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ABSTRACT 

Introduction: XCR1 is a chemokine receptor that is activated by the chemokine 

lymphotactin (hLtn) and has been shown to play an important role in oral squamous cell 

carcinoma (OSCC) and a few other cancers. hLtn is a metamorphic protein which 

interconverts between two distinct protein conformations in physiological conditions, 

where one has the canonical chemokine fold while the other forms a dimer. Due to the 

complexity, the mechanism of action and precise role of each hLtn conformation in 

context of cancer is unknown. 

Aim: Examine the role of XCR1 and its ligand hLtn in OSCC as well as understanding 

the function of different hLtn conformations in the disease. 

Methods: Immunohistochemistry was performed on primary and metastatic OSCC 

tissue sections. Autocrine regulation of XCR1 by hLtn of oral cancer cell lines (OCCL) 

was investigated using qPCR and flow cytometry. Additionally, the role of tumour 

microenvironment on XCR1 expression was also investigated using an indirect co-

culture of fibroblasts (inactive, stimulated, cancer-associated and senescent) with OCCL. 

Recombinant hLtn variants were designed, produced and purified. The activity of the 

variants was determined using intracellular calcium flux and functional assays including 

proliferation, adhesion (collagen I and IV, and fibronectin) and cell migration/chemotaxis 

assays to study the effect of bioengineered hLtn variants on OCCL. 

Results: XCR1 and hLtn expression was seen in basal epithelial cells in normal oral 

mucosa ex vivo and both were upregulated in primary and metastatic carcinoma. 

Exposure of OCCL (H357 and SCC4) to hLtn in vitro cause a decrease in XCR1 

expression. Conditioned media from cancer-associated fibroblasts but not 

myofibroblasts upregulated the expression of XCR1 and hLtn mRNA in OCCL. 

Interestingly, senescent fibroblasts downregulate the expression of XCR1 and hLtn in 

SCC4 cells. hLtn CC3 mutant, with the canonical chemokine fold was highly functional 

and facilitated proliferation and migration through XCR1. The W55D mutant dimer 

caused minimal cell proliferation suggesting possible receptor dimerization. 

Conclusions: These findings confirm that XCR1 and hLtn are expressed in both primary 

and metastatic OSCC ex vivo. XCR1 expression regulation by its ligand hLtn and 

crosstalk with fibroblasts are novel findings suggesting a close association with tumour 

microenvironment. A novel method was used to produce and purify hLtn variants which 

stimulated OCCL proliferation, adhesion and migration. These discoveries confirm and 

build upon previous studies and suggest that the hLtn/XCR1 axis may have a bigger role 

in OSCC biology than originally envisaged.



CHAPTER 1 

LITERATURE REVIEW 
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CHAPTER 1: LITERATURE REVIEW 

1.1 Oral Cancer 

Cancer usually involves mutation of normal cells because of DNA damage. In 

normal cells, mutation or damage to the DNA is detected and the cell programmed to 

undergo apoptosis or cell death. In case of cancer cells, the damage or mutations are 

irreversible leading to uncontrolled division and proliferation through alteration of normal 

survival signals. 

Oral cancer accounted for 3% of all cancer cases in 2015 in the United Kingdom 

and 2% of cancer death in 2016 (Cancer Research UK, accessed 2018), an increase of 

1% from 2012 data. It has a higher incidence in developing countries due to a wider 

range of risk factors (de Camargo Cancela et al., 2010). Oral cancer has a poor 

prognosis as it usually diagnosed at a late stage (Warnakulasuriya, 2009). The incidence 

of oral and oropharyngeal cancer is highest in East Asia, South Asia and Southeast Asia 

(Warnakulasuriya, 2009). 

The precise cause or pathogenesis of oral cancer is not completely understood. 

Several factors might increase the risk and are highly associated with the disease; 

including tobacco and alcohol consumption (McLaughlin et al., 1988; Hashibe et al., 

2013), and human papillomavirus (HPV) (Chaturvedi et al., 2011, 2013). Statistically, 

oral cancer incidence is higher in the elderly with more cases in the male population than 

female (information obtained from Cancer Research UK website). High dietary 

consumption of vegetables and fruits decreases the risk of oral cancer (Levi et al., 1998; 

Llewellyn et al., 2004). In addition, some studies show an increased risk in 

immunocompromised patients such as those undergoing haematopoietic stem-cell 

transplantation (Elad et al., 2010). Poor oral hygiene (Oji and Chukwuneke, 2012) and a 

weakened immune system (Sathiyasekar et al., 2016) also associated to contribute for 

oral cancer development.  

Oral cavity and oropharyngeal cancers mainly occur in the tongue, tonsil, 

oropharynx and other sites such as vestibule, buccal mucosa (the lining of the lips and 

cheeks), hard palate, soft palate, gingiva (gums), lips and floor of the mouth. Most of 

these cancers are oral squamous cell carcinoma (OSCC) and are derived from epithelial 

cells in the lining of the mouth (Figure 1.1). 

OSCC usually invades and destroys tissue in the immediate vicinity and spreads 

from the primary site, usually through the cervical lymph nodes following the path of 
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drainage (Silva et al., 2011). Metastasis in lymph nodes is associated with an almost 

50% reduction in 5-year survival (Vartanian et al., 2004). 

 

 

 

Figure 1.1: Prone sites for oral squamous cell carcinoma development. Most of the 

incidence originated from the tongue. Oral cancer spread is generally to the regional 

lymph nodes through lymphatic vessel. Almost a third of lymph nodes in human is 

situated in the head and neck region. The incidence rate (person per year) was obtained 

from Cancer Research UK website (Accessed in 2018). The image was acquired and 

modified from http://www.innerbody.com/image/mouth.html)).   
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1.2 Tumour Microenvironment 

In recent years, tumour microenvironment research has become the focus to 

study how cancer cells grow and interact. Reactive stroma or the stroma of tumour 

microenvironment is fundamentally different from the normal tissue stroma. Studies of 

tumour progression have shown that cancer cells are not the only drives but also the 

tumour microenvironment through genetic and epigenetic studies (You and Jones, 2012; 

Baxter et al., 2014). The complexity of tumour microenvironment comprises of a network 

of multiple cells, signalling molecules, extracellular matrix (ECM) and soluble factors 

which contributes as the driving force of tumour progression (Cukierman and Bassi, 

2012). The  multiple cells that make up the tumour microenvironment are inflammatory 

cells, endothelial cells, pericytes and fibroblasts (Joyce and Pollard, 2009). Cancer-

associated fibroblasts (CAF) has been shown to promote tumour growth (De Veirman et 

al., 2014; Shiga et al., 2015; Deying et al., 2017), progression (Shimoda, Mellody and 

Orimo, 2010; Bremnes et al., 2011) and migration (Erdogan et al., 2017) through 

paracrine signalling (van Zijl, Krupitza and Mikulits, 2011; Karagiannis et al., 2012). 

 

1.2.1 Tumour 

Tumour formation is linked with uncontrollable growth of cells. In this context, the 

word tumour and cancer can sometimes be used interchangeably, while in definition, it 

is different. A tumour can be either benign or malignant. A benign tumour does not 

progress into a highly invasive tumour and invade other tissue from their initial site. Even 

so, uncontrollable tumour growth of cell can overcrowd the tissue area causing some 

health problems. The increase in size can increase its surrounding pressure resulting in 

applied pressure to neighbouring organ causing discomfort, pain and problem. This 

physical change in the cavity that are not enclosed by hard structure, such as bone, 

permit a flexible tumour expansion. Unfortunately, differ to tumour growth in the brain, 

continuous increase in size is not permitted due to cranial space restriction and the 

additional unnecessary pressure provided by tumour expansion can be quite fatal. 

The progression of normal cell to cancer involves several pathological changes 

and processes. The first stage is dysplasia where cytological appearance is no longer 

normal, forming an abnormal tissue. These changes include the variable size and shape 

of the nucleus, increased staining of the nuclear, increase nuclear and cytoplasmic size 

ratio, increase cell mitotic activity, and lack of cytoplasmic features that are associated 

with normal differentiated cell of the tissue. In dysplasia, the relative number of various 
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type of cells seen in normal tissue are no longer observed. This stage is the transitional 

state between benign and to the premalignant tumour.  

The pre-malignant tumour or carcinoma in -situ is the stage where the abnormal 

cells are only at the site at which it is first formed. This is the precursor of cancer before 

it spreads to nearby normal tissue. Once all the conditions are acquired, the abnormal 

cell develops to become cancerous and can become malignant or invasive. At this stage 

the cells have the potential to spread not only to adjacent tissue area but also other parts 

of the body using the circulatory system.  

 

1.2.2 Reactive Stroma of the Tumour  

Reactive stroma of the tumour consists of the immune cells, endothelial cells 

making up the capillaries, activated fibroblasts, basement membrane and extracellular 

matrix (ECM). Fibroblasts are the dominant component in the tumour stroma and studies 

have shown these to be a notable factor influencing cancer growth, progression and 

metastasis (Kalluri, 2016). Different terms are used for fibroblast association in a certain 

environment such as in cancer, it is termed cancer-associated fibroblasts (CAF) or 

‘activated’ fibroblast. 

 

1.2.2.1 Fibroblast 

The fibroblast is the most versatile and extensively studied cell-type in biology in 

vitro due to its easy isolation and culture handling. They are resilient, survive stress and 

can grow from post-mortem human tissue. This gives fibroblast its plasticity. Resting or 

quiescent fibroblasts are defined as a non-epithelial, non-endothelial, non-immune cell 

with a mesenchymal-like cells lineage that are usually found in the interstitial stroma. It 

displays a spindle-shape morphology with noticeable actin cytoskeleton and vimentin 

filaments (Kalluri and Zeisberg, 2006). 

The quiescent fibroblast can be ‘activated’ and become specialised fibroblast 

known as myofibroblast or normal activated fibroblasts (NAFs). It was first observed in 

wound healing where they migrated to the wound area and generated extracellular matrix 

(ECM) providing scaffold for tissue regeneration (Räsänen and Vaheri, 2010). 

Transformation to myofibroblast gives the fibroblast the phenotype of contractile stress 
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fibres such as α-SMA and FN-EDA 1 (Tomasek et al., 2002). Furthermore, myofibroblast 

can proliferate, migrate, secrete soluble factors (TGF-β1, cytokines, chemokines, matrix-

metalloproteinase (MMP), etc.) and ECM (collagen I, III and IV, and fibronectin, etc.) and 

to assist in matrix re-modelling during wound healing. After the healing process is 

complete, the myofibroblast undergoes reprogramming to revert to quiescent fibroblast 

or apoptosis. This reversible phenotype process is not well understood but it is assumed 

that most fibroblast undergo the latter, a programmed cell death or nemosis to restore 

the population of resident fibroblast (Tomasek et al., 2002). 

 

1.2.2.2 Cancer-Associated Fibroblast 

Fibroblasts in tumour stroma remain in an ‘activated’ state, where they express 

soluble factors and ECM like those found by myofibroblasts. There are several terms of 

fibroblasts used for tumour stroma, but a widely known terminology is cancer associated 

fibroblasts (CAF) (Kalluri, 2016). CAF are distinguishable from normal fibroblasts 

phenotypically, functionally, as well as in different expression profiles of ECM 

components and growth factors (Kalluri and Zeisberg, 2006).  

Several markers were identified to characterize a CAF including α-SMA, 

fibroblast activation gene (FAP), tenascin-C, platelet derived growth factor receptor 

(PDGF-R), periostin, vimentin, desmin and fibroblast specific protein-1 (FSP-1) (Shiga 

et al., 2015; Kalluri, 2016). α-SMA expression is often identified with CAF (Busch and 

Landberg, 2015). CAF has demonstrated a heterogeneity within its population where a 

study identified a unique population expressing FSP-1 with lack expression of α-SMA 

and PDGF-R (Sugimoto et al., 2006). TGF-β can induce the phenotypic features of CAF 

in vitro during wound healing and organ fibrosis by mediating fibroblast activation 

(Dumont and Arteaga, 2000).  

The origin of CAF and its underlying mechanisms are still unclear. It was 

considered to originate from resident fibroblasts, adipocytes, epithelial cells (via 

epithelial-mesenchymal transition (EMT)), endothelial cells (via endothelial-

mesenchymal transition (EndoMT)) and even from hematopoietic stem cells (Shiga et 

al., 2015). CAF has shown to play a role in tumour development in breast (Aboussekhra, 

2011), pancreas (von Ahrens et al., 2017)), oral cancer (Li et al., 2015; N.-N. Lin et al., 

2017) and bone metastasis (Prajapati and Lambert, 2016).  



Chapter 1: Literature Review 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 7 

1.2.2.3 Senescence fibroblast 

When cells undergo the state of arrest growth in response to oncogenic events, 

this incident is termed cellular senescence. It was firstly demonstrated in human 

fibroblasts of embryonic lung tissues where the proliferation rate ceased after replicative 

passaging (Ogrunc and d’Adda di Fagagna, 2011). Several factors can be associated to 

cellular senescence including epigenetic abnormalities, stress-induced premature 

ageing, telomere shortening, genomic damage, mitogen and proliferation-associated 

signals, and activation of tumour suppressors (Campisi, 2013; Wang, Cai and Chen, 

2017). Growth arrest is the hallmark of cellular senescence with permanent cell cycle 

arrest at G1 phase, although still metabolically active (Herbig et al., 2004). The 

senescent cells growth is permanently arrested unlike quiescence cells and its 

proliferative capability cannot be reverted.  

Cell senescence display a tumour suppressive mechanism by preventing the 

cells undergoing neoplastic transformation (Campisi, 2013). The senescent cells secrete 

numerous cytokines, proteases, growth factors and a collection of proteins, also known 

as senescence-associated secretory phenotype (SASP) which can influence 

surrounding cells and can contribute to ageing (Rodier and Campisi, 2011). Some 

studies have shown that senescent fibroblasts can enhance pro-metastatic phenotypes 

(Wang et al., 2017) and promote tumorigenesis (Krtolica et al., 2001; Ruhland et al., 

2016).  

Currently, the mechanism underlying cell senescence phenotype in terms of its 

trigger and maintenance is poorly understood. Therefore, there are limited amount of 

suitable marker and also lack of specificity targeting senescence cells (Althubiti et al., 

2014). Senescence-associated β-galactosidase (SA-βgal) activity is the most common 

marker to identify senescent cells in culture and tissue (Debacq-Chainiaux et al., 2009). 

p16 has been identified to be a senescent marker (Coppé et al., 2011) although not in 

all senescent cells (Haferkamp et al., 2009).  

 

1.2.3 Lymph nodes 

Lymph nodes form a part of the lymphatic system with an ovoid or kidney shape 

organ, playing an important role in immune system (Figure 1.2). The nodes primarily 

reside by B and T lymphocytes, as well as other leukocytes. This organ is crucial for 

proper functioning immune system by filtering foreign particles and sometimes cancer 
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cells. Not to be compared to kidney and liver, lymph nodes do not have the capability as 

a detoxifying function but more as a checkpoint populated with leukocytes to scrutinize 

the circulatory system from any invaders or foreign particles.   

 The highly organized structure of the lymph node is designed to assist the 

interactions between the cell of the immune system and the foreign invader. Fluids from 

surrounding tissue are drained into the lymph node through the afferent lymph vessels 

including the antigen-presenting cells (APC). The fluid will be circulated out of the lymph 

node through efferent lymphatic vessel after its journey around subcapsular sinus (SS) 

and the trabecular sinuses towards the medulla through the cortex (Harwood and Batista, 

2010). It is well compartmentalised to accommodate inflammatory cells.  

In cancer, the lymph node is highly associated with cancer metastasis. Cancer 

dissemination into distant parts is usually through vascular or lymphatic vessel although 

the mechanism is poorly understood. This organ is a useful predictor of patient survival 

where it is use to be the key parameters to determine the disease progression and 

treatment options (Morton et al., 2006). A specific chemokine has been shown to be the 

drive for cancer metastasis to lymph node such as in melanoma through CCL1/CCR8 

(Das et al., 2013). 
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Figure 1.2: Lymph node organisation and immune cells entry. The lymph node is bean-

shaped lymphoid organs encapsulated by a collagenous structure. The main structure is 

subdivided into three major sections: the medulla, the paracortex and the cortex. Naïve 

lymphocytes enter the organ either through afferent lymphatic vessel or high endothelial 

venules (HEVs), and exit via cortical or medullary sinuses, and efferent lymphatic 

vessels. Additionally, the dendritic cells (DCs) can enter the organ through the 

subcapsular sinus. The cortex comprises mostly of tightly packed B cells and follicular 

dendritic cells (FDCs) where they can arrange to form B cell follicles or germinal centres. 

In contrast, the paracortex regions comprise mostly of T cells, in T cell zone and 

fibroblastic reticular cells (FRCs), forming a network guiding the lymphocytes and DCs 

in the lymph nodes. MRC, marginal reticular cell; pre-cDC, precursor conventional DC. 

The image was reproduced and adapted from Girard, Moussion and Förster (2012).  
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1.3 Metastasis 

A cancer which is not infiltrative and remains localised is called benign. A tumour 

is termed malignant when it shows infiltration and invasion into the structures 

surrounding the primary tumour. Metastatic tumours develop when malignant cancer 

cells spread to other parts of the body either by the lymphatic or the blood circulation. In 

OSCC, metastasis is facilitated by epithelial-mesenchymal transition (EMT) which allows 

the epithelial cells to acquire a more mesenchymal phenotype enabling them more 

motility and migration. The tissue extracellular matrix (ECM) plays an important role in 

cancer spread. The matrix environment is active with numerous interactions occurring at 

this site such as cell signalling and transport of nutrients. It also functions in cell support 

by interaction with integrin receptors (Juliano and Haskill, 1993). In tumour environment, 

factors such as matrix-metalloproteinase (Kessenbrock, Plaks and Werb, 2010), 

chemokines (Sheu et al., 2008) and cancer-associated fibroblast (Junttila and de 

Sauvage, 2013) further facilitate the survival and growth of cancer cells. 

Cancer cells are thought to intravasate into the blood or lymphatic vessels 

allowing access to local and systemic circulation which facilitates metastasis (see Figure 

1.3). However, the factors contributing to intravasation of cancer cells are unknown. 

Tumour micro-environment comprises of stromal fibroblasts, endothelial cells lining 

blood and lymphatic vessels, and inflammatory cells which are important in cancer cell 

proliferation, adhesion, migration and invasion suggesting it may have in important role 

in metastasis. 

In local invasion, cancer cells undergo EMT as well as mesenchymal-epithelial 

transition (MET) to detach from the site of origin (Hagman et al., 2013). MET allows the 

cancer cells to re-associate with extracellular matrix (ECM) and anchors them to the new 

site. Mostly, cancer cells show immortality and unlimited division potential recruiting 

some proteins and factors to initiate angiogenesis, sustaining their growth and survival. 
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Figure 1.3: Concept of metastasis. Possible route of cancer spread (– – – →) which is 

either through lymphatic vessel (lymphatic spread) or blood vessels (haematogenous 

spread). The cancer grows from the tissue of origin and invades neighbouring tissue or 

spreads to distant sites. 

 

1.3.1 Theories of Metastasis 

The exact signals triggering cancer metastasis are not well understood. Paget 

originally proposed the “seed and soil” theory where the metastasized cancer cell (the 

seed) circulates in the blood or lymphatic system until it finds a suitable location in the 

human body (the soil) and starts to form cancer there (Fokas et al., 2007). The most 

common site for metastasis to occur is in bone as it always undergoing constant 

remodelling (Hadjidakis and Androulakis, 2006; Rucci, 2008). It also serves as a latent 

location for cancer cells to stay dormant before they start to spread later in life.  

The ‘chemoattractant’ theory of metastasis revolves around chemokines and 

their ability to attract cells expressing chemokine receptors. Recently, it has been 

reported that some cancer cells acquire upregulated expression of specific chemokine 

receptors (Müller et al., 2001; Khurram et al., 2010, 2014; Kim et al., 2012; Gantsev et 

al., 2013) which allows cancer cell movement along a chemotactic gradient hence 

facilitating metastasis. Lymph nodes with activated lymphocytes, macrophages and 
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endothelial cells are a rich source for chemokines and this has been proposed to attract 

the receptor expressing epithelial cells to the lymph node interior resulting in metastasis 

(Alitalo and Detmar, 2012; Karaman and Detmar, 2014). However, the specific 

mechanism of this transmigration of tumour cells from lymphatic circulation into lymph 

nodes is not well understood.  

 

1.4 Chemokines 

Chemokines are chemo-attractant cytokines, which can attract cells expressing 

the receptive receptor along a concentration gradient of the chemokine in a process 

called chemotaxis (see Figure 1.4). Chemotaxis is sensitive as it can be activated by a 

chemokine concentration as low as 1 nM in normal physiological conditions (Fox, 

Nakayama, et al., 2015). 

 

Figure 1.4: Chemotaxis. The receptive cell expressing chemokine receptor responds to 

chemokine concentration gradient. It can be either move towards to (chemo-attract) or 

away (chemo-repel) by the chemokine.  

 

Chemokines are small proteins with a molecular mass of 8 – 10 kDa. Their 

distinctive characteristic is the conserved cysteine residue, which separates the 

chemokines into four different groups (see Figure 1.5). The structure consists of three 

antiparallel β-sheets and N-terminal α-helix which are joined by two disulphide bridges. 
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At least 50 chemokines have been identified in human and are divided into four 

subfamilies based on the position of the conserved cysteine near the N-terminal (Balkwill, 

2012). 

 

 

Figure 1.5: The chemokine super-families. The structure is distinguished by the distinct 

location of the cysteine residues. Denoted by ‘X’ in the picture can be substituted to any 

other amino acid except cysteine. The cysteine residues form disulphide bonds holding 

the protein structure together. All super-families contain chemokine signature of two 

disulphide bridge except for C chemokine. CX3C chemokine contains a mucin-like region 

(purple) allowing it to be membrane-bound or soluble protein. 

 

Most chemokines belong to the CXC and CC families. The C chemokine family 

has only two known members. This group is unique as it only has one disulphide bridge 

compared to conventional chemokines with at least two disulphide bridges in the 

structure. CX3C chemokines are the fourth group in the family with fractalkine being the 

only member. It can exist as either membrane-anchored protein or as glycoprotein 

unbounded protein (Bazan et al., 1997; Tripp et al., 2001; Meyer dos Santos et al., 2011). 
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1.5 Chemokine Receptors 

Chemokine receptors are also known as G-protein coupled receptors. This type 

of receptor is embedded in the cell membrane with the N-terminus on the extracellular 

aspect of the cell membrane and 7-transmembrane α-helices structure that comprise 

three outer and inner loops (Figure 1.6). The C-terminal resides in the cytoplasm are 

connected to a heterotrimeric G-protein; comprising three different bodies: α, β and γ. 

Although there are nearly 50 chemokines identified, not all activate one specific 

chemokine receptor (see Table 1.1). Some receptors are shared between several 

chemokines and some of the chemokines can activate several chemokine receptors 

within the family (Zlotnik, Yoshie and Nomiyama, 2006). For example, in humans, the 

chemokine receptor CX3CR1 can only be activated by CX3CL1 (fractalkine). XCR1 can 

be activated by XCL1 and XCL2 but both have similar structure and differ by two amino 

acids. 

To date, 18 chemokine receptors have been reported (Zweemer et al., 2014) with 

six CXCR chemokine receptors, one XCR chemokine receptor, one CX3CR chemokine 

receptor and 10 CCR chemokine receptors (see Figure 1.7). Additionally, four atypical 

receptor (ACKR1 – 4) have the same structure as the chemokine receptor, although the 

ligand binding unable to activate the classical signalling pathway (Bonecchi and Graham, 

2016). Some of the chemokines share the same chemokine receptor or vice versa, 

providing a biased signalling with additional of atypical receptor contributing to the 

complexity of understanding them (Steen et al., 2014). The complex organisation and 

functions of chemokines and the receptors have been shown to be closely related to their 

evolutionary perspective (Zlotnik and Yoshie, 2012) (Figure 1.8). The phylogeny 

analysis amongst the chemokine receptor has shown that XCR1 are closely related to 

CXCR4, a well-known chemokine receptor in pathology. 
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Figure 1.6: The typical structure of chemokine receptor, a class of G-protein coupled 

receptor (GPCR). (Left) Typical transmembrane receptor structure (reddish pink) 

shown attached to a GPCR (blue-cyan) (image was obtained from RCSB PDB-101 

website). (Middle) A typical chemokine receptor backbone showing a seven-helical 

transmembrane protein (7-TPM) domain of the cell membrane. The image is the 

predictive protein structure of XCR1 receptor created using RaptorX software 

(http://raptorx.uchicago.edu/). (Right) XCR1 receptor with its surface shown. The image 

was produced using Pymol. 

  

http://raptorx.uchicago.edu/
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Figure 1.7: The chemokine receptors based on the family classification. Blue – CC 

chemokine; purple – CXC chemokine; green – CX3C chemokine; and red – C 

chemokine. Additionally, there is a small family of atypical chemokine receptor (ACKR) 

(in grey), a unified member by their incapability to initiate canonical chemokine signalling 

upon receptor activation. The receptor family classification is solely associated to the 

subfamily of its chemokine as there is no distinguishable identification between the 

receptors. Note that there is no CXCR7, as this has been re-classified to ACKR3. The 

other ACKRs were also reclassified to DARC (ACKR1), D6 (ACKR2) or CCX-CKR 

(ACKR4). 
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Table 1.1: Chemokine receptors and their respective ligands (in human).  
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Figure 1.8:  Phylogeny tree (in circular mode) of all chemokine receptors including the 

atypical chemokine receptors. The analysis shows that the XCR1 is closely related to 

CXCR4 (highlighted in red), the intensively studied chemokine receptor that is involved 

in many pathologies.   
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1.6 Functions of Chemokines and Chemokine Receptors  

Chemokines are involved in many biological processes. Their most common 

function is to mediate leukocyte trafficking in the immune response. The signalling 

mediates adhesion and migration of cells expressing the chemokine receptor. They are 

also involved in homeostasis (Zlotnik, Burkhardt and Homey, 2011) and with both 

autocrine (Menten et al., 2002; Tamgüney, Van Snick and Fickenscher, 2004; Kroeze et 

al., 2012) and paracrine signalling (Gortz et al., 2002; Heinrich et al., 2013). Chemokines 

have also been found to be expressed during human transplant rejection (Segerer et al., 

2001). CXC chemokines have also been shown to play an important role in chronic 

inflammation (Hannelien et al., 2012). 

Chemokines can promote neovascularization and tumour angiogenesis (Keeley, 

Mehrad and Strieter, 2011). CXCL1 to CXCL8 except CXCL4 (ligands for CXCR2), CCL2 

(ligand for CCR2), CCL11 (ligand for CCR3) and CCL16 (ligand for CCR1) are pro-

angiogenic chemokines with only four related chemokine receptors. Chemokines are 

also indirectly involved in organogenesis, making new lymph nodes during development 

and in cancer tissue (Gantsev et al., 2013). 

Chemokines also play a role in other pathologies such as diabetes where 

monocytes have been shown to increase inflammatory cytokines and chemokines 

production significantly by high glucose induction (Shanmugam et al., 2003) and 

CXCL10 expression resulting in failure of insulin-producing cells (Antonelli, Ferrari, 

Corrado, et al., 2014).  In autoimmune disease, recruitment of Th1 lymphocytes by 

CXCL10 increases production of interferon-γ and tumour necrosis factor-α, stimulating 

other cells producing the chemokine hence creating a high feedback loop (Antonelli, 

Ferrari, Giuggioli, et al., 2014). High levels of chemokine expression are also seen in 

cardiovascular disease where they contribute to vascular destruction and plaque 

development (Ross et al., 2012; Yao et al., 2014). 

A summary of general signal transduction for chemokine receptor when activated 

by its ligand can be found in Figure 1.9. 
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Figure 1.9: Downstream signalling of chemokine receptor upon activation by its ligand. 

Receptor transduction is closely related to cytokine signalling, although this information 

is generalised to normal cell compared to the complicated chemokine-chemokine 

receptor system associated with cancer pathology. The image at the top shows the 

activation of the chemokine receptor by its ligand (in purple) and the signalling pathways 

of the endogenous ligands (Gα, Gβγ complex, and β-arrestin protein).  
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1.7 Chemokines and Chemokine Receptors in Tumour Biology 

Chemokines and their receptors are involved in cancer-related inflammation 

(Mantovani et al., 2010). Although they recruit leukocytes to counter cancer cells, they 

can also have pro-cancer functions by controlling leukocyte infiltration, assisting 

angiogenesis, promoting cancer cell growth and survival, subverting the anti-tumour 

response and facilitating metastasis (Slettenaar and Wilson, 2006). This role is further 

supported by the fact that epithelial cancer cells can acquire higher levels of chemokine 

receptors compared to their normal counterparts. Increased chemokine expression in 

the cancer microenvironment influences the activity of the cancer cells including cell 

migration, adhesion, proliferation and invasion. The summary of chemokine and 

chemokine receptor involved in different types of cancer cells can be found in Table 1.2. 

Tumour development can be promoted by stimulation of angiogenesis. CXCR4 

positive cells usually metastasize to distant organs and induce angiogenesis by 

interaction with CXCL12 in oesophageal and gastric cancer (Hannelien et al., 2012). 

Although, other CXC chemokines have angiostatic effects and they attract anti-tumoral 

T lymphocyte, which reduces tumour growth. 

Chemokines have been shown to promote metastasis (Sarvaiya et al., 2013). 

The concentration gradient of CXCL12 promoted breast cancer cells movement and 

invasion similar to that seen in lymphocytes. Muller et al. (2001) showed the importance 

of CXCR7 and CCR7 in breast cancer invasion in vivo. Blood vessels consist of an 

endothelial cell lining that is separated from the tissue by a basal membrane and have 

been shown to express chemokine receptor (Murdoch, Monk and Finn, 1999) and 

release chemokines (Hillyer and Male, 2005; Speyer and Ward, 2011; Monnier et al., 

2012) which may induce adhesion and transmigration of cancer cells. It would be 

interesting to know if the endothelial cells express XCR1 receptor and produce hLtn for 

lymphocyte recruitment or cancer cell attachment. 
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Table 1.2: Chemokine receptors and chemokines expression in different types of cancer. 

Annotation: (n = Number of positive cases/Number of cases examined); S indicates 
obtained from serum or ascitic fluid; B.MET indicates bone metastasis; NA indicates data 
not available or not informed in the paper. 

Type of 

cancer 

Chemokine receptors and Chemokines 

References 

Primary tumour Metastasis 

Breast cancer CXCR4 (n=12[1], 

83/182[2], 63/103[3], 

113/200[4]), CXCR7 

(n=68/80[5], 43/103[3]), 

CCR4, CCR5, CCR6 

(n=72/207[6]) CCR7 (n= 

n=111/200[4], 89/207[6]), 

CCR10 (n=63/89[7]), 

CX3CR1 (n=105/202[8]), 

XCR1 (n=10[9]),  

CXCL12 (n=71/182[2], 

86/103[3], 38/100[4]), 

CCL2[10], CCL5 

(n=36/72[11]), CCL19 

(n=101/207[6]) 

CXCR4 

(n=62/100[4])), CCR7 

(n=77/100[4]), CCR10 

(n=59/68)[7],  

CXCL12 n=55/100[4]), 

CCL5 (n=26/47[10]), 

CCL21 (n=68/100[4]) 

[1] Müller et al., (2001),  

[2] Sun et al., (2014), 

[3] Schrevel et al., (2012), 

[4] Y. Liu et al. (2010),  

[5] Yuan et al., (2017),  

[6] Cassier et al. (2011), [7] 

H. Lin et al. (2017),  

[8] Jamieson-Gladney et 

al. (2011), 

[9] Yang et al. (2017), 

[10] (J. Wang et al., 2015), 

[11] Araujo et al. (2018) 

Cervical 

cancer 

CXCR4 (n=110/174[1]), 

CCR7 (102/174[1]), 

ACKR1 (n=168/227[2]), 

ACKR2 (n=162/227[2]), 

ACKR3 (n=34[3]), ACKR4 

(n=179/227[2]),  

CXCL8 (n=61/108[4]), 

CCL19 (n=55/62[5]) 

CXCR4 (n=32/35[1]), 

CCR7 (n=31/35[1]), 

ACKR1 (n=14/33), 

ACKR2 (n=21/33[2]), 

ACKR4 (n=20/33[2]),  

CXCL8 (n=27/43 [4]) 

[1] (Kodama et al., 2006), 

[2] Hou et al. (2013),  

[3] Tang, Xia and Xi 

(2016),  

[4] Yan et al. (2017),  

[5] Zhang et al. (2017) 

Lung cancer CXCR1[13], CXCR2[13] 

(n=262[1]), CXCR4 

(n=76/110[2], 62/154[3]), 

CCR2 (n=39/65[5]), 

CCR7 (24/40[6]), CCR9 

(n=39[7]), XCR1 (n=5[8]), 

ACKR3 (n=21/35[9]),  

CXCL1[10], CXCL5 

(n=75[11]), CXCL8 

(n=56/70[12], 49/120[13]), 

CXCL12 (n=47/150[3]), 

CXCL14 (n=24/35[9]), 

CCL2 (107/134[5]), 

CCL19[10], CCL21 

(n=48/100[4]), CCL25 

(n=39[7]), CCL4[14], XCL1 

(n=5[8]) 

CXCR4 (n=56/76[2], 

16/44[3], 62/100[4]), 

CCR7 (n=77/100[4], 

47/120[13], 19/24[6]), 

XCR1 (n=5[8])B.MET,  

CXCL8 (n=22/27[12], 

36/72[13]), CXCL12 

(n=20/42[3], 

55/100[4]), CCL19 

(n=55/120[13]), CCL21 

(n=68/100[4], 

25/120[13]), XCL1 

(n=5[8])B.MET  

[1] Saintigny et al. (2013),  

[2] Bi et al. (2017),  

[3] Wagner et al. (2009),  

[4] Y. Liu et al. (2010), 

[5] Zhang et al. (2013), 

[6] Yu et al. (2017),  

[7] Gupta et al. (2014),  

[8] T. Wang et al. (2015),  

[9] Choi et al. (2015),  

[10] Acharyya et al. (2012),  

[11] Wu et al. (2017),  

[12] Hosono et al. (2017),  

[13] Liu et al. (2015),  

[14] Cheng et al., (2016) 

Lymphoid 

leukaemia 

CCR3, CCR4, CCR7,  

CCL18 

- Balkwill (2012) 
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Lymphoma CCR3[1], CCR4[2], 

CCR10[3], 

 CCL17[4] 

- [1] Kleinhans et al. (2003),  

[2] Kumai et al. (2015),  

[3] Notohamiprodjo et al. 

(2005),  

[4] Peh, Kim and Poppema 

(2001) 

Melanoma CXCR2, CXCR4 

(n=31/71[1], 25/30[2]), 

CCR7 (n=18/30[2]), 

CCR10 (n=31/40[3]),  

CCL27 (n=18/40[3]), 

CCL28, CXCL1, CXCL8, 

CXCL12 (n=6/30[2]) 

CCR7 (n=16/19[2]),  

CXCL12 (n=11/19[2]) 

Balkwill (2012),  

[1] Scala et al. (2005),  

[2] van den Bosch et al. 

(2013),  

[3] Simonetti et al. (2006) 

Oral or/and 

oropharyngeal 

cancer 

CXCR1, CXCR2 

(n=47/85 [1]), CXCR4 

(n=24/40 [2], 54/60 [3]), 

CCR6 (n=4[4]), CCR7 

(n=4[4], 56/60 [3], 56/85 [5] 

54/90 [6]), XCR1 (n=10 
[7]), ACKR3 (n=30/35[8]),  

CXCL9 (n=46/50[9]), 

CXCL11 (n=25/35 [9]), 

CXCL12 (n=25/40 [2]), 

CCL2S[10], CCL3 

(n=40/98[10]) CCL21 

(n=NA [5]) XCL1 (n=10 [7]) 

CXCR4 (n=65/77[3]), 

CCR7 (n=73/77[3], 

4[4]),  

CCL3 (n=13/30[10]) 

[1] Qian et al. (2014),  

[2] Xia et al. (2012),  

[3] Al-Jokhadar et al. 

(2017).  

[4] Chen et al. (2013),  

[5] Shang, Liu and Shao, 

(2009),  

[6] Tsuzuki et al. (2006),  

[7] Khurram et al. (2010),  

[8] Xia et al. (2011),  

[9] Chang et al. (2013),  

[10] Ding et al. (2014) 

Ovarian 

cancer 

CXCR4 (n=26/44[1], 

241/241[2]), XCR1 

(n=55%/NA [3]),  

CXCL12 (n=40/44[1], 

199/289[1]), XCL1 & 

XCL2 (n=NA [3]) 

CXCR4 [4] [1] Jiang et al. (2006),  

[2] Popple et al. (2012),  

[3] Kim et al. (2012),  

[4] Balkwill (2012) 

Pancreatic 

cancer 

CXCR1 (n= 40/65 [1]), 

CXCR4 (n=34/60[2]), 

CCR4 (n=66/75[3]), 

CCR6 (n=25[4]), CX3CR1 

(n=56/104[5]),  

CXCL12 (n=52/60[2]), 

CCL20 (n=25[4]), 

CX3CL1 (n=70/104[5]) 

CXCR4 (n=28/35[2]), 

CX3CR1 (n=34/69[5]),  

CX3CL1 (n=44/69[5]) 

Balkwill (2012),  

[1] Chen, L. et al (2015),  

[2] J. Zhang et al. (2017),  

[3] Cheng et al. (2017),  

[4] Rubie et al. (2010),  

[5] Celesti et al. (2013) 

Stomach 

cancer 

CXCR2 (n=82/116[1], 

200/357[2]), CXCR4 

(n=40/50[3], 30/93[4]), 

CCR4 (n=79/103[5]), 

CCR7 (n=25/93[4], 

42/64[6]),  

CXCL1 (n=66/116[1]), 

CXCL12 (n=45/50[3])  

CXCR2 (n=4/8), 

CXCR4 (n=33/36[3], 

7/10[4]), CCR7 

(n=6/10[4], 35/39[6]),  

CXCL12 (n=34/36[3]) 

[1] Cheng et al. (2011),  

[2] Z. Wang et al. (2015),  

[3] Ying et al. (2012),  

[4] (Arigami et al., 2009),  

[5] Yang et al. (2015),  

[6] Mashino et al. (2002) 
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1.8 Chemokine – Chemokine Receptors in Oral Cancer 

Investigating biomarkers in saliva is potentially a useful tool for early detection of 

oral cancer (Prasad and McCullough, 2013). Saliva contains chemokines and the levels 

are highly elevated in the presence of cancer. OSCC can also be linked to inflammation 

where chronic inflammation impacts wound healing regulation allowing progression to 

cancer (Feller, Altini and Lemmer, 2013).  

Chemokines and chemokine receptors showed higher expression in oral cancer 

cell lines (OCCL) compared to normal oral epithelial cells (Khurram et al., 2010, 2014). 

Some studies have shown that chemokines in lymph nodes can attract cancer cells from 

the lymphatic circulation into the lymph node interior (Wiley et al., 2001; Mashino et al., 

2002). 

Most documented studies are in relation of chemokine and oral cancer 

progression are on CXCR4 receptor and its ligand CXCL12. CXCR4 expression is higher 

in metastatic oral cancer cells and clinical tissue (Delilbasi et al., 2004) while the ligand 

is only expressed in cancer but not normal oral cells (Uchida et al., 2003). CXCL12 

increases invasiveness and motility of CXCR4-positive cells (Ishikawa et al., 2006). The 

CXCL12/CXCR4 ligand-receptor interaction activates Src Family Kinase (SFK), 

extracellular signal-regulated kinases- ½ (ERK1/2) and Akt/Protein Kinase B (Akt/PKB) 

signalling (Uchida et al., 2003) as well as nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathway through CARD11-BCL10-MALT1 (CBM) complex 

(Rehman and Wang, 2009). 

Other chemokines such as CXCL1 show cytoplasmic expression in OCCL and 

activate the CXCR2 receptor to promote tumour angiogenesis, leukocyte infiltration and 

lymph node metastasis (Shintani et al., 2004). This chemokine is also produced by 

vascular endothelial growth factor (VEGF)-stimulated endothelial cells which induces 

invasion of CXCR2-positive oral cancer cells (Warner et al., 2008). Also, ACKR3 

(previously known as CXCR7) has also seen to be expressed in OSCC but not in normal 

epithelia however its ligand CXCL11 and CXCL12 have a moderate and high expression 

respectively in dysplasia and OSCC (Xia et al., 2011). 

Oral cancer cells also showed increase mRNA expression of CCR5 receptor 

when stimulated with CCL5 and increase the migration and production of matrix 

metalloproteinase-9 (MMP-9) (Chuang et al., 2009). Overexpression of CCR7 is seen 

highly associated with cervical lymph node metastasis where it facilitates higher 
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adhesion to lymph nodes, hence assisting metastasis (Shang, Liu and Shao, 2009). 

Additionally, the paper also shown a positive CCR7 expression in OSCC tissue and cell 

lines although no expression was detected in normal oral mucosa (Shang, Liu and Shao, 

2009). 

In summary, chemokines and chemokine receptors appear to have an important 

role in oral cancer progression, but the mechanism is not well understood as some of 

the other more prevalent cancer. This suggests a specificity of chemokine receptor 

expression in certain types of cancer. 
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1.9 Studies of XCR1 and hLtn in oral cancer 

 A recent study showed XCR1 expression outside the immune system for the first 

time with expression in inflamed oral epithelial cells and oral cancer cells (see Figure 

1.10) (Khurram et al., 2010). In addition, hLtn expression was found in epithelium 

adjacent to OSCC, invasive OSCC islands, metastatic tumour in the lymph nodes as well 

as in stroma (see Figure 1.11). 

hLtn expression was seen in both primary and metastatic tumours being present 

in the infiltrating leukocytes and the tumour stroma. hLtn and XCR1 expression was also 

seen in a range of OCCL at both the mRNA and protein level. However, the stimulus for 

hLtn release from epithelial cells remains unknown. There are only a few reported studies 

of hLtn and XCR1 receptor interaction in the context of cancer pathogenesis and spread. 

This is possibly due to the unique structure of the C chemokine itself which is not well 

established and researched as other chemokine families. This thesis will focus on of hLtn 

and its variant structures as well as their relationship with its receptor in oral cancer. 

 

Figure 1.10: Immunohistochemistry showing XCR1 expression in oral tissue samples. 

(A) Isotype (negative) control, (B) Normal mucosa, (C) Invasive OSCC islands, and (D) 

Metastatic tumour in lymph node (image taken with permission from Khurram et al. 

(2010)).  

(A) Negative control 

Expression of the chemokine receptor (XCR1) on oral tissue samples 

(B) Normal oral mucosa 

(C) Invasive OSCC islands (D) Metastatic tumour in lymph node 
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Figure 1.11: Immunohistochemistry showing hLtn expression in oral tissue samples. (A) 

Normal oral mucosa, (B) Normal mucosa adjacent to OSCC, (C) Invasive OSCC islands, 

and (D) Metastatic tumour in lymph node (image taken with permission from Khurram et 

al. (2010)). 

 

  

Expression of hLtn on oral tissue samples 

(A) Normal oral mucosa (B) Epithelium adjacent to OSCC 

(C) Invasive OSCC islands (D) Metastatic tumour in lymph nodes 
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1.10 XCR1 

1.10.1 Discovery 

XCR1 is a chemokine receptor that is only activated by hLtn, either XCL1 or XCL2 

(Yoshida et al., 1998). This was discovered by testing several known chemokine 

receptors as well as orphan receptors with only one of them inducing calcium 

mobilization by hLtn (Shan et al., 2000). It is also known as GPR5 as it belongs to the G-

protein coupled receptor family. 

 

1.10.2 Structure 

XCR1 is a transmembrane receptor spanning across the cell membrane and 

comprising of seven-transmembrane α-helix structure with three intra- and extra-cellular 

loops (see Figure 1.12). The N-terminus is located outside the cell and it is usually 

glycosylated. The C-terminus tail is lipoylated to the cell membrane by S-palmitoylation, 

attachment of palmitic acid to a specific cysteine residue via thioester linkage. The 

receptor is made up of 333 amino acids (see Figure 1.13). 
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Figure 1.12: Depiction of XCR1 chemokine receptor amino acids in two-dimensional 

arrangement. The structure consists of extracellular N-terminus and intracellular C-

terminus tail with three both extracellular and intracellular loops. The negatively charge 

extracellular amino acid residues (in red) have the potential to orientate the docking of 

the highly positively charge ligand based on their positioning for ligand-receptor binding. 

Additionally, there is a possibility of a post-translation modification of the N-terminal 

amino acid residues such as O-glycosylation (in pentagon) and tyrosine sulfation (in 

blue). The transmembrane residues largely consist of hydrophobic amino acids (in 

orange). The intracellular amino acids (in green) at the C-terminal tail and the ‘DRY’ 

motif (commonly found motif in chemokine receptors) are the possible residues that 

involves in receptor desensitization through β-arrestin signalling cascade. The C-

terminal tail is attached to the phospholipid bilayer through membrane raft. 
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Figure 1.13: XCR1 chemokine receptor protein sequence. Highlighted in yellow is the 

transmembrane α-helix sequence  

 

Although the protein sequence of XCR1 is known, the exact arrangement on the 

cell membrane has not been described. The sequence alignment shares the same trait 

of that in G protein-coupled receptor with similar length of transmembrane protein and 

~13% identical amino acids position identified (see Figure 1.14). When the sequence is 

aligned with known XCR1 protein sequences of other species such as mouse and rat, 

~69% and ~67% of the amino acids are conserved respectively and ~62% for both 

species alignments to human (see Figure 1.15). Kroczek and Henn (2012) reported 

antigen cross-presentation of mouse XCR1 receptor activated by hLtn suggesting that 

the receptor activation is less species specific but more structure dependant. Among all 

chemokine receptors, XCR1 is the only one that shows this unique functional 

characteristic 

  



Chapter 1: Literature Review 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 31 

 

Figure 1.14: Multiple sequence alignment (MSA) between selected chemokine 

receptors families (CCR2, CXCR4, XCR1 and CX3CR1). Shaded in black indicating 

similar identity (*) of amino acid residues between the receptors while shaded grey is 

strongly similar residues (.). Highlighted in colours are the transmembrane α-helix 

sequence. Consensus: (*) similar identity, and (:) strongly similar. Alignment was 

performed using Clustal Omega and BOXSHADE. The information on the protein was 

obtained from UniProt database. 
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Figure 1.15: Comparison of XCR1 receptor between rat, human and mouse. Shaded in 

black indicating similar identity (*) of amino acid residues between the XCR1 receptors 

of selected species while shaded grey is strongly similar residues (.). Alignment was 

performed using Clustal Omega and BOXSHADE. The information on the protein was 

obtained from UniProt database.  
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1.10.3 Expression 

XCR1 is highly expressed on T-cell lymphocytes mainly CD4+ and CD8+ T-cells 

(Hedrick et al., 1997). The mRNA is strongly expressed in placenta and weakly in spleen 

and thymus (Yoshida et al., 1998). Recently, XCR1 has been shown to be expressed in 

dendritic cells in lymph nodes involved in antigen cross presentation (Kroczek and Henn, 

2012). XCR1 receptor expression has also been shown in normal oral mucosa and in 

OSCC (Khurram et al., 2010). Higher in vitro and in vivo expression was seen in oral 

cancer cells and OSCC compared to normal (Khurram et al., 2010).  

Recently, XCR1 expression has been reported in epithelial ovarian carcinoma 

(Kim et al., 2012) and breast cancer (Gantsev et al., 2013) with up regulation of XCR1 

receptor on the cancer cell surface. This is similar to some other chemokine receptors 

which have been reported to be upregulated in cancer cells to assist survival and growth. 

For example, overexpression of CXCR2 with CXCL1 and CXCL2 (the ligands) in breast 

cancer primes tumour survival at metastatic sites (Acharyya et al., 2012) and migration 

to sites of metastasis appears to involve CXCR4 with elevated expression in 23 different 

types of cancer (Balkwill, 2004b). It appears that the XCR1 receptor may also play a 

similar role in cancer although it is not known whether or not all type of cancer cells 

express XCR1. For example, (Khurram et al., 2010) found out that most OCCL express 

the receptor with variable levels of expression in a range of cell lines but Kim et al. (2012) 

showed that not all epithelial ovarian carcinoma express XCR1. Better understanding of 

XCR1 expression on epithelial cancer cells is needed to help characterise the role of 

XCR1 in other cancers. 
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1.11 hLtn (XCL1 & XCL2) 

1.11.1 Discovery 

The hLtn protein was first discovered during cytokine-producing profiling of 

mouse progenitor-T cell library (Kelner et al., 1994). It was found that this cytokine was 

similar to CC and CXC chemokines and only attracted lymphocytes but not monocytes. 

Hence, it was named lymphotactin. It was also found to be produced in activated CD8+ 

activated and progenitor T-cells with abundance in spleen and thymus. 

The human counterpart of this chemokine, human lymphotactin (hLtn) was 

discovered by three independent groups who named it ATAC (Activation-induced, T cell-

derived, and Chemokine-related molecule) (Muller et al., 1995), SCM-1 (Single C-Motif-

1) (Yoshie et al., 1995) and human lymphotactin (Kennedy et al., 1995). The gene is 

located on chromosome 1q23 in humans (Muller et al., 1995). 

Most of the previous studies focus on XCL1 rather than the second member of C 

chemokine family, XCL2 which is situated at chromosome 1q24 (NCBI, Gene ID: 6846). 

This protein has the same length and amino acids sequence to XCL1. The only sequence 

difference is the 7th and 8th amino acids which does not influence the protein structure. 

XCL2 has slightly higher affinity towards heparin even though the structure is very similar 

(Fox, Nakayama, et al., 2015). This is probably due to the presence of two basic amino 

acids Arginine and Histidine at the 7th and 8th position providing basic residue which 

important in protein – GAG interaction (Hileman et al., 1998).  

 

1.11.2 Structure 

hLtn belongs to the C-chemokine family which only has one disulphide bridge 

interconnected by Cys11 – Cys48. As a result, the structure is somewhat unstable allowing 

it to interconvert between two different conformations (Peterson et al., 2004). 

 hLtn has a molecular weight of 10 kDa (mature hLtn) or 12 kDa (with signal 

peptide). It has the basic structure of a chemokine, with three anti-parallel β-sheets and 

C-terminal α-helix (see Figure 1.16). The protein structure contains 15 basic amino acids 

making it a positively charged protein with a hydrophobic core and containing 114 amino 

acids overall (see Figure 1.17). Proteolytic cleavage removes the signal peptide located 

on Gly21 – Val22 leaving the mature hLtn with 93 amino acids (Peterson et al., 2004). 
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Figure 1.16: hLtn structure in physiological conditions. The canonical chemokine-fold for 

hLtn (left) and the novel dimeric four β-sheets structure (right) that was identified using 

nuclear magnetic resonance (NMR). The image was reproduced from Sun et al. (2011) 

using Pymol. 
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Figure 1.17: Human lymphotactin sequence. Total of 114 amino acids including signal 

peptide (1-21 AA) highlighted in grey and mature protein sequence in yellow (22-114 AA) 

(sequence obtained from Uniprot_P47992). 
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Kuloglu et al. (2001) investigated the solution structure of hLtn and found that it 

has a monomeric structure but with some evidence suggesting it also exists as a dimer. 

The structure is salt and temperature dependent (Kuloglu et al., 2002). It was also found 

that hLtn has two completely different, reversible protein conformations. The chemokine-

like fold is monomeric and predominates at higher salt concentrations and at 10oC 

temperature. The novel dimeric structure can be found at lower salt concentrations and 

at a temperature of 40oC. Interestingly, both are distributed equally in physiological 

conditions (temperature 37oC) (see Figure 1.18) and the conversion rate is ~1/s 

(Volkman, Liu and Peterson, 2009). It was suggested that this is due to the significant 

ionic strength required to hold the chemokine-fold. Molecular dynamic simulation also 

shows the importance of the salt concentration and temperature in the protein structure 

(Formaneck, Ma and Cui, 2006). The temperature dependence of ion-protein is sensitive 

to the local sequence especially at the C-terminal tail (Ma and Cui, 2006). It has been 

suggested that ionic charges in salt holds tryptophan of the α-helix structure pack 

together, conserving the structure (Lakemond et al., 2000; Raghuraman and 

Chattopadhyay, 2006). Volkman, Liu and Peterson (2009) speculated that Arg23 and 

Arg43 hold the key to both structures’ conversion by charge repulsion. But this only 

explains structural changes when considering the salt concentration. In the temperature 

scenario, dissociation of bonds holding the hydrophobic core is a probable explanation. 

Ala49, Ala53 and Val59 provide a hydrophobic pocket for tryptophan and hold the α-helix 

structure and the β-sheet together. High energy breaks the bond that holds the structure. 

Nevertheless, it is difficult to explain how this can be translated in vivo and how 

physiological conditions allowing equal distribution of both hLtn forms. 
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Figure 1.18: Distribution of hLtn forms at different temperatures. At low temperature, 

hLtn exists mostly in the canonical-chemokine fold (left) while a dimeric form exists at 

high temperatures 40°C (right). The structures are in equilibrium at 37°C (physiological 

condition, middle). 

 

The conformation change between two protein structures in hLtn is a two-step 

process with no intermediary stable species (Tyler et al., 2011). Some suggest that 

conformational change requires a “bridge” between the two structures (Sauer et al., 

2000). Other proteins such as the Mad2 spindle checkpoint protein and chloride 

intracellular channel 1 (CLIC1) are known to demonstrate the ability to switch between 

different fold (Bryan and Orban, 2010). Yet both are not as unique as hLtn as they form 

a stable intermediate variant while hLtn can interconvert without an intermediate. A 

model simulation shows that interconversion between two different protein 

conformations lies in the conserved local contacts that allow the reversible change 

(Camilloni and Sutto, 2009). Furthermore, the rearrangement is freely reversible with no 

effect from repeated temperature titrations (Tuinstra et al., 2007). Organic acids abrupt 

the disulphide bridge result in loss of tertiary and secondary structure as well as cold 

denaturation where the wild type hLtn is the most sensitive compared to the mutant 

variants (Sun et al., 2011).  

Kroczek and Henn (2012) reported cross-species activation of hLtn and XCR1. 

The study was performed using hLtn to activate XCR1 receptor in the mouse. By 

comparing the structure for several species (see Figure 1.19), 20 amino acids are shown 

to be conserved across species. This illustrates that hLtn activation of XCR1 may be 

related to the structure rather than specific amino acid sites on the protein. Further 

investigation of cross-presentation may elucidate further this theory.  

(Dorner et al., 1997) identified that almost 40% of hLtn is O-linked glycosylated 

and the remaining are terminally sialylated. Others also report that some of the hLtn 
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population is partially folded (Marcaurelle et al., 2001). hLtn can still activate Ca2+ 

signalling and chemotaxis without the presence of glycosylation but the biological activity 

is slightly reduced (Dong et al., 2005). This confirms that hLtn is functional even in 

unglycosylated form. Furthermore, producing hLtn using mammalian or insect cells will 

produce less yield and time consuming compared to E. coli while maintaining 

glycosylation. 

 

 

 

Figure 1.19: Comparison of hLtn (XCL1) in several species. (A) Alignment of XCL1 in 

different species). Shaded in black indicating similar identity (*) of amino acid residues 

between the receptors while shaded grey is strongly similar residues (.). All contains 114 

amino acids (including signal peptide) except for bovine and chicken (only 97 amino 

acids), and boar (110 amino acids). (B) Taxonomy of hLtn between the species. The 

protein sequences were obtained from UniProt website and the multiple sequence 

alignment (MSA) was performed using Clustal Omega and Boxshade.  
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1.11.3 Expression 

hLtn is primarily expressed in spleen and lung tissue (Kelner et al., 1994; Yoshida 

et al., 1999) but the specific cells expressing hLtn in these tissues have not been 

reported. Mostly, hLtn expression can be seen in activated CD8+ T-cells (Muller et al., 

1995), progenitor T-cells (Kelner et al., 1994), natural killer (NK) cells (Hedrick et al., 

1997), neutrophils (Huang et al., 2001) and lymphocytes to induce chemotaxis as part of 

the immune response.  

hLtn can also be expressed in non-lymphoid cells. Recently, the expression was 

reported in synovial fluid of patient with meniscal tears in their knee (Nair et al., 2015). 

Human intestinal mast cells also express multiple chemokines including hLtn due to its 

immunoregulatory role (Feuser et al., 2012). The synovial fluid of patients with 

rheumatoid arthritis has also been shown to contain hLtn indicating that hLtn play a role 

in the immune response and chronic inflammatory conditions outside the lymphoid 

system (Blaschke et al., 2003). 

 

1.11.4 Functions 

hLtn or XCL1 is a chemotactic chemokine which only attracts leukocytes and T-

cells. hLtn binds with high affinity to glycosaminoglycan (GAG) which is important for the 

interaction with lymphocytes in vivo (Peterson et al., 2004). 

Some studies suggest a role for hLtn in allograft rejection (Wang et al., 1998). 

The level of mRNA is highly upregulated in the transplant area whilst none is detectable 

in isografts. This suggests that hLtn is an immune system mediator, recruiting 

lymphocytes during organ rejection. 

  



Chapter 1: Literature Review 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 40 

1.12 hLtn and XCR1 in Tumour Biology 

The first recorded involvement of hLtn and XCR1 in tumour biology was by 

Khurram et al. (2010). In this study, normal oral epithelial cell was shown to express 

XCR1 receptor as well as cancer cells. This was also the first time that XCR1 receptor 

expression was demonstrated outside the immune system and inflammatory cells. Oral 

cancer cell lines were also shown to contain hLtn mRNA and cytoplasmic protein.  

Six years ago, (Kim et al., 2012) showed that primary and metastatic human 

epithelial ovarian carcinoma cells express XCR1 receptor while the normal ovarian 

epithelial cells do not. It was also demonstrated that XCR1 receptor expression induced 

pro-metastatic behaviour in the cells. This suggests a role for the XCR1 receptor in 

facilitating metastasis.  

XCR1 was also found to be expressed in breast cancer which contributes to 

lymphoid neo-organogenesis (Gantsev et al., 2013). Müller et al. (2001) performed a 

screening of chemokine receptor expression and found no XCR1 expression in breast 

cancer cells and normal primary mammary epithelial cells except for malignant 

melanoma cells. This indicates that XCR1 is not necessarily expressed by all breast 

cancer cell lines. Even in OSCC, although, a range of all oral cancer cell lines express 

XCR1, the level varies widely (Khurram et al., 2010).  

OCCL contain cytoplasmic hLtn but the stimulus of secretion is not known 

(Khurram et al., 2010). It would be interesting to investigate factors that induce release 

of hLtn from cancer cells. This will allow an understanding of the mechanism in relation 

to metastasis. 
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1.13 hLtn (XCL1) Variants 

To study both hLtn functional structures, stable production of mutant variants is 

required. This would allow the hLtn10 and hLtn40 variants to remain locked in the 

designed state even at different temperature and physiological conditions. 

 

1.13.1 hLtn10 variant 

The first paper on the production of mutant hLtn10 was published in 2007 

(Tuinstra et al., 2007). The paper proposed the addition of a second disulphide bridge, 

which wild-type hLtn lacks in order to hold the protein structure into its canonical 

chemokine-fold. By comparing hLtn to a CC chemokine, CCL15 (see Figure 1.20), CC1 

and CC3 mutant sequences were acquired. Both were tested for chemokine functional 

activity. 

 

 

Figure 1.20: Sequence alignment for initial hLtn10 variant structure validation. The 

sequences were compared against a CC chemokine (CCL15) with three disulphide 

bridges to predict the placement of the second disulphide bond for hLtn to create the 

canonical chemokine fold. The CC1 mutant is based on the first disulphide alignment to 

CCL15, while the CC3 mutant disulphide is based on the additional unusual third 

disulphide bridge present in CCL15. The sequences were obtained from UniProt website 

and the MSA performed using ClustalOmega and Boxshade. The image was reproduced 

from Tuinstra et al. (2007). 

 

The CC1 mutant has a cysteine addition at location T10C and Ala-Cys dipeptide 

insertion between Gly32 and Ser33. hLtn lacks disulphide connection between the N-

terminal and the 30s loop compared to other chemokine family. Tuinstra et al. (2007) 

suggested that this locks the protein into hLtn10 conformation but may also restrict its 

biological function and mobility as it lacks cysteine on the 30s loop. A second design of 

hLtn10 variant was also constructed, CC3 by overlapping it with the third disulphide 



Chapter 1: Literature Review 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 42 

bridge location of CCL15. The overlaid structure proposed hLtn mutation at V21C and 

V59C (see Figure 1.21). Both hLtn10 mutants retain their structure even when 

introduced to extreme temperature (hLtn40 conditions). Ca2+ flux activation was studied 

to determine functionality, with CC1 and CC3 both showing the same EC50 value (half 

maximal effective concentration) compared to the wild-type (normal hLtn). 

XCR1 is activated by hLtn but the mechanism is yet not fully understood. Some 

researchers suggest that N-terminus is important for receptor activation while others 

suggest the C-terminus is equally important for activation in vivo (Tuinstra et al., 2007). 

Tuinstra et al. (2007) showed that the N-terminus is important in XCR1 activation. 

Experiment was performed using truncated mutant protein where the first Valine of the 

mature hLtn sequence was replaced or the N-terminus has an additional resulting in no 

Ca2+ flux activation. Thus, the authors suggest that the C-terminus does not have a role 

in XCR1 activation. The variant that showed no response lacks the α-helix structure and 

adopts the hLtn40 conformation. However, Hedrick et al. (1997) reported that the 

truncated C-terminal hLtn is inactive and suggested it is likely to be important in vivo. 

This suggests that hLtn can behave rather differently in vivo. Some of the experiments 

reported in literature were performed using commercial hLtn lacking the first Valine 

indicating that this was functionally active in vitro (Khurram et al., 2010). These first 

Valine may thus not be essential, but the activity may be less compared to hLtn with 93 

amino acids. This remains to be elucidated. 

Tuinstra et al. (2007) replaced all the methionine residues in the hLtn sequence 

to accommodate the purification and cleavage process during protein production using 

cyanogen bromide (CnBr). Although it did not cause any major alteration to the protein 

structure, it is usually ideal to keep the protein sequence changes to a minimum to allow 

close resemblance to the natural form. Furthermore, although it was also reported that 

CC1 and CC3 both have the canonical chemokine-fold and activity, the paper only 

provides detail of the CC3 construct and not the other construct. This is probably due to 

the mutation applied where CC3 structure has more resemblance to the wild type hLtn 

which its 30s loop of the structure is not restricted. 
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Figure 1.21: hLtn10 mutant variant. Conversion of hLtn structure (left) to hLtn10 mutant 

variant (right) performed by adding an extra disulphide bridge, where Val21 and Val59 are 

both replaced by cysteine. The image was inspired from Sun et al. (2011) and created 

using Pymol. The protein structure files (ID: 1J9O and 2HDM) were obtained from PDB 

website. 
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1.13.2 hLtn40 variant 

To create hLtn40 variant, changing the only tryptophan in the sequence, Trp55 to 

aspartic acid (Asp) removes the α-helix structure that holds the hydrophobic core of the 

protein, allowing it to form the novel four β-sheets structure (see Figure 1.22) (Tuinstra 

et al., 2008). Due to their proximity, Ala49, Ala53 and Val59 together with Trp55 create a 

hydrophobic pocket, holding the α-helix structure in canonical chemokine-fold.  

In hLtn40, the N-terminus forms a new β-sheet structure, denoted as β0-sheet. 

While β1, β2 and β3 sheets still exist in the conformation, they undergo some changes. 

The β-sheets are slightly longer in hLtn40 and the β2-sheet is shifted forming an anti-

parallel β-sheet connection with the β1 and β3 strands (see Figure 1.23). Furthermore, 

the 30s and 40s loop of hLtn40 is shorter. This structure replaces virtually all the tertiary 

interactions in hLtn10 with different tertiary and quaternary contacts in hLtn40. 

Furthermore, the hydrophobic core region hidden in hLtn10 is exposed in hLtn40. This 

leads to dimer formation in solution. The Lys25 and Glu31 of hLtn40 stabilize the dimer by 

hydrophobic and electrostatic interaction (see Figure 1.24). In addition, the hLtn40 β2 

strand seems to rotate 180o during this conversion. The R groups of Val37, Phe39 and 

Thr41 that are buried in the hydrophobic core of hLtn10 structure are completely solvent-

exposed in hLtn40. Val37 and Phe39 contribute to the hydrophobic core of the monomer 

form and are essential in stabilising the canonical chemokine-fold. 

The hLtn40 variant has a high affinity for heparin (Tuinstra et al., 2008). This is 

important in vivo as glycosaminoglycans (GAGs) are a highly abundant component in 

the ECM and on the cell surface. A class of GAG, heparin/heparan (HSGAG) plays a 

role in biological activities such as cell adhesion (Sasisekharan, Raman and Prabhakar, 

2006). GAGs provide a platform for cell adhesion and interacts with the cell through cell-

substratum adhesion and hyaluronate in GAGs contributes to appropriate cell 

movement. The hLtn10 mutant can activate XCR1 in the presence of heparin whereas 

both the hLtn40 and wild type hLtn are unable to do so (Tuinstra et al., 2008). This raises 

the question of the role of the ECM in vivo or whether other molecules may be required 

to allow hLtn-XCR1 association. Also, heparin may be key as it provides hLtn with a 

tendency to remain in hLtn40 structure in vivo. Furthermore, while the active chemokine-

fold polymerizes and binds to the cell surface GAG (Hoogewerf et al., 1997), the wild 

type hLtn and hLtn10 variant have less or no affinity towards it (Tuinstra et al., 2008). 
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Figure 1.22: hLtn40 mutant variant. Conversion of hLtn structure (left) to hLtn40 mutant 

variant (right) is achieved by substituting tryptophan (W) to aspartic acid (D) in the α-

helix structure on position 55th amino acid. Tryptophan residue is responsible for holding 

the α-helix structure of canonical hLtn fold. The image was inspired from Sun et al. (2011) 

and created using Pymol. The protein structure files (ID: 1J9O and 2JP1) were obtained 

from PDB website).  
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Figure 1.23: Comparison of the β-sheets structure for hLtn10 (top) and hLtn40 (bottom) 

of wild type conformation. Amino acids in square boxes (□) are the one that involve in β-

sheet. Blue dotted-lines (  ) are the hydrogen bonds forming between the β-sheets. 

Amino acids in blue are basic while in orange are the residues that contribute to the 

structure hydrophobic core. The image was reproduced and adapted from Kuloglu et al. 

(2002) . 
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Figure 1.24: Hydrophobic and electrostatic stabilization of hLtn40 dimer. The image on 

the left is the dimer presented with the surface electrostatic potential. (A) Side view of 

protein dimer. Lys25, a basic amino acid (R group in blue) and Glu31, an acidic amino 

acid (R group in red) (shown in sticks) are solvent exposed, forming a salt bridge 

(combination of electrostatic interaction and hydrogen bonding with water). (B) Aerial 

view of the protein dimer displaying (C) the hydrophobic contacts (in orange) forming 

the dimer core (Leu24, Ala36, Ile38, Ile40) with white and grey surface shade. In monomer, 

the responsible R groups are solvent exposed, resulting in a totally different hydrophobic 

core contacts (refer Figure 1.23). The image was created using Pymol and the protein 

structure file (ID: 2JP1) was obtained from PDB website. 
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1.14 Studies on hLtn 

There are several studies on hLtn in relation to its use in potential as a therapeutic 

agent. (Cairns et al., 2001) stated that transforming myeloma cells to express hLtn, 

reduces their growth. By transfecting hLtn-expressing myeloma cells into nude (immune 

system inhibited) and BALB/c (laboratory-bred) mice, tumour growth was reduced. hLtn 

recruits CD4+ and CD8+ T-cell as well as neutrophils to the tumour sites as part of the 

antitumor response and this may explain these findings. 

A study by Fossum et al. (2015) used a XCL1-fusion protein to target influenza 

virus. The DNA vaccines encodes a dimeric XCL1-hemagglutinin fusion protein 

vaccibodies targeting XCR1 expressing dendritic cells to induce T-cell responses. Guzzo 

et al. (2013) discovered that hLtn inhibits HIV-1 virus entry to host cells at an early stage, 

although it requires the hLtn40 variant structure for the blockade. HIV-1 virus usually 

mimics surface receptors on the cell surface to allow fusion and entry (Wilen et al., 2012). 

The possible explanation is that the dimer is blocking the activation of XCR1 as the 

receptor is found to be novel co-receptor for XCR1 (Shimizu et al., 2009). 

hLtn also has potential as an antimicrobial agent (Nguyen and Vogel, 2012; 

Nagata, Nishiyama and Ikazaki, 2013). By using Nuclear Overhauser Effect 

Spectroscopy-Nuclear Magnetic Resonance NOESY-NMR, the dimer interface is 

observed to have clusters of high positively charged surface that can interact with 

bacterial membranes. 

Recently, cytomegalovirus was discovered to express vXCL1 (v denotes virus) 

with 96 amino acids and which can be used by the virus to hide from immune system 

(Geyer et al., 2014). The structure is similar to hLtn and can be detected 13 hours after 

infection. The vXCL1 can attract CD4(-) XCR1-expressing dendritic cells and subvert the 

immune response. 

CXCL10 and hLtn were recently adapted to form a fusokine, a fusion of two 

cytokines for therapeutic potential (Sanchez-Lugo et al., 2015) to increase the 

bioavailability and therapeutic potential of the chemokines. The result showed higher 

chemotactic effect compared to individual chemokines alone in attracting CXCR3 

expressing tumour cells. Although it is not known whether the fusokine can attract XCR1 

expressing cells as well. 
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1.15 Aims and Hypotheses of the Study 

hLtn and XCR1 have shown to be involved in oral cancer progression and may 

play a role in local spread and lymph node metastasis. Also, due to its metamorphic 

properties, we want to further understand the contribution of each hLtn conformation in 

cancer pathogenesis. 

The overall aim of this study is to investigate further the roles of hLtn and XCR1 

in OSCC in the context of the tumour microenvironment. Ultimately, the aim to produce 

a functional hLtn variant mutants with locked conformation and study their effect on the 

behaviour on oral cancer cell lines. The specific aims of each chapter are listed below: 

1) Chapter 2: Ex Vivo Expression of XCR1 and hLtn in Oral Cancer Tissues 

and Lymph Nodes 

 To investigate and quantify the ex vivo expression of XCR1 receptor and hLtn 

and to compare expression between primary tumour and metastatic deposits 

and correlate with clinicopathological features. 

 
2) Chapter 3: Regulation of XCR1 and hLtn (XCL1) Expression in Oral Cancer 

Cell Lines by hLtn & Conditioned Media from Oral Fibroblasts 

 To determine the role of hLtn in regulation of the XCR1 receptor in OCCLs. 

 To understand the role of fibroblasts, in context of tumour microenvironment 

on the expression of XCR1 and hLtn in OCCLs. 

 

3) Chapter 4: Design and Production of Recombinant hLtn Variants 

 To design and produce functional hLtn variants (WT, CC3 and W55D mutant).  

 
4) Chapter 5: The Effect of Recombinant hLtn on the Behaviour of Oral Cancer 

Cell Lines  

 To study the effect of hLtn and each locked conformation of hLtn on the 

behaviour of OCCLs in range of effects (proliferation, adhesion and 

migration). 

 



CHAPTER 2 

EX VIVO EXPRESSION OF XCR1 
AND hLtn IN ORAL CANCER 
TISSUES AND LYMPH NODES 



Chapter 2: Ex vivo Expression of XCR1 and hLtn in Oral Cancer Tissues and Lymph Nodes 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 51 

CHAPTER 2: EX VIVO EXPRESSION OF XCR1 AND hLtn IN ORAL CANCER 
TISSUES AND LYMPH NODES 

2.1 INTRODUCTION 

XCR1 and hLtn expression has been shown to be present in normal and 

cancerous tissue. In case of oral mucosa, the expression is seen in the basal layer of 

normal epithelium, whereas expression is more diffuse in primary oral squamous cell 

carcinoma (OSCC) and metastatic deposits (Khurram et al., 2010). Due to the proximity 

and OSCC preference for lymphatic spread, metastasis is usually to lymph nodes. XCR1 

mRNA expression has been shown in normal placenta, spleen and thymus tissue 

(Yoshida et al., 1998). While in lung (T. Wang et al., 2015), breast (Yang et al., 2017), 

and ovary (Kim et al., 2012), XCR1 receptor is present only in cancerous tissue. While 

for hLtn, expression in tissue only has been shown in OSCC (Khurram et al., 2010) but 

none has been reported in other cancers. The literature is heavily focussed on the 

receptor but not on the ligand hLtn. This chapter further investigated the expression of 

XCR1 receptor and its ligand in primary and metastatic OSCC, and reactive lymph node. 

Literatures suggest that like other chemokines, spatial expression of XCR1 by tumour 

cells and hLtn in lymph node may contribute to lymphatic spread.  

 

2.2 AIM 

The aim of this chapter is to investigate and quantify the ex vivo expression of 

XCR1 receptor and hLtn and to compare expression between primary tumour and 

metastatic deposits and correlate with clinicopathological features. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Materials 

List of detailed information of the materials (reagents, kits, equipment, software 

and miscellaneous) used in the chapter can be found in Appendix 1-5. 
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2.3.2 Tissue cohort 

Tissue samples were identified using the local pathology database and retrieved 

from the archive (ethical approval reference 07/H1309/150) (Table 2.1). A cohort of 15 

samples was chosen including five primary oral tumours with matched metastatic lymph 

nodes and, five reactive lymph nodes.  

Table 2.1: Clinicopathological data of the patient tissue cohort 
 

Tumour 

Total number of patients 5 

Sex 

Men 3 

Women 2 

Age: median [range] 66 [40-72] 

Tumour grade 

Well - 

Moderate 2 

Poor 3 

Tumour size (mm) 26 [9-50] 

Tumour invasion depth (mm) 8 [2-27] 

Lymphovascular invasion 2 

Perineural invasion 3 
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2.3.3 Haematoxylin and Eosin (H&E) Staining  

Principle: Haematoxylin is a basic dye that has the affinity to stain acidic or basophilic 

structures purplish blue. DNA in the nucleus, and RNA in ribosomes and in the rough 

endoplasmic reticulum are both acidic, thus haematoxylin binds to them and stains them 

purple. Eosin is an acidic solution (negatively charged) which stains basic or acidophilic 

structures red or pink. Cytoplasm contains many proteins, which are basic allowing eosin 

to bind to these proteins and stains them pink (Figure 2.1). Under optical microscopy, 

the observation of tissue can be described as the following: erythrocytes are cherry red; 

collagen is pale pink; cytoplasm is reddish pink and nuclei are bluish purple. 

 

Figure 2.1: Explanation of H&E staining. 

Procedure: 5 µm thick sections from FFPE (formalin-fixed paraffin-embedded) tissue 

blocks were mounted on SuperFrost® Plus microscope slide (Thermo Scientific, Paisley) 

and heated in an oven at 65°C for 15 minutes to allow the tissue to bind to the slide 

surface. Xylene was used to deparaffinise the tissue slides and ethanol to dehydrate the 

FFPE tissue. The sections were stained using a Leica ST4040 machine with setting 45 

seconds per solution as in Table 2.2. The tissue was covered in mounting media DPX 

(Cat#: 44581; Sigma-Aldrich, Dorset, UK) and glass cover slips used to cover the tissue. 

The slides analysed using a widefield light microscope attached with camera. Images 

were obtained using Cell^D software (Olympus, Essex, UK). 

  

Nucleus 
(Haematoxylin) 
Purplish-blue 

Cytoplasm 
(Eosin) 
Reddish-Pink 

Normal cell 

Red blood cell 

Extracellular matrix 
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Table 2.2: Iteration washing step for haematoxylin & eosin (H&E) staining. 

No  Solution Function 

1  Xylene 
Deparaffinise the FFPE 

Intermediate clearing solvent 
2  Xylene 

3  Xylene 

4  99% IDA 

Dehydrate tissue section 5  99% IDA 

6  70% IDA 

7  Distilled water 
Tissue hydration 

8  Distilled water 

9  Harris’ haematoxylin (Shandon) 

Stain nucleus 
10  Harris’ haematoxylin (Shandon) 

11  Harris’ haematoxylin (Shandon) 

12  Harris’ haematoxylin (Shandon) 

13  Running tap water To remove residual haematoxylin 

14  0.1% (v/v) acid alcohol To remove the haematoxylin that does not attach 

15  Running tap water To remove residual acid alcohol 

16  
Scott’s Tap Water Substitute 

To intensify the blue colour from the haematoxylin 

stain  

17  Running tap water To remove residual Scott’s tap water 

18  Eosin Y – aqueous (Shandon) 

Stain cytoplasm 19  Eosin Y – aqueous (Shandon) 

20  Eosin Y – aqueous (Shandon) 

21  Running tap water To remove residual eosin 

22  99% IDA 

Dehydrate the tissue section 23  99% IDA 

24  99% IDA 

25  Xylene 

Intermediate clearing solvent 
26  Xylene 

27  Xylene 

28  Xylene 
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2.3.4 Immunohistochemistry (IHC) Staining by Precipitation 

Principle: IHC is a technique to investigate the distribution and spatial localization of 

specific protein of interest in tissue. The technique uses an antibody to target the epitope 

of the protein of interest. Biotinylated secondary antibody is used which binds to the 

primary antibody raised to recognise specific epitope of the animal used to produce the 

primary antibody. Avidin-biotin complex is added to further enhance the signal detection. 

For the enzyme substrate, peroxidase is added in conjunction of the chromogen used 

for optical identification of the antibody location on tissue section attachment. The 

mechanism of the staining is summarised in Figure 2.2 below. 

 

Figure 2.2: Illustration of steps involved in IHC. 

Procedure: 5 µm thick tissue sections were treated with xylene to remove wax and then 

in ethanol for 5 min twice each. Hydrogen peroxide (2%) in methanol was used to block 

endogenous peroxidase for 20 minutes. Heat-induced antigen retrieval (HIAR) was 

performed by submerging the slides in 10 mM sodium citrate buffer (pH 6.0) and heating 

for 8 min at maximum power in a microwave. Non-specific protein binding was blocked 

by incubating the tissue section for 30 min with 100% serum (goat serum for antibodies 

raised in rabbit and horse serum for antibodies raised in mouse). Polyclonal anti-human 

XCR1 antibody (Cat#: LS-A158; LS-Bio, Nottingham, UK) (concentration 10 µg/mL) and 

monoclonal anti-human XCL1 antibody (Cat#: LS-B5938; LS-Bio, Nottingham, UK)  

(concentration 20 µg/mL) were placed onto the respective slides overnight at 4°C. For 

1) Primary antibody 
addition 

Primary antibody was 
incubated to allow them 
to adhere to the epitope 
of the protein. 

2) Biotinylated 
secondary antibody 
addition 

Secondary antibody 
biotin-conjugated was 
added to bind to primary 
antibody epitope. 

3) Avidin-biotin 
complex (ABC) 
addition 

Pre-incubated avidin-biotin 
complex aliquot was used 
to enhance the signalling. 

4) Enzyme substrate 
addition 

NovaRed substrate with 
peroxidase added to react 
with the ABC to allow 
precipitation to occur, 
facilitating optical 
detection. 
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negative control and blocking, goat serum was used for XCR1 and horse serum for 

XCL1. The excess primary antibody was tipped, and the residual was washed off twice. 

All the washing steps were performed with PBS. Secondary antibody from Vectastain® 

Elite® ABC-HRP Kit with Peroxidase was incubated for 30 minutes in respective treated 

slides; rabbit IgG (Cat#: PK-6101, Vectastain, UK) for XCR1 while mouse IgG (Cat#: PK-

6102, Vectastain, UK) was used for XCL1. Avidin-biotin complex (ABC) solution was 

prepared 30 minutes before application onto the slides in accordance with the 

manufacturer’s instruction (VectorStain Elite ABC kit, 2 drops solution A + 2 drops 

solution B per 5 ml PBS). The slides were washed twice for 5 min each and the tissues 

were left in ABC solution for another 30 minutes. The slides were washed twice before 

incubated with Vector NovaRed peroxidase (HRP) substrate (Cat#: SK-4800, Vector 

Laboratories, UK) solution mix. The reaction was stopped with distilled water after 5 min 

or as soon as colour developed. Counterstaining was performed with haematoxylin and 

dehydrated before mounting the slides was mounted in DPX mounting media (Cat#: 

44581; Sigma-Aldrich, Dorset, UK) before analysis under light microscope. The images 

were taken using Cell^D software using light microscope (Olympus, Essex, UK). 

 

2.3.5 Immunohistochemistry Quantification 

IHC stained tissue was scanned using TissueFAXS Slide Loader 120 Histo 

(Wien, Austria). The analysis was performed using HistoQuest Analysis Software by 

Tissue Gnostics Imaging Solution (Vienna, Austria) to quantify the percentage of positive 

cell expression and the mean intensity stains of the positive expressing cells. Six regions 

of interests (ROIs) per slide of equal size were selected covering a total area of 0.3 mm2 

in each tumour section of primary and metastatic tumour as well as for their stromal 

region for analysis. The average percentage of positive cells were calculated by the 

software based on the threshold of NovaRed intensity level set by the user (information 

is available in Appendix 6).  

 

 
2.3.6 Statistical Analysis 

Paired Student’s t-test was used to identify the significance of the mean 

expression of the specimen.  
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2.4 RESULTS 

2.4.1 Histological Analysis of XCR1 and hLtn of Oral Cancer Tissue Sample. 

In normal oral epithelium, the XCR1 expression was predominantly seen in the 

basal layer (Figure 2.3). Expression can also be seen in lymphocytes in the superficial 

connective tissue. A similar trend was seen for hLtn expression. The basal cell staining 

pattern in normal epithelium suggests that XCR1 might be expressed by progenitor/stem 

cells as these reside in the basal layer of normal oral tissue. Staining for hLtn was 

somewhat different and only seen focally and not throughout the oral epithelial basal 

layer. Other than that, some fibroblasts population, patrolling lymphocytes and 

endothelial cells in the connective tissue was also stained with XCR1 and a weaker stain 

for hLtn. 

In primary oral squamous cell carcinoma (OSCC), XCR1 staining was seen in 

throughout the carcinoma epithelium with greater intensity in the basal compartment and 

areas of invading OSCC islands (Figure 2.4). Notably, the XCR1 staining was seen 

throughout the epithelium layer, not confined in the basal layer like in normal oral 

epithelium. Similarly, hLtn staining was also seen in the epithelium and the invasive 

epithelial islands. Expression of both XCR1 and hLtn by the same cells suggests a 

possible autocrine signalling mechanism in OSCC. Lymphocytes in the connective tissue 

are positively stained for XCR1 and hLtn. Similar staining seen by endothelial cells, 

although they have a weaker hLtn stain. Compared to the underlying connective tissue 

of normal oral mucosa, the fibroblast cells in the ‘reactive stroma’ stained with XCR1 and 

hLtn with a noticeable intensity. 

In the case of metastatic OSCC in the lymph node, the tumour cells showed 

strong staining for XCR1 and hLtn (Figure 2.5). The representative sample showed that 

the metastatic carcinoma populated the central region of the node and spread outward 

to the peripheral cortex. Lymphocytes and the endothelial cells in the metastatic node 

also showed XCR1 and hLtn expression, as well as the fibroblasts in the reactive stroma 

(see Appendix 7).  
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Figure 2.3: Normal oral mucosa (representative photomicrograph). (A) H&E staining at 

100× magnification, (B, C, D) XCR1 staining at 100×, 200× and 400× magnification 

respectively, and (E, F, G) hLtn staining at 100×, 200× and 400× magnification 

respectively. XCR1 and hLtn staining is seen in the basal oral epithelium. In the 

superficial connective tissue layer, lymphocytes and endothelial cells are positively 

stained with XCR1 and hLtn, although the latter is weakly stained. Some fibroblasts show 

weak XCR1 and hLtn staining. The angled arrow indicates a blood/lymph vessel. 
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Figure 2.4: Primary oral squamous cell carcinoma with invasive carcinoma to the 

underlying connective tissue (representative photomicrograph). (A) H&E staining at 100× 

magnification, (B, C, D) XCR1 staining at 100×, 200× and 400× magnification 

respectively, and (E, F, G) hLtn staining at 100×, 200× and 400× magnification 

respectively. XCR1 staining is seen throughout the oral epithelium and invasive 

carcinoma and not just the basal layer. Strong hLtn staining is also seen throughout the 

epithelium as well by the invasive carcinoma. Lymphocytes and endothelial cells also 

show XCR1 (weak for endothelial cells) and hLtn staining within the connective tissue. A 

noticeable population of fibroblasts also stain for XCR1 and hLtn. The angled arrow 

indicates a blood/lymph vessel. 
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Figure 2.5: Metastatic carcinoma in the lymph node where the invading carcinoma 

spreading outwards to the outer cortex (representative photomicrograph). (A) H&E 

staining at 100× magnification, (B, C, D) XCR1 staining at 100×, 200× and 400× 

magnification respectively, and (E, F, G) hLtn staining at 100×, 200× and 400× 

magnification respectively. The XCR1 and hLtn staining is seen the metastatic carcinoma 

and the lymphocytes. hLtn stain pattern distribution is weaker by lymphocytes in the 

cortex region. The total magnification and scale bar of the photomicrograph are as stated 

in their respective picture.  
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2.4.2 Histological Analysis or XCR1 and hLtn in Reactive Lymph Nodes 

In the cervical lymph nodes (Figure 2.6), diffuse XCR1 expression was seen in 

lymphocytes. B and T lymphocytes has been previously reported to express XCR1 and 

hLtn (Huang et al., 2001). Strong expression of hLtn was seen in germinal centres where 

mature B lymphocytes proliferate and differentiate, suggestive of hLtn involvement in B 

lymphocyte proliferation. Additionally, stronger XCR1 and hLtn staining was seen found 

in the cortex and paracortex peripheral region. Endothelial cells lining the vascular and 

lymphatic channels as well as the subcapsular sinus (SS) in the lymph nodes also 

expressed both XCR1 and hLtn. These may be important in trafficking lymphocytes and 

tumour into the lymph node.  

 

Lymphocytes 

Endothelial cell 

(A) H&E (200×) 

(B) XCR1 (200×) 
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Figure 2.6: XCR1 and hLtn staining in cervical lymph nodes (representative 

photomicrograph). (A) H&E, (B) XCR1, and (C) hLtn staining at 200× magnification. 

Staining for both was seen in lymphocytes in the peripheral cortex region and medulla. 

Endothelial cells also stained positive for both XCR1 and hLtn, as well as fibroblasts. 
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2.4.3 Quantitative Comparative Analysis of XCR1 and hLtn Expression in 
Primary and Metastatic Tumour. 

To understand whether OSCC progression correlates with the expression of 

XCR1 receptor and hLtn, the expression in patient tissue was quantified using 

HistoQuest software. Staining was evaluated in terms of positivity and the intensity in the 

tumour and the stroma.  

 High expression of XCR1 was present in OSCC with 90.68% ± 4.246 and 94.18% 

± 3.308 in primary and metastatic tumours respectively. There was no significant 

difference in staining between primary and metastatic tumour. However, regarding 

expression intensity, the metastatic tissue with 59.73% ± 7.889 was significantly higher 

(p=0.019) compared to the primary tumour with 34.27% ± 3.655 (Figure 2.7 (a)). In the 

stroma, the metastatic tumours had significantly higher XCR1 expression (p=0.0175) 

with a mean of 74.51% ± 16.51 than primary tumours (mean: 24.85% ± 2.076) (Figure 

2.7 (b)). No significant difference in expression intensity was detected between 

metastatic deposit stroma (mean: 37.22% ± 9.205) and primary OSCC stroma (mean: 

24.93% ± 2.074). 

 Unlike the hLtn distribution in the tumour tissue, there were no significance 

difference in staining between metastatic (mean: 95.57% ± 0.916) and the primary OSCC 

(mean: 72.19% ± 15.06) (Figure 2.8 (a)). The expression intensity in metastatic tumour 

(mean: 53.95% ± 8.756) was slightly lower than primary tumour (mean: 58.32% ± 3.219) 

with no significant difference. Moderate positive expression of hLtn in the stromal cells 

of both primary (mean: 48.35% ± 13.39) and metastatic OSCC (mean: 71.67% ± 9.771) 

was observed (Figure 2.8 (b)). A similar pattern was identified for the expression 

intensity. Both the amount of positive expression and the intensity of staining for hLtn 

between primary and metastatic tumour was not significantly different. 
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Figure 2.7: Histological quantification of XCR1 positive and intensity expression 

between primary and metastatic in oral (A) tumour and (B) stroma (n=5). The settings 

can be referred in Appendix 6.  

(A) 

(B) 
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Figure 2.8: Histological quantification of hLtn positive and intensity of expression 

between primary and metastatic in oral (A) tumour and (B) stroma (n=5). The settings 

can be referred in Appendix 6. 
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2.5 DISCUSSION 

The results show XCR1 and hLtn are present in oral tissue, in normal reactive 

lymph nodes as well as primary and metastatic oral squamous cell carcinoma (OSCC). 

This is in agreement with the novel findings of Khurram et al. (2010) showing XCR1 

expression in oral tissues. From the results of this investigation and the previous study, 

XCR1 expression can be seen primarily in the basal (Khurram et al., 2010). This raises 

the possibility that XCR1 could be a stem cell or basal layer marker in oral epithelia. This 

is quite interesting as the basal layer of oral epithelium is highly populated with 

adult/progenitor stem cells (Costea et al., 2006), and the expression profile of XCR1 

appears similar to that of CD44, a stem cell marker seen in normal human oral mucosa 

(Papagerakis et al., 2014). Another argument is that the epithelial lining in the mouth 

undergoes constant renewal to allow resistance to wear and tear in response to 

mastication, requiring constant tissue renewal. Another argument is that XCR1 might 

serve as positional marker allowing the cells to distinguish their position in the tissue. 

The examination of the OSCC tissue suggests that XCR1 and hLtn are expressed 

at the primary as well as metastatic stage. Chemokine receptors are known to be 

upregulated in cancer and it is thought this facilitates the growth and dissemination of 

the tumour. Previous studies have shown XCR1 expression in OSCC (Khurram et al., 

2010). This is not the case for other epithelial tissue. In breast cancer, XCR1 expression 

can only be seen in oestrogen receptor positive breast carcinoma and no expression is 

detected in normal primary breast epithelial tissue (Yang et al., 2017). In a similar way, 

normal ovarian tissue and ovarian epithelial cell lines derived from normal cells do not 

express XCR1, although it is found in both primary and metastatic ovarian cancers and 

cell lines (Kim et al., 2012). In lung, primary lung carcinoma shows a weak or absent 

expression which is upregulated in lung cancer bone metastasis (T. Wang et al., 2015). 

Most papers show qualitative and subjective assessment of the expression while 

neglecting the quantitative analysis or vice versa. Our results show that metastatic OSCC 

has higher XCR1 expression with nearly 80% positive expression by the tumour. A 

transcriptomic analysis has revealed that low expression of XCR1 correlates with cancer 

progression and poor prognosis in hepatocellular carcinoma (Yanru et al., 2018) which 

is contradictory to our result. The paper also mentioned XCR1 associates with migration 

and invasion but not proliferation of liver cancer cells. This is probably the tissue bias of 

chemokine receptor, where it behaves differently in different type of tissue/cell. 

Histological quantification performed showed that XCR1 receptor expression was high 

(more than 80% of the observed tumour population) in both primary tumour and lymph 

node metastatic OSCC compared to normal tissue. Furthermore, our assessment was 
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performed on OSCC tissue samples investigating the XCR1 receptor protein expression 

rather than the transcriptomes. 

hLtn was found to be expressed in mammary gland yet no further description was 

available in breast cancer (Yang et al., 2017). hLtn mRNA was confirmed to be 

expressed in primary lung cancer and associated with bone metastasis in clinical 

samples (T. Wang et al., 2015). In ovarian carcinoma, hLtn was shown in both epithelial 

ovarian carcinoma ascites and cell lines (Kim et al., 2012).  

Connective tissue components such as endothelial cells also stained strongly for 

XCR1. This is important as OSCC cells can influence endothelial cells to form blood or 

lymphatic vessels resulting in angiogenesis and facilitating tumour growth and 

metastasis. This supports the idea that the hLtn and XCR1 interaction can contribute to 

angiogenesis in oral cancer, i.e. tumour or stromal can act on endothelial cells 

expressing XCR1 (Keeley, Mehrad and Strieter, 2011).  

Other chemokines have been shown to be important during cell development in 

zebrafish (Bussmann and Raz, 2015), directing cells to appropriate destination in the 

body. The XCR1/hLtn axis can recruit intraepithelial lymphocytes (IEL) to fight the 

infections and invasion as first line of defence as seen in intestinal immune homeostasis 

(Ohta et al., 2016). IEL has been shown to express XCR1 and hLtn (Khurram et al., 

2010), and can be a potential source of hLtn in the OSCC mucosa. This may further 

facilitate tumour cell migration and invasion. Our results also show lymphocytes 

expressing XCR1 in the superficial connective tissue near the basal oral epithelium with 

strong hLtn expression.  

The reactive lymph nodes stained positive for both hLtn and XCR1 suggesting 

XCR1/hLtn axis is integral in the organ. Lymph nodes contain T lymphocytes, natural 

killer cells, neutrophils and B lymphocytes and have been shown to express the XCR1 

receptor and its ligand (Kelner and Zlotnik, 1995; Kennedy et al., 2000; Huang et al., 

2001). Interestingly, expression can be seen in germinal centres, suggesting that XCR1 

and hLtn are involved in mature B cell proliferation and differentiation. There is strong 

evidence that the hLtn-XCR1 axis can activate MAPK signalling in cells to promote 

cellular division in cancer (Khurram et al., 2010; Yang et al., 2017). XCR1-hLtn 

interactions may contribute to B cell differentiation, but there is a lack of published 

evidence. Dendritic cells (DC) are involved in programming lymphocytes through 

antigen-presentation. Some evidence suggests that the XCR1-hLtn axis facilitates 

maintenance of immature dendritic cells by T lymphocytes (Park and Bryers, 2013; Ohta 
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et al., 2016). Follicular dendritic cells are involved in antigen processing with B cells (El 

Shikh et al., 2010), which is why the germinal centre stain positive for XCR1 .  

Previous studies have shown that human dendritic cells harvested from bone 

marrow do not express XCR1 receptor (Huang et al., 2001). Although some also reported 

that CD11c+CD141+ DC subsets originating from the same group do express XCR1 

(Bachem et al., 2010). This shows that only a certain subset of DC expresses XCR1, but 

these studies were performed using cells harvested from circulating plasmacytoid DC 

and not those that are resident in lymph nodes. Another study in mice showed that XCR1 

is expressed in a DC subset (Yamazaki et al., 2013) and the cross-presentation antigen 

contributes to recruitment of memory T cells in infection (Alexandre et al., 2016) and 

facilitates T cell survival (Ohta et al., 2016). In addition, the peripheral and stromal 

expression of XCR1 and hLtn may provide a platform for hLtn to attract XCR1+ 

carcinoma and contribute to growth, spread and intranodal extension into lymph nodes. 

In conclusion, the results provide information to support a possible route of lymph node 

metastasis through the XCR1-hLtn axis.  

The stromal expression seen in our results suggests that endothelial cells in 

normal, OSCC and lymph node tissue are positive for XCR1 and hLtn. Endothelial cells 

have been shown to express chemokine receptors that mediate endothelium organo-

specificity, however not much is known about XCR1 and hLtn endothelial cell expression 

in other organs (Hillyer and Male, 2005; Crola Da Silva et al., 2009). This is expected as 

chemokine-chemokine receptor interactions contribute to extravasation of lymphocytes 

into blood vessels, allowing them to patrol the circulatory system and move towards the 

site of injury or infection (Middleton et al., 2002). Dendritic cells also can move across 

lymphatic endothelium with using a similar mechanism (Vaahtomeri et al., 2017). 

Fibroblasts also expressed XCR1 with more prominent staining seen in the OSCC 

stroma. XCR1 expression by human gingival fibroblasts has also been reported in one 

study (Khurram et al., 2010) but a different study reported lack of expression 

(Buskermolen, Roffel and Gibbs, 2017). A possible explanation is probably due to 

fibroblast heterogeneity and differential expression between person to person (Sriram, 

Bigliardi and Bigliardi-Qi, 2015). 

The presence of hLtn was also seen in the extracellular matrix of oral tissue and 

lymph node stroma. The extracellular matrix is abundant with glycosaminoglycans (Yue, 

2014), which allows the hLtn dimer to bind (Fox, Tyler, et al., 2015) providing a gradient 

concentration in the stroma. The expression of XCR1 receptor and hLtn in OSCC and 

lymph node tissue can be summarized in Figure 2.9. The results suggest that hLtn and 
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XCR1 has the potential to influence oral cancer progression by moderating cancer cell 

survival and spread. 

 

2.6 SUMMARY 

This chapter shown that XCR1 receptor and its ligand expression are present in 

all investigated cases in both primary carcinoma and its metastatic counterpart. 

Metastatic stromal cells express higher total expression indicating its function further in 

the disease. Furthermore, XCR1 could be useful as an oral cancer biomarker. Additional 

data of XCR1 and hLtn expression in OSCC tissue are required to provide a statistically 

significant clinicopathological correlation.  

 

 

Figure 2.9: Summary map of XCR1 and hLtn expression based on IHC staining. 
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CHAPTER 3: REGULATION OF XCR1 AND XCL1 EXPRESSION IN ORAL CANCER 
CELL LINES BY hLtn & CONDITIONED MEDIA FROM ORAL FIBROBLASTS 

3.1 INTRODUCTION 

Chemokine receptors are very sensitive to external stimuli which leads to 

receptor desensitization through internalisation and recycling of the receptor (Ferguson, 

2001). This is highly dependent on external stimuli such as receptor activation upon 

ligand engagement (Kroeze et al., 2012), hypoxia (Schioppa et al., 2003), reactive 

oxygen species (Saccani et al., 2000), or change in pH and ionic strength (Dairaghi et 

al., 1997).  

Previous studies have shown that most chemokines can act in an autocrine 

manner (Kroeze et al., 2012). Expression of both hLtn and XCR1 by OCCL suggests that 

hLtn may have the potential to act on XCR1 expressing cells in an autocrine manner. 

The previous chapter gives us an insight into the expression of XCR1 receptor and its 

ligand by oral carcinoma tissue. Therefore, this chapter aimed to investigate whether 

exposure of oral cancer cells to wild type hLtn influences the expression of XCR1 

receptor at the mRNA level and protein expression on the cell surface. 

Additionally, this chapter will investigate the cross-talk between oral fibroblast and 

cancer cell lines. It is well known that cancer progression is highly influenced by the 

tumour microenvironment. This chapter investigates whether soluble factors expressed 

by oral fibroblasts can affect the expression of XCR1 receptor and hLtn by oral cancer 

cell lines (OCCLs). This was performed by exposing OCCLs to conditioned media from 

primary oral fibroblasts. Several types of oral fibroblasts were selected such as normal 

oral fibroblast (NOF), myofibroblasts (‘activated’ NOF), senescent NOF and cancer-

associated fibroblasts (CAF).  
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3.2 METHODS 

3.2.1 Materials 

List of detailed information of the materials (reagents, kits, equipment, software 

and miscellaneous) used in the chapter can be found in Appendix 1-5. 

 

3.2.2 Basic Cell Culture  

All oral cancer cell lines were acquired from the Department of Oral and 

Maxillofacial Pathology in the School of Clinical Dentistry, the University of Sheffield 

(Table 3.1). The human primary normal oral fibroblasts (NOF) were isolated as 

previously described by Hearnden et al. (2009) (Sheffield Research Ethics Committee 

Ref. 09/H1308/66) (Table 3.2). Human primary oral cancer-associated fibroblasts (CAF) 

were isolated from fresh tissue from patients with OSCC undergoing resections within 

Charles Clifford Dental Hospital (Sheffield Research Ethics Committee Ref. 13/NS/0120, 

STH17021; CAF002 and CAF004) were kindly provided by Amy Harding and Dr. Helen 

Colley (Kabir et al., 2016). All experiments were performed under sterile conditions in a 

Class II biohazard laminar flow cabinet. Good cell culture practice (GCCP) guidelines 

were exercised during the whole process.  

 

3.2.2.1 Passaging the Cells 

Cells were grown in T75 cell culture flasks with filter caps (Greiner Bio-One Ltd, 

UK) until ~80% confluent. Media was aspirated, and the cells washed with phosphate 

buffered saline (PBS) (Sigma-Aldrich, Dorset, UK) without Mg2+ or Ca2+. After two 

washes, PBS was removed. 2-3 mL of Trypsin-EDTA solution (Sigma-Aldrich) was 

added for 3-5 minutes at 37oC in an incubator. Cells were dislodged using gentle 

agitation and 3 mL of media added to the flask to neutralise the trypsin. This was 

transferred to a Falcon tube and centrifuged at 1000×g for 5 minutes. The supernatant 

was decanted, and the cell pellet re-suspended in fresh medium followed by addition to 

a new T75 flask. 
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Table 3.1: Table description of oral cancer cell lines and respective culture media. 

Cell line Description 

H357 

Description: Human oral squamous cell carcinoma from a 74-year-old male 

patient. Tissue origin: Tongue. (ECACC 06292004) 

Culture media: Keratinocytes growth media (KGM) (see Appendix 8) 

SCC4 

Description: Human squamous cell carcinoma from a 55-year-old male patient. 

Adherent cell line with epithelial-like morphology. Tissue origin: Tongue. (ATCC® 

CRL-1624) 

Culture media: Dulbecco’s Modified Eagle’s Medium (DMEM) (low glucose) and 

Ham’s Nutrient Mixture F12 combination (ratio 1:1) containing 10% FCS, 2 mM L-

glutamine and 1% (v/v) Penicillin/Streptomycin. 

FADU 

Description: Human squamous cell carcinoma derived from 56-year-old male 

patient. Adherent cell line with epithelial morphology. Tissue origin: Pharynx. 

(ATCC® HTB-43TM) 

Culture media: Eagle's Minimum Essential Medium (EMEM) containing 10% 

FCS, 2 mM L-glutamine and 1% (v/v) Penicillin/Streptomycin.  

TR146 

Description: Human oral squamous cell carcinoma derived from a 67-year-old 

female neck node. Tissue origin: Buccal. (ECACC 10032305) 

Culture media: HAMS-F12 containing 10% FCS, 2mM L-glutamine and 1% (v/v) 

Penicillin/Streptomycin 

BICR16 

Description: Adherent cell line derived from a recurrent OSCC of a Caucasian 

male. Tissue origin: Tongue. (ECACC 06031001) 

Culture media: DMEM (low glucose) containing 10% FCS, 2 mM L-glutamine and 

1% (v/v) Penicillin/Streptomycin. 

BICR22 

Description: Adherent cell line of a lymph node metastasis OSCC of a Caucasian 

male. Tissue origin: Tongue. (ECACC 04072106) 

Culture media: DMEM (low glucose) containing 10% FCS, 2 mM L-glutamine and 

1% (v/v) Penicillin/Streptomycin. 

All the information on the item catalogue number is available in Appendix 1 
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Table 3.2: Table description of human primary fibroblasts and their respective culture 

media. 

Cell line Description 

NOF 

Description: Human primary normal oral fibroblast extracted from the buccal of 

health volunteers attending the Charles Clifford hospital. Tissue origin: Buccal 

Culture media: Dulbecco’s Modified Eagle’s Medium (DMEM) (low glucose) 

containing 10% FCS, 2 mM L-glutamine and 1% (v/v) Penicillin/Streptomycin. 

CAF 

Description:  Human primary oral cancer-associated fibroblasts isolated from 

fresh tissue from patients with OSCC undergoing resections in Charles Clifford 

hospital. Tissue origin: CAF002 obtained from floor of the mouth and CAF 004 

from lateral tongue. 

Culture media: Dulbecco’s Modified Eagle’s Medium (DMEM) (low glucose) 

containing 10% FCS, 2 mM L-glutamine and 1% (v/v) Penicillin/Streptomycin. 

All the information on the item catalogue number is available in Appendix 1 
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3.2.2.2 Cell Storage in Liquid Nitrogen 

 Cells were counted, and a 1 × 106 cells/mL suspension prepared using 10% (v/v) 

dimethyl sulfoxide (DMSO) (Sigma-Aldrich) in growth medium. Then, 1 mL of the cell 

suspension was pipetted into a cryovial and sealed tightly. The cryovial was stored in a 

freezing container (Nalgene®, Sigma-Aldrich) containing propan-2-ol. The container was 

stored at -80oC for 24 hours before transferring the cryovial into a liquid nitrogen 

container. 

 

3.2.2.3 Thawing Cells from Liquid Nitrogen Storage 

A cryovial containing the desired cell line was removed from the liquid nitrogen 

container using appropriate safety protection and thawed in a 37oC water bath. The 

contents were transferred to a Falcon tube and 2 mL of respective growth media was 

added. The cell suspension was centrifuged (RT, 1000×g) for 5 minutes to remove 

DMSO from the solution. The pellet was re-suspended in 1 mL respective growth media 

and transferred to a T75 flask. 10 mL media was added afterwards and incubated in 5% 

CO2 at 37oC. The growth medium was replaced every 2-3 days. 

 

3.2.2.4 Quantification of cell number and concentration 

The number of cells present in a suspension was quantified using a 

haemocytometer with Trypan blue exclusion. The cells were collected as described in 

Section 3.2.2.1 and resuspended in 2-5 mL growth medium. 5 µL of cell suspension was 

mixed with an equal amount of Trypan blue solution 0.4% (Sigma-Aldrich, UK) was 

transferred haemocytometer with a glass cover slip. Living cells do not take-up the dye, 

while the dead cells are stained blue. The total number of viable cells was estimated as 

below: 

 

  

Number of viable cells

mL
 = 

n × dilution factor × 10
4

4
  

n = total number of cell in four squares 
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3.2.3 Flow Cytometry Analysis for XCR1 Surface Receptor Expression 

Principle: Flow cytometry is a powerful tool to analyse the surface protein expression. 

This can be performed by either using a directly conjugated antibody or unconjugated 

antibody, where the latter requires addition of appropriately labelled-secondary antibody 

for detection. Propidium iodide (PI), a fluorescent DNA intercalating agent can assist in 

the evaluation cell viability. PI is unable to cross a healthy cell membrane allowing it to 

distinguish live and dead cells in flow cytometry analysis. Dead cells tend to bind non-

specifically to many reagents leading to a false positive result.  

Procedure: Cells were washed and fully detached using cell-dissociation buffer (Cat#: 

13151014; Thermo Fisher Scientific, Paisley, UK). Detached cells were then re-

suspended in serum free medium at a density of 1 × 105 cells per tube. Tubes were 

centrifuged at 500×g for 5 minutes at room temperature and the supernatant was 

carefully removed. 500 µL of flow buffer (PBS + 10% FCS) was added to each tube. 10 

µg/mL of anti-XCR1 human antibody (extracellular domain) IHC-plusTM LS-A158 (human 

anti-rabbit) (LifeSpan Bioscience Inc., WA, USA) was added for 60 minutes on ice. 

Unbound antibody was removed using three washes in flow buffer. Cells were re-

suspended in 500 µL of flow buffer followed by addition of 8 µg/mL goat anti-rabbit IgG 

(H+L) secondary antibody, Alexa Fluor® 488 conjugate (Life Technologies Ltd, Paisley, 

UK). All steps were performed on ice with minimal exposure to light. Cells were incubated 

with the secondary antibody 30 minutes followed by three further washes. Cells were re-

suspended in 500 µL flow buffer and kept on ice before flow cytometry cell analysis using 

BD FACSCalibur (BD Bioscience) with BD CellQuestTM Pro software (BD Bioscience, 

Oxford, UK). Prior to the run, all samples were treated with propidium iodide (1 µg/mL) 

for cell viability evaluation. The run was stopped when the 10,000 cells threshold was 

reached. The data analysis was performed using FlowJo (LLC, USA). For the 

assessment of the effect of hLtn on the XCR1 receptor expression, the OCCLs were 

treated with hLtn (Peprotech) (concentration: 100 ng/mL) in low-serum medium 

(containing 1% FCS) (LSM) for 24 hours at 37oC. The vehicle control flask was incubated 

with LSM only. 
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3.2.4 mRNA Expression Analysis 

qPCR is a powerful tool to quantify mRNA expression of target genes in cells. It 

requires RNA extraction from the cells followed by RNA translation into complementary 

DNA (cDNA). This is because the primer probe for real-time PCR requires DNA for 

amplification. The primer probe with a fluorescence label binds to complementary 

sequence on the DNA strands. When it is amplified, a fluorescence signal is induced and 

quantified. Two different systems are usually employed: SYBR green and TaqMan 

probe. While SYBR green is cheap and easy to use, TaqMan is more specific and 

sensitive (Soltany-Rezaee-Rad et al., 2015). In this study, real-time PCR was performed 

using TaqMan probes for XCR1 and hLtn while for α-SMA, SYBR Green technique was 

employed.  

 

3.2.4.1 Total RNA Extraction and Purification from Cultured Cells 

The extraction and purification of RNA from cultured cells was carried out using 

an ISOLATE II RNA Mini Kit (Cat#: BIO-52072; Bioline Reagents Limited, London, UK) 

in accordance with the manufacturer’s instructions. The samples were homogenised by 

adding 350 µL of lysis buffer RLY (containing 250 µL lysis buffer RLY and 3.5 µL β-

mercaptoethanol) per sample and vortexed vigorously. The lysate was filtered by loading 

into a 2 mL collection tube through an ISOLATE II filter (violet) and centrifuged (1 min at 

11,000×g). The filter was discarded, and RNA binding conditions were adjusted by 

adding 350 µL 70% ethanol to the homogenised lysate followed by mixing using a 

pipette. The ISOLATE II RNA mini column (blue) was placed in a 2-mL collection tube 

for RNA binding. The cell lysate was loaded onto the column and centrifuged (30 s at 

11,000×g). A new collection tube was then used and 350 µL of membrane desalting 

buffer (MEM) was used to desalt the silica membrane. Centrifugation was performed to 

dry the membrane (1 min at 11,000×g). DNase I was prepared by adding 10 µL DNase 

I to 90 µL reaction buffer for DNase I (RDN). 95 µL of the mixture was applied directly to 

the centre of the silica membrane which was incubated at room temperature for 15 

minutes. Three washing steps were carried out: the first wash using 200 µL wash buffer 

RW1, the second wash and third washes using 600 µL wash buffer RW2. Each washing 

step required centrifugation (30 s at 11,000×g for the first and second and 2 minutes at 

11,000×g for the third wash). After the third wash, the column was placed into a 

nuclease-free 1.5 mL collection tube (supplied with the kit) to collect the RNA. Elution 

was performed by adding 60 µL of RNase free H2O directly to the centre of silica 

membrane, incubating for 1 minute and then centrifuging at 11,000×g) for a minute. The 
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concentration of eluted RNA was estimated using a NanoDrop 1000 Spectrophotometer 

(Thermo Scientific, DE, USA). For storage, RNA was kept at -80°C. 

 

3.2.4.2 Measurement of RNA concentration and purity 

High purity of the extracted RNA is essential, and the observed A260/280 ratio 

must be ~2.0. The RNA concentration required for cDNA reverse transcription was 

calculated using the equation below. 

 

  

Total volume of RNA required (per 10mL) = 
100 ng/mL

Total concentration of RNA (ng)
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3.2.4.3 High Capacity cDNA Reverse Transcription 

Reverse transcription is required as the qRT-PCR probe can only be used on 

DNA. Therefore, transcription of RNA samples is essential and was carried out using 

High Capacity cDNA Reverse Transcription Kit (Cat#: 4368814; Life Technologies Ltd, 

Paisley, UK). The master mix solution (reagents supplied in kit) was prepared (see Table 

3.3). The components were thawed and placed on ice. 

Table 3.3: High Capacity cDNA RT master mix (all supplied in the kit). 

Components 
Volume/Reaction (µL) 

with MultiscribeTM without MultiscribeTM 

10× RT Buffer 2.0 2.0 

25× dNTP Mix (100 mM) 0.8 0.8 

10× RT Random Primers 2.0 2.0 

MultiscribeTM Reverse Transcriptase 1.0 - 

RNase Inhibitor 1.0 1.0 

Nuclease-free H2O 3.2 4.2 

TOTAL per reaction 10.0 10.0 

 

10 µL of RT master mix was pipetted into individual PCR tubes along with 10 µL 

of the RNA sample. 500 ng of RNA was used per sample reaction. Samples were briefly 

centrifuged to spin down the contents and eliminate any air bubbles. The tubes were 

then placed in DNA Engine Dyad® Peltier Thermal Cycler (Bio-Rad Laboratories Ltd., 

Hertfordshire, UK) to run on a set programme (see Table 3.4). For the negative control, 

nuclease-free H2O was used. Each RNA sample is prepared with and without Multiscribe 

to determine the extent of RNA contamination and the effectiveness of real-time PCR. 

cDNA was stored at -20°C prior to further use. 

Table 3.4: Thermal cycler programme for cDNA RT reaction. 

 Step 1 Step 2 Step 3 Step 4 

Temperature (°C) 25 37 85 4 

Time (min) 10 120 5 ∞ 
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3.2.4.4 Quantitative Real-time PCR (qRT-PCR) using Taqman probe 

cDNA quantification for XCR1 and hLtn (XCL1) mRNA was performed using 

TaqMan probes (information available in Table 3.5). The XCR1 specific primers were 

ordered from Life Technologies. To analyse the data, primers to β-2-microglobulin (B2M) 

was used as an endogenous control. A control tube with nuclease-free water was 

included to ensure the integrity of the sample run. 

The master mix solution (including the probes) (see Table 3.5) was prepared and 

mixed gently. 9.5 µL of this solution was pipetted into respective wells of a 96 well PCR 

semi-skirted plate (STARLAB (UK) Ltd, Milton Keynes, UK). 0.5 µL of cDNA samples 

were added to respective wells and nuclease-free water used in negative control wells. 

The plate was sealed using advanced polyolefin StarSeal film (STARLAB (UK) Ltd, 

Milton Keynes, UK). All components were thawed on ice prior to preparation. 

Table 3.5: TaqMan master mix. 

Component Volume (µL) 

TaqMan Gene Expression Master Mix  

(Cat#:4369016; Life Technologies, Paisley, UK) 
5.0 

B2M probe (TaqMan Gene Expression Assays) 

(Cat#:4331182; Life Technologies, Paisley, UK)  

Amplicon length: 64  

R
e
fe

re
n

c
e
 

g
e
n

e
 

0.5 

XCR1 probe (TaqMan Gene Expression Assays) 

(Cat#:4331182; Life Technologies, Paisley, UK)  

Amplicon length: 61 

T
a
rg

e
t 

g
e
n

e
 

0.5 
XCL1 probe (TaqMan Gene Expression Assays) 

(Cat#:4331182; Life Technologies, Paisley, UK)  

Amplicon length: 108 

Nuclease-free water (Cat#:AM9914G; Life Technologies, Paisley, UK) 3.5 

TOTAL per each sample 9.5 

 

The plate was centrifuged (1000×g, 2mins, RT) before being loaded into the 

7900HT Fast Real-Time PCR System (Life Technologies Ltd, Paisley, UK). The desired 

setting on SDS v2.4 (Life Technologies Ltd, Paisley, UK) was chosen before the run and 

RQ Manager 1.2.1 software (Life Technologies Ltd, Paisley, UK) was used as an 

analysis and quantification tool.  
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3.2.4.5 Quantitative Real-time PCR (qRT-PCR) using SYBR Green. 

The quantification of the α-SMA cDNA was performed using a SYBR Green 

technique. The primers with specified sequence was purchased from Sigma-Aldrich 

(Table 3.6). The endogenous control of U6 snRNA was used.  

Table 3.6: List of primers for mRNA expression analysis using SYBR Green technique. 

Name Sequence Supplier 

U6 snRNA 

(Reference gene) 

Fwd 5’-CTCGCTTCGGCAGCACA-3’ 

Sigma-Aldrich, 

UK 

Rev 5’-AACGTTCACGAATTTGCGT-3’ 

α-SMA 

(Target gene) 

Fwd 5’-GAAGAAGAGGACAGCACTG-3’ 

Rev 5’-TCCCATTCCCACCATCAC-3’ 

The melting curve of the primers are available in Appendix 9. 

 

The master mix solution was prepared and mixed gently (Table 3.7). The solution 

was then pipetted into respective wells of a 96 well PCR semi-skirted plate (STARLAB 

(UK) Ltd, Milton Keynes, UK) and 0.5 µL of cDNA samples were added into respective 

wells. Nuclease-free water used in negative control wells. The plate was sealed using 

advanced polyolefin StarSeal film (STARLAB (UK) Ltd, Milton Keynes, UK). All 

components were thawed on ice prior to preparation. The reference and target gene 

samples were prepared separately. 

Table 3.7: SYBRTM Green Master Mix 

Component Volume (µL) 

SYBRTM Green PCR Master Mix (Cat#:4309155; Thermo-Fisher Scientific, 

Paisley, UK) 
5.0 

Forward primer (concentration: 20 µg/mL) 0.5 

Reverse primer (concentration: 20 µg/mL) 0.5 

Nuclease-free water (Cat#:AM9914G; Life Technologies, Paisley, UK) 3.5 

TOTAL per each sample 9.5 
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3.2.4.6 qRT-PCR Analysis 

The quantitation of the qRT-PCR data was performed using the ∆∆Ct method 

(Livak and Schmittgen, 2001; Schmittgen and Livak, 2008). The relative expression 

levels were calculated and compared between the untreated samples (treatment control) 

and treated samples. These samples were compared to respective reference gene of 

the samples (housekeeping gene) to normalize the variation in individual sample quality 

and quantity. The normalized values (∆Ct value) were then used to calculate the ∆∆Ct 

values using the equation below. 

 

 

3.2.5 Exposure of Oral Cancer Cell Lines (OCCLs) to Oral Fibroblast Conditioned 
Media 

Procedure: Normal oral fibroblast (NOF) and cancer-associated fibroblast (CAF) cells 

were derived as described in Section 3.2.2. The NOF cells were also differentiated into 

myofibroblasts and senescence fibroblasts (Section 3.2.6 and 3.2.7 respectively). The 

cells were left in SFM for another 24 hours to obtain the ‘conditioned media’. Conditioned 

media was recovered, filter-sterilised (0.22 µm) to remove cell debris and either used 

immediately for experimentation or stored at -20°C until required. Concurrently, the 

OCCLs were seeded and incubated with SFM for 24 h prior treatment with conditioned 

media obtained from the oral fibroblasts. Additionally, for senescent NOFs, the cells were 

induced with genotoxic stimuli and cultured for 14 days before collecting conditioned 

media (details available in Section 3.2.7). For vehicle control, the oral cancer cells were 

treated only with SFM. The summary of the experiment can be found in Figure 3.1 and 

Figure 3.3. 

 

 

Calculation for the ∆Ct values of the treated and untreated samples 

∆Cttreated = ∆Ct target
treated

 −  ∆Ct referencetreated 

∆Ctuntreated = ∆Ct target
untreated

 −  ∆Ct referenceuntreated 

 

∆∆Ct value for the treated samples 

∆∆Ct sample
treated

 = ∆Ct sample
treated

 −  ∆Ct sample untreated 

Relative Quantification (RQ) = 2-∆∆Ct
 

Fold difference = log 2 (RQ) = -∆∆CT 
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Figure 3.1: Experimental design for the treatment of OCCLs with conditioned medium 

from NOF, myofibroblast and CAF on OCCLs.  
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3.2.6 Transforming Growth Factor-beta 1 (TGF-β1) Treatment of Normal Oral 
Fibroblast 

Procedure: The cells were seeded at an appropriate cell density and left to attach for 

overnight. Before treatment with 5 ng/mL of TGF-β1 (R&D system, Abingdon, UK) for 24 

hours, the cells were cultured in serum-free media (SFM; containing DMEM 

supplemented with 2mM L-glutamine.  

 

3.2.6.1 Immunocytochemistry 

Procedure: Coverslips were sterilised with 70% ethanol for at least 10 minutes followed 

by washing twice with PBS and leaving to dry. 5 × 104 cells were seeded onto each 

coverslip and left to attach overnight in an incubator at 37°C. Medium was aspirated, and 

cells were washed with PBS three times. Cells were fixed using 100% methanol at room 

temperature for 20 minutes before the cells were permeabilized with 4 mM sodium 

dexoxycholate in dH2O for another 10 minutes. Cell were then incubated with blocking 

buffer (2.5% (w/v) BSA in PBS) for 30 min before antibody treatment to reduced non-

specific binding. Incubation with an α-SMA FITC-conjugated primary antibody (1:100 in 

blocking buffer) (Cat#: ab8211, Abcam, Cambridge, UK) was performed for an hour at 

37ºC in the dark. Coverslips were then washed with PBS three times before addition of 

a drop of VectaShield antifade mounting medium with DAPI (Cat#: H-1200; Vector 

Laboratories, Peterborough, UK). Coverslips were then carefully transferred onto glass 

slides before viewing the staining using a fluorescence microscope. Nail polish can be 

used to immobilize and seal the coverslip. The slides were kept covered in aluminium 

foil at 4°C for storage and analysed as soon as possible to reduce the chance of photo-

bleaching. 
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3.2.7 Senescence-induced Normal Oral Fibroblast with Genotoxic Stimuli 

Principle: Senescent cells behave differently to normal cells. It is a state where the cells 

do not grow but are still able to perform functions such as synthesis and secretion of 

proteins. NOF cells were treated with hydrogen peroxide (H2O2) to induce oxidative 

stress allowing pre-mature senescent within a short period of time (Chen, Ozanne and 

Hales, 2007).  

Procedure:   NOFs were to approximately 70% confluence before treatment with 500 

µM H2O2 (Cat#: 10687022; Fisher Chemical, Loughborough) in serum-free media for 2 

hours. Immediately after incubation, the H2O2 was removed and the cells were left in 

growth media for 14 days to allow cells to senesce. Media was changed every 2-3 days.  

To determine if the induction of senescence was successful, senescence-associated β-

galactosidase staining assay was performed (refer Section 3.2.7.1). 

 

3.2.7.1 Senescence-Associated β-galactosidase Staining Assay 

Principle: This assay is to determine cellular senescence by using β-galactosidase as 

a biomarker (Debacq-Chainiaux et al., 2009). Senescence is characterized by arrest 

growth and inability to undergo DNA synthesis, a characteristic shared with quiescent 

cells. Although the enzyme overexpression and accumulation are specific to senescent 

cells, it is not required during the process to senescence. The X-gal reacts with the β-

galactosidase enzyme that accumulates in senescent cells and reacts to form a blue 

precipitate indicating positive cell senescence (Figure 3.2). 

 

Figure 3.2: Principle of the β-galactosidase assay. X-gal reacts with β-galactosidase 

yielding galactose and (A) 5-bromo-4-chloro-3hydroxyindole. Later this spontaneously 

dimerizes and oxidized into (B) 5,5’ dibromo-4,4’-dichloro-indigo, an intense insoluble 

blue precipitate. 

 

(B) (A) 
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Procedure: The assay was performed using a senescence detection kit (Cat#: ab65351 

Abcam). 1 × 104 cells were seeded per well of reaction for 24 h. Cells were washed with 

PBS twice before adding 500 µL of fixative solution for 20 minutes. A total of 500 µL of 

staining solution was added to each well overnight in an incubator at 37ºC 5% CO2. The 

plate was covered in aluminium foil to exclude light. The composition of the staining 

solution is as below: 

 25 µL of 20 mg/mL X-gal (20 mg/mL 20 mg lyophilized X-gal was dissolved in 1 

mL DMSO), 

 470 µL of 1× staining solution, and 

 5 µL of staining supplement. 

For analysis, a light bright-field microscope with attached camera was used to estimate 

the percentage of blue stained cells per microscopic field. 

 

3.2.8 Statistical Analysis 

All the experimental data are presented as at least three independent 

experiments performed in triplicate unless stated otherwise with mean ± SEM. Student’s 

t-test was used to analyse the statistical significance of XCR1 mRNA and protein 

expression, and hLtn (XCL1) mRNA expression of the treatment sample compared to 

the experimental control using Graph Pad Prism 7 (La Jolla, CA, USA). All the mRNA 

data analysis in this chapter were compared to a normalised vehicle control (in fold 

change). A p-value <0.05 was considered as statistically significant and denoted with * 

symbol.  
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Figure 3.3: Experimental design for treatment of OCCLs with CM from senescent-NOFs. 
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3.3 RESULTS 

3.3.1 Effect of hLtn on XCR1 Surface Expression in OCCL 

3.3.1.1 XCR1 Surface Receptor Expression in OCCL 

An initial experiment was performed to quantify the surface expression of the 

XCR1 receptor in different oral cancer cell lines (refer Table 3.1). All the selected cancer 

cell lines expressed the receptor to varying degrees (Figure 3.4) The highest expression 

was seen in SCC4 cell line with more than 88% ± 2.256 of the cell population expressing 

XCR1 and the lowest was by H357 cell line with 29% ± 2.829. SCC4 cells showed a 

wider forward-scatter cell population suggesting that the cell size is larger than all other 

cell lines, possibly providing a larger surface area for XCR1 receptor on its surface. 

TR146, FADU and BICR22 cell lines all showed moderate expression (mean 32% ± 

0.6658, 36% ± 0.2999 and 42% ± 3.732 respectively). BICR16 cell line, a recurrent 

carcinoma has quite a high expression of XCR1 receptor with 68% ± 0.2848 expression. 

Further information on the flow cytometry analysis such the dot plot for the size scatter-

gram, dot-plot channel for cell viability and target protein are available in Appendix 10. 
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Figure 3.4: Oral cancer cell lines surface expression of XCR1 receptor. (A) Histogram 

diagram of XCR1 receptor expression for each cell lines, where shift to the right signifies 

greater expression of XCR1 in the cell population. (B) Bar chart summarising the 

percentage expression. Three independent experiments were performed with triplicates. 

Data is expresses in mean ± SEM.  
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3.3.1.2 Regulation of XCR1 Receptor Expression in OCCL through hLtn 
Stimulation 

This part of the study was to observe whether hLtn can act in an autocrine manner 

and influence expression of its receptor. Several oral cancer cell lines were used to 

compare the receptor expression (refer Table 3.1). The oral cancer cell lines: H357, 

SCC4, FADU, TR146, BICR16 and BICR22 were derived from OSCC. 

Positive expression of XCR1 on normal oral keratinocytes and OCCLs has been 

reported previously (Khurram et al., 2010). XCR1 cell surface expression was observed 

in all the tested cell lines in the current study (refer Figure 3.4).  For the surface protein 

expression (Figure 3.5), only the oral squamous cell carcinoma-derived cell lines (H357, 

SCC4 and FADU) showed significant changes in their surface XCR1 expression after 

exposure to hLtn (100 ng/mL) for 24 hours. FADU showed an increase (~16%) and SCC4 

showed a decrease (p=0.0145) of the XCR1 surface receptor expression (refer to Table 

3.8 for the mean and p-value). H357 surface XCR1 expression was reduced by 8% while 

FADU showed an increase ~16% in the surface receptor expression after the treatment. 

BICR22, TR146 (both lymph node metastatic-derived cell lines), and BICR16 (a 

recurrent carcinoma-derived) showed a trend for decreased in receptor expression but 

this reduction was not significant.  

Exposure to 100 ng/mL hLtn resulted in a significant upregulation in the XCR1 

mRNA expression in SCC4 cells (mean 1.287 ± 0.05785, p=0.0077) but not in other cell 

lines (Figure 3.6). 

Table 3.8: Result of XCR1 expression after treatment with hLtn for 24 hours. 

Cell 
line 

XCR1 Expression (%) 
p-value 

Untreated Treated Differences 

SCC4 88.67 ± 2.256 72.83 ± 3.099 -8.14 ± 2.839 0.0145* 

H357 36.66 ± 0.299 29.02 ± 3.323 -15.83 ± 3.833 0.0456* 

FADU 39.13 ± 2.829 55.37 ± 4.720 +16.23 ± 5.503 0.0420* 

TR146 42.00 ± 3.732 36.37 ± 0.203 -5.633 ± 3.738 0.2063 

BICR16 68.83 ± 0.285 62.37 ± 3.340 -6.467 ± 3.352 0.1259 

BICR22 32.80 ± 0.666 20.63 ± 6.274 -12.17 ± 6.309 0.1260 

* indicates p<0.05 
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Figure 3.5: Percentage of XCR1 expression by the oral cancer cell lines (OCCLs). The 

bars with white-box pattern represent the respective OCCLs (colour coded) without 

treatment and the fully coloured bars represents the OCCLs exposed to hLtn (Peprotech) 

treatment (100 ng/mL). FADU cells showed an upregulation of the surface protein 

receptor (in dashed box) compared to other OCCLs. Three independent experiments 

were performed with triplicates with error bar in SEM. (* p-value<0.05, ** p-value<0.01, 

and NS is not significant).  
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Figure 3.6: XCR1 mRNA expression. The OCCLs were treated with hLtn (100 ng/mL) 

(Peprotech) for 24 hours. The relative expression was compared to the endogenous 

control of β-2-myoglobulin (B2M) and expressed as fold change (normalised to control). 

The graph represents minimum and maximum (with median line). (** p-value<0.01, and 

NS is not significant).  
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3.3.2 Effect of Normal Oral Fibroblast, Myofibroblast, and Cancer-associated 
Fibroblast Conditioned Medium on the Expression of XCR1 and hLtn mRNA 
by OCCLs. 

Oral fibroblasts comprise most of the mesenchymal cells in the oral stroma. 

Therefore, to study their interaction with the oral cancer cells, we investigated several 

types of oral fibroblasts that can exist in an OSCC stroma; including normal oral fibroblast 

(NOF), myofibroblasts and cancer-associated fibroblasts (CAF). Indirect co-culture was 

used to study the effect of secreted factors in the media (conditioned media) by NOF, 

myofibroblast and CAF on oral cancer cell lines (OCCLs) and the level of expression of 

XCR1 receptor and XCL1 (hLtn) determined. 

 

3.3.2.1 Phenotype Assessment of α-SMA expression for Oral Fibroblast 
Cells.  

The α-SMA protein expression was compared between the normal oral fibroblast 

(NOF804 was used in this experiment) and its myofibroblast counterpart (or ‘activated’ 

NOF). TGF-β1 exposure resulted in an increase in α-SMA protein in NOF (Figure 3.7) 

after 24 hours and the expression lasted for a further 24 hours in serum-free media 

(Figure 3.8). No noticeable expression was seen in NOF without the treatment. Cancer-

associated fibroblast (CAF), expressed the α-SMA protein without exposure to TGF-β1 

(Figure 3.9). Preliminary exposure of TGF-β1 to CAF showed no impact on the α-SMA 

fibres expression. Phenotypically, our result showed that cancer-associated fibroblasts 

are similar to the oral myofibroblast. 

For the α-SMA mRNA expression (Figure 3.10), the results were similar to 

protein expression. The relative expression was compared to the endogenous 

housekeeping U6 small nuclear RNA (U6 snRNA). Normal oral fibroblasts (NOF804) 

exposed to TGF-β1 for 24 hours, and cancer-associated fibroblasts (CAF002 and 

CAF004) had a similar high relative expression of α-SMA mRNA (p=0.0152, p=0.0091 

and p=0.005 respectively).  α-SMA mRNA expression was detected even in unstimulated 

cancer-associated fibroblasts.  
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Figure 3.7: Representative photomicrograph of α-SMA expression seen by 

immunofluorescence in normal oral fibroblast (NOF804). The treatment consists of (A) 

without and (B) with 5ng/mL of TGF-β1 treatment after 24 hours. The cell nucleus is 

stained in blue (DAPI) and the α-SMA fibres in green (FITC). (Magnification: 400×). 
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Figure 3.8: Representative photomicrograph of α-SMA immunofluorescence expression 

in stimulated normal oral fibroblast (NOF804). The treatment consists of (A) without and 

(B) with 5 ng/mL of TGF-β1 treatment for 24 hours and further left in SFM for another 24 

hours (total of 48 hours). The cell nucleus is stained in blue (DAPI) and the α-SMA fibres 

in green (FITC). (Magnification: 400×). 
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Figure 3.9: Representative photomicrograph of α-SMA immunofluorescence of cancer-

associated oral fibroblast (CAF). Two populations of CAF were stained (refer Table 3.2 

for the tissue origin): (A) CAF002 (from floor of the mouth) and (B) CAF004 (from lateral 

tongue). The cell nucleus is stained in blue (DAPI) and the α-SMA fibres in green (FITC). 

(Magnification: 400×). 
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Figure 3.10: α-SMA mRNA expression in oral fibroblasts. Normal oral fibroblasts (NOF) 

were exposed to TGF-β1 (5 ng/mL) (Abcam) for 24 hours to promote transformation into 

myofibroblasts. Similarly, additional 24 hours of treatment in SFM was performed to 

compare the expression. Cancer-associated fibroblasts were not treated and αSMA 

expression compared to NOF in fold change (normalise to control). Endogenous control 

to U6 snRNA was used. The graph represents with minimum to maximum (with median 

line). (* p-value<0.05, ** p-value<0.01, and NS is not significant). 
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3.3.2.2 Effect of Conditioned Media from Normal Oral Fibroblast, 
Myofibroblast, and Cancer-associated Fibroblast on OCCL XCR1 and 
hLtn mRNA Expression. 

In continuation from the phenotype assessment of the oral fibroblast derivatives, 

an experiment was performed to investigate the effect of conditioned media (CM) derived 

from the fibroblasts on selected oral cancer cell lines, SCC4 and H357 cells by using an 

indirect co-culture method. After the exposure to the CM for 24 hours, both the mRNA 

expression of XCR1 and hLtn were investigated.  

The XCR1 mRNA expression by SCC4 cells was upregulated after the treatment 

with CM derived from normal oral fibroblast (NOF), and the cancer-associated fibroblasts 

(CAF002 and CAF004) (Figure 3.11 (A)). The highest XCR1 mRNA fold increase was 

from exposure to CM derived from NOF (mean 2.57 ± 0.284), followed by CAF002 (mean 

2.213 ± 0.2113) and CAF004 (mean 1.453 ± 0.1473) which was significant when 

compared to normalised vehicle control (treated with SFM only) (p=0.0052, p=0.0046, 

and p=0.0371 respectively). Interestingly, CM from myofibroblasts showed a significant 

downregulation of XCR1 mRNA expression in SCC4 (mean 0.4426 ± 0.1354, p=0.0146). 

In the case of XCL1 mRNA expression by SCC4 cells, a similar trend was seen 

(Figure 3.11 (B)). However, only exposure to the CM from myofibroblasts (mean 0.3372 

± 0.1264, p=0.0146) and CAF004 (mean 1.633 ± 0.1768, p=0.0232) showed a significant 

change. The result was similar to that in XCR1 where CM from myofibroblast upregulate 

and CAF004 downregulated the XCL1 mRNA expression. 

For H357 cells, we observed that the XCR1 mRNA expression had a similar trend 

to SCC4 cells (Figure 3.12 (A)). CM from NOF caused significant upregulation of XCR1 

mRNA in H357 cells (mean 2.68 ± 0.5961, p=0.0479). In contrast to CM from 

myofibroblasts, the mRNA expression was significantly downregulated (mean 0.4844 ± 

0.0334, p=0.0001). Both CM from CAF002 and CAF004 showed no significant changes 

in the mRNA expression. 

Expression of XCL1 mRNA in H357 cells (Figure 3.12 (B)) was significantly 

downregulated after exposure to CM from myofibroblasts (mean 0.3608 ± 0.1252, 

p=0.0069). Both CAF002 and CAF004 conditioned media displayed a significant 

upregulation in the XCR1 mRNA expression in H357 cells (mean 2.306 ± 0.3538, 

p=0.021 and mean 1.629 ± 0.167, p=0.0197 respectively).  
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Figure 3.11: mRNA expression of SCC4 cells after exposure to conditioned media from 

normal oral and cancer-associated fibroblasts (NOF and CAF respectively). The relative 

quantification of (A) XCR1 and (B) XCL1 mRNA expression was compared to the 

normalised control (in fold change). Endogenous control to B2M was used. The graph 

represents with minimum to maximum (with median line). (* p-value<0.05, ** p-

value<0.01, and NS is not significant). 
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Figure 3.12: mRNA expression of H357 cells after exposure to conditioned media from 

normal oral and cancer-associated fibroblasts (NOF and CAF respectively). The relative 

quantification of (A) XCR1 and (B) XCL1 mRNA expression was compared to the 

normalised control (in fold change). Endogenous control to B2M was used. The graph 

represents with minimum to maximum (with median line). (* p-value<0.05, ** p-

value<0.01, *** p-value<0.001, and NS is not significant).  
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3.3.3 Effect of Senescence-induced Fibroblast Conditioned Medium on OCCLs 
XCR1 and hLtn mRNA Expression. 

In Chapter 2, results show that the XCR1 expression in OSCC was upregulated 

compared to its normal counterpart. The epidemiological data on oral cancer shows a 

significantly increased risk of disease in patients over 45 with further increased rate with 

ageing (Ram et al., 2011). Cellular senescence is highly associated with age, 

contributing to higher risk of developing further disease (van Deursen, 2014; Childs et 

al., 2015). Senescent fibroblast have been shown to have the potential to promote 

tumorigenesis (Krtolica et al., 2001). Therefore, in this sub-chapter we investigated the 

potential of cross-talk between senescence fibroblasts and oral cancer cells in relation 

to chemokine receptor XCR1 and its ligand hLtn. 

 

3.3.3.1 Phenotype Assessment of the Senescence-induced Oral Fibroblast 
Cells. 

X-gal staining was used to compare senescence in normal oral fibroblast cultures 

(Figure 3.13). A small percentage of senescent cells was detected in NOF (mean 11.6% 

± 1.435) following hydrogen peroxide for 2 hours and 14 days in growth media, more 

than 80% of the NOFs were senescent compared to NOF (p<0.0001).  

 

3.3.3.2 Effect of Conditioned Media from Senescence-induced Normal Oral 
Fibroblast on OCCLs XCR1 and hLtn mRNA Expression. 

Following the assessment of the senescence phenotype assessment, the 

conditioned media from s-NOF was collected and used to study its effect on XCR1 and 

hLtn mRNA expression in SCC4 and H357 cells by using an indirect co-culture method. 

After the exposure to the CM for 24 hours, mRNA expression of XCR1 and hLtn was 

examined.  

The SCC4 cells showed a significant downregulation in both XCR1 (mean 0.3214 

± 0.07342, p=0.0008) and hLtn (mean 0.0076 ± 0.0015, p<0.0001) mRNA expression 

when compared to the normalised vehicle control (Figure 3.14). No significant changes 

in H357 cells in either mRNA expression level was observed.  
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Figure 3.13: Senescence-associated β-galactosidase (SA-β-gal) assay of senescence 

normal oral fibroblast (s-NOF804). (A) Representative image of the cells with and without 

hydrogen peroxide treatment for 2 hours after 14 days. (B) The percentage of senescent 

cells with and without treatment with 500 µM H2O2 (an average of five different optical 

views) with SEM. (**** p-value<0.0001). (Total magnification: 400×). 
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Figure 3.14: mRNA expression of SCC4 (in red) and H357 (in blue) cells after exposure 

to the conditioned media from senescence-induced normal oral fibroblast (s-NOF804). 

The relative quantification of (A) XCR1 and (B) XCL1 mRNA expression was compared 

to normalised control (in fold change). Endogenous control to B2M was used. The graph 

is represented with min to max bar (with median line). (*** p-value<0.001, **** p-

value<0.0001, and NS is not significant).  

(B) 

(A) 
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3.4 DISCUSSION 

3.4.1 Regulation of XCR1 Surface Expression in OCCL through hLtn Stimulation. 

XCR1 receptor expression has been shown in oral normal and carcinoma tissue, 

as well as several oral cancer cell lines (OCCL) (Khurram et al., 2010). The evidence in 

Chapter 2 and results in this chapter support the previous findings (refer Section 3.31). 

XCR1 was expressed by all selected OCCL with varying degrees of expression. SCC4 

cells showed the highest percentage of XCR1 expression (~80%) and the lowest was 

H357 cells (~35%) similar to the findings of by Khurram et al. (2010). Both OCCLs was 

derived from tongue OSCC. Recurrent OSCC-derived BICR16 cells population had 

~70% expression of XCR1. Both TR146 and BICR22 are derived from neck lymph node 

OSCC metastasis, which originate from buccal and tongue mucosa respectively and 

show moderate expression of XCR1 receptor (~40% and ~30% respectively). A 

transcriptomic analysis has revealed that low expression of XCR1 correlates with cancer 

progression and poor prognosis in hepatocellular carcinoma (Yanru et al., 2018) which 

is contradictory to our result. This is probably chemokine receptor tissue bias, where the 

receptor behaves differently in different type of cell. Histological quantification performed 

in Chapter 2 showed that XCR1 receptor expression was high (more than 80% of the 

observed tumour population) in both primary tumour and lymph node metastatic OSCC 

compared to normal tissue. Furthermore, our assessment was performed on OSCC 

tissue samples investigating the XCR1 receptor protein expression rather than the 

transcriptomes. Variations in expression are probably due to the OCCLs originating from 

different patients with different risk factors, sites and associated factors. Tumour 

heterogeneity within a cell line population can also effect the expression of chemokine 

receptors as seen in breast cancer cell line (Norton, Popel and Pandey, 2015). 

Furthermore, this heterogeneity can also arise from the stem cell-like cancer cells 

population within the cancer cell lines (Kondo, 2007). This could also influence the 

expression of XCR1 in OCCLs. 

Our findings suggest that the activation of XCR1 receptor by its ligand hLtn can 

regulate the XCR1 mRNA transcript and receptor surface expression. Only H357 and 

SCC4 cell lines, derived from tongue OSCC were found to significantly downregulate the 

surface receptor protein. Both TR146 and BICR22, lymph node metastatic cell lines, as 

well as recurrent cell line, BICR16 showed a decrease in XCR1 expression but the result 

was not significant. FADU was the only cell line which showed an upregulation of XCR1. 

A possible explanation for this is that this cell line is derived from pharynx compared to 

others which are derived from tongue and buccal mucosa (oral cavity). Both oral cavity 
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and pharynx have different development (German and Palmer, 2006), presentation and 

prognosis with distinct pattern of cancer growth and spread (Tshering Vogel, Zbaeren 

and Thoeny, 2010). 

Receptor downregulation may be due to the surface receptor desensitization and 

internalisation after activation. The β-arrestin signalling pathway is involved in 

desensitization of chemokine receptors such as CCR2 and CCR7, that leads to receptor 

internalisation and recycling (Bennett, Fox and Signoret, 2011). Two different types of 

internalisation of a chemokine receptor exist: an agonist-independent (Class A); and 

agonist-dependent (Class B) chemokine receptor desensitization. To date, the only 

chemokine receptor known to belong to Class B are the agonist-treated CXCR4, CCR2 

and CCR5 (Bennett, Fox and Signoret, 2011). Moreover, CCR2 and CCR5 receptors 

can also undergo internalisation through clathrin or caveolin-mediated endocytosis, 

although this is cell-type dependent (Bennett, Fox and Signoret, 2011). The agonist itself 

can influence the fate of the activated receptor such in CCR5 receptor, it follows the 

recycling route, however this may be agonist specific due to promiscuity of chemokine-

chemokine receptor binding.  

Interestingly, β-arrestin interactions with the intracellular domains of different 

chemokine receptors appears to have different functional effects. Interaction with specific 

residues (Ser or Thr) of the C-terminus tail initiate receptor internalization and 

desensitization, essential requirement for β-arrestin-mediated signalling event (Borroni 

et al., 2010; Smith and Rajagopal, 2016). Certain chemokine receptor requires additional 

binding to the third intracellular loops to induce the process. This was also observed in 

the G-protein coupled opioid receptor (Cen et al., 2001). Nevertheless, even without β-

arrestin mediation, the receptor can still be internalized but not recycled (Vines et al., 

2003). XCR1 contains C-terminal Ser/Thr residues, providing a possibility of receptor 

internalisation through β-arrestin. This give an indication that XCR1 receptor 

internalisation could belong to Class B. Chemokine receptors including XCR1 have 

complex mechanism of regulation which are not well understood. Further investigation 

is required to confirm this signalling pathway. 
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3.4.2 Effect Indirect Co-culture of Oral Fibroblast Conditioned Medium on OCCL 
XCR1 and hLtn mRNA Expression. 

Oral fibroblasts the most dominant constituent of the cell population in OSCC 

stroma and play a vital role in tumour growth, invasion and metastasis. Several types of 

oral fibroblast were chosen: normal oral fibroblasts (NOF), myofibroblasts and cancer-

associated fibroblasts (CAF). Our results correlate with previous findings on the 

‘activated’ phenotype of myofibroblast and CAF (Kalluri, 2016).  

Two CAFs were used to compare effect of their conditioned media. Cell 

population is distinct in each human giving a unique expression profile. Additionally, 

unlike immortalized epithelial cell line, fibroblast subpopulation is heterogeneous 

(Sriram, Bigliardi and Bigliardi-Qi, 2015). In oral fibroblasts, even different area in the 

mouth; e.g. gingival fibroblast and periodontal ligament fibroblast has different fibroblasts 

population with distinct functions and expression profile (German and Palmer, 2006). 

CAF have been shown to express different markers between normal fibroblasts and 

CAFs in nemosis (a novel way of fibroblast activation (Vaheri et al., 2009)) further adding 

to fibroblast heterogeneity. 

Cancer progression is a dynamic process involving changes in cancer cells, 

stroma and also changes in extracellular matrix topology which contributes to increased 

matrix stiffness and chemokine secretion by CAF (Kharaishvili et al., 2014). In ovarian 

cancer, CAF has been shown to secrete numerous chemokines (CCL5, and CXCL1,11 

and 12), cytokines and soluble factors to facilitate its progression (Thuwajit et al., 2017). 

The results showed that the mRNA transcripts of both XCR1 and hLtn (XCL1) 

had a similar trend in both SCC4 and H357 cells when exposed to conditioned media 

(CM) from the fibroblasts. CAF-CM upregulated XCR1 and hLtn (XCL1) transcripts in 

SCC4. In contrast, myofibroblast-CM showed a downregulation in both transcripts 

compared to NOF. This was unexpected as our initial assumption was that the 

myofibroblast-CM would be similar to that of CAF due to their phenotype similarity. Both 

myofibroblast and CAF express similar markers and soluble factors such as vimentin, α-

SMA, VCAM1, ICAM1, cytokines and matrix metalloproteinase (MMP) (Kalluri, 2016), 

although enhanced in the latter.  

Previously, conditioned media harvested from endometrial carcinoma CAF has 

been shown to contain chemokines that promote the proliferation and migration of 

endometrial carcinoma cell lines. Additionally, human CAFs promoted the growth and 

tumorigenesis compared to normal fibroblast through CXCL12/CXCR4 axis in a 

xenograft model (Teng et al., 2016). The chemokine-chemokine receptor interaction 
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increases PI3K/Akt and MAPK/Erk through paracrine signalling, and MMP-2 and MMP-

9 in an autocrine manner. CAF-CM has also been shown to induce proliferation and 

angiogenesis in ovarian cancer cells in vitro through TGF-β1, VEGF and PCNA (mRNA 

only) (Xu et al., 2013), and regulating invasion, migration, proliferation, and apoptosis in 

hepatocellular carcinoma (Ding et al., 2015). Oral CAFs were found to secrete cytokines 

and regulate heat-induced apoptosis in OCCL through the CXCL9/CXCR3 axis (Bian et 

al., 2012). This suggests that the oral CAFs may be able to influence oral cancer cell 

behaviour in a paracrine-dependent manner through the hLtn/XCR1 axis. 

Another part of our experiment was to investigate the effect of CM from 

senescence-induced normal oral fibroblast (s-NOF). CM from s-NOF significantly 

influenced the regulation of mRNA expression for both XCR1 and hLtn (XCL1) in SCC4 

cells. Our findings show that the senescence-associated secretory phenotype (SASP) 

from senescent fibroblast greatly reduces transcript expression when compared to 

normalised vehicle control. This showed that senescent cells can control the expression 

of XCR1 and hLtn through paracrine signalling. 

Our initial hypothesis was based on the correlation between cancer incidence 

and increasing age, and the increased presence of senescent cells (Campisi, 2013).  

Conversely, senescent-aged fibroblasts induce proliferation of prostate epithelial cells 

through secretion of CCL5 (Eyman et al., 2009). There is a possibility that the senescent-

aged fibroblasts produce different soluble factors than those that are stress-induced 

fibroblast either by genotoxic stimuli (i.e.: H2O2 or cisplatin) or replicative senescence. 

Ectopic expression of CXCR2 has been shown to cause premature senescence via a 

p53-dependent mechanism where the cells undergo oncogene-induced cellular 

senescence (OIS) and secrete multiple CXCR2-binding chemokines regulated by the 

NF-κB and C/EBPβ transcription factors (Acosta et al., 2008; Guo et al., 2013). SASP 

has been seen to have the potential to promote and supress tumour progression (Lecot 

et al., 2016). SASP involves the secretion of numerous growth factors, inflammatory 

cytokines and proteases, rendering a favourable microenvironment for tumour growth 

(Velarde, Demaria and Campisi, 2013). Therefore, our result suggests that SASP may 

suppress tumour progression by influencing XCR1/hLtn signalling.  
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3.5 SUMMARY 

Results in this chapter demonstrate that XCR1 function is affected by autocrine 

signalling through its ligand. Paracrine signalling by the soluble factors secreted by 

cancer-associated fibroblasts can highly influence the production of XCR1 and hLtn by 

promoting their mRNA transcript in oral cancer cells. This shows the importance of the 

tumour microenvironment in supporting the progression of OSCC through XCR1 

receptor and hLtn. Further investigation of the identity of the other soluble factors present 

in the conditioned medium can be examined through specific chemokine ELISA or by 

use of mass spectrometry to profile the protein components. 
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CHAPTER 4(a): DESIGNING THE RECOMBINANT PROTEIN hLtn VARIANTS 

4.1 INTRODUCTION 

In the modern biotechnology era, pure, soluble and functional proteins are in 

increasing demand. Natural protein sources do not always meet the requirements for 

quantity, price and ease of isolation; thus recombinant technology is the method of 

choice to fulfil this demand (Rosano and Ceccarelli, 2014). Recombinant cell factories 

are constantly employed to produce the proteins. Escherichia coli (E. coli) is a commonly 

used as the host due to its low cost, rapid and high-density growth, and the vast 

availability of compatible molecular tools facilitating protein expression by its low cost 

(Chen, 2012). Alas, expression of recombinant proteins with E. coli often encountered 

with insoluble and/or non-functional proteins despite of all its advantages. Overcoming 

these obstacles require new approaches such as the use of strategies focusing on either 

controlled expression of target protein in an unmodified form or by fusion protein 

modifications using solubility tags (Sørensen and Mortensen, 2005). 

This chapter will discuss the design for production of hLtn and its mutant variants 

(the wild type, CC3 variant and W55D variant) that will be used in further experiments. 

The first part of this chapter will explain the design of the recombinant hLtn DNA 

sequence and its considerations. The next part mainly involves the methodology behind 

protein production and purification. Several optimisations are required for protein 

expression and purification. SDS-PAGE and Western blotting was used for protein 

confirmation. For recombinant hLtn activity and efficacy, the harvested protein was 

compared with commercial recombinant human lymphotactin (XCL1) (Cat#:300-20; 

Peprotech, London, UK). XCR1-expressing cells were used to measure the functional 

activity of the recombinant hLtn using calcium signalling assay. 
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4.2 METHODS 

4.2.1 Protein Sequence Analysis 

The protein sequences used in this chapter were obtained from the NCBI website 

(https://www.ncbi.nlm.nih.gov/protein). The tertiary structure and detailed information of 

the protein was acquired from the RCSB Protein Data Bank (PDB). The structure of the 

recombinant fusion protein was generated using the RaptorX tool and then investigated 

and presented using Pymol. Additionally, the protein sequence was analysed using 

Expasy ProtParam for a theoretical molecular weight of the protein and distribution of 

amino acid residues of the protein. List of the tools used are listed in Table 4.1. 

Table 4.1: List of software tools and its function with link. 

Software 

tool 
Function Link 

Protein Data 

Bank (PDB) 

To obtain 3D 

information of 

previously 

crystalized protein 

structure 

http://www.rcsb.org/pdb/home/home.do 

Pymol 3D protein structure 

investigation and 

imaging 

https://www.pymol.org/ 

Expasy 

ProtParam 

Compute theoretical 

information (various 

physical and 

chemical 

parameters) of given 

protein stored in the 

protein database or 

user’s protein 

sequences 

http://web.expasy.org/protparam/ 

RaptorX Create prediction of 

protein structure 

tertiary structure 

based on existing 

protein crystal 

structure data 

http://raptorx.uchicago.edu/StructurePrediction/predict/ 
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4.3 STUDY DESIGN 

4.3.1 Recombinant Fusion Protein Design 

The recombinant DNA sequence of XCL1 or hLtn was constructed based on the 

wild type hLtn sequence obtained from the NCBI website (NP_002986) (Figure 4.1). 

Alternatively, the detailed information regarding the protein can be obtained from UniProt 

KB website (P47992). Several considerations are required to produce and purify the 

recombinant hLtn.  

Expression organism. The production machine used was E. coli because this 

bacterial system is well established, inexpensive, requires less time and produces a 

higher yield compared to mammalian, yeast (Baeshen et al., 2014) and insect cells 

(Gecchele et al., 2015). Most human proteins undergone post-translational modification 

(PTM) such as glycosylation and this also the case for hLtn. Glycosylation is a unique 

mechanism in mammalian cells which tags produced proteins for them to be recognized 

by specific mammalian cells. Many proteins such as antibodies are not functional unless 

glycosylated. hLtn is unique because even though it is glycosylated, the protein is still 

active when unglycosylated although this form has lower activity (Dong et al., 2005).  

Fusion protein design. Small recombinant proteins are difficult to produce as 

they are susceptible to degradation by E. coli. Moreover, small proteins are difficult to 

detect using gel electrophoresis. Polyhistidine-tag is usually incorporated into the 

sequence to facilitate purification. This is not feasible for hLtn as the N-terminal is 

important for receptor recognition and activation (Rajagopalan and Rajarathnam, 2006). 

While, truncation of N-terminal has been shown to improve the agonistic properties of 

chemokine (Lee et al., 2002), adding polyhistidine will abolish the ligand activity. A fusion 

partner is often incorporated to increase protein stability followed by linker region 

containing a cleavage site before target protein. This is summarized in Figure 4.2 below. 

Each fusion protein domain will be explained in detail below.  

Target gene/protein. The design has five important components with hLtn 

sequence being the main. hLtn contains 114 amino acids including a signal peptide 

(Figure 4.1) whereas mature hLtn only contains 93 amino acids. Only the mature 

sequence is planned to be incorporated in the sequence design in the current study due 

to the inability of E. coli to cleave the signal peptide. Note that throughout this chapter, 

hLtn is referred to human XCL1 (UniProtKB-P47992) and not its paralog human XCL2 

(UniProtKB-Q9UBD3). 
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Figure 4.1: Human lymphotactin sequence. Total of 114 amino acids including signal 

peptide (1-21 AA) highlighted in grey and mature protein sequence in yellow (22-114 AA) 

(UniProtKB-P47992). 

 

 

Figure 4.2: Basic expression vector configuration for high throughput expression in E. 

coli for (A) cytoplasmic protein and (B) membrane protein. The difference in the 

configuration is the location of the purification tag, either N- or C-terminal. T7 promoter 

is used to control the recombinant protein expression in E. coli. Tandem affinity tags are 

essential for high-throughput assay where protein expression initiation, protein solubility 

and soluble detection involves large tag, while purification requires smaller tag. UTR: 

Untranslated region.   

 

Affinity tag. Several affinity tags are commonly used to facilitate recombinant 

protein purification. The most commonly affinity tag is a polyhistidine-tag, ranging from 2 

– 10 histidine residues. A cleavable polyhistidine-tag allows production of a large quantity 

(approximately 10 – 100 mg) of highly pure protein (Kimple, Brill and Pasker, 2013). 

Commercial expression vectors are designed with at least an affinity tag and sometimes 

specific to a certain plasmid such as glutathione S-transferase (GST)-tag to pGEX vector 

and maltose binding protein (MBP)-tag to pMAL and pIVEX vectors (Kimple, Brill and 

Pasker, 2013). The pET24a plasmid with a strong T7 promoter was chosen as an 
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expression vector because it is ideal for expressing soluble, nontoxic recombinant 

proteins in E. coli with high levels of expression. The plasmid contains two different 

affinity tags: T7 tag, which also a reporter tag and a C-terminal His-tag (Figure 4.3). Both 

tags are in the multiple cloning site (MCS) region and can be manipulated accordingly 

using appropriate endonucleases. Cytoplasmic expression is preferred for the proposed 

recombinant protein (refer Figure 4.2), therefore the polyhistidine sequence will be 

purposely added at the N-terminus of the fusion protein. The usual strategy is to prefer 

a N-terminal polyhistidine-tag; and if the recombinant protein does not express or is 

insoluble, a C-terminal polyhistidine-tag will be considered. 

 

 

Figure 4.3: pET24a expression plasmid for protein expression from Novagen. The pET-

24a vector contains the N-terminal T7 promoter and kanamycin resistance selection 

marker. 
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Fusion partners. An alternative method to increase the stability and solubility of 

the recombinant protein is by adding a fusion partner. There are a number of solubility-

enhancing fusion proteins including glutathione-S-transferase (GST), maltose binding 

protein (MBP), disulphide oxidoreductase (DsbA), nutilization substance A (NusA), small 

ubiquitin-related modifier (SUMO), thioredoxin (TrxA), and hyper-acidic protein tags 

(Lebendiker and Danieli, 2014). For our experiments, the solubility enhancer considered 

was the lipoyl domain from B. stearothermophilus, an acidic fusion partner. Lipoyl 

domains can be found in various species but 1LAC, a lipoyl domain from Bacillus 

stearothermophilus (Dardel et al., 1993) containing 85 amino acids was selected. The 

lipoyl domain provides an electrostatic protection which reduces protein aggregation, 

thus providing an adequate time to allow correct protein folding. Another advantage of 

the lipoyl domain is it is extremely soluble and often prevents formation of inclusion 

bodies of the recombinant protein as well as resistant to protease activity.   

Linker protein. To increase the flexibility of the protein during purification and 

cleavage, a linker region was added connecting the His-Lipoyl domain to the hLtn 

sequence. The linker region also further increases the solubility of the protein. It acts as 

a “neck” which gives mobility to the tag proteins allowing them to attach more easily to 

the purification column. The length of the linker used is 19 amino acids as this has been 

previously shown to increase the solubility and protein folding and unfolding  (Robinson 

and Sauer, 1998).  

Cleavage proteases. The majority of the recombinant hLtn design (see Figure 

4.2 (A)) for the protein sequence design) and production procedure was adopted from 

Peterson et al. (2004) with some modifications to fit our purification scheme. Peterson’s 

method made some modifications to the hLtn sequence; (1) conversion of Methionine 

(Met) to Alanine (Ala): M63A and M72A, and (2) insertion of the tripeptide G-M-V at the 

beginning of the mature sequence. The G-M dipeptide is required for CNBr treatment 

which removes the protein tag during purification and the conversion of Met tot Ala is to 

remove the possibility of unintentional cleavage of the hLtn. The initial cleavage protease 

of choice was Factor Xa which recognize IEGR↓ protein sequence. Alternatively, TEV 

protease was used for another construct which recognizes the amino acid sequence 

ENLYFQ↓G. Both were added to facilitate removal of the tag region from the mature 

hLtn. 

Restriction sites. For protein expression, the pET24a plasmid was used (refer 

Figure 4.3). In order to ligate the recombinant sequence into the plasmid, several 

strategic restriction sites were included to allow transfer of the target DNA sequence into 
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other plasmids. A NdeI restriction site was positioned at the beginning of the sequence, 

BamHI positioned inside the linker region and EcoRI at the end. The restriction sites are 

essential to cut the recombinant DNA ends and ligate them into the expressing vector. 

The DNA sequence is then optimized by GenScript (Appendix 11). A stop codon TAA 

increases the efficiency of translational termination suggested by the vector 

manufacturing company and another terminal codon TAG was also included.  

By considering above specifications, two fusion protein designs were considered: 

fusion protein hLtn (IEGR) and hLtn (TEV) (Figure 4.4). The 3D structure of the fusion 

proteins was generated using online tool RaptorX (Chicago, USA) (Figure 4.5). 

Additionally, the differences between the hLtn variants, wild type, CC3 and W55D 

mutants can be found in Figure 4.6. 
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Figure 4.4: Recombinant fusion protein hLtn design. (A) Base design template of the 

fusion protein with specific locations of endonuclease restriction site. Protein sequence 

of the recombinant fusion protein with (B) Factor Xa and (C) TEV protease cleavage 

sites.  

(B) 

(C) 

(A) 

1-6  His6-tag 

7-8  Short linker 

9-92  Lipoyl domain from B. stearothermophilus 

pyruvate dehydrogenase multienzyme complex   

93-111  Amino acids linker 

112-115  Protease recognition site 

115116  Cleavage site 

116-208  Matured hLtn peptide 
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GKVLEILVPE GTVATVGQTL ITLDAPGYEN MTTGSDTGEN LYFQGGSEVS DKRTCVSLTT 

 

       130        140        150        160        170        180  

QRLPVSRIKT YTITEGSLRA VIFITKRGLK VCADPQATWV RDVVRSMDRK SNTRNNMIQT 

 

       190          

KPTGTQQSTN TAVTLTG  
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Figure 4.5: Fusion protein sequence prediction generated using RaptorX online tool 

(Chicago, USA). The 3D protein structure was created using Pymol (Schrödinger, LLC, 

USA). The 3D structure of the fusion protein with (A) Factor Xa and (B) TEV cleavage 

site. Each section has specific functions to facilitate hLtn production and purification. The 

fusion protein contains N-terminal polyhistidine-tag followed by a lipoyl domain, linker 

region, protease cleavage site and mature hLtn.  

(B) 

(A) 
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Figure 4.6: The recombinant hLtn variant constructs. (A) Base design for the 

recombinant fusion protein. (B) The recombinant protein sequence for wild type, CC3 

and W55D mutants.  
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4.3.2 Recombinant Fusion Protein Expression and Purification 

Two steps are involved in producing the protein: Upstream and downstream 

processing. The upstream processing mostly involves preparation of the expression 

plasmid and downstream processing involves the protein purification.  

Bacterial host strains. To initiate protein expression, the first consideration is to 

select the appropriate expression system that is suitable to express the recombinant 

fusion protein. As explained earlier, the E. coli system is the most practical and has been 

used previously to express hLtn (Volkman, Liu and Peterson, 2009), although several 

modification were considered for the fusion protein containing hLtn. Two different E. coli 

strains were considered for the expression which were BL21 (DE3) and C41 (DE3). C41 

(DE3) strain is derived from BL21 (DE3) with several modification to accommodate 

expression of toxic proteins (Dumon-Seignovert, Cariot and Vuillard, 2004). As we have 

no information of the fusion protein behaviour in E. coli, this optimization was considered. 

Protein purification method. There are several types of purification, but a 

suitable purification method must be considered to ensure optimal recombinant protein 

purification. Immobilized metal affinity chromatography (IMAC) was considered to be the 

most appropriate method. Metal ions that are usually used for IMAC are copper, nickel, 

zinc, and cobalt. Each metal has a different affinity and specificity towards the 

polyhistidine tag (Figure 4.7). Nickel is the best choice with moderate-high affinity and 

moderate specificity to polyhistidine. Additionally, the purification format was also 

considered. Batch purification was opted for as it enables longer incubation time (up to 

24 hours) and can be performed at low temperature (4°C) when compared to spin column 

and cartridge methods.  

Buffer content. Common buffer recipes for protein purification are either a Tris-

base or sodium phosphate buffer. The buffer recipe was a modification from Volkman 

(2006) and Tuinstra (2008). Sodium phosphate buffer with pH 7.5 was preferable to 

mimic physiological condition. Expasy ProtParam analysis shown that the theoretical 

isoelectric pH (pI) for the fusion protein (Table 4.2) and the mature hLtn variants (Table 

4.3) are ~6 and ~10 respectively. As a rule of thumb, the buffer pH should be ~2 pH units 

above or below the pI. This is to facilitate the protein purification allowing it to be charged 

in the buffer solution. The buffer pH must be precisely controlled as this is required to 

keep the protein charged, thus allowing electrostatic repulsion to prevent the protein from 

aggregating. Also, it is important to keep in mind that a basic pH is essential to avoid the 

His protein from being protonated which would reduce its binding to the metal ions. 
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Furthermore, addition of glycerol can help reduce protein aggregation (Lebendiker and 

Danieli, 2014). IMAC purification can sometimes introduce binding besides the target 

protein. Addition of 10 mM imidazole can further reduce contamination by unwanted His-

rich proteins produced by E. coli. 

 

 

Figure 4.7: Polyhistidine-tag affinity and specificity towards different metals ions. Metal 

ion with higher specificity to polyhistidine has a lower affinity and vice versa. The metal 

ions that are usually used in IMAC purification are copper (Cu2+), nickel (Ni2+), zinc (Zn2+) 

and cobalt (Co2+). 

 

By using all the information, the flow of protein production is summarized in Figure 4.8. 
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Table 4.2: Expasy ProtParam analysis for recombinant HL.IEGR-hLtn and HL.TEV-hLtn. 

 HL.IEGR-hLtn HL.TEV-hLtn 

Number of amino acids 209 amino acids 198 amino acids 

Molecular weight 22163.92 Da (~22 kDa) 21671.42 Da (~22 kDa) 

Theoretical pI 6.41 5.98 

Total number of 

negatively charged 

residues (Asp + Glu) 

24 25 

Total number of 

positively charged 

residues (Arg + Lys) 

22 21 

Extinction coefficient  

(M-1 cm-1 at 280 nm 

measured in water) 

Abs 0.1% (=1 g/L) 

assuming all pairs of Cys resides form cystines 

14105 

0.636 

15595 

0.720 

assuming all Cys residues are reduced 

13980 

0.631 

15470 

0.714 

Estimated half-life 

3.5 hours (mammalian reticulocytes, in vitro) 

10 min (yeast, in vivo) 

>10 hours (E. coli, in vivo) 

Instability index (II) 
28.34 19.27 

This classifies the protein as stable 

Aliphatic index 77.27 80.10 
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Table 4.3: Expasy ProtParam analysis for recombinant hLtn variants. 

 Wild type CC3 mutant W55D mutant 

Number of amino acids 93 amino acids 

Molecular weight 
10229.70 Da 

(~10 kDa) 
10237.71 Da 10158.58 Da 

Theoretical pI 10.63 10.16 10.36 

Total number of 

negatively charged 

residues (Asp + Glu) 

6 7 

Total number of 

positively charged 

residues (Arg + Lys) 

15 

Extinction coefficient  

(M-1 cm-1 at 280 nm 

measured in water) 

Abs 0.1% (=1 g/L) 

assuming all pairs of Cys resides form cystines 

7115 

0.696 

7240 

0.707 

1615 

0.159 

assuming all Cys residues are reduced 

6990 

0.683 

6990 

0.683 

1490 

0.147 

Estimated half-life 

30 hours (mammalian reticulocytes, in vitro) 

>20 hours (yeast, in vivo) 

>10 hours (E. coli, in vivo) 

Instability index (II) 
25.51 21.82 28.04 

This classifies the protein as stable 

Aliphatic index 74.30 68.06 74.30 
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Figure 4.8: Upstream processing for hLtn protein production 
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CHAPTER 4(b): PRODUCTION OF THE RECOMBINANT hLtn VARIANTS 

4.1 INTRODUCTION 

The E. coli system has been a ubiquitous system to express recombinant protein, 

even for those of eukaryotic origin. However, there are some challenges in expressing 

the protein in its original form as nearly half of all proteins of human origin are 

glycosylated. Glycosylation has an important functional and structural influence in many 

key biological processes (Krištić and Lauc, 2017). hLtn has an unusual feature of O-

linked glycan attached to a C-terminal structure in a portion of the purified protein from 

mammalian culture. While there are some proteins that are not functional without 

glycosylation, hLtn has been shown to activate its receptor with lower activity (Dong et 

al., 2005).  

Production and purification of hLtn using the E. coli system has been established 

previously (Volkman, Liu and Peterson, 2009). Various techniques have been applied to 

produce hLtn variants available in the literature, notably by Volkman’s group where 

changes in certain amino acids to accommodate the purification and structural analysis.  

Most of the protein produced this way forms protein aggregates which result in insoluble 

protein. In this chapter, further possibility was explored to produce a soluble protein.    

Protein insolubility is the common challenge in protein production and purification. 

It is time consuming due to introduction of additional purification steps as well as 

decreasing the protein yield (Rosano and Ceccarelli, 2014).  This problem is partially due 

to 1) expression in a different system such as expressing a mammalian protein in 

bacterial system; 2) improper protein folding due to macromolecular crowding, where 

exposed hydrophobic core allowing protein tendency to form dimer and 3) incorrect 

disulphide linkage due to protein-protein interaction. 

The aim of this chapter is to implement an alternative method to produce and 

purify the chemokine protein.  Additionally, by introducing a lipoyl domain to the fusion 

protein (as discussed in Chapter 4a), we attempted to reduce the formation of protein 

aggregation.  
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4.2 EXPERIMENTAL 

4.2.1 Materials 

List of detailed information of the materials (reagents, kits, equipment, software 

and miscellaneous) used in the chapter can be found in Appendix 1-5. 

. 

 

Table 4.1: Primer designs used for the cloning and sequence check of hLtn into pET24a 

vectors. 

Name Sequence 

T7 promoter Fwd 5’-TAATACGACTCACTATAGGG-3’ 

T7 terminator Rev 5’-GCTAGTTATTGCTCAGCGG-3’ 

Lipoyl check  
Fwd 5’-AAACATGACGTTTGGCGGTGG-3’ 

Rev 5’-CATTCTGAACTTCGCACAGC-3’ 

hLtn check 
Fwd 5’-CATATGCATCATCATCATCATCACTCGGGTG-3’ 

Rev 5’-GAATTCATTAACCCGTCAGCGTCACTGC-3’ 

 

 

4.2.2 E. coli Culture and Growth Media Preparation 

Three different E. coli strains were used: DH5-α, BL21 (DE3) and C41 (DE3). 

The E. coli culture was provided by Dr. Tuck Seng Wong (ChELSI Institute and Advanced 

Biomanufacturing Centre, Department of Chemical and Biological Engineering, The 

University of Sheffield). Tryptone-yeast extract (TYE) culture media was prepared with 

16 g tryptone, 10 g yeast extract, 5 g sodium chloride in 1 L and sterilized by autoclaving. 

TYE agar plates were prepared with 10 g tryptone, 5g yeast extract, 4 g sodium chloride, 

15 g agar, and sterilize by autoclave. Appropriate antibiotics were added into the agar 

before plating (100 µM ampicillin or 50 µM kanamycin). 
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4.2.3 Molecular Cloning 

4.2.3.1 Site-directed Mutagenesis of W55D 

The pCMV6 Entry-XCL1 (NM_002995) human chemokine construct (Cat#: 

SC309015; Cambridge Bioscience Ltd., Cambridge, UK) was purchased from OriGene. 

The mutagenic primer (Table 4.2) was designed using the OneClick programme (link: 

http://tucksengwong.staff.shef.ac.uk/OneClick/). The PCR mixture can be found in Table 

4.3 and the programme in Table 4.4. 

Table 4.2: Primers used for the mutagenesis. 

W55D 
(OneClick)  

Fwd 5’-CAAGCCACAGACGTGAGAGACGTGGTCAGGAGCATGGACAGGAAAT-3’ 

Rev 5’-GTCTCTCACGTCTGTGGCTTGTGGATCAGCACAGACTTTTAGGCCA-3’ 

 

Table 4.3: PCR mixture. 

Component Stock conc’ 

Volume per Reaction (µL) 

TubeF 

(Forward Primer) 

TubeR 

(Reverse Primer) 

Distilled Water - 41.5 41.5 

Cloned Pfu reaction buffer 10× 5 5 

dNTPs 10 mM each 1 1 

DNA template 100 ng/µL 0.5 0.5 

Primer 1 
20 µM  

(20 pmol/µL) 
1 0 

Primer 2 
20 µM 

(20 pmol/µL) 
0 1 

Pfu Turbo DNA Polymerase 2.5 U/µL 1 1 

Total  50  50 

 

Table 4.4: Two-stage PCR programme. 

Step 
Temperature 

(°C) 
Time 

1 95 2 minutes 

2 95 30 seconds 

3 55 30 seconds 

4 72 5 minutes 18 seconds 

5 - Go to Step 2, repeat 9 times 

6 - Pause, mix TubeF and TubeR, redistribute equally, and continue 

7 95 30 seconds 

8 55 30 seconds 

9 72 5 minutes 18 seconds 

http://tucksengwong.staff.shef.ac.uk/OneClick/
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10 - Go to Step 7, repeat 19 times 

11 72 10 minutes 

12 8 Hold 

 

4.2.3.2 Restrictive Digestion 

The reaction mixture for restrictive digestion was as Table 4.5 below. The 

reaction mixture was incubated in PCR machine at 37°C. PCR product was purified using 

QIAquick PCR purification kit (Cat#: 28106; QIAGEN, Manchester, UK) or QIAquick gel 

extraction kit (Cat#: 28706; QIAGEN, Manchester, UK).  

Table 4.5: Reaction mix for restrictive digestion. 

Component Stock conc’ Volume (µL) Final conc’ 

Water  88 – x  

Buffer 4 10× 10 1× 

PCR plasmid 

product/Plasmid 

Measure using 

Nanodrop 
x  

Restriction enzyme 1: 

BamHI (NEB) 
20 U/µL 1 20 U/100 µL 

Restriction enzyme 2: 

EcoRI (NEB) 
20 U/µL 1 20 U/100 µL 

Total  100  

 

 

4.2.3.3 Ligation of hLtn Variants Gene Sequence into pET-24a 

The ligation was achieved using a PCR machine. The reaction mixture used was 

prepared as in Table 4.6 below. The reaction mixture was incubated in PCR machine at 

16°C. After the reaction, 5 µL was transformed into E. coli strain DH5-α. 

Table 4.6: Ligation reaction mixture. 

Component Stock conc’ Volume (µL) Final conc’ 

Water  16 – x – y  

Buffer 10× 2 1× 

Digested plasmid 
Measure using 

Nanodrop 
x 50 ng 

Digested insert 
Measure using 

Nanodrop 
y 

3× the amount of plasmid used 

(3 insert molecules: 1 plasmid 

molecule) 

T4 DNA ligase (NEB) 
400 cohesive 

end unit/µL 
2 40 U/µL 

Total  20  
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4.2.3.4 Polymerase Chain Reaction (PCR) 

The reaction mixture used was prepared as in Table 4.7 below. The reaction 

mixture was incubated in PCR machine using programme described below (Table 4.8). 

The PCR products were purified using QIAquick PCR purification kit or QIAquick gel 

extraction kit. The template DNA was separated from the PCR product using DNA gel 

electrophoresis followed by gel extraction. For PCR purification, 1-2µL DpnI was added 

into the PCR mixture and was incubated for overnight at 37°C to remove methylated or 

hemi-methylated template DNA prior to the purification step. 

Table 4.7: PCR reaction mixture. 

Component Stock conc’ Volume (µL) Final conc’ 

Water  36  

HF Buffer 5× 10 1× 

dNTP mix 10 mM each 1 0.2 mM each 

Forward primer 
20 µM (20 

p.mol/µL) 
1 0.4 µM 

Reverse primer 
20 µM (20 

p.mol/µL) 
1 0.4 µM 

Template DNA 
Measure using 

Nanodrop 
0.5  

Phusion DNA 

polymerase (NEB) 
2 U/µL 0.5 1 U/50 µL 

Total  50  

 

Table 4.8: PCR programme. 

Step 
Temperature 

(°C) 
Time 

1 98 30 seconds 

2 98 10 seconds 

3 72 30 seconds 

4 72 60 seconds 

5 - Go to Step 3, repeat 29 times 

6 72 2 minutes 

7 8 Hold 
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4.2.3.5 Gel Extraction (Nucleospin Gel and PCR Clean Up) 

The DNA gel extraction was executed using QIAquick Gel Extraction Kit 

(QIAGEN, Manchester). The desired DNA band was excised with the help of a 

transilluminator for the band location visualisation. The gel piece was then transferred 

into a 15 mL centrifuge tube and the weight of the gel was recorded to determine the 

volume of buffer required. For each 100-mg agarose gel, 200 µL Buffer NTI was required. 

The tube was then incubated in 50°C water bath with gentle shaking. When the gel was 

fully dissolved, the tube was briefly vortexed. The dissolved gel was pipetted up to 700 

µL onto a spin column and centrifuged at 5000 rpm at RT for 1 minute. The flow through 

was discarded and the protocol continued until all solutions was applied to the column. 

The column was washed with 700 µL Buffer NT3 and the column was left to stand before 

centrifugation. The centrifuge was set at 5000 rpm at RT for 1 minutes. The flow-through 

was again discarded and the column washed with Buffer NT3 for the second time. 

Maximum speed centrifugation at RT for additional 2 minutes was used to remove 

residual ethanol. The column was then placed in a fresh 1.5 mL centrifuge tube before 

incubating at 70°C for 5 minutes using a thermoblock. Consequently, Buffer NE was also 

incubated on the thermoblock. The DNA was eluted with 35 µL Buffer NE and left to 

stand at RT for 2 minutes. Maximum speed centrifugation for 1 minute was used to obtain 

the DNA. DNA quantification was performed using NanoDrop (Thermo Fisher Scientific, 

Paisley, UK) 

 

4.2.3.6 Gene Sequencing Analysis 

Eurofin Sequencing (Eurofin Genomics UK, Wolverhampton, UK) service was 

used to identify the sequence quality of the plasmid. The sequence was then analysed 

using FinchTV (PerkinElmer, UK) or ApE plasmid software (by Wayne Davis, University 

of Utah, USA). Protein sequence translation was performed using Expasy Translate Tool 

(https://web.expasy.org/translate/). 

 

4.2.4 Bacterial Transformation using CaCl2 Heat-Shock Method 

Principle: Calcium chloride (CaCl2) transformation is a laboratory tool to incorporate 

plasmid DNA into prokaryotic cells. The positively charged calcium ions (Ca2+) bind to 

the negatively charge outer core of the lipopolysaccharide (LPS) of the bacterial cell wall 

as well as encasing the negatively charged plasmid DNA. This promotes molecular 
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binding of the two components. Heat shock is applied to ferry the plasmid DNA into the 

bacterial cell through pores in the cell membrane which forms when cells are chilled (on 

ice) and heated at 42°C for a short time. 

Procedure: An overnight culture of E. coli was grown in 5 mL 2×TYE media at 37°C, 

250 rpm. 50 µL of the overnight culture was then inoculated in 5 mL 2×TYE media and 

grown at 37°C with shaking at 250 rpm. The optical density (OD) was monitored at 600 

nm. When OD600 reached ~0.5-0.6, 1-mL aliquot per transformant was transferred to a 

sterile 1.5 mL microcentrifuge tube. Following centrifugation at 2800 rpm, RT, for 2 

minutes, the supernatant was removed by pipetting, followed by gentle re-suspension of 

the cells in 500 µL sterile pre-chilled 50 mM CaCl2, re-centrifugation and removal of the 

supernatant before incubating the cells in CaCl2 on ice for 30. For transforming intact 

plasmid, 10 minutes of incubation is acceptable. Cells were heat shocked at 42oC for 1 

minutes and further incubated in ice for additional 2 minutes. 800 µL of pre-warmed 

2×TYE media (37°C) was added and cells left to grow at 37°C, 250 rpm for 60 minutes. 

Subsequently, TYE agar plates were pre-warmed (with antibiotics) at 37oC. The cells 

were centrifuged at 2800 rpm, RT, for 2 minutes and most of the media removed. The 

remaining 200-300 µL media was used to re-suspend the cells gently before plating them 

on pre-warmed agar plates. The plates were incubated overnight at 37°C to allow the 

transformed colony to grow. 

 

4.2.5 Isolation of plasmid DNA using QIAprep Spin Miniprep Kit 

The plasmid DNA was isolated from E. coli DH5-α using QIAprep Spin Miniprep 

Kit (Qiagen, Manchester, UK). 3 mL of overnight culture (with plasmid of interest) was 

harvested by centrifugation (5000 rpm, RT, 2 minutes). The excess media was removed 

by inverting and tapping the tube carefully on paper towel. Cell pellet was re-suspension 

was performed by vortexing in 250 mL Buffer P1. Cells lysis was achieved by adding 250 

µL Buffer P2. The lysis was performed by gently inverting the tube, not exceeding 5 

minutes. Once lysed, 350 µL Buffer N3 was added immediately followed by centrifugation 

(maximum speed, RT, 10 minutes). The supernatant was transferred to a Qiagen column 

and centrifuged at 5000 rpm at RT for 2 minutes. The flow-through was discarded prior 

to adding 750 µL Buffer PE to the column. The flow-through was discarded following 

centrifugation at 5000 rpm at RT for 2 minutes before a final centrifuge at maximum 

speed at RT for additional 2 minutes to remove residual ethanol. The column was placed 

in a fresh 1.5 mL centrifuge tube to collect the eluted DNA using 35 µL of Buffer EB. The 
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tube was left stand for 2 minutes for good DNA recovery before centrifuged at maximum 

speed at RT for 2 minutes. The DNA concentration was measured using a NanoDrop 

1000 Spectrophotometer (Thermo Scientific, DE, USA).  

 

4.2.6 DNA Purification (QIAquick PCR Purification Kit) 

The DNA purification was performed using QIAquick PCR purification kit. A ratio 

of 5 parts buffer PB to 1-part DNA sample was mixed and vortexed briefly in a 1.5-mL 

centrifuge tube. The entire mixture was then transferred into a Qiagen column and 

centrifuged at 5000 rom at RT for 2 minutes. The flow-through was discarded and the 

column was washed with 750 µL Buffer PE. Column was centrifuged and the flow-

through was discarded. An additional 2 minutes of centrifugation at maximum speed was 

used to remove residual ethanol. The column was then placed in a fresh 1.5-mL 

centrifuge tube to elute the DNA using 35 µL Buffer EB. The elution was collected by 

centrifugation at maximum speed for 2 minutes. DNA concentration was measured using 

NanoDrop. 

 

4.2.7 DNA Gel Electrophoresis 

Procedure: 0.7% (w/v) agarose gel was prepared in 1×TBE buffer (by dissolving 0.35g 

of agarose in 50 mL buffer). The percentage of gel used is dependent on the size of the 

DNA fragment to be analysed. Low percentage gels (0.7-0.8%) are used for high Mw 

DNA fragments and high percentage gel (1-1.5%) for low Mw DNA fragment. To ensure 

the agarose was fully dissolved, heating was performed using microwave. 2 µL of 

ethidium bromide solution was added and the gel was casted using gel caster, gel tray 

and gel comb when only the agarose gel temperature cooled to room temperature. The 

gel allowed to cool down and solidify, before loading 6 µL of 1 kb DNA ladder (Cat#: 

N3232L; New England Biolabs, Hitchin, UK) and appropriate volume of DNA samples. 

The electrophoresis was run at constant voltage of 100 V for 60 minutes. The gel image 

was captured using a gel documentation system. 
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4.2.8 Protein Overexpression using the E. coli system 

4.2.8.1 TEV Protease 

Cell- based protein expression was carried out using E. coli strain BL21 (DE3). 

Cells were transformed with the pRSET vector containing TEV A Protease constructs 

(engineered for higher expression) using the CaCl2 heat-shock method, and plate 

inoculation was carried out on 2×TYE agar supplemented with 100 µM ampicillin. Protein 

expression was initiated in 2×TYE media with 100 µM ampicillin using isopropyl β-D-

thiogalactopyranosidase (IPTG) at final concentration of 1 mM when the growth reached 

~ 0.6 OD. Cells were incubated at 25°C with shaking at 250 rpm for 24 hours to allow 

expression to occur. Cells were harvested post-expression and centrifuged at 8000 rpm 

for 15 minutes at 4°C. Cell pellets were either analysed for protein expression or stored 

at -20°C. 

 

4.2.8.2 hLtn variants 

Protein overexpression was carried out using both E. coli strain BL21 (DE3) and 

C41 (DE3) to identify most suitable strain. Cells were transformed with a pET24a vector 

containing respective hLtn variants constructs (wild type, CC3 and W55D mutants) using 

the CaCl2 heat-shock method. Plate inoculation was carried out on 2×TYE agar 

supplemented with 50 µM kanamycin. Protein expression was initiated in TYE auto-

induction media (Studier, 2014) with 50 µM kanamycin. Expression was performed at 

25°C in an incubator shaker at 250 rpm for 24 hours. Cells were harvested post-

expression and centrifuged at 8000 rpm for 15 minutes at 4°C. Cell pellets were either 

analysed for protein expression or stored at -20°C. 
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4.2.9 Analysis of Protein Expression 

4.2.9.1 SDS-PAGE Analysis 

Procedure: A 15% acrylamide-SDS gel was prepared for the analysis throughout the 

experiments due to the low molecular weight of the protein expressed. There were two 

parts of the gel preparation: the resolving gel (lower part) and the stacking gel (upper 

part). The composition of each layer was as described in Figure 4.1 below. Following 

the addition of the polymerisation initiators, the gel was allowed to solidify, before loading 

5 µL of PageRulerTM unstained broad range protein ladder (Cat#: 26630; Thermo Fisher 

Scientific) and appropriate volume of protein sample. The electrophoresis was run at 

constant voltage of 200 V for 40 minutes. Protein gel was stained with Commassie 

Brilliant Blue staining dye and counterstained with de-staining solution. The gel image 

was captured using gel documentation system. 

 

Figure 4.1: Protein electrophoresis and the composition of a 15% SDS-polyacrylamide 

gel. 

 

  

Gel comb 

Stacking gel (for one gel): 
2.05 mL DDI H2O 
1.65 mL 30% Acrylamide 
1.25 mL 0.5 M Tris-HCl (pH 6.8) 
0.05 mL SDS 
5.0 µL TEMED 
25 µL APS 

 
Resolving gel (for one gel): 
2.05 mL DDI H2O 
1.65 mL 30% Acrylamide 
1.25 mL 1.5 M Tris-HCl (pH 6.8) 
0.05 mL SDS 
2.5 µL TEMED 
25 µL APS 
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4.2.9.2 Western Blot 

Procedure: Prior running a western blot, protein gel electrophoresis as described 

previously was performed (refer Section 4.2.9.1). For wet transfer, a piece of Immobilon 

P Transfer Membrane (Millipore) pre-treated with 100% methanol for 45 seconds 

followed by rinsing in distilled water. The Watman papers, sponges and the transfer 

membrane were thoroughly soaked in 1× transfer buffer containing 10% (v/v) methanol 

(prepared from 10× transfer buffer containing 12 mM Tris base, 96 mM glycine in 1 L). 

The whole unit stack was prepared and placed in a X-cell II Blot Module (Cat#: EI9051; 

ThermoFisher Scientific, Paisley, UK). The blot module was inserted into the running 

chamber and locked. The blot module and running chamber were submerged in 1× 

transfer buffer and run at 30 V for 60 minutes. The membrane was carefully transferred 

in 1× TBS (prepared from 10× TBS containing 500 mM Tris base and 1.5 M NaCl 

adjusted to pH 7.6 in 1 L) for 10 minutes twice. Membrane was then incubated in 1× 

blocking buffer from the Penta.His HRP Conjugate Kit (QIAGEN, Manchester, UK) for 1 

hour. 1× TBST (containing 20 mM Tris base, 500 mM NaCl, 0.05% (v/v) Tween-20 and 

0.2% (v/v) Triton x-100 adjusted to pH 7.5 in 1 L) was used to wash the membrane for 

10 minutes twice followed by another wash with 1×TBS for another 10 mins. Incubation 

of membrane with the Anti-His antibody solution from the Penta.His HRP Conjugate Kit 

(dilution 1:1000 in 1× blocking buffer) was performed for 1 hour. After antibody 

incubation, the membrane was washed in 1× TBST for 10 minutes twice followed by TBS 

for another 10 minutes.  
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4.2.10 Protein Purification of Recombinant Protein 

Principle: Nickel resin purification is an immobilised metal affinity chromatography 

(IMAC) method that is widely utilised in purifying recombinant proteins with polyhistidine 

tags (Block et al., 2009). There are other metals that can be used to charge the column 

such as zinc, cobalt and copper but generally, nickel resin offers the highest yield. The 

binding is achieved through electrostatic attraction to the nickel beads or resin, although 

non-specific binding can occur which can be reduced by addition of sodium chloride to 

the buffer. The polyhistidine binds tightly with micromolar affinity to the metal and can be 

removed by addition of a high concentration of imidazole, which competes with the 

polyhistidine tag for binding to the column. 

 

4.2.10.1 Polyhistidine Tag-Nickel Purification using Fast Protein Liquid 
Chromatography (FPLC) 

Procedure: Histidine tagged proteins purification was carried out using HisTrap HP 5mL 

column (GE Healthcare Life Sciences) on an ÄKTA Pure FPLC system (GE Healthcare 

Life Sciences). Cell sonication was performed to lyse the cell (settings: total time of 10 

minutes (10 seconds on, 20 seconds off) with 70% sonicating amplitude). Binding buffer 

was composed of 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 10 mM imidazole, 10% (v/v) 

glycerol and 0.1% (v/v) 2-mercaptoethanol. Lysis buffer was composed of binding buffer 

with 2 tablets of PierceTM protease inhibitors mini tablets (Thermo Fisher Scientific), 10 

µg/mL DNase, 10 µg/mL RNase and 10 µg/mL lysozyme. The elution buffer was 

composed of 50 mM Tris-HCl pH 8.0, 300 mM NaCl, 250 mM imidazole, 10% (v/v) 

glycerol and 0.1% (v/v) 2-mercaptoethanol (added before use). Purified protein sample 

fractions were collected, aliquoted and analysed, or stored at -80°C in 10% glycerol 

solution for long-term storage.  

 

4.2.10.2 Polyhistidine Tag-Nickel Purification using Batch Resin 

Procedure: Soluble protein fractions were transferred into 50 mL Falcon tube with the 1 

mL nickel resin, equal to 1 column volume (CV). Binding buffer was composed of 50 mM 

sodium phosphate (NaH2PO4) buffer, 300 mM NaCl and 10 mM imidazole (pH 7.5). Lysis 

buffer was composed of binding buffer with 2 tablets of PierceTM protease inhibitors mini 

tablets (Thermo Fisher Scientific), 10 µg/mL DNase (Brand), 10 µg/mL RNase (Brand) 

and 10 µg/mL lysozyme (Brand). The wash buffer pH 7.5 was composed of 50 mM 
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sodium phosphate (NaH2PO4) buffer, 300 mM NaCl and 20 mM imidazole. The elution 

buffer was composed of 50 mM sodium phosphate (NaH2PO4) buffer, 300 mM NaCl and 

250 mM imidazole (pH 7.5). The mixture was then left overnight at 4°C on a rolling 

platform to allow even mixing. The solution was transferred into a filter column and 

allowed to flow through the column by gravity to remove any unbound protein. Samples 

were collected for analysis at each step. The resin was then washed with 5 CV wash 

buffer at least three times before eluting the protein. The resin was then treated with 

elution buffer and left for at least a minute before retrieving the sample. The eluted protein 

fractions were analysed to identify which fraction contained the desired protein. The flow 

of the nickel purification can be found in Figure 4.2. 

Buffer  

Binding 50 mM NaH2PO4 + 300 mM NaCl + 10 mM imidazole (pH 7.5) 

Lysis 
50 mM NaH2PO4 + 300 mM NaCl + 10 mM imidazole (pH 7.5) + protease 

inhibitors + 10 µg/mL DNase + 10 µg/mL RNase + 10 µg/mL lysozyme 

Wash 50 mM NaH2PO4 + 300 mM NaCl + 20 mM imidazole (pH 7.5) 

Elution 50 mM NaH2PO4 + 300 mM NaCl + 250 mM imidazole (pH 7.5) 

 

 

4.2.10.3 Desalting: Removal of Imidazole Salt from the Protein Solution 

Principle: Size exclusion chromatography is a technique to separate biomolecules 

according to differences in their molecular weight. A dextran gel matrix is usually used 

for gel filtration, where molecules larger than the largest pores are excluded from the 

matrix and are eluted first. Sephadex G-25 has a fractionation range of 1000 – 5000 Da.    

Procedure: The desalting process was performed using Sephadex G-25 in a PD-10 

desalting column (GE Healthcare Life Science, Buckinghamshire, UK). Both the column 

equilibration and elution buffer were composed of 50 mM phosphate buffer (NaH2PO4), 

300 mM NaCl and 10 mM imidazole (pH 7.5). The column was equilibrated by allowing 

the solution to enter the packed bed completely. The flow-through was discarded and 

approximately 25 mL equilibration buffer was used in total. Samples were applied in 2.5 

mL, samples less than his volume were brought up to 2.5 mL before application to the 

column. The sample was allowed to enter the packed bed completely before discarding 

the flow-through. For sample elution, 3.5 mL of buffer was used, and the eluate was 

collected. The process was repeated until all the sample was completely treated. The 

recovery protein range is 70 -90% of the initial concentration. 
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Buffer  

Wash & Elution 50 mM NaH2PO4 + 300 mM NaCl + 10 mM imidazole (pH 7.5) 

 

 

4.2.10.4 Fusion Protein Cleavage using TEV Protease A 

The fusion protein was separated into two domains by introducing TEV protease 

to the first-step of the purification. The protein was treated with protease overnight at 4°C 

on a rolling platform to allow even mixing (concentration ratio 1 OD280 TEV to 100 OD280 

protein).  

 

4.2.10.5 Second-step Polyhistidine Purification using Batch Resin 

Procedure: Protein soluble fractions were transferred into 50 mL Falcon tubes with the 

1 mL nickel resin, equal to 1 column volume (CV). The mixture was then left overnight at 

4°C on a rolling platform to allow even mixing. The solution was transferred into a filter 

column and allowed to flow through the column by gravity to remove any unbound 

protein. Samples were collected for analysis at each step. The resin was then washed 

with 5 CV binding buffer at least three times before eluting the protein. The resin was 

treated with elution buffer and left for at least a minute before retrieving the sample. The 

eluted protein fractions were analysed to identify which fraction contains the desired 

protein 

Buffer  

Binding 50 mM NaH2PO4 + 300 mM NaCl + 10 mM imidazole (pH 7.5) 

Wash 50 mM NaH2PO4 + 300 mM NaCl + 20 mM imidazole (pH 7.5) 

Elution 50 mM NaH2PO4 + 300 mM NaCl + 250 mM imidazole (pH 7.5) 
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1) Incubation with Ni-NTA 
resin at 4°C with 
constant rolling 
overnight. 

2) Transfer the soluble 
fraction + nickel resin 
onto a filter column and 
allow the flow-through 
by gravity. 
Sample of the flow-
through was collected 
for analysis. 

3) Wash the resin using 5 
CV wash buffer allow 
the buffer to flow by 
gravity. Sample of the 
wash buffer was 
collected for analysis. 
 
Wash buffer (pH 7.5): 
50 mM NaH2PO4 
300 mM NaCl 
20 mM imidazole 

 

4) Protein bound to the 
resin was removed 
using 2CV elution buffer. 
The resin was left in the 
buffer for at least 2 
minutes to increase 
protein removal yield in 
the first eluate. Sample 
of the eluate was 
collected for analysis. 
 
Elute buffer (pH 7.5): 
50 mM NaH2PO4 

300 mM NaCl 
250 mM imidazole 

 

First –step Purification (Negative Nickel resin) 

Ni-NTA 

Ni-NTA 

Ni-NTA 

Ni-NTA 

Solution with total 
intracellular protein 

Solution with total 
intracellular protein 
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5) Removal of the 
imidazole salt by 
running the eluate from 
first-step of the 
purification in a size 
exclusion column with 
Sephadex G-25. 

6) Cleavage of fusion 
protein to release 
mature hLtn peptide 
from the lipoyl domain. 
 
First-step eluate +  
TEV protease 
(Desalted) 

7) Capture of His.Lipoyl 
domain and His-TEV 
protease on a nickel 
resin 
  
Flow-through (Purified hLtn 
variants) 

8) Wash the resin using 5 
CV wash buffer allow 
the buffer to flow by 
gravity. Sample of the 
wash buffer was 
collected for analysis. 
 
Wash buffer (pH 7.5): 
50 mM NaH2PO4 
300 mM NaCl 
20 mM imidazole 

Second –step Purification (Negative Nickel resin) 

Collected 
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Figure 4.2: Flow diagram of the two-step IMAC batch purification with nickel resin 

protocol used for hLtn variants purification.  

9) Protein bound to the 
resin was removed 
using 2CV elution buffer. 
The resin was left in the 
buffer for at least 2 
minutes to increase 
protein removal yield in 
the first eluate. Sample 
of the eluate was 
collected for analysis. 
Additional washing 
using buffer with high 
imidazole concentration 
(500 mM) to strip any 
residual bounded 
protein 
 
High imidazole buffer (pH 
7.5): 
50 mM NaH2PO4 

300 mM NaCl 
500 mM imidazole 

 

10) Wash the resin for storage 
 
Wash buffer → distilled H2O 2× → 20% (v/v) Ethanol 2×; and 

storage in 20% (v/v) ethanol. 

Ni-NTA 
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4.2.11 Protein Analysis 

4.2.11.1 Protein Concentration Determination using UV-Spectrometer  

The concentration of the protein was measured by using a UV spectrometer at a 

wavelength 280 nm. The concentration was then corrected using the Beer-Lambert’s law 

equation. This was performed by considering the extinction co-efficient of each protein 

species obtained from Expasy ProtParam analysis (refer Chapter 4(a)).  

 

 

4.2.11.2 Calcium Flux Assay 

Principle: This method uses Indo-1 AM ester (Figure 4.3), a ratiometric fluorescent dye 

that is loaded into cells and can be detected by UV laser excitation to measure 

intracellular calcium levels. The emission wavelength depends on whether the dye binds 

to calcium (~420 nm) or is free (~510 nm). Intracellular calcium concentration changes 

can be determined by the ratio of the two wavelengths value (Dustin, 2000). 

Whilst, Indo-1 is not cell permeable, the addition of the potassium salt penta 

acetoxymethyl (AM) to the dye allows it to cross the cell membrane as well as increasing 

the solubility. Once inside the cell, an intracellular esterase will cleave the AM, leaving 

Indo-1 free to chelate to intracellular calcium. 

Procedure: To investigate the effect of the hLtn variants functional activity, highly XCR1-

positive OCCL (SCC4 cells) were used. 1 × 105 cells/mL were prepared in a centrifuge 

tube. Cells were re-suspended in 1 mL cell loading media (CLM) consist of Dulbecco’s 

PBS with MgCl2 and CaCl2 (Cat#: D8552; Sigma-Aldrich, Dorset) with 0.5% (w/v) BSA. 

Indo-1 AM (Cat#: 21030, AAT BioQuest (by Stratech), Suffolk). 4 µg/mL of Indo-1 AM (4 

µM) was added to the cell suspension and incubated at 37ºC for 30 in the dark. Gentle 

mixing of the solution was performed every 10 minutes. After incubation, the cells were 

centrifuged at 400×g for 5 minutes and re-suspended in CLM. The cells were left for 15 

minutes before starting the calcium flux analysis. The analysis was performed by using 

a BDTM LSRII flow cytometer (BD Bioscience, Oxford, UK). A detailed flow cytometer 

settings optimisation and preparation can be found in Appendix 12. The cells were kept 

A = ϵ × b × c 

Where; A is the absorbance, ϵ is the wavelength-dependent molar absorptivity co-efficient 

(M-1 cm-1), b is the path length and c is the analyte concentration 
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at 37ºC before the run to allow maximal calcium flux activity. The programme was 

executed at 200 events/s for 30 s before introducing the treatments. Ionomycin (1 

mg/mL) was used as positive control and all the hLtn variants (100 mg/mL) were tested. 

The data was then analysed using FlowJo software (LLC, Oregon, US). This method 

was adapted from protocol used successfully by the Feinstein Research Institute and 

others in UCL Institute of Health, London (Round, 2007). 
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Figure 4.3: Mechanism of ion channel gate activation by second messengers from inside 

the cell through the interaction of chemokine-chemokine receptor. The chemical 

structure of Indo-1 AM before entering the cell (top) and Indo1 inside the cell after 

removal of the penta-acetoxymethyl by intracellular esterase is also shown. 
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4.3 RESULTS 

4.3.1 Molecular Cloning of hLtn Expressing Vector 

4.3.1.1 Preparation of hLtn W55D from pCMV6 Entry-XCL1 (WT) by Site-
directed Mutagenesis 

The mutagenesis was performed on the pCMV6-Entry-hLtn plasmid from 

Origene, XCL1 (Myc-DDK-tagged)-Human chemokine (C motif) ligand 1 (Cat#: 

RC218177; Origene EU, Herford, Germany). The primers used for the mutagenesis were 

generated using OneClick Mutagenesis online tool and was performed as described in 

the methods section (see Section 4.2.3.1) to generate the mutagenic primers and 

experimental conditions. The expected total size of the PCR product was 5292 kb 

(pCMV6-Entry: 4947 kb + hLtn: 345 kb) and Figure 4.4 indicates that the whole plasmid 

amplification was successful (marked with an arrow) as evidenced by the thick band 

(Warburton et al., 2015). The DNA sequence for the protein variant identity was 

confirmed (Appendix 13). The pCMV6-Entry-hLtn CC3 mutant plasmid had already 

been established previously.  

 

Figure 4.4: PCR analysis of the site-directed mutagenesis from pCMV6-Entry-hLtn WT 

to W55D sequence. The product was monitored by DNA gel electrophoresis (1% (w/v) 

agarose gel). M: 1 kb DNA ladder (NEB). Lane 1:  PCR product. The theoretical size of 

the plasmid DNA is 5292 kb (shown at arrow ◄).  

10.0 – 

8.0 – 
6.0 – 
5.0 – 
4.0 – 

3.0 – 

2.0 – 

1.5 – 

1.0 – 

0.5 – 

Kilobases 
(kb) 



Chapter 4(b): Production of the Recombinant hLtn Variants 

 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 153 

4.3.1.2 Preparation of Plasmid pET24a-HLTEV-hLtn Variants for Protein 
Expression 

The plasmid backbone was obtained from pET24a-HLTEV-p53.QMFL. Excision 

of the p53.QMFL sequence was performed using the restriction enzymes BamHI and 

EcoRI. The digested product was then separated using DNA gel electrophoresis to 

retrieve the desired plasmid backbone (Figure 4.5). Initially, the plasmid backbone was 

planned to be retrieved using the established pET24a-HLTEV-hLtn WT. However, due 

to the small size of the hLtn WT DNA sequence, it was difficult to discern if the digestion 

was successful (result not shown). Similarly, due to the small size (300 bp) of the target 

gene sequence (the CC3 and W55D mutants), the DNA sequence extraction was difficult 

to achieve. Alternatively, the gene sequence of CC3 and W55D mutants from the pCMV6 

cassettes (as described in previous Chapter 4(a)) were amplified using PCR (Figure 

4.6). The CC3 and W55D PCR products were treated with BamHI and EcoRI restriction 

enzymes before ligation using T4 DNA ligase with the previously digested pET24a-

HLTEV plasmid with the same endonucleases (to obtain DNA sticky ends). The ligated 

product was then transformed into E. coli strain DH5-α and the success of the ligation 

was monitored by growth of colonies on the kanamycin plate (Figure 4.7). 

 

Figure 4.5: DNA digestion of pET24a-HLTEV-p53 QFML at restriction site BamHI – 

EcoRI. The product was monitored by DNA gel electrophoresis (1% (w/v) agarose gel). 

The digested product consisted of pET24a-HLTEV (high molecular weight – arrow ◄) 

and p53 QFML (low molecular weight – arrow ) with sticky ends. The DNA size was 

determined 1 kb DNA ladder (NEB).  
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Figure 4.6: PCR amplification of CC3 and W55D variants peptide gene sequence from 

their respective pCMV6 cassette. The product was monitored by DNA gel 

electrophoresis (1% (w/v) agarose gel). The expected PCR product is around 300 base 

pairs (shown at arrow ◄). The DNA size was determined 1 kb DNA ladder (NEB).  
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Figure 4.7: hLtn mutant variants plasmid ligation. The inoculated E. coli strain DH5-α 

colonies transformed with ligated product of pET24a-HLTEV with respective hLtn 

variants (CC3 and W55D mutants) on 2×TYE agar plate with kanamycin. The excision 

was performed at BamHI and EcoRI cleavage site of the gene construct. The control 

plate contained cut pET24a-HLTEV plasmid to observe the ligation background. 

  

W55D mutant 

CC3 mutant 

Vehicle control 
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4.3.2 Comparative Study of pET24a-(IEGR) and pET24a-(TEV) hLtn Constructs 

In this sub-chapter, two different plasmid constructs were studied to verify the 

best suited construct for the hLtn variants expression. The construct used was the 

plasmid containing hLtn wild type (as explained in Chapter 4(a)). Additionally, different 

modes of expression induction for either isopropyl-β-D-thiogalactopyranosidase (IPTG) 

or auto-induction were also considered. Initial protein expression was performed in E. 

coli strain BL21 (DE3) 

Protein gel electrophoresis was used to monitor the expressed protein. Result 

showed auto-induction is the preferred method for the fusion protein (Figure 4.8). There 

was no protein expression detected with IPTG induction. Protein expression with plasmid 

construct pET24a-(TEV) was higher than pET24a-(IEGR). The fusion protein size was 

estimated be around 26 kDa as examined using the protein gel. The fusion protein in 

silico analysis (refer Chapter 4 (a)) calculated that the theoretical molecular weight was 

~22 kDa. Therefore, western blot analysis for His-tag was performed to confirm the result 

obtained using protein gel. The result revealed that the protein size was around ~26 kDa 

when running on a protein gel (Figure 4.9). TEV construct expression was higher than 

the IEGR construct when examined for their total protein and soluble fraction. Due to 

lack of protein expression by pET24a-(IEGR) plasmid, the protein expression was 

proceed using the pET24a-(TEV) plasmid. 
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Figure 4.8: Comparison between fusion proteins constructs and different induction 

schemes. pET24a-(IEGR) and pET24a-(TEV) hLtn constructs were expressed using E. 

coli strain BL21 (DE3) monitored by Coomassie blue dye-stained SDS-PAGE (10% 

polyacrylamide gel). M: molecular weight standard (kDa). On the left (His.Lipoyl-IEGR 

construct): Lane 1: Total intracellular protein before induction. Lane 2: Total intracellular 

protein after IPTG induction. Lane 3: Total intracellular protein after auto-induction. On 

the right (His.Lipoyl-TEV construct): Lane 4: Total intracellular protein before induction. 

Lane 5: Total intracellular protein after IPTG induction. Lane 6: Total intracellular protein 

after auto-induction. The arrow ◄ is the expected fusion protein size (~26 kDa). 
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Figure 4.9: Western blot analysis between fusion proteins constructs. The pET24a-

(IEGR) and pET24a-(TEV) hLtn constructs was expressed using E. coli strain BL21 

(DE3) from SDS-PAGE (10% polyacrylamide gel). M: Novex® Sharp Pre-Stained Protein 

Standard (kDa) (Thermo Fisher Scientific). On the left (His.Lipoyl-TEV construct): Lane 

1: Soluble cell extract. Lane 2: Flow-through. Lane 3: Insoluble cell extract. On the right 

(His.Lipoyl-IEGR construct): Lane 4: Soluble cell extract. Lane 5: Flow-through. Lane 6: 

Insoluble cell extract. The arrow ◄ is the expected fusion protein (~26 kDa). Truncated 

fusion protein was also noticeable at arrow .  
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4.3.3 Comparative Study of pET24a-(TEV) hLtn Constructs using Different E. coli 
Strains and Induction Schemes 

E. coli C41 (DE3) and BL21 (DE3) were used to study the suitable strain to 

express the recombinant fusion protein. The success of the transformation into each 

strain was monitored by growth of the colonies on the kanamycin plate (Figure 4.10). 

The transformation rate was higher in BL1 (DE3) compared to C41 (DE3). Additionally, 

different induction schemes for the protein expression was also considered. The result 

of total intracellular protein analysis showed that there was no protein expressed through 

IPTG induction for both strains (Figure 4.11). Additionally, expression can be seen by 

both E. coli strains through TYE and TB auto-induction. There was a slight difference in 

the protein profile expression between C41 (DE3) and BL21 (DE3). BL21 (DE3) has 

much more ‘cleaner’ expression and no differences were observed between both auto-

induction media for the total protein expressed.  

To further ascertain the preferable conditions for the fusion protein expression, 

soluble and insoluble protein from the cell extracts between strains and media were 

examined. Good protein expression was observed by BL21 (DE3) in both auto-induction 

media but expression was observed to be higher in TYE auto-induction (Figure 4.12). 

Furthermore, the protein expressed by BL21 (DE3) had an increased soluble fraction 

compared to the insoluble fraction. In the case of C41 (DE3), there was little amount of 

protein expressed and most of the protein was truncated in both induction media. Some 

truncation of the protein was also observed in the BL21 (DE3) lane but this was not as 

severe. 
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Figure 4.10: The inoculated of E. coli strain (A) BL21 (DE3) and (B) C41 (DE3) colonies 

transformed with pET24a-HLTEV hLtn variants wild type on 2×TYE agar plate with 

kanamycin.  

(A) BL21 (DE3) 

(B) C41 (DE3) 
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Figure 4.11: Comparison between fusion protein expression in different E. coli strains 

and induction schemes. pET24a-(IEGR) and pET24a-(TEV) hLtn constructs were 

expressed using E. coli strain BL21 (DE3) monitored by Coomassie blue dye-stained 

SDS-PAGE (10% polyacrylamide gel). M: molecular weight standard (kDa). Lane 1: Total 

intracellular protein before induction. Lane 1&3: Total intracellular protein without 

induction in TYE media. Lane 2&4: Total intracellular protein after IPTG induction in TYE 

media. Lane 5&7: Total intracellular protein after TB auto-induction. Lane 6&8: Total 

intracellular protein after TYE auto-induction. The arrow ◄ is the expected fusion protein 

size (~26 kDa).  
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Figure 4.12: Comparison between the soluble and insoluble fusion protein expression 

in different E. coli strain and auto-induction media. pET24a-(TEV) hLtn constructs was 

expressed using E. coli strain BL21 (DE3) and C41 (DE3) monitored by Coomassie blue 

dye-stained SDS-PAGE (15% polyacrylamide gel). M: molecular weight standard (kDa). 

Lane 1: Total intracellular protein without induction. Lane 2-5: Soluble and insoluble cell 

extract from BL21 (DE3) and C41 (DE3) expression using tryptone-yeast extract (TYE) 

auto induction media. Lane 6-9: Soluble and insoluble cell extract from BL21 (DE3) and 

C41 (DE3) expression using terrific broth (TB) auto induction media. The arrow ◄ is the 

fusion protein size (~26 kDa). Protein truncation at arrow  was also observed.   
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4.3.4 TEV Protease Protein Purification 

TEV protease is an enzyme widely used to remove an affinity tag from 

recombinant proteins by site-specific endoproteolysis (Tropea, Cherry and Waugh, 

2009) through recognition of the ENFLYQ↓X sequence. The TEV protease construct 

used in this experiment contained a polyhistidine tag to accommodate affinity purification 

followed by a lipoyl domain to increase protein quantity and solubility in a pRSET vector 

to obtain a high-copy number of expression (Ramos et al., 2004). Two of the constructs 

were tested and both were engineered to have a high yield. The TEV protease containing 

the lipoyl domain has a total molecular weight of ~36 kDa. The colony size of BL21 (DE3) 

with the TEV A Protease construct is smaller compared to TEV S Protease (Figure 4.13). 

For the protease purification, the result showed a good profile for TEV A protease 

(Figure 4.14) while not for TEV S Protease (Figure 4.15).  

 

Figure 4.13: Inoculated of E. coli strain BL21 (DE3) colonies transformed with pRSET-

His.Lipoyl TEV proteases on 2×TYE agar plate with ampicillin.  

TEV A Protease 

TEV S Protease 

Vehicle control 
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Figure 4.14: Purification of TEV A protease using the FPLC ÄKTA Pure system. The 

product was monitored by Coomassie blue dye-stained SDS-PAGE (10% 

polyacrylamide gel). M: molecular weight standard (kDa). Lane 1: Total intracellular 

protein after induction. Lane 2: Soluble cell extract. Lane 3: Flow-through. Lane 4: 

Washing residual. Lane 5: Elute fraction 8. Lane 6: Elute fraction 10. Lane 7: Elute 

fraction 14. Lane 8: Elute fraction 15. Lane 9: Elute fraction 16. The arrow ◄ is the 

expected MW of the His.Lipoyl TEV Protease (~36 kDa).  
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Figure 4.15: Purification of TEV S protease using the FPLC ÄKTA Pure system. The 

product was monitored by Coomassie blue dye-stained SDS-PAGE (10% 

polyacrylamide gel). M: molecular weight standards (kDa). Lane 1: Total intracellular 

protein before induction. Lane 2: Total intracellular protein after induction. Lane 3: 

Soluble cell extract. Lane 4: Flow-through. Lane 5: Washing residual. Lane 6: Elute 

fraction 7. Lane 7: Elute fraction 8. Lane 8: Elute fraction 9. Lane 9: Elute fraction 13-19. 

The arrow ◄ is the expected protein band of the TEV Protease.  
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4.3.5 Protein Purification of hLtn Variants  

4.3.5.1 Wild type Recombinant hLtn 

Initial expression of the fusion protein was performed on the wild type construct. 

The expected size of the fusion protein is ~26 kDa (as discussed in Chapter 4(a)). 

Results showed that the protein expressed is highly soluble (Figure 4.16) by comparing 

the soluble (refer Lane 3) and insoluble fraction (refer Lane 4). This indicates that the 

fusion protein construct with the lipoyl domain has improved the protein solubility. 

Treatment with the nickel resin highly purifies the fusion protein, although there are still 

some impurities observed and a noticeable truncated form of the protein. 

The next step was to obtain the mature hLtn peptide by digestion the TEV 

protease cleavage site of the fusion protein. Before the digestion and re-introducing the 

fusion protein to the nickel resin, the protein was treated beforehand in a size exclusion 

chromatography column to remove excess imidazole salt. The presence of the salt can 

interfere with binding of polyhistidine tag to the nickel affinity resin. The result shows that 

the recovery of the mature hLtn peptide very low as most of it remains bound to the nickel 

beads (Figure 4.17 (a)). Moreover, the cleaved protein size for the His-Lipoyl domain 

and mature hLtn protein was at ~15 kDa and ~13 kDa respectively, with a total size 

higher than the undigested fusion protein (only ~26 kDa). The observed recombinant 

hLtn had a higher molecular weight (~13 kDa) than the theoretical (~10 kDa). Therefore, 

we ran the commercially available hLtn on the gel to clarify the result. The recombinant 

hLtn gel migration was slightly slower than expected which was comparable to the 

commercial hLtn (refer Figure 4.17 (b)). The recombinant hLtn produced had a slightly 

higher molecular weight compared to the commercial as it contains two extra amino acids 

on the N-terminal. The lipoyl domain corresponds to the correct theoretical molecular 

weight at ~16 kDa. Interestingly, the mature recombinant hLtn peptide gel migration 

shows a higher molecular weight <10 kDa (Figure 4.12 (a) Lane 3) compared to the 

expected theoretical molecular weight generated using Expasy ProtParam analysis 

(refer Chapter 4 (a)).   
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Figure 4.16: First-step of Ni-NTA purification of recombinant HLTEV-hLtn WT. The 

product was monitored by Coomassie blue dye-stained SDS-PAGE (15% 

polyacrylamide gel). M: molecular weight standards (kDa). Lane 1: Total intracellular 

protein without induction. Lane 2: Total intracellular protein after induction. Lane 3: 

Soluble cell extract. Lane 4: Insoluble cell extract. Lane 5: Flow-through. Lane 6: 

Washing residual. Lane 7: First elution. Lane 8: Second elution. Lane 9: Third elution. 

The arrow  is the fusion protein (theorectical MW ~26 kDa)  
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Figure 4.17: Second-step of Ni-NTA purification of recombinant HLTEV-hLtn WT. The 

product was monitored by Coomassie blue dye-stained SDS-PAGE (15% 

polyacrylamide gel). On the left (a): M: molecular weight standards (kDa). Lane 1: Elution 

from first-step purification. Lane 2: Digestion of desalted fusion protein with His.Lipoyl-

TEV protease. Lane 3: Purified recombinant hLtn. On the right (b): M: molecular weight 

standards (kDa). Lane 1: Digestion of desalted first elution fusion protein with His.Lipoyl-

TEV protease. Lane 2: Commercial hLtn (Peprotech®) diluted in 1% (w/v) BSA (arrow 

). Lane 3: Purified recombinant wild type hLtn. The arrow  is the His.Lipoyl-TEV 

Protease (theoretical MW ~36 kDa); is the fusion protein (theoretical MW ~26 kDa) 

and ◄ is the recombinant hLtn (theoretical MW ~10 kDa).  
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4.3.5.2 Recombinant CC3 and W55D Mutants of hLtn 

Purification of the hLtn mutant variants was carried on once the purification profile 

has been established with the recombinant wild type hLtn. Similar profile in the mutant 

protein purification was observed compared to the wild type, as there are no differences 

in the hLtn variants sequence only replacement of strategic amino acids. Both CC3 

(Figure 4.18) and W55D (Figure 4.20) mutant fusion protein expressed at ~26 kDa. 

Noticeably, the W55D mutant fusion protein has more truncation of the fusion protein 

(cleaved of the fusion protein before treatment with protease) compared to CC3.  

The second-step in the purification of the mutants revealed that while the 

digestion of the TEV linker site was successful, there was some residual fusion protein 

which was not cleaved by the protease. The purified recombinant CC3 (Figure 4.19 Lane 

4) and W55D (Figure 4.21 Lane 4) mutants contained less impurities than in the wild 

type. Unfortunately, more than half of the protein was lost due to non-specific binding to 

the nickel resin was observed (refer Figure 4.19 and 4.21 Lane 6).  
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Figure 4.18: First-step of Ni-NTA purification of recombinant HLTEV-hLtn CC3 (rCC3) 

mutant. The product was monitored by Coomassie blue dye-stained SDS-PAGE (15% 

polyacrylamide gel). M: molecular weight standards (kDa). Lane 1: Total intracellular 

protein without induction. Lane 2: Total intracellular protein after induction. Lane 3: 

Soluble cell extract. Lane 4: Insoluble of cell extract. Lane 5: Flow-through. Lane 6: 

Washing residual. Lane 7: First elution. Lane 8: Second elution. Lane 9: Third elution. 

The arrow ◄ is the His.Lipoyl.TEV-hLtn CC3 (theoretical MW 26 kDa).  
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Figure 4.19: Second-step of Ni-NTA purification of recombinant HLTEV-hLtn CC3 

(rCC3) mutant. The product was monitored by Coomassie blue dye-stained SDS-PAGE 

(15% polyacrylamide gel). M: molecular weight standards (kDa). Lane 1: Elution from 

first-step purification. Lane 2: Desalted first-step elution. Lane 3: Digestion of desalted 

first elution fusion protein with His.Lipoyl-TEV protease. Lane 4: Purified recombinant 

CC3 mutant hLtn. Lane 5: Washing residual. Lane 6: First elution. Lane 7: Second 

elution. The arrow  is the His.Lipoyl-TEV Protease (~36 kDa);  is the CC3 (theoretical 

MW ~26 kDa); ◄ is the lipoyl domain of the fusion protein (~16 kDa); and  is the rCC3 

hLtn (~10 kDa).  
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Figure 4.20: First-step Ni-NTA purification of recombinant HLTEV-hLtn W55D (rW55D) 

mutant. The product was monitored by Coomassie blue dye-stained SDS-PAGE (15% 

polyacrylamide gel). M: molecular weight standards (kDa). Lane 1: Total intracellular 

protein without induction. Lane 2: Total intracellular protein after induction. Lane 3: 

Soluble cell extract. Lane 4: Insoluble body of cell extract. Lane 5: Flow-through. Lane 

6: Washing residual. Lane 7: First elution. Lane 8: Second elution. Lane 9: Third elution. 

The arrow  is the His.Lipoyl.TEV-hLtn W55D (theoretical MW 26 kDa) and arrow ◄ is 

the truncated protein.  
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Figure 4.21: Second-step Ni-NTA purification of recombinant HLTEV-hLtn W55D 

(rW55D) mutant. The product was monitored by Coomassie blue dye-stained SDS-

PAGE (15% polyacrylamide gel). M: molecular weight standards (kDa). Lane 1: Elution 

from first-step purification. Lane 2: Desalted first-step elution. Lane 3: Digestion of 

desalted first elution fusion protein with His.Lipoyl-TEV protease. Lane 4: Purified 

recombinant CC3 mutant hLtn. Lane 5: Washing residual. Lane 6: First elution. Lane 7: 

Second elution. The arrow  is the His.Lipoyl-TEV Protease (~36 kDa);  is the rW55D 

(theoretical MW ~26 kDa); ◄ is the lipoyl domain of the fusion protein (~16 kDa); and  

is the rW55D hLtn (~10 kDa).  
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4.3.5.3 Concentration of Recombinant Protein Produced 

The concentration of recombinant hLtn variants produced were measured and 

concentration assumption correction was re-calculated based on the extinction co-

efficient provided in Chapter 4(a) (refer Table 4.3). 

Table 4.9: Recombinant hLtn variants protein concentration. 

hLtn variants 

Optical Density [Protein] 

(mg/mL) A260 A280 A340 

Wild type 0.615 0.578 0.387 0.843 

CC3 mutant 0.271 0.246 0.105 0.360 

W55D mutant 0.133 0.115 0.055 0.782 

 

 

 

4.3.6 Analysis of the Functional Activity of Recombinant hLtn Variants using 
Calcium Flux Assay 

The functional activity of recombinant protein is important to investigate whether 

the produced protein behave and function similarly to its native protein. Calcium flux 

assay was performed to determine the protein activity due to chemokine ability to activate 

calcium flux signalling in cells through their receptor. Previous publications had shown 

behaviour of hLtn variants in calcium signalling [hLtn WT, CC3 and W55D mutant 

(Tuinstra et al., 2007, 2008)]. The results (Figure 4.22) show that the recombinant hLtn 

variants produced were functional. Both canonical fold hLtn, hLtn WT and CC3 displayed 

the ability to promote calcium flux whilst this was not the case for W55D.    
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Figure 4.22: Calcium flux assay of SCC4 cells using Indo-1 dye. (A) Ionomycin and (B) 

EGTA was used as positive and negative controls respectively. The cells were treated 

with 100 mg/mL hLtn (C) WT, (D) CC3 and (E) W55D. The dotted line (- - - -) is the base 

line of the unbound Indo-1 SCC4 cells before stimulation.  
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4.4 DISCUSSION 

There are number of challenges in producing and purifying large number of 

protein in high-throughput manner (Jia and Jeon, 2016). Small proteins are especially 

difficult such as the protein being easily degraded by the expressing organism, usually 

in E. coli or problems with purification. Chemokines are categorised as small proteins 

due to its molecular weight being around 10 – 12 kDa. To facilitate purification, tag 

vectors or fusion protein partners can assist in the expression. Continuation of the work 

from Chapter 4(a), this sub-chapter was to produce and purify the designed protein using 

all the information obtained from the in-silico analysis. 

 

4.4.1 Molecular Cloning of Plasmid pET24a-His.Lipoyl-TEV hLtn Variants 

Two different constructs were produced to study hLtn protein expression in E. 

coli. The pET24a-(IEGR) construct was designed and generated using GenScript 

services. The sequence was codon-optimised to accommodate expression in E. coli. 

Meanwhile, pET24a-(TEV) was constructed from pCMV6-Entry hLtn where the 

hLtn/XCL1 DNA sequence is from human. Distinct differences between the two 

constructs were the use of different linkers and the cleavage site.  

The OneClick tool was used to generate the mutagenesis primers and the 

experimental conditions (Warburton et al., 2015). The whole-plasmid amplification was 

successful, and the PCR product corresponded to the expected size of the DNA and 

desired amino acid mutation. Expression in E. coli requires a different vector, therefore 

the hLtn variant DNA sequences were required to be transferred into pET24a-HLTEV 

plasmid cassette. 

 

4.4.2 Comparative Study of pET24a-(IEGR) and pET24a-(TEV) hLtn Expressing 
Plasmid Constructs 

There are different ways to induce the plasmid promoter. The operon ‘substrate’ 

is highly dependent on the nature of the promoter. IPTG is a synthetic molecule that 

mimics allolactose, a structural analogue which triggers the transcription of lac operon to 

induce recombinant protein expression. In contrast auto-induction recipe uses lactose in 

the media (Studier, 2014) which drives the protein expression after depletion of glucose.  
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The protein was not expressed as highly with IPTG induction as for auto-

induction. One of the possible explanations for this is that IPTG can provide stress to the 

E. coli system as due to its synthetic nature and is unable to be metabolised by the cell. 

It was found that IPTG exacerbates haloalkene substrate induced toxicity that can 

causes a metabolic burden to E. coli as well as stimulating expression of exogenous 

genes (Dvorak et al., 2015). Lactose is a natural inducer of lac operon and can effectively 

reduce the negative influence on the metabolic pathways, making it a better inducer than 

IPTG for heterologous protein expression in BL21 (DE3) (Dvorak et al., 2015). Moreover, 

the induction is highly dependent on the binding and dissociation rates of IPTG and 

lactose to the lac repressor (Daber et al., 2007). However, some issues of induction with 

IPTG can be rectified by adjusting the concentration. 

The fusion protein migration in SDS-PAGE runs slower than expected and 

therefore appears to have a higher molecular weight compared to theoretical analysis 

generated by the Expasy ProtParam tool (refer Chapter 4(a) Table 4.2). This is not 

unusual as aberrations in protein migration in SDS-PAGE can be due to the process, 

where the separation is by charge rather than mass. Additional protein domains or 

abundance of particular amino acids can affect the process. Moreover high content of 

basic or acidic amino acids (Guan et al., 2015), and partial reduction of the protein thus 

retaining its disulphide bonds (Okamoto et al., 2014) can also contribute to why the 

molecular weight results in protein migration 3-4 kDa above the expected size. Further 

examination using western blot for the His-tag confirmed the SDS-PAGE protein size at 

26 kDa. 

The codon-optimised IEGR construct showed lower expression than the TEV 

construct, in contrast to expectations. Usually codon-optimisation allows a higher 

expression of recombinant protein as codon frequency is different in each organism. 

Furthermore, this juxtaposition may due to the addition of a fusion partner at the N-

terminus which often results in high level expression of the fusion protein (Steinmetz and 

Auldridge, 2017) which facilitates the expression of TEV construct. Further contributions 

to the disparity may come from the content of the amino acids in the linker region. In 

conclusion, pET24a-(TEV) construct was selected in further experimentation. 
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4.4.3 Comparative Study of pET24a-(TEV) hLtn Expression in Different E. coli 
Strains and Induction Scheme 

Two E. coli strains BL21 (DE3) and C41 (DE3) were used to study their ability to 

express the novel fusion protein. C41 (DE3) is a mutant strain of BL21 (DE3) that can 

overcome the toxicity associated when overexpressing recombinant proteins (Dumon-

Seignovert, Cariot and Vuillard, 2004). Induction with IPTG resulted in similar problems 

as previously explained for both strains, although TB and TYE auto-induction has 

positive total protein expression. While there is little difference in the expression, C41 

(DE3) was shown to express slightly more protein compared to BL21 (DE3). This is 

probably due to the differences between the two strains, where C41 (DE3) has a higher 

transformation success rate and expression of heterologous protein compared to its 

parental strain, BL21 (DE3) (Dumon-Seignovert, Cariot and Vuillard, 2004). Also, TB 

media is a highly enriched compared to TYE media with increased concentration of 

peptone, yeast extract and glycerol as carbon source. 

Additional investigations of the protein expression between the strains and auto-

induction recipe were performed by comparing their soluble and insoluble protein 

fractions. Interestingly, C41 (DE3) had a poor expression in this analysis making BL21 

(DE3) the suitable vehicle for the fusion protein expression. The content of soluble 

protein was higher compared to the insoluble, which was expected due to the 

incorporation of the lipoyl domain in the fusion protein. Truncation of protein was 

observed, highly in C41 (DE3). As C41 (DE3) is a mutated strain of BL21 (DE3), it 

behaves differently and is not compatible with the fusion protein. Presence of 

endogenous proteases is a possible cause of the truncation as their function is to remove 

abnormal and misfolded proteins (Gottesman, 1996) although BL21 (DE3) has a 

knockout of OmpT and Lon proteases. This can be remedied by introducing a sufficient 

concentration of exogenous protease inhibitor. 
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4.4.4 Protein Purification of Functionally Active hLtn Variants 

After rigorous examination of the expressing conditions, the hLtn variants were 

expressed and purified. SDS-PAGE analysis was performed to observe the recombinant 

protein purification profile. A similar protein size was observed between the fusion protein 

of hLtn WT, CC3 and W55D fusion proteins.  

The first-step of purification was performed to isolate protein using the affinity tag. 

Non-specific proteins were detected to bind to the resin and eluted along with the fusion 

protein. BL21 (DE3) has shown to produce small number of native proteins that has a 

high affinity to nickel ions even in presence of a high concentration of imidazole (Bartlow 

et al., 2011; Robichon et al., 2011), allowing some amount of unwanted proteins bind to 

the nickel resin.  

A size exclusion chromatography step was sandwiched between the first and 

second purification steps for removal of imidazole salt before re-introducing the fusion 

protein to a nickel resin. Imidazole can interfere with the binding resulting in poor protein 

purity. A second IMAC purification was used to capture the residual ‘nickel-loving’ 

protein, including both the His-Lipoyl TEV protease and the His-Lipoyl domain of the 

fusion protein after digestion. The intention was to release the mature hLtn protein in to 

the solution. Unfortunately, when executing the ‘negative nickel’ attachment, a high 

amount of the purified hLtn variants still bound to the nickel resin even though the 

polyhistidine tag was removed. Some possible explanations for this behaviour are: 1) the 

abundance of free electron pair amino acids (His, Cys, Met, Arg, Lys), and 2) the buffer 

conditions such as pH, salt content, addition of reducing agent or stabilising elements. 

There is some report shown that high content of glutamine (Gln), aspartic acid (Asp) and 

can contribute to non-specific binding to the nickel resin. The enrichment of electron pair 

amino acids potentially sufficient to interact with sequestered Ni2+ ion. Untagged protein 

has natural affinity to for Ni-NTA and is dependent on the proximity of histidine including 

the previously described amino acid residues on its surface. The amino acids will 

deprotonate in pH higher than 7 and readily bind to metals. Nevertheless, this still does 

not explain low recovery of the purified hLtn. Besides, the overall positively charged 

residues of the hLtn protein, increasing the likelihood that the protein feebly adsorbs to 

Ni2+ resin, reducing its capability to be released into the solution.  

The observed pattern of the protein migration in the SDS=PAGE for hLtn WT, 

CC3 and W55D mutant after TEV cleavage were interesting. The mature hLtn protein 

ran slightly higher on the gel suggesting its molecular weight was larger than the 
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theoretical value. This aberrant mobility may be contributed by the overall charge of the 

protein. hLtn protein contains high number of positively charge amino acids and has the 

possibility to be saturated with SDS (Dolnik and Gurske, 2011). SDS-PAGE protein 

migration is highly dependent on charge, therefore this ‘gel-shifting’ phenomenon is to 

be expected. Similar behaviour was observed by using the commercially available hLtn 

(refer Figure 4.17), where documented the molecular weight is documented at 10 kDa 

when measured by mass spectrometry.   

Calcium flux assay was performed to test the functional activity of the purified 

recombinant hLtn. The results obtained were contrast to those of Tuinstra et al. (2007), 

where they showed that any modification at the hLtn N-terminal did not stimulate the 

calcium flux. Our commercially bought XCL1 from Peprotech did activate the calcium 

signalling (contains 2-93 AA of native XCL1 V2GSE) and our in-house recombinant hLtn 

variants has additional glycine ‘leftover’ due to an artefact of TEV protease cleavage (G-

1VGSE). The difference in calcium signalling is probably due to the use of XCR1+ oral 

cancer cell line expressing native chemokine receptor whilst other studies have used 

stably expressing XCR1 human embryonic kidney (HEK) cells. Also, the calcium flux 

assay method in the literature was different where spectrofluometer was used to detect 

Fluo-2 fluorescence. Alternatively, high-throughput flow cytometer quantification using 

Indo-1 dye were used in this experiment. Comparatively, Indo-1 is more sensitive than 

Fluo-2 in detecting intracellular calcium flux (Bailey and Macardle, 2006). In conclusion, 

the recombinant hLtn WT, CC3 and W55D can be produced using the method described 

in this chapter. 

 

4.5 SUMMARY 

This chapter demonstrates that the production and purification methods used are 

applicable for small sized proteins (≤ 10 kDa) such as chemokines. The incorporation of 

the lipoyl domain, a hyper acidic fusion tag at the N-terminus of the fusion protein further 

facilitated the solubility of the protein domain in E. coli. This technique can be generally 

applied to improve production of chemokines although additional optimisation should 

further refine the process on case-by-case basis. The produced chemokine was 

functionally active as observed by its ability to induce calcium flux activity. All the 

recombinant hLtn variants in this chapter will be used in Chapter 5 to study their influence 

on the behaviour of oral cancer cells. 



 

CHAPTER 5 
THE EFFECT OF RECOMBINANT 
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CHAPTER 5: THE EFFECT OF RECOMBINANT hLtn ON THE BEHAVIOUR OF 
ORAL CANCER CELL LINES  

5.1 INTRODUCTION 

Previous chapters covered the design, development and production of 

recombinant hLtn variants and expression of XCR1 in oral cancer cell lines (OCCLs). 

hLtn has been shown to mediate cell proliferation, adhesion, migration and invasion in 

cancer cells but the studies have been limited to the wild type variant. hLtn is a 

metamorphic protein that can interconvert between two different protein conformations, 

one that activates the chemokine receptor (hLtn10) while the other does not (hLtn40). 

To date, there have been no studies investigating the effect of the hLtn variants on 

epithelial cells. Therefore, this chapter explores the effect of these variants on oral cancer 

cell lines (OCCL). 

Several functional assays were used to investigate the behaviour of oral cancer 

cell lines (OCCL) after treatment with the hLtn variants. Characteristics such as 

proliferation, adhesion to extracellular matrix (ECM) components, and migration towards 

the variants was studied. 

Proliferation is a key cell characteristic with an upregulation in case of cancer. It 

has been shown previously that hLtn mediates cell proliferation in OCCL through its 

receptor XCR1 (Khurram et al., 2010). However, it is not known whether this interaction 

is associated with the canonical chemokine fold only.  

For the adhesion study, several ECM components abundant in oral connective 

tissue were selected including collagen I and fibronectin. Collagen I is the most abundant 

main structural component in the ECM and expressed in all connective tissues 

(Shoulders and Raines, 2009; Ricard-Blum, 2011). Fibronectin is an ECM glycoprotein 

that is involved in cell growth, differentiation, adhesion and migration (Pankov and 

Yamada, 2002; Singh, Carraher and Schwarzbauer, 2010). Fibronectin is secreted by 

various cells, primarily as a soluble protein dimer, which is then assembled into an 

insoluble matrix, providing a structural support and signal for cells through integrin 

binding. Similarly, fibronectin binds to other ECM structures such as collagen, fibrin and 

heparin sulphate proteoglycans. Collagen IV is a basement membrane component in 

primarily found in the basal lamina epithelial and endothelial cells to separate tissue 

compartments (Lu, Weaver and Werb, 2012). Interaction with collagen IV is key in cancer 

progression as invasion through the basement membrane (predominantly comprising of 
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collagen IV) is the first step in OSCC invasion. These ECM components are important in 

cancer invasion providing anchorage to cancer cells and facilitating spread. 

While it has been previously reported that hLtn is a chemokine with a canonical 

fold able to activate the receptor and mediate calcium flux signalling, the exact 

contribution of different hLtn conformations in cancer is still unknown. Different cell types 

behave differently towards a certain stimulus and in cancer cell, this is often aberrant. 

Therefore, this chapter further investigate the role of hLtn variants on oral cancer cell 

behaviour. 
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

List of detailed information of the materials (reagents, kits, equipment, software 

and miscellaneous) used in the chapter can be found in Appendix 1-5. 

 

5.2.2 Basic cell culture 

Methods performed in this chapter can be referred in Chapter 3 Section 3.22. 

 

5.2.3 Proliferation assay 

Principle: The proliferation assay was conducted utilising a tetrazolium compound, ([3-

(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-

tetrazolium, inner salt; MTS]) to determine the number of living cells. The dye reaction is 

dependent on the availability of NAD(P)H flux because of cellular metabolic activity and 

indirect method to quantify cell number. 

Procedure: Cells were prepared and seeded at a density of 2×103 cells per 100 µL in 

96-well plates. Overnight incubation at 37°C was performed allowing the cells to adhere 

to the plate. Several wells were pre-treated with anti-human XCR1 antibody for an hour 

to block the receptor activity. Treatment with hLtn variants (wild type, CC3 and W55D 

mutants) was performed at a concentration 100 ng/mL (or ~10 nM) in serum-free media 

(SFM). For positive and negative controls, full-serum media and SFM were used 

respectively. In addition, mitomycin C (concentration 1 µg/mL) was used to arrest cell 

proliferation, serving as baseline for the cell proliferation. The plate was incubated at 

37°C in 5% CO2 incubator. After 48 h and 72 h, 20 µL of MTS was added into each well 

and further incubated for another hour before absorbance measurements were taken. 

Absorbance was quantified using an Infinite® M200 Pro Series (Tecan UK Ltd) at 492 

nm accompanied by MagellanTM Data Analysis Software (Tecan UK Ltd). 
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5.2.4 Adhesion Assay 

96-well tissue culture plates were coated with collagen type I, solution from rat 

tail (Sigma-Aldrich), collagen IV from human cell culture (Sigma-Aldrich) or plasma 

fibronectin (Sigma-Aldrich) (concentration: 0.1 – 10 µg/mL) for an hour in an incubator at 

37°C. Control wells were not coated but left in phosphate buffed saline (PBS) (Sigma-

Aldrich). Non-specific binding sites were blocked using serum free medium (SFM) with 

1% (w/v) BSA for one hour at 37°C. Cells were prepared by detaching the cells using 

0.05% (v/v) Trypsin-EDTA solution (Sigma Aldrich) in PBS. For cell treatment, cells were 

incubated with 100 ng/mL (~10 nM) of recombinant human lymphotactin (XCL1) 

(Peprotech, London, UK) for 24 hours at 37°C with serum-free medium in a T75 flask. 

Using centrifugation (1000×g, 5 min, 28oC), cell pellets were collected, re-suspended 

and counted. 4 × 104 cells in 100 µL were seeded in each well (number of cells was 

determined after optimisation assays). Cells were left to adhere for another 1 hour in the 

incubator. Unattached cells were removed by washing twice using serum free medium. 

100 µL of fresh medium was added to each well followed by addition of 20 µL of CellTiter 

96® Aqueous One Solution Cell Proliferation Reagent in the dark (Promega, 

Southampton, UK). The reagent contains a tetrazolium compound, 3-(4, 5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt (MTS) which is metabolically cleaved by viable cells. After 1 hour, absorbance 

was recorded at 492 nm using an Infinite® M200 Pro Series (Tecan UK Ltd) 

accompanied by MagellanTM Data Analysis Software (Tecan UK Ltd). All assays were 

performed in triplicate and a standard curve for each assay used to determine the cell 

numbers. Data analysis was performed, and graphs prepared using GraphPad Prism 

(GraphPad Software, CA, USA). Statistical analysis using paired Student’s t-test and 

one-way ANOVA were also analysed using GraphPad Prism). A p-value < 0.05 was 

considered significant. 

 

  

total number of adhered cells = 
absorbance value (OD at 492 nm) - c

m
 

% of cell adhesion = 
total number of adhered cells

40,000 cells (initial seed count )
 

Where; c is the intercept value at y-axis, and m is the value of gradient (refer Appendix 14) 
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5.2.5 Migration assay 

Procedure: Chemotaxis/migration assay was performed using Corning® Transwell® 

polycarbonate membrane cell culture inserts with 8.0 µm pores (Cat#: CLS3422-48EA; 

Sigma-Aldrich, UK). The under-side of the membrane was coated with 10 µg/mL of 

fibronectin for an hour in incubator at 37°C and blocked by 1% (w/v) BSA for another one 

hour. 1×105 cells in 100 µL were seeded on the top chamber and 500 µL of chemokine 

solution to the bottom well (as Figure 5.1). Four hours of incubation at 37°C incubator 

allowed the migration to occur. After this incubation, the residual cells and media on the 

top chamber was removed and membrane was fixed in formalin at least for 20 min. 0.5% 

(w/v) crystal violet (in 10% ethanol) was used to stain the cells for 5 to 10 minutes for 

quantification. Cells on the top chamber were removed with a cotton bud and the inserts 

washed with distilled water to remove residual crystal violet stain. The formalin-fixed 

membrane was cut and mounted on a microscope slide for analysis. The migrated cells 

were counted in five random field of views at magnification 100× using FIJI software. 

 

2) Place upper chamber into new well 

8 µM membrane pore size 

Fibronectin (10 µg/mL) 

1) Coat the membrane with fibronectin 

Incubate for 1 hour at 37
o
C in 5% CO

2
 incubator 
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4) Migration assay incubation 

Test substance Lower: Chemokine 

Upper: Seed cells (1×10
5
) 

Seed cells 

Incubate for 1 hour at 37
o
C in 5% CO

2
 incubator 

3) Block non-specific binding site with 1% BSA 

5) Fix the membrane with formalin for at least 20 
minutes 

Formalin 

Incubate for 4 hours at 37
o
C in 5% CO

2
 incubator 
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Figure 5.1: Overview of migration assay steps using Transwell Boyden chamber.  

6) Stain the cells with 0.5% (w/v) of crystal violet 
(diluted in 20% (v/v) EtOH) for 5-10 minutes. 

Crystal violet 

7) Remove excess cells from the upper chamber. 
Clean the membrane gently using cotton bud. 

8) Cut the membrane and mount on microscope 
slide. 

9) Migrated cells were analysed using light microscope and the picture 
was taken for number of cell migrated per 100× view. 
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5.2.6 Statistical Analysis 

All experiments were performed in triplicate with at least three independent 

repeats. The mean average and standard deviation for each sample were calculated, 

and the significance value was calculated using paired Student’s t-test and ANOVA. A 

p-value less than 0.05 was considered significant. 
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5.3 RESULTS 

5.3.1 Proliferation of OCCL on hLtn variants 

Exposure to media with 10% (v/v) FCS significantly increased the proliferation of 

H357 and SCC4 cells after 48h (p=0.0003 and p=0.0022 respectively) (see Figure 5.2 

A-B). OCCLs also showed proliferation in SFM alone compared to cells treated with 

mitomycin C. The proliferation further increased when exposed to hLtn variants. For 

H357 cells, WT, rCC3, and rW55D significantly increased proliferation (p=0.016, 

p=0.0015, and p=0.0101 respectively). There was no significant difference between the 

different hLtn variants treatments. Exposure to all hLtn variants also significantly 

increased the proliferation of SCC4 cells after 48 hours for WT (p=0.0258), rWT 

(p=0.0326), rCC3 (p=0.0088), and rW55D (p=0.0301). Analysis of variance (ANOVA) 

was performed and the proliferation for both H357 and SCC4 was significant compared 

to control (p<0.0001 and p=0.0024 respectively). No significant increase of observed 

after 72 hours for H357 cells but the SCC4 cells retained the same proliferation profile 

as after 48 hours.   

The data demonstrates that SCC4 cells (with higher XCR1 expression) were 

more proliferative and in response for longer duration to hLtn variants compared to H357 

(Figure 5.3). This suggests that cell proliferation mediated through hLtn/XCR1 is 

correlated to XCR1 expression.  

Table 5.1: Rate of proliferation of H357 and SCC4 cells. 

Cell 
line 

Treatment 
duration 

Proliferation rate (normalised to initial seeding) 

Mitomycin C Negative control Positive control 

H357 
48 h 0.85 ± 0.0633 2.95 ± 0.3249 7.47 ± 0.5210 

72 h 0.30 ± 0.1525 5.33 ± 1.1450 9.66 ± 1.5080 

SCC4 
48 h 1.13 ± 0.2024 1.72 ± 0.2083 4.89 ± 0.5830 

72 h 0.34 ± 0.0186 2.17 ± 0.4337 5.50 ± 0.1406 

Mitomycin C was used to arrest the cell proliferation, the negative control well only 

contained serum-free media, while the positive control was treated with 10% (v/v) FCS.  
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Figure 5.2: Proliferation of H357 and SCC4 cells after treatment with hLtn variants for 

(A & C) 48h and (B & D) 72h. Positive controls were grown in medium with 10% (v/v) 

FCS and negative control in SFM only. Mitomycin C (mitoC) was used to stop cell growth. 

All the treatments were prepared in SFM with respective hLtn variants where WT is 

commercial wild type from Peprotech, rWT is recombinant wild type, rCC3 is recombinant 

CC3 mutant, and rW55D is recombinant W55D mutant. The dashed line (- - -) indicates 

the initial seeding baseline. The number of cells were calculated using equation from the 

linear regression graph (see Appendix 14). Data are from three independent repeats 

(n=3), mean ± SEM. (* p-value<0.05, ** p-value<0.01, *** p-value<0.001, **** p-

value<0.0001, NS indicates not significant). 

  

(A) (B) 

(C) (D) 
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Figure 5.3: The proliferation fold change compared to control (SFM) for H357 and SCC4 

after exposure to hLtn variants for 48 h and 72 h. The annotation used above is as 

follows: the positive control (+) (10% (v/v FCS)), the vehicle control (C) (SFM only), and 

the hLtn variants are arranged as follows - position 1: commercial hLtn (WT), position 2: 

recombinant WT (rWT), position 3: recombinant CC3 mutant (rCC3), and position 4: 

recombinant W55D (rW55D). Data are from three independent repeats (n=3), mean ± 

SEM. (* p-value<0.05, ** p-value<0.01). 
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5.3.2 Adhesion of OCCL after exposure to hLtn variants 

The results (see Figure 5.4 A-B) shows increased adhesion of oral cancer cells 

to Collagen I with the highest adhesion at 10 µg/mL concentration. SCC4 cells showed 

higher adhesion than H357 at 10 µg/mL (p<0.0001 and p=0.0008 respectively) 

compared to control. Compared between the two OCCL, more SCC4 cells attached to 

Collagen I than H357 cells. SCC4 cells showed significant adhesion to Collagen I at most 

concentrations (Figure 5.4 B) while H357 cells only showed significantly higher 

attachment at higher concentrations, 3 µg/mL (p=0.0022) and 10 µg/mL (p=0.0008) 

(Figure 5.4 A). ANOVA for H357 and SCC4 adhesion to the different concentration of 

Collagen I was statistically significant (p=0.0022 and p<0.0001 respectively). 

For Collagen IV, OCCL adhesion was relatively low at lower concentration (see 

Figure 5.4 C-D). The highest percentage of cell adhesion was approximately 15% for 

both cell lines on 10 µg/mL of Collagen IV. The adhesion at concentration 10 µg/mL was 

significant to control for SCC4 (p=0.0005) and H357 (p=0.0016). ANOVA to different 

concentrations of Collagen IV for H357 was significant (p<0.0001) but not for SCC4. This 

was considerably different to Collagen I where the same concentration showed 50% or 

more cell adhesion. Thus, OCCLs showed more attachment to Collagen I (significant 

difference from controls at most concentrations) than Collagen IV (significant difference 

to control only at high concentrations). 

Low adherence to fibronectin was observed for H357 compared to SCC4. The 

highest adhesion for both was at 10 µg/mL concentration with 11.96% for H357 cells 

(p=0.0008) and 45.69% for SCC4 cells (p=0.0014) (Figure 5.4 E-F). Both cell lines show 

increased adhesion with increasing concentration of fibronectin. ANOVA for both H357 

and SCC4 adhesion to fibronectin was significant with p<0.0001 and p=0.0055 

respectively. 

The results show that OCCL adhesion to ECM proteins follows a similar general 

trend where adherence to collagen I > fibronectin > collagen IV, although in H357 (with 

lower XCR1 expression), the adhesion to fibronectin and collagen IV were somewhat 

similar. SCC4 cells had more than twice the adherence compared to H357 for both 

collagen I and fibronectin. Similar adherence to collagen IV was observed in both cell 

lines.  
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Figure 5.4: Adhesion of OCCL to collagen I (A-B), collagen IV (C-D), and fibronectin (E-

F). The concentration range used was 0-10 µg/mL. Data are from three independent 

repeats (n=3), mean ± S.E.M. Statistical analysis with Student’s t-test and ANOVA 

analysis were performed. (* p-value<0.05, ** p-value<0.01, *** p-value<0.001, **** p-

value<0.0001).  

(A) (B) 

(C) (D) 

(F) (E) 
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To study the effect of hLtn on OCCL adhesion, cells were incubated for 24 hours 

with the commercial hLtn wild type (WT). There was an approximately 10% for H357 cell 

line (p=0.0159) (see Figure 5.5) and ~20% increase in adhesion for SCC4 cell line 

(p=0.0174) (Figure 5.6) at 10 µg/mL concentration of collagen I after treatment. 

However, the increase in adhesion to collagen IV was relatively low compare to collagen 

I (see Figure 5.5 B). For H357 cells, the increased adhesion was ~5% (p=0.0149) as 

well as for SCC4 cells (p=0.0183) at concentration 10 µg/mL 

  



Chapter 5: The Effect of Recombinant hLtn Variants on the Behaviour of Oral Cancer Cell Lines 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 196 

 

Figure 5.5: Adhesion of H357 cells after 24-hours hLtn stimulation (100 ng/mL) to (A) 

Collagen I and (B) Collagen IV (concentration range: 0-10 µg/mL). All assays were 

performed for three independent repeats (n=3) with error bar represents SEM. (* p-

value<0.05).  

  

(A) 

(B) 
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Figure 5.6: Adhesion of SCC4 cells after 24-hours hLtn stimulation (100 ng/mL) to (A) 

Collagen I and (B) Collagen IV (concentration range: 0-10 µg/mL). All assays were 

performed for three independent repeats (n=3) with error bar represents SEM. (* p-

value<0.05, ** p-value<0.01). 

  

(B) 

(A) 
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5.3.3 Migration of OCCL towards hLtn variants 

SCC4 cells were used for the chemotaxis/migration assays, as nearly 80% of the 

cell population are XCR1-positive (as described in Chapter 3). Also, the number of cells 

migrating towards the positive control was the highest (p<0.01) compared to control 

(Figure 5.7). All the canonical chemokine fold hLtn variants, including commercial hLtn 

wild type (WT), and recombinant hLtn wild type (rWT) and CC3 mutant (rCC3) caused a 

significant increase in migration compared to control (p=0.0404, p=0.0181 and p=0.004 

respectively). The highest migration was observed towards rCC3, followed by rWT and 

Comm. rCC3 induces higher migration compared to the WT and rWT (p=0.0015 and 

p=0.0101 respectively). Interestingly, we found that the rWT causes significantly more 

migration than the commercially available WT (p=0.0357). No significance difference in 

migration towards the recombinant W55D mutant (rW55D) was seen. However, some 

migration was seen towards rW55D and the level was higher than to WT, although this 

was inconsistent.   

Additionally, the recombinant hLtn variants were also compared to cells that were 

treated with XCR1 antibody prior to migration to ensure specificity of migration. All the 

cells with antibody treatment showed minimal migration comparable to the negative 

control. 

. 
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Figure 5.7: Migration of SCC4 cells towards hLtn variants. The assay was carried out 

using Transwell® Boyden chambers. The legend describes the experimental condition 

for each well. Treatment with XCR1 antibody 30 mins prior to exposure to hLtn variants 

was performed to ensure the chemokine migration was XCR1-specific. Annotation: WT 

is the commercially available hLtn (Peprotech); rWT is the recombinant hLtn wild type; 

rCC3 is the recombinant hLtn CC3 mutant; rW55D is the recombinant hLtn W55D 

mutant; and Ab indicates treatment with XCR1 antibody. Data are representative of three 

independent experiments (n=3) with SEM. (* p-value<0.05, ** p-value<0.01, and NS is 

not significant).   
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5.4 DISCUSSION 

The aim of this part of the study was to investigate the functional effect of hLtn 

variants on the behaviour of OCCLs. Previously, hLtn has been shown to induce 

proliferation, migration and invasion in oral cancer as well as in other types of cancer. 

Due to unique nature of hLtn, it exists in two distinct conformations in physiological 

conditions, a canonical chemokine fold and a dimer. To date, there is no information 

about the role of these conformations in disease processes. Therefore, these different 

conformations were studied including a locked structure (CC3 and W55D mutants) to 

understand their contribution to cancer pathology. 

 

5.4.1 Proliferation profile of OCCL after exposure to hLtn variants 

Proliferation is integral for tissue biology to maintain a balance between cell loss 

and cell division. This process is tightly regulated in normal cells. However, cancer cells 

proliferation is dysregulated leading to uncontrolled growth or failure of the cells to 

undergo apoptosis. 

Chemokines have been shown to induce cell proliferation by acting through their 

receptors on immune cells (Badr et al., 2012; Dirice et al., 2014), mesangial cells (Wörnle 

et al., 2004) and cancers (Balkwill, 2004a, 2012). In periodontal disease and oral cancer, 

chemokine-chemokine receptor interaction has been shown to promote cell growth 

(Sahingur and Yeudall, 2015; Panda, Padhiary and Routray, 2016) through CXCR1 

(ligand CXCL8 or IL-8), CXCR2 (ligand or CXCL1 or GROα) (Khurram et al., 2014), and 

XCR1 (ligand XCL1 or hLtn). Although XCR1, has been shown to play a role in cell 

proliferation, the role of each hLtn conformation in this process is not known. 

As expected, the commercial and recombinant wild type hLtn (rWT) increased 

proliferation of both H357 and SCC4 cells after 48 h. The fold increase in proliferation of 

SCC4 cells compared to controls was higher than H357. This is probably due to the 

abundance of XCR1-expressing cells in SCC4 compared to H357, allowing more 

receptor activation and downstream signalling (Khurram et al., 2010). The recombinant 

hLtn was designed with a different amino acids in the N-terminal compared to the nature 

and chemokine N-terminus which have been shown to be important in receptor activation 

by recognizing the grooves of the chemokine surface (Szpakowska et al., 2012). This 

has been shown in CCR2 where the N-terminal region interact with minor sub-pockets 

of the receptor to trigger distinct interactions (Huma et al., 2017). The modified N-
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terminus of the recombinant hLtn may bind with a higher affinity to the conserved 

sulfotyrosine-binding pocket by stabilizing the interaction. 

The recombinant CC3 mutant induced higher proliferation in both H357 and 

SCC4 compared to the wild type. This is because its structure is locked in the active 

chemokine fold, while the wild type exists in two different conformations in physiological 

conditions (active chemokine fold and dimer). Both the wild type and CC3 mutant have 

the canonical chemokine fold, but the W55D mutant was designed to exist in the dimer 

conformational state. The result show that the mutant also induces proliferation in both 

OCCLs but to a lesser extent.  The mutant usually exists in dimer, where it binds strongly 

to heparin (Tuinstra et al., 2008), blocking HIV viral infection (Fox, Tyler, et al., 2015; 

Guzzo et al., 2015), and has potent antimicrobial properties (Nevins et al., 2016) but its 

role in inducing proliferation has not been reported so far. There are also no published 

reports of the W55D mutant activating the XCR1 receptor. Previous reports, show that 

the CXCL2 dimer has an agonistic properties and is a potent activator of CXCR2 receptor 

(Ravindran et al., 2013). Small-molecule agonist can also activate the receptor by 

binding to allosteric sites such as in CCR3 (Wise et al., 2007; Jensen and Rosenkilde, 

2009) and CXCR3 (Scholten et al., 2012), suggesting that the signalling activation does 

not require the whole chemokine to trigger the process but only important amino acids 

residues.   

Proliferation after exposure to the hLtn variants (excluding rW55D) was similar to 

treatment with 10% (v/v) serum in SCC4 cells. Proteomic profiling of serum compared to 

plasma has previously shown that amongst the growth factors, 11 chemokines level was 

elevated including lymphotactin (Ayache et al., 2006). This explains the similar fold 

increase to the hLtn variants. The fold difference to serum was not profound in H357 

cells. The result indicates that hLtn/XCR1 highly influences the cell growth in SCC4 cells 

and partially in H357 cells. SCC4 cells express more XCR1 than H357 cells resulting in 

greater influence in cell proliferation through the hLtn/XCR1 axis. 

The proliferation of OCCLs relative to control was higher at 48 hours than 72 

hours. Previously, stimulation of OCCL proliferation through the hLtn/XCR1 axis has 

been shown after 72 hours (Khurram et al., 2010) but not after 48 hours. This discrepancy 

may be partially due to the protein half-life and stability, as small proteins such as 

cytokines and chemokines have a short half-life (Panicker et al., 2007; Zhou et al., 2010). 

The estimated half-life for hLtn in vitro is 30 hours as determined using Expasy 

ProtParam (ExPASy Bioinformatics Resource Portal, Swiss Institute of Bioinformatics).  
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5.4.2 Adhesion profile of OCCL to extracellular matrix (ECM) components 

The interaction between cancer cells and the ECM components are fundamental 

for each stage of cancer progression. This ranges from involvement in local invasion of 

cancer cells to facilitating intravasation/extravasation of primary tumour through 

basement membrane of vessels. Additionally, adherence of cancer cell to ECM 

components is essential in tumour progression and metastatic spread (Todd et al., 2016). 

SCC4 cells showed higher adhesion to collagen I and fibronectin compared to 

H357 cells. The data is comparable to the findings of Khurram et al. (2010) who showed 

similar results for both collagen I and fibronectin but did not study adhesion to collagen 

IV. Interestingly the trends for adhesion to collagen I and IV for both H357 and SCC4 

cells were different. This is probably due to the different structural arrangement and 

components that make up the collagen, thus presenting a different surface for cell 

adhesion. Fibronectin provides glycoprotein anchor between the cell and collagen 

primarily type 1, giving an intermediate adherence towards it. Collagen I structure is 

fibrillar (Lu, Weaver and Werb, 2012) while collagen IV structure resembles an 

interconnected network (Kalluri, 2003) explaining the differences in cell attachment. It 

also suggests that the OCCL used probably have different expression or activation of 

integrins responsible in collagen IV associated attachment. Concurrently, SCC4 cells 

has highest adherence collagen I, followed by fibronectin and collagen IV suggesting 

different distribution of integrins that responsible for attachment. In H357 cells, 

attachment to Collagen I was the highest, whereas adherence for both collagen IV and 

fibronectin was similar suggesting the distribution level of the responsible integrins are 

the same. Several integrins are related closely to basal membrane such as α2β1, α3β1 

and α6β4 (Janes and Watt, 2006). Some evidence suggests that focal loss of α2, α3, α6 

and β4 subunits is observed when normal oral epithelium undergoes malignant 

transformation (Jones et al., 1993). In addition, α6 and β4 integrin subunit loss is related 

to loss of basal membrane protein (Downer, Watt and Speight, 1993; Jones, Watt and 

Speight, 1997). β1 subunit is important in basal membrane as it is expressed higher than 

basal stem cells (Liang et al., 2014). Furthermore, β1 subunit heterodimerises with α2 

for receptor to Collagen IV, and with α3 to laminin (Alonso and Fuchs, 2003). Additionally, 

in cancer, integrin-related signalling can promote the production of MMP that facilitate 

cancer migration and invasion (Koistinen and Heino, 2013).  

Integrins are heterodimers of two protein subunits: an α subunit and a β subunit. 

They mediate interactions either between cells or to ECM proteins by activating 

MAPK/ERK (mitogen-activated protein kinases/extracellular signal-regulated kinases) 
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pathway within the cell. Integrins bind to a number of extracellular ligands, with the 

highest number binding to fibronectin (12 integrins), followed by laminin (6 integrins), and 

collagens (4 integrins) (Plow et al., 2000).  Integrin subunit αv expression has identified 

in OSCC (Jones, Watt and Speight, 1997) has been shown to be involved in invasion as 

its overexpression allows rapid phosphorylation of focal adhesion kinase (FAK) 

(Hayashido et al., 2014). Furthermore, introduction of the α9 subunit results in an 

increase in OSCC cell adhesion to collagen I (Roy et al., 2011). Others report that high 

expression of integrin α2β1 and α3β1 facilitates metastasis in OSCC (Soares et al., 

2015). Modulation of integrin activity or expression is a possible explanation for the 

increased adherence of OCCL to ECM after exposure to hLtn (Figure 5.8). 

Previous reports have shown that H357 cells express α2, α3, α5, α6, β1 and β4 

integrins (Thomas et al., 2001). Additionally, increased expression of α9 integrin 

mediates adhesion and migration towards tenascin-C but not proliferation (Roy et al., 

2011). Reports have also shown expression of α9 integrin subunit in oral epithelium, 

specifically in suprabasal and prickle layer and upregulation in their cancer counterpart. 

Furthermore, hLtn  had shown to enhance α9 integrin-dependent cell migration in vivo 

and in vitro in autoimmune disease (Matsumoto et al., 2017).  

Inside-out signalling of integrin is regulated by talin and kindlin in the cytoplasmic 

domain of the cell (Calderwood, Campbell and Critchley, 2013) with assistance of G-

protein activation (Das et al., 2014). Integrin signalling requires recruitment of both 

monomeric small G-proteins and heterotrimeric G-proteins, where the G-protein subunit 

Gα13 binds to the β subunit (Shen, Delaney and Du, 2012) such as in integrin αIIbβ3 

(Gong et al., 2010). Chemokine receptors are G-protein coupled and their activation is 

tightly associated to integrin upregulation in cancer such as in CXCR4 and α4β1 integrin 

(Sosa-Costa et al., 2016).  

Previous reports have shown a correlation between increased adhesion and 

XCR1 receptor expression on the cell surface (Khurram et al., 2010). The result here 

also shows that SCC4 has higher adhesion to Collagen I. Adhesion to Collagen I is 

mediated through the interaction of α1β1 and α2β1 integrin (Jokinen et al., 2004).  

Khurram et al. (2010) also showed an increase in OCCL adhesion to Collagen I 

after 2 hours of hLtn treatment. This effect can still be seen after 24 hours (see Figure 

5.5 and 5.6) suggesting that the mechanism through which hLtn mediates cell adhesion 

is quickly initiated and manifests itself for a long period. It is possible that this increase 

in adhesion is related to an increase in integrin expression, or increased activity avidity 
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of already expressed integrins. However, further work is required to establish the 

relationship between XCR1 and integrin expression/avidity. As OSCC is derived from 

oral epithelial cells, most of the integrins: α6β4, α6β1, α2β1 and α3β1 are expressed in 

cancer but at different levels (Desgrosellier and Cheresh, 2010). Integrins such as αvβ6 

have been shown to be upregulated in OSCC but loss of certain integrins has also been 

reported. However, the precise set of integrins involved in oral cancer progression 

remains unknown. In ovarian cancer, β1 integrin is overexpressed which increases the 

metastasis of ovarian carcinoma cells (Shen et al., 2012). Further work is required to 

establish the expression of these integrins on H357 and SCC4 cells and their interaction 

with hLtn and XCR1. 
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Figure 5.8: Diagram for possible interaction for hLtn/XCR1 mediated integrins 

attachment to ECM. The signalling cascade activates G-protein followed by downstream 

signalling through possible MAPK/ERK pathway. This signal amplifies the gene 

expression to recruit integrin attachment.  
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5.4.3 Migration profile of OCCL after exposure to recombinant hLtn variants 

Migration assays were performed to understand the extent to which the hLtn 

conformational state contributes to OSCC chemotaxis.  Recombinant hLtn has been 

previously shown to promote migration of XCR1+ oral cancer cells (Khurram et al., 2010). 

SCC4 cell line was chosen for the assay as it highly expresses XCR1 (~80% positive 

expression). The results suggest that migration is significantly enhanced by hLtn variants 

with canonical chemokine fold.  

Recombinant hLtn wild type facilitated greater migration compared to the 

commercial hLtn. As explained earlier in the discussion (Section 5.4.1), the additional 

amino acids at the N-terminal may increase the triggered binding interaction (Huma et 

al., 2017) resulting in higher downstream signalling that could influence cell migration. 

Furthermore, the recombinant CC3 mutant stimulated higher migration than other hLtn 

variants due to its locked fold, allowing it to remain in the canonical chemokine fold 

(Tuinstra et al., 2007). This differs from hLtn WT that interconverts between two 

conformations and has a slightly lower migration index.  

By blocking the XCR1 receptor, the migration of SCC4 cells was significantly 

reduced and comparable to the controls, indicating the specificity of the migration. While 

there are numerous reports of hLtn inducing migration in cancer cells, none have studied 

the contribution of the variants in the process. 

 

5.5 SUMMARY 

To summarize, the results for the first time show that the OCCLs respond to hLtn 

variants. The recombinant variants with the canonical fold promote greater chemotaxis 

compared to the commercial hLtn showing that the recombinant chemokines are 

functional. The initial hypothesis was that the dimer can act as a natural inhibitor. A 

preliminary study showed that the dimer form can either attach or blocking the receptor 

in some sort of manner (refer Appendix 15). The only known antagonist for XCR1 

receptor is vCCL2 (or vMIP-II), a viral chemokine produced by herpes-virus. Original 

assumption was that the dimer has no agonistic properties due to its non-canonical 

chemokine fold. This finding showed that it influences the oral cancer cells proliferation 

while not inducing chemotaxis. This adds to the complexity and dynamic of chemokine-

chemokine receptor interaction. Probing more on this idea can potentially be used for 

drug development. 
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CHAPTER 6: GENERAL DISCUSSION & FUTURE PERSPECTIVES 

6.1 Thesis Overview 

Our results show the expression of XCR1 in normal epithelium, and oral 

squamous cell carcinoma and its metastatic counterpart. Furthermore, stromal 

components such as fibroblasts and endothelial cells also express both XCR1 and hLtn 

with significant differences between normal and cancerous tissue, which is a novel 

finding and suggest that hLtn and XCR1 can influence the tumour as well as the 

microenvironment in OSCC. This is evident as hLtn/XCR1 axis can regulate expression 

of XCR1 with significant increase in expression after indirect co-culture with cancer-

associated fibroblasts. Furthermore, for the first time an alternative technique was 

employed to produce and purify hLtn variants and tested them on epithelial cells in a 

working condition. Previously, the protein produced was highly insoluble, using our fusion 

protein construct, improved the protein solubility. By using the variants, we identified the 

proliferation, adhesion and migration of oral cancer cell lines in association with XCR1 

expression. These findings suggest that the hLtn/XCR1 system may play an important 

role in oral cancer progression. Researching the behaviour of metamorphic protein can 

be vital to provide more insight in developing future treatments 

 

6.2 General Discussion 

In Chapter 2, chemokines particularly hLtn and its receptor XCR1 were discussed 

not to only be involved in localisation and trafficking of lymphocytes but also play a pivotal 

role in cancer growth and dissemination. Mainly in oral epithelial cells and carcinoma 

where they mediated various effects such as cell migration and invasion, as well as 

influencing their behaviour. These implications are thought to facilitate tumour invasion 

and metastasis to lymph nodes in vivo. 

The first ever study of XCR1 and hLtn in oral squamous cell carcinoma was by 

Khurram et al. (2010). Their study showed expression of chemokine receptor (XCR1) in 

oral epithelial cells for the first time. Prior to this study, it was only reported to be 

expressed on lymphocytes, neutrophils and NK cells (Huang et al., 2001), rheumatoid 

synovium by mononuclear cells (Wang et al., 2004) and by fibroblast-like synoviocytes 

(Blaschke et al., 2003). Since then more studies have shown expression of XCR1 in 

dendritic cells as part of antigen-presentation (Ohta et al., 2016) and overexpression in 

cancer such as in breast (Yang et al., 2017), lung (T. Wang et al., 2015), and ovary (Kim 
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et al., 2012). Yet none of them reported positive XCR1 expression in normal epithelial 

cells. 

Immunohistochemistry showed XCR1 expression in the basal normal oral 

epithelium, oral squamous cell carcinoma (OSCC) and its metastatic counterparts (refer 

Chapter 2). Fibroblasts, endothelial cells and lymphocytes were also demonstrated to 

express XCR1 receptor in normal and diseased tissue, with greater expression in the 

latter, and similar to what was reported by Khurram et al. (2010). Additionally, it was 

observed that XCR1 and hLtn were strongly expressed in the cervical lymph in the 

peripheral cortex, subcapsular sinus and germinal centre. Others have reported dendritic 

cells (DC)-expressing XCR1 in spleen localizing in the T cell zone, marginal zone and 

the red pulp in mouse (Bachem et al., 2012). One report has stated sparse XCR1 

expression in DCs in T-cell zone proximal to B-cell follicles or medullary regions with 

enriched high endothelial venules (HEV) (Kitano et al., 2016).   

Strong and diffuse expression of XCR1 and hLtn was observed in metastatic 

tumour as well as lymphocytes in cervical lymph nodes, although the sample size was 

minimal (n=5). The presence of strong XCR1 and hLtn staining by fibroblasts in the 

reactive stroma of the metastatic node also supports this idea. Results confirms similar 

to those informed by Khurram et al. (2010) although it extends this significantly by using 

of paired metastatic tissue from the same patient. This suggests a correlation between 

the modulation of hLtn/XCR1 axis with the spread of metastatic OSCC in the lymph node. 

Chapter 3 showed the regulation of XCR1 in various oral cancer cell lines (OCCL) 

through its activation by hLtn. This can be either mediated through autocrine or paracrine 

signalling as the same cells i.e. epithelial and stromal cells expressed both the ligand 

and receptor. Autocrine regulation has been seen by other chemokine receptors in skin 

after wounding (Kroeze et al., 2012) and in systemic sclerosis by dermal fibroblasts 

(Carulli et al., 2005). Conditioned media (CM) influences the expression of XCR1 and 

hLtn mRNA in OCCLs, where cancer-associated fibroblast (CAF) to increase their level 

of expression. Moreover, their expression was downregulated by myofibroblast and 

senescence-induced NOF CM. These are novel and interesting findings suggesting a 

role for hLtn/XCR1 in the tumour microenvironment although further investigations are 

required to determine the significance of these findings (Figure 6.1). 

The hLtn variants (WT, CC3 and W55D mutant) were observed to modulate the 

behaviour of OCCLs in the final experimental chapter. The key difference between the 

CC3 and W55D mutant is that the former is the monomer form while the latter is the 
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dimer form of hLtn. Functionally, the dimer has no ability to induce chemotaxis and 

calcium flux in XCR1-transfected (human embryonic kidney) HEK cells. The function of 

each variants was first demonstrated in cancer here by the oral cancer cell lines 

expressing XCR1. These are novel experiments and findings in cancer as previous 

studies more focus on the structural biology of the variants instead of its physiological or 

pathological consequences. Understanding its effect in cancer will enable better 

understanding of its function, thus can be used a tool of drug discovery.  

Almost all the previous published work has been performed on either Jurkat cells, 

immortalized T cell lymphocytes or XCR1-transfected HEK cells. The initial assumption, 

at the start of the project, was that the dimeric form of hLtn does not activate XCR1, 

hence acting as antagonist of the receptor. Proliferation assays showed hLtn/XCR1 

involvement in the process, where the canonical fold (WT and CC3 mutant) appeared to 

influence OCCL growth as previously described by Khurram et al. (2010). However, the 

dimeric form still induces proliferation of OCCLs comparable to other variant forms. Due 

to complexity of chemokine receptors mechanism, there are several possible 

explanations, such as 1) tissue bias where the hLtn/XCR1 activation and transduction is 

different from other tissue (Steen et al., 2014); 2) the homo-dimerization or hetero-

dimerization of chemokine receptor allows receptor activation by the dimeric ligand such 

as seen by CXCR4 (Rodríguez-Frade, Mellado and Martínez-A, 2001; Springael, Urizar 

and Parmentier, 2005; Rodríguez-Frade et al., 2009; Salanga, O’Hayre and Handel, 

2009; Kleist et al., 2016); or 3) the W55D hLtn dimer populates the unfolding form, the 

transitional state between the monomer and dimer as mentioned by Fox et al. (2016), 

thus having some activity on the XCR1 receptor. 

Biomarkers can be defined as distinct quantifiable characteristics to indicate 

biological processes describing normal or pathological state, pathogen process, or 

pharmacological responses to predict the outcome of incidence, leading to therapeutic 

intervention (Goossens et al., 2015).  Salivary biomarkers have been used as an early-

stage detection biomarker for several types cancer such as lung, pancreatic, breast and 

stomach using transcriptome, proteomic biomarkers, miRNA microarray and exosomes 

(Wang, Kaczor-Urbanowicz and Wong, 2017). Chemokines such as CCL2, CCL3, CCL4, 

CXCL1, CXCL8 and CXCL12 have been shown as strong candidates as biomarkers for 

pre-cancerous cervical lesions based on analysing the protein sample extracted by liquid 

based cytology using proteomic array technology with high sensitivity and specificity 

(Bhatia et al., 2018). ELISA data for analysis of CXCL8, CXCL10, and CXCL14 levels in 

oral fluid indicated their elevation in cancer patients. The levels was not affected by 
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periodontitis thus indicating their potential as cancer biomarkers (Michiels et al., 2009). 

Unfortunately, there is less research focusing on salivary biomarker for oral cancer 

compared to other types of cancer.  

Preclinically, the data suggest that XCR1 and hLtn can be used as diagnostic 

biomarkers for oral cancer detection. High expression of hLtn can be seen in the tissue 

samples. It would be interesting to investigate if there any differences in the content of 

hLtn in the serum, saliva or ascitic fluid in normal compared to disease in terms of 

developing a non-invasive clinical test. Moreover, XCR1 can also be a prognostic 

biomarker for as it can be a good indicator of OSCC progression.  

In clinical sense, XCR1 can be used as target as a diagnostic biomarker as it is 

highly expressed by OSCC. Currently, there is no drug targeting specifically for oral 

cancer. All of them are chemotherapy drugs where targeting highly proliferative cells 

such as cisplatin and carboplatin. Antibody-based drug for cancer therapy has been 

introduced for clinical trials in human where it is targeting CXCR4, CCR2 and CCR4 

(Vela et al., 2015). This review paper stated that most of the studies on CCR2 were in 

Phase II clinical trial while only in Phase I for CXCR4. Treatment for lymphoma targeting 

CCR4 was in Phase III clinical trial. Additionally, other chemokine receptors such as 

CXCR2, CXCR5, CCR7, CCR9 and ACKR3 are still in pre-clinical assay for cancer 

treatment (Vela et al., 2015). More study on XCR1 and hLtn on its behaviour in in vivo 

metastasis is required to proceed to the next step, where the XCR1 receptor can be used 

as a target in oral cancer.  

The ligand, hLtn can be used for tool development for drug discovery. hLtn dimer has 

the capability to prevent early HIV infection. Due to uniqueness of hLtn, being able to 

metamorphose into two distinct protein fold. By using protein engineering, this capability 

can be exploit on improving future drug treatment. Our understanding on its capability in 

cancer perspective is still in its infancy. There are discrepancies in the literature how the 

ligand behaves as well as lack of understanding on the variants behaviour (chemokine 

or chemokine receptor dimerization interaction) especially in disease.   
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Figure 6.1: Summary of main thesis findings and their significance. Annotation: Cancer-

associated fibroblast (CAF), oral fibroblast (OF); endothelial-mesenchymal transition 

(EMT). 

  

Pre-clinical or 
Clinical Approach 
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6.3 Future Perspectives 

Our findings addressed several research questions to understand XCR1 and 

hLtn role, regulation and mechanism precisely in the OSCC pathogenesis. Additionally, 

the metamorphic ligand adds another layer of complexity to the receptor activation. 

Several future investigations should be performed to improve our understanding in the 

role of hLtn and XCR1 in OSCC progression. 

1) Further immunohistochemistry 

It would be useful to perform immunohistochemistry on a bigger cohort to 

establish the findings (XCR1 and hLtn role in OSCC metastasis) and correlate it 

with clinicopathological variables such as tumour size, depth, recurrence and 

survival. 

 

2) Invasion assays using 3D model or tissue-engineered oral mucosa (TEOM). 

Although monolayer or 2D assay are widely used for studying invasion, it does 

not really give a similar indication due to its minimal interaction and lack of tissue 

complexity. Using a 3D model or TEOM will give a better understanding OSCC 

invasion into the underlying connective tissue in response to chemokine 

(particularly hLtn) to mimic in vivo conditions. 

 

3) siRNA or CRISPR knockdown of XCR1 and hLtn in OCCLs. 

XCR1 gene knockdown in cancer cells can be performed using siRNA or CRISPR 

technique. Functional assays (migration, proliferation, adhesion etc.) can be 

repeated to better understand the role of XCR1 in cancer cell regulation. More 

functional assay can also be included such as invasion assay etc. 

 

4) Contribution of tumour microenvironment to OCCLs behaviour through 

hLtn/XCR1 axis. 

Investigate the effect of hLtn on endothelial cell (lymphatic and vascular) by 

studying proliferation and tubule formation by using hLtn variants. The expression 

in stroma and role in epithelial-mesenchymal transition (EMT), such as 

expression of E- and N-cadherin, ZEB-1, SLUG, SNAIL etc. by OCCL could be 

studied after exposure of hLtn variants. 
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5) Post-translational modification (PTM) identification of XCR1 receptor using 

mass spectrometry (LC-MS/MS). 

Glycosylation of protein is important especially in mammalian system. Some of 

the interaction between receptor/ligand axis is highly influenced by protein 

glycosylation. Therefore, it is interesting to investigate whether the glycosylation 

of XCR1 receptor in normal and OSCC has different glycosylation profile. The 

result might allow us to better understand the importance of (PTM) in cancer. 

 

6) Signalling pathway and transduction of hLtn/XCR1 activation (in context of 

hLtn different conformations). 

ERK1/2 pathway has been demonstrated to be involved in hLtn/XCR1 axis 

(Khurram et al., 2010). Since, hLtn/XCR1 activation increases adhesion, it will be 

in interesting to study involvement of focal adhesion kinase (FAK), as well as 

integrins molecules. α9β1 has been shown to modulate epithelial behaviour and 

its expression pattern is somewhat similar to what we found by XCR1 ex vivo 

(Roy et al., 2011). Also, hLtn has been shown to enhance α9 integrin-dependent 

cell migration in vitro and in vivo in autoimmune disease, which is interesting to 

investigate similar fashion in OSCC. Furthermore, as migration appeared to be 

correlated to hLtn variant conformation, F-actin polymerisation could be 

investigated as XCR1 was observed to be synonymous with OSCC metastasis. 

Similarly, adhesion to other extracellular matrix molecules could be investigated 

as well. Additionally, pertussis toxin (PTX) can be used in the assay as to 

understand XCR1 relation with its G-protein coupled receptor (GPCR) as the 

toxin abrogates its activity. 

 

7) New and stable dimeric hLtn conformation. 

Creating the restricted dimeric four-stranded β-sheet fold (CC5 mutant) can 

further understand the full function of the dimer state of hLtn function in cancer 

pathology. This engineered mutant forms a stable form compared to XCL1dim than 

WT-XCL1 or W55D as determined by hydrogen-deuterium exchange (HDX) 

(Fox, Tyler, et al., 2015). This can further improve our understanding of the role 

of each conformation better in cancer pathogenesis. 

 

8) In vivo study using orthotropic xenograft mouse models. 

It will be interesting to study the effect of hLtn and its variants in vivo using 

orthotropic xenograft mouse models and compare primary tumour cells as well 

as lymph node metastases. 
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APPENDICES 

Appendix 1: List of reagents 

List of Reagent Catalogue #; Manufacturer details 

1 kb DNA Ladder Cat#: N3232L; New England Biolabs, Hitchin, 

UK 

Adenine Cat#: A8626; Sigma-Aldrich, Dorset, UK  

Amphotericin B solution Cat#: A2942; Sigma-Aldrich, Dorset, UK 

Anti-alpha smooth muscle actin (α-SMA) 

[1A4] (FITC-conjugated) 

Cat#: ab8211; Abcam, Cambridge, UK 

Anti-XCR1 human antibody (extracellular 

domain) IHC-plusTM LS-A158 (human anti-

rabbit) 

Cat#: LS-A158-50; LifeSpan Bioscience Inc., 

WA, USA 

Anti-XCL1/Lymphotactin antibody (clone 

1E1) IHC-plusTM LS-B5938 (human anti-

mouse) 

Cat#: LS-B5938-50; LifeSpan Bioscience Inc., 

WA, USA 

B2M probe (TaqMan Gene Expression 

Assays) [sequence not available] 

Cat#:4331182; Life Technologies, Paisley, UK 

CellTiter 96® Aqueous One Solution Cell 

Proliferation Reagent 

Cat#: G3582; Promega, South Hampton, UK 

Cholera toxin Cat#: C8052; Sigma-Aldrich, Dorset, UK 

Collagen Type IV from human cell culture Cat#: C6745; Sigma-Aldrich®, Dorset, UK 

Collagen, Type I solution from rat tail Cat#: C3867; Sigma-Aldrich®, Dorset, UK 

Dimethyl sulfoxide Cat#: D8418; Sigma-Aldrich, Dorset, UK 

Dulbecco’s Modified Eagle Media (DMEM) Cat#: D5546; Sigma-Aldrich, Dorset, UK 

Dulbecco’s Phosphate Buffered Saline with 

MgCl2 and CaCl2 

Cat#: D8552; Sigma-Aldrich, Dorset, UK 

Fibronectin bovine plasma Cat#: F1141; Sigma-Aldrich®, Dorset, UK 

Foetal Bovine Serum (FBS) Cat#: F9665, Sigma-Aldrich, Dorset, UK 

Goat anti-rabbit IgG (H+L) secondary 

antibody, Alexa Fluor® 488 conjugate 

Cat#: A-11008; Life Technologies Ltd, Paisley, 

UK 

Goat serum donor herd Cat#:G6767; Sigma-Aldrich, Dorset, UK 

Ham’s Nutrient Mixture F12 (HAMS-F12) Cat#: N6013, Sigma-Aldrich, Dorset, UK) 

His-PurTM Ni-NTA Resin Cat#: 88221; ThermoFisher Scientific, Paisley, 

UK 

Horse serum donor herd Cat#:H1270; Sigma-Aldrich, Dorset, UK 

Human epidermal growth factor (hEGF) Cat#: E9644; Sigma-Aldrich, Dorset, UK 

Hydrocortisone Cat#: H4001; Sigma-Aldrich, Dorset, UK 
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Hydrogen peroxide 30% (w/v) (100 

volumes), Extra Pure SLR 

Cat#: 10687022; Fisher Chemical, 

Loughborough, UK 

Hydrogen peroxide 30% (w/v) (100 

volumes), Extra Pure SLR 

Cat#: 10687022; Fisher Chemical, 

Loughborough, UK 

Indo-1, AM Cat#: 21030, AAT Bioquest (by Stratech), 

Suffolk 

Insulin Cat#: 91077C; Sigma-Aldrich, Dorset, UK 

Isopropanol Cat#: 10674732; Fisher Chemical, 

Loughborough, UK 

L-Glutamine Cat#: G7513; Sigma-Aldrich, Dorset, UK 

Methanol Cat#: 10598240; Fisher Chemical, 

Loughborough, UK 

Minimum Essential Medium Eagle (EMEM) Cat#: M2279; Sigma-Aldrich, Dorset, UK 

Mitomycin C Cat#: ab120797; Abcam, Cambridge, UK 

Nuclease-free water  

Nuclease-free water Cat#:AM9914G; Life Technologies, Paisley, 

UK 

Penicillin-Streptomycin Cat#: P4333; Sigma-Aldrich, Dorset, UK 

Penta.His HRP Conjugate Kit  Cat#: 34460; QIAGEN, Manchester, UK 

Phosphate Buffered Saline (PBS) Cat#: D8537; Sigma-Aldrich, Dorset, UK 

PierceTM Protease Inhibitor Mini Tablets Cat#: 88665; Thermo Fisher Scientific, Paisley, 

UK 

Propan-2-ol Cat#: 11428782; Fisher Chemical, 

Loughborough, UK 

QIAprep Spin Miniprep Kit Cat#: 27106; Qiagen, Manchester, UK 

Recombinant human lymphotactin (XCL1) Cat#:300-20; Peprotech, London, UK 

Recombinant Transforming Growth Factor-

beta 1(TGF-β1) Protein 

Cat#: 240-B-010; R&D System, Abingdon, UK 

Senescence Detection Kit Cat#: ab65351; Abcam, Cambridge, UK 

SYBRTM Green PCR Master Mix Cat#: 4309155; ThermoFisher Scientific, 

Paisley, UK 

TaqMan Gene Expression Master Mix Cat#:4369016; Life Technologies, Paisley, UK 

Trypan blue solution 0.4% Cat#: T8154; Sigma-Aldrich, Dorset, UK 

Trypsin-EDTA solution Cat#: T3924; Sigma-Aldrich, Dorset, UK 

VECTASTAIN® Elite® ABC-HRP kit 

(peroxidase, Mouse IgM) 

Cat#: PK-6102; Vector Laboratories Ltd, 

Peterborough, UK 

VECTASTAIN® Elite® ABC-HRP kit 

(peroxidase, Rabbit IgG) 

Cat#: PK-6101; Vector Laboratories Ltd, 

Peterborough, UK 
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VECTOR NovaRED peroxidase substrate 

kit 

Cat#: SK-4800; Vector Laboratories Ltd, 

Peterborough, UK 

XCR1 probe (TaqMan Gene Expression 

Assays) 

Cat#:4331182; Life Technologies, Paisley, UK 

XCL1 probe (TaqMan Gene Expression 

Assays) 

Cat#:4331182; Life Technologies, Paisley, UK 

Xylene, Extra Pure, SLR Cat#: 10784001; Fisher Chemical, 

Loughborough, UK 

 

 

Appendix 2: List of kit 

List of Kit Catalogue #; Manufacturer details 

High Capacity cDNA Reverse Transcription 

Kit 

Cat#: 4368814; Life Technologies Ltd, Paisley, 

UK 

ISOLATE II RNA Mini Kit Cat#: BIO-52072; Bioline Reagents Limited, 

London, UK 

PierceTM BCA Protein Assay Kit Cat#: 23225; ThermoFisher Scientific, Paisley, 

UK 

QIAprep Spin Miniprep Kit Cat #: 27106, QIAGEN, Manchester, UK. 

QIAquick Gel Extraction Kit Cat #: 28706, QIAGEN, Manchester, UK. 

QIAquick PCR Purification Kit Cat #: 28106, QIAGEN, Manchester, UK. 

 

 

Appendix 3: List of equipment 

List of Equipment Details 

BDTM FACSCalibur  BD Bioscience, Oxford, UK 

BDTM LSRII  BD Bioscience, Oxford, UK 

DNA Engine Dyad® Peltier Thermal Cycler Bio-Rad Laboratories Ltd., Hertfordshire, UK 

Infinite® M200 Pro Series Tecan UK Ltd, Reading, UK 

Olympus BX51-P polarising microscope KeyMed Ltd., Essex, UK 

SpectrafugeTM 24D Digital Microcentrifuge Labnet International Inc., NJ, USA 
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Appendix 4: List of software 

List of Software Details 

FlowJo v10 FlowJo, LCC, USA 

GraphPad Prism GraphPad Software, CA, USA 

MagellanTM Data Analysis Software Tecan UK Ltd, Reading, UK 

Mendeley Elsevier, Amsterdam, Netherlands 

Pymol Schrödinger, LLC, NY, USA 

 

 

Appendix 5: List of miscellaneous 

List of Miscellaneous Catalogue #; Manufacturer details 

96 well PCR plate, Semi-Skirted Cat#: 1402-9700; STARLAB (UK) Ltd, Milton 

Keynes, UK 

Advanced Polyolefin StarSeal Film Cat#: E2796-9795; STARLAB (UK) Ltd, Milton 

Keynes, UK 

Corning® 6.5 mm Transwell® with 8.0 µm 

polycarbonate membrane cell culture inserts, 

TC-treated, sterile, 48/cs 

Cat#: CLS3422-48EA; Sigma-Aldrich, Dorset, 

UK 

Corning® Costar® tissue-culture treated 

multiple well plates 

Cat#: CL3516; Sigma-Aldrich, Dorset, UK 

SuperFrost® Plus microscope slide Cat#: 4951PLUS4, ThermoFisher Scientific, 

Paisley, UK 

T25 suspension culture flask with filter cap Cat#: 658190; Greiner Bio-One Ltd, UK 

T75 suspension culture flask with filter cap Cat#: 690195; Greiner Bio-One Ltd, UK 

X-cell II Blot Module Cat#: EI9051; ThermoFisher Scientific, 

Paisley, UK 
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Appendix 6: HistoQuest settings 

Haematoxylin settings 

Various Shape 2.0 

Nuclei size 5 

Remove small-sized objects 1 

Remove weakly stained objects 1 

Automatic background threshold Yes 

Threshold range [5, 255] 

Use Merging rules: 

Max combined area 10,000 µm2 

Max involved compactness 0.9 

Group max 6 

Min resulted compactness 0.6 

  

  

NovaRed settings 

Various Shape 2.0 

Ring mask Yes 

Interior radius -0.28 µM 

Exterior radius +0.28 µM 

Use identified cell mask Outside 

Max growing steps 2.2 µM 

Use nuclei mask No 
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Fibroblast 

Lymphocytes 
Metastasis in 

the lymph node 

(A) H&E (100×) 

(C) XCR1 (400×) 

(B) XCR1 (100×) 
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Appendix 7: Metastatic OSCC in a lymph node (representative photomicrograph).  

(A) H&E staining at 100× magnification, (B, C) XCR1 staining at 100× and 400× 

magnification respectively, and (D, E) hLtn staining at 100× and 400× magnification 

respectively. XCR1 staining is seen throughout the tumour cells and in lymphocytes. 

Scattered fibroblasts are also positive. In contrast, hLtn stain is weaker but still seen in 

the metastatic carcinoma, lymphocytes and fibroblasts in the reactive stroma. 

 

 

  

(E) hLtn (400×) 

Fibroblast 

Lymphocytes 
Metastasis in 

the lymph node 

(D) hLtn (100×) 
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Appendix 8: Keratinocytes grown (KGM) media preparation 

Keratinocytes Growth Media (KGM) 

Material: 335mL Dulbecco’s Modified Eagle Medium (DMEM), 115mL F12, 50mL Serum 

(either fetal calf serum (FCS) or fetal bovine serum (FBS)), 5mL Penicillin/Streptomycin 

(P/S), 5mL Antifungal, 5mL L-Glutamine, 5mL Adenine, 2mL Hydrocortisone, 500µL 

Cholera Toxin, 250µL Insulin and 500µL epithelial growth factor (EGF). 

 

EGF: 0.2mg Vial adds 10mL DMEM containing 10% FCS aliquot into 0.5mL (10µg/mL) 

and store at -20oC. 

Final concentration 10ng/mL 

 

Hydrocortisone: Make 10X concentrate first. Weigh out 40mg and add 4mL 100% 

ethanol and agitate. Add 36mL DMEM. This 10X concentrate is filtered and can be stored 

in 5mL aliquots at-20oC 0- label well. Each aliquot can be added to 45mL DMEM and 

2mL aliquots stored at -20oC (100µg/mL) 

Final Concentration 0.5µg/mL 

 

Insulin: 10mL sterile water add 100µL glacial acetic acid add to vial of insulin (100mg) 

resulting in 10mg/mL conc. Aliquot into 250µL and store at 4oC 

Final concentration 5µg/mL 

 

Adenine: Weigh out 330mg add 100 mL 0.1HCl, agitate to mix well, filter and aliquot into 

5mLs store at -20oC (1.8 × 10-2M stock) 

Final Concentration 1.8 × 10-4  

 

Cholera toxin: Add 1.67mL distilled sterile water into vial (0.5mg) half of this into 50mL 

sterile water (10-7M stock). Keep at 4oC 

Final Concentration 10-10  
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Appendix 9: Melting curve of α-SMA and U6-snRNA primers. 

 

  

α-SMA 

U6 snRNA 
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Appendix 10: Example for XCR1 surface receptor analysis of SCC4 cell using FlowJo 

software.  
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Combined Histogram  

Control +XCR1 

Step 1:  
Determine the 
distribution of 

cells 

Step 2:  
Discriminate 

the dead cells 
population 

(FL-3 
channel). 

Dead cells can 
give false 
positive 

expression 

Step 3:  
Select the 
positively 

expressing 
cells 

(population 
right of the 
control). 

Step 4:  
Compare the 
expression 

using 
histogram. 

Step 5:  
Combined 
histogram. 
Shift to the 

right indicating 
expression of 

the target 
protein. 
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CATATG 

 NdeI 

 

        10        20        30        40        50        60 

CATCATCATCATCATCACTCGGGTGCTTTTGAATTTAAACTGCCGGACATTGGCGAAGGT 

 H  H  H  H  H  H  S  G  A  F  E  F  K  L  P  D  I  G  E  G.  

 

        70        80        90       100       110       120 

ATCCACGAAGGCGAAATTGTGAAATGGTTTGTGAAACCGGGTGATGAAGTTAACGAAGAT 

 I  H  E  G  E  I  V  K  W  F  V  K  P  G  D  E  V  N  E  D. 

 

       130       140       150       160       170       180 

GACGTGCTGTGCGAAGTTCAGAATGACAAAGCGGTGGTTGAAATTCCGAGTCCGGTCAAG 

 D  V  L  C  E  V  Q  N  D  K  A  V  V  E  I  P  S  P  V  K. 

 

       190       200       210       220       230       240 

GGTAAAGTGCTGGAAATCCTGGTGCCGGAGGGTACGGTTGCAACCGTCGGCCAAACGCTG 

 G  K  V  L  E  I  L  V  P  E  G  T  V  A  T  V  G  Q  T  L. 

 

       250       260       270       280       290       300 

ATTACCCTGGATGCTCCGGGCTATGAAAACATGACGTTTGGCGGTGGCAGTGGTGGCGGT 

 I  T  L  D  A  P  G  Y  E  N  M  T  F  G  G  G  S  G  G  G. 

 

       310       320       330       340       350       360 

TCCGGCGGTGGCACCGGTGGCGGATCCGGCGGTGGCATTGAAGGTCGTGTTGGCAGCGAA 

 S  G  G  G  T  G  G  G  S  G  G  G  I  E  G  R  V  G  S  E. 

 

       370       380       390       400       410       420 

GTCTCTGACAAACGTACCTGTGTCAGCCTGACCACCCAGCGTCTGCCGGTTTCTCGTATT 

 V  S  D  K  R  T  C  V  S  L  T  T  Q  R  L  P  V  S  R  I. 

 

       430       440       450       460       470       480 

AAAACCTACACGATCACCGAAGGTAGCCTGCGCGCAGTGATTTTCATCACGAAACGTGGC 

 K  T  Y  T  I  T  E  G  S  L  R  A  V  I  F  I  T  K  R  G. 

 

       490       500       510       520       530       540 

CTGAAAGTGTGTGCCGATCCGCAGGCCACCTGGGTTCGTGATGTCGTGCGCTCAATGGAC 

 L  K  V  C  A  D  P  Q  A  T  W  V  R  D  V  V  R  S  M  D. 

 

       550       560       570       580       590       600 

CGTAAATCGAATACCCGCAACAATATGATCCAAACGAAACCGACGGGCACGCAACAATCC 

 R  K  S  N  T  R  N  N  M  I  Q  T  K  P  T  G  T  Q  Q  S. 

 

       610       620        

ACCAACACCGCAGTGACGCTGACGGGT 

 T  N  T  A  V  T  L  T  G. 

 

TAATGAATTC 

    EcoRI 

 

START CODON; HIS-TAG; PROTEIN LINKER; LIPOYL DOMAIN; FACTOR XA; 

MATURE LYMPHOTACTIN SEQUENCE; STOP CODON;  

 

Appendix 11: Optimized codon sequence of the designed recombinant fusion protein 

HL-IEGR.hLtn (WT). 
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Appendix 12: Flow cytometer settings and preparation. 

Instrument settings: The BD LSRII (BD Bioscience, Oxford, UK) was used to measure 

to emission of bound or unbound Indo-1 dye. The violet laser was turned off by using the 

in-line rocker-type switch. This is critical as stray violet laser light may cause interference 

in the violet channel of the UV trigon for Indo-1. Importantly, the waste tank was ensured 

to be empty and the sheath tank was filled to the maximum level allowed. The filter 

configuration on the UV trigon was verified as follows: “B” PMT: the 450 /50 filter was 

removed and replaced with 405 /20 for Indo-1 violet (calcium-bound); and “A” PMT: the 

505 DLP was removed and replaced with 450 DLP filter for Indo-1 blue (calcium-

unbound).  

Instrument setting optimization: 1) It is critical that the cells should be acquired on 

“LO” setting with the flow rate adjusted to approximately 200 – 300 cells/seconds; 2) 

Ensure the Indo-1 only sample was installed; 3) The FSC and SSC voltages, and FSC 

threshold were adjusted; 4) A linear bivariate dot blot of blue and violet was created, 

ensuring the ‘blue’ on the y-axis and ‘violet’ on the x-axis; 5) The voltages and gains on 

the blue and violet parameters were adjusted so that the population that appears forms 

along an imaginary line from the vertex at 0/0 and 70° from the x-axis; and 6) A ‘time vs 

ratio’ dot plot was created. During the run, unbound loaded cells should fill the bottom 

part of the plot and when the Indo-1 dye binds to the calcium (violet) due to stimulation, 

it causes a shift in the ratio resulting in the changes of the observed histogram due to 

shift in population ratio. 

 



Appendices 

Functional Role of the Chemokine Receptor XCR1 and Its Bioengineered Ligand in Oral 

Squamous Cell Carcinoma 260 

Appendix 13: DNA sequence identification for W55D site-directed mutagenesis from 

pCMV6-Entry-hLtn (WT) DNA sequence. 

Original sequence: 

 

After mutagenesis: 

  

atcagtaccgaggagatctgcgccgcgatcgccatgagacttctcatcctggccctcctt 

 I  S  T  E  E  I  C  A  A  I  A  M  R  L  L  I  L  A  L  L  

ggcatctgctctctcactgcatacattgtggaaggtgtagggagtgaagtctcagataag 

 G  I  C  S  L  T  A  Y  I  V  E  G  V  G  S  E  V  S  D  K  

aggacctgtgtgagcctcactacccagcgactgccggttagcagaatcaagacctacacc 

 R  T  C  V  S  L  T  T  Q  R  L  P  V  S  R  I  K  T  Y  T  

atcacggaaggctccttgagagcagtaatttttattaccaaacgtggcctaaaagtctgt 

 I  T  E  G  S  L  R  A  V  I  F  I  T  K  R  G  L  K  V  C  

gctgatccacaagccacatgggtgagagacgtggtcaggagcatggacaggaaatccaac 

 A  D  P  Q  A  T  W  V  R  D  V  V  R  S  M  D  R  K  S  N  

accagaaataacatgatccagaccaagccaacaggaacccagcaatcgaccaatacagct 

 T  R  N  N  M  I  Q  T  K  P  T  G  T  Q  Q  S  T  N  T  A  

gtgactctgactggctagacgcgtacgcggccgctcgagcagaaactcatctcagaagag 

 V  T  L  T  G  -  T  R  T  R  P  L  E  Q  K  L  I  S  E  E  

gatctggcagcaaatgatatcctggattacaaggatgacgacgataaggtttaaacggcc 

 D  L  A  A  N  D  I  L  D  Y  K  D  D  D  D  K  V  -  T  A  

ggccgcggtcatagctgtttcctgaacagatcccgggtggcatccctgtgacccctcccc 

 G  R  G  H  S  C  F  L  N  R  S  R  V  A  S  L  -  P  L  P  

agtgcctctcctggccctggaagttgccactccagtgcccaccagccttgtcctaataaa 

 S  A  S  P  G  P  G  S  C  H  S  S  A  H  Q  P  C  P  N  K  

attaagttgcatcattttgtctgactaggtgtccttctataatattatggggtggaaggg 

 I  K  L  H  H  F  V  -  L  G  V  L  L  -  Y  Y  G  V  E  G  

ggggtgggt 

 G  V  G 

atcagtaccgaggagatctgcgccgcgatcgccatgagacttctcatcctggccctcctt 

 I  S  T  E  E  I  C  A  A  I  A  M  R  L  L  I  L  A  L  L  

ggcatctgctctctcactgcatacattgtggaaggtgtagggagtgaagtctcagataag 

 G  I  C  S  L  T  A  Y  I  V  E  G  V  G  S  E  V  S  D  K  

aggacctgtgtgagcctcactacccagcgactgccggttagcagaatcaagacctacacc 

 R  T  C  V  S  L  T  T  Q  R  L  P  V  S  R  I  K  T  Y  T  

atcacggaaggctccttgagagcagtaatttttattaccaaacgtggcctaaaagtctgt 

 I  T  E  G  S  L  R  A  V  I  F  I  T  K  R  G  L  K  V  C  

gctgatccacaagccacagacgtgagagacgtggtcaggagcatggacaggaaatccaac 

 A  D  P  Q  A  T  D  V  R  D  V  V  R  S  M  D  R  K  S  N  

accagaaataacatgatccagaccaagccaacaggaacccagcaatcgaccaatacagct 

 T  R  N  N  M  I  Q  T  K  P  T  G  T  Q  Q  S  T  N  T  A  

gtgactctgactggctagacgcgtacgcggccgctcgagcagaaactcatctcagaagag 

 V  T  L  T  G  -  T  R  T  R  P  L  E  Q  K  L  I  S  E  E  

gatctggcagcaaatgatatcctggattacaaggatgacgacgataaggtttaaacggcc 

 D  L  A  A  N  D  I  L  D  Y  K  D  D  D  D  K  V  -  T  A  

ggccgcggtcatagctgtttcctgaacagatcccgggtggcatccctgtgacccctcccc 

 G  R  G  H  S  C  F  L  N  R  S  R  V  A  S  L  -  P  L  P  

agtgcctctcctggccctggaagttgccactccagtgcccaccagccttgtcctaataaa 

 S  A  S  P  G  P  G  S  C  H  S  S  A  H  Q  P  C  P  N  K  

attaagttgcatcattttgtctgactaggtgtccttctataatattatggggtggagggg 

 I  K  L  H  H  F  V  -  L  G  V  L  L  -  Y  Y  G  V  E  G  

ggggtgggtttg 

 G  V  G  L   
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Appendix 14: Linear regression of OCCLs 
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Appendix 15: XCR1 dimer form (hLtn W55D mutant) capable of binding to the XCR1 

receptor or blocking the antibody attachment. Similar trend observed amongst the 

variables (temperature, duration and washing) suggesting that the W55D dimer variant 

able to attach to the receptor by blocking the anti-XCR1 antibody, impairing its capability 

to bind to the third extracellular loop of the receptor. 
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Appendix 16: List of amino acids and its abbreviation 

 Amino Acid 3-Letter 1-Letter  Amino Acid 3-Letter 1-Letter 

 Alanine Ala A  Leucine Leu L 

 Arginine Arg R  Lysine Lys K 

 Asparagine Asn N  Methionine Met M 

 Aspartic acid Asp D  Phenylalanine Phe F 

 Cysteine Cys C  Proline Pro P 

 Glutamic acid Glu E  Serine Ser S 

 Glutamine Gln Q  Threonine Thr T 

 Glycine Gly G  Tryptophan Trp W 

 Histidine His H  Tyrosine Tyr Y 

 Isoleucine Ile I  Valine Val V 

 Selenocysteine Sec U     

 

Side chain properties: 

 Basic (positively charged)   

 Acidic (negatively charged)   

 Polar (uncharged)   

 Hydrophobic    

 Special cases   

 
 


