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Abstract

In this thesis, we address problems in complex networks using the methods of statis-

tical mechanics and information theory. We particularly focus on the thermodynamic

characterisation of networks and entropic analysis on statistics and dynamics of network

evolution. After a brief introduction of background and motivation behind the thesis in

Chapter 1, we provide a review of relevant literature in Chapter 2, and elaborate the main

methods from Chapter 3 to Chapter 6.

In Chapter 3, we explore the normalised Laplacian matrix as the Hamiltonian oper-

ator of the network which governs the particle occupations corresponding to Maxwell-

Boltzmann, Bose-Einstein and Fermi-Dirac statistics. Therelevant partition functions

derive the thermodynamic quantities in revealing network structural characterisations.

Chapter 4 further decomposes the global network entropy in three statistics on edge-

connection components. This decompensation reflects the detailed distribution of entropy

across the edges of a network.

Furthermore, Chapter 5 and Chapter 6 provide the theoretical approaches to anal-

yse the dynamic network evolution and the application of thereal-world networks. In

Chapter 5, we investigate both undirected and directed network evolution using the Euler-

Lagrange equation. This variational principle is based on the von Neumann entropy

for capturing the topological variations of the time-varying network. Chapter 6 studies

the fMRI regional brain interaction networks. We further develop a novel method for

characterising networks and offer a high discrimination among patients with suspected

Alzheimer’s disease. Finally, Chapter 7 concludes the thesis and discusses the limitations

of our methodologies, which also supplies the potential research in the future.
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graphs; the black line small-world networks and the blue line scale-free

networks. Temperatureβ = 10 and the number of particlesN = 1. . . . . 76

3.4 Kernel embedding from Jensen-Shannon divergence computed with Maxwell-

Boltzmann, Bose-Einstein and Fermi-Dirac entropies. We compare the

effect of different numbers of particles (N = 5 andN = 10) with fixed

temperatureβ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Entropy from Maxwell-Boltzmann occupation statisticsfor NYSE (1987-

2011). Critical financial events, i.e., Black Monday, Friday the 13th mini-

crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn

of 2002-2003, 2007 Financial Crisis, the Bankruptcy of Lehman Broth-

ers and the European Debt Crisis, all appear as distinct events. Particle

numberN = 5 and temperatureβ = 7. . . . . . . . . . . . . . . . . . . . 79



L IST OF FIGURES 11

3.6 von Neumann Entropy and thermodynamic entropy comparedfor NYSE

(1987-2011): (a) Maxwell-Boltzmann occupation statistics, (b) Bose-

Einstein occupation statistics and (c) Fermi-Dirac occupation statistics.

(d) von Neumann entropy. . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.7 Histograms of entropy from three statistics for tumour mutation networks

(ovarian, uterine and lung adenocarcinoma). Particle numberN = 2, tem-

peratureβ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.8 Kernel embedding with the Jensen-Shannon divergence computed from

tumour mutation network entropies (ovarian, uterine and lung adenocar-

cinoma) for different partition functions. Particle number N = 3, temper-

atureβ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.9 Kernel embedding with the Jensen-Shannon divergence computed from

PPI network entropies (Acidovorax, Anabaena, Staphilococcus and Aquifex

& Thermotoga) for different partition functions. ParticlenumberN = 5,

temperatureβ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1 The temperature tendency of edge entropy with differentdegree on both

ends in three statistics. The red line represents the high-degree edge; the

blue line is the low-degree edge and the black line is the median value of

degrees on the edge ends. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2 Scatter plot of edge entropies compared to the von Neumann entropy with

different value of temperatures. . . . . . . . . . . . . . . . . . . . . . .. 96

4.3 3D scatter plot of edge entropy from Maxwell-Boltzmann statistics and

von Neumann entropy. (a) Edge entropy in Maxwell-Boltzmannstatis-

tics. (b) Edge entropy from von Neumann formula. (c) Comparison of

edge entropy between Maxwell-Boltzmann statistics and vonNeumann

entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Examples of protein-protein interaction networks withedge entropy dis-

tribution of von Neumann entropy and Maxwell-Boltzmann statistics. . . 98



L IST OF FIGURES 12

4.5 Entropy from Maxwell-Boltzmann statistics and von Neumann entropy

for NYSE (1987-2011). Number of particles isN = 1 and temperature is

β = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Entropy in NYSE (1987-2011) derived from Bose-Einsteinand Fermi-

Dirac statistics. Critical financial events, i.e., Black Monday, Friday the

13th mini-crash, Early 1990s Recession, 1997 Asian Crisis,9.11 At-

tacks, Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy

of Lehman Brothers and the European Debt Crisis, can be represented in

thermodynamic entropy with Maxwell-Boltzmann statistic.It is efficient

to use the partition function associating with entropy to identify events in

NYSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Visualisation of network structure before, during and after Black Mon-

day. Edge entropy distribution is computed from von Neumannentropy,

Maxwell-Boltzmann statistics, Bose-Einstein statisticsand Fermi-Dirac

statistics. The statistical model such as the Maxwell-Boltzmann case is

more sensitive to represent the dynamic structure in the networks. . . . . 101

5.1 Visualisation of dynamic network structures in time evolution for three

network models (Erd̋os-Rényi random graphs, Watts-Strogatz small-

world networks, Barabási-Albert scale-free networks) . . .. . . . . . . . 116

5.2 Degree distribution of original networks and simulatednetworks for three

network models. The red line is for the originally observed networks

and the blue line is for the results simulated with the secondorder Euler-
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Chapter 1

Introduction

In this chapter, we provide a roadmap detailing the researchfor this thesis. Commenc-

ing with the background of network science, especially regarding complex networks and

network entropy, we present findings of our study regarding network complexity with

entropy and the structural evolution over time. Then, we outline the motivation behind

the study, the state-of-the-art methods available to solverelated problems, and briefly

describe our novel methods with statistical characterisation and network evolution. We

propose our research goals, accomplishments, and the novelcontributions made in the

thesis. Finally, an outline of the thesis is provided at the conclusion of the chapter.

1.1 Network Science

We are surrounded by a wide variety of systems in nature that can be represented as an

abstract pattern of interactions or networks with verticesand edges [110, 62, 12]. Such

network systems play a significant role in our daily life. Forexample, the Internet is

comprised of enormous routers and computers in a kind of network connected by various

physical or wireless links [3]; social relationships are another kind of network structure

connected by human beings to spread ideas or knowledge [25, 102]. Trading markets

maintain the financial networks for us to exchange goods and services for the economic

prosperity [93, 83]. In nature, networks encode the interactions between genes, proteins,

metabolites, and integrate chemical reactions into live cells [98, 62, 56]. The existence

of a vast neural network in our brain, which includes the activity of billions of neurons,
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holds the key for us to understand brain function and consciousness [48, 105, 37]. These

are just a few of the many examples in the real world. Network science has proved to be

an important innovation which allows us to investigate the mechanisms behind complex

systems and the topological pattern in the network structure.

Network representation provides us with an abstract methodto reduce complex sys-

tems to simple structural patterns of connection. Verticesand edges in a network can

be labelled with additional information to capture more detail regarding their operation

[98, 25]. In theory, tools developed to help us understand network characterisations can

also be applied immediately to any other systems represented as a network [37]. If we

want to understand complex systems thoroughly, we should first develop a deep under-

standing of the corresponding network structure behind them. In fact, most networks are

driven by universal organising principles. Scientists have developed an extensive set of

tools to analyse, model and predict them. These tools are complex and are comprised of

developments from a wide variety of fields including mathematics, physics and computer

science [45, 98, 33].

The study of networks can be traced back to the early 18th century which is known

as the graph theory in the domain of discrete mathematics. The story begins with the

work published by Leonhard Euler in 1736 with his historically notable solution to the

problem of the Seven Bridges of Kőnigsberg [49]. Since the early days of the 19th century,

the study of complex networks has been the territory of graphtheory. A few historical

remarks are established to provide the ideas of the interdisciplinary nature of topology. In

1960, a famous model was introduced by Paul Erdős and Alfréd Rényi which is known

as the Erd̋os-Rényi random graph model [41, 42]. The traditional studyof networks

mainly focuses on regular graphs which provide a straightforward realization of complex

networks. This model was relied on heavily in the past, however, it is not suitable for

the realisation of the complex networks that are being studied today. Growing interest

has prompted many scientists to review modelling paradigmswithout the fixed linking

probabilities, and towards the end of the 20th century, we witnessed further movement

in network research. Several novel concepts and measurement methods were proposed
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and investigated in depth regarding large-scale complex networks [98]. Two well-known

models which characterise the structural properties of complex networks are small-world

networks [110, 75, 76] and scale-free networks [12, 13]. These both illustrate the specific

statistical features of real-world network structure. Theformer specifies the short path

lengths and high clustering in topology, while the later characterise the power-law degree

distribution with preferential attachment [13].

(a) Neural network of the nematode C. Elegans (b) Protein-Protein interaction network in Yeast

(c) Western States Power Grid (d) Words network in the David Copperfield

Figure 1.1: Different kinds of Network. (a) A directed and weighted network repre-
senting the neural network of C. Elegans [110, 111]. (b) Protein-protein interaction
network in budding yeast [29]. (c) An undirected and unweighted network representing
the topology of the Western States Power Grid of the United States [110]. (d) Adjacency
network of common adjectives and nouns in the novel David Copperfield by Charles
Dickens [77].
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The exploding interest in network science, particularly with regard to complex net-

works, reveals the fundamental laws and principles in the complex network domain [98].

Despite the apparent diversity in the real world, the structure and the evolution of the

networks behind them is driven by a prevailing set of characterisations. If we disregard

the nature of the components and the precise nature of the interactions, we find that these

networks are more similar to one another than they are different from each other [56, 47].

Although there are hundreds of different technologies available which can analyse the

universal principles of network structure, intellectual and scientific challenges are still

encountered when we attempt to understand, describe, predict and eventually control the

interwoven networks.

1.1.1 Complex Networks

Complex networks are large and varied networks which illustrate the interactions between

the different parts of large complex systems [98, 25, 45, 109]. Well-known examples in-

clude social networks and power grids [45, 109]. These networks offer interesting and

difficult challenges in terms of data analysis, as they are substantial and are characterised

by relationships between objects rather than simple measurements. As a matter of fact,

they are graphs [33, 46]. One of the most prominent challenges is to measure the com-

plexity of the network. In essence, complexity is a measure of how much information

exist within the network.

As the popularity of studying complex networks grows, many other inherent diffi-

culties have attracted attention as we attempt to understand the possible complications in

network structure [98, 25, 3]. Three main categories are usually cited as being useful when

we illustrate network characterisation. The first is structural complexity [74, 44, 43]. Un-

derstanding the structural complexity is useful for identifying and classifying the network

similarity as represented by the graphs. Although there is no widely accepted definition

that can be used to define network complexity, there are stillsome parameters and struc-

tural features that people usually consider, such as the number of spanning trees [15], the

length of pathways [48] and connectivity [47, 61], etc. The network complexity encodes

structural and topological information to discriminate different kinds of networks [81, 59].
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The second is to identify the connection diversity. The links between nodes could have

distinct weights, directions and signs. Understanding of these so-called edge properties is

still in its infancy for the rich characterisation of the practice and phenomenon [61, 4, 16].

The final consideration is to understand the network evolution. Since links and nodes can

be created or could disintegrate at any moment, the network connection is not constant

over time [42, 23, 70]. The evolution of networks usually occurs when connections are

added or rewired from one component to another [78, 25]. Therefore, more effective and

efficient methods of investigations are required if we want to understand the characterisa-

tion of complex networks.

Broadly speaking, many characterisations have been widelyexploited, many differ-

ent types of network structure have been classified, and networks have been analysed with

regard to their evolution over time [46, 47, 2, 80]. Most of the available characterisations

centre around ways of capturing network substructures using clusters, hubs and communi-

ties [47, 2, 80]. The underlying representations are based on simple degree statistics that

capture the connectivity structures [110, 74]. These characterisations usually describe

networks using macroscopic parameters [46, 103]. They delineate a particular network

in terms of its structure, robustness, and performance or function through the statistics of

linking and clustering [50, 37]. However, the structure of networks is not designed from

the macroscopic perspective, and the connecting and relinking of individual nodes play a

role in the microscopic structure [37]. The generalisationof these rules governs the net-

work characterisations from both a purely deterministic domain to an entirely statistical

domain [37, 2, 80].

1.1.2 Statistical Mechanics

Throughout scientific history one of the most influential innovations was the discovery of

the laws of thermodynamics in the field of statistical physics [2, 80, 103, 86, 74, 114].

Statistical mechanics provides a framework based on which we can describe the macro-

scopic properties of matter from the microscopic points of view in the particles. This

relationship provides a connection between the macro and the micro world in terms of

thermodynamics [86]. For example, by using a heat bath analogy from thermodynamics,
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principled physical measures of communicability and balance in networks can be defined

[47]. Tools from statistical mechanics can also be used to characterise the degree distribu-

tion for different types of complex networks [2]. By maximising the ensemble entropy in

exponential random graphs, the Boltzmann distribution developed in classical statistical

mechanics can be used to predict the properties of time-evolving networks [80]. Further-

more, preferential attachment can lead to the phenomenon ofcondensation exhibited in

growing networks [21, 23]. Both Bose-Einstein and Fermi-Dirac statistics have been used

to account for the quantum geometry associated with different types of networks [20].

Another closely related approach is the heat bath analogy tograph spectrum from

thermodynamics [114, 59, 108]. Classical statistical physics characterises the system

with states to specify the energy dependence with the probability of finding certain states

[37, 86]. This method can be extended in order to understand networks. A real-world net-

work can also identify the possible energy states on the graph spectrum. This is known as

the heat bath analogy, and it provides a convenient route to network characterisation. Here

the energy states of a network are captured using the eigenvalues of a matrix representa-

tion of network structure [59, 6, 104]. The energy states arethen populated by particles

which are in thermal equilibrium with the heat bath. As a result of this thermalisation,

the energy states are occupied according to the Boltzmann distribution [46, 114, 104].

Formally, this physical heat bath system can be described bya partition function with the

energy micro-states of the network represented by a suitably chosen Hamiltonian. Usu-

ally, the Hamiltonian is computed from the adjacency or Laplacian matrix of the network,

but recently, Yeet al. have shown that the partition function can be calculated based on

a characteristic polynomial instead [114]. Moreover, thermodynamic and statistical anal-

ogy exploits various quantity in characterising the structural properties of the network

[106]. From the commencement of mapping the network to a thermodynamic system, a

partition function succinctly describes characterisations of the network such as entropy,

total energy and temperature [46, 114]. For example, the Estrada index, as a measure of

centrality and that is associated with the partition function of a network, describes the ther-

modynamic variables characterising network structures [46, 47]. These variables, such as
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the entropy and internal energy, help us to interpret the structural properties within the

graph spectrum [47]. Moreover, the micro-states of the network system can be explained

by graph spectral theory [59, 117]. More investigations of network behaviour can be

provided by this approach [33, 59].

Despite the interest in alternative models of the thermalised distribution of energy

states, there has been no systematic study of the various thermodynamic characterisations

resulting from different choices of statistical occupation, nor has there been a specific

study of those associated with alternative assumptions concerning the graph spectrum

with Laplacian matrix of the network [33, 119]. Here we attempt to understand the struc-

tural information by measuring the entropy of networks fromthermodynamic characteri-

sations [106, 104, 108]. The network complexity related to entropy cannot be specifically

defined by different structural features when we take the topological complexity into ac-

count. Our goal is to find measurements which can encode unique structural information

with a high degree of specificity. These parametric functions are based on metrical prop-

erties of graph spectra and present the notable features which allows for the detection

of significant structural properties within networks and which can be used to identify

network or graph similarities in pattern recognition problems and to predict the network

evolution with appropriate data sets [106, 104, 108].

1.1.3 Network Entropy

Instead of describing the networks based on their structural characterisations, many

types of research focus on quantifying network complexity using entropy as a measure-

ment. The entropic measurements play an important role in understanding the struc-

tural and topological complexity of network systems. Borrowing from the ideas of in-

formation theory [5, 59], statistical mechanics [46, 2, 80,103], and quantum informa-

tion [84, 108, 23, 106], the measurement of entropy allows for a deep understanding

of network evolution [107, 115] and an unveiling of the rich interplay between network

topology and dynamics [93, 110]. More specifically, in the field of complex networks,

the entropy of thermodynamic variables makes a great contribution to the information

gathered on the network. The entropic quantities, such as Shannon entropy [23], Gibbs
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entropy and von Neumann entropy [81, 59, 117], have proved tobe useful for detecting

significant structural characteristics of network ontologies [38].

The more complex, sophisticated, and unique the network structure, the more pecu-

liar properties of entropy will be required to describe the networks. For example, collec-

tions of vertices usually share some similar properties that are known as communities [47].

The entropic measurements are useful for identifying communities with similar structural

complexity and with shared attributes. The fact that they have the same entropy can be

applied to explore symmetric and homogeneous networks [20,94]. Furthermore, the con-

cept of entropy can be used to inform inferences in the problems of complex networks

[59]. The evaluation of the encoded information in network structures can allow for the

challenging issues associated with inference to be addressed with network entropy. Usu-

ally, the statistical structure probability in the networkis characterised as the likelihood

using a generative model [60]. Some real networks present a high likelihood similarity

during the evolution from which the phenomenon of preferential attachment associated

with entropy emerges [119, 113].

Generally speaking, two kinds of entropy are well known in classical and quantum

systems, i.e., the Shannon entropy [6, 10] and von Neumann entropy [6, 81, 59, 117], re-

spectively. The Shannon entropy corresponds to the entropyfor classical systems where

statistical mechanics are used to interpret the various configurations within networks. It

applies to the physical characteristics of states and specifies the energy dependence with

regard to the probability of finding certain states [6]. For anetwork, it is sufficient and

reasonable to describe the states of networks with all possible connection matrices. A

network Hamiltonian introduces the energy of states [119].This approach maps the net-

work into the state of equilibrium where the specific Hamiltonian purportedly specifies

the energy states associated with the topological properties. Formally, the network sys-

tem can be described by a partition function with the energy micro-states of the network

being represented by a suitably chosen Hamiltonian [104, 108]. Thermodynamic charac-

teristics of the network, such as entropy, can then be derived from the partition functions
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[74, 114]. By specifying the micro-states of the network system, statistical thermodynam-

ics can provide deep insights into network behaviour.

On the other hand, von Neumann entropy is applied to describethe quantum statis-

tics in a network system [81, 23, 63]. A mixed micro-state is astatistical mixture of pure

quantum states which correspond to the Hilbert space with the maximum knowledge of

the system [106]. The density matrix is used to describe the quantum state which repre-

sents the positive symmetric matrix with unitary trace [84]. The density matrix represents

a convex combination of quantum states qualified by the von Neumann entropy [24]. It

can be viewed as an extension of Shannon entropy that quantifies the incompressible in-

formation content of a quantum state [59].

The network entropy can be constructed from a density matrixas an operational

meaning of connection between quantum mechanics and thermodynamics [106]. The

network community has shown interest in discussing the challenging topics regarding

the evaluation of the relationship between graph spectra and quantum states theoretically.

Recently the spectra of the Laplacian or normalised matrix have provided a sophisti-

cated way to define the von Neumann entropy and density matrix[81, 59]. Regarding

the eigenvalues of Laplacian and quantum states, von Neumann entropy is derived from

the spectrum of the Laplacian matrix [59, 117]. This efficiently and effectively distin-

guishes the different structures in extremal graph theory,where entropy is maximal for

random graphs and minimal for regular graphs [59, 117]. Further extension approximates

the calculation of von Neumann entropy in terms of simple degree statistics to reduce the

quadratic complexity [106].

Overall, the entropic measurements play a crucial role in the quantification of the

complexity of the network structure. It raises questions which merit investigation regard-

ing the information that is encoded in the structural features of networks. Both Shannon

entropy and von Neumann entropy offer novel methods to studythe properties of pure

states and mixed quantum states in network systems, which are central to the capture of

differences and similarities between networks appearing in vastly different contexts [6].
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1.2 Motivations and Goals

Although different physical analogies are useful for analysing the network characterisa-

tions, they are not always readily relatable to the spectralrepresentation contained within

the graphs presented in previous literature. The study of entropy in network science is

an ongoing problem. The broad applicability of graph-basedmodels offers a virtually

limitless field for the use of entropy to measure structural differences [38]. Identification

and classification of structural configurations in networkshas shed light on the power of

entropy measurements when compared to topological methodsthat were used in previous

studies.

The goals of this thesis are to explore effective and efficient network characteristics

and their evolution. We aim to exploit entropic quantities in characterising network struc-

tural properties in an effort to embark on thermodynamic andstatistical analysis. We aim

to find the structural information by comparing the entropy with network complexity and

then utilising statistical models to derive entropic measurements with partition functions

and the Hamiltonian operator. We aim to develop novel statistical models with network

characterisations that allows us to address the issues thatnormally arise within complex

networks. In this thesis, we have focussed on the problem of describing the network

statistics and evolution with different partition functions. We apply the entropy to de-

scribe structural variations of edge-connectivity and time-varying evolution. Specifically,

• We explore the effects of occupation statistics on the populations of energy states

when the Hamiltonian operator is the normalised network Laplacian, and the en-

ergy states are then given by its spectrum. Commencing from the heat bath analogy

with the Laplacian matrix playing the role as the Hamiltonian, the energy states of

the system are categorised according to a) Maxwell-Boltzmann, b) Bose-Einstein

and c) Fermi-Dirac statistics respectively. Based on the relevant partition function,

we use the statistical mechanical properties of the networks to calculate various

thermodynamic quantities when the energy levels are occupied by particles in ther-

mal equilibrium with the heat bath. We obtain different occupation statistics for the
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energy levels by varying the partition function throughoutthe experiment. The net-

work then can be characterised using thermodynamic quantities such as the entropy

and energy derived from the relevant partition function [46, 114].

• We extend the entropy analysis of the heat bath analogy whichprovides a useful

global characterisation of the network structure. We explore how to easily com-

pute the entropy of edge or subnetwork structures, and attempt to provide a novel

edge entropy projection which can be implemented at the global network entropy.

We exploit this technique to analyse the distribution of edge entropy within a net-

work and explore how this distribution reveals the intrinsic structural properties of

different types of network.

• We explore whether the model of network entropy can be extended to detail the

way in which the node degree distribution evolves with time,taking into account the

effect of degree correlations caused by the degree structure of edges. We exploit this

property by modelling the evolution of network structure using the Euler-Lagrange

equations. Our variational principle is to minimise the changes in entropy during

the evolution. By using our approximation of the von Neumannentropy, we are

able to use update equations for the node degree which account for the effects of

correlations induced by the edges of the network. It is effectively a type of diffusion

process that models how the degree distribution propagatesacross the network.

• We explore whether the thermodynamic entropy can be used to construct an ef-

fective information theoretic graph-kernel for the purpose of classifying different

types of graph or network structure. We construct a Jensen-Shannon kernel using

the Bose-Einstein entropy for a sample of networks and then apply kernel principal

components analysis (kPCA) to map graphs into low dimensional feature space.

We apply the resulting method to classify fMRI activation networks from patients

with suspected Alzheimer’s disease. Furthermore, we are motivated to establish

effective methods for measuring the structural propertiesof directed graphs repre-

senting inter-regional casual networks extracted from fMRI brain data. We aim to
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use the directed network entropy to develop graph analytical methods to measure

the degree of functional connectivity in brain networks.

1.3 Contributions

The significant contributions of this thesis are developingnovel statistical models for net-

work analysis with different partition functions, providing the study on edge entropy de-

composition, minimising the entropy variance to model the network evolution, and apply-

ing the fMRI activation networks to distinguish Alzheimer’s disease. These contributions

are summarised as follows:

1.3.1 Partition Functions and Spin Statistics

The first contribution, outlined in Chapter 3, is to propose the thermodynamic character-

isation of networks using the heat bath analogy when the energy states are occupied by

different spin statistics, specified by a partition function. Applying the heat bath anal-

ogy and a matrix characterisation for the Hamiltonian operator, we consider the cases

where the energy states are occupied according to Maxwell-Boltzmann, Bose-Einstein

and Fermi-Dirac statistics. We develop expressions for thermodynamic variables, such as

entropy, for the system with particles occupying the energystates given by the normalised

Laplacian eigenvalues. The chemical potential determinesthe number of particles at a

given temperature. We provide a systematic study of the entropic measurements for net-

work complexity resulting from the different partition functions and specifically those

associated with alternative assumptions concerning the spin-statistics. Compared to the

network von Neumann entropy to the corresponding normalised Laplacian matrix, these

entropies are effective at characterising the significant structural configurations and dis-

tinguishing between the different types of network model (Erdős-Rényi random graphs,

Watts-Strogatz small-world networks, Barabási-Albert scale-free networks). The effects

of the spin-statistics are a) with regard to bosons - to allowthe particles in the heat bath to

congregate in the lower energy levels and b) with regard to fermions - to allow particles in

the heat bath to populate higher energy levels. Bosons are more sensitive to the spectral

gap in circumstances where a normalised Laplacian energy state exists and, hence, tend
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to detect cluster or community structure, and fermions better sample the distribution of

path lengths in a network. Numerical experiments for synthetic and real-world datasets

are presented to evaluate the qualitative and quantitativedifferences that are present in the

thermodynamic network characterisations derived from thedifferent occupation statistics,

which ultimately confirms these qualitative intuitions.

1.3.2 Edge Entropy Decomposition

The second substantial contribution, outlined in Chapter 4, is to propose a novel frame-

work to show how to project edge-entropy components so that the detailed distribution

of entropy across the edges of a network can be computed. Thisis particularly useful if

the analysis of non-homogeneous networks with a strong community and hub structure is

being attempted. To commence, we view the normalised Laplacian matrix as the network

Hamiltonian operator which specifies a set of energy states with the Laplacian eigen-

values. The network is assumed to be in thermodynamic equilibrium with a heat bath.

According to this heat bath analogy, particles can populatethe energy levels according to

the classical and quantum statistical distribution, and the distribution, together with the

energy states, determines the thermodynamic variables of the network, such as entropy

and average energy. We show how the entropy can decompose into components arising

from individual edges using the eigenvectors of the normalised Laplacian. Compared to

previous work based on the von Neumann entropy, this thermodynamic analysis is more

effective in characterising changes in network structure since it better represents the edge

entropy variance associated with edges connecting nodes oflarge degree. Numerical ex-

periments on real-world datasets are presented to evaluatethe qualitative and quantitative

differences in performance.

1.3.3 Dynamic Network Evolution

The third contribution, outlined in Chapter 5, will investigate network evolution dynamics

using the Euler-Lagrange equation. We use the Euler-Lagrange equation to develop a vari-

ational principle based on the von Neumann entropy for time-varying network structures.

By utilising recent work to approximate the von Neumann entropy using simple degree
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statistics, the changes in entropy between different time epochs are determined by corre-

lations in the degree difference in the edge connection. OurEuler-Lagrange equation min-

imises the change in entropy and allows for the development of a dynamic model which

predicts the changes of node degree with time. We first explore the effect of network

dynamics on the three widely studied complex network models, namely a) Erd̋os-Rényi

random graphs, b) Watts-Strogatz small-world networks, and c) Barabási-Albert scale-

free networks. Our model effectively captures the structural transitions in the dynamic

network models. We also apply our model to a time sequence of networks representing

the evolution of stock prices on the New York Stock Exchange (NYSE). Here we use the

model to differentiate between periods of stable and unstable stock price trading and to

detect periods of anomalous network evolution. Our experiments demonstrate that the

presented model not only provides an accurate simulation ofthe degree statistics in time-

varying networks, but that is also captures the topologicalvariations taking place when

the structure of a network changes violently.

1.3.4 fMRI Network Application

The final contribution, outlined in Chapter 6, is to extend the theoretical approach to real-

world networks and to discuss the application of fMRI brain network analysis. We present

a novel method for characterising networks using the entropy associated with bosonic par-

ticles in thermal equilibrium with a heat bath. According tothis analogy, the normalised

Laplacian plays the role of the Hamiltonian operator, and the associated energy states are

populated according to Bose-Einstein statistics. This model is subject to thermal agitation

by the heat reservoir. The physics of the system can be captured using a partition function

defined by the normalised Laplacian eigenvalues. Various global thermodynamic charac-

terisations of the network including its entropy and energythen can be computed from

the derivative of the corresponding partition function with respect to temperature. We

explore whether the resulting entropy can be used to construct an effective information

theoretic graph-kernel for the purpose of classifying different types of graph or network

structure. To this end, we build a Jensen-Shannon kernel using the Bose-Einstein entropy

for a sample of networks and then apply kernel principal components analysis (kPCA) to
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map graphs into low dimensional feature space. We apply the resulting method to classify

fMRI activation networks from patients with suspected Alzheimer’s disease.

The neurobiology of Alzheimer’s disease (AD) has been extensively studied by ap-

plying network analysis techniques to activation patternsin fMRI images. However, the

structure of directed networks representing the activation patterns, and their differences

in health and Alzheimer’s people remain poorly understood.Here, we aim to identify

the differences in fMRI activation network structure for patients with AD, late mild cog-

nitive impairment (LMCI) and early mild cognitive impairment (EMCI). We use a di-

rected graph theoretical approach combined with entropy measurements to distinguish

subjects falling into these three categories from those within the normal healthy control

(HC) group. We explore three methods. The first is based on applying linear discrim-

inant analysis to vectors representing the in-degree and out-degree statistics of different

anatomical regions. The second uses an entropic measure of node assortativity to gauge

the asymmetries in the node with in-degree and out-degree. The final approach selects the

most salient anatomical brain regions and utilizes the degree statistics of the connecting

directed edges.

1.4 Thesis Outline

Having defined the problem in the domain of complex network and presented the overall

goals of the thesis in Chapter 1, we propose a brief review of the relevant literature in

Chapter 2, which includes a discussion about statistical mechanics in complex networks,

network Hamiltonian, network entropy and dynamics.

Based on the heat bath analogy and the Hamiltonian operator,in Chapter 3, we detail

a novel method that describes the thermodynamic characterisation of networks under dif-

ferent partition functions. We explore the case where the particle occupations correspond

to Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. From the related parti-

tion functions, we can compute the thermodynamic entropy and energy. Motivated by an

interest in revealing the nontrivial properties of the network structure, we have compared

the three resulting entropic characterisations with the von Neumann entropy. This study
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investigates how the different entropies can be used to characterise changes in network

structure, and how it can distinguish different types of network structure. Studies with

synthetic data show that the entropies can distinguish Erdős-Rényi random graphs, Watts-

Strogatz small-world networks, and Barabási-Albert scale-free networks. Experiments on

real-world data, on the other hand, show that the thermodynamic variables can not only be

used to detect both abrupt changes in network structure, butcan also distinguish different

classes of networks.

In Chapter 4, we combine the methods developed in Chapter 3 toexplore the thermo-

dynamic characterisations of networks, specifically thoseassociated with the thermalisa-

tion effects of the heat bath on the occupation of the normalised Laplacian energy states.

We extend the use of entropy as a tool to characterise networkstructures in both static and

time series data. We conduct experiments which demonstratethat the thermodynamic

edge entropy is better suited to represent the intrinsic structural properties associated with

long-tailed degree distribution when compared with the extensively studied von Neumann

entropy.

In Chapter 5, we apply the Euler-Lagrange equation to minimise the change asso-

ciated with von Neumann entropy in the network structures. This treatment facilitates

the prediction of the degree statistics varying with time and captures the effects of degree

change correlations introduced by the edge-structure of the network. In other words, be-

cause of these correlations, the variance within one degreedetermines the translation of

the connected nodes. We conduct numerical experiments using both synthetic and real-

world network data in time evolution. Our model is capable ofsimulating the degree

distribution and detecting significant variations in the network structure.

In Chapter 6, we demonstrate how to compute an information theoretic graph-kernel

using Bose-Einstein entropy and the Jensen-Shannon divergence. This method is based

on quantum statistics associated with the bosonic population of the normalised Laplacian

eigenstates. By applying kernel PCA to the Jensen-Shannon kernel matrix, we are able to

embed sets of graphs into a low dimensional space. We use discriminant classifier analysis

to assign the graphs to different groups in order to evaluatethe performance of thermal
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entropies. The results of the experiment reveal that the method improves the classification

performance for graphs extracted from fMRI data. The kernelmethod combined Bose-

Einstein entropy and the Jensen-Shannon divergence provides an effective and efficient

method for fMRI network analysis.

Furthermore, we are motivated to fill a gap in the literature regarding the analysis

of fMRI regional brain interaction networks using directedgraphs. We take advantage

of the recently developed simplified approximations to the von Neumann entropy of di-

rected graphs, which are dependent on the graph size and the in-degree and out-degree

statistics of vertices. Assortativity of nodes in directedgraphs provides insights into the

neuropathology of Alzheimer’s disease and allow us to characterise the functional or-

ganisation of the brain. Entropic measurements associatedwith node degree identify the

edge connection features which offer high discrimination between subjects suffering from

Alzheimer’s disease and normal subjects.

Finally, in Chapter 7, we offer a brief conclusion regardingthe advantages and short-

comings of the thesis. We summarise the contributions and make suggestions for future

research. Overall, after developing the theoretical analysis, we present the experimen-

tal results on synthetic data and real-world networks throughout the thesis. It shows the

potential applications of our theoretical methods.



Chapter 2

Literature Review

This chapter will review the existing literature about complex networks with considera-

tion being given to statistical mechanics, entropic measures, quantum statistics and dy-

namic evolution. It starts with a discussion of network ensembles to introduce existing

micro-canonical, canonical and grand-canonical ensembles and their associated complex

networks. Then, the partition function is introduced to describe all possible configura-

tions of network ensembles. We survey the thermodynamic concepts, such as entropy

and temperature in networks, by quantifying the network with micro-states and heat bath

analogy. Then, condensation phenomenon is observed in different network models and

the quantum statistics are presented. Finally, we discuss structure, dynamics and other

topics relevant to complex networks with statistical characterisations.

2.1 Network Characterisations in Statistical Mechanics

Statistical mechanics plays a vital role in helping us understand the important features of

a network structure. They aim to develop effective characterisations of complex network

structures and to interpret the process of network dynamics. These characterisations have

been widely explored as the classification of different types of network structure and the

methods of analysis pertaining to network evolution over time.

2.1.1 Network Ensembles

In 1878 in statistical mechanics, J. W. Gibbs introduced theconcept of an ensemble to

describe the microscopic properties of a thermal system [24]. Nowadays, people borrow
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the idea of ensembles and apply it to thermal physics to analyse complex networks. Park

and Newman [80] explored the properties of a graph ensemble with Boltzmann distri-

bution. Bianconi quantified the complexity of networks withthe concepts of ensembles

in random networks [17, 18] and further extended our understanding to multiplex net-

works [19]. Waclaw described the problems associated with networks formulation with

statistical ensembles by starting from the simplest construction of random graphs [103].

Garlaschelli and Loffredo proposed a grand-canonical ensemble model to construct net-

works with reciprocity [53]. All of these researchers regarded network ensembles as a

fundamental tool in the analysis of complex systems.

The ensemble of networks can be used to construct networks with generalised hidden

variables. Park and Newman assert that the ensemble models are not a single network,

but rather a probability distribution over the whole set of possible networks [80]. Bian-

coni defines a network ensemble as a group of networks which satisfies certain structural

constraints, such as degree distribution, community structure, etc [19]. Subsequently,

certain undirected networks can be formulated in circumstances where we are given the

number of links and nodes, the degree distribution or the community structure [18]. Fur-

ther theoretical analysis presents the extensive constraints of network ensembles on the

thermodynamic limits [17]. For example, given the total number of nodes and links, the

degree of all nodes fix to the degree sequenceski , i = 1, · · · ,N, and all networks with the

same number of nodes form the ensemble with the uniform distributionP(G) = 1/N [7].

The network ensembles follow the same structural constraints with the fixed distribution

on average. They are under maximum-entropy constraints where the probability measure-

ment in thermodynamic limits. The closer the graphG is to satisfying the constraints, the

larger the probability value of certain structureP(G) [7].

On the other hand, in terms of the statistical ensemble of networks, Garlaschelli

et al. restrict the fixed number of vertices on unweighted networkswithout self-loops

or multiple edges. Regarding each link as a "particle" between vertices, the constraint

of "occupation number" for each pair of vertices follows certain statistics. Clearly, the

adjacency matrix can be utilized to characterise this topology. Each possible adjacency
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matrix corresponds to a configuration within a network structure, and the combination of

these configurations defines the statistical ensemble of networks [52].

A similar description can be found in Waclaw’s work [103]. Instead of defining

the network ensembles as a statistical distribution for a network set, they refer to the

network as the ideal gas containing the particles. Mapping the network with the same

fixed number of nodes and links as the particles in a container, the canonical network

ensemble emphasizes the conservation of the number of nodesand links, such as the

thermal balance of ideal gas when it connects with a source ofheat [103]. The partition

function is quite useful to describe the configurations within the network ensemble. They

define the partition functionZ(N,L) by summing over all combinations of nodes and links

in adjacency matrices as [26]

Z(N,L) =
1

N!
·C

N
2

L (2.1)

whereC
N
2

L is the combination of the number of ways for choosingL links fromN/2 edges.

Further considering the fluctuations of the number of edges,a new partition function

was introduced with a chemical potential for links in the grand-canonical ensemble [26].

Z(N,µ) = ∑
L

exp(−µL)Z(N,L) (2.2)

By analogy with classical physics, Waclaw defines a micro-canonical ensemble as a

set of all equal probability graphs with prescribed sequences of degreek1, · · · ,kN. These

degree sequences play a role in the micro-states. Then the micro-canonical ensemble

is constructed by summing over all sequences obeying the conservation lawk1+ · · ·+

kn = 2L. With these definitions of the ensembles, Waclaw constructscomplex networks

with non-trivial statistical features, such as pow-law degree distribution, high clustering,

degree-degree correlation etc [103, 26].
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2.1.2 Micro-canonical and Canonical Ensembles

The micro-canonical ensemble is used to describe the possible states of a system con-

strained by total energy in statistical physics. And the canonical ensemble describes the

system in terms of possible states within a heat bath at a certain temperature when it is

in thermal equilibrium exchanging the total energy. Now, these two concepts have been

extended to network systems in the literature.

A micro-canonical network ensemble means that structural constraints are strictly

satisfied. A general framework of a random network ensemble can be built by using the

micro-canonical ensemble and statistical mechanics [18].A canonical network ensem-

ble means these sets of structural constraints are satisfiedon average [18]. This concept

of network ensembles is consistent with the classical statistical description that considers

the configurations of the system to be compatible with the fixed energy constraint, namely

the micro-canonical ensembles, or the fixed average energy in the heat bath, which is the

canonical ensembles [19]. By analogy, the random graph can be viewed as the micro-

canonical ensemble which is formed byN nodes with a constant number of linksL. Con-

sidering the Poisson distribution for the degree with an average〈L〉= p(N−1). It follows

that the canonical ensemble of the random graph is formed by networks that satisfy the

criteria as to the average number of links [5].

In addition, Anand and Bianconi use random graphs as an example in order to find

the connection between micro-canonical and canonical network ensembles as the distri-

bution reaches the thermodynamic limit [5]. The differencein entropy diverges between

two cases when the imposed constraints are extensive. For a random graph with a fixed

degree sequence, the entropy of the micro-canonical ensemble does not correlate to the

entropy of the canonical ensemble case [5]. Recently, Bianconi et al. extend the micro-

canonical and canonical ensembles to multiplex networks byimplementing approaches

from statistical mechanics [19]. They introduce the uncorrelated and correlated multiplex

ensembles which related to the probability of the networks for every layer. They consider

the multiplex ensembles with certain constraints on average, such as the fixed number

of links and the degree sequence in each layer. They find the canonical ensembles are
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more suitable to describe the overlap situation, while the micro-canonical ensembles can

be extended to a number of other constraints [19].

2.2 Thermodynamic Variables in Networks

The analysis of statistical mechanics, in particular thermodynamic variables, within the

network system allows us to gain a deep insight into network behaviour. The network

can be succinctly described using a partition function whenit is interpreted in accordance

with the micro-states in the heat bath analogy. Additionally, thermodynamic variables,

such as entropy, total energy, and temperature, can be derived from the partition function.

2.2.1 Network Entropy

The entropic measures provide a promising tool for understanding the structural and topo-

logical complexity of network systems. They may be able to resolve the issues encoun-

tered regarding evaluation of the network robustness and its ability to tolerate changes

[90]. In 1978, E.T Jaynes first described the Maximum EntropyPrinciple in statistical

mechanics. Since then, Strauss developed a class probability model for configurations of

interacting points in 1986, which introduced this idea to graphs and lattices [97]. Park and

Newman analysed exponential random graphs with Boltzmann distribution and Gibbs en-

tropy. This means that in circumstance where we are given a set of networks, the expected

properties to measure real-world networks can be derived from the data [80]. The network

properties can be predicted by maximizing the Gibbs entropyof the graph ensemble when

it is subjected to the constraints imposed by a given set of observations. Similar to the

ideas contained in statistical mechanics, Lagrange multipliers were introduced, and graph

Hamiltonian and partition function were defined [80].

Bianconi applies entropy to characterise randomized network ensembles that develop

a logarithm to generate the total number of networks. They propose that entropy can be

viewed as an indicator to assess structural features in network models [17]. Furthermore,

Bianconi defines and evaluates the structural entropy to characterise undirected simple

networks with certain constraints, such as the degree distribution [17]. It also reflects the

community structure, in which case the networks might have to link probability with the



2.2. THERMODYNAMIC VARIABLES IN NETWORKS 44

distance between the nodes [17]. Moreover, Anandet al. map the information theory to

network topologies in order to quantify the complexity of networks [5]. They explain the

relationship between the Shannon entropy, the Gibbs entropy and von Neumann entropy

for the network ensembles, which can be used to solve the inference problems through

maximum-entropy principle [5]. Krioukovet al. further explore entropy distribution in

random networks given degree distribution [7]. They find that the network entropy has

the property of self-averaging. The relative entropic variance vanishes in thermodynamic

limit [19]. The fluctuations of entropy are also related to the average degree in networks

[7]. Moreover, Bianconi finds that entropy is useful to solveinferential problems in mul-

tiplex networks [19]. In particular, the smaller the entropy of the ensemble, the smaller

the number of networks satisfying the corresponding constraints, which implies that these

networks are optimized [19].

In addition, a large number of approaches demonstrate that the entropy in thermo-

dynamics is practically advantageous when it comes to measuring the robustness and

complexity of the network. Since Boltzmann defined the general concept of entropy to

the system when it is associated with different states, Shannon has extended the entropy

principle to characterise communication systems with information theory [67, 86]. Such

an application of the entropy principle can be used to characterise a network in terms

of its complexity, robustness and heterogeneity. It has been extended to the graph spec-

trum domain. The normalised Laplacian spectrum can be viewed as a complexity level

characterisation [81]. With the definition of von Neumann entropy, the density matrix

associated with the Laplacian spectrum provides a novel wayto study thermodynamic

entropy on networks [81]. Anand, Bianconi and Severini study the relation between the

Shannon entropy and the von Neumann entropy within networksexhibiting a given ex-

pected degree sequence [6]. Yeet al. [117] extend the approximate von Neumann entropy

for directed graphs to characterise the structural complexity of networks. Overall, ther-

modynamic entropy has generally become an important mechanism through which we

can characterise complex networks.



2.2. THERMODYNAMIC VARIABLES IN NETWORKS 45

2.2.2 Network Temperature

In order to complete thermodynamic characterisations in networks, one parameter in par-

ticular should be mentioned. That is temperature. Generally speaking, there is a limited

amount of literature that explores the impact of temperature on complex networks. Tem-

perature is usually considered to be a pseudo-parameter. However, in order to completely

describe the statistical formalism in complex networks, Garlaschelliet al. clearly discuss

the impact of temperature on networks with a degree of topological optimization. They

also developed various temperature-dependent versions ofnetwork models [52].

Furthermore, when using temperature as a parameter within anetwork, thermody-

namic characterisations provide a convenient way to represent the structure within an

associated graph spectrum. The normalised Laplacian has been shown to be related to the

continuous time random walk and the heat flow on a graph [44]. Escolanoet al. explain

the thermodynamic depth relies on the heat flow to share the characterisation of a graph in

entropy with statistical complexity [43]. Escolano, Bonevand Hancock extend the ther-

modynamic depth with their findings regarding heat diffusion on undirected and directed

networks to quantify the complexity of structural patterns[43].

2.2.3 Partition Function

The partition function can be succinctly used to describe the network characterisations

and properties. It refers to the statistical properties in the thermodynamic equilibrium.

Thermodynamic characteristics of the network, such as entropy, total energy, and temper-

ature can be derived from the partition functions.

Garlaschelli and Waclawet al. [52, 103] view the networks as being at an equilibrium

with the micro-canonical ensemble. It satisfies the constraints that have a fixed number

of verticesN and a varying number of linksLA = ∑i j ai j , and which are controlled by the

chemical potentialµ. Then the probability of a graphA is introduced with temperatureT

PA =
1
Z

exp

[

µLA−EA

T

]

(2.3)

where the partition function isZ = ∑Aexp(µLA −EA)/T. Considering the instructive
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case, the energyEA is summary of each individual link energiesεi j . That isEA=∑i j ai j εi j .

Then the partition function can be written as

Z = ∑
A

∏
i j

e(µ−εi j )ai j /T = ∏
i j

[

1+e(µ−εi j )/T
]

(2.4)

So the probability of graphA is

PA = ∏
i j

p
ai j
i j (1− pi j )

1−ai j (2.5)

And he probability of a link between nodei and nodej is

pi j (T) =
1

e(εi j−µ)/T +1
(2.6)

This form is the constant with quantum statistics, i.e., Fermi-Dirac statistics, which

we review in the next section. The energyEA implies that each link is drawn with probabil-

ity pi j independent of each other. Further, in order to simplify theform of εi j , Garlaschelli

et al. obtained many important network models, such as the hidden-variable models and

the configuration models of random graphs [52]. The optimization of topology in the low

temperature case provides a deep understanding of the temperature-dependent network

models, which in the end aid the investigation of the structural properties within complex

networks [52].

2.3 Networks with Quantum Statistics

Quantum statistics are usually used to describe the statistical properties of complex net-

works. Quantum network states are characterised by quantumoccupation numbers which

are mapped relative to the nodes, links, and triangles.

In particular, the quantum states are characterised by the Hamiltonian operator,

which defines the energy spectrum of the network system. Günthard and Primas first

realised that the matrix form of Hamiltonian can be related to the adjacency matrix of

a certain graph [55]. Gutman introduced the definition of graph energy to the absolute
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eigenvalues of the adjacency matrix [57]. Further extension of the energy spectrum is

defined as the eigenvalues of the Laplacian matrix [58]. Similar variants of the Hamilto-

nian operator are developed for the signless Laplacian [95], the distance matrix [54], the

incidence matrix [64] and, recently, the normalised Laplacian for the connection to the

Randíc index [81].

By defining the micro-states within the network system, the quantum statistical pic-

ture allows for Bose-Einstein and Fermi-Dirac statistics to be used in two different ways.

For example, the fitness of the nodes in the scale-free network model can be an anal-

ogy to the Bose gas when following the Bose-Einstein statistical properties [16]. Similar

mapping of the Fermi gas can describe the growing Cayley trees in Fermi-Dirac statistics

[15].

2.3.1 Bose-Einstein Condensation

In terms of Bose-Einstein statistics, one of the most interesting phenomena is the Bose-

Einstein condensation. Strauss first discovered the condensation transition of a network

model in 1986 [97]. He described these networks as the framework of an equilibrium

model. More recently, Bianconi mapped the nonequilibrium scale-free growing network

model with a fitness parameter to a Bose gas. This is known as Bose-Einstein condensa-

tion [21]. Starting with the fitness model, every nodei is assigned an energyεi relating to

the fitness distributionρ(η) which describes the ability of a node to attract new links.

εi =− 1
β

lnηi (2.7)

whereβ = 1/T plays the role of inverse temperature. A link between two nodesi and j

with energiesεi andε j corresponds to two noninteracting particles on the energy levelsεi

andε j . Adding a new node to the network corresponds to adding a new energy levelεi

and 2m particles to the system. The probability of a particle landson the energy levelεi

is given by

Πi =
e−βεi ki

∑e−βεi ki
(2.8)
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The occupation numberki(εi, t, ti) denotes the meaning that the number of links (particles)

on the energy levelεi at timet, while adding nodes to the system at timeti. The rate at

which particles accumulate on the energy level is given by

∂ki(εi, t, ti)
∂ t

= m
e−βεi ki(εi , t, ti)

Zt
(2.9)

whereZt is the partition function, defined as

Zt =
t

∑
j=1

e−βεi k j(ε j , t, t j) (2.10)

Based on the assumption that each node increases its connectivity following a power law,

the occupation number can be given as

ki(εi, t, ti) = m

(

t
ti

) f (εi)

(2.11)

where the dynamic exponentf (ε) satisfiesf (ε) = e−β (ε−µ), µ plays role of the chemical

potential, satisfying the equation

∫

deg(ε)
1

eβ (ε−µ)−1
= 1 (2.12)

wheredeg(ε) is the degeneracy of the energy levelε. This equation suggests that in the

t → ∞ limit, the occupation number, given the number of particleswith energyε, follows

the familiar Bose statistics [2, 21]

n(ε) =
1

eβ (ε−µ)−1
(2.13)

Each time a new node is added to the network, the links of this node exhibit a higher

probability that they will attach to others with high fitness. That shows that the high

connectivity nodes follow a generalised preferential attachment rule [12]. This kind of

network model exists scale-free property [22]. When the node fitness is significantly

higher than the mean value, this node grabs a finite fraction of all the links in the network.
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Figure 2.1: Schematic illustration of the mapping between the network model and the
Bose gas. The fitness parameterη corresponds to the energy stateε , and a link between
node i and node j corresponds to particles at the energy stateεi andε j . The solid dots
on the energy levels are the existing links. The cycle dots are the new links to be added
in the network [21].

This phase transition can be mapped to the Bose-Einstein condensation in a Bose gas [21].

Furthermore, Ferretti, Mamino and Bianconi extend this work with their work per-

taining to the rewiring of links [50]. The rewiring process tends to remove links from

nodes that have a high negative fitness to optimize the network structure. Rewiring proba-

bilities also satisfy the constraint of the network to be a simple graph. At low temperatures

and high rewiring rates, this constraint induces a Bose-Einstein condensation, which, in

turn, introduces the phase space with the connected component and the degeneracy of the

networks [50]. They provide a mean-field solution to the model of the condensation phase

transition. Via numerical simulation and analytical arguments below the phase transition,

the structure is significantly different to the links near the neighbours of the condensed

nodes [50].

Besides, Penrose also finds Bose-Einstein condensation in asolvable model of hard-

core repulsive bosons on the complete graph [82]. In recent years, Bose-Einstein conden-

sation has also been shown to take place in networks with complex topology, such as those

with a set of infinite linear chains crossing at a single site [28], linear chains connected by

a single line [30], an Apollonian scale-free network [36], and the infinitely ramified star

and wheel graphs [101]. By analogy, the networks like the ideal Bose gas depict a spec-

tral density with an anomalous behaviour at the bottom of energy states. They present a
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ε
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Figure 2.2: Bose-Einstein condensation in the network. The node fitnessis signifi-
cantly higher than the mean value, and this node grabs a finitefraction of all the links.
A high density of particles occupies at the lowest energy state [21].

discontinuous jump of the specific heat at the transition temperature. Typically the critical

temperature is proportional to the particle density. The ground state usually has a finite

particle density located within a given region of the network, i.e. the condensation has a

trapped fraction [101].

Interestingly, Anandet al. characterise the distribution of entropy of random net-

works with a given degree distribution [7]. They show that the condensation of the aver-

age degree is different from the Bose-Einstein condensation in complex networks. After

defining the entropy of a random network ensemble, they find the fluctuations of entropy

are mainly determined by the fluctuations of the average degree. Networks with an aver-

age degree exceeding a certain threshold exhibit large deviation or condensation effects,

which means that a single node can attractO(N) links. This is not the same as typical

Bose-Einstein consideration in complex networks. Generally, they only correspond to

some large deviation configurations in network ensembles [7].

2.3.2 Fermi-Dirac Statistics

Particles with half-integer spin are subject to Fermi-Dirac statistics and obey the Pauli ex-

clusion principle. They give rise to models of network structure which are constrained by

the occupancy of the nodes and edges. Examples include traffic flow and the modelling

of certain types of geometric networks, such as the Cayley tree [15]. It can be used to
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describe the form of super-symmetry multiplex networks [20]. Kriukov et al. detail a ge-

ometric framework to study the structure and functions of complex networks, interpreting

edges as noninteracting fermions whose energies are hyperbolic distances between nodes

[69]. Shen, Zhu and Liu discuss an inverse approach to network evolution defining a rel-

ative with an illness model and Fermi-Dirac statistics [92]. Baronchelli, Catanzaro and

Romualdo define a framework using bosonic reaction-diffusion processes, with the aim

of analysing dynamic systems on complex networks [14]. Javarone and Armano propose

a theoretical model of network evolution inspired by fermions, which maps complex net-

works to Fermi gas [63]. They show that the emergence of different network structures

can be represented in terms of quantum-classical transition [63].

2.4 Structural and Dynamic Networks

Except for thermal physics, many statistical methods are used to analyse complex net-

works based on their structural properties, dynamics, phase transition, modelling, etc.

Martin, Zhang and Newman [72] use eigenvector centrality tomeasure the importance of

nodes in the networks. This model relies on the small number of nodes which concentrate

most of the weight of the centrality. Based on the non-backtracking matrix, an alternative

method was established to avoid localisation and it is much more useful when it comes to

fixing the problems in circumstances where the standard centrality fails. Zhang, Martin

and Newman [118] use methods of statistical inference to detect the core-periphery struc-

ture within networks. They combine an expectation-maximization algorithm and a brief

propagation algorithm to efficiently deconstruct networksinto dense-core plus an outly-

ing structure. Domenicoet al. [39] introduce von Neumann entropy into multiplayer

networks in order to distinguish different layers. They aggregate networks to minimise

the number of layers and maximize the ability to distinguishbetween the multiplayer

networks. Furthermore, they identify modular flows on multiplayer networks to reveal

structures with a high level of overlap [40].

Zuev, Papadopoulos and Krioukov [119] describe the dynamics of complex networks
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with Hamilton’s equations. They derive the explicit form ofthe Hamiltonian in the canon-

ical formalism to govern the growth of a network within the preferential attachment.

Bouna, Kitsak and Krioukov [50] consider networks arising in cosmology. They show

that networks grow following the power-law degree distribution with Lorentz-invariant.

It encodes the maximum information about rewiring of the links which occurs according

to a preferential attachment rule [50]. Ferretti, Mamino and Bianconi [50] consider grow-

ing networks with both heterogeneity of nodes and topological constraints. They found

that at low temperature and high rewiring rates, a new phase transition was induced by an

extended condensate of links. This transition further extends to the size of the connected

component and the degeneracy of the networks [50].

Wu et al. [113] built a model to characterise the geometrical properties of dynamic

networks. The growing geometrical networks follow the non-equilibrium rule which can

generate scale-free networks with clustering and communities and planar random geom-

etry with non-trivial modularity. Ostilli and Bianconi [79] detail a statistical mechanical

approach to extract the coordinates of the nodes in random geometric graphs. They reveal

the mechanism behind the typical configurations of the network model and explore the

finding that the distribution of nodes is either uniform or condensed at the temperature

limit [79]. The network structural transition is characterised by connectivity.

2.5 Summary

In this chapter, we briefly reviewed the existing literatureabout complex networks with

regard to statistical mechanics, thermodynamic variables, quantum statistics and dynamic

structure evolution. It started with a discussion about network ensembles and introduced

existing micro-canonical and canonical ensembles within complex networks. Following

the thermodynamic concept, literature about entropy and temperature in networks was

then presented. Then, condensation phenomenon is observedin networks models and

quantum statistics, i.e. Bose-Einstein statistics and Fermi-Dirac statistics, are employed in

constructing different networks. Finally, we present somethe state-of-art topics, namely

structure, dynamics and others in complex networks with evolution.



Chapter 3

Partition Functions and Spin Statistics

In this chapter, we explore the thermodynamic characterisation of networks using the

heat bath analogy when the energy states are occupied by different spin statistics, speci-

fied by a partition function. Utilising the heat bath analogyand a matrix characterisation

for the Hamiltonian operator, we consider the cases where the energy states are occu-

pied according to Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. We

derive expressions for thermodynamic variables, such as entropy, for the system with par-

ticles occupying the energy states given by the normalised Laplacian eigenvalues. The

chemical potential determines the number of particles at a given temperature. We pro-

vide the systematic study of the entropic measurements for network complexity resulting

from the different partition functions and specifically those associated with alternative

assumptions concerning the spin statistics. Compared withthe network von Neumann en-

tropy corresponding to the normalised Laplacian matrix, these entropies are effective in

characterising the significant structural configurations and distinguishing different types

of network models (Erd̋os-Rényi random graphs, Watts-Strogatz small-world networks,

Barabási-Albert scale-free networks). The effect of the spin statistics is a) in the case of

bosons to allow the particles in the heat bath to congregate in the lower energy levels and

b) in the case of fermions to populate higher energy levels. With normalised Laplacian

energy states, this means that bosons are more sensitive to the spectral gap and hence

to cluster or community structure, and fermions better sample the distribution of path

lengths in a network. Numerical experiments for synthetic and real-world datasets are
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presented to evaluate the qualitative and quantitative differences of the thermodynamic

network characterisations derived from the different occupation statistics, and these con-

firm the qualitative intuitions.

3.1 Introduction

The literature contains many accounts of work aimed at developing effective characterisa-

tions of complex network structure. These characterisations have been widely exploited

in both cluster and classify different types of network structure, and also to analyse how

networks evolve with time [46, 47, 2, 80]. Broadly speaking,most of the available char-

acterisations have centred around ways of capturing network substructure using clusters,

hubs and communities [47, 2, 80]. The underlying representations are usually based on

simple degree statistics that capture the connectivity structures [110, 74]. Although many

of the methods available are goal-directed, most promisingapproaches are to draw on

ideas from physics, using analogies based on statistical mechanics [2, 46, 80], thermody-

namics [114] or quantum information [6].

One of the most powerful of these approaches is to use thermodynamics analogies

suggested by statistical physics. For instance, by maximizing the ensemble entropy in

exponential random graphs, the Boltzmann distribution from classical statistical mechan-

ics can be used to predict the network properties of time-evolving networks [80]. Tools

from statistical mechanics can also be used to characterisethe degree distribution for dif-

ferent types of complex networks [2]. Furthermore, by usinga heat bath analogy from

thermodynamics, principled physical measures of communicability and balance in net-

works can be defined [47]. Ideas from quantum information theory are also useful in the

understanding network structure. For instance, the preferential attachment can lead to the

phenomenon of condensation exhibited in growing networks [21]. Both Bose-Einstein

and Fermi-Dirac statistics have been used to account for thequantum geometries asso-

ciated with different types of networks [20]. Although these different physical analogies

are useful, they are not always easily related to the graph spectral representation.

Another closely related approach is heat bath analogy whichprovides a convenient
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route to network characterisation. Here the energy states of a network are captured using

the eigenvalues of a matrix representation of network structure. The energy states are

then populated by particles which are in thermal equilibrium with the heat bath. As a

result of this thermalisation, the energy states are occupied according to the Boltzmann

distribution [46, 114]. Formally, this physical heat bath system can be described by a

partition function with the energy micro-states of the network represented by a suitably

chosen Hamiltonian. Usually, the Hamiltonian is computed from the adjacency or Lapla-

cian matrix of the network [88], but recently, Yeet al. [114], have shown how the partition

function can be computed from a characteristic polynomial instead.

To embark on this type of analysis, partition functions can be succinctly used to

describe the network statistics and evolution. Thermodynamic characterisations of the

network, such as entropy, total energy, and temperature then can be derived from the

partition functions [74, 114]. By specifying the micro-states of the network system, sta-

tistical thermodynamics can provide deep insights into network behaviour. For example,

by using the Maxwell-Boltzmann partition function to describe a thermalised network,

the entropy, internal energy, and the Helmholtz free energycan be computed from the

graph spectra, and this leads to natural definitions of notions such a centrality [46, 114].

However, the Boltzmann distribution does not take into account particle spin-

statistics and their effects on the population of the thermalised energy levels. Unlike

the classical case where particles are distinguishable, inquantum statistics particles are

indistinguishable. Particles with integer spin are subject to Bose-Einstein statistics and do

not obey the Pauli exclusion principle. As a result, they canaggregate in the same energy

state. At low temperature, this leads to the phenomenon of Bose-Einstein condensation.

There has been work aimed at extending the heat-bath model totake such effects into ac-

count. For instance, Bianconi and Barabási [21] have constructed a network model based

on a Bose gas, and have studied the phase transitions in network structure associated with

Bose-Einstein condensation [21]. This model has also been extended to understand pro-

cesses such as supersymmetry in networks [47, 20]. On the other hand, particles with



3.1. INTRODUCTION 56

half-integer spin are subject to Fermi-Dirac statistics and obey the Pauli exclusion princi-

ple. They thus give rise to very different models of network structure, and these have been

exploited to model situations where there are constraints on the occupancy of the nodes

and edges of a network. Examples include traffic flow and also the modelling of certain

types of geometric networks such as the Cayley tree [15, 92].

Despite the interest in alternative models of the thermalised distribution of energy

states under different particle spin statistics, there hasbeen no systematic study of the var-

ious thermodynamic characterisations resulting from different choices of partition func-

tions, and specifically those associated with alternative assumptions concerning the spin

statistics. Here we consider the effects of occupation statistics on the populations of

energy states when the Hamiltonian operator is the normalised network Laplacian, and

the energy states are then given by its spectrum. Commencingfrom the heat bath anal-

ogy with the Laplacian matrix playing the role as the Hamiltonian, the energy states of

the system are occupied according to a) Maxwell-Boltzmann,b) Bose-Einstein and c)

Fermi-Dirac statistics respectively. From the relevant partition function, we use the statis-

tical mechanical properties of the networks to compute various thermodynamic quantities

when the energy levels are occupied by particles in thermal equilibrium with the heat bath.

Making different choices for the partition function, we obtain different occupation statis-

tics for the energy levels. The network then can be characterised using thermodynamic

quantities such as the entropy and energy derived from the relevant partition function

[46, 114]. In qualitative terms, the Pauli exclusion principle means that particles subject

to Fermi-Dirac statistics are populated the energy states less densely than that in the clas-

sical Maxwell-Boltzmann case. On the other hand, since particles obeying Bose-Einstein

are indistinguishable, they populate the energy states more densely.

The thermodynamic picture offered by quantum Bose-Einstein and Fermi-Dirac

statistics differs from that offered by classical Maxwell-Boltzmann statistics in a num-

ber of important ways. Both quantum statistics additionally require a chemical potential

to specify the distribution of states in the partition function. The chemical potential is

determined by the heat reservoir, and modifies the occupation probability of the energy
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levels [24]. In both cases of Bose-Einstein and Fermi-Diracstatistics, for energy levels

greater than the chemical potential, the occupation probability increases. In other words,

at a given temperature, the higher energy levels are, the more likely to be occupied in the

quantum case than in the classical case. The difference between Fermionic and Bosonic

statistics also manifests itself in important ways. For instance, at low temperatures where

there is little thermal disruption of the occupation pattern dictated by the Pauli exclusion

principle, Bosons tend to condense in the lowest energy states, while there is just one

Fermion per energy state [24]. As a result, thermodynamic quantities such as the total en-

ergy or entropy of the system sample the spectrum of Laplacian energy states in different

ways, and potentially convey different aspects of network structure. For instance, Bose-

Einstein statistics are likely to respond more strongly to the cluster community structure

since they are sensitive to the eigenvalue gap [20]. Fermi-Dirac statistics, on the other

hand, are sensitive to a larger portion of the spectrum and are more sensitive to the den-

sity of energy states [15]. As a result, they are more sensitive to the details of the degree

distribution and also to structural artefacts requiring more information concerning the

Laplacian spectrum such as the path length and cycle length distributions [34].

The aim of this chapter is to explore the behaviour of the entropy and total energy of

networks resulting from different choices of partition functions. We compare four differ-

ent entropic network characterisations. The first three result from the partition functions

for a) Maxwell-Boltzmann, b) Bose-Einstein and c) Fermi-Dirac occupation statistics,

while the fourth is the von Neumann entropy associated with the normalised Laplacian

matrix of the network [81, 59, 117]. We explore how these different entropies can be

used to characterise the changes of network structure with time, and distinguish different

types of network models (Erdős-Rényi random graphs, small-world networks [110], and

scale-free networks [12]).

The remainder of the chapter is organised as follows. We firstprovide a review of

the relationship between the partition function and the thermodynamic variables, i.e. the

average energy, thermodynamic entropy, Helmholtz free energy, temperature and chemi-

cal potential. Then we provide a detailed analysis of the entropies resulting from the three
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different choices of partition functions and explore theirlow and high-temperature lim-

its. The numerical experiments on synthetic and real-worlddatasets are used to evaluate

the effectiveness of the different thermodynamic network characterisations. Finally, we

conclude the chapter and make suggestions for future work.

3.2 Thermodynamic Representation of Networks

Thermodynamic analogies provide powerful tools for analysing complex networks. The

underpinning idea is that statistical thermodynamics can be combined with network the-

ory to characterise both static and time-evolving networks[74].

A complex network can be viewed as a grand canonical ensemble, which not only

exchanges energy but also exchanges particles with a heat reservoir. In general, the energy

and entropy of the network depend on the assumptions concerning the Hamiltonian for

the system and the corresponding partition function.

3.2.1 Preliminaries

Let G(V,E) be an undirected graph with node setV and edge setE ⊆V ×V, and let|V|

represent the total number of nodes on graphG(V,E). The|V|× |V| adjacency matrixA

of a graph is defined as

A=















1 if (u,v) ∈ E

0 otherwise.

(3.1)

Then the degree of nodeu is du = ∑v∈V Auv.

The normalised Laplacian matrix̃L of the graphG is defined as

L̃ = D− 1
2LD

1
2 = ΦΛ̃ΦT (3.2)

whereL = D−A is the Laplacian matrix andD denotes the degree diagonal matrix whose

elements are given byD(u,u) = du and zeros elsewhere.̃Λ = diag(λ1,λ2, . . .λ|V|) is the

diagonal matrix with the ordered eigenvalues as elements and Φ = (ϕ1,ϕ2, . . . ,ϕ|V|) is the
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matrix with the ordered eigenvectors as columns. The element-wise expression of̃L is

L̃uv =































1 if u= v anddu 6= 0

− 1√
dudv

if u 6= v and(u,v) ∈ E

0 otherwise.

(3.3)

3.2.2 Hamiltonian Operator

In quantum mechanics, the Hamiltonian operator is the sum ofthe kinetic energy and

potential energy of all the particles in the system. It is theenergy operator of the system

and the standard formulation on a manifold is

Ĥ =−∇2+U(r, t) (3.4)

In our case, we assume the graph to be in contact with a heat reservoir. The eigenval-

ues of the Laplacian matrix can be viewed as the energy eigenstates, and these determine

the Hamiltonian and hence the relevant Schrödinger equation which governs the particles

in the system. The particles occupy the energy states of the Hamiltonian subject to ther-

mal agitation by the heat bath. The number of particles in each energy state is determined

by the temperature, the assumed model of occupation statistics and the relevant chemical

potential.

If we take the kinetic energy operator−∇2 to be the negative of the adjacency matrix,

i.e. −A, and the potential energyU(r, t) to be the degree matrixD, then the Hamiltonian

operator is the Laplacian matrix on the graph. Similarly, the normalised form of the graph

Laplacian can be viewed as the Hamiltonian operator

Ĥ = L̃ (3.5)

In this case, the energy states of the network{εi} are then the eigenvalues of the Hamil-

tonianĤ|ψi〉= L̃|ψi〉= Ei |ψi〉.

The eigenvalues are all greater than or equal to zero, and themultiplicity of the zero
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eigenvalues is the number of connected components in the network. Furthermore, the

density matrix commutes with the Hamiltonian, i.e. the associated Poisson bracket is

zero,

[Ĥ,ρ ] = [L̃,
L̃
|V| ] = 0 (3.6)

which means that the network is in equilibrium when there areno changes in the density

matrix which describes the system.

3.2.3 Thermodynamic Quantities

Here we consider the thermodynamic system specified by a system of N particles with

energy states given by the network Hamiltonian and immersedin a heat bath with temper-

atureT. The ensemble is represented by a partition functionZ(β ,N), whereβ = 1/kBT

is an inverse of temperature parameter [104].

When specified in this way, the various thermodynamic characterisations of the net-

work can be computed. For instance, the average energy of thenetwork can be expressed

in terms of the density matrix and the Hamiltonian operator,

U =

[

− ∂
∂β

logZ(β ,N)

]

N
= Tr(ρH) = kBT2

[

∂
∂T

logZ

]

N
(3.7)

the thermodynamic entropy by

S= kB

[

∂
∂T

T logZ

]

N
(3.8)

and the chemical potential by

µ =−kBT

[

∂
∂N

logZ

]

β
(3.9)

The chemical potential is a measure of how resistive the system is to the addition of

new particles. It acts to offset the energy levels of the Hamiltonian. In the case of Fermi-

Dirac statistics, the chemical potential is equal to the Fermi level and at zero temperature
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determines the highest occupied energy state. In Bose-Einstein statistics, the chemical

potential tends to zero at zero temperature, and this leads to the formation of the Bose-

Einstein condensate. In the remainder of the paper, we set the Boltzmann constantkB = 1.

Both the energy and the entropy can be regarded as weighted functions of the Lapla-

cian eigenvalues which characterise the network structurein different ways. In the follow-

ing sections, we will explore these differences in more detail, and in particular to which

parts of the Laplacian spectrum they are most sensitive to different choices of the partition

function resulting from different occupation statistics.

3.3 Partition Functions and Occupation Statistics

According to the picture adopted in this chapter, the normalised Laplacian of the graph

specifies a series of energy states that can be occupied by particles. At a given tempera-

ture, there are a number of alternative ways in which the energy levels can be occupied,

depending on the spin-statistics of the particles.

Here we consider the different situations that arise when the occupation of the energy

levels is governed by Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. The

Maxwell-Boltzmann distribution applies when spin statistics are ignored and the popula-

tion of the different energy levels is governed by thermalisation. Bose-Einstein statistics

apply to bosons of integer spin, and which are indistinguishable. Finally, Fermi-Dirac

statistics apply when the particles are fermions with half-integer spin and are subject to

the Pauli exclusion principle.

For each distribution, we capture the statistical mechanical properties of particles in

the system using the partition function associated with thedifferent occupation statistics.

The network can then be characterised using thermodynamic quantities computed from

the partition function, and these include the entropy, energy, and temperature.

3.3.1 Maxwell-Boltzmann Statistics

In statistical mechanics, the Maxwell-Boltzmann distribution relates the microscopic

properties of particles to the macroscopic thermodynamic properties of matter [114]. It
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applies to systems consisting of a fixed number of weakly interacting distinguishable par-

ticles. These particles occupy the energy levels associated with a Hamiltonian and in our

case the Hamiltonian of the network, which is in contact witha thermal bath [80].

Taking the Hamiltonian to be the normalised Laplacian of thenetwork, the canonical

partition function for Maxwell-Boltzmann occupation statistics of the energy levels is

ZMB = Tr

[

exp(−β L̃)N
]

=

( |V|
∑
i=1

e−βεi

)N

(3.10)

whereβ = 1/kBT is the reciprocal of the temperatureT with kB as the Boltzmann con-

stant;N is the total number of particles andεi denotes the microscopic energy of system

at each microstatei. Furthermore, from Eq.(3.7), the average energy of the network is

〈U〉
MB

=−∂ logZ
∂β

= N
Tr[L̃exp(−β L̃)]

Tr[exp(−β L̃)]
= N

∑|V|
i=1εie−βεi

∑|V|
i=1e−βεi

(3.11)

and similarly derived from Eq.(3.8), the entropy of the system withN particles is

SMB = logZ−β
∂ logZ

∂β
=−NTr

{

exp(−β L̃)

Tr[exp(−β L̃)]
log

exp(−β L̃)

Tr[exp(−β L̃)]

}

= −N
|V|
∑
i=1

e−βεi

∑|V|
i=1e−βεi

log
e−βεi

∑|V|
i=1e−βεi

(3.12)

For a single particle, the density matrix is

ρ
MB

=
exp(−β L̃)

Tr[exp(−β L̃)]
(3.13)

Thus, the entropy in the Maxwell-Boltzmann system is simplyN times the von Neumann

entropy of a single particle, as we might expect.

3.3.2 Bose-Einstein Statistics

The Bose-Einstein distribution applies to indistinguishable bosons. Each energy state can

accommodate an unlimited number of particles specified by the network Hamiltonian.
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Bosonic particles subject to Bose-Einstein statistics do not obey the Pauli exclusion prin-

ciple and can aggregate in the same energy state. Complex networks have been success-

fully characterised using systems of bosons to capture network topology. For instance,

Bianconi and Barabási [21] have constructed a network modelbased on a Bose gas, and

have studied the phase transitions in network structure associated with the Bose-Einstein

condensation of the gas. This model has also been extended tounderstand processes such

as supersymmetry in networks [20].

For a grand-canonical ensemble with a varying number of particles and a chemical

potentialµ, the Bose-Einstein partition function is

ZBE = det
(

I −eβ µ exp[−β L̃]
)−1

=
|V|
∏
i=1

(

1

1−eβ (µ−εi)

)

(3.14)

From Eq.(3.7) and Eq.(3.8), the average energy is

〈U〉
BE

=−∂ logZ
∂β

=−Tr
{

[

I −eβ µ exp(−β L̃)
]−1

(µI − L̃)eβ µ exp(−β L̃)
}

=−
|V|
∑
i=1

(µ − εi)eβ (µ−εi)

1−eβ (µ−εi)
(3.15)

while the corresponding entropy is

SBE = logZ+β 〈U〉

=−Tr

{

log[I −eβ µ exp(−β L̃)]

}

−Tr

{

β [I −eβ µ exp(−β L̃)]−1(µI − L̃)eβ µ exp(−β L̃)

}

=−
|V|
∑
i=1

log
(

1−eβ (µ−εi)
)

−β
|V|
∑
i=1

(µ − εi)eβ (µ−εi)

1−eβ (µ−εi)
(3.16)

As a result the average energy is the average difference between the Laplacian energy

states and the chemical potential, weighted by the Bose-Einstein factor exp[−β (εi −

µ)]/(1− exp[−β (εi − µ)]). The weighted energy difference therefore decreases with

energy. The entropy also decreases with the energy of the states.
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3.3.3 Fermi-Dirac Statistics

The Fermi-Dirac distribution applies to indistinguishable fermions with a maximum oc-

cupancy of one particle in each energy state. Particles cannot be added to states that are

already occupied, and hence obey the Pauli exclusion principle. These particles behave

like a set of free fermions in the complex network with energystates given by the network

Hamiltonian. The statistical properties of the networks are thus given by the Fermi-Dirac

distribution of the equivalent quantum system [86, 24]. Thecorresponding partition func-

tion is

ZFD = det
(

I +eβ µ exp[−β L̃]
)

=
|V|
∏
i=1

(

1+eβ (µ−εi)
)

(3.17)

From Eq.(3.7) the average energy of the Fermi-Dirac system is

〈U〉
FD

=−∂ logZ
∂β

=−Tr
{

[

I +eβ µ exp(−β L̃)
]−1

(µI − L̃)eβ µ exp(−β L̃)
}

=−
|V|
∑
i=1

(µ − εi)eβ (µ−εi)

1+eβ (µ−εi)
(3.18)

And the entropy is

SFD = logZ+β 〈U〉

= Tr

{

log[I +eβ µ exp(−β L̃)]

}

−Tr

{

β [I +eβ µ exp(−β L̃)]−1(µI − L̃)eβ µ exp(−β L̃)

}

=
|V|
∑
i=1

log
(

1+eβ (µ−εi)
)

−β
|V|
∑
i=1

(µ − εi)eβ (µ−εi)

1+eβ (µ−εi)
(3.19)

As the result, the average energy is the average difference between the Laplacian en-

ergy states and the chemical potential, this time weighted by the Fermi-Dirac factor

exp[−β (εi − µ)]/(1+exp[−β (εi − µ)]). For a given chemical potential, the higher en-

ergy levels receive more weight than in the case of the Bose-Einstein statistics. Moreover,

the entropy associated with the states peaks at the chemicalpotential.
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3.3.4 Particle Population and Chemical Potential

We need to specify how the system associated with different partition functions is popu-

lated at various temperatures, and how we set the chemical potential in the case of Bose-

Einstein and Fermi-Dirac statistics. Our approach is to compute the number of particles

occupying each energy state, and sum over the different energy states.

In the case of Maxwell-Boltzmann statistics, the number of particles in the state with

energyε is

ni = N
e−βεi

ZMB

= N
exp(−β L̃)

Tr[exp(−β L̃)]
(3.20)

and so the total number of particles is

N =
|V|
∑
i=1

ni (3.21)

In both cases of Bose-Einstein and Fermi-Dirac occupation statistics, the partition

function and hence both the average energy and entropy, depending on the chemical po-

tential. This parameter is determined by the number of particles in the system and the

temperature.

For Bose-Einstein statistics at the temperature corresponding to β , in order for the

number of particles in each energy state to be non-negative,the chemical potential must

be less than the minimum energy level, i.e.µ < minεi. Under Fermi-Dirac statistics, on

the other hand, with a single particle per energy state, the chemical potential is hence just

thenth energy level, and soµ = εn.

3.3.5 High and Low Temperature Limits

High Temperature Limits (β → 0)

At high temperature, i.e. whenβ approaches zero, thermalisation disrupts the effects

of the occupation statistics captured by different partition functions, and both the Bose-

Einstein and Fermi-Dirac models are equivalent to the Maxwell-Boltzmann case. For

the Maxwell-Boltzmann distribution, the high-temperature limit of the average energy is
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Figure 3.1: Plot of the chemical potentialµ versus temperature T for Maxwell-
Boltzmann, Bose-Einstein and Fermi-Dirac statistics. In the high-temperature region,
the three chemical potentials exhibit similar behaviour. In the low-temperature region,
the chemical potential for Bose-Einstein statistics is always less than 0. However, with
Fermi-Dirac statistics, it is larger than 0 and increases with the number of particles N.

limβ→0〈U〉MB =
N
|V|Tr[L̃], which is as expected proportional to the trace of the normalised

Laplacian, giving an average energy per particle of1
|V|Tr[L̃]. The corresponding high-

temperature limit of the entropy is

lim
β→0

SMB = N log|V|+ Nβ 2

2|V|

{

1
|V|Tr[L̃]−Tr[L̃2]

}

(3.22)

This is similar to the result obtained by Han et al. [59] for the von Neumann entropy. As a

result, the entropy at high temperature is a constant for allthree models of the occupation

statistics.

Low Temperature Limits (β → ∞)

The low temperature limits of the energy and entropy under Maxwell-Boltzmann statistics

satisfy whenβ → ∞ are limβ→+∞〈U〉MB = 0 and limβ→+∞ SMB = N logc, wherec is the

number of connected components in the network. We usually deal with graphs having a

single connected component and as a result we have that the limit of entropy in Maxwell-

Boltzmann case at the low temperature tends to zero.

In the case of the Bose-Einstein and Fermi-Dirac partition functions, the chemical
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potential plays a pivotal role in determining the low-temperature limit.

For Fermi-Dirac statistics, the constant chemical potential µ is equal to the energy of

highest state occupied by one of theN particles at zero temperature. With a single particle

per energy state, this is hence just theNth energy level, namelyεN. As the temperature

approaches zero, the chemical potentialµ approaches the Fermi energyεN, so thatµ = εN.

There is only one configuration for each identical particle occupies at each energy state,

and the corresponding entropy is limβ→+∞ SFD = 0.

For Bose-Einstein occupation statistics, atT = 0 all particles are in the ground state

and it is straightforward to show that limβ→+∞ SBE = (N+1) ln(N+1)−N lnN. As N

goes to infinity, the limits of entropy tends to limN→+∞ limβ→+∞ SBE = lnN. The main

difference between the thermal quantities of the classicalstatistical system and that of the

quantum spin systems is that the partition function resultsin different occupation of the

energy levels according to the relevant population statistics.

In the Maxwell-Boltzmann case, without thermalisation of the levels at zero temper-

ature, all particles occupy the zero energy ground state. But in the case of Bose-Einstein

and Fermi-Dirac statistics, this pattern is modified by the chemical potential, and this

modified the way which the higher energy levels are populated. For Bose-Einstein statis-

tics, the effect is to shift the occupation number from the zero energy Maxwell-Boltzmann

ground-state by an amount proportional to the chemical potential. In other words, the

particles are found with higher probabilities at lower energy levels. In the case of the

Fermi-Dirac statistics, the effect is exaggerated since the chemical potential is the energy

of the state corresponding to the number of particles in the system.

3.4 Physical Intuitions

The network Laplacian defines a set of energy levels for a system which is in thermody-

namic equilibrium with a heat bath of known temperature. Thedifferent partition func-

tions govern how a system of non-interacting particles populate these energy levels at

a particular temperature. From the partition functions, wecan calculate the energy and
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entropy associated with the system of particles, at a particular temperature and for dif-

ferent numbers of particles. Our idea is to use these two thermodynamic quantities to

characterise the network from which the Laplacian was computed.

Of course, different networks will have different graph spectra (i.e. distributions of

Laplacian eigenvalues or energy levels of our thermodynamic system), and this, in turn,

will give rise to a different population of energy levels with temperature. More impor-

tantly, in this study, the choice of partition function willalso control how the different

energy levels can be populated depending on the spin statistics of the particles, and the

number of particles added to the system. When we work with theclassical Maxwell-

Boltzmann distribution, then the temperature is the only controlling parameter. By in-

creasing temperature, we simply thermalise the populationof the energy levels. On the

other hand, when we envoke non-classical spin statistics, quantum effects become evi-

dent. In the case of Fermi-Dirac statistics, only one particle can occupy each energy state.

For Bose-Einstein statistics, on the other hand, particlescan condense in the lower energy

states, particularly at low temperatures, but these particles are indistinguishable, leading

to different statistics. In the quantum cases, the effect ofchanging the number of particles

can be modelled by adding a chemical potential which effectively shifts the energy levels.

We use the entropy and energy associated with the distribution of energy levels and

their different occupation probabilities to explore whether the different partition functions

allow us to probe differences in network structure in different and hopefully more useful

ways. The main interest here lies in the low-temperature behaviour since at high tempera-

ture the effects of the quantum statistics are disturbed by thermal effects all three partition

functions give identical results. At low temperature, we are more likely to find bosonic

particles in the low energy states when compared to the Maxwell-Boltzmann distribution.

On the other hand, because of the Pauli exclusion principle,we are more likely to find

fermions at higher energies. Hence by populating the energystates in different ways, the

particles respond to the Laplacian spectrum in different ways depending on which of the

three partition functions governs their behaviour. The question we seek to answer is when

measured in terms of their entropy or energy to the differentpartition functions allow us
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to probe network structure in different ways.

It is well known that different types of network have different degree distributions,

and this is reflected in their Laplacian spectra. For instance, Erd̋os-Rényi random graphs

the eigenvalues follow a semi-circular (or Wigner) distribution, with mean controlled by

the connection probability. Scale-free networks have a triangular distribution and net-

works of the Watts-Strogatz type have a more complex spectrum which depends on the

parameters and may contain sharp peaks. For cluster-structure, the distribution of the

lowest eigenvalues and the spectral gap are most important.Hence, the choice of how the

eigenvalues are sampled, or choice of the partition function, can be sensitive to the type

of structure. One might, for instance, expect Bose-Einstein statistics to be better suited to

detecting networks with strong community structure because they preferentially sample

the lower energy levels. Fermi-Dirac statistics, on the other hand, may be better for dis-

tinguishing different network models because they probe a wider range of energy levels,

and are hence more sensitive to the mean and variance of the eigenvalue distribution.

3.5 Experiments and Evaluations

We explore whether the thermodynamic characterisations resulting from the three alterna-

tive models for the energy level occupation statistics can be employed as a useful tool for

better understanding the structural properties and the evolution of networks. Specifically,

we numerically simulate the effects of the three different models and examine whether

the resulting entropies can distinguish different structures, and compare their relative per-

formance. Furthermore, we compute the thermodynamic characterisations for a number

of real-world time-evolving networks in order to investigate whether they can be used

to detect abrupt changes in network structure at different time epochs. Finally, we use

the different entropies to classify tumour mutation networks and protein to protein inter-

action networks resulting from different groups. To simplify the calculation, we set the

Boltzmann constant to unity throughout our experiments.

This section is structured as follows. We commence by describing the data-sets used
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in our experiments and the kernel principal components method used to visualise the en-

tropy differences between different networks. We then explore how the different entropies

depend on their free parameters, name temperature of a number of particles for network

drawn from different models (random graph, small world and scale-free networks). Using

kernel PCA we visualise how the networks from different models distribute themselves in

three dimensions with the different partition functions, and comment on which gives the

best separation. Finally, we report results on real-world data-sets.

3.5.1 Data Sets

Here, we use four different datasets. The first contains synthetically generated artificial

networks, while the remaining three are extracted from real-world complex systems.

Synthetic Networks Data-set: Contains a large number of graphs which are ran-

domly generated according to one of three different complexnetwork models, namely,

a) the classical Erd̋os-Rényi random graph model, b) the small-world model introduced

by Watts and Strogatz [110], and c) the scale-free model, developed by Barabási-Albert

model [12, 13]. These are created using a variety of model parameters, e.g., the graph

size and the connection probability (randomly generated between 0.1 to 0.9) in the ran-

dom graph model, the link rewiring probability (randomly generated between 0.2 to 0.8)

in the small-world model [110] and the number of added connections (set to 1) at each

time step [12] in the scale-free model. The networks are randomly generated by a normal

distribution with the number of node between 100 and 1,000.

NYSE Stock Market Networks Data-set: The New York Stock Exchange dataset

consists of the daily prices of 3,799 stocks traded continuously on the New York Stock

Exchange over 6000 trading days. The stock prices were obtained from the Yahoo! finan-

cial database (http://finance.yahoo.com) [93]. A total of 347 stock were selected from this

set, for which historical stock prices from January 1986 to February 2011 are available.

In our network representation, the nodes correspond to stock and the edges indicate that

there is a statistical similarity between the time series associated with the stock closing

prices [93]. To determine the edge structure of the network,we use a time window of

20 days is to compute the cross-correlation coefficients between the time-series for each
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pair of stock. Connections are created between a pair of stock if the cross-correlation

exceeds an empirically determined threshold. In our experiments, we set the correlation

coefficient threshold to the value toξ = 0.85. This yields a time-varying stock market

network with a fixed number of 347 nodes and varying edge structure for each of 6,000

trading days. The edges of the network, therefore, represent how the closing prices of the

stock follow each other.

Tumour Mutation Networks Data-set: Contains tumour mutation data for three ma-

jor cancers taken from the Cancer Genome Atlas (TCGA). Theseare a) ovarian cancer b)

uterine cancer and c) lung adenocarcinoma [35]. There are 356 patients with mutations

in 9,850 genes in the ovarian cancer cohort, 248 patients with mutations in 17,968 genes

in the uterine endometrial cancer cohort and 381 patients with mutations in 15,967 genes

in the lung adenocarcinoma cohort [62]. The raw patient mutation data are binary vec-

tors, with elements corresponding to different genes. The binary numbers indicate if the

relevant gene is mutated or not (1 indicates the presence of amutation, 0 that a mutation

is absent). So each individual is characterised by a 0-1 binary gene sequence of muta-

tion indicators. Patient mutation networks were mapped onto gene interaction networks

by aggregating information from several pathways and interaction databases, describing

physical protein-protein interactions (PPIs) and functional relationships between genes in

both regulatory, signalling and metabolic pathways [48].

Protein-Protein Interaction Networks Data-set: The PPIs dataset extracted from

STRING-8.2 [99] consisting of networks which describe the interaction relationships be-

tweenhistidine kinaseand other proteins. Histidine kinase is a key protein in the develop-

ment of signal transduction. If two proteins have direct (physical) or indirect (functional)

association, they are connected by an edge. There are 173 PPIs in this dataset and they

are collected from 4 different kinds of bacteria with the following evolution order (from

older to more recent). Aquifex and Thermotoga-8 PPIs from Aquifex aelicus and Ther-

motoga maritima, Gram-Positive-52 PPIs from Staphylococcus aureus, Cyanobacteria-73

PPIs from Anabaena variabilis and Proteobacteria-40 PPIs from Acidovorax avenae [44].
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3.5.2 Visualising the Distribution of Networks using Jensen-Shannon

Divergence

We require a tool for visualising the similarity of sets of graphs measured by the entropies

computed from the different partition functions. To this end, we measure similarity using

the Jensen-Shannon divergence [73], which is asymmetric information theoretic diver-

gence measure computed from the entropies of pairs of graphs. We characterise the sim-

ilarities of a set of graphs using a kernel matrix and then embed the graphs into a vector

space using kernel-embedding for the purposes of visualisation.

Here we deal with the case where the nodes in the graphs are labelled, and at each

time step, the node-sets are identical. Only the edge-set varies between time-steps. More-

over, since the nodes are labelled it is straightforward to determine which edges have

been added, removed or remained unchanged between different time steps. Suppose that

Gi andG j are two graphs, and thatGi ⊕G j is the union graph with the set of edges formed

from those edges that are present at either time stepi or time stepj. With the union graph

to hand, the Jensen-Shannon divergence for the pair of graphsGi andG j is

DJS(Gi,G j) = S(Gi ⊕G j)−
S(Gi)+S(G j)

2
(3.23)

whereS(Gi) is the entropy associated with the graphGi , andS(Gi ⊕G j) is the entropy

associated with the corresponding union graphGU . Then the Jensen-Shannon kernel[10]

is given by

kJS(Gi,G j) = log2−DJS(Gi ,G j) (3.24)

With the graph kernel to hand, we embed the graphs into a vector space. To compute the

embedding, we commence by computing the eigendecomposition of the kernel matrix,

which will reproduce the Hilbert space with a non-linear mapping. In such a case, graph

features can be mapped to low dimensional feature space withlinear separation. The

graph kernel decomposition is

kJS= ΦΛΦT (3.25)
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where Λ is the diagonal eigenvalue matrix andΦ is the matrix with eigenvectors as

columns. To recover the matrixX with embedding coordinate vectors as columns, we

write the kernel matrix in Gram-form, where each element is an inner product of embed-

ding coordinate vectors

kJS= XXT (3.26)

and as a resultX =
√

ΛΦT . In practice, we embed the samples of graphs into a three-

dimensional space and hence use just the three leading eigenvalues and corresponding

eigenvectors ofkJS to compute the embedding.

3.5.3 Parameter Dependence

In this section, we investigate how well the different models of the energy level occupation

statistics can be used to distinguish synthetic networks generated using the Erdős-Rényi

random graphs, Watts-Strogatz small-world models [110] and Barabási-Albert scale-free

network models [12, 13]. We conduct numerical experiments to evaluate whether the

thermodynamic variables, especially entropy, can represent differences in the structure

and topology of networks.

Fig.3.2(a) shows the behaviour of the entropies resulting from Maxwell-Boltzmann

occupation statistics as a function of temperature (1/β ). We explore the effect of varying

the number of particles occupying the system and explore thecases whereN = 1 and

N = 3. From Eq.(3.12), it is clear that the effect of varying N is simply to scale the

entropy by a multiplicative factor.

For the three different graph models (Erdős-Rényi random graph model, Watts-

Strogatz small-world model and Barabási-Albert scale-free model), there is different be-

haviour with temperature. For small-world networks, the entropy increases fastest at low

values of temperature. But it is quickly overtaken by the scale-free networks at interme-

diate temperatures. The Erdős-Rényi random graph model shows the slowest rate of in-

creasements. The common feature is that all three entropiesincrease monotonically with

temperature. However, the detailed dependence on 1/β depends on the partition func-

tion and the underlying occupation statistics. Specifically, in the low-temperature region
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(0.07∼ 0.12), the entropy distinguishes strongly among the different types of network

models.
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Figure 3.2: Mean and standard deviations of the entropies for three different network
models versus temperature. Number of particles N = 1 and N = 3.Red cross line: Erd̋os-
Rényi random graphs; blue star line: Watts-Strogatz small world networks; black circle
line: Barabási-Albert scale free networks.

Fig.3.2(b) and Fig.3.2(c) respectively show similar plotsfor the entropies derived

from the Bose-Einstein and Fermi-Dirac partition functions. In the case of the Bose-

Einstein entropy, the curves for the three different graph-modes exhibit the same pattern

as in the Maxwell-Boltzmann case. As a result, at low temperatures, the ordering of

the Bose-Einstein entropy can be used to separate the different network models. In both

the Bose-Einstein and Fermi-Dirac, the number of particlesN affects the entropy via

the chemical potentialµ. Hence, the entropy is not simply scaled by changingN. In

the case of the Fermi-Dirac partition function, the patternof entropies for the different

modes is more complex for the various network models. Firstly, for different values of

N, the behaviour is very different with temperature. ForN = 1, we see a similar pattern
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to the Maxwell-Boltzmann and Bose-Einstein cases, but withN = 3 the behaviour is

different with the scale-free and random graphs having small separation for all values of

temperature. Additionally, the small-world model is overtaken by the random graphs and

scale-free models at a lower value of temperature. This is a consequence of the exclusion

principle manifesting itself at low temperature, and hencemodifying the distribution of

entropy for the different models.

Comparing the plots for the Bose-Einstein and Fermi-Dirac entropies, the follow-

ing features should also be noted: a) in each case for the different models approach the

same limiting value for a given value ofN, b) in the case of the Fermi-Dirac partition

function all networks have zero entropy as temperature approaches zero, c) in the case of

the Bose-Einstein model the entropy approaches the finite value lnN at zero temperature

determined by the number of particles in the system, d) the Fermi-Dirac entropy increases

more rapidly with increasing temperature than the Bose-Einstein entropy. On the other

hand, as the temperature increases, the occupation probability for the higher energy states

increases and particles begin to occupy the higher energy states. Moreover, the occupation

probabilities for the three different partition functionsbecome identical.

As expected, the differences between the different models are most evident at low

temperature. These observations also fit with the intuitions outlined in Section 3.4. The

faster rise of the Fermi-Dirac entropy with temperature is aconsequence of the greater

probability of finding fermions in the higher energy levels.For Bose-Einstein entropy,

the greater separation between the different network models as low temperature is a con-

sequence of the different shape of their degree distributions.

3.5.4 Distinguishing Different Network Models

We now explore the ability of the different entropies, resulting from the three different

partition functions (Maxwell-Boltzmann, Bose-Einstein,and Fermi-Dirac) to distinguish

the three types of complex networks (random graphs, small-world networks and scale-free

networks).

Fig.3.3 shows histograms of the entropy for data generated from the three network

models in the synthetic dataset. Each figure shows the entropy computed using a different
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partition function. The differently coloured curves in thehistograms correspond to the dis-

tribution from three network models. In each plot, the Erdős-Rényi random graphs occupy

the low entropy region while the small-world networks stay at the high entropy-area. The

distributions of random graphs and scale-free networks arecloser in Maxwell-Boltzmann

and Bose-Einstein cases when compared to the small-world networks. However, using

entropy simply as a unary feature is insufficient to obtain good separation between the

different network models (Erd̋os-Rényi random graphs, Watts-Strogatz small-world net-

works and Barabási-Albert scale-free networks). Better separation can though be obtained
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Figure 3.3: Histograms of entropy for Maxwell-Boltzmann, Bose-Einstein and Fermi-
Dirac statistics. The networks are randomly generated withthe number of nodes gener-
ated from a normal distribution with the number of nodes between 100 and 1,000. The
red line represents Erdős-Rényi random graphs; the black line small-world networks
and the blue line scale-free networks. Temperatureβ = 10 and the number of particles
N = 1.

if we analyse the pattern of entropy differences between pairs of graphs. Fig.3.4 shows

the results of applying the kernel embedding technique outlined in Section 3.5.2 to the

entropies computed from the three different partition functions. The differently coloured
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points correspond to the data generated from the three different network models (red -

Erdős-Rényi random graphs, blue - small world networks, back - scale-free networks).

In the case of Maxwell-Boltzmann and Bose-Einstein, the different models from non-

overlapping subspaces and can be easily separated. In the case of Bose-Einstein statistics,

the effect of changing the number of particles is negligible. In the case of Fermi-Dirac

statistics, on the other hand, although more scattered whenthe number of particles is low,

they form tightly clustered subspaces when a larger number of particles are used. This is

in line with our physical intuition, since if the number of particles is increased then so the

number of energy levels populated increases, even at low temperature. This is in contrast

to the Bose-Einstein case, where particles congregate at low energy levels.

The results above are obtained, using entropies derived from Maxwell-Boltzmann

and Bose-Einstein partition functions, the Jensen-Shannon divergence with kernel embed-

ding provides a better visualisation of the separation of the different numerical network

models.

3.5.5 Real World Data

We now compute the entropy characterisations obtained fromthe three different partition

functions on real-world data. Specifically, we explore whether the entropy can be used as

an effective tool for better understanding the evolution ofreal-world complex networks.

First, we focus on the detail of New York Stock Exchange in stock market dataset and

then provide analysis of the tumour mutation networks and protein-protein interaction

networks.

Stock Market Data

Fig.3.5 and Fig.3.6 show the entropy time-series for the NYSE data obtained from differ-

ent partition functions. In Fig.3.5, the entropy is derivedfrom the Maxwell-Boltzmann

partition function. It is annotated to show the positions ofsignificant financial events such

as Black Monday, Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis,

9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy of Lehman

Brothers and the European Debt Crisis. In each case, the entropy undergoes significant
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(a) Maxwell-Boltzmann Statistics N = 5
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(b) Maxwell-Boltzmann Statistics N = 10
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(c) Bose-Einstein Statistics N = 5
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(d) Bose-Einstein Statistics N = 10
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(e) Fermi-Dirac Statistics N = 5
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(f) Fermi-Dirac Statistics N = 10

Figure 3.4: Kernel embedding from Jensen-Shannon divergence computedwith
Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac entropies. We compare the effect
of different numbers of particles (N = 5 andN = 10) with fixed temperatureβ = 10.
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fluctuations during the financial crises, associated with dramatic structural changes.
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Figure 3.5: Entropy from Maxwell-Boltzmann occupation statistics forNYSE (1987-
2011). Critical financial events, i.e., Black Monday, Friday the 13th mini-crash, Early
1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturnof 2002-2003, 2007 Fi-
nancial Crisis, the Bankruptcy of Lehman Brothers and the European Debt Crisis, all
appear as distinct events. Particle numberN = 5 and temperatureβ = 7.

A good example is the downturn of 2002-2003. After the 9.11 attacks, investors

became unsure about the prospect of terrorism affecting theUnited States economy. Fol-

lowing the subsequent collapse of many internet companies,numerous large corporations

were forced to restate earnings and investor confidence suffered. This considerably altered

the inter-relationships among stocks and resulted in significant variance in the structure

of the entire market.

Fig.3.6 compares the entropy derived from the three different partition functions with

the von Neumann entropy. In the figure, entropies coming fromthe three partition func-

tions perform better in evaluating the structural changes in the network time-series when

compared to the von Neumann entropy. Further exploration shows that entropies, derived

from Bose-Einstein and Fermi-Dirac partition functions, exhibit the similar behaviour

in the evolution of stock markets. Compared to the Maxwell-Boltzmann case, the Bose-

Einstein and Fermi-Dirac entropies are more sensitive to the critical events in the financial

data, such as Black Monday in 1987 and the Asian Financial Crisis in 1997.
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Figure 3.6: von Neumann Entropy and thermodynamic entropy compared forNYSE
(1987-2011): (a) Maxwell-Boltzmann occupation statistics, (b) Bose-Einstein occupa-
tion statistics and (c) Fermi-Dirac occupation statistics. (d) von Neumann entropy.

Tumour Mutation Networks

Next, we turn our attention to the tumour mutation networks for the three different can-

cers, i.e. a) ovarian cancer, b) uterine cancer and c) lung adenocarcinoma.

In Fig.3.7(a), we provide the histogram of the entropy computed from the Maxwell-

Boltzmann partition function. The different colour of curves represent the three types of

cancers. The most striking feature of this plot is that the three kinds of tumour networks

dominate different entropy intervals. By applying two separate thresholds to the entropy

histogram, we can assign the patients to three classes. We have searched for the two

thresholds which give the maximum pooled classification accuracy over the three cancer

classes. We find that the best result is given when the uterineand ovarian classes are sepa-

rated using an entropy threshold atSMB = 2.92, and the ovarian and lung adenocarcinoma

with a threshold atSMB = 4.38. The resulting classification accuracies are 33.87% for

uterine cancer, 83.71% for ovarian cancer and 78.48% for lung adenocarcinoma.

Fig.3.7(b) repeats the analysis using the entropy derived from the Bose-Einstein par-

tition function. Here the corresponding thresholds are 2.49 and 4.52, giving correct clas-

sification rates of 75.00%, 93.54%, and 83.96% for the uterine, ovarian, and lung ade-

nocarcinoma classes respectively. For the case of the Fermi-Dirac entropy, as shown in
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Table 3.1: Classification accuracy of three different partition functions. The thermo-
dynamic entropy thresholds for Maxwell-Boltzmann statistics are 2.92 and 4.38. The
values of entropy separation for Bose-Einstein statisticsare 2.49 and 4.52. And the
corresponding thresholds of entropy for Fermi-Dirac statistics are 0.56 and 2.08.

Accuracy Uterine Cancer Ovarian Cancer Lung Adenocarcinoma Total
Maxwell-Boltzmann 33.87% (84/248) 83.71% (312/356) 78.48% (300/381) 70.66% (696/985)

Bose-Einstein 75.00% (186/248) 93.54% (333/356) 80.84% (308/381) 83.96% (827/985)
Fermi-Dirac 63.71% (153/248) 74.16% (264/356) 79.53% (303/381) 73.10% (720/985)

Fig.3.7(c), the thresholds areSFD = 0.56 andSFD = 2.08 giving classification accuracies

of 63.71%, 74.16%, 73.10% for the uterine, ovarian and lung adenocarcinoma groups.

To improve the separation of the data, we use the kernel embedding based on the

Jensen-Shannon divergence to measure network similarity,as outlined in Section 3.5.2.

The results of the tumour networks, embedding into the three-dimensional space spanned

by the first three leading eigenvectors of the kernel matrix,are shown in Fig.3.8. The plot
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Figure 3.7: Histograms of entropy from three statistics for tumour mutation networks
(ovarian, uterine and lung adenocarcinoma). Particle number N = 2, temperatureβ =
10.

sheds light on the three different classes of data (shown in different colours) exhibiting a
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compact manifold structure for three statistics. For each entropy, the different groups of

tumour mutation networks are well separated in the embedding space, and this is espe-

cially so in the case of the Bose-Einstein entropy.

In the Maxwell-Boltzmann and Fermi-Dirac cases, although,the groups of lung ade-

nocarcinoma and ovarian cancer are well separated, the outliers of uterine tumour net-

works are interspersed among remaining two classes. The best results are obtained in

the Bose-Einstein case where the individual networks of theuterine group form the most

compact cluster.
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Figure 3.8: Kernel embedding with the Jensen-Shannon divergence computed from
tumour mutation network entropies (ovarian, uterine and lung adenocarcinoma) for dif-
ferent partition functions. Particle numberN = 3, temperatureβ = 10.

Protein-Protein Interaction Networks

Our final example is based on Protein-protein interaction networks. We perform kernel

embedding on the protein-protein interaction networks to visualise their distribution and
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to provide a comparison between the entropic discrimination obtained with different par-

tition functions. To this end, we show the distribution of the PPI’s in the space spanned

by the leading three kernel principal components in Fig.3.9.
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Figure 3.9: Kernel embedding with the Jensen-Shannon divergence computed from
PPI network entropies (Acidovorax, Anabaena, Staphilococcus and Aquifex & Ther-
motoga) for different partition functions. Particle number N = 5, temperatureβ = 10.

In each case, the embedded data exhibits a manifold structure which results in good

separation of the different classes of PPI. Moreover, the Bose-Einstein entropy provides

a better separation of more tightly formed clusters and fewer outliers. The reason for this

is that Bose-Einstein statistics encourage particles to aggregate in the lower energy states

at low temperature. This amplifies the influence of the numberof connected components

and the spectral gap in determining the entropy. The former is reflected by the multiplicity

of the zero eigenvalues and the latter relates to the degree of bi-partivity in the network.

The particle occupation of the low energy states produces a stronger entropic separation



3.6. SUMMARY 84

in the Bose-Einstein case. By contrast, neither the Maxwell-Boltzmann nor Fermi-Dirac

statistics strongly reflect the lower part of Laplacian spectrum, since they do not give

a similar particle concentration in the lower energy states. As a result, Bose-Einstein

statistics are more sensitive to the cluster structure of networks, and in the case of PPI’s

where there is a strong inhomogeneity of node degree which leads to better separation of

different classes.

Conclusions from the real world data study

In the case of the tumour mutation networks, overall, the best-pooled performance comes

from the Bose-Einstein entropy. Compared with the Maxwell-Boltzmann case, the en-

tropies derived from spin statistical partition functionsappear to be more sensitive to

differences in network structure and more accurately reflect the structural differences

between distinct types of tumour mutation networks. The same pattern emerges with

protein-protein interactions networks, This is not surprising since the PPI’s have a strong

cluster (community) structure. This again fits with the intuitions given in Section 3.4.

3.6 Summary

Our study uses the normalised Laplacian matrix as the Hamiltonian operator of the net-

work, and the associated energy states are given by the eigenvalues of the normalised

Laplacian. We explore the case where the particle occupations correspond to Maxwell-

Boltzmann, Bose-Einstein and Fermi-Dirac statistics. From the relevant partition func-

tions, we can compute the thermodynamic entropy and energy.Motivated by an interest

in revealing the nontrivial properties of the network structure, we have compared the three

resulting entropic characterisations and with the von Neumann entropy. We provide a de-

tailed analysis of the three different partition functions, expressed both in terms of the

normalised Laplacian matrix and its eigenvalues.

We evaluate the network models resulting from the three different partition func-

tions on both synthetic and real-world datasets. This studyinvestigates how the different

entropies can be used to characterise the changes in networkstructure, and distinguish dif-

ferent types of network structure. Studies with synthetic data show that the entropies can
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distinguish Erd̋os-Rényi random graphs, Watts-Strogatz small-world networks, Barabási-

Albert scale-free networks. Experiments with real-world data, on the other hand, show

that the thermodynamic variables can not only be used to detect both abrupt changes in

network structure, but also distinguish different classesof networks.

The main conclusion from this study is that for distinguishing different network mod-

els, the Fermi-Dirac entropy appears best. The reason for this is that it is most sensitive

to the higher eigenvalues of the normalised Laplacian and this allows it to better probe

differences in the degree distributions for different models. Our real-world data, on the

other hand, comes mainly from problems where there is a strong community or cluster

structure. Here the Bose-Einstein model performs best, andthe reason for this is that it is

most sensitive to the eigenvalue gap.



Chapter 4

Edge Entropy Decomposition

In prior chapter, we have shown how to compute global networkentropy using a heat

bath analogy and partition functions with three statistics. In this chapter, we show how

to project out edge-entropy components so that the detaileddistribution of entropy across

the edges of a network can be computed. This is particularly useful if the analysis of non-

homogeneous networks with a strong community as hub structure is being attempted. To

commence, we view the normalised Laplacian matrix as the network Hamiltonian oper-

ator which specifies a set of energy states with the Laplacianeigenvalues. The network

is assumed to be in thermodynamic equilibrium with a heat bath. According to this heat

bath analogy, particles can populate the energy levels according to the classical Maxwell-

Boltzmann distribution and the quantum spin statistics. These distributions together with

the energy states determine thermodynamic variables of thenetwork, such as entropy.

We analyse the partition functions relevant to Bose-Einstein and Fermi-Dirac statistics

in terms of temperature. At high temperatures, the effects of quantum spin statistics are

disrupted by thermalisation and correspond to the classical Maxwell-Boltzmann case.

However, at low temperatures, the Bose-Einstein system condenses into a state where the

particles occupy the lowest energy state, while in the Fermi-Dirac system there is only

one particle per energy state. These two models produce quite different entropic char-

acterisations, which are appropriate to different types ofnetwork structure. We show

how the entropy can be decomposed into components arising from individual edges using

the eigenvectors of the normalised Laplacian. Compared to previous work based on the
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von Neumann entropy, this thermodynamic analysis is more effective in characterising

changes of network structure since it better represents theedge entropy variance associ-

ated with edges connecting nodes of large degree. Numericalexperiments on real-world

datasets are presented to evaluate the qualitative and quantitative differences in perfor-

mance.

4.1 Introduction

There has been a considerable recent interest in computing the entropy associated with

different types of network structure [59, 117, 104]. Network entropy has been extensively

used to characterise the salient features of the structure in static and dynamic network sys-

tems arising in biology, physics, and the social sciences [81, 59, 117]. For example, the

von Neumann entropy can be used as an effective characterisation of network structure,

commencing from a quantum analogy in which the Laplacian matrix on graphs [81] plays

the role of the density matrix. Further development of this idea has shown the link be-

tween the von Neumann entropy and the degree statistics of pairs of nodes forming edges

in a network [59], which can be efficiently computed for both directed and undirected

graphs [59, 117]. Since the eigenvalues of the density matrix reflect the energy states of a

network, this approach is closely related to the heat bath analogy in statistical mechanics.

This provides a convenient route to network characterisation [117, 104]. By populating

the energy states with particles which are in thermal equilibrium with a heat bath, this

thermalisation, of the occupation statistics for the energy states can be computed using

the different distribution [114, 104]. The properties of this physical heat bath system are

described by a partition function with the energy micro-states of the network represented

by a suitably chosen Hamiltonian [114].

The Hamiltonian specify the energy states which are populated by particles in ther-

mal equilibrium with a heat bath. A key element in this thermalisation approach is to

model how the energy states are occupied at a particular temperature. Normally this is

assumed to follow the classical Maxwell-Boltzmann distribution, where the particles are
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distinguishable and weakly interacting. But in the quantummechanic domain, these parti-

cles obey spin statistics. In other words, they are indistinguishable and are either fermions

(half-integer spin) or bosons (integer spin). Particles with integer spin are subject to Bose-

Einstein statistics and do not obey the Pauli exclusion principle. They can aggregate in

the same energy state. At low temperature, this leads to the phenomenon of Bose-Einstein

condensation. There has been work aimed at extending this model to networks. For in-

stance, by mapping the network model to a Bose gas, phase transitions have been studied

in network evolution associated with Bose-Einstein condensation [21]. This model has

also been extended to understand processes such as supersymmetry in networks [47]. In

the meanwhile, particles with half-integer spin are subject to Fermi-Dirac statistics and

obey the Pauli exclusion principle. They give rise to modelsof network structures con-

strained by the occupancy of the nodes and edges. Examples include traffic flow and also

the modelling of certain types of geometric networks such asthe Cayley tree [15].

Although entropic analysis of the heat bath analogy provides a useful global char-

acterisation of network structure, it does not allow the entropy of edge or subnetwork

structure to be easily computed. There has been a little systematic study of the result-

ing thermodynamic characterisations of network entropy onedges. In this chapter, we

explore a novel edge entropy projection which can be appliedto the global network en-

tropy computed from Maxwell-Boltzmann, Bose-Einstein andFermi-Dirac statistics. We

characterise the thermalised system of energy states usingpartition functions relevant

to three occupation statistics. From the partition functions, we compute the entropy of

the network with particles. Because Bose-Einstein particles coalescence in low energy

states and Fermi-Dirac particles have a greater tendency tooccupy high energy states for

the Puli exclusion principle, these types of spin statistics lead to very different distribu-

tions of entropy for a network with a given structure (i.e. a set of normalised Laplacian

eigenvalues). Moreover, at low temperature, the distributions are also different from the

classical Maxwell-Boltzmann case. It is these low-temperature differences in energy and

entropy that we wish to investigate as a means of characterising differences in the net-

work structure. We use this technique to analyse the distribution of edge entropy within
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a network and explore how this distribution encodes the intrinsic structural properties of

different types of network.

The remainder of the chapter is organised as follows. In Sec.4.2, we briefly introduce

the von Neumann entropy with its approximate degrees of nodes connected by an edge.

In Sec.4.3, we develop an entropic network characterisation from the heat bath analogy

and Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics, and then describe our

edge entropy projection. In Sec.4.5, we undertake experiments to demonstrate the use-

fulness of this novel method. Finally, we conclude our chapter with a summary of our

contribution and suggestions for future work.

4.2 Entropy Representation

4.2.1 Density Matrix

In quantum mechanics, the density matrix is used to describea system whose state is an

ensemble of pure quantum states|ψi〉, each with probabilitypi . The density matrix is

defined as

ρ =
|V|
∑
i=1

pi |ψi〉〈ψi | (4.1)

Severini et al. [81] have extended this idea to the graph domain. Specifically, they

show that a density matrix for a graph or network can be obtained by scaling the com-

binatorial Laplacian matrix by the reciprocal of the numberof nodes in the graph. With

this notation, the specified density matrix is obtained by scaling the normalised Laplacian

matrix by the number of nodes, i.e.

ρ =
L̃
|V| (4.2)

When defined in this way the density matrix is Hermitian i.e.ρ = ρ† andρ ≥ 0,Tr[ρ ] =

1. It plays an important role in the quantum observation process, which can be used to

calculate the expectation value of the measurable quantity.
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4.2.2 Von Neumann Entropy

The interpretation of the scaled normalised Laplacian as a density operator, opens up the

possibility of characterising a graph using the von Neumannentropy from quantum infor-

mation theory. The von Neumann entropy is defined as the entropy of the density matrix

associated with the state vector of a system. As noted above,Severini et al. [81] sug-

gest how the von Neumann entropy can be computed by scaling the normalised discrete

Laplacian matrix for a network. As a result the von Neumann entropy is given in terms of

the eigenvaluesλ1, .....,λ|V| of the density matrixρ ,

SVN =−Tr(ρ logρ) =−
|V|
∑
i=1

λi

|V| log
λi

|V| (4.3)

The von Neumann entropy [81] computed from the normalised Laplacian spectrum

has been shown to be effective for network characterisation. In fact, Han et al.[59] have

shown how to approximate the calculation of von Neumann entropy in terms of simple

degree statistics. Their approximation allows the cubic complexity of computing the von

Neumann entropy from the Laplacian spectrum, to be reduced to one of quadratic com-

plexity using simple edge degree statistics, i.e.

SVN = 1− 1
|V| −

1

|V|2 ∑
(u,v)∈E

1
dudv

(4.4)

This expression for the von Neumann entropy allows the approximate entropy of

the network to be efficiently computed and has been shown to bean effective tool for

characterising structural property of networks, with extremal values for the cycle and

fully connected graphs.

Therefore, the edge entropy decomposition is given as

S
edge

VN
(u,v) =

1
|E| −

1
|V||E| −

1

|E||V|2
1

dudv
(4.5)

whereSVN = ∑(u,v)∈E S
edge

VN
(u,v). This expression decomposes the global parameter of von
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Neumann entropy on each edge with the relation to the degreesfrom the connection of

two vertexes.

4.3 Thermodynamic Representation

4.3.1 Maxwell-Boltzmann Entropy

Taking the Hamiltonian to be the normalised Laplacian of thenetwork, the canonical

partition function for Maxwell-Boltzmann occupation statistics of the energy levels can

be achieved as Eq.(3.10). The entropy of the system withN particles is given by Eq.(3.12).

Since the density matrix commutes with the Hamiltonian operator, we have∂ρ/∂ t = 0

and the system can be viewed as in equilibrium. So the entropyin the Maxwell-Boltzmann

system is simplyN times the von Neumann entropy of a single particle, as we might

expect.

4.3.2 Bose-Einstein Entropy

For a system of the network, as the grand-canonical ensemblewith a varying number of

particlesN and a chemical potentialµ, the Bose-Einstein partition function is achieved

as Eq.(3.14). The corresponding entropy is given by Eq.(3.16). This entropy depends on

the chemical potential for the partition function and henceit is determined by the number

of particles in the system. At the temperatureβ , the corresponding number of particles in

the leveli with energyλi is

ni =
1

exp[β (λi −µ)]−1
(4.6)

As a result, the total number of particles in the system is

N =
|V|
∑
i=1

ni =
|V|
∑
i=1

1
exp[β (λi −µ)]−1

= Tr

[

1

exp(−β µ)exp[β L̃]− I

]

(4.7)

In order for the number of particles in each energy state to benon-negative, the

chemical potential must be less than the minimum energy level, i.e. µ < minλi .
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The equivalent function of density matrix in this case is given by

ρ
BE

=
1

Tr(ρ1)+Tr(ρ2)







ρ1 0

0 ρ2






(4.8)

whereρ1 =−
(

exp[β (L̃−µI)]− I
)−1

andρ2 =
(

I −exp[−β (L̃−µI)]
)−1

.

Since Bose-Einstein statistics allow particles to coalesce in the lower energy levels,

the corresponding entropy reflects the smaller Laplacian eigenvalues most strongly. As

a result, the number of connected components (the multiplicity of the zero eigenvalues),

and spectral gap (the degree of bi-partiality in a graph) aremost strongly reflected.

4.3.3 Fermi-Dirac Entropy

The Fermi-Dirac distribution applies to indistinguishable fermions with a maximum oc-

cupancy of one particle in each energy state. Particles cannot be added to states that are

already occupied, and hence obey the Pauli exclusion principle. These particles behave

like a set of free fermions in the complex network with energystates given by the network

Hamiltonian.

The statistical properties of the networks are thus given bythe Fermi-Dirac statistics

of the equivalent quantum system, and the corresponding partition function is Eq.(3.17).

From Eq.(3.8), the associated entropy of the Fermi-Dirac system is given by Eq.(3.19).

Under Fermi-Dirac statistics, on the other hand, the numberof particles occupying

the ith energy state is

ni =
1

exp[β (λi −µ)]+1
(4.9)

and the total number of particles in the network system is

N =
|V|
∑
i=1

ni =
|V|
∑
i=1

1
exp[β (λi −µ)]+1

= Tr

[

1

exp(−β µ)exp[β L̃]+ I

]

(4.10)

With a single particle per energy state, the chemical potential is hence just thenth energy

level, and soµ = λn.
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Similarly, we find that the equivalent density matrix function

ρ
FD

=
1

Tr(ρ3)+Tr(ρ4)







ρ3 0

0 ρ4






(4.11)

whereρ3 =
(

I +e−β µ exp[β L̃]
)−1

andρ4 =
(

I +eβ µ exp[−β L̃]
)−1

.

Since Fermi-Dirac statistics exclude multiple particles from the same energy level,

the corresponding entropy does not just reflect the lower part of the Laplacian spectrum

and are sensitive to a greater portion of the distribution ofLaplacian eigenvalues. As a

result, we might expect them to be more sensitive to subtle differences in the network

structure.

4.4 Edge Entropy Analysis

The edge entropy decomposition is to project the global network entropy onto the edges

by multiplying the eigenvector matrices with the entropic elements. The matrix form for

entropy can be written as,

S=−Tr [ρ logρ ] =−Tr[Σ] (4.12)

Since the spectral decomposition of the normalised Laplacian matrix is

L̃ = ΦΛ̃ΦT (4.13)

We can decompose the matrixΣ as follows

Σ = Φσ(Λ̃)ΦT (4.14)

As a result, we can perform edge entropy projection using theLaplacian eigenvectors,

with the result that the entropy of edge(uv) is given as,

Sedge(u,v) =
|V|
∑
i=1

σ(λi)ϕiϕT
i (4.15)
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where, for Maxwell-Boltzmann statistics,

σMB(λi) =−N
e−βλi

∑|V|
i=1e−βλi

log
e−βλi

∑|V|
i=1e−βλi

and for Bose-Einstein statistics,

σBE(λi) =−
|V|
∑
i=1

log
(

1−eβ (µ−λi)
)

−β
|V|
∑
i=1

(µ −λi)eβ (µ−λi)

1−eβ (µ−λi)

and for Fermi-Dirac statistics,

σFD(λi) =
|V|
∑
i=1

log
(

1+eβ (µ−λi)
)

−β
|V|
∑
i=1

(µ −λi)eβ (µ−λi)

1+eβ (µ−λi)

Thus, the global entropy can be projected on the edges of the network system. This

provides useful measures for local entropic characterisation of network structure in a rel-

atively straightforward manner.

4.5 Experiments and Evaluations

In this section, we provide experiments to evaluate the proposed methods of edge entropy

decomposition. We commence by assessing the performance onedge degrees by compar-

ing the previous con Neumann entropy. Then we apply the real-world networks, i.e. PPIs,

NYSE and fMRI, to distinguish significant structural variance.

4.5.1 Data Sets

The first two datasets are Protein-Protein Interaction networks and New York Stock

Exchange networks as introduced in chapter 3. The PPI dataset contains four groups

of bacteria, i.e., Aquifex and Thermotoga-8, Gram-Positive-52, Cyanobacteria-73 and

Proteobacteria-40 [44]. The financial networks are extracted from New York Stock Ex-

change over 6000 trading days with a total of 347 stocks.

4.5.2 Experimental Results

We first investigate the temperature dependence of edge entropy with degree properties in

three statistics. We select three different types of edges with different values of degrees at
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the vertices and explore how the entropy changes with temperature.

0 2 4 6 8 10 12 14 16 18 20

Temperature 

0

50

100

150

200

250

M
a
x

w
e
ll

 B
o

lt
z
m

a
n

n
 E

n
tr

o
p

y

large degree

small degree

median degree

0 2 4 6 8 10 12 14 16 18 20

Temperature 

0

0.005

0.01

0.015

0.02

0.025

B
o

se
-E

in
st

e
in

 E
n

tr
o

p
y large degree

small degree

median degree

0 2 4 6 8 10 12 14 16 18 20

Temperature 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

F
e
rm

i-
D

ir
a
c
 E

n
tr

o
p

y

large degree

mdian degree

small degree

(a) Maxwell-Boltzmann Edge Entropy
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Figure 4.1: The temperature tendency of edge entropy with different degree on both
ends in three statistics. The red line represents the high-degree edge; the blue line is the
low-degree edge and the black line is the median value of degrees on the edge ends.

Fig.4.1(a) plots three selected edge entropies versus temperature with Maxwell-

Boltzmann occupation statistics. The three edges show a similar dependence of entropy

on the temperature. As the inverse of temperature (β ) increases, the edge entropy reaches

a maximum value. The edge entropy for vertices with the high degree increases faster

than that for the low-degree in the high-temperature region. In the low-temperature limit,

entropy approaches zero. This is because when the temperature decreases the configu-

ration of particle occupation becomes identical as the particles always state at the low

energy levels since the thermalisation effects vanish.

The quantum statistics, i.e., Bose-Einstein and Fermi-Dirac cases, exhibit the sim-

ilar pattern like the Maxwell-Boltzmann statistics at the high temperature. As shown in

Fig.4.1(b) and Fig.4.1(c), the edge entropy increases in both cases at the high-temperature



4.5. EXPERIMENTS AND EVALUATIONS 96

(a) Maxwell-Boltzmann Statistics

(b) Bose-Eistein Statistics (c) Fermi-Dirac Statistics

Figure 4.2: Scatter plot of edge entropies compared to the von Neumann entropy with
different value of temperatures.

region. However, as the temperature goes down (the inverse temperatureβ increases), the

edge entropy in quantum statistics present a different tendency compared to the classical

Maxwell-Boltzmann case. For Bose-Einstein statistics, the edge entropy reaches a con-

stant value in the low-temperature limit. It is because the configuration of practices tend

to condensate at the low energy state, which makes the edge entropy coalesce at a constant

platform. On the other hand, particles in Fermi-Dirac statistics have a greater tendency

to occupy high energy state with the Puli exclusion principle. This leads to edge entropy

more distinguishable at the low-temperature limit with broad spread distribution of parti-

cles among the energy states. Two kinds of edge entropies in both quantum statistics cases

are more sensitive to represent the degree structural difference in the low-temperature re-

gion compared to the Maxwell-Boltzmann statistics.

To better present the relationship between the edge entropies in three statistics and

von Neumann entropy case, Fig.4.2 shows the edge entropy tendency with a different

value of temperatures. All three statistical entropies exhibit a transition relationship with
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von Neumann entropy in terms of changing temperature. For example, the Maxwell-
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Figure 4.3: 3D scatter plot of edge entropy from Maxwell-Boltzmann statistics and
von Neumann entropy. (a) Edge entropy in Maxwell-Boltzmannstatistics. (b) Edge en-
tropy from von Neumann formula. (c) Comparison of edge entropy between Maxwell-
Boltzmann statistics and von Neumann entropy.

Boltzmann entropy is roughly in linear proportion to von Neumann entropy at the high

temperature (β = 0.1). However, as the temperature reduces, it takes on an approximately

exponential dependence. The Maxwell-Boltzmann edge entropy decreases monotonically

with the von Neumann edge entropy in the low-temperature region (β = 10). The similar

patterns can be observed in Bose-Einstein and Fermi-Dirac cases. The high temperature

produces a proportional relationship to the von Neumann edge entropy, while the low

temperature causes a transition to an inverse proportion between two entropies.

Furthermore, we explore the relationship between edge entropy in statistical meth-

ods and von Neumann case. Take the Maxwell-Boltzmann statistics as an example, we
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show the 3D plots of edge entropy with the vertex degree in Fig.4.3 . The figure com-

pares the edge entropy between Maxwell-Boltzmann statistics and von Neumann entropy

with node degree connection for each edge in the network. Theobservation is that both

entropies have a similar tendency with the degrees at the end. The Maxwell-Boltzmann

edge entropy is more sensitive to the degree variance than the von Neumann entropy in

the high degree region. The reason for this is the constant term in the von Neumann en-

tropy formula dominates the value of edge entropy when the degrees are large. Thus, the

Maxwell-Boltzmann edge entropy is better suited to represent the differences in graph

structure associated with large degree nodes.

Protein-Protein Interaction

Networks
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von Neumann Entropy
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Figure 4.4: Examples of protein-protein interaction networks with edge entropy distri-
bution of von Neumann entropy and Maxwell-Boltzmann statistics.

Now we apply the real-world PPI networks as an example to better illustrate the

difference between edge entropy distributions in von Neumann entropy and the Maxwell-

Boltzmann statistics. Fig.4.4 shows two examples of PPI networks, namely Anabaena

variabilis and Aquifex aelicus together with their associated edge entropy histograms.

The Maxwell-Boltzmann edge entropies are more sensitive tothe presence of edges asso-

ciated with high degree nodes, which provides better edge discrimination. This effect is
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manifest in the differences of edge entropy histograms. In the Maxwell-Boltzmann case,

the histogram shows two peaks in the edge entropy distribution, while the von Neumann

edge entropy is concentrated at low values and has just a single peak. In other words, the

von Neumann edge entropy offers less salient structure.

Figure 4.5: Entropy from Maxwell-Boltzmann statistics and von Neumannentropy for
NYSE (1987-2011). Number of particles isN = 1 and temperature isβ = 10.

Next, we turn our attention to the time evolution of networks. We take the NYSE

network as an example to explore the entropic characterisation in the network struc-

ture. Fig.4.5 plots the total network for the Maxwell-Boltzmann and von Neumann

cases. Both entropies reflect the positions of significant global financial events. In each

case, the entropy undergoes significant fluctuations duringthe financial crises, associated

with dramatic structural changes. Compared to the von Neumann entropy, the Maxwell-

Boltzmann case is more sensitive to fluctuations in the network structure. A good example

is Black Wednesday in 1992, which is obvious in the Maxwell-Boltzmann entropy but is

not clear in the von Neumann case.

The similar entropic pattern can be observed in Fig.4.6, which shows both entropies

from Bose-Einstein and Fermi-Dirac statistics with various financial events annotated,

including Black Monday, Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian

Crisis, 9.11 Attacks, Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy of

Lehman Brothers and the European Debt Crisis. In each case, the entropy undergoes

sharp increase corresponding to the financial crises, whichare associated with dramatic
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Figure 4.6: Entropy in NYSE (1987-2011) derived from Bose-Einstein andFermi-
Dirac statistics. Critical financial events, i.e., Black Monday, Friday the 13th mini-
crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-
2003, 2007 Financial Crisis, the Bankruptcy of Lehman Brothers and the European
Debt Crisis, can be represented in thermodynamic entropy with Maxwell-Boltzmann
statistic. It is efficient to use the partition function associating with entropy to identify
events in NYSE.

structural changes in the networks. Similarly the Maxwell-Boltzmann entropy in Fig.4.5,

the quantum entropies are also effective in indicating the critical events. Moreover, the

Bose-Einstein quantities show the greatest variation during the crises, suggesting that

changes in cluster-structure (modularity) are important during these episodes.

We now focus in detail on one particular critical financial event, i.e., Black Monday

in October 1987, to explore the dynamic structural difference with the entropic variance.

We visualize the network structure at three-time epochs, i.e., before, during and after

Black Monday, and compare the three statistical edge entropy distribution with von Neu-

mann entropy case. Fig.4.7 shows the network structure and edge entropy distribution

during the crisis. Before Black Monday, the stocks are highly connected with a large

number of densely connected clusters of stocks following the same trading trends. This

feature is reflected in edge entropy distribution of three statistics. However, during Black

Monday, the number of connections between stock decrease significantly with large num-

bers of nodes becoming disconnected. Some stocks do though slightly increase their

number of links with other stocks. This manifests itself as ashift of the peak to the

high entropy region of the distribution. After Black Monday, the stocks begin to recover

connections with another and a few stocks tend to form some clusters in the network struc-

ture. The node degree distribution also returns to its previous shape. In contrast, the von
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Figure 4.7: Visualisation of network structure before, during and after Black Mon-
day. Edge entropy distribution is computed from von Neumannentropy, Maxwell-
Boltzmann statistics, Bose-Einstein statistics and Fermi-Dirac statistics. The statistical
model such as the Maxwell-Boltzmann case is more sensitive to represent the dynamic
structure in the networks.
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Neuman edge entropy distribution does not completely reflect the details of these critical

structural changes. Compared to the three statistical edgeentropy, the distribution of von

Neumann edge entropy does not change significantly during Black Monday and hence

does not effectively characterise the dynamic structure ofthe network. Moreover, an in-

teresting observation is the difference of edge entropy distribution between Bose-Einstein

and Fermi-Dirac statistics after Black Monday. This is because the networks exist some

clusters with community structure. Since Bose-Einstein statistics preferentially sample

the lower energy levels with the network eigenvalue spectrum, it is more suitable to detect

networks with strong community edge connection. While Fermi-Dirac statistics may be

more sensitive to the mean and variance of the eigenvalue distribution since they probe a

wider range of energy levels.

In conclusion, all of the statistical methods and von Neumann edge entropies can

be used to represent changes in network structure. Comparedto the von Neumann edge

entropy, the Maxwell-Boltzmann edge entropy is more sensitive to variance associated

with the degree distribution. In the high-temperature region, the quantum statistics have

similar degree sensitivity to the Maxwell-Boltzmann edge-entropy. However, in the low-

temperature region, Bose-Einstein statistics is more sensitive to reflect strong community

edge connection; while Fermi-Dirac edge entropy is more suitable to represent high de-

gree variations.

4.6 Summary

This chapter has explored the thermodynamic characterisations of networks resulting

from Maxwell-Boltzmann statistics, Bose-Einstein statistics and Fermi-Dirac statistics,

and specifically those associated with the thermalisation effects of the heat bath on the

occupation of the normalised Laplacian energy states. We view the normalised Laplacian

matrix as the Hamiltonian operator of the network with associated energy states which can

be occupied by classical distinguishable particles and quantum identical particles. This

extends the use of entropy as a tool to characterise network structures in both static and
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time series data. To compare with the extensively studied von Neuman entropy, we con-

duct the experiments which demonstrate that the thermodynamic edge entropy is better

suited to represent the intrinsic structural properties associated to long-tailed degree dis-

tributions. The results reveal that all of the statistical entropies are effective in character-

ising dynamic network structure and distinguish differenttypes of network models. Both

quantum spin statistics present the similar effects correspond to the classical Maxwell-

Boltzmann case since they are disrupted by thermalisation at the high temperatures. But,

at low temperatures region, the phenomenon of Bose-Einstein and Fermi-Dirac statistics

are significant different producing quite different entropic characterisations of network

structure. Bose-Einstein system condenses into a state where the particles occupy the

lowest energy state, which preferentially samples the lower energy levels with the net-

work eigenvalue spectrum. The resulting entropy is more suitable to detect networks with

strong community edge connection. Fermi-Dirac system, on the other hand, follows the

Puli exclusion principle with only one particle per energy level. It probes a wider range

of network spectrum which is more sensitive to the mean and variance of the eigenvalue

distribution.



Chapter 5

Modelling Network Evolution

In this chapter, we investigate both undirected and directed network evolution using the

Euler-Lagrange equation. We use the Euler-Lagrange equation to develop a variational

principle based on the von Neumann entropy for time-varyingnetwork structure. Com-

mencing from recent work to approximate the von Neumann entropy using simple de-

gree statistics, the changes in entropy between different time epochs are determined by

correlations in the degree difference of edge connections.Our Euler-Lagrange equation

minimises the change in entropy and allows for the development of a dynamic model

to simulate the changes of node degree with time. We first explore the effect of net-

work dynamics on the three widely studied complex network models, namely a) Erd̋os-

Rényi random graphs, b) Watts-Strogatz small-world networks, and c) Barabási-Albert

scale-free networks. Our model effectively captures both undirected and directed struc-

tural transitions in the dynamic network models. We apply our model to a network time

sequence representing the evolution of stock prices on the New York Stock Exchange

(NYSE) and sequences of Drosophila gene regulatory networks containing different de-

velopmental phases of the organism from embryo to adult. Here we use the model to

differentiate between periods of stable and unstable stockprice trading and to detect peri-

ods of anomalous network evolution. Our experiments show that the presented model not

only provides an accurate simulation of the degree statistics in time-varying networks,

but that is also captures the topological variations takingplace when the structure of a

network changes violently.
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5.1 Introduction

The study of network evolution plays an increasingly crucial role in modelling and pre-

dicting the structural variance of complex networks [112].Previous studies have ad-

dressed this problem from the perspectives of both the localand the global characterisa-

tion of network structure. At the local level, the aim is to model how the detailed connec-

tivity structure changes with time [115, 71]. Specifically,networks grow and evolve with

the addition of new components and connections, or the rewiring of connections from

one component to another [12, 47]. On the other hand, at the global level, the aim is to

model the evolution of characteristics which capture the structure and hence the function

of a network to allow different types of network function to be distinguished from one to

another. Thermodynamic analysis of network structure allows the macroscopic properties

of network structure to be described in terms of variables such as temperature, associated

with the internal structure [115]. There are also models developed to learn the patterns of

network evolution. Examples here include generative and autoregressive models which

allow the detailed evolution of edge connectivity structure to be estimated from noisy or

uncertain input data [60].

However, both the global and the local methods require to us to develop models that

can be fitted to the available data by estimating their parameters, which describe how

vertices interact through edges and how this interaction evolves with time. There are few

methods that are both simple and effectively predict the evolution of network structure.

Motivated by the need to fill this gap in the literature and to augment the methods available

for understanding the evolution of time-varying networks,there have been a number of

attempts to extend the scope of probabilistic generative models using various forms of

regressive or autoregressive models [60, 8]. However, these essentially local models are

parameter intensive and a simpler approach is to coach the model in terms of how different

node degree configurations co-occur on the edges connectingthem [115, 108].

In recent work we have addressed the problem by detailing a generative model of

graph-structure [60] and have shown how it can be applied to network time series using

an autoregressive model [8, 116]. One of the key elements of this model is a means of
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approximating the von Neumann entropy for both directed andundirected graphs [59].

Von Neumann entropy is the extension of the Shannon entropy defined over the re-scaled

eigenvalues of the normalised Laplacian matrix. A quadratic approximation of the von

Neumann entropy gives a simple expression for the entropy associated with the degree

combinations of nodes forming edges [107, 115]. In accordance with intuition, those

edges that connect high degree vertices have the lowest entropy, while those connecting

low degree vertices have the highest entropy [115, 108]. Making connections between

low degree vertices is thus entropically unfavourable. Moreover, the fitting of the gen-

erative model to dynamic network structure involves a description length criterion which

describes both the likelihood of the goodness of fit to the available network data together

with the approximate von Neumann entropy of the fitted network. This latter term reg-

ulates the complexity of the fitted structure [112, 8], and mitigates against overfitting of

the irrelevant or unlikely structure. Moreover, the changein entropy of the two vertices

forming an edge between different epochs depends on the product of the degree of one

vertex and the degree change of the second vertex. In other words, the change in entropy

depends on the structure of the degree change correlations.

The aim of this chapter is to explore whether our model of network entropy can

be extended to model the way in which the node degree distribution evolves with time,

taking into account the effect of degree correlations caused by the degree structure of

edges. We exploit this property by modelling the evolution of network structure using

the Euler-Lagrange equations. Our variational principle is to minimise the changes in

entropy during the evolution. Using our approximation of the von Neumann entropy, this

leads to update equations for the node degree which include the effects of the node degree

correlations induced by the edges of the network. It is effectively a type of diffusion

process that models how the degree distribution propagatesacross the network. In fact,

it has elements similar to preferential attachment [12], since it favours edges that connect

high degree nodes [104, 108].

This model can also be extended to directed graphs. In prior work we have developed
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approximate expressions for the von Neumann entropy of directed graphs [117], consid-

ering the cases where there is a) a mixture of unidirectionaland bidirectional edges, b)

where the unidirectional edges dominate (strongly directed graphs) and c) where the bidi-

rectional edges outnumber the unidirectional edges (weakly directed graphs). Here we

focus on the strongly directed graphs, where edges are purely unidirectional and there are

no bi-directional edges. Our model distinguishes between the in-degree and out-degree

of vertices, and we develop Euler-Lagrange equations for how the distributions quantities

evolve with time.

The remainder of the chapter is organised as follows. In Sec.5.2, we provide a de-

tailed analysis of entropy changes in dynamic networks and develop models for degree

statistics by minimising the von Neumann entropy change using the Euler-Lagrange equa-

tions. We theoretically analyse both undirected and directed networks separately. In

Sec.5.3, we conduct numerical experiments on the syntheticand real-world time-varying

networks and apply the resulting characterisation of network evolution. Finally, we con-

clude the chapter and make suggestions for future work.

5.2 Variational Principle on Graphs

5.2.1 Directed Network Entropy

Severiniet al. [81] exploit the concept of density matrixρ from quantum mechanics

in the network domain. They obtain the density matrix for a network by re-scaling the

combinatorial Laplacian matrix by the reciprocal of the number of nodes in the graph.

Han et al. render the computation of entropy more tractable by making asecond order

approximation to the Shannon entropy [59]. In so-doing theyre-express the entropy it in

terms of the traces of the normalised Laplacian and its square. The resulting approxminate

von Neumann entropy depends on the degrees of pairs of nodes forming edges.

For directed graphs, the approximate von Neumann entropy isrelated to the in-degree

and out-degree of the nodes [117]. First, the edge setE is divided into two subsetsE1

andE2, whereE1 = {(u,v)|(u,v) ∈ E and(v,u) /∈ E} is the set of unidirectional edges,

E2 = {(u,v)|(u,v)∈ E and(v,u)∈ E} is the set of bidirectional edges. The two edge-sets
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satisfy the conditionsE1∪E2 = E,E1∩E2 = /0. With this distinction between unidirec-

tional and bidirectional edges, the analogous approximation for the von Neumann entropy

of a directed graph is,

Sd = 1− 1
|V| −

1

2|V|2

{

∑
(u,v)∈E

din
u

din
v dout2

u
+ ∑

(u,v)∈E2

1
dout

u dout
v

}

(5.1)

To simplify the expression according to the relative importance of the sets of uni-

directional and bidirectional edgesE1 andE2, the von Neumann entropy can be further

approximated to distinguish between weakly and strongly directed graphs. For weakly

directed graphs, i.e.,|E1| ≪ |E2| most of the edges are bidirectional, and we can ignore

the summation overE1 in Eq.(5.1), rewriting the remaining terms in curly brackets as

Swd = 1− 1
|V| −

1

2|V|2







∑
(u,v)∈E

din
u

dout
u

+
din

v
dout

v

dout
u din

v







(5.2)

For the strongly directed graph the unidirectional edges dominate, i.e.,|E1| ≫ |E2|,

there are few bidirectional edges, and we can ignore the summation overE2 in Eq.(5.1),

giving the approximate entropy as

Ssd = 1− 1
|V| −

1

2|V|2

{

∑
(u,v)∈E

din
u

din
v dout2

u

}

(5.3)

Thus, both the strongly and weakly directed graph entropiesdepend on the graph

size and the in-degree and out-degree statistics of edge connections [117].

5.2.2 Euler-Lagrange Equation

We would like to understand the dynamics of a network which evolves so as to minimise

the entropy change between different sequential epochs. Todo this we cast the evolution

process into a variational setting of the Euler-Lagrange equation, and consider the system

which optimises the functional

E(q) =
∫ t2

t1
G [t,q(t), q̇(t)]dt (5.4)
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wheret is time,q(t) is the variable of the system as a function of time, and ˙q(t) is the time

derivative ofq(t). Then, the Euler-Lagrange equation is given by

∂G
∂q

[t,q(t), q̇(t)]− d
dt

∂G
∂ q̇

[t,q(t), q̇(t)] = 0 (5.5)

Here we consider an evolution which changes just the edge connectivity structure

of the vertices and does not change the number of vertices in the graph. As a result, the

factors 1− 1
|V| and 1

|V|2 are constants and do not affect the solution of the Euler-Lagrange

equation.

5.2.3 Undirected Graphs

Suppose that two undirected graphsGt = (Vt ,Et) andGt+∆t = (Vt+∆t ,Et+∆t) represent

the structure of a time-varying complex network at two consecutive epochst and t +

∆t respectively. Then the change of approximate von Neumann entropy between two

sequential undirected graphs can be written a

∆S= S(Gt+∆t)−S(Gt) =
1

|V|2 ∑
(u,v)∈E,E′

du∆v+dv∆u+∆u∆v

du(du+∆u)dv(dv+∆v)
(5.6)

where∆u is the change of degree for nodeu, i.e.,∆u = dt+∆t
u −dt

u; ∆v is similarly defined

as the change of degree for nodev, i.e.,∆v = dt+∆t
v −dt

v. The entropy change is sensitive

to degree correlations for pairs of nodes connected by an edge.

We aim to study evolutions that minimise the entropy change associated with the

structure of the degree change correlations, i.e. minimisethe entropy change between

time intervals. In order to represent the change of entropy more accurately, here, we ap-

proximate the denominator in Eq.(5.6) to the quadratic termand apply the Euler-Lagrange

equationG = ∆Swith the entropy change to obtain

G [t,du(t),∆u(t),dv(t),∆v(t)] =
du∆v+dv∆u+∆u∆v

d2
ud2

v
(5.7)

For the vertex indexedu with degreedu, the Euler-Lagrange equation in Eq.(5.5)
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gives,

∂G
∂du

− d
dt

∂G
∂∆u

= 0 (5.8)

First, solving for the partial derivative of the degreedu, we find

∂G
∂du

=−du∆v+2dv∆u+2∆u∆v
d3

ud2
v

(5.9)

The detailed analysis above not only involves the terms to first order in the node degree

change but also those of second order, i.e. degree difference correlations of the form

∆u∆v.

Then computing the partial time derivative to the first orderdegree difference∆u, we

obtain

∂G
∂∆u

=
dv+∆v
d2

ud2
v

(5.10)

Substituting Eq.(5.9) and Eq.(5.10) into Eq.(5.8),

∂G
∂du

− d
dt

∂G
∂∆u

=
2∆2u−du∆̇u

d3
ud2

v
= 0 (5.11)

The solution for Euler-Lagrange equation in terms of node degree difference is

∆u =

(

du

dv

)2

∆v+C (5.12)

whereC is the constant term coming from the integral of the differential equation. This

leads to a detailed degree update equation which involves a square term ofdu/dv and plus

a constantC. Since it considers the effects of second order terms in the change of von

Neumann entropy, this solution is accurate in predicting the degree distribution

As a result, it gives a relationship between the degree changes of nodes connected

by an edge when solving the Euler-Lagrange equation which minimises the change in

entropy over time. Since we are concerned with understanding how network structure
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changes with time, the solution of the Euler-Lagrange equation provides a way of mod-

elling the effects of these structural changes on the degreedistribution across nodes in the

network. The update equation for the node degree is at time epochst andt +∆t is

dt+∆t
u = dt

u+ ∑
v∼u

∆̇v∆t = dt
u+ ∑

v∼u

(

∆u

∆t

)

v
∆t (5.13)

In other words by summing over all edges connected to nodeu, we increment the degree

at nodeu due to changes associated with the degree correlations on the set of connecting

edges. We then leverage the solution of the Lagrange equation to simplify the degree

update equation, to give the result

dt+∆t
u = dt

u+ ∑
v∼u

(

du

dv

)2

∆v+C (5.14)

This can be viewed as a type of diffusion process, which updates edge degree so as

to satisfy constraints on degree change correlation so as tominimise the entropy change

between time epochs. Specifically, the update of degree reflects the effects of correlated

degree changes between nodes connected by an edge.

5.2.4 Directed Graphs

Weakly Directed Graphs

In order to accommodate directed edges, we consider the nodeu and letdin
u be the number

of edges incident on vertexu or in-degree anddout
u be the number of edges leaving vertex

u or out-degree. The ratio of in-degree to out-degree isru =
din

u
dout

u
andrv =

din
v

dout
v

. We use

this ratio to re-write the directed graph entropies in termsof in-degree and in/out degree

ratio. As a result, the weakly directed graph entropy is

Swd = 1− 1
|V| −

1

2|V|2

{

∑
(u,v)∈E

ru(ru+ rv)

din
u din

v

}

(5.15)

For two weakly directed graphsGt
wd = (Vt,Et) and Gt+∆t

wd = (Vt+∆t,Et+∆t), repre-

senting the structure of a time-varying complex network at two consecutive epochst and
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t +∆t respectively, the change of von Neumann entropy is given by

∆Swd = S(Gt+∆t
wd )−S(Gt

wd) (5.16)

=− 1

2|V|2 ∑
(u,v)∈E,E′

{

(2ru+ rv)∆ru+ ru∆rv

din
u din

v
− ru(ru+ rv)(din

u ∆in
v +din

v ∆in
u )

(din
u din

v )
2

}

where∆in
u is the change of in-degree for nodeu, i.e., ∆in

u = din
u (t +∆t)− din

u (t); ∆in
v is

similarly defined as the change of in-degree for nodev, i.e.,∆in
v = din

v (t+∆t)−din
v (t). ∆ru

and∆rv are the change of degree ratio for the nodeu and nodev respectively.

The Euler-Lagrange equation forru gives

∂∆Swd

∂ ru
− d

dt
∂∆Swd

∂∆ru
=−2(2ru+ rv)(din

u ∆in
v +din

v ∆in
u )

(din
u din

v )2 = 0 (5.17)

and similarly forrv gives

∂∆Swd

∂ rv
− d

dt
∂∆Swd

∂∆rv
=−2ru(din

u ∆in
v +din

v ∆in
u )

(din
u din

v )2 = 0 (5.18)

Combining the Eq.(5.17) and Eq.(5.18), the relationship betweendin
u anddin

v is

∆in
u

din
u

=−∆in
v

din
v

(5.19)

Thus, for the weakly directed graph, there exists a linear correlation between∆in
u /din

u and

∆in
v /din

v .

Strongly Directed Graphs

For a strongly directed graph, the von Neumann entropy in Eq.(5.2) can be expressed in

terms of in-degree and in/out degree ratio as

Ssd= 1− 1
|V| −

1

2|V|2

{

∑
(u,v)∈E

r2
u

din
u din

v

}

(5.20)

For two strongly directed graphsGt
sd = (Vt ,Et) and Gt+∆t

sd = (Vt+∆t ,Et+∆t), the



5.2. VARIATIONAL PRINCIPLE ON GRAPHS 113

change of von Neumann entropy is

∆Ssd= S(Gt+∆t
sd )−S(Gt

sd) (5.21)

=− 1

2|V|2 ∑
(u,v)∈E,E′

din
u din

v ∆ru− ru(din
v ∆in

u +din
u ∆in

v )

(din
u din

v )
2

where∆in
u is the change of in-degree for nodeu; ∆in

v is similarly defined as the change of

in-degree for nodev.

Now we apply the Euler-Lagrange equation to the changes of entropy for strongly

directed graph. The partial derivative of the ratioru is

∂∆Ssd

∂ ru
=−din

u ∆in
v +din

v ∆in
u

(din
u din

v )
2 (5.22)

And the partial time derivative to the first order ratio difference∆ru is

∂∆Ssd

∂∆ru
=

2
din

u din
v

(5.23)

Then, the solution of the Euler-Lagrange equation forru can be computed as

∂∆Ssd

∂∆ru
− d

dt
∂∆Ssd

∂∆ru
=−2(din

u ∆in
v +din

v ∆in
u )

(din
u din

v )
2 = 0 (5.24)

Similarly, applying the Euler-Lagrange equation on the in-degreedin
u , we get

∂∆Ssd

∂din
u

− d
dt

∂∆Ssd

∂∆in
u

=
ru(din

u ∆in
v +din

v ∆in
u )+din

v (ru∆in
u −2din

u ∆ru)

(din
u )

3(din
v )

2 = 0 (5.25)

Substituting Eq.(5.24) into Eq.(5.25), the relationship betweendu andru can be obtained

∆in
u

din
u

= 2
∆ru

ru
(5.26)

Therefore, the Euler Lagrange dynamics leads to a linear relationship between∆
in
u

din
u
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and ∆ru
ru

for strongly directed graphs. This should be compared to theanalogous relation-

ship which arises from the incremental analysis of the ratioru =
din

u
dout

u
,

∆ru =
∆in

u

dout
u

− din
u ∆out

u

(dout
u )2 (5.27)

and as a result
∆ru

ru
=

∆in
u

din
u
− ∆out

u

dout
u

(5.28)

Combining with Eq.(5.26) gives the growth equation

∆out
u

dout
u

=
1
2

∆in
u

din
u

(5.29)

which is the out-degree grows at half the rate of the in-degree. In the next section we

explore empirically how well this relationship is observed.

5.3 Experimental Evaluation

5.3.1 Data Sets

Synthetic Time-evolving Networks: We generate three kinds of complex network models,

namely, a) Erd̋os-Rényi random graph model, b) Watts-Strogatz small-world model [110],

and c) Barabási-Albert scale-free model [12, 13]. These arecreated with the fixed number

of vertices with changing the parameters with the network structure evolution. For the

Erdős-Rényi random graph, the connection probability is monotonically increasing at the

constant rate of 0.005. Similarly, the link rewiring probability in the small-world model

[110] increases constantly between 0 to 1 as the network evolution. For the scale-free

model [13], one vertex is added to the connection at each timestep.

Drosophila Gene Regulatory Networks: The time-evolving network represents the

DNA microarrays expressed at different developmental stages from fertilization to adult-

hood during the life cycle of Drosophila melanogaster. The developmental process has

four stages, namely, the embryonic (1-30), larval (31-40),pupal (41-58) and adulthood

(59-66). The vertices in the network are gene identities which vary in number from 588
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to 4028 at different time epochs. This hence tests the ability of our method to deal with

networks of variable size. The gene expression patterns aremodelled as a binary Markov

random field [96] which allow the edge connections to be determined.

Financial Directed & Undirected Networks: This dataset consists of the daily prices

of 3,799 stocks traded continuously on the New York Stock Exchange over 6000 trading

days. The stock prices were obtained from the Yahoo! financial database [93]. A total

of 347 stock were selected from this set, for which historical stock prices from January

1986 to February 2011 are available. In our network representation, the nodes correspond

to stock and the edges indicate that there is a statistical similarity between the time series

associated with the stock closing prices [93].

To establish the edge-structure of the network we use a time window of 20 days

is to compute the cross-correlation coefficients between the time-series for each pair of

stock. Connections are created between a pair of stock if thecross-correlation exceeds an

empirically determined threshold. In our experiments, we set the correlation coefficient

threshold to the value toξ = 0.85. This yields a time-varying stock market network with

a fixed number of 347 nodes and varying edge structure for eachof 6,000 trading days.

The edges of the network, therefore, represent how the closing prices of the stock follow

each other.

5.3.2 Synthetic Networks

We first conduct experiments on the synthetic networks. We generate three kinds of time-

evolving network models from Erdős-Rényi random graphs, Watts-Strogatz small-world

networks, and Barabási-Albert scale-free networks to evaluate our theoretical analysis.

Using the degree update equation derived from the principleof minimum entropy

change and the Euler-Lagrange equation in Eq.(5.14), we turn our attention to synthetic

network data to characterise the structural variance in network models. Fig.5.1 shows the

visualisation of the time evolution for three complex networks. Since we fix the number

of vertices to 200, for the random graphs, the networks evolve from an initially sparse set

of edges with a low value of the connection probability. As the connection probability

increases, the structure of the random graph exhibits a phase transition to a state with a



5.3. EXPERIMENTAL EVALUATION 116

high density of connection and a giant connected component.A phase transition can also

be observed for the Watts-Strogatz small-world model, as the rewiring probability evolves

with time. Commencing from a regular ring lattice, the network structure evolves to a

small-world network with high rewiring probability, and then to an Erd̋os-Rényi random

graph structure with unit rewiring probability. For the scale-free network, the evolution

takes place via preferential attachment. The nodes with thehighest degree have the largest

probability to receive new links. This process produces several high degree nodes or hubs

in the network structure.

(a) Random Graphs

(b) Small-world Networks

(c) Scale-free Networks

Figure 5.1: Visualisation of dynamic network structures in time evolution for three
network models (Erd̋os-Rényi random graphs, Watts-Strogatz small-world networks,
Barabási-Albert scale-free networks)

Now we explore whether the Euler-Lagrange equation can capture structural proper-

ties in the time evolution. We use our model to predict the network structure at subsequent

time steps and simulate the degree distribution. We then to compare the predicted degree

distribution with which from the original time series. Fig.5.2 shows the simulation results

and degree distribution comparisons. The predicted degreedistribution resulting from
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Euler-Lagrange dynamics for the simulated networks fit quite well to the observed dis-

tributions. This provides empirical evidence that the Euler-Lagrange equation accurately

predicts the short-term evolution of the different networkmodels.

20 30 40 50 60 70 80
100

101

102

Orignial Network Degree
Simulated Network Degree (EL)

20 40 60 80 100 120 140
100

101

102

Orignial Network Degree
Simulated Network Degree (EL)

(a) Random Graph

(b) Small-world Network (c) Scale-free Network

Figure 5.2: Degree distribution of original networks and simulated networks for three
network models. The red line is for the originally observed networks and the blue
line is for the results simulated with the second order Euler-Lagrange analysis. (Erdős-
Rényi random graphs, Watts-Strogatz small-world networks, Barabási-Albert scale-free
networks).

To visualise how the different networks evolve over extended time intervals, we ap-

ply the principal component analysis of the degree distribution to project the degree dis-

tribution sequences for the networks into a low dimensionalspace. To commence, we

normalise the degree distributions so that the bin contentssum to unity, and then we con-

struct a long vector from the normalised bin contents. We then construct the covariance

matrix for the set of long vectors representing the observeddegree distributions for the

sample of networks. Finally, we apply principal component analysis to the sample co-

variance matrix for the sample of observed vectorised network degree distributions. We
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project both the observed and predicted distributions intothe principal component space

spanned by the leading three eigenvectors of the covariancematrix. In this way, we vi-

sualise the evolution of the observed and predicted degree distributions in the principal

component space. The results are shown in Fig.5.3. The red points are the original net-

work distributions and the blue ones are the predicted ones.Fig.5.3 clearly shows that for

all three network models the predicted network degree distribution evolves in a similar

manner to the observed network degree distribution.
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Figure 5.3: Visualisation of degree distribution in network evolutionwith princi-
pal component analysis (Erdős-Rényi random graphs, Watts-Strogatz small-world net-
works, Barabási-Albert scale-free networks).

Then, we explore the effect of length of time step on the performance of the degree

distribution prediction accuracy. Fig.5.4 shows the degree distribution error with a differ-

ent value of the time step for the three different network models. The prediction error is

the standard error over the normalised bin contents (the standard deviation of the differ-

ence in observed and predicted bin contents, divided by the square root of the number of
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bins). The longer the time intervals∆t, the higher the prediction error in the degree distri-

bution. For the random graph, the errors sharply increase around the step∆t = 20. This is

because, during the evolution, the random graph undergoes aphase transition from being

sparsely connected to containing a giant connected component. At large time intervals,

the predictions fail for the reason of the presence of this giant component.
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Figure 5.4: The degree distribution error with the different value of time steps for three
network models (Erd̋os-Rényi random graphs, Watts-Strogatz small-world networks,
Barabási-Albert scale-free networks). Degree predictionerror increases quickly after
time step∆t = 20.

Figure 5.5: Degree distribution of originally observed networks and simulated net-
works before/after Black Monday.

A similar behaviour can be observed in the sample of small-world networks. As

the time step interval increases, there are two instants in time separating three different
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Figure 5.6: Degree distribution of originally observed networks and simulated net-
works during Black Monday. The network becomes disconnected and most vertices are
disjoint, which results in the degree distribution following the power-law.

evolution models. The first event occurs around∆t = 15 and the second at∆t = 25.

The reason is that, during the evolution, the structure of network changes from a regular

lattice at the beginning to a small-world network, and then finally takes on a similar

structure to a random graph. These three epochs and the associated with the impact of

structural transition on the performance of degree distribution prediction. Finally, the

degree prediction error for the scale-free network grows slowly and smoothly with the

time step, since there are no significant structure transitions during the evolution. As

a result, the topology of the scale-free network remains stable. Overall, increasing the

value of the time interval results in a reduction of the prediction accuracy. Our new model

is capable of capturing the local trends arising from the structural changes during the

evolution.

5.3.3 Real-world Networks

For real-world network evaluation, we test our method on data provided by the Drosophila

genes and the New York Stock Exchange. We first evaluate the undirected networks

with the life cycle of Drosophila genes dataset. Then we construct the time sequential

undirected and directed networks which consist of the dailyprices of 3,799 stocks traded

continuously on the New York Stock Exchange over 6000 trading days.
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Figure 5.7: Comparison of entropy evolution in Drosophila gene regulatory networks
using von Neumann entropy and the simulation with the Euler-Lagrange model. The
four developmental phases are embryonic (red line), larval(black line), pupal (blue
line), and adulthood (green line).

Undirected Drosophila Gene Regulatory Networks

To commence, we represent the Drosophila gene regulatory networks as undirected

graphs evolving from the embryonic stage to the adulthood stage. The four phases of

the Drosophila life cycle in genes represent the structuralvariations in the gene regula-

tory network connections.

We compare the computed von Neumann entropy of the network with that computed

from the degree evolution predicted by the Euler-Lagrange model in Eq.(5.14). Fig.5.7

plots the two entropies for the entire life cycle of Drosophila development. The four

developmental phases, namely, embryonic (red line), larval (black line), pupal (blue line),

and adulthood (green line) are represented by different colours. The entropy predicted by

the Euler-Lagrange model exhibits a similar time series compared to that obtained with the

von Neumann entropy calculated from the observed degree distribution. In other words,

the degree distribution predicted by the Euler-Lagrange equation effectively captures the

changes in structure due to developmental changes in the gene regulatory networks.

Undirected Financial Networks

Now we simulate the behaviour of the financial market networks. Here we focus on how

the degree distribution evolves with time. We compare the simulated structure and the

observed network properties and provide a way to identify the consequence of structural
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variations in time-evolving networks. Our procedure is as follows. We first select a net-

work at a particular epoch from the time series and simulate its evolution using the degree

update equation in Eq.(5.14). Then we compare the degree distributions for the real net-

work sampled at a subsequent time and the simulation of the degree distribution after an

identical elapsed time. One of the most salient events in theNYSE is Black Monday.

This event occurred on October 19, 1987, during which the world stock markets crashed,

dropping in value in a very short time.
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Figure 5.8: The visualisation of network structure for three specific days of Black
Monday financial crisis. The red line corresponds to the entropy difference for the
original networks and the gray line is the Euler-Lagrange model.

We compare the prediction of consecutive time steps at different epochs, before/after

and during the Black Monday crisis. The results are shown in Fig.5.5 and Fig.5.6. The

most obvious feature is that the degree distribution for thenetworks before and after Black

Monday is quite different to that during the crisis period. During the Black Monday cri-

sis, a large number of vertices in the network is disconnected. This results in a power-law

degree distribution. However, for time epochs before and after Black Monday, the dis-

connected nodes recover their interactions to one another.This increases the number of

connections among vertices and causes departures from the power law distribution. This

phenomenon is also observed in the simulated networks usingour degree update equa-

tion. This is an important result that empirically shows thesimulated networks reflect the
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Figure 5.9: The von Neumann entropy difference in NYSE (1987-2011) for original fi-
nancial networks and simulated networks. Critical financial events, i.e., Black Monday,
Friday the 13th mini-crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks,
Downturn of 2002-2003, 2007 Financial Crisis, the Bankruptcy of Lehman Brothers
and the European Debt Crisis, are associated with large entropy differences.

structural properties of the original networks from which they are generated. Moreover,

our dynamic model can reproduce the topological changes that occur during the financial

crisis.

In Fig.5.8, we show network visualisations corresponding to three different instants

of time around the Black Monday crisis. In order to compare the simulated network struc-

tures resulting from the current model, we show the connected components (community

structures) at three-time epochs. As the network approaches the crisis, the network struc-

ture changes violently, and the community structure substantially vanishes. Only a single

highly connected cluster at the centre of the network persists. These features can be ob-

served in both the simulations and original time evolution of the networks. At the crisis

epoch, most stocks are disconnected, meaning that the prices evolve independently with-

out strong correlations to the remaining stock. During the crisis, the persistent connected

component exhibits a more homogeneous structure as shown inFig.5.8. Our network pre-

diction gives structures that more closely resemble the original network structure. After

the crisis, the network preserves most of its existing community structure and begins to

reconnect again. This result also agrees with findings in other literature concerning the

structural organisation of financial market networks [93].
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Finally, we explore the anomaly detection in dynamic networks. We validate our

framework by analysing the entropy differences between simulated networks and actual

stock market networks in the New York Stock Exchange (NYSE).In order to quantita-

tively investigate the relationship between a financial crisis and network entropy changes,

we analyse a set of well-documented crisis periods. These periods are marked along-

side the curve of the first order entropy difference in Fig.5.9, for all business days in our

dataset.

The literature in the financial domain usually identifies thepotential crashes using ei-

ther a) the trading volumes [31], b) the variation of expected returns [11] or c) Spearman’s

rank correlation [1]. Recently, machine learning techniques, such as conditional random

fields, support vector machines and artificial neural networks, have been used to identify

trading patterns using various criteria on specific financial datasets [32]. Unfortunately,

the complexity of these data-driven methods is generally high due to the combination of

multiple techniques. By contrast, our entropy based analysis is easily effected using our

dynamic model which clearly indicates the financial crises.

Directed Financial Networks

Next, we extend our study to directed graph representationsof the New York Stock Ex-

change data. To extract directed graphs from the stock timesseries data, we compute the

correlation with a time lag. We measure the correlation over30-day windows separated by

a time and then select the lag that results in the maximum correlation. As with undirected

graphs we threshold the correlation to establish edges representing interactions between

stock. We determine the directionality of the edges using the sign of the lag. All the

resulting edges are unidirectional. We, therefore, explore how the time evolution follows

our model for strongly directed graphs.

First, we investigate how the distribution ofru evolves with the time. Fig.5.10 shows

the distribution at three different time epochs, i.e., before, during and after Black Mon-

day. Here, the parameterru reveals the relationship between in-degree and out-degreefor

each vertex. As shown in Fig.5.10, during the Black Monday, the cumulative distribution

becomes concentrated over a small range of values around unity. This reflects the fact that
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Figure 5.10: The cumulative distribution of parameterru = din
u /dout

u in directed finan-
cial networks before/during/after the Black Monday. The distribution shrinks during
the Black Monday crisis.

a substantial fraction of vertices become isolated during the Black Monday, without the

out-edges. The remaining connections exist with a balance between in-degree and out-

degree. After Black Monday, the network structure begins torecover as the cumulative

distribution widens to return to its previous shape.

From the analysis leading to Eq.(5.19), there is a linear relationship between the

quantities ru
∆ru

and din
u

∆in
u

. In order to test whether this relationship holds in practice, Fig.5.12

shows scatter plots ofru
∆ru

versusdin
u

∆in
u

for epochs before, during and after the Black Monday

crisis. This provides evidence that there exists a linear relationship between the fractional

in-degree change and the degree ratio change. By fitting a linear regression to the se-

quence of scatter plots for the time series, we explore how the slope parameters of the

regression line and the regression error evolve with time. Fig.5.13 shows the linear re-

gression errors, as well as the fitted slope, during the period around Black Monday. Here

we provide the regression error, for a) the flexible fitting ofthe slope and b) the regression

for a fixed value of the slope. In the time interval around Black Monday, both the linear

regression parameter and its error changes abruptly. This is because there are substantial

structural differences in the network evolution. During the Black Monday, many nodes

become disconnected and the connected components of vertices become small and frag-

mented. Only a small number of community structures remain highly inter-connected.

During Black Monday itself, although the slope of the regression line is zero, the scatter

about the line is relatively small.
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Figure 5.11: The linear regression error for the whole sequential financial data in
NYSE (1987-2011). Critical financial events, i.e., Black Monday, Friday the 13th mini-
crash, Early 1990s Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002-
2003, 2007 Financial Crisis, the Bankruptcy of Lehman Brothers and the European
Debt Crisis, are associated with significant error peaks.

-20 -15 -10 -5 0 5 10 15 20

d
u

in
 / ∆

u

-20

-15

-10

-5

0

5

10

15

20

r 
/ 
∆

r

-20 -15 -10 -5 0 5 10 15 20

d
u

in
 / ∆

u

-20

-15

-10

-5

0

5

10

15

20

r 
/ 
∆

r

-20 -15 -10 -5 0 5 10 15 20

d
u

in
 / ∆

u

-100

-80

-60

-40

-20

0

20

40

60

80

100

r 
/ 
∆

r

-20 -15 -10 -5 0 5 10 15 20

d
u

in
 / ∆

u

-20

-15

-10

-5

0

5

10

15

20

r 
/ 
∆

r

-20 -15 -10 -5 0 5 10 15 20

d
u

in
 / ∆

u

-20

-15

-10

-5

0

5

10

15

20

r 
/ 
∆

r

(a) (b) (c) (d) (e)

Figure 5.12: The scatter plots ofdin
u /∆in

u versusru/∆ru during the epoch of Black
Monday (a)-(e). Before Black Monday: (a) October 1, 1987; (b) October 10, 1987.
During Black Monday: (c) October 19, 1987. After Black Monday: (d) October 29,
1987; (e) November 10, 1987

Furthermore, the linear regression error sequence for the entire directed financial

network time series is shown in Fig.5.11. The peaks in the regression error correspond

closely to the occurrence of the financial crisis. Our analysis in the directed graph is

effective and efficient to detect the abnormal structure in dynamic networks. The most

striking observation is that the largest peaks of regression can be used to identify the

corresponding financial crisis. This shows that the theoretical analysis of minimising the

change of directed entropy is sensitive to significant structural changes in networks. The

financial crises are characterised by significant entropy changes, whereas outside these

critical periods remains stable.
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Figure 5.13: The linear regression error and standard deviation during Black Monday
(June 1987 - April 1988). The blue diamond curve is the error bar with the flexible slope
in the regression. Red circle line is the error bar with the fixed slope in the regression.
Black star curve represents the value of the slope.

5.4 Summary

In this chapter, we explore how to model the time evolution ofnetworks using a variational

principle. We use the Euler-Lagrange equations to model theevolution of undirected

and directed networks that undergo changes in structure by minimising the change in

von Neumann entropy. This treatment leads to the model of howthe node degree varies

with time and captures the effects of degree change correlations introduced by the edge-

structure of the network. In other words, because of these correlations, the variety of one

degree determines the translation in connected nodes.

We conduct the experiments on a time-series of networks representing life cycle of

Drosophila and the stock trades on the NYSE. Our model is capable of predicting how

the degree distribution evolves with time. Moreover, it canalso be used to detect abrupt

changes in network structure.



Chapter 6

fMRI Network Application

The neurobiology of Alzheimer’s disease (AD) has been extensively studied by applying

network analysis techniques to activation patterns in fMRIimages. However, the struc-

ture of the directed networks representing the activation patterns, and their differences in

health and Alzheimer’s people remain poorly understood. Inthis chapter, we aim to iden-

tify the differences in fMRI activation network structure for patients with AD, late mild

cognitive impairment (LMCI) and early mild cognitive impairment (EMCI). We first use a

directed graph theoretical approach combined with entropic measurements to distinguish

subjects falling into these three categories and the normalhealthy control (HC) group.

Then we present a novel method for characterising networks using the entropy associated

with bosonic particles in thermal equilibrium with a heat bath. To this end, we construct

a Jensen-Shannon kernel using the Bose-Einstein entropy for a sample of networks and

then apply kernel principal components analysis (kPCA) to map graphs into low dimen-

sional feature space. We apply the resulting method to classify fMRI activation networks

from patients with suspected Alzheimer’s disease.

6.1 Introduction

Functional magnetic resonance imaging (fMRI) provides a sophisticated means of study-

ing the neuropathophysiology associated with Alzheimer’sdisease (AD) [100]. Specifi-

cally, the blood oxygen level-dependent (BOLD) signal in fMRI indicates the activation
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potential of different brain regions, and neuronal activity between the various brain re-

gions can be determined by measuring the correlation between activation signals. The

resulting network representation of region activity has proved useful in understanding

the functional working of the brain [9]. Functional neuroimaging has also proved useful

in understanding Alzheimer’s disease (AD) via the analysisof intrinsic brain connec-

tivity [89]. Abnormal brain function in AD is characterisedby progressive impairment

of episodic memory and other cognitive domains, resulting in dementia and, ultimately,

death [87]. Although there is converging evidence about theidentity of the affected re-

gions in fMRI, it is not clear how this abnormality affects the functional organisation of

the whole brain.

Tools from complex network analysis provide a convenient approach for understand-

ing the functional association of different regions in the brain [89]. The approach is to

characterise the topological structures present in the brain and to quantify the functional

interaction between brain regions, using the mathematicalstudy of networks and graph

theory. Graph theory offers an attractive route since it provides effective tools for char-

acterising network structures together with their intrinsic complexity. This approach has

led to the design of several practical methods for characterising the global and local struc-

ture of undirected graphs [117]. Features based on the global and local measures of

connectivity are widely used in functional brain analysis [66]. By comparing the struc-

tural and functional network topologies between differentpopulations of subjects, graph

theory provides meaningful and easily computable measurements to reveal connectivity

abnormalities in both neurological and psychiatric disorders [87].

Furthermore, kernel-methods on graphs provide emerging and powerful set of tools

to determine the class-structure of different graphs. There are many examples in the liter-

ature where graph kernels have successfully exploited topological information, and these

include the heat diffusion kernel [68], the random walk kernel [65], and the shortest path

kernel [27]. Once a graph kernel is to hand, it provides a convenient starting point from

which machine learning techniques can be applied to learn potentially complex class-

structure [10].
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Unfortunately, there is relatively little literature aimed at studying structural network

features using directed graphs and entropic kernel method.Although the success of exist-

ing graph kernels, one of the main challenges that remain open is to capture the variations

present in different classes of graph in a probabilistic manner. The vast majority of tech-

niques suggested by graph theory pertain to undirected rather than directed graphs. How-

ever, directed graphs are a more natural representation of brain structure, since they allow

the temporal causality of activation signals for differentanatomical structures in the brain.

Moreover, Granger causality provides a powerful tool that can be used to investigate the

direction of information flow between different brain regions [66]. When combined with

machine learning algorithms, classification exhibited from directed graphs provides an ef-

fective way of detecting functional regions associated with Alzheimer’s disease [66]. By

explicitly defining anatomical and functional connectionsin a directed manner between

brain regions, fMRI data may be analysed in a more detailed way and used to identify the

different stages of neurodegenerative diseases [87, 66].

Recently, statistical mechanics and network entropy have been used to understand

more deeply variations in network structure. One of the successes here has been to use

quantum spin statistics to describe the geometries of complex networks [23]. For exam-

ple, using a physical analogy based on a Bose gas, the phenomenon of Bose-Einstein

condensation has been applied to study the salient aspects network structure [21]. This

has been extended to understand processes such as supersymmetry in networks [20]. Al-

though these types of analogy are useful and provide powerful tools for network analysis,

they are not easily accommodated into the kernel-based approach to machine learning.

This chapter is motivated by the need to fill this important gap in the literature, and

to establish effective methods for measuring the structural properties of directed graphs

representing inter-regional casual networks extracted from fMRI brain data. In particular,

we develop a link between statistical mechanics and kernel methods to define information

theoretic kernels in terms of network entropy.

In order to characterise the functional organisation of thebrain, firstly, our approach
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uses as its starting point the von Neumann entropy for directed graphs. It provides a nat-

ural way of capturing the flow of information across a directed network, based on the

asymmetry of edges entering and exiting its nodes. We aim to use the directed network

entropy to develop graph analytical methods to measure the degree of functional connec-

tivity in brain networks. Secondly, we explore whether the physical heat bath analogy

and Bose-Einstein statistics can be used to furnish the required entropy, and implicitly the

underlying probability distribution. We define information theoretic kernels in terms of

network entropy to distinguish Alzheimer’s disease subjects from normal healthy control

population.

The heat bath analogy and Bose-Einstein statistics are proceed as follows. We

commence from a physical analogy in which the normalised Laplacian plays the role

as Hamiltonian (energy operator) and the normalised Laplacian eigenvalues are energy

states. These states are occupied by bosonic (integer spin)particles and the resulting

system is in thermodynamic equilibrium with a heat-bath, which is characterised by tem-

perature. The bosons are indistinguishable, and each energy level can accommodate an

unlimited number of particles. The effect of the heat bath isto thermalise or randomise

the population of energy levels. The occupation of the energy states is therefore governed

by Bose-Einstein statistics and can be characterised usingan appropriate partition func-

tion. The partition function is the effective cumulative probability distribution function

over the energy states in the network when the system of particles is in thermodynamic

equilibrium with the heat bath. From the partition function, we can compute the entropy

of the system of particles, and hence compute the Jensen-Shannon kernel. Once the ker-

nel matrix is to hand, we use kernel principal components analysis (kPCA) [91] to embed

the graphs into a low dimensional feature space where classification is performed.

We demonstrate that the resulting techniques can be used to distinguish the fMRI

data from healthy controls and AD objects. The AD subjects exhibit significantly lower

regional connectivity and exhibit disrupted the global functional organisation when com-

pared to healthy controls. Moreover, the graph kernel in Bose-Einstein statistics combined

with the linear discriminant analysis is applied to brain network data for two groups of
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subjects with early mild cognitive impairment (EMCI) and late mild cognitive impair-

ment (LMCI). Our results indicate that in-degree and out-degree statistics for the nodes

together with their associated entropy may be useful as a graph-based indicator to distin-

guish Alzheimer’s disease subjects from normal healthy control population.

6.2 Entropy Analysis in fMRI Networks

In this section, we give the preliminaries on the directed graph representation in en-

tropy analysis. We provide the concept of approximate von Neuman entropy for directed

graphs. We then introduce the idea of edge entropy assortativity.

6.2.1 Approximate von Neumann Entropy for Directed Graphs

For an undirected graph, as shown in Chapter 5, the von Neumann entropy [81] computed

from the normalised Laplacian spectrum has been proved to beeffective for network

characterisation. In fact, Hanet al.[59] have shown how to approximate the calculation

of von Neumann entropy in terms of simple degree statistics.

Their approximation allows the cubic complexity of computing the von Neumann

entropy from the Laplacian spectrum, to be reduced to one of quadratic complexity using

simple edge degree statistics in Eq.(4.4). This expressionfor the von Neumann entropy

has been extended to characterise the structural properties of networks. It has extremal

values for the cycles and fully connected graphs. Yeet al. [117] have extended this

result to directed graphs by distinguishing between the in-degree and out-degree of nodes,

giving the following expression for the entropy

Sd = 1− 1
|V| −

1
2|V|2 ∑

(u,v)∈E1

din
u

din
v dout2

u

+ ∑
(u,v)∈E2

1
dout

u dout
v

(6.1)

where the edge setE is partitioned into two disjoint subsetsE1 andE2, which respectively

contain the unidirectional and directional edges.

The two subsetsE1 andE2 satisfy the conditions thatE1= {(u,v)|(u,v)∈E∩(v,u) /∈

E}, E2 = {(u,v)|(u,v) ∈ E∩ (v,u) ∈ E}. E1∪E2 = E, E1∩E2 = /0. If most of the edges

in the graph are unidirectional, i.e.,|E1| ≫ |E2|, then the graph is said to be strongly
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directed. In this case we can ignore the entropy associated with the summation overE2,

giving the approximate entropy for strongly directed graphs as

Ssd = 1− 1
|V| −

1
2|V|2 ∑

(u,v)∈E

din
u

dout
u

· 1
din

v dout
u

(6.2)

There are thus two factors determining the entropy. The firstis the ratio of in-degree to

out-degree for the node starts atu in the directed edge, i.e.ru =
din

u
dout

u
; while the second is

the directed version of the edge entropy, i.e.1dout
u din

v
. The former weights the contributions

of the entropy associated with the directed edges exiting nodeu. The contributions to the

entropy are thus large if the ratioru is small, and directed edge connects nodes with large

both out-degree and in-degree.

6.3 Entropic Edge Assortativity for Directed Graphs

The assortativity is the tendency of nodes to connect to those of similar degree. This

concept can be extended to directed graphs if we measure the tendency of nodes to connect

to those nodes of similar in-degree and out-degree. Fosteret al. [51] define the directed

assortativity as

r(α,β ) =
1
|E|

∑(u,v)∈E[(d
α
u − d̄α

u )(d
β
v − ¯

dβ
v )]

σ ασ β (6.3)

whereα,β ∈ {in,out} is the incoming and outgoing direction for a directed edge.d̄α
u =

|E|−1∑(u,v)∈E dα
u andσ α =

√

|E|−1∑(u,v)∈E(dα
u − d̄α

u )
2. The similar definitions are for

¯
dβ

v andσ β .

Ye et al.[114] adopts a different approach to defining degree assortativity for directed

graphs based on von Neumann entropy decomposition. The method is based on the obser-

vation that edges associated with high degree nodes have large entropy and preferentially

attach to clusters in a graph. The entropic assortativity measurement provides a novel

way to analyse the graph structure. For instance, based on the approximation for the von

Neumann entropy for directed graphSd, the coefficient of directed edge assortativity is

given by [114]
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R=
∑(u,v)∈E[(S

u
uv− S̄u

uv)(S
v
uv− S̄v

uv)]

σS
u σS

v
(6.4)

whereSu
uv associate the entropy of all the outgoing edges from vertexu, andSv

uv are all

the incoming edges of vertexv.

6.4 Experiments and Evaluations

In this section, we describe the application of the above methods to the analysis of inter-

regional connectivity structure for fMRI activation networks for normal and Alzheimer’s

patients. We first examine the differences in degree distribution for the four groups of

subjects. Then we apply the entropy-based analysis to distinguish Early Mild Cognitive

Impairment(EMCI) and Late Mild Cognitive Impairment (LMCI). Finally, we explore

whether we can classify the subjects on the basis of similarity of the activation networks

from the fMRI scans. To do this, we embed the network similarity data into a vector-space

by applying kernel-PCA to the Jensen-Shannon kernel. To simplify the calculation, the

Boltzmann constant is set to unity through the experiment.

6.4.1 Dataset

The fMRI data comes from the ADNI initiative [85]. Each imagevolume is acquired

every two seconds with Blood-Oxygenation-Level-Dependent(BOLD) signals. The fMRI

voxels here have been aggregated into larger regions of interest (ROIs). The different

ROI’s correspond to different anatomical regions of the brain and are assigned anatomical

labels to distinguish them. There are 96 anatomical regionsin each fMRI image. The

correlation between the average time series in different ROIs represents the degree of

functional connectivity between regions which are driven by neural activities [104].

A directed graph with 96 nodes is constructed for each patient based on the magni-

tude of the correlation and the sign of the time-lag between the time-series for different

anatomical regions. To model causal interaction among ROIs, the directed graph uses the

time-lagged cross-correlation coefficients for the average time series for pairs of ROIs.

We detect directed edges by finding the time-lag that resultsin the maximum value of the
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cross-correlation coefficient. The direction of the edge depends on whether the time lag is

positive or negative. We then apply a threshold to the maximum values to retain directed

edges with the top 40% of correlation coefficients. This yields a binary directed adjacency

matrix for each subject, where the diagonal elements are setto zero. Those ROIs which

have missing time series data are discarded.

Subjects fall into four categories according to their degree of disease severity. The

classes are full Alzheimer’s (AD), Late Mild Cognitive Impairment (LMCI), Early Mild

Cognitive Impairment (EMCI) and Normal Healthy Controls (HC). The LMCI subjects

are more severely affected and close to full Alzheimer’s, while the EMCI subjects are

closer to the healthy control group (Normal). We have fMRI data for 30 AD subjects, 34

LMCI subjects, 47 EMCI subjects, and 38 normal healthy control subjects.

6.4.2 Directed Degree Classification

We first investigate the in-degree and out-degree distribution of the data by showing a

scatter plot with in-degree versus out-degree for each directed edge. In order to extract

potential structural difference, the distribution of points in the scatter plot is analysed

using a general linear model. Fig.6.1 and Fig.6.2 show the scatter plots of in-degree

versus out-degree, comparing the first AD vs. Normal and secondly EMCI vs. LMCI

respectively. The obvious difference is that normal subjects exhibit a high degree of

interregional connection compared to Alzheimer’s subjects. A similar effect is shown

by Early and Late detection groups. Table 6.1 shows the coefficients of a linear model

with 95% confidence bounds and root mean square error.

The results of fitting the linear model show that the in-degree and out-degree distri-

butions for the nodes in the AD and LMCI groups of subjects have a greater slope than

those of the Normal and Early groups. This implies that thereis a greater imbalance in in-

degree and out-degree in the Alzheimer’s and late detectiongroups. In other words, the

nodes in the fMRI inter-regional connectivity graphs for these two groups tend to have

larger in-degree than out-degree. Moreover, the small value of RMSE in these two groups

reveals that for Alzheimer’s subjects the scatter about theregression lines is smallest. By

contrast, for the normal and early control subjects the scatter is significantly higher. This
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Figure 6.1: The in-degree distribution for edges in the directed graphsin Normal
Healthy Control and Alzheimer’s groups. The blue stars represent the edges of nor-
mal patients’ graphs which occupy the high degree region with large variance. The red
cycles indicate the AD patients’ graphs with narrow and low degree occupation.

Table 6.1: Liner polynomial model to fit the edge in-degree/out-degreedistribution

Groups Coef (α) CI (α) Coef (β ) CI (β ) R2 RMSE
AD 0.8582 [0.8406, 0.8758] 5.445 [4.719, 6.171] 0.7604 7.2444
Normal 0.6103 [0.5848, 0.6357] 22.45 [20.94, 23.96] 0.377111.3445
EMCI 0.7235 [0.7034, 0.7436] 14.6 [13.5, 15.7] 0.5253 10.3959
LMCI 0.9236 [0.9098, 0.9375] 2.933 [2.356, 3.509] 0.8395 6.4426

underlines the imbalance in in-degree for the subjects belonging to the diseased groups.

We can explore this asymmetry of in-degree and out-degree inmore detail using Ye’s

entropy assortativity measure [114]. This gauges the extent to which nodes to connect to

others with similar in-degree or out-degree [66]. To represent the structural difference

regarding the entropy associated with degree of each node, we plot the histogram of edge

entropy assortativity in Fig.6.3 and Fig.6.4. It shows the difference in entropy of the

directed edges for subjects in AD vs. Normal, and EMCI vs. LMCI. By comparing the

directed edges in the AD and normal groups, we conclude that the edges in the directed

graphs for Alzheimer’s subjects tend to have a higher value of entropy, and this reveals

the structure is weakly connected with a lower average in outto in degree ratio. A similar

result is shown in the EMCI and LMCI subject groups. For late Alzheimer’s subjects,

the shift in entropy to the right represents the weak degree connection in the nodes. This

clearly reveals the loss of interregional connection for directed edges in Alzheimer’s.
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Figure 6.2: The in-degree/out-degree distribution for edges in the directed graphs
in Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment
(LMCI).

Finally, the in-degree and out-degree of nodes are used as the features to distinguish

the different group of subjects. For each edge, we constructfour-dimensional feature vec-

tors with two nodes and in and out degree measurements on eachnode. So the graph can

be represented by these directed edges associated with four-dimensional feature vectors.

We perform the linear discriminant analysis (LDA) on the Alzheimer’s(AD) and Normal

healthy control groups as the training process to find the decision boundary. Then the

LDA model is applied to the EMCI and LMCI groups to classify patients. We compare

the results and the labels to get classification accuracy.

Table 6.2 shows the classification accuracy of linear discriminant analysis (LDA).

The directed graphs for the AD and Normal subjects are used asthe training data to find

the decision boundary. The performance of the resulting LDAclassier is high with an

accuracy of 87.87% when computed using 10-fold cross-validation. We randomly divide

the AD and Normal subjects into 10 disjoint subsets of equal size. Remove one subset,

train the LDA model using the other nine subsets. This process is repeated by removing

each of the ten subsets once at a time and then average the classification accuracy. In order

to evaluate the performance of classification, we provide results for sensitivity and speci-

ficity for LDA classifier. The sensitivity indicates the percentage of Alzheimer’s people
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who are correctly identified. It reaches 88.59% which represents the high percentage of

correctly classified. In addition, the specificity shows thetrue negative that is the healthy

people correctly identified as healthy. The accuracy of 87.10% reveals that most normal

healthy people are correctly identified in the Normal group.Similarly to the LDA in AD

and Normal classier, for the discrimination of subjects belonging to the EMCI and LMCI

groups, we obtain a classification accuracy of 80.47%. Although this result is accept-

able, the sensitivity is reduced to 75.85% indicating some percentage of patients are not

correctly classified in LMCI groups.
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Figure 6.3: Histogram of directed edge entropy association. Normal exhibits low en-
tropy association for each edge compared to the late and AD groups which the distribu-
tions shift to high entropy region.
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Figure 6.4: Histogram of directed edge entropy association between Early Mild Cog-
nitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI).
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Table 6.2: The classification accuracy with linear discriminant analysis (LDA) for
training data (AD/Normal) and testing data (EMCI/LMCI) (in%)

LDA Accuracy Sensitivity Specificity Positive Predictivity
AD/Normal 87.87±0.58 88.59 87.10 88.00
EMCI/LMCI 80.47±0.41 75.85 86.18 87.14

6.4.3 Entropic Kernel Classification

Now we describe the application of the quantum statistical methods to investigate the

structural dissimilarity of the fMRI activation networks,which is used to distinguish

different groups of patients. We compute the Jensen-Shannon kernel matrix using the

Bose-Einstein entropy and compare the performance obtained from von Neumann en-

tropy. Given the spectra of a graph and the total number of particles, the chemical po-

tential can be derived from Eq.(4.18), which is used to calculate the entropy. Fig.6.5 and
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Figure 6.5: Kernel PCA performance of Jensen-Shannon Divergence in Bose-Einstein
entropy. Temperatureβ = 10 and particle numberN = 1.

Fig.6.6 show the results of mapping the graphs into a 3-dimensional feature space ob-

tained by kernel principal components analysis (kPCA). We use first three eigenvectors to

show the cluster of each group. The common feature is that both the Bose-Einstein and

von Neumann entropies separate the four groups of subjects.In the case of Bose-Einstein

statistics, the clusters are better separated than those obtained with von Neumann entropy.
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To place our analysis on a more quantitative footing, we apply Fisher’s linear dis-

criminant analysis to classify graphs with the kernel features and compute the classifica-

tion accuracy for the different groups of subjects. Table 6.3 summaries the results of clas-

sification accuracy obtained by Jensen-Shannon kernels computed from the two entropies.

Compared to the accuracy with von Neumann entropy, that obtained with Bose-Einstein

entropy exhibits a higher classification accuracy. The Bose-Einstein entropy outperforms

the von Neumann entropy on three classes of data presented bya margin of about 10%.

This reveals that the proposed graph kernel computed with Jensen-Shannon Divergence

and Bose-Einstein entropy improve the classification performance for the fMRI data.
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Figure 6.6: Kernel PCA performance of Jensen-Shannon Divergence in vonNeumann
entropy.

Table 6.3: Classification Accuracy for Entropy from Bose-Einstein Statistics and von
Neumann Entropy

Classification Accuracy Alzheimer LMCI EMCI Normal
Bose-Einstein Statistics 93.33% (28/30) 100% (34/34) 89.36% (42/47) 92.11% (35/38)
von-Neumann Entropy 93.33% (28/30) 88.24% (30/34) 82.98% (39/47) 86.84% (33/38)

The main parameters of the Bose-Einstein entropy are the temperature and number

of particles in the system. Here, we discuss the effects of the temperature on the energy

level occupation statistics and hence upon the entropic kernel performance at low and high

temperatures. We first focus on the average number of particles given the temperatureβ

at each energy levelεi from Eq.(4.17). In Fig.6.7, we plot the occupation number for the

different normalised Laplacian energy states with different values of temperature.
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Figure 6.7: Average occupation number for energy state set different temperature for
Bose-Einstein statistics.

As shown in this figure, with fixed temperature and increasingenergy, the number

of particles in each energy level decreases. As a result, thelower energy levels are occu-

pied with the largest number of particles. Furthermore, as the temperature decreases, the

number of particles in each energy state decreases. It should be noted that the number of

particles in each state is determined by two factors, namelya) the Bose-Einstein occupa-

tion statistics, and b) the number of particles as determined by the chemical potential.
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Figure 6.8: Classification accuracy changes with temperature in Jensen-Shannon Di-
vergence with entropy from Bose-Einstein statistics.

In order to evaluate how temperature affects the performance of the Jensen-Shannon

kernel, we compare its behaviour at low and high temperature. For the fMRI brain acti-
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Figure 6.9: Kernel PCA performance of Jensen-Shannon Divergence with entropy
from Bose-Einstein statistics at different values of temperature (β = 1, N = 5).

vation data, we setβ = 1 andβ = 0.1, leaving the total particle numberN = 5 unchanged.

Compared to the low temperature case (β = 10) in Fig.6.5, increasing temperature makes

the four classes of graphs more densely clustered in featurespace, shown in Fig.6.9 and

Fig.6.10. This is term which reduces the performance of kernel PCA. Fig.6.8 shows the

performance of classification changes with temperature. Asthe temperature increases, the

occupation number at each energy level increases and particles become to propagate in

the high energy states. This will rise up the entropy and its variance in each group, which

reduces the performance of classification accuracy.
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Figure 6.10: Kernel PCA performance of Jensen-Shannon Divergence with entropy
from Bose-Einstein statistics at different values of temperature (β = 0.1,N = 5).
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6.4.4 Identifying Salient Nodes for Disease Classification

Identifying diseased regions in the brain is also an important study in Alzheimer’s analy-

sis. Several studies have shown that in anatomical structures the corresponding ROIs are

important for understanding brain disorders [100, 89]. Here, we compute the difference

of out-degree and in-degree in our study and investigate themethod for identification of

the disease nodes in patients with Alzheimer’s.

Figure 6.11: Histogram of degree difference between Alzheimer’s (AD) and Normal
Healthy Controls (HC) groups. The normal and early patientsexhibit a wide bound
range compared to the late and AD groups which the distribution narrows around zero.

Figure 6.12: Histogram of degree difference between Early Mild Cognitive Impairment
(EMCI) and Late Mild Cognitive Impairment (LMCI).

We first compute the histogram of degree imbalance, i.e. out-degree minus in-degree

for each node. Fig.6.11 and Fig.6.12 compare histograms obtained for AD and HC, and
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Figure 6.13: Directed edge entropy difference between Alzheimer’s (AD)and Normal
Healthy Controls (HC) groups. The significant changes of degree ratio in each nodes
associate with the similar pattern in edge entropy plot, which illustrates the diseased
area in the brain.

for EMCI and LMCI. The obvious feature is that the directed graphs for HC (normal) and

EMCI (early development) groups give a much broader range ofdegree difference com-

pared to that for the AD (fully developed disease) and LMCI (late development) groups.

In other words, for subjects with fully developed AD, there is a loss of connection between

brain regions and gives rise to a narrowing of the distribution of degree difference.

We now plot the difference in directed edge entropy between corresponding regions

(nodes) in the directed graphs for the AD and HC groups. We finda similar feature

pattern of the degree difference in both plots as shown in Fig.6.13 and Fig.6.14. The

entropic measurements associated with degree difference in the brain areas, such as the

Temporal Gyrus, Parahippocampal Gyrus, Operculum Cortex and Lingual Gyrus, suggest

that subjects with AD experience loss of interconnection intheir brain network during the

progression of the disease.

As listed in Table 6.4, top ten anatomical regions with the largest entropy differences

for subjects with full AD are right Parahippocampal Gyrus, left Inferior Temporal Gyrus,

left Paracingulate Gyrus, right Temporal Fusiform Cortex,right Heschl’s Gyrus, left Pari-

etal Operculum Cortex, right Paracingulate Gyrus, left Temporal Fusiform Cortex, left

Central Opercular Cortex and left Inferior Frontal Gyrus. This result is consistent with
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the previous study [66, 87], which suggested that the middletemporal gyrus is an im-

portant region in AD pathology [89]. The parahippocampal gyrus has consistently been

reported as being an affected region in EMCI and AD [51]. The loss of connection be-

tween these brain regions results in significant functionalimpairment between healthy

subjects and patients with AD.
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Figure 6.14: The ratio of out-degree and in-degree difference corresponding to each
ROI in two groups of AD and Normal patients.

Table 6.4: Top 10 ROIs with the significant difference between groups ofAD and
Normal. These ROIs are extracted from the absolute value of out-degree to in-degree
ratio.

Graph measure ROI Number Corresponding area in brain

Out-degree/In-
degree Ratio
Difference

83 Right Parahippocampal Gyrus
14 Left Inferior Temporal Gyrus
27 Left Paracingulate Gyrus
65 Right Temporal Fusiform Cortex
93 Right Heschl’s Gyrus
43 Left Parietal Operculum Cortex
75 Right Paracingulate Gyrus
38 Left Temporal Fusiform Cortex
42 Left Central Opercular Cortex
5 Left Inferior Frontal Gyrus

We now repeat our LDA analysis using just the salient regionslisted in Table 6.4,

since it is the impairment of connections to these anatomical structures that appear to de-

termine the onset of AD. We perform LDA on the 4 vectors representing the pairs of listed

anatomical regions. The classification accuracy is shown inTable 6.5. In comparison
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Table 6.5: LDA classification accuracy with top 20 selected ROIs to distinguish
AD/Normal and EMCI/LMCL (in %)

LDA Accuracy Sensitivity Specificity Positive Predictivity
AD/Normal 90.52±0.67 91.36 89.61 91.20
EMCI/LMCI 86.20±0.81 83.90 90.12 89.26

to the previous results in Table 6.3, the accuracy increasesby about 3% in AD/Normal

groups and 6% in the EMCI/LMCL groups. All other performances are also improved

with these selected degree features.

(a) von Neumann Edge Entropy

(c) Bose-Einstein Edge Entropy (d) Fermi-Dirac Edge Entropy

(b) Maxwell-Boltzmann Edge Entropy

Figure 6.15: Edge entropy distribution of fMRI networks with (a) von Neumann en-
tropy, (b) Maxwell-Boltzmann statistics, (c) Bose-Einstein statistics and (d) Fermi-
Dirac statistics. Two groups of patients, Alzheimer’s disease (AD) and healthy control
(Normal).

Then, we apply the fMRI brain networks to further compare theedge entropy dis-

tribution with these statistical methods. Fig.6.15 shows the difference of edge entropy

distribution with two groups of patients, i.e., Alzheimer’s disease (AD) and healthy con-

trol (Normal). Compared to the von Neumann entropy which does not clearly represent
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distributions difference between two groups, statisticalmethods are more robust to distin-

guish the detailed entropic edges. The Maxwell-Boltzmann distribution, as an example

in Fig.6.15(b), illustrates that the edge entropy in Alzheimer’s disease tends to present a

low entropy value. This observation is more palpable in Bose-Einstein and Fermi-Dirac

distributions, as shown in Fig.6.15(c) and Fig.6.15(d), with more edges tending to occupy

the low entropy region. The Bose-Einstein edge entropy exhibits a more distinguish-

able property to separate two groups compared to the Fermi-Dirac distribution since the

nonoverlapping area is much larger.
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Figure 6.16: Visualisation of LDA performance with three dimensional principal com-
ponents in four groups of Alzheimer’s disease. (a) Maxwell-Boltzmann statistics, (b)
Bose-Einstein statistics, (c) Fermi-Dirac statistics.

Finally, we select the edges with the largest 3% of entropy inthe anatomical re-

gions. This gives 278 significant edges as a feature vector. We explore whether these

feature vectors can be used to classify normal healthy subjects and patients with the

early Alzheimer’s disease. Fig.6.16 is the visualisation of the three dimensional prin-

cipal components for four groups using linear discriminantanalysis (LDA). Three prin-

cipal eigenvectors show the cluster of each group. The common feature is that each of

the three statistical edge entropy (MB, BE, FD) can give the separation among the four
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subject groups. Here, the Bose-Einstein edge entropy presents a better performance than

Maxwell-Boltzmann and Fermi-Dirac cases.

6.5 Summary

In conclusion, motivated by filling the gap in the literatureof analysing fMRI regional

brain interaction networks using directed graphs. We commence from the recently devel-

oped simplified approximations to the von Neumann entropy ofdirected graphs, which

are dependent on the graph size and the in-degree and out-degree statistics of vertices. In

order to characterise the functional organisation of the brain, assortativity of nodes in di-

rected graphs provides insights into the neuropathology ofAlzheimer’s disease. Entropic

measurements associated with node degree identifies the edge connection features which

offer high discrimination between subjects suffering fromAD and normal subjects.

Furthermore, we show how to compute an information theoretic graph-kernel using

Bose-Einstein entropy and the Jensen-Shannon divergence.We present a novel method

for characterising networks using the entropy associated with bosonic particles in thermal

equilibrium with a heat bath. According to this analogy, thenormalised Laplacian plays

the role of Hamiltonian operator, and the associated energystates are populated according

to Bose-Einstein statistics. This model is subject to thermal agitation by the heat reservoir.

The physics of the system can be captured by using a partitionfunction defined over the

normalised Laplacian eigenvalues. We explore whether the resulting entropy can be used

to construct an effective information theoretic graph-kernel for the purposes of classifying

different types of graph or network structure. To this end, we construct a Jensen-Shannon

kernel using the Bose-Einstein entropy for a sample of networks and then apply kernel

principal components analysis (kPCA) to map graphs into lowdimensional feature space.

We apply the resulting method to classify fMRI activation networks from patients with

suspected Alzheimer’s disease.



Chapter 7

Conclusions and Future Work

This chapter provides a summary of the main contributions inthe thesis, which includes

the novel methods in the network analysis with partition functions, spin statistics, edge

entropy decomposition, dynamic network evolution and the application in fMRI networks.

We analyse the limitations of these methods and provide the potential research in the

future.

7.1 Summary of Contributions

The overall goal of this thesis is to apply statistical and entropic techniques to develop

novel and effective methods for analysing the network structure and evolution, particu-

larly paying attention to the application of fMRI data. To this end, we investigate thermo-

dynamic characterisation of networks with different spin statistics specified by partition

functions. We propose a novel framework to show how to project edge-entropy compo-

nents. The detailed distribution of entropy across the edges are presented. We also de-

velop an efficient method for simulating the dynamic networkevolution using the Euler-

Lagrange equation. Finally, we apply the fMRI brain networks to extend the theoretical

approach to real-world datasets.

Our starting point is to develop statistical models with regard to partition functions

and entropy to investigate the network structure. This is described in Chapter 3. The

normalised Laplacian matrix is regarded as the Hamiltonianoperator of the network, and

the associated energy states are given by the eigenvalues ofthe normalised Laplacian.
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We explore the classical and quantum statistical cases where the particle occupations

correspond to Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. From the

relevant partition functions, we can calculate the thermodynamic entropy and energy. It

provides the detailed analysis of three different partition functions deriving the entropic

characterisations when compared to the extensively study of von Neumann entropy.

We conduct the experiments on both synthetic and real-worlddatasets to evaluate

statistical properties. Entropies from three statisticalmodels can be used to characterise

changes in network structure, and distinguish different network structures. The synthetic

data, generating from Erdős-Rényi random graphs, Watts-Strogatz small-world networks,

Barabási-Albert scale-free networks can be distinguishedby entropies. Experiments with

real-world data show that the thermodynamic variables can not only be used to identify

different classes of network, but can also to detect the abrupt changes in network structure.

In classical and quantum statistical models, i.e., Maxwell-Boltzmann, Bose-Einstein

and Fermi-Dirac statistics, the Fermi-Dirac entropy appears superior performance to dis-

tinguish different networks. This is because Fermi-Dirac statistics is more sensitive to the

higher eigenvalues of the normalised Laplacian, which allows it to enlarge probe differ-

ences in the degree distributions for different models. Ourreal-world data, on the other

hand, comes mainly from problems where a strong community orcluster structure exists

in the networks. Thus, the Bose-Einstein model performs best for the reason of sensitivity

to the eigenvalue gap.

Based on the thermodynamic entropy with spin statistics, wepropose a novel frame-

work in Chapter 4 to project out edge-entropy components so that the detailed distribution

of entropy across the edges of a network can be computed. Combined the methods in

Chapter 3 that Hamiltonian operator of the network associated with energy states derived

from the eigenvalues of normalised Laplacian matrix, the particle occupation in the en-

ergy states result from three statistics. Then the corresponding thermodynamic entropy

extends it as a tool to characterise network structures in both static and time serial data.

Our results in the experiments demonstrate that the thermodynamic edge entropy is better
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suited to represent the intrinsic structural properties associated to long-tailed degree dis-

tributions when compared with the von Neuman entropy. This is particularly valuable for

the analysis of non-homogeneous networks with a hub structure.

The third contribution, as outlined in Chapter 5, is the development of a variational

principle to investigate both undirected and directed network evolution. We apply the

Euler-Lagrange equation based on the von Neumann entropy for time-varying network

structure. Commencing from recent work to approximate the von Neumann entropy us-

ing simple degree statistics, the changes in entropy between different time epochs are

determined by correlations in terms of the degree difference between edge connections.

Our Euler-Lagrange equation minimises the change in entropy and develops a dynamic

model to simulate the changes of node degree with time. We first explore the effect of

network dynamics on the three widely studied complex network models, namely Erd̋os-

Rényi random graphs, Watts-Strogatz small-world networks, and Barabási-Albert scale-

free networks. Our model effectively captures both undirected and directed structural

transitions in the dynamic network models. We also apply tworeal-world networks. One

is the time sequential network representing the evolution of stock prices on the New York

Stock Exchange (NYSE) from 1987 to 2011. The other is the sequences of Drosophila

gene regulatory networks containing different developmental phases of the organism from

embryo to adult. Our experiments show that the presented model not only provides an ac-

curate simulation of the degree statistics in time-varyingnetworks, but that is also captures

the topological variations taking place when the structureof a network changes violently.

Finally, in order to fill the gap in the literature regarding to the analysis of fMRI

regional brain interaction networks using directed graphs, in Chapter 6, we take advan-

tages of the recently developed approximate von Neumann entropy for directed graphs,

which are dependent on the graph size and the in-degree and out-degree statistics. As-

sortativity of vertices provides insights into the neuropathology of Alzheimer’s disease to

explore the functional organisation of the brain. Entropicmeasurements associated with

node degree identifies the edge connection features which offer high discrimination be-

tween subjects suffering from the AD and normal subjects. Furthermore, we compute an
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information theoretic graph-kernel using Bose-Einstein entropy and the Jensen-Shannon

divergence. This method is based on the entropy associated with bosonic particles in ther-

mal equilibrium with a heat bath. It is subjected to thermal agitation by the heat reservoir.

The physics of the system can be captured by using a partitionfunction defined over the

normalised Laplacian eigenvalues. We explore whether the resulting entropy is useful to

construct an effective information theoretic graph-kernel for the purposes of classifying

different types of graph or network structure. To this end, we build a Jensen-Shannon

kernel using the Bose-Einstein entropy for a sample of networks and then apply kernel

principal components analysis (kPCA) to map graphs into lowdimensional feature space.

We apply the resulting method to classify fMRI activation networks from patients with

suspected Alzheimer’s disease.

7.2 Limitations

Although the novel methods provided in this thesis outperformed some of the state-of-

the-art measures in network characterisations, there are still a number of limitations to be

noticed as follows.

First, commencing with the definition of the Hamiltonian operator of the network,

the associated energy states correspond to the eigenvaluesof the normalised Laplacian.

We specify the particle occupations correspond to Maxwell-Boltzmann, Bose-Einstein

and Fermi-Dirac statistics. This leads to an indeterminatedefinition of the meaning of

particles on the network. In other words, it is difficult to present a clear physical meaning

to the particles with regard to the structural characterisations in the network. This short-

coming clearly suppresses the utility of statistical structural applications in the network

characteristics.

Another limitation is the Hamiltonian operator, which is regarded as the normalised

Laplacian matrix, determines the energy of a given network.So far, there is comparatively

little work to understand complex networks from a purely classical statistical mechanics

point of view where the energy is not constrained. Classicalthermodynamics describes

systems in equilibrium. However, many networks which have emerged as a result of a
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dynamical process are far from equilibrium. Real-world networks result from a combi-

nation of a growth process and some thermalisation processes. For example, the Internet

grows, but at the same time, it continuously rearranges exhibiting a sort of thermalisa-

tion [2]. The introduction of a network Hamiltonian makes itdisadvantage to study the

evolutionary networks with thermalisation in a flexible way.

Moreover, in terms of dynamic network evolution, we apply the variational princi-

ple with Euler-Lagrange equation in the experiments. Although it effectively identifies

abrupt changes and distinctive periods in time-varying financial networks, there are still

some limitations with the large-scale networks evolving with inflexible vertices. Some

unexpected random fluctuations may not associate with any identifiable events in the time-

series. A few critical events do not give rise to unique patterns when it applies the change

of approximate von Neumann entropy in variational principle.

Finally, when it comes to the application of fMRI networks, we generate the brain

networks using the cross-correlation coefficients to measure the similarity between pairs

of a time-serial signal. However, this method cannot adequately represent the functional

structural activity in the brain. Actually, there does not exhibit a linear correlation be-

tween pairs of regions in the brain. The threshold for constructing the binary adjacency

matrix can also lead to the lost of information in functionalconnectivity. In this case,

more advantage technologies, such as mutual information and transfer entropy, should be

investigated to compensate the drawbacks of cross-correlation.

7.3 Future Work

In this section, we provide the possible solutions to the limitations of this thesis, and

discuss some approaches for the potential research.

First, in order to clearly explain the meaning of particles in the network system,

we may introduce the network topologies with the thermodynamics of the ideal gas. By

analogy with eigenvalues of graph spectrum, the one-particle energy spectrum can derive

the thermodynamical properties in the scope of network characterisations. In this sense,

the networks with connectivity can be viewed as the ideal gasin the study of general
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physical systems. Moreover, a stochastic process can describe a gas of identical particles

transporting on the networks. The transition rate for particles depends on the state of the

node which corresponds to the quantum walks on the networks.

Moreover, in terms of network Hamiltonian, other graph matrices such as adjacency

matrix, Laplacian matrix and singless Laplacian can be explored as the Hamiltonian op-

erator to specify the energy spectrum. So far the equilibrium approaches have been pro-

posed with specific partition function to study topologicalproperties of networks, while

the dynamic network evolution requires the network Hamiltonian to be more suitable to

represent the non-equilibrium process. Perturbation theory may be further applied to the

dynamic network described by Euler-Lagrange or Hamilton’sequations. This is more in-

teresting to derive the dynamic Hamiltonian that governs the network evolution in analogy

to the physical intuition.

In addition, the entropic methods can further associate with network structure. The

definition of entropy provides the concept of thermodynamics in networks, which es-

tablishes a link between microstates and macroscopic descriptions of networks. There-

fore, the information of network topology can be computed from entropy to reflect the

divergence between different structures. In fact, the von Neumann entropy with Jensen-

Shannon divergence has been proved to be an efficient way to construct graph kernel to

measure dissimilarity. This provides a new direction for the development of kernel meth-

ods. It allows us to further explore graph kernels and mutualinformation methods with

thermodynamic entropies from different statistics. Particular information divergence from

different network statistical entropy will provide a more powerful tool for characterising

various structural patterns.

Finally, we acknowledge that we have explored a relatively limited quantity of real-

world data. It would, for example, be interesting to see if the thermodynamic variables

can be used to detect temporal anomalies and disturbances inthe evolution of networks

on a greater variety of data. Another interesting line of investigation would be to explore

whether phase transitions can be detected with thermodynamic quantities to other net-

work structures such as the multilayer networks and multiplex networks. We also plan
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to extend the work in this thesis to the low-temperature limits for exploring the observed

phenomenon of Bose-Einstein condensation in the networks.



List of Symbols

G Graph
V Vertex set of a graph
E Edge set of a graph
u Vertex Index
|V| Number of Vertices in a graph
A Adjacency Matrix of a graph
D Degree Matrix of a graph
L (Combinatorial) Laplacian matrix of a directed/undirected graph
L̃ Normalized Laplacian Matrix of a directed/undirected graph
Λ̃ Diagonal Eigenvalue Matrix of Normalized Laplacian
Φ Eigenvector Matrix of Normalized Laplacian
I Identity Matrix
η Fitness Parameter for each node
du Degree of Vertexu
din

u In-degree of Vertexu
dout

u Out-degree of Vertexu
λ̃ Eigenvalue of Normalized Laplacian Matrix
|ψ〉 Pure Quantum States
ρ Density Matrix
Ĥ Hamiltonian Operator
∇2 Kinetic Energy
U(r, t) Potential Energy
N Number of Particles
〈U〉 Thermodynamic Average Energy
F Helmholtz Free Energy
T Thermodynamic Temperature
kB Boltzmann Constant
µ Chemical Potential
ε Energy State
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Z Partition Function
ZMB Partition Function in Maxwell-Boltzmann Statistics
ZBE Partition Function in Bose-Einstein Statistics
ZFD Partition Function in Fermi-Dirac Statistics
S Thermodynamic Entropy
SMB Thermodynamic Entropy in Maxwell-Boltzmann Statistics
SBE Thermodynamic Entropy in Bose-Einstein Statistics
SFD Thermodynamic Entropy in Fermi-Dirac Statistics
SVN Von Neumann Entropy of a Graph
S

MB

edge
Edge Entropy Decomposition in Maxwell-Boltzmann Statistics

Sd Von Neumann Entropy of a Directed Graph
Swd Von Neumann Entropy of a Weakly Directed Graph
Ssd Von Neumann Entropy of a Strongly Directed Graph
E(q) Euler-Lagrange equation
q(t) Variable in Euler-Lagrange Equation as a Function of Time
q̇(t) Time Derivative ofq(t)
∆S Change of Approximate von Neumann Entropy
∆Swd Change of Approximate von Neumann Entropy for Weakly Directed Graph
∆Ssd Change of Approximate von Neumann Entropy for Strongly Directed Graph
∆u Degree change at vertexu
∆̇u Time Differential to the Change of Degree at vertexu
G Graph Change in Euler-Lagrange Equation
dt

u Node Degreeu at Time Epocht
ru Ratio of In-degree to Out-degree for Nodeu
r(α,β ) Directed Assortativity
R Directed Edge Assortativity with von Neumann Entropy
DJS Jensen-Shannon Divergence
kJS Jensen-Shannon Divergence in Graph Kernel



Abbreviations

AD Alzheimer’s Disease

ADNI Alzheimer’s Disease Neuroimaging Initiative

BA Barabási-Albert Scale-free Networks

BE Bose-Einstein Statistics

BEC Bose Einstein Condensation

BOLD Blood Oxygen Level-Dependent

CI Confidence Interval

EMCI Early Mild Cognitive Impairment

ER Erdős-Rényi Random Graph

FD Fermi-Dirac Statistics

fMRI functional Magnetic Resonance Imaging

HC Healthy Control

JSD Jensen Shannon Divergence

kPCA kernel Principal Component Analysis

LDA Linear Discriminant Analysis
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LMCI Late Mild Cognitive Impairment

MB Maxwell-Boltzmann Statistics

NYSE New York Stock Exchange

PCA Principal Component Analysis

PPI Protein-Protein Interaction

ROI Region of Interest

RMSE Root Mean Square Error

SD Strongly Directed

VNE von Neumann Entropy

WD Weakly Directed

WS Watts-Strogatz Small World Networks
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