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Abstract 

Sound recognition has been studied for decades to grant machines the human hearing 

ability. The advances in this field help in a range of applications, from industrial ones 

such as fault detection in machines and noise monitoring to household applications such 

as surveillance and hearing aids. The problem of sound recognition like any pattern 

recognition task involves the reliability of the extracted features and the recognition 

model. The problem has been approached through decades of crafted features used 

collaboratively with models based on neural networks or statistical models such as 

Gaussian Mixtures and Hidden Markov models. Neural networks are currently being 

considered as a method to automate the feature extraction stage together with the already 

incorporated role of recognition. The performance of such models is approaching 

handcrafted features. Current neural network based models are not primarily designed for 

the nature of the sound signal, which may not optimally harness distinctive properties of 

the signal. 

This thesis proposes neural network models that exploit the nature of the time-

frequency representation of the sound signal. We propose the ConditionaL Neural 

Network (CLNN) and the Masked ConditionaL Neural Network (MCLNN).  The CLNN 

is designed to account for the temporal dimension of a signal and behaves as the 

framework for the MCLNN. The MCLNN allows a filterbank-like behaviour to be 

embedded within the network using a specially designed binary mask. The masking 

subdivides the frequency range of a signal into bands and allows concurrent consideration 

of different feature combinations analogous to the manual handcrafting of the optimum 

set of features for a recognition task. The proposed models have been evaluated through 

an extensive set of experiments using a range of publicly available datasets of music 

genres and environmental sounds. For example, our proposed model achieved 92.1% for 

a music genre recognition task and 85.5% for environmental sound classification 

compared to 87% and 80% achieved by state-of-the-art Convolutional Neural Networks 

for either task, respectively. In addition, it surpasses several hand-crafted attempts.



3 
 

Acknowledgements 

I want to thank my supervisors, Dr. David Chesmore and Prof. John Robinson.  

Dr. David is a great mentor who gave me all the support, encouragement and freedom to 
pursue my own research ideas. I want to express my deepest gratitude and appreciation 
to have the opportunity of being his student.  

I would like to thank Prof. John for all the advice and the insightful comments 
throughout the whole PhD. I am grateful for him finding me the time for meetings 
despite his very busy schedule. 

I would like to thank my dearest officemate and PhD companion, Chiara Picardi for all 
the nice and interesting talks we had together and all the discussions about the ups and 
downs in our PhDs. It was lots of fun to be in the same office with you. 

I am grateful for being part of the CAPACITIE project and I would like to thank all the 
CAPACITIE fellows: Xiu Gao, Rina Siyengwa, Emily Burns, Magdalena Kruza, 
Jagannath Biswakarma, Prado Domercq, Michelle Wang, Elena Koutsoumpeli, Kyle 
Stevens, Mayank Parmar, Xinwei Fang and Gabor Makrai and special thanks to Prof. 
Alistair Boxall and Dr. Lorraine Youds. 

Last but not least, I would like to thank my Dad, missing you and wished you were 
around for this day, my Mom and my Sister for their continuous support along the PhD 
journey.  

 

 

The project has received funding from the European Union’s Seventh Framework 

Programme for research, technological development and demonstration under grant 

agreement no. 608014 



4 
 

 

 

 

 

 

 

 

To the memory of my Dad 

 

 

 

 

 

 



5 
 

Declaration 

I declare that this thesis is a presentation of original work. This work has not previously 
been presented for an award at this, or any other, University. All sources are 
acknowledged as References. The research in this thesis is featured in a number of 
author’s publications as listed below.  

Publications 

Fady Medhat, David Chesmore, and John Robinson, " Masked Conditional Neural 
Network for Sound Classification", submitted to IEEE Transactions on Pattern Analysis 
and Machine Intelligence, (TPAMI), 2018. 

Fady Medhat, David Chesmore, John Robinson, "Automatic Classification of Music 
Genre using Masked Conditional Neural Networks," in IEEE International Conference 
on Data Mining (ICDM), 2017 

Fady Medhat, David Chesmore, and John Robinson, " Masked Conditional Neural 
Networks for Audio Classification", in International Conference on Artificial Neural 
Networks (ICANN), 2017. 

Fady Medhat, David Chesmore, and John Robinson, " Music Genre Classification using 
Masked Conditional Neural Networks ", in International Conference on Neural 
Information Processing (ICONIP), 2017. 

Fady Medhat, David Chesmore, and John Robinson, "Masked Conditional Neural 
Networks for Automatic Sound Events Recognition", in IEEE International Conference 
on Data Science and Advanced Analytics (DSAA), 2017. 

Fady Medhat, David Chesmore, John Robinson, "Environmental Sound Recognition 
using Masked Conditional Neural Networks," in International Conference on Advanced 
Data Mining and Applications (ADMA), 2017. 

Fady Medhat, David Chesmore, John Robinson, " Masked Conditional Neural Networks 
for Environmental Sound Classification," in International Conference on Artificial 
Intelligence (AI), 2017 
Fady Medhat, David Chesmore, John Robinson, "Recognition of Sound using Masked 
Conditional Neural Networks," in IEEE International Conference on Machine Learning 
and Applications (ICMLA), 2017



6 
 

Contents 

ABSTRACT ................................................................................................................................................ 2 

ACKNOWLEDGEMENTS ....................................................................................................................... 3 

DECLARATION ........................................................................................................................................ 5 

CONTENTS ................................................................................................................................................ 6 

LIST OF FIGURES ................................................................................................................................... 8 

LIST OF TABLES ................................................................................................................................... 10 

1 INTRODUCTION ............................................................................................................................. 12 

1.1 BACKGROUND .............................................................................................................................. 13 
1.2 OBJECTIVE AND METHODOLOGY .................................................................................................. 13 
1.3 ORGANIZATION............................................................................................................................. 15 

2  HISTORY OF SOUND RECOGNITION ...................................................................................... 17 

2.1 SPEECH RECOGNITION .................................................................................................................. 17 
2.2 MUSIC GENRE CLASSIFICATION ................................................................................................... 18 
2.3 ENVIRONMENTAL SOUND RECOGNITION ...................................................................................... 20 
2.4 SUMMARY .................................................................................................................................... 24 

3 SIGNAL REPRESENTATION ....................................................................................................... 25 

3.1 TIME DOMAIN ............................................................................................................................... 25 
3.2 SPECTROGRAMS ............................................................................................................................ 27 
3.3 SCALEOGRAMS ............................................................................................................................. 30 
3.4 PRE-PROCESSING .......................................................................................................................... 32 

3.4.1 Rescaling .............................................................................................................................. 33 
3.4.2 Principal Component Analysis ............................................................................................. 33 
3.4.3 Linear Discriminant Analysis ............................................................................................... 34 
3.4.4 Independent Component Analysis ........................................................................................ 35 
3.4.5 Non-Negative Matrix Factorization ...................................................................................... 36 

3.5 SUMMARY .................................................................................................................................... 37 

4 PATTERN CLASSIFICATION ...................................................................................................... 38 

4.1 SUPERVISED LEARNING ................................................................................................................ 38 
4.1.1 Bayes Classifier .................................................................................................................... 38 
4.1.2 Conditional Random Fields .................................................................................................. 40 
4.1.3 Support Vector Machine ....................................................................................................... 41 

4.2 UNSUPERVISED LEARNING ............................................................................................................ 41 
4.2.1 Gaussian Mixture Model ...................................................................................................... 41 
4.2.2 Hidden Markov Model ......................................................................................................... 43 

4.3 SUMMARY .................................................................................................................................... 45 

5 DEEP NEURAL NETWORKS FOR ABSTRACTION ................................................................ 46 

5.1 NEURAL NETWORK BUILDING BLOCKS ........................................................................................ 47 



Contents 

 

7 
 

5.1.1 Error Function ....................................................................................................................... 48 
5.1.2 Optimizer .............................................................................................................................. 49 
5.1.3 Transfer function .................................................................................................................. 50 
5.1.4 Regularization ....................................................................................................................... 51 

5.2 NEURAL NETWORK MODELS ........................................................................................................ 52 
5.2.1 Autoencoders ........................................................................................................................ 52 
5.2.2 Restricted Boltzmann Machines ........................................................................................... 53 
5.2.3 Conditional Restricted Boltzmann Machines ....................................................................... 56 
5.2.4 Convolutional Neural Networks ........................................................................................... 58 
5.2.5 Recurrent Neural Networks .................................................................................................. 61 

5.3 SOUND RECOGNITION WITH NEURAL NETWORKS ......................................................................... 63 
5.4 SUMMARY .................................................................................................................................... 66 

6  MASKED CONDITIONAL NEURAL NETWORKS .................................................................. 67 

6.1 CONDITIONAL NEURAL NETWORKS .............................................................................................. 68 
6.2 MASKED CONDITIONAL NEURAL NETWORKS ............................................................................... 73 
6.3 SUMMARY .................................................................................................................................... 76 

7 EXPERIMENTS ............................................................................................................................... 77 

7.1 BALLROOM ................................................................................................................................... 81 
7.2 HOMBURG .................................................................................................................................... 85 
7.3 GTZAN ........................................................................................................................................ 87 
7.4 ISMIR2004 .................................................................................................................................. 92 
7.5 ESC-10 ......................................................................................................................................... 96 
7.6 ESC-50 ....................................................................................................................................... 100 
7.7 URBANSOUND8K ........................................................................................................................ 105 
7.8 YORNOISE .................................................................................................................................. 107 
7.9 SUMMARY .................................................................................................................................. 111 

8 ANALYSIS ...................................................................................................................................... 112 

8.1 HYPERPARAMETER EVALUATION ............................................................................................... 113 
8.2 COMPARISON TO CONVOLUTIONAL NEURAL NETWORKS ........................................................... 115 
8.3 SUMMARY .................................................................................................................................. 120 

9  CONCLUSIONS AND FUTURE WORK ................................................................................... 121 

FUTURE WORK ....................................................................................................................................... 124 

GLOSSARY ............................................................................................................................................ 126 

REFERENCES ....................................................................................................................................... 130 



8 
 

List of Figures 

Figure 3.1   Zero-crossings of a Human voice ........................................................... 26 

Figure 3.2  Zero-crossings of an Air-conditioning unit ............................................. 26 

Figure 3.3 Spectrogram of road traffic ....................................................................... 28 

Figure 3.4 The Mel-scale ........................................................................................... 29 

Figure 3.5 Filterbank .................................................................................................. 29 

Figure 3.6 Mother wavelets........................................................................................ 31 

Figure 3.7 Morlet wavelet formation ......................................................................... 32 

Figure 3.8 Complex Morlet Wavelet ......................................................................... 32 

Figure 3.9 Linear Discriminant Analysis vs. Principal Component Analysis ........... 35 

Figure 3.10 Non-Negative Matrix Factorization in image processing ....................... 36 

Figure 3.11 Decomposing a spectrogram into basis and weight matrices ................. 37 

Figure 4.1 Linear-Chain Conditional Random Fields represented using  Markov 
Network ...................................................................................................................... 40 

Figure 4.2 Three component GMM. .......................................................................... 42 

Figure 4.3 Two component GMM ............................................................................. 42 

Figure 4.4 Bayesian Network ..................................................................................... 43 

Figure 4.5 Markov Network ....................................................................................... 43 

Figure 4.6 Hidden Markov Model represented as a Bayesian network ..................... 44 

Figure 5.1 Multi-Layer Perceptron architecture ......................................................... 48 

Figure 5.2 Examples of transfer functions ................................................................. 50 

Figure 5.3 Autoencoder architecture .......................................................................... 53 

Figure 5.4 Boltzmann Machine .................................................................................. 54 

Figure 5.5 Restricted Boltzmann Machine................................................................. 54 

Figure 5.6 Conditional Restricted Boltzmann Machine ............................................. 57 

Figure 5.7 The convolution operation ........................................................................ 59 

Figure 5.8  Convolutional Neural Networks .............................................................. 60 

Figure 5.9 Recurrent Neural Networks ...................................................................... 61 

Figure 6.1 ConditionaL Neural Network layer .......................................................... 69 

Figure 6.2 The relative size of the window d compared to the segment q and the 
spectrogram. ............................................................................................................... 70 



List of Figures 

 

9 
 

Figure 6.3 The CLNN scanning a segment extracted from a spectrogram. ............... 71 

Figure 6.4 A two-layer CLNN model with n = 1 ....................................................... 72 

Figure 6.5 Examples of the mask patterns. ................................................................ 74 

Figure 6.6 A single step of MCLNN .......................................................................... 76 

Figure 7.1 Ballroom confusion using MCLNN. ........................................................ 84 

Figure 7.2 Homburg confusion using MCLNN. ........................................................ 87 

Figure 7.3 Confusion matrix for the GTZAN dataset ................................................ 90 

Figure 7.4 Boxplot for 10 trials on the GTZAN dataset ............................................ 91 

Figure 7.5 Confusion matrix for the ISMIR2004 ...................................................... 95 

Figure 7.6 Boxplot for 10 trials on the ISMIR2004 dataset. ...................................... 95 

Figure 7.7 Confusion matrix for the ESC-10 dataset. .............................................. 100 

Figure 7.8 Confusion matrix for the ESC-50 dataset. .............................................. 104 

Figure 7.9 Confusion matrix for the Urbansound8k dataset. ................................... 107 

Figure 7.10 Confusion matrix for the YorNoise and Urbansound8k ....................... 110 

Figure 8.1 Accuracy and standard error on varying the Order n (baseline circled)
 .................................................................................................................................. 113 

Figure 8.2 Accuracy and standard error on varying the Extra frames k (baseline 
circled). .................................................................................................................... 114 

Figure 8.3 Accuracy and standard error on varying the Bandwidth bw (baseline 
circled) ..................................................................................................................... 114 

Figure 8.4 Accuracy and standard error on varying the Overlap ov (baseline 
circled) ..................................................................................................................... 115 

Figure 8.5 Conditional weight matrices scanning a spectrogram  compared to the 
Convolutional filters ................................................................................................ 116 

Figure 8.6 MCLNN generated segments compared to CNN ................................... 116 

Figure 8.7 Learned conditional weight matrices ...................................................... 117 

Figure 8.8 Visualizations for 30 consecutive segments. .......................................... 119 



10 
 

List of Tables 

Table 7.1 MCLNN Hyper-parameters for the MUSIC datasets ................................ 80 

Table 7.2 MCLNN Hyper-parameters for the Environmental Sound datasets .......... 80 

Table 7.3 Ballroom dataset ........................................................................................ 82 

Table 7.4 Training complexity for the Ballroom dataset ........................................... 82 

Table 7.5 MCLNN performance on the Ballroom dataset compared to other  
attempts in the literature ............................................................................................. 83 

Table 7.6 MCLNN compared to the CNN in [56] ..................................................... 84 

Table 7.7 Homburg dataset ........................................................................................ 85 

Table 7.8 Training complexity for the Homburg dataset ........................................... 85 

Table 7.9 MCLNN performance on the Homburg dataset  compared with 
attempts in the literature ............................................................................................. 86 

Table 7.10 GTZAN dataset ........................................................................................ 88 

Table 7.11 Training complexity for the GTZAN dataset ........................................... 88 

Table 7.12 MCLNN performance on the GTZAN dataset  compared with other 
attempts in the literature ............................................................................................. 90 

Table 7.13 GTZAN Random and  Fault-Filtered accuracy  using the splits by 
Kereliuk et al. [15] ..................................................................................................... 92 

Table 7.14 ISMIR2004 dataset .................................................................................. 92 

Table 7.15 Training complexity for the ISMIR2004 dataset ..................................... 93 

Table 7.16 ISMIR2004 Classification Accuracy ....................................................... 94 

Table 7.17 ESC-10 dataset ......................................................................................... 96 

Table 7.18 Training complexity for the ESC-10 dataset ............................................ 96 

Table 7.19 Training complexity for the ESC-10 dataset with Augmentation ............ 97 

Table 7.20 MCLNN performance on the ESC-10 dataset compared with other 
attempts in the literature ............................................................................................. 98 

Table 7.21 ESC-50 dataset ....................................................................................... 101 

Table 7.22 Training complexity for the ESC-50 dataset .......................................... 101 

Table 7.23 Training complexity for the ESC-50 dataset with Augmentation .......... 102 

Table 7.24 MCLNN performance on the ESC-50 dataset compared with other 
attempts in the literature ........................................................................................... 103 

Table 7.25 Urbansound8K dataset ........................................................................... 105 



List of Tables 

 

11 
 

Table 7.26 Training complexity for the Urbansound8K dataset .............................. 105 

Table 7.27 MCLNN performance on the Urbansound8K dataset compared with 
other attempts in the literature.................................................................................. 106 

Table 7.28 YorNoise dataset .................................................................................... 108 

Table 7.29 Training complexity for the YorNoise dataset ....................................... 109 

Table 8.1 Comparison of shallow architectures of MCLNN, CLNN, CNN, and 
LCN layers and the parameters used to the nearest million ..................................... 118 



12 
 

1  
Introduction 

RBAN city pollutants are increasingly becoming a concern to authorities and 

legislators. The spread of pollutants in air, water and soil are affecting all 

aspects of human life. The effect is not just confined to humans, but animals 

and natural life are also affected considerably. Accordingly, environmental studies are 

attracting the attention of research institutions and funding bodies.  

CAPACITIE (Cutting Edge Approaches for Pollution Assessment in Cities) is a 

research project aiming to find innovative solutions for assessing and monitoring 

pollutants in cities. The project is composed of several work packages targeting different 

types of pollutants, e.g. noise, air and water. Noise pollution is one of the concerns of the 

project and the subject of this thesis.  

A question needs to be put forward before continuing the discussion on how to tackle 

the noise problem further: “Why is it important to control noise?” Many researchers [1-

4] have investigated the answer to this question through finding out the hazardous effects 

of noise on humans and the environment. These show a direct link between noise and 

several human illnesses, e.g. hearing impairments, anxiety, cardiovascular diseases and 

annoyance to name a few. Accordingly, it is required to lessen and hopefully eliminate 

the hazardous effect of noise, and clearly, there are shortcomings in the methods used to 

do so. Elaborating on the shortcomings of noise control, the collective measure of 

environmental sounds in an assessed location does not specify which sound sources are 
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contributing to the total noise level, where several sound sources of different nature 

contribute to the environmental noise.  

1.1 Background 
Environmental noise is very complex in nature with several overlapping sounds that have 

to be associated with the sources generating them to judge the level of annoyance 

objectively. To elaborate on this, considering the sound of a waterfall, it may record high 

dB levels from a microphone very near to its location, or the sound of a flock of birds 

nesting in a tree may even give similar readings. But do humans feel annoyed from these 

categories of sounds compared to similar dB levels measured from a highway due to 

moving vehicles? The answer to this question was investigated by Landstrom et al. [5], 

where they found that there is a weak connection between the annoyance of people and 

loudness of the sound. On the other hand, it was people exposed to noise with low tonal 

components (generated by machinery in general including vehicles) who were much more 

annoyed. Another study by Leventhall [6] shows that low-frequency components, 10Hz-

200Hz, strongly affect human annoyance. These studies show the need for effective and 

smart methods for noise monitoring     

Environmental noise monitoring needs to be assessed over long durations to capture 

the change in the soundscape. This is very similar to the identity of a place but based on 

acoustics. For example, a park possesses, generally, quiet levels of sound composed 

mainly of the sound of wind blowing through trees, birds sounds and maybe the voices 

of some children playing. Another example is the soundscape of a busy road; generally 

loud levels of sounds composed of vehicle engines, horns, footsteps on concrete 

sidewalks. The ability to recognize the sound components making up the environmental 

sound scene will help authorities in devising their action plans and feeding noise data to 

the public users. More importantly, defining the environmental sound sources 

contributing to the total noise level through knowing the sound components in the mixture 

can help in targeting the most hazardous sources, e.g. vehicle sounds. 

1.2 Objective and Methodology 
Sound recognition investigates the possibility of transferring the human ability to 

distinguish sounds and embedding it into a machine. The problem has been the focus of 

the research community for decades. The sound recognition problem captures advances 
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in several subfields such as signal processing, features extraction and crafting and pattern 

recognition. Advances have accumulated over decades in each of these fields, and the 

identification of sound has not been entirely solved yet. 

The problem is faced with too many challenges that span: a) the type of sound, e.g. 

speech or music or environmental sounds, b) the sensitivity of the capturing device and 

the noise around it, which affects the quality of the captured signal, c) the quality of the 

discretization, i.e. the analogue to digital conversion, and d) the resolution of the stored 

signal, i.e. the sampling rate. The previous are only the challenges to capture and store a 

signal on a digital device. Other challenges relate to the type of preprocessing and feature 

extraction that fits the nature of the data captured, and finally, the pattern recognition 

algorithm, which is almost never hyperparameter-free, i.e. finding the optimum 

hyperparameters of a model that fits the data being considered is an exploration mission. 

Hand-crafting the features extracted from signals such as sounds or images or videos 

requires tremendous effort. Recently, deep architectures of neural networks have 

managed to achieve remarkable results for image and video recognition feature 

extraction. The success of these deep architectures induced applying them to the sound 

recognition problem aiming to automate the feature extraction stage.  

A multi-layer perceptron (MLP) [7] can be considered as a basic feedforward neural 

network used for pattern classification. In such a model, the network is introduced to a 

feature vector of a specific length matching the input of the network. The input of a 

temporal signal can be the raw sound signal or the frames of a spectrogram transformation 

of the signal or even a complex set of perfectly finetuned hand-crafted combination of 

features. The problem with such a classification scheme is that it ignores the sequential 

nature of a temporal signal as it treats each frame as an isolated entity. Recurrent Neural 

Networks (RNN) [8] introduce a feedback loop from the neurons’ previous state to the 

current input, which allowed RNN models to be adapted to sequential signals. Long 

Short-Term Memory (LSTM) [9] is a descendant of the RNN that was introduced to 

tackle the some of the problems of the vanilla RNN. LSTMs achieved remarkable results 

in handwritten text recognition [10], speech [11] and images [12]. The remarkable 

performance of the RNN is accounted for by its ability to capture long-term dependences 

especially with their variants such as the LSTM by embedding a memory within the 

network. Convolutional Neural Networks (CNN) achieved wide success as well in image 
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processing [13, 14], which extended its application to spectrograms of sound [15-18]. 

They were even considered as a replacement for the Gaussian Mixture Model (GMM) 

[19] widely used in combination with the Hidden Markov Model (HMM) [20-22]. 

Despite the successful attempts in using neural networks for feature extraction using deep 

neural networks, the models are usually adopted to sound after they gain wide acceptance 

in other domains especially image recognition, which may not optimally harness the 

nature of the sound signal.  

In this thesis, we present a neural network architecture that is designed to harness the 

time-frequency domain representation of the sound signal. The model takes into 

consideration the temporal nature of a sound signal in addition to the spectral bands of 

a spectrogram. The models we propose are general enough to be applied for any multi-

channel temporal signal representation.    

An additional problem special to environmental sound recognition, compared to 

speech and music research, and that has hindered advances in this field is the scarcity of 

large annotated datasets. There are recent attempts [23, 24] to collate large datasets of 

environmental sounds, which we used for benchmarking the models proposed in this 

work. Additionally, we extended the dataset introduced in [24] by manually collecting 

sound samples with more emphasis on vehicle sounds (road and rail traffic). We also 

extended the evaluation of the models to widely adopted music datasets, since music has 

similar properties, to a certain extent, to environmental sounds in terms of the overlapping 

sound sources that have a longer duration than phonemes of speech.  

1.3 Organization  
The thesis is structured as follows:  

Chapter 2 explores the history of sound recognition highlighting important 

landmark attempts used to tackle the problem. 

Chapter 3 explores signal representation techniques that have been used across 

the years for sound recognition. 

Chapter 4 highlights machine learning models that have been used for temporal 

signal modelling. 
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Chapter 5 provides a review of several neural network models that are widely 

adopted for pattern recognition especially sound. 

Chapter 6 introduces the Conditional Neural Networks and its masked variant the 

Masked Conditional Neural Networks, which are the main contribution of this 

work. 

Chapter 7 benchmarks the performance of the models proposed in this work 

through a set of extensive experiments using literature wide adopted sound 

datasets.   

Chapter 8 provides an in-depth analysis of the model proposed in this work and 

an unbiased comparison to the state-of-the-art Convolutional Neural Networks.   

Chapter 9 summarizes the contributions of this thesis and highlights future work.  
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2  
History of Sound 
Recognition 

OUND recognition is a field that has always captured the attention of the research 

community and end users. The problem is intermingled between the features or 

the intermediate representation and the recognition system used. In this chapter, 

we will examine the history of sound recognition as a problem approached either from 

the side of the signal analysis and feature crafting or the perspective of the machine 

learning models adapted to the problem. Our review will avoid categorizing the methods 

at this early stage. We will rather attempt to highlight the methods, and through later 

chapters this form of categorization should be handled.  

 

2.1 Speech Recognition  
Speech recognition can be considered as the primary driver for the sound recognition 

problem, where later interest appeared in environmental sound recognition and several 

music information retrieval tasks such as music genre classification.  1952 marks the first 

speech recognizer by Davis et al. [25], AUDREY. It had large analogue circuitry to 

recognize spoken digits using the energy of a spectrogram split into two bands as a signal 

representation. Of course, AUDREY was proceeded with different artworks in signal 

analysis and recognition and more appeared later. One of such techniques used for signal 

S 
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analysis that appeared in 1965, was the work of Cooley and Tukey [26]. They devised the 

Fast Fourier Transform (FFT), an efficient method to calculate the Discrete Fourier 

Transform, which is still the primary signal transformation from the time to the frequency 

domain, at the time of writing. In the year 1966, the next year to devising the FFT, the 

Hidden Markov Model (HMM) was formulated by Baum and Petrie [20], and later the 

Viterbi algorithm by Forney [21] was introduced in 1973 to formalize the possible state 

transitions in an HMM. Though the HMM and FFT advances may seem unrelated at that 

time, later they joined forces to create efficient speech recognizers together with the 

Gaussian Mixture Models (GMM) [27] trained with the Expectation Maximization 

algorithm introduced by Dempster et al. [19] in 1977. The combination [22] between the 

GMM and the HMM was dominant for some time (at least until deep architectures started 

to gain much attention). This assembly was used extensively in speech recognition [28-

30], where a GMM can model a phoneme distribution and a HMM models the temporal 

sequence relation between the frames of a phoneme. 

2.2 Music Genre Classification 
The interest in the sound recognition problem arose from a range of applications that 

appeared across the years beside speech recognition as a driver, primarily applications in 

Music Information Retrieval (MIR). MIR recently gained increasing attention from music 

industry leaders and businesses with the growing use of digital music content shared over 

the web. MIR involves several sub-areas according to the specificity of the task as 

discussed by Casey et al. [31] ranging from music identification, copyright monitoring, 

and melody detection to recommendation and genre recognition. The problem involves 

the ability to categorize music files to facilitate their retrieval based on the instruments 

played, the author, the type of music and other tags that usually have to be labelled 

manually to a music file and possibly influenced by the annotator’s decision. These 

manual annotations are further used by other subsystems in the field of MIR, where the 

recommendation systems are the most obvious applications. These systems are built 

around the core challenge of fetching a music file that may appeal to the listener based 

on some piece of music that is played inside the actual content of the file, but practically 

it has to be through the “subjective” genre tags accompanying that file. Therefore, based 

on the listener’s taste of one music genre and probably with the collaborative opinions of 

other listeners, the system can recommend a list of songs. Music genre classification 

involves challenges related to the large number of variations of musical instruments, 
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musical notes and the introduction of a mix between two or more genres in the same 

music piece. Most of the time, a musical piece could also involve the presence of a human 

voice. A number of variables have to be considered for a classification decision, and 

automatic classification of different genres based on the audible music contents is 

required, at least to overcome the labour that goes into manual categorization.  

Early attempts of music classification were in the mid-90s [32, 33] and possibly earlier. 

Back then most of the methods used were dependent on handcrafting the most prominent 

acoustic features for distinguishing between different music files and using either a 

distance measure clustering algorithm or simple neural network architectures [33] and 

Support Vector Machines (SVM) [34] in others [35]. An attempt of content based 

classification of audio signals was in the work by Wold et al. [32]. Their work used 

handcrafted features based on sound perception properties like loudness, pitch, 

brightness, bandwidth, and harmonicity. In their system, sounds were classified by 

calculating a distance measure between a new audio segment and the already categorized 

database of sounds. A similar attempt using hand-designed features and a Gaussian 

classifier was by Tzanetakis et al. in [36], and they later extended the work in [37] using 

a feature vector comprising timbral texture, rhythmic content and pitch content features 

classified using a GMM. In [38] Bergstra et al. achieved noticeable results on the music 

genre task using AdaBoost [39] as a classifier applied to several features. They also 

studied the effect of feature aggregation over a texture window on the classification 

accuracy. The work in [40] used a variation of the Self-Organizing Map (SOM) [41], 

introduced in 1981, for the classification of musical recordings of a clarinet based on 

features extracted from both the time and frequency domains.  

Other approaches have also been considered, rather than the mix and match methods 

of choosing features that are widely adopted [42]. An example of these was the work by 

Holzapfel et al. [43], where Non-Negative Matrix Factorization (NMF) was used to 

extract the basis vectors from a spectrogram, acting as a dimensionality reduction 

technique as well, and using a Bag-of-Frames (BoF) [44], a GMM was constructed to 

represent each music genre. Similar approaches were considered in [45, 46]. Andén et al. 

in [47]  used the scattering transform, achieving distinguishable results compared to other 

time-frequency representations applied for the music genre classification task, accounting 

to the frequency and time-wrapping invariant properties of the scattering transform. 
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Another development was the work by Henaff et al. [48]. They adapted the Predictive 

Sparse Decomposition (PSD) [49] to generate sparse representations of the input signal 

that are further classified using an SVM. 

The work by Soltau et al. [33] can be considered as one of the initial references to the 

use of neural network architectures for feature extraction rather than for direct 

classification. Soltau used a three-layered architecture, where the first layer was a 10-

node neural network dedicated to extracting audio events in a music file. The output layer 

of the network was dropped, and the activations of the hidden layer were used as an 

abstract low dimensional representation of the features for succeeding layers. The second 

layer in the proposed system is a statistical analysis layer to capture details about the 

events collected from the previous layer network’s activations and finally a recognition 

layer with a neural network for the final classification. A similar advanced method was 

approached through the use of Restricted Boltzmann Machines (RBM) [50] by Hamel et 

al. [51]. They used three RBM layers, forming a Deep Belief Net (DBN) architecture, 

trained generatively on music spectrograms for feature extraction. The extracted features 

were further classified using an RBF-SVM. They showed in their work how each layer 

of the RBM captured an abstract representation of the data introduced to it. Convolutional 

DBN, a variant of DBN, was investigated by Lee et al. [52], which they used for 

unsupervised extraction of speech and music representations. In a different attempt 

aiming to bypass the need to transform the sound signal to an intermediate representation 

like a spectrogram, Dieleman et al. [53] applied a Convolutional Neural Network (CNN) 

[54] directly to the raw signal for the tagging problem of music files. Their results show 

that CNN was capable of tagging the music files, but still the spectrogram transformation 

prevails. CNN has also been studied for different music tasks in [55, 56] 

2.3 Environmental Sound Recognition  
One other field that captured the attention relates to the problem of Environmental Sound 

Recognition (ESR). Environmental sounds are very informative when it comes to 

specifying the soundscape of a region as either rural or urban, indoor or outdoor. The 

tonal characteristics and loudness of specific sound categories are also an indication of 

the hazardous noise levels that can cause long-term health problems [2-4] including 

anxiety, high blood pressure and cardiac diseases. Noise monitoring is a concern of 

legislators. For example, the Environmental Noise Directive (END) [57], specifies the 
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types of sounds that require monitoring. These are mainly sounds of low tonal 

components [5] generated from air, rail and road traffic in addition to industrial site 

activities. These sound sources are indicative of the level of noise pollution and can 

pinpoint other linked pollution sources such as carbons and NOx components generated 

from engines. The monitoring and measuring standards may not be sufficient though. 

Current monitoring procedures involve the deployment of microphones or sound pressure 

level meters in specific locations, presumably locations expected to report high noise 

levels to measure the dB level generated, but these do not take account of the particular 

qualities and properties of the sounds that make them especially hazardous. 

The environmental sound scene is made up of several sound components that may not 

be as hazardous to the human health and could show similar dB levels to birds singing or 

the sound of a waterfall. Therefore, more efficient noise monitoring should involve the 

recognition of the sound sources. ESR can be considered a more challenging recognition 

task compared to speech and music due to the absence of a clear structure for the sound 

compared to the use of phonemes in speech recognition and the perceptual properties of 

music, e.g. timbre, rhythm. Additionally, there is a wide pool of sounds for all events 

occurring in nature for which the unavailability of labelled data can hinder considering 

all categories in the recognition task.  The problem is not only confined to the scope of 

automatic noise recognition [58, 59]. Information about the surroundings in robotic 

platforms that are dependent on computer vision and image processing can be leveraged 

from the additional cue the ESR can provide especially when these vision sensors are 

hindered by low lighting conditions. Similar settings apply for surveillance applications 

[60]. Another application for ESR involves the use of sound in the non-invasive detection 

of underground burrowing animals and insects in woodlands [61]. This application 

extends to quality monitoring of imported wood that can cause nationwide damage to 

woodlands if the imports embed an infestation. ESR has also found its way to be 

incorporated into smart homes and assisting the elderly [62, 63]. Additionally, as a visual-

hearing aid for hearing impairments, where the environmental sound scene can be 

described on a mobile device, ESR can provide information about the user’s surroundings 

visually and provide an alert in critical situations.     

Efforts have tried to tackle the environmental sound recognition problem using a 

diversity of machine learning methods, mainly statistical attempts using Hidden Markov 
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Model (HMM) and Gaussian Mixture Model (GMM).  One of the 1990s attempts was the 

work by Goldhor [64] using the likelihood measure and cepstral coefficients as features. 

He used a limited dataset in terms of size compared to other datasets appearing later in 

the literature, but still, his work marks the early interest of the research community in this 

problem. A similar early effort was by Gaunard et al. in [65], where a HMM was used for 

modelling five classes of sound, mostly sound categories overlapping with Environmental 

Noise Directive (END) [57] (i.e. rail, road, air traffic). They used Linear Predictive 

Coding (LPC) [66] for feature extraction and Vector Quantization (VQ)  to implement a 

codebook for the extracted features and used a 5-state HMM for classification. Zhang et 

al. [67] used a HMM as well, but here they were aiming towards audio recording retrieval 

by developing a three stage approach incorporating a HMM as a method to classify 

environmental sounds. A notable appearance of a larger dataset compared to earlier works 

was in [58], where Dufaux et al. used a database of around 800 impulsive sounds, such 

as glass breaks, human screams, etc. which fits well in surveillance applications. They 

compared the performance of a Gaussian Mixture Model (GMM) and HMM at different 

Signal to Noise Ratios (SNR). 

Recognition targeted for particular types of environmental sounds has also been 

considered in [68] for helicopter sound detection. Similarly, in [59], the authors studied 

recognizing nuisance sounds of scooters and horns. A specific example was in the work 

by Chesmore in [69], where he used simple time domain analysis to identify features for 

a neural network to classify sounds of 25 species of animals. Cowling et al. [70] aimed to 

review the widely used methods of speech analysis and adapt them for environmental 

sound.  

In [71], Eronen et al. attempted to devise a scheme for context recognition. They 

evaluated the performance of several hand-designed time and frequency domain based 

features including Mel-Frequency Cepstral Coefficients (MFCC) on a dataset of 225 

sound files from various environmental settings, e.g. street, restaurant, railway station, 

etc. aiming to find the best performing combination of features. They also considered 

Principal Component Analysis (PCA), Independent Component Analysis (ICA), and 

Linear Discriminant Analysis (LDA) as dimensionality reduction techniques for the 

extracted features and compared the classification results of a HMM and a K-Nearest 

Neighbor (KNN). A similar attempt was in the work of Su et al. [72], but with the use of 
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Local Discriminant Bases (LDB) [73] for dimensionality reduction. Context recognition 

was also studied by Heittola et al. [74] using a GMM with a three-state HMM. Dictionary-

based features were considered in the work of Chu et al. [75] using Matching Pursuits 

(MP) [76] and MFCC to classify among 14 classes of urban sounds, comparing the 

performance of a Gaussian Mixture Model (GMM) and K-Nearest Neighbors (KNN) as 

classifiers. A dictionary based approach was also proposed in [77], and an unsupervised 

feature learning scheme was considered in [78] using a mel-scaled spectrogram as an 

intermediate representation of the signal, PCA as dimensionality reduction and Spherical 

K-Means [79] for classification. Similarly, the same authors in [80] investigated the use 

of the scattering transform [47]. Wichern et al. [81] proposed a system targeted for 

environmental sound segmentation and retrieval in a yet another attempt using a HMM 

to model the sound category in a query-by-example paradigm. Their dataset can be 

considered limited, but their work focused more on the segmentation problem than 

classification. 

The feature extraction stage has a substantial effect on the recognition systems’ 

accuracy. A review was done by Chachada et al. [82] for ESR with more emphasis on the 

features. The classifier complements the extraction stage of a recognition system. Based 

on the works referenced earlier and others [83, 84], classifiers are mostly dependent on 

the GMM-HMM statistical combination. Neural-based attempts have been considered as 

well, but there is more interest appearing recently especially in applying deep 

architectures. Cakir et al. [85] made a notable effort to tackle the nature of the auditory 

environmental scene, in which several sounds usually overlap the same temporal instance. 

In their work, they used a deep neural architecture for a multi-labelling problem with a 

post-processing stage to alleviate the recognition confusion between overlapping events. 

The Convolutional Neural Network (CNN) [54] having extensive usage in image 

classification [13, 14] and speech [86], was considered by Piczak in [87] for ESR. In his 

work, Piczak used an architecture formed of two convolutional layers interleaved with 

two max-pooling layers applied on a logarithmic mel-scaled spectrogram. A similar but 

deeper structure was proposed in the work by Salamon [16]. Both works also considered 

the application of an augmentation stage to the dataset through several combinations of 

tweaks to the sound signal before introducing it to the network, which enhanced the 

classification accuracy to a certain extent. Another deep architecture was studied in the 

work by Hertel et al. [17], but they attempted to investigate the possibility of using the 
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raw sound files for classification using a CNN to eliminate the need for the time-

frequency representation of the spectrogram. Their work demonstrated the supremacy of 

frequency analysis experimentally as an intermediate representation.  

Efforts using deep learning are being made in an attempt to automate the feature 

extraction stage and hopefully surpass the performance of hand-designed features. 

Nevertheless, hand-designed features [88-94] are still superior in most contexts compared 

to features extracted by other methods like deep neural architectures but the gap is getting 

smaller with deep learning evolving as a rival to minimize and hopefully eliminate the 

need to hand design the features required for classification. 

2.4 Summary 
In this chapter, a general overview of sound recognition as a problem studied for speech 

recognition, music genre classification and environmental sounds classification has been 

provided. Efforts were targeted to either handcrafting the most optimized features or 

introducing pattern recognition models that can exploit such features. We explored a wide 

range of attempts in each of these fields with an intention to highlight the challenges 

facing the research community in tackling the sound recognition problem. The following 

two chapters will approach the two folds of the sound recognition problem, i.e. the signal 

representation and the recognition models, in more detail.  
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3  
Signal Representation 

 

EATURE extraction has a significant influence on the quality of the signal’s 

intermediate representation introduced to a recognition model. Researchers are 

always seeking to engineer the most optimum features that can help in solving the 

recognition problem. A raw temporal signal has a lot of information, which is exploited 

using time-domain feature extraction methods, but there are far more details within the 

signal that are inaccessible within the time-domain and are attainable through the 

frequency domain. Eventually, it depends on the application and the available 

computational resources to choose either of them. Throughout the literature, a range of 

features have been proposed including both straightforward techniques and heavily 

engineered methods.  

In this chapter, we will discuss examples of time-domain analysis and emphasize the 

discussion on frequency domain methods adopted widely for intermediate representation 

of the raw signal to a format comprehensible enough to allow recognition models to elicit 

distinctive properties for classification. 

3.1 Time domain 
The Zero Crossings rate can be considered as one of the most straightforward features 

that can be extracted from a raw signal in the time domain. The rate of the crossing of a 

signal to the horizontal axis is used in several speech recognition systems and sound 
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analysis [95, 96]. Looking further into the zero crossing and how it is generated based on 

the analysis of the signals; in the absence of any pressure exerted on the diaphragm of a 

microphone, Gaussian noise will appear in the signal fluctuating across the horizontal 

axis. On applying a pressure on the diaphragm, the voltage starts to mimic the diaphragm 

movements. The frequency of vibration of the diaphragm while changing its shape from 

being concave to convex and the other way around, forming the zero crossings. Therefore, 

the frequency of occurrence of the zero-crossings across the buffer under consideration 

can be used as a distinction between different categories of sound. It has been used for 

Automatic Speech Recognition (ASR) [97] and sound classification [69]. Zero Crossings 

(ZC) is a simple time-domain measure of the number of times a signal crosses the 

horizontal axis in a specific duration. 

Figure 3.1 shows the rate of ZC across 900 sound samples of human voice and a similar 

plot is shown for an air-conditioning unit in Figure 3.2.  A 1971 study of the ZC for speech 

was in the work of Ito et al. [95], where they investigated the relationship between the ZC 

rate and the corresponding spectral representation of phonemes.  

The second derivative, another time-domain based feature, is a measure of the rate of 

change of the first derivative, which is yet a measure of the rate of change of the signal 

itself. It was used as a feature extraction for sound [98] and as a smoothness measure [99]. 

A signal possesses one global minimum – maximum and several local minima – maxima. 

Chesmore [69] used the number of occurrences of local minima – maxima between two 

zero crossings together with the number of samples between these crossings to generate 

Duration-Shape pairs that are further mapped through a codebook to a specific code. The 

method was used as a feature extraction method in sound and signal analysis for 

 

 
Figure 3.1   Zero-crossings of a Human 
voice  

 

 
Figure 3.2  Zero-crossings of an Air-
conditioning unit  
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classifying animal sounds. Statistical measures are more general, and can be applied in 

either the time-domain or frequency-domain. The fourth moment of a signal also known 

as kurtosis [100], is a measure of the degree of flatness of peakedness of a probability 

distribution compared to the normal distribution. Kurtosis has been applied in 

bioacoustics for sound detection in the wild in [101]. The work in [102] used skewness 

in addition to other statistical measures like kurtosis to measure the statistical properties 

of the accumulated magnitudes generated from 18 mel-scaled channels applied in the 

frequency domain over a window of frames. 

3.2 Spectrograms 
The Discrete Fourier Transform (DFT) is used to decompose a signal into its fundamental 

components of sinusoids. The process involves using several cosine and sine signals of 

different frequencies as biases. The frequencies depend on the integer number of cycles 

of the biases per the number of samples of the signal under consideration. The sinusoidal 

biases are correlated with the function in the time domain to decompose the signal to its 

sinusoidal components. The magnitude of the real (cosine correlation) and imaginary 

(sine correlation) components results in the magnitude spectrum of the signal at different 

frequency bins.  

The DFT has a computational complexity of O(n2). The Fast Fourier Transform (FFT) 

[26] was introduced as an efficient algorithm to calculate the DFT for a discrete signal, 

having a complexity of O(n log n). Calculating the FFT for a long signal is impractical, 

in terms of computation. Moreover, it assumes a signal to be stationary. Accordingly, it 

is even not suitable for non-stationary signals. Therefore, a modification was introduced 

to solve this issue in Short Time Fourier Transform (STFT) that involves splitting a signal 

into chunks (small enough to assume it is stationary). The FFT is applied on these short 

chunks of a temporal signal to generate the magnitude of the energy at each frequency 

bin per chunk. The concatenation of the consecutively generated STFT frames provides 

the change of the energy across the bins of a spectrogram as the signal progresses through 

time. A smoothing window [103] (e.g. Hanning, Hamming) is applied on each chunk to 

smooth the signal near the endings of the fragments to prevent a high-frequency response 

when applying the Fourier transform. Several other parameters control the resolution of 

a spectrogram such as the number of samples in an FFT window to calculate the DFT 

(usually 2n to make use of the efficient FFT calculation, e.g. 64, 128, 256, 512, 1024).  
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The overlap between the successive windows of samples on which the FFT is 

calculated, 50% overlap is the most common overlap distance. Figure 3.3 shows a 

spectrogram representation. Each timestep in the temporal direction of a spectrogram 

represents the magnitude of the coefficients across each frequency bin for each window 

being analyzed.  The frequency coefficients generated through the FFT has been widely 

used as features for signal classification [104]. 

 

Figure 3.3 Spectrogram of road traffic 

The FFT bins play a dominant role in controlling the resolution and the level of details 

a spectrogram can provide, especially the details required to enhance the recognition 

accuracy. An impairment of the spectrograms, when used in conjunction with recognition 

systems, is the frequency shifts, i.e. the energy of one frequency bin can move to a nearby 

frequency bin for signals generated from the same source. This occurs possibly due to 

uncontrolled circumstances affecting the signal propagation. For close signal analysis, 

this sensitivity is helpful, but for recognition systems, it is not. Recognition systems deal 

with feature vectors. Therefore, it is essential that a particular feature within a vector holds 

a consistent trend, i.e. a representation that holds a frequency shift-invariance property is 

required. Thus, instead of dealing with the frequency bins, Filterbanks [105] are used to 

represent the signal in bands (groupings of frequency bins). The spacing in-between the 

centre frequency of each of the band-pass filters of a filterbank is controlled by a specific 

scale. The mel-scale is widely adopted to control this spacing as it mimics the human 

auditory system, which responds non-linearly to the tones perceived. The human ear 

behaviour differs according to the sound pitches (frequency perceived by the human ear) 
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reaching the eardrum. Stevens, Volkman and Newman (1937) studied the relation 

between the actual frequency and the pitches perceived by the listener, and they 

formulated this relationship by what is known as the “Mel-Scale” [106] (Mel from 

Melody) as shown in Figure 3.4. The mel-scale studies this behaviour by mapping the 

sound signal to the perceived tone, which is linear for frequencies less than 1 kHz and 

logarithmic for higher frequencies. 

 
Figure 3.4 The Mel-scale 

The concepts of the band and the melody scale are the basis of the Mel-Frequency 

Cepstral Coefficients (MFCC) and the mel-scaled spectrogram. Mel-Frequency Cepstrum 

is a power density (calculated from a Periodogram) of the pitches mapped to the mel-

scale. The mapping process is applied through the use of a bank of mel-scaled filters as 

in Figure 3.5.  

 
Figure 3.5 Filterbank 

On applying the mel-scaled filterbank on the power density generated from a 

periodogram, the output is the power estimate assigned for each filter of the filterbank for 

each range of frequency bins. At this stage, we want to extract the values of the power 

that are most effective to the power density of the signal; this is where the Discrete Cosine 

Transform (DCT) comes into play. The DCT is very similar to the DFT. However, the 

DCT operates on real values only instead of complex ones, which eliminates half the 

computational complexity of the DFT at the expense of losing some of the high 
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frequencies preserved in the imaginary components. This decreases the precision to an 

affordable extent that allows the DCT to be used in compression for images and sound; 

this is attributed for the ability of the DCT in extracting the most effective components 

and the less effective ones get to be represented with near zero values, which can be 

ignored. Applying DCT on the logarithmic power of the filterbank output generates the 

required coefficients that could be used for classification. MFCC is a widely known 

method for speech recognition and signal analysis [107, 108]. Several other coefficients 

were used in literature; Linear Predictive Cepstral Coefficients LPCC [109], Perceptual 

Linear Predictive Cepstral Coefficients PLPCC based on Perceptual Linear Predictive 

Analysis (PLP) [110], Relative Spectral PLP or RASTA-PLP [111] and Human Factor 

Cepstral Coefficients (HFCC) [112] to name a few. Though they may provide extra 

information according to the application, they are still very much similar in concept to 

MFCC, and better performance can be achieved combining the strength of each of them 

[113]. 

3.3 Scaleograms 
Similar to transforming a signal to the frequency domain using an FFT, wavelet 

transformation is yet another method to examine the signal from a different point of view. 

The FFT transforms the signal to a number of sinusoids with different frequencies, on the 

other hand, wavelets perform the same role of a sinusoid but for wavelet transform. The 

wavelet transformation solves a clear drawback in Fourier transformation regarding the 

relation between the time and the frequency domain. At a certain point in the time domain, 

there is no possibility of specifying the exact frequency. Similarly, on approaching a 

signal in the frequency domain, the temporal properties are eliminated, mainly because 

transforming the signal to the frequency domain using the STFT assumes the signal is 

stationary over a window. For non-stationary signals, the window size is constant 

disregarding any change in the signal geometry, which causes a loss in the resolution. The 

uncertainty principle explains the drawback in Fourier transform [114]. The principle was 

studied in particle physics by Heisenberg in 1927, and it states that the direction of a 

particle or its speed can be determined but not both. 

The concept still applies to wavelets, but with the flexibility of using a dynamic resolution 

based on the frequency range we are analyzing the signal for, very similar to having a 

dynamic window size in FFT, but for wavelets, we no longer use the term frequency, and 
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we use the term scale instead. Therefore, after choosing a wavelet to be applied to the 

signal (samples of mother wavelets in Figure 3.6), variations of this wavelet at different 

scales are correlated with the signal. Low scale (high frequency) versions are used to 

capture the high frequencies of the signal with high resolution and the low frequencies 

with low resolutions. On the contrary, high scale (low frequency) versions are used to 

capture low frequencies with high resolution and high frequencies with low resolution. In 

addition to the increased resolution of both the low and high scales (analogous to the low 

and high frequencies), it is possible to track the temporal resolution with the knowledge 

of the wavelet position. 

Figure 3.6 Mother wavelets. 

Despite the fact that normal wavelet transforms provided good resolution with 

affordable computations, there was still some data within the signal that were not 

captured. The Complex Wavelet Transform [115] was introduced to solve this drawback, 
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where the phase of the signal was also taken into consideration. As an example, the Morlet 

wavelet, mistakenly known in the literature as the Gabor wavelet but it is not related [116] 

to the work of Dennis Gabor (1900 – 1979), is a widely used wavelet that is based on a 

Gaussian distribution modulated with a sine wave carrier as shown in Figure 3.7. A 

variation of it is the Complex Morlet wavelet that is capable of capturing the phase details 

is shown in Figure 3.8. 

 

Figure 3.7 Morlet wavelet formation 

 (http://paos.colorado.edu/research/wavelets/wavelet2.html) 

 
Figure 3.8 Complex Morlet Wavelet 

 (Adapted from [117]) 

A Continuous Wavelet Transform (CWT) involves scanning the signal with different 

scales of the mother wavelet. The Discrete Wavelet Transform (DWT) is the CWT 

counterpart that depends on sampling the CWT. The Fast Wavelet Transform [118] 

(FWT), is a method used for efficient calculation of DWT that iteratively discard half the 

signal required to extract the DWT coefficients. Wavelets have been used in audio 

recordings and music classification in [119, 120].  

3.4 Pre-Processing 
The features collected from the sound signals through the feature extraction stage may 

contain significant variations in terms of magnitude between one feature and another or 

even some of the features may be irrelevant to the classification process. Feeding these 
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data directly to a classifier may degrade the performance of the classification stage. 

Therefore, some transformations are required as discussed in this section.  

3.4.1 Rescaling 

Features may have entirely different ranges of magnitudes, i.e. one feature could be a 

number in the interval between 1 and 4 and another could be in the range of 500 to 1000 

or the mean of one feature is different from another. Accordingly, comparing the 

Euclidian distance will be useless since each feature has a different reference point. A 

feature vector having this type of variation affects the learning performance of a classifier 

and can increase the time complexity of the learning phase. Normalization and 

standardization are used to solve these issues with the data. 

In normalization, it is required to fix the values to reside between a common range, 

generally in the interval [0 – 1] by scaling the values using (3.1). 

 
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  

𝑥𝑥 − min (𝑥𝑥)
max(𝑥𝑥) − min (𝑥𝑥)

 (3.1) 
 

Standardization, on the other hand, is concerned with shifting the mean of the 

distribution to zero and controlling the variations to a unit variance as shown in (3.2). 

 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 =  
𝑥𝑥 −  𝜂𝜂
𝜎𝜎

 (3.2) 
 

where η is the mean and σ is the standard deviation.  

3.4.2 Principal Component Analysis 

Feature vectors used in classification usually have several features, where each of them 

is considered a dimension. Some of these features, or dimensions, may be useless or their 

effect on the classification process is minor. Principal Component Analysis (PCA) [121], 

formulated in 1901 by Pearson [122], can eliminate these features through a process 

called “Dimensionality Reduction”. To measure which of the dimensions is more relevant 

than the others, we need to calculate the degree of variation of the data across a particular 

dimension with respect to another. This is calculated by the covariance. The covariance 

is a measure of the degree of tightness or looseness of a distribution of the data points to 

each other. The covariance between two random variables measures the proportionality 

of their change with respect to each other. The covariance is the generalization of the 

variance, i.e. the covariance of a random variable with itself is the variance. On the basis 
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that feature vectors usually have more than one dimension, a covariance matrix is used to 

hold the covariance relation of each dimension with every other dimension under 

consideration. In addition to the covariance of the dimension with itself across the 

diagonal, which is the variance.  

In the context of linear transformations, a characteristic vector is a vector in space that 

when multiplied by a transformation matrix its length is changed but not its direction. 

This vector is also known as the Eigenvector, and its length is known as the eigenvalue. 

In other words, multiplying the square transformation matrix by the eigenvector results 

in another eigenvector that is multiples of the original eigenvector and these multiples are 

the eigenvalues. Therefore, provided that a specific transformation matrix is available of 

size n×n, this matrix has n eigenvectors that are orthogonal to each other, and each 

eigenvector has a corresponding eigenvalue.  

On treating the covariance matrix as the transformation matrix, the eigenvector and 

eigenvalue pairs are extracted. The eigenvector having the maximum eigenvalue is the 

principal dimension or in other words the principal component of the covariance matrix 

and consequently the data. Dimensions with small eigenvalues can be ignored, which 

helps in reducing the amount of data, i.e. it reduces the dimensionality. The work in [123, 

124] analyzed the use of several dimensionality reduction algorithms in studying source 

localization of environmental sounds.  

3.4.3 Linear Discriminant Analysis 

PCA is only concerned with the covariance across the data, which does not consider the 

class of the features when projecting them on the new axis.  Linear Discriminant Analysis 

(LDA) behaves in a very similar way to PCA, it is also used in classification besides 

dimensionality reduction, but it tries to find the dimension that maximizes the distance 

across the means of the classes under consideration. Figure 3.9 shows the difference 

between PCA and LDA, where PCA tries to find the dimension in the direction of the 

maximum variance, while LDA seeks the dimension in the direction that maximizes the 

distance across the mean of the distributions. 
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Figure 3.9 Linear Discriminant Analysis vs. Principal Component Analysis 

 

 
𝐽𝐽(𝑤𝑤) =  

(𝜇𝜇1 −  𝜇𝜇2)2

𝑆𝑆1 + 𝑆𝑆2
 (3.3) 

 

LDA aims at maximizing the objective function in (3.3), where μ1, μ2 are the means 

of features of class 1 and class 2 respectively and S1, S2 are the covariance (also known 

as the scatter matrix) matrices of each class. The objective function can be reformulated 

in the form of two matrices: the between-class matrix 𝑆𝑆𝐵𝐵 = (𝜇𝜇1 −  𝜇𝜇2)(𝜇𝜇1 −  𝜇𝜇2)𝑇𝑇 and 

the within-class matrix 𝑆𝑆𝑤𝑤 = 𝑆𝑆1 + 𝑆𝑆2. The objective function becomes 𝑆𝑆𝑤𝑤−1𝑆𝑆𝑏𝑏𝑤𝑤 =  𝜆𝜆𝑤𝑤, 

where λ and w are the Eigen pair to be calculated attempting to find the optimal projection 

dimension which correspond to the maximum Eigen value. LDA has been used to 

enhance the performance of speech recognition systems in [125]. 

3.4.4 Independent Component Analysis 

Independent Component Analysis (ICA) [126] is a statistical method for separating 

components based on the assumption that the components are non-Gaussian and linearly 

separable. It is an algorithm that belongs to more general set of techniques used in Blind 

Source Separation. Accordingly, ICA tries to minimize the Gaussian distribution of a 

signal to extract the independent components, even if the components are dependent, it 

seeks to maximize the independence. FastICA [127] was introduced in 2000 by 

Hyvärinen et al. to calculate ICA efficiently, and it is one of the widely used methods in 

the literature. 

Though ICA can tackle situations where other similar algorithms like PCA fails, it still 

has an inherent drawback in that it requires prior knowledge of the number of components 

in the mixture, which is not available for the environmental sounds or music. However, a 

previous work [128] has used ICA for environmental sound classification. 
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3.4.5 Non-Negative Matrix Factorization 

Belonging to Blind Source Separation similar to ICA, the Non-Negative Matrix 

Factorization (NMF) was introduced by Paatero & Tapper [129] in 1994 under the name 

“positive” matrix factorization, but was computationally intensive. In 2000, Lee & Seung 

introduced an efficient algorithm for NMF calculations, which revived its use in different 

fields. NMF theorem states that a non-negative matrix V of size m×n can be decomposed 

into two non-negative matrices; W of size m×k and H of size k×n, where k is less than 

the rank (max number of linearly independent vectors which form the basis vectors) of 

the matrix. The basis matrix W holds the linearly independent vectors, which can be used 

to represent the rest of the vectors in the matrix V. The matrix H holds the coefficients 

used to generate the dependent vectors using the linearly independent ones in W. 

Therefore, multiplying W×H regenerates V. Consequently, if it is required to store V, it 

can be decomposed to the much smaller sized matrices, W and H, to be stored instead of 

V and when V is required, it can be reconstructed again from these two. Another point 

that links to the compression of the data storage is that NMF is sparse decomposition 

method, where the decomposed matrices are characterized by their sparsity, which is 

having mostly zeros or near zero values.  Figure 3.10 shows NMF applied on images. 

 
Figure 3.10 Non-Negative Matrix Factorization in image processing  

 (Adapted from Lee & Seung  [130]) 

NMF is constrained by non-negative values, which made it applicable to images. It is 

capable of learning small parts of the images represented in the basis matrix W. Both W 

and H are calculated iteratively. Accordingly, no unique solution encompasses the 

approximations to the details of the image V.  
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Adopting NMF to a time domain signal is not applicable because of the negative 

components, but a time-frequency spectrogram fits well with the non-negative restriction. 

Decomposing the spectrogram to the basis matrix W and the coefficients matrix H, where 

W represents the features of the spectrograms and H holds the timing at which those 

features are appearing as shown in Figure 3.11 was investigated by Wang & Plumbley 

[131]. They used NMF to separate the sounds of different musical instruments within a 

sound mixture. Similar work was done by Virtanen in [132] 

 
Figure 3.11 Decomposing a spectrogram into basis and weight matrices  

(Redrawn based on Wang and Plumbley [131]) 

A practical feature in favour of NMF is the absence of a need to have prior knowledge 

of the number of components sharing the mixture, which is the case in environmental 

sound and music.  

3.5 Summary 
In this chapter, we reviewed the signal intermediate representations together with several 

pre-processing techniques applied through this work or competing attempts in sound 

recognition that will be discussed further in the experiments chapter. The next chapter 

will focus on pattern recognition models as the second part of the sound recognition 

problem.
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4  
Pattern Classification 

ECOGNITION models can be broadly categorized into: statistical, syntactic and 

neural networks [133]. The training method can be supervised or unsupervised. 

In this chapter, we will walk through some of the widely adopted models for pattern 

recognition, and classification especially models adopted to temporal signals such as 

sound. Our discussion will avoid neural networks to which we will dedicate the next 

chapter.  

4.1 Supervised Learning 
In models undergoing supervised learning, they are trained using labelled data. The 

performance of supervised models generally surpasses the unsupervised ones, but one 

downside is that signals surrounding us are not annotated. Supervised learning requires a 

considerable amount of labelled training and test samples to create a well-trained model. 

Having such models can be hindered by the unavailability of enough labelled samples.   

4.1.1 Bayes Classifier 

Before moving forward with Bayes classifier [134], we will discuss Bayes Theorem (also 

known as Bayes rule) developed by Thomas Bayes (1701–1761). It is an important rule 

in the field of statistics and a fundamental one for pattern recognition systems that depend 

on Bayes’ theory. 

R 
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 The joint probability of observing a certain class and a specific feature in a two-class 

classification problem (classes ω1 and ω2) is given by P(x, ωj) = P(x ∩ ωj) = P(x | ωj) 

P(ωj), where x is the feature, P(x | ωj) is the class conditional probability of observing 

feature x given that the class is ωj and  P(ωj) is the prior probability of observing class ωj, 

knowing that for our two-class problem P(ω1) + P(ω2) = 1. The joint probability can be 

formulated the other way around, i.e. the probability of observing class ωj given a value 

of feature x can be formulated as P(ωj | x)P(x). Equating both joint distributions 

formulates Bayes rule in (4.1).   

which states that that posterior probability P(ωj | x) is equal to the likelihood P(x | ωj) × 

the prior probability P(ωj) given the evidence P(x), where P(x) is mainly for 

normalization, and the other two terms are more important for the classification decision. 

This defines a statistical dependent classifier that can be adapted to our two-class 

classification problem, where if P(ω1 | x) > P(ω2 | x) the decision is class ω1  else the 

class is ω2. This conditional relation can be represented in the form of a graphical 

representation using Bayesian networks referred to in section 4.2.2. 

The problem of parameter estimation is a crucial problem for statistical methods, either 

supervised or unsupervised, e.g. the Gaussian Mixture Model (section 4.2.1). The 

problem relates to the scarcity of information, in the real world, of the prior probability 

distribution P(A) and the likelihood probability P(x | ωj). This problem can be 

approached by considering each likelihood probability as a distribution on its own with 

mean μj and a covariance matrix ∑j  (discussed in section 3.4.2) that capture the relation 

across the likelihoods of each category. Maximum-likelihood estimation algorithms can 

be used for estimating the distribution parameters (μj, ∑j). The principle depends on 

dividing the sample space of the training data based on the class categories into sub-sets 

D1…Dc, where the data in Dj  follows the distribution P(x | ωj) having parameters (μj, ∑j) 

represented by θj. Accordingly, the problem becomes a separate estimation problem for 

each dataset D to estimate θ that maximizes the likelihood P (D | θ), where D contains 

x1, x2, …,xn  samples. So the probability of observing each sample is equal to the 

multiplication of probabilities of observing each one of them on its own given by 

Likelihood probability in (4.2).  

 
𝑃𝑃�𝜔𝜔𝑗𝑗  | 𝑥𝑥� =

𝑃𝑃(𝑥𝑥 | 𝜔𝜔𝑗𝑗)𝑃𝑃(𝜔𝜔𝑗𝑗)
𝑃𝑃(𝑥𝑥)

 (4.1) 
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𝑃𝑃(𝐷𝐷|𝜃𝜃) =  �𝑃𝑃(𝑥𝑥𝑘𝑘|𝜃𝜃)

𝑛𝑛

𝑘𝑘=1

 (4.2) 
 

To get the value that maximizes the P(D|θ), The equation can be differentiated with 

respect to θ and equated to zero, where the value that maximizes the vector θ is extracted. 

It is worth mentioning that it is easier to differentiate a sum then a multiplication. 

Therefore, the log-likelihood is used instead of just the likelihood. 

In some situations, not all the combinations of features x exist especially during the 

training phase. In such a state, a Naïve Bayes classifier, a variation of Bayes classifier, 

deals with this situation by ignoring any relationship between features and it assumes 

independence between features of a class. The work in [135] used Bayesian inference for 

sound source separation and musical instrument detection. 

4.1.2 Conditional Random Fields 

The Hidden Markov Model (HMM), section 4.2.2, is a generative data modelling 

approach, where the classification problem is approached in an attempt to find the 

maximum likelihood of having a certain data point generated using a given class model. 

Conditional Random Field (CRF) [136] on the other hand, the discriminative counterpart 

of HMM, is used in prediction and classification problems to assign labels to a feature 

vector discriminatively. Linear-Chain CRF, a type of CRF, is graphically modelled very 

similar to HMM model and is based on the same concept, except that CRF is modelled 

using Markov Network referred to in section 4.2.2 that possesses undirected edges 

between nodes in the model.  

 
Figure 4.1 Linear-Chain Conditional Random Fields represented using  

Markov Network 

Figure 4.1 shows a linear-chain CRF represented by a Markov Network. The Y1,…, 

YT  represents the random variables or the labels within the sequence and X1,…, XT  

represents the number of input vectors containing the features, i.e. the sequence of input 

vectors to be considered. The diagonal and the horizontal edges capture the influence of 
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each node on the ones it is connected to. CRF can be considered as several neural 

networks next to each other, where a single neural network is influenced by the input and 

the output of the two, or more, networks on its sides. 

CRF has been used by Yuxuan et al. [137] in analyzing the cocktail party problem, 

which is the main focus of the field of sound source separation, especially Computational 

Auditory Scene Analysis (CASA) discussed in [138]. An attempt to use CRF for the 

problem of speech recognition was considered by Hifny et al. in [139].  

4.1.3 Support Vector Machine 

Introduced by Vapnik and Lerner [140] in 1963, Support Vector Machine (SVM) was 

concerned with devising a linear classifier, which is not applicable to non-linear data 

representation. For example, two classes of data taking the shape of concentric circles. 

The linear SVM will fail to solve such a classification problem. The work by Bernard et 

al. in [141] extended the SVM to the classification problem of non-linear data boundaries. 

Through finding a hyperplane for higher dimensions using the dual space transformation 

with Lagrangian multipliers [142]. The main idea depends on using a kernel function to 

map all the data points to a new space and finding a hyperplane that maximizes the margin 

between the support vectors, then projecting the hyperplane back to the original space. 

SVM has been used widely for pattern classification in general and sound classification 

specifically, where it is used to classify the spectrogram frames through some of the work 

discussed in succeeding chapters. The downsides of SVM is their inability to scale with 

large amounts of data due to its computation intensive requirements. In [143], the SVM 

efficiency regarding power consumption when implemented on a smartphone for sound 

event detection monitoring using different kernel functions was investigated.  

4.2 Unsupervised learning 
Unsupervised methods try to cluster the data into clusters without any prior information 

even in the absence of labelled data. A crucial input for some of these algorithms though 

is the number of clusters that the data needs to be split among. 

4.2.1 Gaussian Mixture Model 

The idea of the Gaussian Mixture Model (GMM) [27] is based on finding a combination 

of Gaussian distributions that can fit the data to be modelled, where we are still dealing 
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with a clustering problem, but here we are using a generative model represented by the 

probability distribution of each cluster. 

 

Figure 4.2 Three component GMM.                   
 

Figure 4.3 Two component GMM 

(www.robots.ox.ac.uk) (uk.mathworks.com) 

Figure 4.2 shows an example of three normal distributions represented by the dashed 

lines and a GMM model with three components trying to fit them. The definition of a 

component is used in GMM to represent a class. Therefore, the three-component GMM 

will classify the distributions shown into three classes. Figure 4.3 shows two random 

variables having two distributions clustered using a two-component GMM.  

Maximum Likelihood Estimation (MLE) [19] is an approach to estimate the 

parameters of a statistical model that increase the likelihood of the data to be generated 

from it, where the model has some unknown parameters (the mean and the variance of 

the distribution) that need to be estimated. Accordingly, the parameters that increase the 

likelihood of the dataset are the maximum likelihood estimates. This can be considered 

in other words as the learning process in GMM. 

On having a clustered dataset, it is easy to calculate the mean and the variance of each 

distribution. On the other hand, if the dataset is unlabelled, it is only with the presence of 

the mean and variance of each distribution, there will be a possibility of assigning each 

data point to its respective distribution using the Gaussian density function in (4.3).  

where  𝜎𝜎 and 𝜇𝜇 are the standard deviation and the mean, respectively. But in a real-life 

scenario of trying to fit a GMM to the dataset, there is no prior knowledge of each 

distribution’s parameters nor is the dataset labelled.  

 𝑓𝑓(𝑥𝑥) =  
1

𝜎𝜎√2 𝜋𝜋  𝑒𝑒
1
2( 𝑥𝑥−𝜇𝜇𝜎𝜎 )2 

   (4.3) 
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Expectation Maximization (EM) [19] introduced by Dempster et al. in 1977, is an 

iterative algorithm to solve the problem of having no prior knowledge of neither the 

distribution parameters nor the data assignment in order to find the best distribution to fit 

the data. The algorithm operates iteratively through probability instead of the Euclidian 

distance used in simple clustering algorithms such as k-Means. EM starts with a randomly 

established distribution based on a random mean and variance for each distribution. Then 

for all the points in the dataset, it will calculate the probability of a point belonging to 

each of the randomly generated distributions using Equation (4.3) and each distribution 

will update its mean and variance accordingly based on the distribution of the newly 

assigned data points. The operation continues until convergence. 

GMM is one of the most widely used techniques in speech recognition [144, 145] and 

sound classification systems [67, 120, 146] and it has always been used in combination 

with the Hidden Markov Model to construct efficient speech recognizers.  

4.2.2 Hidden Markov Model 

Graph theory [147] has been around since it was introduced by Leonhard Euler in 1736. 

It is an approach of using nodes and edges to describe a mathematical relation. Graphical 

modelling, based on graph theory, describes the statistical relations between random 

variables using graphs.  

Two of the primary categories of graphs are Bayesian Networks [148] such as the one 

shown in Figure 4.4 that are characterized by having directed acyclic edges to describe 

the relation between the random variables (Bayesian Networks have been used in 

environmental sound segmentation in [81]) and Markov Networks (also known as 

Markov Random Fields). A Markov Network, as the one shown in Figure 4.5, is an 

 
Figure 4.4 Bayesian Network 

 
Figure 4.5 Markov Network 
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undirected cyclic type of graph with the Markov property, which states that a future state 

of a random variable depends only on a specified number of previous states. For example, 

in a 1st order Markov property, the next state of a random variable depends only on the 

current state, in a 2nd order case the next state of a random variable depends on the current 

and the previous state.  

 
Figure 4.6 Hidden Markov Model represented as a Bayesian network  

 (Adapted from [148]) 

A Markov chain is a Bayesian network that captures the interrelation between the 

states of a variable across time-based on the Markov property. The HMM [22] is a 

Markov chain that hides the state of the random variables and it is the observations related 

to the state of a random variable that are available, where these observations can be used 

to infer the state of a random variable. Figure 4.6 shows an HMM represented using a 

Bayesian network. S1,…, ST are the states of a random variable across time, Y1,…,YT 

represent the observations related to the random variables. The directed arrows show the 

dependencies among the states besides the observations and their corresponding states. 

The joint distribution of the states and observations is summed in (4.4). 

 
𝑃𝑃(𝑆𝑆1:𝑇𝑇,𝑌𝑌1:𝑇𝑇) = 𝑃𝑃(𝑆𝑆1)𝑃𝑃(𝑌𝑌1 | 𝑆𝑆1)�𝑃𝑃(𝑆𝑆𝑠𝑠 | 𝑆𝑆𝑠𝑠−1)𝑃𝑃(𝑌𝑌𝑠𝑠 | 𝑆𝑆𝑠𝑠)

𝑇𝑇

𝑠𝑠=2

 (4.4) 

The prior distribution of the random variable that represents the initial state S1 is P(S1), 

the term P(St |St-1) represents the transition probability between a state at time T and 

another at T+1. If the state space S is of size K, the combination of the probability of 

transitions between each state and the rest of the states is kept in a K×K size transition 

matrix A, and P(Yt | St) is the probability of an observation given a certain state. The 

HMM parameters are the transition matrix A and the emission probability related to the 

observations, which are induced from the training stage of the model. 

Tracking the sequence of observations of an HMM over time can provide an insight 

of the most probable sequence of states the model has gone through to generate that 
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observed sequence. Obviously, there could be several combinations of states capable of 

generating the same observations. The Viterbi algorithm is used in this regard, where it 

tries to maximize the probability of each transition within a sequence, and consequently 

it extracts the sequence that maximizes the probability of a certain path. 

HMMs have been widely used in speech recognition systems [28, 149]. The work by 

Gaunard et al. in [65] used the HMM for the classification of environmental sounds in the 

time domain. Similar work with HMM is considered in [72]. 

4.3 Summary 
The chapter explored examples of supervised and unsupervised classification models, 

aiming to provide an overview of recognition models that have been adopted for temporal 

signals such as sounds. These are models that exploit the temporal correlation between 

consecutive frames of a temporal signal. The chapter highlights conventional classifiers 

as well such as the Support Vector Machine, which is widely adopted as a classifier for 

handcrafted features or even features automatically extracted from neural networks. The 

chapter avoided referencing neural networks for pattern recognition, which will be 

handled in the next chapter. 
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5  
Deep Neural Networks for 
Abstraction 

EURAL networks have been used extensively in several areas of pattern 

recognition. A wide range of neural network variants have been introduced 

throughout the literature, especially recently after a long dominance of 

traditional multi-layer perceptrons. The interest in introducing these models emerged 

from the need to automate the feature extraction stage. Feature extraction is a laborious 

process that involves handcrafting the optimum combination of features to enhance the 

accuracy of the recognition model. A recent attempt [13] has shown the success of a deep 

neural network architecture to extract features from raw images automatically. The 

attempt attracted the attention of the research community to investigate various deep 

architectures in nearly every possible application of pattern recognition.  

In this chapter, we will dissect the structure of a neural network and walk through 

examples of the lately introduced neural network models.  Our exploration will start with 

Autoencoders as a simple advancement to traditional neural networks, then Restricted 

Boltzmann Machines and its variant the Conditional Restricted Boltzmann Machine, 

which this work extends. The chapter will also highlight Convolutional Neural Networks 

and Recurrent Neural Networks as two state-of-the-art techniques applied to image 
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recognition and temporal data. Finally, we will wrap up the chapter with a discussion of 

the referenced models and attempts to adapt them to the sound recognition problem. 

It is worth mentioning that a valuable percentage of the advances the research 

community has achieved, is owing to Graphical Processing Units or GPUs. GPUs were 

initially used in the 1970s for games and in arcade systems. With the evolution of the 

gaming industry, the need is never ending for the most vivid and high quality rendered 

graphics. GPUs fulfil this need providing an intensive computing platform. In parallel, 

advances were being made into the field of deep learning (the name seems synonymous 

to deep neural networks though this is not always the case with the emergent of other 

types of models that still adopt the deep architecture but are not neural networks [150]). 

Over time, the data was expanding considerably, models were becoming larger and more 

complex, demanding high-performance computing. A major breakthrough was of 

Krizhevsky et al. [13] in training a massive CNN model on millions of images, which 

induced further interest.  Since then, the expansion of the deep learning paradigm has 

been explored in a wide range of applications, and with GPUs becoming faster, they 

provided a platform to be adapted for machine intelligence with the immense amount of 

data and the complicated models with millions of free parameters to be tuned in training. 

5.1 Neural Network Building Blocks  
The Multi-Layer Perceptron (MLP), is the simplest form of a Feed Forward Neural 

Network [7]. We will use it in this section as a case study to discuss the different building 

blocks that make up a neural network.  

The MLP, shown in Figure 5.1, is formed of interconnected nodes, where each node 

fires a constrained response based on the collective values of the input at this node and 

the constraining function implemented at the neuron level. Each connection in the figure 

refers to a trainable gate known as the weight. The collection of weights control how 

much of the input should pass to the neuron.  These weights are tuned using an optimizer 

to minimize the error between the model’s prediction and the actual label of the training 

sample.  The constraining function is known as the transfer or activation function, which 

squashes the neuron’s output to a mathematically plausible range. The number of layers 

and the number of nodes in each layer are two of the tuneable hyperparameters that 

depend on the nature of the data.  
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Figure 5.1 Multi-Layer Perceptron architecture 

The training of the network proceeds by providing the neural network with a dataset 

of labelled data, where the network learns iteratively through backpropagating the errors. 

The error backpropagation involves updating the weights by comparing the output of the 

network given a labelled feature vector with the ground truth represented by the provided 

label. The network tries to lessen the error until convergence. At the neuron level, a 

transfer function receives a summation of the inputs and generate an output following 

(5.1). 

where 𝑤𝑤𝑖𝑖,𝑗𝑗 is the weight between the input i and the hidden node j, 𝑥𝑥𝑖𝑖 is the ith feature of 

the input feature vector of length n and 𝑏𝑏𝑗𝑗 is the bias at the hidden node. f(…) is the transfer 

function. 

5.1.1 Error Function 

The error (also cost or loss or objective) function is a measure of the level of deflection 

of the model from representing the data distribution. It is used in either a regression or a 

classification problem. In a classification problem, the difference between the predicted 

label and the target one is a measure of the performance of the model. The Mean Square 

Error (MSE), in (5.2), and the Cross-Entropy (CE), in (5.3), (where y is the target and a 

Input Layer

1st Hidden Layer

2nd Hidden Layer

Output Layer

 𝑦𝑦𝑗𝑗 = 𝑓𝑓(�𝑤𝑤𝑖𝑖,𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗

𝑛𝑛

𝑖𝑖=1

) (5.1) 
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is the prediction of the network) are two of the widely adopted error functions. There is 

no preference of one over another as it depends on the model being trained, but generally, 

CE has a better convergence due to the smooth derivative of it compared to the MSE. 

There are models where the predictions do not depend on a logistic output, e.g. using the 

output for regression in the absence of a softmax function. Accordingly the values of the 

output are real numbers and not a probability distribution. For example, in an autoencoder 

structure, the input feature vector can have real values that exceed one. Accordingly, 

using a CE will generate an undefined value. The MSE is the candidate error function for 

such models. 

5.1.2 Optimizer 

Training the neural network involves fitting the weights of the model to the general 

distribution of the data. The process is initiated by predicting a label for the input and 

comparing it with the target label using an error function. The difference between the true 

and predicted value of the label is the error to be propagated back [151, 152] down the 

network using the optimizer. The role of the optimizer is to tune each weight in the model 

with a delta step towards the global minima of the error function and hopefully not getting 

stuck in one of the local minima. The error is propagated using the chain rule similar to 

(5.4). 

where for a single-layered network, the partial derivative of the error 𝜕𝜕𝜕𝜕 with respect to 

the input 𝜕𝜕𝑥𝑥 is given by the partial derivative of the error with respect to the activation 

layer output 𝜕𝜕𝜕𝜕 multiplied by the partial derivative of the activation 𝜕𝜕𝜕𝜕 with respect to 

the activation function input 𝜕𝜕𝜕𝜕 and similarly for the partial derivatives of the weights 𝜕𝜕𝑤𝑤 

and to the input 𝜕𝜕𝑥𝑥. The 𝜕𝜕𝜕𝜕/𝜕𝜕𝜕𝜕 and the 𝜕𝜕𝜕𝜕/𝜕𝜕𝑤𝑤 are repeated as many times as the number 

of layers in the network. The calculated gradient along with the weights are fed to the 

optimization function to minimize the loss function by updating the network’s weights. 

 𝑀𝑀𝑆𝑆𝜕𝜕 =  
(𝑦𝑦 − 𝜕𝜕)2

2
 (5.2) 

 

 𝐶𝐶𝜕𝜕 =  −  
1
𝑛𝑛
�  [𝑦𝑦 ln𝜕𝜕 + (1 − 𝑦𝑦) ln (1 − 𝜕𝜕)]
𝑛𝑛

𝑖𝑖=1

 (5.3) 
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𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

  (5.4) 
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In 1847, Cauchy [153] devised the basis of what is now known as the Gradient Descent 

(GD). One of the noticeable revisits to Cauchy’s method was in 1988 through the work 

of  Barzilai and Borwein [154]. GD is used to minimize a function, in our case aiming to 

reach the global minimum of the error function. GD is an iterative method that moves in 

small steps towards the minimum value of the error function that consequently means the 

model has reached a possible optimum arrangement of weight values that maximizes the 

fitting of the model to the data points it is trained on. The Conjugate Gradient [155] 

method by Hestenes et al. in 1952 provided an accelerated convergence method compared 

to GD. Stochastic Gradient Descent (SGD) [156] is a variant of the GD tackling the slow 

operation of GD. GD moves one step towards minimizing a function after calculating the 

gradients across all the data points, which is not practical for large datasets. SGD, on the 

other hand, can apply a single update using a single data point, but practically, the 

parameters are updated using a random minibatch of data points.  Several other 

optimization variants have been introduced such as AdaGrad [157], AdaDelta [158] and 

ADAM [159].  

5.1.3 Transfer function 

 

Figure 5.2 Examples of transfer functions 

The S-shaped sigmoid and its cousin the tanh allow for a continuous gradient calculation, 

which is helpful in backpropagating the error values during optimization. Also, limiting 

the output to [0, 1] in the sigmoid case provides a probability value that acts as a 

confidence level of the activated neuron. The Tanh pretty much applies a similar non-

linearity to that of the sigmoid but transforms the input to a range between [-1, 1]. 

The non-linear logistic family functions (Sigmoid and Tanh) were dominant until 

recently when new units appeared such as the Rectifier Linear Units (Relu) [160] to tackle 

drawbacks in such a family. The problem relates to the slow convergence of the sigmoid 

Sigmoid

Tanh

ReLU a
P-ReLU

Leaky-ReLU ELU
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due to the vanishing gradient problem that causes very slow propagation of the error 

signal to the front layers near the beginning of the sequence of layers in the network. 

Several variants of the Relu appeared, e.g. Leaky Relu [161], Parametric Relu (PRelu) 

[162] and Exponential Linear Unit (ELU) [163] as depicted in Figure 5.2. 

The softmax function is a special transfer function that is used at the output layer of 

the neural network for classification purposes. The softmax scales the values of the vector 

generated from the last layer to add up to 1, which provides a probability distribution over 

the classes in the output vector.  

5.1.4 Regularization  

Overfitting is a problem that occurs when the neural network, and generally in machine 

learning algorithms, learns to memorize the training data and fails to generalize to the test 

data because the model is overtrained. This phenomenon could occur due to the presence 

of a model having far more trainable free parameters compared to the amount of training 

data available. It could also happen if the network is trained indefinitely.  

Regularization is a counter attempt to overcome the overfitting problem which simply 

involves suppressing the effect of some weights (by bringing them more towards 0), and 

consequently disabling the features associated with them, that are actually not helping in 

learning the general distribution of the data but rather distracting the overall 

generalization of the model. The L1 and L2 norms weight decay are two of the most 

common techniques that are added to the loss function to perform the regularization, 

formalized in (5.5) and (5.6), respectively.  

where w is for the network weights. Dropout [164] is another strong regularization 

technique. Averaging the prediction of multiple networks with different weight settings 

enhances the overall performance. Dropout involves averaging several “thinned-

networks” by disabling a fixed percentage of the activations (or input) that randomly 

 𝐿𝐿1 =
𝜆𝜆
𝑛𝑛
�|𝑤𝑤|
𝑛𝑛

𝑖𝑖=1

 (5.5) 

 𝐿𝐿2 =
𝜆𝜆

2𝑛𝑛
�𝑤𝑤𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 (5.6) 
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changes from one epoch to another during training stage and enabling all the nodes during 

the test stage. 

Batch Normalization [165], introduced recently tackles the slow training of the 

weights, especially when a nonlinear transfer function saturates. They also behave as a 

regularization technique. The method allows the normalization of the input to be applied 

within the layers of the model, where the normalization occurs per minibatch.  

5.2 Neural Network Models 
In this section, we will refer to some of the most widely used neural network models that 

are relevant to this work with an emphasis on the Restricted Boltzmann Machine (RBM) 

and the Conditional Restricted Boltzmann machine (CRBM), which the work in this 

thesis is based on. We will start the discussion with Autoencoders as a simple extension 

to MLP; then we will extend the discussion to more advanced models such as the RBM 

and the CRBM, and later we will highlight the CNN with the notion of weight sharing; 

finally, we will discuss the RNN designed for temporal signals. Most of these models 

were initially used for image recognition problems and later adapted to sound except, for 

example, RNNs that were initially introduced for sequence modelling but still not for 

sound.  

5.2.1 Autoencoders 

The Autoencoder architecture, initially studied in 1986 by Rumelhart, Hinton and 

Williams in [166], was an attempt to use a neural network in an unsupervised way to 

represent data, i.e. encode data. It is based on a neural network with one or more hidden 

layers in addition to the usual input and output layer trained using backpropagation. It 

only differs in two primary points: first, the size of the output layer must be equal to the 

size of the input layer. Second, the error function is not calculated against the ground truth 

anymore, like in a normal MLP, instead it is calculated against the input.  
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Figure 5.3 Autoencoder architecture 

Figure 5.3 shows the architecture of an autoencoder, where it learns by adjusting its 

weight aiming to match the output of the network to the input vector at the input layer. 

When the hidden layer has fewer nodes, the network provides a compressed 

representation of the dataset. The hidden layer can then be used in accordance with a 

softmax layer to work as a classifier. A variant of autoencoders, used for feature 

extraction, was investigated through the denoising autoencoder [167]. The work in [168] 

used autoencoders for sound separation. 

5.2.2 Restricted Boltzmann Machines 

Ludwig Boltzmann (1844–1906) [169] studied mechanical systems defining their state 

through statistical mechanics. A field which merges probability theory with theoretical 

physics aiming to provide mathematical definitions to systems behaviour. Temperature 

and pressure are examples of macrostates that define a system on the other hand 

microstates go down to the particles’ state defined by quantities such as the kinetic energy 

and velocity. The Boltzmann distribution defines the probability that a system is in a 

certain microstate in relation to the system’s energy 𝜀𝜀𝑖𝑖 and temperature T following (5.7). 

Input Encoder OutputDecoderCode

 𝑝𝑝𝑖𝑖 =
𝑒𝑒−𝜀𝜀𝑖𝑖/𝑘𝑘𝐵𝐵𝑇𝑇

𝑍𝑍
  (5.7) 
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where  𝑘𝑘𝐵𝐵 is Boltzmann constant and Z is a normalization constant summed over the 

system’s possible states, Z = ∑ 𝑒𝑒−𝜀𝜀𝑗𝑗/𝑘𝑘𝐵𝐵𝑇𝑇𝑗𝑗 . 

In 1983, Scott Fahlman, Geoffrey Hinton and Terrence Sejnowski introduced the 

Boltzmann Machine [170] architecture (BM) based on the Boltzmann Distribution. BM 

is a neural network composed of a visible and a hidden layer of neurons, where each 

neuron is connected to all the other neurons in the machine including neurons in the same 

layer as shown in Figure 5.4. Later in 1986, Smolensky [171] introduced the Restricted 

Boltzmann Machine (RBM), a variant of the BM. The RBM [172, 173] restricted the 

connections of a BM to the connections across layers as shown in Figure 5.5. In the early 

2000s, Contrastive Divergence (CD) [174] was introduced as a simple method to train an 

RBM, which led to a breakthrough in using the RBM by Hinton et al. in 2006 [50] for 

dimensionality reduction. They used a stack of RBMs to form a “deep” architectural 

structure of a Deep Belief Net (DBN). The attempt is not considered a breakthrough 

confined only in using the neural network for dimensionality reduction, but mainly for 

reviving the deep notion of neural networks that has been around for years before 2006. 

This encouraged later models to use the deep architecture of neural networks beyond the 

single layer of neurons that was popular in recognition models earlier to the DBN. The 

DBN exploits the capacity of the features abstraction using the RBM as a building block, 

where each layer in a deep architecture extracts a higher level abstract representation of 

the data from the layer below it. In an unsupervised training scheme, each RBM is trained 

generatively and separately on the input data introduced to it. For example, training two 

RBMs stacked on top of each other involves training the first layer until convergence then 

the training of the first layer is seized and all the data samples generated from its hidden 

 

 

Figure 5.4 Boltzmann Machine Figure 5.5 Restricted Boltzmann Machine 
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layer are used to train the second layer as if they are a new raw representation of the 

original input data for the second layer.  

Using Contrastive Divergence [174], the training process in a single RBM involves 

two phases: a positive and negative cycle. In the positive cycle, the input feature vector 

is introduced to the visible layer, and the corresponding hidden layer activations are 

sampled, and in the negative cycle, an attempt in the opposite direction is to reconstruct 

a feature vector at the visible layer based on the sampled hidden layer activations and the 

weights between the hidden and the visible layer. The training process referred to with 

Gibbs sampling continues back and forth between the visible and the hidden layer many 

times for a single training sample, but typically a single iteration is used per sample, 

aiming to minimize the energy entrapped between the two layers defined in (5.8). 

where the 𝑣𝑣𝑖𝑖 and ℎ𝑗𝑗 are the states of the visible and the hidden layers respectively, 𝜕𝜕𝑖𝑖 and 

b𝑖𝑖 are their biases and 𝑊𝑊𝑖𝑖𝑗𝑗 is the weight between them. The joint probability of observing 

a certain configuration between the hidden and visible layers is formulated in (5.9) 

where Z, a normalization constant, is defined as the partition function, which involves the 

summation of the energy of all the possible configurations of both 𝑣𝑣� and ℎ�. This operation 

is difficult to determine, but it could be estimated. Since the connections are restricted in 

an RBM, the distributions in either the hidden and the visible layer can be deduced, while 

clamping the visible layer to a training sample. Accordingly, the probability of observing 

an on neuron of the hidden layer can be given in (5.10). 

where 𝜎𝜎 denotes a sigmoid transfer function, 𝑏𝑏𝑗𝑗 is the bias at the hidden neuron, 𝑣𝑣𝑖𝑖 is the 

ith visible input of a vector of length n and 𝑊𝑊𝑖𝑖,𝑗𝑗 is the weight between the hidden and the 

visible node. Conversely, observing an on visible neuron is given in (5.11). 

 𝜕𝜕�𝑣𝑣� ,ℎ�� =  −�𝑊𝑊𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖ℎ𝑗𝑗
𝑖𝑖,𝑗𝑗

−�𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖
𝑖𝑖

−�𝑏𝑏𝑗𝑗ℎ𝑗𝑗
𝑗𝑗

 (5.8) 

 𝑝𝑝�𝑣𝑣� ,ℎ�� =  
𝑒𝑒−𝐸𝐸�𝑣𝑣�  ,ℎ��

𝑍𝑍
 (5.9) 

 𝑝𝑝�  ℎ𝑗𝑗 = 1| 𝑣𝑣�  � =  𝜎𝜎 �𝑏𝑏𝑗𝑗 +  �𝑊𝑊𝑖𝑖,𝑗𝑗𝑣𝑣𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (5.10) 
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where 𝜕𝜕𝑖𝑖 is the bias at the visible neuron, ℎ𝑗𝑗 is the jth hidden activation of a hidden layer 

of length m and 𝑊𝑊𝑖𝑖,𝑗𝑗 is the weight between the hidden and the visible node. The gradient 

of the weights using Contrastive Divergence is given in (5.12).   

where 〈𝑣𝑣𝑖𝑖ℎ𝑗𝑗〉 is for the probability that both the visible and the hidden states are active 

(assigned a binary 1) together for either the input data or the reconstructed version from 

the negative cycle at the visible nodes.  

The weights can be further finetuned with the unsupervised training of an Autoencoder 

[50] structure. The RBM was initially introduced with Bernoulli (binary) visible and 

hidden layers, and further modification adopted the use of real-valued Gaussian visible 

nodes with Bernoulli hidden layers, which allows an RBM to be trained on real-valued 

values outside the [0, 1] range. Weights pre-training was found to be one of the useful 

applications of the RBMs, where using an RBM for initializing the weights in an 

unsupervised manner provided better performance compared to randomly initialized 

weights. Later methods of smart weight initialization [162], [175] eliminated the need for 

pre-training the network. Three layers of an RBM were used in the work of Hamel et al. 

[51] for automating the feature extraction process in music clips for a music genre 

classification problem. Their work showed the accuracy achieved using the features 

extracted at each layer of the stacked RBM layers, where the extracted features were 

classified using an SVM.  

5.2.3 Conditional Restricted Boltzmann Machines 

The Restricted Boltzmann Machine, discussed earlier, lacks the ability to model the 

sequential correlation between the samples of a temporal signal. Temporal signals possess 

a relational property across the successional samples, which if considered can enhance 

the capability of a model.  

Taylor et al. extended the RBM through the Conditional Restricted Boltzmann 

Machine (CRBM) [176] to the temporal dimension. The CRBM is similar to an RBM; a 

 𝑝𝑝�  𝑣𝑣𝑖𝑖 = 1| ℎ�  � =  𝜎𝜎 �𝜕𝜕𝑖𝑖 +  �𝑊𝑊𝑖𝑖,𝑗𝑗ℎ𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� (5.11) 

 ∆𝑊𝑊𝑖𝑖𝑗𝑗 =   〈𝑣𝑣𝑖𝑖ℎ𝑗𝑗〉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −  〈𝑣𝑣𝑖𝑖ℎ𝑗𝑗〉𝑛𝑛𝑟𝑟𝑟𝑟𝑛𝑛𝑛𝑛 (5.12) 
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generative model trained using Contrastive Divergence [174]. They used the CRBM in 

modelling the human motion by tracking the movement across the joints. They also 

introduced variants of the CRBM like the Factored CRBM [177] for the same task. RBMs 

can track the observations of one frame of motion but do not have the ability to capture 

the correlation between successive frames. The CRBM incorporates an additional type of 

directed links (forming the Conditional relation) from the past samples to both the 

activations of an RBM at the hidden layer and the vector being reconstructed at the visible 

layer. 

 

Figure 5.6 Conditional Restricted Boltzmann Machine 

Figure 5.6 shows the architecture of a CRBM. The RBM’s bidirectional links are 

depicted by the matrix 𝑊𝑊�  in the figure and the conditional links from the previous time 

steps are depicted by the 𝐵𝐵�  and �̂�𝐴 tensors. The 3-dimensional tensor 𝐵𝐵�  preserves the 

influence of the past n frames on the hidden layer and the 3-dimensional tensor �̂�𝐴 holds 

the autoregressive relation between the past n frames and the current frame at the visible 

layer. The model is trained through a forward and backward pass. In the forward pass, the 

probability of observing a certain activation by the hidden nodes conditioned on the 

visible frames is given in (5.13). 

where 𝜎𝜎 is the sigmoid transfer function, 𝑏𝑏𝑗𝑗 is the bias at the jth node, 𝑊𝑊𝑖𝑖,𝑗𝑗  is the weight 

between the ith input and the jth hidden node, and 𝑣𝑣𝑖𝑖,𝑠𝑠 is the ith visible element at the current 

n past frames

Time

ℎ�

𝑊𝑊�𝐵𝐵�−𝑛𝑛 𝐵𝐵�−2 𝐵𝐵�−1

�̂�𝐴−𝑛𝑛 �̂�𝐴−2 �̂�𝐴−1

𝑣𝑣�−𝑛𝑛 𝑣𝑣�−2 𝑣𝑣�−1 𝑣𝑣�0

Current frame

 

𝑝𝑝�  ℎ𝑗𝑗,𝑠𝑠 = 1| 𝑣𝑣�𝑠𝑠 , 𝑣𝑣�𝑠𝑠−1, 𝑣𝑣�𝑠𝑠−2, … , 𝑣𝑣�𝑠𝑠−𝑢𝑢  �
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temporal instance t. The three terms match the RBM equation in (5.10). The conditional 

relation from the previous visible nodes is considered in the double summation of the 

remaining terms 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑘𝑘 and 𝑣𝑣𝑖𝑖,𝑘𝑘 , where the tensor B has u matrices corresponding to the u 

previous visible vectors v. On the other hand, the probability of observing the 

reconstructed pattern generated from the visible nodes given the hidden one and the auto-

regressive links through the backward pass is given by (5.14). 

where the activation of the visible neuron  𝑝𝑝(𝑣𝑣𝑖𝑖,𝑠𝑠 = 1) is conditioned on the previous n 

visible states 𝑣𝑣𝑠𝑠−1…𝑣𝑣𝑠𝑠−𝑢𝑢 and the current hidden ℎ�𝑠𝑠. The bias at the visible neurons is 𝜕𝜕𝑖𝑖, 

𝑊𝑊𝑖𝑖,𝑗𝑗 is the weight between the hidden neuron j and the ith visible vector and ℎ𝑗𝑗,𝑠𝑠 is the jth 

hidden neuron. The terms a, W and h overlap with the RBM original equation in (5.11). 

The A and v terms refer to the autoregressive relation between the previous visible states 

and the current visible one. 

The Interpolating CRBM (ICRBM) [178], a CRBM extension, was used for phoneme 

classification in speech recognition. The ICRBM outperformed the CRBM as it considers 

the influence of the future frames in addition to past ones. The CRBM was also used for 

drum sound analysis in [179].  

5.2.4 Convolutional Neural Networks 

Th multi-layer perceptron has a manageable computational complexity for feature vectors 

of practical sizes, but for images, the number of free parameters that require training 

explodes in terms of count. For example, an image of a size equal to a page of this thesis 

(A4 page size) at printing resolution (300 dpi) has dimensions 2480 × 3508 pixels. Let us 

assume that we will only take a quarter of this image discarding the rest of it, which leaves 

us with an image of size 1240 × 1754 pixels. To feed this image to an MLP of a single 

hidden layer of 100 nodes, for example, we have to flatten it to a feature vector that will 

possess a size of 1240 × 1754 = 2,174,960 features. Accordingly, the number of free 

parameters in a single layer is 2,174,960 × 100 = 217,496,000. Having 217 million 

parameters in a single layer of a neural network does not seem practical and apparently 
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will not scale efficiently with images of larger sizes or models having more layers. 

Additionally, images by nature have no restrictions on the spatial position of entities 

appearing in them, i.e. similar objects (or features) could reside at different locations 

across two different images. Accordingly, fixing the weight location is not efficient.  

The Convolutional Neural Network (CNN) introduced in the work of LeCun et al. [54] 

in 1998, was an attempt to adapt the MLP to the nature of images. The CNN exploits the 

weight sharing paradigm, where weights are not tightly coupled with the spatial location 

of the features detected, but rather the same weights can be shared across all the neurons 

of a hidden layer, which decreases the number of neurons compared to a normal MLP. In 

this scheme, the weights behave as filters or edge detectors irrespective of the location of 

the features within the image, making the CNN less susceptible to orientation, variations 

and noise within an image.  

In a CNN, a set of weight matrices also known as filters or kernels convolve the input 

image as in Figure 5.7. The input image may be composed of more than one channel (e.g. 

3 channels for red, green and blue channels of an image). A single filter has dimensions: 

[length, width, depth], where the depth matches the number of channels. The convolution 

operation involves a weighted sum between the region of the image being scanned by the 

filter multiplied by the weights in the corresponding locations within the filter as shown 

in Figure 5.7. 

  

Figure 5.7 The convolution operation 
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Each filter generates a new representation known as feature map (a term borrowed 

from the image processing field) Accordingly, the number of generated feature maps 

matches the number of filters scanning the image. It is worth mentioning that the 

dimension of the generated feature map is smaller than the original input, i.e. feature map 

dimension [input length – filter length +1, input width – filter width +1, 1]. The output 

from each convolution step further goes through a linear or a non-linear activation 

function. The value at each location of the feature map is summarized in (5.15). 

where the neuron activation of the convolution output 𝐶𝐶𝑖𝑖,𝑗𝑗 at position i,j is given by the 

transfer function 𝜎𝜎 applied over the double sum of the element-wise multiplication of 

each element w in the shared filter of size m×n and its corresponding element x in the 

input image. b is a shared bias across all the neurons of the hidden layer. A shared filter 

and the accompanying bias detect a specific feature e.g. horizontal or vertical edge. 

Sharing the same filter across all the neurons used in generating a single feature map 

allows the network to be translation invariant i.e. a detected prediction is not tightly 

coupled to the spatial location of the feature within the input since the same feature can 

be located elsewhere in the image. The interleaved operations of convolution and pooling 

are depicted in Figure 5.8.  

 

Figure 5.8  Convolutional Neural Networks 

The pooling layer follows the convolutional one to generate a lower resolution feature 

map using a sliding window of a specified size to apply a mean or max pooling operation 
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across the pixels in the window. For example, a window of 2×2 will subsample the a 

feature map to half its original dimensions in both the height and width. 

CNNs are used extensively for processing images [13, 14], and several attempts 

exploited the convolutional operation in an effort to adapt the weight sharing property to 

other models. For example, Convolutional Autoencoders in [180] was an attempt to 

merge the autoencoder structure with a CNN. Convolutional Restricted Boltzmann 

Machine (ConvRBM) by Lee et al. [181] was another attempt to include the convolutional 

behaviour with the unsupervised training of the RBM. The ConvRBM adapted 

terminologies of the CNN to the RBM to allow scaling the RBM unsupervised training 

to images by sharing the weights and by implementing a probabilistic pooling layer. The 

ConvRBM is formed of a binary visible layer and groups of hidden binary units, where 

each group of the hidden binary units is linked with a shared weight filter across the nodes 

of the group in addition to a shared bias for each group. A probabilistic max-pooling layer 

is introduced in their work that follows the convolution layer. Lee et al. also extended 

applying the Convolutional RBM to the sound problem in [52]. A range of CNN variants 

has been applied to the sound problem will be discussed throughout the experiments. 

 

5.2.5 Recurrent Neural Networks 

 

Figure 5.9 Recurrent Neural Networks  
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Recurrent neural networks preserve the sequence relation by involving the effect of the 

neuron’s previous activation state in current activation through the use of a directed cycle 

between the output of the hidden layer and its input. 

Figure 5.9 shows an unfolded recurrent neural network, for visualization purposes, 

where the input vector 𝑥𝑥�𝑠𝑠 of the RNN at time t is considered together with the previous 

state activations ℎ�𝑠𝑠. The network is trained on a sequence of n vectors, which specifies 

the number of iterations the network will run, following the steps below: 

where the 𝑊𝑊�ℎ𝑥𝑥 is the weight matrix between the input and the hidden layer, 𝑊𝑊�ℎℎ is the 

weight matrix between the previous hidden state vector and the hidden layer, and 𝑊𝑊�𝑦𝑦ℎis 

the weight between the hidden layer and the output. 𝑥𝑥�𝑠𝑠 is the input vector at index t of the 

input sequence of vectors, ℎ� is the hidden state vector and 𝑦𝑦�𝑠𝑠 is the corresponding output. 

g and f are the transfer functions used to add the non-linear transformation to the generated 

vectors, where g is usually a tanh function and f is a softmax. It can be inferred from the 

above equation that the folded form of an RNN in Figure 5.9 is a normal MLP with a 

feedback loop from the hidden layer’s output back to its input. 

An RNN is trained using Back Propagation Through Time (BPTT) [8, 182], which 

behaves similar to normal Back Propagation [151] using the chain rule, but for RNN it is 

back-propagating the error from each generated sequence to the sequence before it. 

Theoretically, a RNN can process long sequences, e.g. 1000-long sequence, which 

resemble a very deep network architecture having a number of layers matching the 

sequence count that are recurrently fed through the network. This introduces the vanishing 

and exploding gradient problem that was studied by Hochreiter in [183]. Both problems 

occur due to the multiplication of several large value gradients (exploding) or small ones 

(vanishing). In the vanishing gradient problem, small gradient values of the weights are 

multiplied recurrently using the chain rule. The multiplication between such small values 

results in even smaller gradients, which makes the network less sensitive to inputs that 

are further down the sequence as it diminishes the error signal propagated and 

 for t =1 until n   
 

 ℎ�𝑠𝑠 ∶  𝑔𝑔(𝑊𝑊�ℎ𝑥𝑥 . 𝑥𝑥�𝑠𝑠 + 𝑊𝑊�ℎℎ .ℎ�𝑠𝑠−1 + 𝑏𝑏�ℎ) (5.16) 
 

 𝑦𝑦�𝑠𝑠 ∶  𝑓𝑓(𝑊𝑊�𝑦𝑦ℎ. ℎ�𝑠𝑠 + 𝑏𝑏�𝑦𝑦) (5.17) 
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consequently prevents the RNN from learning long-term dependencies in addition to 

slowing down the learning speed. The vanishing gradient problem has also been noticed 

in other deep multilayer neural network models, e.g. CNN, when they use the sigmoid as 

discussed earlier in the transfer function section. 

Long Short-Term Memory (LSTM) was introduced in 1997 by Hochreiter and 

Schmidhuber [9] to address the RNN problems, especially the exploding and vanishing 

gradient, using memory to preserve the hidden state of a RNN. The LSTM memory 

module replaces the conventional hidden layer of neurons used in the RNN, behaving as 

a computer memory with read, write and reset controllers or “gates”. Graves et al. [11] 

used a deep LSTM RNN architecture for phoneme recognition in speech. An attempt to 

use the LSTM to exploit the long-term dependencies across the frames in combination 

with the features extracted by a CNN was investigated by the Convolutional RNN 

(CRNN) in the work of Choi et al. [184] for music classification. Other LSTM variants 

appeared such as the Gated RNN [185], and different LSTM architectures were proposed 

in the Bidirectional LSTM [186] and the Multidimensional LSTM  [12]. 

5.3 Sound Recognition with Neural Networks 
The neural network models explained earlier, broadly categorized into convolutional, 

recurrent and multilayer perceptron neural networks, are some of the widely used models 

that have been adapted to a range of applications including sound.  For example, after the 

DBN success in digit recognition in 2006 through [50], it was considered as a feature 

extraction method for music by Hamel et al. [51] in 2010. In their work, they explored 

the use of a DBN in extracting features from spectrograms, aiming to avoid the need to 

hand-craft the required features for classification. They trained three RBM layers on 

music spectrograms, where the extracted features were further classified using an SVM. 

The frame level classification accuracy was 77.0% using their three RBM layers applied 

on 513 frequency bins generated from a DFT of music files. The performance of their 

extracted features surpassed that of the MFCC, which achieved an accuracy of 63%.   Lee 

et al. [187] applied a similar attempt for environmental sounds. They compared a PCA-

whitened logarithmically mel-scaled 128 bins spectrogram processed with an RBM to 

extract features that are classified using an SVM, to a 13 bin MFCC classified using a 

GMM. They achieved an accuracy 72% compared to the MFCC counterpart achieving 

65.5% using the Bag-of-Frames (BoF) modelling. The BoF method was adopted from 
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text retrieval, where a text document is modelled using a Bag-of-Word vector 

representing the words in a text document and their corresponding frequency of 

occurrence irrespective of the syntax structure. A similar analogy was adapted to sound 

[44, 51] representation, where the long-term statistical distribution of a signal is 

represented by the distribution of its short-term features represented in the frames of the 

STFT, which are usually modelled using a GMM. This incur treating each frame as an 

isolated entity while ignoring the neighboring frames correlation, which embodies the 

context of a frame in the temporal progression of a signal.  

The multilayer perceptron and their advanced cousins of DBNs and similarly the BoF 

methods ignore the neighboring frames temporal correlation, which if considered would 

enhance the performance of the recognition. This encouraged other models that can 

preserve the temporal correlation to be adopted for the problem. Weight sharing is one of 

the principal advantages of using CNN and convolutional based architectures, as it 

eliminates the need to have a corresponding connection between each pixel in the input 

image and the hidden layer nodes. This is motivated by the inherent property of images 

that a feature detected in a certain region in the image has a high probability of being 

detected elsewhere. This allows the network to be translation-invariant to the different 

variations and orientation of an object in an image. A CNN seems like a prominent 

candidate model with its convolutional operation. The process is efficient and effective 

for images, but not for spectrogram representations. Contrary to images, the two 

dimensions of a spectrogram have completely different meanings. Moreover, the 

amplitude of a frequency bin at a certain temporal instance is composed of the sum of 

energies generated from overlapping sound events. And whereas objects in images tend 

to be spatially contiguous, the energies of frequencies of a sound event in a spectrogram 

are distributed about the spectrum. The fundamental frequency, harmonics and overtone 

frequencies of a sound event will reside at different spatial locations across the frequency 

bins of a spectrogram, yet all of them contribute to the energy of the same source. These 

considerations pose the possibility that CNNs are not the optimum solution for 

spectrogram recognition, which induced several attempts to tailor them to the problem.  

In 2014, the work by Abdel-Hamid et al. [86] used a CNN for speech recognition. They 

proposed what they refer to in their work as a CNN with “limited weight sharing”, which 

involves using different sets of filters for different bands. Pons et al. [56] proposed 

different CNN architectures tackling music-related properties using different set of 



 
Deep Neural Networks for Abstraction 

 

65 
 

single-dimension filters to scan the temporal and the frequency axis of a spectrogram 

separately, where they achieved an outperformance using these pretrained sets of weights 

combined into the same model compared to using square-shaped filters. Kereliuk et al. 

explored a comparable attempt in [15].  Another tailored deep architecture that considered 

a set of filters dedicated to music and another set for speech within the same model with 

a merging stage for the features extracted from both types of filters was in the work by 

Barros et al. [18]. Wyse [188] investigated using a CNN channel for each frequency bin 

in a spectrogram. It is evident from these attempts [18, 56, 86, 189]  that weight sharing 

across the frequency and time axes, is not optimum for preserving the location (the 

specific coordinates of a feature in the two dimensional representation) of the energy of 

the frequency bins. Especially if the filters are learning about features in any location in 

the image (spectrogram in the case of sound) rather than features in a specific location. 

The position of a frequency bin is crucial for time-frequency representations since the 

location of the learned features across the frequency bins complemented by the modality 

of the energy through time act as distinctive properties between sounds.  

Recurrent Neural Networks are plausible for temporal signals due to the nature of their 

design. Long Short-Term Memory solved the inability of the standard RNN to extend for 

long sequences due to the vanishing gradient problem. Graves et al. [11], in 2013, used a 

deep LSTM RNN architecture for phoneme recognition in speech. An attempt to use the 

LSTM to exploit the long-term dependencies across the frames in combination with the 

features extracted by a CNN was investigated the Convolutional RNN (CRNN) in the 

work of Choi et al. [184] for music classification. Despite the LSTM success in 

handwritten text recognition and speech, the model and its variants such as Gated 

Recurrent Neural Networks use memory modules, which complicate the model and 

consequently the training. 

Most of the referenced attempts, in this chapter, are state-of-the-art methods that have 

achieved wide success in a range of applications. They were adopted to the sound problem 

after they had gained such success. However, it is clear from the above discussion that 

these methods may not be optimized to harness the time-frequency representation of a 

sound signal. 
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5.4 Summary 
Handcrafting an optimized set of features from a raw signal is a time-consuming process. 

Neural Networks are currently being considered as a method to automate the feature 

extraction stage. Through this chapter, we explored the internals of neural networks and 

referenced examples of popular neural network architectures used for temporal signals 

that are relevant to this work. The next chapter will explain the main contribution of this 

thesis, and it will discuss the relevant connection between some of the models in this 

chapter and their limitations when it comes to recognizing sound.    
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6  
Masked Conditional 
Neural Networks 

HE temporal correlation among the consecutive frames of a temporal signal is 

influential for sound recognition, and several models have been proposed to 

exploit this nature [190]. In addition to the temporal relation between frames, the energy 

of a frequency bin at a specific spatial location within a spectrogram is distinctive to the 

sound category. Accordingly, the frequency and temporal locality of the features detected 

is crucial and can significantly affect the performance of a model.   

Most of the neural network models used for the sound problem are adapted after they 

gain wide acceptance in other domains especially image recognition. This is evident 

through some of the widely used neural network architectures, discussed in the previous 

chapter, attempting to fit these models to the nature of the sound signal, which may not 

optimally harness time-frequency representations.  

In this chapter, we introduce the Conditional Neural Network (CLNN) that is designed 

for the nature of the temporal signal. Most importantly, the Conditional Neural Network 

preserves the frequency and temporal locality of the learned features and act as the main 

skeleton for the Masked Conditional Neural Networks (MCLNN). The Masked 

Conditional Neural Network exploits properties of the filterbank used in spectral 

transformation by enforcing a systematic sparseness that follows a band-like pattern over 

T 
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the network’s connections. The models we introduce in this thesis are designed for 

multichannel (a channel represent a single feature across time) temporal signal 

representations. The models consider the temporal succession of frames and the positions 

of frequency bins within spectrograms. Meanwhile preserving the generalization to be 

adapted for any multichannel temporal signal.   

 For notation purposes: 

• Uppercase symbols with the hat operator are used for matrices, e.g. ( 𝑊𝑊�  ) 

and with a subscript refers to a matrix in a 3D tensor at an index, e.g. ( 𝑊𝑊�𝑢𝑢 ).  

• Lowercase symbols with the hat operator are used for vectors, e.g. ( 𝑥𝑥� ).  

• The absence of the hat operator refers to a single element within the matrix or a 

vector i.e. 𝑊𝑊𝑖𝑖,𝑗𝑗  is the element of a matrix at location [i, j] and 𝑥𝑥𝑖𝑖 is the ith element 

of the vector 𝑥𝑥�.   

• The dot operator ( · ) is used for vector-matrix multiplication.  

• Element-wise multiplication between two vectors or two matrices of the same 

dimensions uses ( ∘ ).  

• The absence of any operators or the use of a multiplication symbol ( × ) refers to 

normal element multiplication, i.e. ( 𝑥𝑥𝑖𝑖 𝑊𝑊𝑖𝑖,𝑗𝑗) or ( l × e ). 

6.1 Conditional Neural Networks 
A sound signal possesses a temporal correlation between its consecutive frames. 

Accordingly, extending the network structure to embed a windowing behaviour enhances 

the model’s decision, where a window of frames rather than a single feature vector, as in 

bag-of-frames classification, is projected in the prediction of the network. The 

Conditional Neural Networks (CLNN), we introduce in this work, similar to other 

temporal models, observes a window of frames. The CLNN implements this behaviour 

by including conditional links that span a window. The CLNN is a discriminative model 

that extends from the generative Conditional Restricted Boltzmann Machine, discussed 

in the previous chapter. The main overlap is the adaption of the conditional links from the 

previous temporal inputs to the hidden layer. The conditional links have been extended 

in the Interpolating Conditional Restricted Boltzmann Machine [178] to the future frames 

in addition to the past ones, which we adopt as well for the CLNN.  
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Figure 6.1 ConditionaL Neural Network layer  

Figure 6.1 depicts the connections of a single neuron of a CLNN layer. The figure 

shows a number of feature vectors (𝑥𝑥�−𝑛𝑛, … , 𝑥𝑥−2, 𝑥𝑥−1, 𝑥𝑥0, 𝑥𝑥�1, 𝑥𝑥�2, … , 𝑥𝑥�𝑛𝑛) representing the 

window of frames for the CLNN to process. Each feature vector is fully-connected with 

the hidden layer through a dedicated weight matrix 𝑊𝑊�𝑢𝑢, where u is the index of the matrix 

in the weight tensor having d weight matrices of indices in the interval [-n, n]. The input 

to a hidden layer is a set of vectors each of l features of count d following (6.1). 

where the window of d frames has a width that depends on the order n in addition to the 

window’s middle frame. The order specifies the number of frames in a single temporal 

direction. Twice the order is used to account for both future, and past frames. 

Accordingly, the predicted activations, at the single-dimensional hidden layer of e 

neurons, are conditioned on the window’s central frame in addition to the n frames on 

either of its sides.  

The output of a CLNN step has 2n fewer frames than its input, where the window’s 

central frame is summed with the 2n off-centre frames. In order to account for the 

consumed frames in a deep CLNN architecture, segments of the spectrogram are extracted 

each of size [l, q], where l is the feature vector length (number of frequency bins), and q 

follows (6.2). 

𝑥𝑥�-n

 ℎ�

𝑊𝑊�−1 𝑊𝑊�2 𝑊𝑊�𝑛𝑛𝑊𝑊�1𝑊𝑊�0𝑊𝑊�−2𝑊𝑊�−𝑛𝑛

𝑥𝑥�-2 𝑥𝑥�-1 𝑥𝑥�0 𝑥𝑥�1 𝑥𝑥�2 𝑥𝑥�n

time

n past frames middle frame n future frames

 𝑑𝑑 = 2𝑛𝑛 + 1   ,𝑛𝑛 ≥ 1 (6.1) 
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where the width of the segment q is dependent on the order n (2 for the past and future 

frames), the number of layers m and the extra frames k. These extra frames, remaining 

beyond the CLNN layers, can be either flattened to a single feature vector or pooled across 

using mean or max pooling as discussed in [191] for images, but for time-frequency 

representations, it will be a single dimension temporal pooling through the features. The 

relative sizes between the CLNN processing window d, the segment q and the actual 

spectrogram is depicted in Figure 6.2.  

 

Figure 6.2 The relative size of the window d compared to the segment q and the 

spectrogram. 

The output of a single neuron of the hidden layer is formulated in (6.3).  

where 𝑦𝑦𝑗𝑗,𝑠𝑠 is the output of neuron j of the hidden layer. The index t is for the position of 

the frame within the segment, which is also the middle frame of the window. The 

activation function at the neuron is f and the bias is 𝑏𝑏𝑗𝑗. The term 𝑥𝑥𝑖𝑖,𝑢𝑢+𝑠𝑠 is for feature i of 

the vector 𝑥𝑥�𝑢𝑢+𝑠𝑠, where each element in the vector of length l is multiplied by its 

corresponding weight element 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑢𝑢, where the indices i and j refer to the connection 

between the ith feature in the feature vector and jth hidden node. The index u in both 𝑥𝑥𝑖𝑖,𝑢𝑢+𝑠𝑠 

and 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑢𝑢 refers to the index within a window of width d.  

Features
(Frequency Bins)

Segment

Window

 𝑞𝑞 = (2𝑛𝑛)𝑚𝑚 + 𝑘𝑘    ,𝑛𝑛,𝑚𝑚 𝜕𝜕𝑛𝑛𝑑𝑑 𝑘𝑘 ≥ 1 (6.2) 

 𝑦𝑦𝑗𝑗,𝑠𝑠 = 𝑓𝑓 �𝑏𝑏𝑗𝑗 + � �𝑥𝑥𝑖𝑖,𝑢𝑢+𝑠𝑠 𝑊𝑊𝑖𝑖,𝑗𝑗,𝑢𝑢

𝑙𝑙

𝑖𝑖=1

𝑛𝑛

𝑢𝑢=−𝑛𝑛

� (6.3) 
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The output at the hidden layer formulated in a vector form is given in (6.4). 

where 𝑦𝑦�𝑠𝑠 is the activation vector observed at the output of a CLNN conditioned on the 

window’s middle frame 𝑥𝑥�𝑠𝑠, and the [𝑥𝑥�−𝑛𝑛+𝑠𝑠 , … 𝑥𝑥�−1+𝑠𝑠] and [𝑥𝑥�1+𝑠𝑠 , … 𝑥𝑥�𝑛𝑛+𝑠𝑠] neighbouring 

frames. The transfer function at the neuron is f and the bias vector at the hidden layer is 

𝑏𝑏�. The vector at index u in a window is 𝑥𝑥�𝑢𝑢+𝑠𝑠 .  The index t is for the window’s middle 

frame, which matches the index of the frame in the segment. The weight matrix at index 

u within the weight tensor is 𝑊𝑊�𝑢𝑢  (the tensor have d matrices) of size [l, e], where l is the 

length of the feature vector and e is the hidden layer width. For each index u, a vector-

matrix multiplication is applied between the frame at index u within the window d and its 

corresponding weight matrix at the same index. The vector-matrix multiplication 

generates d frames each of e-dimensions. The resulting vectors are summed feature-wise 

across the temporal direction to generate a single vector that undergoes a non-linear 

transformation using the transfer function at the hidden layer. The conditional distribution 

of the inferred activation vector at the hidden layer conditioned on the middle frame of 

the window and the the 2n neighboring frames can be captured in 𝑝𝑝( 𝑦𝑦�𝑠𝑠|  𝑥𝑥�−𝑛𝑛+𝑠𝑠 , 

… 𝑥𝑥�−1+𝑠𝑠 , 𝑥𝑥�𝑠𝑠 , 𝑥𝑥�1+𝑠𝑠 , … 𝑥𝑥�𝑛𝑛+𝑠𝑠) =  𝜎𝜎(… ), where 𝜎𝜎 is the sigmoid activation or the final 

softmax output. Figure 6.3 depicts the d weight matrices of a CLNN scanning a segment 

extracted from a spectrogram. 

 

Figure 6.3 The CLNN scanning a segment extracted from a spectrogram. 

Hidden layer width e

Window d

Feature vector length  l

Segment q

Features 
(Frequency Bins)

 
𝑦𝑦�𝑠𝑠 = 𝑓𝑓 �𝑏𝑏� + � 𝑥𝑥�𝑢𝑢+𝑠𝑠 · 𝑊𝑊�𝑢𝑢

𝑛𝑛

𝑢𝑢=−𝑛𝑛

� (6.4) 
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Figure 6.4 A two-layer CLNN model with n = 1 

Figure 6.4 shows the architecture of a two-layered CLNN (m = 2) with an order n = 1. 

Each layer holds a 3-dimensional weight tensor 𝑊𝑊� 𝑏𝑏, where b = 1, 2, …, m. For an order 

n = 1, the depth of the weight tensor = 3.  Therefore, for each of frames within a window 

(3 frames at n=1) there is a dedicated weight matrix having the same index to process it 

through a vector-matrix multiplication. Accordingly, the weight matrix 𝑊𝑊�0𝑏𝑏 is for the 

window’s middle frame at u = 0, 𝑊𝑊�−1𝑏𝑏  and 𝑊𝑊�1𝑏𝑏 for the off-center frames at u = –1 and u = 

1, respectively. Similarly, for n = 2, the weight tensor is composed of five weight 

matrices. As shown in the figure, the first CLNN layer feeds q – 2n frames to the second 

CLNN layer, which in turn performs in a similar manner to generate another 

representation for succeeding layers. The final output for these two layers scheme is one 

or more (based on the k extra frames) representative frames at the output of the second 

CLNN, which can be flattened or pooled across then fed to a densely connected network 

before the final softmax layer for classification. For example, at n = 6, m = 3 and k = 10, 

𝑊𝑊�−11 𝑊𝑊�01 𝑊𝑊�1
1

𝑊𝑊�−12 𝑊𝑊�02 𝑊𝑊�12

𝑊𝑊�

CLNN of n = 1

CLNN of n = 1

Feature vectors with 2n 
fewer frames than the
previous layer

k central frames

Resultant frame of the Mean/Max
pooling or flattening operation 
over the central frames

One or more 
Fully connected layer

Output Softmax
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the input at the first layer is (2 × 6) × 3 + 10 = 46 frames. The output of the first layer is 

46 – 2n = 46 – (2 × 6) = 34 frames. Similarly, the output of the second and the third layers 

is 22 and 10, respectively. The 10 frames at the output of the third layer represent the k 

extra frames that can be flattened or globally pooled feature-wise to create a single output 

vector per input segment to be used for classification. The temporal pooling behaves as 

aggregation over a texture window, which was studied in [38] for music. The extracted 

segments from the spectrogram can overlap with a maximum of q – 1 frames and a 

minimum of zero.  

6.2 Masked Conditional Neural Networks 
This section elaborates on how the Masked ConditionaL Neural Network extends upon 

the structure of the CLNN to account for the spectrogram frequency band properties. 

The frequency components of a time-frequency representation at a temporal instance 

can be combined using filterbanks [192], discussed earlier in the signal representation 

chapter. Filterbanks are formed of a group of bandpass filters each suppressing a range of 

frequencies while allowing others. Filterbanks may have different shapes to provide 

different scaling factors over the frequencies under consideration. They provide a 

weighted sum to aggregate the energies across the frequencies residing within the 

bandwidth of each bandpass filter. A filterbank is designed based on the number of filters 

and their shape together with both the center frequency and bandwidth of each, which 

consequently affects the overlapping distance between the filters.  

The MCLNN mimics a filterbank-like behaviour through a systematic sparseness 

enforced over the connections between the input and the hidden layer within the network 

through a binary mask. The mask follows the structural pattern of the frequency bands in 

a spectrogram as shown in Figure 6.5. The figure depicts two examples of a binary mask, 

where the columns match the number of hidden nodes and the rows are equal to the 

number of features of the input. The mask design is controlled through two tunable hyper-

parameters namely: the Bandwidth and the Overlap. The Bandwidth controls the number 

of features to be considered in the same band (similar to a filter in a filterbank), and the 

Overlap controls the superposition distance between successive bands (mimicking the 

overlap between filters). For example, Figure 6.5.a. shows an example of a binary 

masking pattern of a Bandwidth = 5, this is represented by the consecutive ones positioned 
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in a single column. The same masking pattern has an Overlap = 3; this is represented by 

the superposition of the binary patterns across the consecutive columns. The Overlap can 

be assigned negative values that refer to the non-overlapping distance across the columns 

as shown in Figure 6.5.b. The sparseness enforced by the mask enables certain regions of 

the weight matrix and disable others as depicted in Figure 6.5.c. showing the active 

connections following the mask in Figure 6.5.a.   

a.  b.  

c.  
a) Bandwidth of 5 with an overlap of 3, b) Bandwidth of 3 and an overlap of -1, and 

c) The allowed connections matching the mask in (a). 

Figure 6.5 Examples of the mask patterns. 

 The overlap ov and bandwidth bw controls the linear spacing of the 1’s positions 

within a mask following (6.5). 

where lx is the linear index having an upper bound of l × e, bw is the bandwidth, ov is the 

overlap and l is the length of the feature vector (number of frequency bins). The values 
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𝑙𝑙𝑥𝑥 =   𝜕𝜕 + (𝑔𝑔 − 1) (𝑙𝑙 + (𝑏𝑏𝑤𝑤 − 𝑜𝑜𝑣𝑣)) (6.5) 
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of a are within the interval [1, bw] and the values of g are within the interval 

[1, ⌈(𝑙𝑙 × 𝑒𝑒)/(𝑙𝑙 + (𝑏𝑏𝑤𝑤 − 𝑜𝑜𝑣𝑣))⌉ ]. 

 The sparseness enforced with this band-like scheme ensures that each hidden neuron 

of a certain layer exhibits an interest in a certain band of frequencies by focusing on a 

localized region of the feature vector. Meanwhile, the spatial locality, across the 

frequency dimension, of the learned features is preserved as the locations of the active 

weights are fixed. The systematic sparseness allows the connections within a certain band 

of inputs (as if they are frequency bins) to contribute to the hidden node’s activation.  

 Hand-crafting features does not only involve finding the best individual features, but 

also finding the optimum combination of features. The mask automates this process by 

embedding shifted versions of the filterbank-like pattern. This allows each neuron to learn 

differently about different regions of the feature vector. For example, in Figure 6.5.a, 

ignoring the temporal dimension for the sake of explanation, (with the columns mapping 

to neurons) the first neuron in a hidden layer (i.e. the first column in the mask) will learn 

about the 1st five features, meanwhile, the 5th neuron will learn about the 1st two features 

and the last feature in the feature vector. Similarly, in Figure 6.5.b the input to the first 

neuron is the 1st three features, the fourth neuron (i.e. the fourth column in the mask) will 

learn about the 1st two features in the feature vector, and the seventh neuron will learn 

about a single feature. Accordingly, different feature combinations are considered 

concurrently. 

The masking operation is applied through an elementwise multiplication between the 

binary mask and each matrix in the set of d matrices. This is formulated in (6.6). 

where 𝑊𝑊�𝑢𝑢 is the original weight matrix, 𝑀𝑀�  is the masking pattern having the same 

dimensions as 𝑊𝑊�𝑢𝑢 and �̂�𝑍𝑢𝑢 is the new weight matrix after the element-wise multiplication 

by the mask to substitute 𝑊𝑊�𝑢𝑢 in (6.4). 

Figure 6.6 shows a single step of an MCLNN of order n. Accordingly, a window of 

frames of size 2n+1 is being processed with a weight tensor of a similar depth having 

matrices of a count 2n+1. Each frame in the window at an index u is processed with its 

corresponding matrix at the same index. The highlighted cells in the figure depict the 

 �̂�𝑍𝑢𝑢 =  𝑊𝑊�𝑢𝑢 ∘ 𝑀𝑀�  (6.6) 
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active connections. The output of a step of an MCLNN over a window of frames is a 

single resultant frame.  

 
Figure 6.6 A single step of MCLNN 

6.3 Summary 
In this chapter, we have introduced the ConditionaL Neural Networks (CLNN) and its 

extension the Masked ConditionaL Neural Networks (MCLNN). The models presented 

in this chapter are the core contribution of this thesis. The CLNN exploit the temporal 

correlation across the frames of a sound signal by considering a window of frames. And 

since the location of the detected energy across the frequency bins is crucial for 

interpreting the frequency axis and consequently the sound category, the CLNN preserves 

the spatial locality of the learned features across the frequency bins through the use of 

fixed connections between the input and the hidden layer. The MCLNN uses the CLNN 

as the main framework to subdivide the features into bands by embedding a filterbank-

like behaviour through an enforced controlled sparseness across the connections of the 

neural network. The MCLNN also automates the task of considering different feature 

combinations concurrently during training, which is usually a manual exploration mission 

to hand-craft the optimum combination of features.  In the next two chapters, we will 

evaluate the performance of the proposed models through an extensive range of 

experiments using several publicly available datasets of environmental sounds and music.  
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7   
Experiments  

HIS chapter is composed of an extensive set of experiments to evaluate the 

performance of the models introduced in this thesis. The evaluation has been 

applied using several environmental sound (ESC-10, ESC-50, Urbansound8k 

and YorNoise) and music (Ballroom, GTZAN, Homburg, and ISMIR2004) datasets 

widely utilized in the literature. In this chapter, we also present the YorNoise dataset, 

which we manually collected and incorporated in the evaluation of our models. We have 

dedicated a special section for each dataset. We used the ISMIR2004 and the GTZAN 

datasets in a particular type of experiments to measure the sustainability of the MCLNN 

performance against the data split influence compared to the other reported works, since 

they are two of the oldest datasets, and they have been used in a range of attempts using 

different experimental settings. The following summarises the datasets used and 

highlights the experiments carried out with further details about each dataset postponed 

until their relevant section. 

Ballroom: The dataset, released in 2004, is composed of 698 music files. The samples 

are unbalanced in distribution across the 8 music genres of the dataset. The dataset 

is accompanied by tempo annotations showing the BPM (Beats Per Minute) for 

each music file. We have used this dataset to evaluate the performance of the 

MCLNN compared to other attempts especially the handcrafted ones and methods 

that exploit the tempo nature of this dataset.  
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Homburg: A dataset of 9 music genres, released in 2005, of 1886 files. The dataset has 

a low recognition accuracy in the literature that has not surpassed 65%. We have 

used the Homburg dataset to evaluate the MCLNN performance against 

handcrafted attempts that involved multistage processing. 

GTZAN: Released in 2002, it is one of the most widely adopted datasets for music genre 

recognition tasks. The dataset has 10 music genres with 1000 music files equally 

distributed among the dataset categories. Despite its popularity, the dataset suffers 

a  range of faults, e.g. repetitions, distortion, …etc., which has been studied in [193]. 

Since GTZAN has been used in a number of attempts, there are various 

experimental settings that have been explored in the literature. We have used the 

GTZAN to investigate the effect of the data split on the reported accuracies in the 

literature including this work. 

ISMIR2004: The dataset was released within the ISMIR contest in 2004. The dataset is 

composed of unbalanced 6 music genres with a total number of 1458 files. The 

experiments on this dataset exploit the wide usage of the ISMIR2004 throughout 

the literature with different experimental settings and data splits as in the GTZAN. 

ESC-10: The dataset was collected from the Freesound project [194] 

(www.freesound.org) for 10 environmental sounds. Some sound samples are 

difficult to recognize with possible overlapping sounds in the same clip. Despite the 

challenging task of having a high human recognition level, it is still manageable 

compared to its parent dataset the ESC-50. The dataset avoids the data split 

influence being released in 5-folds. We have used this dataset to compare the 

performance of the MCLNN to Convolutional Neural Network attempts. 

Additionally, we have explored the effect of data augmentation, which involves 

applying a controlled deformation to the sound signal such as pitch shifting and 

temporal stretching. 

ESC-50: The dataset contains 50 environmental sounds out of which 10 are used in the 

ESC-10 dataset. The dataset is also released in 5-folds to standardize reported 

accuracies. The human level accuracy varied across different sounds in the dataset 

as discussed in [23]. 

http://www.freesound.org/
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Urbansound8k: Can be considered as the largest environmental dataset with almost 9000 

sound files for 10 sound categories. Also collected from the Freesound project as 

the ESC-10/50. The sound files are very difficult to distinguish with human hearing 

with the presence of background overlapping sounds in the same recording. The 

dataset is released into 10-folds to facilitate reporting the accuracies. 

YorNoise: The dataset is manually collected in the scope of the work presented in this 

thesis. It focuses on two main urban sounds: rail and road traffic. The dataset is used 

to investigate the confusion between sounds possessing common tonal components. 

The experiments have used the YorNoise dataset as an extension to the 

Urbansound8k classes.  More details on the collection process and preparation of 

YorNoise are provided in the relevant experiments section dedicated for the dataset.  

Before we go through the experiments, we will elaborate on the common 

preprocessing and the models used in the experiments, and we will refer to the hardware 

and software environment.  

We used a mel-scaled spectrogram as an intermediate signal representation for all the 

datasets. The transformation applied to the music datasets (Ballroom, GTZAN, Homburg 

and ISMIR2004) involved a logarithmically Mel-scaled spectrogram of 256 bins with an 

FFT window of 2048 and a 50% overlap. A similar transformation was applied to the 

environmental sound datasets (ESC-10, ESC-50, Urbansound8K, and YorNoise), but 

with 60 bins at an FFT window of 1024 and a 50% overlap. Extra spectral features are 

calculated for the environmental sound datasets by extracting the delta (1st derivative) 

across the frames of the 60 bin FFT. The two spectrograms are concatenated column-wise 

to generate a 120-dimension feature vector. Segments of the spectrogram are extracted 

following (6.2) with a running step of 1, i.e. the number of overlapping frames between 

consecutive segments is q – 1 frames.  

We adopted two MCLNN models for the music and the environmental sounds to cope 

with the different spectrogram transformation, discussed earlier, applied to the two 

categories. Parametric Rectified Linear Units (PRelu) [162] with zero initializations were 

used as activation functions. Dropout [164] was used for regularization. Models were 

trained to minimize the categorical cross-entropy between the predicted labels of each 

segment and the actual one using ADAM [159] at a learning rate of 10-4  using the default 
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values published in their work, 𝛽𝛽1 =  0.9,  𝛽𝛽2 = 0.999 and  𝜖𝜖 = 10−8. More details about 

the complexity of the models is provided in the relevant section of each experiment. 

Table 7.1 and Table 7.2 list the hyperparameters used for music and environmental 

sounds, respectively.  

Table 7.1 MCLNN Hyper-parameters for the MUSIC datasets 

Layer Type NODES 
Mask  

Bandwidth 
Mask 

Overlap 
Dropout 

1 MCLNN 220 40 -10 1% 
2 MCLNN 200 10 3 35% 

 

Table 7.2 MCLNN Hyper-parameters for the Environmental Sound datasets 

Layer Type NODES 
Mask  

Bandwidth 
Mask  

Overlap 
Order n 

Dropout 

1 MCLNN 300 20 -5 15 1% 
2 MCLNN 200 5 3 15 50% 

 

The MCLNN layers are followed by a global single dimensional mean pooling [191] 

layer. The final output layer is a softmax layer with 10% dropout for all datasets. The 

Gaussian weight initialization proposed by He et al. in [162] was used for the MCLNN 

layers and the uniform initialization proposed in [175] for the dense layers. The default 

hyperparameters are listed in the tables while deferring any differences in the order n, the 

extra frames k and the densely-connected layers to the dataset relevant section. 

All experiments used a 10-fold cross validation unless otherwise stated, with the mean 

and standard deviation across the folds reported. Standardization is applied to the training 

data using the z-score. The extracted parameters (mean and variance) are used to 

standardize the validation and testing data. The validation set is used for early stopping 

of the model training after 50 epochs, i.e. if the validation accuracy does not get better 

after 50 epochs, the weights stored at the final epoch index – 50 are used for the model. 

The labels assigned to the segments follows a Multiple Instance Learning paradigm [195] 

used in most of the attempts referenced in the literature, where the original tag of the 

sound file is used to label each segment in isolation and the final decision for the clip 

follows a voting mechanism across the predicted labels of the input segments. The final 
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decision of a clip’s category is decided based on a probability voting across the predicted 

vectors of the clip following (7.1). 

where r is the number of predicted output vectors following the number of total segments 

extracted from a clip’s spectrogram. Each output vector 𝑜𝑜� has a length c, where c is the 

number of classes predicted by the softmax. The clip’s category is decided by summing 

the predicted distributions across all the r predictions per class and choosing the 

maximum sum.  

The development machine is equipped with an Intel Xeon CPU (E5-2640v3, 2.6 GHz), 

128 GB of ram and Nvidia Geforce GTX Titan X (driver version 10.18.13.5921).  The 

implementation of the model was carried out with python (2.7.11 64-bit) using Theano 

[196] (version 0.8.2) and Keras [197] (version 1.0.8) with the exploit of Nvidia CUDA 

(version 7.5.17). FFMPEG [198] (version N-81489 built with GCC 5.4.0)  was used for 

the sound files format conversion, and LibROSA [199] (version 0.4.0) a python signal 

processing library was used for the signal transformation. Muda [200] was used for sound 

files augmentation. 

7.1 Ballroom 
The Ballroom [201] music dataset is summarized in Table 7.3. The parameters used for 

the model, and the training complexity statistics are captured in Table 7.4. We used a 

deep and a shallow architecture, each is followed by two fully-connected layers of 

neurons of 50 and 10 nodes having a dropout of 35% and 10%, respectively, before the 

final 8-way softmax output. We used a mini-batch size of 600 samples.  

Table 7.5 lists the accuracies achieved using the MCLNN in addition to other attempts 

on the Ballroom dataset. The deep MCLNN architecture (described in the common 

section) achieved a mean accuracy of 90.4% over the 10-folds with a standard deviation 

of 2.57%. The architecture is formed of two MCLNN layers and an order n = 15 with 

pooling across k = 10. We applied another architecture of a shallow MCLNN composed 

of a single layer of order n = 20 and extra frames k = 55. MCLNN achieved an accuracy 

of 92.12% with a standard deviation of 2.9%. 

 

𝐶𝐶𝜕𝜕𝐶𝐶𝑒𝑒𝑔𝑔𝑜𝑜𝐶𝐶𝑦𝑦 = 𝜕𝜕𝐶𝐶𝑔𝑔𝑚𝑚𝜕𝜕𝑥𝑥𝑗𝑗=1…𝑟𝑟  ��𝑜𝑜𝑗𝑗𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� (7.1) 
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Table 7.3 Ballroom dataset 

Release date ISMIR tempo contest, 2004 
Total #  698 
Files format .wav 
Classes # 8 
Classes (instances) ChaCha (111) 

Jive (60) 
Quickstep (82) 
Rumba  (98) 
Samba (86) 
Tango (86) 
Viennese Waltz (65) 
Slow Waltz (110) 

Files arrangement N/A 
Sampling Rate  44100 Hz 
File Duration 30 seconds 

 

Table 7.4 Training complexity for the Ballroom dataset 

Model 

Number of MCLNN layers (e = 220) 1 
Number of Dense layers 2 
Window size (frames at n = 20) 41  
MCLNN trainable parameters (per layer) 2,309,340 
Total trainable parameters 2,333,368 

   

Dataset split 

Frames count per clip 600 
Features count per frame 256 
Training count (clips) 558 
Validation count (clips) 70 
Testing count (clips) 70 

   

Input 

Segment size (frames at m = 1, k = 55)  96 
Training count (segments) 281,790 
Validation count (segments) 35,350 
Testing count (segments) 35,350 
Batch size (segments) 600 

   

Execution statistics 
Average training time per fold (hours) 14 
Total training time (hours) 168 
Total memory (GB) 33 
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Table 7.5 MCLNN performance on the Ballroom dataset compared to other  
attempts in the literature 

The MCLNN achieved the listed accuracies without using any musical perceptual 

properties or hand-crafted features that are exploited in attempts that achieved higher 

accuracies. For example, Peeters in [94] achieved 96.13% using the tempo annotation 

released with the dataset. When Peeters reapplied his method without the tempo 

annotations, the accuracy declined to 88%. Another work that explored the effect of the 

tempo annotations was in the work of Gouyon et al. [204]. They proposed several hand-

crafted features, which achieved 90.1% in combination with the tempo annotations and 

82.3% using tempo annotations alone. Other comparable attempts in [202] and [203] 

achieving 93.12% and 92.44% used a heavily engineered set of features.      

In comparison to CNN attempts, the work of Pons et al. [56] tackled the translation 

invariant properties of the CNN, which is not optimal for spectrogram representations. In 

their work, they investigated the use of a shallow CNN with dedicated filters for the 

temporal domain and another set for the frequency domain. They also applied rectangular 

filters to scan the spectrogram irrespective of the temporal or frequency dimensions, in 

addition to filters of size [1, n] and [n, 1] to scan both the temporal and frequency domain 

separately. They also designed the frequency filters to fit a specific Beat Per Minute 

(BPM). They reported the highest accuracy of 87.68% on using a combination of the 

spectral and the temporal pre-trained filters as listed in Table 7.6. On the other hand, the 

MCLNN achieved 92.12% without any special design to exploit musical properties and 

using a shallow architecture as of Pons.   

Classifier and Features Acc. % ± Std. 

SVM + 28 feature with Tempo [94] 96.13 
KNN + Modulation Scale Spectrum [202] 93.12 
Manhattan Distance + Block-Level features [203] 92.44 
MCLNN (Shallow, n = 20, k = 55) + Mel-Spec. (this work) 92.12 ± 2.94 
MCLNN (Deep, n = 15, k = 10) + Mel-Spec. (this work) 90.40 ± 2.57 
SVM + Rhyth., Hist., Statist., Onset, Symb. [93] 90.40 
KNN + 15 MFCC-like descriptors + Tempo [204] 90.10 
KNN + Rhythm and Timbre [205] 89.20 
SVM + 28 features without Tempo [94] 88.00 
CNN + Mel-Scaled Spectrogram [56] 87.68 ± 4.40 
SVM + Rhyth. + Hist. + Statist. features [90] 84.20 
KNN + Tempo [204] 82.30 
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Table 7.6 MCLNN compared to the CNN in [56] 

Classifier and Features Acc. % ± Std. 

MCLNN (Shallow, n = 20, k = 55) + Mel-Spec. (this work) 92.12 ± 2.94 
Time-Frequency pre-trained CNN  87.68 ± 4.44 
Black-box CNN  87.25 ± 3.39 
Time-Frequency CNN  86.54 ± 4.29 
Time CNN  81.79 ± 4.72 
Frequency CNN 59.59 ± 5.82 

 

a.  

b.  
Classes: ChaCha(CC), Jiva(Ji), QuickStep(QS), Rumba(Ru), Samba(Sa), Tango(Ta), 
Viennese Waltz(VW) and Slow Waltz(Wa). a) actual count and b) normalized count in 
percentage 

Figure 7.1 Ballroom confusion using MCLNN. 
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Figure 7.1 shows the confusion across the music genres of the Ballroom dataset. The 

highest confusion is between the Slow Waltz and each of the Viennese Waltz and the 

Rumba genres, which matches findings in [206]. 

7.2 Homburg 
A summary of the Homburg [207] dataset is listed in Table 7.7. The parameters used for 

the model, and the training complexity statistics are captured in  

Table 7.8.  We used the MCLNN architecture in the common section for music datasets 

with an order n = 5 and extra frames k = 2 for the single dimension global pooling. The 

pooling is followed by two densely-connected layers of 50 and 10 nodes with a dropout 

of 35% and 10% respectively before the 9-way softmax output. The mini-batch used for 

training was composed of 800 samples.  

Table 7.7 Homburg dataset 

Release date 2005 
Total #  1886 
Files format .mp3 
Classes # 9 
Classes (instances) Alternative (145)  

Blues (120)  
Electronic (113)  
Folkcountry (222)  
Funksoulrnb (47)  
Jazz (319) 
Pop (116)   
Raphiphop (300)  
Rock (504) 

Files arrangement N/A 
Sampling Rate  44100 Hz 
File Duration 10 seconds 

 

Table 7.8 Training complexity for the Homburg dataset 

Model 

Number of MCLNN layers (e = 220, e = 200) 2 
Number of Dense layers 2 
Window size (frames at n = 5) 11  
MCLNN trainable parameters (1st layer) 619,740 
MCLNN trainable parameters (2nd layer) 484,200 
Total trainable parameters 1,117,699 

   
Dataset split Frames count per clip 200 
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Table 7.9 lists the accuracy achieved using MCLNN in addition to other attempts. The 

mean accuracy across 10-folds using MCLNN is 61.45% with 1.4% standard deviation. 

The accuracy achieved surpasses several hand-crafted attempts and is comparable to 

others. The highest attempts [208] on the dataset employed a set of handcrafted features 

using an auditory cortical representation, which models the cochlea using Constant Q-

Transform followed by a wavelet transformation to extract a 4D cortical representation. 

This is combined with a set of MFCC and chroma features. The extracted features were 

used in combination with a specially designed classifier to exploit sparseness properties 

within the features. The MCLNN performed only slightly below these complicated 

handcrafted methods without any special handling.  The closest neural network based 

attempt achieved an accuracy of 55.3% in [209] using the mean-covariance RBM  

(mcRBM) a variant of the RBM.    

Table 7.9 MCLNN performance on the Homburg dataset  
compared with attempts in the literature  

Classifier and Features Acc. % ± Std. 

JSLRR + Cortical, MFCC, Chroma [208] 63.46 ± 2.49 
LRSM + Cortical, MFCC, Chroma [210] 62.40 ± 3.65 
MCLNN + Mel-Spectrogram (this work) 61.45 ± 1.40 
KNN + LFP,VDSP,CP,SCP  [211] 61.20 
SVM + ESA-MFCC  [212] 57.81 
KNN + Rhythm and Timbre  [205] 57.00 
KNN + mcRBM, PCA, MVG-MFCC  [209] 55.30 
SVM + Marsyas features  ([37])  [213] 55.00 
KNN + Multiple features  [207] 53.23 
SVN + Novelty Functions  [206] 51.10 
KNN + mcRBM, PCA, Mel-Spectrogram [214] 45.50 

Features count per frame 256 
Training count (clips) 1,508 
Validation count (clips) 189 
Testing count (clips) 189 

   

Input 

Segment size (frames at m = 2, k = 1)  22 
Training count (segments) 269,932 
Validation count (segments) 33,831 
Testing count (segments) 33,831 
Batch size (segments) 800 

   

Execution statistics 
Average training time per fold (hours) 1 
Total training time (hours) 12 
Total memory (GB) 8 
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a.  

b.  
Classes: Alternative(Al), Blues(Bl), Electronic(El), FolkCountry(FC), 
FunkSoulRnb(FS), Jazz(Ja), Pop(Po), RapHiphop(RH) and Rock(Ro).  

a) actual count and b) normalized count in percentage 

Figure 7.2 Homburg confusion using MCLNN. 

Figure 7.2 shows the confusion of the Homburg dataset using the MCLNN. There is a 

proportional relation between the accuracy per genre and the number of samples available 

for that genre. The MCLNN achieved lower confusion across the classes than the one 

reported in [207]. 

7.3 GTZAN 
Throughout the experiments of the GTZAN and the ISMIR2004 (in the next section), we 

are evaluating the sustainability of the MCLNN performance against the data split 

influence and limiting the dataset size. We used these datasets for this type of evaluation 

as they are two of the oldest datasets in the literature that have been used in several works 
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using different experimental settings especially with respect to the data split. 

Accordingly, we will cover as many splits as possible to provide an unbiased comparison 

to the work reported in the literature.  

The GTZAN dataset was introduced by Tzanetakis et al. in [37]. Table 7.10 lists the 

GTZAN properties. The parameters used for the model, and the training complexity 

statistics are captured in Table 7.11. 

Table 7.10 GTZAN dataset 

Release date 2002 
Total #  1000 
Files format .ac 
Classes # 10 
Classes (instances) Blues (100)  

Classical (100)  
Country (100) 
Disco (100) 
Hip-hop (100) 
Jazz (100) 
Metal (100) 
Pop (100) 
Reggae (100) 
Rock (100) 

Files arrangement N/A 
Sampling Rate  22050 Hz 
File Duration 30 seconds 

 

Table 7.11 Training complexity for the GTZAN dataset 

Model 

Number of MCLNN layers (e = 220, e = 200) 2 
Number of Dense layers 1 
Window size (frames at n = 4) 9 
MCLNN trainable parameters (1st layer) 507,100 
MCLNN trainable parameters (2nd layer) 396,200 
Total trainable parameters 920,290 

   

Dataset split 

Frames count per clip 600 
Features count per  frame 256 
Training count (clips) 800 
Validation count (clips) 100 
Testing count (clips) 100 

   

Input 

Segment size (frames at m = 2, k = 10)  27 
Training count (segments) 459,200 
Validation count (segments) 57,400 
Testing count (segments) 57,400 
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We adopted a two-layer MCLNN as described in the common section for music 

datasets with an order n = 4 followed by a single fully-connected layer of 50 neurons with 

an input dropout of 35%. The extra frames k = 10, in addition to the window’s middle 

frame, and the minibatch size is 600 samples. The results reported in this section used 

majority voting across the frames for the clip’s category to be comparable to other 

attempts in the literature. The dataset has no specific distribution across the train, test and 

validation splits. We experimented using a 10-fold cross-validation process. To evaluate 

the sustainability of the accuracy against the data split, we randomly generated 10 trials 

of the 10-fold experiments using the system clock as a seed for the random number 

generator across the 10 trials. MCLNN achieved a mean accuracy of 85.1% across the 

10-folds of the cross-validation and 84.1% across the 100 runs (10 trials × 10-folds) on 

the GTZAN as listed in Table 7.12. The highest accuracy of 92.7% in [215] proposed 

using a set of 10 features designed to exploit long-time and short- time acoustic features 

for genre classification, e.g. octave-based spectral contrast, octave-based modulation 

spectral contrast, modulation spectral flatness measure, to name a few, in addition to 

MFCC, spectral flux and others. They also used a specially designed classifier based on 

Compressive Sampling. A comparable accuracy of 92.4% was also achieved in [46] with 

a similar complicated system using an auditory cortical representation that is 

dimensionally reduced using non-negative matrix factorization and finally classified 

using a sparse based classifier. The work in [47] achieved 91.4% using a specially 

designed signal transform that aims to provide a frequency shift-invariant representation 

of the signal. The accuracy reported in this method is also tightly coupled with the fine-

tuning of the grid-search for the optimum RBF-SVM parameters. The MCLNN surpassed 

several state-of-the-art methods that are dependent on hand-crafted features or neural 

networks. 

Figure 7.3 shows the confusion across the GTZAN genres. The highest accuracy 

achieved was for the classical music of 99%, and the lowest was for the Rock genre, 

which overlaps with the confusion rates reported in [193]. 

Batch size (segments) 600 
   

Execution statistics 
Average training time per fold (hours) 7 
Total training time (hours) 70 
Total memory (GB) 16 
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Table 7.12 MCLNN performance on the GTZAN dataset  
compared with other attempts in the literature  

Classifier and Features Acc.% ± Std. 
Compressive Sampling + Multiple feature sets [215]2 92.7 
SRC + LPNTF + Auditory Cortical features [46]2 92.4 
RBF-SVM + Scattering Transform [47]2 91.4 ± 2.2 
MCLNN + Mel-Scaled Spectrogram (this work)2 85.1 ± 3.3 
RBF-SVM + Spectrogram – DBN [51]4 84.3 
MCLNN + Mel-Scaled Spectrogram (this work)3 84.1 ± 4.0 
Linear SVM + PSD on Octaves [48]3 83.4 ± 3.1 
Random Forest + Spectrogram – DBN [216] 83.0 ± 1.1 
AdaBoost + Several features [38]1 83.0 
RBF SVM + Spectral Covariance [217]2 81.0 
Linear SVM + PSD on Frames [48]3 79.4 ± 2.8 
SVM + DWCH [88]2 78.5 ± 4.1 
Logstic Regression + Spectral Covariance [217]2 77.0  
LDA + MFCC, FFT, Beat and Pitch [89]2 71.0   
GMM +MFCC, FFT, Rhythm and Pitch [37]2 61.0 ± 4.0 
15-fold cross-validation  
210-fold cross-validation 
310×10-fold cross-validation 
450% training, 20% validation and 30% testing 

 

 
Classes: Blues(Bl), Classical(Cl), Country(Co), Disco(Di), Hip-hop(Hi), Jazz(Ja), 

Metal(Me), Pop(Po), Reggae(Re) and Rock(Ro) 
Figure 7.3 Confusion matrix for the GTZAN dataset 



 
Experiments 

 

91 
 

 
A plot of 10 attempts of 10-folds cross-validation using the MCLNN 

Figure 7.4 Boxplot for 10 trials on the GTZAN dataset 

The 10 trials reported varying accuracies accounting to the difference of the data 

distributions generated in-between the trials. Figure 7.4 reports a boxplot for the 

accuracies reported for each trial of the 10-folds cross-validation we applied on the 

GTZAN dataset using the MCLNN, where the accuracy ranged from 74% to 94% over 

the 100 training runs. Though the GTZAN has analytical problems as studied by Strum 

[193], the problem is not confined to the GTZAN dataset as we will elaborate in the 

ISMIR2004 section. The fluctuation of the accuracies across the trials reveals the 

influence of the data split on reported accuracies in the literature that do not consider the 

data split. For example, in the work of Hamel et al. [51], they used a DBN architecture to 

extract features from spectrograms, and the extracted abstract features of the DBN were 

further fed to an SVM for classification. In their experiments, they used a fixed data split 

(50% training, 20% validation and 30% testing) and they did not use cross-validation for 

choosing the SVM parameters. Kereliuk et al. [15] used the same architecture proposed 

by Hamel et al. and they achieved  81.5 %. The lower accuracy reported by Kereliuk et 

al. compared to Hamel et al. could be greatly accounted to the data split influence. The 

split influence was considered by Sigtia et al. [216]. They applied a fixed (50% training, 

25% validation and 25% testing) split for 4 times and reported a mean accuracy of 83%. 

In a similar context to experimental settings, Henaff et al. [48] used the whole dataset to 

train their unsupervised method, where they achieved an accuracy of 83.4%. In this 

setting, the model is aware of the test samples, which affects the reported accuracy as 

discussed by Henaff. When they repeated the experiment on the training set only, they 

achieved an accuracy of 80%. In their work, they showed variability in the accuracies 

across 10 attempts of cross-validation that ranged between 77% to 87%.  
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Table 7.13 GTZAN Random and  Fault-Filtered accuracy  
using the splits by Kereliuk et al. [15] 

 

For further evaluation of the MCLNN against the split influence, we adopted the 

publicly available split released in the work of Kereliuk et al. [15]. In their work, they 

released a randomly stratified split (50% training, 25% validation and 25% testing) of the 

GTZAN dataset and another fault-filtered split. The fault-filtered split removed the 

repeated and distorted files as discussed by Sturm [193]. The MCLNN achieved an 

accuracy of 84.4% and 65.8% for the random and fault-filtered splits, respectively, which 

outperforms the DNN attempt by Kereliuk et al. [15] as listed in Table 7.13. With regard 

to the dataset size, the works in [15, 38, 48, 51, 217] used an FFT window of 1024 

samples. The MCLNN used a window of 2048, which decreases the number of samples 

by 50% and consequently the training complexity. 

7.4 ISMIR2004 
The ISMIR2004 dataset was released within the scope of the ISMIR conference in 2004. 

Table 7.14 lists the dataset properties. The parameters used for the model, and the training 

complexity statistics are captured in Table 7.15. We extracted 30 seconds from each file 

following [218]. Further preprocessing followed the one described in the common section 

for the music datasets. We adapted the MCLNN architecture used for the GTZAN dataset 

and applied it in the experiments of the ISMIR2004 without any changes to the 

hyperparameters, except for the minibatch size, to evaluate the generalization of the 

models to datasets of different distributions.  

Table 7.14 ISMIR2004 dataset 

Release date 2004 
Total #  1458 
Files format .mp3 
Classes # 6 
Classes (instances) Classical (640)  

Electronic (229)  
Jazz-Blues (52) 
Metal-Punk (90) 
Rock-Pop (203) 
World (244)  

 
 Random Acc. % Filtered Acc. % 

MCLNN (this work) 84.4 65.8 
DNN [15] 81.2 49.0 
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Files arrangement 729 train / 729 test  
Sampling Rate  44100 Hz 
File Duration Different durations 

 

Table 7.15 Training complexity for the ISMIR2004 dataset 

Model 

Number of MCLNN layers (e = 220, e = 200) 2 
Number of Dense layers 1 
Window size (frames at n = 4) 9 
MCLNN trainable parameters (1st layer) 507,100 
MCLNN trainable parameters (2nd layer) 396,200 
Total trainable parameters 920,086 

   

Dataset split 

Frames count per clip 600 
Features count per frame 256 
Training count (clips) 1,170 
Validation count (clips) 144 
Testing count (clips) 144 

   

Input 

Segment size (frames at m = 2, k = 10)  27 
Training count (segments) 670,263 
Validation count (segments) 82,656 
Testing count (segments) 82,656 
Batch size (segments) 1000 

   

Execution statistics 
Average training time per fold (hours) 9 
Total training time (hours) 90 
Total memory (GB) 23 

 

In an endeavour to prove that the effect of the data split is not specific to the GTZAN 

dataset only (due to its analytical issues as discussed earlier), but rather it is a general 

issue for datasets, we applied two sets of experiments on the ISMIR2004 dataset. In the 

first set, we used the ISMIR contest data split (729 files training / 729 files testing), where 

the 729 training data was divided into 90% training and 10% validation. To investigate 

the split influence, we repeated the experiment for 10 trials, where the files of each trial 

were randomly assigned between the 90% training set or the 10% validation set using the 

system clock as a seed for the random number generator. In the second set, we combined 

the contest splits resulting in a collection of 1458 files. The files for each category were 

randomly distributed across 10-folds and to validate the split influence; we repeated the 

10-fold distribution for 10 trials using the system clock.  
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Table 7.16 lists the accuracies reported using the MCLNN on the ISMIR2004, where 

the it achieved a mean accuracy of 86% over a 10-fold cross validation (the confusion 

matrix is shown in Figure 7.5), and the highest accuracy for the contest split was 84.77%. 

The mean accuracy across the 10 trials of the 10-folds (100 runs) achieved an accuracy 

of 84.83% and the mean of the 10 trials of the contest split achieved 83.13%. Accuracies 

higher than the MCLNN exploit using hand-crafted features. For example, the highest 

accuracy of 94.38% exploited using psychophysiological properties of the human ear 

represented in the auditory cortical features [46] in combination with a multilinear 

dimensionality reduction. Despite achieving 94.4% using a Sparse Representation 

Classifier, the method did not exceed an accuracy of 75% on using a Linear-SVM for 

classification. Others attempts in [205] and [203] used rhythmic and hand-crafted 

features. On the other hand, the MCLNN achieved the listed accuracies without any hand-

crafted features, which allows extending MCLNN to any multi-channel temporal signal, 

which we will explore in future work. 

Table 7.16 ISMIR2004 Classification Accuracy 

 

Classifier and Features Acc. % 
SRC + NTF + Auditory Cortical features [46]1  94.38 
KNN + Rhythmic descriptors and timbre [205]4 90.04 
SVM + Several Block-Level features [203]7 88.27 
MCLNN + Mel-Scaled Spectrogram (this work)4 86.04 ± 1.44 
MCLNN + Mel-Scaled Spectrogram (this work)5 84.83 ± 3.04 
MCLNN + Mel-Scaled Spectrogram (this work)1 84.77 
GMM + NMF [43]3 83.50 
MCLNN + Mel-Scaled Spectrogram (this work)2 83.13 ± 1.46 
SVM + Audio and Symbolic features [93]4 81.40 
Nearest Neighbour + Spec. Similarity and FP [91]6 81.00 
SVM + High-Order SVD [45]4 80.95 
SVM + Rhythmic Patterns and SSD [90]2 79.70 
1Train 729 file / test 729 file 
210× (Train 729 file / test 729 file) 
35-fold cross-validation 
410-fold cross-validation 

510×10-fold cross-validation 
6leave-one-out cross-validation 
7Not referenced 
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a.  

b.  
Classes: Classical(Cl), Electronic(El), Jazz/Blues(Ja), Metal/Punk (Me), Pop/Rock(Po) 
and World(Wo). a) actual count and b) normalized count in percentage 

Figure 7.5 Confusion matrix for the ISMIR2004 

Figure 7.6 shows the variations in the accuracies across the 100 runs of cross-

validation, ranging from 72.22% to 91.67%, which overlaps with similar variations in the 

GTZAN dataset. 

 

A plot of 10 attempts of 10-folds cross-validation using the MCLNN 

Figure 7.6 Boxplot for 10 trials on the ISMIR2004 dataset. 
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7.5 ESC-10 
Table 7.17 summarizes the ESC-10  [23]  dataset. The parameters used for the model, and 

the training complexity statistics are captured in Table 7.18, and in a different setting, we 

applied augmentation to the ESC-10 dataset, where the training complexity statistics are 

listed in Table 7.19.  

The ESC-10 files are fixed length of 5 seconds with shorter events originally padded 

with silence. Accordingly, we are trimmed all the files to remove the zero paddings. All 

files were cloned several times and concatenated using FFmpeg [198]. Following the 

cloning process, 5 seconds were extracted from each file, before applying the processing 

discussed earlier in the common section. 

Table 7.17 ESC-10 dataset 

Release date 2015 
Total #  400 
Files format .ogg 
Classes # 10 
Classes (instances) Baby Cry (40) 

Chainsaw (40) 
Clock Tick (40)  
Dog Bark (40) 
Fire Cracking (40) 
Helicopter (40) 
Person Sneeze (40) 
Rain (40) 
Rooster (40)  
Sea Waves (40) 

Files arrangement 5-folds 
Sampling Rate  44100 Hz 
File Duration 5 seconds 

 

Table 7.18 Training complexity for the ESC-10 dataset 

Model 

Number of MCLNN layers (e = 300, e = 200) 2 
Number of Dense layers 2 
Window size (frames at n = 15) 31 
MCLNN trainable parameters (1st layer) 1,116,300 
MCLNN trainable parameters (2nd layer) 1,860,200 
Total trainable parameters 3,037,410 

   

Dataset split 
Frames count per clip 200 
Features count per frame 120 
Training count (clips) 240 
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Validation count (clips) 80 
Testing count (clips) 80 

   

Input 

Segment size (frames at m = 2, k = 40)  101 
Training count (segments) 24000 
Validation count (segments) 8000 
Testing count (segments) 8000 
Batch size (segments) 600 

   

Execution statistics 
Average training time per fold (hours) 2 
Total training time (hours) 11 
Total memory (GB) 2.5 

 

Table 7.19 Training complexity for the ESC-10 dataset with Augmentation 

Model 

Number of MCLNN layers (e = 300, e = 200) 2 
Number of Dense layers 2 
Window size (frames at n = 15) 31 
MCLNN trainable parameters (1st layer) 1,116,300 
MCLNN trainable parameters (2nd layer) 1,860,200 
Total trainable parameters 3,027,410 

   

Dataset split 

Frames count per clip 200 
Features count per frame 120 
Training count (clips) 3,120 
Validation count (clips) 80 
Testing count (clips) 80 

   

Input 

Segment size (frames at m = 2, k = 20)  81 
Training count (segments) 374,400 
Validation count (segments) 9,600 
Testing count (segments) 9,600 
Batch size (segments) 600 

   

Time and Memory 
Average training time per fold (hours) 13 
Total training time (hours) 67 
Total memory (GB) 15 

 

We used two densely-connected layers of neurons of 100 nodes and a 50% dropout 

each following the common MCLNN architecture used for environmental sounds. The 

mini-batch size used 600 samples per batch. Table 7.20 lists accuracies achieved using 

the MCLNN in addition to other attempts in the literature. The MCLNN surpassed several 

CNN attempts, achieving an accuracy of 85.5% without augmentation compared for 

example to the Piczak-CNN that achieved 80% using 10 augmentation variants. The 

attempt of Piczak [87] used state-of-the-art CNN model formed of two convolutional, two 
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pooling and two fully-connected layers of 5000 neurons each. The Piczak-CNN used two 

channels one for a 60 Mel-Scaled spectrogram and the other channel for delta (1st 

derivative across the spectrogram frames). Piczak extended the ESC-10 dataset with 10 

augmentation variants for each file in the dataset, which involves applying a deformation 

to the signal such as time delay and pitch shifting. Augmentation is a method to increase 

the dataset and consequently the generalization of the model to more samples, which 

increases the accuracy. The influence of augmentation was also studied in [16]. The 

MCLNN achieved 85.25% using 12 augmentation variants (generated using Muda [200]), 

where 8 variants involved pitch shifting (ranging from -3.5 to 3.5 with a 0.5 semitone-

shift), following a subset of the pitch-shift augmentations proposed in [16] and 4 variants 

of time delays (ranging from -0.3 to 0.3 logarithmic space-shifting). Despite the increase 

in the dataset size using augmentation, which consequently requires a larger model with 

more trainable parameters, we used the same MCLNN applied to the nonaugmented 

version of the dataset and the MCLNN was capable of achieving a comparable accuracy.    

Table 7.20 MCLNN performance on the ESC-10 dataset compared with other attempts 
in the literature 

Classifier and Features Acc. % ± Std. 

MCLNN (k = 40, 101 frames) + Mel-Scaled Spec. (this work)2 85.50 ± 4.91  
MCLNN (k = 20, 81 frames) + Mel-Scaled Spec. (this work)1 85.25 ± 4.70  
MCLNN (k = 1) + Mel-Scaled Spec. (this work)2 83.00 ± 4.00 
SoundNet (layers = 5) + Raw Waveform [219]2 82.30 
MCLNN (k = 25) + Mel-Scaled Spec. (this work)2  82.00 ± 5.04 
Piczak-CNN (Long Segment, 101 frames)+ Mel-Scaled Spec. [87]1 80.00  
Piczak-CNN (Short Segment, 41 frames) + Mel-Scaled Spec. [87]1 78.50  
CLNN (k = 25) + Mel-Scaled Spec. (this work)2  77.50 ± 4.26 
CLNN (k = 40, 101 frames) + Mel-Scaled Spec. (this work)2 75.75 ± 3.22 
SoundNet (layers = 8) + Raw Waveform [219]2 75.50 
CLNN (k = 1) + Mel-Scaled Spec. (this work)2  73.25 ± 5.22 
Random Forest + MFCC [23]2 72.70  
1Augmentation 
2Without Augmentation 
 

We adopted the spectrogram transformation used by Piczak to avoid the influence of 

the data transformation in evaluating the performance of the MCLNN. Piczak-CNN 

achieved 80% accuracy using 25 million parameters compared to the 3 million parameters 

utilized by the MCLNN. On the other hand, the MCLNN achieved 85.5% using 12% of 

the parameters used by Piczak-CNN with the same intermediate signal representation.  
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The work of Piczak studied the influence of the segment size introduced to the 

network, where he attempted using a long segment of 101 frames and a short segment of 

41 frames. The MCLNN segment size for the model we used was 101 frames in length (n 

= 15, m = 2 and k = 40 + 1, 1 for the windows middle frame), which matches the same 

long segment of Piczak-CNN. 

The work of Aytar et al. [219] proposed two different CNN models of depth 5 and 8 

layers, respectively. They achieved an accuracy of 82.3% using the 5 layers model and 

75.5% with the 8 layers architecture trained on the raw waveform. Their attempt did not 

only introduce a convolutional architecture for the sound classification problem, but they 

also proposed leveraging the natural synchronization between the vision and sound in 

videos to enhance the training of their proposed architectures. They experimented using 

deep architectures such as VGG [220] and AlexNet [13], each pretrained on two public 

datasets composed of millions of images (ImageNet is 1.2 million and Places is 10 

million). The two deep CNN vision networks were used to extract features from 2 million 

videos forming a year of continuous sound and video, where the audio channel was used 

to train another deep CNN network on the raw signal. The accuracy of their pretrained 

sound network surpassed the performance in Table 7.20. Accordingly, we will consider 

using the MCLNN in combination with vision networks to enhance the performance. 

Arandjelovic et al. [221] proposed a similar paradigm to the SoundNet, which will be 

discussed in the next section. 

To evaluate the performance of the CLNN, we used the same architectures utilized for 

the MCLNN, but without the masking. Table 7.20 lists the accuracies achieved using the 

CLNN. The influence of the mask is clear from the CLNN reported accuracies accounting 

for the functionalities introduced by the mask discussed earlier. 

Figure 7.7 shows the actual confused file count and the normalized percentage of 

confusion. There is a high confusion rate between the Clock Tick sounds and the Fire 

Cracking, due to the overlapping short events. Confusion is also noticed among the 

Chainsaw sound and both the Rain and Sea Waves categories due to the common low-

frequency components.  
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a.  

b.  

Classes: Dog Bark(DB), Rain(Ra), Sea Waves(SW), Baby Cry(BC), Clock 
Tick(CT),Person Sneeze(PS), Helicopter(He), Chainsaw(Ch), Rooster(Ro) and Fire 

Cracking(FC). a) actual count and b) normalized count in percentage 
Figure 7.7 Confusion matrix for the ESC-10 dataset. 

7.6 ESC-50 
The ESC-50 [23] dataset has a collection of 50 classes of environmental sounds. The 

dataset is the parent collection of the ESC-10 dataset. We applied the same 

transformations applied on the ESC-10 dataset; we trimmed the files to remove silence, 

cloned the files to shorter than 5 seconds and extracted 5 seconds from each file in the 

dataset. Further pre-processing involves the one applied to the environmental sounds 

datasets as described in the common section earlier.  Table 7.21 lists the ESC-50 classes. 

The parameters used for the model, and the training complexity statistics are captured in 

Table 7.22, and in a different setting, we applied augmentation to the ESC-50 dataset, 

where the training complexity statistics are listed in Table 7.23.    
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Table 7.21 ESC-50 dataset 

Release date 2015 
Total #  2000 
Files format .ogg 
Classes # 10 
Classes (instances) Hand saw 

Fireworks 
Airplane 
Church bells 
Train 
Engine 
Car horn 
Siren 
Chainsaw 
Helicopter 
Glass breaking 
Ticking clock 
Alarm clock 
Vacuum cleaner 
Washing machine 
Can opening 
Creaks (door/wood) 

Keyboard typing 
Mouse click 
Knocking 
Drinking / sipping 
Snoring 
Tooth brushing 
Laughing 
Footsteps 
Coughing 
Breathing 
Clapping 
Sneezing 
Baby crying 
Thunderstorm 
Toilet flush 
Pouring water 
Wind 

Water drops 
Chirping birds 
Crickets 
Crackling fire 
Sea waves 
Rain 
Crow 
Sheep 
Insects 
Hen 
Cat 
Frog 
Cow 
Pig 
Rooster 
Dog  

Files arrangement 5-folds 
Sampling Rate  44100 Hz 
File Duration 5 seconds 
 

 

Table 7.22 Training complexity for the ESC-50 dataset 

Model 

Number of MCLNN layers (e = 300) 1 
Number of Dense layers 2 
Window size (frames at n = 14) 29 
MCLNN trainable parameters 1,044,300 
Total trainable parameters 1,102,050 

   

Dataset split 

Frames count per clip 200 
Features count per frame 120 
Training count (clips) 1,200 
Validation count (clips) 400 
Testing count (clips) 400 

   

Input 

Segment size (frames at m = 1, k = 40)  69 
Training count (segments) 158,400 
Validation count (segments) 52,800 
Testing count (segments) 52,800 
Batch size (segments) 300 
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Table 7.23 Training complexity for the ESC-50 dataset with Augmentation 

We used two fully-connected layers of 100 nodes each of a dropout of 50% each. We 

used a shallow MCLNN model adopted from the common section but with an order n = 

14 and extra frames k = 40.  Table 7.24 lists the accuracies achieved using the MCLNN 

and other attempts. A shallow MCLNN achieved an accuracy of 62.85% without any 

augmentation. The Piczak-CNN referenced in the table is the same architecture used for 

the ESC-10 dataset, which is composed of 25 million parameters. It achieved an accuracy 

of 64.5% with 4 augmentations. The shallow MCLNN achieved a comparable accuracy, 

without augmentation, using approximately 1 million parameters. Accordingly, the 

accuracies reported with the MCLNN account for 4% of the parameters utilized by the 

Piczak-CNN. Moreover, the spectrogram transformation used for the MCLNN is the 

same transformation adopted by Piczak-CNN. 

Augmentation increases the accuracy as studied by Salamon et al. in [16]. The Piczak-

CNN [87] applied 4 augmentation variants using different time delays and pitch shifting. 

Execution statistics 
Average training time per fold (hours) 5 
Total training time (hours) 25 
Total memory (GB) 9 

Model 

Number of MCLNN layers (e = 300) 1 
Number of Dense layers 2 
Window size (frames at n = 14) 29 
MCLNN trainable parameters 1,044,300 
Total trainable parameters 1,102,050 

   

Dataset split 

Frames count per clip 200 
Features count per frame 120 
Training count (clips) 6,000 
Validation count (clips) 400 
Testing count (clips) 400 

   

Input 

Segment size (frames at m = 1, k = 40)  69 
Training count (segments) 792,000 
Validation count (segments) 52,800 
Testing count (segments) 52,800 
Batch size (segments) 300 

   

Execution statistics 
Average training time per fold (hours) 22 
Total training time (hours) 111 
Total memory (GB) 29.5 
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To investigate the effect of the augmentation, we applied 4 augmentation variants (2 

pitch-shifting and 2 time-delay). The MCLNN achieved 66.25%, which is higher than the 

augmented attempt using the Piczak-CNN.  

Table 7.24 MCLNN performance on the ESC-50 dataset compared with other attempts 
in the literature 

Classifier and Features Acc. % ± Std.  

MCLNN (Shallow, k = 40, n = 14) + Mel-Spectrogram (This Work)1  66.25 ± 1.47 
SoundNet (layers = 5) + Raw Waveform [219]2 65.00 
Piczak-CNN + Mel-Spectrogram [87]1 64.50 
MCLNN (Shallow, k = 40, n = 14) + Mel-Spectrogram (This Work)2  62.85 ± 2.39 
L3-Net (layers = 8) + Log-Spec. [221]2 62.50 
MCLNN (Deep, k = 6, n = 14) + Mel-Spectrogram (This Work)2  61.75 ± 2.20 
SoundNet (layers = 8) + Raw Waveform [219]2 51.10 
Random Forest + MFCC [23]2 44.30 
1Augmentation 
2Without Augmentation 

The work of Aytar et al. [219] (SoundNet), as discussed in the previous section, 

proposed using two pretrained vision networks to instruct the training of a deep CNN 

network for the audio channel of a video. They proposed two deep architectures of the 

SoundNet of 5 layers and 8 layers, which achieved 65% and 51.1%, respectively. The 

work of Arandjelovic et al. [221] (L3-Net) proposed a similar architecture, but they 

investigated the performance of training the vision network concurrently from scratch. 

They trained the vision and the audio network on a task they refer to as the Audio-Visual 

Correspondence (AVC). They trained their model using 0.5 million videos, where the 

input to the vision network was an image of 224 × 224 in size and the sound network was 

trained on a 257 bins logarithmically scaled spectrogram. The output of the two networks 

is further fused through dense layers. They achieved an accuracy of 62.5% with their 

architecture without pretraining, and with the help of the vision network, trained on the 

0.5 million videos, they achieved higher accuracies than the ones in Table 7.24. The 

MCLNN surpassed both the L3-Net and the Soundnet without the visual networks. 

However, both works achieved accuracies higher than the ones listed in the table by 

incorporating a visual network. Accordingly, induced by the L3-Net and SoundNet, we 

will explore using the visual network to help in training an MCLNN deep network on the 

sound signal.           
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Figure 7.8 shows the confusion matrix for the 50 sound categories of the ESC-50 

dataset using the MCLNN with augmentation. 

 

Ai Airplane Cm Clock Alarm Do Dog In Insects Si Siren 
Be Breathing Co Can opening Ds Drinking-sipping Kt Keyboard typing Sn Sneezing 
Bt Brushing teeth Cr Crow En Engine La Laughing Sw Sea Waves 
Ca Cat Cs Chainsaw Fi Fireworks Mc Mouse Click Tf Toilet flush 
Cb Chirping birds Ct Clock Tick Fo Footsteps Pi Pig Th Thunderstorm 
Cf Crackling fire Cu Church bells Fr Frog Pw Pouring water Tr Train 
Cg Coughing Cw Cow Gb Glass Breaking Ra Rain Vc Vacuum Cleaner 
Ch Car horn Cy Crying baby He Hen Ro Rooster Wd Water drops 
Ck Crickets Dc Door-wood 

 
Hp Helicopter Sg Snoring Wi Wind 

Cl Clapping Dk Door knock Hs Hand saw Sh Sheep Wm Washing Machine 

Figure 7.8 Confusion matrix for the ESC-50 dataset. 
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7.7 Urbansound8k 
The dataset is collected from the www.freesound.org. Accordingly, the original files have 

different sampling rate and sizes. The authors of the dataset, extracted clips of a maximum 

of 4 seconds from the files. As an initial pre-processing step, we cloned files having events 

of less than 4 seconds in duration, e.g. gunshots, several times and extracted 4 seconds 

from the generated files. Further spectrogram transformation followed the process 

described in the common section for environmental sounds. Table 7.25 lists a summary 

of the Urbansound8K [24] dataset. The parameters used for the model, and the training 

complexity statistics are captured in Table 7.26. 

Table 7.25 Urbansound8K dataset 

Release date 2014 
Total #  8732 
Files format .wav 
Classes # 10 
Classes (instances) Air Conditioner (1000) 

Car Horns (429) 
Children Playing (1000) 
Dog Bark (1000) 
Drilling (1000) 
Engine Idling (1000) 
Gun Shot (374) 
Jackhammers (1000) 
Siren (929) 
Street Music (1000) 

Files arrangement 10-folds 
Sampling Rate  Different sampling rates of original 

recordings from www.freesound.org 
File Duration ≤ 4 seconds 

 

Table 7.26 Training complexity for the Urbansound8K dataset 

Model 

Number of MCLNN layers (e = 300) 1 
Number of Dense layers 2 
Window size (frames at n = 15) 31 
MCLNN trainable parameters 1,116,300 
Total trainable parameters 1,173,010 

   

Dataset split 

Frames count per clip 170 
Features count per frame 120 
Training count (clips) 7,079 
Validation count (clips) 837 
Testing count (clips) 816 
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Input 

Segment size (frames at m = 1, k = 50)  81 
Training count (segments) 318,555 
Validation count (segments) 36,720 
Testing count (segments) 37,665 
Batch size (segments) 500 

   

Execution statistics 
Average training time per fold (hours) 6.5 
Total training time (hours) 64.5 
Total memory (GB) 15 

 

The MCLNN layers are followed by a global single dimensional mean pooling layer 

of extra frames k = 5 and two 100 neurons fully-connected layers with 50% dropout each. 

The segments extracted from the spectrogram used a step of 2, i.e. the overlapping frames 

between two successive segments = segment length – 2. The minibatch size was 500 

samples per batch. The MCLNN achieved an accuracy of 74.37% using a shallow 

architecture and a long segment. Also, the MCLNN achieved 73.28% using a short 

segment in combination with a deep architecture as listed in Table 7.27. The highest non-

neural based accuracy of 73.7% was in the work of Salamon et al. [78]. They applied an 

unsupervised learning attempt using Spherical k-means to establish a dictionary of PCA 

reduced features of a mel-scaled spectrogram with Random Forest as a classifier. Piczak-

CNN [87] achieved an accuracy of 73.1%. Their model used 25 million parameters. 

Salamon et al. [16] used a deeper architecture than Piczak’s with fewer parameters, and 

it achieved 73.0%. The MCLNN achieved accuracies that surpass the CNN architectures 

using approximately 1 million parameters for the shallow architecture and 3 million for 

the deep one. Additionally, the spectrogram transformation we applied is the same one 

used by Piczak-CNN.  

Table 7.27 MCLNN performance on the Urbansound8K dataset compared with other 
attempts in the literature  

Classifier and Features Acc. % 
MCLNN (Shallow, k = 51) + Mel-Spectrogram (This Work) 74.37 ± 6.46 
Random Forest + Spherical K-Means + PCA + Mel-Spec.[78] 73.7 
MCLNN (Deep, k = 5) + Mel-Spectrogram (This Work) 73.28 ± 5.11 
Piczak-CNN + Mel-Spectrogram [87] 73.1 
S&B-CNN + Mel-Spectrogram [16] 73.0 
RBF-SVM + MFCC [24] 68.0 
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a.  

b.  

Classes: Air Conditioner(AC), Car Horns(CH), Children Playing(CP), Dog Bark(DB), 
Drilling(Dr), Engine Idling(EI), Gun Shot(GS), Jackhammers(Ja), Siren(Si) and Street 
Music(SM). a) actual count and b) normalized count in percentage. 

 
Figure 7.9 Confusion matrix for the Urbansound8k dataset.  

 

Figure 7.9 shows the confusion across the Urbansound8K categories. Low tonal 

components are effective in the confusion across Air Conditioner, Jackhammer, Drilling 

and Engine Idling categories. Similar findings were reported by Salamon et al. in [16]. 

7.8 YorNoise 
YorNoise is a dataset focusing on vehicle sounds (road and rail traffic) that we collected 

in the city of York. The sound recordings were captured by a professional recorder 

(TASCAM DR-40) fitted on a tripod at the height of 1 m. The dataset was recorded at a 
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sampling rate of 44 kHz with a mono channel, and a word depth of 16 bits. Recordings 

were taken in different locations near traffic movements, where vehicles were either 

speeding or shifting from stationary to the speed limit near bus stops. The traffic category 

contains all types of road vehicles irrespective of the size. The rail traffic was collected 

near the rail tracks outside the train station to avoid overlapping sound from passengers 

and the station loudspeaker announcements. The rail sounds were captured for trains of 

different sizes and types, e.g. cargo, passengers, etc., over tracks of varying distances 

from the microphone. The time taken by the longest train to pass across a microphone is 

approximately 40 seconds and the shortest 20 seconds. We listened to all the captured 

clips, which were 5 minutes each to validate the clips we were going to include in the 

dataset. Sounds of 4 seconds in duration were found to be sufficient for the human to 

distinguish environmental sounds as studied in [24]. Accordingly, all validated files were 

split into 4-second clips. We listened to all the 4 second files and dropped the files that 

were less than 4 seconds or silent ones. The filtered files were further redistributed into 

10-folds. The distribution considered that the 4-second clips belonging to the same 

original 5 minutes file reside in the same fold to avoid contaminating the folds with 

sounds from the same origin and consequently biasing the testing accuracy. The dataset 

is publicly available1. The details of the dataset are listed in Table 7.28. The parameters 

used for the model, and the training complexity statistics are captured in Table 7.29. 

Table 7.28 YorNoise dataset 

Release  Manually collected in the city of York 
Total #  1527 
Files format .wav 
Classes # 2 
Classes (instances) Rail (620) 

Traffic (907) 

Files arrangement 10-folds 

Sampling Rate  44100 Hz 

File Duration 4 seconds 
 

 

                                                                                 
1 https://github.com/fadymedhat/YorNoise 



 
Experiments 

 

109 
 

Table 7.29 Training complexity for the YorNoise dataset 

Model 

Number of MCLNN layers (e = 300) 1 
Number of Dense layers 2 
Window size (frames at n = 15) 31 
MCLNN trainable parameters 1,116,300 
Total trainable parameters 1,173,212 

   

Dataset split 

Frames count per clip 170 
Features count per frame 120 
Training count (clips) 8,285 
Validation count (clips) 977 
Testing count (clips) 997 

   

Input 

Segment size (frames at m = 1, k = 50)  81 
Training count (segments) 372,825 
Validation count (segments) 43,965 
Testing count (segments) 44,865 
Batch size (segments) 500 

   

Execution statistics 
Average training time per fold (hours) 7 
Total training time (hours) 69.5 
Total memory (GB) 18 

 
Since using the MCLNN on a two-class problem is not challenging, we appended the 

YorNoise dataset to the Urbansound8K, resulting in a total of 12 sound classes. We used 

the same model used for the Urbansound8k and spectrogram transformation described in 

the common section at the beginning of this chapter for the environmental sounds 

datasets. The MCLNN achieved a mean accuracy across 10-folds of 75.13% with a 

standard deviation of 5.02%. Figure 7.10 shows the confusion across the YorNoise and 

the Urbansound8k datasets. The YorNoise dataset was correctly categorized with 95.6% 

and 97.5% accuracy for the rail and traffic sound, respectively.  
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a.  

 

b.  

Classes: Air Conditioner(AC), Car Horns(CH), Children Playing(CP), Dog Bark(DB), 
Drilling(Dr), Engine Idling(EI), Gun Shot(GS), Jackhammers(Ja), Siren(Si), Street 
Music(SM), Rail (Ra) and Traffic (Tr). a) actual count and b) normalized count in 
percentage 

 
Figure 7.10 Confusion matrix for the YorNoise and Urbansound8k 
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7.9 Summary 
Through this chapter, we used several publicly available datasets used in benchmarking 

sound recognition models proposed in the literature. The models proposed in this thesis 

have shown an outperformance compared to other neural network based attempts 

including state-of-the-art Convolutional Neural Networks. The next chapter will provide 

further analysis with regard to the influence of different hyperparameters of the MCLNN 

and detailed comparison to Convolutional Neural Networks. 
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8  
Analysis 

The previously shown experiments have elaborated on the outperformance of the 

MCLNN compared to several neural network based architectures, in addition to the 

improved performance compared to several hand-crafted attempts and comparability to 

other methods applied to music genre classification and environmental sound recognition. 

The MCLNN has shown sustainability of the reported accuracies through extensive cross-

validation experiments compared to the state-of-the-art methods reported in the literature 

as discussed throughout the GTZAN and the ISMIR2004 experiments. Through these 

datasets, we have shown the influence of the data split and the generalization of the 

MCLNN to datasets of different distributions. This is also evident in the environmental 

datasets using very similar MCLNN architectures with few differences of the tunable 

parameters among the environmental sound datasets (Urbansound8k, YorNoise, ESC-10 

and ESC-50) and similarly for the music datasets (GTZAN, ISMIR2004, Ballroom and 

Homburg).  

In this chapter, we investigate the impact of different hyperparameters used in the 

models proposed with the help of the ESC-10 dataset due to its moderate size, which 

allows the feasibility of this kind of evaluation. In the second section of the chapter, we 

present a set of unbiased performance comparison among a single layer of Masked 

Conditional, Conditional, Convolutional and Locally-Connected layers benchmarked by 

all the public datasets used in this work. 
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8.1 Hyperparameter Evaluation 
In a different type of analysis, we used the ESC-10 dataset to investigate the effect of the 

mask and different hyperparameters introduced in the course of the CLNN and MCLNN 

architectures. We adapted the model referenced earlier in benchmarking the ESC-10 

dataset as a baseline, and we gradually changed each individual parameter of the first 

layer in a 2-layered architecture, while fixing the other parameters to the baseline values 

without special fine-tuning of the step value. All experiments for the upcoming analysis 

are based on the mean value of 5-folds cross-validation totalling to 300 runs (60 × 5-

folds).   

 

Figure 8.1 Accuracy and standard error on varying the Order n (baseline circled) 

Figure 8.1 shows the effect of increasing the order n on the accuracy (in percentage 

terms) for a two-layered CLNN and MCLNN. The figure shows that on average the 

accuracy is directly proportional to the order n with regard to the MCLNN, where it 

decreases beyond n = 15. This is accounted for by the increase in the number of neurons 

together with the decrease in the number of training samples due to the increasing n since 

increasing n involves wider segments extracted from the spectrogram. The plot also 

shows the effect of the masking operation in the MCLNN compared to the accuracies 

achieved with a CLNN. The masking operation in the MCLNN boosted the accuracy at 

different values of n accounting for the properties, discussed previously, achieved by the 

mask.  
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Figure 8.2 Accuracy and standard error on varying the Extra frames k (baseline 

circled). 

Figure 8.2 shows the effect of the aggregation operation for both the CLNN and 

MCLNN. Still, the effect of the masking is clear in the accuracies of the MCLNN 

compared to the CLNN with a slight increase in the accuracy over the increasing k. 

 

Figure 8.3 Accuracy and standard error on varying the Bandwidth bw (baseline circled) 
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Figure 8.4 Accuracy and standard error on varying the Overlap ov (baseline circled) 

Figure 8.3 and Figure 8.4 show the effect of varying the Bandwidth and the Overlap 

of the first layer of the MCLNN. In Figure 8.3, it is noticeable that increasing the 

bandwidth beyond bw = 20 causes a decrease in the accuracy. This is accounted to 

widening the scope of observation of a hidden node, which consequently prevents the 

node from learning about the distinctive features in a more focused region. On the 

contrary, decreasing the overlap, in Figure 8.4, using negative overlap values slightly 

increases the values with the increased sparseness, which suppresses the effect of the 

smearing of the energy across the frequency bins. This effect is depicted in the plot with 

the slight increase in the average accuracies of negative overlaps compared to positive 

ones.  

8.2 Comparison to Convolutional Neural Networks 
The intermediate signal representation and the general experimental settings have an 

influence, which could affect the overall performance of the reported accuracy. This 

presents a possibly biased result. In this section, we wanted to evaluate the performance 

of the MCLNN against Convolutional Neural Networks and its variant the Locally 

Connected Neural Networks (LCNN) [222], which are similar to CNN, but without 

weight sharing. We wanted to perform this evaluation in isolation from architectural, 

signal representation and hardware influences.  
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Figure 8.5 Conditional weight matrices scanning a spectrogram  
compared to the Convolutional filters 

Figure 8.5 shows a single dimensional convolutional layer composed of a set of filters 

each having a length matching the length of the feature vector, mimicking the CLNN 

weight matrices in scanning the spectrogram. The figure shows the conditional layers of 

a CLNN and their corresponding convolutional layers. Despite both layers having the 

same number of weights, the conditional layer allows for independent training between 

the frames compared to the convolutional filters. The vector-matrix transformation, 

between an individual frame and the weight matrix, projects the frame in a different 

dimensional space matching the number of hidden nodes while preserving the projection 

spacing between successive projected vectors. On the contrary, in the CNN layer, the 

feature spacings across individual vectors is not preserved between successive frames 

projected into the feature-maps using the convolutional filters. 

 

Figure 8.6 MCLNN generated segments compared to CNN    
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Figure 8.6 illustrates the output generated from an MCLNN and the corresponding 

output for the same input segments from a CNN. The pattern fluctuations shown in the 

MCLNN segments compared to the repetitive patterns appearing in the CNN pose that 

some features are left out by the CNN, which could be distinguishing properties to be 

used in classification.  

 

 Figure 8.7 Learned conditional weight matrices 

Figure 8.7 shows the learned weight matrices of an MCLNN of order n. There are d 

weight matrices following d = 2n + 1. Each of the d matrices is responsible for processing 

a single frame within the window of frames from a segment. The figure shows the learned 

pattern by a single weight matrix. The size of the matrix depends upon the feature vector 

length at the input and the number of neurons in the hidden layer. The pattern learned by 

each column represent the active connections to the corresponding hidden node from this 

specific matrix. The top section of the figure represents the concatenation of weight 
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columns taken from different cross sections across the d matrices, where the figure depicts 

a complete view of the weights, represented by the highlighted rectangular slice, 

connected to each of the hidden nodes. The shift between the pattern learned in one slice 

and its neighbouring slices is due to the effect of the bandwidth and the overlap 

parameters of the mask. For each slice in the top section of the figure, the structured 

pattern appearing represents the trained weights and the random unstructured noise 

represents the disabled weights controlled by the mask. 

The experiments in this section are applied using all the datasets used in the previous 

sections with their corresponding spectrogram representation used for either the music or 

the environmental sound classification tasks. The models involve a shallow architecture 

of each of the MCLNN, CLNN, CNN and LCNN followed by a pooling layer with the 

same k and n values used in each of the datasets relevant section discussed earlier with 

the absence of fully-connected layers, i.e. the output of the pooling layer is directly fed to 

a softmax layer. This section is not seeking to find the optimum architecture, but rather 

to provide an unbiased comparison of the accuracies between layers of different structure. 

The mean accuracy of 10/5-fold cross-validation for each dataset is reported in Table 8.1. 

The MCLNN achieved the highest accuracy across all the used datasets compared to the 

performance of the LCN and the CNN. Additionally, the CLNN achieved an accuracy 

that either surpasses or is comparable to a CNN and often surpasses an LCN, which shows 

to a certain extent an advantage in terms of performance in favour of the conditional 

structure of the CLNN and consequently the MCLNN. The table also lists the number of 

weights used by each layer for the different datasets in millions. The weights used by an 

MCLNN and a CLNN match exactly that of a CNN having filters of shapes proposed in 

Figure 8.5. 

Table 8.1 Comparison of shallow architectures of MCLNN, CLNN, CNN, and LCN 
layers and the parameters used to the nearest million 

 

 
 Urbansound8k Ballroom GTZAN ISMIR Homburg ESC-10 ESC-50 

MCLNN 67.3 83.1 83.2 83.5 55.4 74.3 50.3 
CLNN 61.1 72.8 79.0 83.3 54.5 71.3 42.0 
CNN 60.5 73.1 79.9 82.6 54.9 69.5 41.1 
LCN 59.9 71.8 78.4 82.4 54.4 70.3 41.3 
Parameter#        
LCN  57 129 5.6 3 1.2 57 42 
MCLNN/CLNN/CNN 1 2 0.5 0.5 0.6 1 1 



 
Analysis 

 

119 
 

 

a. Input spectrogram and its delta (ESC-10 pre-processing)  

 

b. MCLNN output  

 

c. PRelu output  

a) The input segments of the ESC-10 dataset, b) The output of the MCLNN in response 

to the input in (a), c) The output of the PRelu activations for the MCLNN output in (b). 

Figure 8.8 Visualizations for 30 consecutive segments.  
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Figure 8.8 shows the MCLNN response for 30 consecutive input segments. The 

segments are overlapping for visualization purposes, but each segment has a width equal 

to q – 2n and a height e, following the hidden layer node count. 

8.3 Summary  
This chapter presented an in-depth analysis of the effect of varying different 

hyperparameters of the models introduced in this work. Additionally, the chapter 

provided an evaluation of the proposed models in comparison to the Convolutional Neural 

Networks as a state-of-the-art model widely for image recognition and adapted to the 

sound recognition problem. 
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9  
Conclusions and 
Future Work  

OUND recognition is still an open research problem either from the signal 

processing and intermediate representation or the point of view of pattern 

recognition and machine learning. The literature has considered the two folds of 

the problem in an endeavour to provide systems capable of distinguishing and classifying 

sound.  Despite these attempts, we have not reached the stage of creating an artificial 

human-like hearing ability, and researchers approached the problem by tailoring the 

methods being introduced in relation to the type of sound being processed. Speech 

phonemes inspired most of the work in signal processing and pattern recognition models 

especially the use of Gaussian Mixture Model and Hidden Markov Model statistical 

combination. Similarly, in music genre recognition, cues special to music such as Timbre, 

Rhythm, and other musical perceptual properties were the driver in advancing methods 

targeted for this problem. Environmental sounds have been considered as well, exploiting 

methods devised for speech and music to fulfil application requirements such as 

surveillance, hearing impairments aids, and noise control to name a few.   

The intermediate signal representation of a sound signal has been considered as a 

handcrafting problem, where a variety of techniques have been proposed to extract 

features in either the time-domain or the frequency-domain representation of a signal. The 

S 
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process of feature extraction is usually an exhaustive manual process in terms of 

engineering the feature combination that can enhance the performance of a pattern 

recognition model. Automating the feature extraction process will facilitate developing 

generic models that can operate on a signal whatever its type without the need to handcraft 

the features to fit a specific nature related to the signal under consideration. 

Neural networks are pattern recognition models that have been around for years. They 

have primarily been used in classification with the help of handcrafted features introduced 

to them. Recent breakthrough attempts in neural networks have managed to use deep 

architectures of these models for hard problems in image recognition. The success of 

these deep architectures was not only in their use as classification models but in their 

ability to extract the features from raw images without using special handcrafted ones. 

Since the remarkable results they achieved in image recognition, they have been applied 

to a range of pattern recognition problems aiming to exploit their capabilities in 

automatically distinguishing relevant features. Despite the success of these models in 

image recognition, they have not achieved similar success for sound, especially when 

compared to handcrafted approaches.  

The neural network attempts are usually adapted to the sound problem after they 

achieve success in other fields such as image recognition. Since they are not designed to 

exploit the sound nature, they may not optimally harness sound related properties. In this 

thesis, we have introduced a new neural network model for a multi-channel temporal 

signal recognition such as sound. The model we are proposing in this work is designed to 

consider both the temporal and the spectral aspect of the signal exploiting the spectrogram 

of a sound signal as an intermediate representation.     

We have introduced the ConditionaL Neural Network (CLNN) and its extension the 

Masked ConditionaL Neural Network (MCLNN). The CLNN considers the temporal 

correlation across the frames of a temporal signal, which ensures that the influence of 

frames in proximity to each other is collectively taken into consideration rather than a 

bag-of-frame classification, where each frame is considered in isolation from its 

neighbours. The MCLNN extends the CLNN using a binary mask that embeds a 

systematic sparseness over the connections of the network. The enforced sparseness, 

extending from the filterbank design used in signal processing, allows embedding a 

filterbank-like behaviour inside the network. Filterbanks have been used widely in signal 
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analysis to allow aggregating different ranges of frequency components of a signal. A 

filterbank is used to subdivide the frequency domain to provide another spectrogram 

representation that has a lower number of dimensions, matching the number of filters 

used, compared to a raw spectrogram. Additionally, the filterbank design depends upon 

the bandwidth of each filter and the overlapping bands between filters. Similar parameters 

are used in the design of the mask. In addition to the role of the mask in controlling the 

active connections, mimicking a filterbank, it automates the exploration of several feature 

combinations concurrently during training, using several shifted versions of the 

filterbank-like pattern.      

Chapter 2 highlighted research efforts in sound recognition either in signal processing or 

machine learning disregarding the type of sound, i.e. speech, music and environmental 

sounds. The chapter attempted to refer to landmark attempts in both fields that started 

around seven decades ago or even more.  

Chapter 3 explored Spectrograms and Scalegrams as examples of widely used two-

dimensional representations of sound signals.  The signal pre-processing is an important 

stage. The chapter listed some of the widely used methods, for example, dimensionality 

reduction and data standardization. 

Chapter 4 presented some of the pattern recognition models used for temporal signals 

especially the combination of the Gaussian Mixture Model and the Hidden Markov Model 

used widely in speech recognition. 

Chapter 5 demonstrated an in-depth analysis of neural networks, and it highlighted neural 

network based architectures relevant to this work. The chapter referred to advances in 

neural networks and their applications in automating the feature extraction stage, which 

aims to eliminate the need to handcraft the features required by a recognition model.  

Chapter 6 explained the contribution of this work. The ConditionaL Neural Network 

(CLNN), a new model for sound recognition, that takes into consideration the temporal 

correlation across the frames of a sound signal. The CLNN is the platform upon which 

the Masked Conditional Neural Network (MCLNN) has been introduced. The MCLNN 

exploits the time-frequency representation of the signal by enforcing a systematic 

sparseness that follows a filterbank-like pattern. 
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Chapter 7 through an extensive set of experiments, has shown that the MCLNN 

without any special rhythmic or timbral analysis, especially for music datasets, sustains 

accuracies that surpass neural network based and hand-crafted feature extraction methods 

and comparable to others. Meanwhile, MCLNN still preserves the generalization that 

allows it to be adapted for any other multi-channel temporal representations. Through the 

datasets used in the experiments, we have shown the influence of the data split and the 

generalization of the MCLNN to datasets of different distributions. This is also evident 

in using very similar MCLNN architectures with few differences of the tuneable 

parameters across the datasets.  

Chapter 8 provided an in-depth analysis to evaluate the effect of varying the MCLNN 

hyperparameters. Additionally, the chapter considered an unbiased comparison between 

the MCLNN and a Convolutional Neural Network (CNN) of a similar architecture 

without changing any of the hyperparameters of the model, e.g. learning rate, 

optimization function,…,etc. The comparison has been applied over all the datasets 

considered in this work, where the MCLNN surpassed the performance of an equivalent 

layer of a CNN over all the datasets.      

Future work  
The Masked ConditionaL Neural Network (MCLNN) achieves accuracies that surpass 

widely used models based on the state-of-the-art Convolutional Neural Networks and 

comparable to hand-crafted features using several publicly available datasets. The 

MCLNN has achieved these accuracies without any special handling related to the 

signal’s nature, especially for musical signals, where several reported methods exploited 

musical perceptual properties to enhance the classification decision. The ability of the 

MCLNN to achieve this performance without any special pre-processing allows for the 

consideration of MCLNN for other multi-channel temporal signal representations, which 

we will consider for future work. Additionally, will include optimizing the mask patterns, 

considering different combinations of the order n, used to control the number of 

successive frames to be considered concurrently, across the layers and using MCLNN as 

a stand-alone feature extractor for other pattern analysis tasks. We will also consider 

applying MCLNN to other signals possessing a temporal nature. Similar to a 

Convolutional Recurrent Neural Network, merging the MCLNN to extract the local 

feature with the long-term dependencies captured by an LSTM will be explored. In 
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addition to investigating the application of the masking behaviour in combination with 

other neural networks models such as the CNN.
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Glossary 

AdaBoost Adaptive Boosting 

ASR Automatic Speech Recognition 

BM Boltzmann Machine 

BoF Bag of Frames 

BPM Beat per Minute 

BPTT Back Propagation Through Time 

CASA Computational Auditory Scene Analysis 

CD Contrastive Divergence 

CE Cross Entropy 

CG Conjugate Gradient 

CLNN ConditionaL Neural Network 

CNN Convolutional Neural Network 

Conv-DBN Convolutional Deep Belief Net 

Conv-RBM Convolutional Restricted Boltzmann Machine 

CRBM Conditional Restricted Boltzmann Machine 

CRF Conditional Random Field 

CWT Continuous Wavelet Transform  

DBN Deep Belief Net 
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DCT Discrete Cosine Transform 

DFT Discrete Fourier transform  

DWT Discrete Wavelet Transform  

ELU Exponential Linear Unit 

EM Expectation Maximization 

END Environmental Noise Directive 

ESR Environmental Sound Recognition  

FCRBM Factored Conditional Restricted Boltzmann Machine 

FFT Fast Fourier Transform 

FWT Fast Wavelet Transform  

GD Gradient Descent 

GMM Gaussian Mixture Model 

GPU Graphical Processing Unit 

HFCC Human Factor Cepstral Coefficients 

HMM Hidden Markov Model 

ICA Independent Component Analysis 

ICRBM Interpolating Conditional Restricted Boltzmann Machine 

KNN K-Nearest Neighbours 

LCNN Locally Connected Neural Network 

LDA Linear Discriminant Analysis 

LDB Local Discriminant Bases 

LPC Linear Predictive Coding 

LPCC Linear Predictive Cepstral Coefficients 

LSTM Long Short-Term Memory 
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MCLNN Masked ConditionaL Neural Network 

mcRBM mean-covariance Restricted Boltzmann Machine 

MFCC Mel-Frequency Cepstral Coefficients 

MIR Music Information Retrieval 

MLE Maximum Likelihood Estimation 

MLP Multi-layer perceptron 

MP Matching Pursuits 

MRF Markov Random Fields 

MSE Mean Square Error 

NMF Non-Negative Matrix Factorization 

PCA Principal Component Analysis 

PLPCC Perceptual Linear Predictive cepstral coefficients 

Prelu parametric rectified linear unit  

PSD Predictive Sparse Decomposition 

RASTA-PLP Relative Spectral Transform - Perceptual Linear Prediction 

RBF-SVM Radial Basis Function Support Vector Machine 

RBM Restricted Boltzmann Machine 

Relu rectified linear unit  

RNN Recurrent Neural Network 

SGD Stochastic Gradient Descent 

SNR Signal to Noise Ratio 

SOM Self-organizing Map 

STFT Short Time Fourier Transform 

SVM Support Vector Machine 
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VQ Vector Quantization 

ZC Zero Crossings 
 

 



130 
 

References 

[1] J. R. Barber, K. A. Warner, D. M. Theobald, C. L. Burdett, C. Formichella, K. M. 
Fristrup, et al., "Anthropogenic Noise Exposure In Protected Natural Areas: 
Estimating The Scale Of Ecological Consequences," Landscape Ecology, vol. 26, 
pp. 1281-1295, 2011. 

[2] M. S. Hammer, T. K. Swinburn, and R. L. Neitzel, "Environmental Noise 
Pollution in the United States: Developing an Effective Public Health Response," 
Environmental Health Perspectives, vol. 122, pp. 115-9, Feb 2014. 

[3] U. Kraus, A. Schneider, S. Breitner, R. Hampel, R. Ruckerl, M. Pitz, et al., 
"Individual Daytime Noise Exposure During Routine Activities and Heart Rate 
Variability in Adults: A Repeated Measures Study," Environmental Health 
Perspectives, vol. 121, pp. 607-12, May 2013. 

[4] E. E. M. M. v. Kempen, H. Kruize, H. C. Boshuizen, C. B. Ameling, B. A. M. 
Staatsen, and A. E. M. d. Hollander, "The Association between Noise Exposure 
and Blood Pressure and Ischemic Heart Disease: A Meta-analysis," 
Environmental Health Perspectives, vol. 110, pp. 307-317, 2002. 

[5] U. Landstrom, E. Akerlund, A. Kjellberg, and M. Tesarz, "Exposure Levels, 
Tonal Components, and Noise Annoyance in Working Environments," 
Environment International, vol. 21, pp. 265-275, 1995. 

[6] H. Leventhall, "Low frequency noise and annoyance," Noise and Health, vol. 6, 
pp. 59-72, 2004. 

[7] S. Haykin, Neural Networks: A Comprehensive Foundation: Pearson, 1997. 

[8] R. J. Williams and D. Zipser, "Gradient-based Learning Algorithms for Recurrent 
Networks and Their Computational Complexity," in Backpropagation, Y. 
Chauvin and D. E. Rumelhart, Eds., ed: L. Erlbaum Associates Inc., 1995, pp. 
433-486. 



References 

 

131 
 

[9] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Comput, 
vol. 9, pp. 1735-80, Nov 15 1997. 

[10] A. Graves and J. Schmidhuber, "Offline Handwriting Recognition with 
Multidimensional Recurrent Neural Networks," presented at the Advances in 
Neural Information Processing Systems (NIPS), 2009. 

[11] A. Graves, A.-r. Mohamed, and G. Hinton, "Speech Recognition With Deep 
Recurrent Neural Networks," in International Conference on Acoustics, Speech 
and Signal Processing, ICASSP, 2013. 

[12] A. Graves, S. Fernandez, and J. Schmidhuber, "Multi-Dimensional Recurrent 
Neural Networks," in International Conference on Artificial Neural Networks 
(ICANN), 2007. 

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with 
Deep Convolutional Neural Networks," in Neural Information Processing 
Systems, NIPS, 2012. 

[14] C. Szegedy, L. Wei, J. Yangqing, P. Sermanet, S. Reed, D. Anguelov, et al., 
"Going deeper with convolutions," in IEEE Conference on Computer Vision and 
Pattern Recognition, CVPR, 2015, pp. 1-9. 

[15] C. Kereliuk, B. L. Sturm, and J. Larsen, "Deep Learning and Music Adversaries," 
IEEE Transactions on Multimedia, vol. 17, pp. 2059-2071, 2015. 

[16] J. Salamon and J. P. Bello, "Deep Convolutional Neural Networks and Data 
Augmentation for Environmental Sound Classification," IEEE Signal Processing 
Letters, 2016. 

[17] L. Hertel, H. Phan, and A. Mertins, "Comparing Time and Frequency Domain for 
Audio Event Recognition using Deep Learning," in IEEE International Joint 
Conference on Neural Networks (IJCNN), 2016. 

[18] P. Barros, C. Weber, and S. Wermter, "Learning Auditory Neural Representations 
for Emotion Recognition," in IEEE International Joint Conference on Neural 
Networks (IJCNN/WCCI), 2016. 

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum Likelihood from 
Incomplete Data via the EM Algorithm," Royal Statistical Society, vol. 39, pp. 1–
38, 1977. 

[20] L. E. Baum and T. Petrie, "Statistical Inference for Probabilistic Functions of 
Finite State Markov Chains," The Annals of Mathematical Statistics, vol. 37, pp. 
1554-1563, 1966. 



References 

 

132 
 

[21] G. D. Forney, "The Viterbi Algorithm," Proceedings of the IEEE, vol. 61, pp. 
268-278, 1973. 

[22] L. Rabiner and B. Juang, "An Introduction To Hidden Markov Models," IEEE 
ASSP Magazine, vol. 3, pp. 4-16, 1986. 

[23] K. J. Piczak, "ESC: Dataset for Environmental Sound Classification," in ACM 
International Conference on Multimedia 2015, pp. 1015-1018. 

[24] J. Salamon, C. Jacoby, and J. P. Bello, "A Dataset and Taxonomy for Urban Sound 
Research," in Proceedings of the 22nd ACM International Conference on 
Multimedia, Orlando, USA, 2014, pp. 1041-1044. 

[25] K. H. Davis, R. Biddulph, and S. Balashek, "Automatic Recognition of Spoken 
Digits," Journal of the Acoustical Society of America, vol. 24, pp. 637-642, 1952. 

[26] J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calculation of 
Complex Fourier Series," Mathematics of Computation, vol. 19, pp. 297-301, 
1965. 

[27] G. McLachlan and D. Peel, Finite Mixture Models: John Wiley & Sons, Inc. , 
2000. 

[28] L. R. Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications 
in Speech Recognition," Proceedings of the IEEE, vol. 77, pp. 257 - 286, 1989. 

[29] X. He and L. Deng, "Discriminative Learning for Speech Recognition: Theory 
and Practice," Synthesis Lectures on Speech and Audio Processing, vol. 4, pp. 1-
112, 2008. 

[30] L. Deng and X. Li, "Machine Learning Paradigms for Speech Recognition: An 
Overview," IEEE Transactions on Audio, Speech, and Language Processing, vol. 
21, pp. 1060-1089, 2013. 

[31] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, 
"Content-Based Music Information Retrieval: Current Directions and Future 
Challenges," Proceedings of the IEEE, vol. 96, pp. 668-696, 2008. 

[32] E. Wold, T. Blum, D. Keislar, and J. Wheaten, "Content-based classification, 
search, and retrieval of audio," IEEE Multimedia, vol. 3, pp. 27-36, 1996. 

[33] H. Soltau, T. Schultz, MartinWestphal, and A. Waibel, "Recognition Of Music 
Types," in International Conference on Acoustics, Speech, and Signal Processing, 
ICASSP, 1998. 



References 

 

133 
 

[34] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A Training Algorithm for Optimal 
Margin Classifiers," in Proceedings of the fifth annual workshop on 
Computational Learning Theory, COLT, 1992. 

[35] M. I. Mandel and D. P. W. Ellis, "Song-Level Features And Support Vector 
Machines For Music Classification," in International Conference on Music 
Information Retrieval, ISMIR, 2005. 

[36] G. Tzanetakis, G. Essl, and P. Cook, "Automatic Musical Genre Classification Of 
Audio Signals," in International Symposium on Music Information Retrieval, 
ISMIR, 2001. 

[37] G. Tzanetakis and P. Cook, "Musical Genre Classification of Audio Signals," 
IEEE Transactions On Speech And Audio Processing vol. 10, 2002. 

[38] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B. Kégl, "Aggregate Features 
And AdaBoost For Music Classification," Machine Learning, vol. 65, pp. 473-
484, 2006. 

[39] Y. Freund and R. E. Schapire, "A Decision-Theoretic Generalization of On-Line 
Learning and an Application to Boosting," Journal of Computer and System 
Sciences, vol. 55, pp. 119-139, 1997. 

[40] R. Cruz, A. Ortiz, A. M. Barbancho, and I. Barbancho, "Unsupervised 
Classification of Audio Signals by Self-Organizing Maps and Bayesian 
Labeling," Lecture Notes in Computer Science: Hybrid Artificial Intelligent 
Systems, vol. 7208, pp. 61-70, 2012. 

[41] T. Kohonen, "Self-Organized Formation of Topologically Correct Feature Maps," 
Biological Cybernetics, vol. 43, pp. 59-69, 1982. 

[42] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, "A Survey of Audio-Based Music 
Classification and Annotation," IEEE Transactions On Multimedia, vol. 13, 2011. 

[43] A. Holzapfel and Y. Stylianou, "Musical Genre Classification using Nonnegative 
Matrix Factorization-Based Features," IEEE Transactions on Audio Speech and 
Language Processing, vol. 16, pp. 424-434, Feb 2008. 

[44] J. J. Aucouturier, B. Defreville, and F. Pachet, "The Bag-Of-Frames Approach to 
Audio Pattern Recognition: A Sufficient Model for Urban Soundscapes but not 
for Polyphonic Music," Journal of the Acoustical Society of America, vol. 122, 
pp. 881-91, Aug 2007. 

[45] I. Panagakis, E. Benetos, and C. Kotropoulos, "Music Genre Classification: A 
Multilinear Approach," in International Society for Music Information Retrieval, 
ISMIR, 2008. 



References 

 

134 
 

[46] Y. Panagakis, C. Kotropoulos, and G. R. Arce, "Music Genre Classification using 
Locality Preserving Non-Negative Tensor Factorization and Sparse 
Representations," in International Society for Music Information Retrieval 
Conference, ISMIR, 2009. 

[47] J. Anden and S. Mallat, "Deep Scattering Spectrum," IEEE Transactions on 
Signal Processing, vol. 62, pp. 4114-4128, 2014. 

[48] M. Henaff, K. Jarrett, K. Kavukcuoglu, and Y. LeCun, "Unsupervised Learning 
Of Sparse Features For Scalable Audio Classification," in International Society 
for Music Information Retrieval, ISMIR, 2011. 

[49] K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun, "Fast Inference in Sparse Coding 
Algorithms with Applications to Object Recognition," Cornell University Library, 
arxiv, 2008. 

[50] G. E. Hinton and R. R. Salakhutdinov, "Reducing the Dimensionality of Data with 
Neural Networks," Science, vol. 313, pp. 504-7, Jul 28 2006. 

[51] P. Hamel and D. Eck, "Learning Features From Music Audio With Deep Belief 
Networks," in International Society for Music Information Retrieval Conference, 
ISMIR, 2010. 

[52] H. Lee, Y. Largman, P. Pham, and A. Y. Ng, "Unsupervised Feature Learning for 
Audio Classification using Convolutional Deep Belief Networks," in Neural 
Information Processing Systems (NIPS), 2009. 

[53] S. Dieleman and B. Schrauwen, "End-To-End Learning For Music Audio," in 
International Conference on Acoustics, Speech and Signal Processing, ICASSP, 
2014. 

[54] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied 
to document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998. 

[55] A. v. d. Oord, S. Dieleman, and B. Schrauwen, "Deep Content-Based Music 
Recommendation," in Neural Information Processing Systems, NIPS, 2013. 

[56] J. Pons, T. Lidy, and X. Serra, "Experimenting with Musically Motivated 
Convolutional Neural Networks," in International Workshop on Content-based 
Multimedia Indexing, CBMI, 2016. 

[57] The European Parliament and of the Council, "Directive 2002/49/EC of the 
European Parliament and of the Council relating to the Assessment and 
Management of Environmental Noise," 2002. 



References 

 

135 
 

[58] A. Dufaux, L. Besacier, M. Ansorge, and F. Pellandini, "Automatic Sound 
Detection and Recognition for Noisy Environment," in European Signal 
Processing Conference (EUSIPCO), 2000. 

[59] L. Couvreura and M. Laniray, "Automatic Noise Recognition in Urban 
Environments Based on Artificial Neural Networks and Hidden Markov Models," 
in International Congress and Exposition on Noise Control Engineering (INTER-
NOISE), 2004. 

[60] M. Cristani, M. Bicego, and V. Murino, "Audio-Visual Event Recognition in 
Surveillance Video Sequences," IEEE Transactions on Multimedia, vol. 9, pp. 
257-267, 2007. 

[61] D. Chesmore and J. Schofield, "Acoustic Detection of Regulated Pests in 
Hardwood Material," European and Mediterranean Plant Protection 
Organization Bulletin (EPPO), vol. 40, pp. 46-51, 2010. 

[62] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, "Towards Robotic 
Assistants in Nursing homes: Challenges and Results," Robotics and Autonomous 
Systems, vol. 42, pp. 271-281, 2003. 

[63] M. Popescu and A. Mahnot, "Acoustic Fall Detection Using One-Class 
Classifiers," in Annual International Conference of the Engineering in Medicine 
and Biology Society, EMBC, 2009, pp. 2-6. 

[64] R. S. Goldhor, "Recognition of Environmental Sounds," in IEEE International 
Conference on Acoustics, Speech, and Signal Processing (ICASSP), 1993, pp. 
149-152 vol.1. 

[65] P. Gaunard, C. G. Mubikangiey, C. Couvreur, and V. Fontaine, "Automatic 
Classification Of Environmental Noise Events By Hidden Markov Models," in 
IEEE International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 1998, pp. 3609-3612. 

[66] D. O’Shaughnessy, "Linear predictive coding," IEEE Potentials, vol. 7, pp. 29-
32, 1988. 

[67] T. Zhang and C.-C. J. Kuo, "Hierarchical Classification Of Audio Data For 
Archiving And Retrieving," in IEEE International Conference on Acoustics, 
Speech, and Signal Processing, 1999, pp. 3001-3004. 

[68] S. Akhtar, M. Elshafei-Ahmed, and M. S. Ahmed, "Detection of Helicopters 
Using Neural Nets," IEEE Transactions on Instrumentation and Measurement, 
vol. 50, pp. 749 - 756, 2001. 



References 

 

136 
 

[69] E. D. Chesmore, "Application of Time Domain Signal Coding and Artificial 
Neural Networks to Passive Acoustical Identification of Animals," Applied 
Acoustics, vol. 62, p. 16, 2001. 

[70] M. Cowling and R. Sitte, "Comparison of Techniques for Environmental Sound 
Recognition," Pattern Recognition Letters, vol. 24, pp. 2895-2907, 2003. 

[71] A. J. Eronen, V. T. Peltonen, J. T. Tuomi, A. P. Klapuri, S. Fagerlund, T. Sorsa, 
et al., "Audio-Based Context Recognition," IEEE Transactions on Audio, Speech 
and Language Processing, vol. 14, pp. 321-329, 2006. 

[72] F. Su, L. Yang, T. Lu, and G. Wang, "Environmental Sound Classification for 
Scene Recognition using Local Discriminant Bases and HMM," in International 
Conference on Multimedia (MM), 2011, p. 1389. 

[73] N. Saito and R. R. Coifman, "Local Discriminant Bases and their Applications," 
Journal of Mathematical Imaging and Vision, vol. 5, pp. 337-358, 1995. 

[74] T. Heittola, A. Mesaros, A. Eronen, and T. Virtanen, "Context-Dependent Sound 
Event Detection," Journal on Audio Speech and Music Processing (Eurasip), Jan 
9 2013. 

[75] S. Chu, S. Narayanan, and C.-C. J. Kuo, "Environmental Sound Recognition with 
Time-Frequency Audio Features," IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 17, pp. 1142-1158, 2009. 

[76] S. G. Mallat and Z. Zhang, "Matching Pursuits with Time-Frequency 
Dictionaries," IEEE Transactions on Signal Processing, vol. 41, pp. 3397-3415, 
1993. 

[77] O. Dikmen and A. Mesaros, "Sound Event Detection using Non-Negative 
Dictionaries Learned from Annotated Overlapping Events," in Workshop on 
Applications of Signal Processing to Audio and Acoustics (WASPAA), 2013. 

[78] J. Salamon and J. P. Bello, "Unsupervised Feature Learning for Urban Sound 
Classification," in IEEE International Conference on Acoustics, Speech, and 
Signal Processing (ICASSP), 2015. 

[79] I. S. Dhillon and D. S. Modha, "Concept Decompositions for Large Sparse Text 
Data Using Clustering," in Machine Learning. vol. 42, ed, 2001, pp. 143-175. 

[80] J. Salamon and J. P. Bello, "Feature Learning With Deep Scattering for Urban 
Sound Analysis," in European Signal Processing Conference (EUSIPCO), 2015. 

[81] G. Wichern, J. Xue, H. Thornburg, B. Mechtley, and A. Spanias, "Segmentation, 
Indexing, and Retrieval for Environmental and Natural Sounds," IEEE 



References 

 

137 
 

Transactions on Audio, Speech, and Language Processing, vol. 18, pp. 688-707, 
2010. 

[82] S. Chachada and C.-C. J. Kuo, "Environmental Sound Recognition: A Survey," in 
Asia-Pacific Signal and Information Processing Association (APSIPA), 2013. 

[83] S. P. Mohanapriya, E. P. Sumesh, and R. Karthika, "Environmental Sound 
Recognition Using Gaussian Mixture Model And Neural Network Classifier," in 
International Conference on Green Computing Communication and Electrical 
Engineering, ICGCCEE, 2014, pp. 1-5. 

[84] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. D. Plumbley, 
"Detection and Classification of Acoustic Scenes and Events," IEEE Transactions 
on Multimedia, vol. 17, pp. 1733-1746, 2015. 

[85] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, "Polyphonic Sound Event 
Detection using Multi Label Deep Neural Networks," in International Joint 
Conference on Neural Networks (IJCNN), 2015, pp. 1-7. 

[86] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu, 
"Convolutional Neural Networks for Speech Recognition," IEEE/ACM 
Transactions on Audio, Speech and Language Processing, vol. 22, pp. 1533-1545, 
Oct 2014. 

[87] K. J. Piczak, "Environmental Sound Classification with Convolutional Neural 
Networks," in IEEE international workshop on Machine Learning for Signal 
Processing (MLSP), 2015. 

[88] T. Li, M. Ogihara, and Q. Li, "A Comparative Study on Content-Based Music 
Genre Classification," in ACM SIGIR Conference on Research and Development 
in Information Retrieval, SIGIR, 2003. 

[89] T. Li and G. Tzanetakis, "Factors in Automatic Musical Genre Classification of 
Audio Signals," in IEEE workshop on Applications of Signal Processing to Audio 
and Acoustics, 2003. 

[90] T. Lidy and A. Rauber, "Evaluation Of Feature Extractors And Psycho-Acoustic 
Transformations For Music Genre Classification," in International Conference on 
Music Information Retrieval, ISMIR, 2005. 

[91] E. Pampalk, A. Flexer, and G. Widmer, "Improvements Of Audio-Based Music 
Similarity And Genre Classification," in International Conference on Music 
Information Retrieval, ISMIR, 2005. 

[92] N. Scaringella, G. Zoia, and D. Mlynek, "Automatic genre classification of music 
content: a survey," IEEE Signal Processing Magazine, vol. 23, pp. 133-141, 2005. 



References 

 

138 
 

[93] T. Lidy, A. Rauber, A. Pertusa, and J. M. Inesta, "Improving Genre Classification 
By Combination Of Audio And Symbolic Descriptors Using A Transcription 
System," in International Conference on Music Information Retrieval, 2007. 

[94] G. Peeters, "Spectral and Temporal Periodicity Representations of Rhythm for the 
Automatic Classification of Music Audio Signal," IEEE Transactions on Audio, 
Speech, and Language Processing, vol. 19, pp. 1242-1252, 2011. 

[95] M. R. Ito and R. W. Donaldson, "Zero-Crossing Measurements for Analysis and 
Recognition of Speech Sounds," IEEE Transactions On Audio And 
Electroacoustics, vol. 19, pp. 235 - 242, 1971. 

[96] S. K. Park, R. M. Kil, Y.-G. Jung, and M.-S. Han, "Zero-Crossing-Based Feature 
Extraction for Voice Command Systems Using Neck-Microphones," in Lecture 
Notes in Computer Science. vol. 4491, ed: Springer Berlin Heidelberg, 2007, pp. 
1318-1326. 

[97] M. Ghulam, J. Horikawa, and T. Nitta, "A Pitch-Synchronous Peak-Amplitude 
Based Feature Extraction Method For Noise Robust ASR," in IEEE International 
Conference on  Acoustics, Speech and Signal Processing, ICASSP, Toulouse, 
2006. 

[98] R. Gubka and M. Kuba, "A Comparison Of Audio Features For Elementary Sound 
Based Audio Classification," in International Conference on Digital Technologies 
(DT), 2013. 

[99] W. Zhu, Y. Wang, and Q.-F. Zhu, "Second-Order Derivative-Based Smoothness 
Measure for Error Concealment in DCT-Based Codecs," IEEE Transactions On 
Circuits And Systems For Video Technology, vol. 8, pp. 713 - 718, 1998. 

[100] K. P. Balanda and H. L. MacGillivray, "Kurtosis: A Critical Review," The 
American Statistician, vol. 42, pp. 111-119, 1988. 

[101] S. Busson, C. Gervaise, A. Barazzutti, B. Kinda, V. Jaud, L. Chauvaud, et al., 
"Higher-order statistics for bioacoustic click detection," in 10`eme Congres 
Francais d’Acoustique, Lyon, 2010. 

[102] D. P. W. Ellis, X. Zeng, and J. H. McDermott, "Classifying Soundtracks With 
Audio Texture Features," in IEEE International Conference on Acoustics, Speech 
and Signal Processing, ICASSP, Prague, 2011, pp. 5880–5883. 

[103] F. J. Harris, "On the use of windows for harmonic analysis with the discrete 
Fourier transform," Proceedings of the IEEE, vol. 66, pp. 51-83, 1978. 

[104] W. Chu and B. Champagne, "A Noise-Robust FFT-Based Auditory Spectrum 
With Application in Audio Classification," IEEE Transactions On Audio, Speech, 
And Language Processing, vol. 16, pp. 137-150, 2008. 



References 

 

139 
 

[105] B. Boashash, Time-Frequency Signal Analysis and Processing – A 
Comprehensive Reference. Oxford: Elsevier, 2003. 

[106] S. S. Stevens, J. Volkmann, and E. B. Newman, "A Scale for the Measurement of 
the Psychological Magnitude Pitch," Acoustical Society of America, vol. 8, p. 185, 
1937. 

[107] P. M. P1, S. B. Yaacob, A. Nazri, and S. Kumar, "Classification of Vowel Sounds 
Using MFCC and Feed Forward Neural Network," in Signal Processing & Its 
Applications, CSPA, Kuala Lumpur, 2009, pp. 59 - 62. 

[108] T. Kinnunen, R. Saeidi, Filip Sedlák, Kong Aik Lee, J. Sandberg, M. Hansson-
Sandsten, et al., "Low-Variance Multitaper MFCC Features: A Case Study in 
Robust Speaker Verificatio," IEEE Transactions On Audio, Speech, And 
Language Processing, vol. 20, pp. 1990 - 2001, 2012. 

[109] G. I. Sapijaszko and W. B. Mikhael, "An Overview Of Recent Window Based 
Feature Extraction Algorithms For Speaker Recognition," in IEEE International 
Midwest Symposium on Circuits and Systems, MWSCAS, 2012, pp. 880 - 883. 

[110] H. Hermansky, "Perceptual linear predictive (PLP) analysis of speech," The 
Journal of the Acoustical Society of America, vol. 87, p. 1738, 1990. 

[111] H. Hermansky, N. Morgan, A. Bayya, and P. Kohn, "RASTA-PLP speech 
analysis technique," in IEEE International Conference on Acoustics, Speech, and 
Signal Processing, ICASSP, 1992, pp. 121-124. 

[112] M. D. Skowronski and J. G. Harris, "Human factor cepstral coefficients," The 
Journal of the Acoustical Society of America, vol. 112, p. 2279, 2002. 

[113] F. Hönig, G. Stemmer, C. Hacker, and F. Brugnara, "Revising Perceptual Linear 
Prediction (PLP)," in INTERSPEECH, ISCA, 2005, pp. 2997-3000. 

[114] B. Ricaud and B. Torrésani, "A survey of uncertainty principles and some signal 
processing applications," Advances in Computational Mathematics, vol. 40, pp. 
629-650, 2013. 

[115] P. D. Shukla, "Complex Wavelet Transforms And Their Applications," M.Phil., 
Signal Processing Division, University of Strathclyde in Glasgow, Scotland, 
United Kingdom, 2003. 

[116] L. Cohen, "The Wavelet Transform and Time-Frequency Analysis," in Wavelets 
And Signal Processing, L. Debnath, Ed., ed: Birkhauser Boston, 2003. 

[117] J. C. Pedraza-Ortega, E. Gorrostieta-Hurtado, M. Delgado-Rosas, S. L. Canchola-
Magdaleno, J. M. Ramos-Arreguin, M. A. Aceves Fernandez, et al., "A 3D Sensor 



References 

 

140 
 

Based on a Profilometrical Approach," Sensors (Basel), vol. 9, pp. 10326-40, 
2009. 

[118] S. Mallat, A wavelet tour of signal processing: the sparse way: Academic Press, 
2009. 

[119] G. Li and A. A. Khokhar, "Content-based Indexing and Retrieval of Audio Data 
using Wavelets," IEEE International Conference on Multimedia and Expo 
(ICME), vol. 2, pp. 885 - 888, 2000. 

[120] C.-H. Chuan, S. Vasana, and A. Asaithambi, "Using Wavelets and Gaussian 
Mixture Models for Audio Classification," pp. 421-426, 2012. 

[121] I. T. Jolliffe, "Principal Component Analysis and Factor Analysis," in Principal 
component analysis, ed: Springer, 1986, pp. 115-128. 

[122] K. Pearson, "On lines and planes of closest fit to systems of points in space," The 
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 
vol. 2, pp. 559-572, 1901. 

[123] A. S. W. Wong and S. K. Chalup, "Towards Visualisation Of Sound-Scapes 
Through Dimensionality Reduction," in IJCNN, Hong Kong, 2008, pp. 2833 - 
2840. 

[124] M. Scholz and R. Vigario, "Nonlinear PCA: a new hierarchical approach," in 
European Symposium on Artificial Neural Networks, ESANN, 2002. 

[125] K. A. Sheela and K. S. Prasad, "Linear Discriminant Analysis F-Ratio for 
Optimization of TESPAR & MFCC Features for Speaker Recognition," Journal 
Of Multimedia, vol. 2, p. 6, 2007. 

[126] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis: John 
Wiley & Sons, Inc., 2001. 

[127] A. Hyvärinen and E. Oja, "Independent component analysis: algorithms and 
applications," Neural Networks, vol. 13, pp. 411-430, 2000. 

[128] R. Mogi and H. Kasai, "Noise-Robust Environmental Sound Classification 
Method Based On Combination Of ICA And MP Features," Artificial Intelligence 
Research, vol. 2, 2012. 

[129] P. Paatero and U. Tapper, "Positive Matrix Factorization: A Non-Negative Factor 
Model with Optimal Utilization of Error Estimates of Data Values," 
Environmetrics, vol. 5, pp. 111-126, 1994. 

[130] D. D. Lee and H. S. Seung. (1999) Learning The Parts Of Objects By Non-
Negative Matrix Factorization. letters to nature.  



References 

 

141 
 

[131] B. Wang and M. D. Plumbley, "Musical Audio Stream Separation By Non-
Negative Matrix Factorization," in UK Digital Music Research Network, DMRN, 
2005. 

[132] T. O. Virtanen, "Monaural Sound Source Separation by Perceptually Weighted 
Non-Negative Matrix Factorization," Tampere University of Technology, 
Institute of Signal Processing, 2007. 

[133] R. Schalkoff, Pattern Recognition Statistical, Structural and Neural Approaches: 
John Wiley & Sons, Inc., 1992. 

[134] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification: John Wiley & 
Sons, Inc., 2001. 

[135] K. Itoyama, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, "Simultaneous 
processing of sound source separation and musical instrument identification using 
Bayesian spectral modeling," in IEEE International Conference on Acoustics, 
Speech and Signal Processing, ICASSP, 2011, pp. 3816-3819. 

[136] C. Sutton, "An Introduction to Conditional Random Fields," Foundations and 
Trends® in Machine Learning, vol. 4, pp. 267-373, 2012. 

[137] Y. Wang and D. Wang, "Cocktail Party Processing via Structured Prediction," in 
Neural Information Processing Systems Conference, NIPS, 2012. 

[138] A. S. Bregman, Auditory Scene Analysis: The Perceptual Organization of Sound 
MIT, 1990. 

[139] Y. Hifny and S. Renals, "Speech Recognition Using Augmented Conditional 
Random Fields," IEEE Transactions on Audio, Speech, and Language 
Processing, vol. 17, pp. 354-365, 2009. 

[140] V. Vapnik and A. Lerner, "Pattern recognition using generalized portrait method," 
Automation and Remote Control, vol. 24, pp. 774–780, 1963. 

[141] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A Training Algorithm for Optimal 
Margin Classifiers," in Fifth Annual Workshop on Computational learning theory 
, COLT, 1992, pp. 144-152. 

[142] D. Luenberger, Linear and Nonlinear Programming: Addison-Wesley, 1984. 

[143] M.-W. Mak and S.-Y. Kung, "Low-Power SVM Classifiers for Sound Event 
Classification on Mobile Devices," in IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 1985 - 1988. 



References 

 

142 
 

[144] R. Saeidi, H. R. Sadegh Mohammadi, and M. K. Amirhosseini, "An Efficient 
GMM Classification Post-Processing Method for Structural Gaussian Mixture 
Model Based Speaker Verification," vol. 1, pp. I-909-I-912, 2006. 

[145] H. C. Bao and Z. C. Juan, "The research of speaker recognition based on GMM 
and SVM," 2012, pp. 373-375. 

[146] S. P. Mohanapriya, E. P. Sumesh, and R. Karthika, "Environmental sound 
recognition using Gaussian mixture model and neural network classifier," 2014, 
pp. 1-5. 

[147] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory 1736-1936: Clarendon 
Press, 1986. 

[148] Z. Ghahramani, "An Introduction to Hidden Markov Model and Bayesian 
Networks," International Journal of Pattern Recognition and Artificial 
Intelligence, vol. 15, pp. 9-42, 2001. 

[149] M. G. a. S. Young, "Architecture of an HMM-Based Recogniser," Foundations 
and Trends in Signal Processing, vol. 1, pp. 195–304, 2007. 

[150] A. C. Damianou and N. D. Lawrence, "Deep Gaussian Processes," in 
International Conference on Artificial Intelligence and Statistics, AISTATS, 2013. 

[151] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Representations by 
Back-Propagating Errors," Nature, vol. 323, pp. 533-536, 1986. 

[152] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal 
Representations by Error Propagation," in Parallel Distributed Computing: 
Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. 
McClelland, Eds., ed: MIT Press, Cambridge, Massachusetts, 1986. 

[153] A. Cauchy, "Méthode générale pour la résolution des systems d'équations.," 
Compte Rendu à l’Académie des Sciences, vol. 25, pp. 536-538, 1847. 

[154] J. Barzilai and J. Borwein, "Two-Point Step Size Gradient Methods," IMA Journal 
of Numerical Analysis, vol. 8, pp. 141-148, 1988. 

[155] M. R. Hestenes and E. Stiefel, "Methods of conjugate gradients for solving linear 
systems," Journal of Research of the National Bureau of Standards, vol. 49, p. 
409, 1952. 

[156] L. Bottou, "Large-Scale Machine Learning with Stochastic Gradient Descent," pp. 
177-186, 2010. 



References 

 

143 
 

[157] J. Duchi, E. Hazan, and Y. Singer, "Adaptive SubgradientMethods for Online 
Learning and Stochastic Optimization," Journal of Machine Learning Research 
vol. 12, pp. 2121-2159, 2011. 

[158] M. D. Zeiler. (2012, ADADELTA: An Adaptive Learning Rate Method.  

[159] D. Kingma and J. Ba, "ADAM: A Method For Stochastic Optimization," in 
International Conference for Learning Representations, ICLR, 2015. 

[160] X. Glorot, A. Bordes, and Y. Bengio, "Deep Sparse Rectifier Neural Networks," 
Journal of Machine Learning Research, JMLR, 2011. 

[161] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier Nonlinearities Improve 
Neural Network Acoustic Models," in International conference on machine 
learning (ICML), 2013. 

[162] K. He, X. Zhang, S. Ren, and J. Sun, "Delving Deep into Rectifiers: Surpassing 
Human-Level Performance on ImageNet Classification," in IEEE International 
Conference on Computer Vision, ICCV, 2015. 

[163] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, "Fast And Accurate Deep 
Network Learning By Exponential Linear Units (ELUs)," in International 
Conference on Learning Representations 2016. 

[164] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 
"Dropout: A Simple Way to Prevent Neural Networks from Overfitting," Journal 
of Machine Learning Research, JMLR, vol. 15, pp. 1929-1958, 2014. 

[165] S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network 
Training by Reducing Internal Covariate Shift," in International Conference on 
Machine Learning (ICML), 2015. 

[166] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Representations By 
Back-Propagating Errors," Nature, vol. 323, pp. 533-536, 1986. 

[167] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting And 
Composing Robust Features With Denoising Autoencoders," in Proceedings of 
the 25th international conference on Machine learning, ICML, 2008, pp. 1096-
1103. 

[168] K. Zen, M. Suzuki, H. Sato, S. Oyama, and M. Kurihara, "Monophonic sound 
source separation by non-negative sparse autoencoders," in IEEE International 
Conference on Systems, Man, and Cybernetics, USA, 2014, pp. 3623-3626. 

[169] L. Boltzmann, Lectures on Gas Theory: Courier Corporation, 1995. 



References 

 

144 
 

[170] S. E. Fahlman, G. E. Hinton, and T. J. Sejnowski, "Massively Parallel 
Architectures for Al: NETL, Thistle, and Boltzmann Machines," in National 
Conference on Artificial Intelligence, AAAI, 1983. 

[171] P. Smolensky, "Information Processing in Dynamical Systems: Foundations of 
Harmony Theory," in Parallel distributed processing: explorations in the 
microstructure of cognition, D. E. Rumelhart and J. L. McClelland, Eds., ed, 1986, 
pp. 194-281. 

[172] G. Hinton. (2010, A Practical Guide to Training Restricted Boltzmann Machines.  

[173] A. Fischer and C. Igel, "An Introduction to Restricted Boltzmann Machines," 
Lecture Notes in Computer Science, vol. 7441, pp. 14-36, 2012. 

[174] G. E. Hinton, "Training Products of Experts by Minimizing Contrastive 
Divergence," Neural Computation, vol. 14, pp. 1771-800, Aug 2002. 

[175] X. Glorot and Y. Bengio, "Understanding the Difficulty of Training Deep 
Feedforward Neural Networks," Journal of Machine Learning Research, vol. 9, 
2010. 

[176] G. W. Taylor, G. E. Hinton, and S. Roweis, "Modeling Human Motion Using 
Binary Latent Variables," in Advances in Neural Information Processing Systems, 
NIPS, 2006, pp. 1345-1352. 

[177] G. W. Taylor and G. E. Hinton, "Factored conditional restricted Boltzmann 
Machines for modeling motion style," in Proceedings of the 26th Annual 
International Conference on Machine Learning, ICML, 2009, pp. 1025-1032. 

[178] A.-R. Mohamed and G. Hinton, "Phone Recognition Using Restricted Boltzmann 
Machines " in IEEE International Conference on Acoustics Speech and Signal 
Processing, ICASSP, 2010. 

[179] E. Battenberg and D. Wessel, "Analyzing Drum Patterns Using Conditional Deep 
Belief Networks," in International Society for Music Information Retrieval, 
ISMIR, 2012. 

[180] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, "Stacked Convolutional 
Auto-Encoders for Hierarchical Feature Extraction," vol. 6791, pp. 52-59, 2011. 

[181] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief 
networks for scalable unsupervised learning of hierarchical representations," in 
Proceedings of the 26th Annual International Conference on Machine Learning, 
ICML, 2009, pp. 1-8. 

[182] P. J. Werbos, "Backpropagation Through Time: What It Does and How to Do It," 
Proceedings of the IEEE, vol. 78, p. 11, 1990. 



References 

 

145 
 

[183] S. Hochreiter, "The Vanishing Gradient Problem During Learning Recurrent 
Neural Nets and Problem Solutions," International Journal of Uncertainty, 
Fuzziness and Knowledge-Based Systems, vol. 06, pp. 107-116, 1998. 

[184] K. Choi, G. Fazekas, M. Sandler, and K. Cho, "Convolutional Recurrent Neural 
Networks for Music Classification," in arXiv preprint arXiv:1609.04243, 2016. 

[185] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, "Empirical Evaluation of Gated 
Recurrent Neural Networks on Sequence Modeling," in NIPS workshop on Deep 
Learning and Representation Learning, 2014. 

[186] A. Graves and J. Schmidhuber, "Framewise Phoneme Classification With 
Bidirectional Lstm and Other Neural Network Architectures," Neural Networks, 
vol. 18, pp. 602-10, Jun-Jul 2005. 

[187] K. Lee, Z. Hyung, and J. Nam, "Acoustic Scene Classification Using Sparse 
Feature Learning And Event-Based Pooling," in IEEE Workshop on Applications 
of Signal Processing to Audio and Acoustics, WASPAA, 2013, pp. 1 - 4. 

[188] L. Wyse, "Audio Spectrogram Representations for Processing with Convolutional 
Neural Networks," in International workshop on Deep Learning and Music, 2017. 

[189] J. Pons and X. Serra, "Designing Efficient Architectures for Modeling Temporal 
Features with Convolutional Neural Networks," in International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP), 2017. 

[190] K. K. Palawal, "Use of Temporal Correlation between Successive Frames in a 
Hidden Markov Model Based Speech Recognizer," in International Conference 
on Acoustics, Speech, and Signal Processing, ICASSP, 1993. 

[191] M. Lin, Q. Chen, and S. Yan, "Network In Network," in International Conference 
on Learning Representations, ICLR, 2014. 

[192] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & systems. USA: 
Prentice-Hall, 1996. 

[193] B. L. Sturm, "The State of the Art Ten Years After a State of the Art: Future 
Research in Music Information Retrieval," Journal of New Music Research, vol. 
43, pp. 147-172, 2014. 

[194] F. Font, G. Roma, and X. Serra, "Freesound technical demo," pp. 411-412, 2013. 

[195] M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon, "Multiple 
instance learning: A survey of problem characteristics and applications," Pattern 
Recognition, vol. 77, pp. 329-353, 2018. 



References 

 

146 
 

[196] R. Al-Rfou, G. Alain, A. Almahairi, and e. al., "Theano: A Python framework for 
fast computation of mathematical expressions," arXiv e-prints, vol. 
abs/1605.02688, May 2016. 

[197] F. Chollet. (2015). Keras. Available: https://github.com/fchollet/keras 

[198] FFmpeg Developers. (2016). FFmpeg. Available: http://ffmpeg.org/ 

[199] M. McVicar, C. Raffel, D. Liang, O. Nieto, E. Battenberg, J. Moore, et al. (2016). 
LibROSA. Available: https://github.com/librosa/librosa 

[200] B. McFee, E. J. Humphrey, and J. P. Bello, "A Software Framework for Musical 
Data Augmentation," in International Society for Music Information Retrieval 
(ISMIR), 2015, pp. 248-254. 

[201] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, et al., "An 
experimental comparison of audio tempo induction algorithms," IEEE 
Transactions on Audio, Speech and Language Processing, vol. 14, pp. 1832-1844, 
2006. 

[202] U. Marchand and G. Peeters, "The Modulation Scale Spectrum and its Application 
to Rhythm-Content Description," in International Conference on Digital Audio 
Effects (DAFx), 2014. 

[203] K. Seyerlehner, M. Schedl, T. Pohle, and P. Knees, "Using Block-Level Features 
for Genre Classification, Tag Classification and Music Similarity Estimation," in 
Music Information Retrieval eXchange, MIREX, 2010. 

[204] F. Gouyon, S. Dixon, E. Pampalk, and G. Widmer, "Evaluating Rhythmic 
Descriptors for Musical Genre Classification," in International  AES conference, 
2004. 

[205] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and G. Widmer, "On Rhythm And 
General Music Similarity," in International Society for Music Information 
Retrieval, ISMIR, 2009. 

[206] A. Lykartsis and A. Lerch, "Beat Histogram Features For Rhythm-Based Musical 
Genre Classification Using Multiple Novelty Functions," in Conference on 
Digital Audio Effects (DAFx-15), 2015. 

[207] H. Homburg, I. Mierswa, B. Moller, K. Morik, and M. Wurst, "A Benchmark 
Dataset for Audio Classification and Clustering," in International Symposium on 
Music Information Retrieval, 2005. 

[208] Y. Panagakis, C. L. Kotropoulos, and G. R. Arce, "Music Genre Classification via 
Joint Sparse Low-Rank Representation of Audio Features," IEEE/ACM 

https://github.com/fchollet/keras
http://ffmpeg.org/
https://github.com/librosa/librosa


References 

 

147 
 

Transactions on Audio, Speech, and Language Processing, vol. 22, pp. 1905-
1917, 2014. 

[209] C. Osendorfer, J. Schluter, J. Schmidhuber, and P. v. d. Smagt, "Unsupervised 
Learning of Low-Level Audio Features for Music Similarity Estimation," in 
Workshop on Speech and Visual Information Processing in conjunction with the  
International Conference on Machine Learning (ICML), 2011. 

[210] Y. Panagakis and C. Kotropoulos, "Music classification by low-rank semantic 
mappings," EURASIP Journal on Audio Speech and Music Processing, 2013. 

[211] K. Seyerlehner and G. Widmer, "Fusing Block-Level Features for Music 
Similarity Estimation," in International Conference on Digital Audio Effects 
(DAFx-10), 2010. 

[212] K. Aryafar and A. Shokoufandeh, "Music Genre Classification Using Explicit 
Semantic Analysis," in International ACM workshop on Music Information 
Retrieval With User-Centered and Multimodal Strategies (MIRUM), 2011. 

[213] F. Moerchen, I. Mierswa, and A. Ultsch, "Understandable Models of Music 
Collections Based on Exhaustive Feature Generation with Temporal Statistics," 
in ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining (KDD), 2006. 

[214] J. Schluter and C. Osendorfer, "Music Similarity Estimation with the Mean-
Covariance Restricted Boltzmann Machine," in International Conference on 
Machine Learning and Applications, ICMLA, 2011, pp. 118-123. 

[215] K. K. Chang, J.-S. R. Jang, and C. S. Iliopoulos, "Music Genre Classification via 
Compressive Sampling," in International Society for Music Information 
Retrieval, ISMIR, 2010. 

[216] S. Sigtia and S. Dixon, "Improved Music Feature Learning With Deep Neural 
Networks," in International Conference on Acoustics, Speech, and Signal 
Processing, ICASSP, 2014. 

[217] J. Bergstra, M. Mandel, and D. Eck, "Scalable Genre and Tag Prediction with 
Spectral Covariance," in International Society for Music Information Retrieval, 
ISMIR, 2010. 

[218] Y. Panagakis, C. Kotropoulos, and G. R. Arce, "Non-Negative Multilinear 
Principal Component Analysis of Auditory Temporal Modulations for Music 
Genre Classification," IEEE Transactions on Audio, Speech, and Language 
Processing, vol. 18, pp. 576-588, 2010. 



References 

 

148 
 

[219] Y. Aytar, C. Vondrick, and A. Torralba, "SoundNet: Learning Sound 
Representations from Unlabeled Video," in Neural Information Processing 
Systems (NIPS), 2016. 

[220] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-
Scale Image Recognition," in International Conference on Learning 
Representations, ICLR, 2015. 

[221] R. Arandjelovic and A. Zisserman, "Look, Listen and Learn," in IEEE 
International Conference on Computer Vision, ICCV, 2017. 

[222] Y.-h. Chen, I. Lopez-Moreno, T. N. Sainath, M. Visontai, R. Alvarez, and C. 
Parada, "Locally-Connected and Convolutional Neural Networks for Small 
Footprint Speaker Recognition," in INTERSPEECH 2015. 

 


	Abstract
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	1  Introduction
	1.1 Background
	1.2 Objective and Methodology
	1.3 Organization

	2  History of Sound Recognition
	2.1 Speech Recognition
	2.2 Music Genre Classification
	2.3 Environmental Sound Recognition
	2.4 Summary

	3  Signal Representation
	3.1 Time domain
	3.2 Spectrograms
	3.3 Scaleograms
	3.4 Pre-Processing
	3.4.1 Rescaling
	3.4.2 Principal Component Analysis
	3.4.3 Linear Discriminant Analysis
	3.4.4 Independent Component Analysis
	3.4.5 Non-Negative Matrix Factorization

	3.5 Summary

	4  Pattern Classification
	4.1 Supervised Learning
	4.1.1 Bayes Classifier
	4.1.2 Conditional Random Fields
	4.1.3 Support Vector Machine

	4.2 Unsupervised learning
	4.2.1 Gaussian Mixture Model
	4.2.2 Hidden Markov Model

	4.3 Summary

	5  Deep Neural Networks for Abstraction
	5.1 Neural Network Building Blocks
	5.1.1 Error Function
	5.1.2 Optimizer
	5.1.3 Transfer function
	5.1.4 Regularization

	5.2 Neural Network Models
	5.2.1 Autoencoders
	5.2.2 Restricted Boltzmann Machines
	5.2.3 Conditional Restricted Boltzmann Machines
	5.2.4 Convolutional Neural Networks
	5.2.5 Recurrent Neural Networks

	5.3 Sound Recognition with Neural Networks
	5.4 Summary

	6  Masked Conditional Neural Networks
	6.1 Conditional Neural Networks
	6.2 Masked Conditional Neural Networks
	6.3 Summary

	7   Experiments
	7.1 Ballroom
	7.2 Homburg
	7.3 GTZAN
	7.4 ISMIR2004
	7.5 ESC-10
	7.6 ESC-50
	7.7 Urbansound8k
	7.8 YorNoise
	7.9 Summary

	8  Analysis
	8.1 Hyperparameter Evaluation
	8.2 Comparison to Convolutional Neural Networks
	8.3 Summary

	9  Conclusions and Future Work
	Future work

	Glossary
	References

