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Abstract 

 

 Understanding the dynamics of information feedback amongst components of 

complex biological systems is crucial to the success of engineering desirable metabolic 

phenotypes.  Flux Balance Analysis (FBA) is a structural metabolic modelling procedure that 

allows for local topological constraints to be related to steady-state global behaviors of 

metabolic systems.  A vast majority of biological systems of interest, such as microbial 

communities, however do not exist under steady-state conditions.  Therefore, extending FBA 

methods to the dynamical setting has been a major challenge to metabolic modelling.  In 

dynamic FBA (dFBA), the representation of feedback dynamics is made possible by 

combining the methods of FBA with those of Ordinary Differential Equations (ODE).  

Although numerous dFBA models have been constructed to date, very little effort has gone 

into the theoretical analysis of how static FBA models and dynamic ODE models should be 

combined in dFBA.  To develop a better understanding of the mathematical structure of 

dFBA, we investigate the properties of FBA.  In order to predict time-derivatives of 

population growth, every dFBA model must make the assumption that the underlying 

metabolic network modeled via FBA optimizes a phenotypic function of growth rate.  We 

show however, that under certain circumstances, this requirement introduces a rigid 

correspondence between growth rate, and a related quantity, the growth yield.  The 

consequence of this is that the dFBA models become rigid in its predictions, effectively 

becoming a near-static representation of metabolism.  In this thesis, we show that this tight 

correspondence between yield and rate may be broken by combining two inversely related 

approaches to formulating the FBA problem.   
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Preface: 

 

 The aims of the work that is presented in this document are two fold, but are related 

by the common goal of making improvements to the way by which dynamic FBA (dFBA) 

methods are commonly implemented.  Specifically, we will argue that dFBA models that 

represent biomass compositions statically are too rigid in their model predictions, and are 

thus of limited use for representing the dynamics of real biological systems.  The properties 

of FBA models are first investigated.  From this investigation, we identify the cause of this 

rigidity to be related to the use of biomass objective functions in predicting optimal FBA flux 

distributions.  Biomass yields and growth rates will be shown to become tightly coupled 

variables in FBA models when a biomass objective is used.   Hypothesizing from this that the 

construction of more dynamically significant dFBA models will become possible, provided 

that the FBA correspondence between yield and rate can be broken, we investigate whether 

the dFBA problem may be formulated in such a way that these two variables decouple.  We 

will find that by combining two inverse approaches to formulating the FBA problem, that 

such a decoupling is possible, and demonstrate that dFBA models that are defined with this 

FBA formulation predict dynamical trajectories that are not possible with simpler dFBA 

methods.    

This thesis is written in eight chapters starting with two introductory chapters (chapter 

1 and chapter 2) and ending with a concluding chapter where we discuss our research process 

in a broader framework (chapter 8).  The introductory chapters are divided into a chapter 

dealing with general biological topics (chapter 1), and a chapter dealing with the mathematics 

of structural metabolic modelling (chapter 2).  In chapter 3, we investigate the biomass 

objective and identify two inverse approaches to formulating an FBA problem based on 

whether composition is treated as a model parameter or a model prediction. These approaches 

are referred to respectively as the “Palsson-style” and the “Fell-style” formulation of FBA.   

In chapter 4, we investigate the Palsson-style method and demonstrate mathematically that 

biomass yields and growth rates are identical cellular objectives under this FBA formulation.  

The consequences of this correspondence to FBA predictions are investigated in chapter 5.  

Chapter 6 is an experimental chapter where we characterize growth phenotypic differences 

amongst wild type and mutant E.coli.  In chapter 7, we use our results from the previous 

chapters to develop a novel dFBA formulation that combines the Fell and Palsson style FBA 

approaches to decouple the yield-rate correspondence that introduces rigidity in traditional 

dFBA models.   
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CHAPTER 1: Biology and modelling of Escherichia coli  

 

Abstract: 

 This chapter is an introduction to the biology and the modelling of the microbe, 

Escherichia coli.  We focus specifically on those aspects of this organism that are relevant to 

bioengineering, and summarize the ways in which E.coli are characterized computationally in 

models that aid in theoretical studies of metabolism and growth.   

  

1.1: Plant-based biofuels, xylose, and microbial engineering: 

It is currently widely accepted, in light of diminishing fossil-fuel reserves and of an 

increasing social awareness from the public of the damaging environmental effects of a 

petroleum-based energy economy, that renewable energy sources must replace currently 

existing unsustainable practices in the near future (Schmidt and Dauenhauer 2007, Fritsche, 

Sims et al. 2010, Liu and Khosla 2010, Naik, Goud et al. 2010).  Liquid transportation fuels 

derived from the conversion of plant biomass, are a highly desirable alternative to petroleum 

for a number of reasons.  Carbon-neutrality for instance refers to the property of the former 

that there are only small net increases in greenhouse gasses resulting from its combustion due 

to recycling from subsequent phototrophic biosynthesis (Cheng and Timilsina 2011).  

Similarly biofuels exhibit advantages over other alternative forms of renewable energy 

sources. Bioethanol is a liquid fuel like petroleum.  Therefore existing infrastructure for fuel 

distribution offers a potential for a smoother transition to a renewable biofuel energy 

economy than with alternatives such as wind and solar energies  (Lee, Chou et al. 2008, Liu 

and Khosla 2010).  In order to compete as a realistic alternative source of energy however, 

the production of plant-based biofuels must be viable economically; in particular the 

processes of degradation of biomass to monomers and the subsequent metabolism of the said 

monomers must be optimized (Hill, Nelson et al. 2006, Schmidt and Dauenhauer 2007, Liu 

and Khosla 2010).  With advances in microbial molecular biology platforms in the recent 

decades, the engineering of biocatalysts capable of efficient conversion of depolymerized 
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plant matter to fuel compounds has received considerable attention (Hernández-Montalvo, 

Valle et al. 2001, Tao, Gonzalez et al. 2001, El-Mansi 2004, Lee, Chou et al. 2008, Singh, 

Soh et al. 2011, Liao, Mi et al. 2016).   

The pentose sugar D-Xylose occurs naturally in lignocellulosic biomass.  It is a 

monosaccharide having the molecular formula C5H10O5 and a molar mass of 150.13 g ∙

mol−1.  Xylose, glucose and arabinose, are the three most terrestrially abundant plant 

breakdown products from which biofuels such as ethanol may be derived (Groff, Benke et al. 

2012). Studies of microbial (bacterial and yeast) utilization of xylose as a carbon source have 

been carried out well before attentions shifted towards xylose (xylan) as a potential raw 

material for biofuel production (Davis and Henderson 1987, Sumiya and Jf 1989).   Building 

on these works the development of microbial metabolic systems for the conversion of xylose 

to commercially useful compounds is recognized today as an important goal of synthetic 

biology and engineering.   

1.2: E.coli as a model system: 

 Escherichia coli is a Gram negative facultatively anaerobic bacteria.  With most 

strains naturally occurring in the lower intestine of mammals, E.coli as a taxon represents a 

highly diverse group of genetically distinguishable organisms whose members uniformly 

share merely 20% of their genes with one another (Lukjancenko, Wassenaar et al. 2010).  

Since around 1920, when the first E.coli culture was deposited in the National Collection of 

Type Cultures (NCTC) of the United Kingdom, and 1922 when the strain most commonly 

used for genetic analyses K-12 was isolated in the Unites States, extensive effort has gone 

into elucidating the molecular biology of E.coli (Daegelen, Studier et al. 2009).  The 

complete genome of E.coli K-12 composed of roughly 4500 genes was sequenced in 1997 

(Blattner, Plunkett et al. 1997, Alon 2006).  E.coli strain K-12 is an established and widely 
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used model organism for molecular biological and genetic engineering studies owing greatly 

to its amenability to gene manipulation (Lee 1996).  The extensive curation of the 

information available from over 30,224 publications (as of March, 2013) on the K-12 strain is 

an ongoing effort and has culminated in Ecocyc, a comprehensive bioinformatic database 

supporting E.coli research (Karp, Riley et al. 2002, Keseler, Collado-Vides et al. 2005).   A 

library of non-essential single gene deletion strains of E.coli K-12 (BW25113 derivatives) is 

maintained at the Keio University (the Keio Collection) and is available for distribution 

(Baba, Ara et al. 2006).  Likewise, the ASKA library (A Complete Set of E.coli K-12 ORF 

Archive) also maintained in Japan makes available a set of open reading frames of E.coli K-

12 (W3110 derivatives) cloned into the high copy number plasmid pCA24N (Kitagawa, Ara 

et al. 2006).  

 E.coli is both a simple and challenging organism to study from the perspective of 

quantitative and systems biology.  While the malleability of E.coli combined with common 

biochemical platforms afford an experimental system within which hypotheses conjectured 

from theory may be tested, E.coli cells are also capable of appropriately adapting their 

physiology to an exceptionally wide range of environmental conditions.  Thus the 

information flows across the genetic regulatory circuitry in an E.coli cell may be substantially 

more involved than in any individual cell of a multicellular organism that has specialized in 

function within a distribution of labour.   

1.3: Xylose transport and metabolism by E.coli: 

 The uptake of external D-xylose by E.coli is facilitated by one of at least two main 

transport systems.  First the sugar transport may be energized by the proton motive force 

across the inner membrane in a process catalysed by the proton symporter XylE (Sumiya and 

Jf 1989).  The existence of a proton-symport process responsible for xylose transport was 

first proposed by Lam et al. and has subsequently confirmed via genetic analysis by Davis 
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and Henderson (Lam, Daruwalla et al. 1980, Davis and Henderson 1987).  The second 

possible avenue for xylose transport is through ATP-energized catalysis by a xylose- ATP-

binding cassette transporter XylFGH.  First studied in 1981, the functional xylose-ABC 

transporter consists of five protein domains – two each of a cytoplasmic ATP-binding and a 

membrane-bound channel domain, together with a periplasmic substrate binding domain; the 

protein subunits are respectively XylG, XylH, and XylF (Ahlem, Huisman et al. 1982, 

Sumiya, Davis et al. 1995, Song and Park 1997).  Like the substrate binding domain of many 

other importers of the ABC family of transporters, XylF is expressed in the periplasm to 

search for substrate diffusing from the external media through the outer membrane.  

Periplasmic xylose bound by XylF is brought to XylH where the sugar is transported across 

the inner membrane via a conformational change in XylH affected through ATP 

hydrolysis/hydrolyses by the XylG protein (Sofia, Burland et al. 1994, Sumiya, Davis et al. 

1995).  Based on reported Km values for the two transport processes – 0.2-4.0µM for the 

ABC transporter and 63.0-169µM for the symport transporter – it can be concluded that 

whereas the xylose ABC transporter is a high energy high affinity transporter, the xylose 

symporter is a low energy low affinity transporter (Sumiya, Davis et al. 1995).  Therefore, it 

would seem reasonable to suspect that at higher concentrations of external substrate (on the 1 

mM order as commonly encountered in the laboratory) that the symport system would 

intuitively appear to be the more important.  The relative importance to E.coli growth of the 

two transport processes for xylose however has not yet been established as evidenced by the 

lack of a consensus in the literature (Tao, Gonzalez et al. 2001, Hasona, Kim et al. 2004, 

Khankal, Chin et al. 2008).   
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Figure 1.3.1: The transport of xylose by E.coli primarily uses two transporters specific for 

this sugar.  Alternative uncharacterized transport processes are possible and may involve 

diffusion as well as contributions from promiscuous transporters specialized for sugars other 

than xylose.  The symport protein XylE uses directly the proton electrochemical gradient 

across the inner membrane to energize the transport of xylose.  The ABC complex in contrast, 

composed of the five subunits shown in blue made up from proteins XylF XylG and XylH, 

uses the energy of ATP hydrolysis. However, the stoichiometry of hydrolysis to transport has 

not yet been determined.   

 

Xylose degradation by E.coli proceeds as follows.  Upon entry into the cytoplasm, xylose is 

first isomerised to the ketose xylulose by xylose isomerase (XylA);  in a second step, 

xylulose is phosphorylated to D-xylulose-5-phosphate by xylulokinase (XylB); both XylA 

and XylB are enzymes specific to xylose metabolism (Kim and Gadd 2008).  Common 

central metabolic enzymes carry out further metabolism of Xylulose 5-phosphate towards 

energy harvesting, storage, and biosynthesis, the specifics of which depend upon gene 

regulation and growth-conditions (Berg, Tymoczko et al. 2006). 

1.4: Regulation of xylose transport and metabolism by E.coli and carbon catabolite 

repression 

 The genes coding for the three subunits of the xylose ABC transporter, xylF, xylG and 

xylH, are transcribed as a single operon which also includes a fourth gene encoding the 
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xylose transcriptional regulator XylR located immediately downstream of xylH (Figure 

1.4.1). 

 

 

Figure 1.4.1: The genetic regulation of xylose transport and metabolism involves the 

upregulation of the xylose transport and metabolic genes by the transcription factor XylR.  

XylR is a dimeric protein that is activated when bound by xylose.  Expression from three 

promotors, PA PF and PE, are thought to be responsive to transcriptional activation by XylR 

although direct evidence of activation at PE has not been demonstrated.  XylR is also 

constitutively expressible from the XylR independent promotor PR.  There is evidence that 

XylR binding at the PA/PF sites involves a DNA looping mechanism pictured in the upper 

left of the figure.  However a clear looping was visualized between two copies of the PF 

promotor in an artificial strand of DNA rather than between PF and a PA promotors.  The 

ribbons in the figure show the possible transcripts that may be synthesized from the xylose 

operon assuming the RNA polymerase completes all transcriptions initiated from the 

promotors.  (Ni, Tonthat et al. 2013) 

 

The xylA promoter (PA)  is located 360 base pairs upstream of the xylF promoter (PF); 

the genes for the two xylose metabolic enzymes are transcribed from PA in the opposite 

direction with respect to xylFGHR transcription; the xylE gene is located elsewhere in the 
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genome and is expressed from its own separate promoter (PE) (Figure 1.4.1) (Davis and 

Henderson 1987, Song and Park 1997).  The XylR protein is thought to act as a 

transcriptional activator of the xylose operons based on evidence provided by Song and Park 

(1997).  DNA mobility shift assays showed that XylR binds the PA and PF promoters in the 

presence of xylose, and lacZ reporter assays showed the increased expression and no 

expression in the presence and absence of active xylR respectively (Song and Park 1997).  

While these authors provide an indirect evidence of XylR dependent upregulation of the 

XylE protein – a mutation in xylR was shown to retard substrate transport with a greater 

degree than by a xylG mutation – it is not known presently whether this is a consequence of 

direct XylR-to-PE interaction (Song and Park 1997).  Similarly in support of a XylR 

activation of xylE expression are cDNA hybridization assays which show indirectly 

comparable expression patters between the xylFGH and xylE genes by E.coli during 

fermentative growth on xylose (Tao, Gonzalez et al. 2001).  Structural analyses revealed 

XylR to be a dimeric protein in which individual monomers align in an antiparallel 

orientation with the corresponding DNA/substrate binding of each monomer facing the 

opposite direction with respect to the corresponding region in the other monomer; Atomic 

Force Microscopy suggests that upon activation by xylose binding, the XylR dimer binds the 

PA and PF promoters in a 1 promoter to 1 XylR monomer stoichiometry as the DNA in 

between the promoters is looped (Ni, Tonthat et al. 2013).    While evidence was provided by 

Ni et al. for the looping, a clearly visualised image of the loop is captured only for an 

artificially lengthened piece of DNA encoding two copies of the PF rather than one each of 

PF and PA.  If XylR is binding at the xylE promoter, the stoichiometry and mechanism of 

activation remains to be investigated.  Likewise, it is thought that further investigations are 

warranted of functions of XylR protein other than the known activation of the xylose 

operons.  Evidence has for instance recently been provided of a repressive role of XylR at the 
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arabinose metabolic operon (Koirala, Wang et al. 2016).   Similarly for the xylose operons, 

while there is now evidence of a looping mechanism, the exact role played by the structure 

remains unknown, and its treatment may be beneficial towards a better understanding of how 

E.coli cells regulate their xylose metabolic system. 

 XylR itself has a promoter (PR) located 5 base pairs downstream from the xylH 

translational stop codon; results of chromosomal lacZ insertion downstream this promoter 

revealed a sugar-independent (glycerol xylose and glucose) expression level 10% that from 

PF and increasing after the mid-log phase of growth (Song and Park 1997).  As mentioned 

earlier, xylR is also a part of a transcriptional read-through from the PF promoter: XylR 

expression is possible from either one of PF and PR in the absence of any repressive 

conditions. 

 By both mass and energy, protein expression is known to be a costly investment to 

cells and bacteria for this reason tightly control the composition of their proteome (Scott, 

Gunderson et al. 2010, Basan, Hui et al. 2015).  Proteins required for the first steps of 

acquisition and conversion of substrate are required to be expressed at high concentration so 

as to not induce a bottle neck to catabolism and biosynthesis.  A potential evolutionary 

consequence of this effect is the phenomena of carbon catabolite repression; in the presence 

of several substrates in comparable concentrations bacterial cells preferentially choose one 

over the other, and thus cultures in mixed media will sequentially rather than simultaneously 

consume the available substrates (Görke and Stülke 2008). 

The end product of thermochemical plant biomass depolymerisation is a diverse 

mixture of simple oligomers.  This means that carbon catabolite repression poses a hurdle to 

the development of microbial biocatalysts for biofuel production (Hernández-Montalvo, Valle 

et al. 2001, Görke and Stülke 2008).  The three most prevalent sugars from degraded plant 

biomass in order of abundance are glucose, xylose, and arabinose; it is known that E.coli 
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exhibit the preference hierarchy of metabolizing glucose first, then arabinose, then xylose 

(Desai and Rao 2010).    The glucose-xylose repression is thought to involve the same 

cAMP-CRP global regulation that has been reported for the repression of lactose metabolic 

genes in the presence of glucose, and a likely CRP-cAMP binding sequence has been located 

in the region of DNA between PA and PF (Song and Park 1997, Desai and Rao 2010).  

Repression from Arabinose has been shown to involve the arabinose-bound-AraC 

transcription factor interacting with the xylose promoters (Desai and Rao 2010).  Subsequent 

work on catabolite repression of xylose metabolic genes have shown that the effects may be 

overcome to varying degrees with genetic interventions; strains constitutively expressing the 

active CRP have been shown to co-utilize glucose and xylose; similarly an overexpression by 

a factor of 10-30 of the xylR gene has been demonstrated to allow to outcompete the AraC for 

the xylose promotors (Khankal, Chin et al. 2009, Groff, Benke et al. 2012). 

1.5: The numeric characterization of E.coli: 

 A quantitative characterization of a generic E.coli cell is required for the modelling of 

this bacteria; that is to say a computationally representable characterization of a typical E.coli 

cell.  The E.coli cell is biochemically a very well characterized system,  as is discernible from 

our brief description in section 1.2 of the current state of knowledge. However, the 

distillation of the known biology of this organism into a computationally tractable 

conceptualization requires simplification.  This section describes how E.coli often appears as 

modelled in an equation or a piece of computer code.  

 The concept of a “general” E.coli is genetically unfounded as can be seen from the 

breadth of E.coli as a taxon (Lukjancenko, Wassenaar et al. 2010).  This fact is largely 

ignored in the quantitative representation of E.coli.  Thus numeric parameters calculated for 

one strain are often used in the description of another; the difference between E.coli strains 

B/r and K-12 are assumed negligible for the purposes of computational modelling though 



20 
 

clearly likely to be biologically relevant.  Similarly, E.coli cells within a population of 

genetically related individuals are known to differ by such factors as age (Stewart, Madden et 

al. 2005).  On the contrary, the computational population is typically taken to be unstructured. 

The computational E.coli is best conceptualized to be a cylinder with a base radius of 0.35-

0.7 μm, a height of 2-4 μm, and thus a volume of 0.8-6.2 µm3 and a population is a 

homogenous distribution (an ensemble) of such cylinders over a reaction volume 

(Bionumbers ID: 100002, 103714, 104113, 102065, 100001, 100004).  With regard to 

population density, an OD600 of 1.0 is thought to correlate with a cell concentration of 

108~109  
cells

mL
 (Bionumbers ID: 100985, 103625, 10831) (Milo, Jorgensen et al. 2010).  

The surface surrounding the cylindrical volume is by definition the thermodynamic boundary 

separating the cell from its environment.  Therefore the concept of a periplasm and an outer 

membrane is generally absent.  It is noted that biochemical models of membrane transport 

phenomena in Gram negative bacteria often assume the freely diffusive interaction of 

substrate concentrations across the outer membrane via porins. Therefore the simplification is 

to reduce the effect of any periplasmic processes to the permeability arising from the more 

selective of the two membranes, the inner membrane, as a function of the presence of 

transporters.  As a reference, it is known that an E.coli cell growing on lactose is capable of 

expressing 10,000 copies of the lactose transporter whose turnover number is reported to be 

10 reactions sec−1 at 25 degrees Celsius (Nelson, Lehninger et al. 2008, Stein and Litman 

2014). 

  Inside the cylinder is the cytoplasm within which the majority of biochemical 

processes occur.  The fluidic property of the cytoplasm is reported to have a glass-like 

consistency, quite different from the aqueous solutions for which such numeric values as 

Michaelis Menten enzymatic parameters are measured and reported in vitro (Parry, Surovtsev 
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et al. 2014).  The prokaryotic cytoplasm is a highly ordered structure; the biochemical 

environment of the nucleoid region as an RNA polymerase enzyme might experience is quite 

different from what would be experienced by an average cytoplasmic ribosome or a plasmid 

(Nelson, Lehninger et al. 2008).  This fact is ignored in E.coli dynamics and chemical 

processes are modelled through ordinary differential equations and kinetics based on the 

principle of mass action (Alon 2006, Bolouri 2008).   

 Taking the cell volume to be 1.0 femto-litre (fl, 10−15 l), a useful conversion factor 

between molecular concentration and copy number is as follows: a compound (we assumed is 

called “S”) whose concentration, in the E.coli cell in mM is [S], is represented by 

approximately [S] × 106 copies; a compound represented by n copies is in turn present at a 

concentration of  n × 10−6mM.  This is because   

[S] (
mmol

L
) (6.23 × 1020

copies

mmol
) 10−15L = 6.23 × 105copies[S] 

(1.5.1) 

The enzyme database BRENDA (BRaunschweig ENzyme DAtabase) reports that the E.coli 

xylose isomerase has a substrate affinity (Km) on the order of 10 mM.  Approximating a 

typical concentration of the sugar during growth on xylose by the Km value of the enzyme 

metabolizing the sugar suggests that one would expect there to be about a hundred-thousand 

copies of the sugar present in the cell at steady state. 

1.6: Models of microbial growth and specific growth rate 

 

 A fundamental assumption concerning the growth of populations is that overall 

growth rate is proportional to the size of the reproducing fraction of the total population; if 

each reproducing individual can be approximated by a single per-capita rate, then the rate of 

increase in population size should be approximated to be the size of the reproducing fraction 

multiplied by this rate.  This latter per-capita rate is commonly referred to as the “specific 
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growth rate.”  In a homogeneous population model, each existing individual is assumed to 

contribute equally to the overall growth rate, so that there is no “population structure” in the 

model distinguishing members by reproductive fecundity.  Thus, let µ (in units of reciprocal 

time) designate the specific growth rate of an individual, and x designate population size.  

With this notation, the overall reproductive rate of a homogeneous population may be 

expressed by the elementary differential equation, the Malthus equation, in the time-variable 

“t”  

dx

dt
=  µx 

(1.6.1) 

If in the above setting, the specific growth rate is a constant (µ does not change with time), 

then equation 1.6.1 is seen to have the solution 

x(t) = x0e
µt (1.6.2) 

Equation 1.6.2 describes the time-dependence of the size of a population starting with an 

initial value of x0 and growing obeying the rate equation 1.6.1.  Note that although we have 

assumed, by calling µ a “reproductive rate,” that µ ≥ 0.0, the solution in 1.6.2 is equally valid 

for µ < 0.0 where 1.6.1 would be a model of population decay.  Consider for instance, a 

chemostat model where the population growing by 1.6.1 is also diluted at a rate D > 0.0, 

where we have used the capital “D” to avoid confusion with the differential notation.  This 

modification may be expressed using the equation  

dx

dt
=  (µ − D) × x 

(1.6.3) 

In the experimental setting of a chemostat, the system whose dynamics is represented by 

equation 1.6.3 is progressed to a steady-state where D =  µ.  The investigator can control the 

specific growth rate of a population at this steady-state, by experimentally controlling the 
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dilution rate.  Thus, the dilution rate is fixed to a constant by the experimenter and determines 

the steady-state growth-rate of the population, which in turn is also constant.  

 In more realistic biological settings, it is rarely the case that the specific growth rate, 

of even a simple homogeneous population, is a constant over time.   The growth rate is likely 

to be a very complex function of many growth parameters for which their cumulative effect 

on reproduction is unknown.  To account for observations that the specific growth rate varies 

over population growth, modifications to 1.6.1 have been introduced to model the 

dependence of µ on the state of the growth system.  We mention two such modifications: a 

dependence on population size, and a dependence on the growth substrate.     

 One straightforward way by which µ may be modelled to vary is by writing  

µ =  µ(x) (1.6.4) 

In equation 1.6.4, the specific growth rate of a population is dependent on the size of the 

population x.  As an example, the simple logistic growth model is given by  

dx

dt
=  [µMax (1 − 

x

N
)] x 

(1.6.5) 

Where 

µ(x) =  [µMax (1 − 
x

N
)] (1.6.6) 

(Verhulst 1838).  Equation 1.6.6 provide the following interpretation of µ. If the population is 

small (x ≈ 0.0), the specific growth rate should be at a maximal value (µMax) which may be 

for instance because of minimal intrapopulation competition; equation 1.6.5 is approximately 

equation 1.6.1 with this maximal specific growth rate.  Near the environmental carrying 

capacity (N) however, the specific growth rate approaches zero, and the population size 

converges to the carrying capacity.  Thus, the model given by equation 1.6.5 results in a 

sigmoidal population growth from below and population decay from above a non-zero 
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attracting equilibrium located where the population size equals the carrying capacity N.  

Generalizations maintaining the same form as the simple logistic model are possible; these 

are the Richards model and its limiting form, the Gompertz model (Gompertz 1825, Richards 

1959). 

 When bacteria are grown in the laboratory in batch, the growth trajectory of 

populations is known generally to conform well to a sigmoidal description, and the carrying 

capacity appears similarly to be a biologically relevant growth parameter.  As an example, it 

has been demonstrated that E.coli grown in Luria Bertani Lysogeny Broth (LB) will cease to 

increase beyond an environmental carrying capacity (density) of an OD600 of 7.0 (Sezonov, 

Joseleau-Petit et al. 2007).  Because sigmoidal growth is so wide spread across microbial 

growth experiments, models such as the Logistic model provide a convenient way by which 

to compare independent growth data through a common set of parameters (µMax and N in the 

case of equation 1.6.5).   

 As a second example of a variable specific growth rate, we consider that µ may 

depend on the concentration of a limiting growth substrate in the growth medium (which we 

again call “S” as in section 1.5).   

µ =  µ([S]) (1.6.7) 

One instance of equation 1.6.7 is provided by the Monod microbial growth model, derived 

empirically in the 1940s by Jacques Monod.  In Monod’s model specific growth rate is 

defined as a saturating function of the external concentration of a limiting substrate (Monod 

1949).   

dx

dt
=  [

µMax[S]

Km + [S]
] x 

(1.6.8) 

where 
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µ([S]) =  [
µMax[S]

Km + [S]
] 

(1.6.9) 

The form of equation 1.6.9 can be seen to be identical to that of the Michaelis-Menten 

formula for the catalytic rate of enzymes; the specific growth rate in equation 1.6.9 

approaches a maximal rate (µMax) with increasing [S], and is 
µMax

2
 when [S] =  Km.  The 

derivation of 1.6.9 is the same as the derivation of the Michaelis-Menten formula but with 

two notable differences.  First, the enzyme concentration appearing in the Michaelis-Menten 

derivation is replaced with the number of transporters across the cell membrane. This is 

because mass action kinetics between the external substrate and the transporter is assumed to 

determine the consumption rate of the substrate by individual cells.  Second, whereas the rate 

that is predicted by the Michaelis-Menten model is that of a single reaction, the rate that is 

predicted by equation 1.6.9 is interpreted to be a population specific growth rate.  Thus, in 

writing equation 1.6.9, one also assumes that growth rates are approximately determined by 

the rate of the consumption of a limiting substrate.  Equation 1.6.9 also predicts that the 

slightest increase in [S] from 0.0 results immediately in a positive value of μ.  In reality, this 

is not seen to be the case, most likely because a portion of the available substrate must be 

invested towards the survival of the reproducing parent; thus, equation 1.6.9 ignores the fact 

that microbial growth systems often come with threshold substrate concentrations below 

which no growth is possible (because there is not enough substrate for novel biosynthesis) 

(Kovárová-Kovar and Egli 1998).  This phenomenon is treated theoretically in models by 

including what are called “maintenance energies.” The theory of maintenance energies is 

reviewed in van Bodegom and details are also provided in section 5.2 of this thesis (Van 

Bodegom 2007).   Finally, we mention that a theoretical connection does exist between the 

Monod and the Logistic growth models.  With a handful of assumptions, one equation can be 

derived from the other through a rather nasty sequence of steps; the derivation was felt to be 
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beyond the scope of this section owing to the technical details and is therefore excluded (A. 

Jamie Wood; personal communication). 
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CHAPTER 2: Stoichiometric models of metabolism  

 

Abstract: 

 A mathematical introduction to the principles of flux balance analysis (FBA) and 

dynamic flux balance analysis (dFBA) is provided.  FBA and dFBA are considered in the 

general setting of structural metabolic modelling.  In the general setting, metabolic system 

dynamics are represented mathematically as a composition of two mapping operations - a 

nonlinear velocity map, and a linear map represented by the stoichiometry matrix.  By 

starting with this description, we are able to make explicit, the assumptions inherent in flux-

balance models, as well as provide a unified perspective within which these methods can be 

explicitly related to other structural modelling methods such as Metabolic Control Analysis.      

 

2.1: Introduction 

The metabolic engineering of microorganisms towards the synthesis of commercially 

relevant compounds is now, with the availability of precise genetic manipulation techniques 

and in the presence of industrial demand, a highly active area of research.  In the previous 

chapter, we have considered the biological aspects of this engineering effort with an explicit 

focus towards the role played by the model organism, Escherichia coli.  Single gene 

manipulation of this organism has been successfully employed in the past as a means of 

engineering desired phenotypes in the laboratory, however the limitations in the scope of the 

approach becomes apparent in light of the sheer size and intricacies of cellular metabolism.  

Therefore, the genetic engineering of cells towards desired metabolic and growth phenotypes 

calls for a more holistic perspective to complement experimental methods.  Such a global 

perspective to phenotypes is afforded by systems biology (Kitano 2002, Kitano 2002).   

In this chapter, we will describe the basic principles behind two related systems 

biological models of metabolism: flux balance analysis (FBA) and dynamic flux balance 

analysis (dFBA).  The reader is first introduced to the stoichiometric matrix representation of 

metabolic systems, the biological rationale underlying this representation, as well as the 

motivations behind its use in molecular systems biology.  We will then consider the 
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mathematical representation of biomolecular systems dynamics, describing how the 

stoichiometry matrix plays a fundamental role when describing fluxes across interconnected 

sets of reactions modelled as ordinary differential equation (ODE) systems.  The differential 

equation representation will be seen to be only symbolic and generally insolvable; it will 

however also be readily observed that, by applying some basic results of mathematical 

analysis, that practical results of empirical relevance can be derived for linearized systems in 

the proximity of stable equilibria.  By introducing the stoichiometry matrix in this way, two 

goals are achieved.  Firstly, the separation between the structural and dynamical aspects of 

metabolism, as well as their connection, is made clear as is relevant to dFBA.  Second, by 

starting with the full dynamical representation of metabolism, we are able to interpret FBA 

methods in a unified framework that also includes such methods as Metabolic Control 

Analysis (MCA).  In particular, we are able to compare and contrast these two methods by 

considering how the steady-state assumption is used in slightly different ways in FBA and 

MCA when reducing a fully kinetic model.  As part of this process we make explicit the 

fundamental assumptions made by both FBA theory and the new ideas introduced in this 

thesis.  The most important of these new ideas will be seen to be that of the cellular objective. 

Together with the stoichiometric matrix, the objective will be seen to turn FBA into an 

instance of a constrained optimization problem.  Finally, we give a description of the 

dynamic extension of FBA, the dFBA method.   

FBA methods are often described in the literature by mentioning only the null-space 

mapping by the stoichiometry matrix explicitly.  We emphasize however that this linear 

mapping, between the flux space and space of metabolite concentration derivatives, is only 

one step in a larger mapping procedure, whose true domain is the space of metabolite 

concentrations and system parameters.  This view does not affect the way we interpret results 

of FBA.  However, we find that the mathematical assumptions underlying dFBA may be best 
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understood by considering what restrictions are necessary to be placed on the first step of the 

overall mapping operation.  

2.2: Conventions 

 When referring to a general reaction, we will use the substitute “rxn” in place of a 

specific reaction name.  Where it makes sense to qualify a symbolic notation with a reaction 

name, we will qualify with rxn when the indicated quantity is being discussed in the general.   

Analogously, we will use “comp” to refer to a general metabolic compound, and extend this 

notation to all notations for which a qualification by a specific compound name is valid.  We 

will assume that a directionality has been assigned to all reactions and further, that for all 

irreversible reactions, the same direction as the one indicated by the reaction arrow in its 

chemical equation representation has been assigned to be the forward (positive) direction.  A 

compound residing to the negative side of the chemical equation representation of a reaction 

will be called a substrate; likewise, a compound residing to the positive side will be called a 

product.  The name of an enzyme catalysed reaction will be identical to the name of the 

catalyst. The names for reactions that are not catalysed by an enzyme will be treated 

individually.  These exceptions arise for uncatalyzed processes and lumped processes.  A 

special class of uncatalyzed processes is that of the exchange reactions.  An exchange 

reaction is defined to be a reaction with a single substrate having a stoichiometric coefficient 

of 1.0 and no products.  These reactions are not physical reactions but are computational 

features that allow the modelled metabolic system to interact with its surroundings.  In 

naming exchange reactions, we will follow the convention of attaching the name of the 

compound associated with the reaction to “EX_.”  This is the same convention followed for 

E.coli metabolic models such as the iAF1260 model (Feist, Henry et al. 2007).  Thus, the 

name given to the following exchange reaction 
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comp →
←

 
(2.2.1) 

 

will be “EX_comp.”  Note also that we will generally not write the stoichiometric coefficient 

explicitly if the value of the coefficient is 1.0.  Every exchange reaction is a reversible 

reaction.   

 Given a particular reaction rxn, we define the velocity, or equivalently the rate, of the 

reaction as follows.  Let comp be any substrate participating in the reaction with a non-zero 

stoichiometric coefficient which we denote here by scomp.  The velocity of the reaction, 

generally denoted by vrxn, is defined as 

vrxn = (
−1.0

scomp
)
d[comp]

dt
 

(2.2.2) 

Note that, as a result of stoichiometric equivalence, the velocity of a reaction will be of the 

same value regardless of which substrate is chosen when evaluating equation 2.2.2.  

Likewise, comp in 2.2.2 can be replaced with a product without altering the value of vrxn 

provided the numerator in the ratio scaling the derivative is given a positive sign.  Thus, at 

any given time, a reaction will exhibit a single value for velocity, and it makes sense to speak 

of the velocity of a reaction at that time.  The unit on velocity is unit amount of substance per 

unit of time, as in mmol h−1.  A reaction velocity has the interpretation of a rate – namely the 

number of conversion events per unit time.  A slightly different interpretation occurs when 

modelling metabolic systems using networks, where metabolites will be represented by nodes 

and reactions by directed edges connecting the nodes.  In this view, a reaction whose velocity 

is vrxn may be thought of as carrying a unit of mass that passes through the edge from one 

node to another, and that such “fluxes” across individual reactions combine systemically to 

form mass currents across the overall network.  Thus, we will refer to a flux across a reaction 
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to indicate specifically, the transport of mass (via chemical conversion) between two classes 

of metabolites.  Importantly, unlike for velocity that was seen to be a property of a reaction, 

the value of flux will depend on the unit of matter that is being considered.  If, in equation 

2.2.2, comp is a five-carbon compound appearing alone on the substrate side with a 

stoichiometric coefficient of 1.0, it would be valid to say either that |vrxn| is the flux of comp 

across rxn, or that 5|vrxn|is the flux of carbon across rxn.  Note that a flux of a unit of matter 

will always be a positive value.  When no other qualifications are given, the flux of a reaction 

will be taken to mean the velocity of the reaction, except that whilst it makes sense to speak 

of the flux across the reaction or the flux carried by the reaction, the same would not be the 

case for either the velocity or the rate.  For this reason, we will use the same notation vrxn to 

indicate both the velocity of rxn, and the flux of rxn.      

 In moving forward with the network perspective of metabolic systems, we will need 

to represent, the net flux of mass either into or away from a node, representing the net 

synthesis and utilization rate respectively of the associated metabolite.  That is, we will need 

to represent, not just the velocity of a particular reactive step, but also the cumulative flux to 

or away from a particular metabolite that results from summing over velocities of several 

reactions in which the metabolite is a participant.  In a steady-state model, the production and 

utilization rates for a particular metabolite must balance.  Therefore we will denote the 

absolute value of the production rate, and equivalently, the absolute value of the utilization 

rate, of a metabolite by subscripting the lower case v with the name of the metabolite.  This is 

in analogy to how we have treated reaction velocities.  As an example, vATP will be used to 

represent the net rate of ATP production, and equivalently, the net rate of ATP hydrolysis by 

a metabolic system.  Because the system is assumed to be at steady-state, we find that 

subtracting the ATP hydrolysis rate from the ATP production rate results for this example in 

the steady-state equation 
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vatp − vatp = 0 (2.2.3) 

One noteworthy case occurs when the metabolite in question has an associated exchange 

reaction.  If flux to or from the metabolite is balanced by a flux from or to the surrounding, 

then with respect to the part of the metabolic system that is being explicitly modelled, the 

metabolite in question is not conserved.  Whilst the convention described above may still be 

applied to expressing the overall production and consumption rates of such metabolites, it 

should be noted that the biological interpretation of these rates are different.  Whereas a 

production rate of an internally balanced metabolite such as ATP represents a dynamic 

equilibrium within the explicitly modelled part of the metabolic system, an analogous rate for 

a sink or source metabolite represents a consumption or expulsion of matter by the modelled 

system.  As an example, consider the production rate of oxygen vo2.  As in equation 2.2.3, we 

may still write  

vo2 − vo2 = 0 (2.2.4) 

To represent the fact that production and consumption rates balance in the overall flux-

balanced model.  However, oxygen is an external metabolite that is consumed by a respiring 

system, and absorbed from the environment by an exchange reaction EX_o2.  Thus, we have 

vo2 − vEX_o2 = 0 (2.2.5) 

From which it is seen that whilst the overall model balances oxygen, oxygen is lost by the 

metabolic component that only explicitly accounts for its consumption.   

 Provided with a particular quantity, we will often need to indicate that the value of the 

quantity satisfies a chemical steady state or, less frequently, a chemical equilibrium 

condition.  These facts will be indicated by subscripting the notation for the quantity by “ss” 

for steady state, and “eq” for equilibrium.  Thus, [comp]ss is the steady-state concentration of 

the metabolite named comp.  Similarly, we will also often need to indicate that a quantity 

meets an extreme value condition; either the quantity itself has been extremized or its value is 
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such that some other quantity has been extremized as a function of this quantity.  These facts 

will be indicated with superscripts.  To indicate that a quantity satisfies an extreme value 

condition, the notation for the quantity will be given the superscript “opt” (for optimal).  If 

we also want to indicate the direction of extremization, then the superscripts “Max” and 

“Min” will be used to indicate maxima and minima.  An exception to this rule is given for the 

chemical parameter Vmax whose notation is already well established in the biochemical 

literature.  At no point in this thesis will we make explicit references to (finite) mathematical 

suprema and infima that are not also respectively maximal or minimal values to which 

variables may evaluate.  

Finally, it will also be noted here that the qualifications declared in this section will 

only be applied if it the information they provide is not already clear from context.  Thus, we 

will refrain for example from repetitively writing reaction velocities as vrxnss if it has been 

declared in the beginning that the metabolic system under discussion is being analysed under 

steady-state conditions.   

 

2.3: Local versus global metabolic models 

 In this section, we highlight the key differences between traditional versus systems 

biological approaches to metabolic modelling.  In so doing, we illustrate to the reader, the 

conceptual paradigms and the motivations that underlie the systems framework of modelling 

within which flux-balance methods fit.  Thus, by way of introduction, suppose we are 

interested in describing the kinetics of a single reversible biochemical reaction converting a 

substrate S into product P.  Letting the forward and the reverse rate constants for the process 

be denoted by k+1and k−1, we may write down the following chemical and mathematical 

equations to describe this process 
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S

k+1
→ 

k−1
← 

P 
(2.3.1) 

 

d[S]

dt
= k−1[P] − k+1[S] 

 (2.3.2) 

Upon reaching chemical equilibrium where [S] and [P] cease to change with time, but remain 

at fixed values [S]eq and [P]eq equation 2.3.2 can be used to solve for the equilibrium 

constant for the process keqdefined to be 

keq =
k+1
k−1

 
  (2.3.3) 

Or equivalently,  

keq =
[P]eq

[S]eq
 

  (2.3.4) 

 

This empirical result may be taken as a thermodynamic characterization of the reaction given 

by 2.3.1.  In the biochemical context of a cell, this single reaction will most certainly be only 

one step in a lengthy set of steps that together form a chemical pathway such as the glycolytic 

pathway or the tricarboxylic acid cycle.  Thus it may seem possible and tractable to 

characterize the pathway by modelling thermodynamically or kinetically the individual steps 

in such a way as in equation 2.3.2, and to draw conclusions about the global behaviour of the 

pathway as a whole.  This approach to pathway modelling has been shown to come with two 

potentially dangerous limitations.  First, parameters of reactions such as the equilibrium 

constant have most likely been empirically derived from experiments that investigated a 

reaction in vitro and in isolation.  Thus, the parametrization will likely only apply to the 

reaction when it has been taken out of the context of a chemical pathway.  Second, when a 
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pathway is described as a sequence of reactive steps, but without a consideration towards the 

interdependencies that exist amongst the rate determinants for those steps, an apparently 

“dominating” local quantity may erroneously be attributed an undue global significance (Fell 

1997).  An essentially irreversible step (one with a high equilibrium constant) may for 

instance give an impression that this step is a thermodynamic driver of material flux through 

the pathway in which it is embedded; from this, an erroneous conclusion may be drawn that 

such a step is rate-limiting for the pathway as a whole.  Though intuitively satisfying, it may 

be shown with precise mathematical analyses of empirical data that most real biochemical 

pathways do not possess such a rate-determining step (Fell 1997, Cornish‐Bowden and 

Cárdenas 2001, Gunawardena 2002).  Rather, the “control” of material flux through a 

pathway is more often distributed amongst several reactions instead of being localized to any 

single step.  This well-known result, may be proved using the theory of metabolic control 

analysis; the resulting conclusion is formally asserted by the (flux control) Summation 

Theorem (Gunawardena 2002).  The effort to model metabolism as an integrated system is 

motivated in part by these two shortcomings of local analysis just mentioned.  There is a need 

to first conceptualize metabolism as a complex system of interdependent components and 

second, a need to represent the dynamical aspects of said interdependencies in a way 

amenable to computational interrogation.  One practical consequence this has had to 

modelling is a push by modellers in the recent years towards the network representation and 

analyses of metabolic systems (and also of other unrelated systems arising elsewhere in 

biology) (Barabasi and Oltvai 2004).  Network models are structural representations of large 

biosystems that use nodes and edges in place of system components and interactions.  The 

next section will describe in detail how the network view of complex biosystems is used in 

metabolic representation. 
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Writing simple equations like 2.3.2 relies on mass-action kinetics.  If more 

information is known about the process, such as enzyme concentration [E], and kCat and Km 

values, a more detailed mass-action model of the process might utilize a rate equation such as 

(for the forward process) 

d[S]

dt
=
−kCat[S][E]

Km + [S]
 

(2.3.5) 

(Cornish-Bowden 2012, Klipp, Liebermeister et al. 2016).  Note that writing the derivative of 

metabolite concentration as equation 2.3.5 or some generalization of that equation states that 

only three types of quantities in general will factor into the determination of the rate on the 

LHS.  These are respectively metabolite concentrations, enzyme concentrations, and 

parameters.  Whilst equation 2.3.5 describes the dependence for a single isolated process, it 

does not account for the local rate dependence on concentrations and parameters of other 

processes of a larger system.  The network perspective of metabolism will be shown to bridge 

this gap.   

2.4: The stoichiometric matrix  

Consider a biochemical reaction system consisting of n reactions and m metabolites.  

We assume that each metabolite has been uniquely indexed by an integer i, with 1 ≤ i ≤ m, 

and that each reaction has been uniquely indexed by an integer j with 1 ≤ j ≤ n. The 

stoichiometric matrix (which we generally denote by S) representation for this system is a 

real matrix consisting of m rows and n columns.  Let the rows and the columns of S each be 

indexed by positive integers in the usual manner.  By matching the indices, to each 

metabolite is associated a row of S and similarly, to each reaction is associated a column of S.  

The absolute value of the entry in the ith row and jth column of S is the stoichiometric 

coefficient of the ith metabolite as it participates in the reaction j; this entry is given a 

positive sign if the ith metabolite resides to the positive side of the jth reaction, and is 
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otherwise given a negative sign.  Denoting this general entry by sij, we see that sij > 0 if 

metabolite i lies to the product side of the reaction j, sij < 0 if metabolite i lies to the 

substrate side of reaction j, and sij = 0 if metabolite i does not participate in reaction j.  

Hence we see that in S is contained the structural information and the stoichiometric 

information of our metabolic system; that is to say, the connectivity amongst metabolites 

defined as reachability by a sequence of reaction edges and the stoichiometric ratios by which 

metabolites participate in these individual reactions.   

2.5: Dynamical representation of metabolism 

The stoichiometric matrix is a static representation of metabolism.  However, as we 

now describe, S in combination with velocity results in a complete dynamical representation; 

specifically, we are interested in deriving a self-contained system of differential equations in 

metabolite (as opposed to catalyst) concentrations using S.  The metabolic models described 

in this and the coming sections require that algebraic equations written using the 

stoichiometric matrix, provided they are consistent, are solvable.  For this computational 

reason, we will assume that the inequality n ≥ m is satisfied by all metabolic models without 

loss of generality.  Empirically, we find that this assumption is generally justifiable for 

metabolic systems; biological reaction networks are known to be such that the number of 

reactions far outnumber the number of metabolites (Orth, Thiele et al. 2010).   

As described earlier, when considering the local aspects of metabolism, the velocity 

of any single reaction, defined as substrate utilization rate or product formation scaled by a 

stoichiometric coefficient, will depend generally on three factors: the concentration of 

metabolites, the concentration of catalysts, and the parameters of the process.  In this section, 

we will consider only the dynamics of metabolite concentrations.  Therefore, the 

concentration of catalysts will be assumed to be static, and thus be treated as process 
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parameters rather than as dynamic variables.  Note that this means that a general expression 

such as kcat × [E]ss , where [E]ss is an enzyme concentration, may be combined as a single 

parameter Vmax representing the product of the turnover rate and a static concentration of the 

enzyme E.  Note also that the assumption that [E] is static at a constant value of [E]ss may be 

justified by separation of timescales; enzyme concentrations (but not activity), being 

functions of gene expression, is expected to change negligibly on the time-scale of the 

reactions they catalyse.  

Let ci and vj denote respectively the concentration of the metabolite indexed i, and the 

velocity of the reaction indexed j. Further, we assume that there is a total of k parameters 

describing the system, denoted pl indexed by integers l with 1 ≤ l ≤ k.  Based on the 

previous paragraph, we see that this velocity will be a function of the m metabolite 

concentration variables, and the k parameters.  In other words,  

vj = vj(c1, … , cm, p1, … , pk) (2.5.1) 

Let  

𝐜 = [

𝑐1
⋮
𝑐𝑚
] ∈ ℝ𝑚 

(2.5.2) 

𝐩 = [

𝑝𝑘
⋮
𝑝𝑘
] ∈ ℝ𝑘 

(2.5.3) 

With n velocity functions, we may symbolically express the systems 

velocity by a mapping of the form 

 

𝐯 = [
v1(𝐜, 𝐩)

⋮
vn(𝐜, 𝐩)

] ∶  ℝ𝑚+𝑘 →ℝ𝑛 

(2.5.4) 

 

or more concisely as,  
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𝐯 = 𝐯(𝐜, 𝐩) (2.5.5) 

This equation states that the velocities for the n reactions of the system are deterministically 

quantified when the concentrations of the m metabolites of the system and the k parameters 

of the system are given.  Further, because equation 2.5.4 has been written generally, the 

domain of v has not been restricted to any biologically realistic subset of ℝ𝑚+𝑘.  Before 

imposing a few mathematical requirements we need of v, we first consider the product   

𝛟 = 𝐒 ∙ 𝐯(𝐜, 𝐩) (2.5.6) 

for some fixed c and p.  The object on the LHS (𝛟) is a well-defined point of ℝ𝑚 since v is 

now a fixed n-vector and S has dimensions m × n.  We also note that the ith entry of 𝛟 is the 

inner product of the ith row of S corresponding to the ith metabolite, and the rate vector v. 

φi =∑vj

n

j=1

× sij 
(2.5.7) 

Thus, the ith entry of 𝛟 is seen to be the sum over all reactions of the stoichiometric 

coefficient of the ith metabolite for the jth reaction multiplied by a velocity of the jth 

reaction.  Therefore, the quantity φi is the net difference between the rates of production and 

consumption of the ith metabolite by the system.  Recognizing this quantity as a derivative, 

we arrive at the following general expression for the concentration dynamics of the 

metabolites 

𝐝𝐜

𝐝𝐭
= 𝐒 ∙ 𝐯(𝐜, 𝐩) 

(2.5.8) 

In sum, the stoichiometric matrix acts on a vector of velocities to define a vector of 

concentration derivatives.  If v were constant as in equation 2.5.6, equation 2.5.8 represents 

an algebraic relation between reaction velocities and concentration derivatives.  However, in 

the general setting, it is seen that this is not the case as v, even with a static p, depends 

(nonlinearly) on the concentration vector that need not remain static.  As a result, equation 
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2.5.8 does not generally represent an integrable system.  In the following, we will consider 

the maps S and v to be representative of the two aspects of the dynamics of metabolic 

systems: S defines a metabolic structure whilst v defines (local) reaction dynamics.  The 

systems-level behaviour is represented by the differential equation 2.5.8.  For technical 

reasons to be explained in the foot note at the end of this section, but are not all crucial to 

FBA, we will make several assumptions about equation 2.5.8.  First, we assume for 

simplicity that S is of full rank.  Second, we assume for the purposes of MCA that v is 

continuously differentiable in both c and p.  Given any p of interest, it is required that a stable 

equilibrium solution to equation 2.5.8 exists – that is, we may provide a particular c for which 

the LHS of the equation evaluates to the zero-vector and that equation 2.5.8 will return the 

system to that state after a small perturbation is applied to this c.  With these assumptions in 

hand, we discuss the steady-state properties of the system 

{
 

 𝚽(𝐜, 𝐩) = 𝐒 ∙ 𝐯(𝐜, 𝐩): ℝm+k →ℝm

𝐒: ℝn
linear
→   ℝm

𝐯: ℝm+k
C′

→ℝn

 

 

(2.5.9) 

 *We have assumed for simplicity that S is of full rank.  Most biological stoichiometric matrices are rank deficient, 

due to the presence of conserved moieties that introduce row-dependencies (e.g. adenylate is conserved in ATP, ADP, and 

AMP). However, it is possible to convert S into a matrix of full rank by eliminating these dependencies.  The metabolic 

model and its mathematical analyses will remain unchanged by this operation (Gunawardena 2002).  S was assumed to be of 

full rank so that the Jacobian in the system 2.5.9 is invertible.   

 We assume for the purposes of MCA that v in 2.5.5 is a C’ mapping.  This assumption is required so that Φ in 

2.5.9 is C’ to meet the requirements of the Implicit Functions Theorem (Rudin 1964).   For dFBA, the smooth dependence of 

the velocity map on concentration and parameters is a structural stability requirement of Φ and has been discussed 

throughout.    

2.6: Steady-state metabolism and Metabolic Control Analysis 

Let 𝐩𝐩 denote a particular fixed parameter combination.  Starting with the system in 

2.5.9, our stability assumptions on v allow us to write the equation  

𝚽(𝐜𝐬𝐬𝐩, 𝐩𝐩) = 𝟎 (2.6.1) 
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Where 𝐜𝐬𝐬𝐩 is the metabolite concentration that satisfies 2.6.1 for the parameter combination 

𝐩𝐩.     Recalling that Φ represents metabolite concentration derivatives (equations 2.5.7 and 

2.5.8), it can be seen that equation 2.6.1 is a biological statement about a global metabolic 

steady-state.  Namely, it states that for a particular choice of parameters, the metabolic 

system has arrived at a (stable) dynamic equilibrium at which point the concentrations of 

metabolites remain unchanging at 𝐜𝐬𝐬𝐩.  For this pair of values for c and p, the velocity 

function evaluates to a constant 𝐯𝐬𝐬𝐩 defined by 

𝐯𝐬𝐬𝐩 =  𝐯(𝐜𝐬𝐬𝐩, 𝐩𝐩) (2.6.2) 

and equation 2.5.8 is seen to simplify to  

𝐒 ∙ 𝐯𝐬𝐬𝐩 = 𝟎 (2.6.3) 

which is a computationally tractable algebraic system in m independent equations and n ≥

m variables.  In order to ensure that outputs are computable, large-scale computational 

models that are concerned with rates of metabolic systems must make this simplification in 

one form or another.  For this reason, such models can be characterized as having the two 

common features represented by equation 2.6.3: a stoichiometric matrix and a steady-state 

assumption.  The system in 2.5.9 represents metabolic dynamics as a composition of two 

mapping procedures with three associated spaces.  Namely, these are the ℝm+k space of 

parameters and metabolite concentrations, the ℝnspace of reaction velocities, and the ℝm 

space of metabolite concentration derivatives. Although different steady-state models of 

metabolism may approach this equation differently, our discussion makes clear of the fact 

that there is only one dynamical metabolic equation: equation 2.5.9.    Two prominent 

approaches to steady-state metabolic systems modelling are metabolic control analysis 

(MCA), and flux balance analysis (FBA).  Although we are primarily concerned with the 

latter approach, a consideration of the connection between FBA and MCA will be useful 
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towards a better understanding of where FBA methods fit in the larger context of metabolic 

modelling, and with respect to the general mapping operations given in 2.5.9.  In the next 

section, it will be made clear that FBA is concerned with only the mapping by S between 

ℝn to ℝm.  To set FBA up in a context in which S is explicitly understood to be only one 

component of a larger mapping operation, we give now a brief description of MCA. 

 The overall goal of MCA is to characterize the sensitivity of metabolic steady-state 

properties (e.g. metabolite concentrations, reaction rates, and pathway fluxes) to perturbations 

in parameters (e.g. enzyme concentration and activity) (Gunawardena 2002).  The MCA 

modelling framework requires the steady-state assumption (equation 2.6.1), but for its 

consequences to the mapping v (equation 2.5.5) from ℝm+k to ℝn, thus for a somewhat 

different mathematical reason than for FBA.  The main result from analysis that is required 

by MCA models is the Implicit Functions Theorem.  By asserting the C′ requirement on the 

velocity map v, MCA methods use the steady-state equation 2.6.1 to arrive at the equation for 

parameter dependence 

𝚽(𝐜𝐬𝐬(𝐩), 𝐩) = 𝟎 (2.6.4) 

This equation is similar to equation 2.6.1, but the parameters are now variables, and steady-

state metabolite concentrations are explicitly shown to be (implicitly defined) functions of p.  

The Implicit Functions Theorem states that, provided Φ is continuously differentiable, that 

steady-state concentrations may be written implicitly as a continuously differentiable 

mapping of p in the vicinity of a point of ℝm+k satisfying equation 2.6.1 at which the 

Jacobian 
𝐝𝚽

𝐝𝐜
 is invertible (Rudin 1964).  The invertability requirement is satisfied in the 

biological setting because S is of full rank and because 
𝐝𝐯

𝐝𝐜
 is empirically unlikely to be 

singular (Gunawardena 2002).   
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We will not go further in describing the theory behind MCA, as our main interest is 

FBA.  The method is introduced to illustrate how MCA and FBA approach equation 2.5.9 in 

contrasting ways.  We have stated that, in the overall dynamical description of metabolic 

systems, v represents dynamics whereas S represents structure.  It will be seen however, that 

methods such as FBA are developed starting with equation 2.6.3 by largely ignoring the role 

that is played by the stoichiometric mapping in the overall dynamical equation 2.5.9.  This 

point is highly relevant to dFBA methods that tread the line between purely structural (FBA) 

and fully dynamic descriptions (equation 2.5.9).  In contrast to the formulation of FBA, the 

formulation of MCA requires the steady-state assumption first and foremost as a justification 

to writing  

𝐜𝐬𝐬 = 𝐜𝐬𝐬(𝐩) (2.6.5) 

The main advantage for MCA of being able to write equation 2.6.5, is that equation 2.6.4 

may then be differentiated directly to relate metabolic structure to parameter dependences.  

The most important consequences of MCA, such as the Summation Theorem mentioned in 

section 2.3, are structural implications that arise from equation 2.6.3 (Iglesias and Ingalls 

2010).  Namely, these results all depend crucially on combining equation 2.6.3 with the fact 

that S emerges “intact” upon the application of the Chain Rule to 2.6.4 (because S is a linear 

transformation).  Based on our brief description, it may be observed that MCA is an analytic 

theory; the phenotypes of interest to MCA are continuously defined metabolic system 

properties.  This is a point that we find is worth emphasizing as the distinction between the 

continuous and the discrete aspects of metabolism will be seen to be less clearly delineated 

when FBA results are reported.  We may now proceed to give a proper introduction to FBA 

methods, with an explicit understanding that FBA is one component of a larger family of 

metabolic models that are derived from placing equation 2.5.9 in steady-state.    
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2.7: Flux Balance Analysis and the objective function 

It was seen in the previous section that MCA is concerned with the local sensitivity of 

metabolic steady states to perturbations made to the parameters of the system.  In this section 

we proceed by describing the FBA framework of metabolic modelling.  In FBA, the steady-

state assumption is asserted for a purely computational reason, and we find that the properties 

of the velocity function v are quite immaterial; rather, FBA is more or less concerned with 

the geometry of the space into which v maps in relation to imposing direct algebraic 

constraints on the space itself.  As a result, FBA is concerned primarily with the discrete and 

static aspects of metabolic systems.   

Broadly stated, FBA is concerned with the following problem:  starting with the 

steady-state equation (equation 2.6.1), how to derive a particular point in the velocity space in 

the absence of detailed kinetic descriptions of the rates (that is without equation 2.6.2).  The 

proposed solution to this problem is that we introduce one further biological assumption to 

the modelling framework; we assume that the parameters of the system p are quantified in 

such a way that an optimality criterion is met by the system.  This is an evolutionary 

assumption.  From being exposed to selective pressures to meet an optimality criterion, the 

parameters p in a population are assumed to be tuned in such a way that the members in the 

evolved population expresses the optimal phenotype.  Recalling that the rate equation for any 

single reaction will be some generalization of the form given in equation 2.3.5, the 

evolutionary “tuning” is assumed to be of a genetic origin.  Enzymatic parameters such as 

kcat and  Km for instance may be tuned to some degree via mutations that structurally alter 

the final protein product; similarly, a parameter such as Vmax may be tuned to some degree by 

expression-regulatory mutations that alter the steady-state concentration of the catalyst.  

Before making precise what is meant by an “optimality criterion” we restate the steady-state 

equation 2.6.3 as it is understood in FBA.  Let 𝐩𝐨𝐩𝐭 denote a parameter combination for 



45 
 

which the optimality criterion is met by the system, let  𝐜𝐬𝐬
𝐨𝐩𝐭

 be a steady-state concentration 

distribution of metabolites corresponding to 𝐩𝐨𝐩𝐭, and let 𝐯𝐬𝐬
𝐨𝐩𝐭

be the optimal velocity the 

system exhibits with parameters 𝐩𝐨𝐩𝐭and concentrations 𝐜𝐬𝐬𝐩𝐨𝐩𝐭  so that from equation 2.6.2, 

we have 

𝐯𝐬𝐬
𝐨𝐩𝐭

=  𝐯 (𝐜𝐬𝐬𝐩𝐨𝐩𝐭 , 𝐩
𝐨𝐩𝐭) (2.7.1) 

If v is constrained as in MCA, we could similarly apply equation 2.6.5 to arrive at  

𝐯𝐬𝐬
𝐨𝐩𝐭

=  𝐯(𝐜𝐬𝐬(𝐩
𝐨𝐩𝐭), 𝐩𝐨𝐩𝐭) (2.7.2) 

but this is not an FBA requirement.  Note that we have not written 𝐯𝐬𝐬𝐩𝐨𝐩𝐭 .  With velocity 

obeying the steady, state assumption as in MCA, but now also satisfying an optimality 

criterion, the steady-state equation 2.6.3, for FBA reads 

𝐒 ∙ 𝐯𝐬𝐬
𝐨𝐩𝐭

= 𝟎 (2.7.3) 

where either expressions 2.7.1 or 2.7.2 may be substituted for 𝐯𝐬𝐬
𝐨𝐩𝐭

.  Thus the optimality 

assumption in FBA converts the general null-space equation 2.6.5, to the optimal equation 

2.7.3.    

We now discuss the mathematical conditions with which to decide when the equation  

𝐯 = 𝐯𝐬𝐬
𝐨𝐩𝐭

 (2.7.4) 

holds true.  Thus, starting with a velocity v satisfying the steady-state equation 2.6.5, we seek 

conditions to decide if v also satisfies the optimal steady-state equation 2.7.4 (or equivalently, 

equation 2.7.3).  Towards this end, we define the “cellular objective” (or just “the objective”) 

to mean any real-valued function of velocity.  Denoting a general objective function, using 

standard function notation, we may express the cellular objective symbolically as 
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f(𝐯) = f(v1, … , vn) : ℝn →ℝ  
(2.7.5) 

In writing f as in equation 2.7.5, we have already assumed that the objective depends 

implicitly on metabolite concentrations and on systems parameters (e.g. temperature and 

enzyme concentrations).  This is because we assumed in equation 2.5.5 that v is a function of 

metabolite concentrations and of system parameters.  It is of course possible to express 

explicitly, the fact that f might also depend explicitly on a set of parameters (for instance as f 

= f(v, q ) if q, possibly identical to p, were to denote a vector of parameters).  However, we 

find this unnecessary, and will therefore adhere to the notation in 2.7.5.   

Having introduced the objective, we may now state the mathematical condition for 

equation 2.7.5.   Let fS
opt

 denote the supremum (or infimum) of f(v) over 𝐯 ∈ S ⊆ ℝn with ∞ 

(or -∞) allowed.   

𝐯 = 𝐯𝐬𝐬
𝐨𝐩𝐭

  

if   

𝐒 ∙ 𝐯 = 𝟎 and f(𝐯) = fNull(𝐒)
opt

 

 

(2.7.6) 

Where Null(S) denotes the null-space of the matrix S.  Note that writing f(𝐯) = fNull(𝐒)
opt

 on its 

own in the above is enough to assert that 𝐒 ∙ 𝐯 = 𝟎.  We will also give an explanation later 

why we have not written “iff.”  Since the entries of v represent rates of biochemical reactions, 

it is seen to be a trivial physical requirement that ‖𝐯‖ < ∞ holds strictly.  Thus v is 

physically restricted to reside inside of some bounded subset of ℝn, which we will denote by 

Sbd. If we further assume that Sbdis also a closed set, then provided that f is restricted to and 

continuously defined over Sbd, there will exist a finite number fmax such that f(𝐯) ≤ fmax 

and so fSbd
opt

= fmax exactly (an analogous result is clearly true for a minimal value of f).  In 

this light, the (maximizing) FBA problem may be formulated as follows: 
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Given a stoichiometric matrix S, a closed bounded set Sbd ⊆ ℝn, and a cellular 

objective f(v) defined continuously over Sbd, solve for a velocity 𝐯 ∈ Sbd ∩ Null(𝐒) such that 

f(𝐯) = fmax.  As per equation 2.7.3, provided with one v meeting the above conditions, 𝐯𝐬𝐬
𝐨𝐩𝐭

 

is defined using equation 2.7.4 as 𝐯 = 𝐯𝐬𝐬
𝐨𝐩𝐭

 .   

The issues of what specific objective to use and similarly of how to define Sbd are 

biological, in that they depend on there being a specific investigative setting, and do not 

readily conform to a general mathematical treatment beyond that already given in this 

section.   Thus, the next two sections provide a biologically oriented discussion of objectives 

and of bounds.  Based on what we have described already however, it may be apparent that 

efficient computational methods for finding the optimal value of f(v) over Sbd ∩ Null(𝐒) are 

required for the above formulation of FBA to be of any practical use.  In accordance with this 

requirement, we find that the objective is generally chosen to be a linear function of v (e.g. 

extremizing an inner product of v with a constant n-vector) or a quadratic function of v (e.g. 

extremizing ‖𝐯‖); similarly, Sbd ∩ Null(𝐒)will be seen generally to be a convex subset of ℝn.   

An important observation to be noted in the above formulation of FBA is the potential 

non-uniqueness of the quantity 𝐯𝐬𝐬
𝐨𝐩𝐭

.  There is no reason for a v, at which an objective is 

extremized, to be unique.  In practice, FBA solutions are well-known to have multiple such 

v’s, an issue termed “degeneracy” which, although we recognize is important, find to be 

beyond the scope of our simple description of FBA. Thus, in the above formulation, we have 

assumed that one v has been found to optimize f, and that this v is arbitrarily used to define  

𝐯𝐬𝐬
𝐨𝐩𝐭

 .  It should be noted that the fact that a set of optimal solutions may exist in general, and 

that 𝐯 = 𝐯𝐬𝐬
𝐨𝐩𝐭

is just one member of such a set is quite important to many FBA applications.  

A good example of this is when FBA is used for gene essentiality analyses, as will be seen in 
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the next chapter.  However, we find that degeneracies are ignored in all dFBA applications 

that we are aware of.   

Another issue worth considering is the question of whether a particular FBA solution 

such as 𝐯𝐬𝐬
𝐨𝐩𝐭

 contains information about steady-state metabolite concentrations.   The 

traditional view appears to be that FBA methods cannot be used in predicting steady-state 

metabolite concentrations because FBA methods do not contain kinetic information (apart 

from the bounds) (Orth, Thiele et al. 2010).  We find in light of equation 2.5.5 however that 

this is not entirely the case.  Having quantified 𝐯𝐬𝐬
𝐨𝐩𝐭

 using FBA, one would have also 

implicitly quantified the LHS of one or both of equations 2.7.1 and 2.7.2 regardless of the 

formulation of FBA not depending explicitly on a velocity map.  As a consequence of this 

fact, in combination with a particular 𝐩𝐨𝐩𝐭 , possibly found independently of an FBA 

formulation, a quantification of a 𝐯𝐬𝐬
𝐨𝐩𝐭
 is also an implicit quantification of a steady-state 

vector of concentrations 𝐜𝐬𝐬𝐩𝐨𝐩𝐭 .  This point may be illustrated by observing that a kinetic 

equation such as 2.3.5 for a single reaction asserts a steady-state metabolite concentration 

when both the velocity and the parameters are given.  Provided that the latter have been 

quantified within a theoretically consistent framework, a concentration is asserted within that 

same theory by knowledge of velocity and parameters even when these have been 

independently derived.  Thus, FBA solutions do factor into the assertion of steady-state 

concentrations as they may be used to reverse-engineer concentrations when Michaelis-

Menten parameters are known.  

2.8: Biological constraints 

Whilst we have given a simple common-sensical reason as to why v should be 

bounded, the theoretical formulation of FBA does not give any indications as to what those 

bounds should be numerically.  Moreover, the reduction of Null(S) to Sbd ∩ Null(𝐒) may 
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rely, not just on the assertion that the rates of individual reactions are bounded, but perhaps 

also on an assertion that the velocities of several reactions must satisfy some algebraic 

equation (we provide a specific example of such a case below).  Defining the set Sbd requires 

biochemical knowledge or assumptions specific to the context of an FBA application.  The 

same can be said of the objective function f(v).  The FBA formulation requires that a cellular 

objective be defined, but does not indicate specifically what that function should be.  We now 

discuss the FBA constraints and, in the next section, the cellular objective.   

Consider the general Null-space equation for S, 

𝐒 ∙ 𝐯 = 𝟎 (2.8.1) 

In this section, v is not a function, but is interpreted to represent a general point of ℝn.  FBA 

seeks the set of points that satisfy 2.8.1 provided with S.  The vector v of rates is taken from 

ℝn which may be decomposed (as a direct sum) 

ℝn = Null(𝐒) ⊕ Null(𝐒)⊥ (2.8.2) 

where we have used the “inverted T” to indicate the orthogonal complement of Null(S).  The 

biological steady-state assumption requires that 𝐯 ∈ Null(𝐒).  Asserting that v should also be 

constrained to obey a set of equations (inequalities and equalities) serves to further bipartition 

Null(S) into those vectors that satisfy these equations, and those that do not.  We will 

henceforth refer to these equations as “constraints,” and refer to the subset of Null(S) 

consisting of those v satisfying the constraints as the “feasible region” of the FBA problem 

and denote it by Sf.  Thus we write 

Null(𝐒) = Sf ∪ Null(𝐒)\Sf (2.8.3) 

  

And require that v ∈ Sf.  Since Sf is the intersection of a bounded subset of ℝnand Null(S), 

we may also write 
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Sf = Sbd ∩ Null(𝐒) (2.8.4) 

to see again that the feasible region is the subset of  ℝnwhich results from asserting a steady-

state assumption together with further biological constraints.   

 Two constraints may be applied to the rate of any single reaction (vj) on its own 

which are an upper bound and a lower bound.  Denoting these by vj
Max and vj

Min, the rate of 

the jth reaction may be constrained as 

vj ∈ [vj
Min , vj

Max] (2.8.5) 

The value that is assigned to the bounds depends on the reaction and the context.  Thus, we 

illustrate with some biological examples.  If a reaction is known to be irreversible, we may 

write vj
Min = 0.0 for this reaction.   The consumption rate of oxygen is commonly assumed to 

be bounded above at a rate of about 20.0 mmol GDW−1 h−1 .  Letting vO2 denote the 

consumption rate of oxygen, if it is assumed for simplicity that a respiring cell does not 

produce oxygen, this fact may be represented by writing vO2 ∈ [0.0 , 20.0].  If the rate of a 

particular reaction is known exactly, we may set vj
Min = vj

Max for this reaction.  A common 

situation where such a bound may be used is when the rate of consumption of a substrate has 

been measured exactly in an experiment. Let vsubst and vsubst
obs  denote the FBA rate of 

substrate consumption and the experimentally observed rate of substrate consumption 

respectively.  Then the uptake rate of substrate may be constrained as vsubst  ∈

 [vsubst
obs ,  vsubst

obs ]. A second example of where a reaction rate is known exactly is when the 

gene for the enzyme catalysing the process has been deleted; in this case, the reaction is not 

expected to occur at all, and we may write vj  ∈  [0.0, 0.0].  Finally, if no information is 

available about the bounds of a reaction vj, this fact may be represented by simply asserting 

that vjshould at the very least be finite.  Thus, taking a finite, but large value for velocity, 
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106mmol GDW−1 h−1, for instance, we may write vj  ∈  [0.0, 10
6] if the reaction is known 

to be irreversible, and vj  ∈  [−10
6, 106] otherwise.  In some less common instances, an FBA 

application will require that a set of velocities obeys a simple algebraic equation which is 

usually linear.  As an example of this, Feist et al. have made the assumption that the rates 

across the two NADH dehydrogenases at the start of the E.coli electron transport will be in a 

1:1 ratio (Feist, Henry et al. 2007).  Letting vNADH1 and vNADH2 represent the FBA predicted 

rates for these dehydrogenases, this assumption is represented as vNADH1  =  vNADH2, a linear 

constraint on v that is not a simple min/max constraint.   

Equation 2.8.4 illustrates that the one effect of applying biological constraints is that 

the resulting feasible region will have a smaller volume relative to the unbounded set Null(S) 

of all steady-state vectors.  When all constraints are linear, as in the example 

vNADH1  =  vNADH2 from above, the feasible region will also be seen to be the polyhedral 

subset of ℝn described by the system of the form  

𝐒 ∙ 𝐯 = 𝟎

𝐋 ∙ 𝐯 = 𝐰

𝐯𝐌𝐢𝐧 ≤ 𝐯 ≤ 𝐯𝐌𝐚𝐱

 

 

(2.8.6) 

In 2.8.6,  L and w are constant matrix and vector representing the equality constraints whose 

number of rows equal the number of such equations; 𝐯𝐌𝐢𝐧 and 𝐯𝐌𝐚𝐱 are n-vectors whose jth 

entry is respectively, the lower and upper bound corresponding to vj; the inequality signs are 

understood to be applied component-wise.  We do not fully consider in this section, the 

adjustments to the algebraic description of Null(S) that is required to describe Sf as they are 

technical points on which our results do not depend.  However, it is worth mentioning that 

while any point of Sf will be a linear combination of the entries of a basis for Null(S) (since 

Sf ⊆ Null(𝐒)) the converse is not generally true.  To illustrate this point using a simple 

example, we note that whilst any point in the first quadrant of ℝ2 may be represented as a 
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linear combination of members in the standard basis for ℝ2, that the span of this basis covers 

also the second, the third, and the fourth quadrants. A consideration of only those linear 

combinations whose coefficients are positive will restrict the results to the first quadrant.  

However, if we introduce the additional requirement that the result also lie in a polygonal 

subset in the first quadrant, then further restrictions on the coefficients are seen to be needed.  

The requirement will be in general that we start with a convex basis (of vectors 

corresponding to the corners of the polyhedron) and to take a convex combination of these 

elements (the coefficients must not just be positive, but also sum to 1).  Interpreting this 

representation biologically, we are asserting that a biological steady-state velocity v lies in a 

convex subset Sf of ℝ𝑛and that a point of Sf may be described by a convex combination of 

velocities each corresponding to a extreme point (a corner) of Sf.   

2.9: Biological objectives  

We have defined the objective function to generally be any real valued function f(v) 

of velocity (equation 2.7.5), and have assumed that f(v) is continuous over the set of 

velocities for which it is defined.  The biological rationale for the latter assumption is that 

phenotypes are expected to be continuously defined functions of metabolic velocities.  In 

light of the previous section, we make the additional assumption in this section that the 

domain of f(v) has also been restricted to the feasible region Sf for an FBA application. In 

light of the description of FBA given in section 2.7, we see that FBA can be expressed by the 

following optimization problem.  

Optimize:  

f = f(𝐯) 

Subject to: 

 

 

(2.9.1) 
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𝐒 ∙ 𝐯 = 𝟎

𝐋 ∙ 𝐯 = 𝐰

𝐯𝐌𝐢𝐧 ≤ 𝐯 ≤ 𝐯𝐌𝐚𝐱

 

 

 

 

Or equivalently, to solve for a v such that  

f(𝐯) = fSf
opt

 

 

(2.9.2) 

In order to ensure that the optimization problem is computationally tractable, we will also 

require that the objective is either a linear or quadratic function of velocity.  Note that this is a 

computability requirement and not a biological one.  Having explicitly described the FBA 

framework, we now discuss some examples of biological objectives that are commonly used. 

 The most common cellular objective used in FBA modelling is to maximize the flux 

of metabolites towards the production of a unit of biomass.  We provide a comprehensive 

treatment of this objective function which we call “the biomass objective” in section 3.3.  The 

biomass objective is an inner product of v with a constant n-vector representing the 

metabolite composition that is stoichiometric with respect to a unit of biomass.  In choosing a 

v that maximizes this objective, one assumes that cellular reaction rates are such that the 

reproduction rate, as represented by a stoichiometrically balanced biosynthetic rate, is 

maximized.  Another example of a related linear objective is the maximization of just one or 

few of the reaction rates v1…vn (it will be seen in section 3.3 that the biomass objective is a 

special case).  As an example, if vj represents the rate across a reaction needed for the 

production of a commercially relevant compound, the FBA problem of maximizing the 

objective f(v) = vj may be used to solve for a v which may through engineering help increase 

the production rate of the desired compound.  
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Quadratic objective functions often arise from FBA problems that consider Euclidian 

distances involving v.  One example occurs when the FBA is formulated to minimize the 

objective f(𝐯) = ‖𝐯‖ which is an instance of “minimization of overall flux”.  A linear 

alternative to flux minimization would be to represent reversible reactions by two separate 

reactions, for the forward and the reverse processes, so that all velocities would be positive 

(Holzhütter 2004).  The biological rationale for this objective is as follows.  Since enzymes 

are required to catalyse reactions and a cell’s proteomic composition is budgeted, the 

combined rates across reactions, each term being proportional to an enzyme concentration, 

would be minimized so as to make the most efficient use of the available proteome.  Another 

example where a quadratic optimization is required involves “minimization of metabolic 

adjustment” (MOMA) (Segre, Vitkup et al. 2002).  Here one considers two velocities, 

𝐯𝐖𝐓 and 𝐯𝐌𝐓, representing the velocities associated with a wild-type and a mutant metabolic 

system.  In MOMA, the wild-type velocity is calculated from an FBA application is fixed to 

be that solution.  In calculating the mutant velocity, one introduces further constraints, to the 

wild-type FBA problem, representing the metabolic perturbations that differentiates the 

mutant system from the wild-type system.  Biologically, because mutations such as those that 

have been engineered have not been present during the evolutionary adaptive phase of 

populations, the perturbed metabolic system has likely not yet had the time to be tuned to 

deal optimally with conditions for which the wild-type system does behave optimally.  In 

modelling such sub-optimal mutant behaviour, the MOMA approach is to make the 

assumption that a metabolic system will respond to a perturbation by attempting to best 

approximate the velocity 𝐯𝐖𝐓 exhibited by the wild-type.  In this way, MOMA models sub-

optimal metabolism by solving for a 𝐯𝐌𝐓 in the perturbed feasible region for which the 

objective function f(𝐯𝐌𝐓) =  ‖𝐯𝐖𝐓 − 𝐯𝐌𝐓‖ with a fixed 𝐯𝐖𝐓 is minimized.   
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With cellular objectives now having been defined, this section completes our 

description of general flux balance analysis.  The method is summarized as follows.  FBA is 

an approach to structural metabolic modelling comparable to methods such as MCA where 

metabolism is treated holistically as a system rather than by focusing on any local set of 

reactions in isolation.  The dynamical representation of metabolism is given by equation 2.5.9 

which characterizes how dynamics and structure combine to determine the time-derivatives 

of metabolite concentrations as functions of metabolite concentrations and system 

parameters.  The general approach to dealing with equation 2.5.9 in practice is by bringing it 

to a steady-state and studying its linearization.  The formulation of FBA however starts, not 

with equation 2.5.9, but with 2.8.1; that is to say that FBA starts with the stead-state equation 

without an explicit consideration of velocity as a mapping as in equation 2.5.5.  Whereas 

MCA is a sensitivity analysis, FBA is an optimization problem.  Starting with equation 2.8.1, 

the FBA approach uses biological constraints to arrive at a convex subset of Null(S), the 

feasible region, and a cellular objective is optimized over this subset of possible velocities.  

In this way, any solution to the FBA problem is a vector v of velocities that satisfies the 

steady-state equation and optimizes the objective over the feasible region.    

2.10: Dynamic Flux Balance Analysis  

 The metabolic models described up to this section both require that metabolite 

concentrations, except for those with exchange reactions, are at steady-state values.  This is 

because both approaches depend on equation 2.6.3 holding for some particular parameter set.  

Most metabolic phenomena occur however outside of steady-state conditions.  Thus, it would 

be desirable to be able to extend steady-state metabolic models to more realistic dynamic 

settings.  Dynamic Flux Balance Analysis (dFBA) is a non-steady state extension of FBA that 

combines the FBA approach with ODE modelling.  Computationally, dFBA is implemented 

by iteratively performing optimization and integration over some time interval of interest 
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(Mahadevan, Edwards et al. 2002).  We first describe the algorithm and then consider the 

biological details.  Thus, assume that we are starting with some initial condition of 

metabolites and enzymes for the system of interest 𝐜𝟎 and 𝐞𝟎.  Further, assume that there are 

two models, an FBA model and an ODE model denoted 𝐌𝐅𝐁𝐀 and 𝐌𝐎𝐃𝐄 respectively, with 

parameters 𝐯𝐌𝐢𝐧, 𝐯𝐌𝐚𝐱, 𝐋, f, and 𝐩𝐎𝐃𝐄.  With these inputs, a simple dFBA algorithm starting at 

time t0 and moving with a step-size ∆t in N steps to the terminal point t0 + N∆t may be 

expressed as 

 

Input:  

Variables:  Metabolite_concentrations = 𝐜𝟎 

  Enzyme_concentrations = 𝐞𝟎 

Models:  FBA_model = (𝐌𝐅𝐁𝐀, 𝐯
𝐌𝐢𝐧, 𝐯𝐌𝐚𝐱, 𝐋, f) 

ODE_model = (𝐌𝐎𝐃𝐄, 𝐩𝐎𝐃𝐄 ) 

Time:  t ∈ [t0, t0 + N∆t] 

Algorithm: dFBA 

START 

Set FBA_model = (𝐌𝐅𝐁𝐀, 𝐯
𝐌𝐢𝐧, 𝐯𝐌𝐚𝐱, 𝐋, f ) 

Set ODE_model = (𝐌𝐎𝐃𝐄, 𝐩𝐎𝐃𝐄 ) 

Set Metabolite_concentrations = 𝐜𝟎 

Set Enzyme_concentrations = 𝐞𝟎 

 

Set t = t0 

Set total_steps = N 

Set setp_size = ∆t 

 

while (t <  t0 + N∆t){ 

1. Record Metabolite_concentrations 

2. Record Enzyme_concentrations  

 

3. Optimise the FBA_model 
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4. Retrieve 𝐯𝐬𝐬
𝐨𝐩𝐭
and fSf

opt
from the optimisation step 

5. Update 𝐩𝐎𝐃𝐄 using 𝐯𝐬𝐬
𝐨𝐩𝐭
and fSf

opt
 

 

6. Set Initial_condition = (Metabolite_concentrations, 

Enzyme_concentrations) 

7. Integrate ODE_model over [t, t + ∆t] from Initial_condition 

8. Update Metabolite_concentrations 

9. Update Enzyme_concentrations 

10. Update 𝐯𝐌𝐢𝐧, 𝐯𝐌𝐚𝐱, and 𝐋 using Metabolite_concentrations and 

Enzyme_concentrations 

11. Update f(v) using Metabolite_concentrations and 

Enzyme_concentrations <if applicable > 

 

12. Set t = t + ∆t 
} // end while 

STOP 

Output: 

A time-series of metabolite concentrations and enzyme concentrations: 

   𝐭 =  (t0… tN−1) 

  𝐂 = (𝐜𝟎…𝐜𝐍−𝟏) 

  𝐄 = (𝐞𝟎…𝐞𝐍−𝟏) 

 

 

Thus, dFBA is an algorithm that iteratively applies FBA optimization and ODE 

integration, thereby introducing a feedback of information between the parameter sets of the 

two models.  The optimization step (step 3) involves the application of FBA at a time point to 

arrive at a flux distribution under the assumption of an instantaneously achieved metabolic 

steady state.  The results of the FBA are used to update the parameters of the ODE (step 5), 

and the resulting equations are integrated in the ODE step to advance the algorithm over a 

small partition of the time interval (step 7).  The results of the integration step are used to 

update the parameters of the FBA step (step 10).  It is possible, though not often done, for the 
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objective to be redefined in response to the ODE outputs (step 11).  Two examples are found 

in Pramanik and Keasling 1997, Meadows et.al. 2010 where the biomass objective with a 

growth-rate dependent composition is used (Pramanik and Keasling 1997, Meadows, Karnik 

et al. 2010).  The two computations – optimization and integration – are repeated sequentially 

until the final time point is reached and the dFBA algorithm terminates.  The output of the 

algorithm is a simulated time series in metabolite and enzyme concentrations (Mahadevan, 

Edwards et al. 2002, Antoniewicz 2013).  Note that we have used the term “metabolite” in 

our description to include any node of an FBA model, including possibly a “biomass node.”  

The significance of this node is made clear in the next chapter, where we discuss the biomass 

reaction and “Palsson-style” FBA models.   

It should be noted that the concentrations of metabolites treated dynamically in dFBA 

models should be considered now to be parameters in equation 2.5.5 because they are not 

required to return to a steady-state value as in equation 2.6.2.  With this in mind, the key 

biological assumption of dFBA models is represented by step 3 of the routine in the while-

loop.  dFBA models assume that both the cellular objective and the steady-state condition are 

restored at every FBA step.  This is seen to be both an assumption on the stability of the 

system 2.5.9 as well one on the biological properties of metabolism itself.  It is recalled that 

the mathematical formulation of FBA, unlike MCA, does not explicitly require equation 

2.6.4, but only equation 2.6.1 (although stability may be biologically implied).  For dFBA, 

the structural stability of equilibria is now an explicit mathematical requirement, for 

otherwise, there is no guarantee for steady-state conditions to be returned to after parameter 

perturbations occur.  More subtly, dFBA, being a sequence of FBA operations, requires that 

the steady-state equation 2.6.4 holds for the first term of that sequence.  However, as pointed 

out by Gunawaradena, there is no mathematical reason for the system 2.5.9 to have a stable 

fixed point in the first place; a well-known example is glycolysis, a metabolic system that has 
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been shown experimentally to exhibit oscillatory dynamics rather than arriving at a simple 

steady-state (Gunawardena 2002).   Thus, by assuming the structural stability of the system 

2.5.9 to achieve instantaneous steady-state conditions over the FBA iterations, dFBA 

methods may exclude several important biological phenomena from the scope of its 

modelling.  The second assumption of dFBA is that not only is the steady-state condition 

restored for S (equation 2.6.3), but the optimality condition is also restored (equation 2.7.3).  

Thus, the parameter set p in equation 2.5.5 is assumed biologically to be flexible such that, 

after a perturbation to its entries, equation 2.7.2 is restorable by reconfiguring its other entries 

in response.   

With some success, the dFBA approach has been used towards reproducing 

experimental growth response to dynamic respiratory constraints in yeast,  therapeutic protein 

production by E.coli,  diauxic growths, and co-culture fermentation of lignocellulosic 

feedstock (Mahadevan, Edwards et al. 2002, Meadows, Karnik et al. 2010, Hanly and Henson 

2011, Hanly, Urello et al. 2012, Jouhten, Wiebe et al. 2012).  However, unlike for FBA, it 

remains to be investigated for dFBA whether results of practical use may be gained from this 

modelling approach.   

2.11: Discussion 

 In this chapter, we have introduced the reader to the fundamental ideas underlying 

structural metabolic modelling.  These models are required as a part of the systems biological 

approach to the interrogation of metabolism as they allow local kinetic models of reactions 

(e.g. equation 2.3.5) to be related to global metabolic behaviour (equation 2.5.9).  

Fundamental to this approach is the stoichiometric matrix which represents the topology of a 

metabolic network.  FBA methods use the stoichiometric matrix to write equation 2.8.1 to 

solve the problem formulated in 2.9.1.  As a member of a broader family of metabolic models 
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however, we find it may be beneficial to consider FBA methods in the context of the 

dynamical equation for metabolism that is given by equation 2.5.9.  In doing so, we have 

made explicit in this chapter, the mathematical and biological assumptions that are made by 

FBA and its dynamic extension, dFBA.   
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CHAPTER 3: Two approaches to Flux Balance Analysis  

 

Abstract:   

 

Most commonly, FBA models used in practice are genome-scale models that employ 

a biomass objective, where the biomass composition is treated statically using stoichiometric 

coefficients derived from the existing literature.  Here we derive the mathematical closed 

form of this objective from the FBA steady-state equation, and deconstruct the biomass 

objective of the iAF1260 E.coli metabolic model to reveal the exact sources of its 

stoichiometric coefficients.  FBA models are neither required to use a biomass objective nor a 

genome-scale metabolic representation.  In consideration of this fact, we find that a large 

number of FBA methods in practice may be characterized into one of two inverse types based 

on scale, and on their treatment of growth rates.   

 

 

3.1: Introduction 

Formally, FBA and dFBA are members of a broad collection of methods known as 

COnstraint-Based Reconstruction and Analysis (COBRA).  The “constraint” aspect of 

COBRA methods has been described in chapter 2 where it was seen that FBA is 

mathematically formulated as a constrained optimization problem (formulation 2.9.1).  The 

“reconstruction” on the other hand refers to the integration of data in the construction of the 

stoichiometric matrix.  A protocol for reconstruction has been developed by Palsson et al. 

(2010) and involves the synthesis of a detailed metabolic pathway map of all conversions 

between metabolites that are known to occur in an organism (Thiele and Palsson 2010).  This 

process commonly termed “network reconstruction” involves the extensive manual data 

mining of the literature that is available for a particular organism.  Largely bioinformatic by 

nature, network reconstruction depends critically on there being a strong knowledge base for 

the organism such as that represented by EcoCyc for E.coli (see section 1.2).  The 

reconstructed network is a computational representation of an organism’s metabolic system 

in the form of a stoichiometry matrix.  Since an extensive knowledge base is available for 

E.coli, this organism is thought to have one of the most complete network representations.  

We will henceforth refer to the available genomic and metabolomic data as “genotype data” 
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for short.  Thus, as a systems biological approach, FBA methods seek to relate genotype data 

to growth phenotype through the mathematical formulation 2.9.1.     

In the effort to relate genotype data to growth phenotype, there is currently a noticeable 

trend in the COBRA literature which is towards describing metabolic systems in ever finer 

detail; in other words, by striving towards a complete a stoichiometric model as possible 

based on the availability of data.  This trend is seen decidedly in the iJE660, iJR904, 

iAF1260, iJO1366 series, where the final model is of such a complete genomic coverage that 

it is thought to be expandable only by the addition of newly characterized reactions (Edwards 

and Palsson 2000, Reed, Vo et al. 2003, Feist, Henry et al. 2007, Orth, Conrad et al. 2011, 

McCloskey, Palsson et al. 2013).   Work is currently under way in the construction of 

(steady-state) Metabolism and Expression models (ME-models) that combine genomic scale 

protein expression data with the metabolic data (O'Brien, Lerman et al. 2013).   Similarly, we 

note that this trend towards increasing scale is represented, not just by the expansion of 

models, but also by the increasing scale of the bio-systems the models are constructed to 

represent; ecosystem models, such as of bio-films and of interspecies interactions, as well as 

whole-organism models (e.g. of Arabidopsis thaliana) have now been published (Poolman, 

Miguet et al. 2009, Hanly and Henson 2011, Hanly, Urello et al. 2012, Biggs and Papin 

2013).  Thus, the most common COBRA models encountered in practice are large and 

account for an extensive volume of genotype data, a fact often strongly implied as when FBA 

models are referred to as “genome scale” models.   

There is an assumption represented by these trends that a more comprehensive 

coverage of genotype will lead to correspondingly more accurate predictions of phenotype.   

Model size is advocated to increase with data availability, for instance as when the 

construction of a biomass objective is described to progress through three levels of detail 

(from basic to intermediate to advanced) based on this criteria (Feist and Palsson 2010).  
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However, the relation between accuracy and detail must certainly be contingent upon exactly 

what phenotype is being investigated in a COBRA framework; that is, how one has defined a 

“growth phenotype” in the first place.  Moreover, insofar that there is a diversity amongst 

biological phenotypes which may be investigated by FBA methods, it would be expected that 

there should also be a correspondingly wide continuum of metabolic resolutions with which 

to best investigate.  As a demonstration of phenotype ambiguity, authors Feist and Palsson 

mention in one article several phenotypes referring to “growth rates,” “cellular yields,” “flux 

distributions,” “optimal network states” and “phenotypic states,” “essentialities,” “topological 

properties,” and “biophysical capabilities” (Feist and Palsson 2010).  Neglecting the fact that 

some of these terms come with somewhat vague definitions  (i.e. “network states” and 

“biophysical capabilities”), it is also important to point out that lists such as this one combine 

phenotypes that become relevant at differing biological scales.   Flux distributions describe 

“possible metabolic routs through the metabolic network of an organism” and are thus 

phenotypes that require a high resolution description of the network to investigate (Schuster, 

Pfeiffer et al. 2008).  Specific growth rates in contrast, describe the per-capita reproductive 

contribution of individuals to the total population growth rate (equation 1.7.1) and, may not 

be a phenotype requiring as highly a detailed metabolic model to investigate.  Whilst it is the 

stated goal of systems biology to bridge the gaps between various biological scales, nowhere 

has it been demonstrated that such bridges are formed automatically with increased 

descriptive resolution; likewise, nowhere has it been demonstrated that high resolution 

models are prerequisite to the investigation of multi-scale biological phenomena (Kitano 

2002, Kitano 2002).  The Palsson protocol for network reconstruction invariably culminates 

with a genome-scale model however, in which an organism’s metabolism is described at the 

finest possible resolution with respect to the available biological information.  Thus, we may 

not readily identify from the protocol, what is the relevant scale at which reconstructed 
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networks should be studied when a particular set of growth phenotype predictions is of 

interest.  It is therefore an open question if large-scale stoichiometric models are always 

appropriate.  

One area in which large-scale FBA has been notably successful is in the identification 

of unintuitive pathways.  We define an “unintuitive pathway” here to mean a functional path 

along a metabolic network, between two metabolites, that is made up of a previously 

uncharacterized combination of reactive steps.  Relying on large FBA models (and growth-

rate optimization), investigators have been able to identify engineering targets for the 

microbial production of commercial compounds, 1,3-propanediol and L-threonine;  the 

experimental modifications of the predicted targets were later shown to result in increased 

product yields (Nakamura and Whited 2003, Lee, Park et al. 2007, McCloskey, Palsson et al. 

2013).  Another topological growth phenotype for which large-scale FBA models are known 

to make good predictions is gene essentiality.  FBA models have been used to correctly 

identify “essential genes” defined to be those which, if knocked out, cause the growth of cells 

to cease completely.  Note that if essentiality predictions do not match experimental 

observations, then a “knowledge gap” has been identified which would equally be of value to 

biology (McCloskey, Palsson et al. 2013).  Thus, for topological growth phenotypes, it 

appears unsurprisingly that larger metabolic models do in fact correspond to better 

predictions.   

In contrast to these examples, many applications of FBA are concerned first and foremost 

with metabolic rate phenotypes.  The dFBA method (section 2.10) for instance has been 

developed specifically for the investigation of the cellular reprogramming of flux 

distributions in response to dynamically changing metabolic rate parameters (Mahadevan, 

Edwards et al. 2002).  Topology and rates are two distinct aspects of metabolic systems 

however.  As a result, it does not follow automatically that larger metabolic models will 
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correspond to more accurate predictions of rates as it seems to do for topology.  Thus the 

necessity of genome scale metabolic representations in applications of FBA that are 

concerned primarily with rates warrant further investigation.  We consider in this chapter how 

growth rates are represented by FBA models, and identify two reciprocal classes of FBA 

models based on the treatment of growth rates.   

3.2: The biomass objective function 

 

The application of FBA methods requires not just a network structure, but also a 

network function.  This is what a metabolic network is assumed to have been programmed to 

do.  In sections 2.7 and 2.9 of the previous chapter, it was seen that this functional aspect of 

metabolism is represented in FBA models by objective functions.  In this section, we consider 

one specific objective function, called the “biomass objective,” which is the one most 

commonly used in practice (Feist and Palsson 2010, Yuan, Cheung et al. 2016).  The biomass 

objective is used whenever a modeler assumes that a metabolic network has been 

programmed to maximize the specific growth rate (µ) of a cell.  As was described in 

section1.7, µ is the per-capita growth rate as understood in a standard Malthusian growth 

equation.  Here, we describe how µ may be formulated mathematically in an FBA model by 

deriving a closed-form expression for µ starting with the steady-state equation 2.8.1.  

In FBA models, specific growth rate is defined to be the rate of flow of a 

stoichiometric collection of metabolites to a unit of biomass.  We will later make a distinction 

between two inverse approaches to FBA based on whether stoichiometry (of biomass 

metabolic composition) is used to predict µ, or instead, if µ is used to predict stoichiometry.  

In this section, the former situation is assumed.  We will also continue to adhere to the 

notational conventions that were introduced in chapter 2.  So as to be consistent with the 
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notation in section 1.7, where the Greek letter µ was used to signify specific growth rate, we 

will represent the biomass objective as 

µ(𝐯) = µ(v1, … , vn) : ℝn →ℝ  
(3.2.1) 

Thus, we replace the generic function notation introduced in equation 2.7.5 with µ to indicate 

that we are now dealing explicitly with a biomass objective.  The replacement of f with µ will 

be carried through to all symbolic notations for which f may be used.  Thus for instance, a 

maximal value for the biomass objective will be indicated by µMax.  Note that this notation in 

this example coincides with the notation used to denote a generic maximal specific growth 

rate, appearing in equations such as 1.7.5 and 1.7.8, which may be defined without an FBA 

model.  It now follows from the FBA formulation in 2.9.1 that an FBA problem with the 

objective of maximizing a biomass objective may be expressed as 

Maximize:  

µ = µ(𝐯) 

Subject to: 

 

 

(3.2.2) 

𝐒 ∙ 𝐯 = 𝟎

𝐋 ∙ 𝐯 = 𝐰

𝐯𝐌𝐢𝐧 ≤ 𝐯 ≤ 𝐯𝐌𝐚𝐱

 

 

 

For succinctness, we will often only write the steady-state constraint explicitly when defining 

an FBA problem; similarly, we may write matrices and vectors in an expanded form if doing 

so leads to increased clarity.  Thus, the above formulation may alternatively be written as 

Maximize:  

µ = µ(𝐯) 

Subject to: 

 

 

(3.2.3) 

 (

s11 ⋯ s1n
⋮ ⋱ ⋮

sm1 ⋯ smn

) [

v1
⋮
vn
] = [

0
⋮
0
]  
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Note that we are using n and m as in chapter 2 to represent the total number of reactions and 

the total number of metabolites occurring in the model respectively.  In the following, we will 

derive an explicit formula for the biomass objective 3.2.1.   

 Starting with the steady-state equation for FBA 2.8.1,  

(

s11 ⋯ s1n
⋮ ⋱ ⋮

sm1 ⋯ smn

) [

v1
⋮
vn
] = [

0
⋮
0
] 

(3.2.4) 

we augment the system with an extra reaction to arrive at the m× (n + 1) dimensional 

equation 

(

s11 ⋯ s1n
⋮ ⋱ ⋮

sm1 ⋯ smn

|

s1b
⋮

smb

) [

v1
⋮
vn

vbiomass

] = [
0
⋮
0
] 

(3.2.5) 

Isolating the newly added term of the equation gives  

(

s11 ⋯ s1n
⋮ ⋱ ⋮

sm1 ⋯ smn

)[

v1
⋮
vn
] = (−1)vbiomass [

s1b
⋮

smb

] 
(3.2.6) 

It will be seen that the FBA rate predicted for vbiomasswill be taken to be the specific growth 

rate prediction.  Thus, the RHS of 3.2.6 represents the rate at which metabolites must be 

stoichiometrically drawn towards biomass so as to balance the metabolic fluxes on the LHS.  

The vector that is scaled by vbiomasscontains the coefficients for each metabolite comprising 

a unit of biomass.  We define this vector as 𝐛𝐫𝐱𝐧 

𝐛𝐫𝐱𝐧 = [

s1b
⋮

smb

] 
(3.2.7) 

Re-expressing 3.2.6 with this notation, we arrive at 

𝐒 ∙ 𝐯 = (−1)vbiomass𝐛𝐫𝐱𝐧 (3.2.8) 

Taking an inner product with 𝐛𝐫𝐱𝐧,  

〈𝐒 ∙ 𝐯,  𝐛𝐫𝐱𝐧 〉 = (−1)vbiomass‖𝐛𝐫𝐱𝐧‖
𝟐 (3.2.9) 

and isolating vbiomass gives 
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(−1)
〈𝐒 ∙ 𝐯,  𝐛𝐫𝐱𝐧 〉

‖𝐛𝐫𝐱𝐧‖𝟐
= vbiomass 

(3.2.10) 

Replacing the stoichiometric matrix with its transpose gives 

(−1)
〈𝐯, 𝐒𝐓 ∙  𝐛𝐫𝐱𝐧 〉

‖𝐛𝐫𝐱𝐧‖𝟐
= vbiomass 

(3.2.11) 

Let the constant vector b be defined as 

𝐛 = (
−1

‖𝐛𝐫𝐱𝐧‖
𝟐
) 𝐒𝐓 ∙  𝐛𝐫𝐱𝐧 

(3.2.12) 

Substituting expression 3.2.12 into 3.2.11, we arrive at the desired expression for vbiomass 

vbiomass = 〈𝐯, 𝐛〉 (3.2.13) 

Defining the rate prediction for vgrowthto be the specific growth rate prediction, we may 

write 

µ =  vbiomass (3.2.14) 

Taking the specific growth rate as the objective, the FBA problem 3.2.3 may be expressed as  

 

 

Maximize:  

µ(𝐯) = 〈𝐯, 𝐛〉 

Subject to: 

 

 

(3.2.15) 

𝐒 ∙ 𝐯 = 𝟎  

 

The biomass objective is often expressed as a biomass reaction in the COBRA 

literature (Varma and Palsson 1994, Yuan, Cheung et al. 2016).  The value of the biomass 

objective is interpreted, when this is done, to be a flux across the biomass reaction.  We now 

briefly discuss what is meant by these statements.  Let ai for 1 ≤ i ≤ m denote the chemical 

name that is given to the metabolite that has been indexed by i (e.g. a1 might stand for 
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“valine”).  Likening a unit of biomass to a defined metabolic object, a conceptual chemical 

equation such as  

|s1b|a1 +⋯+ |smb|am → biomass 
(3.2.16) 

may be written as a model of growth.  Note that we use absolute values in this equation as the 

signs on the stoichiometric coefficients are given by their location relative to the reaction 

arrow.  Note also that the notation vbiomass was used in accordance with section 2.2 as this 

represents the rate of production of biomass treated as an individual metabolite.  Growth in 

equation 3.2.16 is the irreversible transfer of mass from a stoichiometric collection of 

metabolites on the negative side to the biomass on the positive side.  The stoichiometric 

coefficient for the ith metabolite in 3.2.16 is seen to be 

si = |sib| (3.2.17) 

Because biomass reactions often have more terms than would be practical to write out at 

every occurrence, a notation analogous to the standard notation for sums is used to compact 

expressions such as 3.2.16. 

∑siai

m

i=1

→ biomass 
(3.2.18) 

The expression on the LHS of 3.2.18 is not a mathematical sum.  The operations of addition 

appearing there are not defined in any mathematical sense, but rather, represent the 

combining of chemical terms (stoichiometric coefficient together with the name of a 

compound) in expressing a chemical equation.  This being stated, we also note that the 

indices that appear in 3.2.18 are useful as they may be used as a means of isolating particular 

terms of the chemical equation when appropriate.  As one example, it would be appropriate to 

use the expression     

s1a1 +∑siai

m

i=2

→ biomass 
(3.2.19) 
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to single out the first term of the overall expression.   

3.3: Static biomass objective of the iAF1260 model 

 

Most descriptions of FBA are given using equation 3.2.14 (Orth, Thiele et al. 2010) or 

the biomass reaction 3.2.18 (Varma and Palsson 1994).  These simple equations contains an 

important assumption about the biomass composition.  Namely by fixing b to be a constant, 

the equation asserts that biomass composition (𝐛𝐫𝐱𝐧) is static.  This assumption becomes 

significant when, as is very commonly done, the composition vector is constructed by 

extrapolating data from measurements that have been obtained under several differing growth 

conditions.  Similarly, the assumption will have implications to dFBA model predictions, 

where population growth is profiled with a constant biomass vector but in a variable 

environment.   

The application of equation 3.2.13. assumes implicitly that the biomass composition, 

invariantly of such possible factors as strain, media, and growth conditions in general, 

remains approximately unchanged.  Unfortunately, the FBA method is often presented in the 

language of linear programming that is foreign to biology and that obscure this assumption 

(Varma, Boesch et al. 1993, Varma and Palsson 1994, Varma and Palsson 1994, Edwards and 

Palsson 2000, Edwards, Ibarra et al. 2001, Edwards, Covert et al. 2002, Orth, Thiele et al. 

2010).   For a more lucid illustration of this assumption, we find it useful to complement the 

definition of µ in equation 3.2.14 with a biochemically explicit description.  In the above 

setup, FBA identifies the empirical μ with a specific physiological quantity – the optimal 

velocity of steady-state biosynthesis as represented by a metabolic flux through a 

phenomenological biomass reaction (equation 3.2.18).  In this section and the next, we 

describe the biomass objective that is used by the iAF1260 metabolic model and reverse-
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engineer its biomass constituents to identify the experimental sources of its stoichiometric 

coefficients (Feist, Henry et al. 2007).   
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Amino Acids Stoich. 

Abs(mmol

/gdw) 

Gly-L Glycine 0.595 

Ala-L Alanine 0.499 

Leu-L Leucine 0.438 

Val-L Valine 0.412 

Lys-L Lysine 0.333 

Arg-L Arginine 0.287 

Ile-L Isoleucine 0.282 

Gln-L Glutamine 0.256 

Glu-L Glutamate 0.256 

Thr-L Threonine 0.247 

Asn-L Asparagine  0.234 

Asp-L Aspartate 0.234 

Pro-L Proline 0.215 

Ser-L Serine 0.210 

Phe-L Phenylalanine 0.180 

Met-L Methionine 0.149 

Tyr-L Tyrosine 0.134 

His-L Histidine 0.092 

Cys-L Cysteine 0.089 

Trp-L Tryptophan 0.055 

Ribonucleotides 

Gtp GTP 0.209 

Utp UTP 0.140 

Ctp CTP 0.130 

Atp ATP (biomass 

component) 

0.170* 

Deoxy-ribonucleotides 

dCtp Deoxy-CTP 0.026 

dGtp Deoxy-GTP 0.026 

dATP Deoxy-ATP 0.025 

dTtp Deoxy-TTP 0.025 

Inorganic ions 

H2o Water 54.61 

K Potassium(1+) 0.169 

Nh4 Ammonium(1+) 0.011 

Mg2 Magnesium(2+) 0.008 

Fe2 Iron(2+) 0.007 

Fe3 Iron(3+) 0.007 

Ca2 Calcium(2+) 0.005 

Cl Chlorine(1-) 0.005 

So4 Sulphate(2-) 0.004 

Cobalt2 Cobalt(2+) 0.003 

Cu2 Copper(2+) 0.003 

Mn2 Manganese(2+) 0.003 

Mobd Molybdenum(1+) 0.003 

Zn2 Zinc(2+) 0.003 

Energy Currencies  

Atp ATP (GAM) 59.81* 

Nad NAD+ 0.002 

Nadph NADPH 0.0003 

Nadp NADP+ 0.0001 

Nadh NADH 0.00005** 

Other 

Glycogen Glycogen 0.154 

Ptrc Putrescine 0.033 

Pe160[p] phosphatidylethanola

mine 

0.032 

Pe161[p] phosphatidylethanola

mine 

0.025 

Pe181[p] phosphatidylethanola

mine 

0.013 

Pe160 phosphatidylethanola

mine 

0.012 

Pe161 phosphatidylethanola

mine 

0.010 

Colipa core oligosaccharide 

lipid A 

0.008 

Spmd Spermidine 0.007 

Pg160 Phosphatidylglycerol 0.006 

Murein4p4p[

p] 

Murein 0.005 

Murein4px4p

[p] 

Murein 0.005 

Pe181 phosphatidylethanola

mine 

0.005 

Pg160[p] Phosphatidylglycerol 0.005 

Pg161 Phosphatidylglycerol 0.004 

Pg161[p] Phosphatidylglycerol 0.004 

Clpn160 cardiolipin 0.003 

Clpn161 cardiolipin 0.003 

Pg181 Phosphatidylglycerol 0.002 

Pg181[p] Phosphatidylglycerol 0.002 

Clpn181 cardiolipin 0.001 

Murein3p3p[

p] 

Murein 0.001 

Murein3px4p

[p] 

Murein 0.001 

Murein4px4p

x4p[p] 

Murein 0.001 

Accoa Acetyl-CoA 0.0003 

10fthf 10-

formyltetrahydrofola

te 

0.0002 

2dmmql8 2-

Demethylmenaquino

l 8 

0.0002 

5mthf 5-

Methyltetrahydrofola

te 

0.0002 

adocbl Adenosylcobalamin 0.0002 

Amet s-adenosyl-

methionine 

0.0002 

Chor chorismate 0.0002 

Coa Coenzyme-A 0.0002 

Enter Enterochelin 0.0002 

Fad FAD 0.0002 

Gthrd Reduced glutathione 0.0002 

hemeO Heme O 0.0002 

Mlthf 5,10-

methylenetetrahydro

folate 

0.0002 

Mql8 Menaquinol 8 0.0002 

Pheme Proto-heme 0.0002 

Pydx5p Pyridoxal-5’-

phosphate 

0.0002 

Q8h2 Ubiquinol-8 0.0002 

Ribflv Riboflavin 0.0002 

Sheme Siroheme 0.0002 

Thf Tetrahydrofolate 0.0002 

Thmpp Thiamine 

diphosphate 

0.0002 

Succoa Succinyl-CoA 0.0001 

Udcpdp Bactoprenol 0.0001 

Malcoa Malonyl-CoA 0.00003 

Products 

Adp ADP 59.81 

H H(1+) 59.81 

Pi Orthophosphate 58.81 

Ppi Pyrophosphate 0.750 
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TABLE 3.3.1 (page 72):  The biomass composition of the iAF1260 model.  With the exception 

of the GAM requirement described below, one gram dry weight (GDW) of biomass is assumed 

to be comprised of the compounds listed in the left-most column in the stoichiometric amount 

given by the coefficients in the corresponding rows of the right-most column.  When the FBA 

model predicts that these compounds are synthesized in the stoichiometric ratio given in this 

table over a period of one hour, the specific growth rate is predicted to be exactly µ = 1/hr.  

*ATP fraction of the biomass composition has been split to indicate respectively, the amount 

needed to form new biomass and the amount needed to run the biomass reaction.  The latter 

demand is termed Growth Associated Maintenance (GAM) energy. **stoichiometric coefficients 

rounding to zero at the third decimal place have been reported to the decimal place where the 

first non-zero entry occurs. 

 

The iAF1260 biomass reaction consists of ninety-nine metabolites (Table 3.3.1).  In view 

of the biomass reaction, an entry from either of the first two columns of this table is seen to be a 

valid substitute for ai given a particular metabolite indexed by i.  For that same metabolite, the 

stoichiometric coefficient si is the number located in the third column of the corresponding row.  

Note that in writing the table above, we have ignored any metabolite for which si = 0.0; these 

are the metabolites that are assumed to not be a part of the biomass composition.  Including all 

metabolites, even those with coefficients of zero, will result in a table with m rows.  Thus, to 

each row of the complete table is associated a metabolite with a corresponding row in the 

stoichiometric matrix S.  In the final column of the augmented matrix (𝐒|𝐛𝐫𝐱𝐧), the number that 

appears in a given row is the number appearing in the third column of the full table for the 

corresponding row multiplied by -1.0.  The only exception to this are those metabolites that 

appear as products; their stoichiometric coefficients will appear in the augmented matrix with 

positive signs, as a positive flux across the biomass reaction will lead to their formation.  The 

table indicates that four (non-biomass) metabolites – ADP, protons, orthophosphate, and 

pyrophosphate are formed via the biomass reaction.  Their function is to mass-balance a large 
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ATP hydrolysis accompanying the flux across the biomass reaction of the iAF1260 model.  The 

significance of this hydrolysis is discussed in section 4.2 where “maintenance energies” are 

defined.  The metabolites present on the reactant side (left-hand-side; LHS) of the biomass 

reaction, not involved in the accompanying ATP hydrolysis, represent one’s assumptions of the 

composition of a unit (GDW) of biomass.  Such an assumption on biomass composition is made 

by a large majority of the FBA models but rarely is it asserted in an explicitly biochemical 

language as it has been done here (Varma and Palsson 1994, Varma and Palsson 1994, Edwards, 

Ibarra et al. 2001, Mahadevan, Edwards et al. 2002, Meadows, Karnik et al. 2010, Orth, Thiele et 

al. 2010, Hanly and Henson 2011, Hanly, Urello et al. 2012).     

In sum, the biomass composition in FBA models is represented as a stoichiometric 

collection of simple biomolecules.  The next section discusses the experimental characterization 

of the stoichiometric coefficients.  In the common setting, this collection is placed to the LHS of 

a biomass reaction and a unit flux across this reaction equates with a unit specific growth rate 

(equation 3.2.18).  Maximizing the value of the biomass objective is equivalent to maximizing 

the value of this flux; the flux of the LHS metabolites across the biomass reaction and in those 

proportions given by their stoichiometric coefficients (Equation 3.2.18).  In this way, the 

metabolism of a given substrate is modelled as the maximization of flow through pathways 

starting from its acquisition by transporter(s) and ending at terminal products of well-known 

anabolic pathways.  By optimizing the biomass objective, an FBA model formulated as 3.2.15, 

predicts μ to be the maximal possible cellular rate of synthesis of a static set of basic 

biomolecules.   
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 FBA models are structured to bridge the gap between genotype data and growth 

phenotype.  The optimized value of the biomass objective is a rate phenotype, and there is a clear 

advantage to modelling growth rates via FBA.  Unlike with growth rate models which have been 

introduced in section 1.6, there is a potential with FBA methods, to provide mechanism solutions 

to the question of what determines metabolic rates in a particular genetic and environmental 

setting.   Developing this insight into mechanisms is a critical step towards metabolic 

engineering progress. This is why phenomenological models such as those of section 1.7 are seen 

to be inadequate for an engineering setting. Phenomenological models make no statement of 

causality, and therefore, provide little insight with which to predict system responses to 

experimentally induced perturbations.  On the other hand, the extent to which flux across a 

biomass reaction can realistically represent specific growth rate remains to be explored.  For 

suppose that even if a unit of biomass can be approximated to be a cumulative sum of a handful 

of elementary biomolecules.  There are currently no reliable empirical methods by which one can 

easily quantify the potential variation in composition over differential physiological states.  

Results of recent studies on this matter do in fact support the hypothesis that biomass 

composition can vary considerably across conditions (Godin, Delgado et al. 2010, Yamamotoya, 

Dose et al. 2012, Schmidt, Kochanowski et al. 2016).  Therefore, the applicability of FBA 

methods are seen to be limited by the appropriateness of a static biomass approximation over 

various timescales, conditions, cell types, and cell states.  Some (d)FBA applications have 

addressed this problem, for instance by the use of a growth-rate-dependent biomass composition 

(Pramanik and Keasling 1997, Meadows, Karnik et al. 2010).  Yuan et al. notes that for many 

FBA models, the biomass composition is not measured, but extrapolated from literature values.  
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In their analysis of twenty-one publications using Arabidopsis metabolic models, they have 

found that only five employed biomass compositions that were directly measured by the 

modelers.  Moreover, these authors have found that the measured biomass composition was 

significantly different across those five studies.  To investigate the sensitivity of rate predictions 

to the assumed biomass composition, Yuan et al. studied the biomass composition of three 

published models by permuting the stoichiometric coefficients amongst the three models 

(Poolman, Miguet et al. 2009, de Oliveira Dal'Molin, Quek et al. 2010, Arnold and Nikoloski 

2014, Yuan, Cheung et al. 2016).  It was found, with few exceptions (e.g. AKGDH), that FBA 

predictions of central metabolic reactions as well as specific growth rate predictions were largely 

insensitive to the assumed composition.  In a similar study, Dikicioglu et al investigated the 

sensitivity of Yeast FBA model predictions to the biomass composition.  Whilst these authors 

report that specific growth rate predictions are not sensitive to composition under a particular 

growth condition (consistently with the findings of Yuan et al.), it was observed that pair-wise 

alterations of composition and growth condition do lead to discernible changes.  In light of these 

results, we find that a closer investigation between the rate prediction and the biomass 

composition is warranted for E.coli metabolic models.  In the remaining sections of this chapter, 

we consider two distinct ways by which FBA models may account for biomass composition.  In 

the two chapters following, we investigate the mathematical relation between biomass carbon 

composition and rate predictions and its consequences under the assumption of a biomass 

objective.   

3.4: The compositional characterization of E.coli: 

In the previous two sections, it was seen that many FBA models require, in addition to a 

reconstructed metabolic network, an inventory of molecular components that are assumed to 
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constitute a unit of biomass.  If an FBA model is to optimize a biomass objective, then a 

stoichiometric coefficient will need to be specified for each member of the inventory so that a 

biomass reaction may be written.  Note however, that the formulation of equation 3.2.13 does not 

require the flux across a biomass reaction to be the objective.  Thus, to be more precise, we may 

say that FBA models that make a growth rate prediction require a stoichiometric molecular 

inventory and a biomass reaction.  We have noted in the previous section that E.coli has one of 

the most comprehensively characterized metabolic reconstructions.  It is also the case that E.coli 

has one of the most comprehensively characterized stoichiometric inventory of biomass 

metabolites. This situation is owed largely to the extensive characterization of the molecular 

composition of this bacteria that has been provided by Neidhardt (Neidhardt, Ingraham et al. 

1990).  In this section, we deconstruct the biomass objective of the iAF1260 model by reviewing 

the workflow that has gone into this derivation of E.coli composition. 

The iAF1260 model assumes a molecular parts-list of a typical E.coli cell that can be 

traced to a table of data published by Neidhardt et al. in 1990 in their book Physiology of the 

Bacterial Cell: a Molecular Approach (Neidhardt, Ingraham et al. 1990).  That same data also 

appears as two tables published in an article by Neidhardt and Umbarger in the first volume of 

Escherichia coli and Salmonella (Dempsey, Neidhardt et al. 1987).  In the latter article, is a 

detailed description of how the numbers were obtained.   These values are interpreted today to be 

masses of biomolecules that are stoichiometric with respect a gram dry weight (GDW) of an 

E.coli cell.  The workflow which will now be summarized is shown schematically in figure 3.4.1.   

 



78 
 

 

 



79 
 

 

Figure 3.4.1(continued on page 78): The flow of information described by Neidhardt & 

Umbarger from which the macromolecular composition of a gram dry weight of an E.coli B/r 

cell was determined.  The area surrounded in purple in the top chart illustrates guidance from the 

1977 article by Umbarger.  The table to the right in green is a column in T1 taken directly from 

Neidhardt & Umbarger.  The figure and text have been modified from Neidhardt & Umbarger.  

The full list of references from which the information was derived in Neidhardt & Umbarger is 

as follows: (Taylor 1946, Smith and Wyatt 1951, Roberts, Abelson et al. 1955, Powell 1956, 

Dunn and Smith 1958, Shaw and Ingraham 1965, Ames 1968, Ghuysen 1968, Randle, Albro et 

al. 1969, Morris and Jorstad 1970, Dietzler, Leckie et al. 1973, Dennis and Bremer 1974, 

Umbarger 1977, Jansson, Lindberg et al. 1981, Bulawa and Raetz 1984, Neidhardt, Ingraham et 

al. 1990, Cayley, Lewis et al. 1991) (Dempsey, Neidhardt et al. 1987).   

 

 The inventory of molecular components published by Neidhardt & Umbarger is of an 

average E.coli B/r strain grown aerobically in glucose minimal media at 37 degrees Celsius 

dividing with a steady-state specific growth rate of μ = 1.0 h−1 (Dempsey, Neidhardt et al. 



80 
 

1987).  The construction of the inventory has a strong bioinformatic component relying on 

published literature values of E.coli composition combined with basic dimensional analysis and 

unpublished measurements made in Neidhardt’s own laboratory.  Seventeen primary sources are 

cited in the reference to the Neidhardt & Umbarger article.  Ten of this set of seventeen are 

explicitly stated and shown to have contributed to the construction of the first table (T1) 

reporting on the macromolecular composition of E.coli B/r.  This number increases to eleven 

with the inclusion of the last column of T1 separating macromolecular composition by mass into 

composition by different kinds of molecules of a given type; this is information not typically 

used for FBA modelling (Dempsey, Neidhardt et al. 1987, Orth, Thiele et al. 2010).  The second 

table (T2) reports on the stoichiometric composition of a GDW of E.coli B/r by residue.  It has 

been constructed by combining the information of T1 (cellular mass composition by 

macromolecules) with known mean molecular weights and approximate per-capita copy numbers 

of residues.  Some minimal assumptions have been included in the derivation of T2 from T1; the 

number of directly referenced sources is increased in the process by two for the calculations 

concerning respectively lipopolysaccharide and peptidoglycan content (Dempsey, Neidhardt et 

al. 1987).    

 Four references are particularly noteworthy.  First, the information of T1 and T2 in the 

1990 text itself by Neidhardt et al. is cited not just by Neidhardt & Umbarger, but also 

importantly by subsequent publications that concern the network reconstruction of E.coli 

(Dempsey, Neidhardt et al. 1987, Varma, Boesch et al. 1993, Varma and Palsson 1993, Varma 

and Palsson 1993, Varma and Palsson 1994, Pramanik and Keasling 1997, Edwards and Palsson 

2000, Feist, Henry et al. 2007, Thiele and Palsson 2010).  The second reference, which 

developed a framework for stoichiometric analysis of biochemical pathways and served as 
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guidance for the construction of T1 and T2, is a 1977 publication by Umbarger which is an 

article appearing in Biochemical Education (Umbarger 1977).  Pedagogically oriented, this 

article outlines a syllabus for a fourteen week learning exercise, designed and implemented by 

Umbarger at Purdue University for first year graduate students in biochemistry, involving the 

whole-cell mass and energy stoichiometric characterization of E.coli metabolic pathways using 

literature information.  

 The currently accepted dry mass of an E.coli cell is on order of 10−13 g (Bionumbers ID: 

103904) (Milo, Jorgensen et al. 2010).  The exact number, 280 fg, reported by Neidhardt & 

Umbarger and widely used today, is an original measurement determined in the Neidhardt 

laboratory (Dempsey, Neidhardt et al. 1987).  The amount per cell in grams of macromolecules, 

the key information in T1 needed for T2, is calculated from this measurement combined with 

percentage total dry weight values.  Deriving this information required the assumption on the 

percent composition of water of cells.  For this quantity, Neidhardt & Umbarger assumes a 

‘common textbook value’ of 70%; however it is noted that this is a relatively accurate 

assumption as corroborated by the referenced work by Cayley et al. (Dempsey, Neidhardt et al. 

1987, Cayley, Lewis et al. 1991).    

 The fourth and most important reference in the Neidhardt & Umbarger study is a work on 

E.coli whole-cell composition that was undertaken by Roberts et al. in the 1950s (Roberts, 

Abelson et al. 1955).  Their measurements carried out using radioisotopes is cited to be the 

starting point for the derivation of all information published in T1 and T2 (Dempsey, Neidhardt 

et al. 1987).  As mentioned already, the information on T1 of macromolecular composition is 

translatable to an inventory of residue composition provided the average residue molecular 

weight and per-capita residue copy number are known.  The information provided by Roberts et 
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al. has been combined with T1 to generate T2.  The primary contributions from Neidhardt & 

Umbarger are the replacement of amino acid values of Roberts with values measured in the 

Neidhardt Laboratory (under the same conditions) and few basic biochemical assumptions; one 

example to illustrate is the assumption that the (A+T)/(G+C) ratio is 0.97 for DNA (Dempsey, 

Neidhardt et al. 1987).  

 

3.5: The biomass composition as a parameter and as a response  

 

Combining a large-scale stoichiometric model with a biomass objective is a standard way 

of using FBA when implementing COBRA methods, so much so that the term “FBA” appears to 

have almost become synonymous with this style of application.  This is however only one 

particular approach to FBA which is not universal in the literature.  To make the distinction 

clear, we will find it useful to refer to genome-scale FBA models that employ a biomass 

objective as “Palsson-style” models (David Fell, Jon Pitchford; personal communication).  More 

generally, we will refer to FBA models that predict growth rates using a biomass reaction as 

Palsson-style models.  In making this distinction, we find that a strikingly different approach to 

FBA modelling is possible.  This method, which we refer to as the “Fell-style” FBA deserves to 

be distinguished as an important alternative approach related inversely to Palsson-style metabolic 

modelling.  To put the trend succinctly, a Fell-model starts with experimental flux data whereas a 

Palsson-model starts with genomic data; whereas a Fell-model starts with experiment, a Palsson-

model starts with bioinformatics.  Both the Fell and Palsson approaches eventually result in a 

network flow model with a structure (a stoichiometric matrix) and currents (flux distributions).  

However, in the Palsson approach, µ is a prediction, whereas in the Fell approach, µ is a fixed 

measured quantity.  In the Palsson framework, µ is the predicted flux across a fixed biomass 
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reaction (equation 3.2.18).  In the Fell framework, the biomass composition, rather than µ, is 

often the model prediction.   

Section 3 of this chapter discussed how a biomass reaction may be used by FBA models 

to predict specific growth rates.  The requirement for using a biomass reaction was seen to be the 

knowledge of the stoichiometric coefficients of the metabolites comprising a unit of biomass 

(𝐛𝐫𝐱𝐧).  For a biomass composition that is highly detailed in description, as would naturally be 

seen to occur with a large-scale S, the coefficients often need to be extrapolated from 

bioinformatic data as was seen in the previous sections for the iAF1260 model.  Thus, the FBA 

method that has been described in this chapter is characteristic of the Palsson-style approach.  In 

contrast, the Fell-style alternative of biomass representation requires that the biomass metabolites 

be drawn out from the metabolic system individually.  To see how this may be done, consider the 

following alternative way of writing the augmented equation 3.2.5 

(

s11 ⋯ s1n
⋮ ⋱ ⋮

sm1 ⋯ smn

|
1.0 ⋯ 0.0
⋮ ⋱ ⋮
0.0 ⋯ 1.0

)

[
 
 
 
 
v1
⋮
vn
vn+1
⋮

vn+m]
 
 
 
 

= [
0
⋮
0
] 

 

(3.5.1) 

Here the stoichiometric matrix has been augmented with the m×m identity matrix, and the 

velocity vector has been augmented with m new variables, each representing the rate of 

exchange of a metabolite between the system and its surroundings.  If the rate of exchange of a 

biomass metabolite is given by vj, n + 1 ≤ j ≤ n +m, then with a measured growth rate µobs, 

the stoichiometric coefficient for this metabolite may now predicted to be  

sjb =
vj

µobs
 

(3.5.2) 

Comparing with the corresponding equation for Palsson-style optimization 



84 
 

µ =  〈𝐯, 𝐛〉 (3.5.3) 

It can be seen that the parameter and the prediction have swapped between the two formulations 

(recall that b is fixed from the composition 𝐛𝐫𝐱𝐧).   

It is also possible in the Fell approach that the biomass composition has also been 

measured directly.  Thus if, further to the above setup, the stoichiometric coefficients are also 

known, then it would be possible to individually constrain the fluxes corresponding to the 

biomass composition using strict bounds as  

vj ∈ [sjb
obs × µobs, sjb

obs × µobs]  (3.5.4) 

reducing the FBA solution space to a more experimentally consistent feasible region.  For 

instance Cheung et al. describes a very coarse (Arabidopsis) biomass composition consisting of 

only thirty one metabolites (Cheung, Williams et al. 2013).  The coarse resolution with which the 

biomass composition was described however, had made the direct experimental measurement of 

each stoichiometric coefficient possible.  Similarly, was the case for the metabolic system 

description.  In their study, all carbon exchanges including the substrate influx rate (glucose 

consumption) were also directly measured leaving CO2 efflux rate as the only free boundary 

condition.   

We find that this example is very typical of the Fell-style approach to FBA modelling.  

While Palsson-style FBA models increase in scale with genomic information, Fell-style models 

often do so in consideration of available flux measurements.  As a result, although the 

dimensions of Fell-FBA models are sometimes modest relative to Palsson-style models, Fell 

models are superior in their level of experimental characterization.  It is of course possible to 

construct Palsson-style models on the small scale and likewise, Fell-style models on the genome-

scale. However, in all cases, it is seen that the Fell approach allows for a flexibility in which 



85 
 

biomass composition may be treated as response of a metabolic system to a hypothesized (or an 

actual) cellular objective.  This is in contrast to the Palsson approach in which composition is a 

parameter rather than a response.  This aspect of growth phenotypes may be safely ignored in 

some applications of FBA.  As we have seen in section 3.1, FBA methods may be employed 

towards investigating strictly topological phenotypes in isolation from rates.  One notable 

advantage of starting with the genome and not the experiment is revealed by the examples 

mentioned in that section.  Genome-scale models are superior to small-scale models in 

topological discovery because they are able to explore a wider null-space.   

The Fell approach does not generally allow for the prediction of µ.  For this reason, a 

direct application of Fell optimization is not appropriate for extensions such as dFBA where µ, 

by definition is required to be a prediction.  However, the properties of Palsson models that lead 

to predictions of µ (for instance through the LP defined in 3.2.1) can be better understood by 

leveraging on the Fell approach.    

3.6: Discussion 

 Extensions of FBA such as dFBA require an FBA formulation where growth rates are 

predictions.   We have therefore, in this chapter, investigated the biomass composition of the 

commonly used iAF1260 model of E.coli metabolism.  We first provided a mathematical 

definition of the biomass objective function and discussed the biological rationale behind 

hypothesizing this objective.   Next, we have deconstructing the coefficients that appear in the 

iAF1260 biomass objective by investigating the literature sources from which its assumed values 

have been derived.  The FBA approach of using this objective function, described at the level of 

detail as is done by the iAF1260 model, with a genome-scale metabolic reconstruction is typical.  
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However, we recognize that alternatives to this approach are possible, and suggest that their 

consideration may be useful to dFBA modelling.    

The number of ways to apply FBA methods is limitless.  Each application is 

distinguishable by such factors as the size of the model and the objective function that is chosen.   

For this reason, there is no way to decisively decide if an FBA model is strictly of one type or of 

another; the notion that every FBA model can be put on a spectrum between two types would be 

an oversimplification.  In extending FBA to methods such as dFBA however, a useful distinction 

is made based on how growth rates are treated.  By treating µ as a model response, “Palsson-

style” FBA methods allow for the prediction of growth rates.  However, in doing so, this method 

fixes the carbon demands of the growth process to stoichiometric values that may not readily 

extrapolate beyond the settings in which they have been measured.  Thus, the accuracy of rate 

predictions depends strongly on the extent to which a fixed composition extrapolates across 

various growth conditions.  The opposite approach to the Palsson-style FBA method is to treat 

growth composition, rather than growth rate as a response.  In this approach to FBA, which we 

have chosen to call the “Fell-style” approach, the constituents of the biomass are drawn out 

individually as exchange reactions.  As a result, the constraints on the rate of biosynthesis may 

be applied for each metabolite individually; similarly, the biomass composition may be treated as 

a model prediction by investigating individually, the flux across exchange reactions.  Often, the 

Fell method is employed by using experimentally measured constraints on the exchange 

reactions corresponding to biomass constituents, thus treating the product of stoichiometry and 

growth rate as an experimentally measured system response.  Whilst both the Palsson and Fell 

approaches have been employed for both genome-scale and small-scale metabolic models, 

requiring that the individual components of biomass composition be measured leads to models 
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that are thought to be smaller in scale but experimentally better characterized for making rate 

predictions.  On the other hand, genome scale models are better suited for topological phenotype 

analyses.  These examples reinforce the idea that FBA methods and FBA models, though unified 

in their mathematical formulation as a constrained-based optimization problem, should be quite 

varied in the way they are executed towards the investigation of a particular biological problem.  

In this light, it is surprising to see that in practice, there is not a greater level of diversity amongst 

simple FBA models with respect to scale and to cellular objectives (although the number of 

extensions such as dFBA are many).  At the very least, we expect that FBA methods should be 

tailored in their formulation to the growth phenotype under investigation, and that the latter must 

be properly defined.  There is no indication at the present that genome scale metabolic models 

using the biomass objective is always an appropriate choice; the success of Fell-style 

applications suggest to us that they may not be.  Is the Palsson-style formulation of FBA 

therefore the most prudent choice for dFBA and are there other possible formulations that allow 

for growth-rate predictions that have not yet been considered?  We explore these questions by 

first investigating the consequences to growth rate predictions of using a biomass objective in the 

Palsson FBA framework.    
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CHAPTER 4: The relation between growth rate and biomass yield in flux-balanced 

systems 

 

Abstract:   

 The prediction of flux distributions using FBA models requires that a cellular objective 

be first hypothesized.  Yet it is rarely clear in applications as to what choice of objective to use 

and FBA models commonly adopt the most parsimonious choice of growth rate maximization.  

In this chapter, we investigate the stoichiometric consequences of using this objective function.  

Using conservation laws, we derive a mathematical relation between growth rate and a related 

quantity, growth yield.  Though rate and yield have different biological meanings, we show that 

under certain growth conditions, the two quantities are identical as an optimality criterion.  We 

conclude that the predictions of FBA methods that hypothesize growth rate maximization may 

also be rationalized by the hypothesis of growth yield maximization.  We therefore advocate that 

FBA outputs be reported in the framework of optimizing yields if, compared to optimizing rates, 

this principle leads to simpler explanations of optimal phenotype predictions. 

 

 

4.1 Introduction 

 

 

 

It is a well-established fact that carbon is a dual currency in metabolic systems.  Carbon 

is a synthetic currency to growing cells, since without an external carbon source, basic 

biomolecules such as DNA and protein cannot be synthesized, and the formation of new biomass 

will cease.  Biosynthesis is a highly endergonic (energy-consuming) process however which 

requires not just a source of raw materials such as carbon but also a source of energy to drive its 

reactions uphill.  This source of energy is typically stored in the form of the energetic cofactors 

ATP and NAD(P)H.  To continuously replenish these internal energy pools, heterotrophic 

systems such as E.coli cells require an environmental source of highly reduced carbons.  Thus, 

carbon plays a second role as an energetic currency in metabolism.  In one scenario, a substrate 

molecule such as glucose may be oxidized to by-products of energy biogenesis (such as CO2, 

acetate, and ethanol), which are exported to the environment while the energy liberated in the 

process is stored as a disequilibrium across reactions that interconvert between pairs of cofactors. 
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In a second scenario, that same substrate molecule may be converted to biosynthetic precursors 

and subsequently incorporated into biomolecules.  For this single hypothetical molecule, these 

two scenarios are clearly mutually exclusive; the carbon may be used as a source or mass or as a 

source of energy but not both.  

It was seen in section 3.2 how the Palsson approach to FBA uses a biomass reaction.  

Often, the flux across the biomass reaction, interpreted to be the specific growth rate (equation 

3.2.14), is also used as the objective (formulation 3.2.15).  All FBA models require the 

hypothesis of a cellular objective to predict flux distributions.  Biologically speaking however, 

objectives are a highly abstracted representation of phenotype with a wide and open-ended range 

of possibilities for a choice.  As a result of this, it is rarely clear to modelers whether the chosen 

objective function is biologically relevant.  The practice of adopting the biomass objective as a 

default in the presence of these uncertainties make quite a bit of sense.  For many systems, 

growth rate optimization can be seen empirically to be a parsimonious optimality criterion given 

our knowledge of evolution.  For internally flux-balanced metabolic systems, optimizing growth 

rate require flux distributions that direct as much of the substrate available in the environment 

towards the biomolecular constituents of biomass.  However, in order to pay for the 

thermodynamic costs incurred from operating the chemical pathways necessary for this direction, 

a fraction of the substrate must be diverted away from biosynthesis towards oxidized byproducts 

of energy biogenesis.  Internal flux balance by definition implies the carbon flux across a 

metabolic boundary sums to zero.  As a result, the rate of energy production and the rate of 

biomass production for steady-state systems form a pair of competing quantities that are 

constrained to obey a conservation relation; in order to balance a fixed influx of substrate carbon, 
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the carbon flow to biomass must decrease if carbon flow to byproducts of energy biogenesis are 

to increase and vice versa.   

Up until this point, we have been concerned exclusively with FBA predictions of rates of 

reactions.  However, our consideration of the competition between steady-state flux of carbon to 

biomass and to energetic by-products suggests that a measure of growth efficiency will also be 

needed.  Consider the example of dFBA.   In order for a dFBA model to correctly match 

experimental time-series of substrate consumption, biomass production, and by-product 

production, the underlying FBA model must be parametrized so that ratios of rates between 

consumption and production are consistent with observations.  In the microbial literature, one 

such measure is the biomass yield on substrate which, for growing populations, is defined to be 

the ratio between the increase in population size and the amount of substrate consumed over a 

given time interval.  Letting these values be denoted by ∆x and ∆S respectively (as in equations 

1.7.1 and 2.3.1), the biomass yield on substrate S, denoted here by YS, is the ratio 

YS  =  
∆x 

∆S
 

(4.1.1) 

Although we will not use the biomass yields exactly as defined in 4.1.1 (see section 4.4), it 

appears that FBA predictions of growth rates and growth yields should be closely related. In this 

chapter, we demonstrate that this is in fact the case, by deriving an explicit equation between the 

two quantities involving FBA parameters.  We will then proceed in the next chapter to 

investigate the consequences of this equation to the predictions of Palsson-style FBA models.   

We begin in the following section, by defining cellular “maintenance energies” and by 

describing how FBA models may account for these quantities.  From this discussion, we proceed 

to make explicit, a linear relation between specific growth rate and ATP hydrolysis rate that is 

implied by FBA models that account for maintenance rates of ATP dissipation. Throughout the 
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chapter, we assume an aerobically modeled system having a carbon source from the 

environment, a fixed biomass composition, and maximizing biosynthetic flux.  Thus, our results 

apply to Palsson-type FBA models of substrate-limited growth.  

 

4.2 The linear relation between growth rate and ATP hydrolysis rate 
 

 

From the consideration of carbon-balancing across the boundary of a steady-state 

metabolic system, the maximal carbon flow to biomass for a given substrate consumption rate is 

seen to occur when all incoming carbon flow is directed towards biomass constituents.  

Therefore, for Palsson-FBA models of steady-state growth, the maximal value that a biomass 

objective can achieve, in the total absence of constraints, is the influx rate of substrate scaled by 

the carbon content ratio between the substrate and the biomass.  To illustrate, consider E.coli 

cells modelled with the biomass objective to grow on the pentose (5-carbon) sugar xylose, and 

the uptake rate is fixed at the value of vxyl.  Denoting by Cbio, the carbon content of a unit of 

biomass, the maximal possible value for the objective is constrained as a result of carbon-

conservation by the upper bound  

µMax ≤ vxyl
5

Cbio
 

(4.2.1) 

Because of the need for metabolic systems to allocate a portion of the acquired substrate towards 

energy production however, it should be apparent that FBA predictions of steady-state µMax will 

typically fall well below the upper bound in response to stoichiometric constraints that divert 

carbon flow away from biomass precursors. We show in this section that the actual optimal value 

for µ can be expressed by a linear equation in the predicted ATP hydrolysis rate involving two 

parameters with respect to which FBA model predictions are highly sensitive. 
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Towards this end, we first consider why biologically it might make sense for ATP 

synthesis rate to exhibit a linear relation with µ.  Suppose a quantity of energy is expended in the 

form of ATP hydrolyses over some time interval and results in population growth.  This 

energetic demand may be partitioned categorically into energy that has been applied towards the 

production of new biomass and energy that has been applied towards maintenance of existing 

biomass.  In the consideration of the latter energetic demand, the quantity Non-Growth 

Associated Maintenance (NGAM) rate of ATP hydrolysis (we use the unit mmol GDW−1h−1) is 

defined to mean the energy that is required to maintain homeostasis for a unit biomass over a 

unit time interval. NGAM represents the collective energy needed by existing biomass for such 

housekeeping processes as maintaining a constant membrane potential and flagellar rotation for 

movement (Marr, Nilson et al. 1963, Pirt 1965, Pirt 1982, Van Bodegom 2007, Wang and Post 

2012).  To account for the energy expenditure not included in NGAM, we define the quantity 

Growth Associated energy (GA) (we use the unit mmol GDW−1) to mean the stoichiometric 

amount of ATP hydrolyses required per unit increase in specific growth rate.  Note that unlike 

NGAM, GA is a gradient between the rates of growth and ATP hydrolysis as can also be inferred 

from its unit.  GA itself may be partitioned categorically into two terms.  On the one hand are 

biological processes directly leading to the synthesis of new biomass such as the conversion of 

substrate to metabolic precursors.  We will refer to this component of GA as Growth Associated 

Anabolic energy (GAA).  Processes associated with replication that do not involve the anabolic 

production of new biomass include as examples transcription, translation, and cell division; these 

processes collectively contribute to the second component of GA.  This quantity, representing 

the ATP demand from non-synthetic processes, is termed Growth Associated Maintenance 

energy (GAM) in analogy to NGAM.  This is the rationale behind embedding an ATP hydrolysis 
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in the biomass reaction, which was seen in table 1 of sections 3.3 (Thiele and Palsson 2010).  Let 

the total rate of ATP hydrolysis by a steady-state flux distribution across a metabolic network be 

denoted by vATP.  Our discussion suggests that vATP and µ should be linearly related as    

vATP = NGAM + µGA (4.2.2) 

and equivalently as  

vATP = NGAM + µ(GAA + GAM) (4.2.3) 

Writing vATP in this way relies simply on categorically subdividing the net rate of ATP 

hydrolysis by cellular functions with respect to replication.  Thus, there is nothing 

mathematically inconsistent about writing the above equations; we have defined the parameters 

in such a way that these equations are mathematically and biologically self-contained.   

Extrapolating these relations over a range of µ with a constant choice of the parameter values 

however requires further experimental justification.  Unfortunately, the available evidence that a 

simple linear model may be used to describe the general relation between growth rate and ATP 

hydrolysis rate, are limited to chemostat growth.  Performed most commonly with E.coli, a plot 

of µ against an indicator for vATP (see below and the next section for what is meant here by 

“indicator”), has been shown generally to conform well to a simple linear model (Andersen and 

von Meyenburg 1980, Varma and Palsson 1994, Edwards, Ibarra et al. 2001).  The growth 

conditions involved in chemostat settings are, in many ways, highly unrepresentative of more 

realistic environmental conditions to which cells are exposed on a daily basis or during the 

course of batch growth.  Thus, whether a simple linear model is sufficient for describing the 

general relation between ATP hydrolysis rate and specific growth rate for metabolic systems in a 

more biologically realistic setting is most certainly open to discussion. 
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Before considering the implications of assuming a (fixed) linear relation between growth 

rate and ATP hydrolysis rate, we describe how maintenance energies are represented in FBA 

models. In the Palsson setting, NGAM is modeled as the flux through one reaction, ATP 

hydrolysis of Maintenance (ATPM), which is constrained to hydrolyze ATP to ADP and 

orthophosphate at a constant rate by setting both the lower and upper bounds of this reaction to a 

fixed positive value NGAM.  Thus, for an unconstrained growth-rate, 

vATPM ∈ [NGAM,NGAM] (4.2.4) 

vgrowth ∈ [0.0, 106] (4.2.5) 

Recall that we may choose arbitrarily, the value 106mmol GDW−1h−1 to represent the 

computational bound of a flux for which a biological bound has not been provided (section 2.8).  

In Fell-type models, a reaction such as the one termed ‘generic ATP-ase’ in Poolman et al. serves 

an analogous role (Poolman, Miguet et al. 2009). Importantly however, the flux through the 

generic ATP-ase reaction is often treated as a variable to be predicted rather than a fixed 

parameter.  Thus, with an experimentally observed growth rate µobs and stoichiometric 

coefficients  sjb
obs (as in 3.5.4) 

vATPase ∈ [0.0, 106] (4.2.6) 

vj ∈ [sjb
obs × µobs, sjb

obs × µobs]  (4.2.7) 

In the E.coli series of Palsson, ATPM is constrained strictly to 7.6, 8.39, and 3.15 

mmol GDW−1h−1 in iJR904, iAF1260, and iJO1366 respectively. The quantities were chosen 

from linearly fitting a series of FBA solutions against oxygen or glucose consumption rates 

(Reed, Vo et al. 2003, Feist, Henry et al. 2007, Thiele and Palsson 2010, Orth, Conrad et al. 

2011).   GAM is modelled into the stoichiometric coefficients of ATP hydrolysis by the biomass 

reaction.  The values for GAM are 45.56, 59.81, and 53.95 mmol GDW−1  in the iJR904, 
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iAF1260, and iJO1366 models respectively.  The ATP hydrolysis stoichiometry of the biomass 

objective is lowest in an earlier FBA model by Edwards and Palsson at 23.2 mmol GDW−1 and 

greatest in iAF1260 (Edwards, Ibarra et al. 2001, Feist, Henry et al. 2007).  It can be concluded 

from observing how the parameters have been varied in the past that there is a wide range of 

numeric possibilities for maintenance energy demands.  This is an observation that may be 

corroborated experimentally.  In one attempt to characterize NGAM, E.coli cells were grown 

aerobically in chemostat under various growth limiting conditions (glycerol, oxygen, 

ammonium, and sulphate limitation).  It was found there that the experimentally calculated value 

for NGAM varied between 2.2 mmol GDW−1h−1 under oxygen-limitation, and 30.8 

mmol GDW−1h−1 under sulphate limitation, a wide range within which the computationally 

required interval (3.15 to 8.39 mmol GDW−1h−1) fits comfortably.  The corresponding values 

for glycerol and ammonium limitation were found respectively to be 2.3 and 16.8 

mmol GDW−1h−1  (Farmer and Jones 1976).     

Whilst there is nothing inherent to the stoichiometric formulation of FBA models that 

allow us to predict what value the maintenance parameter should be assigned a priori, FBA 

outputs are known to be quite sensitive to its maintenance parameters.  In light of this fact, it is 

reasonable to surmise that flux-balance methods would be improved with a more careful and 

explicit treatment of maintenance energies, and more generally of energetic constraints to growth 

rate and growth yield predictions.  To consider one example from the dFBA literature, Meadows 

et al. have found that writing a dynamic expression for NGAM as a function of externally 

present compounds and inorganic ions lead to better fits of their dFBA growth curves to their 

experimental data (Meadows, Karnik et al. 2010).  Specifically, they have used the dynamic 

NGAM formula (in the unit mmol GDW−1h−1) 
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NGAM = 0.1[acetate] + 0.175[Na] + 40.0(10.0|pH−7.25| − 1.0) (4.2.8) 

with a GAM value of 40.0 mmol GDW−1.     

The results of Meadows et al. demonstrate the potential importance of treating maintenance 

parameters dynamically in dFBA.  By defining NGAM to account for the changing effects on 

membrane potentials of an increasingly acidic environment, these authors have shown that not 

only can the quantification of maintenance parameters be made upon an explicit mechanistic 

foundation, but also that doing so may result in a flux-balance model that more accurately 

describes real biological data.  Having stated this however, it should also be recognized that a 

hypothesis such as the one represented by equation 4.2.8 is rather complex and cannot be 

unequivocally justified.  In consideration of the fact that an FBA model already makes a highly 

complex hypothesis when choosing a specific cellular objective (section 2.9), a challenge to FBA 

modelling is recognized.  Whilst a set of hypotheses may be supported when a model is able to 

reproduce experimental observations, the level of abstraction that is inherent in the hypotheses 

themselves render their verification difficult.    

In summary, published experimental observations suggest that the specific growth rates 

are directly related to ATP hydrolysis rate in steady state E.coli growth.  The relation of vATP to 

µ is a linear relation so that it is determined by exactly two parameters: a slope and an intercept.  

The biological significance of these two parameters can be explained by the phenomenological 

theory of maintenance energies as given by equations 4.2.2 and 4.2.3.  In FBA models, 

mechanism quantities are introduced into these equations in two ways.  Firstly, by introducing a 

stoichiometric network, the slope term – GA – is split into two terms (GA = GAA + GAM), 

where one term – GAA – is quantified through fluxes through biological reactions with known 

ATP demands.  Secondly, by defining µ as metabolite flux to biomass and defining the 
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composition of the said biomass, a correspondence is asserted between fluxes through a 

metabolic network, and the resulting growth rate.  

4.3: The linear relation between growth rate and unbound oxygen consumption rate   

 

 

 

We discussed in the previous section that FBA predictions of E.coli growth rate are 

closely related to predictions of ATP hydrolysis rate through maintenance energy parameters.  

Experimentally, the net rate of ATP hydrolysis is not a quantity which can be measured directly.  

Suppose however that the stoichiometric relation between ATP hydrolysis and the consumption 

rate (or production rate) of an externally observable metabolite is known approximately.   Then it 

would follow that the rate of steady-state ATP hydrolysis can be deduced by the known 

stoichiometry and flux measurements at the cellular boundary.  This observation provides a 

strategy for the experimental determination of ATP hydrolysis rates using external metabolites as 

proxies.   Fluxes of CO2 and O2 for E.coli grown in chemostat have in fact both been used for 

this purpose and have been shown to be linear in µ under chemostat-controlled growth (Farmer 

and Jones 1976, Andersen and von Meyenburg 1980, Varma and Palsson 1994).  We consider in 

this section, the rate of oxygen consumption (vO2) by respiring E.coli.   

The biological rationale behind using oxygen consumption rate is summarized as follows. 

The function of molecular oxygen in supporting aerobic respiratory growth is solely to serve as 

an electron acceptor; the incoming oxygen atoms of O2 molecules will leave as oxygen atoms in 

outgoing H2O molecules and as part of no other compound.  As a result, there is a simple 

stoichiometric relation between the rate of conversion between O2 and H2O, and the rate of ATP 

synthesis.  Provided with such a stoichiometry between O2 and ATP, vO2 will be an appropriate 

substitute for vATP.  For the time being, we will assume that this stoichiometry is known, and 
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shall denote it by the Greek letter δ.  More precisely, we define δ by writing the stoichiometric 

equation 

vATP ≅ δvO2 (4.3.1) 

Substituting the relation 4.2.2 into equation 4.3.1 gives the stoichiometrically equivalent flux 

balance equation 

vO2 =
NGAM

δ
+
GA

δ
µ 

(4.3.2) 

which, unlike equation 4.2.2, relates growth rate linearly to the observable rate of metabolite flux 

across the cell boundary.  In the interest of attempting to quantify maintenance parameters, this 

has been recognized to be an important property of steady-state growth.  For example, the now 

commonly accepted metabolic reconstruction protocol by Thiel & Palsson suggest maintenance 

parameters to be quantified by linearly regressing growth rate in chemostat against a measure of 

ATP hydrolysis (protocol steps 32 -34) (Thiele and Palsson 2010). 

 As will be developed further in chapter 5, oxygen consumption rate is a particularly good 

proxy for ATP hydrolysis rate in E.coli models because experimental bounds on the former have 

been relatively well documented.  However, we find it also important to consider the fact that 

since any pair of fluxes will exhibit a linear correspondence to each other at a metabolic steady-

state, the fact that an equation of the form 4.3.2 should relate consumption rate to production rate 

is not a result that is unique to oxygen consumption and biomass production. Flux to the biomass 

in particular will be linear with respect to any given flux at the cellular boundary during steady-

state, including substrate consumption flux.  This fact together with equation 4.3.2 is used in the 

next section to derive the main result of this chapter, a relation between FBA predictions of 

biomass yields and of the rate of biomass production.   
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4.4: The relation between FBA predictions of growth rate and of growth yield 

 

 

In the introductory section, we have provided explicit reasoning as to why the maximal 

rate of biomass production relative to a given rate of substrate consumption must diminish in 

response to increasing ATP demand for a flux-balanced metabolic system with no internal source 

of carbon.  This relation arises from the mutually exclusive roles of biosynthesis and energy 

production that is served by any unit of substrate carbon.  Biomass yield is the ratio by mass of 

biomass production to substrate consumption (equation 4.1.1).  In this section, we complete the 

derivation of the equation relating steady-state predictions of biomass yield to predictions of 

growth rate.  In order to generalize our result across substrates that differ in unit carbon content, 

we will first normalize the ratio in equation 4.1.1.  We thus introduce a normalized measure of 

growth efficiency, Yield on Substrate Carbon (YSC), which we define as follows.  Let  Csub be 

the carbon content of a substrate.  If specific growth rate and substrate consumption rates assume 

values µ h−1 and vsub mmol GDW
−1h−1  respectively, YSC is defined to be the following ratio 

YSC =
µ

Csubvsub
 (4.4.1) 

This is simply the ratio of growth rate and the carbon influx from substrate.  Energetic diversion 

of substrate carbon flux away from biomass results in the production of organic by-products and 

carbon dioxide.  To describe such effects, several new quantities are needed for the purposes of 

carbon book-keeping (Table 4.4.1).   
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Notation Quantity Unit 

vCsub Carbon uptake flux mmol GDW−1h−1 

vCO2 CO2secretion flux mmol GDW−1h−1 

vCbio Carbon flux across biomass 

reaction 
mmol GDW−1h−1 

vCbp Carbon secretion as by-

product other than CO2 

mmol GDW−1h−1 

Cbio Total carbon content of 

(GDW) biomass 
mmol GDW−1

 

RQ vCO2
vO2⁄  Unit-less 

BQ vCbp
vCsub⁄  

Unit-less 

 

TABLE 4.4.1: New notations used to facilitate the quantitative description of carbon flows and 

ratios of carbon flows across general metabolic boundaries.   

 

 

With these notations, we start by applying the steady-state assumption at the metabolic 

boundary which is usually taken to be the outer membrane for E.coli FBA models.   Because the 

influx and efflux rates across the boundary must balance exactly for each element, the flux of 

carbon is constrained to obey the following flux-balance equation: 

vCsub = vCO2 + vCbio + vCbp (4.4.2) 

We assume that the total carbon composition of a unit of biomass is fixed to be Cbio, and are 

interested in relating an FBA predicted rate (µ; the flux to biomass) to FBA predicted ratios of 

rates (YSC; a measure of biomass yield).  Towards this end, we make use of the rate ratios RQ 

and BQ to derive a linear relation between the variables 
(1−BQ)

YSC
 and 

1

µ
 .  From equation 4.4.2, we 

have  

vCsub = RQ × vO2 +  μ × Cbio + BQ × vCsub (4.4.3) 

Rearranging this expression gives 

(1 − BQ)vCsub = μ × Cbio + RQ × vO2 (4.4.4) 

Or equivalently,  
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(1 − BQ)

YSC
= Cbio +

RQ × vO2
μ

 
(4.4.5) 

If RQ is assumed to be approximately 1.0, as is the case for carbohydrates, the previous equation 

simplifies to  

YSC = [
μ (1 Cbio

⁄ )

μ + (
vO2

Cbio
⁄ )

] (1 − BQ) 

(4.4.6) 

(Andersen and von Meyenburg 1980).   

Equation 4.4.6 is the desired result.  In this equation, the efficiency of growth – YSC – is 

seen to diminish by a factor that decreases from 1.0 to 0.0 as more carbon influx is diverted to 

by-product; that is as BQ ranges from 0.0 to 1.0.  Equation 4.4.6 can be combined with equation 

4.2.2 to reveal a closed relation between YSC and µ through the FBA ATP hydrolysis 

parameters.   

YSC = [
μ (

δ
δCbio + GA

)

μ + (
NGAM

δCbio + GA
)
] (1 − BQ) 

(4.4.7) 

Neither an assumption of an optimality criterion nor of a stoichiometric metabolic model 

was needed in the derivation of the above equations.  Rather, the key requirement for both 

equations is that the influx and the efflux of carbon balance at the cellular boundary; thus, 

equation 4.4.6 is a statement of how growth rate and growth yields must relate for a metabolic 

system with no internal sources of carbon.  Equation 4.4.7 then follows if the rate of oxygen 

consumption is linear in the rate of ATP hydrolysis.  The experimental evidence for this as has 

been previously stated in section 4.2 is that chemostat plots of oxygen consumption and growth 

rate can be shown to be linear.  When equations 4.4.6 and 4.4.7 are applied with a stoichiometric 

metabolic model, exact values for the parameters that appear may be derived.  Inspecting this 
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relation in turn reveals where FBA predictions of growth yields and growth rates come from.  By 

separating the two components of GA as in equation 4.2.3, it can be seen that the parameter 

GAM makes an individual contribution to the slope of vATP with respect to μ.  The GAA term in 

turn arises from ATP flux summation over metabolic pathways.  Thus, this second term may be 

viewed as the mechanistic component of the gradient, determined stoichiometrically by a mode 

of substrate acquisition combined with biomass formation.   

4.5: Discussion: 

 

In this chapter, we have used stoichiometric balancing laws to derive an equation relating 

FBA predictions of yield and rates involving FBA parameters that quantify metabolic energy 

demands.   Equations 4.4.6 and 4.4.7 have two important implications for Palsson-style FBA 

methods that optimize the flux across a biomass reaction (equation 3.2.18).  We are first left to 

question whether Palsson-style methods optimize for rates as claimed, or instead for yields; we 

are second left to question whether the optimization of either is a valid cellular objective, since 

objective functions are only hypotheses one uses to derive plausible flux distributions (section 

2.9).  Schuster, Pfeiffer and Fell consider both these issues and point out that the terms “growth 

rate” and “growth yield” are often confused in papers on (Palsson-style) FBA; they argue that the 

latter is often optimized when the optimization of the former is claimed.  Further, the authors go 

on, citing numerous biological examples, to show that yield maximization is not in general a 

valid cellular objective (Schuster, Pfeiffer et al. 2008).   Equation 4.4.6 is entirely consistent with 

these conclusions. In fact the relation is a special case of representing yields as a ratio of linear 

combination of rates; this form, given in equation 2 of Schuster, Pfeiffer, and Fell, may be 

recognized by using equation 4.4.6 with equations 3.2.13 and 3.2.14  (Schuster, Pfeiffer et al. 
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2008).  However, we find that equation 4.4.6 makes a slightly stronger assertion than claimed by 

these authors, which is that for internally closed metabolic systems in steady-state, rate 

maximization and yield maximization are the same objective to begin with when CO2 is the only 

byproduct that is evolved (BQ = 0.0); a flux distribution that maximizes one will necessarily 

maximize the other because of 4.4.6.  Founded only upon conservation laws, this is an assertion 

that is applicable to all fluxed-balanced biological systems and not just to FBA models.  

Therefore it does not make sense in any FBA setting to attempt to distinguish between the two 

optimizations when BQ is zero.  The issue becomes important however when the maximization 

of rate and the maximization of yield become conflicting cellular objectives.  Thus, we are left to 

investigate how the by-product quotient BQ is quantified under the Palsson FBA formulation.  

This is the subject of the next chapter.   
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Chapter 5: Consequences of rate maximization by steady-state yield maximization  

Abstract: 

 Flux Balance Analysis (FBA) represents a family of metabolic modelling procedures by 

which systems biological principles are used in conjunction with bioinformatics to interrogate 

and analyze metabolic phenotypes.  The most abstract aspect of FBA is the cellular objective, 

which is a mathematical representation of an evolutionarily optimal biological phenotype 

towards which a cell, when conceptualized as a control system, is hypothesized to strive. This 

notion of a cellular objective is therefore at once, both a mathematical abstraction of a complex 

biological phenomenon and a computational representation of an investigator’s hypotheses.  This 

fact alone suggests that the number of ways by which to formulate an FBA problem are infinite 

in principle.  Yet we find that an overwhelming majority of published FBA models are 

formulated under a single parsimonious objective of growth rate maximization by way of flux 

maximization across a biomass reaction.  We have demonstrated that, for a flux-balanced system, 

growth rate maximization and growth yield maximization are identical objectives.   In this 

chapter, we follow up on these mathematical results by investigating the predictive capabilities 

of the iAF1260 metabolic model.  We find that the growth rate maximizing objective converts 

FBA into a theory that is rigidly coupled to a profoundly simpler theory of energy stoichiometric 

balancing, much of which as we show can be understood from small scale representations of 

central metabolism.  We conclude by suggesting that future work in the field of dynamic FBA 

(dFBA) will benefit from either decoupling this correspondence or reconsidering whether the 

inclusion of genome-scale metabolic representations makes the most efficient use of the genomic 

information that is available from reconstruction efforts.   

 

5.1: Introduction: 

 

The most commonly used Flux Balance Analysis (FBA) models may be classified as 

being a Palsson-type or a Fell-type based on how specific growth rates (µ) are treated, and to a 

lesser degree, on the scale on which metabolism is represented (section 3.5).  Only with the 

Palsson-type models however, can dynamic flux balance analysis (dFBA) models of population 

growth be currently formulated.  This is because dFBA models require an FBA formulation 

within which µ is a model prediction, which is made possible by the Palsson approach by 

defining a biomass reaction but not with the Fell approach which treats this quantity as a 

constraint.  In a very large class of Palsson-type FBA models, µ is not only a prediction, but is 

also considered to be the cellular objective (formulation 3.2.15).  The relation between µ and 
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yield was derived in the previous chapter for internally flux-balanced metabolic systems. 

Equation 4.4.6 applies with any organic byproduct and BQ may become non-zero due to a 

number of reasons.  In the examples mentioned in section 3.1, it was seen that byproduct efflux 

may be induced in metabolic systems by upregulating pathways that have been engineered for 

the production of a commercially relevant compound.  Under most natural settings however, 

non-zero BQ result from the activity of energy biogenesis pathways other than aerobic 

respiration (Varma and Palsson 1994, Wolfe 2005).   

Equation 4.4.6 shows that provided there is no byproduct being produced (other than 

CO2), growth rate and growth yields may be simultaneously optimized since one increases 

monotonically with the other.  On the other hand, if further gains in growth rate could be induced 

from the production of metabolic byproducts, equation 4.4.6 equally shows that the optimization 

of rates will come at the cost of yields since YSC would switch to a monotonically decreasing 

function of rate (and BQ).  Thus, the Palsson approach to FBA asserts that the evolutionarily 

derived cellular objective is to maximize the value of µ by correspondingly minimizing the value 

of BQ.  By-product minimization in flux-balanced models is closely associated with the 

maximization of the efficiency of energy production (Varma and Palsson 1994).  In view of 

equation 4.4.7 therefore, we are led to suspect that a large proportion of FBA predictions of rates 

and of yields that are made under the Palsson-style formulation may be explained by the model’s 

representation of energy flux balance constraints.  If this is the case, then it would follow that the 

FBA component of dFBA models may be more efficiently described by small scale metabolic 

models of energy biogenesis.    

 In the following, we use the results of the previous chapter to investigate the response of 

the iAF1260 model to various growth constraints, with an emphasis towards understanding flux-
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redistributions as we find them to be the predictions of greatest importance to dFBA modelling.   

By considering the biological information that is necessary for bringing about the model 

responses, we investigate whether genome-scale metabolic representations are truly necessary 

for the prediction of growth rates and growth yields under the Palsson-type FBA formulation. 

 

5.2: Distinct growth states of E.coli are predicted in silico by Palsson FBA during aerobic 

growth on xylose 

 

 The goal of this section is to detail the stoichiometric response to increasing substrate 

consumption of the iAF1260 model under the constraint of a maximal oxygen consumption rate.  

To generate our data, we used the iAF1260 E.coli model with the objective of maximizing flux 

through the biomass reaction to produce a series of FBA solutions.  The FBA solutions profile 

aerobic growth predictions over increasing rates of xylose consumption from a minimum value 

of 0.0 mmol GDW−1h−1  to a maximum value of 50.0 mmol GDW−1h−1  in intervals of 0.1 

mmol GDW−1h−1 .  The maintenance parameters of the FBA model were kept at their originally 

published values of 8.39 mmol GDW−1h−1  for NGAM and 59.8 mmol GDW−1 for GAM (Feist, 

Henry et al. 2007) .   To investigate the response of the FBA model to energetic constraints, we 

have constrained the upper bound of the oxygen consumption rate to 20.0 mmol GDW−1h−1.  A 

maximal oxygen uptake rate is an appropriate constraint to consider for both the Fell and Palsson 

FBA modelling of aerobic E.coli growth since several independent measurements are now 

available for its upper bound.  These measurements, made available from chemostat 

experiments,  show that the maximal uptake rate (vO2
Max) consistently falls near the range of 

15.0~20.0 mmol GDW−1h−1  under ideal conditions (Stouthamer and Bettenhaussen 1975, 

Tempest 1978, Andersen and von Meyenburg 1980, Calhoun, Oden et al. 1993, Varma and 

Palsson 1994, Feist, Henry et al. 2007).   
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Of the 2381 reactions in the stoichiometric network of iAF1260 it was observed that only 

532 were predicted to be active at some point in the series data suggesting that biosynthesis can 

be theoretically supported by a relatively small proportion (~22%) of the available reactions.  79 

of the active reactions (~15%) were seen to be exchange reactions that do not map to genes; this 

is only slightly higher than the proportion of all reactions of the overall metabolic model that are 

exchange reactions (297 or ~ 12%).  By-product production was observed at higher substrate 

consumption rates (> 0.85 mmol GDW−1h−1); based on their profiles, three general growth 

phases could be identified for the iAF1260 network.   The first phase involves zero by-product 

production and occurs at low growth rates.  This phase is followed by an acetogenic phase 

corresponding to intermediate growth rates.  Finally, at higher growth rates, a combination of 

acetogenesis and ethanologenesis was observed. These observations are presented in figure 5.2.1 

where biomass yield on substrate carbon (YSC) is plotted as a function of growth rate (µ).   
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Figure 5.2.1: The iAF1260 model was grown aerobically on xylose over a consumption range 

from 0.0 to 50.0 mmol/GDW/h.  The plot is of the predicted yield on substrate carbon (YSC) 

against predicted specific growth rate (left vertical axis). The YSC curve is seen to be hyperbolic 

when the by-product quotient (BQ) is zero (purple region).  In the blue and green regions, BQ 

becomes positive first through acetogenesis and then through a joint acetogenesis and 

ethanologenesis (by-product fluxes correspond to the right vertical axis).  As a result, YSC is 

seen to monotonically decrease with increasing specific growth rate in these two regions.     

 

In accordance with our prediction (equation 4.4.6), it is seen that YSC exhibits a hyperbolic 

relation to µ under regimes of growth unaccompanied by energetic byproducts other than CO2 

(since BQ = 0.0).  In contrast, YSC is seen to decrease monotonically with µ under growth 

regimes where BQ becomes increasingly positive.   

An inspection of the flux distribution predictions show that these transitions occur as a 

result of energy flux-balance constraints.  The first qualitative response from the flux distribution 
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(a flux redistribution) is seen to coincide with the maximization of oxygen consumption rate 

(Figure 5.2.2).   

 

Figure 5.2.2: The iAF1260 model was grown aerobically on xylose.  The flux response of 

several representative reactions have been plotted against specific growth rate to understand the 

flux redistributions that lead to changes in growth regimes.  The AKGDH and aconitase 

represent TCA curves illustrate TCA branching, and this effect on PP is represented by the GND 

curve.  Note that the acetogenic region can be further subdivided into one where GND is 

increasing with growth rate and GND is decreasing with growth rate.  This behavior is explained 

by the transfer of NADP reductive function from PP to the transhydrogenase reaction (grey 

curve).      

 

Upon the arrival of this constraint, the growth phase characterized by the absence of 

organic by-products transitions to one characterized by acetogenesis.  As evidence by the 

continued production of CO2 as well as the high flux through the tricarboxylic acid cycle (TCA), 
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this second growth phase is seen to be characterized energetically to be a respiro-fermentative 

phase where ATP is produced both oxidatively by the electron transport system (ETS) as well as 

by incomplete substrate-level oxidation by pathways leading to acetate (via glycolytic enzymes 

and acetate kinase). 

The possibility of producing acetate as the only non-respiratory efflux metabolite in spite 

of the ETS carrying a maximized constant flux evidences that stoichiometric redox balancing can 

be achieved internally during this growth phase.  The metabolic model was seen to employ two 

key strategies for internal redox balancing.  In the early stages of the acetogenic phase, redox 

balancing was seen first to be supported by a linear response from fluxes through the 

tricarboxylic acid cycle (TCA) and the reductive pentose phosphate pathway (PP) (Figure 5.2.2).  

The iAF1260 model predicts that the TCA cycle would become increasingly branched through 

the suppression of its dehydrogenases upon maximization of oxygen flux.  This is seen to be 

because both the fluxes through succinate dehydrogenase and the alpha ketoglutarate 

dehydrogenase contribute electrons to the ETS (Voet and Voet 2004, Keseler, Collado-Vides et 

al. 2005, Berg, Tymoczko et al. 2006, Nelson, Lehninger et al. 2008).  In response to this linear 

decrease in TCA flux, figure 5.2.2 shows that a corresponding linear increase in the flux through 

the reductive pentose phosphate pathway is predicted to occur.  This is indicative of an 

increasing contribution by the PP to NADP+ reduction in response to the decreasing contribution 

from the (prokaryotic) TCA.   Notice that although the TCA branches, it is not suppressed 

completely as this pathway, in its non-cyclic form, is also needed for its biosynthetic functions.   

The second strategy is applied when the TCA branches completely.  When this occurs, a 

slight kink in the curve of YSC against µ may be observed in the exclusively acetogenic region.  

This transition was found to correspond to an onset of flux through the transhydrogenase 
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reaction.  Recall that the periplasmic transhydrogenase reaction catalyzes an oxidation reduction 

between the cofactor pairs NADH/NAD+ and NADPH/NADP+ (Keseler, Collado-Vides et al. 

2005, Berg, Tymoczko et al. 2006, Nelson, Lehninger et al. 2008) .  This reaction was predicted 

by the iAF1260 model to proceed in the direction of NADH oxidation and NADP+ reduction.  

Thus, upon a complete TCA branching, the iAF1260 model predicts that the transhydrogenase 

functions to maintain a redox balance in the NADH/NAD+ pool by passing reductive potential to 

the NADPH/NADP+ pool.  As the flux through the transhydrogenase reaction is increased, the 

redox balance in the NADP/NADPH pool is maintained by correspondingly decreasing the rate 

of NADP+ reduction by the PP pathway.   

The same principle of redox balance which explains the flux redistribution that occurs in 

the acetogenic growth phase is seen to also explain the transition between the second and the 

final growth phase where a combination of acetogenesis and ethanologenesis is predicted.  The 

onset of ethanologenesis is seen to coincide with the point at which the (reductive) PP becomes 

completely suppressed (Figure 5.2.2).  Ethanologenesis was therefore predicted to occur when 

internal redox balancing is no longer possible and a flux (through the alcohol dehydrogenase 

reaction) diverting carbon away from biomass precursors becomes necessary.   

In summary, we have been able to verify that equation 4.4.6 can be used to predict the 

behavior of Palsson-style FBA models.  An explicit connection is shown to be made between 

energy flux-balance and byproduct formation when we introduce, as a constraint, the auxiliary 

information of a maximal oxygen consumption rate.  In this common setting, we find that it is 

possible to reduce the predictive response of the Palsson FBA model to simpler energetic 

principles of by-product minimization.  In all phases of growth, the Palsson-FBA solution is a 

flux distribution that most efficiently generates the energy required to support biosynthesis.   
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5.3: Are predictions unique to the iAF1260?  

 We have repeated the simulations of the iAF1260 metabolic model with the iJR904 and 

iJO1366.  The results are presented in figure 5.3.1.  It can be seen that despite the differences in 

dimension between the models, the qualitative behavior of flux distributions are identical. 

 

Figure 5.3.1: The aerobic xylose growth simulated for the iAF1260 model was repeated for the 

iJR904 and the iJO1366 Ecoli metabolic models.  Plots A and B show the response of YSC to 

increasing growth rate as well as the byproduct fluxes for the two models.  It is seen that like for 

the iAF1260 model, both the iJR904 and the iJO1366 model predict three growth regimes 

characterized by byproduct formation. Plots C and D show that the underlying flux 

redistributions that lead to regime changes are identical to the predictions of the iAF1260 model.  

For simplicity, the flux curves in plots C and D are not been given labels, and the reader is 

encouraged to compare these plots with figure 5.2.2 of this chapter. 
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5.4: Unequal distribution of energetic flux volume in the iAF1260 network 

 Our analysis of the response of the iAF1260 model detailed in section 5.2 lead us to 

appreciate the significance of a metabolic model’s need to internally balance energetic cofactor 

concentrations to predictions of growth rate and growth yield.  Under the simple constraint of a 

maximal oxygen consumption rate and the hypothesis of growth rate maximization, Palsson-style 

FBA models appear to predict that growth rates are optimized by minimizing the production of 

byproduct as much as possible for a particular value of µMax.  Thus, yields are optimized 

secondarily in growth regimes involving by-products, and primarily (alongside rates) in those for 

which BQ = 0.0.  In consideration of the energetic nature of the principles underlying this 

strategy of rate maximization, we turn to the fact that in the iAF1260 metabolic model, the 

number of reactions involving energetic cofactors is far less than the total number of reactions.  

Of the 2381 reactions available to the iAF1260 network, 340 reactions involve ATP, 111 

reactions involve NADH, and 81 reactions involve NADPH (Feist, Henry et al. 2007).  Thus, 

combined with the fact that conservation laws apply individually to each cofactor, we identify 

the potential to characterize the growth rate and growth yield predictions of Palsson models 

using a handful of energetic reactions involved with cofactor interconversions.  In this section, 

we investigate which reactions of the iAF1260 model contribute most to the quantities 

vATP, vNADH, and vNADPH (notation described in section 2.2).  Towards this end, a single point 

FBA optimization was performed with iAF1260 under same setting as in section 5.2; maximal 

xylose and oxygen uptake rates were set at respectively 10 and 20 mmol GDW−1h−1  .  The 

maintenance parameters were set to NGAM = 8.39 mmol GDW−1h−1 and GAM = 

59.81 mmol GDW−1.   
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Because Palsson FBA models optimize for yield given µMax , an unconstrained 

optimization has been shown to predict that the most efficient energy conversion strategies will 

be used.  For xylose transport, this would imply that flux through the symporter will be used in 

favor of flux through the ABC transporter (section 1.3).  Likewise, the most energetically 

coupling NADH dehydrogenase and cytochrome oxidoreductase pair would be predicted to carry 

a maximally allowed flux at the electron transport system (section 1.6).  In consideration of the 

transport step, it is seen from the setup that the energetic cost of symport may be 

stoichiometrically converted to an ATP cost much in the same way we have done for oxygen 

(equation 4.3.1).  As we are interested only in investigating the contribution that the transport 

step makes to vATP, we have chosen to simplify matters by constraining the flux through the 

xylose symporter to zero so that, via flux through the ABC transporter, the transport step would 

make a direct contribution to ATP hydrolysis rate.   We are similarly not interested in precisely 

determining what the stoichiometries are amongst the energetic cofactors.  Therefore, no 

constraints were placed on the reactions of the electron transport system.  This has left the 

iAF1260 model to predict that the most coupling NADH dehydrogenase and cytochrome 

oxidoreductase will exclusively carry fluxes, leaving their respective counterparts with a flux 

prediction of zero.  

Under these conditions, xylose was predicted to be consumed at the maximal possible 

rate of 10 mmol GDW−1h−1; oxygen consumption was seen to occur at 18.7 mmol GDW−1h−1, 

with a carbon dioxide production rate of 20.2 mmol GDW−1h−1.  No by-product production was 

predicted as can be explained, in light of section 2 of this chapter, that the predicted value of vO2 

is below vO2
Max = 20.0 mmol GDW−1h−1.  The biomass objective was predicted to carry an 

optimal flux of µMax = 0.73 h−1.  From the resulting flux distribution, the locations in the 
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network where energy transactions were predicted to take place were identified.  We discuss our 

findings in turn for ATP, NADH, and NADPH.       

ATP synthesis was predicted to occur primarily via oxidative phosphorylation at the ETS 

(ATP synthase: 59.46 mmol GDW−1h−1), and to a slightly lesser extent at the substrate level 

(PYK = 9.819 mmol GDW−1h−1; PGK: 13.72 mmol GDW−1h−1 SUCCOAS: 

4.458 mmol GDW−1h−1).  The total rate of ATP synthesis was calculated to be 

89.84 mmol GDW−1h−1.  Compared to the five reactions of ATP synthesis, eighty-eight 

reactions were found to be actively consuming ATP (Figure 5.4.1).   

 

Figure 5.4.1: The fraction of total ATP synthesis and ATP consumption attributable to single 

reactions and groups of reactions.   
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It can be seen that the hydrolysis from the biomass reaction accounts for almost half of 

the energetic demand in the form of ATP consumption (~49% of the net rate of ATP synthesis). 

This fraction increases to ~58% with the inclusion of hydrolysis by an equally phenomenological 

‘ATP hydrolysis of maintenance reaction’ (ATPM; discussed in section 4.2).  Finally, with the 

inclusion of central metabolism and xylose acquisition, it is found that hydrolysis by just these 

six reactions account for ~87% of the total ATP demand in the iAF1260 model (Figure 5.4.1).    

A similar observation was made for NADH production and consumption (Figure 5.4.2).   

 

Figure 5.4.2: The fraction of total NADH synthesis and NADH consumption attributable to 

single reactions and groups of reactions.   

 

Nineteen reactions were seen to reduce NAD+ to NADH at a combined rate of 

33.82 mmol GDW−1h−1.  The combined fluxes of four reactions of central metabolism (PDH, 



117 
 

GAPD, MDH, AKGDH) account for ~94% of the net synthesis; The coupling dehydrogenase of 

the ETS was seen to oxidize the resulting NADH at a flux of 32.3 mmol GDW−1h−1  or ~95% 

the total consumption rate.  The remaining NADH demand was seen to be exerted by a folate 

metabolism reaction, cofactor biosynthesis, and the reactions of cell envelope biosynthesis.  

NADPH was found to be produced at a net rate of 11.8 mmol GDW−1h−1  by four reactions 

(Figure 5.4.2).  Three central metabolic reactions of the reductive pentose phosphate pathway 

(PP), together with the tri-carboxylic acid cycle (TCA) are shown to account for ~94% of the 

synthesis.   

The oxidation of NADPH was observed to be distributed over non-central metabolic 

reactions, with large contributions from amino acid and cell envelope biosynthesis (Figure 5.4.3). 

 

 

Figure 5.4.3:  The fraction of total NADPH synthesis and NADPH consumption attributable to 

single reactions and groups of reactions.   
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The amination for alpha ketoglutarate by the NADP+ dependent glutamate dehydrogenase was 

seen to make a rather significant contribution by fraction (just over 50%) to the net NADPH 

consumption rate.  

To summarize our observations of energetic flux profiles, we find that a small number of 

reactions may make a large contribution to the net production and consumption rates of energetic 

cofactors.  This is most evidently true for the production rates of the three cofactors we have 

considered.  For both ATP and NADH however, the same pattern is exhibited by their 

consumption rates.  The majority of production fluxes for ATP, NADH, and NADPH may each 

be accounted for by just four reactions, all of which for ATP and NADH and three of which for 

NADH, are central metabolic reactions.  The consumption flux of ATP has a relatively high 

fraction that may be attributed to biosynthetic reactions, however, it is evident that the large 

majority of the flux contribution comes directly from four reactions; these are namely the xylose 

ABC transporter, the xylulokinase reaction, the ATP maintenance reaction, and the biomass 

reaction.  For NADH consumption rate, biosynthetic demands make up a very small fraction 

relative to the considerable contribution arising from the NADH dehydrogenase.  In contrast, the 

net NADPH consumption rate appears to result from several biosynthetic reactions (note that we 

have presented the reactions as lumped reaction families in figure 5.4.3 for this reason).  

However, it is seen that the net NADPH consumption rate also depends on an unequally large 

contribution from just one reaction, the glutamate dehydrogenase reaction.   

In view of the empirical context in which the Palsson FBA method is usually employed, 

that is, in the absence of large-scale kinetic data to constrain the model with, we find it highly 

relevant that a small number of reactions make an unequal contribution to the rate of energy 

production and energy use.  This is because the efficiency of energy biogenesis is directly related 
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to the efficiency of biosynthesis, and so both are optimized under the assumption of a biomass 

objective (sections 4.4 and 5.2).   We are encouraged by these observations to question again, the 

necessity of genome-scale metabolic reconstructions to FBA methods that are applied under the 

Palsson setting towards the prediction of metabolic rates.  The reader is referred to sections 3.1 

and 3.5 for discussions of why this statement does not apply generally to all FBA methods.  In 

the case of rate predictions and yield predictions, both of which are relevant to dFBA modelling, 

the possibility that a genome-scale metabolic model may be greatly simplified and yet still 

quantitatively make the same desired predictions as the larger model is promising.   

 

5.5: The iAF1260 model applies a common yield-maximizing strategy to different 

substrates  

 

 One of the most commonly used application of FBA methods is in the prediction of the 

response of growth phenotypes to different substrates.  Substrate-specific phenotype phase 

planes (Phpp) have been studied in depth for E.coli and dFBA methods often require such 

predictions when a model must account for multiple growth phases in a single growth data 

(Edwards, Ibarra et al. 2001, Ibarra, Edwards et al. 2002, Mahadevan, Edwards et al. 2002, 

Meadows, Karnik et al. 2010, Hanly and Henson 2011).   In this chapter, we have analyzed, the 

response of Palsson-style FBA models to varying xylose consumption rate with the additional 

assumption that oxygen consumption rate comes with a kinetic upper bound.  We have 

discovered in doing so that Palsson-style models exhibit a growth rate optimizing strategy that 

optimizes for yield secondarily as an indirect cellular objective.  This strategy was seen to lead to 

FBA solutions that favor pathways that are most efficient with respect to energy production and 

use.  Strikingly however, we find that there is very little about this strategy as well as of how the 

models appear to implement it via central metabolic flux redistributions that is specific to the 
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substrate being xylose.  Thus, we investigate the growth phenotype predictions of the iAF1260 

model to substrates other than xylose.  In this section, we define “growth phenotype” to mean the 

qualitative response of flux distributions to increased substrate uptake rate.  The FBA series 

described in section 5.2 for xylose was repeated with glucose, malate, succinate, and acetate.  

The choice of compounds was based upon the set of substrates chosen by Edwards, Ibarra , & 

Palsson (2001), and Ibarra, Edwards, & Palsson (2002) (Edwards, Ibarra et al. 2001, Ibarra, 

Edwards et al. 2002).  We now describe our observations for substrates in the order of similarity 

in model response to our observations for xylose (section 5.2).   

For growth on glucose, the response of the iAF1260 model to an increasing rate of 

glucose exchange was identical to the observations already made for xylose (Figure 5.5.1).   

 

 

Figure 5.5.1: The iAF1260 model was grown aerobically on glucose.  Plot A should be 

compared with figure 5.2.1 corresponding to xylose growth.  Similarly, plot B should be 

compared with figure 5.2.2 also corresponding to xylose growth.  We see from the glucose plots 

that the qualitative response of the iAF1260 model to increased glucose consumption under the 

constraint of a maximal oxygen uptake rate is identical to that for xylose.   
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The response during simulated aerobic growth on malate was similar to that observed for 

glucose. One notable difference was observed for the malate growth; namely the absence of a 

transhydrogenase phase partitioning the strictly acetogenic phase (Figure 5.5.2).   

 

 

 

Figure 5.5.2: The iAF1260 model was grown aerobically on malate.  We see that malate growth 

is qualitatively like both glucose and xylose growth except that for malate, there is no GND 

activity in any of the growth phases analyzed.  A consequence of this is that, for malate, the 

transhydrogenase phase partitioning the acetogenic regime is lost, as this process involves the 

linear transfer of flux volume from PP to the transhydrogenase.      

 

Transhydrogenase was never predicted to be utilized by the model during aerobic growth 

on malate.  An inspection of the central metabolic flux distribution revealed this to be due to the 

fact that the iAF1260 network never employs a flux distribution using the reductive pentose 

phosphate pathway (PP) during non-acetogenic growth.  Only the interconversion branch of PP 

was predicted to be active; in these flux distributions, PP function exclusively as a sugar-

interconverting pathway rather than an energetic one.  For growth on xylose, it is recalled that 

the transition from an exclusively acetogenic to a joint acetogenic and ethanologenic growth 
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involves the diminishing role of the reductive PP and correspondingly, an increase in flux 

through the transhydrogenase reaction with NADP+ reduction (section 5.2).  The FBA prediction 

for malate arises, because the reductive PP never plays a role in NADP+ reduction; the branching 

of the tricarboxylic acid cycle (TCA) is immediately followed by ethanol production.   

 

 
 

Figure 5.5.3: The iAF1260 model was grown aerobically on succinate. We see that succinate 

growth is qualitatively like malate growth except that there is no ethanologenic regime.  Note 

that the succinate consumption curve (green) terminates below the maximal allowed uptake rate 

over the flux series (50 mmol/GDW/h), indicating that the iAF1260 model is unable to use 

ethanol formation as a strategy for further increasing growth rates.  Succinate consumption is 

predicted below its FBA bound as further consumption is not possible without disrupting an 

internal redox balance.         

 

 

Growth on succinate resembled growths on xylose, glucose, and malate but only up to 

TCA branching (Figure 5.5.3).  Plot B of figure 5.5.3 reveals that succinate consumption never 

exceeds a value of 19.03 mmol GDW−1h−1.  Thus, for exchange bounds placed beyond this 

limit, the maximal growth rate achievable with succinate metabolism is predicted to be 

constrained by factors other than substrate availability.  The iAF1260 model predicts for 
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succinate, that once having entered the cytoplasm, this substrate is consumed primarily by the 

succinate dehydrogenase (SUCDi) of the TCA, and to a greatly lesser extent by Propanoyl-CoA-

succinate CoA-transferase (for comparison, the latter reaction carried a final flux of 0.34 when, 

in the same flux distribution, the former carried a flux of 19.03 mmol GDW−1h−1  ).  For xylose, 

glucose, and malate, redox- balancing was seen to require the suppression of SUCDi.  As such, 

the stoichiometric constraint from the need to balance redox cofactors appears to prevent the 

consumption of this succinate beyond a limiting value.  This value was seen to be set by maximal 

oxygen consumption (Figure 5.5.3 B).   In sum, during aerobic growth on succinate, the iAF1260 

model was shown to predict transitions analogous to that of malate but terminating prematurely 

at the point of ethanologenesis.   

Finally, acetate metabolism was predicted to exhibit only a single state of growth in 

which all fluxes scale directly with µ (Figure 5.5.4).  

 

Figure 5.5.4: The iAF1260 model was grown aerobically on acetate. Acetate growth, like 

succinate growth terminates at a value below the maximal allowed consumption rate (green 

curve).  Similarly for succinate, acetate growth does not have the three growth regimes predicted 

for xylose, glucose, and malate.  Instead there is only a single growth phase for acetate, which is 

the one in which BQ is equal to zero.  Note that we have not included a second axis in plot A, as 

there were no byproduct flux curves for acetate.   
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  As it was the case for succinate, acetate consumption for large exchange bounds was 

observed to be limited below the constraint from substrate availability.  It can be concluded from 

the energetic strategies used by the iAF1260 model in metabolizing the other substrates we have 

considered in this chapter, that this limit exists as a result of the acetate kinase catalyzing in the 

ATP-hydrolyzing direction during growth on acetate.  Here, the metabolic strategy of increasing 

vATP by respiro-fermentative energy biogenesis is not feasible as acetate, the by-product of 

fermentative ATP synthesis, is also the substrate.   

In this section, it was investigated whether qualitative predictions of the iAF1260 model 

during aerobic growth on xylose extrapolate to aerobic growth on substrates other than xylose.  

To a large extent the answer was found to be in the affirmative.  A common strategy for 

increasing µ was seen to be shared by the growth simulations across various substrates; to grow 

without by-product production up to a limit set by oxygen consumption; to utilize acetogenesis 

for further ATP synthesis whilst branching the TCA; to pass the reductive function of the PP if 

appropriate to an alternative redox process.  Differences were seen to arise when the processes of 

substrate acquisition conflict with the requirements of this strategy.   

 

 

5.6: Substrates with similar acquisition pathways are not distinguishable by yield 
 

The Palsson-style FBA optimizes for rates by optimizing for yields.  As a consequence, 

differences in rate predictions in the Palsson framework may be attributed to differences in the 

ability of a metabolic network to satisfy energy flux balance constraints (sections 5.2 and 5.5).  

Yet we have seen that the aspects of a metabolic model that energetically determine growth rates 

may be relatively few with respect to the dimensions of the overall model, and even fewer when 

limited to those specific for a given substrate (sections 5.3, 5.4, and 5.5).  The part of a metabolic 
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network whose activity is energetically relevant in a substrate-specific manner is often the small 

number of reactions required for the transport and early metabolism of the substrate (e.g. the 

ABC transporter and the kinase in figure 5.4.1).  In light of this, we investigate the degree to 

which substrates with similar modes of acquisition may be distinguished by their predicted 

maximal yields under the Palsson framework.   

The iAF1260 model was grown on six different sugar substrates – xylose, arabinose, 

ribose, glucose, mannose, and fructose.  The choice of substrates was made based on the 

existence of previously demonstrated catabolite hierarchies and on the similarity of their mode of 

acquisition (Kang, Song et al. 1998, Desai and Rao 2010).  Figures 5.6.1 and 5.6.2 summarize 

the steps by which these sugars are converted to common central metabolic intermediates.     
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Figure 5.6.1: The hexose sugars -- glucose, mannose and fructose -- are transported via a 

phosphotransferase system (PTS) and subsequently enter metabolism through the first glycolytic 

branch.  The ‘[p]’ signifies that the sugars are being transported from the periplasm in this figure. 

This figure has been adapted from the textbook Bacterial physiology and metabolism (Kim and 

Gadd 2008). 
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Figure 5.6.2:  Xylose, arabinose, and ribose are pentose sugars that enter the central metabolism 

through the interconverting branch of the pentose phosphate pathway. E.coli, for the former two 

sugars has available an ABC transporter, and a proton symporter, whereas ribose can only be 

transported by an ABC transporter. The ‘[p]’ signifies that the sugars are being transported from 

the periplasm in this figure. A bolt-mark superimposed upon a transport arrow indicates ATP 

hydrolysis.  This figure has been adapted from the textbook Bacterial physiology and metabolism 

(Kim and Gadd 2008). 

 

For each of the pentoses, three growth simulations were run with substrate uptake rates of 

respectively 10.0, 15.0, and 30.0 mmol ∙ GDW−1 ∙ h−1.  These consumption rates correspond to 

the three distinct growth phases observed previously in section 5.2 for the aerobic metabolism of 

xylose as characterized by by-product production. Growth was demonstrated to be accompanied 

by no by-product at 10.0, by acetogenesis alone at 15.0, and by joint acetogenesis and 

ethanologenesis at 30.0 mmol ∙ GDW−1 ∙ h−1 uptake rates.  The reader is referred to figure 5.2.2 
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to corroborate this information for xylose.  Simulations were run in an identical manner for the 

hexoses as they were for the pentoses.  In order to control for the total flux of carbon however, 

the hexoses for each growth phase were made available at five-sixth the rate for the pentoses; 

thus the influx of total carbon atoms was the same regardless of whether the iAF1260 model was 

grown on a hexose or a pentose.  Higher yields correspond to the use of transporters with the 

lowest energy demands; thus, as in section 5.4, the FBA solution when unconstrained will favor 

a symport transporter over an ABC transporter under the Palsson formulation.  To simulate the 

uptake of a given substrate through a symport process, the FBA model was optimized without 

constraints on transporters; to simulate the uptake through an ABC transporter, the model was 

optimized with the corresponding symport flux constrained to zero.  As in the previous sections 

of this chapter, the maximal oxygen uptake rate was constrained to 20 mmol ∙ GDW−1 ∙

h−1similarly, the rate of ATP hydrolysis for non-growth-associated maintenance was constrained 

to a flux of 8.39 mmol ∙ GDW−1 ∙ h−1 (Feist, Henry et al. 2007).   

 Of the six sugars tested, two sugars – xylose and arabinose – may be transported by either 

a symport protein or an ABC transporter.  For these sugars, the predicted specific growth rate 

was found to decrease very slightly (on the order of 0.01) when the transport was switched from 

a symporter to an ABC transporter (Table 5.6.1). This difference between predicted growth rates 

are seen to become more pronounced in regions 2 and 3 where growth is constrained by a 

combination of maximal oxygen consumption rate and redox balance.  This trend, compared to 

the growth rate predicted for ribose, suggests that the observed differences arise as a result of the 

energetic efficiency of substrate acquisition rather than substrate identity.  The growth rate 

prediction for ribose, whose transport and early metabolism require the expenditure of two units 

of ATP per unit of substrate, is seen to be identical to the growth rate predictions corresponding 
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to the ABC transport of xylose and arabinose.  In a similar way, Table 5.6.1 shows that all sugars 

transported by a PTS exhibit the same growth rate predictions in all three regions of growth.   

 

Sugar Transport 

process used 

Consumption rate 

(mmol/GDW/h) 

µ (1/h) 

Region 1: No by-product produced 

Xylose Symport 10 0.76 

Xylose ABC transport 10 0.73 

Arabinose Symport 10 0.76 

Arabinose ABC transport 10 0.73 

Ribose ABC transport 10 0.73 

Glucose PTS 8.33 0.77 

Mannose PTS 8.33 0.77 

Fructose PTS 8.33 0.77 

Region 2: Acetogenic but not ethanologenic 

Xylose Symport 15 1.0 

Xylose ABC transport 15 0.90 

Arabinose Symport 15 1.0 

Arabinose ABC transport 15 0.90 

Ribose ABC transport 15 0.90 

Glucose PTS 12.5 1.0 

Mannose PTS 12.5 1.0 

Fructose PTS 12.5 1.0 

Region 3: Acetogenic and ethanologenic 

Xylose Symport 30 1.3 

Xylose ABC transport 30 1.1 

Arabinose Symport 30 1.3 

Arabinose ABC transport 30 1.1 

Ribose ABC transport 30 1.1 

Glucose PTS 25 1.4 

Mannose PTS 25 1.4 

Fructose PTS 25 1.4 

 

TABLE 5.6.1: Comparison of specific growth rate predictions of the iAF1260 aerobic single-

substrate growth for several sugars and different transport processes.  
 

 As was hypothesized, the output of the iAF1260 model demonstrates that Palsson-style 

FBA does not make significant distinctions in growth rate predictions amongst substrates when 

normalized for the total flux of carbon.  The fact that we have normalized for the carbon flux is 

quite significant; the rate predictions given in this section are hypothetical growth rates 
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corresponding to hypothetical uptake rates of substrate.  Note that one would expect the numbers 

under the final column of table 5.6.1 to show greater variation had we constrained the model 

with an experimentally observed uptake rate for each substrate.  Thus, what is being compared is 

the rate of growth per unit of carbon delivered.  The significance of the result therefore is that the 

Palsson-style method does not distinguish substrates by yield.  However, it is recalled from 

equation 4.4.6 and from the discussions throughout this chapter that yields and rates exhibit a 

one-to-one relation within the Palsson framework.  The results of this section therefore also 

suggest that the Palsson-style method does not distinguish substrates by growth rates unless an 

experimental uptake rate has been specified.  If an experimental value is made available for the 

uptake rate of one substrate (e.g. glucose), then a carbon-normalized value of experimental 

growth rate may be calculated.  Provided then with an experimental value for the uptake rate of a 

second substrate (e.g. mannose) then, the outputs of the iAF1260 model asserts that the resulting 

growth rate may be predicted a priori using the value of yield that is, as shown in table 5.6.1, 

identical for the two substrates.   

 

5.7: Discussion 

 

 In this third and final chapter dealing with simple FBA models, we have presented results that 

demonstrate several consequences the relation between growth yield and growth rate (equation 4.4.6 and 

4.4.7) have on the overall predictive capability of FBA models.  It is important to point out that, because 

we have only considered FBA models maximizing for growth rate by maximizing the flux across a 

biomass objective, our main results apply to one very specific form of FBA which we refer to in this 

thesis as the “Palsson-style FBA.” Given the wide-spread use of this method of FBA modelling however, 

we find that detailed analyses of its properties, both the strengths as well as the weaknesses, are useful.  

By applying equation 4.4.6 to the iAF1260 model, we have been able to show that Palsson models 
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optimize for growth rates first, and growth yields second.  When no constraints are placed on the most 

efficient energy producing pathway (respiration), BQ remains zero; thus an FBA solution that maximizes 

for growth rate will also maximize for growth yield.  The appearance of growth regimes within which 

yield and rate may no longer be maximized together requires an additional input of information.  In this 

chapter, we have decided to introduce the hypothesis that the maximal rate of oxygen uptake is kinetically 

bounded, an assumption that is commonly used in the FBA community and is well founded 

experimentally (section 5.2). 

In the general framework of FBA, a cellular objective is a hypothesis, and the biomass objective 

is only one of many possible hypotheses.  However, towards applications such as dFBA that require 

models that predict growth rates, some mathematical connection must be asserted between the flux across 

a biomass reaction and a cellular objective. The most parsimonious solution is to assume that the two are 

one and the same; that is to assume the biomass objective.  Because higher rates of biosynthesis means 

greater allocation of carbon to biomass, and equivalently lower carbon to by-products, Palsson FBA 

methods favour combinations of energy biogenic pathways that minimize the energetic efflux of carbon, 

whilst still obeying internal energy flux balance constraints.  Thus, Palsson FBA solutions should all be 

considered to be yield-maximizing flux distributions.  This is in the sense that although growth rate takes 

precedence over growth yield when the biomass objective is used, both quantities must be maximized 

with respect to energy biogenesis.  The consequence of employing the Palsson-style FBA method is that a 

very strong coupling is assumed between growth rate, growth yield, and energetic efficiency which may 

not always be a biologically valid correspondence.  Thus, we find that further FBA modelling, in settings 

such as dFBA where investigators are primarily concerned with rate predictions (as opposed to 

topological predictions), could be improved by devising modelling strategies that decouple the rigid 

correspondence between these three quantities in the Palsson framework.  

 Further to this goal of devising improved dFBA methods, the results of this chapter strongly 

indicate that dFBA models may be better served by small scale metabolic reconstructions.  The results of 
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sections 5.3-5.5 indicate that the factors that determine the quantitative (rates and yields) as well as the 

qualitative (flux redistributions) growth phenotypes are surprisingly few in number relative to the total 

number of factors that are considered by genome-scale models.  For example, of the 2381 reactions of the 

iAF1260 model, 300 reactions are those involving ATP; yet we have seen, in one simulation, that just 4 

reactions (xylulokinase, xylose ABC transport, ATPM, and the biomass reaction), combined with the 

reactions of glycolysis, account for close to 90% of the total flux volume of ATP hydrolysis (Figure 

5.4.1).  It is likely the case that more complex behavioural predictions will become possible with the 

inclusion of more kinetic constraints and better objective functions.  However, Palsson-style FBA models 

are useful in the absence of the experimental data that is required to verify that information.  Where rate 

phenotypes are concerned, it is difficult to imagine realistic settings in which, given a set of reactions to 

model explicitly, defining the correct constraints and a biologically valid objective in a genome-scale 

model is not a task comparable in difficulty to measuring the required kinetic parameters.  The 

quantitative predictions of the Palsson-style FBA modelling appear to depend strongly on the energetics 

of substrate acquisition and central metabolism.  It has been shown that substrates whose transport and 

early metabolism share a common energetic stoichiometry cannot be distinguished by yield in the Palsson 

framework (section 5.6).  These results appear, on a first glance, to indicate that there are flaws in the 

Palsson-FBA framework.  However, we find that these results are actually quite encouraging from the 

standpoint of dynamic FBA modelling where the major source of model complexities is expected to be 

the differential equations.  The metabolic reconstruction protocol outlined by Palsson describes how vast 

amounts of biological information may be integrated and summarised into a metabolic model and then 

curated.  FBA methods provide ways of using this information to quantify globally relevant parameters 

such as biomass composition and maintenance energies.  The fact that the prediction of FBA models 

depend on such quantities in a way that involves a small well studied component of a genome-scale 

network such as the central metabolism indicates to us that there may be more efficient ways of using the 

biological information contained in genome scale models in dynamic settings.  In the remainder of this 

thesis, we explore the following two questions.  First, we ask whether Palsson-style FBA predictions of 
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rates and of yields may be made by stoichiometric models that have been substantially reduced in 

dimension relative to a parental genome scale model.  Second, we ask whether the Palsson-style FBA 

method may be reformulated in such a way that rates are predictable in a way decoupled from yields.  By 

demonstrating that these two questions have affirmative answers, we will arrive at a novel formulation of 

dFBA the combines the growth rate predicting capabilities of the Palsson-style FBA method with the 

flexibility of Fell FBA.   
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CHAPTER 6: Experimental E.coli growth curves  

 

Abstract:   

 

  Up to this point, we have relied on computer simulated outputs to describe E.coli growth 

yields and growth rates on the industrially relevant pentose sugar, xylose.  In this chapter, we 

investigate the properties of E.coli growth on this sugar experimentally. Using transporter 

deleted strains required to consume xylose using different combinations of ABC transport and 

proton symport, we show that differing growth rates and growth yields (defined for this chapter 

alone as the maximal OD650) result from transporter deletions.  Comparatively analyzing these 

differences, we provide evidence that the wild type growth profile is supported by a combination 

of symport and ABC transport under the conditions investigated here.  Finally, we show that, 

under shake-flask batch growth conditions, wild type xylose growth is a highly acetogenic 

process.     

 

 

6.1: Introduction 

Investigations into the transport by Escherichia coli of D-xylose (xylose),  extend back 

from the present by roughly four decades and a dual-transporter model (xylose transport by an 

ABC-transporter and a proton-symporter) for the acquisition of this sugar had been established 

by 1989 (Sumiya and Jf 1989).  The periplasmic substrate-binding domain of the xylose ABC 

transporter was first purified and biochemically characterized by Ahlem et al in 1981; (Ahlem, 

Huisman et al. 1982).  A year prior,  Lam et al. reported observations of increasing alkalinity of 

growth media of xylose-consuming E.coli cells together with the diminishing of the effect with 

the addition of uncoupling agents which led them to suspect the presence of a proton-linked 

xylose transport system; the existence of such a system was subsequently confirmed and the 

transporter responsible (XylE) was sequenced in the work of  Davis and Henderson (Lam, 

Daruwalla et al. 1980, Davis and Henderson 1987).  By the end of the decade following the 

publication of these works (and also building on prior works concerning xylose metabolic 

enzymes) a body of literature has been published about the components required for genetic 

induction of xylose transport and metabolism in the presence of environmental xylose, 
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specifically by the transcription factor XylR (Song and Park 1997).  As with the closely related 

and by far better characterized system for E.coli arabinose transport and metabolism, it is fair to 

interpret the early goals underlying investigations into the bacterial regulation of xylose 

utilization as being focused on the characterization of a biochemical and genetic model system 

from which generalizable paradigms may be drawn and/or from which then-existing 

biotechnological methods be extended.  While such goals appear to have remained largely 

unchanged to the present day a number of modern trends can be identified in the more recent 

research concerning E.coli xylose utilization; this is the inclusion of efforts towards investigating 

xylose as a potential source of biofuel in the framework of microbial synthetic biology.    

As was discussed in section 1.1 of the introductory chapter, (D-) xylose and (L-) 

arabinose comprises 95% of hemicellulosic biomass and represent the largest sources of 

sugar second only to glucose (Kim, Block et al. 2010, Ni, Tonthat et al. 2013).  E.coli 

bioconversion of hemicellulose to desired compounds such as ethanol, although 

promising owing to the possession by this microbe of the necessary chemical pathways, 

suffers the shortcoming of low product yields.  An important hurdle to increased yields is 

carbon catabolite repression, the underlying causes for which are known to be largely 

genetic (Desai and Rao 2010).  Much effort has gone into understanding carbon-

catabolite repressions, with the aim of engineering strains capable of simultaneously 

utilizing multiple hemicellulose-derived sugars (Desai and Rao 2010, Kim, Block et al. 

2010, Hanly and Henson 2011, Groff, Benke et al. 2012).  Engineering studies of xylose 

metabolism have revealed several important properties of the underlying system; it has 

been shown that product (ethanol) yields can be increased, and similarly that repression 
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hierarchies (from glucose and arabinose) can be disrupted (Tao, Gonzalez et al. 2001, 

Kim, Block et al. 2010, Groff, Benke et al. 2012).  

Clearly, a large volume of effort has gone into the experimental analysis of xylose 

metabolism in complex media.  What we find however, is that effort is still needed in 

interrogating the basic properties of E.coli growth on xylose as a single substrate in a 

simple genetic background and in simple media.  In this chapter, we describe the 

differences that are observed experimentally amongst growth phenotypes (growth rates 

and growth yields) of transporter-deleted E.coli mutants growing aerobically on xylose.  

Although this is mainly a theoretical thesis, I have had the opportunity to undertake some 

work in the laboratory from which the data described in the following experimental 

sections have been acquired with the help of an experimental colleague, Konstantinos 

Drousiotis.  Also included in these sections are unpublished results acquired by another 

colleague, Henrique Neves; namely, these are plate reader data that will now be 

described.    

 

6.2: Comparison of growth phenotypes of wild type and transport deletion mutants 

 

 In this section, we investigate the aerobic transporter utilization by E.coli. 

Comparative batch growth data were generated for WT and transporter-deleted mutant 

strains.  The aerobic growth on xylose of WT E.coli K-12 was compared with growth of 

mutant strains lacking one or both of the genes coding for the respective xylose 

transporters.  Growth data was generated for each strain in triplicate via plate-reader and 

was repeated with initial xylose concentrations of 2.5 mmol ∙ L−1, 5.0 mmol ∙ L−1, 10.0 
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mmol ∙ L−1, and 20.0 mmol ∙ L−1.  Measurements of OD650 (OD) were taken in half-

hourly intervals for 48 hours.  In order to identify kinetic differences occurring within and 

across the growth profiles, the specific growth rates of the growing populations were 

approximated where the approximating formula is provided in the experimental methods 

section of this chapter.  These results are presented in figures 6.2.1-6.2.4.  In these 

figures, the final eight hours of growth data have been truncated as we have found that 

there were no significant events occurring in the extended death phases of the 

populations.  

 

Figure 6.2.1: The aerobic plate reader growths for wild-type (WT) and transporter 

deleted strains of E.coli with an initial xylose concentration of 2.5 mmol ∙ L−1 over 40 

hours are plotted in black.  The specific growth rates (µ) for each strain is plotted in red.  

Panels A, B, C, and D correspond respectively to WT, ΔxylH, ΔxylE, and ΔxylEΔxylH 

curves.  The growth data were generated in triplicate biological repetitions. 
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Figure 6.2.2: The aerobic plate reader growths for wild-type (WT) and transporter 

deleted strains of E.coli with an initial xylose concentration of 5.0 mmol ∙ L−1 over 40 

hours are plotted in black.  The specific growth rates (µ) for each strain is plotted in red.  

Panels A, B, C, and D correspond respectively to WT, ΔxylH, ΔxylE, and ΔxylEΔxylH 

curves.  The growth data were generated in triplicate biological repetitions. 
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Figure 6.2.3: The aerobic plate reader growths for wild-type (WT) and transporter 

deleted strains of E.coli with an initial xylose concentration of 10.0 mmol ∙ L−1 over 40 

hours are plotted in black.  The specific growth rates (µ) for each strain is plotted in red.  

Panels A, B, C, and D correspond respectively to WT, ΔxylH, ΔxylE, and ΔxylEΔxylH 

curves.  The growth data were generated in triplicate biological repetitions. 
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Figure 6.2.4: The aerobic plate reader growths for wild-type (WT) and transporter 

deleted strains of E.coli with an initial xylose concentration of 20.0 mmol ∙ L−1 over 40 

hours are plotted in black.  The specific growth rates (µ) for each strain is plotted in red.  

Panels A, B, C, and D correspond respectively to WT, ΔxylH, ΔxylE, and ΔxylEΔxylH 

curves.  The growth data were generated in triplicate biological repetitions. 

 

Growth was observed for the WT, ΔxylE mutant, and the ΔxylH mutant at all 

initial concentrations of xylose tested.  The doubly transporter-deleted mutant only grew 

appreciably at 10 mmol ∙ L−1 and 20 mmol ∙ L−1 initial concentrations of xylose.  The 

ability of the double mutant to grow at higher substrate concentrations demonstrates that 

means of xylose transport other than transport via the known xylose specific transporters 

exist – possibly this is attributable to promiscuous transporters or to membrane diffusion.  

The low-affinity kinetics associated with alternative processes is evidenced by the 
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inability of the double mutant to grow at 2.5 mmol ∙ L−1 and 5.0 mmol ∙ L−1 

concentrations of xylose; at the same time it is noteworthy just how well growth can be 

supported by such non-xylose-specific processes at moderately higher xylose 

concentrations of 10 mmol ∙ L−1 and 20 mmol ∙ L−1.  These concentrations are a full 

order of magnitude lower than a typical sugar concentration used for industrial-scale 

fermentations which may be as high as 400 mmol ∙ L−1 (Gavin Thomas; personal 

communication).   

  The growth profiles of the singly-deleted transporter mutants are most 

prominently distinguishable by the presence and absence respectively in the ΔxylH and 

ΔxylE growth of a diauxie.  By exhibiting a diauxic shift the ΔxylH growth curve appears 

to more closely resemble the WT growth curve than does the ΔxylE curve.  An inspection 

of the specific growth rate profiles at all concentrations reveals that the ΔxylH mutant is 

also kinetically similar to the WT.  That the mutant whose growth is supported primarily 

by proton-symport exhibits a growth pattern more comparable to that of the WT relative 

to the ABC-deleted mutant is consistent with a hypothesis that a low-affinity transport 

process is used primarily for xylose acquisition by the WT.  If however the XylE system 

is the most important, then why is a symport-deleted mutant capable of growing at all?  

At initial xylose concentrations of 10 mmol ∙ L−1 and 20  mmol ∙ L−1growth would be 

supportable in the absence of xylose transporters as was observed for the double mutant.  

However the symport deleted strain is distinguishable from the double mutant in its 

ability to grow well also at 2.5 mM and 5.0 mM initial xylose concentrations where the 

latter cannot.  Therefore it must be concluded that in the absence of the xylose symporter, 

the xylose ABC complex may be expressed and that catalysis by this transporter is 
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sufficient to produce growth albeit with a lower rate and a lower biomass yield relative to 

the WT.  Is the ABC transporter operative in the WT under the conditions here tested and 

the symporter-preference therefore non-exclusive?  These observations raise the 

possibility that the purpose served by the ABC transporter  may be more involved than 

simple scavenging at low (~ 10−3mM) substrate concentrations as might be logically 

hypothesized from Km considerations.    

 

6.3: Wild type growth on xylose in shake-flask is diauxic and acetogenic      

In this section, we investigate the substrate consumption and by-product 

production rates of WT E.coli.  As we required larger sample volumes than was possible 

with the plate reader for substrate quantifying assays,  the experimental setting was 

switched from the plate-reader to shake-flask (SF) growth.     

WT growth in SF was observed to mirror qualitatively the corresponding growths 

in the plate reader (Figure 6.3.1).   
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Figure 6.3.1: A) Experimentally measured time course of an aerobic growth of E.coli 

performed in triplicate (black) with approximations to µ for each partition considered 

(red).  B) Depletion of substrate (xylose; black), and accumulation of by-product 

accompanying growth (acetate; red).  Data have been generated in triplicate repeats.     

 

The growth curve exhibited an approximately sigmoidal form saturating about a 

maximal average OD600 of 0.82 starting from an initial value of 0.10; a diauxic shift was 

observed two hours after the maximal specific growth rate was recorded.  In panel A of 

figure 6.3.1, this is apparent from the sudden widening of the error bars past the hour-two 

time point.  The specific growth rate varied during this growth over a range spanning 0.11 

h−1 to 0.58 h−1, with the maximal value being achieved three hours post-inoculation 

where the OD600 readings increase exponentially (Figure 6.3.1.A).  Xylose is shown to be 

depleted immediately prior to the ninth hourly time point corresponding to the time of 

entry of the OD600 curve into the stationary phase; this is five hours past the onset of the 

diauxie.  Despite the high aerobicity of the growth cycle, a large amount of acetate 

secretion into the reaction volume by the cells was recorded (Figure 6.3.1.B).  Relative to 
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their plate reader counterparts, both the biomass yield and growth rate were measured to 

greater values during SF growth.   

 

6.4: Discussion 

The purpose of the growth experiments described in this chapter was to identify 

any discernible changes to E.coli growth phenotype occurring as a result of xylose 

transporter deletions.  Wild-type (WT) E.coli growth was shown to exhibit a diauxic shift 

for which the underlying mechanism remains to be investigated.  In particular, out SF 

data strongly suggests that what we observe is not an acetate diauxie.  Exponential growth 

kinetics were observed prior to the diauxie but the maximal specific growth rates were 

seen to be short-lived.  Singly and doubly deleted xylose transport mutants were seen to 

exhibit growth phenotypes non-identical relative to one another and to the WT.  It is 

therefore likely that the completion of the WT growth is dependent upon the use of both 

the symport and the ABC transport of xylose.  Based upon kinetic properties of the 

growth phenotypes, it is seen likely that the primary transport process supporting WT 

growth is symport-based.   

The ability of E.coli to transport xylose by concentration-dependent non-xylose 

specific processes has been also demonstrated.  We find that the contribution of 

alternative xylose transport processes to net xylose acquisition appears to be quite 

significant at concentrations of 10 mmol ∙ L−1 and higher; this may explain the slightly 

diminished distinguishability amongst growth curves of genetically differing strains at the 

higher (10 mmol ∙ L−1 and 20 mmol ∙ L−1) xylose concentrations considered.  These 

observations are quite relevant to industrial biotechnological applications in which E.coli 
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cells may be exposed to unnaturally high conditions towards which their genetic systems 

have not yet been adapted.   

Interestingly, it has also be seen that higher final biomass concentration 

correspond to higher lower maximal specific growth rates under certain conditions.  At 

10.0 mmol ∙ L−1  and 5.0 mmol ∙ L−1  concentrations, it can be seen that WT cell achieve 

higher biomass concentrations with lower maximal growth rates compared to their closest 

counterpart, the ΔxylH mutant growing via xylose symport.  We may not however draw a 

conclusion that this is a transport-energy dependent result.  Under the same conditions, 

we find that the symport-deleted mutant growing via ABC transport achieves a final 

biomass concentration that is comparable to the ΔxylH mutant with a much reduced 

growth rate.  Similarly, it is seen at 20 mmol ∙ L−1concentrations that three strains 

achieve a comparable final biomass concentration yet with very different growth rates.   It 

is concluded that the regulation of xylose transporter expression, as well as the functional 

relation amongst xylose transport, growth rates, and growth yields, is a complex property 

of the E.coli metabolic system that warrants deeper investigation.   
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6.5: Experimental methods  

 

Strain  Description  Source  

BW25113  Wild-type; parent to all Keio 
strains  

(Baba, Ara et al. 2006)  

BW  xylE  Symport deletion  D.B  

BW  xylH  Deletion of membrane 
component of the xylose ABC 
transporter; XylR independent 
promotor missing  

D.B  

BW  xylE  xylH  As in  BW  xylE and  
BW  xylH  

D.B  

BW  xylF  Deletion of the periplasmic 
substrate binding domain of  

D.B  

 the xylose ABC transporter   

BW  xylG  Deletion of the cytoplasmic 
ATP binding domain of the 
xylose ABC transporter  

D.B  

Table 6.5.1: Table of strains used 

 

Table 6.5.1 lists all of the Escherichia coli (E.coli) strains used for this study.  In 

all experiments, the strains were grown in M9 minimal media with xylose and MgSO4 

added.  The composition of M9 is as follows: 6 grams Na2HPO4, 3 grams KH2PO4, 0.5 

grams NaCl, and 1.0 gram NH4Cl dissolved in 1L of dH2O at a PH of 7.0.    

  The growth experiments described below were carried out by Konstantinos 

Drousiotis (K.D) and Kazuki Iizuka (K.I), and by Henrique Iglesias Neves (H.N) as 

indicate.  The xylose transporter deleted strains have been obtained from Dr. Daniel 

Bowden (D.B).  

Growth of Escherichia coli strains in the plate reader (H.N)  

   Wild type and mutant E.coli were grown overnight in M9 minimal media (1mL 

M9, 1mM MgSO4, and 20mM glucose) at 37 degrees Celsius. Cells from the culture were 
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then washed in 15mL of M9 by twice centrifuging at 4000 rpm for 10 minutes.  Inocula 

were set up either in triplicate or quadruplicate on a 96 well plate at an initial OD650 

reading 0.1.  Initial xylose concentrations were set at 2.5mM, 5.0mM, 10.0mM, or 

20.0mM.  Growth was continued for a 48 hour period with optical density readings 

recorded every half hour.    

Growth of Escherichia coli strains in shake flask and sampling (K.D; K.I)  

  Wild type (WT) E.coli were grown overnight in M9 minimal media (1mL M9, 1mM  

MgSO4, and 20mM xylose) at 37 degrees Celsius. Cells from the culture were then 

washed in 15mL of M9 by twice centrifuging at 4000 rpm for 10 minutes.  50mL M9 

solutions were prepared for triplicate growth assays and were inoculated to an OD600 

reading of 0.1; xylose was provided as the sole carbon source starting with an initial 

concentration of 5mM.  The shake-flask growth was conducted identically as for the 

overnight culture. Cells were grown to stationary phase with OD600 readings taken in 

hourly or half-hourly intervals.  For subsequent substrate and by-product assays, samples 

were collected at every OD600 reading via centrifugation for 10 minutes and storing the 

resulting supernatant at -80 degrees Celsius.    

Measurement of acetate concentration (KD; KI)  

  The acetate assay was carried out using the Megazyme acetic acid assay kit 

following manual procedure. This assay is based on the following.  Acetate is converted 

to acetyl-CoA in a two-step process catalysed by the enzymes acetate kinase and 

phosphotransacetylase.  The ADP that is generated in the first step (the kinase step) is re-

phosphorylated to ATP in the presence of phosphoenolpyruvate and the gluconeogenic 

enzyme pyruvate kinase.  As in gluconeogenesis the pyruvate kinase reaction produces 
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pyruvate which may in turn be reduced to lactic acid by the enzyme lactate 

dehydrogenase.    The conversion of pyruvate to lactic acid involves the oxidation of 

NADH to NAD+ in a 1:1 stoichiometry with the conversion of acetate to acetyl-CoA.  

The Acetate assay therefore measures acetate concentration by measuring the NADH 

oxidation which in turn is indicated by a decrease in absorbance at λ = 340 nm.   Assays 

were performed on samples taken from the shake-flask growth with an assay-volume of 

2.66mL and at 25 degrees Celsius.    

Measurement of xylose concentration (KD; KI)  

  The xylose assay was carried out using the Megazyme D-xylose assay kit 

following manual procedure. This assay is based on the following.  Alpha-xylose 

furanose is converted to its beta-form isomer by the enzyme xylose mutarotase. The 

resulting beta-xylose furanose donates electrons to NAD+ in a reaction catalysed by beta-

xylose dehydrogenase.  Therefore, as was the case for the acetate assay, the change to 

NADH concentration measured as change (increase) in absorbance at λ=340 nm is used 

to measure xylose concentration. .   Assays were performed on samples taken from the 

shake-flask growth with an assay-volume of 2.97mL and at 25 degrees Celsius.    

 

6.6: Computational methods  

 

Calculation of experimental specific growth rates and growth statistics 

 In calculating the specific growth rates of our growth curves, moving averages were used 

to more clearly observe the trends in the data.  For each time interval of growth, the increase in 

OD650 readings observed over the interval was divided by the length of the time interval to 

approximate the total population growth rate.  The resulting value was subsequently divided by 
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the OD650 reading for the left-end time point to derive a specific growth rate.  This calculation 

was repeated for each interval, and a specific growth rate calculation was assigned to each time 

point with the exception of the final time point.  A three-point smoothing procedure was applied 

to the resulting sequence of specific growth rates.  For each time point, the corresponding rate 

was averaged with two succeeding terms in the sequence.  Repeating this calculation over the 

sequence, we were able to calculate a specific growth rate value for each time point with the 

exception of the final two.  Because a time point has already been lost in deriving the growth rate 

sequence, a total of three final time points were lost in our calculations.   

All error-bars appearing in our data were generated using the sample standard deviation 

formula 

𝑠 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑁
𝑖=1

𝑁 − 1
, 

(6.6.1) 

where N is the sample size, s is the standard deviation, xi is a data value, and  x̅ is the sample 

mean.  For our dataset, N = 3 because our experiments were performed in triplicate.  Error bars 

are extended one standard deviation above and one standard deviation below an averaged data 

point.  All statistical calculations were performed using the software R.   

Flux Balance Analysis and Dynamic Flux Balance Analysis 

 The computation of FBA was performed using the GLPK (GNU Linear Programming 

Kit) software for linear programming.  Structural metabolic models were represented using 

standard Excel files.  Custom code was written in Java to translate this information, to carry out 

the optimization using GLPK, and to output this information as text files.  All simulations 

described in this thesis were performed by codes running on a standard Windows hp home 
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computer.  The visualization of all data included in this thesis, not just FBA outputs, were done 

using SigmaPlot.    

 In implementing the dFBA algorithm described in section 2.10, the Java routines written 

for FBA were iterated over a specified time interval.  In all simulations, FBA solutions and ODE 

solutions were calculated alternatively every 0.3 seconds of model time.  In calculating integrals 

numerically, ODE rates were solved, and the results were used to approximate net changes in 

concentrations using Newton’s two-point approximation formula for derivatives.   
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Chapter 7: A novel approach to dFBA that accounts for dynamic biomass composition 

Abstract: 

 A careful consideration of dynamic flux balance analysis (dFBA) formulations is a 

prerequisite for the construction of both better dFBA models and of better microbial community 

models.  We suggest in this chapter that this improvement will require an investigation into how 

dFBA models should treat the boundaries between its dynamic and static components, as well as 

developing new methods where internal metabolic information feedback can be accommodated.  

In this chapter, we demonstrate how both these issues may be resolved by combining the Fell 

and Palsson approaches to flux balance analysis (FBA), and thus propose a new formulation of 

the dFBA method. We illustrate this “hybrid” dFBA approach, by implementing it using a small 

stoichiometric network that we parametrized against the boundary conditions of the iJR904 

E.coli metabolic model. Through this implementation, we demonstrate how internal metabolites, 

potentially deeply located within a metabolic network, may be treated dynamically in a dFBA 

model without severely increasing the dimensionality of the differential equations describing the 

external environment.  We extend this result by demonstrating how regulatory effects of deeply 

located metabolites, whether it be allosteric or genetic effects, can be represented by a dFBA 

model; thus, we demonstrate how dynamics of information transfer can be accommodated by a 

dFBA model.   

 

  

7.1: Introduction 

The ability to alter, and to be altered by the environment in turn, is a universal feature of 

biological systems that is shared across all branches of life.  Understanding the nature of this 

feedback process is prerequisite, not just to understanding biology at the level of systems, but 

also to rationally engineering novel and useful cellular phenotypes through genetic and 

metabolomic means. For microbial communities, the interaction that takes place between one 

organism and its environment is often also an indirect interaction amongst several organisms 

sharing a common spatial domain. A very natural way of modelling such community-scale 

metabolic interactions is by coupling individual metabolic models through environmental 

variables, such as concentrations of substrates and metabolic by-products.  Such models can, at 

least structurally, represent the complex interdependences that are known to exist between 

microorganisms that make up real communities (Stolyar, Van Dien et al. 2007, Chaganti, Kim et 



152 
 

al. 2011, Khandelwal, Olivier et al. 2013, Henson and Hanly 2014).  Apart from a very small 

number of exceptions, such as communities that are grown in a chemostat, the chemical 

composition of the environment is a dynamically changing variable on the timescale of microbial 

growth and replication.  The mammalian gut microbiota, for example, is exposed to a range of 

different growth media over the course of a single day, and similarly, cells cultured in batch will 

detect varying concentrations of substrates as population growth is progressed to a stationary 

phase.  For this reason it is only for a limited number of cases, or over uninterestingly short 

timescales, that external metabolite concentrations can be modelled to be in a dynamic steady-

state.  In all remaining cases, external metabolites must be represented through differential 

equations that allow for their concentrations (and so the environment) to change in response to 

the metabolic behaviour of individual community members.  The modelling framework within 

which steady-state metabolic models are coupled to differential equations is dynamic flux-

balance analysis (dFBA).  Therefore, the general problem of modelling the metabolism of 

microbial communities should be considered as a subset of dFBA modelling.  By extension then, 

it becomes necessary to study the properties of dFBA models prior to exploring the full scope 

and potential of community flux-balance analysis.  

The need to consider environmental dynamics in community FBA models brings to light 

a fundamental question applicable to all dFBA modelling efforts.  What is the most appropriate 

method by which to couple individual metabolic systems? Each system will be modelled under 

the assumptions of steady state and an optimality criterion, but also incorporating appropriately 

chosen kinetic ODEs.  What are the conditions required so that the final representation is a valid 

and useful systems biology model of the global complexity that emerges from local interactions?  

We argue that this is a problem of identifying the correct number, the types, and the placements 
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of feedback mechanisms between the individual dFBA components.  The issue of which dFBA 

variables to treat dynamically via ODEs, and likewise, which variables to treat statically via FBA 

is context-dependent and decisions are usually left to the discretion of the investigator.  Any 

choice of a partition of the variables will rest upon both convenience (what can feasibly be 

measured experimentally) and experimenter interest (what aspects of a system is being 

investigated).  Nevertheless, there are several variables that are common across most metabolic 

systems under study that deserve special attention.  In chapter 4, we have derived a mathematical 

relation (equations 4.4.6 and 4.4.7) between two key FBA predictions, growth yield and growth 

rate, both of which are fundamental to the dynamic modelling of microbial systems.  The relation 

was shown to depend very strongly on the assumed biomass composition as well as the 

capability of central metabolism to meet steady-state energy demands; the consequences of this 

dependence to FBA predictions have been reported in chapter 5.  The results we presented in 

these chapters lead us to conclude that, in addition to the chemical and biological composition of 

the environment, biomass composition and maintenance energies are variables that require 

further attention.  Although we focus specifically with the biomass composition in this chapter, 

the carbon demand that is incurred dynamically on the FBA objective by the biomass reaction is 

readily recognized to be discussible analogously in terms of dynamic maintenance energies with 

the biomass composition held static; this is because of the stoichiometric interconvertibility of 

carbon and energy that has been emphasized throughout the previous chapters.  An important 

point to recognize however, is that a very significant hurdle is introduced to the problem of 

integrating dFBA models when both biomass composition and maintenance energies are treated 

as dynamic variables.  The simultaneous dynamic treatment of composition and maintenance is a 

significant problem on its own and the issue is therefore left to future studies.    
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7.2: Is the composition of biomass static? 

If the biomass composition under investigation remains static over a timeframe and 

environmental range of interest, it may be either measured directly once (the Fell approach) or 

extrapolated from previously obtained data (the Palsson Approach).  In both cases, the biomass 

composition may be treated as a part of an FBA model, for instance though not necessarily as a 

biomass objective.  Thus, the only complication to dFBA that arises from a static biomass 

composition is the feasibility of deriving precise stoichiometric coefficients.  Moreover, it is seen 

that any errors in the biomass composition that is used may be linearly compensated for in FBA 

by using phenomenological fitting parameters such as GAM (e.g. equations 4.2.3 and 4.4.2).  

However, for those cases where the biomass composition does change over a relevant range of 

growth conditions, then the question of how to represent these dynamics poses theoretical 

challenges to the modelling process.  

 There are several experimental observations that have been made to date that suggest the 

biomass composition, like environmental composition, changes over growth phases and over 

growth conditions, and so needs to be included in dFBA as a dynamic variable.  Huang et al. 

showed that in the microalgae, Chlorella sorokiniana, the total lipid content of biomass differs 

depending upon whether the substrate of growth is acetate, glucose, or a combination of the two; 

similarly, when grown on a combination of glucose and acetate, the starch content of the biomass 

was shown to change over the course of batch growth (Huang, Huang et al. 2013).  Likewise, Di 

Pasqua et al. provide evidence that Escherichia coli O157:H7, Salmonella enterica serovar 

typhimurium, and Brochothrix thermosphacta, all change their membrane fatty acid profiles in 

response to stress induced by sublethal concentrations of antimicrobial compounds in the growth 



155 
 

media; oppositely, it was found that the composition does not change in Pseudomonas 

fluorescens and Staphylococcus aureus (Di Pasqua, Hoskins et al. 2006).  Godin et al. have 

shown that the buoyant mass of individual cells of Bacillus subtilis, Escherichia coli, 

Saccharomyces cerevisiae, and mouse lymphoblasts, increase with replication rate (Godin, 

Delgado et al. 2010).  As a final example, Yamamotoya et al. have shown, for batch cultures of 

E.coli K-12 strains growing aerobically on glucose in MOPS medium, that the average measured 

intracellular concentrations of glycolytic metabolites (3-phosphoglycerate, glucose-6-phosphate, 

and phosphoenolpyruvate) as well as of glycogen can change over a range of several orders of 

magnitudes throughout the entire duration of growth from the lag phase to the stationary phase 

(Yamamotoya, Dose et al. 2012).  Considering such data, we are led to conjecture, by way of 

exercising biological intuition, that perhaps a dynamically changing biomass composition is the 

norm rather than the exception.  After all, is it truly reasonable to expect biological systems and 

phenomena of interest to exist or to occur predominantly under steady-state? By extension, how 

applicable to real systems are “simple dFBA” models that do not account for such changes in a 

realistic way?   

Despite the many reasons to believe that the biomass needs to be treated as changing, we 

have found that very few published dFBA models consider this problem (Hanly and Henson 

2011).  In contrast, some dFBA authors have considered altering the biomass composition during 

growth, and reported improved dFBA fits to experimental growth data.  Notably, Pramanik and 

Keasling used the observation, that fractional compositions of the various compounds that make 

up E.coli biomass change with growth rate, to derive statistical linear regressions between 

growth rate and concentrations of various molecules that comprise this organism; these 

regressions were then used to define biomass objectives with growth-rate-dependent coefficients 
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(Pramanik and Keasling 1997).  In one application, the approach of Pramanik and Keasling was 

used to achieve qualitatively improved dFBA fits to aerobic growth data of E.coli growing on 

glucose and acetate (Meadows, Karnik et al. 2010).   

Whilst using regressors against specific growth rate may lead to qualitatively acceptable 

fits of dFBA predictions to growth data, we would argue that this is still a static representation of 

biomass composition.  In accounting for a changing composition by simply altering the 

coefficients of a biomass reaction, a dFBA model does not treat the metabolic cell constituents as 

dynamic concentrations; that is, as signals of feedback regulation.   As a result, the feedback 

mechanisms from alterations to enzyme activity by substrates in pathways that transiently exhibit 

non-steady-state concentration changes are neglected.  There is evidence that metabolites of even 

well studied pathways such as glycolysis exhibit non-steady-state concentration dynamics under 

certain growth conditions (Yamamotoya, Dose et al. 2012).  The need for kinetic models to 

account for “local feedback” have already been demonstrated for fully kinetic models (Cornish‐

Bowden and Cárdenas 2001).    

A second reason we find that the above treatment of biomass composition is a static 

representation is because metabolites such as those of central metabolism are not terminal 

products of pathways.  Rather, they are precursors to anabolism or energy-sources.  Therefore, 

the potential use of these metabolites as future growth assets is neglected when they are 

consumed in a model, for instance, by a biomass reaction.  Thus, it is unclear how in dFBA to 

treat intracellular metabolites that, although contribute by mass to a dynamic biomass 

composition, do not contribute a service to an instantaneous and static cellular objective.  Some 

dFBA authors have recently considered this problem.  For example, Upton et al vary the 
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composition of phosphate products and glycogen storage in aspergillus niger to take into account 

the aggressive phosphate scavenging strategy of A. niger (Upton, McQueen-Mason et al. 2017). 

 We will propose solutions to overcome these hurdles to dFBA modelling.  First however, 

we demonstrate using the ideas introduced in this section that the rigid correspondence between 

growth rate, growth yield, and energy flux in Palsson-style FBA models (chapters 4 and 5) leads 

to dFBA models that predict unrealistically rigid growth curves.  We begin by introducing the 

notational conventions we will use for our dFBA models.   

7.3: Notational convention for kinetic parameters 

 We will now describe the notational conventions that we will follow in describing our 

kinetic equations.  The rate of most enzyme catalysed reactions will be described with at least 

three parameters.  Representing the turnover rate, the half-maximal rate, and the product 

inhibition concentration, these parameters are respectively given the base notations kCat, Km, and 

Ki as standard in biochemistry.  For the most part, these values are parameters associated with a 

catalyst and not a substrate (each dynamically treated catalyst is modelled to have a single 

substrate and a single product).  Therefore, in discussing these parameter values of a specific 

catalyst, the above three notations will be superscripted with the name of the catalyst.  The 

notation Ki
XylE

 is therefore the product inhibition parameter for the XylE transporter; the fact that 

the inhibiting metabolite is xylose is understood as internal xylose is the only product of xylose 

transport (we have ignored any effects from protons).  In later sections (7.11 and 7.12), we 

consider possibilities where a catalyst may be inhibited by metabolites other than its own 

product.  Thus, inhibition constants other than those for product inhibition must be qualified with 

the inhibiting metabolite.  To indicate this metabolite, we will follow the “i” in Ki with the name 
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of the metabolite.  Thus, when a compound comp inhibits Rxn but is not a product of Rxn, the 

inhibition parameter for this interaction will be denoted by Kicomp
Rxn .   

 The next section deals with metabolites and enzymes that occur in real biological 

systems.  However, we will later work with a hypothetical network model as a way of illustrating 

our ideas in the absence of the topological complexities of real metabolic networks.  To facilitate 

the book keeping of metabolite and catalyst (and reaction) names there, we will assign to all 

hypothetical metabolites, a lower-case letter from the English alphabet.  Catalysts of that 

network will then be named by sandwiching a “TO” between the sequence of its substrate and its 

product names written in alphabetical order.  Thus, the catalyst for the reaction  

a → b + e, (7.3.1) 

will be given the name “aTObe,” and similarly for the reaction itself.   

Introduced in section 7.6 are “indicator metabolites,” which we use later on as a simple 

way of writing FBA constraints as functions of dynamic metabolite concentrations.  Indicator 

metabolites are purely computational, but all indicator metabolites will have one real counterpart 

metabolite in the dFBA model.  Thus, indicator metabolites will be named by prefixing the name 

of the associated metabolite with a capital “I.”  Constraints on exchange reactions involving 

indicator metabolites will be written as simple irreversible Michaelis-Menten equations with a 

maximal velocity parameter (Vmax) and a half-maximal parameter (Km).  Because these 

parameters are associated with the metabolite, and not with any catalyst, we will qualify them by 

subscripting the base notation with the name of the indicator metabolite.  The parameter 

Vmax will be used in dFBA, as opposed to kCat, generally when the concentration of a catalyst 

cannot be represented as a dynamic variable.  One such case occurs when an effector, but not the 
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catalyst, is a dynamic variable.  In this case, we will qualify the Vmax notation by indicating the 

name of the affected catalyst as a superscript.  Note that there is a notational difference between 

doing this and what we have done for indicator metabolites; one denotes a parameter of a single 

reaction, whereas the other denotes a parameter of a single metabolite.   

Less conventionally than for the kinetic parameters we have discussed so far, we will use 

the Greek symbols, β and κ, to describe the kinetics of gene expression.  When an expression 

rate is described as an order-1 Hill function of a signalling metabolite or a transcription factor 

concentration, β will be used to represent the maximal rate of gene expression that occurs at 

saturation; in the same setting, κ will be used to represent the concentration of the signal at which 

expression rate is 
1

2
β.  These parameters will be specific to a protein whose expression is under 

consideration, and thus will be qualified using the protein name as a subscript.  To describe the 

constant production rate of a protein due to basal gene expression, we will use the same 

conventions described here except that the notation β0 will be used as the base notation for the 

constant rate.  The parameter κ may be thought of as always having a value of zero for basal 

expression; therefore we will not indicate this explicitly in our equations.   

Finally, we introduce two parameters that do not fall within the conventional scope of 

this section.  First is the non-unit Hill coefficient that appears in one equation in section 7.11.  

We will use the notation ncomp to indicate the value of this coefficient where comp is the 

signalling metabolite.  Second, we will use the notation kDiff
xyl

 to indicate the diffusion coefficient 

of xylose across the inner cell membrane.  With the notational convention having been described, 

we will now introduce a simple dFBA model of E.coli xylose metabolism.   
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7.4: A simple xylose dFBA model 

The following system of differential equations was used to construct a simple dFBA 

model of aerobic E.coli growth on xylose.   

[R2ss] =
[XylR][xyl]2

(kd
XylR

)
2  

 

(7.4.1) 
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d[XylE]

dt
= [

βE[R2ss]

[R2ss] + κE 
] −

µ[XylE]

3600
 

 

(7.4.6) 

 

d[XylA]

dt
= [

βA[R2ss]

[R2ss] + κA 
] −

µ[XylA]
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(7.4.7) 

 

d[XYLR]

dt
= βR

0 + [
βR[R2ss]

[R2ss] + κR 
] −

µ[XylR]

3600
 

(7.4.8) 

 

  The equation accounts for the upregulation of the proteins involved in the xylose system 

by the inclusion of the transcription factor (TF) XylR, which in its activated form, is written 

R2ss.  The concentration of R2ss is assumed to achieve a rapid steady-state (ss) value, and is 

included as an algebraic equation expressing the quadratic dependence of the ss concentration on 

intracellular xylose.  The presence of R2ss is modelled to activate the expression of the proteins 

XylR, XylE, and XylA via first-order Hill functions of R2ss; respectively, these proteins are the 

TF, the transporter, and the metabolic enzyme (section 1.4). 

It should be noted that this ODE model accounts for only one transporter for xylose.  In 

preliminary analyses of the equations, we have found that it makes very little difference to the 

overall behaviour of this system whether a second transporter is included.  This is a consequence 

of our not including the mechanism details that distinguish the two transporters biologically in 

the interest of keeping the ODE simple for its integration into dFBA.  Recall from section 1.4 

that xylose is transported via an ABC mechanism by the XylFGH complex and via a proton-

symport mechanism via the XylE protein.  In particular, by assuming that the only biologically 
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distinguishing feature of the transporters is their Km values, we have found that, because 

[xylOut] >> Km for both the symporter and the ABC transporter, for the majority of the growth, 

the ss xylose concentration is determined summatively as a function of the ss concentrations of 

XylE, and XylFGH (correspondingly, by their combined transport rates). Specifically, with 

comparable values for the turnover parameter, the consumption rate of xylose (neglecting a small 

contribution from diffusion) remains essentially  

vtransport
xyl

≈ kCat
XylE([XylE] + [XylFGH]) [xylOut] (7.4.9) 

for most of the growth simulation, with the transporter concentrations driven to ss by a pair of 

decoupled Hill equations (note that kCat
XylFGH

 could have been used to substitute kCat
XylE

 in the above 

expression with the same effect).  We have chosen to represent this dynamics as a single 

transport process as we find the inclusion of a second transporter to be unnecessary, unless a 

more complex regulatory model is assumed for their expression.  Since we are not interested in 

this chapter in describing specific growth rates and yields at the resolution of the difference in 

Palsson-style FBA predictions that arises from using alternative transporters (table 5.6.1), we 

will assume that only the symport process is used.   

 The rate of xylose transport is assumed to be quantified as a combination of two 

processes.  The first, is a simple diffusion, the rate of which is determined by the concentration 

difference between the external and the internal xylose.  The flux across the diffusion step will 

be seen to be trivial in magnitude relative to the flux across catalysed transport, and so will have 

very little consequences to dFBA predictions.  This is because  

kDiff
xyl

 is assumed to be a small parameter.  A diffusion step is required however to activate the 

xylose system when starting with an initial xylose concentration near 0.0 mmol ∙ L−1; that is, the 
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model must accommodate, in some way, a process by which external xylose may be transported 

into the cell to activate the TF.  An alternative way by which this could have been accomplished 

is by introducing a basal expression level of XylE, as we have done in the above equations for 

XylR.  The second avenue of xylose transport is through the process catalysed by the transporter 

XylE.  This step has been modelled as an irreversible Michaelis-Menten step with product 

inhibition.  The simplest dFBA model of xylose metabolism we present has no feedback 

processes other than this inhibition that operate on the metabolic time-scale; the xylose 

consumption step is not regulated by “end metabolites” of pathways because those metabolites 

reside in the FBA and are at ss.   

 The intracellular xylose is processed by the xylose isomerase reaction catalysed by XylA, 

and, in the dFBA, the ODE-predicted flux across the XylA reaction is used to define constraints 

in the corresponding reaction in the linear program.  Note that in the ODE, the XylA reaction is 

not product-inhibited as in the XylE reaction.  This is because the product of this step, xylulose, 

is an FBA metabolite.   

The spatial conversion factors have been included in the above to remind ourselves that 

the biomass is measured in OD-units, and that a volume-difference exists between the two 

compartments across which transport processes operate.  Here, we have assumed that an OD600of 

1.0 corresponds to a cell concentration of 1012 ∙ cells ∙ L−1,  that the external volume is 1.0 L, 

that the internal cell volume is 10−15L , and that the GDW of a cell is 2.8 (10−13) grams (Milo, 

Jorgensen et al. 2010).    A conversion factor is also included for time to explicitly reflect the fact 

that the specific growth rates for E.coli are conventionally understood to carry the unit of h−1, 

whereas the relevant timescale in the equations is sec−1.  
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   The E. coli metabolic model iJR904 was used to introduce the stoichiometric 

constraints of the FBA step (Reed, Vo et al. 2003).  Xylose diffusion was added as an extra 

reaction as this step is not included in the published model.  We have also used the NGAM and 

GAM values that have been published for the iJR904 model: respectively, 7.6 mmol ∙ GDW−1 ∙

h−1 and 45.56 mmol ∙ GDW−1.   The maximal oxygen consumption rate was constrained to a 

value of 15.0 mmol ∙ GDW−1 ∙ h−1 (Varma and Palsson 1994).  The value was lowered from the 

maximal value of 20.0 mmol ∙ GDW−1 ∙ h−1which has been used throughout this thesis as we 

found from initial dFBA runs that our model does not predict an acetogenic growth regime for 

this vo2
Max.  Finally, we have used the Palsson-style method of assuming a biomass objective with 

the biomass composition of the published iJR904 model (Reed, Vo et al. 2003).   
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7.5: Parameters and the calculation of β 

The summary of all numerical values we have assigned to parameters in this chapter   are 

presented in table 7.5.1 with their units and sources.  

Parameter unit Value used Value cited Source 

NGAM mmol ∙ GDW−1 ∙ h−1 7.6 7.6, 8.39 (Reed, Vo et al. 2003, Feist, 

Henry et al. 2007) 

GAM mmol ∙ GDW−1 45.56 45.56 (Reed, Vo et al. 2003) 

vo2
Max mmol ∙ GDW−1 ∙ h−1 15.0 15.0 (Varma and Palsson 1994) 

Cbio mmol ∙ GDW−1 41.46 41.46 (Reed, Vo et al. 2003) 

kCat
XylE

 sec−1 60.0 1.5~2320.0 (Stein and Litman 2014) 

Km
XylE

 mmol ∙ L−1 0.1 0.2~4.0 (Sumiya, Davis et al. 1995) 

Ki
XylE

 mmol ∙ L−1 100.0 4.6-1174.0 BRENDA (www.brenda-
enzymes.org) *XylA 

inhibition by xylitol 

kCat
XylA

 sec−1 90.0 0.007-258.0, 47.0 BRENDA (www.brenda-
enzymes.org) (Umemoto, 

Shibata et al. 2012) 

Km
XylA

 mmol ∙ L−1 10.0 0.076-605.0 BRENDA (www.brenda-
enzymes.org) 

Kif
XylA

 mmol ∙ L−1 20.0 4.6-1174.0 BRENDA (www.brenda-
enzymes.org) *XylA 

inhibition by xylitol 

kDiff
xyl

 sec−1 1.0 ∙ 10−5.0 NA *required for initiation; 

arbitrarily chosen to be 

small 

kcat
eTOg

 sec−1 90.0 90.0 Value for  kCat
XylA

  

Km
eTOg

 mmol ∙ L−1 10.0 10.0 Value for  km
XylA

 

Ki
eTOg

 mmol ∙ L−1 100.0 100.0 Value for  ki
XylE

 

kcat
gTOh

 sec−1 90.0 90.0 Value for  kCat
XylA

 

Km
gTOh

 mmol ∙ L−1 10.0 10.0 Value for  km
XylA

 

Ki
gTOh

 mmol ∙ L−1 100.0 100.0 Value for  ki
XylE

 

kcat
eTOh sec−1 90.0 90.0 Value for  kCat

XylA
 

Km
eTOh mmol ∙ L−1 10.0 10.0 Value for  km

XylA
 

Ki
eTOh mmol ∙ L−1 100.0 100.0 Value for  ki

XylE
 

kcat
hTOf sec−1 90.0 90.0 Value for  kCat

XylA
 

Km
hTOf mmol ∙ L−1 10.0 10.0 Value for  km

XylA
 

Ki
hTOf mmol ∙ L−1 100.0 100.0 Value for  ki

XylE
 

Vmax
Ie  mmol ∙ sec−1 0.02 0.75 (Lee 2009)*value for citrate 

synthase 

Km
Ie mmol ∙ L−1 100.0 0.076-605.0 BRENDA (www.brenda-

enzymes.org)*value for 

XylA 

Vmax
If  mmol ∙ sec−1 0.02 0.75 (Lee 2009)*value for citrate 

synthase 

Km
If  mmol ∙ L−1 100.0 0.076-605.0 BRENDA (www.brenda-

enzymes.org)*value for 

XylA  

Vmax
Ig

 mmol ∙ sec−1 0.02 0.75 (Lee 2009)*value for citrate 

synthase 
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Km
Ig

 mmol ∙ L−1 100.0 0.076-605.0 BRENDA (www.brenda-
enzymes.org)*value for 

XylA 

Vmax
Ih  mmol ∙ sec−1 0.02 0.75 (Lee 2009)*value for citrate 

synthase 

Km
Ih mmol ∙ L−1 100.0 0.076-605.0 BRENDA (www.brenda-

enzymes.org)*value for 

XylA 

Vmax
Ixyl

 mmol ∙ sec−1 0.02 0.75 (Lee 2009)*value for citrate 

synthase 

Km
Ixyl

 mmol ∙ L−1 100.0 0.076-605.0 BRENDA (www.brenda-
enzymes.org)*value for 

XylA 

kd
XylR

 mmol ∙ L−1 3.0 ∙ 10−3.0 3.3 ∙ 10−3.0 (Ni, Tonthat et al. 2013) 

βR
0  mmol ∙ L−1 ∙ sec−1 1.0 ∙ 10−10.0 NA *required for initiation; 

arbitrarily chosen to be 

small 

βR mmol ∙ L−1 ∙ sec−1 5.0 ∙ 10−8.0 5.0 ∙ 10−8.0 (Robison, McGuire et al. 

1998, Milo, Jorgensen et al. 

2010) Bionumber 102632; 

*TF concentration required 

to be two-three orders of 

magnitude below the value 

for XylE 

κR mmol ∙ L−1 1.0 ∙ 10−5.0 1.0 ∙ 10−4.0 (Robison, McGuire et al. 

1998, Milo, Jorgensen et al. 

2010) Bionumber 102632; 

βE mmol ∙ L−1 ∙ sec−1 5.0 ∙ 10−6.0 2.7 ∙ 10−6.0 (Nelson, Lehninger et al. 

2008) *calculated as 

described in text 

κE mmol ∙ L−1 1.0 ∙ 10−5.0 1.0 ∙ 10−5.0 Value for  κR 

βA mmol ∙ L−1 ∙ sec−1 7.0 ∙ 10−6.0 2.7 ∙ 10−6.0 Value for  βE 

κA mmol ∙ L−1 1.0 ∙ 10−5.0 1.0 ∙ 10−5.0 Value for  κR 

βeTOg mmol ∙ L−1 ∙ sec−1 7.0 ∙ 10−6.0 2.7 ∙ 10−6.0 Value for  βA 

κeTOg mmol ∙ L−1 1.0 ∙ 10−5.0 1.0 ∙ 10−5.0 Value for  κA 

βgTOh mmol ∙ L−1 ∙ sec−1 7.0 ∙ 10−6.0 2.7 ∙ 10−6.0 Value for  βA 

κgTOh mmol ∙ L−1  1.0 ∙ 10−5.0 1.0 ∙ 10−5.0 Value for  κA 

βeTOh mmol ∙ L−1 ∙ sec−1 7.0 ∙ 10−6.0 2.7 ∙ 10−6.0 Value for  βA 

κeTOh mmol ∙ L−1 1.0 ∙ 10−5.0 1.0 ∙ 10−5.0 Value for  κA 

βhTOf mmol ∙ L−1 ∙ sec−1 3.0 ∙ 10−6.0 2.7 ∙ 10−6.0 Value for  βA 

κhTOf mmol ∙ L−1 1.0 ∙ 10−5.0 1.0 ∙ 10−5.0 Value for  κA 

Vmax
aTObe mmol ∙ sec−1 7.0   

nf NA 1.3 1.0~4.0 (Alon 2006) 

Kif
aTObe mmol ∙ L−1 6.0 ∙ 103.0 NA *Discussed in text 

nh NA 1.3 1.0~4.0 (Alon 2006) 

Kih
aTObe mmol ∙ L−1 50.0 NA *Discussed in text 

 

Table 7.5.1: Table of all parameter values used for our dFBA simulations in this chapter. Note 

that many of these parameters will not appear until the hybrid dFBA model is discussed.  The 

simple xylose dFBA model presented in this section is modified to this second dFBA model, and 

its parameter values remain unchanged in the process.   
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We have found that one particularly difficult parameter to come across in the literature is 

the maximal gene expression rate β.  In arriving at a value for βE, we made the following 

calculation.  We started with the assumption that the number of copies of the XylE transporter at 

steady-state is 10,000 using a published value for the E.coli lactose transporter (Nelson, 

Lehninger et al. 2008).  According to equation 1.5.1, this value translates to 0.016 mmol ∙ L−1 for 

the intracellular XylE concentration.  Bringing the equation for XylE expression (equation 7.4.6) 

to steady-state, and assuming promotor saturation, we are able to write  

βE = µss[E]ss. (7.5.1) 

Using the maximal specific growth rate observed experimentally (0.6 h−1) as an approximation 

to the steady-state specific growth rate, the RHS of equation 7.5.1 was evaluated to our 

approximation to βE (2.7 ∙ 10−6.0).  In all of our dFBA models, we have assumed, when 

quantifying βA, that this value would be of the same order of magnitude as βE.  This may not be 

strictly a valid assumption as the promotors of the symport protein and the promotor for the 

isomerase are located in different regions of the E.coli genome (section 1.4).  However, the 

expression of the genes for the xylose ABC transporter has been shown to be coupled to the 

expression of the xylose metabolic genes via a DNA looping mechanism (Tao, Gonzalez et al. 

2001, Ni, Tonthat et al. 2012).  Thus, we make the assumption that the upregulation of the 

transport and metabolic processes for xylose should take place at comparable rates under optimal 

conditions.  When quantifying βR, we have used the fact that the intracellular concentration of 

transcription factors are often several orders of magnitude below that of metabolic enzymes 

(Milo, Jorgensen et al. 2010).  We have assumed for XylR that its steady-state expression rate (as 

in equation 7.5.1) would be two orders of magnitude below that of XylE.   
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7.6: Predictions of the simple xylose dFBA model 

The dFBA algorithm (section 2.10) was run with the ODE system of section 7.4 and the 

parameter values from section 7.6.  The predicted growth dynamics are presented in figure 7.6.1.   

 

Figure 7.6.1:  These plots show the output of the simple xylose dFBA model.  A) The 

concentrations of the protein products of the xylose system upregulated by the presence of 

environmental xylose.  Note that the concentration for the XylR protein is plotted using the right 

axis of the graph in panel A using a logarithmic scale.  B) The concentration time series for the 

external metabolites (xylOut, acOut, and CO2) are plotted together with the internal 

concentration of the substrate (xyl).  C) The time series of population growth is plotted together 

with FBA predicted specific growth rates.  D) The relation between yield and growth rate is 

tracked dynamically over the YSC-µ plane.  The numbers and arrows indicate the direction of 
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movement along the depicted trajectory.  A thick arrow is used at the third position to reflect that 

fact that the dFBA algorithm spends the majority of its time there.    

  

 It can be seen that, upon induction, the xylose transport and metabolic proteins tend to 

steady state concentrations, with the XylE protein achieving the highest steady-state value of 

0.02 mmol ∙ L−1, followed by XylA which achieves a concentration of 0.01 mmol ∙ L−1.  At all 

times, the concentration of the XylE protein exceeds that of the XylA protein.  This is because 

βEwas assigned a slightly higher value relative to βA.  The consequence of this effect may be 

seen in the plot of internal xylose concentration in panel B of figure 7.6.1.  The xylose curve is 

seen to increase toward a high steady-state concentration because the rate of transport is greater 

than the rate of metabolism.  The xylose flux into the FBA model increases over the first hours 

of growth as the product of [xyl] and [XylA] increases.  As a result, it is seen that the predicted 

specific growth rate also increases during this period (panel C).   The specific growth rate 

prediction peaks, when the internal xylose concentration is maximal, around a value of 0.9 h−1 

just over 1.5 hours into growth.  Because the value of µ does not change appreciably once having 

approached this maximum, the biomass growth curve exhibits what is close to an exponential 

growth with a near-constant specific growth rate (panel C).  The trajectory of the relation 

between growth yield and growth rate is plotted in Paned D of figure 7.6.1.  It can be seen there 

that, at all time-points, the relation predicted by equation 4.4.6, and analysed as an FBA series in 

chapter 5, is obeyed.  It is not until very close to internal xylose depletion that the trajectory is 

seen to make a return to region of the YSC-µ plane corresponding to lower growth rates.  The 

region of the plane in which the dFBA model was seen to spend the most amount of time was 

determined, from inspecting the density of simulated points, to be the acetogenic region.  This is 

indicated in panel D by a thick arrow.  This fact may also be observed from, once again, noting 
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that µ is seen in panel C to be close to its maximal value for the majority of the growth.  That this 

value of µ corresponds to acetogenic growth (at a vo2
Max of 15.0 mmol ∙ GDW−1 ∙ h−1) may be 

observed from the acetate accumulation that is seen in panel B.  No ethanol production was seen 

to occur; note that, from the corresponding plots in chapter 5, this may be inferred from Panel D 

where the movement of the trajectory away from the jointly optimal hyperbola is too small to 

enter the ethanologenic regime.   

 The conclusion we draw from the simple model is that the dFBA approach of 

constraining metabolite uptake rates, as functions of external concentration, and using a biomass 

objective does introduce a systems level feedback of information, as claimed by dFBA authors 

(Mahadevan, Edwards et al. 2002).  In the case of our model, the feedback involves two 

concentrations.  The xylose concentration “informs” the biomass to grow, and the biomass 

concentration “informs” the xylose concentration to deplete.  In this way, a feedback is 

established from the biomass onto itself, asserting that growth should cease as a function of 

population size.   

On the other hand, a problem we identify with the simple xylose dFBA model is that its 

dynamic predictions are not qualitatively informative.  The fact that the key variables that drive 

the dynamics of the system reach an early steady-state, combined with the insensitivity of µ to 

the applied constraints (xylose consumption rate) leads to a dFBA model which behaves 

essentially as an FBA model for the majority of the simulation.  This is to say that rate-

predictions of the simple dFBA model are very nearly static, or that the dynamics do not 

appreciably accelerate. A likely reason for this is because the just-mentioned feedback of 

information occurs on the timescale of population growth, and not metabolism.  Thus we 

hypothesize that more dynamically significant dFBA models will need to account for feedback 
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transfer of information on the metabolic timescale, for example, by the inclusion of allosteric 

regulation.  Fast feedback of information however requires that dFBA models consider not just 

the transfer of information that occurs through changes in environmental metabolite 

compositions, but also the information that is present internally to the cell; that is, the 

information that is available to a cell regarding its own metabolic system state as a function of 

internal metabolite concentrations (e.g. the internal xylose in the simple dFBA model).  Thus, 

before discussing the possible ways by which to include faster information feedback, we will 

first deal with the problem of defining non-physical boundaries between the static and dynamic 

components of dFBA models.  We start in the next section by considering the number of 

topologically distinct ways by which to set up dFBA problems.   

 

7.7: How many distinct ways are there to set up a dFBA model? 

 As we have done with our simple xylose dFBA model, most microbial dFBA models that 

have been constructed to date and that we are aware of treat the environmental composition 

dynamically, but not the biomass composition (Mahadevan, Edwards et al. 2002, Meadows, 

Karnik et al. 2010, Hanly and Henson 2011).  A notable exception is seen in the work of Upton 

et al (Upton, McQueen-Mason et al. 2017).  This is because time-courses in biomass and 

metabolite concentrations in the external media are more easily measurable compared to their 

intracellular counterparts.  As a simple thought experiment however, consider what might 

happen if the reverse situation were true; that is, if a particular cellular component was much 

easier to observe than the combination of cells and their external environment.  In this case, it is 

entirely conceivable that modellers would opt to treat the observable cellular component as the 

dynamic component and to treat the rest of the cell together with the external environment as the 
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static component.  In the real-world situation, the dFBA model is structured in such a way that a 

static system (the cell) is embedded in an ambient dynamic system (the environment).  In the 

hypothetical reverse-world situation, the model is structured with a dynamic system embedded in 

an ambient static system.  Biologically speaking, these are two very different models 

corresponding to two distinct physical systems.  However, we will now argue that the two 

models mathematically exhibit the same structure.  The main conjecture we present in this 

section is that the total number of ways to set up a dFBA model with a fixed number of FBA 

components is one.  We build our argument in ten steps.         

Step1: Use formulation 2.9.1 to define an FBA model 

An FBA problem is a metabolic network and a global sink and an objective function and 

constraints. 

 

Step2: Enumerate FBA models by cellular objectives 

In any large model involving several FBA components, the number of FBA models is equal to 

the number of objective functions. 

 

Step3: Combine the sinks in separate FBA models into one  

All FBA models share a common global sink.  This is because individual FBA sinks may be 

safely combined without altering the remaining components defining an FBA model in step 1 

(the network, the objective, and the constraints).   

 

Step 4: Define how two FBA models are combined into one 

Two linear objective functions combine to form one when two networks are coupled by a 

common set of metabolites.  Observe that for two metabolic networks represented by 

stoichiometric matrices 𝐒𝟏 and 𝐒𝟐, if the matrices are decoupled, then an FBA problem of the 

form 

 

Optimize:  

f = f(𝐯𝟏, 𝐯𝟐) 
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Subject to: (7.7.1) 

[
𝐒𝟏 𝟎
𝟎 𝐒𝟐

]  ∙ [
𝐯𝟏
𝐯𝟐
] = 𝟎, 

 

 

may be written as two separate problems 

Optimize:  

fk = fk(𝐯𝐤) 

Subject to: 

 

 

(7.7.2) 

𝐒𝐤 ∙ 𝐯𝐤 = 𝟎,  

 

for k = 1, 2.   

Step 5: Define how an FBA model is transformed into a dFBA model 

An FBA model becomes a dFBA model when a network model is coupled to an ODE system.  

Formally, one partitions the set of all exchange reactions in the model into those that transfer 

flux between the network and the sink, and those that transfer flux between the network and the 

ODE system.  The ODE system may be thought of in this way as the part of the FBA sink for 

which concentration information is explicitly accounted for in dFBA by integrating flux across 

the latter set of exchange reactions.  The definite integrals evaluated in this way represent 

concentration information that provide the opportunity for feedback processes to be defined.   

 

Step 6: Restrict the transfer of information between two FBA components in dFBA 

Any transfer of information between two FBA models must be via an ODE component of a 

dFBA model.  This is because information is lost to the sink as a consequence of not having 

integrated exchange fluxes.   

 

Step 7: Conclude that there is only one way to set up a dFBA problem given a fixed number of 

FBA problems 

We may conclude from steps 1-6 that, for a dFBA model with p FBA components and q = 1 

ODE component, there is only one topologically distinct way by which to construct a dFBA 

model.   Information may not be transferred via the sink (step 6), and fluxes may not be directly 

exchanged between FBA models without reducing the number p (step 4).     
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Step 8: Observe that a dFBA model with one FBA model does not depend on the order of model 

compartmentalisation  

There is absolutely no concept of spatial orientation in FBA or dFBA.  The dFBA algorithm 

(section 2.10) therefore does not distinguish between the physical spatial orders of embedding 

between its statically and dynamically treated components that occurs biologically.  A sink in a 

steady-state network in a dynamic environment, has the same dFBA setup as a dynamic cellular 

compartment in a steady-state cell and environment surrounded by a sink.    

 

Step 9: Observe that two decoupled ODE models can be combined to form one ODE system 

This observation states simply that two differential equations may either form a single coupled 

system, or combine to form a single decoupled system.  In either case, there is only one ODE 

system in the dFBA model.    

 

Step 10: Conclude that there is only one way of setting up a dFBA model with a fixed number of 

FBA models  

With p distinct FBA components and q decoupled ODE components, there is only one 

topologically distinct way by which to set up a dFBA model.   

 

The conclusion in step 10 is the desired result.  Whilst we have outlined a qualitative 

argument in this section that lead us to conjecture that the number of ways of setting up a dFBA 

problem for a fixed number of FBA and ODE models is one, the result remains to be proven 

mathematically or demonstrated computationally.  Doing this is beyond the scope of our goals of 

this chapter.  The significance of the result then, is the insight that this line of reasoning brings to 

the development of alternative dFBA formulations that account for dynamic biomass 

compositions.  Specifically, we find that the partitioning the exchange reactions in step 5 should 

not in general be restricted by biological compartmentalisations that physically separate the 

various components of the systems because of our observation in step 8.  In other words, 

topologically distant metabolic processes should be accountable under a common dFBA 

formulation.  This idea is further explored in the next section. 



175 
 

Before proceeding, we find that it is very important to emphasize that we are interested in 

the number of ways of setting up dFBA models; what our conclusion does not state is that all 

dFBA models are mathematically equivalent.  Such a statement would require a metric to be 

defined for a space of dFBA formulations and the proof of a uniqueness theorem for dFBA 

solutions.  We find it unlikely that such a result is possible for general dFBA formulations.  As 

one counterexample, if any one of the decoupled ODEs mentioned in step 9 where to exhibit a 

bifurcation, then we have no way of establishing a one-to-one mapping between initial 

conditions and dFBA trajectories.  This is because the parameter set in (𝐌𝐅𝐁𝐀, 𝐯
𝐌𝐢𝐧, 𝐯𝐌𝐚𝐱, 𝐋, f) of 

the dFBA algorithm becomes dependent on which branch of bifurcation the dFBA trajectory 

lands.  One possible situation in which uniqueness of dFBA trajectories may be proven might be 

if the dFBA model is defined using only single-dimensional ODE models.  In this case, each 

ODE is decoupled from the other; by sandwiching each equation between FBA models, one will 

have effectively assumed steady-state boundary conditions between the individual dynamical 

components of the larger metabolic system.   

7.8: An alternative formulation of the xylose concentration dynamics 

 The result of section 7.7 states that the dFBA algorithm does not see the physical spatial 

order in which the static and dynamic components of the overall model have been embedded.  

This is because in every configuration, the number of differential equation systems is just one.  

The corollary to this result is that topologically separated biological compartments and 

subsystems may all be treated dynamically in dFBA without altering the overall architecture of 

the dFBA model.  In this way, it is observed that the issue of how dynamic biomass 

compositions should be treated in dFBA is a special case of deciding on where to draw the 

biological boundaries.  It is not a case of deciding amongst several possibilities for drawing 
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mathematical boundaries between static and dynamic model components.   In this setting, the 

treatment of biomass composition dynamics, environmental composition dynamics, and 

community dynamics, are seen to be instances of the same problem from the perspective of 

dFBA topology.  In any of these biological formulations, dFBA is equivalent to eliminating a set 

of FBA exchange reactions and replacing them with an ODE system. 

In the Palsson FBA framework, a biomass reaction is employed and metabolites between 

the final step of substrate acquisition and biomass formation are assumed to be at steady-state 

concentrations.  As a consequence, the physical boundary of metabolism is defined to coincide 

with the dynamic to static boundary of the FBA model, and there is no internal accumulation of 

mass.  If therefore, in the Palsson-style dFBA setting, a compound that occurs at the periphery of 

the metabolic model is required a dynamic representation, this problem may be very easily 

resolved by extending the environmental boundary inward by several reactions.  The apparent 

difficulty in the Palsson framework arises under settings where metabolites located far from the 

physical boundary need to be treated dynamically.  As a result of asserting that internal 

metabolites may not accumulate, an ODE system in the Palsson framework is required to 

increase in dimension, in a coupled manner, as the distance of a dynamic metabolite from the 

physical boundary is increased.  However, our discussion of dFBA topology suggests that ODE 

dimensions need not increase with topological distance between dynamically modelled dFBA 

components.   

Two issues become immediately apparent from the discussion in the previous paragraph.  

First, we require a scheme for representing the concentration dynamics of internal metabolites 

that are not at steady-state values.  Second, we require this representation scheme to be 

extendible towards deeper metabolic loci in a way that does not depend on metabolic distance 
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from the physical cell boundary.  With the goal of arriving at a solution, we reconsider the 

Palsson formulation of the xylose dFBA model by asking how a Fell approach may have been 

different.  Specifically, we consider how a Fell-FBA would have treated the concentration 

dynamics of intracellular xylose.  Suppose that the xylose fraction was the only component of the 

biomass composition that is varying (the xylose model already makes this assumption 

implicitly).  Our xylose model accounts for this dynamic strictly via its ODE component; that is 

to say that the FBA side of the overall model starts with xylulose, and not xylose. An alternative 

representation however would have been to draw xylose out in a separate exchange reaction, thus 

representing flux to the xylose composition of the biomass as a combination of ODE and FBA 

predictions.  Having a xylose exchange while simultaneously using a biomass objective would 

clearly leave this exchange with zero-flux since Palsson-style FBA optimizes for (terminal) 

biomass yields.  Thus, to ensure that flux imbalances can be predicted by FBA at the xylose 

node, the constraints on the reactions surrounding xylose must be strict LP constraints.  The flux 

through the xylose exchange reaction would then be taken to be the difference in flux through the 

isomerase step and the transport step, which in turn, the ODE would determine.  It is obvious 

from this description, of an alternative dFBA formulation, that its output would be identical to 

that of the original.  The noteworthy difference is a technical one however.  From the Fell-

representation of xylose, but not from the Palsson-representation, it can be seen that by 

surrounding an FBA node for which there is an exchange reaction with strict LP bounds, 

integration of the flux through the exchange (set to infinity bounds) can be used to derive the 

concentration of a biomass metabolite that is not in steady state.  The upshot to this 

representation is that, unlike with the strictly Palsson approach, the dynamical treatment of the 

non-steady state metabolite does not depend on the metabolite being coupled to the part of the 
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ODE system describing the dynamics of the environmental composition.  Therefore, with the 

Fell-representation of variable biomass compositions, the modelling of non-steady state 

metabolite concentrations can be extended to metabolites located deeper within the metabolic 

system without increasing the dimensionality of an external ODE as a function of metabolic 

distance.  We will now formally describe this method of doing dFBA.      

 

7.9: Modifications for a hybrid dFBA algorithm for dynamic biomass compositions 

 In this section, we describe the modifications to the dFBA algorithm (section 2.10) that 

are needed for the dynamic representation of concentrations of biomass constituents.  The reader 

is referred to section 2.10 as the same notations used in that section are used here as well.   

1) A metabolite is treated dynamically or statically, but not both; thus, decide upon which 

subset of metabolites to treat dynamically.  The set of dynamically treated metabolites 

will then be partitioned into those occurring internally to the cell and those occurring 

externally to the cell.  Let 𝐜𝟎
𝐢𝐧 and 𝐜𝟎

𝐞𝐱, be their initial concentrations so that    

𝐜𝟎 = [
𝐜𝟎
𝐢𝐧

 𝐜𝟎
𝐞𝐱]. 

(7.9.1) 

 

2) For each dynamic metabolite, ai, introduce a corresponding FBA metabolite, Iai.  We will 

refer to this new metabolite as an indicator metabolite for ai for reasons that will become 

immediately clear.  Both metabolites should now be given separate exchange reactions.  

Thus, if we assume for concreteness that i = m, and assign to the indicator metabolite 

Iam , the index of m+1, the matrix equation 3.2.5 may be augmented as  
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(

s11 ⋯ s1n
⋮ ⋱ ⋮

sm1 ⋯ smn
s(m+1)1 ⋯ s(m+1)n

0.0
⋮

−1.0
0.0

0.0
⋮
0.0
−1.0

|

s1b
⋮

smb

0.0

)

[
 
 
 
 
 

v1
⋮
vn

vbiomass

vEX_am
vEX_Iam ]

 
 
 
 
 

= [
0
⋮
0
] 

 

(7.9.2) 

Note that a separate exchange reaction will not be needed if metabolite ai has already an 

associated exchange reaction in the FBA model.  This will be the case for external 

metabolites.   

3) The exchange reaction for am in step 2 should now be given infinity bounds in both 

directions.  Thus, let 

vEX_am ∈ [−106, 106]. (7.9.3) 

  

4)  For each dynamic metabolite, ai, consider the non-exchange reaction edges surrounding 

the metabolite.  If an edge for a reaction (rxn) connects this metabolite to another 

dynamic metabolite  aj≠i, then the rate of conversion across this edge is a part of the ODE 

system within which the concentrations of the two metabolites are variables.  Thus, 𝐌𝐎𝐃𝐄 

has [ ai] and [ aj] as variables, and accounts for their interconversion by rxn in the 

definitions for 
d[ ai] 

dt
 and 

d[ aj]

dt
.  To ensure that the FBA predicted flux vrxn is consistent 

with the ODE predicted flux vrxn
ODE, the ODE predicted value should be assigned as a strict 

bound in the LP formulation.  

vrxn ∈ [vrxn
ODE, vrxn

ODE].  (7.9.4) 
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If, on the other hand, metabolite aj is a steady-state metabolite, then modify the definition 

of rxn so that the indicator metabolite for ai occurs on the same side and with the same 

stoichiometric coefficient as ai.  Thus, a reaction such as 

siai  ↔ sjaj (7.9.5) 

would now be written as 

siIai + siai  ↔ sjaj. (7.9.6) 

With respect to the augmented matrix in 7.9.2, we define the entries of the row indexed 

by m+1 using the formula 

s(m+1)j = smj (7.9.7) 

Computationally, the difference between a metabolite and its indicator is that, whilst the 

metabolite may participate as a variable in both the FBA and the ODE component of the 

dFBA model, the indicator metabolite is strictly an FBA variable. 

 

5) Finally, for each indicator metabolite, assign a lower and/or upper constraint on its 

exchange reaction as functions, vEX_Iai
Min ([ai]) and vEX_Iai  

Max ([ai]), of the concentration of the 

dynamic metabolite for which it has been defined.  This step is required to constrain the 

flux to and/or from a non-steady-state node through reactions not explicitly modelled via 

ODEs.   

vEX_Iai
∈ [vEX_Iai

Min ([ai]) , vEX_Iai  
Max ([ai])]. 

(7.9.8) 

As an illustration, if [ai] = 0.0 were to hold, then we should not expect any outward flux 

from the node corresponding to this metabolite.  Thus, we would constrain the exchange 

flux for the indicator metabolite as  
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vEX_Iai
∈ [0.0, vEX_Iai  

Max ([ai])]. 
(7.9.9) 

 

With the modifications to the dFBA algorithm introduced in this section, we are able to 

now use the Palsson-style FBA formulation for the prediction of growth rates whilst 

accommodating for the biomass composition of intermediate metabolites in a dynamic fashion.  

The rationale behind the hybrid dFBA algorithm draws upon two key observations previously 

made about FBA and dFBA models.  First is the observation that in the Fell-style formulation of 

the FBA problem, biomass constituents are drawn out individually.  The major advantage of the 

Fell FBA is that stoichiometric coefficients with respect to a unit of biomass may be treated as 

model predictions (section 3.5).  This is in contrast to the Palsson-style formulation of FBA in 

which the biomass composition is a static model parameter defined by the biomass reaction.  

Whilst our hybrid approach to dFBA still requires a biomass reaction (equation 7.9.2), the 

flexibility of the Fell-approach is employed towards the representation of intermediate 

metabolites.  The second key observation is that the topological structure of a dFBA model is not 

altered by the addition of spatially decoupled ODE systems, as they will all become consolidated 

into a single differential equation (section 7.7).  As a result of this, it becomes feasible to 

dynamically characterize several metabolite pools even when the metabolic distance between the 

pools may be arbitrarily large.  Using a Palsson-style FBA formulation, one is able to use the 

information 𝐜𝐞𝐱 to model the dynamical feedback between environmental compositions and 

metabolic flux distributions, where the latter is constrained at each iteration of the dFBA 

algorithm as 

𝐯 ∈ [𝐯𝐌𝐢𝐧(𝐜𝐞𝐱), 𝐯𝐌𝐚𝐱(𝐜𝐞𝐱)]. (7.9.10) 

With our modification, the flux distribution is constrained instead as  
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𝐯 ∈ [𝐯𝐌𝐢𝐧(𝐜𝐢𝐧, 𝐜𝐞𝐱), 𝐯𝐌𝐚𝐱(𝐜𝐢𝐧, 𝐜𝐞𝐱)],  (7.9.11) 

where the entries of 𝐜𝐢𝐧are derived exactly as they are for  𝐜𝐞𝐱 by integrating FBA flux 

predictions across appropriate exchange reactions.    

To summarize the approach we propose, we use the Fell-FBA formulation to leave the 

biomass composition of intermediates as variable predictions of the model, and the Palsson-FBA 

formulation to predict specific growth rates.  The advantage of this hybrid method of 

implementing dFBA is that dynamic biomass compositions may now be treated as ODE 

variables rather than as simple FBA parameters.  As a result, the regulatory effects of internal 

metabolites whose concentrations are not in steady-state concentrations may now be investigated 

in the framework of dFBA.   

7.10: Network reduction of the iJR904 FBA model 

 Our results from section 7.7 suggest that fundamental to dFBA is the understanding of 

how best to draw biologically relevant boundaries when partitioning a complex metabolic system 

into dynamic and static components.  As was seen in the previous section, this partition is not 

necessarily required to coincide with actual physical boundaries, such as membranes, when 

viewed purely from the standpoint of setting up a biological dFBA model.  In this view, we 

conjecture that the more relevant aspect of a partitioned component of a metabolic model in 

dFBA than its structural resolution, is the ability of the subsystem to transfer relevant biological 

information across its boundary to other dFBA components.  In the concluding section of chapter 

5, we posed the following question about Palsson-style FBA:  Can Palsson-style FBA predictions 

of rates and of yields be made by stoichiometric models that have been substantially reduced in 

dimension relative to a parental genome scale model?  In this section, we demonstrate, by 

reducing the iJR904 metabolic model that the answer is in the affirmative.   In showing that this 
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can be done, we will also argue that growth yields and growth rates in the Palsson-FBA 

framework represent information that may be transferred across a metabolic boundary without 

relying on a high resolution metabolic reconstruction.  We argue that whilst the parametrization 

of the reduced network requires the biological information that is contained in a genome scale 

model, the genome scale model itself is unnecessary for the purposes of dFBA.  Our reasoning 

begins as follows. 

 In sections 5.2 and 5.3, it was seen that despite the differences in dimension, the three 

E.coli metabolic models studied there (iJR904, iAF1260, and iJO1366) make essentially 

identical predictions of biomass yields and growth rates in response to increasing the 

consumption rate of xylose (figures 5.2.1 and 5.3.1).  Whilst slight quantitative differences were 

observed (e.g. the iJO1366 model predicts higher yields), equation 4.4.7 shows that these 

deviations from equality may be minimized by parametrizing appropriately for maintenance 

energies and the coefficients of the biomass reaction (equations 3.2.7 and 3.2.18).  These results 

indicate that the iJR904 model, which is the smallest of the three may be expanded by following 

a network reconstruction protocol to the iJO1366, the largest of the three without significantly 

altering yield and rate predictions.  In this light, we ask if the reverse case is also true; that is if 

the iJR904 model may be put through a network reduction procedure to arrive at a minimal 

network model containing the sufficient amount of biological information (derived from iJR904) 

to make yield and rate predictions that quantitatively agree with those of its parental model.   

In defining the target metabolic network model (M-model), we begin by defining its 

boundary as in definition 1 of section 7.7: An FBA model is a metabolic network combined with 

a global sink combined with an objective function and constraints (formulation 2.9.1).  Thus, the 

M-model is one with a single boundary partitioning a yet unknown stoichiometric network from 
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a global sink, and flux are transferred across this boundary via exchange reactions.  To specify 

that this model is a Palsson-style formulated FBA model, we assume that the M-model will try to 

optimize the efflux rate of a stoichiometrically fixed amount of carbon into the sink.   For 

notational consistency (equations 4.4.2-4.4.7), we will denote this stoichiometric amount of 

carbon by Cbio and the normalized efflux rate by µ.  Likewise, this process of transferring carbon 

from the network to the sink will be denoted “EX_bio.”  Thus, µ is identical to vEX_bio, and 

µ=1.0 exactly when a Cbio (biomass) amount of carbon is transferred from the M-model to its 

sink via EX_bio.  The value of carbon flux through the biomass reaction of the iJR904 model 

that corresponds to a specific growth rate prediction of 1.0 is 41.46 mmol ∙ GDW−1.  Thus, we 

will parametrize our model by setting   

Cbio = 41.46. (7.10.1) 

Similarly, we will need to assume that there are processes with which the sink is able to deliver a 

flux of carbon into the network.  Imitating the processes of xylose transport that is available to 

the iJR904 network, we will introduce two processes by which a five-carbon compound which 

we also call “xylose,” (or “xyl”) is transferred into the M-model.  These two processes will be 

called XylH and XylE.  Recall from section 2.2 that enzyme-catalysed reaction names are given 

the same name as the catalyst.  In the case of XylH, the ABC transporter, we have left out the 

“FG” part from the notation for succinctness.   Finally, we will need to introduce exchange 

reactions that may potentially compete with EX_bio.  For simplicity, we will consider two 

competitive carbon efflux processes.  The first will be termed “EX_co2” and will be defined to 

be a process exporting single-carbon units from the network into the sink.  The second will be 

termed “EX_ac” and will be defined to be a process exporting two-carbon units.  Note that for a 

same value of vEX_co2 and vEX_ac, that the latter flux will transfer a greater amount of carbon 
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from the network into the sink.  Finally, we will assume that there is a compound denoted 

“o2Out” and that the one carbon unit that is exported by EX_co2 is one part carbon and one part 

o2Out.  As a result, in order to export a unit of carbon as co2, EX_co2 will require an equal 

amount of flux of o2Out to be transferred from the sink into the network.  The process by which 

o2Out may be transferred to the network will be termed EX_o2Out. With these exchange 

reactions, the boundary separating the M-model from its sink has been fully defined.  Note that 

there are only two types of elementary objects (carbon and o2Out) that we have defined to be 

transferrable across this boundary.  The system, as it currently stands, has a corresponding 

stoichiometric matrix of dimension m=5 by n=6 and rank 5.  The only way for this network to 

satisfy a steady-state condition (equation 2.6.3) is by exchanging zero flux with the sink.  To 

allow for non-trivial solutions to the null-space equation, internal metabolites, of one, two, and 

three carbon units were added to the matrix and reactions were added together with a 

stoichiometrically balanced set of reactions that form pathways between the incoming xylose and 

respectively, co2, ac, and bio.  Since we are interested in whether networks with arbitrary 

metabolite interconversion topologies could reproduce the iJR904 simulated YSC curves, we 

have tried to introduce the internal reactions connecting the exchangeable metabolites without 

setting a priori topological requirements.  There were however four important exceptions.  First, 

in order to separate the transport of substrate and early metabolic steps unique to the substrate, it 

was required that xylose, upon entry into the network is first converted to a different five-carbon 

unit.  Second, the pathway to co2 production was deliberately decoupled from the synthetic steps 

leading to bio as a measure of simplification.  Third, a two-carbon unit was placed in the network 

as a node from which flux may be directed either towards the synthesis of bio, or the production 

of ac.  Fourth we have ensured that the network is able to support the futile cycling of 
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metabolites.  This final requirement, which we have come to find in retrospect to be unnecessary, 

was placed to detect computational difficulties that may arise from the presence of futile cycling 

when the model is used in a dFBA algorithm.  As a further trivial requirement, we have also 

required that the underlying graph of the network model is connected.  Note that step 4 in our 

argument presented in section 7.7 suggests that this requirement has already been asserted upon 

declaring that we arrive at a single (close to) minimal FBA model representative of E.coli 

metabolism.  

 Finally, to introduce an energy currency, we have added two metabolites, “ADP” and 

“ATP,” whose summed concentration is constrained to be constant (moiety conservation).  By 

coupling the conversion between these two metabolites to several reactions in the network, we 

have introduced an energy economy in our hypothetical network.  The complete model is 

depicted in figure 7.10.1.   
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Figure 7.10.1: A pictorial representation of the network that has been reduced from the iJR904 

metabolic model.  Double arrows indicate reversible reactions and single arrows indicate 

irreversible reactions.  Metabolites without biological counterparts have been assigned lower-

case letter as names.  These metabolites are represented as the nodes of the network.  The carbon 

content of each metabolite is indicated below its given name.  The conserved metabolite pair, 

ATP and ADP nodes, are depicted in blue (ADP) and yellow (ATP) respectively.  Their 

interconversions are written alongside the respective arrows of the reactions they accompany.  

The stoichiometric coefficients for ATP and ADP are written within their transformation arrow.  

A biomass reaction has also been included.  This transformation is represented by the bottom 

reaction draining internal metabolites towards the biomass node.  The coefficient of each 

metabolite in the biomass reaction is indicated along the horizontal biomass reaction arrow.   

Finally, double arrows pointing to only a single node represent the exchange reaction for that 

node.   

 

This network consists of 18 metabolites and 23 reactions, of which 5 are exchange 

reactions.  In keeping track of the names of the hypothetical metabolites, we have assigned to 

each metabolite a lower-case alphabet letter indicating their name.  For increased readability, 

these names will be italicised when appearing in text.  The reader is also referred back to the 

notations section of this chapter.   
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Carbon flux from xylOut to the biomass was penalized energetically by assuming that 

some amount of current must flow from the ATP to the ADP node at certain steps along the way.  

The transport steps converting xylOut to xyl has been assigned a cost respectively of 1.0 and 

0.25 units of ATP; similarly, the conversion of xyl to a has been also assigned a cost of one ATP 

unit.  These values have been chosen to reflect the stoichiometric ATP costs for the biological 

xylose transport and isomerization steps.  The conversion of a stoichiometric amount of internal 

metabolites to biomass has also been given an ATP cost.  The value we assigned to the process is 

the numerical value of GAM (45.5) that is assigned to the biomass reaction of the iJR904 model.  

A cost to the synthesis of the metabolite d, required for biomass production, has been assigned a 

value such that GAA is consistent between the reduced network and the iJR904.  Finally, a 

reaction was introduced to convert ATP to ADP without being coupled to any other model 

processes.   

 To meet the ATP demands, we have required that the reduced network sacrifice a portion 

of its incoming substrate carbon, thereby reducing the amount of carbon that may be transferred 

to biomass.  The two reactions producing respectively, the metabolites co2Out and acOut, were 

coupled to ATP producing currents.  The ATP and ADP stoichiometric coefficients for these two 

reactions have been assigned values that match the ATP production to by-product production 

gradients of the iJR904 FBA model.  A series of FBA solutions was generated with the reduced 

network and the iJR904 network and their yield predictions were compared (figure 7.10.2). 
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Figure 7.10.2: A comparison of the yield predictions between the complete and the reduced 

iJR904 model for aerobic xylose growth using high-energy and low-energy transport.  Panels A 

and B compare the low-energy (top curves) and high-energy (bottom curves) yield predictions 

for the M-model (A) and the iJR904 model (B).  Panels C and D compare the flux predictions for 

oxygen consumption, biomass production, and acetate production between the M-model (C) and 

the iJR904 model (D).   

 

 In figure 7.10.2, our results of comparing FBA series solutions between the iJR904 model 

and its reduced counterpart, the M-model, are presented.  Two separate series of FBA solutions 

have been generated for each network model – one corresponding to high-energy cost substrate 

transport and another corresponding to low-energy cost substrate transport.  It is apparent from 
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the plots of figure 7.10.2 that the predictions made by the two models for flux exchange between 

the steady-state network and the sink through exchange reactions are virtually identical.  The 

optimal yield predictions made by the two FBA models agree, as do the predicted reduction in 

yield that occurs when substrate transport is switched from a high-energy cost to a low-energy 

cost transport process.   

The results shown in figure 7.10.2 are possible most certainly because the reduced 

network has been constructed from, and deliberately parametrized to agree with, the genome-

scale metabolic network that is the iJR904 model.  However, what we can take away from the 

fact that procedure may be followed is the possibility that optimal yield predictions under the 

Palsson-style formulation of FBA may at times be blind to the internal topology of a metabolic 

system.  Thus, when investigating non-topological growth phenotypes, such as optimal yields, it 

may be unnecessary under many circumstances to represent metabolism at the resolution of 

genome-scale or perhaps even small-scale network models.  Whilst we have repeatedly 

emphasized in this section that the M-model is not a biological representation of metabolism 

from a topological perspective, we do not assert that the network does not contain biological 

information.  To the contrary, we would argue that, by deriving the reduced network from a 

genome-scale model that has gone through a rigorous reconstruction procedure, the parameter 

values that are required by the M-model to match the predictions of the iJR904 contain 

integrative biological information.  In the next two sections we use the reduced network model to 

demonstrate the application of the hybrid dFBA procedure that was introduced in section 7.9. 
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7.11:  Building a hybrid dFBA model from the reduced iJR904 FBA model   

 

  The goal of this section is to demonstrate that a dFBA model may be formulated in such a 

way that an external dynamical system is topologically separated from an internal dynamical 

system.  Towards this end, we describe how our modifications outlined in section 7.9 has been 

applied to the M-model to arrive at a hybrid dFBA model meeting this requirement. 

 In the first step, we partitioned the metabolites occurring in the network into those to be 

treated statically, and those to be treated dynamically.  We have decided to treat all externally 

occurring metabolites with the exception of oxygen to be dynamic variables.  As a way of 

making comparison with the simple dFBA model of xylose metabolism, we have included the 

same steps involved in the transport and metabolism of xylose as described by equations 7.4.1-

7.4.8.  Four internal nodes (e, f, g, and h) were chosen to be modelled dynamically.   Nodes e, g, 

and h were chosen to investigate the mass-allocating properties of an internally mass-constrained 

dFBA model.  Notice that there is no reason that incoming substrate mass should find a “way 

out” of a given metabolic network, and it is at this early stage, very likely that masses will 

accumulate internally.  Whether such an effect can be circumvented by a system via simple 

feedback inhibition remains to be investigated.  Node f was chosen as an end-metabolite with 

respect to the xylose flux arriving through the e-f-g system of nodes.  For this pathway, node f 

can be seen topologically to be a potentially absorbing dead-end sink for incoming mass; for that 

same reason, the concentration accumulated at this node [f] may serve as a valuable signal for 

inhibiting the catalysis of the early steps.   

 Indicator metabolite nodes were introduced for the dynamic variables, and exchange 

processes were added for the xyl, e, f, g, and h nodes.  The constraints on the non-indicator 
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exchange reactions were set to infinity in both directions so that fluxes may freely leave or enter 

the system provided the constraints from stoichiometry and the differential equations are obeyed.  

The indicator exchange fluxes were assumed to be bounded below by a simple Michaelis-

Menten constraint as a function of the corresponding metabolite concentration. An upper bound 

was not specified for indicator exchange reactions.  Thus, we have  

vEX_Iai
∈ [(−1.0)

Vmax
Iai [ai]

Km
Iai + [ai]

 , 106.0], 
(7.11.1) 

  

where ai is one of e, f, g, h, or xyl.  This is as was done for the example given in equation 7.9.9.  

A generic value for a Vmax corresponding to a central metabolic enzyme, the E.coli citrate 

synthase, was chosen arbitrarily for each indicator exchange; similarly, a value falling in the 

range published for the XylA enzyme was assigned as a generic Km (table 7.5.1) (Lee 2009) .   

The e, f, g, h group of nodes is interconnected by four reaction edges.  These edges 

represent the reactions catalysed by the enzymes eTOg, gTOh, eTOh, and hTOf.  In modelling 

the concentration dynamics of these enzymes, we used first order Hill functions as before 

(section 7.4); however, as we have not included a transcription factor for these catalysts, we have 

written the equations so that intracellular xylose will directly trigger the upregulation of their 

expression.   
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d[eTOg]

dt
= [

βeTOg[xyl]

[xyl] + κeTOg 
] −

µ[eTOg]

3600
 

(7.11.2) 

 

d[gTOh]

dt
= [

βgTOh[xyl]

[xyl] + κgTOh 
] −

µ[gTOh]

3600
 

(7.11.3) 

 

d[eTOh]

dt
= [

βeTOh[xyl]

[xyl] + κeTOh 
] −

µ[eTOh]

3600
 

(7.11.4) 

 

d[hTOf]

dt
= [

βhTOf[xyl]

[xyl] + κhTOf 
] −

µ[hTOf]

3600
 

(7.11.5) 

In writing equations 7.4.1 with 7.4.6-7.4.8, we have assumed that the presence of internal 

xylose will activate the genes for xylose transport and metabolism.  In writing 7.11.2-7.11.5, we 

are also now assuming that the presence of internal substrate will also upregulate some general 

genes required for metabolism.  For the numeric values of the β and κ parameters, we have 

assumed that they are equal to the values that have been assigned to the corresponding 

parameters for XylA regulation (equation 7.4.7). 

 The kinetics of the reaction steps catalysed by the four enzymes in equations 7.11.2-

7.11.5 were written as irreversible Michaelis-Menten models with product inhibition.  This is 

represented by the following equations.    
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veTOg
ODE =

kCat
eTOg[eTOg][e]

Km
eTOg

(1 + 
[g]

Ki
eTOg) + [e]

 
(7.11.6) 

vgTOh
ODE =

kCat
gTOh[gTOh][g]

Km
gTOh

(1 + 
[h]

Ki
gTOh) + [g]

 
(7.11.7) 

veTOh
ODE =

kCat
eTOh[eTOh][e]

Km
eTOh (1 + 

[h]

Ki
eTOh) + [e]

 
(7.11.8) 

vhTOf
ODE =

kCat
hTOf[hTOf][h]

Km
hTOf (1 + 

[f]

Ki
hTOf) + [h]

 
(7.11.9) 

 The LHS of equations 7.11.6-7.11.9 may be interpreted as the rate of the corresponding 

reaction that would be predicted by a simple ODE model, of the internal dynamics for a given set 

of concentration values, had the model not been embedded into a larger network framework.  

Thus, to achieve constancy between the ODE rate predictions for the internal dynamics and the 

flux predictions of the surrounding FBA model, we have set dynamic strict bounds on the 

reactions whose catalyst concentrations are modelled dynamically by setting 

vrxn ∈ [ vrxn
ODE, vrxn

ODE] (7.11.1) 

in the FBA, where rxn is one of  eTOg, gTOh, eTOh, or hTOf.  We have done similarly for 

xylose symport and xylose diffusion.     

Finally, in order to demonstrate that the representation of internal dynamic concentrations 

may be used to model metabolic regulation, we have introduced two mechanisms by which early 

metabolic steps may be affected by metabolites occurring later in pathways.  Firstly, we 
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introduce a rule that xylose metabolism by the isomerase protein may be inhibited by f 

accumulation.  The Michaelis-Menten bound for this reaction has been set using 

 

vXylA
ODE =

kCat
XylA[XylA][xyl]

Km
XylA

(1 + 
[f]

K
if
XylA) + [xyl]

 
(7.11.11) 

Second, we also introduce the assumption that the reaction catalysed by aTObe may be dually 

inhibited by h and f as  

vXylA
ODE = Vmax

aTObe (
Kif
aTObe

fnf + Kif
aTObe

)(
Kih
aTObe

hnh + Kih
aTObe

) 
(7.11.11) 

 

With these equations in hand, we will now describe the behaviour of the hybrid dFBA model. 
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Figure 7.11.1: A pictorial representation of how the reduced network model in figure 7.10.1 has 

been transformed into a network appropriate for hybrid dFBA using the modifications suggested 

in section 7.9.  The network is identical to the one in figure 7.10.1.  However, dynamic 

metabolite nodes are now depicted in orange and dynamic edges in black. For clarity, we have 

shown only two indicator metabolite nodes (for g and e).   

 

7.12: The predictions of the hybrid dFBA  

 

 We have applied the hybrid dFBA approach to the M-model as described in the previous 

section.  We here present the predictions of the model.  In figure 7.12.1, the fluxes across various 

reactions included in our model are presented.  Similarly, in figure 7.12.2, the concentration 

dynamics of the non-steady state metabolites are presented. 
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Figure 7.12.1: Fluxes across reactions of the M-model during the course of hybrid dFBA 

 

 

Figure 7.12.2: Concentration dynamics of non-steady state metabolites of the M-model hybrid 

dFBA 

 

 The initial trajectories of the fluxes in figure 7.12.1 are seen to be similar in behaviour to 

what was observed with the simple dFBA model of xylose growth.  It is seen from panel B of 

figure 7.12.2 that during the early stages of growth, the internal xylose concentration increases as 

the xylose metabolic system is activated in a positive feedback between internal xylose and its 

transporter, XylE.  Because we have assumed that the presence of intercellular xylose will 

activate the transcription of general metabolic enzymes, it is seen in panel A of 7.12.1 that the 
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fluxes through their corresponding reactions increase with xylose concentration.  The metabolic 

system is not in an internal steady-state however; the concentrations of the e, f, g, h group of 

metabolites, separated from the xylose system via a steady-state reaction (aTObe), are 

dynamically changing in a way decoupled in the xylose ODE system.  As a result, it is seen that 

masses are not allocated optimally by the FBA model, but rather increase and decrease 

depending upon what constraints are place in the model by the ODE system.  The effect of these 

dynamically changing concentrations on the external dynamics of the model are shown in figure 

7.12.3.     

 

Figure 7.12.3: Dynamical consequences predicted by the M-model. A) External concentration 

dynamics of substrate and energy by-products.  B) specific growth rate and biomass 

concentration predictions.  C) the interaction between the optimal flux across the aTObe reaction 

and its dynamically changing constraint.  D) Fluxes across fermentation and respiration over 

time.      
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 External xylose is seen to be consumed by the system accompanied by CO2 and acetate 

production.  Whilst it may not be obvious from just observing the dynamics of substrates and by-

product concentration, it can be readily concluded from the specific growth rate dynamics that 

the mode is predicting a more complicated growth behaviour then the simple xylose dFBA 

model.  What is seen in panel B of figure 7.12.3 is that growth rate increases at first, like for the 

simple dFBA model, but becomes severely repressed as the growth trajectory is progressed.  The 

reason for this growth rate depression can be understood from observing the curves of panel C of 

7.12.3.  What is shown there is the negative feedback transfer of information to an early 

metabolic step as a function of accumulating late metabolites.  The red curve in the figure is the 

upper bound to the aTObe reaction in the FBA model which is a function of the dynamical 

concentrations of metabolites f and h.  It is seen that as these regulatory metabolites increase in 

concentration (figure 7.12.2), their repressive effect on the early step of the pathway catalysed by 

aTObe becomes stronger.  As a result of this, the dFBA trajectory transitions from a simple 

xylose-model like growth to a phase where the constraint to growth rate is no longer determined 

by the xylose system; rather, this control of growth is transferred to the e, f, g, h system.  The 

exact point of this switch can be seen occur when the FBA constraint from f and h concentrations 

arrives to meet the optimal value of flux through aTObe under xylose-controlled growth.  It is 

interesting to notice the effect of this arrival on the ability of the network to optimize for energy 

efficiency.  It is seen in panel D of figure 7.12.3 that, whilst respiratory growth is possible and is 

thus used under xylose-controlled growth, this becomes no longer possible under e, f, g, h 

controlled growth.  Fermentation is seen to increase in flux with the arrival of the aTObe 

constraint, and respiration flux is seen to decline.  Why should it be the case that a dFBA model 

using a Palsson biomass objective predicts fermentation over respiration?  This is because 
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acetate is effluxed into the media, not as an energetic by-product, but as a stoichiometric by-

product.  Thus what we can see is that this simple hybrid dFBA model predicts acetate 

production via a genuine overflow mechanism and not as an energetic strategy.  As the aTObe 

constraint departs, the system is seen to be restored to respiratory growth.   

 One of the goals of this chapter has been to break the rigid correspondence between 

growth rate and growth yield predictions of the Palsson-style FBA formulation in dFBA.  That a 

hybrid dFBA model is able to do this is represented in panel A of figure 7.12.4.     

 

Figure 7.12.4: The time dynamics of YSC.  A)  The trajectory of the hybrid dFBA prediction 

along the YSC-µ plane (red) is compared with the corresponding trajectory of the simple xylose 

dFBA model (blue).  Thick arrows are used to represent regions in which the hybrid model was 

seen to spend more time relative to the overall trajectory. B) The dynamics of YSC is plotted 

against time.  

 

In figure 7.12.4, the dynamics of YSC is presented and compared with the YSC dynamics 

of the simple xylose dFBA model.  What can be seen is that with the hybrid dFBA formulation, 

the metabolic system is able to explore a greater region of the YSC-µ plane.  That is to say, that 

the dynamics of the model are no longer confined to the optimal curve described by equation 



201 
 

4.4.6.  We have seen in sections 6.2 and 6.3 that yields and rates for real biological systems may 

relate in a way that is not as trivial as might be expected from a Palsson-style (d)FBA model.  

Thus, the hybrid dFBA approach which combines the key elements of the Fell FBA formulation 

with a Palsson-style biomass objective in dFBA brings the potential of modelling more complex 

dynamical systems behaviour than would be possible from a strict Palsson-style dFBA approach.  

Thus, we suggest that hybrid dFBA approach is more appropriate than the standard dFBA in 

modelling a wide range of real metabolic systems phenomena including, but not limited to, 

dynamic biomass compositions and microbial community interactions.  The complete dynamic 

network model is presented in figure 7.12.5. 

 

Figure 7.12.5: A pictorial representation of the dynamics of the M-model hybrid dFBA 
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We have presented, in this section, a novel approach to dFBA and used the M-model to 

illustrate the kinds of predictions our approach may make which are not possible with the 

traditional dFBA.  It is important to emphasize however, that the M-model hybrid dFBA is only 

a qualitative representation of growth dynamics.  Notice that the concentrations of internal 

metabolites that are predicted are far beyond biologically realistic values (we would suggest that 

300mmol ∙ L−1 would be a good value for the total metabolite pool of a cell).  Thus, the result 

that we have presented is a proof of principle; that yields and rates may be decoupled in dFBA.      

7.13: Discussion 

 

 The goal of this chapter has been two-fold, and stem from our dissatisfaction with the 

apparent inability of dFBA methods that rely on a strict Palsson-style FBA formulation to 

produce biologically realistic growth curves without altering a set of phenomenological FBA 

parameters posteriori to meet investigator expectations.  In chapters 4 and 5, it was seen that the 

main weakness of the Palsson approach to FBA modelling is the rigid correspondence that arises, 

when the biomass objective is assumed under steady-state conditions, between predictions of 

biomass yield and the specific growth rate.  Thus, by extending our observations there, it was 

hypothesized that dFBA methods that are able to break this correspondence will lead to more 

qualitatively satisfying predictions of growth dynamics.  Our first goal was therefore to 

generalize the notion of static-to-dynamic model boundaries in dFBA in such a way that these 

boundaries may be conceptualized independently of physical biological boundaries such as cell 

membranes.  Our second goal was to use this more generalised notion of boundaries to introduce 

internal non-steady-state pockets of dynamic metabolite concentrations in a metabolic network.  

By introducing dynamic internal metabolite pools, the requirement of absolute flux balance 
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across physical cellular boundaries will be partially relaxed, and the potential of modelling 

internal metabolic feedback dynamics arises.   

 In meeting our goals, we have relied heavily on an alternative formulation of FBA that is 

in many respects, the inverse to the Palsson-style formulation.  This “Fell-style” FBA brings a 

level of flexibility to predictions of biomass yields and growth rates by treating the composition 

of biomass as a variable to be predicted rather than as a model parameter.  Unfortunately, the 

shortcoming of using a strict Fell-FBA formulation in dFBA is that the Fell-FBA requires 

specific growth rates to be parameters.  However, our analysis of Fell style FBA has led us to 

conjecture that if model boundaries may be drawn independently of physical boundaries in FBA, 

then the same may hold true for dFBA.  Pursuing this line of reasoning, we have been able to 

characterize the extension of FBA to dFBA as a process of choosing a set of exchange reactions 

over which to integrate fluxes so that information is retained over time intervals.  Information is 

understood here to mean metabolite concentrations whose values depend on network inputs and 

outputs; thus information is “lost” to sinks through fluxes across exchange reactions that are not 

integrated in time.  This formulation of dFBA does not depend on physical boundaries, but only 

on the boundaries across which an underlying FBA model interacts with its sink.  Therefore we 

are able to combine the Fell-style approach to FBA with the Palsson style approach of using a 

biomass objective to formulate a dFBA procedure that predicts specific growth rates with the 

flexibility of Fell-FBA.  We have referred to this approach of doing dFBA as a “hybrid” dFBA 

method.   

 The issue of drawing boundaries across FBA models leads to the following question; at 

what resolution should the internal metabolic network be described so that the appropriate 

information transfers are able to occur across steady-state boundaries?  Our results of this 
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chapter, unsurprisingly perhaps, suggest that this depends on what information is being 

considered.  Palsson-style FBA models and dFBA models that rely on the Palsson-approach are 

often corroborated by the ability of models to predict biomass yields; this may be for example by 

using a phenotype phase plane or matching biomass and by-product production to substrate 

depletion over time (Varma and Palsson 1994, Edwards, Ibarra et al. 2001, Ibarra, Edwards et al. 

2002, Hanly and Henson 2011).  By demonstrating that a substantially reduced metabolic 

network is still able to make optimal yield predictions of the iJR904 model however, we have 

demonstrated that yield is a phenotype which may be better characterized with consolidated 

parameters such as NGAM, GAA, and Cbio.  This is jointly because first, flux-balance equations 

applied over the FBA model boundary do not “see” the underlying metabolic topology; second, 

because steady-state biomass yields are directly related to the flux of energetic by-products.   

 Having demonstrated that a reduced network is able to make yield predictions of a 

genome-scale model, we applied our hybrid dFBA approach to this hypothetical system.  It was 

shown that by using the hybrid dFBA approach, we are able to describe feedback loops that 

occur internally within a metabolic system; thus, we have shown that the boundary of 

information transfer between the static and dynamic components of dFBA model need not 

coincide with the boundary between the environment and the cell.  We find that characterizing 

dFBA models at this level of abstraction brings a unifying view with which to approach several 

seemingly separate modelling issues; these include the need to model feedback loops, the need to 

account for dynamic biomass compositions, and the need to extend FBA models to dynamic 

community models.   

 The M-model was used in this chapter to demonstrate how the hybrid dFBA may be 

computationally implemented as a method to introduce a flexibility between (d)FBA predictions 
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of yields and rates.  We find that the reduced model is sufficient for meeting this goal.  Despite 

this, the hybrid dFBA using the M-model is not representative of a realistic biological system.  

We point out however, that the model does make experimentally testable biological predictions.  

Biomass composition is predicted to be changing and doing so in a way that introduces internal 

feedback that renders substrate acquisition and early metabolism not rate limiting for growth.  

Similarly, energy maximization is not predicted to be an objective that has been yet achieved by 

our cells for xylose growth; although some observations suggest that perhaps with Adaptive 

Laboratory Evolution, this may be possible (Ibarra, Edwards et al. 2002). The model also makes 

the computational hypothesis that the appropriate level of resolution with which to describe 

metabolic topology to account for growth data may lie somewhere in between it, and the iJR904 

model.  What we take away from this is that the process of formulating and implementing novel 

dFBA methods is in it of itself a valid method for biological hypothesis generation.  
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CHAPTER 8: Discussion 

 

   

Flux Balance Analysis (FBA) is a systems biological method that applies the 

known stoichiometric structure of metabolic networks towards microbial engineering.  

Genome-scale network reconstructions of metabolism are comprehensive and quality 

controlled through manual inspection.  The flux-balance methods that rely on such 

reconstructions, not requiring detailed kinetic information, are easy to apply (Orth, Thiele 

et al. 2010, Thiele and Palsson 2010, McCloskey, Palsson et al. 2013).  Therefore, in 

conjunction with the depth of existing knowledge available for a handful of model 

organisms and allied with the wide repertoire of techniques from modern experimental 

molecular biology, FBA methods offer an important interface between experimental and 

computational molecular biological efforts.  We find however, that the question of how 

most efficiently to use the genomic information contained in metabolic reconstructions 

has not yet been answered.  Strictly speaking, FBA models may be applied only to 

metabolic systems in steady-state, such as microbial populations replicating under a 

chemostat-controlled growth.  Dynamic extensions of FBA are therefore required for 

modelling more general biological systems.  The method of dynamic FBA (dFBA) 

combines FBA with ODEs to bridge this connection.  This thesis concerns the 

investigation of the properties of FBA and dFBA models to arrive at improved dFBA 

implementations. 

The need for improved dFBA methods represents two observations that we have 

made in our initial encounter with dFBA methods.  First, we have been able to conclude 

that a number of separate but important biological systems to which FBA is applied 

today, particularly community FBA models of microbial interaction, may actually be 
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formulated under the dFBA framework.  As we have argued in the introductory section 

chapter 7, community FBA models are in fact dFBA models.  Thus an understanding of 

the properties of dFBA is a prerequisite to understanding community FBA modelling.  

The second observation, that prompted a need for better dFBA formulations, is the 

observation that when we ran simulations with dFBA models, the outputted growth 

trajectories were found to be unrealistically rigid.  Variables such as specific growth rates 

were found to be highly insensitive to the outputs of the ODE component of our dFBA 

models.  Thus, we have concluded, from experience, that dFBA methods have the 

potential to positively impact the analyses of a diverse group of important biological 

systems; however, the current dFBA method is not without flaws.  How therefore to 

improve the dFBA method?  More precisely, how to make dFBA predictions more 

“flexible?”  Towards answering this question, we decided that the best place to start may 

be to try and better understand FBA methods.  The results of this research effort has been 

presented in chapters 3, 4, and 5.   

“What is FBA?” was the first question that was posed.  The surprising answer to 

which we arrived, is that FBA is a structural metabolic model that predicts flux 

distributions that are consistent with the hypothesis of a cellular objective.  Why this was 

found to be so surprising, was because we have also found that the vast majority of FBA 

model assume the common objective of maximizing a flux across a biomass reaction.  Of 

course, the logic of the biomass objective is justified; it is a parsimonious representation 

of a metabolic goal in the absence of data.  However, it had not occurred to us early on 

that using the biomass objective is in it of itself, a very strong hypothesis.  Our conjecture 

at that point became that perhaps the rigidity of dFBA arises as a consequence of using a 
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biomass objective.  We refer to this method of doing FBA as the “Palsson-style” FBA 

method.  Two lines of investigation were initiated from this.  First, we asked whether 

there are alternative means by which to do FBA, not just by choosing a separate 

objective, but alternative ways by which the FBA problem itself may be formulated.  In 

the second line of investigation, we asked what the potential flaws are of the Palsson FBA 

method of using a biomass objective? 

In engaging with the first problem, we have learned that an alternative FBA 

formulation exists within which the biomass composition, and not the growth rate, is 

predicted by the model.  We refer to this style of FBA formulation as the “Fell-style” 

formulation.  This method has been discussed in section 3.5 where it was argued that Fell-

style FBA should be considered as an inverse to the Palsson-style FBA in that the 

predictions and parameters reverse in switching between the two.   

The results of the second line of reasoning is presented in chapters 4 and 5.  Our 

main theoretical finding is represented by equation 4.4.6, and its consequences to 

Palsson-style FBA predictions are explored in chapter 5.  What we found is that under the 

Palsson-style FBA formulation, biomass yields and growth rates are two very rigidly 

coupled quantities.  More specifically, optimizing for one was found to optimize for the 

other.  Equation 4.4.6, in the form of 4.4.7, suggests that this is because Palsson FBA 

models optimize for the efficiency of energy biogenesis; equivalently put, Palsson FBA 

models find FBA solutions that minimize the efflux rate of energetic by-products.  This is 

a consequence of assuming, simultaneously, a biomass objective, and a global steady 

state.  In chapter 5, we have shown that energy biogenic constraints of metabolic 

networks used in Palsson-style FBA has a very strong central metabolic component as 
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well as a very strong phenomenological component (GAM).  We have shown that the 

main contributors to the net exchange rates between energetic cofactors by the iAF1260 

metabolic model are in fact central metabolic reactions and maintenance constraints.  

Therefore, to the extent that yields are coupled to rates in such a way as asserted by 

equation 4.4.6, it was reasoned that the genomic information contained in large-scale 

metabolic models may potentially be condensed as consolidated global parameters such 

as GAA.  This was evidently suggested in section 5.3 that three dimensionally distinct 

metabolic reconstructions behave identically under the conditions there simulated.   

With our findings, we returned to the question of improving dFBA in chapter 7.  

The statement that we made at the introduction of this chapter – that community FBA is 

dFBA – represents a conjecture that was made early on: that dFBA formulation is really 

about defining boundaries between components of metabolic systems, and modelling 

correctly, the transfer of information, in the form of dynamic metabolite concentrations, 

that occurs as topologically separated subsystems communicate.  In chapter 7, we 

provided computational evidence that this is likely to be the case.   

The original problem is recalled to be the following: how to make FBA modes 

more responsive to ODE models in dFBA?  That is to say, how to make dFBA models 

more flexible?  Through the findings of research process that has been described in the 

FBA chapters of this thesis, we are able to now state this question more precisely as well 

as provide a potential solution.  Dynamic FBA models require a Palsson-style FBA 

because this is the formulation that allows for the prediction of growth rates.  The rigidity 

of dFBA is a consequence of the rigidity in the coupling between yields and rates in 

Palsson-style FBA formulations.  Thus, introducing a level of flexibility requires that 
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yields and rates be decoupled in the Palsson formulation.  The solution to this problem 

comes when the Fell-style formulation of FBA is combined with our conjecture that 

dFBA modelling requires the modelling of boundaries between static and dynamic 

subsystems.  Pursuing this line of reasoning, we arrive at three results which are presented 

in chapter 7.   Our first result is that when the model boundary between an ODE system 

and a structural metabolic system is coincided with the physical boundary between a cell 

and its environment in the Palsson framework, that the overall FBA model may be 

substantially reduced in dimension and still make quantitative yield predictions that are 

consistent with a parental genome-scale model.  The second result is that the Fell-style 

formulation of FBA may be applied to dFBA once it is realized that the model boundaries 

of dFBA need not coincide with physical boundaries.  Combining these results together, 

we investigated the possibility of using the Fell-FBA approach of treating biomass 

composition as model predictions, whilst also using a Plasson-style approach of using a 

biomass objective to predict rates.  Carrying out our work under the controlled setting of 

using a very small network which we refer to as the M-model, we arrive at our third and 

final result, which is a novel approach to dFBA modelling which we refer to as the 

“hybrid” dFBA.   

In chapter 7, the dynamic predictions of yields and of rates of the hybrid dFBA 

were compared with those of the simple dFBA.  What we have discovered was that in the 

hybrid approach, yield and rate predictions may be significantly decoupled, even when 

the biomass objective is used to predict growth rates.  Most importantly, it was found that 

that the dFBA trajectory of the hybrid model is able to explore a wider region of the 

YSC-µ plane as a positive consequence of not being rigidly bound to the dual-optimality 
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curve represented by equation 4.4.6.  Therefore, we have presented a novel approach to 

dFBA that is able to predict growth rates using a Palsson-style biomass objective whilst 

leveraging on the advantage of the Fell-style FBA of treating representing biomass 

composition as variables.  The resulting hybrid dFBA exhibits the desired flexibility that 

we sought to find.   

As future applications are concerned, it must first be noted that the result we 

presented in section 7.12 is a proof of principle that yields and rates may be decoupled in 

dFBA models.  One of the main concerns we would have is that unless the underlying 

network is topologically capable of distributing masses amongst its nodes, that mass 

accumulations will inevitably occur.  This was seen in the M-model where a metabolite 

(f) was unable to pass its concentrations off to another node, for example environmentally 

to a by-product.  The consequence of this was seen to be that this metabolite acted 

effectively as a sink in the network in a similar manner that acetate behaves as an 

environmental sink in the simple dFBA formulation.  Thus, what is suggested is that the 

M-model is far too reduced topologically to be of practical use.  The “correct” topology is 

hypothesized currently to be represented by some network model that falls dimensionally 

in between the M-model and the iJR904 model; for example, perhaps a network 

representing just the central metabolism.  Thus, the first step to follow is likely to be the 

demonstration that yields and rates may be decoupled by dFBA models in which internal 

concentration predictions are biologically realistic.  In the hopeful assumption that this 

may be done, we find that the hybrid approach to dFBA which has been proposed in this 

thesis may have profoundly important implications to the dFBA modelling of complex 

systems such as microbial communities that are only just starting to be better understood.    
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