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Abstract

This research is devoted to study equilibrium strategies in a game

theoretical framework for the mean-variance problem. The thesis ex-

plores the investment behaviour and interlinks between different types

of equilibrium strategies.

In order to find the open-loop strategy in discrete time, we incorpo-

rate the idea based on Hu et al. (2012) and the concept of open-loop

strategies in engineering study. In engineering study, there are two

types of strategies: open-loop and closed-loop control strategies. We

find the interpretations for both strategies in a Nash equilibrium con-

text from a financial perspective. This thesis extends the literature

by providing the existence and uniqueness of the solution of open-

loop equilibrium strategy in discrete time. Our findings point to the

causes of different equilibrium strategies in the existing literature.

We show the common issue of equilibrium strategies, i.e. that the

amount of money invested in risky assets decays to 0 as time moves

away from the maturity. Furthermore, the closed-loop strategy tends

to a negative limit depending on the assets’ Sharpe ratio. We call

this phenomenon as Mean-variance puzzle. The reason is that the

variance term penalises the wealth changes quadratically as well as

the expectation only increases linearly. By drawing in the concepts

from behavioural economics, we solve this puzzle by using the present-

biased preference. The advantage of the present-biased preference

is that equilibrium investors have the flexibility to adjust their risk

attitude based on their anticipated future.

We simulate three types of control strategies existing in the literature

and compare the investment performance. Furthermore, we evaluate

the performance with respect to different rebalancing periods.



Abbreviations

MT : transpose of a matrix M .

bt : a column vector of return factor for n risky

assets [b1
t , . . . , b

n
t ]T where bit =

Sit
Sit−1

.

Bt : a column vector of excess return factor

for n risky assets [(b1
t+1 − er

0
t ), (b2

t+1 −

er
0
t ), . . . , (bnt+1 − er

0
t )]T at time t.

A : the set of admissible strategies.

o(εk) : a family of ξε such that limε→0 ess sup
∣∣ ξε
εk

∣∣ =

0.

O(εk) : a family of ξε such that limε→0 ess sup
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εk

∣∣ <
c for some finite constant c.

Fs⊗B(R)
B(Rn)

: a set of mearuable functions f : (X, Y )→ Z,

where (X,Fs), (Y,B(R)) and (Z,B(Rn)) are

measurable spaces.

L2(Ft) : the set of Ft-measurable function with

E[|f |2] <∞.

Lp : the Banach space of Borel measurable func-

tions summable with order p.

L2
F(t, T ;Rn) : the set of {Fs}s∈[t,T ]-adapted processes f =

{fs : t < s < T} with E[
∫ T
t
|fs|2 ds] <∞.



L∞F (t, T ;Rn) : the set of essentially bounded {Fs}s∈[t,T ]-

adapted processes.

L2
F(Ω, C(t, T ;Rn)) : the set of continuous {Ft}s∈[t,T ]-adapted pro-

cesses f = {fs : t ≤ s ≤ T} with

E[sups∈[t,T ] |fs|
2] ≤ ∞.



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature review 7

2.1 Mean-varaince analysis in single period time setting . . . . . . . . 7

2.2 Mean-variance analysis in multi-period time setting . . . . . . . . 9

2.2.1 Pre-commitment strategy . . . . . . . . . . . . . . . . . . 10

2.2.2 Equilibrium strategy . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Dynamic optimal strategy . . . . . . . . . . . . . . . . . . 14

2.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Open-loop equilibrium strategy in discrete time 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Overview of the model and the equilibrium condition . . . . . . . 18

3.3 Open-loop strategy for mean-variance problem . . . . . . . . . . . 19

3.4 Convergence of discrete open-loop control for Black-Scholes model 34

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Closed-loop equilibrium strategy in discrete time 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Formulation of the problem and preliminaries . . . . . . . . . . . 41

4.3 Closed-loop strategy for mean-variance problem . . . . . . . . . . 43

4.4 Asymptotic behaviour of closed-loop control . . . . . . . . . . . . 48

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7



CONTENTS

5 Open-loop strategy in continuous time setting 64

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Necessary and Sufficient Condition for Equilibrium Controls . . . 66

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Mean-Variance puzzle 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Solving the mean-variance puzzle with Present-Biased preference . 85

6.2.1 Case 1: At = 1 for all t (zero interest rate) . . . . . . . . . 87

6.2.2 Case 2: At > 1 for all t. (positive interest rate) . . . . . . 91

6.2.3 Case 3: At ∈ (0, 1) for all t. (negative interest rate) . . . . 92

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Numerical Simulation 96

7.1 Pre-commitment v.s. Equilibrium: I.I.D model . . . . . . . . . . . 96

7.2 Pre-commitment v.s. Equilibrium: Case study . . . . . . . . . . . 104

7.2.1 Case Study A . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.2 Case Study B . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8 Conclusion 121

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

References 128

8



List of Figures

6.1 The comparison between open-loop and closed-loop equilibrium

strategies as time moves away from terminal . . . . . . . . . . . . 86

6.2 The comparison between constant risk-aversion and present-biased

risk-aversion. The red dash line indicates the strategy using present-

biased risk averision, whereas the blue dash line indicates the con-

stant risk aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Probability density function for 10-year investment with 65,000

Monte Carlo simulations. The parameters are given in Table 7.1

with a constant risk-aversion parameter γ = 0.5. . . . . . . . . . . 99

7.2 Mean and standard deviation for three different strategies. There

are 65000 Monte Carlo simulations. The parameters are given in

Table 7.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 The closed-loop strategy with the parameters given in Table 7.1

for investment periods between 1 and 50 years. . . . . . . . . . . 100

7.4 The ratio of terminal wealth Sharpe ratios for equilibrium strategies.101

7.5 The ratio of terminal wealth Sharpe ratios for equilibrium strategies102

7.6 The ratio of terminal wealth’s Sharpe ratios for equilibrium strategies102

7.7 Mean and standard deviation with present-biased risk-aversion pa-

rameter for different investment periods. . . . . . . . . . . . . . . 104

7.8 Apple Inc. share price from Jan,1999 to Jan,2018 . . . . . . . . . 105

7.9 The equilibrium strategies for 5 years investment period. The

parameters are estimated from 2000 to 2005. . . . . . . . . . . . . 107

7.10 The equilibrium strategies for 15 years investment period. The

parameters are estimated from 2000 to 2010. . . . . . . . . . . . . 107

7.11 The equilibrium strategies for 5 years investment period. The

parameters are estimated from 2000 to 2015. . . . . . . . . . . . . 108

7.12 The logarithm of wealth paths under different investment strate-

gies for various investment periods. . . . . . . . . . . . . . . . . . 109

9



LIST OF FIGURES

7.13 The logarithm of wealth paths by pre-commitment, open-loop and

closed-loop equilibrium strategies for 5 years investment period. . 110

7.14 The logarithm of wealth paths by pre-commitment, open-loop and

closed-loop equilibrium strategies for 10 years investment period. . 110

7.15 The logarithm of wealth paths by pre-commitment, open-loop and

closed-loop equilibrium strategies for 15 years investment period. . 111

7.16 The truncated investment proportions of pre-commitment, closed-

loop and open-loop equilibrium strategies. . . . . . . . . . . . . . 112

7.17 The logarithm terminal wealth of present-biased risk-aversion co-

efficients with different biased level q for Apple inc. stock. The

investment periods are 5, 10 and 15 years. The horizontal dash

lines are the terminal threshold with state-dependent risk-aversion

coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.18 Sony Corporation share price from Jan, 1999 to Jan, 2018. . . . . 113

7.19 The logarithm terminal wealth of present-biased risk-aversion co-

efficients with different biased level q for Sony corporation stock.

The investment periods are 5, 10 and 15 years. The horizontal dash

lines are the terminal threshold with state-dependent risk-aversion

coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.20 The logarithm of wealth paths by open-loop equilibrium strategies

for 15 years investment period. The equilibrium strategies have

been re-evaluated for every 1 year, 3 years and 5 years. . . . . . . 116

7.21 The logarithm of wealth paths by closed-loop equilibrium strate-

gies for 15 years investment period. The equilibrium strategies

have been re-evaluated for every 1 year, 3 years and 5 years. . . . 116

7.22 The open-loop equilibrium strategies for 15 years investment pe-

riod by re-evaluating in every 1 year, 3 years and 5 years. . . . . . 117

7.23 The logarithm of wealth paths by pre-commitment equilibrium

strategies for 15 years investment period. The pre-commitment

strategies have been re-evaluated for every 1 year, 3 years and 5

years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.24 The pre-commitment strategies for 15 years investment period by

re-evaluating in every 1 year, 3 years and 5 years. The vertical dash

lines indicate the negative strategies (where logarithm is undefined).118

7.25 The truncated logarithm of pre-commitment strategies for 15 years

investment period by re-evaluating in every 1 year, 3 years and 5

years. The vertical dash lines indicate the negative strategies. The

strategies in the gap between the blue lines are all negative. . . . 119

10



List of Tables

7.1 Parameters setting for the market with independent and identical

returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Means and standard deviations of terminal wealth for 40-years

investment under different strategies . . . . . . . . . . . . . . . . 101

11



Chapter 1

Introduction

1.1 Introduction

The modern portfolio selection theory dates back to Markowitz’s Nobel prize-

winning work (Markowitz, 1952). Before the 1950s, there was little systematic

theory for the financial market. Markowitz (1952) worked in single-period mean-

variance portfolio selection problem, which became the foundation for modern

financial portfolio theory. The first pioneering contribution made by Markowitz

is to discuss the trade-off between return and risk of the portfolio, where the

risk is measured by the variance of the portfolio return. A second significant

contribution is that Markowitz’s model provides the foundation for developing

the Capital Asset Pricing Model, which is introduced by Sharpe (1964) during

the 1960s, where the Beta risk in CAPM is now used widely in all the stock

exchange-listed companies.

In the single period of Markowitz’s framework, he identifies the return with the

expectation of the portfolio and the risk with the variance of the portfolio. As

the trade-off between return and risk, the problem focuses on how to minimise

portfolio’s variance subject to a given level of return. Then, the strategy is said

to be optimal if the portfolio achieves minimum variance subject to a prescribed

expected level of return X. The set of all optimal pairs (E[X],Var(X)) is called

Mean-Variance frontier. Following the Markovitz’s work, Merton (1971) extends

his result to the case in the single-period when short selling is allowed.

1



1.1 Introduction

Ever since the appearance of the Markovitz’s framework, this subject has at-

tracted a huge amount of researches on itself. However, the investor faces several

practical difficulties in multi-period time as the tradeoff information between re-

turn and risk becomes less intuitive. The multi-period mean-variance problem

has not been further investigated until the results from the paper Li & Ng (2000).

The strategy developed by Li & Ng (2000) is referred to pre-commitment strategy

because the investor pre-commits to a strategy which is only optimal at the time

of evaluation.

However, the pre-commitment strategy has its own disadvantages. Under the

pre-commitment strategy, the investor will find a different optimal strategy if he

evaluates his plan at a different time. In other words, if the investor is keen to

follow the best strategy at all times, he has to re-evaluate his plan continuously

to ensure that he is making the best decision. In modern financial market, there

are thousands of different stocks available in the market. Furthermore, if an

investor decides to follow one strategy and wants to be satisfied at any time,

then pre-commitment strategy does not meet his requirement. Therefore, the

pre-commitment strategy can be very computationally expensive.

In game theory, the Nash equilibrium is a concept related to a non-cooperative

game among two and more players. The players in the game are assumed to

know strategies of the other players. Every player in the game makes the best

decision for himself, based on what he expects the others will do. For example,

suppose two cars are driving towards a junction from perpendicular directions.

The traffic is red for car A and green for car B. The question is whether they

want to break the law if there is no police officer. As car B knows that car A will

stop in front of traffic light, then car B will make the decision that he will drive

through this junction. If not, both cars would not move. On the other side, as

car A knows that car B will drive through the junction, then the best decision

for A is to wait before the junction. Otherwise, they will crash into each other.

Therefore, the traffic light can be regarded as a law of Nash equilibrium in that

both players are willing to follow it.

In game theory context, the time-consistent mean-variance investor is playing

the optimisation game with future-self. The investor is finding the best respond-

ing strategy based on the strategies which are expected to be chosen by his

future-selves. Strotz (1955) suggested a time-consistent strategy should take into

account investor’s own belief or insight. Such own belief coincides the idea of an-

ticipating future strategy in the game theoretic framework. Therefore, the Nash

2



1.1 Introduction

subgame equilibrium approach has been proposed by Bjork & Murgoci (2010)

and Basak & Chabakauri (2010) in order to obtain a time-consistent strategy.

Suppose the equilibrium investor at time t is looking for the best strategy

sequence (ut, ut+1, . . . , uT−1). He has to pre-determine his future strategies

(ut+1, . . . , uT−1). However, the key difference between the open-loop and closed-

loop equilibrium strategies is: the open-loop investors consider their future strate-

gies at time (ut+1, . . . , uT−1) as a fix strategy (i.e. a fixed amount of money in-

vested in the stock) whereas the open-loop investors modify the future strategies

according to the different choice of strategy ut at time t. These modified future

strategy, denote as (umt+1, . . . , u
m
T−1), are only used to evaluate the strategy ut at

time t. Once the strategy ut is chosen, then the investor combine ut with the

pre-determined future strategies (ut+1, . . . , uT−1) to give a closed-loop equilib-

rium strategy. Therefore, the open-loop equilibrium investor can be viewed as

a fixed recipe investor whereas the closed-loop equilibrium investor is a flexible

recipe investor.

Stochastic control is a sub-field of control theory, which plays an important role in

economic problems. Stochastic control was developed in the late 1950s and the

early 1960s. During that period, stochastic control problems were formulated

to solve engineering problems, typically, which involve a dynamical system in

the presence of randomness. For instance, the dynamics of the system can be

described as a stochastic differential equation and the randomness described as

Brownian motion. The engineers can control the direction of dynamics and the

size of the randomness in the system. In addition, the performance of control

system is assessed by a function of future value of a stochastic process. Therefore,

the stochastic control problem is to find a control law which optimises the random

quantity (see Fleming & Rishel (2012)).

In engineering study, a manager can adjust different elements which are connected

to the system to produce the desired output. This system is referred to control

system. The control systems are classified as open loop or closed loop. The

closed loop system is also known as feedback control system. A system is called

an open loop control system if the control action is independent of the output of

the system. Alternatively, if a system is called closed loop system if a manager

determines the input of system based on the responses (or output) generating

from the previous input quantity.

In both one period and multi-period models, the strategy is said to be optimal if

this strategy gives the highest rewards at the end. The main approach in solving

3



1.2 Research questions

such optimisation problems is to derive a set of necessary conditions that must

be satisfied by any optimal control. Suppose that the investor needs to maximise

his objectives, if the investor decides to deviate from the optimal strategy by

a quantity ε, then the functional rewards will be worse off than if he had not

changed. The deviation quantity ε is called perturbation. In the classical calculus

of variations, the optimisation problem can be solved by considering the first-

order condition with respect to this perturbation. However, in the equilibrium

context, the investor is not only to find a strategy that maximises the rewards,

but also he has to be satisfied with this strategy at any time.

This thesis has three purposes: firstly, to get insights for the equilibrium control

strategies by looking at discrete time problems in detail. In order to show opti-

mality in the equilibrium setting, we need to use a perturbation and investigate

the effect of different types of perturbations to equilibrium strategies. Generally

speaking, if we obtain the equilibrium strategies that turn out to be different, we

can confirm the fact that the perturbation plays an important role of determining

the equilibrium strategy. Later, we extend our study into continuous setting by

looking at a random perturbation process. Secondly, this thesis aims to look at

how open-loop strategy compares to the closed-loop strategy and also the pre-

commitment strategy. Following the result from previous motivation, we can find

a family of different equilibrium controls by setting the perturbation differently.

In practice, it is important to see if there exists any equilibrium control that

will out-perform the rest. Third, this thesis examines whether equilibrium strat-

egy can be a better solution than the pre-commitment as the pre-commitment

strategy is widely used in financial investment.

1.2 Research questions

Research question 1
Providing the open-loop equilibrium strategy in continuous time setting, this

study explores a discrete version of open-loop equilibrium, and obtain the nec-

essary and sufficient condition for discrete open-loop strategies in the form of a

uniqueness and existence theorem.

Research question 2
By using a similar construction technique for the closed-loop equilibrium strate-

gies, this study examines the consistency of closed-loop equilibrium with the defi-

4



1.3 Overview of the thesis

nition introduced by Bjork & Murgoci (2010). This is to understand and provide

an interpretation of equilibrium strategies and different types of perturbations

from a financial prospective.

Research question 3
The simulated equilibrium strategies in the existing literature show a down-trend

in the investment proportion as time moves away from the maturity. Do equi-

librium strategies converge to any limit as time moves backwards? The decay in

equilibrium strategies makes no practical sense for the independent and identical

investment environment. Therefore, is it possible to solve this issue?

Research question 4
Compared to pre-commitment strategies, we would like to find whether the out-

comes of equilibrium strategies for the long-term investments have been improved

or not. The comparison will be tested on the basis of the situation whether the

re-evaluation is allowed. Furthermore, we would like to implement the approach

developed from Research question 3 and assess the improvement of the invest-

ment performance.

1.3 Overview of the thesis

This thesis is organised as follows: In Chapter 2, we review the previous work

for multi-period mean-variance problem which covers the pre-commitment strat-

egy by Li & Ng (2000), open-loop equilibrium strategy by Hu et al. (2012) and

closed-loop equilibrium strategy by Bjork & Murgoci (2010). Chapter 3 describes

our approach to construct open-loop equilibrium strategies in discrete time. We

derive a uniqueness and existence of open-loop strategy. Finally we present an

example to show the discrete open-loop equilibrium strategies converge to the

continuous strategies. Chapter 4 applies same technique used in Chapter 3 to

derive the closed-loop in discrete time. Further, we show the closed-loop equilib-

rium strategies decay to a negative limit as time goes to infinity. In, Chapter 5,

we relax the assumption on the type of perturbation for open-loop equilibrium

strategy in continuous time. Chapter 6.2 addresses the issue of decays in equi-

librium strategy and uses the present-biased concept from economics to fix the

issue. Chapter 7 uses numerical tools to assess the performance of different types

of equilibrium strategies. In Chapter 8, we provide a summary of our approach

5



1.3 Overview of the thesis

on studying the equilibrium strategies and give a financial interpretation of the

rationale of the equilibrium investors.
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Chapter 2

Literature review

2.1 Mean-varaince analysis in single period

time setting

The central issue in the mean-variance formulation is the optimisation of

quadratic criteria. In the literature, there are various formulations of mean-

variance problem. The classical mean-variance portfolio selection problem is

formulated as:

min
u

Var(Xu
T ) (P1)

s.t. E(Xu
T ) = c, (∗)∑

i

ui = 1. (?)

where u ∈ Rn denotes the proportion of investment allocated in ith asset and X

denotes the investor’s wealth level. Since different assets yield different returns

at terminal time, the increment of investor’s wealth depends on the way of allo-

cating u for each assets. It can be noticed that we use the original formulation in

Markowitz (1952) instead of maximising the expected return subject to the risk.

7



2.1 Mean-varaince analysis in single period time setting

In this formulation, the investor splits the objective (minimise the portfolio vari-

ance) and reward condition (∗). The Lagrangian of such optimisation problem

is

L(u, c, λ1, ρ1) = Var(Xu
T )− λ1(E[Xu

T ]− c)− ρ1(
∑
i

ui − 1).

We refer to the optimal multipliers λ1 and ρ1 as reward multiplier and budget

multipler, respectively. From the Lagrangian, the first-order necessary condi-

tion yields the optimal triple of (u∗, λ∗, ρ∗) subject to a desired level c. On the

other hand, the mean-variance problem can also be read as a concave quadratic

optimisation problem, which can be formulated as:

max λ2E[Xu
T ]− 1

2
Var(Xu

T ) (P2)

s.t.
∑
i

ui = 1,

for some constant λ2. The classic formulation is equivalent to the quadratic op-

timisation problem if and only if the chosen constant λ2 is equal to the optimal

reward multiplier λ1. The Markowitz framework provides an important theoret-

ical justification of the parameters λ1 and λ2. Markowitz (1968) describes this

parameter as risk aversion which represents the rational behaviour or investor’s

preference under uncertainty. Several measures of risk aversion parameters have

been justified and explored by Mossin (1968); Rubinstein (1973); Tobin (1958)

for the relation between the utility functions and the corresponding risk attitude.

It is generally assumed that the risk aversion parameter is a constant. However,

Arrow (1971) argues the constant risk aversion leads the invariance of demand

for risky assets as the present wealth changes (i.e. the strategy does not depend

on wealth level). Arrow (1971) believes that the risk aversion should decrease as

the present wealth increases. This idea will be discussed later in the equilibrium

approach.

8



2.2 Mean-variance analysis in multi-period time setting

2.2 Mean-variance analysis in multi-period

time setting

Following the formulation from (P2), the extension of objective functional J in

the multi-period framework becomes

J(t, xt;u) = Et,x[X
u
T ]− γVart,x(X

u
T ),

where we assume the investor is sitting at time t with wealth level x and λ is

postive constant that penalises the risk. The conditional expectation and variance

are defined by E[Xu
T |Xt = x] and Var(Xu

T |Xt = x), respectively. The main issue

in such framework is that the Bellman’s principle does not hold and dynamic

programming cannot be applied. When the objective functional is linear in terms

of conditional expectation, the Markov property can be used to decomposit the

original problem into several sub-problems with respect to different time points.

Thus, the investor can first optimise the sub-problems and then solve the original

problem based on the previously computed solution. The obtained sequential

control strategies will form an optimal control law for the optimisation problem.

However, due to the term
(
E[X]

)2
arising from variance term, there is no global

optimal strategy in multi-period that optimises the functional at every point in

time.

There are three types of time-inconsistent problem in the literature. First, the

mean-variance optimisation problem is time-inconsistent. We recall the variance

formula:

Var(x) = E[X2]− E2[X].

We have the term E2[X], which is not an expected value of a non-linear function

of wealth, but instead a non-linear function of expected wealth. Second, the

objective functional depends on the the wealth of evaluation point. For example,

the endogenous utility function has the following form

Et,x
[

ln(Xu
T − x+ c)

]
, c > 0.

The different evaluation time leads to different wealth level x. Since utility func-

tion changes, the resulting strategy u will not necessarily be the same. The final

9



2.2 Mean-variance analysis in multi-period time setting

time-inconsistent situation is when the utility function depends on the evaluation

time. For example,

Et,x

[ ∫ t

t

ρ(s− t)f(Xs)ds
]
.

Thus, if the optimality of obtained strategy depends on the time of the evaluat-

ing the problem, then such problem is called time inconsistent problem. Previous

research suggests there are three different methods dealing with the time incon-

sistent problem.

2.2.1 Pre-commitment strategy

The first type of the strategy is called pre-commitment which is developed by

Li & Ng (2000). The investor fixes an initial point and tries to find the con-

trol strategy which optimises the objective with respect to this fixed time point.

Li & Ng (2000)’s work is a breakthrough as it is the first paper that provides

the analytical result in multi-period discrete time setting. They use the em-

bedding technique to embed the problem (P2) into an auxiliary problem, which

is time-consistent, and obtain the optimal strategies for the auxiliary problem.

Furthermore, they show the solution set for the original problem is a subset of

the solution for auxiliary problem, and provide a necessary condition for the so-

lution of auxiliary problem attaining the optimum. Based on Li & Ng (2000)’s

study, Zhou & Li (2000) introduce the continuous stochastic linear-quadratic

framework which is a generalisation of the mean-variance problem. The authors

combine the portfolio selection problem and stochastic control theory to expand

this topic into a more complicated situation. For example, random parameters

(Lim & Zhou, 2002), regime switching market (Zhou & Yin, 2003), incomplete

market (Lim, 2004), short-selling prohibition (Li et al., 2002), and Skorokhod

embedding problem (Ankirchner et al., 2015). Besides the embedding technique

developed by Li & Ng (2000), there is an alternative approach called martingale

approach. This approach can be divided into two sub-problems. Firstly, the

investor tries to find the targeting terminal wealth level which optimises the ob-

jective function. Secondly, the investor searches for a strategy which replicates

this terminal threshold. Pliska (1982) first applies martingale approach to solve

stochastic control problem. Afterwards, according to Li & Ng (2000)’s work, Bi-

elecki et al. (2005) use martingale approach to solve the mean-variance problem

with the short-selling constraint. Compared with the embedding approach, mar-

10



2.2 Mean-variance analysis in multi-period time setting

tingale approach appears to be more straightforward to solve the problem with

constraints.

2.2.2 Equilibrium strategy

The second type of the strategy is called equilibrium strategy, which is first in-

troduced by Basak & Chabakauri (2010). Basak & Chabakauri (2010) study

the time consistent strategy by following the suggestion from Strotz (1955):

an investor chooses “the best plan among those that he will actually follow.”

Therefore, Basak & Chabakauri (2010) investigate local behaviour of the mean-

variance strategy. The total law of the variance enables them to derive recursive

Hamiltonian-Jacob-Bellman equation to characterise the strategy. The main ob-

servation in their study is that they characterise a relationship between the HJB

equation and the expected total gains or losses from the stock investment. This

observation allows them to obtain the optimal time consistent strategy in two

parts: myopic and intertemporal investment terms. The myopic term is in the

form of discounted optimal mean-variance strategy for single period model. The

intertemporal investment term is expressed by the sensitivity of the expected to-

tal gains or losses from the stock investment with respect to the stock price and

wealth, respectively. Basak & Chabakauri (2010) examine this sensitivity of an-

ticipated gain under the risk-neutral measures and provide a characterisation of

this intertemporal investment demand under the risk-neutral measures. Basak &

Chabakauri (2010) provide the insights and benefits to the mean-variance time-

consistent strategy. One disadvantage could be the optimality of time-consistent

strategy is not defined mathematically throughout their work.

Bjork & Murgoci (2010) are the first to formulate the time consistent strategy

in game theoretic manner. It is motivated by game theory. In discrete time, the

investor at different times can be viewed as different players. Given the initial

value (t, x), the player t plays a non-cooperative game with the player t+1, ..., T .

The reward to player t is given by the performance functional, and this reward

only depends on the action chosen by himself and the actions chosen by players

t+ 1, ..., T . The player t will make the decision based on the strategies chosen by

the players t+ 1, ..., T .

In view of financial perspective, the objective functional changes at different time

t which can be understood as different investment preference, the problem can be

viewed as a game between the investor and his future self. Due to the fact that

11



2.2 Mean-variance analysis in multi-period time setting

the objective rewards for the investor depend on the future strategies of his incar-

nations, every incarnation of the investor will determine the best strategy for his

own objective given his best conjecture about the others. This concept coincides

with the idea that “choose the best plan among those that he will actually follow

(Strotz, 1955).” In discrete time, the results in forming a time-consistent pol-

icy by backward recursion from the terminal. For example, the non-exponential

discounting problem (Ekeland & Lazrak, 2006) and the mean-variance problem

(Björk et al., 2014). Wang & Forsyth (2011) study the numerical method to

obtain the equilibrium strategy. The time-consistent policy in continuous formu-

lation can be approached via two different directions: discrete time approximation

and continuous time formulation. In continuous formulation, Bjork & Murgoci

(2010) give a mathematical definition of equilibrium strategy. The Markovian

structure enables the authors to analyse the local behaviour of a general class

of time-inconsistent functionals and derive a local strategy. The local optimal-

ity yields a system of partial differential equations (PDE), which is referred to

extended Hamilton Jacobi Bellman (HJB) system. They prove a verification the-

orem for the extended HJB system to ensure that the solutions satisfying the

extended HJB are the desired value function. On the other hand, Czichowsky

(2013) studies the same problem by focusing on the mean-variance functional

via discrete approximation. He proves that the discrete time formulation solu-

tion converges to the continuous case. Björk et al. (2017) attempt to understand

the convergence theory for the general time-inconsistent problem. Yong (2012)

studies the existence and the convergence of equilibrium discrete formulation so-

lutions for hyperbolic discounting problems. Unfortunately, to the best of our

knowledge, the existence and uniqueness of the solutions for the extended HJB

system of general functional is still an open question.

Within previous research, by applying this approach to mean-variance framework

with constant risk aversion, the obtained equilibrium control does not depend on

the wealth state. This phenomenon agrees with the result from single-period

model by Arrow (1971) where the constant risk aversion leads to the invariance

of demand for risky assets as present wealth changes. However, in practice, the

investor might change his risk attitude if any circumstances change. e.g. wealth

level, investment environment or the time remaining to retire. Henderson &

Hobson (2013) point out that the risk aversion can also depend on the timing.

Having realised this, Björk et al. (2014) suggest a state-dependent risk aversion

parameter for mean-variance problem and focus the risk aversion parameter λ

in the form of c
xt

for a positive constant c and wealth level xt. This is because,

as Arrow (1971) pointed out, risk aversion decreases as present wealth increases.

12



2.2 Mean-variance analysis in multi-period time setting

Björk et al. (2014) derive extended HJB system for a general state-dependent risk

aversion. Having focused on risk aversion in the form of c
xt

, they deduce further

that the equilibrium control can be written in the feedback form and linear in

term of wealth state (e.g. u(t, x) = a(t)x). They provide a sufficient condition

(an integral equation) that a(t) must satisfy and prove the uniqueness of the

solution for the integral equation. They propose a numerical scheme to compute

the time-coefficient a(t) from the integral equation and show the convergence

theory for such scheme. As an extension of the model, Bensoussan et al. (2014)

explore the same problem with no short-selling. Besides the state-dependent risk

aversion, another way to have a wealth dependent equilibrium strategy is when

there are only risky assets available in the market, which is studied by Lam et al.

(2016). The reason to consider the risky asset only is due to the stochastic nature

of real interest rates and the inflation risk. A risk-free asset hardly exists in a

long investment horizon. Aside from portfolio selection problem, there are several

applications of equilibrium approach developed in Bjork & Murgoci (2010). For

example, a number of research (Li et al., 2012; Zeng & Li, 2011; Zeng et al., 2013)

has studied the reinsurance problem for mean-variance objective reinsurer. Yao

et al. (2013) and Wei et al. (2013) look at asset–liability management problem

with endogenous liabilities and regime switching, respectively.

Hu et al. (2012) design the game theoretic formulation to the general dynamic

setting. Due to the nature of general dynamic system, the impact of deviating

from a strategy at a specific time cannot be fully characterised until all the infor-

mation is observed. Hu et al. (2012) use a random variable as the perturbation to

the wealth process. They study the differences between perturbed functional and

unperturbed functional. They later introduce two families of backward stochastic

differential equations (BSDEs), which characterises this difference between the

functionals. This characterisation allows them to deduce a necessary condition

for the equilibrium strategy for general dynamic. However, regarding the mean-

variance problem with the same set-up, the equilibrium strategy developed in

Hu et al. (2012) is not the same as the closed-loop equilibrium strategy in Bjork

& Murgoci (2010). Due to the feature of general dynamic system, the strategy

in Hu et al. (2012) is referred to an open-loop equilibrium strategy. Hu et al.

(2015) take a step further and investigate connections between a family of BSDEs

and the equilibrium condition. They reduce the family of BSDEs into a single

BSDE, which enables them to have a deeper understanding of a specific structure

of the necessary condition. They obtain a sufficient condition and provide the

uniqueness of open-loop equilibrium strategy for linear-quadratic problem. Alia
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2.2 Mean-variance analysis in multi-period time setting

et al. (2016) attempt to solve the reinsurance problem by using the open-loop

equilibrium approach.

2.2.3 Dynamic optimal strategy

Another approach to solve the time-inconsistent issue is called dynamic opti-

mal strategy, which is first introduced in Pedersen & Peskir (2017). Pedersen &

Peskir (2017) point out a key drawback of pre-commitment strategy that it uses

the initial points (t, xt) to determine all future optimal strategy us for all s > t.

However, at least in Markovian framework, the investor should forget the past in-

formation and rely on the most updated information to evaluate the strategy. The

notion of dynamic optimality yields a strategy in a time-consistent manner that

it optimises the objective at each new point in time and wealth state. Intuitively,

dynamic optimality requires the investor to solve infinitely many optimal control

problems based on the different initial time points and wealth levels. In the game

theoretic point of view, the dynamic optimality considers incarnations of the in-

vestors achieving their own objective rewards in an aggressive way. Pedersen &

Peskir (2017) derive a closed-form solution for dynamic optimal strategy. The dy-

namic optimal strategy shares a lot of similarities with pre-commitment strategy.

In particular, they both achieve the same expected terminal wealth or termi-

nal value function. However, at the initial point, the value function of dynamic

optimal strategy strictly dominates the value function of pre-commitment strat-

egy. Vigna (2016) further investigates the difference in value function between

dynamic optimal and pre-commitment strategy and shows that this difference

is decreasing through time until it vanishes at the terminal. Vigna (2016) also

studies the value functions between pre-commitment and equilibrium strategy

and shows the value function of pre-commitment out-performs the equilibrium

value function until terminal time. Pedersen & Peskir (2017) study a constrained

case where the dynamic wealth is bounded from above. The authors identify

the behaviour that the dynamic optimal wealth process remains below the upper

bound until it hits the target at terminal. Pedersen & Peskir (2015) explore a

case when the dynamic wealth is constrained from above and below. Pedersen &

Peskir (2015) show that the terminal wealth under the dynamic optimal strategy

can only take two values from the upper and lower bounds.
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2.3 Problems

Although the above literature review on the time consistent approach for the

mean-variance portfolio selection problem has broadened us with the understand-

ing on the rationale of time-consistent problem, in particular, the equilibrium

approach. However, this method has some limitations.

First of all, in the classic control theory with Markovian system, the open-loop

strategy and the closed-loop strategy are identical. However, the current results

lead the equilibrium investor into two different directions: open-loop equilibrium

(Hu et al. (2012)) and closed-loop equilibrium (Bjork & Murgoci (2014)) with

completely different trading strategies. The majority of previously paper focus

on the application of a particular type of equilibrium including Liang & Song

(2015), Zeng & Li (2011) and Alia et al. (2016), but they do not consider the

differences between the two approaches. Vigna (2016) compares the value func-

tion between pre-commitment, closed-loop and dynamic optimal strategies. A

number of paper use the closed-loop equilibrium to define the notion of equilib-

rium strategy. Hence, their analysis and numeric results may underestimate the

performance of the equilibrium strategy. Basak & Chabakauri (2010) provide

insights of the rationale of a closed-loop investor and the structure of a closed-

loop equilibrium strategy. However, little research has investigated the open-loop

strategy in discrete formulation. To complete the study about open-loop strategy

and understand the rationale of open-loop investor, I will focus on the open-loop

equilibrium in the discrete time formulation. Studying the discrete formulation

allows us to investigate the structure of open-loop equilibrium strategy. By doing

so, the effect of dynamic wealth can be identified and the differences between the

rationale of the equilibrium can be studied.

Secondly, the existing results about equilibrium approach indicate that the pro-

portion of wealth invested in stocks decreases as the investor moves away from

maturity. The explanation of this phenomenon is complex. Considering the pre-

commitment, the martingale approach prescribes an optimal terminal wealth and

the investor increases the risky asset investment towards the end of the invest-

ment period in order to reach the benchmark. In mean-variance framework, the

risk is measured by the variance which is a quadratic function of the wealth dy-

namic while the return is measured by the expectation which is a linear function

of the wealth dynamic. This is consistent with the equilibrium approach. The

variance term is not a coherent risk measure (Artzner et al., 1999) in which the

risk/cost arising from each time period is not additive. Therefore, the starting
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control strategy has more impact on the volatility of the wealth dynamic than the

future strategies. Similarly, the equilibrium strategy prescribes the small stock

investment when the investor is far away from the maturity as well as large stock

investment when the investor is near the maturity. This finding is also supported

by Aivaliotis & Palczewski (2014). They study the mean-variance objective func-

tional depending on the whole trajectory of the control process instead of terminal

wealth. However, when the investment period is sufficiently long, compared to

the pre-commitment strategy, the equilibrium strategy behaves differently at the

starting point. To our best knowledge, little study has looked at the behaviour

of trajectory of the equilibrium strategy.

Finally, Markowitz (1968) discusses the advantages and limitations of using vari-

ance as the risk measure. The main issue is that the variance penalises the wealth

process for being too high as well as being too low. This limits the investment

strategy to seek for a situation that is profitable. These considerations drive

the research into asymmetric risk measures involving lower partial moments and

semi-variance. Research in this area includes Markowitz et al. (1993), Bawa &

Lindenberg (1977), Harlow & Rao (1989), Rockafellar & Uryasev (2000), and

Krokhmal et al. (2002). More recently the idea of cash withdrawal technique

was introduced and further developed by Cui et al. (2012). Cui et al. (2012)

study the situation where investor decides to withdraw the cash dynamically to

avoid the wealth level to be too high. The cash withdrawal strategy achieves

the same efficient mean-variance pair of the terminal wealth as well as offers free

cash flow by the withdrawal. In the context of equilibrium approach in the multi-

period framework, the portfolio optimisation problem using semi-variance has not

received much attention. Rudloff et al. (2014) consider the time-consistent strat-

egy for mean-cvar problem based on nested objective functional. However, in

my thesis, I will concentrate on the empirical study of the equilibrium approach

to evaluate the performance. The reason is that, when the notion of optimality

changes to equilibrium, it is less intuitive to determine the real objective for the

equilibrium investor. It is no longer to optimise the mean-variance objective at

every point in time. Instead, the investor plays a game with the future incarna-

tions of himself. Therefore, comparing the equilibrium value function with the

rest becomes less effective.
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Chapter 3

Open-loop equilibrium strategy

in discrete time

3.1 Introduction

Hu et al. (2012) first study the equilibrium strategy for linear-quadratic opti-

mization problem, which is an extended study for the previous paper by Zhou

& Li (2000). The equilibrium control problem in continuous time framework

has been developed by using the spike variation in which the investor deviates

the strategy in a short time horizon and study the infinitesimal of the objective

functions. This chapter aims to use a similar approach to study the equilibrium

strategy in discrete time setting. In Hu et al. (2012), the authors define the

perturbation as a random variable in continuous time. As described earlier, the

two different perturbations used in the existing research lead to different strate-

gies. However, compare to the continuous case, it is more straightforward to

investigate the rationale of the equilibrium strategy in discrete time. Therefore,

this chapter presents the perturbed method in discrete time for obtaining the

open-loop equilibrium strategy.
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3.2 Overview of the model and the equilibrium

condition

We consider a discrete time, finite horizon, (t ∈ T := {0, 1, . . . , T}) a general

market with (n + 1) available assets: a risk-free bond S0
t with its deterministic

growth factor rt at time t and n risky stock assets with prices St = [S1
t , . . . , S

n
t ]T

with its random return factor bit :=
Sit
Sit−1

at time t for i = 1, . . . , n, where (·)T

denotes a transformed vector. It is assumed that the first and second moment of

bt are known and the Cov(bt) is strictly positive definite. The information set

at time t is given by

Ft = σ(S0,S1, . . . ,St).

A self-financing investor joins the market at any time t ∈ {0, 1, . . . , T−1} with the

wealth Xt. Therefore, his entire investment strategy is described by a sequence

of Rn-valued random variables ūt := (ut, . . . ,uT−1), where us = [u1
s, . . . , u

n
s ]T

and uis is the amount of wealth invested in the ith risky asset in period s. Let A

denotes the admissible set and a strategy is said to be admissible us ∈ A if us

is Fs-measurable and bs+1us is square integrable for all s. Since the amount of

money invested in the risk-free asset at time t is X ū
t −

∑n
i=1 u

i
t, the dynamics of

investor’s wealth follow

X ū
t+1 =

n∑
i=1

uit
Sit

Sit+1 + (X ū
t −

n∑
i=1

uit) e
r0
t = AtX

ū
t + BT

t+1ut, (3.1)

where At = er
0
t and Bt+1 := [B1

t+1, B
2
t+1, . . . , B

n
t+1]T = [(b1

t+1 − er
0
t ), (b2

t+1 −
er

0
t ), . . . , (bnt+1 − er

0
t )]T . When it is clear from the context, we will drop ū from

X ū
t .

Suppose the investor entering the market at time t with the wealth Xt ∈ L2(Ft)

would like to maximize the following mean-variance objective functional over

admissible investment strategies:

ess sup
ū∈A

{
XtEt[X

ū
T ]− γ

2
Vart[X

ū
T ]
}
, (3.2)

where γ > 0 will be called the investor’s risk aversion, andEt[·] and Vart(·) denote

E[·|Ft] and Var(·|Ft), respectively. Notice that under the assumption that Xt > 0
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3.3 Open-loop strategy for mean-variance problem

a.s., this problem is equivalent to the classical Markowitz mean-variance criterion

for the return of the portfolio over [t, T ]

ess sup
ū

{
Et[X

ū
T /Xt]−

γ

2
Vart[X

ū
T /Xt]

}
.

Criterion (3.2) can also be interpreted, c.f. Björk et al. (2014), as imposing

a state-dependent risk aversion γ
2Xt

whereby the investor with a higher wealth

would be more risk-seeking than the investor with a lower wealth.

For an admissible strategy ūt and an initial wealth Xt ∈ L2(Ft) at time t, denote

J(t,Xt; ūt) = XtEt[X
ū
T ]− γ

2
Vart[X

ū
T ].

3.3 Open-loop strategy for mean-variance prob-

lem

Definition 3.3.1. An admissible strategy ū∗0 ≡ (u∗0,u
∗
1, . . . ,u

∗
T−1) is an open-

loop equilibrium control if for any t and any bounded Rn-valued Ft-measurable

random variable ε

J(t,X ū∗,ε

t ; ū∗,εt )− J(t,X ū∗

t ; ū∗t ) ≤ 0, a.s.,

where ū∗t = (u∗t ,u
∗
t+1, . . . ,u

∗
T−1), and ū∗,εt = (u∗t + ε,u∗t+1, . . . ,u

∗
T−1).

The idea of the equilibrium concept is that, when the investor decides to change

the investment at any single point t = 0, . . . , T−1, the rewards for investor would

be worse than if he had not changed the strategy.

Dynamics (3.1) allow for explicit expression for the terminal wealth. Given Xt ∈
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3.3 Open-loop strategy for mean-variance problem

L2(Ft) at time t and an admissible control ūt we have

X ū
T = AT−1X

ū
T−1 + BT

TuT−1

= AT−1

(
AT−2X

ū
T−2 + BT

T−1uT−2

)
+ BT

TuT−1

=
( T−1∏
i=T−2

Ai
)
X ū
T−2 + AT−1B

T
T−1uT−2 + BT

TuT−1

Define DT = 1 and Dt =
∏T−1

i=t Ai, then

X ū
T = DT−2X

ū
T−2 +DT−1B

T
T−1uT−2 +DTBT

TuT−1

Repeating the above procedure until time t, we obtain

X ū
T = DtXt +

T−1∑
s=t

Ds+1B
T
s+1us (3.3)

For a perturbed control ūεt , as constructed in Definition 3.3.1, the terminal wealth

equals

X ūε

T = DtX
ū
t +

T−1∑
s=t+1

Ds+1B
T
s+1us +Dt+1B

T
t+1(ut + ε)

= DtX
ū
t +

T−1∑
s=t

Ds+1B
T
s+1us +Dt+1B

T
t+1ε

= X ū
T +Dt+1B

T
t+1ε (3.4)

The expression (3.4) shows that, the perturbed wealth process is differed from the

original process by a term Dt+1B
T
t+1ε. The extra term can be view as following:

investing ε amount of money into the stock market at time t. After one-period

time, the amount becomes BT
t+1ε. The investor then withdraws it from the stock

market and invests it into the risk-free bond until terminal time.
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3.3 Open-loop strategy for mean-variance problem

Define V ū
T = 0 and

V ū
t =

T−1∑
s=t

Ds+1B
T
s+1us, t = 0, . . . , T − 1, (3.5)

and introduce the notation that will be used to characterise equilibrium strategy:

Σt = Covt[Bt+1], µt = Et[Bt+1], βū
t = Covt[Bt+1,Et+1 V

ū
t+1].

Formulae (3.3)-(3.4) play an important role in deriving open-loop equilibrium

controls. In the following theorem, we prove the uniqueness of open-loop equi-

librium strategy for a general wealth process (3.1). As a by-product, we obtain

a recursive formula for backward computation of a candidate strategy. If this

strategy satisfies the required integrability conditions, i.e., Bt+1ut ∈ L2(Ft) for

all t then it is an open-loop equilibrium control. Otherwise, there is no admissible

equilibrium strategy.

Theorem 3.3.2. A open-loop equilibrium control ū∗t satisfies

u∗t =
1

γDt+1

Σ−1
t

(
X ū∗

t µt − γβū∗

t

)
. (3.6)

Proof. Fix an admissible control strategy ū and assume perturbed version of this

admissible strategy ūε with a deterministic perturbation ε ∈ Rn applied at time

t. Later, we can relax the condition for the perturbation ε. Recalling expressions

(3.3)-(3.4), we notice that

Et[X
ūε

T ] = Et[X
ū
T ] +Dt+1µ

T
t ε.

Recall the law of total variance,

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X]),
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3.3 Open-loop strategy for mean-variance problem

we obtain

Vart[X
ūε

T ] = Et

[
Vart+1[X ū,ε

T ]
]

+ Vart
[
Et+1[X ū,ε

T ]
]

= Et

[
Vart+1[Vt+1]

]
+ Vart

[
DtXt +Dt+1B

T
t+1(ut + ε) +Et+1[Vt+1]

]
= Et

[
Vart+1[Vt+1]

]
+ Vart

[
Et+1[Vt+1]

]
+D2

t+1(ut + ε)TΣt(ut + ε)

+ 2Dt+1β
T
t (ut + ε)

= Vart[Vt+1] +D2
t+1(ut + ε)TΣt(ut + ε) + 2Dt+1β

T
t (ut + ε),

where in β and Vt we skipped the superscript ū. Therefore,

J(t,X ū
t ; ūεt)− J(t,X ū

t ; ūt)

= X ū
t Dt+1µ

T
t ε−

γ

2

(
D2
t+1(ut + ε)TΣt(ut + ε) + 2Dt+1β

T
t (ut + ε)

−D2
t+1u

T
t Σtut − 2Dt+1β

T
t ut

)
= X ū

t Dt+1µ
T
t ε− γD2

t+1u
T
t Σε− γ

2
D2
t+1ε

TΣtε− γDt+1β
T
t ε. (3.7)

For ū to be an open equilibrium strategy, the above expression has to be a.s.

non-positive for any ε, in particular, for deterministic ε. As Σt is strictly positive

definite, the equation (3.7) is a strictly concave function in ε. The condition

of non-positivity is satisfied if and only if the maximum is at ε = 0. Due to

concavity, the first order condition is necessary and sufficient. The derivative

with respect to ε reads

X ū
t µt − γDt+1Σtut − γDt+1Σtε− γβt.

The first order condition at ε = 0 takes the form:

X ū
t µt − γDt+1Σtut − γβt = 0.
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Therefore, ut has to satisfy

ut =
1

γDt+1

Σ−1
t

(
X ū
t µt − γβt

)
. (3.8)

For the sufficient condition, inserting the above expression (3.8) into (3.7) gives

J(t,X ū
t ; ūεt)− J(t,X ū

t ; ūt) = −γ
2
D2
t+1ε

TΣtε,

which is non-positive for all ε. Now, we relax ε to be a bounded Ft-measurable

random variable. Due to positive definiteness of Σt, the above expression is non-

positive for all ε.

Condition (3.6) provides a recipe for constructing an open-loop equilibrium. At

T − 1, VT = 0, so βT = 0 and uT−1 is uniquely determined by the conditional

moments of BT given FT−1. Moving to T −2, the random variable VT−1 is known

and therefore βT−1 can be computed, provided that the covariance is well-defined

(it will be discussed later on). Equation (3.6) gives a unique characterisation of

uT−2, and we continue down to u0.

The above procedure depends on the ability to compute the covariance βt. If

at each step, we could obtain an admissible strategy (i.e. bs+1us is square in-

tegrable for all s ) and Vt =
∑T−1

s=t Ds+1B
T
s+1us is square-integrable. Therefore,

the covariance βt is well-defined. The control strategy exists if and only if, in

each step of the above procedure, the calculated risky asset position ut ∈ A,

i.e. BT
t+1ut ∈ L2(Ft+1). It is not clear that the condition (3.6) yields a unique

construction control sequence as the random variable Vt does depend on all the

control us for s ≤ t. We summarise these findings below.

Theorem 3.3.3. Define Kt by the following:

Kt =E−1
t+1

( 1

γDt+1

Σ−1
t µt −

1

Dt+1

Σ−1
t AtCovt

(
Bt+1,Et+1[Mt+1]

))
,

where

Et+1 = I +
1

Dt+1

Σ−1
t Covt

(
Bt+1,Et+1[Mt+1]BT

t+1

)
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3.3 Open-loop strategy for mean-variance problem

and Mt+1 is constructed by induction:

Mt+1 :=

[ T−1∑
s=t+2

Ds+1B
T
s+1Ks

( s−1∏
n=t+1

(An + BT
n+1Kn)

)
+Dt+2B

T
t+2Kt+1

]

and MT = 0. If the above inverse of the matrix Et+1 is well-defined for all t, the

control

u∗t = KtX
∗
t ,

where X∗t =
∏t−1

i=0

(
Ai + BT

i+1Ki

)
X0, is the unique open-loop equilibrium control.

Proof. The theorem 3.3.2 characterises a necessary and sufficient condition for

equilibrium control. It allows us to construct the control recursively. However, βt

is not necessarily unique since it depends on the control sequence {u0, . . . , uT−1}.
We need to show that, under such construction, the equilibrium control is

uniquely defined.

At time T-1, we have βT−1 = 0, so

u∗T−1 =
1

γDT

Σ−1
T−1

(
X ū∗

T−1µT−1

)
=
( 1

γDT

Σ−1
T−1µT−1

)
X ū∗

T−1

:= KT−1X
ū∗

T−1,

where KT−1 is FT−1-measurable that depends only on the filtration of the stock

price σ(S0, . . . , ST−1).

Assume that u∗s = KsX
ū∗
s for all s ≥ t + 1 and Ks depends only on the fil-

tration of the stock price σ(S0, . . . , Ss), i.e., it does not depend on any of the

control sequence {u∗0, . . . ,u∗s−1}. Therefore, we can rewrite the wealth at time

t+ 2, . . . , T − 1 in terms of the wealth at time t+ 1 in the following way:

X ū∗

t+2 =
(
At+1 + BT

t+2Kt+1

)
X ū∗

t+1,
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3.3 Open-loop strategy for mean-variance problem

X ū∗

t+3 =
(
At+2 + BT

t+3Kt+2

)(
At+1 + BT

t+2Kt+1

)
X ū∗

t+1.

Therefore, for any s ∈ {t+ 2, . . . , T − 1},

X ū∗

s =
( s−1∏
n=t+1

(An + BT
n+1Kn

))
X ū∗

t+1.

Then we have

V ū∗
t+1 =

T−1∑
s=t+1

Ds+1B
T
s+1u

∗
s

=
T−1∑
s=t+1

Ds+1B
T
s+1KsX

ū∗

s

=
T−1∑
s=t+2

Ds+1B
T
s+1Ks

[( s−1∏
n=t+1

(An + BT
n+1Kn)

)
X ū∗

t+1

]
+Dt+2B

T
t+2Kt+1X

ū∗

t+1

=

[ T−1∑
s=t+2

Ds+1B
T
s+1Ks

( s−1∏
n=t+1

(An + BT
n+1Kn)

)
+Dt+2B

T
t+2Kt+1

]
·X ū∗

t+1

:= Mt+1 ·X ū∗

t+1,

where Mt+1 is a FT−1-measurable random variable which depends only on stock

price filtration σ(S0, . . . , ST−1). Therefore

βt = Covt

[
Bt+1,Et+1[V ū∗

t+1]
]

= Covt

[
Bt+1,Et+1[Mt+1]X ū∗

t+1

]
= Covt

[
Bt+1,Et+1[Mt+1](AtX

ū∗

t + BT
t+1u

∗
t )
]

= AtX
ū∗

t Covt

[
Bt+1,Et+1[Mt+1]

]
+ Covt

[
Bt+1,Et+1[Mt+1]Bt+1

]
u∗t .
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3.3 Open-loop strategy for mean-variance problem

Substituting βt into (3.8), we obtain

u∗t =
1

γDt+1

Σ−1
t

(
X ū∗

t µt − γβt
)

=
1

γDt+1

Σ−1
t X ū∗

t µt −
1

Dt+1

Σ−1
t βt

=
1

γDt+1

Σ−1
t X ū∗

t µt −
AtX

ū∗
t

Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]

]
− 1

Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

]
u∗t .

Rearranging above expression, we get

(
I +

1

Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])
u∗t

=

(
1

γDt+1

Σ−1
t µt −

At
Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]

])
X ū∗

t .

Under the assumption that the matrix

(
I +

1

Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])

is invertible, then we have

u∗t =
(
I +

1

Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])−1
(

1

γDt+1

Σ−1
t µt

− At
Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]

])
X ū∗

t

= KtX
ū∗

t

where Kt is Ft-measurable depends only on the stock price filtration σ(S0, . . . , St)

By induction, we can construct an unique strategy sequence u =

(u0, u1, . . . , uT−1). Since such construction agrees the form in equation (3.8),

the sufficiency is followed by Theorem 3.3.2.
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3.3 Open-loop strategy for mean-variance problem

The above theorem shows that the open-loop equilibrium control is linear in

term of wealth X with a random coeffient K. For t ∈ (0, . . . , T − 1), any random

coefficient Kt is independent of choices of the strategies (u0, . . . , ut−1). Although

we construct the equilibrium strategy backward, we can compute each random

coefficient Kt for all t and the value of Kt is uniquely defined with respect to the

stock price filtration.

Corollary 3.3.4. Assume the excess return Bt is essentially bounded for all

t, i.e. there exists a constant c such that ess supω∈Ω |Bt| = c1 < ∞ for all t,

and ess supω ‖Σ−1‖u ≤ c2 < ∞. Also the matrix Et defined in theorem 3.3.3 is

invertible for all t. Then an open-loop equilibium strategy is unique. Moreover, it

is determined by a backward procedure stemming from (3.6) provided that at each

step the calculated ut satisfies that BT
t+1ut is a square integrable random variable.

(i.e. admissible strategy)

Proof. Define the upper and lower bounds on L2 norm space as:

‖A‖u = max
‖ξ‖2=1

‖Aξ‖2

‖A‖l = min
‖ξ‖2=1

‖Aξ‖2

For any t ∈ {0, 1, . . . , T − 1}, there exists some constants c1 and c2 such that

ess sup
ω
|Bt| = c1 <∞,

ess sup
ω

∥∥Σ−1
∥∥
u
≤ c2 <∞.

Recall that u∗t = KtX
ū∗
t where

Kt :=
(
I +

1

Dt+1
Σ−1

t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])−1

(
1

γDt+1
Σ−1

t µt −
At

Dt+1
Σ−1

t Covt

[
Bt+1,Et+1[Mt+1]

])
.
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3.3 Open-loop strategy for mean-variance problem

Then, for any t ∈ {0, 1, . . . , T − 1},

E

[(
BT
t+1u

∗
t

)2
]
≤ c2

1E

[(
u∗t
)2
]

= c2
1E

[
KT
t Kt

(
X ū∗

t )2
]
.

We will prove by induction that Kt is bounded for any t ∈ {0, 1, . . . , T − 1}. At

time T − 1, since βT−1 = 0, then

∥∥KT
T−1KT−1

∥∥
u
≤ 1

γ2D2
T

∥∥µTT−1Σ−1
T−1Σ−1

T−1µT−1

∥∥
u

≤ 1

γ2D2
T

∥∥µTT−1

∥∥
u

( ∥∥Σ−1
T−1

∥∥
u

)2 ‖µT−1‖u

=
c2

1c
2
2

γ2D2
T

,

which is bounded from above. We make the following induction hypothe-

sis: if {Kt+1, . . . ,KT−1} are bounded, then Kt is bounded. Denote d =

max {‖Kt+1‖u , . . . , ‖KT−1‖u}. Since Kt is a product of two matrices, we can

prove that the operator norm is bounded for each individual matrix. Since(
I + 1

Dt+1
Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])−1

is a n× n square-matrix, then

∥∥∥∥(I +
1

Dt+1
Σ−1

t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])−1
∥∥∥∥
u

=

∥∥∥∥(I +
1

Dt+1
Σ−1

t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])∥∥∥∥−1

l

Since the matrix
(
I + 1

Dt+1
Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])
is an n × n real

symmetric matrix. Therefore, the matrix has n number of non-zero eigenval-

ues {λ1, . . . , λn}.

Theorem. Given A ∈ Cn×n, suppose rank(A) = n. Then

min
‖x‖=1

‖Ax‖2 = σmin(A)
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3.3 Open-loop strategy for mean-variance problem

Proof. For any ‖x‖ = 1,

‖Ax‖2 = ‖UΣV ′x‖2

= ‖ΣV ′x‖2

= ‖Σy‖2 for y = V ′x.

Then,

‖Σy‖2 =
(
Σn
i=1 |σiyi|

2 )2 ≥ σmin

Denote λmin = min{|λ1| , . . . , |λn|}, then

∥∥∥∥(I +
1

Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]Bt+1

])−1
∥∥∥∥
u

≤ 1

λmin
.

To prove the boundedness for

(
1

γDt+1

Σ−1
t µt −

At
Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]

])
,

we will need the following estimates:

‖Mt+1‖u =

∥∥∥∥∥
T−1∑
s=t+2

Ds+1B
T
s+1Ks

( s−1∏
n=t+1

(An + BT
n+1Kn)

)
+Dt+2B

T
t+2Kt+1

∥∥∥∥∥
u

≤
T−1∑
s=t+2

∥∥∥∥∥Ds+1B
T
s+1Ks

( s−1∏
n=t+1

(An + BT
n+1Kn)

)∥∥∥∥∥
u

+
∥∥Dt+2B

T
t+2Kt+1

∥∥
u

≤
T−1∑
s=t+2

Ds+1c1d
( s−1∏
n=t+1

(An + c1d)
)

+Dt+2c1d

=: c3 <∞,
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3.3 Open-loop strategy for mean-variance problem

and

∥∥Covt
[
Bt+1,Et+1[Mt+1]Bt+1

]∥∥
u

=

∥∥∥∥Et [Bt+1B
T
t+1Et+1[Mt+1]

]
−Et

[
Bt+1

]
Et

[
BT
t+1Et+1[Mt+1]

]T∥∥∥∥
u

≤
∥∥∥Et [Bt+1B

T
t+1Et+1[Mt+1]

]∥∥∥
u

+

∥∥∥∥Et [Bt+1

]
Et

[
BT
t+1Et+1[Mt+1]

]T∥∥∥∥
u

≤ 2c2
1c3 =: c4.

Therefore,

∥∥∥∥ 1

γDt+1

Σ−1
t µt −

At
Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]

]∥∥∥∥
u

≤
∥∥∥∥ 1

γDt+1

Σ−1
t µt

∥∥∥∥
u

+

∥∥∥∥ At
Dt+1

Σ−1
t Covt

[
Bt+1,Et+1[Mt+1]

]∥∥∥∥
u

≤ 1

γDt+1

∥∥Σ−1
t

∥∥
u
‖µt‖u +

At
Dt+1

∥∥Σ−1
t

∥∥
u

∥∥∥Covt

[
Bt+1,Et+1[Mt+1]

]∥∥∥
u

≤ c1c2

γDt+1

+
Atc2c4

Dt+1

.

This yields

∥∥KT
t Kt

∥∥
u
≤ 1

λ2
1

( c1c2

γDt+1

+
Atc2c4

Dt+1

)2

<∞.

Hence, we have shown that Kt is bounded for any t ∈ {0, . . . , T − 1}. This

implies the control u∗t is admissible if and only if the wealth level X ū∗
t is square-

integrable. Since the initial wealth of investor entering the market, the starting

wealth is a constant at that point. Then, this implies the control u0 is admissible.

As a consequence, X1 is square-integrable under the admissible control u0. Follow

such procedure, at maturity time, we obtain an admissible equilibrium control

sequence {u∗0, . . . ,u∗T−1}.

Although formula (3.6) can be expressed in the feedback form, a more convenient

formulation can be obtained using a slightly different decomposition of wealth

than in the proof of Theorem 3.3.2.
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3.3 Open-loop strategy for mean-variance problem

To simplify notation in the Markovian case, we writeEtsx[·] forE[·|St = s,Xt = x]

and analogously for the variance and covariance operator. When the conditioning

is on the state variables St, the state variable x is omitted in the notation, for

example, Ets[·] = E[·|St = s].

Theorem 3.3.5. In the Markovian setting (i.e. the stock price process admits

strong Markov property), an open-loop equilibrium strategy ū∗ satisfies

u∗t = αt(St) Xt,

where

αt(s) =
(
Covts

[
ht+1(sBt+1)Bt+1, Bt+1

])−1
(1

γ
Ets[Bt+1]−AtCovts

[
ht+1(sBt+1), Bt+1

])

and the function h is given by the following recursive equation:

ht(s) = Ets[ht+1(sBt+1)(At +BT
t+1αt(s))], t ∈ {0, 1, . . . , T − 1}

hT (s) = 1,

with Etsx[X
ū∗
T ] = E[X ū∗

T |St = s,Xt = x] = ht(s)x.

Proof. In Markovian setting, the We will prove by backward induction that in

the Markovian setting, for each t, there are functions αt, ht : (0,∞)n → R such

that an equilibrium strategy is given by

u∗t = αt(St)Xt, (3.9)

Etsx[X
ū∗

T ] = ht(s)x. (3.10)

31



3.3 Open-loop strategy for mean-variance problem

We will use the following notation:

Γ̂t(s) = Covts[ht+1(sBt+1)Bt+1, Bt+1],

µ̂t(s) = Ets[Bt+1],

β̂t(s) = Covts[ht+1(sBt+1), Bt+1].

Note that Γ̂t is an n×n matrix while the other two objects are column n-vectors.

Assume that the conditional expectation of the terminal wealth agrees the repre-

sentation (3.10) for time t+1 (it trivially holds for T with hT (s) = 1). The proof

uses the characterisation (3.8) of an open-loop equilibrium. For that we have to

compute βt in terms of the quantities defined above. Notice that XT = DtXt+Vt,

hence Etsx[Vt] = (ht(s)−Dt)x. Therefore, βt = Covt[Et+1 Vt+1,Bt+1] has the fol-

lowing representation

βt = Covtsx

[(
ht+1(sBt+1)−Dt+1

)
(Ax+BT

t+1u
∗
t ), Bt+1

]
= Γ̂t(s)u

∗
t + Axβ̂t(s)−Dt+1Σtu

∗
t .

Inserting it into (3.8) and making use of the Markovian property of the price

process gives

u∗t =
1

γDt+1

Σ−1
t

(
µ̂t(St)Xt − γΓ̂t(St)u

∗
t − γAβ̂t(St)Xt + γDt+1Σtu

∗
t

)
.

This simplifies to

0 =
1

γDt+1

Σ−1
t

(
µ̂t(St)Xt − γΓ̂t(St)u

∗
t − γAβ̂t(St)Xt

)
.

Due to positive-definiteness of Σt, we conclude that the expression inside of the

bracket has to be zero. Hence u∗t satisfies

u∗t = Γ̂−1
t (St)

(1

γ
µ̂t(St)− Aβ̂t(St)

)
Xt.
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3.3 Open-loop strategy for mean-variance problem

Therefore, u∗t can be represented as a function of s and x: u∗t (s, x) = αt(s)x,

where

αt(s) = Γ̂−1
t (s)

(1

γ
µ̂t(s)− Aβ̂t(s)

)
which coincides with the expression in the statement of Theorem 3.3.5.

It remains to prove the recursive formula for ht(s). Substituting the open-loop

equilibrium control into the functional at time t, we obtain

Etsx[X
ū∗

T ] = Etsx[E[X ū∗

T |St+1 = sBt+1, Xt+1 = Atx+BT
t+1u

∗
t ]]

= Etsx

[
ht+1(stBt+1)(Atx+BT

t+1u
∗
t )
]

= Etsx

[
ht+1(stBt+1)(At +BT

t+1αt(s))x
]

= ht(s)x.

Corollary 3.3.6. Assume Bt, t ∈ {1, . . . , T}, are independent random variables

with the mean µt and the covariance matrix Σt. The unique open-loop equilibrium

strategy ū∗ is given by

u∗t =
1

γht+1

Σ−1
t µt Xt, (3.11)

where the sequence of real numbers ht, t = 1, . . . , T , satisfies

ht = ht+1At +
1

γ
µTt Σ−1

t µt.

Proof. Under the independence assumption, the result of Corollary 3.3.6 can be

easily shown by Theorem 3.3.5. Hence, we only need to show that the equilibrium

control found by Corollary 3.3.6 is admissible, that is BT
t ut ∈ L2 for any t ∈

{0, . . . T − 1}, i.e.

E
[
(BT

t+1u
∗
t )

2
]

= E
[
(BT

t+1

ht+1

γ
Σ−1
t µtX

ū∗

t )2
]

Recall that

hT = 1,
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3.4 Convergence of discrete open-loop control for Black-Scholes model

and

hT−1 = AT−1 +
1

γ
µTT−1Σ−1

T−1µT−1.

then

ht+1 = Dt+1 +
1

γ

T−1∑
i=t+1

Dt+1

Di+1

µTi Σ−1
i µi <∞.

Under the independence assumption, Σt and µt are constant, and Bt+1 is inde-

pendent from the filtration Ft, so is independent from Xt.

E
[
(BT

t+1u
∗
t )

2
]

= E
[
(u∗t

TBt+1)2
]

=
(ht+1

γ

)2
E
[
Σ−1
t µTt Bt+1B

T
t+1Σ−1

t µt(X
ū∗

t )2
]

=
(ht+1

γ

)2
Σ−1
t µTt E

[
Bt+1B

T
t+1(X ū∗

t )2
]
Σ−1
t µt

=
(ht+1

γ

)2
Σ−1
t µTt E

[
Bt+1B

T
t+1

]
Σ−1
t µtE

[
(X ū∗

t )2
]

Since the mean and variance of Bt is well-defined, then the second moment is

finite and (ht+1

γ

)2
Σ−1
t µTt E

[
Bt+1B

T
t+1

]
Σ−1
t µt <∞

Hence, we start with a constant initial wealth X0 = x0, it implies that the equilib-

rium control u0 is admissible. As a result, the process X1 will be square-integrable

and E
[
(BT

2 u∗1)2
]
< ∞. Again, this implies that u1 is admissible. Therefore, we

follow this procedure until the maturity T and obtain the admissible equilibrium

control law {u0, u1, . . . , uT−1}.

3.4 Convergence of discrete open-loop control

for Black-Scholes model

In this section, we demonstrate the method for finding the open-loop equilibrium

control in continuous setting through discrete approximation. For the sake of

simplicity, we assume the risk-free rate is 0 and the dynamic of risky assets
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3.4 Convergence of discrete open-loop control for Black-Scholes model

follows:

dSt = µStdt+ σStdWt,

where Wt is a Brownian motion and t ∈ [0, T ]. Denote ut as the amount of money

invested in stock market at time t, then the wealth process (Xt)t≥0 follows:

dXt =
ut
St
dSt.

Assume the investor aims to maximise the functional:

J(t, xt;u) = xtEt[X
u
T ]− γ

2
V art(X

u
T ),

where γ is a positive constant.

We can discretise the time horizon into N partitions with equal sub-interval ∆t.

Denote ∆t = T
N

, then for i ∈ {0, . . . , N − 1}, the discretised dynamics of the

stock price and wealth process follow:

Si∆t = S0 exp
(
(µ− σ2

2
)i∆t+ σWi∆t

)
,

and

X(i+1)∆t = Xi∆t + (
S(i+1)∆t

Si∆t
− 1)ui.

We know A = e0 = 1, and for i ∈ {0, . . . , N − 1}, we have

B∆t
i+1 =

S(i+1)∆t

Si∆t
− 1 = exp

(
(µ− σ2

2
)∆t+ σ(W(i+1)∆t −Wi∆t)

)
− 1

= exp
(
(µ− σ2

2
)∆t+ ση∆t

)
− 1

where η∆t is normal random variable with mean 0 and variance ∆t. We notice

that B∆t
i is indeed identically distributed, then we will omit the index i. From the

results Corollary 3.3.6 from previous section, the open-loop equilibrium strategy

is given by

u∗i =
E[B∆t]

γhi+1Var(B∆t)
xi (3.12)
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3.4 Convergence of discrete open-loop control for Black-Scholes model

and

hi = hi+1 +
E[B∆t]2

γV ar(B∆t)
, for i ∈ {0, . . . , N − 1}.

Denote that ξ∆t = E[B∆t]2

γV ar(B∆t)
, then

hi = hi+1 + ξ∆t

= hT + (N − i)ξ∆t

= 1 + (N − i)ξ∆t

for i ∈ {0, . . . , T − 1}, and

ξ∆t =
E[

S(i+1)∆t

Si∆t
− 1]2

γV ar(
S(i+1)∆t

Si∆t
− 1)

=
E
[
exp((µ− σ2

2
) + ση∆t)− 1

]2
γV ar

(
exp((µ− σ2

2
) + ση∆t)

)
=

(eµ∆t − 1)2

γe2µ∆t{eσ2∆t − 1}
.

For any t ∈ [0, T ], denote k = b t
∆t
c, then k ·∆t ≤ t < (k + 1) ·∆t. Next, we will

show that as N tends to infinity, hk and hk+1 will tend to same limit,

lim
N→∞

hk = lim
∆t→0

hk

= 1 + lim
∆t→0

ξ∆t(N − k)

= 1 +
1

γ
lim

∆t→0

E[B∆t]2

V ar(B∆t)
·
( T

∆t
− k
)

= 1 +
1

γ
lim

∆t→0

E[B∆t]2

∆t · V ar(B∆t)
·
(
T − k ·∆t

)
= 1 +

1

γ
lim

∆t→0

(eµ∆t − 1)2

∆t · e2µ∆t{eσ2∆t − 1}
·
(
T − k ·∆t

)
.
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3.4 Convergence of discrete open-loop control for Black-Scholes model

By L’Hôpital’s rule, we have

lim
∆t→0

(eµ∆t − 1)2

∆te2µ∆t{eσ2∆t − 1}
= lim

∆t→0

1− 2e−µ∆t + e−2µ∆t

(eσ2∆t − 1) ·∆t
L’Hôpital

= lim
∆t→0

2µe−µ∆t − 2µe−2µ∆t

σ2eσ2∆t∆t+ eσ2∆t − 1

L’Hôpital
= lim

∆t→0

−2µ2e−µ∆t + 4µ2e−2µ∆t

∆t · σ4eσ2∆t + σ2eσ2∆t + σ2eσ2∆t

=
µ2

σ2
.

Hence, we have

lim
N→∞

h∆t
k = 1 +

µ2

γσ2
lim

∆t→0
(T − k ·∆t)

= 1 +
µ2

γσ2
lim

∆t→0

(
T − b t

∆t
c ·∆t

)
= 1 +

µ2

γσ2
(T − t).

Similarly, since ξ∆t does not depend on the index k, then

lim
N→∞

hk+1 = 1 +
µ2

γσ2
lim

∆t→0

(
T − (k + 1) ·∆t

)
= 1 +

µ2

γσ2
(T − t).

As N goes to infinity, the mapping t→ ht is now in continuous time, then

ht = 1 +
µ2

γσ2
(T − t),

and

u∗t =
µ

γ · (1 + µ2

γσ2 (T − t))σ2
Xt

=
µ

γσ2 + µ2(T − t)
Xt. (3.13)
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3.5 Conclusion

Remark. In (Hu et al., 2012, Section 5.4.1), the continuous open-loop equilibrium

control for the same problem is found to be:

u∗t =
µ

γ Mt σ2
Xt (3.14)

where

Mt = 1 +
µ2

γσ2
(T − t).

which is the limit of the control for discrete framework as shown above.

3.5 Conclusion

This chapter has introduced a definition of discrete time open-loop equilibrium

strategy. Under the discrete time open-loop definition 3.3.1, the relationship per-

turbed wealth process and unperturbed wealth process has been identified by

equation (3.3). From the equation (3.3) the rationale of the open-loop equilib-

rium is that the investor tests a perturbed strategy against current investment

plan by deviating a small amount of stock investment ε over a single-period. In

particular, the investor has two objectives: short-term investment and long-term

investment plans. The short-term investment plan (e.g. the term Dt+1B
T
t+1ε in

equation (3.3)) for open-loop equilibrium investor is to invest in stock market for

one period. After one period, the investor will withdraw this investment from

stock market and deposit it into the bank account until the maturity.

The second focus of the research is to obtain the necessary and sufficient condi-

tion (Theorem 3.3.2 and Theorem 3.3.3) for open-loop equilibrium strategy. It

has been shown that the type of perturbation does not affect the resulting equi-

librium strategy in discrete time. Moreover, given the specific matrix inversion

is well-defined,Theorem 3.3.3 shows that the open-loop equilibrium strategy is of

linear feedback type and is unique. Therefore, there exists only one open-loop

strategy for multiplicative wealth dynamic. The feasibility of the solution has

been provided by Corollary 3.3.4 with bounded excess return factor Bt.

The condition obtained for open-loop can be used for generating a numerical algo-

rithm for constructing an open-loop equilibrium control. It has been shown that

the open-loop equilibrium strategy we developed in this chapter approximates
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3.5 Conclusion

the continuous version of open-loop equilibrium strategy by Hu et al. (2012) in

Black-Scholes model. Providing the uniqueness result for continuous open-loop

equilibrium strategy from Hu et al. (2015), it verifies that our interpretation of the

open-loop investor’s rationale coincides with the original open-loop equilibrium

definition. However, for the Black-Scholes example presenting in this chapter, it

has be noticed that the value of Mt strictly increases as (T − t) increases. This

implies that the open-loop equilibrium strategy u∗t in equation (3.14) decays as

time t goes backward. We will discuss these issues in Chapter 6.2.
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Chapter 4

Closed-loop equilibrium strategy

in discrete time

4.1 Introduction

In Bjork & Murgoci (2014), the authors study the closed-loop equilibrium strat-

egy in discrete time. Since the closed-loop was first developed for Markovian

system, the perturbation is defined as the deterministic function of current time

and wealth state. It is expected that, when the investor deviates from the strat-

egy slightly, there exists a chain reaction on the future perturbations. Based

on such hypothesis, we will present a similar perturbation method as shown in

Chapter 3. As mentioned in Chapter 3, the investment amount of initial open-

loop equilibrium strategy goes to 0 as the investment length goes to infinity. A

similar phenomenon has been observed for closed-loop equilibrium strategy in all

existing studies. Therefore, this chapter will study the asymptotic behaviour of

closed-loop equilibrium strategy as investment length goes to infinity.
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4.2 Formulation of the problem and preliminaries

4.2 Formulation of the problem and preliminar-

ies

In this chapter, we will study the same problem as in Chapter 3.2. Recall the

aim of investor from equation 3.2:

ess sup
ū

{
XtEt[X

ū
T ]− γ

2
Vart[X

ū
T ]
}
, (4.1)

subject to the wealth dynamic

X ū
t+1 = AtX

ū
t + BT

t+1ut, (4.2)

where At = er
0
t and Bt+1 := [B1

t+1, B
2
t+1, . . . , B

n
t+1]T = [(b1

t+1 − er
0
t ), (b2

t+1 −
er

0
t ), . . . , (bnt+1−er

0
t )]T . However, compared to the previous chapter, we will study

the problem within the Markovian framework. Markovian framework implies the

stock price admitting a strong Markov property. Since under the strong Marko-

vian property, the stock price at time t is independent of the prices at time s with

s < t. This suggests us to concentrate on the feedback type of the strategies.

Now we will introduce the definition of feedback strategy and the equilibrium

condition. Also, we will use the upper case Ū to denote the strategy of feedback

type in Markovian setting to distinguish it from the notation of open-loop strat-

egy in general setting. Recall that (Ft) is the filtration generated by stock prices

(Sk)k∈0,...,t.

Definition 4.2.1. A sequence Ūt ≡ (Ut, . . . , UT−1) of random functions: Ω×R→
Rn in is a admissible feedback strategy for an initial wealth xt ∈ L2(Ft) if

i Us is Fs⊗B(R)
B(Rn)

-measurable for s = t, . . . , T − 1.

ii the wealth process defined as XŪ
s+1 = AsX

Ū
s +BT

s+1Us(X
Ū
s ) satisfies XŪ

s ∈
L2(Fs) for s = t, . . . , T − 1.

If stock price is a Markov process, then we introduce an obvious specialisation

of the above definition. For the sake of simplicity, notations remain the same as

previously assigned.
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4.2 Formulation of the problem and preliminaries

Definition 4.2.2. A sequence Ūt ≡ (Ut, . . . , UT−1) of function R×(0,∞)n → Rn

is a admissible Markovian feedback strategy for an initial wealth Xt ∈ L2(Ft) if

i Us is B(R)⊗B(Rn)
B(Rn)

-measurable for s = t, . . . , T − 1.

ii the wealth process defined as XŪ
s+1 = AsX

Ū
s +BT

s+1Us(X
Ū
s ) satisfies XŪ

s ∈
L2(Fs) for s = t, . . . , T − 1.

Definition 4.2.3. The wealth process (X
Ūt,xt
s )s=t,...,T for a feedback strategy Ūt

and initial wealth Xt ∈ L2(Ft) is defined as follows:

X
Ūt,xt
t = Xt,

X
Ūt,xt
s+1 = AsX

Ūt,xt
s +BT

s+1Us(X
Ūt,xt
s ), s = t, . . . , T − 1.

For the simpilicity of notation, we will often omit the dependence on Xt and Ūt.

Definition 4.2.4. For an admissible feedback strategy Ūt and an intial wealth

xt, its performance is defined as

J(t, xt; Ūt) = XtEt[X
Ūt,xt
T ]− γ

2
Vart[X

Ūt,xt
T ].

Definition 4.2.5. An admissible feedback strategy Ū∗ ≡ Ū∗0 for the initial

wealth x0 is a closed-loop equilibrium control if for any t ∈ {0, 1, . . . , T − 1}
and for any bounded Rn-valued Ft-measurable random variable ε, we have

J(t, xŪ∗

t ; Ūε
t)− J(t, xŪ∗

t ; Ū∗t ) ≤ 0 a.s.,

where Ū∗ = (U∗t , U
∗
t+1 . . . , U

∗
T−1) and Ūε = (U∗t + ε, U∗t+1, . . . , U

∗
T−1).

42



4.3 Closed-loop strategy for mean-variance problem

4.3 Closed-loop strategy for mean-variance

problem

Note that the definition of closed-loop equilibrium stands in sharp contrast with

open-loop equilibrium from the perturbed strategy. The deviation term ε at time

t will affect the future strategies {Us} for s = t + 1, . . . , T − 1. An explanation

for this difference is: when the open-loop investor decides to test the strategy

by a perturbation at time t, due to the nature of general dynamic system, he

could not examine the future influence arising by this perturbation after time

t+ 1. Therefore, he would like to have a “blind” test against the present control

strategy. However, in Markovian system, the future dynamic generated by the

perturbation can be tracked and the investor can adjust the future strategies

corresponding to this perturbation.

Theorem 4.3.1. Let control sequence {Ūs(X
Ū
s , Ss)}s=0,...,T−1 be a closed-loop

equilibrium control for problem (4.1) under the wealth dynamic (4.2). Then the

equilibrium control Ū admits a separable form of

Ūt = K(t)Xt, for t = 0, . . . , T − 1.

Furthermore, let

KT−1 =
1

γ
ET−1[BT ]Cov−1

T−1(BT ),

and, for t = 0, 1, . . . , T − 2,

Kt = Cov−1
t (Gt+1Bt+1)

(1

γ
Et[Bt+1Gt+1]− AtCovt

)
where

Gt =
T−1∏
i=t

(Ai + BT
i+1Ki), for t = 1, 2, . . . , T − 1. (4.3)

Assume that (Kt) is well-defined, i.e., CovT−1(BT ) and Covt(Gt+1Bt+1) are

a.s. invertible and all the expectations exist. Define a feedback control Ū∗ =

(U∗0 , U
∗
1 , . . . , U

∗
T−1) by

U∗t (x) = Ktx.
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4.3 Closed-loop strategy for mean-variance problem

i If XŪ∗,1
T ∈ L2(FT ), then Ū∗ is a unique equilibrium closed-loop feedback

control for any initial wealth x0 ∈ R \ {0}.

ii If XŪ∗,1
T /∈ L2(FT ), then there is no equilibrium closed-loop feedback control

for any x0 ∈ R \ {0}.

Proof. We will prove the above result using mathematical induction. At time

T − 1, recall DT = 1, the closed-loop equilibrium strategy coincides with the

single-period optimal control, which is given by

UT−1 =
µT−1

γ
Σ−1
T−1XT−1,

where ΣT−1 = CovT−1[BT ] and µT−1 = ET−1[BT ]. Therefore, at time T − 1, the

closed-loop equilibrium control is in the form:

UT−1 = KT−1XT−1,

where KT−1 = 1
γ
µT−1Σ−1

T−1. Assume Us follow the expression KsXs for all s ∈
{t + 1, . . . , T − 1}, then the dynamics (4.2) allow for explicit expression for the

terminal wealth. For convenience, we also set Dt =
∏T−1

i=1 Ai and recall that is a

deterministic quantity. Given Xt ∈ L2(Ft) at time t and a separable admissible

control Ūt, for a perturbed control Ūε
t we have

X
Ūε
T

T = AT−1X
Ūε

T−1 + BT
TUε

T−1(XŪε

T−1) = (AT−1 + BT
TKT−1)XŪε

T−1

=
T−1∏
i=t+1

(Ai + BT
i+1Ki)X

Ūε

t+1

=
T−1∏
i=t+1

(Ai + BT
i+1Ki)(AtXt + BT

t+1U
ε
t)

=
T−1∏
i=t+1

(Ai + BT
i+1Ki)

(
AtXt + BT

t+1(Ut + ε)
)

= XŪ
T + BT

t+1ε

T−1∏
i=t+1

(Ai + BT
i+1Ki) (4.4)

Here,to obtain the expression (4.4), we use the induction hypothesis that the

strategies (Ut+1, . . . , UT−1) admit the form Us = KsXs for s ∈ {t+ 1, . . . , T − 1}.
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4.3 Closed-loop strategy for mean-variance problem

Next, we will prove the closed-loop equilibrium control at time t obtains the

same expression. Fix an admissible strategy Ū and its perturbed version Ūε

with a deterministic perturbation ε ∈ Rn applied at time t. Recalling expression

(4.4)-(4.3), we have

Et[X
Ū,ε
T ] = Et[X

Ū
T ] + Et[B

T
t+1Gt+1]ε.

For variance term, we have

Vart[X
Ūε

T ] = Vart[X
Ū
T + BT

t+1Gt+1ε]

= Vart[X
Ū
T ] + 2εTCovt(X

Ū
T ,B

T
t+1Gt+1) + εTCovt[Bt+1Gt+1]ε

By the definition 4.2.5, we have

J(t,XŪ
t ; Ūε)− J(t,XŪ

t ; Ū)

= XtEt[B
T
t+1Gt+1]ε− γεTCovt(X

Ū
T ,B

T
t+1Gt+1)− γ

2
εTCovt[Bt+1Gt+1]ε. (4.5)

For Ū to be a closed-loop equilibrium strategy, the above expression has to be

a.s. non-positive for any ε. We assume CovT−1(BT ) and Covt(Gt+1Bt+1) are a.s.

invertible and all the expectations exist. The above expression is strictly concave

in ε. The condition of non-positivity is satisfied if and only if the maximum is at

ε = 0. Due to the concavity, the first order condition is necessary and sufficient.

The derivative with respect to ε evaluated at ε = 0 reads

XtEt[Bt+1Gt+1]− γCovt(X
Ū
T ,B

T
t+1Gt+1) = 0 (4.6)

Recall that the structure of separable control Us = KsXs for s ∈ {t+1, . . . , T−1},
then given Xt ∈ L2(Ft) at time t and an admissible control Ūt we have

XT = Gt+1(AtXt + BT
t+1Ut)
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4.3 Closed-loop strategy for mean-variance problem

By the first order condition (4.6), we have

0 = XŪ
t Et[Bt+1Gt+1]− γCovt

(
Gt+1(AtXt + BT

t+1Ut),B
T
t+1Gt+1

)
= XŪ

t Et[Bt+1Gt+1]−XtAtγCovt
(
Gt+1,B

T
t+1Gt+1

)
− γCovt

(
Gt+1B

T
t+1,B

T
t+1Gt+1

)
Ut

Since Covt
(
Gt+1B

T
t+1,B

T
t+1Gt+1

)
is positive definite, then Ut has to satisfy

Ut = Cov−1
t

(
Gt+1Bt+1

)(1

γ
Et[Bt+1Gt+1]− AtCovt(Gt+1,B

T
t+1Gt+1)

)
Xt.

Inserting it into (4.5) gives

J(t,XŪ
t ; Ūε

t)− J(t,XŪ
t ; Ūt) = −γ

2
εTVart[Bt+1Gt+1]ε,

which is non-positive for all ε. Now, we relax ε to be a bounded Ft-measurable

random variable. Due to positive definiteness of Vart[Bt+1Gt+1], the above ex-

pression is non-positive if and only if ε ≡ 0.

It can be seen that, the closed-loop equilibrium control Ut = KtXt where

Kt = Cov−1
t

(
Gt+1Bt+1

)(1

γ
Et[Bt+1Gt+1]− AtCovt(Gt+1,B

T
t+1Gt+1)

)
.

Therefore, by the mathematical induction, the equilibrium strategy Ū admits a

separable form of

Ūt = K(t)Xt, for t = 0, . . . , T − 1.

Remark. It can be seen in Theorem 4.3.1 that the closed-loop equilibrium control

at time t depends on the entire future choices for {t+1, . . . , T−1} via K. However,

the investor decides the closed-loop control recursively. Compared with open-loop

equilibrium control, the separable structure and the recursive construction ensure
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4.3 Closed-loop strategy for mean-variance problem

the uniqueness of the solution. Therefore, the following result can be concluded.

Corollary 4.3.2. There exists a unique closed-loop equilibrium control Ū∗t sat-

isfying

U∗t = Covt(Gt+1B
T , Gt+1)−1

(1

γ
Et[Bt+1Gt+1]− AtCovt(Gt+1)

)
XŪ
t ,

where

Gt =
T−1∏
i=t

(Ai + BT
i+1Ki).

Corollary 4.3.3. Assume Bt, t ∈ {1, . . . , T} are independent random variables

with the mean µt and the covariance matrix Σt. A unique closed-loop equilibrium

strategy Ū∗ is given by

U∗t =
(
βt+1(Σt + µtµ

T
t )− α2

t+1µtµ
T
t

)−1(1

γ
αt+1µt − At(βt+1 − α2

t+1)µt

)
XŪ
t

(4.7)

where the function α and β are given by the following recursive equations

αt = (At + µTt Kt)αt+1, αT = 1,

and

βt = (A2
t + KT

t (Σt + µtµ
T
t )Kt + 2Atµ

T
t Kt)βt+1, βT = 1.

Proof. If Bi’s are independent, then

Et[Gt+1Bt+1] =
T−1∏
i=t+1

(Ai +E[Bi+1]TKi])E[Bt+1]
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4.4 Asymptotic behaviour of closed-loop control

and

Covt(Gt+1, Gt+1Bt+1) = E[G2
t+1]E[Bt+1]− (E[Gt+1])2E[Bt+1].

Denote αt+1 := E[Gt+1] and βt+1 := E[G2
t+1], then

αt = E[Gt] = E[(At + BT
t+1Kt)Gt+1] = (At + µTt Kt)αt+1

and

βt = E[G2
t ] = E[(At + Bt+1Kt)

2G2
t+1]

= (A2
t + KT

t (Σt + µtµ
T
t )Kt + 2Atµ

T
t Kt)βt+1

with

αT = 1 and βT = 1.

Hence, the closed-loop equilibrium control becomes

U∗t =
(
βt+1(Σt + µtµ

T
t )− α2

t+1µtµ
T
t

)−1(1

γ
αt+1µt − At(βt+1 − α2

t+1)µt

)
XŪ
t

Remark 4.3.4. Suppose there is one risky asset with independent and identical

increment, then 4.3.3 is the same as the construction in Bjork & Murgoci (2014).

4.4 Asymptotic behaviour of closed-loop con-

trol

Corollary 4.3.3 provides a recursive way to construct a closed-loop equilibrium

control. Such construction allows us to determine the control for infinite time

backwards. Since the equilibrium strategy is designed for long-term investors,
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4.4 Asymptotic behaviour of closed-loop control

it is important to investigate the behaviour as time goes back. For the sake of

simplicity, we will assume that there is only one risky asset where the log returns

are independently and identically distributed. Meanwhile, the risk-free asset has

a constant return which implies At = er
0
t = A = constant > 1.

Recall Ut is a closed-loop equilibrium strategy in the form of

Ut = Kt Xt.

where t denote the time to maturity T . In the independent and identical case,

Kt+1 =

1
γ
αtµ− A

{
βtµ− α2

tµ
}

βt(σ2 + µ2)− α2
tµ

2

where

αt+1 = (A+ µKt+1)αt, α0 = 1

and

βt+1 =
(
A2+(σ2+µ2)K2

t+1+2AµKt+1

)
βt =

(
(A+µKt+1)2+σ2K2

t+1

)
βt, β0 = 1.

From here, in order to simplify the notations, we can rewrite Kt+1 by dividing

both the numerator and denominator by µ2,

Kt+1 =
1

µ
·

1
γ
αt − A

{
βt − α2

t

}
βt(

σ2

µ2 + 1)− α2
t

,

and also write α and β as,

αt+1 =
(
A+

1
γ
αt − A

{
βt − α2

t

}
βt(

σ2

µ2 + 1)− α2
t

)
αt,

and

βt+1 =
((
A+

1
γ
αt − A

{
βt − α2

t

}
βt(

σ2

µ2 + 1)− α2
t

)2
+
σ2

µ2

( 1
γ
αt − A

{
βt − α2

t

}
βt(

σ2

µ2 + 1)− α2
t

)2
)
βt.
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4.4 Asymptotic behaviour of closed-loop control

Denote

φ =
σ2

µ2
, (4.8)

then

Kt+1 =
dt+1

µ
, (4.9)

where

dt+1 =

1
γ
αt − A

{
βt − α2

t

}
βt(φ+ 1)− α2

t

, (4.10)

then

αt+1 = (A+ dt+1)αt (4.11)

and

βt+1 =
(

(A+ dt+1)2 + φ d2
t+1

)
βt (4.12)

Note that the behaviour of closed-loop equilibrium control Kt+1 is the same as

the behaviour of dt+1 by a constant scaling factor. The main difficulty is the

nested dependence between the variables d, α, β and a constant φ. It can be

seen that φ is the inverse value of Sharpe ratio square. Therefore, the behaviour

of closed-loop control depends on the value of the Sharpe ratio. Note that the

expression (4.10) can be also written as:

dt+1 =

1
γ
αt
βt
− A

{
1− α2

t

βt

}
(φ+ 1)− α2

t

βt

. (4.13)

Lemma 4.4.1.
α2
t

βt
is monotonically decreasing as t increases, that is

α2
t+1

βt+1
≤ α2

t

βt

for all t and the equality holds iff d1 = 0. Also, there exists a constant c1 < 1
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4.4 Asymptotic behaviour of closed-loop control

such that
α2
t

βt
≤ α2

1

β1

= c1 < 1.

Proof. Since φd2
t ≥ 0, then

α2
t+1

βt+1

=
(A+ dt+1)2

(A+ dt+1)2 + φd2
t+1

α2
t

βt
≤ α2

t

βt

and the above equality holds only if dt+1 = 0. It is easy to verify that the base

value

d1 =
1

γφ
6= 0.

So,
α2

1

β1

=
(A+ d1)2

(A+ d1)2 + φd2
1

α2
0

β0

<
α2

0

β0

= 1.

Remark 4.4.1. Lemma 4.4.1 shows the ratio of
α2
t

βt
is strictly less than 1 for all t

and will always decrease unless the value dt+1 = 0. Therefore, the denominator of

equation (4.13) is strictly positive. The sign of dt only depends on the numerator

of equation (4.13)

Lemma 4.4.2. There exists a t∗ such that dt < 0 for all t > t∗.

Proof. Assume that dt ≥ 0 for all t, then

αt+1

βt+1

=
A+ dt+1

(A+ dt+1)2 + φ d2
t+1

· αt
βt

=
1

(A+ dt+1) +
φ d2

t+1

A+dt+1

· αt
βt
≤ 1

A

αt
βt

Next, we will show that αt
βt

tends to 0 as t increases. Since all dt ≥ 0 for all t, the

above denominator

(A+ dt) +
φd2

t

A+ dt
> 1.

Therefore, there exists a δ 6= 0 such that

1 ≥ 1

(A+ dt) +
φ d2

t

A+dt

+
δ

(A+ dt) +
φ d2

t

A+dt

.
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4.4 Asymptotic behaviour of closed-loop control

Since all dt ≥ 0 for all t, then the above denominator

(A+ dt) +
φd2

t

A+ dt
> 1.

Since αt
βt
≤ 1 and 0 <

α2
t

β2
t
< 1, then

dt =

1
γ
− A+ A

α2
t

βt

φ+ 1− α2
t

βt

≤
1
γ

φ
= d1.

Therefore, dt is bounded above by d1 = 1
γφ

, and δ

(A+dt)+
φ d2t
A+dt

is strictly bounded

away from 0. Hence, limt→∞
αt
βt

= 0. Now,

lim
t→∞

dt = lim
t→∞

1
γ
· αt
βt
− A(1− α2

t

βt
)

φ+ 1− α2
t

βt

≤ lim
t→∞

1
γ
· αt
βt
− A(1− c1)

φ+ 1− α2
t

βt

= lim
t→∞

1
γ
· αt
βt

φ+ 1− α2
t

βt

− lim
t→∞

A(1− c1)

φ+ 1− α2
t

βt

≤ −A (1− c1)

φ+ 1
< 0.

This contradicts the positivity of dt for all t.

Remark 4.4.2. Lemma 4.4.2 shows the closed-loop equilibrium control can attain

a negative values when t is sufficient large. The following lemma will state a

lower bound for the equilibrium control.

Lemma 4.4.3. There exists a lower bound, −A, such that dt > −A and αt, βt >

0 for all t.

Proof. By Lemma 4.4.1, in the formula (4.10), the denominator is positive. Hence

dt+1 > −A is equivalent to

1

γ

αt
βt
− A (1− α2

t

βt
) > −A (φ+ 1− α2

t

βt
),
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4.4 Asymptotic behaviour of closed-loop control

which is
αt
γβt

> −Aφ.

As βt is strictly positive for all t, then it is sufficient to show αt > 0. This is true

because α0 = 1 implies d1 > −A and the relation (4.11) states for all t

αt+1 = (A+ dt)αt.

This ensures α1 > 0 and by using induction, αt is positive for all t, which com-

pletes the proof.

As we mentioned, the limit of closed-loop equilibrium control depends on the

Sharpe ratio. For a specific range of Sharpe ratio, the limit of equilibrium control

can be provided.

Lemma 4.4.4. If φ > 1
4A(A−1)

, then Θt := 1
γ
αt
βt

+ A
α2
t

βt
→ 0 and dt → −A

φ+1
as

t→∞.

Proof. Firstly, recall the expression (4.13) of dt

dt+1 =

1
γ
αt
βt
− A

{
1− α2

t

βt

}
(φ+ 1)− α2

t

βt

, (4.14)

showing the limit of dt is equivalent to study the limit of αt
βt

and
α2
t

βt
We will show

that,
αt
βt
→ 0, as t→∞.

Then, for φ > 1
4A(A−1)

,

(A+ dt)
2 + φd2

t − (A+ dt) > 0 for all real value dt.

Providing the value of φ, there exists a δ > 0 such that

(A+ dt)
2 + φd2

t − (A+ dt) ≥ δ.
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4.4 Asymptotic behaviour of closed-loop control

Recall the equation (4.11) and (4.12) we have

αt+1

βt+1

=
(A+ dt)

(A+ dt)2 + φd2
t

αt
βt
.

Then, we have

(A+ dt)

(A+ dt)2 + φd2
t

≤ 1− δ

(A+ dt)2 + φd2
t

.

To show the limit of αt
βt

is equivalent to have (A+dt)

(A+dt)2+φd2
t

being strictly bounded

away from 1 by a constant. However, it is not clear now as dt can be arbitrarily

large. Hence, we need to prove that the limit of supremum of dt is bounded.

Since Lemma 4.4.3 shows αt
βt
≤ 1

A
α0

β0
≤ 1 and Lemma 4.4.1 shows 0 <

α2
t

βt
≤ 1,

then

dt =

1
γ
αt
βt
− A+ A

α2
t

βt

φ+ 1− α2
t

βt

≤
1
γ

φ
= d0 <∞ for all t.

Therefore, there exists a δ̃ > 0 such that

1− δ̃ ≥ A+ dt
(A+ dt)2 + φd2

t

,

and

lim
t→∞

αt
βt

= 0.

Next, we will find the limit of
α2
t

βt
. Lemma 4.4.1 and Lemma 4.4.3 show that

α2
t

βt

is a monotonic decreasing sequence which is bounded below by 0. Then there is

κ ∈ (0, 1)

lim
t→∞

α2
t

βt
= κ.
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4.4 Asymptotic behaviour of closed-loop control

Then,

lim sup
t→∞

Θt = 0 + Aκ < A.

This implies dt is bounded away from 0 for sufficiently large t, since

lim sup
t→∞

dt = lim sup
t→∞

1
γ
αt
βt
− A

{
1− α2

t

βt

}
(φ+ 1)− α2

t

βt

=
1

φ+ 1− κ
(

lim sup
t→∞

Θt − A
)

< 0.

Then, from Lemma 4.4.1, we have κ = 0. For sufficient large t, there is an η < 1

such that

α2
t+1

βt+1

=
1

1 +
φd2
t

(A+dt)2

α2
t

βt
≤ η

α2
t

βt
.

Therefore,

lim
t→∞

Θt → 0

and

lim
t→∞

dt =
−A

1 + φ
.

Note that it is also important to explore the case when Sharpe ratio is outside

of above range. By analysing the different range of Sharpe ratio, the different

investment behaviour can be studied. Recall that αt represents the dynamics of

the first moment of wealth process, then dt + A shows the expected investment

return or loss over a single period. Therefore, we will focus on the cases when

dt + A > 1 and dt + A < 1.
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4.4 Asymptotic behaviour of closed-loop control

Lemma 4.4.5. Assume A+ dt ≥ 1, then dt+1 < dt.

Proof. Equation (4.10) is equivalent to

1

γ
αt + (A+ dt)α

2
t = (dtφ+ dt + A)βt. (4.15)

To show dt+1 < dt, it is equivalent to show

1
γ
αt+1 − A(βt+1 − α2

t+1)

βt+1(φ+ 1)− α2
t+1

≤ dt. (4.16)

Lemma 4.4.1 provides the denominator is positive, then the above inequal-

ity (4.15) can be rearranged as:

LHS of (4.15) =
1

γ
αt+1 + Aα2

t+1 + dtα
2
t+1

=
1

γ
(A+ dt)αt + A(A+ dt)

2α2
t + dt(A+ dt)

2α2
t (by the relation (4.11))

=
1

γ
(A+ dt)αt + (A+ dt)

3α2
t

< RHS of (4.15)

= (dtφ+ dt + A) βt+1

= (dtφ+ dt + A)
(

(A+ dt)
2 + φ d2

t

)
βt (by the relation (4.12))

=
(

(A+ dt)
2 + φ d2

t

)(1

γ
αt + (A+ dt)α

2
t

)
(by equation (4.15))

=
1

γ
(A+ dt)

2αt + (A+ dt)
3α2

t +
1

γ
φd2

tαt + φd2
t (A+ dt)α

2
t

Therefore, cancelling the above term (A+ dt)
3α2

t , it suffices to show that

1

γ
(A+ dt) <

1

γ
(A+ dt)

2 +
1

γ
φd2

tαt + φd2
t (A+ dt)α

2
t

When (A+ dt) ≥ 1, then the above inequality is trivial.
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4.4 Asymptotic behaviour of closed-loop control

Remark 4.4.3. Under the assumption of Lemma 4.4.4 φ ≥ 1
A−1

, we have the limit

of dt is equal to −A
1+φ

. As a result,

−A
1 + φ

+ A =
A

1 + 1
φ

≥ 1,

which is sufficient to show

A > 1 +
1

φ
⇔ φ >

1

A− 1
.

This is fulfilled by the assumption of Lemma 4.4.4. Providing Lemma 4.4.5, we

have a monotonic decreasing sequence dt converges to the limit −A
1+φ

. We decide

to prove the behaviour of the closed-loop control for full generality (φ < 1
A−1

)

in the next lemma. The proof of Lemma 4.4.6 will be needed in the remaining

results.

Lemma 4.4.6. Suppose φ ≥ 1
(A−1)

. If dt + A ≥ 1, then

dt+1 + A ≥ 1.

Proof. We need to show

dt+1 =

1
γ
αt+1 − A(βt+1 − α2

t+1)

βt+1(φ+ 1)− α2
t+1

≥ 1− A.

Define

Λ(αt, βt) := −1

γ
αt+1 + A(βt+1 − α2

t+1) + (1− A)
(
βt+1(φ+ 1)− α2

t+1

)
.

Then, we have

Λ(αt, βt) = −1

γ
αt+1 − α2

t+1 +
(
φ+ 1− Aφ

)
βt+1.
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4.4 Asymptotic behaviour of closed-loop control

From (4.11),

1

γ
αt+1 + α2

t+1 =
1

γ
(A+ dt)αt + (A+ dt)

2α2
t

= (A+ dt)
(1

γ
αt + (A+ dt)α

2
t

)
= (A+ dt)(dtφ+ dt + A)βt by equation (4.15).

Then,

Λ(αt, βt) = −(A+ dt)(dtφ+ dt + A)βt +
(
φ+ 1− Aφ

)(
(A+ dt)

2 + φd2
t

)
βt.

By Lemma 4.4.3, we have βt > 0, then

dt+1 + A ≥ 1 ⇐⇒ Λ(dt)

βt
≤ 0.

We can expand the bracket and simplify the terms to obtain

Λ

βt
(dt) = d2

tφ(φ+ 1)(1− A) + dtφA(1− 2A) + φA2(1− A)

Since A > 1, then Λ(dt)
βt

is a quadratic function in terms of dt with all the coef-

ficients being negative. It is trivial that Λ(dt)
βt
≤ 0 for all dt ≥ 0. Therefore, it

suffices to show Λ(dt)
βt
≤ 0 for dt ∈ [1−A, 0). We look at the discriminant of Λ(dt)

βt
:

∆ := A2φ2(1− 2A)2 − 4φ2A2(1− A)2(1 + φ).

If ∆ ≤ 0, then Λ(dt)
βt
≤ 0 for any dt, that is

∆ = A2φ2(1− 2A)2 − 4φ2A2(1− A)2(1 + φ) ≤ 0.
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4.4 Asymptotic behaviour of closed-loop control

The above inequality is true if

φ ≥ (1− 2A)2

4(1− A)2
− 1

=
(1− 2A)2 − 4(1− A)2

4(1− A)2

=
4A− 3

4(1− A)2

=
1

A− 1
+

1

4(A− 1)2
.

If ∆ > 0, in which 1
A−1

+ 1
4(A−1)2 > φ > 1

A−1
, then

d+
t :=

−φA(1− 2A)−
√

∆

2φ(1− A)(1 + φ)
≤ (1− A)

This is equivalent to

−
√

∆ ≥ φA(1− 2A) + 2φ(1− A)(1− A)(1 + φ).

The above inequality requires the right-hand side to be negative,

φA(1− 2A) + 2φ(1− A)2(1 + φ) < 0,

that is

φ <
A(2A− 1)

2(A− 1)2
− 1

=
3

2(A− 1)
+

1

2(A− 1)2

This is satisfied because φ < 1
A−1

+ 1
4(A−1)2 < 3

2(A−1)
+ 1

2(A−1)2 . Squaring both

sides, we obtain

∆ ≤ φ2A2(1−2A)2+4φ2(1−A)2(1−A)2(1+φ)2+4φ2A(1−2A)(1−A)(1−A)(1+φ).

59



4.4 Asymptotic behaviour of closed-loop control

Therefore,

A2φ2(1− 2A)2 − 4φ2A2(1− A)2(1 + φ)

≤ φ2A2(1− 2A)2 + 4φ2(1− A)2(1− A)2(1 + φ)2

+ 4φ2A(1− 2A)(1− A)(1− A)(1 + φ),

which leads to

− 4φ2A2(1− A)2(1 + φ)

≤ 4φ2(1− A)2(1− A)2(1 + φ)2 + 4φ2A(1− 2A)(1− A)(1− A)(1 + φ).

Dividing both side by 4φ2(1 + φ)(1− A),

−A2(1− A) ≥ (1− A)2(1− A)(1 + φ) + A(1− 2A)(1− A).

Therefore,

φ ≥ A2(1− A) + A(1− 2A)(1− A)

(A− 1)(1− A)2
− 1

=
−A2 − A(1− 2A)

(A− 1)2
− 1

=
A(A− 1)

(A− 1)2
− 1

=
A

A− 1
− 1

=
1

A− 1
.

Recall that Λ(dt)
βt
≤ 0 for all dt ≥ 0. Therefore, it suffices to show Λ(dt)

βt
≤ 0 for

dt ∈ [1−A, 0).In the case of d+
t < 1−A, we have Λ(dt)

βt
≤ 0 for any dt ∈ [1−A, 0),

which implies dt+1 + A ≥ 1.
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4.4 Asymptotic behaviour of closed-loop control

Lemma 4.4.7. Suppose φ < (A− 1)−1, if dt + A < 1, then

dt+1 + A < 1.

Proof. By Lemma 4.4.3 and Lemma 4.4.6 , it is equivalent to show that

Λ(dt)

βt
> 0, for dt ∈ (−A, 1− A),

where

Λ(dt)

βt
= d2

tφ(φ+ 1)(1− A) + dtφA(1− 2A) + φA2(1− A).

Since φ < (A− 1)−1, the discriminant ∆ is positive. We will show that

Λ(−A)

βt
≥ 0 and

Λ(1− A)

βt
≥ 0.

Since

Λ(−A)

βt
= A2φ(φ+ 1)(1− A)− AφA(1− 2A) + φA2(1− A) ≥ 0

if

(φ+ 1)(1− A)− (1− 2A) + (1− A) ≥ 0.

Meanwhile,

Λ(1− A)

βt
= (1− A)2φ(φ+ 1)(1− A) + (1− A)φA(1− 2A) + φA2(1− A) ≥ 0

if

(1− A)2(φ+ 1) + A(1− 2A) + A2 ≤ 0.
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4.5 Conclusion

Both inequalities are true since φ < 1
A−1

, which completes the proof.

Note that the lemma 4.4.5 and lemma 4.4.6 shows that, when the Sharp ratio

satisfies the condition φ > (A − 1)−1, the equilibrium strategy can be negative.

The expect return of investment is positive over every single period. Therefore, we

have a monotonic decreasing control sequence which is bounded below. However,

when the Sharp ratio satisfies the condition φ < (A − 1)−1, ds + A will be less

than 1 at some time t and ds+A is also less than 1 for all s > t. The phenomenon

shows the investor starts to lose money in the investment intentionally. This is

because when the time is far from the terminal and the expect excess return

is positive, the wealth is expected to be increased dramatically over a long time

period. As a result, the investor is losing money to stabilise the wealth trajectory.

4.5 Conclusion

In this chapter, we define the definition of feedback type strategy by 4.2.3.

Comparing to the work in Bjork & Murgoci (2014), the closed-loop equilibrium

strategy has been derived from a different perspective. The difference between

open-loop and closed-loop equilibrium investor lies in the short-term investment

plan. Comparing to the open-loop short-term plan, which is Dt+1B
T
t+1ε, the

short-term plan of the closed-loop equilibrium BT
t+1

∏T−1
i=t+1(Ai + BT

i+1Ki)ε is to

invest a small amount ε into stock market and leave this investment until the

maturity.

Taking the advantage of separable form (4.4) of terminal wealth, under the equi-

librium definition 4.2.5 and the assumption of invertibility in Lemma 4.3.1, we

obtain a necessary and sufficient condition for closed-loop equilibrium strategy

and the uniqueness of the solution in Lemma ?? and Lemma 4.3.1. We then

show such condition yields a linear feedback type strategy which coincides with

the equilibrium strategy in Bjork & Murgoci (2014) in one risky asset case.

We discuss the asymptotic behaviour of using the closed-loop equilibrium strategy

for mean-variance optimisation problem. The relation between the sharp ratio

and the asymptotic limit of closed-loop equilibrium strategy has been studied.

Firstly, Lemma 4.4.5 addresses the fact that the closed-loop equilibrium strategy

reduces the investment amount in risky asset as time goes backwards, which

is similar to the open-loop equilibrium strategy. Next, it has been shown in

62



4.5 Conclusion

Lemma 4.4.2 that, for any mean and variance of excess return of risky asset, the

closed-loop will always short the stocks at some point of investment time period.

In particular, when the parameter φ = σ2

µ2 >
1

4A(A−1)
, Lemma 4.4.4 proves that

the asymptotic limit of closed-loop equilibrium strategy tends to − −A
φ+1

. It can

be seen that the above asymptotic limit is negative. Although the closed-loop

tends to such limit for all φ > 1
4A(A−1)

, there exists a difference in the investment

behaviour with respect to the different values of φ. For φ ≥ 1
A−1

, Lemma 4.4.6

shows the expected excess return factor of the investment portfolio (A + dt) is

greater or equal to 1 in a single-period. This implies a positive excess return rate

of the investment portfolio. However, when 1
4A(A−1)

< φ < 1
A−1

, Lemma 4.4.7

describes a situation where the investor has negative portfolio return.
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Chapter 5

Open-loop strategy in continuous

time setting

5.1 Introduction

In this chapter, we study the open-loop equilibrium for the linear-quadratic prob-

lem in continuous time, where the objective functional includes both a quadratic

term of the expected state and a state-dependent term. In previous chapters, it

has been shown that the perturbation plays an important role in determining the

type of equilibrium strategy. Therefore, the aim of this chapter is to explore the

equilibrium strategy in continuous time by choosing a different perturbation.

In Bjork & Murgoci (2010), the closed-loop equilibrium is obtained by setting the

perturbation as a deterministic function. In contrast, the open-loop equilibrium

is obtained by setting the perturbation as a square-integrable random variable.

In this chapter, we define an adapted process as the perturbation. The goal is to

study the impact of perturbation in continuous time setting.
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5.2 Theoretical framework

5.2 Theoretical framework

Let T > 0 be a finite time horizon and (Wt)0≤t≤T be a d-dimensional Brownian

motion on a probability space (Ω,F,P). The natural filtration of (Wt) is denoted

by Ft = {σ(Ws), 0 ≤ s ≤ t}.

For any time t ∈ [0, T ] and Xt = xt, we consider a stochastic linearly controlled

system:

dXs =
[
AsXs +BT

s us + bs
]
ds+

d∑
i=1

[
Ci
sXs +Di

sus + σis
]
dW i

s ; ∀s ≥ t, (5.1)

where A : [0, T ] → R
n×n is a deterministic function. The coefficients B, Ci and

Di are essentially bounded adapted process on Ω×[0, T ] with values inRl×n,Rn×n

and Rn×l, respectively. The other processes b and σi are in L2
F(t, T ;Rn), where

L2
F(t, T ;Rn) is the space of {Fs}s∈[t,T ]-adapted processes ξ = {ξs; t ≤ s ≤ T} such

that E
[∫ T

t
|ξs|2 ds

]
< ∞. The process u ∈ L2

F(t, T ;Rl) is called an admissible

control and its role is to control the dynamics of the diffusion (Xs)s∈[t,T ]. For any

x, y, we assume

∣∣Asx+BT
s us + bs − Asy −BT

s us − bs
∣∣ ≤ ess sup

ω∈Ω,s∈[t,T ]

|As| |x− y|

and

|Csx+Dsus + σs − Csy −Dsus − σs| ≤ ess sup
ω∈Ω,s∈[t,T ]

|Cs| |x− y|

By Theorem 7, Section 2.5 in Krylov (2008), there exists a unique strong solution

Xs ∈ L2
F(t, T ;Rn) of (5.1).

For any time t ∈ [0, T ] with the state Xt = xt with xt ∈ L2
F(t, T ;Rn), we aim to

minimise the functional

J(t, xt;u) =
1

2
Et

∫ T

t

[QsX
2
s+Rsu

2
s]ds+

G

2
Et[X

2
T ]−h

2
(Et[XT ])2−(µ1xt+µ2)Et[XT ]

(5.2)

over the set of admissible controls, where X is the state process corresponding

to the control u and Et[·] denotes E[·|Ft]. Here Q and R are both non-negative

essentially bounded adapted processes and G, h, µ1, µ2 are constants with G being

non-negative.
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5.3 Necessary and Sufficient Condition for Equilibrium Controls

We notice that, this linear-quadratic functional can represent many different

types of problems. When Q and R are 0, the problem becomes a mean- variance

optimisation with state-dependent risk aversion. When h, µ1 and µ2 are 0, the

problem becomes an inventory problem with the stage cost and final stage cost.

Definition 5.2.1. Let u∗ be an admissible control and v ∈ L∞F (0, T ;Rl), where

L∞F (t, T ;Rl) is the space of {Fs}s∈[t,T ]-adapted processes ξ = {ξs; t ≤ s ≤ T}
such that ess supω∈Ω,s∈[t,T ] |ξs(ω)| < ∞. For any t ∈ [0, T ] and ε > 0, define the

perturbed control

ut,ε,vs = u∗s + vs1{s∈[t,t+ε)}. (5.3)

Let X t,ε,v and X∗ be the state processes corresponding to ut,ε,v and u∗, respec-

tively.

Definition 5.2.2. An admissible u∗ is called an open-loop equilibrium control if

lim inf
ε↓0

J(t,X∗t ;ut,ε,v)− J(t,X∗t ;u∗)

ε
≥ 0, a.s. (5.4)

for any t ∈ [0, T ) and vs ∈ L∞F (0, T ;Rl).

5.3 Necessary and Sufficient Condition for

Equilibrium Controls

We will prove the above necessary and sufficient condition for u∗ ∈ L2
F to be an

equilibrium control. Throughout this section, we will denote by X∗ the state

process corresponding to the control u∗.

Let us introduce notation used in this section. We will denote by

L2
F(Ω;C(t, T ;R)) the space of continuous {Fs}s∈[t,T ]-adapted processes (ξs)t≤s≤T

such that E
{

sups∈[t,T ] |ξs|
2} < ∞. We also extend standard order notation

to random variables. For a sequence of random variables ξε parametrised by

ε > 0, we write ξε = o(εk) if limε→0 ess sup
∣∣ ξε
εk

∣∣ = 0; and ξε = O(εk) if

limε→0 ess sup
∣∣ ξε
εk

∣∣ < c for some finite constant c.

For any t ∈ [0, T ], consider the following backward stochastic differential equa-
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tions:


dp(s; t) = −[Asp(s; t) + Csk(s; t) +QsX

∗
s ]ds+ k(s; t)TdWs, s ∈ [t, T ],

p(T ; t) = GX∗T − hEt[X∗T ]− µ1X
∗
t − µ2;

(5.5)


dPs = −[2AsPs + C2

sPs + 2CsKs +Qs]ds+KT
s dWs, s ∈ [t, T ],

PT = G.

(5.6)

Lemma 5.3.1. For any admissible control u∗, equations (5.5) and (5.6)

admit unique solutions (p(·; t), k(·; t)) ∈ L2
F(Ω;C(t, T ;R)) × L2

F(t, T ;R)

and (P (·), K(·)) ∈ L2
F(Ω;C(t, T ;R)) × L2

F(t, T ;R), respectively, where

L2
F(Ω;C(t, T ;R)) is the space of continuous {Fs}s∈[t,T ]-adapted processes ξ =

{ξs; t ≤ s ≤ T} such that E
[
sups∈[t,T ] |ξs|

2] < ∞. Moreover, Ps ≥ 0 a.s. for all

s ∈ [t, T ].

Proof. Denote g1(s, u, v) = Asu + Csv + QsX
∗
s and g2(s, u, v) = 2Asu + C2

sv +

2Csy + Qs. For any s ∈ [t, T ], g1(s, 0, 0) ∈ L2
F(s, T ;R) and g2(s, 0, 0) ∈

L2
F(s, T ;R). Moreover, it can be shown that g1(s, u, v) and g2(s, u, v) are almost

surely uniformly Lipschitz with respect to (u, v). Therefore, according to Theo-

rem 1.1 El Karoui et al. (2008), there exist unique pairs of solutions (p(·; t), k(·; t))
and (P (·), K(·)) satisfying (5.5) and (5.6), respectively. Moreover, by Proposition

1.3 in El Karoui et al. (2008), we have Ps ≥ 0 a.s. for all s ∈ [t, T ].

Next, we will prove an important proposition which is very similar to the propo-

sition in Hu et al. (2012)[Proposition 3.1]. The reason for us to provide all the

details of the proof is that, firstly, in Hu et al. (2012), they refer to a theorem

in Yong & Zhou (1999) to prove the conditional expectation of supremum of the

processes Y and Z are in the O(ε) and O(ε2), respectively. However, the theorem

in Yong & Zhou (1999) does not have a conditional version of the proof, and

it only specifies the order for the supremum of the expectation. Secondly, our

definition of equilibrium control differs from the definition in Hu et al. (2012).

Therefore, we need to ensure that the proposition in Hu et al. (2012) still holds

in our case.
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Proposition 5.3.1. For any admissible control u∗, t ∈ [0, T ), ε > 0 and vs ∈
L∞F (t, T ;R),

J(t,X∗t ;ut,ε,v)− J(t,X∗t ;u∗) = Et

∫ t+ε

t

{
Λ(s; t)vs +

1

2
Hsv

2
s

}
ds+ o(ε), (5.7)

where ut,ε,v is defined by (2.3); Λ(s; t) := Bsp(s; t) +Dsk(s; t) +Rsu
∗
s and Hs :=

Rs +D2
sPs.

The proof of this proposition is comprised of a number of lemmas. The constant

C in the proofs may differ from line to line.

Define the processes Ys ≡ Y t,ε,v
s and Zs ≡ Zt,ε,v

s that satisfy


dYs = AsYsds+ [CsYs +Dsvs1{s∈[t,t+ε)}]dWs, s ∈ [t, T ],

Yt = 0;


dZs = [AsZs +Bsvs1{s∈[t,t+ε)}]ds+ CsZsdWs, s ∈ [t, T ],

Zt = 0;

Lemma 5.3.2. Let X t,ε,v be the state process corresponding to ut,ε,v, then

X t,ε,v
s = X∗s + Ys + Zs, s ∈ [t, T ].

Proof. Since ut,ε,vs = u∗s + vs1{s∈[t,t+ε)}, for X t,ε,v,

dX t,ε,v =
[
AsXs +BT

s u
t,ε,v
s + bs

]
ds+

[
CsXs +Dsu

t,ε,v
s + σis

]
dWs,

68
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Set ηs = X t,ε,v
s −X∗s − Ys − Zs, we have

dηs =
(
dX t,ε,v

s − dX∗s
)
− dYs − dZs

=
(
As(X

s,ε,v −Xs) +Bsvs1{s∈[t,t+ε)}
)
ds+

(
Cs(X

s,ε,v −Xs)Dsvs1{s∈[t,t+ε)}
)
dWs

− AsYsds− [CsYs +Dsvs1{s∈[t,t+ε)}]dWs − [AsZs +Bsvs1{s∈[t,t+ε)}]ds− CsZsdWs

= As(X
s,ε,v −Xs − Ys − Zs)ds+ Cs(X

s,ε,v −Xs − Ys − Zs)dWs

= Asηsds+ CsηsdWs.

Therefore, 
dηs = Asηsds+ CsηsdWs, s ∈ [t, T ],

ηt = 0.

This yields, ηs = 0 for all s ∈ [t, T ]

Lemma 5.3.3. Let L = max
(
ess sup |As|, ess sup |Cs|, ess sup |Ds|, ess sup |vs|

)
<

∞ be the maximum of essential suprema of the processes As, Cs, Ds and vs over

all ω ∈ Ω and s ∈ [t, T ]. The processes Et[Y
2k
s ] and Et[Z

2k
s ] have continuous

trajectories with respect to s for any k ≥ 1. There exists a constant M depending

on r and L such that, for all t ∈ [0, T ]

sup
s∈[t,T ]

Et

[
Y 2r
s

]
≤M · εr, sup

s∈[t,T ]

Et

[
Z2r
s

]
≤M · ε2r a.s.

Proof. First we prove that Et[Y
2r
s ] is finite and s 7→ Et[Y

2r
s ] is continuous (the

proof for Et[Z
2r
s ] is analogous). Since |AsYs| ≤ L |Ys| and

∣∣CsYs +Dsvs1{u∈[t,t+ε)}
∣∣2 ≤ |Cs|2 |Ys|2 +

∣∣Dsvs1{u∈[t,t+ε)}
∣∣2 + 2

∣∣CsDsvs1{u∈[t,t+ε)}
∣∣ |Ys|

≤ L2 |Ys|2 + L4 +
∣∣CsDsvs1{u∈[t,t+ε)}

∣∣2 + |Ys|2

≤ (L4 + L6) + (1 + L2) |Ys|2 ,
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by Krylov (2008)[Corollary 10, Section 2.5], we have

E
[

sup
u∈[t,T ]

|Yu|2r
]
≤ N(r, L)T r−1eN(r,L)T

E[

∫ T

t

(L4 + L6)2rds], (5.8)

where N(r, L) is a constant depending only on r and L. This, in particular,

implies that Et[Y
2r
s ] <∞. To prove continuity of s 7→ Et[Y

2r
s ], it is sufficient to

show that for any t1 ∈ [t, T ]

lim
t2→t1

(
Et[Y

2r
t2

]−Et[Y 2r
t1

]
)

= 0

over t2 ∈ [t, T ]. This follows by conditional dominated convergence theo-

rem (Williams, 1991, Lemma 9.7)

lim
t2→t1

(
Et[Y

2r
t2

]−Et[Y 2r
t1

]
)

= lim
t2→t1

Et

[
Y 2r
t2
− Y 2r

t1

]
= Et

[
lim
t2→t1

(Y 2r
t2
− Y 2r

t1
)
]

= 0 a.s.,

where the dominant

(
Y 2r
t2
− Y 2r

t1

)
≤ 2 sup

u∈[t,T ]

|Yu|2r a.s.

is integrable by (5.8).

The rest of the proof is concerned with establishing the bounds for superma of

conditional expectations of Y 2r and Z2r. Applying Itô’s formula to the process

Y 2r
s

dY 2r
s =

[
2rAs + r(2r − 1)C2

s

]
Y 2r
s ds+ 2r(2r − 1)CsDsvs1{s∈[t,t+ε)}Y

2r−1
s ds

+ r(2r − 1)(Dsvs)
2
1{s∈[t,t+ε)}Y

2r−2
s ds

+ 2r[CsYs +Dsvs1{s∈[t,t+ε)}]Y
2r−1
s dWs.

Take s1 and δ such that t ≤ s1 < s1 + δ ≤ T . For s ∈ [s1, s1 + δ), integrate both

sides of the inequality from s1 to s and take the conditional expectation with
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respect to Ft to get

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃

{
Et[

∫ s

s1

Y 2r
u du]

+Et[

∫ s

s1

|Yu|2r−1
1{u∈[t,t+ε)}du] +Et[

∫ s

s1

Y 2r−2
u 1{u∈[t,t+ε)}du]

}
+Et[

∫ s

s1

2r[CuYu +Duvu1{u∈[t,t+ε)}]Y
2r−1
u dWu],

where

M̃ := max
{

2r · sup
s∈[t,T ]

|As|+ r(2r − 1) ess sup
s∈[t,T ]

|Cs|2 ,

2r(2r − 1) ess sup
s∈[t,T ]

|CsDsvs| , r(2r − 1) ess sup
s∈[t,T ]

|Dsvs|2
}

is a constant depending only on r and L. Since (Y l
u) is square-integrable for all

l ≥ 1 (see the beginning of the proof) and (vu) is bounded, then the process

2r[CuYu + Duvu1{u∈[t,t+ε)}]Y
2r−1
u is square-integrable. Therefore, the stochastic

integral is a martingale and it vanishes under the conditional expectation. By

Fubini’s theorem for conditional expectation we have

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃

{∫ s

s1

Et[Y
2r
u ]du+

∫ s

s1

Et[|Yu|2r−1]1{u∈[t,t+ε)}du

+

∫ s

s1

Et[Y
2r−2
u ]1{u∈[t,t+ε)}du

}
.

Using Hölder inequality for conditional expectations (Chen, 2006, p. 332), we

express lower conditional moments of Yu by the 2r-th moment:

Et[|Yu|2r−1] ≤
(
Et[Y

2r
u ]
) 2r−1

2r ,

Et[|Yu|2r−2] ≤
(
Et[Y

2r
u ]
) 2r−2

2r .
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Hence,

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃

{∫ s

s1

Et[Y
2r
u ]du

+

∫ s

s1

(Et[Y
2r
u ])

2r−1
2r 1{u∈[t,t+ε)}du+

∫ s

s1

(Et[Y
2r
u ])

2r−2
2r 1{u∈[t,t+ε)}du

}
.

Since the process Et[Y
2r
s ] has continuous trajectories, supu∈[s1,s)Et[Y

2r
u ] is well-

defined and

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃

{
sup

u∈[s1,s)

Et[Y
2r
u ] · (s− s1)

+ ( sup
u∈[s1,s)

Et[Y
2r
u ])

2r−1
2r

∫ s

s1

1{u∈[t,t+ε)}du

+ ( sup
u∈[s1,s)

Et[Y
2r
u ])

2r−2
2r

∫ s

s1

1{u∈[t,t+ε)}du
}
.

We will now use a trick from the proof in Zhou & Li (2000)[Lemma 4.2, Chapter

3] to ensure that after application of Young’s inequality we (supu∈[s1,s)Et[Y
2r
u ])

has a coefficient strictly smaller than 1:

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃

{
sup

u∈[s1,s)

Et[Y
2r
u ] · (s− s1)

+ ( sup
u∈[s1,s)

Et[Y
2r
u ])

2r−1
2r · (δ

2
)

2r−1
2r · (2

δ
)

2r−1
2r

∫ s

s1

1{u∈[t,t+ε)}du

+ ( sup
u∈[s1,s)

Et[Y
2r
u ])

2r−2
2r · (δ

2
)

2r−2
2r · (2

δ
)

2r−2
2r

∫ s

s1

1{u∈[t,t+ε)}du
}

Applying Young’s inequality to the third term with p = 2r
2r−1

and q = 2r, and to
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the last term with p = 2r
2r−2

and q = r, then a.s.

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃

{
sup

u∈[s1,s)

Et[Y
2r
u ] · (s− s1) +

2r − 1

2r
· δ

2
· sup
u∈[s1,s)

Et[Y
2r
u ]

+
1

2r
· (2

δ
)2r−1 · (

∫ s

s1

1{u∈[t,t+ε)}du)2r +
2r − 2

2r
· δ

2
· sup
u∈[s1,s)

Et[Y
2r
u ]

+
1

r
· (2

δ
)r−1 · (

∫ s

s1

1{u∈[t,t+ε)}du)r
}

Since s− s1 < δ, 2r−1
2r

< 1 and 2r−2
2r

< 1, then

Et[Y
2r
s ] ≤ Et[Y 2r

s1
] + M̃ · 2δ sup

u∈[s1,s)

Et[Y
2r
u ] +

M̃

2r
· (2

δ
)2r−1 · ε2r +

M̃

k
· (2

δ
)r−1 · εr

Fixing δ = 1/(4M̃), taking the supremum for s ∈ [s1, s1 + δ), for any ε < 1, we

have the following estimate

sup
s∈[s1,s1+δ)

Et[Y
2r
r ] ≤ 2Et[Y

2r
s1

] + C1 · ε2r + C2 · εr

≤ 2Et[Y
2r
s1

] + C · εr,

for constants C1 = C1(r, L) and C2 = C2(r, L) depending only on r and L, and

C = C1 + C2. This estimate holds on intervals [t, t + δ), [t + δ, t + 2δ), . . . , [t +

nδ, t+ ε) for n := [ ε
δ
]. Recalling that Yt = 0, we have

sup
s∈[t,T ]

Et[Y
2r
s ] ≤

n∑
i=0

(2i+1 − 1) · C(r, L) · εr.

which proves the estimate for the process Y with the constant M1 =

C(r, L)
∑[1/δ]

i=0 (2i+1 − 1) for ε < 1.

For the process (Zs), since the perturbation Dsvs1{s∈[t,t+ε)} exists only in the drift

term, when we apply the Itô’s formula for Z2r
s , the term Z2r−2

s does not appear.
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Following similar lines of reasoning as above, we obtain

sup
s∈[s1,s1+δ)

Et[Z
2r
s ] ≤ 2Et[Z

2r
s1

] + C̃ · ε2r.

where C̃ = C̃(r, L). Therefore, for ε < 1,

sup
s∈[t,T ]

Et[Z
2r
s ] ≤M2(r, L)ε2r,

with M2 = C̃(r, L)
∑[1/δ]

i=0 (2i+1 − 1). Then M = max{M1(r, L),M2(r, L)} is the

constant in the statement of the theorem.

Denote ξt,ε,vs = Y t,ε,v
s + Zt,ε,v

s . Hence, the dynamics of ξt,ε,vs follow


dξs = [Asξs +Bsvs1{s∈[t,t+ε)}]ds+ [Csξs +Dsvs1{s∈[t,t+ε)}]dWs, s ∈ [t, T ],

ξt = 0.

(5.9)

Lemma 5.3.4. The following estimate holds uniformly in s ∈ [t, T ]

Et[ξ
t,ε,v
s ] = O(ε). (5.10)

Proof. Since the diffusion term of (Ys) is square integrable, it disappears under

conditional expectation Et[Ys]. Recalling that (As) is deterministic, we have

Et[AsYs] = AsEt[Ys] so we can write an ODE for θs = Et[Ys]:


dθs = Asθsds, s ∈ [t, T ]

θt = 0.

Therefore, θs = 0 and Et[ξs] = Et[Zs] for s ∈ [t, T ]. By Jensen’s inequality and
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Lemma 5.3.3, we obtain

(Et[Zs])
2 ≤ Et[Z2

s ] = O(ε2), ∀s ∈ [t, T ]. (5.11)

Remark 5.3.2. The proof of Lemma 5.3.4 reveals why (As) is assumed to be

deterministic as this allows us to disregard (Ys) in the estimate of conditional

expectation of (ξs). Random (As) requires the use Lemma 5.3.4 whose statement

cannot be strengthened for Et[Y
2
s ] (this is easy to see) resulting in an estimate

O(ε). Using Lemma 5.3.4 in its present form would weaken the estimate of Et[ξs]

to O(ε1/2) which is too little for the proof of Proposition 5.3.1.

Alternative proof of Lemma 5.3.4. The lemma can be proved directly. By taking

conditional expectation of both sides of (5.9) and using the fact that then the

stochastic integral disappears, we obtain

Et[ξs] =

∫ s

t

(
AsEt[ξs] +Et[Dsvs]1{s∈[t,t+ε)}

)
ds.

Denoting by ξ̂ = Et[ξs] and bs = Et[Dsvs], the above is rewritten as an ordinary

differential equation

dξ̂s =
(
Asξ̂s + bs1{s∈[t,t+ε)}

)
ds

with a solution

ξ̂s =

∫ (t+ε)∧s

t

bue
∫ u
t Ardrdu.

Consider a differential equation dθs =
(
|As|θs + |bs|1{s∈[t,t+ε)}

)
ds with solution

θs =

∫ (t+ε)∧s

t

|bu|e
∫ u
t |Ar|drdu.

Clearly, ξ̂s ≤ θs. Moreover, if L = max{ess sup |vs|, ess sup |Ds|, sup |As|}, then

θs ≤
∫ (t+ε)∧s

t

L2e
∫ u
t Ldrdu ≤

∫ (t+ε)∧s

t

L2eL(u−t)du ≤ L2eL(T−t)ε,

which completes the proof.
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Lemma 5.3.5. The following equalities hold

Et[PT ξ
2
T ] = Et

[∫ T

t

{PsD2
sv

2
s1{s∈[t,t+ε)} − ξ2

sQs}ds
]

+Et

[∫ T

t

2ξs(PsBs + PsCsDs +KsDs)vs1{s∈[t,t+ε)}ds

]
a.s.

(5.12)

and

Et[p(T ; t)ξT ] = Et

∫ T

t

{
−ξsQsX

∗
s + (p(s; t)Bs + k(s; t)Ds)vs1{s∈[t,t+ε)}

}
ds a.s..

(5.13)

Proof. Apply the Itô’s formula to the process Psξ
2
s , where Ps is the solution of

BSDE (5.6):

d(Psξ
2
s ) = ξ2

sdPs + Psdξ
2
s + dPsdξ

2
s

=
[
2PsBsvsξs1{s∈[t,t+ε)} + PsD

2
sv

2
s1{s∈[t,t+ε)}

+ 2ξsPsCsDsvs1{s∈[t,t+ε)} − ξ2
sQs + 2ξsKsDsvs1{s∈[t,t+ε)}

]
ds

+
[
ξ2
sKs + 2Psξ

2
sCs + 2PsξsDsvs1{s∈[t,t+ε)}

]
dWs. (5.14)

We will use the localisation method to prove (5.12). Let

τn := inf{s ≥ t;

∫ s

t

(ξ4
sK

2
s + ξ4

sP
2
s )ds > n}.

Random variables τn are (finite-valued) stopping times. Indeed,

∫ s

t

(ξ4
uK

2
u + ξ4

uP
2
u )du ≤

(
sup
u∈[t,T ]

ξ4
u

) ∫ s

t

K2
udu+

(
sup
u∈[t,T ]

ξ4
u

)
·
(

sup
u∈[t,T ]

P 2
u

)
.

Since all coefficients in (5.9) are essentially bounded, (Krylov, 2008, Corollary 6,

Section 2.5) implies that every moment of ξ is bounded. Also, by Lemma 5.3.1,
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we have (P (·), K(·)) ∈ L2
F(Ω;C(t, T ;R))× L2

F(t, T ;R). Then

∫ s

t

(ξ4
sK

2
s + ξ4

sP
2
s )ds <∞ a.s.

and

lim
n→∞

τn =∞.

In view of (5.14), we have

Et[PT∧τnξ
2
T∧τn ] = Et

[∫ T∧τn

t

{PsD2
sv

2
s1{s∈[t,t+ε)} − ξ2

sQs}ds
]

+Et

[∫ T∧τn

t

2ξs(PsBs + PsCsDs +KsDs)vs1{s∈[t,t+ε)}ds

]
.

(5.15)

For each n we have a.s.

∣∣PT∧τnξ2
T∧τn

∣∣ ≤ sup
s∈[t,T ]

|Ps| · sup
s∈[t,T ]

∣∣ξ2
s

∣∣ ,
By Cauchy-Schwartz inequality

E

[
sup
s∈[t,T ]

|Ps| · sup
s∈[t,T ]

∣∣ξ2
s

∣∣] ≤ (E[ sup
s∈[t,T ]

|PT |2]

) 1
2
(
E[ sup

s∈[t,T ]

|ξT |4]

) 1
2

<∞,

hence, conditional dominated convergence theorem (Williams, 1991, Lemma 9.7)

implies

lim
τn→∞

Et

[
PT∧τnξ

2
T∧τn

]
= Et

[
PT ξ

2
T

]
.

Similarly, quantities under conditional expectation on the right-hand side of

(5.15) are dominated by

∣∣∣∣∫ T∧τn

t

(
PsD

2
sv

2
s1{s∈[t,t+ε)} − ξ2

sQs

)
ds

∣∣∣∣+

∣∣∣∣∫ T∧τn

t

2ξs(PsBs + PsCsDs +KsDs)vs1{s∈[t,t+ε)}ds

∣∣∣∣
≤
∫ T

t

(∣∣PsD2
sv

2
s1{s∈[t,t+ε)}

∣∣+
∣∣ξ2
sQs

∣∣) ds+

∫ T

t

∣∣2ξs(PsBs + PsCsDs +KsDs)vs1{s∈[t,t+ε)}
∣∣ ds.
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The expectation of the above bound is finite since it is dominated by

C

(
E

∫ t+ε

t

|Ps| ds+Et

∫ T

t

|ξs|2 ds
)

+ C

(
E

∫ t+ε

t

|ξsPs| ds+E

∫ t+ε

t

|ξsKs| ds
)

≤ C

(
E

∫ t+ε

t

|Ps| ds+E

∫ T

t

|ξs|2 ds
)

+ Cε1/2
(

sup
s∈[t,T ]

E |ξs|2
) 1

2
[( ∫ t+ε

t

E |Ps|2 ds
) 1

2
+
(∫ t+ε

t

E |Ks|2 ds
) 1

2
]
<∞.

Therefore, we can again apply conditional dominated convergence theorem to

infer (5.12) from (5.15). The proof of (5.13) is similar.

Corollary 5.3.3. The following estimate holds

Et

[∫ T

t

2ξs(PsBs + PsCsDs +KsDs)vs1{s∈[t,t+ε)}ds

]
= o(ε) a.s. (5.16)

Proof. Using conditional form of the estimates from the above proof we get

Et

[∫ T

t

2ξs(PsBs + PsCsDs +KsDs)vs1{s∈[t,t+ε)}ds

]
≤ Cε1/2

(
sup
s∈[t,T ]

Et |ξs|2
) 1

2
[( ∫ t+ε

t

Et |Ps|2 ds
) 1

2
+
(∫ t+ε

t

Et |Ks|2 ds
) 1

2
]
.

By Lemma 5.3.3, sups∈[t,T ]Et |ξs|
2 = O(ε). It, therefore, suffices to prove that

(∫ t+ε

t

Et |Ps|2 ds
) 1

2
+
(∫ t+ε

t

Et |Ks|2 ds
) 1

2
= o(1),

which is clear given that both processes are square integrable.

We have now collected all preliminary results required in the proof of Proposition

5.3.1.
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Proof of Proposition 5.3.1. From the definition of the functional, we have

2(J(t,X∗t ;ut,ε,v)− J(t,X∗t ;u∗))

= Et

∫ T

t

[Qs(X
t,ε,v
s )2 +Rs(u

t,ε,v)2]ds+GEt[(X
t,ε,v
T )2]

− h(Et[X
t,ε,v
T ])2 − 2(µ1X

∗
t + µ2)Et[X

t,ε,v
T ]

−Et
∫ T

t

[Qs(X
∗
s )2 +Rs(u

∗)2]ds−GEt[(X∗T )2] + h(Et[X
∗
T ])2 + 2(µ1X

∗
t + µ2)Et[X

∗
T ]

= Et

∫ T

t

{
Qs[(X

t,ε,v
s )2 − (X∗s )2] +Rs[(u

t,ε,v)2 − (u∗)2]
}
ds

+GEt[(X
t,ε,v
T )2 − (X∗T )2]− h[(Et[X

t,ε,v
T ])2 − (Et[X

∗
T ])2]

− 2(µ1X
∗
t + µ2)Et[X

t,ε,v
T −X∗T ].

Recalling that X t,ε,v
s = X∗s + ξs and (a + b)2 − b2 = a(a + 2b), we rewrite the

functional

2(J(t,X∗t ;ut,ε,v)− J(t,X∗t ;u∗))

= Et

∫ T

t

Qs[2X
∗
s + ξs]ξsds+Et

∫ t+ε

t

Rs(2u
∗
s + vs)vsds

+GEt[ξ
2
T ] + 2GEt[ξTX

∗
T ]− h(Et[ξT ])2 − 2hEt[ξT ]Et[X

∗
T ]− 2(µ1X

∗
t + µ2)Et[ξT ]

= Et

∫ T

t

Qs[2X
∗
s + ξs]ξsds+Et

∫ t+ε

t

Rs(2u
∗
s + vs)vsds

+GEt[ξ
2
T ] + 2Et[(GX

∗
T − hEt[X∗T ]− µ1X

∗
t − µ2)ξT ]− h(Et[ξT ])2.

In view of (5.10), we have h(Et[ξT ])2 = o(ε). By (5.12) and (5.16)

GEt[ξ
2
T ] = Et

∫ T

t

[PsD
2
sv

2
s1{s∈[t,t+ε)} − ξ2

sQs]ds+ o(ε).
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In the final step of the proof we collect above results and also apply (5.13):

2(J(t,X∗t ;ut,ε,v)− J(t,X∗t ;u∗))

= 2Et

∫ T

t

QsX
∗
s ξsds+Et

∫ t+ε

t

Rs(2u
∗
s + vs)vsds+Et

∫ T

t

[PsD
2
sv

2
s1{s∈[t,t+ε)}]ds

+ 2Et

∫ T

t

[
−ξsQsX

∗
s + (p(s; t)Bs + k(s; t)Ds)vs1{s∈[t,t+ε)}

]
ds+ o(ε)

= Et

∫ t+ε

t

{
2[Rsu

∗
s + p(s; t)Bs +Dsk(s; t)]vs + [PsD

2
s +Rs]v

2
s

}
ds+ o(ε)

= Et

∫ t+ε

t

{
2Λ(s; t)vs +Hsv

2
s

}
ds+ o(ε),

where Λ(s; t) and Hs are defined in the statement of the proposition.

Lemma 5.3.6. An admissible control u∗ is an equilibrium control if and only if

lim inf
ε↓0

1

ε
Et

∫ t+ε

t

[Λ(s; t)vs]ds ≥ 0 a.s. (5.17)

for any t ∈ [0, T ) and v ∈ L∞F (t, T ;R).

Proof. If u∗ is an equilibrium control, by Proposition 5.3.1, for any A ∈ Ft,

v ∈ L∞F (t, T ;R) and t ∈ [0, T )

lim inf
ε↓0

1

ε

∫ t+ε

t

E

{(
Λ(s; t)vs +

1

2
Hsv

2
s

)
1A

}
ds ≥ 0. (5.18)

Fix t and v. For any N > 0, apply (5.18) to perturbation 1
N
v:

lim inf
ε↓0

1

ε

∫ t+ε

t

E

{( 1

N
Λ(s; t)vs +

1

2N2
Hsv

2
s

)
1A

}
ds ≥ 0.

Multiplying both sides by N and taking the limit as N →∞ yields

lim
N→∞

lim inf
ε↓0

1

ε

∫ t+ε

t

E

{(
Λ(s; t)vs +

1

2N
Hsv

2
s

)
1A

}
ds ≥ 0.

Recall that Hs = Rs + D2
sPs ≥ 0 a.s. We can obtain an upper bound for
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1
ε

∫ t+ε
t

E[ 1
N
Hsv

2
s1A]ds which does not depend on ε. Indeed,

1

ε

∫ t+ε

t

E

{
1

N
Hsv

2
s1A

}
ds ≤ C

1

ε

1

N
E

{∫ t+ε

t

Hs1Ads

}
≤ C

1

ε

1

N
E

{
ε sup
s∈[t,t+ε)

|Hs|1A

}
≤ C

N
,

where, as before, the constant C may differ from line to line. Then,

0 ≤ lim
N→∞

lim inf
ε↓0

1

ε

∫ t+ε

t

E

{(
Λ(s; t)vs +

1

2N
Hsv

2
s

)
1A

}
ds

≤ lim
N→∞

lim inf
ε↓0

(
1

ε

∫ t+ε

t

E {Λ(s; t)vs1A} ds+
C

N

)
= lim inf

ε↓0

1

ε

∫ t+ε

t

E {Λ(s; t)vs1A} ds.

Conversely, assume (5.17) holds, since Hs ≥ 0 almost surely for s ∈ [t, T ], then

lim inf
ε↓0

1

ε

∫ t+ε

t

E

{
1

2
Hsv

2
s

}
ds ≥ 0 a.s.

which gives

lim inf
ε↓0

1

ε

∫ t+ε

t

E

{
(Λ(s; t)vs +

1

2
Hsv

2
s)

}
ds ≥ 0 a.s.

Theorem 5.3.4. u∗ is an equilibrium control if and only if

lim
ε↓0

1

ε
Et

∫ t+ε

t

[|Λ(s; t)|] ds = 0, a.s. (5.19)

for any t ∈ [0, T ) and v ∈ L∞F (t, T ;R).
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Proof. By Lemma 5.3.6, it suffices to show that

lim inf
ε↓0

1

ε
Et

∫ t+ε

t

[Λ(s; t)vs] ds ≥ 0 ⇔ lim
ε↓0

1

ε
Et

∫ t+ε

t

[|Λ(s; t)|] ds = 0.

If lim infε↓0
1
ε
Et

∫ t+ε
t

[Λ(s; t)vs]ds ≥ 0 holds almost surely, then setting vs =

− sgn (Λ(s; t)), we have

− lim sup
ε↓0

1

ε
Et

∫ t+ε

t

[Λ(s; t) · sgn (Λ(s; t))]ds ≥ 0 a.s.

Hence,

lim sup
ε↓0

1

ε
Et

∫ t+ε

t

[|Λ(s; t)|] ds ≤ 0,

this yields

0 ≥ lim sup
ε↓0

1

ε
Et

∫ t+ε

t

[|Λ(s; t)|] ds ≥ lim inf
ε↓0

1

ε
Et

∫ t+ε

t

[|Λ(s; t)|] ds ≥ 0.

Therefore,

lim
ε↓0

1

ε
Et

∫ t+ε

t

[|Λ(s; t)|]ds = 0.

Conversely, if limε↓0
1
ε
Et

∫ t+ε
t

[|Λ(s; t)|]ds = 0 holds almost surely, this implies

lim supε↓0
1
ε
Et

∫ t+ε
t

[|Λ(s; t)|] ds = 0. Then, for any v ∈ L∞F (t, T ;R), we have

lim inf
ε↓0

1

ε
Et

∫ t+ε

t

[Λ(s; t)vs]ds ≥ − lim sup
ε↓0

1

ε

∫ t+ε

t

Et[|Λ(s; t)| |vs|]ds

≥ −C · lim sup
ε↓0

1

ε

∫ t+ε

t

Et[|Λ(s; t)|]ds

= 0 a.s.
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5.4 Conclusion

In this chapter, we study the open-loop equilibrium control for the linear-

quadratic problem in continuous time. In contrast to the existing literature (see

Hu et al. (2012)), where the equilibrium control is characterised via sufficient

condition, we provide a necessary and sufficient condition for open-loop equilib-

rium control. The motivation is that the investor may have her own preference

for the investment policy, and then our condition can be used to test her policy.

Existing literature (see Djehiche & Huang (2016)), study necessary and sufficient

condition for mean field type of equilibrium control under different assumption.

The assumptions require the boundedness of the state dynamic. However, within

the linear-quadratic framework, this condition is not satisfied.

Moreover, the equilibrium condition of a adapted process perturbation is iden-

tical to the condition of a random variable perturbation. Therefore, the type of

equilibrium strategy does not depend on the perturbation type. In conclusion,

the equilibrium approach can be viewed as a game for the investor. The equi-

librium investor has to choose two investment plans: short-term investment and

long-term investment plans. Although the investors might have a very good long-

term investment plan with a good rewards, they still have to decides the short-

term investment plan. As a result, the final investment strategies are modified

and adjusted to the corresponding short-term plan. The game for the investor

becomes choosing the best combination of the investment strategy.

Our results of equilibrium rationale indicate that there exists a family of equi-

librium strategies by choosing different short-term investment plans. Therefore,

the drawbacks we discussed in previous chapter are only responsible for the spe-

cific short-term plan. Regarding to improve the performance of the equilibrium

strategy, it is crucial to decide a sensible and profitable short-term plan.
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Chapter 6

Mean-Variance puzzle

6.1 Introduction

In this chapter, we are trying to address the feature of equilibrium control in

discrete time setting (present both in open-loop and closed-loop formulations)

that the investment in the risky asset increases as time approaches the investment

horizon. This is what we call the mean-variance puzzle. The equilibrium concept

has been understood through the game theoretic framework under finite time

horizon. The basic idea is that the investor chooses a decision at any time t by

agreeing to implement the policy she thinks that would also be optimal for future

times. She then views the problem as a cooperative game only with her future

self. Therefore, the investor will be able to find an equilibrium policy as long as

the future time is finite. Provided there is a long enough investment horizon, the

mean-variance puzzle manifests itself as the control goes to zero at the starting

point. To ensure there is a long-enough investment horizon, we allow the starting

point to move backwards in time.
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6.2 Solving the mean-variance puzzle with

Present-Biased preference

For the sake of simplicity, we assume that there is only one risky asset and one

risk-free asset available in the market. The risky asset has the excess return factor

Bt, which mean µt and variance σ2
t for all t = 0, . . . , T − 1. In Chapter 3 and

Chapter 4, we have shown that the open and closed-loop equilibrium strategies

admit the following form:

uopt = Otxt,

and

uclt = Ctxt.

We can further simplify the closed-form solutions of open-loop (3.11) and closed-

loop (4.7) equilibrium strategies, the following representations can be obtained:

uopt = Otxt =
µt

γ ·Et
[∏T−1

i=t+1(Ai +Bi+1Oi)
]
σ2
t

xt, (6.1)

and

uclt = Ctxt =
Et

[∏T−1
i=t+1(Ai +Bi+1Ci)

]
µt

γ ·Et
[∏T−1

i=t+1(Ai +Bi+1Ci)2]σ2
t

xt. (6.2)

We notice that, for Bt independently and identically distributed, the expression

in the denominator of open-loop control (6.1) can be written as:

Et

[ T−1∏
i=t+1

(Ai +Bi+1Oi)
]

=
T−1∏
i=t+1

Et[Ai +Bi+1Oi]

=
T−1∏
i=t+1

{
Ai +Et[Bi+1]Et[Oi]

}
.
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6.2 Solving the mean-variance puzzle with Present-Biased preference

The expression inside of the curly bracket is always positive for any i ∈ {t +

1, . . . , T − 1} and Et[Bi+1] > 0 (which is a reasonable assumption). Therefore,

as t moves backwards, the control (6.1) will decay towards 0. Figure 6.1 shows

plots of both controls (6.1) and (6.2) where the mean-variance puzzle is evident.

This is in agreement with the numeric results in (Björk et al., 2014) and (Hu

et al., 2012), where both open-loop and closed-loop equilibrium strategies would

decrease rapidly as time goes backwards.

Figure 6.1: The comparison between open-loop and closed-loop equilibrium
strategies as time moves away from terminal

Assuming that Bt is independent and identically distributed, then the result im-

plies that the investor would invest much less at the beginning than towards

maturity even if she faces exactly the same investment environment. This is

because the variance term penalizes perturbation quadratically as well as the

expectation term only increases linearly. If the investor deviates slightly from

the equilibrium, as long as it’s far away from the maturity, the variance would

eventually penalise the perturbation more than any benefits added by the expec-
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tation term. As a consequence, the control should be sufficiently small in order

to keep the variance low enough. In our view, this is unreasonable in practice

and this feature is unrealistic. In the remaining of this section, we concentrate

on addressing this unrealistic feature (the mean-variance puzzle).

Recall the independent and identical increment case, the open-loop control (3.12)

can be written as

ut =
µ

γ αt+1 σ2
xt,

where

αt = αt+1 · At +
µ2

γσ2
with αT = 1.

Such a strategy is in the form of one-period mean-variance strategy with the risk-

aversion coefficient γαt+1. Therefore, we can modify the risk-aversion depending

on time, forcing the strategy to be riskier if the investor is far away from the

maturity. We will call this type of risk aversion Present-Biased preference. The

name follows from a long history on studying the Strotz-Pollak equilibrium prob-

lem (see for example (Phelps & Pollak, 1968) and (Peleg & Yaari, 1973)) with

Present-Biased preference. The fundamental framework in (Phelps & Pollak,

1968) postulates that the preference for the investor at time t is represented by

the sum of the utilities of future payoffs. Since the utilities are applied identically

for the time t and future, then the future payoff at time t+k should be discounted

by a factor δβk. The constant factor δ represents the degree of selfishness and β is

the discounting factor. In what follows, we consider a Present-Biased preference

in the same spirit to avoid th control decay to zero.

6.2.1 Case 1: At = 1 for all t (zero interest rate)

In this section, we will use the arithmetic excess return and set the interest rate

equal to zero. Suppose the investor is sitting at time t = T−k, which is k periods

away from the maturity. Then we have

ut := uT−k =
µ

γT−k αT−k+1 σ2
·XT−k, (6.3)
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where

αT−k+1 = αT−k+2 · 1 +
µ2

γT−k+1 σ2

= αT−k+3 +
µ2

σ2

(
1

γT−k+1

+
1

γT−k+2

)
= αT +

µ2

σ2

k−1∑
i=1

1

γT−i

= 1 +
µ2

σ2

k−1∑
i=1

1

γT−i
.

Therefore, the denominator of control (6.3), we get

γT−k · αT−k+1 = γT−k +
µ2

σ2

k−1∑
i=1

γT−k
γT−i

. (6.4)

Suppose we choose the risk-aversion in the following form:

γT−k = γe−q(k−1),

for some positive constant q and γ. Under such risk attitude, if the investor is far

away from the maturity (large k), then variance is less penalised and she invests

more in the stocks. Therefore, the summation in Equation (6.4) can be written

as:

k−1∑
i=1

γT−k
γT−i

= e−qk
k−1∑
i=1

eqi.
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We are interested in the asymptotic behavior as time goes backwards, which

means as k tends to infinity. We have

γT−k · αT−k+1 = lim
k→∞

{ 1

kq
+
µ2e−qk

σ2

k−1∑
i=1

eqi
}

= lim
k→∞

{ 1

kq
+
µ2e−qk

σ2
· e

q − eqk

1− eq
}

= lim
k→∞

{ 1

kq
+
µ2

σ2
· e
−q(k−1) − 1

1− eq
}

=
µ2

σ2
· 1

eq − 1
.

In practice, the exponential risk-aversion eliminates the variance and the investor

would immediately try to maximise the expectation. Therefore, we would like

the exponential risk-aversion to decay as slow as possible. We suggest to consider

the risk-aversion in the form:

γT−k = γe−
(k−1)
T

In the case when k is small, such time-dependent risk-aversion coefficient constant

risk-aversion. In the case when k is large, the investor becomes more risky.

Consequently, as k tends to infinity, the equilibrium control tends to

uT−k →
µ

σ2
· σ

2(e
1
T − 1)

µ2
·XT−k =

e
1
T − 1

µ
·XT−k

In the case γT−k = γe−
(k−1)
T , the original functional can be reformulated as

J(t, xt, st; ūt) = Et[e
− (k−1)

T XT ]− γ

2xt
Vart(e

− (k−1)
T XT )

This is a Present-Biased preference mean-variance problem with the discounting

fator β = e−
1
T .
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Example: Black-Scholes model with present-biased risk aversion

Recall the mean-variance problem with present-biased preference and i.i.d Bt:

J(t, xt; ūt) = Et

[
XT

]
− 3e−(T−t−1)

2xt
Vart

(
XT

)
.

The figure below shows the open-loop strategies (the proportion of wealth in-

vested in stock) for 30-years investment.
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Figure 6.2: The comparison between constant risk-aversion and present-biased
risk-aversion. The red dash line indicates the strategy using present-biased risk
averision, whereas the blue dash line indicates the constant risk aversion

We see that, with Present-Biased risk aversion, the strategy does not go to zero
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as time goes backwards. However, it is still observed that the strategy becomes

riskier towards the terminal time.

6.2.2 Case 2: At > 1 for all t. (positive interest rate)

Suppose the investor is sitting at time t = T − k, which is k periods away from

the maturity. Then from the previous result, we have

ut := uT−k =
µ

γT−k αT−k+1 σ2
·XT−k,

where

αT−k+1 = αT−k+2 · AT−k+1 +
µ2

γT−k+1 σ2

= αT−k+2 · AT−k+2 · AT−k+1 +
µ2

σ2

( 1

γT−k+1

+
AT−k+1

γT−k+2

)
= αT ·

k−1∏
i=1

AT−i +
µ2

σ2

k−1∑
i=1

∏k−1−i
j=1 AT−k+j

γT−i

=
k−1∏
i=1

AT−i +
µ2

σ2

k−1∑
i=1

∏k−1−i
j=1 AT−k+j

γT−i

Recall that Ai = er for all i, then

αT−k+1 = er·(k−1) +
µ2

σ2

k−1∑
i=1

er·(k−1−i)

γT−i

Suppose we choose the risk-aversion in the following form:

γT−k = γe−r·q·k,
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for some positive constant q > 1 and γ. Therefore,

γT−k · αT−k+1 = γe−r·q·ker·(k−1) + γe−r·q·k · µ
2

σ2
·
k−1∑
i=1

er·(k−1−i)

γe−r·q·i

= γe(1−q)rk−r +
µ2

σ2
·
k−1∑
i=1

erk−r−ri−rqk+rqi

= γe(1−q)rk−r +
µ2

σ2
· er(k−1−qk)

k−1∑
i=1

e(q−1)ri

= γe(1−q)rk−r +
µ2

σ2
· er(k−1−qk) · e

(q−1)r − e(q−1)rk

1− e(q−1)r

= γe(1−q)rk−r +
µ2

σ2
· e

(1−q)rk+r(q−2) − e−r

1− e(q−1)r

Since q > 1, then as time goes backwards, we have

lim
k→∞

γT−k · αT−k+1 =
µ2

σ2
· e−r

e(q−1)r − 1
.

Hence, as k tends to infinity, the equilibrium control tends to

uT−k →
er(eq − 1)

µ
·XT−k.

Since our risk-aversion decays exponentially fast, as k tends to infinity, the

penalty from the risk is negligible. Therefore, the asymptotic open-loop equi-

librium control does not depend on the volatility of the stocks. On the other

hand, when we use the parameter q > 1, the discount rate is larger than the

interest rate. This suggests an alternative way to look at the model in the case

where interest rate is negative.

6.2.3 Case 3: At ∈ (0, 1) for all t. (negative interest rate)

There are two circumstances forAt being in such range: Firstly, when the inflation

rate is higher than the interest rate. The central bank tends to implement the

policy based on the Friedman’s k-percent rule. Milton Friedman, a Nobel-prize-

winning economist, proposed that the central bank should increase the money
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6.2 Solving the mean-variance puzzle with Present-Biased preference

supply by a constant percentage rate every year, irrespective of business cycles. In

many developing countries, especially in China, the inflation rate is on average

around 3% to 4% per year and the interest rate for 1-year zero coupon bond

is 1.75%. If the investor deposits the money into the bank account, then the

purchasing power of the money would actually depreciate. However, the economy

in the developing countries is growing fast, which makes the real estate or stocks

more attractive than the zero-coupon bond. For example, an investor decides to

invest from 1999 to 2014 for 15 years. The average return rate for 1-year zero

coupon is 2% in China, in which the equivalent return rate is 35% for 15 years.

However, the Shanghai Composite Stock Market Index raised from 1123.70 to

3000, in which the return rate is 300%. Therefore, the investor should buy stocks

rather than make savings to keep the value of money.

This situation is not uncommon in modern market. In 2015, Switzerland has be-

come the first government to sell 10-year bonds with a yield of −0.055%. Sweden,

Denmark, European and Japanese Central Bank have followed and cut their key

interest rate below zero. This means investors buying risk-free assets and hold-

ing to maturity will not get the same money back. This situation encourages the

investor to invest in stock in order to keep the value of her assets, which makes

the investor more risk-seeking.

Hence, we consider the wealth model as following:

Xt+1 = AtXt +Bt+1ut

where

At = e−c,

Bt+1 =
St+1

St
− e−c,

for some positive constant c. We can understand the model as following: in the

case where the interest rate is negative, then r = −c. In the case where the infla-

tion rate is higher than the interest rate, then (Interest rate−Inflation rate) = −c.
Such a model indicates that if the investor decides not to invest the money into

stock market, then the real value of money would actually depreciate. On the

other hand,
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6.2 Solving the mean-variance puzzle with Present-Biased preference

Hence,

αT−k+1 = αT−k+2 · AT−k+1 +
µ2

γ σ2

= αT−k+2 · AT−k+2 · AT−k+1 +
µ2

σ2

(1

γ
+
AT−k+1

γ

)
= αT ·

k−1∏
i=1

AT−i +
µ2

γ σ2

k−1∑
i=1

k−1−i∏
j=1

AT−k+j

= e−(k−1)·c +
µ2

γ σ2

k−1∑
i=1

e−(k−1−i)·c.

Then,

γ · αT−k+1 = e−(k−1)·c · γ +
µ2

σ2

k−1∑
i=1

e−(k−1−i)·c.

We can see the last term is the geometric series. We can obtain

k−1∑
j=1

e−(k−1−i)·c = e(1−k)·c ·
k−1∑
j=1

ec·i

= e(1−k)·c · e
c − eck

1− ec

=
e(2−k)·c − ec

1− ec
.

Hence, as t goes backward, and as k tends to infinity, we have

lim
k→∞

γ · αT−k+1 =
ec

ec − 1
· µ

2

σ2
=

1

1− e−c
· µ

2

σ2
.

and the equilibrium control tends to

uT−k →
µ

σ2
·XT−k ·

σ2

µ2
· (1− e−c)

=
1− e−c

µ
·XT−k, as k tends to infinity.
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6.3 Conclusion

Notice that this control does not go to zero as k tends to infinity, even though

the Present-Biased preference is not used. That is because the effect of negative

interest rate counteracts the penalty for the variance.

Remark. One can always direct the problem into the case of negative interest

rate by considering an anticipated inflation rate that is higher than the risk-free

interest rate.

6.3 Conclusion

This chapter presents the idea of using state-dependent present-biased preference

as the risk-aversion parameter. Our analysis addresses the drawbacks of state-

dependent risk-aversion which is proposed by Björk et al. (2014). The focus

is given to analyse the investment behaviour for equilibrium strategy from the

behavioural economic perspective. Our result points to the risk attitude of the

investor corresponding to the investment time point.

The present-biased risk aversion has been defined e−qk, where k is the number of

periods away from the maturity and q is degree of bias for the risk attitude as

time goes backward. With using a present-biased risk aversion parameter in i.i.d

case, we have shown that the open-loop equilibrium strategy tends to a constant

proportion invested in the stock with respect to differnt wealth.

95



Chapter 7

Numerical Simulation

Based on the equilibrium strategies presented in Chapter 3 and Chapter 4, this

chapter assesses the performance of equilibrium strategies together with pre-

commitment strategies and explores numerically the impact of equlibrium in-

vestors’ behaviour. The closed-form solution of pre-commitment strategy in Li

& Ng (2000) will be introduced in next section. A variety of investment situa-

tions such as an identical and independent market return, a booming market and

a depression market will be discussed. We analyse the investment impact of in-

vestors’ present-biased preference in performance evaluation by varying the value

of biased level q. Finally, we compare the investment performance by allowing

investors to re-evaluate regularly.

7.1 Pre-commitment v.s. Equilibrium: I.I.D

model

In this section, we study the difference between the performance of the pre-

commitment and equilibrium strategies. Suppose there are two assets available

in the market: one risk-free asset with risk-free rate r and one risky asset with

independent and identical investment return: mean E[B] and variance Var(B).

We refer to the results for pre-commitment strategy from Li & Ng (2000)[Section
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

3]. The optimal pre-commitment strategy up,∗ follows:

up,∗t = −e
r
E[B]

E[B2]
Xt +

1

2
(bX0 +

ν

2γa
)
(A1

A2

)T−t−1 E[B]

E[B2]
for t = 0, . . . , T − 1,

(7.1)

where

K =
(E[B])2

E[B2]
, A1 = er − er(E[B])2

E[B2]
, A2 = e2r − (erE[B])2

E[B2]

K1
t = K

(A1)T−t−1

2(A2)T−t−1
, K2

t = K(
(A1)T−t−1

2(A2)T−t−1
)2

µ = (A1)T , τ = (A2)T , ν =
T−1∑
t=0

(A1)T−t−1K1
t

a =
ν

2
− ν2, b =

µν

a
, c = τ − µ2 − ab2.

r 0.05 E[B] 0.1
Var(B) 0.09 X0 1
γ 0.5

Table 7.1: Parameters setting for the market with independent and identical
returns

Table 7.1 shows the values for different parameter. In this case, we have K =

0.158, A1 = 0.885, A2 = 0.930, µ = 0.295, ν = 0.486, a = 0.0367, b = 3.297, and

c = 0. The expected terminal wealth and variance under the pre-commitment

strategy up,∗ with respect to a given risk-aversion parameter γ follow:

E[XT ] = erTX0 +
1− (1−K)T

2γ(1−K)T
(7.2)

Var(XT ) =
1− (1−K)T

4γ(1−K)T
. (7.3)

The analytical expression of the mean-variance efficient frontier Li & Ng
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

(2000)[Section 3, Equation (27)] is

Var(XT ) =
(1−K)T

1− (1−K)T
(E[XT ]−X0e

rT ) for E[XT ] ≥ X0(er)T (7.4)

We set initial wealth X0 equal to 1 and simulate a number of different wealth tra-

jectories by using the open-loop equilibrium (Corollary 3.3.6), closed-loop equi-

librium (Corollary 4.3.3) and pre-commitment strategies (equation (7.1)).The

parameters for simulation are given in 7.1. Next, we record the terminal value

XT with respect to each simulation. For n simulations, we obtain a sequence of

terminal wealth (X1
T , X

2
T , . . . , X

n
T ). Denote Et=0,X0 [·] = E[·|t = 0, X0 = 1] and

Vart=0,X0 [·] = Var[·|t = 0, X0 = 1]. We can calculate the mean Et=0,X0 [XT ] and

the standard deviation Stdt=0,X0 [XT ]. Then, we will evaluate the performance

by using the Sharpe ratio of simulated terminal wealth
Et=0,X0

[XT ]

Stdt=0[XT ]
. Furthermore,

we will compare the performance in following two situations:

1. The different investment periods: 10 years and 40 years.

2. Using the present-biased risk aversion.

Figure 7.1 shows the probability density function of terminal wealth for X0 =

1. For 10 years investment period, the pair (Stdu
p

t=0,x0
[XT ],Eu

p

t=0[XT ]) =

(1.401584, 3.511251), while the open-loop equilibrium strategy with con-

stant risk-aversion gives (Stdu
o

t=0,x0
[XT ],Eu

o

t=0,x0
[XT ]) = (0.7824366, 2.4664584)

and the closed-loop equilibrium strategy with constant risk-aversion gives

(Stdu
c

t=0,x0
[XT ],Eu

c

t=0[XT ]) = (0.5628208, 2.1860717). The Sharpe ratios for ter-

minal wealth for pre-commitment, open-loop and closed-loop strategies are 2.5,

3.15 and 3.88, respectively. Although the pre-commitment gives better expected

return E[XT ], the pre-commitment is more risky compared to the equilibrium

strategy due to the left tail of the density function.
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

Figure 7.1: Probability density function for 10-year investment with 65,000 Monte
Carlo simulations. The parameters are given in Table 7.1 with a constant risk-
aversion parameter γ = 0.5.

The figures 7.2 shows the mean and standard deviation for the terminal wealth

for various length of investment period. It can be seen that both open-loop and

closed-loop equilibrium strategies have a low terminal return variance, whereas

pre-commitment starts to out-perform the equilibrium strategies for longer in-

vestment period. For example, in table 7.2, although the Sharpe ratio of equilib-

rium strategy is higher than the pre-commitment strategy, the pre-commitment

strategy achieves a high return with a reasonable level of variance. Compared

with pre-commitment, the equilibrium strategy is a state-independent strategy

in which the investors only invest a small amount of money during the whole

investment period. As a result, the small amount of investment leads to a low

standard deviation of terminal wealth.
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

Figure 7.2: Mean and standard deviation for three different strategies. There are
65000 Monte Carlo simulations. The parameters are given in Table 7.1.

.

Figure 7.3: The closed-loop strategy with the parameters given in Table 7.1 for
investment periods between 1 and 50 years.

.

Figure 7.2 also provides a comparison for two types of equilibrium strategies.

First of all, we observe the standard deviation of the closed-loop equilibrium

strategies increase much faster after 31 years. This phenomenon is caused by

the negative initial investment of closed-loop equilibrium strategies. As shown

in Figure 7.3, the closed-loop equilibrium strategies approach to negative value
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

40 yrs Standard deviation Mean
Pre-commitment 7.016938 74.04783
Open-loop 1.0879517 9.568016
Closed-loop 0.8855937 7.198412

Table 7.2: Means and standard deviations of terminal wealth for 40-years invest-
ment under different strategies

around year 31. Next, to compare the performance between two equilibrium

strategy, we analyse the ratio of Sharpe ratios, which is defined by:

ratio of sharpe ratios =
Expected returnopen/Expected returnclosed

Standard deviationopen/Standard deviationclosed
.

If the ratio is above 1, then it describes that the open-loop equilibrium strategy

achieves a higher return than closed-loop with respect to the same level of risk.

For example, in table 7.2, the open-loop equilibrium policy yields an expected

return of 9.568016
1.0879517

= 8.794522, while the closed-loop equilibrium policy only gives
10.467957
1.725999

= 8.128346. The ratio of Sharpe ratios is equal to 1.081957. Therefore,

we conclude that the open-loop equilibrium strategy is preferable to closed-loop

strategy for 40-years investment period.

Figure 7.4: The ratio of terminal wealth Sharpe ratios for equilibrium strategies.

Figure 7.4 shows the ratio defined as above for various investment periods. We can

see that, before 37-years investment time, the closed-loop equilibrium performs

better than the open-loop equilibrium. After 37-years investment time, the open-

loop equilibrium becomes better than the closed-loop equilibrium.
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

Figure 7.5: The ratio of terminal wealth Sharpe ratios for equilibrium strategies

Figure 7.6: The ratio of terminal wealth’s Sharpe ratios for equilibrium strategies
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7.1 Pre-commitment v.s. Equilibrium: I.I.D model

Figure 7.5 - Figure 7.6 show the mean path of 65, 000 Monte Carlo simulated

trajectories for both open-loop equilibrium and closed-loop equilibrium strate-

gies with state-dependent risk aversion 1
2xt

and state-independent risk aversion
1
2
, respectively. First, we notice that the state-dependent risk-aversion coeffi-

cient yields an increase in the mean of open-loop terminal wealth. In contrast,

the mean of closed-loop equilibrium is almost identical to the state-independent

case. This observation shows that the improvement of closed-loop equilibrium

investment may depend on the initial wealth level. Secondly, the open-loop equi-

librium wealth has a wide lower quantile and a narrow upper quantile in the

state-dependent case. In addition, the distance between mean and quantiles does

not change along with an increase in investment period, whereas the quantiles

shrink towards the mean in the state-independent case. Finally, as shown in

figure 7.6, the lower quantile of open-loop terminal wealth increases and crosses

the upper quantile of closed-loop terminal wealth as investment period increases,

which means three quarter of the open-loop terminal wealth is greater than three

quarter of closed-loop equilibrium terminal wealth. Therefore, the open-loop

equilibrium strategy is more likely to yield a higher terminal wealth than the

closed-loop equilibrium strategy.

Figure 7.7 shows the mean and standard deviation of open-loop terminal

wealth with present-biased risk-aversion coefficient for various investment pe-

riods. As described in Chapter 6.2, the present-biased risk-aversion has the form:
e−qr(T−t−1)

2xt
. The value of biased level q is tested between 0 and 10 with a step

size of 0.5. It can be noticed that the present-biased risk-aversion leads to a

deterioration in the performance of the wealth’s Sharpe ratio. As biased level

increases, the Sharpe ratios decreases. This is because an increase in biased level

causes the investors to invest in the stock aggressively from the beginning of the

investment period. The variance of terminal wealth grows quadratically corre-

sponding to this adjusted investment, while the mean of terminal wealth grows

linearly. Furthermore, we notice that the crossing point between red and blue

lines shifts towards left along with the increase in investment period. Therefore-

for long term investment, using the present-biased risk coefficient will result a

drop in the Sharpe ratio.
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7.2 Pre-commitment v.s. Equilibrium: Case study

(a) 5 years investment period (b) 10 years investment period

(c) 20 years investment period (d) 40 years investment period

Figure 7.7: Mean and standard deviation with present-biased risk-aversion pa-
rameter for different investment periods.

7.2 Pre-commitment v.s. Equilibrium: Case

study

In the previous section, we study the performance of different types of strategies

by using the Monte Carlo simulations. In this section, we carry out numerical

tests on comparing the strategies for Apple Inc stock shares. We will test our

comparison in the following ways:

• Case Study A Suppose the investor enters the market in Jan, 2000 with all

the information from 2000 to 2017, i.e., the stock price between 2000 and

2017 is known. Then we compare the pre-commitment strategy and equi-

librium strategy with monthly rebalancing for three different time lengths:

5 years, 10 years and 15 years.

• Case Study B Suppose the investor enter the market in Jan, 2000 with the

parameters estimated from past 5 years (1995 − 1999) and rebalances the
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7.2 Pre-commitment v.s. Equilibrium: Case study

strategies monthly. Then the investor aims to invest for 15 years and re-

evaluate his strategies for every 1, 3 and 5 years.

The primary goal in this chapter is to compare the different investment behaviours

and investment outcomes of equilibrium strategies. We classify the investment

situations into two cases: first, we suppose that the investors evaluate their strate-

gies at the beginning of the investment period and the investors do not intend to

change the strategies afterwards. Such situation is analysed in the Case Study A.

Since our study focuses on the comparison of the performance between different

strategies, without considering the estimated parameter sensitivity for different

strategies, we would like to assume the investors have all useful information about

future stock market. Therefore, the investors are assumed to observe all relevant

information of future share prices.

In contrast, Case Study B illustrates a different investment behaviour by allow-

ing regular re-evaluation of the strategies. Since the pre-commitment has been

well-studied and widely used under this circumstance, the Case study B explores

the performance of equilibrium strategies compared to the pre-commitment. Fur-

thermore, as the estimated parameters change along with re-evaluation time, we

can analyse the parameter sensitivity of equilibrium strategies. For the sake

of simplicity, we assume the independence for the future asset returns and the

investors enter the market with 1000 dollars.

7.2.1 Case Study A

Figure 7.8: Apple Inc. share price from Jan,1999 to Jan,2018
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The Figure 7.8 shows the stock price of Apple. We observe the uptrend and

downtrend in the price movement. The 5 years investment parameters are esti-

mated for 60 months from 2000 to 2005. The mean and standard deviation of

monthly excess return rate estimated for 5 years investment period are 0.01673431

and 0.1688279, respectively. The 95% confidence interval for estimated 5-years

excess return is (−0.007146538, 0.04061516). The 10 years investment parame-

ters are estimated for 120 months from 2000 to 2010. The mean and standard

deviation of monthly excess return rate estimated for 10 years investment pe-

riod are 0.02658799 and 0.1466011, respectively. The 95% confidence interval for

estimated 10-years excess return is (0.9787574, 1.019367). The 15 years invest-

ment parameters are estimated from 180 months from 2000 to 2015. The mean

and standard deviation of monthly excess return rate estimated for 15 years in-

vestment period are 0.02568134 and 0.126899, respectively. The 95% confidence

interval for estimated 15-years excess return is (0.007731372, 0.0436313).

Based on the parameter listed above, we will show the resulting strategies for

three different types of risk-aversion parameters: constant risk-aversion param-

eter (1
2
), state-dependent risk-aversion parameter ( 1

2xt
), and present-biased risk-

aversion parameter ( e
−qr(T−t−1)

2xt
). The aims of studying these risk-aversion pa-

rameters are different. In state-independent risk-aversion parameter case, we

focus on studying the difference in structure between open-loop and closed-loop

equilibrium strategies with different investment periods. In the state-dependent

risk-aversion parameter case, we focus on assessing different investment perfor-

mance between pre-commitment, open-loop equilibrium and closed-loop equilib-

rium strategies. In the present-biased risk-aversion parameter case, we focus

on improving the investment outcome for open-loop equilibrium strategy with

different biased level q.
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7.2 Pre-commitment v.s. Equilibrium: Case study

State-independent Risk-aversion Coefficient Case

Figure 7.9: The equilibrium strategies for 5 years investment period. The pa-
rameters are estimated from 2000 to 2005.

Figure 7.10: The equilibrium strategies for 15 years investment period. The
parameters are estimated from 2000 to 2010.
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Figure 7.11: The equilibrium strategies for 5 years investment period. The pa-
rameters are estimated from 2000 to 2015.

Figures 7.9 - 7.11 show the amount of money invested in stock for different equi-

librium strategies. First, we observe that the open-loop equilibrium strategies are

always above the closed-loop equilibrium strategies. This is because the short-

term plan of open-loop equilibrium strategies only invests in the stock market for

one period. Compared with the closed-loop equilibrium investor, the open-loop

equilibrium investors take less future risk into account in the short-term invest-

ment plan. Then the open-loop equilibrium strategies are more risky than the

closed-loop equilibrium strategies. Second, the open-loop and closed-loop equilib-

rium strategies approach to the same value at the end of investment period. This

value is the mean-variance strategy for single-period framework, which depends

on the estimated values of excess return and variance. Finally, as we mentioned

in Chapter 4, for long period (e.g. 15 years), the initial closed-loop equilibrium

strategy becomes negative.
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7.2 Pre-commitment v.s. Equilibrium: Case study

Figure 7.12: The logarithm of wealth paths under different investment strategies
for various investment periods.

Figure 7.12 shows the logarithm of wealth paths for different investment periods.

First of all, we notice that there is no differences in terminal wealth between

open-loop and closed-loop equilibrium strategies for 5 years, 10 years and 15

years. Also, the equilibrium wealth paths are identical to the risk-free wealth

path. This shows the equilibrium wealth is driven by the risk-free asset return

rather than the stock investment return.

State-dependent Risk-aversion Coefficient Case

It can be criticised that the investment amount is fixed for any amount of ini-

tial wealth. As we described above, the state-independent wealth path is driven

by the risk-free asset return. The state-dependent risk-aversion coefficient solves

such problem. Considering the state-dependent risk-aversion coefficient, the re-

sulting figures for equilibrium strategies are identical to the Figures 7.9 - 7.11.

However, instead of the amount of money invested in the stock market, the y-axis

indicates the proportion of the current wealth investing in the stocks.
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7.2 Pre-commitment v.s. Equilibrium: Case study

Figure 7.13: The logarithm of wealth paths by pre-commitment, open-loop and
closed-loop equilibrium strategies for 5 years investment period.

Figure 7.14: The logarithm of wealth paths by pre-commitment, open-loop and
closed-loop equilibrium strategies for 10 years investment period.
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Figure 7.15: The logarithm of wealth paths by pre-commitment, open-loop and
closed-loop equilibrium strategies for 15 years investment period.

Figures 7.13 - 7.15 show the logarithm of wealth paths for three types of strate-

gies: pre-commitment, open-loop equilibrium and closed-loop equilibrium strate-

gies. Fist of all, we notice that, in figure 7.15, the wealth under pre-commitment

strategies becomes negative at 11th month. This is because the pre-commiment

investors try to achieve the target investment and invest a dramatical amount of

money into the stock market (see Figure 7.16). For illustration, the investment

proportion for pre-commitment strategy has a range between −40 and 10. Once

the target is achieved, the pre-commitment investors will stabilise their wealth

around the target by reducing the amount of investment. Such behaviour can be

observed in Figure 7.16. In contrast, the equilibrium investors always start with

a small proportion and become risk-seeking at the maturity. Secondly, compared

with closed-loop equilibrium strategies, open-loop equilibrium strategies yield a

better terminal wealth in general. Although Figure 7.13 shows that the closed-

loop equilibrium strategy gives higher terminal wealth, the open-loop achieves a

better performance between month 12 and month 60. Finally, the equilibrium

strategies yield better terminal wealth than the pre-commitment strategies. This

is because the pre-commitment strategy optimises the objective function at the

initial time. The pre-commitment investors set their target investment based

on the initial wealth level, whereas there is no targeting threshold for equilib-

rium investors. As the wealth level changes dramatically over a long period, the

targeting wealth evaluating from pre-commitment is undervalued at initial time.
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7.2 Pre-commitment v.s. Equilibrium: Case study

Figure 7.16: The truncated investment proportions of pre-commitment, closed-
loop and open-loop equilibrium strategies.

Present-biased risk-aversion Coefficient Case

We study the present-biased risk-aversion coefficient with the range of biased level

q between 0.01 and 10. As a result of applying present-biased risk aversion, the

sizes of the open-loop equilibrium strategies (the absolute value of the investment

proportion) increase at the beginning of investment period. Figures 7.17 shows

the terminal wealth for three different investment periods. We notice the present-

biased risk-aversion parameter increases the terminal investment wealth for 10

and 15 years investment. In contrast, the terminal wealth strictly decreases

as the biased level increases for 5 years investment period. It is interesting to

explore whether such observation holds for general. Therefore, we use the share

prices of Sony Corporation to compare the result between state-dependent and

present-biased risk-aversion coefficients.
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Figure 7.17: The logarithm terminal wealth of present-biased risk-aversion coef-
ficients with different biased level q for Apple inc. stock. The investment periods
are 5, 10 and 15 years. The horizontal dash lines are the terminal threshold with
state-dependent risk-aversion coefficients.

Figure 7.18: Sony Corporation share price from Jan, 1999 to Jan, 2018.
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Figure 7.19: The logarithm terminal wealth of present-biased risk-aversion coef-
ficients with different biased level q for Sony corporation stock. The investment
periods are 5, 10 and 15 years. The horizontal dash lines are the terminal thresh-
old with state-dependent risk-aversion coefficients.

Figure 7.18 shows the share prices of Sony corporation between 1999 and 2018. It

can be noticed that, in the first two years, there is a recession in the stock market.

As a result, the estimated means of excess return are all negative and open-loop

strategies become all negative (short-selling). The higher biased level q yields a

larger investment in the risk-free asset. Since the price of Sony shares is stabilised

after first few years, it is not profitable to keep investing a large proportion of

wealth in the risk-free asset for long term. For illustration, in figure 7.19, the

red curve decays with a higher biased level. Compared with state-dependent

risk-aversion parameter, the present-biased risk-aversion parameters is able to

achieve an improvement in terminal wealth. However, it is crucial to determine

the biased level q based on the anticipated future.
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7.2.2 Case Study B

In previous subsection, we address the issue with ”Case Study A”: without ad-

justing the targeting threshold for pre-commitment strategies, the equilibrium

strategies out-perform the pre-commitment in the long-term investment. There-

fore, in ”Case Study B”, we would like to further explore the situation in which

the adjustment is allowed. While the adjustment is allowed, the input parameters

are estimated from past 5 years.

State-dependent Risk-aversion Coefficient Case

To illustrate the impact of frequent evaluation of the equilibrium strategies, Fig-

ure 7.20 -7.21 indicate that the re-evaluation does not help the equilibrium in-

vestors to improve the performance of the investment. The intuition is straight-

forward. Since the equilibrium strategies only becomes risky towards the matu-

rity, apart from those strategies near the maturity, the changes of remaining equi-

librium strategies are relatively small. Then the open-loop equilibrium strategies

with three different updating frequency are relatively close to each other. Also,

as long as the updating estimated parameters (mean of excess return, variance

of excess return and the interest rate) do not change significantly, the result-

ing terminal strategies are almost identical near the maturity. For example, as

shown in Figure 7.22, the terminal size of equilibrium strategy for the brown line

estimated from 2010 is almost identical the green dash line estimated from 2012.
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7.2 Pre-commitment v.s. Equilibrium: Case study

Figure 7.20: The logarithm of wealth paths by open-loop equilibrium strategies
for 15 years investment period. The equilibrium strategies have been re-evaluated
for every 1 year, 3 years and 5 years.

Figure 7.21: The logarithm of wealth paths by closed-loop equilibrium strategies
for 15 years investment period. The equilibrium strategies have been re-evaluated
for every 1 year, 3 years and 5 years.
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7.2 Pre-commitment v.s. Equilibrium: Case study

Figure 7.22: The open-loop equilibrium strategies for 15 years investment period
by re-evaluating in every 1 year, 3 years and 5 years.

The figures 7.23-7.24 further illustrate the wealth paths and size of pre-

commitment strategies with different re-evaluating frequency. Compare Fig-

ure 7.23 with 7.15, we notice that a high frequency of re-evaluation is able to

improve the performance of investment under the pre-commitment strategies.

This is because the targeting threshold is amended based on the current wealth

and estimated parameters. In Figure 7.24, we observe a few peaks for green dash

line around month 73. These peaks are caused by the updated mean and variance

of the excess return in 2006. As the mean of excess return increases by more than

twice, the pre-commitment investors immediately invest a huge amount of money

into the risky asset. As a result, we notice logarithm wealth (the green dash line

in Figure 7.23) jumps from 8 to 11. Compared with equilibrium strategies, the

pre-commitment strategies are more sensitive to the estimated parameters.
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7.2 Pre-commitment v.s. Equilibrium: Case study

Figure 7.23: The logarithm of wealth paths by pre-commitment equilibrium
strategies for 15 years investment period. The pre-commitment strategies have
been re-evaluated for every 1 year, 3 years and 5 years.

Figure 7.24: The pre-commitment strategies for 15 years investment period by
re-evaluating in every 1 year, 3 years and 5 years. The vertical dash lines indicate
the negative strategies (where logarithm is undefined).
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7.3 Conclusion

Figure 7.25: The truncated logarithm of pre-commitment strategies for 15 years
investment period by re-evaluating in every 1 year, 3 years and 5 years. The
vertical dash lines indicate the negative strategies. The strategies in the gap
between the blue lines are all negative.

7.3 Conclusion

This chapter uses numerical tools to assess the performance of three types of

strategies: pre-commitment, open-loop equilibrium and closed-loop equilibrium.

One of the main focuses of the research has been on the Sharpe ratio and prob-

ability density of the terminal wealth under different strategies. For the market

with independent and identical return, it has been shown that the equilibrium

strategies with constant risk aversion achieve better Sharpe ratio of terminal

wealth, whereas pre-commitment strategies are the profit-driven strategy which

yields better expected return with higher risk.

The second focus of the research is on a case study to compare the performance
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7.3 Conclusion

of different strategies. The case study has been classified into two situations: re-

evaluation prohibited and re-evaluation allowed. In the re-evaluation prohibited

case, the equilibrium strategies out-performs the pre-commitment strategies. For

pre-commitment strategies, once the target threshold is reached, the investors

will not take anymore risk. Our results indicate that the pre-commitment in-

vestors may undervalue the target investment threshold due to the length of in-

vestment period and initial wealth level. In contrast, there is no target threshold

for equilibrium investors. Comparing different equilibrium strategies, we find the

open-loop equilibrium strategies out-performs the closed-loop equilibrium strate-

gies as investment period increases, which is consistent with one observed in the

Monte Carlo simulation case.

When the re-evaluation is allowed, the terminal pay-off of pre-commitment strate-

gies increases along with the increase in the frequency of re-evaluation. The

updated asset parameters and wealth level for pre-commitment strategies lead

to a huge change in the trading volume. However, we show that there is no

guarantee on the terminal pay-off for equilibrium investors as the re-evaluation

frequency increases. This is because the updated asset parameters does not affect

the equilibrium strategies dramatically.

Finally, we evaluate performance of the investment by using the present-biased

risk-aversion coefficient. Similar to varying the risk attitude by wealth level,

the present-biased risk aversion allows the investors to adjust their risk attitude

based on the anticipated future investment environment. We show that the

improvement can be achieved in both booming market and recession market.

However, our results indicate that the investor’s biased level is able to cause a

more diverse wealth distribution.
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Chapter 8

Conclusion

8.1 Summary

This research studies the different types of equilibrium strategies for mean-

variance problem in discrete and continuous time. The focus is on analysing

the role of perturbation in different equilibrium methodologies in affecting the

dynamic of the wealth process. The goal is to explore the difference between open-

loop and closed-loop equilibrium strategies existing in the current literature and

identify the issues for implementing the equilibrium strategies in practice.

In Chapter 1, we describe the background and the motivation of the research.

Also, we propose a number of research questions and an overview of the thesis.

Chapter 2 presents a literature review on the main three strategies existing in

the literature namely: pre-commitment, open-loop equilibrium and closed-loop

equilibrium. The purpose is to identify the outcomes, issues and gaps in this

new implementation of equilibrium methodology for mean-variance problem. By

reviewing the equilibrium strategies for mean-variance problem, we notice the

different results for equilibrium strategies which may impact investors’ financial

decisions. Understanding the different rationale behind the equilibrium strate-

gies helps the investors to choose the best strategy corresponding to their own

preference.
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8.1 Summary

Chapter 3 initiates the main research by studying the equilibrium strategies in

discrete time. Although the continuous framework already provides an explicit

solution for equilibrium strategy, there is still a gap between understanding the

behaviour of equilibrium strategy and implementing the solution of the problem.

In a discrete time setting, the behaviour of the strategy and the dynamic of

the wealth are trackable by constructing the equilibrium strategy recursively.

By incorporating concepts from open-loop controls in engineering, we take the

perturbation affecting the wealth dynamic in a specific way and derive a necessary

and sufficient condition for open-loop equilibrium strategy. A analytic study of

existence and uniqueness of the open-loop equilibrium strategy has been carried

out.

Chapter 4 shows a perturbation acts on the wealth in a different way in order to

obtain the closed-loop equilibrium strategies. Together with results from Chap-

ter 3, a key behavioural feature of equilibrium investors is that the investors divide

their investment plan into two parts: short-term and long-term plans. Once the

short-term plan is chosen, the investors combine the short-term plan with any

long-term investment plan and test different amount of investment in short-term

investment plan. Therefore, the equilibrium strategy is the strategy that yields

the best outcome of the objective function among these combinations. This in-

terpretation allows us to draw out the key different behaviour between open-loop

and closed-loop investors. The open-loop short-term strategy (perturbation) only

invests in the stock market for a single-period and deposits the investment into

bank account until the maturity, whereas the closed-loop short-term strategy

invests in the stock market and leaves the investment until the maturity.

Chapter 5 develops open-loop equilibrium strategies in continuous time by using

a different type of perturbation. Compared with the random variable of pertur-

bation used in Hu et al. (2012), we relax the perturbation as a random process.

We have shown that the random process perturbation yields the same condi-

tion as the random variable perturbation. Therefore, the type of equilibrium

strategies depends on the way that the perturbation affects the wealth dynam-

ics. Compared with the continuous time framework, the discrete time framework

provides more flexibility for the equilibrium investor in choosing the short-term

investment plan (perturbation).

Chapter 6.2 addresses issues for equilibrium strategies for practical implemen-

tation. As time moves away from maturity, the investment amount for both

closed-loop and open-loop strategies decays. The open-loop equilibrium decays

to zero, whereas the closed-loop equilibrium decays to a negative limit. A proper
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8.1 Summary

relation between the value of the limit and the model parameters has been identi-

fied by the Sharpe ratio of the risky asset in Chapter 4. By incorporating concepts

from behavioural economics, we focus on modifying the risk aversion parameter

which represents the preference of the incarnations of investor at different time

point.

Chapter 7 uses numerical tools to assess the performance of pre-commitment,

open-loop and closed-loop equilibrium strategies in various situations. Our anal-

ysis shows that, the equilibrium strategies are preferable to pre-commitment

strategies when the re-evaluation is prohibited. Comparing between the closed-

loop and open-loop equilibrium strategies, we find that the performance of the

closed-loop equilibrium deteriorates as the investment period increases. When

the re-evaluation is allowed, the equilibrium strategies are not as sensitive as

the pre-commitment strategies to the updated parameters of the assets. As a

result, the pre-commitment strategies out-performs the equilibrium strategies as

the re-evaluation frequency increases. Finally, we show that the improvement of

the investment can be achieved by implementing the present-biased risk-aversion

coefficient.
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