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i

Thesis summary

How does the brain represent sensory input? When stimuli move across sensor surfaces, such

as a light source moving across the retina, sound moving between the ears, or contact moving

over the skin, patterns of activation propagate across sheets of neurons that form the primary

sensory cortices. Understanding how the movement of stimuli across the sensor surfaces relates

to the activation of the cortical sheet is a fundamental problem in neuroscience.

The thesis presents a series of computational neuroscience studies, addressing how sensory

stimuli are represented in mammalian primary sensory cortex. Each study constructed a model

of how tactile stimuli, experienced by rodents via the array of facial whiskers, are encoded in

the barrel cortex area of the primary somatosensory cortex. Each explains how the responses

of cortical neurons to sensory stimuli can be predicted from their location in the cortical sheet.

In each case, simple organising principles, based on cortical connection geometry and/or local

learning rules, could account for how neuronal responses vary according to sensory stimuli.

The success of these highly simplified descriptions of cortical circuitry at explaining complex

neurophysiological data suggests an important role for sensory experience and neural inter-

connection geometry in neural computation. The roles of both have been largely overlooked

in recent large-scale efforts to model somatosensory cortical processing, which have focussed

instead on cataloguing descriptions of neural tissue in increasing levels of detail. Using a top-

down approach to modelling, the thesis generates specific hypotheses about the functional or-

ganisation of the sensory cortex, that can be used to guide future experimental work. The

contribution of the thesis will therefore have been to lay the foundations of a theoretical frame-

work for studying tactile stimulus processing in the somatosensory cortex, which is emerging

as one of the most popular model systems in modern neuroscience.
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Chapter 1

Introduction

Chapter summary

A growing body of research in modern neuroscience has been centred on a remark-

able feature of the rodent sensory cortex; the presence of a small number of large cortical

columns, called ‘barrels’, each about half a millimetre in diameter, which after chemical

staining are just about visible to the naked eye on the surface of the brain. The neurons

of a particular barrel respond selectively when a particular whisker on the face is touched,

and the barrels are arranged on the surface of the brain such that movement of adjacent

whiskers on the animal’s face primarily activates neurons of adjacent barrels. In effect,

neuroscientists know exactly where to look for a response when they touch a whisker. Due

to the precise topological relationship between the sensor (the facial whisker) and its pri-

mary cortical representation (the barrel), the whisker to barrel pathway is an ideal system

in which to ask how sensory stimuli are represented in the brain. In addition to the mapping

from the whisker to the barrel, several other parameters of whisker motion may be repre-

sented spatially across the sensory cortex. Additional parameters include the direction in

which the whisker is moved, the frequency of whisker movements, and the relative timing

between the movements of several whiskers. A review of the literature suggests that each

parameter of sensory motion is represented in the cortex by a spatial code. Reviewed in the
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2 Introduction

context of precise definitions for sensory motion and spatial coding, the evidence gives rise

to a general theory of sensory motion processing, which will be referred to as Figuring Time

by Space. In order to formulate the theory scientifically, a program of computational mod-

elling is proposed, centred around four key research questions. This program of research

constitutes the basis of the thesis presented herein.

1.1 Sensory motion and spatial coding

What is sensory motion? Motion is the change in the position of a body in space over time.

Motion is described by a velocity vector, composed of a rate of change and a direction of

change, relative to an observer. In sensing, the observer is a receptor cell or surface thereof, the

body is an object, and the motion velocity relative to the sensor surface is a sensory stimulus.

Electrical signals in the brain are generated when waves of energy disturb receptor cells. Waves

can be electromagnetic, as in vision or electrosensing, or mechanical, as in touch, audition, or

biosonar in some species. Following the definitions of Cavanagh and Mather (1989), a detector

for first-order motion responds to the displacement of stimulus intensity at an individual point

on the sensor surface, whereas a detector for second-order motion responds to the difference in

stimulus intensity between pairs of points on the sensor surface. Second order motion detection

requires that signals from two detectors must be processed asymmetrically and integrated non-

linearly, such that the response to stimuli moving in different directions is not equal to the mean

response to either direction (Borst and Egelhaaf, 1989).

What is spatial coding? If different values for a parameter of sensory stimulus reliably evoke

the greatest responses in different neurons, then that parameter is represented by a spatial code.
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For example, if stimulation of different regions of the sensor surface evokes maximal firing rates

in different neurons of a particular brain region, then the parameter, position, is represented in

that region by a spatial code. For the present purposes, three types of spatial code can be de-

fined, at increasing levels of spatial order; from the random map, to the topological map, to the

topographical map at the highest level. Distinctions between these terms, particularly between

topological and topographical maps, have been somewhat arbitrary in the literature and per-

haps no universal distinction is possible (see Goodhill and Sejnowski, 1997); thus the following

working definitions are offered to distinguish between orders of spatial codes in the context of

the present review. First, if incremental parameter values reliably evoke the greatest responses

in different neurons, and adjacent neurons respond to unrelated values, then that parameter is

represented by a random map. A random map is a spatial code distributed amongst neurons

without spatial order. Second, if incremental parameter values evoke the greatest responses in

neurons that are located next to each other, then that parameter is represented by a topological

map. A topological map is a spatial code with spatial order but without consistent orientation

amongst the brains of conspecifics. Third, if increasing parameter values reliably evoke the

greatest responses in neurons at increasing distances from an anatomical marker, and the rela-

tionship is conserved across the brains of conspecifics, then that parameter is represented by a

topographical map. Thus a topographical (or topographic) map can be defined as a topological

map with consistent spatial orientation.

The spatial code is to be contrasted with the temporal code, which may be defined as temporal

precision in the neuronal response not simply reflecting the stimulus dynamics but relating to the

stimulus properties (Dayan and Abbott, 2001). For example, in a seminal paper entitled figuring

space by time, Ahissar and Arieli (2001) proposed that the location of a tactile stimulus may be

encoded by the timing of spikes locked to whisker contact times, relative to those reporting the



4 Introduction

phase of the whisker through the whisking cycle. Broadly speaking, spatial coding herein refers

to an organisation where stimuli are discriminable by differences in the identity of responding

neurons, rather than by differences in the activity of a responding neuron.

One brain area can contain numerous maps of different types, which are all coextensive with

respect to the constituent neurons. To illustrate, consider the primary visual area of the rodent

cortex, wherein each neuron participates in (at least) a random map for the orientation of visual

edges and eye dominance, coextensive with a topographic map for the location of the stimulus

in the visual field (Gias et al., 2005; Schuett et al., 2002; Ohki et al., 2005).

Self-organising processes underlie the organisation of many types of topological or topograph-

ical map, and they can originate from physical or environmental constraints on the neuronal net-

work (Miikkulainen et al., 2005). Physical constraints may be due to genetically pre-programmed

restrictions on connection lengths or speeds; for example, it has been suggested that a mapping

for inter-ear stimulation time differences emerges from differences between the lengths of axons

carrying signals from each ear to midbrain neurons (Jeffress, 1948). Environmental constraints

are due to the nature and statistical structure of external inputs. For example, ferret auditory

cortex, rewired postnatally to receive visual input, develops maps for eye preference and vi-

sual edge orientation; these maps are characteristic of those normally measured in visual cortex

(Sharma et al., 2000). Hence, cortical maps for features of each sensory modality are highly

plastic and are shaped by a combination of physical and environmental constraints (Feldman

and Brecht, 2005).

The following sections present evidence that the sensory cortex represents sensory motion by

spatial coding. Specifically, they review how the barrel cortex of tactile specialists like rats,
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Figure 1.1. Sensory motion. Motion of an object in different directions (blue versus red)
causes a response on the receptor surface via different types of wave. In vision (left), light
waves travel to photoreceptors of the retina, directed by contraction of the iris relative to the
lens. In the whisker system (right), mechanical waves travel to mechanoreceptors in the skin,
directed by the facial vibrissae.
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mice and shrews represents motion of the facial whiskers. In terms of first-order motion, maps

have been measured in the barrel cortex for the identity of the stimulated whisker, for its fre-

quency of vibration, and for its movement direction. For second-order motion, maps have been

measured for the identity of maximally effective secondary whiskers, and for the velocity of

stimulus movement between adjacent whiskers. As well as reviewing the evidence for these

maps, the following sections serve as a focussed introduction to the anatomy and physiology of

the whisker barrel system.

1.2 A spatial code for whisker identity

Tactile specialists like rats, mice, shrews and seals navigate dark environments, based on signals

elicited by motion of the facial whiskers (Pisano and Storer, 1948; Hartmann, 2011; Wieskot-

ten et al., 2011). The whiskers are arranged in an array of around 35 large whiskers on either

side of the face, and many more around the lip and mouth (Welker, 1964; Brecht et al., 1997;

Towal et al., 2011). Upon disturbance, the whiskers mediate a mechanical wave onto the sensor

surface, which is comprised of mechanoreceptors distributed within (and, to a lesser extent, be-

tween) the corresponding hair follicles on the face (Ebara et al., 2002). It has been proposed that

the physical location of the mechanoreceptor with respect to the follicle determines its response

properties as either rapidly-adapting or slowly-adapting (Mitchinson et al., 2004, 2008). Sim-

ilar to the way in which contracting the iris or generating a saccade regulates the flow of light

onto the retina, actively controlled placement of the whiskers in space regulates the flow of the

stimulus to the tactile sensor surface. (Welker, 1964; Kleinfeld et al., 2006; Mitchinson et al.,

2007; Grant et al., 2009, see Figure 1.1). Whisker motion is represented in multiple, parallel,
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hierarchical, sensorimotor loops, in turn via the brainstem, the thalamus, and the somatosensory

and motor cortices (see Diamond et al., 2008 for an overview). See Figure 1.2 for an illustration

of the pathway upon which this thesis will be focussed.

The primary somatosensory cortex contains a grid of discrete architectonic units, one unit per

whisker, which after staining are visible to the naked eye (Woolsey and van der Loos, 1970;

Welker and Woolsey, 1974). In layer 4, each unit is delineated in the plane tangential to the

surface of the brain by a perimeter of densely-packed somata shaped like a barrel; the delin-

eations between ‘barrels’ in the cortical sheet have been described mathematically as Dirichlet

domains (Senft and Woolsey, 1991). Within each barrel, changes in synaptic contact density

reveal regular geometric patterns, resembling, for example, a coffee bean or the Mercedes car

badge (Land and Erickson, 2005; Louderback et al., 2006); these patterns are thought to emerge

developmentally by self-organising processes (Ermentrout et al., 2009).

Following first-order motion at high velocity, i.e., deflection of a single whisker, neurons of a

single barrel respond faster and with greater magnitude than the others. Thus the ≈ 10, 000

neurons comprising each barrel column (Beaulieu, 1993) tend to be mapped primarily to a

particular whisker, called the principal whisker. The pattern of barrels in the somatosensory

cortex directly corresponds to the layout of the whiskers on the face, such that adjacent whiskers

are principal to adjacent barrels. This organisation is termed somatotopic, and the array of

barrels is also oriented correctly (i.e., somatotopically) with respect to an overall ‘ratunculus’

body map in the somatosensory cortex (Woolsey and LeMessurier, 1948), which may itself

arise out of self-organising processes (Farah, 1998; Stafford and Wilson, 2007). The orientation

of the barrel field representation in the ratunculus is consistent amongst conspecifics (perhaps

‘rodentunculus’ is a sensible generalisation between rodent species), and hence the identity of
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Figure 1.2. Cortico-centric view of the lemniscal processing pathway. The lemniscal path-
way carries whisker signals to the cortex and beyond, via the trigeminal nucleus to ipsilateral
neuronal clusters known as ‘barrelettes’ in the principal sensory brainstem, to contralateral ‘bar-
reloids’ in the thalamic ventral posteromedial nucleus and to layer 4 cortical ‘barrels’. The
topographic projection of signals pertaining to two adjacent whiskers (blue and red) are traced
along the neuraxis, to targets in so-called ‘supra-barrel’ and ‘infra-barrel’ regions in layer 2/3
and layer 5 barrel cortex respectively.
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the deflected whisker is represented by a topographic map in the somatosensory cortex (see

Figure 1.3).

The map for whisker identity amongst the barrels of granular layer 4 barrel cortex reflects a sim-

ilar organisation between nuclei known as barrelettes in the brainstem (Ma and Woolsey, 1984),

and as barreloids in the thalamus (van der Loos, 1976). The term supra-barrel has recently

been suggested for the area of layer 2/3 supragranular barrel cortex situated directly above

the barrel in layer 4 (Wilson et al., 2010), and similarly the term ‘infra-barrel’ will be used

here to describe the region that is vertically aligned to the barrels in the infragranular layers 5

and 6. Upon whisker movement, excitation feeds forward along the neuraxis from barrelette,

to barreloid, to barrel, to supra-barrel and infra-barrel, and laterally into adjacent supra- and

infra-barrels (Armstrong-James et al., 1992; Lefort et al., 2009). This constitutes the lemniscal

pathway; see Figure 1.2. It had been suggested that during development the organisation of

topographic whisker maps unfolds in sequence along the pathway, with each whisker identity

map inheriting the organisation from the antecedent layer (Killackey, 1980).

In the literature the term ‘receptive field’, without qualification, typically refers to the identity

of whiskers whose movement can elicit significant responses in the neuron, although strictly

speaking the receptive field of a neuron encompasses the full range of (multiple) whisker mo-

tion primitives (as in the original usages of Zucker and Welker, 1969; Woolsey and van der Loos,

1970). Non-principal whiskers comprising the receptive field of a neuron can increase or de-

crease its responses to the principal whisker, in the barreloids (Timofeeva et al., 2003; Lavallée

and Deschênes, 2004; Kwegyir-Afful et al., 2005) and in the barrels (Brumberg et al., 1996;

Bruno and Simons, 2002; Mirabella et al., 2001). These multi-whisker interactions are thought

to subserve a kind of edge detection, and they stem from interactions between nuclei within
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each level along the neuraxis (e.g., interactions between barrelettes or between barreloids; Tim-

ofeeva et al., 2004; Lavallée and Deschênes, 2004; Mirabella et al., 2001; Le Cam et al., 2011).

The receptive field can be summarised by its eccentricity; a vector drawn through the whisker

field, from the principal whisker to the center of mass of responses to non-principal whiskers

(Andermann and Moore, 2006). The angle of eccentricity differs for different neurons within

a barrel (Armstrong-James et al., 1992), such that neurons tend to prefer secondary whiskers

that are represented by the nearest of the adjacent barrels (Andermann and Moore, 2006). This

organisation constitutes a topographic map for the receptive field eccentricity within the barrel.

Hence a topographic map exists for first-order whisker motion (the principal whisker identity),

at the resolution of the barrels (see Figure 1.4A), and for second-order whisker motion (the

multi-whisker receptive field), at sub-barrel resolution.

1.3 A spatial code for whisker motion frequency?

Whiskers vary in morphology, depending on species, but in general they are curved and tapered

from the base to the tip with a flat or undulating profile (Brecht et al., 1997; Chernova and

Kulikov, 2011; Hanke et al., 2010; Williams and Kramer, 2010). To a first approximation the

whisker behaves like a static beam with each whisker carrying a fundamental resonant frequency

as well as higher-order harmonic frequencies (Birdwell et al., 2007). Thus, upon stimulation,

whiskers of increasing length vibrate at decreasing frequencies (Neimark et al., 2003).

Although the whiskers have been characterised as large (the macro-vibrissae on the side of
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Figure 1.3. Spatial organisation of the sensory cortex. Sensory cortical areas were traced
from anatomical borders, delineated by cytochrome oxidase staining in a flattened mouse cor-
tical hemisphere. Recreated from ref. (Maier et al., 1999), their Figure 2. Rostral is to the left,
caudal is to the right, medial is to the top and lateral is to the bottom. The array of cortical ‘bar-
rels’ in the somatosensory cortex map in a one-to-one fashion to the array of facial whiskers.
The configuration of primary visual cortex (V1) and primary auditory cortex (A1) sit in topo-
graphic register with an overall body-map organisation. Area S2 is secondary somatosensory
cortex.
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the face) or small (the micro-vibrissae around the mouth), in most species they are actually

graded in length from small to large (Brecht et al., 1997). This grading is reflected by the band-

pass tuning of barrel cortex neurons in response to controlled whisker vibration frequencies

(Garabedian et al., 2003). The grading is also reflected by a topographic map for decreasing

motion frequency along the barrel arcs, the major axis of the barrel array, representing whiskers

of increasing length from the nose to the ear (see Figure 1.4B). Emerging from these observa-

tions, the ‘cochlear hypothesis’ (Andermann et al., 2004) compares the whisker array with the

anatomical organisation of the cochlear in the inner ear, with its hair cells arranged by decreas-

ing frequency preference from base to apex (Roberts et al., 1988). The cochlear hypothesis

suggests a role for resonance in detecting and discriminating the spatial frequency of surface

textures (Moore and Andermann, 2005). However it has been cast into doubt by evidence that

barrel cortex neuronal spikes are time-locked to the ‘kinetic signature’ of the whisker movement

(Wolfe et al., 2008), defined as the product of the frequency and the amplitude of the whisker

displacement (Arabzadeh et al., 2004). The kinetic signature idea likens the whisker to a stylus

on a record player, faithfully encoding the temporal pattern of small sticking and slipping events

as the whisker moves over a textured surface. Accordingly, whisker resonance (and hence the

resonance map) may play a more minor role in modulating near-threshold responses to whisker

micromotions (Ritt et al., 2008; Andermann and Moore, 2008; Lottem and Azouz, 2009; see

also Brecht, 2006; Arabzadeh et al., 2009 for a review).
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1.4 A spatial code for whisker motion direction?

When the individual whisker is deflected in a particular direction at high velocity, rapidly-

adapting primary afferent neurons that innervate particular structures of the whisker follicle fire

strongly (Lichtenstein et al., 1990; Ebara et al., 2002; Szwed and Ahissar, 2006). Efforts to

model the follicle complex have assumed that the selectivity of a primary afferent neuron for

a particular deflection direction is related to the radial position of its innervation domain about

the whisker base (Mitchinson et al., 2004, 2008). There is some evidence supporting the idea of

a topographic mapping of deflection direction in the brainstem barrelettes, with respect to the

anatomical axes of the barrelette nuclei (Furuta et al., 2006). However, stronger evidence for

a topographic map for the whisker deflection direction has been measured in the thalamic bar-

reloids (Timofeeva et al., 2003): The upward (dorsal) and forward (rostral) deflections seem to

be represented by neurons located at the heads of the chilli-shaped barreloids, whereas down-

ward (ventral) and backwards (caudal) deflections are represented by neurons located at the

barreloid tails.

Evidence for a map for whisker deflection direction in the barrels has been somewhat controver-

sial. First it was found that similar whisker deflection directions were represented by localised

clusters of neurons within the barrel, but a null relationship between the directions represented

in adjacent clusters was observed; i.e., a random map on the scale of the barrel (Bruno et al.,

2003). Later, a positive correlation was measured between principal whisker deflection direction

and the location of the neuron with respect to the barrel center (Andermann and Moore, 2006).

An outwardly radiating pinwheel organisation was revealed, reminiscent of those measured in

primary visual cortex, for example by Ohki et al. (2005) in cat but notably not in rodents (Ohki
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et al., 2005; van Hooser et al., 2005; see also van Hooser et al., 2006). Extracellular multi-unit

recordings, using tetrodes at different tangential locations through the barrel, were made whilst

the principal whisker was deflected in randomly interleaved directions (Andermann and Moore,

2006). The pinwheels were topographic because movement of the whisker in the direction of

an adjacent whisker on the face evoked the greatest responses in neurons located closer to the

corresponding adjacent barrel (see Figure 1.4C). The strength of the correlation between neu-

ron location and preferred direction was significantly greater in the supra-barrel compared to

the barrel, suggesting that the direction map may be refined by intra-cortical circuitry.

In contrast, a subsequent two-photon calcium imaging study measured a random map in the

supra-barrels (Kerr et al., 2007). However, recent additional studies have confirmed the exis-

tence of the direction map using optical imaging (Tsytsarev et al., 2010), and later using two-

photon calcium imaging (Kremer et al., 2011). Results of the latter experiment went some way

to resolving the previous discrepancy, revealing a non-topographic map in three-week old rats

(the same age as in Kerr et al., 2007) and a topographic map in three-month old rats (the same

age as in Andermann and Moore, 2006). Hence the first hypothesis that will be addressed, in

chapter 2, is that, like the barrels themselves, a map for the whisker deflection direction emerges

during post-natal development.

A computational model showed how correlated patterns of whisker deflection experienced dur-

ing development could turn a non-topographic map for deflection direction into a topographic

map in around an hour of simulated clock-time (Kremer et al., 2011; note that this model ex-

tends that presented in chapter 2; see Wilson, 2007; Wilson et al., 2010). The authors interpret

this result as evidence that the map emerges during post-natal development, driven by corre-

lations in the pattern of typical multi-whisker inputs. However, taken at face value the result
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suggests that a topographic map for whisker direction could be entrained rapidly by correlated

patterns of whisker deflection. Therefore the result suggests that the whisker-barrel system

could be useful for exploring the process of map formation as it occurs (see Li et al., 2008 on

the entraining of visual maps in ferret primary visual cortex). Suggestions for manipulating the

process of self-organisation, by changing the patterns of experienced multi-whisker deflections,

as well as predictions for the resulting map organisations, will be presented in chapter 2.

1.5 A spatial code for multi-whisker motion sequence?

When the rat or mouse palpates its whiskers against a surface, the whiskers make contact in

sequence (Sachdev et al., 2001; Kleinfeld et al., 2006; Hartmann, 2011), and different object

shapes and motion trajectories yield different patterns of whisker deflection sequence (second-

order motion).

Adjacent-whisker contacts have been found to elicit supralinear responses, i.e., more than the

sum of the single-whisker responses, in supra-barrel neurons located in the septal region be-

tween columns, for a range of short inter-whisker deflection intervals (Simons, 1983, 1985;

Shimegi et al., 1999, 2000). It is possible that these data reflect an underlying continuum of

preferences for the time interval between adjacent whisker deflections. Chapter 3 will present

the hypothesis that neurons located closer to either supra-barrel center prefer increasing inter-

whisker deflection intervals for stimuli beginning at the adjacent whisker. The idea is that

supra-linear responses represent a topographic map for the inter-whisker motion velocity, i.e.,

for second-order sensory motion (see Figure 1.4D).
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Figure 1.4. Summary of proposed spatial codes for whisker motion in the barrel cortex.
A A map for the whisker identity across the barrels, coding for stimulus location increasing in
x (stronger red along the arcs) and y (stronger blue along the rows). B A map for decreasing
whisker resonant frequency (ω) along the arc of barrels (green to yellow for increasing x). C
A map for the whisker receptive field eccentricity and the whisker motion direction (θ), around
the radial extent of each barrel. D A map for inter-whisker motion sequence (∆t), extended
between supra-barrels.
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A recent study elegantly demonstrated that many-whisker displacement sequences are repre-

sented by a spatial code in the infra-barrels (Jacob et al., 2008). Twenty four whiskers were

deflected in sequences that suggested the motion of a flat bar through the whisker field in differ-

ent directions. Here a ‘matrix’ of individual piezoelectric stimulators aligned to each whisker

(Jacob et al., 2010) allowed the individual whisker deflection directions to be independently

controlled. Irrespective of the individual whisker deflection directions (first-order motion),

infra-granular neurons were selective for the motion direction defined by the whisker deflec-

tion sequence (second-order motion), which is evidence for a spatial code for true second-order

motion. However, the level of spatial code was not determined; random map, topological map,

or topographic map? As suggested by the data of Andermann and Moore (2006) and Kremer

et al. (2011), the principal whisker deflection direction is represented in a topographic pinwheel

map across each barrel. However, as reported by Jacob et al. (2008), the tuning of a neuron for

the principal whisker deflection direction is uncorrelated with its tuning for the motion direction

implied by the multiple whisker sequence. Therefore a topographic organisation for the multi-

ple whisker sequence direction would have to be defined with respect to axes that are distinct

from the radial axes of the pinwheel maps for the principle whisker deflection direction.

1.6 Relationships between motion maps

As well as being coextensive, the organisations of maps for different stimulus features defined

over the same sheet of neurons can be systematically related. The value of one stimulus param-

eter represented in a particular group of neurons can be predicted from the value of a second

parameter represented in that group, given the map organisation for the second parameter. For
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example, the iso-orientation contours of maps for visual edge orientation and the iso-direction

contours of maps for visual motion direction tend to intersect at right angles across the two sheet

dimensions of primate primary visual cortex; probably due to an interdependence between the

two during normal visual experience (see Miikkulainen et al., 2005 and Issa et al., 2008 for an

overview). So how might maps for whisker motion parameters relate?

The first-order direction map (deflection direction) seems to be correlated with the receptive

field map (eccentricity), in layer 4 and 2/3 barrel cortex (Andermann and Moore, 2006). The

receptive field map (eccentricity) seems to be correlated with the second-order direction map

(deflection sequence), in layer 2/3 (Drew and Feldman, 2007). However, the first and second or-

der direction maps appear not to be correlated; i.e., in layer 5 when testing using many whiskers

(Jacob et al., 2008) and in layer 4 when testing using whisker pairs (Hemelt et al., 2010). A

number of factors might account for this apparent discrepancy. One possibility is that stimulus

motion maps in layer 2/3 and 5 might have a fundamentally different organisation. Another

possibility is that colinear first-order and second-order stimulus directions used by Drew and

Feldman (2007), but not by Jacob et al. (2008), might have modified the structure of the map

for receptive field eccentricity. For example, Le Cam et al. (2011) recently reported that the

receptive field eccentricity varies significantly depending on the first-order motion direction, in

a majority of barrel cortex neurons. Hence it is a particularly interesting time to be studying

map organisation, and potential correlations between maps, in the barrel cortex.

We have seen that the organisations of maps for different parameters can be systematically

related within the same brain area. In addition, an elegant study revealed that maps for the

same parameter in different brain areas can also influence one-another (Li and Ebner, 2007).

Direct electrical stimulation of a region of the infra-barrel map for first-order motion direction
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was found to modulate similar representations in the aligned thalamic barreloid. The authors

stimulated infra-barrel neurons representing particular motion directions, and then measured a

(recoverable) shift in the direction preference of barreloid neurons, from their original preferred

direction to that preferred by the cortical neuron (Li and Ebner, 2007). The effect, and a similar

effect between cortical and thalamic whisker identity maps, was measured during experiments

that lasted several hours. It is not yet known whether such plasticity also occurs on shorter

timescales, however it is interesting to consider whether dynamic modifications between maps

within and between brain areas could subserve attention to particular stimulus feature values on

behaviourally relevant timescales.

1.7 A spatial code for ‘higher-order’ tactile stimulus features?

If higher-order stimulus properties, such as those describing object shape, are represented by

spatial coding, then they are more likely to be represented in topological rather than topographic

maps; it is difficult to conceive how object representations that are invariant to spatial transfor-

mations (e.g., rotation of the object) could be maintained in a rigid topographic map that is

anchored to the layout of the barrels. For example, the behavioural data of Anjum et al. (2006)

show that Etruscan shrews elicit attacks when the whiskers encounter object shapes resembling

the vulnerable body parts of their prey (i.e., the legs of crickets), irrespective of the direction of

movement of those body parts through the whisker field. This implies that shrews maintain a

Gestalt-like representation of certain tactile object shapes. Thus we might predict the presence

of topological maps organised principally for higher-order relationships between object fea-

tures, i.e., composed of tactile equivalents of the “Jennifer Aniston” neurons found in humans
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(Quiroga et al., 2005). Unless the organisation of such an object-centered map were genetically

predetermined, there should be no environmental constraints that would relate it to topographi-

cal maps for egocentric spatial relationships (e.g., for whisker identity, direction, and sequence;

see Roth-Alpermann et al., 2010, for an exploration of maps in shrew cortex). The idea of maps

for higher-order object representations will be explored in chapter 5.

Maps are typically measured by varying a parameter, thought by the experimenter to be of rel-

evance to the sensory system, and then measuring the response. However it is difficult to know

exactly what to look for in the barrel cortex. One approach is to control the form of the object

and vary its motion. This requires formulating an hypothesis about what object forms are reli-

ably encoded by the system; for example, that the sequence of whisker deflections pertaining to

the tangential motion of a flat bar is relevant (Benison et al., 2006; Drew and Feldman, 2007;

Jacob et al., 2008). However this approach becomes increasingly difficult as the represented

stimuli become more abstract with respect to simple motion primitives. Another approach is to

determine by experiment what type of stimulus is relevant for the animal by systematically vary-

ing tactile stimuli, and then observing a behavioural (Anjum et al., 2006) or neurophysiological

response (Roth-Alpermann et al., 2010). Another method for describing spatial-temporal re-

ceptive fields for individual neurons is to consecutively track maximally effective secondary

whiskers in sequence through the whisker field (Ghazanfar and Nicolelis, 1997, 1999), but this

serial, single-neuron approach is difficult to apply on the scale of cortical maps.

An alternative to these methods is to avoid choosing a specific stimulus by using reverse cor-

relation analyses. This technique involves presenting (typically low-pass filtered) white noise

stimuli to the whiskers and then reconstructing the spatial and temporal profile of the maximally

effective stimulus, from the maximally effective kinematics at each time-step and in each loca-
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tion (each whisker). Reverse correlation analyses have been applied to the responses of primary

afferent and thalamic neurons under stimulation of a single whisker (Arabzadeh et al., 2005;

Petersen et al., 2008), and in the barrel cortex using multiple whiskers (Brumberg et al., 1996;

Le Cam et al., 2011), and algorithms for performing efficient reverse correlation for motion

stimuli are being refined for visual stimuli (Borghuis et al., 2003). However reverse correla-

tion analyses are limited to describing only spatial-temporal receptive fields in which responses

across the sensor surface combine linearly (i.e., simple-cell receptive fields; for discussion see

Willmore and Smyth, 2003). Hence, whilst the approach is efficient and requires little knowl-

edge of receptive-field structure a priori, it is limited when it comes to describing complex

receptive-fields that may be invariant to transformations in space (e.g., a rotation of the cricket

leg) or time (e.g., a slower motion of the cricket leg).

1.8 Figuring Time by Space

This review began with the idea that sensory motion may be represented in the sensory cor-

tex by spatial coding. The idea is based on the fact that neurons in the barrel cortex respond

to motion of the whiskers and that the spatial layout of the barrels on the surface of the brain

reflects the layout of the whiskers on the face. Pursuing the idea further, the representation of

additional somatosensory features, i.e., changes in whisker positions over time, could be cast as

components of the more general problem of representing sensory motion by spatial coding. The

idea that sensory motion is spatially encoded may therefore be conceptualised as the problem

of Figuring Time by Space. Focussing on research conducted in the decade since Ahissar and

Arieli published Figuring space by time (Ahissar and Arieli, 2001), the evidence was reviewed
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in the context of spatial coding for first-order motion features, such as the frequency and direc-

tion of whisker movements, and second-order motion features, such as the relative timings of

whisker movements.

In order to formulate the idea of Figuring Time by Space as a theory, it is necessary to ask of

it scientific questions phrased at an appropriate level of abstraction. In reviewing the evidence

it was useful to consider spatial codes of increasing spatial order in the form of random, topo-

logical, and topographic maps. In several cases the evidence suggests that maps for multiple

stimulus features can lie coextensive across the same population of neurons, that the organisa-

tion of multiple maps can be correlated, and that maps can arise from developmental processes.

Posed at the level of map organisation, map interaction, and map development, it is therefore

appropriate to formulate theory at the level of neural systems, rather than at (or below) the level

of individual neuronal and synaptic processes. As already encountered, establishing the func-

tional organisation of cortical maps is challenging; the process often requires that a number

of simplifying assumptions are made; thus maps can be difficult to interpret and the mecha-

nisms by which they arise can be hard to evaluate. So how can these systems level problems be

tackled?

Systems neuroscience has at its disposal a particularly powerful tool in the form of the com-

putational model. Computational models are powerful theoretical formulations, because every

assumption made by including or excluding part of a model constitutes an explicit hypothe-

sis about how that part contributes to the function of the system. Modelling can complement

experimental work by identifying gaps in existing knowledge, filling those gaps with explicit

hypotheses, piloting experiments that may otherwise be infeasible, and establishing critical

questions for future experiments. Modelling is therefore a good place to start to draw out the
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plausibility of the theory that part of the function of sensory cortical processing concerns Fig-

uring Time by Space.

The rodent primary somatosensory cortex has been studied in exquisite detail; a wealth of neu-

rophysiological, neuroanatomical, neuroimaging, and behavioural data have been collected, un-

der a variety of experimental, genetic, and pharmacological manipulations, both in vivo and in

vitro. In silico methods have played an important role in collating a wealth of knowledge about

the whisker-barrel system, and deriving from that knowledge new insights into the functional

organisation of the single cortical column (notably from Kyriazi and Simons, 1993; Kyriazi

et al., 1996; Pinto et al., 1996; Sarid et al., 2007; Lefort et al., 2009). However replicating this

bottom up modelling approach on the scale of cortical maps is a long way off (see Markram,

2006). Meanwhile, by formulating the functional theory first and then testing it in simulation,

a top down modelling approach can be equally important; research on vision in particular has

a long history of complementary approaches to models at different levels of abstraction (see

Table 1.1). However few, if any, top down models have been formulated in the context of the

whisker barrel system. Hence the aim of this thesis will be to establish the first top down com-

putational models of sensory processing in the whisker barrel system. These models will be

used to test new ideas about barrel cortical processing, and, where possible, to derive specific,

testable predictions to guide future experimental work.
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Table 1.1. Results of a search on PubMed.gov (http://www.ncbi.nlm.nih.gov/pubmed) per-
formed 12/08/2011, revealing a prevalence of computational modelling in vision compared with
somatosensation.

Search term + ‘cortex’ + ‘computational model’

‘visual’ 40700 355
‘somatosensory’ 15790 38
‘barrel’ 1386 14
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1.9 Organisation of the thesis

Following Epstein (2008), a major motivation for modelling is to generate new theories by

suggesting analogies with other known systems. Hence a major goal of the thesis is to explain

somatosensory processing by analogy with that in other modalities; specifically by analogy with

vision in chapter 2 and with audition in chapter 3. Another motivation is, where possible, to

reveal the seemingly complex as simple (Epstein, 2008). Hence the general modelling approach

will be to investigate complexity in networks interacting under simple local constraints; in par-

ticular as we explore network self-organisation in chapters 2 and 5. The approach will be one

of synthesis followed by analysis (Braitenberg, 1984; Mitchinson et al., 2010); i.e., to construct

the model (for example by making a physical model of the whiskers in chapter 4) and then to

scientifically investigate its behaviour. Analysis at each stage will draw direct comparisons with

biological data, with the caveat that a good fit alone reveals nothing about what data cannot be

fit by the model, or what can be fit by alternative models (Roberts and Pashler, 2000). Hence

suitable control models will be formulated where appropriate, and specific predictions for future

experimental validation will be derived.

The remainder of the thesis is organised in terms of four main research questions. Together

these questions constitute a theoretical framework, based on spatial coding, for understanding

sensory processing in the whisker-barrel system:

Research question: Can a general model of cortical development explain the existence of a

whisker direction map in the barrel cortex?

In chapter 2 we will ask whether a topographic map for the individual whisker deflection

direction could emerge in the barrel cortex from constraints on the patterns of tactile stim-
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uli typically experienced during post-natal development. Chapter 2 is an edited version of

the published article: Wilson SP, Law JS, Mitchinson B, Prescott TJ & Bednar JA (2010)

Modeling the emergence of whisker direction maps in rat barrel cortex. PLoS ONE 5:

e8778 (doi: 10.1371/journal.pone.0008778).

Research question: Can a general model for resolving the relative timing of sensory inputs

explain neuronal responses to different whisker timings in the barrel cortex?

In chapter 3 we will ask whether a topographic map for the velocity of stimulus move-

ments between multiple whiskers could emerge from the geometry of connections in the

barrel cortex. Chapter 3 is an edited version of the published article: Wilson SP, Bednar

JA, Prescott TJ & Mitchinson B (2011) Neural computation via neural geometry: A place

code for inter-whisker timing in the barrel cortex? PLoS Computational Biology (doi:

10.1371/journal.pcbi.1002188).

Research question: Can spatial coding in the barrel cortex be used to reconstruct tactile

stimulus features from real multi-whisker deflection patterns?

In chapter 4 we will ask to what extent spatial coding mechanisms for first and second

order motion, as identified in chapters 2 and 3, can be used to reconstruct tactile stimulus

features from real (i.e., physical) multi-whisker deflection patterns.

Research question: How might representations of complex tactile stimulus features be or-

ganised in the barrel cortex?

In chapter 5 we will try to predict the structure of cortical maps for complex multi-whisker

stimulus parameters related to the shape, motion direction, and motion speed of tactile

stimuli, asking in particular how maps for multiple tactile stimulus features may interact
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across the cortical sheet.

A general discussion in chapter 6 will evaluate the general modelling approach and propose

some specific experiments for the future.



Chapter 2

Modeling the emergence of whisker

direction maps in rat barrel cortex

Chapter summary

Based on measuring responses to rat whiskers as they are mechanically stimulated, one

recent study suggests that barrel-related areas in layer 2/3 rat primary somatosensory cortex

(S1) contain a pinwheel map of whisker motion directions. Because this map is reminis-

cent of topographic organization for visual direction in primary visual cortex (V1) of higher

mammals, we asked whether the S1 pinwheels could be explained by an input-driven de-

velopmental process as is often suggested for V1. We developed a computational model to

capture how whisker stimuli are conveyed to supragranular S1, and simulate lateral cortical

interactions using an established self-organizing algorithm. Inputs to the model each rep-

resent the deflection of a subset of twenty-five whiskers as they are contacted by a moving

stimulus object. The subset of deflected whiskers corresponds with the shape of the stimu-

lus, and the deflection direction corresponds with the movement direction of the stimulus.

If these two features of the inputs are correlated during the training of the model, a soma-

totopically aligned map of direction emerges for each whisker in S1. Predictions of the

model that are immediately testable, include, i) that somatotopic pinwheel maps of whisker

28
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direction exist in adult layer 2/3 barrel cortex for every large whisker on the rat’s face,

even peripheral whiskers, ii) in the adult, neurons with similar directional tuning are in-

terconnected by a network of horizontal connections, spanning distances of many whisker

representations. We also propose specific experiments for testing the predictions of the

model by manipulating patterns of whisker inputs experienced during early development.

The results suggest that similar intracortical mechanisms guide the development of primate

V1 and rat S1.

2.1 Introduction

Mammalian sensory cortex is organized firstly by modality, and secondly into topographic maps

of the corresponding sensory apparatus. The prototypical example is the map of the retina in

primary visual cortex (V1). Within this retinotopic map, finer scale feature maps have been

found, such as for the motion direction of visual stimuli, with nearby neurons responding to

similar directions (Weliky et al., 1996; Ohki et al., 2006).

Direction maps in ferret V1 emerge postnatally, and are sensitive to early visual experience (Li

et al., 2006; White and Fitzpatrick, 2007), suggesting that they result from a self-organizing

process driven by visual input. Map self-organization has been modeled using networks of

neurons that develop receptive fields (RFs) by Hebbian learning of correlations between input

and cortical activities (Swindale, 1996; Bednar and Miikkulainen, 2003; Stafford and Wilson,

2007). In such models, a balance between intracortical excitation and inhibition ensures the

emergence of RFs that collectively cover the full range of motion directions; essentially, the

neurons compete to respond to directions in the visual scene.
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Direction maps in both real and simulated V1 are punctuated by pinwheels, where all directions

are represented continuously around a central point. A similar pinwheel map has recently been

measured in rat primary somatosensory cortex (S1) for the direction of deflection of the rat’s

whiskers (Andermann and Moore, 2006; Bruno et al., 2003). Andermann and Moore (2006)

found a pinwheel map of directions spanning the domain of layer 2/3 (L2/3) neurons most

responsive to one principal whisker (PW). This domain will henceforth be referred to as the

supra-barrel region or just the supra-barrel, as it is located above the L4 ‘barrel’ structure which

receives thalamic input primarily from the PW. The map is somatotopically aligned to echo

the overall pattern of barrels: deflection of whisker A towards whisker B evokes the strongest

responses in neurons of whisker/supra-barrel A that are nearest to whisker/supra-barrel B (see

Figure 2.1).

The map was measured by multi-unit tetrode recordings in approximately three-month-old rats

(Andermann and Moore, 2006) but was not found in a subsequent study that used two-photon

calcium imaging and rats aged approximately one month (Kerr et al., 2007). These two stud-

ies used different methods, besides the age of the animals tested and the recording techniques

employed, and so the differences in their findings remain controversial (see Discussion). How-

ever, recent two-photon calcium imaging data have measured a similar map in three-month-old

but not in three-week-old rats (Leger J-F., Kremer Y. & Bourdieu L., 2009, Society for Neuro-

science abstract 174.13). These findings together suggest that the map for whisker deflection

direction emerges during post-natal development (see Discussion). Here we explore the idea

that the development of the map is driven by input from the whiskers, much as V1 feature map

development is thought to be driven by input from the eyes.

Because the mapping of whisker deflection direction within the individual supra-barrel is aligned
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Figure 2.1. Maps in the rat whisker-barrel system. A The whiskers are arranged on the
snout of a 10 day old rat pup in an orderly grid pattern. B This pattern is reproduced in barrel
clusters, revealed here in a tangential section in L4 barrel cortex stained for cytochrome oxidase,
such that neurons in each cluster respond preferentially to stimulation of the whisker in the
corresponding position in the whiskerpad. C Within a supra-barrel, a pinwheel map has been
measured for the direction in which the corresponding whisker is deflected (Andermann and
Moore, 2006). The map is described as somatotopic because deflecting the principal whisker
(PW) in the direction of an adjacent whisker on the snout selectively activates neurons in the
PW’s barrel that are closest to the adjacent whisker barrel. Reprinted from Andermann and
Moore (2006); colors show the direction tuning of neurons in each location within a barrel,
according to the color key in D. The black dots show positions of electrode penetrations, where
multiple dots correspond to multiple-unit recordings. The white box in A outlines the base of
the PW for the corresponding barrel outlined in B and whose supra-barrel is enlarged in C.
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with the overall layout of the barrels themselves (see Figure 2.1B), we hypothesize that it is

driven by tactile experiences in which the direction of the individual whisker deflection is cor-

related with the stimulation of adjacent whiskers. We have previously shown that when freely

moving rats explore surfaces, they make contacts on a subset of whiskers (Mitchinson et al.,

2007; Grant et al., 2009). Here we show in simulation that when (and only when, within the

constraints of our modelling framework) the subset of deflected whiskers is consistent with

the direction in which each whisker is deflected, a direction map robustly self-organizes into a

somatotopic pinwheel in each supra-barrel.

2.2 Methods

2.2.1 A model of the barrel cortex

We developed a model based on LISSOM (Laterally Interconnected Synergetically Self-Organizing

Map; Sirosh and Miikkulainen, 1997; Miikkulainen et al., 2005), with afferent projections that

are constrained to simulate those from the layer 4 (L4) barrels to the supra-barrels in L2/3.

The model was built using the Topographica simulator (Bednar et al., 2004), which is freely

available at www.topographica.org.

The model comprises twenty-five whiskers arranged into a 5×5 grid, or ‘whisker field’ (Fig-

ure 2.2A), 25 corresponding ‘barrels’ in L4 S1 (Figure 2.2B), and a sheet of 105×105 L2/3

neurons (Figure 2.2C). Each barrel contains 25 directionally tuned afferent units that code for

the stimulation of each whisker. Based on the afferent connections from L4, L2/3 can also



Modeling direction maps 33

be divided into a 5×5 grid of ‘supra-barrels’. There are 21×21 neurons in each supra-barrel,

such that neurons located in each receive input from the L4 units coding for stimulation of the

corresponding isomorphic (principal) whisker.

We first give a general overview of how the model works. An input pattern represents how

the 5×5 grid of whiskers interacts with a tactile stimulus, determining whether each whisker

is deflected and in what direction. This pattern is then encoded as a pattern of activation in

L4. When the pattern is presented to the network, activity propagates from the L4 barrels (see

Figure 2.2D) to the corresponding L2/3 supra-barrels (see Figure 2.2E), via weighted connec-

tions whose strengths are initially set to random values. L2/3 neurons then interact laterally,

through recurrent connections that are net excitatory over very short distances and inhibitory

over very large distances. Lateral interactions are allowed to stabilize through a number of set-

tling steps, focusing the initial L2/3 response into discrete bubbles of activity across L2/3 (as in

Figure 2.1E). Once the lateral interactions have settled, afferent and lateral weights are updated

with a Hebbian learning rule, activation is reset to zero, and a new stimulus is presented to the

network. The next four Methods sections describe these steps in detail.

2.2.2 Stimulating the whiskers

Each whisker w is assigned a coordinate spaced on a rectangular grid such that horizontally and

vertically adjacent whiskers are 1.0 units apart, and diagonally adjacent whiskers are
√

2 apart.

The layout of the whiskers on the grid is illustrated in Figure 2.2A. To construct each input

pattern, we choose a linear boundary passing through a random point {x0, y0} ∈ [−2.5, 2.5]

and with outwardly-pointing normal in a random direction θ ∈ [0, 2π). Whiskers inside the



34 Modeling direction maps

Figure 2.2. Model diagram and activity before any learning. A 25 whiskers are arranged in
a regular grid, where some are deflected (colored arrows) and some are not (dots). Deflected
whiskers are those impinged by a wide stimulus (solid line) moving in the direction of the
dashed line and unfilled arrow (θ = 320◦). The stimulus is a half plane, which has moved almost
half-way through the whisker field in this example. Deflected whiskers are those to the left of
the plane. Impinged whiskers are deflected roughly in the direction of stimulus motion, but we
apply normally distributed noise to each, with concentration parameter κ = 3 in the example. B
The L4 sheet is divided into barrels (delineated by white), each containing 25 neurons with pre-
assigned maximally effective directions (MEDs; pixel color) from around the circle, and located
arbitrarily within the barrel. C L2/3 is divided into supra-barrels (21×21 neurons in each), such
that each neuron receives weighted projections from all L4 neurons in the corresponding barrel.
Each L2/3 neuron also receives excitatory lateral connections from itself and its 8 immediate
neighbors (its lateral excitatory connection field). Each also receives inhibitory connections
from all neurons that fall within a 4×4-barrel area (84×84 neurons) centered on its location; the
lateral inhibitory connection field for the neuron marked * is shown. The brightness indicates
connection strengths from * to each neuron before training. D The example input is represented
in L4 by activating neurons whose MEDs are similar to the direction of deflected whiskers. E
Initially random activity in stimulated L2/3 supra-barrels migrates to the leading edge of the
stimulus as lateral interactions settle for each of steps < t = 0.6. All plots are normalized
separately.
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boundary are deflected, and those outside are not.

In line with our hypothesis that a correlation between whisker direction and the overall pattern

of activated whiskers could align maps of whisker direction, we define the perfectly correlated

direction for each whisker deflection to be θ. We can then control the strength of this correlation

by drawing individual deflections randomly from a distribution centered on θ. We use a circu-

lar normal distribution (a Von Mises distribution; see Fisher, 1993) and vary its concentration

parameter κ. This is shaped like a normal distribution for κ values between 0 and∞, but at 0

the distribution is flat, and κ = ∞ describes a delta function. For example, when κ = 0 the

whiskers would each be deflected in random directions, and when κ = ∞ they would each be

deflected at θ. See Figure 2.2A for an illustration of this process.

This model is a simple abstraction of the complex (and largely unknown) pattern of whisker–

stimulus interactions present during early development, focusing only on the assumption that

local subsets of the whiskers are usually impinged by large stimuli moving from outside to

inside the whisker field. Such stimuli might be, for example, the floor and other surfaces in the

environment, a littermate’s foot, tail or head, or a part of the mother’s body. For clarity in the

remaining sections, when we refer to a direction of motion, we mean the motion of a stimulus

relative to stationary whiskers, not that of the whiskers due to locomotion or active whisking

behavior. Even so, note that both types of motion would yield the same relative motion, and

thus indistinguishable patterns of activation in the model.
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2.2.3 Activating the barrels

Neurons located within a rat L4 barrel are tuned to the direction in which the PW is deflected

(Simons, 1978; Bruno and Simons, 2002; Lee and Simons, 2004). Although neurons with

similar maximally effective directions (MEDs) are clustered together, evidence for a systematic

spatial arrangement of these domains in L4 is weak (Bruno et al., 2003; Andermann and Moore,

2006). L4 MEDs are consistent throughout post-natal development (Shoykhet and Simons,

2008), and neither the location nor directionality of the neuron is known to predict adjacent-

whisker effects (Simons and Carvell, 1989; Khatri and Simons, 2007).

Accordingly each afferent unit in L4 represents a cluster of real neurons that have similar direc-

tion tuning. Each unit a is pre-assigned a fixed MED for deflections of the PW, chosen randomly

from (φa ∈ [0, 2π)). We use a cosine curve scaled to reflect the broad directional tuning of L4

neurons:

fa =
cos|θw − φa|+ 1

8
(2.1)

where the firing rate fa of each L4 unit increases when the PW is deflected in a direction more

similar to its preferred direction.
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2.2.4 Lateral interactions

Following deflection of a single rat whisker, excitation is relayed through corresponding groups

of neurons in rat brainstem and thalamus to the isomorphic L4 barrel. Excitation then projects

into the supra-barrel in L2/3, and subsequently spreads across L2/3 into adjacent domains

(Armstrong-James et al., 1992). However, the overall long-distance effect of a strong whisker

deflection is inhibitory, perhaps due to disynaptic inhibition. For example, Derdikman et al.

(2003) measured a consistent difference-of-Gaussians profile of activity across L2/3, in which

inhibitory effects range significantly further across adjacent supra-barrels than excitatory ef-

fects, for the duration of the response following PW deflection.

Studies in which adjacent whiskers are sequentially deflected also reveal strong suppression

of responses to the second whisker by prior deflection of the first (Simons, 1985; Simons and

Carvell, 1989; Shimegi et al., 1999; Kida et al., 2005), and the same has recently been demon-

strated for stimuli that involve many whiskers (Drew and Feldman, 2007; Jacob et al., 2008).

Interestingly, cross-whisker suppression is maximal at the time-scale measured as the mean in-

terval experienced by rats trained to whisk into a stimulus (approximately 20 ms; Sachdev et al.,

2001).

With these observations in mind, we set up model L2/3 neurons to receive excitatory connec-

tions from themselves and the eight immediately adjacent neurons, so that the activity of the

pre-synaptic neuron increases the response of adjacent post-synaptic neurons. Over this range

and over greater lateral distances (a square area four supra-barrel widths across), neurons re-

ceive inhibitory lateral connections.
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Note that these connections implement the observed net pattern of lateral interactions, and as

described in the Discussion, do not represent any assumptions about the relative lengths of

actual inhibitory and excitatory lateral connections in S1.

It is plausible that L2/3 neurons receive feed-forward input arising from multiple whiskers.

However for simplicity in the model the twenty-five units of each L4 barrel all project to each

of the 441 neurons in the isomorphic supra-barrel only. Hence we model the connectivity from

barrel to supra-barrel as all–to–one. The excitatory and inhibitory connection fields are not

restricted by the barrel borders imposed on the afferent projection from L4, but are instead

centered on the location of each cortical neuron (as suggested by evidence from Bruno et al.,

2009; Kerr et al., 2007; Feldmeyer et al., 2006; Helmstaedter et al., 2009; Ajima and Tanaka,

2006; see example in Figure 2.2C). Before training, the weights in the connection fields for each

L2/3 neuron (afferent, excitatory and inhibitory) are uniform random values, normalized to sum

to 1.0 in each connection field.

Following the reduced LISSOM model (Miikkulainen et al., 2005), the activity sb for a L2/3

neuron at location b is the weighted sum of the activity in the corresponding barrel:

sb =
∑
a

χaAab (2.2)

where χa is the activation of afferent neuron a in the barrel projecting to cortical neuron b

and Aab is the corresponding afferent weight. After the initial response of a cortical neuron is

calculated, activation propagates laterally across L2/3 for 9 settling steps; little change in the

activation patterns is observable after 5 steps. Lateral interactions affect the activity η of a single
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cortical neuron b according to:

ηb(t) = σ

(
sb +

∑
c

ηc(t− 0.1)Ecb −
∑
c

ηc(t− 0.1)Icb

)
(2.3)

where ηc(t− 0.1) is the activity of another L2/3 neuron c during the previous settling step, Ecb

is the excitatory lateral connection weight from that neuron to neuron b, and Icb is the inhibitory

connection weight. The activity is squashed through σ(x), a piecewise-linear approximation to

a sigmoidal activation function:

σ(x) =


0

(x− l)/(u− l)

1

x ≤ l

l < x < u

x ≥ u

(2.4)

where l = 0.1 is a lower-bound threshold and u = 0.65 is the upper bound, i.e., the saturation

point of the (linearly approximated) sigmoidal region. The values for all of these parameters

were determined in pilot work so that the network would group activity into bubbles on the

approximate spatial scale of the supra-barrel (see example in Figure 2.2E).
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2.2.5 Learning

After settling, both afferent and lateral weights are updated via a Hebbian learning rule with

divisive normalization:

w′db =
wdb + αbpXdηb∑
e(web + αbpXeηb)

(2.5)

where wdb is the current afferent or lateral connection weight from d to b, w′db is the value of

the weight to use in the next input presentation, Xd is the pre-synaptic activity after settling,

and ηb is the activity of neuron b after settling. For unit b, αbp = 1
np

is the Hebbian learning

rate for connections of type p (either afferent, A, excitatory, E, or inhibitory, I), where np is

the number of neurons in the connection field for neuron b. For example, αbA = 1
25

, as there

are 25 afferent units in the afferent connection field (or barrel) connecting to each L2/3 neuron

b. The afferent, excitatory, and inhibitory connections are normalized separately. We note that

by using a divisive rather than subtractive normalization, weights are redistributed rather than

driven to saturation after each training pattern; for a detailed discussion of this behavior see

Miller and Mackay (1994). This process of input presentation, activation, settling, and learning

is repeated for each of 5,000 random input patterns.

Although the initial distribution of lateral interactions in the model is uniform, the lateral

weights are modifiable during self-organisation. Hence we might anticipate an anisotropic dis-

tribution of input patterns to be consolidated in a similarly anisotropic map organisation and a

corresponding change in the distribution of learnt lateral connection weights. These questions
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will be addressed later when we demonstrate how biased input statistics can overturn the ini-

tially unbiased cortical interactions during development in a manner consistent with data from

adult barrel cortex.

2.3 Results

2.3.1 Activity bubbles migrate to the leading edge of the stimulus

When the very first stimulus is presented to the model (Figure 2.2D), activity first propagates

from the barrels associated with deflected whiskers to layer 2/3, exciting each neuron in the

isomorphic supra-barrels randomly (Figure 2.2E, t=0.1). L2/3 neurons then begin to interact

laterally (t > 0.1), each becoming more active if it is similar to its immediate neighbors and

dissimilar to more distant neighbors, and less active otherwise. This process continues as the

network settles, and as larger groups of activity merge they migrate toward regions of least

net inhibition. Hence, bubbles of activity form at the high-contrast edges of the supra-barrels

that correspond to whiskers located furthest forward in the direction of the stimulus. By furthest

forward we mean those inside the linear boundary that are closest to it, and hence those whiskers

that would have been deflected most recently by contact with the stimulus. If the direction in

which the whiskers are deflected is consistent with the orientation of the stimulus, then neurons

in these regions of the supra-barrels will learn to become associated with the L4 neurons that

encode the somatotopically consistent direction of whisker deflection.

As an example, a stimulus boundary moving upwards would be oriented so as to bisect the
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whisker field through one of the whisker rows. It would deflect all whiskers located within and

below that row in an upwards direction, and would preferentially activate L4 units representing

upwards deflections. Activity in L2/3 would migrate to the top portion of the supra-barrels in

the same row, and these neurons would learn stronger weighted connections to the active L4

units representing upwards deflections.

Repeated for stimuli whose leading edges bisect all points in the whisker field, at all orienta-

tions, this process will bias the network to arrange direction preferences somatotopically in each

supra-barrel.

2.3.2 A somatotopic pinwheel emerges in each supra-barrel

For each value of κ = 0, 1, 2, 3, 4, 5, and ∞, 20 networks with different random initial

weights were trained on different sets of 5,000 random input patterns; a total of 140 simula-

tions were run. As a reminder, larger values of κ increase the concentration of the individual

whisker deflection directions towards the movement direction of the stimulus (θ). Once the pro-

cess of self-organization was complete, direction map plots were measured by deflecting each

whisker through 16 directions, and then coloring each L2/3 neuron by the deflection direction

that evoked the largest response. Lateral interactions and learning were turned off during this

process. We note that once some learning has taken place, direction maps based on the feed-

forward response are almost indistinguishable from those based on the activity after settling.

We report maps based on the feed-forward response as it can be calculated more quickly for

the large numbers of simulations used, and so as not to reveal an arbitrary mapping in networks

that have received no previous input. An example map measured from one network trained on
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κ = 3 inputs is shown in Figure 2.3A.

For the 20 networks run at each value of κ, we constructed plots of the mean preferred deflection

direction at each cortical location. For 0 < κ < ∞, these plots revealed a somatotopically

consistent pinwheel spanning each supra-barrel; Figure 2.3B shows such a plot for the κ = 3

maps. Each is a qualitative match to that measured by Andermann and Moore (2006) in L2/3

barrel cortex. Notice that the center of the pinwheel is shifted in each supra-barrel away from the

center of the cortical sheet. This reflects an implicit bias for deflections of the PW to occur more

often towards the center of the whisker field, because the origin of the stimulus was confined

to fall in a space not much larger than that occupied by the whiskers. Recent evidence in rat

barrel cortex, based on differences in the distribution of directional preferences amongst barrels

at different locations, appears to support this ‘super-pinwheel’ organisation predicted by the

model (personal communication with Prof. Daniel Shulz, November, 2011). A super-pinwheel

organisation may have important consequences for perception. By dedicating cortical territory

to the representation of peripheral whisker deflections inward towards the whiskerpad centre,

the super-pinwheel could increase the resolution with which inward deflection directions can

be discriminated. For neurons of peripheral barrels, an enhanced resolution for these more

common first-order motion directions could compensate for a reduction in the availability of

second-order motion cues about the stimulus motion direction, i.e., an absence of adjacent-

whisker deflections for stimuli moving inward towards peripheral whiskers.

Similar plots for the control κ = 0 reveal no global alignment (see Figure 2.6A), suggesting that

a somatotopic relationship between the deflection direction and the combination of deflected

whiskers is required to organize directional preferences somatotopically. Suprisingly, when

the correlation is perfect (κ = ∞), map organization does not become consistent with the
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Figure 2.3. A somatotopically aligned map of whisker deflection direction emerges in each
supra-barrel. A Example map from one network trained on 5,000 input patterns in which
whisker deflection directions are each concentrated towards the orientation of the stimulus
(κ = 3). Maps in each supra-barrel are a match to that measured by Andermann and Moore
(2006) in which neurons on the left of each supra-barrel, for example, prefer leftward deflec-
tions of the PW. Supra-barrels are delineated by white lines. B Mean direction preference for
neurons at each cortical location, over the 20 networks in the same data set, showing that the
organization is consistent across runs. C Plot of the long range lateral connection strengths,
from the representative example neuron at the position marked by *, to the rest of the cortical
map. Pixel brightness indicates lateral weight strength, and the color indicates the preferred
deflection direction of each connected neuron. This neuron becomes most strongly connected
to others, some located many supra-barrels away, that are tuned to similar directions of PW
deflection.
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somatotopic ideal. Inspection of the individual maps suggests that κ =∞ networks instead tend

to maximize continuity of directional preferences across the entire sheet, without respecting the

boundaries between supra-barrels (see below and Figure 2.6D).

2.3.3 Connections between similar directions and different whiskers

Because the Hebbian rule strengthens connections between correlated neurons, we might expect

the final patterns of long-range lateral connections to reflect the fact that even distal whiskers

are deflected in similar directions. Such an effect is clear in an example L2/3 map in which

pixel brightness is scaled by the strength of the weights to one neuron from the rest of the sheet

(Figure 2.3C). The example neuron prefers leftward (180◦) deflections of the central whisker

and becomes connected most strongly to neurons in L2/3 that also prefer leftward deflections

of their PWs. Overall, we found a significant correlation between the strength of the lateral

inhibitory weight between each pair of L2/3 neurons and the absolute difference between their

preferred deflection directions (mean Pearson’s r = −0.531, range −0.518 to −0.550, across

20 networks each trained on 5,000 κ = 3 inputs). Hence, the model predicts connectivity in

L2/3 between patches of directionally consistent neurons with different PWs. Notice also that

connection strength is greatest between neighboring neurons within the barrel, and falls off with

the distance to the pre-synaptic cell (see Kerr et al., 2007).

These findings are consistent with those from experiments showing the strongest lateral interac-

tions when whiskers are sequentially deflected in similar directions (Kida et al., 2005; Simons,

1985). Similarly, in tree shrew V1, long-ranging connections have been found to connect neu-

rons that respond to similar orientations of visual stimulus (Bosking et al., 1997). The feature-
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specific patchy connectivity that arises during map self-organisation has direct implications

for perception. For example, connections linking domains of similar orientation preference in

primate V1 can bind activity along the collinear edges that typically trace object contours, or

separate a novel edge orientation from a background of mutually inhibiting collinear edges (de-

pending on the sign and range of interactions) (Bednar, 2012). An analogous ‘pop-out’ effect

between whisker deflection directions could attribute salience to the whisker field location of

individual deflections reporting e.g., a crack through which to escape from a wall evoking oth-

erwise collinear deflection directions. It is important that although we simulate the long-range

interactions as inhibitory connections in the model, long range inhibition represents the net

effect of responses to strong inputs that we assume drive self-organisation in real developing

cortex. The patchy connections that result from self-organisation may therefore subserve more

complex functionality including facilitatory effects in adult cortex when processing weaker in-

coming stimuli. This point we be revisited in the Discussion.

2.3.4 Input correlation improves pinwheel alignment but not quality

To quantify our observations, we analyzed the direction maps per supra-barrel with reference

to an ideal somatotopic pinwheel template, defined for each neuron as the angle of its location

from the center of each supra-barrel. More formally, each L2/3 neuron was assigned a coor-

dinate (x, y ∈ [−10, 10]) with respect to the supra-barrel center, and its preferred deflection

direction according to the template was defined using the quadrant-specific arctangent function

atan2(y, x). The template value at the origin is undefined so the neuron at each supra-barrel

center was discounted from further analyses.
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An angular-angular correlation between the measured map and the template gives a score of

the correspondence between the two that is rotation independent, and the absolute value of this

quantity is also independent of clockwise and counter-clockwise orientation around the supra-

barrel center. We can therefore define pinwheelness as the magnitude of the angular-angular

correlation coefficient. For the 500 supra-barrel maps (20 networks times 25 supra-barrels) at

each value of κ = 0, 1, 2, 3, 4, 5, and ∞, we first counted those with counter-clockwise or

clockwise orientation with a correlation coefficient greater than that measured in barrel cortex

(r = 0.226; Andermann and Moore, 2006). We classified supra-barrel maps wherein r >

0.226 as rotating counter-clockwise about the supra-barrel center and therefore somatotopically

correct, those where r < −0.226 as clockwise and thus somatotopically inverted, and where

−0.226 < r < 0.226 as non-pinwheels (see Figure 2.4A). At κ = 0, 90% of 500 supra-

barrels developed pinwheels, but these were equally likely to be oriented clockwise or counter-

clockwise. For κ > 0, the number of pinwheels that rotate counter-clockwise around the supra-

barrel increases to a peak of 76% at κ = 3. However, when inputs had a perfect alignment

between whisker deflection direction and the orientation of the edge of the stimulus (κ = ∞),

the number of well-defined pinwheels dropped to just 30%.

These trends are reflected in a plot of absolute pinwheelness (Figure 2.4B), which is notable

because it shows maximal pinwheelness when κ = 0. Hence, even without a consistent soma-

totopic relationship between the whiskers, the supra-barrels still discover the circular topology

of the space of possible deflection directions, communicated by the coactivation of L4 cells with

similar MEDs.

The overall trend is for pinwheelness to decrease as κ is increased. Thus an increase in somato-

topic information in the inputs does not create pinwheels, but only aligns them somatotopically.
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Figure 2.4. Analysis of pinwheel quality and somatotopic alignment per supra-barrel in
20 model networks. A At t = 5,000, direction maps in each supra-barrel were compared to the
template pinwheel (inset) and classed as somatotopically correct pinwheels (the example map
has a ‘pinwheelness’ score of 0.9), somatotopically inverted pinwheels (example score -0.9) or
not pinwheels (score 0.2), as described in Results. When there is no correlation between the
direction in which each whisker is stimulated during training (κ = 0), pinwheel maps emerge
in each supra-barrel, but they are equally likely to rotate clockwise or counter-clockwise. When
such a correlation is present in the inputs (κ > 0), the number of supra-barrels containing
pinwheels that rotate in a somatotopically consistent way increases to a maximum of 76%.
Surprisingly, perfectly correlated inputs (κ = ∞) degrade pinwheel quality. B This behavior
is reflected in a plot of absolute ‘pinwheelness’ scores, in which all but the scores for κ = ∞
progress over training iterations (t=0, 500, 1,000, 2,000, 3,000, 4,000 in progressive dashed
lines) toward good scores at t = 5,000 (solid line). Scores are highest for κ = 0, suggesting
that networks trade a bias to maximize pinwheelness for one towards somatotopic alignment as
κ is increased. C shows that pinwheels rotating in the correct direction become aligned to the
somatotopic template, with a final circular standard deviation < 20◦ for 1 < κ <∞.
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This is confirmed in a plot of the circular standard deviation between the counter-clockwise

supra-barrel maps and the template (Figure 2.4C), which shows a distribution all the way around

the circle for κ = 0 (std ≈ ∞◦) which decreases to ≈ 20◦ when whisker deflection direction

and location are well correlated during training (1 > κ >∞).

As well as associating the leading edge effect with whisker deflection directions necessary to

align pinwheels somatotopically, increasing k introduces a corollary association between the

afferent units of adjacent barrels that have similar directional tuning. When k =∞, the activity

of a given afferent unit becomes more strongly correlated with that of a neighbour-barrel unit of

identical direction tuning, compared with a same-barrel unit of slightly different direction tun-

ing. Mappings that emerge during self-organisation promote continuity in their representation

of the input feature space, which in the k =∞ condition is distorted by this stronger correlation

between L4 barrels rather than within them. This is manifest in an example plot of k =∞ map

organisation, which is shown in later Figure 2.6D to accompany those produced under various

other experimental distortions of the input space.

2.3.5 Biased whisker inputs create anisotropic maps.

Next we tested how a statistical bias in the distribution of θ might affect map organization

(see Figure 2.5). This is important to consider because biases in the representation of certain

deflection directions have been found in the barrel cortex of the adult rat (see Discussion). To

this end we ran networks for 5,000 input patterns, this time drawing θ from a circular normal

distribution with mean 180◦. Here the concentration parameter of the distribution serves to

control input pattern anisotropy, where zero anisotropy means that θ is drawn uniformly from
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around the circle. In addition, we ran 20 different networks each per input anisotropy value 1,

2, 3, 4, 5 and∞ (κ = 3). Hence, for networks in subsequent conditions, the movement of the

half-plane stimulus was more likely to be around 180◦.

To quantify the effects of the bias (Figure 2.5A), we summed the vectors corresponding to the

preferred direction of each neuron trained under a given bias. The averaged length of this resul-

tant vector gives a score of how concentrated the direction preferences are towards one direction,

and hence provides a score of map anisotropy. A map anisotropy score of zero indicates that

maps represent directions isotropically, whereas a maximum score of 1.0 indicates that the map

is comprised of neurons that all prefer the same direction.

We found that as the bias for θ = 180◦ input patterns increased, so did the proportion of neu-

rons whose preferred direction became aligned towards 180◦ (mean preferred directions ranged

179◦−180◦ for maps trained with a bias). The trend converges to a map anisotropy score of 0.69

out of 1.0 when θ is always 180◦, which is less than 1.0 owing to the broad and fixed direction

tuning of the L4 input units and the κ = 3 noise applied to the individual whisker deflection

directions.

For input anisotropies up to 4, the biased maps themselves still organize to represent a range

of directions around 180◦ continuously, in a distorted pinwheel local to each supra-barrel (Fig-

ure 2.5B). Above 4, some patches opposite the biased orientation remain un-selective through-

out training, because very few θ ≈ 180◦ input patterns will create a leading edge effect to drive

bubbles of activity to the opposite edge of the supra-barrels (Figure 2.5C).

Thus the model predicts that strong biases in the distribution of experienced deflection directions
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Figure 2.5. Anisotropic inputs create anisotropic maps. Values of θ were drawn from circular
normal distributions with varying degrees of concentration (input anisotropy), towards a mean
of 180◦. Results suggest that biased experience to a particular direction of stimulus will cause
an over representation of that direction in the supra-barrels. Map anisotropy scores converge
to 0.69 (out of a maximum of 1.0) when the networks are trained in a regime where half-
plane stimuli always move in the same direction. B shows an example map from a network
trained on input anisotropy 3.0, where pixel saturation indicates a lower direction selectivity for
each neuron. Distorted pinwheel structures still form in many barrels, but the map is clearly
dominated by neurons preferring ≈ 180◦ deflection directions. C shows a similar map from a
network trained on input anisotropy∞, wherein patches of non-selective neurons form on the
right side of the left most supra-barrels where the leading edge of the stimulus is least likely to
occur.
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will be reflected in the direction maps, both as expanded regions for over represented directions,

and as patches of less selective neurons in the somatotopically correct locations for under-

represented directions.

2.3.6 Maps do not organize somatotopically without a correlation between

whisker combination and deflection direction

We have already examined the results of the first control condition, the case where κ = 0,

in which we see good pinwheel maps form in each barrel but no consistent global alignment

(example in Figure 2.6A). The networks were then trained in two additional control conditions

(both at κ = 3).

In the second control (Figure 2.6B), the location (but not the number) of the activated whiskers

was randomly permuted for each input pattern. For example, the stimulus shown in Figure 2.2D

would be reconstructed so that a random subset of ten whiskers were deflected. The activated

whiskers were distributed randomly over the twenty-five possible locations on the whiskerpad

and were therefore not confined to any particular region of it. Hence the global information

about somatotopy was removed from each input pattern, but the level of afferent activation

and the consistency between the directions in which the whiskers were deflected remained.

Maps organized in this condition developed reasonably strong pinwheels, but again had no

global alignment (standard deviation from the template ≈ ∞◦). Instead, they organize more

locally to be similar to primate V1 maps for orientation or direction, becoming composed of

continuous regions that are punctuated by pinwheel, linear and saddle-point discontinuities (see

Miikkulainen et al., 2005), largely ignoring the barrel boundaries.
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Figure 2.6. Model maps organized in control experiments and at κ = ∞. A Whisker de-
flection directions are independent of one another. Example direction map from a representative
κ = 0 network, which develops good pinwheels in each supra-barrel but no consistent global
organization. B Removing global correlations. Example map measured from a network trained
on 5,000 inputs wherein the location of the stimulated whiskers was randomly shuffled on each
iteration (κ = 3). C Direction map measured from one representative network trained on 5,000
inputs wherein the whiskers are deflected in the same combinations as in the normal case, but
the mean direction in which they are deflected bears no relation to the stimulus direction implied
by this combination (κ = 3). In both controls, maps resemble V1 orientation or direction maps
rather than rodent S1 maps, because they cover all directions continuously on the local scale
but have no consistent global alignment. D When whisker deflection directions are perfectly
correlated with the whisker combination (κ = ∞), the supra-barrel borders no longer affect
the input correlations, and so the map groups similar directions together rather than developing
independent pinwheels.
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In the third control (Figure 2.6C), the stimulus deflected whiskers in the same combinations

as in the main simulation, and for each stimulus whiskers were deflected in similar directions

(κ = 3). However, the mean of the distribution from which each deflection direction was

drawn was random and independent of the orientation of the stimulus. Hence whisker deflection

directions were again correlated with one another but unrelated to the global direction implied

by the combination of activated whiskers. Again, direction maps that emerge in this control

condition are more similar to primate V1 maps than rodent S1 maps because they have no

overall somatotopic organization.

These results confirm that only when the overall pattern of deflected whiskers correlates with

the direction in which each whisker is deflected, do somatotopic direction maps self-organize

consistently within each supra-barrel.

2.3.7 Experimental manipulations

Computational models, like other theoretical formulations, should make specific predictions

that can be tested through experimentation. Two such predictions, arising from the current

work, are illustrated in Figure 2.7.

For the first prediction, we simulated a whisker-trimming experiment by depriving whisker

input to a chessboard configuration of the barrels (Wallace and Fox, 1999; see Figure 2.7A).

Although no prediction can be formulated about the organization of maps in deprived supra-

barrels, somatotopically aligned maps emerge in the spared supra-barrels. Thus the model

predicts that isolated whisker trimming even early in development will not have a significant
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effect on the development of pinwheels in the supra-barrels for the remaining whiskers. Only

when enough whiskers have been trimmed to isolate a supra-barrel from those that interact

laterally with it, will somatotopic alignment be disrupted.

The second prediction is that if a central whisker is consistently deflected opposite the direction

of its neighbors, the organization of direction preferences in the corresponding supra-barrel will

be a pinwheel that is somatotopically inverted (see Figure 2.7B). In other words, deflections

of whisker A towards whisker B will evoke the strongest responses in supra-barrel A neurons

located furthest from supra-barrel B. With the advent of apparatus capable of independently

stimulating up to twenty-five whiskers (Krupa et al., 2001a; Jacob et al., 2008; Drew and Feld-

man, 2007), the anti-correlated pinwheel experiment could now be undertaken with very precise

control.

2.4 Discussion

We have demonstrated how a computational model of L2/3 barrel cortex can develop a map of

whisker deflection direction that is a strong qualitative match to that measured in the rat barrel

cortex by Andermann and Moore (2006). The main finding is that pinwheel maps of whisker

deflection direction align somatotopically in each simulated supra-barrel. Thus the somatotopic

pinwheel map should emerge across all supra-barrels provided that (i) net L2/3 interactions

concentrate activity into bubbles smaller than a supra-barrel, (ii) these bubbles migrate to areas

corresponding to the leading edge of a tactile stimulus, (iii) whiskers are consistently deflected

away from stimuli.
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Figure 2.7. Predicting mappings for experimentally manipulated whisker inputs. A
Whisker trimming experiment. Whiskers in a chessboard configuration of the model barrels
were deprived of whisker input. The plot shows the mean directional preference over 20 net-
works. Neurons in deprived supra-barrels have no opportunity to learn connections to particular
L4 neurons. However, spared supra-barrels are still able to form reasonable somatotopic pin-
wheel maps. Thus the model does not predict any specific reorganization of spared portions
of the map for the isolated whisker trimming case. B Anti-correlated whisker experiment. If a
central whisker is consistently deflected in the direction opposite its neighbors, neurons in the
central barrel should develop RFs for deflection directions opposite those suggested by their
somatotopic location, forming a somatotopically inverted pinwheel in the corresponding supra-
barrel. The mean preferred direction for neurons at each location is plotted (N=20 different
networks). This prediction could be tested by training rats on artificial stimuli in which the
central whisker is deflected, for example, rostrally (0◦) whenever the more caudal whiskers are
primarily deflected, during the critical period. Although difficult to perform, this experimental
paradigm would be very useful for assessing the time course of map plasticity.
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The two key assumptions of the model, which need to be validated with further experimental

work, are as follows. First, the model assumes that whisker contacts experienced by young

rats correlate whisker combination with whisker deflection direction. Second, it assumes that

the lateral extent of net excitatory interactions is less than that of net inhibitory interactions in

barrel cortex, regardless of the detailed circuitry that implements these interactions. The two

key predictions of the model, for normally developed barrel cortex, are as follows. First, supra-

barrels for all of the large whiskers will contain a somatotopically aligned pinwheel map of

PW direction, although pinwheel centers may be shifted for more peripheral whiskers. Note

that only the direction map for a central supra-barrel has been established to date (Andermann

and Moore, 2006, although analyses made by combining across several barrel maps have been

presented; Kremer et al., 2011). Second, L2/3 neurons with similar directional tunings will

be synaptically coupled, certainly with neighbors in the supra-barrel, and perhaps with those

located several supra-barrels away. These predictions and the two key assumptions are testable

immediately, and should not require experimental manipulation of the patterns of input to the

whiskers.

In the present study, the efficacy of all whisker deflections was chosen to be equal: a whisker

is either deflected or it is not. However, we could have chosen to associate different strengths

to each whisker deflection, e.g. by defining a gradient of deflection strengths that decreases

along the path of the stimulus. Networks trained in this way develop the same map organization

as those reported (data not shown), because they essentially repeat the leading edge effect at

multiple locations for each training pattern.

We chose LISSOM to model feature map development in the barrel cortex because it empha-

sizes lateral cortical interactions, because it produces realistic primate V1 feature maps (Mi-
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ikkulainen et al., 2005), and because many comparisons have been drawn between whisker S1

and primate V1 at the level of the cortical map (Fox and Wong, 2005; Moore et al., 1999). We

expect that other models (e.g. self-organizing maps or correlation-based–learning approaches)

would yield similar overall map organization, if they implement similar lateral interactions.

However, with the exception of the LISSOM-like model of Burger and Lang (2001), alterna-

tive models do not simulate explicit, modifiable lateral weights, and so could not reveal an

emergent connectivity between directional representations that span many supra-barrels (as in

Figure 2.3C).

It is important to emphasise that LISSOM does not require any assumption that long-range in-

hibitory interactions are implemented via long-range inhibitory connections in the cortex. The

long-range inhibitory interactions measured in the barrel cortex by Derdikman et al. (2003) are

presumably implemented by long-range excitation of local inhibitory neurons (Helmstaedter

et al., 2009), as is thought to be the case in V1 for high contrast visual inputs (see Ren et al.,

2007; Weliky et al., 1995; Martin, 2002; Somers et al., 1998; Ren et al., 2007; Silberberg and

Markram, 2007, and see also Moore et al., 1999). There is now growing evidence for pervasive

disynaptic inhibition in barrel cortex, at least in L4 to L2/3 circuit pathways (Swadlow, 2002;

Sun et al., 2006; Higley and Contreras, 2007; Kapfer et al., 2007). Whether long-range inhibi-

tion is monosynaptic or disynaptic is not important for the modeling results, only that it be net

inhibitory at long distances for strong deflections.

Given the robust emergence of pinwheel maps in the model, it is intriguing that although a

recent two-photon calcium imaging study from Kerr et al. (2007) measured similar levels of

directional tuning to Andermann and Moore (2006), they found no evidence for a systematic

map of deflection direction in L2/3. A number of methodological differences might account
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for these findings, such as anesthetics with different effects on intracortical inhibition (Kyriazi

et al., 1996), or weaker stimulation velocity, as suggested by Ritt et al. (2008). The differ-

ences might be reconciled by recent two-photon calcium imaging data (Leger J-F., Kremer Y. &

Bourdieu L., 2009, Society for Neuroscience abstract 174.13) which report a somatotopic pin-

wheel organisation in three-month old rats (the approximate age of the rats of Andermann and

Moore, 2006) but no correlation between the location of the neuron and its directional tuning in

three-week old rats (the data of Kerr et al., 2007 were obtained between postnatal days 25 and

35).

It also remains to be seen why an organisation for directional tuning accounts for just a por-

tion of the variability of supragranular neuronal responses to deflection of the whiskers (r2 =

0.2262 = 5%, Andermann and Moore, 2006). Input to the model neurons communicates only

information about whisker direction, and so produces a very smooth mapping for direction in

all of our simulations. However, we should assume that cortical neurons compete to represent

many features of single– and multi– whisker stimuli, and so expect maps for direction to be

degraded by the extent to which these additional features are described by thalamocortical in-

put. To illustrate, consider the primary visual cortex of higher mammals, wherein each neuron

participates in topographic mappings for eye preference and disparity, as well as for stimulus

location, orientation, motion direction, spatial frequency, and colour. Deflection direction may

not even be the best-represented feature after whisker identity, as suggested by a decrease in the

information about direction carried by spikes recorded from neurons higher along the neuraxis

(Bale and Petersen, 2009). The question of what additional, presumably higher-order, features

are coded for by the activity of barrel cortex neurons remains an exciting and very open one.

There are numerous other phenomena in the whisker/barrel system that might yet be explained
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by Hebbian learning of whisker experience. In the paralemniscal brainstem nuclei, it has been

suggested that the overrepresentation of dorsal deflections (Furuta et al., 2006) may be due to

the greater preponderance of dorsal deflections during rat locomotion and exploratory behav-

ior (e.g., Grant et al., 2009) biasing cell receptive field properties via Hebbian learning. In

the thalamus, competitive interactions between nuclei (Lavallée and Deschênes, 2004; Hartings

et al., 2000; Brumberg et al., 1996; Brecht and Sakmann, 2002) might shape the direction map

measured across the vertical extent of thalamic ‘barreloids’ (Temereanca and Simons, 2004;

Timofeeva et al., 2003), and feedback to thalamic direction maps from those in infragranular

cortical layers might also play a role (Li and Ebner, 2007). For infragranular neurons, a corre-

lation has been reported between selectivity for motion directions administered in waves across

many whiskers, and for responses to particular adjacent whiskers (Jacob et al., 2008). This data

suggests the presence of a map for wave direction that is distinct from the single-whisker direc-

tion map, and might develop in a model extended to include a representation of layer 5 (see also

Ghazanfar and Nicolelis, 1999; Sato et al., 2007; Drew and Feldman, 2007). Such maps could

be used by the animal to discriminate stimulus features such as orientation (Polley et al., 2005).

In the adult cortex, a number of studies have reported that activity propagates preferentially

along the barrel rows compared with the arcs (Petersen et al., 2003; Wirth and Lüscher, 2004;

Derdikman et al., 2003), that a row bias exists also in axon distributions across layer 2/3 (Ajima

and Tanaka, 2006), and that rostral and caudal deflection directions are overrepresented (Bruno

et al., 2003; Andermann and Moore, 2006). These biases may reflect tendencies of adult rats to

encounter objects head-on and to actively palpate the whiskers forwards and backwards, but it is

difficult to determine the precise patterns of whisker deflections in live animals to use as inputs

to the model. We are now beginning experiments with a mobile whiskered robot to determine

what patterns of whisker deflection are common in such encounters (Fox et al., 2009), but can
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predict from the results of Figure 2.5A that these would lead the model to expand representations

of more common deflection directions in the map. At the time of writing we have also begun

a series of experiments using robot-controlled collisions with an array of artificial whiskers to

investigate the extent to which stimuli of different shapes correlate the relative position of the

whisker with its deflection direction (see chapter 4 and Wilson S.P., Mitchinson B., Pearson M.,

Bednar J.A., Prescott T.J, 2009, Society for Neuroscience abstract 174.4).

Each of the phenomena discussed above likely involves interactions at the neural population

level between multiple whisker pathways. Hence each are suitable for investigation with net-

work models like ours, the first to explore interactions between whiskers in detail. To progress

towards a complete systems-level model of multiwhisker processing, the ideas developed here

can be integrated with existing models of detailed temporal processing of single-whisker events.

Relevant models are available for the rat whisker (Birdwell et al., 2007), the follicle and gan-

glion (Mitchinson et al., 2004, 2008), the thalamus (Golomb et al., 2006) and the barrel cortex

(Puccini et al., 2006; Kyriazi and Simons, 1993; Kyriazi et al., 1996; Pinto et al., 1996; Sarid

et al., 2007).

Of the existing computational models, the only one to focus on S1 direction tuning is from

Puccini et al. (2006). They presented whisker-direction inputs to an integrate-and-fire neuron

as differences in the latency and strength of their excitatory and inhibitory components: ex-

citation arrives faster, and both are stronger, for whisker deflections more similar to the MED

(Wilent and Contreras, 2005). If this feed-forward model were to learn and evaluate inputs from

adjacent-whisker cells, the relative contributions of feed-forward versus recurrent inhibition to

constructing directional RFs could be detailed (see Swadlow, 2002; Swadlow and Gusev, 2002).

In a network of such neurons we might hope to predict how the spatial organization of direc-
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tion within a supra-barrel interacts with that for alternative features, e.g. stimulus frequency

(Neimark et al., 2003).

The validity of our model could be tested using the anti-correlated whisker manipulation sug-

gested in Figure 2.7B. If robust changes are found to the directional RFs of L2/3 neurons, with-

out producing an anti-correlated pinwheel, then our description of either the sensory input, or

of the resulting cortical interactions, is inaccurate. On the other hand, finding an anti-correlated

direction map under these conditions would be very strong evidence for input-driven self-

organization as a mechanism for establishing RFs in the barrel cortex. Previous studies detailing

the plasticity of cortical feature maps have shown how cortical organization can be disrupted

or exaggerated by altered sensory stimuli (for example see Feldman and Brecht, 2005), but if

our anti-correlated pinwheel prediction is confirmed we could use it to ask, on what timescale

could a very specific map organization be entrained: seconds, hours or days? Answering this

question could help clarify the ongoing relationship between the sensory environment and the

organization of cortical sensory areas.



Chapter 3

A place code for inter-whisker timing in

the barrel cortex?

Chapter summary

The place theory proposed by Jeffress (1948) is still the dominant model of how the

brain represents the movement of sensory stimuli between sensory receptors. According

to the place theory, delays in signalling between neurons, dependent on the distances be-

tween them, compensate for time differences in the stimulation of sensory receptors. Hence

the location of neurons, activated by the coincident arrival of multiple signals, reports the

stimulus movement velocity. Despite its generality, most evidence for the place theory has

been provided by studies of the auditory system of auditory specialists like the barn owl,

but in the study of mammalian auditory systems the evidence is inconclusive. We ask to

what extent the somatosensory systems of tactile specialists like rats and mice use distance

dependent delays between neurons to compute the motion of tactile stimuli between the

facial whiskers (or ‘vibrissae’).

We present a model in which synaptic inputs evoked by whisker deflections arrive at

neurons in layer 2/3 (L2/3) somatosensory ‘barrel’ cortex at different times. The timing

of synaptic inputs to each neuron depends on its location relative to sources of input in

63
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layer 4 (L4) that represent stimulation of each whisker. Constrained by the geometry and

timing of projections from L4 to L2/3, the model can account for a range of experimentally

measured responses to two-whisker stimuli. Consistent with that data, responses of model

neurons located between the barrels to paired stimulation of two whiskers are greater than

the sum of the responses to either whisker input alone. The model predicts that for neurons

located closer to either barrel these supralinear responses are tuned for longer inter-whisker

stimulation intervals, yielding a topographic map for the inter-whisker deflection interval

across the surface of L2/3. This map constitutes a neural place code for the relative timing

of sensory stimuli.

3.1 Introduction

A fundamental question in computational neuroscience asks how the brain represents the rel-

ative timing of stimuli as they move between sensory receptors, e.g. as a light source moves

relative to the retina, or as contact moves between touch sensors on the fingertip. For over 60

years Jeffress’ place theory (Jeffress, 1948) has remained the dominant model. The idea is that

coincidence detector neurons receive input from sensors after delays governed by the distance

of the neuron from either sensor. The inter-sensor time difference is encoded by the location

of neurons that are active because their connection delays exactly compensate the inter-sensor

stimulation interval (see Figure 3.1); similar to an idea originating from vision research, each

neuron essentially serves as a Reichardt motion detector (Reichardt, 1961). The place theory

therefore suggests an important role for neural geometry in computing the motion of sensory

stimuli.
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Figure 3.1. Cartoon of the Jeffress model for sound source localisation. According to
the model, the distance travelled by sound waves from a source (black asterisk) to either ear
(dashed lines) is compensated by internal delays that increase with the distances of neurons
(white triangles) from either ear. When differences in internal signalling delays are exactly
compensated by differences in inter-ear timing the incoming signals are coincident and thus
sources at specific locations activate neurons at specific locations (green).
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Strong support for Jeffress’ place theory has been provided by a number of studies of midbrain

neurons in auditory specialists like the barn owl, who locate sound sources by resolving small

differences in the arrival time of sounds at either ear (see Yoris and Yin, 2006 for a review).

Evidence from the mammalian auditory system is less conclusive because, for example, rab-

bit auditory cortex neurons are tuned to inter-ear time differences that are too long to attribute

to inter-neuron distances alone (Fitzpatrick et al., 2000; see also Grothe, 2003; McAlpine and

Grothe, 2003, and Seriès et al., 2002 for an alternative mechanism based on slow lateral con-

nections). However few studies have investigated how inter-sensor time-differences might be

resolved in specialist mammalian sensory systems.

Tactile specialists like rats, mice, shrews, and seals determine the form and motion of tactile

stimuli using prominent arrays of whiskers (vibrissae) on the face (Welker, 1964; Mitchinson

et al., 2011). For example, shrews hunting in the dark can use their whiskers to localise particu-

lar body-part shapes on fast-moving prey animals (Anjum et al., 2006). Specific to the whisker

system is a precise topographic correspondence between the individual sensor and its neural rep-

resentation. Deflection of adjacent whiskers A and B on the face evokes the largest amplitude

and shortest latency responses in adjacent cortical columns A and B in the somatosensory (bar-

rel) cortex. This precise mapping, as well as observations of sub-millisecond temporal precision

throughout (Barth, 2003; Benison et al., 2006; Petersen et al., 2009), makes the whisker-barrel

system ideal for exploring the impact of neural geometry on neural computation.

A consistent finding across studies in the rat and mouse somatosensory cortex is that responses

vary with the time interval between adjacent whisker stimulation (Simons, 1983, 1985; Simons

and Carvell, 1989; Ghazanfar and Nicolelis, 1999; Shimegi et al., 1999, 2000; Mirabella et al.,

2001; Civillico and Contreras, 2006; Higley and Contreras, 2003, 2005; Kida et al., 2005; Drew
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and Feldman, 2007). A useful metric for comparing the response to a two-whisker stimulus to

the response to the individual whisker deflection is the facilitation index (Shimegi et al., 1999),

defined as ‘the response to paired deflection of whiskers A and B divided by the sum of the re-

sponse to deflection of whisker A deflected alone and the response to whisker B deflected alone’

or FI = rAB/(rA+rB). In layer 2/3 barrel cortex (L2/3) in particular, paired stimuli in which the

adjacent whisker deflection precedes by 20-50 ms typically evoke sublinear responses (FI < 1).

For a range of near-simultaneous deflections, a number of studies have also reported supralin-

ear responses (FI > 1), again particularly in L2/3 neurons (Ghazanfar and Nicolelis, 1999;

Shimegi et al., 1999, 2000; Higley and Contreras, 2005; Kida et al., 2005; but see Ego-Stengel

et al., 2005). Interestingly Shimegi et al. (2000) reported that septa-related neurons in L2/3,

located at the midline area between two barrels, were more likely to show response facilitation

for short-interval stimuli, whereas barrel-related neurons were more likely to show response

suppression by prior deflection of the distal whisker at longer intervals (see Figure 3.2). Plots of

the relationship between the inter-whisker-interval and the response magnitude for individual

neurons showed evidence of tuning to particular short intervals. Together these results suggest

that the location of the L2/3 neuron relative to the underlying barrel geometry is important in

determining its response to a two-whisker stimulus.

One explanation for the different responses of barrel-related and septa-related neurons, as sum-

marised in Table 1, is that they reflect the operation of different mechanisms for integrating

adjacent-whisker signals in distinct barrel and septal circuits (see Brumberg et al., 1999; Al-

loway, 2008; Chakrabarti and Alloway, 2009). However an alternative hypothesis, inspired by

the place theory, is that the differences reflect an underlying continuum of responses, which are

determined by the location of the neuron with respect to the two cortical columns. This hypoth-

esis would allow for, although it would not require, an essentially homogeneous population in
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Table 3.1. Summary of the trends of facilitation index scores (FI), as a function of the relative
stimulus timing and neuron location. tA and dA are the deflection time of whisker A and the
distance of the neuron from the center of barrel A respectively. Thus the responses are strongly
affected by the relative timing of whisker stimuli and the location of the neuron.

dA < dB dA ≈ dB dB < dA

tB < tA 0 0.5 1
tA ≈ tB 1 > 1 1
tA < tB 1 0.5 0
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L2/3.

According to this alternative hypothesis, the relationship between the inter-whisker deflection

interval and the facilitation index in L2/3 neurons may be determined by differences in the

arrival times of synaptic inputs that originate from either barrel. These differences may be at-

tributed to inter-soma distance-dependent delays in the feed-forward projection from the major

input in layer 4 barrel cortex (L4). This hypothesis is supported by estimates of the speed of the

projection between L4 and L2/3 neuron pairs that are relatively slow, around 0.2 meters per sec-

ond for excitatory and inhibitory post-synaptic neurons (Feldmeyer et al., 2002; Helmstaedter

et al., 2008).

In this paper we show that simulated barrel cortex neurons that receive synaptic inputs with

onset times constrained to embody this hypothesis can account for all of the trends relating to

the stimulus interval in the data of Shimegi et al. (2000). We show that a natural prediction

of the model is the existence of a topographic mapping of the inter-whisker deflection interval

across the surface of L2/3. Specifically, supralinear population responses will peak at short non-

zero intervals in neurons located closer to the barrel representing the later of the two deflected

whiskers. The responses of individual L2/3 neurons satisfy the basic requirements for a motion

detector, and across the population these responses encode a range of stimulus motion velocities.

Results therefore suggest that two-whisker timing is represented by a place code in L2/3 barrel

cortex.

More generally, the lateral displacement of active neurons due to distance-dependent delays

on projections between cortical columns can be used to compute the sequence and timing of

events between the sensory stimuli represented by activity in those columns. The results are
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Figure 3.2. Two-whisker response interactions as reported in (Shimegi et al., 2000). L2/3
barrel cortex neurons were grouped by their position relative to the underlying barrel geometry.
The spike rate over 50 stimuli at each inter-whisker deflection interval (IWI) is shown as an av-
erage for neurons located above barrel A (blue line, open circles), above barrel B (red, squares)
or above the septal region between the barrel columns (green, triangles). IWI is defined as
the time of the whisker A deflection relative to a whisker B deflection at time zero. When
the adjacent whisker is deflected after the principal whisker, the response of neurons above the
principal barrel is the linear sum of the response to either when deflected independently, as in-
dicated by a facilitation index (FI) of 1. When the adjacent whisker is deflected prior to the
principal whisker, neurons above the principal barrel are strongly suppressed, yielding a FI less
than 1 and tending to zero for longer intervals. For neurons located between the barrels, longer
intervals in either direction yield suppression with FI around 0.5. However in these neurons,
intervals ranging −3 ms to +3 ms yield responses greater than the sum of the response to either
whisker deflected independently and thus FI greater than 1. Notice a smaller positive FI peak
in neurons above A when the whisker B deflection precedes by 2 ms. These trends will be used
to validate the model. The figure is a visualisation of the data reported in Shimegi et al. (2000),
their Figure 8E, obtained from a computer-aided scan; the original error bars and statistical sig-
nificance indicators are omitted, colour is added, marker styles are changed, and the axes are
relabelled for clarity.
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interpreted as evidence in support of the place theory as a general model of cortical processing

of spatiotemporal information.

3.2 Materials and Methods

3.2.1 The distance-dependent delay hypothesis

We hypothesise that distance-dependent delays associated with inter-columar projections in

sensory cortex can be used to extract the relative timing of sensory events. Specifically, delays

in the projection from layer 4 (L4) to layer 2/3 (L2/3) barrel cortex might generate selectivity to

the inter-whisker deflection interval for adjacent whiskers. To test the hypothesis, the latencies

of synaptic inputs to a leaky integrate and fire neuron were constrained to reflect the range of

geometries that characterise the L4 to L2/3 projection. To validate the model, we recreated

an adjacent-whisker paired-deflection study (Shimegi et al., 2000), and compared responses of

neurons in different cortical locations to stimuli in which the whiskers were deflected through a

range of intervals.

The simplified model is based on three main assumptions, which are described with respect to

the validation data in terms of adjacent whiskers A and B, but which in principle apply to a

general model of cortical responses to arbitrarily complex multi-whisker deflection patterns.

The first assumption is that, upon whisker stimulation, inputs to L2/3 tend to originate from L4

neurons at the center of the corresponding barrel in L4. Therefore, in the model, the input layer



72 A place code for inter-whisker timing?

L4 is collapsed down to just two point sources, with activity at each source representing the

deflection of the corresponding whisker A or B.

The second assumption is that the excitatory and inhibitory synaptic inputs evoked by deflection

of whisker A and by deflection of whisker B arrive at a population of L2/3 neurons situated

above and between corresponding barrels A and B. Therefore, in the model, each L2/3 neuron

receives just four inputs, although each represents the total contribution of many similar synaptic

contacts.

The third assumption is that the time taken for a L2/3 neuron to register a synaptic input is

proportional to the straight-line distance between the L4 and L2/3 neuron. Therefore, in the

model, we assume that the time of arrival of each synaptic input is a linear function of the

distance of the L2/3 neuron from either point source in L4, and we refer to the associated

constant of proportionality as the connection speed.

This simplified model of the neural geometry may deviate from the true situation. For ex-

ample, if the signalling delays are due to the axonal propagation speeds, then delays could

be modified by the morphology of L4 axons, which branch vertically and laterally into L2/3

(Lübke et al., 2000; Porter et al., 2001). Delays could also be modified by particular branching

patterns that vary systematically with the location of the neuron in the home barrel (Petersen

and Sakmann, 2000). We choose not to explicitly model the variety of axonal morphologies,

firstly to keep the model formulation simple, secondly because L4 to L2/3 signalling delays are

well predicted by the straight-line inter-soma distance (Feldmeyer et al., 2002; Helmstaedter

et al., 2008; Armstrong-James et al., 1992), and thirdly because post-hoc simulations which

considered a laterally-branching axonal morphology did not significantly alter the results. Fur-
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thermore, recurrent interactions within L2/3 are not modelled explicitly, because they would

occur subsequent to the initial activation of L2/3, and thus could only affect the afferent re-

sponse after the critical first spike response has been determined (see Discussion). Similarly,

modelling each L4 input source as a discrete representation of one whisker is justified because

multi-whisker responses in L4 are thought to be due to latent contributions from intra-cortical

mechanisms (Mirabella et al., 2001). The potential latent contributions from thalamo-cortical

afferent projections will be considered in the Discussion. The following sections outline how

each assumption is represented formally in a model that we refer to as the distance-dependent

delay hypothesis. The plausibility of each assumption, the impact of each simplification, and

the alternatives to each are considered in Discussion.

3.2.2 A simplified model of feed-forward layer 4 to layer 2/3 connectivity

The thalamocortical volley of excitation from thalamus to L4 and then up into L2/3 (Armstrong-

James et al., 1992; Sato et al., 2008) is closely followed by a volley of disynaptic inhibition,

mediated by a small number of interneurons in L4 (Sun et al., 2006), with a diverse range of

morphologies (Porter et al., 2001). We posit that the main excitatory input to L2/3 is derived

from direct synaptic connections from excitatory neurons in L4, and the main inhibitory inputs

are derived indirectly from excitation of L4 inhibitory interneurons. The circuit therefore con-

sists of three connections: an excitatory connection from L4 to L2/3, an excitatory connection

onto the L4 inhibitory interneuron, and an inhibitory connection from the L4 interneuron to the

L2/3 neuron.

According to the distance-dependent delay hypothesis each connection has an associated de-



74 A place code for inter-whisker timing?

lay. The onset time of the direct excitatory synaptic input at the L2/3 neuron is proportional

to its distance from the barrel center. To model the indirect inhibition through an inhibitory

interneuron we use a time delay proportional to the L4 to L2/3 distance plus a constant time

delay accounting for the distance of the interneuron and its spike generation time.

The circuit therefore has three parameters: the speed of the excitatory pathway between L4 and

the L2/3 target neuron (v+), the speed of the inhibitory pathway between L4 and the L2/3 target

neuron (v−), and a fixed latency representing the delayed onset of the spike in the inhibitory

interneuron (c) relative to the onset of excitation in L4.

For neurons in the barrel cortex, the principal whisker is typically defined as the one which,

upon deflection, elicits the shortest latency and/or the largest-amplitude response. Neurons of

a particular barrel column tend to share the same principal whisker, the one which on the face

is isomorphic with the position of the barrel in the grid of barrels. For a given neuron all

three criteria usually select the same whisker. These constraints can be built into the model if,

for progressively longer inter-soma distances, whisker-evoked inhibition arrives progressively

earlier than excitation. This pattern of delays requires that inhibitory connections are faster than

excitatory connections, and that the onset of inhibition is delayed relative to the excitation. This

is achieved in the model by setting v− > v+ and c > 0. An analysis of the tension created

by these two factors is presented later in Figure 3.11, and the biological plausibility of these

constraints will be considered in full in the Discussion.
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3.2.3 Geometry of the L4 to L2/3 projection

In the analysis presented by Shimegi et al. (2000), against which the model will be validated,

L2/3 neurons were characterised by their horizontal location with respect to two underlying

barrel columns. The geometry is shown in Figure 3.3.

In the model axes x and y refer to orthogonal axes of the plane tangent to the pia matter of

the brain (i.e., the plane tangential to the cortical surface; Woolsey and van der Loos, 1970);

specifically x is aligned with barrels that correspond to a row of whiskers on the face, and y is

orthogonal in the ‘tangential plane’. The axis z is normal to the tangential plane. Axes x and z

will henceforth be referred to as the horizontal and vertical axes respectively.

In the model, L2/3 neurons will be parameterised only by their horizontal location relative to

the two input sources in L4. In effect, this means reducing the three spatial dimensions {x, y, z}

in which intra-cortical connections are defined to just two spatial dimensions {x, z} by setting

y = 0. In this way we can define the position of two sources in L4 at {x = ∓α, z = 0}.

Similarly we can describe L2/3 as a one-dimensional string {x ∈ R, z = β} and uniquely

describe the location of individual L2/3 neurons along the string in terms of x. For example the

neurons at {x = −α, z = β},{x = α, z = β}, and {x = 0, z = β} are L2/3 neurons located

directly above barrel A, above barrel B, and above the midline respectively.

The Euclidean distance of each L2/3 neuron from the two sources can now be written in terms
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Figure 3.3. Schematic model of the L4 to L2/3 projection geometry. Input sources A and B
are adjacent barrel centers in L4 that respond when corresponding whiskers A or B are deflected.
Individual neurons in L2/3 (black dots) receive direct excitatory connections (solid line), or
indirect inhibitory projections (dotted line) that are delayed by an additional connection (solid
loop). All connections to a neuron above barrel A are shown in blue, those to the midline neuron
are shown in green, and those to the neuron directly above barrel B are shown in red.
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of x:

dA(x) =
√

[x− (−α)]2 + β2 (3.1)

dB(x) =
√

(x− α)2 + β2 (3.2)

For the analyses presented in Results, the input sources were located at {x = ∓α = ∓0.2 mm, z =

0} and the two layers were separated by vertical distance β = 0.4 mm. We will henceforth refer

to dA and dB as inter-soma distances.

Reducing the description of the neural geometry in this way makes interpretation of the be-

haviour of the model tractable, and it allows for a direct comparison with the available elec-

trophysiological data. We note that using an alternative geometry has little impact on the main

results, as considered in detail in Discussion.
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3.2.4 Incorporating the distance-dependent delay hypothesis into the L4

to L2/3 projection

The L2/3 neuron receives excitatory and inhibitory synaptic inputs from each stimulated whisker.

Thus, under two-whisker stimulation, the time of each input is given by:

tA+ = dA/v+ + IWI (3.3)

tA− = dA/v− + c+ IWI (3.4)

tB+ = dB/v+ (3.5)

tB− = dB/v− + c (3.6)

The inter-whisker interval (IWI) is the time of deflection of whisker A, relative to whisker B,

which is always deflected at time 0. Thus if IWI < 0 whisker A was deflected before whisker

B, if IWI > 0 whisker B was deflected before whisker A, and if IWI = 0 then the whiskers

were deflected simultaneously.

The relationship between the inter-soma distance and the onset time of excitation and inhibition

is illustrated in Figure 3.4A. The connection speeds were chosen to be v+ = 0.1 m/s and v− =

0.3 m/s, which are in the range of estimates derived from electrophysiological data (Feldmeyer

et al., 2002; Helmstaedter et al., 2008), but we note that similar analyses have estimated speeds

as slow as 0.05 m/s (Armstrong-James et al., 1992). The constant c = 3.7 ms was chosen to

delay the onset of inhibition relative to excitation by 1 ms for the neuron located closest to either

barrel center, i.e., c = β/v+ − β/v− + 1 ms = 3.7 ms.
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Figure 3.4. A model of distance-dependent delays in the L4 to L2/3 projection. A Distance-
dependent delays in the L4 to L2/3 excitatory neuron projection. The onset of the post-synaptic
conductance change (PSC) registers at the neuron after delay proportional to distance (minimum
0.4 mm), defined by connection speed v+ = 0.1 m/s or v− = 0.3 m/s for excitatory (EPSC;
solid line) and inhibitory (IPSC; dashed line) pre-synaptic neurons respectively. The inhibitory
projection is in turn delayed by a constant temporal offset c. B Geometry of the L4 to L2/3
projection. L2/3 neurons are indexed by vertical distance β = 0.4 mm and horizontal location
x, with x < 0 neurons located closer to barrel center A at {x = −α = −0.2 mm, z = 0 mm},
and x > 0 located closer to barrel B at {x = α = 0.2 mm, z = 0 mm}. This geometry
constrains the PSC onset latencies given by the model in A to be hyperbolic functions of x.
Thus for simultaneous deflections of whiskers A and B the two synaptic inputs arising from
deflection of whisker A (blue lines) and B (red lines) arrive in sequence depending on the
location of the neuron x. The earliest input arrives at the neuron directly above the barrel center
and is excitatory. C The timecourse of the excitatory and inhibitory PSC evoked by a whisker
A stimulus is shown with relative PSC onset times for neuron x = −α.
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With the inter-soma distance constrained by the geometry of Equations 3.1 and 3.2, the input

onset times, described by the linear functions in Figure 3.4A, become hyperbolic functions of

the neuron location x, as shown in Figure 3.4B.

3.2.5 Leaky integrate and fire model layer 2/3 barrel cortex neuron

The model neuron is a simple integrate and fire neuron with inputs in the form of excitatory and

inhibitory post-synaptic conductance changes (EPSCs and IPSCs). Parameters followed those

reported by Puccini et al. (2006) as a guide for neurons in the barrel cortex.

The time course of each input Ps, following its onset at time tA+, tA−, tB+ or tB−, was modelled

as a normalised difference of two exponentials:

Ps = B(e−t/τ1 − e−t/τ2) (3.7)

The normalisation term B = ((τ2/τ1)
τrise/τ1 − (τ2/τ1)

τrise/τ2)−1, where τrise = τ1τ2/(τ1 − τ2),

ensures that the potential peaks at 1.

For excitatory synapses τ1 = 1 ms and τ2 = 0.22 ms simulating AMPA receptor channel open-

ing (Sarid et al., 2007), and ensuring that excitatory inputs peak at 0.4 ms. For inhibitory

synapses τ1 = 4 ms and τ2 = 3 ms as used by Puccini et al. (2006) to model GABA recep-

tor channel opening, peaking later than the EPSC at 3.5 ms as seen in electrophysiological data
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(e.g., Wilent and Contreras, 2005). The maximum EPSC amplitude was gs = 0.014 mS/cm2

and the maximum IPSC conductance amplitude was gs = 0.028 mS/cm2 (similar to Puccini

et al., 2006). The relative amplitude and time course of the excitatory and inhibitory post-

synaptic currents are illustrated in Figure 3.4C.

For the L2/3 neuron we used a standard leaky integrate and fire neuron (Dayan and Abbott,

2001), again with parameters guided by those from Puccini et al. (2006):

dV

dt
=

1

τm

(
EL − V − rm

∑
s

gsPs(V − Es)

)
+ η (3.8)

where the membrane time constant τm = 12 ms, the resting potential EL = −69 mV, the

reversal potential for synapses s of type inhibitory Es = −85 mV, and for excitatory synapses

Es = 0 mV. The leak conductance was gL = 0.03 mS/cm2 and hence the membrane resistance

rm = 1
gL

. Gaussian noise η with standard deviation 0.04 mV was added to the membrane

potential at each time step. Integration was by the forward Euler method (dt = 0.01 ms).

When the membrane potential reached Vthreshold = −65 mV a spike was recorded, and the

membrane potential was set to Vreset = −70 mV.
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3.3 Results

The model is validated against the data of Shimegi et al. (2000), which show a range of sublin-

ear and supralinear facilitatory responses in neurons in different locations when paired whisker

deflections occur at different inter-whisker intervals. In the following sections we show that

simulated L2/3 barrel cortex neurons display the same range of interactions observed experi-

mentally when the timing of synaptic inputs is determined by the connection geometry.

3.3.1 Responses to isolated deflections of the principal and adjacent whisker

To anticipate how a L2/3 neuron might respond to independent deflections of either whisker, we

first determine when the onset times of the EPSC and IPSC evoked by deflection of that whisker

will be coincident. We derive the time of coincidence by setting the onset times to be equal and

rearranging:

tA+ = tA− when x = −α±
√

[cv−v+/(v− − v+)]2 − β2 (3.9)

tB+ = tB− when x = α±
√

[cv−v+/(v− − v+)]2 − β2 (3.10)

Therefore we can determine that when tA+ < tA− and hence |x+α| <
√

[cv−v+/(v− − v+)]2 − β2

we would expect to see the largest responses to deflection of whisker A because the excitatory

input precedes the inhibitory input.

To test this, neurons through the range of x locations were stimulated by applying a deflection
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to either whisker A or whisker B in isolation. Analogous to the experimental procedure of

Shimegi et al. (2000), each trial began 37 ms prior to the onset of the first whisker deflection

and ended 37 ms after the onset of the second deflection. Spike counts were calculated over

this time window for the results of all simulations, however we note that spikes were precisely

timed to the whisker stimuli and so this choice of time window is not critical for the behaviour

of the model (see later Figure 3.9). The spike rate is shown as an average over 50 trials in

Figure 3.5A to allow direct comparison with the results of Shimegi et al. (2000), and averaged

over 5000 trials for clarity in Figure 3.5B. As expected, neurons located closer to a particular

barrel spike more often in response to deflection of the corresponding whisker. As the distance

of the neuron from either source increases, the excitatory and inhibitory inputs evoked by the

corresponding neuron register at the neuron closer together in time and thus the window of

opportunity in which the EPSC can cause a spike decreases. At longer inter-soma distances, the

IPSC precedes the EPSC, and effectively silences the neuron. These observations agree with

the notion of the principal whisker as that represented by the barrel closest to the neuron, and

which evokes the shortest latency and largest amplitude response.

Figure 3.5 shows the linear sum of the response to independent deflection of both whiskers.

These values for the linear sum are later used to construct facilitation index scores from the

average spike counts obtained in paired whisker-deflection trials.
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Figure 3.5. Response to independent deflection of the whiskers. Whisker A (blue line) was
deflected 50 times in separate trials, and the average spike count over trials was measured in
neurons at different locations in L2/3. Responses are highly variable, but are largest for neurons
located directly above barrel A at x = −α = −0.2 mm and fall off for neurons further away
from the center. Similarly responses to whisker B deflections (red line) fall off with the distance
of the neuron from barrel center B at x = α = 0.2 mm. The linear sum of the responses (dashed
line) is used later to calculate the facilitation index scores. B Responses are shown as means
over 5000 stimulus presentations for clarity.
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3.3.2 The timing of synaptic inputs maps between the inter-whisker-interval

and neuron location

For independent deflections of either whisker, we have seen that the spike rate is dictated by

the sequence and relative timing of the synaptic inputs. Responses to paired whisker deflection

stimuli are more complex because they are dictated by four PSCs rather than two and also by the

IWI. However similar analysis of the relative arrival times of PSCs can be used to anticipate

these responses. To this end it is useful to consider regions of the space of possible neuron

location and inter-whisker deflection intervals (henceforth x–IWI space, see Figure 3.6A) that

are delineated by different ordering of arrival times of the four PSCs.

These regions are delineated by loci representing coincident arrival of each possible pair amongst

the four PSCs. Equations 3.9-3.10 represent two such pairs. As their solutions are not depen-

dent on the IWI, Equations 3.9-3.10 describe four loci, which when plotted are straight lines at

constant values of x that divide x–IWI space into five columns in Figure 3.6A. Solutions for the

other four pairs of PSCs can be written as functions of IWI as follows:

tA+ = tB+ when IWI = (dB − dA)/v+ (3.11)

tA− = tB− when IWI = (dB − dA)/v− (3.12)

tA− = tB+ when IWI = dB/v+ − dA/v− − c (3.13)

tA+ = tB− when IWI = dB/v− − dA/v+ + c (3.14)

The solutions to Equations 3.11-3.14 are also plotted in Figure 3.6A, and they further divide the
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Figure 3.6. Simulated two-whisker response interactions. A Coincident synaptic input on-
sets. The model equations were rearranged to define the time at which each pair of synaptic
input onsets arrives coincidently as a function of the neuron location and inter-whisker inter-
val. B These solutions can be used to determine zones in which the excitatory inputs arrive in
particular sequence. Neurons close to the midline register both excitatory inputs before both in-
hibitory inputs when the closer of the two whiskers is deflected after the more distant whisker at
short intervals (dark blue zone). Under these conditions we might expect the neuron to display
a large response. When these neurons are stimulated at longer intervals (cyan zone) each excita-
tory input immediately precedes an inhibitory input. As the excitation/inhibition pairs become
separated in time the conditions are similar to the independent whisker deflections case and we
might expect to observe baseline spiking. For neurons located further from the midline, when
the adjacent whisker deflection precedes the principal whisker deflection by longer intervals an
inhibitory input precedes both excitatory inputs, and we might expect to see a reduction in the
firing rate. C Average spike rate measured from simulated L2/3 neurons. Neurons in differ-
ent x locations were stimulated by paired-whisker deflections through a range of inter-whisker
intervals. The colour of each pixel represents the average spike count averaged over 50 trials ac-
cording to the colour key. The trends in the simulation data confirm the predictions formulated
in reference to panel B. Neurons located closer to either barrel fired more often in response to a
preceding adjacent whisker deflection for a range of short inter-whisker intervals, and showed
the weakest responses when this interval was increased. The orientation to the patch of high
activity in this space represents a topographic mapping of the two-whisker interval across L2/3.
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columns into ‘rows’.

For each region of the graph we can use the equations to state the sequence of inputs for each

synaptic pair. This is done by setting all = signs to < signs in Equations 3.9-3.14. The eight

inequalities that define each region of the graph can then be combined to give the order of all

four synaptic PSCs, and the twenty-four possible PSC orderings take the form tB− < tB+ <

tA− < tA+, for example, in the top-left region of x–IWI space shown in Figure 3.6A.

Considering now only whether each synaptic event in the input sequence is excitatory or in-

hibitory, we can describe the input to the L2/3 neuron more simply. This effectively reduces

the twenty-four PSC sequences to just six different orders in which excitation and inhibition

can arrive at the neuron. Figure 3.6B shows how each of the six orderings delineates a zone in

x–IWI space.

For a range of short interval stimuli, neurons situated near the midline receive both excitatory

inputs before both inhibitory inputs. They receive inputs in the order ++−−, which can be read

as ‘two excitations followed by two inhibitions’. This zone is coloured dark blue in Figure 3.6B.

It is in this zone that we would expect to observe the greatest spike rate because neither IPSC

precedes the EPSCs. Notice that this zone is oriented diagonally in x–IWI space, and therefore

neurons in different locations near the midline will prefer a range of (short) IWIs.

Similarly we can expect that the greatest suppressive interactions will be displayed in the yellow

(− + −+), brown (− − ++), and orange zones (− + +−), in which an IPSC event is always

registered first. Of these zones the orange will be expected to yield the smallest suppression as

the second IPSC is preceded by both EPSCs.
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In the blue zone (+ − −+) we might expect just one of the whisker deflections to evoke a

response, as the second EPSC will be silenced by two preceding IPSCs. In the cyan zones

(+ − +−) both EPSCs are followed immediately by an IPSC. Therefore we might expect that

if the two EPSC/IPSC pairs are separated sufficiently in time for the neuron to respond to

them independently, i.e., if the first inhibition has little effect on the second excitation, then the

response will resemble the linear sum of that evoked by either whisker deflected independently,

and hence the facilitation index score here will be around one.

3.3.3 Responses to paired whisker deflections encode short inter-whisker

intervals

Neurons through the range of x locations were stimulated by applying paired deflections to

whisker A and whisker B in sequence. By analogy with the experimental procedure of Shimegi

et al. (2000), each trial began 37 ms prior to the onset of the first whisker deflection and ended

37 ms after the onset of the second. The spike rate is shown as an average over 50 trials in

Figure 3.6C.

As anticipated, the greatest activity was evoked in neurons around the midline (x ≈ 0) when the

whiskers were deflected through a range of short inter-whisker intervals (IWI ≈ 0). Within this

range neurons located left of the midline and therefore closer to barrel A responded maximally

to slightly positive inter-whisker intervals where whisker B was deflected before whisker A.

Neurons to the right of the midline and therefore closer to barrel B responded maximally when

whisker A was deflected before whisker B at short intervals.
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For intervals longer than around 3 ms in either direction, and for neurons further from the mid-

line than around half a millimetre, responses were much smaller. In a region of x–IWI space

roughly corresponding with the light blue zone in Figure 3.6B, responses were more variable at

around 0.2 spikes per stimulus.

These results from the full spiking model fit well those expected based on the relative timing

of the synaptic inputs. Thus changing the relative timing of the synaptic inputs with distance-

dependent delays alters the response of the neuron to paired whisker stimuli in a predictable

way. A major feature predicted by the simulation data is a mapping of short interval stimuli to

the location of the most active L2/3 neuron.

3.3.4 Inter-whisker interval tuning in individual L2/3 neurons

The simulation data presented thus far suggest that distance-dependent delays in the L4 to L2/3

projection can generate a spatial encoding of the relative timing of whisker inputs for short

interval stimuli. But to what extent do these observations match up with experimental data? To

answer this question we look first at the responses of individual model neurons to the range of

different interval stimuli.

Figures 3.7A & B show the average spike rate for an individual neuron located either close to

barrel B or between barrels A and B respectively. The neuron in Figure 3.7A was located ap-

proximately 0.3 mm to the right of the midline. Also indicated in the Figure is the linear sum of

the response of this neuron to either whisker deflected in isolation. Where paired stimuli evoke

responses equal to this value, a facilitation index of 1 would be measured and we would con-
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clude that no facilitatory interaction had occurred. Where it is less, suppression would have been

measured, and where it is greater facilitation would have been measured. The neuron in Fig-

ure 3.7A shows no facilitatory interaction when whisker B (the principal whisker) is deflected

prior to the adjacent whisker A. However for slightly negative intervals strong facilitation was

measured, with the average spike count exceeding the linear sum baseline three-fold or more

around a peak when whisker A is deflected 2 ms before whisker B. When whisker A precedes

by more than 4 ms the response is strongly suppressed and almost no spikes are evoked. The

suppression recovers towards the linear sum baseline for intervals exceeding 50 ms.

For the example midline neuron shown in Figure 3.7B facilitation appears more symmetrical

around the zero inter-whisker interval. Facilitation peaks for simultaneous intervals and fluctu-

ates around baseline for longer intervals in either direction. The peak in the average spike count

is larger than that for the previous neuron, as is the linear sum response used to compute the

strength of its facilitatory interaction.

Equivalent plots for individual L2/3 neurons, found in Shimegi et al. (1999, 2000); Kida et al.

(2005); Drew and Feldman (2007), display similar qualitative trends to those in Figure 3.7A

and Figure 3.7B, in terms of both the facilitatory interactions and of the average spike counts

for independent and paired whisker stimuli.
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Figure 3.7. Comparing the neural and simulated data. A Mean spike response for the
individual neuron x = 0.3 mm stimulated through the range of inter-whisker intervals. Here we
show the spike rate as an average over 5000 trials for clarity. The sum of the average response to
either whisker deflected independently is shown by the dotted line. At positive intervals, when
the principal whisker B is deflected first, responses fluctuate around baseline, whereas for longer
negative IWIs the response is suppressed before recovering at intervals upwards of 50 ms. The
peak response for this neuron is at IWI = −3 ms. B Equivalent data for a neuron at the midline
(x = 0 mm). Responses to single and multi-whisker stimuli are symmetrical with respect to the
inter-whisker-interval. Responses are suppressed to around 50% of the baseline firing rate for
longer IWIs in either direction but are recovered for IWIs larger than 50 ms. Peak responses are
evoked by simultaneous whisker deflections. These plots are similar to those for individual L2/3
neurons reported in Shimegi et al. (1999, 2000). C Average response interaction for neurons
located above or between the barrels. The data in Figure 3.6C are reproduced in the inset (for
IWIs ranging ±12 ms) and are shown as means over neuron location in the main plot. Means
were taken with respect to groups of neurons ‘above A’ (−0.6 mm < x < −0.2 mm), ‘above
B’ (0.2 mm < x < 0.6 mm), and ‘septal’ between the two (−0.2 mm < x < 0.2 mm). The
divisions are depicted by the position and length of the coloured bars above the inset. This plot
should be compared directly with the electrophysiological data presented in Figure 3.2. Each
of the major trends are reproduced by the model, including the secondary smaller peak in the
above A data. In addition the model data contains a peak in the above B data, which is not
clearly present in the experimental data.
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3.3.5 Interval tuning over the population is a good match to the experi-

mental data

In Figure 3.7C we group the L2/3 neurons by location as either above barrel A, above barrel

B or in the septal region between the barrels. This allows for a direct comparison between

the simulation data (Figure 3.7C) and the available experimental data of Shimegi et al. (2000)

(compare with Figure 3.2).

The simulation data share many of the qualities of the experimental data, as summarised in

Table 3.1. Septal neurons show a large facilitatory peak for near simultaneous paired whisker

deflections and for longer intervals in either direction respond with an average FI ≈ 0.5, equiv-

alent to the response to either independently deflected whisker. Neurons located above barrel

B display on average a lesser facilitatory peak at 2 ms interval stimuli, are suppressed by prior

deflection of whisker B, and display no facilitatory interactions when whisker B is deflected

first (see Figure 3.2).

Geometry in the model is symmetrical about the midline and therefore the responses are sym-

metrical about the zero inter-whisker interval. Therefore the above barrel B population display

the exact opposite interactions with respect to the interval compared with the above barrel A

population. This includes a lesser peak for −2 ms interval stimuli not apparent in the elec-

trophysiological data. Notice too that the peak of the septal group in the experimental data is

for a slightly negative inter-whisker interval. We will shortly demonstrate how an extension

to the model, which introduces asymmetries related to the direction in which each whisker is

deflected, may account for these differences. For now we note that the population response
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predicted by the model affords a good match to the experimental data.

3.3.6 A place code for the inter-whisker deflection interval across the sur-

face of L2/3

Instead of asking how L2/3 neurons in particular locations respond to different interval stimuli,

we can ask how particular interval stimuli are represented across the population of L2/3. It is

particularly important to consider the population response because even the most effective stim-

uli typically elicit less than one spike per stimulus in any particular neuron, and so individual

spikes yield ambiguous information about the stimulus (Bale and Petersen, 2009).

Figure 3.8 shows the distribution of average responses across the population for a range of

positive intervals. Each of the short inter-whisker deflection intervals is clearly associated with

a tuning curve across the population, with a peak that shifts to the left (negative x) and scales

systematically with the increase in interval. Negative intervals also evoke symmetrical results,

i.e., a shift in peak responses towards neurons on the right, but we do not show them in the

Figure for clarity.

Viewed in this way, it is clear that the model predicts the existence of a topographic map for

the inter-whisker deflection interval across the surface of L2/3 barrel cortex. According to the

model, paired whisker stimuli should elicit supralinear responses and display a systematic shift

in tuning across the population for stimulus intervals ranging −3 ms to +3 ms.

As well as the representation of the inter-whisker interval across cortical space, it is useful to
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Figure 3.8. Predicted population place code for two-whisker timing. The mean spike rate
plotted against neuron location reveals the population response to various inter-whisker inter-
val stimuli. The peak response decreases and is shifted across the horizontal extent of L2/3 by
stimuli varying in interval from 0 ms to 3 ms interval. Thus distance-dependent delays in the
projection from L4 to L2/3 barrel cortex, coupled with the geometry of the projection, repre-
sent a mechanism by which the relative timing of two-whisker stimuli can be encoded by the
population activity in L2/3 barrel cortex, for inter-whisker intervals ranging −3 ms to +3 ms.
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consider how the stimulus is represented in the timing of spikes. Inspection of maps for the spike

timing revealed that in paired-whisker stimulations, spikes were precisely timed to the whisker

stimuli. Moreover the largest responses reflected a combination of the delayed response to the

principal whisker, as well as the superposition of excitatory influences from both whiskers (see

Figure 3.9). Therefore the model predicts that the effects measured by Shimegi et al. (2000)

primarily operate on the first somatosensory-evoked spikes in L2/3.

As evident in Figure 3.7A & B, the model predicts a different profile of recovery for longer

inter-whisker interval stimuli beginning at the adjacent whisker. This could in principle support

an inverted place code for longer inter-whisker-intervals. However, whilst the differences in

response magnitude are clear in plots averaged over many trials, they are not well predicted by

the location of the neuron, and the low spike rates involved (less than 0.1 spike per stimulus)

render a hypothetical inverted place code for longer intervals unreliable.

3.3.7 Introducing response asymmetry via deflection direction

Barrel cortex neurons are selective for the direction in which the whiskers are deflected. The

mechanism thought to underlie directional selectivity in L4 neurons is similar to that which

we have outlined for two-whisker timing, but with distances measured in degrees from the

preferred stimulus direction (Wilent and Contreras, 2005; Puccini et al., 2006). Several studies

have suggested that direction preferences vary systematically within the barrel column, such

that deflection of the principal whisker to the left or right is correlated with increased activity

in neurons located to the equivalent left or right of the barrel column (Andermann and Moore,

2006; Wilson et al., 2010). Therefore we can model the effect of deflecting the whisker in either
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direction by moving the L4 point source for that whisker in either direction in L4.

Accordingly, to represent a deflection of whisker A to the left (away from whisker B) we offset

the point source in L4 that corresponds to whisker A by a fixed distance r = 0.1 mm to obtain

a new source location at {x = −α − r, z = 0}. Deflecting whisker A to the right means

moving the point source to {x = −α + r, z = 0} and similarly deflecting whisker B to the

left or right means moving the second source to {x = α ∓ r, z = 0}. For two whiskers and

two deflection directions, possible combinations are both deflections to the left (leftwards), both

right (rightwards), A left & B right (outwards), and A right & B left (inwards). Results obtained

from the model in these conditions are summarised in Figure 3.10.

For the analysis shown in Figure 3.2, Shimegi et al. (2000) deflected both whiskers to the left,

and so we consider the leftwards condition first (Figure 3.10A). Conditions leftwards and right-

wards produce symmetrical effects and so we only show results for the former. In the leftwards

condition, the relative projections, distances, and geometry are identical to the case where the

stimulus originates from the barrel centers. However, each projection is shifted to the left, and

so each neuron inherits the input timing of that located 0.1 mm to the right. As a result the

effects are still symmetrical but they are symmetrical about a new midline that is shifted to the

right at x = 0.1 mm. When we average the data across groups defined in terms of the original

midline at x = 0, as in Figure 3.10A, we observe systematic asymmetries in the results. The

facilitatory peak in the above A group is increased, that in the septal group is shifted towards

negative inter-whisker intervals, and the peak in the above B group is decreased. Thus by intro-

ducing a topology associated with the stimulus deflection direction, the model can account for

each of the previously unexplained observations in the original data.
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Figure 3.9. Analysis of spike timing. Spike histograms were constructed for neurons at dif-
ferent locations in x (shown in successive panels). In each panel, rows correspond to different
inter-whisker deflection intervals (IWI), and columns show progressive simulation time. Each
pixel shows the average spike count, across 5000 trials, in a 1 ms window. Histograms are
aligned by IWI such that white ticks indicate the onset of the influence of whisker A (the first
of which is labelled tA in the first panel), and grey ticks indicate the onset of the influence of
whisker B (labelled tB). Specifically, ticks are at tA = IWI+β/v+ and tB = β/v+, which is the
time at which excitation from each whisker registers at the neuron closest to the corresponding
input source (at x = ±α). In general, neurons spiked at low rates, in time with the influence
of the closer whisker (diagonal versus linear trends for x < 0 or x > 0 respectively). For
neurons located around the midline additional spikes occurred in time with the second whisker
deflection. Interestingly, in many cases additional spikes occurred in the millisecond before
the influence of the second whisker, indicating a delayed influence of the first. The maximum
average spike count was 0.82 spikes per stimulus at x = 0 mm and IWI = 0, in the millisecond
following the influence of whisker B.



98 A place code for inter-whisker timing?

This account is also consistent with the observations of Shimegi et al. (2000) and Kida et al.

(2005) (but not Hemelt et al., 2010), that preferences for the deflection direction of the principal

whisker are strongly correlated with those for the adjacent whisker deflection direction, and

with the deflection direction evoking facilitatory interactions when both are deflected in that

same direction at short intervals.

Predictions of the model for the two stimulus conditions not yet tested experimentally, inwards

and outwards, are shown in Figure 3.10B and Figure 3.10C. Deflected towards one another (Fig-

ure 3.10B), as may occur when the whiskers encounter a concave stimulus shape, the two stimuli

should be represented in the two adjacent sides of the corresponding barrels. This configuration

effectively shortens all connection distances, and expands the zone in which both excitatory

inputs precede both inhibitory inputs across x. Thus the facilitatory interactions are distributed

more broadly across the population, and we would expect to see more similar facilitatory peaks

amongst the three neuron groups. Conversely if the two whiskers are deflected away from one

another (Figure 3.10C), as may occur when the whiskers encounter a convex stimulus shape or

during divergent whisking movements (Sachdev et al., 2002), inputs originate from distal sides

of the barrels. This configuration squeezes the zone in which we expect to see facilitatory inter-

actions with respect to x, and concentrates them under a single peak in the septal neuron group.

Demonstration of effects to the contrary could be used to falsify this aspect of the model.
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Figure 3.10. Direction-specific interactions. There is evidence that leftward or rightward
deflections of the principal whisker tend to excite L4 neurons situated on the left or the right
of the barrel respectively. Therefore to simulate the expected effect of deflecting the whiskers
in different directions, we offset the center of activity in the model L4 by ±0.1 mm. A As in
Shimegi et al. (2000) both whiskers were deflected to the left, as indicated by the pairs of arrows
above each plot. The relationship between inter-whisker-interval and neuron location is the
same but shifted for increasing intervals to neurons closer to barrel A. The resulting asymmetry
is of the same form as that in Figure 3.2, increasing the secondary peak in above A neurons,
decreasing that in the above B group, and shifting the septal group interval tuning negatively. B
If the whiskers are deflected toward each other, intra-cortical distances are effectively shortened
and the model predicts that facilitatory interactions will be distributed more evenly across L2/3.
C Conversely if the whiskers are deflected away from each other, distances are increased and all
facilitatory interactions are confined to the septal region. The conditions represented in panels
B and C have not yet been conducted experimentally and could therefore be used to falsify the
model.
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3.3.8 An approximate non-linear neuron model reproduces the facilita-

tory interactions

The particular neuron model from which the previous results have been derived was chosen

to allow comparison of the results with real biological neuron data. We have shown how the

sequence of synaptic inputs due to distance-dependent delays can change the output of the neu-

ron, but we have not yet determined the origin of the non-linear effects underlying the observed

facilitatory interactions, i.e., where the facilitation index deviates from unity. To understand this

better we tried to reproduce the effects using as simple a neuron model as possible.

We found that all of the trends in the full model simulations could be reproduced using a simple

linear filter neuron model. The reduced model is:

dV

dt
=

1

τm

(∑
s

gsPs − V

)
(3.15)

where gs = 1 or gs = −0.5, with output squashed using the logistic output function:

F (V ) =
(
1 + e(0.2−V )/0.04

)−1
(3.16)

The range of facilitatory interactions can be seen if we interpret either the maximum or the

mean value of F (V ) over time as the spiking probability for each stimulus trial.
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The logistic output function performs the role of the thresholding operation in the full model.

Its form in the full model is affected primarily by the noise, which has a similar effect to the

slope of the sigmoid (slope parameter = 0.04), and the relationship between the firing threshold

and the synaptic weights and reversal potentials, which essentially sets the inflection point of

the sigmoid (inflection point = 0.2).

Because both neuron models yield comparable stimulus-evoked interactions, we can be confi-

dent that the thresholding non-linearity in the full neuron model, as approximated by the sig-

moidal output function in the simpler neuron model, can account for the observed non-linear

effects. Comparing the two models in terms of the spike probability is valid in this instance

because we observed that in the full model neurons generate less than one spike per stimulus.

3.4 Discussion

We have demonstrated how a model of the geometry of projections within the barrel cortex can

generate a range of responses to paired whisker-deflection stimuli that are similar to responses

measured in rat L2/3 by Shimegi et al. (2000). The main finding is that distance-dependent

delays on projections from L4 to L2/3 can affect how inputs from adjacent whiskers are inte-

grated by a non-linear neuron, in a way that is dictated by the location of the neuron relative to

the underlying columnar structure. The data against which the model was validated (Shimegi

et al., 2000) suggest that neurons located between the barrels combine whisker inputs supralin-

early through a small range of inter-whisker deflection intervals (IWI), and when the principal

whisker deflection is preceded by deflection of the adjacent whisker at longer IWIs the inputs
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are combined sublinearly. In the model a discrepancy between the arrival times of excitatory and

inhibitory inputs can account for each of the observed trends in the available electrophysiologi-

cal data. According to our hypothesis, this discrepancy is governed by the lateral displacement

between the input neurons and their targets. Therefore the discrepancy is a continuous function

of the location of the neuron, and hence the range of non-linear responses is mapped contin-

uously across the surface of L2/3. As a consequence, the model predicts that a range of short

IWIs are mapped continuously across a zone of supragranular barrel cortex located between

the barrel centers. This mapping constitutes a place code for the timing of the two-whisker

stimulus, wherein the stimulus motion velocity (i.e., the IWI) systematically shifts the location

of neurons that spike with the greatest probability.

It is useful to consider these findings in the context of the more general problem of encoding

sensory stimulus motion. According to Borst and Egelhaaf (1989), the general requirements

for a motion velocity detector are threefold. First, two samples or more are required to specify

a motion vector, so the detector must receive two or more input signals. Second, the inputs

must be asymmetrically processed, such that swapping two inputs registers a change in the

output. Third, the inputs must be combined in a non-linear fashion in order that the response to

stimuli in different directions is not equal to the mean response over all directions. Our results

suggest that responses of individual L2/3 barrel cortex neurons satisfy each of these conditions.

Inputs arising from adjacent whiskers and originating from foci in adjacent cortical columns are

asymmetrically delayed in their projection to supragranular cortex. The inputs are integrated

by individual L2/3 neurons by the non-linear processes involved in spike generation. Hence

we propose that one function of the the L4 to L2/3 projection is to encode the stimulus motion

velocity defined in terms of inter-whisker contact times.
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3.4.1 Simplifications and assumptions of the model

A major simplification we made in order to construct the model was to explicitly simulate only

four synaptic contacts per neuron, whereas real L2/3 neurons receive hundreds of synaptic con-

tacts originating from L4 (Beaulieu, 1993). Where possible, the parameters of the full neuron

model were derived from existing models or electrophysiological data. However to compensate

for the decrease in afferent drive, the spiking threshold was lowered from a realistic −60 mV

to a low −65 mV. In the final results section we showed that the behaviour of the model is

not sensitive to the form of the neuron model chosen, but that each of the trends in the electro-

physiological data can be reproduced using a simple sigmoid output function neuron, as used in

previous models of the barrel cortex (Kyriazi and Simons, 1993; Pinto et al., 1996).

Another simplification was to relate the delay on each projection to the straight-line distance

between the input and its target. This choice was motivated by several studies reporting an

approximately linear relationship between the straight-line inter-soma distance and the associ-

ated delay (Armstrong-James et al., 1992; Feldmeyer et al., 2002; Helmstaedter et al., 2008).

However, the axons of L4 neurons tend to project vertically into L2/3 before turning to branch

laterally (Petersen et al., 2003). Therefore it may be appropriate to consider the Manhattan

distance, the vertical plus the horizontal distance, defined in the model by rewriting Equations

3.1-3.2 to be of the form dA(x) = |x+α|+β. This change has the effect of changing the hyper-

bolic relationship between x and the synaptic onset latency into a piecewise linear relationship.

Each of the zones of synaptic input sequence is maintained in x–IWI space; hence using the

Manhattan distance to compute synaptic input latencies does not change the form of the main

results when they are recalculated using this alternative geometry.
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The model relies implicitly on the assumption that connections between L4 and L2/3 are organ-

ised on a finer spatial scale than that defined by the column boundaries, such that the location

of the L2/3 neuron determines its response properties. Evidence from several studies supports

this assumption. For example calcium transients measured between pairs of neighbouring L2/3

neurons located above the barrel centers are more highly correlated than those between pairs

of distant neurons located above the barrel borders (Kerr et al., 2007). These data suggest that

L2/3 neurons receive input from particular regions of the L4 barrel according to their tangential

location in the column (Kerr et al., 2007). More evidence for a sub-columnar spatial resolu-

tion of connections is provided by a correlation between the maximally effective direction of

whisker deflection for L4 and L2/3 neuron pairs in vertically aligned sub-regions of the barrel

column (Andermann and Moore, 2006). Similarly, connected thalamic and L4 neuron pairs

share tuning to the whisker deflection direction (Bruno et al., 2003).

The mechanism by which the model accounts for tuning to inter-whisker interval is essentially

the same as that thought to underlie tuning for the deflection direction in L4 (Swadlow, 2002;

Wilent and Contreras, 2005; Puccini et al., 2006; Higley and Contreras, 2007). In both cases

the relative latency of inhibition creates a short ‘window of opportunity’ in the post-synaptic

neuron, in which excitatory input representing the preferred stimulus can evoke a response.

The dependency of the preferred inter-whisker interval on the connection geometry raises the

intriguing possibility that tuning for deflection direction in L4 is inherited from the geometry

of the thalamo-cortical projection. A reported topographic organisation of directional prefer-

ences about the barrel center in L4 could be inherited from a map of direction preferences

measured along the major anatomical axis of the thalamic input barreloid (Timofeeva et al.,

2003). This idea seems plausible given that thalamocortical axon conduction times range from

0.3 ms to 1.3 ms (Simons et al., 2007), and that latencies ranging 0.5 ms to 1.4 ms can account
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for responses to preferred and anti-preferred stimuli respectively (Wilent and Contreras, 2005;

Puccini et al., 2006).

To account for the data of Shimegi et al. (2000), the model requires that at short inter-soma dis-

tances excitation precedes inhibition and for longer distances inhibition precedes excitation (see

Figure 3.11). This we attributed to differences in axonal conduction velocity on excitatory and

inhibitory projections into L2/3. The origin of the faster inhibition is unlikely to be mediated

by L2/3 interneurons, because excitatory connection speeds from L4 to L2/3 interneurons are

similar to those from L4 to L2/3 excitatory targets (compare Helmstaedter et al., 2008 and Feld-

meyer et al., 2002 respectively). The origin is also unlikely to be thalamocortical, because L4

interneurons and L4 excitatory targets are excited after comparable latencies (Beierlein et al.,

2003), although interneurons are excited via slightly thicker, shorter, and thus faster thalamo-

cortical axons (Kimura et al., 2010). Therefore we suggest that differences in speed may be

attributable to morphological differences between the axons of L4 inhibitory and L4 excitatory

neurons; L4 interneurons are known to branch into L2/3 and extend well beyond the boundary

of the vertically aligned barrel (Porter et al., 2001). To our knowledge, the axonal conduction

velocities for this connection have not been directly measured. Therefore the critical quanti-

tative prediction, that the L4 inhibitory axonal conduction speed must be faster than the L4

excitatory speed, can be used to validate the model in a future experiment.

Because each input source in L4 represented the deflection of one whisker, the present model

assumed no contribution of sub-cortical mechanisms to the integration of multi-whisker signals.

To a first approximation, the barrels in L4 can be considered as functionally separate processing

units (Woolsey and van der Loos, 1970; Armstrong-James et al., 1992). Moreover, although

non-linear multi-whisker responses can be evoked in L4 neurons (Simons, 1985; Simons and
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Figure 3.11. Constraints on the timing of axonal propagation. The delay on the onset
of inhibition, c, required to make excitation and inhibition from the same whisker arrive co-
incidently, is plotted for varying inhibitory connection speeds v− at three locations in L2/3.
Solutions to the equation c = d/v+− d/v− are plotted for three different L4 to L2/3 inter-soma
distances: First to the home barrel center d = β (solid line), second to the adjacent barrel center
d =

√
(2α)2 + β2 (dashed line), and third to two barrel centers away d =

√
(4α)2 + β2 (dotted

line). All other parameters were fixed at the values reported in the main text (v+ = 0.1 m/s,
α = 0.2 mm, and β = 0.4 mm). For choices of the parameters v− and c that are above a line,
inhibition will arrive at L2/3 neurons above the corresponding barrel center later than excitation
evoked by the same whisker, and vice versa for parameters that fall below that line. The cross
indicates the choice of v− and c used for the simulations in the main text, which make excitation
and inhibition coincident for neurons located approximately one barrel away from the source.
Measurements of v− and c below the solid line would falsify the model because no facilitatory
zone and hence no map for the inter-whisker interval could exist in L2/3. Values much greater
than the dashed line would map inter-whisker intervals between adjacent barrel centers with
poor coverage.
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Carvell, 1989; Brumberg et al., 1996), much of the effect may be due to intra-cortical rather

than thalamocortical mechanisms (Mirabella et al., 2001), which are most pronounced in non-

granular layers (Drew and Feldman, 2007; Jacob et al., 2008), and which would shape responses

only after the first stimulus-evoked spikes had been determined.

However, we note that a recent study measured multi-whisker receptive fields in L4 neurons

that were effectively isolated from cortico-cortical influences (Roy et al., 2011). This sug-

gests a thalamo-cortical component of multi-whisker integration that is neglected in the present

model by assuming a mono-whisker afferent projection into L4. Roy et al. (2011) found that

the latency of L4 responses to non-principal whiskers increases with the distance of the non-

principal whisker from the principal, which suggests that latency differences associated with

the thalamo-cortical projection could play a similar role to the L4-L2/3 projection in estab-

lishing inter-whisker interval tuning in L4. The contribution of sub-cortical mechanisms to

multi-whisker integration should not be overlooked; an extended version of the model will be

required to explore this important issue in more detail.

By appealing to differences in axonal path lengths, the present model has not ruled out poten-

tial contributions of dendritic mechanisms to the encoding of the stimulus velocity. In contrast

to the Jeffress model, the classic model of Rall (1964) shows how different synaptic input se-

quences can lead to different activity in the cell if synaptic potentials are evoked in particular

sequences along the length of dendritic cables. As a temporal coding mechanism for veloc-

ity tuning, Rall’s original passive formulation of the model requires dendrites with very large

electrotonic length to support meaningful velocity discriminations. However, recent glutamate

uncaging experiments activating synapses along the dendritic length have revealed a more active

interaction between synapses when they are sequentially activated (Branco et al., 2010). These
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experiments have to some extent confirmed Rall’s central prediction for sequence coding, in

L2/3 cortical neurons with dendrites of regular electrotonic lengths. Whether these results re-

late to velocity tuning for multi-whisker stimuli is at present unclear. The critical question is

whether the relative placement of synapses along the dendritic length corresponds with the rel-

ative placement of the neuron between the barrels, i.e., does a L2/3 neuron closer to barrel A

receive input from barrel A afferents at synapses located systematically closer to the soma than

those from barrel B? Whilst this is certainly plausible, distance dependent axonal delays and

dendritic non-linearities may both interact to enhance the representation of input velocity, and

thus axonal and dendritic models may represent complementary rather than competing theories.

3.4.2 Extending the model

Tactile stimuli which include three or more whiskers cause suppressive interactions across barrel

cortex which serve to enhance the representation of complex multi-whisker deflection patterns

(Ghazanfar and Nicolelis, 1999; Mirabella et al., 2001; Drew and Feldman, 2007; Jacob et al.,

2008). We investigated how additional whiskers are represented according to the model, by

simulating the effect of a stimulus moving at various speeds through a row of whiskers which

included two, three, four, or five whiskers (see Figure 3.12). When the whiskers were deflected

simultaneously, the resulting activity across L2/3 was widespread and large and formed a sym-

metrical pattern, but when the whiskers were deflected consecutively the activity decreased

across L2/3 in the direction corresponding to the stimulus motion. In agreement with previous

studies the model predicts the existence of an activity gradient that is steeper for slower stimulus

motions.
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Figure 3.12. Predicted responses to additional
whiskers. Responses across a large region of
barrel cortex were generated by deflecting in-
creasing numbers of whiskers. The top panel
shows the mean spike count, over 5000 trials, to
deflection of whisker A followed by whisker B
after intervals ranging 0 ms to 4 ms (see legend).
Ticks along the x–axis mark the location of the
barrel centers, at 2α spacing, for columns cor-
responding to whiskers A to E in a row on the
snout. The top panel is comparable with Fig-
ure 3.8 from the main text. Successive panels
include deflections of additional whiskers, each
deflected a fixed time after deflection of the ad-
jacent whisker to the left. When three or more
whiskers are deflected simultaneously (0 ms in-
terval) the response resembles the superposition
of adjacent two-whisker tuning functions, punc-
tuated by additional peaks. When stimulated
consecutively, the two-whisker tuning function
between each pair of columns is modulated by
an overall response decrease in the direction cor-
responding to the stimulus movement direction.
Thus, when additional whiskers are included by
tactile stimuli, the model predicts an overall trend
for responses to decrease in the direction of the
stimulus movement.
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A previous modelling study suggested that a spatial gradient in the afferent activation of L2/3

could represent the direction of stimulus motion through the whisker field, and that this repre-

sentation in L2/3 would be sharpened by recurrent inhibitory interactions (Wilson et al., 2010).

The present model did not consider recurrent inhibition, which is prevalent in L2/3 (Derdikman

et al., 2003; Kapfer et al., 2007; Sato et al., 2008; Adesnik and Scanziani, 2010), because it

considered primarily how subthreshold inputs interact to generate the earliest spikes in L2/3

(see Figure 3.9). We are currently working on a model which extends the present study and that

of Wilson et al. (2010), to test the hypothesis that regions of contrast in activity due to initial

feed-forward interactions are enhanced by subsequent lateral inhibition. This model will also

explore how stimulus coding might be affected by distance-dependent weights on synaptic con-

nections, as suggested by recent experiments (Derdikman et al., 2003; Adesnik and Scanziani,

2010).

3.4.3 The impact of neural geometry on neural computation

The present simulation results afford an existence proof for a more general hypothesis that the

geometry of projections between neighbouring cortical columns could be useful for encoding

relative inter-sensor motion speed and direction.

In its weakest form the implication of the hypothesis is that interconnection geometry and con-

nection speeds should be considered in detailed cortical microcircuit models if they are to ac-

curately predict the response properties of individual cortical neurons. Given the remarkable

spatial relationship between the whisker and its associated barrel column, it is surprising that,

with the exception of Benusková et al. (1999), Ermentrout et al. (2009) and our own previous
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model (Wilson et al., 2010), connection geometry has not been an important factor in computa-

tional neuroscience models of the barrel system.

In its strongest form the implication is that the cortex could carry out specific computations by

reading out the tangential position of active cortical neurons. This is essentially the same idea

as the place theory proposed by Jeffress (Jeffress, 1948). The principle behind our model and

the Jeffress model are essentially the same. In both, a bank of coincidence detectors receive

input from spatially separated sources after delays governed by the distance from either source,

and thus activity in detectors whose connection delays compensate that of the stimulus motion

reports the stimulus velocity. It remains to be shown whether tactile specialists such as rats and

mice can discriminate adjacent whisker contact times over the range generated in the model,

although emerging techniques are allowing the link between barrel cortex activity and perfor-

mance on tactile discrimination tasks to be explored in unprecedented detail (O’Connor et al.,

2010).

Jeffress’ place theory can be thought of as a specific case of a more powerful computational prin-

ciple, recently termed ‘polychronous wavefront computation’ (PWC; Izhikevich and Hoppen-

steadt, 2009). In PWC terminology, two sources in the Jeffress model specify a one-dimensional

axis through a medium (the axonal web), along which the placement of detector neurons deter-

mines their inter-stimulus interval selectivity. However, sources and detectors can be arranged

in two- or higher- dimensional media, such as the barrel cortex, to perform non-trivial computa-

tions. The barrel cortex, with the precise correspondence between the grid of cortical columns

and the grid of whisker sensors, is an ideal structure in which to investigate the role of neural

geometry in neural computation.



112 A place code for inter-whisker timing?

The simplicity of the current model affords its explanatory power. However, a future study

will be required to verify under what conditions the behaviour of the model is retained, when

many hundreds of neurons and thousands of synaptic contacts are modelled explicitly. The bar-

rel column is currently the target of a number of detailed modelling efforts (Markram, 2006;

Helmstaedter et al., 2007; Sarid et al., 2007; Lefort et al., 2009). Complementing these ap-

proaches, the power of our simple geometric model to explain a series of complex observations

suggests that the geometry of synaptic connections in and between barrel columns should be

considered if we are to understand the function of cortical microcircuitry.



Chapter 4

Tactile discrimination using artificial

whiskers and cortical maps

Chapter summary

The facial whiskers (or ‘vibrissae’) afford natural touch specialists, like rats and mice,

with a rich representation of their immediate surroundings. A number of artificial whisker

technologies are currently being developed to mimic this high-acuity sensory system. How-

ever methods for combining whisker signals have drawn little inspiration from the primary

somatosensory cortex (S1), wherein multi-whisker signals seem to be integrated. Here we

present the first systems-level description of the primary (lemniscal) processing pathway

from the whiskers to their representation in S1. Movement signals were collected using

robot-controlled collisions between physical stimuli of different shapes and an array of

artificial whisker sensors. According to the model, these signals are first i) filtered for

high-velocity movements in particular directions by sub-cortical neurons, then ii) mapped

onto neurons at specific locations in the sensory cortex, and finally iii) integrated between

whiskers, via connection delays that increase with the distances between cortical input and

output neurons. After processing by the model, the whisker movements could be clas-

sified by the tactile stimulus shapes, and motion directions and speeds that caused those

113
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movements, using a simple linear classifier. The model ascribes specific functional roles to

sub-cortical and intra-cortical neural circuitry, derived at each stage from existing neuro-

physiological data.

4.1 Introduction

Tactile specialists like rats, mice, seals and shrews rely on facial whiskers (or ‘vibrissae’) to

mediate information about the shape and motion of tactile stimuli to the sensory brain; Around

thirty-five large whiskers on either side of the face (the macrovibrissae), and many smaller

whiskers around the lip (the microvibrissae), constitute a high-acuity sensor surface (Welker,

1964; Ahl, 1986; Brecht et al., 1997; Towal et al., 2011; see Figure 4.1A). Whisker-mediated

sensing is thought to be important for guiding natural exploration and navigation behaviours

(Mitchinson et al., 2007; Grant et al., 2009; Dehnhardt et al., 2001; Hartmann, 2011; Mitchin-

son et al., 2011), as well as for hunting, foraging and fighting (Vincent, 1912; Ahl, 1986; Anjum

et al., 2006); and, when performing behavioral tasks, multiple whiskers seem to be better than

one (Krupa et al., 2001a; Celikel and Sakmann, 2007). In the lab, behavioural and neurophys-

iological data suggest that rodent whisker systems can discriminate between tactile stimulus

shapes (Brecht et al., 1997; Anjum et al., 2006; Benison et al., 2006; Diamond et al., 2008);

sizes, positions and orientations (Carvell and Simons, 1990, 1995; Polley et al., 2005; O’Connor

et al., 2010); surface textures (Arabzadeh et al., 2005; Ritt et al., 2008); and motion velocities

(Drew and Feldman, 2007; Jacob et al., 2008).

The whisker system is an important model sensory system in modern neuroscience, because in-
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Figure 4.1. The whisker-barrel system. A The whisker system of the tactile specialist Rattus
norvegicus (the Norwegian rat); around 35 large whiskers (the ‘macrovibrissae’) on either side
of the face, and many more around the upper lip (the ‘microvibrissae’) constitute a high-acuity
sensor surface. B A tangential section through rat barrel cortex stained for cytochrome oxidase,
revealing a pattern of ‘barrel’ columns in layer 4; barrels are outlined in white. The layout
of barrels in the cortical sheet maps precisely to the layout of whiskers on the face, such that
adjacent whiskers (for example those traced in blue and red in A) evoke the shortest latency and
greatest magnitude response in neurons of adjacent barrels (highlighted in corresponding blue
and red in B).
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put to the individual sensors (whiskers) can be precisely controlled (Krupa et al., 2001b; Jacob

et al., 2010), and because the spatial layout of the sensor surface is maintained in projections

through the brain to the primary sensory cortex (Woolsey and van der Loos, 1970; Welker and

Woolsey, 1974). The arrangement is such that stimulation of adjacent whiskers on the face

evokes maximal responses in adjacent columns of cortical neurons (Armstrong-James et al.,

1992), known as ‘barrels’ because of their characteristic barrel-like shape. After chemical stain-

ing, the barrels are just about visible to the naked eye, on the surface of the brain, and hence the

primary cortical representation of each individual sensor is easily identifiable and accessible to

the experimenter (see Figure 4.1B).

Inspired by the whisker system, a number of biomimetic whisker sensor technologies have been

developed in recent years (Lungarella et al., 2002; Seth et al., 2004; Russell and Wijaya, 2005;

Solomon and Hartmann, 2006; Kim and Möller, 2007; Gopal and Hartmann, 2007; Pearson

et al., 2007; Sullivan et al., 2011: see Solomon and Hartmann, 2008; Prescott et al., 2009 for

an overview). Computational neuroscience models for processing single-whisker deflection

signals have been proposed; at the level of the whiskers (Birdwell et al., 2007) and mechanore-

ceptors (Lottem and Azouz, 2011), at the level of the primary afferent neurons that innervate

the whisker follicles (Mitchinson et al., 2004, 2008), and at the level of thalamo-cortical loops

(Ahissar, 1998). However, biological mechanisms for integrating signals arising from multi-

ple whiskers are not well understood (but see Kyriazi et al., 1996; Mitchinson et al., 2006;

Gopal and Hartmann, 2007), despite a wealth of neurophysiological data describing the neu-

ral correlates of controlled multi-whisker stimulations at the level of cortical barrels (Simons,

1983, 1985; Shimegi et al., 1999, 2000; Kida et al., 2005). The aim of the present study is

to collate what is known from the neurophysiology about multi-whisker integration, into the

first systems-level description of the major (lemniscal) processing pathway from the whiskers
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to their representation in and between the primary cortical barrels.

Two computational neuroscience models, developed recently in our lab, have suggested how

whisker movement primitives are represented in the barrel cortex. These movement primitives

are the direction in which a single whisker is deflected (a spatial stimulus parameter; Wilson

et al., 2010, see chapter 2), and the time interval between multi-whisker deflections (a temporal

stimulus parameter; Wilson et al., 2011, see chapter 3). According to these previous models, the

geometry of connections between cortical columns plays a key role in determining the spatial-

temporal receptive fields of neurons at different locations on a cortical sheet. The present model

uses, and extends, the principles of neural interconnection geometry identified in these previous

models, to represent a variety of multi-whisker movement patterns as activity patterns on a

cortical sheet.

We show that the shape, direction and speed of a moving tactile stimulus can be recovered from

the cortical sheet representation of multi-whisker movement patterns, collected using an array

of artificial whisker sensors that were stimulated by a robot. The results therefore validate, in

a real-world task, the neural model, and in particular the cortical encoding of relative whisker

deflection times proposed in Wilson et al. (2011), on which the model architecture was based.
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4.2 Methods and Materials

4.2.1 Overview

An array of 12 artificial whisker sensors were stimulated using tactile stimuli of different shapes,

which were moved through the array by a table-top XY positioning robot. Whisker signals

resulting from 2,000 collisions between the tactile stimuli and the array of whiskers were col-

lected; 5 tactile stimulus shapes, 10 movement speeds, 8 movement directions, and 5 realisa-

tions of each stimulus combination. Signals were processed by our computational neuroscience

model of the whisker-barrel processing pathway. According to this model, a population of sub-

cortical neurons each elicit spikes when they register a high-velocity movement of the preferred

whisker in a preferred direction. Subcortical spikes are relayed to a cortical sheet representing

layer 4 (L4) barrel cortex, with neurons positioned on the sheet at locations that reflect the spa-

tial pattern of whisker movements. Finally signals from multiple whiskers are integrated over

time, via intra-cortical signalling delays to layer 2/3 (L2/3) barrel cortex that increase with the

distance between pre-synaptic (L4) and post-synaptic (L2/3) cortical neurons.

An important aim of the study is to establish a baseline measurement of the information about

the tactile stimuli that is retained by the mapping from whisker signals to the responses of

model L2/3 neurons; It is important to note that the aim is not to optimise a system for the

task of recognising tactile stimuli. The baseline measurement is taken to be the performance

of a simple linear classifier at discriminating between tactile stimuli based on the model L2/3

population responses. Serving as a control, against which to evaluate the information retained

by the mapping from the whiskers to L2/3 responses, performance of the simple linear classifier
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is compared with that obtained using inputs generated via an analogous mapping based on cross-

correlation from signal processing. The following sections present the details of the cortical

model, with particular reference to Figure 4.2, and they present the performance measurements

that were applied to the cortical and control mappings.

4.2.2 Apparatus

Twelve artificial whisker sensors were arranged in a 4 columns by 3 rows array, with the whisker

shafts pointing vertically (Figure 4.3). The whiskers were stimulated using 5 differently shaped

perspex edges, which served as tactile stimuli. Tactile stimuli were suspended from a platform

above the whisker array so as to make contact at 2− 3 mm from the whisker tips. The platform

was translated by a table-top XY positioning robot (Yamaha RoboticsTM, model PXYX; see

Evans et al., 2010), with two motors controlling translation of the stimulus on orthogonal axes

(X and Y ) on the table-top. We will use a notational convention wherein real-world physical

quantities, such as distances and time, are denoted by capital letters; the robot movement is

repeatable to an accuracy of ±0.01 mm, so for convenience we will treat the requested robot

movement as the actual robot movement, and thus also denote robot movement variables using

capitals.

Thewth whisker is identified by its table-top coordinate, byXw ∈ {−1.5D,−0.5D, 0.5D, 1.5D}

and Yw ∈ {−D, 0, D}, whereD = 16 mm is the spacing between adjacent whiskers of the same

column or row, and the origin is at the center of the array. Tactile stimuli were a straight edge,

and concave and convex semi-circular edges of radius 33 mm or 55 mm. These shapes can be

described by a single parameter R, equivalent to the semi-circle radius, which takes negative
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Figure 4.2. Model overview. A Robot-controlled stimulation of an array of artificial whisker
sensors, viewed from above. The large convex stimulus edge is shown in its starting position
to the northwest of an array of 4 by 3 whiskers, with the subsequent motion direction indicated
by the large arrow. B Mechanism for measuring whisker deflections on the X–axis. When the
whisker is at rest (left), a magnet at the whisker base (dark grey rectangle) is aligned to a Hall-
effect sensor in the casing below (white rectangle; alignment indicated by dashed line). Upon
contact with the stimulus (solid black), the whisker rotates to the right in its casing (black arcs),
displacing the magnet to the left and yielding a positive voltage. Typically, at the contact offset
the whisker oscillates at high frequency (ringing), as reflected in the recorded whisker deflec-
tion signal shown above (x(t)). C Encoding whisker deflections. Eight, directionally sensitive
thalamic neurons (coloured circles indicate the deflection preference) respond maximally when
the whisker is deflected in their preferred direction at high-velocity; f(.) is largest for neurons
aligned to the whisker deflection at 7π

4
(dotted curve), and these neurons are more likely to

reach the spiking threshold. D Architecture of the cortical model. Pre-synaptic L4 neurons
inherit the stimulus selectivity of their thalamic counterparts, and are arranged in L4 so that
whisker identity and deflection direction are somatotopically represented. The L4 connectivity
between L4 and L2/3 is all-to-all but we show a few connections to one example L2/3 neuron,
of length given by δ(.) (see Equation 4.5). A response in L2/3 to this stimulus (S = 7Smax

10
; see

Equation 4.1), consisting of individual neuron spike probabilities (v′j; see Equation 4.8) ranging
from 0 to 0.7 as shown in the colour key.
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Figure 4.3. Setup and apparatus. A Twelve artificial whisker sensors were deflected by
the movement of a straight edge tactile stimulus (R = ∞, shown, is a transparent rectangle)
suspended by a pole from a platform attached to a table-top XY –positioning robot (X and Y
axes correspond to the two arms labelled ‘YAMAHA’; YamahaTM). The stimulus was rotated
on the pole so that its edge was perpendicular to the forthcoming stimulus movement (Θ = 5π

4
,

or from-northeast-to-southwest in this example). B The whiskers were arranged in a 4 columns
by 3 rows array; each whisker was designed to interface independently with a standard LegoTM

base. Multi-whisker deflection signals were collected via a custom-made electronic interface
with a commercial LabJackTM data acquisition card, and stored on a desktop computer.
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values when the semi-circle is oriented so as to be convex relative to the whiskers, positive val-

ues when it is concave, or infinite when it is a straight edge. The five stimulus radii were thus

R ∈ {−33,−55,∞, 55, 33}, expressed in mm.

Before each robot movement began, the stimulus was rotated on the robot platform (by hand)

so that its edge was oriented perpendicular to the forthcoming robot movement direction. Eight

categories of robot movement direction were used; Θ ∈
{

1π
4
, 2π

4
, ..., 8π

4

}
, with angle Θ increas-

ing anticlockwise from the positive X–axis. For example Θ = 7π
4

describes a movement of the

stimulus from a northwest to a southeast location, as depicted in Figure 4.3A.

The maximum movement speed allowed by each robot motor was Smax = 720 mm/s. Ten

categories of scaling on this maximum speed were used; S ∈
{

1Smax

10
, 2Smax

10
, ..., 10Smax

10

}
. Due

to intrinsic characteristics of the robot control system, the scaling was applied to the robot

motors controlling translation in X and Y independently, thereby increasing the actual speed of

movement S ′ = S(| cos Θ|+ | sin Θ|) by a factor of
√

2 for diagonal trajectories.

The geometry of whisker-stimulus interactions can be summarised by the following model,

which describes the (relative) time at which the stimulus edge should make first contact with

the wth whisker. Conceptually, we first rotate the coordinates of the whisker array to align

the whiskers to the direction of stimulus movement, defining Θ′ = −Θ − π
2
, and obtaining

X ′w = Xw cos Θ′ − Yw sin Θ′ and Y ′w = Xw sin Θ′ + Yw cos Θ′. Then, to represent the stimulus

edge, we draw a semi-circle on the new Y ′–axis, and divide the distance of each whisker from

the semi-circle, along Y ′, by the robot movement speed, to obtain relative contact times:
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Tw(R,Θ, S) =
sgn(R)

√
R2 −X ′w2 − Y ′w
S ′

, (4.1)

where sgn(.) is the signum function.

4.2.3 Measuring whisker deflections

Each artificial whisker sensor operates like a traditional computer joystick (Figure 4.2B). When

the whisker is moved from its resting axis, a magnet attached to its base is displaced relative to

a Hall-effect sensor mounted in the casing below (Sullivan et al., 2011, see also Evans et al.,

2010). When the whisker is moved to the right, the magnet moves to the left, and this registers

as a positive voltage on a sensor aligned to the X–axis. Movement of the whisker to the left

results in a negative voltage on the X–axis sensor, and equivalent whisker movements forwards

or backwards result in positive or negative voltages respectively on a sensor aligned to the Y –

axis. When the whisker is at rest (i.e., pointing vertically), zero voltage is registered on both

axes. Voltages on each axis Vx,w(t) and Vy,w(t) were sampled at 2 kHz and relayed to a desktop

computer via a custom-made multiplexing circuit, interfaced with a LabJackTM data acquisition

card (model UE9, http://labjack.com).

The voltages, Vx,w(t) and Vy,w(t), are approximately linearly related to the angles of deflection

of the whisker, w, parallel with the X and Y axes respectively (Sullivan et al., 2011). For

simplicity, we assume linearity, and define the whisker deflection signals as xw(t) = Vx,w(t)

and yw(t) = Vy,w(t). The switch to lower case corresponds to the transition from physical
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space to model space.

An initial validation of the dataset required a description of the variability between the sensor

measurements and those that might result from a noiseless methodology and/or apparatus; the

variability should indicate where systems for recognising the tactile stimulus parameters may

fail. To this end, we estimated time differences between whisker deflections ∆tab, for
(
12
2

)
= 66

pairs of whiskers labelled a and b, as the time-lag where the cross-correlation between the

deflection magnitudes of whiskers a and b was maximal. We note that this analysis requires

no a priori assumption about the deflection signals, unlike alternatives that might compare the

times at which particular features in the signals occur; e.g., by comparing arbitrary threshold

crossing times. Estimates were compared to those expected based on Equation 4.1, using either

the standard deviation (σ) or mean deviation (µ) between ∆tab and Ta − Tb.

4.2.4 Subcortical pre-processing of whisker movements

Neurons in the thalamic ventral posteromedial nucleus (VPM), which provide the main afferent

drive to the barrel cortex, can be categorised in terms of their spatial-temporal receptive fields;

they will spike maximally in response to a specific profile of movement on a particular combi-

nation of whiskers (Petersen et al., 2008). VPM neurons of one category spike selectively when

a particular whisker, known as the principal whisker, is deflected at high velocity in a preferred

direction (Petersen et al., 2008; Bale and Petersen, 2009). To model the differential-filtering

operation performed by these neurons (Figure 4.2C), we first compute:
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ẋw(t) =
10∑
k=1

xw(t− kτ)−
20∑

k=11

xw(t− kτ), (4.2)

where the integration time-step was τ = 0.5 ms, and the width of the filter (10 ms) removes the

high-frequency component of the signals. A similar operation is applied to obtain ẏw(t), and

ẋw(t) and ẏw(t) are converted to polar coordinates to obtain the deflection magnitude ṙw(t) and

the deflection direction θ̇w(t). Next, the (binary) occurrence of spikes in 8 thalamic neurons

per whisker, indexed by i, and with preferred deflection directions θ̂i ∈
{

1π
4
, 2π

4
, ..., 8π

4

}
, is

determined by:

f(w, i, t) = H

(
ṙw(t)

eα cos(θ̇w(t)−θ̂i)

eα
− β

)
, (4.3)

where H(.) is the Heaviside step function, α = 20 sets the directional selectivity of the thalamic

neuron, and β = 0.2 sets the binary spike threshold. Finally, a record of the time since the most

recent spike is maintained for each thalamic neuron at runtime. Spikes occur when the velocity

of the signal, in the direction preferred by the neuron, changes from being below threshold to

above threshold, i.e., at the rising edge of the signal according to:

t′w,i(t) =


0 if f(w, i, t)− f(w, i, t− τ) = 1

t′w,i(t− τ) + τ else

, (4.4)

where t′w,i(0) =∞. For Equation 4.4, and hereafter, the integration time-step was τ = 5 ms.
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4.2.5 Mapping whisker deflections to response patterns in the barrel cor-

tex

At the scale of cortical columns, activity in the barrel cortex reflects the spatial arrangement

of stimulated whiskers of the face (Welker, 1964; Woolsey and van der Loos, 1970). At the

sub-columnar scale, several studies (Andermann and Moore, 2006; Tsytsarev et al., 2010; Kre-

mer et al., 2011), and results of a computational model developed in our lab (Wilson et al.,

2010), have suggested that the representation of the whisker deflection direction varies sys-

tematically within the barrel column, such that deflection of the principal whisker toward an

adjacent whisker selectively activates neurons located closer to the corresponding adjacent bar-

rel. At the inter-columnar scale, several studies (Shimegi et al., 1999, 2000; Armstrong-James

et al., 1992; Feldmeyer et al., 2002; Helmstaedter et al., 2008), and results of a computational

model developed in our lab (Wilson et al., 2011), suggested that layer 2/3 (L2/3) barrel cortex

neurons receive synaptic inputs after delays proportional to the straight-line distance of the cell

body from regions of each barrel in layer 4 (L4) that correspond to the direction in which the

principal whisker is deflected. Based on these two models, and in particular by extending the

model of Wilson et al. (2011) to represent L2/3 activity patterns on a full cortical sheet, we

construct here a simplified intra-cortical connection geometry to simulate the functional con-

nectivity implied by these observations (see Figure 4.2D).

According to the model, L4 neurons directly inherit their tuning to a particular whisker stim-

ulus from a single thalamic neuron. Therefore L4 neurons are also indexed by a preferred

whisker w and a preferred deflection direction i, and L4 spike times are generated according to

Equation 4.4. In the model, the only difference between the thalamic and L4 neurons is in an
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ordered spatial layout of L4 neurons across a cortical sheet. L4 neurons are located in the plane

(χ, γ, ζ = 0), which represents the plane tangential to the surface of the brain. The axes of the

cortical χγ–plane reflect that of the physical XY –plane, such that the center of the barrel col-

umn corresponding to the wth whisker is located at coordinates χw ∈ {−1.5, 0.5, 0.5, 1.5} and

γw ∈ {−1, 0, 1}. For each whisker an outwardly-radiating pinwheel arrangement of eight neu-

rons is specified in L4, according to the preferred deflection directions of the L4 neurons, such

that the L4 neuron is located at coordinates (χw,i = χw + ρ cos θ̂i, γw,i = γw + ρ sin θ̂i, ζ = 0),

where ρ = 0.25 is the distance of the neuron from the corresponding barrel center.

A sheet of 120 by 90 L2/3 neurons L2/3 (indexed by j) are spaced at regular intervals on a

two-dimensional grid in a plane parallel to (and directly above) L4, at (χj ∈ [−2,+2], γj ∈

[−1.5,+1.5], ζ = 1). The intra-cortical geometry is expressed in Equation 4.5, which describes

the straight-line distance between the pre-synaptic L4 neuron and the post-synaptic L2/3 neu-

ron:

δ(w, i, j) = η
√

(χw,i − χj)2 + (γw,i − γj)2 + 1. (4.5)

The scaling factor η = 0.4 mm is used to simulate the dimensions of cortical tissue, based on

the spacing between cortical columns in the barrel cortex. According to Equation 4.5 the model

assumes strong relationships between the physical space in which the whiskers exist, whisker

deflection signal space, and the physical space in which the neurons exist. Nevertheless, we

use different notation (e.g., X , x, χ) for coordinates in each space to highlight that the relations

between these spaces are not necessarily simple.
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Parameters for the temporal processing of the signals reported in the remainder of this section

were taken from our biological-scale model (Wilson et al., 2011), and then scaled by a factor

of ten to reflect the larger dimensions of the artificial whisker array and an expected increase in

typical inter-whisker deflection intervals, compared with biological whisker arrays. According

to the model, the time at which a synaptic potential arrives at a L2/3 neuron depends on whether

the potential originated from an excitatory or an inhibitory L4 neuron, and we define the time

since the onset of the pre-synaptic conductance change as:

λ(w, i, j, t) = t′w,i(t)− δ(w, i, j)/s− c, (4.6)

where s = 10 mm/s is the axonal propagation speed for an excitatory connection (i.e., 100 mm/s

in the biological scale model) and s = 30 mm/s for an inhibitory connection and c = 37 ms

is a constant synaptic onset delay for inhibitory connections (i.e., 3.7 ms in the biological-scale

model) and c = 0 for excitatory connections. The time-course of each synaptic potential is

modelled as a difference of two exponentials, by:

p(λ, t) = b(e−λ/τ1 − e−λ/τ2)H(λ), (4.7)

where b is a normalisation term ensuring that the potential peaks at unity (see Dayan and Abbott,

2001; Puccini et al., 2006; Sarid et al., 2007; Wilson et al., 2011). For excitatory synapses

τ1 = 10 ms and τ2 = 2.2 ms and for inhibitory synapses τ1 = 40 ms and τ2 = 30 ms. L2/3

barrel cortex neurons are modelled as leaky integrators (Kyriazi and Simons, 1993; Wilson
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et al., 2011), by:

vj(t) = vj(t− τ) +

(∑
w,i,±

gp(λ)− vj(t− τ)

)
τ

τm
, (4.8)

where ± here denotes summation over one excitatory and one inhibitory connection from each

location in L4, g = 1 for excitatory synapses and g = −0.5 for inhibitory connections, and τm =

120 ms is the membrane potential decay constant. Hence vj(t) represents the L2/3 neuronal

membrane potential after spatial integration and temporal integration of synaptic inputs (see

Kyriazi and Simons, 1993). Finally, the output of each L2/3 neuron j is squashed using the

logistic activation function to generate a probability of the occurrence of a spike:

v′j(t) =
(
1 + e[0.2−vj(t)]/0.04

)−1
, (4.9)

where Equation 4.9 was parameterised to simulate the non-linear responses of L2/3 barrel cortex

neurons (see Wilson et al., 2011). The maximum value v′j,trial = maxt v
′
j(t), for all t in a time

window including only the whisker displacements affected by one tactile stimulus (i.e., one

trial), was used as a proxy for the overall probability that neuron j would spike in response to

the tactile stimulus presented in a given trial; following Wilson et al. (2011).
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4.2.6 A matched control for evaluating the cortical (L2/3) mapping

To establish a baseline, against which to evaluate the cortical mapping, we defined a con-

trol mapping based on the cross-correlation function. Pairwise cross-correlations between 24

whisker displacement signals xw(t) and yw(t) were computed using each ofNpairs =
(
24
2

)
= 276

signals. The 276 cross-correlation vectors were sampled at 5 ms intervals for time-lags in the

range ±95 ms. This gave reasonable coverage over the range of latencies between whisker de-

flections in the data, and we note that classification performance (see below) did not improve

significantly for different choices of sampling frequency. The total number of features sampled

in this way (276×39 = 10, 764) was comparable to the number of neurons in the cortical model

(10,800 L2/3 neurons). Hence this transformation of the whisker displacement signals served as

a control, matched to the output of the cortical model by dimensionality and by type; in both the

control and cortical mappings, signals from multiple whiskers are offset by a series of time-lags

before being integrated non-linearly to compute relative whisker deflection times.

4.2.7 Classification procedure and performance

The extent to which activity in the network encoded the parameters of the tactile stimuli was

assessed by training and testing a linear classifier to recognise the stimulus parameters from

the cortical responses. Multiple linear regression was used to estimate the stimulus shape (R),

direction (Θ), or speed (S), using either the activity of L2/3 barrel cortex neurons (v′j,trial) or the

values of the control mapping as features.

Due to the small number of realisations of each stimulus parameter, a ‘leave one out’ design was
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Figure 4.4. Raw artificial whisker deflection signals. Data shown are from a single collision
between a straight edge tactile stimulus (R = ∞) and 12 artificial whiskers. The panels are
arranged to reflect the spatial layout of the whiskers in their array positions. The whiskers were
deflected by the sweep of an edge stimulus travelling at 0.2 meters per second in a south-easterly
direction (Θ = 7π

4
). The whisker signals vary accordingly with positive voltages measured

on the X–sensor channels (red) and negative voltages on the Y –sensor channels (blue). In
particular, the onset time of the deflections progresses in time, starting at the whiskers located
in the northwest and progressing through to the southeast array positions. Note the variability in
response magnitude between whiskers, caused by differences in the degree of damage (during
pilot work) to the rubber seal which holds the whisker shaft to its resting axis. Whilst the signals
could have been renormalised post-hoc, both the cortical and control processing of these signals
would be unaffected by normalisation (i.e., both operate on correlations between the signals
and should not be sensitive to their absolute values); thus we present the original un-normalised
amplitudes as they were processed by the model.
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employed. Data from one of the five realisations in each condition (i.e., a total 400 patterns)

was designated as the test set, and the remaining 1,600 patterns were the training set. This

procedure was repeated using each of the 5 realisations as test data, and performance measures

were averaged across realisations.

To avoid problems of multicollinearity, i.e., over-fitting due to a large ratio of features to test

conditions, classification was performed using subsets of the features selected at random. Lin-

ear regression was performed on subsets consisting of progressively more features. A vector

of regression weights was obtained using simple multiple linear regression. After rounding the

linear regression estimates to the nearest class label, performance in classifying each stimulus

parameter was measured as either the percentage of correct classifications, or by using an ap-

propriately weighted Cohen’s κ statistic (Cohen, 1968) to test the agreement between the actual

and estimated classes:

κ =

∑
ij

Oi,jWi,j −
∑
ij

EjWi,j

1−
∑
ij

EjWi,j

, (4.10)

where the square covariance matrix Oi,j is indexed by columns of actual class i ∈ {1, 2, ..., nclasses}

and rows of estimated class j ∈ {1, 2, ..., nclasses}, with entries normalised by a total 2,000 test

patterns; Ej =

nclasses∑
i=1

Oi,j/nclasses represents expected values. Weights, Wi,j , for classification

in ordinal spaces (i.e.,R and S), or circular spaces (i.e., Θ), were Wi,j = 1−|i−j|/(nclasses−1),

or Wi,j = |1− 2|i− j|/nclasses|, respectively. These weightings ensure higher values of κ (ap-

proaching maximum κ = 1) where misclassifications were more similar to the actual class.
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4.3 Results

4.3.1 A dataset of artificial whisker deflection signals

Data were collected from an array of 12 artificial whiskers, stimulated by 5 differently shaped

objects (R), moving in 8 different directions (Θ), each at 10 different speeds (S). Every collision

was realised 5 times so that data from 2,000 separate multi-whisker collisions were collected

in total. The raw data for each collision consisted of 24 time series (xw(t) and yw(t)), which

represent the amplitude of the whisker deflections from their resting positions in X and Y

axes. Figure 4.4 shows an example of the raw data collected from a single collision between the

whiskers and the straight edge moved at S = 2Smax

10
, in direction Θ = 7π

4
.

To explore the dataset, measured whisker deflection times were compared with those expected

based on the geometry of whisker-stimulus interactions as defined by Equation 4.1 (see Fig-

ure 4.5). Values of µ were fit by a linear regression onto the inter-whisker interval. In ascending

order, the slopes were 3.2% for the large convex shape, 10.7% for the straight edge, 11.2%

for the large concave edge and the small concave edge, and 15.2% for the small convex edge.

Similar fits for σ yielded, in ascending order, 26.1% for the straight edge, 33.5% for the large

concave edge, 34.5% for the large convex edge, 55.2% for the small concave shape, and 63.2%

for the small convex shape. The fits indicate first, that there was considerable noise in the rel-

ative whisker contact times (indicated by large σ), second that the robot was moving slightly

faster than expected (indicated by µ > 0), and third that the levels of noise were fairly similar

amongst the five stimulus shapes.
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Figure 4.5. Deviation of between-whisker time differences from those predicted by the
geometry. A Mean difference, µ, (expected temporal offset minus measured temporal offset)
across sixty-six unique pairs from the twelve whiskers, shown as a function of the expected time
taken for the robot to traverse the inter-whisker distance D. Time on both axes is measured in
seconds. Each line is a linear fit to the data from twenty unique stimulus speeds collected using
one of the stimulus shapes (as indicated by the shape key). For each shape the mean difference
decreases as the stimulus speed increases (slower stimuli take more time), suggesting that our
measurements based on the modal value of the cross-correlogram between each pair of sig-
nals underestimated the true time differences. B Error from the same data computed as the
standard deviation of the measured time differences from those predicted from the geometric
model, σ. Again, for each shape the error is greatest for the slower stimulus speeds where the
expected time differences are largest. Linear regression fits to the error using both quantifica-
tions suggest that the smaller semi-circular object (dark blue and pink lines) yielded the most
error. Data collecting using the small semi-circles (R = ±33 mm) are shown after discounting
all measurements that included a whisker snapped during data collection.
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4.3.2 Encoding whisker movement in cortical and control activity pat-

terns

Movements of the whiskers were encoded as activity patterns, using a model of the responses of

L2/3 barrel cortex neurons to paired deflections of adjacent whiskers, which vary as a function

of the whisker identity, deflection direction and the interval between deflections. The model

generates spatial patterns of activity across the cortical sheet, where the response of a neuron to

a particular stimulus is determined by its location.

To generate activity patterns the whisker deflections were propagated through the model, and

for each tactile stimulus the L2/3 response vector, v′j,trial, was computed for each of the 2,000

stimulus trials. Example response patterns are shown in Figure 4.6, which reveals that the spatial

distribution of activity patterns across simulated L2/3 barrel cortex varies systematically with

respect to R, Θ, and S.

The patterns consisted of small patches of activity distributed around the cortical column cen-

ters. The patches each had a characteristic ellipse-like shape (Figure 4.7), and we henceforth

refer to the shape of the patches as ellipses. In the majority of cases, a central ellipse represent-

ing high activity was surrounded by two larger ellipses of less-responsive neurons. The major

axes of the ellipses tended to be oriented perpendicular to a line drawn between nearby activated

L4 neuron pairs, which for the bar stimulus corresponded with the direction of motion (Θ); the

centers were shifted to fall between the centers of columns corresponding to consecutively stim-

ulated whiskers (see Figure 4.7). The faster stimuli (larger S) tended to produce more ellipses

and larger responses, and, for slower stimuli, more highly-active ellipses appeared between
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Figure 4.6. Layer 2/3 activity patterns. Each panel shows a representative activity pattern
in L2/3 barrel cortex in the x,y–plane, as presented for classification (after downsampling).
Patterns were obtained by propagating the 12 whisker deflections signals through the network,
and storing the maximum response for each neuron over time (v′j; one pixel corresponds to one
neuron). The patterns shown were obtained by using the straight edge stimulus or the large
convex stimulus moving in one of two directions (rows), at three increasing speeds (columns).
See the text for a description of how cortical responses vary systematically with the associated
tactile stimulus parameters.
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Figure 4.7. Characterising the L4 to L2/3 mapping. To investigate how the whisker deflec-
tions map to activity pattern across the L2/3 sheet, we simulated isolated deflections of two
adjacent whiskers (A and B) by stimulating pairs of L4 units (blue circles) pertaining to two
adjacent barrel columns. Then, across the L2/3 sheet, we traced the region in which both ex-
citatory inputs precede both inhibitory inputs, known as the ‘facilitatory zone’ after Wilson
et al. (2011). By varying the simulated stimulus movement direction, rightward movement in
the plane perpendicular to the alignment of whiskers evoked facilitatory zones delineated by
contours labelled tA < tB, leftward movement evoked tA > tB contours, and coincident
deflections evoked tA = tB contours. To simulate the range of stimulus orientations we var-
ied the angle of whisker A deflection (denoted A; varying between the rows of panels), and
the difference in angle between whisker A and B deflections (denoted A-B; varying between
columns). Facilitatory zones, in which we expect to see the largest L2/3 neuronal responses,
had ellipse-like shapes, whose size and orientation varied systematically with the simulated
stimulus movement parameters.
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barrels representing whiskers displaced earlier by the stimulus. Compared with a more regu-

lar organisation generated by straight edge stimuli, curved stimuli (smaller |R|) yielded more

irregular patterns. This is likely due to the presence of a broader range of different whisker

deflection directions within a given pattern, and hence a less uniform spacing of the active input

neurons in L4.

4.3.3 Recognition of tactile stimulus shape, direction and speed from cor-

tical versus control patterns

The classification performances for stimulus shape, direction, and speed, using either the per-

centage correct (Figure 4.8) or the Cohen’s κ (Figure 4.9) metrics are summarised in Table 4.1.

The classification of tactile stimulus shape R from control patterns was reasonable (see Fig-

ure 4.9A), but 800 features were required to obtain this performance. The maximum perfor-

mance, after averaging across 10 combinations of randomly selected features at eachNfeatures ∈

{10, 20, ..., 1000}, was κ = 0.40 for Nfeatures = 880. In contrast, performance on the recogni-

tion of the tactile stimulus shape was improved for classification based on the cortical response

patterns, reaching a maximum κ = 0.47 for Nfeatures = 570. Control performance increased

slowly as a function of increasing Nfeatures to an asymptote when more than 800 features were

available. In comparison, performance based on the cortical patterns increased sharply, reaching

near-maximum levels for around 500 neurons, and then tailed off, presumably as a reflection of

the classifier over-fitting to the training set and thus not being able to generalise to the test set.

The procedure performed less well for classification of tactile stimulus direction Θ based on
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Figure 4.8. Percentage of correct classifications. A linear classifier was trained to recog-
nise tactile stimulus shape, speed, or direction, based on either the cross-correlations between
whisker displacement patterns (used as a control), or on cortical response patterns generated
via the barrel cortex model. The percentage of correct classifications is plotted as a function
of the number of randomly chosen features (or neurons) available to the classifier. Accuracy
increased as a function of the number of available features, and it was consistently better when
processing cortical versus control mappings of the whisker displacements. As the number of
available features increased, performance peaked before tailing-off for cortical patterns, and
increased towards asymptotes for the control patterns. Overall accuracy levels were quite low
for the classification of stimulus shape A, direction B and speed C. The trends here were more
exaggerated when using the κ measurement, which also takes into consideration the difficulty
of the task and the distribution of classification errors (see Figure 4.9).
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the control patterns, and performance scores were less than for the shape (see Figure 4.9B). A

lower maximum at κ = 0.29 was obtained for a similar Nfeatures = 810. However, classifica-

tion performance for direction using cortical patterns reached a higher maximum using fewer

features. Again, as Nfeatures was increased, performance either reached an asymptote or tailed

off, for the control and cortical conditions respectively.

Classification of stimulus speed, S, based on the cortical patterns, was better than for control

patterns, as measured by the maximal κ. For control patterns, similar scores were reached when

anything upwards of 600 features were used (see Figure 4.9C). For cortical patterns 200 or more

features yielded similar levels of performance.

Similar trends, with higher classification scores obtained using cortical versus control mappings,

were observed in terms of the percentage of class labels identified correctly (see Figure 4.8 and

Table 4.1). Of course, these scores do not reflect the difficulty of the respective classification

tasks as they do not account for the number of classes involved in each, but the fact that they

display similar trends to those for κ scores adds support to conclusions based on the more

informative performance measure, κ.

In summary linear classification performance based on a cortical transformation of the whisker

displacement data was very much better than chance, and better than that based on a control

transformation matched for type and dimensionality, at classifying previously unseen tactile

stimuli.



Artificial whiskers and cortical maps 141

Table 4.1. Summary of classifier performance.

Tactile stimulus % maxκ at Nfeatures

control cortical control cortical

Shape 38 40 0.40@880 0.47@570
Direction 26 37 0.29@810 0.56@480
Speed 28 35 0.57@720 0.70@450
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Figure 4.9. Recognising tactile stimuli. The trends in classification performance, as mea-
sured by the percentage of correct classifications, were reflected in similar trends based on the
weighted Cohen’s κ score, computed from the covariance matrices. Scores are the average of
ten randomisations. A Linear classification performed remarkably well at recognising stimulus
shape from the cortical data, peaking when 570 features were available at a mean performance:
weighted κ = 0.47. B Classification of the stimulus direction, based on the cortical activation
patterns, was maximal when 480 features were available: weighted κ = 0.56. C Classifica-
tion of stimulus speed, based on the cortical responses, was maximal when 450 features were
available: weighted κ = 0.70.
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4.3.4 Insights from the classification errors

To understand how the cortical mapping represented the tactile stimuli, we inspected the distri-

bution of errors in the confusion matrices for the best classifiers with respect to each stimulus

parameter.

In terms of the stimulus form, as evident in Table 4.2, a curved edge was rarely mistaken for

an edge of the same size curved in the opposite direction. This is interesting because, ac-

cording to the geometry expressed in Equation 4.1, the distribution of ∆tab amongst whisker

pairs should be identical in both cases. In order for the classifier to disambiguate stimuli of

opposite curvatures, the cortical mapping must have retained spatial information about the dif-

ferent multi-whisker deflection patterns, relating to the directions of whisker deflection and/or

the identity of whiskers that were deflected earlier by the stimulus. Retention of these spatial

features is to be expected, given their explicit mapping by the location of corresponding input

neurons in simulated L4.

In terms of stimulus motion, the pattern of errors for the robot direction (see Table 4.3) revealed

the fundamental problem of challenging a linear classifier to discover an inherently circular

topology associated with Θ. This was shown by the fact that mistakes when the robot mo-

tion direction was of class 1 (arbitrarily assigned to Θ = 1π
8
) never mistakenly estimated the

stimulus to be of class 8 (Θ = 8π
8
), and vice-versa, despite these classes representing adjacent

parameterisations of the robot motion in circular space. Classification performance for direction

could be improved significantly using a non-linear classifier; confusion matrices obtained using

a parallel perceptron classifier, trained via the parallel-delta learning rule as described by Auer

et al. (2008), displayed misclassification errors that wrapped around the circular space repre-
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Table 4.2. Confusion matrix for the best classifier trained to recognise stimulus shape from
cortical response patterns (Nfeatures = 570). Values are the number of hits for each actual and
estimated class of stimulus shape. Classes are labelled by a symbol indicating the corresponding
stimulus shape, as if it were moved in the direction of the arrow. The classification performance
was κ = 0.44 and 39% patterns were recognised correctly.

Estimated Stimulus shape (R)

→ ) ) | ( (

) 146 68 18 2 1
) 136 161 106 27 15
| 96 129 185 142 80
( 20 34 78 151 168
( 2 8 13 78 136
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sented by Θ. Accordingly, performance of κ > 0.8 for Nfeatures ≈ 600 could be achieved using

this non-linear classifier. We note that significant performance increases could not be obtained

for shape and speed classification using the non-linear classifier, at least in our hands, and so

we do not detail the procedure used for non-linear classification here. For stimulus speed, mis-

classification errors appeared to be more widely distributed amongst the classes as the speed

increased (see Table 4.4), which is probably a reflection of the linear relationship between the

stimulus speed and the variability amongst ∆tab, as revealed in Figure 4.5.

4.4 Discussion

We mapped a variety of tactile stimuli to neuronal activity at discrete locations on a two-

dimensional cortical sheet. The mapping was by non-linear temporal integration of signals

communicating high-velocity multi-whisker directional-deflection times. These whisker de-

flection signals were offset in time by a geometry of cortical projections reflecting the physical

space in which the whiskers moved. The tactile stimulus parameters were recovered by linear

regression on the activity patterns, and the classification performance showed that the mapping

of whisker displacements to cortical activity, by the geometry of cortical connections, retains

essential information about the stimulus shape, direction and speed.
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Table 4.3. Confusion matrix for the best classifier trained to recognise stimulus direction Θ
from cortical response patterns Nfeatures = 480. The classification performance was κ = 0.54
and 36% patterns were recognised correctly.

Estimated Stimulus direction (Θ)
π
8
× 1 2 3 4 5 6 7 8

1 120 62 20 2 1 1 0 0
2 57 81 45 5 4 0 0 0
3 50 81 74 35 37 7 0 3
4 19 18 76 103 58 27 10 5
5 4 6 28 80 78 61 41 15
6 0 2 6 17 47 101 65 59
7 0 0 0 6 21 41 69 74
8 0 0 1 2 4 12 65 94
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4.4.1 Technical considerations

Using our apparatus the stimulus speed and direction were co-dependent. Thus the motion speed

parameter, S, did not uniformly sample the underlying speed (S ′), and the linear regression

estimated the speed applied to each of the two robot motors from signals collected under the

joint influence of both S and θ. That the regression faired as well as it did in this non-linear space

was encouraging, and we anticipate improved performances using continuous parameterisations

of speed in future studies.

Whilst efforts were made to record data for each stimulus in random order, in practise this

was not entirely feasible. The first compromise meant collecting all data with a given stimulus

shape at once, with speed and direction randomised. Because the concave and convex edges of

a given stimulus radius were part of the same physical apparatus, the second compromise meant

that data for oppositely curved edges were collected consecutively. After manual repositioning

of the stimulus orientation for the forthcoming trial, data using the convex edge were always

collected before those using the concave edge. A potential confound related to this procedure

was that the whisker resting axes could have been systematically displaced before collection of

all concave data. This would have introduced systematic measurement errors for the concave

versus the convex stimuli, that could in principle have made them more easily separable for

the classifier. Although we cannot rule out such an effect, there was no evidence for it in our

estimations of the error for each shape, as presented in Figure 4.5. For both measures of error (µ

and σ), errors associated with both small stimuli were greater than those for both large stimuli.

Moreover the straight edge, which could have suffered from no such confound, generated levels

of error in the estimation of ∆tab that were comparable to those for each of the curved stimuli.

Therefore we feel confident that potential confounds related to the order in which the data
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Table 4.4. Confusion matrix for the best classifier trained to recognise stimulus speed class
from cortical response patterns Nfeatures = 450. The classification performance was κ = 0.70
and 35% patterns were recognised correctly.

Estiamted Stimulus speed (S)
Smax

10
× 1 2 3 4 5 6 7 8 9 10

1 96 34 4 0 0 0 0 0 0 0
2 84 113 54 9 1 1 0 0 0 0
3 17 41 82 48 15 1 0 0 0 0
4 1 12 41 69 40 13 5 1 0 1
5 2 0 16 41 71 36 15 9 2 1
6 0 0 2 23 47 63 41 15 13 14
7 0 0 1 9 18 55 52 50 42 19
8 0 0 0 1 6 16 50 53 57 44
9 0 0 0 0 1 11 26 49 38 60

10 0 0 0 0 1 4 11 23 48 61
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were collected were minimal, at least to within the accuracy of our model of whisker stimulus

interactions (Equation 4.1).

Unlike naturalistic whisker experiences, the center of the stimuli always traversed the center of

the whisker array, the orientation of the stimulus was always orthogonal to the direction of mo-

tion, all trajectories followed a straight line, and all movement was confined to the XY –plane.

These constraints made a large range of different multi-whisker displacements reducible to just

three dimensions (R,Θ, S). Relaxation of each constraint would require the introduction of at

least one additional stimulus parameter. The space of stimulus parameters to explore increases

further when parameters of the configuration of the whisker array are included; for example

including static parameters like the spread of the whisker resting axes from vertical, and dy-

namic parameters like the frequency of whisking movements. Nature has selected a variety of

configurations (Brecht et al., 1997); compare the bilaterally symmetric grid-like morphology

of the rat whisker array (Towal et al., 2011) with the radially symmetric cone-like morphology

of the Etruscan shrew array (Anjum et al., 2006). Perhaps particular morphologies are suited

to the processing of particular stimulus parameters? There is scope to test such an hypothesis

in the future, using our reconfigurable array of posable artificial whiskers, to compare how the

range of array morphologies that occur naturally amongst tactile specialists changes the nature

of multi-whisker deflection patterns.

4.4.2 Practical considerations

The raw whisker deflection signals were filtered to pick out the high-velocity components as-

sociated with whisker-stimulus contacts, with reference to the data of Petersen et al. (2008)
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showing that a class of thalamic neurons are sensitive to the deflection velocity. However, these

data revealed different classes of thalamic neuron, sensitive to either the absolute deflection

magnitude, or to higher-order derivatives of the whisker deflection, i.e., filters for the whisker-

position or whisker acceleration respectively. Filtering for the whisker-velocity picked out the

whisker deflection offset events, i.e., the time at which the whisker was released after being in

contact with the stimulus. Indeed it is plausible that deflection offsets accounted for more of the

signal reaching the cortex than did deflection onsets. This may account for the tendency towards

positive errors in the measurement µ (Figure 4.5A), wherein filtered deflections were compared

with those expected from a geometry formulated to predict deflection onsets (Equation 4.1).

Data from high-speed video analyses of rat whisking behaviour suggest that when rats investi-

gate objects they actively control whisker movements to make a ‘light touch’; minimising the

whisker impingement whilst maximising the number of whisker-stimulus contacts (Mitchinson

et al., 2007; Grant et al., 2009). Such a strategy would minimise the velocity associated with de-

flection offsets, and thus neuronal responses to deflection offset would be less pronounced than

those generated under our procedure using passive (stationary) whiskers (Evans et al., 2010).

Further studies will be required to investigate the contributions of alternative thalamic circuitry

and whisking control strategies to the nature of signals received by cortex.

4.4.3 Potential alternative models

The mapping from the whiskers to the cortex, as represented by Equation 4.5, represents a

highly simplified model of real cortical connection geometry. In the model all L2/3 neurons re-
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ceive input from all L4 neurons, and they do so with equal strength. This is unlike real cortical

circuitry, where for example sub-threshold activity in L2/3, as a consequence of direct stim-

ulation in L4, decreases with the distance between the pre-synaptic and post-synaptic neuron

(Adesnik and Scanziani, 2010; see also Petersen et al., 2003; Derdikman et al., 2003). Although

its behaviour would be more difficult to interpret, a more accurate model would decrease the

connection probability and the synaptic weight by some function (such as a Gaussian function)

of the inter-soma distance.

The model also does not account for how plasticity shapes cortical circuits; for example our

previous computational modelling study predicted that lateral interactions will be strongest be-

tween cortical loci that represent similar directions of deflection applied to nearby whiskers

(Wilson et al., 2010). A more accurate model in this respect might introduce recurrent con-

nections, with a profile of weights that sharpen synaptic inputs to amplify contrasts between

adjacent whisker deflection directions.

Cortical activity generated in the model could be used to identify higher-order features of the

tactile stimuli based on the multi-whisker deflection patterns, by forming representations that

were invariant to the position of the stimulus in the whisker array at any given time. It may be

worth considering whether the cortical mapping can maintain information about the absolute

position of the stimulus. We observed that due to the somatotopy-preserving mapping, regions

of the cortical sheet became active in a sequence closely related to that in which the individual

whiskers were deflected, and hence the absolute position of the stimulus was retained in the

gross dynamics of the network. However, we did not investigate the dynamics of the network

in detail in the present study, nor did we try and constrain them to match the data of a particular

experiment.
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As an alternative model, differences in dynamics may identify separate cortical circuits for the

processing of stimulus form and motion in real cortical networks. For example, recent imaging

of network dynamics in cat primary visual cortex revealed traveling waves of activity with re-

spect to the Cartesian axes of the retinotopic map, but standing waves of activity with respect to

the circular axis of the coextensive map for visual edge orientation preferences (Benucci et al.,

2007). Similar mechanisms could operate in somatosensory cortex, if domains of directional

selectivity in the barrels can be thought of as the tactile equivalent of orientation tuning domains

in primary visual cortex, and if somatotopic and retinotopic maps can likewise be substituted.

This idea is supported by the measurement of similar lateral propagation speeds for activity in

cat visual and mouse barrel cortices; compare 280 mm/s (Benucci et al., 2007) and 250 mm/s

(Adesnik and Scanziani, 2010) respectively (for rat, see also Petersen et al., 2003 and Derdik-

man et al., 2003).

A recent study found that the receptive fields of neurons throughout the barrel column, i.e, the

identity and number of whiskers that could elicit significant responses, shifted depending on the

direction in which the whiskers were deflected (Le Cam et al., 2011). Differences in receptive

field were related to differences in response latencies, which were predicted first by the whisker

identity (principal or adjacent whisker) and second by the deflection direction (caudal or rostral).

It would be interesting to see whether these differences in response profile can be predicted by

the precise location of the neuron. It should be possible to draw out specific predictions from

our cortical sheet model, about the timing of responses that arise when distance dependent input

delays into L2/3 are constrained by superimposing directional pinwheels onto the somatotopic

whisker map in L4.

Whilst the present study cannot rule out alternative models, which might have the unique ge-



Artificial whiskers and cortical maps 153

ometry of interactions within the barrel cortex utilised differently, the results demonstrate the

sufficiency of the geometric mapping, which was derived from neurophysiological observation,

for representing tactile stimulus form and motion.



Chapter 5

Orthogonal coding of tactile stimulus

features in a model of barrel cortex

development

Chapter summary

The responses of mammalian primary visual cortex neurons to different features of

visual input are organised systematically across the cortical sheet. Since being discovered

by Hubel and Wiesel in the 1960s, maps for visual edge orientation, spatial frequency, and

eye preferences have been described in exquisite detail: Visual feature maps are topological,

preserving adjacency in each feature space; they are coextensive, meaning that they can

be measured within a single population of neurons; and they interact predictably, with

a tendency for the contours of different maps to intersect with each other orthogonally.

However, much less is known about the types of feature map that may be present in non-

visual cortical areas, and how coextensive non-visual feature maps may interact. Using a

self-organising model of visual cortex map development, we set out to predict the potential

organisation of maps in the somatosensory ‘barrel’ cortex, which in rats, mice and shrews,

is driven by tactile stimulation of the facial whiskers.

154
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Inputs to the model were patterns of activity in simulated layer 2/3 barrel cortex, which

correspond to the different shapes, directions, and speeds of a tactile stimulus moved

through an array of artificial whisker sensors. As the network self-organised, responses

became organised into maps, wherein contours for shape, direction, and speed preferences

intersect orthogonally. The orthogonal coding for these three tactile feature spaces was re-

flected by a transition from initial single-whisker neuronal receptive fields to multi-whisker

receptive fields. The maps that emerged, and the connectivity patterns behind them, serve

as predictions about the organisation of responses in layer 5 barrel cortex that could help

guide future experiments.

5.1 Introduction

The primary visual cortex (V1) of many species is organised by maps of neuronal preferences

for a variety of different visual features. For example, responses to different orientations of

edges in the visual scene define a functional organisation of V1 in cat and monkey, as a locally

smooth orientation map, wherein incremental changes in orientation evoke selective responses

in neurons at incremental horizontal locations (Hubel and Wiesel, 1959, 1965, 1974; Ohki et al.,

2006). V1 visual feature maps are shaped by the nature of sensory inputs experienced during

post-natal development, and changes in map organisation correspond with changes in the extent

to which those features can be perceived. For example, in kittens that have only experienced

scenes composed of vertical lines, V1 neuronal receptive-fields and inter-connectivity patterns,

are vertically biased (Blakemore and Cooper, 1970; Blakemore et al., 1978; Tieman and Hirsch,

1982); consequently, vertical-reared animals respond less reliably to lines of other orientation

to which they are later exposed (Blasdel et al., 1977).
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Maps for visual stimulus features other than orientation, for example for the location of an image

(retinotopy), the eye to which it is presented (ocular dominance), and the spacing between visual

edges (spatial frequency), also vary smoothly across cat and monkey V1. Thus multiple feature

maps lie coextensive across the cortical sheet. These feature maps interact in such a way that

promotes coverage (all features represented equally) and continuity (map smoothness; Hübener

et al., 1997; Yu et al., 2005; Farley et al., 2007; see Basole et al., 2006 and Issa et al., 2008 for

an overview), and that minimises connection lengths (Swindale et al., 2000; Yu et al., 2005). As

a consequence, the contours of maps for different stimulus features intersect at right angles, and

thus the interactions between maps in V1 describe an orthogonal encoding of multiple visual

feature spaces (Issa et al., 2008).

Continuity, coverage, and orthogonal coding are all predicted by dimension-reduction models,

which explain map self-organisation as a consequence of sensory experiences. Conceptually, in

these models the high-dimensional space of stimulus features is folded onto the two dimensions

of the cortical sheet (von der Malsburg, 1973; Kohonen, 1982; Burger and Lang, 2001; Sirosh

and Miikkulainen, 1997; see Swindale, 1996 and Miikkulainen et al., 2005 for an overview).

This account of map development has been used to explain numerous observations about the

organisation of maps in V1. However, dimension-reduction models represent a general theory

of cortical map development, and as such they should also make predictions about map develop-

ment in non-visual domains. Therefore in this study, we use a general-purpose self-organising

map model to ask how the representation of non-visual feature spaces may be represented in

other cortical areas. Specifically, we asked how the representation of whisker movements per-

taining to different features of tactile stimuli might be organised in the barrel cortex area of the

primary somatosensory cortex (S1), in tactile-specialist species such as rats, mice, and shrews.
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Previous models of S1 map self-organisation, including those developed in our lab, have been

successful in reproducing maps for individual tactile stimulus features; explaining, for example,

the origin of discontinuities in the primate ‘homunculus’ body-map (Stafford and Wilson, 2007),

the emergence of receptive-fields for textures experienced via the finger-tip (Park et al., 2009),

and maps for the direction in which the rats facial whiskers are deflected (Wilson, 2007; Wilson

et al., 2011; Kremer et al., 2011). Here we use a similar approach to model map development

in the rat barrel cortex, to explore for the first time, the emergence of, and interactions between,

coextensive maps for multiple tactile stimulus features.

Experimentally, responses of barrel cortex neurons have been shown to correlate with various

features of multi-whisker stimulation, such as the shape of a stimulus edge, i.e., a straight

versus curved edge (Benison et al., 2006); the direction of stimulus motion, as implied by

the whisker deflection direction (Bruno et al., 2003; Andermann and Moore, 2006) and the

deflection sequence (Ghazanfar and Nicolelis, 1999; Polley et al., 2005; Drew and Feldman,

2007; Jacob et al., 2008); and the speed of stimulus motion, as represented by the inter-whisker

deflection interval (Shimegi et al., 1999, 2000). The aim of the present study is to explore the

interactions between maps for these three tactile stimulus features (shape, direction, and speed)

in the barrel cortex, and therefore to suggest how the preference of a given neuron for one

feature can predict its preference for another.
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5.2 Methods and Materials

5.2.1 Overview

Layer 5 (L5) can be thought of as the major output layer of the barrel cortex, innervating large

regions of layer 2/3 (L2/3) (Wright and Fox, 2010; Oberlaender et al., 2011), and projecting

to numerous extra-barrel targets. Targets include the primary motor cortex and secondary so-

matosensory cortex (Welker et al., 1988; Hoffer et al., 2005; Fox, 2008), the thalamus (Veinante

et al., 2000; Li and Ebner, 2007), the cerebellum (Mercier et al., 1990), the pons, and the supe-

rior colliculus (Hoffer et al., 2005). In general, L5 neurons have the longest stimulus-response

latencies (Armstrong-James et al., 1992; Lefort et al., 2009; Adesnik and Scanziani, 2010), as

well as the largest (Ito, 1992; Manns et al., 2004) and most spatial-temporally complicated re-

ceptive fields (Ghazanfar and Nicolelis, 1999; Jacob et al., 2008) compared with layers 4 and

2/3. L5 can be characterised by two layers a and b: L5a neurons are smaller, sparser, and

tend to project axons reciprocally back to their afferents in L2/3 (Schubert et al., 2006). L5b

consists of two functionally distinct pyramidal cell types (known as regular spiking and intrin-

sically bursting), based on differences in their spiking characteristics, receptive-field sizes, and

modes of plasticity (Schubert et al., 2001; Jacob et al., 2012; see Ahissar and Staiger, 2010

for an overview). Whilst acknowledging a number of important distinctions within L5, for the

purposes of the modelling presented here we will consider L5 to be an essentially homogenous

population and henceforth refer to a single L5.

To explore how multi-whisker stimulation patterns might be represented in L5 barrel cortex, we

model it as a sheet of recurrently interconnected self-organising neurons (as in Wilson et al.,
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2010), and present to it many examples of multi-whisker stimulation. Activity in simulated

L5 is driven by robot-controlled stimulation of 12 artificial whisker sensors, as encoded in

patterns of activity on a sheet of layer 2/3 (L2/3) neurons (Wilson et al., 2011), and it is shaped

by weighted lateral connections between L5 neurons. In response to each tactile stimulus,

cooperative interactions within L5, mediated by short-range recurrent excitatory connections,

and competitive interactions via long-range recurrent inhibitory connections, are consolidated

by Hebbian learning. The process is repeated in response to many multi-whisker stimulation

patterns, simulating early post-natal whisker experiences, during which L5 connections self-

organise to represent whisker movements correlated by the nature of the tactile stimuli.

The following sections briefly describe, i) the procedure for collecting whisker deflection data

(for details see chapter 4), ii) the representation of whisker deflections as patterns of activity in

a sheet of L2/3 neurons (for details see Wilson et al., 2011 and chapter 4), and iii) the process

of map self-organisation in simulated L5 barrel cortex (for details see Wilson et al., 2010).

Figure 5.1 provides an overview of the network architecture. Measures of the organisation of

L5 stimulus feature maps, and of the structure of neuronal receptive fields underlying those

maps are also detailed, along with a model for simulating whisker deflections.

5.2.2 Generating whisker deflections and barrel cortex input patterns

A dataset of multi-whisker deflection patterns was generated using robot-controlled collisions

between a variety of tactile stimuli and a regular 3 by 4 array of artificial whisker sensors (as

described in chapter 4). Tactile stimuli were five semi-circular edges, each parameterised by

a radius R. On each trial, one tactile stimulus shape (R), suspended from a table-top XY-
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Figure 5.1. Model architecture and initial activity. When whiskers in a 3 by 4 array are
moved by a tactile stimulus, changes in whisker position cause changes in voltage, measured
on sensors aligned to the X and Y axes (one resting and one deflected whisker is illustrated).
Thalamic neurons respond to high-velocity deflections of a principal whisker in a particular di-
rection, and relay spikes to layer 4 (L4) barrel cortex neurons, which are positioned by whisker
and direction preference (colour indicates the direction preference). Layer 2/3 (L2/3) barrel
cortex neurons are arranged in a sheet above L4, and register spikes at each L4 position as one
excitatory and one inhibitory conductance change (EPSC and IPSC) after delays proportional to
the straight-line distance from the pre-synaptic neuron. These distance-dependent delays differ
for EPSCs and IPSCs, and render L2/3 neurons at particular locations selective to particular
time-differences in the onset of L4 spikes, thus converting L4 inter-spike intervals to patterns of
firing rate across L2/3. Initial responses in a dense sheet of layer 5 (L5) neurons are the weighted
sum over firing rates of all L2/3 afferents. L5 neurons then interact laterally, cooperating and
competing via short-range excitatory and longer-range inhibitory weighted connections respec-
tively (the ranges of connection onto the center neuron are shown as a green and red disk). The
settling of recurrent interactions forms blobs of activity in L5, as shown in successive panels
above. The settled activity in L5 is used to update both afferent and lateral connection weights
by Hebbian learning, before activity is zeroed and a new randomly chosen multi-whisker move-
ment pattern is presented.
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positioning robot, was moved through the center of the whisker array in one of eight directions

(Θ), at one of ten speeds (S). Each combination of R, Θ, and S, was repeated five times; hence

2,000 multi-whisker deflection patterns were collected in total. The deflection of each whisker

was defined by a deflection magnitude and a deflection direction time-series.

High-velocity displacements of the whiskers were used to elicit spikes, in simulation, in eight

directionally tuned L4 units per whisker (96 L4 units in total). The layout of the L4 units in

a cortical sheet reflects their whisker and deflection direction preferences. For example, a unit

tuned to rightwards deflections of the whisker in the top-left corner of the whisker array is

located to the right of a barrel center at the top-left corner of the L4 sheet.

Based on neurophysiological observations (Shimegi et al., 1999, 2000; Feldmeyer et al., 2002;

Helmstaedter et al., 2009), an organisation of inter-soma distance-dependent axonal delay lines

was used to model the L4 to L2/3 projection. This organisation renders L2/3 neurons closer to a

particular barrel center selective for stimuli in which an adjacent whisker is deflected before the

whisker associated with the nearest barrel (Wilson et al., 2011). Upon registering its preferred

whisker stimulus, each L4 unit elicits an immediate excitatory spike and a latent inhibitory

spike, which propagate to L2/3 neurons tiling a sheet located directly above L4. The inhibitory

potential travels faster, such that L2/3 neurons nearest to the L4 unit register the excitatory input

first but neurons further away register the inhibitory input first.

Activity in L2/3 is computed as the maximum response, over one second post-stimulus, to the

individually delayed excitatory and inhibitory potentials from each of the 96 L4 units, after

leaky integration and subsequent squashing using a sigmoid. The distribution of spiking prob-

abilities across L2/3 encodes the pattern of whisker deflections by their spatial and temporal
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profile. Specifically, the projection to L4 explicitly encodes the whisker identity and deflection

direction and the L4 to L2/3 projection encodes the inter-deflection interval.

According to analyses presented in chapter 4, maximal performance in classifying the tactile

stimulus features (R, Θ, and S) could be achieved using the responses of around 550 L2/3

neurons at randomly chosen positions on the sheet. To use similar numbers of neurons, whilst

keeping the indexing of those neurons simple, a dense L2/3 sheet comprising 90 by 120 neu-

rons was discretised into 21 by 28 squares and all but a single randomly chosen neuron from

each square were discarded. This procedure leaves 588 pseudo-randomly selected neurons in a

contiguous arrangement across L2/3.

5.2.3 A self-organising model of layer 5 barrel cortex development

L5 was simulated as a sheet of 63 by 84 self-organising neurons, using the LISSOM algorithm

(laterally interconnected synergistically self-organising map: Sirosh and Miikkulainen, 1997;

Miikkulainen et al., 2005; Wilson et al., 2010). On each iteration, each L5 neuron computes

its response as the weighted sum of the activity in separate afferent, recurrent excitatory, and

recurrent inhibitory connection fields. Model afferent connections are received from all L2/3

neurons and are excitatory; short-range excitatory connections are received from all L5 neurons

within a 0.2 barrel-width radius of the target neuron; longer-range inhibitory connections are

from all L5 neurons within a 1.0-barrel radius. All connection weights had initially random

values in the range 0.0 to 1.0, which were multiplied by a two-dimensional Gaussian kernel

centred on the position of the L5 neuron in the sheet. Gaussian kernels applied to the initial

afferent, excitatory, and inhibitory connections were computed using σ = 0.5, σ = 0.5, and
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σ = 1 respectively (in units of between-neuron spacings on the pre-synaptic sheet), and the

weights in each connection field were normalised to sum to 5, 0.6, and 1.0.

In response to each pattern of whisker deflections, the L2/3 activity pattern is fixed for 17

steps, during which the L5 activity patterns are allowed to settle via the lateral interactions; the

weighted sum over the three connection fields is recomputed on every settling step. The recur-

rent settling process collects the activity into localised blobs across the L5 sheet (Figure 5.1),

and the settled activity pattern is used to update all of the connection weights. Weights are

updated using a Hebbian learning rule, using a divisive re-normalisation of the weights in each

connection field to keep them plastic and bounded (see Wilson et al., 2010 for discussion). Ac-

tivity is then reset to zero in preparation for processing of the next pattern of whisker deflections.

In total, 60,000 whisker deflection patterns were presented to the network during training; each

was chosen randomly from the 2,000 distinct multi-whisker deflection patterns.

5.2.4 Measuring tactile stimulus feature maps in L5

Maps for tactile stimulus feature preferences and for the receptive-field structure were con-

structed from the responses of L5 neurons after every 1,000 pattern presentations. To compute

the preferred tactile stimulus parameter for the kth L5 neuron, all 2,000 whisker deflection pat-

terns were presented to the network, and the response to each pattern, rk, was computed (with

learning turned off). The preferred stimulus parameter, with respect to features R, Θ, and S,

was computed by summing the responses to all patterns involving a given parameter, and then
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taking the maximum:

R′k = arg max
c

5∑
c=1

rk(Rc,Θ, S)

Θ′k = arg max
c

8∑
c=1

rk(R,Θc, S)

S ′k = arg max
c

10∑
c=1

rk(R,Θ, Sc)

(5.1)

Hence, each L5 neuron could be labelled by its preferred stimulus shape (R′k), by its preferred

stimulus movement direction (Θ′k), and by its preferred stimulus movement speed (S ′k). Re-

sponses were recorded either before or after propagation of activity through the lateral connec-

tions, and these responses are referred to as the afferent or settled response respectively.

5.2.5 Measuring the receptive field structure of L5 neurons

Several measures of the L5 neuron receptive field structure were employed to investigate how

preferences for particular tactile stimuli evolved during self-organisation, i.e., by examining

the distribution of responses to isolated whisker deflections. The measures are summarised in

Table 5.1.

For each measure, the response of the kth L5 neuron, rk(w, θ), was recorded after simulating

an isolated deflection of each whisker w, in each of eight directions θ. Deflections were simu-
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Table 5.1. Summary of measures of the preferred stimulus for the kth neuron.

Measure Description

PWk Principal whisker (PW)
ˆPWk Selectivity to the PW

PWθk Angle of the PW from the array center
PWρk Distance of the PW from the array center
MWθk Angle of center of mass
MWρk Magnitude of center of mass
PDθk preferred direction of the PW
PDρk Selectivity for preferred direction of the PW
MDθk Preferred direction over all whiskers
MDρk Selectivity for preferred direction over all whiskers
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lated by evoking a spike in each of the 96 L4 units in turn. The resulting L2/3 activities were

multiplied by a factor of three, as determined in pilot work to evoke a strong response in L5,

which would otherwise respond weakly to patterns involving less than two whisker deflections.

From the response rk(w, θ), the preference and selectivity of the neuron for the identity of

deflected whisker, and for the deflection direction could be evaluated. The principal whisker

was defined as that which elicited the maximum summed response over eight directions of

deflection:

PWk = arg max
w

∑
θ

rk(w, θ) (5.2)

The selectivity of the neuron for deflection of the principal whisker was defined by comparing

the principal whisker response with the summed response over all other whiskers:

ˆPWk =
maxw

∑
θ rk(w, θ)∑

w

∑
θ rk(w, θ)

(5.3)

It is useful to describe the identity of the principal whisker in polar coordinates, using the coor-

dinates of the whisker in the whisker array (Xw ∈ {−1.5,−0.5, 0.5, 1.5}, Yw ∈ {−1, 0, 1}):

PWxk = XPWk
,

PWyk = YPWk
,

PWθk = atan2(PWyk,PWxk),

PWρk =

√
PWyk

2 + PWxk
2. (5.4)
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We will make similar use of the polar transform for the receptive field measures that follow, so

henceforth we will define the Cartesian components of the measure explicitly, and use the suffix

θ or ρ to denote its polar representation.

The center of gravity of multi-whisker responses, in co-ordinates of the whisker array, is defined

by:

MWxk =
∑
w

(
Xw

∑
θ

rk(w, θ)

)
,

MWyk =
∑
w

(
Yw
∑
θ

rk(w, θ)

)
, (5.5)

The measures MWxk and MWyk were used to construct the angle of the center of gravity from

the center of the whisker array MWθk, and the magnitude of the center of gravity MWρk.

The preferred direction for principal whisker deflections (or the principal direction; PD) was

defined as:

PDxk =
∑
θ

[rk(PWk, θ) cos(θ)] ,

PDyk =
∑
θ

[rk(PWk, θ) sin(θ)] , (5.6)

and PDxk and PDyk were used to construct the preferred deflection direction PDθk, and the

selectivity to that deflection direction PDρk.

Similarly, the distribution of preferred deflection directions, across all whiskers, was sum-
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marised by the mean deflection direction, using:

MDxk =
∑
w

∑
θ

[rk(w, θ) cos(θ)] ,

MDyk =
∑
w

∑
θ

[rk(w, θ) sin(θ)] , (5.7)

from which the preferred multi-whisker deflection direction MDθk, and the multi-whisker di-

rection selectivity MDθk, were computed.

5.2.6 Simulating whisker deflections

To control for the effects of unforeseen artefacts in the data, i.e., a dependency between the

stimulus direction and the stimulus speed, we ran a second network using simulated whisker

deflection patterns that consisted of no such dependency. Whisker deflection onset times Tw and

deflection directions Φw, on a four-by-four whisker array, were generated using the following

model of the geometry of whisker-stimulus interactions:

Θ′ = −Θ− π/2,

X ′w = Xw cos Θ′ − Yw sin Θ′,

Y ′w = Xw sin Θ′ + Yw cos Θ′,

Tw(R,Θ, S) =
sgn(R)

√
R2 −X ′w2 − Y ′w
S

,

Φw(R,Θ) = atan2

(
−
√
R2 −X ′w2,−sgn(R)X ′w

)
−Θ′, (5.8)
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and hence deflection directions were computed as the outwardly pointing normal to the tangent

of the semi-circle edge, at the time of each whisker contact. Accordingly, convex shapes (R <

0) deflect the whiskers away from one another, whereas concave stimuli (R > 0) deflect the

whiskers towards one another.

Based on inspection of the robot stimulation data, the mean latency between deflection onset

and subsequent offset events varied systematically with the stimulus movement speed, with

latencies given approximately by τ = 13.1ms
S

. Thus for the simulated deflections, each onset

was followed by an offset in the opposite direction Φw + π, at Tw + τ . The minimum value of

Tw + τ was subtracted from all deflection times so that the first whisker deflection began at the

start of each iteration of self-organisation.

Self-organisation progressed as for the robot data, but using simulated deflections allowed for

stimuli to be drawn from simpler (i.e., continuous) parameter distributions. As well as a straight

edge, one concave and one convex stimulus were simulated at the minimum radius required to

always deflect all whiskers; movement directions were uniform around the circle, and speeds

were uniformly random in the range of faster speeds 360 mm/s to 720 mm/s. On each training

iteration, a pattern of activity in L2/3 was generated in the usual way, using tactile stimuli with

combinations of parameters drawn on each iteration randomly from these simpler distributions

of radius, direction and speed.

We note that this approach required recomputing input patterns ‘on the fly’, and thus it took

longer to simulate than for the physical model in which L2/3 activity patterns could be pre-

computed. Using 282 L2/3 neurons and 842 L5 neurons, simulations took around 17 hours,

with full map measurement after every 1,000 training patterns, running optimised C++ code
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(interfaced using BRAHMS: Mitchinson et al., 2010) on a dual-core 2.66 GHz processor (al-

though pre-computation of L2/3 patterns for map measurement would have allowed significant

speed-up). Note also that to obtain similar responses in L5 to those evoked by physical-whisker

stimulation, the afferent projection strength was doubled.

5.3 Results

5.3.1 A map for stimulus shape in simulated L5 barrel cortex

The L5 neurons were labelled first by their preferences for the tactile stimulus shape, as shown

in Figure 5.2A. Prior to training, the organisation of responses to different shapes was random,

except for a component at low spatial frequency in which responses to either convex shape dom-

inated. This component is due to the initial spatial arrangement of afferent connection fields,

which biases nearby neurons to have similar initial responses; that convex shapes dominate the

initial responses is not important, because the selectivity of those responses was weak. After

training on 60,000 input patterns, however, the shape map revealed an organisation of responses

into patches of neurons, and the arrangement of patches had a regular, repeating structure. For

example patches of neurons preferring movements of the straight edge tended to be below and

to the right of patches for concave stimulus edges, and to the left of patches for the large convex

stimulus. The repeating structure indicates that the self-organising process had promoted some

form of continuity in representing shape. As expected, the size and spacing between patches

was on the order of the radius of the lateral inhibitory connection fields.
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Figure 5.2. Maps for tactile stimulus features measured in simulated L5. L5 neurons (one
pixel represents one neuron) were tested for their preferences for features of the tactile stimulus
after training on 60,0000 example multi-whisker deflection patterns. Neurons are coloured by
their maximum summed activity, over all 2,000 stimulus patterns that were parameterized by
the feature indicated by the colour key. Preferences were measured in this way for A the shape
of the stimulus edge, B the direction in which the edge was moved through the 3 by 4 whisker
field or C the speed applied to the robot motors to generate the movements. Inset maps show the
organisation prior to any learning or settling, which is random but for a low spatial-frequency
component owing to the Gaussian kernel on the initial afferent weights. Black scale bars in
each panel (and in all subsequent figures) indicate one spacing between barrel centers.
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It is conceivable that instead of learning to represent tactile stimulus shape per se, as we have

chosen to parameterise it (or indeed direction or speed), the self-organising process discovered

structure in the whisker deflection patterns beyond our knowledge of how those patterns were

generated. For example, the deflection patterns owing to different stimulus shapes could have

instead been labelled by the stimulus size, i.e., by using the radii of the semi-circular edges and

ignoring the distinctions between convex and concave orientations. Relabelled in this way, the

straight edge stimulus has the largest size, and thus the largest size was under-represented in

the dataset, with 400 patterns generated using the straight edge but 800 patterns generated using

either of the other two stimulus sizes. This alternative encoding did not seem to be developed

by the network, because learnt preferences for each of the five shapes dominated similar pro-

portions of the shape map. However, it is worth noting the potential for bias when using the

maximum response over chosen stimulus features to label neuronal feature preferences.

5.3.2 An anisotropic map for stimulus direction reflects a bias for faster

stimuli

The same neurons were coloured next by their preferences for particular stimulus movement

directions, as shown in Figure 5.2B. As in the shape map, patches of neurons displaying similar

direction preferences replaced an essentially random initial organisation of responses. As in

the shape map, the arrangement of direction-selective patches had a regular structure. There

was a consistent relationship between patches of neurons preferring directions labelled pink

and the nearest patches of neurons preferring yellow, for example, and similar relationships

for any other pair of represented stimulus directions. There was a strong tendency for the four
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cardinal movement directions to be underrepresented in the direction map, compared with the

four diagonal movement directions. For example, there were almost no neurons that ended up

preferring rightward movements, and hence very little red in the direction map, and few cyan

neurons representing leftward movements. This bias may be due to a relationship between the

stimulus speed and direction in the whisker deflection dataset, as diagonal movements were

associated with faster movement speeds (see chapter 4).

In the speed map (Figure 5.2C), the faster movements completely dominated the organisation of

L5 responses, but for a few disparate patches of neurons responding maximally to slower stim-

uli. Stimulus movement speed was therefore poorly represented in the organised map, whereas

different stimulus shapes and directions were comparably well-covered and well-separated. A

possible explanation is that the distribution of inter-whisker deflection intervals (and deflection

directions) in the physical-whisker dataset is less informative about the stimulus speed than it is

about shape or direction. However this is unlikely to be the case, because L2/3 activity patterns

associated with different stimulus speeds were more easily separable by a linear classifier than

were those associated with different shapes or directions (chapter 4). If the effect is not due to

the input to L5 then it must have originated from within L5.

Faster stimulus movements give rise to shorter inter-spike intervals in L4, which tend to activate

all L2/3 neurons more strongly. The recurrent interactions in L5 separate responses to different

input patterns based primarily on differences in the identity of active input neurons in L2/3.

This is because the dynamics of settling, via short-range excitatory and longer-range inhibitory

connections, sharpen regions of contrast in the distribution of afferent responses across the L5

sheet (Figure 5.1). Although stronger inputs yield stronger responses, it is the input contrasts

rather than their intensities that determine the patterns of settled activity across the sheet. Thus
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the separation of input pattern representations, after consolidation of the settled responses by

Hebbian learning, is driven primarily by differences in activation between rather than within

input neurons. Faster speeds correspond to increased L2/3 activities, and hence faster speeds

dominate even the initial L5 map organisation; differences in activity due to the stimulus speed

do not sufficiently break symmetry in L5 to allow slower speeds to compete for cortical territory

as self-organisation continues.

5.3.3 Orthogonal coding of tactile stimulus features in L5

To investigate a potential interaction between map organisations for the various stimulus feature

spaces, we overlaid the shape, direction, and speed maps. In Figure 5.3, the direction map in

Figure 5.2B was reproduced and the contours of the shape and speed map were overlaid as white

and black lines respectively. It is important to clarify that each feature map was measured from

the responses across the same sheet of L5 neurons, from the same simulation, and thus the three

feature maps are coextensive across L5.

The overlay of feature maps revealed a tendency of the contours in each to intersect at right

angles. That is, the boundary drawn between adjacent patches in one feature map is likely to be

perpendicular to the boundary drawn between adjacent patches in another, at the point where

those two boundaries cross. As a consequence of this organisation, patches of neurons prefer-

ring a particular shape were bisected by contours of low selectivity to the stimulus movement

direction and/or speed. Therefore, at a given location in L5, stimulus shape and direction fea-

ture spaces (but not speed) were well covered. The organisation indicates that L5 responses had

become self-organised, reducing the high-dimensional input space of possible combinations of
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Figure 5.3. Feature separation indicated by non-overlapping map contours. The self-
organised map for stimulus motion direction preferences is shown with pixel brightness indi-
cating the selectivity of the neuron. Contours of maps for the stimulus shape (white lines) and
speed (black lines). If the learnt feature representations corresponded to selectivity for particu-
lar examples of whisker deflection, then the contours of all three maps would overlap. Instead
they tend to intersect at right angles, indicating a genuine separation (i.e., orthogonal encoding)
of response preferences within and between feature spaces.
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whisker deflection directions and relative timings, down to the three components by which the

multi-deflection patterns were constrained (or at least down to two dimensions, discounting the

poor-resolution speed map). Hence the interaction between feature map organisations suggests

a separation of cortical representations according to the three stimulus feature spaces.

With respect to each feature map, L5 neurons with different preferences to the vertically or

horizontally adjacent neuron were selected as markers for within-map contours. Neurons se-

lected as such with respect to both in a pair of different feature maps (e.g., shape and direction),

were selected as markers for between-map contour intersections. Each neuron was taken to

mark an exact orthogonal map intersection if it was spatially isolated from all other neurons

selected in this way, whereas intersection neurons adjacent to one other marked one of two

ends of a non-orthogonal map intersection (i.e., diagonal or collinear boundaries). The propor-

tion of exactly orthogonal versus non-orthogonal intersections for shape versus direction was

38/(38 + 29) = 0.57, for shape versus speed was 32/(32 + 26) = 0.55, and for direction versus

speed was 31/(31 + 21) = 0.60.

5.3.4 Feature map periodicity is reflected in patchy lateral connection

fields

To explore how preferences for stimulus features were constructed during map formation, we

first plotted the learnt connection weights onto individual L5 neurons in Figure 5.4. Weights

were plotted in coordinates of the pre-synaptic sheet (i.e., L2/3 for the afferent connections and

L5 for recurrent connections), for five post-synaptic neurons at equal spacings along a strip

through the middle of the L5 sheet. Although the initial random weights were distributed under
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a two-dimensional Gaussian kernel, after training a clear and very different spatial organisation

was apparent in the weight plots.

Afferent connection weights picked out activity hotspots in L2/3 which correspond with the

barrel column centers, whereas the strongest lateral inhibitory connection weights traced dis-

tinct patches in the surrounding L5. Patches in the distribution of lateral weights were on the

same spatial scale as that separating patches of similar parameter preferences in the stimulus

feature maps. The structure was revealed by an analysis of the periodicity between likewise-

tuned neurons in the feature maps: Laid out over simulation time, histograms of the average

distance separating like-tuned neurons displayed stable ridges along the time axis, which re-

peated at around 20-25 between-neuron spacings (i.e., one barrel-width; see Figure 5.5). The

map organisation was stable throughout training, but for several step-changes in direction map

periodicity, corresponding to the bleeding of smaller patches into larger neighbouring patches.

The feature map periodicity was around one barrel width (i.e., the radius we allowed for long-

range lateral connection fields), which corresponds physiologically to≈ 0.4 mm, and is consis-

tent with a typical feature-map periodicity of 0.5–1.0 mm in cat V1 (Issa et al., 2008). Therefore

feature maps that might be measured in the barrel cortex should be expected to have similar pe-

riodicity to those generated here in simulation. The patchy organisation of lateral connections

is a key prediction of LISSOM, which is supported by observations in V1, and which distin-

guishes LISSOM from other dimension-reduction models that do not explicitly simulate lateral

interactions (see Miikkulainen et al., 2005; Wilson et al., 2010).
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Figure 5.4. Learnt connection weights onto five L5 neurons. Connection weights onto five
L5 neurons (five columns), located at varying horizontal locations along the central vertical
location, are plotted in co-ordinates of the sheet to which the pre-synaptic neuron belongs. The
pixel intensity indicates the connection strength after training on 60,000 stimulus presentations;
pixel intensities were normalised separately in each plot to aid visualization. The top row of
panels shows connection weights from the afferent neurons in L2/3. The 4 by 3 discretisation
apparent in each panel reflects a tendency for L5 neurons to develop stronger connections to
L2/3 neurons clustered around the barrel centers. The middle row of panels shows the learnt
excitatory connection weights within L5, which in each case reveal the development of strong
weights from all surrounding neurons within the short-ranging connection field. Note that these
plots give a good visual impression of the location of the post-synaptic neuron in the sheet.
The bottom row shows the strength of learnt lateral inhibitory connection weights, revealing
a patchy structure often present in mammalian primary visual cortex. The patches are on the
order of the separation between patches of likewise tuned neurons in the various multi-whisker
feature maps. Symbols below the plot for each neuron indicate its preferred stimulus; each
preferred the fastest speed, except the center neuron which preferred the second fastest.
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Figure 5.5. Analysis of feature-map periodicity over simulation time. Over simulation time,
the distance separating pairs of neurons with the same feature preferences was measured, and
histograms were constructed from the number of observed pairs at a given between-neuron dis-
tance. Plots for A shape preference, B direction preference, and C speed preference are shown.
A horizontal band of bright pixels at under 15 between-neuron distance indicates the grouping
of neurons into clusters of similar feature preference. A brighter band at distances of around
30 indicates the separation between nearby clusters. Bands at lower map spatial-frequencies
(i.e., at greater between-neurons distances) indicate the separation between more distal clus-
ters. The separation between clusters in maps for stimulus shape (A) increases smoothly as L5
self-organises, whereas discontinuities at iterations 6,000 and at 49,000 in maps for the stim-
ulus movement direction (B), and in the map for stimulus speed at iteration 32,000 represent
subsumption of smaller clusters into larger neighbouring clusters. Maps measured since these
times tended to be stable. The histogram represented by each vertical column of pixels was
independently normalised to aid the visualisation.
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5.3.5 Self-organisation represents a transition from single-whisker to multi-

whisker receptive fields

To further explore the organisation of L5, receptive-field maps were constructed using the vari-

ety of measures described in Table 5.1, based on responses to isolated whisker deflections (see

Figure 5.6).

Prior to training, maps measured for stimulus features defined on single-whiskers, namely for

the preferred whisker and for the preferred direction in which that whisker was deflected, dom-

inated the organisation of L5. This is because the initial L5 responses were essentially the

spatial average of the L2/3 responses, which were determined by an explicit representation

of the whisker identity and deflection direction in the arrangement of units in L4 (see Fig-

ure 5.1). However after training, the organisation of L5 responses based on single-whisker

preferences, in particular based on the principal whisker deflection direction (as defined by

Equation 5.6), was disordered (Figure 5.6C). Instead maps measured for multi-whisker stimulus

features, namely for the center of gravity of the receptive field and for the mean preferred direc-

tion, became smoother during training (Figure 5.6B & Figure 5.6B). In particular, Figure 5.6B

reveals a repeating mosaic of complete somatotopic maps for the layout of the whiskers in the

array, tiling L5. Thus, a single global-scale representation of the array layout was overturned

during map self-organisation, suggesting a transition from a receptive-field structure based on

single-whisker preferences to one based on the combination of multi-whisker preferences.

To explore this idea further, we looked at how the correlation (the circular-circular correlation

coefficient; Fisher, 1993) between the single-whisker and multi-whisker receptive-field com-
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Figure 5.6. Organisation and development of whisker preference maps. A L5 neurons are
coloured by the whisker which when deflected in isolation evokes the greatest response; re-
sponses to each whisker were the sum activity over deflections in eight directions. The afferent
responses at time zero reveal a rigid topographic map for the principal whisker, which is inher-
ited from the initial weights to the topographically organised L2/3 response. B Preferences for
the identity of multiple whiskers were constructed from the center of gravity of responses to all
twelve whiskers, when deflected in isolation (shown by the X and Y components on blue and
red colour channels respectively), with a global organisation again present at t = 0. After train-
ing, plots in A and B reveal a re-organisation of whisker preferences into multiple, regularly
repeating topological maps for the layout of whiskers in the whisker array. C L5 neurons are
coloured by their direction preference for the principal whisker, with pixel intensity weighted by
the selectivity of the neuron to principal whisker deflections in the preferred direction. At t = 0
a regular tiling of outwardly-radiating pinwheels are inherited from L2/3, but after training the
mapping is irregular and discontinuous, indicating that L5 neuron representations are no longer
governed by correlations within a whisker. D Multi-whisker direction preferences, defined as
the vector average over the preferred direction for each whisker become organised into regular,
repeating topological maps on the scale of those for the multi-whisker identity. These results
indicate a re-organisation during training, from maps dominated by single-whisker preferences
and inherited from L2/3, to maps reflecting multi-whisker preferences.
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ponents varied during the self-organising process (Figure 5.7). L5 neuron preferences for the

principal whisker identity and the multi-whisker identity (MW), as well as for the preferred

principal whisker deflection direction (PD) and the mean preferred deflection direction over all

whiskers (MD) were each expressed in radians, and a circular-circular correlation coefficient

was computed over all L5 neurons. This allows inspection of the neuronal receptive-field struc-

tures in terms of the relationship between MW and MD, and between PW and PD. As L5 self-

organised, single-whisker correlations (between PW & PD) stayed small or slightly negative for

both the afferent and settled responses, supporting the idea that learnt stimulus preferences do

not reflect single-whisker components. Conversely, the correlation between multi-whisker fea-

tures (between MW and MD) increased steadily over time in the afferent response. Over time

the settled responses steadily de-correlated the two multi-whisker components. This suggests

that as self-organisation progressed, the lateral inhibitory weights served to separate responses

based on the combination of whiskers from those based on deflection directions.

These dynamics confirm our intuition about how self-organisation unfolds. At the beginning of

training, recurrent interactions dictate where activity settles on the cortical sheet, during which

time a general consistency between the identity and direction of whisker deflections is learnt.

This consistency can be thought of as description of the stimulus motion direction. As learning

continues, the afferent connection weights consolidate this description (hence the steady rise in

afferent correlations in Figure 5.7), allowing the recurrent interactions to pick out the structure

in whisker-deflection patterns that is superimposed on that describing stimulus direction; i.e.,

that describing shape. ‘Picking out’ is manifest as a de-correlation of the multi-whisker identity

and direction measures of the receptive field (hence the steady fall in settled correlations in

Figure 5.7).
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Figure 5.7. Development of relationships between represented multi-whisker features.
Based on either the afferent response or the settled response in L5 (‘aff’ and ‘set’ in the legend),
the correlation between the principal whisker identity (PW) and the preferred principal whisker
deflection direction (PD) remained low (blue), with a slight anti-correlation between the two.
However, the correlation between the angle of the receptive field center of mass (MW) and the
mean preferred deflection direction over all whiskers (MD) became large in the settled responses
after presentation of just 1,000 whisker-deflection patterns (green). This suggests that from the
beginning of the self-organising process the lateral interactions were driven by a consistency
between the identity and direction of whisker deflections. As self-organisation progressed, this
consistency between deflections was consolidated in the afferent responses, and as training
continued these features became increasingly de-correlated in the settled response.
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According to this explanation, maps for stimulus shape (but not direction) should be better de-

fined in the settled responses than in the afferent responses. This is what we observed; specifi-

cally, patches corresponding to the curved edge preferences were expanded in the settled versus

the afferent maps. Hence the model predicts that in young animals selectivity for the stim-

ulus movement direction will be present in the initial responses of L5 barrel cortex neurons.

However selectivity for stimulus shape, as it is defined in the plane perpendicular to the mo-

tion direction, will be present only in older animals. Moreover it will be pronounced in latent

responses recorded after the settling of recurrent intra-cortical dynamics.

5.3.6 Predicting selectivity for one stimulus feature from knowledge of

another

A second self-organising model was run, this time using simulated whisker-deflection patterns

(Figure 5.8). The stimulus features maps that emerged validate the previous results. In ad-

dition, the simpler training paradigm, in which stimulus direction and speed were drawn from

continuous distributions, revealed the structure of each feature map in finer detail (Figure 5.8A).

The speed map was again dominated by faster speeds, suggesting that the effect is attributable to

the process of self-organisation, rather than to the statistics of the physical-whisker dataset. The

effects may by compensated by controlling the dynamics of L5 neurons differently, for example

by modifying the neuronal input-output transfer function. We used a sigmoidal transfer function

to prevent runaway recurrent excitation that can cause unstable network oscillations; however

by balancing the recurrent excitatory and inhibitory interaction strengths more carefully, use of

a non-saturating output function could provide a larger dynamic range of input-output relation-
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Figure 5.8. Maps generated using simulated whisker deflections. Self-organisation in L5
was driven by simulated whisker deflections, using a four-by-four whisker array. Maps gen-
erated in this way had similar form to those generated using physical whisker deflections, but
were locally smoother and the discontinuities were less apparent. A The individual shape, di-
rection, and speed maps are shown. Note, first that only three stimulus shapes were used for
map training and testing, and hence that three colours indicate shape preferences; second, that
the direction map is locally smooth, comprised of several large pinwheel-type structures, and;
third, that faster speed preferences again dominate the map organisation, even though speeds
were selected from a smaller range than in the physical whisker model. B When the tactile
feature maps were overlaid, there was again evidence of orthogonal coding, with map con-
tours tending to intersect at right angles, at least for stimulus shape and direction. The propor-
tion of exactly orthogonal versus non-orthogonal intersections for shape versus direction was
59/(59 + 44.5) = 0.57, for shape versus speed was 1/(1 + 0) = 1, and for direction versus
speed was 2/(2 + 7.5) = 0.21. The figure facilitates stronger predictions about map L5 organ-
isation. First, preferences for convex stimulus shapes, which deflect the whiskers away from
one-another, are overlaid on discontinuities in the direction map that resemble pinwheel centers.
Second, preferences for straight edge stimuli are overlaid on regions of local continuity in the
direction map. Third, preferences for concave stimuli are overlaid at the linear fractures in the
direction map. C Patches in the lateral inhibitory connections were delineated more strongly in
the map organised using simulated multi-whisker deflection patterns (compare with Figure 5.4).
Preferred stimuli for each of the five example neurons are indicated by symbols, with each pre-
ferring the fastest speed.
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ships. Over larger ranges, smaller contrasts in the afferent activations of L5 neurons could break

the symmetry of responses to different movement speeds, and thus aid their separation during

self-organisation.

Compared with the stimulus-direction map organised using physical-whisker deflections, in

which direction and speed were confounded, the map for simulated stimulus-direction pref-

erences was locally smooth with each direction occupying equal cortical territory. As a con-

sequence, the direction map was composed of large-scale circular structures, reminiscent of

orientation pinwheels measured in visual cortex. Hence the self-organised mapping for stimu-

lus direction promoted both coverage and continuity. Orthogonal coding was also evident when

the direction map was overlaid with the self-organised map for stimulus shape preferences (Fig-

ure 5.8B).

L5 preferences were measured for the three stimulus shapes; a straight edge, a concave edge,

and a convex edge. The organisation of preferences for each shape was clearly related to the

structure of the direction map. For example, neurons preferring the straight edge encapsulated

regions in which direction preferences varied continuously. Presumably this is because, un-

like for the curved stimuli, there was no information in the identity or direction of whisker

deflections in the plane perpendicular to that describing the movement direction. Preferences

for the convex edge were confined to neurons representing discontinuities in the direction map,

at the centers of pinwheel-like structures. At these regions of the direction map, directional

preferences radiate outwardly, reflecting a major feature of the convex stimuli that they deflect

the whiskers in a similar outwardly-radiating profile (Equation 5.8). Likewise, clusters of neu-

rons preferring concave stimuli, which deflect the whiskers towards one-another, gathered at

the fractures of low directional selectivity delineating the boundaries between the pinwheel-like
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structures. Situated in these regions, nearby neurons can have maximally similar directional

preferences based on their afferent connections, whilst maintaining lateral access to the range

of deflection directions required to discriminate shape. This explanation was again supported

by the observation that neuronal clusters preferring curved stimuli were expanded in maps mea-

sured using the settled responses, compared with those using the afferent responses.

These observations indicate that representations of more complex stimulus shapes will be found

in the discontinuous regions of the stimulus-direction map. Thus, given knowledge of how

a L5 neuron participates in the stimulus direction map, and particularly given a measure of

its relative directional selectivity, we might infer its tactile stimulus shape preference. The

interactions between shape and direction maps revealed here may also explain a tendency for

convex shapes to dominate maps organised using physical whisker deflections (Figure 5.2A).

The under-representation of cardinal directions led to a distortion of the directional pinwheels,

such that regions representing whiskers deflected towards one-another were expanded in the

direction map. These regions of the direction map correspond with the representation of convex

stimuli in the shape map (as convex stimuli deflect the whiskers towards each other) and hence

an apparent over-representation of convex stimuli in the shape map of Figure 5.2A.

5.4 Discussion

L5 barrel cortex was modelled as a self-organising network, and trained on patterns of simulated

L2/3 activity that were derived from physical interactions between an array of artificial whiskers

and a variety of tactile stimuli. After training on many examples of multi-whisker deflection
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patterns, responses across a sheet of L5 neurons were used to construct maps from neuronal

preferences for particular features of the tactile stimuli. As these feature maps developed, pref-

erences for particular whiskers, for their deflection directions, and for particular combinations

of stimulus shape, direction, and speed, became separated across L5.

Several lines of evidence suggest that the self-organisation of L5 connectivity patterns corre-

sponded with a genuine separation of responses according to the tactile stimulus feature spaces,

rather than one based on specific examples of whisker-deflection pattern. Firstly, the contours in

maps measured for stimulus shape, direction, and speed preference, tended to intersect at right

angles. If neurons had instead become organised into patches, each corresponding to one shape,

one direction, and one speed, then the respective map contours would have been superposed,

and thus L5 would have learnt preferences for individual examples of multi-whisker input rather

than for the stimulus parameters represented by those examples. Secondly, inspection of maps

generated using different realisations of each stimulus parameter combination revealed similar

structures, as did maps generated by combining over realisations. Thus learnt representations

were robust against sources of noise in the whisker movements that were uncorrelated with

particular stimulus features. We can also be reasonably confident that representations were not

based on noise correlated to particular stimulus parameters, because a previous analysis sug-

gested that at least the timings of whisker deflections were dictated by the geometry of whisker-

stimulus interactions (chapter 4). Therefore the network seems to have learnt representations

of the tactile stimuli that were abstract with respect to specific examples of individual whisker

movement.

The separation of L5 responses was due to a re-organisation of whisker representations, from

those pertaining to individual whisker movements, to those pertaining to relationships between
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multiple whisker movements (as suggested by Figure 5.7). Prior to training, a mapping for the

identity of the whisker in the whisker array was inherited from an initial topographic organ-

isation of L2/3 to L5 connections. However, this organisation was quickly overturned during

learning, in favour of a repeating mosaic of smaller-scale maps for the array layout, in which re-

sponses reflected movements between rather than within the whiskers. The implication is that in

areas downstream of L2/3, an organisation of responses based on the principal whisker identity

may be secondary to one based on representations of more abstract multi-whisker features.

To what extent can the predictions of this high-level model of cortical development be expected

to translate to the biology? Our previous model of barrel cortex map self-organisation used

LISSOM to explore the development of maps for the principal whisker deflection direction

(Wilson et al., 2010). In a more recent study (Kremer et al., 2011), the results of our model were

validated using a network in which many of the biological assumptions implicit in LISSOM

were made explicit. The model of Kremer et al. (2011) included realistic synaptic dynamics

(as used here to simulate the L4 to L2/3 but not the L2/3 to L5 interaction), and the synaptic

weights were modified in continuous-time using a spike-timing dependent plasticity learning

rule in place of our rate-based approximation. Despite these modifications, at the level of map-

organisation, the results of Wilson et al. (2010) and Kremer et al. (2011) were identical; for

example, both models predict that map singularities are located further from the map center in

more eccentric barrels. It is also interesting that Kremer et al. (2011) were able to generate

the short-range excitatory and long-range inhibitory lateral interactions required for map self-

organisation, using shorter-range inhibitory connections that are more biologically plausible;

note that this paradox has also been resolved using LISSOM-like models of map development

(Law, 2009). Overall, the consistency between map organisations predicted by the two types of

model, suggest that predictions generated using our top-down approach can inform models that
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are subjected to additional biological constraints.

Although based on only two network simulations, which grossly simplify the physical system

in numerous ways, we can ask of the present results whether the structure of L5 receptive fields

generated in simulation are consistent with those observed in the barrel cortex. Firstly, whereas

an earlier study found consistency in the preferences of a given neuron for the direction in which

adjacent whiskers are deflected (Kida et al., 2005), a more recent study found a null relationship

between preferred deflection directions amongst whiskers (Hemelt et al., 2010). In line with the

latter study, we observed only a weak correlation between the preferred deflection direction for

the principal whisker and the mean direction computed across all other whiskers; i.e., a circular-

circular correlation coefficient around 0.1 was measured throughout development, based on

either the afferent or settled responses. Therefore, as seems to be the case in the biology,

the model does not predict that L5 receptive-fields reflect simple co-linear deflection patterns.

Secondly, Le Cam et al. (2011) recently found that for the majority of barrel cortex neurons,

the center of gravity of responses across the whisker field depends on the direction in which

the whiskers are deflected: In L5, they found that the center of gravity was shifted by between

0.6 and 0.7 whisker spacings, depending on whether whiskers were deflected to the left or to

the right. An equivalent analysis in the model, averaging over four pairs of opposite deflection

directions, yielded a mean shift of 0.59± 0.22 whiskers. Thus the simulations also predict that

the whisker receptive field can be significantly modulated by the direction in which the whiskers

are deflected. A final comparison can be drawn with the data of Jacob et al. (2008), which

revealed selectivity in L5 neurons to the stimulus direction implied by the whisker deflection

sequence, but no consistency between these preferences and the preferred principal-whisker

deflection direction. To the extent that these two receptive field measures are approximated

by those used to construct Figure 5.2B and Figure 5.2C, this null relationship was also true
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in simulated L5. However, the dominance of preferences for faster speeds in simulation may

be inconsistent with the data of Jacob et al. (2008), in which neurons displayed a degree of

tuning for moderate movement speeds; the simulation result was explained earlier by a lack of

symmetry breaking in the L5 recurrent connections.

The structure of maps generated using simulated deflections (Figure 5.8) may serve as more

accurate predictions about the structure of maps in real barrel cortex based on real whisker

experiences, during which there would be no reason for stimuli to be drawn from the discrete

parameter sets used in the physical-whisker setup. The drawback to using simulated deflec-

tion patterns is that the distributions from which whisker movements are drawn, and indeed

the choice of geometric model and the parameters to be varied, require us to introduce addi-

tional assumptions. By using deflections of physical whiskers, we at least introduced sources

of external noise into the network that are analogous to those which may be experienced nat-

urally, and against which we demonstrated robustness in the encoding and learning of feature

representations. These types of noise are likely to better characterise biological noise than, for

example, independent normally-distributed noise added to the deflection times and directions,

that we might have introduced in simulation. Thus the implication is that robustness to noise at

the sensory periphery is also a feature of biological cortical maps.

Short of training the network using statistics obtained from analyses of real whisker experiences,

a better approach for a more comprehensive version of this study in the future, is to collect

data from artificial whiskers mounted on autonomous, biomimetic robot platforms. Important

questions, about how the interplay between the agent and its environment may shape cortical

representations, can then be addressed by manipulating the environment, and then comparing

learnt structure in simulated cortex with that in the cortices of animals reared under similar
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conditions. This is the goal of our forthcoming research program. In this context, the present

results, obtained using inputs gathered under controlled conditions will serve as a benchmark,

against which to test hypotheses about how the nature of somatosensory inputs shapes their

representation in the brain.



Chapter 6

General discussion

Chapter summary

The central thesis, as posed in chapter 1, is that sensory motion may be represented in

the sensory cortex by spatial coding. This is the problem referred to as Figuring Time by

Space. Specifically, the thesis has provided evidence that first order motion, as represented

by the movement of one of the facial whiskers, and second order motion, as represented

by the inter-whisker deflection interval, are encoded in the somatosensory barrel cortex in

topological and/or topographical maps. The thesis set out to formulate the idea of Figuring

Time by Space as a scientific theory, by constructing top down models of sensory motion

processing in the whisker-barrel system. In this general discussion, the main findings of the

thesis are reiterated, the modelling approach is evaluated, specific suggestions for further

experimental work are presented, and some general implications of the research are offered.

193
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6.1 Summary of main findings

Chapter 2 presented the hypothesis that input driven self-organisation can explain how a soma-

totopically aligned pinwheel mapping for the whisker movement direction (first order motion)

can emerge across the supra-barrels. The explanation is that typical multi-whisker deflection

patterns, coupled with cortical interactions that result in the settling of activity in regions of

high contrast in afferent inputs, become associated with particular layer 2/3 neurons during

post-natal development. The pinwheel mapping emerges if typical whisker deflection patterns

are spatially coherent, i.e., if first- and second-order motions are colinear. Essentially, in a

generic model of sensory cortex, previously investigated by analogy with the visual cortex, vi-

sual inputs were substituted for tactile inputs and tactile maps emerged. Therefore, in answer

to the first research question, a general model of cortical development can explain the existence

of a whisker direction map in the barrel cortex.

Chapter 3 presented the distance-dependent delay hypothesis. The hypothesis explained ex-

isting data, relating the relative timing of multi-whisker deflections (second order motion) to

the location of active barrel cortex neurons, as a reflection of an underlying continuum of dif-

ferences in axonal signalling delays. Inspired by an existing theory of how inter-ear timing

differences are resolved in the auditory midbrain (place theory; Jeffress, 1948), a simple model

that incorporated plausible connection distances, geometry, and speeds, reproduced a range of

complex response properties measured in the barrel cortex. Therefore, in answer to the sec-

ond research question, a general model for resolving the relative timing of sensory inputs can

explain neuronal responses to differing whisker timings in the barrel cortex.

In chapter 4 the research question was whether the spatial coding mechanisms identified in the
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previous chapters could be used to reconstruct tactile stimulus features from real (i.e., physical)

multi-whisker deflection patterns. The answer is that features could be reconstructed after cor-

tical re-mapping, at least as well as they could be reconstructed after remapping via a sensible

control operation. Processing inputs from a physical model of whisker-stimulus interactions,

chapter 4 showed how cortical responses predicted by the distance-dependent delay hypothesis

translate from a one-dimensional string of neurons to a two-dimensional sheet of neurons. The

process revealed robustness of the neural encoding to sources of external noise and it forced

more of the assumptions involved in constructing the encoding to become explicit.

In chapter 5 cortical responses to the artificial whisker deflection signals, collected as part of

chapter 4, were processed by the model developed in chapter 3, and used to drive the self-

organising algorithm presented in chapter 2. Hence after a full exploration of the behaviour at

each level of processing, the full model presented in chapter 5 was used to generate predictions

about the functional organisation of layer 5 barrel cortex, about which there is relatively little

data. As the biological constraints were more relaxed, chapter 5 represents an exploratory mod-

elling study, with a focus on generating qualitative predictions about the cortical organisation.

This approach generated specific predictions that can guide future experimental work on an

important and difficult area of research. For example, the major prediction is that components

of the multi-whisker deflection pattern that describe orthogonal features of a tactile stimulus,

such as its shape and motion direction, will be represented in coextensive topological maps

across layer 5, with contours that intersect at right angles. Hence, whilst some of the details

may be shown in future experiments to be wrong, the model makes falsifiable predictions about

the functional organisation of responses in layer 5, and therefore it is useful (Box and Draper,

1987).
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6.2 All models are wrong, but some are useful

Chapters 2 and 3 each explained a range of complex neuronal stimulus-response interactions in

terms of simple organisational principles. Although it is important to clarify that these expla-

nations do not in themselves rule out alternatives, no explicit, verifiable, falsifiable explanation

had been formulated beforehand. Hence the contribution of chapters 2 and 3 has been to for-

mulate the first explicit theories of the functional organisation in the barrel cortex. Each model

represents, at best, a theory of cortical computation, and at worst, a straw-man to be knocked

down in a step towards a deeper understanding. Formulated as they are as computational mod-

els, it is clear how each theory can be knocked down. For example, if anti-correlation of a

particular whisker’s deflection direction failed, in a future experiment, to anti-correlate the cor-

responding whisker direction map (Figure 2.7), then we would know that the self-organising

model of pinwheel map development must be wrong. Similarly, if the preferred inter-whisker

deflection interval can be shown not to be correlated with the specified differences in axonal

path lengths, then we would know that the distance-dependent delay hypothesis must be wrong.

Like any other theoretical formulation, if the model is revealed to be wrong then it can be revised

or discarded. For example, when the work in chapter 2 was first submitted for publication,

reviewers challenged an original assumption that whisker deflection magnitudes are graded

across the whisker field in the direction of stimulus movement. The model was therefore revised

to include a simpler binary deflection gradient, where some whiskers are deflected and other

whiskers are not. Thus the hypothesised role of recurrent dynamics in amplifying afferent

activity gradients was revealed to be more general and thus more powerful than first anticipated,

extending to the simpler case of binary deflections. Similarly, when the distance-dependent
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delay hypothesis was originally submitted for publication, reviewers challenged an original

assumption that the major inhibitory influence on the L2/3 responses originates in L2/3 rather

than in L4. As suggested by the reviewers, this is inconsistent with the known anatomy because

any plausible inter-connection geometry based on this assumption would require differences

in axonal path lengths that are too large to be generated within rather than between cortical

laminae. The description of the model was therefore revised, and the process revealed the

specific model prediction that L4 to L2/3 inhibitory axonal conduction speeds must be faster

than their excitatory counterparts.

In order to process inputs from physical whisker sensors in chapter 4, the model required an

explicit representation of thalamic neuronal processing, which based on the available data was

assumed to act as a filter for the velocity of single-whisker movements. The process of making

this type of assumption explicit revealed some of the technical and practical challenges that

may face attempts to mimic the capabilities of biological whisker systems in robots. For ex-

ample, it became clear that a system based on isolating high-velocity whisker movements will

be significantly affected by whisker deflection offsets, unless offsets are actively controlled at

the sensory periphery. The impact of the offsets on the cortical responses, such as through

an increase in afferent activity and through a correlation between afferent neurons of opposite

directional tuning, appears obvious only in retrospect.
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6.3 Future directions: suggestions for experiments

Inputs to the model presented in chapter 2 were derived via the exact same analogy as that

used to derive the inputs to the model of Kremer et al. (2011), that of a straight edge moving

through the whisker field. In the model of Kremer et al. (2011) the relative whisker deflection

times were communicated to a network of spiking unit as its dynamics unfolded in continuous

time. However in the model of chapter 2 relative whisker deflections were communicated to the

network implicitly by collapsing the full spatial-temporal evolution of the stimulus down to a

snapshot of whisker activity at a single point in time. The history of the stimulus motion was

captured by the binary activation of whiskers that would, at that point in time, have recently

been deflected by the stimulus. Although the same stimulus movement was presented to the

two models using slightly different methods, at the level of the map organisation both models

produce identical results. Maps generated in both models result from unsupervised learning

which reveals the statistical structure in the input patterns. Therefore any important additional

structure that may have been communicated to the network of Kremer et al. (2011), by repre-

senting time explicitly, should have resulted in differences in map structure. The Kremer et al.

(2011) model provides an important validation of the results in chapter 2, using a more realistic

network. However it may be more interesting in a future study to ask further questions of this

model relating to stimulus features that require an explicit representation of time, e.g., by trying

to measure a stimulus speed map.

A particular strength of the computational model is in its power to predict, and several pre-

dictions have been derived during the presentation of this thesis. A central prediction of the

distance-dependent delay hypothesis is that the position of the layer 2/3 neuron, relative to two
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underlying barrels, is correlated with its preferred inter-whisker deflection interval. Specifically,

deflection of whisker A before whisker B will evoke selective responses in neurons located

closer to barrel B, and vice versa; thus position x should be anti-correlated with the maximally

effective inter-whisker interval (IWI). As presented in Figure 6.1, the original data of Shimegi

et al. (2000) were very kindly supplied for reanalysis by S. Shimegi and H. Sato of Osaka Uni-

versity Japan. The analysis is presented in this section on future directions because it is not

complete, and as such the details are presented only briefly in the figure caption. However the

initial results of the analysis are promising; smoothing over conditions to estimate the preferred

IWIs of thirty-one layer 2/3 neuronal response profiles a regression of preferred-IWI onto x re-

vealed a fit IWI = −3.61x+ .26; Pearson’s correlation coefficient r(29) = .44, p = .0124. Four

neurons were excluded from the analysis based on inspection of the spike-histograms, either

because their spikes were relatively poorly time-locked to the stimulus or because the smooth-

ing generated artificially large preferred IWIs (see Figure 6.1D); we note that for each excluded

neuron secondary peaks were evident at IWIs consistent with the overall trend, although it is

difficult to draw out this relationship using transparent statistics. Excluding these neurons, the

general relationship between x and the preferred IWI is as predicted by the distance-dependent

delay hypothesis. Thus we might expect that a future experiment in which data like those of

Shimegi et al. (2000) are collected to explicitly test the distance-dependent hypothesis will be

fruitful. This is an important experiment to conduct.

It is constructive to detail a particular experiment suggested by the model presented in chapter 5.

A key prediction of the model is that orthogonal components of second-order whisker motion,

describing the shape and direction of a tactile stimulus moving through many whiskers, are rep-

resented by spatial coding across the sheet of layer 5 barrel cortex, in topological maps whose

contours intersect at right angles. To test the hypothesis one would record somatosensory-
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Figure 6.1. Pilot analysis of Shimegi et al., (2000) data confirms the model. S. Shimegi
and H. Sato most kindly recovered and supplied 35 L2/3 neuronal response profiles to adjacent-
whisker inter-deflection-intervals IWI ∈ ±{0, 1, 2, 3, 4, 6, 8, 10, 12}. Response profiles for 26
neurons (9 tested using two whisker-pairs) consisted of histograms of mean spikes over 25 or
50 trials in 1 ms bins beginning at the onset of the first whisker deflection. A Neuron location
(x, y) in the tangential plane, was estimated histologically, and 0.4 mm spacing between barrel
(dotted) centers was assumed post hoc. Neurons located above a particular barrel (e.g., blue/red)
typically spiked a fixed time after deflection of the corresponding whisker, whereas neurons
towards the midline (e.g., green) tended to spike a fixed latency following the earliest deflection;
see B for individual responses. C Response profiles rt,i were smoothed across ascending IWIi:
r′(i) =

∑
t(τ2rt,i−1 + (τ1 + τ2)rt,i + τ1rt,i+1)/2(τ1 + τ2), τ1 = IWI(i) − IWI(i − 1), where

τ2(i) = IWI(i + 1) − IWI(i), and we specify τ1 = τ2 for IWI = ±12 ms. The preferred IWI,
estimated as arg maxIWIi r

′(i), is plotted against x and fit by linear regression. A significant
anti-correlation was consistent with the predictions of the distance-dependent delay hypothesis.
D Due mainly to smoothing artefacts responses of the grey neurons in A were excluded from
C. Statistics without exclusion: IWI = 2.29x+ .61, r(33) = .16, p = .35.
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evoked responses across a hemisphere of barrel cortex, targeting layer 5 in vivo in adult rats at

day P81+ (Kremer et al., 2011), using two-photon calcium imaging to capture map-level organ-

isation at high spatial and temporal resolution (see Kerr et al., 2007; Kremer et al., 2011, but

note that at the time of writing two-photon recordings in L5 have only been achieved in mouse

cortex; Mittmann et al., 2011). All contralateral whiskers would be stimulated, using a matrix

of omni-directional actuators (Jacob et al., 2008, 2010; Le Cam et al., 2011) to imply the va-

riety of semi-circular edge movements defined by Equation 5.8. Stimuli would be delivered in

pseudo-random order to control for the possibility of map smoothing by adaptation to consecu-

tively presented stimuli, and responses to identical stimuli would be compared by presentation

order to rule out map entraining (see Li et al., 2008). Finally alignment of the images to the

barrel layout would be confirmed post mortem by histology.

Validating the prediction of orthogonal coding in an experiment like this is very important. Fal-

sification, for example if two-photon imaging revealed a random map in adult layer 5, would

be interesting because it would suggest that cortical areas processing information from dif-

ferent modalities and in different species employ specialised organisational principles. This

is the implication of recent results showing a random map for orientation preferences in the

primary visual cortex of certain rodent species (van Hooser et al., 2005), as well as a lack of

patchy lateral connectivity between similar orientation domains (van Hooser et al., 2006); al-

though LISSOM-like simulations have recently demonstrated how orientation selectivity in the

absence of orientation maps can arise from input driven self-organisation, as a result of biolog-

ically plausible levels of retinotopic scattering in the thalamo-cortical projection (Law, 2009).

Conversely, confirmation of orthogonal coding would be strong evidence that input-driven self-

organisation in mammalian primary sensory cortex serves as a general purpose mechanism for

representing the world, by reducing it to the most relevant feature dimensions, at least in vision
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and touch. In essence, confirmation of orthogonal coding would be evidence that the sensory

cortex does what this thesis set out to acheive. That is, to reduce the dimensions of the prob-

lem; to describe what is important by abstracting over the details. Perhaps then, the brain itself

should be considered as a modeller?

6.4 When is a topological map necessary?

This thesis has presented evidence suggesting that topological feature maps characteristic of

those in primate primary visual cortex are also present in rodent barrel cortex. However not

all stimulus features appear to be mapped topologically in rodent primary cortical areas. For

example, whilst the retinotopic map in rodent V1 has been well characterised (e.g., Gias et al.,

2005) maps for visual edge orientation in rodent V1 appear to be random (van Hooser et al.,

2005). If we assume that topological maps for alternative features do not preside over the rodent

V1 orientation map, then the apparent discrepancy between rodent and primate maps raises the

question of exactly when a topological map is necessary. Why should projections from a high-

dimensional stimulus feature space onto two cortical sheet dimensions preserve feature space

topology (Durbin and Mitchison, 1990)?

Answers to this question have often appealed to the idea of minimal wiring lengths (Koulakov

and Chklovskii, 2001). The idea is that random maps minimise metabolic and structural costs

associated with the lengths of connections between neurons that represent similar features,

whilst maximising feature space coverage across local regions of the map (e.g., a neuron tuned

for ‘up’ is equidistant from neighbours representing all angles). Conversely, topological maps
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minimise wiring lengths whilst maximising feature space continuity across local regions of the

map (e.g., a neuron tuned for ‘up’ is closer to other ‘up’ neurons and further from ‘down’ neu-

rons). This minimal wiring length argument is by itself unsatisfying because it does not explain

the functional significance of representing feature space continuously.

Preserving continuity in feature space preserves also notional distances between features present

in a stimulus. Therefore, unlike a random map, a topological map allows a comparison between

features to be computed in units of inter-neuronal connection distance. This means that any

computation based on the degree of similarity between stimulus features can be implemented

on a topological map using monotonic functions of the inter-neuronal distance. For example,

relative to a topological orientation map, lateral inhibition that increases in strength with inter-

neuronal distance will enhance responses to edges of novel orientation against a background of

similar (and thus mutually suppressive) orientations. However, it is not difficult to conceive of

appropriate non-monotonic connectivity in random maps that can achieve identical functional-

ity. Therefore any comparison between stimulus features that requires a topological map should

utilise some network property that is constrained to vary monotonically with inter-connection

distance.

A candidate network property is the signalling latency, which must increase monotonically with

inter-connection distance if axonal and dendritic propagation speeds are finite and essentially

homogeneous. As we saw in Chapter 3, measuring distances in feature space in terms of relative

signalling latencies fulfils the basic requirements for second order motion detection outlined by

Borst and Egelhaaf (1989). Therefore topological maps are required for the use of distance de-

pendent signalling delays to measure the velocity of stimulus motion through feature space. For

example, the rotation of a visual edge defines a velocity vector in the orientation domain, and
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hence distance dependent signalling delays can be used to compute the speed and direction of

rotation in a topological orientation map. Similar mechanisms could in principle resolve vectors

defined in arbitrary feature spaces using distance dependent delays and topological maps. Thus

Figuring Time by Space may well be the primary function of topological maps.

The argument can be summarised as follows. i) By definition, topological maps preserve conti-

nuity and thus notional distances in feature space; ii) Distances in feature space correspond to

differences between features present in a stimulus; iii) Computations based on these differences

alone can be resolved in random maps using non-monotonic functions of inter-neuronal dis-

tance; iv) However computations based on differences between features and relying on mono-

tonic functions of inter-neuronal distance necessitate topological maps; v) These include any

computation relying on finite, homogeneous inter-neuronal connection speeds to resolve mo-

tion velocities through arbitrary feature spaces; vi) Thus the topological map may be necessary

for any computation that requires figuring time by space.

6.5 The best model for a rat is another, or preferably the

same rat

Rosenblueth and Wiener (1945) were of course being flippant when they declared that ‘...the

best material model for a cat is another, or preferably the same cat’ (page 320). What they meant

is that the system is necessarily the most accurate description of itself. My cat is called Dinah.

A perfect description of Dinah’s brain, down to the quantum state(s) of every molecule flowing

at every synapse, in itself offers no better explanation for how Dinah perceives her world than
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does Dinah herself, nor can it predict how she will behave next. One could argue that new

insights would be gained by constructing such a detailed model, or that once constructed, the

model would be more amenable to scientific investigation. These are both valid points only if

at some stage we start to abstract over the details, i.e., by making a model of the model. Else,

as Rosenblueth and Wiener (1945) conclude, for anybody to comprehend the original model, to

the point that they may elaborate upon it, would require a level of comprehension that would

render such a modelling effort unnecessary. If this is true, then how can progress be made?

By adopting a top down approach to modelling, the work of this thesis has provided insights

into the functional organisation of the barrel cortex that may have been difficult to establish

using only a bottom up approach. For example, imagine for the sake of argument that evolution

has selected the structure of the barrel column for the property that it discretises the location

of neurons in cortical space and thus supports a Jeffress-like place coding for the inter-whisker

interval. It is difficult to imagine how this could have been revealed by bottom up models,

simply because current models have necessarily been simulating the neuronal and synaptic pro-

cesses in single columns that are isolated from sensory input. Of course, bottom up models

have an important role to play in understanding brain function. For example the model of Wil-

son et al. (2011) presented in chapter 3 leaned heavily on the equations and parameters used

by Sarid et al. (2007) in order to represent processes of synaptic integration in the barrel cortex

with confidence. This serves to illustrate how the bottom up approach to modelling can inform

models constructed from the top down. Imagine now that the primary function of the barrel

column were instead to learn the topology of the space of typical whisker deflection directions.

According to the self-organisation hypothesis, the minimum requirements for this organisation

to emerge are inputs from multiple whiskers, spatial coherence between experienced whisker

deflections, and Hebbian learning. Again, even if the next generation of bottom up models
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simulated more than one column, it would be a long time before the function of the system

as a whole could be elucidated. The interplay between the studies of Wilson et al. (2010) and

Kremer et al. (2011), in which the details of the relatively abstract model of chapter 2 were

verified in simulations that filled in some of the biological details, serves to illustrate how the

top down approach to modelling can inform models constructed from the bottom up. Thus it

seems that bottom up models like those of Sarid et al. (2007) and Lefort et al. (2009) provide

essential tools for informing higher-level models, and vice versa, in equal measures. The truth,

so to speak, will almost certainly lie at the point where top down, bottom up, and experimental

approaches converge; i.e., in a collaborative cycle of top down prediction, experimental valida-

tion, and bottom up verification. Perhaps it is only through such a cyclical process that we can

progress towards understanding how high level phenomena like perception and consciousness

are subserved by neural circuitry (but see Markram, 2006).

6.6 Conclusion: ‘seeing’ with whiskers

By way of a conclusion, the thesis will end by taking the liberty to discuss the potential role of

spatial coding in perception; or ‘seeing’ (see Frisby and Stone, 2010 on seeing in the context of

visual perception).

The evidence for Figuring Time by Space, from which the models presented in this thesis were

derived, was measured almost exclusively from neurons of the lemniscal pathway (barrelette,

barreloid, barrel, supra/infra-barrels and beyond), whereas much of the evidence for figuring

space by time is provided instead in paralemniscal pathways that deviate from the lemniscal
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pathway at the brainstem (Ahissar and Arieli, 2001). Therefore it may be useful to consider

these two pathways as separate streams for processing temporal and spatial information. Seeing

is about figuring both time and space, and thus it surely involves both streams. Note that the

dichotomy between processing streams is presented with the caveat that there is likely to be

considerable interplay between the two, as representations become increasingly abstract along

the neuraxis with respect to simple motion primitives like the whisker deflection direction (see

Bale and Petersen, 2009).

From the perspective of Gibson (1962), seeing might be recast as a more general problem of

active sensing, where the observer seeks to elicit the behaviours that are afforded by stimulus

objects, i.e., a mug affords grasping, a wedge of cheese affords eating, and, to an Etruscan

shrew at least (Anjum et al., 2006), a cricket leg affords attack. Like all mammalian sensory

systems, the whisker system is dynamic and active; rats, for example, palpate the whiskers

at around ten ‘whisks’ per second (Welker, 1964; Kleinfeld et al., 2006; Grant et al., 2009,

2011). In light of evidence from the whisker system, the role of spatial coding during perception

might be explained as follows. Topographical cortical maps for first-order sensory motion (i.e.,

chapter 2; Wilson et al., 2010) and second-order sensory motion (i.e., chapter 3; Wilson et al.,

2011), are each in spatial register with an overall map of the body (Stafford and Wilson, 2007),

anchored as they are to the layout of cortical columns. Spatial relationships in the sensory

environment are therefore preserved, and thus stimuli are played out onto a kind of Cartesian

screen (Dennett, 1991). Projections onto the cortical screen are gated by the thalamus, which

itself contains a mapping of the sensory cortex (Hartings et al., 2000), and which illuminates

salient regions of cortical feature maps (Crick, 1984). In turn representations of salient stimuli

are attended to, without invoking a homunculus, but as manifest in the dynamic shaping of

thalamic maps by cortical activity (Li and Ebner, 2007). Topological maps for higher-order
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stimulus features are maintained in projections through deep brain structures (Welker et al.,

1988; Mercier et al., 1990; Hoover et al., 2003; Hoffer et al., 2005), such as the basal ganglia

which resolve competing requests for access to motor resources (Redgrave et al., 1999; Gurney

et al., 2001a,b). Preservation of the topology of sensory input spaces through the brain may

ensure efficiency in fulfilling the affordances of salient sensory stimuli, as mammalian sensory-

motor systems interact dynamically with the sensory environment.

To conclude, during the course of this thesis the idea that sensory motion is represented in

the sensory cortex via a series of coextensive spatial codes was developed into the theory of

Figuring Time by Space. The theory was formulated scientifically using a series of top down

systems-level computational neuroscience models of the whisker barrel system. Based on sim-

ple and local principles of functional organisation between cortical neurons, Figuring Time by

Space represents a general theory of neural computation in the mammalian sensory cortex.
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