
Towards Process Models for
Goal-Based Development

of Enterprise Information Systems
Architectures

Malihe Tabatabaie

PhD
Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

The University of York
Department of Computer Science
United Kingdom

December 2011

Abstract

Enterprises are organisations with multiple business processes; they often
use Enterprise Information Systems (EIS) to support these business pro-
cesses. The concept of an EIS has arisen from the need to deal with the
increasingly volatile requirements of modern large–scale organisations. EIS
are growing in use and are now being used to support government, health
care, and non-profit / non-governmental organisations. The development of
EIS has been affected significantly by the complexity and size of enterprises
and their business processes, in addition to the influences of economical,
social, and governmental factors.

There are many challenges associated with building EIS. Three critical
ones identified in the literature are: adequately satisfying organisational re-
quirements; building valid and stakeholder–acceptable business processes;
and providing repeatable and rigorous approaches to establish shared under-
standing of EIS goals. These challenges are difficult to cope with because of
the need to deal with different goals, changes in goals, and the problem of
how to transform these goals into system requirements and, ultimately, to
an EIS architecture.

This thesis contributes a rigorous approach for identifying and describ-
ing the enterprise–level requirements of IT developers, managers, and other
stakeholders of an enterprise. The approach provides two modelling and
tool–supported processes to help establish a rigorous model of EIS goals. It
also provides support for transforming goals to a strategic EIS architecture.

The approach presented in the thesis is based on the concepts of Goal–
oriented software engineering. The thesis presents a novel Process
Model, KAOS-β that extends goal–oriented software engineering approaches
with new concepts and techniques for EIS. Further, to support the tran-
sition from requirements to an EIS architecture, an EIS Architecture Pro-
cess Model (EAPM), is designed and evaluated. Using KAOS-β and EAPM
in concert provides a rigorous, repeatable and tool–supported approach for
analysing, and designing a strategic EIS architecture. The thesis illustrates
the approach with two substantial examples from the health informatics and
critical systems domain.

4

Contents

1 Introduction 15

1.1 Motivation . 16

1.2 Research Questions . 18

1.3 Research Methodology . 19

1.4 Thesis Outline . 20

1.5 Thesis Contributions . 23

2 Literature Review 27

2.1 Enterprise Information System 28

2.1.1 EIS Characteristics . 31

2.1.2 EIS Examples . 31

2.1.3 EIS Development Challenges 32

2.2 Goal Definitions . 34

2.2.1 Goal vs. Requirement vs. Claim 34

2.2.2 Motivation For GOA 36

2.3 Solutions For GOA . 37

2.3.1 Suitability Of KAOS For EIS 40

2.4 Process Modelling . 44

2.5 EIS Architecture . 45

2.5.1 Background . 46

2.5.2 Enterprise Architecture Solutions 47

2.5.3 Software Architecture 53

2.5.4 EIS Architecture Review Summary 56

2.6 Definition Of Method . 56

2.7 Overview Of Case Study Domains 56

2.7.1 Stroke Care . 58

2.7.2 Airport Crisis Management 65

2.8 Hypothesis . 68

2.9 Conclusion . 69

5

6 CONTENTS

3 Method: Process Model 71
3.1 KAOS-β . 72

3.1.1 KAOS-β Elements . 72
3.1.2 KAOS-β Structure . 74

3.2 EAPM . 77
3.2.1 EAPM Elements . 77
3.2.2 EAPM Structure . 80

3.3 Conclusion . 82

4 Method: Philosophy 83
4.1 KAOS-β Philosophy . 83
4.2 EAPM Philosophy . 89
4.3 Conclusion . 91

5 Method: Tool 93
5.1 Eclipse Process Framework . 93
5.2 Conclusion . 96

6 Method: Illustration 97
6.1 KAOS-β Example . 97
6.2 EAPM Example . 108

6.2.1 EAPM: Tasks One and Two 108
6.2.2 EAPM: Task Three . 109
6.2.3 EAPM: Task Four . 111
6.2.4 EAPM: Tasks Five, Six, and Seven 112

6.3 Conclusion . 118

7 The Airport Crisis Management Example 119
7.1 Airport Crisis Management: Background 119
7.2 Applying KAOS-β . 120

7.2.1 First Iteration . 120
7.2.2 Second Iteration . 131

7.3 Applying EAPM . 134
7.4 Conclusion . 141

8 Evaluation 143
8.1 Evaluation of KAOS-β . 143
8.2 Evaluation of EAPM . 149

8.2.1 Process Model Standards 149
8.2.2 Process Models Comparison 153

8.3 Conclusion . 161

CONTENTS 7

9 Thesis Conclusion 163
9.1 Research Questions Revisited 165

9.1.1 Question One . 165
9.1.2 Question Two . 166
9.1.3 Question Three . 167

9.2 Lessons Learnt . 167
9.3 Future Work . 168
9.4 Conclusion . 169

A Results of Piloting ACM 171
A.1 Step 4: Document goals . 171
A.2 Step 6: Document links . 175
A.3 EAPM Tables . 177

Glossary 183

Bibliography 185

8 CONTENTS

List of Figures

1.1 Thesis methodology, an exploratory approach 20
1.2 Thesis conceptual Model . 22
1.3 EIS development roadmap . 25

2.1 Domain analysis of EIS . 30
2.2 Models in KAOS technology 39
2.3 KAOS Activity Diagram . 40
2.4 An example of EIS goal bloat 43
2.5 Software Architecture Activities 55
2.6 Software Architecture Process 55
2.7 The structure of the parent goal and its three child goals . . . 64

3.1 Method to address the gap in enterprise level systems analysis:
the context of KAOS-β and EAPM 71

3.2 KAOS-β Elements . 73
3.3 KAOS-Beta Process . 75
3.4 Presentation of EAPM elements 79
3.5 EIS architecture process . 80

4.1 Stroke care EIS modules . 86

5.1 Kestrel, a tool to support KAOS-β 94
5.2 EAPM-tool Snapshot . 95

6.1 The structure of the parent goal and its three child goals . . . 101
6.2 The structure and refinement of application goal 107
6.3 Business processes, quality attributes, sample strategies 117
6.4 Business process layer of the architecture 117
6.5 Selected strategies in quality attributes and service layer . . . 117
6.6 Partial architecture for stroke care system 117

7.1 The modules identified for ACM 122

9

10 LIST OF FIGURES

7.2 ACM modules for the KAOS-β pilot 123
7.3 Goal Refinement for ACM goals in the first iteration 127
7.4 Links between goals and agents during the first iteration . . . 129
7.5 Second iteration of goal refinement for SCM goals 132
7.6 Links between the goals and agents in the second iteration . . 133
7.7 Conflicts between goals in the second iteration 133
7.8 Business process diagram for Airport Crisis Management . . . 139
7.9 EIS architecture for ACM using three–tier style 140

8.1 SPEM Activity Diagram . 145
8.2 SPEM WorkFlow Diagram . 145
8.3 Kestrel, a tool to support KAOS-β 145
8.4 SPEM activity diagram for EAPM 152
8.5 SPEM use case for EAPM . 152
8.6 EAPM-tool Screenshot . 152

List of Tables

2.1 EIS boundaries, objectives, and challenges 29
2.2 Negative and positive characteristics of SOA 52

3.1 Template for the structured documentation of KAOS-β’s goals 75
3.2 Example of the structured documentation of KAOS-β’s link

refinement . 76

4.1 Examples of goal features model annotations 85
4.2 Comparing KAOS and the new KAOS-β process 88

6.1 Structured documentation for goal with ID: SCGT1 99
6.2 Structured documentation for goal with ID: SCGT11 99
6.3 Structured documentation for goal with ID: SCGT12 99
6.4 Structured documentation for goal with ID: SCGT13 100
6.5 Structured documentation for goal with ID: SCGL20 102
6.6 Structured documentation for goal with ID: SCGL201 103
6.7 Structured documentation for goal with ID: SCGL21 103
6.8 Structured documentation for goal with ID: SCGL211 104
6.9 Structured documentation for goal with ID: SCGL212 104
6.10 Structured documentation for goal with ID: SCGL213 105
6.11 Structured documentation for goal with ID: SCGL22 105
6.12 Structured documentation for goal with ID: SCGL221 106
6.13 Structured documentation for goal with ID: SCGL222 106
6.14 Relationship between goals and quality attributes 108
6.15 Template for EAPM results 114
6.16 A filled example of EAPM results template (Table 6.15) . . . 115

7.1 Structured documentation for ACM’s goal with ID:ACMG1 . 124
7.2 Structured documentation for ACM’s goal with ID:ACMG10 . 125
7.3 Structured documentation for ACM’s goal with ID:ACMG2 . 125
7.4 Structured documentation for ACM’s goal with ID:ACMG3 . 126
7.5 Documentation for the link between ACMG1 and ACMG2 . . 128

11

12 LIST OF TABLES

7.6 Documentation for the link between ACMG1 and ACMG3 . . 128
7.7 Goals that indicate the existence of agents 129
7.8 Architectural information for reliable communication quality

attribute . 134
7.9 Architectural information for safe communication quality at-

tribute . 136
7.10 Architectural information for reliable DB quality attribute . . 137
7.11 Architectural information for usability quality attribute 138

8.1 Evaluation of KAOS-β against Ramsin’s criteria 148
8.2 Results of comparing EAPM and PALM. 155

A.1 Structured documentation for ACM’s goal with ID:ACMG4 . 172
A.2 Structured documentation for ACM’s goal with ID:ACMG5 . 172
A.3 Structured documentation for ACM’s goal with ID:ACMG6 . 173
A.4 Structured documentation for ACM’s goal with ID:ACMG7 . 173
A.5 Structured documentation for ACM’s goal with ID:ACMG8 . 174
A.6 Structured documentation for ACM’s goal with ID:ACMG9 . 174
A.7 Documentation for the link between ACMG1 and ACMG4 . . 175
A.8 Documentation for the link between ACMG1 and ACMG5 . . 175
A.9 Documentation for the link between ACMG2 and ACMG6 . . 175
A.10 Documentation for the link between ACMG2 and ACMG7 . . 175
A.11 Documentation for the link between ACMG5 and ACMG8 . . 176
A.12 Documentation for the link between ACMG5 and ACMG9 . . 176
A.13 Architectural information for safe database quality attribute . 177
A.14 Architectural information for different communication devices

quality attribute . 178
A.15 Architectural information for supporting different interface qual-

ity attribute . 178
A.16 Architectural information for availability quality attribute . . 179
A.17 Architectural information for modifiability quality attribute . 179
A.18 Architectural information for performance quality attribute . . 180
A.19 Architectural information for cost-benefit and time to market

quality attribute . 181

Acknowledgements

I thank my supervisors, Prof. Richard Paige and Dr. Fiona Polack,
for their invaluable guidance, support and encouragement throughout my
doctoral research.

I would like to thank my colleagues and countless friends in the depart-
ment and outside for their support and friendship. I thank my colleagues and
friends in the Enterprise System group for many interesting and entertaining
discussions.

I would like to express gratitude to my parents, my sisters Maryam and
Homa, and my brother, without whom this journey was not possible. I
would like to dedicate this thesis to those who never stopped supporting me,
Maryam, Susan, Matthew, Martin, Andrea, and many more friends.

Author’s Declaration

Except where stated, all the work contained in this thesis represents the
original contribution of the author.

Parts of the work presented in this thesis have been published as a refer-
enced book chapter, and as referenced conference and workshop papers:

• Malihe Tabatabaie, Richard F. Paige, Christopher Kimble. Exploring
the boundaries of Enterprise Information Systems, in Proc. 2nd York
Doctoral Symposium, YDS 2008, York, UK, October 2008

• Malihe Tabatabaie, F.A.C. Polack, Richard F. Paige. Evaluating Goal-
Oriented Analysis in the Domain of Enterprise Information Systems,
in Proc. 1st International Conference on Enterprise Information Sys-
tems, CENTERIS 2010, Springer, Porto, Portugal, September 2010

• Malihe Tabatabaie, F.A.C. Polack, Richard F. Paige. KAOS-β: Analysing
EIS architecture using KAOS, in Proc. 8th International Workshop on
Modelling, Simulation, Verification and Validation of Enterprise Infor-
mation Systems, ICEIS 2010, Madeira, Portugal, June 2010

• Malihe Tabatabaie, Richard F. Paige, Christopher Kimble. Exploring
Enterprise Information Systems, in Enterprise Information Systems for
Business Integration in SMEs: Technological, Organizational and So-
cial Dimensions, IGI Global, 2009

Chapter 1

Introduction

An Enterprise Information System (EIS) is a software platform capable
of supporting and integrating activities across an organisation (Wikipedia,
2011d). The range of EIS applications is growing; they are now being used
to support government, health care, non-profit / non-governmental organi-
sations, and commercial enterprises (Stair & Reynolds, 2006; Bowers, 2010;
Harrell, 2009). The UK National Health Service information technology
portfolio (NHS) is a working example of an EIS (Morse, 2011). Other ex-
amples include the EIS that integrates different business processes in Mit-
subishi (Mitsubishi Logistics, 2011); and an Airport Crisis Management
(ACM) system (International Airport Review, 2011; MODELPLEX Con-
sortium, 2007) that integrates different business processes for dealing with
emergency situations.

The concept of an EIS has evolved to improve organisational coordination,
efficiency, decision making, and address organisational requirements (Laudon
& Laudon, 2007). These enterprise–level requirements include functional and
non-functional requirements for software systems, reducing costs of develop-
ment processes, dealing with distributed systems, sharing business processes,
and making best use of resources (Tabatabaie, Paige, & Kimble, 2010).

The increasing demands for the use of EIS, and the challenges involved in
their deployment and development, are the original motivation for research
in this domain. The main challenges of developing an EIS are categorised as
follows.

Complexity: A complex system is non-deterministic, where its behaviour
cannot be predicted by analysing component interactions (Wegmann,
2003). An EIS is a system that deals with organisations and human
interactions. Even though organisations are structured entities, the ex-

15

16 CHAPTER 1. INTRODUCTION

pectations of a system that supports the functionalities and Business
Processes of an organisation cannot be predicted just by analysing
component interactions. The interactions between human users and
business processes within an organisation are complex, and the results
cannot be predicted by analysing individual components. The devel-
opment process of an EIS should identify and address the elements of
complexity.

Business processes: EIS are used to support the inter–connected business
processes of an organisation. Each business process is designed to ad-
dress dynamic organisational demands and values (Tabatabaie et al.,
2010). There is a challenge in developing an EIS that satisfies the
functionalities of business processes and supports changes in business
processes as well (Stair & Reynolds, 2006). This challenge extends to
further difficulties in capturing the knowledge of business processes and
required functionalities.

The aim of this thesis is to develop a rigorous approach to capture the
volatile and strategic level requirements of EIS and to help make a transition
from this knowledge to the EIS design phase. The approach is supported by
systematic processes and tools.

1.1 Background and Motivation

Since the 1950s, organisations have been developing computer-based informa-
tion systems (IS) to support their business processes. Through improvements
to IS and changes in the ways that businesses use IS, computer-based sys-
tems have become more complex and yet more reliable; at the same time,
increasing functional requirements have been placed on these systems (Ed-
ward et al., 1993).

Even though the technology used in computer-based IS has become more
reliable, the literature reveals many cases of computer-based IS that fail to
support their businesses, functionalities or business changes. Some examples
are summarised below.

Consider the case of BMW. “The BMW Group is reputed to be the only
manufacturer of automobiles and motorcycles worldwide that concentrates
single mindedly on premium manufacturing standards on outstanding quality
for all its brands” (Stair & Reynolds, 2006). This company failed to handle a
change in the market demand for their Z3 and X5 products (Stair & Reynolds,
2006). As a result, the BMW production line received some of the parts while
other parts were still under development. They could not produce the cars

1.1. MOTIVATION 17

till all the parts arrived, hence large storage rooms were required for arriving
parts; this caused extra expense. This was explained by the company’s use of
an IS that does not provide functionalities to support a tight and coordinated
supplier network (Stair & Reynolds, 2006). An EIS with such functionalities
would have facilitated the capture of knowledge, such that decision makers
may have become aware of changing demand patterns in BMW’s partners.
Thus, they would not have increased the production line (change) in a way
that did not match with the partners’ capacities. This failure is an example of
the challenges caused by EIS complexity: new demand and changing business
processes.

The Hilton Hotels example appears much earlier in the literature1. In
1992, a reservation system for hotels and cars was requested by four major
partners, including the Hilton Hotels Corporation. The development team
failed to deliver the requested system. Two of the cited reasons for this
failure are project mismanagement and changing goals (Keef, 2011). One
of the key challenges of developing an EIS is dealing with changes in the
market and resulting business processes. In this case, the changes occurred
in the early phases of development, particularly goal identification. Explicit
and structured goals for an EIS are a source of knowledge that could be
shared between decision makers and IT developers. As an EIS is a complex
system, its development could suffer from unclear or unrealistic goals and
expectations. Addressing all the goals of an EIS might be impossible but
an agreed set of preliminary goals is the first step towards developing an
EIS. This example illustrates the complexity of developing EIS that could be
caused by the changes in the goals, demands and values of an enterprise.

The UK National Health Service (NHS) electronic patients’ records
and online booking system is another example of complex and challenging
EIS (DH Stroke Policy, 2007). The size, the number of business processes,
and large number of stakeholders makes the development process very chal-
lenging. Some of the functionalities of this EIS are sensitive and could lead
to risk to human life. This EIS was expected to be implemented in 10 years
from its inception in 2002 (with an allocated budget of £12.7 bn). Because of
these challenges, it is predicted that the expected deadline will be extended.
In the 8th year (2010), only thirteen out of 169 acute trusts2 received the
full system but half of the budget was spent (Bowers, 2010). Even the im-
plemented parts were suffering from incidents; for example, in 2006, during

1http://www.computerworld.com/computerworld/records/images/pdf/44NfailChart.
pdf

2“Hospitals are managed by acute trusts. Acute trusts make sure that hospitals provide
high-quality healthcare and that they spend their money efficiently” (Acute Trusts, 2011).
Acute trusts employ the medical and non–medical staffs for NHS.

18 CHAPTER 1. INTRODUCTION

four months of system operation, more than 110 major incidents (e.g. fail-
ure of x-ray retrieval hardware and software, patients records and planned
treatments) hit hospitals across England (Collins, 2006). In 2008, thousands
of electronic patients’ records were lost for no clear reasons (Bowers, 2010).
The human interaction, the size and impact of the NHS in the society, in
addition to the organisational complexity of NHS are challenges that EIS
need to address.

In all these examples, organisations, regardless of their size and line of
work, hired IT experts to develop or purchase a suitable IS that addresses
their business processes. The main question is: why even well–planned and
experienced IT groups fail to deliver the required systems as promised?

The Bull survey in 1998 (Bull, 1998) reveals twelve reasons for IT projects
failure in the finance sector. Two major reasons are bad communication
between relevant partners and lack of planning and scheduling resources and
activities. These reasons are discussed further in Chapter 2 and leads to
defining focused motivation for the rest of this thesis. The motivation for
this thesis is the lack of existing process models for identifying and capturing
knowledge of EIS demands and values. These processes could help partners
communicate and plan the use of resources and activities and develop a
shared understanding of business processes.

To address this motivation a number of research questions have been
identified.

1.2 Research Questions

This thesis is motivated by a key question: why does the process of building an
EIS fail to deliver its functionalities and address users’ goals? The focus of
the thesis is on understanding the difficulties within the development process,
rather than on implementation difficulties such as an absence of required
devices or errors in code.

By considering different types of EIS examples and analyses of EIS, which
are available in the literature review (see Chapter 2), the thesis develops
specific questions that focus on concrete EIS challenges. This process is called
domain analysis. The concept was first introduced in (Neighbors, 1980) as
a method for identifying elements such as the objects and operations of a
software class.

The EIS domain analysis leads to the following research questions:

1. What are the essential characteristics of an EIS?

1.3. RESEARCH METHODOLOGY 19

2. Why does an EIS fail to deliver its functionalities and fail to address
stakeholders’ and enterprises’ goals?

3. What knowledge is required to identify the essential functionalities for
an EIS?

Chapter 2 starts with an analysis of the literature. It identifies a number
of gaps that are derived from the research questions. The rest of this thesis
is organised so as to answer the three major research questions, using the
research methodology introduced in the next section.

Nomenclature: in this thesis, keywords are in italic format and capi-
talised. They are summarised in the glossary section.

1.3 Research Methodology

To address the research questions in Section 1.2, a number of qualitative
and quantitative approaches in the domain of Software Engineering (SWE),
Requirements Engineering (RE), and Human Computer Interaction (HCI)
have been reviewed and analysed. The results of the review illustrate that
there are few, if any, techniques available to support the transformation of
enterprise-level goals to a strategic EIS architecture.

This thesis develops a systematic approach to the transformation of en-
terprise goals and requirements, into a strategic EIS architecture. To do this,
an exploratory methodology is used, to support the transitive characteristics
of the results and approaches used in this thesis. The results of each phase
initiate the techniques and approaches used for the next phase. The iterative
software engineering (SWE) process models are based on the idea of accept-
ing the changes, reviewing the results in each phase and advancing to the
next phase; and these characteristics are the motivations for using iterative
SWE process models for this thesis.

One of the process frameworks that could be extended and adapted to
create more specific software engineering processes is evolutionary develop-
ment (Sommerville, 2007). “Evolutionary development is based on the idea
of developing an initial implementation, exposing this to user comment and
refining it through many versions until an adequate system has been devel-
oped” (Sommerville, 2007). To address the development of software systems
with unclear problem domain specifications, the theory of evolutionary de-
velopment may be applied. Using this theory the development team can
iteratively improve their implementations until they are satisfied with the
results.

20 CHAPTER 1. INTRODUCTION

Figure 1.1 summarises the steps of the exploratory approach used in the
thesis. An exploratory methodology starts with a literature survey. Even
though research questions motivate the study, a domain analysis clarifies the
problems, boundaries, and the elements of the domain. A literature survey
phase leads to understanding the problem and collecting data to start the
research (step 1). Indeed, the data collection phase and analysing the data
would help to re-evaluate the problem and if required, re-define it. The
data collection (step 2), leads to designing a model to address and possibly
solve the problem (step 3). A model also could provide a new perspective
to address the problem and the domain of the problem. To analyse and
evaluate a model it should be applied to examples from the domain (step
4). The results of the empirical analysis helps to evaluate the model and the
problem (step 5). As can be seen in Figure 1.1 this methodology is based
on the concept of iteration. Iterations continue until there is confidence in
the collected data and results. However, time and resources also limit the
explicit and implicit iterations.

In Section 1.4, the relationships between the exploratory methodology
and the research model that is followed for this thesis is presented.

1: Understand Problem

2: Data Collection

3: Design Model

4: Practical
Assessment

5: Evaluation

6: Literature Study

Figure 1.1: Thesis methodology, an exploratory approach (Sommerville,
2007).

1.4. THESIS OUTLINE 21

1.4 Thesis Outline

This section presents the blueprint of the thesis and its accomplishments,
aligned with the conceptual model presented in Figure 1.2.

The thesis starts with domain analysis (box 1 in Figure 1.2); this phase
is aligned with the step 1 in Figure 1.1. The thesis then identifies the gaps
in the literature associated with developing EIS (box 2 in Figure 1.2); this
phase is aligned with step 2 in Figure 1.1. The gap that this research is
focusing on is understanding, specifying, and describing diverse and volatile
stakeholders’ goals.

To address the identified gap, a general review on the current methodolo-
gies and technologies related to developing EIS has been undertaken, leading
to detailed review and analysis of Goal–Oriented Approaches (GOA) (box 3
in Figure 1.2). The analysis of GOA illustrates two main gaps in this domain
in respect of enterprise goal analysis: lack of clear process guidance for GOA
and strong dependency on technologies’ experts and domain experts. This
analysis leads to the development of a process model, KAOS-β, to address
the identified gaps (box 4 in Figure 1.2); this phase is aligned with step 3
in Figure 1.1. The relationship between the KAOS-β and EIS goals in Fig-
ure 1.2 illustrates that KAOS-β could be used to identify EIS goals (box 5
in Figure 1.2).

To demonstrate the effects of identifying EIS goals on the later stages
of the EIS design process, this research focuses on tracing the results of the
KAOS-β to an EIS architecture. Strategic EIS architecture is a challenging
area because of the lack of a clear definition. To address the challenges and
propose solutions, this area has been the subject of much research. As a
result, commercial solutions such as DODAF and MODAF have been de-
veloped to help develop EIS architectures. This thesis reviews and analyses
these solutions to identify the process models used in the current solutions
(boxes 7 and 8 in Figure 1.2). The analysis of EIS architecture and related
technologies leads to developing a novel process model, EAPM (box 6 in Fig-
ure 1.2); this phase is also aligned with step 3 in Figure 1.1. The transition
from KAOS-β to EAPM is illustrated in Figure 1.2 and leads to identifying
a number of quality attributes for EIS (box 9 in Figure 1.2). These qual-
ity attributes could be used as an early information for designing an EIS
architecture (box 10 in Figure 1.2).

To evaluate the results of the process models developed in this thesis,
Chapter 7 presents the phases of developed process models to a new example
of EIS, ACM. This phase is aligned with steps 4 and 5 in Figure 1.1.

22 CHAPTER 1. INTRODUCTION

A
n

a
ly

s
is

o
f

E
IS

D
o

m
a

in

K
A

O
S

-ß

G
a

p
in

D
e

v
e

lo
p

in
g

E
IS

Id
e

n
tify

G
O

A
A

n
a

ly
s

is

E
n

te
rp

ris
e

A
rc

h
ite

c
tu

re
A

n
a

ly
s

is

E
IS

G
o

a
ls

E
IS

D
o

m
a

in
A

n
a

ly
s

is

E
IS

Q
u

a
lity

A
ttrib

u
te

s

E
IS

A
rc

h
ite

c
tu

re
D

e
v

e
lo

p
m

e
n

t

E
A

P
M

Id
e

n
tify

A
d

d
re

s
s
e

d
B

y

D
e

v
e

lo
p

In
p

u
t

Id
e

n
tify

G
a

p
in

u
n

d
e
rs

ta
n

d
in

g
d

iv
e
rs

e
a

n
d

v
o

la
tile

s
ta

k
e

h
o

ld
e

rs
’
g

o
a
ls

L
a

c
k

o
f

c
le

a
r

p
ro

c
e
s

s
g

u
id

a
n

c
e

fo
r

G
O

A
s

S
tro

n
g

d
e

p
e
n

d
e
n

c
y

o
n

T
e

c
h

n
o

lo
g

ie
s

E
x

p
e

rts
a
n

d
D

o
m

a
in

E
x
p

e
rts

D
e
v

e
lo

p

T
rig

g
e
r

1
2

3

4

5

6

78
9

1
0

F
igu

re
1.2:

T
h
esis

con
cep

tu
al

M
o
d
el

1.5. THESIS CONTRIBUTIONS 23

1.5 Thesis Contributions

This section summarises the contributions of this thesis, and their impact on
addressing the research questions.

Central Contribution: The key contribution of this thesis is a novel method
that develops goals for Enterprise Information Systems and traces them
through to a strategic EIS architecture. This method includes two novel
processes, KAOS-β and EAPM.

KAOS-β: The first process model, KAOS-β, provides steps to analyse, iden-
tify, and structure the goals for an EIS. This new process model adapts
and extends KAOS (a requirement engineering method) to the enter-
prise context. The results of KAOS-β could be used to support decision
making, during design phases (e.g. architectural design), or eliciting re-
quirements of an EIS.

EAPM: The second process model, EAPM, is developed here to address
the strategic level of developing an EIS architecture. EAPM provides
a novel perspective for developing an EIS architecture using software
architecture concepts and technologies, and building on the output of
KAOS-β.

Process Model Development: Two process models (KAOS-β and EAPM)
are developed in this thesis. The steps and approach towards develop-
ing these process models are explicitly explained and analysed. This
systematic approach could be used as guidance for developing other
process models in the domain of software engineering.

Process Model Evaluation: There are no widely accepted approaches for
determining the quality of a specified process or process model (Alegŕla,
2011). This thesis introduces techniques that could be used for evalu-
ating a process model and a novel demonstration of applying and use of
these techniques for evaluating KAOS-β and EAPM. These evaluation
techniques could be used for similar process models in the domain of
software engineering.

EIS Definition: There is no standard definition of EIS. This thesis presents
a domain analysis of EIS, including a summary of EIS characteristics,
that provides an explicit definition for EIS (Section 2.1).

In summary, the contributions of this thesis address the three research
questions presented in Section 1.2 as follows:

24 CHAPTER 1. INTRODUCTION

1. What is an EIS and its characteristics?
To address this question, the EIS and its domain has been analysed an
EIS definition, its characteristics, examples of what is and what is not
an EIS, are discussed in this thesis.

2. Why does an EIS fail to deliver its functionalities and address stake-
holders’ and enterprises’ goals?
The domain analysis illustrates that unclear goals in the early phases
of decision making and design, causes different understandings of how
an EIS should integrate and support the business processes. There-
fore, goal–oriented approaches in the domain of software engineering
are analysed and a process model to address one possible approach is
developed and tested.

3. What knowledge is required to identify the required functionalities for
developing an EIS?
Analysing EIS examples in the literature illustrates that each devel-
opment phase requires specific knowledge. This knowledge should be
shared and understandable for different parties. To identify and de-
velop required functionalities, we propose to trace the original goal
knowledge to the further development phase. In this thesis, the goal
knowledge is traced to the architecture design knowledge.

Figure 1.3 presents the use of this thesis’ contributions, KAOS-β and
EAPM, in the development process of an EIS. The process starts by the
initial analysis of the EIS domain and uses the KAOS-β to identify EIS goals.
The identified goals are used to identify requirements in an iterative process.
The identified goals also are used to design an EIS architecture by providing
initial information for EAPM. EAPM leads to identifying a number of EIS
quality attributes that trigger the EIS architecture.

1.5. THESIS CONTRIBUTIONS 25

A
n

a
ly

s
is

o
f

E
IS

D
o

m
a

in
K

A
O

S
-ß

E
IS

G
o

a
ls

E
IS

R
e

q
u

ir
e
m

e
n

ts

E
A

P
M

E
IS

Q
u

a
li
ty

A
tt

ri
b

u
te

s

E
IS

A
rc

h
it

e
c
tu

re
D

e
v

e
lo

p
m

e
n

t

T
ri

g
g

e
r

U
s

e

Id
e

n
ti

fy

R
e

v
ie

w

Id
e

n
ti

fy

Id
e

n
ti

fy

U
s

e
d

B
y

(a
s

p
ri

m
a

ry
in

fo
rm

a
ti

o
n

)

A
s

s
e

c
o

n
d

a
ry

in
fo

rm
a

ti
o

n

S
o

u
rc

e
fo

r

Provideadditionalinformation

Provideadditionalinformation

F
ig

u
re

1.
3:

E
IS

d
ev

el
op

m
en

t
ro

ad
m

ap
.

S
ol

id
li
n
es

p
re

se
n
t

p
ri

m
ar

y
li
n
k
s

an
d

d
as

h
ed

li
n
es

p
re

se
n
t

se
co

n
d
ar

y
li
n
k
s.

26 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

The aim of Chapter 2 is to present a review and analysis of the literature
relevant to the development of EIS. We use the review to clarify and precisely
define the characteristics and challenges of developing an EIS. The review
considers research from software engineering, and their applicability to EIS
development challenges.

Section 2.1 presents a discussion review of the EIS domain, including
EIS definition, characteristics, examples and challenges. Sections 2.2 and 2.3
present a review of Goal–Oriented Approaches (GOA), including a definition
of goal and related concepts, in addition to an empirical review of a selection
of successful GOA. This review identifies a number of limitations for GOA;
one limitation is the lack of clarity in the underlying process models for GOA.
This limitation leads to a review of process modelling approach in Section 2.4.

Some of the EIS development challenges presented in Section 2.1 motivate
an investigation of EIS architecture. Therefore, Section 2.5 presents a review
of a number of architectural methods in the domain of EIS.

Because the contributions of this thesis are presented in the form of a
method for developing EIS, Section 2.6 presents a definition and brief re-
view of the constituent elements of a method. To help answer the research
questions of this thesis, we carry out two EIS case studies; these case studies
are introduced in Section 2.7. EIS case studies introduction illustrates the
rational to adopt these cases. Finally, the results of EIS literature review
leads to identifying a number of gaps.

Section 2.8 presents focused gaps and a testable hypothesis to address this
gaps. Finally, Section 2.9 summarises the results of Chapter 2 and introduces
the structure of this thesis’s chapters to address the hypothesis.

27

28 CHAPTER 2. LITERATURE REVIEW

2.1 Enterprise Information System

The notion of an enterprise system was established after the First World War,
when new industries came to the market and many industries combined and
amalgamated (Fruin, 1994). (Fruin, 1994) identified three types of enterprises
that share common elements such as inter-firm relations, marketing, mode of
competition, finance, ownership, management, administrative coordination,
government relations.

Mitsubishi is an example of an enterprise dating back to 1926; it integrates
distinct yet affiliated companies, particularly Mitsubishi Heavy Industry,
Mitsubishi Warehousing, Mitsubishi Trading, Mitsubishi Mining, Mitsubishi
Bank, Mitsubishi Electric, Mitsubishi Trust, Mitsubishi Property, Mitsubishi
Steel, Mitsubishi Oil, Nippon Industrial Chemicals, and Mitsubishi Insur-
ance (Fruin, 1994). Another enterprise example is General Electric, which
has independent divisions focusing on health care, aviation, oil and gas, en-
ergy, electrical distribution, security, and many others (Electric, 2011).

EIS is a large–scale information system that supports the business pro-
cesses of an enterprise. The examples of Mitsubish and General Motors
illustrate that an enterprise is composed of several business processes and
multiple groups of stakeholders. Therefore an EIS must support multiple
business processes and related stakeholders. Technologies such as Service
Oriented Architecture (SOA) are currently popular in design and implemen-
tation of systems to support multiple businesses processes, platform, and
information systems. The term business process often implies a process that
focuses on delivering financial value. However, in practice, large-scale busi-
ness processes, and their associated information systems support delivery of
different kinds of outcome, which are not always directly linked to financial
values. In fact, businesses include both financial organisations and public
organisations, which deliver services to the public.

By analysing published definitions, organisation, and business model char-
acteristics (Tabatabaie et al., 2010), we adopt the following definition of EIS:

An Enterprise Information System is a software system that integrates
the business processes of organisation(s) to improve their functioning.

Integration of business processes plays an important role in this definition.
Integration can be accomplished by providing standards for data and business
processes. These standards are applied to various part of the system such as
a database or clusters of databases. One aim of integration is to allow data
required by more than one business process to flow seamlessly.

Another point in this definition is the software characteristics of EIS. At
this stage, we consider EIS as a type of information system; therefore an EIS
may include humans, software, and hardware systems.

2.1. ENTERPRISE INFORMATION SYSTEM 29

The next term used in the definition is organisation. Organisations may
include an organisation with its partners, or a group of organisations. Ta-
ble 2.1 refines the above definition and describes what we propose as the
objectives, goals, domain, and challenges of EIS (Tabatabaie et al., 2010;
Laudon & Laudon, 2007).

EIS Objective

Integrating business processes of an organisation
Seamless information flow
Suitable access to data and information for various stake-
holders
Matching the software system structure with organisa-
tion structure and requirements

EIS Goal Improving coordination, efficiency, and decision-making
of business process in an organisation

EIS Domain Covers the internal and external business activities of
organisation

Particular EIS
Challenges

Security challenges that should be considered carefully
for organisations’ processes.
Managing integrated information needs of multiple busi-
ness processes and changing enterprise goals.
Mixing the required information of one business process
with another one can cause problem for the organisation
Improve flexibility in organisation processes

Table 2.1: EIS boundaries, objectives, and challenges.

Figure 2.1 gives a graphical presentation of the EIS definition. An en-
terprise may contain one or more organisations (represented as large trian-
gles). Organisations have their own business processes (BPx), which have
their own data requirements. The EIS provides standard information tech-
nology (IT) support across all the business processes, interfacing with the
databases, warehouses, and other computer systems of the enterprise. This
structure allows co-ordination of IT systems across business processes, al-
lowing data sharing and supporting security policies, as well as providing
flexibility needed to support enterprise level strategies. Beyond the technol-
ogy, an EIS needs to support EIS strategy, i.e. providing suitable information
for management to make decisions.

30 CHAPTER 2. LITERATURE REVIEW

BF-Data-IS

BF-Data-IS BF-Data-IS

BF-Data-IS
Standard for Data

and BP

BP

BP

BP

BP
BP

BP
BP

BPBP

EIS Interface to Database(s)

DBs DWs

Interface to other IS

IS IT

Figure 2.1: Domain analysis of EIS model. BP in this figure are business
processes and BF are business functions; based on (Tabatabaie et al., 2010).

2.1. ENTERPRISE INFORMATION SYSTEM 31

2.1.1 EIS Characteristics

To identify the defining characteristics of an EIS, a number of technolo-
gies and terminologies have been reviewed (Tabatabaie, 2011): system of
systems, adaptive systems, legacy systems, distributed systems, service–
oriented architecture, catalysis approach, and the IBM component business
model (Tabatabaie, 2011).

The analysis identifies the following characteristics for an EIS:

• Supports and orchestrates multiple business processes

• Supports organisational goals

• Supports changes and evolution of an enterprise functionalities

• Dynamic architecture to accommodate and integrate new systems

• Contains sensitive and real–time data and processes

• Open system: includes interactions with systems (e.g. human, hard-
ware, software systems)

None of these characteristics is based on the size of the organisation; an
EIS covers different sizes of enterprises, small, medium, or large. It is also not
essential for an EIS to be geographically distributed, though the fundamental
nature of enterprise makes this common.

2.1.2 EIS Examples

The definition of EIS that was presented previously can help to distinguish an
EIS from other information systems. To refine the distinction, some examples
are now provided.

Mitsubishi has more than 400 companies around the world (Mitsubishi
Committee, 2011) and multiple business process is an enterprise (See sec-
tion 2.1). An information system that links various parts of the Mitsubishi
organisation (including high-level managers) and supports seamless collabo-
rations between business processes would be an EIS.

The infrastructure needed to support the National Health Service (NHS),
can be considered as an EIS. Here, information systems are being developed
to support management of patient records and prescriptions. Such infrastruc-
ture aims to connect currently independent departments within and outside
of the NHS, whilst implementing a strict security policy. E-Government is
another public sector enterprise that could use an EIS, to connect various

32 CHAPTER 2. LITERATURE REVIEW

governmental organisations or departments together to let information flow
seamlessly between them.

Counter-examples can further clarify the definition of enterprise and
EIS. Online shops such as eBay (Gopalkrishnan & Gupta, 2007) and Ama-
zon (Wikipedia, 2011a) do not have the requisite diversity of business pro-
cesses: they are not enterprises, and their organisational needs can be sup-
ported by conventional information systems.

There are also organisational systems development projects that do not
in themselves qualify as an EIS. A classic example is the 1980s attempt to
develop an automated ambulance dispatch system for London Ambulances
Service (LAS) (Finkelstein, 1993). Whilst ambulance dispatch is a process of
the wider NHS EIS, this system was not design to integrate with patient and
health care management. It addresses a single strategic goal, rapid response
to emergency call outs- it did not, for instance, incorporate forward planing
of casualty treatment. Whilst many of the issues that arise in this project
relate to failure to appreciate the complexity of the problem, the LAS is not
an EIS by the criteria identified in this thesis.

This thesis focuses on two enterprises and their EIS (more information is
given in Section 2.7). The stroke care example takes a strategic level view
of stroke management and prevision in a hypothetical health service (based
on documented examples of UK (DH Stroke Policy, 2007), US (Schwamm,
Pancioli, Acker, Goldstein, Zorowitz, Shephard, Moyer, Gorman, Johnston,
Duncan, Gorelick, Frank, Stranne, Smith, Federspiel, Horton, Magnis, &
Adams, 2005), and Denmark (Harrell, 2009)). This qualifies as an enterprise,
because it covers many business processes with a need for integrated data
management, e.g. patient admission, emergency treatment and its records,
rehabilitation services, etc.

The Airport Crisis Management (ACM) example (MODELPLEX Consor-
tium, 2007) deals with strategic information and decisions in crisis situations.
It requires an EIS because it must integrate, capture, and disseminate infor-
mation from crisis site to air side and land side of the airport, among staff
and passengers, press, emergency services etc.

2.1.3 EIS Development Challenges

An EIS supports business processes of an enterprise. Therefore the challenges
of developing EIS are associated with the challenges of developing complex
information system, multiple enterprise business processes, and enterprise
structure (i.e. different stakeholders and point of view).

(Berg, 2001) reviews the concept and reasons for the success and failure
of developing health care information systems. The results of (Berg, 2001)

2.1. ENTERPRISE INFORMATION SYSTEM 33

review applies to EIS as EIS is a complex information system and face some
of the challenges of complex health care systems.

This review highlights some of the challenges of complex systems applied
to EIS as an EIS is a complex system too.

An early challenge, discussed in (Berg, 2001) is the design issues that leads
to failure in implementations. There are different aspects of design for an
EIS, including early design and planing, and architecture design. Challenges
in each of these phases could lead to failure in the final result. For exam-
ple, according to (Armour et al., 1999), a mis-perception of EIS architecture
design that leads to failure is to start the development from detailed archi-
tectural design rather than providing a blueprint for creating enterprise-wide
information system.

The challenges in design are also influenced by lack of clear criteria and
measure for success and failure of EIS (Berg, 2001). (Berg, 2001) argues that
there is no simple formula to define success factors, even when there is a total
agreement on the goals. This highlights the importance of defining goals of
an EIS to gather further information about an EIS development, which leads
to goal identification challenges. (Berg, 2001) also emphasises that conflicts
between goals and policy and regulations is another challenge for developing
EIS. In addition, a set of goals and policy, while is successful in a system,
might not be successful in another one.

Another challenge highlighted by (Berg, 2001) originates from a charac-
teristic of EIS that was discussed in Section 2.1.1: Involving multiple business
processes and different stakeholders’ point of view. The failure to manage
processes that address different points of view is a common challenge of de-
veloping an EIS (Berg, 2001).

In addition to these challenges, several other common challenges for com-
plex information systems has been presented by (Bull, 1998; Royal Academy
Engineering, 2004) that could be categorised as an EIS challenges. For ex-
ample, lack of clear communication between relevant partners (Bull, 1998;
Royal Academy Engineering, 2004); inadequate resources and skills to deliver
the total portfolio (Royal Academy Engineering, 2004); too little attention
to breaking development and implementation into manageable steps (Royal
Academy Engineering, 2004). These are examples of implementation and
technical challenges.

In summary, implementation challenges such as inadequate resources,
skills, and technologies have been in centre of attention for developing an
EIS. The aim of this thesis is to focus on design challenges to investigate
systematic processes for developing an EIS, in addition to providing trace-
able design solutions in advance of implementing a complex EIS that requires

34 CHAPTER 2. LITERATURE REVIEW

substantial amount of resources.
One of the challenges that is presented in EIS examples is identifying and

structuring goals of an EIS, which leads to extracting further design and im-
plementation information (Berg, 2001; Liu et al., 2000). Section 2.2 presents
a review of the goal concept and technologies. The design challenges also
motivate this thesis to further the investigations to review EIS architecture
and the influence of identifying goals on the EIS architecture in Section 2.5.

2.2 Goal Definitions

In section 2.1.3 some of the EIS challenges of early phases of development
have been reviewed. (Liu et al., 2000) argues that organisational and en-
terprise long-term goals must be taken into consideration in developing an
EIS. This suggests that goal analysis is a useful approach in addressing part
of the design challenges. Thus, the objective of this section is to precisely
define the notion of goal that is used for this thesis, and to review exist-
ing GOA. GOA have been widely discussed in the requirement engineering
domain (van Lamsweerde, 2001, 2004). GOA are also used in the safety
and security research community – for example, to present safety cases and
safety arguments (Kelly, 2004; Kelly & Weaver, 2004) – and in software
assessment (Weiss et al., 2002).

Even though the notion of goal is used in different GOA, there is no gen-
eral agreement on a standard definition. For example, the term goal used in
GSN presents the concept of an arguable claim, whereas in the requirements
engineering domain, a goal is a system goal, leading to one or more system
requirements. Section 2.2.1 presents a review of goal definition in comparison
with other similar concepts. Later in Chapter 3 we narrow down the choices
of GOA to the ones that are aligned with this thesis definition of goal. Nev-
ertheless, to learn from the successful aspects of practical GOA, the concepts
of GOA in general and in particular a number of successful approaches are
reviewed in Section 2.3.

2.2.1 Goal vs. Requirement vs. Claim

The terms goal and requirement are often used interchangeably; the notion
of claim is also used simultaneously in argumentation (Kelly, 1998a). This
section discusses the differences between these terminologies.

(Antón, 1996, p. 137) defines goals as “high level objectives of the busi-
ness, organization, or system. Goals express the rationale for proposed sys-
tems and guide decisions at various levels within the enterprise”. This defi-

2.2. GOAL DEFINITIONS 35

nition is used as a primary goal definition for this thesis. (Kim et al., 2006)
define a goal model, similarly to (van Lamsweerde, 2003), as a criterion for de-
signing the architecture for systems, used to guide decisions at various levels;
source of requirements, software, and data architecture. (van Lamsweerde,
2003) uses goals for identifying requirements and as source for deriving data
and software architecture.

(Sommerville, 2007, p. 118) defines requirements as “the descriptions of
the services provided by the system and its operational constraints”. The
concrete difference between requirements and goals is that the requirement
inquires what needs to be implemented whereas goal inquires why and how.
Goals indicate what needs to be achieved, that leads to identifying require-
ments (Regev & Wegmann, 2005; Nuseibeh & Easterbrook, 2000; Darimont
et al., 1997).

We assume that by answering what we expect a system to achieve, and
Why, a number of functionality and requirements are defined, a set of goals
would be collected. (Antón, 1996, p. 137) supports this argument by defining
the relationship between goals and requirements as follows: “a requirement
specifies how a goal should be accomplished by a proposed system”. A re-
quirements document is developed with the developer team in mind; thus
a requirements document may be unclear for the stakeholders, but the goal
document should be understandable and agreed on for both stakeholders and
developers.

In short, the definition of goal that is used in this thesis is aligned
with (Antón, 1996); goals are collected from domain analysis and should
be understandable to the users and decision makers. Requirements are tech-
nical and, compared to goals, include more detailed information that could
be used by system developers to understand the details of the system design
and implementation.

Claim is another interpretation of notion of goal. A claim is a statement
intended to be demonstrated to be true; hence it could be the motivation
for developing an argument, to show that it is true or false. A claim could
be defined based on the description of defined goals, objectives of a system,
requirement, or developed functionalities of a system. An example of a goal
is: the system should satisfy the users by providing suitable response to their
queries. An example of a requirement is: the system should respond to the
user’s queries in less than 10 seconds. An example of a claim is: the system
provides a response to the user in less than 10 seconds.

Knowledge of what constitutes a goal is the first step towards applying a
GOA. Based on our definition of goal, the next section gives a rationale for
using a GOA as the basis for developing an EIS.

36 CHAPTER 2. LITERATURE REVIEW

2.2.2 Motivation For Goal–Oriented Approaches

An enterprise is a collection of businesses processes, and sometimes busi-
ness partners that operate as an organisation with shared goals. An EIS
is a software system that integrates support for the business processes of
organisation(s) to improve their functioning (Tabatabaie, Paige, & Kimble,
2008; Tabatabaie et al., 2010). The challenges of developing and deploying
EIS vary across enterprises, with many challenges related to scale and com-
plexity. Some factors that create complexity in EIS are (Tabatabaie et al.,
2010):

• Growth of the size of information systems and enterprises

• Interactions between different information systems

• Involvement of many different parties in the construction and use of
information systems

• Ever-increasing rate of organisational and social change

Involvement of different parties in the construction and use of informa-
tion systems and the social, technical, organisational changes brings the chal-
lenges of dealing with diverse and volatile stakeholders’ goals. In addition
to the lack of precise approach to bridge the gap between stakeholder un-
derstanding and IT system expert understanding of an EIS structure. These
factors also lead to failure in communication and understanding of organ-
isational requirements, identified as challenges earlier (RAE-BCS Working
Group, 2004). Techniques that can help to address these challenges could
help to reduce the risks inherent in developing and deploying EIS.

To develop an EIS that satisfies the stakeholders’ expectations of a sys-
tem, the ideal case is to involve them in the process of developing an EIS.
At this stage, however, we cannot expect business experts to design their
own software systems but we can provide support for them in identifying
and structuring their goals; similar support could be provided for EIS de-
velopers. Through a structured process of analysis and modelling goals, EIS
developers are led towards an understanding of the priorities of the enterprise
and its organisational goals. Analysis requires identification of a sufficiently-
complete set of goals, by engagement with different groups of stakeholders.
Engagement with senior staff can help to create understanding between de-
velopers and organisational seniors. Structuring the goals of EIS can lead
towards a vision of the EIS-to-be and systems-as-is, and indirectly addresses
the challenge of EIS structural visualisation.

2.3. SOLUTIONS FOR GOA 37

2.3 Solutions For Goal–Oriented Approaches

Based on the previous review of goals and motivation for GOA, Section 2.3
summarises current GOA. We do this to identify features of existing GOA
that are of value in EIS development.

The need to identify enterprise–level goals led us to review well–known
GOA techniques, especially in the domain of requirements elicitation and
engineering. Of the GOA reviewed, some have previously been applied to
EIS, but all are aimed at use by GOA experts, rather than domain experts.
A review of a number of GOA is presented in Section 2.3. The reviewed GOA
do not generally include clear process of how to extract and refine the goals
and goal structures: this is a critical concern for EIS where overlapping,
contradictory, and possibly inconsistent goals may lead to enterprise-wide
problems. There are various types of EIS with very different requirements,
and it may therefore not be possible to develop a generic process that can
satisfy all of them. Approaches tailored for specific EIS domains may be
more profitable. However, in any case, when there is no process, the use of an
approach is limited by its reliance on GOA experts or personal interpretation
by its users.

There are at least 15 distinct GOA (Kavakli & Loucopoulos, 2005), in
areas such as artificial intelligence (Hong, 2001), software assessment (Weiss
et al., 2002), requirements engineering (van Lamsweerde, 2009; Castro, Kolp,
& Mylopoulos, 2002) and safety argumentation (Kelly, 1998b, 2004).

In this section we report our review of four leading approaches by applying
them to an EIS example, stroke care (Tabatabaie, Polack, & Paige, 2010a).
The approaches, which were selected after considering the definition of EIS,
the aim of the research, and the internal characteristics of each GOA, are Goal
Structuring Notation (GSN) (Kelly, 1998b), KAOS (van Lamsweerde, 2009),
GBRAM (Antón, 1996), and i∗ (Castro et al., 2002). KAOS and GBRAM
have approaches for defining and refining the goals of an organisation; KAOS
is the better-documented approach, and has been used in many successful
projects. i∗ is a well-known and successful approach, and has been applied
to health care (An et al., 2009); it claims to encourage the involvement of
stakeholders in requirement analysis, and to help the developers to achieve
a deep understanding of the domain. GSN is widely used for presenting
the structure of arguments in the domain of safety, and has been applied to
requirements analysis in research contexts (Habli et al., 2007).

Critique of i∗: “The i∗ framework (i∗ stands for distributed intentionality)
views processes as involving social actors who depend on one another
for goals to be achieved, tasks to be performed, and resources to be

38 CHAPTER 2. LITERATURE REVIEW

furnished” (Yu et al., 1996). i∗ captures implicit yet important infor-
mation for business processes and IS that support them. i∗ supports
process modelling and re-engineering (Yu & Mylopoulos, 1994). The
motivation of i∗ is to understand why a business process is the way it
is, rather than just to describe the requirements for a business process.
i∗ was chosen for review because of its focus on understanding of the
business environment and the domain (Yu & Mylopoulos, 1994); its
encouragement of stakeholder involvement in requirements analysis; its
visual notation for communication between stakeholders; and, finally,
its previous use in health care (An et al., 2009).

However, like (An et al., 2009), we find that i∗ requires significant
detailed information early in the design process. Whilst the level of de-
tail may exist in business–specific IS development, it is not appropriate
for analysis of enterprise goals. This problem applies in some part to
the other GOAs, but is particularly problematic in i∗, which requires
detailed information for allocating dependency relationships, and pro-
duces a goal structure that includes implementation information.

Critique of GSN: The critique of GSN is based on (Tabatabaie, 2009).
GSN is a notation for presenting an argument, and one of the require-
ments to start an argument is a claim about the system. “A claim
is a statement that you are asking the other person to accept” (Toul-
min, 1958). For example a claim would be that a system is safe. GSN
uses a set of notations, including modules, goals, strategies, context,
and assumptions to support the claims. Even though using claim is
successful for the GSN, it is not match with the goal definition of this
thesis. Similarly, because of the origin of GSN origins, goals are derived
from safety requirements and expressed as a claim over evidence; by
contrast, in most requirements engineering GOA, goals are expressed
before identifying the requirements and are a source for identifying
the requirements (Kavakli et al., 1996; Antón, 1996; van Lamsweerde,
2009).

GSN is typically used to summarise an argument over evidence of safety,
from traditional safety analysis techniques. Whilst GSN provides a
powerful structuring notation, it does not provide a goal identification
method which is one of the requirements for this thesis.

Because of its origins in safety-case argumentation, the GSN notation
includes useful features such as modularity or context, but cannot easily
express contradiction or priority of goals, perhaps because they are not
needed for an argument. In EIS, it is invariably the case that the

2.3. SOLUTIONS FOR GOA 39

enterprise assigns priorities to its goals, and it is generally the case
that some identified goals will conflict (excellence vs cost-saving is a
common instance).

Critique of GBRAM: (Antón, 1996) presents GBRAM as an approach for
analysing, identifying, and classifying goals, Agents and stakeholders.
The detail level of GBRAM is more appropriate for identifying goals
than that of i∗: goals are a “logical mechanism for identifying, orga-
nizing and justifying software requirements” (Antón, 1996). GBRAM
provides a top-down approach to refining and structuring goals; it ad-
dresses identification and documentation of goals, as well as the issue
of knowing when the goals are adequately specified. These positive
attribute influence our eventual approach.

The main disadvantage of GBRAM is its lack of a generic analysis
process: this lack of guidance inhibits use the method as-is for EIS.

Critique of KAOS: KAOS is a GOA, designed to elicit and validate re-
quirements and to prove their consistency (Delor et al., 2009). Objec-
tiver is a tool that supports KAOS. The developers of the Objectiver
tool1 state that KAOS extends the traditional “what question” ap-
proach to requirements with “why”, “who” and “when” questions.

KAOS develops a goal model, from which other models can be derived:
the obstacle model, the agent model, the operation model, the object
model and the behaviour model. Figure 2.2 presents the relationships
between these models that cover different views and aspects of the
system requirements.

Even though KAOS does not have an explicit process model for struc-
turing a goal model, it provide a number of heuristics. KAOS has many
conceptual similarities to GBRAM (Objectiver, 2010). It has both a
top-down approach and a bottom-up approach to identifying and refin-
ing goals. In this sense, it is more detailed and complete than GBRAM;
KAOS’ approach is also at an appropriate level for EIS, without the
need for detailed information early in the analysis that is problematic
in i∗. The rigorous approach to goal definition in KAOS can cause dif-
ficulties for stakeholders who are unfamiliar with IT development, but
adds its own value in respect of concrete definition.

The KAOS methodology is actively evolving and is well-documented; it is
applied in many industrial cases. Although, as in other approaches, the pro-
cess of applying KAOS is not well-defined, largely comprising usage examples

1www.objectiver.com

40 CHAPTER 2. LITERATURE REVIEW

Goal model

Obstacle model Agent model Operation model

Object model Behaviour model

Figure 2.2: Relationship between KAOS models; image is based on the de-
scription given in (van Lamsweerde, 2009).

(van Lamsweerde, 2009, p. 502), the advantage of documentation makes it
the basis for our EIS process. The overall review of KAOS illustrates the
benefit of this methodology compare to the ones we review in this thesis.
Therefore KAOS is used as the main methodology for the further study of
GOA for this thesis.

2.3.1 Suitability Of KAOS For EIS

Section 2.3.1 considers the aspects of KAOS that are and are not suitable for
EIS development.

The analysis of KAOS heuristics focuses on the heuristics used to identify
goals. These are summarised in an activity diagram, Figure 2.3.

The first heuristic relates to goal identification. It proposes review of
documentations related to the system and its environment for specific goal-
related keywords. This heuristic proposes further goal identification through
instruction of goal categories.

Some of the goal–related keywords and categories proposed by KAOS (van
Lamsweerde, 2009) are not generally applicable to EIS analysis, because the
categories aim to finally define requirements for a system and not an EIS and
they assume there exist documents that clearly present objectives of a system.

2.3. SOLUTIONS FOR GOA 41

Identify goals

Instantiate goal categories

Identify goals by refinement

Split responsibilities

Identify soft goals

Identify agent wishes (Human)

Analyse obstacles, threats and conflicts

Check the converse of achieve goals

Check the complementary case of conditional achieve goals

Refine goals until assignable to single agents

Abstract goals until the system's boundry is reached

Figure 2.3: Activity Diagram presenting the steps of KAOS methodol-
ogy (van Lamsweerde, 2009).

42 CHAPTER 2. LITERATURE REVIEW

Instead, a review of documentation of identified functionalities, plans, and
expectations of the EIS leads to identifying part of EIS goals. Further goals
were identified from interviews of professional users and researchers.

The KAOS heuristics for identifying goals by using refinement was use-
ful in exploring relationships among goals. KAOS proposes top–down and
bottom–up review, posing “How” and “Why” questions, respectively (van
Lamsweerde, 2009). The approach is particularly useful in clarifying am-
biguous goals and relationships.

The remaining heuristics all pose problems for EIS goal modelling; be-
cause EIS goal modelling addresses business processes, and does not relate
to a specific development of a single system. Agents also are not identified
during enterprise goal analysis.

This means that the KAOS heuristics that proposes to split responsibili-
ties (van Lamsweerde, 2009) (i.e. to assign goals to agents) are not applicable
to EIS. The same problem appears in a later step: refine goals until appli-
cable to a single agent. The heuristic: identify soft goals, is problematic for
several reasons: EIS goals modelling does not focus on a single system de-
velopment, so soft goals that can be used to “prescribe preferences among
alternative system behaviours” (van Lamsweerde, 2009, p. 268) cannot be
accurately determined. Furthermore, the precise meaning of soft goals is not
elaborated in KAOS documentation.

Identify agent wishes (human) is not completely applicable to EIS. How-
ever, the goal identification heuristics do reveal human wishes in relation to
enterprise strategies and expectations for the EIS.

The heuristics: analyse obstacles, threats and conflicts ; check the converse
of achieved goals; and check the complementary case of conditional achieved
goals are all useful guidelines but in the case of EIS goal analysis, the iden-
tifies goals are not usually specific enough for these forms of checking. The
heuristics refine goals until assignable to single agents already been rejected
because EIS goal analysis does not identify agents. However, the heuristics
are also inappropriate in EIS, since many agents would typically be involved
in satisfying any particular EIS goals.

Finally the heuristic: abstract goals until the system boundary is reached,
is only applicable in principle. In practice, the boundaries of an EIS are
unclear, and as a result do not provide a useful stopping criterion.

The review of KAOS heuristics on stroke care EIS illustrates that some of
the heuristics are not directly applicable to EIS. As the result, the Objectiver
tool is not fully applicable for our case of EIS. However, by modifying the
steps, the Objectiver tool could be used to create KAOS goals model. Objec-
tiver was applied to the stroke care case study (Section 2.7). The resulting

2.3. SOLUTIONS FOR GOA 43

goal model (e.g. Figure 2.4) is complex and poorly structured- it illustrates
the phenomenon of goal bloat. Goal bloat is similar to the concept of code
bloat (Stevens et al., 2005; Wikipedia, 2011e) that leads to unnecessary com-
plexity in presenting the structure of goals. The complexity of the KAOS
goal structure for an EIS highlights the problems associated with applying
GOA design for single system requirement analysis to an enterprise. This is
exacerbated by KAOS reliance on a single goal model, with no modularity.
Benefits of modularity is one of the lessons learnt from analysing GSN and
will be used in developing the method of this chapter.

In summary, we identified at least 15 distinct GOA (Kavakli & Loucopou-
los, 2005). Existing GOA address system–level goals, so need adaptation for
EIS–level goal analysis. The review of the four GOA illustrates a general
key limitation which is the lack of result evaluation techniques. Evaluating
the results relies heavily on the domain expertise. We also observed that the
processes introduced by these techniques on how to apply them are either
inapplicable fully to EIS (i.e. GSN, KAOS) or do not exist(i.e. i∗). How-
ever, the heuristics of KAOS have the potential to be encoded to a suitable
process. To make this transformation, the elements and requirements of a
process should be considered. To investigate the elements of a suitable pro-
cess for a GOA tailored to developing EIS, Section 2.4 presents a review of
processes and process models.

44 CHAPTER 2. LITERATURE REVIEW

F
ig

u
re

2.
4:

T
h
e

si
ze

an
d

co
m

p
le

x
it

y
of

a
go

al
st

ru
ct

u
re

fo
r

an
E

IS
co

u
ld

le
ad

to
go

al
b
lo

at
.

T
h
is

fi
gu

re
p
re

se
n
ts

p
ar

t
of

th
e

p
os

si
b
le

el
em

en
ts

of
a

go
al

st
ru

ct
u
re

fo
r

an
E

IS
ex

am
p
le

to
d
em

on
st

ra
te

th
e

co
m

p
le

x
it

y.

2.4. PROCESS MODELLING 45

2.4 Process Modelling

In 1992, research on software processes started to appear (Feiler & Humphrey,
1993). A process, and in particular, a software process requires human in-
volvement; hence processes are mainly dependent on the final users and the
domain experts for their implementation and evaluation. In the domain of
software engineering, a process is a “set of partially ordered steps intended
to reach a goal” (Feiler & Humphrey, 1993). (Fuggetta, 2000, p. 28) defines
a process as a “coherent set of policies, organisational structure, technolo-
gies, procedures, and artifacts that are needed to conceive, develop, deploy,
and maintain a software product”. Hence processes could be used in differ-
ent stages of software development to focus on a particular aspect. Conse-
quently process model is an abstract representation of a process architecture,
design, or definition (Feiler & Humphrey, 1993). Examples of processes and
process models are Business Process Modelling (Mitra, 2008), Application
Development Process Support (ADPS), Catalysis, Rational Unified Process
(RUP) (Chroust et al., 2010), OpenUp (EPF Project, 2010).

A software process model provides principles and guidelines by provid-
ing a precise course of action, tools, procedure, constraints, policies; and it
presents a direct correlation between quality of the process and the quality
of the developed software (Fuggetta, 2000). A benefit of defining an explicit
software process is to evaluate improve the results by enhancing the pro-
cesses (Fuggetta, 2000; Feiler & Humphrey, 1993). Software processes also
identify the different dimensions of software development and the problems
need to be addressed (Fuggetta, 2000). Other benefits of an explicit process
model are providing the ability to reuse and repeat the process, it is easier
to validate as one can analyse elements and structure of a process model. It
also makes the process model effective as an explicit process model is easier
to document. Hence providing an explicit process model could improve the
quality of a software product.

Process models are currently presented in natural, formal language, and
graphical notations (Chroust et al., 2010). The main characteristics, prop-
erties, and requirements of a process model are: activities that have to be
accomplished to achieve the process objectives, roles of the people, struc-
ture and the nature of the artifacts (Fuggetta, 2000; Feiler & Humphrey,
1993; SPEM, 2009; Chroust et al., 2010). Example of tools, standards and
process modelling languages that are currently used are: Eclipse Process
Framework (EPF Project, 2009), Software and Systems Process Engineering
Metamodel Specification (SPEM) (SPEM, 2009), Business Process Modeling,
Business Process Execution Language (van der Aalst, 2003; White, 2006).

Process models have two aspects: methodological and technologi-

46 CHAPTER 2. LITERATURE REVIEW

cal (Fuggetta, 2000). Technological process models have direct affect on
implementation of projects, however this thesis focuses on the methodologi-
cal aspect of process models by defining the elements, structure, and philos-
ophy of a process model (Chroust et al., 2010). The method is presented in
the following chapter.

The importance of process model evaluation has been discussed in the
literature, however, the approaches to evaluate process model is an ongoing
research. There are attempts to evaluate a process model quantitatively
and based on metrics (Garcia et al., 2006; Aguilar et al., 2006). However,
these approaches are still far from practical use. External validity of a process
model is particularly difficult because generalising the conclusion of the study
outside the context where the study was carried out is not possible in most
cases (Fuggetta, 2000). To address these issues, a number of criteria (Ramsin,
2006; Chroust et al., 2010; Fuggetta, 2000; Feiler & Humphrey, 1993) and a
standard (SPEM, 2009) have been identified to be the basis for evaluating
this thesis process models.

So far this section has presented a review of processes, process models,
and their elements and standards. This review is the basis for part of the
solutions, suggesting GOA, to address the design challenges presented in
Section 2.1.3. Another aspect of the design challenges highlights the EIS
architecture issues that could lead to failure. Therefore, Section 2.5 presents
a review of the enterprise and EIS architecture to investigates the potential
solutions for designing an EIS architecture.

2.5 EIS Architecture

So far, goals have been identified as a key element for strategic-level EIS
development. The objective of this section is to present another element of
EIS strategic-level development: EIS architecture. The influence of goals on
data and software architecture has been the subject of research for at least the
last decade (Clements & Bass, 2010a; van Lamsweerde, 2003). However, none
of them has presented an analysis of the influence of goals on EIS architecture.
New solutions are suggested to design enterprise architecture, that are not
exactly the same as EIS architecture. This section presents a review of the
the current processes and approaches in designing EIS architecture from two
perspectives: enterprise architecture (EA) and software architecture.

2.5. EIS ARCHITECTURE 47

2.5.1 Background

(McGovern et al., 2003, p. 6) state: “To consider what enterprise architec-
ture means, it is important to understand its origin. All architecture within
information technology can trace its ancestry back to the lessons learned
from building architecture”. The term architecture has an established defi-
nition in the building construction domain. However, in the domain of IT,
the term, architecture is not defined so clearly.

Early work on aspects of architecture in the domain of EIS describe dif-
ferent terminologies and technologies such as Enterprise Architectures (EA),
Enterprise Information System Architecture (EISArch), System Architecture
(SysA), Software Architecture (SWA), Hardware Architecture (HWA), Net-
work Architecture. The difference in the architecture terminology is depen-
dent on the users’ point of view and the domain the architecture is applied
to. For example Network Architecture is about the nodes of a network and
the relationship that these nodes have on each other (Perry & Wolf, 1992,
p. 2); HWA presents the “configuration of architectural pieces of the hard-
ware” (Perry & Wolf, 1992, p. 2). Likewise, the SWA is about the structure
that includes the software elements, its visible properties, and the relation-
ship between the elements (Bass, Clements, & Kazman, 2003, p. 3). All these
architecture definitions define common concepts such as the kind of compo-
nents and the connections between them. However, unlike the other archi-
tecture terminologies discussed so far, the SysA is “a process and a discipline
to produce efficient and effective information systems” (McGovern et al.,
2003, p. 1). The main difference between SysA and SWA/HWA/Network
architecture is the use of processes and process models in designing SysA. As
discussed in the first part of this thesis, EIS is a system with enterprise char-
acteristics – it is organisational and business oriented. Thus EIS architecture
inherits the characteristic of SysA and uses processes and process models for
its design. Little work has been done on process modelling in this area. Two
examples are the IT and business alignment technique by (Molinaro et al.,
2010) and the matrix based value model2 by (Páscoa et al., 2010).

To investigate the current processes and process models for designing EIS
architecture, a domain analysis has been undertaken. The results illustrate
that there are two main approaches for design EIS. The first approach appeals
to EA concepts and related technologies, and the second approach appeals
to software architecture solutions (McGovern et al., 2003). Section 2.5.2
presents the results of analysing EA approaches and Section 2.5.3 presents
the results of analysing software architecture solutions.

2Value matrix is used to present the relationship between business objectives and busi-
ness processes.

48 CHAPTER 2. LITERATURE REVIEW

2.5.2 Enterprise Architecture Solutions

This section presents a review of current solutions for Enterprise Architecture
(EA). The term EA tends to refer to ultra large scale and complicated archi-
tectures for systems or organisations. The topic has received little attention,
therefore limited references are introduced in this section. In this thesis, an
alternative definition of enterprise architecture is used: “a coherent whole of
principles, methods, and models that are used in the design and realisation
of an enterprise’s organisational structure, business processes, information
systems, and infrastructure” (Lankhorst, 2005, p. 3).

The main purpose of EA is to create a clear map of the business processes
(BPs) and governance principles to support BPs, so that the IT developers
understand what a business wants, and can implement systems that satisfy
the enterprise goals (Minoli, 2008; Lankhorst, 2005). “The goal of enterprise
architecture is to create a unified IT environment (standardized hardware and
software systems) across the firm or all of the firms business units” (Minoli,
2008, p. 9). The essential information of the business that could be captured
partly in goals is generally considered to be more stable than specific solutions
that are found for the problems currently at hand (Lankhorst, 2005).

A model of EA includes business architecture, information architecture,
solution architecture, and technology architecture (Minoli, 2008, p. 16). In
this model, the business architecture extends business process modelling tools
such as the Business Process Modelling Language (BPML). Business archi-
tecture is “an architectural formulation of the business function” (Minoli,
2008) and the information architecture is an “architectural formulation of
the information function via a data model” (Minoli, 2008). The information
architecture presents data modelling tools such as entity relationship mod-
elling. The solution architecture presents code development tools such as
CORBA, SOA (Minoli, 2008). The technology architecture states the net-
work design tools, performance modelling tools (Minoli, 2008, p. 18). Each
of these architectures is represented by a set of viewpoints. Each viewpoint
is associated with a language that can be used to describe systems from that
viewpoint (Minoli, 2008, p. 17). The enterprise architecture goes beyond the
IT architecture umbrella (which usually is data and infrastructure architec-
tures) (Minoli, 2008, p. 19). The enterprise architecture explicitly exhibit
the business processes and agents’ point of view.

The main characteristic of EA is creating a holistic view of an enterprise.
This view is a web of relations between organisational structure, products,
operations, and technology (Lankhorst, 2005). (Wegmann, 2003) defines en-
terprise as “an organization of resources, which performs a process”. Hence,
he defines EA as a “discipline that deals with the organization of the enter-

2.5. EIS ARCHITECTURE 49

prises resources” (Wegmann, 2003). To design an EA, he introduced four
different levels for aspects and viewpoints of an enterprise (e.g. IT level and
business level). The role of EA is to integrate business and IT by creating
traceability between these levels. This theory is the basis for well-known EA
solutions such as Zachman, DODAF, MODAF, TOGAF etc. These methods
and solutions address the strategic-level or strategic reasoning architecture.
This level of architecture focuses on the decision making and planing rather
than providing detailed implementation information (Hoogendoorn, Jonker,
Maanen, & Treur, 2009). The following present a domain analysis of a selec-
tion of EA solutions.

Zachman’s Framework: In 1987, Zachman introduced a framework for
large scale and complex information systems that become the first EA
framework (Zachman, 1987). His framework is independent of infor-
mation systems and aims to integrate the interfaces of the systems’
components. By which he will achieve another level of control for these
large scale and complex systems.

“Zachman puts an emphasis on describing what exists on each level
of an enterprise. In the simplest version of the framework, Zachman
proposes to describe within each level: what things are involved (data);
how things are done (function), where things are done (network). The
Zachman framework uses an add-hoc graphical notation. No specific
CAD tool support is available” (Wegmann, 2003).

Zachman framework suggests an enterprise architecture based on the
users viewpoints. This theory motivates further enterprise architecture
framework based on viewpoints such as the framework proposed by US
Department of Defense3, UK Ministry of Defence4, and Open Group5.

DODAF: Department of Defense Architecture Framework (DODAF) is a
promising product in the field of enterprise architecture, and a possible
approach for our example of EIS: the aim here is to find an understand-
ing of both how DODAF works and what its processes are. Note that
clear processes, tools, and guidelines are necessary if non-experts are
to use the products.

DODAF is an architectural framework that first appeared in the 1990s
with the aim of supporting the development of an interoperable and

3http://cio-nii.defense.gov/sites/dodaf20/
4http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/

InformationManagement/MODAF/
5http://www.opengroup.org/togaf/

50 CHAPTER 2. LITERATURE REVIEW

cost effective military system using comprehensive architectural guid-
ance (DODAF, 2007). A framework in this case provides “guid-
ance and rules for structuring, classifying, and organizing architec-
tures” (DODAF, 2007, p. 1-6). The architecture for DODAF follows a
similar definition of architecture to SWArch (Bass et al., 2003) which is
a set of components and connections between the components, as well
as functional parts and their rules (DODAF, 2007). The aim of using
an architecture, from the DODAF point of view, is to enable better de-
cision making throughout the enterprise (DODAF, 2007). Therefore,
DODAF concentrates on providing different views to present the stake-
holders’ requirements. An early version of DODAF, Version 1.5, used
Products as well as views to help the users visualise the architecture
data. However, in Version 2.0, the concept of Product is removed and
the concept of Described Model is added. The focus in the new version
is more on the data model and three main views: operational view,
systems and services view, and technical view. In this version the term
view is replaced by view point (DODAF, 2009).

DODAF establishes two main architecture layers: presentation and
data layers. The presentation layer includes the view points and the
data layer includes the data model. To satisfy the goal of having in-
teroperable military systems, DODAF accommodates Net-Centric and
SOA concepts. SOA is a key element for implementing the Net-Centric
objectives, that provide the ability to share information when it is
needed, where it is needed, and with those who need it (DODAF, 2007).

DODAF is based on federated architecture6; the first step of DODAF’s
process is to “determine the intended use of the architecture”. In this
early stage the stakeholders are told what to expect from the architec-
ture, “what the architecture would accomplish and how it may affect
the organisations or system development” (DODAF, 2007, p. 2-3).

Although DODAF focuses on federated architecture and uses SOA and
Net-Centric ideas, it is essentially an architectural approach/ strategy.
To decide if this strategy is required for designing an enterprise archi-
tecture, the designers need to have a general understanding of what
goals they want to satisfy, and they need to investigate if this strategy
is suitable and cost effective. Techniques such as KAOS-β could help

6“It provides a framework for enterprise architecture development, maintenance, and
use that aligns, locates, and links disparate architectures and architecture informa-
tion via information exchange standards to deliver a seamless outward appearance to
users” (DODAF, 2007, p. 1-6)

2.5. EIS ARCHITECTURE 51

the designers to understand the goals better and make a decision on
what strategy is most appropriate.

MODAF: MODAF is an EA framework developed by British Ministry of
Defence to support defence planning and change management activi-
ties (MODAF, 2010). Similar to DODAF, MODAF provides different
views and graphical and textual visualisation of the business area for
different groups of stakeholders (MODAF, 2010). In addition to the
Operational views, Service-Oriented views, System views, and Techni-
cal views, MODAF provides Strategic views, Acquisition views, and
a Combined system view. Strategic views address business outcome,
Acquisition views addresses dependencies and timelines of the project.
By adding these views MODAF emphasises the requirement for pre-
senting the business outcomes and their effect on the implementation
of the project in an enterprise architecture.

MODAF is based on DODAF and there is no evidence in the public
documents that the early stages of the process are different from the
DODAF process. Therefore, the argument regarding the requirement
for identifying the quality attributes and architectural drivers that we
made for DODAF is applicable to MODAF.

TOGAF: The Open Group Architecture Framework (TOGAF) was devel-
oped in 1995. It is based on the Technical Architecture Framework for
Information Management (TAFIM), developed by the US Department
of Defense (TOGAF, 2009). TOGAF is a set of methods and tools for
developing and maintaining enterprise architecture.

Architecture in TOGAF refers to the definition in ISO/IEC 42010:2007.
The fundamental organization of a system is embodied in its compo-
nents, their relationships to each other and the environment, and the
principles governing its design and evolution (TOGAF, 2009). The
main aspects of architecture in TOGAF are the formal description of
the system and components, and the relationships, principles and de-
sign guidance in the systems. TOGAF aims to reach the level of imple-
mentation from the detailed descriptions (TOGAF, 2009). Therefore,
it includes business architecture, information systems architecture, and
technology architecture. The TOGAF process is about preparing and
initiating the required elements for the architecture. Public documen-
tation focuses on defining the main quality attributes and architectural
drivers by analysing the organisations’ business, IT, and technological
aspects.

52 CHAPTER 2. LITERATURE REVIEW

SOA: The objective of EA methods that have been reviewed so far is to
address the business implementation of an enterprise in general and
specifically, the relationship between business processes and IT re-
sources (Wegmann, 2003). Aligned with this objective, SOA provides
a solution that depends on the concept of services. Services are the
functionalities of a system (McGovern et al., 2003, p. 63). A service
is “an implementation of a well-defined piece of business functional-
ity, with a published interface that is discoverable and can be used
by service consumers when building different applications and business
processes” (O’Brien, Bass, & Merson, 2005, p. 1). Services address the
implementation of a system functions and structured their interfaces in
an standard way to be able to communicate with other services mainly
from other systems.

To understand the positive and negative aspects of using SOA, Ta-
ble 2.2 presents a selection of SOA characteristics.

From a cost point of view, the effectiveness of SOA for designing EIS
depends on how an enterprise allocates its budget, the domain of the
system, and the expertise of the developers. Therefore the argument on
the cost effective characteristics could have both negative and positive
aspects. However, from our point of view, SOA provides a strategy
for designing the architecture and developing a system rather than
an architectural process. When an architect collects early information,
they could decide either to use SOA or any other approach for designing
their architecture.

The SOA definition given in (O’Brien et al., 2005, p. 1) emphasises
that SOA is not just a system that is built as a set of services, but the
SOA uses the services to build a particular system or application; the
difference is subtle. The SOA definition highlights the importance of
justifying the required services and placing them very carefully where
they can add benefit, rather than just choosing a number of possi-
ble services and designing an ad-hoc system to combine the services.
This leads us again to the importance of having a clear set of goals
for understanding and choosing most appropriate services. Hence, to
follow the SOA logic, SOA uses Business Process Modelling Notation
(BPMN) (Wikipedia, 2011c) to define the business processes and iden-
tify the functionalities (Erl, 2010). The defined services would col-
laborate with each other using Business process Executable Language
(BPEL) (Wikipedia, 2011b), which is an executable language. The
combination of these techniques and languages produces the architec-
ture of SOA. In this case the architecture is the connection between

2.5. EIS ARCHITECTURE 53

Positive Characteristics Negative Characteristics

Abstract and loosely cou-
pled (O’Brien et al., 2005, p. 4)

Refactor and change when the
service is published should be
avoided (O’Brien et al., 2005, p. 5)

Modular and layered nature (Mc-
Govern et al., 2003)

Vulnerable to network issues be-
cause of distributed nature (McGov-
ern et al., 2003)

Achieve reliable level of clustering
the servers leads to higher availabil-
ity (Minoli, 2008; McGovern et al.,
2003)

Disrupting the service if any of
the provider machines not available
as SOA are hosted on many ma-
chines (McGovern et al., 2003)

More tolerant of network disruption
according to asynchronous commu-
nication (McGovern et al., 2003)

“The complex nature of some sys-
tems built on an SOA makes it
very difficult to mathematically de-
rive SLA parameters (Implementa-
tion downside)” (McGovern et al.,
2003)

Easier remove or replace the services
in the architecture (McGovern et al.,
2003)
Increase corporate agility(Minoli,
2008; McGovern et al., 2003)
Increase overall reliability by “pro-
ducing systems that are more resis-
tant to application and equipment
failure and disruption”(McGovern
et al., 2003)
Upgrading a service and maintain-
ing the system is cheaper than total
application replacement(McGovern
et al., 2003; Minoli, 2008)
Parallel service development (Mi-
noli, 2008)

Table 2.2: Negative and positive characteristics of SOA

54 CHAPTER 2. LITERATURE REVIEW

the services. Thus SOA requires a number of functionalities as an in-
put, and any architectural solution that provides suitable information
about the functionalities of a system could be used in collaboration with
SOA. Even though SOA provide a logic for how to implement services
according to standards, is dependent on other techniques to provide
the essential and basic information about the required functionalities
of a system.

Therefore, to continue the investigation for an EIS architectural process
that could provide the basic and essential information about the functional-
ities of a system, the next section presents the results of analysing software
architecture approach.

2.5.3 Software Architecture

This section presents a domain analysis of Software Architecture, to investi-
gate its relation to EIS architecture.

Software architecture is components and the connectors between
them (Rozanski & Woods, 2005; Clements, Kazman, & Klein, 2002). Soft-
ware Architecture (SWA) “is the bridge between mission/business goals and
a software-intensive system” (O’Brien et al., 2005, p. 1). Considering differ-
ent definitions of software architecture, the terminology that this research is
based on defines SWA as the sketch of the overall structure, showing “top-
level design decisions, the interacting parts, their properties, and the main
pathways of interactions” (Rozanski & Woods, 2005, p. 23). The main ben-
efit of SWA, according to Rozanski and Woods (2005), is to create a better
understanding of the system by providing an abstract and high-level design.
However, techniques such as DODAF and SOA illustrates that software ar-
chitecture can also start with a high–level and abstract design and lead to
detailed design and an implementation phase. The review of EA solutions
(i.e. SOA, DODAF, MODAF) presents that these solutions could be used as
a strategy within an architecture to design an EIS. However, a global archi-
tectural solution such as software architecture is independent of a particular
style or strategy. Therefore, to design an EIS architecture that is global
to cover different EA solutions, we focus on the current process model of
software architecture.

Figure 2.6 presents the details of a software architecture process. The
first step is to consolidate the inputs, (Rozanski & Woods, 2005) defines
the initial inputs as scope and context definition, and stakeholders concerns.
From this information, the architect produces a number of scenarios in the

2.5. EIS ARCHITECTURE 55

next phase. In the later phases (Step 5), an architectural option is evaluated
against a number of requirements.

Bass et al. (2003) argue that the aim of an architecture is to support
the quality attributes. Example of quality attributes are performance and
time to market. Quality attributes are over and above the functionalities of
a system, even though they are closely related (Bass et al., 2003).

The software architecture process that is suggested by (Bass et al., 2003)
is based on and initiated from identifying quality attributes and defining
scenarios that justify detailed information of the quality attributes. However,
there is no standard source or process for identifying quality attributes.

The traditional software architecture process, including defining quality
attributes, are purely based on requirements (Bass et al., 2003; Rozanski &
Woods, 2005). (Clements & Bass, 2010a), in their recent work, argue that
designing software architecture based on the requirements is not convenient
for defining quality attributes as a generic concept that could capture various
requirements. The concept of goals, on the other hand, is more high level
and generic compare to requirements and could provide the initial informa-
tion about the quality attributes. Goals are the architectural knowledge for
today’s industry and business-oriented systems (Clements & Bass, 2010a).
The quality of quality attributes could improved by understanding business
goals and using this knowledge to elicit quality attributes (Clements & Bass,
2010a). To achieve this objective they introduced a process model or method,
Pedigreed Architecture eLicitation Method (PALM). The steps of this pro-
cess are presented in detail in Section 8.2.2.

To review PALM, we applied it to the stroke care example. PALM steps
are suitable for introducing a process model to a team of domain experts,
to apply brain storming techniques to identify the goals and possible qual-
ity attributes. The steps are general and are based on identifying quality
attributes from goals using Scenarios, nevertheless, no detailed instruction,
method, or tool is provided to make this process model usable for non-PALM
experts. In short, even though this method is aligned with our theory of using
goal knowledge to design an EIS. architecture, there is no detailed guidance
available on how to apply PALM to examples of EIS, in order to analyse this
method and the results.

The lessons learnt from reviewing current software architecture solutions
(i.e. PALM, (Rozanski & Woods, 2005)) is the basis for modelling a process
that is aimed to design an EIS architecture, EAPM.

56 CHAPTER 2. LITERATURE REVIEW

Define Initial
Scope and

Context

Engage
Stakeholders

Capture First-Cut
Concerns

Define
Architecture

Create Skeleton
System

Figure 2.5: Main activities supporting architecture definition (Rozanski &
Woods, 2005).

2.5. EIS ARCHITECTURE 57

1
.
C

o
n

s
o

li
d

a
te

In
p

u
ts

2
.

Id
e
n

ti
fy

S
c
e

n
a

ri
o

s

3
.

Id
e
n

ti
fy

R
e
le

v
a

n
t

A
rc

h
it

e
c

tu
ra

l
S

ty
le

s

4
.

P
ro

d
u

c
e

C
a
n

d
id

a
te

A
rc

h
it

e
c

tu
re

5
.
E

x
p

lo
re

A
rc

h
it

e
c

tu
ra

l
O

p
ti

o
n

s

6
.
E

v
a

lu
a

te
A

rc
h

it
e
c

tu
re

w
it

h
S

ta
k
e

h
o

ld
e

rs

7
A

.
R

e
w

o
rk

A
rc

h
it

e
c

tu
re

7
B

.
R

e
v
is

it
R

e
q

u
ir

e
m

e
n

ts

[N
o

t
a

c
c

e
p

ta
b

le
]

[A
c

c
e

p
ta

b
le

]

Figure 2.6: Software architecture process (Rozanski & Woods, 2005).

58 CHAPTER 2. LITERATURE REVIEW

2.5.4 EIS Architecture Review Summary

The notion of EIS architecture has been reviewed from two perspectives: first,
by appeal to EA concept and related technologies; and second, by appeal to
software architecture solutions.

The analysis of EA technologies illustrates that the solutions (i.e. DODAF)
could be used as architectural strategies and not an EIS architecture. An EIS
architecture covers different aspects of an enterprise, in particular business
processes. One way to address different aspects is to use the information
collected from different view points (i.e. by using Zachman’s Framework).
Information collected from different point of view leads to further goal iden-
tification. Thus there is a traceability between the enterprise level goals and
EIS architecture. This traceability is not explicit in any of the reviewed
technologies so far. Therefore, to define an explicit traceability between en-
terprise goals and EIS architecture, a novel method should be developed. To
develop and evaluate this novel method, this thesis uses two independent
EIS case studies. One of these case studies (stroke care) also used during
analysing different GOA. Section 2.7 introduces these case studies.

To define a transition from goals to EIS architecture. An approach to
define a transition that is according to standards and could be reused by
other practitioners, is to define a method that includes process models.

2.6 Definition Of Method

Because this thesis presents its contributions in the form of a method, this
section presents its definition of method, including its constituent elements.

A method is composed of a process, a notation for expressing the outcome
of the process, and underlying philosophy (Blum, 1994; Song, 1995; Chroust
et al., 2010; Fuggetta, 2000).

The contributions of this thesis will be presented in the form of these
components. In particular, we present: explicit process models to identify
and structure EIS goals, and an explicit process model to trace and relate the
influence of EIS goals to EIS architecture. The other method components
(notation, philosophy) will also be presented.

2.7 Overview Of Case Study Domains

An empirical study is a means, not an end (Fuggetta, 2000); the method
presented in the following chapters of this thesis do not present a final imple-
mentation solution of these specific EIS examples. The main objective is to

2.7. OVERVIEW OF CASE STUDY DOMAINS 59

present hypothetical examples of EIS, based on real documents and realistic
assumptions, to produce and illustrate the results of applying the processes
developed this thesis.

Two examples of EIS are used in this thesis and introduced in Sec-
tion 2.7.1 and 2.7.2, stroke care EIS and Airport Crisis Management (ACM).
Both of the examples are aligned with the EIS characteristics presented in
Section 2.1.1. The main characteristic of both these case studies is that they
address multiple business processes.

These examples are faced with general challenges of EIS, presented in
Section 2.1.3; challenges such as design issues of a large scale and com-
plex EIS (Berg, 2001), the design issues included the ones initiated from
requirement engineering phase (i.e. defining unrealistic goals (Soumerai &
Avery, 2010)) and the EIS architecture phase (Berg, 2001; Kaplan & Harris-
Salamone, 2009).

In order to analyse different aspects of the two main case studies (stroke
care and ACM), this thesis briefly reviewed experiences in developing EIS of
the health care and crisis management domain. These examples of health
care domain are London Ambulance Services’s, patient electronic record in
UK, and Denmark patient portal; and in crisis management domain, FBI
crisis management information technology systems.

A review of general and specific examples of health care and crisis man-
agement information technology illustrates other common challenges for de-
veloping these EIS. These challenges are human challenges (e.g. lack of
suitable stakeholders’ participation, management issues, lack of clear owner-
ship (Kaplan & Harris-Salamone, 2009; Rinkineva, 2004; Finkelstein, 1993)),
technical challenges (e.g. lack of users’ technical skills, poor development
skills (Finkelstein, 1993; Kaplan & Harris-Salamone, 2009)), and challenges
related to the characteristics of enterprises (e.g. complexity of business pro-
cesses and changes within an enterprise including workflow and strategy
changes (Kaplan & Harris-Salamone, 2009; ECRI Institute, 2011; Soumerai
& Avery, 2010))

The development challenges of these examples, are predominantly those of
requirements engineering and architecture design; this is the main motivation
for choosing these two distinct examples of EIS. As a result, we use the first
example, a hypothetical stroke care enterprise, during the development of the
thesis method. The second example is used for an evaluation of the method,
independent from the first example. The following two sections presents
stroke care and ACM examples, along with the lessons learnt from reviewing
other examples of information technology from the same domains.

60 CHAPTER 2. LITERATURE REVIEW

2.7.1 Stroke Care

Stroke is the third largest killer in countries such as US and UK (Schwamm
et al., 2005; DH Stroke Policy, 2007) and a significant cause of morbidity
and mortality. The effects of having a stroke for a patient could last for
a life time and affect not just the patient but the family and carer. The
cost of supporting stroke patients and their families also is high. One of
the objectives of using information technology in the health care domain
including stroke care is to reduce the cost of supporting patients (Soumerai
& Avery, 2010)

Some of the main goals of using information technology in the healthcare
domain, including stroke care, are to make smarter choices, have safer pa-
tients, reduce medical costs, improve workflow, improve quality of care, flex-
ible enough to support organisations ranging from solo practitioners offices
to national integrated delivery networks, maintain long standing beneficial
patterns of communication, collaboration, and healthcare delivery (ECRI
Institute, 2011; Soumerai & Avery, 2010; Shanmuganathan, 2010; Nagy, Si-
mon, Sipos, & Kozmann, 1995; Schwamm, Audebert, Amarenco, Chumbler,
Frankel, George, Gorelick, Horton, Kaste, Lackland, Levine, Meyer, Meyers,
Patterson, Stranne, & White, 2009)

The collected processes of stroke care constitute an enterprise, and op-
erate within the content of healthcare enterprise systems, the information
system that support stroke care are designated EIS. A typical stroke care
EIS is envisaged as consisting of three major group of information sys-
tems (Schwamm et al., 2009; Levine & Gorman, 1999; Anyanwu et al., 2003):

• Clinical information system (telestroke)

• Administrative information system

• External information system (i.e. information system for ambulance
and secondary clinics)

Of these three areas most literature focuses on clinical information sys-
tems. Since 2001, new technologies have been implemented to support a
stroke healthcare system. Telestroke (Schwamm et al., 2009) uses computer-
based technology to integrate electronic medical information, clinical assess-
ment tools, neuroradiology, laboratory data, and clinical pathways to bring
state-of-the-art expert stroke care together (Levine & Gorman, 1999).

In the area of administrative information systems, a number of tools has
been developed to support administrative and workflow systems (Anyanwu
et al., 2003) to support stroke patients, their carers, health specialists, and
healthcare administrative teams (Romano & Stafford, 2011).

2.7. OVERVIEW OF CASE STUDY DOMAINS 61

A typical stroke care EIS is integrated with different systems within the
whole healthcare enterprise. In the context of the stroke care EIS these
systems might include support for patient records, emergency admissions,
ambulance dispatch (Finkelstein, 1993). It is also possible that the stroke
care EIS needs to interact with the systems outside the immediate healthcare
enterprise, such as social services, long term rehabilitations (Anyanwu et al.,
2003).

Integration with external system can be used to illustrate the importance
of taking a holistic view of enterprise support. Failure to take a holistic view
invariably leads to ineffective information system projects. Two well-known
healthcare related projects demonstrate the issues. The London Ambulance
Services’s (LAS) fetching dispatch system (Finkelstein, 1993) shows the prob-
lems that can arise when a system is designed and implemented in isolation,
ignoring different stakeholders needs and point of view in the process of iden-
tifying goals and requirements; whilst the patient electronic record (PER)
system of Denmark (IBM, 2005) and UK (Morse, 2011) show holistic and
isolated approaches to EIS.

LAS: Problems Of Isolated Information System Development

Finkelstein (1993) identifies four major groups of issue that leads to
the LAS dispatch system failure in 1992. These issues could have been
avoided by use of requirement elicitation techniques that considered
the wider context of the enterprise, its strategy, and goals.

The first group of concerns technical issues such as lack of complete test
and bugs in the code that leads to shortage of machine memory (Finkel-
stein, 1993). The second set of issues concern limitations in clear own-
ership and management. This led to lack of suitable communication
between different parties and creation of unrealistic expectations (e.g.
automatic improve of a number of existing working practices) that were
not considered as goals or requirements in the requirement elicitation
phase which led to lack of suitable planing (Finkelstein, 1993). The
third group of issues concern evidence of misusing the LAS informa-
tion system by some ambulance crew (Finkelstein, 1993). One assump-
tion here is that this group of stakeholders was omitted from the early
phases of requirement elicitation (Finkelstein, 1993). The fourth group
of issues relate to over ambitious and unrealistic top-level expectations
of the system (e.g. an expectation from healthcare management that
LAS information system would automatically improve a number of ex-
isting working practices). The LAS report evidence illustrates that the

62 CHAPTER 2. LITERATURE REVIEW

implementation was according to the design, however the design has
failings that are due to the unsuitable requirements and undefined top-
level goals. One of the solutions (suggested by Finkelstein (1993, p. 8))
would be to have shared and agreed objective between IT managers
and organisational managers.

The investigation of reasons for LAS information system failure illus-
trates the need for addressing requirement issues and identifying top-
level goals that are based on the communication and shared under-
standing between different parties is part of the solutions. It is also ev-
ident that traceability from high level enterprise goals to requirements
and strategic design (i.e. architecture design) is important for such
evolving and emergent healthcare information systems (Weber-Jahnke
& Onabajo, 2009).

PER: Examples Of Successful And Unsuccessful Integration

PER is another example of an external information system that would
be relevant to the stroke care EIS. It also illustrates the importance
of requirements and traceability to design as part of a successful infor-
mation system. The aim of the PER information system is to “reduce
reliance on paper files, make accurate patient records available at all
times, and enable the rapid transmission of information between dif-
ferent parts” of a national healthcare system (Morse, 2011, p. 4).

The Denmark PER information system is a successful case that IBM
has not published public documents about the development process
and challenges. In Denmark healthcare system development scenar-
ios are used to identify the top goals and expected functionalities of
the system-to-be and to present them to different groups of stakehold-
ers (IBM, 2005). Other contributing reasons to the success of PER in
Denmark is the smaller population and the higher IT awareness of the
enterprise, IT savvy compared to the UK NHS (Harrell, 2009).

On the other hand, the UK PER information system is suffering from
many development issues, leading to changes in the plan from its initial
stage (Morse, 2011). Some of the identified issues are the lack of shared
understanding and lack of clarity between departments and IT suppli-
ers; changes of requirements; and developing parts of the information
system in isolation (Morse, 2011). Lack of communications and changes
in the goals and requirements within UK healthcare’s large number of
stakeholders, become the motivation to develop the PER information

2.7. OVERVIEW OF CASE STUDY DOMAINS 63

system locally and according to set of standards and not in enterprise
level (Morse, 2011).

Considering the top goal of PER, which is to provide rapid transmis-
sion of information between different parts of the health centre, the
isolation of parts of PER information system develops a conflict with
a top-level enterprise goal. To conclude, a top-level goal of PER is
to improve services and quality of patient care, however the develop-
ment of this information system has fallen below expectations (Morse,
2011). One of the IT sectors argues the changes in the requirements
leads to difficulties in the development (Morse, 2011). In addition to
the requirement changes Soumerai and Avery (2010) lists the following
issues: unrealistic goals, lack of suitable technical support, different
vendors developing different part of the system, incompatible products
to build integrated health system, software error and unreliable technol-
ogy, hidden implementation and no public documents on development
phases. One of the Soumerai and Avery (2010) suggests to build a suc-
cessful healthcare information system is to use open source resources
and materials that a larger number of people could collaborate in its
improvement, testing, and evaluation.

Stroke Care EIS: The Enterprise Context

The review of these two healthcare information systems highlights the
importance of requirement elicitation solutions such as GOA and trac-
ing them to strategic design in developing a healthcare EIS. The aim
of stroke care EIS is to support stroke care functionalities to improve
stroke prevention, treatment, and rehabilitation. Prevention aims at
helping high-risk populations to reduce the chance of having a stroke
by changing their lifestyle and taking certain precautions (strokepreven-
tion.org, 2011). In US, only 76 percent of annual stroke patients have
first time stroke, so it is important to provide support for this phase
to increase the awareness of first stroke and recurrent stroke (Gorelic,
2009). The main goals of prevention phase is to secure the privacy of
the visitors who are attending the programs, not to reveal their infor-
mation. Prevention aspect with the main goal of secure visitors data
is not the focus of this research.

The second aspect of stroke care is treatment during the first 72 hours of
stroke. The goal of this phase is to treat patients to prevent long-term
disability and save lives (NHS, 2011). The functionalities and goals
of this phase is more focused on medical and clinical goals however,

64 CHAPTER 2. LITERATURE REVIEW

to demonstrate an EIS with enterprise strategic level goals, part of
rehabilitation phase is considered for applying process models. The
main reasons for this choice are as follows (National Institute for Health
and Clinical Excellence, 2008):

• Even though it has medical treatment goals, it includes a fair
number of strategic enterprise level goals

• It includes different groups and departments such as health spe-
cialists, patient, carer

• It includes different services such as treatment after stroke, sup-
port of patient and carer, diagnosis for recurrent stroke, patient
transport system

• It includes short term goals and plans such as first two weeks after
stroke

• It includes long term goals and policy to support a life time of
patients who suffer from stroke and their carer

A main challenge of implementing the rehabilitation phase is lack of
agreement between health professionals. However, as this thesis does
not address the implementation of an EIS for a particular region with
particular policy, at this stage we assume the health professional are
agree to communicate with each other and share their knowledge and
opinion to improve the patients’ health. This example also is limited
to a number of high-level goals and does not address all the goals and
expectations of a rehabilitation phase.

Figure 2.7 presents the high-level view of a hypothetical stroke EIS
in relation to parent EIS such as healthcare system. In this figure, a
healthcare system is a wider enterprise, and the stroke care is a child
enterprise. Within stroke care, there are three child enterprises: stroke
prevention, treatment, and rehabilitation. Each of these enterprises are
in collaborations with other parts of health system such as ambulance
system and organisations independent to health system such as private
physiotherapists, which are not presented in this figure.

A stroke rehabilitation aspect of stroke care is an EIS because it has
the EIS characteristics demonstrated as follows:

• Has different business processes such as the ones addressing stroke
prevention, the ones addressing stroke treatment, and the ones
addressing stroke rehabilitations

2.7. OVERVIEW OF CASE STUDY DOMAINS 65

• Supports organisational goals such as improving stroke care and
providing applications to improve stroke care

• Involves and orchestrate multiple business processes such as sup-
port the treatment of a patient and provide a secure environment
for the patient’s data

• Includes multiple partners such as laboratory system, ambulance
system, and private physiotherapists

• Has evolutionary development, to minimise the risk of using such
systems in real environment when all the elements are not fully
tested (lesson learnt from (Finkelstein, 1993))

• Has a dynamic architecture to deal with the changes in the health
policy or extending the system to new applications and regions

• Has geographical distribution to support the patients in different
parts of a country or region including rural area

• Contains sensitive health related data (i.e patients electronic
records)

• Support the changes in technology, health science, policy, and
business processes

• It is an open system as it interact with human (i.e. health spe-
cialists, patients, ambulance staff) and hardware devices (i.e. CT
scan and MRI equipment)

As mentioned earlier, this thesis will focus on the rehabilitation phase.

In conclusion part of an iterative process of goal identification and tracing
it to the strategic level of EIS architecture for a hypothetical rehabilitation
phase of an stroke care is presented in Chapter 6. To address the requirements
of emergent and evolving nature of healthcare information system, suitable
traceability to and from a goal model to different phases of development
process is required (Weber-Jahnke & Onabajo, 2009). Therefore, chapter 6
also presents a demonstration of tracing part of the stroke EIS rehabilitation
goals to EIS strategic level using the methods developed in this thesis in
Chapter 3.

66 CHAPTER 2. LITERATURE REVIEW

T
re

a
tm

e
n

t

R
e
h

a
b

il
it

a
ti

o
n

P
re

v
e
n

ti
o

n
S

tr
o

k
e

C
a
re

H
e
a
lt

h
S

y
s
te

m

C
h

o
s
e

n
E

IS
E

x
a
m

p
le

Figure 2.7: The structure of the parent goal and its three child goals.

2.7. OVERVIEW OF CASE STUDY DOMAINS 67

2.7.2 Airport Crisis Management

This section introduces the second EIS example, Airport Crisis Manage-
ment(ACM). In addition, to demonstrate why this example is suitable for
this thesis, a number of EIS characteristics that are match with ACM char-
acteristics are reviewed. To gather more information about ACM charac-
teristics and development of similar information systems. This section also
briefly reviews the Federal Bureau of Investigation (FBI) Crisis Management
System (CMS).

FBI Crisis Management: Example Of Successful CMS

“Crisis management involves the activities of a great number of agents
confronting the same problems” (Rinkineva, 2004). CMS provide the
ability for stakeholders to make timely and appropriate decisions that
translate into decisive actions (Neubauer, 2007). Crisis management is
an enterprise, because “no single entity can be responsible for the en-
tire management of an enterprise” (Iannella, Robinson, & Rinta-Koski,
2007). The main goals for a CMS is to create an interoperable net-
work of coordinated agents, to share the information and knowledge
in a suitable time period (Rinkineva, 2004). To achieve this goal a
CMS requires applications for communications, applications for knowl-
edge sharing, agreed policy, and implementation standards (Rinkineva,
2004).

Other than the technical issues in developing such an EIS that is dis-
cussed at the beginning of Section 2.7, some of the main issues faced
by the people who use this system is human competition rather than
coordination to share the resources and information (Rinkineva, 2004).

This thesis identified several commercial crisis management software
(EmerGeo, 2011; ERMS, 2011); a good example of such system is de-
veloped for FBI. FBI CMS example is for a brief review because FBI
CMS, Orion, is an example of working and successful EIS for FBI (Crit-
ical Incident Response Group, 2007), even though there are still inves-
tigates about different approaches to share the information in a more
secure and accessible environment (Neubauer, 2007). Orion provides
case management and related information processing capabilities to
support federal, state, local, and tribal law enforcement agencies dur-
ing a coordinated response to a variety of events and critical incidents.
Orion has successes in information processing such as capturing data
provided in thousands of e-mails and phone tips and to convert raw

68 CHAPTER 2. LITERATURE REVIEW

information into actionable intelligence. However, there is no evidence
about development methodology, that can be reviewed further in this
thesis. One of the main challenges of developing a CMS such as Orion
is to define a cooperated success measure and desire in an uncertain
environment (Critical Incident Response Group, 2007). This challenge
highlight the difficulties in identifying and structuring CMS goals from
different views and defining the success measures that are aligned with
the goals.

ACM: The Enterprise Context

“Crises are without doubt headline grabbers, and, it seems in recent
times, there have been many high profile events, which have hit the
commercial aviation sector hard. Global economic crisis aside, one
of the most disruptive and costly events to have hit the industry in
recent years has been the volcanic ash cloud which had loomed over
European Airspace. For such an unforeseen act of Mother Nature to
have such a devastating affect on Europe’s airports and airlines (cost
to airlines 200m Euro a day according to IATA) is unprecedented and
has once again put emergency planning experts to the test around the
world” (ACM, 2010).

“Crisis Management immediately brings to mind the rare occurrence
of aircraft accidents but there are many more challenges facing airports
and airlines which need contingency planning. Implementing appropri-
ate measures to cover any crisis, which can lead to delays, damage to
property or customer safety & well-being will reduce the adverse af-
fect upon all stakeholders. Both airports and airlines rely upon public
confidence that their operations are running in secure, safe environ-
ments” (International Airport Review, 2009).

An analysis of ACM reveals the following challenges in developing these
systems (Magister Ludia Aviation and Softsolutions, 2011):

• Late activation of procedure

• Late communications of relevant information

• Late communications to relevant people

• Information overlapping

• Incorrect application of procedures

• Incorrect storage of information

2.7. OVERVIEW OF CASE STUDY DOMAINS 69

• Only minimal training for the people involved

For this thesis an example of ACM is used that is based on a real
development of an ACM, which used the state of art techniques and is
developed in a European airport (MODELPLEX Consortium, 2007).
The real case is commercial and the data is confidential.

This example of ACM is an EIS because it is aligned with the following
EIS characteristics, presented in Section 2.1.1.

• Support multi business processes such as air traffic control tower
(ATCT) business processes, emergency assistance within flight
service station (FSS), and air route traffic control centre (ARTCC),
which control the flight from outside an airport (NATCA, 2011).

• Support organisational goals such as implement appropriate sys-
tem to cover any crisis, which can lead to delays, damages to
properties, or customer safety and well-being

• Includes multi partners such as within airport grounds (i.e. Po-
lice, Firemen, ATC Tower, Airline Companies, Security Compa-
nies) and external to airport grounds (i.e. Hospitals, Police, Me-
dia) (NATCA, 2011)

• Has evolutionary development to minimise the risk of using such
systems in real environment when all the elements are not fully
tested

• Has dynamic architecture to deal with the changes in the ACM
policy or extending the system

• Has geographically distribution to within and outside air-
port (NATCA, 2011)

• Contains sensitive airport and travellers related data (i.e. reasons
for a certain system failure)

• Interacts with other systems (i.e. Human, Radar Approach Con-
trol)

Even though the example is based on a real ACM case, the aim of this
thesis is not to implement a solution for a real case of ACM. To illustrate
this thesis method, a number of realistic scenarios are generated.

So far, a review of the enterprise, related technologies, method, and case
studies have been presented. These reviews lead to identifying a number of
gaps that are the basis for research questions and hypothesis, presented in
the following sections.

70 CHAPTER 2. LITERATURE REVIEW

2.8 Hypothesis

The literature review shows us that there is a:

• Lack of explicit process models to identify and structure EIS goals

• Lack of explicit process models to trace and relate the influence of EIS
goals on EIS architecture

This leads us to the following hypothesis. The hypothesis of this thesis
is based on a number of research questions, presented in the introduction
chapter, that guide the research exploratory path. The objective of this
section is to present a testable hypothesis that is aligned with the research
questions and addresses the gaps and limitations presented in the Section 2.8.

Hypothesis:

Process models can be developed to provide a precise, repeatable, and
documented set of structures for identifying and specifying EIS goals, and
for relating EIS goals with a strategic-level enterprise architecture.

The critical terminologies that are used to build this hypothesis are pro-
cess model (defined at Section 2.4), goals (defined at Section 2.2), strategic-
level EIS architecture (defined at Section 2.5.2).

A hypothesis is a testable statement, therefore, the testable features and
keywords of this hypothesis are: precise, repeatable, and documented process
models.

The goal of this thesis is to define a method including process models that
could be evaluated in line with the hypothesis’s testable criteria in addition
to delivering the functionalities defined by the hypothesis, identifying, spec-
ifying, relating. These process models are for identifying, structuring EIS
goals and reflecting on EIS architecture.

The sub goal here is to define the testable criteria and how they could be
addressed in this thesis.

Precise: to define a precise process model, we used the SPEM process
structure metamodel (Pereira et al., 2011) and address the well-formdness
rules using EPF.

Repeatable: To define a process model that is repeatable and used by
other practitioners, we document the process and applied them to indepen-
dent examples of EIS. In addition, this explicit process model has a static
web-based tool that could be accesses in different platforms.

2.9. CONCLUSION 71

Documented: a process model could be documented using natural lan-
guage and graphical notations (see Section 2.4). To document the process
models of this thesis, in addition to natural language and graphical notations
an eclipse plug in (EPF) is used to build supporting tools based on the SPEM
standard.

Documenting a process model and developing supporting tools helps to
use the process model by the domain experts and not only the IT technical
experts.

2.9 Conclusion

In summary, Chapter 2 presents a literature review that is motivated by the
top level research questions posed in Chapter 1. To investigate the answers
for the first research question that is focused on the essential characteristics
of an EIS, Section 2.1 presents an analysis of the enterprise and EIS con-
cepts. This analysis includes a novel definition for EIS, its characteristics, its
challenges, and EIS examples. The main lesson learnt at this phase is that
to follow a systematic research, the first step is to clarify the main concepts
used as the backbone of the research. Some terms such as EIS are used fre-
quently in industry and academia, yet, the term and concept suffers from an
unclear definition.

The research question that focused on the reasons of failure in delivering
the functionalities and addressing stakeholders’ goals, inspired a further anal-
ysis of requirement engineering approaches, in particular GOA, and design
phases, in particular architecture design. Therefore, Sections 2.2, 2.3 and 2.5
present an analysis of the current approaches in these domains and presents
a critical review. The main learning outcome of this analysis and critical
review is that the GOA and architectural design solutions strongly depen-
dent on the experience of their expertise. This becomes a main challenge
for developing a method that aim to develop a collaborative environment
for main groups of EIS stakeholders with little experience of GOA and EIS
architecture.

The final research question focuses on a knowledge that could help to
identify essential functionalities for an EIS. This research question motivates
a further analysis of a method that uses the results of analysing GOA and
EIS architecture design solutions, and not only be a roadmap for identify-
ing and structuring goals of an enterprise, but also trace those goals to EIS
architecture design. The main lesson learnt from investigating this research
question is identifying the elements of a method in software engineering do-
main (Section 2.6). One of the essential elements of a method is a process

72 CHAPTER 2. LITERATURE REVIEW

model. The importance of defining a process model (Section 2.4) and not a
specific process to deal with flexible requirements of an EIS is one of the main
lessons learnt during analysing process and process model’s requirements.

This thesis integrates multiple areas in software engineering domain, in-
cluding, requirement engineering, software and EIS architecture, method and
process modelling. All these areas of software engineering have a common
characteristic, that is qualitative results rather than quantitative. This de-
velops challenges in proposing solutions that could formally prove to address
the problems. Therefore, during this thesis, mainly evaluation chapter, qual-
itative techniques are used to support the results that are developed during
this thesis. These results have several limitations, including being developed
by one person and applied and evaluated by the same person. Nevertheless,
it is a recognised limitation of many PhD thesis.

Next, we commence presentation of the method developed in this thesis.
The first step is to present the novel process models that enable identification
of enterprise goals and tracing thereof to a strategic EIS architecture. These
process models – KAOS-β and EAPM – are presented in Chapter 3.

Chapter 3

Method: Process Model - From
EIS Goals to Strategic-level
Architecture

This chapter commence the presentation of the new method developed in this
thesis, a method for systematising the early stages of development of an EIS.
In particular, the method is for eliciting, identifying and capturing goals, and
refining and connecting those goals to an early EIS architecture. The method
addresses a gap identified in Chapter 2, lack of systematic consideration of the
diverse and volatile interests and objectives of enterprise stakeholders, and
the influence these have on the identification of goals for the EIS architecture
design.

The concept of a method was introduced in Section 2.6 and the con-
text of this thesis method is shown in Figure 3.1. The method comprises
two processes, KAOS-β (derived from van Lamsweerde (2009) KAOS) and
EAPM (motivated by enterprise architecture and software architecture solu-
tions). The method assumes existing information about enterprise strategy
(i.e. reports of structure of enterprise, feedback documents, interviews, enter-
prise/system policy, review of similar information systems, report of current
systems, requirement documents) on the current structure, objectives and
stakeholders of the enterprise. The result of applying KAOS-β and EAPM is
a strategic architecture for the information systems to support an enterprise.

The method consists of the two aforementioned process, KAOS-β and
EAPM, which are connected as indicated in Figure 3.1. The inputs to the
method consist of enterprise strategy documents. KAOS-β generates a struc-
tured set of goals, which are used as input to EAPM. The output of EAPM is
strategic architectural information. The combination of KAOS-β and EAPM
systematises the process of transforming strategy documents to strategic ar-

73

74 CHAPTER 3. METHOD: PROCESS MODEL

KAOS-ß EAPM

Enterprise
Strategy

Documents

Strategic
Architectural
Information

Identified &
Structured

Goals

Figure 3.1: Method to address the gap in enterprise level systems analysis:
the context of KAOS-β and EAPM.

chitectural information. By connecting these two processes, we are able to
trace early-stage EIS architecture decisions to enterprise-level goals, and ul-
timately strategies.

The rest of this chapter is organised as follows: Section 3.1 presents
KAOS-β process model, its elements and structure. Section 3.2 introduces
EAPM, its elements and structure and Section 3.3 summarises the content
of this chapter.

3.1 KAOS-β: A process for analysing the strate-

gic goals of an enterprise

One of the gaps identified in Section 2.8 is the lack of explicit process model
to identify and structure EIS goals. The objective of this section is to in-
troduce KAOS-β elements and structure to address this gap. KAOS-β is a
process model used to identify and structure the goals of EIS by analysing
the enterprise strategy documents.

3.1.1 KAOS-β Elements

The main elements of KAOS-β are enterprise strategy documents, goals,
modules, and agents. These elements and their relationships are presented
in Figure 3.2 using a metamodel.

A number of reliable and standard enterprise strategy documents are the
core of KAOS-β. Analysing these documents leads to identifying and defining
a number of goals and modules. Each module could suggest one or more goal

3.1. KAOS-β 75

and each goal could belong to one or more module. Further analysis of the
goals leads to identifying more goals and identifying negative affects of goals
on each other (i.e. conflicts, threats, obstacles). Goals are addressed by zero
or more agents allocated to them. Each agent addresses at least one goal.

Enterprise Strategy Document

Goal Module

Agent

+Define
1..*

1

+Define

*

1

+Address By

+Address

*

1..*

+Suggest +Belong

1..* 1..*

+Conflicts, Threats, Obstacle
*

*

Figure 3.2: KAOS-β Elements.

76 CHAPTER 3. METHOD: PROCESS MODEL

3.1.2 KAOS-β Structure

Figure 3.3 summarises the structure of KAOS-β process model. In KAOS,
task 1 concerns identification of the strategic level goals. For an EIS, this
involves searching for strategic objectives, business goals, domain-specific
objectives, and goals that could be refined by analysing requirements and
problems. To identify goals, designers could analyse the statements about
an EIS by asking what goal(s) does each statement exemplify? what goal(s)
does each statement block or obstruct? (Antón, 1996). In addition, analysing
and searching for action oriented or objective oriented keywords (van Lam-
sweerde, 2009; Antón, 1996) has been useful to identify some of goals in
practice. For our EIS example, we benefit from defining and analysing sce-
narios to visualise the EIS responsibilities and expectations; the benefits of
using scenarios is also mentioned in relation to GBRAM (Antón, 1996).

In task 2, where an enterprise has many goals from different view points,
the designers use modularity to structure and manage the goal model. The
heuristic used to derive modules in the EIS example is to consider partici-
pant groups, many of whom are later designated as agents. Modularity is
a critical step: from this point, each KAOS-β task is applied to each mod-
ule. Modularity, which is suggested by GSN (Kelly, 2001), is an approach to
handle the complexity of large number and diverse goals.

Within each module, task 3 is akin to goal refinement in KAOS and
GBRAM. In task 4, the designers document the goals, which lead to iden-
tification of missing, redundant, or mis-specified goals: the documentation
process is thus part of the validation of the identified goals. Iteration of tasks
3 and 4 is usually required. Table 3.1 presents a template for documenting
EIS goals. Some of the elements of this table are taken directly from KAOS,
such as goal name and def. The stared elements are required to provide the
minimum information for stroke care EIS example to trace the goals to the
source and present them to a broader audience using scenarios. The priority
criterion could be defined in different ways, such as high, low, medium, or
using a numbering system. As for success measure, because KAOS-β does
not aim to lead directly to a system implementation, success measure is not
a mandatory criterion, and it is difficult if not impossible to define it at a
strategic level, but where success measure do exist, it can be documented
in the template. This criterion and the scenario criterion are added to the
template in the later iterations of using and analysing KAOS-β; they are
useful mainly in extending KAOS-β to EIS architecture.

In tasks 5 and 6, the designers refine goals and document the refinement
links, creating traceability within the goal structure. Iteration occurs as new
goals are identified. Table 3.2 presents a filled template for documenting the

3.1. KAOS-β 77

refinement links. It is filled because we find an example clarifies the content of
the template. In this template, ID is an identifier, name is a descriptive name
for the link, SysRef is the state of the system (i.e. system-as-is, system-to-be,
version of a system, or sub-system), Status is the condition of the refinement
process (i.e. ready for further goal refinement, or ready to transfer to require-
ments by adding implementation data), and tactic is the source of refinement
strategy (i.e. designer assumption, system documentation, policy).

In Task 7 agents are identified similar to KAOS, it includes human and
non human agents. The main difference is that in KAOS-β, more than one
agent could be associated with each goal. In Task 8 the designers associate
the agents to goals similar to KAOS; no particular information is recorded at
this stage. In Task 9 the designers search for obstacles, threats, and conflicts,
with the appropriate iteration to step 3 to check for any subsequent changes
in the goal set or the links. These iterations are part of evaluating and
improving the goal structure.

ID *
Name *
Def *
Scenario *
Context
Priority
Source *
Success Measure
Issue/Notes

Table 3.1: Template for the structured documentation of KAOS-β’s goals.
The criteria with the star sign are strongly recommended to be filled.

ID ACML1-2
Name Link from ACMG1 to ACMG2
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer’s assumption is based on document1

Table 3.2: Example of the structured documentation of KAOS-β’s links re-
finement.

78 CHAPTER 3. METHOD: PROCESS MODEL

Task 1: Identify top goals

Task 2: Identify modules

Task 3: Identify goals in each
module

Task 4: Document Goals

Task 5: Refine goal links

Task 6: Document links

Task 7: Identify agents

Task 8: Link goals and agents

Task 9: Identify obstacles,
threats and conflicts

Figure 3.3: Activities of the KAOS-β Process (Original KAOS activities and
heuristics are presented in Figure 2.3).

3.2. EAPM 79

3.2 EAPM: A Process Model to Reflect Goals

in Strategic-Level Enterprise Architecture

The second gap identified in Section 2.8 is the lack of explicit process model
to trace and relate EIS goals to EIS architecture. The objective of this sec-
tion is to introduce a new process model, Enterprise Information System
Architecture Process Model (EAPM), to address this gap. EAPM is pro-
posed because, as mentioned in Chapter 2, there is a need to design an EIS
architecture based on goals rather than requirements; existing architecture
methods are targeted to addressing single system software and data archi-
tecture or to documenting different points of view rather than designing a
strategic-level EIS architecture.

EAPM can be used to derive architecture requirements from a set of goals
(such as those developed using KAOS-β). The elements of EAPM are based
on enterprise architecture and software architecture solutions presented in
Chapter 2. The documentation notation is motivated by ATAM (Clements
et al., 2002) and the underlying philosophy is that of software architecture
presented by (Rozanski & Woods, 2005; Bass et al., 2003; Clements et al.,
2002). The elements of EAPM are introduced in Section 3.2.1 followed by
EAPM structure presented at Section 3.2.2.

3.2.1 EAPM Elements

This section describes the EAPM elements and is followed by the description
of the sequence of tasks in the next section.

The main elements of EAPM are Goals, Quality Attributes, and Strate-
gies. Figure 3.4 presents the relationship between these elements and other
related elements, using UML syntax. As can be seen, on the top, outside the
dashed box, a system is associated with goals, quality attributes, architectural
description. A system provides the source of a number of goals and quality at-
tributes. An architecture description could be evaluated against the system
documentation.

Each goal could generate several quality attributes and similarly any quality
attributes could be justified by one or more goals; this presents the association
between goals and quality attributes.

Measurable values are used, when possible, to evaluate a strategy. Hence,
Strategy uses a measure to evaluate the architecture. The information for
Measures could be generated by goals, quality attributes, standard specifica-
tions and limitations of the system, and architect’s expertise.

Strategy suggests one or more styles and consequently architecture descrip-

80 CHAPTER 3. METHOD: PROCESS MODEL

tions. Examples of strategies in the domain of EIS architecture are SOA and
DODAF; examples of styles are client server and three-tier. Strategies could
have several styles for their implementation. Hence, style could associate
with other, more detailed styles. Style or combination of styles suggest one
or more architectural description; hence each architectural description contains
one or more style.

To design an architecture for an EIS system, the goals and quality at-
tributes could provide information required to generate measurement values
to help designers to evaluate the results. Based on the description of quality
attributes a number of strategies would be nominated to address them. A
combination of strategies could create a style or a set of styles of architecture
for the EIS system. Section 3.2.2 presents the EAPM process structure that
is based on the elements and linkage shown in Figure 3.4.

3.2. EAPM 81

System

Goal

QA

1
1..*

1

*

Measure

Strategy

Style

Architecture Description

-Generated-By*

-Generate

*

-Generated-By*

-Generate*

-Define

*

-Justified-By*

«uses»

1

*

-Suggest1..*
-Contain

1..*

-Suggest

1..*

-Based-On

1..*

-SubStyle

0..1

*

-Suggest

1..*

-Based-On 1..*

Figure 3.4: The elements of EAPM presented as a metamodel. The dashed
area present the components and connectors that provide detailed informa-
tion for the choices of architecture.

82 CHAPTER 3. METHOD: PROCESS MODEL

3.2.2 EAPM Structure

The structure of EAPM uses the elements from Figure 3.4 and organises them
in sequential tasks. There is iterations between tasks to either collect more
information or revise the elements such as quality attribute and strategy.

Considering the elements of EAPM that are presented in Figure 3.4, this
section presents the structure of EAPM. This structure uses the elements
and organise them in a format of sequential tasks. Even though the tasks
are sequential, where required, there are iterations between tasks either to
collect more information or to revise the current one. The structure of EAPM
is presented in Figure 3.5. Following is the description of each task.

Task 1: this task establishes a basic and essential knowledge to initiate
EAPM. This task is based on an activity introduced by (Rozanski & Woods,
2005). For an EIS architecture the input data include, but are not limited to,
goals, agents (actors), links, questions, indirect stakeholders. These maybe
provided as KAOS-β outputs.

Analysing the input data, including the goals, provides knowledge to
determine the quality attributes and drivers. Hence the next step is:

Task 2: this task is based on architectural guidance given by (Bass et al.,
2003), to define less than ten quality attributes in the first iteration, to
keep the size and complexity of the design in control. To identify quality
attributes, EAPM uses goal description such as that provided by KAOS-β
and defines one or more scenarios to support that goal description. Analysing
the goal description and related scenario triggers identification of candidate
quality attributes that capture the essence of the goal. For example, a health-
care EIS (Harrell, 2009) goal could be the easy and secure access to personal
health-care information. This goal indicates the quality attributes of security
and usability (user friendly interface).

Based on the information collected from the system, standards, speci-
fication, and the output of KAOS-β, designers could identify measures or
measurable values. These measures could help the designers and the group
who evaluate the results to have a set of standards to measure the success of
the results. The next step accordingly is:

Task 3: based on the information collected from the system, standards,
specification, and the output of KAOS-β, designers could identify measures or
measurable values. These measures could help the designers and the group
who evaluate the results to have a set of standards to measure the success of
the results.

This task is motivate by evaluation activities in (Rozanski & Woods,
2005) and ATAM (Clements et al., 2002). Similar to goals, if possible, de-
signers should define measure of success for quality attributes to evaluate

3.2. EAPM 83

1: Consolidate
Inputs

2: Determine
Quality

Attributes/
Drivers

3: Identify
Measures

4: Identify
Strategies

5: Select
Strategies

6: Identify Style

7: Produce
Architecture

Measure

Measure

Measure

Legend:

Main steps of
process model

Evaluation Steps

Figure 3.5: The EAPM. The green (dashed) box is a support for the red
(dotted) box.

84 CHAPTER 3. METHOD: PROCESS MODEL

how a quality attribute is succeed. The measure of success could be defined
loosely at this level, where defining quantitative measures could not be valid.
Same as quality attributes, the goals and their scenarios can be used to in-
vestigate the measures of success; this could be a number (i.e. supporting
more than 100 members of staff), or a qualitative measure (i.e. suitable for
elderly patients).

Task 4: this task focuses on the identifying possible strategies and not the
best one. The task is motivated by evolving architectural strategies to match
with business strategy (Nedstam & Staples, 2007). Current EA solutions (i.e.
SOA, DODAF) indicate that they could be used as a strategy within the
EAPM. Detailed strategies such as two factor authentications (Wikipedia,
2011g) or physical access control to satisfy security quality attribute also
could be identified in this stage.

Strategies could have conflicts with each other, hence after identifying
them the next task is to select one or more suitable strategies.

Task 5: each combination of strategies introduces different architectures.
In an ideal case, designers create different architectures and compare them to
find the better option. In Figure 3.5, the select strategies box addresses this
activity. The measurable values that were identified in step 3 could affect
how to select combination of strategies, and in future phases how to identify
style and evaluate the produced architecture.

To implement a strategy, a number of styles could be used.
Task 6: choosing a strategy and a style are interrelated steps. This task

is motivated by an activity introduced by (Rozanski & Woods, 2005). Archi-
tectural style (i.e. client-server, pipes-filters) is a vocabulary of components,
connectors, and constraints that could be used in an instance of an architec-
ture (Garlan & Shaw, 1994). Architectural styles are linked to architectural
strategies.

Task 7: this task is motivated by an activity introduced by (Rozanski &
Woods, 2005). This final stage combines all the information of the previous
tasks and present one or more architecture description and diagram.

Note that if the identified measure of success in task 5, 6, or 7 changes, it
might reflect and change the previous tasks. The measure boxes in Figure 3.5
address this point.

3.3 Conclusion

A process or a process model is an element of a method (Section 2.6) and this
chapter presents the first step towards defining a novel method by developing
two process models: KAOS-β and EAPM. The result of using these process

3.3. CONCLUSION 85

models is systematic identification and structuring a number of goals that
are traced to strategic EIS architecture.

Several lessons have been learned during the process of analysing and
defining KAOS-β and EAPM including there is no one approach and solution
for identifying goals; different materials and approaches could be used to
identify suitable goals. In addition, the process models developed in this
chapter could amend based on the specific requirements of each project.
A tailored process for each project could capture different view points of
stakeholders more accurately.

To capture different views of diverse stakeholders, we identified scenarios
as a suitable solution to create a shared platform for identifying and justifying
goals. Another lesson learnt during defining scenarios, is the benefit of having
domain experts and IT experts. One of the limitations of this thesis is the lack
of required access to these stakeholders. Thus we believe the participation
of these stakeholders leads to identifying and structuring goals that reflects
the true goals of an enterprise’s functionalities and avoid defining goals that
leads to unrealistic expectations from development team.

Chapter 3 presented the KAOS-β and EAPM. Continuing in our overall
presentation of the method, the next chapter presents the method’s under-
pinning philosophy.

86 CHAPTER 3. METHOD: PROCESS MODEL

Chapter 4

Method: Philosophy

The philosophy of science is “the critical study of the basic principles and con-
cepts of a particular branch of knowledge, especially with a view to improving
or reconstituting them” (Dictionary.com, 2011). Philosophy is another as-
pect of a method (Chapter 3). This chapter presents the philosophy and
the basic principles of KAOS-β and EAPM. KAOS-β philosophy is strongly
based on KAOS philosophy. KAOS-β philosophy focuses on the differences
between KAOS-β and KAOS principles in documentation, heuristics, and
aim of KAOS-β to generate traceable output for EIS architecture. EAPM
philosophy is strongly motivated by processes in software architecture do-
main. EAPM philosophy argues over the details of activities and principles
of software architecture processes and their influence on EAPM principles
(structure and elements).

4.1 KAOS-β Philosophy

To develop KAOS-β an analysis of GOA is conducted and presented in Sec-
tion 2.3. This analysis is the basis for the KAOS-β philosophy. Even though
the philosophy of KAOS-β benefits from an empirical review of four major
GOA (KAOS, GBRAM, GSN, i∗) and the lessons learnt, KAOS-β main un-
derlying philosophy is based on KAOS. The rest of this section presents the
KAOS-β philosophy that is shaped by KAOS philosophy.

To recap, KAOS heuristics were applied to an EIS example, part of stroke
care rehabilitation. To facilitate following and documenting the results of
applying KAOS to stroke care, the Objectiver tool was used. This helps to
apply KAOS systematically and to identify its limitations, particularly in
relation to modularity and traceability. Here, we highlight how KAOS has
been adapted for EIS, and, in this way, outline how KAOS-β process and

87

88 CHAPTER 4. METHOD: PHILOSOPHY

philosophy differs from KAOS.

Preliminary goal identification discovered a number of top–level goals of
the stroke care EIS, capturing the strategic-level aspirations of the enter-
prise. The Objectiver tool documents each goal by providing optional fields
of Name, Def, Issues, Pattern, Category, Priority, and FormalDef. As can
be seen, no source criterion is considered for the goal documentation. As in
KAOS (van Lamsweerde, 2009, p. 295), the documentation of each goal dif-
fers. The common documentation includes a name (a unique identifier) and a
definition, describing the goal in natural language. The definition also iden-
tifies phenomena related to the goal that could be monitored and controlled
in the system. Some goal types such as Achieve goals consider documenting
the source of a goal. In EIS goal analysis, traceability of the goals to their
source is crucial, both in analysis and in the presentation of results to the
enterprise. The outcome of goal analysis is a set of integrated plans (an
architecture) for EIS; it is the starting point for system–level analysis and
design activities, and these must be able to trace back to the sources used in
devising the EIS architecture. To support traceability, the KAOS-β process
adds a mandatory source feature to the documentation of every goal. This
identifies the document pages/paragraphs that are the origin of each goal.

In KAOS, optional features of each goal are Type, Category, Source, Pri-
ority, Stability, FitCriterion, FormalSpec, and Issue (van Lamsweerde, 2009).
Because the level at which KAOS-β is used (EIS architecture development
rather than system-level requirements engineering), features such as FitCri-
terion, which relate to measurability of goals, are of limited value. However,
contextual information is often needed: for example, it is useful to identify
which specific stakeholders have an interest in a goal, and goals may include
terms or assumptions that need elaborating or disambiguating. Earlier ap-
plication of GSN to the stroke care example (Tabatabaie et al., 2010) had
made significant use of the GSN context concept (Kelly, 1998b), and this has
been incorporated into the KAOS-β goal documentation. KAOS-β also adds
the Issue/Notes feature, to record goal information that does not fit in any
other field, perhaps regarding future consequences or the need for further
information. With these modifications, KAOS-β uses the same notations
for forms and models as KAOS (van Lamsweerde, 2009). A tabular format
is used for recording goal features: an example of KAOS documentation is
presented in Table 4.1,

The documentation of goals leads to identifying further goals, as well as
the modification or removal of some goals. Whilst iteration may be implicit
in the KAOS guidelines, in KAOS-β, we make the possibility of iteration
explicit, to help analysts in applying the process.

4.1. KAOS-β PHILOSOPHY 89

Name MinimumInteractionWithParticipants
Def The number of interactions between an invited par-

ticipant and the system should be kept as small as
possible during meeting scheduling.

Type Soft goal
Priority Medium
FitCriterion At most one participant interaction about constraints

in at least 80% of cases

Table 4.1: Examples of goal features model annotations (van Lamsweerde,
2009, p. 295).

In KAOS, consideration of goal categories (e.g. safety category) con-
tributes to goal identification (van Lamsweerde, 2009). The KAOS categories
(behavioural versus soft goals, and their sub-categories) refer to system-level
requirements, and are less helpful at the strategic enterprise level. Instead,
we use a modular structuring concept, and we apply it during the refine-
ment of top-level goals to derive sub-goals. In the stroke care example, goal
refinement led to goal-bloat – the graph of goals and sub-goals becomes un-
manageable. KAOS-β modularity is inspired by GSN modularity. In the
stroke care goal analysis, modules are identified via participant or stake-
holder groups: health care specialists (doctors, nurses, ambulance staff etc.);
community members (patients, family of patients etc.); stakeholders who
deal with systems development (IT specialists, domain specialists, decision
makers etc.). This leads to modules of relevance to the enterprise as well
as to the EIS design activities, such as an IT module and a social module.
Figure 4.1 presents an example of the modules identified for stroke care. The
modules cover different aspects of stroke care EIS in its environment. The
top-level modules are based on different policies that should be addressed by
this EIS such as IT aspect, Social aspect, and Medical aspect. The justi-
fication for this grouping is that stroke care EIS is a governmental project
and affects different groups of people in the society. Collecting the goals that
address these different policies requires the engagement of different groups
of experts. Because of the domain of this research, which is software engi-
neering, the focus of the goal model is more on the IT goals. For this kind
of multi view EIS, different grouping and modularity could be justified.

90 CHAPTER 4. METHOD: PHILOSOPHY

Policies

IT Social Medical

Collect Records
Process
Records

Sharing
Information And/

Or Data

Figure 4.1: Modules derived from the stroke care EIS, from a policies’ angle

Similar to identifying and structuring the goals, identifying and struc-
turing modules is an iterative task. During the investigation process, one
module could disappear or a new module could be created. Designers could
change the module viewpoint after identifying more information and goals
about an EIS.

A KAOS goal model records the refinement links between goals. In
KAOS, a link is documented with details of the refinement that has been
made: Name, SysRef, Status and Tactic (van Lamsweerde, 2009). In KAOS,
the name feature is used to remove ambiguity. System reference (SysRef)
refers to system-to-be or system-as-is. Status records whether the goal is
still under refinement. Tactic records the refinement tactic used to derive
the sub-goal (van Lamsweerde, 2009). Refinement tactics could be developed
using the designers’ experience. However, in KAOS-β, the tactic feature also
records the source of a refinement (e.g. particular standards, designers’ ex-
perience, or domain experts’ suggestions). The refinement is motivated by
explicit strategy in breaking the argument in GSN. This supports traceabil-
ity, and also helps in evaluating the structure of a goal model.

In KAOS, the heuristics of goal refinement results in detection of agents,
consideration of the wishes of agents, and the allocation of goals to agents.
In the KAOS-β process model, these heuristic rules are consolidated into two
steps, to identify EIS agents and to link them to goals. The identification
of agents is closely related to the identification of personnel and stakeholder
groups that form the basis of KAOS-β modules. Whilst KAOS-β uses the
KAOS heuristic of asking “who” questions, to identify agents, it does not
use any system modelling (KAOS proposes sequence diagrams etc. to relate

4.1. KAOS-β PHILOSOPHY 91

goals and agents) because this is inappropriate to the EIS level. KAOS-
β uses KAOS agent categories: in the stroke care case, non-human agents
are related to the operational context of the EIS, whilst the human agents
are different groups of users and stakeholders: Patients; Health specialists
(doctors, nurses, etc.); System developer; System maintainer; Decision mak-
ers (Hospital Managers, Government, Domain experts, etc.); Health Staff
(system operators, data entry personnel, etc.).

The KAOS heuristics advise refining goals until there is one agent per
goal. In enterprise goal analysis, it is important to record responsibilities, but
it is unnecessary (and inappropriate) to break down goals in such detail, since
these are not (yet) the basis for system-level transactions. In the enterprise
design level, there may be many agents for each goal.

In KAOS, the heuristics and patterns related to analysing obstacles,
threats and conflicts are part of goal refinement. This interesting step allows
the designers to detect and address (through additional goals) interactions
among goals and requirements (van Lamsweerde, 2009). In KAOS-β, the
analysis of goal interaction and the resultant iteration is raised to the status
of a step in the process. For example, the stroke care strategy documents
yield conflicting goals relating to the ease of access to patient data (e.g. by
patients and for emergency stroke treatments) and data security (e.g. the
need to limit who can access personal data). As in KAOS, conflicts are
identified in the goal model diagram.

The difference between KAOS and KAOS-β are summarise in Table 4.2.
This summary is based on the criteria of primary goal identification, goal
documentation, refinement document, agent, and evaluation checks. As can
been seen in this table, to document the links and refinement the significant
change between KAOS and KAOS-β is the enforcement of adding sources to
create traceability. In addition, to identify agents, the important change is
considering several agents to several goals. Finally, for the checks criterion,
KAOS-β considers some checks that already exist in KAOS. More checks
could be defined by collecting best practice and applying KAOS-β to more
examples of EIS.

92 CHAPTER 4. METHOD: PHILOSOPHY

KAOS Goal Model KAOS-β

Primary Goal Identification

KAOS approach Adds understanding of GBRAM
Implicit iteration Explicit iteration
Goal categories (behaviour, soft goals) No categories
No modularity Adds modularity from GSN

Goal Documentation

Fit criterion No fit criterion
No context Context (from GSN)
No notes Notes (flexibility)
KAOS notation Same

Refinement Documentation

Tactics describe the refinement Adds source in tactic (traceability)
Agent

3 steps: detect agents + wishes + al-
locate agents to goals

2 steps: identify agents + allocate
agents to goals

Categorise agents Same categories
Sequence diagram to identify agents Inappropriate in EIS level
One agent per goal Several agents to several goals

Checks

Converse of achieved goals No such categories
Confusing goals and operations To be considered
Confusing and-or refinement To be considered
Abstract goals until reaches system
boundaries (check if agent is outside
the boundaries)

To be considered

Avoid ambiguity in goal specification Not here (It is in the checklist-
evaluation to make process shorter and
to the point)

Stopping rule: If agent is outside the
boundaries

Continue until designer is confident to
start the next phase

Table 4.2: Comparing KAOS and the new KAOS-β process.

4.2. EAPM PHILOSOPHY 93

So far the KAOS-β philosophy and how it is influenced by KAOS is
discussed. The next section presents the philosophy of EAPM.

4.2 EAPM Philosophy

This section presents the EAPM philosophy that is based on software ar-
chitecture activities and solutions. EAPM philosophy also benefits from the
lessons learnt from analysing EA solutions. However, the starting point for
EAPM is the activities presented by (Rozanski & Woods, 2005, p. 24).

(Rozanski & Woods, 2005, p. 24) introduce the core concepts of software
architecture as: stakeholders, architectural description and architectural el-
ements. In Chapter 2, Figure 2.5 presents the activities supporting archi-
tecture definition. To build an architecture definition, Figure 2.6 presents
the details that needs to be considered. This section presents the knowledge,
that is developed from activities in Figure 2.5, and how it motivates EAPM
tasks. In the following, Roz-process refers to the process and activities de-
fined by (Rozanski & Woods, 2005, p. 24). Roz-process starts by defining
the scope, behaviour and responsibilities of the system. The input is infor-
mation about the organisation’s needs and vision, organisational strategy,
and its IT structure. Therefore to design an EIS architecture, the first step
is to collect information about the goals of the organisation and additional
information like boundaries, organisational strategies etc. The needs and
vision of the organisation is transformed as the goals of the organisation in
KAOS-β, hence the output of KAOS-β is the starting point for EAPM. The
Roz-process continues with identifying stakeholders; this is aligned with the
task of identifying human agents in the KAOS-β process model. The next
step of Roz-process is to understand the stakeholders’ concerns. This phase
is transformed as the link between the agents and the goals because each
goal is related to a particular agent and, based on the information gathered
from the agents, the goals could be prioritised. The next step of the Roz-
process is to create the architecture description. This phase is closely related
to the architecture design process and it continues to the next step: to cre-
ate a working architecture. More detailed SWA processes also contain an
iteration between architecture design and revisiting the requirements; con-
sider that this is the traditional SWA that relies on the information of the
requirement’s document.

Another process for developing an architecture is introduced by (Bass
et al., 2003). The process starts with determining the architectural drivers.
The process continues with prioritising the architectural drivers and applying
the Attribute Driven Design (ADD). In this method, the architect breaks the

94 CHAPTER 4. METHOD: PHILOSOPHY

system into modules and in each module, after identifying the high priority
quality attributes, some quality scenarios would be defined. Breaking an
EIS into modules also is addressed by KAOS-β to present the EIS goals
from different views, and to deal with the EIS complexity by focusing on
smaller size and focused group of goals. Defining scenarios also has been
an implicit source of knowledge for eliciting goals. Analysing this ADD
activity illustrates that explicitly defining scenarios that used to capture the
goals could be used for the EIS architecture to identify and support quality
attributes.

ADD continues by choosing architectural patterns or strategies to sat-
isfy the quality attributes. Architectural strategies are independent from
architectural styles and provide a focused solution to address each quality
attribute. This ADD activity provides the base knowledge for defining a
similar task in EAPM. After identifying strategies, an architect could use
architectural styles to define a connection between different elements of an
architecture (i.e. goals, quality attributes, strategies) and present an EIS
architecture.

By breaking modules into functional child modules that come from use
cases the system breaks down into more detailed and refined modules. Each
of these modules has interfaces that allow them to interact with other mod-
ules. ADD also adds constraints on child modules using scenarios; therefore,
scenarios should cover both negative and positive aspects of the main func-
tionality and quality attributes of the system. This is an iterative process
for each parent module.

Analysing these processes illustrates that the common practice for de-
signing an architecture for an EIS is to define a set of quality attributes
or architectural drivers, and after understanding the attributes and drivers
the designer could choose which architectural approach, Architectural Strat-
egy, and Architectural Style could be suitable. As this is a common step
for starting all these techniques, the EAPM development uses the software
architecture approach with little modification to demonstrate the benefits of
using goals in designing the architecture. Note that using goals in identifying
quality attributes does not prevent use of other techniques such as DODAF
or SOA.

To conclude, by analysing software architecture activities and practices,
some of the elements for EAPM has been identified. The next two sections
present these elements, their relationship and the structure of EAPM.

4.3. CONCLUSION 95

4.3 Conclusion

In summary, Chapter 4 presents the philosophy behind the identified elements
and structure of KAOS-β and EAPM.

The KAOS-β philosophy is strongly based on KAOS philosophy, hence
this chapter analyses and compares these two philosophies. The main les-
son learnt during defining KAOS-β philosophy and comparing it with KAOS
philosophy is that the experts of these techniques have a strong influence
on how these techniques are understood and applied. Unfortunately, there
are not many evidences on how these techniques have been used in practice,
therefore, the main resource for making this comparison is the published
documentation of KAOS. The similar argument applies for the EAPM. Ar-
chitecture design in general, strongly depends on the experience of the archi-
tecture, even though there are various patterns in different domains to guide
the practitioners.

Experience in using GOA is an important factor in their successful appli-
cation, in addition, tools helps to generalise and extend KAOS-β and EAPM
to a wider audience. Tools help to demonstrate the elements, structure, and
philosophy of a process model in practice. Thus Chapter 5 presents KAOS-β
and EAPM tools.

96 CHAPTER 4. METHOD: PHILOSOPHY

Chapter 5

Method: Tool

Another aspect of a method is a tool and language or notation to support
a process and present the results of a method (Section 2.6). This chapter
presents the tools developed for KAOS-β and EAPM to support these process
models.

5.1 Eclipse Process Framework

Two distinct tools have been developed to support KAOS-β and EAPM.
These web-based tools are implemented using the Eclipse Process Framework
(EPF). EPF is an open source tool platform for process engineers and project
managers to author, tailor, and publish method and processes (Haumer,
2011); it is based on the latest version of SPEM (see Section 2.4). EPF
can be used without full knowledge of Eclipse, and provides a process edi-
tor that supports different breakdown structure views and graphical process
presentations (Haumer, 2011): this makes it accessible to non-expert users.

The result of using EPF to produce tool support is a static website and an
XML description of the process model. The benefit of using this framework
is to apply the SPEM standard easier and to produce a free tool that can be
sent to the users and other designers for direct use or evaluation. The EPF
tool supporting KAOS-β is called Kestrel. A snapshot of Kestrel is shown in
Figure 5.1 and a snapshot of the EAPM-tool is presented in Figure 5.2.

These tools present the SPEM elements related to KAOS-β and EAPM;
elements such as roles, tasks, and the relationship between these elements.
In addition they present the input and output of each task and the activity
diagram.

In both these tools, the roles including agents in the process are identified
and explicitly presented. Each role is allocated to the tasks. Tasks also are

97

98 CHAPTER 5. METHOD: TOOL

linked to each other, this way the input and output of each task is explicit.
This also helps to maintain a smooth transition between the tasks. To have a
visual image of the smooth transition and links between the tasks, an activity
diagram. The extra information including checklist and release information
(Figure 5.1) could assist the tool users to find required information related
to the process and tool (e.g. checklist of necessary activities and tasks)

Figure 5.2 presents an instance break down of the EAPM tool, which
focuses on presenting a task and its related information.

In summary, the tools are one aspect of using and presenting the KAOS-β
and EAPM. In addition, the KAOS notation, as presented by Objectiver (Ob-
jectiver, 2010), is used for KAOS-β. To present the information system qual-
ity attributes of EIS example using EAPM, the software architecture notation
is used (Bass et al., 2003).

5.1. ECLIPSE PROCESS FRAMEWORK 99

Figure 5.1: A snapshot of Kestrel, the tool support for KAOS-β

100 CHAPTER 5. METHOD: TOOL

Figure 5.2: Snapshot of the EAPM-tool that is developed by EPF to support
EAPM.

5.2. CONCLUSION 101

5.2 Conclusion

In conclusion, Chapter 5 briefly presents tools to support this thesis method
by supporting KAOS-β and EAPM. These tools are available online and have
been presented to process modelling experts. Improvements to the tools are
discussed in Chapter 9.

The main advantage of using EPF is that it quickly enables development
of a tool to support a process model. Another main advantage of using EPF
for this thesis is to exploit SPEM standards. In practice, after developing
these tools, KAOS-β and EAPM were modified to align with SPEM stan-
dards more accurately. This way the process model developers have more
direct instruction on how to define a process model and not just a set of
documents.

At the time of this study, EPF has not been widely used to define pro-
cesses and process models; hence very few documentations helped the process
authors to use EPF. However, recently EPF has received more attention in
the academic domain and we produced an online step by step tutorial on
how to use it (Tabatabaie, 2010); this tutorial also includes our experience
of using EPF to develop KAOS-β.

We have now presented the method’s processes, philosophy and tools. The
next step is to illustrate the application of the method; Chapter 6 presents
the results of this on the stroke care example introduced in Section 2.7.1.

102 CHAPTER 5. METHOD: TOOL

Chapter 6

Method: Illustration

The objective of this chapter is to illustrate the method (particularly fo-
cusing on KAOS-β and EAPM) on a stroke care EIS. This example was
introduced in Section 2.7; as mentioned earlier, the example is focused on
the rehabilitation aspects of a hypothetical stroke care EIS.

The main body of this chapter contains two sections. Section 6.1 presents
the results of applying KAOS-β. Even though KAOS-β has been applied fully
on the stroke care example, and the full results influenced the development
of Kestrel tool (Chapter 5), this section only presents a selected number
of goals and their structure. The aim is to illustrate the influence of these
goals on EIS architecture while using EAPM. Hence, to keep the focus on
the goals, Section 6.1 does not present all the other elements of KAOS-β,
such as agents and conflicts between goals. These elements are presented in
Chapter 7, where KAOS-β is applied in two iterations on another example
of EIS.

Section 6.2 presents the result of applying EAPM on the output of KAOS-
β from Section 6.1. Section 6.2 presents the application of each task in
EAPM. This complete demonstration of using EAPM leads to a hypothetical
EIS architecture that is developed based on the goals of EIS and uses an
EAPM process model.

Last, Section 6.3 presents a summary of the outcome of this chapter, and
a number of lessons learnt from applying the method.

6.1 KAOS-β Example

The objective of Section 6.1 is to illustrate the tasks of KAOS-β, using an
EIS example. The application of KAOS-β produces a set of goals. These
goals are used as input to EAPM. This section presents a selection of goals

103

104 CHAPTER 6. METHOD: ILLUSTRATION

only and does not attempt to summarise all of the documentation suggested
by KAOS-β.

The top goals identified for the stroke care EIS are limited to the ones
identified by (Schwamm et al., 2005). Some of the goals are also supported by
the scenarios defined by IBM for the Denmark electronic health system (IBM,
2005). Because of the success of the final results achieved by IBM for Den-
mark health system, for the rest of the goal scenarios in this section, where
possible, we follow the structure used by (IBM, 2005) to define the scenarios.
In these scenarios, Peter is a patient who had a stroke and now uses the
stroke EIS for stroke rehabilitation phase. None of the identified goals have
conflicts with the policy document presented in (DH Stroke Policy, 2007).

The stroke care EIS, in particular the rehabilitation phase, is chosen be-
cause its characteristics match with the criteria for EIS presented in Sec-
tion 2.1.1. Development of a stroke care EIS is influenced by enterprise
strategy and by the different views and aspects of health professional and
society members. These different views shape different modules in KAOS-β.

Once goals are structured into different modules, the illustration focused
on the information system applications module and its specific goals. We do
not address all the information system goals, as this is impossible in such a
thesis.

In task 1, according to (Schwamm et al., 2005) the top goal of a stroke
care EIS is to improve stroke care prevention, treatment, and rehabilitation
by providing education, undertaking research, and developing applications.

These action keywords and system intentions lead to identifying the top
goals and refine it to three child goals. In task 2, each of theses child goals
leads to identifying a module, research module, education module, and ap-
plication module.

Even though documenting the goals is the task 4 in KAOS-β process
model (Figure 3.3), in practice and for a clear presentation of the progress
of goal identification and refinement, we fill the forms’ elements during the
identification and refinement process. Therefore, Tables 6.1, 6.2, 6.3 and 6.4
present the four top goals and Figure 6.1 presents the refinement of these
four top goals (task 5).

6.1. KAOS-β EXAMPLE 105

ID SCGT1
Name Improve Stroke Care
Def Improve stroke prevention, treatment, and rehabilitation
Scenario A region or country (i.e. US, UK, Denmark) uses stroke care

EIS to “adequately integrate various facilities, agencies, and
professionals to collaborate closely and provide stroke care
services”.

Context
Priority High
Source (Schwamm et al., 2005, p. 690)
Issue/Notes Stroke is the third leading cause of death in US and

UK (Schwamm et al., 2005; DH Stroke Policy, 2007)

Table 6.1: Structured documentation for goal with ID: SCGT1

ID SCGT11
Name Research
Def Undertake medical, technical, and social research to improve

stroke care
Scenario Health care scientist undertake research on medicines to

make patients condition stable after a stroke.
Context
Priority High
Source (Schwamm et al., 2005, p. 694)
Issue/Notes

Table 6.2: Structured documentation for goal with ID: SCGT11

ID SCGT12
Name Education
Def Provide education for the stroke care system staff and society

members on how to prevent, treat, and rehabilitate a stroke
case.

Scenario Peter visits the stroke EIS, “he has access to a wide range of
general information from the Health Services”.

Context
Priority Medium
Source (Schwamm et al., 2005, p. 694)(IBM, 2005, p. 25)
Issue/Notes

Table 6.3: Structured documentation for goal with ID: SCGT12

106 CHAPTER 6. METHOD: ILLUSTRATION

ID SCGT13
Name Application
Def Develop applications to support the prevention, treatment,

and rehabilitation activities and services provided by a stroke
system.

Scenario Peter and his GP have access to the stroke care EIS to mon-
itor and control his progress after a stroke. GP and other
authorised health specialist use the stroke care EIS to col-
laborate and share data, request data, or request tests to
monitor Peter’s progress.

Context
Priority
Source (Schwamm et al., 2005, p. 690)
Issue/Notes

Table 6.4: Structured documentation for goal with ID: SCGT13

6.1. KAOS-β EXAMPLE 107

S
tr

o
k
e
R

e
h
a
b

Figure 6.1: The structure of the parent goal and its three child goals.

108 CHAPTER 6. METHOD: ILLUSTRATION

ID SCGL20
Name Resource Management
Def “A stroke care system should coordinate activities and re-

sources to ensure that the appropriate patients are receiving
appropriate care from the appropriate providers in the ap-
propriate amount of time”.

Scenario Peter is discharged from hospital to be under the care of a
carer at home, and short term rehab devices are sent to his
home.

Context short term here is less than 10 years.
Priority High
Source (Schwamm et al., 2005, p. 692)
Issue/Notes

Table 6.5: Structured documentation for goal with ID: SCGL20

For task 3, to demonstrate the KAOS-β goal documentation and trace
some of the goals to the EIS architecture, we limit the focus of the goal
identification to selected child goals of Application Goal, which earlier also
is called application module. The child goals of Application Goal(Table 6.4)
belong to part of the stroke rehabilitation services and activities. Note that
some of the goals identified for rehabilitations phase could be valid for stroke
presentation or stroke treatment, but at this stage, to limit the example, the
scenarios are limited to stroke rehabilitation.

In task 4, the identified goals are documented in Table 6.6 to 6.13; they
are used as an input for the next process model, EAPM, in Section 6.2.

Figure 6.2 also presents task 5, which is the goal’s refinement. As men-
tioned earlier in this chapter, the results of task 6 onwards are not presented
in this section. This is because these tasks are demonstrated in another
example of EIS (Chapter 7), and because, to identify agents and conflicts
between goals, further goal identification is required. However, the objective
of this section is to identify enough goals that could be used as an input for
EAPM. The next section presents the influence of the current identified goals
on the EIS architecture.

6.1. KAOS-β EXAMPLE 109

ID SCGL201
Name Clear Protocol
Def Define clear transport protocols for providers to ensure that

patients are taken only to facilities with appropriate and suf-
ficient resources.

Scenario Peter’s carer notices the symptoms of another stroke, he calls
the emergency number, the ambulance system has the record
and address of Peter and pick him up from his current loca-
tion (assuming he is at his current location) and deliver him
to the suitable emergency room.

Context
Priority High
Source (Schwamm et al., 2005, p. 692)
Issue/Notes This is just one of the many possible child goals for Resource

Management parent goal that is focused on transport proto-
col.

Table 6.6: Structured documentation for goal with ID: SCGL201

ID SCGL21
Name Communication
Def Enhance communication among rehabilitation team, patient,

patient’s carer, hospitals and emergency medical services
(EMS).

Scenario The laboratory updates the test results of Peter, thus he
and his carer receives a notice for the changes in his records.
Peter also is informed about the new test that he need to do
and he should contact his local rehabilitation team to discuss
his status.

Context
Priority High
Source (Schwamm et al., 2005, p. 692)
Issue/Notes

Table 6.7: Structured documentation for goal with ID: SCGL21

110 CHAPTER 6. METHOD: ILLUSTRATION

ID SCGL211
Name Communication Patient & Health Specialist
Def Provide communication services between patients and other

healthcare professionals.
Scenario “Peter decides to give his local pharmacy consent to view

his personal medicine profile, so they may assist him better
when advising him in the use of medication”.

Context
Priority High
Source (IBM, 2005, p. 38)
Issue/Notes

Table 6.8: Structured documentation for goal with ID: SCGL211

ID SCGL212
Name Communication Systems
Def Provide communication between stroke related health sys-

tem applications (i.e. patient electronic record, laboratory
system, scanning system, ambulance system, telemedicine).

Scenario Based on the results of his latest lab test, Peter records are
updated and he receives a number of suggestions for his food
diet.

Context
Priority High
Source (Schwamm et al., 2005, p. 692)
Issue/Notes

Table 6.9: Structured documentation for goal with ID: SCGL212

6.1. KAOS-β EXAMPLE 111

ID SCGL213
Name Communication Rural Area
Def Provide stroke care services for patients who live in rural and

remote areas.
Scenario “Since Peter (a patient) can access the stroke care EIS portal

anywhere in the world, he is also free to travel, and the clinic
can monitor his condition remotely and only needs to see him
once a year”.

Context
Priority High
Source (Schwamm et al., 2005, p. 691)
Issue/Notes

Table 6.10: Structured documentation for goal with ID: SCGL213

ID SCGL22
Name Security
Def Provide a secure stroke care EIS for the use of stroke system

members.
Scenario Peter and health specialists connect to stroke care EIS using

different devices to communicate and send the changes about
his stroke progress. They also make decisions based on the
information provided by the stroke care EIS.

Context
Priority High
Source (IBM, 2005, p. 27)
Issue/Notes

Table 6.11: Structured documentation for goal with ID: SCGL22

112 CHAPTER 6. METHOD: ILLUSTRATION

ID SCGL221
Name Data Security
Def Provide the most appropriate data for stroke EIS functions.
Scenario peter has an appointment with his doctor. Before the meet-

ing “Peter’s doctor retrieves Peter’s EPR from the general
database, and is updated with information from Peter?s hos-
pitalisation and anti-coagulant therapy”.

Context Appropriate data here means up to date and not corrupted
data.

Priority High
Source (IBM, 2005, p. 22)
Issue/Notes

Table 6.12: Structured documentation for goal with ID: SCGL221

ID SCGL222
Name Access Security
Def Provide easy and secure access to personal healthcare infor-

mation for the authorised members.
Scenario “Using his digital signature, Peter logs on to his personal

page on the portal. Here, he finds information related to his
own interaction with the health services”.

Context
Priority High
Source (IBM, 2005, p. 28)
Issue/Notes

Table 6.13: Structured documentation for goal with ID: SCGL222

6.1. KAOS-β EXAMPLE 113

S
tr

o
k
e
R

e
h
a
b
L
e
v
e
l2

Figure 6.2: The structure of application goal refinement.

114 CHAPTER 6. METHOD: ILLUSTRATION

Quality Attributes Goals

System Responsiveness SCGL201,21
Availability SCGL213,221
Security SCGL22,221,222
Freshness SCGL221
Ubiquitousness SCGL222
Usability SCGL213

Table 6.14: Relationship between goals and quality attributes. Numbers are
referred to the goals in Section 6.1.

6.2 EAPM Example

This section presents the EAPM tasks applied to the stroke care EIS example.
The main input for EAPM for this example are the goals identified and
structured using KAOS-β in the previous section.

6.2.1 EAPM: Tasks One and Two

The aim of these steps is to consolidate the inputs of EAPM, including
the goals of EIS, and to determine quality attributes and drivers. The goals
have already been extracted and structured using KAOS-β (see Section 6.1).
Therefore using the information provided by KAOS-β, an explanation for
quality attributes and drivers is undertaken.

Table 6.14 presents the quality attributes that are identified from the goals
– KAOS-β’s output. The numbers under the Goals category in Table 6.14
presents the number or ID of the goals that were defined while using KAOS-
β. The descriptions of these goals are presented in Section 6.1. The goal
knowledge is one of the sources (here the main source) of identifying quality
attributes. For example, SCGL212, which is a goal identified by KAOS-β,
is identified as: enhance communication among stroke related health system
applications. SCGL213, also is identified as: provide stroke care services
for patients who live in rural and remote areas. To address these goals, the
responsiveness quality attribute is identified. Responsiveness for this system
is defined as: the system provides feedback to the users’ requests regardless
of their geographical position within the domain of EIS.

Following this, further quality attributes that are identified from the goals
in Table 6.14 are as follows:

• Responsiveness: Responsiveness or data and function are availability

6.2. EAPM EXAMPLE 115

means system gives feedback to the users’ requests regardless of their
physical position.

• Availability: Service interruptions in EIS functionality minimised or
removed. This quality attribute and responsiveness derive from the
same goals. A description of a goal could lead to more than one quality
attributes.

• Security: EIS data and functionalities should be available in a secure
environment.

• Freshness: The most appropriate data for each EIS function exist in
the EIS. Data freshness and data accuracy could be categorised under
security quality attribute too (Perrig et al., 2001; Peralta, 2006).

• Ubiquitousness: The EIS can be accessed by the authorised users,
regardless of access device or location.

• Usability: After training, users of the system can use the system with
no destructive frustration. Further usability studies and investigations
should be provided to collect users’ feedback. Usability in this study
has different aspects such as user friendliness, saving time, and feel as
using a single system.

So far a number of quality attributes have been extracted from the infor-
mation provided by the KAOS-β goals. The next step uses the information
about the system and expertise of the architect to add more architectural
information such as measures of success.

6.2.2 EAPM: Task Three

The aim of the third step is to identify the measures of success for the quality
attributes and, consequently, for the EIS architecture. These measures could
be defined from designers’ expertise, system characteristics, or standards in
each field; for example security standards for health system such as ISO for
confidentiality (Public Health Data Standards Consortium, 2011).

For the stroke care example, we made assumptions for the measures of
identified quality attributes to progress this task. These assumed measures
of success include time (e.g. less than 10 minutes), high, medium, or low
to emphasise the importance of the quality attribute in a trade off analysis
process. For example for availability quality attribute, availability of the
system should be as high as possible (e.g. system works for users 99.999% of
time (Clements et al., 2002, p. 51)).

116 CHAPTER 6. METHOD: ILLUSTRATION

• Responsiveness: Less than 10 minutes, but this will depend on the
situation: e.g. if it is an emergency or non-emergency function of the
stroke care EIS

• Availability: High (system works for users 99.999% of time (Clements
et al., 2002, p. 51))

• Security: High (patients’ database authorisation works 99.999% of
time (Clements et al., 2002, p. 51))

• Freshness: High (data updated within the system in less than 3 minutes
after changes of data)

• Ubiquitousness: At least one interface and device to use stroke care
EIS inside hospital and one in ambulance should be active. At least
the patients records should be available, if other functionalities are not
available.

• Usability: In a normal functionality of the EIS, at least 2 different
solutions for communications should be supported, this way a larger
group of people have a chance to be able to use the interface with less
problem (i.e. voice based interface and touched based interface)

As can be seen, the measure of success could be defined by a simple
comparative measure such as high, medium and low. It also could be a
statistical or quantitative measure. The aim is to make the importance and
in cases resources’ demands of these quality attributes more clear for the
team of designers. Measures of success could help designers to choose the
strategies and styles and design the architecture to address the important
quality attributes. For examples, strategies may be chosen that provide
high security, or provide different usability solutions. These may be conflicts
between strategies (i.e. security and usability); based on the measures of
success, it is important not to compromise the security. However, the system
should be usable for the users. If certain devices put security at risk, they
should not be considered in the strategy. These decisions could be made using
the information collected from measures of success. In addition, measures of
success can help designers to evaluate the quality architecture in the later
stages. If a change is required to be applied to an architecture, it should be
aligned with the criteria developed by measures of success (i.e. high security).

6.2. EAPM EXAMPLE 117

6.2.3 EAPM: Task Four

The aim of the step four in EAPM is to identify one or more strategies for
modelling the architecture. There is no specific list for software or EIS ar-
chitecture strategies. Some of these strategies are presented in (Bass et al.,
2003) as examples. To demonstrate this task, arbitrary strategies are allo-
cated to address quality attributes. These strategies are relevant to each
quality attribute but not necessarily the best. For each quality attribute at
least two different strategies are allocated to emphasise the possibility of hav-
ing different architectures by choosing different combinations of strategies.

1. Responsiveness

• Local caching: improve the data availability by data caching on
the client-side (Ma, Vazhkudai, & Zhang, 2009).

• Distributed replicated data: store multiple copies of data at vari-
ous sites in a network and provide data availability even when the
sites or communication links fail (Lazoff & Stephens, 1996).

2. Availability

• Fault detection (Heartbeat: one component emits a heartbeat
message periodically and another component listens (Bass et al.,
2003, p. 102).)

• Fault recovery (Active redundancy: all redundant components
provide the same functionality, are always active, and respond to
events in parallel; downtime is on the order of milliseconds (Bass
et al., 2003, p. 103).)

3. Security

• Authenticate users (Bass et al., 2003, p. 119)

• Authorise users (Bass et al., 2003, p. 119)

• Local security responsibility

4. Freshness

• Weak freshness: To have a recent data and ensure that no ad-
versary replayed old messages, the strategy is to have a partial
message ordering that carries no delay information (Perrig et al.,
2001).

118 CHAPTER 6. METHOD: ILLUSTRATION

• Strong freshness: To have a recent data and ensure that no adver-
sary replayed old messages, the strategy is to provide a total order
on a request-response pair, and allows for delay estimation (Perrig
et al., 2001).

5. Ubiquitousness

• Mobile device caching

• Support multiple redundant communication devices (landlines,
mobile phone, laptop, desktop)

6. Usability

• Separate user interface design and implementation from the rest of
the application to localise expected changes during development
and after deployment (Bass et al., 2003, p. 123)

• Support user initiative (cancel, undo, aggregate)

To propose an architectural solution, an architect could propose different
strategies. Different combinations of these strategies creates different archi-
tectures. Different architectures should be compared with each other as to
choose the most appropriate.

6.2.4 EAPM: Tasks Five, Six, and Seven

The last three steps of EAPM focus on selecting strategies, identifying styles,
and producing an architecture. To accomplish these steps we introduce and
design a template for presenting the architectural information.

Table 6.15 presents a template motivated by Architecture Tradeoff Anal-
ysis Method (ATAM) (Clements et al., 2002). Some of the fields are changed
to fit our objective – illustrating the relationship between goals and quality
attributes. The fields that are similar to the ATAM template for analysis
of the architectural approach are: scenario, quality attribute, environment,
stimulus, response, reasoning, architectural diagram.

The field quality attribute is the key in this template, it provides the
name, if required short description, of the architectural quality attribute.
Each quality attribute is supported by a scenario. Scenario also makes a
quality attribute understandable for the non-IT experts. The scenarios are
motivated by the goal description. Therefore, to explicitly present the source
of each scenario, the field of goal is added to the EAPM template. Goal
(s) and scenarios fields present the link for transition from goals to EIS
architecture.

6.2. EAPM EXAMPLE 119

The environment field presents the relevant information about the system
environment and the environment which scenario is carried out (Clements
et al., 2002). The information about the environment has a valuable effect
when the EIS is dealing with the change. Change is inevitable for a business-
oriented system such as EIS, hence the architecture design should presents
the solutions to address the changes. Table 6.15 presents a normal operation
of the EIS for the environment that could be applicable for the first iteration
of the design. The later iterations include special cases such as dealing with
the expected changes.

The stimulus field presents a “precise statement of the quality attribute
stimulus (i.e. failure) embodied by the scenario” (Clements et al., 2002).
Even though this information is not requested directly from the EAPM tasks,
stimulus field extracts additional and detailed information about the scenario
that could clarify why a quality attribute is required.

To explain how a quality attribute responds to a stimulus, the EAPM
and ATAM template have a response field. This field presents a “precise
statement of the quality attribute response” (Clements et al., 2002). This
field presents detailed information about effects of the existence of a quality
attribute by presenting its response to the environment’s stimulus.

Reasoning is a field that is borrowed from ATAM. This field presents the
qualitative and quantitative rational for how a quality attribute addresses a
goal. In addition, this field could present how a strategy addresses the quality
attribute. The information in this field helps the reviewers to understand or
criticise why a quality attribute is chosen.

EAPM template presents two fields of measure and strategy to document
the information collected from EAPM tasks three, four, and five. One source
of identifying the measure is the goal structure and documentation.

To present a diagrammatic view of the chosen architectural strategies
and styles that address each quality attribute and goal, EAPM and ATAM
provide a field for architectural diagram.

The ATAM template also presents information about criteria such as
tradeoff and risk which could be added to the EAPM if required. However,
at this stage, the tradeoff and risk of particular strategies do not add any
value as the strategies are selected arbitrary to demonstrate the EAPM tasks.

In the architecture description documents, the architect fills in a template
form to describe each relationship between quality attributes and goals. In
this chapter, the information for one quality attribute is presented in Ta-
ble 6.16 as an example.

The completed template can be used by the architect to start designing
the detailed EIS architecture. In practice, experts analyse different combina-

120 CHAPTER 6. METHOD: ILLUSTRATION

tions of strategies to choose a suitable architecture, but here the objective is
to demonstrate the process of going from goals to early phases of architecture,
not to design the best possible architecture.

Attribute (s) Name of the quality attribute(s)
Scenario (s) Sample scenario to explain the goals and quality attribute
Goal (s) One or more goal id (from KAOS-β output)
Environment e.g. normal operation of the system
Stimulus A trigger event such as hardware fault or threat
Response A precise statement of the quality attributes such as response

time
Reasoning Qualitative and/or qualitative rational of how a quality at-

tribute addresses the goal, plus how a strategy addresses the
quality attribute

Measure Measure of success for the quality attribute(s)
Strategy One or more strategies to address quality attribute
Architectural
diagram

Cross reference to architectural views and reasoning

Table 6.15: The structure of a template motivated by ATAM template; for
recording analysis of an architectural approach (based on Clements et al.
(2002, p.122))

6.2. EAPM EXAMPLE 121

Attribute (s) Responsiveness
Scenario (s) A patient visits a local emergency room and a doctor inserts

the patient’s information and find the medical record.
Goal (s) SCGL21, SCGL201
Environment Normal operation
Stimulus Insert the patient name and date of birth to the system
Response In less than 10 minutes
Reasoning System should be able to present at least the basic patient’s

medical record
Measure Present the fresh patient’s record in less than 10 minutes
Strategy Local Caching
Architectural
diagram

Table 6.16: A filled example of EAPM results template (Table 6.15). The
source of the content is output of KAOS-β presented in Section6.1.

122 CHAPTER 6. METHOD: ILLUSTRATION

Based on the collected information about the architecture so far, one
possible model of a stroke care EIS architecture is outlined in Figure 6.3. The
diagram in Figure 6.3 presents the business process layer, quality attributes,
and the service layer of the architecture. The top layer and the bottom layer
of Figure 6.3 are presented in detail in Figure 6.4 and 6.5.

Figure 6.3 presents the relationship between an example of a business
process for stroke care EIS, related quality attributes, and further architec-
tural information such as strategies and styles. The first layer in this figure
presents a data flow diagram to illustrate a business process. In this business
process, users log in and use the system to access the patients record and
medical queries. This diagram is created using a design decomposition matrix
(DDM) (Bassry and Associates, 2010). DDM is not an element of EAPM; it
is used at this stage as a tool to model a business process. Examples of other
approaches to model a business process are flowchart (Wikipedia, 2011f) and
business process model and notation (BPMN) (Wikipedia, 2011c).

The business process layer is presented in more detail in Figure 6.4. This
business process is based on a scenario of using the stroke care EIS. This
scenario describes when authorised healthcare users (i.e. doctors and nurses)
wish to use the system, users should log into the system by entering login
information and if their aim is to have access to the patient’s record based
on their access level, they request the patient’s record by entering patient’s
searchable information (such as name and date of birth). The further steps
present possible queries of patients’ record, either just part of patients’ record
or requesting relevant medical advice (tasks 3 and 4 in Figure 6.4).

The middle layer in Figure 6.3 presents the quality attributes that are
established from early EAPM steps. The bottom layer in Figure 6.3 presents
the mapping from quality attributes to the candidate strategies that are
nominated to address the quality attributes. Figure 6.5 presents the name
of these strategies. Figures 6.3, 6.4, and 6.5 partially present the results of
EAPM’s steps for an assumed scenario in stroke care system.

6.2. EAPM EXAMPLE 123

Task 1 Task 2

Task 3

Task 4

Security
environment

Usability QA

Ubiquitous

Responsive
ness

Freshness

Availability

Business
Process

Quality
Attributes

Strategies

Figure 6.3: A possible model for EIS architecture presenting the links be-
tween business processes, identified quality attributes, and sample strate-
gies. The top layer is presented separately with more deatiled information
in Figure 6.4. The boxes in the strategies section are presented in detail in
Figure 6.5.

124 CHAPTER 6. METHOD: ILLUSTRATION

Task 1 Task 2

Task 3

Task 4

Interface

Login Info

Security
Warnings

Patient Info

Medical
Query

Medical Query
Response

Patient Record
Query

Patient
Record

Figure 6.4: Details of a business process for a scenario of stroke care EIS.
This business process is the top layer in Figure 6.3.

Authenticate
Users

Authorise
Users

Local
Security

Strategies

Separate
user

interface

User
initiative

System
initiative

Mobile
Device

Caching

Redundant
Communication

Device

Fault
Detection

Local
Caching

Outdated
State

Figure 6.5: Selected strategies from Section 6.2.3. This is more information
for the third layer in Figure 6.3.

6.2. EAPM EXAMPLE 125

Client Layer

Application
Layer

Database
Layer

GUI Security
Check

GUI Input
Patient Data

GUI Input
Query

GUI Output
Query

Security Check
Process &

Rules

Process
Security Data

Process Input
Information

Process and
Rules to

Handle Query

Query results
& Process for

Fresh and Safe
data within
time limits

Task 1 Task 2

Task 3

Task 4

Interface

Login Info

Security
Warnings

Patient
Info

Medical
Query

Medical
Query

Response

Patient
Record
Query

Patient
Record

Key

User Info
DB

Patient
Record

DB

Query
Analysis
Results

Health
Systems

DB

Figure 6.6: Partial architecture for stroke care EIS using three-tiered archi-
tecture style (IBM Software Information Center, 2007).

126 CHAPTER 6. METHOD: ILLUSTRATION

Figure 6.6 presents an alternative, more modest architecture for stroke
care EIS. In this architecture a three–tiered architectural style (Rozanski &
Woods, 2005) is chosen to address the previously defined quality attributes.
The three–tiered style is a common design of the client/server system (IBM
Software Information Center, 2007), and includes the presentation or client
layer, business logic or application layer, and data layer; and have been ap-
plied to example of EIS architecture (Pradhan, Laefer, & Rasdorf, 2007). For
the stroke care EIS, the interface layer includes the graphical user interface
(GUI) for the applications that address the quality attributes. For example,
the GUI for the security check that is mapped to the applications related to
security quality attribute. The business logic layer includes different appli-
cations for addressing quality attributes, and the database layer presents the
stroke care EIS database and data warehouse.

6.3 Conclusion

After defining a method in Chapters 3, 4, and 5, Chapter 6 illustrates the
application of this method on a stroke care EIS example. This example was
introduced in Section 2.7.1. Chapter 6 contains two main sections, illustrat-
ing the core of KAOS-β and EAPM.

In summary, Chapter 6 identifies, structures, and traces part of the top
goals of a rehabilitation phase of a hypothetical stroke care EIS to a top-level
EIS architecture. During the process of applying the method to the EIS ex-
ample, we learned that the goal identification and documentation improves
by the experience of the domain experts. This chapter demonstrates the im-
portance of using scenarios to identify the goals. These scenarios are defined
to identify and structure a number of goals that influence an EIS architec-
ture by identifying a number of quality attributes. The quality attributes
are limited to the software engineering solutions. Practitioners from differ-
ent background such as health specialists, sociologist could identify further
scenarios and goals that are aligned with the top-level stroke care system
goals, yet address their viewpoint.

The Stroke care example is the first of two that were introduced in Sec-
tion 2.7. Applying the method to more examples of EIS from different do-
mains will increase the level of maturity of the method. Thus Chapter 7
demonstrates the second case study of this thesis: Airport Crisis Manage-
ment (ACM).

Chapter 7

The Airport Crisis
Management Example

This chapter presents the results of using the method on an Airport Crisis
Management (ACM). The example application of the method produces a
number of goals for ACM and presents the transition from goals to a possi-
ble top-level EIS architecture. The results of this chapter lead to empirical
justification of the elements, structure, and philosophy of the method.

Prior to presenting the results, Section 7.1 reviews the ACM example.
Section 7.2 presents the results and justification of applying KAOS-β to ACM
documents in two iterations. Section 7.3 presents part of the steps, elements,
and structure of EAPM on ACM example. Given what was presented in
Chapter 6, Sections 7.2 and 7.3 do not repeat justification of the elements
and structure of KAOS-β and EAPM. Finally Section 7.4 presents a reflective
conclusion of the results of Chapter 7.

7.1 Airport Crisis Management: Background

An ACM is a collection of software and hardware solutions to give direct sup-
port to all crisis management activities: from incident reporting to logistics
workflow support. An ACM system that deals with alignment of departments
and business processes can be considered to be an EIS.

Like the stroke care EIS, ACM involves interactions of many departments,
has various business processes that could change over the time and has impact
on wider society – as in the 2010 volcanic ash cloud disruption. Its similarities
to the stroke care EIS makes it appropriate for assessing the utility of the
method.

Examples of co-operating departments in a crisis are police, media, hospi-

127

128 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

tals. The volcanic ash cloud disruption in 2010 is an example of a large-scale
crisis that ACM may address. A more restricted and manageable crisis is as
follows:

An airplane catches fire while refuelling at a gate, an alarm
event is generated to inform the different departments. CCTV
sends usual information to relevant departments, which
broadcast the latest information.

As in the stroke care EIS, there are limitations in the amount of infor-
mation available for applying the method. The main sources for this real
example are the notes from private communication with the domain expert1

and (MODELPLEX Consortium, 2007) which is based on a real EIS. To
expand understanding of this example, we also reviewed other materials in-
cluding online news articles such as (ACM, 2010; Noland, 2011). This version
of the case study is designed to fit within the time limits and scope of this
thesis. When there is not enough information, realistic assumptions have
been made.

7.2 Applying KAOS-β

To apply KAOS-β systematically, the Kestrel tool, developed as part of the
method (Chapter 5) is used. In two iterations, the steps of KAOS-β have
been applied. The result of the first iteration is presented in plain text;
the result of the second iteration is presented using graphical diagrams to
demonstrate different techniques. In a real analysis using KAOS-β, the fi-
nal documentation would present the results in both textual and graphical
modes.

7.2.1 First Iteration

The first iteration applies the nine steps of KAOS-β. This is a summary of
the steps and the results. The details of the steps are presented in Chapter 3.

Step 1: Identify top goals

1R.Paige. Case Study: Airport Crisis Management. Unpublished notes.

7.2. APPLYING KAOS-β 129

To identify the top goals, the first step is to review the documents
describing ACM system1, and online news (ACM, 2010; Noland, 2011).
The review identified the following goals (in no particular order):

1. Clear communication

2. Reliable information to all actors

3. Effective dissemination

4. Software and hardware solutions to support activities

5. Identify and register victims

Step 2: Identify modules

To identify the modules we analysed the documents about system de-
scription and scenarios (i.e. (ACM, 2010; Noland, 2011)). For exam-
ple, identifying and registering victims is a goal that indicates a social
module. In a large–scale crisis such as volcanic ash disruption in 2010,
the media and many society members are affected. The social module
addresses the goals, actors and activities that apply to society, me-
dia, families of victims, politicians etc. A business module indicates
the goals, actors, and activities that support the business aspect, e.g.
the financial issues and outcome of the crisis, or the lessons learnt to
minimise the impact of the crisis on the life of the airport.

We identified goals that address clear communication, software and hard-
ware solutions to support activities. These goals are the indicators for
IT module. Clear communication goal in addition to goals address-
ing reliable information to all actors, effective dissemination, and identify
and register victims are indicators for different aspects of airport mod-
ule. The detailed analysis of the data and possible scenarios illustrates
the option of sub-categorising the airport module to the four Tower,
Ground, In Flight, and IT modules. IT module is a technical module
that could help to link the other three modules together. We assume
that currently there are some IT systems dealing with part of the func-
tionalities inside this enterprise. However, no IT system that performs
as a platform for collaboration of the current IT and non-IT systems
and integrate IT systems with business goals, ACM EIS. As this re-
search focuses on EIS systems, we select the IT modules for further
investigation.

Figure 7.1 shows the modules identified in step 2. Note that the IT
module should support the functionalities of each module as required.

130 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

Airport Crisis
Management

Social Business Airport

IT GroundTower In Flight

Figure 7.1: The modules identified for ACM.

Step 3: Identify goals in each module
In this step the analysis of the ACM documents focuses on goal identifi-
cation within each module. The following lists elaborate the high–level
goals that relate to each module:

IT Module:

• Software and hardware solutions to support activities

• Clear communication

• Identifying and registering victims

• Effective dissemination

Social Module:

• Reliable information for actors and stakeholders via public relation
representatives

• Informing the families of the victims

• Sending relevant information to the media to inform society2

Business Module:

2For example in the case of volcanic ash disruption (Jordans & Lekic, 2010) the airports
should inform people intending to travel and their related parties about the flight situation;
this could be done via broadcast media.

7.2. APPLYING KAOS-β 131

• Reliable information for actors

• Allocate budget

• Prepare staff, training, facilities to deal with crisis

• Future planing based on the learning outcome of each incident

Ground Module:

• Clear communication

• Reliable information to actors

• Effective dissemination

• Identify and register victims

In flight Module:

• Clear communication

• Reliable information for actors

• Effective dissemination

• Identify and register victims

Tower Module:

• Clear communication

• Reliable information for actors

• Effective dissemination

To complete the application of KAOS-β, the rest of this section focuses
on one module. However, the application considers the airport module
and its sub-modules as one module, and applies the KAOS-β process
to the whole airport module. The reasons for this are: firstly, the four
sub-modules and the four following goals are very similar, hence they
could be considered as goals of one parent module. Secondly, time
and access to documents restricts the detailed information available to
apply KAOS-β for the sub-modules individually. These factors affect
the size of the case study but not its behaviour; even though a realistic
size for a case study is desirable, it is not a necessity. Thus we continue
with considering airport modules and its sub-modules as one module.
Figure 7.2 presents the modules used in the KAOS-β pilot.

132 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

Airport Crisis
Management

Social Business Airport

Figure 7.2: Airport Crisis Management modules for steps four to nine of the
KAOS-β pilot.

7.2. APPLYING KAOS-β 133

Step 4: Document goals
To document the goals, KAOS-β proposes a number of forms, intro-
duced in Chapter 3. The aim is to describe the goals clearly, justifiably,
and traceable to their sources. Three out of nine primary top goals are
presented in this section, to demonstrate the suggested information
and structure for documenting the goals. Forms helps to structure
the required information and can enhance the process of implement-
ing systematic tools in future works that can support KAOS-β results.
Table 7.1 to 7.4 are examples of how the sample data are used to fill
the forms for the identified goals. The rest of the documentation for
the detected goals is presented in Appendix A.1. This documentation
in the later steps helps reader to understand the links between goals.

ID ACMG1
Name Share awareness, reliable information, full and seamless com-

munication links
Def A crisis management system for airports must allow shared

situational awareness from the field through to command
centres; reliable information from a number of sources; and
shaping full, seamless communication links.

Scenario An airplane got on fire while refuelling at a gate, an alarm
event generated to inform the incident to different depart-
ments plus the CCTV sends the information to relevant de-
partments to broadcast the latest information.

Context Seamless means “simple and comfortable communication
across various technologies” (German Telekom, 2011)

Priority High
Source ACM description and sample scenarios1

Issue/Notes None detected at this stage

Table 7.1: Structured documentation for ACM’s goal with ID:ACMG1

134 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

ID ACMG10
Name Reliable Communication
Def ACM should collect information from reliable sources and

guaranteed to reach their destination complete and uncor-
rupted and in the order they were sent.

Scenario After an alarm has been triggered, critical information
(smoke location estimate and composition) needs to be col-
lected from machines and human and sent urgently to the
appropriate personnels (e.g., the fire department) for analy-
sis and decision on how to limit the potential impact.

Context “Data corruption refers to errors in computer data that oc-
cur during transmission, retrieval, or processing, introduc-
ing unintended changes to the original data” (quick guide to
key technical terms, 2011)

Priority High
Source ACM description and sample scenarios1

Issue/Notes None detected at this stage

Table 7.2: Structured documentation for ACM’s goal with ID:ACMG10

ID ACMG2
Name Clear Communication
Def Clear communication procedure, standard and tools to allow

departments and rescue units communicate with each other
under defined security levels

Scenario The crisis management system support secure, fast and reli-
able communication activities and provide information about
the stakeholders that can assist with the situation.

Context
Priority High
Source ACM description and sample scenarios1

Issue/Notes Measure of success: security, reliability, and providing stake-
holder information within specific period of time.

Table 7.3: Structured documentation for ACM’s goal with ID:ACMG2

7.2. APPLYING KAOS-β 135

ID ACMG3
Name Cross regional involvement of Crisis Management Depart-

ments
Def Support cross-regional involvement of departments or rescue

units and document their activities. A crisis could require
different groups of helps from different regions and geograph-
ical places.

Scenario Without waiting for central coordination orders, first inter-
vention units are sent to start extinguishing the fire, provide
security, and to provide more accurate view and information
of the situation.

Context
Priority High
Source ACM description and sample scenarios1

Issue/Notes measure of success: send situational information such as the
number of dead or injured people, damage to the plane to the
central crisis management unit within reasonable amount of
time. It could be hours, minutes, or days.

Table 7.4: Structured documentation for ACM’s goal with ID:ACMG3

136 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

Step 5: Refine goal links
This step refines the links between the goals, to develop the structure
and relationships between the goals. Figure 7.3 presents this refine-
ment for the first iteration. The notation is borrowed from the KAOS
tool (Objectiver, 2010). Having a big picture of the relationships be-
tween goals gives the designers and stakeholders a high–level, graphical
view on the system’s values, by observing its goal breakdown and the
relationships between goal structure elements (e.g. goals, agents). For
more detailed information one can refer to goals and links documenta-
tion in Chapter 3.

7.2. APPLYING KAOS-β 137

A
C

M

Figure 7.3: Goal Refinement for ACM goals in the first iteration.

138 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

Step 6: Document links

“The goal model records the refinement links between goals. In KAOS,
a link is documented with details of the refinement that has been made:
Name, SysRef, Status and Tactic. In KAOS, the name feature is used
to remove any ambiguity. System reference (SysRef) refers to system-
to-be or system-as-is. Status records whether the goal is still under
refinement. Tactic records the refinement tactic used to derive the sub-
goal. In KAOS-β, the tactic feature is used (additionally) to provide
source information, which documents or other sources were used in
arriving at the refinement. This supports traceability, and also helps
in evaluating the goal model” (Tabatabaie et al., 2010b).

Table 7.5 and Table 7.6 show filled forms for the links observed in
Figure 7.3. The documentation for the three top goals can be seen in
Step 4. The link documentation for the remaining goals is presented in
Appendix A.2.

ID ACML1-2
Name Link from ACMG1 to ACMG2
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer’s assumption is based on document1

Table 7.5: Documentation for the link between ACMG1 and ACMG2

ID ACML1-3
Name Link from ACMG1 to ACMG3
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer’s assumption is based on document1

Table 7.6: Documentation for the link between ACMG1 and ACMG3

Step 7: Identify agents
“An agent is an active system component playing a specific role in goal
satisfaction” (van Lamsweerde, 2009, p. 260). Analysis of the ACM
goals and documents suggests four agents for the start. Goals ACMG6
(Exchange Situational Information between departments and rescue
units) suggests the Departments as one group of agents. ACMG7 and
ACMG8 suggest IT consultants and solution providers as one group of
agents. The interfaces of the departments including IT, human, and

7.2. APPLYING KAOS-β 139

other device interfaces are suggested by ACMG3 and ACMG4. These
goals also suggest human representatives of different departments and
stakeholders or society members that are affected by the crisis as one
group of agents.

• Departments

• IT Solution

• Departments’ interfaces

• Representatives of departments and stakeholders

Step 8: Link goals and agents
After identifying the goals and agents, step 8 guides the connection of
goals and agents, as summarised in Table 7.7. Figure 7.4 displays the
graphical presentation of the links between agents and goals.

Agent Goal
Departments ACMG6
IT Solution ACMG7 , ACMG8
Departments’ inter-
faces

ACMG3 , ACMG4

Representative ACMG9

Table 7.7: Goals that indicate the existence of agents.

Step 9: Identify obstacles, threats and conflicts
In this step, the designers search for obstacles, threats, and conflicts.
The results could affect the goal structure, hence an appropriate iter-
ation to step 3 is considered for this phase. The analysis illustrates
that no conflicts between goals have been detected in the first itera-
tion. There are security threats in exchanging situation information
and communication interfaces. Also there are threats in exchanging
reliably the right amount of information between departments for dis-
semination and to the relatives of victims and other groups such as
media. These threats and conflicts should be highlighted in the archi-
tecture design and document and be considered in the implementation
phase.

140 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

A
C

M
Figure 7.4: The presentation of the links between goals and agents during
the first iteration.

7.2. APPLYING KAOS-β 141

7.2.2 Second Iteration

Several iterations through the KAOS-β steps help to collect a suitable amount
of information for the designers to start the architecture design process. How-
ever, each iteration is time consuming and costly. Therefore, the number of
iterations depends on resources available to the EIS development team. To
be confident that enough information is collected for this example, we run a
second iteration. This helps to collect more data, evaluate the results of the
first iteration, and increase an assurance of the final results.

Figure 7.5 presents the results of the second goal refinement. Compared
to the results of the first iteration (Figure 7.3) detailed goals are introduce to
present different aspects of the top-level goals. There is a fine line between
defining the detailed goals and the requirements, hence extra care is applied
to not define any requirements in this iteration.

Figure 7.6 presents the links between the goals and agents in the second
iteration. This figure includes the presentation of the results for steps 7 and
8. The conflicts which are the results of step 9 is presented in Figure 7.7.
In this figure the small red lightning on the links between some of the goals
presents the conflicts. The results of the second iteration developed enough
confidence to have enough information to start the next phase of the method,
applying EAPM.

142 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

A
C

M

Figure 7.5: Second iteration of goal refinement for SCM goals. The parallel-
ogram presents the goals.

7.2. APPLYING KAOS-β 143

D
e
p
a
rt

m
e
n
t

In
te

rf
a
c
e
1

Figure 7.6: Links between the goals and agents in the second iteration. The
yellow hexagon presents the agents.

144 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

D
e
p
a
rt

m
e
n
t

In
te

rf
a
c
e
1

Figure 7.7: Conflicts between goals in the second iteration. The red lightning
on the links between the goals symbolises the conflicts between those goals.

7.3. APPLYING EAPM 145

7.3 Applying EAPM

EAPM creates a transition from a goal structure to starting point of EIS
architecture design. The aim is to provide suitable information for EIS ar-
chitects to start the process of designing an EIS architecture, regardless of the
techniques or strategies they wish to adopt. This section presents the results
of applying EAPM to the output of KAOS-β for ACM. Parts of these results
is captured in Table 7.8 to Table 7.11; the rest of the forms are located in
Appendix A. Data analysis on the output of KAOS-β and ACM documents
indicates eleven quality attribute for the EIS architecture. For each of these
quality attributes a form is used to document the required information. The
elements of these forms are filled with the information gathered from each
of EAPM’s steps. Thus each form presents the output of all the steps of
EAPM.

Attribute (s) Reliable Communication
Scenario (s) After an alarm has been triggered, critical information

(smoke location estimate and composition) needs to be sent
urgently to the appropriate persons (e.g., the fire depart-
ment) for analysis and decision on how to limit the potential
impact.

Goal (s) ACMG10
Environment At the start of activating the crisis management system
Stimulus Critical information send to the system
Response Distribute the information to the valid departments
Measure Valid departments and people receive the information within

the specific period of time (with no delay)
Strategy Process group view 3

Reasoning “This strategy informs operational group members when an-
other member fails, recovers, joins, or withdraws voluntarily,
or when some other change to a global property of the group
occurs” (Birman & Joseph, 1987, p. 5)

Architectural
diagram

Table 7.8: Architectural information for Reliable Communication quality at-
tribute.

Table 7.8 presents the information regarding to reliable communication.
A scenario is defined to justify the existence of this quality attribute. In
addition, this scenario could be used in the later phases of evaluating the
EIS architecture and even final product testing. The goal that indicates

146 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

this quality attribute is presented in the Goal criterion (refer to ACMG10 in
Section 7.2.1). The Environment is filled with the information about the en-
vironment of the EIS, if it is running under normal condition or the quality
attribute affects particular phase or aspect of the EIS. In the case of reli-
able communication, this quality attribute has an strong impact in the early
phases of using CMS, including when the system is launched by the users.
Based on the information gathered from the scenario, the remaining crite-
ria are completed. A similar approach is followed to fill the forms with the
information for the rest of quality attributes.

Based on the information collected by EAPM, an EIS architecture for
ACM is designed. The ACM documentation analysis and the scenarios
shaped a business process diagram that is presented in Figure 7.8. This
diagram consists of five major tasks. Each task has a number of inputs and
outputs. For example, in the start of using the ACM users insert the connec-
tion information (e.g. username, password, and position). Task 1 processes
the entry data and if the suitable information is provided a connection will
establish. After creating the business process diagram, more layers of the
architecture that aim to address the business process are built up based on
the chosen strategy and style (e.g 3-tier style (Rozanski & Woods, 2005)).
For the EIS architecture, this business layer will link to IT strategic layer.
Figure 7.9 demonstrates the links between business and strategic architecture
layer. The aim of designing an EIS architecture for ACM is to demonstrate
one possible EIS architecture and not necessarily the best one, therefore no
further evaluation for the architecture is carried out.

7.3. APPLYING EAPM 147

Attribute (s) Safe Communication
Scenario (s) The system will make all or part of the information available

to the different groups of stakeholders according to their ac-
cess rights. Also the system is under the control of safety
standards.

Goal (s) ACMG14
Environment Distributing the information under safety standards
Stimulus Distribute the information between stakeholders
Response follow the safety standard criteria
Measure Information does not pass to non-valid stakeholders
Strategy Strict access list
Reasoning Function and level of access are assigned to roles
Architectural
diagram

Table 7.9: Architectural information for Safe Communication quality at-
tribute.

148 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

Attribute (s) Reliable DB
Scenario (s) Different types of information about the crisis including

the position and movements of the victims are inserted in
database(s) and stakeholders can have different level of ac-
cess to the detail information with appropriate properties

Goal (s) ACMG8, ACMG4
Environment Crisis management system is storing and retrieving informa-

tion
Stimulus Information is inserted insider database (s)
Response Save and become available to the other functions to be re-

trieved
Measure Information save and retrieved in real time into and from

database (s)
Strategy Oracle Database Lite Client
Reasoning

• Secure data access from mobile devicesSmall footprint
database enables secure offline access to your corporate
data at any time from your mobile device

• Access corporate data on the roadChanges made offline
in Oracle Lite are tracked and can later synchronized
with the backend Oracle Database using the Oracle
Database Lite Mobile Server

• Broad platform supportSupport for Windows
2003/XP/Vista, Redhat Linux, Windows Mobile
5 & 6, Symbian 7, 8, & 9, and embedded Linux for
SH4 and xScale

Architectural
diagram

Table 7.10: Architectural information for Reliable DB quality attribute.

7.3. APPLYING EAPM 149

Attribute (s) Usability
Scenario (s) Different stakeholders send and request information

and the system provides appropriate feedback and
assistance within specific period of time (real time).

Goal (s) ACMG11
Environment System respond to the requests from stakeholders

and other systems.
Stimulus Stakeholders or other systems send or request infor-

mation
Response System send the suitable amount of information

within specific time
Measure
Strategy Oracle Loyalty Analytics (Oracle, 2011a)
Reasoning

• Understand users transaction trends and re-
sponse accordingly .

• Distributed valuable information to suitable
users.

Architectural dia-
gram

Table 7.11: Architectural information for Usability quality attribute.

150 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

T
a

s
k

1
T

a
s

k
2

T
a

s
k

3

T
a

s
k

4

T
a

s
k

5

C
o

n
n

e
c

ti
o

n
In

fo
rm

a
ti

o
n

C
o

n
fi

rm
a

ti
o

n
o

f
C

o
n

n
e

c
ti

o
n

R
e

p
o

rt
o

f
C

ri
s

is
(w

it
h

d
e

la
y

)

O
b

s
e

rv
in

g
In

fo
rm

a
ti

o
n

(r
e

a
l-

ti
m

e
)

C
o

n
fi

rm
a

ti
o

n
o

f
R

e
c

e
iv

e
d

In
fo

rm
a

ti
o

n

O
rd

e
r

S
u

g
g

e
s

ti
o

n

B
ro

a
d

c
a

s
t

O
rd

e
r

B
ro

a
d

c
a

s
t

S
u

g
g

e
s

ti
o

n

R
e

q
u

e
s

t
A

n
a

ly
s

is
o

f
In

fo
rm

a
ti

o
n

S
it

u
a

ti
o

n
a
l

A
n

a
ly

s
is

O
rd

e
rs

/
S

u
g

g
e

s
ti

o
n

s
b

a
s

e
d

o
n

re
s

u
lt

s
o

f
a

n
a

ly
s

isR
e

p
o

rt
o

f
A

c
ti

v
it

y

Figure 7.8: A business process diagram for a scenario of Airport Crisis Man-
agement. This business process is presented as the top layer in Figure 7.9

7.3. APPLYING EAPM 151

Client Layer

Application
Layer

Database
Layer

GUI Security
Check

GUI Input crisis
Data

GUI Input
Query

GUI Output
Query

Security Check
Process &

Rules

Process
Security Data

Process Input
Information

Process and
Rules to

Handle Query

Query results
& Process for

Fresh and Safe
data within
time limits

User Info
DB

Crisis
Informati

on

Query
Analysis
Results

Best
Practices

Task 1 Task 2

Task 3

Task 4

Task 5

Figure 7.9: Partial EIS architecture for ACM using three-tiered architecture
style.

152 CHAPTER 7. THE AIRPORT CRISIS MANAGEMENT EXAMPLE

7.4 Conclusion

This chapter presents the results of applying the method to a second exam-
ple of EIS to test applicability. The second example, ACM, in addition to
processing the characteristics of an EIS, has similarities with the earlier EIS
example, stroke care.

Applying these approaches in a different EIS example with similar char-
acteristics developed an opportunity to determine that the method is not
specific to one particular example of EIS.

Indeed, the contributed parts of the method, namely KAOS-β and EAPM
may become mature by applying them to more examples of EIS.

Ideally, future application of the method will be carried out by other
researchers and developers, which will help assess the learnability of the
method.

The next chapter presents a detailed qualitative evaluation of the method,
using the results of the two case studies.

Chapter 8

Evaluation

In the past, expert review has been the main technique used for evaluating
processes and process models (Feiler & Humphrey, 1993). However, access
to experts is usually limited and costly, hence other solutions are required
to make evaluation feasible. Such techniques should allow designers and
developers to review the steps of a process in early phases and then pass the
reviewed process to the domain experts for further and complete evaluation.
Evaluating the process model in advance to presenting it to the domain
experts does not prevent objective evaluation.

The objective of this chapter is to present and use different approaches
to evaluate a process model without the use of process experts. Indeed these
methods are for evaluating the process models and not the results of applying
them to a certain domain. To evaluate the results, domain experts provide
invaluable knowledge.

This chapter includes two main sections; Section 8.1 presents the evalua-
tion process and results of KAOS-β and Section 8.2 presents the evaluation
process and results of EAPM. Different evaluations for process models are
presented and demonstrated in these two sections.

8.1 Evaluation of KAOS-β

The KAOS-β process model is an extension and reordering of KAOS’s heuris-
tic rules, adapted to EIS goals. Evaluation is a non-trivial problem, particu-
larly in the context of a small project that does not have the capacity to apply
the process in many realistic situations. There is little guidance on process
evaluation, and that which exists is often inapplicable. For example, (Gruhn,
1991) proposes an approach that evaluates application of a process in a spe-
cific context; the approach also focuses on temporal and dynamic aspects of

153

154 CHAPTER 8. EVALUATION

process application: neither is appropriate here.

KAOS-β is evaluated in three ways: appeal to standards, internal validity
(or soundness), and external validity (based on (Curtis, Kellner, & Over,
1992)).

The appeal to standards is made by specifying the KAOS-β process model
using a standard notation for process models. Object Management Group
(OMG) defines a set of UML stereotypes for defining processes and their
components using the SPEM – Software & Systems Process Engineering
Metamodel Specification (SPEM, 2009).

The OMG defines SPEM as a standalone meta-model built upon UML 1.4
and UML profile (Object Management Group, 2008). SPEM “is used to de-
fine software and systems development processes and their components” (Ob-
ject Management Group, 2008, p. 20). SPEM first appeared in 2002 and has
been developed by process engineers; it is internally grounded and limited to
the minimum elements necessary to define any software and system devel-
opment process, without adding specific features for particular development
domains or disciplines (Object Management Group, 2008). SPEM merges
different characteristics of a process such as process structure, behaviour,
and content.

To demonstrate SPEM in practice, Figure 8.1 and 8.2 present detailed
activity and workflow diagrams for an imaginary case designed in SPEM.
In addition to graphical notation, the standard defines rules and constraints
for processes, using the Object Constraint Language (OCL). SPEM provides
the ability to map between the content of an activity diagram, a process and
a project plan; hence this “breakdown structure provides key information
attributes that provide the project planner with the right guidance to make
these instantiation decisions” (Object Management Group, 2008, p. 166).

Designers use SPEM because it provides the necessary concepts for mod-
elling, documenting, presenting, managing, interchanging, and enacting de-
velopment methods and processes.

Specifying KAOS-β with SPEM improves confidence in the validity of the
process model. To further improve confidence, web-based tool support for
KAOS-β is implemented in the Eclipse Process Framework (EPF). EPF is
an open source tool platform for process engineers and project managers to
author, tailor, and publish method and processes (Haumer, 2011); it is based
on the latest version of SPEM. EPF can be used without full knowledge
of Eclipse, and provides a process editor that supports different breakdown
structure views and graphical process presentations (Haumer, 2011): this
makes it accessible to non-expert users.

The result of using EPF to produce tool support is a static website and an

8.1. EVALUATION OF KAOS-β 155

XML description of the process model. The benefit of using this framework
is to apply the SPEM standard easier and to produce a free tool that can be
sent to the users and other designers to be used and evaluated. The EPF tool
supporting KAOS-β is called Kestrel. A snapshot is shown in Figure 8.3.

The specification of KAOS-β in SPEM and EPF identified several omis-
sions from the manually developed version. SPEM prompted addition of
roles, and structuring of tasks: the final version comprises four roles, respon-
sible for, modifying, or performing thirteen distinct tasks (tasks include a
number of steps). SPEM also use streamlined the process, so that the out-
puts of one task form the inputs to the next task. The EPF tool use led to
clear templates for documenting goals, tasks, and agents.

Evaluating KAOS-β using a process model standard clarified the impor-
tance of defining elements for process models explicitly. The final version
includes all the process model elements requested by the standard. KAOS-β,
as other process models, could evolve with feedback from users and additional
documentation. As this is a trial version, and because of the limitations in
time and access to the domain users, this aspect of the evaluation is con-
sidered as complete at this stage and the evaluation continues in the other
directions.

156 CHAPTER 8. EVALUATION

Figure 8.1: A detailed activity diagram designed using SPEM: from (Object
Management Group, 2008, p. 162)

8.1. EVALUATION OF KAOS-β 157

Figure 8.2: A workflow diagram designed using SPEM, from (Object Man-
agement Group, 2008, p. 161)

158 CHAPTER 8. EVALUATION

Figure 8.3: A snapshot of Kestrel, the tool support for KAOS-β

8.1. EVALUATION OF KAOS-β 159

The second part of the evaluation of KAOS-β considers internal validity.
Internal validity addresses the detail of the process: the structure, applica-
bility and heuristics, as well as how the outputs are validated. The KAOS-β
process model is represented as a series of tasks and steps. Clearly, identi-
fying a process, its steps and links makes it possible to address its internal
validity. It can be seen that the process and the steps themselves conform
to most of the process characteristics (i.e. role, task); KAOS-β also offers
the potential for evolvability and adaptability. KAOS itself is a widely-used
approach to requirements engineering, and we can assume that it is inter-
nally valid. We can thus infer at least some internal validity for the KAOS-β
process model through its derivation from KAOS. The internal differences
between KAOS-β and KAOS are derived by application of the process to an
EIS. Here, internal validity can be shown by appeal to best practice: modu-
larity is added to manage the scope of EIS goal analysis; traceability is added
so that goal models can be maintained and can be used to initiate specific
systems projects in the enterprise.

The KAOS-β process includes explicit iteration, to support the exploratory
nature of goal analysis. The validity of the output of the process (the goal
model) is improved through iterative development and oversight of the pro-
cess and results by the enterprise stakeholders.

In terms of goal evaluation, KAOS-β Step 9 (identifying obstacles and
threats) requires the analyst to evaluate the goals by considering interaction
and negative aspects of goals. KAOS goes further, for example looking at
the converse of goals; KAOS-β evolution should consider adding further goal
evaluation heuristics as optional steps, or adaptation options for use in other
EIS situations.

KAOS heuristics advise continuing goal identification “to the system
boundary” as a stopping condition, and also advise that refinement should
continue until each goal maps to one agent. For KAOS-β, we propose a vali-
dation check that defines the boundaries of each module and of the EIS (i.e.
the scope of the goal analysis), and determines that the identified goals reach
the boundaries: this is a coverage condition. The second validation check is
that all goals should be mapped to agents – though we allow goals to map
to many agents, as described earlier: when the enterprise wishes to proceed
to system development, the goal model would form the starting point for
requirements engineering, in which lower level goals would be desired and
mapped to single agents.

The final part of evaluation considers external validity. These outline the
general criteria for a valid process. The validity of the process depends on the
qualitative argument on how a process addresses these criteria. If a process

160 CHAPTER 8. EVALUATION

contains detail information such as the time to fulfill a task, quantitative
criteria or measurable values could be added to the external validity. At this
level a number of criteria that has been investigated by Ramsin (2006) work
is used. These criteria are for evaluating software engineering processes and
address the general and quantitative aspects of KAOS-β.

To start this phase of evaluation, first the general requirements for a (soft-
ware engineering) process is considered. We draw on evaluations of process
presentation techniques for UML (Dumas & ter Hofstede, 2001) and Petri-
nets (Curtis et al., 1992; Murata, 1989), and a general definition of process
as a set of activities, associated results and a product (Sommerville, 2007),
and add to the requirements of a process the need for defined inputs, de-
fined outputs, and linkage between steps. The type and domain of input and
output of the process shall be defined for the users of the process.

The KAOS-β process conforms to these general process characteristics: it
is a process to create an enterprise-level goal structure and EIS architecture; it
comprises a set of well-defined activities, represented as steps, with associated
results that link the activities. As a result, a goal structure which is part of
the software product design is created.

Good engineering practice also proposes that a process should be cus-
tomisable, both in its ability to evolve, and in relation to adaptation to
different situations. This cannot be assessed directly at this stage.

The criteria-based evaluation applied all of Ramsin’s criteria (Ramsin,
2006); these criteria are summarised in table 8.1. Three criteria require
comment: (a) consideration of the clarity, rationality and consistency of the
process definition, which cannot be assessed until KAOS-β is fully reported
in practice and tested by the domain users; (b) coverage of generic lifecy-
cle development activities is addressed in so far as is possible, but KAOS-β
precedes most conventional lifecycle development activities; (c) support for
umbrella activities (risk management, project management and quality as-
surance) have not yet been addressed. The other criteria are addressed and
can be seen in table 8.1.

This qualitative analysis illustrates that KAOS-β could be applied for
some cases of EIS. We could get confidence about it by testing it in different
cases. We believe that there is no one good process that could be applied to
all types of EIS, hence instead we should focus on the best practices.

8.1. EVALUATION OF KAOS-β 161

Ramsin Criteria
√

Comments
Seamlessness and smoothness
of transition between phases,
stages and activities

√
KAOS-β retains and improves the flow be-
tween activities (steps), facilitating itera-
tion or omission of optional steps

Basis in the requirements
√

KAOS-β address the needs of the exam-
ple EIS goal analysis and is aligned with
general definitions of process and of EIS

Testability and Tangibility of
artefacts, and traceability to
requirements

√
Artefacts are tangible: goals, agents,
refinement (goal-model); testability is
heuristic; KAOS-β traceability is explicit

Encouragement of active user
involvement

√
Intended and facilitated in KAOS-β, as in
KAOS

Practicability and practicality (
√

) KAOS-β is applicable EIS; it is a practical
modification of KAOS. Full practicality
needs umbrella activities (further work)

Manageability of complexity
√

KAOS-β’s clear activities and links mini-
mize complexity

Extensibility / Configurability
/ Flexibility / Scalability

√
Addressed by iterative process, modular-
ity; process potentially customisable

Application scope (Informa-
tion Systems)

√
Scope is EIS goals/architecture

Table 8.1: Evaluation of KAOS-β against Ramsin’s criteria (Ramsin, 2006)

162 CHAPTER 8. EVALUATION

8.2 Evaluation of EAPM

Analytical evaluation is evaluating the subject by dividing it into elements
and basic principals (TheFreeDictionary, 2011). Analytical evaluation of the
EAPM focuses on the standard basic elements of a process model (i.e. tasks
and roles) as well as addressing how practical the process model is, compared
to similar architectural process models.

To evaluate the basic elements of a process a review on the qualitative
technique has been conducted. The results illustrates the existence of at-
tempts to measure the values of the basic principles. For example, counting
the number of roles or tasks and comparing these values of the processes (Gar-
cia et al., 2006; Aguilar et al., 2006). However, there is no evidence of how
these measured criteria and values leads to evaluating the quality of a pro-
cess. For example, if the number of tasks in a process model ‘A’ is less than
the number of tasks in another process model ‘B’, does it mean process model
‘A’ is less complicated than ‘B’?

Therefore, the analytical evaluation in this thesis is based on qualitative
arguments. The main reason to choose qualitative techniques over quan-
titative techniques is that process models in general, and in particular the
ones studied in this thesis, heavily depend on how they are used. No general
quantitative measurement techniques have been found that can be applied
to the use of EAPM.

Even though a qualitative approach is considered for evaluating EAPM,
there is little research on how to do such an evaluation. In this thesis, two
approaches for evaluating EAPM have been used: appeal to standards and
appeal to similar process models that are used in practice. The following
sections present the results of evaluating EAPM using these two approaches.

8.2.1 Process Model Standards

The first approach to evaluate EAPM is to appeal to standards by specify-
ing this process model using a standard notation for process models. The
standard notation, SPEM, was introduced in Section 8.1. This is a general
standard for software engineering process models, therefore, it is applicable
both in the case of KAOS-β and EAPM.

Figure 8.4 presents the activity diagram using SPEM syntax and axioms
(established principles that are applied by OCL for well-formedness check).
Activity diagram in SPEM includes a number of steps and the relationships
between them. SPEM’s activity diagram follows the general rules of UML
activity diagram (Stevens & Pooley, 1999), with small modification in the
graphical syntax (SPEM, 2009). Activity diagram in Figure 8.6 is in paral-

8.2. EVALUATION OF EAPM 163

lel with the activity diagram presented in Figure 3.5. No additional steps
are detected in designing the SPEM activity diagram, and no new phase is
suggested by SPEM to be added. However, SPEM documents suggest the
concept of Role as an important element of any process and process model
and, as no roles can be defined in SPEM’s activity diagram, a use case dia-
gram is designed to cover the interacting roles (see Figure 8.5).

Defining EAPM using SPEM does not reveal any conflict between EAPM
and the process model standard but has helped to define additional elements.
In addition EAPM is defined systematically by SPEM standards using EPF.

Originally one role, an Architect, was identified by EAPM for the Stroke
Care example. Applying SPEM and investigation of the possible roles for
designing the use case diagram, identifies two more additional roles: Domain
Expert and IT/Domain Expert. Each of these roles provide their view point.
analysing their view point provide additional knowledge of the enterprise for
the architecture, and using this knowledge an architect could allocate the
tasks to the suitable role.

Eclipse Process Framework (EPF), is an open source plug-in that helps
designers to define their processes systematically and according to SPEM
standards. The output is an automatically published web-based tool that
can be easily used to support the processes. A snapshot of the output is
presented in Figure 8.61.

The tool developed using EPF for EAPM is EAPM–Tool. Figure 8.6
presents all the tasks and roles defined for EAPM; seven tasks for the seven
steps of the EAPM is defined in EPF. Three roles responsible for these seven
tasks are defined, as explained above.

To determine the architectural drivers and quality attributes, in addition
to the role of architect as a primary performer, a domain expert that has IT
knowledge is defined. The IT/domain expert role bridges the gap between the
architectural knowledge and enterprise knowledge and would help to define
the quality attributes and drivers to addresses the enterprises goals. The two
roles of domain expert and IT/domain expert are defined as the result of
developing the EAPM–Tool in EPF. Process model developers are required
to define the process model steps by step in detail for the users of the process
model.

Another advantage of using EPF to design EAPM tool support is defin-
ing and justifying the inputs and outputs of the process model’s tasks2. In
the EAPM description (see Chapter 3) tasks are defined but the sequential

1Note: the template of the tool is similar to Kestrel tool, however, the content is
different.

2EPF introduces the tasks and the steps inside tasks.

164 CHAPTER 8. EVALUATION

relationships are implicit. Developing EAPM–Tool forces the process model
designer to make the inputs, outputs, and the relationships between the tasks
explicit. Explicit inputs and outputs help the users of the process model to
clarify their expectations, and helps to evaluate the correctness of applying
each task by comparing the results with the expected results3. Explicit re-
lationships help the Process’s users to understand the progress of a process
better.

The result of developing the EAPM–Tool is that EAPM describes seven
sequential tasks that would be performed by three roles and thirteen work
products4. This results illustrates that according to SPEM, the first version
of EAPM did not define all the elements of a process (i.e. assistant roles
and explicit inputs and outputs). However, the current version of EAPM
includes these standard process elements.

In summary, the two main issues of developing a process document are
lack of visualising a big picture and explosion of details. Researchers narrow
down the descriptions to the use of diagrams such as flow charts (Humphrey
& Kellner, 1989) to create a visual picture. The aim of these diagrams is to
define required elements for a process such as Roles and Tasks. UML defines
a set of stereotypes for defining processes and their components using the
SPEM. To facilitate the understanding and use of a process, a web–based
tool using EPF is developed. EPF uses the concept of processes and process
models used in SPEM. Using EPF to develop a tool to support EAPM lead
us to analyse and evaluate the elements of EAPM in detail. This evaluation
makes the missing elements clear or it helps to justify them. In addition to
this evaluation technique, I considered another approach that is based on
comparing EAPM with another process model that shares the same objec-
tives.

3Similar to the concept of black box testing, when the test case does not test the
internal structure, but the input and the expected output.

4In EPF work products present artefacts and outcomes of tasks

8.2. EVALUATION OF EAPM 165

1: Consolidate Inputs

2: Determine Quality Attributes/ Drivers

3: Identify Measures
4: Identify Strategies

5: Select Strategies

6: Identify Style

7: Product Architecture

Figure 8.4: Activity diagram for EAPM, designed using SPEM, to present
the tasks of EAPM.

166 CHAPTER 8. EVALUATION

System

Architect

Domain Expert

IT/ Domain Expert

Consolidate Input

Determine QA/ Drivers

Identify Measures

Identify Strategies

Select strategies

Identify Styles

Produce Architecture

<<Perform>>

<<Perform>>

<<Perform>>

<<Perform>>

<<Perform>>

<<Perform>>

<<Perform>>

<<Assist>>

<<Assist>>

<<Assist>>

Figure 8.5: Use case diagram for EAPM designed using SPEM to present
EAPM roles. Roles in SPEM are presented using symbol; equivalent sym-
bol for actor in UML is: . Use case in SPEM presented by: , and its
equivalent symbol in UML is:

Use Case

8.2. EVALUATION OF EAPM 167

Figure 8.6: Screenshot of the EAPM-tool that is developed by EPF to sup-
port EAPM.

168 CHAPTER 8. EVALUATION

8.2.2 Process Models Comparison

So far we have used process model standards (e.g. SPEM) as guidance that
provide a general roadmap for process model development. This analytical
evaluation helps us to identify the missing elements for the EAPM. The next
step in evaluating EAPM is to analyse its functionality by comparing it with
a valid process models that has a similar objective and approach. “A process
model will be called a valid model iff (if and only if) there exists at least one
successful process path” (Soffer & Wand, 2004, p. 525); validity of a process
is with respect to a given goal.

(Clements & Bass, 2010b) introduce a process model that uses the con-
cept of goals to design a software architecture. They claim this process
model has been used successfully, hence this process model has at least one
successful process path and could be considered as a valid process.

The PALM (Pedigreed Attribute eLicitation Method) is a method that
is piloted in a real-world setting (Clements & Bass, 2010b). PALM uses
the concept of goals to design software architecture for large scale and com-
plex systems. The main objectives of using PALM are to empower archi-
tects to spot missing requirements and to question difficult requirements
that may not be necessary because they do not support any important busi-
ness goal (Clements & Bass, 2010b). The output of PALM is a “prioritized
list of business goals and the associated quality attribute requirements that
drive from the stated business goals” (Clements & Bass, 2010b, p. 21). Thus,
PALM is aligned with the objectives of EAPM. These process models address
the same challenges with a similar approach. This alignment in the objective
and approach, motivate the selection of PALM for comparison with EAPM.
The methodology used for comparing these process models is criteria-based
evaluation. In this method explicit criteria are used as a basis for assess-
ment (The Danish Evaluation Institute, 2004). We investigate how each of
these processes could address specific list of criteria. This analysis helps to
develop a vision for different aspects of process models.

Clements and Bass (2010b) have evaluated PALM by applying it to
real industrial cases and collecting feedback from domain experts (Clements
& Bass, 2010b). PALM includes 7 steps that are applied in a 2-day exer-
cise (Clements & Bass, 2010b). Following is the main description that is
published to introduce the use of PALM. To estimate the length of running
a PALM session, for each step, time is roughly estimated and presented in
parenthesis. The information about the estimated time could be provided
for EAPM and KAOS-β because there is no access to the industrial cases in
the real environment.

1. PALM overview presentation (30 minutes)

8.2. EVALUATION OF EAPM 169

2. Business drivers presentation (60 minutes)

3. Architecture drivers presentation (30 minutes)

4. Business goals elicitation exercise (2 hours)

5. Identifying potential quality attributes from business goals (2.5 hours)

6. Assignment of pedigree to existing quality attribute drivers (2.5 hours)

7. Exercise conclusion (30 minutes)

To compare EAPM and PALM a number of criteria as the basis for com-
parison is required. Humphrey and Kellner (1989) suggests primary objec-
tives and criteria that process models should consider. These criteria are:
enable effective communication, enable process reuse, enable process evolu-
tion, and facilitate management of the process. Ramsin (2006) also identifies
a number of criteria for a process model during his research. The criteria that
could be applied for general process models and not just specific to software
development are: clarity, rationality, accuracy, and consistency of defini-
tion; seamlessness and smoothness of transition between phases, stages and
activities; basis in the requirements; encouragement of active user involve-
ment; practicability and practicality; manageability of complexity; extensi-
bility, configurability, flexibility, scalability; application scope (Information
Systems). In Section 8.1 these criteria have been used to evaluate KAOS-β.
Table 8.2 uses the criteria introduced in Section 8.1 to be used as a framework
for comparing PALM and EAPM.

The criteria in Table 8.2 as categorised to Addressed for criteria that are
addressed fully by the process model; Partly Addressed for the criteria that are
not fully addressed by the process model, perhaps because of lack of public
documentation or knowledge about specific process model; Not Addressed for
the criteria that are not addressed by the process model.

170 CHAPTER 8. EVALUATION

Criteria PALM EAPM

Enable process reuse Addressed Addressed
Enable effective communica-
tion

Partly Addressed Addressed

Facilitate management of the
process

Addressed Addressed

Support evolution of the pro-
cess

Addressed Addressed

Clarity, rationality, accuracy,
and consistency of definition

Partly Addressed Addressed

Seamlessness and smoothness
of transition between phases,
stages and activities

Addressed Addressed

Basis in the requirements Partly Addressed Partly Addressed
Encouragement of active user
involvement

Addressed Addressed

Manageability of complexity Addressed Addressed
Extensibility, Configurability,
Flexibility, Scalability

Addressed Addressed

Application scope Addressed Addressed
Practicability and practicality Partly Addressed (No

Evidence)
Partly Addressed

Table 8.2: Results of comparing EAPM and PALM using Ramsin (2006)
criteria. The values for the criteria are Addressed, Partly Addressed, Not Ad-
dressed. When there is no evidence, PALM developers might partly addressed
the practicability and practicality criterion, but we do not have evidence.

8.2. EVALUATION OF EAPM 171

Enable process reuse :
Humphrey and Kellner (1989) recommend that a specific software should
be able to instantiate and execute in a reliable repeatable fashion across
multiple software projects. EAPM and PALM are both process mod-
els, hence they are not specified for a specific project (i.e. stroke care).
The general nature of process models means that PALM and EAPM
can be used for different EIS projects. Process reuse is supported by
the objective of structuring the goals, and by associating architectural
quality attributes to the goals. The tool developed for EAPM also is
not restricted to a project.

Enable effective communication :
“Process models are especially useful for sharing knowledge and ex-
pertise” (Humphrey & Kellner, 1989, p. 3). PALM and EAPM are
developed in different ways; this influences the effectiveness of commu-
nication of the process. PALM is developed by software architecture
experts in Carnegie Mellon University. It expresses expert knowledge
and has received positive evaluation by industrial experts (Clements
& Bass, 2010b). However, it does not provide much practical support
for the novice users. The method should be used in sessions run by
PALM experts for domain experts. EAPM, by contrast, was developed
experimentally, through analysis of an example EIS (the stroke care
example). It provides practical examples. The tool support facilitates
use of the process, as well as communication between developers and
users. Thus, the two process models both provide aspects of effective
communication, but EAPM is arguably more accessible to non–expert
users.

Facilitate management of the process :
Management of the process can be achieved by facilitating “effective
planning, control, and operational management of software processes”
(Humphrey & Kellner, 1989, p. 3); this can be accomplished initially
through understanding of the process. One concern is that the process
models considered here are fully understandable by their originators.
PALM, in its first step, provides an introduction to the process model,
its elements, and business goals, using natural language. This intro-
duction creates understanding of the PALM process model and con-
sequently facilitates management of the process. On the other hand,
EAPM uses a tool as well as text description, to introduce the pro-
cess and its elements, as well as providing the facility to add detailed
information to the process to facilitate planing and control of the pro-

172 CHAPTER 8. EVALUATION

cesses. In practice, if process model experts are available, it is better to
have a session to explain the steps and related details; however if the
process model experts are not available, then the description and tools
should provide the required information. Hence, EAPM and PALM
address this criterion using different approaches but they are both flex-
ible enough to allow process users to plan and control the flow of the
process model.

Support evolution of the process :
A process model supports the evolution of a process by satisfying the
two following objectives: “(1) serving as a storehouse for modifica-
tions, lessons learned, and tailoring; and (2) analysing the effectiveness
of changes in a laboratory or simulated environment before actually
implementing them” (Humphrey & Kellner, 1989, p. 3). PALM and
EAPM are potentially able to evolve, to address EIS architecture issues
that were not foreseen. Both process models are abstract, reusable, and
flexible enough for customisation. However, there is no empirical ev-
idence of evolution at this stage. EAPM is a new process model and
there is limited public information on PALM. Hence this criterion is
recorded as being addressed partly in both cases.

Clarity, rationality, accuracy, and consistency of definition :
“The methodology should be well-documented (comprehensive, clear,
rational, accurate, detailed and consistent description should be pro-
vided)” (Ramsin, 2006, p. 201). Ramsin (2006, p. 201) passes two ques-
tions: “what should be captured?” and “How?”. EAPM addresses this
criterion by providing a text introduction, and an example of imple-
mentation. The introduction presents the life cycle and steps of EAPM.
In addition a tool is developed according to the specification of EAPM
to help the users to understand and apply the process model. However,
PALM is designed for brainstorming sessions with the domain experts,
therefore the introduction text is very brief and it is not clear whether
addresses this criterion fully.

Seamlessness and smoothness of transition between phases stages
and activities :

An interpretation of the seamless and smoothness of process models
is as follows:

Seamlessness : “To have the seamlessness criterion, there is no costly
and error-prone transition between phases, stages, or activities. Gaps
between stages which are impedence mismatches could be caused by

8.2. EVALUATION OF EAPM 173

changes in notations, mindset, and personnel” (Meyer, 2000, p.931). In
addition, seamlessness entails direct mapping between the description
of the problem and the solution (Meyer, 2000).

Smoothness : The smoothness criterion requires that, to pass from one
stage, phase, or activity of the process to the next, without the need
to create a new artefact (Ramsin, 2006).

These criteria is satisfied for the EAPM. The interactions between the
steps are defined explicitly by defining the input and output artefacts
of each task and relating these artefacts for the sequential tasks. As for
PALM, the seven steps are high-level and mainly introductory. PALM
introduces a sequence of the tasks that use the earlier results. Hence,
we found no evidence for lack of these criteria for PALM too, but more
detailed knowledge is required to support this claim.

Basis in the requirements :
Ramsin (2006)’s research covers a complete process of software devel-
opment that starts with requirement elicitation phase and continues to
implementation and testing. Ramsin (2006) includes the criterion that
a process must base development on the requirements of the project
to which it is applied. The requirement in this case refers to the re-
quirements for developing EAPM and PALM. The shared and explicit
requirement for both processes is to use the goal knowledge to design
the architecture. There are also implicit requirements for modelling a
process. For example, we use the SPEM standard for defining the re-
quired elements of a process. As most of the requirements are implicit,
this criterion is considered partly addressed.

Encouragement of active user involvement :
Ramsin (2006) described user engagement as a vital criterion for ac-
tivities such as risk management and quality assurance. PALM relies
strongly on the involvement of domain experts. This process model
is developed based on an assumption that it would be running as a
brain storming guidance, hence the encouragement and involvement
of users are inevitable (Clements & Bass, 2010b). User engagement
continues until the last stage that is collecting feedback from partici-
pants. EAPM also encourages active user involvement by involving the
domain experts and IT experts with domain knowledge in the early
phases. In the later steps in EAPM, the architect plays the primary
role however, if the domain expert role still plays a part. Thus both
of these process models address active user involvement criteria, with
different approaches.

174 CHAPTER 8. EVALUATION

Manageability of complexity :
“The complexity of work-units should be manageable” (Ramsin, 2006,
p. 206). There are techniques to limit the complexity of a process
however, any technique in designing architecture is very subjective and
depends on the project. A process model handles the complexity by
explicitly introducing the tasks and other required elements such as
roles. Each task of a process could be complex for the users. For
example, in PALM, the task of creating a prioritised list of business
goals and associated quality attributes could be complex for the users,
because there is not enough guidance on how to create this list. In
cases it is possible to define a quality attribute directly from a goal.
In this case, there is low complexity in the transition from a goal to
a quality attribute. If PALM replies on the expertise of architects
to define quality attributes directly from goals, then it addresses this
criterion. However, EAPM uses scenarios and a explicit data card
(Figure 6.15) to document the goals and trace them to the quality
attributes. Even though this phase requires the architect expertise to
choose the suitable quality attribute that addresses the scenario and
goal, EAPM introduces a clear path, which is scenario, between goal
and quality attribute to handle part of the complexity of the transition
from goals to quality attributes.

Extensibility, Configurability, Flexibility, Scalability :
To apply these criteria to a process model, a minimum characteristics
is required (Ramsin, 2006):

• Process model should support projects with different sizes,

• Process model should support projects with different level of crit-
icality,

• Iterative approach usually helps to achieve the above criteria,

• Process model should be flexible enough to be tuned based on the
experience gained during the project by developer team.

There is no evidence in EAPM and PALM of anything that would
restrict the size, level of criticality, number of iteration, and flexibility
of the project. Thus, these process models can be said to address this
criteria.

Application scope :
“The application scope depends on the usage context” (Ramsin, 2006,

8.2. EVALUATION OF EAPM 175

p. 206). Ramsin (2006) limits the domain of his application to infor-
mation systems. Limiting the boundaries or defining the domain of
applications, processes, techniques, or phases could help the developers
to clarify the domain of work and manage the external expectations.
PALM is not limited to any specific domain but can be used in design-
ing any software architecture that deals with business goals, by whoever
wants to produce a set of requirements or by architects (Clements &
Bass, 2010b). EAPM is restricted to EIS architectures, because in this
type of system the role of identifying goals has a stronger impact com-
pared to small businesses with clear requirements. However, EAPM
could probably be use for other type of software systems where goals
can be used for identifying quality attributes and drivers. PALM is
used for business-oriented software systems; EAPM is designed for EIS
architecture; hence the both address this criterion.

Practicability and practicality :
The review of these two terms in (Ramsin, 2006) leads to the following
points that could be applied to evaluate the process:

• the process should be applicable to some groups of projects. The
characteristics of these type of projects should be defined,

• it should not be over complex because it will be used less,

• it should avoid the tasks that are distracting from mainstream
activities or encumber them from unnecessary details,

• use techniques that focus the development,

• use project management strategies and avoid lack of adequate
management measure mainly in large projects with restrictions
on time and resources,

• avoid dependency on special tools and techniques.

Both PALM and EAPM apply to software architecture and they follow
the software architecture characteristics. PALM evaluated its process
model in practice by running a two–days workshop and piloting this
process model. The results did not present any exceptional complex-
ity. However, the detailed results of the workshop is not published,
hence we cannot analyse the complexity of the PALM steps. On the
other hand, EAPM is built to address the complexity of developing an
EIS architecture by suggesting goal infrastructure as a starting infor-
mation. EAPM should not add to the complexity of software archi-
tecture but it tries to make the source of quality attributes clear, to

176 CHAPTER 8. EVALUATION

improve traceability. Thus, complexity is partly addressed in EAPM.
Both PALM and EAPM are focused on developing software systems;
neither of them addresses project management strategies; neither of
them is dependent on a specific tool or technique. In short, EAPM
and PALM both address some of Ramsin (2006)’s detailed criteria of
practicality and practicability.

In summary Section 8.2.2 presents the results of comparing EAPM and
PALM. As can be seen in Table 8.2, EAPM could address criteria that are
partially addressed in PALM. EAPM does not fully addresses two criteria:
basis in the requirements and practicability and practicality that are partly
addressed. However, considering the information in the literature, PALM
partly addressed four out of twelve criteria. Based on the results of evalua-
tion, EAPM addresses more criteria with satisfactory compare to PALM.

8.3 Conclusion

Expert review is the main evaluation technique for process models. How-
ever, as access to experts is usually limited and costly, other approaches for
evaluating these solutions and the results of applying them could enhance
the general evaluation process. Thus the evaluation of the method developed
in this thesis is organised based on appealing to process models standards,
internal validity, external validity, and comparing with other similar process
models.

The main lesson learnt from this evaluation process is that the results of
process model evaluation are generally qualitative and not quantitative. Re-
cently, some software engineering large-scale process models (e.g. OpenUp)
are structured according to this standard. A platform independent tool also
has been developed for KAOS-β and EAPM that help not just evaluate the
process model but also to distribute it via net. Using this tool the designers
share the knowledge about EAPM with the users. The results of analysing
the compatibility of EAPM with SPEM illustrate some missing or implicit
elements that have been captured and addressed in the revision of EAPM.
The results of comparing EAPM with other process model with the same ob-
jective and approach shows that PALM addresses fewer criteria than EAPM.

In addition to illustrating the results of evaluating KAOS-β and EAPM,
this chapter demonstrates several qualitative approaches to assessing and
evaluating process models in general that could provide guidance for future
work in developing process models.

Chapter 9

Thesis Conclusion

This thesis focuses on the challenges of the early stages of developing EIS.
The EIS development examples and domain analysis illustrates a common
gap between goals of an enterprise and developed functionalities of an EIS.
This also illustrates lack of shared understanding between EIS developer and
enterprise stakeholders and decision makers.

These top-level limitations are the inception for this thesis research ques-
tions:

1. What is an EIS and its characteristics?

2. Why might an EIS fail to deliver its functionalities and fail to address
stakeholders and enterprise goals?

3. What knowledge is required to understand the required functionalities
for developing an EIS?

These research questions are the motivation for further literature and
technology analysis. Further literature analysis of technical solutions leads
to narrowing down the gaps to the following ones that could fit in the domain
of this thesis:

• Lack of explicit process models to identify and structure EIS goals

• Lack of explicit process models to trace and relate the influence of EIS
goals on EIS architecture

To address these gaps in this thesis, the following testable hypothesis is
defined:

Process models can be developed to provide a precise, repeatable, and
documented set of structures for identifying and specifying EIS goals, and
for relating EIS goals with a strategic-level architecture.

177

178 CHAPTER 9. THESIS CONCLUSION

This hypothesis shapes the top-level goal of this thesis which is:
Process models can be developed to provide a precise, repeatable, and doc-

umented set of structures for identifying and specifying EIS goals, and for
relating EIS goals with a strategic-level enterprise architecture.

The central contribution of this thesis derived from the thesis hypothesis
and is aligned with the process presented in Figure 1.2; the key contribution
is as follows:

A novel method that develops goals for Enterprise Information Systems
and traces them through to a strategic EIS architecture. This method includes
two novel processes, KAOS-β and EAPM.

The two process models that are developed in this thesis address all three
criteria mentioned in the hypothesis. KAOS-β and EAPM are precise, be-
cause as presented in Chapter 8, they follow the SPEM standard and address
the well-formdness rules by developing two web-based tools using EPF.

Where processes are defined for a special case and project, process models
are defined to adapt based on the specification of each project and environ-
ment. Thus, being repeatable is a characteristic of process models and the
main distinction with processes. Therefore, KAOS-β and EAPM, which are
process models, are repeatable. To demonstrate repeatability, they have been
applied to two independent case studies, from two distinct environments.
The results illustrates that considering each project’s assumptions, the main
backbone of the two process models could be used in both case studies.

This thesis process models are documented using natural language and
tool. Different techniques of documentations could help different groups of
users to understand and benefit from these process models.

In addition to the main contribution of this thesis, which is developing a
method to address this thesis hypothesis; this thesis accomplished following
contributions:

EIS definition: Chapter 2 presents the domain analysis of EIS that leads
to defining EIS and its characteristics. In Chapter 2, examples of what
could be an EIS and what could not be an EIS are discussed.

Modelling Processes: Chapters 3, 4, and 5 of this thesis present the steps
and approaches used to develop this thesis method. These modelling
approaches can be reused by other practitioners to develop other in-
stances of method, processes, or process models. Best practice in this
domain improves the quality of modelling processes.

Process model evaluation: To evaluate KAOS-β and EAPM, Chapter 8
of the thesis identify evaluation technologies that are not heavily depen-
dent on the domain experts. These technologies are applied and tested

9.1. RESEARCH QUESTIONS REVISITED 179

for two process models, and no limitations have been identified to limit
the range of process models that could benefit from these evaluation
techniques.

The next section summarises how theses contributions address the re-
search questions posed for this thesis.

9.1 Research Questions Revisited

The thesis is inspired by the challenges and gaps presented in Chapter 2; and
accomplished a number of contributions. The following is a summary of the
thesis chapters and how the analysis and contributions address the research
questions.

9.1.1 What is an EIS and its characteristics?

The main contribution of Chapter 2 of the thesis is to introduce EIS and its
characteristics. To answer this question, the analysis of an enterprise and its
characteristics is presented. A number of EIS characteristics are summarised
in Chapter 2 are as follows:

• Support for business processes

• Support for organisational goals

• Involves and orchestrates multi business processes

• Includes multi partners (Optional)

• Evolutionary development

• High dynamic architecture

• Geographic distribution (Optional)

• Contains sensitive and real–time data and processes

• Flexible: handle changes in business processes and environments

• Open system: interact with other systems (e.g. human, hardware,
software systems)

180 CHAPTER 9. THESIS CONCLUSION

Because there is no standard definition for EIS, the domain and example
analysis leads to explicitly defining EIS.

An Enterprise Information System is a software system that inte-
grates the business processes of organisation(s) to improve their
functioning.

Examples of what can and can not be an EIS are presented to support
the definition. The examples demonstrate the subjective point of view and
the gray boundaries of an EIS; in cases, depending on the justification a
firm could require an EIS or not. Identifying business processes and the
relationships between them helps to determine demand for an EIS. The size
of a firm is not a factor for demanding an EIS; the complexity and the
relationships between the business processes is a factor.

9.1.2 Why an EIS fails to deliver its functionalities and
addresses stakeholders and enterprise’s goals?

To address the question of why EIS might fail to deliver its functionalities,
Chapter 2 presents an analysis of existing techniques that could be used to
identify and structure the EIS stakeholders and enterprise goals. Making the
goals explicit improves ability to share knowledge between the EIS developers
and the stakeholders. Shared understanding limits unrealistic expectations
of EIS functionalities, and leads to development of an EIS that addresses an
enterprise’s goals.

A number of GOA in the domain of computer science has been reviewed
and as the result the first focused gap is identified: Lack of explicit process
model to identify and structure EIS goals.

This gap motivates the development of a novel process model using the
lessons learnt from empirical study of the four GOA.

KAOS-β, the novel process model, is a contribution of this thesis. This
process model guides the users to identify and refine the goal structure. This
thesis also presents how to systematically develop and evaluate a process
model. This learning outcome adds to the knowledge of the process modelling
community.

KAOS-β elements, philosophy, and tool are presented in Chapters 3, 4,
and 5. Chapter 8 also presents the evaluation techniques and results for
KAOS-β.

9.2. LESSONS LEARNT 181

9.1.3 What knowledge is required to identify the re-
quired functionalities for developing an EIS?

From the review of enterprise and software architecture, we propose that
the knowledge required to identify required EIS components and function-
alities are quality attributes, architectural drivers, and architectural strate-
gies. This thesis’s literature analysis of enterprise architecture solutions and
the influence of goals on identifying architectural quality attributes leads to
identifying this thesis second gap: Lack of explicit process model to trace and
relate the influence of EIS goals on EIS architecture.

To address this gap and the third research questions, a process model,
EAPM, is developed to guide the systematic identification of quality at-
tributes. EAPM uses the goals derived using KAOS-β, and other resources
of the enterprise documents. The end point of EAPM is architectural pro-
posal, forming the starting point of EIS development.

9.2 Lessons Learnt

Apart from major contributions outlined above, this research has identified a
range of useful insight into EIS, process modelling, and evaluation of process
models.

The first lesson is to clarify the definitions, concepts, and characteristics
used in a domain. Unclear domain and terminologies leads to creating differ-
ent understanding of an under question limitation. The domain of software
engineering is immense and includes different types of information systems.
Each type of information system presents different challenges and develop-
ment demands. Narrowing down what it means by EIS reveals its specific
challenges and helps to focus a research and organises it in a timescale.

A key challenge in EIS research and development is dealing with change.
During this research, different approaches and paths of research were inves-
tigated. Each solution could lead to identifying more hidden limitations that
change the focus of the research. For example, GOA was identified as a solu-
tion, this led to more challenges due to the dependency of GOA on experts,
lack of clear process models for using a GOA, and a lack of accepted approach
to evaluating process models.

Whilst analysing approaches and solutions, assessment of process mod-
els became a large part of the thesis. Process models provide a solution
for a systematic development, and provide repeatability in the use of ap-
proaches. Process models are essential to quality software development and
team work, but developing and following process models can be costly, and

182 CHAPTER 9. THESIS CONCLUSION

has implicit effects on manageability; their importance sometimes has been
underestimated (Humphrey, 2007).

While there is a history of studying process models, approaches to de-
veloping and analysing process models are limited. Therefore, the analysis
of an approach for developing process models and evaluating the results has
been a learning curve. One aim is to produce approaches that could be used
in the future for developing and analysing other process models.

The next lesson concerns the importance of evaluating results, even if
this cannot be done objectively. In this thesis, approaches such as scenario–
based and criteria–based evaluations are used for identifying and evaluating
a number of EIS goals and process models. These evaluation approaches
could benefit the software engineering community and trigger more research
in this direction. Another important approach for evaluating the process
models and results is the use of domain examples. Suitable EIS examples
and case studies could benefit the results considerably, while non suitable
examples could damage them. Hence it is important to spend time locating
and investigating EIS examples that fit for the purpose of this thesis. This
is a challenging task, that can lead to the use of classified and secure data
and information that might not be publishable.

The scale of the examples also is an important factor in choosing them.
As time and resources are limited, it is important to limit examples in a way
that address the main characteristics of this thesis objective but is doable by
an individual. Part of rehabilitation phase of stroke care and airport crisis
management examples are based on real cases, but have to make realistic
assumptions to fit within time constraints and avoid exposing confidential
material. Having limited access to the real environment of the examples and
their experts makes some of the tasks (e.g identifying and evaluating the
goals) challenging and fragile.

A final lesson concerns individual research. Working individually on the
examples limits the quality of the results. In practice a team of designers
including the domain experts would investigate the domain. Here the devel-
oper, the user, and the analyser are all one person. In addition, the lack of a
tool to document the results makes the documentation process difficult, and
in cases incomplete.

9.3 Future Work

Following is a list of identified future developments for the work presented in
this thesis.

• In the thesis two examples of EIS are presented. To become confident

9.4. CONCLUSION 183

about the results, KAOS-β and EAPM should be applied to more ex-
amples of EIS. To achieve better results, they should be applied by
unbiased developers and reviewed by domain experts. By applying the
results to more examples, and building a database of the best practices,
the process model will mature.

• Several evaluation approaches are presented in the thesis. However,
none of the software architecture evaluation approaches have been anal-
ysed in practice for the thesis. A future work is to analyse the current
evaluation solutions for analysing the results of a goal model.

• EPF is used to develop tools to support the process models. The tools
currently are published as static websites. To improve guidance and
support for KAOS-β and EAPM, dynamic, web based tools are needed.

• EPF based tools also could interact with other tools specially the ones
that could analyse and assess the process model and the results. Inter-
acting with other tools could help to expand the domain of the tool.

9.4 Conclusion

A complex system is different to a complicated system. A computer is a
complicated system, however, a complex system is a system for which the
behaviour cannot be predicted by analysing components’ interactions. Thus,
considering the effect of human decisions, market changes, and business pro-
cess concept, an EIS is a complex system (Wegmann, 2003). The way of
thinking, the approaches to address the challenges, and the contributions are
different for complex systems compare to complicated system.

To address the problem of EIS development, the development team (in-
cluding domain experts) needs to make a paradigm shift from the mechanistic
paradigm used to understand complicated systems to a systematic paradigm
used to understand complex systems. Making explicit the existence of a
systematic paradigm is an important contribution because it provides the-
oretical justification for what are the essential elements (here goals) of an
EIS (Wegmann, 2003).

Paradigm is “a set of values, or principals that we use when we
think” (Kuhn, 1962) as cited in (Wegmann, 2003). This thesis makes the
existence of a systematic paradigm explicit by developing a method includ-
ing process models to capture the values and goals of an EIS and use the
information for an architecture design of an EIS.

184 CHAPTER 9. THESIS CONCLUSION

The Implementation phase of EIS development, while important, is not
the critical part of EIS development: the early phases – specifically those
that are the focus of the thesis – are where essential complexity arise.

Appendix A

Results of Piloting ACM

Chapter 7 presents an example of EIS, Airport Crisis Management (ACM).
ACM is used to pilot both KAOS-β and EAPM process models. The aim is
to analyse these process models using a novel example of EIS. In addition, to
demonstrate the relationships between these two process models and how the
results of KAOS-β could be traced to the design phase. Figure 1.3 presents
the roadmap that is followed in Chapter 7.

However, a sample result including the tables is presented in Chapter 7
and the further results are presented in this appendix. This helps Chapter 7
to be more focused on demonstrating how the steps are applied and what are
a sample of expected results. This appendix is categorised in three sections.
First, Section A.1 presents the further results of the fourth step of KAOS-β,
which is documenting the goals. Section A.2 presents the further results of
KAOS-β step six, which is documenting the links between the goals. Sec-
tion A.3 presents the further results of final documentation of EAPM. The
empty field of the tables could be filled by further analysis of the domain’s
data and brainstorming with a group of IT and domain specialists.

A.1 Step 4: Document goals

According to KAOS-β, after identifying modules and early goals, the next
step is to document the goals. For documenting the goals, a template is sug-
gested. This template is presented in Table A.1. Context in these tables are
empty because no keyword found that require further explanation. However,
to keep the look of the template constant the empty fields are not removed.

185

186 APPENDIX A. RESULTS OF PILOTING ACM

ID ACMG4
Name Effective Dissemination between Departments
Def Effective dissemination to evaluate the situation, analyse the

reports, and provide the solutions.
Scenario Heads of rescue workers teams carry and disseminate using

a PDA that is automatically configured in line with the type
of incident and the role they have to play. They communi-
cate all relevant information in real-time with a distributed
blackboard application with other departments.

Context
Priority High
Source ACM description and sample scenarios1

Issue/Notes measure of success is related to the real-time communication

Table A.1: Structured documentation for ACM’s goal with ID:ACMG4

ID ACMG5
Name Identify and Register Victims
Def Identify and register victims as soon as possible with no er-

rors.
Scenario The list of passengers and crew names passed to the crisis

management system for further investigation of the victims’
situation.

Context
Priority Medium
Source ACM description and sample scenarios1

Issue/Notes measure of success: reliable and fast investigation of victims’
situation

Table A.2: Structured documentation for ACM’s goal with ID:ACMG5

A.1. STEP 4: DOCUMENT GOALS 187

ID ACMG6
Name Exchange Situational Information
Def Exchange Situational Information between departments and

rescue units
Scenario The crisis management system provide integrated advance

GIS system which allows visualising (at different levels of
detail and with the appropriate properties) for different de-
partments.

Context
Priority High
Source ACM description and sample scenarios1

Issue/Notes measure of success is the accuracy and speed of information,
plus user friendly system and method of exchanging infor-
mation.

Table A.3: Structured documentation for ACM’s goal with ID:ACMG6

ID ACMG7
Name Communication Interface between Departments
Def Different methods to help departments communicate with

each other.
Scenario The operation centre monitors the evacuation of the victims

via a GIS system and interacts with hospital, police and res-
cue workers for a smooth evacuation of victims.

Context
Priority High
Source ACM description and sample scenarios1

Issue/Notes

Table A.4: Structured documentation for ACM’s goal with ID:ACMG7

188 APPENDIX A. RESULTS OF PILOTING ACM

ID ACMG8
Name Central recording of victims
Def Central recording of disaster victims and their appearance at

a treatment facility.
Scenario The list of registered plane crew and passengers would be

compared against victims and will be passed to the treatment
facilities.

Context
Priority Medium
Source ACM description and sample scenarios1

Issue/Notes measure of success: correct list and tracing the victims to
the correct treatment facility within specific period of time.

Table A.5: Structured documentation for ACM’s goal with ID:ACMG8

ID ACMG9
Name Pass Situational Information to relatives of victims
Def Central organisation to pass real-time information to rela-

tives.
Scenario Meanwhile rescue process, correct information is passed to

the help desk so that information could be provided to the
relatives and other parties such as press etc.

Context
Priority Medium
Source ACM description and sample scenarios1

Issue/Notes Measure of success is related to the speed and accuracy of
the information. This goal is the link to the Social Module.

Table A.6: Structured documentation for ACM’s goal with ID:ACMG9

A.2. STEP 6: DOCUMENT LINKS 189

A.2 Step 6: Document links

According to KAOS-β after identifying modules, goals, and documenting the
goals, the next step is to refine and document the links between the goals.
To document the links, Table A.7 is suggested as a template.

ID ACML1-4
Name Link from ACMG1 to ACMG4
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer assumption based on document1

Table A.7: Documentation for the link between ACMG1 and ACMG4

ID ACML1-5
Name Link from ACMG1 to ACMG5
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer assumption based on document1

Table A.8: Documentation for the link between ACMG1 and ACMG5

ID ACML2-6
Name Link from ACMG2 to ACMG6
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer assumption based on document1

Table A.9: Documentation for the link between ACMG2 and ACMG6

ID ACML2-7
Name Link from ACMG2 to ACMG7
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer assumption based on document1

Table A.10: Documentation for the link between ACMG2 and ACMG7

190 APPENDIX A. RESULTS OF PILOTING ACM

ID ACML5-8
Name Link from ACMG5 to ACMG8
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer assumption based on document1

Table A.11: Documentation for the link between ACMG5 and ACMG8

ID ACML5-9
Name Link from ACMG5 to ACMG9
SysRef Sys-to-be
Status Goal under further refinement
Tactic Designer assumption based on document1

Table A.12: Documentation for the link between ACMG5 and ACMG9

A.3. EAPM TABLES 191

A.3 EAPM Tables

According to EAPM, while applying all the steps, to document the results a
template, presented as table A.13, is used. The empty fields in these tables
could be filled by further analysis of the domain’s data and brainstorming
with IT and domain specialists.

Attribute (s) Safe DB
Scenario (s) The information is saved and retrieved to and from database

under safety regulations
Goal (s) ACMG8, ACMG4
Environment Database (s) operates under defined safety standards
Stimulus Insert or retrieved information to and from database (s)
Response Check the inserted data and retrieved requests against secu-

rity criteria
Measure No unreliable source can insert or retrieve information from

database (s)
Strategy Database masking and wallet encryption1

Reasoning Wallet encryption prevents from theft and masking prevents
from everyday misuse of data

Architectural
diagram

Table A.13: Architectural information for Safe Database quality attribute.

192 APPENDIX A. RESULTS OF PILOTING ACM

Attribute (s) Different Communication Devices
Scenario (s) The rescue workers are providing first aid to the victims and

are recording all data on their PDA’s. The first victim is
ready to be transported to the hospital. The operation cen-
tre communicates the correct location of the hospital to the
rescue workers.

Goal (s) ACMG11, ACMG12
Environment The system accepts information and transactions from and

to different devices and send information to different devices.
Stimulus Communication with external devices
Response System communicates with different defined devices
Measure No failure response from different devices
Strategy Different hardware and software interfaces
Reasoning As much as technology allows
Architectural
diagram

Table A.14: Architectural information for Different Communication Devices
quality attribute.

Attribute (s) Supporting Different Interface
Scenario (s) The system offers the integration of advanced GIS systems

which allows visualising (at different levels of detail and with
the appropriate properties) the position of any number of
victims and resources.

Goal (s) ACMG11, ACMG12, ACMG18, ACMG19, ACMG20
Environment The system accepts information and transactions from and

to different devices and send information to different devices.
Stimulus Communication with external devices
Response System communicates with different interfaces (Human and

Machine)
Measure No failure response from different interfaces
Strategy Web-base interfaces
Reasoning Helps to design different, fast, and cost effective interfaces

for some of the hardware
Architectural
diagram

Table A.15: Architectural information for Supporting Different Interface qual-
ity attribute.

A.3. EAPM TABLES 193

Attribute (s) Availability
Scenario (s) The fire department fail to receive the live video of the fire

incident, hence a technical witness sends the information via
phone.

Goal (s) ACMG17
Environment The system accepts information and transactions from alter-

native sources.
Stimulus Communication with alternative sources and devices.
Response System communicates with different sources.
Measure No failure response in functionality of the system
Strategy Run the system and database across a cluster of servers.

Provide alternative human and non-human sources.
Reasoning Provides 24/7 availability, on-demand scalability 2

Architectural
diagram

Table A.16: Architectural information for Availability quality attribute.

Attribute (s) Modifiability
Scenario (s) The system is designed in such that supports the future

changes; for example, in the future the system should be
connected directly to the government security department.

Goal (s) ACMG17, ACMG8
Environment The system integrate with new systems or sub-systems.
Stimulus New components for communicating with the security de-

partment.
Response Developers add the new components.
Measure The system communicates with the security department via

the new components.
Strategy Localise changes (anticipate expected changes, generalize

module, and limit possible options)
Reasoning Provide suitable access to the right level of EIS data and

functionalities.
Architectural
diagram

Table A.17: Architectural information for Modifiability quality attribute.

194 APPENDIX A. RESULTS OF PILOTING ACM

Attribute (s) Performance
Scenario (s) An aircraft is crashed in a rural area. The system should

collect information about the number of victims in less than
an hour.

Goal (s) ACMG5
Environment The system starts working with the information about the

accident and victims.
Stimulus Receiving information about an accident.
Response System collect, store, analyse, and distribute the latest in-

formation about the accident.
Measure The system collect data about the victims in less than an

hour.
Strategy Oracle real application clusters and make performance

model.
Reasoning Runs faster than the fastest mainframe (Oracle, 2011b).
Architectural
diagram

Table A.18: Architectural information for Performance quality attribute.

A.3. EAPM TABLES 195

Attribute (s) Cost-Benefit and time to market
Scenario (s) The system should be able to expand in short time and within

allocated budget.
Goal (s) goals from business module
Environment Normal environment
Stimulus Request for expanding the system.
Response The system is expanded within budget by adding new

servers.
Measure The system adds new servers to support the expansion of the

system.
Strategy Oracle real application clusters
Reasoning Expand capacity by simply adding servers to your clus-

ter (Oracle, 2011b).
Architectural
diagram

Table A.19: Architectural information for Cost-Benefit and time to market
quality attribute.

196 APPENDIX A. RESULTS OF PILOTING ACM

Glossary

A

Agents An agent is an active system component playing a specific role in
goal satisfaction(van Lamsweerde, 2009, p. 260).

Architectural Strategy An overall plan rather than detailed tactic to ac-
complish an architecture.

Architectural Style Expresses a fundamental structural organization scheme
for software systems. It provides a set of predefined element types,
specific their responsibilities, and includes rules and guidelines for
organizing the relationship between them (Rozanski & Woods,
2005).

B

Business Processes A set of partially ordered steps intended to reach a
goal (Curtis et al., 1992, p. 76).

E

EIS Architecture Process Model (EAPM) A process model to model a
transition from the goal structure to starting point of EIS archi-
tecture design.

Enterprise Information Systems (EIS) An EIS is a software system that
integrates the business processes of organisation(s) to improve
their functioning (Tabatabaie et al., 2008).

G

Goal Goals are high level objectives of the business, organization, or
system. They express the rationale for proposed systems and

197

198 GLOSSARY

guide decisions at various levels within the enterprise (Antón,
1996, p.137).

K

KAOS-β A process model for explicitly eliciting, capturing, and specifying
the goals of an EIS.

P

Process Model Nested set of abstractions intended to reach a goal (Feiler
& Humphrey, 1993).

R

Requirements Engineering (RE) The process of finding out, analysing,
documenting and checking these services and constraints is called
requirement engineering (Sommerville, 2007, p. 118).

S

Scenarios Scenarios are behavioural descriptions of a system and its en-
vironment arising from restricted situations. They exemplify be-
haviours enabling hidden needs to be uncovered and are useful
for evaluating design alternatives and validating designs (Antón,
1996, p. 138).

Service Oriented Architecture (SOA) SOA is one of the most effective
tools to use for incremental integration of legacy application func-
tionality. Once an interface (contract) has been defined for some
part of a legacy application’s services, plugging that interface
into an SOA is relatively straightforward (McGovern et al., 2003,
p. 25).

Software Architecture The software architecture of a program or comput-
ing system is the structure or structures of the system, which
comprise software elements, the externally visible properties of
those elements, and the relationships among them (Bass et al.,
2003).

Bibliography

ACM (2010). Aviation Crisis Management 2010. [Accessed February 2011]
Available at: http://www.internationalairportreview.com/.

Acute Trusts (2011). Authorities and trusts. [Accessed February 2011]
Available at: http://www.nhs.uk/NHSEngland/thenhs/about/Pages/
authoritiesandtrusts.aspx.

Aguilar, E. R., Ruiz, F., Garćıa, F., & Piattini, M. (2006). Applying software
metrics to evaluate business process models. CLEI Electron. J., 9 (1–
15).

Alegŕla, J. A. H. (2011). Analyzing Software Process Models with AVISPA.
In International Conference on Software and Systems Process.

An, Y., Dalrymple, P., Rogers, M., Gerrity, P., Horkoff, J., & Yu, E. (2009).
Collaborative social modeling for designing a patient wellness track-
ing system in a nurse-managed healthcare center. In International
Conference on Design Science Research in Information Systems and
Technology, pp. 1–14. ACM.

Antón, A. I. (1996). Goal-based requirements analysis. In IEEE Interna-
tional Conference on Requirements Engineering, pp. 136–144. IEEE
Computer Society.

Anyanwu, K., Sheth, A., Cardoso, J., Miller, J., & Kochut, K. (2003). Health-
care enterprise process development and integration. Journal of Re-
search and Practice in Information Technology, Special Issue in Health
Knowledge Management, 35 (2), 83–98.

Armour, F., Kaisler, S., & Liu, S. (1999). A big-picture look at enterprise
architectures. IT Professional, 1 (1), 35–42.

Bass, L., Clements, P., & Kazman, R. (2003). Software Architecture in Prac-
tice (2nd edition). Addison-Wesley Professional.

199

200 BIBLIOGRAPHY

Bassry and Associates (2010). Design Decomposition for Business Process
and Data Flow Diagrams. [Accessed December 2010] Available at:
http://www.designdecomposition.com/.

Berg, M. (2001). Implementing information systems in health care organi-
zations: myths and challenges. International Journal of Medical Infor-
matics, 64 (2), 143–156.

Birman, K. P., & Joseph, T. A. (1987). Reliable communication in the
presence of failures. ACM Transactions on Computer Systems, 5 (1),
47–78.

Blum, B. I. (1994). A taxonomy of software development methods. Journal
of Enterprise Architecture, 37 (11), 82–94.

Bowers, S. (2010). Where the NHS’s software scheme
went wrong. [Accessed March 2011] Available at:
http://www.guardian.co.uk/business/2010/mar/21/nhs-national-
program-problems.

Bull (1998). Failure causes statistics. [Accessed February 2011] Available at:
http://www.it-cortex.com/Stat Failure Cause.htm.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards Requirements–
Driven Information Systems Engineering: The Tropos Project. Infor-
mation Systems, 27 (6), 365–389.

Chroust, G., Kuhrmann, M., & Schoitsch, E. (2010). Modeling software de-
velopment processes. In Cruz-Cunha, M. M. (Ed.), Social, Managerial,
and Organisational dimensions of enterprise information systems, pp.
31–57. IGI.

Clements, P., & Bass, L. (2010a). Business goals as architectural knowledge.
In Proceedings of the 2010 ICSE Workshop on Sharing and Reusing
Architectural Knowledge, pp. 9–12. ACM.

Clements, P., & Bass, L. (2010b). Relating business goals to architecturally
significant requirements for software systems. Tech. rep. CMU/SEI-
2010-TN-018, Carnegie Mellon.

Clements, P., Kazman, R., & Klein, M. (2002). Evaluating Software Archi-
tectures: Methods and Case Studies. Addison-Wesley.

BIBLIOGRAPHY 201

Collins, T. (2006). Major incidents hit NHS na-
tional systems. [Accessed March 2011] Available at:
http://www.computerweekly.com/Articles/2006/09/19/218552/Major-
incidents-hit-NHS-national-systems.htm.

Critical Incident Response Group (2007). Critical Information
TechnologyORION. [Accessed September 2011] Available at:
http://www.fbi.gov/about-us/cirg/investigations-and-operations-
support.

Curtis, B., Kellner, M. I., & Over, J. (1992). Process modeling. Commu-
nunications of the ACM, 35 (9), 75–90.

Darimont, R., Delor, E., Massonet, P., & van Lamsweerde, A. (1997).
GRAIL/KAOS: An Environment for Goal-Driven Requirements En-
gineering. In IEEE International Symposium on Requirements Engi-
neering, pp. 612–613. IEEE Computer Society.

Data corruption (2011). Data corruption. [Accessed February 2011] Available
at: http://en.wikipedia.org/wiki/Data corruption.

Delor, E., Darimont, R., & Rifaut, A. (2009). Software Quality Starts with
the Modelling of Goal-Oriented Requirements. [Accessed December
2010] Available at: http://www.objectiver.com.

DH Stroke Policy (2007). National Stroke Strat-
egy. [Accessed March 2010] Available at:
http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/.

Dictionary.com (2011). Philosophy—Dictionary.com. [Accessed August 2011]
Available at: http://dictionary.reference.com/browse/philosophy.

DODAF (2007). DoD Architecture Framework Version 1.5. Tech. rep., De-
partment of Defence.

DODAF (2009). DoD Architecture Framework Version 2.0. Tech. rep., De-
partment of Defence.

Dumas, M., & ter Hofstede, A. H. (2001). UML activity diagrams as a
workflow specification language. In International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and Tools,
Vol. 2185 of LNCS, pp. 76–90. Springer.

202 BIBLIOGRAPHY

ECRI Institute (2011). Top 10 health technology haz-
ards for 2011. [Accessed November 2011] Avail-
able at: https://www.ecri.org/Documents/Secure/
Health Devices Top 10 Hazards 2012.pdf.

Edward, C., Ward, J., & Bytheway, A. (1993). The Essence of Information
Systems (2nd edition). Prentice Hall.

Electric, G. (2011). Product and services. [Accessed February 2011] Available
at: http://www.ge.com/products services/index.html.

EmerGeo (2011). EmerGeo emergency and crisis management software. [Ac-
cessed September 2011] Available at: http://www.emergeo.com/.

EPF Project (2009). Eclipse Process Framework Project (EPF). [Accessed
May 2009] Available at: http://www.eclipse.org/epf/.

EPF Project (2010). Introduction to the Eclipse Process Framework. [Ac-
cessed 30 March 2010] Available at: http://epf.eclipse.org.

Erl, T. (2010). Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall.

ERMS (2011). Erms crisis manager - embedded crisis man-
agement software. [Accessed September 2011] Available at:
http://www.ermscorp.com/crisis-management-software/.

Feiler, P. H., & Humphrey, W. S. (1993). Software process development and
enactment: Concepts and definitions. In Second International Confer-
ence on the Software Process: Continuous Software Process Improve-
ment, pp. 28–40. IEEE Computer Society.

Finkelstein, A. (1993). Report of Inquiry Into The London Ambulance Ser-
vice. Tech. rep. 0905133706, University College London.

Fruin, M. (1994). The Japanese Enterprise System: Competitive Strategies
and Cooperative Structures. Oxford University Press.

Fuggetta, A. (2000). Software process: a roadmap. In ICSE - Future of SE
Track, pp. 25–34.

Garcia, F., Piattini, M., Ruiz, F., Canfora, G., & Visaggio, C. A. (2006).
FMESP: Framework for the modeling and evaluation of software pro-
cesses. Journal of Systems Architecture, 52, 627–639.

BIBLIOGRAPHY 203

Garlan, D., & Shaw, M. (1994). An Introduction To Software Architecture.
In Ambriola, V., & Tortora, G. (Eds.), Advances in Software Engi-
neering and Knowledge Engineering (Series in Software Engineering
& Knowledge Engineering) (8th edition)., pp. 1–40. World Scientific
Publishing Co Pte Ltd.

German Telekom (2011). A quick guide to key tech-
nical terms. [Accessed March 2011] Available at:
http://www.telekominnovationcenter.de/dtag.

Gopalkrishnan, J., & Gupta, V. (2007). ebay: “the worlds largest online
marketplace”- a case study. In Global Competition and Competitiveness
of Indian Corporate, pp. 543–549.

Gorelic, P. B. (2009). Challenges of designing trials for the primary preven-
tion of stroke. American Stroke Association, 40, 82–84.

Gruhn, V. (1991). Validation and verification of software process models.
In European symposium on Software Development Environments and
CASE Technology, pp. 271–286. Springer.

Habli, I., Wu, W., Attwood, K., & Kelly, T. (2007). Extending Argumen-
tation to Goal-Oriented Requirements Engineering . In Advances in
Conceptual Modeling - Foundations and Applications: ER Workshops,
Vol. 4802 of LNCS, pp. 306–316. Springer.

Harrell, E. (2009). In Denmark’s Electronic Health Records Program,
a Lesson for the U.S. [Accessed September 2009] Available at:
http://www.time.com.

Haumer, P. (2011). Eclipse Process Framework Composer, Part
1: Key Concepts. [Accessed February 2011] Available at:
http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf.

Hong, J. (2001). Goal recognition through goal graph analysis. Journal of
Artificial Intelligence Research, 15, 1–30.

Hoogendoorn, M., Jonker, C., Maanen, P., & Treur, J. (2009). Agent-
Based Analysis and Simulation of Meta-Reasoning Processes in Strate-
gic Naval Planning. Knowledge-Based Systems Journal, 22, 589–599.

Humphrey, W. S. (2007). Software process improvement A personal view:
How it started and where it is going: Research Sections. Software
Process: Improvement and Practice, 12 (3), 223–227.

204 BIBLIOGRAPHY

Humphrey, W. S., & Kellner, M. I. (1989). Software process modeling: prin-
ciples of entity process models. In Proceedings of the 11th International
Conference on Software Engineering, pp. 331–342. ACM.

Iannella, R., Robinson, K., & Rinta-Koski, O. (2007). To-
wards A Framework For Crisis Information Management
Systems (CIMS). [Accessed September 2011] Available at:
http://cairns.sourceforge.net/tiems2007.pdf.

IBM (2005). The National Danish e-health Portal. [Accessed May 2009]
Available at: http://www-05.ibm.com/services/dk/gbs/healthcare/.

IBM Software Information Center (2007). TXSeries for Multi-
platforms Version 6.2. [Accessed June 2011] Available at:
http://publib.boulder.ibm.com/infocenter/txformp/v6r2/index.jsp?
topic=/com.ibm.cics.tx.doc/index.htm.

International Airport Review (2009). Aviation Crisis Man-
agement 2009. [Accessed August 2011] Available at:
http://www.internationalairportreview.com/1025/events/aviation-
crisis-management-2009/.

International Airport Review (2011). Airport crisis management
- Articles and news items. [Accessed May 2011] Avail-
able at: http://www.internationalairportreview.com/tag/airport-
crisis-management/.

Jordans, F., & Lekic, S. (2010). Volcanic ash shuts down
European airports. [Accessed February 2011] Available at:
http://www.msnbc.msn.com/id/37041388/ns/travel-news/.

Kaplan, B., & Harris-Salamone, K. D. (2009). Health it success and failure:
Recommendations from literature and an amia workshop. Journal of
the American Medical Informatics Association, 16 (3), 291–299.

Kavakli, E., & Loucopoulos, P. (2005). Goal modeling in requirements en-
gineering: Analysis and critique of current methods. In Krogstie, J.,
Halpin, T. A., & Siau, K. (Eds.), Information modeling methods and
methodologies, pp. 102–124. IGI.

Kavakli, E., Loucopoulos, P., & Filippidou, D. (1996). Using scenarios to
systematically support goal-directed elaboration for information system
requirements. In IEEE Symposium and Workshop on Engineering of
Computer Based Systems, pp. 308–314. IEEE Computer Society.

BIBLIOGRAPHY 205

Keef, M. (2011). Top 10 corporate information technol-
ogy failures. [Accessed February 2011] Available at:
http://www.computerworld.com/computerworld/records/images/pdf/
44NfailChart.pdf.

Kelly, T. (1998a). A six-step Method for Developing Arguments in the Goal
Structuring Notation (GSN). [Accessed November 2011] Available at:
http://www.origin-consulting.com/gsnclub/gsnmethod.pdf.

Kelly, T. (1998b). Arguing Safety – A systematic approach to managing
Safety Cases. Ph.D. thesis, University of York, Department of Com-
puter Science.

Kelly, T. (2001). Concepts and principles of compositional safety case con-
struction. Tech. rep. COMSA/2001/1/1, University of York.

Kelly, T. (2004). A Systematic Approach to Safety Case Management. In
SAE 2004 World Congress. Society for Automotive Engineers.

Kelly, T., & Weaver, R. (2004). The Goal Structuring Notation: A Safety
Argument Notation. In Proceedings of the Dependable Systems and
Networks 2004 Workshop on Assurance Cases. IEEE Computer Soci-
ety.

Kim, J. S., Park, S., & Sugumaran, V. (2006). Contextual problem detection
and management during software execution in complex environments.
Industrial Management and Data Systems, 106, 540–561.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. University of
Chicago Press.

Lankhorst, M. (2005). Enterprise Architecture at Work: Modelling, Commu-
nication and Analysis. Springer.

Laudon, J. P., & Laudon, K. C. (2007). Management Information Systems:
Managing the Digital Firm (10th edition). Prentice Hall.

Lazoff, D., & Stephens, A. (1996). Optimal-availability placement of repli-
cated data in distributed systems. In Proceedings of the 1996 IEEE
Fifteenth Annual International Phoenix Conference on Computers and
Communications. IEEE Computer Society.

Levine, S. R., & Gorman, M. (1999). Telestroke: The Application of
Telemedicine for Stroke. American Stroke Association, 1, 464–469.

206 BIBLIOGRAPHY

Liu, K., Fox, M., Apers, P., Klein, M., Cheng, A., Stamper, R., Chattopad-
hyay, S., & Greene, T. (2000). Enterprise information systems: issues,
challenges and viewpoints. In Filipe, J. (Ed.), Enterprise information
systems, pp. 1–13. Kluwer Academic Publishers.

Ma, X., Vazhkudai, S., & Zhang, Z. (2009). Improving Data Availability
for Better Access Performance: A Study on Caching Scientific Data
on Distributed Desktop Workstations. Journal of Grid Computing, 7,
419–438.

Magister Ludia Aviation and Softsolutions (2011). Aviation Cri-
sis Management 2009. [Accessed August 2011] Available at:
http://www.magisterludi.com/public html/aviation/consultancy/pdf/
APTSpresntn.pdf.

McGovern, J., Ambler, S., Stevens, M., Linn, J., Sharan, V., & Jo, E. (2003).
Practical Guide to Enterprise Architecture. Prentice Hall.

Meyer, B. (2000). Object-Oriented Software Construction (2nd edition).
Prentice Hall.

Minoli, D. (2008). Enterprise Architecture A to Z: Frameworks, Business
Process Modeling, SOA, and Infrastructure Technology. Taylor & Fran-
cis.

Mitra, T. (2008). Part 6: Why business process management (BPM)
is important to an enterprise. [Accessed February 2011] Avail-
able at: http://www.ibm.com/developerworks/webservices/library/ar-
arprac6/index.html.

Mitsubishi Committee (2011). About mitsubishi. [Accessed February 2011]
Available at: http://www.mitsubishi.com/e/group/about.html.

Mitsubishi Logistics (2011). Information System Services. [Ac-
cessed May 2011] Available at: http://www.mitsubishi-
logistics.co.jp/english/service/pd/system/index.html.

MODAF (2010). Documentation supporting the MOD Architecture
Framework (MODAF). [Accessed September 2010] Available at:
http://www.mod.uk/DefenceInternet/AboutDefence/WhatWeDo/ In-
formationManagement/MODAF/ModafDetailedGuidance.htm.

MODELPLEX Consortium (2007). Deliverable D1.1a: Case Study
Scenario Definitions. [Accessed May 2011] Available at:
http://www.modelplex.org/.

BIBLIOGRAPHY 207

Molinaro, L. F. R., Ramos, K. H. C., da Cotta Orlandi, T. R., & Abdalla, H.
(2010). Enterprise Architecture to IT Governance: An Approach Based
on Component Business Model and Performance Levels. In Communi-
cations in Computer and Information Science, pp. 41–51. Springer.

Morse, A. (2011). The National Programme for IT in the NHS: an update
on the delivery of detailed care records systems. Tech. rep. HC888,
National Audit Office.

Murata, T. (1989). Petri nets: Properties, analysis and applications. Pro-
ceedings of the IEEE, 77 (4), 541–580.

Nagy, Z., Simon, P., Sipos, E., & Kozmann, G. (1995). The main elements of
the information system of the National Stroke Program (Smart Card
- Telecommunication - Knowledge Bases). [Accessed September 2011]
Available at: http://www.ncbi.nlm.nih.gov/pubmed.

NATCA (2011). How We Guide You Home. [Accessed August 2011] Available
at: http://www.natca.org/.

National Institute for Health and Clinical Excellence (2008). Information
about NICE clinical guideline. [Accessed August 2011] Available at:
http://www.nice.org.uk/nicemedia/live/12018/41315/41315.pdf.

Nedstam, J., & Staples, M. (2007). Evolving strategies for software archi-
tecture and reuse. Software Process: Improvement and Practice, 12,
295–309.

Neighbors, J. M. (1980). Software construction us-
ing components. [Accessed May 2011] Available at:
http://www.bayfronttechnologies.com/thesis.htm.

Neubauer, M. J. (2007). A systems analysis of information tech-
nology and the use of WLANs Implemented by an FBO
Field Office for Crisis Response Incidents: The Columbia
Field Office Case Study. [Accessed September 2011] Avail-
able at: http://books.google.co.uk/books?id=1kRp0j3qc6wC
&printsec=frontcover#v=onepage&q&f=false.

NHS (2011). Treating Stroke. [Accessed August 2011] Available at:
http://www.nhs.uk/Conditions/Stroke/Pages/treatment.aspx.

Noland, D. (2011). 10 Plane Crashes That Changed
Aviation. [Accessed February 2011] Available at:
http://www.popularmechanics.com/technology/aviation/crashes/.

208 BIBLIOGRAPHY

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A
roadmap. In International Conference on Software Engineering, pp.
35–46. ACM Press.

Object Management Group (2008). Software & Systems Process Engineer-
ing Meta-Model Specification. [Accessed January 2011] Available at:
http://www.omg.org/spec/SPEM.

Objectiver (2010). Objectiver Tool. [Accessed February 2011] Available at:
http://www.objectiver.com/.

O’Brien, L., Bass, L., & Merson, P. (2005). Quality attributes and service-
oriented architectures. Tech. rep. CMU/SEI-2005-TN-014, Software
Engineering Institute, Carnegie Mellon.

Oracle (2011a). Oracle Loyalty Analytics. [Accessed September 2011]
Available at: http://www.oracle.com/us/solutions/ent-performance-
bi/loyalty-analytics-066542.html.

Oracle (2011b). Oracle Real Application Clus-
ters. [Accessed May 2011] Available at:
http://www.oracle.com/us/products/database/options/real-
application-clusters/index.html.

Páscoa, C., Belo, N., & José (2010). Value model for enterprise and process
architecture alignment verification. In Communications in Computer
and Information Science, pp. 63–72. Springer.

Peralta, V. (2006). Data Freshness and Data Accuracy: A
State of the Art. [Accessed June 2011] Available at:
http://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR0613.pdf.

Pereira, E. B., Bastos, R. M., da C. Móra, M., & Oliveira, T. C. (2011).
IMPROVING THE CONSISTENCY OF SPEM-BASED SOFTWARE
PROCESSES. In 13th International Conference on Enterprise Infor-
mation Systems, pp. 1–10. Science and Technology Publications.

Perrig, A., Szewczyk, R., Wen, V., Culler, D., & Tygar, J. D. (2001). SPINS:
Security Protocols for Sensor Networks. In The Annual International
Conference on Mobile Computing and Networking, pp. 189–199. ACM.

Perry, D. E., & Wolf, A. L. (1992). Foundations for the study of software
architecture. SIGSOFT Software Engineering Notes, 17 (4), 40–52.

BIBLIOGRAPHY 209

Pradhan, A., Laefer, D. F., & Rasdorf, W. J. (2007). Infrastructure manage-
ment information system framework requirements for disasters. Com-
puting in Civil Engineering, 21 (2), 90–101.

Public Health Data Standards Consortium (2011). Pri-
vacy and Security Standards. [Accessed June 2011]
Available at: http://www.phdsc.org/standards/health-
information/PS Standards.asp.

RAE-BCS Working Group (2004). The Challenges of Complex IT Projects.
Tech. rep. 1-903496-15-2, The Royal Academy of Engineering.

Ramsin, R. (2006). The Engineering of an Object-Oriented Software Devel-
opment Methodology. Ph.D. thesis, University of York, Department of
Computer Science.

Regev, G., & Wegmann, A. (2005). Where do goals come from: the un-
derlying principles of goal-oriented requirements engineering. In Inter-
national Conference on Requirements Engineering, pp. 253–362. IEEE
Computer Society.

Rinkineva, K. (2004). The role of information technology in cri-
sis management. [Accessed September 2011] Available at:
http://www.einiras.org/conf/conferences/documents/ Informa-
tion Technology in Crisis ManagementEINIRAS.pdf.

Romano, M. J., & Stafford, R. S. (2011). Electronic health records and clin-
ical decision support systems. Archives of Internal Medicine, 171 (10),
897–903.

Royal Academy Engineering (2004). The challenges of complex IT projects.
Tech. rep., The Royal Academy of Engineering.

Rozanski, N., & Woods, E. (2005). Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley.

Schwamm, L., Audebert, H. J., Amarenco, P., Chumbler, N. R., Frankel,
M. R., George, M. G., Gorelick, P. B., Horton, K. B., Kaste, M., Lack-
land, D. T., Levine, S. R., Meyer, B. C., Meyers, P. M., Patterson,
V., Stranne, S. K., & White, C. J. (2009). Recommendations for the
Implementation of Telemedicine Within Stroke Systems of Care, A Pol-
icy Statement From the American Heart Association. American Stroke
Association, 1, 1–26.

210 BIBLIOGRAPHY

Schwamm, L., Pancioli, A., Acker, J., Goldstein, L., Zorowitz, R., Shephard,
T., Moyer, P., Gorman, M., Johnston, C., Duncan, P., Gorelick, P.,
Frank, J., Stranne, S., Smith, R., Federspiel, W., Horton, K., Magnis,
E., & Adams, R. (2005). Recommendations for the establishment of
stroke systems of care. American Stroke Association, 36, 690–703.

Shanmuganathan, S. (2010). A Stroke Information System (SIS): Critical Is-
sues and Solutions. In Pease, W., Cooper, M., & Gururajan, R. (Eds.),
Biomedical Knowledge Management: Infrastructures and Processes for
E-Health Systems, pp. 177–191. IGI.

Soffer, P., & Wand, Y. (2004). Goal–driven analysis of process model validity.
In Proceedings of Advanced Information Systems Engineering, pp. 521–
535. Springer-Verlag.

Sommerville, I. (2007). Software Engineering (8th edition). Addison Wesley.

Song, X. (1995). A framework for understanding the integration of design
methodologies. ACM SIGSOFT Software Engineering Notes, 20 (1),
46–54.

Soumerai, S., & Avery, T. (2010). Don’t Repeat the UK’s Elec-
tronic Health Records Failure. [Accessed September 2011] Available
at: http://www.huffingtonpost.com/stephen-soumerai/dont-repeat-
the-uks-elect b 790470.html.

SPEM (2009). Software Process Engineering Meta-
Model (SPEM). [Accessed May 2009] Available at:
www.omg.org/technology/documents/formal/spem.htm.

Stair, R. M., & Reynolds, G. (2006). Principles of Information Systems (7th
edition). Thomson.

Stevens, J., Heckendorn, R. B., & Soule, T. (2005). Exploiting disruption
aversion to control code bloat. In Generic and Evolutionary Computa-
tion Conference, pp. 1605–16012. ACM.

Stevens, P., & Pooley, R. (1999). Using UML : Software Engineering With
Objects and Components. Addison Wesley.

strokeprevention.org (2011). Stroke Prevention. [Accessed August 2011]
Available at: http://www.strokeprevention.org/.

BIBLIOGRAPHY 211

Tabatabaie, M. (2009). Applying GSN to Stroke Care. [Accessed May 2011]
Available at: www-users.cs.york.ac.uk/ malihetb/Publication/GRR-
Main.pdf.

Tabatabaie, M. (2010). Implementing a tool to Support KAOS-β
Process Model Using EPF. [Accessed August 2011] Available
at: http://www-users.cs.york.ac.uk/ malihetb/Publication/Eclipse-
process-Framework-Step-by-step-example.pdf.

Tabatabaie, M. (2011). EIS Technologies and Terminologies. [Accessed
August 2011] Available at: http://www-users.cs.york.ac.uk/ mali-
hetb/Publication/EISTechReview.pdf.

Tabatabaie, M., Paige, R., & Kimble, C. (2010). Exploring enterprise in-
formation systems. In Cruz-Cunha, M. M. (Ed.), Social, Managerial,
and Organisational dimensions of enterprise information systems, pp.
415–432. IGI.

Tabatabaie, M., Paige, R. F., & Kimble, C. (2008). Exploring the boundaries
of enterprise information systems. In Second York Doctoral Symposium
on Computing, Vol. YCS-2008-434, pp. 27–34. Department of Com-
puter Science, University of York.

Tabatabaie, M., Polack, F. A., & Paige, R. (2010a). Evaluating goal-oriented
analysis in the domain of enterprise information systems. In Conference
on Enterprise Information Systems (CENTERIS), pp. 62–71. Springer.

Tabatabaie, M., Polack, F. A., & Paige, R. (2010b). KAOS-β: A Goal-
Oriented Process Model for EIS. In 8th international workshop on
modelling, simulation, verification and validation of enterprise infor-
mation systems, pp. 40–49. Science and Technology Publications.

The Danish Evaluation Institute (2004). Criteria based evaluations, EVA’s
experience in evaluations based on criteria . [Accessed June 2011] Avail-
able at: http://english.eva.dk/.

TheFreeDictionary (2011). Analytical . [Accessed June 2011] Available at:
http://www.thefreedictionary.com/analytical.

TOGAF (2009). Welcome to TOGAF Version 9 – The Open Group Archi-
tecture Framework. Tech. rep. 978-90-8753-230-7, The Open Group.

Toulmin, S. (1958). The Uses of Argument. Cambridge University Press.

212 BIBLIOGRAPHY

van der Aalst, W. (2003). Don’t go with the flow: Web services composition
standards exposed. IEEE Intelligent Systems, 18, 72–76.

van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A
guided tour. In IEEE International Conference on Requirements Engi-
neering, pp. 249–262. IEEE Computer Society.

van Lamsweerde, A. (2003). From system goals to software architecture.
Formal Methods for Software Architectures, 2804, 25–43.

van Lamsweerde, A. (2004). Goal-oriented requirements enginering: A
roundtrip from research to practice. IEEE International Conference
on Requirements Engineering, 4–7.

van Lamsweerde, A. (2009). Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley.

Weber-Jahnke, J., & Onabajo, A. (2009). Mining and analysing security
goal models in health information systems. In Workshop on Software
Engineering in Health Care, pp. 42–52. IEEE Computer Society.

Wegmann, A. (2003). The Systemic Enterprise Architecture Methodology
(SEAM) - Business and IT Alignment for Competitveness. In Interna-
tional Conference on Enterprise Information Systems, pp. 483–490.

Weiss, D. M., Bennett, D., Payseur, J. Y., Tendick, P., & Zhang, P. (2002).
Goal-oriented software assessment. In International Conference on
Software Engineering, pp. 221–231. ACM.

White, S. A. (2006). Introduction to BPMN.
[Accessed February 2011] Available at:
http://www.bpmn.org/Documents/OMG BPMN Tutorial.pdf.

Wikipedia (2011a). Amazon.com — Wikipedia, The Free
Encyclopedia. [Accessed August 2011] Available at:
http://en.wikipedia.org/wiki/Amazon.com.

Wikipedia (2011b). Business Process Execution Language — Wikipedia,
The Free Encyclopedia. [Accessed June 2011] Available at:
http://en.wikipedia.org/wiki/Business Process Execution Language.

Wikipedia (2011c). Business Process Model and Notation — Wikipedia,
The Free Encyclopedia. [Accessed June 2011] Available at:
http://en.wikipedia.org/wiki/Business Process Modeling Notation.

BIBLIOGRAPHY 213

Wikipedia (2011d). Enterprise Information System — Wikipedia,
The Free Encyclopedia. [Accessed May 2011] Available at:
http://en.wikipedia.org/wiki/Enterprise Information System.

Wikipedia (2011e). Flowchart — Wikipedia, The Free
Encyclopedia. [Accessed June 2011] Available at:
http://en.wikipedia.org/wiki/Code bloat.

Wikipedia (2011f). Flowchart — Wikipedia, The Free
Encyclopedia. [Accessed June 2011] Available at:
http://en.wikipedia.org/wiki/Flowchart.

Wikipedia (2011g). Two-factor authentication — Wikipedia,
The Free Encyclopedia. [Accessed June 2011] Available at:
http://en.wikipedia.org/wiki/Two-factor authentication.

Yu, E., & Mylopoulos, J. (1994). Towards modelling strategic actor rela-
tionships for information systems development – with examples from
business process reengineering. In Workshop on Information Technolo-
gies and Systems, pp. 21–28.

Yu, E. S. K., Mylopoulos, J., & Lespérance, Y. (1996). AI Models for Business
Process Reengineering. IEEE Expert: Intelligent Systems and Their
Applications, 11, 16–23.

Zachman, J. A. (1987). A framework for information systems architecture.
IBM System Journal, 26 (3), 276–292.

