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Abstract

Tony Blake, "Quantum Approach to Cavity Mediated Laser Cooling", Ph.D. thesis,

University of Leeds, September 2011

Cavity-mediated cooling has the potential to become one of the most efficient tech-

niques to cool molecular species down to very low temperatures. This thesis studies the

use of rate equations to analyse the cooling process in such systems. In particular the

master equation is used to find rate equations that can determine the rate of change

of phonons in the system. The general idea behind cavity cooling is the continuous

conversion of phonons into cavity photons. While there is no spontaneous emission and

decay rate associated with the concept of phonons, photons are created after a change

in the phonon number has occurred and can then leak out through the cavity mirrors

easily. Hence the conversion of phonons into photons can result in the constant removal

of phonon energy from the system.

In this thesis we compare cavity mediated cooling with single particle laser cooling.

It is shown that cavity cooling is essentially the same as ordinary laser cooling. This

is done by calculating the stationary state phonon number mss and the cooling rate γ

as a function of the system parameters. For example, when the trap phonon frequency

ν is either much larger or much smaller than the cavity decay rate κ, the minimum

stationary state phonon number scales as κ2/16ν2 (strong confinement regime) and as

κ/4ν (weak confinement regime), respectively. Replacing κ with Γ yields the steady

states associated with ordinary laser cooling.

The main result of this thesis is the development of a method which allows for a

relatively straightforward analysis of the cooling process without having to apply the so

called Lamb-Dicke approximation or semiclassical theories.
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Chapter 1

Introduction

"A good problem proves its worth by fighting back". This was said by some guy whose

name I don’t know but by his definition the problem of this thesis was definitely a good

one because to say it fought back would be an understatement! The problem in ques-

tion concerns developing a quantum approach to cavity mediated laser cooling. First

attempts at a description of laser cooling can be attributed to Hänsch and Schalow [1]

and independently for trapped ions by Wineland and Dehmelt [2]. It was noticed that

the scattering of light from single particles affected the particles external motion. Such

effects resulted in significant changes of the vibrational energy of massive particles.

Several other laser cooling techniques have been developed that allow atoms and ions

to be cooled to the micro and nanokelvin temperatures needed for quantum coherence

and degeneracy [3–5]. Examples of these are Sisyphus cooling [6] and evaporative

cooling [7].

In this thesis we focus our attention on the cooling of trapped particles confined to a

harmonic potential [8]. It is in this environment that a full quantum description of the

cooling process can be realised as here the cooling process has the potential to move

the initial state of the particle to the motional ground state. An example of another

cooling scheme where the particle is not confined to a harmonic potential but can also

have a quantum mechanical description would be velocity selective coherent population

trapping or VSCPT. Here, a so called darkstate is formed when the atomic state cannot

be excited by light at a certain frequency of polarisation. A superposition state of the

particle will have its excited state vanish for a particular momentum associated to the

particles external motion. The quantum description of the particle’s motion must be

accounted for by a kinetic energy operator which will have associated eigenstates [9].

However for the purposes of this thesis we shall concentrate on models that characterise

the centre of mass motion of the particle with a confining harmonic potential.The idea

of laser sideband cooling of a single trapped particle can be understood with respect to

the particles external motion. If the trapping potential of the particle is strong enough
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Chapter 1. Introduction

for its centre of mass motion to become quantised then the energy of this motion can be

described as vibrational quanta or phonons. The laser drives the electronic transition of

the particle. Quantum mechanical effects can manifest as vibrational quanta when the

particle is confined to a fraction of the wavelength of the driving laser. The electronic

transition of the particle coupled to the dynamics of its centre of mass motion will have

a corresponding absorption spectrum which can be measured by varying the detuning

between the laser frequency and atomic resonance and observing the photon scattering

rate. If the phonon frequency is much larger than the spontaneous decay rate of the

excited electronic state, it becomes possible to resolve the resonances with the cooling

laser and selectively drive transitions between vibrational states. One such resonance is

the so called red sideband transition where the excitation of the excited electronic state

of the trapped particle on this resonance is most likely accompanied by the annihilation

of a phonon. When followed by the spontaneous emission of a photon, the particle re-

turns into its electronic ground state without regaining a phonon which implies cooling.

The cooling cycle only stops when the particle reaches a state with almost no phonons.

The final population of excited vibrational states is in general very small and only due

to highly off-resonant excitations of the ground state of the atom-phonon system.

Even though the idea of laser cooling and also cavity mediated laser cooling are not

new ones, the aim of the thesis is to develop a new formalism that can provide more

insights into the complicated dynamics present at the interaction of a particle and a

cavity field. In fact the formalism developed here is mathematically equivalent to the

standard formulations [10–19]. So there are no new fundamental results. That being

said, there is a novelty to be observed from solving old problems with alternative meth-

ods. As is often the case, certain advantages can become apparent when approaching

some problems from a new point of view. For example, in the case of a particle inter-

acting with a free radiation field, by using a new formalism that shall be introduced in

chapter 3, it will become apparent that adiabatically eliminating the particle’s excited

state is unnecessary. Often such a step is critical in the analysis of a system’s cooling

dynamics. Indeed, the first theoretical analysis of laser cooling with red-detuned light

based on a combination of simple classical and quantum ideas can be found in Ref. [8]

by Wineland and Itano. Lindberg and Stenholm later introduced the tool for a full

quantum treatment of laser cooling by deriving a master equation for spontaneously

emitting atoms with atomic recoil included [20] (cf. also Refs. [12, 21–24]). An alter-

native but consistent analysis of the laser cooling of trapped ions in a running and in a

standing wave configuration has been presented by Cirac et al. in Ref. [11]. The main

result of these papers is a cooling equation of the form

ṁ = −(A−− A+)m+ A+ , (1.1)
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where m denotes the mean phonon number. The A± can be interpreted as transition

rates between states with different phonon numbers and hence relate to the actual

cooling and heating rates. The stationary state phonon rate mss is consequently given

by [10, 11, 13, 20]

mss =
A+

A−− A+
. (1.2)

Experimental results confirm the general dependence of this stationary state phonon

number on the emission rate of the excited electronic state of the trapped particle Γ and

on its phonon frequency ν [25]. For reviews on this topic see for example Refs. [10, 13,

26, 27].

The theory of the single trapped particle and associated cooling methods have been

quite successful. Having said that, there are inherent limitations within each cooling

scheme and with regard to sideband laser cooling this would be characterised by the

atomic line width and the number of times the closed atomic transition needs to be

repeated. Extending the sideband cooling method to clouds of cold atoms or molecules

presents significant difficulties in so far as repeating the transition cycle will generally

end up with the excited state population being distributed between the molecular rota-

tional and vibrational states. With a cloud of atoms, repetition of the transition cycle

will increase the probability of heating effects arising from multiple absorption and re-

coil events thereby limiting the density of the cloud. When it comes to the cooling of

a large number of particles, evaporative and sympathetic cooling is a much more ef-

ficient approach [28–31]. As we shall see, the final steady state phonon number is a

function of the atomic line width thereby establishing this property of the particle as a

fundamental limit on the sideband cooling mechanism. Overcoming this limit has been

the goal of many approaches in the last few years. Foremost among these among these

approaches has been the use of the optical resonator or cavity.

Purcell first pointed out that the rate of spontaneous emission can be enhanced by

the cavity field in an optical resonator [32]. A natural extension to the above ideas

would be to use the cavity enhancement to alter the cooling rate and steady state of

the single particle. Such coherent scattering inside an optical resonator has the advan-

tage that the lowest temperature reachable is not limited by the atomic line width Γ

but by the cavity line width κ which can be significantly lower. First indications that

cavity-based laser cooling might allow us to cool particles, like trapped atoms, ions and

molecules, to much lower temperatures than other laser cooling techniques had been

observed already in Paris in 1995 [33, 34]. Systematic experimental studies of cavity

cooling have subsequently been reported by the group of Rempe [35–38], Vuletić [39–

42], and others [43, 44]. Recent atom-cavity experiments access an even wider range

of experimental parameters by using optical ring cavities [45, 46] and by combining op-

3



Chapter 1. Introduction

tical cavities with atom chip technology [47, 48], atomic conveyer belts [49, 50], and

ion traps [51]. Recent experiments even reported the occurrence of collective strong

coupling effects in lossy optical cavities [52].

There is still much to be understood from cavity mediated cooling experiments. Cav-

ity mediated cooling is a subject in its infancy and it is therefore important to increase

our understanding of the complex physical processes which can occur in atom-cavity

systems. The road to understanding the complex interplay of the cavity dynamics be-

tween particle and field began when cavity cooling of free particles was first discussed

in Refs. [53, 54]. Later, Ritsch and collaborators [55–59], Vuletić et al. [19, 60], Murr

et al. [61–63], and others [64] developed semiclassical theories to model cavity cooling

processes, including the cooling of polarisable particles [65–67]. Moreover, Xuereb et

al. [68] introduced a simple input-output formalism which can in principle be applied

to a variety of cooling scenarios. The analysis of cavity cooling based on a master equa-

tion approach has been pioneered by Cirac et al. in 1993 [15]. Refs. [15, 16] calculate

the cooling rate and the final temperature of a single two-level particle trapped inside

an optical resonator with the help of a Lamb-Dicke approximation. The same master

equation approach has been used later by other authors [14, 17, 18, 69]. With the ex-

ception of Ref. [14] which applies only to relatively large phonon frequencies ν , these

papers suggest that cavity and ordinary laser cooling are essentially the same. Also

cavity sideband cooling has been analysed for the case of certain molecules [70] and

recently cavity cooling methods using EIT have been explored [71].

In addition, it is worth mentioning the recent progress made in the development

of cooling methods for molecules and ultra cold chemistry. The different approaches

taken serve to highlight how the use of a cavity can aid in achieving the low temper-

ature required for ultra cold chemistry. To date the most successful cooling methods

for molecules apply to polar species. Methods used consist of slowing down gases of

polar molecules using Stark deceleration [72], or buffer gas cooling whereby a warm

gas of polar molecules interacts with a buffer gas of cryogenically cooled helium. A

magnetic potential with a magnetic field minimum can then attract molecules in the

low field seeking state and repel molecules that are strong field seeking [73]. How-

ever such methods require high density samples of cold molecules in specific states. A

combination of both these methods into a single experiment that produces a high den-

sity slow beam of cold polar molecules has been developed by the Rempe group [74].

This method allows a much wider class of molecules with an electric dipole moment

to be addressed. Temperatures of between approximately 1− 100 mK can be achieved

with these methods. Lower temperatures can be achieved from the formation of het-

eronuclear molecules using Feshbach resonance techniques [75] and photoassociation

of precooled atoms [76]. Such techniques have the drawback of sometimes leaving

the molecule in highly excited vibrational levels. Although it is possible to reach the
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vibronic ground state as was shown by the Demille group whose photoassocation tech-

nique has brought the RbCs polar molecule to its ground vibronic state with a transla-

tional temperature of ∼ 100 µK [77]. In fact in a recent experiment the Demille group

have developed a technique that successfully laser cooled the diatomic molecule SrF

to a temperature of 300 µK [78]. The Demille technique is however limited to those

molecules that have closed electronic transitions with diagonal Frank-Condon factors.

In a recent paper Zeppenfeld et al have proposed to use electric-field interaction energy

in lieu of photon recoil to remove energy from a molecular ensemble [79].

The above molecular cooling schemes all needed to find some means through which

to use a closed electronic transition for optical cooling cycles. In general molecules

have a large number of states into which an excited state can decay all of which would

need to be repumped using additional lasers to obtain closed electronic transitions. The

complexity of such a task is the major practical limitation of molecular cooling schemes.

However the strong coupling of a molecule to the cavity field of an optical cavity pro-

vides an alternative approach to molecular cooling that can avoid the closed electronic

transitions needed for cooling cycles [80]. Proposals to use cavity-enhanced Raman

scattering to cool both the internal and the external degrees of freedom of molecules

have been demonstrated using simulations based on ab- initio calculations for OH and

NO radicals [81, 82]. In a recent proposal, Kowalewski et al have shown theoretically

that cavity-enhanced sideband cooling of molecules and molecular ions in a strongly

confining external potential is possible for experimentally feasible set ups [70].

The structure of the thesis is as follows. In chapter 2 we present our model that

describes the interaction of a harmonically confined particle with the single mode of a

cavity field. Here we derive the relevant Hamiltonian and show how to apply the pow-

erful approximation technique of adiabatically eliminating the excited state. We next

introduce the Lamb-Dicke approximation and use it with the quantum optical master

equation for atom-cavity systems [15, 16] to derive a closed set of rate equations. These

equations are linear differential equations which describe the time evolution of expec-

tation values. Only two of the variables in these cooling equations are populations: the

mean phonon number m and the mean number of photons in the cavity n. All other

variables are coherences. More concretely, we assume that the mean phonon number

m evolves on a much slower time scale than all the other expectation values which are

included in the cooling equations, as it applies for a very wide range of experimental

parameters. This allows us to simply reduce the above mentioned cooling equations to

a single effective cooling equation via an adiabatic elimination of all expectation values

other than m. As a result, we obtain the cooling rate and the stationary state phonon

number as a function of the system parameters.

In chapter 3 we revisit the case of the trapped particle interacting with the free ra-

diation field. It is in this chapter that we introduce a new formalism that makes use
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Chapter 1. Introduction

of 2 different unitary transformations, one of which changes the atomic lowering op-

erator σ− to a new operator x and the other transformation which takes the phonon

annihilation operator b and changes it to a new operator y. These correspond to par-

ticles that are neither atoms nor phonons and also commute with each other. Most

importantly, they provide a representation of the Hamiltonian which no longer contains

atomic displacement operators. Instead it depends on terms like x† x(y − y†) which

take non-linear effects in the atom-phonon interaction into account [83]. We use this

Hamiltonian to obtain a manageable set of cooling equations which are differential

equations for the time derivatives of expectation values. Our calculations are more

straightforward than previous calculations. As in Refs. [10–13, 20], we are interested

in the dynamics of the cooling process on the very slow time scale given by the cooling

rate γc which scales as η2 with η ≪ 1. The only approximation involved in the fol-

lowing calculations of stationary state phonon numbers and effective cooling rates is to

neglect higher order terms in the Lamb-Dicke parameter η.

The technique of ordinary laser cooling is already well established. Thus the main

motivation in introducing a new formalism is to establish and test a framework for the

modelling of laser cooling which can be extended relatively easily to more complex cool-

ing scenarios like cavity-mediated laser cooling [14, 69, 84] and the study of possible

quantum optical heating mechanisms in sonoluminescence experiments [85]. In fact

this will be the subject of chapter 4; the application of our method to cavity-mediated

laser cooling.
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Chapter 2

Cavity Mediated Cooling within the

Lamb-Dicke Approximation

To establish the setting for our quantum approach to cavity mediated laser cooling this

chapter shall describe the model we employ to derive our results. The model considered

is shown in Figure 2.1 . It consists of a single two-level particle with ground state

|0〉 and excited state |1〉 trapped inside an optical cavity. In this model, we assume

confinement of the motion of the particle in the direction of the cooling laser which

enters the setup orthogonal to the cavity axis. Population in the cavity mode can leak

into the environment via spontaneous emission at a decay rate κ. The energy levels

considered in this model are shown in Figure 2.3. In what follows we shall denote the

detuning of the cavity and of the laser with respect to the 0–1 transition of the particle

by ∆ and ∆+ δ, respectively.

2.1 Theoretical Model

The experimental set up of a single two-level particle inside an optical cavity is depicted

in Fig. 2.1. The geometry of the system is such that an incident laser field interacts

with the particle in a direction perpendicular to the cavity axis. The particle is in a

harmonic trapping potential so that its motion is restricted to one dimension. Here we

assume that this motion is aligned with the direction of the incident laser light. Here

we take the x axis to be along the direction of the cavity axis, the z axis to be along the

direction of the incident laser and the y axis to be perpendicular to the plane made by

x -z axes. The field of the incident laser light is linearly polarised so that its transverse

oscillation is in the x direction. This induces a transverse oscillation in the particle in

the x direction. We next assume that the particle emits a photon into the cavity mode

which is in the x direction along the cavity axis. In this way the possible polarisation

directions of the emitted photon are in the z and y directions. Since the particle is

7



Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

Figure 2.1: Experimental setup of a single two-level particle inside an optical cavity with

coupling constant g and spontaneous decay rates κ and Γ. The motion of the particle

orthogonal to the cavity axis is strongly confined by an externally applied harmonic

trapping potential with phonon frequency ν . The cooling of this vibrational mode can

be done with the help of the cooling laser with Rabi frequency Ω.

oscillating in the x direction the component of its dipole moment will be perpendicular

to the possible polarisation directions of the emitted photon. Fig. 2.2 illustrates the

different polarisation cases. So using the above assumptions for the polarisation of the

incident laser light and emitted photon it is possible to see how the induced dipole

moment of the particle does not affect the emitted photon. On the other hand if the

incident laser light was linearly polarised so that its transverse oscillation was in the

y direction then the induced oscillation of the particle in the y direction will interact

with the emitted photon with linear polarisation in the y direction. This coupling of the

dipole oscillation in the y direction and the polarisation of the emitted photon in the y

direction is what allows for the cooling of the trapped particle in the cavity. Therefore,

we have to assume in the set up in Fig. 2.1 that the incident laser is linearly polarised

in the y direction.

The system described in this model has a Hamiltonian that can be written as

H = Hpar +Hphn +Hcav +HL +Hpar−cav . (2.1)

The energy of the electronic states of the trapped particle, its quantised vibrational

mode, and the quantised cavity field mode are described by the first three terms. This

model describes the particle as a two-level system with ground state |0〉 and excited

state |1〉 such that the energies ħhω0, ħhν , and ħhωc are the energy of a single atomic

excitation, a single phonon, and a single cavity photon, respectively. The first three

terms in Eq. (2.1) can hence be written as

Hpar = ħhω0σ
+σ−, Hphn = ħhν b† b, Hcav = ħhωc c†c , (2.2)
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2.1. Theoretical Model

Figure 2.2: The first figure shows how a plane wave linearly polarised in the x direc-

tion induces a dipole oscillation in the x direction which does not interact with both

possible emitted photon polarisations which are orthogonal to the dipole motion. The

second picture shows a plane wave polarised in the y direction which induces a dipole

oscillation in the y direction and would in fact interact with the y polarisation of the

emitted photon. The set up in Fig. 2.1 assumes polarisation of the incident laser in the

y direction.

where the operators σ− ≡ |0〉〈1| and σ+ ≡ |1〉〈0| are the atomic lowering and raising

operators, and b and c are the phonon and the photon annihilation operators with the

commutator relations

[b, b†] = [c, c†] = 1 . (2.3)

The two remaining terms in Eq. (2.1), i.e. HL and Hpar−cav, are the Hamiltonian describ-

ing the interaction between the particle and the laser and the Hamiltonian describing

the interaction between the trapped particle and the cavity mode. The single laser is

used to establish a coupling between the electronic states |0〉 and |1〉 of the trapped

particle and its quantised motion. In the dipole approximation, it can be written as

HL = eD ·EL(R, t) , (2.4)

where e is the charge of an electron, D is the atomic dipole moment, and EL(R, t) is

the electric field of the laser at the position R of the particle relative to its equilibrium

position at R= 0 at time t. More concretely, the dipole moment D can be written as

D = D01σ
− +H.c. , (2.5)

where D01 is a 3-dimensional complex vector, while

EL(R, t) = E0 ei(kL·R−ωL t) + c.c. (2.6)
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

Figure 2.3: Level configuration showing a single particle with ground |0〉 and excited

state |1〉. Here ωc and ωL are the frequency of the cavity and of the cooling laser. The

corresponding detunings with respect to frequency of the 0–1 transition, ω0, are ∆ and

∆+δ.

where E0, kL, and ωL are the amplitude, the wave vector, and the frequency of the

cooling laser. Here the cooled motion of the trapped particle is the centre of mass

motion in the laser direction. To see more clearly the underlying quantum dynamics

we must take a closer look at the harmonic trap. When the trapped particle emits a

photon it gains energy in the form of recoil which can be expressed as Erec = ħh
2k2

L/2M

and where M is the mass of the particle. In the trap the particles external motion is

quantified in units of vibrational energy so that as it moves up and down a level in

the trap it gains or loses a quanta of vibrational energy respectively in the form of ħhν .

Therefore if the recoil energy is greater than ħhν it is possible for the particle to make

transitions that are greater than 1 vibrational quantum state. Conversely if Erec ≪ ħhν

then the transitions which change the vibrational quantum number by more than 1 are

suppressed. Thus we can define an interaction parameter η between the internal states

of the ion and its external motional states.

η =

r

ħhk2
L

2Mν
=

Ç

ER

ħhν
, (2.7)

This parameter is the so called Lamb-Dicke parameter. The Lamb-Dicke regime or Lamb-

Dicke limit can next be derived by considering the root mean square of the particles

position expectation value.

〈z〉rms =
p

〈m|(z)2|m〉=

r

〈m|
�

ħh

2Mν

�

�

b+ b†
�2 |m〉 =

r

�

ħh

2Mν

�

(2m+ 1) . (2.8)
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2.1. Theoretical Model

When the root mean square of the position expectation value is much less than the

wavelength of the laser then the vibrational motion of the particle will be such that

the transitions which change the vibrational quantum number by more than 1 are sup-

pressed. This then is the Lamb - Dicke regime. More specifically we find the following

conditions are necessary to enter the quantum regime characterised by the Lamb-Dicke

limit.

〈z〉rms ≪ 1/kL

kL〈z〉rms ≪ 1
Æ

k2
L

p

〈m|(z)2|m〉 ≪ 1
Æ

〈m|k2
L(z)

2|m〉 ≪ 1
p

η2(2m+ 1) ≪ 1 (2.9)

In the ground state |0〉, m = 0, so from the conditions in Eq. (2.9) it is easy to see that

η≪ 1 is a direct consequence of the size of the trap ground state, a0, in relation to the

wavelength of the laser or more precisely

a0 ≡
p

〈0|(z)2|0〉 ≪
1

kL

→ η≪ 1 . (2.10)

This of course means that Erec ≪ ħhν which thereby guarantees that the transitions of

the particle in the trap whose vibrational quantum number is greater than 1 will be

suppressed. For a tightly confined ion trap the Lamb-Dicke parameter will be small

(0.01 to 0.1 in most experiments).

So by considering the Lamb - Dicke regime we can no longer treat the quantity kL ·R

as a number. Instead the important relationship between the laser wavelength and

position of the ion must be expressed by using the definition of the position operator R

in terms of the annihilation and creation operators b and b†. This yields

kL ·R = η(b+ b†) , (2.11)

where the Lamb-Dicke parameter η is as described above [10]. Introducing the particle

displacement operator D as

D(iη) ≡ e−iη(b+b†) , (2.12)

and substituting Eqs. (2.5), (2.6), (2.11) into Eq. (2.4), it is easy to see that the laser
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

Hamiltonian can be written as

HL = e
�

D01σ
− +H.c.

�

· E∗0 D(iη)eiωL t +H.c. (2.13)

This equation shows that the laser couples the vibrational and electronic states of the

particle.

Next there is the interaction Hamiltonian describing the coupling between the elec-

tronic states of the trapped particle and the cavity. In the dipole approximation this

interaction equals

Hpar−cav = eD · Ecav(R) , (2.14)

where Ecav(R) is the observable for the quantised electric field inside the resonator.

Denoting the coupling constant between the particle and the cavity field as g, this

Hamiltonian can be written as

Hpar−cav = ħhg(σ− +σ+) c +H.c. (2.15)

which describes the possible exchange of energy between atomic states and the cavity

mode. Here we also note that the interaction strength g between the particle and the

cavity is constant. This because we have taken the direction of the cavity field to be

in the x direction along the cavity axis and assumed the field to be constant in this

direction. Next we move into an interaction picture from which we can take advantage

of the fact that the experimental parameters δ, ν , g, and∆ are in general much smaller

than the optical frequencies, i.e.

δ , ν , g , ∆ ≪ ωL , ωc . (2.16)

Choosing

H0 = ħhωLσ
+σ− + ħhωL c†c , (2.17)

and defining U0(t, 0) ≡ e−iH0 t/ħh we find that the interaction Hamiltonian HI,

HI = U
†
0(t, 0) (H −H0)U0(t, 0) , (2.18)

contains terms which oscillate with frequencies close to 2ωL. Neglecting these relatively

fast oscillating terms as part of the rotating wave approximation, HI becomes

HI =

�

1

2
ħhΩD(iη)σ− + ħhgσ−c+

�

+H.c.

+ħh(∆+ δ)σ+σ− + ħhν b† b+ ħhδ c†c , (2.19)
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2.2. Adiabatic elimination

where

Ω ≡
2e

ħh
D01 · E

∗
0 (2.20)

denotes as usual the laser Rabi frequency which is also much smaller than the optical

frequencies in Eq. (2.16). Eq. (2.19) is now time independent but using this equation

to analyse the cooling process can lead to many complicated equations. This is due to

the Hamiltonian in Eq. (2.19) describing both the interaction between the particle and

laser and the interaction between the cavity and the particle. The analysis becomes less

complicated when the Hamiltonian reduces to describing a single interaction. As such

the following section shall describe an approximation technique whereby the effective

Hamiltonian will consist of a single interaction.

On a final note a potential real life realisation of this simplified one dimensional

model would consist of confining a single 88Sr+ ion in a linear R.F Paul trap with mo-

tional frequencies ωx,y,z = 2π× (1.45,1.2,0.87) MHz. This trap could then be placed

inside a 5cm long cavity with a finesse F = 2.56 × 104 giving a cavity linewidth of

κ = 2π× 117 kHz. The cavity would have a detuning from the S1/2↔ P1/2 transition

by a few tens of MHz. The transition itself would have a wavelength of λ= 422 nm and

a population decay rate of Γ = 2π× 20.2 nm. The ion trap axis would then be oriented

so that it is aligned with the cavity axis. A 422nm cooling laser oriented perpendicular

to the ion trap axis could then be used to attempt a cooling mechanism. A more detailed

version of this experimental set up has been performed by the Vuletic group [41].

2.2 Adiabatic elimination

The magnitude of ∆ with respect to the other system parameters allows us to make use

of a powerful approximation technique that is commonly applied for quantum optics

systems. Such systems can be described by equations that tell us how populations and

coherences in a system change over time. These equations have a time development

determined by the system parameters. One can then split the equations into 2 groups.

One group of equations will have a time development determined by large parame-

ters and the other by the smaller parameters. The assumption then made is that the

equations whose time development is determined by the smaller parameters rapidly

approach quasi - stationary values. These values can be obtained by setting the left

hand side of these equations to equal zero. By substituting the expressions obtained for

the quasi - stationary values into the remaining equations, the large parameter group

of equations have been removed or "eliminated".
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

Example.

Suppose we have N equations describing a systems dynamics and 1 group of equations

has time development parameters αi whereas the remaining group of equations has time

development parameters βi for (i = 1, . . . N), where αi = α, βi = β and ξ is a coupling

constant.

Ċ1 = ξC2 −αC1

...

Ċl = ξCl+1 −αCl

Ċl+1 = ξCl+2 −βC1

...

ĊN = ξC1 −βCN (2.21)

If α ≪ β we can use the adiabatic approximation by setting the time derivatives of

Cl+1, . . . , CN equal to zero. This will result in the expression Cl+1 = f (Cl+2, . . . CN ).

Substituting this expression into the remaining equations effectively eliminates the large

parameter group of equations.

The long relaxation time or the long lifetime of the small parameter group of equations

allows it to slave the subsystem defined by the large parameter group [86]. In our

model, as we shall see, the rate of change of population in the excited state is gov-

erned by an equation whose time development is determined by ∆. Whereas the rate

of change of population in the ground state is governed by an equation whose time

development is determined by a parameter that is much smaller than ∆.

To reduce Eq. (2.19) from describing 2 interactions to describing a single interaction it

necessary to replace both interactions ( cavity - particle and particle - laser) with a new

single interaction. The best way to do this is to have our new interaction describing a

cavity- laser interaction. This can be achieved by eliminating the equation that describes

the rate of change of population in the excited state. Doing so will mean that the pop-

ulation of the excited state, on the timescale defined by the evolution the ground state

population, will have become negligible. A negligible excited state population can be

established by the presence of a relatively large detuning. It enables us to eliminate the

excited state from the system. We make this approximation by assuming the following

size relations between parameters.

∆ ≫ Ω , δ , ν , g , Γ , κ . (2.22)
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2.2. Adiabatic elimination

The state of the system can be defined using a basis that is the tensor product of the

atomic, phonon number and photon number states, j, m, and n respectively so that

|ψ〉=
1
∑

j=0

∞
∑

m,n=0

c jmn | jmn〉 , (2.23)

Then, from this representation of the state of the system we can determine 2 coupled

differential equations, one for each state of the 2 level system, using

ċ j′m′n′ = −
i

ħh

1
∑

j=0

∞
∑

m,n=0

c jmn〈 j
′m′n′|Hcond| jmn〉 . (2.24)

and where

Hcond = HI −
iΓ

2
σ+σ− . (2.25)

A full derivation of the conditional Hamiltonian Hcond and how it can be found using

the quantum jump approach is the subject of appendix A.1. We now determine the

differential equation corresponding to the excited state ( j = 1) by using (2.19) with

(2.24). These are

iċ1m′n′ =
∑

mn

c0mn

®

1m′n′
�

�

�

�

Ω

2

�

D(iη)σ− + gσ−c+ +H.c
�

�

�

�

�

0mn

¸

+
∑

mn

c0mn

®

1m′n′
�

�

�

�

ν b† b+

�

∆+ δ−
iΓ

2

�

σ+σ− + δc†c

�

�

�

�

0mn

¸

+
∑

mn

c1mn

®

1m′n′
�

�

�

�

Ω

2

�

D(iη)σ− + gσ−c+ +H.c
�

�

�

�

�

1mn

¸

+
∑

mn

c1mn

®

1m′n′
�

�

�

�

ν b† b+

�

∆+ δ−
iΓ

2

�

σ+σ− + δc†c

�

�

�

�

1mn

¸

.(2.26)

Letting the atomic raising and lowering operators act on the electronic states of the

particle in Eq. (2.24) results in unit eigenvalues for some atomic terms and cancels the

remaining ones. The action of the phonon and photon number operators results in their

respective eigenvalues. Overall we find the equation

iċ1m′n′ =
∑

mn

c0mn

®

m′n′
�

�

�

�

Ω

2

�

D(iη)† + gc
�

�

�

�

�

mn

¸

+ c1m′n′

�

mν + δn+∆+ δ−
iΓ

2

�

. (2.27)
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The remaining differential equation corresponding to the ground state ( j = 0) can be

determined by working through the same steps again.

iċ0m′n′ =
∑

mn

c0mn

®

0m′n′
�

�

�

�

Ω

2

�

D(iη)σ− +H.c
�

�

�

�

�

0mn

¸

+
∑

mn

c0mn

®

0m′n′
�

�

�

�

ν b† b+

�

∆+ δ−
iΓ

2

�

σ+σ− + δc†c

�

�

�

�

0mn

¸

+
∑

mn

c1mn

®

0m′n′
�

�

�

�

Ω

2

�

D(iη)σ− +H.c
�

�

�

�

�

1mn

¸

+
∑

mn

c1mn

®

0m′n′
�

�

�

�

ν b† b+

�

∆+ δ−
iΓ

2

�

σ+σ− + δc†c

�

�

�

�

1mn

¸

.(2.28)

Once more the expression reduces to a simpler form which is only dependent on phonon

and photon eigenvalues,

iċ0m′n′ =
∑

mm

c1mn

®

m′n′
�

�

�

�

Ω

2

�

D(iη) + gc†
�

�

�

�

�

mn

¸

+ c0m′n′ (mν + δn) . (2.29)

The complex parameters i (mν + δn+∆+ δ)+ Γ
2

and i (mν + δ) affect the time evolu-

tion of Eq. (2.27) and Eq. (2.29) respectively.

ċ1m′n′ = −i
∑

m

c0mn

®

m′n′
�

�

�

�

Ω

2

�

D(iη)† + gc
�

�

�

�

�

mn

¸

+

�

−
Γ

2
− i (mν + δn+∆+ δ)

�

c1m′n′

ċ0m′n′ = −i
∑

mn

c1mn

®

m′n′
�

�

�

�

Ω

2

�

D(iη) + gc†
�

�

�

�

�

mn

¸

− i (νm+ δn) c0m′n′ .(2.30)

The rate of change of population in the excited state is described by the function c1mn(t)

which evolves in time according to the large parameter i (mν + δn+∆+δ) + Γ
2

. The

rate of change of population in the ground state is described by the function c0mn(t)

which evolves according to (ν m+ δ n). This means

c1nm(t) ∝ e−
Γ

2
t e−i(mν+δn+∆+δ)t and c0nm ∝ ei(νm+δn)t . (2.31)

The complex parameter that defines the evolution of the excited state population clearly

indicates that it will eventually to decay to a stationary state with a decay envelope of

Γ/2. On the other hand the complex parameter that defines the evolution of the ground

state has no decay envelope and so would indicate that it oscillates continuously. In

addition due to condition (2.22) c1mn(t) evolves much more quickly than c0mn(t) and
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2.2. Adiabatic elimination

so reaches a quasi - stationary state on the time scale that c0mn(t) evolves on. Since

the period of time that c1mn(t) takes to reach the quasi - stationary state is so short on

the timescale defined by the time evolution of c0mn(t) then c1mn(t) remains effectively

constant over the duration of c0mn(t) evolution. We can therefore say that

iċ1m′n′ = 0 (2.32)

from which it is possible to derive

c1m′n′ = −
1

2∆− iΓ

∞
∑

m,n=0

c0mn〈m
′n′|

�

2g c +ΩD†(iη)
�

|mn〉 (2.33)

which holds up to first order in 1/∆. We can now just change the primes on the indices

c1mn = −
1

2∆− iΓ

∞
∑

m′,n′=0

c0m′n′〈mn|
�

2g c +ΩD†(iη)
�

|m′n′〉 (2.34)

Substituting this result into the differential equations for c0m′n′ , we obtain the following

equation,

iċ0m′n′ = (mν + δn) c0m′n′ −
1

2∆− iΓ

∑

mn

∑

m′n′

c0m′n′



m′n′
�

�

�Ω
�

D(iη) + 2gc†
�

�

�

�mn

·

×〈mn|
�

2g c +ΩD†(iη)
�

|m′n′〉 . (2.35)

Making use of the closure relation 1 =
∑

mn |mn〉〈mn|, and expanding out the terms in

the circular brackets Eq. (2.34) can now be written as,

iċ0m′n′ =
1

ħh

∑

m′n′

c0m′n′〈m
′n′|HI −

iΓ

2
σ̃+σ̃−|m′n′〉 , (2.36)

where σ̃+σ̃− = 1

4∆2+Γ2

�

D(iη) + 2gc†
��

2g c +ΩD†(iη)
�

are operators that represent

the atomic pauli operators after adiabatically eliminating the excited state. Detailed

expressions for these operators shall be derived in the following section. HI is the

effective interaction Hamilitonian

HI = ħhgeff D(iη)c +H.c.+ ħhν b† b+ ħhδeff c†c (2.37)

with the (real) cavity coupling constant geff given by

geff ≡ −
2g∆Ω

4∆2+Γ2
(2.38)
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

and the effective detuning δeff as defined as

δeff ≡ δ−
4∆g2

4∆2+Γ2
. (2.39)

The interaction Hamiltonian HI in Eq. (2.37) holds up to first order in 1/∆. It no

longer contains any atomic operators. Instead, Eq. (2.37) describes a direct interplay

between phonons and cavity photons. Eq. (2.37) is the canonical Hamiltonian for the

cavity model from which all subsequent derivation, analysis and numerical simulation

shall be based upon. In the following sections it will be used to investigate dynamical

quantities in the form of populations and coherences of phonons and photons.

2.3 Master equation

We are now in a position to launch the first attack on the problem that this thesis is

concerned with, finding a quantum approach to cavity mediated laser cooling. Having

just determined an effective Hamiltonian for the cavity - phonon system (q.v Eq. (2.37) )

we shall now use the quantum optical master equation for atom-cavity systems [15, 16]

to derive a closed set of rate equations. For many of the systems considered in quantum

optics it is not in general possible to find a closed set of rate equations that describe

the dynamics of the systems variables [87]. Many different forms of approximation

techniques have been put to use in the quest to find the elusive closed set. They can

range from small parameter perturbative techniques [88, 89] to small scale versus large

scale energy comparison approximations [90–92]. In our case we use the idea of the

small parameter and the focus of this chapter shall be to understand how the equations

that describe the system’s dynamics behave according to this approximation. In fact this

approximation has a name. It is called The Lamb - Dicke approximation as the small

parameter in question is the same parameter that we already met in Eq. (2.7).

What we wish to obtain is a function that can describe the rate of change of the

phonon number in the system described by the cavity model. A closed set of rate equa-

tions can allow us to do this. Unfortunately one encounters an infinite hierarchy in

attempting to derive a set of rate equations with respect to m ≡ 〈b† b〉. The source

of this problem is the commutator relation between the displacement operator defined

in Eq. (2.12) and m. Using the Lamb-Dicke approximation is one way of stopping an

infinite hierarchy of equations from arising. It has become one of the staples of ion trap

theory and quantum information implementations [87]. In what follows we shall show

how expanding to first order in η allows us to derive a closed set of rate equations.

The rate equations include the variables m, the mean number of phonons in the

system, and n, the mean number of photons in the cavity. All other variables described

by the equations are coherences. The desired function that describes the rate of change
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2.3. Master equation

of phonon number can then be obtained by solving the closed set of rate equations.

Expanding to first order in η as we shall see will result in a set of 14 coupled first order

differential equations. Such a set of coupled equations must be solved numerically as

finding a solution involves determining the roots of a 14 degree polynomial otherwise

known as the characteristic polynomial of a 14 × 14 matrix. An analytic solution is

also possible with the aid of further approximation. Assuming that the mean phonon

number m evolves on a much slower time scale than all other expectation values, we

can use the approximation of adiabatic elimination to set equal to zero all rate equations

that evolve on the faster time scale as explained in section (2.2). This leaves us with

a single effective cooling equation in the variable m. As a result we obtain the cooling

rate and stationary state phonon number as a function of the system parameters. The

assumption of the mean phonon number moving slower than the other expectation

values will be checked in later sections (q.v sec. 4.2, app. B.2 and app.B.3).

A necessary condition for the use of the Lamb - Dicke approximation as described

in subsection (2.1) is that the displacement x of the particle is confined to within one

wavelength of the laser. To justify this condition we suppose the particle has already

been cooled enough to ensure that it remains in the vicinity of its equilibrium position

R= 0. More concretely, we assume in the following that the displacement x of the par-

ticle is confined to within one wavelength of the cooling laser. Then kL · x in Eq. (2.11)

is much smaller than one, and the Lamb-Dicke approximation with

η ≪ 1 (2.40)

can be applied. This means, Eq. (2.12) simplifies to

D(iη) = 1− iη(b+ b†) . (2.41)

Substituting this into Eq. (2.37), we finally obtain the interaction Hamiltonian

HI = ħhgeff c − iħhηgeff (b+ b†)c +H.c.+ ħhν b† b+ ħhδeff c†c (2.42)

which contains cavity interactions, the phonon-photon interaction, the phonon energy

term, and a level shift. Next we must consider the rest of the story as up to now we

have only described a system whose energy is conserved. In other words there has been

no attempt to use the atomic and photon operators to describe how the system loses

energy through the cavity mirrors or by spontaneous emission from the excited state.

This we shall now do.

As discussed previously in Section 2.2 the effective Hamiltonian in Eq. (2.37) no

longer contains any atomic operators. To account for the effect of spontaneous emission

we will use the so called Liouvillian terms of the master equation which do contain
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

atomic operators. The master equation also accounts for dissipation from the cavity

through the loss of photons from the cavity mirrors. It is the equation that describes the

evolution of the state of the system accounted for by the density operator ρ ≡ |ψ〉〈ψ|

and has the the form

ρ̇ = −
i

ħh

�

H,ρ
�

+Lpar(ρ) +Lcav(ρ) , (2.43)

where Lcav(ρ) is the Liouvillian that describes the loss of cavity photons from the cavity

system. Defining κ to be the cavity decay rate or the rate at which photons are lost from

the cavity then has the following form Lcav(ρ).

Lcav(ρ) =
1

2
κ
�

2 cρc† − c†cρ −ρc†c
�

. (2.44)

The Liouvillian for the particle must also account for the angular distribution of spon-

taneous emission which quantifies the degree of randomness in the direction of the

emited photon. This is achieved when the Liouvillian is written in the following form

where N(ζ) ≡ 1+ |d3|
2 +
�

1− 3|d3|
2
�

ζ2 is the factor that represents the angular dis-

tribution of spontaneous emission and d3 is the normalised component of the dipole in

the z direction.

Lpar(ρ) =
3Γ

8

∫ 1

−1

dζN(ζ)σ−D(iηζ)ρD(iηζ)†σ+ −
Γ

2
(σ+σ−ρ+ρσ+σ−)(2.45)

A detailed derivation of Lpar(ρ) can be found in apps. A.1 and A.2. Having already

imposed the conditions of Eq. (2.22) to justify the adiabatic elimination of the electronic

states of the particle which then resulted in the effective Hamiltonian Eq. (2.37) we

must also consider the Liouvillian part of the master equation as this will also be affected

due to the presence of the atomic operators. We must use the relationship obtained in

Eq. (2.34) to determine the relationship that expresses the atomic operators in terms of

the displacement operators and the photon operators. This can be achieved by firstly

writing Eq. (2.34) in the following way and ’cleverly’ adding zero.

〈1m′n′|ψ〉 = −
1

2∆− iΓ

∞
∑

m,n=0

c0mn〈0m′n′|
�

2g c +ΩD†(iη)
�

|0mn〉

−
1

2∆− iΓ

∞
∑

m,n=0

c1mn〈0m′n′|
�

2g c +ΩD†(iη)
�

|1mn〉 (2.46)

Next we left-multiply both sides of Eq. (2.46) by |0m′n′〉 and sum over all m′n′ on both
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2.4. Analysis of the cooling process

sides.

∞
∑

m,n=0

|0m′n′〉〈1m′n′|ψ〉 = −
1

2∆− iΓ

∞
∑

m,n=0

∞
∑

m,n=0

|0m′n′〉〈0m′n′|
�

2g c +ΩD†(iη)
�

×
�

c0mn|0mn〉+ c1mn|1mn〉
�

(2.47)

Then using the completeness relationship 1 =
∑

mn |mn〉〈mn| and the definition of |ψ〉

from Eq. (2.23) we find that Eq. (2.47) simplifies to the following neat relationship.

σ−|ψ〉 = −
1

2∆− iΓ

�

2g c +ΩD†(iη)
�

|ψ〉. (2.48)

Using the relationship of Eq. (2.48) it is easy to see that the first term in the Liouvillian

of Eq. (2.45) is proportional to 1/∆2.

σ−ρ̃σ+ =
1

4∆2+Γ2

�

2g c +ΩD†(iη)
�

ρ̃
�

2g c† +ΩD(iη)
�

(2.49)

and here ρ̃ = 3Γ/8
∫ 1

−1
dζN(ζ)D(iηζ)ρD(iηζ)†. In a similar manner the second term

in Eq. (2.45) is proportional to 1/∆2. The conditions of Eq. (2.22) ensures that the

prefactor of 1/∆2 makes the expectation values that can be derived from the Liouvillian

of Eq. (2.45) so small as to be negligible in comparison to all the expectation values in

the rate equations. In this way it is justifiable to neglect the Lpar Liouvillian term in

Eq. (3.21). So after the adiabatic elimination of the electronic states of the particle, the

only relevant decay channel in the system is the leakage of photons through the cavity

mirrors. We then find that Eq. (3.21) simplifies to the following form.

ρ̇ = −
i

ħh

�

HI,ρ
�

+
1

2
κ
�

2 cρc† − c†cρ −ρc†c
�

(2.50)

with HI as in Eq. (2.37). Finally we have the master equation to describe the dynamics

of our cavity system.

2.4 Analysis of the cooling process

We now have everything we need to extract the information we seek to describe the

cavity systems cooling dynamics. This is exactly why the master equation ρ̇ is so pow-

erful as it contains all the information about the systems dynamics. In section 2.3 we

talked about finding a function to describe the rate of change of the phonon number.

We can now do so by using Eq. (2.50) to derive the aforementioned set of 14 rate equa-
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

tions with respect to the phonon number m. From these equations, we can calculate

the stationary state phonon number mss and the effective cooling rate γ as a function

of the experimental parameters η, geff, κ, ν , and δeff. The objective of this section is to

obtain an analytic solution for the special case where the cavity decay rate κ and the

phonon frequency ν are both relatively large but still both much smaller than ∆. In this

situation then

κ, ν ≫ ηgeff . (2.51)

In section 2.2 we demonstrated how a set of coupled equations can be split into 2

groups according to the relative size of their time development parameters. The group

whose time development depended on the value of large parameters could then be

adiabatically eliminated. In the situation just described by the conditions in Eq. (2.51)

we can apply the adiabatic elimination approximation with respect to the timescales

defined by these conditions. As we shall see the mean phonon number m evolves in this

case on a much slower time scale than all other expectation values which are included

in the cooling equations. The latter can hence be eliminated adiabatically from the time

evolution of the system. We shall now determine the set of coupled equations.

2.4.1 Cooling equations

The next equation that we will introduce is without a doubt the most useful tool that

has been brought to bear in the development of the quantum approach that we have

taken to investigate the mechanism of cavity based laser cooling. Indeed it is so useful

that we will apply it in all three parts of this thesis. In fact it is quite simple to write

down. The definition of the expectation value of an operator is 〈A〉= Tr(Aρ) so the time

derivative of the expectation value of an operator A equals

˙〈A〉 = Tr(Aρ̇) . (2.52)

Then using the master equation in Eq. (2.50) and the cyclic property of the trace we

find the generalised rate equation

〈Ȧ〉 = −
i

ħh


�

A, HI

��

+
1

2
κ 〈2 c†Ac − Ac†c − c†cA〉 (2.53)

from which we can generate our closed set of rate equations. Using the commuta-

tor relations in Eq. (2.3) and the interaction Hamiltonian in Eq. (2.42) and applying

Eq. (2.53) to the mean phonon number m = 〈b† b〉 we find that we need to only con-
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2.4. Analysis of the cooling process

sider the mean photon number n= 〈c†c〉, and the following coherences

kx = i〈b− b†〉 , ky = i〈c − c†〉 ,

ku = 〈b+ b†〉 , kw = 〈c + c†〉 ,

k1 = 〈(b+ b†)(c+ c†)〉 , k2 = i〈(b+ b†)(c − c†)〉 ,

k3 = i〈(b− b†)(c + c†)〉 , k4 = 〈(b− b†)(c − c†)〉 ,

k5 = 〈c
2 + c†2〉 , k6 = i〈c2 − c†2〉 ,

k7 = 〈b
2 + b†2〉 , k8 = i〈b2 − b†2〉 (2.54)

to obtain a closed set of differential equations. So on substituting all 14 expectation

values into Eq. (2.53) we find the rate equations

k̇x = −2ηgeff ky+ ν ku ,

k̇y = 2geff+ δeff kw −
1

2
κ ky ,

k̇u = −ν kx ,

k̇w = 2ηgeff ku −δeff ky−
1

2
κ kw (2.55)

and

ṅ = geff ky+ηgeff k1 − κn ,

k̇1 = 2ηgeff

�

k7 + 2m+ 1
�

− ν k3 − δeff k2 −
1

2
κ k1 ,

k̇2 = 2geff ku + ν k4 + δeff k1 −
1

2
κ k2 ,

k̇3 = −2ηgeff (k6 − k8) + ν k1 + δeff k4−
1

2
κ k3 ,

k̇4 = −2geff kx− 2ηgeff (k5− 2n− 1)− ν k2 − δeff k3 −
1

2
κ k4 ,

k̇5 = −2geff ky+ 2ηgeff k1 − 2δeff k6 − κ k5 ,

k̇6 = 2geff kw + 2ηgeff k2 + 2δeff k5 − κ k6 ,

k̇7 = −2ηgeff k4 − 2ν k8 ,

k̇8 = −2ηgeff k2 + 2ν k7 , (2.56)

while

ṁ = ηgeff k4 . (2.57)

Notice that these differential equations, the cooling equations, have been derived with-

out further approximations.
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Chapter 2. Cavity Mediated Cooling within the Lamb-Dicke Approximation

2.4.2 Stationary state phonon number

Having found 14 rate equations we can now calculate an expression for the stationary

state by assuming the existence of such a state and setting the right hand side of the

above cooling equations equal to zero. Doing so, we find that Eq. (2.55) yields

kss
x = 0 , kss

y =
4geffκν

µ3
, kss

u =
8ηg2

eff
κ

µ3
,

kss
w =

8geff(4η
2 g2

eff
− δeffν)

µ3
(2.58)

with the cubic frequency µ3 defined as

µ3 ≡ ν(κ2 + 4δ2
eff
)− 16η2 g2

eff
δeff . (2.59)

Moreover, we obtain the stationary state values

nss =
η2 g2

eff
(κ2 + 4ν2)

2δeffµ
3

+
4g2

eff
ν2(κ2 + 4δ2

eff
)

µ6

−
128η2g4

eff
νδeff

µ6
+

256η4g6
eff

µ6
,

kss
1 =

ηgeffκ(κ
2 + 4δ2

eff
)

2δeffµ
3

−
64ηg3

eff
κνδeff

µ6

+
256η3g5

eff
κ

µ6
,

kss
2 =

ηgeff(κ
2+ 4δ2

eff
)

µ3
+

32ηg3
eff
κ2ν

µ6
,

kss
3 =

ηgeff

δeff

, kss
4 = kss

8 = 0 ,

kss
5 = −

8g2
eff
ν2(κ2 − 4δ2

eff
)

µ6
+
η2 g2

eff
(κ2 − 4δ2

eff
)

δeffµ
3

−
256η2g4

eff
νδeff

µ6
+

512η4g6
eff

µ6
,

kss
6 = −

32g2
eff
κν2δeff

µ6
+

4η2 g2
eff
κ

µ3
+

128η2 g4
eff
κν

µ6
,

kss
7 =

η2 g2
eff
(κ2 + 4δ2

eff
)

νµ3
+

32η2 g4
eff
κ2

µ6
, (2.60)
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and most importantly the expression for the steady state phonon number

mss =
κ2 + 4δ2

eff

16νδeff

+
η2 g2

eff
(κ2 − 8ν2+ 16νδeff + 4δ2

eff
)

2νµ3

+
ν(κ2+ 4δ2

eff
)(ν − 2δeff)

4δeffµ
3

+
16η2 g4

eff
κ2

µ6
. (2.61)

These equations can be checked easily by substituting them back into Eqs. (2.55)–

(2.57).

In this particular cavity model we are considering the parameter regime of a tightly

confined particle inside a relatively leaky optical cavity described by Eq. (2.51). This

parameter regime is consistent with the Lamb-Dicke approximation in Eq. (2.40). Cal-

culating mss up to second order in η2 correctly would require us to go beyond the

current first order Lamb-Dicke approximation and to take terms proportional to η2 in

the system Hamiltonian into account. The above expression for the stationary state

phonon number hence applies only up to first order in η. Taking this into account,

Eq. (2.61) simplifies to

mss =
κ2 + 4(ν − δeff)

2

16νδeff

. (2.62)

Here we must also note that we are considering δeff to be positive. Eq. (2.22) tells

us that the detuning ∆ is large in relation to g and δ. Since δeff ≡ δ −
4∆g2

4∆2+Γ2 then

δeff will be positive if δ is positive. Fig. 2.3 shows that δ = ωc −ωL. So if δ < 0

then ωL >ωc. In this case the particle will favour transitions to higher vibrational trap

states which corresponds to heating. On the excitation spectrum of the particle in the

strong confinement regime these transitions correspond to the so called blue detuned

frequencies located to the right of the carrier resonance. In our analysis we will be

considering the situation when ωL < ωc so that δ > 0 and δeff is positive. In this case

the particle will favour transitions to lower vibrational trap states and hence cooling.

Since Eq. (2.51) does not pose a condition on the size of the effective detuning δeff,

we can find a value for this parameter that will minimise the stationary state phonon

number mss in Eq. (2.62). This value will be in the form of an expression found by

the usual means of minimising a function by differentiating the function defined by mss

with respect to δeff, setting the resulting expression equal to zero and solving for δeff.

Calculating the derivative then of mss with respect to δeff we find that the optimal

choice for δeff is

δeff =
1

2

p

κ2 + 4ν2 . (2.63)

In the parameter regime which is the most interesting from an experimental point of
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Figure 2.4: Logarithmic contour plot of the stationary state phonon number mss in

Eq. (2.61) as a function of δeff and ν for η = 0.1 and geff = 0.0001κ. The result is in

very good agreement with the simpler expression in Eq. (2.62).

view, i.e. in the case of relatively small phonon frequencies ν (weak confinement regime

κ≫ ν), the effective detuning in Eq. (2.63) becomes

δeff =
1

2
κ . (2.64)

Substituting this detuning into Eq. (2.62), we obtain the stationary state phonon num-

ber

mss

δeff=
1

2
κ
=

κ

4ν
(2.65)

which is in good agreement with Figure 2.4. To see this more clearly we calculate some

values for mss using Eq. (2.65) in the following example.
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Figure 2.5: Contour plot of the stationary state phonon number mss in Eq. (2.61) as

a function of δeff and ν for the same η and geff as in Figure 2.4 but for much larger

phonon frequencies ν . The result is again in very good agreement with Eq. (2.62).

Example. We can use Eq. (2.65) to find values for mss when δeff = 1/2κ. Suppose we

consider the following values for ν ,

ν = 0.02κ, 0.04κ, 0.06κ, 0.09κ. (2.66)

Then using Eq. (2.65) we find that the values for mss are respectively

mss = 12.5, 6.25, 4.17, 2.78 . (2.67)

Refering to Fig. 2.4 we see that these values of mss correspond quite well to the relevant

values for ν on the vertical line for δeff .

In the other extreme case, i.e. when the phonon frequency ν is much larger than the

cavity decay rate κ (strong confinement regime), the effective detuning in Eq. (2.63)

simplifies to

δeff = ν (2.68)

which corresponds to

mss
δeff=ν

=
κ2

16ν2
. (2.69)

This result is confirmed by Figure 2.5 which considers much larger phonon frequencies
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ν than Fig. (2.4). Again to illustrate the more simpler version of Eq. (2.69) we use it to

calculate some values for mss in the following example.

Example. Taking δeff = ν we can use Eq. (2.69) to find values for mss. We consider the

following values for ν .

ν = 10κ, 20κ, 40κ, 60κ. (2.70)

These result in very small and very close in value results for the steady state which are

respectively given by

mss = 0.000625, 0.00015625, 0.0000390625, 0.0000173611 . (2.71)

Looking at Fig. (2.5) we can see that all these values of mss line up almost exactly on

the diagnonal ν = δeff which is of course what we would expect for the values of the

steady in the strong confinement regime defined by Eq. (2.69).

Cooling to very low temperatures means minimising the stationary state phonon num-

ber. As we have just seen this is limited by the relative size of the phonon frequency

ν with respect to the cavity decay rate κ. Comparing the two choices of effective de-

tunings δeff in Eqs. (2.64) and (2.68), we find that on the one hand we must have the

cavity decay rate κ much smaller than the phonon frequency ν to minimise the final

number of phonons in the system (strong confinement regime). In this case the cor-

responding stationary state phonon number mss
δeff=ν

will be found to be approximately

given by κ2/16ν2. On the other hand however, if κ is much larger than ν (weak con-

finement regime), one should choose δeff =
1

2
κ to minimise the final phonon number

since in this case mss

δeff=
1

2
κ

equals κ/4ν to a very good approximation. Comparing the

explicit analytical expressions for mss

δeff=
1

2
κ

and mss
δeff=ν

, we find that

mss

δeff=
1

2
κ
=

Æ

mss
δeff=ν

(2.72)

for a wide range of experimental parameters. It is easy to see from this comparison and

the above examples that in strong confinement regime when κ ≪ ν the final phonon

number mss
δeff=ν

will always be less than one and in the weak confinement regime when

κ≫ ν the final phonon number will be greater than one. Clearly when the cavity system

is operated in the strong confinement regime a lower steady state will be reached than

in the weak confinement regime. However when the trapped particle cannot be so

strongly confined that it is not possible to cool to phonon numbers below one, it is

better to choose δeff =
1

2
κ than choosing δeff = ν since in this case

mss

δeff=
1

2
κ
=

Æ

mss
δeff=ν

< mss
δeff=ν

. (2.73)
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Figure 2.6: The above figures show the excitation spectrum of particle for making the

red sideband transition which is quanrified by the transition rate A−. The first figure

shows the case of weak confinement whereby κ ≫ ν and the resonance width is κ.In

this instance optimal cooling occurs at δeff = κ/2 is exactly at the half width of the

resonace. The second figure shows the case of strong confinement where κ≪ ν . Here

we can clearly see the resolved sidebands at δeff = 0,ν .

So whenever the endpoint of the cooling process is such that the final phonon number

is not less than one, choosing the detuning δeff different from the phonon frequency ν ,

as it has been suggested in Refs. [16–19], yields a significant enhancement of the cavity

cooling process.

Discussion

To gain a clearer picture of the cooling dynamics it shall be instructive to look at the exci-

tation spectrum of the particle in the cavity. This spectrum can be quantified by the tran-

sition rate A− that tells us about the process of the particle losing a phonon as it makes

the transition |0, m〉 → |1, m−1〉. As pointed out in the introduction (q.v. Eq. (1.1)) the

cooling can be expressed in the form of transition rate notation. As we shall see in the

following sections the cooling rate can be expressed as γ =
4η2κg2

eff

κ2+4(δeff−ν)2
−

4η2κg2
eff

κ2+4(δeff+ν)
2 .

If we follow the lead of previous authors [10, 11, 13, 20] we can determine the form of

the lowering transition rate from the cooling rate in the transition rate notation.

A− =
4η2κg2

eff

κ2 + 4(δeff − ν)2
+

4η2κg2
eff

κ2 + 4(δeff)
2

(2.74)

Fig. 2.6 illustrates the different behaviour of the lowering transition rate for both the

weak and strong confinment regimes respectively. However, the hierarchy of motional

states means that the particle can couple to several excited states. Thus a series of res-

onances can be excited by the detuning δeff at intervals of the trap frequency ν . The

spectral resolution of the resonances depends on the relationship between ν and κ.

The first picture in Fig. 2.6 shows the resonance curve for the weak confinement regime

which has a resonance width of κ. All states are excited whose transition frequencies
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fall inside this curve. The halfwidth at δeff = κ/2 is the point on the curve that will op-

timise the probability of the red sideband transition occuring. This behaviour is clearly

illustrated in Fig. 2.4. Take the vertical line at δeff = 0.1κ. Then between ν = 0.02κ

and ν = 0.1κ mss changes steeply from 32.5 to 12.5. But if we take the vertical line

at δeff = 0.5κ then between ν = 0.04κ and ν = 0.1κ mss only varies slightly from 6.5

to 2.5 thus indicating the optimality of the κ/2 detuning. The situation changes when

we look at the strong confinement case. In Fig. 2.6 we see in the second picture two

resonance peaks. These peaks correspond to the carrier transition (|0, m〉 → |1, m〉) and

the red sideband transition (|0, m〉 → |1, m−1〉). The red sideband here is resolved and

so the detuning can be tuned to this frequency thus selectively driving the transitions

between the vibrational states |0, m〉 → |1, m− 1〉. Again this behaviour can be clearly

seen in Fig. 2.5. The line for which δeff = ν is actually the diagonal in the diagram

and every point that lies along this line is lower than the points on lines that are not

diagonal from the bottom left hand corner thus indicating that δeff = ν is the optimal

choice for minimising mss. In addition as the value of ν increases, the contours have

a wider spread and the change in mss becomes less gradual whilst at the same time

remaining below 1. This shows that in the strong confinement regime when ν ≫ κ the

steady state reaches the ground state and remains there for a large range of parameter

values.

2.4.3 Initial state

The next part of the cooling analysis will require us to determine the initial state of the

cavity model in Figure 2.1. To do so we assume that the cooling laser is turned on at

t = 0. We also assume that the particle does not experience any other cooling processes

and Ω = 0. So our initial state corresponds to the situation when the laser is not on.

In this case geff also becomes zero due to Eq. (2.38). Then our effective Hamilitonian

of Eq. (2.37) reduces to just the ħhν b† b and ħhδeffc
†c terms. Taking this into account we

find that the right hand side of the cooling equations (2.55) and (2.56) become zero,

which corresponds to a state with all coherences and the cavity photon number being

equal to zero, i.e.

n(0) = ka(0) = ki(0) = 0 (2.75)

for a = x, y,u,w and i = 1, ..., 8, while there can be any mean initial number of phonons

m in the vibrational mode of the particle. This initial condition is consistent with the

particle being trapped which means that it is located around the centre of a trap and

that it has no initial momentum away from its equilibrium position. The first of these

two statements implies ku(0) = 0 and the second one implies kx(0) = 0.
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2.4.4 Cooling dynamics

As we discussed at the beginning of this section only one of the variables in the above

cooling equations, namely the mean phonon number m, evolves on a relatively slow

time scale. This then allows us to calculate the effective cooling rate γ, as all other

variables, i.e. the mean photon number n and the coherences, evolve on the fast time

scale given by ν and κ. In the parameter regime of Eq. (2.51), these can then be elimi-

nated adiabatically from the time evolution of the system, leaving us only with a single

effective cooling equation. Doing so and setting the time derivatives in Eqs. (2.55) and

(2.56) equal to zero and assuming that we are at the beginning of the cooling process

where m≫ 1, we find

k4 = −
64ηgeffνκδeff

(κ2+ 4ν2)2+ 8δ2
eff
(κ2 − 4ν2)+ 16δ4

eff

m . (2.76)

This equation holds up to first order in ηgeff and is consistent with the Lamb-Dicke

approximation introduced in Section 2.3. Eq. (3.39) shows that the photon-phonon co-

herence k4 is essentially the cooling rate of the trapped particle. Substituting Eq. (2.76)

into Eq. (2.57), we obtain the final cooling equation

ṁ = −γm (2.77)

with the cooling rate γ given by

γ =
64η2 g2

eff
νδeffκ

(κ2 + 4ν2)2 + 8δ2
eff
(κ2 − 4ν2) + 16δ4

eff

. (2.78)

The standard solution to this differential equation is of course

m(t) = e−γt m(0) . (2.79)
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Remark

We must point out that the cooling rate is of order η2 while our calculations only con-

sider expressions up to order η in the Lamb-Dicke limit. In this way it is then possible

that our expression for γ may not be complete as there may be other terms that could

contribute to the cooling rate when calculating expressions up to order η2 in the Lamb-

Dicke limit. In fact we will explore this deficiency further in the following chapters and

show that it necessary to consider terms to second order in η. However our steady state

and cooling rate expressions agree with the results of previous authors and we will show

that going to second order in η does in fact yield the same expressions for mss and γ

as those found here in second order. This apparent paradox will be explained later by

showing how the time averaged values for certain coherences are equivalent to their

stationary state values even though in first order no such stationary state values exist.

We now have an approximate analytic solution of the cooling equations. It is quite

simple as it is literally a decreasing exponential function which in our case describes

the reduction in the number of phonons i.e. cooling. We can also numerically integrate

Eqs. (2.55)–(2.57) to find the behaviour of the function for m(t). Figures 2.7 and 2.8

show exacly this. In fact both figures compare the full set of cooling equations (solid

lines) to the exponential cooling process with the rate γ in Eq. (2.78) (dashed lines) and

both show that γ is a very good approximation for the cooling rate as long as the actual

phonon number m is much larger than one. We see that it is only as m approaches its

stationary state value that the exponential reduction of m slows down. The figures also

show that as the value of ν/κ increases the speed of the cooling process increases.

Again we can examine our choice of δeff where the phonon frequency ν is either much

smaller or much larger than the cavity decay rate κ as this will also determine the rate

at which the system reaches its stationary state. As we have already seen in Subsection

2.4.2 when ν is much smaller than the cavity decay rate κ we need to choose δeff =
1

2
κ

(q.v Eq. (2.64)) so as to minimise the stationary state phonon number. When we do

this we also change the rate at which the system cools which is reflected in Eq. (2.78)

simplifing to

γδeff=
1

2
κ =

8η2 g2
eff
νκ2

κ4 + 4ν4
. (2.80)

Going to the other extreme when ν is much larger than the cavity decay rate κ we need

to choose δeff = ν (q.v Eq. (2.68)) to minimise the stationary state phonon number.

Again this choice of δeff changes the rate at which the system cools. It equals

γδeff=ν
=

64η2 g2
eff
ν2

κ(κ2 + 16ν2)
. (2.81)
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Figure 2.7: Logarithmic plot of the time evolution of the mean phonon number m

for η = 0.1, geff = 0.0005κ, and δeff =
1

2
κ for two different phonon frequencies ν .

The solid lines have been obtained from a numerical solution of the cooling equations

(2.55)–(2.57) for the initial conditions in Eq. (2.75) and m(0) = 2500. The dashed lines

assume an exponential cooling process with the rate γ in Eq. (2.78). Both solutions

coincide very well when m is far away from its stationary state value.

When we compare the explicit analytic expressions for the cooling rates γδeff=ν
and

γδeff=
1

2
κ of Eq. (2.80) and (2.81) respectively we find that

γδeff=
1

2
κ

γδeff=ν

=
κ

8ν
. (2.82)

Looking at this in another way, choosing δeff =
1

2
κ instead of δeff = ν yields a speed up

of the cooling process as γδeff=
1

2
κ is about κ/8ν times larger than γδeff=ν

when κ > 8ν .

This is confirmed by Figures 2.7 and 2.8 which show that choosing δeff =
1

2
κ in the

weak confinement regime not only leads to a lower stationary state phonon number

but also to a significant speed up of the cooling process. This detuning is also the

better choice in order to minimise the stationary state phonon number in the weak

confinement regime. Large cooling rates are important when the purpose of using a

cavity is to avoid spontaneous emission from the particle. In the next section we discuss

the importance of speeding up the cooling process so that spontaneous emission from

the excited state |1〉 remains negligible for a much wider range of single particle-cavity

cooperativity parameters g2/κΓ [93].

Further Discussion

Looking once more at Figs. 2.7 and 2.8 we can see that both feature plots where the

parameters used for ν are less than κ. Thus both these figures reflect the cooling be-
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Figure 2.8: Logarithmic plot of the time evolution of the mean phonon number m for

the same experimental parameters as in Figure 2.7 but with δeff = ν . Again, the solid

lines have been obtained from a numerical solution of the cooling equations (2.55)–

(2.57) for the initial conditions in Eq. (2.75) and m(0) = 2500. The dashed lines assume

an exponential cooling process with the cooling rate γ in Eq. (2.78). Although κ and ν

remain the same, we now observe slower cooling processes with higher stationary state

phonon numbers mss.

haviour of the particle when it operates in the weak confinement regime. As we have

already pointed out using Fig. 2.6, all motional states that are at ν intervals that fall

under the resonance will become excited. Then, when the detuning is set to half the

resonance width the probability of the red sideband transition occuring is optimised.

This can be clearly seen when both Fig. 2.7 and Fig. 2.8 are compared. In Fig. 2.8 the

cooling rate is gradual and more slow than in Fig. 2.7 where the cooling rate is actually

quite fast and results in much smaller values of mss than in Fig. 2.8. This is consistent

with the weak confinement regime and the choice of parameter values for δeff as indi-

cated in Fig. 2.6. The optimal value of δeff = κ/2 was used in Fig. 2.7 and this gave

enhanced cooling rates and lower values of mss than in Fig. 2.8 where δeff = ν was

used.

2.4.5 Avoiding spontaneous emission from the particle

Avoiding spontaneous emission from the excited electronic state |1〉 into free space is

especially important when it comes to the cooling of molecules, where it could result in

the population of states, where the particle no longer experiences the cooling laser. As

briefly mentioned in the introduction, the interaction between a molecule and a cavity

can play an important role in the cooling dynamics of such a system. In this section

we shall elaborate a bit more on the mechanics of this role and use some of our earlier

results to shed some light on understanding what lies behind this mechanism. Then, as
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a final point we shall show how previous work by other authors ties in with our own

deductions.

To begin it will be useful to define the so called cooperativity parameter of the

cavity system ηc = g2/κΓ where the interaction strength between the cavity field and

the atom g is defined as

g ≡
2d

ħh

È

ħhωc

2ε0V
. (2.83)

Here d = |D01| is the dipole matrix element of the atomic transition and V is the volume

of the cavity mode [94] . As we shall see ηc is also the ratio of the spontaneous emission

rate into the cavity to the spontaneous emission rate into free space. One can write ηc

purely as a function of the cavity parameters

ηc =
3Qλ3

c

4π2V
(2.84)

and where Q is the quality factor of the cavity which in our case is Q =ωc/κ, and λc =

2πc/ωc is the wavelength of the cavity field resonant with the atomic transition [94].

Using the definition of the cavity atom interaction strength we find the aforementioned

ratio through the calculation

ηc =
g2

κΓ
=

2d2ωc

ħhε0 L3κΓ
=

2d2Q

ħhε0VΓ
=
Γc

Γ
, (2.85)

where Γc is the spontaneous emission rate into the cavity

Γc =
2d2Q

ħhε0V
. (2.86)

Clearly then when ηc < 1 the probability for the light to be scattered into free space is

the dominant effect making it more likely that in the case of molecular cooling the states

where the molecule does not see the cooling laser will become populated. Thus for the

case of molecular cooling it will be useful to estimate the parameter regime where

spontaneous emission from the particle into free space remains highly unlikely. In the

Lamb-Dicke limit and the parameter regime given by Eq. (2.22), Eq. (2.34) shows that

the population in |1〉 scales essentially as Ω2/∆2. We therefore assume in the following

that

γ ≫
ΓΩ2

4∆2
, (2.87)

i.e. that the cooling rate is much larger than the probability density for the spontaneous
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emission of a photon from the particle. For δeff =
1

2
κ and γ as in Eq. (2.80) and when

taking the definition of geff in Eq. (2.38) into account, we see that this condition applies

when

g2

κΓ
≫

κ4 + 4ν4

8η2νκ3
. (2.88)

Since η ≪ 1, the right hand side of this equation is in general much larger than one.

This means, spontaneous emission from the particle is only negligible, when the cavity

is operated in the so-called strong coupling regime. If the cavity decay rate κ is much

smaller than 4ν , one should choose δeff = ν and the cooling rate simplifies to the

expression in Eq. (2.81). In this case, condition (2.87) simplifies to

g2

κΓ
≫

κ2 + 16ν2

64η2ν2
. (2.89)

Since η ≪ 1, we find again that the cavity needs to be operated within the strong

coupling regime.

The Vuletic group and Morigi and co workers have all found that the cooperativity

parameter plays a role in determining the size of the final phonon number [18, 39].

In fact the experiments carried out by the Vuletic group measure scatter rates into the

cavity against scatter rates into free space for an experimental determination of the

cooperativity parameter ηc [41]. Both groups have found an analytic expression of a

similar form for mss which looks like

mss =
κ2

16ν2
+

C

4ηc

�

1+
κ2

16ν2

�

(2.90)

where C is a dimensionless parameter that depends on the cooling geometry. Using

the Vuletic-Morigi form of mss it is easy to see how the cooperativity parameter affects

cooling to the ground state. If Γc ≫ Γ then ηc becomes much larger than 1 and the

Vuletic-Morigi steady state in Eq. (2.90) reduces to the same result we found for mss in

the strong confinement regime (q.v Eq. (2.69)). Also to get this result Vuletic-Morigi

need ηc ≫ 1 which corresponds to the strong coupling regime. This then is consistent

with the deduction we have just made regarding the parameter regime for suppression

of spontaneous emission being the strong coupling regime. On the other hand there

is the situation of moderate coupling when ηc ® 1. In this case Γc ® Γ and we find

that the Vulteic-Morigi final phonon number is proportional to 1/ηc. It is limited by

the value of the cooperativity parameter or mss ∝ η
−1
c . In other words for ηc ∼ 1 the

cooling process becomes a mixture of cavity and ordinary laser cooling.

On a final note we shall briefly explain why the Vuletic-Morigi steady state feature ηc

yet it seems to play no role in our expression for mss in Eq. (2.69). When one relaxes the
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Figure 2.9: Contour plot of mss/mss
δeff=ν

as a function of δeff and ν . This plot has been obtained

using Eq. (2.61) for η = 0.1 and geff = 0.0001κ and shows that choosing the detuning δeff

comparable to κ leads to much lower stationary state phonon numbers when ν ≪ κ.

condition of eliminating the excited state adiabatically in the conditions of Eq. (2.22)

we find Γ dependent corrections to Eqs. (2.55), (2.56), and (2.57). These come from

the previously neglected Liouvillian Lpar(ρ) of Eq. (2.45) calculated to leading order in

∆ that corresponded to the spontaneous emission of the particle.

In conclusion then, using the various definitions of the cooperativity parameter one

can see that the final phonon number and corresponding steady state temperature is

determined by the opposing mechanisms of cooling from photons scattered into the

cavity and heating from the recoil energy created by the photons scattered into free

space.

2.4.6 Comparing δeff = ν with δeff =
1

2
κ in cavity cooling

Previous papers (see e.g. Refs. [16–19]) mainly focus their analysis on cavity cooling

in the strong confinement regime, where one should choose δeff = ν and where it is in

principle possible to cool the trapped particle to phonon numbers well below one. Our

purpose here is to point out that there are three distinct advantages in choosing δeff

differently, i.e. close to 1

2
κ (q.v Eq. (2.63)), when it is experimentally not possible to

enter the strong confinement regime:

1. A reduction of the stationary state phonon number. As already pointed out in

Eq. (4.4.2), mss

δeff=
1

2
κ

equals the square root of the stationary state phonon num-

ber mss
δeff=ν

and is hence significantly smaller than mss
δeff=ν

for a wide range of
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Figure 2.10: Contour plot of γ/γδeff=ν
as a function of δeff and ν for the same parameters as

in Figure 2.9. This plot has been obtained using Eq. (2.78) and shows that that choosing the

detuning δeff comparable to κ leads to a significant speed up the cooling process when ν ≪ κ.

experimental parameters. This result is confirmed by Figure 2.9 which shows

mss/mss
δeff=ν

for relatively small phonon frequencies ν and a wide range of effec-

tive detunings δeff. In order to minimise the stationary state phonon number, one

should choose δeff as in Eq. (2.63).

2. An increase of the cooling rate. Calculating the ratio γδeff=
1

2
κ/γδeff=ν

using Eqs. (2.80)

and (2.80) for fixed values of η, geff, κ, and ν , we find

γδeff=
1

2
κ

γδeff=ν

=
κ

2ν
·
κ2(κ2 + 16ν2)

4κ4 + 16ν4
(2.91)

which scales approximately as κ/8ν , as already pointed out in Eq. (2.82). This

means, choosing δeff close to 1

2
κ results in a significant speedup of the cooling

process. This result is confirmed by Figure 2.10 which shows γ/γδeff=ν
for the

same parameters as in Figure 2.9.

3. Minimising spontaneous emission from the excited electronic state |1〉 of the

trapped particle. This is important, when it comes for example to the cooling

of molecules, where such an emission might populate states, where the particle

no longer experiences the cooling laser. As pointed out in the previous paragraph,

the cooling rate γ is much higher when δeff is close to 1

2
κ. As a consequence, the

restrictions which need to be imposed on the minimum size of the single particle

cooperativity parameter g2/κΓ are therefore much weaker in this case. The re-
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duction of the cooling time might moreover help to balance unconsidered heating

processes which are, for example, due to stray fields.

2.5 Problem with above analysis

It must be pointed out that in all of our previous analyses we made considerable use

of the difference in timescales associated with the evolution of the system’s dynamic

variables. In particular we were able to use the conditions of Eq. (2.51) to find expres-

sions for the quasi-stationary states. This is all well and good as long as such quasi -

stationary states are actually reached by the system. On closer inspection of Eqs. (2.55)

and (2.56) we find that there are 4 equations that evolve on a timescale defined by ν .

In fact if we replace the variables that move on the timescale defined by κ by their quasi

stationary values in these 4 equations we can write them in the form of a single matrix

equation in η
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The matrix equation in this equation has the eigenvalues

{λ1, λ2, λ3, λ4} = {iν , −iν , i2ν , −i2ν} . (2.93)

Clearly the the eigenvalues do not have negative real parts meaning of course that our

4 rate equations in Eq. (2.92) do not evolve to a steady state solution. They fail the

eigenvalue negative real part criteria for stability. Thus there are no quasistationary

states for these equations in zeroth or first order. It is therefore necessary to go to

an order higher in the η parameter to determine whether stationary state solutions do

actually exist.

Taking into account terms in the rate equations that go one order higher in the small

parameter η one would obviously make the Lamb-Dicke expansion to second order in

Eq. (2.41). Doing so then introduces the second order terms into the Hamiltonian for

the system and subsequently all rate equations will change and new coherences will

be formed. This approach has the disadvantage of being unable to choose what new

coherences will emerge as the result of the second order contribution in the Hamilto-

nian. However, there exists another approach to going to second order in the small

parameter which is different to performing a Lamb-Dicke expansion. We shall explore

this approach in the next chapter. We shall see that its advantage lies in its technique
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for using groups of rate equations to determine expressions for cohereneces to a certain

order. Such coherences can then be substituted back into other groups of rate equations

thereby determining another coherence to a required order. Before attempting to use

this approach on the model of the trapped particle in a cavity we firstly test this new

approach within the scenario of the trapped particle interacting with the free radiation

field.

40



Chapter 3

Laser Cooling of Single Trapped

Particle beyond the Lamb - Dicke

Approximation

The chapter shall highlight one of the most important distinctions in quantum mechan-

ics, namely the difference between a fermionic system and a bosonic one. The previous

chapter explored the system of a weakly driven two level system interacting with a

cavity which experiences photon loss. In the weak saturation limit of the laser it was

possible to make the approximation of eliminating the excited state of the 2 level sys-

tem. In this chapter we shall explore the system of the so called free particle. The

term "free particle" is a bit of a misnomer as the system which we wish to investigate

is actually that of a particle confined to a potential which experiences photon loss from

spontaneous emission through interaction with the environment. The description of

free refers to the "free radiation field" in space as opposed to the field within the cavity.

Indeed, from the choice of formalism that describes the confined particle, it is possible

to define commutator relationships that allow us to continue with the rate equation

approach whilst at the same time including the action of a fermionic algebra. To paint

the picture in a different way, using the cavity model of the previous chapter and hav-

ing eliminated the excited state found us working with the bosonic algebra defined by

[b, b†] = 1. In the "free particle" model however we shall find ourselves working not

only with the familiar bosonic algebra but also with an additional fermionic algebra

defined by the operators that describe the 2 level system of the particle.

3.1 Theoretical Model

The free particle model is similar to the cavity model from the previous chapter. The

main difference being obviously no cavity and a description of the effect of the interac-
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Approximation

tion with the environment. Both of these differences combine to make the spontaneous

emission of the particle significant as opposed to this effect being negligible in the

strong coupling regime of the cavity environment. So then, we can begin by describing

the theoretical model and the experimental set up. As already mentioned we have a

confined particle where the particle is driven by a laser field. If the trapping potential

is approximately harmonic [95] we can describe the motional states of the particle by a

harmonic oscillator Hamiltonian. Again we describe the external motion of the particle

as quantised with the annihilation operator b. We now also introduce the model which

allows us to predict the time evolution of the mean phonon number.

3.1.1 The Hamiltonian

Our model of a single particle trapped in a one dimensional potential inside a free

radiation field whose electronic transition is driven by an external laser field can be

written as

H = Helectron +Hnucleus +Hfield +Hdip . (3.1)

The first two terms of the Hamiltonian describe the free energy of the electronic states

and the quantised vibrational modes of the trapped particle. The energy of the free

radiation field surrounding the trapped particle is described by the third term. The

dipole interaction of the electronic states of the particle with both electromagnetic fields

present in the system, which in our case are the laser and the free radiation fields,

are taken into account by the last term. In the following we consider the particle to

be effectively a two level system with ground state |0〉 and excited state |1〉 and the

energies ħhω0, ħhν , and ħhωk denote the energy of a single atomic excitation, of a single

phonon excitation of the quantised vibrational mode of the trapped particle, and of

the modes of the free radiation field, respectively. Here we take into account the free

radiation field. It is the interaction between this field and the particle that causes the

excited state of the particle to spontaneously decay. In the cavity model we adiabatically

eliminated the excited state thereby relinquishing the need to consider spontaneous

decay (c.f. Section 2.3). The first three terms of Eq. (3.1) can then be written as

Helectron = ħhω0σ
+σ− ,

Hnuclei = ħhν b† b ,

Hfield =
∑

kλ

ħhωk a
†
kλ

akλ , (3.2)
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where the operators akλ are the annihilation operator of a photon with wavevector k

and polarisation λ. These operators obey the commutator relation

�

akλ, a
†
kλ

�

= 1 (3.3)

which is the usual commutator relation for bosonic annihilation operators. All other

photon commutators are equal to zero. Next we have a closer look at Hdip, the dipole

Hamiltonian. As previously mentioned, this Hamiltonian describes the dipole interac-

tion of the electronic states |0〉 and |1〉 of the trapped particle with the free radiation

field and the applied laser field. Within the usual dipole approximation1, it can be

written as

Hdip(t) = eD ·
�

Efield(R) + EL(R, t)
�

. (3.4)

As in the previous chapter we denote the electronic charge of the electron as e and the

dipole moment of the particle as D. In fact in this case D is the position operator of the

outer most electron of the particle with respect to its atomic nuclei at position R while

Efield(R) and EL(R, t) denote the electric field of the free radiation and of the laser field

at time t, respectively. Using Eq. (2.5) we find he electric field operators are given by

Efield(R) = i
∑

kλ

È

ħhωk

2ε0 L3
εkλ akλ eik·R +H.c. ,

EL(R, t) = E0 ei(kL·R−ωL t) + c.c. (3.5)

with L3 being the quantisation volume of the free radiation field and εkλ being a unit

length polarisation vector orthogonal to k. Here E0, kL, and ωL are the amplitude, the

wave vector of length kL, and the frequency of the applied laser field.

3.1.2 The displacement operator

Having become familiar with our Hamiltonian friends we are now in a position to un-

derstand the central role played by the dipole Hamiltonian that facilitates the energy

changing process which ultimately results in a cooling mechanism. As pointed out in

the previous chapter, when the recoil energy of the particle is much smaller than the

energy difference ħhν between subsequent trap levels then transitions that change the

vibrational quantum number m by more than 1 are suppressed. This situation occurs if

the extension of the traps ground state wave function is much smaller than the wave-

length of the laser

1This means, we assume that the size of the atom is small compared to the relevant optical wavelength.
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p

〈0|R2|0〉 ≪ λL
p

〈0|(k ·R)2|0〉 ≪ 1 . (3.6)

Hdip features the interaction of both the free radiation field and the laser field with the

particle. However both fields are distinct from each other and as such correspond to

distinct wave vectors. To highlight this distinction in direction between both field it

will prudent to assume different directions for each field. This difference in direction

also contributes to changing the displacement of the particles position. We shall assume

that the incoming laser has the same direction as the quantised motion of the trapped

particle so as to maximise the effect of the cooling laser. Doing so we can establish

the relationship between the wavevector of the laser field and the phonon operators

which we are already familiar with from the previous chapter (c.f. Eq. (2.11))2. Taking

Eq. (2.11) into account, it is easy to see how the laser interaction affects the position

of the particles since the Hamiltonian itself is a function of the particle displacement

operator [97]

D(iη) ≡ e−iη(b+b†) (3.7)

which is a unitary operator with the pairwise consistent relations

D(iη) b D(iη)† = b+ iη ,

D(iη)† b D(iη) = b− iη . (3.8)

The direction of the free radiation field can now be distinguished from kL by defining

its direction in terms of the general wave vector k of length k with the polar coordinates

ϑ and ϕ such that

k = k









sinϑ cosϕ

sinϑ sinϕ

cosϑ









. (3.9)

Then, if we choose the z-axis in the direction of the cooling laser we find that

k ·R = k sinϑ
�

Rx cosϕ+ R y sinϕ
�

+
ηk cosϑ

kL

�

b+ b†
�

, (3.10)

2Notice that Eq. (2.11) applies as long as the trapping potential seen by the atom does not depend on

its respective electronic state. This means, the following calculations apply to a trapped ion, to a single

atom confined in a magneto optical trap, and to single atoms with a so-called magical wavelength [96].

44



3.1. Theoretical Model

where Rx and R y are the x and the y component of the vector R. It should also be noted

that here R is a vector whose z component is an operator and not a number. As such

the Rz component actually represents the position operator of the particle with respect

to the z - direction. Rx and R y are numbers multiplied by the identity and as such can

commute with any operator. From the commutativity property we find that

e−ik·Rρ eik·R = e
−i
ηk cosϑ

kL
(b+b†)

ρ e
i
ηk cosϑ

kL
(b+b†)

. (3.11)

So quantising the motion in the z direction allows us to cancel the displacement opera-

tors defined by the Rx and R y components.

Remark. It is worth mentioning the importance of Eq. (3.10) with respect to the dis-

placements to the particle from the interaction between it and both electromagnetic

fields. Indeed, by choosing the laser direction along the z-axis, Eq. (3.10) reflects the

combined effect of the displacements caused by both the laser and free radiation fields.

The combination of both effects is introduced through the z - component dependence in

the following manner.

k cosϑRz = k cosϑ

r

ħh

2mν

�

b+ b†
�

=
ηk cosϑ

kL

�

b+ b†
�

. (3.12)

Here also we have made use of the relation η/kL =
p

ħh/2mν . Thus the laser

interaction forms part of the recoil contribution due to the free radiation field!

We can now write the Hamiltonian Hdip in Eq. (3.4) as a function of displacement

operators, so that it becomes

Hdip(t) = e
�

D01σ
− +H.c.

�

·

�

E∗0 D(iη)eiωL t

−i
∑

kλ

È

ħhωk

2ε0 L3
εkλ a

†
kλ

D

�

iηk cosϑ

kL

�

e−ik sinϑ[Rx cosϕ+R y sinϕ]

�

+H.c. (3.13)

This equation reflects the coupling that is established by the cooling laser between the

electronic states |0〉 and |1〉 of the trapped particle and its quantised motion. In addition

the coupling to the free radiation field is the origin of spontaneous emission and recoil

effects which limit the final phonon number of the cooling process as we shall see

shortly.
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3.1.3 Interaction picture

Next, we wish to move to an interaction picture that will be more convenient for the

derivation of the master equation. Choosing

H0 = ħhωLσ
+σ− +Hfield (3.14)

with Hfield as in Eq. (3.2) and neglecting relatively fast oscillating terms as part of the

usual rotating wave approximation, the interaction Hamiltonian HI,

HI = U
†
0
(t, 0) (H −H0)U0(t, 0) , (3.15)

becomes

HI =
∑

kλ

ħhgkλσ
−a

†
kλ

D

�

iηk cosϑ

kL

�

e−ik sinϑ[Rx cosϕ+R y sinϕ] ei(ωk−ωL)t

+
1

2
ħhΩD(iη)σ− +H.c.+ ħh∆σ+σ−+ ħhν b† b . (3.16)

Here ∆ denotes the detuning between the laser and the relevant atomic transition and

Ω and gkλ,

Ω =
2e D01 · E

∗
0

ħh
,

gkλ = −ie

r

ωk

2ħhε0 L3
D01 · εkλ (3.17)

are the usual laser Rabi frequency and the atom-field coupling constant.

3.1.4 Spontaneous emission and recoil

Our free particle model is an example of a system - reservoir interaction which can also

be called an open quantum system [98, 99]. Analysis of the energy change in such

systems is governed by the dynamics of the master equation. The state of such systems

can be represented by a density matrix whose evolution is determined by von Neumann

- Liouville equation . Solving the equation requires use of second order perturbation

theory through iterative integration. However validity of the solution is based on the

assumption that the density matrix represents an ensemble of states. Before single par-

ticle systems were experimentally feasible the use of the density matrix approach to

deriving a master equation could be applied to most quantum systems that comprised

many particles. However a density matrix that describes an ensemble of states led to

difficulties when used to describe a system of a single particle. In experiments that

observe photon emission from a large atomic ensemble a density matrix is sufficient to
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describe the observed fluorescence signal as the average over many individual trajecto-

ries. The ensemble description applied to a single particle system meant that probability

densities were being calculated for the emission of any photon at times t1, · · · , tn in a

time interval [0, t]. So the big problem with applying the density matrix formalism to

single particle systems was that many more photons could have been emitted between

times t i . Thus was motivated the need for an approach to describe sequential photon

emissions as otherwise many emission events would be hidden when using a density

matrix approach. Several new methods were developed to account for the situation of

the single particle. [98, 100–102]. The method favoured in our analysis is that used by

Hegerfeld. The method is based upon repeated gedanken measurements of the system

considered. This is achieved by considering the concept of environment-induced mea-

surements in rapid succession at times∆t apart [101]. Here∆t should be much smaller

than the level lifetimes but should also be larger than the inverse optical frequencies.

So

1/ω0≪∆t ≪ 1/Γ . (3.18)

The environment induced measurements on a single two level system can be interpreted

as an ensemble of many 2 level systems each of which has its own quantised radiation

field whereby our 2 level system is a member of the ensemble. Thus the ensemble

represents a collection of different states all of whom can be collectively described by

the appropriate density operator ρ(∆t).

There are 2 distinct parts to this approach. In the periods of time between photon

detections the time development of the state of the atom will now be described by a

so-called Conditional Hamiltonian or Hcond , the condition being that no photons are de-

tected. The first part of this approach involves determining this non-Hermitian operator.

Once a photon is detected the atom "resets" back to its ground state. The second part

of the approach is determining the Reset Operator or R(ρ) which is defined in terms of

the density operator ρ(∆t).

In our system we suppose the state of the laser-driven trapped particle is at t = 0

given by the density matrix ρ, while the free radiation field is in its vacuum state |0〉.

Taking this into account, the density matrix ρ(∆t) of the particle at time ∆t can be

written as [101]

ρ(∆t) = Ucond(∆t, 0)ρ U
†
cond
(∆t, 0) +R(ρ)∆t , (3.19)

where ∆t denotes the typical response time of the environment, i.e. the typical time it
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takes the environment to absorb a photon from the free radiation field, and where

Ucond(∆t, 0) = 〈0|UI(∆t, 0) |0〉 ,

R(ρ) = lim
∆t→0

1

∆t

∑

kλ

〈1kλ|UI(∆t, 0) |0〉ρ 〈0|U†
I (∆t, 0) |1kλ〉 . (3.20)

The first term in Eq. (3.19) describes the subensemble with no photon emission in

∆t. The second term in this equation is the unnormalised state of the subensemble

after emission and then absorption by the environment of the respective photon in ∆t

[103]. Taking the time derivation of ρ(∆t) on the coarse grained time scale ∆t into

account, we obtain the usual master equation

ρ̇ = −
i

ħh

�

Hcond ρ−ρH
†
cond

�

+R(ρ) (3.21)

in Lindblad form. As we have already stated a second order perturbation is used to

solve the von Neumann - Liouville equation and indeed a similar approach is used to

calculate Hcond and R(ρ). Since the displacement operator D(iη) is a unitary operator,

i.e.

D(iη)D(iη)† = D(iη)†D(iη) = 1 , (3.22)

the derivation of the conditional Hamiltonian Hcond remains exactly the same as in the

case, where the motion of the particle is not quantised. This means, we find that

Hcond =
1

2
ħhΩD(iη)σ− +H.c.+ ħh∆σ+σ− + ħhν b† b−

i

2
ħhΓσ+σ− , (3.23)

where the spontaneous decay rate Γ of the excited electronic state |1〉 is given by

Γ =
e2ω3

0

3πε0ħhc3
|D01|

2 . (3.24)

The displacement operator D
�

iηk cosϑ

kL

�

is, however, featured in the reset operator and

represents the effect of recoil from spontaneous emission. The appearance of the dis-

placement operator in the Liouvillian part of the master equation is a direct consequence

of Eq. (3.16) that represents quantising the external motion of the particle. A detailed

derivation of this expression based on quantum optical standard approximations can

be found in App. A.2. Proceeding as described there and using first order perturbation

theory to evaluate UI(∆t, 0) in Eq. (3.20), we find that

R(ρ) =
3Γ

8

∫ 1

−1

dζσ−D(iηζ)ρ D(iηζ)†σ+
�

1+ |d3|
2+
�

1− 3|d3|
2
�

ζ2
�

(3.25)
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where d3 denotes the z-component of the normalised dipole vector D01/|D01|. The

above reset operator is different from the one often used in the literature [10–12].

The reason for this is that the authors of these references consider only the case where

d3 = 0 which is well justified for certain atomic level schemes and laser configurations.

Remark. In our calculation of the conditional Hamilitonian Hcond no specific direction

was chosen for the dipole vector. It is quite remarkable that in defining a general vector

for D01/|D01| it is possible to express the d1 and d2 degrees of freedom in terms of just the

single d3 degree of freedom which then vanishes in the calculation Γ (c.f. Eq. (A.32)).

Actually it’s not that remarkable when one considers the polarisations of the driving

laser. Suppose that the components of the normalised dipole (d1, d2, d3) are aligned

with the cartesian axes (x , y, z) respectively. Then, using a similar argument to that

shown previously for the cavity in section 2.1 and Fig. 2.2, if the polarisation of the

incident laser is in the x direction, then the induced dipole will oscillate in the x -

direction. Since the dipole does not oscillate in the z direction then d3 = 0.

The above reset operator R(ρ) is consistent with the reset operator of a free particle

whose motion of the particle is not quantised. In this case, the displacement operator

D(iη cosϑ) becomes a number and it becomes straightforward to perform the integra-

tion over ζ. The result is indeed R(ρ) = Γσ−ρσ+ which is independent of d3, as it

should.

3.2 Cooling equations

So now we come to our favourite part of the analysis of the free particle model from

which we can find the differential equations of the expectation values like those that

we encountered in Section 2.4.1. However in the free particle model as was already

pointed out the effect of spontaneous emission is no longer negligible as the trapped

particle experiences the interaction with the free radiation field. As such our gener-

alised rate equation will have a different form which accounts for the presence of the

displacement operator D in Eqs. (3.23) and (A.55). The task of deriving our rate equa-

tions which include the effects of the displacement operator is not as straightforward as

the work involved in section (2.4.1).To overcome this problem, we now introduce two

new operators x and y which replace the particle and the phonon operators σ− and b,

respectively. Both operators describe neither electronic excitations nor phonons. In the

following we use these operators to derive a closed set of rate equations which predict

the time evolution of the mean phonon number m. These are then used in Sections 4.3

and 4.4 to analyse the cooling process analytically as well as numerically.
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3.2.1 Transformation of the Hamilitonian

We define the new operator x which we write, using the displacement operator, as

x ≡ D(iη)σ− . (3.26)

The operator x differs from σ− only by the fact that its application not only transforms

|1〉 into |0〉 but also induces a kick, i.e. it simultaneously displaces the motion of the

particle. The commutator relation between x and its adjoint highlights the fundamental

difference between this model (free particle) and the other model (cavity) presented

in this thesis. The difference being the fermionic algebra used to relate the atomic

operators. Using the commutator relation Eq. (3.3), one can easily show that x obeys

the commutator relation

�

x , x†
�

= 1− 2 x†x . (3.27)

The x operator is thus defined by the fermionic relationship of Eq. (3.27). The outcome

of this will become apparent in the cooling equation derivations. Using Eqs. (3.3), (3.8),

and (3.26) we find that the x operator and its adjoint x† has the following commutator

relation

[x , b] = −
�

x , b†
�

= iη x ,
�

x†, b
�

= −
�

x†, b†
�

= −iη x† . (3.28)

with respect to the phonon operators b and b†. Using these relations we can further

show that

�

x , b†b
�

= −iη x(b− b†)−η2 x ,
�

x†, b† b
�

= iη(b− b†)x†+η2 x† ,
�

x†x , b
�

=
�

x†x , b†
�

=
�

x†x , b† b
�

= 0 . (3.29)

As the operators x and b and functions of them do not commute in general we find it

more straightforward to transform b via a unitary transformation that will enable the x

and y operators to commute. Defining y to be

y ≡ b− iη x† x (3.30)

and using the commutator relations in Eq. (3.29), we can easily show that y is a bosonic

operator which obeys the commutator relation

�

y, y†
�

= 1 . (3.31)
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Then taking the commutators of x and y operators we find that they all commute.

�

x , y
�

=
�

x†, y
�

=
�

x , y†
�

=
�

x†, y†
�

= 0 . (3.32)

All of these can be checked using the commutator relations in Eqs. (3.28) and (3.31).

Using the notation introduced in this section, the conditional Hamiltonian Hcond in

Eq. (3.23) and the reset operator R(ρ) in Eq. (A.55) become

Hcond =
1

2
ħhΩ
�

x + x†
�

− iħhην x†x(y − y†) +ħh
�

∆+η2ν
�

x†x + ħhν y† y −
i

2
ħhΓ x†x ,

R(ρ) =
3Γ

8

∫ 1

−1

dζ x D(iη(1− ζ))†ρ D(iη(1− ζ))x†

×
�

1+ |d3|
2+
�

1− 3|d3|
2
�

ζ2
�

. (3.33)

3.2.2 Time evolution of expectation values

We are now ready to begin deriving our cooling equations. Once again we shall be using

the extremely useful generalised rate equation for the time derivative of the expecta-

tion value of an arbitrary operator A (c.f. Eq. (2.52)) which we previously encountered

in Section 2.4.1. The difference this time being the last term R(ρ) which takes into

account the recoil due to the combined effects of the free radiation and laser fields.

Combining the master equation in Eq. (3.21) with Eq. (3.33), we get

〈Ȧ〉 = −
i

ħh
〈AHcond −H

†
cond

A〉+
3Γ

8

∫ 1

−1

dζ 〈x†D(iη(1− ζ))AD(iη(1− ζ))† x〉

×
�

1+ |d3|
2+
�

1− 3|d3|
2
�

ζ2
�

. (3.34)

So if the conditional Hamiltonian Hcond is the same as in Eq. (3.33), then this equation

describes the time evolution of the expectation value 〈A〉 within the interaction picture

which we introduced in Section 3.1.3.

As in the previous chapter we wish to determine the time evolution of the mean

phonon number m,

m ≡ 〈b† b〉 . (3.35)

In this chapter, since we have made use of a unitary transformation to turn b into y, we

need to account for this transformation by establishing a relationship between the mean

phonon number m and the expectation values that are a result of the transformation.

Using Eqs. (3.26) and (3.30), we find that this relationship is

m ≡ n2 −η k12 +η
2 n1 (3.36)
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with n1, n2, and k12 defined as

n1 ≡ 〈x
† x〉 , n2 ≡ 〈y

† y〉 , k12 ≡ i 〈x† x(y − y†)〉 . (3.37)

So to find out the behaviour of m as it evolves in time we need to calculate the time

evolution of these three expectation values. In fact, to obtain a closed set of cooling

equations we also need to consider the expectation values

k7 ≡ 〈y + y†〉 , k8 ≡ i 〈y − y†〉 , k9 ≡ 〈y
2 + y† 2〉 ,

k10 ≡ i 〈y2 − y† 2〉 , k11 ≡ 〈x
† x(y + y†)〉 (3.38)

and the expectation values defined in App. A.3. Since all of these variables are expec-

tation values of Hermitian operators, they are real and their time evolution is given by

real differential equations.

The operator expectation values defined by n2 and k7 to k10 are all based on the y

operators. If we use the generalised rate equation of Eq. (3.34) to calculate the time

derivatives of these five variables, we find that

ṅ2 = ην k11 −ηΓ k12 +η
2θΓn1 ,

k̇7 = 2ην n1 − ν k8 ,

k̇8 = ν k7 − 2ηΓn1 ,

k̇9 = −2ν k10 + 2ην k11 + 2ηΓ k12 − 2η2θΓn1 ,

k̇10 = 2ν k9+ 2ην k12 − 2ηΓ k11 . (3.39)

The factor θ in this equation,

θ ≡
1

5
(7− |d3|

2) , (3.40)

depends explicitly on the direction of the emitting dipole moment. It relates to the

parameter α used in previous papers [10–13] via the equation

θ = 1+α−
1

5
|d3|

2 . (3.41)

Here also we should add that for the orientation of the laser interacting with the trapped

particle in our particular configuration α = 2/5. This corresponds to the case where the

components of the normalised dipole (d1, d2, d3) are aligned with the cartesian axes

(x , y, z) respectively and the incident laser field is propagating in the z direction with a

linear polarisation in the x direction. Of course if the laser was oriented in a different

direction the value of alpha would be different. For example if the laser was propagating

in the y direction then it turns out α= 3/10. Javanainen and Stenholm have written a
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good paper that discusses how different orientations of the laser driven trapped particle

produce different values for α [104]. The time derivatives of the k11, k12, other mixed

operator expectation values, n1 and the remaining x expectation values can be found

in App. A.4.

3.2.3 Weak confinement regime

Further analysis of the cooling process can be made easier by considering different

frequency regimes. One such regime is defined by the situation where the trapped

particle experiences a relatively weak trapping potential and where the Lamb-Dicke

parameter η is much smaller than one. More specifically we assume that

ν ≪ Γ and η≪ 1 . (3.42)

In addition we assume that the Rabi frequency Ω and the detuning ∆ are at most

comparable to Γ and definitely not much larger. However we must point out that we

have made no restriction on the driving parameter. In this way we do not demand

that Ω is much smaller than Γ. The conditions of Eq. (3.42) mean that this choice of

parameters causes the y operator expectation values n2 and k7 to k10 to a evolve on

a much slower time scale than all other relevant expectation values. This can be seen

when comparing the cooling equations of App. A.4 with Eq. (3.39) which clearly shows

that the variables defined by all x or mixed operator expectation values decay with the

spontaneous atomic decay rate Γ whereas n2 and k7 to k10 all evolve at a much slower

rate defined by the conditions of Eq. (3.42).

The time scale separation between the y operator expectation values and all other

expectation values allow us to eliminate n1, k1, k2, and k13 to k24 adiabatically from the

system dynamics. Doing so, we obtain a closed set of five effective cooling equations

which applies after a relatively short transition time and which can be written as

�

ṅ2, k̇7, k̇8, k̇9, k̇10

�T
= M

�

n2, k7, k8, k9, k10

�T
+
�

β1,β2,β3,β4,β5

�T
. (3.43)

Going back to Eq. (3.39) we see that the time derivatives of the y operator expectation

values n2, and k7 to k10 depend only on n1, k11, and k12. The calculation of the 5× 5

matrix M therefore only requires the calculation of n1, k11, and k12 which can be found

in App. A.4.

Before proceeding further we shall pause and describe the general method of so-

lution. We would like to find a set of 5 differential equations in 5 unknowns from

Eq. (3.39) so that we can form the matrix equation that is Eq. (3.43). What we require

to do so are expressions for n1, k11, and k12 in zeroth and first order. For example, let
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us look at the rate equation for n2. Ultimately we want an equation of the form

ṅ2 = η2(some number)n2 +η
2(some othernumber) (3.44)

Now to bring the order of η2 into the equation we need to consider the orders of η

that are already in the equation. So looking again at Eq. (3.39) we can see that the

prefactors before k11, k12 and n1 are η, η and η2 respectively. So, to get the n2 rate

equation into the form

ṅ2 = α11 n2+α12 k7 +α13 k8+α14 k9 +α15 k10 + β1 (3.45)

so that it can turn into Eq. (3.44) we need to calculate expressions for k11 and k12 up

to zeroth and first order, while we only need to calculate n1 up to zeroth order. To

calculate k11 to zeroth order we take the group of 6 rate equations

{k̇11, k̇12, k̇15, k̇16, k̇17, k̇18} (3.46)

up to zeroth which can be found in app. A.4 in Eq. (A.62). As we noted earlier the time

scale separation between the y-operator expectation values and all other expectation

values allows us to adiabatically eliminate the x and mixed operator expectation values

from the systems dynamics. Therefore we can set {k̇11, k̇12, k̇15, k̇16, k̇17, k̇18} equal to

zero and get the following zeroth order expression for k11.

k
(0)
11

=
Ω2

µ4Γ

�

µ2Γ k7 − (3Γ
2 − 4∆2)ν k8

�

(3.47)

Notice how the zeroth order expression for k11 is only dependent on k7 and k8. Sim-

ilarly the zeroth order expression for k12 is only dependent on k7 and k8. Then, since

the prefactor of k11 is ην and k12 is ηκ we will find that the coefficients α12 and α13

are first order in η. n
(0)
1 , k

(0)
1 , k

(0)
2 are found in a similar manner. Next we must consider

{k̇11, k̇12, k̇15, k̇16, k̇17, k̇18} to first order in ηwhich is Eq. (A.66) in app. A.4. The first or-

der in eta terms in these equations include the coherences {k(0)
13

, k
(0)
14

, k
(0)
19

, k
(0)
20

, k
(0)
21

, k
(0)
22
}.

So, to solve {k̇11, k̇12, k̇15, k̇16, k̇17, k̇18} to first order in η we must firstly solve

{k̇13, k̇14, k̇19, k̇20, k̇21, k̇22} (3.48)

in zeroth order which is Eq. (A.68) in app. A.4. Then having found zeroth order expres-

sions for n1, k1, k2, k13, k14, k19, k20, k21, k22 we can finally set {k̇11, k̇12, k̇15, k̇16, k̇17, k̇18}
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in first order in η equal to zero and get first order in η expressions for k11 and k12.

k
(1)
11

=
4ηνΩ2

µ4

�

2∆ k10+Γ
�

,

k
(1)
12 =

8ην∆Ω2

µ4

�

2n2− k9 + 1
�

(3.49)

Notice that the first order expressions for k11 and k12 only depend on n2, k9 and k10.

Like before, since the prefactor of k11 is ην and k12 is ηκ we will find that the coeffi-

cients α11 ,α14 and α15 are second order in η. In a similar way we determine the αi j ’s

for {k̇7, k̇8, k̇9, k̇10} Substituting Eqs. (A.60), (A.63), (A.65), and (A.69) into Eq. (3.39),

we find that M can be written as

M =



















α
(2)
11 α

(1)
12 α

(1)
13 α

(2)
14 0

0 0 −ν 0 0

0 ν α
(2)
33 0 0

α
(2)
41

α
(1)
42

α
(1)
43

α
(2)
44 −2ν

0 α
(1)
52

α
(1)
53

2ν α
(2)
55



















. (3.50)

The first order matrix elements α
(1)

i j
in this equations are given by

α
(1)
12 = −

2ηνΩ2

µ4
(Γ2 − 4∆2−Ω2) , α

(1)
13 = −

ηΓΩ2

µ2
,

α
(1)
42
=

4ηνΩ2

µ4
(Ω2 + 2Γ2) , α

(1)
43
=

2ηΓΩ2

µ2
,

α
(1)
52 = −α

(1)
43 , α

(1)
53 = α

(1)
42 (3.51)

with µ2 defined as in Eq. (A.61). The non-zero matrix elements α
(2)

i j
of M in second

order in η and first order in ν are given by

α
(2)
11
= α

(2)
33
= α

(2)
44 = α

(2)
55 = −

16η2ν∆ΓΩ2

µ4
,

α
(2)
14 =

8η2ν∆ΓΩ2

µ4
, α

(2)
41 =

32η2ν∆ΓΩ2

µ4
. (3.52)

We determine β1 by firstly finding the expression for ṅ2 that is a function of n2 and k7

to k10. We do this by substituting in the zeroth and first order expressions for, k11 and

k12 from Eqs. (A.63), and (A.69) and zeroth and first order expressions for, n1 from

Eqs. (A.60), and (A.65), into the differential equation for ṅ2 in Eq. (3.39) which are as
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follows

k11 =
Ω2

µ4Γ

�

µ2Γ k7 − (3Γ
2 − 4∆2)ν k8

�

+
4ηνΩ2

µ4

�

2∆ k10+Γ
�

,

k12 =
Ω2

µ4Γ

�

(3Γ2− 4∆2)ν k7 +µ
2Γ k8

�

+
8ην∆Ω2

µ4

�

2n2− k9 + 1
�

,

n1 =
Ω2

µ2
+

8ην∆Ω2

µ4
k8 (3.53)

We then use the expressions for the relevant αi j ’s and define

β1 = ṅ2 (n2, k7, k8, k9, k10)−α11 n2−α12 k7−α13 k8 −α14 k9 −α15 k10 . (3.54)

Doing so, we find that β1 up to second order in η is given to a very good approximation

by β1 = β
(2)
1 with

β
(2)
1 =

η2ΓΩ2

µ2
θ . (3.55)

In a similiar manner we find that the coefficients β2 to β5 in Eq. (3.43) are in first order

in η given by

β
(1)

2
=

2ηνΩ2

µ2
, β

(1)

3
= −

2ηΓΩ2

µ2
, β
(1)
4 = β

(1)
5 = 0 . (3.56)

On a final note it will be prudent to explain why we only need to consider β2, . . . ,β5

to first order. Consider once again the rate equation for n2. For the terms α
(1)
12

k7 and

α
(1)
13

k8 to be second order in η the expressions for k7 and k8 need to be first order in η.

To determine the first order expressions for k7 and k8 it is only necessary to consider β2

and β3 to first order. A similar argument holds for β4 and β5.

We now have a closed set of five differential equations which can be used to analyse

the time evolution of the y operator expectation values analytically and numerically.

It is now also easy to see that the weak confinement regime which we introduced in

Eq. (3.42) does not allow for the adiabatic elimination of the y operator coherences k7

to k10. The conditions of Eq. (3.42) ensure that the following condition holds

16η2ν∆ΓΩ2

µ4
≪ Γ . (3.57)

The expression on the left hand side of Eq. (3.57) is actually the rate with which the y

operator coherence evolve on in general as can be inferred from Eqs. (3.43), (3.50) and

(3.51). Thus in the weak confinement regime there is a clear separation of timescales

with between the y operator coherences and the other coherences that evolve on the
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Figure 3.1: Time scale comparison for a numerical solution of k7 to k10, and n2 for

∆ = 0.5Γ, ν = 0.1Γ, Ω = 0.3Γ, and d3 = 0. Here quasi stationary state expressions

for n1, k11 and k12 were used with parameters chosen to reflect the weak confinement

regime. y particles initially assumed to be in a coherent state.

timescale of Γ. Indeed, it can be clearly seen from Fig. 3.1 that all of the y operator

coherences evolve on the same timescale as the y operator population.

3.2.4 Strong confinement regime

Another parameter regime is the one whereby the phonon frequency ν and the detuning

∆ exceed the spontaneous decay rate Γ and the Rabi frequency Ω by at least one order

of magnitude,

Ω, Γ ≪ ν , ∆ , while η≪ 1 . (3.58)

In this case, also known as the strong confinement regime, the time scale separation

57



Chapter 3. Laser Cooling of Single Trapped Particle beyond the Lamb - Dicke

Approximation

0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

t�Ν

k 7
Ht
L

W = 0.3 Ν, D = Ν, Η = 0.1, G = 0.01 Ν

0 2 4 6 8 10 12 14
-2

0

2

4

6

8

10

t�Ν

k 8
Ht
L

W = 0.3 Ν, D = Ν, Η = 0.1, G = 0.01 Ν

0 2000 4000 6000 8000 10 000

-15

-10

-5

0

5

10

15

t�Ν

k 9
Ht
L

W = 0.3 Ν, D = Ν, Η = 0.1, G = 0.01 Ν

0 2000 4000 6000 8000 10 000

-15

-10

-5

0

5

10

15

t�Ν

k 9
Ht
L

W = 0.3 Ν, D = Ν, Η = 0.1, G = 0.01 Ν

0 5000 10 000 15 000 20 000

0.001

0.01

0.1

1

10

100

t�Ν

n 2
Ht
L

W = 0.3 Ν, D = Ν, Η = 0.1, G = 0.01 Ν

Figure 3.2: Time scale comparison for a numerical solution of k7 to k10, and n2 for

∆ = ν , Γ = 0.1ν , Ω = 0.3ν , and d3 = 0. Here quasi stationary state expressions for n1,

k11 and k12 were used with parameters chosen to reflect the strong confinement regime.

y particles initially assumed to be in a coherent state.

in the dynamics of the trapped particle is different than in the previous subsection.

However, at least at the end of the cooling process when n2 is already relatively small,

we can assume that the expectation values n1, n4, k1, k2, and k7 to k24 evolve much

faster than the y operator population n2. This can clearly be seen from Fig. 3.2 which

shows that the y operator coherences reach their respective steady state on a shorter

timescale to that experienced by the y operator population.
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Remark. Fig. 3.2 seems to show k9 and k10 evolving on the same time scale as n2. This

would seem to violate our assumption of adiabatic elimination for k9 and k10. However,

without even considering adiabatic elimination the rate equations for k9 and k10 can be

solved in zeroth order giving k
(0)
9 = k

(0)
10 = 0. Looking at the α form for ṅ2 we see

ṅ2 = α
(2)

11 n
(0)

2 +α
(1)

12 k
(1)
7 +α

(1)

13 k
(1)

8 +α
(2)

14 k
(0)

9 +α
(2)

15 k10 +β
(2)

1 . (3.59)

So for the purposes of finding a steadystate number and cooling rate for n2 we need

only consider zeroth order values for k9 and k10 which are actually zero!

This means, we can simplify the system dynamics via an adiabatic elimination of all

expectation values other than n2. Doing so (cf. App. A.5), we obtain an effective cooling

equation of the form

ṅ2 = −γstr
c n2 + c . (3.60)

The frequencies γc and c in this equation are given by

γstr
c =

η2ΓΩ2

4(∆− ν)2
−

η2ΓΩ2

4(∆+ ν)2
,

c =
η2ΓΩ2

4∆2

�

θ +
∆2

(∆+ ν)2
− 1

�

(3.61)

up to second order in η. In this case γc is actually the effective cooling rate for strongly

confined particles. We must also point out here that the cooling rate becomes much

larger when the detuning ∆ is close to the phonon frequency ν . In this approximation,

however, ∆ should not be exactly equal to ν as in this case the cooling rate goes infinity

which is of course not feasible.

3.3 Stability analysis

In the weak confinement regime we have a set of five linear differential equations that

describe the cooling process. As we have just seen these equations are the result of the

time scale separation implied by the conditions of the weak confinement regime. The

conditions of Eq. (3.42) allowed us to eliminate n1, k1, k2, and k13 to k24 adiabatically

from the system dynamics leaving us with the four y operator coherences and the y† y

population which apply after a relatively short transition time. However what we do

not know is whether or not these equations have stationary state solutions. In this

section we shall perform a stability analysis on this set of equations. For the case of the

strong confinement regime it is not necessary to question stability as γc > 0 always in

this regime.
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To help our analysis we introduce the shifted y operator expectation values which

are defined as

�

ñ2, k̃7, k̃8, k̃9, k̃10

�T ≡
�

n2, k7, k8, k9, k10

�T
+M−1

�

β1,β2,β3,β4,β5

�T
. (3.62)

This definition means that the tilde and the non-tilde variables differ only by the sta-

tionary state solutions of the non-tilde expectation values. Substituting Eq. (3.62) into

Eq. (3.43), we find that

�

˙̃n2, ˙̃k7, ˙̃k8, ˙̃k9, ˙̃k10

�T
= M

�

ñ2, k̃7, k̃8, k̃9, k̃10

�T
. (3.63)

We must also emphasise here that Eq. (3.62) that defines the transformation is just a

relabelling of variables to make the plotting of variables in the forthcoming stability

analysis more presentable. All of the following calculations can be carried out with-

out the using the transformation. In fact the same calculations that were performed to

investigate the existence of steady state solutions were done prior to using the trans-

formation that uses the inverse of M . So, having prior knowledge that the determinant

of M was not equal to zero, its inverse could then be used in defining an ansatz for

Eq. (3.62).

A stationary state solution exists for this set of equations if all the eigenvalues of M

have a negative real part. As we shall see an intuitive approach to understanding the

existence of the stationary state resides within the perturbative analysis of the elements

of M in terms of the small parameter η.

3.3.1 Time evolution for η= 0

Noting that α
(2)
15
= α

(2)
22
= α

(2)
51
= 0 we can expand Eq. (3.50) up to second order in η by

expanding M in powers of η

M = M (0) +M (1) +M (2)

=



















0 0 0 0 0

0 0 −ν 0 0

0 ν 0 0 0

0 0 0 0 −2ν

0 0 0 2ν 0



















+



















0 α
(1)
12

α
(1)
13

0 0

0 0 0 0 0

0 0 0 0 0

0 α
(1)
42 α

(1)
43 0 0

0 α
(1)
52 α

(1)
53 0 0



















+



















α
(2)
11 0 0 α

(2)
14 α

(2)
15

0 α
(2)
22 α

(2)
23 0 0

0 α
(2)
32 α

(2)
33 0 0

α
(2)
41 0 0 α

(2)
44 α

(2)
45

α
(2)
51 0 0 α

(2)
54 α

(2)
55



















(3.64)
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The first term in Eq. (3.64) is the matrix that contains all the terms which correspond

to the time evolution of the y operator expectation values for η = 0. The eigenvalues

of this matrix can be easily shown to be

λ1 = 0 , λ2,3 = ∓iν , λ4,5 = ∓2iν . (3.65)

Taking this into account and solving Eq. (3.63) analytically, we find that

ñ2(t) = ñ2(0) ,
 

k̃7(t)

k̃8(t)

!

=

 

cosν t − sinν t

sinν t cosν t

! 

k̃7(0)

k̃8(0)

!

,

 

k̃9(t)

k̃10(t)

!

=

 

cos2ν t − sin 2ν t

sin 2ν t cos2ν t

! 

k̃9(0)

k̃10(0)

!

. (3.66)

The behaviour of Eq. (3.66), the analytic solutions of Eq. (3.63) for η = 0, can be clearly

seen in Fig. 3.3(a) which shows numerical solutions of the effective cooling equations

in Eq. (3.63) for the case where the y particles are initially in a coherent state. The first

two phase diagrams show k̃8 and k̃10 as functions of k̃7 and k̃9, respectively. As we can

see from the diagrams all points lie on a circle which means that the state of the particle

remains approximately coherent throughout the cooling process. In fact Fig. 3.3(a)

shows that the y particle population ñ2 and therefore also the mean phonon number

m (cf. Eq. (3.36)) in zeroth order in η remains constant in time. This result means that

there is no cooling in the zeroth order approximation of η. Of course this fact is obvious

when one considers that in zeroth order in η there is no coupling between the electronic

and vibrational states of the trapped particle. One must go at least one order higher to

encounter terms in the hamiltonian that couple electronic and vibrational operators or

in our case the x and y operators.

3.3.2 First order corrections

Calculating the eigenvalues of the matrix M in Eq. (3.50) up to first order in η, we

obtain again Eq. (3.65). All of them are either zero or imaginary. This means there are

no first order corrections to the eigenvalues. However, since the eigenvalues of M have

no real parts, ñ2 as well as the mean phonon number m in zeroth order in η cannot

reach their respective stationary state values. Instead, they remain close to their initial

value and no cooling occurs.

3.3.3 Second order corrections

We now take a closer look at the third term in Eq. (3.64). This matrix will allow us to

find the second order corrections. In fact all the first order terms are located in different
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Figure 3.3: Diagrams illustrating the time evolution of the expectation values k̃7 to k̃10,

and ñ2 for ∆ = 0.5Γ, ν = 0.1Γ, Ω = 0.01Γ, and d3 = 0. It is assumed that the y

particles are initially in a coherent state. In (a), only terms in zeroth order in η have

been taken into account. As expected, we find that the mean phonon number remains

constant in time. The coherences k̃7 to k̃10 evolve such that their points in the respective

phase diagrams lie on circles. This means that the y particles remain in a coherent state.

In (b), only terms in first order in η have been taken into account. All five eigenvalues

of M are still either zero or purely imaginary which is why there is still no reduction of

ñ2. In (c), also the second order terms in η are taken into account. The coherences k̃7

to k̃10 now evolve towards zero. We now observe an exponential decrease of ñ2. This

implies a reduction of the mean phonon number m in zeroth order in η, ie. cooling.

matrix elements to where the zeroth and second order matrix element terms are. In this

way it is easy to see why there are no first order corrections to the eigenvalues of M .

Being in the weak confinement regime where Γ≫ ν some second order matrix elements

can be neglected as they scale with ν2 the result of which is evident in Eq. (3.50)

and can be deduced from Eqs. (A.60), (A.63), and (A.69). Basically when the first

order expression for n1 and the first and second order expressions for k11 and k12 are

multiplied by 2ην some of the coefficients in front of n2, k7, and k10 scale with ν2.

Specifically we have α
(2)
15 = α

(2)
22 = α

(2)
51 = 0. Then using the fact that α

(2)
11 = α

(2)
33 = α

(2)
44 =

α
(2)
55 we find that matrix that will give us our eigenvalues with second order corrections
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is



















α
(2)
11 0 0 α

(2)
14 0

0 0 −ν 0 0

0 ν α
(2)
11 0 0

α
(2)
41 0 0 α

(2)
11 −2ν

0 0 0 2ν α
(2)
11



















. (3.67)

We can now rearrange rows and columns in Eq. (3.67) to give a block diagonal matrix.

The eigenvalues of the individual blocks will then give us the eigenvalues of Eq. (3.67).

There are in fact just 2 blocks that we need to find eigenvalues for.

K ≡

 

0 −ν

ν α
(2)
11

!

(3.68)

which has the eigenvalues

λ2,3 =
1

2
α
(2)
11
∓

i

2

Ç

4ν2 −
�

α
(2)
11

�2

. (3.69)

The other block matrix looks like so

M≡









α
(2)
11 α

(2)
14 0

α
(2)
41 α

(2)
11 −2ν

0 2ν α
(2)
11









and it has the following eigenvalues

λ1 = α11, λ4,5 = α
(2)
11 ∓ i

q

4ν2 −α(2)14 α
(2)
41 . (3.70)

As we are only considering postive values of δeff the matrix element α
(2)
11

is always

negative and so all tilde variables are damped away and tend eventually to zero on the

time scale given by 1/α
(2)
11

. This is illustrated in Fig. 3.3(c) which shows a numerical

solution of the effective cooling equations in Eq. (3.63).

Since the y coherences k7 to k10 do not increase in time but oscillate instead with

a slowly decreasing amplitude around constant values as is illustrated in Fig. (3.1), the

cooling process remains stable and the trapped particle eventually reaches its stationary

state. In the following section we use the fact that k7 to k10 oscillate around constant

values to analyse the cooling process in more detail. We shall continue our analysis by

using time averaged values to replace the coherence variables k7 to k10 at the end of the

cooling process. In the weak confinement regime this approximation is applied after a

period of time on the order of 1/α
(2)
11 as we shall see in the next section.
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One can easily check that the time averages of the coherences k7 to k10 are ex-

actly the same as the quasi-stationary state solutions obtained when setting their time

derivatives in Eq. (3.43) equal to zero and in fact we shall devote the next subsection

to illustrating this neat equivalence.

3.3.4 Time averaged values and quasi - stationary states.

Let us look again at the rate equations for the k7 and k8 coherences in Eq. (3.39). Now

if we take into account the value of n1 in zeroth order these equations look like the

following.

k̇7 =
2ηνΩ2

µ2
− ν k8 , k̇8 = ν k7 −

2ηΓΩ2

µ2
. (3.71)

Setting both equations equal to zero we easily determine both quasi - stationary states

to be

kss
7 =

2ηΓΩ2

νµ2
, kss

8 =
2ηΩ2

µ2
. (3.72)

Next we can find the solutions of both differential equations. This task is quite doable

due to the low number of terms and variables in both equations. Choosing an initial

value of 20 for k7 and an initial value of zero for k8 ( general initial values can also

be chosen but to make life easier we’ve chosen specific values ) we get for example the

following expressions up to first order in η,

k7(t) =

�

20µ2ν − 2ΓηΩ2
�

cos(ν t) + 2ηΩ2(Γ+ ν sin(ν t))

µ2ν

k8(t) =
2ηνΩ2 − 2ηνΩ2cos(ν t) +

�

20µ2ν − 2ΓηΩ2
�

sin(ν t)

µ2ν
. (3.73)

Using these functions we can determine their time averages from the standard definition

of such with an arbitrary function f (t) whose average f̄ (t) is

f̄ (t) ≡
1

(b− a)

∫ b

a

f (t) d t (3.74)

Taking a to be zero and b to T we find our time averaged value for k7 to be

k̄7(t) =
2ηνΩ2

Tν2µ2
+
(20µ2ν − 2ηΓΩ2)sin(ν T )

Tν2µ2
−

2ηνΩ2cos(ν T )

Tν2µ2
+

2ηΓΩ2

νµ2
. (3.75)

Towards the end of the cooling process as k7 reaches its stationary state value the value

of T will be much greater then one. Then every term in Eq. (3.75) except the last term
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become negligible. Thus the time average becomes

k̄7(t) ≈
2ηΓΩ2

νµ2
. (3.76)

Therefore in the limit as T goes to infinity the average value becomes the stationary

state value

kss
7 = lim

T→∞
k̄7(t) . (3.77)

Then for k8 we find the average value for the function to be

k̄8(t) =
2
�

10µ2ν − ΓηΩ2 +
�

ΓηΩ2 − 10µ2ν
�

cos(ν T )−ηνΩ2sin(ν T )
�

Tµ2ν2

+
2ηΩ2

µ2
(3.78)

So for a very large value of T we find the first term becomes negligible and we are left

with the same expression as we got for the value of k8’s quasi - stationary state, namely

k̄8(t) ≈
2ηΩ2

µ2
. (3.79)

Again we have the very nice relationship between the time averaged value and the quasi

- stationary state

kss
8 = lim

T→∞
k̄8(t) . (3.80)

When a similar analysis is performed for k9 and k10 in first order in η one finds that the

average value of the function is actually zero. Indeed this corresponds to the stationary

state at this order. One could be tempted to say that Eqs. (3.77) and (3.80) are obvious

when one considers that as a function evolves it eventually reaches its steady state.

In other words the steady state is the asymptotic value of the function. However this

is not always true. In fact this is why this particular example was chosen. From the

previous section on stability analysis we have just seen that in first order in η the y

operator coherences do not evolve into a steady state. This fact can also be seen when

we can numerically integrate Eq. (3.71) the result of which is shown in Fig. 3.4. Here

we can see how the functions that represent k7 and k8 to first order in η do not evolve

to a point for which the function becomes constant. Fortunately for us Eqs. (3.77)

and (3.80) imply that towards the end of the cooling process the time averaged values

are equivalent to the quasi - stationary state. Thus if we consider our analysis to be

towards the end of the cooling process replacing the coherences k7 to k10 with their
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Figure 3.4: The above figures show the evolution of the coherences k7 and k8 whose

functions are exact up to first order in η. At this order the plots clearly show the absence

of a stationary state after a long period of time. Here also for ∆ = 0.5Γ, ν = 0.1Γ,

Ω = 0.3Γ, and d3 = 0. Here quasi stationary state expressions for n1, k11 and k12

were used with parameters chosen to reflect the weak confinement regime. y particles

initially assumed to be in a coherent state.

time averaged values would be a reasonable approximation.

Better Argument

The time average value of k7 over 1 period is actually kss
7

. This is easy to see for T = 2π

in Eq. (3.75).

k̄7 =
2ηνΩ2

2πν2µ2
+
(20µ2ν − 2ηΓΩ2)sin(ν 2π)

2πν2µ2
−

2ηνΩ2cos(ν 2π)

2πν2µ2
+

2ηΓΩ2

νµ2

=
2ηνΩ2

2πν2µ2
−

2ηνΩ2

2πν2µ2
+

2ηΓΩ2

νµ2

=
2ηΓΩ2

νµ2
. (3.81)

Thus averaging over one period gives the same expression as the quasi-stationary state

for k7. As the time scale of 1 period on the evolution of k7 is much smaller than the

timescale on which n2 evolves on it is justifiable to use the first order time average value

of k7 in lieu of the k7 coherence variable in the rate equation for n2. A similar argument

can be used for k8, k9 and k10.

3.4 Cooling rates and phonon numbers

Taking the results of the previous section into account and replacing the y operator co-

herences k7 to k10 by their time averages we now obtain an analytical solution for the

closed set of 23 cooling equations which we introduced in this paper. As we have just

seen the time averages of the coherences k7 to k10 are exactly the same as the quasi-

stationary state solutions obtained when setting their time derivatives in Eq. (3.43)
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Figure 3.5: Logarithmic contour plot of the stationary state phonon number mss in

Eq. (3.84) as a function of the laser parameters Ω and ∆ for a) ν = 0.01Γ, b) Γ = ν ,

and c) Γ = 0.01ν .

equal to zero. This means, adiabatically eliminating k7 to k10, as we did in Section

3.2.4 for the strong confinement regime, and replacing these variables by their time

averages yields exactly the same result. Taking this into account and simply eliminating

all expectation values other than n2 adiabatically, we obtain an effective cooling equa-

tion which is of exactly the same form as Eq. (3.60). Its solution in zeroth order in η is

given by

m(t) =
�

m(0)−mss

�

e−γc t +mss (3.82)

with mss = c/γc. This equation applies, since n2 and m are the same in zeroth order in η

(c.f. Eq. (3.36)). In the remainder of this section, we derive analytical expressions for

the stationary state phonon number mss and for the effective cooling rate γc. We then

check that these results are consistent with the effective cooling equations derived in

Section 3.2.3 and 3.2.4. Finally, we show that analytical solution for the time evolution

of the mean phonon number m in Eq. (3.82) is in very good agreement with a numerical

solution of the 23 cooling equations in this thesis which apply as long as η≪ 1.

3.4.1 Stationary state phonon numbers

Using the cooling equations in Eq. (3.39) and in App. A.4 and setting the time deriva-

tives of all expectation values equal to zero, we obtain the stationary state phonon

number

mss =
1

16ν∆
·

1

ξ4
1

�

ξ6
2 θ − 2ξ6

3

�

(3.83)
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with the frequencies ξ1, ξ2, and ξ3 defined as

ξ4
1 ≡ (4∆2+Γ2)(Γ2+ ν2) + 2(Γ2+ 3ν2)Ω2 ,

ξ6
2 ≡ (Γ2+ ν2)

�

(Γ2 + 4∆2)2 + 8(Γ2− 4∆2)ν2 + 16ν4
�

+4
�

(Γ2 + 2ν2)(Γ2+ 4∆2)− 8ν4
�

Ω2 + 4(Γ2+ 4ν2)Ω4 ,

ξ6
3 ≡ 2(2∆+ ν)(Γ2 + ν2)

�

Γ2 + 4(∆− ν)2
�

+
�

3Γ4 − (4∆2

−8∆ν − 7ν2)Γ2 − 4(∆2− 6∆ν + 5ν2)ν2
�

Ω2 . (3.84)

This result applies in zeroth order in η without any approximations. Fig. 3.5 shows mss

as a function of the two laser parameters Ω and∆ for three different sets of experimen-

tal parameters. In the weak confinement regime one should choose ∆ = 0.5Γ and for

ν = Γ one should choose ∆ close to Γ in order to minimise the final kinetic energy of

the trapped particle.

Fig. 3.5 also shows that there is a particular dependence for mss to remain at a

constant steady state without further changing its value. This is an interesting result

which implies that effective laser cooling is not restricted to laser Rabi frequencies much

smaller than Γ as it is often implied in the literature [11–13, 20]. As we shall see be-

low in Section 4.4.3, maximising Ω increases the cooling rate which scales as Ω2. Our

numerical simulations show that Ω can be as large as 0.3Γ in the weak confinement

regime and as large as 0.3ν in the strong confinement regime without noticeably in-

creasing the final phonon number mss. Notice also that increasing the value of Ω to

larger values rapidly increases the stationary state phonon number thus indicating how

cooling changes quickly changes into heating.

3.4.2 Consistency with the standard results

In this section by considering different parameter regimes we show how our results

are the same as those results from calculations of previous authors [11–13, 20]. The

alternative but consistent analysis of the laser cooling of trapped ions presented in these

papers has as its main result a cooling equation of the form

ṁ = −η2 (A−− A+)m+ A+ , (3.85)

where m denotes the mean phonon number. The A± can be interpreted as transition

rates between states with different phonon numbers and hence relate to the actual

cooling and heating rates. The stationary state phonon rate mss is consequently given

by [10, 11, 13, 20]

mss =
A+

A−− A+
. (3.86)
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Using our analysis and taking into account the regime for relatively small Rabi fre-

quencies Ω, Eq. (3.83) whereby we neglect all terms that scale with Ω2 simplifies to

mss =
Γ4 + 8Γ2(∆2+ ν2) + 16(∆2− ν2)2

16ν∆(Γ2+ 4∆2)
θ

−
(2∆+ ν)

4∆(Γ2+ 4∆2)

�

Γ2 + 4(∆− ν)2
�

. (3.87)

This equation is in good agreement with the stationary state phonon number implied in

Refs. [10–13] for d3 = 0. This can be shown using Eqs. (3.86) and (3.41) in this paper

and the expressions for A± in Eq. (7) in Ref. [12] which we now do.

The definition of A± taken from Eq. (7) in Ref. [12] is as follows

A± = Γ[α P(∆)+ P(∆± ν)] (3.88)

and if we work out the algebra such that P(∆) is a function of Ω, Γ and ∆ then we also

get

P(∆) =
4Ω2

Γ2 + 4∆2
. (3.89)

Then if we substitute Eq. (3.88) into Eq. (3.87) we find an expression of the following

form which is the steadystate as derived by the previous authors.

mss =
Γ2 + 4(∆− ν)2

16∆ν
+
Γ4 + 8Γ2(∆2+ ν2) + 16(∆2− ν2)2

16ν∆(Γ2+ 4∆2)
α . (3.90)

Now if take Eq. (3.87) which is our result for the steady state in the limit of small Rabi

frequencies and using Eq. (3.41) which was determined by incorporating the definition

of α as defined in Refs. [10–13] into a rederivation of Eq. (A.55) we find our expression

for mss becomes

mss =
Γ4 + 8Γ2(∆2 + ν2) + 16(∆2− ν2)2

16ν∆(Γ2+ 4∆2)
−

(2∆+ ν)

4∆(Γ2+ 4∆2)

�

Γ2 + 4(∆− ν)2
�

+
Γ4 + 8Γ2(∆2+ ν2) + 16(∆2− ν2)2

16ν∆(Γ2+ 4∆2)

�

α−
1

5
|d3|

2

�

(3.91)

Noting that previous authors usually consider the case whereby the angular distribution

of spontaneous emission is such that d3 = 0 then on adding together the first 2 terms in

Eq. (3.91) we find it contracts to the following expression
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mss =
Γ2 + 4(∆− ν)2

16∆ν
+
Γ4 + 8Γ2(∆2+ ν2) + 16(∆2− ν2)2

16ν∆(Γ2+ 4∆2)
α (3.92)

which is of course the standard expression for mss that has been derived earlier by

previous authors.

Weak confinement

In the weak confinement regime, the stationary state phonon number mss in Eq. (3.83),

after neglecting terms that scale with ν2, simplifies to

mweak
ss =

µ2

16∆ν
θ −

(3Γ2 − 4∆2)Ω2

8µ2ν∆
. (3.93)

Exactly the same stationary state phonon number is obtained when setting the left hand

side of the five effective cooling equations in Eq. (3.39) equal to zero. We now have

derived the same result in two different ways thus confirming the consistency of the

steady state calculations. As already pointed out above, for small Ω, this expression

assumes its minimum if

∆ =
1

2
Γ . (3.94)

For this laser detuning and Rabi frequencies Ω≪ Γ, which means we neglect all terms

that scale with Ω2, the stationary state phonon number simplifies to

mweak
ss =

Γ

4ν
θ . (3.95)

When substituting the detuning ∆= Γ/2 into Eq. (3.87) we get this expression for mss

mss =
Γ4θ − 2Γ3ν + 4(−1+ θ)ν4 +Γ22ν2

4Γ3ν
(3.96)

Neglecting terms that scale with ν (weak confinement approximation) we get back

Eq. (3.93). So, in the optimal case the final phonon number scales essentially as Γ/ν

which is much larger than one which is exactly what we saw in the numerical solution

of n2 in Fig. (3.1).

Strong confinement

Using the effective cooling equation derived in Section 3.2.4 and setting it equal to zero,

we find that the stationary state phonon number in the strong confinement regimes
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Figure 3.6: Logarithmic contour plot of the cooling rate γc in Eq. (3.103) in units of

1/Γ as a function of the laser parameters Ω and ∆ for a) ν = 0.01Γ and η = 0.01, b)

Γ = ν and η= 0.1, and c) Γ = 0.01ν and η= 0.1.

equals

mstrong
ss =

(∆− ν)2

4ν∆3

�

(∆+ ν)2 θ − (2∆+ ν)ν
�

(3.97)

to a very good approximation. Exactly the same result is obtained when neglecting

terms proportional to Γ and Ω in Eq. (3.83). This result suggests immediately that one

should choose

∆ = ν (3.98)

in order to minimise the final phonon number mss. Next we substitute this detuning

back into Eq. (3.87) which was derived prior to making any approximation with regard

to either the strong or weak confinement regime. We now neglect terms which scale

with Γ2 and find the following expression for mss

mstrong
ss =

Γ2

16ν2
[4θ − 3] . (3.99)

This means, the stationary state phonon number now scales essentially as Γ2/ν2 which

is much smaller than one [8].
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Remark.

We must point out that when we combine Eq. (3.41) with Eqs. (3.94) and (4.46) and

set d3 = 0 we get

mstrong
ss

=
Γ2

16ν2
(1+α), and mweak

ss
=
Γ

4ν
(1+α) (3.100)

It is interesting to note that we found very similar expressions for the mss in section

2.4.2 when we were considering frequency regimes for the cavity model for which we

also called strong and weak confinement. However in those regimes the relevant decay

parameter was not the spontaneous decay rate Γ of the atom but instead it was the

photon loss rate from tha cavity κ [c.f Eqs. (2.65) and (2.69)] .

If we replace Γwith κ in Eq. (3.100) and set α= 0, since the effect of spontaneous emis-

sion from the atom is negligible in the cavity model, we we get back the cavity model

steady states Eqs. (2.65) and (2.69), thus highlighting the similar cooling mechanisms

between the cavity and free particle models.

3.4.3 Effective cooling rates

As we have seen in section (3.2.3) analysing the cooling process for the weak confine-

ment regime gave us an equation of the form

ṅ2 = α11 n2+α12 k7 +α13 k8+α14 k9 +α15 k10 + β1 (3.101)

Then in section 3.3.4 we saw how to arrive at our effective cooling equation for n2 by

replacing the coherences k7 to k10 with their time averaged values . In section (3.2.4)

for the strong confinement regime we showed the expectation values n1, n4, k1, k2, and

k7 to k24 evolve much faster than the y operator population n2 thus making it possible

to adiabatically eliminate all variables except n2 to give us an effective cooling equation

Eq. (3.60). In both instances the rate at which n2 decreases is given by the coefficient

in front of the n2 variable in the effective equation. For the weak confinement case this

is α11 (c.f Eq. (3.52)) and for the strong confinement this is γstr
c (c.f Eq. (3.61)). In fact

before any approximation is made with regard to either the strong or weak confinement

regimes we can use the equations in App. A.4 specifically Eqs. (A.59), (A.62), (A.64),

(A.66), (A.67), and (A.68) to determine, by adiabatic elimination of the variables n1,

n4, k1, k2, and k11 to k24, zeroth order and first order expressions for n1, k11 and k12.

Substituting these expressions into Eq. (3.39) we find an equation of the form

ṅ2 = a1 n2+ a2 k7 + a3 k8 + a4 k9 + a5 k10 + b1 (3.102)
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Figure 3.7: Logarithmic plot of the time dependence of the mean phonon number m

for the experimental parameters indicated in the figure. The numerical solutions are the

result of a numerical integration of 23 cooling equations while the analytical solution

represents Eq. (3.82).

Here we are only interested in the rate without regard to the strong or weak confine-

ment regimes and so there is no need to find approximate expressions for the coher-

ences k7 to k10 as we have previously done with time averaging and quasi - stationary

approximations. In this case the rate is obviously a1 and for the sake of simplicity let us

instead call this rate γc as it is actually the effective cooling rate γc in Eq. (3.82) which

in second order in η is given by

γc =
16η2ν∆ΓΩ2

µ2
·
ξ4

1

ξ6
2

(3.103)

with ξ1 and ξ2 as in Eq. (3.84). Fig. 3.6 shows the dependence of this cooling rate

on the laser parameters Ω and ∆. Indeed we find that γc increases in general as Ω in-

creases. This confirms that one should choose Ω as large as possible without noticeably

decreasing the stationary state phonon number mss as pointed out already in Section

3.4.1.

For relatively small Rabi frequencies Ω, i.e. for Ω ≪ Γ, the cooling rate γc in

Eq. (3.103) simplifies to

γc =
η2ΓΩ2

Γ2 + 4(∆− ν)2
−

η2ΓΩ2

Γ2 + 4(∆+ ν)2
. (3.104)

When comparing this result with the expression for A− − A+ in [10, 12], we find that

our cooling rate differs by a factor 4 from the cooling rate reported in these references.

The above cooling rate γc also differs by a factor 1

2
from the cooling rate implied in

Ref. [11]. However, as Fig. 3.7 confirms, Eq. (3.103) is in very good agreement with

73



Chapter 3. Laser Cooling of Single Trapped Particle beyond the Lamb - Dicke

Approximation

 25

 50

 75

 100

 0.01  0.1  1  10

m

γc t

ν=0.01Γ
η=0.1

Ω=0.01Γ

∆=0.25Γ

∆=0.75Γ

∆=0.5Γanalytical
numerical

Figure 3.8: Logarithmic plot of the time dependence of m analogously to Fig. 3.7 but

for different experimental parameters (weak confinement regime).

numerical solutions of the closed set of 23 cooling equations given in this paper. These

numerical solutions of the cooling equations also confirm our analytical solution for the

stationary state phonon number mss in Eq. (3.83).

Weak confinement

For a relatively weakly confined particle, the optimal laser detuning∆ which minimises

the stationary state phonon number mss is given by 1

2
Γ (cf. Eq. (3.94)). Taking this into

account, the cooling rate γc in Eq. (3.103) simplifies to

γc =
2η2νΩ2

Γ2
(3.105)

in the limit of weak driving, ie. when neglecting terms proportional to Ω2. As Fig. 3.8

illustrates, this cooling rate is in good agreement with a numerical solution of the full

set of 23 rate equations.

Strong confinement

In the strong confinement regime, terms which scale as Γ or Ω are in general negligible

(cf. Eq. (3.58)). Taking this into account and simplifying Eq. (3.103) accordingly, we

find that the cooling rate γc in this equation is exactly the same as γc in Eq. (3.61). The

cooling process becomes indeed the most efficient, when the detuning ∆ is close to the

phonon frequency ν (cf. Eq. (3.98)). The cooling rate is in this case given by

γc =
η2Ω2

Γ
(3.106)
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3.5 Final remarks

We have now analysed the cooling process of a single-trapped particle with red-detuned

laser light.In contrast to previous authors [10–13, 27], our analysis avoids the adiabatic

elimination of the excited atomic state prior to deriving any rate equations for calcu-

lating the effective cooling rate γc and the stationary state phonon number mss. Our

calculations hence apply to a wider range of laser Rabi frequencies Ω. They show that

Ω can be chosen relatively large without affecting the final outcome of the cooling pro-

cess. For example, in the weak confinement regime with ν ≪ Γ, Ω can be as large as

0.3Γ and in the strong confinement regime with Γ≪ ν , Ω can be as large as 0.4ν with-

out changing the stationary state phonon number mss noticeably. This is an interesting

observation, since γc scales as Ω2 and increases rapidly when Ω increases.

The main novelty of our calculations is a transformation of the original Hamiltonian

which replaces the atomic lowering operator σ− and the phonon annihilation operator

b by two new operators x and y which commute with each other. The corresponding

particles are neither atomic excitations nor phonons but provide a more natural descrip-

tion of the trapped particle in the sense that these operators account for a combined

effect of b and σ−. Our calculations are therefore more straightforward than previous

calculations. Since the theory of laser cooling has already been studied in great detail in

the literature [10, 13, 26, 27], the main purpose of our approach is to establish and test

a framework for the modeling of laser cooling which can be extended relatively easily

to more complex cooling scenarios like cavity-mediated laser cooling [14, 69, 84] and

possible quantum optical heating mechanisms in sonoluminescence experiments [85].

Indeed, having now developed this approach, the next chapter shall see its applica-

tion to the cavity model that was explored using the Lamb-Dicke approximation in the

previous chapter except now we can use the "sandwich" method

D(iη) b† b D†(iη) = b† b− iη (b− b†) +η2 (3.107)

in place of the Lamb-Dicke approximation.
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Chapter 4

Cavity Mediated Laser Cooling

beyond the Lamb - Dicke

Approximation

We now return to the trapped particle in the cavity and apply the techniques we have

developed from analysing the case of the free particle. In fact the techniques can be

easily adapted to the cavity framework and as we shall see the relevant expressions

bear a lot of resemblance to their free particle analogues. Specifically we take the ef-

fective Hamiltonian of Eq. (2.37) and determine the groups of rate equations for y

operator, x operator and mixed operator expecation values. Having already adiabat-

ically eliminated the excited state we now find our x operators to be bosonic which

reduces the number of terms in some rate equations. There is a trade off however in

that we now must deal with a nonlinear operator x†x x†x which introduces more rate

equations. This time also, the rate equations do not feature any θ dependance as we

are no longer considering spontaneous emission from the excited state. The analysis

of the rate equations once again becomes vastly simpler when considering 2 different

frequency regimes of weak and strong confinement which in this case are those first

defined in Section 2.4.2 by κ≫ ν and κ≪ ν respectively. It is quite remarkable how

we once again discover that in the conditions of weak confinement the x operator ex-

pectation values and mixed operator coherences can be adiabatically eliminated leaving

us to show the existence of a stationary solution for the y-operator expectation values

through a stability analysis. A difference to be noted this time, as we shall see, is that

even in the conditions of strong confinement all expectation values of the y operators

evolve on the same time scale. Knowing this the subsequent sections will follow similar

steps that have been carried out in the previous chapter.
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4.1 Theoretical model

Let us look again at Eq. (2.37). Using a similar idea to that of section 3.2.1 we define x

to be

x ≡ D(iη) c . (4.1)

only this time the annihilation operator will be bosonic.

�

x , x†
�

= 1 . (4.2)

We can again make the interpretation that the operator x differs from c only by the

fact that its application not only transforms |1〉 into |0〉 but also induces a kick, i.e. it

simultaneously displaces the motion of the particle. Eq. (2.37) can now be written as

HI = ħhgeff x +H.c.+ ħhδeff x† x + ħhν b† b . (4.3)

Like before the operators x and b and functions of them do not commute in general.

In fact we find the exact same commutators that we found previously in Eqs. (3.28) and

(3.29) so we once more introduce another operator y which again can be defined as

y ≡ b− iη x† x . (4.4)

Again y is a bosonic operator which obeys the commutator relation

�

y, y†
�

= 1 . (4.5)

And of course we now have

�

x , y
�

=
�

x†, y
�

=
�

x , y†
�

=
�

x†, y†
�

= 0 (4.6)

which can be checked using the commutator relations in Eqs. (3.28) and (4.5). We can

also show that Eq. (4.4) is a unitary transformation since one can show that [105]

U ≡ exp
�

iηc†c
�

b+ b†
��

(4.7)

yields y when defining y as y = U b U†. Proceeding in a similar way one can show that

x = U c U†. Using the x and the y operators therefore does not introduce a new Hilbert

space and new physics into the modelling of the cavity cooling process. Using the x and
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the y operators, the interaction Hamiltonian HI in Eq. (2.37) can now be written as

HI = ħhgeff x +H.c.+ ħhδeff x†x + ħhη2ν x†x x†x

−iħhην x†x(y − y†) +ħhν y† y . (4.8)

This Hamiltonian is exact, since the exponential terms in the original Hamiltonian HI in

Eq. (2.37) have been removed via a basis transformation and not via an approximation.

Unfortunately, the new HI contains non-linear terms which still make it impossible to

obtain a closed set of cooling equations. However, as we shall see below, this new

form of the interaction Hamiltonian yields simpler equations than the Hamiltonian HI

in Eq. (2.37), since x and y commute. In the remainder of this section, we use the

interaction Hamiltonian HI to obtain a closed set of cooling equations to model the

time evolution of the mean phonon number m.

4.2 Time evolution of expectation values

So once more, instead of solving the master equation in Eq. (2.50), we consider in the

following only a finite set of expectation values and derive a closed set of differential

equations which show how these evolve in time. Using Eq. (4.1) with Eq. (2.53) we

find that the generalised rate equation is given by

〈Ȧ〉 = −
i

ħh


�

A, HI

��

−
1

2
κ 〈Ax† x + x†xA〉+ κ 〈x†D(iη)AD(iη)† x〉 . (4.9)

In the following, we use this equation to analyse for example the time evolution of the

x operator expectation values

n1 ≡ 〈x
† x〉 , n3 ≡ 〈x

† x x†x〉 (4.10)

which are identical to the cavity photon expectation values 〈c†c〉 and 〈c†cc†c〉. In addi-

tion, we consider the y-operator expectation values

n2 ≡ 〈y
† y〉 , k7 ≡ 〈y + y†〉 , k8 ≡ i 〈y − y†〉 ,

k9 ≡ 〈y
2 + y†2〉 , k10 ≡ i 〈y2 − y†2〉 . (4.11)

Finally, we also need to consider the mixed operator expectation values

k11 ≡ 〈x
†x(y + y†)〉 , k12 ≡ i 〈x† x(y − y†)〉 . (4.12)

The definitions of the other expectation values which are used to derive the remaining

rate equations can be found in App. B.1. Combining m ≡ 〈b† b〉 with the definitions of
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x and y in Eqs. (4.1) and (4.4), we find that m can also be written as

m ≡ n2 −η k12 +η
2 n3 . (4.13)

Note that in the free particle case the last term was the population n1. So once again m

and n2 are the same for η = 0. Then applying Eq. (4.9) to the y operator expectation

values in Eq. (4.11), we find that their time derivatives are without any approximations

given by

ṅ2 = ην k11 −ηκ k12 +η
2κn1 ,

k̇7 = 2ην n1 − ν k8 ,

k̇8 = ν k7 − 2ηκn1 ,

k̇9 = −2ν k10 + 2ην k11 + 2ηκ k12 − 2η2κn1 ,

k̇10 = 2ν k9 + 2ην k12 − 2ηκ k11 . (4.14)

Like their free particle analogues these five differential equations depend only on the

y operator expectation values themselves as well as on n1, k11, and k12. The time

derivatives of other expectation values can be found in App. B.2 where we also perform

an adiabatic elimination of all these equations as they are the equations that define the

relatively fast evolving variables.

4.2.1 Weak confinement regime

We now look again at the case where the trapped particle experiences a relatively weak

trapping potential and where the Lamb-Dicke parameter η is much smaller than one.

More concretely we assume in the following that

ν ≪ κ and η≪ 1 . (4.15)

A closer look at the cooling equations in App. B.2 shows that this choice of parameters

causes the y operator expectation values n2 and k7 to k10 to evolve on a much slower

time scale than all other relevant expectation values. The reason for this is that these

variables are all x or mixed operator expectation values which decay with the cavity

decay rate κ. Taking this into account and eliminating n1, n3, k1, k2, and k13 to k24

adiabatically from the system dynamics, we obtain a closed set of five effective cooling

equations which applies after a relatively short transition time and which can be written

in similar matrix form to Eq. (3.43) of the free particle analysis.

�

ṅ2, k̇7, k̇8, k̇9, k̇10

�T
= M

�

n2, k7, k8, k9, k10

�T
+
�

β1,β2,β3,β4,β5

�T
. (4.16)
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Eq. (4.14) shows that the time derivatives of the y operator expectation values n2, and

k7 to k10 depend only on n1, k11, and k12 just like their free particle counterparts. The

calculation of the 5× 5 matrix M therefore only requires the calculation of n1, k11, and

k12 which can be found in App. B.2. Substituting Eqs. (B.4), (B.7), (B.9), and (B.12)

into Eq. (4.14), and using the α notation like in the free particle example, M can again

be written as

M =



















α
(2)
11 α

(1)
12 α

(1)
13 α

(2)
14 0

0 0 −ν 0 0

0 ν α
(2)
33 0 0

α
(2)
41 α

(1)
42 α

(1)
43 α

(2)
44 −2ν

0 α
(1)
52 α

(1)
53 2ν α

(2)
55



















. (4.17)

This time, the first order matrix elements α
(1)

i j
in these equations are given by

α
(1)
12
= −

8ην g2
eff

µ4
(κ2− 4δ2

eff
) , α

(1)
13
= −

4ηκg2
eff

µ2
,

α
(1)
42 =

32ην g2
eff
κ2

µ4
, α

(1)
43 =

8ηκg2
eff

µ2
,

α
(1)
52 = −α

(1)
43 , α

(1)
53 = α

(1)
42 (4.18)

with µ2 defined as in Eq. (B.5). The non-zero matrix elements α
(2)

i j
of M in second order

in η and first order in ν are given by

α
(2)
11 = α

(2)
33 = α

(2)
44 = α

(2)
55 = −

64η2νδeffκg2
eff

µ4
,

α
(2)
14 =

8η2νδeffκg2
eff

µ4
, α

(2)
41 =

32η2νδeffκg2
eff

µ4
. (4.19)

We can now show that β1 up to second order in η is given by β1 = β
(2)
1

with

β
(2)
1 =

4η2κg2
eff

µ2
+

32η2 g4
eff
κ
�

3κ2 − 4δ2
eff

�

µ6
. (4.20)

Moreover, we find that the coefficients β2 to β5 in Eq. (3.43) are in first order in η given

by

β
(1)
2 =

8ην g2
eff

µ2
, β

(1)
3 = −

8ηκg2
eff

µ2
,

β
(1)
4 = β

(1)
5 = 0 . (4.21)
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Figure 4.1: Time scale comparison for a numerical solution of k7 to k10, and n2 for

δeff = κ/2, ν = 0.1κ and geff = 0.01κ. Here quasi stationary state expressions for n1,

k11 and k12 were used with parameters chosen to reflect the weak confinement regime.

y particles initially assumed to be in a coherent state.

Using this closed set of five differential equations we can now analyse the time evolution

of the y operator expectation values analytically and numerically just like we did for

the case of the free particle. Here we can see from Fig. 4.1 that all of the y operator

coherences evolve on the same timescale as the y operator population n2. So once

again the weak confinement regime which we introduced in Eq. (3.42) does not allow

for the adiabatic elimination of the y operator coherences k7 to k10,

4.2.2 Strong confinement regime

Let us now have a closer look at the parameter regime where the phonon frequency ν

and the detuning δeff exceed the spontaneous decay rate κ and geff by at least one order
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of magnitude,

geff, κ ≪ ν , δeff , while η≪ 1 . (4.22)

Using Eq. (4.16) in this regime we find that the corresponding matrix for M has the

following form

M =



















α
(2)
11 α

(1)
12 α

(1)
13 α

(2)
14 α

(2)
15

0 α
(2)
22 −ν 0 0

0 ν α
(2)
33 0 0

α
(2)
41 α

(1)
42 α

(1)
43 α

(2)
44 −2ν +α

(2)
45

α
(2)
51 α

(1)
52 α

(1)
53 2ν −α(2)45 α

(2)
55



















. (4.23)

The calculation of the above 5×5 matrix only required the calculation of n1, k11 and k12

which can be found in App. B.3. The matrix elements can then be found by substituting

Eqs. (B.13), (B.14, (B.15) and (B.16) into Eq. (4.14). The first order matrix elements

α
(1)

i j
are given by

α
(1)
12 = −

2ηg2
eff
ν

δ2
eff
− ν2

, α
(1)
13 = −

ηg2
eff
κ
�

δ2
eff
+ ν2

�

�

δ2
eff
− ν2

�2
,

α
(1)
42 =

4ηg2
eff
ν

δ2
eff
− ν2

, α
(1)
43 =

2ηg2
eff
κ
�

3δ2
eff
− 5ν2

�

�

δ2
eff
− ν2

�2
,

α
(1)
52 = −α

(1)
43 , α

(1)
53 = α

(1)
42 . (4.24)

The non-zero matrix elements α
(2)

i j
of M in second order in η are given by

α
(2)
11 = α

(2)
33 = −

4η2 g2
eff
δ2

eff
κν

�

δ2
eff
− ν2

�2
,

α
(2)
44 = α

(2)
55 = −

4g2
eff
δeffη

2κν

ξ8

�

5δ4
eff
− 34δ2

effν
2 + 38ν4

�

,

α22 = −
4η2 g2

eff
ν3

δ3
eff
κ− δeffκν

2

α
(2)
14 =

2g2
eff
δeffη

2κν

ξ8

�

δ4
eff
+ 4δ2

eff
ν2 − 14ν4

�

, α
(2)
41 =

8η2 g2
eff
κν
�

δ2
eff
− 2ν2

�

δeff

�

δ2
eff
− ν2

�2

α45 = −α54 =
12g2δη2ν2

ξ4
,

α
(2)
51 =

8η2 g2
eff
ν2

δeff(δ
2
eff
− ν2

) ,α
(2)
15 =

2g2
eff
δeffη

2κν

ξ8

�

δ4
eff
+ 4δ2

effν
2 − 14ν4

�

(4.25)
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Figure 4.2: Time scale comparison for a numerical solution to k7 to k10, and n2 for

δeff = ν , κ = 0.1ν and geff = 0.01ν . Here quasi stationary state expressions for n1, k11

and k12 were used with parameters chosen to reflect the strong confinement regime. y

particles initially assumed to be in a coherent state.

with ξ4 defined as in Eq. (B.17). We can also show that β1 in second order is given by

β1 =
4η2 g2

eff
κ

µ4
+

8g4
eff
η2κ

�

−4δ2
eff
+ 12ν2

�

δ2
eff

�

16δ4
eff
+ κ4

� . (4.26)

The other coefficients β2 to β5 are found to be

β
(1)
2 =

2ην g2
eff

δ2
eff

, β
(1)
3 = −

2ηκg2
eff

δ2
eff

,

β
(1)
4 = β

(1)
5 = 0 . (4.27)
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We thus have, in the strong confinement, a closed set of five equations. Fig. 4.2 shows

the evolution of the numerical solution of these 5 equations. Fig. 4.2 is the result of

plotting the numerical solution of Eq. (4.14). These equations were used after sub-

stituting in the quasi-stationary state values for n1, k11 and k12. However, and this is

important, the expressions for n1, k11 and k12 are those for which no approximation

was made with regard to either the weak or strong confinement regimes. The choice

of parameters for ν and κ in the numerical integration reflect this distinction. As can

clearly be seen from Fig. 4.2 all y operator expectation values evolve towards a steady

state on the same time scale. This is in contrast to the case of strong confinement in

the free particle case (c.f. Fig. 3.2). There all the expectation values of all y operator

coherences reach a steady state in a much shorter time to that of the y operator pop-

ulation. So if we adiabatically eliminate all y operator coherences here it would not

be a reasonable approximation as they evolve on the same time scale as the y operator

population. Thus, it is not clear whether an analytic solution for the steady state exists

for the case of strong confinement. We must therefore perform a stability analysis on

the Eq. (4.14) for the conditions of weak confinement. Proving that a stationary state

exists will allow us to replace the relevant expectation values with their time average

values (c.f. Section 3.3.4).

4.3 Stability analysis

Using our perturbative analysis to derive equations to second order in η for the case

of the trapped particle in the cavity has left us with the five y operator differential

equations of Eq. (4.14) for which it is not clear whether a stationary state solution

exists. This applies to both the weak and strong confinement regimes. We shall now

perform a stability analysis for both these cases and show that a stationary state solution

does in fact exist.

4.3.1 Weak confinement regime

Looking at Eq. (4.17) it is easy to see that M has the same form as Eq. (3.50) that repre-

sented the five slowly evolving equations of the free particle. Then the same steps apply

as before for the zeroth, first and second order matrices that were carried out in sections

3.3.1, 3.3.2 and 3.3.3. Therefore the zeroth and first order matrices have eigenvalues

whose real part is zero, thus proving that the zeroth and first order approximations of

Eq. (4.14) have no stationary state solution. So the second order matrix elements must

be taken into account. Doing so of course results in the same eigenvalues as Eqs. (3.69),

(3.70). Here the values for the alphas are those of Eqs. (4.18), (4.19) and (4.20). As in

the case of the free particle, since the matrix element α
(2)
11 is always negative, the vari-

ables of Eq. (4.14) are damped away and asymptotically approach zero on the timescale
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Figure 4.3: Phase portraits from a numerical solution of k8 against k7 and k10 against

k9 for δeff = κ/2, ν = 0.1κ and geff = 0.01κ. Here quasi stationary state expressions

for n1, k11 and k12 were used with parameters chosen to reflect the weak confinement

regime. y particles initially assumed to be in a coherent state.

given by 1/α11. Fig. 4.3 illustrates how the expectation values of the y operator coher-

ences evolve towards zero thus indicating that they do not increase in time but instead

oscillate around constant values with a slowly decreasing amplitude. This enables us to

replace the coherence variables k7 to k10 with their time averaged values after a period

of time on the order of 1/α11.

4.3.2 Strong Confinement

In the strong confinement regime we have five differential equations that describe the

cooling process. These five equations are those of Eq. (4.16) whose corresponding

matrix M is defined by Eq. (4.23). Our numerical solution of these 5 equations has been

plotted in Fig. 4.2 and shows that the coherences oscillate and asymptotically approach

a fixed value. We can determine the eigenvalues of Eq. (4.23) and by showing that

their real parts have a negative value we will have proven the existence of a stationary

(stable) solution for the 5 equations. The matrix consisting of just zeroth order terms

and the matrix consisting of just first order terms have the exact same form as those we

met previously in Eq. (3.64). Then these matrices have the exact same eigenvalues as

Eq. (3.65), whose real parts are not negative. Thus the second order matrix elements

must once more be taken into account. Using the same idea as in section 3.3.3 where

we only consider k7 and k8 from the set of 5 as by themselves they form a closed set. In
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this case this closed set has the corresponding matrix

K̃ ≡

 

α
(2)
22 −ν

ν α
(2)
11

!

(4.28)

which has the eigenvalues

λ2,3 =
1

2

�

α
(2)
11 +α

(2)
22

�

∓
i

2

Ç

4ν2 −
�

α
(2)
11 −α

(2)
22

�2

. (4.29)

So if k7 and k8 reach a stationary state when

1

2

�

α
(2)
11 +α

(2)
22

�

< 0 (4.30)

which is true if α11 and α22 are negative (c.f. Eq. (4.25)) which in turn can only be

true if δeff > ν . Finding the eigenvalues of the matrix that corresponds to the evolution

of n2, k9 and k10

M̃ ≡









α
(2)
11

α
(2)
14

α
(2)
15

α
(2)

41
α
(2)
44 −2ν −α(2)45

α
(0)
51 2ν −α(2)45 α

(2)
44









is not straightforward. However, finding the characteristic polynomial and solving to

find the cubic roots results in a 3 long expressions involving different permutations

and functions of α11, α15, α51, α44 and α45. Since permutations of the alphas will

have expressions that go above second order in η we can make the approximation of

neglecting such terms. Doing so, we find that the following conditions are necessary for

the real part of the eigenvalues to be negative

α11 < 0, 2α44 < 0 . (4.31)

These conditions will be true as long as δeff does not fall between the following values

approximately for the case of the strong confinement regime.

2.3ν > δeff > 1.2ν . (4.32)

This is so as Eq. (4.25) shows that α11 and α44 are always negative when

�

5δ4
eff
− 34δ2

eff
ν2 + 38ν4

�

> 0 . (4.33)
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Figure 4.4: Phase portraits from a numerical solution of k8 against k7 and k10 against

k9 for δeff = ν , κ = 0.1ν and geff = 0.01ν . Here quasi stationary state expressions

for n1, k11 and k12 were used with parameters chosen to reflect the strong confinement

regime. y particles initially assumed to be in a coherent state.

So in the strong confinement regime the five eigenvalues of M have negative real parts

thus proving that all variables are damped away and eventually tend to zero on the

timescale given by 1/α11. Fig. 4.4 which plots the numerical solution of Eq. (4.14) for

the strong confinement regime clearly illustrates how the coherences k7 to k10 evolve

towards zero. Since the y coherences do not increase but oscillate with a slowly de-

creasing amplitude around constant values, the cooling process remains stable and the

trapped particle eventually reaches its stationary state. This observation enables us to

replace the coherences by their time averaged values. This means the calculations in the

following section apply only towards the end of the cooling process after a transition

time of the order 1/α
(2)
11

for both the weak and strong confinement regimes.

4.4 Cooling rates and phonon numbers

Using the same form of the rate equation for n2 as Eq. (3.101) we can determine the

effective n2 rate equation for both the weak confinement regime using the values of the

αi j ’s in Eq. (4.19) and the strong confinement regime using the values of the αi j ’s in

Eq. (4.25). Since n2 and the mean phonon number are identical in zeroth order in η,

this equation allows us to calculate the effective cooling rate γc and the stationary state

phonon number mss for the cooling process illustrated in Fig. 2.1. As we shall see below,

these are exactly the same as the cooling rate and the stationary state phonon number

which we obtained previously when applying the Lamb-Dicke approximation [15–18,

69]. This section also shows that our current analysis of the cavity cooling process is
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consistent with earlier results.

4.4.1 Time averaging of k7 to k10

In this subsection we derive approximate solutions for the y operator coherences k7 to

k10 in first order in η. Taking only terms in first order in η into account, we find for

example that the time derivatives of k7 and k8 are given by

 

k̇7

k̇8

!

=

 

0 −ν

ν 0

! 

k7

k8

!

+

 

β2

β3

!

. (4.34)

As we have seen in the previous section, these equations describe relatively fast oscil-

lations around constant values whose amplitudes decrease in time. This allows us to

approximate k7 and k8 by their time averages which are given by

k7 =
8ηκg2

eff

ν(κ2 + 4δ2
eff
)

, k8 =
8ηg2

eff

κ2 + 4δ2
eff

(4.35)

up to first order in η. Moreover, we find that the time derivatives of k9 and k10 equal

k̇9 = −2ν k10 ,

k̇10 = 2ν k9 (4.36)

in zeroth order in η. These coherences also oscillate relatively rapidly. This allows us to

replace k9 and k10 by the average values of these oscillations and assume that

k9 = k10 = 0 (4.37)

in zeroth order in η. Substituting the expressions for the αi j ’s in Eq. (4.19) and using

the time average values we find that the effective rate equation for n2 in the weak

confinement regime becomes

ṅ2 = −
64η2 g2

eff
δeffκν

�

4δ2
eff
+ κ2

�2
n2+

4η2 g2
eff
κ

4δ2
eff
+κ2

. (4.38)

In a similiar manner the effective rate equation for n2 in the strong confinement regime

becomes

ṅ2 = −

�

η2κg2
eff

(δeff − ν)2
−

η2κg2
eff

(δeff + ν)
2

�

n2 +
η2κg2

eff

(δeff + ν)
2

(4.39)
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Figure 4.5: Logarithmic contour plot of the stationary state phonon number mss in

Eq. (4.40) as a function of the relative phonon frequency ν/κ and the relative effective

detuning δeff/κ.

In the following two sections section we shall show how to derive an analytic expression

for the steady state mss and cooling rate γc without making any approximation to either

the weak or strong confinement regimes. We will then show that both the steady state

and cooling rate reduce to the expressions that are consistent with the weak and strong

confinement regimes.

4.4.2 Stationary state phonon numbers

Using the cooling equations in Eq. (4.14) and in App. B.2 and setting the time deriva-

tives of all expectation values equal to zero, we obtain the stationary state phonon

number

mss =
κ2 + 4(ν − δeff)

2

16νδeff

(4.40)

This result applies in zeroth order in η without any approximations with respect to

either the weak or strong confinement regimes. Fig. 4.5 shows mss as a function of the

two laser parameters ν and δeff . In the weak confinement regime one should choose

δeff = 0.5κ and for ν ≫ κ one should choose δeff close to ν in order to minimise

the final kinetic energy of the trapped particle. To see this more clearly consider the

following example
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Example.

Consider ν/κ = 10. This is in the strong confinement regime as ν ≫ κ . So if we let

δeff = ν then δeff = 10κ/κ = 10 which means mss, according to Fig. 4.5, is less than 0.1.

On the other hand if we consider the weak confinement regime and choose ν/κ = 0.1

then δeff = 0.5 which corresponds to a steady state of about 5 when checking Fig. 4.5.

Noting Eq. (4.40)’s consistency with Eq. (2.62) from the earlier chapter we can now

apply the approximations that correspond to the weak and strong confinement regimes

and show that we get the same expressions that can be found from Eq. (4.38) and

Eq. (4.39) respectively.

Weak confinement

In the weak confinement regime, the stationary state phonon number mss in Eq. (4.40)

simplifies to

mss =
κ2 + 4δ2

eff

16νδeff

(4.41)

Exactly the same stationary state phonon number is obtained when setting the left hand

side of Eq. (4.38) equal to zero. This confirms the consistency of the calculations in this

paper. This expression assumes its minimum if

δeff =
1

2
κ . (4.42)

For this laser detuning the stationary state phonon number simplifies to

mweak
ss =

κ

4ν
. (4.43)

This means, in the optimal case the final phonon numbers scales essentially as κ/ν

which is much larger than one.

Strong confinement

Using the effective cooling equation derived in Eq. (4.39) and setting it equal to zero,

we find that the stationary state phonon number in the strong confinement regime

equals

mstrong
ss =

(δeff − ν)
2

4δeff ν
(4.44)

to a very good approximation. Exactly the same result is obtained when neglecting

terms proportional to κ in Eq. (4.40). This result suggests immediately that one should
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Figure 4.6: Logarithmic contour plot of the effective cooling rate γc in Eq. (4.47) in

units of 2g2
eff
/κ as a function of the relative phonon frequency ν/κ and the relative

effective detuning δeff/κ for η= 0.01.

choose

δeff = ν (4.45)

in order to minimise the final phonon number mss. When substituting this detuning

back into Eq. (4.40), we find that the stationary state phonon number for cavity laser

sideband cooling in the strong confinement regime is to a very good approximation

given by

mstrong
ss =

κ2

16ν2
. (4.46)

This means, the stationary state phonon number now scales essentially as κ2/ν2 which

is much smaller than one.

4.4.3 Effective cooling rates

We now use cooling equations in App. B.2 and determine the first and second order

expressions for n1, k11 and k12 and substitute them into the rate equation for n2 in

Eq. (4.14). Doing so will allow us to extract the cooling rate before making approxima-

tions with regard to either the weak or strong confinement regimes. In this case we do

not need to know what functions the y operator coherences are as the rate will simply

be the coefficient in front of the n2 variable which in second order in η, is given by

γc =
64η2νδeffκg2

eff
�

κ2 + 4(δeff + ν)
2
�

·
�

κ2 + 4(δeff − ν)2
� . (4.47)
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We can also express γc in the form of the popular A− − A+ transition rate notation in

the following way

γc =
4η2κg2

eff

κ2 + 4(δeff − ν)2
−

4η2κg2
eff

κ2 + 4(δeff + ν)
2

. (4.48)

Fig. 4.6 shows a contour plot of the cooling rate γc of Eq. (4.47) in units of 2g2
eff
/κ as a

function of ν/κ and δeff. The figure illustrates how the cooling rate varies between the

weak and strong confinement regimes. Consider again the following example.

Example. Suppose that we are in the strong confinement regime so that ν = 10κ. Then

for the cooling rate to be minimised δeff = ν = 10. This means that the cooling rate

will be of the order of 10−4. In fact for any value of δeff the cooling rate will be of this

order as all values will lie along the diagonal in the figure. Now if we move to the weak

confinement regime and have ν = 0.1κ then for δeff = κ/2 we get the cooling rate to be

of the order of 10−5.

So as one moves between the weak and strong confinement regimes the cooling rate

increases by an order of magnitude depending on parameters.

Weak confinement

For a relatively weakly confined particle, the optimal laser detuning δeff which min-

imises the stationary state phonon number mss is given by 1

2
κ (cf. Eq. (4.42)). Taking

this into account, the cooling rate γc in Eq. (4.47) simplifies to

γc =
8η2 g2

eff
νκ2

κ4 + 4ν4
. (4.49)

which is the same result we found in Eq. (2.80) for the first order Lamb-Dicke approxi-

mation.

Strong confinement

In the strong confinement regime, terms which scale as κ2 are in general negligible

(cf. Eq. (4.22)). The cooling process becomes indeed the most efficient, when the

detuning δeff is close to the phonon frequency ν (cf. Eq. (4.45)). The cooling rate is in

this case given by

γc =
64η2 g2

eff
ν2

κ(κ2 + 16ν2)
. (4.50)

which is the same result that we found in Eq. (2.81) for the first order Lamb-Dicke

approximation.
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Figure 4.7: Plot showing a numerical integration of all 25 cooling equations

(c.f. Eqs. (4.14), (B.3), (B.6), (B.8), (B.10), and (B.11)) compared with the analytic

solution of Eq. (4.52) which includes all terms up to η2.

4.5 Numerical Results

Summarising the results of the previous section we note that in both weak and strong

confinement cases we have a single effective cooling equation of the form

ṅ2 = −γcn2 + c . (4.51)

As previously discussed, n2 and the stationary state phonon number mss are identical in

zeroth order (c.f. Eq. (4.13)). Therefore an analytic solution for the steady state m(t)

will have the form

m(t) =
�

m(0)−mss

�

e−γc t +mss (4.52)

with mss = c/γc. This equation applies, since n2 and m are the same in zeroth order

in η. Let us emphasise that Eq. (4.52) applies independent of the relative size of ν ,

i.e. in the strong and in the weak confinement regime but only after a transition time

of 1/γc. As we shall, in spite of the time average approximation which is only reason-

able after a transition time of 1/γc, Eq. (4.52) agrees well with a numerical solution

of all 25 expectation value rate equations. Fig. 4.7 illustrates nicely how the cooling

process changes as the choice of parameters transitions between the weak and strong

confinement regimes. The figure compares a numerical integration of all 25 cooling

equations (c.f. Eqs. (4.14), (B.3), (B.6), (B.8), (B.10), and (B.11)) to the analytic so-

lution of Eq. (4.52) which includes all terms up to η2. Here we see that for a choice

of ν = 0.01κ we find ourselves deep in the weak confinement regime. We can also see

that the cooling rate is very gradual and eventually reaches a steady state not much

lower from the initial phonon number. Choosing ν = 0.05κ we remain within the weak
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confinement regime whilst the cooling rate increases and the steady state drops. The

next choice of parameter, ν = 0.5κ moves us an order higher to previously and brings

us to the boundary of the strong confinement regime (ν ≃ κ). Here we have the steep-

est cooling rate and the lowest phonon number steady state. The comparison with the

analytic solution shows agreement for all parameter choices. This is very encouraging

as the approximations performed with respect to the time averaging of the y operator

coherences could only be justified if applied towards the end of the cooling process on

the order of 1/γc. This would correspond to 1 on the time axis of Fig. 4.7 but as can

clearly be seen the analytic curves match very well with the numerical ones at times

less than 1. It must also be pointed out here that in the analytic solution for m(t) the

expressions used for γc and mss are those of Eqs. (4.47) and (4.40) respectively which

make no approximation regarding either the weak or strong confinement regimes.

4.6 Final Remarks

In this chapter we revisited one of the standard scenarios for cavity cooling [15, 16,

69]. The main difference compared to previous calculations [14–18, 69] is that instead

of expanding the Hamiltonian HI in Eq. (3.16) in η, we solve the cooling equations

for small Lamb-Dicke parameters η perturbatively. This is possible after replacing the

phonon and the cavity photon annihilation operators b and c in the initial interaction

Hamiltonian HI by two new bosonic operators x and y (q.v Eqs. (3.26), (4.4) and

(4.6)). The operator x annihilates cavity photons while giving a kick to the motion of

the respective particle. The operator y annihilates phonons but not without affecting

the state of the cavity photons as well. Using this method a total of 25 rate equations

were needed to determine a set of 5 equations (c.f. Eq. (4.14)) that described the cool-

ing of the system to second order in η. A numerical integration of these 5 equations

was performed with parameters chosen so as to show the behaviour of the 5 equations

with respect to both the weak and strong confinement regimes. In both cases all 5

equations evolved on the same time scale and as such it was necessary to perform a

stability analysis to determine the existence of a stable solution. Time averaging of the

variables in the set of 5 equations that described the cooling process was shown to be

justified on determining said stable solution for this group of 5 equations. Looking at

the two extreme cases of the weak and strong confinement regimes vastly simplified

the analysis of the 25 rate equations and resulted in a single effective equation for both

cases. Solving said equation resulted in a simple analytic function that could be plotted

against a numerical integration of all 25 equations. Doing so revealed good agreement

between the analytic result and the numerical result over a range of parameter choices

that reflected the transition from the weak to the strong confinement regime. All ana-

lytic results were also shown to be consistent with the earlier results found in chapter 2

95



Chapter 4. Cavity Mediated Laser Cooling beyond the Lamb - Dicke

Approximation

using the Lamb-Dicke approximation.
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Chapter 5

Conclusions

We have now reached the conclusion of the present analysis and at this point we would

like to gather together all that we have learned over the course of the investigation.

We undertook the task of establishing a quantum approach to cavity mediated laser

cooling. We set out to understand a cooling mechanism for single particles that could

be explained by using the concept of discretised energy loss. Such energy loss was de-

scribed as the removal of quanta of vibrational energy of the particle incurred from the

interaction between the different elements of the systems considered. We considered

2 types of systems. The first system consisted of a laser driven trapped particle inter-

acting with the single mode of a cavity field from which photons could escape through

the cavity mirrors. The second system considered consisted of a laser driven trapped

particle interacting with a free radiation field. Both systems used different forms of the

quantum optical master equation to model the change of vibrational quanta and loss

within its system.

In chapter 2 we presented the model through which we could investigate the in-

teraction between the trapped particle and the single mode of the cavity. We found

that in the parameter regime of a tightly confined particle inside a relatively leaky op-

tical cavity described by Eq. (2.22), the cavity cooling scenario in Figure 2.1 has many

similarities with ordinary laser cooling [8, 10, 11, 13]. The reason is that the atomic

0–1 transition and the cavity are so strongly detuned that the electronic states of the

trapped particle can be adiabatically eliminated from the system dynamics (q.v Section

2.2). The remaining master equation (q.v Eq. (2.50)) with the interaction Hamiltonian

HI in Eq. (2.37) is almost the same as in laser cooling. One only needs to replace the

cavity annihilation operator c by the atomic lowering operator |0〉〈1|, the cavity decay

rate κ by the atomic decay rate Γ, and the effective coupling constant geff by the cooling

laser Rabi frequency Ω, and so on.

As in laser cooling, we found that it is useful to distinguish between two different

parameter regimes: the strong confinement regime and the weak confinement regime.
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In the strong confinement regime, where the relevant spontaneous decay rate (κ or Γ)

is much smaller than the phonon frequency ν , one should choose the relevant laser

detuning equal to ν (q.v Eq. (2.68)) in order to minimise the stationary state phonon

number mss. In laser cooling, this case is known as laser sideband cooling. The sta-

tionary state phonon number mss for cavity cooling in the strong confinement regime

is essentially given by κ2/16ν2 (q.v Eq. (2.62)) while scaling as Γ2/ν2 in laser side-

band cooling [13]. This means, it is possible to cool to phonon numbers well below

one (ground state cooling), although realising κ≪ ν in cavity cooling is experimentally

very demanding.

We adopted a different approach to analysing the cooling process and firstly applied

the method to the case of the trapped particle interacting with the free radiation field

and then to trapped particle in the cavity. The motivation for a new approach was

made in response to realising the naivety of adiabatically eliminating all rate equations

except the phonon number rate equation. A subgroup of the 14 rate equations that

described the cooling process in Chapter 2 were assumed to have quasi-stationary states.

These equation are only exact up to first order in η. This subgroup of equations could

easily be shown to have no stationary state solution (q.v section 2.5). By adiabatically

eliminating this subgroup of equations we were inadvertently determining the time

averaged values of the relevant variables which were equivalent to the quasi-stationary

state values (q.v section 3.3.4). So we determined the correct expressions inadvertently!

It was realised that to have a stable solution for this subgroup of equations it would

be necessary to use equations that were exact up to second order in η. Doing so we

found that we had no control in determining which coherence expectation values could

be used to form closed sets of rate equations. In response to this situation we developed

the novel method of using the algebra of the commutator between the displacement

operator D(iη) and the phonon annihilation and creation operators in the rate equation

derivations. In addition 2 unitary transformations (q.v Eqs. (3.26) and (3.30)) were

employed to make the rate derivations more straightforward.

In chapter 3 we found that we could greatly simplify the calculations by considering

the cases of weak (Γ ≫ ν) and strong (Γ ≪ ν) confinement once more. In the weak

confinement case the y operator rate equations were found to evolve on the same

timescale whilst in the strong confinement regime the y operator coherences and the

y operator population evolved on different timescales. Steady states and cooling rates

were derived that agreed with their cavity counterparts (q.v Eq. 3.100)). We were then

able to further simplify the analysis by considering the limit of weak driving Ω ≪ Γ.

Using this approximation we recovered the results of previous authors [10–13]. This

method also provided an alternative approach to adiabatically eliminating the excited

state of the particle.

In chapter 4 we applied the transformation method to the Hamiltonian describing
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trapped particle and cavity interaction. Here we found that the x annihilation operator

could be easily defined with the bosonic annihilation operator in place of the fermionic

σ− Pauli operator. Indeed, this provided a nice example of the crucial difference be-

tween a purely bosonic system (cavity) and bosonic plus fermionic system (free parti-

cle). Here the difference lay in the commutators of Eqs. (3.27) and (4.4). So it is quite

remarkable then, that when considering this fundamental difference, that expressions

derived for the cooling rate and steady states have the exact same form as their free

particle analogues.

Feynman pointed out in his classic paper "Space time Approach to Non-relativistic

Quantum Mechanics " [106] how curious it was that there were 2 differing but equiv-

alent approaches to the mathematical formulation of quantum mechanics to which his

paper became a third. He himself thought that there was something special about na-

ture in the sense it could be described using quantum mechanics in completely different

ways. In some sense this could be the take home message of this thesis. The quantum

formalism that was developed to describe the cooling of trapped ions [10–13] and later,

cavity mediated laser cooling ,[14–19] used a transition rate formalism that could be

applied equally well to both frameworks. In our work we have shown that the exact

same results can be produced by using the transformation formalism. Its usefulness can

be captured in the definition of the x unitary transformation which can be used for both

free particle and cavity systems.
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Appendix A

Free Particle Model

A.1 Derivation of conditional Hamiltonian Hcond

To clarify our use of the quantum jump approach to determine Eqs. (3.19), (3.20)

and the form of the master equation Eq. (3.21) the following section shall give a brief

description of the concepts involved and a short derivation of the central expressions.

Previously, in section (3.1.4), we briefly described the ensemble description of a

single particle system. Here we shall elaborate on this concept some more. To adhere

to the necessary condition of the observation of sequential photon emission we must

impose a requirement on the the length of time ∆t between observations on the single

system. If we suppose the single particle to be a 2 level system with an optical transi-

tion frequency of ω0 with a spontaneous decay rate of Γ then ∆t must not be smaller

than the time it takes for the particle to become excited, 1/ω0, but much smaller than

the lifetime of the excited state. As otherwise with respect to the former we would en-

counter the quantum zeno effect [107] ( a sort of "freezing" of the systems dynamics)

and with respect to latter we would risk the possibility of not detecting a sequential

emission event. Thus we have

1

ω0

≪∆t ≪
1

Γ
. (A.1)

The trick that is used in this approach of applying an ensemble description to a single

particle system is to consider an ensemble E of many particles and their associated

quantised free radiation fields. The single particle system then is a member of the

ensemble E

The initial state of the ensemble at t0 = 0 is then described by the state |0ph〉|ψpar〉.

Then each member of the E ensemble is a measurement for photon detection performed

at times t1 = ∆t, . . . tn = n∆t, . . . . Next, for n = 1, 2, . . . , we denote by E
(n∆t)
0

the subensemble which consists of all systems of E for which at times ∆t, . . . n∆t, . . .
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Figure A.1: The ensemble of 2 level systems E with the subensembles E
(∆t). The single

particle system is denoted by the dot contained within the subensembles E
(n∆t)

no photon was detected. This is illustrated in Fig. (A.1) where we denote our single

particle system of particle plus free radiation field as a dot · within the subensemble

E
(n∆t)
0

. Using the von Neumann - Lüders projection postulate [108] we let P0 be the

projector onto the no - photon subspace,

P0 ≡ |0ph〉〈0ph| ⊗ 1par (A.2)

and let U(t, t0) be the unitary operator that describes the complete time develope-

ment of the laser driving, the particle field interaction and the particles external motion

(c.f Eqs. (3.2) and (3.4)). Then after a time ∆t the state of the subensemble E
(∆t)
0 is

described by

P0U(t1, t0)|0ph〉|ψpar〉 ≡ |0ph〉|ψpar(∆t)〉 . (A.3)

After a time 2∆t the subensemble E
(2∆t)
0

is described by

P0U(t2, t1)P0U(∆t, 0)|0ph〉|ψpar〉 ≡ |0ph〉|ψpar(2∆t)〉 . (A.4)

After a time (n− 1)∆t the subensemble E
((n−1)∆t)
0

is described by

P0U(tn−1, tn−2)P0 . . .P0U(t1, t0)|0ph〉|ψpar〉 ≡ |0ph〉|ψpar((n− 1)∆t)〉 (A.5)
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and after a time n∆t the subensemble E
(n∆t)
0

is described by

P0U(tn, tn−1)P0 . . .P0U(t1, t0)|0ph〉|ψpar〉 ≡ |0ph〉|ψpar(n∆t)〉 . (A.6)

It is now quite simple to see how this approach can account for the detection of sequen-

tial emission events. As we stated earlier E is the ensemble of many particles with its

own quantised radiation field. So if a photon is detected at a time 2∆t then this means

that no photon has been detected during the time ∆t. Therefore a member of E will

also be a member of the subensemble E
(∆t)
0 . In a different case if a photon is detected at

a time 3∆t then this means that no photon has been detected during the time 2∆t and

so the member of E will now be a member of the subensemble E
(2∆t)
0 . More precisely

for some timedependent function f (t)

E
(n∆t)
0

= { f (t′) ∈ E : (n− 1)∆t ≤ t′ < n∆t} (A.7)

So in general if photon is detected after a time n∆t then this means that no photon has

been detected up to the time n∆t and so the member of E will now be a member of the

subensemble E
(n∆t)
0 .Thus the probability of finding a member of E in the subensemble

E
(n∆t)
0 is the same as the probability of not detecting a photon up to the time n∆t.

Now the probability of finding a member of E in the subensemble E
(n∆t)
0 is actually the

relative size of E
(n∆t)
0 which is given by

P0(n∆t) ≡ ‖|ψpar(n∆t)〉 ‖ . (A.8)

To determine |ψpar(n∆t)〉 redefine Eq. (A.6) to be

P0U((n)∆t, (n− 1)∆t)P0 . . .P0U(∆t, 0)|0ph〉|ψpar〉 ≡ |0ph〉Ucond(n∆t, 0)|ψpar(0)〉 (A.9)

so that

Ucond(n∆t, 0)|ψpar(0)〉 ≡ |ψpar(n∆t)〉 (A.10)

From Eqs. (A.4),(A.5) and (A.6) it is easy to see that

P0U(t′ +∆t, t)P0 = |0ph〉〈0ph|U(t
′ +∆t, t′)|0ph〉〈0ph|. (A.11)

Expanding the inner expression 〈0ph|U(t
′+∆t, t′)|0ph〉 using second order perturbation

theory and using the fact that

Ucond(t, 0) =

n
∏

1

〈0ph|U(t i, t i−1)|0ph〉 (A.12)
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and where we are saying that t = tn = n∆t we can find an expression for the condi-

tional Hamilitonian Hcond which we now do so with respect to Eq. (3.16), the interaction

Hamiltonian HI

A.1.1 2nd order perturbation calculation of Ucond(t , 0)

We first expand 〈0ph|U(t i, t i−1))|0ph〉 up to second order [109] where t i − t i−1 =∆t

〈0ph|UI(t i , t i−1)|0ph〉 = 1−
i

ħh

∫ ti

ti−1

d t′〈0ph|HI (t
′)|0ph〉

−
1

ħh2

∫ ti

ti−1

∫ t ′

ti−1

d t′′〈0ph|HI(t
′)HI (t

′′)|0ph〉 (A.13)

The first term remains unaffected by the operation. The second term only has contribu-

tions from the particle, laser and phonon terms of Eq. (3.16)

i

ħh

∫ t i

t i−1

d t〈0ph|H I (t
′)|0ph〉 =−

i

ħh

∫ t i

t i−1

d t ′
�

1

2
ħhΩD(iη)σ− +H.c.+ħh∆σ+σ− + ħhν b† b

�

(A.14)

Expanding out the third term we neglect all terms that contribute in ∆t2. All terms

with 〈0ph|a
†|0ph〉 vanish. This then leaves us with

−
1

ħh2

∫ ti

ti−1

∫ t ′

ti−1

d t′′〈0ph|Hdip(t
′)Hdip(t

′′)|0ph〉 (A.15)

where Hdip is the first term in Eq. (3.16) which as we recall is

Hdip(t) =
∑

kλ

ħhgkλσ
−a

†
kλ

D

�

iηk cosϑ

kL

�

e−ik sinϑ[Rx cosϕ+R y sinϕ] ei(ωk−ωL)t

+H.c . (A.16)

Evaluation of Eq. (A.15) gives us four terms but obviously the 2 terms involving σ−σ−

and σ+σ+ vanish. This leaves 2 terms. One of which has 〈0ph|a
†
kλ

akλ|0ph〉. However

〈0ph|a
†
kλ

akλ|0ph〉= 0 (A.17)

This just leaves one term that has 〈0ph|akλa
†
kλ
|0ph〉 which we can easily show is equal

to one

〈0ph|akλa
†
kλ
|0ph〉 = 1 . (A.18)
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A.1. Derivation of conditional Hamiltonian Hcond

We thus have

1

ħh2

∫ ti

ti−1

d t′
∫ t ′

ti−1

d t′′〈0ph|Hdip(t
′)Hdip(t

′′)|0ph〉 =
∑

kλ

∫ ti

ti−1

d t′
∫ t ′

ti−1

d t′′|gkλ|
2

×ei(ω0−ωk)(t
′−t ′′)σ+σ− . (A.19)

From Eq. (A.1) we know that ∆t is much larger than the inverse optical frequency ω0

and since t′− t i−1 ≤∆t we can extend the inner integral to infinity allowing us to make

use of the identity

lim
∆t→∞

∫ ∆t

0

d t′′ei(ω0−ωk)(t
′−t ′′) =

1

2

�

πδ(ω0−ωk)− i
P

ω0 −ωk

�

. (A.20)

Following the time honoured tradition of treating the principal value part as a level shift

and rescaling the energy scale so as to start the energy measurement from where the

level shift ends, thereby neglecting it, and also substituting the expression for gkλ we

find that Eq. (A.19) becomes

−
1

2
π∆t

∑

kλ

e2ωk

2ε0ħhV
|D01 · ekλ|

2δ(ω0 −ωk)σ
+σ− . (A.21)

In order to proceed further it will be necessary to convert the following expression to

an integral in ωk

∑

k

∑

λ

|D01 · ekλ|
2 . (A.22)

Firstly we convert the summation over k to an integration over ωk

∑

k

→
V

(2π)3

∫

dk

=
V

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

k2 sinϑdkdϑdϕ

=
V

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0

ω2
k

c2
sinϑ

dωk

c
dϑdϕ

=
V

8π3c3

∫ ∞

0

∫ π

0

∫ 2π

0

ω2
k sinϑdωkdϑdϕ . (A.23)

Next let us denote the vector that describes the normalised dipole D̂01 ≡ D01/|D01|

as

D̂01 = (d1, d2, d3)
T . (A.24)
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Appendix A. Free Particle Model

Now we express the sum over polarisations of the vector product of the Dipole moment

and the vector that defines the direction of the free radiation field in terms of the spher-

ical polar variables ωk, ϑ and ϕ using the fact that ekλ · k= 0, and ek1 · ek2 = 0 we can

express the sum over λ in the following manner.

∑

λ

|D01 · ekλ|
2 = |D01|

2− |D01 · k̂|
2

= |D01|
2− |D01|

2 |d1 sinϑ cosϕ+ d2 sinϑ sinϕ+ d3 cosϑ|2

= |D01|
2
�

1−
�

�sinϑ
�

d1 cosϕ+ d2 sinϕ
�

+ d3 cosϑ
�

�

2
�

. (A.25)

If we now expand out the square in Eq. (A.25) we get the following terms.

∑

λ

|D01 · ekλ|
2 = |D01|

2− |D01|
2|d2

1 sin2ϑ cos2ϕ+ d2
2 sin2 ϑ sin2ϕ+ d2

3 cos2 ϑ

+2d1 d2 2 sin2ϑ sinϕ cosϕ+ 2d1 d3 sinϑ cosϑ cosϕ

+2d2 d3 sinϑ cosϑ sinϕ| . (A.26)

Making use of the fact that ω3
0 = 2

∫∞

0
ω3

k
δ(ω0 −ωk)dωk and using Eq. (A.21) with

Eq. (A.25) we find that Eq. (A.21) becomes a series of 5 integrals.

�

e2ω3
0

8π2c3ħh

�∫ 2π

0

dϕ

∫ π

0

sinϑσ+σ−|D01|
2 =

3Γ

2
σ+σ− , (A.27)

−

�

e2ω3
0

8π2c3ħh

�∫ 2π

0

dϕ
�

d2
1 cos2ϕ+ d2

2 sin2ϕ
�

∫ π

0

dϑ sin3ϑ|D01|
2 = −

3Γ

2

�

d2
1 + d2

2

�

×σ+σ− , (A.28)

−

�

e2ω3
0

8π2c3ħh

�∫ 2π

0

dϕ d2
3

∫ π

0

dϑ sinϑ cos2 ϑσ+σ−|D01|
2 = −

Γ

2
d2

3

×σ+σ− , (A.29)

−2

�

e2ω3
0

8π2c3ħh

�

d2
1 d2

2

∫ 2π

0

dϕ cosϕ sinϕ

∫ π

0

dϑ sinϑσ+σ−|D01|
2 = 0 , (A.30)
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A.1. Derivation of conditional Hamiltonian Hcond

�

e2ω3
0

4π2c3ħh

�∫ 2π

0

dϕ
�

d1 cosϕ+ d2 sinϕ
�

∫ π

0

dϑd3 sinϑ cosϑσ+σ−|D01|
2 = 0 .(A.31)

Noting that d2
1 + d2

2 = 1− d2
3 and defining Γ = e2|D01|

2ω3
0/3πħhc3, we add together the

nonvanishing integrals Eqs (A.27), (A.28) and (A.29) to get

�

3Γ

2
−
Γ

2

�

1− d2
3

�

−
Γ

2
d2

3

�

σ+σ− =
Γ

2
σ+σ− . (A.32)

Collecting all terms together we find that Eq. (A.13) becomes

〈0ph|UI(t i , t i−1)|0ph〉 = 1−
i

ħh

∫ ti

ti−1

d t′
�

1

2
ħhΩD(iη)σ− +H.c.+ ħh∆σ+σ− + ħhν b† b

�

−
1

2
Γ∆tσ+σ− . (A.33)

Next we integrate so that
∫ ti

ti−1
d t′ Γ/2 σ+σ− = Γ/2 σ+σ−∆t and make use of the fact

that eε ≈ 1− ε for small ε to get

〈0ph|UI(t i , t i−1)|0ph〉= e
− i

ħh

∫ ti

ti−1
d t ′
�

HI
par+HI

phn
+HL− 1

2
Γσ+σ−

�

. (A.34)

and where we have defined the interaction Hamiltonians H I
par, H I

phn
and HL to be the

particle, phonon and laser interaction Hamiltonians respectively from Eqs. (3.16) and

(A.33). We should point out that these Hamiltonians are also time independent this

being due of course to Eqs. (3.14) and (3.15) Going back to Eq. (A.10) and using the

following properties of products, sums and exponential

n
∏

i=1

exp





∫ ti

ti−1

d t′ f (t′)



 = exp





∫ t1

0

d t′ f (t′) + · · ·+

∫ tn

tn−1

d t′ f (t′)





= T exp





∫ n∆t

0

d t f (t′)



 (A.35)

and using the time ordering property T to mean t1 < · · · < tn we finally arrive at the

expression for the conditional unitary operator Ucond(n∆t, 0)

Ucond(n∆t, 0) = T e
− i

ħh

∫ n∆t

0
d t ′
�

HI
par+HI

phn
+HL− 1

2
Γσ+σ−

�

(A.36)
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Thus we deduce that Hcond is

Hcond =
1

2
ħhΩD(iη)σ− +H.c.+ ħh∆σ+σ− + ħhν b† b−

i

2
ħhΓσ+σ− . (A.37)

A.1.2 Coarse graining

If we consider our ensemble of states for which there has been no photon emission

to be described by the density operator ρ0(n∆t) and using the fact that Hcond is time

independent then

ρ0(n∆t) =

 

1−
i

ħh
Hcond

∫ n∆t

0

d t

!

ρ(0)

 

1+
i

ħh
H

†
cond

∫ n∆t

0

d t

!

=

�

ρ(0)−
i

ħh
Hcondρ(0)n∆t

��

1+
i

ħh
Hcond n∆t

�

= ρ(0)−
i

ħh

�

Hcondρ(0)−ρ(0)H
†
cond

�

n∆t +O(∆t2) (A.38)

Next we denote the density operator that describes the part of the ensemble for which

a photon has been detected as ρ>(n∆t) and consider the derivative of the density

operator that describes on the full ensemble.

ρ̇(t) = lim
n∆t→0

ρ(n∆t)−ρ(0)

n∆t

= lim
n∆t→0

ρ0(n∆t) +ρ>(n∆t)−ρ(0)

n∆t

= lim
n∆t→0

ρ0(n∆t)−ρ(0)

n∆t
+ lim

n∆t→0

ρ>(n∆t)

n∆t

= lim
n∆t→0

−i/ħh
�

Hcondρ(0)−ρ(0)H
†
cond

�

n∆t

n∆t
+ lim

n∆t→0

R(ρ)n∆t

n∆t
(A.39)

Here we have also defined ρ>(n∆t) ≡ R(ρ)n∆t where R(ρ) is the density operator

that the particle density operator is "reset" to after a photon detection. Thus on the

coarse-grained timescale as n∆t → 0 we recover the usual master equation that de-

scribes the ensemble of systems ρ(t) from Eq. (3.21).

A.2 Derivation of the reset state R(ρ)

This can be considered as the second part of the quantum jump approach, namely the

construction of the density operator ρ>(n∆t) through which we shall determine the
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A.2. Derivation of the reset state R(ρ)

reset operator. As before the initial state of the ensemble is |0ph〉|ψ〉 but now we seek

the state of the subsystem with one photon emission at time tn+1 = tn + ∆t where

tn = n∆t as before. Let P1 be the projector onto the photon emission subspace. Then

P1 = 1−P0 =
∑

kλ

|1kλ〉〈1kλ| ⊗ 1par (A.40)

The unnormalised state of the subensemble for which a photon has been detected is

then given by

ρ>(tn+1) = P1ρ(tn+1)P1

=
∑

kλ

|1kλ〉〈1kλ|UI(tn+1, tn)|0ph〉

×|ψ〉〈ψ|〈0ph|U
†
I (tn+1, tn)

∑

k’λ

|1k’λ〉〈1k’λ| (A.41)

We next follow the argument laid out in reference [101]which states that after a photon

detection by absorption no photons are present any longer and the resulting reset state

is obtained by a partial trace over the free radiation field. After taking the partial trace

with respect to the free radiation field we find Eq. (A.41) changes to

ρ>par(tn+1) =
∑

kλ

〈1kλ|UI(tn+1, tn)|0ph〉|ψ〉〈ψ|〈0ph|U
†
I (tn+1,tn

)|1kλ〉 (A.42)

As a first step in determining (A.42) we use a first order perturbation expansion on the

amplitudes within (A.42) which gives us the following integral form.

〈1kλ|UI(∆t, 0)|0ph〉 = −
i

ħh

∫ ∆t

0

d t′
∑

kλ

e−i(ωk−ω0)t
′
ħhgkλD

�

iηk cosϑ

kL

�

×e−ik sinϑ[Rx cosϕ+R y sinϕ]σ− . (A.43)

The other amplitude can then be found by taking the complex conjugate of Eq. A.43.

We can now determine an expression for the density operator ρ>par(tn+1) which is

ρ>par(tn+1) =
∑

kλ

∫ ∆t

0

d t′
∫ ∆t

0

d t′′
∑

kλ

e−i(ωk−ω0)(t
′−t′′)|gkλ|

2

×σ−D

�

iηk cosϑ

kL

�

ρ(0)D†

�

iηk cosϑ

kL

�

σ+ . (A.44)
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Appendix A. Free Particle Model

Notice that the exponentials on the last line of Eq. (A.43) have now vanished. This

is because we are making the approximation that Rx and R y now represent numbers

since we are only considering the motion quantised in the direction of the laser. We now

decompose the double integral over t and t′ for the rectangular integration domain into

two triangular integration domains which gives

∫ ∆t ′

0

d t′
∫ ∆t

0

d t′′ =

∫ ∆t

0

d t′
∫ t ′

0

d t′′ +

∫ ∆t

0

d t′
∫ ∆t

t ′
d t′′ (A.45)

Using the following integration relation we interchange the order of integration in the

second double integral

∫ ∆t

0

d t′
∫ ′∆t

t

d t′′ =

∫ ∆t

0

d t′′
∫ t ′′

0

d t′ . (A.46)

Then, by making the replacements t′′ → t′ and t′′ → t′ in the second double integral

Eq. (A.45) contracts to the following double integral. [109]

ρ>par(tn+1) = 2
∑

kλ

∫ ∆t

0

d t′
∫ t

0

d t′′
∑

kλ

e−i(ωk−ω0)(t
′−t′′)|gkλ|

2

×σ−D

�

iηk cosϑ

kL

�

ρ(0)D†

�

iηk cosϑ

kL

�

σ+ . (A.47)

Next we use the identity of Eq. (A.20), neglect the principal value, integrate over t′,

substitute for gkλ and make the sum to integral replacement in the large volume as in

Eq. (A.23) to get the following expression for R(ρ) noting of course that ρ>par(tn+1) =

R(ρ)∆t.

R(ρ) = 2π

∫ π

0

dϑ sinϑ

∫ 2π

0

dϕ
∑

λ=1,2

|D01 · ekλ|
2

∫ ∞

0

dωkω
2
k

�

L

2πc

�3
�

e2ωk

2ε0ħhV

�

×
1

2
δ(ω0 −ωk)σ

−D

�

iηk cosϑ

kL

�

ρ(0)D†

�

iηk cosϑ

kL

�

σ+ . (A.48)

Now we must account for the recoil factors which are included through the wave vector

that defines the direction of the free radiation field (c.f Eq. (3.13)). We substitute

Eq. (A.26) back into Eq. (A.48) and also use the delta function property and cancel

constants to get the factor e2ω3
0/8π

2c3ħh. Previously when we were performing the

same operation in the calculation of Eq. (A.21) we were able to integrate out both the

ϕ and ϑ variables. This was because of the form of the second order perturbation
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A.2. Derivation of the reset state R(ρ)

with respect to the displacement operators. In that case the displacement operators

vanished due to their unitary multiplication property. In the present case however, this

is no longer possible due to the form of the operators in Eq. (A.48) . To illustrate this

point we shall label the operator form as function a F(ϕ)

F(ϑ) = σ−D

�

iηk cosϑ

kL

�

ρ(0)D†

�

iηk cosϑ

kL

�

σ+ . (A.49)

We can now only integrate out the ϕ variable. After substituting Eq. (A.26) into

Eq. (A.48) the penultimate expression for R(ρ) becomes a matter of solving the fol-

lowing integrals and adding together all terms.

�

e2ω3
0

8π2c3ħh

�∫ 2π

0

dϕ

∫ π

0

sinϑ|D01|
2F(ϑ) =

3Γ

4

∫ π

0

dϑ sinϑF(ϑ) , (A.50)

−

�

e2ω3
0

8π2c3ħh

�∫ 2π

0

dϕ
�

d2
1 cos2ϕ+ d2

2 sin2ϕ
�

∫ π

0

dϑ sin3 ϑ|D01|
2 F(ϑ)

= −
3Γ

8

�

d2
1 + d2

2

�

∫ π

0

dϑ sin3 ϑF(ϑ) , (A.51)

−

�

e2ω3
0

8π2c3ħh

�∫ 2π

0

dϕ d2
3

∫ π

0

dϑ sinϑ cos2ϑ|D01|
2F(ϑ) = −

3Γ

4
d2

3

∫ π

0

dϑ sinϑ

× cos2 ϑF(ϑ) , (A.52)

−2

�

e2ω3
0

8π2c3ħh

�

d2
1 d2

2

∫ 2π

0

dϕ cosϕ sinϕ

∫ π

0

dϑ sinϑF(ϑ)|D01|
2 = 0 , (A.53)

�

e2ω3
0

4π2c3ħh

�∫ 2π

0

dϕ
�

d1 cosϕ+ d2 sinϕ
�

∫ π

0

dϑd3 sinϑ cosϑF(ϑ)|D01|
2 = 0 . (A.54)

Lastly we note that d2
1 + d2

2 = 1− d2
3 and set ζ = cosϑ to finally arrive at the expression

for the reset operator R(ρ)

R(ρ) =
3Γ

8

∫ 1

−1

dζσ−D(iηζ)ρ D(iηζ)†σ+
�

1+ |d3|
2+
�

1− 3|d3|
2
�

ζ2
�

(A.55)
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The spontaneous decay rate Γ in this equation is the same as Γ in Eq. (3.24). Notice

that d3 denotes the component of the normalised dipole moment D̂01 in the direction

of the cooling laser.

A.3 Relevant expectation values

The calculations in the following two appendices require in addition to the expectation

values defined in Section 3.2.2 the x operator expectation values

k1 ≡ 〈x + x†〉 , k2 ≡ i 〈x − x†〉 . (A.56)

Moreover we employ the mixed operator expectation values

n4 ≡ 〈x
† x y† y〉 , k13 ≡ 〈(x + x†)y† y〉 ,

k14 ≡ i 〈(x − x†)y† y〉 , k15 ≡ 〈(x − x†)(y − y†)〉 ,

k16 ≡ i 〈(x + x†)(y − y†)〉 , k17 ≡ 〈(x + x†)(y + y†)〉 ,

k18 ≡ i 〈(x − x†)(y + y†)〉 , (A.57)

and

k19 ≡ 〈(x − x†)(y2 − y†2)〉 ,

k20 ≡ i 〈(x + x†)(y2 − y†2)〉 ,

k21 ≡ 〈(x + x†)(y2 + y†2)〉 ,

k22 ≡ i 〈(x − x†)(y2 + y†2)〉 ,

k23 ≡ 〈x
†x(y2 + y†2)〉 ,

k24 ≡ i 〈x† x(y2− y†2)〉 . (A.58)

The time derivatives of these and other expectation values which we defined in Sec. 3.2.2

can be found in App. A.4.
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A.4 n1, k11, and k12 in the weak confinement regime

Setting η = 0 and substituting the x operator expectation values n1, k1, and k2 into

Eq. (3.34), we find that they evolve according to

ṅ1 =
1

2
Ω k2 − Γn1 ,

k̇1 = −∆ k2−
1

2
Γ k1 ,

k̇2 = Ω(1− 2n1) +∆ k1 −
1

2
Γ k2 (A.59)

in zeroth order in η. These equations form a closed set of differential equations. Elim-

inating all x -operator expectation values adiabatically which change on the relatively

fast time scale given by Γ and adopting a notation where x = x (0) + x (1) + x (2) + ...,

with the superscript indicating the scaling of the respective term with respect to η, we

find for example that n1 is in zeroth order in η given by

n
(0)
1

=
Ω2

µ2
. (A.60)

The constant µ2 in this equation is given by

µ2 ≡ 2Ω2 +Γ2 + 4∆2 . (A.61)

In addition to n(0), we obtain solutions for k
(0)
1 and k

(0)
2 . These will be used in the next

subsection to calculate the coherences k11 and k12 up to first order in η.

Setting η = 0 and using again Eq. (3.34), we find that the time evolution of the

mixed operator coherences k11 and k12 and k15 to k18 is in zeroth order in η given by

k̇11 =
1

2
Ω k18 − ν k12 − Γ k11 ,

k̇12 = −
1

2
Ω k15 + ν k11 − Γ k12 ,

k̇15 = −Ω(k8− 2k12)−∆ k16 − ν k18 −
1

2
Γ k15 ,

k̇16 = ∆ k15 + ν k17 −
1

2
Γ k16 ,

k̇17 = −∆ k18 − ν k16 −
1

2
Γ k17 ,

k̇18 = Ω(k7 − 2k11) +∆ k17 + ν k15 −
1

2
Γ k18 . (A.62)

All six expectation values evolve on the relatively fast time scale given by the sponta-

neous decay rate Γ. Taking this into account and eliminating them adiabatically in the
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weak coupling regime, i.e. for relatively small ν , we find that

k
(0)
11 =

Ω2

µ4Γ

�

µ2Γ k7 − (3Γ
2− 4∆2)ν k8

�

,

k
(0)
12 =

Ω2

µ4Γ

�

(3Γ2− 4∆2)ν k7 +µ
2Γ k8

�

(A.63)

to a very good approximation. The constant µ2 is given in Eq. (A.61) above. In addi-

tion to k
(0)
11

and k
(0)
12

we obtain expressions for k
(0)
15

and k
(0)

16
. These are used in the next

subsection to calculate n1 up to first order in η.

Proceeding as above but taking terms up to first order in η into account we find

that the first order in η contributions of the x operator expectation values n1, k1, and

k2 in Eq. (4.10) evolve according to

ṅ
(1)
1 =

1

2
Ω k

(1)
2 − Γn

(1)
1 ,

k̇
(1)
1 = −ην k

(0)
15 −∆ k

(1)
2 −

1

2
Γ k
(1)
1 ,

k̇
(1)
2 = −2Ωn

(1)
1 −ην k

(0)

16
+∆ k

(1)
1 −

1

2
Γ k
(1)
2 . (A.64)

These equations form a closed set of cooling equations, when the results for k
(0)
15 and

k
(0)

16
which we obtained in App. A.4 are taken into account. Eliminating n1, k1 and k2

adiabatically

n
(1)
1

=
8ην∆Ω2

µ4
k8 (A.65)

in the weak confinement regime which we introduced in Section 3.2.3. This means

terms proportional to ν2 have been neglected.

In order to calculate k11 and k12 up to first order in η, we need a closed set of

cooling equations which holds correctly up to this order. Applying Eq. (3.34) again to
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k11 and k12 and k15 to k18, we find that

k̇
(1)
11 =

1

2
Ω k

(1)
18 − ν k

(1)
12 + 2ην n

(0)
1 − Γ k

(1)
11 ,

k̇
(1)

12
= −

1

2
Ω k

(1)

15
+ ν k

(1)

11
− Γ k

(1)

12
,

k̇
(1)
15

= 2Ω k
(1)
12
−∆ k

(1)

16
− ν k

(1)
18
+ην

�

k
(0)
1
+ 2k

(0)
13

−k
(0)
21

�

−
1

2
Γ k
(1)
15 ,

k̇
(1)

16
= ∆ k

(1)
15 + ν k

(1)
17 +ην

�

k
(0)
2 + 2k

(0)
14 − k

(0)
22

�

−
1

2
Γ k
(1)

16
,

k̇
(1)
17 = −∆ k

(1)
18 − ν k

(1)

16
+ην

�

k
(0)
1 − k

(0)
19

�

−
1

2
Γ k
(1)
17 ,

k̇
(1)
18 = −2Ω k

(1)
11 +∆ k

(1)
17 + ν k

(1)
15 +ην

�

k
(0)
2 − k

(0)
20

�

−
1

2
Γ k
(1)
18

. (A.66)

Substituting the definitions of the mixed-particle expectation values n4, k13 and k14 and

k19 to k22 into Eq. (3.34) and setting η= 0, we find that

ṅ4 =
1

2
Ω k14 − Γn4 ,

k̇13 = −∆ k14 −
1

2
Γ k13 ,

k̇14 = Ω(n2− 2n4) +∆ k13 −
1

2
Γ k14 , (A.67)

while

k̇19 = −Ω(k10 − 2k24)−∆ k20 − 2ν k22 −
1

2
Γ k19 ,

k̇20 = ∆ k19 + 2ν k21 −
1

2
Γ k20 ,

k̇21 = −∆ k22 − 2ν k20 −
1

2
Γ k21 ,

k̇22 = Ω(k9 − 2k23) +∆ k21 + 2ν k19 −
1

2
Γ k22

k̇23 =
1

2
Ω k22 − 2ν k24 −Γ k23 ,

k̇24 = −
1

2
Ω k19 + 2ν k23 − Γ k24 . (A.68)

These final six differential equations hold in zeroth order in η. Setting the right hand

side of these and of the cooling equations in Eq. (A.66) equal to zero, we finally find
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Figure A.2: A comparison of the analytical results for n1, k11, and k12 in Eqs. (A.60), (A.63),

(A.65), and (A.69) with the results of a numerical solution of the above cooling equations for

η= 0.1, Ω = ν = 0.01Γ, and ∆= 0.5Γ.

that

k
(1)
11 =

4ηνΩ2

µ4

�

2∆ k10 +Γ
�

,

k
(1)
12 =

8ην∆Ω2

µ4

�

2n2− k9 + 1
�

(A.69)

in the weak confinement regime. This means, terms of order ν2 have again been ne-

glected. Fig. A.2 compares the above analytical results for n1, k11, and k12 with the

result of a numerical solution of the above cooling equations. Very good agreement

between both solutions is found which suggests that the effective cooling equations in

Eq. (3.43) apply after a very short transition time of the order 1/Γ.

A.5 n1, k11 and k12 in the strong confinement regime

The calculation of n1 in zeroth order in η is the same as in App. A.4. However, in the

strong coupling regime, the expression in Eq. (A.60) simplifies to

n
(0)
1 =

Ω2

4∆2
. (A.70)
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Figure A.3: A comparison of the analytical results for n1, k11, and k12 in Eqs. (B.13), (A.72),

and (A.74) with the results of a numerical solution of the above cooling equations for η= 0.01,

Ω = Γ = 0.01ν , and ∆= ν .

Setting η = 0 and eliminating the y operator coherences adiabatically from the system

dynamics we immediately find that k7 to k10 all equal zero in zeroth order in η,

k
(0)
7 = k

(0)
8
= k

(0)
9
= k

(0)
10
= 0 . (A.71)

Taking this into account when eliminating the mixed operator expectation values whose

time derivatives are given in Eq. (A.62), we moreover find that

k
(0)
11 = k

(0)
12 = 0 . (A.72)

To calculate the coherences k11 and k12 up to first order in η, we have a look at the

time derivatives of k11, k12, and k15 to k18 in first order in η which can be found in

Eq. (A.66). Combining Eqs. (A.68) and (A.71), we immediately see that

k
(0)
19
= k

(0)
20
= k

(0)
21
= k

(0)
22
= 0 . (A.73)

Taking this and the expressions for k
(0)
1 , k

(0)
2 , k

(0)
13 , and k

(0)
14 obtained in App. A.4 into

account, when setting the time derivatives of the relatively fast evolving variables in
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Eq. (A.66) equal to zero, we therefore find that

k
(1)
11 =

ηνΓΩ2

4(∆+ ν)2∆2

�

1−
4ν∆

(∆− ν)2
n2

�

,

k
(1)
12

=
ηνΩ2

2(∆+ ν)∆2

�

1+
2∆

∆− ν
n2

�

. (A.74)

These coherences are different from the coherences in Eq. (A.69), since they apply only

in the strong confinement regime. As Fig. A.3 shows there is again very good agreement

the analytical and the numerical solutions for n1, k11, and k12. This means that the

effective cooling equation for the strong confinement regime in Eq. (3.60) too applies

after a relatively short transition time.
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Appendix B

Trapped Particle In a Cavity

B.1 Expectation values

The following appendices shall calculate x operator and mixed operator expectation

values in similar manner to that performed in appendix A.4 and A.5 except this time we

have more rate equations for the x operator expectation values

k1 ≡ 〈x + x†〉 , k2 ≡ i 〈x − x†〉 ,

k3 ≡ 〈x
2+ x†2〉 , k4 ≡ i 〈x2 − x†2〉 ,

k5 ≡ 〈x
†(x + x†)x〉 , k6 ≡ i 〈x†(x − x†)x〉 . (B.1)

and less rate equations for the mixed

k13 ≡ 〈(x + x†)y† y〉 ,

k14 ≡ i 〈(x − x†)y† y〉 ,

k15 ≡ 〈(x − x†)(y − y†)〉 ,

k16 ≡ i 〈(x + x†)(y − y†)〉 ,

k17 ≡ 〈(x + x†)(y + y†)〉 ,

k18 ≡ i 〈(x − x†)(y + y†)〉 ,

k19 ≡ 〈(x − x†)(y2 − y†2)〉 ,

k20 ≡ i 〈(x + x†)(y2 − y†2)〉 ,

k21 ≡ 〈(x + x†)(y2 + y†2)〉 ,

k22 ≡ i 〈(x − x†)(y2 + y†2)〉 . (B.2)

Their time derivatives can be found in App. B.2.
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Appendix B. Trapped Particle In a Cavity

B.2 Calculation of n1, k11, and k12 for the weak confinement

regime

Setting η = 0 and substituting the x operator expectation values in Eq. (4.10) into

Eq. (4.9), we find that these evolve according to

ṅ1 = geff k2 − κn1 ,

ṅ3 = geff

�

k2 + 2k6

�

+ κ
�

n1 − 2n3

�

,

k̇1 = −δeff k2 −
1

2
κ k1 ,

k̇2 = 2geff + δeff k1 −
1

2
κ k2 ,

k̇3 = −2geff k2 − 2δeff k4 − κ k3 ,

k̇4 = 2geff k1+ 2δeff k3 − κ k4 ,

k̇5 = geff k4 − δeff k6 −
3

2
κ k5 ,

k̇6 = geff

�

4n1− k3

�

+ δeff k5−
3

2
κ k6 . (B.3)

These equations form a closed set of differential equations. Eliminating all x -operator

expectation values adiabatically which change on the relatively fast time scale given

by κ and adopting a notation where x = x (0) + x (1) + x (2) + ..., with the superscript

indicating the scaling of the respective term with respect to η, we find for example that

n1 is in zeroth order in η given by

n
(0)
1

= 4
g2

eff

µ2
. (B.4)

The constant µ2 in this equation is given by

µ2 ≡ κ2 + 4δ2
eff

. (B.5)

In addition to n
(0)
1 , we obtain solutions for k

(0)
1 and k

(0)
2 . These will be used in the next

subsection to calculate the coherences k11 and k12 up to first order in η.

In addition we obtain expressions for the zeroth order in η solutions k
(0)
1 , k

(0)
2 , k

(0)
5 ,

k
(0)

6
, and n

(0)
3 . These will be used in the next subsection to calculate the coherences k11

and k12 up to first order in η.

Setting η = 0 and using again Eq. (4.9), we moreover find that the time evolution

of the mixed operator coherences k11 and k12 and k15 to k18 is in zeroth order in η
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B.2. Calculation of n1, k11, and k12 for the weak confinement regime

given by

k̇11 = geff k18 − ν k12 − κ k11 ,

k̇12 = −geff k15 + ν k11 −κ k12 ,

k̇15 = −2geff k8 − δeff k16 − ν k18 −
1

2
κ k15 ,

k̇16 = δeff k15 + ν k17 −
1

2
κ k16 ,

k̇17 = −δeff k18 − ν k16 −
1

2
κ k17 ,

k̇18 = 2geff k7 + δeff k17 + ν k15 −
1

2
κ k18 . (B.6)

These six equations too form a closed set of cooling equations which describe a time

evolution on the time scale of the spontaneous cavity decay rate κ. Taking this into

account and eliminating k11 and k12 and k15 to k18 adiabatically in the weak coupling

regime, i.e. for relatively small ν , we find that

k
(0)
11 =

4g2
eff

µ4κ

�

µ2κ k7 − (3κ
2− 4δ2

eff
)ν k8

�

,

k
(0)
12 =

4g2
eff

µ4κ

�

(3κ2− 4δ2
eff)ν k7 +µ

2κ k8

�

(B.7)

to a very good approximation. The constant µ2 is given in Eq. (B.5) above. In addition

to k
(0)
11 and k

(0)
12 we obtain expressions for k

(0)
15 and k

(0)

16
. These are used in the next

subsection to calculate n1 up to first order in η.

Proceeding as above but taking terms up to first order in η into account we find that

the first order in η contributions of the x operator expectation values n1, k1, and k2 in

Eq. (4.10) evolve according to

ṅ
(1)

1
=

1

2
Ω k

(1)

2
− Γn

(1)

1
,

k̇
(1)
1 = −ην k

(0)
15 −∆ k

(1)
2 −

1

2
Γ k
(1)
1 ,

k̇
(1)
2 = −2Ωn

(1)
1 −ην k

(0)

16
+∆ k

(1)
1 −

1

2
Γ k
(1)
2 . (B.8)

These equations form a closed set of cooling equations, when the results for k
(0)
15

and

k
(0)

16
which we obtained in App. B.2 are taken into account. Eliminating n1, k1 and k2

adiabatically

n
(1)
1 =

32ηνδeff g
2
eff

µ4
k8 (B.9)

121



Appendix B. Trapped Particle In a Cavity

in the weak confinement regime which we introduced in Section 3.2.3. This means

terms proportional to ν2 have been neglected.

In order to calculate k11 and k12 up to first order in η, we need a closed set of

cooling equations which holds correctly up to this order. Applying Eq. (3.34) again to

k11 and k12 and k15 to k18, we find that

k̇
(1)
11

= geff k
(1)
18
− ν k

(1)
12
+ 2ην n

(0)
3
−κ k

(1)
11

,

k̇
(1)
12

= −geff k
(1)
15
+ ν k

(1)
11
+ 2ηκ

h

n
(0)
1
− n

(0)
3

i

− κ k
(1)
12

,

k̇
(1)
15 = −δeff k

(1)

16
− ν k

(1)
18 +ην

h

k
(0)
1 + 2k

(0)
13 − k

(0)
21

i

+2ηκ k
(0)

6
−

1

2
κ k
(1)
15

,

k̇
(1)

16
= δeff k

(1)
15 + ν k

(1)
17 +ην

h

k
(0)
2 + 2k

(0)
14 − k

(0)
22

i

−2ηκ k
(0)
5 −

1

2
κ k
(1)

16
,

k̇
(1)
17 = −δeff k

(1)
18 − ν k

(1)

16
+ην

h

k
(0)
1 + 2k

(0)
5 − k

(0)
19

i

−
1

2
κ k
(1)
17

,

k̇
(1)
18 = δeff k

(1)
17 + ν k

(1)
15 +ην

h

k
(0)
2 + 2k

(0)

6
− k

(0)
20

i

−
1

2
κ k
(1)
18 . (B.10)

Substituting the definitions of the mixed-particle expectation values k13 and k14 and

k19 to k22 into Eq. (4.9) and setting η = 0, we find moreover that

k̇13 = −δeff k14 −
1

2
κ k13 ,

k̇14 = 2geff n2 + δeff k13 −
1

2
κ k14 ,

k̇19 = −2geff k10 − δeff k20 − 2ν k22 −
1

2
κ k19 ,

k̇20 = δeff k19 + 2ν k21 −
1

2
κ k20 ,

k̇21 = −δeff k22 − 2ν k20 −
1

2
κ k21 ,

k̇22 = 2geff k9 + δeff k21 + 2ν k19 −
1

2
κ k22 . (B.11)

These final six differential equations hold in zeroth order in η. Setting the right hand

side of these and of the cooling equations in Eq. (B.10) equal to zero, we finally find
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B.3. n1, k11 and k12 in the strong confinement regime

that

k
(1)
11 =

16ην g2
eff

µ4

�

2δeff k10 + κ
�

+
64ηg4

eff
ν
�

16δ4
eff
+ 16δ2

eff
κ2 − 5κ4

�

κµ8
,

k
(1)
12 =

8ην∆Ω2

µ4

�

2n2− k9 + 1
�

−
32ηg4

eff

�

3κ2− 4δ2
eff

�

µ6
(B.12)

in the weak confinement regime. This means, terms of order ν2 have again been ne-

glected.

B.3 n1, k11 and k12 in the strong confinement regime

The calculation of n1 in zeroth order in η is the same as in App. B.2. However, in the

strong coupling regime, the expression in Eq. (A.60) simplifies to

n
(0)
1 =

g2
eff

δ2
eff

. (B.13)

For η = 0 we can also use Eq. (B.6) to determine the zeroth order expressions for k11

and k12. These equations still evolve on the relatively fast timescale given by the cavity

decay rate κ which means we can still perform an adiabatic elimination of the mixed

operator expectation values in Eq. (B.6). Also, since we are in the strong confinement

regime we can use the approximation κ≪ ν to neglect terms that scale with κ2. Doing

so we find that

k
(0)
11

=
g2

eff

ν
�

δ2
eff
− ν2

�2

�

2ν
�

δ2
eff
− ν2

�

k7 + κ
�

δ2
eff
− 3ν2

�

k8

�

,

k
(0)
12 = −

g2
eff

ν
�

δ2
eff
− ν2

�2

�

κ
�

δ2
eff − 3ν2

�

k7 + 2ν
�

−δ2
eff + ν

2
�

k8

�

.

(B.14)

The expressions for k
(0)
15 and k

(0)

16
that are also obtained are used next with the first

order equations of Eq. (B.8) to calculate n1 to first order in η. Eliminating n1, k1 and

k2 adiabatically

n
(1)

1
=

2ηg2
eff
ν

κδeff

�

δ2
eff
− ν2

�2

�

ν
�

−δ2
eff
+ ν2

�

k7 + κδ
2
eff

k8

�

(B.15)

in the strong confinement regime. This means that we have made the approximation of
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Appendix B. Trapped Particle In a Cavity

neglecting terms proportional to κ2. Adiabatically eliminating the zeroth order equa-

tions of Eq. (B.11) we substitute the respective quasi-stationary state values into the

first order equations of Eq. (B.10). Finally we adiabatically eliminate Eq. (B.10) to find

the first order expressions for k11 and k12 to be

k
(1)
11 = −

2ηg2
eff
δeffκ

ξ8

�

2δ4
eff
− 19δ2

eff
ν2 + 26ν4

�

k9

+
6ηg2

eff
δeffν

ξ4
k10 −

4ηg2
eff
κν2

δeff

�

δ2
eff
− ν2

�2
n2

−
g2

eff
ηκ

δ4
eff
ν
�

δ2
eff
− ν2

�2

�

−δ2
eff
(δeff − ν)

2ν2 + g2
eff

�

4δ4
eff
− 6δ2

eff
ν2 − 2ν4

��

,

k
(1)
12 =

6g2
eff
δeffην

ξ4
k9 −

2g2
eff
δeffηκ

ξ8

�

2δ4
eff
− 19δ2

effν
2 + 26ν4

�

k10

−
4g2

eff
ην

δeff(δ
2
eff
− ν2)

n2

−
32ηg2

eff

µ4
�

δ2
eff
− ν2

�

�

δ2
eff
ν(−δeff + ν) + g2

eff

�

δ2
eff
+ ν2

��

. (B.16)

Here

ξ≡ δ4
eff
− 5δ2

eff
ν2 + 4ν4 (B.17)

and µ4 is defined as in Eq. (B.5). These coherences can now be used to determine the

expressions for the matrix elements of Eq. (4.23)
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