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Abstract 
 
This thesis used a range of simulation techniques to investigate the various effects rare-

earth element doping has on barium titanate with a focus on their ability to increase the 

lifetime of such ceramics.  
Finite element simulation was used to look for a relationship between user generated 

regional input permittivities, conductivities and microstructures based on experimental 

core-shell microstructures formed in rare-earth element doped barium titanate and the 

simulated bulk output properties. No simple analytical relationship was found. Input 

properties for more local regions are needed for accurate simulations. These cannot 

easily be obtained from experiment.  

Experimental spectra (XRD and TEM) of perovskites were simulated from molecular 

dynamics simulations. The simulated spectra include dynamical information. The 

spectra along with the in-house analytical PALAMEDES code were used to interpret 

tilt features in the simulated systems. The code gives quantitative values for tilt and 

volumes for A and B sites in the system and identifies tilt phase. 

Static simulations of doped barium titanate demonstrate the affinity of rare-earth 

dopants to form specific compensation schemes. The simulation results agree with 

experiment. Lifetime improvements due to rare-earth dopants have been theorised to 

be due to oxygen vacancy trapping. Further simulations show that all mid-size trivalent 

rare-earth elements can strongly trap oxygen vacancies. The differences seen in lifetime 

improvements between rare-earths is due to their distribution and compensation 

schemes they adopt. 
Advanced sampling techniques were used to look at self-diffusion and rare-earth 

diffusion in barium titanate. The applicability of Mean Squared Displacement, Steered 

MD, Umbrella sampling and Metadynamics to solid-state systems is discussed. The self-

diffusion results agreed with available experimental values. Dysprosium was found to be 

the most mobile rare-earth of those investigated in barium titanate lattice suggesting 

that a combination of its mobility and preference to dope in a self-compensatory 

manner is the reason for its superior lifetime improvements.  
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1 Introduction 
 

1.1 Aims 
 

This introduction gives a general background to the materials investigated in this work 

and their applications. Firstly, the structure and properties of perovskites as a class of 

materials will be discussed. The electroceramic capacitors will be introduced and some 

of the research that has been done on barium titanate over the past 70+ years will be 

surveyed. Finally, aims of the thesis will be outlined, giving the reader an idea of what to 

expect in each chapter. As this thesis contains widely varied simulation techniques, each 

chapter will have its own introduction and background as required. 

 

1.2 Introduction to Perovskites 
 

Perovskites are a class of minerals with the general formula ABX3 that are both found 

in nature, and manufactured for their industrial use (Haertling, 1999). They are among 

the most abundant minerals found on earth. Due to the flexibility of the crystal 

structure, there are many possible perovskite systems, solid solutions and possible 

dopants. This allows for great variation in the properties and polymorphs exhibited by 

these materials and allows them to be optimised for many different industrial 

applications. 

 

1.2.1 Crystal Structure 
 

The prototype perovskite structure is pseudo cubic close packed with the A-site cation 

and the X-site ions forming a close packed structure and B-site cations located on the 

octahedral interstitial sites (Glaister and Kay, 2002)(Fig 1.1). 
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Figure 1.1: Prototype perovskite structure with A and X sites shown as green and red 

balls respectively. B-sites shown by blue polyhedra. The B-sites in perovskites form 

octahedra.  

Examples of perovskite systems include calcium titanate (CaTiO3)(Yashima and Ali, 

2009), barium titanate (BaTiO3), methyl-ammonium lead iodide (CH3NH3PbI3) 

(Handley and Freeman, 2017) and strontium titanate (SrTiO3) (Smith, 2012).  

 

1.2.2 Applications 

 
Perovskite based electroceramics can exhibit pyro, piezo and ferroelectric properties 

and are used for many applications (Haertling, 1999). They are prevalent throughout 

many industries and are used in areas including sensors, capacitors, energy storage 

devices and energy conversion devices (Alam, Zuga and Pecht, 2012). 

One of the most important and widely used electro ceramics is, barium titanate (BT) 

which is used in capacitors. With a recent emphasis on reducing the use of devices that 

contain lead, BT is being used again for its piezoelectric properties (Kishi, Mizuno and 

Chazono, 2003) 

 

1.3 Multilayer ceramic capacitors 
 

Trillions of multilayer ceramic capacitor (MLCC) units, made using electroceramics 

such as barium titanate, are sold per year (Kishi, Mizuno and Chazono, 2003). They are 
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used in most electronic circuits and chip sets for computing, aviation, communication 

and many other industries. MLCCs consist of layers of dielectric electroceramic, with 

metal electrodes between each layer and each end capped with a connecting terminal 

(Moulson and Herbert, 2003) (Fig 1.2).  

 

 

 

 

Figure 1.2: Schematic of an MLCC showing the main components, connection 

terminals, dielectric electroceramic and electrodes. A photograph of an example MLCC 

on an integrated circuit board is also shown. 

 

The capacitance of a parallel-plate capacitor C is given in Equation 1.1 where A is the 

area of the capacitor pate, d the separation of the plates of the capacitor layer and ε0 and 

εr are the permittivity of free space and the permittivity of the capacitor material 

between the plates.  

!	 = 	 $%$&'/) (1.1) 

To optimise a capacitor without increasing the volume it occupies, either an increasingly 

small d or an increasingly large εr is desirable. To maximise the capacitance in an MLCC 

micrometer thin layers of electroceramic are used to minimize d and electroceramics are 

chosen to maximise εr.. Multiple layers are used to maximize the total charge able to be 

stored by a capacitor. 

Electroceramic capacitors are categorised into class I, or class II depending on their 

charge holding stability (Moulson and Herbert, 2003). Class I capacitors exhibit high 

stability and low losses. Class II capacitors exhibit lower stability and higher losses but 

are useful due to their greater volumetric efficiency. Within their respective classes, 

capacitors are classified based on their operating temperature range and the percentage 

variance in capacitance from room temperature in that range. The percentage variance 

Electrode 

Electroceramic 
Dielectric 

Connecting 
Terminals 
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is known as the temperature coefficient of capacitance (TCC). One of the current 

industry standards for a Class II BT MLCC is X7R. rating. The letters and numbers in 

X7R refer to the temperature range (X) -55°C – (7) 125°C with variance (R) - ±15% 

TCC (Fig 1.3). Room temperature is taken as 25°C. 

 

Figure 1.3: Typical TCC curve for Class II X7R Ceramic Capacitor exhibiting ±15% 

temperature coefficient of capacitance over the temperature range -50°C - 150°C. 

adapted from Moulson, A. and Herbert, J. (2003) 

 
To optimise the TCC and therefore the stability of a class II BT MLCC, it is necessary 

to optimise the permittivity of the material over the device operating temperature range. 

Pure BT exhibits large permittivity changes with temperature, due to the phase 

transformations that it undergoes. Pure BT exhibits large permittivity changes with 

temperature, due to the phase transformations that it undergoes (Moulson and Herbert, 

2003). Arguably the most important transformation for capacitor applications is from a 

tetragonal to a cubic crystal structure which occurs at the Curie temperature ~130°C 

(TC). Above TC the cubic structure prevents the titanium ions from forming dipoles and 

destroys the ferroelectric properties of the material, becoming paraelectric (Megaw, 

1945). Approaching TC the permittivity increases rapidly before dropping off sharply on 

the transformation to cubic where it subsequently obeys the Curie-Weiss law (Equation 

1.2). This phase change drastically affects the TCC and therefore the stability of pure 

BT as a capacitor material above TC. 

 

*& = 	 '
+,	-!

 (1.2) 
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where A is a constant for the specific material, T the temperature in Kelvin and θC  is a 

temperature very close to but not the Curie temperature itself. Doping with elements 

such as lead or certain rare earth (RE) ions can increase the TC leading to an improved 

TCC (Moulson and Herbert, 2003). Dopants can also influence the transition 

temperature of the lower temperature phase changes and can therefore influence the 

lower temperature end of TCC as well (Kishi, Mizuno and Chazono, 2003). Other 

materials with the perovskite structure such as NaNbO3 have also been added to BT to 

optimise its TCC (Sarkar and Sharma, 1989). Some dopants, including rare earth 

elements, that are used in BT based MLCCs can fluctuate in cost wildly (Alam, Zuga 

and Pecht, 2012).  

 

1.4 Barium Titanate  
 

1.4.1 Background 
 

First investigated in the 1940s (Haertling, 1999) barium titanate (BT) is one of the 

earliest high permittivity dielectric electro ceramics discovered, exhibiting permittivities 

of εr=2000-10000 making it ideal for capacitor applications. Barium titanate has a wide 

range of polymorphs, or phases and due to this was also the first electro ceramic used in 

piezoelectric applications (Moulson and Herbert, 2003). Each phase change results in 

dimensional changes to the unit cell, these dimensional changes can be observed in the 

bulk ceramic. BT can be doped to make it into either an n-type or a p-type 

semiconductor at high temperatures with n-type BT also exhibiting conduction at room 

temperature (Moulson and Herbert, 2003). Such versatility in such a wide number of 

applications is the reason BT ceramics have been researched extensively in the last 

seven decades. 

 

1.4.2 Properties and Phase Transformations 
 
 

Barium titanate is a crystalline ceramic material with the ABX3 perovskite structure §1.2, 

in which the barium sits on the A-site, titanium on the B-site and oxygen on the X-site.  

Pure barium titanate, is cubic above its Curie temperature TC (approximately 130°C) 

(Megaw, 1945). It also exhibits further phase transitions at around 1430°C to the 

hexagonal structure (Rase and Roy, 1955). Below TC the structure is tetragonal (von 
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Hippel et al., 1946). Further low temperature phase transformations occur at ~0°C to 

the orthorhombic polymorph (Kay and Vousden, 1949) and at ~ -90°C to the 

rhombohedral polymorph (Rhodes, 1949). Barium titanate exhibits its highest 

permittivities when in the tetragonal polymorph. 

In the tetragonal phase BT exhibits ferroelectric behaviour due to a dipole moment that 

is created along the c-axis with the elongation of the unit cell. The titanium ions can 

occupy one of two lower energy sites within the elongated BX3 octahedra with a 

relatively small energy barrier between the two (Fig 1.4). The titanium offset creates a 

spontaneous dipole within the crystal and the movement of the ion between these two 

possible sites in the octahedra within the tetragonal phase gives rise to BT’s ferroelectric 

properties (Moulson and Herbert, 2003). The size of the titanium ion dipole increases 

with increasing disorder through the tetragonal polymorph to the orthorhombic and 

then the rhombohedral polymorphs respectively.  

 

Figure 1.4: Schematic showing the titanium dipole observed in tetragonal barium 

titanate, shown by the off-centre blue titanium ion in the orthorhombic unit cell. 

 

The relative permittivity of pure BT has been shown to increase with decreasing grain 

size down to 1µm (Kinoshita and Yamaji, 1976) which is due to lower internal strain the 

smaller the grain allowing for greater tetragonality within the particles and therefore 

higher permittivity. However, studies on nano size BT powders have shown that 
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reducing the initial particle size to below 40nm reduces the tetragonality of the initial 

powder and that this is due to increased strain due to the much larger surface area to 

volume ratio of the smaller powders which encourages a more cubic structure to lower 

the overall energy of the grains (Yashima et al., 2005). 

1.4.3 Dopants 
 

As the grain size of the final polycrystalline material has a large effect on the resultant 

permittivity it is important to optimise this property during manufacturing. Additions of 

dopants such as La3+, Gd3+ that have a higher charge than that of the A-site Ba2+ they 

substitute were shown by Buscaglia, V. et al (Buscaglia et al., 2006) to have a grain 

minimizing effect, thus increasing permittivity. This effect is also observed when 

substituting B-site Ti4+ with higher valency ions. These A-site and B-site substitutions 

can also have a marked difference on the TC of the overall ceramic, raising or lowering 

TC, which contributes to the stability of the material over a given temperature range. In 

the bulk material, unlike single crystals, grain boundaries can negatively contribute to 

the overall permittivity (Buscaglia et al., 2006) so it is important to balance these 

competing contributions when optimizing grain size. As well as metallic ions, glasses are 

also sometimes added to BT to more closely control and lower sintering temperatures 

by facilitating liquid phase sintering.  

The addition of dopants and other modifiers to perfect the properties of a BT ceramic 

for a specific purpose can also have other effects. For example, doping BT with rare-

earth elements such as yttrium, gadolinium and dysprosium can create duplex or “Core-

Shell” microstructures (Fig 1.5). These are structures in which a grain of pure BT is 

surrounded by a doped shell created by the limited diffusivity of the rare-earth dopants 

added to the ceramic (Jeon et al., 2014). 

Figure 1.5: SEM images of duplex or “core-shell” structures in Y-Mg Doped BT 

reproduced from Jeon et al (2014). The numbers shown are the average grain size in 

micrometres in the respective images. 
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The ‘core-shell’ structures consist of a conductive, ferroelectric core and a more 

resistive dopant containing shell. They are an example of how the heterogeneity in 

typical BT ceramics and thus the distribution of dopants and resultant properties of 

specific regions within the material can vary and may contribute towards the resultant 

properties of the bulk (Jeon et al., 2014). The formation mechanism of these “core-

shell” microstructures is much debated with Wang et al (2014)suggesting that it is a 

solid-state diffusion process whereas Jeon, C. et al (2012) suggest that in their Mg-Y 

doped BT the formation mechanism is that of liquid state sintering due to the uniform 

core sizes they observe. It may be the case that a combination of both solid-state 

diffusion and liquid sintering processes form these structures and that it depends on the 

individual recipe, and processing conditions as to which mechanism is dominant. To 

establish the compositional gradients and therefore an indication of the variability of the 

properties across these structures, techniques such as energy dispersive spectroscopy are 

necessary. Although compositional measurements are possible, direct electrical 

measurements of a specific point in a sample is not realistic.  

The addition of rare-earth elements especially dysprosium is attributed with increasing 

the lifetime, or cycles to failure, for a given device. The mechanism behind this lifetime 

improvement is not fully understood, but is believed to be due to the ability of rare-

earth elements to trap intrinsic oxygen vacancies (Waser, Baiatu and Härdtl, 1989). This 

lifetime improvement may also be related to the formation of the ‘core-shell’ 

microstructures (Jeon et al., 2014). All rare-earth elements are trivalent ions however, 

when doping in barium titanate certain rare-earth elements outperform others in 

lifetime improvements. This difference in performance is not yet explained. 

 

1.5 Motivations  
 

The cost of the materials used in BT based MLCCs especially rare-earth elements as 

well as the difficulty in recycling low percentage dopants incentivise the search for 

alternatives and efficiencies (Alam, Zuga and Pecht, 2012). If this is to be successful, it 

is useful to understand the underlying processes by which these dopants work and their 

effect on material properties, to maximize their effectiveness without increasing the 

cost. Materials modelling is a cost-effective approach for facilitating the exploration of 

these processes; as the cost of lab time and consumables (other than computer time) is 

not a consideration. Simulation techniques also have the potential to observe behaviour 
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at scales not easily accessible via physical experiment. Using finite element modelling 

(FEM) simulation, the effect on the microstructures created by rare-earth dopants on 

the overall properties of a device can be examined. Atomistic simulation can be used to 

look at the energetics of doping, and the dynamic motion of the crystal. Diffusion of 

dopant species can also be looked at using atomistic simulations. The combination of 

the kinetic and thermodynamic information about different dopants in barium titanate 

should be invaluable for building up a picture of how and why dopants perform as they 

do. 

 

1.6 Thesis Outline 
 

This thesis uses many different simulation techniques to investigate rare earth element 

doping of BT and its effects on microstructure and properties. 

In §2 the microstructures created by rare-earth element doping are probed using finite 

element simulation. The strengths and weaknesses of finite element simulation of 

impedance spectroscopy are discussed.  

Atomistic simulation methods are discussed in §3. The fundamental concepts of 

atomistic simulations both static and dynamic as well their advantages and limitations 

are introduced. 

§4 uses atomistic simulation to look at the structural implications of tilting in 

perovskites, barium titanate and calcium titanate included. TEM and XRD spectra are 

simulated from molecular dynamics simulations. Tilting in perovskites is explored using 

geometrical analysis. 

Static simulations of rare earth doping of barium titanate are found in §5. The 

thermodynamics of doping with rare earths and their impact on O diffusion is 

investigated. Cation diffusion using static calculations are also attempted. 

§6 explains advanced sampling techniques and free energy methods that can be used to 

investigate diffusion in crystals. The techniques include metadynamics, steered MD and 

umbrella sampling. 

Free energy methods are used to investigate diffusion in barium titanate in §7. Standard 

MD is evaluated as a method for looking at diffusion. Metadynamics, steered MD, and 

umbrella sampling are all used to investigate oxygen diffusion in BT. Rare earth 

diffusion and cation self-diffusion are evaluated using metadynamics. Issues with 
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implementing the free energy methods are discussed as well as their suitability for use in 

solid-state simulations.  

§8 contains the overall conclusions of this work and suggests future work that could be 

carried out based on it. 
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2 Finite Element Modelling of Electroceramics 
 
2.1 Introduction 

 
As discussed in §1 barium titanate (BT) has been optimised for use in multi-layer 

ceramic capacitors (MLCCs) using additives such as rare-earth (RE) elements and 

transition metals. These additives can create a ‘core-shell’ microstructure (Figure 2.1) 

during processing which can give the MLCC longer lifetimes (Waser, Baiatu and Härdtl, 

1989) and a more stable temperature coefficient of capacitance (TCC) (Jeon et al., 2014). 

 

 
 

Figure 2.1: Barium titanate SEMs with a ‘core-shell’ microstructure reproduced from 

Jeon et al (2014). Size in micrometres refers to average grain size. 

 

As stated in §1, the main aim of this thesis is to explain how and why certain REs 

perform better than others when doping barium titanate to increase lifetime. This 

chapter discusses the finite element modelling of the electronic properties of barium 

titanate. Finite element modelling can be used to simulate the microstructures that REs 

cause in BT. This can help interrogate the reasons for the difference in performance of 

specific REs. It may explain how the different properties combine with different 
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microstructures to give the overall properties seen experimentally. The results should 

also suggest possible improvements to these microstructures.  

 
2.2 Impedance Spectroscopy 

 

2.2.1 Impedance Formalisms 
 

Impedance is an A.C. property of materials or devices; analogous to D.C. resistance. 

Impedance includes an extra term not seen in D.C. resistance, due to the phase 

difference between current and voltage that can occur in A.C. circuits. Impedance 

spectroscopy (IS) is a characterization technique which measures the current and 

voltage of a material over a range of A.C. frequencies. These data give information 

about the electrical microstructure of the material itself. The different frequencies of an 

A.C. circuit activate responses from different electrical processes within the sample and 

can be used to identify electrical heterogeneity in a material (Sinclair, 1995; Kishi, 

Mizuno and Chazono, 2003). The magnitude of the complex impedance (Z*) can be 

calculated as the ratio between the amplitude of the current and voltage measured 

during impedance spectroscopy (Macdonald, 1987). Z* is made up of two components, 

one of which is real and is the resistance of the material, Z’. The other is imaginary or 

complex; Z”. The impedance modulus can be used to calculate other formalisms that 

more clearly represent other electrical properties of the material being measured (Table 

2.1). 

Table 2.1: Impedance Spectroscopy Formalisms with their respective real and imaginary 

components listed. 
Formalism Real Component Imaginary Component 

Impedance Z’ - Resistance Z’’ 

Admittance 
(Z*)-1=Y* 

Y’ - Conductivity Y” 

Electric Modulus 
M*=jωCoZ* 

M’ - Capacitance M” 

Permittivity 
(M*)-1= ε* 

ε' - Permittivity ε" 

 

IS data can be plotted using one of the formalisms in Table 2.1 in either a Nyquist or 

Bode plot (Fig 2.2). Often the plateaus or arcs shown can be related to the material’s 
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microstructure. For example, the arcs exhibited in the M* Nyquist plot of Fig 2.1 can be 

used to work out the capacitance of the overall system and individual components such 

as grains and grain boundaries. 

 

 

 
 

Figure 2.2: Example impedance spectroscopy formalism plots – Left: Nyquist style plot 

showing real and imaginary parts of impedance. Right: Bode plot showing impedances 

dependence on frequency (Log Z vs Log Frequency) 

 

Impedance spectra are typically analysed using model circuits (equivalent circuits) to 

work out the constituent properties of the electrical microstructure. These can be made 

from any idealised circuit elements but for ceramics are often made from pairs of 

resistors and capacitors in parallel (RC elements) joined in series (Fig 2.3)(Macdonald, 

1987). Typical equivalent circuits can have multiple RC elements, alongside extra terms 

to ensure a good fit to the measured data. These extra terms are discussed later. Usually, 

each RC element represents a component of the microstructure that it is modelling (e.g. 

grain boundaries and bulk) giving the model circuit a grounding in the physical 

microstructure of the material. Grain boundaries are modelled with higher values for 

resistance and capacitance than the bulk due to their geometry and higher concentration 

of defects. 
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Figure 2.3: RC Circuit used to analyse impedance spectroscopy spectra. The diagram 

shows two RC circuits joined in series. 

 

Impedance spectra often disagree with the ideal responses modelled by their equivalent 

circuits. This is often attributed to the presence of material heterogeneity in the sample 

(West, Sinclair and Hirose, 1997). This is a non-ideal Debye response; a depressed arc in 

modulus plots (M*) and a broadened Debye peak in the spectroscopic plots (Z*). This 

makes using equivalent circuits to fit data challenging and often an extra constant phase 

element (CPE) term is used to fit these non-ideal responses. CPEs, unlike RC elements, 

cannot usually be ascribed to a specific microstructural feature; just to overall material 

homogeneity. Once an analytical model is chosen and values are ascribed to each 

component it is compared to the collected experimental data and observed in multiple 

formalisms to check the fit (Irvine, Sinclair and West, 1990). Care must be taken when 

choosing and fitting an equivalent circuit as different equivalent circuits can have the 

same outputs (Abelard and F. Baumard, 1982). Fitting a model to IS data requires 

experience of the system as well as intuition as to how to best represent the system 

using electrical components. 

It has been shown by Dean et al (2014), using finite element modelling, that a 

homogeneous grain core gives rise to electric field heterogeneity and this was further 

explored by Heath et al (2015) who showed that both the core volume fraction and 

overall geometry of the sample can lead to heterogeneity in the electric field. This 

implies that the analysis of experimental IS data via equivalent circuits may not result in 

a direct link to physical microstructure as geometrical features rather than pure 

microstructural ones can also influence the IS data. This can be described as the 

electrical microstructure of a sample. 
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2.2.2 Modelling Impedance Spectra 
 

Using equivalent circuits to understand the impedance spectra of ceramics began in 

1969 when RC circuits were used by Bauerle and subsequently Beekmans to model bulk 

ceramics alongside grain boundaries (Bauerle, 1969; Beekmans and Heyne, 1976). This 

was expanded to the Brick Layer Model (BLM) where the bulk ceramic is modelled as 

‘bricks’ and the grain boundaries as ‘mortar’ when multiple grains are modelled together 

(Fig 2.4). Subsequently Nafe added a term to account for any current flowing around 

the grain core (Nafe, 1984). 

 

 

Figure 2.4: Brick Layer Model Schematic adapted from Kidner et al(2005). Showing the 

cubic grain core in blue with the grain boundary components in green modelled in 

series alongside the parallel grain boundary contribution. 

Wen et al (2008) have proposed a simple analytical model for modelling the permittivity 

of spherical ‘core-shell’ grains using the radii of the cores and shells and their respective 

permittivities to calculate the grain permittivity. However, the mathematical model 

presented is not a good analytical model for grains with thick shells. Other attempts at 
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modelling IS of materials include the finite difference model (FD)(Kidner et al., 2005). 

This models IS using 6 orthogonally connected ‘cubes’ or RC elements assigned 

different properties depending on the part of the microstructure the cube represents 

(Fig 2.5).  This technique gives overall agreement with impedance spectra and with 

other methods, including effective medium theory and FEM. However, the conduction 

pathways through the model are limited by the orthogonal connections which results in 

unrealistic electric field distributions as the cores are modelled as cubes (Kidner et al., 

2008). 

 

 

Figure 2.5: Finite Difference Model for Impedance Spectroscopy showing orthogonally 

connected RC circuits assigned with either the grain core or grain boundary properties. 

The overall grain core remains cubic in shape. 

Other methods for modelling the impedance of electroceramics include effective 

medium theory (EMT) based on Maxwell’s equations. It models randomly distributed 

nested spheres, a grain core and boundary, within an effective medium matrix that is 

assigned properties like the grain boundaries (Maxwell 1881) . This method also gives 

good agreement with impedance spectra however it is limited to spheres in its 

implementation. The effective medium matrix occupies the location of what would be 

the grain boundaries in a real ceramic. The EMT model also uses (unrealistic) perfectly 

spherical grain shapes. In the literature EMT and FD methods have been used to model 

different volume fractions of core and shell microstructures (Kidner et al., 2008). Both 

methods allow the assignment of individual properties to different regions of the model, 

which is crucial for investigating the combinatorial effect of both microstructure and 
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properties. Recreating a realistic microstructure is necessary to be able to separate the 

contributions made by the material properties from the microstructural features. 

 

2.3 Finite Element Modelling 
 

2.3.1 Introduction 
 

Finite element modelling (FEM) is a mathematical technique that solves partial 

differential equations. It does this by breaking them into finite sections or elements and 

subsequently solving these elements as a set of parallel equations. These local solutions 

can then be used to solve the global system. It has been used to model problems 

including heat transfer (Daurelle, Occelli and Martin, 1994), structural analysis of 

bridges (Chan, Guo and Li, 2003) and aircraft (Wen et al., 2018) using equations for heat 

flow, and stress and strain respectively. It can be used to solve for electronic properties 

by using it to solve Maxwell’s equations (Maxwell 1881). Maxwell’s equations, originally 

published by James Clerk-Maxwell in 1865, are the main equations used to describe the 

generation of fields, both electric and magnetic, by charges and currents. The equations 

come in two variants, micro and macroscopic. The macroscopic equations are solved in 

this work using the FEM code ELCer (Dean, Harding and Sinclair, 2014). 

 

2.3.2 Mesh Generation 
 

FEM works by splitting the problem being solved into finite elements; the generation of 

finite elements is mesh generation. The models in this work are generated using 

Voronoi tessellation, which uses a bisection method to generate finite element 

geometries (Tanemura, Ogawa and Ogita, 1983)(Fig 2.6a). In Voronoi tessellation, an 

overall 3D shape is seeded with points. The points are then joined by straight lines 

which are bisected by a plane that is normal to the line. The algorithm terminates the 

planes when they intersect another plane. This forms finite convex polygons. When 

complete, the whole 3D shape is meshed. Mirror points can be added to the model to 

create specific geometries such as squares or cubes (Fig 2.6b). The mirror points can 

also be used above or below a 2D plane to create a 3D dimensional wire model. 
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Figure 2.6: a) Voronoi line bisection. b) A 3D structure made using Voronoi line 

bisection with mirror points. c) Parallel layer and nested cube models built using the 

qhull code (see below). d) A parallel layer wire frame geometry with an extruded 

electrode layer. 

 

The qhull (Barber, Dobkin and Huhdanpaa, 1996) open source software uses an 

algorithm to identify the surfaces or wire frame of the 3D shape being simulated. This 

basic geometry can then be duplicated and shrunk or distorted to create the wanted 

geometry: simple layers, parallel layers, ‘core-shell’ microstructures or grain boundaries 

(Fig 2.6c). The geometry is then meshed using tetrahedral elements by another open 

source program – Gmsh (Geuzaine and Remacle, 2009), in which the mesh size can be 

set as a fraction of the total geometry to be meshed. In FEM, a coarser mesh requires 

less computer time to solve than a much finer mesh due to the total number of 

elements. Error increases with increasing mesh size so the mesh size needs to be 

optimised for each geometry simulated. Once the mesh for a simulation has been 

generated, a reference electrode is added to the top of the model for the FEM 

calculation using the extrude function in Gmsh which extrudes the top layer of into a 

layer made up of prisms (Fig 2.6d). 

 

2.3.3 ELCer 
 

ELCer (Dean, Harding and Sinclair, 2014) is an in-house code that solves Maxwell’s 

equations using the finite element method. The generated mesh is uploaded to be 

solved using ELCer. The elements in the mesh are assigned material properties. The 

a
) 

` ` 

b) c) 

Voronoi Seed Point 
 
Voronoi Mirror Point 

d) 
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properties required are conductivity and permittivity. The permittivity is considered 

isotropic for ease of calculation. Induction is neglected as ceramics are not conductive 

over the frequency range considered. The code constructs the stiffness matrix using the 

permittivities and conductivities that have been assigned. When simulating a material 

over a temperature range, the temperature itself is not considered explicitly; instead the 

properties assigned are modified to account for temperature change. This requires 

knowledge of the permittivity and conductivity of the material over the temperature 

range being investigated. This data can be taken from experiment or simulation. After 

the initial matrices are constructed, each element is solved locally, giving the electric 

field and current density at each time step. These values are substituted into the global 

matrix. The current density is set to zero at the free surfaces by a Neumann boundary 

condition; where the solution to the derivative of the partial differential equation is set. 

The voltage drop across the simulation is a known value (set using Dirichlet boundary 

conditions; where the solution to the partial differential equations at the boundary is set). 

Thus, by integrating the global matrix at a given frequency, the current flowing through 

the reference electrode can be calculated. The V-I data can then be used to calculate 

impedance at that frequency (Table 2.1). Finally, the data calculated is saved in the form 

of a Microsoft Excel file, and a ZView (an impedance spectra program) file. 

 

2.4 FEM Workflow 
 
The workflow for the FEM simulations completed in this chapter is detailed in Fig 2.7.  

 
Figure 2.7: FEM simulation workflow for this chapter. 
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2.5 Bilayer Simulation 
 

2.5.1 Simulation Details 
 

To validate ELCer the in house code against analytical equations, the simple layer 

model (SLM); two capacitors in series (Fig 2.8a, Eq 2.1), and the parallel layer model 

(PLM); two capacitors in parallel (Fig 2.8b, Eq 2.2) were compared to the analytical 

solution shown in the respective equations. Two individual 10µm3 model cubes, one 

split horizontally and the other split vertically were generated with a mesh size of 0.09. 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: A cross section of 10 µm cubes meshed using Gmsh with a mesh size of 

0.09 a) Simple Layer Model, b) Parallel Layer Model. 
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The properties for the layers (Table 2.1) were generated analytically based on straight 

lines generated from the approximate gradients of the curves shown by Jeon et al (2014) 

for ‘core’ and ‘shell’ barium titanate. The generated property profiles do not overlap. In 

10 μm 
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the simulations one layer (blue) was assigned ‘shell’ permittivities and conductivities and 

the other ‘core’ (red) permittivities and conductivities.  A range of temperatures: 0°C-

150°C (273.15K-423.15K) was investigated. The reference electrode was assigned a 

permittivity value of 0 and a conductivity of 1x103 µSm-1. Even though this is an 

unrealistic property it makes the electrode a constant value which allows the potential 

difference to be calculated simply with reference to this constant. All values assigned are 

shown in Table 2.1. The models were simulated from 1Hz – 0.1 GHz. M* Nyquist plots 

were generated. The total capacitance value was also calculated using the appropriate 

analytical solutions utilising the relationship between capacitance and permittivity (Eq. 

2.1, 2.2). 

 

 

Table 2.1: Properties assigned to the core, shell and electrode for the SLM and PLM 

investigation, generated by fitting straight lines to the BT core and shell signals from 

Jeon et al (2014) 

 

 

Temperature 

(°C) 

Core Properties Shell Properties Electrode Properties 

σ (µSm-1) ε (Fm-1) σ (µSm-1) ε (Fm-1) σ (µSm-1) ε (Fm-1) 

0 1x10-4 1800 1x10-4 1700 1x103 0 

10 1x10-4 1850 1x10-4 1650 1x103 0 

20 1x10-4 1900 1x10-4 1600 1x103 0 

30 1x10-4 1950 1x10-4 1550 1x103 0 

40 1x10-4 2000 1x10-4 1500 1x103 0 

50 1.25x10-4 2050 1.25x10-4 1450 1x103 0 

60 1.5x10-4 2100 1.5x10-4 1400 1x103 0 

70 1.75x10-4 2150 1.75x10-4 1350 1x103 0 

80 2x10-4 2200 2x10-4 1300 1x103 0 

90 2.25x10-4 2250 2.25x10-4 1250 1x103 0 

100 2.5x10-4 2300 2.5x10-4 1200 1x103 0 

110 2.75x10-4 2350 2.75x10-4 1150 1x103 0 

120 3x10-4 2400 3x10-4 1100 1x103 0 

130 3.25x10-4 2450 3.25x10-4 1050 1x103 0 

140 3.5x10-4 2500 3.5x10-4 1000 1x103 0 

150 3.75x10-4 2550 3.75x10-4 950 1x103 0 
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2.5.2 Results and Discussion 
 

The graphs (Fig 2.9a and 2.9b) show that in the case of the SLM and PLM the values 

obtained from FEM are a good match with the analytical solutions (Eq. 2.1, 2.2) with 

SLM having a maximum 2% variance from the analytical values and the PLM having a 

maximum 8% variance. The variance from analytical could be explained by the large 

mesh size as this may introduce error. 

 

Figure 2.9: Capacitance vs Temperature plots for a) SLM – Variance 2% b) PLM – 

Variance 8%. 

 
The M* Nyquist plots of the SLM and PLM are single arcs (Fig 2.10). Though the 

microstructures have regions with two different assigned material properties no second 

response arc is seen. The values assigned are close together – separated by less than 

three orders of magnitude - and therefore the phase difference between the two regions 

is insufficient for separate arcs on the plot to be seen. This is also possible in 

experimental IS data when time constants of separate regions are similar. Hence 

choosing the correct equivalent circuit when analysing IS data is difficult, as merged arcs 

are difficult to resolve and there can be many solutions to choose from. For 

microstructures with many different areas with similar properties it may be very difficult 

to attribute specific bulk properties to any specific phase analytically or through 

simulation. Overall it is clear that ELCer gives good agreement with analytical models 

and can be used to simulate IS for generated microstructures. Input properties, 

permittivity and conductivities for simulation must be obtained either from experiment 
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or simulation. Ideal properties can be investigated to ascertain if there is an observable 

relation between properties of specific areas and resultant overall bulk properties over 

temperature. 

 

 

Figure 2.10: M* Nyquist Plots showing single arcs for a) simple layer and b) parallel 

layer models at 150˚C. The lack of a secondary arc is because the assigned permittivities 

are separated by less than three orders  of magnitude. 

 
2.6 Core-Shell Microstructure Simulation 
 

2.6.1 Simulation Details 
 

The relationship between individual core and shell permittivities and the overall 

capacitance of a single “core-shell” grain was investigated. Both core volume fraction 

and input permittivities were varied. A ‘core-shell’ 10µm3 nested cube microstructure 

was generated with core volume fractions, 20%, 50%, 60%, 70%, 80% and 90% using 

the methods outlined previously §2.3.2 (Fig 2.11). The 50% core volume fraction cube 

was tested at varying mesh sizes using the input parameters from the SLM/PLM 

investigation to check for convergence and to pick the most appropriate mesh size. The 

final mesh size used was 0.05. 
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Figure 2.11: Cross sectional images of created geometries with a mesh size 0.05 of a) 

70% core volume fraction b) 20% core volume fraction 

 

‘Core’ input permittivity values for this investigation were created using a straight-line 

gradient generated by drawing an approximate straight line fit for the 0-150°C range at 

10°C intervals for the pure BaTiO3 experimental signal reported by Jeon et al (2014). A 

flat shell permittivity at εr = 1700 was chosen for the same temperature range. The zero-

gradient shell line was then rotated clockwise about the 0°C coordinate, creating 4 shell 

permittivity straight lines with gradients ranging from -2.5 to -10 (Fig 2.12). In all 

simulations, the core permittivity gradient (Fig 2.12) was kept the same and the shell 

permittivity gradient was varied. A conductivity of 1x10-4 µSm-1 was selected and this 

value was kept the same for both the ‘core’ and ‘shell’ components throughout. The 

reference electrode was assigned a permittivity value of 0 and a conductivity of 1x103 

µSm-1. 

Figure 2.12: Input core and shell permittivities straight lines generated for simulation 

purposes with the shell inputs varied with increasing negative gradient (0 to-10) 

10μm 

b) a) 
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Each core volume fraction was simulated once with each of the five shell permittivity 

gradients shown, through the 1Hz-0.1GHz range. From each M* spectrum created, the 

total capacitance value was obtained from 1/M’. Capacitance vs temperature graphs 

were generated which were converted into TCC (temperature coefficient of capacitance) 

curves for each gradient and core volume fraction. Room temperature was taken to be 

30°C for the TCC calculation as 25°C was not a temperature simulated during these 

calculations. 

 

2.6.2 Results and Discussion 
 

The TCC graphs generated for different core volume fractions with different shell 

gradients (Figs 2.12-14) show several trends. As the shell volume fraction decreases, the 

overall contribution from the shell permittivities decreases non-linearly. The non-

linearity increases with increasing shell gradient. This suggests that the combination of 

core volume fraction and the shell properties is important for optimising these core-

shell structures. The plots also suggest that, as the difference in permittivity between the 

core and shell increases, the TCC is increasingly affected as evidenced by the high-

temperature ends of the curves where the difference between permittivities is greatest. 

Figure 2.13: TCC (DC/C%) curve for a 20% core volume fraction grain, core input 

permittivity and conductivities were kept the same and shell input permittivities were 

varied as per Figure 2.12. 
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Figure 2.14: TCC (DC/C%)  curve for a 70% core volume fraction grain, Figure 2.13: 

TCC curve for a 20% core volume fraction grain, core input permittivity and 

conductivities were kept the same and shell input permittivities were varied as per 

Figure 2.12. 

Figure 2.15: TCC (DC/C%)  curve for a 90% core volume fraction grain, Figure 2.13: 

TCC curve for a 20% core volume fraction grain, core input permittivity and 

conductivities were kept the same and shell input permittivities were varied as per 

Figure 2.12. 
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The largest deviation of TCC is observed at 150°C for all core volume fractions and 

input permittivity gradients. The TCC value for every volume fraction at 150°C at every 

shell gradient was plotted to better interrogate the relationship between input 

permittivities and output TCC (Fig 2.16). The plot shows that the relationship between 

shell gradient, core volume fraction and TCC is not linear, and this is exacerbated in 

shells with steeper gradients. This non-linear relationship becomes more cubic (see 

cubic line of best fit) with increasing shell gradient and suggests that the link between 

microstructural regions, their assigned properties and the bulk properties of the material 

cannot be predicted by a simple analytical relationship. 

 

 
 

Figure 2.16: TCC (%) at 150°C for Input Shell Permittivity Gradients 0, -2.5, -5, -7.5 

and -10 at core volume fractions 20%, 50%, 60%, 70%, 80% and 90% showing lines 

and curves of best fit. 

 
It has also been shown by Dean et al (2014) and Heath et al (2015) that even simple 

microstructures with single input properties can give rise to electrical heterogeneity that 

is not directly relatable to specific microstructural features. This electrical heterogeneity 

is thought to be from the 3D shapes formed by areas of the microstructure. Experiment 
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also shows that shells have a rare-earth content gradient (Jeon et al., 2014) due to the 

diffusion of rare-earths towards the core as the grain grows. This means that, in FEM, 

shells should be modelled by successive thin shells with different properties per rare-

earth content. It is difficult to obtain these properties by experiment due to the small 

dopant level and the difficulty in obtaining completely homogenous samples to measure. 

Exploring other smaller scale simulation techniques may help bridge this gap. 

 

 

2.7 Conclusions 
 

FEM as a technique can provide valuable insight to the relationship between material, 

microstructural and electrical properties. The technique requires the user to input 

properties for individual areas of the microstructure. These can come from experiment 

or simulation. The results of simulating ‘core-shell’ microstructures with simple linear 

properties show that the relationship between core and shell properties and bulk 

properties is not linear. Impedance spectroscopy is of limited value for analysis of 

materials with microstructural regions with very similar properties. Merged M* Nyquist 

plots make attributing properties to physical microstructural features difficult. Exploring 

rare-earth doping of BT using a smaller scale simulation technique may be the best way 

of continuing to explore this system, and obtain realistic properties to input into future 

FEM simulations. The linking of two different scale simulation techniques via these 

properties will be allow a feedback loop between different simulation scales as well as 

comparison with experimental results. 
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3 Atomistic Simulation Methods 

3.1 Introduction 
 

Atomistic simulations form the bulk of the work done in this thesis. This chapter 

discusses the basics of atomistic simulation methods including atomistic forcefields, 

molecular dynamics, static simulations and Monte Carlo simulations. A brief discussion 

of analysis techniques that can be used on the data gathered from atomistic simulations 

is also included. Enhanced sampling of atomistic simulations including metadynamics, is 

discussed in §6. 

3.2 Introduction to Forcefields 
 

In this work, atomistic simulation methods refer to those methods whose primary 

concern is simulating the atoms in a system by treating them as a combination of nuclei 

and electronic effects. This is achievable due to the Born Oppenheimer approximation 

(Born and Oppenheimer, 1927) (Eq 3.1). 

 

!"#"$% = !'%'(")#*+( × !*-%'$)  (3.1) 

 

The approximation states that because the velocities of the electrons around the nuclei 

are much greater than the velocity of the nuclei itself that you can treat them separately. 

Thus, the total wavefunction of the system is a product of the nuclei wavefunction and 

the electronic wavefunction. Quantum mechanical methods are mainly concerned with 

solving the wavefunction for the electrons.  

Atomistic methods predominantly calculate the forces on the nuclei by solving the 

atomistic forcefield equation which is a classical approximation of the forces exerted on 

the atoms by its electrons. Atomistic methods can also be called forcefield, classical or 

potential based methods. These methods neglect calculating the electronic behaviour of 

a system explicitly and are therefore less computationally expensive than quantum 

methods. As they are less expensive they can be used to calculate large cell sizes of 

hundreds of thousands of atoms efficiently.  
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Quantum methods are generally considered to be more accurate than atomistic methods 

however, the number of atoms that can be simulated is limited to a few thousand. 

Another limitation of many quantum mechanical methods is the necessity to simulate 

the ground state of a system rather than excited states. Simulated excited states is 

challenging so this can limit the use of quantum mechanical simulations in the field of 

functional ceramics, as the behaviours we are most interested in occur in excited states. 

It is also usually necessary to calculate both minimum energy states and excited states to 

quantify the difference between the two, so other methods such as atomistic simulation 

need to be used instead. 

Atomistic forcefield simulations of ionic solids assume that the nuclei interactions can 

be modelled using Newtonian mechanics and that the nuclei take the form of charged 

hard spheres as per the Born model. In atomistic methods, both the static and dynamic 

properties of a system can be calculated.  

Atomistic forcefields (Eq 3.2) are mathematical equations used to describe the potential 

energy of the simulated chemicals. As per Equation 3.2 the total potential energy of a 

system is the sum of the energies of the individual components. The forcefield for a 

whole and varied system can be made up from many components, including but not 

limited to short range pair potentials, angular terms and long range Coulombic 

interactions.  

 

."#"$%	 = 	.0#*12 + .$*4%'2 + ."#)2+#*2 + .'%'(")#2"$"+(2 + .5$*	1')	6$$%2 (3.2) 

 

 

Forcefields are fitted to recreate the real system as accurately as possible. They can be 

fitted using data from ab initio calculations or from experimental spectra such as XRD 

and TEM. They are often fitted to a combination of the two to replicate the specific 

properties of the system that are going to be investigated. Forcefields are fitted for 

specific scenarios and systems; as creating a universal forcefield that recreates all 

chemical systems within reasonable accuracy is currently an unrealistic goal. This is due 

to the variability exhibited across different systems. 
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3.2.1 Short-range Interactions 
 

3.2.1.1 Two-Body Interactions 
 

Two body or pair potentials describe the interaction between two atoms in the 

simulation as a function of distance. The two atoms can be either the same or different 

species. These potentials include a term to describe the strong repulsion or Pauli 

repulsion atoms feel when their electron clouds are overlapping or too close together, 

and a term which describes the attraction of the ions to one another due to van der 

Waals forces (Fig 3.1). Equilibrium is reached when the two bodies are at an ideal radius 

r from each other and this usually corresponds to the ideal interatomic distance. 

 

 
 

 

Figure 3.1: Graph showing a typical two-body potential form with potential energy v as 

a function of distance r. 

 

Buckingham (1938)(Eq 3.3) and Lennard-Jones (Eq 3.4) are examples of typical two 

body terms used in this work.  
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For the Buckingham potential (Eq 3.3) and the Lennard-Jones potential (Eq 3.4) the 

exponential term and the n-index term are the repulsive terms respectively.  The r6 term 

(Eq 3.3) and the m-index term (Eq 3.4) act as the attractive van der Waals interactions.  

In the case of the Buckingham potential A, L and C are the terms that must be fitted 

for a specific interaction within a system. For a Lennard-Jones potential, G and M are the 

terms that must be fitted. G		represents the depth of the potential energy well and M is 

typically the sum of the ions radii. In the Lennard-Jones potential, the n and m terms are 

typically 12 and 6 respectively. These indices determine the strength of the repulsive and 

attractive terms of the potential. If the potential needs to be less repulsive then a smaller 

n value can be used. Both the Lennard-Jones and Buckingham potentials produce a 

relatively computationally inexpensive good approximation of the two body interactions 

experienced in simple systems including ionic solids. 

 

3.2.1.2 Three-Body Interactions 
 

 

Three body potentials (Leach, 2001) are used to maintain a specific angle between three 

atoms in the system (Eq 3.5). They are required in situations where the bonding 

character of the atoms encourages an ideal angle between the ions.  The atoms in the 

triplet can be the same or different species. It encourages the ideal angle by introducing 

an energy penalty when the angle N deviates from the ideal N0 during the simulation. 

 

.+7 =
OP
Q
(N − NS)Q   (3.5) 

 

In the titanate models used in this work, the O2-- Ti4+-O2- triplet requires a three-body 

term to encourage the angle between these atoms to remain at 90° as this is the ideal 

angle for the system.  
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3.2.2 Long-range Interactions 
 

The long-range interactions or Coulombic interactions of the ions in the simulation are 

modelled using the Coulomb sum (Leach, 2001). The Coulomb sum calculates the 

electrostatic forces felt by the ions in the system using the formal charges ascribed in 

the forcefield (Eq 3.6). In an ionic solid most of the potential energy contributions 

come from the electrostatic interactions. 

 

.+7 = 	∑
U?U@
)?@

+7    (3.6) 

 

where qi  and qj  are the charges of a pair of ions in the lattice and rij is the distance 

between the pair. The electrostatic interactions calculated using Coulombs law do not 

include contributions that would come from polarisation or multipoles. The cut-off 

distance for the short-term interactions does not apply for the electrostatic (long-range) 

interactions. This is because electrostatic effects contribute to the potential energy over 

a much larger distance than a few lattice sites. The electrostatic effect decays as a 

reciprocal function of the distance from each ion, the rate of decay is r-1, however the 

number of interacting ions increases by r2. This makes the total energy contribution 

from the Coulomb sum conditionally convergent.  

 

3.2.3 Cores and Shells 
 

In the atomistic forcefield discussed so far, the charged rigid Born model ions are not 

capable of representing any effects caused by the electron density of the atom. They 

assume the electron density is fixed. In modelling, ionic solids, polarisability has 

significant effects when defects, surface effects and or grain boundaries are introduced 

as the non-stoiochemistry introduces a dielectric boundary. In these situations, it is 

often necessary to use the Dick and Overhauser model (Dick and Overhauser, 1958) of 

a “core-shell” ion as part of the forcefield to approximate polarisability. In this model, 

polarisable ions are modelled using a spherical, positively charged mass or “core” 

connected via a spring to a larger massless negatively charged “shell”. The sum of the 

core and shell charge equals the value of the formal charge on the overall ion. 
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Figure 3.2: Diagram illustrating the components of the Dick and Overhauser (1958) 

“core-shell” model showing the cores, shells and connecting springs. 

 

During the calculation, for ions using the shell model, the Coulomb interaction between 

the core and shell is turned off, allowing the ionic point charge of the nuclei and the 

sphere of the shell to overlap each other. Within a calculation the two-body interaction 

is considered operational between the shells, if both ions have shells, and between the 

shell and the nuclei of an atom without a shell. The three-body interactions are 

considered operational between the cores of the atoms; this allows the desired angle to 

be maintained more easily. The spring is assigned a constant k, as per Hooke’s law, that 

allows the shell to freely oscillate harmonically about the core (Dick and Overhauser, 

1958). The potential energy .+ stored in the spring (Eq 3.7) is easily derivable from 

Hooke’s law where	V is the length of the spring, or in this case, the distance between 

core and shell. 

 

.+ = 	
W

Q
XVQ (3.7) 

 

The greater the spring constant, the less the shell can oscillate and thus the less 

polarizable the ‘electron cloud’. This is illustrated by Equation 3.8 where y is the charge 

of the shell and k is the fitted spring constant. This model approximates the electron 

cloud surrounding an ion as a perfect sphere which is useful in many situations it 

however falls short in situations where distinct non-spherical electron cloud distortions 

occur e.g. Jahn-Teller distortions (Leach, 2001). In practice, forcefields with cores and 

shells can, in molecular dynamics, be treated in two different ways. In the first case, the 

shell is kept massless and the shells are relaxed to the cores each time the core moves. 

In the second case, the shell is assigned a small mass of its own, and undergoes particle 
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motion with the spring acting as a tether. The second method is considered to generate 

less reliable statistics due to the fact that it can make the calculation unstable as the time 

evolution of the system will not follow the true free energy surface of the system, 

subsequently limiting the timestep size that can be used. In large systems the cost of 

relaxing the shells after every move can be prohibitively expensive. 

 

YZ[	\Z]^_`a^b`]`cd = 	 e
2

O
 (3.8) 

3.3 Energy Optimisations  
 

3.3.1 Calculating Lattice Energies 
 

Calculating the static lattice energy of a system, is one of the basic techniques for 

simulating ionic solids. A calculated lattice energy can also be used to calculate the 

second electron oxygen affinity energy to complete a Born-Haber cycle calculation 

using Hess’ Law (Atkins, 2014) (Fig 3.3). This is necessary, as the second electron 

oxygen affinity varies from oxide to oxide due to its local chemistry, and the depth of 

the potential well confining the oxygen electron cloud (Harding and Pandey, 1984) .  

 

 
 

Figure 3.3: Born-Haber cycle calculation diagram for barium titanate applying Hess’ law 

adapted from Freeman et al (2011) 

The lattice energy can also be used to help calculate both lattice formation energies and 

defect formation energies. They are also key for determining preferable configurations 
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in systems with high levels of disorder. At its basic level, calculating the lattice energy or 

potential energy of the system involves solving the forcefield equation (Eq 3.2) for a 

specific system. Once calculated other algorithms including rational functional 

optimisations or defect calculations can be used to find out information on features of 

the system. All static calculations in this work were calculated using the General Lattice 

Utility Program (GULP)(Gale, 1992). Static calculations calculate the total energy of the 

system by solving the forcefield equation typically without considering pressure and 

temperature effects per the law of thermodynamics, making the calculations simpler and 

cheaper. In the case of crystals, the repeating periodic nature of the crystal can be taken 

advantage of by reducing the crystal to a smaller symmetric form to speed up the lattice 

energy calculation. Static simulations can be altered to consider pressure using a PV 

term and temperature effects within the quasi harmonic approximation however this 

makes the calculation much more expensive. 

3.3.1.1 Periodic Boundary Conditions 
 

When studying the bulk properties of a solid ionic system it is impossible to calculate 

the potential energy of the number of atoms in a real, finite sized experimental sample. 

To overcome this and to allow simulation to be compared to experiment, periodic 

boundary conditions are utilised (Fig 3.4) (Leach, 2001).  

 
Figure 3.4: Image showing a schematic of cubic periodic boundary conditions. 

 
Periodic boundaries allow a pseudo-infinite bulk to be simulated and simultaneously 

removes external surfaces from the calculation. This works by assuming the box of 
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atoms being simulated interfaces at each box face of the simulation with an image of 

itself. Thus, an atom in a minimisation that sits on the top face of the simulation cell 

may appear on the bottom face of the simulation cell from one iteration to the next as 

the boundaries are periodic. These boundary conditions are ideal for periodic, regular 

ionic lattices as the atomic structure lends itself to being repeated.  Care must be taken 

(when using periodic boundary conditions) with the size of the cell as the it interacts 

with all images of itself, this can frustrate motion at some of the boundaries and create 

artefacts in the statistics taken from these simulations. If the cell being simulated is large 

enough these artefacts can be considered small enough to be negligible. Periodic 

boundary conditions can be cubic or orthorhombic in nature and maintain a 90-degree 

angle between images, however more commonly parallelepiped boundaries are used 

which allows the angles of the box to fluctuate, but maintain the tessellation of the box. 

The minimum image convention states that due to periodic boundary conditions, the 

interactions within the cell should be limited to an atom only interacting with the 

nearest image of every other atom in the system, rather than the infinite images 

generated by the periodic boundaries (Leach, 2001). This reduces the burden of 

calculation to a much smaller number of interactions 

 

3.3.1.2 Calculating Short-range Interactions 
 

Calculating the total forcefield and thus the total potential energy of a system, relies on 

the sum of all the possible interactions (Eq 3.2). As the number of atoms, N, in the 

system increases, the number of ion interactions that must be calculated increases 

quadratically. This makes it prohibitively expensive to calculate the interactions between 

all pairs of atoms simulated other than for very small systems. As the distance between 

the pair of atoms increases, the contribution to the overall energy of the short-range 

interaction decreases to near zero (Eq 3.4, 3.5). Therefore, a cut off distance is 

introduced to the simulation beyond which the short-range interactions are assumed to 

be zero. This is typically of the order of 12Å, however it must not be greater than the 

distance prescribed by minimum image convention used in the simulation. The cut off 

distance used in research has been increasing over time due to increasing available 

computer power. Generally, the greater the cut off the greater the accuracy of the 

simulation. If the cut off is small, often the potentials being used are truncated so 

abruptly that artefacts are created in the short-range interactions calculated (Fig 3.5) 
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Tapering functions can be used to make the transition at the cut off less abrupt (Fig 3.5) 

(Leach, 2001). They can be specified as part of the interatomic potential set. The cut off 

combined with the minimum image convention can greatly reduce the number of 

interactions that must be calculated, making the simulation much more efficient. 

 
 

Figure 3.5: Graph showing abrupt truncation of a two-body potential (Solid line) and a 

tapering function (Dashed line) that can be used to overcome this.  

 

3.3.1.3 Ewald Summation 
 

The cut-off distance for the short-range interactions does not apply for the electrostatic 

or long-range interactions. This is because electrostatics contribute to the potential 

energy of the system over a much greater distance than a few lattice sites. The 

electrostatic effect decays as a function of the distance from each ion. The rate of decay 

is r-1, however the number of ions being interacted with increases by r2. This makes the 

total energy contribution to the potential energy of the system from the Coulomb sum 

[6] a conditionally convergent sum. If this conditionally convergent sum is solved 

directly it converges very slowly if at all.  

The Madelung potential (Eq 3.9) defines the potential energy due to electrostatics felt 

by one ion due to all the other ions in the lattice (Glasser, 2012). 
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where .+ is, the potential energy felt by ion i, e is the unit of elementary charge, ϵS is the 

permittivity of free space, rij is the distance between the ith and the jth ion and zj is the 

Cut off 
distance 
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number of charges on the jth ion.  

To solve this sum for all atoms in a periodic system during a simulation quickly and 

efficiently the Ewald summation (Ewald, 1921) is used. The Ewald summation is a 

special case of the Poisson summation formula (Kittel, 1996) which takes advantage of 

the periodic nature of the electrostatic interactions to solve the Coulomb sum. It does 

this by splitting the Coulomb sum into a sum of three terms (Eq 3.10). Two of the 

terms are the sum of the potential energy in real space and in reciprocal space 

respectively. The third term is the potential energy of the ion itself. For the Ewald 

summation to correctly converge the unit cell being simulated must be charge neutral.  

.'%'(")#2"$"+(2 = .)'$% + .)'(+l)#($% − .2'%m(3.10) 

 

In the Ewald summation, the electrostatic charge of each ion in the lattice is represented 

by a point charge lattice. Gaussian distributions with their centre located at each lattice 

site, where the area of the Guassian equals the charge of the ion, are sequentially 

subtracted from the point charge lattice and then added back on to allow Equation 3.10 

to be solved (Fig 3.6).  

 
 

Figure 3.6: Graphical representation of the Ewald summation adapted from (Kittel, 

1996). 
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The charge of the ion at the reference point of the calculation does not contribute to 

the potential energy at its own location, giving the .2'%m (Eq 3.11) term which consists 

of the charge distribution for the reference point ion in the form of a single Gaussian. 

.)'(+l)#($% (Eq 3.12) is the sum of the Gaussians in the lattice; a continuous Gaussian 

distribution. This continuous Gaussian distribution sum is difficult to solve within real 

space quickly, therefore by using a Fourier transform the sum can rapidly converge and 

be solved in reciprocal space.   .)'$% (Eq 3.13) is a lattice of point charges with the 

negative .)'(+l)#($% Gaussian distribution subtracted from it. This results in the point 

charges being screened and an equation that is easily solvable in real space. 

 

.2'%m = 	
n

fo
p
qri

∑ s7
Qt

7uW  (3.11) 

 

.)'$% = 	
W

fori
∑ ∑

UvU@
wxyz@vw

t
*{7

|
xu} :_~�(Äwx + z7*w) (3.12) 

 

.)'(+l)#($% = 	
W

QÅri
∑

ÇÉÑ	(Ö
Üp

áàp
)

Op
w∑ s7exp	(−`å ∙ z7)

t
7u% w

Q|
åu} (3.13) 

 

where k is the reciprocal lattice vector. Given by:  å = 	 Qo
Å
é
q
(ℓ,ë, [)í. 

 

3.3.2 The Minimisation Problem 
 

The minimum energy configuration of a system is of great interest to atomistic 

simulators, both as a starting configuration for future calculations, for finding structural 

equilibrium and for calculating an optimised lattice energy for Hess cycles and similar 

methods (Leach, 2001). 

The potential energy surface of a system is a multi-dimensional energy surface where 

the energy of a system is given as a function of its coordinates (Frenkel, 2002) (Fig 3.7). 

A minimum for a given system can be mathematically defined as the point at which 

both the gradients and second derivatives of the potential energy surface are zero. 

For a system with a given set of coordinates, finding the global minimum energy of a 

system is inherently problematic. This is because a potential energy surface for a system 

can be complex and iteratively solving the forcefield for each point of the potential 

energy surface is combinatorically and computationally too expensive and time 
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consuming. However, unless the whole of the potential energy surface is searched 

systematically, any minima found cannot be proven to be the global minimum. As this 

type of searching is not feasible for systems larger than a few atoms, a minimization 

algorithm or downhill search method is often used to find minima. The larger the 

system being simulated, the more degrees of freedom and the longer a minimisation can 

take. 

 

 
 

Figure 3.7: Example Potential Energy Surface of a System. 
 

3.3.3 Energy Optimisations 
 

There are many algorithms (Press et al., 1993) that can be used to search for a minimum 

in atomistic simulations. They vary in method, accuracy and speed and their limitations. 

This work uses a combination of the methods. An energy optimisation searches for a 

minimum on a potential energy surface. All optimisations are given an initial 

configuration of the system. Once the energy of the initial configuration is evaluated the 

algorithm then searches for configurations with lower and lower total energies, until a 

minimum is found. 
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3.3.3.1 Conjugate Gradient Method 
 

The conjugate gradient method using the Fletcher-Reeves algorithm (Fletcher and 

Reeves, 1964) uses progressive line searches that are conjugate to one another, to locate 

the minimum of a system (Fig 3.8). Using the initial configuration, the direction with the 

steepest gradient is determined. The algorithm then searches along this direction of the 

potential energy surface to find the minimum. Once found, the gradient of the minima 

is used to calculate the conjugate or non-interfering direction to search in. The line 

search for the minimum in the new direction is then completed. The second two steps 

are then repeated until an overall minimum is found. As the conjugate gradient method 

only evaluates the gradients of the potential energy surface, this is a first order searching 

method. 

 

 
 

Figure 3.8: Illustration of the steps taken during the operation of the conjugate gradients 

method on a second order polynomial. 

 

One limitation of the conjugate gradient method is that as the complexity of the system 

increases a greater and greater number of steps must be calculated to find the minimum. 

Conjugate gradients is useful for very large non-symmetric systems as it does not 

require the calculation of a second derivative matric (Hessian matrix). However it will 

fail if the hessian matrix is not a positive definite matrix. 
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3.3.3.2 Newton-Raphson Method 
 

Unlike conjugate gradients the Newton-Raphson method (Leach, 2001) is a second 

order minimisation method. It uses both the gradient or first derivative of the potential 

energy surface as well as the second derivative, the hessian matrix, to minimise a system. 

To do this the potential energy surface of the system is written in the form of a Taylor 

expansion (Eq 3.14) that is the sum of the energy at position x, the vector of the first 

derivatives g and the hessian matrix H of the second derivatives.  

 

ì(; + V;) = ì(;) + î(;) + ï(;)  (3.14) 
 

The next step from position x, dx is determined using g and the inverted hessian matrix 

H from the previous step (Eq 3.15). This means the next step dx is intelligently 

informed which can reduce the number of steps needed to find the minimum. For the 

algorithm to work successfully, H must have all positive eigenvalues, if negative 

eigenvalues are present, saddle points rather than minima can be found, making the 

method unstable. 

 

; + V; = 	− 4(ñ(ó))

ò(ñ(ó))
  (3.15) 

 
 

The algorithm also requires the calculation and inversion of the hessian matrix, which is 

computationally slower and more expensive with increasing system size. These features 

give competing speed ups and slowdowns to the overall algorithm. To overcome this, 

quasi Newton-Raphson methods have been developed, to reduce the number of 

occasions on which the hessian matrix needs to be fully evaluated. There are many 

competing schemes for this, however the one utilised by GULP is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method (Shanno, 1970). BFGS is one of the most 

accurate quasi Newton-Raphson methods available. It uses an approximation of the 

hessian matrix based on the value of the current position x and the first derivatives g of 

the first step to determine dx the next step (Eq 3.15). When the value of the energy at x 

falls below or rises above a certain threshold due to an abnormal step choice, or when a 

certain number of iterations have been completed, the full hessian matrix H is 

computed and inverted to check for accuracy. H in full is also calculated for the final 

configuration to check that a minimum has been found. 
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3.4 Defect Calculations 
 

So far the methods explained in this chapter deal only with calculating energies for 

charge neutral perfect crystals. Perfect crystal lattices only provide limited information 

about the materials being simulated. Real materials contain defects, and these defects 

often result in phenomena or materials properties that are of use. The perfect crystal is 

only an ideal. For all real crystal systems, the introduction of a defect increases the 

entropy S of a system where the total free energy of formation G is given by Equation 

3.16 (Atkins, 2014) where T is the temperature in Kelvin. The introduction of defects 

also increases the enthalpy of formation of the overall system H. 

ô = ï − öõ(3.16) 

 

This results in a non-zero minimum G for all temperatures above 0K, resulting in the 

spontaneous formation of point defects at all temperatures above 0K. The defects that 

form in a system can range in size from point defects to grain boundaries and 

dislocations. In this work, we only deal with simulating point defects, and clusters of 

point defects. As the Ewald Summation is only accurate for a system that is charge 

neutral (Ewald, 1921), mathematical corrections are needed to overcome this limitation, 

and allow defects to be simulated. 

 

3.4.1 Types of Defect 
 

Point defects in crystals can be categorised into five different types (Fig 3.9) . These 

point defects can exist singularly or in defect complexes. Defect complexes are often 

more energetically favourable as they can restore charge equilibrium to the system. The 

defects in this work are bulk defects. Defects at the surface of a crystal will have 

different chemistry due to the interface. 

Firstly, a vacancy also known as the Shottky defect in the case of metals, is an ion 

missing from an occupied lattice site. Secondly, an interstitial is the introduction of an 

ion into the space in-between the crystal lattice sites. Thirdly, the Frenkel pair defect 

consists of a vacancy and an interstitial formed by the ion that has just vacated the 

vacancy site. Fourthly anti-site defects occur where ions are found occupying the wrong 

lattice site, the electrostatic neutrality of the system is conserved. These first four types 

of defect are intrinsic defects, because they can form in a pure crystal, without 
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impurities. Finally, substitution is the replacement of a different species onto a lattice 

site. The substituted ion can be of the same, more positive or less positive charge than 

the ion being substituted. This is an extrinsic defect, as its presence alters the 

stoichiochemistry of the system. 

 

 
 

Figure 3.9: Schematic illustrating the five types of point defect: 1. Vacancy, 2.  

Interstitial, 3. Frenkel Defect, 4. Anti-site Defect, 5. Substitution. 

 

Kroger-Vink (1956) notation is commonly used to define and label point defects. It 

takes the form of a defect identifier, with an associated subscript and superscript. The 

defect identifier illustrates the type of defect: atom, vacancy, electron or hole. The 

subscript illustrates the lattice site the defect is located on. This can be an element 

symbol or i for interstitial. Electrons and holes do not typically have a lattice site 

associated with them. The superscript can be dots to represent a positive net charge, the 

apostrophes, negative net charge compared to the non-defective lattice or a cross where 

there is difference in the net charge of the lattice due to the defect. The example 	

údù$
∙   is a rare-earth ion Dysprosium substituted onto the Barium site of the barium 

titanate lattice with a positive net charge of one, as Ba is 2+ and Dy is 3+. Vacancies are 

denoted with V. 
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3.4.2 Mott-Littleton Simulations 
 

The Mott-Littleton (ML) (1938) approach to defect simulations involves calculating the 

energy it costs to insert a defect into a perfect crystal. It is also known as the embedded 

cluster approach. ML is useful when the defects involved are below the dilute limit of a 

system. This is the case when an element is a low-level dopant in a material, e.g. rare-

earth doping of barium titanate.  A prerequisite for ML defect calculations is that the 

system is optimised before introducing defects; this ensures the accuracy of the 

calculation. Both individual and defect clusters can be simulated using this approach. In 

this method, the crystal surrounding the defect or cluster of defects is divided into two 

nested spherical regions (3.10).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: Schematic of the Mott-Littleton Defect Calculation. 

 

In the inner defect-containing region (Region I), the interactions between the atoms are 

calculated explicitly this is because these ions are closest to the defect and will therefore 

be the most affected by the defect. In the outermost region (Region IIb) the interaction 

of the ions with the defect is approximated using a continuum method where the only 

interaction with the defect is coulombic. Therefore, the movement of the ions due to 

the defect are treated harmonically. This is the Mott-Littleton approximation. The 

interactions between the Region I and the inner part of the outer region (Region IIa) 

which has a radius given by the sum of the cut off distance and the radius of region I 

are also calculated explicitly. However, the positions of the ions in Region IIa are 

   

Defect 
Centreee 

Region I 

Region IIa 

Region IIb  
Extends to ∞ 
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calculated using the harmonic approximation. The total energy of the defect or defect 

cluster is given by Equation 3.17. Where x represents the displacements of the inner 

region and	û the displacements of the outer region. When the energy of the defect is 

being minimised, it is not possible to provide an explicit expression for the minimum 

configuration as the displacements of the atoms outside Region I, rely on the 

displacements inside Region I. In this scenario, a minimum is reached when all the 

forces acting on the ions in Region I are zero. 

 

ü	 = ü1	
(;) + ü12	

(;, û) + ü2(û)	(3.17) 

  

The larger the radius of Region I the better converged the calculation. The radius of 

Region IIa must equal to or greater than be the sum of the radius of Region I and the 

cut off distance of the potentials being used. This ensures that all of atoms in Region 

IIb only react Coulombically to the presence of the defect as the short-range 

interactions are cut off. The appropriate radii for Region I and IIa can be fitted for a 

specific system by calculating it for progressively larger radii and looking for 

convergence. The converged values will oscillate about a final value due to the different 

layers of atoms that are included in each region as the radii increase. Once this 

convergence is reached, the smallest converged radii is chosen as this is the most 

efficient and cost effective choice. The M-L method is unsuitable for evaluating systems 

such as solid solutions where there are many more defects present than at the dilute 

limit. 

 

3.5 Transition State Theory and Saddle Point Searching  
 

As previously discussed, we are often not interested in the static optimised structures of 

an atomic system, perfect or defective, as they cannot tell us about the dynamic 

behaviour and properties of the system. Chemical reactions, diffusion, phase transitions 

and many other physical phenomena occur at energies higher than those used for 

optimisations. To investigate these phenomena, approaches other than downhill 

optimisations are required.  
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Transition state theory is a theory in chemistry developed to understand the reaction 

rates of chemical processes (Truhlar, Garrett and Klippenstein, 1996). It states that 

there is a transition state between the reactants and products of a reaction, or as 

investigated in this work, the start and end points of a diffusion event. It states that the 

transition state is located at a saddle point on the potential energy surface of a system. 

The energy difference between the start state and transition state of an event is the Ea or 

activation energy of the reaction or hopping event. This activation energy can be used 

to calculate the rate of reaction, or in this case; the diffusion constant of an ion species.  

  

3.5.1 Definition of a Saddle Point 

 

A saddle point is defined mathematically as a point on a surface where the second 

derivative hessian matrix H has only one negative eigenvector (Banerjee et al., 1985). 

This means that the point is a minimum in all directions except for one Fig 3.11.   

 

 

 
 

Figure 3.11: Schematic showing a potential energy surface with a saddle point. 

 

This definition means that mathematically, the saddle point of an energy surface can be 

identified by second order derivative methods. However, all previously discussed search 
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methods only search downhill. This is a problem when transition points will always be 

found at a higher energy than genuine minima in a system. 

 

 

3.5.2 Rational Functional Optimisations 

 

To find a saddle point in static atomistic calculations, uphill rather than downhill 

searches can be utilised. The rational functional optimisation (Banerjee et al., 1985) is 

one such uphill search method. A starting position for the transitional ion in the crystal 

is chosen. This consists of Frenkel pair and an extra lattice site vacancy (Fig 3.13). One 

is the vacancy that the ion has left, and the other is vacancy the ion is travelling to. The 

starting location of the interstitial is chosen to ensure it does not lie along any of the 

symmetry lines of the crystal and so that it is close to the expected transition point.  

 

 

 
 

 

Figure 3.13: Schematic of the starting positions of the defects for a rational functional 

optimisation calculation of Oxygen diffusion. 

 

The method works by calculating the inverse hessian matrix H at the location of the 

transitional ion. The algorithm then moves the ion upwards along its local least steep 

gradient one step and then the hessian matrix is re-evaluated. These steps continue until 
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the state in which the inverse second derivative hessian matrix only has one negative 

eigenvector and therefore contains a maximum. Once this is found the Newton-

Raphson optimiser is run until the tolerance factor for the norm of the energy gradient 

(gnorm) is reached. The energy of the ground state from the defect calculation is then 

subtracted from the energy of the transition state to reveal the overall barrier height. 

There are a few main limitations of the RFO method. Firstly, choosing the starting 

position requires quite extensive knowledge of the system being simulated as it must be 

chosen so that it is both close to the saddle point and not on any crystal symmetry lines. 

Limitation two is that RFO is very slow, both because the calculation takes a long time, 

and because moving the transitional ion is limited to a very small step. The small step 

size is to ensure the calculation does not accidentally miss the transition point. Thirdly, 

there is no guarantee that the saddle point found corresponds to the transition state 

being searched for since other transition states may exist nearby. Finally, the RFO only 

provides information about the location of the saddle point, there is no other 

information given about the potential energy surface, such as the pathway itself or other 

barriers. 

 

3.5.3 Nudged Elastic Band 

 

The nudged elastic band (NEB) method (Leach, 2001) is a method of finding the 

transition state and the minimum pathway of a known reaction or diffusion event. It 

does this by optimising images of configurations between a start and end state on a 

pathway. To begin, the start and end state of the reaction or diffusion must be known. 

Then configurations are generated linking these the start and end configurations, this is 

often done with linear interpolation. Generally, the greater the number of images, the 

greater the accuracy of the calculation. Too many images however, can lead to kinks in 

the pathway. The configurations are linked together using springs to ensure the 

configurations stay in order. The images are then all optimised (Fig 3.14) using the 

BFGS optimiser (Shanno, 1970). As the images are linked together by springs, the 

forces applied to the atoms due to the springs are ignored during optimisation. Only the 

forces perpendicular to the springs are considered. 
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Figure 3.14: Example of an NEB calculation potential energy surface illustrating the 

initial images selected and the subsequent optimised images. 

 

NEB calculations provide significantly more information about the potential energy 

surface than RFO calculations. When NEBs are properly minimised the entire lowest 

pathway can of transition can be revealed. The transition point itself may not be the 

exact position of one of the images, and subsequent smaller NEB runs can be used to 

find the location specifically. In operation, some NEB calculations struggle when the 

forcefield includes atoms utilising the shell model. This is because some algorithms do 

not have the relaxations of the shells onto the cores explicitly built into the 

minimisation and it can lead to overestimated and incorrectly minimized pathways. 

Another limitation of the NEB is that it requires the correct parameterization of the 

springs being used, if the springs are too stiff, the simulation will fail to find the true 

minimum. Conversely springs that are too soft may allow the minimum pathway that is 

found to be inaccurate. 
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3.6 Monte Carlo Simulation 
 

Monte Carlo (MC) simulation is the general name by which several techniques using 

random or pseudo-random sampling can be used in atomistic simulation to generate a 

sample of atomistic configurations per a Boltzmann distribution (Leach, 2001). This is 

useful if you are not interested in the dynamic properties and trajectories of a system. 

Monte Carlo simulations can be carried out for non-equilibrium states and systems [39]. 

The Monte Carlo algorithm invented by Ulam (1949), named after Monte Carlo because 

of the casinos found in the principality, is an algorithm that can be used to generate a 

random sample of configurations of a system.  

The techniques full name is the Metropolis Monte Carlo method which combines the 

idea of random sampling from Ulam’s original technique with the Metropolis algorithm 

(Metropolis et al., 1953) for generating a Markov chain of states (Norris, 1997). If the 

sample generated is truly random, it will replicate the properties of the overall 

population and replicate a Boltzmann distribution. This allows us to obtain the 

properties of the entire potential energy surface much more quickly than by sequential 

or time dependent sampling. 

The method used for atomistic simulation typically consists of a starting configuration, 

a user determined acceptance criteria and a random number generator. The algorithm 

works as follows: 

 

• The energy of the starting configuration is calculated.  

• A new configuration is generated, either by swaps or steps to move the ions 

around.  

• The energy of the new configuration is then evaluated , if the energy is lower 

than the starting configuration the move is automatically accepted. 

• If not the energy is used to calculate the acceptance criteria for the move.  

• A random number is generated and if it is larger than the acceptance criteria the 

new configuration is rejected, if it is smaller or equal to the criteria the move is 

accepted.  

• The steps are then repeated. 

 

The longer an MC calculation is run the more accurately the distribution of the system 

is replicated. In the case of an atomistic simulation involving temperature and pressure 
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this distribution is a Boltzmann distribution. It is important to note that per the ergodic 

hypothesis, the configurations visited over a long MC run will equal the configurations 

visited in an MD run, providing both runs are long enough. For an in-depth discussion 

of Monte Carlo methods, the reader is directed to Binder (1988). 

3.7 Molecular Dynamics 
 

Molecular Dynamics (MD) is a simulation technique that uses classical mechanics to 

evolve a system along a time dependent trajectory, using Newton’s second equation of 

motion (Eq 3.18) 

 

¢+ = ë+^+       (3.18) 

 

where F is, the force exerted on a particle i, m is the mass of the particle i and a is the 

acceleration of particle i. In a similar way to static calculations MD uses the forcefields 

previously discussed and evolves them time dependently to explore the trajectories of 

the atoms. Unlike many static calculations, thermodynamic information is included in 

the calculation explicitly.  

 

3.7.1 Leapfrog Verlet Algorithm 
 
 

Solving the expressions to move the atoms over time requires rapid efficient integration 

methods to ensure the calculation is cost effective. One of the most commonly used 

integration algorithms is the Leapfrog Verlet algorithm. The Verlet method is a finite 

difference method used to solve the MD equations. It works by calculating velocities 

and positions at time t – ∆t to calculate by integration the velocities at t +∆t. This takes 

the form of two Taylor expansions of newtons equations of motion (Eq 3.23. 3.24). 

The expansions can be combined to solve for the current timestep.. In the Leapfrog 

Verlet variant of the algorithm, to ensure high accuracy and reduce the error in 

calculating the velocities and positions, the positions are calculated using half timesteps, 

allowing the size of the timestep to be larger than for traditional Verlet. As the velocities 

and positions are updated in turn using the previously calculated numbers they are 

thought to be “leapfrogging” over one another.  
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Where x is the position of the particles, v is their velocity, f is the forces acting on the 

particles and m is the masses of the particles. The Leapfrog-Verlet is economical with 

storage, and can be implemented when simulating very large systems. Smaller timesteps 

can be used to increase the accuracy of the positions and velocities. The algorithm 

conserves the energy of the system well.  

 

3.7.1 Thermodynamic Ensembles 
 

Thermodynamic ensembles are statistical ensembles that allow a simulated system to 

exist at equilibrium by imposing certain conditions upon the system (Fig 3.15)(Leach, 

2001). They facilitate the calculation of thermodynamic properties of a system which is 

crucial for evolving positions and velocities in MD calculations. Simulating real systems 

is infinitely complex and by imposing certain conditions on the simulation, a good 

approximation of the thermodynamic properties can be obtained. The constraints 

concern the thermodynamic properties of the simulation box, including but not limited 

to the volume, temperature, pressure and number of particles.  

 
Figure 3.15: Schematic of NVE, NVT and NPT ensembles. 
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The microcanonical ensemble, or NVE ensemble keeps N the number of particles 

constant, V, the volume of the simulation box, constant and E, the energy of the system 

constant. This allows the pressure and temperature of the system to fluctuate during the 

calculation. No energy or particles may transfer to the surroundings. If a given energy of 

a system is known, an NVE calculation can be used to find equilibrium states for that 

energy. The NVE ensemble is achieved by running a standard MD calculation, solving 

the (conservative) Hamiltonian. To achieve other ensembles extra mathematical terms 

must be added.  

In the canonical (NVT) ensemble, the number of particles, the volume and the 

temperature is kept constant. This is achieved by allowing energy to leave and enter the 

system using a mathematical thermostat or heat bath. The exchange of energy continues 

until the system finds equilibrium. This type of simulation is useful for examining 

systems at a known temperature. NVT calculations can be used to work out the 

Helmholtz free energy of a system. The Nose-Hoover thermostat is used in this 

ensemble (Eq 3.24) (Hoover, 1985). NVT calculations are considered more stable than 

many other types of ensemble. 

In the Isobaric-Isothermal (NpT) ensemble, the number of particles, temperature and 

pressure is kept the same. This allows the volume and energy to fluctuate to achieve the 

given temperature and pressure. For this type of calculation, a heat bath or thermostat 

and a barostat are needed. The barostat exerts an external pressure on the system from 

all directions, and lets the volume fluctuate. NpT calculations are useful for calculating 

the Gibbs free energy of a system. This work uses the Nose-Hoover thermostat (Eq 

3.24) (Hoover, 1985)and the Berensden barostat (1984) (Eq 3.25) for these calculations. 

NpT calculations are usually considered to be the ensemble most like experiment out of 

the ensembles described here.  

 

3.7.2 Mean Squared Displacement 
 

Mean squared displacement (MSD) is an analysis technique used on the outputted 

trajectory from molecular dynamics calculation to work out the deviation from a 

specific position or mean movement of a particle over time (Eq 3.25) (Frenkel, 2002). 
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where N is the number of particles being considered, ;S are the positions of the 

particles in their reference states and ;(c) are the particle positions at time t. 

It can be used to calculate diffusion coefficient D and the activation energy EA (Eq 

3.26) from MD simulations (Eq 3.27). 

 

ú = úS:;< =−
ÆØ
∞±
B	(3.26) 

 

 

	〈(; − ;S)Q〉 = 2≤úc		(3.27) 

 

 

The output from the MSD calculation is traditionally displayed as a graph of log of the 

cumulative displacement of the particles vs log time (Fig 3.16). The first section of the 

graph is ignored when calculating diffusion coefficients, this is the ballistic regime where 

the displacement of the particles is independent of the local forces acting on the 

particles. To ensure that the statistics for the diffusive events are reliable this initial 

ballistic part of the MSD is discounted. Once the first hopping event has been seen 

there is a vast change in gradient of the MSD. The reliability of the diffusion constant 

calculated from the gradient of the MSD relies upon the statistics of multiple diffusive 

events. If there are not enough events seen in the calculation the diffusion constant will 

not be reliable.  To encourage diffusive events to occur, the simulation box can be 

heated, or more charge carriers can be introduced. 
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Figure 3.16: Example of outputted MSD graph showing log cumulative displacement vs 

log time. The gradient of the non-ballistic regime is used to calculate the diffusion 

coefficient. The red box shows the area of the calculation the MSD would be calculated 

from. 

3.8 Software Used 
 

In this work GULP (Gale, 1992) was used for all static lattice calculations. This included 

lattice optimisations, ML calculations and RFO calculations. DL_POLY Classic (Smith 

and Forester, 1996) and DL_POLY 4 (Todorov et al., 2006) were used for all MD 

simulations. Simulations with 10000+ atoms were carried out using DL_POLY 4 for 

efficiency. MSD calculations were carried out using DL_POLYs in built MSD code, and 

the code from Project Aten - dlputils (Young, 2017). Random sampling methods were 

carried out using custom Python code. 
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4 Simulation of Dynamic Tilt in Perovskites 
 

4.1 Introduction 
 

Perovskites, as discussed in §1, are materials with the general form ABX3. These 

minerals, including barium titanate, can undergo phase transformations resulting in 

different polymorphs with the same stoichiometry. In many of the phases exhibited by 

perovskites, the general structure is still that of corner sharing B-site octahedra with the 

A-sites forming a sub-lattice, sitting on the 12-coordinate site. However, a deviation 

from unity in the tolerance factor often results in octahedral tilting and distortion to 

compensate for the A and B site size mismatch (Reaney and Ubic, 1999). This chapter 

discusses tilting in perovskites, its classifications, the simulation of experimental spectra 

of tilted perovskites from molecular dynamics, comparison to space-group simulation 

and experimental results. The aim of this chapter is to successfully simulate 

experimental spectra from MD, compare this to experimental results, and probe the 

geometries invisible to typical experiments. This will allow the prediction of TEM 

patterns for perovskites, providing extra geometrical analysis and feedback for 

forcefield fitting, and allowing assessment of experimental spectra. 

 

4.2 Tilted Perovskites 
 

4.2.1 Structure-Property Relationships in Perovskites 
 

As mentioned in §1 structure-property relationships are key to understanding and thus 

manipulating materials for specific purposes. For example, in the case of pure barium 

titanate at the tetragonal-cubic phase transition near the Curie temperature (~120-

130°C)(Fig 4.1), the permittivity of barium titanate spikes massively, and then drops off 

rapidly (Van Santen and Jonker, 1947) This is due to the c/a unit cell length ratio in 

tetragonal barium titanate approaching unity. As the c/a ratio approaches unity the 

energy required to make the titanium ion go off-centre gets progressively smaller, as the 

distance to travel to go of centre decreases. This increases the bulk permittivity. When 

the c/a ratio reaches unity the barium titanate is cubic, which prevents the titanium ion 

going off-centre at all, resulting in the large drop in permittivity. 
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Figure 4.1: Pure barium titanate single crystal Permittivity vs Temperature data 

Reproduced from Merz (1949) http://dx.doi.org/10.1103/PhysRev.76.1221. 
 

This example of a structure-property relationship in perovskites exemplifies why 

studying such relationships is crucial for understanding why certain materials exhibit 

certain behaviour. In the perovskite material family, another well understood but poorly 

numerically quantified structural feature is tilting.  

 
4.2.2 Tilt in Perovskites 

 

As mentioned in §4.1 tilt in perovskites occurs when the BX6 corner-sharing octahedra 

tilt or rotate to compensate for the size ratios between A, B and X sites. The 

dependence of tilt on the size ratio was demonstrated by Reaney et al (1999) , where tilt 

was linked to the tolerance factor t for perovskites which predicts the stability of a given 

perovskite as determined by Goldschmidt (1926) (Eq 4.1).  

 

! = ($% + $')/[2
,
-($. + $')] (4.1) 

 



 73 

where RA, RBa and RX are the radii of the A, B and X site ions respectively. The closer the 

resulting value is to unity, the more likely the perovskite phase is to form. An example 

of tilt is the prototype perovskite, calcium titanate (Fig 4.2). Orthorhombic calcium 

titanate shows tilting along all three of its unit cell axes.  

 

 
 

Figure 4.2: Orthorhombic calcium titanate unit cell, next to Cubic barium titanate cell 

[001] direction. Tilt can clearly be seen in the calcium titanate. 

 

When one octahedron in a perovskite is tilted about one of its axes, the surrounding 

octahedra in the plane normal to the axis of rotation are constrained in their response to 

the initial tilt (Glazer, 1972). These constraints can extend for a long distance in a 

perfect lattice. The octahedra in the other two planes are not constrained and may tilt in 

a different direction. The sum of these rotations creates a net ‘tilt’ away from the perfect 

cubic perovskite.  

Net tilt can be observed experimentally, through the space groups obtained from X-ray 

diffraction patterns as well as transmission electron microscopy patterns (Woodward 

and Reaney, 2005) and results in super-lattice reflections in the latter due to the net off-

centring of the ions in the bulk ceramic (Fig 4.3). 
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Figure 4.3: Example of TEM super-lattice reflections due to tilt (i and c) in calcium 

titanate view directions a)[100], b)[010] (Woodward and Reaney, 2005). 

 

4.3 Introduction to TEM and XRD 
 

4.3.1 Bragg Diffraction 
 

 

The fundamental physics that explains both transition electron microscope (TEM) 

diffraction patterns and X-ray diffraction (XRD) patterns is the same. Proposed by 

father and son, William Henry and William Lawrence Bragg (1913) , Bragg diffraction 

or Bragg’s Law (Eq 4.2) describes how X-rays and other small wavelength waves are 

diffracted by crystalline materials. When X-rays are fired at a crystalline material, they 

scatter off the multiple layers of ions within the crystal and either remain in phase, 

interacting constructively, or ending up out of phase, interacting destructively with each 

other (Fig 4.4). Waves with sub-nanometre (<10Å) wavelengths give the greatest 

convergence/interference pattern, as the wavelengths are a similar length to the 

interatomic distances found in crystals. 

 

01 = 223405 (4.2) 
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Figure 4.4: Diagram of Bragg Scattering 

 

Bragg’s law states that for a crystal with interatomic spacing d and a radiation source 

with wavelength	1 the constructive interference will occur at angle 5. Working 

backwards from the angle at which constructive interference is observed, interatomic 

layer spacings can be determined. By scanning over a full range of incidence angles 5, 

the diffraction pattern for a material can be accessed. Depending on the type of initial 

radiation; X-rays; neutrons or electrons, this pattern looks different. The diffraction 

pattern provides information about the presence of other phases, defects, and internal 

strain.  

 

4.3.2 X-ray Diffraction (XRD) 
 

4.3.2.1 The Diffractometer 
 

One of the earliest instruments used in materials science to perform experimental 

diffraction was the powder X-ray diffractometer (Fig 4.5). The fundamental 

components of a modern diffractometer are an X-ray source, a goniometer and an X-

ray detector (Fultz, 2008). Electronic control systems are also needed to relate the 

detected scattered X-rays to the angle between source and sample. There are many 

different arrangements of the four basic components possible. Polycrystalline samples 
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are usually diffracted using the Debye-Scherrer method, which uses monochromatic X-

rays over the range 0-180° to interrogate the sample. 

 

 
 

Figure 4.5: Schematic of X-ray Diffractometer adapted from Fultz (2008) 

 

The three main components of the X-ray diffractometer are commonly arranged as 

shown in Figure 4.5. Their purpose and basic operation is discussed below. 

 

1. The X-ray source is most commonly a vacuum tube diode that uses a copper 

filament to thermionically produce X-rays. These X-rays are then filtered using 

slits to produce a single phase coherent X-ray beam focused in the direction of 

the sample. Filters are used on the vacuum tube source to eliminate the 

characteristic X-rays of the source filament. Different filaments are often used 

to produce specific wavelengths. 

 

2. The goniometer facilitates the rotation of the sample in the X-ray beam. Some 

X-ray diffractometers keep the sample static and rotate the X-ray source and 

detector. Goniometers provide precise measurable rotation. An entire X-ray 

scan of a sample, rotates through the full 25 to 180º range of angles. 

 

3. The detector collects the resultant X-rays scattered by the sample. Each 

absorbed X-ray causes the detector to emit a pulse of electricity. The sum of the 

pulses for a given 25 is the intensity. To ensure coherence and ease of analysis, 

two sets of slits, singular vertical slits, and horizontal Soller slits (1924) are used 

in front of the detector. The horizontal slits allow only angles scattered at 25 to 
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pass through to the detector, and the Soller slits correct any axial divergence in 

the rays detected. 

 

The sample being interrogated by XRD can be a single crystal or a powder. When 

probing a single crystal, only one orientation of the crystal is observed by the X-ray 

beam, even when the sample is rotated, leading to a limited number of high intensity 

peaks or diffraction spots being observed. These 2D spot diffraction patterns are like 

those observed in transmission electron microscopy. In the case of powder diffraction, 

the same material is arranged in multiple orientations allowing the detector to detect 

coherence or high intensity at more 25 values than for a single orientation. The 

aggregated values from many orientations allow the whole structure of the material to 

be probed from one polycrystalline, powder sample rather than many individual 

orientations of a single crystal sample, which would be time consuming and expensive 

to facilitate. 

 

4.3.2.2 XRD Spectra 
 

X-ray diffraction spectra is most often visualised as a graph showing intensity of the X-

rays observed at all angles of 25 (Fig 4.6). This collates the information from the entire 

scanning range of the X-ray diffractometer into one graph. There is typically low level 

background noise in the spectra which can be eliminated by subtracting the spectra of 

the background noise of the diffractometer without the sample.  

 

 
Figure 4.6: X-ray diffraction spectra for cubic barium titanate (Aoyagi et al., 2002). 
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4.3.2.3 Analysis of X-ray Diffraction Patterns 
 

The resultant spectra from XRD can be analysed in two different ways. Firstly, it can be 

indexed, this process relates the individual peaks in the spectra to a specific reciprocal 

lattice position (in Miller indices). From this the d-spacing for each indexed peak and 

unit cell length can be calculated. In a cubic cell indexing the peaks and working out the 

d-spacing is straight forward (Eq. 4.3). 

 

 
7
8-
= 9 7

:-
; [ℎ= + >= + ?=] (4.3) 

 

 

where d is the lattice spacing, h, k and l are the Miller indices of the plane and a is the 

unit cell length. By calculating d for each of the high intensity peaks using Bragg’s law 

(Eq. 4.2) and calculating the 1/d 2 value for each peak, the Miller indices can be worked 

out by dividing through by the common factor (1/a2). 

 For crystal structures other than cubic, or solid solutions combining multiple space 

groups, indexing the pattern can become more complex. Auto-indexing programs are 

used to determine the index and intensity of each peak and the respective R-factor or 

discrepancy index; a measure of how reliable the intensity of the peaks is. 

The second method for analysing XRD spectra is through an iterative modelling 

process. This is often used for unknown substances and complex systems. An XRD 

pattern from a model is calculated, and then compared to the experimental result. This 

is then iteratively improved until the model matches the experiment. The data can be 

fitted using many different methods, Rietveld refinement (1969) is one of the most 

common. MD calculations have also been used to identify the thermal ellipsoid 

parameters included in the refinements due to the kinetic vibrations of the atoms 

(Auffinger, Masquida and Westhof, 2002). 

 

4.3.3 Transmission Electron Microscopy 
 

Electron microscopes, first developed and trialled during the 1930s, can observe very 

small features of materials, in the range of 50-100 pm (Fultz, 2008). As an electron has a 
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very small wavelength (1.23nm) this allows much smaller objects to be seen than by a 

light microscope. The transmission electron microscope (TEM) forms images by firing 

electrons through a specimen. The sample must be 100nm or thinner, to allow the 

electrons to pass through and to ensure a uniform width is exposed to the beam. 

 

4.3.3.1 The Microscope 
 

The creation of diffraction patterns in transmission electron microscopy (TEM) is a 

similar process to that used in XRD. In TEM however, a beam of electrons is used as 

the source of radiation. An electron microscope consists of 6 components in its most 

basic form (Fig 4.7). 

 
Figure 4.7: Schematic of basic transmission electron microscope adapted from (Fultz, 

2008) 

 

1. The vacuum system of an electron microscope removes gas atoms that would 

deflect the electron beam reducing the effectiveness of the device. The vacuum 

system is typically pumped down to 10-4Pa or less. Much lower vacuum 

pressures are needed if the TEM is high-voltage, this is to safeguard against arcs 

being generated. 

 

2. The electron source, or electron gun, is typically a tungsten or lanthanum 

hexaboride filament heated to high temperatures to produce electrons. The 
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filament is heated by a high powered electrical source, and the resultant beam 

directed towards the positively charged anode has an acceleration of between 60 

and 300 keV. The acceleration voltage can be altered to change the 

magnification of the sample. The gun itself is negatively biased to ensure the 

electrons leave the filament to create the electron beam. As electron beams can 

damage the sample being investigated, the higher the voltage and longer the 

exposure the more likely this is to occur. For a typical ceramic sample, the beam 

is accelerated to between 100-200keV. 

 

3. The condenser lenses focus the electron beam to produce a more condensed 

‘point-like’ electron beam. These lenses control the ‘spot-size’ of the beam, or 

the size of the area of the sample which is hit by the beam. The ‘spot size’ can 

vary between 0.0001 and 0.5Å-1. The first condenser lens corrects for 

astigmatism, the second controls the spread of the beam hitting the sample. The 

lenses are typically magnetic lenses, controlling the charged electron beam via a 

magnetic field. The deflector coils can be oriented around the beam to focus the 

beam centrally, or at the sides of the beam to deflect the beam side to side. 

 

4. The sample is either held in the sample holder rod suspended on a small grid, or 

for self-supporting samples is placed directly in the rod. The sample rod is 

attached to goniometers to facilitate the rotation of the sample during the 

operation of the microscope. 

 
5. In the diffraction TEM configuration, the objective lenses are found after the 

sample holder. They focus and magnify the beam that has passed through the 

sample. They are typically magnetic lenses like those used for the condenser 

lenses. 

 

6. The fluorescence screen and cameras are found below the specimen; they are 

usually paired with a final set of projection lenses which take the output from 

the objective lens and further magnify the resultant image. The beam that has 

been diffracted by the sample is then projected onto the fluorescence screen, 

which fluoresces when an electron hits the surface. The diffracted electron 

beam hitting the fluorescence screen produces a visible TEM spectrum from the 
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monochromatic electrons. This can be observed directly or indirectly, via 

cameras, by the operator of the machine.  

 

The sample preparation for TEM can be carried out in many ways. Often a larger 

sample is manufactured first and then cut down and finally thinned using a fixed ion 

beam (FIB) to get the sample to 100nm in thickness or less. The sample itself is 

typically circular and approximately 3mm in diameter. For brittle substances, such as 

ceramic, achieving such a small sample without fractures is a highly skilled job.  

 

4.3.3.2 TEM Outputs 
 

Depending on the set-up and imaging mode of the TEM, many different outputs may 

be obtained. These include but are not limited to: long or short exposure selected area 

diffraction patterns (SADP), backscattered TEM and laue diffraction (Fig 4.8).  

 

 
 

Figure 4.8: Examples of TEM imaging modes, a) laue diffraction, b) backscattered laue 

diffraction, c) Selected area diffraction pattern. The diffraction patterns show reciprocal 

space depictions of the system being diffracted. 
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4.3.3.3 Selected Area Diffraction Patterns  
 

In this work, we are concerned with SADPs as an output from TEM. SADPs consist of 

spots, that are produced due to the constructive and destructive interference of the 

electron beam when transmitted through the sample. These spots, or areas of high 

intensity, like those seen in single crystal XRD spectra, can reveal information about the 

crystal structure such as the atomic spacing, ionic correlations, and the overall crystal 

structure. The diffraction patterns observed are the projected reciprocal lattice of the 

crystal in that orientation (Fultz, 2008). Selected area diffraction patterns can be 

simulated from atomic positions by calculating the reciprocal lattice of the atomic 

positions.  

 

4.3.3.4 Effect of Exposure Time on Diffraction Patterns 
 

The time that a sample is exposed to the electron beam when in diffraction mode 

affects the resultant visible spectra. Short exposure diffraction patterns are SADPs 

where the time that the sample has been exposed to the beam is between 5-16 seconds  

Long exposure diffraction patterns are between 50-100 seconds and further information 

about the sample can be observed including diffuse scatter which is indicative of weak 

correlation between ions in the solid. Long exposure times can damage the sample. 

 

4.3.3.5 Analysis of Transmission Electron Microscopy Diffraction Patterns 
 

SADPs can be indexed and used to identify the crystal structure and d-spacing of the 

crystal being examined. SADPs taken over multiple zone-axis are needed to index the 

entire crystal structure. The patterns are indexed with relation to the pseudo-cubic cell 

(Fig 4.9) as this is the convention in literature. This is important when it comes to non-

cubic crystals as literature can report a zone axis that does not match the zone axis 

given in simulation. When simulating TEM patterns the zone axis identified is the zone 

axis of the simulated crystal, cubic or not. The zone axes seen in experiment and those 

simulated must match each other and so a conversion from the real crystal axis to the 

pseudo-cubic axis must take place (Fig 4.9) 
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Figure 4.9: Pseudo-cubic and orthorhombic cell relations with the view directions and 

their corresponding equivalents listed. 

 

Once indexed, the patterns can be compared to known or simulated patterns to identify 

crystal structures and d-spacing. Other features such as diffuse scatter and Kikuchi lines 

can be identified and associated with specific features such as uneven surfaces or 

scratches in the sample. 

 

4.4 Definitions of Tilt in Perovskites 
 

4.4.1 Tilt in Perovskites 
 

As discussed in §4.2 octahedral tilting is an important bulk structural phenomenon 

found in perovskites with overall Goldschmidt factors of 0.96 and below (Reaney and 

Ubic, 1999).This net tilt can be observed in TEM diffraction patterns as super-lattice 

reflections, and in XRD as d-spacings consistent with the space-group associated with 

the tilt. General tilt classification has been attempted by many scientists most 

predominantly by Glazer (1972) and Beanland (2011). Their models are reviewed in 

detail in §4.4.2. One limitation common to these classification systems is the lack of 

interrogation of the dynamic behaviour of the system. To be able to observe and 

classify tilt they both require the bulk of the perovskite to exhibit tilting. As tilting 

occurs due to ion size ratios within a perovskite, it is reasonable to assume that regions 

within heavily doped, or solid solution perovskites may also exhibit local tilting due to 

different local chemistry and thus a lower local Goldschmidt factor. These small regions 

of tilt currently cannot be seen and quantified using conventional experimental spectra, 

No Cubic Orthorhombic 

1 [001] [001] 

2 [010] [1A10] 

3 [110] [210] 

4 [101] [111] 

5 [111] [212] 
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although they may be viewed using high resolution methods such as HRTEM. XRD 

and TEM diffraction patterns may also be observing this local tilt behaviour, which 

could generate artefacts, or lead to misinterpretation of this behaviour. 

 

4.4.2 Existing Definitions of Tilt and Their Limitations 

 

As previously mentioned §4.4.1 there have been many mathematical definitions of tilt 

reached by different scientists in the last four decades. The most well-established 

definition is that of Glazer. In the first and subsequent paper (Glazer, 1972, 1975) he 

identified 23 possible tilt systems in perovskites and classified the type of tilting using a 

system subsequently called Glazer notation. He also linked the 23 tilt systems to their 

respective crystallographic space groups. By assuming the prototype perovskite 

structure to be perfectly cubic, with no tilt and geometrically perfect octahedra, Glazer 

notation then identifies overall tilt as a sum of tilts, either in-phase, anti-phase or no 

tilting (Fig 4.10), in each of the cubic unit cell directions a, b and c. Tilt phase is 

identified by looking at the tilt angle between two octahedra projected along one plane 

(x, y or z) and relating it to the subsequent layer of octahedra in that direction. If the tilt 

angle is in the same direction, the tilt is in phase. If there is no angle of tilt there is no 

tilting, and if the angles of tilt seen are in opposing directions then the tilt is classified as 

anti-phase tilting. 

Although net tilting in perovskites has been observed, classified and mathematically 

simulated using ideal space groups, the dynamical behaviour of the tilted octahedra has 

not been thoroughly interrogated. 
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Figure 4.10: In-phase and Anti-phase tilting highlighted in the calcium titanate cell. 

 

Cubic systems with no tilt are represented as a0a0a0 in Glazer notation. If the magnitude 

of tilt is the same in multiple directions the same letter is used. The super script 0 + or – 

denotes no tilt, in phase tilt and anti-phase tilting respectively. The Glazer notation for 

the calcium titanate system is thus a-b+a- denoting anti-phase tilting with the same 

magnitude along two axis and in-phase tilting along the other. This corresponds to the 

orthorhombic space group No. 62 - p n m a which equivalent to p b n m as the only 

difference is the cell orientation. The number of possible tilt systems was revised 

downwards to 15 by Howard and Stokes (1998) as some of the original 23 systems were 

proven to be equivalent.  

The main limitation of Glazer notation is that the octahedra are assumed to remain 

perfect. This presumed lack of distortion in the octahedra is unlikely in certain 

scenarios: low tolerance factor perovskites; solid solutions including tilted perovskites; 

hybrid organic-inorganic perovskites; and highly defective systems. Another significant 

limitation is that the tilting is defined by an external reference frame, in this case the 

perfect pseudo cubic perovskite cell. This makes it easy to link the tilts to specific space 

groups, however it only works if perfect centrosymmetric octahedra are assumed. This 

is a problem for many perovskites which derive their electrical properties from off-

centre A and B sites. Glazer notation also implies that the tilt motion comprises three 

distinctive sequential moves. This is not the case in real dynamic systems. Glazer 
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notation also has no way of classifying tilt during phase changes, only the end states of 

the transition. Finally, Glazer notation is not quantitative; the only information stated 

about the tilts themselves is whether some are equivalent and in what direction each 

subsequent layer of the system tilts. 

Richard Beanland (2011) described tilt in a more generalised manner for the purposes 

of examining tilt around grain boundaries. His method accounts for small octahedral 

distortions and non-centrosymmetric octahedra to model and explain tilting at phase 

boundaries. It does this by using a tensor description for octahedra to describe their 

tilting, and an operator to describe the type of connection between adjacent octahedra 

(Fig 4.14). This system has advantages over Glazer notation as it facilitates description 

of phase boundaries and non-regular octahedra. However, like Glazer notation, this 

model relies on external reference frames for defining the direction and relationship of 

tilt. 

 
 

Figure 4.11: Beanland’s definition of tilt (2011) Reproduced with permission of the 

International Union of Crystallography 

 

Fundamentally although both Beanland and Glazer and others have created definitions 

for overall net tilt, they lack quantitative values for tilt angles. Neither scheme considers 

the dynamic motion of tilted perovskites, and how this may link to tilt phase changes. 

To overcome these limitations another method of tilt analysis has been developed in 

conjunction with this thesis. 
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4.5 Geometrical Tilt Analysis 
 

4.5.1 Defining Tilt from Geometry 
 

One of the most fundamental limitations of previous definitions of tilt in perovskites is 

the tendency to relate tilt to a cubic cell that has been distorted. This is useful when 

relating tilted systems to specific space groups. However, as previously discussed, this 

creates issues when the octahedra are not regular. To overcome this an internal 

reference frame was used in this work. This allows the simulated ceramic to be in any 

orientation and eliminates the need to impose an external cubic frame of reference on 

the cell which can cause description of the tilt structure to vary depending which 

direction is chosen as x, y and z respectively. 

Another decision that must be made when defining tilt (in the BX6 octahedra) is 

whether the angle of tilt itself is between the X – X – X sites or the B – X – B sites (Fig 

4.16). In this work the tilt angle is described using the X – X – X sites. This allows non-

centrosymmetric octahedra to be accommodated.  

 
Figure 4.12: Possible definitions of tilt angles; X-X-X and B-X-B.  

This work uses X-X-X to facilitate off centre octahedra. 
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Information about the crystal structure can be calculated using well known geometric 

formulae. Volumes of the B-site octahedra and A-site irregular dodecahedra (cubo-

octahedra) can be calculated by splitting the octahedra and dodecahedra into irregular 

tetrahedra and using Equation 4.4 on all constituent tetrahedra (Fig 4.13). 

 
 

 

 

 

(4.4) 

 

 

where V is the tetrahedral volume, and d2
12 etc are the lines connecting the vertices in 

the irregular tetrahedra. 

 

 

 

 

 

 

 

 

Figure 4.13: Diagram of an irregular octahedra with vertices and edges labelled as per 

Eq 4.4. 

 

A measure of the distortions of an octahedra can be calculated using the quadratic 

elongation formulae (Eq. 4.5) and the distortion index (Eq. 4.6) (Momma and Izumi, 

2011) where l0 is the edge length of a regular polyhedron with the same volume lav is the 

average length of the edges in a given octahedra and li  is the length of a given edge of a 

octahedra.  The Dipole displacements of A-site and B-site ions away from their central 

lattice point can be calculated as the difference between the centroid of the surrounding 

X-site ions and the position of the A or B site ion.   
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The tilt phase as per Glazer notation can be also calculated geometrically in a 

generalised way for all simulated perovskites by calculating and comparing torsion 

angles. 

For a given A-site (Fig 4.13a), each side of the bounding B-site -X-site – B-site lattice 

box is examined in turn. The midpoints between B-sites along two ‘parallel’ edges are 

calculated. Then these midpoints M1 and M2 are connected via a rod (Fig 4.13b). The X-

sites X1 and X2 are also connected via rods to the midpoint of their respective B-sites 

(Fig 4.13c). 

 

 
  

Figure 4.14: Tilt Phase Calculation in PALAMEDES. a) Identification of A-site box. b 

& c) Identification of B-sites, midpoints and X-sites. d) definition of in-phase tilting, all 

other results are anti-phase. 
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This allows the angle of torsion between all connected members to be calculated. In a 

method, analogous to a method used to identify cis or trans molecules, if the specific 

angle X2M2M1X1 (Fig 4.13d) is the smallest of all five angles of the angles interrogated 

as per the legend, then that pair of edges of the box surrounding an A-site is counted as 

in-phase. All other results are considered anti-phase. The no-phase state is a 

combination of tilt angle ~180° and the edges counted as anti-phase. For each pair of 

edges examined, in-phase edges are scored as 1 and anti-phase edges are scored as -1. 

The average of these in each of the cell directions over the entire simulation gives a 

value between -1 and 1.  

This allows the magnitudes of tilt angles in the cell directions and the calculated phase 

tilt to give a generalised, more realistic, alternative to Glazer. The larger the number of 

edge pairs in each direction that score the same value, the longer the phase persistence 

length of the tilt. This persistence length is valuable for assessing micro tilted regions 

and tilt phase transitions. The code written to perform all of the geometrical analysis 

detailed here on DL_POLY_4 (Todorov et al., 2006) output files was written in house 

by Dr Christopher M. Handley and is detailed in Appendix 1. 

 

 

4.6 Time Dependent Simulation of Tilt - TEM, and XRD Spectra 

 

4.6.1 Introduction 

 

Simulation of tilted perovskites has been done successfully. These simulations have 

been linked back to Glazer’s tilt definitions and space groups and have been very useful 

for identifying tilted structures. The simulation of tilted perovskites over time has yet to 

be attempted. The reason for this was explained by Woodward and Reaney (2005) as 

the limitations of computer time, power and expense. In the 13 years since, 

developments in hardware and software have made the time dependent simulation of 

perovskites possible. In this work the aim was to simulate experimental spectra of tilted 

perovskites from molecular dynamics simulation. This feedback loop from dynamical 

simulation will help facilitate validations of forcefields and identifications of defects in 

experimental samples. 
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4.6.2 Molecular Dynamics Details 

 

The molecular dynamic simulations were all run using the NpT ensemble as it is best 

for comparison to experiments carried out under standard conditions. Simulations were 

run between 100 and 10000 timesteps. Timesteps were 0.5fs in length. The forcefields 

used for each calculation are detailed in each results section as well as simulation size 

and length. 

 

4.6.3 Effective Sampling of Molecular Dynamics 

 

As MD simulations have such small timesteps (femtoseconds), they typically are not run 

for more than nanoseconds. Experimental techniques however, collect data over much 

longer periods of time (seconds – minutes), but do so less frequently than MD. For 

example, a TEM sample exposed to an electron beam with energy 200keV would see a 

single electron every 1x10-11 seconds assuming a constant flow of electrons, this is 4 

orders of magnitude longer than femtoseconds (1x10-15). Therefore, the TEM is seeing 

the sample much less often than an MD calculation. Using all of the data from an MD 

run to simulate experimental spectra may over-sample configurations due to the 

timestep difference between experimental and simulation.  

MD calculations can be run and only print the trajectory every nth timestep. This would 

be a better approximation of the sampling of a TEM than a trajectory printed every 

timestep. However, without prior knowledge of the system, an arbitrary selection of n 

could enforce over-sampling of specific configurations due to the periodic nature of 

atomic oscillations in solid materials. Monte Carlo sampling is an effective strategy to 

sample the MD trajectory. The fitting of the sampling scheme is discussed below. 

Simulated TEM and XRD spectra are generated with CrystalMaker Suite (2018) 

 

4.7 Proof of Concept – Barium Titanate and Calcium Titanate 

 

4.7.1 Simulation Details 

 

To simulate experimental spectra for calcium titanate, a box size of ~100x100Å was 

used. This was a 20x20x20 cell box of 160000 atoms at 50K. The size is a good 

approximation of a small aperture SADP sample in a TEM. The same forcefield as that 
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in §5 was used, apart from the Ca-O interaction as detailed in Table 7.1 and an altered 

Ti-O interaction to encourage the system to remain orthorhombic during dynamic 

simulation. The simulation was equilibrated for 5000 timesteps and run for 10000 

timesteps printing the trajectory every timestep. The same size box and simulation was 

undertaken for pure barium titanate using the forcefield in §5. 

 

Table 7.1: Ca-O Interaction from Dawson (2012) and adapted Ti-O interaction for this 

work. 

 

 

 

4.7.2 Sampling of Raw Data 

 

The 10000 timestep history file was sampled both sequentially and randomly using 

Monte Carlo sampling as per Table 7.2. As can be seen in the table the averages and 

standard deviations fail to change much past 1000 timesteps for random sampling. 

However, this is a very low temperature calculation at 50K and to ensure applicability to 

higher temperatures 20% was decided upon as being a more suitable number of frames 

to sample. For more in-depth analysis of dynamics, sequential sampling is more 

appropriate as it includes all of the dynamical information, unfortunately this over 

samples in comparison with experimental techniques. 

  

Buckingham Potential QRST(−V W⁄ ) − Y WZ⁄  
Interacting ions A 

(eV) 
[ 

(Å) 
C 

(eV 
Å6) 

Ca O 1375.0 0.3325 15.21 
 

Lennard-Jones 7-6 Potential \]^ _9
`^
W
;
a
− b 9`^

W
;
Z
cd 

Interacting Ions 
 

E0(eV) Ro(Å)  

Ti O 0.01194 4.719  
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4.7.3 PALAMEDES Output 
 

Table 7.2: PALAMEDES angles output for random and sequential sampling of CT simulated at 50K showing the average octahedral volume for the 

system, the standard deviation, minimum and maximum octahedral volumes seen in the sample. The angle X+ refers to the angle of tilt calculated in 

the positive x direction for each octahedra. 

 

Random 
Sampling 

Average Oct 
Vol  (Å3) 

STD Oct 
Vol 

Min Oct 
Vol 

Max Oct 
Vol 

Average 
Angle x+ 

Min 
Angle x+ 

Max 
Angle x+ 

STD 
Angle x+ 

100 9.9193 0.0637 9.369 10.1881 159.0785 154.0014 164.6074 0.9763 
200 9.9192 0.0638 9.3366 10.1967 159.0812 154.0014 164.8479 0.9766 
500 9.9191 0.0638 9.3715 10.2134 159.0829 154.0173 164.83 0.9775 

1000 9.919 0.06395 9.3672 10.2171 159.08475 154.11965 164.7193 0.9774 
2000 9.919025 0.0639 9.3572 10.217775 159.08385 154.0014 165.0326 0.97685 
5000 9.91898 0.06396 9.34775 10.21396 159.0847 153.9837 165.0326 0.97708 

Sequential 
Sampling 

Average Oct 
Vol  (Å3) 

STD Oct 
Vol 

Min Oct 
Vol 

Max Oct 
Vol 

Average 
Angle x+ 

Min 
Angle x+ 

Max 
Angle x+ 

STD 
Angle x+ 

100 9.9175 0.0655 9.3215 10.2093 159.1255 154.4814 164.0318 0.9822 
200 9.9166 0.0666 9.3215 10.2093 159.137 154.4814 164.0318 0.9888 
500 9.9184 0.0648 9.3715 10.2093 159.0977 154.4814 164.0216 0.9867 

1000 9.9189 0.06405 9.34815 10.20535 159.0874 154.5566 164.06135 0.9852 
2000 9.91885 0.064025 9.369425 10.20685 159.0886 154.54465 164.21025 0.9842 
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The outputs show that sampling randomly is more effective than sampling sequentially. 

2000 of 10000 frames is an appropriate amount of random sampling for this system. 

The sequential sampling is inappropriate as the same average volume as for random 

sampling still hasn't been equalised at 2000 steps sampling. This is inefficient. 

 

Table 7.3: PALAMEDES Phase output for CT and BT at various temperatures. 

 Temperature 
(K) 

x y z 

CT 50 -1 -1 1 
CT 150 -1 -1 1 
CT 350 -1 -1 1 
BT 350 0 0 0 

 
 
The code correctly identifies the phase tilt for CT as two anti-phase tilts and one in 

phase tilt, this corresponds to the a-b+a- and for BT a0a0a0.  The angles are quantified and 

the volumes of the octahedra do not change much over the 50-350K temperature range 

for CT.  

 

Table 7.4: PALAMEDES average angles and standard deviation output for randomly 

sampled CT and BT simulations at various temperatures in the positive x, y and z 

direction from each octahedra. 

 

Temperat
ure (K) 

octahedral 
volume 

x+(°) y+(°) z+(°) 

AVE STD.
DEV 

AVE STD.
DEV 

AVE STD.
DEV 

AVE STD.
DEV 

50 9.93 0.06 159.03 0.80 159.03 0.80 158.65 0.86 
150 9.93 0.13 159.56 1.56 159.28 1.44 158.92 1.52 
350 9.93 0.12 160.17 2.74 160.17 2.74 159.82 2.73 

BT-350 10.65 0.02 179.8 0.04 179.7 0.06 179.8 0.04 
 

It is clear from Table 7.3 that the CT force field behaves as expected with increasing 

angle of tilt and standard deviation with increasing temperature. Though the octahedral 

volume does not change, its standard deviation does gets larger. The BT simulation at 

350K gives a very defined cubic structure, with no tilting and tilt angles very close to 

180°. 
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4.7.4 Comparison to Experimental Spectra 
 

4.7.4.1 X-ray Diffraction 

 

The predicted CT spectra compares very well with experiment (Figure 7.14) although 

they do not match perfectly. This is due to the fit of the forcefield and its ability to 

replicate the density of states for the system investigated as well as the difference in 

temperature between room temperature experiment and 50K simulation. The forcefield 

fit could be improved with improved forcefield fitting. The thermal contributions even 

at 50K in the simulated spectra can be seen in the form of some broadened peaks.  This 

gives a good indication of thermal effects on CT in XRD and reduces the need to 

calculate thermal ellipsoids when predicting XRD from simulations. 

 

 
Figure 7.15: XRD spectra for a) simulated CT from an the average structure of 2000 

randomly sampled frames and b) experimental orthorhombic CT (Yashima and Ali, 

2009). 

 

 

a) 

b) 



 96 

 

 

 

4.7.4.2 TEM 
 
 

The predicted CT TEM compare well with experiment (Figure 7.16), by increasing the 

intensity of the plot, diffuse scatter can be seen around the main spots in the pattern 

suggesting cation-correlation. This allows us to predict a long exposure TEM. The 

perfect unit cell simulation does not get this scatter. This technique combines with the 

outputs from PALAMEDES can be used to inform about tilt on the local level and link 

the quantitative numbers and angles of tilt to the observed structure.
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Figure 7.16: TEM spectra for analytical and experimental CT from Woodward and Reaney (2005) 

and simulated CT at 50K from an ideal cell, from a structure averaged from 2000 MD frames at low intensity – to represent short exposure TEM 

SADP and high intensity to represent high exposure TEM SADP. BT was simulated form 2000 frames randomly sampled from MD. Super relections 

are ringed in black. BT exhibited no such super-reflections. 
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4.8 Results – Methyl-Ammonium Lead Iodide 
 

4.8.1 Simulation Details 

 

To simulate experimental spectra for methyl-ammonium-lead-iodide (MALI), a box size 

of ~45x45Å was used at 330K. The forcefield used was by Handley and Freeman 

(2017). The simulation was equilibrated for 1000 timesteps and run for 4000 timesteps 

printing the trajectory every timestep. The PALAMEDES output and the simulated 

TEM were outputted from this calculation. 

 
4.8.2 PALAMEDES Output 

 
The PALAMEDES output for MALI at 330K shows non-180° angles of tilt in the 

positive and negative directions in all three axes (Table 7.4). The average angle in for 

each axis in both directions are not equal suggesting a higher level of disorder in the 

model than for CT which had almost equal average angles in both directions. The phase 

output (Table 7.5) suggests that in at least two directions MALI is cubic, however the 

variation in average tilt angles disagrees with this. In the z direction a phase tilt value of 

0.5 was given suggesting some coordinated motion of the in-phase type in this axis. 

 
Table 7.4: PALAMEDES angles output for MALI at 330K showing average octahedral 

volume, and standard deviation and the average angle standard deviation in all three 

directions x, y and z, in both the positive and negative directions. 
 

Temperature 
(K) 

octahedral 
volume 

x+(° )  x - ( ° )  y+ ( ° )  y - ( ° )  z+ (° )  z - ( ° )  

AVE STD. 
DEV 

AVE STD. 
DEV 

AVE STD. 
DEV 

AVE STD. 
DEV 

AVE STD. 
DEV 

AVE STD. 
DEV 

AVE STD. 
DEV 

330  46.31 1.95 154 5.59 158 3.76 151 4.38 157 5.81 152 2.98 149 2.61 

 

Table 7.5: PALAMEDES Phase output for MALI showing no net phase tils in the x 

and y directions and 0.5 phase tilt in the z direction. 

Temperature (K) x y z 
330 0 0 0.5 
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4.8.3 Comparison to Simulated Experimental Spectra 
 

4.8.3.1 TEM 

 
Figure 7.17: Predicted TEM of MALI from randomly sampled MD at 330K 

 
A TEM SADP has been predicted for MALI and shows some indications of net tilting 

in the z direction in the [111] zone axis (Fig 7.17) which is supported by the 

PALAMEDES Phase output (Table 7.5). The numbers from PALAMEDES show that 

the angles of tilt in MALI are different in multiple directions suggesting that distortion 

of the octahedra and dodecahedra play an important role in the structure of the 

material. This is to be expected due to the organic A-site having the ability to rotate 

freely especially at higher temperatures. In the [001] direction there seems to be no 

indication of super-reflections supporting the phase tilt analysis. Subsequent analysis is 

needed to tell whether the rotation of the organic A-site is what influences this tilt 

behaviour.  

  

4.9 Conclusions 
 
We can successfully simulate time averaged XRD spectra and TEM diffraction patterns 

of perovskites. The TEM diffraction patterns for CT include the correct super 

reflections. These patterns include temperature averaging effects eliminating the need 

for calculation of thermal ellipsoids in XRD simulation. This averaged structure 
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includes thermal information which allows the TEM pattern to be simulated for both 

short and long exposure, unlike idealised patterns.  

The PALAMEDES code is capable of determining the angles of tilting including 

averages, minimums and maximums, and correlating this to tilt phase. This gives us a 

form of notation analogous to glazer notation. For the prototype systems CT and BT 

this matches glazer notation. We can predict TEM patterns for MALI, which up until 

now have not been shown experimentally. 

Sampling of MD data is key for recreating spectra that is similar to those from 

experiment as sequential sampling can oversample the trajectory. 20% random sampling 

of total frames for a large system was deemed to be appropriate. 

The created spectra could be used as a metric by which to test existing and future 

forcefields. Indexing currently has to be done by hand for simulated TEM and XRD 

patterns, as Crystal Maker indexes all mathematically possible reflections, not just the 

strong reflections which are the ones comparable to experimental signal. 
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5 Rare Earth Doping of Barium Titanate  
 
 

5.1 Introduction 
 

As discussed in §1, BaTiO3 has a high relative permittivity at room temperature making 

it ideal for achieving large volumetric efficiencies in capacitor applications (Haertling, 

1999). In dielectric applications, the movement of oxygen ions and therefore oxygen 

vacancies in the bulk ceramic is believed to be crucial in determining the mechanisms by 

which the capacitors fail (Waser, Baiatu and Härdtl, 1989). The movement and build up 

at interfaces of charged species can lead to short circuits and electrical break down. 

Preventing oxygen vacancy creation and movement is therefore key to extending the 

lifetime of BaTiO3 in capacitor applications. Ceramic BaTiO3 both contains intrinsic 

oxygen vacancies due to cation vacancies (Yoo, Song and Lee, 2002)  and reduces 

readily at its interfaces with electrodes leading to the production of a small 

concentration of oxygen vacancies that can migrate into the solid (Jida and Miki, 1996). 

In capacitors with dielectric ceramic layers a few microns thick, it is crucial that 

movement of these vacancies is controlled as the distance they must migrate to reach an 

electrode and begin to build up is very small. 

Oxygen diffusion in BaTiO3 has been extensively studied experimentally both in 

undoped single crystals (Kessel, De Souza and Martin, 2015) and polycrystals (Müller 

and Härdtl, 1989) giving activation energies ranging from 0.5 to 1.28 eV (Maier, 

Schwitzgebel and Hagemann, 1985; Müller and Härdtl, 1989; Kessel, De Souza and 

Martin, 2015). Simulation studies using both density functional theory (Erhart and Albe, 

2007) and atomistic techniques using both static and dynamic (Islam, 2002; Uberuaga 

and Vernon, 2013; Zulueta et al., 2016) methods have been used to look at the migration 

pathway, the activation energies and the diffusion constants of oxygen vacancy 

migration in many perovskites.  

For MLCC applications, BaTiO3 is frequently doped with trivalent rare earth (RE) ions 

to improve its electrical properties (Sakabe et al., 2002) as discussed in §1. The 

incorporation of these RE ions affects the microstructure of the ceramic, producing 

core-shell grain structures that can be used to improve the temperature dependence of 

capacitance for MLCCs (Kishi et al., 1997) as well as their electrical stability. It has been 

shown experimentally that doping with mid-size (0.9-0.94 Å(Shannon, 1976)) trivalent 
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RE ions leads to improved lifetimes of MLCCs with Dy3+ giving large 

improvements(Itoh et al., 2002; Sakabe et al., 2002; Kishi, Mizuno and Chazono, 2003; 

Hahn, Sohn and Han, 2009) . These RE dopants have also been experimentally linked 

to decreased oxygen migration in BaTiO3. It is still unclear why Dy3+ is the best ion for 

large stability improvements.  

Simulations of RE doping of BaTiO3 using atomistic techniques (Freeman et al., 2011) 

have reported that large RE ions substitute primarily on the A-site in BaTiO3 and small 

RE ions predominantly on the B-site, while mid-sized RE ions are observed to dope on 

both sites in self compensation.  The influence of both divalent and trivalent dopant 

ions on oxygen migration has also been studied in SrTiO3 revealing that the influence of 

dopants on oxygen vacancies extends into the surrounding lattice further than the two 

lattice sites (Schie, Waser and De Souza, 2014). All the trivalent ions investigated can 

strongly trap oxygen vacancies in SrTiO3 when doped solely on the B-site. 

The effect of RE ions has also been simulated in materials for fuel cell applications, 

including ceria (Wang, Chroneos and Schwingenschlogl, 2013)where the ionic radius of 

the RE was shown to be key in determining the activation energy of oxygen vacancies. 

Quantum mechanical methods have been utilised to look at the interaction of REs and 

the movement of oxygen vacancies in BaTiO3
 but this has been limited to looking at 

only the closest lattice sites to individual dopants. Trapping of oxygen vacancies in 

BaTiO3 was shown to be more effective with B-site only dopants due to the -1 charge 

on the RE attracting the positive charge of the vacancy (Honda et al., 2011). Here we 

use static lattice simulation techniques to present a study of midsize RE ions in the 

BaTiO3 lattice to understand how ions such as dysprosium, gadolinium and yttrium trap 

oxygen vacancies and investigate how effective they are over increasing distances. Static 

lattice calculations can only give information about the thermodynamics of the 

simulation scenarios. For kinetic information about the system, other simulation 

techniques such as molecular dynamics must be used. 

 

5.2 Forcefield Details 
 

The potential set used for barium titanate in all calculations was that of Freeman et al 

(2011) (Table 5.1- 5.3). RE potentials for Gd and Y from Lewis and Catlow (Lewis and 

Catlow, 1985) (Table 5.4). These forcefields were shown to be compatible in the paper 



 106 

of Freeman et al (2011) The Dy potential was fitted as part of this work as no Dy3+- O2- 

interaction was found in the literature. It was fitted to match the trends seen in the 

Lewis and Catlow set of potentials, as well as structural information from literature. It 

gives a good match to these criteria.  

 

Table 5.1: Barium titanate forcefield Freeman et al (2011) Two-body potentials 

 
Buckingham Potentials !"#$(−' (⁄ ) − + (,⁄  

Interacting ions A 
(eV) 

- 
(Å) 

C 
(eV Å6) 

Ba O 1150.0 038037 55.0 
O O 22764 0.149 43.0 

Lennard-Jones 7-6 Potential ./0 12
30

(
4
5

− 6 2
30

(
4
,
78 

Interacting Ions E0(eV) Ro(Å)  
Ti O 0.01234 4.719  

  

 
Table 5.2: Barium titanate forcefield Freeman et al (2011) Three-body potentials 

 
Three Body Potential 9

6
:6(;0 − ;0)

6 

Species <=(eV) >? (°) Cutoffs(Å) 
O Ti O 1.82 90 2.5 2.5 3.5 

 

Table 5.3: Barium titanate forcefield Freeman et al (2011) Cores and Shells 

 
Cores and Shells 

Species Core 
Charge 
(|e|) 

Shell 
Charge 
(|e|) 

Spring 
Constant (eV 

Å-2) 
Ba +3.45 -1.45 56.23 
Ti +4.00 - - 
O +0.472 -2.472 15.41 

 

Table 5.4: Rare Earth Potentials (Lewis and Catlow, 1985) Two-body potentials 

 
Buckingham Potentials !"#$(−' (⁄ ) − + (,⁄  

Interacting ions A 
(eV) 

- 
(Å) 

C 
(eV6) 

Y O 1345.1 0.3491 0.0 
Gd O 1366.8 0.3551 0.0 
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5.2.1 Fitting the Dy - O Potential 

 

The Dy - O interaction Buckingham potential was fitted in-house to the published 

Dy2O3 structure (Antic et al., 1993). The forcefield was fitted iteratively to match the 

lattice parameters found in the literature  and to ensure consistency with RE3+ potentials 

published by Lewis and Catlow (Lewis and Catlow, 1985)(Table 5.5). The A and - 

values fit within the trends of the RE3+values published. There was no reliable materials 

properties information to compare to. 

 

Table 5.5: Dysprosium potential fitted for this work. 

 
Buckingham Potential !"#$(−' (⁄ ) − + (,⁄  

Interacting 
ions 

A 
(eV) 

- 
(Å) 

C 
(eV Å6) 

Dy O 1346.05 0.3527 0.0 
 

 

5.3 Rare Earth Doping Schemes 
 

5.3.1 Introduction 

 

When doping an ionic solid, maintaining charge neutrality is key for both solving the 

Ewald summation and for representing a real crystal system. As such, simply 

substituting an ion with another of different charge is not possible. Doping schemes are 

the methods by which charge neutrality can be maintained whilst making substitutions 

within the lattice. These can take the form of a combination of any of the defect type 

discussed in §3 The possible and likely defect configurations for REs in barium titanate 

have already been theorised (Buscaglia et al., 2001; Freeman et al., 2011). 

 

5.3.2 Doping Schemes 

 

In this work, four possible defect compensation schemes for trivalent rare earths in 

barium titanate as published by Buscaglia et al (2001) plus the fifth from Freeman et al 

(2011) were simulated for Y, Gd and Dy dopants. Experimental values for oxygen 

dissociation and liberation of electrons from titanium ion were used (Haynes et al., 

2016). 
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Scheme 1. Electronic compensation:  

ℜ=AB + 2EFGH → 2ℜGH
∙ +

1

2
A= + 2L

M + 2EFA 

NO =
1

2
12NOQR,GH

ℜTU + 2NOQR
VWTU + 2NX

Y
−
1

2
Z[\ + 2N]

[\Y + 2N^
GH[ − 2N^

ℜ\[T7 
 

 
Scheme 2. Substitution of RE3+ at Ba2+ with Ti4+ vacancy compensation: 

ℜ=AB + 4EFGH + `aVW → 4ℜGH
∙ + bVW

MMMM + 3EFA + EF`aAB 

NO =
1

4
d4NOQR,GH

ℜTU + NeHf
VWgU + N^

GHVW[T + 3N^
GH[ − 2N^

ℜ\[Th 
 
 
Scheme 3. Substitution of RE3+ at Ti4+ with O2- vacancy compensation: 

ℜ=AB + 2`aVW + A[ → 2ℜ′VW + b[
∙∙ + 2`aA= 

NO =
1

2
d2NOQR,VW

ℜTU + NeHf
[\Y + N^

VW[\ − N^
ℜ\[Th 

 
 
Scheme 4. Substitution of RE3+ at Ba2+ and RE3+ at Ti4+ leading to self-compensation: 

ℜ=AB + EFGH + `aVW → ℜGH
∙ + ℜ′VW + EF`aAB 

NO =
1

2
dNOQR,GH

ℜTU + NOQR,VW
ℜTU + 2N^

GHVW[T − N^
ℜ\[Th 

 
 
Scheme 5. Substitution of RE3+ at Ba2+ with Ba2+ vacancy compensation: 

ℜ=AB + 3EFGH → 2ℜGH
∙ + bGH

MM + 3EFA 

NO =
1

2
d2NOQR,GH

ℜTU + NeHf
GH\U + 3N^

GH[ − N^
ℜ\[Th 

 

5.4 Defect Energies in Barium Titanate 
 

5.4.1 Calculation Details 

 

All static simulations were carried out using the GULP code (General Utility Lattice 

Program) Version 4.2 (Gale, 1992). The cut off distance used in all cases was 12Å. The 

Ba and O ions were treated using the Dick and Overhauser (1958) shell model to 

include electronic polarisation effects. Static lattice defect simulations were carried out 
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using the Mott-Littleton method (1938). The region diameters used in all Mott-Littleton 

calculations were 21Å for region I and 33Å for the inner part of region II. These were 

the converged region diameters for the largest of all the defect complexes, or Mott-

Littleton clusters. 

The formation energies (Ef) of the dissociated defect energies for each compensation 

scheme were calculated from the values of individual defects simulated. All defects in 

each scheme were also simulated within a M-L to calculate the final solution energy (Es) 

or associated energy of each compensation scheme. The preferred arrangements of the 

defects were taken from Dawson (2012). The binding energy (Eb) is calculated as the 

energy gained by having the defects in the scheme located adjacent (associated) to each 

other.  

5.4.2 Hess Cycles 

 

The Hess Cycle for Dy2O3 and Y2O3 were calculated to compete the lattice energies 

calculated by Freeman et al (2011). All lattice energies were comparable with those in the 

published literature. These values are necessary for calculating defect energies. 

 
5.4.2.1 Dy2O3 

 

The Hess Cycle for Dy2O3 using the new Dy - O Potential was calculated as follows: 

 
 

Figure 5.1: Figure showing the calculated Born-Haber cycle for Dy2O3. All energy values 

shown are in eV. 
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5.4.2.2 Y2O3 

 

The Hess Cycle for Y2O3 using the Y - O Potential (Lewis and Catlow, 1985): 

 
 

Figure 5.2: Figure showing the calculated Born -cycle for Y2O3. All energy values shown 

are in eV. 

 

Table 5.6: Table of calculated crystal lattice energies and second oxygen affinities for Y, 

Gd and Dy, Gd taken from Freeman et al(2011). 
Rare 

Earth 

Ionic 

radius 
(Å) 

 
Lattice Energy 

(eV) 
2nd Oxygen 

Affinity (eV) 

Y 0.9 -135.713 7.26 

Dy 0.913 -133.967 7.00 

Gd 0.938 -133.068 7.23 
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5.4.3 Defect Energies 

 

Table 5.7: Energy of formation for individual defects doping rare earths into BaTiO3 

(dilute limit) calculated here for Y and Dy, Gd taken from Freeman et al(2011). 
Defect  

Energy of formation (Ef) (eV) 
 

Ba Ti O 

Vacancy 19.50 98.96 24.65 

Ti3+ - 43.24 - 

Y -25.75 51.96 - 

Dy -25.17 53.09 - 

Gd -24.83 53.72 - 

 

 

Table 5.8: Energy of solution (Dissociated defect energy) for rare earth compensation in 

BaTiO3 (dilute limit). 
Rare 

earth 

Ionic 

radius 
(Å) 

 
Energy of solution (Es) (eV) 

 
REBa  
+ e- 

REBa  
+ 

VTi 

RETi  
+ VO 

REBa 
+ 

RETi 

REBa  
+ 

VBa 
Y 0.9 10.59 2.40 4.50 0.95 2.99 

Dy 0.913 10.43 2.11 4.76 0.93 2.67 

Gd 0.938 10.209 2.00 4.94 0.97 2.58 

 

 

Table 5.9. Binding energy for isolated rare earth defects in BaTiO3 (negative sign 

denotes binding) 
Rare 

earth 

Ionic 

radius 
(Å) 

 
Binding Energy (Eb) (eV) 

 
REBa  
+ e- 

REBa  
+ 

VTi 

RETi  
+ VO 

REBa 
+ 

RETi 

REBa  
+ 

VBa 
Y 0.9 -6.11 - 0.18 -3.47 -0.07 -0.25 

Dy 0.913 -2.29 - 0.19 -3.58 -0.06 -0.83 

Gd 0.938 -3.62 -0.14 -3.63 -0.06 -0.25 
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Table 5.10: Final solution energy (Associated defect energy) for rare earth compensation 

mechanisms into BaTiO3 
Rare 

earths 

Ionic 

radius 
(Å) 

 
Final Solution Energy (Efs) (eV) 

 
REBa  
+ e- 

REBa  
+ 

VTi 

RETi  
+ VO 

REBa 
+ 

RETi 

REBa  
+ 

VBa 
Y 0.9 4.48 2.21 1.03 0.88 2.73 

Dy 0.913 7.91 1.92 1.18 0.87 1.85 

Gd 0.938 6.59 1.86 1.32 0.9 2.3 

 

The binding, solution and formation energies follow the trends set out in Freeman et al 

(2011) due to the same potential set being used. The fitted Dy - O potential closely 

follows the trends seen in Freeman et al (2011) which agree with experiments (Makovec, 

Samardžija and Drofenik, 2005; Mizuno et al., 2007) which show that mid-size rare 

earths can dope both on the A and B-site with some preference to dope in a self-

compensatory manner and also a preference to dope on the B-site with associated 

oxygen vacancies. 

For Gd, Y and Dy the two energetically most favourable defect configurations are the 

substitution of RE3+ at the Ti4+ site with O2- vacancy compensation and substitution of 

RE3+ at both the Ti4+ site and the Ba2+ site leading to self-compensation. The ℜVW
M  

substitutions bind to the b[∙∙vacancy to create a tightly bound b[∙∙ defect held between 

two ℜVW
M substitutions. This linear arrangement of charges (Fig 5.3) and high binding 

energies (Table 5.9) makes it unlikely that ℜVW
M  defects will be able to trap extra, intrinsic 

b[
∙∙ (Fig 5.3). 

The associated ℜGH
∙ -ℜVW

M  self-compensating pair has a positive ℜGH
∙  situated diagonally 

from the ℜVW
M  (Fig 5.3). The negatively charged RE doped B-site can attract a positively 

charged migrating b[∙∙. As the binding energies of the RE doped AB pairs for the ionic 

radii investigated are quite small (Table 5.9) both lone and associated ℜGH
∙  and ℜVW

M  are 

expected to be present in the bulk material in the self-compensation case. The lone ℜVW
M  

defects should be the most effective at trapping the migrating b[∙∙ due to the high 
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coloumbic attraction between the oppositely charged species. Conversely a lone ℜGH
∙  

defect will repel a migrating b[∙∙ due to the like charges and therefore was not studied in 

this thesis. The other three possible doping schemes 4ℜGH
∙  and b′′′VWM , 2ℜGH

∙  and bGHMM  

and electronic compensation are increasingly less likely to occur in the lattice due to 

their large solution energies. All three are also less likely to trap oxygen vacancies due to 

their preferred geometrical arrangement in the lattice and the charge distributions 

present (Fig 5.3).4ℜGH
∙  and  b′′′VWM  may be the exception to this rule due to the titanium 

vacancy which is likely to attract b[∙∙. However, the geometrical arrangement of 4ℜGH
∙  in 

a ring above a b′′′VWM  would repel b[∙∙ from one side of the defect complex whilst 

attracting them from the other side. 
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Figure 5.3: Associated defect complex spatial arrangements for compensation schemes 

2, 3 and 4. 

5.5 Defect Populations in Barium Titanate 
 

 

5.5.1 Calculation Details 

 

The likelihood that each RE ion investigated will exhibit a given compensation 

mechanism at equilibrium over a range of temperatures was calculated using statistical 

mechanics (5.1).  

jW(a) = Lkl(−NW(a) <G`⁄ ) ∑ Lkl(−NW(n) <G`⁄ )o⁄  (5.1) 

 

Pi(i) is the probability of a specific defect compensation scheme, i, occurring given that 

the rare earths are included in the lattice Ei(i) is the energy calculated for the formation 

of the defect compensation scheme, Ei(j) is the total energy of all the defect schemes,  

being either Es for associated defects or Efs for disassociated defects; kB is the Boltzmann 

constant and T is the temperature in Kelvin. Both the associated and dissociated defect 

compensation scheme energies were included in the calculation so show the likelihood 

of associated schemes as well as dissociated schemes. 

 

5.5.2 Defect Populations 

 

Equation (5.1) was used to calculate the probability of each dopant exhibiting the 

different compensation schemes both associated and dissociated across the device 

operation and sintering temperature range (Figure 5.4, a-c).  

 



 115 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
Figure 5.4: Probabilities of type of defect concentration in BaTiO3 at equilibrium versus 

temperature in the range 0-1750K for a) Y, b) Dy and c) Gd. 
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5.5.3 Discussion 

 

Y, Dy and Gd will primarily dope in a self-compensatory manner in the temperature 

regime achieved during sintering (up to ~1750K). This compares well with experiment 

(Makovec, Samardžija and Drofenik, 2005; Mizuno et al., 2007). For the values of the 

ionic radii investigated (0.9-0.938 Å), all dopants exhibit associated and dissociated ℜGH
∙  

and ℜVW
M  defects as well as  ℜVW

M  defects compensated by b[∙∙ at high temperatures. As the 

ionic radii increase from Y through to Gd, the affinity for doping on the titanium site 

decreases. The probability of seeing both associated and dissociated pairs for all rare 

earths investigated is high due to the very low binding energy of this scheme. The 

defects corresponding to each compensation scheme can exist separately within the 

bulk ceramic if charge neutrality is maintained. They can also associate with each other 

to minimize their overall energy. 

 

5.6 Oxygen Self-diffusion in Barium Titanate 
 

 

5.6.1 Calculation Details 

 

Saddle points for an oxygen ion moving between vacant lattice sites were calculated 

using the rational functional optimization method (RFO) in GULP (see §3). NEB was 

not used as when NEB in DL_POLY Classic was utilised barrier heights of ~8eV were 

calculated. This massive discrepancy is likely to be due to the fact that the DL-POLY 

algorithm does not allow the shells in each replica to relax resulting in inflated energy 

barriers. Unlike lowest pathway searches such as nudged elastic band methods, in the 

RFO calculation only a single saddle point may be found at a time with no pathway 

information obtained. RFO uses an uphill search method to identify the point at which 

only one eigenvalue of the hessian matrix is negative and thus a saddle point. In the 

oxygen ion self-diffusion case; one O2- ion and one vacancy were used. The ion starting 

location was chosen close to the half way point between ion sites, avoiding the crystal 

symmetry (Fig 5.5). Due to the large barrier heights seen in the NEB the RFO 

calculation was carried out using varying spring constants to see the effect the shell 

model has on the barrier height. The calculation was carried out using oxygen shell 

spring values, k, ranging from 15.41 to 24.21 eV Å-2. A calculation with no shells was 

also carried out. 
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Figure 5.5: Starting configuration for Oxygen Diffusion Scenario in RFO. 

 

 

5.6.2 Results and Discussion 

  

The barrier to migration for an oxygen vacancy in a pure BT lattice was calculated to be 

0.84 eV for the spring value 15.41 eV Å-2 (Table 5.11). This compares well with the 

recent literature value (Kessel, De Souza and Martin, 2015) 0.70±0.04 eV for single 

crystal BT where the difference in value can be attributed to the fact that the energy 

calculated is an internal energy and that measured in experiment is an enthalpy 

(Harding, 1990). However, simulation without or with limited polarisation included via 

the shell model drastically affected the migration barrier calculated increasing it from 

0.84 at the fitted spring value to 3.44 when no springs were used. This shows why 

models that account for polarisation are especially important for ionic solids with very 

polarisable ions such as oxygen in them. 

 

Table 5.11: Oxygen migration barriers for varied shell springs k 

Spring (k) Barrier (eV) 
15.41 0.84 
16.21 0.93895684 
16.61 0.90015323 
17.01 0.87392079 
24.21 1.33364228 
∞ 3.44 
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Self-diffusion RFO calculations were also tried for Barium and Titanium diffusion to try 

and compare the values to available experimental values for self-diffusion, however the 

calculations did not resolve. The Oxygen simulation case took a week to complete as a 

serial job. The cation diffusion calculations ran for 40 days and did not resolve. This is 

likely to be due to the limitations of the RFO method (see §3). The start point must be 

very carefully chosen, and for cation self-diffusion this is nearly always on a symmetry 

line, which prevents the calculation from successfully being carried out or too far away 

from the saddle point to resolve. 

 

5.7 Oxygen Vacancies around Rare Earth Dopants 
 

 

5.7.1 Calculation Details 

 

The effect of A and B site self-compensatory rare earth pairs on the migration of 

oxygen vacancies in the lattice was further investigated as they were the most 

energetically favourable for all the REs investigated and lone B-site dopants are 

theoretically most likely to trap oxygen vacancies. The energy of a single oxygen vacancy 

at the 60 nearest neighbouring oxygen lattice sites surrounding RE dopants was 

simulated using GULP (Gale, 1992) and Mott-Littleton calculations (1938). Two 

scenarios were investigated: an oxygen vacancy around a RE-doped self-compensatory 

associated pair and an oxygen vacancy around a lone RE doped on a B-site. These 

scenarios were used to map the potential energy surface for oxygen vacancies near RE 

dopants. An oxygen vacancy around a lone RE doped on a A-site was not investigated 

due to the repulsion that would be felt between a 2- charged oxygen vacancy and the 

1+charged rare earth dopant.  

 

5.7.2 Results and Discussion 

 

The associated ℜGH
∙ -ℜVW

M  pair may offer the greatest chance of trapping intrinsic  b[∙∙ due 

to the ability of the exposed negative ℜVW
M  to attract a positive b[∙∙. However, a lone ℜVW

M  

may be better at trapping b[∙∙ as it can attract the vacancies from all directions. Here 

both the associated ℜGH
∙ -ℜVW

M  pair and dissociated substitutional rare earth defects (lone 

ℜVW
M  defects) were further investigated as the binding energies are so low. The energy of 
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an oxygen vacancy in the 60 nearest neighbour oxygen sites to the dopants was mapped 

in 3D space (Figure 5.6, a-d). As can clearly be seen, the oxygen vacancy landscape 

surrounding the lone ℜVW
M  is symmetrical (Figure 5.6, a, c). This is to be expected due to 

the octahedral point group symmetry of the lone dopant. Each concentric shell of the 

oxygen lattice sites exhibits energies that decrease in magnitude away from the dopant 

i.e. the position of the oxygen vacancy is less favourable the further it is from the rare-

earth defect. This is to be expected due to the octahedral point group symmetry of the 

lone dopant. The first shell of oxygen lattice sites has an energy of -3.44 to -3.56 eV 

from Y to Gd showing that a lone ℜVW
M  tightly binds an oxygen vacancy.  

 

Figure 5.6: A plot of the binding energies of an oxygen vacancy in nearest neighbour 

lattice sites compared to defects at infinite separation, view direction (UVW) is shown. 

The colors of the lattice sites correspond to the energy of the position per the right-

hand scale bar. a, c) A lone Dy (Blue) doped on the B-site; b, d) a Dy pair (Blue) doped 

on both an A and B site. The values for Gd and Y were calculated and were very 

similar. The trends remained the same. 

In the case of the ℜGH
∙ -ℜVW

M  pair (Figure 5.6 b, d), the b[∙∙ landscape is asymmetric. The 

most favourable positions are in the perpendicular plane bisecting the ℜGH
∙ -ℜVW

M  pair 

with energies for Y-Gd from -3.54 to -3.60eV. This low energy is unexpected because 
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the positive charge created by the ℜGH
∙  might be expected to repel the positive b[∙∙. The 

next most favourable sites for b[∙∙are the three remaining sites in the ℜVW
M  coordination 

shell. The binding energies for these sites range from -3.13 to -3.23 eV with RE of 

increasing radii. The 18 most favourable sites are either in-between the dopants or on 

the ℜVW
M  side of the cluster. After these there are favourable sites on the ℜGH

∙  side of the 

cluster, suggesting that there may be migration paths that can trap b[∙∙ approaching from 

any direction. In all cases, only a small energy difference is observed between the 

trapping ability of different RE ions. The maps (Figures 5.7 a-d) show that RE dopants, 

whether lone ℜVW
M  or ℜGH

∙ -ℜVW
M  pairs, can interact with vacancies in the lattice up to four 

sites away. This explains why RE dopants are effective in low amounts. Assuming 

perfect mixing and an even distribution, ~3 at% of RE dopants could influence all the 

lattice sites in a barium titanate ceramic. The values for Gd and Y were calculated and 

were very similar. The trends remained the same. 

 

5.8 Oxygen Diffusion around Rare Earth Dopants 
 

5.8.1 Calculation Details 

 

Based on the mapped oxygen vacancy potential energy surfaces, a migration path for an 

oxygen vacancy moving away from the defects was investigated. The path was picked 

using the lowest energy chain of oxygen vacancy sites away from the dopants. This was 

then investigated using saddle point searches to find the energy barriers to oxygen 

vacancy migration along this chain to assess the ability of RE dopants to trap intrinsic 

oxygen vacancies. Saddle points for an oxygen ion moving between vacant lattice sites 

were calculated using the rational functional optimization method. The difference in 

energy between a vacancy at a specific site and the saddle point is calculated. This is the 

b[
∙∙ migration barrier. 

 

5.8.2 Results and Discussion 

 

Lattice site and saddle point energies for a single trajectory moving away from the 

dopants were plotted for both the lone B-site dopant case and the AB doped associated 

pair case. The trends shown for dopant pathways involving only the B-site are similar to 
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those shown for transition metal ions doped in SrTiO3 (Schie, Waser and De Souza, 

2014). However, the magnitude of the trapping energies is much smaller ~0.5eV. 

Similarly, these results also show that dopant ions influence the lattice many sites away. 

In both scenarios, the oxide vacancies at lattice sites 1 and 2 (Fig 5.7a, b) in the 

coordination shells of the REs are energetically favoured compared to dopants at 

infinite separation, due to the coloumbic attraction between the defects.  

Figure 5.7: Schematics of the simulations carried out and graph showing the change in 

energy compared to defects at infinite separation. Vacancy lattice sites investigated are 

integers 1-6 and saddle points investigated are decimals 1.5-5.5. a) A lone RE-doped B-

site in an unassociated AB pair and b) an A and B doped associated RE pair. 

In the lone ℜVW
M  case, sites 1 and 2 are equally favourable with a trapping energy of -3.44 

eV (Y) to -3.56 eV (Gd) and a small barrier to migration of between 0.19 and 0.21 eV 

between the sites. There is a much greater barrier to moving the vacancy further away, 

from site 2 to 3 ranging from 2.79 to 3.40 eV. This is expected, due to the large 

coloumbic attraction between the negative ℜVW
M  and the positive b[∙∙ making it difficult 

for the vacancy to escape from the dopant. Conversely going from site 3 to 2 towards 

the RE the barrier to migration is small or non-existent. The largest migration barrier is 

0.71 eV in the case of Dy, highlighting how attractive the dopants can be to oxygen 
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vacancies. In the RE associated pair case (Figure 5.5b) the b[∙∙ will bind to both the ℜGH
∙  

and ℜVW
M  when it is located on position 1. There is a large trapping energy of -3.53 to -

3.59 eV. This binding is stronger than that for position 1 for the isolated ℜVW
M  defect. 

The lower energy at b[∙∙ position 1 for the RE pair scenario (Fig 5.5b) is unexpected as it 

was assumed that the positively charged ℜGH
∙  defect would repel the positively charged 

b[
∙∙ and therefore would bind less strongly than the lone ℜVW

M   case. Some of the saddle 

points found are not at a higher energy than the two nearest lattice sites. This is possible 

as RFO calculations do not necessarily find the highest saddle point along the 

simulation pathway, they just find a saddle point. This makes it difficult to find the 

‘correct’ saddle point. These results were included for completeness. These calculations 

take 40+ days on a single core (and cannot be parallelised yet). The method for possible 

parallelisation is discussed in the GULP manual (Gale, 1992). 

Overall it is clear (Fig 5.7a, b) that all REs investigated have similar energetics when 

trapping oxygen vacancies in both doping scenarios despite the different ionic radii. It is 

likely, therefore that the ability of REs to diffuse through the lattice and become well 

dispersed (as well as their preferred compensation scheme) will be key to explaining 

why some REs give greater stability improvements in barium titanate MLCCs.  

To explain why a b[∙∙ binding to a ℜGH
∙ -ℜVW

M  pair is energetically more favourable than 

binding to a single dissociated ℜVW
M , the structure of the surrounding lattice was studied. 

Interatomic distances were calculated and analysed. When the oxygen vacancy is located 

in between the ℜGH
∙ -ℜVW

M  pair, the remaining oxygens in the perpendicular bisecting 

plane relax diagonally inwards towards each other due to the reduction in coloumbic 

repulsion because of the presence of the vacancy. They move away from the B-site by ~ 

0.1 Å and towards the A-site by ~ 0.4 Å (Fig 5.8a). The reduced charge screening 

between the doped RE pair due to the b[∙∙ and the inward relaxation of the remaining 

oxygens results in the two RE substitutional ions moving diagonally away from each 

other (Fig 5.8b). These combined movements also push the two oxygens in the plane of 

the ℜGH
∙  away from the  ℜGH

∙  dopant, increasing the interatomic distance by ~0.1 Å 

each (Fig 5.6c). This is the ℜGH
∙  attempting to reduce its coordination due to the smaller 

ion size of the dopant (0.9 Å compared to 1.4 Å for Ba).  
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Figure 5.8:  Images showing BaTiO3 lattice surrounding an RE doped AB pair (blue 

coloured) with an oxygen vacancy shown as a black square. Oxygen vacancies in the 

plane bisecting the two rare earths (orange), other oxygen movements (yellow). 

Crystallographic view directions [UVW] are indicated. a) shows the movement of the 

remaining nearest oxygens diagonally inwards in orange. b) highlights in blue the 

movement of the ℜGH
∙ and the ℜVW

M  diagonally away from each other. c) shows the 

movements in yellow of the oxygens in the plane of the ℜGH
∙  where the Ba – O distance 

increases. d) and e) shows in yellow the movement of the other oxygens surrounding 

the dopants in relation to the oxygens between the dopants in orange. 

 

 

Other relaxations include the oxygens in the dopant coordination shells located above 

and below the b[∙∙. These relax out of plane towards the vacancy both vertically (Fig 

5.6d) and horizontally (Fig 5.6e). The oxygens in the perpendicular plane bisecting the 

dopants move the furthest. The relaxations involving all ion types extend into the 

surrounding lattice and stabilise the defect complex by allowing the  ℜGH
∙  to partially 

reduce its coordination from twelve on the standard Ba site to eleven. The presence of 

the b[∙∙ does not, therefore, cause large repulsions between the RE pair due to the 

presence of these large relaxations. This can account for the ability of the associated 
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ℜGH
∙  - ℜVW

M  pair to trap intrinsic oxide vacancies more strongly at close quarters than 

lone ℜVW
M  dopants. 

5.9 Conclusions 
 

It is evident that, despite the differences in their ionic radii, mid-size RE ions (0.9-0.95 

Å) can all trap oxygen vacancies with similar energetics when doped in the self-

compensatory manner. RE dopants affect oxygen vacancies up to four lattice sites away, 

illustrating why they are effective in small amounts. At close quarters, AB associated 

pairs are the most energetically favourable mechanism for trapping oxygen vacancies 

due to the large lattice relaxations that occur around the defect cluster. The differences 

in performance between REs observed experimentally are likely to be partly due to the 

preference of the RE to dope in a self-compensatory manner and therefore gain the 

ability trap oxygen vacancies. If the formation of self-compensated defects alone 

mattered, ionic radius arguments would suggest that Gd should give the greatest 

stability improvements. However, experiment shows that the greatest improvement is 

given by Dy. Therefore, the ability of the different rare earths to diffuse through the 

lattice and achieve wide distribution during processing is also likely to be significant for 

performance gains in MLCCs. Further investigation of RE diffusion in barium titanate 

will be addressed in §7 of this thesis. As the migration barriers calculated in this chapter 

are quite high even for the oxygen vacancy migration (~0.8eV), traditional methods for 

calculating kinetic diffusion information such as mean squared displacement in 

molecular dynamics will not be sufficient. Advanced sampling methods will be needed; 

the theory and methodology behind these techniques are discussed in §6. 
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6 Enhanced Sampling Techniques in Molecular 
Dynamics 
 

6.1 Introduction 
 

Enhanced sampling techniques are key for looking at phenomena not normally accessed 

by traditional atomistic simulation techniques. This chapter introduces the theory 

behind enhanced sampling techniques and discusses the theory of metadynamics and 

umbrella sampling in depth with a brief discussion of steered molecular dynamics (MD). 

The development and practical application of these techniques in close packed crystals 

is further discussed in §7. 

 

6.2 Why do we need enhanced sampling techniques?  
 

MD as discussed in §3 is a powerful technique to simulate time dependent dynamic 

events using classical mechanics. MD is still, however, far from being able to efficiently 

simulate a full mole or more of a substance, or events that take more than microseconds 

to occur. There is a large difference between the length and timescales involved in 

physical processes such as diffusion, phase transitions and chemical reactions and the 

length and timescales accessible by standard MD simulations. 

Currently MD can efficiently simulate hundreds of thousands of atoms for a short time, 

or a smaller number of atoms for a longer time. These simulations can fail to sample 

areas of the free energy surface during the simulation when the potential energy surface 

is rough, has high barriers that are greater than the thermal fluctuations in the system or 

multiple local minima (Gervasio, 2008). (Fig 6.1). Although a MD simulation may be 

perfectly equilibrated the likelihood of overcoming any large barriers during a normal 

simulation run time is extremely low unless extremely favourable conditions are found. 

Raising the temperature to see more events is also another approach that can be taken, 

however some forcefields become unstable at high temperatures and can produce 

unreliable results. 
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Figure 6.1: Example of a Complex Free Energy Surface. 

 

In a ceramic such as barium titanate, a diffusive event with one charge carrier (an 

oxygen vacancy) may only be seen once in a 10ns simulation at low temperature. This is 

a problem when statistical mechanics methods require multiple samples of the same 

event to give reliable averages of the energies and trajectories involved. The reason for 

this low successful jump frequency is the high barrier to migration and the lack of 

charge carriers.  

Multiple charge carriers within one simulation can be used to get more reliable statistics 

but, it is impossible to separate the energies of one hopping event from multiple events. 

This is because the charge carriers may be interacting with each other and the 

contributions to the energy or changes in the trajectories due to this interaction cannot 

be isolated. 

An alternative option for simulating diffusive events is the Nudged Elastic Band (NEB) 

calculation as detailed in §3. However, as mentioned previously NEB methods require 

knowledge of the start and end states of a pathway as well as some knowledge of the 

pathway itself to ensure convergence. This is not possible for all scenarios. Other 
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methods such as saddle point searches §3 can also be used to look for transition states. 

This technique provides no information about the pathway itself and no guarantee that 

the smallest local saddle point is found. 

To examine rare events in a system, enhanced sampling techniques can be used to 

overcome the limitations of standard MD. They do this by improving the sampling of 

MD simulations. Most of these techniques involve adding a bias to the simulation that 

in some way increases the probability that the event you are looking for occurs. The 

bias is then removed in post processing to reveal the unbiased pathways and energies 

involved. The accuracy to which you can remove the bias, and the reliability of the 

sampling achieved using an enhanced sampling method are the main limitations of any 

given technique. 

There are many enhanced sampling methods that can be implemented to improve the 

statistics collected from MD each with its own advantages and disadvantages. In this 

work metadynamics, steered MD and umbrella sampling have been used to sample 

diffusion pathways in perovskite ceramics. 

 

6.3 Metadynamics 
 

6.3.1 Introduction 
 

Metadynamics as proposed by Laio and Parrinello (2002) is an enhanced sampling 

technique likened to ‘filling in the free energy surface with computational sand’ (Fig 

6.3). It works by progressively biasing an MD run during the simulation to force it to 

explore new areas of the free energy surface. It has been used with success in many 

biological and chemical applications including protein folding and docking (Bian et al., 

2015; Rather et al., 2017) nucleation and crystallisation events (Quigley and Rodger, 

2008a), and surface interactions between crystal surfaces and solute (Freeman, Harding 

and Duffy, 2008). The filling of the free energy surface FES by ‘computational sand’ is 

achieved by adding predefined bias, in the form of Gaussian functions (Eq 6.1) along 

mathematically defined degrees of freedom known as collective variables (Laio and 

Parrinello, 2002). 
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Figure 6.3: FES being filled up by Gaussian ‘sand’. 

 

The collective variables chosen, limit the simulation to exploring the area of interest. 

The Gaussians are added at regular intervals throughout the simulation, gradually filling 

up the wells in the free energy surface, overcoming barriers and forcing the simulation 

to sample other configurations. This history dependent cumulative bias gives the 

simulation the ‘sampling memory’ it needs to ensure that the free energy surface is 

sampled more evenly. 

 

!(#), & = ()*
(+(,)-+(./))0

0120 (6.1) 

 

 

Where S(x),t is  the Guassian functions added as bias with height W, and width 3s are 

used as the ‘metaphorical sand’ in metadynamics. The locations of added Gaussians, as 

a function of the collective variables used are recorded during the simulation. These 

locations Si(R(t’)) are taken to be the central position at time t of the Gaussian added. 

The width of the Gaussian, 3s, its height, W, and its deposition stride, τG, need to be 

fitted for each individual simulation scenario to ensure both convergence and efficiency. 

The rate of deposition of the Gaussians, w, is given in Eq. 6.2. The cumulative bias VG 

potential at time t is defined as a sum of the Gaussians added to the simulation given by 

Eq 6.3. The final total bias VG is related to the free energy surface F by Eq 6.4. 
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As the integral of a Guassian is known to be the error function, the free energy surface 

explored in the simulation can be recovered in post processing easily by integrating the 

collective bias potential to reveal the underlying energy surface (Fig 6.4) 

 

 
 

Figure 6.4: Example free energy surface revealed by integration as a function of 

two directional CVs and energy. 

 

6.1.1 Collective Variables 

 

Collective variables (CVs) are 3D mathematical functions that are used in metadynamics 

to restrict the degrees of freedom that the simulation can explore. These can be defined 

as anything, from the position of an atom or the centre of a group of atoms to the 

distance or angle between atoms. The choice of CVs is very important and needs to be 

appropriate for the system being explored. Having too many CVs can artificially restrict 

the area of the free energy surface being investigated whilst simultaneously increasing 
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the simulation expense. Too few CVs will explore too much of the free energy surface 

and might not reveal the specific physical process you are looking for.  

The CVs for a specific simulation, as discussed by Quigley and Rodger (2008b) , must 

be chosen so that the start and end state of the process you are investigating are clearly 

defined e.g. the products and reactants for a reaction simulation or the start and finish 

positions for a diffusive event. If CVs are poorly defined, these states may overlap, and 

it will not be possible to clearly observe the barrier height, the pathway or whether the 

reaction or rare event has occurred. The predominant CVs used in this work are CVs 

defining the absolute position (in terms of the x, y and z coordinates) of an ion that will 

diffuse. 

These CVs are sufficient to describe diffusion in a ceramic lattice as they allow the 

diffusing atom to fully explore the lowest energy path of diffusion without 

predetermining the path or the end state. The width of the Gaussian used for each 

scenario is based upon the standard deviation of the CV in its start and end location. In 

this work this is the standard deviation of the vibrational amplitude of the diffusing 

atom in both its start and end lattice sites at equilibration. These CVs would be 

considered unsuitable in biological simulations, or simulations containing large amounts 

of solvent, as the atoms themselves can move around inside the simulation box freely 

thus the absolute position of the atoms can shift significantly throughout a simulation 

leading to the ‘sand’ being left behind. In the case of solid-state ceramics, the absolute 

position of an atom is an appropriate choice of CV, as in most cases, the atoms are 

closely packed and cannot move around very much limiting the range of motion and 

not allowing the Gaussians added to be left behind. 

 

6.1.2 Advantages of Metadynamics 

 

A significant advantage of metadynamics is that, unlike a rational functional 

optimisation both the energy and location of the barrier can be explored in one 

simulation, along with the shape of the diffusion pathway and any other saddle points. 

Metadynamics, unlike the nudged elastic band, does not require a priori knowledge of 

the system being investigated. However, some knowledge is useful when it comes to 

fitting the Gaussians. The required knowledge (such as the standard deviations of CVs) 

can be obtained from the equilibration MD run. When using metadynamics, the rate of 

sampling of rare events is increased, and multiple pathways can be found in a single 
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calculation. The 3D shape of a pathway can also be ascertained, unlike NEB and 

umbrella sampling where users tend to focus on a 2D pathway. 

 

 

6.1.3 Convergence and Error in Metadynamics 

 

Convergence in metadynamics is achieved by ensuring that the MD motion in the 

simulation is adiabatically separated from the addition of the bias potential. This often 

requires narrow and short Gaussians and a long deposition stride rate τG. If the MD 

motion is separated, the free energy surface recovered can be misleadingly narrow, and 

the barrier height is not statistically reliable (Fig 6.5).   

 
Figure 6.5 Misleadingly narrow MTD profile with real profile to compare. 

 

The reason for the misleading recovered profile is that if the rate of deposition τG is too 

rapid, the MD motion is not conserved, and the system has not had enough time to 

relax back to an equilibrated state before the addition of a further Gaussian (Fig 6.5). As 

the position of the CV is used as the centroid of each Gaussian, this will make the 

recovered energy surface too narrow and can artificially alter the shape and size of the 

pathway. Conversely a very wide flat Gaussian with a long addition stride can also have 

misleading consequences as the Gaussian is so shallow that there is not enough driving 

force to make the system relax down to an equilibrated state in the time given (Fig 6.6a). 

Unnecessarily long choices of τG will also extend simulation time significantly and make 

calculations less efficient. 
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One limitation of metadynamics is that it can be prone to ‘over filling’ (Fig 6.6b). This 

happens when the height of the Gaussian being added artificially overfills the well it is 

in, meaning that the barrier is overcome at a much higher energy than that of the actual 

saddle point. One solution to this problem is well-tempered metadynamics. Well-

tempered metadynamics is an adaptive bias version of metadynamics developed by 

Barducci, Bussi and Parrinello (2008). It works by scaling the height of the Guassian 

being added by the length of time the simulation spends in the free energy well. This 

allows the well to be filled rapidly at first and then flattens the Gaussians as the top of 

the well is approached allowing the top of the well to be fully flattened out before the 

next well is found and avoiding the overestimation of barrier heights. This overcomes 

the ‘over filling’ problem in traditional metadynamics. The bias factor used to adapt the 

Guassian must be fitted to ensure quick filling of the well followed by slow filling to the 

top of the well. However, this can add very small Gaussians in a normal metadynamics 

simulation which is an inefficient use of simulation time. 

 

 
Figure 6.6: Problems with Gaussians, a) too short and wide gaussians, b) Gaussians 

overfilling, overestimating the barrier height, c) Too large Gaussians masking features of 

the potential energy well. 
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Sometimes metadynamics simulations can miss features of the potential energy well that 

they are filling up. This happens when the Gaussian used is too large and occurs 

because the bias is too big to see small features in the potential energy well (Fig 6.6c). 

When using force fields with shell models, it is also important to use a Gaussian that is 

not too tall and narrow. This can force the cores and shells too far apart, overcoming 

the core-shell cut-off distance. If this occurs the simulation will fail to relax the cores 

back onto the shells and cease to run. This can limit the size of Gaussians used in 

certain simulations and may extend the simulation time significantly as smaller 

Gaussians must be used.  

Most of these issues can be overcome by properly fitting the Gaussians to be used in 

each system with given CVs. Laio et al (2005) showed that the error in metadynamics 

could be minimised with careful choice of simulation parameters. An explicit equation 

for the error K in a metadynamics calculation was derived (Eq 6.5). As a function of 

Gaussian width W, diffusion constant D, the temperature 1/	L, the system size S, the 

Gaussian width 3J, and the deposition stride M:  and C is a dimensionless constant. 

 

 

K̅ = O(P)QRST
U78

6
V

  (6.5) 

 

 

 

This equation relies on some a priori knowledge of the system such as the diffusion 

coefficient D which can come from experiment or simulation. The constant although it 

may not be immediately known can be estimated after initial simulations are run to 

optimise the error and efficiency of further simulations. (Barducci, Bonomi and 

Parrinello, 2011) highlight the use of Equation 6.6 to discover the appropriate ratio 

between stride, height and deposition rate. Convergence can also be checked once the 

appropriate height and width of the Gaussians have been chosen, by gradually 

increasing the deposition rate until no difference in pathway shape and barrier height is 

observed.  

Gervasio et al (2008) also showed that the ratio between the width of the Gaussians 

being used and the size of the region of the free energy space that is being investigated 

is the main limiting factor when it comes to error. The use of this equation (6.5) assists 
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in determining the maximum Gaussian width possible for a given system or region of 

free energy space being investigated. The error in metadynamics simulations, especially 

the barrier height, can be minimised by taking the average of several calculations of the 

same metadynamics event. 

 

6.4 Umbrella Sampling 
 

6.4.1 Introduction  
 

Umbrella sampling, introduced by Torrie and Valleau (1977), adds an umbrella shaped 

bias potential to the overall potential energy Hamiltonian. The potential added is 

typically a harmonic potential, restraining the simulation harmonically to a region of 

interest in phase space (Eq. 6.7).  

 

9(J⃗, &) = W
>
X(&)(J⃗ − J⃗Y(&))>(6.7) 

 

where	X is the spring constant, J⃗ is the location of the centre of the spring at time t. 

The information about the region explored is collected as a histogram of the probability 

of visiting configurations within the region, P(x), during each run (Eq 6.8). The 

outputted histogram is of the biased probabilities of visiting each configuration given 

the restraining potential. For a simulation with harmonic potential U’(x) the unbiased 

probability histogram P’(x) can be estimated from the collected histogram A(x) using kB 

the Boltzmann constant, T the temperature of the calculation in kelvin. F is an 

undetermined constant but is not important for an individual calculation. F is a constant 

and depends on the features of U’(x) and therefore solving for F is the main problem to 

overcome when combining the outputs from multiple umbrella sampling runs. This is 

discussed in section §6.4.4. 

 

Z(#) = 	−[\]^_`a(#) − ba(#) + H(6.8) 

 

 

The simulation with the added umbrella potential is then repeated over many different 

overlapping areas of interest by moving the bias potential along the reaction (or 

diffusion pathway). The outputs of these simulations can then be recombined using 
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various techniques, including umbrella integration and the weighted histogram analysis 

method, to reveal the underlying free energy surface.  

Umbrella sampling has advantages over traditional MD in that the added potential 

ensures sampling about a given region of interest. The addition of the ‘umbrella’ can 

allow the system to cross a high-energy barrier and visit more of the free energy surface 

(Fig 6.8). This encourages sampling of rare events. Much like metadynamics, careful 

selection of CVs is necessary to ensure that the region of interest on the free energy 

surface is properly explored.  

 
 

Figure 6.8: Schematic of multiple umbrella sampling runs bridging an energy barrier. 

 

The histograms outputted from all the umbrella sampling runs for one scenario need to 

be combined and the bias removed to reveal the underlying free energy surface. One 

method for doing this is discussed in §6.4.4. Firstly, the CVs used and the fitting of the 

harmonic restraint potential will be discussed. 

 

6.4.2 Collective Variables for Umbrella Sampling 
 

In umbrella sampling, the CVs chosen for metadynamics can be used to ensure that the 

same specific region of interest in the simulation is investigated. In this work the same 

CVs were used in both the umbrella and metadynamics calculations. These were the 

absolute position of the ion being moved. A harmonic restraint was added to the CVs 
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to investigate the areas of interest for the umbrella sampling runs. The lowest energy 

pathway calculated from the metadynamics calculations were used to pick the regions of 

interest in which to perform the umbrella sampling. In this work, these were the bottom 

of the starting free energy well and the saddle point, needed to calculate a more accurate 

barrier height.  

In practical applications, umbrella sampling can also be carried out as part of one 

continuous steered MD calculation which allows one calculation to be carried out 

instead of many. In this version of umbrella sampling the collective variables are steered 

with a specific force to reach certain values. The steering can be paused multiple times 

along the pathways to obtain the umbrella sampling for that location. 

 

6.4.3 Fitting Harmonic Potentials 
 

The harmonic potential (Eq. 6.7) used to restrain the umbrella sampling calculations 

needs to be fitted to ensure that the region of interest is fully examined. For a potential 

energy surface to be recovered, the umbrellas used to sample the system need to 

overlap. This is to ensure that the recovered histograms also overlap and can be used to 

produce an overall free energy surface without gaps. This becomes a challenge with 

especially steep or rough potential energy surfaces, as in regions with large gradient 

changes the umbrella sampling run is more likely to sample unequally in the direction of 

the greatest gradient (Fig 6.9). This is a problem around saddle points and requires the 

harmonic potential to be stiffer. To sample the same size area of a simulation the 

harmonic potential must be stiffer and so more simulations are required. This increases 

the overall cost and length of the simulation run. 
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Figure 6.9: Umbrellas on a rough free energy surface not overlapping well. Would 

produce the free energy surface shown in blue 

 

If examining the histograms of adjacent umbrellas shows that they do not share any 

visited configurations, then they do not overlap. The spring constant must then be 

progressively adjusted until the umbrellas do overlap over the area of the free energy 

surface of interest. If possible, this overlap is achieved at a known maximum such as a 

saddle point on the free energy surface. This allows the most appropriate spring 

constant to be chosen for the whole system. If nothing is known about the system 

before starting, an initial guess at the spring constant can also be used to investigate the 

entire region of the free energy surface being investigated before refining the spring 

constant and number of umbrellas used. 

 

6.4.4 Analysing Umbrella Sampling  
 

The free energy surface can be recovered from multiple umbrella sampling runs using 

various techniques including the weighted histogram analysis method (WHAM) and 

umbrella integration. In this work 2D WHAM is utilised to produce the free energy 

surface from the umbrella runs. WHAM was developed as an extension of the multiple 

histogram method invented by Ferrenberg and Swendsen (1989). It is an algorithm that 

reweights the histograms obtained from a group of umbrella sampling runs and 

combines them into a single histogram for the region of the system that has been 
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investigated. The method requires that the histograms overlap along the reaction 

pathway. 

Each umbrella run produces a histogram; a probability distribution of the likelihood of 

each configuration visited during that run (Eq 6.9). As the undetermined constant F 

depends on the location of the centre of the harmonic potential U’(x), it is not 

immediately obvious how to weight the individual histograms facilitating their 

combination. The WHAM algorithm combines the individual histograms by solving for 

the optimum values of F (Kumar et al., 1992) It can be generalised for multiple 

temperature umbrella sampling and for multiple CV umbrella sampling (Grossfield, 

2018). The WHAM equations (Eq. 6.9, 6.10) are used to solve for all F values - Fi and 

all probability distributions Pi(x) iteratively until self-consistency is achieved. 
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Where P(x) is the best guess of the unbiased probability distribution, Nsims is the number 

of simulations Ubias, i and Fi are biasing potential and free energy shift from simulation i, 

ni(x) is the number of counts in histogram bin x, Fi is an unknown.  

  
6.4.5 Limitations of Umbrella Sampling 

 

One of the main limitations of umbrella sampling is that, although the individual 

calculations are quick, the number of calculations needed to investigate a complete 

diffusion pathway can be large. This can be computationally expensive. Like Gaussian 

fitting for metadynamics, fitting the harmonic potential for umbrella sampling is also 

time-consuming and may require extensive prior knowledge of the system. The 

selection of CVs face the same limitations as those for metadynamics. Both umbrella 

sampling and WHAM assume in the derivations of the equations that either the NVT or 

NPT ensemble is used in the simulation. For WHAM one main limitation of the 
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technique is the correct selection of the bin size for the histogram. It needs to be small 

enough to ensure smooth histograms, but large enough to make sure the calculation is 

efficient. 

 

6.5 Steered MD 
 

Steered MD is a non-equilibrium technique used to force a system from an initial 

configuration to a final configuration using CVs. This ensures that the simulation 

produces configurations along a pathway that are often used for other calculations (e.g. 

umbrella sampling). The steering is done via an inputted force which moves a CV-

centred harmonic potential from one value to another linearly over time. The force 

used, the time taken to move, and the spring potential can be fitted for a specific 

system. Jarzynski’s equality (1997) is used to determine the harmonic restraint on the 

system Eq 6.11 and Eq 6.12 where W is work done, ∆F is the change in free energy 

between two states in the system, kB is the Boltzmann constant and T is the temperature 

of the system.  
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The work done to move the restraint is outputted. Averages from steered MD runs can 

be used to calculate barrier heights from the work done. Steered MD has been used to 

investigate biological systems, protein folding and unfolding (Booth and Shalashilin, 

2016), ion transportation (Wells, Abramkina and Aksimentiev, 2007), protein-protein 

interaction (Cuendet and Michielin, 2008), and drug discovery (Patel et al., 2014). 

One of the main disadvantages of steered MD is that, to get reliable statistics, it can take 

a long time to run the calculation. However, by combining steered MD with umbrella 

sampling, a full umbrella sampling calculation of the system can be carried out within 

one single calculation. This reduces the burden on the scientist setting up and initiating 

all the calculations needed manually. 
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6.6 Software Used 
 

In this work metadynamics was implemented using PLUMED 1.3 libraries (Bonomi et 

al., 2009) patched to DL_POLYClassic (Smith and Forester, 1996). PLUMED is a free-

standing library that can be implemented in numerous MD codes. PLUMED has many 

pre-built CVs available including absolute position, direction and torsion. PLUMED 

works by adding the bias to the DL_POLY calculation and then passing the 

information back to the MD code on the fly. All metadynamics calculations in this work 

were carried out within the NVT ensemble.  

PLUMED comes with sum_hills, a post processing code that can be used to integrate 

the Gaussians to reveal the underlying free energy surface. This reduces the number of 

CVs down to two by integrating out the extra CVs, thus allowing the free energy surface 

to be visualised in 3D. For simulations where three CVs were used, the dimension 

reduction was done for each CV in turn. and the lowest barrier height obtained was 

chosen as the barrier height for that scenario.  

A separate Python code was used to search for minima in the region of the diffusion 

pathway, by searching for the lowest energy along each line of the 3D data produced by 

the output of sum_hills.  
For umbrella sampling and steered MD, the same PLUMED 1.3 patched to DL_POLY 

Classic was also utilised. A combination of steered MD with umbrella sampling, and 

pure umbrella sampling was used. The WHAM code developed by the Grossfield group 

(Grossfield, 2018)  was used to reweight and analyse output from the umbrella sampling 

runs.  
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7 Diffusion in Barium Titanate 
 

7.1 Introduction  

  

Diffusion in barium titanate plays an important role during the operational lifetime of a 

device as well as its processing, especially sintering. All ceramics tend to have a small 

number of intrinsic oxygen vacancies, from the Schottky mechanism due to cation 

vacancies(Song and Yoo, 2000). However, the concentration is considerably enhanced 

by reduction during processing (Yang et al., 2004). The diffusion of these vacancies 

during the lifetime of the device, as previously discussed §5, is believed to play an 

important role in the degradation of MLCCs. The ability of a rare-earth (RE) to trap 

oxygen vacancies has already been investigated and it was shown §5 that all mid-size 

REs can trap oxygen vacancies to the same degree, therefore the difference in observed 

performance is likely to come from the ability of the dopants to diffuse into the lattice 

during sintering as well as the preference for certain dopants to form self-compensatory 

defect complexes. 

Experimentally, diffusion in perovskites has been looked at using radioactive ion tracer 

methods in single crystals to evaluate oxygen diffusion (Kessel, De Souza and Martin, 

2015) and cation diffusion (Müller and Härdtl, 1989). It is difficult to directly measure 

diffusion for when the ion diffusivity is very low however; it is evident from Jeon et al 

(Jeon et al., 2014) that RE dopants when forming core-shell microstructures have a 

concentration gradient across the core, and thus some REs can migrate further than 

others. This migration during sintering can also be enhanced or compromised by grain 

growth mechanisms and thus cannot be used as a direct measure of the ability of 

specific RE dopants to migrate. Some experimental measurements of self-diffusion in 

barium titanate have been carried out, giving an idea of the diffusivity of Ba and Ti in 

the lattice (Garcia-Verduch and Lindner, 1952). 

 

7.2 Molecular Dynamics and MSD 

 

Initially the mean squared displacement for oxygen diffusion in barium titanate was 

calculated over the temperature range 1000-3000K (Fig 7.1). This scenario uses one 

oxygen vacancy as the charge carrier and was completed using an 8 x 8 x 8 cell using an 
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NpT ensemble, in DL_POLY Classic using a charge neutralising background. The 

MSD was calculated using DL_POLY Classics internal MSD calculator. 

 

 

 

 
 

Figure 7.1: MSD for a single oxygen vacancy in barium titanate over temperature range 

1000-3000K 

 

It is clear from the MSDs calculated that the migration rate of defects, is too low to use 

a simple molecular dynamics simulation for diffusion information. In 10ns at the lowest 

temperatures investigated, no hop was observed. This does not supply enough statistics 

to be confident of the result. Having more charge carriers is not possible as it will not 

allow for the exclusion of data due to interaction of the defects.  In this case from the 

single charge carrier simulations, the diffusion constant was calculated to be ~1.2eV. 

We have therefore used metadynamics techniques to obtain the free energy migration 

pathway and the migration barrier, as this method should give a more reliable activation 

energy. Steered MD and umbrella sampling were also carried out on the oxygen 

diffusion scenario for comparison. 
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7.3 Metadynamics Details 

 

A general introduction to the technique can be found in the review of Laio and 

Gervasio (2008) and is discussed in §6. Our metadynamics simulations were performed 

using the DL_POLY Classic (Smith and Forester, 1996)molecular dynamics code in 

association with the PLUMED-1.3 plug-in (Bonomi et al., 2009). A cell consisting of 8 x 

8 x 8 unit cells (2560 ions) was used. The barium titanate forcefield detailed in §5 was 

used. Each simulation scenario was force minimised and energy optimised and then 

equilibrated for 5000 timesteps with the NpT ensemble with a Nose-Hoover thermostat 

(Fig 7.2) The thermostat relaxation time was set to 0.1ps and the barostat to 0.05ps. 

Production simulations were run for up to 6 ns using the NVT ensemble at a 

temperature of 298 K. The thermostat relaxation time was set to 0.1ps. A charge 

neutralising background was used when charge neutrality was not maintained. The 

corners of the cell were pinned by fixing the positions of four atoms to prevent 

unphysical translations of the unit cell - this is discussed in §7.3.2. 
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Figure 7.2: Metadynamics Simulation Protocol 

 

7.3.1 Gaussian Fitting 
 

The collective variables (CVs) chosen were the absolute positions in x, y and z of the 

ion being moved. This choice, although considered inappropriate for some simulation 

scenarios proved best for simulating the pathways of diffusion in a crystal, without 

much prior knowledge of the system, and without biasing the pathway the ion took. 

In the X-X, A-A and B-B hops two positional CVs were used, either the x and y, y and 

z, or z and x directions (Table 7.1). This is because the pathway of the ion from its’ site 
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to the vacancy was most likely to remain in plane within the simulation, due to the 

electrostatics of the surrounding ions, and the symmetry of the crystal (Fig 7.3). 

 

 
 

Figure 7.3: X-X, A-A, B-B, A-B and B-A Diffusion Scenarios  

 

In the A-B and B-A hops, the only viable hopping scenario is along the [111] direction 

in the lattice, which required the three directional CVs, x y and z (Figure 7.3, Table 7.1). 

In scenarios where the diffusing ion had cores and shells (Ba, and O) the CV chosen 

was the position of the shell and not the core. This is to ensure that the gaussians are 

added smoothly, prevents the core and shell being separated causing the simulation to 

stop running, and allows the shells to be relaxed back onto the core during the 

molecular dynamics. Adding the gaussians to the core can also inflate the recovered 

barrier height (Fig 7.4). 
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Table 7.1: Number of CVs and directions used for the diffusion scenarios in this work 

 

Hopping Scenario Number of 

CVs 

Direction of 

CVs 

X-X 2 x, y 

A-A 2 x, y 

B-B 2 y, z 

A-B 3 x, y, z 

B-A 3 x, y, z 

 

 

 
Figure 7.4: Cores vs Shells metadynamics, Left: Free energy surface recovered when 

adding Gaussians to the shell position as a CV, Right: Free energy surface recovered 

when adding the Gaussians to the core position. Difference between barrier heights is 

0.3eV. 

 

 

The CVs chosen were monitored using PLUMED_1.3 during the equilibration. The 

width of all Gaussians was fitted as between one half and one third of the  Shannon and 

Prewitt (1976) ionic radii of the atoms involved. Usually a value of half of the standard 

deviation of the unbiased positions of the CV is chosen, as recommended by Quigley 

and Rodger (2008). However, the standard deviations were so small due to the high 

stiffness of a solid-state ceramic that this definition of width would destroy any 

simulation efficiency because of the number of Gaussians required to fill the energy 

landscape. The height of the Gaussian was chosen to be 0.05 eV for the oxygen hops 

and 0.1eV for the A and B site hops. A combination of the two was used for the RE 
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hops. This done was to ensure efficient calculations, despite the vast difference in 

barrier heights between the O ion diffusion (< 1eV) and the cation diffusion (>4eV). 

The addition rate or stride for the gaussians was increased until convergence of the free 

energy surface occurred. The smallest stride once convergence was reached was chosen. 

This was every 100 timesteps or every 50fs. The stride was kept the same for all 

simulations, once convergence was demonstrated, this was to make it easier to compare 

and run simulations. 

 

Table 7.2: Fitted Gaussian Parameters for Diffusion Metadynamics 

 

Hopping 

Scenario 

Gaussian 

Width 

(Å) 

Gaussian 

Height 

(eV) 

Stride 

(fs) 

X-X 0.3 0.05 50 

A-A 0.4 0.1 50 

B-B 0.3 0.1 50 

A-B 0.3 0.05 50 

B-A 0.3 0.05 50 

 

7.3.2 Cell Corner Pinning 
 

When the Gaussians were being fitted for the B-B hop, it became clear that the second 

energy well (or lattice site) was not being found. The first half of the pathway appeared 

easily (Figure 7.5), however the vacancy lattice site was never found. This was also the 

case for the X-X hop at very long strides (>150fs) 
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Figure 7.5: B-B Unpinned Trajectory. Lattice Site at (0,0,0), the vacancy is at (0,4,4)- 

unseen, and migration never finds this vacancy. 

 

When the atom trajectory was viewed using CrystalMaker (2018) it became clear that 

the energy added to the simulation was so great, and the barrier so high, that the entire 

simulation box kept moving in a translational manner leading to the second lattice site 

being completely missed by the diffusing ion. This is an issue with absolute position 

CVs. As perovskites are relatively close-packed it was determined that if the cell was 

large enough, and the atoms at the corners of the cell were fixed or frozen post 

equilibration, the lattice would not have the chance to move in such a translational 

manner whilst still allowing the diffusion event to occur. It was determined using the X-

X hop, calculated with both pinned and non-pinned corners, that the difference in the 

barrier height was only 0.03 eV and the pathway was the same (Figure 7.6). To allow 

comparison of calculations, pinned corners were used in all calculations. 

 
 

Figure 7.6: Left: Pinned and Right: Unpinned Oxygen Diffusion Pathways. 
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7.3.3 Metadynamics Runs 
 

For the X-X hop, 5 metadynamics runs were run using starting configurations from 

equilibration. The barrier height was then averaged giving an average value of 0.90eV 

and a standard deviation of 0.004. As the standard deviation was so low, it was deemed 

that because of the close packed nature of the system, the CVs used are highly 

correlated. This is in agreement with Barducci, Bonomi and Parrinello (2011) who state 

that the more corelated the CVs the less improvement in error you get from multiple 

runs. 

Therefore, multiple runs were deemed not necessary in other cases, allowing more 

scenarios to be carried out within the time available. This treatment is appropriate for 

close-packed ceramic systems where pathways are quite rigidly confined due to the 

stiffness of the crystal structure and subsequent reduction of the number of accessible 

pathways across a barrier, and the lack of solvent that is present in most biological 

simulations. 

 

7.3.4 Analysis of Metadynamics Results 
 

All metadynamics results were analysed using the sum_hills utility provided by 

PLUMED_1.3 (Bonomi et al., 2009). This integrates the Gaussian ‘hills’ added to the 

calculation to reveal the free energy surface as a function of the collective variables and 

the energy. A grid size of 200x200x200 was used to complete the calculation. The 

resultant pathways were then analysed for barrier height using an in-house python 

script. The script calculates the overall lowest pathway, and the difference between 

bottom of the free energy well and the saddle point. The barrier height was taken as the 

lowest barrier height observed during the calculation as this remained the lowest 

possible regardless of how many times the hop was made. For hops where three CVs 

were used (A-B and B-A), sum_hills was used three times to integrate out each CV in 

turn. The barrier height was taken to be the smallest barrier calculated from the three. 

 

7.4 Steered MD 

 

Steered MD was carried out on the oxygen diffusion scenario using one absolute 

position of the core and its direction as a collective variable. The other two ion 

positions directions were monitored. The steering was carried out moving one oxygen 
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ion into a single adjacent vacancy (Fig 7.3). The calculations were carried out within the 

NVT ensemble on the same unit cell with pinned corners as for the metadynamics. 

 

7.4.1 Fitting 
 

In steered MD, both the spring constant and the velocity or speed of the steering must 

be fitted. The spring constant was trialled at 25, 50, 100 and 200 eV/Å2 at a step size of 

0.1Å. The calculation crashed at the lower spring constants 25 and 50 suggesting that 

this was too stiff a spring combined with too large a timestep. For spring constants of 

100 eV/Å2 and 200 eV/Å2 the results and location of the barrier was similar, thus a 

value of 100 eV/Å2 was chosen.  

 

 

 
Figure 7.7: Steered MD step size fitting showing an X-X hop with the initial lattice site 

locate at (14, 12, 14) and the vacancy at (12, 14, 14). Step sizes, 0.1, 0.5, 0.05 and 0.01. 

 

The pathway was examined for convergence (Fig 7.7) and the step size was chosen as 

0.05Å. 
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7.4.2 Analysis Techniques 
 

Steered MD was analysed using the output COLVAR file from the PLUMED run. The 

work done and CVs were plotted against each other to observe the convergence of the 

pathway. The location of the barrier was determined to be the point at which the most 

work was done.  

 

7.5 Umbrella Sampling Calculation Details 

 

Umbrella sampling was carried out as part of a steered MD run. The steered MD 

moved the oxygen ion for 500fs. Then an umbrella sampling calculation was carried out 

for 500fs. These two scenarios were repeated until the second lattice site was found. 

The steered MD had a spring constant of 100eVÅ-2 and a step size of 0.05Å. Th V e run 

was carried out moving one oxygen ion into a single adjacent vacancy (Fig 7.3). The 

calculations were carried out within the NVT ensemble on the same unit cell with 

pinned corners as for the metadynamics. 

Like steered MD the springs were fitted to a value of 100. When carrying out analysis 

using WHAM the histograms overlapped and therefore this was considered to be an 

appropriate choice of spring constant. 

 

7.6 Self-Diffusion in Cubic Barium Titanate 

 

7.2.1 Self-Diffusion Scenarios 

 

As RE diffusion in BT cannot be explored using experimental techniques self-diffusion 

in BT was investigated first, to compare to the limited available experimental values 

(Garcia-Verduch and Lindner, 1952; Kessel, De Souza and Martin, 2015), and validate 

the techniques used. The hopping scenarios investigated were oxygen diffusion, barium 

diffusion and titanium diffusion (Fig 7.3). The most likely pathway for diffusion in the 

lattice was simulated based on the surrounding electrostatics pathway length. As the 

RFO for oxygen diffusion was successfully carried out in §5 the calculated value and 

barrier location obtained there is also included in the discussion and evaluation of 

methods for simulating diffusion barriers. As we are interested in oxygen diffusion 

during the operation of electroceramic devices, all calculations were carried out at 298K. 
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7.6.1 Oxygen Diffusion 
 

Oxygen diffusion in BaTiO3 has been extensively studied experimentally both in 

undoped single crystals and polycrystals giving activation energies ranging from 0.5 to 

1.28 eV as discussed in §5. In §5 we reported a configurational energy barrier to oxygen 

migration from a rational functional optimisation calculation as 0.84eV. This fits well 

with experimental values (Table 7.4). 

As the oxygen diffusion scenario (Fig 7.3) is the shortest hop of all studied in this thesis; 

metadynamics, Steered MD and Umbrella sampling were all carried out and compared. 

The final metadynamics saddle point is shown (Fig 7.9) with the RFO saddle point, the 

Steered MD and the Umbrella sampling profile projected onto the same graph. The 

values from all four types of calculation are in Table 7.3. 

 

 
 

Figure 7.8: Locations of oxygen diffusion saddle points for, metadynamics, RFO and 

Umbrella sampling with the initial lattice site locate at (14, 12, 14) and the vacancy at 

(12, 14, 14).. 
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Table 7.3: Oxygen diffusion activation energies and barrier locations. 

 

Calculation Activation Energy (eV) Barrier Location (Å) 

RFO 0.84 12.9, 13.4 

MSD 1.2 N/A 

Metadynamics 0.9 13, 13.3 

Umbrella Sampling 0.85 13.1, 13.1 

Steered MD N/A 13.1, 13.1 

 

 

The saddle point was found in a similar location for all simulation types carried out (Fig 

7.8). The energies recovered are also very similar. This indicates that all methods used 

are possible for discerning the barrier height (configurational energy – RFO, free-energy 

otherwise) and thus an activation energy for diffusion in barium titanate. These results 

compare well with literature – 0.74eV (Kessel, De Souza and Martin, 2015). It can 

clearly be observed (Fig 7.6) that the metadynamics calculation obtains the full pathway 

of migration as well as the barrier height in one calculation. RFO calculations obtain the 

least detail about the migration and are extremely sensitive to starting position but the 

barrier height is very accurate.  The length of time it takes to perform an RFO is also 

prohibitively expensive for the obtained information. Direct use of steered MD 

produces the least reliable barrier height, due to the sampling problems inherent in the 

Jarsinsky equality §6 and the knowledge of the pathway required for setting up the 

calculation. However, Steered MD is very useful for setting up the ‘windows’ needed 

for umbrella sampling. This allows a full run of umbrella sampling to be carried out 

using only one long calculation, minimising user input. Umbrella sampling is easy to run 

however; large numbers of calculations are necessary to map the pathway when not 

combined with steered MD. Metadynamics overall seems to be the best choice of 

techniques to use when the user has the least information about the system as only CVs 

to determine a pathway or a configurational relationship is needed. As long as the 

calculation is run for long enough you gain the most information with the least number 

of simulations. 
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7.6.2 Barium Diffusion 
 

 

 
 

Figure 7.7: A-A self-diffusion pathway for Ba. Lattice sites indicated by A and direction 

of migration indicated with the arrow. Hopping scenario shown at the bottom. 
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7.6.3 Titanium Diffusion 
 

 

 

Figure 7.8 B-B Pathway for Ti self-diffusion. Lattice sites indicated by B, interstitial site 

indicated by I. Hopping scenario shown at the bottom. 

 

7.6.4 Discussion 
 
 
The literature on cation diffusion in BaTiO3 is sparse. It is often assumed that the 

diffusion rate for titanium diffusion is much less than that for barium diffusion due to 

I 
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the charge effect of the much smaller 4+ ion. However, work by Lee and co-workers 

(2008) shows that the diffusion rates of the two cations must be similar as in their 

experiments diffusion of both barium and titanium was observed, however no de-

mixing was seen. Some experimental values for the diffusion activation energy in 

BaTiO3 and SrTiO3 exist (Table 7.4). For A-site vacancy diffusion there is the work of 

Garcia-Verduch and Lindner(1952) (3.9 eV – Ba in BaTiO3); Koerfer et al (2008). 

(5.6±1.2 eV – Sr in BaTiO3); Mayer and Waser (Meyer et al., 2003) (3.5 eV – Sr in 

SrTiO3). For B-site vacancy diffusion there is the work of Preis and Sitte (Preis and 

Sitte, 2006)(3.9±0.7eV –Ti in BaTiO3); Koerfer et al (2008).  (5.1±0.6 eV - Zr in 

BaTiO3). These are very widely scattered but do not support the notion that vacancy 

diffusion rates on the A and B site lattices are very different. It should, however, be 

remembered that these are activation energies and could contain an energy contribution 

to create a mobile vacancy (release a vacancy from being bound to an impurity for 

example) as well as the migration energy of the mobile vacancy. 

Table 7.4: Simulations to obtain migration energies for SrTiO3 and BaTiO3. Methods 

used are TAD (Temperature Accelerated Dynamics), AKMC (Adaptive kinetic Monte 

Carlo), NEB (Nudged Elastic Band), DFT (Density Functional Theory), RFO (Rational 

Functional Optimisation). *Defect does not migrate but converts into a Sr anti-site 

complex. 

Ref Methods SrTiO3 BaTiO3 
  VSr (eV) VTi (eV) VBa (eV) VTi (eV) 

(Uberuaga 
and 

Vernon, 
2013) 

TAD; AKMC; 
(NEB)  

forcefield from 
(Meyer et al., 2003) 

5.03 Immobile* 6.68 Immobile* 

TAD; AKMC; 
(NEB) 

forcefield from 
(Busker et al., 1999) 

3.95 Immobile*  
— Immobile* 

(Erhart 
and Albe, 

2007) 
NEB, DFT 

 
— 
 

 
— 
 

5.82 (VBa
x) 

5.96 (VBa
’) 

6.0 (VBa
’) 

9.84 (VTi
x) 

(Walsh et 
al., 2011) NEB, DFT 3.68 (VSr

’’) 
2.92 (VSr

’’-VO
..) 

 
— 

 
— 

 
— 

(Thomas, 
Marks 

and Begg, 
2007) 

RFO, own forcefield 3.9 11.0 — — 
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Several attempts have been made to calculate the diffusion migration energies. These 

are summarised in Table 7.4. All authors use static lattice methods to calculate the 

migration although they may use high temperature molecular dynamics to identify the 

transition (TAD). Most authors use the nudged elastic band (which assumes that both 

the start and end points of the transition are known). Thomas, Marks and Begg (2007) 

uses a mode-following method (RFO) which requires only the initial state. All results 

are internal energies at zero temperature. The result is clearly sensitive to the models 

used for the interatomic interactions (see the column for strontium vacancies in 

SrTiO3). The results (for both simulation and experiment) are too scattered to permit a 

meaningful comparison except to note that (where results exist), the simulations predict 

a large difference in diffusion rate between A-site and B-site vacancy diffusion whereas 

the experiments do not. The migration energies for intrinsic diffusion on the A and B 

sublattices are very similar – consistent with experiment although the migration energies 

are higher than the only two experimental results (Garcia-Verduch and Lindner (1952) 

for A-site diffusion; (Preis and Sitte, 2006) for B-site diffusion but note the wide error 

bars). In this work the metadynamics barrier heights obtained for Ba and Ti are similar 

to each other (Table 7.5) which agrees with the work of Yoo, Song and Lee, (2002) 

however our Ti self-diffusion pathway also goes interstitial which agrees with simulation 

results where Sr went immobile(Uberuaga and Vernon, 2013). The X-X barrier height 

obtained by metadynamics (0.9eV) agrees with experiment (0.74eV) considering the 

expected differences due to one result being a free energy and the other an entropy. 

These results suggest that metadynamics is a suitable technique for investigating the 

trends in activation energies for RE dopants in barium titanate. As these are single 

metadynamics calculations, the traditional calculation of error from an average does not 

apply. Instead the error is taken as minus one gaussian height used, as this is likely the 

height a barrier may be overfilled by in a single hop. 

 

Table 7.5: Self-diffusion activation energies calculated from metadynamics. 

 

 

 

 

 Barrier 
Height(eV) 

Stright 
Hop 
Length 
(Å) 

Error 
(eV) 

Ba 4.9 4.0 -0.1 
Ti 5.0 5.7 -0.1 

O 0.9 2.83 -0.05 
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7.7 Rare Earth Diffusion in Barium Titanate 

 

7.7.1 A-A Hop 

 

Table 7.6: Calculated Barrier Height, Error and Hop Length for all A-A Hops. 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: A-A Pathway for Dy, A sites are indicated by A and direction of travel is 

shown with a white arrow. Hopping scenario is detailed at the bottom. 

 

 Barrier 
Height(eV) 

Hop 
Length 
Å 

Error 
(eV) 

Ba 4.9 4.0 -0.1 

Y 5.5 4.0 -0.1 
Dy 5.3 4.0 -0.1 

Gd 5.0 4.0 -0.1 
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The A-A hop for the REs (Fig 7.8) is the same in length and direction as the Ba self-

diffusion case (Fig 7.9). The barrier heights are higher than those for self-diffusion, 

which is understandable due to the increased charge of the REs and the lack of shells 

on the REs. The A-A hop is the least likely scenario to occur during RE diffusion as it 

is the largest barrier height for all REs investigated. 

 

7.7.2 A-B and B-A Hop 

 

 

Figure 7.10: A-B/B-A Pathway for Y, A-site noted by A and B site noted by B. 

Hopping scenario is detailed at the bottom. 
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Figure 7.11: A-B/B-A Pathway for Dy. A-site noted by A and B site noted by B. 

Hopping scenario is detailed at the bottom. 
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Figure 7.12: A-B/B-A Pathway for Gd. A-site noted by A and B site noted by B. 

Hopping scenario is detailed at the bottom. 
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Table 7.7: Projection of collective position variables onto the three orthogonal planes 

for AB/BA hopping scenarios. The lowest value is the migration energy quoted in 

Table 7.8 
 

 A => B (3.46 Å) B => A (3.46 Å) 

XY YZ XZ XY YZ XZ 

Y 0.6 0.6 0.6 2.75 2.75 2.55 

Dy 0.5 0.5 0.5 2.25 2.4 2.3 

Gd 1.0 0.9 1.0 3.0 3.0 3.0 

 
Table 7.8: Calculated Barrier Height, and Error for A-B/B-A Hop 

 
 

 

 

 

 

 

As can be seen (Fig 7.10-12) The A-B and B-A hop are the shortest hops possible for 

the REs. They are also the lowest two in energy for all scenarios. This suggests that 

mid-size REs diffuse into the BT lattice during sintering by way of a A/B B/A hopping 

chain. The relaxation of the lattice around the REs, similar to that seen in §5, shortens 

the hop length for Dy in particular. Y is too small for the A-site which means that it will 

sit preferentially in such a way to give itself pseudo 9-fold configuration. This off-centre 

location can be seen in Fig 7.10. This makes Y’s A-site well much smaller than for Dy 

or Gd. For Dy its size gives it more room to rattle when on the A-site (Fig 7.11) which 

may increase the number of jump attempts. Being the largest Gd sits more comfortably 

and centrally on the A-site than the other ions, making it harder to leave as it will be 

held more in place by the surrounding lattice. In this sense Dy really is the ‘Goldilocks’ 

ion, as it neither wants to sit on the A or B – site, making it easier to move between the 

two. 

 A-B Hop B-A Hop 

 Barrier 
Height(eV) 

Error 
(eV) 

Barrier 
Height(eV) 

Error 
(eV) 

Y 0.6 -0.05 2.55 -0.05 
Dy 0.5 -0.05 2.25 -0.05 
Gd 0.9 -0.05 3.0 -0.05 
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7.7.3 B-B Hop 

 

Figure 7.13 B-B Pathway for Y, B-sites denoted by B, Interstitial-sites denoted by I. 

Hopping scenario is detailed at the bottom. 

 

 

 

 

I 
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Figure 7.14: B-B Pathway for Dy. B-sites denoted by B, Interstitial-sites denoted by I. 

Hopping scenario is detailed at the bottom. 
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Figure 7.15: B-B Pathway for Gd. B-sites denoted by B, Interstitial-sites denoted by I. 

Hopping scenario is detailed at the bottom. 
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Table 7.9: Calculated Barrier Height, Error and Hop Length for B-B Hop  

 

 

 

 

 

The B-B site hop for RE diffusion is the same length as the Ti self-diffusion case (Table 

7.9). Like the Ti case there is in an interstitial site similar to those found in the 

strontium titanate and BT calculations done by Uberuaga and Vernon (2013) found in 

all three RE examples. The barrier height is the greatest when initially leaving the BO6 in 

all scenarios. In the Y case the RE never made it to the second lattice site (Fig 7.13), 

however it visited 3 out of 4 possible interstitial sites, suggesting the likelihood of the 

ion making the hop in the B-B case is only 1 in 4. This also suggests that the vacant B-

site does not constrain the direction the ion might migrate in initially. The RE barriers 

are smaller than that for Ti self-diffusion which is to be expected due to having a 

smaller charge than the titanium ion.  

 

7.7.4 Discussion 

 

7.7.4.1 Activation Energies 

 

The overall metadynamics results for self-diffusion and rare earth diffusion are shown 

in Table 7.10. For all the REs, the simulations show that the lowest energy migration 

path involves alternating between the A and B sublattices as the two shortest and lowest 

energy hops in all cases are the A/B and B/A migration. In this proposed A/B, B/A 

pathway, the rate-determining step is the Bsite – Asite barrier crossing. Here the migration 

energy increases in the order Dy < Y < Gd, implying that Dy diffusion will be the 

fastest and Gd diffusion the slowest.  

 

 

 

 

 Barrier 
Height(eV) 

Hop Length 
Å 

Error 
(eV) 

Ti 5.0 5.7 -0.1 
Y 4.0 5.7 -0.1 

Dy 3.9 5.7 -0.1 
Gd 3.75 5.7 -0.1 
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Table 7.10 Migration energies (eV) for cation diffusion pathways (intrinsic and RE ions) 

in BaTiO3 with calculated error. Values are free energies at 298 K. Vacancy mechanism 

assumed throughout. 

Cation (migration 

pathway) 

Path 

length 

Ba Ti Gd Dy Y 

Barrier (eV)  

(Asite-Asite) 

4.0 4.9 

(-0.1) 

- 5.5 

(-0.1) 

5.3 

(-0.1) 

5.0 

(-0.1) 

Barrier (eV)  

(Bsite-Bsite) 

5.7  - 5.0 

(-0.1) 

4.0 

(-0.1) 

3.9 

 (-0.1) 

3.75 

(-0.1) 

Barrier (eV)  

(Asite-Bsite) 

3.5 - - 1.0 

(-0.05) 

0.5 

(-0.05) 

0.6 

(-0.05) 

Barrier (eV)  

(Bsite-Asite) 

3.5 - - 3.0 

(-0.05) 

2.3 

(-0.05) 

2.75 

(-0.05) 

 

Although all these RE ions can fit into both A and B sites, they are too small to fit 

comfortably into the A site and too large for the B site. Thus, as the RE ion size 

decreases from Gd3+ to Y3+ it is more prone to rattling around in the large A site well, 

reducing its effective coordination from 12 to 9. The 6-fold coordinate B site is a tight 

fit for all the RE ions and the effective coordination number is unchanged. A simple 

explanation for the lowered migration energy for the Asite—Bsite hop lies in this failure of 

the Dy ion to fit well into either site – this tends to lower the barrier between them.  

 

7.7.4.2 Diffusion Coefficients 

We can estimate the different sintering times required for each rare earth to reach an 

acceptable level of dispersion through the ceramic using a simple diffusion model.  For 

our model, we assume that the rare earth cations are a thin-instantaneous source on 

surface of the grains and use a solution to Fick’s second law (Eq 7.1). Where This 

model assumes a simple solid-state diffusion model of RE ions from a layer of RE2O3 

on the surface of a BaTiO3 crystal as per Fick’s Law. The sintering procedure is 

obviously more complex than this (Paunović, Živković and Mitić, 2010; Jeon, Lee and 

Kang, 2012) but this is sufficient for our purpose. 
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!(#, %) = ()
√+,- .#/ 0

123
4,-5	(7.1) 

 

Where c is the concentration at a time t, and distance from the surface x, D is the 

diffusion constant, and A0 is the initial concentration. The solution to this equation 

provides a concentration profile at a time, t (assumed as 1 hour), and various distances, 

x, from the surface. Therefore, we can estimate the concentration of RE at a certain 

depth into a grain.  The initial concentration, A0, is assumed to be 1 molm-3 as we are 

interested in the concentration profiles and this is only a multiplier of this distribution.  

The diffusion constant can then be calculated (Eq 7.2, Table 7.11). 

 

7 = 89:;<.#/(−>?@ AB⁄ D) (7.2) 

 

Where D is the diffusion coefficient, β is the structure factor, f is the correlation factor, 

kB is the Boltzmann constant, T is the temperature in Kelvin, ΔGm is the activation 

energy, v is the jump frequency, a is the jump distance We assume that the product of 

structure factor, β, and correlation factor, f, gives 0.75 as this is in-between the value 

0.72 for a bcc lattice (the cations in the perovskite lattice) and 0.78 which is the 

structure factor for fcc (the Ti – O lattice forms). The ideal jump distance, a, is given in 

Table for each of the different perfect hops. The activation energy (ΔGm) is taken as the 

barrier for the B-A hop as this is significantly larger than the A-B hop and therefore will 

be the slowest compulsory move in the RE diffusion and thus the rate controlling step.  

We assume the jump frequency, ν, to be 1.0x10-12 s-1 as this comparable to the Debye 

frequency and therefore likely to be of the right order for the vibrational mode 

responsible for the diffusion process.  We used a temperature of 1400 K which is 

comparable to the sintering temperatures used in industrial processing.  The calculated 

distributions are shown in Figure 7.13.   
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Table 7.11: Calculated Diffusion Constant 

 
Dy Y Gd 

A/B Hop 
D 

5.34E-09 1.29E-10 1.62E-11 

 

 

Figure 7.13: Rare-earth concentrations as a function of distance calculated at T=1400K, 

using Diffusion coefficients as calculated in Table 7.11. 

 

All distributions are normalised. We can immediately see a substantial difference 

between these distributions.  The Dy adopts an almost homogeneous distribution 

across the first micron while the Y population drops much more rapidly over the first 

micron and the Gd population decays extremely rapidly and is near 0 at 0.25 microns.  

The change in the activation energy leads to significant differences in the diffusion 

constant that produce these very different profiles.  These suggest that Dy will be able 

to pass through the perovskite lattice creating an even distribution across the shell 

making a much more even microstructure.  In §5 it was discussed that all investigated 

rare earths can trap oxygen vacancies to the same degree and it was theorised that the 

ability of each rare earth to distribute into the lattice is key to understanding the gains in 
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lifetime performance. The fact that Dy can migrate the furthest into the lattice creating 

the widest shell means that it should be the most effective at trapping oxygen vacancies 

during operational temperatures. The very poor diffusion shown by Gd will leave it 

largely trapped at the surfaces.  This means that despite its thermodynamic behaviour 

that would produce a very good distribution of the Gd cations on the A and B sites §5, 

it will fail to achieve the desired shell structure and not trap Oxygen vacancies well.  We 

can see that Y would produce the desired shell structure but would potentially require 

greater Y concentrations, higher temperatures, longer sintering times or other sintering 

aids to make it comparable to Dy. Y whilst able to dope in a self-compensatory manner 

also would have a large concentration of B-site doping with oxygen vacancies §5. This 

would also inhibit yttrium’s ability to trap vacancies. 

 

7.8 Conclusions 

 

We have used simulation to demonstrate why Dy is the most effective RE ion to use for 

improving the electrical characteristics of BaTiO3-based capacitors. Its ability to trap 

oxide vacancies is a combination of defect chemistry (thermodynamics) and diffusion 

behaviour (kinetics). The size of the ion means that the dominant way by which the Dy 

ion is incorporated into BaTiO3 is by self-compensation §5. Both the isolated RETi 

defect and the REBa - RETi pair are effective traps for oxide vacancies but this trapping 

ability is not significantly different across the REs studied. This is not sufficient to 

explain why Dy is better than other rare earths like Gd. To explain this requires a 

consideration of the kinetics of diffusion of rare earth ions in BaTiO3 and here ion size 

also plays a role. The size of Dy is such that it fits into both the A-site and the B-site 

and this enables it to diffuse much faster than other rare earths and so produce a more 

uniform distribution of the defects that can trap the leakage current associated oxide 

vacancies. Other RE ions could also do this but would require much higher sintering 

temperatures or longer sintering times to work effectively. Finally, this study shows the 

strength of using a range of simulation techniques in combination with experimental 

data to solve a puzzle of considerable industrial interest. This work shows the power of 

bias-potential methods like metadynamics to investigate slow processes like cation 

diffusion in many oxides which are difficult to address by simple dynamical simulations 

or indeed by experiment. This work has shown that there are many approaches for 

finding barriers in solid state materials. 
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8 Conclusions and Future Work 
 
 

In this thesis a number of simulation techniques at various time and length scales were 

utilised to investigate the effects of rare-earth doping in barium titanate. Rare-earth 

doping can affect the microstructure of such ceramics, forming core-shell structures, 

improving the temperature stability of the bulk and increasing the lifetime, or number 

of cycles to failure, of a capacitor made from these materials. The lifetime 

improvements seen in rare-earth doped are often attributed to the ability of rare-earth 

elements to trap oxygen vacancies in the lattice and prevent their migration which can 

lead to electrical breakdown. 

 

In §2 it was shown that finite element modelling can be used to simulate the impedance 

spectra of complex user generated microstructures. This provided insight into the 

relationship between local and bulk, microstructural and electrical properties. User 

generated input properties for individual areas of the microstructure were used to see if 

a simple analytical relationship between input local properties and the output bulk 

impedance spectra existed. The relationship between core and shell properties and the 

bulk properties was established as not linear. No simple analytical relationship was 

observed. To further explore the effect that rare-earth doping of barium titanate has on 

its bulk properties it is necessary to obtain realistic properties to input into future FEM 

simulations. These could be obtained by atomistic simulation, quantum mechanics or 

experiment. Atomistic methods were used in subsequent sections to investigate rare-

earth doping due to its efficiency and the system size that can be simulated. Atomistic 

simulation can also reveal information about the thermodynamics and kinetics of rare-

earth doping in barium titanate. 

  

In §4 X-ray diffraction spectra and transmission electron microscopy selected area 

diffraction patterns of orthorhombic calcium titanate, cubic barium titanate and methyl-

ammonium lead iodide perovskites were simulated from molecular dynamics 

calculations. The diffraction patterns display the correct super reflections for calcium 

titanate and no super reflections for cubic barium titanate. The d-spacings for calcium 

and barium titanate compare well with experiment. The patterns include temperature 

averaging effects as they were calculated from dynamic simulations. This eliminates the 
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need for calculation of thermal ellipsoids for the X-ray diffraction spectra, reducing the 

need for pattern refinement.  

The in-house PALAMEDES analysis code is capable of determining the angles of tilt, 

their averages, minimums and maximums, and calculating tilt phase for each octahedra 

in the simulated system. The code uses an internal reference frame, allowing for 

distortions and non-centrosymmetric systems to be analysed. The calculated tilt phase 

and angles for barium titanate and calcium titanate agree with the analytical Glazer 

notation for both systems. This shows that PALAMEDES is capable of correctly 

calculating tilt angles and phase whilst allowing for distortions. In the future it will be 

utilised on non-perfect systems, including solid solutions and defects. 

It is also discussed in §4 that random sampling of the molecular dynamics data is key 

for generating experimentally comparable XRD and TEM spectra as simulation 

timesteps are three orders of magnitude smaller than how often the sample is ‘seen’ 

experimentally. Approximately 20% random sampling of total frames for a large system 

on a long time run generated XRD spectra and TEM patterns comparable to 

experiment and converged tilt averages and standard deviations. We can predict TEM 

patterns for bulk methyl-ammonium lead iodide which has not yet been possible 

experimentally. The TEM gives d-spacings which are in agreement with available XRD. 

The tilt angle analysis gives quantitative values for tilt angles and shows that although 

the overall structure is viewed as cubic, the tilting in each directions are not equal and 

opposite, suggesting a higher level of disorder in the system than seen in the XRD or 

predicted TEM. 

 

In the short term the PALAMEDES code proof of concept with the simulated 

experimental spectra will be published. Further analysis of TEM and XRD patterns for 

other perovskites and solid solutions will be possible. Directly simulating the 

experimental spectra of materials should become standard practise when evaluating new 

forcefields. It would be interesting to use both experimental and simulated spectra as 

part of an automated fitting process. Conversely using simulated spectra to explore the 

arrangements in which and the threshold at which the influence of dopants, can be seen 

by experimentalists. The geometrical analysis could be extended to cover systems other 

than perovskites, to better probe the dynamic behaviour of the materials. 
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In the static atomistic simulation chapter §5, the five possible defect compensation 

schemes for Gd, Y and Dy in barium titanate were simulated. The probability that each 

rare-earth would exhibit a given compensation scheme was calculated and these 

probabilities agreed with experiment. The lowest energy schemes for the mid-size rare-

earths were self-compensatory doping, and doping on the B-site with oxygen vacancies 

generated to compensate.  

Mid-size rare-earth ions Gd, Y and Dy (0.9-0.95 Å) were all shown to trap oxygen 

vacancies with similar energetics (~-3.7eV) when doped in the self-compensatory 

manner both in AB defect pairs and as lone B-site dopants. 

Both AB pairs and lone B-site dopants can trap oxygen vacancies from all directions 

showing that both schemes have a spherical area of influence on the lattice. All rare-

earth dopants investigated affect oxygen vacancies up to four lattice sites away, 

illustrating why they are effective in the small amounts seen experimentally. At close 

quarters, AB associated self-compensatory pairs are the most energetically favourable 

mechanism for trapping oxygen vacancies due to the lattice relaxations that occur in the 

cluster. 

 

Dy experimentally gives the best lifetime improvements, but these results suggest that 

all mid-size rare earths when doping in a self-compensatory manner should give the 

same lifetime improvements. According the calculated probabilities this means that Gd 

should give the best lifetime improvements as it wants to dope in a self-compensatory 

manner the most which suggests that the difference in performance comes from the 

distribution of the rare-earth elements in the lattice, and therefore the rare-earth ion 

mobility. Repeating these simulations for the whole lanthanide group including 

Holmium would be useful. Exploring the energetics of mixed rare-earth pairs in the 

lattice may help offer cheaper alternatives to pure Dy as possible dopants.  

 

The ability of the different rare-earths to diffuse through the lattice and achieve wide 

distribution during processing was investigated in §7. The ability of the rare-earth ions 

to migrate is likely to be significant for lifetime performance gains in MLCCs. Firstly 

self-diffusion of oxygen, barium and titanium were investigated. The self-diffusion of 

oxygen was simulated using metadynamics, steered MD, umbrella sampling, mean 

squared displacement and rational functional optimisation. All techniques used 

produced an activation energy of between 0.8 and 1.2 eV which compares well both 
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with available simulation values and experimental values. Metadynamics was considered 

to be the efficient method for simulating diffusion as it requires the least user input and 

fitting and outputs the most information about shape and direction of the diffusion 

pathway, along with a relatively accurate barrier height. The calculated barriers from 

metadynamics for barium and titanium diffusion agreed well with other simulation 

values, and also agreed with experimental work. 

 

In the case of the rare-earth ions all possible diffusion pathways, A-A, B-B, A-B and B-

A, were simulated for Dy, Y and Gd using metadynamics. The A-B and B-A diffusion 

pathways were the shortest and gave the smallest barriers, suggesting that during 

sintering rare-earths migrate from the A-site to the B-site and vice versa to get into the 

bulk ceramic. The B-A hop was determined to be the rate limiting step for rare-earth 

diffusion in barium titanate. Based on the activation energies for this hop, Dy is the 

most mobile rare-earth investigated. The size of the Dy ion means that the dominant 

way by which it is incorporated into BaTiO3 is by self-compensation §5. Dy is a size 

such that it fits into both the A-site and the B-site but not well enough to want to stay 

in either site and this enables it to diffuse much faster than other rare-earths 

investigated. This higher rate of diffusion would produce a more uniform distribution 

of the defect clusters that can trap the leakage current associated oxide vacancies 

explaining Dysprosium’s performance gains over other rare-earth elements. Other rare-

earth ions could also do this but would require much higher sintering temperatures or 

longer sintering times to work effectively. Another option may be mixing some 

different rare-earths together to encourage migration.  

 

This thesis shows the strength of using a range of simulation techniques in combination 

with experimental data to solve a puzzle of considerable industrial interest. It has also 

been shown that in solid state ceramics, multiple advanced sampling methods are 

suitable for finding migration barriers. The appropriate fitting for these techniques has 

been detailed as well as the limitations of any results obtained. 

Metadynamics could be used to investigate other doping scenarios in barium titanate 

including other rare-earths and transition metals. Activation energies from 

metadynamics could be used in a kinetic Monte Carlo simulation to confirm the 

diffusion rates and concentrations. Building a large kMC with diffusion rates that alter 

themselves as the simulation progresses would be an exciting next step in this work. 
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Metadynamics could also be used to simulate hopping at sintering temperatures, and 

eventually building a simulation model which includes liquid states, may help answer 

whether the presence of liquid during sintering aids the formation of cores and shells 

and to what degree.  
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Appendix 1 
 
The PALAMEDES Code 

  

Written in house by Dr Christopher M. Handley with input from this work, the PALAMEDES 

code was designed to work alongside the work done for this thesis on the simulation of 

experimental spectra of tilted perovskites. The trajectory of the atoms is output from a MD 

calculation during the simulation run. This consists of the atomic coordinates at each timestep in 

the calculation. Using these the PALAMEDES code can calculate the angles, dipoles, volumes 

and phase tilts for a given system. 

 

Outputs from PALAMEDES 

 

There are several outputs that the PALAMEDES code creates during its analysis of a MD 

trajectory. 

1. HISTORY-TEM 

This file provides the average structure of the system over the whole simulation in the form of a 

single frame DL_POLY history file. 

2. Angles Volumes Data 

This file provides the average, minimum and maximum volumes and angles and standard 

deviations for every individual octahedra in the simulation over its time as well as averages taken 

over all octahedra. It is provided in the text file format. 

3. A-site dipoles 

This text file provides the average minimum and maximum magnitude of the calculated A-site 

dipole displacements for all A-sites. 

4. B-site dipoles 

This text file provides the average minimum and maximum magnitude of the calculated B-site 

dipole displacements for all B-sites. 

5. Tilt Phase 

This text file provides the calculated tilt phase and persistence length across all A-sites. 

 


