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ABSTRACT 

Advances in tissue engineering have allowed the construction of various tissues of the oral 

and maxillofacial region for clinical and in vitro modelling proposes. Additive manufacturing, 

also known as three−dimensional printing (3DP) is an innovative technique that offers an 

entirely new method of fabricating geometrically precise 3D structures, allowing the 

opportunity to progress composite tissue engineering to the point where complex anatomical 

relationships can be accurately replicated. The aim of this study was to develop and 

characterise a novel 3D composite human alveolar bone−mucosal model (ABMM) based on 

conventional and 3D printed bone scaffolds. 

Two types of bone scaffold were used: firstly, a conventional hydroxyapatite/tricalcium 

phosphate (HA/TCP) scaffold fabricated using an aqueous gel-casting method, and secondly, 

a 3D printed β−tricalcium phosphate (β−TCP) scaffold prepared using an extrusion−based 

Rapid Prototyping plotting system. In order to construct a composite bone−mucosal model, 

alveolar bone-derived osteoblasts were seeded into the respective scaffolds (both 

conventional and printed) and the resultant bone constructs were then attached to a tissue 

engineered, collagen−based oral mucosa. Histological, immunohistochemical, and 

ultrastructural features of the mucosal part as well as, the histology, genes expression, and 

proteins secretion of the composite models were examined to validate the ABMM as a 

representative analogue of combined oral hard and soft tissues. 

The mucosal component demonstrated a mature epithelium undergoing terminal 

differentiation similar to that of native oral mucosa, as confirmed using cytokeratin 

immunohistochemistry. Histological evaluation of ABMM confirmed an anatomically 

representative tri-layer consisting of distinct epithelial, connective tissue, and bone layers. 
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Interrogation of osteogenic and epithelial−related gene expression within the models 

confirmed an osteogenic expression profile in the tri−layered model that was not observed in 

epithelial−stromal bilayers. Collectively, these data suggest that the developed composite 

model displayed characteristics similar to those of normal tissue counterparts. This novel 

tri−layered model, therefore, may offer great scope as a more advanced, and anatomically 

representative tool for a number of in vitro applications. 
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INTRODUCTION 

Tissue engineering (TE) can be defined as the process of recreating functional biological 

tissues by combining cells, materials, bioactive molecules, and environmental factors (Langer 

and Vacanti, 1993). Since the term TE was first introduced to the broader scientific 

community, this field of research has continued to advance at a tremendous pace, resulting 

in the achievement of 3D construction of various human tissues such as liver, pancreas, skin, 

muscle, vasculature, and cartilage (Langer and Vacanti, 2016; Ali and Robert, 2006; 

Khademhosseini and Langer, 2016). With the introduction of the TE concept to dentistry, 

many oral and dental tissue analogues have been developed including alveolar bone, oral 

mucosa, and periodontal structures (Amrollahi et al., 2016; Zafar et al., 2015).  

The primary aim of TE is to ultimately achieve biological substitutes capable of resolving the 

need for clinical transplantation, with the TE substitutes acting to restore, maintain, and even 

improve tissue function (Langer and Vacanti, 1993). However, there are currently many 

challenges to overcome in order to produce clinically and physiologically relevant tissues 

capable to perform this function. Many of these challenges pertain to limitations of the TE 

process itself, such as a paucity of immunologically acceptable cell sources, lack of 

biomaterials that recapitulate the normal extracellular matrix, and difficulties with the 

generation of large areas of adequately vascularised tissue (Berthiaume et al., 2011). 

In addition to the potential clinical applications of TE, 3D models of human tissues have been 

developed for in vitro study. The models can be used in the testing of biomaterial 

biocompatibility (Moharamzadeh et al., 2009), as well as investigation of the mechanisms of 

disease initiation and progression, such as oral cancer (Colley et al., 2011) and tissue infection 

(Pinnock et al., 2014).  Such models may offer a unique opportunity to investigate the 
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interactions between multiple cell types, the surrounding matrix, and numerous 

environmental factors that would otherwise be difficult to study in a controlled manner. TE 

models offer insight into cell behaviour from biological, physiological and pathological 

perspectives, allowing novel products, diagnostics, and treatment approaches to be 

developed in vitro (Spector, 2002). Furthermore, the use of TE constructs for in vitro research 

may minimise the need for lengthy, costly, and controversial animal studies, which can 

furthermore deliver misleading results, due to interspecies molecular and physiological 

differences (Benam et al., 2015; van der Worp et al., 2010). 

Development of composite constructs represents a new avenue in TE particularly in the oral 

and maxillofacial (OMF) region, where a variety of tissue types are in close association with 

each other. This intricate relationship of heterogeneous tissues poses a considerable 

challenge, not only in engineering the sheer number of tissue types required in order to 

replicate all tissues native to the orofacial region, but also in attaching these various tissue 

types to each other in a manner that recreates the normal anatomical relationships observed 

in vivo (Spicer et al., 2014). As a result, to date, very few intricately-structured TE composite 

tissues have been developed, although some success has been reported in the fabrication of 

osteochondral structures (Ruan et al., 2017) and also fibro-osseous structures capable of 

replicating the bone-periodontal ligament complex (Park et al., 2011). 

The periodontium and region of the hard palate represent two oral structures where the 

mucosa tightly adheres to the underlying bone (Nanci, 2013). The periodontium is comprised 

of root cementum, alveolar bone proper, gingiva, and periodontal ligament. These 

components together form the tooth-supporting apparatus that anchor the tooth root to the 

jaws (Lang et al., 2015). Although the engineering of bone tissue (Thavornyutikarn et al., 2014) 

and oral mucosal equivalents (Moharamzadeh et al., 2012) have been extensively studied for 
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various clinical and experimental applications, in vitro combination of these two components 

into a single construct has not been investigated to date. Development of an accurate human 

alveolar bone-mucosal model represents the next important step in the process of achieving 

a physiologically relevant and utilisable TE oral construct.  

In order to faithfully imitate the complex structure of native human bone, advanced TE 

techniques may be required. Recently, such advances have been achieved in computational 

design and additive manufacturing (AM), otherwise known as 3DP, which has enabled quick 

and accurate fabrication of 3D porous scaffolds with a highly controlled architecture (Cox et 

al., 2015; Bose et al., 2018).  3DP offers an alternative to current scaffold fabrication methods 

and has the potential to deliver precise scaffolds of a predefined shape, size, porosity, pore 

size, and spatial distribution; all of which can have significant impact on cell behaviour within 

TE models (Ferlin et al., 2016; Cavo and Scaglione, 2016). 

The work described in this thesis demonstrates the development, optimisation, and 

characterisation of the composite human alveolar bone-mucosal models in vitro using both 

conventional and 3DP bone scaffolding methods. 
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1.1. Normal human alveolar bone−mucosal tissue 

1.1.1.  Overview of alveolar bone−mucosal structure 

Alveolar bone, as with all bones, is comprised of two macroscopically distinguishable layers, 

termed “compact” and “cancellous”. Compact (cortical) bone is a dense outer layer, which 

forms the external and internal alveolar plates. These plates enclave the inner cancellous 

(spongy) bone which consists of thin trabeculae arranged in a 3D lattice, interspersed with 

marrow. Compared to compact bone, cancellous bone is less dense, more porous, and highly 

vascularized (Nanci, 2013). These differing features reflect the fact that each of the two bone 

types are functionally distinct; whilst the dense cortical plates confer strength and rigidity to 

the bone’s overall structure, the cancellous layer offers a degree of flexibility whilst also 

performing an important haemopoietic function. 

Microscopically, bone may be also categorised as woven or lamellar. Woven bone represents 

an immature tissue in which collagen fibres are of a variable diametre and are arranged 

randomly, giving the bone a basket-weave appearance. Woven bone is formed rapidly, has a 

higher cellular turnover, and is subsequently converted into organised, fine-fibred, mature, 

lamellar bone (Berkovitz, 2009). Lamellar bone consists of three distinct layers: 

circumferential, concentric, and interstitial. While circumferential lamellae enclose the bone 

and form its outer and inner layer, concentric lamellae make the bulk of bone and form its 

basic metabolic unit, called the “osteon” or “Haversian system”. Each osteon consists of a 

bony cylinder surrounding a Haversian canal which is lined by a single layer of living osteocytes 

and contains a capillary at its centre. Adjacent canals are unified by Volkmann canals; blood 

vessels that form anastomoses between the capillaries of neighboring Haversian systems. 

Interstitial lamellae fill the spaces between adjacent concentric lamellae (Figure 1.1.).  
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Figure 1. 1. Organisation of bone structure. The image illustrates the compact−cancellous bone 

structure and the arrangement of compact bone into circumferential, concentric, and interstitial 

layers (Nanci, 2013). 

 

 

Overlying the external aspect of alveolar bone is a thin connective tissue membrane; the 

“periosteum”. This membrane is, in fact, a bilayer comprising an outer fibrous layer that 

houses collagen fibrils and fibroblasts and an inner “cambium layer” that contains osteoblast 

progenitor cells and osteoclasts.  Beyond the periosteal layer, which delineates the external 

boundary of the alveolar bone, a varying connective tissue layer (the lamina propria) links the 

bone to the overlying oral epithelium. In periodontium and hard palate, bone tightly bonds 

to a relatively thin lamina propria and overlaying keratinised epithelium; so-called “attached 

mucosa” (Nanci, 2013) (Figure 1.2.). 
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Figure 1. 2. The locations and arrangement of the native alveolar bone and associated mucosa. 

Images show the anatomical sites where the masticatory mucosa is firmly attached to the underlying 

alveolar bone; (A) the periodontium is comprised of alveolar bone, gingiva, cementum, and 

periodontal ligament; and (B) hard palate. (C) The histological arrangement of mucoperiosteum; the 

mucosa overlying the alveolar bone with a thin intervening layer of periosteum (Nanci, 2013).          

 

1.1.2. Alveolar bone 

1.1.2.1. Bone constituents 

As with all connective tissues, bone consists of cells and extracellular matrix (ECM) (Figure 

1.3.). However, two essential features distinguish it from other specialised connective tissues. 

The first feature is the presence of mineralisation within the ECM, which produces an 

extremely hard tissue capable of providing both support, protection, and storage of calcium 

and phosphate.  The retention of adjacent non-mineralised compartments further allows the 

tissue to participate in haemopoesis (Ross, 2016). The second unique feature is its plasticity, 

which allows alteration of both its external shape “modelling” and also its internal structure 

“remodelling” (Berkovitz, 2009). 
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Figure 1. 3. The main components of alveolar bone. 

 

1.1.2.1.1. Bone ECM 

Bone’s ECM consists by dry weight, of about 67 % inorganic phase and 33 % organic material 

(Nanci, 2013). The inorganic phase is composed of hydroxyapatite (HA) crystals Ca10 

(PO4)6(OH)2 which impart rigidity and hardness to bone. The organic matrix, or “osteoid”, 

consists of collagen and non-collagenous proteins, of which type I collagen is the principal 

protein−comprising 90 % of all organic matrix. Type I collagen provides structural integrity to 

connective tissue and imparts resilience and tensile strength that helps bone to resist 

fracture. Non collagenous proteins account for the remaining 10 % of the total organic 

content and include four main groups, namely, proteoglycans, glycoproteins, vitamin K 

dependent proteins, and growth factors. Proteoglycans such as hyaluronan and chondroitin 

sulphate contribute to the compressive strength of bone and are responsible for binding 
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growth factors. Glycoproteins including osteonectin, osteopontin, and bone sialoprotein are 

responsible for attachment of bone cells to the matrix and gluing collagen to HA crystals. 

Vitamin K dependent proteins, including osteocalcin (OC), which captures calcium from the 

circulation and stimulates osteoclasts during bone remodelling; protein S, which assists in the 

removal of apoptosed cells. Growth factors and cytokines such as bone morphogenic proteins 

(BMPs) induce the differentiation of stem cells to osteoblasts (Ross, 2016). 

1.1.2.1.2. Bone cells 

Five cell types are associated with bone: osteoprogenitors, osteoblasts, osteocytes, bone 

lining cells, and osteoclasts. All cells except osteoclasts originate from mesenchymal stem 

cells which differentiate into osteoprogenitor cells, osteoblasts, and finally osteocytes and 

lining cells. Osteoclasts are derived from the fusion of mononuclear haemopoietic cells, 

namely granulocyte/monocyte progenitor cells, which differentiate into active bone 

resorbing cells (Ross, 2016). 

Osteoprogenitor cells are renewable cells that can differentiate into osteoblasts−the chief cell 

responsible for secretion of matrix proteins, as well as calcification of unmineralised bone or 

osteoid. As osteoblasts progressively secrete these proteins, they ultimately become 

completely surrounded in a calcified matrix; whereby they are termed osteocytes. The main 

function of osteocytes is to maintain bone integrity and vitality by sensing the mechanical and 

biochemical environments and respond themselves or transduce signals to other cells 

participated in bone remodelling. Failure of this the mechanotransduction processes leads to 

bone sclerosis and death (Nanci, 2013). Bone lining cells cover the surfaces of non-remodelled 

bone and play a role in the metabolism of calcium and phosphate, protecting the surface of 

bone from the resorptive activity of osteoclasts, and may also participate in bone remodeling. 
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Osteoclasts are responsible for bone resorption by releasing protons and lysosomal 

hydrolases such as matrix metalloproteinases which degrade collagen and other matrix 

proteins in a concentric microenvironment of the extracellular space (Berkovitz, 2009; Ross, 

2016). 

1.1.2.2. Mechanism of bone formation (osteogenesis) 

Osteogenesis involves the transformation of pre-existing mesenchymal tissue into bone 

through one of two major pathways; intramembranous ossification and endochondral 

ossification. 

1.1.2.2.1. Intramembranous ossification 

The direct conversion of mesenchymal tissue into bone is termed intramembranous 

ossification. The flat bones of the skull and face, the mandible, and the clavicles are formed 

via this pathway. During intramembranous ossification, osteogenesis is initiated by 

condensation of mesenchymal stem cells (MSCs) to form ossification centres. Within the 

ossification centres MSCs differentiate into osteoprogenitor cells, which further differentiate 

into osteoblasts and commence secretion of collagen and non-collagenous proteins such as 

osteocalcin, osteonectin, bone sialoprotein, and other matrix components; this 

proteinaceous secretion is termed “osteoid”. The osteoid subsequently undergoes 

mineralisation and the secretory osteoblasts either become osteocytes, convert to lining cells 

or undergo apoptosis. Mineralisation is initiated when the local concentration of calcium 

(Ca2+) and phosphate (PO4) ions in the matrix exceeds the normal threshold. Binding of Ca2+ 

with osteocalcin and other proteins increases the level of this ion and stimulates alkaline 

phosphatase (ALP) secretion by osteoblasts, which increases the concentration of PO4. At this 

stage, the osteoblasts release small matrix vesicles containing ALP and pyrophosphate that 
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accumulate Ca2+ and cleave PO4. This results in crystallisation of CaPO4 which subsequently 

form and deposit HA crystals in the matrix. As mineralisation progresses, newly-formed bony 

trabeculae radiate out from the site of initial ossification and the area becomes surrounded 

by mitotic osteoprogenitor cells. These cells differentiate into new osteoblasts, and in turn 

lay down successive layers of woven bone which is subsequently replaced by lamellar bone 

(Ross, 2016) (Figure 1.4.). Ultimately, the matrix contains only 4−6 % osteoblasts and 1−2 % 

osteoclasts, whilst osteocytes comprise the vast majority of cells within the matrix (90−95 %) 

(McCauley and Somerman, 2012).  

 

Figure 1. 4. Illustration of the mechanism of intramembranous ossification. (A) An ossification centre 

consists of aggregated mesenchymal osteoprogenitor cells that further differentiated to osteoblasts 

which begin osteoid secretion. (B) The osteoblasts accumulate at the periphery of the ossification 

centre and continue to produce and mineralise the osteoid, which traps osteoblasts to become 

osteocytes. (C) The immature woven bone has thick trabeculae lined by endosteal cells and 

osteoblasts. (D) The continued growth and remodelling of bone results in replacement of woven bone 

by outer and inner compact bone, with trabecular bone in between. The presence of osteoblasts, 

osteoclasts, and bone marrow cells that are brought by blood vessels indicates the active remodelling 

process. 
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1.1.2.2.2. Endochondral ossification 

Endochondral ossification involves the production of a cartilaginous “template” which is 

eventually replaced by bone. All of the bones of the body, except for the flat bones of the 

skull, mandible, and clavicles, are formed through this pathway. The process can be divided 

into 5 phases. 

Phases 1− Commitment: the commitment of MSCs to mature cartilage cells is induced by 

Sonic hedgehog which stimulates the adjacent sclerotome cells to express Pax1 transcription 

factor that initiates the cascade of the ossification.   

Phase 2− Compaction: the committed cells then condense into compact nodules with inner 

and outer cells that generate cartilage and bone, respectively. BMPs are critical for driving 

this stage as they induce the expression of several cell adhesion molecules such as N-cadherin 

and neural cell adhesion molecule which are important in the initiation and maintaining of 

the condensations.  

Phase 3− Proliferation: in the 3rd phase, chondrocytes divide rapidly and secret cartilage-

specific ECM to form the cartilaginous template of the bone. 

Phase 4− Growth: In the 4th phase, the proliferation ceases and the chondrocytes increase 

their volume to become “hypertrophic chondrocytes”. This step appears to be mediated by 

Runt-related transcription factor 2, which is necessary for the development of both 

intramembranous and endochondral bone. The hypertrophic chondrocytes alter the matrix 

they secret by adding collagen X, fibronectin, a s well as vascular endothelial growth factor 

(VEGF) which induce mesenchymal cell transformation into blood vessels. In addition, at this 

stage, the calcification starts by secretion of numerous small, membrane-bound vesicles into 

the ECM. These vesicles are produced by chondrocytes and contain enzymes such as ALP that 
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are active in the generation of hydroxyapatite crystals, which mineralize the cartilaginous 

matrix in the same sequence of events occur in the intramembranous ossification. 

Phase 5− Chondrocyte death and bone cell generation: The final phase involves apoptosis of 

the hypertrophic chondrocytes and differentiation of the cells surrounding the cartilage 

model into osteoblasts. In addition, the blood vessels invade the spaces and bring in 

osteoblasts which begin forming bone matrix on the partially degraded cartilaginous model. 

The cartilage matrix is then degraded by osteoclasts brought to the area via blood vessels 

(Gilbert, 2010). 

1.1.3. Oral mucosa  

Normal oral mucosa (NOM) can be divided into three types; lining mucosa found in lips, cheek, 

soft palate, floor of mouth, and the ventral surface of tongue; masticatory mucosa that covers 

the gingiva and hard palate; and specialised mucosa which present in the region of the tongue 

dorsum. For all regions of the mouth, NOM has two recognisable layers; epithelium and 

connective tissue (lamina propria) separated by a basement membrane. The epithelium is of 

stratified squamous type, which offers protection to the underlying tissue. Whilst the 

epithelia’s principally comprises keratinocytes, there are a number of additional 

non−epithelial cells such as melanocytes, Langerhans cells, and lymphocytes which may be 

found within the layer. In masticatory mucosa (gingiva and hard palate), the epithelium is 

keratinised, with cells ordered into four distinct layers: the basal, prickle, granular, and 

keratinised layers (Figure 1.5.), whilst in non−keratinised epithelium the granular and 

keratinised layers are replaced by a stratum intermedium and superficial layer, respectively. 

Adhesion between adjacent epithelial cells is achieved via desmosomal attachments, while 

hemidesmosomes bind epithelium to the underlying connective tissue (Nanci, 2013).  
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Figure 1. 5. Histologic section of keratinised oral mucosa (hard palate). Haematoxylin and eosin− 

stained section of palatal mucosa demonstrates the epithelial and connective tissue (lamina propria) 

components of keratinised oral mucosa. The mature oral epithelium in this image clearly 

demonstrates the respective strata, namely basal, prickle, granular, and keratinised layer (Scale 

bar=100 µm). This palatal gingiva was obtained with written, informed consent from a patient 

underwent elective oral surgery at Charles Clifford Dental Hospital, Sheffield, UK, under the ethical 

approval from National Research Ethics Services Committee number 15/LO/0116 (see appendix III). 

The detailed method of histological processing, sectioning, staining, and examination of the specimen 

was provided in section (2.3.6.2.). 

 

 The basement membrane is a specialised ECM containing collagen, glycoproteins, and 

proteoglycans, which are arranged into three distinct layers; the lamina lucida, lamina densa, 

and lamina reticularis. The underlying connective tissue comprises the lamina propria, which 

is responsible for support, nourishment, and sensation. It contains fibroblasts, mast cells, 

macrophages, blood vessels, nerves, and fibres embedded in ground substance. In the 

masticatory mucosa, the lamina propria is thick and tightly bound directly to the underlying 

bone “mucoperiosteum” without an intervening layer of submucosa (Avery, 2006; Berkovitz, 

2009). 
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1.2. The need for composite alveolar bone−mucosal tissue engineering  

1.2.1. Clinical need 

Bone loss in the OMF region is a commonly encountered problem that can range in size from 

small periodontal defects to complex, difficult to manage structural defects (Elsalanty and 

Genecov, 2009). To illustrate the magnitude of this issue, data from the National Health and 

Nutrition Examination Survey showed the prevalence of severe periodontitis warranting 

surgery to be approximately 15 % of United States (US) population (Eke et al., 2012). In 

addition, the deficiency of bone and /or mucosa poses a considerable challenge in the success 

of the dental implant. Engineering of these tissues may provide a means to regain the bone 

volume and restore the integrity of mucosa to enhance the successful outcomes of dental 

implants while minimising complications (Wen et al., 2015). For more extensive bony defects, 

data from the British Association of Oral and Maxillofacial Surgeons reported that more than 

4,000 facial injuries occur annually per 500,000 population (CWFI, 2010). A proportion of 

these fractures may require surgical revision in order to address deficits in post-treatment 

facial contour.  

Conventional approaches in the treatment of bone defects include various types of bone 

grafts, guided tissue regeneration techniques, and osteodistraction. The origins of bone 

grafting can be traced back several centuries when the earliest xenografting procedure was 

reported in 1668 by Job Janszoon van Meekeren, who attempted to perform cranioplasty 

using dog bone. In 1821, Walther was credited with the first documented autograft 

procedure, although wound suppuration prevented full healing (Sanan and Haines, 1997). 

Sixty years later, the first published case report of successful inter−human bone transfer was 

performed by William MacEwen (Macewen, 1881) whereas the first introduction of synthetic 
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calcium phosphate as an alloplastic bone substitute material was at the turn of the 20th 

century (Albee, 1920). 

As autografts contain all the essential elements for osteogenesis, they are considered the 

“gold standard”. Nevertheless, autografts are on occasion associated with difficulties in 

obtaining adequate bone quantity to fully restore larger defects, and post−operative 

complications such as infection, dehiscence, and non-union may hamper the augmentation 

process, particularly when using non vascularised bone grafts which may have complication 

rates as high as 69 % (Miloro and Kolokythas, 2012). In addition, bone resorption may reach 

up to 50 % of the initial grafted volume (Kahnberg, 2010). Use of allograft or xenograft 

materials offer readily available, low−cost alternatives, although there have been some 

concerns with the risk of disease transmission; however the overall chance of disease 

transmission appears to be in the order of 1:1 million (Miloro and Kolokythas, 2012). 

Osteoconductive synthetic materials are another potential option, although their utility is 

limited by unfavourable mechanical properties and higher potential for resorption (Scheller 

et al., 2009). 

Oral mucosal defects, as with bone defects, can be reconstructed by autografts taken from 

either the adjacent oral mucosa or using vascularised and non vascularised skin grafts. Direct 

oral mucosal grafting is limited by the availability of donor tissue, as well as donor site 

morbidity. Split and full thickness skin grafts are another option and have the advantage that 

they can be harvested in large quantities with relative ease, although there is often graft 

contracture and phenotypic mismatch between the mucosa and skin structure, as the latter 

contains skin appendages such as hair follicles and glands (Girod et al., 2009). Further 

limitations include the expression of different keratinisation patterns, skin being predisposed 
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to infection in the wet oral environment (Izumi et al., 2004), and scarring of the donor site 

due to healing by secondary intention (Glim et al., 2013). 

1.2.2. Pre-clinical need in oral health research  

In general, there are two major approaches to pre-clinical research; in vivo animal modelling 

and in vitro modelling. The latter is further subdivided into 2D and 3D cell culture.   

1.2.2.1. Animal model 

Animal models have been used to test and validate many hypotheses that have emerged from 

in vitro studies (Barré-Sinoussi and Montagutelli, 2015). However, many limitations of this 

approach are recognised. The first issue relates to the scope of the European Directive 

2010/63/EU in animal protection and welfare. The established “three Rs rule” − replacement, 

reduction, and refinement - states that animals should not be used as long as non 

animal−based experiments are available, and that the number of animals used in experiments 

must be reduced to the minimum needed to reach a satisfactory conclusion, and that all 

provisions must be considered to minimise any harm inflicted on the animals (Kirk, 2017; 

Russell and Burch, 1959). 

Secondly, the inter−species genetic and physiological differences between humans and 

animal models means any results obtained from animal work may not be reproduced in 

human studies and may lead to ineffective or even harmful effects (Greek and Menache, 

2013). For bone engineering, a wide variety of mammalian species such as rabbit, canine, and 

dog have been used. However, there is no single clinically relevant animal model that can 

faithfully mimic human bone. The complex nature of bone is affected by a myriad of local and 

systemic variables, such as defect size, remodelling, age, gender, hormone levels, and 
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exposure to mechanical forces; this complexity leads to a gap in clinical translation, due to 

the difficulty of standardising such variables in animal models (Muschler et al., 2010). 

1.2.2.2. In vitro model 

1.2.2.2.1. 2D model 

The majority of cell-based studies use conventional 2D cell cultures raised on flat and rigid 

substrates. However, monolayer culture often does not reflect the complex tissue 

microenvironment present in vivo due to the absence of a representative 3D which results in 

a lack of cell−to−cell communication and cell-to-matrix interaction.  As a consequence, 2D cell 

culture tests may provide misleading data for anticipating in vivo responses because it does 

not faithfully mimic the normal structure and function of cells (Bhadriraju and Chen, 2002). 

Therefore, 2D does not faithfully mimic the normal structure and function of cells. 

1.2.2.2.2. 3D model 

To overcome the limitations associated with in vivo and 2D models, a growing number of 

studies have involved the development of physiologically relevant 3D standardised models 

suitable to biological, pathological, and pharmaceutical investigation (Huh et al., 2015; Linda 

and Melody, 2006; Peck and Wang, 2013).  3D spheroids or cell aggregates may represent the 

simplest example of 3D cell culture techniques. Spheroids are carrier−free microspheres in 

which a solid mass of cells is formed when cells are cultured on a non adherent surface 

(Hearnden, 2011). A number of methods can be used to create cell spheroids, including; 

hanging drop techniques, static liquid overlay techniques and centrifugation (Fennema et al., 

2013). Spheroids may serve as a suitable model for replicating 3D relationships that cannot 

be achieved in 2D cultures and have been used extensively to create a model of the hypoxic 

tumour microenvironment (Sutherland et al., 1981). 3D spheroids have their limitations, 
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however, as their structure is homogenous and therefore lacks the intricacies necessary to 

accurately replicate a multi−layered tissue or organ.  

The evolving capabilities of TE raise new opportunities to address the unmet clinical demand 

for more complex grafting materials as well as to create anatomically representative 3D tissue 

models for the study of complex physiological and pathophysiological processes in vitro. The 

following sections provide an insight into the concept of TE and the progress which has been 

made in the engineering of bone and oral mucosal tissues to date. 

1.3. The paradigm of tissue engineering 

TE applies the principles of cell biology, materials science, and engineering to create an 

artificial substitute for lost or damaged tissues that cannot be self−regenerated. The main 

strategy of TE is based on the concept that cells isolated from autologous tissue can be guided 

to form new tissue when placed with suitable matrices, in the presence of inductive molecules 

such as growth factors  (Langer and Vacanti, 1993).  

The cellular component of TE constructs is essential for the generation of new tissue, through 

the production and long−term maintenance of ECM. In fact, one of TE’s great strengths over 

inorganic substitutes is the ability to incorporate cells capable of responding and adapting to 

the various mechanical and biological stimuli occurring within the recipient site to which they 

are exposed. Whilst non cellular material is subject to degradation and fatigue, which may 

then compromise its performance, an engineered construct contains cells that repair and 

remodel its ECM such that its properties should not degrade with time (Bonassar and Vacanti, 

1998). In order to be effective for clinical purposes, cells should be easily procurable, scalable 

in vitro, and robust in both cell culture and following implantation. In addition, they should 

be obtained in an ethically acceptable manner, be able to functionally integrate with recipient 
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tissue, and be non immunogenic and safe; that is, neither tumorigenic nor contaminated by 

pathogens (Vacanti, 2006). Moreover, cells should ideally be capable of being processed so 

that they can have “off the shelf” availability, and furthermore, stem cells should have the 

capability to differentiate into the desired lineage (Birla, 2014). 

The second component of the TE paradigm is an underlying scaffold on which to seed the 

cellular component. Scaffold usually provide mechanical support for cellular proliferation and 

differentiation (Boccaccini et al., 2014). In addition, it should fulfil the role of the normal ECM, 

which contributes not only to mechanical integrity, but also has an important signaling role in 

tissue regeneration (Juliano and Haskill, 1993). Inaccurately recapitulating the properties of 

the native ECM using scaffolds can result in a passive cell−matrix interface, which fails to 

trigger appropriate interactions, and thereby deprives cells of the substantial benefits that 

ECM constituents may have on cell phenotype (Birla, 2014). In order to further promote 

appropriate ECM formation within TE constructs, a new generation of scaffolds made from 

“smart biomaterials” has emerged to include a wider range of modifications, such as the 

incorporation of nanoparticles or bioactive molecules that can promote differentiation and 

attachment of cells onto the scaffold (Motamedian et al., 2015; Khan and Tanaka, 2018).   

Growth factors comprise a wide range of proteins that play a key role in cellular 

differentiation and proliferation. The success of using bioactive molecules in TE mainly 

depends on the large−scale production of purified signal molecules and the development of 

appropriate method to deliver these molecules to their targets (Langer and Vacanti, 1993). 

Several delivery approaches have been attempted such as encapsulation of growth factors in 

biomaterial scaffold (Zhang et al., 2016) and using the gene technology to transfer the gene 
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encoding growth factor to specific cells which transplanted into the body where the growth 

factor will be released into the tissue to be engineered (Hadjizadeh et al., 2017). 

1.4. Bone tissue engineering (BTE) 

1.4.1. Strategies for BTE 

The strategies for BTE can be broadly divided into in vivo and in vitro, depending on where 

tissue construction takes place (Elsalanty and Genecov, 2009). In vivo methods include in situ 

BTE, which involves implantation of osteoconductive, resorbable scaffolds into a  bone defect 

to provide mechanical support for host cells (Khan et al., 2008) or ectopic implantation of the 

scaffold into muscle, which may then be transplanted as a free bone−muscle flap 

(Kokemueller et al., 2010). In vitro BTE, on the other hand, involves osteogenic cell harvesting, 

expansion, and seeding onto an appropriate scaffold, which should already be approved for 

clinical use if the engineered construct is intended for clinical applications. The seeded 

scaffold is then cultured in vitro, ideally in the presence of biophysical and biochemical signals 

that enhance osteogenesis (Mangano et al., 2009; Pradel and Lauer, 2012). While in vivo 

techniques provide a physiological environment that is difficult to reproduce in the 

laboratory, in vitro TE offers two distinct advantages: firstly, providing 3D geometries in a 

controlled culture settings that  increased reproducibility and allows variability of results to 

be minimised, and secondly, addressing the scientific and ethical concerns related to animal 

tests  (Gibbons et al., 2013). 
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1.4.2. Cell sources for BTE 

Various cell types have been employed for BTE. Cells can be categorised as being derived 

from either human or animal sources.  

1.4.2.1. Human cells  

Human sources of bone cells may be either “autologous” or “allogenic”. Autologous cells are 

those obtained from a biopsy harvested from the individual who will subsequently receive 

the engineered tissue, whereas allogeneic cells are those derived from a human donor who 

is not the recipient of the final TE graft. Each type of cell source can be further described in 

terms of maturity: that is, differentiated cells and stem cells (Griffith and Naughton, 2002). 

The main advantage of using differentiated primary human osteoblasts in the manufacture of 

bone equivalents is the elimination of interspecies differences and retaining the cell 

phenotype in vitro. However, growth and differentiation of primary human osteoblasts are 

affected by both donor age and site of cell origin, which may result in heterogeneous cell 

populations that exhibit phenotypic differences (Martínez et al., 1999). In addition, 

osteoblasts have a finite lifespan and limited proliferative potential which gradually declines 

until growth is irreversibly arrested as cells progress to senescence. This poses the risk that 

cell expansion may be insufficient to create a clinically relevant tissue should inadequate cells 

originally be harvested (Fisher, 2013).  

Stem cells, in contrast, which include human mesenchymal stem cells (hMSCs), human 

embryonic stem cells (hESCs), and induced pluripotent stem cells (iPSCs), have a unique 

capacity for self−renewal, potency, and differentiation into various specialised cell types 

(Bhagavati, 2015). hMSCs are self−renewing and have the potential to be harvested and 

differentiated into bone−forming cells if cultured in the presence of β−glycerophosphate, 
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dexamethasone and ascorbic acid (Jaiswal et al., 1997; Coelho and Fernandes, 2000). Their 

potential in clinical applications has been investigated in a number of in vivo and in vitro 

studies, whereby regeneration of bone has been observed (Khojasteh et al., 2017; Weinand 

et al., 2016; Yuan et al., 2016). However, despite the many encouraging results, hMSCs carry 

several limitations from a tissue engineering perspective. The availability of hMSCs is 

extremely limited; the amount in bone marrow, for instance, is 1: 100,000 nucleated cells (El 

Tamer and Reis, 2009). In addition, progressive loss of functionality upon in vitro expansion 

has been reported (Wagner et al., 2008; Kim et al., 2009). Moreover, several studies have 

pointed out that certain culture conditions may affect the osteodifferentiation of hMSCs, 

including: seeding density (Zhou et al., 2011), co-culture with different cell types ((Seebach et 

al., 2010; Henrich et al., 2013), tissue source (Niemeyer et al., 2010; Yang et al., 2013), ), and 

presence of specific growth factors (Biver et al., 2012). 

Pluripotent hESCs derived from discarded human embryos (Shamblott et al., 1998; Thomson 

et al., 1998) also carry the potential to deliver an unlimited source of homogenous cells for 

bone engineering applications (Bielby et al., 2004; Bigdeli et al., 2010). However, the use of 

these cells appears to carry a number of risks, including teratoma formation and failure to 

consistently form bone (Przyborski, 2005), immune rejection following transplantation (Tan 

et al., 2014), and the ethical/ legal concerns associated with hESCs (Santos and Ventura-Junca, 

2012); each of these risks hampers the potential use of hESCs in the clinical setting.  

Progenitor cells derived from hESCs may provide an alternative to hESCs for construction of 

bone substitutes (de Peppo et al., 2013b; Kim et al., 2008). However, the long-term safety and 

stability of bone engineered from these cells remain questionable. 
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Recently, iPSCs derived from the genetic reprogramming of somatic cells (Takahashi et al., 

2007; Yu et al., 2007) have been introduced as an attractive source of stem cells and have 

displayed an osteogenic capability similar to, or higher than, hMSCs (Bastami et al., 2017; de 

Peppo et al., 2013a; Jin et al., 2013). The major concern in the clinical application of iPSCs 

remains the possibility of tumorigenesis associated with using genetically modified cells (Uri 

and Nissim, 2011). 

In addition to normal human cells, human cell lines have been used in TE models, although 

their use has been limited to basic bone research. They have the advantages of carrying a 

relatively stable phenotype, are easy to maintain in culture compared to primary cells, allow 

large cell numbers obtained, and lack the need for isolation. Many bone−related cell lines 

have been developed and characterised, including human osteosarcoma cell lines SaOs−2 and 

MG-63 (Czekanska et al., 2012). However, progressive phenotypic changes induced by 

extensive passaging of the cell lines presents a limiting factor for their utility in tissue 

engineered models (Leis et al., 1997). In addition, cell lines cannot carry all phenotypic 

features of conventional bone cells, as they are normally stage arrested. Moreover, the 

proliferation of malignant cells is non-physiologic due to the disturbances of contact inhibition 

mechanisms and the genetic and epigenetic aberrations of cell cycle control. Although cell 

lines demonstrate a number of similarities with primary human osteoblasts, particularly in 

terms of genetic expression and mineralisation, no bone−derived cell line has been found to 

faithfully reproduce the characteristics of normal osteoblasts when used in TE models 

(Czekanska et al., 2014). 

1.4.2.2.  Animal cells 

Due to the limitations associated with bone cells sourced from human, normal bone cells 

isolated from other species such as rat, bovine, and pig provide an alternative for in vitro 
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research model. The main advantage, compared to human cells, is their ease of accessibility 

and attainability so as they can be obtained from different sites. In addition, the selection of 

age, sex, and weight of the donor animal can be more controlled. The interspecies differences, 

on the other hand, represent a distinct disadvantage that makes extrapolation difficult 

(Pearce et al., 2007).  

In addition to the normal animal cells, animal cell lines such as mouse cell line (MC3T3E1) 

(Czekanska et al., 2012) and rat osteosarcoma (ROS) cell line (Machida et al., 1995) were 

established and considered a popular choice for in vitro studies due to ease of culture and 

large cell yield. Nevertheless, the decline in proliferation and inconsistency in cell cycling 

which associated with high passage constitute a limiting factor (Grigoriadis et al., 1985). 

1.4.3. Scaffold in BTE  

1.4.3.1. Role and requirements of bone scaffold 

According to the interaction between the biomaterial and its biological environment, three 

generations of biomaterials have been developed, namely, bioinert, bioactive, and smart or 

gene-activating material (Hench and Polak, 2002).  

Contrary to what was thought for many years that scaffolds are a mechanical construct that 

acts as a carrier for cells and should be bioinert to avoid any foreign body reaction or scar 

formation, trend has shifted toward the concept of bioactive materials that have bio 

instructive role in stimulating the body’s own repair process through guiding stem cell 

proliferation and differentiation to regenerate lost tissues (Ben-Nissan et al., 2014). The third 

generation is being designed to elicit specific cellular responses at a genetic level through a 

molecular modification of material. Such an informative role of “smart scaffold” can be 

achieved through control of the structural design or modifying surface properties by, for 
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example, adding nanoparticles, growth factors, or ECM-like molecules (Motamedian et al., 

2015).    

Ideally, several characteristics should be available in the chosen material to serve as a scaffold 

for BTE (Table 1.1.). However, no absolute advantageous biomaterial could be used for 

scaffold fabrication because every type has inherent drawbacks, instead, the selection 

depends on the particular application. 

Table 1. 1. The ideal characteristics of scaffold for BTE. 

 Criterion Definition  Reference 

1 Biocompatible 

 

Capable of supporting normal cellular 

activity without local or systemic side 

effect. 

(Williams, 2008) 

2 Biodegradable 

 

Varies according to the application. For 

example, 3−6 months in the 

craniomaxillofacial area or 9 months in 

spinal fusion 

(Lichte et al., 2011) 

3 Porous 

 

Porosity is the ratio of the volume of open 

space to the total volume of the sample. 

Multiscale porosity is required with an 

optimal size of 300−500 µm for cell 

penetration, vascular invasion, and 

nutrients delivery. 

(Thavornyutikarn et al., 

2014; Tellis et al., 2009) 

 

4 Interconnected Interconnectivity is the degree of 

communication between pores in a 3D 

environment 

(Yao et al., 2006) 

5 Non-

homogeneous 

Multi-layered or gradient scaffolds that 

better mimic its original structure. 

(Atesok et al., 2016) 
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6 Osteoconductive 

 

Allows cells adherence, proliferation, and 

matrix secretion. 

(Daculsi et al., 2013) 

7 Osteoinductive Induces progenitor cells recruitment and 

differentiation via biomolecules signalling 

(Daculsi et al., 2013) 

8 Mechanical 

properties  

Comparable to the natural compressive 

strength of cancellous (2−20 MPa) and 

compact (100−200MPa) bones. 

(Olszta et al., 2007) 

9 Induce 

vasculogenesis 

Forms new blood plexuses following the 

implantation and supports nutrient 

transport 

(Gu et al., 2013) 

10 Sterilisable Can be sterilized without altering its 

properties 

(Thavornyutikarn et al., 

2014). 

 

1.4.3.2. Biomaterials for bone scaffold 

The current available biomaterials used for BTE can be grouped into ceramics and glass, 

natural and synthetic polymers, metal, or composite scaffold that is made up of two or more 

biomaterials such as a scaffold comprised of both ceramic and polymer (Bose et al., 2012) 

(Table 1.2.). Calcium phosphate bioceramics including HA, tricalcium phosphate (TCP), and 

biphasic calcium phosphate are promising candidates in BTE as their structure, chemical 

composition and properties in term of osteoconductivity and biocompatibility reflect the 

mineral component of bone matrix (Sulaiman et al., 2013; Feng et al., 2014). However, the 

brittleness, difficulty in processing, and a slow degradation rate are considered the main 

drawbacks (Ferracane et al., 2014b). Biodegradable polymers, by contrast, such as collagen 

and polylactic acid are biocompatible, versatile, and flexible therefore they can be processed 

easily (Jafari et al., 2017). Nevertheless, the weakness and the possibility of sudden loss of 
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their mass and mechanical integrity are among the major concerns regarding the use of 

biodegradable polymers as a scaffold, particularly in hard tissue applications (Yarlagadda et 

al., 2005). Biodegradable metals such as magnesium alloys that possess mechanical 

properties comparable to those of bone and degrade naturally within an aqueous 

environment may have higher mechanical properties and fracture toughness in comparison 

to biodegradable polymers (Yusop et al., 2012).
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Table 1. 2. Types of biomaterials used as a scaffold in BTE. 

Class Example Advantages Disadvantage Reference 

Ceramic HA • Biocompatible. 

• Osteoconductive 

• Similar to the chemical 
structure of inorganic 
phase of bone. 

 

• Slow biodegradation 

• Difficult to shape due to 
hardness, fragility, and 
brittleness 

(Petrovic et al., 
2012) 

 

TCP Same to above • Rigid and fragile 

• Faster resorption rate  

(Miño Fariña et 

al., 2012) 

Bioglass • Biocompatible 

• Osteoconductive 

• Bioactive 

• Promote angiogenesis 

• Enhance cell adhesion 
and proteins adsorption 

• Easy to control the 
chemical composition 

• Controlled degradation 
rate 

• Brittleness 

• Low resistance to crack due 
to low strength and fracture 
toughness 

(Fu et al., 2011) 

Polymers− 

Natural 

proteins 

Collagen, fibrin, 

alginate, silk fibroin, 

Hyaluronic Acid 

• Biocompatible 

• Biodegradable without 
inflammation bioactive 

• Poor mechanical strength 

• Rapid resorption 

(Polo-Corrales 

et al., 2014) 
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Class Example Advantages Disadvantage Reference 

Polymers− 

Natural 

Polysaccharides 

Chitosan 
 
 
 

• Biodegradable 
biocompatible 

• Has an antibacterial and 
bioadhesive properties 

• Promote wound healing 

• Poor mechanical strength 

• Rapid resorption 

(Polo-Corrales 

et al., 2014) 

Polymers− 

Synthetic 

 

Polyglycolic acid 

(PGA) 

• Versatile  

• Reproducible 

• Thermoplastic so it can be 
shaped easily 

• Inflammatory or immune 
reaction due to acid release 
in enzymatic biodegradation 

• Mechanical stability is of 
limited duration 

• Less biocompatible than 
natural 

• Not bioactive 

• Rapid resorption 

• Low solubility in organic 
solvent 

(Carletti, 2011) 

poly-L-lactide acid 

(PLLA) 

• Degrades slower and 
dissolves easier than PGA 

• Reproducible 
 

• The potential to cause 
immune and foreign-body 
reactions because it does nor 
degrade completely 

• The mechanical stability is of 
limited duration 

poly-ε-caprolactone 

(PCL) 

• Slow degradation rate 

• Reproducible 

• Good workability 

• Inflammatory or immune 
reaction 

• Mechanical stability is of 
limited duration 
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Class Example Advantages Disadvantage Reference 

Polymers− 

Synthetic 

 

Hydrogel • Modified easily 

• Biocompatible 
Biodegradable 

• Contracted 

• Lack stiffness  

(Polo-Corrales 

et al., 2014) 

Metal Titanium mesh • High mechanical 
strength and 
fracture toughness 

• Biocompatible 

• Corrosion may release toxic 
particles affecting the 
biocompatibility and induce 
an inflammatory reaction 

•  Poor stimulation of new 
bone formation due to the 
elastic moduli which does 
not correspond with natural 
bone 

 

(Chen et al., 

2007) 

Composite PGA/β−TCP • Better ability for 
osteogenesis, 

mineralization and 

biodegradation than HA 

• Lack of osteoinductivity (Cao and 

Kuboyama, 

2010) 

Bioglass 45S5 and poly (D, 

L-lactide) polymer 

Improved 
mechanical 
properties and 
resorption rate 

Reaction with polymer 

changes the bioglass surface 

properties and compromised 

its bioactivity 

(Abdollahi et 

al., 2013) 
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Class Example Advantages Disadvantage Reference 

Composite Poly (b-hydroxybutyrate-

co-b-hydroxyvalerate) 

(PHBV) microsphere and 

poly (L-lactic-coglycolic 

acid) (PLGA). 

• Supports drugs 

and growth factors 

delivery 

• Changes in the surface 

topography and decrease 

porosity due to dehydration 

shrinkage 

(Huang et al., 

2010) 

hyaluronic acid-gelatine • Good mechanical 
property 
Biocompatible 

• High porosity 

• Hydrophilic 

• Suboptimal cell adhesion due 
to negative cell-scaffold 
interaction 

 

(Linh et al., 

2013) 

Nano HA/polymer • Promote better 
cell adhesion and 
distribution 

• No significant 
inflammatory 
response 

• Biocompatible 
Improved 
mechanical 
properties 

Unknown mechanism of 
cellular proliferation and 
differentiation 

(Sun et al., 

2011) 
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1.4.3.3. Manufacturing technologies for bone scaffold  

To date, numerous techniques have been developed to fabricate 3D scaffolds. These 

techniques can be categorized into two principal groups: conventional fabrication 

technologies and solid free form (SFF) techniques; otherwise termed as rapid prototyping 

(RP). Each of these methods produces different characteristic features such as mechanical 

properties, porosity, and interconnectivity (Bose et al., 2018; Thavornyutikarn et al.). The 

following sections review the main conventional and SFF approaches used in BTE. 

1.4.3.3.1. Conventional fabrication technologies 

In these techniques, the desired conformation of the scaffold is obtained by subtracting parts 

of the material from the initial block (Thavornyutikarn et al., 2014).  

1.4.3.3.1.1. Solvent-casting and particle leaching 

In this technique, a polymer solution is dissolved in a solvent with uniformly distributed 

porogen particles of a particular size. Following solvent evaporation, a salt 

particles−embedded matrix is left behind, which is then immersed in water for salt leaching. 

The major advantages of this method are simplicity, high scaffold porosity, and the feasibility 

to control pore size and mechanical properties through adjusting the size of the particles 

(Annabi et al., 2010). For example, a nanohydroxyapatite−nylon composite scaffold was 

fabricated by using particle leaching. The resultant scaffold possessed high porosity with 

200−500 µm pore size and mechanical properties comparable to native cancellous bone 

(Mehrabanian and Nasr-Esfahani, 2011). However, the main limitation of this technique is the 

very limited control of the interconnectivity of the pores in terms of degree and orientation. 

In addition, the need for removing the solid particles implies a limitation in shape which is 

restricted to thin sheets or tubes that are assembled later to a large construct. Finally, the use 
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of cytotoxic organic solvents requires a lengthy washing time to ensure complete removal of 

solvent and to reduce the risk of cell death (Annabi et al., 2010). 

1.4.3.3.1.2. Freeze−drying 

Freeze-drying, or lyophilization, involves dissolving a synthetic polymer in a suitable solvent 

then cooling the polymer solution down below its freezing point to produce thermodynamic 

instability that causes phase separation. The solvent is then removed by sublimation, leaving 

behind voids in the regions it previously occupied. The benefits of this method are the ability 

to incorporate biological factors due to the absence of high temperature and the possibility 

to use a wide range of natural and synthetic polymer (Roseti et al., 2017). However, irregular 

pores, lengthy processing time, high energy consumption, and the use of cytotoxic solvents 

limit the use of this technique (Ho et al., 2004). 

1.4.3.3.1.3. Gas foaming 

In this technique, a polymer mould is pressurized with inert gas foaming agents such as 

nitrogen or carbon dioxide until it is saturated with gas bubbles. The bubbles consequently 

form pores due to the thermodynamic instability that follows pressure dropping. This process 

produces a sponge−like scaffold with pore size ranging from 30 to 700 µm and 85 % total 

porosity. Although this method eliminates the need for cytotoxic solvent, the excessive 

heating during compression and closed, non-interconnected pores which may pose diffusion 

limitations constitute the main drawbacks (Thavornyutikarn et al., 2014).  

1.4.3.3.1.4. Thermally induced phase separation  

This low-temperature process involves the use of a volatile organic solvent of a low melting 

point to quench a polymer solution and to induce phase separation. This forms a polymer−rich 

phase that solidifies and a polymer-poor phase that evaporates; leaving a porous nanoscale 

network (Roseti et al., 2017). The principal advantage of this method is that various 
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architectures and high porosity can be obtained by controlling several parameters such as 

separation temperature, polymer concentration, and types of polymer and solvent 

(Molladavoodi et al., 2013). Despite high porosity, the small pore size of 50−500 nm limits the 

usefulness of such scaffolds in BTE and makes them more suitable for growth factors or drug 

delivery (Smith et al., 2009; Qiu et al., 2016). 

1.4.3.3.1.5. Sol-gel technique 

The sol−gel process is based on the polymerization of metal alkoxide and the formation of sol 

by the addition of surfactant followed by condensation and gelation reaction. This technique 

allows for the fabrication of ceramic or glass materials with different forms, including 

spherically shaped powder, ceramic fibres, thin-film coating, inorganic membrane, and 

porous aerogel materials (Thavornyutikarn et al., 2014). In addition, it produces an open 

interconnected porosity and pore sizes in the range of 300−600 µm. However, the poor 

mechanical properties associated with this method constitute the main disadvantage 

(Goudouri et al., 2016). To overcome this problem, (Chung et al., 2016) developed a hybrid 

bioactive glass scaffold by adding self−hardening copolymers with different architectures that 

significantly improved the mechanical properties without compromising biocompatibility. 

1.4.3.3.1.6. Electrospinning  

Electrospinning utilizes an electrical charge and polymer solution to draw fine micro or 

nanofibres and creates a highly porous scaffold with interconnected pores. The diameter and 

pattern of the fibres can be adjusted through a number of factors, including the viscosity, 

molecular weight and charge density of polymer, as well as the strength of the electrical field 

(Pham et al., 2006). The high surface area/volume ratio of nanoscale fibres allows for efficient 

delivery of loaded bioactive factors. Li et al. (2015) developed nanoparticle−embedded 

electrospun nanofibre for dual delivery of BMP−2 and dexamethasone. The scaffold strongly 
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induced osteogenic differentiation in vitro and enhanced the repair of a bone defect in vivo.  

However, the disadvantage of his method is the use of a cytotoxic organic solvent (Pham et 

al., 2006). 

1.4.3.3.2. Limitation of conventional fabrication techniques 

Although conventional methods have been widely used in BTE, they are incapable of 

producing scaffold with full interconnectivity and precisely controlled pores in terms of size, 

morphology and spatial distribution. In addition, some of these methods are manual based. 

Therefore, they are labour intensive and difficult to reproduce. Another limitation is the need 

for organic solvent and porogens, which are cytotoxic, and their residues may cause 

inflammatory responses (Hutmacher, 2000). 

1.4.3.3.3. Solid free−form (SFF) techniques  

This technology is based on a computer-aided design to fabricate a custom-made construct. 

Unlike subtractive conventional methods, SFF is an additive process in which scaffold is 

manufactured in a layer−by−layer manner built according to its computerised 3D image (Bose 

et al., 2018). SFF offers a number of substantial benefits that counteract the limitations 

associated with conventional methods. First, a customised, patient−specific design can be 

obtained by using computerised modelling. Second, a scaffold with high porosity (>90 %), full 

interconnectivity and consistent pore morphology can be easily achieved with high accuracy 

and minimum labour (Thavornyutikarn et al., 2014). Third, a functionally graded scaffold of 

different porosities and mechanical properties can be produced (Kawai et al., 2017). Finally, 

it is solvent and porogen−free, which makes the incorporation of some bioactive molecules 

such as VEGF feasible (Akkineni et al., 2015). To date, the main SFF techniques are 

stereolithography (SLA), selective laser sintering (SLS), fused deposition modelling (FDM), 3D 

printing (3DP) and bioprinting (Roseti et al., 2017).   
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1.4.3.3.3.1. Stereolithography (SLA) 

This process is based on the solidification of a photosensitive liquid resin by 

photopolymerisation. Although this technique shows excellent reproducibility and high 

accuracy and resolution, the toxicity and irritation caused by photosensitive materials and the 

shrinkage of the polymer due to polymerisation are considered to be the main limitations of 

this process  (Melchels et al., 2010). 

1.4.3.3.3.2. Selective laser sintering (SLS)  

SLS employs a CO2 laser beam to sinter or fuse selected regions of a tightly compacted powder 

made of a thermoplastic material forming a material layer. Compared with SLA, SLS enables 

the processing of powder−based material by melting and does not use any cytotoxic 

chemicals or organic solvent. In addition, no supporting structures are required for the model 

during processing since support is provided by the unprocessed powder (Mazzoli 2013). 

Nevertheless, the heat generated by the laser beam and the time that the polymer powder is 

exposed can lead to the deterioration of the powder’s properties (Pham et al., 2008). Another 

problem with this technique is the extreme difficulty in removing powder trapped inside the 

small pores, which may adversely affect cell growth or induce an inflammatory reaction 

(Thavornyutikarn et al., 2014). 

1.4.3.3.3.3. Fused deposition modelling (FDM) 

In FDM, the filament material is placed into two rotating rollers and the molten thermoplastic 

material is extruded from a movable nozzle in XY directions and deposited on to a platform. 

When a layer is completed, the platform (Z axis) is lowered and the process is repeated. Low 

cost, lack of organic solvent, the ability to form a construct with high porosity and full 

interconnectivity are considered to be the advantages of this technique (Roseti et al., 2017). 

However, the main difficulty of FDM is the material selection, which needs to be in the form 
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of fibres with a specified size. Furthermore, the effect of high temperature on the raw 

material and inadequate resolution constitute another limiting factor (Chen et al, 2007).  

1.4.3.3.3.4. 3D printing (3DP) 

3DP enables layer−by−layer scaffold fabrication by using one of three main technologies: 

inkjet, extrusion or laser-assisted printing (Mandrycky et al., 2016; Obregon et al., 2015). This 

available range of techniques facilitates precise fabrication of 3D scaffolds with a defined 

shape, size, porosity and pore size distribution, which can have a significant impact on cell 

proliferation, differentiation, and vascularisation (Cavo and Scaglione, 2106; Ferlin et al., 

2016; Wang et al., 2015). They also allow for scalable fabrication of complex designs using 

various biocompatible materials; thereby providing an optimal cell microenvironment. In 

addition, the physical properties of the scaffolds such as compressive strength, toughness and 

elastic modulus can be optimised by adjusting the layer thickness and printing orientation 

(Farzadi et al., 2014). Moreover, it enables the incorporation of growth factors such as the 

vascular endothelial growth factor to enhance vasculogenesis (Fahimipour et al., 2017). 

However, to date, the clinical translation of construct containing growth factors is limited by 

rapid clearance from the implanted site, short effective half-life, low protein stability and 

rapid deactivation by enzymes at body temperature (Zhenming et al., 2017). Research is being 

conducted to design a delivery system for optimal control of spatial release and to reduce the 

dose such as micro and nanocontact printing, layered and gradient scaffold, and modular 

assembly (Samorezov and Alsberg, 2015). The rough surface finish, which may affect the 

resolution of the scaffold, is considered to be the main limitation of the 3DP method. 

1.4.3.3.3.5. Bioprinting 

In bioprinting, cell−laden biomaterials are dispensed with micrometre precision to form 

tissue-like structures. It offers scalability, cost−effectiveness, high−resolution cell deposition 
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and great precision relating to the spatial distribution of cells, proteins, growth factors and 

drug particles. These advantages have led to the development and subsequent applications 

of this technology to include broad applications such as clinical transplantation, drug 

screening and high−throughput assays, cancer research, and tissue engineering and 

regenerative medicine (Ozbolat et al., 2016).  

Bioprinting of vascular and clinically relevant organs remains elusive due to several challenges 

such as the need to incorporate various cell types, limited mechanical and structural integrity, 

and difficulties in integrating a vascular network down to the level of capillaries (Ozbolat and 

Yin Yu, 2013). However, some thin, avascular tissues have been successfully bioprinted such 

as skin, hollow blood vessels and avascular cartilage (Aljohani et al., 2017).  

Efforts to bioprint bone are ongoing towards the fabrication of scalable and composite 

constructs containing skin, muscle, nerve, and cartilage, although the mechanical properties 

of these constructs are still inferior to native bone and require more extensive investigation 

(Datta et al., 2017). Recently, successful bioprinting of composite constructs comprised of 

mandibular bone with open vascular channels and osteochondral tissue has been 

demonstrated (Hyun-Wook et al., 2016). Moreover, attempts are in progress to enhance 

angiogenesis and osteogenesis through culturing stem cells with osteogenic or angiogenic 

growth factors such as BMP−2 and VEGF, respectively. Cunniffe et al. (2017) demonstrated 

the dual delivery of therapeutic genes encoding bone morphogenic protein and transforming 

growth factor from gene−activated bioink prepared from alginate and nanohydroxyapatite 

(nHA) combined with bone marrow−derived MSCs. Fourteen days post bioprinting, cultured 

cells displayed robust osteogenesis and matrix deposition in vitro as well as superior 

vascularisation and mineralisation in vivo.  
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1.4.3.3.4. Limitations of SFF techniques 

In spite of the advantages of SFF, there are some technical limitations that should be 

addressed for future improvements. First, each technique utilises a specific form of material. 

For example, fine powder is used for SLS, whilst thermoplastics are useful for FDM. Using the 

material can be challenging if the material is deemed suitable for a particular application but 

cannot be easily prepared to meet the required process. Second, printability of any material 

does not necessarily guarantee its usefulness for scaffold fabrication because successful RP 

relies on the bonding strength between layers. Therefore, the material needs to be 

self−supporting for layer-by-layer fabrication. Third, for bioprinting, new methods of material 

solidification should be developed that preserve the integrity of the printed construct without 

compromising cell survival (An et al., 2015). For example, in extrusion printing, hydrogels are 

solidified through either thermal processes or post-print cross-linking, which may have 

potentially harmful effects on the cells. Lastly, the flexibility of printing parameters such as 

temperature or dispensing pressure (shear stress) have become limited when using cell-laden 

materials, as because sudden changes in the environment around the cells may significantly 

reduce cell viability (Nair et al., 2009). 

1.4.4. Bioactive factors in BTE  

The role of numerous bioactive molecules such as fibroblast growth factors, insulin-like 

growth factors, and VEGFs in bone formation has been investigated (Allori et al., 2008). 

However, only two recombinant human proteins have been widely used and approved by the 

Food and Drug Administration (FDA) for clinical purposes: bone morphogenic protein−2,−7 

(rhBMP-2,-7) and platelet−derived growth factor−BB (rhPDGF-BB) (Lynch, 2008). 
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BMPs, which belong to the transforming growth factor−B superfamily, are group of 30 

members family with various cellular effects. For example, BMP−2, 4, 6, 7 and 9 showed 

evidence to induce mineralisation, OC production, and orthotopic ossification. However, 

BMP−3 negatively regulates bone formation and exerts an inhibitory effect of orthotopic 

ossification induced by BMP−2, 6 and 7 (Carreira et al., 2014). Platelet-derived growth factors, 

by contrast, are the strongest chemotactic factors relating to osteoblasts and stem cell 

precursors and have a potent mitogenic and activating effect on osteoclasts, fibroblasts, and 

endothelial cells (Allori et al., 2008). 

Although these bioactive cues have an advantageous effect on bone formation, their 

application in BTE may be complicated by two factors. First: evidence indicates that the 

significant effect of these biomolecules is dose and duration dependent, which may be 

difficult to achieve, particularly with regard to the clinical aspect (Lieberman et al., 2002). For 

example, a high risk of cancer has been associated with the clinical use of concentrated BMP 

products (AMPLIFYTM, rhBMP-2, 40mg), which may suggest the relation of high dose with 

carcinogenic effect (Devine et al., 2012). Second: in order to recapitulate the complex process 

of embryonic bone formation or bone regeneration, a simultaneous and/or stepwise delivery 

of a combination or cocktail of factors is required because these molecules act synergistically 

rather than solely. For example, insulin-like growth factors enhance bone cells’ migration 

whereas BMPs induce osteoprogenitor cells’ differentiation and proliferation (Allori et al., 

2008). 

To support prolonged release and activity of multiple growth factors, several delivery 

strategies have been envisioned. A multilayer fibrous scaffolds incorporating more than one 

growth factor achieve a better result by simultaneous and sustained delivery of multiple 

biological signals (Shah et al, 2014; Yilgor et al., 2009). Microsphere carriers and 
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nanostructured colloidal gelatine gels loaded with numerous bioactive cues are another 

controlled release strategy (Van Der Stok et al., 2013). 

1.4.5. Environmental factors in BTE 

In BTE, the concept of emulating the native environment is gleaned from an understanding of 

normal cell behaviour. Normally, to survive and grow, cells must be able to import nutrients 

from their surroundings and regulate the concentration of various inorganic ions. This could 

be achieved by simple diffusion, through which only a few small non-polar molecules can 

transfer across the cell membrane while the vast majority cannot. Instead, their movement 

depends on active transport, which needs a driving force with an expenditure of energy to 

move the solute “uphill” against its concentration gradient (Alberts, 2013). 

Static cell culture techniques rely on diffusion transport which is sufficient to nourish only a 

thin superficial layer approximately 100−200 µm, in contact with the medium. As the cells 

increase in number so does metabolic demand and the build−up of waste products. 

Consequently, the cells in the tissue interior are deprived of oxygen and a nutrient source. As 

such, maintenance of cells’ viability entails an effective vascular supply replicating the normal 

convective-diffusive transport. To circumvent this problem, several bioreactor technologies 

have been developed such as a spinner flask, rotating wall vessels, and the perfusion system 

(Chen and Hu, 2006; Dermenoudis and Missirlis, 2010; Zhong, 2010). A comparison of the 

three systems carried out by (Goldstein et al., 2001) showed that the perfusion bioreactor 

yielded the most uniform cell distribution throughout the scaffold with a significant 

expression of ALP, while in the spinner and rotating vessels the cell density demonstrated 

preferential distribution towards the scaffold exterior. In BTE, the bioreactor provides 

another advantage of exposing the cells to mechanical conditioning caused by fluid shear 
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stress and this enhances osteogenic expression and produces more minerals and proteins 

(Gaspar et al., 2012; Martina and Giuseppe Maria de, 2014). 

1.5. Oral mucosa engineering 

1.5.2. Strategies of engineered oral mucosa (EOM) 

EOM has offered an opportunity to bypass the shortcomings associated with autografts 

through many strategies which aim to emulate normal tissue, both anatomically and 

physiologically. As the normal oral mucosa consists of epithelium and lamina propria, EOM 

consequently falls into one of two categories: split thickness (epithelium only) or full 

thickness, which reconstructs both epithelium and connective tissue layers separated with a 

continuous basement membrane (Moharamzadeh et al., 2007). 

1.5.2.1. Split−thickness EOM 

After the serial cultivation of human epidermal keratinocytes on a murine 3T3 feeder cell layer 

was first described by Rheinwald and Green (1975) many clinical studies have shown the 

advantages of cultured autologous epithelial sheets for the treatment of skin wounds 

(Navsaria et al., 1995; Ronfard et al., 2000). The method was then translated for culturing 

gingival epithelium, which was useful as an autograft for the correction of mucosal defects 

such as peri−implant soft tissue loss or defects resulting from pathological resection (Ueda et 

al., 1998; Bodner and Grossman, 2003).  

In order to exclude xenogenous products, the original culture method has been modified to 

a feeder−cell free culture (Lauer, 1994; Ilmarinen et al., 2013). In addition, a temperature 

responsive polymer poly (N-isopropyl acrylamide) approach has been developed to control 

cell detachment and harvesting via temperature changes instead of enzymatic treatment 

(Nishida et al., 2004). However, the intraoral grafting of epithelial sheets encountered many 
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drawbacks that included a relatively long keratinocyte growth time, low graft acceptance rate, 

wound contraction, handling difficulty due to a thin, friable layer, and blister formation 

following minor mechanical forces (Izumi and Feinberg, 2002). 

1.5.2.2. Full−thickness EOM 

An ideal full−thickness EOM that resembles normal oral mucosa comprises a lamina propria, 

a continuous basement membrane separating the lamina propria and the epithelium, and a 

stratified squamous epithelium. The lamina propria can be formed by using a fibroblast 

−infiltrated 3D scaffold. It has been shown that fibroblasts play an important role in 

keratinocyte adhesion, epithelial morphogenesis, and the formation of an 

epithelial−connective tissue junction (Saintigny et al., 1993). In addition, fibroblasts influence 

the phenotype and keratin expression of the overlying epithelial cells (Okazaki et al., 2003). A 

stratified squamous epithelium, on the other hand, can be achieved by culturing oral 

keratinocytes at the air-liquid interface in a medium containing the keratinocytes’ growth 

factors such as the epidermal growth factors (Dongari-Bagtzoglou and Kashleva, 2006a; Izumi 

et al., 2000).  

1.5.2. Components of EOM 

1.5.2.1. Cells for EOM 

The type of cell is an important factor in the construction of EOM. Human oral fibroblasts can 

be obtained from the connective tissue of oral mucosa while oral keratinocytes can be 

isolated from the hard palate (Cho et al., 2000), gingiva (Yoshizawa et al., 2004) or buccal 

mucosa (Bhargava et al., 2004). In addition to normal human cells, immortalised human 

keratinocytes such as HaCaT cells (Boelsma et al., 1999) and OKF6/Telomerase reverse 

transcriptase (TRET) (Dongari-Bagtzoglou and Kashleva, 2006a) as well as TR146 

tumour−derived cells (Schmalz et al., 2000) have been used in the construction of oral mucosa 
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test models. Although these cell lines can be utilised through extended passages, the ultimate 

steps of terminal differentiation do not occur (Boelsma et al., 1999) and tumour derived−cells 

cannot be used for clinical purposes. 

1.5.2.2. Scaffold for EOM 

Scaffolds used in oral mucosa reconstruction fall into three different categories: “naturally 

derived” such as acellular dermis, “synthetic” such as polymer-based scaffolds, or “hybrid”, 

which are a combination of natural and synthetic matrices (Moharamzadeh et al, 2017). 

Acellular cadaveric dermis (AlloDerm) (Izumi et al., 2013; Izumi et al., 2003) and 

deepidermalised dermis (DED) (Cho et al., 2000; Hildebrand et al., 2002) have been 

extensively used for the preparation of oral mucosal constructs. An ex vivo oral mucosa 

equivalent has been successfully produced by Izumi et al. (2003; 2013) through growing 

autologous oral keratinocytes on AlloDerm without incorporation of fibroblasts. The main 

advantage of this technique is the use of a chemically defined culture that precludes serum 

or any animal−derived constituents, which makes this method consistent with the FDA’s 

regulatory guidelines for clinical use. However, this technique may be deemed suboptimal for 

many reasons. First, from a development standpoint, epithelial−mesenchymal interaction is 

essential for the morphogenesis, differentiation, and complete maturation of oral mucosal 

epithelium (Liu et al., 2011). Second, fibroblasts present in the oral mucosa may participate 

in its unique scarless healing due to the role of fibroblasts in collagen remodelling and the 

secretion of growth factors that accelerate resolution of the inflammatory phase (Enoch et 

al., 2008; Mak et al., 2009; Glim et al., 2013). Third, the non porous synthetic or natural matrix 

results in poor fibroblast infiltration and migration even when the fibroblasts were 

incorporated (Moharamzadeh et al., 2008).  
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Collagen is the major structural component of the ECM where its main role is in mechanical 

integrity (Rajan et al., 2006). Therefore, it has been used as a scaffold for oral mucosa 

engineering either as pure collagen (Masuda, 1996) or as compound collagen−based matrices 

such as collagen−chitosan (Ma et al., 2003) and the collagen−glucosaminoglycan matrix (Ojeh 

et al., 2001). Recently, extracellular protein-based scaffolds such as fibrin and plasma have 

been used to construct autologous oral mucosa equivalents. The results showed a reasonable 

outcome for intraoral grafting with good handling characteristics and no contraction (Llames 

et al., 2014; Peña et al., 2010; Peña et al., 2012). However, the epithelium showed only 

monolayered keratinocytes and negative expression of the proliferation marker, ki67, which 

indicates poor differentiation. 

Synthetic scaffolds such as polycarbonate membranes are used in commercially available 

partial thickness epithelium (SkinEthic and MatTek tissue models). These synthetic matrices 

have good mechanical properties with no risk of disease transmission. A hybrid scaffolds, on 

the other hand, may provide controlled biodegradability and good biocompatibility such as 

for scaffolds made of benzyl esters of hyaluronan (Zacchi et al., 1998). 

1.5.2.3. Culture environment of EOM 

Usually, EOM is cultured in Green’s medium supplemented with serum (Rheinwald and 

Green, 1975). However, in order to eliminate the xenogenetic components present in serum 

and irradiated mouse 3T3 fibroblast feeder layers from human grafts, a tissue−engineered 

oral mucosa equivalent was developed and characterised (Izumi et al., 2000). In addition, 

various methods have been utilised to induce keratinocyte differentiation in 3D models, 

including the addition of calcium, concomitant use of serum and calcium, and the use of lower 

incubation temperatures (Borowiec et al., 2013).   
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1.5.3. Applications of EOM 

1.5.3.1. Clinical applications 

EOM has been developed for both intra and extraoral clinical applications. An oral mucosa 

equivalent of 15 cm2  has been produced using a seeding density of 3 × 1 05 cells/cm2 oral 

keratinocytes in AlloDerm with a thickness of  508.0 µm (Kato et al., 2015). Success in the 

fabrication of EOM in such a large and reproducible way has enabled its use in grafting of 

many congenital and acquired intraoral defects. For example, hemifacial microsomia and 

ankyloglossia are facial congenital anomalies that have been treated by the grafting of 

autologous EOM, although re-grafting was required due to post−operative wound shrinkage 

and the recurrence of ankyloglossia  (Llames et al., 2014). Likewise, the engineering of palatal 

mucosa−like human tissue using a collagen matrix was achieved as a potential graftable tissue 

for cleft palate augmentation (Luitaud et al., 2007; Liu et al., 2008). Satisfactory results have 

been clinically achieved using oral mucosa equivalents in both minor and extensive oral 

reconstructive surgery. Augmentation of mucogingival defects with ex vivo−produced EOM 

was demonstrated in clinical trial, and was assessed in terms of efficacy, safety, rapid 

integration, and vascularization (Izumi et al., 2013). Similarly, optimal functional and aesthetic 

outcomes have been obtained using EOM prelaminated with a fibula flap in the treatment of 

a severely atrophic maxilla or extensive mandibular defects following mandibulectomy (Sieira 

Gil et al., 2015). 

Extra orally, it was found that re−epithelisation of a severely burned cornea can be enhanced 

by oral mucosa epithelial transplants, although the long-term survival of the graft largely 

depends on the stem cells in the basal layer (Chen et al., 2009). The suitability of an oral 

mucosa epithelial sheet was also investigated for the treatment of an oesophageal ulcers 

after endoscopic submucosal dissection, and the findings indicated the possibility of using the 
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epithelial sheet to promote wound healing and re−epithelialisation, and to prevent 

oesophageal stenosis (Takagi et al., 2011). Another example is the use of engineered buccal 

mucosa for substitution urethroplasty in patients with long urethral strictures (Osman et al., 

2015).  

1.5.3.2. Experimental applications 

In vitro EOM modelling is another potential use in a wide range of studies. An oral 

carcinogenesis model was developed by (Colley et al., 2011) to replicate the different stages 

of oral squamous cell carcinoma from dysplasia to early invasion. Such models may facilitate 

the study of the mechanisms of malignant transformation as well as in vitro testing of new 

diagnostic and treatment methods. Investigating the pathogenesis of oral infections such as 

candida albicans using normal or immortalised oral keratinocytes cultured with collagen− 

populated fibroblasts is another example of using EOM models to study the cellular response 

and host defence mechanism against infection (Yadev et al., 2011). The variation in 

permeability, keratinisation, and composition across different regions of EOM also makes it a 

suitable tool for in vitro assessment systemic drug delivery (Hearnden et al., 2012) and 

material biocompatibility (Hearnden et al., 2012; Moharamzadeh et al., 2009). 
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1.6. Challenges and future directions in oral and maxillofacial tissue 

engineering 

Despite the significant progress that has been achieved in BTE, many hurdles are still ahead. 

Some of these limitations pertain to TE itself such as identification of reliable and scalable cell 

source, optimisation of scaffold properties, controlling of the in vitro microenvironment, and 

vascularisation of the engineered tissue (Spicer et al, 2014). Other restrictions are associated 

with commercialisation, manufacturing facilities, and governmental regulations (Ram-Liebig 

et al., 2015).  

The presence of such difficulties may explain the lack of proved and marketable cell−based 

engineered bone products that can address the unmet clinical need regardless of the 

extensive research being conducted in this field. However, it may be worth to mention that 

even the availability of such products does not imply its successful application. For example, 

the commercially tissue engineered transplants (Oral Bone®, BioTissue, Germany), produced 

by seeding periosteal human cells on PLGA bone chips, was compared with autologous iliac 

bone graft in sinus augmentation. The outcome 3 months post operatively was not 

encouraging due to high resorption rate in the engineered bone that reached up to 90 % while 

the autologous graft showed a resorption rate of 29 % (Zizelmann et al., 2007). Such 

unfavorable results may pose a question regarding the long−term stability of any off the shelf 

cellular engineered bone and whether or not this post−operative complication can be 

encountered by using the current materials and techniques. 

Oral mucosa engineering may share the same challenges associated with BTE. While the first 

FDA−approved skin product, Apligraf ® (Organogenesis, Boston, USA), was introduced in 1998 

(Zaulyanov and Kirsner, 2007), the marketing of EOM has lagged behind the engineered skin. 

The first commercially available oral mucosa product, GINTUIT®, received FDA approval in 
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2012 (Charles, 2012). However, the current EOM models cannot be deemed as an identical 

replica of the normal oral mucosa due to manufacturing and biological challenges. Ideally, the 

EOM should be constructed using autologous cells. Therefore, the time elapses between 

biopsy and grafting entails precise coordination between clinic and laboratory to cope with 

the long, complicated, and expensive culture procedures. The biological challenges include 

the introduction of other cells such as immune cells in the lamina propria and the 

incorporation of the vascular components which aids in revascularisation of the construct 

following transplantation (Böttcher-Haberzeth et al., 2010). Moreover, more advanced 

fabrication technologies such as 3D bioprinting may be utilized in the future to generate oral 

mucosal equivalent in the same manner as skin has been recently fabricated (Cubo et al., 

2017; Rimann et al., 2016). 

In addition to aforementioned hurdles, engineering of composite tissues and attaching 

various parts in their normal anatomical relationship poses a considerable challenge 

particularly in OMF region where heterogenous tissues are closely related to each other in a 

relatively small area (Spicer et al, 2014). Although the engineering of many orofacial tissues 

such as bone, teeth, muscles, and cartilage have been investigated (Zaky and Cancedda, 2009; 

Tayebi and Moharamzadeh, 2017), only a few intricately-structured hybrid tissues have been 

developed such as osteochondral structure (Ruan et al., 2017) and bone−periodontal 

ligament complex (Park et al., 2011).  

Bone and overlying mucosal tissues represent the key components in orofacial area. They 

comprise together with cementum and periodontal ligament the periodontal apparatus that 

provides anchorage and support to the teeth in dental jaws (Lang et al., 2015). In addition, 

alveolar bone and masticatory mucosa form the main structure of the hard palate (Nanci, 
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2013). Although engineering of bone and oral mucosa has been extensively investigated, a 

faithful replication of oral structures entails a combination of these heterogeneous tissues in 

a single composite construct. The more in vitro representation of native oral tissue 

arrangement, the more accurate insight in biological, physiological, and pathological 

conditions thereby the gap between translation and basic research is bridged, the progress 

toward clinical application is promoted, and the need for costly in vivo model is reduced. 

Development of an accurate and reproducible human alveolar bone-mucosal model, 

therefore, represents another important step in the process of achieving a utilisable tissue 

engineered orofacial construct. 

To date, to the best of our knowledge, there are no published studies in the current literature 

indicating in vitro TE of a composite alveolar bone−mucosal model. This study was proposed 

to fill this gap by generating such construct using conventional and 3D printing bone 

scaffolding techniques.   
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1.7. Aims and objectives 

1. To develop and assess an in vitro, cell line−based composite bone−mucosal model 

(BMM) using a conventional bone scaffold.  

❖ Characterise an HA/TCP scaffold for the construction of the bone component 

of the BMM. 

❖ Optimise the suitable technique for seeding ROS cells into the HA/TCP scaffold 

to fabricate the bone construct (BC). 

❖ Optimise the culture condition of the BC. 

❖ Assess the proliferation and metabolic activity of the cells in the BC.  

❖ Construct an oral mucosal model (OMM) using a collagen gel scaffold, normal 

oral fibroblasts, and immortalised OKF6/TERT−2 oral keratinocytes. 

❖ Assess the feasibility of combining BC and OMM using a fibrin−based tissue 

adhesive to develop the composite BMM. 

❖ Assess the histological morphology of BMM using decalcified paraffin 

embedding techniques. 

❖ Assess the differentiation status of the mucosal component of the BMM. 

2. To develop and characterise a novel 3D composite human alveolar bone−mucosal 

model (ABMM) based on the conventional bone scaffold and primary cells isolated 

from the native human oral hard and soft tissues. 

❖ Isolate and characterise oral−derived gingival and bone cells, namely 

keratinocytes, fibroblast, and osteoblasts.  

❖ Develop and characterise a human alveolar BC of the planned ABMM using an 

HA/TCP scaffold. 



53  

❖ Develop and characterise a normal human cell−based oral mucosa model 

(OMM). 

❖ Assess the histological features of ground sections taken from the ABMM.  

❖ Analyse the proteins and genes expression of cells within the ABMM using 

suitable markers of cells typically found within bone. 

3. To construct and characterise a composite ABMM using the 3D printed bone scaffold. 

❖ Prepare an injectable β−TCP paste and assess its rheological properties. 

❖ Optimise the printing parameters for printing the β−TCP paste.  

❖  Print a bi−layered β−TCP scaffold that replicates the cortico−cancellous 

alveolar bone architecture. 

❖ Characterise the printed scaffold in terms of microstructure, morphology, 

surface topography, phase composition, mechanical and biological properties. 

❖ Assess the printing−based ABMM qualitatively and quantitatively.  

4. To examine the relevance of the printing-based ABMM in the modelling of oral cancer 

at different progression stages. 

❖ Generate tumour cell spheroids. 

❖ Incorporate tumour spheroids in the ABMM at three distinct anatomical, 

namely epithelium (carcinoma in situ), epithelium and connective tissue layers, 

and connective tissue and bone interface. 
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Chapter 2: Development of a cell line−based 3D 

tissue engineered composite bone−mucosal 

model: a feasibility study 

 

 

 

 

 

 

 

 

 

NB: The work described in this chapter has been published in: 

Almela, T., Brook, I. M. & Moharamzadeh, K. 2016. Development of three-dimensional tissue 
engineered bone-oral mucosal composite models. Journal of Materials Science: 
Materials in Medicine, 27(4), pp 1-8. 
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2.1. Introduction 

Composite TE constitutes a new avenue particularly in the OMF area where a variety of tissues 

are closely associated with each other. Engineering of bone (Ferracane et al., 2014b; Seong 

et al., 2010) and oral mucosa (Moharamzadeh, 2017) has been thoroughly investigated using 

different cell types and biomaterials. Although the use of human primary cells in TE is relevant 

clinically and produce more predictive data experimentally, the difficulties of cell sourcing, 

inherent donor−to−donor variations, and limited proliferative capacity of native cells may 

restrict their usefulness (Olson et al., 2011). To circumvent these ever−presenting problems, 

a plethora of bone cell lines typically isolated from cancerous tissues or derived by 

immortalisation of primary cells are often used (Czekanska et al., 2012; Kartsogiannis and Ng, 

2004). Although the phenotype expressed by cell lines such as rat osteosarcoma (ROS) 

(Machida et al., 1995), human osteosarcoma (SaOs-2) (Rodan et al., 1987a) and mouse cell 

line (MC3T3-E) (Wang et al., 1999) may not accurately reflect the true phenotype of normal 

osteoblasts, these cells are generally easier to culture, have a long lifespan and high 

proliferation rate, and have higher phenotypical stability comparing to primary cells 

(Czekanska et al., 2012). 

Immortalised human cells can divide indefinitely due to the expression of telomerase reverse 

transcriptase (TERT), a cellular ribonucleoprotein which compensates for the inevitable 

telomer shortening thereby preventing growth arrest, and maintains the cell phenotype (Jerry 

and Woodring, 2000; Lee et al., 2004). OKF6/TERT-2 constitutes an example of normal 

epithelial cells immortalised by forced expression of telomerase (Dickson et al., 2000) and 

provides a valuable alternative to primary human oral keratinocytes in TE of the oral mucosal 

equivalent (Dongari-Bagtzoglou and Kashleva, 2006a, Dongari-Bagtzoglou and Kashleva, 

2006b).  
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Aforementioned cell types have emerged to tackle the surge in research related to bone and 

soft tissue engineering and to compensate, to some degree, the unsustainable supply of 

primary human cells. Many studies have been conducted in the development of cell line− 

based TE of bone (Choi et al., 2016; Neufurth et al., 2017b; Sobhani et al., 2017) and oral 

mucosa equivalents (Jennings et al., 2016; Dongari-Bagtzoglou and Kashleva, 2006a; 

Buskermolen et al., 2016), however, the combination of these two entities in a single 

composite construct still needs to be addressed. This work examined the feasibility of 

developing an in vitro TE composite BMM using immortalised epithelial cells and malignant 

bone cells to approximate the natural anatomical structure of alveolar bone with an overlying 

oral mucosa. 

2.2. Aim 

To develop and assess an in vitro, cell line- based, composite bone−mucosal model. 

2.3. Materials and methods 

2.3.1. Routine cell culture conditions 

2.3.1.1. 2D cell expansion 

Three types of cells, namely osteoblast−like rat osteosarcoma (ROS) cells, normal human oral 

fibroblasts (NHOFs), and human telomerase-immortalised oral epithelial cells (OKF6-TERET-

2) were used to construct BMM. Each cell type was cultured in cell culture flasks (Greiner Bio-

one, Gloucestershire, UK) with its specific media and incubated at 37 ˚C with 5 % CO2 in a 

humidified incubator. Cell morphology and growth were monitored by light microscopy and 

the medium was changed every other day until cells reached 80 % confluency when they were 

either passaged or maintained as stock cultures. 
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ROS cell line  

ROS cells were obtained from liquid nitrogen storage in the School of Clinical Dentistry, 

University of Sheffield, UK. This cell line was used due to its availability, ease of culture, the 

culture parameters of this cell line had been already optimised by coresearcher, and the high 

proliferation potential which yields large cell number in short period compared to the lengthy 

and costly culture of primary bone cells. In addition, ROC cells exhibit an osteoblastic 

characteristic in terms of osteogenic markers expression and calcified matrix formation 

(Kartsogiannis and Ng, 2004). Cells were cultured in high glucose Complete Dulbecco’s 

Modified Eagles Medium supplemented with L−ascorbic acid 2 phosphate (CDMEM-LAA) 

(Table 2.1.). 

Table 2. 1. Culture medium of bone cells. Table lists the volume and final concentration (conc.) of 

each component required to prepare CDMEM−LAA medium that supports the growth of bone cells 

(Helfrich and Ralston, 2012). 

Component Volume/amount Final conc. 

Dulbecco’s Modified Eagles Medium 

(DMEM) + GlutaMAX™ (Gibco, Paisley, UK) 

444 ml 89 % 

Foetal bovine serum (FBS) 

(Sigma Aldrich, Dorset, UK) 

50 ml 10 % (v/v) 

Penicillin/Streptomycin (P/S) 

(Sigma Aldrich, Dorset, UK) 

5 ml 

 

100 IU/ml:100 µg/ml 

Amphotericin B 

(Sigma Aldrich, Dorset, UK) 

1.25 ml 0.625 µg/ml 

L-ascorbic acid 2-phosphate (LAA) 

(Sigma Aldrich, Dorset, UK) 

25 mg 50 µg/ml 
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NHOFs 

NHOFs were obtained from liquid nitrogen storage in the School of Clinical Dentistry, the 

University of Sheffield, UK (Sheffield Research Ethics Committee (REC:04/Q2305/78)). Cells 

were cultured in CDMEM (Table 2.2.).  

Table 2. 2. CDMEM culture medium. Table lists the volume and final concentration of each 

component required to prepare CDMEM used for culture NHOFs. 

Component Volume/amount Final conc. 

 DMEM + GlutaMAX™  444 ml 89 % 

 FBS 50 ml 10 % (v/v) 

P/S 5 ml 100 IU/ml:100 µg/ml 

Amphotericin B 1.25 ml 0.625 µg/ml 

  

OKF6-TERET-2 

OKF6-TERET-2 cells were kindly provided by Brigham and Women's Hospital, Harvard Institute 

of Medicine, USA. This cell line was chosen to overcome the shortage of resected gingival 

tissue and the donor-to-donor variations thereby it produces a valuable and reproducible 

model of normal oral epithelial cells. OKF6-TERET-2 were cultured in Green’s medium (Table 

2.3.). The individual stock solutions were prepared as follows: 

1. Adenine  

0.5 g Adenine powder (Sigma Aldrich, Dorset, UK) was mixed with 70 ml distilled water. 1 M 

hydrochloric acid (HCL) was added to the mixture until the powder dissolved completely. The 

solution was made up to 80 ml with distilled water (dH2O) to give a final concentration of 6.25 

µg/ml, filter sterilised and stored aliquots at −20 °C. 
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2. Insulin  

10 mg recombinant human insulin (Sigma Aldrich, Dorset, UK) was added to 1 ml of 0.01 M 

HCL. Once dissolved 9 ml of dH2O is added to give a final concentration of 1 mg/ml, filter 

sterilised and stored aliquots at -20 °C. 

3. 3, 3, 5- Tri-iodothyronine (T3)/Apo-Transferrin 

13.6 mg of T3 (Sigma Aldrich, Dorset, UK) was dissolved in a minimum volume of 0.02 M 

sodium hydroxide. Once dissolved the solution was made up to 100 ml with dH2O. 250 mg 

apo−transferrin (Sigma Aldrich, Dorset, UK) was dissolved in 30 ml of phosphate buffer saline 

(PBS). 0.5ml of the T3 solution was added to 30 ml of the apo−transferrin solution and the 

volume was made up to 50 ml with PBS, filter sterilised and stored aliquots at -20 o C. 

4. Hydrocortisone 

Dissolve 25 mg hydrocortisone (Sigma Aldrich, Dorset, UK) in 10 ml PBS. Stored at 4 °C. 

5. Epidermal growth factor (EGF) 

100 µg of EGF (Thermofisher, USA) was reconstituted in 1 ml of PBS. Aliquoted and stored at 

−20 °C. 
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Table 2. 3. Green’s medium. Table lists the volume and final concentration of each component 

required to prepare Green’s medium. Adapted from (Hearnden, 2011). 

Component Volume Final Conc. 

DMEM + GlutaMAX™  330 ml 66 % 

Nutrient Mixture F12 medium (Hams 

F12) (Gibco,Paisley, UK) 

108 ml 21.6 % 

P/S 5 ml  100 IU/ml:100 µg/ml 

Amphotericin B 1.25 ml 0.625 µg/ml 

FBS 50 ml 10 % (v/v) 

Adenine 2 ml 0.025 µg/ml 

Insulin 2.5 ml 5 µg/ml 

3, 3, 5-Triiodothyronine (T3) 0.5 ml 136 ng/ml 

Apo-transferrin 0.5 ml 5 µg/ml 

Hydrocortisone 80 µl 4 µg/ml 

EGF  25 µl 5 ng/ml 

 

2.3.1.2. Cell passaging 

Cells were passaged by removing media and washing twice with calcium and magnesium free 

PBS before incubation with 0.25 % (v/v) trypsin/ 0.02 % (v/v) ethylene diamine tetra acetic 

acid (EDTA) (Sigma Aldrich, Dorset, UK) at 37 °C, 5 % CO2 for 5 minutes to detach the 

monolayer from the flask surface. CDMEM was added at a 1:1 (v/v) ratio to inhibit further 

enzymatic activity of trypsin. Cells were centrifuged at 190 × g for 5 minutes, resuspended in 

the appropriate cell culture medium at the required seeding density (Table 2.4.) into tissue 

culture flasks. 
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Table 2. 4. 2D seeding densities of cells used in cell line-based BMM 

Cell type Seeding density 

ROS 13 × 103 /cm2 

NOFs 7 × 103 /cm2 

OKF6-TERET-2 13 × 103 /cm2 

 

For cell counting, 20 µl of cell suspension was diluted with the viability stain trypan blue 

(Thermofisher, USA) and viable cells were counted using a Neubauer hemocytometer 

(Weber Scientific International, Middlesex, UK) using the equation: 

% of viable cells per milliliter = Number of live cells counted × 10,000 × dilution factor 

                                                              Number of Squares counted  

Higher than 90 % viable cells were used in each experiment. 

2.3.1.3. Cell freezing and cryopreservation 

For long−term storage, cells were passaged and resuspended at 1.5−2 × 106 cells/ml in 

cryoprotectant freezing medium which consisted of 90 % FBS (v/v) with 10 % dimethyl 

sulfoxide (DMSO) (v/v) (Sigma Aldrich, Dorset, UK). One ml of cell suspension was added to 

each cryovial (Greiner bio-one, Gloucestershire, UK) which placed in Mr. Frosty™ freezing 

container (Thermo Scientific, Leicestershire, UK) to achieve a cooling rate of 1oC per minute 

to −80 oC.  After 24 hours in −80, cryovials were transferred to liquid nitrogen storage for 

optimal long−term cell preservation.  

2.3.1.4. Resuscitation of frozen cells 

When required, frozen cells were thawed and rapidly resuspended in appropriate cell culture 

media, centrifuged at 190 × g for 5 minutes to remove DMSO, then pellet resuspended in 

media and seeded into tissue culture flask.   
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2.3.2. Authentication of human cell line  

An accurate data interpretation depends on unambiguous identity of a cell line relative to its 

original source. Contamination, mutation, and misidentification of human cell cultures leads 

to spurious results; therefore, authentication of human cell lines adds confidence to the 

scientific study. Short-tandem-repeat (STR) DNA profiling provides an accurate, reliable, and 

standardized method for authentication of human identity (Nims et al., 2010). Authenticity of 

OKF6-TRET was performed by STR profiling (Appendix I). For that, the DNA was extracted 

using QIAamp DNA Mini Kit (Qiagen) according to the manufacturer’s instructions. The 

concentration of DNA was measured using a NanoDrop 1000 Spectrophotometer 

(ThermoScientific) at 260/280 nm. ABI 3730 DNA analyzer (ThermoFisher, UK) was used to 

run samples. 

2.3.3. Development of cell-line based bone construct (BC) 

2.3.3.1. Microstructural analysis of bone scaffold using micro−computed tomography 

(µ−CT)  

HA/TCP (60 %/40 %) scaffolds of 20 mm × 3 mm dimension fabricated by conventional 

aqueous gel−casting method were used (Ceramisys LTD, UK). The microstructural 

characteristics of the scaffolds were quantified by a high resolution µ−CT scanner (SkyScan 

1172; Bruker, Belgium) with a source voltage of 100 Kilovoltage (kV) and current of 90 

MicroAmpere. For scanning, each HA/TCP disc was covered by polystyrene, placed on the 

sample holder, and scanned with a filter of 0.5 mm aluminum at a rotation step of 0.7° and 

rotation angle of 180°. Images were taken using Skyscan 1172 Control software (version 1.0. 

×) and all the resulted 2D and 3D cross-sectional images were reconstructed using NRecon 

(version 1.6.10.4, Skyscan) software. For image analysis (CTAn, version 1.13.2.1, Skyscan 

software), a region of interest (RIO) with a diameter of 9 mm and a height of 1.8 mm was 
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chosen to exclude the peripheral irregularities of the scaffold. Closed and open porosity, 

interconnectivity as well as the other basic features were determined. 

2.3.3.2. Optimisation of 3D seeding method  

Seeding efficiency is defined as the percentage of the cells retained in the scaffold with 

respect to the total amount of cells (Zhao and Ma, 2005). Two different seeding techniques 

were compared to evaluate cell seeding efficiency; static and dynamic seeding (Burg et al., 

2000). Prior to seeding, the scaffolds were autoclaved and pre-wet with CDMEM for 4 hours. 

In static seeding, scaffolds were placed in 12 well plate (Greiner Bio-one, UK) and 1×106 of 

ROS cells suspended in 15 µl of CDMEM−LAA media were slowly distributed on top of each 

scaffold and allowed to adhere for 2 hours after which 2 ml of culture media were added to 

each well. Spinning seeding technique was performed using spinner bioreactor (Stem stirrer, 

UK). The bioreactor consisted of dual side arm cylinder and rubber cover pierced by a 22 

gauge needle on which scaffolds were threaded and separated 5 mm apart by silicon tubes. 

Subsequently, 3× 106 ROS cells suspended in 50 ml CDMEM−LAA media were added to the 

spinner which was stirred at 30 rpm under incubation conditions.  

All cell−scaffolds constructs were incubated for 24 hours to give the cells enough time to 

adhere to and establish themselves in the scaffolds. Following that, the number of non 

adherent cells in each group was quantified by cell counting. For the well plate, the culture 

medium was removed, the wells were washed with PBS, and cells attached to wells were 

trypsinized using 0.25 % trypsin/EDTA solution. For the spinners, 20 µl of the culture medium 

was taken from each spinner. Following cell counting, seeding efficiency was calculated based 

on the following equation (Hong et al., 2014): 
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Cell seeding efficiency % = 

        initial seeded cells to scaffold – non adherent cells   × 100 

initial seeded cells to scaffold  

2.3.3.3. Optimisation of 3D culture technique  

Scaffolds were statically seeded as mentioned previously (see section 2.3.3.2.). To promote a 

robust cell attachment, cell−scaffold constructs were maintained in an initial static period of 

24 hours before transferring them to a dynamic environment. This time was recommended 

by many authors to prevent initial cell detachment and death (Hewitt et al., 2011; Teixeira et 

al., 2014). Following 24 hours, constructs were cultured under two different conditions; 

statically in 12 well plate or dynamically in spinner flask (Sikavitsas et al., 2002). The culture 

was carried out in CDMEM−LAA for one month with the refreshment of medium every other 

day. Sample assessment was performed at 1, 7, 14, 21, 30 days for cell viability using 

PresoBlue (PB) live assay. 

2.3.3.4. Cell viability assessment using PresoBlue (PB) live assay 

The assessment of cell viability was performed using PB assay (Invitrogen, USA). This new, 

simple, and extremely fast assay is a resazurin-based compound which is converted to the 

reduced form by mitochondrial enzymes of viable cells and, consequently, exhibits a colour 

change that can be quantified by fluorometric or spectrophotometric approach (Boncler et 

al., 2014). 

 At each time point, samples were placed in 12 well plate and washed with PBS. Then, a mixture 

of 900 µl of CDMEM and 100 µl of PB reagent was added to each well. Three acellular discs 

were included as a control (ctrl). Culture plates were wrapped in aluminum foil and incubated 

at 37 °C and 5 % CO2 for 3 hours. The incubation time of PB reagent had been optimised by 

taking readings at different time points namely; 1, 2, 3, and 4 hours. After incubation, 200 µl 
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aliquot of test and control samples were transferred to a white opaque 96 well plate (Greiner 

Bio-one, UK) in triplicate. Subsequently, the fluorescence values were measured 

(excitation/emission: 560/590 nm) using spectrophotometric plate reader (Infinite® M200, 

TECAN, USA). For calculation, the average fluorescent values of negative ctrl (scaffolds 

without cells) were subtracted from the averaged sample readings. 

2.3.3.5. Preparation of BC 

BCs were prepared according to the technique described by (Sikavitsas et al., 2002). In brief, 

10 autoclaved scaffolds were pre−wet in CDMEM 4 hours prior to cell seeding. In 12 well plate, 

2 × 106 ROS cells suspended in 15 µl CDMEM-LAA were dropwise seeded in each scaffold. 

Following 2 hours, BCs were submerged with 2 ml of CDMEM-LAA and incubated for 24 hours 

after which they were suspended 5 mm apart in a spinner bioreactor spun at a rate of 30 rpm 

(Figure 2.1.). Spinner was filled with 150 ml of CDMEM-LAA refreshed every 3 days until the 

end of the culture period. 

 

Figure 2. 1. The dynamic culture of BCs in spinner bioreactor. Figure shows ROS cells−seeded HA/TCP 

scaffolds threaded in spinner before the addition of CDMEM−LAA and transferring to the incubator. 
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2.3.4. Development of OMM 

Collagen hydrogel−based OMMs were constructed using the protocol adapted from (Dongari-

Bagtzoglou and Kashleva, 2006a). Briefly, keeping everything on ice, rat tail collagen (R & D 

biosystems, UK) was mixed with 10 × DMEM, reconstitution buffer (22 mg/ml sodium 

bicarbonate and 20 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), FBS, L-

glutamine (Table 2.5.). Before the addition of 0.2×106 NHOFs per model, this mixture was 

neutralised to pH 7.4 by addition of 1 Molar sodium hydroxide (NaOH) (All Sigma Aldrich, 

Dorset, UK).  

Table 2. 5. The components added to collagen to prepare collagen hydrogel−based OMM 

Component Final Conc. 

10 × DMEM 13.8 mg/ml 

Sodium bicarbonate 2.25 mg/ml 

HEPES 2 mM 

NaOH 6.3 mM 

FBS 8.5 % (v/v) 

L-Glutamine 2.1 mM 

 

Then, 2 ml of the resultant fibroblast-collagen mixture was poured into 30 mm diameter cell 

culture transwell inserts (0.4µm pore size, Millipore) in 6 well plate (Greiner Bio-one, UK) and 

incubated at 37 oC in a 5 % CO2 incubator for 2 hours allowing the collagen hydrogels to set. 

Once the hydrogels had set, they were completely submerged in 2 ml of CDMEM for 3 days. 

Following that, 1 × 106 OKF6−TERET−2 suspended in 30 µl of Green’s media were seeded on 

top of each model and allowed to adhere for 2 hours after which 2 ml of CDMEM and Green’s 
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media were added to outside and inside of the insert, respectively. After a further 4 days of 

culture, OMMs were raised to an air-to-liquid interface (ALI) using a 6 well plate and 

perforated metal grids. 6 ml of Green’s media was added to each well and refreshed every 2 

days for 10 days (Figure 2.2.). 

 

 

 

Figure 2. 2. Main steps of OMM construction. (A) Collagen embedded−fibroblasts immediately after 

pouring in the inserts to be cultured in CDMEM; (B) OMMs following the addition of OKF6−TERET−2 

to be cultured in submerged condition for 4 days with CDMEM and Green’s medium; (C) OMM at ALI 

culture which lasted for 10 days in Greene’s medium only. 

 

A 

B 

C 
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2.3.5. Development of composite BMM 

Once the culture of BCs and OMMs had completed, both models were combined to construct 

the composite BMMs. Briefly, BC was placed on a sterile culture plate containing 10 ml 

CDMEM.  Then, a biocompatible fibrin-based adhesive sealant (ARTISS, Baxter, UK) (Table 

2.6.) was prepared in a pre−filled syringe according to manufacturer’s instructions, and a thin 

layer of the mixed fibrinogen-thrombin sealer applied to the non-epithelial side of OMM. 

OMM was then immediately attached to the surface of BC and held in the desired position 

with gentle compression for a minimum of 60 seconds to ensure that adhesive material had 

completely set and both models were firmly adhered to each other (Figure 2.3.). The resultant 

BMMs were then further cultured at static ALI for 5 days, after which the analyses were 

performed. 

Table 2. 6. The main constituents of fibrin sealant 

 

Fibrinogen Solution 

Fibrinogen 67−106 mg/ml 

Fibrinolysis Inhibitor (Synthetic) 2250−3750 kallikrein inhibitor 

units (KIU)/ml 

 

Thrombin Solution 

Thrombin (Human) 2.5−6.5 units/ml 

Calcium Chloride 36−44 µmol/ml 
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Figure 2. 3. BMM after the adhering of OMM and BC with fibrin adhesive. OMM was inverted for 

fibrin addition on the connective tissue side then BC was placed on the top and held in its position for 

1 minute under gentle pressure. The final BMM was further cultured at ALI for 5 days. 

 

2.3.6. Assessments  

BCs were assessed monthly by scanning electron microscopy and histological examination. 

BMMs were examined histologically at the end of the culture period.  

2.3.6.1. Scanning electron microscopy (SEM) examination  

SEM assessment was performed to observe cell attachment and proliferation. Following 

collection from the spinner, BCs were rinsed with 5 ml of 0.1 cacodylate buffer, fixed with 3 

% of glutaraldehyde for 3 hours, and then rinsed again with cacodylate buffer. Osmium 

tetroxide was added to cover the material surface and left for 2 hours. Then, the samples 

were washed with buffer and dehydrated gradually with the increasing concentration of 

ethanol solutions (75 %, 95 %, and 100 %) for 15 minutes each. Samples were air dried 

overnight, mounted onto 20 mm diameter stubs and sputter−coated with gold (~20 nm). Cell 

attachment and distribution were imaged at an acceleration voltage of 15 kV using a scanning 

electron microscope (Philips XL-20, USA). Preparation of samples for imaging was performed 

by Chris Hill, Department of Biomedical Science, University of Sheffield. 
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2.3.6.2. Histological examination   

Formalin−fixed paraffin−embedded (FFPE) sections were prepared to examine the tissue 

morphology of OMM, BC, and BMM. Samples were fixed in 10 % (v/v) PBS−buffered formalin 

for 24 hours, decalcified with formic acid for the same period, and processed overnight using 

a Leica TP1020 benchtop tissue processor (Leica TP1020 benchtop tissue processor, Leica 

Microsystems, Germany; Table 2.7.). Samples were then embedded in paraffin wax using a 

Leica EG1160 embedding centre (Leica Microsystems). Sections of 10 µm thickness were 

prepared (Leica RM2235 microtome, Leica Microsystems, Germany), floated onto a paraffin 

section mounting bath (Barnstead Electrothermal, Staffordshire, UK), mounted onto 

superfrost plus micro slide (VWR, West Sussex, UK), and placed in an oven for 30 minutes at 

55°C. 

Table 2. 7. Dehydration and embedding schedule for FFPE tissue. Table shows solutions and length 

of time the tissue spent in each solution. 

Solution Time (hours) 

10 % (v/v) neutral 

buffered formalin 

1 

70 % alcohol 1 

80 % alcohol 1 

90 % alcohol 1 

Absolute alcohol I 1 

Absolute alcohol II 1 

Absolute alcohol III 1 

Xylene 1.5 

Xylene 1.5 
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Paraffin wax I  2 

Paraffin wax II  2 

 

Haematoxylin and eosin (H&E) staining was performed (Leica ST4040 Shandon Linear Stainer, 

Leica Microsystems, Germany; Table 2.8.). Following staining, slides were mounted with 

Dibutyl phthalate, polystyrene, xylene (DPX) and covered with an appropriate coverslip. 

Images were captured using an Olympus BX51 microscope and colour view Illu camera with 

associated Cell^d software (Olympus soft imaging solutions, GmbH, Münster, Germany). 

Table 2. 8. H&E staining schedule of FFPE sections. The table describes the order and solutions used 

for staining. Each step lasted for 45 seconds. Industrial denatured alcohol (IDA). 

Order Solution 

 1 Xylene  

2 Xylene 

3 Xylene 

4 99 % IDA 

5 99 % IDA 

6 99 % IDA 

7 Distilled water 

8 Distilled water 

9 Harris’ haematoxylin (Shandon) 

10 Harris’ haematoxylin (Shandon) 

11 Harris’ haematoxylin (Shandon) 

12 Harris’ haematoxylin 

13 Running tap water 

14 0.1 % acid alcohol 

15 Running tap water 

16 Scott’s tap water substitute 
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17 Running tap water 

18 Eosin Y−aqueous (Shandon) 

19 Eosin Y−aqueous (Shandon) 

20 Eosin Y−aqueous (Shandon) 

21 Running tap water 

22 99 % IDA 

23 99 % IDA 

24 99 % IDA 

25 Xylene 

26 Xylene 

27 Xylene 

28 Xylene 

 

2.3.7. Statistical analysis 

All data were presented in terms of mean ± standard deviation (SD). The statistical 

significance of differences within each group was evaluated by one−way analysis of variance 

(ANOVA) complemented by Tukey’s post−test while two−way ANOVA with Sidak’s post−test 

was used to determine the difference between groups. Comparison between two groups was 

performed using Unpaired two−tailed t−test. Statistical analysis was performed using 

GraphPad Prism software v7.0 (GraphPad Prism software, CA, USA), and differences were 

considered significant when p < 0.05. 
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2.4. Results 

2.4.1. µ−CT analysis of HA/TCP scaffold 

 2D cross-sectional views of scanned scaffolds showed interconnected, randomly distributed 

pores of different sizes (Figure 2.4.). µ−CT analysis revealed an open porosity (total porosity) 

of 78.9 % compared with 0.01 % closed porosity. Similarly, the volume of closed pore space 

showed a negligible value of 0.002 mm3 in comparison with 90.7 mm3 open pore volume. The 

averaged trabecular separation (pore diameter) was 0.24 mm (240 µm) while the value of 

trabecular thickness (pore wall) was 0.05 mm. The interconnectivity was 68487.6 (Table 2.9.). 

 

Figure 2. 4. µ−CT image of HA/TCP scaffold. Representative µ−CT image illustrating the 2D 

cross−sectional architecture of the conventional ceramic scaffold used for the construction of the 

bone component of BMM. The area represents a region of interest (RIO) with a diameter of 9 mm and 

a height of 1.8 mm. Note the random distribution of multi-size, open and interconnected pores.  
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Table 2. 9. µ−CT scan measurement of HA/TCP scaffold. Table summarising the main characteristic 

features of HA/TCP bone scaffold. Data are representative of mean ± SD of three independent 

experiments (n=3) performed in triplicate. 

 Feature Unit Mean ± SD 

1 Volume of closed pores mm3 0.002 ± 0.001 

2 Volume of open pores mm3 90.71 ± 3.31 

3 Closed porosity % 0.01 ± 0.005 

4 Open porosity % 78.9 ± 2.88 

5 Trabecular thickness mm 0.05 ± 0.01 

6 Trabecular separation mm 0.24 ± 0.04 

7 Trabecular number  1/mm 3.93 ± 0.42 

8 Surface density 1/mm 14.78 ± 1.6 

9 Connectivity density 1/mm3 595.71 ± 116.81 

10 Connectivity - 68487.6 ± 13429.14 

 

2.4.2. Assessment of cell seeding efficiency  

The results of cell seeding efficiency are presented in Figure (2.5.). The efficiency of static 

seeding  (97.23 ± 0.96 %) was significantly higher than spinning seeding (92.08 ± 2.08 %). 
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Figure 2. 5. Assessment of cell seeding efficiency of ROS cells in HA/TCP scaffold. Bar chart to show 

difference efficiency between two methods of cell seeding; spinning and static. In static seeding, ROS 

cells were added drop-wise to each HA/TCP scaffold while in the spinning method the cell suspension 

was added to the spinner and allowed to attach to the threaded scaffolds. Data represent mean ± SD 

of three independent experiments (n=3) performed in triplicate. Statistical significance was 

determined using an unpaired two-tailed t-test (* = p < 0.05). 

 

 2.4.3. Viability of BCs in static and dynamic conditions 

Before the assessment of BCs viability in static and dynamic culture, the optimal incubation 

time of BC in PB reagent was performed. The optimisation showed a significant difference in 

the metabolic activities during the 1st, 2nd, and 3rd hour of incubation. However, after 3 hours 

there was no significant change in metabolic activity values (Figure 2.6.). Therefore, in this 

thesis, 3 hours incubation period was used in all PB assessments of BC.  
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Figure 2. 6. Optimisation of PB assay incubation time. The graph to show fluorescent readings of PB 

assay at different time points when incubated with ROS cell−seeded scaffolds. The graph 

demonstrated a significant increase in the metabolic activities during the 1st, 2nd, and 3rd hour of 

incubation while after 3 hours there was no significant change in metabolic activity values. Data 

represent mean ± SD of a single experiment (n=1) performed in triplicate. Statistical significance was 

determined using one-way ANOVA with Tukey's post-test (** = p<0.01, *** = p<0.001).  

 

With regard to the comparison between the static and dynamic culture, our results showed 

that the metabolic activities of BCs cultured statically were not significantly different from 

those cultured in the spinner in the 1st, 2nd, and 3rd week. Conversely, in the 4th week, the 

spinning culture yielded significantly higher metabolic activity values than the static 

environment (Figure 2.7.). 
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Figure 2. 7. Comparison of the static and dynamic culture of ROS within 3D scaffold. Bar graph to 

show the vitality of ROS−seeded scaffolds following 28 days culture in either well plate or under 

spinner bioreactor conditions. The graph demonstrated no significant difference in the metabolic 

activities of BCs cultured statically in well plate and dynamically spinner in the in the 1st, 2nd, and 3rd 

week. However, in the 4th week, the dynamically-cultured BCs yielded significantly higher metabolic 

activity values than those cultured in the static environment. Data represent mean ± SD of a single 

experiment (n=1) performed in triplicate. Statistical significance was determined using two-way 

ANOVA with Sidak’s post-test (**** = p<0.0001). 

 

2.4.4. Attachment, distribution, and morphology of ROS cells 

SEM micrographs of the surface regions of acellular HA/TCP scaffold showed a porous 

microstructure with pores of different sizes (Figure 2.8. A and B). Examination of the BCs 

surface following one day of culturing demonstrated sparse ROS cells which had a flat irregular 

morphology attached to the surface and occupied numerous pores (Figure 2.8. C and D). After 

one month of culturing, the adherent cells had proliferated and arranged into dense 

aggregates covering the entire scaffold surface and filling the pores. The growing cells 

established a plump, rounded morphology with a thin layer of secreted matrix appearing in 

few areas (Figure 2.8. E and F). In the 2nd month (Figure 2.8 G and H) and 3rd month (Figure 

2.8. I and J), however, the cells revealed a shrunk degenerative appearance at the surface. 
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Some areas were devoid of cells whereas in other areas a mineral deposition within the 

scaffold pores was observed. 
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Figure 2. 8. SEM micrographs of ROS cell−seeded scaffold. Representative SEM micrographs of 

HA/TCP scaffold before and after ROS cells seeding and culturing for 3 months. (A and B) Scaffold 

without cells showed the porous structure with pores of various sizes and random distribution. (C and 

D) BC after 24 hours of dynamic culture demonstrated flat irregularly shaped cells scattered on the 

scaffold surface and occupied many pores. (E and F) BC after one month of culturing demonstrated 

the proliferated cells arranges into dense clusters covering the entire scaffold surface and filling the 

pores. Note the change of cell morphology from flat at day one to a plum, rounded shape with a thin 

shell of the secreted matrix appeared in few areas. (G and H) and (I and J) The construct after 2 and 3 

months of culture, respectively. Cells showed a degenerative cell pattern with spherical minerals 

appearing in the scaffold surface (Scale bars: A, C, E, G =200 µm; B, D, F, H, J = 800 µm). Preparation 

of samples for imaging was performed by Chris Hill, Department of Biomedical Science, University of 

Sheffield according to the method described in section (2.3.6.1). 

 

4.4.5. Histological examination of BCs 

Decalcified histological section of the acellular scaffold is presented in the (Figure 2.9. A). 

From day one  (Figure 2.9. B) to day 30 (Figure 2.9. C), cells were distributed in the scaffold 

and became densely packed with a high degree of mitotic figures and even distribution. 

However, there was a gradual decrease in cellular density in the 2nd and 3rd month (Figure 

2.9. D and E, respectively).  
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Figure 2. 9. H&E histological sections of decalcified BC. (A) HA/TCP scaffold without cells. (B) BC after 

24 hours of culture in spinner demonstrated the cells scattered on the residual scaffold material. (C) 

The cells showed proliferation after 1 month of culture. (D) BC in the 2nd month of culture 

demonstrated a decreased cell number and increasing the dissolved scaffold minerals. (E) The cell 

number decreased further at the end of 3rd month. The yellow arrows indicating the ROS cells while 

the red arrows indicating the degraded scaffold material (Scale bars = 100 µm).   

 

2.4.6. Histological examination of BMM 

Examination of the composite BMM revealed a tri−layered structure comprising equivalents 

of epithelium, connective tissue, and a bony layer. Mucosal part demonstrated a  relatively 

differentiated parakeratinised epithelial tissue with 6−8 cell layers of OKF6/TRET−2 and 
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evenly distributed fibroblasts within the connective tissue layer. The bone−mucosa interface 

displayed a thin band of fibrin sealant adhering the soft and hard tissue interface, with many 

cells populated beneath the sealant and scattered around residual mineral from the 

decalcified HA/TCP scaffold (Figure 2.10.). 

 

Figure 2. 10. H&E section of the composite cell line−based BMM. Image shows the decalcified section 

of BMM consisted of mucosal and bone components. The mucosal part was comprised of a relatively 

stratified epithelial layer formed by immortal OKF6 and a connective tissue layer which demonstrated 

an evenly distributed fibroblasts within the collagen gel. The bone mucosal interface revealed a thin 

band of fibrin sealant (blue arrows) at the interface between the soft and hard compartment. Many 

cells populated beneath the sealant and scattered around residual mineral from the decalcified 

HA/TCP scaffold (Scale bars =200 µm). 
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2.5. Discussion 

2.5.1. Effect of scaffold structure on BTE 

Porous ceramic scaffolds that mimic trabecular bone are receiving particular attention in 

the rapidly evolving BTE domain. An optimisation of many features such as geometry, 

composition, and mechanical properties of the scaffold is essential to ensure its 

functionality in tissue formation. For that, efficient and rapid methods for quantitative 

assessment of scaffold design are essential (Peyrin, 2011). 

In the study of the morphological and architectural characteristics of the scaffold, several 

techniques have commonly been used, including gravimetric, liquid displacement, SEM, and 

mercury intrusion porosimetry. Although the first two methods are quantitative, simple, and 

fast, they are inaccurate and only give an approximation of actual scaffold porosity (Guarino 

et al., 2008; Nazarov et al., 2004). SEM, on the other hand, provides high resolution of surface 

topography and can quantify the pore size and number of interconnections (Murphy et al., 

2002). However, the 2D measurement on a relatively small area presents a weakness of this 

method because it is difficult to envisage the internal structure. Similarly, mercury intrusion 

porosimetry can measure the porosity, pore size, and distribution of the whole scaffold, but 

it cannot detect the isolated and deep pores. In addition, both SEM and mercury intrusion 

porosimetry result in sample destruction (Ho and Hutmacher 2006). A high−resolution X−ray 

µ−CT scan, by contrast, can easily represent specimen in 2D and 3D formats and can analyse 

the interconnection between pores (Moore et al., 2004). In addition, it is highly accurate, non-

destructive, requires minimal sample preparation, and enables visualisation of the internal 

architecture (Tuan and Hutmacher, 2005; Ho and Hutmacher, 2006). Moreover, it can be 

employed in the quantification of newly formed bone, neovascularisation, and bone matrix 

(Peyrin, 2011). 
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Scaffold acts as synthetic ECM that largely influences cell behaviour and the rate of bone 

ingrowth through its architectural features, including porosity, pore size, and 

interconnectivity (Thavornyutikarn et al., 2014).  Porosity is defined as the ratio of the volume 

of void space to the total solid volume (León Y León, 1998). In vivo, porosity enhances the 

mechanical interlock between the implanted scaffold and recipient site; thereby providing an 

interface mechanical stability (Story et al., 1998). In addition, a high porosity with a high 

interconnectivity between the pores is essential to permit recruitment and penetration of 

cells from the surrounding tissue, vascular ingress, and nutrient and waste diffusion (Kuboki 

et al., 1998).  

Although different porosity percentage ranges between 35−90 % were indicated in the 

previous studies, there is a consensus among the literature that favours increasing the 

porosity of bone scaffold to enhance osteogenesis (Karageorgiou and Kaplan, 2005). This 

effect is likely due to the higher adsorption of bone−inducing factors and exchange of ions 

due to the larger surface area (Hing, 2004; Hing, 2005). Conversely, only a limited number of 

studies showed no effect of porosity on bone apposition (Fisher et al., 2002; Kujala et al., 

2003). The absence of any report in the literature indicating the beneficial effect of minimal 

porosity solidifies the importance of highly porous scaffold in tissue regeneration. However, 

increasing porosity often compromises the mechanical property of the scaffold (Scott, 2006). 

Hence, a balance between the mass transport and mechanical function of the scaffold should 

exist for an optimal outcome. 

Pore size formed by the trabecular separation between struts is another determining factor 

in bone formation. Generally, pores are either micro (<5 μm pores) or macro (>100 μm pores) 

(Karageorgiou and Kaplan, 2005). Too small pores limit cell migration and lead to cellular 

capsule formation in the scaffold periphery, which compromises nutrient diffusion and causes 
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necrosis in the interior part of the construct. Too large pores, by contrast, decrease cell 

attachment (Yannas, 1992). To date, the optimal pore size is still controversial. In general, 

scaffolds with microporosity (<10 μm pores) and macroporosity (>100 μm pores up to 800 

μm) have been used in BTE applications and yielded different results (Karageorgiou and 

Kaplan, 2005). For instance, a study conducted by (Hulbert et al., 1970) in which a calcium 

aluminate scaffold implanted in dog femoral bone showed that pores of 100 μm−150 μm 

resulted in substantial bone growth, pores of 75 μm−100 μm showed unmineralized bone, 

while fibrous tissue was formed in scaffold with pores of 10 μm−75 μm. The author concluded 

that 100 μm is the minimum recommended pore size for the significant bone formation and 

correlated this with normal Haversian systems that have an approximate diameter of 

100−200 μm. Although these findings were confirmed by other successive studies (Eggli et al., 

1988; Flatley et al., 1983), growing evidence has shown that pore size exceeding 300 μm is 

needed for optimal osteogenesis and vasculogenesis (Murphy et al., 2010; Karageorgiou and 

Kaplan, 2005; Liu, 1997). However, the role of microporosity in bone formation should not be 

ignored because it increases the surface area and surface roughness, which in turn enhances 

protein adsorption and biodegradability (Jeon et al., 2014). The importance of heterogeneous 

pore size may have led to the emergence of the concept of “gradient scaffold” that 

incorporates different pore sizes in one construct to exhibit similar structural complexity as 

the native bone tissue (Di Luca et al., 2016; Andrea Di et al., 2016). 

Another important structural parameter of scaffold design is the interconnectivity, which 

refers to the connection and communication between pores (Li et al., 2003); in other words, 

the volume of pores accessible by cell divided by the total volume of all pores (Lemon et al., 

2012). The pores may be either interconnecting or may contain “dead−ends” (Blokhuis et al. 

2000). Several studies demonstrated that interconnectivity is as important as porosity for 
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effective fluid permeation, cell migration, and mass transfer (Salerno et al., 2017). 

Connectivity density, on the other hand, is defined as the maximum number of trabecular 

connection that must be broken in order to break the scaffold (Tellis et al. 2009). Therefore, 

it correlates more to the scaffold’s mechanical properties and may act as an estimator for 

bone stiffness when it undergoes remodelling  (Kabel et al., 1999). 

Based on the previously mentioned literature, it appeared that the conventional HA/TCP 

scaffold used in this study reasonably provided the required features for BTE. However, for 

ideal bone scaffolding characteristics (see Table 1.1.) further optimisation in terms of 

structure and composition is needed.  

2.5.2. Influence of the seeding technique on seeding efficiency  

In this study, ROS cell line was chosen for the fabrication of BC. This cell line was first derived 

in the late 1970s from the spontaneous tumour in rat. The cells exhibit an osteoblastic 

characteristic such as ALP expression, OC secretion, and calcified matrix formation when 

cultured in a dynamic environment (Kartsogiannis and Ng, 2004; Shteyer et al., 1986).  

The first step in TE of any construct is seeding of the scaffold. This step often affects the 

success of tissue-engineered products because it determines the initial number of cells as well 

as their spatial distribution throughout the construct, which, consequently, provides the basis 

for cell proliferation, migration, and uniform ECM secretion (Li et al., 2001). Many 

investigators demonstrated that the optimal initial cellularities of the construct are desirable 

because they resulted in high proliferation, increased osteogenic gene expression, and more 

bone tissue formation (Yassin et al., 2015; Zhou et al., 2006). Therefore, researchers have 

relied on different seeding methods to improve the affinity of cells to the substrate.  

Generally, these methods can be divided into two approaches: static and dynamic seeding 

techniques (Li et al., 2014; Van Den Dolder et al., 2003).  A static method is either surface 
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seeding which is simply performed by pipetting the cell suspension on to the scaffold surface 

(Wan et al., 2005) or direct injection inside the scaffold (Hofmann et al., 2003). Dynamic 

methods, on the other hand, involve movement of the cell solution through and/or around 

the scaffold using a spinner flask (Vunjak‐Novakovic et al., 1998), a perfusion bioreactor (Zhao 

and Ma, 2005), an orbital shaker, or centrifugation (Li et al., 2014). 

Several comparative studies between dynamic and static seeding highlighted the advantage 

of dynamic seeding in achieving high cellular yield and distribution. (Burg et al., 2000) 

compared the effect of the perfusion bioreactor, the spinner flask, and static seedings using 

rat aortic endothelial cells on polyglycolide fibrous mesh. They found that static seeding 

produced the poorest distribution and a low yield, as determined on the basis of cellular 

metabolic activity,  attachment, and proliferation. Similarly, (Van Den Dolder et al., 2003) 

evaluated the effect of static and rotating seeding on the culturing of rat bone marrow cells 

into titanium fibre mesh, and concluded that high initial cell number and the osteogenic 

capacity of the scaffold can be promoted with the dynamic seeding technique. Another 

comparison performed among static, centrifugal and cycling methods demonstrated that 63.1 

% of cells were seeded on the scaffold with the cycling technique, which was higher compared 

to 61.9 % and 53.2 % for centrifugal and static seeding, respectively (Li et al., 2014). However, 

the study showed that static seeding provides a more reproducible and uniform seeding in 

comparison with the other methods, which showed extreme statistical variance. In addition, 

cell damage and death were lower in static seeding, which showed 5.08 % compared with 

6.11 % and 9.31 % for centrifugal and cycling method, respectively. 

Other studies, by contrast, are in agreement with our findings in showing that higher seeding 

efficiency can be obtained with static seeding. (Wendt et al., 2003) monitored seeding 

efficiency and spatial uniformity of perfusion, static, and spinner systems. They showed that 
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the difference between perfusion (87 %) and static (85 %) seeding is not statistically 

significant, whereas both systems produced a significantly higher efficiency than spinner flask 

(71 %). Similarly, (Thevenot et al., 2011) investigated the seeding efficiency of static, orbital 

shaker, and centrifuge using a poly (lactide-co-glycolide) (PLGA) scaffold. They found no 

statistical difference between various cell seeding methods although the cell viability 

assessment showed 100 % viability with the static method while a cell death of 25 % and 50 

% resulted from the shaking and centrifugation methods, respectively. Other studies 

demonstrated that seeding efficiency using droplet static seeding can reach up to > 90 % 

(Rajan et al., 2014; Hong et al., 2014; Buizer et al., 2014).  

The variations found in the literature regarding static seeding performance may be attributed 

to several reasons. First, the non optimal ratio of cell number to the surface area of the 

scaffold may contribute towards increasing the unattached cells, which are miscalculated as 

un-efficient seeding. (Holy et al., 2000) used initial seeding concentrations that varied from 

0.5 to 10 × 106  cells/cm3 on a PLGA scaffold. They reported that a plateau of 1.5 × 106 cells/cm3 

(25 % of initially seeded cells) was reached regardless of the increasing initial cell 

concentration. Second, the efficiency of the seeding method varies according to the chemical 

composition and spatial architecture of the scaffold. Porosity percentage, pore dimetre, pore 

geometry, surface area, and wettability can lead to different seeding results (Hong et al., 

2014). With regard to our results, the high seeding efficiency associated with droplet static 

may be explained by the proper cell/suspension volume ratio. It is likely that static seeding of 

1 × 106 cells loaded in 15 µl promoted more cell attachment in the scaffold than the spinning 

of  3 × 106 cells suspended in 50 ml. In addition, the hydrodynamic forces such as shear stress 

produced by the spinner flask may cause detrimental cell damage. Therefore the number of 

viable attached cells was reduced (Mohd-Zulhilmi et al., 2014). 
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2.5.3. Effect of static versus dynamic culture environment on BTE 

In 3D cell culture, cell viability and activity are largely influenced by a culture environment 

that promotes mass transfer and nutrient delivery. Cell viability can be assessed by a variety 

of methods, including the measurement of mitochondrial activity, analysis of lactate 

dehydrogenase, and determination of adenosine triphosphate cell content as the indicators 

of cellular necrosis and apoptosis (Miret et al., 2006). The monitoring of alterations in 

mitochondrial activity is particularly popular and can be detected with the use of MTT (3- (4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and resazurin (7-hydroxy-10-

oxidophenoxazin-10-ium-3-one) (Ansar Ahmed et al., 1994). Although MTT is economic and 

widely utilized, it is cytotoxic; allowing only one measurement to be made at a single time 

point (Boncler et al., 2014). Resazurin−based reagents are dependent on the ability of viable, 

metabolically active cells to reduce resazurin, a water-soluble dye compatible with phenol 

red, to resorufin that can be detected either colorimetrically or fluorometrically (Ansar 

Ahmed et al., 1994). AlamarBlue and PrestoBlue are resazurin-based compounds that are 

considered superior to MTT because they are not toxic to the cells. Therefore, continuous 

monitoring of cell viability in cultures over time is possible. In addition, these reagents are 

more sensitive than MTT because they can detect 1,000 cells after 1 hour of incubation while 

MTT is able to detect 5,000 cells after 3 hours of incubation (Xu et al., 2015).  

In BTE, the reproduction of the body dynamic environment is essential because it maintains 

an efficient mass transfer as well as providing physical stimulation to the differentiating tissue 

(Szpalski et al., 2013). In 2D and thin 3D tissues, the passive diffusion provided by the 

continuous contact between cells and the culture medium is sufficient to maintain the cells. 

However, as the tissue becomes thicker, cells existing at a distance greater than 100−200 µm 

from the medium would undergo hypoxia and death due to insufficient nutrition/oxygen 
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supply and waste removal (Mekala et al., 2014). The ceramic-based bone model required a 

dynamic flow to improve nutrient and waste diffusion because the static culture is only 

sufficient to nourish the thin superficial layer contacting the medium (Rouwkema et al., 2008). 

As the cells increase in number, so does their metabolic demand and the build-up of waste 

products. In addition, once the cells start to secrete their ECM, another diffusion barrier is 

formed by the matrix components such as proteins and proteoglycans. These are relatively 

larger molecules with low diffusion coefficients, which may further hinder nutrient diffusion. 

Consequently, the deeper cells in the tissue interior can be deprived of an oxygen and nutrient 

source in long-term static culture conditions (Martin and Vermette, 2005; Kihara et al., 2013). 

Moreover, oxygen transport is linked to its concentration, which is approximately 220 mM in 

the fully oxygenated culture medium compared with 8699 mM in oxyhaemoglobin. The low 

oxygen concentration in media limits the diffusion to the outer cell rim and deprives the core 

cells of oxygen and a nutritional supply (Bhumiratana et al. 2013). 

Manipulation of the mechanical force that stimulates growing bone is another important 

benefit of fluid flow provided by a dynamic culture system.  Indeed, native bone is constantly 

subjected to mechanical stimulation by movement and muscular contraction which lead to 

bone modelling. In addition, the applied physical forces cause a change in the shear stress, 

hydrostatic pressure, and electrical fields (Rubin and Lanyon, 1984). 

In order to address the previously described limitations associated with static culture, 

different bioreactor systems have been widely used in BTE (Martina and Giuseppe Maria de, 

2014). A spinner flask is a simply designed bioreactor that showed a positive osteogenic effect 

through increasing the levels of cell proliferation, mineralization, ALP, and OC secretion 

(Ichinohe et al., 2008; Kim et al., 2007; Sikavitsas et al., 2002). (Sikavitsas et al., 2002) 

compared bone marrow seeded PLGA scaffolds cultured in static, spinner, and rotating wall 
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vessels for 21 days. Their weekly assessment revealed an increased cell proliferation at all 

time points and a higher calcium content in the spinner culture than those encountered in 

static and rotating wall vessels. Another comparative study was conducted for 21 days 

between static, orbital shaker, and spinner cultures of rat bone marrow cells seeded in 

polyethylene terephthalate fibre. The extent of cell proliferation, osteogenic differentiation, 

ALP activity and mineral density were higher in the spinner culture (Ichinohe et al., 2008). 

Similar results were obtained when human adipose-derived stem cells were combined with 

cancellous bone scaffold in the spinner and traditional static culture. Following 2 weeks of 

culture, ECM secretion, ALP expression, and cell vitality, metabolism, and distribution were 

much better in the spinner group (Kedong et al., 2014). 

Our findings were in agreement with the aforementioned studies in showing that the spinner 

flask could mitigate the mass transport limitation and promote cells’ vitality. We 

demonstrated that the static culture could not support the model viability for 1 month 

although the vitality in static and dynamic culture was the same in the first 3 weeks. Cell 

survival throughout 3 weeks in static culture may be attributed to the nature of cancer cells 

to withstand the hypoxic environment. In addition, cells can easily gain nutrition as long as 

they are on the surface of the scaffold where they are in contact with the medium. By 

contrast, the sharp decline or approximately the complete loss of the models’ viability at the 

end of the 4th week may be because the cells deeply infiltrated inside the scaffold and became 

isolated. Consequently, the passive diffusion in the static culture was insufficient to provide 

the highly proliferative cancer cells with their nutrition and oxygen need. In this regard, 

perhaps it is noteworthy to mention that the non-significant difference between static and 

spinning culture during the 3 weeks does not necessarily indicate a similar proliferation rate 

because PrestoBlue assay does not quantify the cell number; rather, it assesses the overall 
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metabolic cellular activity. It reflects the state of cellular well-being because it assesses the 

mitochondrial activity which indicates any shift in the aerobic metabolism (Burg et al., 2000). 

2.5.4. Qualitative assessment of BC  

Our study revealed the feasibility of culturing BC in the spinner bioreactor for 3 months, which 

is considered to be a relatively long period. A similar long study was performed by Kim et al. 

(2007) in which hMSC were seeded in silk scaffold and were cultured in a spinner flask for 84 

days. They showed that by using the spinner culture not only cell viability was maintained, 

but all the osteogenic outcomes were progressively enhanced. Perhaps the logical 

explanation for these results is that the distribution of the nutrients/oxygen within the 

constructs and the efficacy of cell metabolites are improved by liquid flow in the spinner. 

Therefore the deeper cell could be reached (Kedong et al., 2014; Mekala et al., 2014). 

The qualitative SEM and histological assessments were consistent in showing the distribution 

and proliferative pattern of ROS cells in HA/TCP scaffold, which was higher during the 1st 

month and progressively declined towards the end of the experiment. Such a trend in 

decreased cellularity over time may indicate necrotic cell death, which is explained by the fact 

that cancer cells have a higher proliferation rate and nutritional demand than normal primary 

cells. This can result in the deprivation of nutrients and cell death that was noticed in this 

study during the 2nd and 3rd months of the culture. Furthermore, cell necrosis can be 

attributed to the limitation of the spinner bioreactor itself because it promotes convection 

mass transfer at the construct surface while the dominant nutrient exchange within the 

construct remains by diffusion (Mekala et al., 2014). Meinel et al. (2004) cultured hMSCs on 

a collagen scaffold of 3 mm and 1.5 mm thickness for 5 weeks. They showed that, in spite of 

the porosity and minimal thickness of the scaffold, the spinner culture did not adequately 
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support mass transport. The penetration depth appeared to be 1 mm or less, resulting in bone 

formation in the exterior and cell death in the centre. 

The change in the ROS cells’ morphology observed by SEM between the 1st day and the 30th  

day may be attributed to the differences in cell shape, population, and behaviour in 2D and 

3D culture.  Cells after only 24 hours of seeding still behaved as in monolayer growth, where 

cells are usually flatter than they would appear in a 3D environment (Edmondson et al., 2014). 

Finally,  it might be noteworthy to consider that the morphological features observed in this 

in vitro model, which is based on ROS cell line, do not reflect the typical features of bone 

tissue formation. Not surprising if we generally accepted the fact that malignant cells express 

the differentiated features of the tissue of origin but do not represent the functional 

properties in terms of cellular products and response, which are often species-specific (Rodan 

et al., 1987b). 

2.5.5. Qualitative assessment of BMM 

In respect of OMM, various types of synthetic and naturally derived scaffolds have been 

reported such as polycarbonate, PLGA, collagen, and acellular dermis (Moharamzadeh et al., 

2007). Collagen comprises the main constituent of the natural oral mucosa. It was first used 

by (Masuda, 1996) to develop an in vitro full thickness OMM by seeding normal keratinocytes 

in bovine skin collagen gel containing fibroblasts. The resulting model showed well-

differentiated mucosal tissue comparable to the native oral mucosa histologically. In this 

study, growing OMM in a static culture raised no problem due to the hydrophilic, high 

water−containing networks of collagen hydrogel that enhance permeability for oxygen, 

nutrients and water−soluble metabolites (Peppas et al., 2006). In addition, collagen provides 

a suitable template where the fibroblasts proliferate, produce ECM, and provide a condition 

for keratinocyte proliferation and differentiation better than any artificial matrix (Maruguchi 
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et al., 1994). However, the dimensional instability and gel contraction presented a problem 

in this study due to the positive correlation we observed between the number of the 

contractile fibroblasts and the amount of contraction. This contraction could be minimized by 

adjusting the number of fibroblasts to 0.2x106, which generated a well-populated connective 

tissue and proper matrix deposition that appeared as pink staining in the lamina propria 

component of the model (Fischer et al., 2008). 

Oral epithelial cell line immortalised by forced expression of telomerase (OKF6/TERT- 2) was 

used in this study. The use of cell line helps to reproduce and standardize the model as well 

as overcome the disadvantages of primary keratinocytes such as limited biopsy resources, 

patient-to-patient variations, short lifespan, and limited propagation (Southgate et al., 1987; 

Dongari-Bagtzoglou and Kashleva, 2006b). The choice of this cell line was based on the 

evidence that it resembles normal keratinocytes in several aspects and was successfully used 

in the construction of in vitro OMM (Dongari-Bagtzoglou and Kashleva, 2006b; Dongari-

Bagtzoglou and Kashleva, 2006a). In addition, these cells retain their growth control in culture 

because telomerase expression rescues cells from the mechanism of senescence without 

affecting major growth behaviour. Therefore, these cells can be easily cultured for several 

passages (Dickson et al., 2000). However, in our model, the epithelial layer was not terminally 

differentiated, which may be attributed to a high passaged number. 

The selection of fibrin to glue bone and mucosal tissues was based on imitating the normal 

physiological phenomenon occurring in vivo. When a wound occurs, adhesive fibrin protein is 

formed to seal the wounded edges as well as to plug blood vessels and prevent blood loss 

(Miloro et al., 2004). The role of fibrin adhesive in surgery has been recognized since 1972 

when it was used in digital nerve repair (Matras et al., 1972). The application of fibrin glue in 

the field of oral and maxillofacial surgery was first described in 1982 for nerve injury (Matras, 
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1982); then for soft tissue injuries (Matras, 1985). In addition to its hemostatic, 

biocompatibility, and biodegradability, fibrin can promote osteogenesis and vasculogenesis 

due to its pro−angiogenic properties, which make it a suitable candidate for BTE 

(Khodakaram-Tafti et al., 2017). 

This study demonstrated the feasibility of combining the soft and hard tissues in one construct 

using fibrin sealant, with no detachment cases being reported. However, the major challenge 

of this study was to preserve the integrity of the model structure during histological 

processing. The decalcification of BMMs often resulted in complete dissolution of the HA/TCP 

scaffold and loss of the model’s structure due to the absence of a sufficient matrix that could 

support the residual mineral following decalcification. 

Finally, it may be speculated that an alternative method of generating BMM would be by 

growing the soft tissue directly over the bone component.This approach may be technically 

impossible due to the lack of universal media formulations suitable for different types of cells 

in a single culture. In addition, this technique may raise the question of how long the cells, 

particularly in the air lifted epithelium, can survive in the presence of bone that may prevent 

adequate delivery of a medium that is not directly contacted to the oral mucosa substitute. 

Although our composite model revealed that epithelial cells survived for an additional 5 days 

after final assembly of the full-thickness model, it must be emphasized that this finding should 

be interpreted with caution because it does not necessarily represent human primary cells.  

In summary, the present work demonstrated that in vitro engineering of a bone mucosa 

model resembling native oral tissue structure could be established. The use of 

fibroblast−populated collagen gel for oral mucosa assembly and employing a biocompatible 

fibrin−based adhesive to combine the constructed soft and hard tissues appear to be 

successful approaches in TE of a composite osteo-mucosal system. The current findings 
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provided primitive proof of the concept to fabricate a well-characterized composite model. 

In the next chapter, optimization of this newly developed model by using primary human oral 

cells will be addressed. 
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Chapter 3: Development and characterisation 

of tissue engineered human alveolar bone− 

mucosal model using conventional scaffolds 

 

 

 

 

 

 

 

 

 

NB: The work described in this chapter has been published in: 

Almela, T., Al-Sahaf, S., Bolt, R., Brook, I. M. & Moharamzadeh, K. 2018. Characterisation of 
Multilayered Tissue-Engineered Human Alveolar Bone and Gingival Mucosa. Tissue 
Engineering Part C: Methods, 24 (2), pp 99-107. 
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3.1. Introduction 

Currently, there is an exceedingly high demand for bone substitutes in the United State (US) 

and other countries worldwide. In the US, more than 500,000 patients receive bone defect 

repairs annually, and the prevalence of bone disorders is expected to double globally by 2020 

(Baroli, 2009). Restoration of defects following trauma, excision of pathology, and in the 

correction of developmental deformities, poses a great challenge due to the lack of suitable 

donor sites for harvesting grafts capable of accurately replicating the missing tissues. Whilst 

the need for anatomically-accurate grafting materials offers a niche that could be filled using 

refined tissue engineered constructs, it also imposes a considerable challenge to current 

composite TE techniques in order to create and attach the numerous tissue types required to 

replicate the normal anatomy (Lanza et al., 2014). Despite this challenge, 3D in vitro screening 

systems, based on human cells and tissues, have already attracted significant attention, as 

they offer more robust and predictive experimental data compared to 2D or animal models 

(Rouwkema et al., 2011). Limitations of 2D models include the loss of a natural 3D 

environment, which is in turn reflected in cell behaviour (Khoruzhenko, 2011), and 

additionally, the absence of a 3D environment excludes important factors such as hypoxic 

gradients and drug penetration.  Furthermore, animal studies may mislead due to interspecies 

molecular and physiological differences (van der Worp et al., 2010).  Therefore, the 

short−term need for anatomically representative 3D models of the oro-facial region is 

assured. Future development of these models beyond experimental analysis furthermore 

offers potential to achieve the longer−term goal of establishing tissue engineered grafting 

materials capable of improving and simplifying the reconstruction of surgical defects in the 

orofacial region. 
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Over the last few decades, there has been a substantial amount of innovation and progress 

in the engineering of various tissues found in the orofacial region, such as cartilage, bone, 

mucosa, and periodontium (Pallua and Suschek, 2010). This has encouraged researchers to 

develop more intricately−structured hybrid tissues that differ in the characteristics of their 

constituent parts yet comprise a single functional unit. To date, only a few examples of 

composite tissues have been engineered which replicate the orofacial region. Recent 

successes include the engineering of osteochondral components of the temporomandibular 

joint, which comprises both articular cartilage and subchondral bone (Sun et al., 2016; Ruan 

et al., 2017), and the engineering of a ligamentous interface between tooth and alveolar bone 

to replicate the bone-periodontal ligament complex (Park et al., 2011).  

The three key components of the majority of orofacial tissues are that of bone, fibrous 

connective tissue, and an overlying epithelium. Development of an accurate alveolar bone-

mucosal model, therefore, represents another important step in the process of achieving a 

clinically utilizable tissue engineered orofacial construct. In Chapter 2, the feasibility of 

developing 3D composite bone mucosal model was demonstrated using cancer and immortal 

cell lines. In this chapter, the development of a primary human alveolar bone mucosal model 

(ABMM) based on the conventional scaffold is presented. 
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3.2. Aims  

1. To develop a novel 3D composite ABMM based on primary cells isolated from the native 

human oral hard and soft tissues. 

2. To characterise the ABMM qualitatively and quantitatively, and to examine whether it 

accurately replicates the normal tissues in terms of histology, ultrastructural appearance, 

differentiation and phenotype characteristics. 

3.3. Materials and methods 

3.3.1. Surgical removal of biopsies 

Gingival and bone biopsies were obtained with written, informed consent from patients 

undergoing elective oral surgery at Charles Clifford Dental Hospital, Sheffield, UK, under 

appropriate ethical approval from National Research Ethics Services Committee (number 

15/LO/0116) (Appendix III).  

3.3.2. 2D cell culture conditions of normal human alveolar gingival and bone cells 

3.3.2.1. Isolation and cultivation of normal human oral keratinocytes (NHOKs) 

Irradiated 3T3 (i3T3) murine fibroblast cells were used as a feeder layer for NHOKs cultivation. 

3T3 (NIH/3T3 (ATCC® CRL-1658™) were cultured in DMEM supplemented with 100 IU/ml:100 

µg/ml P/S, 10 % FBS, and 2 Mm L-Glutamine. For irradiation of 3T3, cells were exposed to 60 

Grays using a cobalt 60 source irradiator to arrest cell growth (Hearnden, 2011). i3T3 were 

cryopreserved and resurrected when required. 

NHOKs were isolated from normal oral mucosa (NOM) biopsies as previously described 

(Colley et al., 2011). Briefly, biopsies were collected and kept for 4-5 hours at 4 oC in transport 

medium which is comprised of DMEM-GlutaMAX™ supplemented with 100 IU:100 mg/ml P/S 
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and 0.625 µg/ml amphotericin B. Then, biopsies were incubated at 4 oC in 0.25 % trypsin-EDTA 

solution for 16 hour. Following enzymatic digestion, the epithelium was removed from the 

connective tissue by gentle scraping with a scalpel blade (Figure 3.1.). NHOKs were 

centrifuged at 190 g for 5 minutes and cultured with an equal number of i3T3 (Table 3.1.) in 

Green’s medium (see Table 2.3.) (Rheinwald and Green, 1975) which refreshed every day until 

confluency. NHOKs were used at passage 2 or cryopreserved. 

A B 

  

Figure 3. 1. The separation of epithelium from the connective tissue layer of the oral mucosal biopsy. 

Image shows; (A) normal oral mucosa (NOM) biopsy in the transporting medium; (B) the epithelial 

layer was separated from connective tissue by gentle scraping after incubation for 16 hours in trypsin 

and each layer was cultivated separately.  

 

Table 3. 1. 2D seeding densities of primary human alveolar gingival and bone cells. 

Cell type Seeding density 

NHOKs 6 × 104 /cm2 

NHOFs 7 × 103 /cm2 

HAOBs 13× 103 /cm2 

 

NOM 

Epithelium 
Connective 

tissue 
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3.3.2.2. Isolation and cultivation of normal human oral fibroblasts (NHOFs) 

NHOFs were isolated from gingival and buccal mucosa biopsies as previously described (Colley 

et al., 2011). Following incubation with 0.25 % trypsin-EDTA solution for 16 hour at 4 oC and 

separation from the epithelium, connective tissue was finely minced and incubated in 0.05 % 

(w/v) collagenase type I (Gibco, USA) at 37 oC for 4 hours. NHOFs were collected by 

centrifugation at 190 g for 5 minutes and plated with appropriate seeding density (Table 3.1) 

in CDMEM (see Table 2.2.) which refreshed every other day until confluency. NHOFs used at 

passage 2 or cryopreserved. 

3.3.2.3. Isolation and cultivation of primary human alveolar osteoblasts (HAOBs) 

HAOBs were isolated from bone chips collected in a sterilised bone trap during the 

preparation of dental implant sites  (Mailhot and Borke, 1998; Jonsson et al., 1999). Following 

collection in the transport medium, bone fragments were extensively rinsed in PBS and 

vortexed to remove blood components. Tissue was cultured as explant in CDMEM−LAA (see 

Table 2.1.) and left undisturbed for 7 days because any dislodgment of explants may impede 

cell outgrowth. The medium was replaced 2−3 times/week until the culture attained 

confluency. Cells were passaged, plated with appropriate seeding density (Table 3.1), and 

used in passage 3 or cryopreserved. 
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3.3.3. Characterisation of intraoral-derived cells. 

3.3.3.1. Characterisation of bone-derived cells. 

The main function of bone cells is secretion and mineralisation of ECM (Neve et al., 2011). 

Therefore, to verify the osteogenic phenotype of the bone-derived cells, the secretion of one 

major specific osteogenic protein, OC, and the calcium deposition were examined. 

3.3.3.1.1.  Determination of protein secretion by immunofluorescent (IF) staining  

Isolated cells were grown at density 7 × 103 /cm2 on sterilized glass coverslips placed in 24 

well plate. After 48 hours, IF labeling with antibodies was performed according to the 

manufacturer’s instructions. Briefly, medium was removed, cells were washed with PBS (1 × 

3, 5 minutes each), fixed with 4 % paraformaldehyde (PFA) (Sigma Aldrich, Dorset, UK) (5 

minutes), permeabilized with 0.1 % Triton X−100 (Sigma Aldrich, Dorset, UK) (1 × 3, 5 minutes 

each), and then blocked with 1 % bovine serum albumin (BSA) (Sigma Aldrich, Dorset, UK) in 

0.1 % PBS−Tween (Sigma Aldrich, Dorset, UK) for 30 minutes. After removing of blocking 

solution, primary antibody was added and incubated for 1 hour after which cells were washed 

with PBS (1 × 3, 5 minutes each) and fluorescein isothiocyanate (FITC) conjugated secondary 

antibody was added and incubated for 45 minutes. Finally, cells were washed with PBS (1 × 3, 

5 minutes each) and mounted using 4',6-diamidino-2-phenylindole (DAPI)-containing, anti-

fade mounting medium (Thermofisher, UK). Visualisation was performed using Carl Zeiss 

microscope and colour view QI click camera with associated image pro plus 7.0.1 software 

(Zeiss Ltd, Germany). Human leukocyte antigen antibody (HLA) and an appropriate isotype 

were used as positive and negative ctrl, respectively. Ctrls were used with the dilutions and 

incubation times identical to that used for the primary antibodies (Table 3.2.). 
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Table 3. 2. Antibodies used for IF staining of bone-derived cells 

Marker Dilution Catalogue no. Vendor 

OC 1:100 ab13420 Abcam 

HLA 1:100 H1650 Sigma 

Mouse IgG isotype 1:100 02-6502 ebioscience 

FITC-conjugated goat anti-

mouse secondary antibody 

1:200 ab150113 Abcam 

 

3.3.3.1.2.  Determination of mineralisation by alizarin red stain (ARS). 

Quantitative assessment of mineralisation was performed using calcium-bounded ARS (Sigma 

Aldrich, Dorset, UK) at day 1,7,14,21, and 28. For that, bone-derived cells were cultured on 

sterilized glass coverslips in 24 well plate at seeding 5 × 103/ cm2. A standard ARS in a 

concentration range from 1000 to 0 µg/ml was prepared by serial dilutions with 5 % (v/v) 

perchloric acid (Sigma Aldrich, Dorset, UK). At each time point, samples were washed with 

deionized water, submerged with 500 µl of ARS stock solution, and incubated for 30 minutes. 

Next, the stain was removed and samples were washed repeatedly every 5 minutes with 

deionized water in a gentle orbital shaker until water remained clear. Then, 500 µl of 5 % (v/v) 

perchloric acid was added and left for 15 minutes in the orbital shaker. 150 µl of standard and 

sample solutions were transferred into transparent 96 well plate in triplicates and absorbance 

was read at 405 nm (Infinite® M200, TECAN, USA). Following subtracting the blank value (0 

µg/ml) from all values, the concentration of bounded ARS in samples was determined using 

the equation defined by the standard curve. Blank solution was used as a negative ctrl. 
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3.3.3.2. Characterisation of gingival-derived cells. 

Cytokeratin 13 (CK13) reacts with suprabasal non keratinised epithelium (Reibel et al., 1989) 

while fibroblasts surface protein (FSP) is predominately expressed in fibroblasts but not in 

epithelial cells in the tissue undergoing remodelling such as skin (Frank et al., 1995). These 

markers were selected for characterisation of NHOKs and NHOFs, respectively. Staining was 

performed according to the method described in section (3.3.3.1.1.) and the antibodies used 

for the staining are listed in the Table (3.3.). 

Table 3. 3.  Antibodies used for IF staining of gingival cells. 

Antibodies for IF staining of NHOKs 

Marker Dilution Catalogue No. Vendor 

CK13 1:100 ab198584 Abcam 

HLA 1:100 H1650 Sigma 

Rabbit IgG isotype 1:100 ab172730 Abcam 

FITC-conjugated goat 

anti-rabbit secondary 

antibody 

1:200 ab150083 Abcam 

Antibodies for IF staining of NHOFs 

FSP 1:50 Ab11333 Abcam 

HLA 1:50 H1650 Sigma 

Mouse IgM isotype 1:50 14-4752-81 ebioscience 

FITC-conjugated goat 

anti-mouse secondary 

antibody 

1:200 ab150117 Abcam 
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3.3.4. Construction of human alveolar bone construct (ABC). 

ABC was constructed and characterised prior to its utilization in the composite model. The 

construction of ABC construct was performed according to the method described in section 

(2.3.3.5.).  

3.3.5. Characterisation of ABC 

ABCs were cultured for a month during which the following qualitative and quantitative 

assessments were carried out every 10 days. 

3.3.5.1. SEM examination (see section 2.3.6.1.). 

3.3.5.2. Cell viability assessment (see section 2.3.3.4.). 

3.3.5.3. Proliferation assessment 

Cell proliferation was estimated by measuring total DNA content using ultrasensitive Quant-

iT™ PicoGreen® dsDNA reagent kits (ThermoFisher, USA). For that, lysed samples were first 

prepared then proliferation assessment was carried out.    

3.3.5.3.1. Preparation of lysed samples 

At each time point, samples were washed with PBS, grinded-frozen in liquid N2 with pestle 

and mortar into a fine powder which then transferred to Eppendorf tube. Then, on the ice, 

500 µl of lysis buffer consisting of 0.1 % (v/v) Triton in TE buffer (10 mM Tris-HCL, 1 mM EDTA, 

pH 7.5) was added with the vortex. Following three freeze−thaw cycles, lysed samples were 

centrifuged at 800 g for 5 minutes at 4 oC (Thermoscientific, Germany) (de Peppo et al., 2013). 

The supernatant lysates were collected and kept on ice to be used or kept in −80 until 

required. 
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3.3.5.3.2.  Assessment of total DNA content 

Standard solutions were prepared according to the manufacturer’s instructions, using serial 

dilutions of stock DNA with TE buffer to obtain a concentration ranged from 25 to 0 (blank) 

ng/ml. 10 µl aliquots of lysed samples were incubated with 90 µl of TE buffer. Then, 100 µl of 

PicoGreen working reagent was added to standard and sample solutions. 200 µl of standard 

and diluted lysed sample solutions were transferred into a transparent 96 well plate in 

triplicates and incubated for 5 minutes protected from light after which fluorescence was 

read with excitation 480 nm, emission 520 nm (Infinite® M200, TECAN, USA). For calculation, 

the mean fluorescence value of the blank was subtracted from the averaged sample and 

standard readings, then a standard curve of known concentrations of DNA was used to 

convert fluorescence to total DNA content. Blank assay buffer solution was used as a negative 

ctrl. 

3.3.5.4. Total protein content assessment 

To quantify the deposited ECM, total protein content was measured using the BCA protein 

assay kit (ThermoFisher, USA). Standard solutions were prepared according to the 

manufacturer’s instructions, by serial dilution of stock BSA with assay buffer to obtain a final 

BSA concentration ranged from 2000 to 0 (blank) µg/ml. Then, 25 µl of standard solutions and 

lysed sample (see section 3.3.5.3.1.) were transferred into a transparent 96 well plate in 

triplicates and incubated with 200 µl of working reagent for 30 minutes at 37 oC after which 

absorbance was read at 562 nm (Infinite® M200, TECAN, USA). For calculation, the mean 

absorbance value of the blank was subtracted from the averaged sample and standard 

readings, then protein concentration was determined using a standard curve of known 

concentrations of BSA. Blank assay buffer solution was used as a negative ctrl. 
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3.3.5.5. ALP activity assessment 

Differentiation of HAOBs was investigated by colorimetric ALP assay (Abcam, UK) according to 

the manufacturer’s instructions. p−nitrophenyl phosphate (pNPP) was used as a phosphatase 

substrate which turns yellow when dephosphorylated by ALP enzyme. Standard was prepared 

by serial dilution of stock pNPP with assay buffer to obtain a final concentration ranged from 

20 to 0 (blank) nmol/well. Then, in duplicates, 10 µl of ALP enzyme was added to 120 µl pNPP 

standard whereas 10 µl of the lysed sample (see section 3.3.5.3.1.) were diluted with 70 µl of 

assay buffer and added to 50 µl of pNPP. During incubation at room temperature for 60 

minutes protected from light, the enzyme converted pNPP substrate to an equal amount of 

coloured p−Nitrophenol. Finally, 20 µl of stop solution was added to sample and standard 

wells and the quantity of pNP produced was measured spectrophotometrically at 405 nm 

(Infinite® M200, TECAN, USA). For calculation, the mean absorbance value of the blank was 

subtracted from the averaged sample and standard readings and the concentration of ALP 

was calculated as: 

ALP (U/ml) = (A/V) /T 

Where A is the amount of calculated pNP, V is the sample volume, and T is the reaction 

time. Blank assay buffer solution was used as a negative ctrl. 

3.3.5.6. Quantitative real−time polymerase chain reaction (qRT-PCR) examination  

3.3.5.6.1. Total RNA isolation 

Tissue−engineered models were grinded frozen with pestle and mortar in liquid N2 then the 

total RNA was isolated from the tissue powder using isolate II RNA Mini Kit (BioLine, UK) 

according to manufacturer’s instructions. Briefly, the grinded tissue was lysed and filtered by 

centrifugation for at 11,000 g for 1 minute. Then, 70 % ethanol was added to homogenise the 
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lysate and improve binding of the RNA to the silica-based membrane of the spin column 

following centrifugation at 11,000 g for 30 seconds. DNA digestion was achieved by incubation 

with DNase I for 15 minutes followed by washing of column−bound RNA three times and 

elution in RNase/nuclease−free water. The concentration and purity of RNA were measured 

using a NanoDrop 1000 spectrophotometer (ThermoScientific, UK) and only high purity RNA 

(A260/A280 ratio) equal to or more than 2.0 was used for qRT−PCR analysis. 

3.3.5.6.2. Complementary DNA (cDNA) preparation  

cDNA was prepared from total RNA using a high capacity cDNA reverse transcription kit 

(Applied Biosystems) according to the manufacturer’s instructions. In this protocol, 500 ng of 

total RNA was reverse transcribed per reaction containing the reagents shown in Table (3.4.). 

Samples were then loaded in a thermal cycler (MJ Research PTC-200 Thermo Cycler, UK). The 

reverse transcription reaction consisted of 10 minutes at 25 oC followed by 2 hours at 37 oC, 

then 5 minutes at 85 oC, after which the sample was stored at −20 oC until used. 
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Table 3. 4. The components used to synthesize cDNA. Table shows the reagents of high capacity cDNA 

reverse transcription kit and their volume which were mixed into MicroAmp Fast reaction tubes 

(applied biosystem). 

Reagent Volume (µl) 

10 × RT buffer 4.0 

25 × dNTP 1.6 

10 × RT random primer 4.0 

Multiscribe reverse 

transcriptase 

2.0 

RNase inhibitor 2.0 

Nuclease-free water 6.4 

Total volume per reaction 20 

 

3.3.5.6.3. Gene expression analysis 

Quantitative detection of target genes was achieved using pre-designed TaqMan primers 

(Applied biosystems) (Table 3.5.). 0.5 µl cDNA was added to 9.5 µl qRT−PCR master mix (All 

Applied Biosystems) to give a total volume of 10 μl (Table 3.6). 
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Table 3. 5. TaqMan primers used for characterisation of ABM. Asterisked genes were used to analyse 

the epithelial component of the composite ABMM. 

Gene Marker Assay ID 

ALPL Alkaline phosphatase (ALP) HS01029144 

Secreted phosphoprotein-1 (SPP1) Osteopontin (OP) HS00959010 

Secreted protein acidic and rich in 

cysteine (SPARC) 

Osteonectin (ON) HS00234160 

Bone gamma-carboxyglutamic acid-

containing protein (BGLAP) 

Osteocalcin (OC) HS01587814 

COL1A1 Collagen1 (COL1) HS00164004 

KRT10* Cytokeratin 10 (CK10) HS01043114-G1 

KRT13* Cytokeratin 13 (CK13) HS02558881-S1 

B2M B-2-microglobulin HS00187842-M1 

 

Table 3. 6. The reagents used in TaqMan qPCR. 

Reagent Volume (µl) 

Taqman master mix 5 

 B2M 0.5 

Primer 0.5 

Water 3.5 

cDNA 0.5 

Total volume per reaction 10 
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Each sample was run in triplicate and the following thermocycle settings were used: 

Initial hold at 95 oC for 10 minutes, followed by 40 cycles of Annealing and Extension at 95 oC 

for 10 seconds, 60 oC for 45 seconds, respectively (Rotor-Gene Q, QIAGEN, Germany). B2M 

was used as the reference control gene. The threshold cycle (CT) values provided by the 

QIAGEN Software (QIAGEN, Germany) were imported into a spreadsheet of Microsoft Excel 

(version 2016) and ΔCT was calculated as follows;  

ΔCT = CT target gene - CT reference gene 

where CT target gene is gene under investigation while CT reference gene is CT for B2M 

measured in the same well. The quantification of gene expression was calculated either by 

using delta threshold cycle (ΔCT) value to calculate fold change using the 2ΔCt equation or by 

calculating gene expression relative to the reference ctrl. 

 

3.3.5.7. Enzyme-linked immunosorbent assay (ELISA). 

Following 24 hours incubation of models in serum-free conditioned medium, ELISA was used 

to measure the level of collagen (COL1) (R&D systems, UK), osteonectin (ON) (R&D systems, 

UK), and osteocalcin (OC) (Abcam, UK) in the conditioned medium according to the 

manufacturer’s instructions. For measuring COL1 and ON, conditioned medium was diluted 

to (1:200), (1:20), respectively. Then, 96 well plate was coated with the recommended 

concentration of captured antibody and incubated overnight at room temperature. The 

following day, wells were washed and nonspecific binding sites were blocked with 1 % BSA in 

PBS before the standard and samples were incubated for 2 hours. Then, unbound protein was 

washed and the recommended concentration of biotinylated detection antibody was 

incubated for 2 hours. Finally, streptavidin conjugated to horseradish peroxidase was added 

and incubated for 20 minutes followed by TMB substrate. For OC measurement, simple step 
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ELISA kit was used in which sample, standard, and antibody cocktail (capture and detector 

antibody) were added to antibody−coated wells and incubated for 1 hour at room 

temperature on a plate shaker. Following washing, TMB substrate was added and incubated 

for 10 minutes. All colorimetric reactions were measured spectrophotometrically using 

microplate reader (Infinite® M200, TECAN, UK) at an absorbance wavelength of 450 nm and 

570 nm for correction. Data were imported and into a spreadsheet of Microsoft Excel (version 

2016) for analysis. The concentration of target protein was determined using a standard curve 

of known protein concentrations. Conditioned media of monolayer cultured HAOBs was used 

as a positive ctrl while media without cells was the negative ctrl. 

 

3.3.6. Development of composite human alveolar bone mucosal model (ABMM). 

Construction of ABMM involved the simultaneous construction of ABC (see section 2.3.3.5.) 

and OMM (see section 2.3.4.). When the culture of OMM completed at day 17th, it was 

combined with ABC according to the method described in section (2.3.5.) to form a composite 

ABMM which further cultured for additional 5 days in static ALI condition (Figure 3.2.). 
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Figure 3. 2. Schematic illustration of the preparation of ABMM. The procedure involved 3 main steps. 

First; HAOBs, NHOFs, and NHOKs were isolated from oral tissues and cultivated in monolayer culture. 

Second; ABMs were prepared by seeding HAOBs in HA/TCP scaffold and cultured in spinner bioreactor 

while OMMs were prepared from fibroblast−embedded collagen gel and ALI cultured oral 

keratinocytes. Third; the combination of ABC and OMM using adhesive fibrin to form ABMM.  

 

3.3.7. Characterisation of ABMM 

3.3.7.1. Histological examination of mucosal part 

For histological examination, frozen sections were prepared as previously described 

(Kriegebaum et al., 2012). OMMs were fixed with 4 % PFA for 24 hours, incubated overnight 

in 18 % sucrose solution (Sigma Aldrich, Dorset, UK), then frozen in optimal cutting 

temperature compound (Thermofisher, UK). Sections of 14 µm thickness were prepared 

(Microm, Germany) and mounted onto superfrost plus micro slide (VWR, West Sussex, UK). 

Some sections were stained with H&E (See Table 2.8.) and imaged using an Olympus BX51 

microscope and Colour view IIIu camera with associated Cell^D software (Olympus Soft 

Imaging Solutions, GmbH, Münster, Germany). Other sections were subjected to IF staining. 
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3.3.7.2. IF staining of mucosal part 

For characterisation, sections of OMM were stained with cytokeratin 10, 13, and 14, which 

are the markers of keratinised epithelium, non-keratinised epithelium, and actively dividing 

basal keratinocytes, respectively (Kinikoglu et al., 2009; Jennings et al., 2016; Kriegebaum et 

al., 2012). For that, sections were washed with PBS (× 3, 5 minutes each), permeabilised with 

0.2 % Triton x-100 (× 2, 15 minutes each), and then blocked with 1% BSA in 0.1 % PBS-Tween 

for 1 hour. Following aspiration of blocking solution, sections were incubated with primary 

antibodies or IgG isotype overnight in a humidified chamber at 4 oC (Table 3.7.) then washed 

with PBS (× 3, 5 minutes each).  Sections with conjugated antibodies were mounted using 

DAPI−containing, anti−fade mounting medium (Thermofisher, UK), while those with un 

conjugated antibodies or with isotype control were incubated with secondary antibodies for 

1 hour at room temperature then washed with PBS (× 3, 5 minutes each) and mounted. 

Images were captured using Carl Zeiss microscope and colour view QI click camera with 

associated image pro plus 7.0.1 software (Zeiss Ltd, Germany). 

 

Table 3. 7. Antibodies used for IF staining of OMM. 

Marker Dilution Catalog no. Company 

CK10 1:50 ab9025 Abcam 

CK13 1:100 ab198584 Abcam 

CK14 1:100 ab192055 Abcam 

Mouse IgG Isotype 1:50 02-6502 ebioscience 

Rabbit IgG Isotype 1:100 ab172730 Abcam 
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Gout anti-mouse secondary 

antibodies 

1:200 ab150117 Abcam 

Gout anti-rabbit secondary 

antibodies 

1:200 ab150083 Abcam 

 

3.3.7.3. Transmission electron microscopy (TEM) of mucosal part 

TEM assessment was performed to demonstrate the presence of epithelial cell ultrastructures 

such as desmosome and hemidesmosome which provide interepithelial and epithelial-

connective tissue connection, respectively  (Nanci, 2013). For that, 4 mm of OMM were fixed 

in 3 % glutaraldehyde in 0.1 M sodium cacodylate buffer overnight, washed with 0.1 molar 

sodium cacodylate buffer, and post-fixed in 2 % aqueous Osmium Tetroxide for 2 hours. 

Following rinsing with water, samples were dehydrated with 70 %, 95 %, and 100 % ethanol 

(×2, 10 minutes each) then cleared in epoxypropane and infiltrated in 50:50 araldite resin: 

epoxypropane mixture overnight on a rotor. This mixture was replaced with two changes over 

8 hours with fresh araldite resin mixture before being embedded and cured in a 60 oC oven 

for 48-72 hours. Finally, ultrathin sections of 85 nm thick were cut on ultramicrotome (Leica 

UC 6, Leica microsystem, Germany) onto 200 mesh copper grids and stained for 30 mins with 

saturated aqueous Uranyl Acetate followed by Reynold’s Lead Citrate for 5 minutes. 

Visualization was performed using a transmission electron microscope (FEI tecnai 12 Bio-twin, 

120Kv TEM) at an accelerating voltage of 80 Kv. Electron micrographs were recorded using a 

Gatan Orius 1000 digital camera and Gatan Digital Micrograph software. Preparation and 

sectioning of samples for imaging was performed by Chris Hill, Department of Biomedical 

Science, University of Sheffield. 
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3.3.7.4. Histological examination of ABMM. 

3.3.7.4.1. Preparation of undecalcified resin embedded block 

Technovit 7100 (Heraeus Kulzer, Wehrheim, Germany), a plastic embedding system based on 

2-hydroxyethyl methacrylate, also known as GMA (Glycolmethacrylate), was used according 

to manufacturer’s instructions (Gerrits and Horobin, 1996). Briefly, the embedding procedure 

consisted of four major steps: 

Fixation and dehydration 

At the end of the incubation period, specimens were washed with PBS, fixed in 4 % PFA for 

24 hours, then rinsed with PBS before dehydration in graded ethanol series 75 %, 95 %, 100 

% for at least 2 hours with two changes for each solution. 

Prefiltration 

After dehydration, the specimens were immersed in a prefiltration solution consisting of 

equal parts of Technovit 7100 basic solution and 100 % ethanol overnight on a rotating mixer.  

Infiltration  

Specimens were infiltrated with infiltration solution consisting of 100 ml Technovit 7100 basic 

solution and 1 g Hardener 1 for 2 days on a rotating mixer. 

Polymerisation  

Finally, samples were polymerized in a suitable mold in premixed 15ml infiltration solution 

plus 1 ml Hardener 2. Polymerisation completed in around 2 hours at room temperature or 1 

hour at room temperature in a vacuum embedder. 
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3.3.7.4.2. Ground sectioning 

Cutting-grinding technique was carried out to prepare the resin embedded slides  (Chai, 

2011). Resin block was first sectioned into 100-150 µm thickness with a cutting machine 

(IsoMet® 1000 precision saw, Buehler UK Ltd, UK). Sections were then adhered onto 

superfrost plus micro slide using cyanoacrylate adhesive (Loctite® glass bond UV curing, UK). 

Thickness was then further reduced to 35−40 µm by grinding the sections with silicon carbide 

papers of P800 and P1200 roughness in a grinder-polisher machine (Buehler ™ Metaserv, UK). 

Subsequently, ground sections were stained by H&E staining according to the manufacturer’s 

instructions (Table 3.8.) (Leica ST4040 Shandon Linear Stainer, Leica Microsystems, Germany). 

Slides were mounted with DPX and covered with a coverslip. Finally, images were taken using 

an Olympus BX51 microscope and colour view Illu camera with associated Cell^d software 

(Olympus soft imaging solutions, GmbH, Münster, Germany). 

Table 3. 8. H&E staining schedule for resin embedded section. Table describes the order, solutions 

used for staining, and time the tissue spent in each solution. Industrial denatured alcohol (IDA). 

Order Solution Time (minutes) 

1 Harris’ haematoxylin (Shandon) 15 

2 Running tap water 1 

3 Scott’s tap water substitute 10 

4 Running tap water 1 

5 Eosin Y – aqueous (Shandon) 20 

6 Running tap water 1 

7 70 % IDA 1 

8 95 % IDA 1 

9 100 % IDA 1 
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10 Xylene 1 

 

3.3.7.5. qRT−PCR examination (see section 3.3.5.6.). 

3.3.7.6. ELISA (see section 3.3.5.7.). 

3.3.8. Statistical analysis 

All data were presented in terms of mean ± SD of three independent experiments performed 

in triplicate. One−way ANOVA complemented by Tukey’s post-test was performed using 

GraphPad Prism software v7.0. (GraphPad Prism software, CA, USA). Differences were 

considered significant when p < 0.05. 

3.4. Results 

3.4.1. 2D expansion and phenotypic characterisation of intraoral-isolated cells 

Regarding intraoral derived bone cells, with the exception of a small number of detached cells 

from the bone surface, the first evidence of cellular outgrowth from the explants was 

observed within 7−10 days of plating. After 2 weeks, cells started to migrate from the tissue 

onto the flask surface (Figure 3.3. A). Avoiding explant dislodgment during feeding helped to 

anchor the explant to the flask and prevent disturbance of cell outgrowth. The proliferated 

cells had polygonal or spindle shape morphology. No differences in growth characteristics or 

cell morphology were observed among individual explant cultures. Culture generally attained 

confluency after 4−5 weeks after initiation of culture and achieved cell yields 2,860,000 ± 

597285.5 cells/ 75 cm2 flask. 

With respect to the growth of NHOKs, by 4th to 5th day, small colonies of 10-15 cells were 

visible between i3T3. In 10−14 days, the colonies matured, lateral expansion ceased, and the 

cells were desquamated from the surface. The culture yielded 3,000,000 ± 163299.3 cells / 25 
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cm2 flask (Figure 3.3. B). Contaminating NHOFs were seen on few occasions which scrapped 

off to obtain a pure culture. NHOFs outgrowth from the connective tissue pieces began in 4−6 

days and the confluent culture gave 3766666.7 ± 251661.1 cells / 75 cm2 flask (Figure 3.3. C).  

HAOBs HNOKs 

  

HNOFs 

   
 

Figure 3. 3. Inverted lens microscopy of 2D cultured HAOBs, NHOKs, and NHOFs isolated from oral 

biopsies. Image shows (A) The outgrowth of bone−derived cells from the explanted oral cancellous 

bone (red arrow). The migration of cell started after 2 weeks of explant plating and the confluency 

was reached at 4th−5th week. The derived cells exhibited a polygonal or spindle shape which reflects 

the osteoblastic morphology. (B) A confluent layer of epithelial cells attained after 10−14 days of 

culture with an i3T3 feeder layer in Green’s medium. The culture gave rise to apparently pure 

keratinocyte outgrowths except for few cases where the keratinocytes were mixed with the 

fibroblasts. The shape of keratinocytes was remarkably homogenous and area of intense mitotic 

activity was noticed before the coalescence of outgrowth and formation of the confluent culture. (C) 

The outgrowth of cells isolated from the connective tissue began 4-6 days after establishment in 

primary culture. The culture shows elongated fibroblasts proliferating in irregular bands (Scale bars = 

100 µm). 

100 µm 

B A 

100 µm 

C 
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In addition to the morphological observation, the bone, epithelial, and connective tissue-

derived cells characterised by immunofluorescent labelling demonstrated a positive 

immunoreactivity for OC (the major non collagenous osteogenic protein), CK13 (epithelial 

differentiation marker) and FSP, respectively. These findings confirmed that the isolated cells 

had the normal phenotypical features associated with HAOBs, NHOKs, and NHOFs, as well as 

they showed the purity of the culture (Figure 3.4.). 

 

 

Figure 3. 4. Representative images of immunofluorescent stained HAOBs, NHOKs, and NHOFs. 

Images show positive immunoreactivity (green) of (A) HAOBs; (D) NHOKs; and (G) NHOFs with OC, 

CK13, and FSB, respectively. (B, E, H) depict positive ctrls stained with HLA and secondary antibodies. 

(C, F, I) depict negative ctrls incubated with Ig isotype and secondary antibodies. Inset images include 

DAPI overlay to demonstrate cell nuclei (blue) (Scale bars = 100 µm). 
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The capacity of bone−derived cells for mineralisation was quantified by ARS at days 1, 14, 21, 

and 28 of culture. Figure (3.5.) indicates that mineral deposition was significantly high at day 

14 (p=0.0006) and continued to increase at day 21 and 28 (p<0.0001) compared with day 1. 

 

Figure 3. 5. Determination of matrix mineralisation by HAOBs using ARS. Graph shows the 

concentration of calcium bounded ARS at day 1,7,14,21, and 28 of culture period of HAOBs cultured 

in monolayer. Data represent mean ± SD of three independent experiments (n=3) performed in 

triplicate. Statistical significance was determined using results from a one-way ANOVA followed by 

Tukey’s post-test (** = p<0.001, **** = p<0.0001). Asterisks above the horizontal line are relative to 

the two bars at the ends of the line. 

 

3.4.2. Evaluation of ABC 

3.4.2.1. SEM examination 

Cell adhesion, proliferation, and distribution were qualitatively assessed by SEM. SEM 

observation allowed to determine sparse HAOBs well adhered to HA/TCP scaffold surface 

after 1 day of culture (Figure 3.6. A). At day 10, proliferated cells were being able to deeply 

infiltrate the pores and span across them which demonstrated the adequacy of the pore size 

range (Figure 3.6. B). By 20 days, it was possible to observe a higher degree of colonization 

occluding most of the scaffold pores (Figure 3.6.C). Additionally, it was possible to observe 
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what seems to be ECM fibers produced by proliferated cells (Figure 3.6. D). At the end of the 

month, HAOBs had massively colonized the scaffolds and occluding the scaffold bars and 

pores (Figure 3.6. E).   

 

Figure 3. 6. SEM micrographs of ABC. Image shows HAOBs cultured on HA/TCP scaffold at; (A) day 1, 

HAOBs were attached and scattered on the scaffold (yellow arrows); (B) day 10, the cells 

demonstrated a proliferation and infiltration of the pores; (C) day 20, showed an increased cell 

number that covered most of the scaffold surface and (D) possibly the secreted ECM fibres (red 

arrows); (E) day 30, the proliferated cells expanded on the scaffold forming a membrane-like layer 

covering scaffold pores and bars (Scale bars: A, B, C, E = 200 µm; D = 5000 µm). Preparation of samples 

for imaging was performed by Chris Hill, Department of Biomedical Science, University of Sheffield 

according to the method described in section (2.3.6.1). 
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3.4.2.2. Cell vitality 

 Viability assessment of ABC at day 10, 20, and 30 presented a significant increase in signal 

intensity compared to day 1 (p<0.0001). The highest metabolic activity reached at day 20 

which was significantly higher than that noticed at day 10 (p=0.0038) while no difference was 

observed between day 20 and 30 (p=0.1464) (Figure 3.7.).  

 

Figure 3. 7. The viability of HAOBs within the ABC. Graph shows the viability of HA/TCP bone 

constructs cultured in spinner bioreactor for one month. The metabolic activity of HAOBs within the 

construct demonstrated a gradual increase that reached the maximum level by day 20 while no 

significant difference was observed afterward. Data represent mean ± SD of three independent 

experiments (n=3) performed in triplicate. Statistical significance was determined using one-way 

ANOVA followed by Tukey’s post-test (** = p<0.01, **** = p<0.0001). Asterisks directly above the bar 

are relative to the day 1 (baseline) and above the horizontal line are relative to the two bars at the 

ends of the line. 

 

3.4.2.3. Cell proliferation 

Total DNA content, which indicates to cell proliferation, reflected approximately the same 

trend observed with the cell activity assessment. The cell number demonstrated a progressive 

significant increase at 10 (p= 0.0017), 20 (p<0.0001), and 30 (p=0.8073) compared with day 
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1.  The proliferation at day 20 was significantly high in comparison with the previous time 

point (0.0014) while no difference was reported between day 20 and 30 (Figure 3.8).  

 

Figure 3. 8. Total DNA content in ABC. Graph shows the proliferative pattern of HAOBs cultured in 

HA/TCP scaffold along the entire duration of culture in the spinner. The number of HAOBs within the 

construct demonstrated a gradual increase that reached the highest level by day 20 and 30 which 

were not significantly different. Data represent mean ± SD of three independent experiments (n=3) 

performed in triplicate. Statistical significance was determined using one-way ANOVA with Tukey’s 

post-test (** = p<0.01, **** = p< 0.0001). Asterisks directly above the bar are relative to the day 1 

(baseline) and above the horizontal line are relative to the two bars at the ends of the line. 

 

3.4.2.4. Total protein secretion 

The concentration of protein progressively increased at day 10 (p=0.0223), 20 (p<0.0001), and 

30 (p<0.0001) compared with day 1. The protein level at day 20 was significantly higher in 

comparison with day 10 (p=0.0037) while no significant difference was observed afterward 

(p=0.9362) (Figure 3.9.). 
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Figure 3. 9. Protein content in ABC. Graph shows the protein content in HAOBs−HA/TCP constructs 

along the entire duration of culture in the spinner. The total protein content within the construct 

demonstrated a progressive increase that reached the highest level by day 20 and 30 which were not 

significantly different. Data represent mean ± SD of three independent experiments (n=3) performed 

in triplicate. Statistical significance was determined using one-way ANOVA with Tukey’s post-test (* = 

p< 0.05, ** = p<0.01, **** = p< 0.0001). Asterisk(s) directly above the bar is relative to the day 1 

(baseline) and above the horizontal line are relative to the two bars at the ends of the line. 

 

3.4.2.5. ALP assessment  

The osteogenic differentiation was investigated by measuring the ALP activity. The data 

presented in Figure (3.10) demonstrated that the constructs of HAOBs were positive for ALP 

from day 1 and reached the maximum level by day 30. Compared to day 1, cells produced a 

significantly higher amount of ALP at day 10 (p=0.0005), 20 (p<0.0001), and 30 (p<0.0001). 

The level of ALP at day 20 was significantly higher than that reported at day 10 (p<0.0001) 

and lower than the level at day 30 (p=0.0004). 
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Figure 3. 10. ALP activity for ABC. Graph demonstrates the progressive differentiation of HAOBs 

cultured in HA/TCP scaffold for one month. HAOBs within the construct demonstrated a progressive 

increase in ALP expression that reached its highest level at day 30.  Data represent mean ± SD of three 

independent experiments (n=3) performed in triplicate. Statistical significance was determined using 

one-way ANOVA with Tukey’s post-test (*** = p<0.001, **** = p< 0.0001). Asterisks directly above 

the bar are relative to the day 1 (baseline) and above the horizontal line are relative to the two bars 

at the ends of the line. 

 

3.4.2.6. qRT-PCR assessment 

To obtain a complete insight into the phenotypic profile of ABCs during differentiation, the 

changes of osteogenic genes at 10 days interval over 30 days were analysed. Gene expression 

for osteoblast−specific markers was evaluated and made relative to the expression of these 

genes in the construct at day 1. ALPL displayed comparable levels from day 1 to 30 with no 

significant changes in the expression at day 10 (p>0.9999), 20 (p=0.6531), and 30 (p=0.9977) 

compared to day 1 (Figure 3.11. A). Similarly, the levels of COL1A1 at day 10 (p=0.7662), 20 

(p=0.3751), and 30 (p=0.5856) were not observed to be significantly higher compared with day 

1 although the expression slightly increased (Figure 3.11. B). Conversely, SPARC expression 

was significantly upregulated 2 fold and 3.9 fold at day 20 (p= 0.0076) and 30 (p<0.000), 

respectively (Figure 3.11. C). The expression of SPP1 at day 10 was generally comparable with 
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day 1 (p=0.8817) then the level increased steeply 3 fold at day 20 (p=0.0049) and 30 

(p=0.0060) (Figure 3.11. D). BGLAP, unlike other genes, was found to be significantly 

decreased 0.5, 0.6, and 0.4 fold by day 10 (p=0.0015), 20 (p=0.0039), and 30 (p=0.0002), 

respectively in comparison with day 1 (Figure 3.11. D).  
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Figure 3. 11. qRT−PCR gene expression analysis of ABC. Image shows the expression level of (A) ALPL; 

(B) COL1A1; (C) SPARC; (D) SPP1; (E) BGLAP in ABC cultured in spinner bioreactor for one month. Data 

represent mean ± SD of three independent experiments (n=3) performed in triplicate. Statistical 

significance was determined using one-way ANOVA with Tukey’s post-test (** = p<0.01; *** = 

p<0.001; **** = p<0.0001). Asterisks directly above the bar are relative to the day 1 (baseline) and 

above the horizontal line are relative to the two bars at the ends of the line. 

 

3.4.2.7. ELISA 

Quantitative analysis of COL1, ON, and OC released into the serum−free conditioned medium 

of ABC were assessed by ELISA every 10 days for a month and evaluation was made in 

comparison with protein level at day 1. Generally, the concentration of COL1 and ON reflected 

the same trend of their encoding genes; COL1A1 and SPARC, respectively. COL1 level tended 

to be steady and demonstrated no significant change at different time points (Figure 3.12. A). 

Conversely, ON was progressively upregulated at day 10, 20, and 30 (p<0.0001) and reached 

the maximum level at day 20 when compared with day 10 (p=0.0014) and 30 (p=0.9040) 

(Figure 3.12. B). In contrast with its encoding gene profile (BGLAP), OC displayed a fluctuant 

level compared with day 1. The trend demonstrated by a sharp increase at day 10 (p=0.0014) 

followed by a decline at day 20 although it was not significantly different (p=0.0720) then the 

level increased again significantly in day 30 (p=0.0038) (Figure 3.12. C). 

 

E 
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Figure 3. 12. ELISA assessment of ABC. Image shows the secreted (A) collagen I; (B) osteonectin; (C) 

osteocalcin in ABM. Data represent mean ± SD of three independent experiments (n=3) performed in 

triplicate. Statistical significance was determined using one-way ANOVA with Tukey’s post-test (* 

=p<0.05, ** = p< 0.01, **** = p<0.0001). Asterisk(s) directly above the bar is relative to the day 1 

(baseline) and above the horizontal line are relative to the two bars at the ends of the line. 
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3.4.3. Assessments of the composite ABMM 

3.4.3.1. Histological examination of OMM  

Figure (3.13.) show the histological appearance of the mucosal part of ABMM. OMM 

demonstrated a proliferating basal layer and well−differentiated stratified squamous oral 

epithelium of 12−14 NHOKs thickness, which resembled the NOM. The epithelium consisted 

of distinct layers that included equivalents to basal, intermediate, and superficial cells, 

respectively. No stratum corneum was observed, as in the case of nonkeratinized native oral 

mucosa. The uppermost aspect of the superficial layer had cells of a flattened appearance, 

while cells in the basal layer remained rounded. Glycogen granules were occasionally 

observed in the intermediate layer. NHOFs were found dispersed homogeneously in the 

connective tissue. 

 

  

Figure 3. 13. H&E−stained histological sections of OMM. (A) NOM; and (B) OMM showing a 

well−differentiated stratified squamous epithelial layer with fibroblasts (yellow arrows) scattered in 

the connective tissue layer (Scale bars = 100 µm). 
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3.4.3.2. Immunohistochemical examination of OMM  

Figure (3.14.) shows the keratin expression of NOM and OMM, as assessed by 

immunofluorescent staining for CK10, CK13, and CK14. OMM showed very mild expression of 

CK10 (Figure 3.14. A) and strong expression of CK13 throughout the entire epithelium (Figure 

3.14. D). CK14 was strongly expressed in the basal layer while it downregulated in the 

intermediate layer and disappeared in the superficial layer (Figure 3.14. G). NOM (positive 

ctrl) demonstrated similar results regarding the expression of CK10, CK13, and CK14, 

respectively (Figure 3.14. B, E, H). All markers were negatively expressed in OMM stained with 

IgG isotype and secondary antibody (negative ctrl) (Figure 3.14.C, F, I).  
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 OMM NOM Negative Ctrl 

 

CK10 

   

 

 

CK13 

   

 

 

CK14 

   

Figure 3. 14. Immunofluorescent labelling of OMM with CK10, CK13, and CK14. Image demonstrates 

the Immunolabelling of CK10 (keratinized epithelium marker), CK13 (non-keratinised epithelium 

marker), and CK14 (basal epithelial layer marker) in the epithelial layer of NOM and OMM. OMM 

showing (A) negative staining with CK 10; (D) strong expression of CK13 in suprabasal layers; (G) 

expression of CK14 in basal and intermediate layers. The same results were obtained in NOM (positive 

ctrl) for CK10 (B), CK13 (E), and CK14 (H). (C, F, I) OMM stained with isotype control and secondary 

antibody were used as negative ctrl for CK10, CK13, and CK14, respectively. Positive immunolabelling 

are shown in green while cell nuclei are shown in blue (Scale bars = 100 µm).  
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3.4.3.3. TEM examination of OMM 

Ultrastructural analysis of the OMM demonstrated the presence of numerous desmosomes 

between adjacent epithelial cells (Figure 3.15. A and B). A continuous and intact basement 

membrane was formed on the lamina propria equivalent all along the interface between the 

epithelium and connective tissue anchoring the epithelium firmly to the connective tissue by 

means of hemidesmosomal attachments (Figure 3.15. C). In the sup−epithelial layer, a high 

amount of newly synthesised collagen was observed (Figure 3.15. D). 

 

Figure 3. 15. Ultrastructural analysis of the OMM by transmission electron microscopy. Image 

demonstrating; (A) numerous desmosomes between adjacent epithelial cells (yellow arrows); (B) a 

desmosome at higher magnification; (C) basement membrane formed all along the interface between 

the epithelial cell and connective tissue with the presence of hemidesmosomes (white arrows); (D) 

newly synthesised collagen I fibrils in the connective tissue (red arrows) (Scale bars: A = 1 µm; B, C, D 

= 200 nm). Preparation and sectioning of samples for imaging was performed by Chris Hill, Department 

of Biomedical Science, University of Sheffield according to the method described in section (3.3.7.3.). 
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3.4.3.4. Histological examination of ABMM 

Histological observation revealed that the ABMM had a structure consisting of epithelial, 

connective tissue and bony layers which were comparable to the histological architecture of 

the soft and hard tissues of the oral cavity (Figure 3.16. A). The model’s surface displayed a 

continuous stratified epithelial layer, and a connective tissue layer densely populated with 

viable fibroblasts (Figure 3.16. B). The hard-soft tissue interface showed a thin band of 

cell−infiltrated sealant adhering both layers (Figure 3.16. C). Viable cells evenly populated the 

scaffold porosities with a secreted matrix partially or completely filling the pores of the 

scaffold (Figure 3.16. D). 

 

Figure 3. 16. H&E stained sections of ABMM. Representative images showing (A) full thickness 

multi−layered bone and mucosa; and magnified images of (B) oral mucosa part; (C) bone−mucosal 

interface; and (D) bony part showing the pores of the scaffold populated with spindle−shaped cells 

(Scale bars: A = 500 µm; B, C, D = 200 µm). 



136  

3.4.3.5. qRT-PCR assessment  

Figure (3.17.) summarises gene expression for the composite model, including both HAOB 

and NHOK cell components. Bone−specific genes such as ALPL, BGLAP, SPARC, and SPP1 

were detected. Mucosal genes encoding KRT10 and KRT13 were expressed. The trend of 

gene expression in ABMM was observed in the osteoblasts (positive ctrl) although the 

expression of OC and OP was minimal. Undetectable OC and OP, as well as the negligible 

amount of ALP (0.0002) in the mucosal part of the model (negative ctrl), indicated the 

osteogenic specificity of these markers. Conversely, COL1 and ON were detected in mucosa 

which demonstrated that these markers can be expressed by cells other than bone cell. 
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(A) ABMM (B) Positive Ctrl 

  

 

(C) Negative Ctrl 

 

Figure 3. 17. qRT−PCR analysis of the osteogenic and epithelial gene expression in ABMM. (A) The 

osteogenic genes; BGLA, ALPL, SPP1, SPARC, and COL1A1 as well as the epithelial genes; KRT10 and 

KRT13 were detected in the composite ABMM. The expression of SPARC and COL1A1 in ABMM 

demonstrated the same trend found in the positive ctrl although the expression of COL1A1 was 

significantly lower. BGLA and SPP1 showed high level compared with the positive ctrl while the 

expression of ALP and KR13 was lower. All the detected genes were significantly higher than their level 

in the negative ctrl. (B) Positive ctrl were HAOBs and NHOKs for bone and epithelial components, 

respectively. (C) Negative ctrl for bone was OMM while no cDNA sample was used for epithelium. Data 

represent mean ± SD of three independent experiments (n=3) performed in triplicate. Statistical 

significance was determined using one-way ANOVA with Tukey’s post-test. *: compared to positive 

ctrl: # compared to negative ctrl. (* = p<0.05, ## = p< 0.01, *** or ### = p<0.001, **** or #### = 

p<0.0001).   
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3.4.3.6. ELISA 

ELISA results for COL1, ON, and OC demonstrated the same trend observed with their gene 

expression profile. All proteins in ABMM were significantly higher than that found in 

positive ctrl (Figure 3.18.).  

(A) ABMM (B) Positive Ctrl 

  
     

 

(C) Negative Ctrl 

 

Figure 3. 18. ELISA assessment of proteins expressed in ABMM. Image shows the levels of COL1, ON, 

and OC produced in; (A) ABMM; (B) HAOBs which was used as a positive ctrl, and (C) serum-free 

medium represented the negative ctrl. Data represent mean ± SD of three independent experiments 

(n=3) performed in triplicate. Statistical significance was determined using one-way ANOVA with 

Tukey’s post-test. *: compared to positive ctrl: # compared to negative ctrl.  (* = p<0.05, ## = p< 0.01, 

**** or #### = p<0.0001). 
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3.5. Discussion 

3.5.1. Isolation, growth, and characterisation of alveolar bone and gingival cells. 

Cells constitute the main element in any engineered tissue. Therefore, identification of a 

reliable cell source and expansion of the harvested cells to an appropriate quantity while 

preserving the fundamental quality such as identity, purity, potency, functionality, and 

genetic stability are of utmost importance in TE. Parameters related to the cell itself such as 

the biological properties and nature of original tissue or related to culture conditions, 

including initial seeding density and passage number and length, are all crucial in determining 

normal cell function (Melero-Martin et al., 2009). 

In bone tissue, it is well established that matrix formation and subsequent mineralisation are 

organised by osteoblasts through a complex process, including cell migration, proliferation, 

differentiation, and expression of growth factors and structural proteins (Neve et al., 2011). 

Several studies indicated that alveolar bone can be used as a source to isolate mesenchymal 

cells that have the potential to undergo osteogenic differentiation when cultured in 

appropriate conditions (Clausen et al., 2006; Malicev et al., 2008; Pradel et al., 2008). 

Interestingly, previous work suggested that cells originating from alveolar bone exhibit 

distinct differentiation properties in vivo and in vitro (Akintoye et al., 2006) as well as different 

drug responses compared to the cells derived from long and iliac bones (Marolt et al., 2012; 

Stefanik et al., 2008). These studies clearly indicate that bone cell populations at different 

anatomical locations have different physiological characteristics. As such, primary human 

alveolar bone cells might uniquely represent a physiologically relevant model for in vitro 

studies related to the OMF region. 

Explant culture or enzymatic treatment by collagenase are the main reported methods for 

isolating human bone cells. However, previous studies showed no difference in phenotypical 
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characteristics between cells harvested from both methods (Jonsson et al., 1999; Marolt et 

al., 2014). The morphology of bone cells, as demonstrated by a light microscope, revealed 

predominantly a polygonal or spindle appearance, which is postulated by some investigators 

as a typical osteoblastic shape (Clausen et al., 2006; Murata et al., 2004). The absence of major 

morphological variations in bone−derived cells can be explained by the fact that young cells 

of early passage were used in this study while subculturing to a high passage number might 

reveal shape differences (Kassem et al., 1997). 

Many non-osseous cell types such as periodontal and gingival cells that have similar 

morphology to osteoblasts are present in bone biopsies and may multiply along with or 

preferentially relative to osteoblasts and osteoprogenitors. Therefore, definite 

characterization cannot be made based on morphological features. In our study, cells isolated 

from an intraoral osseous explant were characterised by OC, which is one of the major non-

collagenous proteins produced exclusively by cells of osteoblastic lineage (Allori et al., 2008b). 

Another essential indicator for osteogenesis is the formation of mineralised ECM. Mature 

osteoblasts produce a collagen I−rich matrix which consequently calcified (Neve et al., 2011). 

Our findings are correlated with other studies in showing that bone-derived cells have the 

capacity to deposit calcium mineral within 2 weeks of culture, and the deposition increased 

with time (Wang et al., 2006; Birmingham et al., 2012).  

The validity of the oral mucosal tissues as a cell source for oral tissue engineering was proved 

by the morphological appearance, the purity of culture, and the positive immunoreactivity of 

NHOKs and NHOFs to CK13 and FSP, respectively. The former protein is the epithelial 

differentiation marker predominately secreted by non keratinised epithelial cells (Reibel et 

al., 1989), while FSP is a fibroblast−specific protein (Frank et al., 1995). Considering the 

generally accepted fact that, the more the cells are passaged, the more they change and their 
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health declines, leading to variable results, early passaged primary cells should be used. For 

human primary bone cells, studies indicated that the 4th passage is more likely to be the 

turning point after which cell dedifferentiation begins (Pradel et al., 2008; Kwist et al., 2016). 

Oral keratinocytes, on the other hand, can be used at Passage 2 (Taichman et al., 1979) up to 

Passage 5 (Zhou et al., 2001). The reason for the decrease in lifespan with the progressive 

passage may be related to keratinocyte terminal differentiation induced by serum in the 

medium or by a change in calcium level due to repeated exposure to EDTA in trypsin that 

reduces cell mitotic activity (Borowiec et al., 2013).  

3.5.2. Characteristics of ABC 

To date, BTE has been extensively studied for both clinical and research purposes using 

different cell types. While several osteogenic cell lines were established and well 

characterised, primary human osteoblasts remain the “gold standard” with which other cells 

are compared (Czekanska et al., 2014). The developmental sequence of osteogenesis in vitro 

is described by three phases: proliferation with matrix secretion, matrix maturation, and 

matrix mineralisation (Lian and Stein, 1995; Owen et al., 1990). The current study assessed 

these phases in the BC before its utilisation in the composite model. We, therefore, identified 

the behaviour of 3D cultured bone cells in dynamic conditions, and to what extent these cells 

can survive and reproduce the phenotypic differentiation and maturation of cells in vivo.  

SEM images of HAOBs grown in an HA/TCP scaffold clearly showed the proliferative cells 

expanded on the surface and within the pores, forming a continuous layer of cells and their 

matrix fibres. This finding was confirmed by the quantitative vitality assessment, which 

revealed a marked progressive increase in cell signal in the first 20 days. However, the 

PrestoBlue measurement is based on the metabolic activity of cells and may not accurately 



142  

reflect the cell number. For this reason, another method was used in this study in order to 

precisely quantify cell number.  

Cell proliferation can be estimated using different methods, including quantification of nucleic 

acid by measuring the absorbance at 260 nm. However, the relative insensitivity, the 

interference caused by contaminants commonly found in nucleic acid preparations, and the 

inability to distinguish between DNA and RNA are major disadvantages of this technique. 

PicoGreen®, by contrast, is a fluorochrome that selectively binds dsDNA and quantitates as 

little as 25 pg/mL of dsDNA with minimal fluorescence contribution of RNA and single-

stranded DNA. The proliferative pattern was consistent with the vitality as well as with the 

matrix protein figures in showing the progressive increase in cell activity, number, and total 

protein secretion during the first 20 days, and all these parameters remained steady 

afterward. These findings may be attributed to the normal lifespan of osteoblasts, which is 

approximately 1−3 months through which the cells can continue their proliferation, 

differentiation, and matrix protein secretion (Franz‐odendaal et al., 2006).  

In addition, our observations are in the line with other studies in showing that dynamic culture 

can enhance bone formation by the effect of fluid flow and the convective transport of 

nutrients to the scaffold in spinner flask culture (Meinel et al., 2004; Sikavitsas et al., 2002). 

Furthermore, the spinning exposes cells on the surface to shear stress, which was found to 

enhance cell differentiation (Wang et al., 2009; Ichinohe et al., 2008).  This may explain the 

persistent increase in ALP expression, the early differentiation bone marker, throughout the 

entire culture period. Such increased ALP expression in response to shear stress was reported 

by another study, which showed that the BCs cultured in spinner exhibited higher ALP 

compared with static culture, and this expression became significantly higher in the perfusion 

bioreactor (Hosseinkhani et al., 2005). Collectively, these findings showed that the 
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dynamically cultured HAOBs reflected the osteogenic stages of proliferation, differentiation, 

and matrix secretion. 

In order to track the process of osteogenesis in the ABC, the expression of key 

osteoblast−specific markers that regulate bone formation was analysed. ALPL/ALP and 

COL1A1/COL1 can be described as early bone formation markers and can be detected in vitro 

after approximately 2 weeks of culturing under osteogenic conditions (Donahue et al., 2000). 

SPP1/osteopontin and SPARC/osteonectin are mid-stage markers and are involved in the 

initiation of crystal nucleation. BGLAP/ OC is considered a late−stage marker that is expressed 

in bones and teeth and plays an important role in regulating mineralisation (Setzer et al., 

2009). 

Normally, ALPL is expressed at the early phase during the matrix synthesis stage and it is 

upregulated in the stage of matrix mineralization. It hydrolyses pyrophosphate and provides 

inorganic phosphate to promote calcification (Orimo, 2010). Many in vitro studies examined 

the differentiation of human osteoblasts and showed a positive expression of ALPL in a 

time−dependent manner (Czekanska et al., 2014; Marolt et al., 2014). Other studies 

demonstrated the enhancing effect of the dynamic culture environment on the ALPL 

expression (de Peppo et al., 2013a; Hosseinkhani et al., 2005). Our results, however, showed 

a steady expression of ALPL throughout the experiment with no significant changes compared 

to Day 1. This profile would suggest an insufficient matrix maturation and would preclude the 

beginning of the calcification process because ALPL activity usually increases many times 

between the cell growth phase and the mineralisation phase (Collin et al., 1992).  

The expression profile of COL1A1/COL1 that coincided with the similar ALPL trend may be 

attributed to the same reason. Type I collagen is the predominant collagen isoform found in 

bone ECM and is essential for HA formation,  osteoblast function, and proper fibril formation 
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with the subsequent physiological matrix maturation (Gehron Robey, 1989). The absence of 

a significant upregulation in COL1A1, which is highly upregulated in the stage prior to matrix 

mineralisation, may indicate the immature collagenous matrix (Lian and Stein, 1995).  

SPARC is localised to mineralised bone trabeculae and accounts for approximately 23 % of 

total non collagenous protein. Interestingly, the protein encoded by SPARC, osteonectin, can 

be demonstrated in active osteoblasts and osteoprogenitor cells as well as in young 

osteocytes, but not in aged, quiescent osteocytes. The protein, therefore, may be a reliable 

marker of functional osteoblasts (Jundt et al., 1987). Osteonectin selectively binds to COL1, 

and the resultant osteonectin−collagen complexes initiate mineral phase deposition by 

binding synthetic apatite crystals and free calcium ions (Termine et al., 1981). Our results that 

showed the significant upregulation in SPARC expression at Day 20 onwards may accord with 

the role of SPARC/osteonectin in the initiation and enhancement of mineralization. Many 

studies indicated that calcium mineral deposition in vitro can be detected from Day 7 and 

increased significantly at Day 21 (Ferracane et al., 2014a; Czekanska et al., 2014). 

SPP1 that encodes osteopontin is another bone marker that is known to be secreted by 

osteoblasts (Weinreb et al., 1990; Merry et al., 1993), as well as osteoclasts (Tezuka et al., 

1992). It has been found that osteopontin is markedly upregulated in osteoblasts following 

fracture, which suggests that it is involved in immediate cell recruitment, bone formation and 

resorption (Denhardt and Guo, 1993; Sandberg et al., 1993). Our findings supported other 

previous research indicating the upregulation of SPP1 in intramembranous ossification 

(Denhardt and Noda, 1998) and osteoblastic differentiation and proliferation  (Zohar et al., 

1998).  
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BGLAP encoded osteocalcin is considered a late osteoblast cell marker and it is upregulated 

in late mineralisation rather than in early matrix deposition (Rutkovskiy et al., 2016). Although 

osteocalcin is identified as an osteoblast−specific gene, it may not be considered critical for 

bone formation, and its precise role within the bone matrix remains unclear (Murshed et al., 

2005; Hollinger, 2005). Previous investigations indicated that BGLAP/OC acts as a regulator of 

mineralization by inhibiting spontaneous mineral precipitation and HA crystal growth 

(Romberg et al., 1986; Desbois and Karsenty, 1995). Other studies, however, showed that 

BGLAP/OC is upregulated during the mineralisation phase (Price et al., 1981; Collin et al., 

1992).  In our study, BGLAP, unlike other genes, displayed a significant decrease in expression.  

Similar results were previously reported by other authors; demonstrating that bone cells 

underwent a significant decrease in expression of BGLAP/OC when cultured under dynamic 

conditions (Bjerre et al., 2008; Mygind et al., 2007). The downregulation observed with BGLAP 

may be caused by the mechanical stresses associated with the dynamic conditions, and 

optimising the load applied to the cells may result in stimulating the expression of the gene 

(de Peppo et al., 2013). The lack of specific gene promoters involved in the regulation of OC 

expression, such as the AP−1−related protein and the bone−restricted Cbfa1/AML3 

transcription factor may account for another reason for OC gene downregulation (Lian et al., 

1998). However, it was demonstrated that OC-deficient mice showed increased bone 

formation and mineralization, which indicated that a low expression of OC gene may be 

desirable during bone formation (Patricia et al., 1996).  

Although gene expression is a standard mechanism to evaluate cell characteristics and to 

quantify changes induced by culture environment, this method does not entirely reflect cell 

function in terms of matrix production (Cote et al., 2016); a central point of directed 

osteogenesis (Datta et al., 2005). Quantification of ECM components provides a more 
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comprehensive evaluation of cell behaviours than genetic analysis alone (Ortega et al., 2004). 

Therefore, our gene analysis was supported by ELISA assessment of the major three 

components of ECM: COL1, ON, and OC. The data obtained from the quantification of COL1 

and ON was consistent with their encoding gene analysis and approximately reflected the 

same trend. The pattern of OC secretion, however, showed inconsistency with its gene 

expression profile. Such a rebound pattern in OC secretion was observed in MG−63 and 

MC3T3 cell lines. The authors attributed this trend in OC secretion to an unknown regulatory 

mechanism (Czekanska et al., 2014). Presumably, the poor correlation between the protein 

and gene levels may be attributed to the many complicated transcriptional and translational 

mechanisms involved in turning mRNA into protein. In addition, the mRNA may degrade 

following translation while the half−life of its corresponding protein remained high due to a 

reduced degradation rate (Greenbaum et al., 2003).  

3.5.3. Characteristics of composite ABMM 

In Chapter 4, the culture of cell-line based BCs was extended for 3 months. This study, 

however, was modified to involve a simultaneous construction of ABC and OMM that were 

cultured separately for 17 days followed by 5 days’ culture of the composite constructs. 

Although it is appreciated that the total culture period of 22 days is relatively short compared 

to the in vivo implantation studies that are usually extended for months, such experimental 

design was necessary. First, finite lifespan and limited proliferative potential of primary cells 

impede culture for a long time because the cells undergo apoptosis (Jilka et al., 1998). Second, 

the composite model is cultured at a static ALI condition after the incorporation of the soft 

and hard tissues on the final days. Extended static culture may deprive the deeper tissue of 

oxygen and nutrients, causing cell death and tissue necrosis. 
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We have shown that the histological structure and expression of key markers associated with 

stratification, differentiation, and keratinization in the OMM were comparable to those of its 

normal tissue counterpart. Our findings were consistent with other studies which 

characterised EOM (Buskermolen et al., 2016; Kinikoglu et al., 2009). Similar to other oral 

mucosal equivalents (Chai et al., 2010; Kinikoglu et al., 2009), the model used in this study 

showed the characteristics of a para−keratinised epithelium, as demonstrated by the weak 

expression of CK10 and the strong expression of CK13: two established biomarkers of 

suprabasal cells in keratinised and non keratinised stratified epithelium, respectively (Reibel 

et al., 1989). In contrast, other studies have revealed the strong expression of CK10 in 

superficial layers (Moharamzadeh et al., 2008; Tra et al., 2012). Such differences between 

these oral mucosal models may be attributed to the fact that oral keratinocytes appear to 

maintain the properties of their original donor epithelium, which may be either keratinised 

(gingiva and palate) or non keratinised (buccal mucosa) (de Luca et al., 1990). 

The control of keratinocyte’s proliferation and differentiation is multifactorial. Several studies 

have confirmed the role of fibroblasts in epithelial development through the stimulation of 

keratinocyte proliferation, migration, and keratin expression (Okazaki et al., 2003; Rakhorst 

et al., 2006). Fibroblasts establish such growth promoting roles through paracrine cross−talk 

between NHOFs and NHOKs via cytokines such as heparin-binding epidermal growth factor, 

Interleukin 1 alpha, and transforming growth factor beta 1 (Wang et al., 2012). This function 

requires an optimal fibroblast density because the presence of either excessive or inadequate 

numbers of fibroblast will adversely affect epithelium morphogenesis; leading to 

differentiation markers being inappropriately expressed (El‐Ghalbzouri et al., 2002). In our 

models, we found that the optimised fibroblast seeding density of 2 × 105 per model could 

support an anatomically representative epithelial layer. Keratinocyte senescence may also 
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impact on the capacity to achieve well-developed epithelia in tissue culture models. 

Sequential subculturing may restrict the capacity of keratinocytes to divide once seeded into 

a 3D model due to sustained telomerase expression within primary cells, and therefore it is 

recommended that the use of keratinocytes in tissue substitute constructs is limited to 

Passage 3 or less (Ng et al., 2009).   

The proper functionality of keratinocytes is important not only for epithelial layer formation 

but also for epithelial−connective tissue attachment and cell−cell adhesion, which are 

essential for achieving an accurate, functional mucosal substitute. Our data, consistent with 

data from other studies, has confirmed that cells within the 3D models actively synthesized 

the ultrastructural components, including desmosomes, hemidesmosomes, and the 

basement membrane required for this structural stability (Tra et al., 2012; Chai et al., 2012b).  

In Chapter 4, standard decalcified FFPE sections were prepared for the histological 

examination of the composite model. The major disadvantage of paraffin embedding is that 

it requires sample decalcification that eliminates essential information about the tissue 

structure. Decalcifying the specimen for paraffin sectioning resulted in the total dissolution of 

the HA/TCP scaffold and poor−quality histological sections. Plastic embedding resin such as 

GMA, by contrast, preserves the structural integrity of the sample better than paraffin. It 

eliminates the need for demineralisation of the sample and the removal of resin from section 

prior to staining; thereby preventing the distortion of tissue elements. However, the 

polymerisation of GMA is exothermic, and high temperatures can result from the dibenzoyl 

peroxide that decomposes, producing free radicals, which act as initiators of the 

polymerisation (Gerrits and Horobin, 1996). The polymerisation temperature of this resin 

ranged between 40−45oC, which results in the denaturing of proteins and impedes 

immunological staining. Therefore, the undecalcified resin-embedded sections were chosen 



149  

to examine the histological morphology of the composite construct, while the mucosal part 

was separately characterised by immunostaining.  

The overall histological appearance of the ABMM replicated the structure of the native oral 

bone mucosal arrangement. However, the major challenge of this study was to prepare 

specimens for a bone-mucosal interface without disturbing the soft mucosal component. The 

cutting and grinding procedure is known to be labour intensive and technically challenging, 

particularly with soft tissue, which posed a difficulty in obtaining an intact histological section 

without losing the epithelium. It was observed that the epithelium within composite models 

was generally less stratified compared with the OMM that detached from the composite 

model before the resin embedding. We hypothesized that this difference resulted from two 

different embedding methods used for the OMM and ABMM. The OMMs were minimally 

handled for cryosectioning. Therefore, the epithelial layer remained intact and never rubbed 

off, as happened with the composite construct where the mucosa was subjected to surface 

abrasion during grinding and polishing. 

Regarding gene expression, although all the marker-encoded genes were detected, a 

relatively high level of COL1A1/COL1 was expressed in our model. This may be for a number 

of reasons. First, this marker constitutes the most abundant component of bone ECM (90 % 

of the organic component), and it is upregulated during bone formation (Allori et al., 2008a). 

Second, ascorbic acid was added as a component of the culture medium in order to maintain 

the osteoblastic phenotype of bone-derived cells; ascorbic acid is known to stimulate cell 

growth and collagen synthesis in osteoblasts (Choi et al., 2008). The hydroxylation of proline 

residues of procollagen is increased to approximately 40 % by ascorbate, which is known to 

stabilize the collagen triple helix (Berg and Prockop, 1973). Third, Type I collagen is not only 

secreted by osteoblasts but it is also produced in abundance by fibroblasts (Kishimoto et al., 
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2013; Schwarz, 2015). Therefore, the fibroblastic component of the model may have 

contributed to the collagen levels observed.  

The main role of SPARC and its encoding ON in active bone mineralisation is to selectively 

bind newly-secreted collagen fibrils with apatite crystals. Therefore, it is frequently associated 

with tissues with high rates of collagen turnover such as bone (Termine et al., 1981). By 

implication, the presence of ON suggests that an abundant collagenous matrix was 

concomitantly secreted. Although SPARC/ON is considered a bone-specific marker (Termine 

et al., 1981; Jundt et al., 1987), its expression in the oral cavity has been localised in the 

fibroblasts in collagen-rich tissues such as periodontal ligament (Trombetta and Bradshaw, 

2010) and dermal fibroblasts (Rentz et al., 2007).  

ALPL is synthesised by osteoblasts and has been used to assess osteoblast phenotype and 

matrix mineralisation (Masrour Roudsari and Mahjoub, 2012). However, like COL1A1, it is 

expressed by cells other than osteoblasts such as gingival fibroblasts (Abe et al., 1996; Gomes 

and Resende, 2010). Present data accorded with previous studies in showing the expression 

of COL1A1, SPARC, and ALPL in the non-bony tissue (the mucosal component of the composite 

model), while OC and OP were absolutely absent.   

The expression of all osteoblast-associated molecules varies over the different stages of 

bone development. Therefore, the expression profiles observed in our models, which were 

cultured over a relatively short period compared to that of normal human bone turnover, 

may vary to that found in vivo. For example, ALP increases during the initial stages of bone 

formation but decreases as mineralisation progresses, while OP is first detected in young 

bone and OC appears towards the end of the mineralisation process (Kim et al., 2015).  
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In conclusion, this study showed that the tissue-engineered tri−layered model based on 

HAOBs’ BC adhered to the collagen-based mucosal model was able to mimic the native 

alveolar bone and overlaying full−thickness mucosal structures. The composite hard and soft 

tissue model may provide scope to act as a valuable alternative to 2D and animal models for 

various in vitro and potential in vivo applications.  
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Chapter 4: Tissue engineering of human alveolar 

bone−mucosal model using 3D printed bone 

scaffold 
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4.1. Introduction 

BTE owes most of its advances to the improvements in novel biomaterial−based technologies 

that can accurately replicate the heterogeneous nature of native tissue. However, many 

challenges remaine to be addressed in order to progress this field. Fabrication of an ideal 

bone scaffold is one of the on-going medical challenges due to the complex hierarchical 

structure of bone. 

Ideally, scaffold intended for osteogenesis should mimic the bone composition, morphology, 

structure, and function in order to optimise integration into the surrounding tissues. In terms 

of composition, calcium phosphates have been the primary focus for synthetic bone 

substitutes because of their osteoconductivity, biocompatibility, bioresorbability and 

chemical similarity to the inorganic phase of the bone (Boccaccini et al., 2014). The structure 

of bone has an inner trabecular layer which creates a porous environment with 50−90 % 

porosity (Karageorgiou and Kaplan, 2005) and an outer cortical layer with 3−12 % porosity. 

These two layers vary in their characteristics in terms of porosity, interconnectivity, pore size, 

mechanical properties, and surface area (Cooper et al., 2004; Nanci, 2013).  

The factors that govern the scaffold design are complex and include considerations of matrix 

architecture, pore size, morphology, mechanics versus porosity, surface topography and 

degradation products (Do et al., 2015). Conventional scaffold manufacturing methods such as 

particulate leaching (Park and Park, 2015), freeze-drying (Offeddu et al., 2015), and foam 

replication (Baino and Vitale-Brovarone, 2014) have been used extensively. Although high 

porosity can be achieved by these methods, the internal structure of the scaffold is difficult 

to control. Random and disconnected pores significantly decrease nutrient transportation, 
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cell migration, and cell survival, especially in the centre of a bulky scaffold (Thavornyutikarn 

et al., 2014). 

Recently, advances in computational design and additive manufacturing (AM) have enabled 

quick and accurate fabrication of 3D porous scaffolds with well-controlled architectures (Cox 

et al., 2015). Three−dimensional printing (3DP) is an innovative technique that offers an 

entirely new method of reconstructing complex tissues comprising intricate 3D 

microarchitectures, such as bone, cartilage, heart tissue, and blood vessels. It has been used 

to create physiologically relevant in vitro models which can be applied as an alternative to 

conventional 2D and animal models in a number of research settings, such as disease 

modeling and drug screening (Pati et al., 2016). 

In contrast with current conventional scaffold fabrication methods, 3DP facilitates precise 

production of 3D scaffolds with defined shape, size, porosity and pore size distribution which 

can have a significant impact on cell proliferation, differentiation, and vascularization (Wang 

et al., 2015; Shrivats et al., 2014; Ferlin et al., 2016; Cavo and Scaglione, 2016). In addition, it 

enables mimicking bone’s hierarchy, that is not possible to be reproduced by conventional 

methods, through construction of multiscale scaffolds with small and large pores and high 

interconnectivity which in turn directly related to scaffold performance since it influences 

bone growth and strength (Do et al., 2015; Egan et al., 2017). Moreover, 3DP enables the use 

of various materials including polymers, ceramics, or composites to construct a hybrid 

scaffold (Inzana et al., 2014; Neufurth et al., 2017a). Several studies have used different 

printing methods to fabricate bone scaffolds (Bose et al., 2012; Wen et al., 2017). Many of 

these studies, however, have produced scaffolds with a single homogenous structure which 

do not simulate the bilayer cortico−cancellous structure of bone in most parts of the body 
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and in the maxillofacial region. The aim of this study was to exploit the advantage of 3D 

printing to fabricate a bilayer ceramic scaffold that replicates the cortico−cancellous alveolar 

bone architecture and using the printed scaffold in TE of the composite human alveolar bone 

mucosal model.  

4.2. Aims  

1. To fabricate a bi−layered β−TCP-based scaffold that replicates the cortico−cancellous 

alveolar bone architecture using 3D printing technique. 

2. To characterise the structural, morphological, mechanical, and biological properties of 

the printed scaffold.  

3. To construct and characterise the composite ABMM using the printed bone scaffold. 

4.3. Materials and methods 

4.3.1. Scaffold design and fabrication 

4.3.1.1. Preparation of printable β−TCP paste 

An injectable β−TCP paste was formulated by mixing 1 g Sodium Tripolyphosphate (Na5P3O10) 

(Alfa Aesar, US), 0.15 g Carboxymethylcellulose Sodium salt (Alfa Aesar, US), and 30 g β-TCP 

powder (Sigma, US) in 10 ml deionised, filtered water. The paste was mixed and defoamed 

for 10 and 3 minutes, respectively at 2000 rpm using a centrifugal mixer (THINKY, Japan) and 

loaded into the plotting cartridge (Nordson, USA) for printing.  

4.3.1.2. Rheological assessment of β−TCP paste 

The rheological measurements were performed using a shear rheometer (Kinexus, Malvern, 

UK) with a stainless steel parallel plate geometry with a diameter of 20 mm. The paste was 

placed on the lower plate and the upper plate was lowered until it gently touched the surface 

of the sample at a gap distance of 0.5 mm and excess material was removed. Measurements 



156  

were performed at different temperatures from 30 oC to 15 oC with a scanning interval of 5 

oC. At each temperature, the rheological evaluation consisted of two consecutive shear cycles 

with no rotational pre-shear step. The shear rate varied linearly in ramp mode from 0 to 100 

s− 1 with 10 s-1 intervals in 2 min and then back to 0 s− 1. The total testing time was 12 minutes. 

4.3.1.3. 3D plotting of β−TCP scaffolds 

The scaffolds were fabricated using the 3D bio plotting system (EnvisionTec, Germany) (Figure 

4.1.). First, the printed scaffold was designed using computer-aided design (CAD) software. 

Then, the digital model was converted to a standard tessellation language file format that 

represents the surface geometry of the 3D scaffold. The model was virtually sliced into 

sequential 2D layers using the bioplotter software. The printing machine then used those 

layers to create the necessary tool-path along the X and Y directions for direct manufacturing. 

Finally, each layer was processed one on top of the other to form a 3D part. This process was 

performed by applying the optimised parameters as listed in Table (4.1.), β−TCP paste 

extruded from a cartridge through a plotting needle (Nordson, USA) having an inner diameter 

of 400 um. The printer head deposited strands of the paste in a layer−by−layer fashion on the 

building platform forming a disc of 10 mm x 2 mm thickness. Scaffolds were air−dried 

overnight and then sintered. The temperature of the furnace (Vulcan, USA) was raised to 600 

oC at the uniform rate of 3o/min, held for 1 hour in 600, then raised from 600 oC to 1100 oC at 

a rate of 5o/min and remained at 1100 oC for 4 hours. 



157  

 

Figure 4. 1. 3D bio-plotter system used in the fabrication of 3DP bone scaffold. 

 

 

Table 4. 1. The optimised parameters for printing β−TCP scaffold 

Parameter Measurement 

Pressure 1.5−1.7 bar 

Speed 5 mm/s 

Material temperature 23 
o
C 

Platform temperature Room temperature 

Distance between strands 0.6 mm & 0.8mm 

Lay down pattern 0
0

, 60
0
, 120

0
 

Slice width 150 µm 
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4.3.2. Scaffold characterisation 

4.3.2.1. Structure, morphology, and surface topography 

Evaluation of the scaffold’s, structure, morphology, and surface roughness was conducted by 

3D laser scanning digital microscope (Olympus LEXT OLS 4000, Japan). Scaffolds were 

randomly selected to measure the roughness, morphology, dimension of the pores, distance 

between strands, and thickness of strands on both sides of scaffolds using the software (LEXT 

OLS 4000).  

4.3.2.2. Microstructural characterisation by µ−CT scanner (see section 2.3.3.1.). 

4.3.2.3. X−ray diffraction (XRD) 

 XRD was carried out for the scaffold powder and pure β−TCP from which the paste was 

prepared. Sintered scaffolds were ground using an agate mortar and pestle (Fisher Scientific, 

UK). The powder was then sieved to 150 µm particles (Endecotts, UK). XRD patterns were 

recorded between 5o and 70o 2θ at a step of 0.4/s using D2 phaser diffractometer (Bruker, UK) 

equipped with a Cu Kα radiation source of (30) KV and (10) mA. Diffraction data was analysed 

by ICDD PDF-4+ software (2015 edition). 

4.3.2.4. Mechanical properties 

The Young's modulus and ultimate compressive strength of the scaffolds were measured 

using a mechanical testing machine (Shimadzu, Japan) with a 5kN load cell, and a cross─head 

speed of 1.0 mm min-1. The sintered cylindrical samples with a diameter of 10 mm and a 

height of 20 mm were compressed in Z direction until they fractured.  The data obtained was 

used to calculate the mean compressive strength and modulus. 
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4.3.2.5. Biological properties of 3DP scaffolds 

The scaffolds were autoclaved and pre-incubated in the culture medium for 4 hours, followed 

by cell seeding and culture for 1 month as described in chapter 2 (see section 2.3.8.). Every 

10 days, the following assessments were performed: 

4.3.2.5.1.  Cell viability assessment (see section 2.3.3.4.). 

 4.3.2.5.2.  Proliferation assessment (see section 3.3.5.3.). 

 4.3.2.5.3.  SEM examination (see section 2.3.6.1.).  

4.3.3. Construction of printed ABMM (see section 3.3.6.). 

4.3.4. Characterisation of printed ABMM 

4.3.4.1. Histological examination of mucosa ( see section 3.3.7.1.). 

4.3.4.2.  IF staining of mucosa (see section 3.3.7.2.). 

4.3.4.3.  TEM of mucosa (see section 3.3.7.3.). 

4.3.4.4.  Histological examination of printed ABMM (see section 3.3.7.4.). 

4.3.4.5. qRT-PCR examination (see section 3.3.5.6.). 

4.3.4.6. ELISA (see section 3.3.5.7.). 

4.3.5. Statistical analysis 

All data were presented in terms of mean ± SD of three independent experiments performed 

in triplicate. One−way ANOVA complemented by Tukey’s post−test was performed using 

GraphPad Prism v7.0 (GraphPad Software, La Jolla, CA). Differences were considered 

significant when p < 0.05. 
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4.4. Results 

4.4.1. Rheological assessment of β−TCP paste 

The viscosity assessment of the β−TCP paste indicates that the viscosity is strongly dependent 

on both shear rate and temperature. Figure (4.2. A) shows that at 15 oC the dependence of 

viscosity to shear rate is considerable for a shear rate of 10 s−1 to 70 s−1, while it remained 

constant at shear rates higher than 70 s−1. On the other hand, the effect of shear rate on 

viscosity is not significant when the temperature is above 15 oC. Regarding the temperature, 

Figure (4.2. B) shows that the decline in the viscosity started at 15 oC and ended at 20 oC. 

Increasing temperature up to 30 °C had no significant effect on the viscosity. The viscosity 

seems to be independent of the temperature for temperatures higher than 20 oC at a specific 

shear rate. Figure (4.2. C) shows shear stress versus shear rate for the prepared paste at 20−30 

oC. The paste seems to be a Bingham plastic material with yield stresses of 58.12, 47.05 and 

39.75 Pa at 20, 25 and 30 oC, respectively. A linear correlation between shear stress and shear 

rate was found for all the examined temperatures where all the coefficients of determination 

(r-squared) were found to be greater than 0.99. The dependence of viscosity on temperature 

and shear rate influences the printing parameters i.e. cartridge temperature and printing 

pressure, respectively. The pressure applied to the material for printing dictates the material's 

flow rate from the needle which in turn could be related to the shear rate. 
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Figure 4. 2. The rheological assessment of TCP paste. (A) The dependence of viscosity on shear rate 

at 15 oC is considerable for a shear rate of 10 s−1 to 70 s−1. The viscosity remained constant at shear 

rates higher than 70 s−1. No significant effect of shear rate on viscosity was observed when the 

temperature is above 15 oC. (B) The decline in the viscosity started at 15 oC and ended at 20 oC. 

Increasing temperature higher than 20 oC at a specific shear rate had no significant effect on the 

viscosity. (C) A linear correlation between shear stress and shear rate was found at 20, 25 and 30 oC. 

The prepared paste had yield stresses of 58.12, 47.05 and 39.75 Pa at the examined temperature, 

respectively (Pa=Pascal, S=second). 

 

 4.4.2.  Characterisation of 3DP scaffold 

4.4.2.1. Structural morphology and surface roughness of 3DP scaffold 

3D laser microscopy examination revealed the morphology and geometrical accuracy of 

scaffold structure. It showed smooth continuous strands as well as clearly revealed the 

differences between both sides of 3DP scaffold (Figure 4.3.). For the compact side, the 

measurements of pore diameter, strands thickness and the distance between strands were 

242.2 ± 24.3 µm, 516.8± 28.1 µm, and 214.5± 19.1 µm, respectively while the dimensions in 

the cancellous side were 410.5± 27.9 µm, 447.1± 46.7 µm, and 502.1± 46.9 µm. Figure (4. 4. 

A) presents the 2D laser scanning of the single printed layer at X and Y direction while Figure 

4.4. B) shows the compact layers in Z directions. The value of surface roughness (Ra) was 

found to be 1.1 ± 0.2 µm.  
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Figure 4. 3. Representative 2D and 3D laser scanning images of the bilayered printed scaffold. Image 

showing; (A) The measurements of pore size and the distance between strands in the cancellous side; 

(C) The compact side that is in contact with the substrate. The pore shape is parallelogram because of 

the angle of printing in the second layer. (B and D) Representing the 3D views of cancellous and 

compact sides, respectively (Scale bars = 500 µm). 

 

A B 

C D 
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Figure 4. 4. 2D laser scanning of the single and compact printed layer(s) in X, Y, and Z directions. 

Image shows; (A) The pore dimensions in X and Y directions for the printed cortical part that is not in 

contact with the substrate (platform); (B) The spaces between printed layers at Z direction (Scale bars 

= 500 µm). 

 

It was noticed that these consistent values were obtained after optimisation of printing 

parameters (see Table 4.1.). Changes in these variables or utilizing unoptimised printing 

resulted in many problems such as clogging of dispensing needle, disconnection of the plotted 

strands (Figure 4.5. A), and even cracking of the scaffold after sintering (Figure 4.5. B). 

  

Figure 4. 5. 2D laser scanning images of the faulty 3DP scaffold. Image shows examples of 

inappropriate β−TCP scaffolds when they were printed with un optimised plotting parameters. (A) 

Incomplete and uneven strands; (B) microcracking in the sintered scaffold (Scale bars = 500 µm). 

A B 

B    

A B 
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4.4.2.2. Phase analysis by X−ray diffraction (XRD). 

Figure (4.6.) shows the XRD patterns of β−TCP from which the scaffolds were prepared and 

the crushed scaffolds after sintering. As it can be seen in this figure, the crystalline structure 

of β−TCP was a major phase. XRD patterns of sintered and unsintered β−TCP exhibited 

approximately the same characteristic peaks. No secondary phase, organic residue or 

crystallographic substitution was detected. 

 

Figure 4. 6. XRD patterns of β−TCP powders. The unsintered powder (pink) and powder of scaffold 

sintered at 1100 oC for 4 hours (blue) are displayed. Both patterns demonstrated approximately the 

same characteristic peaks. 

 

4.4.2.3. µ−CT scan assessment  

The basic properties of the scaffolds determined by µ−CT scanning are shown in Table (4.2.).  

3DP scaffold had 61.8 % open porosity (total porosity) while the closed porosity was 0.003 %. 

The volume of closed pores (0.002 mm3) was approximately negligible compared with 71.1. 

mm3 open pores volume. Scaffold demonstrated high interconnectivity and connectivity 

density. 
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Table 4. 2. µ CT-scan measurement of 3DP scaffold 

 Feature Unit Mean ± SD 

1 Volume of closed pores mm3 0.0342 ± 0.0064 

2 Volume of open pores mm3 71.1 ± 1.6 

3 Closed porosity % 0.04 ± 0.041 

4 Open porosity % 61.8 ± 1.4 

5 Trabecular thickness mm 0.05 ± 0.007 

6 Trabecular separation mm 0.2 ± 0.02 

7 Trabecular number - 7.47 ± 0.95 

8 Surface density 1/mm 24.11 ± 2.6 

9 Connectivity density 1/mm3 1815.4 ± 455.8 

10 Connectivity - 208707.5 ± 52405.1 

 

4.4.2.4. Mechanical properties 

The compressive strength of the scaffolds was found to be 10.0 ± 2.4 MPa while the modulus 

was 55.5 ± 5.7 MPa.  

4.4.3. Characterisation of printed ABC 

4.4.3.1. Cell viability 

The results obtained from this assay are presented in Figure (4.7.). It shows that cells 

remained alive and their metabolic rate was significantly higher on day 10 and afterward 

compared with day 1 (p<0.0001).  
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Figure 4. 7. The viability of 3DP bone constructs. Graph shows the viability of 3DP bone constructs 

cultured in spinner bioreactor for one month. The metabolic rate of HAOBs was significantly higher on 

day 10 and afterward compared with day 1 (baseline) with no significant increase was observed on 

day 20 and 30. Data represents mean ± SD of three independent experiments (n=3) performed in 

triplicate. Statistical significance was determined using one-way ANOVA with Tukey’s post-test (****= 

p<0.0001). Asterisks directly above the bar are relative to day 1 (baseline) and above the horizontal 

line are relative to the two bars at the ends of the line. 

 

4.4.3.2. Cell proliferation 

Proliferation assessment demonstrated a detectable but not significant increase in cell 

number from day 1 to 10 (p=0.0641) while a significant proliferation was found at day 20 

(p=0.0126) and 30 (p<0.0001) (Figure 4.8.). day 30 showed a decrease in cell number although 

it was not significant compared to day 20. 
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Figure 4. 8. Total DNA content 3DP bone constructs. Graph shows the proliferative pattern of HAOBs 

cultured in 3DP scaffold in spinner bioreactor for one month. The number of HAOBs within the 

construct demonstrated no significant difference on day 10 compared to day 1 while the cell number 

remarkably increased on day 20 followed by slight non significant decrease on day 30. Data represents 

mean ± SD of three independent experiments (n=3) performed in triplicate. Statistical significance was 

determined using one-way ANOVA with Tukey’s post-test (**** = p<0.0001). Asterisks directly above 

the bar are relative to the day 1 (baseline) and above the horizontal line are relative to the two bars 

at the ends of the line. 

 

4.4.3.3 Assessment of cell attachment and spatial distribution 

SEM observation of cell morphology revealed normal osteoblastic polygonal shaped cells 

attached to the rough scaffold surface (Figure 4.9.). The macroporous scaffold structure 

supported the cell adhesion, penetration, and ingrowth on both surfaces of the scaffold 

throughout 30 days of dynamic culture (Figure 4.10.). The attached cells showed even 

distribution as well as elongation and orientation along the scaffold strands which indicates 

that the osteoblasts spread and align along the surface microstructures. On day 20, both 

surfaces were densely covered by interconnected growing cells which formed stacked and 

crusted layers. Pores in the compact side approximately occluded and completely sealed by 
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cellular matrix at the end of the month while some open pores were observed in the porous 

side at the end of the experiment.  

 

 

Figure 4. 9. SEM micrograph of HAOBs attached to 3DP scaffold after 24 hours of seeding (Scale bar 

= 50 µm). 
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Figure 4. 10. SEM micrographs of HAOBs cultured in 3DP scaffold. Image shows the attachment, 

distribution, and ingrowth of HAOBs on both surfaces of 3DP scaffold during 30 days of dynamic 

culture. (A and B) non cellular porous and compact sides, respectively. (C-I) and (B-J) show porous and 

compact sides of the constructs, respectively at 1, 10, 20, and 30 days (Scale bars = 500 µm). 

Preparation of samples for imaging was performed by Chris Hill, Department of Biomedical Science, 

University of Sheffield according to the method described in section (2.3.6.1). 

 

4.4.4. Assessment of printed ABMM 

4.4.4.1. Histological examinations of mucosa 

As expected, OMMs displayed the same histological obtained in chapter 3. A well−developed 

stratified squamous epithelium overlying collagen−populated fibroblasts in a way mimicking 

NOM was demonstrated (Figure 4.11. A and B). 

        

Figure 4. 11. H&E representative image compared the mucosal part (OMM) of the printed composite 

model with normal oral mucosa (NOM). (A) shows OMM with a well−differentiated oral epithelium 

overlying collagen−populated fibroblasts. (B) NOM (Scale bars = 100 µm). 

 

4.4.4.2. IF characterisation of mucosa 

IF staining of OMM revealed strong expression of CK13 throughout the entire epithelium 

(Figure 4.12. A) and CK14 expression in basal layer (Figure 4.12. D). The expression was 

comparable to that found in NOM (Figure 4.12. B and E). 

A B 
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 OMM NOM Negative ctrl 

 

 

CK13 

   

 

 

CK 14 

   

Figure 4. 12. Representative images compared the cytokeratin expression in mucosa part (OMM) of 

the printed composite model with normal oral mucosa (NOM). OMM displays cytokeratin expression 

profile similar to NOM. Image demonstrates; (A and D) Immunofluorescent labelling shows the 

positive expression of cytokeratin (CK) 13 and 14, respectively in OMM. Similar CKs expression was 

found in NOM (positive ctrl) for CK 13 (B) and CK14 (E). (C and F) represent OMM stained with isotype 

control and secondary antibody (negative ctrl) for CK13 and CK14, respectively. Positive 

immunolabelling are shown in green while cell nuclei are shown in blue (Scale bars = 100 µm). 

 

4.4.4.3. Histological assessment of printed ABMM 

Printed ABMM demonstrated a histological structure consisting of oral mucosa adhered to 

the underlying bone scaffold (Figure 4.13. A), simulating the native oral hard and soft tissues. 

The uppermost surface displayed a continuous stratified epithelium covering a quite 

fibroblast−populated dense connective tissue. Oral mucosa−bone interface revealed a thin 

band of cell infiltrated fibrin attaching both layers. The pores of 3DP scaffold containing two 

apparently viable cell layers; a central mass of fusiform cells partially aligned with each other, 

B C 

D E F 

A 
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and a separate mural monolayer of rounded cells within a more eosinophilic matrix (Figure 

4.13. B). Such cellular alignment was noticed in native oral bone (Figure 4.13. C). 

 

 

Figure 4. 13. H&E stained histological ground section of 3DP ABMM. Image showing (A) 

full−thickness, multi−layered 3DP bone mucosal construct consisting of a stratified oral epithelium, 

connective tissue layer adherent to the underlying 3DP bone. (B) The bony part showing the pores of 

the scaffold containing two apparently viable cell layers; a central mass of fusiform cells partially 

aligned with each other (red arrows), and a separate mural monolayer of rounded cells (blue arrows). 

(C) Similar cellular alignment was noticed in natural alveolar bone (Scale bars: A = 500 µm; B and C = 

50 µm). 
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4.4.4.4. qRT−PCR assessment  

Figure (4.14.) demonstrates the osteogenic and epithelial genes expressed in the printed 

ABMM.  

 

Figure 4. 14. qRT−PCR analysis of the osteogenic and epithelial genes expressed in printed ABMM. 

Data represents mean ± SD of three independent experiments (n=3) performed in triplicate. 

 

4.4.4.5. ELISA 

Quantification of COL1, ON, and OC proteins was consistent with their gene profile. COL1 

demonstrated an increased protein concentration in comparison to ON and OC. OC, in turn, 

showed the lowest level (Figure 4.15.).   

 

Figure 4. 15. Protein expression of COL1, ON, 

and OC in the printed ABMM analysed by 

ELISA. Data represents mean ± SD of three 

independent experiments (n=3) performed in 

triplicate 
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4.5. Discussion 

An important prerequisite for successful BTE is the utilization of a suitable scaffold that 

satisfies the physical and chemical requirements of the native bone. TCP is a well−established 

bone substitute material that has been used in different techniques of scaffold fabrication 

such as leaching and foaming (Ginebra et al., 2010). AM techniques enable a more controlled 

construction of scaffold architecture and shape than using conventional scaffold fabrication 

methods (Lode et al., 2014). Therefore, it provides advantages from both clinical and 

experimental standpoints. While it allows fabrication of a precise, patient−specific construct 

for therapeutic purposes, a tissue model with more reproducibility and replication of native 

tissue can be obtained for research applications. In this study, we have described the use of 

3D printing technology to fabricate TCP scaffolds with dual layers, including compact and 

porous. 

Optimisation of the prepared paste and extrusion parameters have an impact on the 

fabrication and characteristics of the TCP-based scaffold. The flow rate of the dispensing 

material is a crucial aspect of the 3D printing technique. This factor is known to affect line 

width, fabrication time, and geometry resolution (Li et al., 2009). Our results indicated that 

the viscosity of the TCP paste is dependent on the shear rate and temperature to a certain 

extent. The prepared TCP paste, like many other ceramic slurries, has non-Newtonian 

behaviour and is a Bingham plastic material, which means that the flow rate is directly 

proportionate to the shear stress and inversely proportionate to the viscosity (resistance to 

flow) (Liu et al., 2006; Qi et al., 2008). This feature can be advantageous in adjusting the 

viscosity of the dispensing paste by controlling the temperature; thereby increasing the flow 

rate and shortening the fabrication time. However, the high dispensing speed may 

compromise the geometrical resolution. Particle size may comprise a contributing factor in 
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the flowability and printability of the material. A too small particle size can compromise 

flowability due to the agglomeration of the particles, while too large particles easily flow but 

do not pack sufficiently. This leads to interlayer instability that compromises binding and 

geometrical accuracy. A 10-50 µm particle size is generally considered optimal (Butscher et 

al., 2012; Inzana et al., 2014; Zhou et al., 2014b).  

The bonding solution, which is usually a sacrificial polymer such as tripolyphosphate or an 

aqueous solution like diluted phosphoric acid, may constitute a factor that determines the 

solidification process. While the polymer binder pyrolyzed during sintering, the acidic binder 

initiates a dissolution−precipitation reaction within the powder to fuse the particles. The 

resultant scaffolds may have different mechanical and biological properties. TCP scaffolds 

printed with high temperature (i.e. heat sintered) usually have enhanced mechanical 

properties, enabling them to be structurally sound, particularly in load bearing areas. The low-

temperature method, on the other hand, allows direct printing of living cells and/or biological 

factors with the printed paste, which is hardened by cement reaction or UV light (Trombetta 

et al., 2017).  

The importance of the structural and morphological features of bone scaffold was detailed in 

Chapter 2 (see section 2.6.1.). In this study, it was possible to adjust the structural parameters 

to be close to the optimised desirable values. Porosity (pore size, pore shape, and porosity 

percentage) and interconnectivity are two critical parameters that have a strong impact on 

cell behaviour. Previous studies have shown that the optimum pore size for the bone is 400 

µm (Bai et al., 2010; Feng et al., 2011), whereas the critical size is considered to be 100 µm 

due to cell size, migration, and nutrition (Rouwkema et al., 2008).  A study conducted on the 

printed TCP scaffold with a pore size of 1,000, 750, and 500 μm showed that decreasing the 

macro porosity from 1,000 to 500 μm resulted in increasing the osteoblasts’ proliferation 
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(Tarafder et al., 2013). In the same study, the obtained total open porosity was between 42 

% and 63 %, which is very close to our findings. Human cancellous bone demonstrates a total 

porosity between 30 % and 90 %. Therefore, a scaffold construct containing a porosity within 

this range is considered to be suitable for bone regeneration  (Karageorgiou and Kaplan, 

2005).  

Strand thickness and the distance between the strands on the porous scaffold layers were 

tailored to be around or within the range of the trabecular struts in the cancellous bone, 

which are approximately 100−300 µm thick and have spaces equal to 300−1,500 µm (Bueno, 

2011). The compact bone is denser than the cancellous bone, therefore, a plotter with higher 

resolution is required to obtain a concentric ring similar to Haversian canals, which are 

approximately 50 µm in diameter (Burr and Allen, 2014).  

With regard to surface roughness, it has been established that surface topography can have 

positive effects on cellular functions by increasing wettability and surface area. This results in 

a favourable cellular response in terms of protein secretion, adhesion, proliferation, and 

differentiation (Zhao et al., 2015). Wu et al. (2015) investigated the influence of different 

degrees of roughness on bone cells and found that the optimum average roughness of 

0.80−1.00 µm could be a key factor in determining the morphological and functional cell 

responses. However, the cells exhibited a less activated proliferation when the surface 

roughness was above the critical point (Ra=1.00 µm). 

Although all the aforementioned factors are fundamentals for bone regeneration, a balance 

should be struck between these factors and maintaining proper mechanical properties.  

Mechanical strength is affected by pore volume and distribution as well as layer thickness and 

printing orientation (Farzadi et al., 2014). These factors yield mechanical properties close to 

the cancellous bone, which ranged between 1.8−10.2 MPa and 10−2,000 MPa for 
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compressive strength and modulus, respectively. These properties are lower than those of 

the compact bone, which has a compressive strength of 133−195 MPa and Young’s modulus 

of 11.7−18.2 GPa (Bueno, 2011). To counteract the poor mechanical properties, many 

methods have been used to reinforce ceramic-based scaffolds, including the infiltration of the 

bioactive glass with a tough Polycaprolactone polymer (Eqtesadi et al., 2016), reinforcement 

with hydroxyapatite whiskers (Feng et al., 2014), or compositing with collagen (Zhou et al., 

2014a). Recently, Roohani-Esfahani et al. (Roohani-Esfahani et al., 2016) developed a 3D 

printed bioactive ceramic scaffold with a high compressive strength comparable to compact 

bone (90−110 MPa at 70 % porosity). The authors attributed this result to the hexagonal 

architecture of the pores, which resulted in a higher contact area between the printed struts, 

leading to an enhanced load transfer.  

Another method of scaffold consolidation is through sintering technique and temperature. 

(Tarafder et al., 2013) compared microwave and conventionally sintered TCP printed scaffold 

at different temperatures. They obtained a maximum compressive strength of 10.95 ± 1.28 

MPa and 6.62 ± 0.67 MPa in microwave and conventional furnaces, respectively, for scaffolds 

with 500 μm pores sintered at 1250 oC. However, this improvement in the mechanical feature 

was at the expense of total porosity, which dropped from 69 % to 46 % due to the marked 

shrinkage associated with microwave sintering. In another study, when a mixture of 

tetracalcium phosphate/β−TCP was sintered at 1400 oC, the strength of the 3DP scaffold was 

increased, while sintering a tetracalcium phosphate/calcium sulphate dihydrate composite 

compromised the strength due to water release (Khalyfa et al., 2007).  

Voids volume is another factor that should be considered when a scaffold is fabricated in a 

layer−by−layer manner. Voids volume influences the strength of interlayer bonds, leading to 

the propagation of cracks along the boundaries between layers due to the weakness and 
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brittleness of these bonds under parallel compression load (Cox et al., 2015). Perhaps this 

problem is signified when the printed material itself is brittle, as is the case in all ceramic 

material, including β−TCP. Taking these data together, the printed scaffold in this study may 

be deemed appropriate in terms of porosity and mechanical properties compared with many 

studies that achieved porosity ranges between 30 % and 54 % and compressive strength 

between 3.8 and 6.6 MPa (Khalyfa et al., 2007; Tarafder et al., 2013). 

Undoubtedly, for regenerative applications, it is necessary to determine the biocompatibility 

of the 3D printed scaffold. The cell-scaffold biological interaction, as evaluated by cell vitality, 

DNA content, and adhesion, all showed a significant increase in the cell activity, proliferation, 

and exponential growth of HAOBs on a 3DP scaffold. Together these findings indicated that 

the biomimetic β−TCP printed scaffold possessed biocompatibility, and structural features 

facilitated cellular growth in vitro. These results are in the line with many investigations which 

found that printing calcium phosphate with different patterns favourably supports cell 

behaviour. A comprehensive systematic review by (Trombetta et al., 2017) described 

different 3DP approaches of calcium phosphate and the evidence of its in vivo and in vitro 

efficacy.  

In bone, collagen fibres and apatite crystals are preferentially self-assembled according to the 

bone’s anatomical position, which in turn has its own impact on the mechanical properties. 

The alignment and spreading of osteoblasts in different degrees of orientation along the 

scaffold’s strands suggest that the newly produced bone matrix may exhibit an anisotropic 

microstructure similar to bone microstructure (Nakano et al., 2014).  

With regard to the printed ABMM, the characteristic features were comparable to those 

found in composite constructs fabricated by the conventional scaffold. A discussion of the 

characteristics features of the composite model was provided in Chapter 3 (see section 
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3.4.3.). The trends relating to gene expression and protein secretion in the printed models 

were generally similar to those observed in conventional counterparts, logically, due to the 

same reasons explained in Chapter 3. Such similarities in the expression of major ECM 

markers, which are known to be upregulated in osteogenesis, confirmed the biocompatibility 

of the printed scaffold and its ability to support bone tissue formation.  In addition, the higher 

gene expression found in the printed model compared with the conventional one can be 

supported by many studies, indicating that osteogenic proliferation and differentiation are 

favourably enhanced by printed design (Ferlin et al., 2016; Cavo and Scaglione, 2016; Zhang 

et al., 2017). However, in this study, the quantitative comparison between printed and 

conventional models may be not feasible due to patient-to-patient variations. 

Further to the results pertaining to the engineered composite models, the differences in 

scaffold fabrication using conventional and printing methods should be considered. In 

addition to the accuracy, consistency, reproducibility, and minimum labour efforts provided 

by the robotic printing system, two other factors should be highlighted: time and cost. The 

speed of manufacture when using 3D printing is quite high. The average printing time for each 

scaffold was 5 minutes. This means that 144 scaffolds can be printed within 12 hours and 

sintered within an additional 12 hours; resulting in a significant number of scaffolds within 

only 24 hours. 

From an economic standpoint, although the versatility in using a wide range of cheap 

materials makes the cost of printed material very reasonable (GBP0.04 for each scaffold used 

in this study), the price of a high−quality printer, a furnace, a mixer, as well as the machinery’s 

maintenance and the energy used, might all result in a quite high final cost per scaffold.  

In conclusion, this study disclosed the fabrication of a 3D printed bi-layer calcium phosphate 

cement-based scaffold resembling a normal cortico−cancellous bone’s microstructure. The 
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scaffolds demonstrated optimal in vitro biocompatibility and biological activity, high 

interconnectivity, and precise pore size on both sides. We demonstrated here the in vitro 

replication of normal human alveolar bone and the mucosa relationship. Our data suggested 

that the composite in vitro model had a structure and characteristics comparable to native 

oral hard and soft tissues. The developed model might have the potential to provide a more 

reliable human cell−based alternative to 2D or animal models for various in vitro applications. 
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Chapter 5: Application of 3D printed bone− 

mucosal model for in vitro modelling of oral 

cancer progression 

 

 

 

 

 

 

NB: The work described in this chapter has been published in: 

Almela, T., Al-Sahaf, S., Brook, I. M., Khoshroo, K., Rasoulianboroujeni, M., Fahimipour, F., 
Tahriri, M., Dashtimoghadam, E., Bolt, R., Tayebi, L. & Moharamzadeh, K. 2018. 3D 
printed tissue engineered model for bone invasion of oral cancer. Tissue and Cell, 52, 
pp 71-77. 

 

Figure (5.1. C) illustrated in this chapter has been featured on the cover of Tissue and Cell 
journal, Volume 52, June 2018, ISSN 0040-8166. 
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5.1. Introduction 

One of the applications by which the advantages of 3DP can be exploited is fabrication of 

reproducible constructs to be used for in vitro disease modelling or drug screening 

(Vanderburgh et al., 2017). In this preliminary study, the potential application of the printed 

ABMM in the future study of oral cancer invasion was demonstrated.  

Oral squamous cell carcinoma (OSCC) is the most common head and neck malignancy that 

accounts for approximately 90 % of all oral and oropharyngeal tumours (Chi et al., 2015). To 

date, several authors have undertaken 3D in vitro modelling of OSCC using soft tissue−only 

constructs (Kataoka et al., 2010; Colley et al., 2011; Che et al., 2006). However, OSCC 

frequently invades the underlying alveolar bone due to the close anatomical relationship 

between these two entities (Goda et al., 2010; Ebrahimi et al., 2011). Indeed, tumours of the 

tongue, retromolar region, and floor of mouth invade the mandible in 42 %, 48 %, and 62 % 

of cases, respectively (Brown et al., 2002). Therefore, the absence of a bone equivalent 

construct within the soft tissue models limits their validity in translating in vitro findings which 

are heavily influenced by the presence or absence of bony invasion. A suitable 3D in vitro 

model which combines both soft and hard tissues is, therefore, desirable in achieving a more 

sophisticated model of OSCC progression. 

5.2. Aim 

To construct a cancerous alveolar bone mucosal model (CABMM) representing oral squamous 

cell carcinoma (OSCC) in three distinct anatomical levels. 
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5.3. Materials and methods 

5.3.1. Tumour spheroid production 

According to (Hearnden, 2011) “spheroid is a mass of cells which when cultured on a non 

adherent surface form a spherical solid mass with a well−defined border”. In this work, the 

cell line UPCI−SCC090 was used to produce tumour spheroids. The cells were received under 

Material Transfer Agreement from Professor S. Gollin, University of Pittsburgh School of 

Public Health, Pittsburgh. STR profiling was performed for cell type authentication (see 

section 2.3.2. and Appendix II). Tumour spheroids were generated from UPCI−SCC090 cells 

using the liquid overlay method as previously described (Carlsson and Yuhas, 1984). A 96 well 

plate was coated with 1.5 % type V agarose (Sigma Aldrich, Dorset, UK) (w/v in serum-free 

DMEM). Then, 100 µl of cell suspension containing a 1 × 104 UPCI−SCC090 were added to each 

well. The cells were incubated for 4 days and medium changed every 48 hours.  

5.3.2. Construction of cancerous bone mucosa model (CBMMs) 

To generate a cancerous bone mucosal model (CBMMs), ABMM was constructed (see section 

4.3.3.). Then, 30 spheroids of UPCI-SCC090 were added at different steps of model 

preparation to produce three distinct levels of OSCC. Spheroids were added either to the 

epithelium (carcinoma in situ), epithelium and connective tissue layers, or connective tissue 

and bone interface. After the end of culture time, models were assessed histologically as 

described in chapter 3 (see section 4.3.4.4.).  

5.4. Results 

After 4 days of culturing UPCI−SCC090 in a well plate coated with agarose, spheroids were 

formed (Figure 5.1.).  
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Figure 5. 1. UPCI-SCC090 spheroid formed after 4 days of culture. 

 

The histological observation of the constructed CBMMs displayed a combined bone and oral 

mucosal structure with clearly visible tumour spheroids located at different depths. Figure 

(5.2. A) illustrates the histological pattern of OSCC in which tumour cells located in the 

epithelium (carcinoma in situ) while tumour cells located at the connective tissue and mucosal 

bone interface are demonstrated in figure (5.2. B) and (5.2. C), respectively. 

 

Figure 5. 2. H&E−stained histological ground sections of CBMM representing OSCC spheroids in 

different anatomical levels. H&E−stained histological ground sections of CBMM representing OSCC 

spheroids with different anatomical level. Red arrows indicate to tumor spheroids in; (A) epithelium; 

(B) the epithelium and connective tissue; (C) and connective tissue layer in direct contact with the 

bone (Scale bars =200 µm). 
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5.5. Discussion 

Many studies have shown that once the OSCC has invaded the mandible, it may progress 

through the bone in an erosive, infiltrative or mixed pattern (Slootweg and Muller, 1989). The 

progression of tumour−induced bone disease has been modeled in vitro using 3D collagen or 

polymer scaffolds for metastatic prostate cancer (Fitzgerald et al., 2015), breast cancer 

(Mastro and Vogler, 2009), and Ewing sarcoma (Eliza Li Shan et al., 2013). These studies 

demonstrated that the tumour response to anticancer drugs is substantially altered in 3D 

microenvironment compared to 2D monolayer culture. However, these scaffolds constructed 

by conventional methods do not generally represent the normal bone structure which may 

pose a problem regarding the translation of in vitro findings. Similarly, OSCC has been 

modelled in vitro using soft tissue substrates (Che et al., 2006; Colley et al., 2011; Kataoka et 

al., 2010). The limitation of these studies, however, is the lack of bone−construct equivalent 

that faithfully represents the oral cancer microenvironment which often invades the bone 

and progress through it in an erosive, infiltrative or mixed pattern (Slootweg and Muller, 

1989). This preliminary study addressed these two limitations by using the bone scaffold 

fabricated by the 3DP method to construct a composite bone mucosal model that might 

closely resemble the oral cancer microenvironment. By utilising this model, the interaction 

between different layers of tumor microenvironment that influence the cancer growth, 

progression and metastasis can be determined. However, it should be kept in mind that the 

size of spheroids and the length of their culture, are limited by the absence of angiogenesis; 

the innermost tumour cells may, therefore, become quiescent and ultimately apoptose or 

necrose. The lack of oxygen and nutrients, as well as the accumulation of waste products and 

decreased pH, can result in a central necrotic core when the spheroid’s size exceeds 500−600 

µm (Friedrich et al., 2007). Although present on a more macroscopic scale, changes in pH, 
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oxygen tension and nutrient availability also occur in vivo as a result of cancer growth 

outstripping vascular supply. Therefore, these features within our model may replicate the 

properties of cancer which contribute to tumour resistance to therapy and cytokine release. 

Accordingly, the establishment of a tissue engineered in vitro 3D oral cancer model by 

co−culturing cancer spheroids and multiple types of normal human cells within appropriate 

multi-layered scaffolds may represent a promising approach to simulate in vivo tumour 

microenvironment and the clinical situation as closely as possible. Therefore, the illustrated 

model has the potential to be further developed and characterised to be used for the 

assessment of novel diagnostic or therapeutic approaches to manage OSCC in the future. 

However, detailed and extensive analysis of the cancer model was beyond the scope of this 

study. 
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Chapter 6: Final conclusions  

Several studies have demonstrated oral and dental tissue engineering using various methods 

in terms of the cells, scaffolds, and culture environment. While the construction of individual 

tissue has received significant attention, only a few studies have focused on incorporating 

different tissues in a single compound construct. This thesis has described the development of a 

3D tissue engineered ABMM based on a ceramic bone scaffold fabricated by conventional and 

advanced printing techniques. Conclusions for this study can be summarized in the following points: 

 

• In vitro engineering of a composite oral bone-mucosal model resembling the native 

histological structure of the oral tissue could be established using cancer and immortal 

cell line. The use of fibroblast−populated collagen gel for oral mucosa assembly and 

employing a biocompatible fibrin−based adhesive to combine the constructed soft 

and hard tissues appear to be successful approaches in TE of a tri-layered composite 

osteo-mucosal system. Although the development of the oral composite model using 

human cell lines was feasible, the construction of the model by human primary oral 

cells was essential for more relevant and predictive data. 

• ABMM constructed from convensional scaffold and patient-sourced alveolar bone and 

mucosal cells demonstarted a characteristic features comparable to the native tissue 

in terms of histological, immunohistochemical, ultrastructural examinations, as well 

as the gene and protein expression. However, reconstruction of intricately stuctured 

scaffold mimicking the bone’s hierarchy with precise measurements could not be 

achieved by convensional scaffolding method.   
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• Advanced 3DP technique disclosed the fabrication of a bi-layered bone scaffold that 

simulated cortico−cancellous bone structure. The characterised scaffold 

demonstrated optimal in vitro biocompatibility and biological activity, high 

interconnectivity, and precise pore size on cortical and porous side. This technique  

provided the accuracy, consistency, reproducibility, reduced time and labour effort. 

The printing-based ABMM demonstrated a structure and characteristic features 

comparable to the native tissues. However, printing with higher resolusion is needed 

for further optimisation of scaffold geometrie.   

• The preliminary use of the printing-based CABMM demonstrated oral carcinoma at 

different anatomical levels, namely the epithelium, epithelium and connective tissue, 

or connective tissue-bone interface. This novel cancer model provides a tool to 

improve understanding of oral cancer progression or to be used for the assessment of 

novel diagnostic and therapeutic approaches in order to manage OSCC in the future. 

While the engineering of this multi-layered cancer construct is presented in this thesis, 

additional development and characterisation will provide further insight into the 

mechanism of oral cancer invasion. 
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Chapter 7: Future work 

3D cell culture system has been proposed to bridge between 2D cell culture and in vivo animal 

models (Ali et al., 2006) and between animal modelling and human trials (Linda and Melody, 

2006). Recently, tissue engineered models have gained increasing interest in drug discovery 

and disease modelling due to their evident advantages in providing more physiologically 

relevant information and more predictive data for in vivo tests. The novel ABMM 

demonstrated in this thesis can provide a valuable tool in many in vitro applications such as 

oral cancer and dental implant studies. 

Over the last decade, there has been a growing notion of the significance of the tissue 

microenvironment for the initiation, progression, and suppression of cancer (Villasante and 

Vunjak-Novakovic, 2015). The lack of ability to replicate the complexity and heterogeneous 

nature of human in vivo oral cancer constitutes a barrier to more effective research and 

therapeutic targets. Recently, 3DP has found a niche in fabricating in vitro models with 

complexity approaching that of the in vivo tumor microenvironment (Albritton and Miller, 

2017). The novel CABMM illustrated in this study may provide a representative tool to 

improve understanding of oral cancer progression in the future studies. Clearly, further 

extensive and detailed characterisation are necessary before the utilisation of this model in 

the testing of novel diagnostic or therapeutic approaches towards managing OSCC in the 

future. 

Dental implant research may constitute another potential application of ABMM. Dental 

implants are an increasingly popular solution for edentulous people to restore appropriate 

masticatory functions and satisfactory aesthetic requirements. In the USA alone, it is 

estimated that half million implants are placed annually (Rittel et al., 2017). The implant 
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system is comprised of three elements; the implant itself, bone, and soft tissue. The success 

of implant therapy depends on the interaction between these components. Although many 

in vitro studies conducted to investigate oral mucosa-implant interface (Chai et al., 2012a; 

Chai et al., 2012b; Chai et al., 2013; Chai et al., 2010), the establishment of the whole implant 

system will provide an opportunity for new generation of dental implant with special 

micro−topographical, mechanical and biological  features (Moradian‐Oldak et al., 2006). 

Utilisation of ABMM in the future may include: investigating implant-soft tissue attachment, 

the study of implant−bone interface and osseointegration, the evaluation of biological seal, 

and the effects of oral bacteria on the implant−tissue interface. 
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cells. Kōkūbyō Gakkai zasshi. The Journal of the Stomatological Society, Japan, 63(2), 
pp 334. 

Matras, H. 1982. The use of fibrin sealant in oral and maxillofacial surgery. Journal of Oral and 
Maxillofacial Surgery, 40(10), pp 617-622. 

Matras, H. 1985. Fibrin seal: The state of the art. Journal of Oral and Maxillofacial Surgery, 
43(8), pp 605-611. 

Matras, H., Dinges, H. P., Lassmann, H. & Mamoli, B. 1972. Suture-free interfascicular nerve 
transplantation in animal experiments. Wien Med Wochenschr, 122(37), pp 517-23. 

Mazzoli, A. 2013. Selective laser sintering in biomedical engineering. Medical &Biological 

Engineering & Computing, 51(3), pp 245-56. 

McCauley LK, Somerman MJ (2012). Mineralized tissues in oral and craniofacial science: 
biological principles and clinical correlates Ames, Iowa; Chichester: Wiley-Blackwell. 

Mehrabanian, M. & Nasr-Esfahani, M. 2011. HA/ nylon 6,6 porous scaffolds fabricated by salt-
leaching/ solvent casting technique: effect of nano- sized filler content on scaffold 
properties. International Journal of Nanomedicine, 6, pp 1651-1659. 

Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., Kaplan, D., 
Langer, R. & Vunjak-Novakovic, G. 2004. Bone Tissue Engineering Using Human 
Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow. Annals of 
Biomedical Engineering, 32(1), pp 112-122. 

Mekala, N. K., Baadhe, R. R. & Potumarthi, R. 2014. Mass transfer aspects of 3D cell cultures 
in tissue engineering. Asia Pacific Journal of Chemical Engineering, 9(3), pp 318-329. 

Melchels, F. P. W., Feijen, J. & Grijpma, D. W. 2010. A review on stereolithography and its 
applications in biomedical engineering. Biomaterials, 31(24), pp 6121-6130. 



212  

Melero-Martin, J. M., Santhalingam, S. & Al-Rubeai, M. 2009. Methodology for optimal in vitro 
cell expansion in tissue engineering. Advances in Biochemical 
Engineering/Biotechnology, 112, pp 209-29. 

Merry, K., Dodds, R., Littlewood, A. & Gowen, M. 1993. Expression of osteopontin mRNA by 
osteoclasts and osteoblasts in modelling adult human bone. Journal of Cell Science. 
London, New York NY, 104 (4), pp 1013-1020. 

Miloro, M., Ghali, G. E., Larsen, P. E., Waite, P. D. & Peterson, L. J. 2004. Peterson's principles 
of oral and maxillofacial surgery. Vol. 1, 2nd ed., Hamilton, Ont. ; London: Hamilton, 
Ont. ; London : B.C Decker Inc, 2004. 

Miloro, M. & Kolokythas, A. 2012. Management of complications in oral and maxillofacial 
surgery [electronic resource], Chichester: Chichester : Wiley-Blackwell, 2012. 

Miret, S., De Groene, E. M. & Klaffke, W. 2006. Comparison of in vitro assays of cellular toxicity 
in the human hepatic cell line HepG2. Journal of Biomolecular Screening, 11(2), pp 
184-193. 

Mino-Farina, N., Munoz-Guzon, F., Lopez-Pena, M., Ginebra, M. P., Del Valle-Fresno, S., Ayala, 
D. & Gonzalez-Cantalapiedra, A. 2009. Quantitative analysis of the resorption and 
osteoconduction of a macroporous calcium phosphate bone cement for the repair of 
a critical size defect in the femoral condyle. Veterinary Journal, 179(2), pp 264-72. 

Moharamzadeh, K., Brook, I., Noort, R., Scutt, A., Smith, K. & Thornhill, M. 2008. 
Development, optimization and characterization of a full-thickness tissue engineered 
human oral mucosal model for biological assessment of dental biomaterials. Journal 
of Materials Science: Materials in Medicine, 19(4), pp 1793-1801. 

Moharamzadeh, K., Brook, I. M., Van Noort, R., Scutt, A. M. & Thornhill, M. H. 2007. Tissue-
engineered oral mucosa: a review of the scientific literature. Journal of Dental 
Research, 86(2), pp 115-24. 

Moharamzadeh, K., Colley, H., Murdoch, C., Hearnden, V., Chai, W. L., Brook, I. M., Thornhill, 
M. H. & MacNeil, S. 2012. Tissue- engineered Oral Mucosa. Journal of Dental Research, 
91(7), pp 642-650. 

Moharamzadeh, K., Van Noort, R., Franklin, K. L. & Brook, I. M. 2009. Biologic assessment of 
antiseptic mouthwashes using a three- dimensional human oral mucosal model. 
Journal of Periodontology, 80(5), pp 769-775. 

Moharamzadeh, K. Oral mucosa tissue engineering. In: Tayebi, L. & Moharamzadeh, K. 2017. 
Biomaterials for oral and dental tissue engineering: Oxford: Woodhead Publishing, 
2017. 

Mohd-Zulhilmi, I., Kerry, H. & Andreas, F. 2014. Experimental Characterisation of Fluid 
Mechanics in a Spinner Flask Bioreactor. Processes, 2(4), pp 753-772. 

Molladavoodi, S., Gorbet, M., Medley, J. & Ju Kwon, H. 2013. Investigation of microstructure, 
mechanical properties and cellular viability of poly( L- lactic acid) tissue engineering 
scaffolds prepared by different thermally induced phase separation protocols. Journal 
of the Mechanical Behavior of Biomedical Materials, 17, pp 186-197. 



213  

Moore, M. J., Jabbari, E., Ritman, E. L., Lu, L., Currier, B. L., Windebank, A. J. & Yaszemski, M. 
J. 2004. Quantitative analysis of interconnectivity of porous biodegradable scaffolds 
with micro‐ computed tomography. Journal of Biomedical Materials Research Part A, 
71(2), pp 258-267. 

Moradian‐Oldak, J., Wen, H. B., Schneider, G. B. & Stanford, C. M. 2006. Tissue engineering 
strategies for the future generation of dental implants. Periodontology 2000, 41(1), pp 
157-176. 

Motamedian, S. R., Hosseinpour, S., Ahsaie, M. G. & Khojasteh, A. 2015. Smart scaffolds in 
bone tissue engineering: A systematic review of literature. World Journal of  Stem 
Cells, 7(3), pp 657-68. 

Murata, H., Tanaka, H., Taguchi, T., Shiigi, E., Mizokami, H., Sugiyama, T. & Kawai, S. 2004. 
Dexamethasone induces human spinal ligament derived cells toward osteogenic 
differentiation. Journal of Cellular Biochemistry, 92(4), pp 715-722. 

Murphy, C. M., Haugh, M. G., amp, Amp, Apos & Brien, F. J. 2010. The effect of mean pore 
size on cell attachment, proliferation and migration in collagen– glycosaminoglycan 
scaffolds for bone tissue engineering. Biomaterials, 31(3), pp 461-466. 

Murphy, W. L., Dennis, R. G., Kileny, J. L. & Mooney, D. J. 2002. Salt fusion: An approach to 
improve pore interconnectivity within tissue engineering scaffolds. Tissue 
Engineering, 8(1), pp 43-52. 

Murshed, M., Harmey, D., Millan, J., McKee, M. & Karsenty, G. 2005. Unique coexpression in 
osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM 
mineralization to bone. Genes & Development, 19(9), pp 1093-1104. 

Muschler, G. F., Raut, V. P., Patterson, T. E., Wenke, J. C. & Hollinger, J. O. 2010. The design 
and use of animal models for translational research in bone tissue engineering and 
regenerative medicine. Tissue Engineering Part B Reviews, 16(1), pp 123-45. 

Mygind, T., Stiehler, M., Baatrup, A., Li, H., Zou, X., Flyvbjerg, A., Kassem, M. & Bünger, C. 
2007. Mesenchymal stem cell ingrowth and differentiation on coralline 
hydroxyapatite scaffolds. Biomaterials, 28(6), pp 1036-1047. 

Nair, K., Gandhi, M., Khalil, S., Yan, K. C., Marcolongo, M., Barbee, K. & Sun, W. 2009. 
Characterization of cell viability during bioprinting processes. Biotechnology Journal, 
4(8), pp 1168-77. 

Nanci, A. 2013. Ten Cate's oral histology : development, structure, and function, 8th ed. / 
Antonio Nanci., St. Louis, Mo.: St. Louis, Mo. : Elsevier, 2013. 

Nakano, T., Matsugaki, A., Ishimoto, T., Todai, M., Serizawa, A., Suetoshi, R., Fujitani, W. 2014. 
Control of oriented extracellular matrix similar to anisotropic bone microstructure, Materials 
Science Forum, PP (72–77). 

Navsaria, H. A., Myers, S. R., Leigh, I. M. & McKay, I. A. 1995. Culturing skin in vitro for wound 
therapy. Trends Biotechnolology, 13(3), pp 91-100. 

Nazarov, R., Jin, H.-J. & Kaplan, D. L. 2004. Porous 3- D scaffolds from regenerated silk fibroin. 
Biomacromolecules, 5(3), pp 718-726. 



214  

Neufurth, M., Wang, X., Wang, S., Steffen, R., Ackermann, M., Haep, N. D., Schröder, H. C. & 
Müller, W. E. G. 2017. 3D printing of hybrid biomaterials for bone tissue engineering: 
Calcium- polyphosphate microparticles encapsulated by polycaprolactone. Acta 
Biomaterialia, 64, pp 377-388. 

Neve, A., Corrado, A. & Cantatore, F. 2011. Osteoblast physiology in normal and pathological 
conditions. Cell and Tissue Research, 343(2), pp 289-302. 

Ng, M. H., Aminuddin, B. S., Hamizah, S., Lynette, C., Mazlyzam, A. L. & Ruszymah, B. H. I. 
2009. Correlation of donor age and telomerase activity with in vitro cell growth and 
replicative potential for dermal fibroblasts and keratinocytes. Journal of Tissue 
Viability, 18(4), pp 109-116. 

Niemeyer, P., Fechner, K., Milz, S., Richter, W., Suedkamp, N. P., Mehlhorn, A. T., Pearce, S. & 
Kasten, P. 2010. Comparison of mesenchymal stem cells from bone marrow and 
adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the 
influence of platelet- rich plasma. Biomaterials, 31(13), pp 3572-3579. 

Nims, R., Sykes, G., Cottrill, K., Ikonomi, P. & Elmore, E. 2010. Short tandem repeat profiling: 
part of an overall strategy for reducing the frequency of cell misidentification. In Vitro 
Cellular & Developmental Biology - Animal, 46(10), pp 811-819. 

Nishida, K., Yamato, M., Hayashida, Y., Watanabe, K., Yamamoto, K., Adachi, E., Nagai, S., 
Kikuchi, A., Maeda, N., Watanabe, H., Okano, T. & Tano, Y. 2004. Corneal 
Reconstruction with Tissue- Engineered Cell Sheets Composed of Autologous Oral 
Mucosal Epithelium. The New England Journal of Medicine, 351(12), pp 1187-1196. 

Obregon, F., Vaquette, C., Ivanovski, S., Hutmacher, D. W. & Bertassoni, L. E. 2015. Three- 
Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue 
Engineering. Journal of Dental Research, 94, pp 143S-152S. 

Offeddu, G. S., Ashworth, J. C., Cameron, R. E. & Oyen, M. L. 2015. Multi-scale mechanical 
response of freeze-dried collagen scaffolds for tissue engineering applications. Journal 
of the Mechanical Behavior of Biomedical Materials, 42, pp 19-25. 

Ojeh, N. O., Frame, J. D. & Navsaria, H. A. 2001. In vitro characterization of an artificial dermal 
scaffold. Tissue Engineering, 7(4), pp 457-72. 

Okazaki, M., Yoshimura, K., Suzuki, Y. & Harii, K. 2003. Effects of subepithelial fibroblasts on 
epithelial differentiation in human skin and oral mucosa: heterotypically recombined 
organotypic culture model. Plastic and Reconstructive Surgery, 112(3), pp 784. 

Olson, J. L., Atala, A. & Yoo, J. J. 2011. Tissue Engineering: Current Strategies and Future 
Directions. Chonnam Medical Journal, 47(1), pp 1-13. 

Olszta, M. J., Cheng, X., Jee, S. S., Kumar, R., Kim, Y.-Y., Kaufman, M. J., Douglas, E. P. & Gower, 
L. B. 2007. Bone structure and formation: A new perspective. Materials Science & 
Engineering R, 58(3), pp 77-116. 

Orimo, H. 2010. The mechanism of mineralization and the role of alkaline phosphatase in 
health and disease. Journal of Nippon Medical School, 77(1), pp 4-12. 



215  

Ortega, N., Behonick, D. J. & Werb, Z. 2004. Matrix remodeling during endochondral 
ossification. Trends in Cell Biology, 14(2), pp 86-93. 

Osman, N. I., Hillary, C., Bullock, A. J., Macneil, S. & Chapple, C. R. 2015. Tissue engineered 
buccal mucosa for urethroplasty: Progress and future directions. Advanced Drug 
Delivery Reviews, 82-83, pp 69-76. 

Owen, T. A., Aronow, M., Shalhoub, V., Barone, L. M., Wilming, L., Tassinari, M. S., Kennedy, 
M. B., Pockwinse, S., Lian, J. B. & Stein, G. S. 1990. Progressive development of the rat 
osteoblast phenotype in vitro: reciprocal relationships in expression of genes 
associated with osteoblast proliferation and differentiation during formation of the 
bone extracellular matrix. Journal of Cellular Physiology, 143(3), pp 420-30. 

Ozbolat, I. T., Peng, W. & Ozbolat, V. 2016. Application areas of 3D bioprinting. Drug Discovery 
Today, 21(8), pp 1257-1271. 

Ozbolat, I. T. & Yin Yu, I. T. 2013. Bioprinting Toward Organ Fabrication: Challenges and Future 
Trends. Biomedical Engineering, IEEE Transactions on, 60 (3), pp 691-699. 

Pallua, N. & Suschek, C. V. 2010. Tissue engineering: from lab to clinic. London, Berlin: 
Springer. 

Park, C. H., Rios, H. F., Jin, Q., Sugai, J. V., Padial-Molina, M., Taut, A. D., Flanagan, C. L., 
Hollister, S. J. & Giannobile, W. V. 2012. Tissue engineering bone-ligament complexes 
using fiber-guiding scaffolds. Biomaterials, 33(1), pp 137-45. 

Park, H. & Park, C. 2015. Fabrication of 3d Porous Silk Scaffolds by Particulate (salt/sucrose) 
Leaching for Bone Tissue Reconstruction. Tissue Engineering Part A, 21, pp S390-S390. 

Pati, F., Gantelius, J. & Svahn, H. A. 2016. 3D Bioprinting of Tissue/Organ Models. Angewandte 
Chemie International Edition, 55(15), pp 4650-65. 

Patricia, D., Christelle, D., Brendan, B., Gerald, P., Beryl, S., Colin, D., Erica, S., Jeffrey, B., 
Steven, G., Caren, G., Allan, B. & Gerard, K. 1996. Increased bone formation in 
osteocalcin- deficient mice. Nature, 382(6590), pp 448. 

Pearce, A. I., Richards, R. G., Milz, S., Schneider, E. & Pearce, S. G. 2007. Animal models for 
implant biomaterial research in bone: a review. European Cells & Materials, 13, pp 1-
10. 

Peck, Y. & Wang, D. A. 2013. Three-dimensionally engineered biomimetic tissue models for in 
vitro drug evaluation: delivery, efficacy and toxicity. Expert Opinion on Drug Delivery, 
10(3), pp 369-83. 

Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. 2006. Hydrogels in Biology and 
Medicine: From Molecular Principles to Bionanotechnology. Advanced Materials, 
18(11), pp 1345-1360. 

Petrovic, V., Zivkovic, P., Petrovic, D. & Stefanovic, V. 2012. Craniofacial bone tissue 
engineering. Oral Surgery Oral Medicine Oral Pathology Oral Radiology, 114(3), pp E1-
E9. 



216  

Peyrin, F. 2011. Evaluation of bone scaffolds by micro- CT. Osteoporosis International, 22(6), 
pp 2043-2048. 

Peña, I., Junquera, L. M., Llorente, S., de Villalaín, L., de Vicente, J. C. & Llames, S. 2012. Clinical 
outcomes after the use of complete autologous oral mucosa equivalents: preliminary 
cases. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 113(5), pp e4-
e11. 

Peña, I., Junquera, L. M., Meana, Á., García, E., García, V. & De Vicente, J. C. 2010. In vitro 
engineering of complete autologous oral mucosa equivalents: characterization of a 
novel scaffold. Journal of Periodontal Research, 45(3), pp 375-380. 

Pham, D. T., Dotchev, K. D. & Yusoff, W. A. Y. 2008. Deterioration of polyamide powder 
properties in the laser sintering process. Proceedings of the Institution of Mechanical 
Engineers, Part C: Journal of Mechanical Engineering Science, 222(11), pp 2163-2176. 

Pham, Q. P., Sharma, U. & Mikos, A. G. 2006. Electrospinning of polymeric nanofibers for 
tissue engineering applications: a review. Tissue Engineering, 12(5), pp 1197-211. 

Pinnock, A., Murdoch, C., Moharamzadeh, K., Whawell, S. & Douglas, C. W. I. 2014. 
Characterisation and optimisation of organotypic oral mucosal models to study 
Porphyromonas gingivalis invasion. Microbes and Infection, 16(4), pp 310-319. 

Polo-Corrales, L., Latorre-Esteves, M. & Ramirez-Vick, J. E. 2014. Scaffold design for bone 
regeneration. Journal for Nanoscience and Nanotechnology, 14(1), pp 15-56. 

Pradel, W. & Lauer, G. 2012. Tissue- engineered bone grafts for osteoplasty in patients with 
cleft alveolus. Annals of Anatomy, 194(6), pp 545-548. 

Pradel, W., Mai, R., Gedrange, T. & Lauer, G. 2008. Cell passage and composition of culture 
medium effects proliferation and differentiation of human osteoblast- like cells from 
facial bone. Journal of physiology and pharmacology, 59, pp 47-58. 

Price, P. A., Lothringer, J. W., Baukol, S. A. & Hari Reddi, A. 1981. Developmental appearance 
of the vitamin K- dependent protein of bone during calcification. Analysis of 
mineralizing tissues in human, calf, and rat. Journal of Biological Chemistry, 256(8), pp 
3781-3784. 

Przyborski, S. A. 2005. Differentiation of human embryonic stem cells after transplantation in 
immune-deficient mice. Stem Cells, 23(9), pp 1242-50. 

Qi, X., Ye, J. & Wang, Y. 2008. Improved injectability and in vitro degradation of a calcium 
phosphate cement containing poly(lactide-co-glycolide) microspheres. Acta 
Biomaterialia, 4(6), pp 1837-1845. 

Qiu, K., Chen, B., Nie, W., Zhou, X., Feng, W., Wang, W., Chen, L., Mo, X., Wei, Y. & He, C. 2016. 
Electrophoretic Deposition of Dexamethasone- Loaded Mesoporous Silica 
Nanoparticles onto Poly( L- Lactic Acid)/ Poly(epsilon- Caprolactone) Composite 
Scaffold for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 8(6), pp 
4137-4148. 

Rajan, A., Eubanks, E., Edwards, S., Aronovich, S., Travan, S., Rudek, I., Wang, F., Lanis, A. & 
Kaigler, D. 2014. Optimized Cell Survival and Seeding Efficiency for Craniofacial Tissue 



217  

Engineering Using Clinical Stem Cell Therapy. Stem Cells Translational Medicine, 3(12), 
pp 1495-1503. 

Rajan, N., Habermehl, J., Cote, M. F., Doillon, C. J. & Mantovani, D. 2006. Preparation of ready-
to-use, storable and reconstituted type I collagen from rat tail tendon for tissue 
engineering applications. Nature Protocols, 1(6), pp 2753-8. 

Rakhorst, H., Tra, W., Van Neck, J. W., Van Osch, G., Hovius, S., El Ghalbzouri, A. & Hofer, S. 
O. P. 2006. Fibroblasts Accelerate Culturing of Mucosal Substitutes. Tissue 
Engineering, 12(8), pp 2321-2331. 

Ram-Liebig, G., Bednarz, J., Stuerzebecher, B., Fahlenkamp, D., Barbagli, G., Romano, G., 
Balsmeyer, U., Spiegeler, M.-E., Liebig, S. & Knispel, H. 2015. Regulatory challenges for 
autologous tissue engineered products on their way from bench to bedside in Europe. 
Advanced Drug Delivery Reviews, 82-83, pp 181-191. 

Rathbone, C. R., Guda, T., Singleton, B. M., Oh, D. S., Appleford, M. R., Ong, J. L. & Wenke, J. 
C. 2014. Effect of cell- seeded hydroxyapatite scaffolds on rabbit radius bone 
regeneration. Journal of Biomedical Materials Research  Part A, 102(5), pp 1458-1466. 

Reibel, J., Clausen, H., Dale, B. A. & Thacher, S. M. 1989. Immunohistochemical analysis of 
stratum corneum components in oral squamous epithelia. Differentiation, 41(3), pp 
237-244. 

Rentz, T. J., Poobalarahi, F., Bornstein, P., Sage, E. H. & Bradshaw, A. D. 2007. SPARC regulates 
processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. The 
Journal of biological chemistry, 282(30), pp 22062. 

Rheinwald, J. G. & Green, H. 1975. Serial cultivation of strains of human epidermal 
keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6(3), pp 
331-334. 

Rimann, M., Bono, E., Annaheim, H., Bleisch, M. & Graf-Hausner, U. 2016. Standardized 3D 
Bioprinting of Soft Tissue Models with Human Primary Cells. Journal of Laboratory 
Automation, 21(4), pp 496-509. 

Rittel, D., Shemtov-Yona, K. & Korabi, R. 2017. Engineering Dental Implants. Current Oral 
Health Reports, 4(3), pp 239-247. 

Rodan, S. B., Imai, Y., Thiede, M. A., Wesolowski, G., Thompson, D., Bar-Shavit, Z., Shull, S., 
Mann, K. & Rodan, G. A. 1987a. Characterization of a human osteosarcoma cell line ( 
Saos- 2) with osteoblastic properties. Cancer research, 47(18), pp 4961. 

Romberg, R. W., Werness, P. G., Riggs, B. L. & Mann, K. G. 1986. Inhibition of hydroxyapatite 
crystal growth by bone-specific and other calcium- binding proteins. Biochemistry, 
25(5), pp 1176. 

Ronfard, V., Rives, J. M., Neveux, Y., Carsin, H. & Barrandon, Y. 2000. Long- term regeneration 
of human epidermis on third degree burns transplanted with autologous cultured 
epithelium grown on a fibrin matrix. Transplantation, 70(11), pp 1588. 



218  

Roohani-Esfahani, S. I., Newman, P. & Zreiqat, H. 2016. Design and Fabrication of 3D printed 
Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large 
Bone Defects. Scientific Reports, 6, pp 19468. 

Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I. & Grigolo, B. 2017. 
Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Materials 
Science & Engineering C, 78, pp 1246-1262. 

Ross, M. H. 2016. Histology : a text and atlas : with correlated cell and molecular biology. 
Seventh edition / Michael H. Ross, PhD, Wojciech Pawlina, MD, FAAA.; International 
edition.: Philadelphia : Wolters Kluwer, 2016. 

Rosso, F., Marino, G., Giordano, A., Barbarisi, M., Parmeggiani, D. & Barbarisi, A. 2005. Smart 
materials as scaffolds for tissue engineering. Journal of Cellular Physiology, 203(3), pp 
465-470. 

Rouwkema, J., Gibbs, S., Lutolf, M. P., Martin, I., Vunjak-Novakovic, G. & Malda, J. 2011. In 
vitro platforms for tissue engineering: implications for basic research and clinical 
translation. Journal of Tissue Engineering and Regenerative Medicine, 5(8), pp e164-7. 

Rouwkema, J., Rivron, N. C. & van Blitterswijk, C. A. 2008. Vascularization in tissue 
engineering. Trends in Biotechnology, 26(8), pp 434-41. 

Ruan, S. Q., Yan, L., Deng, J., Huang, W. L. & Jiang, D. M. 2017. Preparation of a biphase 
composite scaffold and its application in tissue engineering for femoral osteochondral 
defects in rabbits. International Orthopaedics, 1-10. 

Rubin, C. T. & Lanyon, L. E. 1984. Regulation of bone formation by applied dynamic loads. The 
Journal of Bone and Joint Surgery. American volume, 66(3), pp 397. 

Russell, W. M. S. & Burch, R. L. 1959. The principles of humane experimental technique. 
London:Methuen. 

Rutkovskiy, A., Stensløkken, K.-O. & Vaage, I. J. 2016. Osteoblast Differentiation at a Glance. 
Medical Science Monitor Basic Research, 22, pp 95-106. 

Saintigny, G., Bonnard, M., Damour, O. & Collombel, C. 1993. Reconstruction of epidermis on 
a chitosan cross-linked collagen-GAG lattice: effect of fibroblasts. Acta Dermato-
Venereologica, 73(3), pp 175-80. 

Salerno, A., Diéguez, S., Diaz-Gomez, L., Gómez-Amoza, J. L., Magariños, B., Concheiro, A., 
Domingo, C., Alvarez-Lorenzo, C. & García-González, C. A. 2017. Synthetic scaffolds 
with full pore interconnectivity for bone regeneration prepared by supercritical 
foaming using advanced biofunctional plasticizers. Biofabrication, 9(3), pp 035002. 

Samorezov, J. E. & Alsberg, E. 2015. Spatial regulation of controlled bioactive factor delivery 
for bone tissue engineering. Advanced Drug Delivery Reviews, 84, PP 45-67. 

Sanan, A. & Haines, S. J. 1997. Repairing holes in the head: a history of cranioplasty. 
Neurosurgery, 40(3), pp 588-603. 

Sandberg, M. M., Aro, H. T. & Vuorio, E. I. 1993. Gene expression during bone repair. Clinical 
Orthopaedics and Related Research, 289, pp 292-312. 



219  

Santos, M. J. & Ventura-Junca, P. 2012. Bioethical aspects of basic research and medical 
applications of human stem cells. Biological Research, 45(3), pp 317-26. 

Scheller, E. L., Krebsbach, P. H. & Kohn, D. H. 2009. Tissue engineering: state of the art in oral 
rehabilitation. Journal of Oral Rehabilitation, 36(5), pp 368-89. 

Schmalz, G., Schweikl, H. & Hiller, K. A. 2000. Release of prostaglandin E2, IL-6 and IL-8 from 
human oral epithelial culture models after exposure to compounds of dental 
materials. European Journal of Oral Sciences, 108(5), pp 442-8. 

Schwarz, R. I. 2015. Collagen I and the fibroblast: High protein expression requires a new 
paradigm of post- transcriptional, feedback regulation. Biochemistry and Biophysics 
Reports, 3(38-44. 

Scott, J. H. 2006. Porous scaffold design for tissue engineering. Nature Materials, 5(7), pp 590. 

Seebach, C., Henrich, D., Kaehling, C., Wilhelm, K., Tami, A., Alini, M. & Marzi, I. 2010. 
Endothelial Progenitor Cells and Mesenchymal Stem Cells Seeded onto beta - TCP 
Granules Enhance Early Vascularization and Bone Healing in a Critical- Sized Bone 
Defect in Rats. Tissue Engineering, Part A: Tissue Engineering, 16(6), pp 1961-1970. 

Seong, J. M., Kim, B. C., Park, J. H., Kwon, I. K., Mantalaris, A. & Hwang, Y. S. 2010. Stem cells 
in bone tissue engineering. Biomedical Materials, 5(6), pp 062001. 

Setzer, B., Bächle, M., Metzger, M. C. & Kohal, R. J. 2009. The gene- expression and phenotypic 
response of hFOB 1.19 osteoblasts to surface- modified titanium and zirconia. 
Biomaterials, 30(6), pp 979-990. 

Shah, N. J., Hyder, M. N., Quadir, M. A., Dorval Courchesne, N.-M., Seeherman, H. J., Nevins, 
M., Spector, M. & Hammond, P. T. 2014. Adaptive growth factor delivery from a 
polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction. 
Proceedings of the National Academy of Sciences of the United States of America, 
111(35), pp 12847. 

Shamblott, M., Axelman, J., Wang, S., Bugg, E., Littlefield, J. W., Donovan, P., Blumenthal, P. 
D., Huggins, G. & Gearhart, J. D. 1998. Derivation of pluripotent stem cells horn 
cultured human primordial germ cells. Proceedings of the National Academy of 
Sciences of the United States of America, 95(23), pp 13726-13731. 

Shrivats, A. R., McDermott, M. C. & Hollinger, J. O. 2014. Bone tissue engineering: state of the 
union. Drug Discovery Today, 19(6), pp 781-786. 

Shteyer, A., Gazit, D., Passi-Even, L., Bab, I., Majeska, R., Gronowicz, G., Lurie, A. & Rodan, G. 
1986. Formation of calcifying matrix by osteosarcoma cells in diffusion chambers in 
vivo. Calcified Tissue International, 39(1), pp 49-54. 

Sieira Gil, R., Pagés, C. M., Díez, E. G., Llames, S., Fuertes, A. F. & Vilagran, J. L. 2015. Tissue- 
Engineered Oral Mucosa Grafts for Intraoral Lining Reconstruction of the Maxilla and 
Mandible With a Fibula Flap. Journal of Oral and Maxillofacial Surgery, 73(1), pp 
195.e1-195.e16. 



220  

Sikavitsas, V. I., Bancroft, G. & Mikos, A. 2002. Formation of three- dimensional cell/ polymer 
constructs for bone tissue engineering in a spinner flask and a rotating wall vessel 
bioreactor. Journal of Biomedical Materials Research, 62(1), pp 136-148. 

Slootweg, P. J. & Muller, H. 1989. Mandibular invasion by oral squamous cell carcinoma. 
Journal of Cranio-Maxillofacial Surgery, 17(2), pp 69-74. 

Smith, I. O., Liu, X. H., Smith, L. A. & Ma, P. X. 2009. Nanostructured polymer scaffolds for 
tissue engineering and regenerative medicine. Wiley Interdisciplinary Reviews: 
Nanomedicine and Nanobiotechnology, 1(2), pp 226-36. 

Sobhani, A., Rafienia, M., Ahmadian, M. & Naimi-Jamal, M.-R. 2017. Fabrication and 
Characterization of Polyphosphazene/ Calcium Phosphate Scaffolds Containing 
Chitosan Microspheres for Sustained Release of Bone Morphogenetic Protein 2 in 
Bone Tissue Engineering. Tissue Engineering and Regenerative Medicine, 14(5), pp 
525-538. 

Southgate, J., Williams, H. K., Trejdosiewicz, L. K. & Hodges, G. M. 1987. Primary culture of 
human oral epithelial cells. Growth requirements and expression of differentiated 
characteristics. Laboratory investigation, 56(2), pp 211-23. 

Spector, M. 2002. Novel Cell- Scaffold Interactions Encountered in Tissue Engineering: 
Contractile Behavior of Musculoskeletal Connective Tissue Cells. Tissue Engineering, 
8(3), pp 351-357. 

Spicer, P., Young, S., Kurtis Kasper, F., Athanasiou, K. A., Mikos, A. G. & Eu-Kien Wong, M. 
2014. Chapter 71 - Tissue Engineering in Oral and Maxillofacial Surgery A2 - Lanza, 
Robert. In: Langer, R. & Vacanti, J. (eds.) Principles of Tissue Engineering (Fourth 
Edition). Boston: Academic Press. 

Stefanik, D., Sarin, J., Lam, T., Levin, L., Leboy, P. & Akintoye, S. 2008. Disparate osteogenic 
response of mandible and iliac crest bone marrow stromal cells to pamidronate. Oral 
Diseases, 14(5), pp 465-471. 

Story, B. J., Wagner, W. R., Gaisser, D. M., Cook, S. D. & Rust-Dawicki, A. M. 1998. In vivo 
performance of a modified CSTi dental implant coating. Int J Oral Maxillofac Implants, 
13(6), pp 749-57. 

Sulaiman, S., Keong, T., Cheng, C., Saim, A. & Idrus, R. 2013. Tricalcium phosphate/ 
hydroxyapatite ( TCP- HA) bone scaffold as potential candidate for the formation of 
tissue engineered bone. The Indian Journal of Medical Research, 137(6), pp 1093-
1101. 

Sun, F., Zhou, H. & Lee, J. 2011. Various preparation methods of highly porous 
hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta 
Biomaterialia, 7(11), pp 3813-3828. 

Sun, J., Hou, X.-K. & Zheng, Y.-X. 2016. Restore a 9 mm diameter osteochondral defect with 
gene enhanced tissue engineering followed mosaicplasty in a goat model. Acta 
Orthopaedica et Traumatologica Turcica, 50(4), pp 464-469. 

Sutherland, R., Carlsson, J., Durand, R. & Yuhas, J. 1981. Spheroids in Cancer Research. Cancer 
Research, 41(7), pp 2980-2984. 



221  

Szpalski, C., Sagebin, F., Barbaro, M. & Warren, S. M. 2013. The influence of environmental 
factors on bone tissue engineering. Journal of Biomedical Materials Research Part B, 
101(4), pp 663-75. 

Taichman, L., Reilly, S. & Garant, P. R. 1979. In- vitro cultivation of human oral keratinocytes. 
Archives of Oral Biology, 24(5), pp 335-341. 

Takagi, R., Yamato, M., Murakami, D., Kondo, M., Ohki, T., Sasaki, R., Okano, T., Yamamoto, 
M., Namiki, H. & Nishida, K. 2011. Fabrication and validation of autologous human oral 
mucosal epithelial cell sheets to prevent stenosis after esophageal endoscopic 
submucosal dissection. Pathobiology, 78(6), pp 311-319. 

Tan, Y., Ooi, S. & Wang, L. 2014. Immunogenicity and tumorigenicity of pluripotent stem cells 
and their derivatives: genetic and epigenetic perspectives. Current Stem Cell Research 
& Therapy, 9(1), pp 63-72. 

Tarafder, S., Balla, V. K., Davies, N. M., Bandyopadhyay, A. & Bose, S. 2013. Microwave-
sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. 
Journal of Tissue Engineering and Regenerative Medicine, 7(8), pp 631-41. 

Tayebi, L. & Moharamzadeh, K. 2017. Biomaterials for oral and dental tissue engineering: 
Duxford, United Kingdom : Woodhead Publishing, 2017. 

Teixeira, G. Q., Barrias, C. C., Lourenço, A. H. & Gonçalves, R. M. 2014. A Multicompartment 
Holder for Spinner Flasks Improves Expansion and Osteogenic Differentiation of 
Mesenchymal Stem Cells in Three- Dimensional Scaffolds. Tissue Engineering Part C: 
Methods, 20(12), pp 984-993. 

Tellis, B. C., Szivek, J. A., Bliss, C. L., Margolis, D. S., Vaidyanathan, R. K. & Calvert, P. 2009. 
Trabecular scaffolds created using micro CT guided fused deposition modeling. 
Materials Science & Engineering C, 28(1) pp 171-178. 

Termine, J. D., Kleinman, H. K., Whitson, S. W., Conn, K. M., McGarvey, M. L. & Martin, G. R. 
1981. Osteonectin, a bone- specific protein linking mineral to collagen. Cell, 26(1), pp 
99-105. 

Tezuka, K., Sato, T., Kamioka, H., Nijweide, P. J., Tanaka, K., Matsuo, T., Ohta, M., Kurihara, N., 
Hakeda, Y. & Kumegawa, M. 1992. Identification of osteopontin in isolated rabbit 
osteoclasts. Biochemical and Biophysical Research Communications, 186(2), pp 911-7. 

Thavornyutikarn, B., Chantarapanich, N., Sitthiseripratip, K., Thouas, G. A. & Chen, Q. 2014. 
Bone tissue engineering scaffolding: computer- aided scaffolding techniques. Progress 
in Biomaterials, 3(2-4), pp 61-102. 

Thevenot, P., Nair, A., Dey, J., Yang, J. & Tang, L. 2011. Method to Analyze Three- Dimensional 
Cell Distribution and Infiltration in Degradable Scaffolds. Tissue Engineering Part A, 
14(4):319-331. 

Thomson, J., Itshovitz-Eldor, J., Shapiro, S. & Waknitz, M. 1998. Embryonic stem cell lines 
derived from human blastocysts. Science (Washington), 282(5391), pp 1145-1147. 



222  

Tra, W. M. W., Van Neck, J. W., Hovius, S. E. R., Perez-Amodio, S. & Van Osch, G. J. V. M. 2012. 
Characterization of a three- dimensional mucosal equivalent: Similarities and 
differences with native oral mucosa. Cells Tissues Organs, 195(3), pp 185-196. 

Trombetta, J. M. & Bradshaw, A. D. 2010. SPARC/ osteonectin functions to maintain 
homeostasis of the collagenous extracellular matrix in the periodontal ligament. 
Journal of Histochemistry and Cytochemistry, 58(10), pp 871-879. 

Trombetta, R., Inzana, J., Schwarz, E., Kates, S. & Awad, H. 2017. 3D Printing of Calcium 
Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. The Journal of the 
Biomedical Engineering Society, 45(1), pp 23-44. 

Tuan, H. S. & Hutmacher, D. W. 2005. Application of micro CT and computation modeling in 
bone tissue engineering. Computer-Aided Design, 37(11), pp 1151-1161. 

Ueda, M., Hata, K.-I., Sumi, Y., Mizuno, H. & Niimi, A. 1998. Peri- implant soft tissue 
management through use of cultured mucosal epithelium. Oral Surgery, Oral 
Medicine, Oral Pathology, Oral Radiology and Endodontology, 86(4), pp 393-400. 

Uri, B.-D. & Nissim, B. 2011. The tumorigenicity of human embryonic and induced pluripotent 
stem cells. Nature Reviews Cancer, 11(4), pp 268. 

Vacanti, C. A. 2006. The history of tissue engineering. Journal of Cellular and Molecular 
Medicine, 10(3), pp 569-576. 

Van Den Dolder, J., Jansen, J. A. & Spauwen, P. H. M. 2003. Evaluation of various seeding 
techniques for culturing osteogenic cells on titanium fiber mesh. Tissue Engineering, 
9(2), pp 315-325. 

Van Der Stok, J., Siebelt, M., Sandker, M., Waarsing, J. H., Verhaar, J. A. N., Jahr, H., Weinans, 
H., Wang, H., Leeuwenburgh, S. C. G., Amin Yavari, S. & Zadpoor, A. A. 2013. Enhanced 
bone regeneration of cortical segmental bone defects using porous titanium scaffolds 
incorporated with colloidal gelatin gels for time-and dose- controlled delivery of dual 
growth factors. Tissue Engineering Part A, 19(23-24), pp 2605-2614. 

Van der Worp, H. B., Howells, D. W., Sena, E. S., Porritt, M. J., Rewell, S., Collins, V. & Macleod, 
M. R. 2010. Can Animal Models of Disease Reliably Inform Human Studies? PLoS 
Medicine, 7(3), pp e1000245. 

Vanderburgh, J., Sterling, J. & Guelcher, S. 2017. 3D Printing of Tissue Engineered Constructs 
for In Vitro Modeling of Disease Progression and Drug Screening. The Journal of the 
Biomedical Engineering Society, 45(1), pp 164-179. 

Villasante, A. & Vunjak-Novakovic, G. 2015. Tissue-engineered models of human tumors for 
cancer research. Expert Opinion on Drug Discovery, 10(3), pp 257-68. 

Vunjak‐Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R. & Freed, L. E. 1998. 
Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. 
Biotechnology Progress, 14(2), pp 193-202. 

Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., 
Pfister, S., Eckstein, V. & Ho, A. D. 2008. Replicative Senescence of Mesenchymal Stem 



223  

Cells: A Continuous and Organized Process ( Replicative Senescence of MSC). PLoS 
ONE, 3(5), pp e2213. 

Wan, Y., Wang, Y., Liu, Z., Qu, X., Han, B., Bei, J. & Wang, S. 2005. Adhesion and proliferation 
of OCT- 1 osteoblast- like cells on micro- and nano- scale topography structured poly( 
l- lactide). Biomaterials, 26(21), pp 4453-4459. 

Wang, D., Christensen, K., Chawla, K., Xiao, G., Krebsbach, P. H. & Franceschi, R. T. 1999. 
Isolation and characterization of MC3T3- E1 preosteoblast subclones with distinct in 
vitro and in vivo differentiation/ mineralization potential. Journal of bone and mineral 
research : the official journal of the American Society for Bone and Mineral Research, 
14(6), pp 893. 

Wang, M. O., Vorwald, C. E., Dreher, M. L., Mott, E. J., Cheng, M. H., Cinar, A., Mehdizadeh, 
H., Somo, S., Dean, D., Brey, E. M. & Fisher, J. P. 2015. Evaluating 3D‐ Printed 
Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering. Advanced 
Materials, 27(1), pp 138-144. 

Wang, T. W., Wu, H. C., Wang, H. Y., Lin, F. H. & Sun, J. S. 2009. Regulation of adult human 
mesenchymal stem cells into osteogenic and chondrogenic lineages by different 
bioreactor systems. Journal of Biomedical Materials Research Part A, 88(4), pp 935-
946. 

Wang, Y. H., Liu, Y., Maye, P. & Rowe, D. W. 2006. Examination of Mineralized Nodule 
Formation in Living Osteoblastic Cultures Using Fluorescent Dyes. Biotechnology 
Progress, 22(6), pp 1697-1701. 

Wang, Z., Wang, Y., Farhangfar, F., Zimmer, M. & Zhang, Y. 2012. Enhanced Keratinocyte 
Proliferation and Migration in Co- culture with Fibroblasts ( Keratinocyte Proliferation 
and Migration). PLoS ONE, 7(7), pp e40951. 

Weinreb, M., Shinar, D. & Rodan, G. A. 1990. Different pattern of alkaline phosphatase, 
osteopontin, and osteocalcin expression in developing rat bone visualized by in situ 
hybridization. Journal of Bone and Mineral Research, 5(8), pp 831-42. 

Wen, Y., Xun, S., Haoye, M., Baichuan, S., Peng, C., Xuejian, L., Kaihong, Z., Xuan, Y., Jiang, P. 
& Shibi, L. 2017. 3D printed porous ceramic scaffolds for bone tissue engineering: a 
review. Biomaterials Science., 5(9), pp 1690-1698. 

Wen, B., Freilich, M., & Kuhn, L. Bone Tissue Engineering Around Dental Implants. In: 
Vishwakarma, A., Sharpe, P. T., Shi, S., Ramalingam, M. & Ajaykumar, V. 2015. Stem 
cell biology and tissue engineering in dental sciences, London : Amsterdam: London : 
Academic Press ; Amsterdam : Elsevier, 2015. 

Wendt, D., Marsano, A., Jakob, M., Heberer, M. & Martin, I. 2003. Oscillating perfusion of cell 
suspensions through three‐ dimensional scaffolds enhances cell seeding efficiency and 
uniformity. Biotechnology and Bioengineering, 84(2), pp 205-214. 

Williams, D. F. 2008. On the mechanisms of biocompatibility. Biomaterials, 29(20), pp 2941-
2953. 



224  

Wu, C., Chen, M., Zheng, T. & Yang, X. 2015. Effect of surface roughness on the initial response 
of MC3T3-E1 cells cultured on polished titanium alloy. Biomedical Materials and 
Engineering, 26 Suppl 1(S155-64. 

Xu, M., McCanna, D. J. & Sivak, J. G. 2015. Use of the viability reagent PrestoBlue in 
comparison with alamarBlue and MTT to assess the viability of human corneal 
epithelial cells. Journal of Pharmacological and Toxicological Methods, 71(1-7. 

Yadev, N. P., Murdoch, C., Saville, S. P. & Thornhill, M. H. 2011. Evaluation of tissue engineered 
models of the oral mucosa to investigate oral candidiasis. Microbial Pathogenesis, 
50(6), pp 278-285. 

Yang, H., Gao, L.-N., An, Y., Hu, C.-H., Jin, F., Zhou, J., Jin, Y. & Chen, F.-M. 2013. Comparison 
of mesenchymal stem cells derived from gingival tissue and periodontal ligament in 
different incubation conditions. Biomaterials, 34(29), pp 7033-7047. 

Yannas, I. V. 1992. Tissue regeneration by use of collagen- glycosaminoglycan copolymers. 
Clinical Materials, 9(3), pp 179-187. 

Yao, Y., Czymmek, K. J., Pazhianur, R. & Lenhoff, A. M. 2006. Three- dimensional pore 
structure of chromatographic adsorbents from electron tomography. Langmuir, 
22(26), pp 11148-11157. 

Yarlagadda, P. K., Chandrasekharan, M. & Shyan, J. Y. 2005. Recent advances and current 
developments in tissue scaffolding. Biomedical Materials and Engineering, 15(3), pp 
159-77. 

Yassin, M. A., Leknes, K. N., Pedersen, T. O., Xing, Z., Sun, Y., Lie, S. A., Finne-Wistrand, A. & 
Mustafa, K. 2015. Cell seeding density is a critical determinant for copolymer scaffolds-
induced bone regeneration. Journal of Biomedical Materials Research Part A, 103(11), 
pp 3649-58. 

 Yilgor, P., Tuzlakoglu, K., Reis, R. L., Hasirci, N. & Hasirci, V. 2009. Incorporation of a sequential 
BMP- 2/ BMP- 7 delivery system into chitosan- based scaffolds for bone tissue 
engineering. Biomaterials, 30(21), pp 3551-3559. 

Yoshizawa, M., Feinberg, S. E., Marcelo, C. L. & Elner, V. M. 2004. Ex vivo produced human 
conjunctiva and oral mucosa equivalents grown in a serum-free culture system. 
Journal of Oral & Maxillofacial Surgery, 62(8), pp 980-8. 

Yu, J., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Thomson, J. A., Vodyanik, M. A., 
Slukvin, I. I., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V. & Stewart, R. 2007. Induced 
pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), pp 
1917-1920. 

Yuan, X., Smith, R. J., Jr., Guan, H., Ionita, C. N., Khobragade, P., Dziak, R., Liu, Z., Pang, M., 
Wang, C., Guan, G., Andreadis, S. & Yang, S. 2016. Hybrid Biomaterial with Conjugated 
Growth Factors and Mesenchymal Stem Cells for Ectopic Bone Formation. Tissue 
Engineering Part A, 22(13-14), pp 928-39. 

Yusop, A. H., Bakir, A. A., Shaharom, N. A., Abdul Kadir, M. R. & Hermawan, H. 2012. Porous 
Biodegradable Metals for Hard Tissue Scaffolds: A Review. International Journal of 
Biomaterials, 2012, pp 1-10. 



225  

Zacchi, V., Soranzo, C., Cortivo, R., Radice, M., Brun, P. & Abatangelo, G. 1998. In vitro 
engineering of human skin‐ like tissue. Journal of Biomedical Materials Research, 
40(2), pp 187-194. 

Zafar, M., Khurshid, Z. & Almas, K. 2015. Oral tissue engineering progress and challenges. 
Tissue Engineering and Regenerative Medicine, 12(6), pp 387-397. 

Zaky, S. H. & Cancedda, R. 2009. Engineering craniofacial structures: facing the challenge. 
Journal of Dental Research, 88(12), pp 1077-91. 

Zaulyanov, L. & Kirsner, R. 2007. A review of a bi- layered living cell treatment ( Apligraf (R)) 
in the treatment of venous leg ulcers and diabetic foot ulcers. Clinical interventions in 
aging, 2(1), pp.93-98. 

Zhang, X., Wang, J., Ren, M., Li, L., Wang, Q. & Hou, X. 2016. A novel collagen/ platelet- rich 
plasma ( COL/ PRP) scaffold: preparation and growth factor release analysis. 
International Journal for Banking, Engineering and Transplantation of Cells and Tissues 
Incorporating Advances in Tissue Banking, 17(2), pp 327-334. 

Zhang, Y., Zhai, D., Xu, M., Yao, Q., Zhu, H., Chang, J. & Wu, C. 2017. 3d- printed bioceramic 
scaffolds with antibacterial and osteogenic activity. Biofabrication, 9(2), pp 025037. 

Zhao, F. & Ma, T. 2005. Perfusion bioreactor system for human mesenchymal stem cell tissue 
engineering: Dynamic cell seeding and construct development. Biotechnology and 
Bioengineering, 91(4), pp 482-493. 

Zhao, F., Wang, J., Guo, H., Liu, S. & He, W. 2015. The Effects of Surface Properties of 
Nanostructured Bone Repair Materials on Their Performances. Journal of 
Nanomaterials, 2015( 

Zhenming, W., Zhefeng, W., William Weijia, L., Wanxin, Z., Dazhi, Y. & Songlin, P. 2017. Novel 
biomaterial strategies for controlled growth factor delivery for biomedical 
applications. NPG Asia Materials, 9(10), pp e435. 

Zhong, J.-J. 2010. Recent advances in bioreactor engineering. Korean Journal of Chemical 
Engineering, 27(4), pp 1035-1041. 

Zhou, C. C., Ye, X. J., Fan, Y. J., Qing, F. Z., Chen, H. J. & Zhang, X. D. 2014a. Synthesis and 
characterization of CaP/Col composite scaffolds for load-bearing bone tissue 
engineering. Composites Part B: Engineering, 62,242-248. 

Zhou, H., Weir, M. D. & Xu, H. H. K. 2011. Effect of cell seeding density on proliferation and 
osteodifferentiation of umbilical cord stem cells on calcium phosphate cement- fiber 
scaffold. Tissue engineering. Part A, 17(21-22), pp 2603. 

Zhou, Y. F., Sae‐Lim, V., Chou, A. M., Hutmacher, D. W. & Lim, T. M. 2006. Does seeding density 
affect in vitro mineral nodules formation in novel composite scaffolds? Journal of 
Biomedical Materials Research Part A, 78(1), pp 183-193. 

Zhou, Z., Buchanan, F., Mitchell, C. & Dunne, N. 2014b. Printability of calcium phosphate: 
calcium sulfate powders for the application of tissue engineered bone scaffolds using 
the 3D printing technique. Materials science & engineering. C, Materials for biological 
applications, 38, pp 1-10. 



226  

Zhou, Z., Zhou, H., Shang, Q. & Cao, Y. 2001. In- vitro cultivation of normal human oral 
keratinocytes. Chinese Medical Journal, 114(7), pp 731-734. 

Zizelmann, C., Schoen, R., Metzger, M. C., Schmelzeisen, R., Schramm, A., Dott, B., Bormann, 
K. h. & Gellrich, N. C. 2007. Bone formation after sinus augmentation with engineered 
bone. Clinical Oral Implants Research, 18(1), pp 69-73. 

Zohar, R., Cheifetz, S., McCulloch, C. A. & Sodek, J. 1998. Analysis of intracellular osteopontin 
as a marker of osteoblastic cell differentiation and mesenchymal cell migration. 
European Journal Of Oral Sciences, 106 (Suppl 1), 401-407. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



227  

 

Chapter 9: Appendices 

 
 
 
 
 
 
 
 
 
 
 

 



228  

Appendix I: Cell line STR profile report for OKF6-TRET-2 
Core Genomic Facility 

Medical School 
University of Sheffield 

Reference data for OKF6/TERT-2 

Reference profile           

from: OKF6/TERT-1 

 

  

Sample data 

Sample: OKF6/TERT-2 

 

 

 

 

Analysis: 

Sample match to reference: 

 

Comment:           The percentage match between TRET-OKF6 and the reference cell line is between 94 % - 100 %. 

 

THO1 D21S11 D5S818 D13S317 D7S820 D16S539 CSFIPO AMEL vWA TPOX 

6,9.3  12,13 11,11 8,10 11,12 11,12 X,X 14,15 9,11 

THO1 D21S11 D5S818 D13S317 D7S820 D16S539 CSFIPO AMEL vWA TPOX 

6,9.3 31.2,31.2 12,13 11,11 8,10 11,12 11,12 X,Y 14,15 9,11 

Matches reference cell line profile at 8 markers.  
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Appendix II: Cell line STR profile report for UPCI-SCC-090 
                                                        Core Genomic Facility 

Medical School 
University of Sheffield 

Reference data for UPCISCC090  

Reference Profile  

from: UPCI-SCC-090 

 

 

Sample data 

Sample: UPCI-SCC-090   

 

 

 

Analysis: 

 Sample match to reference:  

 

Comments 

 

 

THO1 D21S11 D5S818 D13S317 D7S820 D16S539 CSFIPO AMEL vWA TPOX 

7,7 29,31 11,12 11,11 9,10 12,13 11,12 X,Y 17,17 8,8 

THO1 D21S11 D5S818 D13S317 D7S820 D16S539 CSFIPO AMEL vWA TPOX 

7,7 29,31 11,12 11,11 9,10 12,13 11,12 X,Y 17,17 8,8 

Matches reference cell line profile at 10 markers. 

UPCI-SCC-090 and the reference cell line have extremely similar STR profile. The percentage match between 

the two profiles is 100 % and the two cell lines cannot categorically distinguish by STR profiling.  
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Appendix III 
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Study Number: STH18551            

Patient Identification Number for this trial: 

CONSENT FORM 

Title of Project: Development of a three-dimensional tissue engineered bone- oral mucosal      

composite model 

Name of Researchers: Thafar Almela, Ian Brook, Keyvan Moharamzadeh 

Please initial all boxes  

1. I confirm that I have read and understood the information sheet dated 25 November 
2014  (version 1) for the above study.  I have had the opportunity to consider the 
information, ask questions and have had these answered satisfactorily. 

   

2. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 

 

3. I understand that relevant sections of my medical notes and data collected during the 

study, may be looked at by individuals from the University of Sheffield from regulatory 

authorities or from the NHS Trust, where it is relevant to my taking part in this research.  

I give permission for these individuals to have access to my records. 

 

4. I agree to take part in the above study.    

            

Name of Participant   Date    Signature 

                                

            

Name of Person   Date    Signature  
taking consent.  
 

 

 

Consent form date of issue 25 November 2014                                            Consent form version number: 1 
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PATIENT INFORMATION SHEET 

 

Study title: Development of 3 Dimensional tissue engineered bone-oral mucosa composite 

model 

Invitation:  

As part of the treatment you are about to undergo, a small amount of surplus soft tissue or 

bone is often removed. Normally this is discarded. You are being invited to donate this tissue 

for use in a research project that forms part of a PhD programme for one of our students and 

need samples of cells to develop our laboratory models. No extra tissue will be removed and 

you will not be received any additional procedures. Before you decide it is important for you 

to understand why the research is being done and what it will involve. Please take time to 

read the following information carefully and discuss it with others if you wish. Ask us if there 

is anything that is not clear or if you would like more information. Take time to decide whether 

or not you wish to take part. 

 

Background:  

Tissue engineering is the use of a combination of cells, engineering materials, and suitable 

biochemical factors to create tissue or organ that can be used for various diagnostic and/or 

therapeutic applications. This could be achieved in the laboratory by creation an environment 

outside the living body that recapitulate the native tissue environment as closely as possible 

and support cells to survive and grow up. 

 This project is proposed to contribute in advancement of this field by creation a model 

comprise of hard bony and soft lining tissues. Development and optimization of such model 

are indispensable for understanding diverse responses of human body to drugs, chemicals, 
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pathogens, and environmental toxins. It is also considered far more representative than 

animal models which are costly, lengthy and often fail to predict human responses. 

Purpose 

We are developing 3 dimensional tissue model comprised of bone and oral mucosa using 

human cells isolated from surplus tissues and cultivated in the laboratory.  We hope these 

new models can mimic the natural tissues and thereby it could be useful for future research 

work. 

Why have I been asked? 

You are having tissue removed during your treatment which would normally be discarded but 

could be used in our research. 

Do I have to take part? 

No, it is up to you to decide whether or not to donate your tissue. If you do decide to take 

part you will be given this information sheet to keep and be asked to sign a consent form. If 

you decide to take part you are free to withdraw at any time and without giving a reason. A 

decision to withdraw at any time, or a decision not to take part, will not affect the standard 

of care you receive. 

What will happen to me if I take part? 

Samples will be collected for research from tissue after it has been removed and before it is 

discarded. We will not be removing any tissue other than that required for your treatment. 

The sample may be stored at the Laboratories of Sheffield University for possible use in 

future projects. 

What will happen to the tissue? 

The vast majority of the work involved in the development of this model is basic laboratory 

research. Tissue specimens which are produced as a waste bi products from the oral surgical 

operation will be collected and transferred in a sealed container to the laboratory, and stored 

in a dedicated refrigerator until it will be processed within 48 hours of harvesting. 
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What will happen to the tissue after the research is finished? 

At the end of our work, all the redundant or residual specimens will be disposed of lawfully in 

relation to the Human Tissue Act (2004). 

What do I have to do?  

You do not need to do anything other than normal pre and post-operative care. 

Are there any side effects? 

No 

What are the possible benefits of taking part? 

There is no intended clinical benefit to you from taking part in this study and the tissue you 

donate will be considered as a gift.  

What if there is a problem? 

If you are harmed by your participation in this study, there are no special compensation 

arrangements.  If you are harmed due to someone's negligence, then you may have grounds 

for a legal action but you may have to pay for it.  If you have any cause to complain about any 

aspect of the way in which you have been approached or treated during the course of this 

study, you can contact one of the following and you are not compromised in any way because 

you have taken part in a research study. 

• National Health Service complaints mechanisms.  

•  Sheffield Teaching Hospital NHS Trust complaints procedure: contact the following 

person:  Dr D Throssell, Medical Director, 8 Beech Hill Road, Sheffield Teaching 

Hospital NHS Trust. 

• Patient Advice and Liaison Service (PALS) : 0114 271 2400 PST@sth.nhs.uk in person 

at B floor Royal Hallamshire Hospital. 

  

Will my taking part in this study be kept confidential? 

All information which is collected about you will be kept strictly confidential. Any information 

about you which leaves the dental hospital will be anonymous so that you cannot be 

recognised from it. No patient identifying details will be associated with the sample sent to 

the laboratory. The only data that will be requested to accompany the sample will be the date 

mailto:PST@sth.nhs.uk
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of collection, the age and sex of the patient, the nature of tissue. In the laboratory each 

sample will be registered and issued with a number so that we know the date of collection, 

age and sex of the donor and the site of the sample. 

 

What will happen to the results of the research study? 

The results of this research project will be published in a PhD thesis format and will be kept 

in the Libraries of the University of Sheffield. The results will also be presented in national and 

international scientific meetings and may be published in scientific journals. You will not be 

identified in any report/publication. If you interested in this study and you wish to obtain 

further information about the progress or summary of results at the end of project you can 

contact the researcher: 

 

Miss Thafar Almela 

Department of Oral and Maxillofacial Surgery 

School of Clinical Dentistry 

University of Sheffield.  

Email: tkalmela1@sheffield.ac.uk 

 

Thank you for considering taking part in this study. 

You will be given a copy of this form and a signed consent form to keep. 

 

mailto:tkalmela1@sheffield.ac.uk

