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Abstract 
 

The life expectancy increasing, in the last few decades, leads to a large diffusion of 
neurodegenerative age-related diseases such as Parkinson’s disease. 
Neurodegenerative diseases are part of the huge category of neurological disorders, 
which comprises all the disorders affecting the central nervous system. These 
conditions have a terrible impact on life quality of both patients and their families, 
but also on the costs associated to the society for their diagnosis and management. 
In order to reduce their impact on individuals and society, new better strategies for 
the diagnosis and monitoring of neurological disorders need to be considered. 
 
The main aim of this study is investigating the use of artificial intelligence 
techniques as a tool to help the doctors in the diagnosis and the monitoring of two 
specific neurological disorders (Parkinson’s disease and dystonia), for which no 
objective clinical assessments exist. The evolutionary algorithms are chosen as the 
artificial intelligence technique to evolve the best classifiers.  The classifiers 
evolved by the chosen technique are then compared with those evolved by two 
popular well-known techniques: artificial neural network and support vector 
machine. All the evolved classifiers are not only able to distinguish among patients 
and healthy subjects but also among different subgroups of patients. For 
Parkinson’s disease: two different cognitive impairment subgroups of patients are 
considered, with the aim of an early diagnosis and a better monitoring. For 
dystonia: two kinds of dystonia patients are considered (organic and functional) to 
have a better insight in the division of the two groups. 
 
The results obtained for Parkinson’s disease are encouraging and evidenced some 
differences among the cognitive impairment subgroups. Dystonia results are not 
satisfactory at this stage, but the study presents some limitations that could be 
overcome in future work.   
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CHAPTER 1: INTRODUCTION 
	

Nowadays, thanks to scientific progress and the discovery of new drugs, people live 
longer and, as a consequence, there are more elderly people than a few decades ago. 
The process of becoming older leads to new challenges for society. In fact there are 
a lot of neurodegenerative age-related diseases likely to become more common, due 
to increased life expectancy. These conditions not only have a terrible impact on 
patients and their family life, but also on the costs of the society for diagnosing, 
monitoring and managing these conditions. Neurodegenerative diseases are part of 
the huge category of neurological disorders which comprises all the brain disorders 
affecting the central nervous system. In this work we will investigate the 
application of artificial intelligence techniques as a tool to help in the diagnosis and 
monitoring of two specific neurological disorders, for which no objective clinical 
assessments exist. The aims of the techniques presented are: reducing the costs for 
diagnosing and monitoring specific diseases with a simple and cost efficient test; 
improving the patients and families life with an early and objective diagnosis and 
also designing a better target therapy identified by the improved monitoring and 
diagnosis. 
This chapter describes the motivations, the aims and the novelty of this study. It is 
divided in six main sections. In section 1.1 a brief introduction about the incidence 
and the costs of neurological disorders is given. Section 1.2 describes the costs 
related to neurological disorders, examining graphs and tables. Section 1.3 
discusses health burden associated with neurological disorders by estimating the 
impact on quality life. The motivation of the research along with an overview of its 
aims is given in section 1.4. In section 1.5 the aims of the work are described in 
details along with the motivations of the work novelty. The study is summarized as 
a research question in section 1.6, where also the thesis organization is given. 

1.1 NEUROLOGICAL DISORDERS AND PROBLEMS 
ASSOCIATED 

 
In the last decades medical advances and improvements in sanitation led to an 
increased life expectancy.  The world-wide life average reached about 70 years in 
2014 (six years longer than in 1990) and about 80 years considering only the 
developed countries (in the early 20th century this was about 50 years) (Jin et al. 
2015). In a recent study Kontis and colleagues predicted that life expectancy could 
increase more in the next years, reaching in 2030 an average of 85 years or more in 
the industrialised countries (Kontis et al. 2017).  In future years then, a further 
increasing of the life average is expected, leading to more people living longer.   
Although the increased life average is a positive aspect, it leads to new challenges. 
Getting older, in fact, is strictly linked to biological and cognitive degeneration 
resulting in a consequent increasing of neurodegenerative diseases (Jin et al. 2015). 
Neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease are 
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known to be strongly age related, there is no cure, they are difficult to be slowed 
significantly and usually end with death. Parkinson’s disease is the second most 
common age related disease after Alzheimer’s disease, having a prevalence of 
approximately 0.5 to 1 percent for those aged between 65-69,  and rising to 1 to 3 
percent for those aged 80 and above (Nussbaum and Ellis 2003). Ageing decline 
appears to be important for the development of Parkinson’s disease itself, leading 
to the loss of neurons related to the disease (Reeve, Simcox and Turnbull 2014).  
Neurodegenerative diseases are part of the more general category of brain 
disorders. Brain disorders can be very disabling and often with the progression of 
the disease the person is unable to perform daily activities. There are a lot of 
different brain disorders: some of them affect only the psychological functions 
without directly affecting the central nervous system (mental disorders) such as 
sleep disorders, anxiety disorders etc. , while others affect the central nervous 
system (neurological disorders), affecting also muscles (i.e. neuromuscular 
disorders) or  movements (i.e. neurodegenerative diseases) and resulting often in 
very disabling conditions. In this work we are interested in neurological disorders. 
These incurable and disabling conditions have a devastating impact on the 
individual, family and society. Many people affected by neurological disorders are 
not able to continue their life independently relying on the family, who are required 
to find a way to assist them. 
Neurological disorders then have a terrible impact on the quality of life of the 
people affected and their family, but also have a financial burden for the family and 
society.  In order to compute the costs associated to these conditions, we need to 
take in account not only the cost of treatment itself, but also the loss of productivity 
of patients and their caregivers which are exposed to an emotional and financial 
burden. Many caregivers have to leave their job and all leisure activities to look 
after their family member affected by the disease or have to pay someone to care 
for him/her while they are at work. The cost of brain disorders (comprising 
neurological disorders) in Europe was estimated as €798 billions in 2010 of which 
60% was related to the direct costs while the 40% to lost productivity (Gustavsson 
et al. 2011). The cost of Parkinson’s disease for the society was estimated in eleven 
different countries (Austria, Czech Republic, Finland, France, Germany, Italy, 
Portugal, Russia, Sweden, UK and US) between 1998 and 2011 (Mateus and 
Coloma 2013). The results took in account both the direct and indirect costs. The 
direct costs included the cost of the illness itself (treatment, medical analysis, 
hospitalization, etc.) while the indirect costs comprised all the cost derived by the 
illness (loss of productivity of patient and caregiver, possible early retirement etc.). 
The authors concluded that, although different countries had different results, the 
costs associated to the disease increases with the disease progression which cause 
more need for healthcare or caregiver support affecting more the patient’s ability to 
perform everyday tasks. The costs computed for each country, with different 
methodologies, evidenced the health and economic burden for the society (e.g. 
annual cost for a PD patient in UK was estimated as £1.4 billion). The estimation of 
the indirect costs was the most difficult part of the study, but these costs are 
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important because they represent a significant burden for patients, caregivers and 
society as whole.  
In another study Wimo and colleagues estimate the worldwide economic impact of 
dementia in 2010 (Wimo et al. 2013). Dementia is a very disabling 
neurodegenerative disease that affects everyday tasks, making the subject unable to 
live independently. The results of Wilmo’s study evidenced a worldwide cost of 
US$604 billion in 2010. 70% of the costs was found in western Europe and North 
America where social care and informal care (care from a family member) 
contributed in almost equal manner to the overall cost. In low and middle-income 
countries the contribution of informal care was higher respect to social care one 
which contribution was negligible. 
The overview of this section gives an idea of the diffusion and the burden 
associated to neurological disorders. The problem for society will increment with 
the increasing of life expectation, predicted to increase every year (Kontis et al. 
2017).  In the next sections we will analyse in details the two major problems 
associated to neurological disorders: the costs and the aggravation of the quality of 
life. 

1.2 ANALYSYS OF THE COSTS ASSOCIATED TO 
NEUROLOGICAL DISORDERS  
 
In the previous section we examined some findings showing the increasing of 
incidence of neurodegenerative diseases, due to the increasing of life expectancy. 
The costs associated to dealing with more people affected by these extremely 
disabling conditions are high for society and they are destined to increase with the 
predicted life expectancy. In this section the costs associated to these conditions 
and more in general to the neurological disorders are examined in details. The 
section is divided in two subsections: firstly the costs associated to brain disorders 
are examined; secondly we examine the costs associated to two particular 
neurodegenerative diseases: Parkinson’s disease and dementia.   

1.2.1 Costs associated to brain disorders 
A study by Gustavsson and colleagues estimated costs for brain disorders in 2010 
(Gustavsson et al. 2011). The costs reported are divided in: direct healthcare costs 
(relative to treatment and diagnosis of the disease), direct non-medical costs 
(relative to goods and services associated to the disease e.g. social services, special 
accommodation, and informal care), and indirect costs (e.g. loss of productivity due 
to work absence or early retirement). In figure 1 the annual costs per person in 
Europe in 2010 are summarized.  
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Figure 1. Costs per person in Europe in 2010 by type of cost and condition.  
The different conditions are reported on y-axis while the costs associated are reported on x-

axis. Source: (Gustavsson et al. 2011) 
 

Neuromuscular disorders, such as dystonia considered in this work, had the highest 
costs equal to 30000€ per person in 2010, with a prevalence of indirect costs. 
Dementia had also high costs around 17000€, with prevalence of direct non-
medical costs and without presence of indirect costs (due probably to the age of the 
subjects affected). Parkinson’s disease costs instead were estimated around 12000€ 
per person, with a prevalence of direct medical costs due to the diagnosis and the 
treatment of the disease.  
In figure 2 the total costs per disease spent in Europe in 2010 are reported. Figure 2 
is simply derived from figure 1 aggregating the costs and considering the people 
affected by the different diseases. The total costs are the highest for mood disorders 
followed by dementia. Surprisingly neuromuscular disorders are not in the most 
elevated costs as in figure 1. This is due to the fact that the people affected by 
neuromuscular disorders are considerably less than those affected by the other 
diseases.  
 

€ (Euros) 
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Figure 2.Total cost by disorder and type of cost in Europe in 2010. 
 The different conditions are reported on y-axis while the costs associated are reported on x-axis.  

Source: (Gustavsson et al. 2011). 
	

In figure 3 the percentage of the various costs in brain, mental and neurological 
disorders are shown. For brain disorders in general the direct costs were estimated 
around 60% while the indirect costs only about 40%. For mental disorder the 
highest costs were the indirect ones estimated at 48%, while for neurological 
disorders the highest percentage were for direct costs (74%). These results are 
predictable because mental disorders cause a major loss of productivity than 
neurological disorders affecting usually elderly people. We need to consider also 
that informal care is included in the direct non-medical costs and this component is 
very significant in neurological disorders. In fact often people affected by 
neurological disorders are unable to perform daily tasks relying on a family 
member as an informal carer.  
This estimation of the different costs in 2010 in Europe gave an idea of the elevated 
costs associated to brain diseases in general. Interestingly, despite the 
neuromuscular disorders had the larger costs per person that year (figure 1); they do 
not seem having the same large impact on the total costs (figure 2).  
The same costs were estimated in 2010 considering only UK (Fineberg et al. 2013) 
and the results are reported in figure 4. 

	
 

 
 

€ (Euros) 
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Figure 3. Distribution of costs.  

Source: (Gustavsson et al. 2011). 
 

	
Figure 4. Total UK cost of individual brain disorders. 

On x-axis the different condition are reported while on y-axis the costs in euros are reported. 
Source: (Fineberg et al. 2013) 
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In UK the highest costs are found for dementia followed by mood disorders. Also 
in this case the costs associated to the neuromuscular disorders are extremely low 
considering that the cost per person is the highest. 

1.2.2 Costs associated to Parkinson’s disease and dementia 
 
Parkinson’s disease (PD) is an age-related disease, very common and intended to 
become ever more common with the increasing of life expectancy. In 2007, Findley 
estimated the total cost in UK being between  £449million and £3.3billion annually 
(Findley 2007). The costs are divided in direct costs (healthcare resource use and 
drugs) and indirect costs (mortality costs, lost productivity and carer replacement 
costs). The direct costs are divided also in: NHS costs, social service costs and 
private PD-related expenditures (private care, equipment, travel etc.). In figure 5 
the direct costs of PD in the UK according to Hoehn and Yahr scale (Hoehn Mm 
Fau - Yahr and Yahr 1967) are reported. Hoehn and Yahr scale is a quantification 
system to evaluate how the PD symptoms progress. In the scale there are five 
stages measuring the different grade of disability in a crescent way. Patients in the 
last stage usually are wheelchair users or bedridden unless aided. 
 

	
Figure 5: Direct costs of PD in the UK according to Hoehn and 

Yahr scale.  
Source: (Findley 2007). 

	
In figure 5 we can acknowledge the increasing costs associated to the progression 
of the disease, the findings confirmed later by another worldwide study (Mateus 
and Coloma 2013). The progression of the disease leads to an increasing disability 
resulting in higher costs for caring. During the progression stages, in fact, the 
patients could develop a cognitive impairment which could be mild or severe. In 
this work two cognitive impairments are considered: mild cognitive impairment 
and dementia. Mild cognitive impairment is less severe than dementia, it affects the 
memory but it is not too severe to affect the ability to live independently. Dementia 
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is a severe cognitive impairment leading to inability to perform daily tasks and then 
resulting in a very disabling condition.   
In a report, published in 2014, Prince and colleague reported the costs associated to 
dementia in UK relative to 2013 (Prince et al. 2014). This report is an update of a 
previous report published in 2007 (Knapp et al. 2007) .  In figure 6 the annual costs 
for each person affected by dementia in UK is reported. The results are divided 
according three different severity levels of dementia (mild, moderate and severe) 
and two different settings (community and residential care). For people living in 
community the following annual healthcare costs are found:  £2,751 for those with 
mild dementia, £2,695 for those with moderate dementia and £11,258 for those 
with severe dementia. People with severe dementia, in the community, have 
considerable higher costs respect to the two other categories.  
In the residential care setting the situation is different, with the following costs:  
£4,504 (mild), £9,438 (moderate) and £8,689 (severe). This change is due to the 
fact that NHS pays full costs or in some case part of the costs for the people staying 
in nursing home care. The healthcare annual average costs per person is estimated 
to be £5,285 which approximately £650 are spent for the diagnosis.  
The average annual social care costs per person, reported in figure 6, for people 
living in the community are: £3,121 (mild dementia), £7,772 (moderate) and 
£10,321 (severe). The increasing of the costs with the severity of the disease 
confirms the same trend of the healthcare costs. For people residing in nursing 
homes the costs are higher, but there is not a big difference among the different 
severity levels: £24,737 (mild), £25,715 (moderate) and £25,874 (severe). 
Considering all the severity levels and both settings the average annual social care 
costs of people with dementia is £12,584.  
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Figure 6. Average annual cost per person with dementia, by severity and settings (£, 2012/2013 

prices). 
Source: (Prince et al. 2014) 

	
The average annual unpaid care costs per person for people in the community are: 
£19,714 (mild), £32,237 (moderate), and £33,482 (severe). The trend of increasing 
costs with severity of the disease is confirmed also in this case. While considering 
the residential care setting obviously the unpaid care costs are considerably lower 
than the community setting: £1,067 (mild), £2,901 (moderate) and £2,119 (severe). 
The overall average annual unpaid care costs considering all the severity levels and 
both settings is £14,237 per person.  
The column headed “Other costs” comprises: costs for missing persons, advocacy 
and support costs, research costs and costs of premature mortality (loss of 
productivity, earnings, etc.). These costs are negligible with respect to the three 
previous examined costs (health care, social care and unpaid care). 
In patients living in the community we notice that unpaid care accounts for three-
quarter of the total costs (74.9%). Unpaid care in the community settings has a 
major contribution on the total costs, followed by: social care (10.8%), healthcare 
(13.8%) and other costs (0.5%).  
In a residential care setting the situation is different. Social care has a major 
contribution on the total cost (69.7%) followed by healthcare (23.3%), unpaid care 
(6.7%) and other costs (0.4%).   
In figure 7 an estimation of the costs of dementia for the UK in 2013 is reported. 
The estimation is done considering the costs for person reported in figure 6 and 
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projecting these costs on all people affected by dementia in 2013. The overall cost 
computed aggregating all the single costs is estimated to be £26.3 billion, of which 
the unpaid care element accounts for 44.2%, the social care element accounts for 
39%, the healthcare element accounts for 16.4% and the other costs element 
accounts for 0.4% (figure 5, all settings). These findings evidence the annual large 
cost for dementia in UK intended to increase as the life expectancy increases. 
 
 

	
Figure 7. Estimated breakdown of costs of dementia for the UK, 2013.  

Source: (Prince et al. 2014) 
	

1.3 HEALTH BURDEN ASSOCIATED TO 
NEUROLOGICAL DISORDERS 

	
Neurological disorders cause premature deaths and health issues resulting often in 
disability which affects badly the quality life of the patients and their family. In 
order to assess the health burden associated to these terrible conditions we need to 
define a measure able to estimates not only the premature deaths, but also the 
impact of the disability on the quality life.  A time-based metric was defined as the 
sum of the years of life lost because of premature mortality (YLL) and the years of 
healthy life lost as results of disability, weighted by the severity of the disability 
(YLD) (World Health 2006).  This metric was called disability-adjusted life years 
(DALYs) and was used in 1993 to assess the global burden of the disease (GBD) 
for the year 1990 (Murray, Lopez and Jamison 1994, Murray, Lopez and World 
Health 1996, Lopez and Murray 1998). DALYs estimates the number of years in 
which the patient modify his life for the disability associated to the condition 
equivalent to the number of healthy life years lost. One DALY is then equivalent to 
one lost year of healthy life.  
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In 2006 the World Health organisation published a report which estimated the 
global burden of neurological disorders using the DALYs measure (World Health 
2006). Some of the findings of that report are reported in this section to estimate the 
impact of neurological disorders on the quality life.   
The percentage of total DALYs for neurological disorders is compared to those for 
selected diseases in figure 8. The selected diseases are neuropsychiatric disorders 
plus diseases belonging to other categories. Neurological disorders have the 
greatest contribution on a global burden of disease reaching over 6% of total 
burden. 
 

	
Figure 8. Percentage of total DALYs for selected diseases and neurological disorders.  

Source:(World Health 2006) 
	

The percentage of total DALYs for neurological disorders in 2005 and its 
estimation in 2015 and 2030 is reported in figure 9. The results are divided for 
income category based on World Bank estimates of gross national income (GNI) 
per capita in 2001 (The World Bank 2003). Each country is classified as low 
income (GNI US$ 745 or less), lower middle income (GNI US$ 746–2975), upper 
middle income (GNI US$ 2976–9205), and high income (GNI $ 9206 or more). 
The contribution of neurological disorders on global burden increased each year 
(figure 9). For high income countries we have the highest contribution of 
neurological disorders on global burden, this is probably due to the greatest life 
expectancy. 
 



	 24	

 
Figure 9.  Neurological disorders as percentage of total DALYs for 2005, 2015 and 2030 

(estimated) across World Bank income category.  
Source: (World Health 2006) 

	
The findings discussed gave an idea of the health burden associated to neurological 
disorders in the world. The DALYs measure comprises both the years lost for a 
premature death and the healthy life years lost by disability. Such disability has a 
terrible impact on patients’ life and also on their family and friends. In fact when 
the patient is unable to perform daily tasks, a family member or a friend becomes 
often a full-time informal carer, and her/him may have to leave his or her job and 
all leisure activities. The carer has a big emotional burden that sometimes becomes 
also a financial burden, when there is the necessity to pay someone else to look 
after the patient. The quality life of patients with neurological disorders and their 
families need to be improved by reducing the impact of the disability.  In the next 
section we will talk about how this work can help in improving patients’ lives                                                      
and, at the same time, in reducing the associated costs.  

1.4 MOTIVATIONS OF THE WORK  
	

In the previous two sections (sections 1.2 and 1.3) we discussed the incidence of 
neurological disorders, the cost associated and the health burden due to the 
disability caused by these conditions. Particularly in section 1.2 some graphs 
evaluate the costs of neurological disorders in UK but also across Europe. High 
costs were found for neurological disorders with dementia (neurodegenerative 
disease) having one of the highest cost for both Europe and UK in 2010 (figures 2 
and 4). The costs in Parkinson’s disease instead are shown to increase with the 
progression of the disease (figure 5). Another important aspect is the quality of life 
associated to these terrible conditions. An estimation of the quality of life 
associated to neurodegenerative disorders along with their contribution on global 
diseases burden, is given in section 1.3. In order to estimate the health burden of 
neurological disorders, the DALYs measure is used, comprising both the number of 
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years lost for premature death and healthy life years lost for the disability.  The 
elevated costs and the impact on the patients quality of life evidence the need to 
improve the diagnosis and the management of these conditions in order to reduce 
the costs and improving the life of the patients and their families. This need 
becomes even more necessary thinking that, the incidence of the neurodegenerative 
diseases which are age-related such as dementia is intended to increase due to the 
predicted increasing of life expectancy. Research must focus on finding better ways 
to diagnose, monitor and treat neurological disorders. The discovery of new drugs 
can reduce the costs, improving the quality of patients’ lives. From a medical point 
of view, it is important that society invests money in the research of new drugs, 
improving treatments and hopefully finding a cure to these disabling conditions. 
Therefore the diagnosis and the monitoring of the neurological disorders are also 
crucial. With the correct diagnosis we can better target the care and the treatment of 
the disease minimizing the costs. The diagnosis is a crucial part and efforts have to 
be made in finding better and less expensive ways to obtain a more objective 
diagnosis. The better target therapy could be beneficial for the subjects, improving 
their quality of life. On the other hand monitoring is also very important because it 
permits clinical practitioners to evaluate the progression of the disease modifying 
medications and treatment, but also permits the evaluation of new drugs as soon as 
they become available. The modification of the treatment could improve patients’ 
quality life with a better management of the condition. 
In this work we consider two neurological disorders: Parkinson’s disease 
(neurodegenerative disease) and dystonia (neuromuscular disease). The basic idea 
of the research is to use artificial intelligence to provide a better insight in these 
conditions with the aim of improving diagnosis and monitoring. Parkinson’s 
disease is an age-related disease where instances will increase with the increasing 
life expectancy. Dystonia was chosen because there are many difficulties in its 
diagnosis particularly when it is functional dystonia (section 4.4). The prevalence 
of dystonia was estimated to be around 100-150 per million in some studies 
conducted in Europe and in Japan (Matsumoto et al. 2003) . Although the precise 
incidence and prevalence of dystonia is actually unknown (Steeves et al. 2012). 
Steeves and colleagues evidenced the underestimation of people affected by 
dystonia, due to the difficulties to diagnose some kind of dystonia manifesting in 
different ways. The authors remarked of the need to find specific dystonia features 
in subjects affected by a movement disorder, in order to reduce the misdiagnosis 
rate. Dystonia is part of neuromuscular diseases that had the highest costs per 
person in Europe in 2010 (figure 1), considering the underestimation the total costs 
shown in figure 2 could be higher than represented.  
Parkinson’s disease affects approximately one person in every 500, equivalent to 
about 127,000 people in UK (Website of the parkinsons’s disease society 2016). 
The diagnosis actually is based on subjective clinical assessment resulting in up to 
25% percent of patient diagnosed with PD found to have other similar condition 
(Playfer 1997). Many patients also develop cognitive impairment with different 
severity grades. This cognitive impairment need to be detected and monitored to 
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minimise the risk of developing dementia (Pedersen et al. 2013), with a consequent 
reduction of costs and an improvement in quality of life. New methods for a more 
objective diagnosis and also to identify early the patients presenting cognitive 
impairments may improve the costs and be more reliable. The first aim of this 
research is to find a new objective method to help doctors in the diagnosis of the 
Parkinson disease and also in detecting and monitoring the possible cognitive 
impairment. 
Two kinds of different dystonia are considered: organic and functional dystonia 
(section 4.4). The distinction between these two categories is not clear. The 
diagnosis of organic dystonia is based on the evaluation of its core motor features 
and temporal evolution (Albanese et al. 2013) with a current misdiagnosis rate of 
25-52%  (Pal 2011). On the other hand the diagnosis of functional dystonia is based 
on assessment of inconsistency and incongruence (in both the history and 
neurological examination) with organic disease patterns (Espay and Lang 2015, 
Ganos, Edwards and Bhatia 2014), with a large risk of diagnosing atypical forms of 
organic dystonia as functional ones. The second aim of this research is to find a 
more objective and cost efficient method for the diagnosis of organic dystonia 
which is also able to detect the differences between functional and organic 
dystonia. 
In summary Parkinson’s disease and dystonia are chosen because they are two 
neurological disorders for which no objective clinical assessment currently exist 
and their diagnosis is based on subject clinical assessment that is often no very 
reliable. The need of a more objective diagnosis for both of them is evidenced by 
the existing misdiagnosis rate equivalent approximately to 25% for Parkinson’s 
disease (Playfer 1997) and between 25-52% for dystonia (Pal 2011). The classifier 
evolved with Cartesian Genetic Programming can be used as a tool of support for 
the doctor in the diagnosis, designing a simple and cost efficient test. During the 
disease it can be used for monitoring and diagnosing the cognitive impairment 
associated to the Parkinson’s disease. Ideally when the doctor suspects a cognitive 
impairment can use the test to detect it and also monitor the improvement of the 
cognitive impairment (e.g. due to the new drugs) with the same test. 

1.5 AIMS AND NOVELTY OF THE WORK 
	

This work investigates the use of artificial intelligence techniques, such as 
evolutionary algorithms (chapter 2), to classify and monitor neurological conditions 
through assessment of movement disorders and cognitive decline using standard 
clinical tests.  The potential of evolutionary algorithms in improving diagnosis and 
monitoring of neurological disorders will be investigated. The improvement of 
diagnosis and monitoring have a beneficial impact on both the costs and the quality 
of life associated, as mentioned in section 1.4.   
Two neurological disorders are selected: Parkinson’s disease and dystonia. 
Previous studies investigated the use of the evolutionary algorithms in the 
classification of Parkinson’s disease patients (Smith et al. 2007, Lones et al. 2014, 
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Lacy et al. 2013) but none before investigated their use in the detection and 
monitoring of cognitive decline.  The characterisation of dystonia using 
evolutionary algorithms, to the author’s knowledge, has not previously been 
investigated and currently no objective clinical assessment exists (as in Parkinson’s 
disease). 
In this work then there are two main aims:	
	

1. Finding a classifier able to distinguish between Parkinson’s disease patients 
and healthy subjects, but also among different subgroups of patients which 
present different cognitive impairments. 

2. Finding a classifier able to distinguish between dystonia patients and 
healthy subjects but also among two different subgroups of patients 
(organic and functional ones).	

	
In order to achieve the first aim, a simple reach grasp experiment was performed. 
All the reaching and grasping kinematic data were collected respectively with an 
electromagnetic sensor placed on the wrist and with a special computer data glove 
(description in chapter 5). These data were used to compute different features used 
as inputs of the evolutionary algorithms to evolve the best classifiers (chapter 5). 
In order to achieve the second aim, we considered an experiment comprising 
several upper limbs movements. During the experiment the activity of four 
different muscles (EMG data) located on the arm was recorded. Also the kinematic 
data were recorded with two electromagnetic sensors: one placed on the thumb and 
the other on the index finger. Hand opening-closing was selected among the 
movements and the analysis was performed only considering this movement. The 
two main reason of selecting hand opening-closing were: the major activity of the 
muscles recorded respect to other movements and the easy way to divide the single 
hand opening-closing cycle using the kinematic data available. The EMG data were 
pre-processed using the wavelet transform (chapter 6) and then different features 
were extracted and used as inputs of the evolutionary algorithms to evolve the best 
classifiers (chapter 7).  
The study is novel for the following reasons: 
 

1. The cognitive decline in Parkinson’s disease is assessed examining the 
kinematic data collected from a simple reach and grasp experiment. 

2. A set of features is extracted from the kinematic data collected in the reach 
and grasp experiment. This set was computed merging different features 
obtained in two previous studies (Caselli et al. 1999, Alberts et al. 2000). 
The set of features is then used as inputs to the evolutionary algorithms to 
evolve the best classifiers able to distinguish between Parkinson’s disease 
patients and healthy subjects but also among different cognitive subgroups 
of patients.   
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3. The application of movement sensing technology and evolutionary 
algorithms in order to provide novel insights into organic, as well as 
functional, dystonia. 

4. The continuous wavelet transform (chapter 6) is used to pre-process EMG 
dystonia data before extracting the features given as inputs of the 
evolutionary algorithms. 

5. An artificial intelligence technique is used to classify dystonia patients and 
healthy subjects but also organic and functional patients. 
 

1.6 RESEARCH QUESTION AND WORK 
ORGANIZATION 

	
In section 1.4 the aims of the work and the reasons of its uniqueness are 
summarized. In this section all the work is summarized with a research question or 
hypothesis. In the conclusions (chapter 8) the research question will be revisited. 
 
The work can be summarised by the following research question:  
 

“Can Evolutionary algorithms provide a means for monitoring and 
diagnosing of specific neurological disorders?”  
 
In this study we will investigate the research question concentrating on two specific 
neurological disorders: Parkinson’s disease and dystonia. For Parkinson’s disease 
the cognitive decline is monitored by considering a simple reach and grasp 
experiment. This experiment is proposed as non-invasive and cost-efficient test to 
improve the diagnosis of Parkinson’s disease and monitoring the cognitive decline 
associated to it. For dystonia a simple hand opening-closing movement is 
considered as a simple test to detect dystonia, but also the differences between 
organic and functional dystonia. The idea is to improve the diagnosis of organic 
and functional dystonia designing an objective, non-invasive and cost-efficient 
method.  
The question will be revisited in the conclusions (chapter 8) using the results 
available (chapter 5 and chapter 7). 
 
This thesis is organized as follows: 
 

• Chapter 2 describes Evolutionary algorithms in general examining the 
different program representations that defined the different kinds of 
algorithm. Cartesian Genetic Programming is the evolutionary algorithm 
chosen for this work and will be explained in details in section 2.4. 
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• Chapter 3 gives an overview of Parkinson’s disease describing the history 
of the disease, the cause, main symptoms and also the cognitive impairment 
associated with it. 

• Chapter 4 gives an overview of dystonia describing the history, the different 
kinds of dystonia with their signs and symptoms, the cause, the diagnosis 
and the two kind of dystonia considered: functional and organic dystonia. 

• Chapter 5 contains a description of the reach and grasp experiment, of the 
methodology and presents the classification results. The classes considered 
in the results comprise healthy subjects, Parkinson’s disease patients with 
normal cognition and two subsets of Parkinson’s disease patients affected 
by two different cognitive impairments. 

• Chapter 6 describes the wavelet transform which is the method used to pre-
process the EMG data collected in the dystonia experiment. Two different 
wavelet transform are described: the continuous wavelet transform and the 
discrete wavelet transform. The continuous wavelet transform is described 
in more detail because we chose to use this approach in this work. Morse 
wavelet, the analytic wavelet used is described in detail in section 6.1.3.  

• Chapter 7 contains the description of the hand opening-closing experiment, 
of the methodology and presents the classification results. The classes 
considered are: healthy subjects, organic dystonia patients and functional 
dystonia patients. 

• Chapter 8 contains the conclusions, suggestions for future works and 
revisits the research question.   

	
	

	
 

 
 
 

  



	 30	

CHAPTER 2: EVOLUTIONARY ALGORITHMS 
 

In this chapter evolutionary algorithms are described. We used these algorithms to 
evolve classifiers able to distinguish among the different classes considered. The 
chapter is organised in five main sections. Section 2.1 reports the history of the 
evolutionary algorithms going through their development over time. Section 2.2 
describes evolutionary computation and evolutionary algorithms highlighting their 
common structure. In Section 2.3 genetic programming (GP), a particular 
evolutionary algorithm, is described highlighting its representations (section 2.3.1-
2.3.2) and its problems (section 2.3.3). Cartesian Genetic programming (CGP), the 
algorithm chosen in this work is described in section 2.4 evidencing its advantages 
respect GP. Section 2.5 gives a review of the past medical applications of CGP. 
Finally the last section 2.6 gives a summary of the chapter with the conclusions and 
the key points.   

2.1 HISTORY  
 

There are many different types of evolutionary algorithms (EAs), but all of these 
algorithms apply the principles of Darwin’s theory of evolution by natural selection 
(Darwin and Bynum 2009). The idea of artificial evolution was introduced the first 
time by Alan Turing in 1948. Alan Turing wrote the first essay on this topic while 
he was working on the construction of Automatic Computer Engine (ACE) at the 
National Physical Laboratory in UK. Unfortunately the essay was dismissed by his 
employer, who surprisingly was the grandson of Charles Darwin. However,  it was 
later recognized that Turing’s essay proposed not only artificial neural networks but 
all the field of artificial intelligence (Turing 2004). After Turing, the main creators 
of evolutionary algorithms are Lawrence Fogel, Ingo Rechenberg, Hans-Paul 
Schwefel and John Henry Holland. Lawrence Fogel in 1966 studied evolving finite 
state machines used to predict symbol strings (Fogel, Owens and Walsh 1966). 
Ingo Rechemberg and Hans-Paul Schwfel, between 1971 and 1974 in Germany, 
gave also a contribution to the development of evolutionary algorithms working in 
the field of optimization of physical shapes in fluids. They produced good results 
altering random physical variables, where small changes happened more frequently 
than larger ones (as in natural selection). This technique was described as a kind of 
evolutionary algorithm (Eigen 1973, Schwefel 1977). In 1975 in US,  John Henry 
Holland wrote a book about genetic algorithms highlighting the importance of 
genetic recombination or crossover (Holland 1992).   
While Holland in US called his method genetic algorithm, Rechemberg and 
Schwefel designated their method called evolutionary strategies in Germany. For 
about 15 years these two areas developed separately. In the early nineties they were 
unified representing two different representations of the same technology called 
evolutionary computing. 
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Nowadays evolutionary algorithms are used in many applications, they are popular 
in solving multi-dimensional problems and also in optimising the design of systems 
(Onwubolu and Babu 2013, Jamshidi 2003). 
 

2.2 EVOLUTIONARY COMPUTATION AND 
EVOLUTIONARY ALGORITHMS 

	
Evolutionary computation is the area of study of non-deterministic search 
algorithms that are based on Darwin’s theory evolution of natural selection (Darwin 
and Bynum 2009). Evolutionary computation represents a family of algorithms for 
global optimization inspired by biological evolution. An Evolutionary algorithm 
(EA) is one of the algorithms comprised in the family of Evolutionary computation. 
It is a generic population-based metaheuristic optimization algorithm. A 
metaheuristic is a high-level procedure or heuristic (technique designed to solve a 
problem) with the aim to find an heuristic that could give an acceptable good 
solution to an optimization problem (Bianchi et al. 2009). So in summary an 
evolutionary algorithm is an algorithm able to select a heuristic, from an evolving 
population, which gives us a sufficient solution to an optimization problem. The 
fitness function in our case is the function to optimize in order to have the best 
solution. The evolutionary algorithms perform better than the conventional 
statistical approaches on non-linear highly complex problems (Grosan and 
Abraham 2008). They are extremely useful also in solving classification and 
optimization problems with limited or no knowledge of the problem itself. 
The basic idea of an evolutionary algorithm is to emulate the natural selection 
starting from a population of possible solutions of the problem and permitting only 
the best solutions to survive during the generations.  Each solution is called 
chromosome or phenotype, terminology taken from biology. After the creation of a 
population, each individual is associated to a value that measures how good the 
solution is. The function used to evaluate the chromosomes or solutions is called 
“fitness function”. When the fitness function values are calculated for all 
individuals of the population, the chromosomes with the best values are kept to 
generate the new generation, becoming “parents” used to create new “children”. 
The generation of new children can be a sexual (crossover) or an asexual process 
(mutation). 
The above process is repeated until a “termination condition” is 
reached.  Termination conditions often include finding a suitable solution and/or a 
time constraint. The steps of the EAs are resumed in figure 10. 
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Figure 10. Representation of the Evolutionary algorithm’s steps.  

Source: www.canaero.be 
                
In an evolutionary algorithm the following concepts have to be defined: 
 

1) The initial population 
2) The fitness function 
3) The evolutionary strategy 
4) The reproduction mechanism 
5) The stop criteria 

 
Usually the initial population is composed by random solutions of the problem. In 
some cases the initial population can be composed by a set of probable solutions 
determined by some program.  
The fitness function depends on the problem; generally it is necessary to choose a 
function that measures the grade of “goodness” of a solution. 
The evolutionary strategy consists in choosing how many parents have to be 
selected in each generation and what is the criterion to choose the right parents. For 
example, we can choose for each generation the two individuals with higher or 
lower (it depends on the problem) fitness function value as parents of the next 
generation.  
The reproduction mechanism can be mutation (asexual process) or crossover 
(sexual process). In mutation one parent is involved and the child is simply a 
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mutated copy of the parent chromosome. In crossover, instead, two parents are 
involved and the child contains genetic material from both parents with or without 
mutation. 
The stop criteria usually put together a required precision of fitness function value 
and/or a maximum number of iterations permitted. 

 

2.3 GENETIC PROGRAMMING 
	

In this section an overview of Genetic programming is given. In his book (Miller 
2011a) Julian Miller gives an excellent introduction of genetic programming and its 
different types. The concepts described by Miller are summarized in this section. 
Genetic programming (GP) is an evolutionary algorithm with the aim to generate a 
program which gives the best solution to a determined problem. In 1958 Friedberg 
for the first time designed a form of GP, describing an algorithm able to evaluate 
the quality of a computer program (Friedberg 1958, Friedberg, Dunham and North 
1959). He designed a mechanism able to make repetitively small random changes 
in the program and then test them to check possible improvements. Years later in 
1980 a kind of GP was used in Smith’s PhD thesis (Smith 1980). The first evolved 
programs having the form of symbolic expression trees were evolved by Cramer in 
1985 using TB computer language (Cramer). Despite these first applications, GP 
become popular only in 1992, when John Koza published his book (Koza 1992).  
The most challenging part in evolving computer programs is to find the correct 
representation of the programs, in the way that programs respect specific grammar 
in order to be compiled. In the two following subsections an overview of different 
programs representation in GP will be given, while in the last subsection the 
advantages and the problems of GP will be described.     

2.3.1 Tree-based representation 
 

One of the possible representations for programs is the tree representation. It is very 
easy to represent a program as a tree when it is written in LISP. LISP is one of the 
oldest high-level computer language and was invented by John McCarthy in 1958 
(McCarthy 1960). All the programs in LISP are written as S-expressions, a list of 
symbols enclosed in parenthesis. Calls of a function are written as the name of the 
function first followed by its argument. So if we want to call a function g with two 
arguments we should write in LISP (g arg1 arg2). 
In his book Koza (Koza 1992) described in details the evolution of computer 
programs written as LISP expression. To understand how easy it is to represent a 
LISP program as tree data structure, a simple example is considered. The function 
written in LISP is the following: + a ∗ bc , that is equal to the mathematical 
expression: a+ (b ∗ c), the correspondent tree representation is illustrated in figure 
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11. The tree nodes represent the operators while the leaf nodes represent the 
terminals. To construct the mathematical expression the tree is parsed from left to 
right. 

	
Figure 11. Program tree representing the S-expression (+a(*bc)) 

 
LISP programs, as any program, obey precisely specific syntax and then are highly 
constrained. The first step is to be able to generate random legal trees (respecting 
the syntax). 
The representation as a tree of the programs simplifies the GP operations. 
Crossover can be performed easily by exchanging subtrees between parents 
chromosomes, while mutation is simply the substitution of a subtree with a random 
one. The size of the chromosome in tree-based GP is variable, because crossover 
and mutation could result in an offspring of different size. 

2.3.2 Other representations 
 

Other than the popular tree representation there are other possible representations in 
GP that define different kinds of GP.  
In linear or machine code GP programs are a constrained linear set of operations 
and terminals (inputs). They are similar to those written in machine code. In other 
words programs are codified and represented as bit strings as Banzhaf did 
originally (Banzhaf 1993). A mechanism of repair has to be generated for the 
strings because random altered or generated code could result in a syntax violation. 
Brameier and colleagues defined a recent version of linear genetic programming 
using variable-length string chromosomes representing simple statements in C 
programming language (Brameier and Banzhaf 2001, Brameier and Banzhaf 2007).  
Crossover consists in swapping a whole number of instructions while mutation 
changes randomly an instruction by replacing the instruction identifier, a variable 
or a constant, by equivalents from valid ranges. 
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The grammar-based approaches in GP evolve chromosomes that obey to a specific 
grammar. A very popular published grammar approach is called grammatical 
evolution (GE) (O'Neill and Ryan 2001, Ryan, Collins and Neill). In GE, 
chromosomes are variable-length strings grouped into codons of eight bits. The 
codon is used as integer value to select a rule from a grammar defined, using a 
mapping function.   
Another less known GP is the PushGP defined using the stack-based computer 
language Push created by Lee Spector (Spector and Robinson 2002). The 
interesting aspect of this kind of GP is that is able to support a self-adaptive form of 
evolutionary computation called auto constructive evolution. The auto constructive 
evolution permits that the method of crossover and mutation can be evolved in the 
system rather than be imposed from the beginning. 
In the next section Cartesian Genetic Programming will be described in details, but 
before presenting this technique, we describe its precursor: Cartesian Graph-Based 
GP. This form of GP is different from the previous ones because graphs are used 
instead than trees to represent programs. Graph permits having more than one path 
between any pair of nodes. From a computational point of view this means that, 
assuming that each node contains a computational function, they permit the reuse 
of previously calculated computations (contained in sub-graphs). Graph 
representation is widely used in computer science and engineering (Aho and 
Ullman 1983, Chartrand, Lesniak and Zhang 2010, Deo 2017), for example 
artificial neural networks (ANN)(Maind and Wankar 2014) are represented as 
graphs.   
The first person which described a form of Cartesian-Graph based GP was Sushil 
Louis in 1990 (Louis and Rawlins 1991b, Louis and Rawlins 1991a). He described 
a binary genotype encoding, a network of digital logic gates, where a gate in each 
column can be connected to another gate in the previous column. The resulting 
structure was very similar to a graph. 
At the same time, following the studies on neural networks, Poli designed his form 
of graph-based GP called parallel distributed GP (PDGP) (Poli 1996, Poli 1997). 
PDGP is a flexible representation able to evolve different kinds of network like 
tree-like programs, logic networks and neural networks. The flexibility of the 
approach is given thanks to the introduction of labels associated with the edges of 
the graph. The labels are dependent on the network to be evolved, for example in 
neural networks they represent the weights. In order to define a PDGP chromosome 
there are three things to specify: the set of functions, the set of terminals and the set 
of links defining how the nodes are connected among each other.  
Poli defined the two operations of crossover and mutation for his form of GP. The 
basic crossover is a generalization of the crossover used in tree-based approach and 
is called subgraph active-active node (SAAN). In SAAN a random active point is 
selected from both parents (crossover point), then, from the first parent, the 
subgraph of active nodes used to compute the output of the crossover points is 
selected and inserted in the second parent. Poli then defined two versions of 
mutation: global mutation and link mutation. The global mutation changes 
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randomly a subgraph in the program while the link mutation changes randomly a 
connection in the graph selecting a random node and then a random input of the 
node, changing randomly the link. Details about the SAAN and the two mutation 
operations are reported in Poli’s studies (Poli 1996, Poli 1997). 
Cartesian Genetic Programming (CGP), described in the next section, represents 
programs as graphs like PDGP, but the chromosomes are represented as one-
dimensional string and its main operation, the mutation (Poli’s link mutation), is 
done on the chromosome string instead that on the graph itself as PDGP.    

2.3.3 Advantages and problems 
	

Genetic programming has a lot of advantages but three main problems:  
GP, unlike formal methods, does not need any knowledge about the problem which 
has to be solved but only a measure to quantify the goodness of a solution. Once 
initiated GP does not need human interaction. The advantage respect the inductive 
logic programming is that GP does not perform an exhaustive search inside the 
problem’s solution space; but rather looks for the solution only in the areas which 
probably contain global optima. These areas are identified through the use of its 
search history. 
However, GP has three main problems: 
During its execution, the mechanism of using its search history to explore 
determined area sometimes fails, because the genetic recombination process does 
not produce better programs than the existing ones.  
The second problem is the bloat problem: the chromosomes that it generates tend to 
become larger and larger across the generations without any increase in fitness. 
Typically these chromosomes contain sections of code with inefficient or redundant 
subexpressions. The evolution of the programs can become very time-consuming 
and in some cases the program evolved can be bigger than the memory of the 
computer itself. When the bloat problem occurs it is impossible to find a small and 
efficient solution and the solutions found could be too hard to understand and not 
very elegant. Details about the cause of bloat and the possible remedies are reported 
in the following studies (Langdon and Poli 2002, Poli, Langdon and McPhee 2008, 
Silva and Costa 2009). In CGP the bloat problem does not occur because genotype 
has fixed size and also phenotype does not become so large to trigger bloat (Miller 
and Smith 2006). Turner and Miller also gave an explanation of why  CGP does not 
suffer from the bloat, proposing the two theories of Natural Genetic Drift and 
Length Bias (Turner and Miller 2014) . 
Another problem affecting GP, as other evolutionary computation approaches, is 
the scalability problem. This means that the increasing problem size results in a 
high increase of the time and space resources, reaching unmanageable levels.  
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2.4 CARTESIAN GENETIC PROGRAMMING 
 

Cartesian genetic programming was described by Miller’s and Thomson’s (Miller 
and Thomson 2000). In this section we describe the main features of CGP, 
summarizing the popular tutorial (Miller 2013). 
CGP differs from the standard tree-based GP, simply for the representation of the 
programs that are graphs instead of trees. The graph, as in PDGP, permits cycles in 
a chromosome (cyclic CGP), nodes with arity greater than one and also backward 
connections between nodes. The only restriction regarding the connections is the 
fact that the nodes in the same columns cannot be connected to each other. 
CGP chromosome is a graph and the shape of the graph depends on the setting of 
number of columns, number of rows and levels-back. These are denoted by nc, nr 
and l, respectively. The maximum number of computational nodes allowed is 
defined as: Ln = nc*nr. The parameter levels-back is used to establish how the 
nodes are connected, determining from which column a node can get its input. For 
example if this parameter is equal to one then the inputs of a node can come from 
another node in a column on its immediate left or from a primary input. If instead 
levels-back is equal to two, a node can be connected to any other node in the 
immediate left of two columns or to a primary input. Levels-back is set equal to the 
number of columns when it is allowed the connectivity among any nodes in 
different columns. In general if there is not a specialist knowledge of the problem, 
it is convenient to set nr=1 and l= nc in this case the chromosome is an arbitrary 
directed graph with a maximum depth (shown in Figure 12). 
  

	
Figure 12. Arbitrary directed graph with a maximum depth.  

Source:(Miller 2013). 
 

The chromosome is a set of nodes of three kinds: input nodes, function nodes and 
output nodes. The number of inputs, the number of outputs and the set of functions 
has to be decided. 
In CGP each chromosome corresponds to a list of integers called “genotype”. So 
each chromosome has two representations: a graph representation called phenotype 
and a list of integers representation called genotype. The genotype is composed by 



	 38	

numbers that are called genes. Each gene can be: a function gene, a connection 
gene or an output gene. A function gene is a gene representing a function; a 
connection gene is an input of the function, it can be an input of the chromosome 
but also an output of a previous node; an output gene instead represents an output 
of the chromosome.  
Figure 13 shows an example of a chromosome’s phenotype and genotype. 
 

 

	
Figure 13. An example of chromosome’s phenotype and genotype.  

Source: (Miller 2013). 
 

The meaning of the chromosome phenotype and its associated genotype is easy to 
understand.  
All functions in the chromosome are codified as numbers, in this case: 0 adds data 
presented to inputs, 1 subtracts data presented to inputs, 2 multiply data presented 
to inputs and 3 divides data presented to inputs. The genotype in CPG has a fixed 
length while the phenotype could have a number of nodes from zero to the number 
of node of genotype (Miller 2011b). The phenotype has zero nodes when all the 
program outputs are connected to the program inputs (there aren’t computational 
nodes). 
Figure 14 helps to understand how the chromosome works, evidencing how the 
chromosome can be translated in a mathematical expression. This mathematical 
expression is useful to understand what are the inputs used and how the classifier 
works. In fact not necessary all the inputs are used to compute the output. Cartesian 
Genetic Programming as other Evolutionary Algorithms give us the advantage of 
understanding what are the most important inputs (features in our case) in 
classifying the different patients. The discover of the important features for each 
classification case give a better insight in the disorders considered, helping in 
understanding what are the differences between the patients. This is the main 
reason of the choice to use Cartesian Genetic Programming to evolve the classifier. 
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Another advantage of Cartesian Genetic Programming respect the other methods is 
the easy implementation of the evolved classifier as mathematical expression. 

	
Figure 14. Representation of the chromosome meaning.  

Source:(Miller 2013). 
 

CGP is a kind of evolutionary algorithm so we have to define the features described 
in section 2.2: 
 

• Initial population: Usually is composed by random chromosomes. Using the 
inputs and the set of functions pre-defined, the chromosome is created with 
random connections, random functions (from the functions set) and random 
outputs. 

• Fitness function: Depends on the problem. The function has to measure the 
goodness of the solution found by the program (chromosome). 

• Evolutionary strategy: Often a strategy called (1+4)-ES is used, where in 
each generation is selected one parent (the fittest chromosome) that is used 
to create four children (usually by mutation). So each generation has a 
population of five chromosomes, the parent and its four children. 

• Reproduction mechanism: Only mutation is used. The mutation is 
implemented in a straight-forward way: considering the genotype, each 
gene has the same probability to mutate (mutation rate). Clearly the 
mutation has to be “safe”. This means that each mutating gene has to be 
substituted with a right gene: function gene has to be substituted by another 
function gene, output gene by another output gene and connection gene by 
another connection gene.  

• Stop criteria: Usually a maximum number of generations are permitted, 
depending on the shape of the chromosomes.  
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In Figure 13 the node with the output six does not have any role in the output of the 
chromosome, then this node is inactive instead all other nodes are active. Clearly 
there is a many-to-one genotype to phenotype map. So if an inactive node is 
mutated there is no effect on the phenotype.  The mutation of an inactive node is 
called “silent mutation” because it does not affect the outputs value of the 
chromosome. 
In figure 15 the effect of a silent mutation is depicted. It is clear that this mutation 
does not change the phenotype but it changes the program connections through 
subsequent mutational modification. When the genotype is encoded in phenotype 
the inactive nodes may be ignored to reduce the space of phenotype (Miller 2011b). 
For example in Figure 13 we could ignore the node six that is inactive. The genes 
ignored are called “non-coding”. In this case the phenotype and the genotype have 
the same number of nodes only if all nodes are active. 
 
 

	
Figure 15. Effect of a silent mutation. 

Source:(Miller 2013). 
 

Instead, when a mutation is done on an active node, it can change a phenotype in a 
massive way as shown in Figure 16.  So with one simple gene mutation the 
phenotype can change completely with a consequent change of output values. Only 
mutation is used as operator, because it can give a massive changes in the 
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chromosome and also because, as demonstrated by Miller (Miller 1999), crossover 
does not seem to add anything.  
However, in some cases, crossover can be very useful: in cases where there are 
multiple chromosomes with independent fitness assessment (Walker, Miller and 
Cavill 2006) and also when the floating point representation of CGP is used(Clegg, 
Walker and Miller 2007). 
  
 

	
Figure 16. Effect of a single gene mutation on phenotype.  

Source:(Miller 2013). 
 

2.5 PREVIOUS MEDICAL APPLICATIONS  
	

In the past, as mentioned, in my previous study (Picardi et al. 2017), evolutionary 
algorithms (EAs) were widely used to evolve classifiers in medical context (Zhang 
and Wong 2008, Paul and Iba 2009, Winkler, Affenzeller and Wagner 2009, 
Bhowan et al. 2013). Factors which make them very effective for these kinds of 
problems are: their breadth of search, relatively low sensitivity to initial conditions, 
and flexibility in terms of representation and evaluation of solutions (Freitas 2009). 
EAs are extremely useful in all the situations where we do not know precisely the 
final solution form. The method’s breadth of search and the ability to use relatively 
unconstrained solution representations allow a wide exploration of candidate 
solutions (Lones et al. 2014). In medical applications usually there is limited 
understanding on what the solutions look like and then the EAs are extremely 
useful.  
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In this work CGP is used taking advantage of the graph representation and of the 
operations on the genotype. Also, as described in section 2.3.3, the use of CGP 
permits to avoids the bloat problem.  
CGP was used in three previous studies to evolve classifiers able to distinguish 
between Parkinson’s disease patients and healthy subjects with promising results, 
as revised in our paper (Picardi et al. 2017). In the first study (Smith et al. 2007), a 
figure-copying task was used, recording pen movements during the experiment. 
The figure-copying task is represented in figure 17, where the data were collected 
using a standard digitizing tablet. CGP was applied to find, in the acceleration of 
the pen, features identifying bradykinesia, a cardinal motor feature of PD (figure 
18). In figure 18 a two-part feature of the velocity is shown. This feature evidences 
a hesitation during the movement, typical of bradykinesia.  The limitations of the 
study are the small dataset and the choice of an experimental threshold based on the 
dataset.  
 

	
Figure 17. Figure copying task, the data are 

measured using a conventional digitizing tablet. 
Source: (Smith et al. 2007) 
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Figure 18. Example of two-part velocity feature.  

This feature evidences bradykinesia. Source:(Smith et al. 2007) 
 
In the second study (Lones et al. 2014) 49 PD patients and 41 healthy controls 
performed a finger tapping experiment with each hand separately while the position 
of the fingers was recorded in real-time. CGP was used to classify PD patients and 
healthy subjects using as input the acceleration of the fingers, in order to find signs 
of bradykinesia. In this work two different EAs were used: Artificial biochemical 
network (inspired by the biochemical networks found in the cell) and a variant of 
Cartesian Genetic programming. The outputs of the classifiers evolved were 
combined in ensemble classifiers. The combination was made scaling the output 
range of each component classifier to the interval [0, 1] and then using the mean of 
the classifiers’ outputs. The area under ROC curves (Hanley and McNeil 1982) for 
the ensemble classifier and its component are shown in figure 19. Figure 19 
evidences the benefit of combining the results of classifiers evolved by two 
different EAs, one more able to recognize well characterized local features and the 
other more sensitive to less evident global features.  In this study EAs were able to 
evolve classifiers which discriminate Parkinson’s disease patients and age-matched 
healthy subjects with an area under ROC curve of 96%. 
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Figure 19. ROC curves for the ensemble and its component classifiers.  

Source: (Lones et al. 2014). 
 

The third study (Lacy et al. 2013) also considered finger-tapping. The kinematic 
data during the experiment were recorded using two electromagnetic sensors one 
placed on the thumb and the other on the index finger. These data were processed 
using a Butterworth Low Pass Filter with cut-off frequency 5Hz and then the 
Euclidean distance was computed and used as measure of separation between the 
fingers. A trace of digit separation is shown in figure 20 where the single taps, 
found as intervals between two consecutive local minima, are evidenced. The 
separation was used as inputs for the Genetic programming in order to evolve the 
best classifiers. The classifiers evolved in this way were able to achieve an area 
under roc curve (AUC) (Hanley and McNeil 1982) greater than 0.9. 
 

 
Figure 20. Trace of separations values.  

Source:(Lacy et al. 2013). 
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We used CGP, in this work, to evolve classifiers able to distinguish among PD 
patients and healthy subjects, PD patients subgroups, dystonia patients and healthy 
subjects and dystonia patients subgroups. The details on the methodology and the 
results will be given in chapter 5 and chapter 7. The two movements considered are 
“reach and grasp” for PD patients and “hand opening-closing” for dystonia patients. 
In reach and grasp the kinematic data are used while in the hand opening-closing 
electromyography (EMG) (Gary 2004) data are used.  
Reach and grasp is not a repetitive movement as the finger tapping, so the 
application of CGP is different. It is interesting to evaluate potential of CGP 
considering a more complex movement (details in chapter 5).  
While in hand opening and closing task the aim is to evaluate the potential of CGP 
in evolving classifiers able to distinguish between dystonia patients and healthy 
subjects but also between dystonia patients subgroups, taking as input the EMG 
data (details in chapter 6).  

 

2.6 SUMMARY AND CONCLUSIONS 
 

This chapter describes evolutionary computation and in particular evolutionary 
algorithms. Two particular evolutionary algorithms are described in details: GP and 
CGP (used in this work). The following list highlights the key points of the chapter: 
 

• Evolutionary computation represents a family of algorithms for global 
optimization inspired by the biological evolution. 

• An Evolutionary Algorithm is one of the algorithms comprised in the family 
of Evolutionary Computation, able to select a heuristic from an evolving 
population, which gives us a sufficient solution to an optimization problem.  

• The basic idea of an evolutionary algorithm is to emulate the natural 
selection starting from a population of possible solutions of the problem 
(chromosomes) and permitting that only the best solutions survive during 
the generations.  

• Genetic programming (GP) is an evolutionary algorithm with the aim to 
generate a program which gives the best solution to a determined problem.  

• The most common program representation in GP is the tree but other 
representations exist (e.g. Cartesian-Graph based GP). 

• GP has the following three main problems: sometimes fails to effectively 
exploit its search history, bloat problem and scalability problem. CGP 
solves the bloat problem. 

• CGP differs from the standard tree-based GP, simply for the representation 
of the programs that are graphs instead of trees, permitting cycles in a 
chromosome (cyclic CGP), nodes with arity greater than one and also 
backward connections between nodes. 
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• The chromosome in CGP is a graph easy to convert in a normal string called 
genotype. The operations on the genotype are easier than on the 
chromosome itself. 

• CGP is used in this work to take advantage of the graph representation and 
of the operations on the genotype.    

 
In conclusion EAs are chosen to evolve classifiers for their breadth search in the 
solution space and the relatively low-sensibility to the initial configuration. 
Therefore EAs are extremely useful when there is poor knowledge on what the 
solution looks like, situation very common in medical applications. We chose CGP 
for the graph representation and the consequent derived genotype representation, 
which makes the mutation operation easy. Also CGP was used in previous similar 
medical studies with promising results as described in section 2.5. In this thesis we 
will apply CGP on a more complex movement such “reach and grasp”, not 
repetitive as the previous movements considered (e.g. finger-tapping), in order to 
distinguish among subgroups of Parkinson’s disease patients and healthy subjects. 
In the second part of the work, we will use CGP, considering EMG data as inputs, 
in order to evolve classifiers able to distinguish among subgroups of dystonia 
patients and healthy subjects.  
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CHAPTER 3: PARKINSON’S DISEASE 
 

 
In this chapter an introduction about Parkinson’s disease is given. The aim of the 
chapter is to explain what Parkinson’s disease is and what the main symptoms are. 
In the subsequent work, detailed in chapter 5, we will evolve classifiers able to 
distinguish among different subgroups of Parkinson’s disease patients and healthy 
subjects. This chapter gives a better understanding of the disease and the different 
subgroups of patients considered. It contains four main sections. Section 3.1 reports 
the history of the disease highlighting the causes and the usual medication with its 
side effects. Section 3.2 reports the symptoms of the disease describing the four 
main symptoms: bradykinesia (section 3.2.1), rest tremor (section 3.2.2), rigidity 
(section 3.2.3) and loss of postural reflexes (section 3.2.4). Section 3.3 describes 
the possible cognitive problems in Parkinson’s disease highlighting the different 
subgroups measured. Section 3.4, gives a summary of the chapter underlining the 
key points. 

3.1 HISTORY OF THE DISEASE 
 

The first person who described Parkinson’s disease was J.Parkinson in 1817 with 
his essay posthumously published (Parkinson 2002). He described six cases of 
shaking palsy, describing shaking palsy as: “Involuntary tremulous motion, with 
lessened muscular power, in parts not in action and even when supported; with a 
propensity to bend the trunk forwards, and to pass from a walking to a running 
pace: the senses and intellects being uninjured”. The Parkinson’s essay describes 
some symptoms of the disease: resting tremor, abnormal posture and gait, paralysis 
and diminished muscle strength but also the nature of the disease to progress over 
the time. 
In later years many neurologists contributed to a better knowledge of the disease. 
One of the most important contribution was given by Jean-Martin Charcot as 
described by Goetz in his paper (Goetz 2011). Goetz remarks as those Charcot’s 
studies between 1868 and 1881 helped to reach a better comprehension of the 
disease. In fact as Goetz states: “Jean-Martin Charcot was particularly influential in 
refining and expanding this early description and in disseminating information 
internationally about Parkinson’s disease. He separated Parkinson’s disease from 
multiple sclerosis and other disorders characterized by tremor, and he recognized 
cases that later would likely be classified among the Parkinsonism-plus 
syndromes”.  Charcot was the first to suggest the use of the term “Parkinson's 
disease” deciding to reject the term of paralysis agitans or shaking palsy because 
for him not all the patients presented tremor and weakness. William Gowers, wrote 
“the Manual of Diseases of the Nervous System” giving his personal experience 
with 80 patients in the 1980s (Gowers 1898). 
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Charcot and William Gowers, with their studies contributed to the early treatments 
of Parkinson’s disease discovering the dopaminergic deficits in the disease. 
Charchot also helped to distinguish the rigidity from weakness and from  
bradykinesia (Lees 2007). 
In 1912 Frederic Lewy described the microscopic particles of the brain 
characterising the disease, today called “Lewy bodies”(Lees 2007). 
Rolf Hassler’s studies in 1938 made clear that the disease affects the substantia 
nigra and later, in 1950, Arvid Carlsson discovered also the role of the 
neurotransmitter dopamine in the disease (Fahn 2008).   
M. Parents and colleagues (Parent and Parent 2010) remarked the fact that Carlsson  
and Hornykiewicz contributed to the important discovery that dopamine is a 
specific chemical marker of nigral neurons that degenerate in Parkinsonism, 
supporting the view that  substantia nigra and Parkinson’s disease are closely 
related. 
Following this research, it was clear that Parkinson’s disease is a neurodegenerative 
disease caused by the loss of the neurons producing dopamine, located in the part 
of the brain called “substantia nigra” (Kim et al. 2003).  The loss of dopamine is 
caused by the degeneration of the dopaminergic neurons that often become 
abnormal aggregates of protein called “Lewy bodies”(Gibb and Lees 1988). The 
reduction of dopamine is responsible for the difficulties in the movements; in fact 
the dopamine facilitates the voluntary movements acting on specific receptors (See 
figure 21). 
 

 
Figure 21.  Dopamine levels in normal neurons and in 

Parkinson’s affected neurons. 
Source: (anti-agingfirewalls.com). 
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Discovering that the cause of the disease was the deficiency of the dopamine in the 
brain was very important for the treatment of the disease with the Levodopa 
synthetized in 1911. Levodopa is the precursor to the neurotransmitters dopamine 
and is used to increase dopamine concentrations in the treatment of Parkinson's 
disease. This treatment has been used since the late 1960s to alleviate some motor 
symptoms of the disease.  
With the progression, Parkinson’s disease unfortunately becomes less responsive to 
Levodopa and some side effects such as motor fluctuations and dyskinesia can 
appear (Liu et al. 2005). The dyskinesia causes involuntary movements that can 
lead to a very disabling condition.  
Liu and colleagues (Liu et al. 2005) examined the effect of the dyskinesia 
evaluating the involuntary movements during the execution of a spiral-drawing 
task. They evidenced that Levodopa reduces the effects of the bradykinesia, 
described in section 3.2.1, but introduces many involuntary movements caused by 
dyskinesia.  
However the side effects of the dyskinesia start after a long-term use of Levodopa 
(usually at least five years) and probably depend on an increased sensitivity to 
dopamine, happening when the level of dopamine reaches his peak. 

3.2 PARKINSON’S DISEASE SYMPTOMS 
 
J. Jankovic in his paper (Jankovic 2008) described well all the symptoms that 
differentiate Parkinson’s disease (PD) from other parkinsonian disorder. As 
Jankovic wrote in his work: “Rest tremor, bradykinesia, rigidity and loss of postural 
reflexes are generally considered the cardinal signs of PD. Other clinical features 
include secondary motor symptoms (e.g., hypomimia, dysarthria, dysphagia, 
sialorrhoea, micrographia, shuffling gait, festination, freezing, dystonia, glabellar 
reflexes), non-motor symptoms (e.g., autonomic dysfunction, 
cognitive/neurobehavioral abnormalities, sleep disorders and sensory abnormalities 
such as anosmia, paresthesias and pain).” 
In the following sub-sections all the four cardinal signs of PD will be discussed in 
detail. 

3.2.1 Bradykinesia 
 

J. Jankovic described bradykinesia as slowness of tasks during daily life and 
prolonged reaction times (Cooper et al. 1994), (Giovannoni et al. 1999). As 
Jankovic says in his work referring to bradykinesia: “this may include difficulties 
with tasks requiring fine motor control (e.g., buttoning, using utensils). Other 
manifestations of bradykinesia include loss of spontaneous movements and 
gesturing, drooling because of impaired swallowing, monotonic and hypophonic 
dysarthria, loss of facial expression (hypomimia), decreased blinking and reduced 
arm swing while walking.” Bradykinesia is often one of the most evident symptoms 
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of PD and usually appears before any formal examination. 
The assessment of bradykinesia is done through fast, alternate and repetitive 
movements of the hand (i.e. finger-tapping). During these movements both 
slowness and decrementing amplitude are evaluated. 
Other difficulties related to bradykinesia are: planning, initiating and executing 
movements, performing sequential and simultaneous tasks. Bradykinesia is strictly 
correlated to the levels of the dopamine so the effects of bradykinesia decrease with 
the use of Levodopa. Bradykinesia introduces difficulties to access the motor 
programmes for PD patients. An external trigger, such as a loud noise, a marching 
music or a visual cue can help the patients to focus on the action and overcome the 
difficulties.  
In fact many patients, when stimulated, are able to make quick movements (e.g. 
catch a ball). This was demonstrated by Schettino and colleagues (Schettino et al. 
2004) . In their experiment a group of healthy subjects and a group of PD patients 
performed a reach and grasp experiment following a sound. Despite the 
bradykinesia the PD patients velocity shapes were comparable to the healthy age-
matched ones. The results evidenced the severe disruption of internal guidance 
processes in PD patients. In fact PD patients delayed the execution of the grasp, 
until visual feedback of their hand was available. The visual feedback appears to be 
necessary for the subjects in order to modify their hand shape in function of the 
object to grasp.  

3.2.2 Rest tremor 
	

Rest tremor is the most common symptom of the PD. Rest tremor occurs when a 
muscle is relaxed such as when the hand is resting on a table. Usually tremors are 
unilateral and are considerable in the distal part of an extremity. In the hand the 
tremors are like supination-pronation tremors, starting from one hand and then 
spreading to the other hand. In some cases tremors are also present in the lips, chin, 
jaw and legs but only in rare cases they affect neck/head and voice. The rest tremor 
obviously disappears when a PD patient starts an action or sleeps. In some cases 
there is also an “internal” shaking that is not a visible tremor (Shulman et al. 1996). 
Therefore, even if rest tremor is the most common symptom of PD, the occurrence 
of it is different among the patients and during the disease. In their studies Hughes 
and colleagues (Hughes et al. 1993) reported that the 69% of patients with PD had 
rest tremor at onset of the disease however, 75% of patients manifested rest tremor 
during the progression of the disease.  Rest tremor disappears during the disease in 
9% of PD patients. Martin and colleagues in their study evidenced that a small 
percentage of patients (11%) never had tremor (Martin et al. 1973), but another 
study demonstrated through the use of autopsy that 100% of patients had tremor 
during the disease (Rajput, Rozdilsky and Rajput 1991). 
Another possible tremor that can affect the patients is postural tremor. Postural 
tremor is a kind of essential tremor (Deuschl and Elble 2009), it happens when a 
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patient tries to hold a part of his body fighting the gravity force (e.g. holds an arm 
in front of you).  This kind of tremor is more prominent and disabling than rest 
tremor and usually is present when the subject assumes an outstretched horizontal 
position(Jankovic, Schwartz and Ondo 1999, Jankovic 2002). Postural tremor has 
the same frequency of the more common rest tremor and for this it is responsive to 
dopaminergic therapy. It may be one of the first symptoms of Parkinson’s disease. 

3.2.3 Rigidity 
 

Rigidity affects the ability of the muscle to relax, resulting in tensing muscles 
unable to relax properly. Most PD patients with the progression of the disease 
develop some degree of rigidity or stiffness of limbs. The rigidity limits the 
movement ability and is caused by involuntary and uncontrolled tensing of muscles 
(Lance, Schwab and Peterson 1963). Aches or pains could be also present in the 
affected muscles. Rigidity could be associated to hyperactive stretch reflexes in the 
muscles concerned (Rushworth 1960). 
Increased resistance causes the rigidity and often the “cogwheel” phenomenon is 
present. When the “cogwheel” phenomenon is present, a movement is not 
continuous but is subdivided in a small fragmented movement remembering the 
cogwheel of the clock (Lance et al. 1963). 
Rigidity of the neck and trunk (axial rigidity) could cause abnormal axial postures 
(e.g., anterocollis, scoliosis). Postural deformities are caused by the rigidity and can 
result in flexed neck, posture, knees and elbows. However, flexed posture generally 
occurs in the final stages of the disease (Jankovic 2008).  

3.2.4 Loss of postural reflexes 
 

Postural Reflexes are automatic movements that control the equilibration and 
permit to fight the gravity force when the subject stands up and moves. 
Loss of postural reflexes causes a postural instability which usually occurs after the 
onset of other clinical features. The postural instability is the major cause of falls 
and so increases the risks of bones fractures (Williams, Watt and Lees 2006).  
There are some risk factors to the development of postural instability. People with 
diabetes and PD have an higher risk to develop postural instability than patients 
having only PD (Kotagal et al. 2013). Cognitive impairment, described in 
subsection 3.3, seems to increase also the risk to develop postural instability (Owan 
et al. 2015). Additionally another study shows that PD patients with depression and 
apathy have a major risk to develop postural instability (Hassan et al. 2014).  At the 
onset of PD it is possible fight this symptom using the PD medications, but with the 
progression of the disease they become less effective. Some studies shows that 
physical therapy can be useful to fight the postural instability improving balance 
and preventing falls, but it is still unclear if the effects of the therapy are permanent 
or only temporary (Klamroth et al. 2016). 
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Some of the symptoms described above can cause the freezing phenomenon that 
when associated with gait is another cause of falls. As Jankovic wrote in his work: 
“Freezing, also referred to motor blocks, is a form of akinesia (loss of movement) 
and is one of the most disabling symptoms of PD.” 
A good way to describe freezing is imagine that during walking the feet get “glued 
to the ground”. When this happens, patients cannot move forward also for several 
seconds, they feel their feet “frozen” or stuck, but at the same time they are able to 
move the top half of the body (Parkinson's UK). Freezing can manifest when 
patients start to walk or try to turn around but it is not limited to walking. 
Sometimes patients freeze while they eat, speak or perform other repetitive 
movements such as writing (Parkinson's UK). Rigidity, bradykinesia, postural 
instability and longer duration of the disease represent the increase the risk of 
developing freezing, while tremor at the beginning of the disease seems to decrease 
the risk (Jankovic 2008). 
Whereas the above symptoms are the most known, few people know that the PD 
patients have also many problems in the coordination between limbs. Van den Berg 
and colleagues in their study  (van den Berg et al. 2000) investigated the problem of 
coordination between limbs in PD. Their experiment consists in rhythmic forearm 
movements performed by 11 PD patients and 11 healthy subjects. The movements 
were executed in three different ways (considering both phase and anti-phase 
movements): comfortable amplitude in-phase, anti-phase and single-arm mode at 
pacing frequencies ranging from 0.5 to 3 Hz.  Results evidenced coordination 
problems in PD patients. For both in-phase and anti-phase modes the PD group 
performances were significantly worse respect to the control group (healthy 
subjects). Also the PD group showed a greater variability of relative phase than the 
control group. 

3.3 COGNITION IN PARKINSON’S DISEASE 
	

It is very difficult to define what the cognitive impairment is. In general cognitive 
impairment causes difficulties in remembering, learning new things, concentrating 
and making everyday decisions.  
In this work two kinds of cognitive impairment associated with PD are considered: 
Parkinson’s disease mild cognitive impairment (PD-MCI) formally defined in 2012 
(Litvan et al. 2012) and Parkinson’s disease dementia (PDD) (Docherty and Burn 
2010).   
Patients with mild cognitive impairment notice some changes in cognitive functions 
starting to forget things and having problem in concentrating. Anyway these 
changes do not severely affect daily activities, permitting the subject to live 
independently.  The situation is different for the patients with dementia that present 
a severe impairment and lose the ability to manage daily living activities resulting 
in losing the ability to live independently (Cognitive Impairment Parkinson’s 



	 53	

Disease Foundation). 
Cognitive impairment is very common in PD. Several studies demonstrate that 
approximately 50 % PD patients develop dementia in ten years from diagnosis and 
80 % in 20 years time (Williams-Gray et al. 2013, Perez et al. 2012).  PD-MCI is 
recognised to be present in a percentage between 35% and 42.5% of people at the 
time of the diagnosis of the disease (Broeders et al. 2013, Yarnall et al. 2014). 
Janvin in his study shows that in some cases PD-MCI could lead to PDD (Janvin et 
al. 2006), in particular the evolution of PD-MCI in PDD seems to depend on which 
cognitive domain is affected. Usually when PD-MCI affects memory, language and 
visuospatial domains there is a greater risk that this can evolve in PDD (Williams-
Gray et al. 2007).  
An early detection of the cognitive impairment is very important to maximise the 
benefit of any possible therapy. 
There is a grown interest in trying to identify potential biomarker to diagnose the 
cognitive impairment as soon as possible with the aim of maximising the 
medication effects.  
Previous studies investigated the correlation between gait and cognition (Amboni et 
al. 2012, Amboni, Barone and Hausdorff 2013). In the first study the gait of 
patients with and without mild cognitive impairment are compared showing that the 
patients with impairment have reduced step-length, reduced swing time and 
dynamic stability. The second study also shows that cognitive impairment is 
connected to postural instability. This is probably due to the fact that the 
impairment affects the visuospatial domain.  
In the first part of the work described in this thesis, we will distinguish among three 
different subgroups of PD patients and healthy subjects using a number of features. 
The groups measured are: PD-NC (Parkinson’s disease patient with normal 
cognition), PD-MCI, PDD and a group of healthy subjects called control group. 
The idea is that this classification can identify potential biomarkers relative to the 
impairment, considering a reach and grasp task.  The reach and grasp experiment is 
done also with eyes closed (memory-guided reach way) to find a better evidence of 
impairment effects. 
The classifier evolved to distinguish between the patients with different cognitive 
impairment can be used to monitor the impairment itself. The patient can be 
monitored periodically with the test evidencing if there are any improvements in 
the impairment by the examination of the classification results. This monitoring is 
particularly useful when a new drug is given, testing periodically the patient to see 
if the classification result changes and the cognitive impairment consequently 
improves. This monitoring can be very useful to judge the effectiveness of new 
drugs helping in the research of a cure for these disorders.  
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3.4 SUMMARY AND CONCLUSIONS 
	

This chapter contains an introduction to Parkinson’s disease describing the causes, 
the symptoms, the medications used and the possible cognitive decline. In the 
following list the key points are highlighted: 
 

• Parkinson's disease (PD) is a neurodegenerative disease caused by the loss 
of the neurons producing dopamine, located in the part of the brain called 
“substantia nigra”. 

• The dopaminergic neurons degenerates in abnormal aggregates of protein 
called "Lewy bodies" 

• The reduction of dopamine is responsible for the difficulties in the 
movements; in fact the dopamine facilitates the voluntary movements acting 
on specific receptors. 

• Levodopa is used to increase dopamine concentrations in the treatment of 
Parkinson's disease, but it could lead to dyskinesia causing involuntary 
movements leading to a disabled condition. 

• The main symptoms of Parkinson's disease are: bradykinesia, rest tremor, 
rigidity and loss of postural reflexes. 

• Two kinds of cognitive impairment associated with PD are considered: 
Parkinson’s disease mild cognitive impairment (PD-MCI) and Parkinson’s 
disease dementia (PDD). 

• PD-MCI patients notice some changes in cognitive functions (e.g. forgetting 
things), but these changes are not so bad to influence the subject 
independence. 

• PDD patients present a severe impairment, which causes the loss of the 
ability to manage daily living activities leading to inability of living 
independently. 

 
In conclusion PD is a neurodegenerative disease, which affects the brain and causes 
difficulties in performing voluntary movements. The evolution of PD in time could 
cause cognition problems important to detect in order to manage them with the 
proper drugs.  
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CHAPTER 4: DYSTONIA 
 

In this chapter an introduction about dystonia syndrome is given. In the second part 
of the work described in this thesis we use CGP (section 2.4) to evolve classifiers 
able to distinguish among subgroups of dystonia patients and healthy subjects. The 
chapter is useful to understand dystonia itself and the different kinds of dystonia 
along with their symptoms and signs. Also functional and organic dystonia, the two 
subgroups considered, are described highlighting their differences.  
The chapter is organised in five main sections. Section 4.1 reports the history of the 
disease defining the disease itself. Section 4.2 reports the symptoms and signs of 
dystonia relative to its different kinds. Section 4.3 describes the causes and the way 
to diagnose the syndrome dividing it in two big categories primary (section 4.3.1) 
and secondary (section 4.3.2) dystonia. A different kind of dystonia called 
functional dystonia is reported in section 4.4 highlighting its differences respect to 
the common organic dystonia. A summary of the chapter with key points and 
conclusion is reported in section 4.5.  

4.1 HISTORY OF THE DISEASE 
	

In 1713 Bernardino Ramazzini for the first time described dystonia syndrome 
(Ramazzini 2001). In his book he described diseases related to different workers. In 
particular he noticed that clerks and in general all the workers who sit and write for 
a long time could develop in time “failure of power in the right hand”. This failure 
for Ramazzini was linked to “the incessant movement of the hand and always in the 
same direction” and “the incessant driving of the pen over the paper” that causes 
“the continuous and almost tonic strain on the muscles and tendons”.  This 
description represents a task-specific dystonia, a focal dystonia that affects one or 
more muscles in a part of the body causing involuntary muscle contractions and 
abnormal postures. The task-specific dystonia is present usually during particular 
motor activities involving highly skilled, repetitive movements (Torres-Russotto 
and Perlmutter 2008). Writer’s cramp is diagnosed as task-specific dystonia and 
Ramazzini in his book for the first time described it. In 1814 Samuel Solly 
recognised this phenomenon in writers calling it the scrivener’s palsy (Pearce 
2005). 
All historical reports related motor abnormalities to the overuse of muscles. 
In 1911 Hermann Oppenheim (1858–1919) for the first time introduced the term 
dystonia describing the characterizing spams of the syndrome (Oppenheim 1911).  
In 1975 there was the first international conference on dystonia, in which also the 
task-specific dystonia known as the writer’s cramp, in addition to the severe forms, 
was recognised as kind of dystonia (International Parkinson and Movement 
Disorder Society (MDS) 2013).  
In the following years all the different dystonia syndromes were identified and the 
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clinical complexity of the disease was recognised.  
At this stage it was clear that dystonia is a neurological movement disorder where 
excessive and involuntary muscle contractions result in repetitive movements 
and/or abnormal postures (The National Institute of Neurological Disorders and 
Stroke 2018). Neychev and colleagues (Neychev et al. 2008) in their study, 
highlighted that dystonia can be caused by a disruption of a motor network 
involving both basal ganglia (part of the brain involved in controlling voluntary 
movements) and cerebellum (part of the brain playing an important role in motor 
control of the movements).    The symptoms can involve a restricted group of 
muscles and with time spreading to the adjacent muscles (Balint and Bhatia 2014). 
There is a growing interest in discovering how psychological factors can affect 
dystonia. In their work R.E. Newby and colleagues (Newby et al. 2017) reported a 
complete review of dystonia’s history remarking how two main intellectuals Jean 
Martin Charcot (1825–1893) and Sigmund Freud's (1856–1939) had a long lasting 
effect on thinking about dystonia. Charcot separated the “organic” disorder, which 
could be related to structural changes in the nervous system, from the “functional” 
disorders that could not. A lot of dystonia cases over the next two decades were 
identified as “névroses”: his term for conditions without an identifiable 
neuroanatomical cause. Sigmund Freud’s developed theories about how psychic 
distress and past experiences could be transformed in physical symptoms. These 
theories were applied to dystonia making it unclear if the disease had neurological 
or psychiatric cause. More details about how the psychological factors could cause 
symptoms and generate a kind of dystonia called “functional dystonia” will be 
given in section 4.4. 

4.2 KINDS OF DYSTONIA SIGNS AND SYMPTOMS 
	

Symptoms of dystonia can be different accordingly to the kind of dystonia.  All the 
symptoms described in this section are present on the website of the dystonia 
society (The Dystonia Society 2018b).  
One of the possible symptoms is an abnormal blinking or twitching of the eye that 
clears up quickly. Often there is the feeling that the eye is tired or dry and the 
eyelid is heavy. These symptoms are usually present in the eye dystonia 
(Blepharospasm) characterized by an increased blinking and involuntary closure of 
eyelids. Sensitivity to bright lights can also be present in eye dystonia.   
The Cervical Dystonia (Spasmodic Torticollis) is instead characterized by painful 
contractions of the muscles in the neck. This can bring the feeling that the 
head/neck is pulling to one side, backwards or forward and also painful muscle 
spasms or stiffness in the neck. The subjects could develop abnormal posture of the 
head/neck and difficulty to turn the head to one side with relative easy turning to 
the other side.  
The hand dystonia (otherwise known as Writer’s or Musician’s Cramp), described 
in the previous section is characterized by the twisting or curling up of the hands 
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during a certain activity such as writing or playing an instrument. The fingers can 
move independently assuming unusual position during the activity and the activity 
undertaken could result in pain. Usually all the symptoms of the hand dystonia 
disappear when stopping the particular movement, such as writing.  
In voice dystonia (laryngeal dystonia or spasmodic dysphonia) there are voice 
problems. The voice can be strained with tremors; the subject makes big effort to 
speech resulting in a strangled voice with the feeling of chocking on words. 
Sometimes it is difficult to speak in noisy environment because the voice results to 
be breathy, whispering or very quiet.   
There are symptoms that could be present in all different kinds of dystonia such as 
pain, cramping and muscle spasms due to involuntary muscle movements. 
Sometimes tremor is also present (uncontrollable shaking oscillation of a part of the 
body) and is called dystonic tremor. Dystonic tremor could affect the same part of 
the body affected by dystonia but also other parts. Usually the oscillations are 
irregular and the tremor is asymmetric (affecting only one arm for example instead 
of both). This tremor could be temporarily removed by a sensory trick such as a 
light touch on the chin for head tremor. 
Severe attacks of dystonia, called “dystonic storms” could be present in subjects 
where the dystonia affects a great part of the body. During these attacks the subject 
is conscious but usually unable to communicate because the muscles of the face 
and vocal cords are involved. This status is called dystonicus and its causes are 
unknown, it is believed that some change in medication can trigger it. The 
medications are used to reverse this status and in some rare case, where 
medications do not work, deep brain stimulation is used (Apetauerova et al. 2010). 
As described in the symptoms above many kinds of dystonia exist. The different 
kinds of dystonia are classified in different way. One of the ways is accordingly to 
the affected area of the body  (Brain Foundation 2018): Focal dystonia affects only 
one part of the body such as neck (Cervical dystonia); Segmental dystonia affects 
adjacent body parts; Multifocal dystonia involves more than one unrelated body 
parts; Hemidystonia affects one arm and one leg on the same side of the body and 
Generalized dystonia affects more or less all of the body.  
The age onset of dystonia is strictly related to the body area affected and to the 
spreading of the diseases (Geyer and Bressman 2006). As Geyer and colleagues 
wrote in their study, usually early-onset in a childhood dystonia starts in a leg or 
arm and rarely from neck, vocal cords or other face muscles; while on the contrary 
late-onset in adults starts in the neck or in general cranial muscles and rarely starts 
in a limb such as leg.  Also the spreading of the disease depends on the age onset 
with the early-onset dystonia usually spreading from one limb to another and 
becoming generalised in 50% of the cases (Geyer and Bressman 2006). Late-onset 
dystonia usually do not spread all over the body remaining focal or segmental 
(Jayne, Lees and Stern 1984, Friedman and Fahn 1986).  
Like many movement disorders all the symptoms described above could be 
worsened by fatigue and emotional stress, and at the same time could be improved 
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by sleep and relaxation (Geyer and Bressman 2006). Usually to threat dystonia 
drugs are used to reduce muscle spasms and pain, but also Levodopa in some 
particular kinds of dystonia. 
 

4.3 CAUSES AND DIAGNOSIS OF DYSTONIA 
	

The cause of dystonia cannot be identified in all patients; also it is very important 
in order to ensure a personalised effective treatment. Dystonia can be divided in 
two basic categories: primary or idiopathic dystonia and secondary or symptomatic 
dystonia (Geyer and Bressman 2006). Geyer and colleagues gave an excellent 
description of the two categories and how to diagnose dystonia in both cases. Their 
description will be summarized in the following subsections. 

4.3.1 Primary dystonia 
	

Primary dystonia presents only signs of dystonia itself. This means that only 
abnormalities related to proper dystonia are detected. If other signs of 
parkinsonism, seizures, dementia, ataxia, spasticity or others are found it is more 
likely to be secondary dystonia. The only symptom that can be present in primary 
dystonia, along with the proper dystonia symptoms, is tremor or myoclonus. 
However usually myoclonus or tremor movements are less predominant than 
dystonia, if this is not the case dystonia is more likely to be secondary dystonia. 
Focal or segmental dystonia are the most frequent primary dystonia with late-onset. 
Only 10% of patients have generalised primary dystonia with childhood or 
adolescence age onset (Nutt et al. 1988).    
Although many patients do not have a family history of dystonia a genetic cause is 
identified or at least suspected for many primary dystonia (Bressman et al. 1989, 
Defazio et al. 1993, Stojanović, Cvetković and Kostic 1995). Usually dystonia is 
diagnosed as primary when the cause is genetic or not identifiable.  
The diagnosis of primary dystonia first involves genetic test to check if dystonia is 
one of the genetic identified dystonia, then if the test is negative other tests are 
undertaken to exclude secondary dystonia. One of the tests performed to exclude 
secondary dystonia and other pathologies is the MRI of the brain, useful to exclude 
structural lesion and signal abnormalities suggestive of other syndromes such as 
metabolic syndromes. 

4.3.2 Secondary dystonia 
 

Secondary dystonia is diagnosed when other abnormalities are identified other than 
the proper dystonia ones. This kind of dystonia usually can be induced by many 
factors providing insult to the brain (Dystonia Medical Research Foundation 2018):  
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• Spinal cord, head and peripheral injury (trauma) 
• Drugs such as levodopa in treatment of Parkinson’s disease (levodopa-

induced dystonia), or dopamine receptors blocking agents drugs 
• Other pathologies affecting the brain like cerebral palsy, cerebral infections, 

stroke, brain tumor etc. 
• Neurological or metabolic diseases such as Huntington’s disease and 

Wilson’s disease 
 
Secondary dystonia has many subcategories; one of these is the dystonia-plus 
syndrome. In these kinds of disorders dystonia is present with other neurological 
abnormalities, but, as in primary dystonia, there are no signs of brain degeneration. 
Dopa-responsive dystonia is one of the dystonia-plus syndromes. This kind of 
dystonia is easy treatable, usually with levodopa is possible to restore all or almost 
all normal motor functions over time (Segawa et al. 1976). 
Another subcategory of secondary dystonia contains many inherited disorders in 
which it is possible to find a sign of brain degeneration. These disorders cause 
abnormal movements due to the disruption of the basal ganglia function or to the 
interference with dopamine synthesis. Usually examining the neuroimaging it is 
possible to notice some alterations and dystonia appears to be less prominent than 
other conditions. 
As reported above also other degrading factors can cause secondary dystonia in 
healthy subjects. Brain insults could be caused by: drugs such as block dopamine 
receptors, infections, trauma and others.  
However secondary dystonia is also associated to other movement diseases. 
Usually it is associated with Parkinson’s disease, often causing a painful foot 
dystonia when levodopa concentrations are low, but it could affect other body 
areas. 
The diagnosis for a secondary dystonia may start when the assessment for the 
primary one is negative or when the clinical features suggest a secondary dystonia. 
Although there are several factors that cause secondary dystonia as described 
above, usually an analysis of the age-onset, family history and presence of other 
features such spasticity should be sufficient to diagnose a secondary dystonia.  MRI 
of the brain can be also useful to determine abnormalities.   

4.4 FUNCTIONAL AND ORGANIC DYSTONIA 
 

In the previous sections we described different kinds of dystonia that are all part of 
organic dystonia. Organic dystonia, as described previously, could be primary or 
secondary and in both of these cases there are appropriate tests to diagnose it. 
Functional dystonia instead is a condition where there are some specific symptoms 
of dystonia, but the tests establishing the cause of the symptoms are negative (The 
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Dystonia Society 2018a). The symptoms are similar to those of organic dystonia, 
but they are due to psychological factors rather than a brain disease. In some cases 
functional dystonia and its symptoms are triggered by a psychological trauma.  
The diagnosis of functional dystonia is not easy. Usually it is diagnosed by a 
neurologist with experience in this kind of dystonia. Ganos and colleagues (Ganos 
et al. 2014) in their study highlighted the fact that the differentiation between 
organic and functional (psychogenic) dystonia is not clear. This fact leads to a 
misdiagnosis of both organic and functional dystonia, causing a bad management of 
the condition wrongly diagnosed. In fact for functional dystonia a physical and/or 
occupational therapy is preferred, other possible therapies are cognitive behaviour 
therapy and/or oral medication such as anti-depressant.  As Ganos and colleagues 
(Ganos et al. 2014) explain some features characterizing functional dystonia could 
help its diagnosis. Usually in functional dystonia symptoms appear suddenly and 
are often preceded by physical and/or emotional event. There could also be 
variability in progression and duration with influence of life-related events on 
remissions and recurrences. Other functional phenomena such as functional tremor 
could be present and a suggestibility to the placebo or an atypical response to 
medications could be observed.  Finally, functional dystonia may coexist with other 
organic movement disorders or neurological illness affecting the same side of the 
body.  
An early diagnosis of functional dystonia could be crucial to address the cause and 
reduce frustration in patients. It is also important, when it is possible, to discover 
the psychological cause of the dystonia itself, because usually treatment of the 
cause leads to disappearing of the symptoms. The psychological cause is not ever 
easy to discover because not all functional dystonia forms are accompanied by 
psychological symptoms such as anxiety and depression.  
However, if the symptoms are caused by psychological factors they are real and 
appear exactly as the organic dystonia symptoms.  In order to demonstrate that 
functional dystonia can also cause real physical problems, Schrag and colleagues 
(Schrag et al.) examined neuroimaging to find some differences between functional 
and organic dystonia. Participants comprised 6 functional and 5 organic dystonia 
right leg patients along with 6 matched healthy control subjects. They were 
measured during rest, fixed posturing of the right leg and during paced ankle-
movements. Both functional and organic patients showed abnormal activity in 
prefrontal cortex rejecting the hypothesis that these abnormalities are a marker for 
the functional disorders. The findings of this study are really important, because, as 
Dr. Schrag added in a statement, "opens up a way for researchers to learn how 
psychological factors can, by changing brain function, lead to physical problems”. 
The second aim of this work is to distinguish among healthy subjects, functional 
and organic dystonia patients. This is done by measuring the activity of two 
specific muscles during hand opening-closing task. Different features are extracted 
and the classifiers are evolved using the evolutionary algorithms described in 
Chapter 2 and two other well-known machine learning algorithms: Artificial Neural 
Networks (ANN) (Maind and Wankar 2014) and Support Vector Machine (SVM) 
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(Durgesh and Lekha 2010). The details of the experiment, the method and all the 
results are given in Chapter 7. The aim is defining a methodology useful to 
appreciate the differences between healthy subjects and dystonia patients but also 
between organic and functional dystonia patients. The classification of the two 
subgroups of dystonia patients is very challenging, but also really interesting. In 
fact this classification could be used to understand better the differences between 
the groups, helping the doctors in difficult diagnosis. 

4.5 SUMMARY AND CONCLUSIONS 
 

The aim of this chapter is to give an introduction about dystonia. The following list 
highlights the key points of the chapter: 
 

• Dystonia is a neurological movement disorder syndrome where excessive 
and involuntary muscle contractions result in repetitive movements and/or 
abnormal postures.  

• There are different kinds of dystonia (e.g. cervical dystonia, hand dystonia), 
each kind affects specific muscles and has different symptoms. 

• There are symptoms that could be present in all different kinds of dystonia 
such as pain, cramping, tremor and muscle spasms due to involuntary 
muscle movements. 

• Usually to treat dystonia drugs are used to reduce muscle spasms and pain 
and also Levodopa in some particular kind of dystonia. 

• Dystonia can be divided in two main categories: primary or idiopathic 
dystonia and secondary or symptomatic dystonia. 

• Primary dystonia presents only signs of dystonia itself. This means that only 
abnormalities related to proper dystonia are detected. 

• Secondary dystonia is diagnosed when other abnormalities are identified 
other than the proper dystonia ones. This kind of dystonia usually can be 
induced by many factors providing damage to the brain. 

• Primary and secondary dystonia are both part of organic dystonia. 
• In functional dystonia the symptoms are similar to those of organic 

dystonia, but they are due to psychological factors rather than to a brain 
disease. In some cases functional dystonia and its symptoms are triggered 
by a psychological trauma. 

• It is important but also challenging to distinguish between organic and 
functional dystonia in order to design the best therapy for the subject. 

In summary dystonia is a neurological disorder, which affects muscles causing 
involuntary movements, cramps and pain. Functional dystonia is due to 
psychological factors but presents all the normal symptoms. 
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CHAPTER 5: REACH AND GRASP 
EXPERIMENT 

 
In this chapter the first part of the thesis work is detailed. We considered a reach 
and grasp experiment in three different visual conditions. Three different subgroups 
of Parkinson’s disease patients PD-NC, PD-MCI, PDD (section 3.3) and a group of 
healthy subjects were measured recording all the kinematic data. The aim is 
distinguishing among the different subclasses using some features extracted from 
the data and given as inputs of the evolutionary algorithms (Chapter 2).  
The chapter is divided in four main sections. Section 5.1 describes reach and grasp 
movement reviewing the previous studies. Section 5.2 contains the methodology 
describing: the subjects recruited (section 5.2.1), the equipment used (section 
5.2.2), the experiment (section 5.2.3), the reaching data (5.2.4), the features 
extracted from the reaching data (5.2.5) and the grasping data (5.2.5) explaining 
why they are not used in this study. Section 5.3 reports all the results and it is 
divided in three subsections: in the first subsection (5.3.1) all the data belonging to 
all the different visual conditions are analysed to determine if one of the conditions 
is more discriminating, in the second subsection (5.3.2) all the results are reported 
and the third subsection (5.3.3) shows a diagram of a classifier evolved with the 
derived mathematical expression. Section 5.4 reports the conclusions and the 
suggestions for future work. 

5.1 REACH AND GRASP MOVEMENT 
 
Reach and grasp task can be defined as the movement done to reach an object and 
grasp it. This movement, also called prehension task, is a simple movement 
composed by two components (Marteniuk et al. 1990, Jeannerod 1986): 
 

• Reach or transport component: where the brain commands the 
responsible upper limb muscles to transport the hand from the start point to 
the target. The usual kinematic parameters of this phase are: movement 
time, peak (maximum) velocity, peak acceleration, peak deceleration, times 
to reach all the peaks from the movement onset (time to peak velocity etc.).  

• Grasp or manipulation component: where the brain commands the 
muscles responsible for the movements of the fingers to start the grasp 
phase (open and close hand). The usual kinematic parameters of this phase 
are: peak aperture (maximum distance between index and thumb), time to 
peak aperture from the movement onset, manipulation time (time from the 
reaching onset to the first sign of hand opening saw as the first separation 
sign between index and thumb). 
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Prehension task is very suitable for diagnosing Parkinson’s disease because the 
patients present great difficulties to perform manipulative task. These difficulties 
are evident in the differences of reach and grasp parameters (movement time, peak 
velocity, peak aperture, peak acceleration etc.) between PD patients and healthy 
subjects.  
The delayed starting of the manipulation component in PD patients was evidenced 
by Castiello and colleagues (Castiello, Stelmach and Lieberman 1993). In their 
study, they evaluated the prehension performance of PD patients and noticed that 
the patients started to open the hand (manipulation component) only after 
approximately 80-90 ms from the transport onset. The healthy subjects instead 
started the manipulation component approximately 30 ms after the transport onset. 
This resulted in a prolonged movement time for PD patients. 
An interesting study explores the effect in response of PD patients to a double 
unexpected perturbation in position and size of the target object (Castiello et al. 
1999). With the double perturbation the PD patients reached the peak acceleration 
on average 50 ms earlier than the normal case. The response to the perturbations in 
the grasp component appeared 500 ms after that of the transport component. On the 
other hand, the response of the healthy subjects to the perturbations appeared 
approximately simultaneously in the transport and in the grasp phase prolonging 
only the deceleration phase. The results supported the view that PD patients have 
difficulties in performing coordinated actions, assuming the basal ganglia to be part 
of the circuit that modulates the degree to which the components are coordinated 
according to output requirements.  
Also other studies suggested that basal ganglia played an important role in the 
execution of coordinated task as reach and grasp (Teulings et al. 1997, Alberts 
1997, Gentilucci and Negrotti 1999). So with a basal ganglia dysfunction, like that 
caused by Parkinson’s disease, there is a difficulty in performing coordination 
movements resulting in a disruption in both temporal and spatial domain.  
A study examined this disruption effects for PD patients (Isenberg and Conrad 
1994). The authors considered simple pointing movements with different 
movement distances and speeds comparing the performances of the PD patients 
with the healthy subjects. The results reported more segmented reaching paths for 
PD patients than for healthy subjects. The irregularity of the reaching paths for PD 
patients become worse as the speed increased, probably because with a greater 
movement speed the time for single components synchronization is less. In addition 
PD patients spent more time in the vertical plane (raising their arm) than in 
horizontal plane (reaching the target). Healthy subjects on the contrary performed 
movements using both planes simultaneously and resulting in the normal 
curvilinear reach path.  
The visual conditions (presence or absence of visual feedback) influence the reach 
and grasp parameters of PD patients, as reported in the following studies. 
The lack of visual feedback seems to destroy the coupling between reach and grasp 
(Castiello, Bennett and Mucignat 1993). Jeannerod demonstrated that when the 
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visual feedback is removed the hand opening depends on the object size (greater for 
bigger objects than for smaller ones), but it is greater with respect to the full vision 
case (Jeannerod 1984). The movement time was prolonged when the visual 
feedback was absent. The same findings were confirmed in another study 
(Jakobson and Goodale 1991).  
The increased hand opening could be a way to avoid the collision between fingers 
and object, but also a way to compensate the reach error, opening the hand to grasp 
a bigger object (Fukui and Inui 2013).   
Schettino et al. investigated the effect of visual feedback for PD patients in reach 
and grasp (Schettino, Adamovich and Poizner 2003). In their experiment, subjects 
had to reach and grasp three different shaped objects (a rectangular cube, a convex 
shaped block and a concave shaped block) under three different visual conditions 
(full vision, in darkness with the exception of a visually illuminated target and 
without any visual feedback). Movement time was prolonged when visual feedback 
was removed both completed and partially (only object is illuminated). Also the 
time to peak aperture occurred earlier in the same cases supporting the theory that a 
margin of error is employed in the absence of visual feedback (the hand opens 
wider and sooner in these conditions).  These recent findings then confirmed the 
previous ones in literature (Jeannerod 1984, Jakobson and Goodale 1991). 
In summary the kinematic reach and grasp parameters affected by the visual 
feedback seem to be movement time and hand opening. Movement time increases 
when visual feedback is absent (Jakobson and Goodale 1991, Jeannerod 1984, 
Schettino et al. 2003) or when the room is dark and only the object is illuminated 
(Schettino et al. 2003). Peak aperture (maximum aperture of the hand) is greater 
and occurs earlier in absence of visual feedback (Jakobson and Goodale 1991, 
Jeannerod 1984, Schettino et al. 2003). 
In this study the reach and grasp is examined considering different visual condition 
and different speeds. The idea is to try to classify the PD patients and the healthy 
subjects using some representative features of the reach and grasp, which as the 
previous studies demonstrated, are affected by the basal ganglia dysfunction 
present in PD. These features, which are computed using kinematic parameters, are 
used also to distinguish among the different subgroups of patients: PD-NC, PD-
MCI and PDD (see section 3.3).  Some of them were computed in an old study on 
apraxia to distinguish between apraxia patients and healthy subjects but also among 
different subgroups of apraxia patients (Caselli et al. 1999). The apraxia patients 
were slower than the healthy subjects and the slowness is reflected in movement 
time, reaction time but also in all kinematic transport and manipulation parameters. 
Minor differences were found among apraxia patients subgroups. 
The set of features of Caselli’s study was not so powerful to distinguish among the 
classes considered. We decided to extend this set with other features relative to the 
angular velocity, acceleration and to the jerk (time derivative of the acceleration).  
Alberts et al. (Alberts et al. 2000) computed angular velocity and jerk finding some 
interesting differences between PD patients and healthy subjects. They investigated 
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the reach paths of PD patients considering different accuracy constraints (bigger or 
smaller objects). The jerk score, a feature computed from the jerk was used to 
estimate the smoothness of the reaching paths. The smoothness was also evaluated 
examining the regularity of the angular velocity profile. They confirmed the 
previous findings in which the PD patients have less smoother reaching paths with 
respect to the healthy subjects (Isenberg and Conrad 1994). Also reaching paths 
were more segmented when accuracy increased. In addition they highlighted the 
differences in kinematic patterns of the transport and the grasp component, 
evidencing that PD patients were slower than healthy subjects.  
In this study 25 features are computed using the previous studies (Caselli et al. 
1999, Alberts et al. 2000) and used as input to the classifier, evolved with the 
technique explained in Chapter 2, with the aim to distinguish among all the classes 
considered (PD, PD-NC, PD-MCI, PDD and controls). The methodology with the 
details about the experiment and the features computed will be described in the 
following sections. 

 

5.2 METHODOLOGY 

5.2.1 Subjects recruited 
	

This thesis is based on the study ‘A novel diagnostic device for the objective 
diagnosis of Parkinson’s disease with and without dementia’, which received 
National Regional Ethics Service approval (reference code 10/H1308/5) and local 
Research and Development approval from Leeds Teaching Hospitals NHS Trust 
(LTHT) (reference code UI10/9232). The subjects were measured in Leeds, UK 
(Cosgrove 2016).  
Patients were recruited from Dr Jamieson’s and Dr Alty’s current consultant 
caseloads and also from other neurology clinics at Leeds Teaching Hospitals NHS 
Trust. They are divided in three classes according to the cognition: PD-NC, PD-
MCI and PDD and attended specialised clinics and day hospital that retain the 
capacity for informed consent. The clinical researcher Dr Cosgrove was responsible 
to measure the subjects ensuring that all the patients read the protocol and signed 
the informed consent. 
Fifty-eight PD patients and 29 healthy subjects called controls were assessed 
between February 2014 and October 2014. Controls were recruited from the 
spouses and friends of PD patients who attended clinic.   
The Movement Disorders Society – Unified Parkinson’s disease Rating Scale 
(MDS-UPDRS) – Part 3 was used to assess the motor symptoms of all participants. 
This is a validated scale that assesses the motor signs of PD (Goetz et al. 2008).  
The cognition of the patient was evaluated using two different scales: Montreal 
Cognitive Assessment (MoCA), a global test to assess the cognitive function 
(Nasreddine et al. 2005), and Clinical Dementia Rating Scale (CDR), a semi-
structured interview designed to assess different grade of dementia from normal 
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cognition to severe dementia (Morris 1997).   
MoCA score was used to separate the patients with normal cognition (PD-NC with 
MoCA ≥26) from those with some cognitive impairment (PD-CI with MoCA <26) 
(Cosgrove 2016). The global CDR score was used instead to separate the PD-CI 
group; a score of 0 or 0.5 was categorised as PD-MCI and a score of ≥1 was 
categorised as PDD (Cosgrove 2016).  
In total the fifty-eight patients were divided in: 22 PD-NC, 23 PD-MCI and 10 
PDD. Three patients were impossible to classify according the two scales because 
they had limit value scores; they are then excluded from the categories. They were 
considered in the class containing all PD patients. In table 1 all the classes 
considered with the demographical details are summarized. 

 
 Controls PD-NC PD-MCI PDD 

Age, years 
63.8(7.9, 
50-75) 

 

66.5 (9.4, 
44-84 

 

70.0 (8.0, 47-
85) 

 

72.6 (5.3, 
64-83) 

 
Gender, M:F 4:15 16:6 14:9 6:4 
Handedness, R:L 15:4 20:2 20:3 8:2 

Duration disease, 
years 

- 5.1 (3.7, 
0.5-15) 

5.7 (4.0, 0.5-
15) 

 

10.5 (6.4, 
1.0-20) 

 

Number subjects 29 22 23 10 

Table 1. Summary of the class considered with demographic details (Standard deviation, 
range).  

Part of the table is taken from (Cosgrove et al. 2016). 

	

 5.2.2 Equipment used 
	

The experiment performed is a simple reach and grasp experiment. Measurements 
of the reach and grasp motor tasks were made by using a commercially available 
computer data glove 5DT Data Glove 5 Ultra manufactured by Fifth Dimension 
Technologies (California, USA) with an incorporated electromagnetic tracking 
system manufactured by Polhemus Inc. (Vermont, USA). 
In Figure 22 the glove is shown, it is made of Lycra, comfortable to wear with 
exposed finger tips to allow fine motor actions such as manipulation of objects. 
Lycra gloves were made to fit all hand sizes.  
The 5DT Data Glove 5 Ultra has five sensors, one on each finger to measure its 
flexion (used to measure the manipulation component). The sensor computes an 
average finger flexion value for all fingers (Fifth Dimension Technologies, 2014). 
Similar technology in a glove was used in previous reach and grasp studies 
(Schettino et al. 2003, Schettino et al. 2004).  
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Figure 22. 5DT Data Glove 5 Ultra.  

It allows real-time tracking of hand movements whilst maintaining the flexibility and 
convenience of an existing clinical test environment. Source: www.5dt.com. 

 
 

The computerized data glove incorporated an Electromagnetic (EM) sensor placed 
on the wrist (Figure 23), in order to track the position and orientation of it during 
the experiment (used to measure the transport component).  
The EM sensor is part of the Polhemus Patriot an EM tracking device composed by 
a system electronic unit (SEU), two sensors (one of them placed on the wrist) and a 
magnetic transmitter (Figure 24). The sensor placed on the wrist permits location 
with six degrees of freedom: three positional coordinates (x, y and z) and three 
orientation coordinates (roll, pitch and yaw). The position of the wrist is computed 
as distance between the sensor on the wrist and the magnetic transmitter that was 
placed five centimetres behind the object to reach. 
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Figure 23. EM sensor fixed on the wrist under the Velcro strap of the glove. 

Picture produced by Dr Jeremy Cosgrove (Cosgrove 2016). 
 
 

	
Figure 24. The EM tracking device Polhemus Patriot. 

Picture produced by Dr Jeremy Cosgrove (Cosgrove 2016). 
	

5.2.3 Experiment description 
	

The reach and grasp experiment required the subjects to reach an 8 cm diameter 
cylinder (such as baker) placed on a table 30 cm in front of them, grasp it, lift it and 
put it back on the table. The experimental setup is illustrated in Figure 25. The 
subject was positioned in front of the table, sat on a chair, with the hands semi-
pronated rested on the table. The little fingers rested on the table in the positions 
corresponding to 2 and 3 marks depicted in Figure 25. 
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Figure 25. Experiment setup.  

Picture produced by Dr Jeremy Cosgrove. 
 

Each subject did the experiment five times with their dominant hand and five times 
with their non-dominant hand under four different conditions: 
 

• Self-guided reach1 (NAT): instructions were to reach and grasp the object 
as they would be at home grasping a beaker (natural speed) after a sound 
clue. 

• Visually cued reach (VIS): participants had to reach and grasp the object 
after it light up (red light). The room was dark as much as possible and there 
was also a simultaneous sound clue as in the other cases. 

• Self-guided reach2 (MAX): instructions were to reach and grasp the 
objects as fast as they could after the sound clue. 

• Memory guided reach (MEM): participants were asked to close their eyes 
before the start of the task. They had to reach and grasp the cylinder keeping 
their eyes closed. Only when the cylinder was put back on the table were 
rhey allowed to open their eyes. The signal to start the experiment was the 
audio clue as in the previous cases. 

 
In summary each subjects did the task ten times (five for each hands) for each 
conditions (forty repetitions in total). 
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5.2.4 Reaching data 
	
The patriot sensor, placed on the wrist, recorded the values of six different spatial 
coordinates: three positional coordinates (x,y,z) and three rotational coordinates 
(roll, pitch, yaw). The six degrees of freedom are shown in figure 26 and figure 27. 

 

	
Figure 26. Positional space coordinates (x,y,z).  

Source: (Caselli et al. 1999) 
	
	

	
Figure 27. Rotational coordinates (roll,pitch,yaw).  

Source: (Pegasus 3D mesh 2017) 
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All the data discussed in this subsection and the features that will be discussed in 
the next subsection were used for the results published in 2017 (Picardi et al. 2017). 
 
Using the reaching data recorded in the experiment the following measures were 
computed: 
 

• Distance: the positional coordinates (x,y,z) are used to compute the 
position, the velocity and the acceleration of the wrist during the 
experiment. The position is computed as the Euclidean distance between the 
sensor on the wrist and the EM magnetic source placed behind the cylinder: 

 

dist t = x t ! + y t ! + z t !         (5.1) 

 

• Velocity: each velocity component (v!, v!, v!) is computed differentiating 
each positional component (x,y,z) considering h =1/60 seconds as sampling 
time. Then the velocity along the x direction at the time t! is: 

 

v! t! =  
x t! + h − x(t!)

h                     (5.2) 

 
 

 The velocity is then computed as a modulus using all its components: 
 

vel t = v!(t)! + v!(t)! +  v!(t)!       (5.3) 

 
Only the modulus of the velocity is considered because the direction is 
known. 

 

• Acceleration: is computed differentiating the velocity described above with 
the same sampling time h. So the acceleration at the time t!  is: 

 

acc t! =
vel t! + h − vel(t!)

h                 (5.4) 

 
In this case the sign of the acceleration is important because in order to 
distinguish between acceleration (acc(t)>0) and deceleration (acc(t)<0). 
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• Jerk: it is the first time derivative of the acceleration. Jerk is computed 
differentiating the acceleration using the sampling time h. Jerk value at the 
time t!  is then: 

 

jerk t! =
acc t! + h − acc t!

h               (5.5) 

 

• Angular velocity: the rotational coordinates roll φ,pitch θ and yaw ψ, are 
used to construct the rotation matrix describing the pose of the wrist with 
the three rotations around ZYX. The Aerospace MATLAB Toolbox 
(Aereospace MATLAB Toolbox 2017) is used to compute the matrix. The 
skew-symmetric matrix S(t) (Siciliano 2009)  is computed from the rotation 
matrix R(t) with the following formula: 

S t = R t R! t                                                   (5.6) 
 

The matrix S t  is computed each 1/60 seconds and contains the 
components of the angular velocity vector  ω = [ω!,ω!, ω!]! that are its 
symmetric elements, with respect to the main diagonal, in the form 
(Siciliano 2009): 
 

S =
0 −ω!  ω!

 ω! 0 − ω!
− ω!  ω! 0

                                         (5.7)         

 
The angular velocity magnitude ω is then computed from its components: 
 

                     ω t =  ω! t ! +  ω! t ! +  ω! t !                    (5.8) 

 

• Angular acceleration: is computed by differentiating the angular velocity, 
described above, using the same sampling time h = 1/60 seconds. Then the 
angular acceleration at the time t! is: 

 

ang!"" !! =
ω t! + h −ω t!

h                              (5.9)   

 
A Savitzky-Golay filter is used to smooth all velocities and accelerations (Luo, 
Ying and Bai 2005). The smoothing is done fitting successive sub-sets (windows) 
of adjacent data points with a low-degree polynomial using the linear least square 
method (Luo et al. 2005). A window size of 35 and degree of polynomial 5 was 
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chosen throughout experimentation. The experimentation was done with an 
iterative method incrementing gradually the window size and the polynomial 
degree. The window size of 35 and a polynomial degree equal to five gave the best 
results smoothing the signal without changing the shape in order to avoid loss of 
information.  

5.2.5 Features extracted 
	

The measures described in the previous subsection 5.2.4 were used to compute the 
different features that are described in detail in this subsection. The features 
extracted are related only to the reaching data because the use of grasping data was 
more difficult than we thought at the beginning of the work. Details about the grasp 
data will be given in the next subsection 5.2.6. 
Figure 28 shows the distance profile of one trial made by a control (healthy 
subject):  on x-axis the time in seconds is reported, while on y-axis the distance 
(from the starting point) in millimetres is reported. The distance decreases when the 
subject starts to move until a minimum is achieved when the subject reaches the 
object (end of the reach phase). The distance then increases when the subject lifts 
the cylinder and decreases at the end when the subject leaves the cylinder on the 
table (end of the lift phase). The following points are highlighted: 
 

• Stimulus: the dotted line marks the time at which the cue occurs. The cue is 
a sound or a light (for the visually cued task) used as a signal for the subject 
to start the movement.  

• Start of the movement: instant at which the subject starts to move. This 
point is identified as the point in which the distance between the sensor and 
the source starts to decrease. 

• End of the movement: instant at which the subject reaches the object. This 
point is identified as the first minimum of the distance between the sensor 
and the source. 

 

	
	

Figure 28: Distance profile relative to a trial made by a healthy subject.  
Source: (Picardi et al. 2017). 
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Figure 29 considers the same movement examined in Figure 28 with velocity (on x-
axis time is measured in seconds, on y-axis velocity is measured in 
millimetres/second) and acceleration (on x-axis time  is measured in seconds, on y-
axis acceleration is measured in millimetres/second) derived from it. In the graph 
the following points are highlighted: 

 
• Peak velocity: The maximum of the velocity identified in the interval of 

time between the start of the movement and the end of the movement. 
• Peak acceleration: The maximum of the acceleration identified in the 

interval of time between the start of the movement and the end of the 
movement. 

• Peak deceleration: The minimum of the acceleration identified in the 
interval of time between the start of the movement and the end of the 
movement. 

 

	
 

Figure 29. Distance (upper), velocity (middle) and acceleration (bottom) profiles 
relative to the same trial of Figure 28.  

Peak velocity, acceleration and deceleration are evidenced.  
Source: (Picardi et al. 2017). 

	
Using the points detailed in Figure 28 and Figure 29, the following features are 
computed: 
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1. Movement time (MT): The time taken between the start of the movement and 
the end of the movement.   

2. Reaction time as a percentage of total movement time (RT%): The time 
taken between the cue and the start of the movement expressed as a percentage 
of the total movement time. 

3. Peak velocity (PV): The value of the velocity at its peak. 
4. Time to peak velocity (TPV): The amount of time taken from the start of the 

movement to the point where the velocity peak occurs. 
5. Time to peak velocity as a percentage of total movement time (TPV%): The 

amount of time taken from the start of the movement to the point where the 
velocity peak occurs, expressed as a percentage of the total movement time. 

6. Peak angular velocity (PAV): The maximum of the angular velocity found in 
the interval of time between start of the movement and end of the movement. 

7. Time to peak angular velocity as a percentage of total movement time 
(TPAV%): The amount of time taken from the start of the movement to the 
point where the angular velocity peak occurs, expressed as a percentage of the 
total movement time. 

8. Time to peak angular velocity (TPAV): The amount of time taken from the 
start of the movement to the point where the angular velocity peak occurs. 

9. Peak acceleration (PA): The value of the acceleration peak.  
10. Time to peak acceleration as a percentage of total movement time 

(TPA%): The amount of time taken from the start of the movement to the point 
where the acceleration peak occurs, expressed as a percentage of the total 
movement time. 

11. Time to peak acceleration (TPA): The amount of time taken from the start of 
the movement to the point where the acceleration peak occurs. 

12. Peak angular acceleration (PAA): The maximum of the angular acceleration 
found in the interval of time between start of the movement and end of the 
movement. 

13. Time to peak angular acceleration as a percentage of total movement time 
(TPAA%): The amount of time taken from the start of the movement to the 
point where the angular acceleration peak occurs, expressed as a percentage of 
the total movement time. 

14. Time to peak angular acceleration (TPAA): The amount of time taken from 
the start of the movement to the point where the angular acceleration peak 
occurs. 

15. Peak deceleration (PED): The value of the deceleration peak. 
16. Time to peak deceleration as a percentage of total movement time 

(TPD%): The amount of time taken from the start of the movement and the 
point where the deceleration peak occurs, expressed as percentage of the total 
movement time. 

17. Time to peak deceleration (TPD): The amount of time taken from the start of 
the movement and the point where the deceleration peak occurs. 

18. Mean velocity (MV): The mean velocity from the start of the movement and 
the end of the movement. 
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19. Mean angular velocity (MAV): The mean angular velocity from the start of 
the movement and the end of the movement. 

20. Mean acceleration (MA): The mean acceleration from the start of the 
movement and the end of the movement.  

21. Mean angular acceleration (MAA): The mean angular acceleration from the 
start of the movement and the end of the movement.  

22. Time lift (TL): The amount of time from the beginning to the end of the lift 
phase (see Figure 28). 

23. Peak lift (PL): The maximum value of the distance during the lift phase.   
24. Total movement (TM): The sum of the movement time and the absolute 

reaction time (not expressed in percentage) 
25. Jerk score (JS): A measure to quantify smoothness of the wrist path (Alberts et 

al. 2000, Teulings et al. 1997). Jerk score has to be normalized in time and 
amplitude to avoid the terrible increasing associated to movement duration 
(Schneider and Zernicke 1989). Then jerk score was computed using the 
following formula: 
 

𝐽𝑆 =  
1
2×  𝑗! 𝑡 𝑑𝑡

!"#_!"#

!"#$"_!"#

×  𝑑! 𝑙!        (5.10)      

 
Where 𝑗 is the jerk computed as described before (derivative of the 
acceleration),  𝑑  is the movement duration (time movement) and 𝑙  is the 
movement amplitude (distance peak between start movement and end 
movement). The definite integral from the start of the movement to the end of 
the movement is used to define a measure to quantify the smoothness of the 
wrist path during the movement. 

 
The features described above are then normalised through being expressed as 
percentage. Those features not expressed as percentage (e.g. peak velocity) are 
transformed considering the maximum value of the feature contained in the data. 
For example the percentage of the peak velocity is computed in the following way: 
 

𝑃𝑒𝑎𝑘 𝑣𝑒𝑙 𝑝𝑒𝑟𝑐 =  
𝑝𝑒𝑎𝑘 𝑣𝑒𝑙

max𝑝𝑒𝑎𝑘 𝑣𝑒𝑙  ∗ 100          (5.11) 

 
As explained before these 25 features are computed considering two different 
studies (Caselli et al. 1999, Alberts et al. 2000). In particular almost all the features 
relative to the distance, velocity and acceleration were computed in the Caselli’s 
study (Caselli et al. 1999) . The time lift and the peak lift were added. The features 
relative to the linear velocity and acceleration were computed also for the angular 
ones, using the findings of Alberts’ study (Alberts et al. 2000) where some 
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differences between angular quantities are evidenced. Also the jerk score was 
replicated using the findings of Alberts’ study. 

5.2.6 Grasping data  
	

The extraction of proper features from the data glove resulted to be very 
complicated because the data glove software provided flexion and extension data as 
a series of arbitrary integer values, without any measure unit.  The value of each 
sensor increased when the finger flexed and decreased when it extended (often 
becoming a negative number).  
The movements recorded by the sensors for each finger in some case were minimal 
and difficult to distinguish. For this reason, in order to have more readable data, the 
information from the middle, ring and little fingers were added to thumb and index 
finger data having an average of the fingers.   
Peak aperture was estimated as the point in which the average of the fingers 
reached the minimum (fully extended). Then the time to peak aperture (TAP) was 
computed as the time between the start of the movement and the peak aperture 
point. TAP was the only feature that was possible to estimate from the data glove. 
It was not possible to calculate the amplitude of peak aperture, usually computed as 
index finger to thumb aperture, because the data glove did not give any clue about 
the distance between fingers. For the same reason it was not possible to establish 
when the grasp started, usually computed as the first point where the index starts to 
extend or better as the point where the distance between index and thumb starts to 
increase (Scarpa and Castiello 1994).   
Figure 30 reports the grasp data of a trial made by a healthy subject, evidencing the 
time to peak aperture. This feature was not considered in the set of features 
computed because it is computed considering an average of the 5 sensors so we are 
not very confident about the precision of its value. Therefore the use of TAP in 
classification did not improve the results. 
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Figure 30. Grasp data relative to a trial performed by a healthy subject.  

In the figure are reported the profiles of: distance patriot (upper), data glove 
reporting the values of each sensor (middle) and average of fingers computed as sum 

of all the sensor values (below). Peak aperture is evidenced. 
 
 

5.2.7 Description of the data 
The data used are collected in the experiment described in section 5.2.3. Every 
subject did the experiment five times with the dominant hand and five times with 
the non-dominant hand in the four conditions described in section 5.2.3. In 
summary we have for each subject 10 reaching data, collected with the wrist sensor 
and 10 grasping data, collected with the glove sensors in each of the four different 
condition, for a total of 40 reaching data and 40 grasping data. The features 
described in section 5.2.5 are extracted for each reaching data collected in the four 
different conditions (40 for each subject). The 25 features extracted from each 
reaching data are threated as a single sample also if the reaching data belong to the 
same subject. The different repetitions of each subject (5 with dominant hand and 
five with non-dominant hand) are threated as single sample to have enough data to 
train the classifier.  Dominant and non-dominant hand are threated in the same way 
putting them in the big data set. In summary for each subject there are 10 data 
reaching samples for each of the four different conditions, the features described in 
section 5.2.3 are extracted for each of the different samples and are inserted in the 
big data set in order to train and test the classifiers evolved. 
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5.3 RESULTS 

5.3.1 Cases analysis 
	

Before applying the evolutionary algorithms to the data, considering as inputs the 
25 features described in section 5.2.5 it was decided to do a preliminary analysis. 
As explained in section 5.2.3 the experiment was undertaken in four different 
conditions: NAT (natural speed following a sound clue), VIS (natural speed 
following a light clue), MAX (as fast as they can following a sound clue), MEM 
(with the eyes closed remembering the position of the object, following a sound 
clue). Two different well known algorithm Support Vector Machine (SVM) 
(Durgesh and Lekha 2010) and Artificial Neural Network (ANN) (Maind and 
Wankar 2014) were used to find the best classifiers in each condition considered, 
considering as input the 25 features.. This analysis was done to understand if there 
is one case in which the difference among all classes considered is greater than the 
others. In other words we looked for the most discriminative visual condition. We 
decided to perform this analysis before applying CGP in order to limit the number 
of CGP simulations, which are very time consuming. Also the study of the 
classification results for each different condition could be very helpful to 
understand what condition is the best to appreciate the differences among the 
different classes considered. In table 2 the number of samples for each class in each 
case considered is reported. As explained is section 5.2.1, fifty-eight PD patients 
and 29 healthy subjects (Con) were tested. The patients are divided in 22 PD-NC, 
23 PD-MCI and 10 PDD with three patients excluded in the categories but included 
in the overall patients. Each subject did the experiment 5 times for each hand in 
each visual condition considered (40 samples for subjects in total). The numbers 
reported in table 2 are fewer than expected because some data were discarded due 
to measurement errors or other protocol violations.   
 

Cases Controls PD PD-NC PD-MCI PDD 
NAT 246 489 168 197 94 
VIS 243 496 173 199 94 

MAX 244 488 172 191 95 
MEM 245 483 172 189 92 

Table 2. Number of samples considered for each class in each condition 

 
Given the classes in table 2, seven pairwise classification cases are considered: 

• PD vs Con 
• PD-NC vs Con 
• PD-MCI vs Con 
• PDD vs Con 
• PD-NC vs PD-MCI 
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• PD-NC vs PDD 
• PD-MCI vs PDD 

 
Each dataset, comprising the two classes considered in each classification case, was 
divided into five folds and k-fold cross validation (k=5) was performed to 
generalize the results. In 5-fold cross validation, every time a different set of data 
for training, validation and test is considered, giving a good estimation of how the 
classifier generalise the results.  Ten runs of the experiment were completed for 
statistical significance. 
The SVM is configured with a linear kernel function and the solver used is SMO 
(Sequential minimal Optimization) (Fan, Chen and Lin 2005). These are the default 
settings in MATLAB. Different experiments were done using other kernel 
functions (Gaussian, polynomial) and a different solver (Iterative Single Data 
Algorithm) without an improving of the results, so we decided to use the default 
settings. The Neural network used was a feed-forward back propagation network 
with 20 hidden layers and a tan-Sigmoid transfer function. The number of hidden 
layers was chosen using an iterative method; we increased the number of hidden 
layers gradually registering the maximum improvement in the results when 20 is 
considered. A greater number of hidden layers did not improve the results so the 
hidden layer number was chosen equal to 20. 
We choose as measure to evaluate the classifier obtained the Area Under ROC 
Curve AUROC (Hanley and McNeil 1982). The AUROC, as Hanley and McNeil 
demonstrated in their paper, represents the “probability of correctly ranking a 
(normal, abnormal) pair”. The ROC curve is a plot of the true positive rate on y-
axis (TPR = true positive number of positives) against the false positive rate on 
x-axis ( FPR = false positive number of negatives ) considering different 
thresholds. The AUROC is then the area under the ROC curve. This measure is 
widely used for medical applications (van Erkel and Pattynama 1998, Lacy et al. 
2013) and also to evaluate in general a machine learning algorithm (Bradley 1997).  
In table 3 the classification results for SVM and ANN are reported considering all 
conditions together. While in tables 4, 5, 6 and 7 the results for each single 
condition are reported.  
In each table the result reported for each case is in the form: 
mean± standard deviation, where the mean and the standard deviation of the 
AUROCs are computed across the ten runs of the experiment. Both values of train 
and test set are reported. 
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ALL CONDITIONS (NAT, VIS , MAX, MEM). 
	

CASES SVM 
         Test                   Train 

ANN 
Test                   Train 

PD	vs	Con	 0.74 ± 0.004	 0.76 ± 0.001	 0.75 ± 0.01	 0.77 ± 0.02	
PD-NC	vs	Con	 0.70 ± 0.003	 0.73 ± 0.001	 0.72 ± 0.01	 0.76 ± 0.01	
PD-MCI	vs	Con	 0.77 ± 0.004	 0.79 ± 0.001	 0.79 ± 0.02	 0.82 ± 0.01	
PDD	vs	Con	 0.86 ± 0.004	 0.88 ± 0.001	 0.88 ± 0.01	 0.90 ± 0.01	

PD-NC	vs	PD-MCI	 0.71 ± 0.004	 0.75 ± 0.001	 0.70 ± 0.01	 0.73 ± 0.02	
PD-NC	vs	PDD	 0.78 ± 0.006	 0.82 ± 0.002	 0.79 ± 0.01	 0.83 ± 0.01	
PD-MCI	vs	PDD	 0.79 ± 0.005	 0.83 ± 0.002	 0.81 ± 0.01	 0.85 ± 0.05	

 
Table 3. SVM and ANN classification results for all conditions. 

 AUROC mean and standard deviation across the ten runs is reported.  
 

NAT (Natural speed). 
	

CASES SVM 
         Test                   Train 

ANN 
Test                   Train 

PD	vs	Con	 0.68 ± 0.04	 0.70 ± 0.04	 0.68 ± 0.01	 0.74 ± 0.02	
PD-NC	vs	Con	 0.66 ± 0.03	 0.74 ± 0.02	 0.65 ± 0.02	 0.74 ± 0.03	
PD-MCI	vs	Con	 0.68 ± 0.03	 0.75 ± 0.03	 0.70 ± 0.02	 0.77 ± 0.02	
PDD	vs	Con	 0.74 ± 0.03	 0.86 ± 0.02	 0.83 ± 0.03	 0.89 ± 0.03	

PD-NC	vs	PD-MCI	 0.62 ± 0.02	 0.72 ± 0.02	 0.61 ± 0.02	 0.71 ± 0.03	
PD-NC	vs	PDD	 0.69 ± 0.03	 0.82 ± 0.04	 0.76 ± 0.03	 0.85 ± 0.03	
PD-MCI	vs	PDD	 0.72 ± 0.02	 0.84 ± 0.03	 0.75 ± 0.04	 0.86 ± 0.04	

 
Table 4. SVM and ANN classification results for NAT condition.  

AUROC mean and standard deviation across the ten runs are reported. 
	

VIS (Light clue) 
	

CASES SVM 
         Test                   Train 

ANN 
Test                   Train 

PD	vs	Con	 0.65 ± 0.03	 0.69 ± 0.03	 0.76 ± 0.03	 0.81 ± 0.02	
PD-NC	vs	Con	 0.68 ± 0.02	 0.76 ± 0.01	 0.72 ± 0.03	 0.81 ± 0.02	
PD-MCI	vs	Con	 0.77 ± 0.02	 0.83 ± 0.02	 0.82 ± 0.02	 0.88 ± 0.02	
PDD	vs	Con	 0.81 ± 0.01	 0.88 ± 0.01	 0.84 ± 0.02	 0.91 ± 0.02	

PD-NC	vs	PD-MCI	 0.68 ± 0.02	 0.78 ± 0.02	 0.67 ± 0.04	 0.78 ± 0.04	
PD-NC	vs	PDD	 0.68 ± 0.03	 0.82 ± 0.02	 0.77 ± 0.02	 0.87 ± 0.03	
PD-MCI	vs	PDD	 0.77 ± 0.02	 0.89 ± 0.01	 0.76 ± 0.01	 0.86 ± 0.03	

 
Table 5.  SVM and ANN classification results for VIS condition. 

 AUROC mean and standard deviation across the ten runs are reported. 
 



	 82	

MAX (Maximum speed). 
	

CASES SVM 
         Test                   Train 

ANN 
Test                   Train 

PD	vs	Con	 0.70 ± 0.06	 0.72 ± 0.07	 0.79 ± 0.01	 0.84 ± 0.01	
PD-NC	vs	Con	 0.64 ± 0.03	 0.70 ± 0.04	 0.77 ± 0.01	 0.84 ± 0.01	
PD-MCI	vs	Con	 0.78 ± 0.02	 0.84 ± 0.01	 0.79 ± 0.01	 0.86 ± 0.02	
PDD	vs	Con	 0.92 ± 0.01	 0.97 ± 0.003	 0.95 ± 0.01	 0.98 ± 0.01	

PD-NC	vs	PD-MCI	 0.62 ± 0.03	 0.70 ± 0.04	 0.69 ± 0.04	 0.79 ± 0.05	
PD-NC	vs	PDD	 0.77 ± 0.03	 0.86 ± 0.04	 0.84 ± 0.03	 0.92 ± 0.03	
PD-MCI	vs	PDD	 0.74 ± 0.04	 0.86 ± 0.04	 0.84 ± 0.02	 0.90 ± 0.02	

 
Table 6. SVM and ANN classification results for MAX condition. 

 AUROC mean and standard deviation across the ten runs are reported. 
	

MEM	(Eyes	closed).	
	

CASES SVM 
         Test                   Train 

ANN 
Test                   Train 

PD	vs	Con	 0.81 ± 0.01	 0.86 ± 0.002	 0.80 ± 0.01	 0.84 ± 0.02	
PD-NC	vs	Con	 0.78 ± 0.01	 0.86 ± 0.003	 0.77 ± 0.02	 0.84 ± 0.03	
PD-MCI	vs	Con	 0.81 ± 0.01	 0.87 ± 0.002	 0.79 ± 0.02	 0.86 ± 0.02	
PDD	vs	Con	 0.94 ± 0.01	 0.99 ± 0.002	 0.94 ± 0.01	 0.98 ± 0.01	

PD-NC	vs	PD-MCI	 0.78 ± 0.01	 0.83 ± 0.001	 0.72 ± 0.04	 0.82 ± 0.03	
PD-NC	vs	PDD	 0.82 ± 0.01	 0.89 ± 0.002	 0.80 ± 0.03	 0.89 ± 0.03	
PD-MCI	vs	PDD	 0.80 ± 0.01	 0.89 ± 0.002	 0.81 ± 0.03	 0.90 ± 0.03	

 
Table 7. SVM and ANN classification results for MEM condition. 

 AUROC mean and standard deviation across the ten runs are reported. 
 
Examining all the results in the tables 3-7, MEM seems to be the best 
discriminating condition. This result is expected, because it is reasonable to think, 
that with the eyes closed the difficulties increases for the patients and also cognitive 
impairments should be more noticeable.  
There are some interesting considerations examining all the results. We can notice 
that we have the worse results for the conditions NAT and VIS. These conditions 
do not seem to evidence the differences in performing the experiment neither 
between patients and controls, nor between the cognitive subgroups of patients. A 
possible explanation of these findings could be that at natural speed the patients are 
relaxed and performed the experiment in a similar way as the controls. For the VIS 
condition surprisingly, the finding that partial visual feedback affects badly the 
patients performance in reach and grasp (Schettino et al. 2003) is not confirmed. An 
explanation of this could be that maybe the room was not dark enough to remove 
the visual feedback affecting patient’s performance. 
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The results of MAX condition are very interesting. ANN can evolve classifiers with 
performances comparable to MEM condition. In “PD-NC vs PDD”, “PD-MCI vs 
PDD” and “PDD vs Con” the classifiers evolved using ANN have better 
performance on the test set than those evolved for the MEM condition. In MAX 
condition, ANN outperforms SVM. Then from this results ANN seems to be the 
best technique to evolve classifiers especially for MAX condition. 
MEM condition can be considered the best condition for two main reasons:  
 

1. Both SVM and ANN evolved classifiers with comparable performances, so 
we can be more confident about the results;  

2. The classifiers evolved have the best overall performances compared to the 
other conditions (excepted for the cases described above).  

 
In this study we consider only the data of MEM condition, evaluating it as the best 
condition to distinguish among the class considered. 
 

5.3.2 CGP classification results 
	

In this section the classification results of CGP are reported. Only the MEM 
condition is considered for the reasons explained in the previous subsection.  
The geometry of the programs in the population of CGP (chromosomes) has 
seventy-five internal nodes (three times the number of inputs) with a function set of 
eleven mathematical functions (+, -, *, /, mean, min, max, division rest, sin, cos, 
tan), 25 inputs (the features described in section 5.2.5) and one output. The number 
of internal nodes equal to three times the number of inputs was chosen through 
experimentations using an iterative method, a greater number of internal nodes 
incremented the complexity but did not improve the results. As function set we 
considered a basic set of mathematical functions since we did not have specific 
knowledge of the problem to determine specific functions. Each output is 
considered a positive response if the value is greater than a certain threshold, 
negative otherwise; 18 thresholds are considered here, in multiples of 5 (5, 10, 
15…., 90). We chose to use 18 thresholds to facilitate the calculation of AUROC. 
The values of the threshold are chosen taking account of the input values expressed 
in percentage and then comprised between 0 and 100. For each threshold the true 
positive rate and false positive rate is computed, then the ROC curve is depicted 
using these two computations for each threshold. The positive class is the first in 
the classification cases; for example, for the case “PD-NC vs PD-MCI”, the 
positive class is PD-NC. At each generation the fittest chromosome is selected and 
the next generation is formed with its mutated versions (mutation rate=0.07). 
Evolution is stopped when 50000 iterations are reached or when the over fitting 
occurs. 
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In table 8 all the results are summarized. The SVM and ANN results are the same 
reported in table 7, they are used as comparisons in order to evaluate CGP results. 
ANN and SVM are used as baseline methods because are two very well-known 
techniques and were applied before to medical diagnosis. ANN was used before to 
diagnose Parkinson’s disease and other kinds of dementia (Geman 2013) and also  
for the diagnosis of different diseases such as colorectal cancer (Spelt et al. 2012), 
multiple sclerosis lesions (Mortazavi, Kouzani and Soltanian-Zadeh 2012), colon 
cancer (Ahmed 2005) and pancreatic disease (Bartosch‐Härlid et al. 2008).  SVM 
was used to identify potential biomarker in psychiatric and neurological disorders 
(Orru et al. 2012) but also for the diagnosis of different diseases such as cancer 
(Wang and Huang 2011), heart disease (Ghumbre, Patil and Ghatol) and diabetes 
(Zhang et al. 2017) 
The classification cases considered here are the same reported in subsection 5.3.1 
and the 5-folds cross validation was performed. As in tables 3-7, the results are 
reported in the form of mean± standard deviation, where the mean and the 
standard deviation of the AUROCs are computed across the ten runs of the 
experiment. Both results for train and test set are present for each technique. 

 
 
CASES	 SVM	

				Test													Train	
ANN	

Test												Train	
CGP	

Test																Train	
PD	vs	Con	 0.81

± 0.01	
0.86
± 0.002	

0.80
± 0.01	

0.84
± 0.02	

0.79±0.01 0.82±0.01 

PD-NC	vs	Con	 0.78
± 0.01	

0.86
± 0.003	

0.77
± 0.02	

0.84
± 0.03	

0.76 
±0.01 

 

0.81±0.02 

PD-MCI	vs	
Con	

0.81
± 0.01	

0.87
± 0.002	

0.79
± 0.02	

0.86
± 0.02	

0.78 
±0.01 

0.81±0.03 

PDD	vs	Con	 0.94
± 0.01	

0.99
± 0.002	

0.94
± 0.01	

0.98
± 0.01	

0.93±0.01 0.95±0.01 

PD-NC	vs	PD-
MCI	

0.78
± 0.01	

0.83
± 0.001	

0.72
± 0.04	

0.82
± 0.03	

0.65 
±0.02 

0.73±0.02 

PD-NC	vs	PDD	 0.82
± 0.01	

0.89
± 0.002	

0.80
± 0.03	

0.89
± 0.03	

0.78 
±0.01 

0.82±0.03 

PD-MCI	vs	
PDD	

0.80
± 0.01	

0.89
± 0.002	

0.81
± 0.03	

0.90
± 0.03	

0.78±0.02 0.84±0.02 

 
Table 8. Classification results for MEM condition.  

AUROC mean and standard deviation across the ten runs are reported. 
	

As the test set results are most useful in evaluating the potential of the classifier to 
generalise the unseen data, from this point forward discussion regarding the results 
will refer solely to the test set. Examining the results in table 8, unfortunately the 
classifiers evolved by CGP seem to be the worse for each case. However CGP does 
give an advantage to us to understand the most important inputs for each case, 
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because the programs do not necessarily use all the inputs considered. In addition 
the programs evolved by CGP are simple mathematical expressions easy to 
implement (details in section 5.3.3). 
In all the classification cases containing controls (“PD vs Con”, “PD-NC vs Con”, 
“PD-MCI vs Con” and “PDD vs Con”) the classifiers evolved by CGP are 
comparable to the classifiers evolved by the other techniques. In fact, in all these 
cases, the results of CGP differ a maximum for 3% with respect to the best method 
(SVM or ANN). We can conclude that in all cases comprising the healthy subjects, 
CGP is able to evolve classifiers with approximately the same performance of those 
evolved using SVM and ANN. 
Unfortunately the situation changes when the comparisons among the subgroups of 
patients are considered. In these cases CGP evolved classifiers with worse 
performances than SVM and ANN.  
In the case “PD-NC vs PD-MCI” SVM evolved the best classifiers reaching 0.78, 
followed by ANN reaching 0.72 and both methods outperforms CGP which evolves 
classifiers reaching 0.65. In this case CGP does not seem the best approach to 
evolve classifiers; it is preferable to use SVM that has very good results. 
Considering “PD-NC vs PDD” and “PD-MCI vs PDD” CGP results differ 
respectively of approximately 4% and 3% with respect to the best method. In these 
cases the classifiers evolved by the CGP was more comparable to those evolved 
using the other methods.  
We can conclude that, if CGP is not the best method, in many cases it evolves 
classifiers comparable to the other methods and has two possible advantages: 
selecting only the most useful inputs for the problems and evolving programs that 
are simple mathematical expressions and therefore are easy to implement. In the 
next subsection we will give details about the mathematical expression derived by 
the evolved classifier and the network diagram associated 

5.3.3 CGP classifier Mathematical expressions and Network 
Diagrams 
	
As shown in section 2.4 one of the main advantages of CGP is that the evolved 
classifier can be represented as a group of standard mathematical expressions and 
corresponding directed graphs (figure 14). In figure 14 it is clear that each output 
can be represented as a simple mathematical expression using the directed graph 
representing the classifier. In our case the classifier evolved has only one output 
and can be represented as a single mathematical expression. In figure 31 a network 
diagram corresponding to the best classifier evolved for the case “PDD vs Con” is 
reported. Cross-validation is used, so the best classifier considered is the best across 
all the folds and the generations. The classifier considered has an AUROC equal to 
0.98 for the test set. In figure 31 only the active nodes are reported in order to make 
the diagram clearer. We can note that only ten of the twenty-five inputs contribute 
to the output computation. The order of the input is reported in section 5.2.5 
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(starting from 0 instead of 1); following this order the inputs used by the classifier 
in this case are: movement time (MT), reaction time as percentage of total 
movement time (RT%), time to peak acceleration as percentage of total movement 
time (TPA%), time to peak angular acceleration (TPAA), peak deceleration (PED), 
time to peak deceleration as percentage of total movement time (TPD%), mean 
velocity (MV), mean angular velocity (MAV), mean acceleration (MA) and time 
lift (TL). The study of the inputs used can help to understand what the most useful 
features for each classification case are.  Unfortunately, identifying the most useful 
features for each classification case was not possible in this context. In fact there 
was not a common set of inputs used by the best classifier for each case across the 
folds of cross-validation. For this motivation it is not possible to make any 
conclusion about the most important features for each classification case. However, 
the diagram reported in figure 31 helps to understand what happens inside the 
classifier. The representation of the classifier is easy to understand and gives a 
better insight about the data used. CGP was used principally for this motivation, the 
representation of the classifiers evolved permits a better understanding of how the 
inputs are used and the output can be translated in a single mathematical 
expression, facilitating the implementation. Figure 31 can be represented easily 
with a mathematical expression following the oriented edges of the graph (figure 
14). The mathematical expression corresponding to the diagram is expression 5.12. 
In the expression the input numbers are replaced with the short name of the inputs 
(section 5.2.5) to clarify the meaning of the equation. The expression is complex 
but helps to understand how the equation can be easily derived from the diagram. 
   



	 87	

	
Figure 31. Network diagram of the best classifier evolved for the case PDD vs Con.  

Only the active nodes are reported. 
	
𝑜𝑢𝑡 =
max {[(𝑀𝑇 +max ( 𝑀𝐴𝑉 − 𝑚𝑜𝑑( 𝑅𝑇%− 𝑇𝑃𝐴𝐴 , 𝑇𝑃𝐴%+ 𝑇𝑃𝐴𝐴 ,𝑀𝑉 −
𝑀𝐴 − sin(𝑚𝑜𝑑 𝑚𝑜𝑑 𝑇𝑃𝐷%,𝑀𝑉 ,𝑃𝐸𝐷 )] , 𝑅𝑇%− 𝑇𝑃𝐴𝐴 + 𝑇𝐿 	.					(5.12)	
	

5.4 CONCLUSIONS AND FUTURE WORKS 
	

Examining table 8 interesting conclusions on each single case can be made. Let’s 
start with the different comparisons between patients and controls. We can see that 
the classification between PD (all PD patients together) and Controls is around 
0.79-0.81. The comparisons between subgroups of patients and controls, the 
situation is different. For “PD-NC vs Con” the mean AUROC of the generated 
classifiers is 0.76-0.78, for “PD-MCI vs Con” it is 0.81-0.78 and for “PDD vs Con” 
it is 0.93-0.94.  As expected, the classification between PD-NC and Controls is less 
certain then the other subgroups cases. The best classification is for “PDD vs 
Controls” in which the generated classifiers have a very high AUROC. Again, this 
result is expected: based on conventional clinical assessment, it is easier to 
distinguish between PDD and Controls than between PD-NC and Controls, or PD-
MCI and Controls. Therefore, it can be proposed that the PD-NC class lowers the 
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overall classification accuracy between PD and Controls, whilst the PDD class 
raises the classification accuracy. 
Comparisons of classification results for PD patient subgroups are interesting. The 
most challenging classification is between PD-NC and PD-MCI. This is expected 
because we know that patients from the two classes can perform the movement in a 
similar way and can be difficult to distinguish clinically. In this case CGP 
generated classifiers with a mean AUROC of 0.65 and it is outperformed by both 
ANN and SVM. SVM generates the best classifiers with a mean AUROC of 0.78.  
The differentiation between PD-NC and PDD, and between PD-MCI and PDD is 
more pronounced. This result was also expected because we know that PDD 
patients have greater difficulties with respect to the other subgroups in performing 
the movement. In fact, we note that for “PD-NC vs PDD” the mean AUROC of the 
generated classifiers is 0.78-0.82 while for the case “PD-MCI versus PDD” it is 
0.78-0.81.  
For all the comparisons between patients and controls CGP evolved classifiers 
comparable to the other approaches while for the comparisons among the patients 
the differences among the classifiers evolved by CGP and the other methods, in 
some cases, are more evident. In particular in the case “PD-NC vs PD-MCI” the 
classifiers evolved by CGP are outperformed by the other methods. 
In the study considered there are two limitations that could influence the results. 
Firstly, the patients examined were on medication to limit motor symptoms of PD, 
which may affect their performance.  The second limitation of this study is the 
relatively small number of the patients measured and the consequent way in which 
the different repetitions were considered. Each subject performs the experiment five 
times with each hand. So for each subject there are ten repetitions that are 
considered in the dataset as ten different samples. The data available resulted less 
than those recorded for measurement errors and protocol violations (table 2). If we 
only considered the mean of the repetitions, the data available would be insufficient 
to evolve a classifier. The strategy to consider repetitions as different samples could 
influence the results because the same subject can perform the experiment in a 
similar way, reducing the variability. However, patients showed a high variability 
in performing the experiment, so including repetitions was justified. In future, a 
new memory guided reach experiment including more subjects would be useful to 
overcome this limitation.  
Another point of discussion is the use of the grasping data. They are not used for 
the reasons explained in section 5.2.6, but could be useful to find new features to 
improve the classification. In the future it would be useful finding a way to use 
these data, it is suggested to consider a new reach and grasp experiment using two 
Polhemus Patriot sensors (described in section 5.2.2): one placed on the index 
finger and another placed on thumb finger, in order to measure the distance 
between the fingers.  
Moreover the results using CGP could be improved when considering other 
features or using the raw data values as inputs. In particular, the use of the raw data 
has a big potential, because the whole signal is considered instead of a summary 
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represented by the features. In conclusion, the results of this study are promising 
and can be used as a starting point in the classification of PD patients and controls 
but also in the detection of different cognitive impairments considering the “reach 
and grasp” task. 
In the next chapter the wavelet transform are introduced. We will use this technique 
to pre-process the hand-opening data (details in Chapter 7). 
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CHAPTER 6: WAVELET TRANSFORM 
ANALYSIS  

 
In this chapter an introduction about wavelet transform analysis is given. This 
technique is used to pre-process the EMG of dystonia patients and healthy subject, 
recorded in the second part of the study (details in chapter 7). The wavelet 
transform analysis is a technique used to perform time-frequency analysis. The 
time-frequency analysis gives information about all the frequencies contained in the 
signal and the time at which they occur. The Fourier transform differs from the 
wavelet transform in the fact that it has only frequency resolution and no time 
resolution. In order to find the power spectra, the amplitude of all the existing sine 
functions at various frequencies are identified through the whole duration of the 
signal (Le Van Quyen and Bragin 2007). This means that, we know all the 
frequency components in the signal, but the time in which they occur is unknown 
(Haddad and Serdijn 2009). Fourier transform is defined as a frequency–amplitude 
decomposition (Poularikas 2010).   
Time-frequency analysis is more suitable than just frequency analysis made with 
the Fourier transform when the signal examined is oscillating and is dynamic with 
frequency changes in time (Le Van Quyen and Bragin 2007). In these situations it 
is important not only knowing the frequency component but also decoding the 
oscillations separating them in elementary units well-defined in frequency and time 
(Le Van Quyen and Bragin 2007).  Wavelet transform is used to perform such 
time-frequency analysis. 
All the concept described in this chapter are taken by Addison’s book (Addison 
2002) unless otherwise specified.  
In wavelet transform analysis the functions used are called wavelets because they 
have a waveform. The wave-like scalable function is localized in time and 
frequency. This kind of function is more suitable in representing abruptly signal 
changes in time with respect to sine functions used in Fourier transform (Le Van 
Quyen and Bragin 2007).  There are two main operations with the wavelet: 
translation and scaling. With translation the wavelet is moved to a different 
location, with scaling it is stretched or squeezed. In figure 32a scaling and 
translation operations are represented.   
Using wavelets a time domain signal can be transformed into a two dimensions 
time-frequency domain signal, useful to evidence features. The transformation of 
the signal is called wavelet transform. In mathematical terms, wavelet transform is 
defined as the convolution of the wavelet function with the signal. From a practical 
point of view, we can say that the wavelet transform has a big value when wavelet 
matches the shape of the signal for a specific scale and location; instead it has a low 
value when this does not happen. In figure 32b the value of the wavelet transform 
for a certain scale s0 is reported. It is possible to note how for the smaller scales the 
wavelet converges to the function singularities S1 and S2.  
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The transform value is located in a two dimensional space, called transform plane, 
using location and frequency (derived from scale). The representation of the 
transform plane is illustrated in figure 33.  
The wavelet transform is computed at various locations and scales, filling up the 
transform plane. The wavelet transform gives information about time and 
frequency at the same time, giving all the frequencies contained in the signal along 
with the time when they occur. Wavelet transform is in practice computed for each 
scale of interest across all time points. This is done decomposing the signal of 
interest into several parts and then analysing the parts separately (Haddad and 
Serdijn 2009). The several parts are represented by the different locations and scale 
contained in the transform plane: the location is related to the time while the scale 
is inversely proportional to the frequency. Dilation in time domain corresponds to 
lengthening time periods and a lowering of the associated frequency. The scaling 
operation is used to examine the signal at various levels of details: wavelet 
contraction is associated to the increasing depth of focus, passing from coarser (i.e. 
low- frequency) to finer (i.e. high-frequency) signal structures (Le Van Quyen and 
Bragin 2007).  The way in which the wavelet transform can decompose the signal 
in the different parts will be further explained in the next sections.  
There are two kinds of wavelet transform: the continuous wavelet transform (CWT) 
and the discrete wavelet transform (DWT). The CWT is used when the transform 
plane is filled in a continuous or smoothed way, while the DWT is used when it is 
filled in discrete steps. In the following subsections both kinds of wavelet are 
discussed but CWT is discussed in more detail because this is the approach chosen 
for the work described in this thesis. 
In this work we decided to use wavelet transform instead of Fourier transform 
because it has been shown to be a very promising mathematical tool (Rioul and 
Vetterli 1991, Daubechies 1992, Mallat 1999), particularly for local analysis of 
non-stationary and fast transient signals (as medical signals), due to its good 
estimation of time and frequency localizations (Haddad and Serdijn 2009). 
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Figure 32. Scaling and translation of a wavelet plus wavelet transform for a certain scale 

 (a) Scaling and translation of a wavelet (here the second derivative of the Gaussian) along a 
signal (function) f(x).	(b) Up: a function f(x), down: amplitude of the wavelet transform of 

function f(x), along the x-axis, at a certain scale, s0. The original wavelet is the second 
derivative of the Gaussian. Source: (Enescu, Ito and Struzik 2006) 

 
 
 
   
 
 
 
 

 
 
 
 

This chapter is divided in three main sections. 
In section 6.1 the continuous wavelet transform (CWT) is described illustrating also 
some applications. Section 6.1 is divided in three subsection: subsection 6.1.1 
contains the description of the two wavelets spectrum, the Fourier spectrum and the 
wavelet-based energy spectrum, in subsection 6.1.2 the Heisenberg boxes of the 
wavelets transform are discussed and in subsection 6.1.3 two kinds of wavelets 
transform are discussed: Morlet wavelet and generalized Morse wavelets (the 
approach used in this work). 

frequency	
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current	
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Figure 33: Transform plot of the wavelet transform. 
Source: (Addison 2002) 
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In section 6.2 a brief introduction of discrete wavelet (DWT) transform is given. 
Subsection 6.3 contains a summary highlighting the key-points described in the 
chapter. 

6.1 THE CONTINUOUS WAVELET TRANSFORM 
 
A wavelet is a function that has to satisfy certain mathematical constraints. There 
are many different wavelets; the choice depends on the signal to transform and on 
the application. The wavelet chosen is called the mother wavelet and it can be 
altered with two main operations: translation (movement along time axis) and 
dilation (spreading out).  
The wavelet function ψ(t) has to satisfy three mathematical criteria: 

 
1. finite energy: 

 

E = ψ(t) !
!

!!
dt  < ∞           (6.1) 

 
where E is the energy of the function computed as the integral of its squared 
magnitude, the vertical brackets represent the modulus operator giving the 
magnitude of ψ(t). If ψ(t) is a complex function both real and complex part 
have to be used to compute its magnitude 

 
2. ψ t  must have zero mean, equivalent to no zero frequency component, 

𝜓 0 = 0 where 𝜓(𝑓) is the Fourier transform of 𝜓(𝑡): 
 

ψ f =  ψ(t)
!

!!
e!! !"! ! dt      (6.2) 

 
Then the following condition has to be satisfied: 
 

C! =
 ψ f !

f df < ∞
!

!
           (6.3) 

 

where C! is called admissibility constant and has a value depending on the 
chosen type of wavelet. 

 
3. In case the wavelet is a complex function (e.g. Morlet wavelet) the Fourier 

transform has to be real and dissolving for negative frequencies. 
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In figure 32 the operations of dilatation and translation are illustrated. The mother 
wavelet used in this figure is called Mexican hat and is the second derivative of a 
Gaussian distribution function e!!! !: 
 

 ψ t = 1− t! e!!! !.                 (6.4)        
 
The dilatation parameter a is used to control the dilation and the contraction of the 
wavelet, while the translational parameter b is used for the wavelet movements 
along the time axis (figure 34). Both parameters a and b can be added to the 
wavelet definition representing all the shifted and dilated version of the mother 
wavelet as ψ t− b a .  The expression of the mother wavelet ψ t  is found when 
b = 0 and a = 1. 
 
The wavelet transform of a continuous signal x t  with respect to the wavelet 
function is defined as: 
 

T a, b = w a x t
!

!!
ψ∗

t− b
a dt        (6.5) 

 

Where w(a) is called the weighting function and its value is usually equal to 1 a 
for energy conservation (at each scale the wavelets have same energy). The 
complex conjugate of the wavelet function is indicated with asterisk. In equation 
6.5 there is a product between the signal and the wavelet integrated over the signal 
range. This operation in mathematics is called convolution.  
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Figure 34: Dilatation and translation of a wavelet.  

a) Stretching and squeezing wavelet (dilation) using three different scales 𝒂𝟏,𝒂𝟐 and 𝒂𝟑 
defined as  𝒂𝟏 = 𝒂𝟐 𝟐 ;  𝒂𝟑 = 𝒂𝟐×𝟐, b) moving a wavelet: translation three different locations 

are considered 𝒃𝟏 <  𝒃𝟐  <  𝒃𝟑. Source: (Addison 2002) 
 

The convolution, described in equation 6.5, has a positive contribution when both 
the wavelet and the signal have the same sign, while it has a negative contribution 
when they have opposite sign. 
In figure 35 an example illustrates this concept. In figure 35(a) a wavelet of a 
specific dilation and in a specific location is described.  In regions A and B there is 
a positive contribution to the integral (wavelet and signal have same sign), while in 
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regions C, D and E there is a negative contribution to the integral (wavelet and 
signal have opposite sign). 
In figure 35(b) there is a wavelet of a fixed dilation in four different locations. At 
the first location b! the positive and the negative parts of the wavelet are almost 
coincident with those of the signal giving a large positive value of T a, b . At the 
second location b! the positive and the negative contributions are almost the same 
deleting each other and resulting in a value near to zero for T a, b . At the third 
location b!, signal and wavelet are out of phase resulting in large negative value for 
T a, b . At the fourth location b! again the wavelet and the signal are out of phase, 
but this time the signal portion in proximity of the wavelet contains a local 
minimum component.  This component contributes in the same way to positive and 
negative values of T a, b . Then only the local signal feature is highlighted and the 
mean is discarded, resulting in a negative value for T a, b . The process described 
is the way in which the wavelet identifies “coherent structures” in a time signal for 
different scale. It is repeated for all a scales moving the signal in each different b 
location, until all the wavelet coherent structures within the signal from the largest 
to the smallest for each scale are identified.  
CWT is used for pattern recognition (Szu, Telfer and Garcia 1996, Qiao, Esmaeily 
and Melhem 2012) because it has the ability to decompose complex signal and 
patterns into elementary forms.  
There are different medical applications of CWT: for instance Iranmanesh and 
colleagues used CWT, and in particular the Mexican hat, to detect spikes due to 
epilepsy in electroencephalography (EEG) (Iranmanesh and Rodriguez-Villegas 
2017) while Addison and colleagues used a Morlet wavelet transform to detect 
ventricular fibrillation in electrocardiogram (ECG) (Addison et al. 2002). 
An important property of CWT the resistance to signal noise is highlighted in 
(Slavič, Simonovski and Boltežar 2003). Slavič and colleagues used Gabor wavelet 
transform to describe damping. Gabor wavelet (Carmona, Hwang and Torresani 
1998) is a complex function characterized by a parameter ∂,  with similar form of 
the Morlet wavelet described in section 6.1.3. Slavič and colleagues demonstrated 
that a large ∂  parameter gives a slightly better resistance to noise. They 
demonstrated the advantages of using the amplitude and phase methods, both of 
which provide information about the instantaneous noise.  
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Figure 35: Wavelet interrogation of the signal.  

a) The wavelet at specific dilatation and location on the signal. b) The wavelet of fixed dilation 
at four different locations. Source: (Addison 2002) 

  

6.1.1 Wavelet energy 
	

The wavelet has two different energy spectra: the Fourier spectrum and the 
wavelet-based spectrum (scalogram).  These two spectra are defined in detail as 
followings:  
 

1. The Fourier spectrum of a mother wavelet is defined as the plot of squared 
magnitude of the wavelet Fourier transform against wavelet frequency: 
 

                                                                       E!(f) = ψ(f) !            (6.6) 
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where ψ(f)  is the Fourier transform of the wavelet, the vertical brackets 
represent the module operator and E!(f) is the Fourier spectrum of the mother 
wavelet ψ t . A wavelet is a bandpass filter, then only the signal components 
frequencies within a certain range of frequencies (passband) can go through it. 
These signal components are in proportions characterized by the energy 
spectrum of the wavelet defined in equation 6.6.  The passband centre 
frequency of the mother wavelet, f! is the standard deviation of the energy 
spectrum about the vertical axis and is defined as: 
 

f! =
f ! ψ(f) !df!

!

ψ(f) !df!
!

                                      (6.7)    

 
The wavelet scale a  is inversely proportional to f! and to all mother wavelet 
characteristic frequencies. This is an obvious consideration because it is clear 
that a dilation in time domain means lengthening time periods corresponding to 
a lowering of associated frequencies. Wavelet Fourier spectrum is useful in 
visualising the wavelet band pass filter behaviour. 
 
2. The wavelet-based energy spectrum is determined for a specific scale, 

location and signal 𝑥(𝑡) as: 
 

                                     𝐸 𝑎, 𝑏 = 𝑇(𝑎, 𝑏) !                              (6.8) 
 

where 𝑇(𝑎, 𝑏) is the wavelet transform defined in equation 6.5. The plot of 
𝐸 𝑎, 𝑏  is called scalogram and all the function that differ from 𝑇(𝑎, 𝑏) ! 
by a multiplicative constant are called scalogram. The scalogram is often 
expressed in a logarithmic 𝑎 scale axis.  
The scalogram is very useful in highlighting the location and the scale of 
dominant features in the signal. The following examples are useful to clarify 
this concept. 
In figure 36 a human ECG containing a defibrillation shock event along 
with its scalogram is illustrated. Looking at the scalogram it is possible to 
notice the high frequency spike, evidenced with an arrow, preceding the 
traumatic event.  
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Figure 36. Top: 7 seconds of human ECG containing a defibrillation shock event.  

Bottom: scalogram corresponding to ECG signal. Notice the high frequency spike in 
the scalogram before the shock event. Source: (Addison et al. 2002) 

	
 

In figure 37 the aorta pressure trace of a pig (top) showing an irregular 
activity of the ventricular muscle, which is obscured in the ECG (middle), is 
shown. At the bottom there is the wavelet scalogram obtained using a 
Morlet wavelet, explained in the subsection 6.1.3. The high frequency 
pulses in the scalogram (highlighted by white arrows) correspond 
approximately to the aortic pressure pulses. In this case then the wavelet 
scalogram is useful to identify the location of the aortic pressure pulses. 
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Figure 37. The aorta pressure trace (top) with the ECG (middle) and the 

corresponding wavelet energy plot (bottom) using the Morlet wavelet.  
The white arrows mark high-frequency “pulses” visible in the scalogram and 

corresponding approximately to the aortic pressure pulses. Source (Addison et al. 
2002) 

6.1.2 Heisenberg box wavelet transform 
	

The wavelet transform, as explained so far, gives a representation in time and 
frequency using a two-dimensional transform. The Heisenberg uncertainty principle 
expresses the fact that when you are dealing with two dimensions, you cannot have 
the same resolution precision for both of them (Busch, Heinonen and Lahti 2007).  
In physics this can be translated as the impossibility to know at the same time 
where a particle is and how fast it is. The Heisenberg uncertainty principle then 
expresses a trade-off saying that if you want a more precise particle position you 
have to be less certain about its speed and vice versa. 
This principle is applied also to the wavelet transform: a contraction in time of the 
wavelet corresponds to a wavelet containing higher frequencies with a wider spread 
and vice versa (Addison 2002).  Heisenberg boxes are used to show the resolution 



	 101	

uncertainty in the two dimensions. Figure 38 shows some Heisenberg box examples 
illustrating the Heisenberg uncertainty principle.  
In the middle of the figure three Morlet wavelet at three different scales are 
reported (only the real parts are shown), while in the bottom the energies densities 
of the wavelet are reported in both time ψ!,!(t)

! and frequency 

ψ!,!(f)
! domains. The Heisenberg boxes have side lengths 2σ! by 2σ! where σ! 

and σ! are respectively the standard deviations around the mean of ψ!,!(t)
!
 and 

ψ!,!(f)
!
. These two standard deviations are used to quantify the spread around the 

mean of ψ!,!(t)
!
 and ψ!,!(f)

!
, with large values corresponding respectively to 

reduced time and frequency precision. 
Minimizing the area of the Heisenberg boxes we can find the best wavelet that 
maximises the time and frequency resolution. In the selection of the best wavelet 
this consideration is very important. 
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Figure 38: Heisenberg boxes in time-frequency domain. 

Heisenberg boxes at the top, Morlet wavelet real parts at three different scales and their 
energies in the middle-bottom. Source: (Addison 2002). 
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6.1.3 Morlet and Analytic Wavelets 
	

The analytic wavelet transform (AWT) is a special family of complex-valued 
wavelet transforms (Lilly and Olhede 2010). As reported in Lilly and Olhede’s 
work, these wavelets are particularly useful for the analysis of modulated 
oscillatory signals (Delprat et al. 1992, Mallat 1999, Carmona, Hwang and 
Torrésani 1997, Carmona, Hwang and Torrésani 1999, Scheper and Teolis 2003) 
and discontinuities(Tu, Hwang and Ho 2005). Details about all the properties and 
references for complex-valued wavelet transforms are reported by Selesnick’s and 
colleagues (Selesnick, Baraniuk and Kingsbury 2005). 
In this work we choose to use this family of wavelet transforms because the signal 
to examine is an electromyography (EMG) which is an oscillatory signal(Reaz, 
Hussain and Mohd-Yasin 2006).  
 
The advantage of using complex-valued wavelets is that we can separate the 
amplitude and phase of the signal because the wavelet has real and imaginary parts. 
The phase information is more accurate than the modulus to reveal isolated 
singularities in a signal (Aldroubi and Unser 1996). The phase is used also to 
identify several types of transition points (i.e. local maxima) within the analysed 
signal (Haddad and Serdijn 2009).  
It is important to remember that complex-valued wavelet transforms have Fourier 
transform equal to zero for negative frequencies as described in the third 
requirement to be a wavelet in section 6.1.   
In this section two continuous wavelet transforms are discussed: Morlet wavelet 
and analytic Morse wavelet. 
 
The Morlet mother wavelet is defined as: 
 

ψ t = π!! ! e!"!!!! −  e! !"!! ! ! e!!! !        (6.9) 

 

where f! is the central frequency of the mother wavelet. The term e! !"!! ! ! is a 
correction term and it is used to correct the non-zero mean of the complex sinusoid 
described in the previous term. However if f! ≫ 0 the term e! !"!! ! ! becomes 
negligible and can be ignored writing the Morlet wavelet in the simple form: 
 

ψ t =
1
π! ! e

!"!!!!e!!! !                                          (6.10) 
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where !
!! ! is the normalization factor, e!"!!!! is a complex sinusoid and e!!! ! is a 

Gaussian envelope with a unit standard deviation. Then the Morlet wavelet for 
f! ≫ 0 is simply a complex wave (e!"!!!!) within a Gaussian envelope (e!!! !).  
The dilated and translated Morlet wavelet could be defined substituting t with 
(t− b) a in the expression 6.10: 
 

ψ
t− b
a =

1
π! ! e

!"!!![(!!!) !]e![(!!!) !]
! !    (6.11) 

 
The imaginary and the real part of the mother wavelet described by equation 6.10 
differ by a quarter of period. The normalization factor !

!! ! is important to ensure 
that the wavelet has unit energy. It is important to notice that the wavelet described 
by equation 6.10 is not a real wavelet because it has non-zero mean equivalent to 
say that it has zero frequency component and then the second requirement 
described in section 6.1 is not strictly satisfied. However, if f! ≫ 0 equation 6.10 
can be used with a minimal error. 
The imaginary and real parts of the Morlet wavelet with its Gaussian envelope are 
shown in figure 39(a). This illustrates how the imaginary part is shifted by a quarter 
of period with respect to the real part. 
The energy spectrum of the Morlet wavelet, given in figure 39(b), is defined as: 
 

ψ t ! = 2π! !e!(!"!!!"!!)!                        (6.12) 

 

where ψ t  is the wavelet Fourier transform. The wavelet energy is given by 
integrating the equation 6.12. This energy is equal to one considering equation 6.11 
(π!! ! is the normalization factor).  
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Figure 39. Morlet wavelet.  

a) Morlet wavelet with 𝒂 = 𝟏 and 𝒇𝟎 = 𝟎.𝟖𝟗𝟒. b) Energy spectrum of the Morlet wavelet 
reported in a. c) Morlet wavelet with 𝒂 = 𝟏 and 𝒇𝟎 = 𝟎.𝟑𝟏𝟖. d) Morlet wavelet with 𝒂 = 𝟏 
and 𝒇𝟎 = 𝟏.𝟗𝟎𝟗. e) Morlet wavelet with 𝒂 = 𝟎.𝟓 and 𝒇𝟎 = 𝟎.𝟖𝟗𝟒. f) Morlet wavelet with 

𝒂 = 𝟐 and 𝒇𝟎 = 𝟎.𝟖𝟗𝟒. Source (Addison et al. 2002) 
	

The central frequency f! is the complex sinusoid frequency and determines how 
many oscillations are present in the Gaussian envelope. The effects of changing f! 
are shown in figure 39(c) and 39(d). When f! is smaller there are fewer oscillations 
(c), when it is bigger the number of oscillations is large (d). We can say that f! is 
proportional to the number of oscillations contained in the Gaussian envelope. 
Usually f! is 0.849 which corresponds of an angular frequency value ω! of 5.336 
(ω! = 2πf!). In practice ω! has a value between 5 and 6. If ω! is chosen less than 
five corresponding to f! < 0.8, equation 6.9 has to be used instead of equation 6.10 
to compute the Morlet wavelet.   
In figure 39(e) the squeezed Morlet wavelet (a = 0.5) is shown, while the stretched 
Morlet wavelet is illustrated in figure 39(f) (a = 2).  
A signal with an abrupt change in the periodicity (a) and a Morlet wavelet (b) used 
to identify the abrupt change are represented in figure 40. The wavelet transform 
T(a, b) is a complex number and can be expressed as T a, b = Re T a, b +
Im T a, b . From this expression it is possible to find the wavelet transform phase 
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ϕ a, b  illustrated in figure 40(c) and the wavelet transform modulus 
T(a, b)  illustrated in figure 40(e). In figure 40(d) and 40(f) the real and the 

imaginary parts of the wavelet transform are shown respectively. Examining the 
figure it is possible to observe that they are very similar, in fact the imaginary 
waveform is simply a phase-shifted version of the real plot. The imaginary part of 
Morlet best matches the signal features present one quarter of cycle later than the 
real part. The change of periodicity for the signal is evidenced in all the wavelet 
plots of figure 40. 
 

	
Figure 40. Use of the Morlet wavelet to detect an abrupt change in a signal periodicity.  
a) Signal to decompose b) Morlet wavelet with 𝒇𝟎 = 𝟎.𝟖𝟒𝟗 and 𝒂 = 𝟏. c) Phase of the 
wavelet transform. d) Real part of the wavelet transform. e) Modulus of the wavelet 
transform. f) Imaginary part of the wavelet transform. Source (Addison et al. 2002) 

 
Generalized Morse wavelets were introduced in Olhede’s and colleagues (Olhede 
and Walden 2002). Lilly and Olhede developed Morse wavelet theory and its 
applications to modulated oscillatory signal analysis in their papers (Lilly and 
Olhede 2009, Lilly and Olhede 2010, Lilly and Olhede 2012). 
The generalized Morse wavelet, according to Olhede and Lilly, has the following 
frequency-domain form: 
 

Ψ!,! ω = U ω a!,!ω!e!!!                        (6.13) 
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where U ω  is the heaviside step function: a discontinuous function equal to zero 
for the negative values and equal to one for positive values (Bracewell 2000). The 
presence of U ω  in the expression is necessary to satisfy the third admissibility 
condition described in section 6.1. In equation 6.13 a!,! is the normalizing constant 
defined as: 
 

a!,! = 2
eγ
β

! !
                                             (6.14) 

 
Then the Morse wavelet shape is defined by the two parameters β and γ. The 
effects of changing these two parameters is examined in details in (Lilly and 
Olhede 2009).  
Equation 6.13 is defined in the frequency domain. The inverse Fourier transform is 
used in order to derive the corresponding time domain equation: 
 

Ψ!,! t = !
!"

Ψ!,! ω
!
!! e!!! dω.              (6.15) 

 
In figure 41 different generalized Morse wavelets are illustrated examining the 
differences in changing the two parameters β and γ (Lilly and Olhede 2010).  The 
upper row, in figure 41, shows the effect of increasing β leaving constant γ = 3. In 
time domain increasing β makes the signal more oscillatory, while in frequency 
domain (figure 41(e)) makes the peak narrower. The lower row of figure 41 shows 
the effect of increasing γ and decreasing β. In this case, in the time domain the 
oscillations inside the central window do not change but the time behaviour of the 
wavelet changes. In frequency domain there is an enhancement to the right of the 
frequency peak shifts to the left of the frequency peak as γ increases.  
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Figure 41.Examples of generalized Morse wavelets. 

Panels (a–d) and (f–i) show wavelets in the time domain for different (β, γ) values, which are 
indicated in the lower left corner of each panel; for presentation, the wavelets are rescaled by 
their maximum amplitude. The real part is a solid line, the imaginary part is dashed, and the 

modulus is a thick solid line. The frequency-domain versions of the wavelets in the top and bottom 
rows are then given in panels (e) and (j) respectively. Source (Lilly and Olhede 2010) 

	
Figure 42 shows the area of Heisenberg boxes described in section 6.1.2 as a 
function of the β  and γ  parameters, both time and frequency axes have been 
rescaled for presentational clarity.  
As described in section 6.1.2, it is important to minimize the area of the Heisenberg 
boxes to have the best resolution precision in the two dimensions. We decided to 
use β = 9 and γ = 3 because this corresponds to a small Heisenberg area giving us 
a good resolution precision in both dimensions (figure 42). The shape of the 
wavelet used is reported in figure 41(c). The letters contained in figure 42 indicate 
some well-known wavelet families: “L” for the lognormal wavelets; “C” for the 
Cauchy wavelets; “G” for the Derivative of Gaussian wavelets; “A” for the Airy 
wavelets; “e” for complex exponentials; “S” for the Shannon wavelet; “a” for the 
analytic filter; and “B” for the Bessel wavelet. Details about these wavelet families 
are reported in (Lilly and Olhede 2012). 

 



	 109	

	
 

Figure 42. Parameter space for the generalized Morse wavelet superfamily. 
The Heisenberg areas are shaded over 𝜷 and 𝜸  on log-log axes. Note that for  𝜷 ≤ 𝟏

𝟐
  the 

Heisenberg area is undefined. Source: (Lilly and Olhede 2012). 
	

In this work to pre-process the EMG (Reaz et al. 2006) we chose the generalized 
Morse wavelet because it is more versatile than Morlet wavelet. In fact Morse 
wavelet uses two parameters instead of only one, allowing a better localization in 
frequency or time (Aguiar‐Conraria and Soares 2014). As Lilly and Olhede 
illustrated in their work: “With two free parameters, the generalized Morse 
wavelets can take on a broad range of forms which has not yet been fully explored, 
and in fact this family encompasses most other popular analytic wavelets”(Lilly 
and Olhede 2009). 

6.2 THE DISCRETE WAVELET TRANSFORM 
	

In this section a brief introduction of discrete wavelet transform is given, for more 
details refer to (Addison 2002). 
The discrete wavelet transform differs from the continuous wavelet transform, 
reported in the equation 6.5 in the fact that it uses discrete values for the dilation 
and translation parameters a and b. The logarithmic discretization can be used to 
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discretize a  and then link this to the size of the steps between locations of 
translation. 
The idea is to move with discrete steps proportional to the a scale between the 
different b locations. Then the wavelet has the following form: 
 

ψ!,! t = !
!!!
ψ !!!!!!!!

!!!
                                  (6.16)       

 

where w a = !
!!!

 , m and n are integers used to control the dilation and the 

translation, a! is a fixed dilation step parameter greater than one and b! is the 
location parameter which must be greater than zero. The size of the translation step 
is Δb = b!a!! is directly proportional to the scale parameter a!!. 
The discrete wavelet transform of a continuous signal x(t) is then: 
 

T!,! = x t =
1

a!
! !ψ(

!

!!
a!!!t− nb!)             (6.17) 

 
where T!,! is called the wavelet transform or detail coefficients gives the values on 
a scale-location grid with indexes m and n. 
While CWT operates at every scale giving as a result a signal larger than the 
original one, DWT decomposes the signal into approximation low frequency and 
detail high frequency coefficients, giving as a result a signal of the same length as 
the original (Ngui et al. 2013). CWT is scaled and shifted over the full domain of 
the analysed signal, while DWT is scaled and shifted only on a subset of the signal 
domain determined by the discrete steps. 
DWT are widely used for image processing (Broughton 1998), signal processing of 
accelerations for gait analysis (Martin 2011) and in many others areas (Akansu et 
al. 1998, Akansu and Medley 2006, Akansu and Smith 2012). 
DWT are not used here because, as explained previously, it is computed only on a 
domain subset of the signal as opposite to CWT that is computed across the entire 
signal domain. We preferred CWT to pre-process EMG signal across its entire 
domain avoiding the loss of some useful information. 

6.3 SUMMARY AND CONCLUSIONS 
 

In this chapter the wavelet transform is discussed. The following key-points are 
highlighted: 
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• Wavelet transform is used for time-frequency signal analysis. Time-
frequency analysis shows all the frequency is contained in the signal along 
with the time at which they occur.  

• A wavelet function has a wave-like form that respect defined mathematical 
constraints. 

• The two main operations on the wavelet function are: scaling and 
translation. With scaling the wavelet is stretched/squeezed along the signal, 
while with translation it is moved along the time domain of the signal.  

• The wavelet transform is the convolution of the wavelet function with the 
signal considered. It transforms the time domain signal in a two-
dimensional domain signal considering frequency (inverse of scaling) and 
location. 

• There are two kinds of wavelet transform: continuous wavelet transform 
(CWT) where the wavelet transform is computed along the entire signal 
domain and the discrete wavelet transform (DWT) where the wavelet 
transform is shifted and scaled on a subset of the signal domain determined 
by the discrete steps. 

• In this work CWT is used to pre-process EMG signal since it is more 
appropiate to compute the transformation along the entire signal domain. 

• The generalized Morse wavelet transform is used in this work. Generalized 
Morse wavelet is an analytic wavelet, a family of complex-valued wavelets 
useful to separate amplitude and phase of the signal having real and 
imaginary part. These wavelets are versatile thanks to the two parameters β 
and γ, which regulate their shape. 

 
In conclusion the wavelet transform is preferred to the Fourier transform because it 
permits to know not only the frequencies contained in the signal but also the time in 
which they occur. Morse wavelet is used instead than the well-known Morlet 
wavelet because it is more versatile using two parameters instead of one. The two 
parameters of the wavelets are chosen in order to minimize the Heisenberg boxes 
area improving precision in both time and frequency domain. The main idea of this 
work is using the wavelet transform to pre-process the EMG signals in order to find 
useful features able to discriminate among healthy subjects, dystonia patients and 
subsets of dystonia patients. In the next chapter the hand-opening experiment is 
described, with details about the pre-processing of the EMG using wavelets and the 
feature extracted. 
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CHAPTER 7: HAND OPENING-CLOSING 
EXPERIMENT 

 
In this chapter the second part of the thesis work is described. Several dystonia 
patients and healthy subjects were measured while performing different tasks. The 
data recorded are the electromyography (EMG) of four different muscles. EMG 
data are pre-processed with wavelet transform described in Chapter 6.  
The aim of this second part is to distinguish between dystonia patients and healthy 
subjects but also between functional and organic dystonia patients (section 4.4).  
The chapter is organised in five main sections. Section 7.1 reports the aim and 
motivations of the work reviewing the previous studies. Section 7.2 gives an 
introduction about the EMG signal explaining how it is computed and describing 
the two different kinds of EMG (surface and intramuscular). Section 7.3 reports the 
methodology used, describing: the subjects recruited (section 7.3.1), the equipment 
used (section 7.3.2), the experiment (section 7.3.3) and the data used along with the 
pre-processing (section 7.3.4). Section 7.4 reports the results divided for the 
different inputs considered plus a subsection (section 7.4.5) showing a diagram of a 
classifier evolved with the derived mathematical expression. Section 7.5 reports the 
conclusions with some suggestions for future works.       

7.1 AIM AND MOTIVATIONS 
	

In the experiment described, two different subgroups of dystonia patients and a 
group of healthy subject perform several movements involving upper limbs. During 
the experiment the following pairs of EMG were recorded: biceps/triceps and flexor 
digitorum superficialis/extensor digitorum communis (FDS/EDC). The patients 
were diagnosed with two kinds of dystonia: organic dystonia (comprising cervical 
dystonia, focal and secondary dystonia involving upper limb muscles) and 
functional dystonia. 
The aim of this study is using these EMG recordings to distinguish among dystonia 
patients and healthy subjects but also between the two big subgroups of patients: 
organic and functional (section 4.4). Clearly the muscles affected by the disease are 
determined by the different kind of dystonia, although there is evidence in the 
literature that patients present abnormal muscle activities also in non-dystonic body 
parts (De Vries et al. 2007). De Vries and colleagues measured the activity of two 
wrist muscles (flexor and extensor) of eight cervical dystonia patients and eight 
healthy subjects during a flexion-extension movement of the right wrist.  The 
results showed abnormal muscle activities for the patients, evidenced by lower 
mean EMG amplitude and a prolonged extensor muscle contraction compared with 
healthy subjects. The results support the view that “although dystonic involvement 
is clinically only seen in one part of the body, other parts of the body may exhibit 
subclinical dystonic movement abnormalities” (De Vries et al. 2007). The muscles 
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exhibiting abnormal muscle activity are in “pre-dystonic state”. We used these 
findings including in our study different kinds of dystonia such as cervical dystonia 
that do not affect directly the upper limb muscles. The first step is distinguishing 
between the dystonia patients and healthy subjects verifying the possible abnormal 
activity also in the muscles not directed affected by dystonia.  
The big challenge of this study is distinguishing between organic and functional 
patients. Although this classification could be very challenging, it could lead to a 
discovery of some criteria useful to diagnose functional dystonia. In  the literature 
there is no clear agreement on diagnostic criteria for functional dystonia (Morgante 
et al. 2012, Ganos et al. 2014). Historical variables and/or psychiatric comorbidity 
(co-occurrence of one or more diseases or disorders in an individual) which have 
poor predictive values (Espay and Lang 2015, Pareés et al. 2014) are usually used 
for the diagnosis. The need of clear diagnostic criteria based on laboratory studies 
has been highlighted (Espay and Lang 2015). These criteria should permit earlier 
diagnosis and treatment reducing the risk of long-term disability and reducing at the 
same time the health and social care costs (Bermingham et al. 2010). 
The diagnosis of organic dystonia is based on its core motor features and temporal 
evolution (Albanese et al. 2013). There are also some typical non-motor features 
including cognitive and psychiatric features (Stamelou et al. 2011). However there 
are some atypical forms of organic dystonia which have been a challenge to 
diagnose even for expert clinicians (Pandey et al. 2014, Bentivoglio et al. 2002). 
For this reason a misdiagnosis rate of 25-52% is currently experienced (Pal 2011).  
The diagnosis of functional dystonia is based on assessment of inconsistency and 
incongruence (in both the history and neurological examination) with organic 
disease patterns (Espay and Lang 2015, Ganos et al. 2014) . However there may be 
a significant number of functional patients overlapping with the atypical form of 
dystonia making it difficult the diagnosis.  
All these considerations evidence the need of more precise criteria to distinguish 
between organic and functional dystonia. From literature findings we know that 
functional and organic dystonia share some features such as co-contraction (Pal 
2011, Macerollo et al. 2015) and reduced intra-spinal and intra-cortical inhibition 
(Espay et al. 2006). Potentially discriminating features for functional dystonia are: 
greater bradykinesia (Criswell et al. 2010), co-activation of non-contiguous 
muscles (Mehta et al. 2013), less agonist/antagonist co-contraction and faster 
reaction times (Macerollo et al. 2015). However the utility of these findings is 
limited: co-contraction is not ubiquitous in organic dystonia (so absence/reduction 
is not specific for functional dystonia)(Malfait and Sanger 2007) and intra-cortical 
inhibition and reaction times are influenced by such factors as attention to the limb 
and personality disorder (Ganos et al. 2014). Also functional dystonia is 
challenging to study experimentally due to the difficulties to diagnose the 
pathology itself. Then the studies on the argument are few and only a small sample 
size of patients is considered (Macerollo et al. 2015, Mehta et al. 2013). 
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The approach used in this study to improve the classification of organic and 
functional dystonia patients involves the use of evolutionary algorithms described 
in Chapter 2 to analyse the possible differences between the subgroups of patients. 
The main idea is helping doctor’s diagnosis trough the identification of some 
discriminating features. 

7.2 EMG SIGNAL 
	

The Electromyography is a way to measure the muscle activity considering the 
electrical signal emanated by the muscle. 
Usually what is studied is the voluntary neuromuscular activation of muscles 
during postural tasks, specific movements, work conditions and treatment/training 
regimes. Konrad gave a clear explanation of muscle contraction process (Konrad 
2006). His work is summarized in this section explaining the process of muscles 
contraction and how EMG detects muscle activity. 
The "motor unit" represents the smallest functional unit to describe the neural 
control of the muscular contraction. As Konrad explained: “motor unit is the union 
of the cell body and dendrites of a motor neuron, the multiple branches of its axon, 
and the muscle fibers that innervates it” (Konrad 2006).   
The resting potential at the muscle fiber membrane, which is approximately 
between -80 to -90 mV (when the cell is not contracted), is due to the ionic 
difference between the inner and outer spaces of a muscle cell. When the muscle is 
not contracted, the intracellular space has a negative charge compared to the 
external surface. In order to start a muscle contraction, the central nervous system 
or a reflex induces the activation of an alpha-motor neuron, which is a particular 
neuron responsible for initiating the contraction of a muscle. The activation of an 
alpha-motor neuron results in the conduction of the excitation along the motor 
nerve, which is a particular nerve responsible to carry out of the central nervous 
system the command information and send it to the muscles. After the command 
information reaches the muscle, there is the formation of a potential at the muscle 
fiber innervated by its motor unit. The fiber membrane is depolarized; the cell 
becomes less negative than before. The entrance of sodium ions inside the cell 
causes the depolarization. The repolarization is activated then and restores the 
negative charge of the cell through a backward exchange of ions within the active 
ion pump mechanism. If the level of sodium ions exceeds a certain threshold, the 
depolarization causes a quickly change in membrane potential from – 80 mV up to 
+ 30 mV. The quick change of membrane potential is a phenomenon called action 
potential. The repolarization immediately restores this electrical burst.  
The action potential starts at the extremity of the muscles and propagates inside and 
along the muscle. As a consequence of the excitation, calcium ions are released 
inside the intra-cellular space. The chemical processes derived are the cause of 
shortening of the contractile elements of the muscle cell resulting in the contraction 
of the muscle. 
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The EMG signal measures the action potentials at the muscle membrane resulting 
from the depolarization and the repolarization process described.  
The depolarization–repolarization cycle results in a depolarization wave or 
electrical dipole, which travels along the surface of the muscle fiber. 
Usually EMG measures are done through bipolar electrode configurations and a 
differential amplification. Figure 43 shows a detection of a single muscle fiber. The 
dipole generates a potential difference between the electrodes dependant on the 
spatial distance between electrode 1 and 2. 
 
 

	
Figure 43. Model of the single muscle fiber detection by using a differential measure of 

muscle activity. 
 Source: (Konrad 2006) 

 
The model illustrated in figure 43, shows how the monopolar action potential 
creates a bipolar signal within the differential amplification process. This is due to 
the fact that the electrode pair can see the magnitude of all innervated fibers 
contained in a motor unit. Figure 44 shows how all the magnitudes of all innervated 
fibers sum up to a triphasic motor unit action potential with shape and size 
depending on the geometrical fiber orientation in ratio to the electrode site (Konrad 
2006).   
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Figure 44. Model of the triphasic motor unit action potential.  

Source: (Konrad 2006) 
	

Electromyography (EMG) signal is then a biomedical signal measuring the 
neuromuscular activities. EMG measures precisely the electrical currents generated 
in the muscles when they contract/relax receiving the command by the nervous 
system (Reaz et al. 2006). This is done measuring the electric potential produced by 
muscle cells when these are electrically or neurologically activated with the process 
described previously. 
The instrument used to measure the EMG is called electromyograph and the record 
produced is an electromyogram.   
Ii is possible to measure two kinds of EMG: surface EMG and intramuscular EMG. 
Surface EMG measures the muscle activity from the skin. They are placed on the 
skin, where the muscle is located. The skin is cleaned with an alcohol pad then the 
needle electrode is placed at the belly of the muscle: the longitudinal midline 
(Delsys technical note 101). More than one electrode is used because the 
measurement is expressed as the potential difference (voltage difference) between 
the electrodes. Usually a pair of electrodes is used for each muscle, but it is 
possible to use also a complex array of multiple electrodes.  
The surface EMG placement usually is difficult and depends on the muscle chosen 
and its size. Also it has three main limitations: the skin is a possible source of 
interference and the more body fat the subject has the more EMG signals are weak; 
recordings can be done only on superficial muscles and it is difficult to distinguish 
the activity among adjacent muscles. 
Intramuscular EMG is measured using needles or wires inserted directly into 
muscles (Merletti and Farina 2009). This technique is invasive but it overcomes the 
limitations of the surface EMG. The skin does not influence the signal, it is possible 
to record not only superficial muscles and also the needle is placed directly into the 
muscle so it is easier to distinguish among the activity of adjacent muscles. 
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From this discussion, everything seems to suggest that the intramuscular EMG is 
the correct choice. However this technique is very invasive and in our work we 
chose to use the surface EMG because one of the aims of this work is to design a 
non-invasive and easy test for the patients.   

7.3 METHODOLOGY  

7.3.1 Subjects recruited 
	

Participants with dystonia were recruited from the current caseloads of the 
movement disorders consultants at Monash Medical Centre (MMC) in Melbourne 
(Australia).  Three different classes of subjects were measured: 

• 30 patients with organic dystonia 
• 10 patients with functional dystonia 
• 30 age-matched healthy subjects (controls) 

Patients and controls subjects were chosen following the three inclusion criteria: 

− Organic dystonia: Expert diagnosis, according to accepted guidelines, with 
upper limb or cervical involvement (genetic, idiopathic focal or secondary); 

− Functional Dystonia: Expert diagnosis, documented or clinically established 
according to the Fahn-Marsden  criteria (Burke et al. 1985), with upper limb 
involvement; 

− Controls: Capacity to consent and able to perform assessments. 
Subjects were removed from the study according the following exclusion criteria: 

− Aged under 18 years; 
− Lacking capacity to consent; 
− Unable to perform movement assessments (e.g. due to cognitive deficit). 

Control subjects were recruited from spouses and friends of the patients who attend 
clinics at MMC. 
The assessments of the symptoms and of the disease were done according to the 
Fahn-Marseden (Burke et al. 1985) and Hinson (Hinson et al. 2005) rating scales. 
Scores were compared for inter-rate reliability. The mean of the rates’ scores were 
used to correlate the movement data with diagnosis and symptoms severity. The 
ethical approval was obtained for the study and the protocol was clarified to 
subjects with a comprehensive information sheet, given to the subjects one week 
before the assessment. The same information sheet was presented again the day in 
which the subject signed the informed consent and the clinical investigator (Dr 
Rachel Newby) addressed any possible queries. Also the subjects were aware of the 
possibility to withdraw from the study at any time without any impact on their 
treatments. 
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7.3.2 Equipment used 
	

The subjects performed different movements described in the next subsection. Two 
different kinds of data were recorded: the kinematic data and the muscular data.  
The kinematic data were recorded using two Electromagnetic (EM) sensors 
attached to thumb and index fingers (figure 45). These two sensors are part of 
Polhemus Patriot an EM tracking device described in section 5.2.2 and shown in 
figure 23 and figure 24. 
 

	
Figure 45. Electromagnetic sensor attached to thumb and index fingers.  

Picture produced by Dr Rachel Newby. 

 
The muscular data are measured using surface EMG (Shimmer ™) on the skin 
overlying four muscles of the upper limb. The muscles recorded are the following 
pairs: biceps/triceps and flexor digitorum superficialis/extensor digitorum 
communis (FDS/EDS).  
Surface EMG electrodes shown in figure 46 are attached to boxes called Shimmer 
EMG units that collect and store the data (figure 47). Each shimmer EMG unit has 
two EMG channels to record the pair muscles, then each subject wore 8 EMG 
sensors (electrodes) attached to four Shimmer EMG units (left biceps/triceps, left 
FDS/EDC, right biceps/triceps, right FDS/EDC). 
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Figure 46.Shimmer EMG sensors fixed on the skin in correspondence of the selected muscles.  

Source: (Shimmer3 ECG Unit 2018). 

	
 

	
Figure 47.Shimmer EMG unit secured to the arms with elasticated straps during the 

movements.  
Source: (Zebra press 2014). 

	

7.3.3 Experiment description 
	

The experiment comprised many movements involving upper limbs, wearing the 
EMG sensors (figure 46-47) and the EM sensors (figure 45) described in the 
previous subsection. Each subject did the following tasks with each arm/hand 
(dominant and non-dominant): 
 

1. Wrist flexion/extension ten times 
2. Finger tapping for 15s x 3 
3. Finger tapping in time with metronome x 3 (1, 2 and 3 Hz) 
4. Hand opening and closing ten times x 2 
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5. Arm pronation/supination ten times x 2 
6. Resting (30s) 
7. Arms outstretched (25s) x 2 
8. Finger-nose pointing ten times x 2 

 
The experiment also included some writing tasks using a digitising graphic pad and 
wearing only the EM sensor, however these tasks were not included in the scope of 
this study so were not taken in consideration for these experiments. 
The EMG recording was done continuously for all the movements creating very 
large files. The first challenge was to find a way to separate the different 
movements. During the experiments the logs containing the start and the stop Unix 
time (The Open group 2017) for each task, were registered. We compared the start 
and stop of each task containing in the logs with the UNIX timestamp recorded 
from the shimmers during the experiment. This process permitted us to divide the 
large recording file into the eight small EMG recording files corresponding to each 
single task. 
Having all the different tasks, the next challenge was to decide which of them was 
better in order to distinguish the different class groups (organic dystonia, functional 
dystonia and controls). We decided to choose a repetitive task in order to compute 
the wavelet transform on each trial of the task. In the task chosen the muscles 
measured had to be active as much as possible. The muscles measured, as described 
in the previous subsection, are: biceps, triceps, flexors (FDC) and extensors (EDC). 
They are located on the arm as shown in figure 48, so the finger tapping was 
excluded because the muscles on the arm are not very active in these movements. 
The arms outstretched task was excluded because it is not a repetitive movement. 
So four different tasks remained for the choice: wrist flexion/extension, hand 
opening/closing, arm pronation/supination and finger-nose pointing. The hand 
opening/closing task was chosen because it was easy to determine the single trials 
during the task using the kinematic data. In particular the distance between the 
index finger and the thumb was used (details in the next subsection). In the other 
tasks we did not find an appropriate way to compute the single trials using the data 
available. 
Then from this point all the data analysis and the results will be referred only to the 
hand opening-closing task.  
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Figure 48. Location of the muscles on the arm.  

Source: (workout trends 2013) 
	

7.3.4 Hand opening-closing data 
	

First of all the EMG data were filtered with a high pass filter with cut-off frequency 
of 10 Hz. This was done to remove the artifacts in the movement. These artifacts 
are due to different source of noise such as interferences, other electromagnetic 
signal and so on. 
After filtering the EMG data the kinematic data were analysed. The kinematic data 
were filtered too with a low pass Butterworth filter (Zhongshen 2003) at 5Hz to 
remove extreme data. Then the Euclidean distance between the index and the 
thumb fingers is computed as following: 
 

dist = x! − x! ! + y! − y! ! + z! − z! !              (7.1) 
 
where x!, y!, z! and x!, y!, z! are respectively the Cartesian coordinates recorded 
from the two EM sensors on the thumb and the index finger.  In figure 49 an 
example of distance between the fingers relative to a patient is reported. The 
distance reported on y-axis is computed with (7.1), while the time on x-axis is 
computed using the UNIX timestamp retrieved from the EM sensors. In the figure, 
the peaks are highlighted in red and correspond to the maximum distance between 
the fingers (when the hand is open). The peaks were used as trigger points 
delimiting the single trials during the hand opening-closing movement. In other 
words, the time of the trigger points was computed using the UNIX timestamps of 
the EM sensors and then the same timestamps were found in the timestamp 
recorded from the EMG sensor in order to determine the trigger points in the EMG 
data. 
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Figure 49. Thumb-index fingers distance on y-axis, time on x-axis.  

The different peaks corresponding to the different hand-opening trial (maximum distance) are 
highlighted.  

 
The EMG data were pre-processed with CWT wavelet transform choosing in 
particular the generalized Morse wavelet transform (γ = 3 and β = 9) described in 
section 6.1.3. The range of frequencies included for the analysis is 16-32-64 Hz. 
This range of frequencies is considered enough to analyse human movements as 
referred in the literature.  
The EMG data were divided in single trials using the location of the trigger points 
shown in figure 49. The Morse wavelet transform were computed on each single 
trial and then the average considering all trials was computed. All trials were 
represented as rows of a matrix representing all the data. In order to compose the 
rows of the matrix, the fact that the trials have different lengths had to be taken in 
consideration. All the trials then were zero-padded in order to reach the length of 
the maximum one. 
An example of EMG data and corresponding CWT spectrogram (section 6.1.1) is 
reported in figure 50. 
 
 
 



	 123	

	
Figure 50. EMG data of a patient with the corresponding CWT scalogram.  

Top: EMG data for each different trial, middle: rectified EMG obtained as mean on the trials, 
bottom: CWT scalogram 

 
In figure 50, at the top, the different EMG trials are shown highlighting the zero-
padding on some trials (e.g. blue one). The rectified EMG obtained as the mean 
along all the trials is reported in the middle of the figure. The wavelet transform 
spectrogram, reported at the bottom of the figure, reveals how much energy is 
present during the movement at a certain frequency (on y-axis) and time (on x-
axis). The heat map on the left matches the colours with the energy power: yellow 
regions are where there is the maximum energy; blue area where there is the 
minimum. 
We divided the spectrogram in different regions creating a grid. For the first 
frequency 16Hz we defined two regions, for the second frequency 32Hz four 
regions and for the third frequency 64 Hz eight regions. The grid created is shown 
in figure 51, with all the regions equispaced in time.  
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Figure 51. Grid built on the spectrogram.  

The spectrogram is divided in regions according the 
different frequencies. 

 
The grid built is useful to understand the differences among the classes in the 
different regions.  The sub-divisions of the grid were chosen to represent the 
behaviour of the signal at different frequencies. For low frequencies the 
spectrogram does not change fast, so we chose to divide the 16Hz frequency in 
only two regions defined enough to represent the signal at 16Hz. The number of 
regions is incremented to four at 32 Hz when the spectrum changes faster and then 
the values considered change in the different regions. For the same reason the 
number of regions at 64 Hz become eight when the spectrum changes faster than 
before and then the values considered change too.  The two main novelties of this 
work are: the use of the EMG wavelet scalogram and the construction on it of the 
grid reported in figure 51. To our knowledge there are not previous work that used 
the EMG wavelet scalogram and its division in regions in order to classify the 
different dystonia patients. For each region the mean, the max and the standard 
deviation were extracted and given as input to the SVM (Durgesh and Lekha 2010), 
ANN (Maind and Wankar 2014) and CGP (described in Chapter 2) to generate 
classifiers distinguishing among the different classes. The results obtained are 
reported in the next section. 

7.4 RESULTS 
	

The muscles measured during the experiment are four: biceps/triceps and 
FDS/EDC. Examining the EMG graphs during the hand opening-closing 
movement, we noticed that the biceps/triceps were not so active so we decided to 
include in our analysis only the EMG data relative to FDS/EDC. 
In table 9 the number of subjects and samples for each muscles and class are 
reported. The numbers are less than expected because some data were discarded for 
recording errors or lack of consent. 
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Muscles Subjects	 Samples	
Org Fun	 Con	 Org	 Fun	 Con	

FDS 25 7 23 72 16 64 
EDC 24 6 25 76 11 75 

Table 9.Number of subjects and samples considered for each class (organic, functional, 
controls) considering the muscles FDS and EDC. 

	
In table 9 it is clear that the dataset is unbalanced in the fact that the functional 
samples are very few in comparison to the other classes. He and Garcia wrote a 
review about the possible techniques to deal with unbalanced data (He and Garcia 
2009). Two possible sampling approaches are considered here: the oversampling 
and undersampling.  
With the first approach the samples of the smallest class are increased creating new 
reasonable synthetic data from the existing samples. The method used for the 
oversampling was Adaptive Synthetic Sampling (ADA-SYN)(Haibo He et al. 
2008). In this method a density distribution function is used to decide the number 
of synthetic samples that need to be generated for each sample 𝑥!  belonging to the 
minority class 𝑆!"#. The density distribution function 𝜏! is defined as following: 
 

𝜏! =
∆!/!
!

      𝑖 = 1,… . , 𝑆!"#      (7.2) 

Where ∆! is the number of samples in the K-nearest neighbors of  𝑥! belonging to 
the majority class and 𝑍 is the normalization constant so that 𝜏! = 1. He and 
Garcia defined The K-nearest neighbors for each  𝑥! ∈ 𝑆!"#, for a specific integer 
K as: “the K elements of 𝑆!"# whose euclidian distance between itself and 𝑥! under 
consideration exhibits the smallest magnitude along the n-dimensions of feature 
space X” (He and Garcia 2009).  The new random synthetic sample is created by 
selecting a random K-nearest neighbour of  𝑥!, then multiplying its feature vector 
for a random number in [0,1] and finally adding the resulting vector to the original 
𝑥!.  Results obtained using ADA-SYN were not so different from those using the 
original unbalanced data, so it was decided to discard this approach because the 
creation of valid synthetic data introduces significant uncertainty.  
In the second approach the samples of the largest class are reduced with 
undersampling. The undersampling can be random or informed trying to minimize 
the information loss. We did not consider this approach because the reduction of 
the total dataset makes it impossible to have a number of sufficient samples in test, 
training and validation sets of each cross-validation fold.   
We decided to continue with the data available taking into account that in some 
studies the classifiers induced with unbalanced dataset gave performance 
comparable to the ones induced with the respective balanced dataset computed with 
different techniques (Batista, Prati and Monard 2004, Japkowicz and Stephen 
2002). 
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In the next subsections several results will be discussed taking in account different 
inputs. Each input was normalized using z-score (Jain, Nandakumar and Ross 
2005) expressed by the following formula: 
 

                                                                  z! =
!!!!
!

      (7.3) 

where z! is the new input computed, x! is the old input and µ and δ are respectively 
the mean and the standard deviation of the dataset considered.  
 
Four pairwise classification cases are considered: 
 

• Org&Fun vs Con 
• Org vs Con 
• Fun vs Con 
• Org vs Fun 

 
Each dataset, comprising the two classes considered in each classification case, was 
divided into five folds and k-fold cross validation (k=5) was performed to 
generalize the results. In 5-fold cross validation data every time a different set for 
training, validation and test is considered, giving a good estimation of how the 
classifier generalise the results.  Ten runs of the experiment were completed for 
statistical significance. 
We used SVM (Durgesh and Lekha 2010), ANN (Maind and Wankar 2014) and 
CGP (described in Chapter 2) to generate classifiers distinguishing among the 
different classes. The ANN used is a feed-forward back propagation network with 
20 hidden layers and a tan-Sigmoid transfer function. The geometry of the 
programs in the population of CGP (chromosomes) has a number of internal nodes 
equal to three times the number of inputs, with a function set of eleven 
mathematical functions (+, -, *, /, mean, min, max, division rest, sin, cos, tan), 
different number of inputs (described in the following subsections) and one output. 
Each output is considered a positive response if the value is greater than a certain 
threshold, negative otherwise; 18 thresholds are considered here, in multiples of 0.1 
(0.2, 0.3, 1.80). We chose to use 18 thresholds to facilitate the calculation of 
AUROC. For each threshold the true positive rate and false positive rate is 
computed, then the ROC curve is depicted using these two computations for each 
threshold. The positive class is the first in the classification cases; for example, for 
the case “Org vs Fun”, the positive class is Org. At each generation the fittest 
chromosome is selected and the next generation is formed with its mutated versions 
(mutation rate=0.07). Evolution is stopped when 50000 iterations are reached or 
when the over fitting occurs. In the next subsections all the inputs considered with 
the respective classification results will be discussed. The Area Under ROC Curve 
AUROC (Hanley and McNeil 1982) is used to evaluate the classifiers as the reach 
and grasp case described in Chapter 5. Also in this case the results are reported in 
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the form: mean± standard deviation, where the mean and the standard deviation 
of the AUROCs are computed across the ten runs of the experiment. Both values of 
train and test set are reported. Then all the results described in the next subsections 
differ only for the inputs considered. As the test set results are most useful in 
evaluating the potential of the classifier to generalise the unseen data, from this 
point forward discussion regarding the results will refer solely to the test set. 

7.4.1 Maximum for each region 
	
In this subsection the inputs used are the spectrogram maxima extracted for each 
regions identified in the grid (figure 51). The regions represented in the grid are 
fourteen and for each region the maximum is extracted corresponding to fourteen 
inputs. In the following four tables (table 10-13) the results for each classification 
case are reported. 

              Org&Fun vs Con 
	

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.68
± 0.02 

0.75 ± 0.01 0.65
± 0.02 

0.72
± 0.03 

0.65
± 0.03 

0.71
± 0.04 

EDC 0.60
± 0.02 

0.67 ± 0.01 0.59
± 0.03 

0.63
± 0.04 

0.57
± 0.01 

0.74
± 0.04 

Table 10. Classification results considering the case Org&Fun vs Con (inputs MAX). 
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
	

            Org vs Con 
	

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.69
± 0.02	

0.77
± 0.002	

0.69
± 0.04	

0.72
± 0.03	

0.66
± 0.02	

0.72
± 0.04	

EDC 0.62
± 0.02	

0.68 ± 0.01	 0.63
± 0.02	

0.65
± 0.03	

0.59
± 0.02	

0.72
± 0.05	

Table 11.Classification results considering the case Org vs Con (inputs MAX).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are  

reported. 
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Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.60
± 0.06 

0.75 ± 0.01 0.57
± 0.09 

0.68
± 0.08 

0.50
± 0.07 

0.73
± 0.07 

EDC 0.66
± 0.03 

0.77 ± 0.02 0.58
± 0.08 

0.83
± 0.06 

0.53
± 0.09 

0.80
± 0.05 

Table 12.Classification results considering the case Fun vs Con (inputs MAX). 
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
             
             Org vs Fun 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.70
± 0.05 

0.80
± 0.004 

0.52
± 0.09 

0.69
± 0.07 

0.56
± 0.03 

0.79
± 0.06 

EDC 0.63
± 0.04 

0.77 ± 0.03 0.55
± 0.07 

0.80
± 0.07 

0.59
± 0.12 

0.90
± 0.03 

Table 13.Classification results considering the case Org vs Fun (inputs MAX).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 

	
The results reach a maximum of 0.70. In the cases “Org&Fun vs Con” and “Org vs 
Con”, classifiers evolved using FDS data have better performances respect those 
evolved using EDC data. SVM evolved the best classifiers reaching 0.68 and 0.69 
in the two cases. CGP evolved classifiers with comparable performance to the ones 
evolved by SVM and ANN in both two cases “Org&Fun vs Con” and “Org vs 
Con”. The discrimination between Org and Con seems be easier than that between 
Org&Fun and Con. There is no surprise considering the fact that in functional 
dystonia the symptoms are not so clear. 
The classification between the classes Fun and Con is worse than the previous 
cases. Obviously this is a challenging task considering the fact that the knowledge 
of functional dystonia is limited. In this case EDC inputs induced classifiers with 
better performance with respect to those induced by FDS data. SVM performs 
better than the other two methods, maybe because it is less influenced by 
unbalanced data. The difference among SVM, ANN and CGP is more evident in 
the case “Org vs Fun” where SVM outperforms definitely ANN and CGP 
generating classifiers reaching a mean AUROC of 0.70, using FDS data as inputs. 
In this case neither ANN nor CGP are able to evolve classifiers that can distinguish 
between the two classes. This is no surprise considering that distinguishing between 
the two classes of patients is a very challenging task due to the similarities. SVM 
surprisingly generated very good classifiers outperforming also the previous 
classification cases. In the two cases containing the functional class a big difference 
between train and test set (overfitting) and increased standard deviations are 
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present. The overfitting and the increased standard deviations are probably due to 
the unbalanced data.   

7.4.2 Mean for each region 
	

The inputs considered are the means extracted for each region in the grid (figure 
51). There are fourteen inputs as in the previous case. Four tables (table 14-17) are 
reported with the results of each classification case. 

 
             Org&Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.66
± 0.02 

0.73 ± 0.01 0.63
± 0.03 

0.69
± 0.03 

0.60
± 0.05 

0.74
± 0.03 

EDC 0.56
± 0.05 

0.64 ± 0.01 0.55
± 0.05 

0.61
± 0.03 

0.49
± 0.04 

0.69
± 0.06 

Table 14.Classification results considering the case Org&Fun vs Con (inputs MEAN).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 
             Org vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.69
± 0.03 

0.75 ± 0.01 0.65
± 0.05 

0.70
± 0.03 

0.65
± 0.03 

0.78
± 0.04 

EDC 0.60
± 0.03 

0.66 ± 0.01 0.58
± 0.03 

0.63
± 0.02 

0.50
± 0.05 

0.69
± 0.05 

Table 15.Classification results considering the case Org vs Con (inputs MEAN).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 
              Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.57
± 0.05 

0.70 ± 0.02 0.53
± 0.09 

0.73
± 0.06 

0.50
± 0.04 

0.77
± 0.10 

EDC 0.68
± 0.04 

0.74 ± 0.02 0.64
± 0.10 

0.89
± 0.05 

0.58
± 0.08 

0.79
± 0.07 

Table 16.Classification results considering the case Fun vs Con (inputs MEAN).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
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             Org vs Fun 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.59
± 0.05 

0.71 ± 0.02 0.57
± 0.09 

0.72
± 0.08 

0.58
± 0.03 

0.78
± 0.08 

EDC 0.70
± 0.03 

0.76 ± 0.03 0.65
± 0.10 

0.83
± 0.06 

0.65
± 0.12 

0.92
± 0.05 

Table 17.Classification results considering the case Org vs Fun (inputs MEAN).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 
In the cases “Org&Fun vs Con” and “Org vs Con” the classifiers induced using 
FDS data are better than those induced using the EDC data. SVM generated 
classifiers with the best performance in each case. For “Org&Fun vs Con” case 
CGP evolved classifiers comparable to ANN using FDS data, while ANN and 
SVM outperform it using EDC data. In “Org vs Con” case, CGP evolved classifiers 
with almost the same performance of the ones generated by ANN and comparable 
to the best generated by SVM using FDS data. As in the previous case, the 
classifiers induced using EDC data by both SVM and ANN, outperform CGP. 
Distinguishing Org from Con is easier than distinguishing Org&Fun from Con, as 
described in the previous subsection where maxima are used as inputs.  
The classification cases containing the functional class are the most challenging 
also in this case. SVM generates the best classifiers for both “Fun vs Con” and 
“Org vs Fun”. The classifiers obtained using EDC data as inputs are better than the 
ones considering FDS data.  In “Fun vs Con” case, SVM and ANN outperform 
CGP considering EDC data, while in “Org vs Fun” case SVM outperforms both 
CGP and ANN which generates comparable classifiers. The overfitting and the 
increased standard deviation are probably due, as previously, to the unbalanced 
data.  

7.4.3 Standard deviation for each region 
	
Again fourteen inputs are used in this case representing the standard deviation 
extracted for each region of the grid (figure 51). The four tables (table 18-21) with 
the results are reported below.           
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             Org&Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.63
± 0.01 

0.73
± 0.004 

0.61
± 0.04 

0.69
± 0.03 

0.62
± 0.02 

0.72
± 0.03 

EDC 0.58
± 0.04 

0.72
± 0.004 

0.61
± 0.04 

0.66
± 0.02 

0.62
± 0.03 

0.72
± 0.03 

Table 18.Classification results considering the case Org&Fun vs Con (inputs STD).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 

             Org vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.61
± 0.03 

0.74 ± 0.01 0.61
± 0.04 

0.67
± 0.02 

0.62
± 0.03 

0.74
± 0.03 

EDC 0.63
± 0.02 

0.74
± 0.003 

0.65
± 0.02 

0.68
± 0.004 

0.64
± 0.04 

0.74
± 0.04 

Table 19.Classification results considering the case Org vs Con (inputs STD).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 
              Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.61
± 0.06 

0.63
± 0.01 

0.52
± 0.11 

0.76
± 0.06 

0.59
± 0.06 

0.77
± 0.06 

EDC 0.71
± 0.04 

0.76
± 0.01 

0.54
± 0.08 

0.83
± 0.06 

0.52
± 0.07 

0.75
± 0.06 

Table 20.Classification results considering the case Fun vs Con (inputs STD).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 
              Org vs Fun 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.56
± 0.03 

0.64 ± 0.02 0.54
± 0.07 

0.74
± 0.07 

0.50
± 0.05 

0.78
± 0.07 

EDC 0.72
± 0.07 

0.78 ± 0.01 0.52
± 0.06 

0.78
± 0.05 

0.55
± 0.09 

0.69
± 0.10 

Table 21.Classification results considering the case Org vs Fun (inputs STD).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
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In this case the difference in distinguishing between Org and Con and between 
Org&Fun and Con is more pronounced. In “Org&Fun vs Con” case the classifiers 
induced using FDS and EDC data are very similar, reaching a mean AUROC equal 
respectively to 0.63 and to 0.62. Using EDC data and FDS data, CGP and SVM 
evolved respectively the best classifiers, comparable to the ones evolved by the 
other approaches. In “Org vs Con” case the classifiers induced using EDC data are 
better than the ones evolved using FDS data. All the approaches evolved classifiers 
comparable, using both FDS and EDC data, with a maximum mean AUROC equal 
to 0.65.  
In both “Fun vs Con” and “Org vs Fun” cases SVM generates the best classifiers 
reaching a mean AUROC of 0.71 and 0.72 respectively for the two cases and 
outperforming definitely the other two methods using EDC data. This larger 
difference can be due to the unbalanced data but it is difficult to explain. In fact 
neither ANN nor CGP were able to evolve classifiers able to distinguish between 
the classes, in both cases, either considering FDS data either considering EDC data. 
As in the previous case, the presence of the overfitting and the increased standard 
deviation could be due to the unbalanced data. 

7.4.4 Max, mean and standard deviation for each region 
 
In this section the number of inputs is greater than the previous cases. The inputs 
are forty-two, because for each region in the grid (figure 51) the max, the mean and 
the standard deviation are computed. The four tables (table 22-25) with the results 
are reported below. 

           
             Org&Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.61
± 0.03 

0.87
± 0.01 

0.65
± 0.04 

0.76
± 0.03 

0.62
± 0.04 

0.74
± 0.04 

EDC 0.58
± 0.03 

0.77
± 0.01 

0.63
± 0.03 

0.69
± 0.04 

0.59
± 0.04 

0.71
± 0.04 

Table 22.Classification results considering the case Org&Fun vs Con (inputs MAX, MEAN, 
STD).  

AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 
reported. 
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              Org vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.64
± 0.04 

0.82
± 0.005 

0.69
± 0.03 

0.74
± 0.03 

0.65
± 0.05 

0.78
± 0.03 

EDC 0.59
± 0.04 

0.78
± 0.01 

0.65
± 0.03 

0.70
± 0.02 

0.58
± 0.05 

0.75
± 0.05 

Table 23.Classification results considering the case Org vs Con (inputs MAX, MEAN, 
STD).  

AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 
reported. 

 
              Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.53
± 0.05 

0.83
± 0.01 

0.50
± 0.07 

0.72
± 0.06 

0.54
± 0.07 

0.84
± 0.06 

EDC 0.70
± 0.07 

0.87
± 0.01 

0.57
± 0.06 

0.87
± 0.06 

0.43
± 0.09 

0.75
± 0.07 

Table 24.Classification results considering the case Fun vs Con (inputs MAX, MEAN, STD).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
	

Org vs Fun 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

CGP 
   Test             Train 

FDS 0.70
± 0.05 

0.84
± 0.01 

0.51
± 0.08 

0.75
± 0.08 

0.40
± 0.07 

0.74
± 0.11 

EDC 0.68
± 0.06 

0.86
± 0.02 

0.54
± 0.11 

0.83
± 0.07 

0.59
± 0.10 

0.88
± 0.06 

Table 25.Classification results considering the case Org vs Fun (inputs MAX, MEAN, STD).  
AUROCs mean and standard deviation across the ten runs for FDS and EDC data are 

reported. 
 

In this case we tried to improve the results adding information. For both “Org&Fun 
vs Con” and “Org vs Con” cases the classifiers generated using FDS data have 
better performances than those generated using EDC data. All the classifiers 
obtained by the three approaches are comparable, reaching the maximum of mean 
AUROC equal to 0.69 (ANN using FDS data). The classifiers evolved for “Org vs 
Con” case have better performances than the ones evolved for “Org&Fun vs Con” 
case. 
In “Fun vs Con” case, using EDC data, SVM outperforms the other approaches that 
are unable to evolve classifiers to distinguish between the classes. This happens 
also for classifiers induced by both FDS and EDC data in “Org vs Fun” case. Also 
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in this case is difficult to explain the large difference in performance between 
classifiers generated by SVM and the other approaches. Again this could be due to 
unbalanced data.   

7.4.5 Fourier Transform comparison 
The results using wavelet, as explained in the previous sections, are not 
satisfactory. For this reason we decided to compute also the Fast Fourier Transform 
(FFT) of the signal and use this instead that the wavelet transform to classify the 
different dystonia patients. As features considered for the classification we 
extracted the mean and the standard deviation plus the first 10 or 20 maxima. The 
classification is done using only SVM and ANN for the cases “Org&Fun vs Con” 
and “Org vs Con”. The results are reported in table 26,27,28 and 29. In the 
following tables the results are in the form: mean± standard deviation, where the 
mean and the standard deviation of the AUROCs are computed across the ten runs 
of the experiment. Both values of train and test set are reported. Also using FFT the 
results do not improve and this is clear examining the following tables. Looking at 
these results we decided to do not try the classification cases “Org vs Fun” and 
“Fun vs Con” because an improvement looked improbable given the unbalanced 
data. The CGP is not used to evolve the classifiers because the results found with 
SVM and ANN gave a clear indication about the impossibility to classify the 
different classes. For the oscillatory nature of the EMG signal the use of wavelet is 
justified to identify both the change in time and in frequency. 
                FDS Org&Fun vs Con 

 
DATA SVM 

   Test             Train 
ANN 

   Test             Train 
10 max + 

mean + std 
0.49
± 0.02 

0.53
± 0.01 

0.53
± 0.03 

0.55
± 0.03 

10 max + 
mean + std 

0.52
± 0.02 

0.55
± 0.01 

0.53
± 0.04 

0.55
± 0.04 

Table 26. Classification results considering the case Org&Fun vs Con and using FFT (inputs 
10 maxima + mean + std, 20 maxima +mean+ std). AUROCs mean and standard deviation 

across the ten runs for FDS are reported. 
                
                FDS Org vs Con 

 
DATA SVM 

   Test             Train 
ANN 

   Test             Train 
10 max + 

mean + std 
0.49
± 0.01 

0.50
± 0.01 

0.48
± 0.02 

0.48
± 0.02 

10 max + 
mean + std 

0.50
± 0.02 

0.52
± 0.01 

0.46
± 0.04 

0.47
± 0.02 

Table 27. Classification results considering the case Org vs Con and using FFT (inputs 10 
maxima + mean + std, 20 maxima +mean+ std). AUROCs mean and standard deviation 

across the ten runs for FDS are reported. 
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                EDC Org&Fun vs Con 
 

DATA SVM 
   Test             Train 

ANN 
   Test             Train 

10 max + 
mean + std 

0.47
± 0.02 

0.54
± 0.01 

0.48
± 0.04 

0.54
± 0.02 

10 max + 
mean + std 

0.46
± 0.03 

0.54
± 0.01 

0.50
± 0.05 

0.53
± 0.03 

Table 28. Classification results considering the case Org&Fun vs Con and using FFT (inputs 
10 maxima + mean + std, 20 maxima +mean+ std). AUROCs mean and standard deviation 

across the ten runs for EDC are reported. 
 
                 EDC Org vs Con 

 
DATA SVM 

   Test             Train 
ANN 

   Test             Train 
10 max + 

mean + std 
0.44
± 0.05 

0.52
± 0.01 

0.46
± 0.04 

0.53
± 0.02 

10 max + 
mean + std 

0.43
± 0.04 

0.52
± 0.01 

0.47
± 0.04 

0.52
± 0.02 

Table 29. Classification results considering the case Org&Fun vs Con and using FFT (inputs 
10 maxima + mean + std, 20 maxima +mean+ std). AUROCs mean and standard deviation 

across the ten runs for EDC are reported. 

7.4.6 CGP classifier Mathematical expressions and Network 
Diagrams 
 
In this section, as in section 5.3.3, the diagram of an evolved classifier with the 
derived mathematical expression is reported.  Figure 52 shows the best classifier 
evolved across the cross-validation folds and the generations, for the case “Org vs 
Con” considering as inputs the 14 maxima extracted from the grid derived by FDS 
scalogram (section 7.4.1, case “Org vs Con”). The classifier represented has an 
AUROC equal to 0.80 for the test set. In the diagram only the active nodes are 
reported to make the graph clearer. Only three of the fourteen inputs have a 
contribution in the output computation. The order of the inputs is reported in figure 
51 showing the grid from which the maxima are extracted. In this case the grid is 
relative to the FDS scalogram and the inputs used are the maximum extracted from: 
the first region defined for 16 Hz (x16_1) and the third and fifth region defined for 
64Hz (x64_3, x64_5). The mathematical expression derived from the diagram is 
expression 7.4. In the expression the number of the input was replaced with the 
short name of the input defined before. The mathematical expression is clear and 
very easy to implement. 
 The study of the inputs used, as described in section 5.3.3, can help to understand 
what the most useful features for each classification case are.  Unfortunately 
identifying the most useful features for each classification case was not possible. In 
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fact there was not a common set of inputs used by the best classifier for each case 
across the folds of cross-validation (considering all possible inputs). For this 
motivation it is not possible to make any conclusion about the most important 
features for each classification case. The classifier evolved is less complex than that 
reported for the reach and grasp experiment (section 5.3.3). This is due to the small 
number of inputs considered (14 in this case, 25 in the reach and grasp case) and 
consequently to the smaller number of internal nodes considered (equivalent to 
three times the number of inputs). 
 

	
Figure 52. Network diagram of the best classifier evolved for the case Org vs Con considering 

as inputs the 14 maxima extracted by the FDS scalogram grid.  
Only the active nodes are reported. 

 

𝑜𝑢𝑡 = 𝑚𝑒𝑎𝑛 𝑚𝑒𝑎𝑛 𝑥64_5, !!"_!
!!"_!

, 𝑚𝑎𝑥 !!"_!
!!"_!

,max (𝑥64_3, 𝑥16_1) 				
(7.4)	
 

7.5 CONCLUSIONS AND FUTURE WORK 
 

In the method proposed, the differences in wavelet spectrogram are used to 
distinguish among the different classes. Unfortunately, the results evidenced that 
none of the approaches considered evolved classifiers able to distinguish among the 
classes. The classes do not seem to have statistically significant differences.  
In the first classification case, we tried to distinguish the patients from the healthy 
subjects (“Org&Fun vs Con”). In this case we achieved the best results considering 
fourteen inputs, representing the maximum of each region (section 7.4.1). The best 
results are achieved using FDS data, with evolved classifiers reaching 0.68 for 
SVM and 0.65 for ANN and CGP.  
The second classification case involved the distinction between the organic patients 
and the healthy subjects (“Org vs Con”). Removing the functional patients from the 
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patients set brought an improvement in the results for all the input cases considered. 
This fact is expected because as explained in section 4.4, functional dystonia is not 
very easy to diagnose and the symptoms might not to be very clear. All the 
considerations of the previous case (Org&Fun vs Con) are valid for this case: the 
best classifiers are evolved when the maximum of each region of the grid (14 
inputs) is considered as inputs and FDS data are used. In this case, SVM and ANN 
induced classifiers reaching 0.69, followed by those evolved by CGP, reaching 
0.66. There is a slightly improvement with respect to the previous case. 
Considering the fourteen inputs represented by the mean computed for each region 
the results are very similar to the ones found considering the maxima. SVM 
evolved classifiers reaching 0.69 as before, while the ones evolved by ANN and 
CGP are slightly worse reaching 0.65.   
When we consider the functional patients class alone, in the two classification cases 
“Fun vs Con” and “Org vs Fun”, the results are worse. We can notice that 
surprisingly there is a big difference between SVM results and the other approaches 
results in almost all the input cases considered. In almost all the input cases 
considered the classifiers evolved using EDC data are better than those evolved 
using FDS results, except for the classification case “Org vs Fun” considering the 
maximum computed for each region.  
The larger difference among the classifiers evolved by SVM and those evolved by 
other approaches in both cases “Fun vs Con” and “Org vs Fun” considering almost 
all the input cases, could be due to the fact that the class are unbalanced and maybe 
in this case SVM tolerates more the unbalanced class than ANN and CGP.  The 
standard deviations computed for classifiers evolved by CGP, ANN and also by 
SVM in some cases are very high indicating a large variability in the results. The 
differences between the value of train and test set evidence overfitting, probably 
due to the unbalanced data. We achieved the best results for both cases “Fun vs 
Con” and “Org vs Fun” considering as input, the standard deviations computed for 
each region of the grid derived from EDC data. In “Fun vs Con” SVM induced the 
best classifiers reaching 0.71, followed by the ones evolved by ANN (0.54) and 
CGP (0.52). The standard deviations are very high for CGP and ANN evidencing 
overfitting. In “Org vs Fun” SVM evolved classifiers reaching 0.72, while the ones 
evolved by CGP and ANN reached 0.59 and 0.52 respectively. In this case all the 
standard deviations are very high so the results have a high variability. 
The results relative to the functional patients class considered alone (not in 
combination with organic ones) seem to be very variable, so there is less 
confidence in these results. Probably the unbalanced data affected the classification. 
Interestingly SVM outperforms the other approaches indicating less sensibility to 
the unbalanced data. In future it is suggested to repeat the experiment measuring 
more functional patients in the way that a significant sample is considered. 
Therefore the recruitment of functional patients could be very difficult considering 
the symptoms not being very clear and the diagnosis not very easy (section 4.4). 
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In conclusion, unfortunately as described before, none of the results considered are 
so high to evidence a statistically significant difference among the classes 
considered.  
These relatively poor results could have a number of reasons:  
The problem can depend on the recordings. Section 7.2 described the three 
problems of using surface EMG: the skin is a possible source of interference and 
the more body fat the subject has the more EMG data are weak; recordings can be 
done only on superficial muscles and it is difficult to distinguish the activity among 
adjacent muscles. These three limitations could affect the recordings and then the 
results in conjunction with other possible interferences in the room (i.e. light). 
The problem could depend on the way in which the recordings were done. The 
EMG was recorded continuously for all the tasks considered and, as explained in 
section 7.3.3, the tasks were divided using the shimmers clock. If the clock was not 
precise the division of the tasks could be wrong. Anyway we are confident enough 
on the clock precision. 
The problem could depend on the task considered; hand opening-closing may not 
be the best task to address our classification problems. We have chosen this task 
because it was the task where the muscles considered were more active and it was 
reasonably easy dividing the single hand-opening repetition. 
The muscles considered may not have been affected in a severe way by dystonia 
and then the recordings among the classes could have been very similar, leading to 
an increased difficulty in discriminating among the classes. 
Another possible explanation could be that the methodology is wrong. To 
investigate about this hypothesis we used deep learning for image classification, 
using as inputs the CWT scalogram images relative to each classification case. The 
network used is convolutional neural networks (CNN) (LeCun, Bengio and Hinton 
2015) and the results are computed using the following Matlab toolboxes: Neural 
Network Toolbox™ and Statistics and Machine Learning Toolbox™. CNN is a 
deep neural network and then the main problem is the large amount of time needed 
for the training phase. In order to solve this problem we started from a pre-trained 
network called AlexNet model. This model is trained  on a subset of the ImageNet 
database (ImageNet. http://www.image-net.org), which is used in ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC) (Russakovsky et al. 2015). AlexNet 
has 8 layers with learnable weights: 5 convolutional layers, and 3 fully connected 
layers. The model is trained on more than a million images and can classify images 
into 1000 object categories. As a result, the model has learned rich feature 
representations for a wide range of images. This network was trained again using 
the EMG spectrogram wavelets images for each of the classification case 
considered. For simplicity in this case the training and the test set were chosen 
randomly: 30% of the date were used as test set and the remaining 70% as training 
sets. In table 30 the results are reported as mean accuracy on the test set for each 
classification case and for both muscles considered. As in the previous results, ten 
runs of the experiment were completed and the results are report in the form mean 
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accuracy±standard deviation, where the mean accuracy and the standard deviation 
are computed across the ten runs. 

 
Cases FDS EDC 

Org&Fun vs Con 0.62±0.04 0.54±0.03 
Org vs Con 0.64±0.04 0.54±0.02 
Fun vs Con 0.49±0.03 0.46±0.08 
Org vs Fun 0.54±0.12 0.48±0.08 

Table 30. Deep learning test set results.  
The mean accuracy and standard deviation across the ten runs for each classification case 

and input are reported.  
 
The problems considering the functional patients as a single class are evident. The 
results achieved, considering image recognition using CNN, are not better than the 
results achieved with the methodology described in this work. This fact seems to 
highlight that there are no significant difference in the data recorded, supporting the 
view that our results are affected by the data itself instead by the methodology 
used. 
In future work we advise to repeat the experiment separating each single task and 
including patient with hand dystonia only, in order to be sure that the disease 
seriously affects the muscles recorded. Also a change of the task can be considered 
recording other relevant muscles. The use of intramuscular EMG might be useful to 
increase the measurements precision. 
Future studies, following our suggestions, will overcome the limitations of this 
study with a consequent improvement of the results. 
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CHAPTER 8: CONCLUSIONS AND FUTURE 
WORK 

	

8.1 RESEARCH SUMMARY 
 
The principal aim of this work was to improve the diagnosis and the monitoring of 
two neurological disorders: Parkinson’s disease and dystonia. For both of them no 
objective clinical assessments currently exist and the diagnosis is based on subject 
clinical assessment that is often not very reliable. Actually the misdiagnosis rate of 
Parkinson’s disease is about 25% (Playfer 1997) that is equivalent to saying that 
25% of people diagnosed with Parkinson’s disease are ultimately found to have 
another similar condition. This misdiagnosis rate is high, due to the similarity of the 
symptoms among Parkinson’s disease and other neurological conditions. Dystonia 
(or more accurately organic dystonia) is actually diagnosed evaluating its core 
motor features and temporal evolution (Albanese et al. 2013) with a current 
misdiagnosis rate of 25-52%  (Pal 2011). The misdiagnosis rate is due to the 
existence of several atypical forms of organic dystonia that are not easy to separate 
from functional dystonia. The difference between organic and functional dystonia 
is explained in details in section 4.4. The distinction between the two forms is 
crucial to manage the conditions with the best drugs. An objective way to diagnose 
Parkinson’s disease and dystonia is necessary, in order to reduce the respectively 
misdiagnosis rates.   
The identification of new features characterizing Parkinson’s disease and dystonia 
could help in improving the diagnosis of these conditions, reducing the 
misdiagnosis rate. Twenty-five features characterizing Parkinson’s disease patients 
and healthy subjects were computed from the kinematic reach and grasp data 
(section 5.2.5). One of the novelties of this study is the computation of this set of 
features by merging two set of features considered respectively in Alberts’ and 
Caselli’s studies (Alberts et al. 2000, Caselli et al. 1999). The features were used as 
input to the CGP in order to evolve classifiers able to distinguish not only between 
Parkinson’s disease patients and healthy subjects, but also among Parkinson’s 
disease patients affected by two different kinds of cognitive impairments. The 
cognitive decline of Parkinson’s disease is then assed with an artificial intelligence 
technique. The assessment of cognitive decline is important in monitoring the 
progression of the disease modifying drugs if necessary and also to identify the 
mild cognitive impairment (section 4.4), which treated it in the proper way, can 
prevent dementia.  
The EMG data of dystonia patients and healthy subjects collected in the hand 
opening-closing experiment were pre-processed with Morse wavelet (section 6.1.3) 
and divided in a grid (figure 51), then different features were extracted (sections 
7.4.1-7.4.4). The pre-processing of the EMG data with Morse wavelet together with 
the extraction of features derived represent two novelties of this study. 
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The features extracted from both reach and grasp and hand opening-closing 
experiments were used as inputs to the evolutionary algorithms to evolve the best 
classifiers. The performance of the classifiers evolved by the evolutionary 
algorithms, in this case the Cartesian Genetic Programming (section 2.4) are 
compared to others obtained using two well-known machine learning techniques: 
Support Vector Machine (Durgesh and Lekha 2010) and Artificial Neural Networks 
(Maind and Wankar 2014).  The main objective was to show the potential of 
artificial intelligence techniques to improve the monitoring and the diagnosis of the 
two neurological disorders. Evolutionary algorithms in particular are useful to give 
a better insight about the features characterising the cognitive decline in 
Parkinson’s disease and the differentiation between organic and functional 
dystonia. In fact these algorithms, evolve classifiers that do not necessarily use all 
the inputs considered but only the most useful, selecting the most discriminative 
ones (section 5.3.3 and section 7.4.5). The use of artificial intelligence techniques 
could help also in reducing the costs associated to the neurological diseases that, as 
explained in section 1.2, can be very high. Both of the experiments made in fact are 
easy to do, non-invasive, cost efficient and could design a more objective easy test 
for the diagnosis.   
The two main aims, as described in section 1.4, were: 
 

1. Finding a classifier able to distinguish between Parkinson’s disease patients 
and healthy subjects, but also among different subgroups of patients that 
present different cognitive impairments. 

2. Finding a classifier able to distinguish between dystonia patients and 
healthy subjects but also between two different subgroups of patients 
(organic and functional ones).	

 
In the next section all the results will be examined to verify if this study fulfilled its 
aims. The research question will be revisited in section 8.2.3.  
 

8.2 CONCLUSIONS AND FUTURE WORK     
 
The two aims of the research, described in section 8.1, denoted the division of the 
study in two different parts: the part relative to Parkinson’s disease patients and that 
pertaining to the dystonia patients. In the first part a reach and grasp experiment 
(Chapter 5) is considered while in the second part a hand opening-closing 
experiment (Chapter 7) is considered. In this section we give the final 
considerations with suggestions for future work for both parts (respectively section 
8.2.1-8.2.20), considering the results. Finally, in section 8.2.3, all the conclusions 
are summarized, revisiting the research question (section 1.6). 
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8.2.1 Parkinson’s disease classification 
	

In reach and grasp experiment different classifiers were evolved to distinguish 
among different Parkinson’s disease patients and healthy subjects. The classes 
considered are: Parkinson’s disease patients with normal cognition (PD-NC),  
Parkinson’s disease patients with mild cognitive impairment (PD-MCI), 
Parkinson’s disease patients with dementia (PDD), all Parkinson’s disease patients 
together (PD-NC, PD-MCI and PDD) and healthy age-matched subjects (Controls). 
The best classifiers are evolved for the case “PDD vs Controls” while the worse for 
the case “PD-NC versus PD-MCI”. These results were expected because: dementia 
can badly affect the movements evidencing the differences between patients and 
controls; while mild cognitive impairment instead does not affect badly the 
patient’s life therefore the difference between normal cognition patients and those 
affected by mild cognitive impairment is not pronounced. More pronounced were 
the differentiations in the cases “PD-NC vs PDD” and “PD-MCI vs PDD”, this is 
expected as well because as described before, dementia can badly affect the 
movements, and therefore the differences among the classes are much evident. It is 
important also to remember that the data considered are relative to the experiment 
done with eyes closed, and then the subjects are guided by memory which is 
severely affected by dementia.  
Cartesian Genetic Programming evolved classifiers comparable to those obtained 
by the other approaches in the cases including controls while the other approaches 
outperformed CGP in the comparisons among the patient subgroups, especially in 
“PD-NC vs PD-MCI”. The results suggest that CGP is not the best approach, but its 
big advantage is that it can translate classifiers into simple mathematical 
expressions and make their implementation very easy. In section 5.3.3 a diagram of 
an evolved classifier with its derived mathematical expression is reported. The 
graphical and mathematical representations of the classifier are used to understand 
how the data are used and can give a better insight about the nature of the data. 
 This study represents a start point for the diagnosis and the monitoring of cognitive 
decline in Parkinson’s disease. The features computed evidenced some differences 
among the classes considered, with the best results achieved for the classification 
cases containing patients affected by dementia. Patients affected by dementia seem 
have the most difficulties in performing the “reach and grasp” experiment with 
closed eyes.   
This study has however two main limitations: 
 

1. The repetitions of the experiment for each subject were treated as different 
samples. This could affect the study because the same subject can perform 
the experiment in a similar way, reducing the variability. If we used the 
mean across the repetitions, the data were not enough to evolve classifiers. 
This choice was justified observing a great variability across repetitions for 
the patients. 
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2. The patients were on medication to limit the motor symptoms of 
Parkinson’s disease, obviously the medications could influence the results 
improving patients’ performances.  
 

In order to overcome the two limitations it is possible to repeat the reach and grasp 
experiment, with closed eyes, including more subjects to increase the variability 
and also patients that are not on medications to evaluate their effects on the 
experiment.  
Another point of discussion is the use of the grasp data recorded with the glove 
sensors. In this study the grasp data are not used for the motivations explained in 
section 5.2.6. Therefore the use of the grasp data could be very useful to identify 
new features useful for the classification. For future work a new reach and grasp 
experiment could be considered using electromagnetic sensors, as that placed on 
the wrist (figure 23), placed on the fingers. In this way it is possible to record the 
position of the fingers during the experiment permitting the computation of the 
distance between fingers and then some useful features such as maximum aperture, 
time of maximum aperture, time of opening onset can be obtained.  
The features chosen are obtained merging feature sets found in two previous studies 
(Caselli et al. 1999, Alberts et al. 2000). These 25 features are considered enough to 
represent the reach and grasp and then differentiate among the classes. Moreover 
summarizing the data available with a limited set of features can cause a loss of 
useful information very important for the classification. Further investigations are 
needed to find a way to use the raw data instead of only a limited set of features.   
In conclusion this study is a starting point for the classification of cognitive decline 
in Parkinson’s disease; some differences among the different subgroups of patients 
are evidenced, highlighting overall the difficulties of the patients affected by 
dementia.  

8.2.2 Dystonia classification 
	

In the hand opening-closing experiment, EMG data were pre-processed with Morse 
wavelet (section 6.1.3), divided in a grid (figure 51) and then different features 
were extracted. The class considered are: healthy subjects (Con), organic dystonia 
patients (Org), functional dystonia patients (Fun) and all the dystonia patients 
(Org&Fun). Using the grid (figure 51) we extracted different features for each 
region such as mean, maximum and standard deviation. Unfortunately in none of 
the cases considered statistical significance differences between the classes are 
found. In classification cases, which contain functional patients (“Fun vs Con” and 
“Org vs Fun”), SVM outperforms the other approaches that are unable to 
differentiate the classes. This distance between SVM and the other approaches 
along with the high standard deviations, make us unsure about the results. The 
unbalanced datasets could explain this high variability; in fact the functional 
subjects recorded are very few with respect to the other classes.  
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There are several factors that could affect the results. The methodology could be 
wrong or the problem could be in the data.  
In order to verify if the problem was the methodology we considered the scalogram 
images and used the deep learning Matlab toolboxes for images classification. In 
table 30 the test set accuracies relative to the convolutional neural network are 
reported. The results are no better than those found with our methodology, 
highlighting the difficulty to distinguish among functional patients and other 
classes.  
If the problem is not the methodology then probably it is in the data that do not 
evidence the differences between classes. There are a lot of factors that could 
influence the quality of the EMG signal.  The surface EMG, as described in section 
7.2, are not invasive as the intramuscular ones but have three main limitations: the 
skin is a possible source of interference and more body fat a subject has the weak 
the EMG signal are; recordings can be done only on superficial muscles and it is 
difficult to distinguish the activity among adjacent muscles. The interferences due 
to the skin and the adjacent muscles could affect the quality of the signal. The 
position of the electrodes on the muscles is very important to minimize the adjacent 
muscles interferences. In order to record a good quality signal the electrode has to 
be placed at the belly of the muscle (longitudinal midline) (Delsys technical note 
101). This position is very difficult to determine because it is not possible to see the 
exact position of the muscles under the skin. The inexperience of the doctor that 
recorded the EMG data at Monash Medical Centre (MMC) in Melbourne 
(Australia) could lead to some errors in positioning the electrodes. Furthermore the 
recording was blind; this means that was not possible to check the signal during the 
recording detecting possible errors.  
The hand opening-closing movement could be not the best choice to appreciate the 
differences among the classes considered, but it was chosen because was one of the 
movements where the muscles considered where more active and also it was easy 
to divide it in the single hand-opening trials using the kinematic data. Also the 
muscles considered could not be badly affected by dystonia making the differences 
not so clear.  All these factors could influence our recording and then our results. In 
order to verify our methodology a new experiment made by an expert person could 
be considered, using equipment that permits to check the signal during the 
recording.  
For future work, different movements could be considered recording all the specific 
muscles involved in the movements. Then all the different data for each task could 
be analysed with the methodology described, in order to verify if there are 
particular tasks more useful for the classifications. More functional patients should 
be included in future experiments to improve our classification results solving the 
problem of unbalanced data.  
In order to verify the hand opening-closing movement itself, it could be useful to 
repeat the experiment including only patients affected by hand dystonia to be sure 
that the muscles recorded are affected by the disease.  
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The previous suggestions, hopefully, will be useful in future to overcome the 
limitations of this study and then to improve the results obtained. 

8.2.3 Final conclusions  
 

In section 8.2.1 and 8.2.2 we reported the conclusions and the suggestions for 
future work for both parts of the study.  Using these considerations we can now 
revisit the research question defined in section 1.6 as:  
 

“Can Evolutionary algorithms provide a means for monitoring and 
diagnosing of specific neurological disorders?”  
 
The main question is: can the results found in this study justify the use of the 
Evolutionary algorithms as a mean for monitoring and diagnosing of the two 
specific neurological disorders considered?  
In the first part of the study the Evolutionary algorithms are used to diagnose 
Parkinson’s disease but also to diagnose and to monitor the cognitive decline 
associated to the disease. The results evidence that CGP evolved classifiers are 
comparable to the other approaches in differentiating between controls and patients, 
while the other approaches evolved better classifiers in differentiating among 
patients affected by different cognitive impairments. Also if the other approaches 
outperform CGP in some cases, the advantage of CGP is to translate the program in 
a simple mathematical expression making its implementation very easy and cost 
efficient. Another potential advantage of CGP or in general of the evolutionary 
algorithms, is the fact that they do not use necessarily all the inputs and can give 
indications about the most important features. Details about the classifiers diagram 
and their derived mathematical expression are given in section 5.3.3. Unfortunately 
during the cross-validation it was not possible to find a common subset of features 
used by the best classifier for each classification case, then it is not possible to 
determine the best features. The advantage of CGP could be appreciated better if 
further investigations will lead to use the raw data instead only a subset of features; 
in fact CGP could determine distinctive movement patterns in the raw data as 
demonstrated in previous studies (Smith et al. 2007, Lacy et al. 2013, Lones et al. 
2014).  
In the second part of the study evolutionary algorithms are applied to find 
differences in EMG data among organic dystonia patients, functional dystonia 
patients and healthy subjects. Unfortunately neither the classifiers evolved by CGP, 
nor those obtained using the other approaches were able to find statistical 
significance differences among the classes considered. The motivations of the bad 
results, as explained in section 8.2.2, seemed to depend on the data recorded that do 
not evidence differences among the classes. In order to verify the quality of the 
methodology, a new experiment has to be considered ensuring a good quality of the 
signal. Some suggestions for future work, useful to overcome the limitations of this 
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study are given in section 8.2.2. Then the judgement of the methodology has to be 
postponed until a new good quality data set including more functional dystonia 
patients is available. 
The results relative to the Parkinson’s disease evidence the potential of the 
evolutionary algorithms as a mean of diagnosing and monitoring of the disease. 
This technique can be very useful to help doctors in the diagnosis itself but also in 
monitoring the cognitive decline associated. In dystonia instead the classifiers 
evolved are not able to distinguish among the classes. The problem seems to 
depend on the data as discussed previously. We can conclude that this study shows 
a potential of using the evolutionary algorithms in the context of diagnosing and 
monitoring neurological disorders. Further investigations are needed to confirm the 
results and verify the methodology. However, the results relative to Parkinson’s 
disease are encouraging and can justify the use of this technique.  
The hope of the author is that the study can represent an incentive for further 
investigations on the use of evolutionary algorithms as a means to help doctors in 
the diagnosing and monitoring of neurological disorders. The use of CGP can be 
useful to understand better how the data are used in classification (diagrams in 
section 5.3.3 and 7.4.2) and then have a better insight about the nature of the data. 
The technique can be applied also to other neurological disorders such as 
Alzheimer disease or multiple sclerosis investigating the potential of artificial 
intelligence techniques. Hopefully this work will be useful for future works that 
will overcome limitations and improve the results.    
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