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Abstract 

Cobalt is a waste product in many industrial processes and its most common 

radioactive isotope – 60Co – is a by-product of nuclear reactors. If released into 

the environment, cobalt would cause much harm as its stable isotope is toxic to 

plants and animals in large quantities and the radioactive isotope decays via 

gamma radiation. This thesis investigates the sorption of Co onto the surfaces of 

common soil constituents and composites of these, as well as several natural soils, 

to help aid decontamination procedures. 

The key findings of this thesis were with regard to Co sorption behaviour to 

substances commonly found in soils. At high pH, Cobalt was found to form 

binuclear bidentate inner-sphere complexes with ferrihydrite, kaolinite, humic 

acid, as well as composites of the minerals with humic acid. At low pH, Co sorbed 

to kaolinite, humic acid, and the kaolinite-humic acid composite via outer-sphere 

complexes. STEM analysis showed that Co sorbed to one face of the kaolinite 

particles where high affinity AlOH sites are located.  Above pH 5, humic acid 

behaves colloidally and Co bound to these colloidal particles are mobile. A surface 

complexation model was developed based on this information that was capable of 

modelling Co sorption to the end-member phases. However, Co sorption to the 

composite phases cannot be modelled assuming linear additivity of the end-

member phases.  

This model was further tested with Co sorption to soils with a range of 

constituents and carbon contents. Co sorption to peat was high across the entire 

pH range and the model produced a good fit to this. Sorption to the agricultural 

soil and sediment was low below pH 6, but increased to 100% by pH 8. Model fits 

to these replicated the overall behaviour but did not make accurate detailed 

predictions.  

Co sorption to ferrihydrite and humic acid were not found to increase with 

ageing, though sorption to sorption to kaolinite increased up to 28 days. Co 

became incorporated into ferrihydrite with longer sorption periods, thus 

decreasing the amount of Co desorbed, and desorption by citric acid or HCl were 

the most effective due to dissolution of the ferrihydrite releasing incorporated Co. 

EDTA was the most effective at desorbing Co from kaolinite and humic acid as it 
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desorbed Co via chelation. The most efficient method of decontamination based 

on these experiments would be to wash with EDTA within 7 days of the 

contamination event, as after this period of time EDTA removed from ferrihydrite 

similar amounts of Co as citric acid and HCl.  

The findings of this thesis mark a significant advance in understanding the 

fundamental processes governing the sorption and desorption of Co in the 

environment. Particularly, it shows that while Co sorption to soils can be 

modelled assuming parameters based on sorption to pure phases, these models 

are missing the complexity required to fully model sorption to soils. Therefore it 

is essential for future work to further constrain the sorption processes controlling 

Co behaviour to soil phases. Furthermore, decontamination techniques are 

affected by the length of the sorption equilibrium period for iron oxides. This 

suggests that for soils with high Fe contents decontamination should be 

attempted as soon as possible.  
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Figure 4.1: Diagrams showing sorption mechanisms discussed in this 
study. Co atoms are labelled circles, unlabelled large circles are surface 
metal atoms of a standard mineral, and unlabelled smaller circles are 
oxygen atoms. ......................................................................................... 59 

Figure 4.2: Co speciation plots for each of the ionic strength and Co 
concentrations used in the sorption experiments (solid lines, Co(OH)2, 
dashes, Co+2, dots, CoOH+, and dash-dot-dot, CoNO3+). Panels A, C, 
and E show 10-4 mol L-1 Co at 10-3, 10-2, and 10-1 mol L-1 NaNO3, 
respectively. Panels B and C show 10-3 and 10-5 mol L-1 Co at 10-2 mol L-

1 NaNO3. .................................................................................................. 63 

Figure 4.3: Co sorption (at 10-4 mol L-1 Co total concentration, equating to 
0.58 wt% Co sorbed at 100% sorption for ferrihydrite and 0.058 wt% 
Co sorbed at 100% sorption for kaolinite) to ferrihydrite (A) and 
kaolinite (B) as a function of pH; conducted at room temperature at a 
range of ionic strengths. ......................................................................... 67 

Figure 4.4: Co sorption to humic acid at ionic strengths of 10-3 mol L-1 and 
10-1 mol L-1, and using two different filters before analysis (squares, 10-

3 mol L-1 NaNO3; circles, 10-1 mol L-1 NaNO3 filtered with a 10 kDA 
centrifuge filter; triangles, 10-1 mol L-1 NaNO3 filtered at 0.22 μm.) 
Solid lines represent the surface complexation model fits for each 
system. .................................................................................................... 68 

Figure 4.5: Co sorption to ferrihydrite (A) and kaolinite (B) as a function 
of pH and Co concentration. For ferrihydrite, squares show 0.058 wt% 
Co, circles show 0.58 wt% Co, and triangles show 5.8 wt% Co systems. 
For kaolinite, squares show 0.0058 wt% Co, circles show 0.058 wt% 
Co, and triangles show 0.58 wt% Co. Solid lines represent the EQLFOR 
fits. The solid:solution ratio was 1 g L-1 for ferrihydrite experiments, 
and 10 g L-1 for kaolinite. ........................................................................ 68 

Figure 4.6: Co sorption to ferrihydrite-humic acid (A) and kaolinite-humic 
acid (B) organo-mineral composites, both at a range of C contents (for 
the ferrihydrite-humic acid composites, squares show sorption to the 
composite with 5 wt% C; circles, 10 wt% C; and triangles, 17 wt% C; for 
the kaolinite-humic acid composites, squares show sorption to the 
composite with 1.4 wt% C, and circles 2.2 wt% C). In both graphs, the 
dashed line shows sorption to the humic acid end-member at the ionic 
strength of each experiment, and the dotted line shows sorption to the 
mineral end-member (ferrihydrite or kaolinite). .................................. 70 

Figure 4.7: EXAFS spectra and resulting Fourier transforms of each 
sample. Sample names are presented as: adsorbent_wt % Co_wt% C 
(only necessary for the composite phases)_ionic strength (in mol L-1) 
and sample pH. The solid line represents the data and dotted line is the 
best fit. Samples showing signs of low signal:noise and self-absorption 
have been omitted, but are shown in Fig. 4.8. ........................................ 71 
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Figure 4.8: EXAFS spectra and resulting Fourier Transform for samples 
with low signal:noise and high self-absorption. Sample names are 
presented as: adsorbent_wt % Co_ionic strength (in mol L-1)_sample 
pH. The solid line represents the data and dotted line is the best fit. All 
samples were fit to a similar model to that of the 2 wt% Co ferrihydrite 
pH 8 sample in Fig. 4.7. .......................................................................... 75 

Figure 4.9: High resolution bright field TEM image showing ferrihydrite 
particles after Co sorption at pH 8, with corresponding HAADF image 
and Co and Fe EDS maps of the same region. An electron energy loss 
spectrum collected from the ferrihydrite is also shown (bottom panel) 
with the position of the Fe L3, 2 and Co L3-edges indicated. .................. 77 

Figure 4.10: Low resolution bright field TEM images show kaolinite 
crystals after Co sorption. Red box shows region chosen for high 
resolution TEM imaging. HAADF image of same region and Al and Co 
EDS elemental maps are also show. Arrows denote a specific Co-
containing laminae and are the same location in each image. ............. 78 

Figure 4.11: Low resolution bright field TEM image showing HA after Co 
sorption at pH 8. Red box shows region show in the adjacent high 
resolution image with corresponding HAADF image of same region 
and the Co EDS elemental map. ............................................................. 79 

Figure 4.12: Iterated surface complexation model predictions for Co 
sorption to kaolinite surface sites. Panel A shows Co sorption with an 
ionic strength of 10-3 mol L-1; panel B, 10-2 mol L-1; and panel C, 10-1 
mol L-1. Squares are data; solid lines show total predicted sorption; 
dashed lines, ≡AlOH sites; dotted lines, ≡XH sites; and dash-dot-dot 
lines, ≡X- sites. ....................................................................................... 90 

Figure 4.13: EQLFOR model predictions for Co sorption to kaolinite 
surface sites. Panel A shows predicted sorption at 0.0058 wt% Co, 
panel B at 0.058 wt% Co, and panel C at 0.58 wt% Co. Solid lines 
represent total amount of Co predicted to be sorbed, dashed lines show 
sorption to ≡AlOH sites, dotted lines show sorption to ≡XH sites, and 
dash-dot-dot lines show sorption to ≡X- sites. ....................................... 91 

Figure 4.14: Iterated surface complexation model predictions for Co onto 
humic acid surface sites at 10-3 mol L-1 NaNO3 (panel A) and 10-1 mol L-

1 NaNO3 (panel B). Squares are data; solid lines, total predicted 
sorption; dashes, outer-sphere sorption to ≡RCOO- sites; and dots, 
inner-sphere sorption to ≡RCOO- sites. ................................................ 93 

Figure 4.15: Surface complexation model predictions of Co sorption to 
ferrihydrite-humic acid surface sites. Panels A and B show the 
composite with 5 wt% C; panels C and D, 10 wt% C; and panels E and 
F, 17 wt% C composite. Panels A, C, and E show predicted sorption 
using log Ks fixed to those from the two end--member phases. Panels 
B, D, and F show predicted sorption with iterated log Ks. Solid lines 
show total predicted sorption; dashed lines, sorption to ≡FeOH sites; 
dash-dot-dot, outer-sphere sorption to ≡RCOO- sites; and dotted lines, 
inner-sphere sorption to ≡RCOO- sites. ................................................ 96 
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Figure 4.16: Surface complexation model predictions of Co sorption to 
kaolinite-humic acid surface sites. Panels A and B show the results for 
the 1.4 wt% C composite, and panels C and D show the 2.2 wt% C 
composite. Panels A and C show predicted sorption using log Ks fixed 
to those from the two end-member phases. Panels B and D show 
predicted sorption with iterated log Ks. Solid lines show total predicted 
sorption; dashed lines, sorption to the ≡AlOH sites; dotted lines, 
sorption to ≡XH sites; dash-dot-dot lines, inner-sphere sorption to 
≡RCOO- sites; and dash-dot, outer-sphere sorption to ≡RCOO- sites. . 97 

Figure 5.1: Co sorption to 3 soils from different environments: peat 
(squares), agricultural (circles), and sediment (triangles). Error bars 
represent the standard deviation of the triplicate sets. ........................ 112 

Figure 5.2: XRD spectra of the peat, agricultural soil, and sediment. 
Dominant mineral phases are identified as: Qtz, quartz; Al, albite; Dt, 
dolomite; Chl, chlorite; and Ms, muscovite. ......................................... 114 

Figure 5.3: Surface complexation model predictions of Co sorption to peat 
soil. Panel on the left shows predicted sorption using log K values fixed 
to those from the two end member phases. Panel on the right shows 
predicted sorption with iterated log K values. Solid lines show total 
predicted sorption; dashed lines, inner sphere sorption to ≡RCOO- 
sites; and dotted lines, outer-sphere sorption to ≡RCOO- sites. .......... 116 

Figure 5.4: Surface complexation model predictions of Co sorption to 
agricultural soil. Panel on the left shows predicted sorption using log K 
values fixed to those from the two end member phases. Panel on the 
right shows predicted sorption with iterated log K values. Solid lines 
show total predicted sorption; dashed lines inner-sphere sorption to 
≡FeOH sites; dotted lines, outer-sphere sorption to ≡RCOO- sites; 
dash-dot-dot, inner-sphere sorption to  ≡RCOO- sites. ........................ 118 

Figure 5.5: Surface complexation model predictions of Co sorption to 
sediment. Panel on the left shows predicted sorption using log K values 
fixed to those from the two end member phases. Panel on the right 
shows predicted sorption with iterated log K values. Solid lines show 
total predicted sorption; dashed lines inner-sphere sorption to ≡AlOH 
sites; dotted lines, sorption to ≡X- sites. ............................................... 119 

Figure 6.1: Co sorption (at 10-3 mol L-1Co total concentration, equating to 
5.893 wt% Co sorbed at 100% sorption) to ferrihydrite (squares), 
kaolinite (circles), and humic acid (triangles); conducted at room 
temperature and ionic strength of 10-3 mol L-1 NaNO3. Error bars 
represent one standard deviation in the amount of Co sorbed and are 
not visible for the ferrihydrite and humic acid systems. ..................... 129 

Figure 6.2: Co desorption from ferrihydrite, kaolinite, and humic acid as a 
function of a variety of desorption agents: DIW (squares), EDTA 
(circles), citric acid (triangles), and HCl (diamonds). Error bars 
represent the standard deviation in Co desorbed. Where they are not 
present indicates data ranges where the standard deviation is too small 
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Chapter 1: Introduction 

1.1 Background context and rationale 

Cobalt-60 was chosen to study because a large number of industries use it as a 

radioactive source, therefore it is possible that it would be the radionuclide of 

choice in a radiological dispersion device (RDD) (Luckey and Kansas, 2003). 60Co 

is a synthetic radionuclide and is also one of the most highly radioactive sources 

for an RDD; it has a half-life of 5.27 years and 1 g of cobalt-60 has an activity of 

44 TBq. As it decays through gamma radiation it is not easily contained through 

shelding. It is a major radionuclide generated in the civil nuclear industry as a by-

product of nuclear fission reactions and is present in low-level liquid waste. 

Therefore there is an interest in understanding its behaviour in the environment 

should there be an unexpected event wherein it is released into the surface and 

sub-surface. Most radionuclides formed in nuclear reactors have low solubility, 

and so accumulate in the upper soil layers or interstitial system of sediments in 

aquatic systems (Igwe et al., 2005). For example, Smith et al. (2008) found that 

98 % of 60Co remained in the upper 15 cm of soil after 1 year. As 60Co has a half-

life of 5.27 years, it is essential to efficiently decontaminate an area to prevent 

dangerous doses of radiation affecting life, as the amount present will not 

naturally decay quickly.  

Soils are rarely made up of just 1 or 2 components, and so it is necessary to 

understand how Co interacts with soil constituents on their own and as a mixture 

as this knowledge will assist in determining the most effective decontamination 

technique. This mechanistic understanding can be input to surface complexation 

models to test whether current knowledge is accurate and compare how well the 

model predicts sorption compared to macroscopic data of the systems being 

tested. By combining models of sorption to a number of soil components, the 

knowledge gained from these can then be used to predict how Co would react in a 

natural soil. It is possible to test these models by sorbing Co to a number of 

different soils and comparing the predicted sorption to the collected data. This 

process allows us to test whether our understanding gained from the simple 
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systems fully explains cobalt’s sorption behaviour in a more complex natural 

system. 

After a nuclear contamination event, the initial response is not to immediately 

decontaminate the affected area. First, the nature of the incident needs to be 

assessed, the exact radionuclides involved need to be determined, and it needs to 

be decided whether clean-up is necessary and, if so, which would be the most 

appropriate decontamination method. This is likely to result in the radionuclide 

being in the environment for a period of time, and this could affect the efficiency 

of any decontamination techniques that are put into place.  

In the case of there being a time delay, it is essential to know whether there is an 

ageing period past which decontamination becomes significantly less efficient. 

Knowing about a potential critical ageing period could influence decisions made 

in the aftermath of a contamination event, and potentially increase the priority of 

remediation. In particular, this would prevent a waste of resources if - without 

this understanding - decontamination would be attempted after the critical 

ageing period has passed resulting in ineffective remediation. 

1.2 Aims and objectives 

The overarching aim of this thesis was to understand the sorption behaviour 

of Co to substances commonly found in soils and how this affects the mobility 

of Co2+. To fulfil this aim, a number of specific objectives were tested:  

• Determine the macroscopic sorption behaviour of Co with ferrihydrite, 

kaolinite, humic acid, and ferrihydrite-humic acid and kaolinite-humic 

acid composites. Establish whether the behaviour was affected by ionic 

strength of the system or (in the case of the organo-mineral composites) 

the carbon content of the composites, 

• Use EXAFS spectroscopy to determine the local environment of Co 

sorption to the sorption phases, 

• Input the knowledge gained from EXAFS into a thermodynamic surface 

complexation model to be able to predict Co sorption to the organo-

mineral composites, 
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• Determine whether Co sorption to natural soils is comparable to that of Co 

sorption to ferrihydrite, kaolinite, humic acid, or composites of 

ferrihydrite-humic acid or kaolinite-humic acid, 

• Observe whether Co sorption to ferrihydrite, kaolinite, and humic acid 

changes over time, 

• Determine the most effective desorption agent to release Co back into 

solution after several different sorption equilibration times. 

1.3 Thesis Structure 

This thesis is structured to first give an overview of the project in Chapter 1. Each 

chapter then intends to inform the reader of knowledge that will lead to a final 

understanding of the stated objectives.  

Chapter 2 presents a detailed review of the literature, including discussion of the 

structure of soils and the chemistry and mineralogy of key minerals discussed in 

this work, sorption theory, the geochemical behaviour of Co, and current 

decontamination methods. 

Chapter 3 of this thesis presents a detailed description of the materials and 

methods employed in the research of this work. Detailed relevant background to 

the techniques used is also given. 

Chapter 4 is the first results chapter and presents an investigation of Co sorption 

to ferrihydrite, kaolinite, humic acid, and organo-mineral composites. The 

objectives for this investigation were addressed by a detailed experimental 

programme with a range of Co concentrations (10-5 – 10-3 mol L-1), and ionic 

strengths (10-3 – 10-1 mol L-1). The experiments were conducted across the pH 

range 3.5 – 8.5. The EXAFS results were interpreted using the Demeter package 

(Ravel and Newville, 2005), and the macroscopic and EXAFS results were input 

to the EQLFOR surface complexation model (Sherman et al., 2008; Sherman, 

2009). High-resolution TEM was used to supplement the microscopic EXAFS 

data and to gain an image of the location of Co sorbed to ferrihydrite, kaolinite, 

and humic acid.  

Chapter 5 builds on this work by exploring the Co sorption behaviour to 3 soils of 

different origins and C contents. Batch sorption experiments were used and the 
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over the pH range 3.5 to 8.5 for the 3 soils and the results were again input to 

EQLFOR. 

Chapter 6 then focusses on the effect of ageing and desorption on Co sorption to 

ferrihydrite, kaolinite, and humic acid. Batch sorption experiments were carried 

out at pH 8 and left to equilibrate for either 1, 7, 28 or 84 days, before the 

supernatant was replaced by one of 4 desorption agents: DIW, EDTA, citric acid, 

or HCl. These were shaken for 1 day before being sampled to determine how 

much Co was in solution. 

Finally, Chapter 7 summarises the conclusions from this work together with an 

overall discussion of the results.  
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Chapter 2 : Literature Review 

2.1 Sources of Cobalt 

Cobalt is a naturally occurring element that is found widely in rocks, soils, water, and 

vegetation (Gál et al., 2008). Easily weathered minerals – such as olivine, hornblende, 

and augite (Mitchell, 1967) – often contain Co2+ up to 8% (Young, 1957) as it is 

incorporated into the crystal lattice by substituting with Fe2+ and Mg2+ because they have 

similar ionic radii (Co2+ = 8.2 nm, Mg2+ = 7.8 nm, and Fe2+ = 8.3 nm) (Smith and 

Paterson, 1995). The concentration of Co in sedimentary rocks is related to the 

composition of the material that was originally weathered, and so its concentration can 

vary from 0.06 ppm in quartz to 14 ppm in shales (Tatsumoto, 1957; Carr and Turekian, 

1961; Mitchell, 1967). 

Co ores (such as cobaltite – CoAsS – and linnaeite – Co3S4) are found in a number of 

countries including Canada, Russia and Democratic Republic of Congo, where it is mined 

and refined for use in industry. Co is also commonly extracted as a by-product of copper 

and nickel mining because Co ores are rare and small in size compared to the mining 

fields of copper and nickel (Mudd et al., 2013). Industrial uses vary widely, as they 

include the use of Co compounds as paint pigments, as well as creating corrosion- and 

wear-resistant alloys when combined with iron and nickel (Jacobs and Walter, 2005).  

Many forms of anthropogenic activity release Co into the environment. Coal power plants 

release Co that is associated with fine particulate matter, fly ash, and bottom ash (Reddy 

et al., 2005). The amount of Co emitted is dependent on its concentration in the initial 

fuel (Reddy et al., 2005) with concentrations ranging from 2.1 (Coles et al., 1979) to 9.6 

μg g-1 (Raask, 1985) in coals. Vehicle exhausts are also known to emit Co, with 

concentrations increasing from 0.15 ng m-3 at roof top level to 0.47 ng m-3 at street level 

(Johansson et al., 2009). Cobalt emissions have also been associated with cement plants 

(Chen et al., 2010), glassworks (Jandová et al., 2005), and the petroleum industry (Silva 

et al., 2015). 

Cobalt can also exist as a radioactive isotope, of which 60Co has the longest half-life (~5 

years). Cobalt-60 is produced as a low-level liquid waste from nuclear power reactors 

(Bangash et al., 1992) and is present in the cooling waters of nuclear reactors (Motojima 

et al., 1978). 60Co is created artificially by the activation of stable 59Co by bombarding it 

with neutrons. The 59Co absorbs a neutron, converting it to 60Co (Ward Whicker and 

Schultz, 1982). This then decays by gamma and beta radiation to the stable 60Ni (King, 

1994): 
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Co27
59 + n0

1  → Co27
60  

t1
2

=5.27 years
→          Ni28

60
+ β+ γ

-1

0
     (2.1) 

2.2 Health Effects 

Cobalt is a bioessential nutrient due to its compounds assisting in the formation of 

haemoglobin (Aubert and Pinta, 1977) and being a central atom in vitamin B12 (Bruland, 

1983). Vitamin B12 is a coenzyme involved in many biological reactions, such as DNA 

synthesis (Andres et al., 2004), meaning that a lack of Co could cause serious harm if 

there is a deficiency. In plants, Co was found to be important in N2 fixation as increasing 

the supply of Co resulted in an increase in rhizobial growth, N2 fixation, and production 

of vitamin B12 (Kliewer and Evans, 1963). In leguminous plants (e.g sweet lupin) a Co 

deficiency was found to delay the onset of N2 fixation by several weeks (Dilworth et al., 

1979). Fauna suffering from a Co deficiency show symptoms such as a loss of appetite, 

lack of growth, and low fertility (Mengel and Kirkby, 1978). A deficiency of vitamin B12 in 

humans can result in disturbances in the nervous system, and leads to the blood disease 

pernicious anemia, which causes the deterioration of cells in bone marrow that are 

responsible for replacing blood (Enghag, 2004). 

On the other hand, a surplus of Co can also be damaging to lifeforms. In plants, Co 

toxicity alters the structure and number of chloroplasts in a leaf and in some plants it 

inhibits enzymes involved in the fixation of CO2 (Palit et al., 1994). This results in leaf 

fall, inhibition of greening, and reduced shoot weight (Palit et al., 1994). Excessive intake 

of Co in animals can cause heart disease, and in cases where this resulted in death the Co 

concentration was an order of magnitude greater than average (Tokaz et al., 2013). 

Radioactive 60Co decays producing beta/gamma radiation, which can have harmful 

effects on living organisms if they receive a high doses. At high doses of radiation 

functional cells (as opposed to structural cells) of an organ die (Mettler and Voelz, 2002). 

However, this may not cause harm if the cells are not essential for survival. But if a large 

number of cells die, or those that are affected are critical to survival, then symptoms such 

as vomiting, fatigue, and fever can occur in humans (the severity of which are dependent 

on the dose of radiation received) (Anno et al., 1989). 

In contrast, plants have been shown to benefit from exposure to gamma radiation. 

Irradiating hard wheat and chickpea seeds with a low dose of radiation (≤25 Gy) was 

found to increase the root number and root length (Melki and Sallami, 2008; Melki and 

Marouani, 2010) while irradiating tomato seeds with up to 10 Gy caused early ripening of 
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the fruits, and consequently increases in the number and weight of ripe fruit (Sidrak and 

Suess, 1973).  

Too high of an exposure to radiation can inhibit plant growth. Bartlett pears that were 

subjected to 3000 – 4000 Gy did not ripen even when all other factors benefitted 

ripening (Maxie et al., 1966). The mean survival rate of Curcuma alismatifolia decreased 

from 63% at a dose of 20 Gy to 7% at 30 Gy and then to 2% at 40 Gy (Lee Abdullah et al., 

2009). As well as a decreasing survival rate with increased doses of radioactivity, Lee 

Abdullah et al. (2009) found that the height of the plants and number of leaves 

decreased. 

Therefore, while low concentration levels of Co are essential for living organisms to 

function, and even low doses of gamma radiation can be beneficial to plants, high 

amounts are poisonous to plant and animals. This results in the removal of Co and its 

radioactive isotopes to be necessary in order to prevent harm to people and the 

environment.  

2.3 Geochemical Behaviour of Cobalt 

Metallic Co is not reactive with air, only forming Co3O4 when heated and if the reaction 

occurs above 900°C, cobalt(II) oxide, CoO, is formed. Cobalt metal does react directly 

with halogens to form a variety of cobalt(II) salts, including CoBr2, CoCl2, and CoI2. 

Additionally, cobalt dissolves in sulfuric acid to form solutions containing aqueous Co2+ 

(Jacobs and Walter, 2005).  

Cobalt has four oxidation states: Co4+, Co3+, Co2+, and Co1+, although Co3+ and Co2+ are 

the most common  (Ma and Hooda, 2010). Co3+ is not stable in aqueous solution (Baes 

and Mesmer, 1976), and so it often precipitates as sulphides, or is adsorbed by or 

incorporated into hydrous oxide minerals such as Mn(III, IV) oxides as these oxides 

precipitate in the same Eh-pH conditions that Co3+ is present (Kabata-Pendias, 2011; 

Swanner et al., 2014). It can be stabilised by forming a complex with a ligand (e.g. EDTA 

or NH3) and may then be present in aqueous solutions (Krupka and Serne, 2002). In 

contrast, Co2+ is stable in aqueous solution and is mobile in oxidising acidic 

environments (Fig. 2.1) (Kabata-Pendias, 2011). Despite this, Co2+ mobility is limited in 
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oxidising environments because it is strongly associated with manganese and iron oxides 

found in soils and sediments (Wasserman et al., 2001). Under specific conditions – such 

as transient waterlogging – Mn and Fe can become reduced, which causes the release of 

Co2+ that is then able to leach deeper into the soil layers (Baize, 1997). This results in a 

higher rate of weathering in poorly drained environments and these soils will have a 

higher concentration of available Co2+ which would cause more being taken up by plants 

and so entering the food chain (Mengel and Kirkby, 1978).  

In aqueous solutions, Co2+ is octahedrally coordinated with six water molecules, however 

octahedral and tetrahedral stereochemistries are often in equilibrium and so there is 

usually some tetrahedral Co(OH2)4
2+ present  (King, 1994; Collins and Kinsela, 2010). 

Figure 2.1: Eh-pH diagram for the system Co-S-C-O-H. Assumed activites 
for dissolved species are: Co 10-6; C 10-1; S 10-3. Co3+ is only present at 
extremely low Eh values and so is not located on the diagram (Swanner 
et al., 2014). From Brookins (1988). 
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Despite this, Co2+ preferentially forms solid compounds in a tetrahedral structure, 

especially when binding to anionic ligands (Dunitz, 1957; Sacconi et al., 1962; King, 

1994). In contrast, Co3+ complexes are almost exclusively octahedrally coordinated, with 

few 5-coordinated complexes that take the form of square pyramidal geometry (such as 

the vitamin B12
 complex) (King, 1994). 

Co2+ has a similar ionic radius to that of Cu2+, Fe2+, Fe3+,Mn2+, Mg2+, Ni2+, ad Zn2+, giving 

it the potential to be isomorphously substituted into oxides, silicate, and sulphide 

minerals that contain these ions. For example, Co is known to substitute for Ni in many 

copper-nickel-iron sulphide orebodies (Young, 1957) . 

In basaltic rocks (such as gabbros, norites, and andesites) Co is commonly found in 

association with Fe and Mg (Carr and Turekian, 1961). In some Caledonian basaltic and 

dioritic rocks, the Co/Mg ratio was approximately constant with varying concentrations 

of the two metals (Nockolds and Mitchell, 1948), and log/log plots of Co and Mg show a 

positive trend (Carr and Turekian, 1961). A similar positive trend occurs between Co and 

Mg in granites, though in this case there is less scatter and the positive trend is stronger. 

In alkali and calcalkali, the Co/Mg and Co/Fe ratios were found to be constant (Nockolds 

and Allen, 1953; 1954). As with Co and Mg, log/log plots of Co and Fe in basaltic rocks 

show a positive trend (Carr and Turekian, 1961). These suggest some relationship 

between Co and Fe and Mg during the formation of igneous rocks.  

In the pore waters of marine sediments, Co concentrations increase with depth. Cobalt 

was found to be undetectable in the shallow, oxic zone sediments on the east and west 

coast of North America, but concentrations increased to 50 nmol kg-1 in the manganese 

reduction zones at ~8 – 10 cm depth (Heggle and Lewis, 1984). This is likely due to 

adsorbed Co being released from the Mn oxides when they are reduced. Below this depth, 

Co concentrations in the pore waters began to decrease again as a result of the 

precipitation of insoluble cobalt sulphides (Heggle and Lewis, 1984). However, in other 

regions, such as Maizurur Bay, Japan, the Co concentration was found to remain 

relatively stable with increases in depth (Kurata, 1974). This suggests that the behaviour 

of Co in sediments is highly dependent on the mineralogy of the sediments and chemistry 

of the porewaters.  

2.4 Soils and their constituents 

Soil is a mixture of organic matter, minerals, gases, liquids, and organisms that together 

support life. Depending on the location, what makes up a soil can vary drastically. In 

sandy soils over 99% consists of mineral matter, but this can drop to as low as 5% in soils 
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high in organic matter, such as peat (Jackson, 1969). The distribution of minerals 

present in soils is dependent on those inherited from the parent rock and by soil forming 

processes that may destroy some minerals and selectively accumulate others (Jackson, 

1969). The amount of organic matter in a soil is controlled by 5 factors: climate, time, 

vegetation, parent material, and topography (Jenny, 1941). These factors vary in different 

locations, and therefore for different soils. This results in organic matter accumulating at 

different rates and in varying quantities (Sparks, 1995). 

Despite the varying amounts of each soil constituent in soils, there are three minerals 

that contribute the most to the geochemical behaviour due to their high surface area and 

abundance in natural soil systems– clay minerals, iron oxides, and organic matter – and 

therefore this review will focus on these. 

2.4.1 Iron Oxides 

Iron oxides are not found in as large quantities as clays in soils, but play an important 

role in many soil processes because of their large surface area and high reactivity (Sparks, 

1995). 

The basic structural unit of all Fe oxides is the octahedron, where each Fe atom is 

surrounded by six oxygen atoms (Sparks, 1995). Iron is most commonly found in its 

trivalent Fe(III) form in the iron oxides, however there are three compounds that contain 

divalent Fe(II) – FeO, Fe(OH)2 and Fe3O4 (Schwertmann and Cornell, 2003).  

Hematite (Fe2O3) and goethite (FeOOH) are the most common iron oxides and the most 

thermodynamically stable (Sparks, 1995). They are found in soils, often present as films 

on the surfaces of soil grains to give them a red/ brown colour (Jackson, 1969).  

Ferrihydrite is a hydrated semicrystalline material that exists as a poorly ordered 

mineral. It is made up of nano-crystals that are typically 4 – 6 nm in size (Schwertmann 

and Cornell, 1991, 2003). These small particles pack together and form aggregates that 

are greater than 0.1 μm, and this aggregation results in ferrihydrite being microporous. 

Ferrihydrite is widespread in surface environments, but transforms into a more stable 

iron oxide unless stabilised in some way (Schwertmann and Cornell, 2003). Stabilization 

can occur by ferrihydrite binding with organic ligands (e.g. alizarin; Yuwono et al., 2012) 

and metal cations (Liu et al., 2016), and coprecipitation with humic substances (Angelico 

et al., 2014).This can cause changes in particle-particle interactions and surface charge, 

or may slow the transformation into a single crystal from the mesocrystal state (Yuwono 

et al., 2012). The structure of ferrihydrite has been difficult to define due to its low degree 

of order, and the composition of it appears to be variable, especially regarding the 
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amounts of OH and H2O (Schwertmann and Cornell, 2003). However, the simple 

formula Fe5O8H.H2O is generally used to represent this mineral (Towe and Bradley, 

1967). 

The surface area of ferrihydrite (ranging from as low as 175 m2 g-1 to 599 m2 g-1; Zhu et 

al., 2010, and Rout et al., 2012, respectively) is much higher than that of other iron 

oxides, such as goethite (~45 m2 g-1; Sherman et al., 2008) and hematite (~28 m2 g-1; 

Christl and Kretzschmar, 2001). This makes ferrihydrite much more reactive than other 

iron oxides that are more prevalent in soils. The large range in measured surface areas of 

ferrihydrite is because of its aggregated structure and interparticle porosity, which means 

the internal area can be inaccessible to some measurement techniques, such as the BET 

surface area method. This method uses N2 adsorption to measure the surface area of the 

solid and if the interior of the ferrihydrite aggregates is inaccessible to the N2 then the 

measured surface area will be lower than the true surface area (Schwertmann and 

Cornell, 2003; Ona-Nguema et al., 2005). 

The surface functional groups of iron oxides are hydroxyls (OH). They can react with 

acids and bases through reactions 2.2 and 2.3 due to their double pair of electrons and 

dissociable hydrogen atom. This means they are amphoteric and their charge changes 

with pH (Schwertmann and Cornell, 2003). 

≡FeOH2
+

 ↔ ≡FeOH + H+         (2.2) 

≡FeOH ↔ ≡FeO
-
+ H+         (2.3) 

Due to its amphoteric nature, the charge of ions that will be attracted to the iron oxides 

changes with the pH of the system. At acidic pH values the surface sites will be in the 

≡FeOH2
+

 form and will attract anions, but at basic pH values cations will be attracted due 

to the surface site being present as ≡FeO
-
.  

2.4.2 Clay Minerals 

The clay distribution in soils may change with depth depending on the age of the soil 

(Barshad, 1964). In young soils with a uniform alluvial parent material, there is no 

change in clay content with depth, whereas in a moderately weathered soil the clay 

content is highest at the surface and decreases with depth, and in well-developed soils 

the clay content increases with depth until it reaches a maximum, below which the clay 

content either stays constant or decreases. 

Clay minerals play a large role in the chemistry of soils. They often determine the 

physical properties of a soil, such as plasticity and structure, as well as the chemical 
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properties (e.g. cation exchange, ion release, and ion fixation) (Jackson, 1969). This is 

often due to the abundance of clay minerals in the soil rather than it being particularly 

influential, as the surface areas are generally low: 39.8 m2 g-1 for bentonite (Aylmore et 

al., 1970), 12.2 m2 g-1 for kaolinite (Peacock and Sherman, 2005) and 43 m2 g-1 for illite 

(Helios Rybicka et al., 1995) . For example, as the percentage of clay in a soil increases, 

the ability for it to hold water increases (Keen and Raczkowski, 1921).  

Clays are formed of layers of silica tetrahedral and alumina octahedral sheets. A 1 :1 clay 

mineral (Fig. 2.2) occurs when one tetrahedral sheet binds to an octahedral sheet via the 

oxygen atoms at the tip of the tetrahedral sheet, and when two tetrahedral sheets are 

bound to an octahedral sheet, a 2 : 1 clay is created (Grim, 1968; Sparks, 1995). In the 

interlayer space between the sheets cations can be octahedrally coordinated with 

hydroxyl groups, or may be present as individual cations (Sparks, 1995). 

During the formation of a mineral an atom in the crystal lattice can be substituted for by 

another atom of a similar size. This can result in the charge changing from neutral to a 

net negative or positive charge, which is then balanced by ions near the surface of the 

clay (Sparks, 1995). In clays, the Si4+ in the tetrahedral sheet is often replaced by Al3+ and 

sometimes P, while the central ion in the octahedral sheet (Al3+, Mg2+, Fe2+)  can be 

replaced by Fe2+, Fe3+, Mg2+, Ni2+, Zn2+, or Cu2+ (Sparks, 1995). When a trivalent ion 

occupies the central space, the clay is referred to as a dioctahedral structure because only 

two of the three octahedral positions are filled, but when a divalent ion is the central 

atom all three of the octahedral positions are filled and it is a trioctahedral structure 

(Jackson, 1969). 

Figure 2.2: The structure of kaolinite. From Barani and 
Kalantari (2017). 
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Kaolinite (Al2Si2O5(OH)4) is a 1 : 1 dioctahedral clay (Fig. 2.2) that contains little 

isomorphic substitution (Sparks, 1995). There is no interlayer space as the silica and 

alumina sheets share a common plane of oxygen atoms and repeating layers are bound 

via hydrogen bonds, which prevents kaolinite from expanding in water, which 2 : 1 clays 

such as montmorillonite do (Jackson, 1969). This structure also leads to the silica/ 

oxygen and alumina/ hydroxyl sheets being exposed, allowing them to interact with other 

soil species (Grim, 1968).  

Despite having little isomorphic substitution, Al3+ typically substitutes for Si4+ in the 

tetrahedral sheet (van Olphen, 1977). This creates a permanent negative charge on the 

basal surface that results in the attraction of cations in solution throughout the entire pH 

range. Kaolinite also has a hydroxyl surface where the OH groups can act as proton 

donors and form H-bonds with foreign molecules (Tunega et al., 2002). However, these 

are less reactive than the pH-dependent surface sites and do not contribute to the 

sorption capacity of the mineral (Brady et al., 1996; Liu et al., 2013).  

The pH-dependent charge of kaolinite is due to the presence of ≡AlOH and ≡SiOH groups 

found at the edges of the octahedral and tetrahedral sheets, respecitively. The ≡SiOH 

groups are found at the edge of the tetrahedral sheet and only contribute towards the 

negative charge by deprotonation to ≡SiO- through the same reaction as equation 2.3, 

where Fe is replaced with Si (Sposito, 1984; Sparks, 1995; Huertas et al., 1998). In 

contrast, the ≡AlOH are amphoteric and becomes protonated and deprotonated through 

equations 2.2 and 2.3 where Fe is replaced with Al (Sparks, 1995).  

2.4.3 Organic Matter 

Soil organic matter is an important constituent in soils as it can control the uptake and 

availability of plant nutrients by having a high surface area (800 – 900 m2 g-1) and a 

cation exchange capacity of 150 – 300 cmol kg-1 (Sparks, 1995). This high surface area 

and cation exchange capacity means that soil organic matter is capable of sorbing macro- 

and micro-nutrients, heavy metals, and pesticides, thereby controlling their mobility in 

the soil (Sparks, 1995). 

The main elemental constituents of soil organic matter are carbon, oxygen, hydrogen, 

and nitrogen, with phosphorus and sulphur being less abundant (Sparks, 1995). The ratio 

of these elements to each other stays similar in drastically different soil types that contain 

different amounts of each of the chemical species (Kononova, 1966; Stevenson, 1994). 

Soil organic matter can be split into 2 groups: non-humic and humic substances. Non-

humic substances only exist in the soil briefly because they are attacked by 
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microorganisms. They include carbohydrates, proteins, peptides, amino acids, fats, 

waxes, and low-molecular-weight acids (Sparks, 1995). 

The decomposition of plant, animal, and microbial material produces acidic, complex 

organic molecules that make up humic substances (Tipping, 2002). Humic substances 

can be subdivided into humic acid, fulvic acid, and humin, which are defined based on 

the conditions under which they are soluble / insoluble. Fulvic acid is soluble in both acid 

and alkali solutions, humic acid is insoluble in acid and soluble in alkali, and humin is 

insoluble in acid and alkali solutions (Sparks, 1995). The elemental composition of the 

three phases are similar and often overlap due to different sources of the soil (for 

example, the relative C content ranges for humic acid, fulvic acid and humin are 52 – 

65%, 40.7 – 60.4% and 55.9 – 56.3%, respectively), humic acid has the largest range and 

therefore the possibility to have the lowest O content (24.8 – 41.7%) compared to humin 

(31- 36.5) and fulvic acid (39.7 – 49.8%) (Tipping, 2002). However, the molecular 

weights of the phases are dramatically different, with fulvic acid generally having a range 

of 1,000 to 3,900, humic acid can have molecular weights up to 200,000 (Beckett et al., 

1987; Tipping, 2002), and humin having the largest molecular weights at 100,000 – 

10,000,000 (Pettit, 2004; Calace et al., 2007; Helal et al., 2011). 

All three sub-categories of humic substances consist of functional groups that may 

contain carbon, oxygen, hydrogen, or nitrogen in a range of structures (Stevenson, 1994). 

These functional groups contribute to the high cation exchange capacity by becoming 

deprotonated as pH increases; this then allows cations to bind to the functional groups as 

they now have a negative charge. The functional groups that deprotonate at pH values 

commonly found in soils (<5) are carboxyls (R-COOH), quinones (Ar=O), and phenolic 

OH groups (Ar-OH) (Sparks, 1995). Therefore, these are the functional groups that are 

most important for interactions between humic substances and cations. Humic acids are 

characterised as being dominated by a high number of carboxyl and phenolic hydroxyl 

groups attached to aromatic rings (Fig. 2. 3) (Szyma ski et al., 2016). The presence of 

aromatic structures suggests that algae or microbes are involved in the humification 

process to create humic substances (Hatcher et al., 1981). Despite the complex structure 

of humic acids being heterogenous and their elemental composition varying greatly, it 

was found that there was no relationship between the humic acids and their original 

vegetation type when analysed with infrared spectroscopy and solid state nuclear 

magnetic resonance spectroscopy (Amalfitano et al., 1995). However, there is a difference 

in the C/N ratio of marine and soil humic acids, ranging from 6 – 9 for marine and 12 – 

18 for soil (Gauthier et al., 1987). This suggests that the environment does play a role in 
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the heterogeneity of humic acids on a large scale, but differences on a more local scale are 

minimal.  

2.5 Sorption Processes 

Sorption is the term given to processes that remove metal ions from solution. This can 

occur through three main mechanisms: adsorption, incorporation, and precipitation. 

2.5.1 Adsorption 

Adsorption occurs when a solute is removed from solution and forms a surface complex 

on the mineral surface (Krauskopf and Bird, 1995). One of two types of complex can be 

formed: inner- or outer-sphere. Inner-sphere complexes form when hydroxyl groups on 

the sorbent surface create ionic or covalent bonds with ions in solution. When cations 

Figure 2.3: A model structure of humic acid. From (Szyma ski et al., 2016) 
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form inner-sphere complexes with an oxide surface, the process is known as a cation 

exchange reaction due to the cation replacing the H+ of the hydroxyl group, for example: 

S-OH+M+
↔ S-OM+H+         (2.4) 

where S represents the mineral surface and M the cation. When anions bind to the 

sorbent surface, the process is a ligand exchange reaction and the anion replaces the 

hydroxyl group: 

S-OH+L-
↔ S-L+OH

-
         (2.5) 

where L represents the sorbing anion (Stumm, 1992). The adsorbing ion in an inner-

sphere complex can either bind to one or two surface functional groups, and these are 

termed monodentate or bidentate respectively (Fig. 2.4) (Krauskopf and Bird, 1995).  

With an increasing adsorbate concentration, it is also possible for clusters of ions to form 

on the surface, which are termed multinuclear complexes (Fig. 2.5) (Krauskopf and Bird, 

1995). 

Outer-sphere complexes (Fig. 2.4) are formed from long range electrostatic forces 

(Langmuir, 1997). These forces are weak and the ions keep their associated water 

molecules, but this also means that this type of complex is not as stable as inner-sphere 

complexes, and that they can’t approach the sorbent closer than the radii of their 

Figure 2.4: A schematic showing outer-sphere complexation (left) 
monodentate inner-sphere complexation (centre) and bidentate inner-
sphere complexation (right). The horizontal line denotes the boundary 
between the mineral below and the solition. Small solid circles in the 
mineral represent metal ions and the large solid circles are oxygen 
atoms. M represents sorbate ions, and H denotes hydrogens in water 
molecules solvated about the surface complexes. Adapted from 
Krauskopf and Bird (1995) 
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hydration spheres (Harrison and de Mora, 1969; Krauskopf and Bird, 1995). Because of 

this, the inner- and outer-sphere complexes are often placed at different planes when 

modelling adsorption (e.g. the basic Stern model – see Chapter 3.6.1 for more detail).  

Adsorption is dependent on a number of external factors, the most important of which is 

pH. This is because adsorption most commonly occurs between ions in solution and 

surface functional groups on the sorbent. The surface functional groups react with H+ 

and OH- ions in solution (equations 2.2 and 2.3) causing them to become more 

negatively charged with increasing pH and will attract ions of the opposite charge 

(Stumm, 1992). Due to this shift in surface charge, there is a pH at which the sorbent’s 

net charge is 0, which is known as the point of zero charge (PZC) (Krauskopf and Bird, 

1995).Therefore, at pH values below the PZC where the functional groups are positively 

Figure 2.5: Schematic two-dimensional representation 
of a multinuclear surface complex of Pb bound by 
two inner-sphere surface complexes to goethite. 
From Krauskopf and Bird (1995). 
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charged more anions will be sorbed and in environments where the pH is above the PZC 

the functional groups are negatively charged and attract cations (Fig. 2.6).  

The ionic strength of the system impacts the amount of adsorption that occurs due to 

ions competing for binding to the surface sites. As the ionic strength increases, more 

competing ions means that less of the desired ions are sorbed (Undabeytua et al., 2002). 

However, only outer-sphere complexation is affected by changes in ionic strength 

(Krauskopf and Bird, 1995). 

Different sorbing ions have different pH ranges of the sorption edge, and this is 

particularly evident when multiple ions are in the system. The order of the sorption edges 

(from low to high pH for cations) is known as the selectivity sequence. Cations with 

sorption edges at low pH values are said to have a higher affinity to the sorbent and these 

Figure 2.6: Adsorption of various oxyanions (a) and metal cations (b) 
each at a trace concentration of 5x10-7) by ferrihydrite as a function of 
pH at an ionic strength of 0.1 mol L-1. From Langmuir (1997). 
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will outcompete other cations for binding sites thereby shifting the sorption edge of the 

lower affinity cation to higher pH values (Bruemmer et al., 1988; Zhu et al., 2010).  

2.5.2 Incorporation 

Incorporation is a process that occurs when a foreign ion replaces one in a mineral lattice 

(Bradl, 2004). This takes place through either isomorphic substitution or coprecipitation. 

Isomorphic substitution occurs when ions that are adsorbed to the mineral surface 

diffuse into the mineral lattice and completely lose their hydration sphere in the process 

(Bradl, 2004; Schmidt et al., 2009). In order to be incorporated, the ions must diffuse 

beyond the interfacial region of the mineral, which is defined as the nanometer depth 

from the surface (Sposito, 1986). Coprecipitation often takes place by recrystallization, in 

which the primary solid dissolves and reprecipitates with the solution ions and this forms 

a more thermodynamically stable crystal (Curti, 1997). 

The biggest control on which ions can be incorporated into a mineral is ionic radius, as 

ions with a similar ionic radius can substitute for each other, e.g. Mg2+ and Fe2+ with 

ionic radii of 0.72 Å and 0.78 Å, respectively (Krauskopf and Bird, 1995).  

The ionic charge of an ion also influences whether it can be incorporated into a mineral 

structure or not. If the incorporating ion has the same charge as an ion in the mineral 

structure then there is the possibility of it replacing the structural ion (Regenspurg and 

Peiffer, 2005). While ions with differing ionic charges can replace structural ions, when 

the ionic charges are the same there is no change in the crystal structure (Shi et al., 

2016). These changes are due to the mineral maintaining charge balance when an 

incorporating ion has a different charge to the structural ion. This change in charge must 

be compensated for by other substitutions in the mineral structure (Wood and Blundy, 

2001). 

The precipitation rate of the coprecipitate is also an important influence. With an 

increasing precipitation rate, the incorporation of Co, Mn, and Cd into calcite was found 

to decrease (Lorens, 1981). At slow growth rates it is possible for the ions near the 

mineral surface and those incorporated in it to reach equilibrium, but at faster growth 

rates this becomes increasingly difficult. In contrast, Sr incorporation increased with 

faster precipitation (Lorens, 1981). As Sr has a larger ionic radius than Ca2+ it is not 

preferentially incorporated into the coprecipitate, but at high precipitation rates all of the 

ions in the solution layer in contact with the mineral surface become indiscriminately 

trapped by the growing coprecipitate.  



20 
 

2.5.3 Precipitation 

Precipitation is the formation of nuclei on a mineral surface by ions in a solution that 

then grow into a precipitate. Precipitation in this way can occur before the ions would 

precipitate in a solution without a surface (Sparks, 2005), this is because when 

precipitating a mineral from solution, stable nuclei are only formed once an activation 

barrier has been overcome – i.e. the solution must be supersaturated to a certain point 

(Stumm and Morgan, 1996). But, when a solid is already present in the solution, this 

reduces the activation energy necessary for stable nuclei to be formed (Stumm and 

Morgan, 1996).  

 In this way there is a continuum between surface complex formation and precipitation 

as ions sorbing onto a mineral surface lowers the energy required for the ions in solution 

to precipitate (Farley et al., 1985; Stumm, 1992). In this process, as ions form a layer of 

surface complexes on a mineral, a new hydroxide surface can be  formed (Farley et al., 

1985).  

2.6 Cobalt Sorption 

2.6.1 Cobalt sorption to iron oxides 

Cobalt sorption to iron oxides has been studied extensively at the macroscopic level (e.g. 

Forbes et al., 1976; Schenck et al., 1983; Ainsworth et al., 1994; Landry et al., 2009) with 

sorption generally increasing from <10% to ~100% between pH 5.5 and 7.5. Small 

differences in the pH range of the sorption edge, such as a sorption edge between pH 5.5 

and 7 (Landry et al., 2009) compared to 6.5 and 7.5(Schenck et al., 1983) are likely to be 

caused by different preparation methods (Nicholson and Eley, 1997). Differences in the 

preparation methods can affect sorption properties of the minerals, such as the PZC and 

surface area. Reported PZC values for ferrihydrite range from 6.8 (Ghoneimy et al., 1997) 

to 8.1 (Schultz et al., 1987) which will cause differences in the position of the sorption 

edge. This is because it affects the pH at which the mineral’s surface charge changes. 

Ferrihydrite surface area values from the literature also show a range, from 175 m2 g-1 

(Zhu et al., 2010) to 599 m2 g-1 (Rout et al., 2012). This affects the sorption edge as the 

surface area controls the concentration of binding sites and therefore the amount of ions 

that can sorb to the mineral surface (Wilkie and Hering, 1996).  

The ionic strength of the background electrolyte has been found to have no effect on the 

sorption edge of Co sorbing to iron oxides. Increasing the ionic strength from 0.001 mol 



21 
 

L-1 to 0.1 mol L-1 had only a minor effect on the sorption edge by increasing the pH50 (the 

pH at which 50% of sorbing ions are sorbed) from 6.06 to 6.33 (Landry et al., 2009).  

In environmental systems where other heavy metal cations are present, Co is 

outcompeted for binding sites on ferrihydrite, and this can shift the sorption edge to a 

higher pH range. In a system where Co, Cu, Cd, Ni, Pb, Mg, Sr, and Zn were present the 

selectivity sequence was: Pb > Cu > Zn > Ni > Cd > Co > Sr > Mg (Kinniburgh et al., 

1976). Similar selectivity sequences have been found in other studies: Pb > Cd = Co 

(Ainsworth et al., 1994), Cu > Co > Mn (Bibak, 1994), and Cu > Pb > Zn > Co > Cd 

(Forbes et al., 1976). This suggests that in systems where there are multiple cations, the 

sorption edge of Co is likely to be shifted to a higher pH range due to other cations 

outcompeting it for binding sites.  

Cobalt sorption to ferrihydrite has been modelled using a diffuse layer model (DLM) as 

described by Dzombak and Morel (1990). This is a 2-site model that assumes 

monodentate surface complexes according to: 

≡Fe(s)OH+ Co(aq)
2+

 = ≡Fe(s)OCo
+

+H(aq)
+       (2.6) 

≡Fe(w)OH+ Co(aq)
2+

 = ≡Fe(w)OCo
+

+H(aq)
+

      (2.7) 

where ≡Fe(s)OH represents a strong adsorption site and ≡Fe(w)OH a weak site. However, 

the parameters used by Dzombak and Morel (1990) do not describe data accurately at 

high pH vales where the ≡Fe(s)OH sites reach saturation (Ainsworth et al., 1994). To 

resolve this issue Ainsworth et al. (1994) optimised the log K value for ≡Fe(w)OH. With 

the optimised log K, Co sorption was able to be reproduced across the full pH range of 3 

– 10. Landry et al. (2009) also modelled Co sorption data to the DLM by Dzombak and 

Morel (1990), which they found produced a reasonable fit and matched their collected 

data in that there was no dependence on ionic strength.  

Landry et al. (2009) also modelled their data with a single site DLM using protonation 

and deprotonation constants from Sverjensky and Sahai (1996) and fitting to the log K 

value of:  

≡FeOH+ Co(aq)
2+

= ≡FeOCo++ H(aq)
+        (2.8) 

This produced as statistically as good a fit as the two-site DLM by Dzombak and Morel 

(1990). 

2.6.2 Cobalt sorption to kaolinite 

Cobalt sorption to kaolinite as a function of pH has been found to occur in two stages: an 

initial stage at low to mid pH values where Co sorbs to permanently negatively charged 

surface sites, and a second stage at mid to high pH values that is associated with variable 

charge sites (e.g. Spark et al., 1995; Angove et al., 1998; Landry et al., 2009; Ikhsan et al., 
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1999; Bhattacharyya and Sen Gupta, 2007). The initial sorption stage is dependent on 

ionic strength of the background electrolyte with the pH50 (the pH at which 50% of the 

cation is sorbed) increasing as the ionic strength increases, and with an ionic strength of 

0.1 mol L-1 sorption is completely inhibited (Landry et al., 2009). This is caused by Co2+ 

competing with increasing amounts of the cation associated with the background 

electrolyte for binding sites on the kaolinite surface and implies that Co forms an outer-

sphere complex with kaolinite at low pH (Spark et al., 1995). The second sorption stage is 

similar to sorption to pure silica and alumina oxides and is independent of ionic strength 

(Spark et al., 1995; Landry et al., 2009). 

The type of background electrolyte used has also been found to affect the sorption edge at 

low to mid pH values (Spark et al., 1995). Using KNO3 consistently inhibited sorption 

compared to NaCl, but how much by was dependent on the concentration of the 

electrolytes. At 10-1 mol L-1 sorption was minimal up to pH 6.5 and there was no visual 

difference. At 10-2 mol L-1 sorption reached 25% with NaCl at pH 6, but was 15% with 

KNO3. At 10-3 mol L-1 the difference between percentage Co sorbed at pH 6 was ~6%. This 

was concluded to be because K+ competes more effectively with Co2+ than Na+ (Spark et 

al., 1995).  

As with sorption to ferrihydrite, Co sorption to kaolinite is likely to be reduced in systems 

where multiple cations are present. The selectivity sequence has been found to be Cu > 

Zn > Co > Cd (Spark et al., 1995), and Pb ≈ Cu > Zn > Co > Mn (Ikhsan et al., 1999).  

Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to discern 

the local environment of Co sorbed to kaolinite and to determine which surface 

complexes are formed (O’Day et al., 1994a; b). At low Co surface coverages and high pH, 

the Co data was fit with a small number of either Al or Si atoms (N = 0.6-1.5) and so it 

can be concluded that it forms bidentate inner-sphere mononuclear complexes (O’Day et 

al., 1994b). However, at pH values of ~8, Co was found to form multinuclear complexes 

on the kaolinite surface with a number (N = 2.1-5.7, depending on the Co surface 

coverage) of Co-Co neighbours present. Due to the high Co surface coverage the 

backscattering from the Co neighbours masked that from Al or Si and so it is not possible 

to determine the relationship between Co complexes and the kaolinite surface, though it 

can be assumed that it is also a bidentate inner-sphere complex, the same as at low 

surface coverage (O’Day et al., 1994a). Outer-sphere complexes cannot be determined by 

EXAFS due to the bonding of a hydrated ion to a Al/ Si atom resulting in distances over 5 

Å (O’Day et al., 1994b). However, as the uptake of Co at low pH values is dependent on 

ionic strength and it is known that outer-sphere complexes are dependent on ionic 
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strength, then it can be implied that sorption of Co to kaolinite at low to mid pH is via 

outer-sphere complexation. 

Angove et al. (1998) modelled Co sorption to kaolinite via bidentate complexes to two 

surface sites using a constant capacitance (CC) surface complexation model according to: 

Co
2+

+2≡XK ↔ ≡X2Co+2K+       (2.9) 

Co
2+

+2≡SOH ↔ (≡SO)2Co+2H+      (2.10) 

where ≡X- represents permanently negatively charged sites, ≡SOH represents variable 

charge Al or Si sites, and - in the absence of transition metal ions - K+ from the 

background electrolyte is assumed to occupy the surface binding sites. This model fit the 

adsorption data well, only overpredicting sorption at the plateau between the two 

sorption stages. Ikhsan et al. (1999) used the same approach and found a good fit to their 

data. They also showed that the X2Co complexes were responsible for the initial sorption 

stage at pH <7, and above this the majority of sorption was via (SO)2M complexes. 

Landry et al. (2009) used a DLM to model their sorption data with a bidentate surface 

complex to permanent and variable charge sites according to: 

≡2X(Na)+Co(aq)
2+

↔ ≡X2(Co)+ 2Na(aq)
+      (2.11) 

≡2SOH+Co(aq)
2+

↔ (≡SO)2Co+ 2H(aq)
+       (2.12) 

respectively. This produced a good fit to the data at all Co concentrations (10-6 – 10-4) and 

ionic strengths (10-3 – 10-1), apart from at the lowest ionic strength where there was 

underprediction at low pH and overprediction at high pH.  

All of the models discussed here are based on bidentate inner-sphere sorption 

complexes. However, spectroscopic methods (O’Day, et al., 1994a;b; Thompson et al., 

2000) show that Co-Co multinuclear complexes occur under many circumstances, 

including a range of Co surface densities and pH. Therefore, despite the empirical utility 

of existing sorption models this aspect of Co behaviour is not well understood at the 

molecular level. 

2.7 Removal of cobalt from soils 

The period of time left for Co to remain in contact with soil materials (e.g. kaolinite and 

ferrihydrite) does not appear to impact the uptake of Co onto the solid surfaces past the 

initial few minutes (Ainsworth et al., 1994; Backes et al., 1995; McLaren et al., 1998). 

Although, in the case of Fe oxides, an increase in sorption with time could be masked by 
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a decrease in pH as protons are known to be released when trace metals are sorbed to the 

surface (Backes et al., 1995). However, the ageing period of Co in soils and with 

individual soil components does affect its ability to be removed.  

Co sorption to ferrihydrite was completely reversible within 16 hours by decreasing the 

pH with no hysteresis between the sorption and desorption curves (Ainsworth et al., 

1994). However, at 2, 9 and 16 weeks, the amount of Co removed decreased compared to 

the previous ageing period, with 20% Co remained sorbed to the ferrihydrite after 16 

weeks. The amount of time left for Co to desorb from ferrihydrite (and goethite) did not 

significantly affect the amount of Co that was released (Backes et al., 1995).  

As with ferrihydrite, the release of Co from kaolinite decreased with an increased ageing 

period, though after no ageing period is there completely reversible sorption (Thompson 

et al., 2000). Desorption was carried out by reducing the pH to7. This confirms that the 

sorbed phase increases in stability with sorption time. However, the amount of Co 

released increased the longer it was allowed to desorb, up to 10,000 hours.  

The extraction of Co from 13 soils with a range of international origins (4 from Australia, 

3 from Belgium, 2 from Greece, and 1 each from Italy, UK, USA and France) over periods 

ranging from 2 hours to a year was studied (Wendling et al., 2009a). In general, the 

amount of Co extractable by CaCl2 decreased with ageing, with soils that were measured 

to be more acidic showing the greatest amount of extractable Co. For example, after 15 

days the soil from Athens, Greece (pH 4.5) ~35% of Co was extracted, but after the same 

length of time only <5% Co was released from the Woburn, UK soil (pH 6.2). After 365 

days of ageing, the same soils had ~10% and <1% extractable Co, respectively.  

The decrease in the amount of Co released with an increase in ageing period is thought to 

be because of a number of processes: surface precipitation, surface oxidation, diffusion 

into micropores, or incorporation into crystal lattices (Wendling, et al., 2009). In the 

case of ageing the metal ions with ferrihydrite over a period of several weeks it is possible 

that the metal becomes incorporated through isomorphic substitution into the mineral as 

it recrystallizes into a more stable form (Ainsworth et al., 1994). An EXAFS study of Co 

sorbed to kaolinite after ageing periods of up to 300 days showed that Co formed a 

hydrotalcite-like precipitate on the surface of the kaolinite (e.g. CoxAl(OH)2x+2(An-)1/n,  

where x is a number between 2 and 4 and An- is a nitrate or silicate anion). (Thompson et 

al., 2000). This structure formed at all Co sorption densities (0.25 – 1.1 μmol m-2), 

though was only present at the lowest sorption density after 184 days. Both of these are 

likely to be the cause of Co not being released back into solution. 
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The reduction in labile Co with ageing has been modelled with a semi-mechanistic model 

that assumed the processes involved were precipitation of Co on the solid surface and 

diffusion into the mineral surface (Wendling et al., 2009b). This produced a good fit to 

the data at an ageing period of 2 hours, however at longer ageing periods there was 

overprediction of the amount of Co released, which suggests that either the model was 

not properly constrained or there was a process that was not included in the model.  

2.7.1 Current decontamination methods 

There are many current decontamination techniques, and the development of 

commercially viable and efficient methods is an ongoing research priority (Tadesse et al., 

1994). Remediation techniques can be categorised as either in-situ, prepared bed, or in-

tank reactors. In-situ methods treat the contaminant where it is located without 

excavation of the soil. Prepared bed techniques either move the contaminated soil to an 

area on the site that has been designed to enhance treatment or prevent the transport of 

pollutants, or the soil is relocated to a storage area while the original location is prepared 

for use, and once the contaminated soil is returned the treatment is provided. In-tank 

treatments are used for the treatment of contaminated soil where it is relocated and 

placed in an enclosed reactor where the treatment will take place (Sims, 1990). Each of 

these methods can then be used with chemical, physical, or biological techniques in order 

to remove the pollutant from the soil (Tadesse et al., 1994). This review will focus on the 

most commonly used decontamination methods. 

2.7.1.1 Soil washing and flushing 

These techniques involve flushing the contaminated soil with a solution designed to 

remove the particular pollutant. This could be an acidic or basic aqueous solution, an 

oxidising agent (such as hydrogen peroxide) that can chemically change the contaminant, 

or a chelating agent that can bind the contaminant to two or more of its functional sites 

to create a ring that prevents the contaminant from bonding to the soil constituents 

(Raghavan et al., 1991). The difference between the two methods is that washing is an in-

tank method that requires the transport of the soil to a suitable container, whereas 

flushing is an in-situ method. These techniques are used for the removal of organic and 

inorganic contaminants, but is most suitable for the removal of heavy metals, and non-

volatile hydrophobic and hydrophilic organic compounds. Once the soil has been 

adequately flushed of the contaminant, the washing fluid then needs to be treated and 

the problem somewhat repeats itself (Tadesse et al., 1994).  

This method can vary in its effectiveness. An alluvial sediment that had been exposed to 

137Cs and 60Co was washed and while 84% of Co was removed from the sediment, only 
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18% of Cs was (Gombert, 1994). This implies that the washing solution needs to be 

researched to ensure it is suitable for the contaminant.  

2.7.1.2. Permeable Reactive Barrier (PRB) 

A PRB is an in-situ technique that uses a permanent, semi-permanent, or replaceable 

reactive material placed in the subsurface across the flow of groundwater or the 

contaminated plume (Fig. 2.7). The contaminants must then pass through the barrier as 

it flows, and as it does so a reaction will occur that will transform the contaminant into a 

less toxic or immobile species (Mulligan et al., 2001; Thiruvenkatachari et al., 2008). 

The barrier can be made of a variety of materials, depending on the reactions desired. 

The materials chosen will have one or more favourable qualities, such as inducing 

changes in pH, causing precipitation of aqueous ions, or having a high sorption capacity 

(Thiruvenkatachari et al., 2008). For example, sulfate-reducing bacteria have been used 

to promote precipitation of the heavy metals as insoluble metal sulphides. This resulted 

in the reduction of Co from 5.3 μg L-1 in the influent to 1.1 μg L-1 in the barrier (Ludwig et 

al., 2002). Limestone and red mud barriers have also been tested as potential PRB 

materials (Komnitsas et al., 2004). Limestone is used to raise the pH of the aqueous 

system in order to encourage precipitation and remove heavy metals from aqueous 

solutions. Red mud has a high surface reactivity and has a higher inherent alkalinity than 

limestone so can also increase the pH of the system. Both materials removed Co2+ from 

solution by sorption to the solid surface, however their effectiveness decreased over time 

with more Co being present in solution after passing through the materials after 12 weeks 

Figure 2.7: Permeable reactive treatment barrier placed in the 
groundwater to remove metal contaminants. From Mulligan et al. 
(2001). 
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(4 mg L-1, as opposed to negligible amounts at the beginning of the experiment) 

(Komnitsas et al., 2004). This suggests that the materials would have to be replaced after 

several weeks in order to maintain levels of removal.   

2.7.1.3 Phytoremediation 

Phytoremediation is a biological technique for the removal of contaminants from soils 

and involves using non-food crops to absorb metals from the soil. The metals are then 

stored in the leaf and stalk until the plants are harvested – though it has been found that 

up to 69.3% of the Co in the plant is found in the roots (Lotfy and Mostafa, 2014). They 

are then burnt and the ash that remains contains a high concentration of the stored metal 

(Robinson et al., 1999). Because this technique relies on plant roots absorbing the toxic 

metals, it is limited to low levels of contamination that occurs in the upper layers of the 

soil (Mulligan et al., 2001). There are 26 known plants that are hyperaccumulators of Co 

– they have an unusually high uptake of metals from the soil (90% uptake (Saleh, 2012)). 

Hyperaccumulators are often metal specific and can contain up to 2 orders of magnitude 

more of a contaminant than regular plants (Jacobs and Walter, 2005). 

Compounds can be added to the soil to increase metal solubility and therefore potentially 

increase the metal uptake by the chosen plant. Common additions to the soil are EDTA, 

citric acid, nitrogen fertiliser and DTPA (Sheoran et al., 2009). However a downfall of 

this technique is that the compound added could then pose a risk to the environment 

(Robinson et al., 1999).  

One of these Co hyperassumulator plants – Berkheya coddii – has a high biomass 

production, making it a good candidate for phytoremediation because as it grows larger it 

will be able to store more Co (Robinson et al., 1999). When compounds were added that 

increased the pH of the soil (e.g. Mg/ Ca carbonate) the Co uptake decreased, whereas 

when sulphur and acid mine tailings were added to the soil the amount of Co absorbed by 

the plant increased, most likely because of the decrease in pH. This is supported by other 

studies showing that a low pH environment (~4.9) resulted in the highest uptake of 

metal ions in the plant (Bagga and Peterson, 2001; Saleh, 2012). 
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Chapter 3: Methodologies 

3.1 Batch Sorption Experiments 

Batch sorption experiments were performed to investigate Co uptake to a number of 

materials. These were conducted in 50 mL plastic centrifuge tubes at room temperature 

and in aerobic conditions. In these experiments a known amount of solid was mixed with 

a known amount of Co and background electrolyte. The amount and concentration of 

these varied for the individual experiments and specific information can be found in the 

methods section of the experimental chapters (Chapters 4, 5 and 6). The pH was then set 

to a desired value through dropwise (10 μL aliquots) addition of either 0.01, 0.1, or 0.5 

mol L-1 HCl or NaOH. pH was recorded when there was less than 0.01 pH unit change in 

15 seconds. This was repeated twice a day for 4 days in order to overcome the sorbent’s 

buffering capacity and reduce pH drift during the equilibration period. The samples were 

shaken continuously while the pH was monitored and set back to within ±0.15 of the 

desired pH. The samples then continued to be shaken once the pH had been set for the 

final time and the equilibration period started. 

After the equilibration period, the pH of each sample was measured again and recorded 

as the final pH.  

To produce a sorption edge, the pH was varied across the range 3.5 – 8.5, while keeping 

the amount of solid, background electrolyte concentration, and Co concentration the 

same. The pH was measured using a Thermo Scientific Orion 9102BNWP bench top pH 

meter and glass bulb electrode calibrated to pH 4 and 7 using standard buffer solutions.  

3.2 Desorption experiments 

Desorption experiments were carried out by aging the sorbed samples for a period of 

time (either 1, 7, 28, or 84 days). The samples were centrifuged and prepared for ICP-

OES as described in Section 3.1. The supernatant was then discarded and replaced by 30 

ml of either DIW, 0.01 mol L-1 EDTA, 0.01 mol L-1 citric acid, or 0.01 mol L-1 hydrochloric 

acid. After equilibrating for 24 hours on a shaker table, the samples were centrifuged and 

prepared for ICP-OES analysis.  
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3.3 Solution analysis by ICP-OES 

Cobalt sorption was determined by measurement on an inductively coupled plasma 

atomic emission spectrometer (ICP-OES). This process works based on the ability of 

metals to release electromagnetic radiation when they are raised to higher energy states 

and return to their ground state. Each metal produces radiation at a unique wavelength 

and so metals can be identified by the spectrum of radiation that they produce. The 

intensity of radiation released is proportional to the number of atoms excited, and 

therefore by comparing the sample spectra to known standards the concentration of 

atoms in the sample can be determined (Mendham et al., 2000). 

In ICP-OES this excitation of atoms occurs in a plasma (usually ionised argon gas) that is 

heated to between 7000 and 15000 K. The sample solution is first nebulised into a fine 

aerosol and then carried into the burning plasma by a stream of argon gas. In an 

inductively coupled plasma source the argon stream flows through the central of three 

concentric tubes and the sample is excited by several turns of a metal induction tube that 

has a radiofrequency current flowing through it. A second stream of argon flows in a 

helical pattern in the outermost tube and maintains the plasma. The plasma is initially 

ignited by a spark and then continues to be self-sustaining. Once the excited sample ions 

reach the flame they emit radiation. The radiation is captured by a photomultiplier tube 

which converts it into an electrical current, and the resulting voltage is proportional to 

the concentration of the element in the sample (Mendham et al., 2000).  

Sorption samples were prepared for ICP-OES by centrifuging for 10 minutes at 4000 

RPM. A 5 mL sample of the supernatant was then filtered through a 0.22 μm syringe 

filter and added to 5 mL of 2% HNO3 ready for ICP analysis of the Co concentration. In 

the case of samples with a high humic acid content, once filtered through the syringe 

filter, they were filtered at 10k Dalton in centrifuge filters, after which 5 mL was added to 

5 mL of 2% HNO3. The samples were analysed on a Thermo iCAP 7400 radial ion-

coupled plasma optical emission spectrometer (ICP-OES; ThermoFisher Scientific, USA). 

Percentage sorption was then calculated by subtracting the measured Co concentration 

from the amount of Co that was initially added and multiplying by 100.  

3.4 X-ray powder diffraction (XRD) 

The fundamental principle of XRD is that typical electromagnetic waves are described by 

a sine wave, and if two identical waves do not coincide they have a phase shift (δφ) (Fig. 

3.1). When x-rays are scattered off atoms at different angles they arrive at a detector with 
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a phase shift. The detector measures the intensity of each of the waves and so phase 

shifts can give information about relative atomic positions of a crystalline structure 

(Dinnebier and Billinge, 2008). 

However, diffracted rays will only produce constructive interference, and thereby 

intensify the beam, when the difference in length between the two rays is equal to the 

wavelength, or a multiple of it. The angle at which constructive interference occurs is 

determined according to Bragg’s Equation: 

2d sinθ=nλ         (3.1) 

where d is the distance between planes in the crystal, n is a positive integer called the 

order of reflection, θ is the scattering angle of the diffracted x-ray, and λ is the 

wavelength (Fig 3.2) (Whiston, 1996). By powdering a crystal, the number of planes 

increases and they all face different directions; this increases the likelihood that some of 

the planes will satisfy the Bragg Equation (Whiston, 1996).  

By using a monochromatic x-ray beam and rotating the sample through a range of 2θ 

values, the detector can measure all possible angles that fulfil the Bragg Equation and 

Figure 3.1: Graphical illustration of the 
phase shift between two sine waves of 
equal amplitude. From Dinnebier and 
Billinge (2008).  
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thus produce all the diffraction peaks associated with the sample (Cockcroft and Fitch, 

2008) .  

Samples were ground into a powder using a mortar and pestle, and then loaded into Si 

sample holders of Ø 5mm x 1mm depth and levelled using a glass slide. Samples were 

analysed on a Philips PW1050 X-ray diffractor configured in vertical θ/2θ Bragg-

Brentano using Cu Kα radiation with a Ni filter graphite secondary (the monochromator 

is positioned after the sample) monochromator and scanning between 5-70° 2θ. 

Diffraction peaks from unknown samples were matched to known standard reference 

patterns using Diffrac.Suite Eva v3.0 software using the International Centre for 

Diffraction Data (ICDD) PDF2 database.  

3.5 X-ray Absorption Spectroscopy (XAS)  

The basis of collecting XAS data is to bombard a sample with x-rays of known energy. At 

element specific threshold energies, atoms in the sample will absorb some of the x-rays, 

causing the excitation or ejection of an electron from a K, L or M electron shell and 

creating a core-hole. The amount of x-rays absorbed can be quantified by comparing the 

energy of the x-rays before absorption with the energy after. The intensity of an x-ray 

passing through a sample of a given thickness is described by the absorption coefficient, 

μ: 

I= I0e-μt          (3.2) 

Figure 3.2: Geometric derivation of Bragg’s law: Constructive 
interference occures when the delay between waves scattered 
from adjacent lattice planes given by a1 + a2 is an integer 
multiple of the wavelength λ. From Stanjek and Häusler (2004).  
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Where I is the intensity of the beam transmitted through the sample, I0 is the initial x-ray 

intensity, and t is the thickness of the sample. The absorption coefficient is dependent on 

x-ray energy, atomic number, atomic mass, and density of the sample. Because the 

absorption coefficient is dependent on the atomic number and atomic mass, this makes it 

possible to determine the elements present in a sample (Newville, 2004).  

The energy after absorption can either be measured by transmission or fluorescence. In 

transmission measurements, the amount of x-rays absorbed is calculated from the 

difference in initial x-ray intensity and that measured once the x-rays have passed 

through the sample, as in Equation 3.2 (Newville, 2004). However, this approach is 

limited to samples containing a concentration of the absorbing atom of >500 ppm 

(Penner-Hahn, 2003). Measurements in fluorescence involve detecting the refilling of 

the core hole and can be used for more dilute samples (Penner-Hahn, 2003; Newville, 

2004). This is either by measuring the fluorescence x-rays produced by the excited atom 

as an electron drops down a shell to fill the core hole, or by measuring the kinetic energy 

of ejected electrons as the core hole is filled. The latter is known as the “Auger process”, 

which occurs when an electron at a higher shell drops to fill the core hole and 

simultaneously ejects another electron from the same higher shell (Bunker, 2010). When 

fluorescence measurements are being taken the formula to measure the absorption 

coefficient becomes: 

μ(E)∝ If/I0          (3.3) 

where If is the emitted fluorescent x-rays or electron emission (Newville, 2004) 

The initial ejection of the electron from an atom creates a photoelectron that scatters off 

nearby atoms and back to the absorbing atom, causing constructive or destructive 

interference. The photoelectron can also scatter from one neighbouring atom to another 

before returning to the absorbing atom; this is known as multiple scattering (Calvin, 

2013). 

By measuring the absorption over a range of x-ray energies a spectrum is produced (e.g. 

Fig. 3.3). 

3.5.1. Synchrotrons 

Despite synchrotron radiation working in the same way as radiation from x-ray tubes, 

synchrotrons are necessary to study XAS as they produce spectral brightness of more 

than 10 orders of magnitude greater than that from x-ray tubes, which allows the beam to 

be focussed onto small samples while maintaining the intensity of the x-rays (Penner-

Hahn, 2003; Balerna and Mobilio, 2015).  
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Synchrotron light sources work by injecting electrons that are travelling at velocities near 

the speed of light into a storage ring to produce broad-spectrum radiation, that extends 

through the visible light to X-rays (Kunz, 1979; Calvin, 2013). To prevent the electron 

beam from decaying through interactions with other particles, the electrons travel 

around the storage in a vacuum chamber that is kept under ultrahigh vacuum conditions 

(Margaritondo, 1987). However, residual gas particles often remain which gradually 

causes decay over several hours, requiring the electron beam to be “topped up”. This can 

either be through the continuous addition of electrons throughout the day (such as every 

10 minutes as occurs at Diamond Light Source) or by injecting a large amount of 

electrons twice a day. Continuously adding electrons makes the beamlines more stable 

and the electron beam is able to remain at maximum intensity at all times (Diamond 

Light Source, 2018) 

The storage ring consists of straight sections alternating with bending magnets that cause 

the electrons to bend their trajectory around the ring. Insertion devices, such as 

“wigglers” and “undulators”, are also present in modern synchrotrons in order to 

produce more intense light (Bunker, 2010; Diamond Light Source, 2018). These consist 

of pairs of magnets of alternating orientation in a row so that passing electrons feel a 

magnetic field of alternating polarity. This causes the electron path to oscillate back and 

forth, which produces radiation at each bend (Bunker, 2010).  

Figure 3.3 Schematic illustration of an X-ray absorption 
spectrum, showing the structured absorption that is 
seen both within ca. 50eV of the edge (the XANES) and 
for several hundred to >1000eV above the edge (the 
EXAFS). From Penner-Hahn (2003). 
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As the electrons are bent by the bending magnets or insertion devices they lose energy in 

the form of electromagnetic radiation, and these are then channelled into the beamlines 

where the experimental stations are located (Calvin, 2013; Diamond Light Source, 2018). 

In the beamlines, the radiation is first focussed and filtered through the use of mirrors 

and monochromators before being introduced to the sample. The mirrors are used to 

preserve the high optical quality of the photon beam by focussing the radiation along the 

beamline, while the monochromator eliminates photons that have energies outside of the 

desired range (Margaritondo, 1987). 

3.5.2 EXAFS sample preparation 

EXAFS spectra were collected at the Co K-edge (7722 eV) at Beamline B18 at Diamond 

Light Source Ltd, UK, operating at 3 GeV with a typical current of 300 mA. The X-rays at 

B18 are generated from a bending magnet source. The beam is vertically collimated by a 

Si mirror before passing through a double crystal Si monochromator. It was then focused 

onto the sample to give a spot size of 200x250 μm at the sample. Air dried (40 °C) 

sorption samples were presented to the beam as 8 mm pressed pellets using cellulose as a 

dilutant to reduce chemical thickness. The sample pellets were held in KaptonTM tape 

for analysis, and a separate 1000 mg L-1 Co(NO3) solution was also prepared and held in 

a polythene bag for analysis. Spectra were collected for the samples containing Ka and 

HA in fluorescence mode at room temperature (~295°K) using a 32 element solid state 

Ge detector, and for the samples containing Fh in transmission mode at room 

temperature. An aqueous Co2+ standard was also analysed and held up to the beamline in 

a zip-lock plastic bag. More detailed information on EXAFS sample preparation can be 

found in Chapter 4.2.3. 

3.5.3. Extended X-ray Absorption Fine Structure (EXAFS) 

Spectroscopy 

The features of the XAS spectrum are analysed to gain an understanding of the sample. 

In EXAFS spectroscopy, the features of interest are the oscillations at energies of roughly 

40 to 800 eV above the absorption edge, which is a sharp rise in absorption caused by the 

excitation of the atom (Bianconi, 1980). The absorption edge is unique to each element, 

making it possible to analyse certain elements of interest in a sample. There are also 

multiple edges for each element, which are named according to the principle quantum 

number of the electron that has been excited (K for n = 1, L for n = 2, M for n = 3 etc.) 

(Penner-Hahn, 2003) 

Once analysed, these oscillations provide information on the local environment (up to ~5 

Å) of a particular element in the sample, such as the bond length and coordination 
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number between the absorbing atom and its neighbours (Penner-Hahn, 2003). This 

information, however, is an average of the local environments of each atom of that 

element in the sample, and therefore the technique is best used with homogenous 

samples (Bianconi, 1980; Calvin, 2013). 

In order to analyse raw EXAFS data, it is necessary to first remove the background. 

Errors propagated during background subtraction will not affect the measured 

interatomic distance, but will affect the coordination number determined from the data 

(Bianconi, 1980). 

Because EXAFS is interested in the oscillations in the absorption coefficient, the atomic 

background is removed and the EXAFS is defined as: 

X(E) = 
μ(E)- μ0(E)

∆μ0(E0)
         (3.4) 

Where μ0(E) represents the bare atom background, and Δ μ0(E) is the edge step. This 

gives the oscillations normalised to one absorption event (Bianconi, 1980; Newville, 

2004).  

X(E) is then converted to X(k) using the formula: 

k = √
2me(E-E0)

ħ
2          (3.5) 

where me is the electron mass, E0 is the binding energy of the photoelectron and ħ is 

Planck’s constant. This step is important because as XAFS is an interference effect that is 

dependent on the nature of the photoelectron being like a wave, it is convenient for the 

EXAFS to be in terms of the photoelectron wavenumber. The X(k) is then often weighted 

by k2 or K3 in order to amplify oscillations at high k values (Penner-Hahn, 2003; 

Newville, 2004).  

A Fourier transform of the k-space data is taken to decompose the signal into its different 

constituent frequencies. This makes it possible to identify each coordination shell as they 

produce distinct peaks. 

EXAFS data analysis of the Co K-edge was undertaken using the Demeter software 

package v0.9.24 (Ravel and Newville, 2005). Spectra were averaged, background 

subtracted and normalised using the Athena application. The processed spectra were 

then fit ab initio to model spectra in Artemis to determine the atomic coordination 

surrounding the central Co atom. 
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3.6 Scanning transmission electron microscopy (STEM) 

The STEM is a highly versatile microscope that is capable of atomic resolution imaging 

and nanoscale analysis.  

A STEM works by accelerating electrons to a typical energy of 100 – 300 keV from an 

electron gun that are focused at a sample. In contrast to a conventional TEM where 

lenses are placed between the sample and the detector to magnify the exit wave, the 

STEM has a series of lenses between the electron gun and the sample to focus the 

electrons before they reach the sample. This creates a small electron probe (0.2 – 5 nm) 

that can scan the sample, rather than illuminate the entire sample at once (Reimer and 

Kohl, 2010). The electron beam also has to pass through a monochromator to ensure the 

electrons have a narrow energy distribution. The electrons are scattered by the sample, 

and these are detected and their intensity measured as a function of the probe position to 

form an image. Most commonly, the detectors measure the transmitted electrons and so 

are placed after the sample. Because of this samples are required to be electron 

transparent (typically <50 nm) (Nellist, 2008).  

Commonly used STEM detectors are bright-field (BF) and annular dark-field (ADF) 

detectors. Both of these detectors sum the electron intensity to produce an image, 

however BF detector measures electron intensity over a disc along the optic axis of the 

microscope while the ADF detector measures electrons over a ring around the optic axis 

where only scattered electrons can be detected. ADF imaging is important to STEM 

because it is capable of differentiating different elements in a sample as it is sensitive to 

atomic number (Nellist, 2008). 

Separate Fh, Ka and HA samples with Co surface loadings of approximately 1 wt% were 

prepared for STEM analysis in the same way as the sorption experiments. Briefly 0.03 

dry g equivalent of sorbent was suspended in 29.5 mL of 10-3 mol L-1 NaNO3 and 0.6 mL 

0.01 mol L-1 Co2+. After 16 hrs the final pH was 7.5 ±0.5; consistent with > 90% aqueous 

Co removal in previous batch sorption experiments. Samples were then dispersed in 

methanol (or DI water in the case of HA) and a drop was pipetted onto a lacy / holey 

thin-film across a copper grid using a glass Pasteur pipette. As DI water was used to 

disperse the HA sample, the carbon film and grid underwent plasma treatment in a 

Fischione 1020 plasma cleaner for 10 seconds to make the film hydrophilic and ensure 

the sample was evenly distributed. (S)TEM images, energy dispersive X-ray (EDX) 

microanalysis elemental maps and electron energy loss spectra (EELS) were collected on 

an FEI Titan3 Themis 300: X-FEG 300 kV S/TEM. This was fitted with S-TWIN 

objective lens, monochromator (energy spread 1.1 eV when the monochromator is de-
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excited), multiple high-angle annular dark-field (HAADF), annular dark-field (ADF), 

bright-field (BF) STEM detectors, FEI Super-X 4-detector EDX system, Gatan Quantum 

ER 965 energy filter for EELS and energy filtered TEM and Gatan OneView 4K CMOS 

digital camera. To minimise potential sample damage (which was most important for 

kaolinite samples) a low beam current of 0.3 nA was used throughout data acquisition 

and limited magnification (280k x) BF TEM imaging with short acquisition times (< 1 s) 

was performed before commencement of HAADF STEM imaging and EDX elemental 

mapping (using a ~80 pA probe current). 

3.6.1. Electron Energy Loss Spectroscopy (EELS) 

EELS uses the signals of the inelastically scattered electrons (those that interact 

electrostatically with the orbiting electrons of an atom which results in the loss of energy 

(Egerton, 1986)) from the sample to give analytical information about the sample, such 

as the chemistry and electronic structure (Nellist, 2008).  

The experimental set up is the same as that for STEM and also requires a 

monochromator to limit the energy of the electrons (section 3.5, above). The electrons 

that were transmitted through the sample pass through a spectrometer that deflects all 

the electrons through 90 degrees. Electrons with more energy will be deflected less thus 

dispersing the beam into a spectrum of energies. The spectrum is then detected by either 

a serial spectrometer where the spectrum is scanned across a slit by varying the strength 

of the magnetic field, or by a parallel spectrometer where the entire spectrum is collected 

at once (Ibach and Mills, 1982; Goodhew et al., 2001).  

In an EELS spectrum, inelastic scattering is visible as an edge. These occur at the 

ionization threshold of an atom, where the energy lost by the electron is approximately 

equal to the ionisation energy of the corresponding atomic shell. Since binding energies 

are dependent on the atomic number of the scattering atom, this technique is capable of 

determining which elements are present in the sample (Egerton, 1986). 

3.6.2. Energy Dispersive X-ray (EDX) microanalysis 

EDX is the principle method for analysing the chemical composition of a sample in a 

TEM (Titchmarsh, 1993). 

In a similar way to that of STEM and EELS, an electron beam is focused at the sample 

and the electrons interact with the atoms in the sample. As the electrons pass through the 

sample, they can cause the ionization of an atom’s inner-shell which results in the 

emission of x-rays characteristic to that element. The x-rays are then measured by a 

detector, and because the x-rays have unique energies depending on the atom that the 
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electron was scattered by they give information on the chemical composition of the 

sample (Reimer and Kohl, 2010).  

The detector is a piece of semiconducting Si or Ge that is in line of sight of the sample, as 

X-rays cannot be deflected. Each x-ray that reaches the detector excites electrons in the 

conduction band of the Si (or Ge), which results in identical number of positively charged 

holes in the outer electron shells. As the energy required to excite each electron is known 

to be 3.8 eV the number of electron hole pairs generated is proportional to the energy of 

the detected x-ray. If a voltage is applied across the Si semiconductor, a current will flow 

when an x-ray is absorbed and the magnitude of the current will be proportional to the 

energy of the x-ray.  (Goodhew et al., 2001).  

3.7 Thermodynamic Modelling of the mineral-water 

interface 

The sorption behaviour of Co on end-member Fh, Ka and HA and the organo-mineral 

composites was fit to a thermodynamic surface complexation model using the program 

EQLFOR (Sherman et al., 2008; Sherman, 2009). The Fh and Ka models were then 

combined with the HA model using a linear component additivity approach to explore Co 

sorption behaviour on the Fh and Ka organo-mineral composites. The surface 

electrostatics in all the models were accounted for by adopting the basic Stern model 

(BSM). The Davies equation was used for activity corrections to the stability constants for 

aqueous species: 

logγ
i
 = Azi

2(
√μ

1+ √μ
-0.3μ)        (3.6) 

where γ is the activity coefficient, i represents the chemical species, zi is the ionic charge 

of aqueous species, μ is the ionic strength of the solution and A and B are temperature 

dependent constants. 

Detailed discussion on the development of the end-member Fh, Ka, HA, and organo-

mineral composite models is available in Chapter 4.3. 

3.7.1. Basic Stern Model 

The BSM is a thermodynamic surface complexation model that employs the electrical 

double layer (EDL) theory. This theory states that the surface charge of a sorbent in 

solution creates an electrostatic potential that reduces with distance away from the 

surface. Because of this, EDL theory assumes that close to the surface there will be an 

excess of counterions (ions of the opposite charge to the surface charge) and as distance 
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from the surface increases the amount of coions (ions with the same charge as the 

surface) increases (Langmuir, 1997) (Fig. 3.4). 

Because of the difference in electric potential close to the surface and further away, the 

activity of ions differs depending on their distance from the surface (Allison et al., 1991). 

This change in activity is described by an exponential Boltzmann expression: 

(Xs
z)=(Xz)[e-ψF/RT]

z
         (3.7) 

Where z is the charge of ion X, (Xs
z) is the activity of ion X of charge z near the surface, 

(Xz) is the activity of X in the bulk solution unaffected by the surface, and e-ψF/RT is the 

Boltzmann factor, wherein ψ is the potential in volts at the adsorption plane, F is the 

Faraday constant, R is the ideal gas constant, and T is the temperature (Langmuir, 1997). 

The BSM expands on the EDL theory and explains the solid/ solution interface as having 

two regions: one, the Stern layer where counterions in contact with the solid are located, 

and two, a Gouy layer which is a diffuse layer further away from the solid (Fig 3.5). The 

Stern layer is split into two planes, the inner Helmholtz plane (IHP) and the outer 

Figure 3.4: Depiction of the EDL theory. (a) shows the 
location of the co- and counter-ions in the mineral-water 
interface. At the surface there are only counter-ions, but 
the further away from the surface the more co-ions there 
are. (b) shows the charge distribution across the 
interface. Adapted from Harrison and de Mora (1969). 
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Helmholtz plane (OHP). The IHP is where counterions that are specifically adsorbed to 

the solid surface are located, including H+ and OH-. Counterions that are outer-

spherically sorbed to the surface are located in the OHP because they are fully solvated 

and cannot approach as close to the solid surface. The Gouy layer uses the concept of the 

EDL as it contains mostly counterions but some coions are present (Harrison and de 

Mora, 1969; Stumm and Morgan, 1996). 

Traditionally, the uptake and release of protons to/ from the mineral surface was 

described as: 

SOH+H+
↔ SOH2

+          (3.8) 

SOH ↔ SO
-
+H+          (3.9) 

where SO- represents the surface site and H+ is the proton. This is termed the 2-pK 

approach as it requires 2 stability constants (Lützenkirchen, 1998). However, more 

recently a 1-pK model is used: 

≡SOH
-0.5

+H+ ↔ ≡SOH2
+0.5         (3.10) 

This formalism is preferred as the stability constant K can be obtained experimentally 

through titrations to determine the point of zero charge (Lützenkirchen, 1998). This is 

also preferred due to its consistency with the Pauling Bond Valence Theory, which states 

that the total strength of the valency bonds that reach an anion from all neighbouring 

Figure 3.5: Schematic arrangement of sorbates at a charged 
sorbent interface, as described by the BSM. From Thompson 
and Goyne (2012). 
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cations is equal to the charge of the anion (Boily et al., 2001). For a trivalent cation (e.g. 

Fe3+) that has a coordination number of 6, this results in a net charge of -0.5 i.e. ≡SOH-0.5 

Cation sorption to a solid surface is written as: 

≡SO
-
+M2+

↔ ≡SOM+         (3.11) 

Where SO- is the surface site and M2+ represents the cation. Assuming that M2+ is sorbed 

to the 0-plane, the amount of M2+ at the solid surface cannot be directly measured. 

Therefore, it is assumed to be related to the bulk M2+ activity through the Boltzmann 

expression in Eqn. 3.7, where Xz is replaced by M2+. The mass-action expression and its 

intrinsic constant can thus be written: 

KM2+
int

= 
(SOM+)

(SO-)(M2+)exp(-ψ0F/RT)
        (3.12) 

However, Eqn. 3.11 assumes a 2-pK formalism and is thus a rather crude representation 

of the reactions at the mineral-water interface. This is because (as explained above) ≡SO- 

is not possible in reality.  

The use of models on their own to determine the processes at the mineral-water interface 

is limited. This is because the simplest complex will often produce the best fit. For 

example, previous studies have reported models that show good fits with monodentate 

complexes between cations and common mineral surfaces (e.g. iron oxides and clays) 

(e.g. Dzombak and Morel, 1990; Ainsworth et al., 1994; Landry et al., 2009). Recent 

spectroscopic studies have shown that monodentate complexes do not form at the 

mineral-water surface, but rather bidentate and polynuclear complexes do (e.g. O’Day, et 

al., 1994a;b; Moon and Peacock, 2012). Therefore, models require constraining with 

molecular level information in order for them to be useful, which is what I present in 

Chapters 4 and 5.  

3.7.2. Model Framework and input parameters 

Surface complexation models were developed for the sorption of Co onto end-member 

Fh, Ka and HA that are consistent with the EXAFS data. The model framework for Co 

sorption to Fh is based on the model for copper sorption to Fh by Moon and Peacock 

(2013) and Otero Fariña et al. (2017b), the framework for Co sorption to Ka is adapted 

from the model for Co sorption to Ka by Heidmann et al. (2005b), and the framework for 

Co sorption to HA is based on the model for copper sorption to HA by Otero Fariña et al., 

(2017b). The model input parameters were obtained either through fitting potentiometric 

titration data for the sorbent acid-base behaviour, or from direct measurement of the 
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sorbent physiochemical characteristics, and are detailed in Moon and Peacock (2013) for 

Fh, Heidmann et al. (2005b) for Ka and López et al. (2012) for HA.  

The basic stern model (BSM) is used to model surface electrostatics in the Fh, Ka and HA 

sorption systems. For Fh, a 3-site 1 pK formalism is assumed for the protonation of the 

Fh surface, involving two types of singly-coordinated surface oxygens (sorbing cations in 

edge-sharing (≡FeOH-0.5(e)) and corner-sharing (≡FeOH-0.5(c)) configuration), and the 

triply coordinated oxygens (≡Fe3O-0.5) (e.g., Hiemstra et al., 1989; Hiemstra and van 

Riemsdijk, 2009; Moon and Peacock, 2013; Otero Fariña et al., 2017b). A 2-site, 1pK 

formalism is used for the protonation of the Ka surface. This involves a singly-

coordinated surface oxygen (≡AlOH-0.5) representing the pH-dependent charge, and 

negatively charged sites (≡X-) to represent the permanent negative charge (e.g., 

Heidmann et al. (2005b). For the HA, a 1-site 1 pK formalism is used, involving ≡RCOO- 

sites where the stability constants for the protonation of these sites and the site densities 

are constrained using the NICA-Donnan model (Kinniburgh et al., 1999), calibrated on 

multiple data sets (López et al. 2012).   

The sorption data are fit by iterating the log K for the surface complexation reaction that 

represents the formation of the Co-Fh, -Ka or -HA complexes that were identified by 

EXAFS analysis.  The three Fh systems that contained 10-2 mol L-1 ionic strength (5.8, 

0.58 and 0.058 wt% Co) and two of the Ka systems that contained 10-2 mol L-1 ionic 

strength (0.058 and 0.0058 wt% Co) are fit simultaneously. Due to the limitations of 

EQLFOR, systems with different ionic strengths are fit separately.  

3.7.3. Sensitivity Analysis of the Co-Ferrihydrite, -Kaolinite, and 

Humic Acid Surface Complexation Models 

A sensitivity analysis was performed to evaluate the sensitivity of the end-member 

models to the input parameters. For each model, the input parameters (Cstern, electrolyte 

binding constants, surface site densities, and surface area) were systematically varied 

while monitoring the log K values for the Co adsorption complexes. The analyses are 

based on the protocols of Moon and Peacock (2013). The Cstern was varied by ±50%, the 

log K electrolyte binding constants between -1.5 and 0.5, and the surface site densities 

and the surface areas were varied by a factor of ±3. These were determined to be 

plausible ranges in the input parameters and therefore the resulting log K values would 

represent a sensible range wherein the model fit would still be good. 
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Chapter 4 : A universal uptake mechanism for cobalt(II) on 

soil constituents: ferrihydrite, kaolinite, humic acid, and 

organo-mineral composites 

This first experimental chapter presents results of an investigation into Co sorption onto 

ferrihydrite, kaolinite, humic acid and organo-mineral composites. This chapter is based 

on a paper under revision for Geochimica et Cosmochimica Acta. 

4. 1. Introduction 

Cobalt is a heavy metal that is released into the environment by a variety of industrial 

sources including, for example, coal power plants, vehicle emissions, and through metal 

production (Gál et al., 2008). Cobalt can also be present as a radionuclide, most 

commonly as 60Co, which decays through ionising gamma radiation and has a half-life of 

~5 years. 60Co can be present in the cooling water of nuclear reactors, or in radioactive 

waste, meaning that it is possible for it to be released into the wider environment 

(CEFAS, 2005). Cobalt most commonly occurs as the Co2+ ion, which is highly soluble in 

water and, therefore, potentially very mobile in the environment. While it is a 

bioessential nutrient at low concentrations, Co contamination has negative impacts on 

plants as too high an uptake can result in insufficient chlorophyll production and death 

(Hewitt, 1953). The potential environmental harm posed by both stable and radioactive 

isotopes of Co means that it is important to understand how Co2+ interacts with soil 

constituents in order to predict Co mobility and fate in the environment and develop soil 

remediation methods.  

Soils contain a complex mixture of components including water, air, primary and 

secondary minerals and organic materials in varying proportions (Sparks, 1995). 

However, it is interactions with relatively low abundance, but high surface area phases 

such as iron (hyr)oxides, clays and humic substances that typically control the sorption 

behaviour of many divalent transition element cations in soils, including Co2+ (Sparks, 

1995). Therefore, a common approach to understanding Co sorption behaviour has been 

to study its sorption to separate mineral or organic phases (e.g., Ainsworth et al., 1994; 

Angove et al., 1998; Alvarez and Garrido, 2004). More recently, however, the sorption 

behaviour of metal cations in different physical mixtures and chemical composites of 

mineral phases (such as kaolinite and ferrihydrite) and organic materials has been 

investigated as a way of approaching the complexity expected in natural soil 



57 
 

environments (e.g.,  Zhu et al., 2010; Moon and Peacock, 2012, 2013; Otero Fariña et al., 

2018). 

Macroscopic Co2+ sorption behaviour to ferrihydrite has been well documented (Forbes 

et al., 1976; Schenck et al., 1983; Ainsworth et al., 1994; Kanungo, 1994; Landry et al., 

2009) . Cobalt is shown to sorb to ferrihydrite over a narrow pH range of ~5.5 to ~7 

(Ainsworth et al., 1994; Landry et al., 2009) below which there is minimal to no sorption, 

and above which sorption reaches 100% of Co concentrations tested. In particular, 

Landry et al. (2009) reports no significant difference in sorption behaviour over changes 

in the Co concentration and sorbate/sorbent ratio (with a Co concentration range from 

10-4 mol L-1 to 10-6 mol L-1 and solid/solution from 2 to 5 g L-1) or ionic strength (between 

10-3 mol L-1 NaNO3 and 10-1 mol L-1 NaNO3). On the other hand, Kanungo (1994) finds 

that increasing the Co concentration from 4.1 x 10-5 mol L--1 to 2.0 x 10-4 mol L-1 does shift 

the sorption edge to higher pH values.  

The experimental data by both Landry et al. (2009) and Ainsworth et al. (1994) are fit to 

a thermodynamic surface complexation model in order to quantify the distribution of Co 

between the mineral and solution phases. These studies use the double layer model 

(DLM) as presented by Dzombak and Morel (1990) to account for the electrostatics at the 

mineral surfaces. Landry et al. (2009) show that Co2+ sorption data fit by a single 

sorption site DLM does not provide as good a visual fit to the data as a 2-site DLM. The 

Dzombak and Morel DLM invokes monodentate Co2+ surface complexation to both 

strong and weak FeOH sorption sites, however, the goodness of fit of the single-site and 

two-site models are not statistically different (Landry et al., 2009). Ainsworth et al. 

(1994) find that at low sorbent concentrations the data can be modelled with only one 

(the strongest) site, but at increased Co2+ concentrations a second, weaker FeOH site is 

required.  However, despite these macroscopic observations and modelling inferences, 

there are no direct spectroscopic observations of Co sorption on any of the iron 

(hydr)oxides, and the local sorption environment of Co2+ on the common soil constituent 

ferrihydrite is still unconstrained. 

The sorption of Co2+ to the commonly occurring 1:1 phyllosilicate clay mineral, kaolinite, 

has also been studied extensively (Spark et al., 1995; Angove et al., 1998; Landry et al., 

2009). A two stage sorption process is observed. The initial sorption stage generally 

shows an increase in sorption between pH 4 and 5.5 (Spark et al., 1995; Angove et al., 

1998; Landry et al., 2009). Then between pH 5.5 to 6.5, the amount of Co2+ sorbed 

remains relatively stable and sorption in this pH range is highly dependent on solution 

ionic strength (Landry et al., 2009; Spark et al., 1995). Indeed the initial sorption stage is 

completely inhibited by increasing the solution ionic strength from 10-3 mol L-1 to 10-1 
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mol L-1 with either KNO3 or NaCl (Spark et al., 1995). The low pH sorption behaviour of 

Co2+ to kaolinite is therefore attributed to complexation of Co2+ to the siloxane faces in 

the kaolinite until these sites become saturated (Spark et al., 1995; Angove et al., 1997; 

Angove et al., 1998). This is consistent with spectroscopic data that indicate only outer-

sphere sorption of Co2+ to kaolinite at low pH (O’Day et al., 1994a), and low pH Co2+ 

sorption data that can be adequately predicted by invoking non selective cation exchange 

involving permanent negative charge on the siloxane sites (Angove et al., 1998). The 

second sorption stage occurs above pH ~6.5, where Co2+ sorption to kaolinite increases 

to 100% of the concentrations tested at pH ~8 (Spark et al., 1995; Angove et al., 1998; 

Landry et al., 2009); this second stage is not affected by changes in ionic strength or Co2+ 

concentration (Landry et al., 2009). This behaviour is attributed to cation sorption to the 

amphoteric alumina faces (Schulthess and Huang, 1990). Spectroscopic data of Co2+ 

sorption to kaolinite above pH ~6.5 suggests that Co-Co second-neighbour atoms at 3.1 

±0.02 Å become increasingly important with increasing surface coverage (O’Day et al., 

1994a;b). O’Day et al. (1994a) interpret this behaviour as evidence for the formation of 

multinuclear surface complexes on the kaolinite surface. At the lowest Co surface 

coverages, however, EXAFS data suggested that there are also Al or Si backscattering 

atoms present at 2.7 ±0.5Å and 3.4 ±0.05 Å, with the shorter of these bond lengths 

consistent with the predicted bond length for inner-sphere bidentate Co2+ complexes 

(Fig. 4.1) on the AlOH surface sites.  Experimental data for Co2+ to kaolinite is therefore 

fit using a DLM framework by invoking cation exchange processes in combination with 

either monodentate or bidentate surface complexes (Landry et al., 2009). Both models fit 

the data well at ionic strengths of 10-2-10-1 mol L-1, but at low ionic strength (10-3 mol L-1) 

Co sorption is overpredicted. Although the model invoking monodentate complexes 

performs slightly better than the model with bidentate complexes, neither is significantly 

different at a 95% confidence interval (Landry et al., 2009).  Angove et al. (1998) also 

fitted Co2+ sorption data using a two-site model consisting of Co sorption to X- and SOH 

sites and the constant capacitance model to account for surface electrostatics. The model 

produces a good fit across the entire pH range, although the model was only tested at an 

ionic strength of 5 x 10-3 mol L-1.  
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While several previous studies focus on how Co sorbs to different soil constituents, 

including ferrihydrite at a macroscopic level and kaolinite at both macro- and 

microscopic levels, there has been almost no research to understand Co2+ sorption 

behaviour in systems involving organo-mineral composites (Zachara et al., 1994). This is 

an important knowledge gap to fill because contaminants do not react with soil phases in 

isolation, rather natural soil phases are present as more complex composites, where, for 

example, clays and iron (hydr)oxides in natural soils are typically coated with organic 

matter in the form of humic substances and/or microbial cells (e.g., Davis, 1982; Sposito, 

1984; O’Melia, 1989; Fortin and Langley, 2005). Therefore, the purpose of this study is to 

understand the mechanisms by which Co2+ interacts with common soil constituents in 

the form of isolated end-member phases, ferrihydrite, kaolinite and humic acid, and 

more complex organo-mineral composites of ferrihydrite-humic acid and kaolinite-

Figure 4.1: Diagrams showing sorption mechanisms discussed in this 
study. Co atoms are labelled circles, unlabelled large circles are 
surface metal atoms of a standard mineral, and unlabelled 
smaller circles are oxygen atoms. 
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humic acid, made by coating the pure mineral phases with sorbed humic acid. We 

investigate Co sorption as a function of pH, ionic strength, and Co concentration, and 

also for the composites as a function of organic carbon concentration, with composites 

made containing a wide range of organic carbon contents. We determine the molecular 

sorption mechanisms of Co to the end-member mineral and organic phases and the 

composites using extended X-ray absorption fine structure (EXAFS) spectroscopy, and 

transmission electron microscopy (TEM) to visualise Co2+ distribution at the nm-scale on 

the sorbent particles. Our work addresses the lack of underpinning spectroscopic 

information regarding the nature of Co2+ sorption coordination with iron (hydr)oxides 

and humic substances, in comparison to that observed with kaolinite clay. From our 

analysis we develop molecularly constrained thermodynamic surface complexation 

models to investigate the nature of the Co sorption behaviour to the soil constituents, and 

in particular to determine whether Co2+ sorption to the organo-mineral composites 

adheres to sorption additivity (i.e., can be predicted by assuming a simple mixture of 

phases).  
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4. 2 Methods 

4. 2. 1 Materials 

Humic acid was obtained from an ombrotrophic peat soil in Galicia (NW Spain, 43° 28′ 

5.10″ N, 7° 32′ 6.53″ W) (López et al., 2011). Preparation and characterisation of the 

humic acid is reported in López et al. (2012). Briefly, the soil was acid-washed to remove 

inorganic components following Smith et al. (2004), and then humic acid was extracted 

following Swift (1996). ferrihydrite was synthesised as described in Schwertmann and 

Cornell (1991) by rapid hydrolysis of 0.1 M Fe(NO3)39H2O (aq) with 1 M NaOH at pH 7. 

After synthesis ferrihydrite was washed several times over a week in equivalent volumes 

of 18.2 MΩcm MilliQ water, and subsequently stored as a slurry at 4oC, following 

standard protocols to maintain mineralogical integrity (Schwertmann and Cornell, 1991). 

Plastic labware and AR grade reagents were used throughout the ferrihydrite 

preparations. Mineralogically pure kaolinite (KGa-1b) was obtained from the Clay 

Minerals Society Source Clays Repository. Mineral identity and purity of the ferrihydrite 

and kaolinite was confirmed by X-ray powder diffraction (XRD) using a Bruker D8 

Advance powder diffractometer and Cu–Kα radiation (λ = 1.5406 Å). The BET surface 

area of the end-member minerals was measured in triplicate using a Micrometrics 

Gemini VII 2390a using the N2 sorption method after degassing for 16 hours at room 

temperature. We report ferrihydrite and kaolinite surface areas of 295 ± 3 and 11.7 ± 0.1 

m2/g, respectively, which are in good agreement with literature values (Schwertmann 

and Cornell, 1991; Eick and Fendorf, 1998). Three ferrihydrite-humic acid and two 

kaolinite-humic acid composites with different wt% adsorbed C were prepared following 

the method suggested by Iglesias et al. (2010a, b). Briefly, 2 dry g equivalent of the pure 

mineral were suspended in 50 mL of 0.1 mol L-1 NaNO3 and then mixed with a varying 

amounts of humic acid (23, 70, and 140 ml of 5.2 g L-1 humic acid slurry for ferrihydrite-

humic acid composites, and 10 and 55 ml of 13.99 g L-1 humic acid slurry for kaolinite-

humic acid composites) and DIW to make up a 500 mL solution. The pH was lowered to 

~4 by the addition of dilute HNO3 to facilitate humic acid sorption and the solutions were 

agitated for 7 days. To wash the ferrihydrite-humic acid composites, the solutions were 

repeatedly mixed with equivalent volumes of DIW and centrifuged at 4000 g for 10 

minutes until the presence of humic acid in the supernatant was negligible, as 

determined by UV-Vis performed at 280 nm (Otero-Fariña et al., 2017). The kaolinite-

humic acid composite particles were too fine for efficient centrifugation and were 

therefore washed via dialysis, using excess volumes of DIW and Membra-Cel MD44 

14x100 CLR dialysis tubing with a 14 kDa cut off, until the electrical conductivity of the 
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wash water equalled that of deionised water. All of the composites were stored as a slurry 

at 4°C.  The C content of the humic acid and composites was measured by combustion 

using a LECO SC-144DR Dual Range Sulfur and Carbon Analyzer 606-000. The three 

ferrihydrite-humic acid composites were found to have 5, 10, and 17 wt% C, and the 

kaolinite-humic acid composites had 1.4 and 2.2 wt% C.  

4. 2. 2 Sorption Experiments 

Batch sorption experiments were carried out in 50 mL plastic centrifuge tubes at room 

temperature and in aerobic conditions. The pH range for the experiments was 3.5-8.4, 

representative of the pH of natural soils. 0.03 dry g equivalent weight samples (0.3 dry g 

equivalent for kaolinite) were mixed with 30 mL solutions of NaNO3 (10-1, 10-2, or 10-3 

mol L-1 NaNO3) and Co so that the sorbents contained either 5.8, 0.58, or 0.058 wt % Co 

at 100% sorption (0.58, 0.058, or 0.0058 wt % Co for kaolinite). pH was recorded when 

there was less than 0.01 pH unit change in 15 seconds. Samples were adjusted to the 

chosen pH by dropwise addition of dilute NaOH or HNO3. The samples were shaken 

continuously while the pH was monitored and set back to within ±0.15 of the desired pH. 

The pH values were then reset twice a day for 4 days until they remained constant for 16-

24 hours, after which time the experiments were concluded and the final pH was 

measured. The samples were centrifuged for 15 minutes at 3000 g.  The supernatant was 

filtered using 0.22 μm filters (10 kDa centrifuge filters in the case of the humic acid) and 

then 5 mL was added to 5 mL of 2% HNO3 to maintain Co in solution. The Co 

concentration was determined (with an analytical uncertainty of < ±3%) on a Thermo 

iCAP 7400 radial ion-coupled plasma optical emission spectrometer (ICP-OES; 

ThermoFisher Scientific, USA).  

PHREEQC (Parkhurst and Appelo, 1999) was used to calculate Co speciation in solution 

using the MINTEQ.V4 database (Charlton and Parkhurst, 2002) and is shown in Fig. 4.2 

as a function of pH. Up to pH ~8.5, Co2+ (aq) dominates Co speciation. At pH 8.3 

Co(OH)2 (s) begins to precipitate and by pH 8.5 it accounts for 50% of the Co total. 

Therefore in our experiments Co(II) is predominantly present as Co2+ (aq) throughout 

the pH range examined. 
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Figure 4.2: Co speciation plots for each of the ionic strength and Co 
concentrations used in the sorption experiments (solid lines, 
Co(OH)2, dashes, Co+2, dots, CoOH+, and dash-dot-dot, 
CoNO3+). Panels A, C, and E show 10-4 mol L-1 Co at 10-3, 10-2, 
and 10-1 mol L-1 NaNO3, respectively. Panels B and C show 10-3 
and 10-5 mol L-1 Co at 10-2 mol L-1 NaNO3. 
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4. 2. 3. EXAFS Spectra Collection and Data Analysis 

EXAFS spectra were collected at the Co K-edge (7722 eV) at Beamline B18 at Diamond 

Light Source Ltd, UK, operating at 3 GeV with a typical current of 300 mA. The X-rays at 

B18 are generated from a bending magnet source. The beam is vertically collimated by a 

Si mirror before passing through a double crystal Si monochromator. It was then focused 

onto the sample to give a spot size of 200x250 μm at the sample. Dried (40 °C) sorption 

samples were presented to the beam as 8 mm pressed pellets using cellulose as a dilutant 

to reduce chemical thickness. The sample pellets were held in KaptonTM tape for analysis, 

and a separate 1000 mg L-1 Co(NO3) solution was also prepared and held in a polythene 

bag for analysis. Spectra were collected for the samples containing kaolinite and humic 

acid in fluorescence mode at room temperature (~295 °K) using a 32 element solid state 

Ge detector, and for the samples containing ferrihydrite in transmission mode at room 

temperature. Multiple scans were averaged to improve the signal to noise ratio and 

background subtracted using Athena version 0.9.25 from the Demeter package (Ravel 

and Newville, 2005). The resultant EXAFS spectra were then fit ab initio to model 

spectra produced by including a series of theoretical single and multiple scattering 

pathways calculated in Artemis version 0.9.25 (also from the Demeter package). Data 

were fit in a shell-by-shell manner to construct a structurally realistic best possible fit. Fit 

quality was assessed using the EXAFS R-factor and the reduced χ 2 function, which were 

calculated in Artemis for each model fit (the final best fit is reported in Tables 4.1 and 

4.2). A fit is deemed to be of acceptable quality when the R-factor is less than or equal to 

0.02 (Ravel and Newville, 2005).  The reduced Chi2 value allows comparison of fits with 

different parameterisation and therefore is only useful when comparing between samples 

or model fits and does not have its own ideal value. Additional longer backscattering 

pathways were only included if there was a > 10% reduction in the reduced χ 2 function 

measure of goodness of fit. Uncertainties in the fitting parameters for each pathway (r, 

E0, S2
0, and σ2) were calculated individually and are also shown in Tables 4.1 and 4.2. 

For the EXAFS models of the composite samples, the end-member samples were 

combined and adjusted, if necessary, to produce an acceptable fit.  

4. 2. 4. Scanning Transition Electron Microscopy  

Separate ferrihydrite, kaolinite and humic acid samples with Co surface loadings of 

approximately 1 wt% were prepared for (S)TEM analysis in the same way as the sorption 

experiments. Briefly 0.03 dry g equivalent of sorbent was suspended in 29.5 mL of 10-3 

mol L-1 NaNO3 and 0.6 mL 0.01 mol L-1 Co2+. After 16 hrs the final pH was 7.5 ±0.5; 

consistent with > 90% aqueous Co removal in previous batch sorption experiments. 

Samples were then dispersed in methanol (or DI water in the case of humic acid) and a 
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drop was pipetted onto a lacy / holey thin-film across a copper grid using a glass Pasteur 

pipette. As DI water was used to disperse the humic acid sample, the carbon film and 

grid underwent plasma treatment in a Fischione 1020 plasma cleaner for 10 seconds to 

make the film hydrophilic and ensure the sample was evenly distributed. (S)TEM images, 

energy dispersive X-ray (EDX) microanalysis elemental maps and electron energy loss 

spectra (EELS) were collected on an FEI Titan3 Themis 300: X-FEG 300 kV S/TEM. This 

was fitted with S-TWIN objective lens, monochromator (energy spread 1.1 eV when the 

monochromator is de-excited), multiple high-angle annular dark-field (HAADF), annular 

dark-field (ADF), bright-field (BF) STEM detectors, FEI Super-X 4-detector EDX system, 

Gatan Quantum ER 965 energy filter for EELS and energy filtered TEM and Gatan 

OneView 4K CMOS digital camera. To minimise potential sample damage (which was 

most important for kaolinite samples) a low beam current of 0.3 nA was used throughout 

data acquisition and limited magnification (280k x) BF TEM imaging with short 

acquisition times (< 1 s) was performed before commencement of HAADF STEM imaging 

and EDX elemental mapping (using a ~80 pA probe current).  

4. 2. 5 Surface Complexation Modelling 

The sorption behaviour of Co on end-member ferrihydrite, kaolinite and humic acid and 

the organo-mineral composites was fit to a thermodynamic surface complexation model 

using the program EQLFOR (Sherman et al., 2008; Sherman, 2009). The ferrihydrite 

and kaolinite models were then combined with the humic acid model using a linear 

component additivity approach to explore Co sorption behaviour on the ferrihydrite and 

kaolinite organo-mineral composites. The surface electrostatics in all the models were 

accounted for by adopting the basic Stern model (BSM). The Davies equation was used 

for activity corrections to the stability constants for aqueous species.  Detailed discussion 

on the development of the end-member ferrihydrite model is available in Moon and 

Peacock (2013), and for the kaolinite, humic acid and organo-mineral composite models 

in Section 4.4.3 below. 

4. 2. 5. 1 Sensitivity Analysis of the Co-Ferrihydrite, -Kaolinite, and 

Humic Acid Surface Complexation Models 

A sensitivity analysis was performed to evaluate the sensitivity of the end-member 

models to the input parameters. For each model, the input parameters (Cstern, electrolyte 

binding constants, surface site densities, and surface area) were systematically varied 

while monitoring the log K values for the Co adsorption complexes. The analyses are 

based on the protocols of Moon and Peacock (2013). The Cstern was varied by ±50%, the 

log K electrolyte binding constants between -1.5 and 0.5, and the surface site densities 
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and the surface areas were varied by a factor of ±3. Log K values for each surface site and 

their uncertainty are presented in Table 4.5. 
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4. 3. Results 

4. 3 .1 Co Sorption to End-member Ferrihydrite, Kaolinite and 

Humic Acid 

The results from pH sorption edge experiments using ferrihydrite, kaolinite, and humic 

acid are shown in Figs. 4.3 and 4.4 (n.b. only data from 0.58 wt% Co experiments are 

shown, where the solid:solution ratio is 1 g L-1  in the ferrihydrite and humic acid 

experiments and 10 g L-1 in the kaolinite experiments; data from all Co2+ concentrations 

0.058 – 5.8 wt% Co for the ferrihydrite and humic acid, and 0.0058 – 0.58 wt% Co for 

the kaolinite experiments are shown in Fig. 4.5).  

For ferrihydrite we observe sigmoid sorption edges that are in agreement with previous 

studies of Co sorption onto iron (hydr)oxides (Forbes et al., 1976; Schenck et al., 1983; 

Ainsworth et al., 1994; Kanungo, 1994; Landry et al., 2009). There is no change in the 

shape or position of the sorption edges in pH space with increases in ionic strength from 

10-3 to 10-1 mol L-1 (Fig. 4.4) or with increases in Co concentration from 0.058 to 5.8 wt % 

Co (Fig. 4.5). 

  

Figure 4.3: Co sorption (at 10-4 mol L-1 Co total concentration, 
equating to 0.58 wt% Co sorbed at 100% sorption for 
ferrihydrite and 0.058 wt% Co sorbed at 100% sorption for 
kaolinite) to ferrihydrite (A) and kaolinite (B) as a function of 
pH; conducted at room temperature at a range of ionic 
strengths. 
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Figure 4.4: Co sorption to humic acid at ionic strengths of 10-3 mol L-

1 and 10-1 mol L-1, and using two different filters before analysis 
(squares, 10-3 mol L-1 NaNO3; circles, 10-1 mol L-1 NaNO3 filtered 
with a 10 kDA centrifuge filter; triangles, 10-1 mol L-1 NaNO3 
filtered at 0.22 μm.) Solid lines represent the surface 
complexation model fits for each system. 

Figure 4.5: Co sorption to ferrihydrite (A) and kaolinite (B) as a 
function of pH and Co concentration. For ferrihydrite, squares 
show 0.058 wt% Co, circles show 0.58 wt% Co, and triangles show 
5.8 wt% Co systems. For kaolinite, squares show 0.0058 wt% Co, 
circles show 0.058 wt% Co, and triangles show 0.58 wt% Co. Solid 
lines represent the EQLFOR fits. The solid:solution ratio was 1 g 
L-1 for ferrihydrite experiments, and 10 g L-1 for kaolinite. 
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The kaolinite sorption edges show two sorption stages which is also in agreement with 

previous studies of Co sorption onto kaolinite (Spark et al., 1995; Angove et al., 1998; 

Landry et al., 2009). There is a decrease in the amount of Co sorbed during the initial 

sorption stage with increasing ionic strength from 10-3 to 10-1 mol L-1 (Fig. 4.3) The 

percentage of Co sorbed in the initial sorption stage also decreases when increasing the 

Co concentration from 0.0058 to 0.58 wt% Co (Fig. 4.5).  

For humic acid we observe high sorption even at low pH values, which is consistent with 

previous studies of Co sorption on humic acid (McLaren et al., 1986). The sorption edge 

shifts to higher pH values when ionic strength is increased from 10-3 to 10-1 mol L-1 (Fig. 

4.4). There is also a marked difference in sorption behaviour dependant on the filtration 

method used for equivalent samples. When the sample is filtered with a 10 kDa filter, 

sorption reaches 100%, however when it is filtered with a 0.22 μm filter, sorption peaks 

at ~60% and then decreases back down to ~35% where it remains stable (Fig. 4.4). 

4. 3. 2. Co Sorption to Organo-mineral Composites 

The sorption of Co to the organo-mineral composites is plotted in Fig. 4.6 as a function of 

pH. The three ferrihydrite-humic acid composites show a generally sigmoidal shape, but 

the sorption edges are intermediate between those of the end-member ferrihydrite and 

humic acid, showing enhanced sorption relative to the end-member ferrihydrite in the 

mid-low pH regime. In particular at pH 3.5 – 5.5 there is negligible sorption to 

ferrihydrite, but the composites show 15 – 45% sorption. This is in good agreement with 

the sorption of other divalent cations to ferrihydrite organo-mineral composites (e.g., 

Moon and Peacock, 2012, 2013; Zhu et al., 2010). 

The two kaolinite-humic acid sorption edges are also intermediate between those of the 

end-member kaolinite and humic acid, with the 1.4 wt% C composite edge falling below 

the end-member kaolinite edge only above pH 7. The 1.4 wt% C and 2.2 wt% C 

composites show enhanced sorption relative to the end-member kaolinite in the low-mid 

pH regime and over the majority of the pH range studied, respectively.  

4. 3. 3. EXAFS of End-member and Composite Phases 

Spectra collected from all samples are fit with a series of single and corresponding 

multiple scattering pathways. The final best model fits are shown in Fig. 4.7 for all 

sample spectra and an aqueous Co standard solution, and the fit parameters are shown in 

Table 4.1 and 4.2 for the end-member and composite systems, respectively. Additional 

ferrihydrite samples (with both very high and very low Co-loadings) that produced 

EXAFS spectra with high signal to noise ratio are presented in Table 4.3 and Fig. 4.8. 
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The amplitude reduction factor, S2
0, determined for the fitting of all EXAFS samples was 

based on results obtained from the fitting of the EXAFS standard Co2+(aq) solution. In 

this process, the CN (coordination number) of the Co-O path was set to 6 and the S2
0 

parameter fit to a value of 0.92. This value was used for all S2
0 in all subsequent fits and 

models. The CN for the Co-O pathway was fixed at 6 for all samples, and we did not 

consider non-octahedrally coordinated Co2+. For the sorption coordination we fit the 

CN’s for the Co-Fe and Co-Co pathways iteratively to choose the best fit for the highest 

quality data. This was then applied to the lower quality data to ensure consistency. Given 

Figure 4.6: Co sorption to ferrihydrite-humic acid (A) and kaolinite-
humic acid (B) organo-mineral composites, both at a range of C 
contents (for the ferrihydrite-humic acid composites, squares 
show sorption to the composite with 5 wt% C; circles, 10 wt% C; 
and triangles, 17 wt% C; for the kaolinite-humic acid composites, 
squares show sorption to the composite with 1.4 wt% C, and 
circles 2.2 wt% C). In both graphs, the dashed line shows sorption 
to the humic acid end-member at the ionic strength of each 
experiment, and the dotted line shows sorption to the mineral 
end-member (ferrihydrite or kaolinite). 
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that the error on CNs is ~25% it was sensible to choose an intermediate number close to 

integer values for the subsequence fits.  

 

Figure 4.7: EXAFS spectra and resulting Fourier transforms of each 
sample. Sample names are presented as: adsorbent_wt % 
Co_wt% C (only necessary for the composite phases)_ionic 
strength (in mol L-1) and sample pH. The solid line represents the 
data and dotted line is the best fit. Samples showing signs of low 
signal:noise and self-absorption have been omitted, but are 
shown in Fig. 4.8. 
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Table 4.1: Co K-edge EXAFS fitting parameters for ferrihydrite, 
kaolinite and humic acid samples, where N is the coordination 
number (±25%), r is the interatomic distance, σ2 is the Debye–
Waller Factor and reduced χ2 and R are the goodness of fit 
parameters. Uncertainties in the last digit shown in parentheses. 
MS = multiple scattering pathways within the CoO6 octahedral 
and Co-O-Co linkages. MS pathways are italicised and do not 

contribute to the structural fit. 

  

Experiment Description Pathway N r (Å) σ2 (Å2) χ2; R 

A: Co (aq) Standard 
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 6 2.07(1) 0.005(1) 771; 
0.019 CoO6 MS 12 4.14(2) 0.011(2) 

 

B: Fh_2wt%Co_0.1_pH8 Co-O 6 2.06(1) 0.011(1) 120; 
0.013 δe0 = -2(1) 

S2
0 = 0.92 

Co-Fe 1.3(3) 2.99(2) 0.006(3) 
Co-Co 1.6(4) 3.14(1) 0.005(2) 
CoO6 MS 12 4.12(2) 0.022(2) 
Co-O-Co MS 6(2) 3.66(1) 0.008(2) 

C: Fh_2wt%Co_0.1_pH7 
δe0 = -3(2) 
S2

0= 0.92 

Co-O 6 2.04(1) 0.011(1) 288; 
0.045 Co-Fe 1.3(3) 2.99(3) 0.006(5) 

Co-Co 1.8(4) 3.14(3) 0.007(4) 
CoO6 MS 12 4.09 (2) 0.022(2) 
Co-O-Co MS 6(2) 3.65(2) 0.009(3) 

D: Fh_1wt%Co_0.1_pH8 
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 6 2.04(1) 0.009(1)  
266; 
0.022 

Co-Fe 1.1(3) 3.00(4) 0.006(7) 
Co-Co 1.7(4) 3.13(3) 0.007(4) 
CoO6 MS 12 4.09(2) 0.018(2) 
Co-O-Co MS 6(2) 3.65(2) 0.007(3) 

E: 
Ka_1wt%Co_0.001_pH8 
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 6 2.06(1) 0.009(1) 121; 
0.017 Co-Al 0.5(1) 2.97(10) 0.014(17) 

Co-Co 1.2(3) 3.11(1) 0.004(1) 
CoO6 MS 12 4.13(2) 0.018(2) 
Co-O-Co MS 4(1) 3.64(1) 0.006(1) 

F: 
Ka_1wt%Co_0.001_pH6 
δe0 = -2(1) 
S2

0 = 0.92 

Co-O 6 2.07(1) 0.006(1) 445; 
0.013 CoO6 MS 12 4.14(2) 0.013(2) 

G: 
Ka_1wt%Co_0.001_pH5 
δe0 = -2(1) 
S2

0 = 0.92 

Co-O 6 2.06(1) 0.007(1) 775; 
0.015 CoO6 MS 12 4.13(2) 0.014(2) 

H: HA_1wt%Co_0.1_pH8 
δe0 = 0(1) 
S2

0 = 0.92 

Co-O 6 2.04(1) 0.010(1) 36; 
0.006 Co-C 2.3(5) 2.92(2) 0.006(4) 

Co-Co 0.9(2) 3.07(2) 0.007(2) 
CoO6 MS 12 4.08(2) 0.020(2) 
Co-O-Co MS 4(1) 3.61(2) 0.008(2) 

I: 
HA_1wt%Co_0.1_pH4.6  
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 6 2.05(1) 0.008(1) 1062; 
0.024 CoO6 MS 12 4.11(2) 0.017(2) 

J: HA_1wt%Co_0.1_pH4 
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 
 

6 2.05(1) 0.007(1) 642; 
0.017 
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Table 4.2: Co K-edge EXAFS fitting parameters for ferrihydrite, 
kaolinite and humic acid samples, where N is the coordination 
number (±25%), r is the interatomic distance, σ2 is the Debye–
Waller Factor and reduced χ2 and R are the goodness of fit 
parameters. Uncertainties in the last digit shown in parentheses. 
MS = multiple scattering pathways within the CoO6 octahedral 
and Co-O-Co linkages. MS pathways are italicised and do not 

contribute to the structural fit. 

 

The FEFF paths for the model were created from the basic atom coordinates of cobalt 

hydroxide, goethite, kaolinite, and Co-acetate, which account for Jahn-Teller distortions. 

A potential problem with this approach is that increasing the number of variables to be 

determined in the fitting minimization can make the uncertainties in the fitted variables 

intolerably large. However, the parameters for the additional MS paths (R, σ2) can all be 

expanded quantitatively in terms of the single scattering paths that make up the 

individual legs of each of the multiple scattering paths. Thus the added multiple 

scattering paths do not need any additional variable parameters added to the fit and 

instead they add constraints to better define the single scattering paths, reducing the 

uncertainty of the first shell Co-O and Co-Co paths making such a fit attainable (Webb et 

al., 2005). 

The spectra collected from the Co-sorbed ferrihydrite samples at all pH and Co 

concentrations are fit with the same molecular model, consisting of 6 O at  

Experiment Description 
 

Pathway N r (Å) σ2 (Å2) χ2; R 

K: 
FhHA_2wt%Co_17wt%C_0.
1_pH7 
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 6 2.05(1) 0.009(1) 90; 
0.014 Co-C 1.3(3) 2.95(12) 0.012(27) 

Co-Fe 0.6(2) 3.02(8) 0.007(13) 
Co-Co 0.9(2) 3.17(5) 0.008(9) 
CoO6 MS 12 4.11(2) 0.018(2) 
Co-O-Co MS 8(2) 3.67(3) 0.009(5) 

L: 
FhHA_2wt%Co_17wt%C_0.
1_pH6 
δe0 = -5(1) 
S2

0 = 0.92 

Co-O 6 2.04(1) 0.007(1) 185; 
0.025 CoO6 MS 12 4.09(2) 0.014(2) 

M: 
KaHA_2.1wt%Co_2.2wt%C
_0.001_pH8 
δe0 = -2(2) 
S2

0 = 0.92 

Co-O 6 2.07(1) 0.009(1) 363; 
0.031 Co-C 2.5(6) 3.09(6) 0.011(12) 

Co-Co 1(2) 3.12(3) 0.007(4) 
CoO6 MS 12 4.14(2) 0.019(2) 
Co-O-Co MS 4(1) 3.65(2) 0.008(3) 

N: 
KaHA_2.1wt%Co_2.2wt%C
_0.001_pH6 
δe0 = -2(1) 
S2

0 = 0.92 

Co-O 6 2.06(1) 0.006(1) 306; 
0.013 CoO6 MS 12 4.12(2) 0.013(2) 

O: 
KaHA_2.1wt%Co_2.2wt%C
_0.001_pH4 
δe0 = -3(1) 
S2

0 = 0.92 

Co-O 6 2.06(1) 0.006(1) 279; 
0.014 CoO6 MS 12 4.13(2) 0.012(2) 
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Table 4.3: Co K-edge EXAFS fitting parameters for high signal: noise 
ferrihydrite samples, where N is the Occupancy, r is the 
interatomic distance, σ2 is the Debye–Waller Factor and reduced 
χ2 and R are the goodness of fit parameters. Uncertainties in the 
last digit shown in parentheses. MS = multiple scattering 
pathways within the CoO6 octahedral and Co-O-Co linkages. MS 
pathways are italicised and do not contribute to the structural fit. 

 

~2.05 Å, ~1 Fe at ~3 Å and ~1.5 Co at 3.1 – 3.2 Å. The Co-sorbed kaolinite spectra at low 

pH (pH 5 and 6) are fit with only 6 O at ~2.05 Å, similar to the Co(aq) standard, while at 

high pH (pH 8), the best fit model includes ~0.5 Al at ~2.9 Å and ~1 Co at ~3.1 Å. The 

Co-sorbed humic acid spectra at low pH (pH 4 and 4.6) are also fit with only 6 O, similar 

to the Co(aq) standard and the low pH sorption to kaolinite, while at high pH (pH 8) there 

are also ~2 C at ~2.9 Å and ~1 Co at ~3.1 Å. Co sorption to the ferrihydrite-humic acid 

composite spectrum at pH 6, is fit with 6 O at ~2.05 Å, ~1 Fe at ~3.02 Å and ~1.5 Co at 

~3.2 Å, while at pH 7, the fit also includes ~1 C at ~2.9 Å. Sorption to the kaolinite-humic 

acid composite spectrum at pH 4 and 6 is fit with only 6 O at ~2.05 Å, while at pH 8, 

there are also contributions from ~2 C at ~3.04 Å and ~1 Co at ~3.14 Å. 

4. 3. 4. TEM Imaging of Co-Sorbed End-member Ferrihydrite, 

Kaolinite and Humic Acid 

In low magnification imaging the Co-sorbed ferrihydrite sample is seen to consist of 

small (2 - 5 nm) particles that form much larger aggregates between 500 – 800 nm in 

Experiment 
Description 

Pathway N r 
(Å) 

σ2 

(Å2) 
χ2; R 

A: 
Fh_5wt%Co_0.1_pH8 

δe0 = -2(1) 
S2

0 = 0.92 

Co-O 6(2) 2.05(1) 0.013(8) 851; 
0.011 

Co-Fe 1.2(3) 2.98(2) 0.006(3) 

Co-Co 1.6(4) 3.14(1) 0.006(2) 

CoO6 MS 12(3) 4.10(2) 0.026(16) 

Co-O-Co MS 6(2) 3.65(2) 0.009(5) 

B: Fh_2wt%Co_0.1_pH 
6.5 

δe0 = -4(2) 
S2

0 = 0.92 

Co-O 6(2) 2.04(1) 0.006(1) 299; 
0.086 Co-Co 1.7(4) 3.09(4) 0.010(5) 

CoO6 MS 12(3) 4.08(1) 0.013(1) 

Co-O-Co MS 6(2) 3.62(3) 0.008(3) 

C: 
Fh_1wt%Co_0.1_pH7 
δe0 = -2(2) 
S2

0 = 0.92 

Co-O 6(2) 2.04(2) 0.009(1) 66; 
0.065 Co-Co 1.8(4) 3.09(3) 0.008(4) 

D: 
Fh_0.5wt%Co_0.1_pH8 

δe0 = -4(2) 
S2

0 = 0.92 

Co-O 6(2) 2.04(1) 0.004(1) 532; 
0.058 Co-Co 1.6(4) 3.08(2) 0.006(3) 
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size (Fig. 4.9). Relatively high magnification analysis of 5 areas of interest shows that 

none of these areas contain any nano-scale Co-containing particles. In all 5 areas of 

interest EDS mapping shows the Co to be homogenously distributed on the sample, 

though areas that are deemed to be thicker through observation of the HAADF image 

appear to have a higher concentration of Co (Fig. 4.9). Due to the possibility of overlap in 

the Fe Kβ and Co Kα peaks in EDS analysis, the presence of Co associated with the 

ferrihydrite was confirmed using electron energy loss spectroscopy (EELS) and a distinct 

Co L3-edge is detected at 780 eV. 

In low magnification imaging the Co-sorbed kaolinite sample consists of hexagonal 

crystalline platelets between 100 – 400 nm in size with a depth of 10 – 50 nm (Fig. 4.10). 

Thirteen regions of interest were selected for relatively high magnification analysis, 2 

imaging the planar platelet surface and the remainder imaging edge-on views of the 

crystals. No nano-scale Co-containing particles are observed in any region of interest. In 

EDS mapping Co is found to be heterogeneously distributed on the sample and in 5 

regions of interest was detected specifically associated with the crystal edges. In these 5 

regions, Co appears to be distributed such that it is found predominately on one face of 

Figure 4.8: EXAFS spectra and resulting Fourier Transform for 
samples with low signal:noise and high self-absorption. Sample 
names are presented as: adsorbent_wt % Co_ionic strength (in 
mol L-1)_sample pH. The solid line represents the data and dotted 
line is the best fit. All samples were fit to a similar model to that 
of the 2 wt% Co ferrihydrite pH 8 sample in Fig. 4.7. 
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each crystal. In high resolution imaging these Co-rich faces appear to be regions where 

the kaolinite cleavage planes are rougher and less coherent than Co-free areas (Fig. 4.10).  

In low magnification imaging the Co-sorbed humic acid sample consists of rounded 

amorphous particles displaying a very wide range of particle sizes (<100 nm – > 2000 

nm) (Fig. 4.11). Three areas of interest were studied at a high resolution and in all of 

these areas EDS mapping shows Co homogenously distributed on the sample with no 

nano-scale Co-containing particles (Fig. 4.11).  
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Figure 4.9: High resolution bright field TEM image showing 
ferrihydrite particles after Co sorption at pH 8, with 
corresponding HAADF image and Co and Fe EDS maps 
of the same region. An electron energy loss spectrum 
collected from the ferrihydrite is also shown (bottom 
panel) with the position of the Fe L3, 2 and Co L3-edges 
indicated. 
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Figure 4.10: Low resolution bright field TEM images show 
kaolinite crystals after Co sorption. Red box shows region 
chosen for high resolution TEM imaging. HAADF image of 
same region and Al and Co EDS elemental maps are also 
show. Arrows denote a specific Co-containing laminae and 
are the same location in each image.  
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Figure 4.11: Low resolution bright field TEM image showing HA 
after Co sorption at pH 8. Red box shows region show in 
the adjacent high resolution image with corresponding 
HAADF image of same region and the Co EDS elemental 
map. 
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4. 4. Discussion 

4. 4. 1. Co Sorption to End-member Ferrihydrite, Kaolinite and 

Humic Acid  

4. 4 .1 .1 . Co sorption to ferrihydrite 

The sorption edge data for ferrihydrite (Figs. 4.3A and 4.5A) compare well with that 

reported in the literature for Co sorption to iron (hydr)oxides, with sorption edges in the 

range pH 6 – 7 (Ainsworth et al., 1994; Landry et al., 2009). The percentage of Co sorbed 

is independent of initial Co concentration (Fig. 4.5A), suggesting that in our sorption 

systems there is an excess of surface sorption sites, consistent with the large surface area 

for ferrihydrite (~295 ± 3 m2/g). The Co sorption behaviour is also independent of ionic 

strength (Fig. 4.3A) suggesting that Co binds to ferrihydrite via inner-sphere surface 

complexation. This is confirmed by EXAFS analysis of Co sorbed to ferrihydrite at pH 7 

and 8 as all samples are fit with 1 Fe at ~3.0 Å (Table 4.1). The number of Fe 

backscatterrers and the Co-Fe interatomic distance indicates that octahedral Co-O 

moieties form inner-sphere bidentate edge-sharing complexes with FeOH octahedral 

surface groups at the pH values investigated (e.g., for copper sorption to ferrihydrite; 

Scheinost et al., 2001; Moon and Peacock, 2012; Otero Fariña et al., 2018). EXAFS data 

were also fit with ~1.5 Co at ~3.14 Å (Table 4.1) indicating the presence of Co hydroxide-

like linkages as opposed to Co hydroxide surface precipitates in which the CN for the Co-

Co pathway would be higher. As the Co-Co CN is between 1 and 2, it is possible that Co is 

forming a mixture of bi- and tri-nuclear surface complexes, as the CN will tend towards 2 

as the chain length increases. Although Fe and Co are similar X-ray backscatterers, the 

modelled Co-Fe and Co-Co pathways as calculated in FEFF have sufficiently different 

distances (~0.1 Å) that they can be resolved in the EXAFS fit. Addition of both Co-Fe and 

Co-Co pathways improved the model fits despite also increasing the total degrees of 

freedom when compared to models with either Co-Fe or Co-Co. TEM observations (Fig. 

4.9) however, show that even at relatively high Co loadings Co is evenly dispersed on the 

ferrihydrite surfaces and does not form discrete Co(OH)2 nanoparticles. Furthermore, 1.5 

Co-Co bonds is significantly below the 6 Co-Co bonds present in Co(OH)2 (O’Day et al., 

1994a). Therefore we propose that Co binds to ferrihydrite via bi- or tri-nuclear surface 

complexes, and thus in summary via inner-sphere bidentate multinuclear edge-sharing 

complexes (Fig. 4.1).  
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4. 4 .1 .2  Co sorption to kaolinite 

The sorption edge data for kaolinite (Fig. 4.3B) is similar to results found in 

previous studies (Spark et al., 1995; Angove et al., 1998; Landry et al., 2009). Our data 

sets all show increasing sorption between pH 4 and 5.5, and 6.5 and 8. In contrast to the 

ferrihydrite samples, the percentage of Co sorbed is somewhat dependent on initial Co 

concentration below pH ~7 (Fig. 4.5B), suggesting that our sorption systems are surface 

sorption site limited in the low-mid pH regime, consistent with the relatively low surface 

area for kaolinite (11.7 ± 0.1 m2/g).  Again in contrast to ferrihydrite, the Co sorption 

behaviour is also dependent on ionic strength mainly below pH ~7 (Fig. 4.3B), suggesting 

that Co binds to kaolinite via outer-sphere surface complexation in the low-mid pH 

regime. Taken together and in agreement with previous studies, these results suggest 

that Co binds to kaolinite via outer-sphere complexation during the initial sorption stage 

in the low-mid pH regime, where sorption is generally attributed to Co uptake onto 

permanently negatively charged surface sorption sites present on the siloxane faces 

(Spark et al. 1995; Landry et al. 2009), and then above pH ~7 during the second sorption 

stage Co binds via inner-sphere complexation onto the variable charge sites present on 

the alumina faces that are increasingly deprotonated and thus negatively charged in the 

mid-high pH regime (Schulthess and Huang, 1990).  

The above inferences about Co-kaolinite sorption behaviour based on our macroscopic 

sorption data are confirmed by our EXAFS analysis of Co sorbed to kaolinite, where at 

low-mid pH (pH 5 and 6) the best fits do not include Co-Al bonds, while at high pH (pH 

8) the best fit includes 0.5 Al at ~2.9 Å.  The number of Al backscatterrers and the Co-Al 

interatomic distance indicates that octahedral Co-O moieties form inner-sphere 

bidentate edge-sharing complexes with AlOH octahedral surface groups at the pH value 

investigated (e.g., O’Day, et al., 1994a;b). The absence and presence of Co-Al bonds at 

low-mid and high pH, respectively, also agrees with previous work on the sorption of Co 

to kaolinite (O’Day et al., 1994b). In addition to previous work however, our EDS map 

(Fig. 4.10) appears to show Co distributed across the edges of the kaolinite particles, and 

in particular concentrated onto one side of the edges of the kaolinite particles. The 

distribution of Co across the particle edges is likely due to the presence of highly reactive 

edge sites created when crystallites break apart (Sposito, 1984) which Co can bind to 

(O’Day et al, 1994b). Additionally, kaolinite is a 1:1 clay that readily cleaves between 

octahedral Al and tetrahedral Si layers (Spark et al., 1995) to produce exposed AlOH and 

SiOH sites on opposite sides of the resultant crystallites. While the exposed SiOH sites 

are likely to provide outer-sphere sorption sites for Co, the exposed AlOH sites are 

known to provide inner-sphere sorption sites (O’Day, et al., 1994b), and so we propose 
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that the observed concentration of Co onto one side of the edges of the kaolinite particles 

is caused by a “depth profile” created when Co preferentially sorbs to cleavage planes 

containing exposed AlOH sites.  As with ferrihydrite, the EXAFS analysis also indicates 

there are multiple (~1.5) Co-Co bonds at ~3.1 Å, but the CN for the Co-Co pathway is not 

high enough to imply surface precipitation and there is no evidence of Co(OH)2 

nanoparticles present in the TEM images (Fig. 4.10). As with ferrihydrite, a Co-Co CN of 

~1.5 suggests a mixture of bi- and tri-nuclear surface complexes are forming. Overall we 

therefore propose that at low-mid pH, Co sorbs via outer-sphere complexation, likely 

associated with the permanently negatively charged sites present on the siloxane faces, 

while at high pH Co sorbs via inner-sphere bidentate binuclear edge-sharing complexes 

onto the variable charge alumina sites present at the kaolinite crystal edges and on 

exposed cleavage plains (Fig. 4.10).  

4. 4 .1 .3 Co sorption to humic acid 

Our results show that there are significant differences in the apparent amount of Co 

sorbed to humic acid after filtration through 0.22 μm or 10 kDa filters (Fig. 4.4). The 

marked decrease in solid-associated Co above pH 5, which is only observed when using 

0.22 μm filters, is attributed to humic acid solvation and dispersal processes occurring at 

higher pH values.  Humic acid solvation increases progressively as pH is raised from pH 

2 to pH 12, with initially the low molecular weight (MW) fraction being dispersed at 

lower pH (cf. full dispersion of humic acid molecules is operationally defined at pH 12) 

(Ritchie and Posner, 1982). Therefore, at pH values > 5, a fraction of the sorbed Co 

present is not solid associated, but rather is bound to a relatively low MW (<220 nm) Co-

humic acid phase that is dispersed in solution. The 10 kDa filter, in contrast, removed all 

humic acid particles larger than 3 nm (Pan et al., 2017) and represents the best estimate 

of true sorption behaviour (i.e. ~90% above pH 6.5 for the 0.1 mol L-1 ionic strength 

system). 

Co sorption to humic acid at low pH (pH 4 and 4.6) is reduced when the ionic strength is 

increased (Fig. 4.4), in good agreement with previous studies on the sorption of other 

heavy metals onto purified Aldrich humic acid (Liu & Gonzalez, 2000), and our EXAFS 

analysis shows that at low pH (pH < 5) no Co-C bonds are required to fit the data (Table 

4.1).  This suggests that Co is bound through outer-sphere complexation at low pH. 

However, at higher pH Co sorption is unaffected by changes in ionic strength (Fig. 4.4) 

and our EXAFS fitting also includes 2 C at ~2.9 Å, indicative of inner-sphere 

complexation to C-containing functional groups present in humic acid.  This is in good 

agreement with previous EXAFS studies reporting that Co is bound to humic acid via 

inner-sphere complexation to C atoms (Ghabbour et al., 2007; Xia et al., 1997). The 
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presence of the Co-Co bond at 3.07 Å at pH 8 indicates the presence of a hydroxide-like 

precipitate, but again, the CN for the Co-Co pathway is not high enough to imply surface 

precipitation and the TEM images (Fig. 4.11) provide no evidence of Co-Co nanoclusters. 

This is consistent with other work on heavy metal interactions with organic matter, 

where Gustafsson et al. (2014) found that Cr(III) formed dimers when sorbed to soil 

above pH 5, with each Cr atom bound to two carboxyl groups at 2.85-2.87 Å, which is 

similar to the Co-C path length used in this study. Overall we propose that Co sorbs to 

humic acid at low pH via outer-sphere surface complexation, and at high pH via inner-

sphere bidentate binuclear surface complexation, likely involving carboxyl groups 

present in the humic acid moiety.  

4. 4. 2. Co sorption to organo-mineral composites 

Sorption to all ferrihydrite-humic acid composites is enhanced relative to the pure 

ferrihydrite phase, particularly at low pH (Fig. 4.6A). This is typically attributed to the 

fact that, in contrast to ferrihydrite, the majority of humic acid surface functional groups 

are deprotonated at low pH and thus possess a negative charge, which when present in a 

ferrihydrite-humic acid composite results in enhanced sorption in the low-mid pH 

regime, over the pure end-member ferrihydrite phase (Tipping et al., 1983; Murphy and 

Zachara, 1995; Zhu et al., 2010). The combined sorption edge and EXAFS data for the 

ferrihydrite-humic acid system indicates that Co binds to each of the composite fractions, 

and does so via the same molecular mechanisms as to the end-member ferrihydrite and 

humic acid phases. Specifically, at pH 6 we see enhanced Co sorption relative to the end-

member ferrihydrite (Fig. 4.6A), suggesting that Co binds to both the ferrihydrite and 

humic acid fractions, and the best fit EXAFS model includes ~1 Fe at ~3.0 Å and ~1.5 Co 

at ~3.2 Å (Table 4.2), suggesting that Co binds to the ferrihydrite fraction via the inner-

sphere bidentate multinuclear surface complex identified for ferrihydrite. The absence of 

a Co-C interatomic distance for the pH 6 ferrihydrite-humic acid sample is consistent 

with our EXAFS data for Co sorption to end-member humic acid which indicates that Co 

binds to humic acid via outer-sphere surface complexation at low-mid pH. In contrast at 

pH 7 the best fit EXAFS model includes 0.5 Fe at ~3.0 Å, 1.25 Co at ~3.17 Å and 1.1 C at 

~2.87 Å, suggesting that Co binds to both the ferrihydrite fraction and the humic acid 

fraction, via the ferrihydrite inner-sphere multidentate binuclear surface complex and 

the humic acid inner-sphere bidentate binuclear surface complex. Our results indicate 

that the sorption behaviour of Co with respect to humic acid is the same for end-member 

humic acid, and humic acid that is sorbed to ferrihydrite surfaces. 

Sorption to the kaolinite-humic acid composites is generally enhanced relative to the 

pure kaolinite phase, except for the 1.4 wt% C kaolinite-humic acid composite above pH 
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~7 (Fig. 4.6B), and again this is typically attributed to the presence of additional 

negatively charged sorption sites in the low-mid pH regime that are associated with the 

organic moieties (e.g., Heidmann et al. 2005a) who found that introducing fulvic acid to 

kaolinite increased Cu and Pb sorption at low to mid pH values). Consistent with the 

outer-sphere sorption of Co to end-member kaolinite and humic acid at low-mid pH, the 

best fit EXAFS models for Co sorption to kaolinite-humic acid at similar pH include only 

6 O at ~ 2.0 Å. At higher pH (pH 8) the best fit EXAFS model includes 2 C at ~3.0 Å and 

1 Co at ~3.14 Å (Table 4.2), suggesting that Co binds to the humic acid fraction via the 

inner-sphere bidentate binuclear surface complex identified for end-member humic acid. 

The pH 8 best fit EXAFS model does not however include any Co-Al bonds (Table 4.2), 

which suggests that either Co has a higher affinity for humic acid and is only sorbed to 

the humic acid phase in the composite, or because the Co-C and Co-Al bond lengths are 

similar they are not resolvable during the EXAFS analysis.  

It is noteworthy that the extent to which Co sorption is enhanced in our mineral-organic 

composites over the pure end-member mineral phases appears to depend on the surface 

area of the end-member mineral phase.  With relatively high surface area ferrihydrite (~ 

295 ± 3 m2/g) the percentage of Co sorbed by ferrihydrite-humic acid appears to be 

independent of composite C content, while with relatively low surface area kaolinite (~ 

11.7 ± 0.1 m2/g) the percentage of Co sorbed by kaolinite-humic acid appears to increase 

with increasing composite C content. This is observed in other heavy metal composite 

sorption systems, where studies using high surface area ferrihydrite in ferrihydrite-

organic composites also show the enhanced low-mid pH regime sorption to be 

independent of composite C content (Moon and Peacock, 2012, 2013; Otero Fariña et al., 

2018), while studies using relatively low surface area goethite (~42.1 m2/g; Jönsson et al., 

2006) in goethite-organic composites show increasingly enhanced low-mid pH regime 

sorption with increasing composite C content (Jönsson et al., 2006; Otero Fariña et al., 

2017). We suggest that with a lower surface area, the organic surface coverage on a 

kaolinite composite will be significantly higher than for a ferrihydrite composite, and as 

such, cation sorption in the mid-low pH regime, where sorption onto the humic acid 

fraction dominates, will increasingly resemble the sorption of the cation onto pure end-

member humic acid, and will thus increase with increasing humic acid fraction. 
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4. 4 .3  Surface Complexation Modelling of Co Sorption to End-

member Ferrihydrite, Kaolinite and Humic Acid  

4. 4. 3. 1 Model framework and input parameters  

Surface complexation models were developed for the sorption of Co onto end-member 

ferrihydrite, kaolinite and humic acid that are consistent with the EXAFS data. The 

model framework for Co sorption to ferrihydrite is based on the model for copper 

sorption to ferrihydrite by Moon and Peacock (2013) and Otero Fariña et al. (2018), the 

framework for Co sorption to kaolinite is adapted from the model for Co sorption to 

kaolinite by Heidmann et al. (2005b), and the framework for Co sorption to humic acid is 

based on the model for copper sorption to humic acid by Otero Fariña et al., (2018). The 

model input parameters were obtained either through fitting potentiometric titration 

data for the sorbent acid-base behaviour, or from direct measurement of the sorbent 

physiochemical characteristics, and are detailed in Moon and Peacock (2013) for 

ferrihydrite, Heidmann et al. (2005b) for kaolinite and López et al. (2012) for humic 

acid; the input parameters are reported here in Table 4.4.  

The basic stern model (BSM) is used to model surface electrostatics in the ferrihydrite, 

kaolinite and humic acid sorption systems. For ferrihydrite, a 3-site 1 pK formalism is 

assumed for the protonation of the ferrihydrite surface, involving two types of singly-

coordinated surface oxygens (sorbing cations in edge-sharing (≡FeOH-0.5(e)) and corner-

sharing (≡FeOH-0.5(c)) configuration), and the triply coordinated oxygens (≡Fe3O-0.5) ( 

e.g., Hiemstra et al., 1989; Hiemstra and van Riemsdijk, 2009; Moon and Peacock, 2013; 

Otero Fariña et al., 2018). A 2-site, 1pK formalism is used for the protonation of the 

kaolinite surface. This involves a singly-coordinated surface oxygen (≡AlOH-0.5) 

representing the pH-dependent charge, and negatively charged sites (≡X-) to represent 

the permanent negative charge (e.g., Heidmann et al. 2005b). For the humic acid, a 1-site 

1 pK formalism is used, involving ≡RCOO- sites where the stability constants for the 

protonation of these sites and the site densities are constrained using the NICA-Donnan 

model (Kinniburgh et al., 1999), calibrated on multiple data sets (López et al. (2012).   

The sorption data are fit by iterating the log K for the surface complexation reaction that 

represents the formation of the Co-ferrihydrite, -kaolinite or -humic acid complexes that 

were identified by EXAFS analysis.  The three ferrihydrite systems that contained 10-2 

mol L-1 ionic strength (5.8, 0.58 and 0.058 wt% Co) and two of the kaolinite systems that 

contained 10-2 mol L-1 ionic strength (0.058 and 0.0058 wt% Co) are fit simultaneously. 

Due to the limitations of EQLFOR, systems with different ionic strengths are fit 
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separately. The best fit log K values for the sorption of Co in all the end-member systems 

are shown in Table 4.5. The model fits to the data are shown in Figs. 4.3 and 4.4. 

4. 4. 3. 2. Model for Co sorption to end-member ferrihydrite  

Our EXAFS data indicate that Co sorbs to ferrihydrite via an inner-sphere bidentate bi- 

or tri-nuclear edge-sharing complex over the entire pH range investigated. Both 

bidentate bi- and tri-nuclear edge-sharing complexes were used to model the sorption 

edge data, however, models invoking a bidentate binuclear edge-sharing complex 

produce the best fits across all the ferrihydrite sorption data sets investigated.  

Model fits to the data are shown in Fig. 4.3 and our model produces adequate fits to the 

data over the range of ionic strengths studied. We therefore model our ferrihydrite 

sorption data with: 

Table 4.4: Input parameters for the surface complexation models 
for Co sorbed to ferrihydrite, kaolinite and humic acid. 
Parameters for the ≡FeOH-0.5 site are from Moon and 
Peacock (2013); the ≡AlOH-0.5 and ≡X- sites are from 
Heidmann et al. (2005b); and the ≡RCOO-  site are from 
López et al. (2012). 

Site Parameter  

≡FeOH-0.5  Site Density (mol sites g-1) 1.25x10-3 

 Capacitance (C) (F m-2) 1.1 

 𝐿𝑜𝑔 𝐾𝐹𝑒𝑂𝐻2  ≡FeOH-0.5 + H+  ⇌  ≡FeOH2
+0.5 7.99 

 𝐿𝑜𝑔 𝐾𝐹𝑒𝑂𝐻_𝑁𝑎 ≡FeOH-0.5 + Na+  ⇌  ≡FeOH-0.5 – Na+0.5 -1.00 

 𝐿𝑜𝑔 𝐾𝐹𝑒𝑂𝐻2_𝑁𝑂3  ≡FeOH2
+0.5 + NO3

-  ⇌  ≡FeOH2
+0.5 – NO3

- -1.00 

≡AlOH-0.5  Site Density (mol sites g-1) 8.78x10-4 

 Capacitance (C) (F m-2) 1.1 

 𝐿𝑜𝑔 𝐾𝐴𝑙𝑂𝐻2≡AlOH-0.5 + H+  ⇌  ≡AlOH2
+0.5 4.8 

 𝐿𝑜𝑔 𝐾𝐴𝑙𝑂𝐻_𝑁𝑎 ≡AlOH-0.5 + Na+  ⇌  ≡AlOH-0.5 – Na+0.5 -2.1 

 𝐿𝑜𝑔 𝐾𝐴𝑙𝑂𝐻2_𝑁𝑂3  ≡AlOH2
+0.5 + NO3

-  ⇌  ≡AlOH2
+0.5 – NO3

- 4.9 

≡X-  Site Density (mol sites g-1) 5.44x10-5 

 Capacitance (C) (F m-2) 1.1 

 𝐿𝑜𝑔 𝐾𝑋_𝑁𝑎 ≡X- + Na+  ⇌  ≡X- - Na+0.5 2.9  

 𝐿𝑜𝑔 𝐾𝑋_𝐻 ≡X- + H+ ⇌  ≡XH 5.9 

≡RCOO-  Site Density (mol sites g-1) 1.94x10-3 

 Capacitance (C) (F m-2) 8.0 

 𝐿𝑜𝑔 𝐾𝑅𝐶𝑂𝑂𝐻  ≡RCOO- + H+  ⇌  ≡RCOOH 3.60 

 𝐿𝑜𝑔 𝐾𝑅𝐶𝑂𝑂_𝑁𝑎 ≡RCOO- + Na+  ⇌  ≡RCOO- - Na+0.5  -1.00 
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2≡FeOH-0.5(e) + 2Co2+ ⇌ (≡FeOH(e))2Co2
+3  

      log𝐾(≡𝐹𝑒𝑂𝐻(𝑒))
2
𝐶𝑜2
+3    (4.1) 

𝐾(≡𝐹𝑒𝑂𝐻(𝑒))
2
𝐶𝑜2
+3 =

𝑋
(≡𝐹𝑒𝑂𝐻(𝑒))2𝐶𝑜2

+3

(𝑋≡𝐹𝑒𝑂𝐻−0.5(𝑒))
2[𝐶𝑜2+]

exp (
(−2𝜓0)𝐹

𝑅𝑇
)    (4.2) 

Where X represents the mole fraction of surface sites that the protonated or 

deprotonated surface complex occupies, ψ0 is the electrostatic potential at the 0-plane 

(defined from the surface charge distribution (σ) using the BSM), F is the Faraday 

Table 4.5: Log K values for Co sorbed to ferrihydrite, kaolinite and 
humic acid with the error (±) as derived from the sensitivity 
analysis. 

Phase Ionic 
Strength  

(mol L-1) 

Co 
concentration  

(wt% Co) 

Complex Log K 

ferrihydr
ite 

10-1 0.58 (≡FeOH(e))22Co+3 13.11±0.58 

10-2 0.058, 0.58, 5.8 (≡FeOH(e))22Co+3 14.33±2.07 

10-3 0.58 (≡FeOH(e))22Co+3 13.90±0.57 

kaolinite 10-1 0.058 (≡AlOH-0.5)2Co2(OH)6
-2 -33.86±0.58 

  X- -- Co+2 3.99±0.49 

10-2 0.58 (≡AlOH-0.5)2Co2(OH)6
-2 -33.97±0.97 

  ≡XH 9.60±1.17 

 0.058 (≡AlOH-0.5)2Co2(OH)6
-2 -32.12±0.8 

  XH -- Co+2 9.23±1.54 

  X- -- Co+2 4.59±3.02 

 0.0058 (≡AlOH-0.5)2Co2(OH)6
-2 -31.46±0.81 

  XH -- Co+2 10.41±1.62 

  X- -- Co+2 5.20±2.42 

10-3 0.058 (≡AlOH-0.5)2Co2(OH)6
-2 -32.93±1.58 

  XH -- Co+2 11.72±1.66 

  X- -- Co+2 3.81±5.85 

humic 
acid 

10-1 0.58 (≡RCOO)2Co2 

≡RCOO- -- Co+2 

-0.58±2.25 

0.75±0.94 

10-3 0.58 (≡RCOO)2Co2 

≡RCOO- -- Co+2 

2.04±0.83 

2.03±1.07 
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constant, R is the gas constant and T is temperature. It should be noted that bidentate 

binuclear edge-sharing complexation is technically represented by ≡Fe(OH-0.5(e))2 + 

2Co2+ ⇌ ≡Fe(OH(e))2Co2
3+. However, in surface complexation modelling formalism, 

≡FeOH-0.5 is the operational surface site and thus both bidentate binuclear edge- and 

corner-sharing are represented by Eq. (4.1).  

4. 4. 3. 2. Model for Co sorption to end-member kaolinite  

Our EXAFS data indicate that Co sorbs to kaolinite via an outer-sphere complex at low-

mid pH and an inner-sphere bidentate binuclear edge-sharing complex associated with 

the alumina sorption sites at high pH.  In agreement with previous modelling studies 

(e.g., Heidmann et al., 2005b; Peacock and Sherman, 2005) outer-sphere sorption is 

invoked onto the permanently negatively charged sites present on the siloxane faces (≡X-

), and we find that the best fits to the data generally involve Co sorption onto these sites 

in both their deprotonated (≡X-) and protonated (≡XH) forms. The inner-sphere sorption 

is invoked onto the variable charge alumina sites (≡AlOH-0.5).  The total model fits to the 

data are shown in Fig. 4.3 while the contribution of the different surface sites to the total 

sorption is shown in Fig. 4.12. The protonated form of the permanently negatively 

charged site (≡XH) only significantly contributes to sorption at low ionic strength (Fig. 

4.12A) and low wt% Co (Fig. 4.13) and in the very low pH regime, reflecting the log K for 

the deprotonation of these sites (log K = 5.9; Table 4.4). Overall the models produce good 

fits to the data over the range of ionic strengths studied, and the contribution of the 

different surface complexes to the total sorption as a function of pH is consistent with 

our EXAFS data. We therefore model our kaolinite sorption data with: 

2≡AlOH-0.5 + 2Co2+ + 6H2O ⇌ (≡AlOH)2Co2(OH)6 + 6H    

      log𝐾(≡𝐴𝑙𝑂𝐻)2𝐶𝑜2(𝑂𝐻)6−2    (4.3) 

𝐾(≡𝐴𝑙𝑂𝐻)2𝐶𝑜2(𝑂𝐻)6−2 = 
𝑋
(≡𝐴𝑙𝑂𝐻)2𝐶𝑜2(𝑂𝐻)6

−2

(𝑋≡𝐴𝑙𝑂𝐻−0.5)
2[𝐶𝑜2+]

exp (
(2𝜓0)𝐹

𝑅𝑇
)    (4.4) 

≡X- + Co2+ ⇌ ≡X- -- Co2+        

       log𝐾≡𝑋−−−𝐶𝑜2+            (4.5) 

𝐾≡𝑋−−−𝐶𝑜2+ = 
𝑋
≡𝑋−−−𝐶𝑜2+

(𝑋≡𝑋−)
2[𝐶𝑜2+]

exp (
(−2𝜓1)𝐹

𝑅𝑇
)      (4.6) 

≡XH + Co2+ ⇌ ≡XH -- Co2+        

       log𝐾≡𝑋𝐻−−𝐶𝑜2+   (4.7) 

𝐾≡𝑋𝐻−−𝐶𝑜2+ = 
𝑋
≡𝑋𝐻−−𝐶𝑜2+

(𝑋≡𝑋𝐻)
2[𝐶𝑜2+]

exp (
(−3𝜓1)𝐹

𝑅𝑇
)      (4.8) 
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Where X represents the mole fraction of surface sites that the protonated or 

deprotonated surface complex occupies, ψ0 is the electrostatic potential at the 0-plane 

and ψ1 is the electrostatic potential at the 1-plane (as defined from the surface charge 

distribution (σ) using the BSM), F is the Faraday constant, R is the gas constant and T is 

temperature. Again it should be noted that bidentate binuclear edge-sharing 

complexation is technically represented by ≡Al(OH-0.5)2 + 2Co2+ + 6H20 ⇌ 

≡Al(OH)2Co2(OH)6 + 6H+. However, as above, in surface complexation modelling 

formalism ≡AlOH-0.5 is the operational surface site and thus both bidentate binuclear 

edge- and corner-sharing are represented by Eq. (4.3).  
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Figure 4.12: Iterated surface complexation model predictions for Co 
sorption to kaolinite surface sites. Panel A shows Co sorption 
with an ionic strength of 10-3 mol L-1; panel B, 10-2 mol L-1; and 
panel C, 10-1 mol L-1. Squares are data; solid lines show total 
predicted sorption; dashed lines, ≡AlOH sites; dotted lines, ≡XH 
sites; and dash-dot-dot lines, ≡X- sites. 
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Figure 4.13: EQLFOR model predictions for Co sorption to kaolinite 
surface sites. Panel A shows predicted sorption at 0.0058 wt% Co, 
panel B at 0.058 wt% Co, and panel C at 0.58 wt% Co. Solid lines 
represent total amount of Co predicted to be sorbed, dashed lines 
show sorption to ≡AlOH sites, dotted lines show sorption to ≡XH 
sites, and dash-dot-dot lines show sorption to ≡X- sites. 
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4. 4. 3. 3 Model for Co sorption to end-member humic acid  

Our EXAFS data indicate that Co sorbs to humic acid at low pH via outer-sphere surface 

complexation, and at high pH via inner-sphere bidentate binuclear surface complexation 

that likely involves carboxyl groups present in the humic acid moiety. It is not possible to 

determine from the EXAFS which sorption site(s) are most associated with the outer-

sphere complex, and unlike kaolinite, humic acid has a number of different sorption sites 

which could be responsible for the electrostatic and hence outer-sphere sorption of Co 

(including carboxyl, phosphoryl, methoxyl, carbonyl, and alcoholic hydroxyl groups 

(Tsutsuki and Kuwatsuka, 1978; Yonebayashi and Hattori, 1988)). Given this we 

nominally assign the outer-sphere sorption to the carboxyl ≡RCOO- sites in the 

modelling, which is at least consistent with the fact that Co is already known to interact 

with these sites during sorption to humic acid via inner-sphere complexation (as 

identified for our high pH Co-humic acid sorption sample and by Xia et al. (1997) and by 

Ghabbour et al. (2007) during their studies of Co sorption to humic acid). The total 

model fits to the data are shown in Fig. 4.4 while the contribution of the different surface 

sites to the total sorption is shown in Fig. 4.14. Overall the models produce adequate fits 

to the data at the two ionic strengths studied, and the contribution of the different 

surface complexes to the total sorption as a function of pH is consistent with our EXAFS 

data. We therefore model our humic acid sorption data with: 

 2≡RCOO- + 2Co2+ ⇌ (≡RCOO)2Co2       

      log𝐾(≡𝑅𝐶𝑂𝑂)2𝐶𝑜2   (4.9) 

𝐾(≡𝑅𝐶𝑂𝑂)2𝐶𝑜2 =
𝑋(≡𝑅𝐶𝑂𝑂)2𝐶𝑜2

(𝑋≡𝑅𝐶𝑂𝑂−)
2[𝐶𝑜2+]

exp (
(−4𝜓0)𝐹

𝑅𝑇
)     (4.10) 

≡RCOO- + Co2+ ⇌ ≡RCOO- -- Co2+       

       log𝐾≡𝐶𝑅𝑂𝑂−−−𝐶𝑜2+   (4.11) 

𝐾≡𝑅𝐶𝑂𝑂−−−𝐶𝑜2+ =
𝑋
≡𝑅𝐶𝑂𝑂−−−𝐶𝑜2+

(𝑋≡𝑅𝐶𝑂𝑂−)
2[𝐶𝑜2+]

exp (
(−2𝜓1)𝐹

𝑅𝑇
)     (4.12) 

As for the ferrihydrite and kaolinite equations, X represents the the mole fraction of 

surface sites that the protonated or deprotonated surface complex occupies, ψ0 is the 

electrostatic potential at the 0-plane and ψ1 is the electrostatic potential at the 1-plane (as 

defined from the surface charge distribution (σ) using the BSM), F is the Faraday 

constant, R is the gas constant and T is temperature. 
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Figure 4.14: Iterated surface complexation model predictions for Co 
onto humic acid surface sites at 10-3 mol L-1 NaNO3 (panel A) and 
10-1 mol L-1 NaNO3 (panel B). Squares are data; solid lines, total 
predicted sorption; dashes, outer-sphere sorption to ≡RCOO- 
sites; and dots, inner-sphere sorption to ≡RCOO- sites. 
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4. 4. 3. 4 Sensitivity analysis  

A sensitivity analysis of the systems, to test the models’ sensitivity to the input 

parameters, was conducted, in which the input parameters are varied over a range of 

reasonable experimental and theoretical values. The process for this is described fully in 

Chapter 4.2.5.1, and the results of the analysis are shown in Table 4.5 as the error (±). 

The errors provide an estimate of the range that the log K values may vary due to 

inherent uncertainties in the parameterisation of the ferrihydrite, kaolinite, and humic 

acid sorption properties in the models. Overall, based on our EXAFS identified surface 

complexes, the average log K for Co sorption onto ferrihydrite is log K (≡FeOH(e))2Co2
+3  

= 13.78; onto kaolinite is log K ≡X- -- Co+2 = 4.4, log K ≡XH -- Co+2 = 10.24 and log K 

(≡AlOH)2Co2(OH)6 = -32.868; and onto humic acid is log K  ≡RCOO- -- Co+2 = 1.39 and 

log K (≡RCOO)2Co2 = 0.73. 

4. 4. 4 Surface Complexation Modelling of Co Sorption to 

Organo-mineral Composites  

4. 4. 4. 1 Model framework and input parameters  

Sorption edge data for the ferrihydrite-humic acid and kaolinite-humic acid composites 

are intermediate between the end member phases (Fig. 4.6), and the EXAFS data show 

the Co sorption to the composites occurs via the same molecular mechanisms as to the 

end-member phases (Tables 4.1 and 4.2, Fig. 4.7). This suggests that Co sorption to these 

composites shows a degree of additivity, and therefore a component additivity approach 

was used to fit the ferrihydrite-humic acid and kaolinite-humic acid composite sorption 

data. In this approach the models for Co sorbed to ferrihydrite and humic acid, and 

kaolinite and humic acid are combined linearly in order to create a single sorption model 

for each composite. The model input parameters are reported here in Table 4.4 and the 

model fits are shown in Figs. 4.15 (panels A, C, and E) and 4.16 (panels A and C). As with 

the end-member models, the BSM is used to model the composite electrostatics. As the 

linear combination of the ferrihydrite and humic acid end-member models, the 

ferrihydrite composite adopted a 4-site 1 pK formalism (containing the 3 ferrihydrite 

sites and the 1 humic acid site) while the kaolinite composite adopted a 3 pK formalism 

(the 2 kaolinite sites and the 1 humic acid site). In this approach the log K’s for the 

protonation and binding of electrolyte ions to these sites, and absolute site densities, are 

fixed to the values of the end-member ferrihydrite or kaolinite and humic acid models. 

Operational site densities for each site, and a surface area and Stern layer capacitance for 

each composite, are then calculated from the end-member values weighted to the 

appropriate ferrihydrite:humic acid or kaolinite:humic acid mass ratio (Table 4.6).  
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Initially Co sorption to the composites is modelled with the best fit log K values from the 

end-member systems (Figs. 4.15A, C, E and 4.16A, C). The end-member log K values are 

then iterated whilst keeping all other parameters constant (Figs. 4.15B, D, F and 4.16B, 

D). If the composites behave in an additive manner then the optimised log K values 

should fall within the uncertainties on the end-member values. 
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Figure 4.15: Surface complexation model predictions of Co sorption to 
ferrihydrite-humic acid surface sites. Panels A and B show the 
composite with 5 wt% C; panels C and D, 10 wt% C; and panels E 
and F, 17 wt% C composite. Panels A, C, and E show predicted 
sorption using log Ks fixed to those from the two end--member 
phases. Panels B, D, and F show predicted sorption with iterated 
log Ks. Solid lines show total predicted sorption; dashed lines, 
sorption to ≡FeOH sites; dash-dot-dot, outer-sphere sorption to 
≡RCOO- sites; and dotted lines, inner-sphere sorption to 
≡RCOO- sites. 
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Figure 4.16: Surface complexation model predictions of Co sorption to 
kaolinite-humic acid surface sites. Panels A and B show the 
results for the 1.4 wt% C composite, and panels C and D show the 
2.2 wt% C composite. Panels A and C show predicted sorption 
using log Ks fixed to those from the two end-member phases. 
Panels B and D show predicted sorption with iterated log Ks. 
Solid lines show total predicted sorption; dashed lines, sorption 
to the ≡AlOH sites; dotted lines, sorption to ≡XH sites; dash-dot-
dot lines, inner-sphere sorption to ≡RCOO- sites; and dash-dot, 
outer-sphere sorption to ≡RCOO- sites. 
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4. 4. 4. 2 Model for Co sorption to ferrihydrite-humic acid composite 

Model fits for Co sorption to the 3 ferrihydrite-humic acid composites are shown in Fig. 

4.15. Using the exact end-member log Ks, the model underestimates Co sorption to the 5, 

10, and 17 wt% C ferrihydrite-humic acid composites below pH 6.5 (Fig. 4.15A). When 

the log K values are iterated the fit improves, but for the 5 wt% C composite there is still a 

significant underestimation between pH 5 and 6.5 (Fig. 4.15B). Iterated log K values are 

presented in Table 4.7. Furthermore, the log K for the outer-sphere humic acid complex 

in the iterated fits for all composites is far outside the uncertainty on the end-member 

value (Table 4.5). This implies that the model formalism for the outer-sphere 

complexation of Co to the end-member humic acid does not accurately describe the 

outer-sphere complexation of Co to the humic acid fraction of the composite. This could 

be because the functional groups available for outer-sphere complexation in the 

composite are modified as a result of humic acid interaction with the ferrihydrite surface. 

The model also fails to accurately predict the distribution of the adsorbed Co between the 

ferrihydrite and humic acid fractions, where, based on our EXAFS, the model fits should 

show inner-sphere bidentate binuclear sorption to the ferrihydrite fraction, either no 

sorption or outer-sphere sorption to the humic acid fraction at mid-low pH and inner-

sphere bidentate binuclear sorption to both the ferrihydrite and humic acid fractions at 

mid-high pH. As such Co sorption to our ferrihydrite organo-mineral composites is non-

additive and cannot be modelled assuming a component additivity approach. This could 

be caused by the HA chemically altering the surface sites on the Fh (or vice versa) 

meaning that Co is not binding to the surface sites accounted for in the model. 

Alternatively, Co could have a higher affinity to one of the phases so it preferentially 

binds to that, while the model assumes sorption to each of the phases that is proportional 

to the number of surface sites of that phase. This is in contrast to previous work on Cu 

sorption to ferrihydrite-humic acid composites, where iterated log K values (resulting in 

log K values of 9.27 and 3.31 for Cu sorption to ferrihydrite and humic acid, respectively) 

remained within the range of error determined by a sensitivity analysis and produced a 

good fit to the data, showing that a component additivity approach was able to accurately 

predict the sorption behaviour (Otero-Fariña et al., 2018). 
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4. 4. 4. 3 Model for Co sorption to kaolinite-humic acid composite 

The model fits for Co sorption to the 2 kaolinite-humic acid composites are shown in Fig. 

4.16. Using the exact end-member log Ks, the model underestimates Co sorption to the 

1.4 and 2.2 wt% C kaolinite-humic acid composite over the entire pH range (Fig. 4.16). 

When the log K values are iterated the fit improves, but there is still an underestimation 

between pH 4 and 7 for the 1.4 wt% C composite. Iterated log K values are presented in 

Table 4.7. Furthermore, for the 1.4 wt% C composite the log K values for the XH -- Co+2 

and inner-sphere humic acid complex are outside the uncertainty on the end-member 

values (Table 4), and for the 2.2 wt% C composite the log K values for the XH -- Co+2 and 

inner-sphere kaolinite complex are outside the uncertainty on the end-member values 

(Table 4). As for the ferrihydrite-humic acid composite, this suggests that these surface 

Table 4.7: Iterated log K values for Co sorbed to 
ferrihydrite and kaolinite and humic acid organo-
mineral composites. 

System Complex Log K 

Ferrihydrite-humic 
acid 5 wt% C 

(≡FeOH(e))22Co+3 13.11 

 (≡RCOO)2Co2 -0.58 

 ≡RCOO- -- Co+2 10.73 

Ferrihydrite-humic 
acid 10 wt% C 

(≡FeOH(e))22Co+3 13.11 

 (≡RCOO)2Co2 -0.58 

 ≡RCOO- -- Co+2 9.23 

Ferrihydrite-humic 
acid 17 wt% C 

(≡FeOH(e))22Co+3 13.11 

 (≡RCOO)2Co2 -0.58 

 ≡RCOO- -- Co+2 8.86 

Kaolinite-humic 
acid 1.4 wt% C 

2AlOH-2Co -30.67 

 XH--Co+2 18.31 

 X- -- Co+2 4.22 

 (≡RCOO)2Co2 15.35 

 ≡RCOO- -- Co+2 2.10 

Kaolinite-humic 
acid 2.2 wt% C 

2AlOH-2Co -16.82 

 XH--Co+2 26.49 

 X- -- Co+2 5.17 

 (≡RCOO)2Co2 2.83 

 ≡RCOO- -- Co+2 2.03 
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functional groups behave differently in the composite system compared to the single 

phase systems. For both composites the model also fails to accurately predict the 

distribution of the adsorbed Co between the kaolinite and humic acid fractions, where, 

based on our EXAFS, the model fits should show outer-sphere sorption to either the 

kaolinite or humic acid fractions at mid-low pH and bidentate binuclear inner-sphere 

sorption to the humic acid fraction and either no sorption or outer-sphere sorption to the 

kaolinite fraction at mid-high pH.  As such Co sorption to our kaolinite organo-mineral 

composites is non-additive and cannot be modelled assuming a component additivity 

approach. As with the Fh-HA composite, this could be explained by the HA chemically 

altering the surface sites on the Fh (or vice versa), or Co having a higher affinity to one of 

the phases so it preferentially binds to that. 

4. 4. 5. Implications for Co Behaviour in Natural Environments 

In all end-member and organo-mineral composite systems studied in this work, inner-

sphere bidentate binuclear sorption complexes were found to occur at mid-high pH.  We 

propose that this is a universal uptake mechanism for Co in soils and sediments at 

neutral and alkaline pH values. This universal sorption mechanism controls Co uptake 

onto ferrihydrite, kaolinite and humic acid and their associated organo-mineral 

composites, and limits Co mobility in natural and contaminated environments. Our work 

unifies previous studies that have worked on similar systems individually yet reported 

similar sorption mechanisms (O’Day, et al., 1994a;b; Xia et al., 1997; Ghabbour et al., 

2007), but also reconciles direct observations of Co sorption mechanisms, observed with 

EXAFS, with indirect Co sorption modelling studies, by developing the first 

thermodynamic surface complexation models for Co sorption to ferrihydrite, kaolinite 

and humic acid that are completely consistent with EXAFS results.    

Our results indicate that Co sorption behaviour is likely to differ between environments 

where the organic matter content varies. In soils that are low in organic matter such as 

some alluvial sediments and desert areas, Co will behave similarly to how it does in the 

pure mineral systems as there is no organic matter to influence sorption. This means that 

Co will be mobile below pH ~ 6.5 because below this pH there is no significant sorption 

to solid phases likely to be present such as iron (hydr)oxides and clay minerals. In 

contrast to mineral soils, in peat soils and other organic matter dominated environments, 

Co will be less mobile at lower pH values due to higher sorption to humic substances and 

will likely be mobile as Co2+ only at very low pH values. At neutral to high pH, humic acid 

may also be present as colloids and the association of Co with low MW humic acid 

colloids is a potential transport vector for contamination in organic rich environments at 

neutral to alkaline pH values where high Co sorption would be expected. In temperate 
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regions, soils that contain both minerals and modest amounts of organic matter are 

much more common than either mineral or peat soils and are likely to show sorption 

behaviour that is composite between pure mineral and organic dominated systems. This 

is especially true at low pH, where enhanced sorption may be expected due to interaction 

of Co with humic materials. Also, in composite systems discrete humic acid colloids do 

not appear to form, most likely due to the strong bonding of humic acid to mineral 

surfaces reducing the propensity for humic acid solvation and dispersion in solution. In 

addition, in soils where there is a high amount of humic substances relative to clays, 

sorption to the clay fraction may be completely inhibited due to all AlOH sites being 

involved in clay-humic acid bonding and none being available for cation sorption. This 

would result in Co binding solely to the humic acid coating and thus sorption behaviour 

would be most similar to that of the pure humic acid system. 

Finally these organo-mineral composite systems cannot be modelled in a component 

additivity approach. Therefore, the physiochemical characteristics of the composite must 

be so significantly different from the end-member phases that adsorption is not the 

simple linear combination of the end-member adsorptivities. This means that Co 

sorption to these composites cannot currently be predicted and more research is 

necessary in order to fully understand how organic and mineral phases in organo-

mineral composites interact to potentially change the composite adsorptive properties. 
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4. 5 Conclusion 

The addition of humic acid to ferrihydrite and kaolinite enhances the amount of Co 

sorbed below pH 6, where there is typically little sorption. For the first time, Co sorption 

onto an iron (oxy)hydroxide was studied using EXAFS and its local molecular 

environment analysed. EXAFS and TEM data suggests that Co sorbs to all soil 

components through formation of similar inner-sphere bidentate multinuclear surface 

complexes at high pH, but at low pH on kaolinite and humic acid sorption is via outer-

sphere complexation. We conclude that the formation of these inner-sphere bidentate 

multinuclear surface complexes at high pH constitute a universal uptake mechanism of 

Co onto soil materials. It was possible to fit the sorption data for the pure end-member 

systems invoking the sorption mechanisms identified by the EXAFS data. However, 

fixing the log Ks in the composite models to the values from the pure end-member 

systems did not produce a good fit to the composite sorption data. Therefore, we 

conclude that Co sorption to ferrihydrite-humic acid and kaolinite-humic acid 

composites is non-additive and further work is required to understand how organic and 

mineral phases in organo-mineral composites interact and how this interaction 

potentially changes composite adsorptive properties.   
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Chapter 5: Cobalt sorption to soils with a range of organic 

matter contents 

This second experimental chapter presents results of an investigation into Co 

sorption onto 3 soils of different origins to determine whether sorption to soils 

can be modelled using the surface complexation models developed in Chapter 4.  

5. 1. Introduction 

Cobalt is a transition metal that has a range of industrial uses and its radioactive 

form (cobalt-60) is a by-product in nuclear reactors. While it is a micronutrient at 

low concentration levels, in high doses it is toxic to both plants and animals 

(Aubert and Pinta, 1977; Palit et al., 1994; Tokaz et al., 2013). Therefore it is 

important to understand how it behaves in typical environmental conditions if it 

were to be released into the wider environment.  

Previous studies have sorbed Co to a range of soils in an attempt to determine 

how different compositions of the soil affect sorption behaviour, and therefore 

which is the dominant phase in controlling Co sorption.  

The clay content of the soil has been found to largely impact Co sorption, with 

more Co sorbing to the soils with a higher clay content (Anderson and 

Christensen, 1988; Rawat et al., 1996). This is due to clay providing high energy 

binding sites and therefore having a high capacity to bind Co and an increased 

cation exchange capacity (CEC). Co sorption has been found to have a good 

correlation with the CEC of agricultural soils (Yasuda et al., 1995).  

This high dependence on soil clay content could explain the dependence on ionic 

strength. As previously studied in Chapter 4, sorption to clay minerals such as 

kaolinite is dependent on ionic strength. Co sorption to a loamy sand showed 

dependence on ionic strength that was more prominent at pH values above 5.5 

(Barrow and Whelan, 1998) 

Soil carbon content was found to have a limited effect on Co sorption (Anderson 

and Christensen, 1988). In a study between sandy loam and silt clay loam soils, 

the silt clay loam soil sorbed more Co, despite the sandy loam having a higher 

carbon content (Barrow and Whelan, 1998).  
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Despite these studies on Co sorption to a variety of soils, the dominant sorption 

phase and which characteristics of the soil contribute most to sorption behaviour 

is still uncertain. 

Co sorption to the common soil constituents ferrihydrite, kaolinite, and humic 

acid and their organo-mineral composites has been previously studied and 

modelled in Chapter 4. The purpose of this study is to determine how Co sorbs to 

natural soils with different organic matter contents rather than synthetic organo-

mineral composites, and to determine whether this sorption can be modelled as 

either ferrihydrite, kaolinite, humic acid sorption, or a mixture. This will aid the 

prediction of the main sorbing phase in each of the soils. 
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5. 2. Methods 

5. 2. 1. Materials 

Irish moss peat (Westland Horticulture Ltd. UK) was used in this study. 

Agricultural soil was collected from Leeds University farm (53°51’48.8”N and 

1°20’36.1”W) which is on an Mg limestone catchment. It contains 0.0175%  plant 

available Fe, which was extracted using Mehlich 3. Briefly, this method involves 

extracting the Fe using a solution of acetic acid, ammonium nitrate, ammonium 

fluoride, nitric acid, and EDTA. 20 mL of this solution is added to 2 g of 

powdered soil and then shaken. The soil suspension is filtered and the solution 

analysed by ICP-OES (Mehlich, 1984).  Glacial outwash sediment was acquired 

from a borehole located on the Sellafield site, West Cumbria, from a radioactively 

uncontaminated area. Total Fe content was 2%, as determined by X-ray 

fluorescence (XRF) carried out at the University of Leicester using a PANalytical 

Axios Advanced XRF spectrometer.  Fe analysis was conducted on fused glass 

beads prepared from igniting 15 g powdered sediment sample. The agricultural 

soil and sediment were collected and Fe content analysed by Nicholas Humphries 

and Emma James (both University of Leeds), respectively.  

Due to the high pH buffering capacity of the agricultural soil, 35 g was mixed with 

DIW to make a slurry and a Titrando 907 autotitrator with a 800 Dosino doser 

and Tiamo v2.5 software was used to lower the pH with the addition of 1 mol L-1 

HCl at a flow rate of 1.5 mL min-1 until the pH remained between 3.5 and 4.0 for 

30 minutes. The soil was then dried at 35°C. 

Surface area of the soils was measured using the BET method. The analyses were 

performed in triplicate, yielding average surface area values of 1.51 m2 g-1 for the 

peat soil, 13.79 m2 g-1 for the agricultural soil, and 11.13 m2 g-1 for the sediment.  

Carbon content of the 3 soils was measured in triplicate by combustion using an 

Elementar vario MICRO cube. The peat soil was found to have an average C 

content of 49.05%, the agricultural soil was 4.45%, and the sediment was 0.07%.  

5. 2. 2. Sorption Experiments 

Batch sorption experiments were carried out in triplicate, as described in Chapter 

3.1. The pH range for the experiments was 3.5 – 8.4, representative of the natural 
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range of soil pH. 1 g of soil was mixed with 27 mL of 10-1 mol L-1 NaNO3 and 3 mL 

10-2 mol L-1 Co stock solution. Samples were adjusted to the desired pH by 

dropwise addition of dilute NaOH or HNO3. The pH values were then reset twice 

a day for 4 days until they remained constant for 16 – 24 hours, after which time 

the experiments were concluded and the final pH was measured. The samples 

were then prepared for ICP-AES analysis as reported in Chapter 3.2. The samples 

were first centrifuged for 15 minutes at 3000 g. For the peat, 5ml of the 

supernatant was then filtered via 10 kDa centrifuge filters. The sediment and 

agricultural soils were filtered using 0.22 μm filters. Then, 5ml of the filtered 

samples was added to 5 mL of 2% HNO3 to maintain Co in solution. The Co 

concentration was determined (with an analytical uncertainty of < ±3%) on a 

Thermo iCAP 7400 radial ion-coupled plasma atomic emission spectrometer 

(ICP-AES; ThermoFisher Scientific, USA). 

5.2.3. XRD analysis 

The three soils were crushed using a mortar and pestle and prepared for XRD 

analysis as described in Chapter 3.3. 

5. 2. 4. Surface Complexation Modelling 

The sorption behaviour of Co on the three soils was fit to a thermodynamic 

surface complexation model using the program EQLFOR (Sherman et al., 2008; 

Sherman, 2009). The models are based on the end-member ferrihydrite, 

kaolinite, and humic acid models developed in Chapter 4. These were combined 

using a linear component additivity approach to explore how far sorption to these 

phases explains sorption to the natural soils. The surface electrostatics in all the 

models were accounted for by adopting the basic Stern model (BSM). The Davies 

equation was used for activity corrections to the stability constants for aqueous 

species.  
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5. 3. Results 

5.3.1 Batch sorption experiments 

Results for Co sorbed to the three types of soil are shown in Fig. 5.1.  

For the peat soil, high sorption was found across the entire pH range, with a 

sorption edge between pH 3.5 and 6 where sorption increased from ~60 to 100%.  

The sorption edge for the agricultural soil shows low sorption (10 – 20%) between 

pH 3.5 and 6. Above pH 6, sorption rises to 100% by pH 8.  

The sediment had low amounts of sorption (10 – 20%) at pH <6. From pH 6 to 

8.4, Co sorption increased from ~20% to 100%.  

5.3.2 XRD analysis 

The spectra from the XRD analysis of the three soils are shown in Fig. 5.2.  

Figure 5.1: Co sorption to 3 soils from different environments: peat (squares), 
agricultural (circles), and sediment (triangles). Error bars represent the 
standard deviation of the triplicate sets. 
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The spectrum for peat shows a large sharp peak at ~26.5° 2θ. This was identified 

as quartz.  

In the spectrum for agricultural soil, two quartz peaks at 21° and 26.5° 2θ were 

present. The peaks at 31° and 41° 2θ were identified as dolomite. A number of 

smaller peaks not visible in Fig 5.2 were identified to be albite, microcline, and 

clays belonging to the mica group.  

The sediment XRD spectrum shows two quartz peaks at 21° and 26.5° 2θ (Fig. 

5.2). Peaks at 6°, 12°, and 25°were identified at chlorite. The two peaks at 8° and 

17° were identified as muscovite.  
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Figure 5.2: XRD spectra of the peat, agricultural soil, and sediment. 
Dominant mineral phases are identified as: Qtz, quartz; Al, 
albite; Dt, dolomite; Chl, chlorite; and Ms, muscovite. 
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5. 4. Discussion 

5.4.1 Cobalt sorption to soils 

Co sorption to peat soil was higher than sorption to the agricultural and sediment 

soils across the entire pH range. The peat sorption edge is similar to that of Co 

sorption to humic acid (Chapter 4), which implies that humic acid is a dominant 

sorption phase in soils with a high organic matter content.  

The sorption edges for agricultural and sediment soil are similar, despite the 

agricultural soil having 4.45% C and the sediment having 0.07%. It is possible 

that the high ionic strength of the experiments reduced the effect of sorption to 

the organic matter in the agricultural soil, as it was found to reduce sorption to 

pure humic acid (Chapter 4). A system with a lower ionic strength (~10-3 mol L-1) 

could have produced a sorption edge that was more intermediate between the 

peat and sediment sorption edges. The other phases found in the XRD spectrum 

of the agricultural soil – dolomite and albite – also show reduced sorption of 

cations in high ionic strength solutions (Syed Ahmad, 1995; Brady et al., 1999). 

Despite the Fe content only being 0.0175%, any Fe oxides in the soil would have a 

great impact on Co sorption as they have high sorption capacity. However, 

sorption to Fe oxides only increases above pH ~6 and is not affected by high ionic 

strength, so this would not have affected reduced sorption below pH 6. 

XRD spectra for the sediment shows the presence of chlorite, muscovite, and 

quartz. High ionic strength only reduces the amount of cation sorption to chlorite, 

while muscovite and quartz are not affected (Chen and Hayes, 1999; Yang et al., 

2010; Fuller et al., 2016). This could explain why there is some sorption below pH 

6. As the sediment also contains high amounts of Fe (2%), this would account for 

the steep sorption edge between pH 6.5 and 8.   

As the agricultural soil contains a high number of phases that show reduced 

sorption at high ionic strength, this is likely to be why the Co sorption edge is 

similar to that of the sediment, rather than being intermediate between the peat 

and sediment sorption edges. 
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5.4.2 Surface Complexation Modelling 

Surface complexation models were used for the sorption of Co onto the soils that 

are consistent with the EXAFS data for Co sorption to the main contributing 

phases in the soil. These end-member models, their input parameters and surface 

electrostatics, were discussed in Chapter 4.  

The sorption data are fit by iterating the log K for the surface complexation 

reaction that represents the formation of the Co-humic acid (for the peat), Co-

ferrihydrite and –humic acid (for the agricultural soil), or Co-kaolinite (for the 

sediment) complexes that were identified by EXAFS analysis.  

Carbon content analysis showed that the peat soil contained 49% C, and therefore 

it was modelled using the humic acid surface complexation model developed in 

Chapter 4. Model fits are shown in Fig 5.3. Using the humic acid end member log 

K values from Chapter 4, the model underestimated sorption at pH values below 

5 (Fig 5.3). When the log K value was iterated, the fit improved. However, the 

iterated log K value for the outer-sphere complex (Table 5.1) is outside of the 

range provided by the sensitivity analysis (Table 5.1). This suggests that humic 

acid is not the only surface that Co was outer-spherically sorbed to and there 

must be other phases (such as humin or clays,) present. Previous studies that 

Figure 5.3: Surface complexation model predictions of Co sorption to peat soil. 
Panel on the left shows predicted sorption using log K values fixed to those 
from the two end member phases. Panel on the right shows predicted 
sorption with iterated log K values. Solid lines show total predicted sorption; 
dashed lines, inner sphere sorption to ≡RCOO- sites; and dotted lines, outer-
sphere sorption to ≡RCOO- sites. 
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have characterised peat have found silicates such as quartz, and small amounts of 

feldspars, and Fe, Al and Mn (López-Buendía et al., 2007; Muller et al., 2008; 

López et al., 2012). However, Mn and Fe form compounds that are soluble in 

acidic peat soil and so are not present in large quantities and are unlikely to affect 

the sorption behaviour of Co (Holynska et al., 1998). XRD analysis shows a large 

quartz peak, and although quartz has a low surface area (4.5 – 5 m2 g-1; Fubini et 

al., 1987) and surface site density, it is possible that some Co was sorbed to 

quartz, which was not accounted for in the model. The poor fit of the data to the 

humic acid model could also be caused by the model assuming sorption was only 

to the carboxyl groups in the humic acid. Humic acid has a range of different 

surface groups that it is possible for cations to sorb to (e.g. phenolic and 

quinones). Including these in the model could have improved the fit by making 

the model similar to natural humic acid, and therefore, natural soil. 

The agricultural soil contains organic matter and some clay phases. However, 

despite the small Fe content (0.02%) it was modelled using the ferrihydrite-

humic acid model from Chapter 4. This is because of the high sorption capacity of 

Fe oxides meaning that small amounts contribute significantly to the sorption of 

cations. The model was adjusted for the different C content of the agricultural 

soil. Model fits are shown in Fig 5.4. Sorption was underpredicted at low to mid 

pH values when the log K values were fixed to the ferrihydrite and humic acid end 

member values, and only show inner-sphere sorption to ferrihydrite starting at 

pH 6. When the log K values were iterated (Table 5.1) the fit improved above pH 

5.5 and outer-sphere sorption to the humic acid was present as well as inner-

sphere sorption to ferrihydrite. The iterated log K values were outside the range 

provided by the sensitivity analysis by a large amount (Table 5.1). This suggests 

Table 5.1: The iterated log K values for Co sorption to the peat, agricultural, and 
sediment soils, as well as the end member log K values and the error from the 
sensitivity analysis in Chapter 4. 

Soil Complex Log K End member log K 

Peat (≡RCOO)2Co2 -2.17 -0.58±2.25 

≡RCOO- -- Co+2 3.36 0.75±0.94 
Agricultural (≡FeOH-0.5)2Co2(OH)6

-2 11.35 13.11±0.58 
 (≡RCOO)2Co2 11.75 -0.58±2.25 
 ≡RCOO- -- Co+2 6.50 0.75±0.94 

Sediment (≡AlOH-0.5)2Co2(OH)6
-2 -31.72 -33.86±0.58 

X- -- Co+2 5.00 3.99±0.49 
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that sorption to the agricultural soil cannot be modelled using the ferrihydrite-

humic acid model and there are other phases in the soil that need to be taken into 

account. The phases that need to be considered are possibly other Fe oxides, as 

unaltered ferrihydrite is rare in soils and Fe oxides are more likely to be present 

as goethite. The model could also benefit from including clay phases that sorb 

cations via outer-sphere complexation at low pH (e.g. kaolinite), as this is a pH 

range where the model underpredicted sorption. 

XRD analysis showed that the sediment primarily contained clays with a 

negligible C content (<0.1%) . Whereas XRF analysis showed a 2% Fe content. As 

the FeOH sites behave similarly to the AlOH sites in clays, for simplicity the 

sediment soil was modelled assuming the kaolinite surface complexation model 

(Chapter 4). Despite kaolinite not being present in the soil, it is assumed that the 

clays identified have similar sorption sites (i.e. an X- site that forms outer-sphere 

bonds and AlOH sites that form inner-sphere bonds). Model fits are presented in 

fig. 5.5. Sorption was underpredicted across the entire pH range when using the 

kaolinite end member log K values. When the log K values were iterated the fit 

improved, although the iterated log K values are outside of the range provided by 

the sensitivity analysis (Table 5.1). The log K for the AlOH complex did not 

Figure 5.4: Surface complexation model predictions of Co sorption to 
agricultural soil. Panel on the left shows predicted sorption using log K 
values fixed to those from the two end member phases. Panel on the right 
shows predicted sorption with iterated log K values. Solid lines show total 
predicted sorption; dashed lines inner-sphere sorption to ≡FeOH sites; 
dotted lines, outer-sphere sorption to ≡RCOO- sites; dash-dot-dot, inner-
sphere sorption to  ≡RCOO- sites. 
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change to be dramatically more intermediate between the AlOH and FeOH end 

member log K values, suggesting that the clays do provide a dominant sorption 

site. However, the iterated log K values being outside the range suggested by the 

sensitivity analysis implies that kaolinite does not provide a good representation 

of the clay minerals identified in the sediment soil. This is not surprising, as the 

Fe content of the sediment would have contributed to the change in log K in 

providing surface sites that could have behaved slightly differently, and because 

the identified clay minerals do not appear to have inhibited sorption when in a 

system with high ionic strength, and Co sorption to kaolinite is reduced with high 

ionic strength (Chapter 4). The clays present in the sediment (muscovite and 

chlorite) are also chemically different to kaolinite, as kaolinite is a 1:1 

dioctahedral clay whereas muscovite and chlorite are 2:1 clays. This extra silica 

layer would provide extra X- sites while at the same time reducing cation access to 

Al3+ sites, thus changing the surface site concentrations and Co sorption 

behaviour. This behaviour is not accounted for in the model and thus is likely to 

contribute towards the iterated log Ks not fitting within the sensitivity range. 

  

Figure 5.5: Surface complexation model predictions of Co sorption to sediment. 
Panel on the left shows predicted sorption using log K values fixed to those 
from the two end member phases. Panel on the right shows predicted 
sorption with iterated log K values. Solid lines show total predicted sorption; 
dashed lines inner-sphere sorption to ≡AlOH sites; dotted lines, sorption to 
≡X- sites. 
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5. 5. Conclusion 

Co sorption to the peat soil was the highest of the three soils across the pH range 

studied. Sorption to the agricultural and sediment soils were similar, and this is 

likely to be because sorption to the phases in the agricultural soil were reduced 

due to high ionic strength. Modelling suggests that while iterating the values of 

the complexes in each of the systems does provide a reasonable fit, the log K 

values are outside the range of the sensitivity analysis and the complexes used in 

the models do not necessarily represent the dominant sorption phase. 
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Chapter 6: The Effect of Ageing on Desorption of Co from 

Common Soil Constituents 

This chapter presents the work of a series of experiments that aimed to 

understand the behaviour of Co when in equilibrium with soil constituents for 

long periods of time, and how this affects the ability to remove Co from the 

surface of those constituents.  

6. 1. Introduction 

Cobalt has the potential to be released into the environment in its stable form as 

waste from industrial processes, or in its radioactive form as 60Co by 

contamination from nuclear waste waters or from a radiological dispersion 

device. Once it has been released, it may not initially be known which 

contaminant has leaked into the environment, therefore first responders need to 

determine what has been released and the best decontamination method for that 

particular environment. This means that decontamination may not occur 

immediately following a contamination event, and aging processes can occur, 

such as surface precipitation, surface oxidation, and incorporation into crystal 

lattices (Wendling et al., 2009), which affects the ability of Co to be removed from 

the soil. 

There is limited research on the effect of ageing on Co sorption to common soil 

components (Ainsworth et al., 1994; McLaren et al., 1998), though what there is 

suggests no change in the amount of Co sorbed to clays and iron oxides with 

increases in the equilibration time (for time periods of longer than 1 day).  

However, increasing the ageing time does appear to affect desorption. Desorption 

of Co from kaolinite (Thompson et al., 2000), goethite (Backes et al., 1995), and 

ferrihydrite (Ainsworth et al., 1994) was found to have decreased when the 

sorption systems had been aged. The decrease in sorption with ageing time could 

be caused by the metal ions being incorporated into the oxides during this time, 

and this limits the metal’s ability to desorb (Backes et al., 1995). 

Different desorption agents can have an effect on the amount of Co desorbed. 

Desorption of Co from HA was studied (Rashid, 1974) and it was found that 

ammonium acetate desorbed 49.1% of Co, but EDTA desorbed 90.8%. This 
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suggests that different desorption agents use different mechanisms to remove the 

Co from the sorbent surface. Similarly, ~95% of Co was desorbed from 

ferrihydrite when HNO3 was used to reduce the pH of the system (Ainsworth et 

al., 1994), but only 37% of sorbed Co was removed after peristaltic pumping with 

CaCl2 (Backes et al., 1995).  

Soil washing is a common remediation technique that can be used either in situ or 

in another location that the soil has been moved to (Tadesse et al., 1994). This 

process involves using a chemical to wash the soil that has been proven to remove 

the contaminant. Chemicals used include EDTA, NTA, HNO3, ammonium 

oxalate, ammonium acetate, and CaCl2, plus many more (Rashid, 1974; McLaren 

et al., 1986; Elliott and Brown, 1989; Ford et al., 1997; Thompson et al., 2000). 

These work in a variety of ways:  

• Chelating agents such as EDTA and NTA remove contaminants by forming 

two bonds with a single central atom. These bonds are incredibly strong 

and create a soluble complex, thereby releasing the contaminant from the 

mineral surface.  

• Ammonium acetate and CaCl2 compete with the contaminants bound to 

the mineral’s surface functional groups. If they have a higher affinity to the 

mineral, they will replace the contaminant on the surface functional group 

and the contaminant will be released back into the environment. 

• Acids such as HNO3 work by simply decreasing the pH of the system. 

Cation sorption increases with pH, so decreasing the pH can trigger the 

release of cations back into solution. 

With a wide variety of potential desorption agents it is important to determine 

which chemical is most effective at desorbing Co from soil components. There is 

also a lack of research on the effect of ageing on Co sorption to humic substances 

and how this affects desorption. This is an important knowledge gap to fill 

because humic substances can make up to 95% of soil (Jackson, 1969) and 

understanding factors that can affect sorption to it will help to understand 

desorption processes.  

The objectives of this study were to sorb Co2+ to ferrihydrite, kaolinite, and soil 

derived HA for different periods of time, ranging from 1 day to 12 weeks, in order 

to determine whether sorption behaviour changed with ageing. Co2+ was then 
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desorbed from the sorbent using one of four desorption agents: deionised water, 

EDTA - ethylenediamine tetraacetic acid - citric acid, or hydrochloric acid. These 

were chosen as they are commonly used in the UK nuclear industry and have low 

intrinsic toxicity (Harvey, 2015). A desorption agent with a competing ion 

mechanism (e.g. CaCl2) was not used because Co sorbs via inner-sphere 

complexation at pH 8 and was therefore expected to be ineffective (Backes et al., 

1995). These desorption agents were used to determine whether they were viable 

options for desorbing Co2+ from solids, which was the most effective, and finally, 

whether their effectiveness changed depending on how long Co2+ had been aged 

in contact with specific solids.  
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6.2. Methods 

 6.2.1. Materials 

Ferrihydrite was synthesised by following the method described in Schwertmann 

and Cornell (2003). Fe(NO3)3.9H2O was dissolved in deionised (DI) water and 

NaOH was added to raise the pH to ~7. The ferrihydrite was washed by allowing 

the precipitate to settle, and then decanting the excess water and replacing it with 

DI water. This was repeated 3 times a day for 7 days. The pH was then readjusted 

to ~7, the precipitate was allowed to settle again, and the excess water was 

decanted before centrifuging the precipitate at 3000 RPM for 15 minutes to 

produce a homogenous solution. 

Humic acid was extracted from Irish moss peat (Westland Horticulture Ltd, UK). 

The method was taken from Stevenson (1994) and consisted of washing the soil, 

extracting the HA, and purifying the HA. To wash the soil, it was first air dried 

before washing it with 0.1 mol L-1 HCl and shaking it on a shaker table at 200 

RPM for 4 hours. The solution was then centrifuged at 4000 RPM for 30 minutes 

and the supernatant was discarded.  

Extraction was then carried out by shaking the solid in 0.5 mol L-1 NaOH for 24 

hours and centrifuging the sample at 4000 RPM for 45 minutes. The supernatant 

was collected and the solid fraction was extracted again through shaking it in 0.5 

mol L-1 and shaken for 1 hour. It was then centrifuged again and the supernatant 

added to the previously collection of supernatant. The solid was finally washed 

with DI water, shaken for another hour, and centrifuged again. The supernatant 

was added to the collection of supernatant and the solid was discarded. 4 mol L-1 

HCl was added to the supernatant until the pH was lowered to 2 and was left to 

stand for an hour, after which it was centrifuged at 4000 RPM for 45 min. The 

supernatant was discarded and solid collected. 

The solid was purified by redissolving it (raising pH to ~12 with NaOH), shaking 

it for an hour and then centrifuging it at 4000 RPM for 45 minutes. The 

precipitate was discarded and soluble fraction collected, which was acidified (pH 

lowered to ~2) and then shaken for an hour before being centrifuged for 45 

minutes at 4000 RPM. The liquid was discarded and solid collected. The solid 

was redissolved (pH raised to ~12), shaken for an hour, and centrifuged. The 
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supernatant was acidified again, shaken for an hour, centrifuged, and then the 

solid was collected. This was washed with DI water so the pH was reduced to pH 

2. It was shaken for an hour, centrifuged, and the solid was collected. DI water 

was added to produce a slurry. 

Mineralogically pure Ka (KGa-1b) was obtained from the Clay Minerals Society 

Source Clays Repository. 

 6.2.2. Aging Sorption Experiments 

Batch sorption experiments were carried out in triplicate in 50 mL plastic 

centrifuge tubes at room temperature and in aerobic conditions. Each experiment 

was carried out in triplicate. 0.03 g of each soil constituent was mixed with 30 ml 

solution and the pH was set to ~8.5 by the dropwise addition of NaOH. The 

samples were shaken continuously while the pH was monitored and set back to 

the desired pH. This occurred until the pH remained constant for 16 – 24 hours, 

after which time the samples were aged for a set period of time (1 day, 7 days, 28 

days, or 84 days). During this time the pH was allowed to drift. 

After the ferrihydrite and kaolinite samples had been aged for the desired period 

of time, they were centrifuged at 3000 RPM for 10 minutes and the supernatant 

filtered using 0.2 μm syringe filters and 5 ml of supernatant was added to 5 ml of 

2% HNO3. The rest of the supernatant was decanted, leaving the solid sample in 

the centrifuge tube.  

The HA samples were filtered through 10 kDA centrifuge filters for 20 min at 

4000 RPM and then 5 ml was added to 5 ml of 2% HNO3. The rest of the 

supernatant was discarded and the filtered solid was removed from the filter with 

a glass pipette and returned to the original centrifuge tube.  

The Co concentration was determined (with an analytical uncertainty of < ±3%) 

on a Thermo iCAP 7400 radial ion-coupled plasma optical emission spectrometer 

(ICP-OES; ThermoFisher Scientific, USA,). 

6.2.3. Desorption 

Four desorption agents were used to test their effectiveness: DI water, 0.01 mol L-

1 EDTA, 0.01 mol L-1 citric acid, and 0.01 mol L-1 HCl. 30 ml of these were added 

to the solid sorption sample leftover from the aging experiments, therefore these 
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experiments were also carried out in triplicate. The samples were then shaken for 

24 hours, after which the pH was measured and the samples were centrifuged at 

4000 RPM for 10 minutes. 5 mL of supernatant was then filtered through a 0.22 

μm syringe filter and added to 5 ml HNO3. As with the sorption experiments, the 

HA samples were centrifuged in 10 kDa centrifuge filters at 4000 RPM for 20 

minutes and then 5 mL of supernatant was added to 5 mL HNO3. 

6.2.4 Ferrihydrite dissolution 

In order to determine the effect of the desorption agents on ferrihydrite the 

ferrihydrite was aged for 1, 7, 28, and 84 days at room temperature. After each 

ageing period, 0.03 g of ferrihydrite was removed and mixed in a 50 mL 

centrifuge tube with 30 mL of either DIW, EDTA, citric acid, or HCl. These 

experiments were performed in triplicate for each desorption agent. The samples 

were then shaken for 16-24 hours, after which they were centrifuged at 3000 

RPM for 10 minutes and the supernatant filtered using 0.2 μm syringe filters. 5 

ml of supernatant was added to 5 ml of 2% HNO3 in preparation for ICP-OES 

analysis. 

6.2.5 Ferrihydrite XRD analysis 

After each ageing period a sub sample of room temperature aged ferrihydrite was 

dried at 40°C. They were then ground into a powder and prepared for XRD 

analysis as described in Chapter 3.3.   
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6.3. Results 

6.3.1. Sorption and desorption experiments 

Co sorption to ferrihydrite, kaolinite and HA after 1, 7, 12, and 84 days of sorption 

is shown in Fig. 6.1. Sorption to ferrihydrite and HA was 100% after 1 day and 

remained at this level at 84 days. Co sorption to kaolinite increased from ~65% 

sorption after 1 day to ~80% after 28 days where it remained for the 84 day 

equilibration period. 

When DIW was used to desorb the Co from ferrihydrite, only 5-10% Co was 

desorbed from the mineral regardless of the aging period of the system (Fig 6.2). 

For EDTA,  

Figure 6.1: Co sorption (at 10-3 mol L-1Co total concentration, equating 
to 5.893 wt% Co sorbed at 100% sorption) to ferrihydrite 
(squares), kaolinite (circles), and humic acid (triangles); 
conducted at room temperature and ionic strength of 10-3 mol L-1 
NaNO3. Error bars represent one standard deviation in the 
amount of Co sorbed and are not visible for the ferrihydrite and 
humic acid systems. 
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Figure 6.2: Co desorption from ferrihydrite, kaolinite, and humic acid 
as a function of a variety of desorption agents: DIW (squares), 
EDTA (circles), citric acid (triangles), and HCl (diamonds). Error 
bars represent the standard deviation in Co desorbed. Where they 
are not present indicates data ranges where the standard 
deviation is too small to be visible.  
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almost all (>95%) the Co was removed from the mineral after one day of aging. 

This decreased to ~90% Co desorbed on the sample aged in contact with Co2+ for 

7 days, and the sample aged for 28 days  had ~70%  Co desorbed. After a sorption 

aging period of 84 days, ~25% Co was desorbed. After 1 and 7 days of aging, citric 

acid was able to remove almost all of the Co sorbed to ferrihydrite. After 28 days 

of aging, less than 10% sorbed Co was still sorbed to the mineral after citric acid 

was added to the system. Citric acid was able to remove >70% of sorbed Co after 

an 84 day aging period. As with EDTA and citric acid, HCl removed almost all of 

the sorbed Co after a one day aging period. After 7 and 28 days, less than 10% 

sorbed Co remained on the ferrihydrite, however, after 84 days only 50% Co had 

been removed.  

DIW removed the least Co from kaolinite over the full 84 day period (Fig. 6.2). 

After 1 day, ~20% sorbed Co was removed which decreased to ~15% after 7 days 

and remained at this level after 28 and 84 days. EDTA, citric acid, and HCl all 

released the same amount of Co back into solution. After 1 day 40-45% of sorbed 

Co was released back into solution. This increased slightly to 45-50% desorption 

after 7 days and remained at this after 28 and 84 days.  

Using DIW to desorb Co from HA resulted in none being removed after all aging 

periods (Fig 6.2). After aging for 1 and 7 days, ~5% sorbed Co was left on the HA 

after desorption with EDTA, after 28 days ~15% was left, and after 84 days ~10% 

still remained on the HA. When citric acid was used to desorb Co from HA, 

between 45-50% remained sorbed to HA for all aging periods. HCl removed ~75% 

sorbed Co after all aging periods. 
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6.3.2. Ferrihydrite dissolution 

The ability of each desorption agent to dissolve ferrihydrite is presented in Fig. 

6.3. DIW did not release Fe into solution with the aqueous Fe concentration 

remaining at 0 ppm for all samples regardless of the length of ageing. EDTA 

partially dissolved ferrihydrite, with ~100 ppm Fe being in solution after being 

added to ferrihydrite that had been aged for up to 84 days. Citric acid dissolved 

the most ferrihydrite with the most aqueous Fe being in solution after being 

added to all aged ferrihydrite samples. When the ferrihydrite had been aged for 1 

day, citric acid released ~600 ppm Fe(aq) into solution. However, when added to 

7 day old ferrihydrite, less was dissolved, with only ~350 ppm being present in 

solution. When added to 28 and 84 day old ferrihydrite, citric acid again released 

~600 ppm of Fe(aq) into solution. HCl showed a similar trend to citric acid, but 

dissolved less ferrihydrite. When added to ferrihydrite that had been aged for 1 

day, ~450 ppm Fe(aq) was released into solution, and when added to 7 day old 

Figure 6.3: Cobalt release from ferrihydrite as a function of the 
ferrihydrite age and of desorption agents: DIW (circles), EDTA 
(upwards triangle), citric acid (diamonds) and HCl (downwards 
triangles). 
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ferrihydrite only ~200 ppm was released. HCl added to 28 and 84 day old 

ferrihydrite released ~400 ppm Fe(aq) into solution.  

6.3.3. Ferrihydrite XRD analysis 

The XRD peaks for ferrihydrite at 1, 7, 28, and 84 days old are shown in Fig 6.4. 

Scans after 1, 7, and 28 days all showed the characteristic 2 broad peaks at ~35° 

and ~62° 2θ of 2-line ferrihydrite. The scan of 84 day old ferrihydrite shows 

narrower peaks on top of the broad ferrihydrite peaks at 21°, 33°, 36°, and 37° 2θ. 

These are characteristic of goethite.   

Figure 6.4:  XRD spectra of ferrihydrite after being aged for 1, 7, 28, 
and 84 days. Spectra for 1, 7, and 28 days show the 
characteristic 2 broad peaks at ~35° and ~62° 2θ for 2-line 
ferrihydrite, whereas the 84 day aged spectra shows goethite 
peaks. 
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6.4. Discussion 

6.4.1. Effect of ageing on sorption 

Cobalt sorption to ferrihydrite and humic acid remained constant at ~100% for all 

of the ageing periods up to 84 days (Fig. 6.1.). This suggests that the sorption 

reactions reach equilibrium in 24 hours or less and do not change over a 84 day 

period.  

Sorption to kaolinite was affected by the length of the ageing period. After 1 day, 

sorption was at ~65% which increased to ~75% after 7 days and then ~80% at 28 

days where it remained stable until 84 days. This could be caused by the sorption 

reactions being slower when Co sorbs to kaolinite. However, the error bars for the 

4 data points do overlap and so it is possible that Co sorption remains stable for 

84 days, with some error caused by slight differences in the pH in the repeat 

experiments done in this study (Table 6.1). This is because near to the main 

sorption edge small changes in pH can result in significant changes in the 

percentage sorption observed. This is due to the sorption edge occurring over an 

extremely narrow pH range.  

Previous studies of Co sorption to kaolinite have found that there are two uptake 

stages: the first of which occurs over a matter of minutes, and the second that 

takes place over several hundred to thousands of hours (Thompson et al., 2000; 

Bhattacharyya and Sen Gupta, 2007). This has been explained simply as being 

because initially cations are sorbing to an empty surface and the rate of 

adsorption is high. But as more cations form complexes with the surface they 

have to compete with each other for surface sites, decreasing the rate at which 

they can be taken up by the mineral surface (Bhattacharyya and Sen Gupta, 

2007). Between 1 and 100 hours (~4 days), Co sorption to kaolinite increased 

regardless of the initial Co concentration.  



135 
 

Table 6.1: The average pH values for each sorbent phase after the sorption 
ageing period and after Co had been desorbed for 24 hours. The ± symbol 
provides the standard deviation of the dataset for each value. 

Sorbent Sorption ageing 
period (days) 

Desorption 
Agent 

pH after 
ageing 

pH after 
desorption 

Ferrihydrite 1 DIW 8.41 ± 0.11 7.39 ± 0.02 
EDTA 8.51 ± 0.14 10.20 ± 0.22 
Citric Acid 8.48 ± 0.09 2.56 ± 0.19 
HCl 8.47 ± 0.14 2.33 ± 0.09 

7 DIW 8.44 ± 0.25 7.25 ± 0.19 
EDTA 8.37 ± 0.14 10.03 ± 0.24 
Citric Acid 8.52 ± 0.07 2.54  ± 0.07 
HCl 8.51 ± 0.13 2.3 ± 0.05 

28 DIW 8.2 ± 0.07 7.09 ± 0.21 
EDTA 8.12 ± 0.10 9.64 ± 0.62 
Citric Acid 8.15 ± 0.09 2.78 ± 0.57 
HCl 8.20 ± 0.21 2.56 ±0.62 

84 DIW 7.58 ± 0.06 6.60 ± 0.18 
EDTA 7.63 ± 0.07 10.01 ± 0.16 
Citric Acid 7.63 ± 0.06 2.53 ± 0.17 
HCl 7.62 ± 0.01 2.28 ± 0.17 

Kaolinite 1 DIW 8.13 ± 0.33 7.41 ± 0.18 
EDTA 8.15 ± 0.34 9.12 ± 0.13 
Citric Acid 8.13 ± 0.19 2.63 ± 0.03 
HCl 8.13 ± 0.27 2.24 ± 0.48 

7 DIW 7.93 ± 0.03 7.28 ± 0.30 
EDTA 7.94 ± 0.08 9.34 ± 0.16 
Citric Acid 7.93 ± 0.11 2.65 ± 0.02 
HCl 7.88 ± 0.12 2.14 ± 0.16 

28 DIW 7.73 ± 0.16 7.48 ± 0.21 
EDTA 7.67 ± 0.17 8.77 ± 0.31 
Citric Acid 7.71 ± 0.14 2.58 ± 0.01 
HCl 7.70 ± 0.09 2.01 ± 0.03 

84 DIW 7.71 ± 0.10 6.90 ± 0.34 
EDTA 7.74 ± 0.09 8.44 ± 0.09 
Citric Acid 7.69 ± 0.07 2.66 ± 0.07 
HCl 7.69 ± 0.07 2.05 ± 0.05 

Humic Acid 1 DIW 8.51 ± 0.03 8.50 ± 0.02 
EDTA 8.64 ± 0.04 8.13 ± 0.02 
Citric Acid 8.54 ± 0.04 2.88 ± 0.03 
HCl 8.57 ± 0.02 2.16 ± 0.10 

7 DIW 8.14 ± 0.03 8.18 ± 0.04 
EDTA 8.12 ± 0.04 9.03 ± 0.12 
Citric Acid 8.08 ± 0.02 2.94 ± 0.13 
HCl 8.08  ± 0.02 2.16 ± 0.10 

28 DIW 7.49 ± 0.02 7.78 ± 0.07 
EDTA 7.51 ± 0.05 7.98 ± 0.04 
Citric Acid 7.53 ± 0.04 2.88 ± 0.13 
HCl 7.50 ± 0.10 2.19 ± 0.13 

84 DIW 7.37 ± 0.01 7.56 ± 0.07 
EDTA 7.39 ± 0.08 9.00 ± 0.05 
Citric Acid 7.33 ± 0.03 2.91 ± 0.11 
HCl 7.31 ± 0.07 2.22 ± 0.17 
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After 100 hours, Co sorption remained stable. (Thompson et al., 1999; 2000). 

Therefore it is probable that the initial increase in Co sorption in this study 

between 1 and 28 days is due to a similar slow uptake mechanism occurring in 

these experiments, and after this sorption remains stable. 

6.4.2 Desorption of cobalt from soil constituents 

6.4.2.1 Ferrihydrite 

All desorption agents (apart from DIW) showed a decrease in desorption 

effectiveness with a longer sorption equilibration time. EDTA showed the biggest 

decrease in effectiveness, dropping from 90% removal after 1 day of sorption, to 

20% removal after an 84 day sorption equilibration period. Citric acid showed the 

highest removal of Co from the ferrihydrite surface after all sorption equilibrium 

periods, apart from after 1 day sorption ageing period where EDTA, citric acid, 

and HCl all removed ~90% Co.  It has been shown previously that increasing the 

sorption equilibration time decreases the amount of sorbed cations that can be 

released for iron oxy(hydr)oxides due to incorporation into a slowly restructuring 

iron oxide (Ainsworth et al., 1994; Ford et al., 1997). Therefore my results further 

confirm those found in the literature.  

XRD analysis of ferrihydrite after 1, 7, 28, and 84 days sorption is shown in Fig. 

6.3. This shows that ferrihydrite remained as ferrihydrite for up to 28 days. 

Between 28 and 84 days, the ferrihydrite began to transform into goethite, 

evidenced by the goethite peaks present in the spectrum. During the 

transformation of ferrihydrite to goethite adsorbed Co was likely to have become 

incorporated into the mineral, explaining why the desorption agents removed less 

surface Co after 84 days.  

This process has been studied with other transition metals (e.g. Cd, Pb,) and it 

has been shown that ferrihydrite undergoes structural reordering that can result 

in sorbed metals becoming incorporated into crystalline structural sites (Spadini 

et al., 1994; Ford et al., 1997). This results in desorption agents not able to remove 

metals incorporated into the solid and so results in less metal released back into 

solution. Therefore, I propose that sorbed Co becomes structurally incorporated 

into the ferrihydrite structure as it ages therefore making it difficult for the 

desorption agents to release it. 



137 
 

This hypothesis works in the case of EDTA, as Fig 6.2 shows that desorption 

decreases as the ferrihydrite is aged for longer, and Fig. 6.4 shows that EDTA 

dissolves minimal amounts of ferrihydrite (~100 ppm Fe(aq) was present in 

solution after addition of EDTA) and therefore cannot bind to the Co 

incorporated into the ferrihydrite structure. EDTA is able to remove Co from the 

ferrihydrite surface by binding to the Co in the reaction: 

S-Co + EDTA ⇌ S + Co-EDTA        (6.1) 

where S represents the surface functional group (Bermond and Ghestem, 2001). 

EDTA has a chelating effect on cations bound to mineral surfaces and thus Co 

preferentially binds to the EDTA. This creates strong soluble metal-ligand 

complexations that increase the mobility of cations in soils, leading to the ability 

to remove metals from the soil completely (Kim et al., 2003). This is likely to 

account for the high desorption of Co after 1 and 7 days of sorption, but after this 

time Co becomes incorporated into the mineral and EDTA is not able access Co2+ 

incorporated into the ferrihydrite (and goethite) structure to remove the 

incorporated Co. 

Citric acid and HCl were used as desorption agents to lower the pH, as that has 

been shown to trigger desorption (Ainsworth et al., 1994). They reduced the pH to 

~2.75 and ~2.25, respectively. Despite HCl creating a system with a lower pH, 

when the 2 desorption agents no longer desorb equal amounts of Co after an 84 

day sorption period, citric acid desorbs the most Co. This suggests that another 

mechanism is taking place other than simply reducing the pH thereby causing the 

variable charge sites to turn positively charged.  

Both citric acid and HCl dissolve large amounts of ferrihydrite (~600 ppm and 

~400 ppm, respectively) and this would cause more of the structurally 

incorporated Co to be released. This is shown in Fig. 6.2, as citric acid releases 

more Co back into solution than HCl over all sorption equilibrium periods. This 

implies that the main mechanism resulting in citric acid and HCl releasing Co 

into solution is the dissolution of the ferrihydrite mineral.  

6.4.2.2 Kaolinite  

Unlike ferrihydrite, there was no decrease in desorption with longer sorption 

equilibrium periods for all desorption agents. DIW released ~15% sorbed Co, 
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which was most likely outer-spherically bound to the permanent charge sites on 

the Si face (Chapter 4). Outer-sphere bonds are much weaker than inner-sphere 

bonds and so it is possible that a simple diffusion effect resulted in the outer-

spherically bound Co being released from the kaolinite surface. A desorption 

agent that makes use of the competitive effect to remove ions from the mineral 

surface (e.g. CaCl2) would likely have been more effective at removing the outer-

spherically bound Co. 

As with ferrihydrite, EDTA chelates cations that are sorbed to the mineral 

surface. This creates soluble metal-ligand complexes that are released into 

solution. However, only ~50% of Co sorbed to kaolinite was desorbed (Fig. 6.2). 

This contrasts the ability of EDTA to desorb 100% of Cd associated with kaolinite 

surfaces (Hong and Pintauro, 1996). However it is possible that Co has a higher 

affinity to kaolinite than Cd, which is implied by Co starting to sorb to kaolinite at 

pH 7, while Cd starts at pH 8 (Spark et al., 1995). It is also possible that Co 

multinuclear complexes that form on the kaolinite surface (Chapter 4) help to 

stabilise Co on the surface, forming stronger bonds than would be created by an 

EDTA-Co complex. These strong bonds and a high affinity for kaolinite would 

result in less binding to EDTA and so less Co is released back into solution.  

Desorption of Co from kaolinite has been studied by lowering the pH of the 

solution using HNO3 and the amount desorbed was found to decrease with 

increasing sorption periods (Thompson et al., 2000). The only time periods 

where there was minimal change in desorption were 103 (4 days) and 2664 hours 

(111 days). For shorter (between 2 and 121 hours) and longer (426 and 6778 

hours) periods of time there were large decreases in the amounts of desorption. 

This contrasts with the results in Fig 6.2, where there was little change in the 

amount of Co desorbed by either citric acid or HCl after they were used to 

decrease solution pH. This difference could be due to the NO3- anion forming 

strong bonds with the sorbed Co and releasing it back into solution (Thompson et 

al., 2000). 

6.4.2.3 Humic acid 

As with kaolinite, there was limited effect of the length of the sorption 

equilibration period on the desorption of Co from humic acid. DIW released 

negligible amounts of Co back into solution, suggesting that Co binds to humic 
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acid via strong bonds. At high pH (~7 - 8, at which desorption using DIW water 

took place) Co is bound to humic acid via multinuclear bidentate inner-sphere 

complexes (Chapter 4). These bonds are therefore too strong for Co to be released 

back into solution by a dilution effect.  

EDTA desorbed ~80% of Co for all sorption equilibration periods and was the 

most effective at releasing Co from the humic acid out of the 4 desorption agents 

that were studied. EDTA has previously been found to be effective at desorbing 

cations from humic acids, as it has desorbed 91% of sorbed Co, 98% Zn, and 88% 

Mn (Rashid, 1974). This was explained as being caused by weak bonds between 

these metals and the humic acid. However, Co sorbs to humic acid via strong 

inner-sphere complexes (Chapter 4) which suggests that Co-EDTA bonds are 

stronger than Co-HA. As EDTA induced desorption does not decrease with 

increased sorption time (Fig. 6.2), this implies that Co2+ remains on the surface 

and there are no reactions involving humic acid over 84 days that results in Co 

becoming inaccessible to desorption by EDTA 

Both citric acid and HCl are likely to have desorbed Co simply by lowering the pH 

of the system. As HCl decreased the pH more than citric acid (to pH values ~2.25 

and ~2.9, respectively) it is likely that this caused more Co to be desorbed by HCl. 

It is possible that repeated washing with either citric acid or HCl could 

progressively remove more Co from the humic acid as a new equilibrium would 

form between Co sorbed to the humic acid and the fresh acid solution, potentially 

desorbing more Co.  
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6.4.3 Implications for remediation 

The length of sorption equilibration time had no effect on the amount of Co 

desorbed from kaolinite and humic. However, it did have an impact on Co release 

from ferrihydrite, with the most Co being desorbed after 1, 7, and 28 days 

sorption. After 28 days sorption, citric acid and HCl were most effective in 

removing Co from ferrihydrite. Therefore, I recommend decontamination to be 

carried out within 28 days of a contamination event where the soil contains high 

amounts of iron oxides. Although, the experiments carried out are not truly 

representative of a natural soil, making this a conservative recommendation. 

Natural ferrihydrite in soils will have already aged in situ and transformation can 

be slower due to the presence of other sorbed cations (Jambor and Dutrizac, 

1998). Therefore it is possible that experiments using natural Fe-rich soils may 

exhibit slower incorporation than observed in these experiments. In soils that are 

high in kaolinite/ clay and/ or humic substances decontamination can be carried 

out at any time up to 84 days (3 months).  

There are drawbacks to using citric acid and HCl in soil washing approaches. The 

use of these will produce an acidic solution with high Fe(aq) and Co2+ 

concentrations that will need to be treated prior to discharge, increasing the cost 

of this decontamination technique. However, neutralisation of this solution would 

result in the precipitation of a Fe-oxy(hydr)oxide, which provides surface sites for 

the sorption of Co at pH levels above 7. This would make it possible to recover the 

desorbed Co for safe disposal, and after separation of the solids this would leave a 

Co free, neutral pH aqueous phase suitable for discharge into the sewer system.  

It is possible that repeated washing with EDTA, citric acid, or HCl could desorb 

more Co from the sorbent phase. If this were to occur even after long sorption 

equilibration periods then it could result in decontamination that is just as 

effective as immediate decontamination. This would remove the necessity of 

immediate decontamination, despite using more resources and increasing the 

cost.  
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6.5. Conclusion 

There was no decrease in sorption when Co was left in equilibrium with the 

sorption phase for 84 days, with ferrihydrite and humic acid showing no change 

in that period. Kaolinite showed a slight increase in Co sorbed between 1 and 28 

days. Less Co was desorbed from ferrihydrite with increases in the sorption 

equilibrium period, implying that it was incorporated into the mineral structure 

as the ferrihydrite transformed into goethite. EDTA was the most effective in 

removing Co from humic acid, was equally good as citric acid and HCl in 

desorbing Co from kaolinite, and released the same amount of Co from 

ferrihydrite as citric acid and HCl up to 7 day sorption equilibration period. 

Therefore to avoid mixing desorption agents in the soil, it is recommend to use 

EDTA to decontaminate soils that contain a mixture of the 3 phases within 7 days 

of the decontamination event.  
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Chapter 7: Conclusions  

7.1 Summary 

Cobalt has the potential to be released into the environment either in its stable or 

radioactive forms because of its use in industry and its presence in low level 

radioactive waste. Therefore, it is important to understand how it reacts with 

common phases found in soils, such as iron oxides, clay minerals, and organic 

matter.  This detailed scientific understanding is essential for the effective 

remediation of areas contaminated with Co.    

The aim of this thesis was to understand the sorption behaviour of Co in soil 

environments to aid efforts for clean-up after a contamination event. As a result I 

chose to investigate Co sorption to ferrihydrite, kaolinite, and humic acid as these 

sorption processes are likely to dominate Co behaviour in oxic soils and 

sediments, and these phases represent the dominant sorption surfaces present in 

soils and sediments. This thesis has presented a comprehensive study of the 

sorption behaviour of Co2+ to a number of different materials (pure soil 

constituent phases, and composite phases) at a macro- and microscopic level and 

how this differs in different environmental conditions, whether this behaviour 

can be accurately modelled in a thermodynamic surface complexation model, how 

closely Co sorption to soils is representative of sorption to the pure phases, and 

how effectively a range of desorption agents can reverse sorption after different 

sorption equilibrium periods.  

7.2 Major Findings 

Chapter 4 studied the key sorption controlling phases in soils and composite 

materials. It presented the initial macroscopic results of Co sorption to 

ferrihydrite, kaolinite, and humic acid, and ferrihydrite-humic acid and kaolinite-

humic acid composites. Sorption to each of these phases was generally low 

(<50%) below pH 6, implying high mobility of Co in these environments. The 

exception was humic acid, to which sorption was ~100% by pH 4 in environments 

with low ionic strength (10-3 mol L-1) and by pH 6 in high ionic strength 

conditions (10-1 mol L-1). Additionally, the kaolinite-humic acid composite with 
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2.2 wt% C reached 50% Co sorption by pH ~4.5 and was at ~100% at pH 6. 

Therefore, in these environments the mobility of Co is low.  

EXAFS analysis of these systems provided novel information on the coordination 

environments of Co sorbed to the 5 phases. It was determined that at low pH 

(<6.5) sorption to kaolinite and humic acid – and therefore, the kaolinite-humic 

acid composite – Co formed outer-sphere complexes with the sorbent surface. 

These are weak bonds that are highly dependent on other ions in solution and 

therefore it is possibly easy to remove Co sorbed via these complexes. Above pH 

6.5, Co formed binuclear bidentate inner-sphere complexes with all of the 

sorbents under investigation, including ferrihydrite. These are strong bonds that 

are difficult to break and Co would be less likely to be desorbed. This was the first 

time that Co sorption to ferrihydrite was studied using EXAFS spectroscopy and 

therefore provided novel understanding regarding the local environment of Co 

sorption to an iron oxide.  

Additionally, this was the first time Co sorption to ferrihydrite, kaolinite, and 

humic acid had been studied by STEM.  While the ferrihydrite and humic acid 

systems showed that Co nanoparticles did not form, the kaolinite system showed 

Co concentrated along one side of the kaolinite particles. Where the Co is present 

is likely due to highly reactive edge sites that are created when the crystallites 

break apart.  

Ultrafiltration data compared to filtration at 0.22 μm showed that above pH 5, 

humic acid became solvated and the Co bound to this humic acid phase was 

dispersed in solution. This provides a potential transport vector for 

contamination in organic rich environments at pH values above 6 where ~90% 

sorption would be expected.  

The knowledge gained from these methods was used to develop a thermodynamic 

surface complexation model. The end-member systems were able to be modelled 

well. For the composite systems, the relevant end-member models were 

combined assuming a linear component additivity approach and these model fits 

did not match the EXAFS results, and therefore systems that more closely reflect 

a true soil system cannot be modelled with an additivity approach.  
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Chapter 5 continued as an extension of the work completed in Chapter 4. Co was 

sorbed to 3 different soils with varying C contents – peat, agricultural, and 

sediment. Sorption to peat soil was greater than that to the other 2 soils, which 

behaved identically to each other: low sorption below pH 6, and then an increase 

until 100% sorption is reached at pH 8. The surface complexation model 

developed in Chapter 4 was tested with these soils. The overall sorption behaviour 

to peat, agricultural soil and sediment were able to be modelled using the 

previously constructed humic acid, ferrihydrite-humic acid, and kaolinite models, 

respectively. However, the models lacked accurate details about the processes 

involved, so while Co sorption to these natural soils are comparable to sorption to 

humic acid, ferrihydrite-humic acid composite and kaolinite they are not perfect 

representations. 

Chapter 6 used the knowledge gained in the previous chapters to inform 

decontamination methods after aging. The effect of ageing on Co sorption to 

ferrihydrite, kaolinite, and humic acid, was investigated, as well as the 

effectiveness of 4 desorption agents after different sorption equilibration periods. 

Ageing did not have an impact on Co sorption to ferrihydrite and humic acid, 

both of which remained at 100% sorbed for the full 84 day sorption equilibrium. 

However, Co sorption to kaolinite increased between 1 day and 28 days and then 

remained stable. Co desorption from ferrihydrite decreased with longer sorption 

equilibrium period, and XRD spectra show that this is likely due to Co becoming 

incorporated into the mineral as ferrihydrite transforms into goethite. Therefore, 

Co mobility decreases with time in environments where ferrihydrite is present. 

EDTA was found to desorb the most Co after up to 84 days sorption equilibration 

period for humic acid and kaolinite. EDTA forms strong chelating bonds that are 

capable of breaking the inner-sphere complexes binding the Co to the sorbents. 

However, for ferrihydrite citric acid released the most Co back into solution after 

up to 84 days sorption equilibration, though EDTA was equally effective at 

mobilising Co after a 7 day sorption equilibration period due to Co not having 

been incorporated into the ferrihydrite structure yet.  

This implies that for the most effective decontamination, and to avoid mixing 

decontaminants, the soil should be treated with EDTA within 7 days of the 

contamination event. This method also will not destroy the soil as much as using 
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citric acid or HCl (the two desorption agents that dissolved the most ferrihydrite) 

as little ferrihydrite was dissolved.  

7.3 Future Work 

Future work in this area should focus on building a complete understanding of 

cobalt sorption to soil phases. Initially, using the work in this thesis as a starting 

point, this could be carried out by producing a ferrihydrite-kaolinite-humic acid 

composite and modelling the Co sorption data. The data could be compared to the 

Co sorption to natural soils to determine whether the sorption behaviour is 

similar and whether this composite is a good approximation to sorption to the 

natural soils. The ferrihydrite-kaolinite-humic acid model could then be adjusted 

for the correct ratios of the phases in the natural soils and continue the work in 

Chapter 5 in determining whether a simple model can accurately predict sorption 

to the complex natural system.  

Further work in this area could consist of producing sorption edge data for Co 

interactions with other common clay minerals such as muscovite, chlorite and 

montmorillonite, and more stable iron oxides like goethite and Si incorporated 

ferrihydrite (as this is how ferrihydrite is most commonly found in natural 

environments (Berquó et al., 2007)). This sorption edge data could then be 

modelled and the models combined with each other and the models developed in 

this thesis. It would then be possible to test whether a combination of these soil 

phases is a good approximation for Co sorption to a range of natural soils, based 

on the characterisation of the soils under use.  

Continuing on from the work carried out in Chapter 4, research should be 

conducted into the interactions between humic acid and minerals in order to 

determine why sorption to the composite phases as not additive. This could be 

carried out using microscopic techniques such as (S)TEM and EXAFS to initially 

gain an image of how the humic acid coated the surface of the minerals – and 

possibly whether it is possible to determine where on the composites Co sorbed, 

as this could show whether Co was preferentially sorbed to one phase of the 

composite more than the other. EXAFS could then be used to determine the local 

structure of carbon atoms bound to the mineral phase and potentially investigate 

the type of bonds between the two phases. 
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It would be interesting to carry out this work with a range of similar heavy metals. 

It has already been found that Cu sorbs to iron oxide-organic composites 

additively (Otero-Fariña et al., 2018) and so it would be interesting to study how 

other heavy metals (e.g. Zn, Mn, Cr and Ni) behave in similar systems, and why. 

The desorption studies carried out in Chapter 6 can be developed further by next 

investigating the effectiveness of the same desorption agents (DIW, EDTA, citric 

acid and HCl) on desorption of Co from mineral-organic composites and natural 

soils. These experiments would be carried out in the same way but with the 

different sorbent material. Again, this is a way of building up the scientific 

knowledge from a simple to more complex system to determine whether the basic 

understanding is a good approximation of the more complex system.  

To further test the effectiveness of the desorption agents it would be possible to 

study the effects of repeated washing cycles. This would be carried out by 

sampling the solution after the desorption period, removing the solution and 

replacing it with the initial desorption agent. Doing this would create a new 

equilibration gradient and could potentially remove more Co from the solid. 

Developing this work further with the context of a nuclear contamination event, it 

would be interesting to carry out the ageing studies using 60Co to investigate 

whether the radiation emitted affects the chemical bonds and could make 

decontamination more or less effective. This would be particularly interesting in 

the case of Co sorbing to organics such as bacteria in the soil as the radiation 

could damage the bacteria in ways that affect Co binding to it.  
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