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ABSTRACT

The class of single-index varying coefficient (SIVC) models is
an important extension of varying coefficient models and has
proved to be remarkably useful in data analysis. The model
selection in such class is essential but challenging due to the
complicated structure of SIVC models. In this thesis, we take
on this challenge and develop a novel iterative approach for
model selection in SIVC models. Based on the ideas of ker-
nel smoothing, penalised least squares with SCAD penalty
and group selection, the proposed iterative approach can si-
multaneously select and estimate the SIVC models. Asymp-
totic properties of the proposed iterative approach are also
established, which justify the proposed approach theoreti-
cally. Intensive simulation studies conducted in this paper
illustrate the efficiency of the proposed iterative approach.
Finally, we apply the SIVC model and the proposed model
selection method to an environmental set from Hong Kong
and a housing dataset from Boston, both of which lead to some
interesting findings.
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1
INTRODUCTION

Variable selection is an important topic in statistics with
wide applications in diverse disciplines, such as econometrics,
epidemiology and computer science.

The traditional approaches, such as stepwise selection
procedures and best subsets regression, suffer from several
limitations especially when the number of potential variables
is big. Apart from the expensive computational cost, stepwise
regression neglects the stochastic errors in the variable selec-
tion process which leads to a somewhat poor interpretation of
its theoretical properties while the best subsets regression is
an unstable procedure, see Breiman (1996).

The penalised likelihood/least squares approach emerged
as a promising alternative and have been well studied, as it
possesses many advantages over the traditional approaches.
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CHAPTER 1. INTRODUCTION

With an appropriate penalty function, the penalised approach
would automatically select significant variables and estimate
coefficients simultaneously. In the family of Lp penalised
least squares, the ridge regression associated with L2 penalty
are proposed by Frank and Friedman (1993) and base on L1

penalty, the least absolute shrinkage and selection operator
(LASSO) are proposed by Tibshirani (1996, 1997). Boyd and
Vandenberghe (2004) developed the proximal gradient descent
(PGD) algorithm to solve LASSO and other L1 based penalised
methods. Efron et al.(2004) proposed an efficient algorithm,
termed as least angle regression (LARS), which can be used
to generate the full set of LASSO solutions with a minor
modification. Yuan and Lin (2006) studied and proposed effi-
cient algorithms for the extensions of the LASSO for selecting
the grouped variables. Although LASSO enjoys considerable
nice properties, it is inconsistent with variable selection as
the resulting penalised estimator is biased. Zou (2006) pro-
posed the adaptive LASSO to overcome the inconsistency of
the LASSO. The smoothly clipped absolute deviation (SCAD)
penalty proposed by Fan and Li (2001) also enjoys the oracle
properties if the regularization parameter is appropriately
chosen; namely, the resulting penalised estimators perform
as well as the estimators if the true underlying model were
known in advance. Furthermore, Fan and Li (2001) extended
the penalised least squares to likelihood-based models and
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CHAPTER 1. INTRODUCTION

established a unified algorithm to solve both the penalised
least squares and penalised likelihood via local quadratic ap-
proximations. Hunter and Li (2005) proposed an algorithm
termed minorize–maximize (MM) to optimise the penalised
likelihood for a broad class of penalty functions and estab-
lished the convergence and other theoretical properties of MM
algorithm. Based upon local linear approximation, Zou and Li
(2008) developed a one-step sparse estimation procedure for
optimising the penalised likelihood which can alleviate the
computational burden without losing statistical efficiency.

Much literature about the application of the penalised like-
lihood/least squares approach on diverse high-dimensional
models has emerged in the last two decades. See Fan and Lv
(2008), Fan et al.(2009), Bickel et al.(2009), Wang and Xia
(2009), Stefanski et al.(2014), Wang, Peng and Li (2015), Fan
et al.(2015), Li, Ke and Zhang (2015), Fan and Lv (2016),
Zhang et al.(2016), and the references therein.

The existing literature mainly focuses on linear models,
varying-coefficient models, and additive models. The pre-supposed
parametric linear models may ignore the dynamic feature
in the data set and often be too unrealistic to work well in
analysing some complex data. Instead, varying coefficient
models loosen the linear restriction and let the constant co-
efficients evolve with certain characteristics to describe the
varying relationship between the response and covariates.

3



CHAPTER 1. INTRODUCTION

Varying coefficient models are remarkably useful in exploring
the dynamic patterns of the impacts of covariates in data anal-
ysis and has gained popularity in modelling and forecasting
non-linear time series, analysing functional and longitudinal
data during the past decade. The substantial amount of lit-
erature includes Chen and Tsay (1993), Carroll et al.(1998),
Kauermann and Tutz (1999), Hastie and Tibshirani (1993),
Cai, Fan and Yao (2000), Cai, Fan and Li (2000), Zhang and
Lee (2000), Fan and Huang (2005) and Fan and Zhang (2008).
The works about the hypotheses testing of the model include
Fan and Zhang (2000), Fan, Zhang and Zhang (2001) and Li
and Liang (2008).

Although varying-coefficient models are defined in slightly
different forms from diverse statistical contexts, a typical
varying-coefficient model is assumed by most previous work
that

Yi =X>
i f (Zi)+εi, (1.1)

where (Xi,Yi) is the i-th observation (1≤ i ≤ n), Yi ∈R1 is the
response variable, Xi = (X i1, . . . , X id)> ∈Rd is the d-dimensional
vector of covariate, Zi ∈R1 is often called the index which is
collected from the observations, the random noise εi ∈R1 are
independent identically defined with E(εi |Xi, Zi)= 0 and co-
efficient vector f (· ) = ( f1(· ), . . . , fd(· ))> ∈ Rd are the vector of
unknown functions of the index. And specifically, in this def-
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CHAPTER 1. INTRODUCTION

inition of varying-coefficient model, the index Z is assumed
to be a known variable which is chosen from the covariates.
Since the varying coefficient models are locally linear models,
it is reasonable to employ kernel polynomial smoothing to
estimate, see Hoover et al.(1998), Wu et al.(1998), Xia and Li
(1999) and Fan and Zhang (1999).

However, it is often not very clear which variable should
be chosen as the index in practical application when it comes
to the analysis of complicated data. Instead of selecting the
index variable in the light of experience, it would probably be
more sensible to estimate it from the data. Fan, Yao and Cai
(2003) proposed the single-index varying coefficient (SIVC)
model to solve the problem by generalising the index as a
linear combination of covariates. Therefore, the index is set
to be Zi = X>

i β ∈ R1, i = 1, . . . ,n, where the index coefficient
β ∈ Rd is unknown and estimated by data. Then, the SIVC
model assumes that

Yi =X>
i f (X>

i β)+εi. (1.2)

The value of SIVC model has gone beyond the exploration
of dynamic pattern. It is also a notable approach to ameliorate
the "curse of dimensionality" in nonparametric modelling, see
Fan and Zhang (2008). Meanwhile, the SIVC model substan-
tially enlarges the modelling capacity, because it assumes the
index to be unknown and estimated by data.
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CHAPTER 1. INTRODUCTION

Although the SIVC model is equipped with numerous ad-
vantages, due to its sophisticated structure, it would be diffi-
cult to obtain satisfactory estimators without model selection,
especially in the high dimensional situation. In most high
dimensional SIVC models, only a handful covariates signifi-
cantly contribute to the response variable or index variable,
and hence it is necessary to consistently obtain the estimates
admit sparsity. With this in mind, selecting the significant
components of the model and eliminating the irrelevant com-
ponents correctly is essential.

In fact, model selection in the semi-parametric models has
been extensively studied in the literature. For instance, Lin
and Zhang (2003), Fan and Li (2004) and Li and Liang (2008)
extend the penalised estimation methods (e.g., SCAD) to select
the significant sub-model in semi-parametric models. Wang
et al.(2008) and Wang and Xia (2009) use group selection to
select the significant variables in modest dimensional varying
coefficient models. More recently, Song et al.(2012), Cheng et
al.(2014), Fan et al.(2014) and Liu et al.(2014), Li et al.(2015)
apply the group penalised method to select the significant
covariates and estimate the functional coefficients for the
high dimensional varying coefficient models. Therefore, we
are motivated to establish a more specific penalised approach
that can automatically select the significant components and
simultaneously estimate the relevant parameters in SIVC

6



CHAPTER 1. INTRODUCTION

model.
In this thesis, based on the ideas of kernel smoothing, pe-

nalised least squares with SCAD penalty and group selection,
we proposed an iterative approach to select the significant
varying coefficient f (· ) and the relevant direction β in SIVC
model, thereby simplify the model used. We term this selection
procedure as model selection. In the meantime, our proposed
selection approach is able to detect the functional coefficients
with zero derivatives, which can be used for identifying the
constant coefficients. To sum up, the proposed model selection
has threefold aims: variable selection, index specification and
the identification of the constant coefficients. Additionally,
the proposed approach also applies to the computation of the
penalised estimators for SIVC.

The thesis is organized as follows. We begin in Chapter
2 with a literature review on local polynomial modelling, pe-
nalised least squares, generalised information criterion and
varying coefficient models. Chapter 3 describes the SIVC
model and develops an iterative procedure for the estima-
tion of the model. This also aids as a helpful stepping stone
for the demonstration of the methodology in the following
chapters. In Chapter 4, we propose an iterative approach for
model selection and estimation for the unknowns in the SIVC
model. Chapter 5 is devoted to the selection of the bandwidth
(smoothing parameter) and tuning parameters (regularization

7



CHAPTER 1. INTRODUCTION

parameters). Chapter 6 provides the asymptotic properties of
the proposed model selection and lists the necessary technical
conditions. The performance of the proposed model selection
and estimation procedures is assessed by simulation stud-
ies in Chapter 7. In Chapter 8.1, we apply the SIVC model
together with the proposed iterative procedures to analyse
an environmental data set from Hong Kong. This real data
analysis will explore which pollutants and environmental
factors significantly affect the number of daily total hospital
admissions for circulatory and respiratory problems in Hong
Kong and the dynamic pattern of the impacts. In Chapter 8.2,
we analyse another real data example on a Boston housing
data set to explore how the collected factors affect the me-
dian value of owner-occupied homes in Boston. In Chapter
9, we gives the proof of theoretical results. In particular, the
Chapter 9 are mainly from my submitted paper "An Iterative
Approach for Model Selection in Single-index Varying Coeffi-
cient Models" and are the joint work with Prof. Efang Kong
and Prof. Wenyang Zhang.

8



C
H

A
P

T
E

R

2
LITERATURE REVIEW

In this chapter, the literature we shall review is fourfold. The
first part presented in Section 2.1 is about the local poly-
nomial modelling, which is the fundamental technique for
fitting the SIVC model (1.2) in our thesis. Secondly, in order
to avoid overfitting and to select the true model in sparse
SIVC models, we will introduce the penalised least squares
approach with smoothly clipped absolute deviation (SCAD)
penalty (Fan and Li, 2001), the relevant literature is reviewed
in Section 2.2. Thirdly, since determining how to select the
tuning parameters (regularization parameters) involved in
the SCAD penalty is essential to consistently identify the
true model, we refer to Fan and Tang (2013) for the study
on generalised information criterion (GIC). A brief review on
GIC shall be given in Section 2.3. In the end, we will review

9



CHAPTER 2. LITERATURE REVIEW

some existing work on the statistical methods with varying
coefficient models in Section 2.4.

2.1 Framework of local polynomial
modelling

In this section, we will review the framework of local poly-
nomial modelling. Belonging to the family of nonparametric
modelling, local polynomial regression does not assume a cer-
tain functional form of a regression problem. Instead, the
regression functions are left unspecified and determined by
data. This approach can be successfully applied to describe
an unknown function, which could assess whether a para-
metric method is appropriate or not. This technique is such
a useful tool that it can be applied in broad aspects, which
include, among others, non-linear time series, generalised
linear models, quantile regression and generalised partially
linear single-index models.

Before outlining the local polynomial regression, we first
introduce a motivating example concerning a motorcycle data
from Schmidt et al.(1981). Two variables are contained in the
dataset: the time (in milliseconds) after a simulated impact
and the head acceleration, serve as covariate X and response
Y , respectively. Figure 2.1 gives the scatter plot diagram of

10



CHAPTER 2. LITERATURE REVIEW

this dataset. We intuitively find that the observations appear
nonlinear, but to gain more insights, we would like to initially
fit the data by a linear regression. Assume that (xi, yi), i =
1, . . . ,n, is the observation collected from the i-th subject. We
fit the data by a global linear regression

yi =α0+α1xi +error,

and report the resulting estimator in Figure 2.2. As illustrated
in the first plot of Figure 2.2, the global linear estimates yields
a very large modelling bias.

Figure 2.1: Scatter plot for motor data
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A commonly used approach to fit the nonlinear phenomena
is the polynomial regression. We consider some examples of

11
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polynomial fits as follows:

yi =α0+α1xi +α2x2
i +εi, (2.1)

yi =α0+α1xi +α2x2
i +α3x3

i +εi, (2.2)

yi =α0+α1xi +α2x2
i +α3x3

i +α4x4
i +εi, (2.3)

where ε1, · · · ,εn are independently and identically distributed
N(0,σ2) random errors. (2.1), (2.2) and (2.3) refers to quadratic,
cubic and quartic polynomial regressions respectively. Figure
2.2 shows the estimated curves from them. It can be seen
visually that, compared with linear regression, the quadratic,
cubic or quartic fit may reduce the modelling bias to some ex-
tent, but leads to an estimator with larger variance. Besides,
the polynomial models also suffer from the drawback that
the remote individual observations can impact largely on the
curve.

There are several approaches to overcome the issues of
polynomial models. One idea is to apply polynomial model
locally to a strip of data around the point that needs to be esti-
mated. We term this method the local (polynomial) modelling.
One of the most important hyper-parameter in this modelling
is the size of the local neighbourhood, which is called the
bandwidth.

To provide more insights into this technique, we apply
the local polynomial approximation to an independently and
identically distributed bivariate samples (X1,Y1), · · · , (Xn,Yn)

12
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Figure 2.2: Motorcycle data fitted by polynomial regressions
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form a population (X ,Y ). Assume that the data is generated
from the model

Y = m(X )+σ(X )ε, (2.4)

where E(ε)= 0,Var(ε)= 1, and ε is independent of X . We wish
to fit the unknown regression function m(x0) = E(Y |X = x0)
and its derivatives ṁ(x0), m̈(x0), · · · , m(p)(x0). Suppose that the
(p+1)th derivative of m(·) exists at the point x0. Consider a
Taylor expansion for the unknown function m(x) for x in a

13
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neighbourhood of x0

m(x)≈m(x0)+ ṁ(x0)(x− x0)+ m̈(x0)
2!

(x− x0)2

+·· ·+ m(p)(x0)
p!

(x− x0)p. (2.5)

We can treat m(x0), ṁ(x0), · · · ,m(p)(x0) as unknown parameters
that need to be estimated. From this point of view, we use the
notation:

m( j)(x0)
j!

=β j, for j = 0,1, · · · , p,

which allows us to rewrite (2.5) as

m(x)≈β0+β1(x− x0)+β2(x− x0)2+·· ·+βp(x− x0)p. (2.6)

To obtain the estimators of unknown parameters, denoted by
β̂0, β̂1, · · · , β̂p, it suggests minimising a locally weighted least
squares regression

n∑
i=1

{
Yi −

p∑
j=0
β j(X i − x0) j

}2

Kh(X i − x0), (2.7)

with respect to β j, j = 0, . . . , p, where h is a bandwidth, and
Kh(·) = K(·/h)/h is a kernel function (a symmetric probabil-
ity density function) assigning weights to each observation.
Based on the estimates β̂ j, we can obtain the estimator of func-
tion m(x) and its derivatives m(v)(x0) by m̂v(x0)= v!β̂v for each
v = 0, · · · , p. Using the notations in Fan and Gijbels (1996), the

14
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weighted least squares problem (2.7) can be rewritten in the
matrix notation as

min
β

(y−Xβ)>W(y−Xβ),

where

X=


1 (X1− x0) · · · (X1− x0)p

... ... . . . ...
1 (Xn− x0) · · · (Xn− x0)p

 ,

y= (Y1, · · · ,Yn)>,

β= (β0, · · · ,βp)>,

and
W= diag{Kh(X1− x0), . . . ,Kh(Xn− x0)}.

It follows from least squares theory that the solution is given
by

β̂= (X>WX)−1X>Wy. (2.8)

To consistently and effectively fit the data by local poly-
nomial regression, it is necessary to choose an appropriate
bandwidth h, because it controls the model complexity. A
small bandwidth leads to low bias but high variance. A large
bandwidth gains on variance side but loses on bias side. Intu-
itively, we search for a bandwidth which can provide a good

15
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trade-off between bias and variance. Figure 2.3 illustrate this
statement by applying the local linear model to the motorcycle
data for a variety of bandwidths. We can see from Figure 2.3
that when a very large bandwidth is used, the fit almost yields
global linear estimates. Conversely, once h = 0 was used, the
estimator exactly interpolates the data points. When the band-
width is chosen to be h = 3.3, the local linear regression gives
a much more accurate fitting, and hence produces a much
smaller approximation error.

Figure 2.3: Local linear regression with different bandwidths
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NOTE: Local linear estimates with bandwidth h = 0 (dotted line), 3.3

(dashed line) and infinity (solid line). With the increasing of h,

the estimated curve becomes simpler

A theoretical optimal choice of bandwidth is obtained
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by minimizing the conditional Mean Squared Error (MSE),
which is the sum of conditional bias and conditional variance

[Bias(m̂v(x0)|X)]2+Var(m̂v(x0)|X),

where X= (X1, . . . , Xn). In the practical implementation, band-
width can be selected by cross validation or generalised cross
validation (GCV), and it may be sufficient for some purposes
to choose h to be around 25% of the whole range of data.

To deal with the problem of bandwidth selection, it is of
importance to have a good insight into bias and variance. The
conditional bias and variance of β̂ can be obtained from (2.8)
that

E(β̂|X) = (X>WX)−1X>Wm

= β+ (X>WX)−1X>r (2.9)

And

Var(β̂|X)= (X>WX)−1(X>ΣX)(X>WX)−1 (2.10)

where m = {m(X1), · · · ,m(Xn)}>,β= {m(x0), · · · ,m(p)(x0)/p!}>,r=
m−Xβ, the vector of residuals of the local polynomial regres-
sion, and Σ = diag{K2

h(X1 − x0)σ2(X1), . . . ,K2
h(Xn − x0)σ2(Xn)}.

Due to the unknown quantities r and Σ, the expression (2.9)
and (2.10) cannot be directly used. The study from Ruppert
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and Wand (1994) provides a solution to use a first order asymp-
totic expansion for the bias and variance to approximate the
conditional bias and variance, which is given in the following
theorem. The theorem is directly quoted from Fan and Gijbels
(1996). We use the following notation:

u j =
∫

u jK(u)du, v j =
∫

u jK2(u)du, S = (u j+l)0≤ j,l≤p,

S̃ = (u j+l+1)0≤ j,l≤p, S∗ = (u j+l+1)0≤ j,l≤pbgv,

cp = (µp+1, · · · ,µ2p+1)>, c̃p = (µp+2, · · · ,µ2p+2)>,

ev+1 = (0, · · · ,0,1,0, · · · ,0)>,

where ev+1 has a 1 on the (v+1)th position. op(1) denotes a
random quantity that is tending to zero in probability.

Theorem 1. Assume that f (x0)> 0 and that f (·),m(p+1)(·) and
σ2(·) are continuous in a neighbourhood of x0. Further assume
that h → 0 and nh → ∞. Then the asymptotic conditional
variance of m̂v(x0) is given by

Var(m̂v(x0)|X)= e>v+1S−1S∗S−1ev+1
v!2σ2(x0)

f (x0)nh1+2v

+ op

(
1

nh1+2v

)
. (2.11)

18



CHAPTER 2. LITERATURE REVIEW

The asymptotic conditional bias for p−v odd is given by

Bias(m̂v(x0)|X)= e>v+1S−1cp
v!

(p+1)!
m(p+1)(x0)hp+1−v

+ op(hp+1−v). (2.12)

Further, for p−v even the asymptotic conditional bias is

Bias(m̂v(x0)|X)= e>v+1S−1 c̃p
v!

(p+1)!
{m(p+2)(x0)

+ (p+2)m(p+1)(x0)
ḟ (x0)
f (x0)

}hp+2−v

+ op(hp+2−v) (2.13)

provided that ḟ (·) and m(p+2)(·) are continuous in a neighbour-
hood of x0 and nh3 →∞.

We can find from the above theorem that there is a theo-
retical distinction between the cases p−v odd and the p−v
even. Indeed, it turns out later that odd order fits are always
superior to even order fits.

2.2 Penalized least squares

The penalised least squares approach is one of the most widely
used selection and shrinkage method. This approach attempts
to simultaneously select significant variables consistently and
estimate the corresponding coefficients effectively. In this
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section, we will compactly review the penalised least squares
and the smoothly clipped absolute deviation (SCAD) penalty.
Start with considering the linear regression model

y=Xβ+ε
where y= (y1, . . . , yn)> is an n×1 vector, X= (x1, · · · ,xd) is an
n×d design matrix of covariates, β= (β1, . . . ,βd)> is an d×1
vector of parameters to be estimated and ε is an n×1 vector
of random errors.

The penalised least squares (PLS) assumes that

min
β∈Rd

{ 1
2n

||y−Xβ||22+
d∑

k=1
pλ(|βk|)

}
, (2.14)

where pλ(·) is a penalty function allowed to depend on the
tuning (regularization) parameter λ ≥ 0. The first terms in
(2.14) measure the goodness of fit while the second terms
control the complexity of the model. Hence, we can regard the
minimizer of (2.14) as a trade-off between bias and variance.

To gain the insights about the variable selection proce-
dures more accessible, we consider the specific case of a canon-
ical linear model with a rescaled orthonormal design matrix,
i.e., X>X= nId. With this in mind, the penalised least squares
(2.14) can be rewritten in a minimisation problem as follows:

min
β

{ 1
2n

||y−Xβ̂||22+
1
2
||β̂−β||22+

d∑
k=1

pλ(|βk|)
}
. (2.15)
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where β̂= (XTX)−1X>y=n−1X>y is the ordinary least squares
estimator. Since (2.15) can be minimised in a component-
wise manner, we consider the minimisation problem of the
univariate penalise least squares for brevity

1
2

(z−θ)2+ pλ(|θ|), (2.16)

with respect to the parameter θ, where z is the univariate
ordinary least squares estimate. Then, we can obtain the
penalised estimator θ̂ by solving

θ̂ = argmin
θ

{1
2

(z−θ)2+ pλ(|θ|)
}
. (2.17)

According to the rule provided by Antoniadis and Fan (2001),
the penalty function pλ(·) in (2.17) can be clarified as a good
penalty function if the corresponding penalised estimate θ̂

can fulfil the following three requirement:

• Sparsity. If the true parameter |θ| is small, the corre-
sponding resulting estimate will be θ̂ = 0.

• Approximate unbiasedness. When the unknown param-
eter |θ| is sufficiently large, the resulting estimate gives
θ = z with high probability.

• Continuity. The resulting estimate θ̂ is continuous in
data z.
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More generally, the sparsity refers to the property that the
resulting estimator can automatically shrink the small esti-
mated coefficient to zero and thus reduce model complexity.
Approximate unbiasedness is the property that the resulting
estimate is nearly unbiased especially when the unknown
parameter is large. Continuity represents the property that
the resulting estimator is continuous in the data. Fan and
Li (2001) also provided some insights on the choice of ideal
penalty functions, which included a conclusion that a penalty
function holds the sparsity conditions must be singular at the
origin.

Continuing on these lines, we can assess some of the most
commonly used penalty functions. As a member in the family
of Lq penalties, L0 penalty

pλ(z)= λ2

2
I(z 6= 0)

produces the hard thresholding estimate θ̂ = zI(|z| >λ). Fig-
ure 2.4(a) and Figure 2.5(a) visually describes L0 penalty. It
can be see that the resulting estimate does not satisfy the
continuity. Another well known penalty is the L1 penalty
(LASSO) (Tibshirani, 1996) pλ(|θ|) = λ|θ|, which yields the
soft thresholding estimator

θ̂ = sgn(z)(|z|−λ)+.
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We depict the thresholding estimate in Figure 2.4(b), from
which we can intuitively find that the resulting estimates pro-
duce biased solutions. Additionally, the convex Lp penalties
with p > 1 are not singular around the origin, and hence they
fail to enjoy the condition of sparsity. Consequently, None of
the Lq penalties can hold all three aforementioned conditions
at the same time.

Figure 2.4: The penalty functions
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NOTE: Plot of penalty functions of (a) L0 penalty, (b) L1 penalty and

(c) SCAD penalty.
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As such, one successful attempt, proposed by Fan and Li
(2001), is the smoothly clipped absolute deviation (SCAD)
penalty, whose derivative is defined by

p′
λ(θ)=λ{I(θ ≤λ)+ (aλ−θ)+

(a−1)λ
I(θ >λ)},

for some a > 2 and θ > 0,

where pλ(0) = 0 and a is suggested to be 3.7. It fulfils the
foregoing three conditions and, particularly, modifies the bias
problems of convex penalties. We gives more insights into this
statement by Figure 2.4(c) and 2.5(c).
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Figure 2.5: The thresholding functions

NOTE: Plot of thresholding function for (a) the hard, (b) the soft and

(c) the SCAD. The plots are quoted from the Figure 2 in Fan and

Li (2001)

Moreover, Fan and Li (2001) established the asymptotic
properties to show that the resulting estimator of SCAD
penalty performs as well as the oracle estimator with proba-
bility tending to 1. Here, the oracle estimator represents the
estimator obtained from the correct sub-model.
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Although the SCAD penalty enjoys many appealing prop-
erties, solving the penalised least squares (2.14) with a non-
convex penalty function is challenging. To solve the minimisa-
tion problem, Fan and Li (2001) developed a unified algorithm
via local quadratic approximations (LQA).

We assume that a given initial value β0 = (β0
1, . . . ,β0

d)> is
close to the optimizer of (2.14) and we set β j = 0 if β0

j is close to
0. Then, the penalty function pλ(·) can be locally approximated
by a quadratic function as

pλ(|β j|)≈ pλ(|β0
j |)+

1
2

p′
λ(|β0

j |)
|β0

j |
[β2

j−(β0
j )

2], for β j ≈β0
j . (2.18)

The derivative form of this approximation is given as

[pλ(|β j|)]′ = p′
λ(|β j|)sgn(β)≈ {p′

λ(|β0
j |)/|β0

j |}β j.

With this quadratic approximation (2.18), the penalised least
squares problem (2.14) is reduced to a quadratic optimisation
problem and admits a closed-form solution. Note that one
drawback of LQA is that once a coefficient is shrunken to zero
in any iteration, it will remain zero. To overcome this potential
issue, Zou and Li (2008) developed a unified algorithm based
on the local linear approximation (LLA):

pλ(|β j|)≈ pλ(|β0
j |)+ p′

λ(|β0
j |)[|β j|− |β0

j |], for β j ≈β0
j .
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It has been demonstrated in Zou and Li (2008) that the LLA
does not have to eliminate any small parameters or select the
size of perturbation and the LLA naturally yields a sparse
estimates through continuous penalisation. Like LQA, the
LLA algorithm can also significantly reduce the computation
burden.

2.3 Tuning parameter selection by
Generalised information
criterion

In the previous section, we have discussed penalised least
squares with SCAD penalty, which is illustrated to be a re-
markably potent shrinkage and selection method. However,
many advantages and notable features of the SCAD approach
largely depend on a proper choice of the tuning parameters.
Traditional model selection criterion includes cross-validation,
Akaike information criterion (AIC) (Akaike, 1973) and Bayes
information criterion (BIC) (Schwarz, 1978). Wang et al.(2007)
showed that tuning parameters determined by the BIC could
consistently identify the true model for SCAD approach in
fixed dimensionality, while AIC and cross-validation may fail
because of overfitting. Although a modified BIC still work
successfully in diverging dimensionality, when the dimension
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of covariates is larger than the sample size, it may fail to
select the correct model with consistency and efficiency. To
solve this problem, the study of Fan and Tang (2013) allows
the dimensionality d increase exponentially with the sample
size n and proposed their generalised information criterion
(GIC) to select the tuning parameter in high dimensional pe-
nalised approach. In Nishii (1984), a generalised information
criterion can be expressed as follows:

measure of model fitting+an×measure of model complexity,
(2.19)

where an is some sequence that controls the regularization
on model complexity, and thus the choice of an is significant
for detecting the optimal tuning parameter. In AIC and BIC,
an in criterion (2.19) is 2 and log(n), respectively. Fan and
Tang (2013) specified a range of an for consistent and effective
model selection and proposed a uniform choice

an = log{log(n)}log(d)

in GIC (2.19) for practical implementation.

2.4 Varying coefficient models

The varying coefficient model is an important generalisa-
tion of the linear model whose coefficients are allowed to be
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functions with respect to some random variable U. The non-
parametric estimation in varying coefficient model has been
well studied in much existing literature. In this section, we
provide a concise review of varying coefficient models.

A typical varying coefficient model assumes the following
conditional linear structure

Y =
d∑

k=1
fk(U)Xk +ε, (2.20)

for the univariate index variables U, covariates X1, · · · , Xd

and response variable Y with

E(ε|U , X1, · · · , Xd)= 0, Var(ε|U , X1, · · · , Xd)=σ2(U).

And we note that it is possible for us to consider an intercept
by setting X1 ≡ 1.

Because of the varying coefficient model is equipped with
good interpretation, it can be applied to explore the dynamic
pattern in many scientific areas where statistics are needed.
For instance, in longitudinal data analysis, the coefficient
functions fk(·), k = 1, . . . ,d, present the dynamic impact of the
corresponding covariate on the response variable over time.
When it comes to the estimation of these functional coeffi-
cients fk(·), we can directly fit them by the kernel regression
locally around the index U .

Suppose that we have a sample (Ui, xi1, . . . , xid, yi), i =
1, . . . ,n from (U , X1, . . . , Xd,Y ) in model (2.20), then following
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the local linear smoothing in Fan and Zhang (1999), for each
given u, we locally approximate the function by

fk(Ui)≈ ak +bk(Ui −u)

for Ui in a neighbourhood of u. This leads to the local estima-
tion procedure with the smooth parameter (bandwidth) h as
follows

n∑
i=1

{
yi −

d∑
k=1

[ak +bk(Ui −u)]xik

}2

Kh(Ui −u) (2.21)

The locally weighted least squares (2.21) can be rewritten as

min
θ

(y−Xθ)>W(y−Xθ)

where y= (y1, . . . , yn)> and

θ = (a1,b1, · · · ,ad,bd)>,

W = diag{Kh(U1−u), · · · ,Kh(Un−u)},

X=


x11 x11(U1−u) · · · x1d x1p(U1−u)
... ... . . . ... ...

xn1 xn1(Un−u) · · · xnd xnp(Un−u)

 .

The solution is given by the least squares theory that

θ̂ = (X>WX)−1X>Wy
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and the estimate of coefficient function fk(u) is

f̂k(u)= e>2k−1,2d(X>WX)−1X>Wy (2.22)

where e j,m is the unit vector of length m with the j−th com-
ponent being 1.

In traditional varying coefficient models, the index vari-
able U is given to be known. For the purpose of ameliorat-
ing the "curse of dimensionality", we introduce the single
index model (Hardle and Stoker, 1990) to incorporate with
the varying coefficient models. The single index models can
be expressed by the following basic form

Y = f (X>β1, . . . , X>βq,ε),

where X is a d dimensional covariate, Y is the response
variable, q is an integer smaller than the dimension d and
ε is the random error. Hence, the known index U is replaced
by the linear combination of covariates and index direction β,
which takes the form β>X. By assuming the index coefficient
β is unknown and estimated by data, Fan et al.(2003) explored
the adaptive varying coefficient model (or single index varying
coefficient model).

Specifically, suppose that we are going to estimate a mul-
tivariate regression function G(x)≡ E(Y |X= x), where Y is a
random variable and X is a d×1 random vector. The adaptive
varying coefficient linear model in Fan et al.(2003) which can
be one way to approximate G(x) follows the model structure
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g(x)=
d∑

k=0
fk(β>x)xk (2.23)

where x = (x1 · · ·xd)>, x0 = 1, β ∈ Rd is the vector of unknown
index parameters and coefficients f0(·), · · · , fd(·) are unknown
functions. We obtain the estimators of coefficient functions
fk(·) and index parameters β such that E{G(X)− g(X)}2 is min-
imised. we remark that once β has successfully been fitted,
model (2.23) becomes a varying coefficient model (2.20) which
can be estimated via the aforementioned local liner regres-
sion.

A crucial theorem for the identifiability of the functions
fk(·) are developed in Fan et al.(2003). We quote this theorem
as follows:

Theorem 2. Assume g(·) of the form (2.23) to be twice differ-
entiable, if we set ‖β‖ = 1, and the first non-zero component of
β0 positive, such a β is unique unless g(·) is of the following
form

g(x)=α>xβ>x+γ>x+c, (2.24)

where α,γ ∈ Rd, c ∈ R are constants and α and β are not
parallel to each other. Moreover, once β= (β1, . . . ,βd) has been
given with βd 6= 0, we may let fd(·) ≡ 0. Accordingly, all the
other fk(·) are uniquely determined.
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It follows from the Theorem 2 that, in model (2.23), ‖β‖ = 1
and the first non-zero element of β is positive. To avoid losing
the uniqueness of the index parameter β, it also assumes that
the unique least squares approximation g(·) of G(·) should not
be formulated in the form (2.24), and hence by letting β 6= 0,
they only consider an approximation g(·) in the following
form:

g(x)=
d−1∑
k=0

fk(β>x)xk. (2.25)

In Fan et al.(2003), they not only search for fk(·) based on the
local linear regression, but also give an estimation procedure
for β. As one product of this thesis, we propose an iterative
estimation procedure for fitting the model (2.25).
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3
ESTIMATION FOR SINGLE-INDEX

VARYING COEFFICIENT MODELS

In this chapter, we first describe the SIVC model. Then, based
on the non-parametric estimation, we develop an iterative
algorithm to estimate the model. Exploring this algorithm
has threefold purposes. Firstly, it yields an efficient approach
to solve the varying coefficient model whose index is un-
known. Secondly, it helps us to gain insights into the iterative
shrinkage estimation procedures which will be generalized in
Chapter 4. Thirdly, in our simulation studies, we also employ
this penalty-free iterative procedure to estimate the true sub-
model directly to obtain the oracle estimates, which will be
used as a benchmark to evaluate the estimation accuracy of
our proposed penalised approach.
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3.1 Model specification

Let Y denote the response variable, and X= (X1, · · · , Xd)> be
a real-valued d×1 covariate vector with a compact support D,
where > denotes the transpose of a matrix. In a single-index
varying coefficient model (SIVCM), it is assumed that for any
x= (x1, · · · , xd)> ∈D, the regression equation g(x)≡ E(Y |X= x)
admits the following structure:

g(x)=
d∑

k=0
fk(x>β0)xk, (3.1)

where x0 ≡ 1, fk(·), k = 0, · · · ,d, are unknown functions, and
β0 = (β01, · · · ,β0d)> ∈Rd is the unknown index parameter. For
identification purposes (Fan et al., 2003), if we choose ‖β0‖ = 1,
the first non-zero component of β0 positive and give β0d 6= 0,
then by setting fd(·)≡ 0, we can make sure that fk(·), k ∈ S0 ≡
{0,1, · · · ,d−1} are uniquely determined, in which case (3.1) is
then rewritten as

g(x)=
d−1∑
k=0

fk(x>β0)xk, (3.2)

and without loss of generality, it is assumed that ‖β0‖ = 1,
β01 > 0, and β0d 6= 0. Throughout this thesis, we assume all
functions fk(·) are continuously differentiable. For any k ∈ S0,
denote by ḟk(·), the first order derivative of fk(·).

In this chapter, we focuses on the estimation of β0 as well
as of the functions fk(·), k ∈ S0.
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3.2 Methodology

In this section, we outline the approach for estimating the
direction β0 and functional coefficients fk(·) in model (3.2).
We remark that once the true value of index parameter β0

is known, model (3.2) becomes the a typical varying coeffi-
cient model with a known index z = x>β0, whose coefficient
functions can be estimated via local linear regression. Hence,
We will first explore the local linear estimators for fk(·) with
given β0 in Section 3.2.2, and then extend the idea to an itera-
tive procedure for fitting fk(·) when β0 is unknown in Section
3.2.2.

3.2.1 Estimators for functional coefficients
fk(·) with known β0

Let (Xi,Yi), i = 1, , . . .n, be independent identical distributed
observations with the same marginal distribution as (X,Y )
with Xi = (X i1, · · · , X id)>. If the true value of β0 is known,
then for any given x, the estimation of { fk(x>β0), ḟk(x>β0)},
k = 0, . . . ,d−1, can be based on the following Taylor expansion
in a neighborhood of x>β0 with

fk(z)≈ fk(x>β0)+ ḟk(x>β0)(z−x>β0).
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We define f= ( f0(x>β0), . . . , fd−1(x>β0), ḟ0(x>β0), . . . , ḟd−1(x>β0))>

∈ R2d and write X̃i = [Xi0,Xi1, . . . ,Xid−1]> ∈ Rd, with Xi0 ≡ 1.
Then, the estimator of f with the condition that β0 is known
can be obtained by minimizing

Qx(f |β0)= 1
n

n∑
i=1

{Yi − X̃>
ixf}2Kh(X>

ixβ0), (3.3)

with respect to f ∈R2d, where Kh(·)= K(·/h)/h is a probability
density function with the kernel function K(·), h is a smooth-
ing parameter, such that h → 0 as n →∞, Xix =Xi −x, and

X̃ix = [X̃>
i , (X>

ixβ0)X̃>
i ]> ∈R2d.

Following this idea, estimators of f j ≡ ( f0(X>
j β0), . . . , fd−1(X>

j β0)
, ḟ0(X>

j β0), . . . , ḟd−1(X>
j β0))> ∈ R2d, j = 1, . . . ,n can be obtained

by implementing n individual minimization of (3.3) with x
replaced by X j. Then, we consider the local linear estimates
for f j with the condition that β0 is known. This leads to mini-
mizing the double summation of weighted squares

Q(F |β0)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i jf j}2Kh(X>

i jβ0), (3.4)

with respect to F= (f1, . . . ,fn)> ∈Rn×2d with f j = ( f0(X>
j β0), . . . ,

fd−1(X>
j β0), ḟ0(X>

j β0), . . . , ḟd−1(X>
j β0))> where Xi j =Xi−X j ∈Rd

and

37



CHAPTER 3. ESTIMATION FOR SINGLE-INDEX VARYING

COEFFICIENT MODELS

X̃i j = [X̃>
i , (X>

i jβ0)X̃>
i ]> ∈R2d.

We can rewrite (3.4) in matrix notation as

1
n

n∑
j=1

(Y− X̃>
j f j)>Wj(Y− X̃>

j f j), (3.5)

where Y = (Y1, . . . ,Yn)> ∈ Rn, X̃ j = (X̃1 j, . . . ,X̃n j) ∈ R2d×n and
Wj = diag{Kh(X>

1 jβ0), . . . ,Kh(X>
n jβ0)} ∈ Rn×n. By least squares

theory, the resulting estimators f̂ j is given by

f̂ j = (X̃ jWjX̃
>
j )−1(X̃ jWjY),

and hence we obtain the estimators F̂= (f̂1, . . . , f̂n)>.
With this in mind, it is natural to extend the idea to the

case when the index parameter β is unknown. However, it’s
hard to directly work out the estimators for fk(·) and β from an
analytic formula, and hence we explore an iterative approach
in Section (3.2.2).

3.2.2 Iterative approach for the estimation
of SIVC models

In the previous section, we discussed the minimization prob-
lem of the locally weighted function (3.4). Now, we consider a
similar case but with an unknown index parameter β0 . We
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define the following discrepancy loss function

L (F,β)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i jf j}2Kh(X>

i jβ), (3.6)

with respect to F = (f1, . . . ,fn)> ∈ Rn×2d and β= (β1, · · · ,βd)> ∈
Rd.

The estimators F̂ and β̂ are obtained by solving

(F̂, β̂)= argmin
F,β

L (F,β), (3.7)

subject to the constraints that ||β|| = 1, β1 > 0, which are
assumed for the identifiability purpose. A global minimum of
the target function (3.6) cannot be derived directly, instead,
we consider an iterative computational algorithm to solve the
problem. We remark that it is feasible to implement such an
iterative approach, as in each step of the iterative procedure,
there exists a closed form solution.

Before the iterative procedure, we should specify an initial
estimate β̃ of β0. It can be expected that a reasonably good
initial value β̃ will lead to well performed estimators. We will
discuss whether the estimators are sensitive to the choice of
initial estimate β̃ in the simulation study in Section 7.1.

In order to solve (3.7), we consider the following iterative
procedure. Start with an initial estimate β̃ of β0:

1. Step 1: We estimate F= (f1, . . . ,fn)> by solving
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F̂= argmin
F

L (F|β̃). (3.8)

The estimator denoted byF̂= (f̂1, . . . , f̂n)> ∈Rn×2d in (3.8)
is the minimizer of the following quantity

1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i jf j}2Kh(X>

i jβ̃), (3.9)

with respect to F= (f1, . . . ,fn)> ∈Rn×2d, where X̃i j = [X̃>
i ,

(X>
i jβ̃)X̃>

i ]> ∈R2d and X̃i = [1,Xi1, . . . ,Xi,d−1]>. The double
summation (3.9) can be rewritten in the matrix notation
as

1
n

n∑
j=1

(Y− X̃>
j f j)>Wj(Y− X̃>

j f j),

with respect to F= (f1, . . . ,fn)> ∈Rn×2d with f j = ( f0(X>
j β̃),

. . . , fd−1(X>
j β̃), ḟ0(X>

j β̃), . . . , ḟd−1(X>
j β̃))>, where Wj is an

n× n diagonal matrix with Kh(X>
i jβ̃) as its i-th diago-

nal element, X̃ j is an 2d×n matrix with X̃i j as its i-th
column and Y = (Y1, . . . ,Yn)T. It follows from the least
squares theory that,

f̂ j = (X̃ jWjX̃
>
j )−1(X̃ jWjY),

and thus we obtain the estimator F̂= (f̂1, . . . , f̂n)>. Before
next step, we define two d×1 vectors â j and b̂ j as â j =
( f̂0(X>

j β̃), . . . , f̂d−1(X>
j β̃))> and b̂ j = ( ˆ̇f0(X>

j β̃), . . . , ˆ̇fd−1(X>
j β̃))>,

thereby f̂ j = (â>
j , b̂>

j )>.
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2. Step 2: By applying the estimator F̂ = (f̂1, . . . , f̂n)> with
f̂ j = (â>

j , b̂>
j )>, j = 1, . . . ,n, from Step 1, we now search

for the estimator for β, denoted by β̂, by solving

β̂= argmin
β

L (β|F̂), (3.10)

the estimator β̂ is the minimizer of the function

L (β|F̂)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i â j − X̃>

i b̂ jX>
i jβ}2Kh(X>

i jβ).

(3.11)
with respect to β= (β, . . . ,β)> ∈Rd. It worth noting that
β not only appears in the in the least squares part of
the target function (3.11), but also involves in the kernel
function. Therefore, it is hard to directly derive a closed
form from the quantity (3.11). To deal with this situation,
we consider the following approximation for the double
summation in (3.11) as

1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i â j − X̃>

i b̂ jX>
i jβ}2Kh(X>

i jβ̃), (3.12)

with respect to β. It can be seen that in the kernel func-
tion of quantity (3.12), we use the estimate β̃ from the
last step to replace the unknown parameter β. Then,
β only involves in the least squares part, and hence it
is feasible to obtain a closed form solution. Unlike the
local estimator F̂ which is obtained via the local linear
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smoothing, the parameter β should be estimated glob-
ally. We first rewrite the minimisation problem as

β̂= argmin
β

1
n2

n∑
j=1

n∑
i=1

{c i j −Bi jβ}2wi j, (3.13)

where

c i j =Yi − X̃>
i â j,

Bi j = X̃>
i b̂ jX>

i j = X̃>
i b̂ j(Xi −X j)> ∈Rd,

and
wi j = Kh(X>

i jβ̃)= Kh((Xi −X j)>β̃).

In order to formulate the double sum of weighted squares
in (3.13) into a traditional weighted least squares, we
construct an n2×1 vector C, an n2×d matrix B and an
n2×n2 diagonal matrix W as follows:

C= (c11, . . . , cn1, c12, . . . , cn2, . . . , c1n, . . . , cnn)>,

B= (B11, . . . ,Bn1,B12, . . . ,Bn2, . . . ,B1n, . . . ,Bnn)>,

W= diag{w11, . . . ,wn1,w12, . . . ,wn2, . . . ,w1n, . . . ,wnn}.

Then, it leads to a minimisation problem of a traditional
weighted least squares as follows:

β̂= argmin
β

(C−Bβ)>W(C−Bβ).

Hence, following from least squares theory, the solution
is given by

β̂= (B>WB)−1(B>WC).
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According to identifiability condition assumed in (3.7),
the estimator β̂ should be rescaled to satisfy the con-
straints ||β|| = 1, β1 > 0.

Then, we go back to Step 1 and replace the estimate β̃

with the scaled β̂ and repeat the two steps until convergence.
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4
MODEL SELECTION IN

HIGH-DIMENSIONAL SIVC MODELS

In SIVC models, when the dimension of the covariates is fixed
and limited, we can obtain the resulting nonparametric es-
timators through local linear smoothing as we discussed in
the previous chapter. However, if the covariates is of large di-
mension, because the number of the unknown nonparametric
components involved may be exceedingly larger than the num-
ber of observations, a direct use of nonparametric modelling
may lead to unsatisfactory estimation results. To address this
issue, we next introduce a locally weighted group selection
method by adding the SCAD penalty to the previous iterative
approach to select an efficient predictive model, and thereby
to obtain the resulting estimators.

In this chapter, we focus on the main subject of the thesis:
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the model selection in high-dimensional SIVC models. Specifi-
cally, our model selection includes three aspects: (i) variable
selection; (ii) identification of the constant coefficients; (iii)
specification of the index.

It is worth noting that variable selection and identifica-
tion of the constant coefficients are equivalent to detecting
the zero functional coefficients and the functional coefficients
with zero derivatives respectively. Specification of the index
is equivalent to identifying the zero-elements of index pa-
rameter β. In Section 4.1, we give the description of high-
dimensional sparse SIVC models. In Section 4.2, we demon-
strate the methodology of an iterative computational algo-
rithm for simultaneously selecting and estimating the SIVC
model.

4.1 Model specification

Suppose that Y is the response variable, and X= (X1, · · · , Xdn)>

is an dn × 1 covariate vector. We assume that dn → ∞ as
n →∞ and dn is of order O(nα) for some 0 < α < 1. For any
x = (x1, · · · , xdn)

>, the regression equation g(x) ≡ E(Y |X = x)
admits the following structure:

g(x)=
dn∑

k=0
fk(x>β)xk, (4.1)

45



CHAPTER 4. MODEL SELECTION IN HIGH-DIMENSIONAL

SIVC MODELS

where x0 ≡ 1, fk(·), k = 0, · · · ,dn, are unknown functions, and
β = (β1, · · · ,βdn)

> ∈ Rdn is an unknown vector of index para-
meters. Let βdn 6= 0, it follows the identification condition in
model (3.2), to uniquely determine fk(·), k ∈ S0 ≡ {0,1, · · · ,dn−
1}, we rewrite (4.1) as

g(x)=
dn−1∑
k=0

fk(x>β)xk, (4.2)

with β1 > 0 and ‖β‖ = 1.
It is also assumed that the model (4.2) is a sparse high-

dimensional model and, ideally, only a handful predictors
contribute to the response or to the index. Therefore, without
loss of generality, we assume that there exists a positive inte-
ger d0 which is smaller than dn, and two subsets S1 and S2

of S0, such that

βk 6= 0, k = 1, · · · ,d0,dn; βk = 0, k = d0+1, · · · ,dn−1;

S1 = {k : k ∈ S0, fk(·) is not constant}; (4.3)

S2 = {k : k ∈ S0, fk(·)≡ ck, for some ck 6= 0}.

For any k ∈ S0, denote by ḟk(.), the first order derivative of
fk(.), and let

mk = E[| fk(X>β)|], ṁk = E[| ḟk(X>β)|],

where the expectation is taken with respect to X. Conse-
quently, k ∈ S1 ⇔ {mk > 0, ṁk > 0}, k ∈ S2 ⇔ {mk > 0, ṁk = 0}.
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In this chapter, we shall focus on identifying which ele-
ments of β are zero, and also, among fk(·)s, k ∈ S0, which are
in fact constants or even zero and giving accurate estimates
for those nonzero parameters.

4.2 Methodology

Here we introduce the model selection and estimation for
SIVC models. The procedure we are going to introduce is a
mixture of the ideas of penalised least squares, local linear ap-
proximation and group selection. In a similar way to Section
3.2, we initially present our idea on the condition that the true
value of index parameter β is known, in which the model selec-
tion actually becomes selection of the varying-coefficients. By
adding appropriate penalty functions to the locally weighted
function (3.3), we describe the penalised least squares and
obtain the resulting estimators for functional coefficients fk(·)
in Section 4.2.1. Then, we extend the idea to the case that β
is unknown. In Section 4.2.2, we propose an iterative compu-
tational algorithm to simultaneously select and estimate both
fk(·) and β. At last, in Section 4.2.3, to improve the computa-
tional efficiency in the high dimensional situation, we slightly
modify the proposed algorithm to reduce its space complexity.
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4.2.1 Variable selection and penalised
estimators for functional coefficients
fk(·) with known β

Let (Xi,Yi), i = 1, , . . .n, be independent identical distributed
observations with the same marginal distribution as (X,Y )
with Xi = (X i1, · · · , X idn)

>. For any observation X j, j = 1, . . . ,n,
with the true β given, the estimation of { fk(X>

j β), ḟk(X>
j β)}, k =

0, . . . ,dn−1, can be based on the following Taylor expansion
in a neighbourhood of X>

j β with

fk(X>
i β)≈ fk(X>

j β)+ ḟk(X>
j β)(X>

i β−X>
j β). (4.4)

We rewrite the Taylor series (4.4) as:

fk(X>
i β)≈ a jk +b jk(Xi −X j)>β,

where a jk = fk(X>
j β), b jk = ḟk(X>

j β), k = 0, . . . ,dn −1 and two
dn×1 vectors a j and b j are denoted as

a j = (a j0, . . . ,a j,dn−1)>

and
b j = (b j0, . . . ,b j,dn−1)>.

The local linear estimator of the 2dn×1 vector

f j ≡ ( f0(X>
j β), . . . , fdn−1(X>

j β), ḟ0(X>
j β), . . . , ḟdn−1(X>

j β))>

= (a j0, . . . ,a j,dn−1,b j0, . . . ,b j,dn−1)>
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can be obtained by the minimization of the sum of weighted
squares

1
n

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ)X̃>
i b j}2Kh(X>

i jβ), (4.5)

with respect to a j,b j ∈Rdn, where Kh(·)= K(·/h)/h is a proba-
bility density function, h is a smoothing parameter, such that
h → 0 as n →∞, Xi j =Xi −X j ∈Rdn and

X̃i = [1,Xi1, . . . ,Xi,dn−1]> ∈Rdn.

The problem with this approach, which is inherent to
nearly all least square based methods, is that for the zero
elements in f j, their estimates derived from minimizing (4.5)
are often not zero. To deal with this issue and produce sparse
solutions, so that zero or constant functions could be iden-
tified, we combine (4.5) with the smoothly clipped absolute
deviation (SCAD) penalty function first proposed in Fan and
Li (2001), the derivative of which is such that

ṗλ(t)=λ{I(t ≤λ)+ (aλ− t)+
(a−1)λ

I(t >λ)}, t > 0,

for some constant a > 2, and a regularization parameter λ;
see Fan and Li (2001) for detailed discussions on the various
desirable properties of the SCAD penalty function.
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This leads to the following locally weighted group - SCAD
function for feature selection and identification of constant
coefficients

Q(F |λ,β)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ)X̃>
i b j}2Kh(X>

i jβ)

+
dn−1∑
k=0

pλk(||a(k)||)+
dn−1∑
k=0

pλdn+k(||b(k)||), (4.6)

with respect to the n×2dn matrix

F=
( a1, b1

... ...
an, bn

)
= (a(0), . . . ,a(dn−1),b(0), . . . ,b(dn−1)),

where λ= (λ0,λ1, . . . ,λ2dn−1)>is the 2dn ×1 vector of regular-
ization (tuning) parameters and || · || stands for the Euclidean
norm. We note that the task of selection of varying-coefficient
becomes equivalent to detecting spares columns in matrix
(a(0), . . . ,a(dn−1)), which is the first dn columns of matrix F.
Direct use of the SCAD method on model (4.2) for general
variable selection is not efficient, which leads to select far
more individuals than necessary; accordingly, in (4.6), we fol-
low the group selection idea of Yuan and Lin (2006) to identify
the sparse solutions in (a(0), . . . ,a(dn−1)) in a column-wise man-
ner. Analogically, we also apply the group selection idea to
select ḟk(·), which is equivalent to identify sparse solution in
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matrix (b(0), . . . ,b(dn−1)) in column-wise manner. Consequently,
we can obtain the penalised estimate F̂ by solving

F̂= argmin
F

Q(F |λ,β). (4.7)

In order to deal with the SCAD-type problems, we need to
introduce a computational algorithm. For the purpose of sim-
plicity and completeness, we here apply an algorithm based
on the idea of the local quadratic approximation proposed by
Fan and Li (2001). In (4.6), the penalty function with respect
to a(k) can be locally approximated by a quadratic function as:

pλk(||a(k)||)≈ pλk(||a0
(k)||)+

1
2

p′
λk

(||a0
(k)||)

||a0
(k)||

[a>
(k)a(k)− (a0

(k))
>a0

(k)],

for a(k) ≈ a0
(k),

(4.8)
where a0

(k) is an initial value that is supposed to be close to
the minimiser â(k) of (4.6). If a0

(k) is very close to 0, we directly
set â(k) = 0. Alternatively, the local quadratic approximation
of the first derivative of a(k) can be given by

[pλk(||a(k)||)]′ ≈
p′
λk

(||a0
(k)||)

||a0
(k)||

||a(k)||.

Similarly, the the penalty function with respect to b(k) and its
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first derivative can be locally approximated by

pλk+dn
(||b(k)||)≈ pλk+dn

(||b0
(k)||)+

1
2

p′
λk+dn

(||b0
(k)||)

||b0
(k)||

×[b>
(k)b(k)− (b0

(k))
>b0

(k)], (4.9)

for b(k) ≈b0
(k),

and

[pλk+dn
(||b(k)||)]′ ≈

p′
λk+dn

(||b0
(k)||)

||b0
(k)||

||b(k)||,

respectively.
Then, by replacing the penalty functions in (4.6) by the ap-

proximations (4.8) and (4.9), it leads to the following objective
function

Q(F |λ,β)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ)X̃>
i b j}2Kh(X>

i jβ)

+ 1
2

dn−1∑
k=0

p′
λk

(||a0
(k)||)

||a0
(k)||

a>
(k)a(k)+ 1

2

dn−1∑
k=0

p′
λk+dn

(||b0
(k)||)

||b0
(k)||

b>
(k)b(k)

+C, (4.10)

where C stands for the constant terms when the initial values
a0

(k) and b0
(k) are provided.

We denote f j = (a>
j ,b>

j )> ∈ R2dn, in other words, {f(0), . . . ,
f(2dn−1)} = {a(0), . . . ,a(dn−1),b(0), . . . ,b(dn−1)}. Then, in matrix no-
tation, the objective function (4.10) is equivalent to
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Q(F |λ,β)=1
n

n∑
j=1

(Y− X̃>
j f j)>Wj(Y− X̃>

j f j)

+ 1
2

n∑
j=1

f>j Σλ(F0)f j +C, (4.11)

with respect to F= (f1, . . . ,fn)> = (f(0), . . . ,f(2dn−1)) ∈Rn×2dn, where
Y = (Y1, . . . ,Yn)> ∈ Rn, Wj = diag{Kh(X>

1 jβ0), . . . ,Kh(X>
n jβ0)} ∈

Rn×n , F0 = (f0
(0), . . . ,f

0
(2dn−1)) is the initial value of F, X̃ j is an

2dn×n matrix as

X̃ j = (X̃1 j, . . . ,X̃n j) with X̃i j = [X̃>
i , (X>

i jβ0)X̃>
i ]>,

and Σλ(F0) is an 2dn×2dn diagonal matrix as

Σλ(F0)= diag{
p′
λ0

(||f0
(0)||)

||f0
(0)||

, . . . ,
p′
λ2dn−1

(||f0
(2dn−1)||)

||f0
(2dn−1)||

}.

The solution of the penalised least squares (4.11) can be
found by computing the ridge regression

f̂ j = {X̃ jWjX̃
>
j +

n
2
Σλ(F0)}−1X̃ jWjY,

and hence we obtain the resulting estimators F̂= (f̂1, . . . , f̂n)>.
By applying the proposed penalised approach, the resulting es-
timators of insignificant coefficients are expected to be shrunk
to a very small value. Sequentially, in our implementation,
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we introduce an appropriate threshold which is used to auto-
matically reduce the very small estimators to zero, and thus
we obtain the final penalised estimator with sparsity. Specifi-
cally, assuming that the thresholds {θ1,θ2} are small enough,
if ||â(k)||, k = 0, . . . ,dn−1, the L2-norm of penalised estimator
â(k), is smaller than θ1, we set ||â(k)|| = 0 which is equivalent
to shrinking the estimator of k -th coefficient fk(·) to zero.
Analogously, if ||b̂(k)|| < θ2 but the corresponding ||â(k)|| ≥ θ2,
we will consider the k -th coefficient fk(·) as constant, whose
resulting estimator can be approximated as

f̂k(·)= 1
n

n∑
j=1

â jk.

We remark that, in the foregoing algorithm, a reasonably
good initial value F0 is very important for an efficient estima-
tion. Practically, in the iterative procedure described in next
section,we solve an ordinary locally weighted least squares
(3.4) before conducting the penalised approach, and then use
the minimisers of (3.4) as the initial values. From now on,
we call the minimisers of ordinary least squares as "prelim-
inary estimators", which serve as the initial values of our
penalised approach. With this in mind, we will specify this
method in Section 4.2.2. Meanwhile, it is natural to extend
the idea to the case when the index parameter β is unknown,
and hence we are also going to explore an iterative algorithm
for selecting and estimating the SIVC models in Section 4.2.2.
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4.2.2 Iterative approach for the model
selection and estimation of
high-dimensional SIVC model

In this section, we generalise our methodology of model se-
lection to the high-dimensional SIVC model (4.2) to select
a sub-model of important components, and thereby produce
accurate estimation.

Let

L (F,β)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ)X̃>
i b j}2Kh(X>

i jβ). (4.12)

The penalised local weighted least squares for model selection
and estimation is given by

Q(F,β |λ) = L (F,β)+
dn−1∑
k=0

pλk(||a(k)||)

+
dn−1∑
k=0

pλdn+k(||b(k)||)+
dn∑

k=1
pλ̃k

(|βk|), (4.13)

with respect to β= (β1, · · · ,βdn)> ∈Rdn and

F=
( a1, b1

... ...
an, bn

)
= (a(0), . . . ,a(dn−1),b(0), . . . ,b(dn−1)) ∈Rn×2d;

where λ= (λ0,λ1, . . . ,λ2dn−1, λ̃1, . . . , λ̃dn)> is the augmented vec-
tor of the pre-specified regularization (tuning) parameters,
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and
∣∣·∣∣ stands for the L1-norm. The L1-norm penalty induces

sparsity in the solution of β. It is worth noting that in (4.13)
we directly apply the SCAD method to select the index param-
eter β individually and apply the group selection method to
select the functional coefficients and their derivatives, namely,
we identify sparse solutions in β in a element-wise manner
but in matrix F in a column-wise manner.

Consequentially, the penalised estimators F̂ and β̂ can be
obtained by solving

(F̂, β̂)= argmin
F,β

Q(F,β |λ), (4.14)

subject to the constraints that ||β|| = 1, β1 > 0. As direct mini-
mization of (4.13) is hard to conduct, we propose an iterative
procedure for implementation purpose.

Start with an initial estimate β̃ of β:

1. Step 1: We first work out preliminary estimators of the
functional coefficients using ordinary weighted least
squares which will serve as the initial values of the
penalised approach. The preliminary estimates, which
is denoted by F̂o = (âo

(0), . . . , â
o
(dn−1), b̂

o
(0), . . . , b̂

o
(dn−1)) ∈Rn×2d

can be obtained by solving

F̂O = argmin
F

L (F|β̃). (4.15)
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This leads to minimizing the double sum

1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ̃)X̃>
i b j}2Kh(X>

i jβ̃), (4.16)

with respect to {a j} and {b j}, j = 1, . . . ,n. Xi j = Xi −X j ∈
Rdn and

X̃i = [1,Xi1, . . . ,Xi,dn−1]> ∈Rdn.

For brevity, we recall the pre-specified notation

f j ≡ (a>
j ,b>

j )>,

X̃i j = [X̃>
i , (X>

i j β̃)X̃>
i ]>,

X̃ j = (X̃1 j, . . . ,X̃n j).

Then, (4.16) can be rewrite in the matrix notation as

1
n

n∑
j=1

(Y− X̃T
j f j)TWj(Y− X̃T

j f j),

with respect to F= (f1, . . . ,fn)> = (f(0), . . . ,f(2dn−1)) ∈Rn×2dn,
where Wj is an n×n diagonal matrix with Kh(X>

i jβ̃) as
its i-th diagonal element and Y= (Y1, . . . ,Yn)>. It follows
from the least squares theory that,

f̂o
j = (X̃ jWjX̃

T
j )−1(X̃ jWjY),

and thus we obtain the preliminary estimator F̂o =
(f̂o

1, . . . , f̂o
n)>.
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2. Step 2: Based on the idea of the local quadratic approx-
imation and with the help of the preliminary estima-
tor F̂o, we solve the minimisation problem of the pro-
posed penalised weighted least squares along with group
SCAD penalty, and thus obtain estimators of the varying
coefficients, which denoted by F̂p = (f̂p

1 , . . . , f̂p
n)>. Now, we

need to estimate

F̂p = argmin
F

Q(F |λ, β̃,F̂o).

Specifically, we consider the following locally weighted
group-SCAD function with respect to F = (f1, . . . ,fn)> =
(f(0), . . . ,f(2dn−1)) ∈Rn×2dn:

Q(F |λ, β̃)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ̃)X̃>
i b j}2Kh(X>

i jβ̃)

+
dn−1∑
k=0

pλk(||a(k)||)+
dn−1∑
k=0

pλdn+k(||b(k)||).

(4.17)

By applying the quadratic approximation (4.8) and (4.9)
to the penalty functions corresponding to ||a(k)|| and
||b(k)||, respectively, a new objective function can be de-
fined by
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Q(F |λ, β̃,F̂o)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i a j − (X>

i jβ̃)X̃>
i b j}2

×Kh(X>
i jβ̃)+ 1

2

dn−1∑
k=0

p′
λk

(||âo
(k)||)

||âo
(k)||

a>
(k)a(k)

+ 1
2

dn−1∑
k=0

p′
λk+dn

(||b̂o
(k)||)

||b̂o
(k)||

b>
(k)b(k)+C,

(4.18)

where C stands for the constant terms when the prelim-
inary estimator F̂o = (f̂o

1, . . . , f̂o
n)> are provided. Then, in

matrix notation, the minimization problem of (4.18) is
equivalent to minimizing

1
n

n∑
j=1

(Y− X̃>
j f j)>Wj(Y− X̃>

j f j)

+ 1
2

n∑
j=1

f>j Σλ(F̂o)f j +C, (4.19)

with respect to F= (f1, . . . ,fn)> = (f(0), . . . ,f(2dn−1)) ∈Rn×2dn,
where Wj = diag{Kh(X>

i jβ̃), . . . ,Kh(X>
i jβ̃)} ∈Rn×n, F̂o = (f̂o

(0),
. . . , f̂o

(2dn−1))≡ (âo
(0), . . . , â

o
(dn−1), b̂

o
(0), . . . , b̂

o
(dn−1)) is the prelim-

inary estimator of F and Σλ(F̂o) is an 2dn×2dn diagonal
matrix as

Σλ(F̂o)= diag
{ p′

λ0
(||f̂o

(0)||)
||f̂o

(0)||
, . . . ,

p′
λ2dn−1

(||f̂o
(2dn−1)||)

||fo
(2dn−1)||

}
.
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The solution of the penalised least squares (4.19) can be
found by

f̂p
j = {X̃ jWjX̃

T
j +

n
2
Σλ(F̂o)}−1X̃ jWjY,

and hence we obtain the resulting estimators F̂p = (f̂p
1 , . . . ,

f̂p
n)T. Note that we have suppressed the dependency of

these quantities on λ.

3. Step 3: By applying the estimator F̂p = (f̂p
1 , . . . , f̂p

n)T with
f̂ j ≡ {(âp

j )>, (b̂p
j )>}>, j = 1, . . . ,n, we now search for the

preliminary estimator for β, denoted by β̂
o
, by solving

β̂o = argmin
β

L (β|F̂p), (4.20)

the estimator β̂
o

is the minimizer of the function

L (β|F̂p)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i âp

j − X̃>
i b̂p

j X>
i jβ}2Kh(X>

i jβ).

(4.21)
with respect to β = (β1, . . . ,βdn)

> ∈ Rdn. Note that β not
only appears in the in the least squares part of the target
function (4.21), but also involves in the kernel function.
In order to obtain a closed form solution, we follow ex-
actly the same way in section 3 by approximating the
target function (4.21) by

L (β|F̂p)= 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i âp

j − X̃>
i b̂p

j X>
i jβ}2Kh(X>

i jβ̃),

(4.22)
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where β̃ is the estimator for β used in Step 1 and Step 2.
Rewriting the minimization problem yields

β̂
o = argmin

β

1
n2

n∑
j=1

n∑
i=1

{Ci j −Bi jβ}2Wi j, (4.23)

where

Ci j =Yi − X̃>
i âp

j ,

Bi j = X̃>
i b̂p

j X>
i j = X̃>

i b̂p
j (Xi −X j)>,

Wi j = Kh(X>
i jβ̃)= Kh((Xi −X j)>β̃).

We next formulate the double sum of weighted squares
in (4.23) into a traditional weighted least squares. This
can be achieved by constructing an n2×1 vector C, an
n2 ×dn matrix B and an n2 ×n2 diagonal matrix W as
follows:

C= (c11, . . . , cn1, c12, . . . , cn2, . . . , c1n, . . . , cnn)>, (4.24)

B= (B11, . . . ,Bn1,B12, . . . ,Bn2, . . . ,B1n, . . . ,Bnn)>,

(4.25)

W= diag{W11, . . . ,Wn1,W12, . . . ,Wn2, . . . ,W1n, . . . ,Wnn}.

(4.26)

Then, it leads to a minimization problem of a traditional
weighted least squares

β̂
o = argmin

β
(C−Bβ)>W(C−Bβ).
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Following from least squares theory, we compute the
preliminary estimator β̂

o = (β̂o
1, . . . , β̂o

dn
) by

β̂
o = (B>WB)−1(B>WC). (4.27)

4. Step 4: Using the estimates F̂p = (f̂p
1 , . . . , f̂p

n)T with f̂ j ≡
{(âp

j )>, (b̂p
j )>}>, j = 1, . . . ,n, we consider the minimization

problem of the locally weighted SCAD function defined
as

Q(β |λ,F̂p) = 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i âp

j − X̃>
i b̂p

j X>
i jβ}2Kh(X>

i jβ̃)

+
dn∑

k=1
pλ̃k

(|βk|), (4.28)

with respect to β= (β1, . . . ,βdn)> ∈Rdn, where λ̃= (λ̃1, . . . ,
λ̃dn)> ∈Rdn is the vector of tuning (regularization) para-
meters. According to the idea of local quadratic approxi-
mation, with given preliminary estimate β̂

o = (β̂o
1, . . . , β̂o

dn
),

the penalty functions in (4.28) can be locally approxi-
mated by

pλ̃k
(|βk|)≈ pλ̃k

(|β̂o
k|)+

1
2

p′
λ̃k

(|β̂o
k|)

|β̂o
k|

[(β2
k − (β̂o

k)2],

for βk ≈ β̂o
k,

(4.29)

in other words,

[pλ̃k
(|βk|)]′ ≈

p′
λ̃k

(|β̂o
k|)

|β̂o
k|

βk.
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Consequently, by (4.28) and (4.29), we define a new ob-
jective function

Q(β |λ,F̂p, β̂
o
) = 1

n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i âp

j − X̃>
i b̂p

j X>
i jβ}2

×Kh(X>
i jβ̂

o
)+ 1

2

dn∑
k=1

p′
λ̃k

(|β̂o
k|)

|β̂o
k|

βk
2

+C̄, (4.30)

where C̄ stands for the constant terms when the pre-
liminary estimator β̂

o = (β̂o
1, . . . , β̂o

dn
) are provided. Now,

we would like to calculate the estimator of β,denoted by
β̂

p = (β̂p
1 , . . . , β̂p

dn
) such that

β̂
p = argmin

β
Q(β |λ,F̂p, β̂

o
). (4.31)

Similar to the way in Step 3, to solve (4.31), we rewrite
(4.30) as

Q(β |λ,F̂p, β̂
o
) = 1

n2

n∑
j=1

n∑
i=1

{Ci j −Bi jβ}2Wi j

+1
2

dn∑
k=1

p′
λ̃k

(|β̂o
k|)

|β̂o
k|

βk
2+ C̄, (4.32)

where

Ci j =Yi − X̃>
i âp

j ,

Bi j = X̃>
i b̂p

j X>
i j = X̃>

i b̂p
j (Xi −X j)>,

Wi j = Kh(X>
i jβ̃)= Kh((Xi −X j)>β̃).
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With exactly the same notations (4.24), (4.25) and (4.26)
in Step 3, function (4.32) can be written in the matrix
notation as

Q(β |λ,F̂p, β̂
o
)= (C−Bβ)>W(C−Bβ)+ 1

2
β>Σλ̃(β̂

o
)β+ C̄,
(4.33)

where

Σλ̃(β̂
o
)= diag

{ p′
λ̃1

(|β̂o
1|)

|β̂o
1|

, . . . ,
p′
λ̃dn

(|β̂o
dn
|)

|β̂o
dn
|

}
is an dn×dn diagonal matrix. The solution of the mini-
mization problem of (4.33) can be found by

β̂
p = (B>WB+ n

2
Σλ̃(β̂

o
))−1(B>WC). (4.34)

In terms of the identifiability condition assumed in
(4.14), the estimator β̂

p
should be rescaled to satisfy

the constraints ||β̂p|| = 1, β̂p
1 > 0.

Go back to Step 1 and update the estimate β̃ with the
scaled β̂

p
and repeat above four steps until convergence. Con-

cretely, in our implementation, the convergence condition are
defined as follows: when the estimates of index parameters
from the t-th iteration, β̂

p(t)
, satisfy

max
{∣∣∣β̂p(t)

1 − β̂p(t−1)
1

β̂
p(t−1)
1

∣∣∣, . . . , ∣∣∣β̂p(t)
dn

− β̂p(t−1)
dn

β̂
p(t−1)
dn

∣∣∣}<ϑ,
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where t = 1, . . . ,T is the t−th iteration in the procedures, and
ϑ, a positive number close to 0, is a threshold, the iterative
procedure is convergence. Practically, we set the threshold of
convergence be ϑ= 0.01.

When the convergence condition has been fulfilled, we
obtain the resulting estimators form the iterative procedure,
which are denoted by β̌= (β̌1, . . . , β̌dn)> ∈Rdn and

F̌=
( ǎ1, b̌1

... ...
ǎn, b̌n

)
= (ǎ(0), . . . , ǎ(dn−1), b̌(0), . . . , b̌(dn−1)) ∈Rn×2d,

respectively.
By applying the foregoing iterative procedure, the result-

ing estimators of insignificant coefficients and irrelevant in-
dex parameters are expected to be shrunk to very small values.
Sequentially, in our implementation, we employ thresholds
to automatically eliminate the resulting estimators which
are smaller than the corresponding thresholds, and thus we
obtain the penalised estimator with sparsity.

Specifically, the implementation can be broken down as
follows:

1. We assume that the thresholds {θ1,θ2,θ3} is small enough
and there exists three subsets S̄1, S̄2 and S̄3 of S0 ≡
{0, . . . ,dn−1}. If ||ǎ(k)||, k ∈ S0, with respect to the coeffi-
cient fk(·), are smaller than θ1, we set ||ǎ(k)|| = 0 and the
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subset S̄3 as

S̄3 = {k : k ∈ S0, ||â(k)|| > 0}.

2. If ||b̌(k)||, k ∈ S̄3 , with respect to the first derivative of
fk(·), is smaller than the thresold θ2, it will be automati-
cally set to 0. Accordingly, we define the subsets S̄1 and
S̄2 by

S̄1 = {k : k ∈ S0, ||â(k)|| > 0, ||b̌(k)|| > 0};

S̄2 = {k : k ∈ S0, ||â(k)|| > 0, ||b̌(k)|| = 0}.

To avoid the abuse of notation, we denote the ultimate
sparse estimates for coefficients fk(·), k ∈ S0 as

F̂= (â(0), . . . , â(dn−1), b̂(0), . . . , b̂(dn−1)) ∈Rn×2d,

among which, for k ∈ S̄1, â(k) = ǎ(k) and b̂(k) = b̌(k); for
k ∈ S̄2, â(k) = ǎ(k) and b̂(k) = 0; the rest â(k) and b̂(k) equal
to 0.

3. Similarly, assuming that S̃ is the subset of S ≡ {1, . . . ,dn},
if

∣∣β̌k
∣∣< θ3, k ∈ S, we set β̌k = 0 and define the subset S̃

as
S̃ = {k : k ∈ S, β̌k = 0}.

Then, β̌ becomes a sparse estimates for index parameter
β. By rescaling β̌ to satisfy the constraints ||β|| = 1 and
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β1 > 0, we obtain the ultimate sparse estimates for index
parameter β, which are denoted by

β̂= (β̂1, . . . , β̂dn)>.

It is necessary to point out that we have suppressed the
dependency of the ultimate estimates on λ̃. Furthermore, it
can be seen that in the foregoing computational algorithms,
we shrink the irrelevant components of the underlying model
to zero only after the iterative procedure completed. This
implementation leads to a “double check” mechanism which
works as follows: if after an iteration a coefficient or an in-
dex parameter is shrunken to be insignificant, it still has
an opportunity to be reselected into the model in the follow-
ing iteration. Thanks to this mechanism, our algorithm can
overcome the main drawback in typical local quadratic approx-
imation, which is that once a coefficient is lessened to zero, it
will remain at zero. Meanwhile, since we do not eliminate the
insignificant components in each iteration, the algorithm is
not very sensitive to the choice of initial values, namely, the
choice of initial estimate β̃ of β. We will show the ultimate
estimates are not sensitive to the choice of initial estimate in
our simulation study in Section 7.1.

67



CHAPTER 4. MODEL SELECTION IN HIGH-DIMENSIONAL

SIVC MODELS

4.2.3 Modification of the proposed
algorithm

In the proposed iterative procedure, we notice that in solu-
tions (4.27) and (4.34) within Step 3 and Step 4, respectively,
the memory required for execution grows at order O(n2dn). It
is acceptable to conduct the proposed algorithm in the mod-
est dimensional models, but in the high dimensionality, care
shall be taken from a computational point of view to avoid
exceeding the limitations of memory.

To address this issue, in practical implementation, we
consider a slight modification on computing two quantities
B>WB and B>WC involving in both (4.27) and (4.34). Based
on the notation (4.24) - (4.26), we first denote an n×dn matrix
B j, an n×1 vector C j and an n×n matrix W j as follows:

B j =
( B1 j

...
Bn j

)
=

( X̃>
1 b̂p

j (X1−X j)>
...

X̃>
n b̂p

j (Xn−X j)>

)
,

C j =
( Ci j

...
Ci j

)
=

( Y1− X̃>
1 âp

j
...

Yn− X̃>
n âp

j

)
,

and

W j=diag{W1 j, . . . ,Wn j}= diag{Kh(X>
1 jβ̃), . . . ,Kh(X>

n jβ̃)}.
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Then, (4.27) and (4.34) can be calculated using the following
equations

B>WB=
n∑

j=1
B>

j W jB j, (4.35)

B>WC=
n∑

j=1
B>

j W jC j. (4.36)

According to (4.35) and (4.36), we actually figure out (4.27) by

β̂
o = (

n∑
j=1

B>
j W jB j)−1(

n∑
j=1

B>
j W jC j). (4.37)

Similarly, in practice, we compute (4.34) by

β̂
p = (

n∑
j=1

B>
j W jB j + n

2
Σλ̃(β̂

o
))−1(

n∑
j=1

B>
j W jC j). (4.38)

In (4.37) and (4.38) the space complexity are reduced to
O(ndn), which is acceptable even in the high dimensional
situation. Moreover, as the trade-off between the space com-
plexity and time cost should be taken into consideration, we
do not apply an algorithm to reduce the space complexity to
O(1). The reason is, in programming, the time cost of most
algorithms applied for matrix multiplication is less than of
the nested loops.
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SELECTION OF BANDWIDTH AND

TUNING PARAMETER

In this chapter, we will explore the selection of bandwidth and
tuning parameter. Both of them play a very important role in
our proposed approach.

Specifically, the objective function (4.13) in our algorithm
actually contains two parts which can be intuitively expressed
as follows:

Q(F,β)=L (F,β)+P(F,β),

where L (·) is the loss function, which measures the fitting
of the model and P(·) refers to penalty functions or regular-
ization terms, which control the complexity of the model. In
our proposed method, the choice of bandwidth is rather cru-
cial to the model fitting and the SCAD penalty applied to
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control the model complexity relies on the proper choice of
tuning parameters. Moreover, both bandwidth and tuning pa-
rameter will simultaneously impact the model selection and
estimation, since both of these two hyper-parameters can con-
trol the trade-off between the bias and variance in resulting
estimators.

We will explore the selection of bandwidth in Section 5.1
and address how to choose tuning parameter in Section 5.2.

5.1 Bandwidth selection

In this section, we discuss the choice of the bandwidth h
involved in the estimation of fk(·) and β in SIVC model.

In order to select the bandwidth in a particular scale,
instead of directly tuning the global bandwidth h, we will
tune the percentage of the whole range of the estimated index
covered by the global bandwidth, which is defined as follows

H = h
max{Ẑ1, . . . , Ẑn}−min{Ẑ1− Ẑn}

×100%

where h is the value of global bandwidth and Ẑi = X>
i β̂, i =

1, . . . ,n, for a given estimate β̂ of β.
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5.1.1 Sensitivity to the choice of bandwidth

By defining the relative bandwidth H, we are going to employ
a data-driven method to evaluate the performance of the
estimation with a sequence of bandwidth parameters from 0
to 100%.

Let (Xi,Yi), i = 1, . . . ,n denote the observations, it states in
Fan and Gijbels(1996) that a theoretical optimal bandwidth
is obtained by minimizing the conditional Mean Square Er-
ror (MSE) given X= (X1, . . . ,Xn) or the conditional weighted
Mean Integrated Square Error (MISE) given X= (X1, . . . ,Xn).
Accordingly, the criteria used for assessing the performance
of the resulting estimates are their MSE and Relative MISE.

Specifically, we employ MSE to measure the goodness of
the estimated index parameter β̂, which is defined as follows:

MSE= 1
dL

L∑
l=1

dn∑
k=1

(β̂l
k −βk)2,

where β̂l
k is either the unpenalised estimator or the penalised

estimator from the l-th replication in a simulation, βk is the
true index parameter; and we evaluate the goodness of estima-
tors with respect to coefficients fk(·), k = 0, . . . ,dn−1 in terms
of the relative MISE (RMISE), which can be approximated by

RMISE≈ 1
L

L∑
l=1

[

∑dn−1
k=0

∑n
j=1( f̂ l

k(z j)− fk(z j))2∑dn−1
k=0

∑n
j=1 fk(z j)2

],

72



CHAPTER 5. SELECTION OF BANDWIDTH AND TUNING

PARAMETER

where f̂ l
k(·), k = 0,1, . . . ,dn −1, l = 1,2, . . . ,L, is either the un-

penalised estimator or the penalised estimator of the k− th
functional coefficient in the l−th replication and z j = xT

j β̂, j =
1, . . . ,n.

Now, we use the grid-search approach based on a simu-
lation study to illustrate the relationship between different
bandwidth and the estimation accuracy, namely, to explore
the sensitivity of the estimation accuracy to the choice of
bandwidth. Consider the following example

Yi = 2cos(0.5πZi)+ X i1+4exp(−Z2
i )X i2+εi, (5.1)

with Zi =XT
i β= 1

3
(2X i1+2X i2+ X id),

where Xi = (X i1, X i2, . . . , X id)T, for i = 1, . . . ,n, are normally
distributed independent random vectors and noise εi are in-
dependent N(0,1) random variables. The regression models
are based on the form (4.2) with β= 1

3(2,2,0, . . . ,1)T.
We first consider the underlying regression model with a

modest dimension that d = 7. Then, we conduct simulations
on the model by applying the unpenalised approach developed
in Section 3.2.2 and the proposed penalised approach in Sec-
tion 4.2.2, respectively. We use a uniform tuning parameter
λ f = 4 for selecting the coefficients f (·)k and another uniform
tuning parameter λβ = 40 for obtaining the penalised esti-
mates of index parameters. The kernel function k(·) we used
through out this section and the following numerical analyses
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is Epanechnikov kernel K(t) = 0.75(1− t2)+. We simulate in
1000 datasets, each with the sample size n = 600.

The simulation results about how the choice of bandwidth
impact the estimation of index parameter β and coefficient
fk(·) are given in Figure 5.1 and Figure 5.2, respectively.

The finding from the results is threefold. Firstly, the choice
of bandwidth is essential, since in all the cases, either MSE or
RMISE can be remarkably reduced to a reasonable value by
a careful choice of bandwidth. Secondly, there indeed exists
the optimal bandwidth for penalised estimate of β, which is
inside the range (0.15,0.35) and the optimal bandwidth for
penalised estimates of fk(·) locates in the range (0.25,0.35).
Thirdly, the penalised estimators perform significantly better
than the unpenalised estimators and are more sensitive to
the choice of bandwidth.
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Figure 5.1: Sensitivity of MSE to bandwidth H
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NOTE: Simulation results: (a) sensitivity of MSE of penalised esti-

mates to H; (b) sensitivity of MSE of unpenalised estimates to H.

In both cases: solid line, estimate on the underlying model with

noise εi; dashed line, estimate on the underlying model without

noise.

75



CHAPTER 5. SELECTION OF BANDWIDTH AND TUNING

PARAMETER

Figure 5.2: Sensitivity of RMISE to bandwidth H
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without noise.
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Furthermore, we also execute a simulation on the underly-
ing model with dimension d = 20 by merely using penalised
approach to demonstrate the sensitivity of estimation accu-
racy to the bandwidth in the high-dimensional situation. Here,
we set an uniform tuning parameter for selecting the coeffi-
cients f (·)k as λ f = 5 and the other uniform tuning parameter
for selecting index parameters be λβ = 50. We also conduct
simulation with sample size n = 600 in a total of 1000 repli-
cations. The results are reported in Figure 5.3 and 5.3. From
these two figures, we remark that in the high-dimensional
model, both the optimal choice of bandwidth and the sensi-
tivity to the choice of this hyper-parameter are fairly similar
to the situation in the modest-dimensional model. The opti-
mal bandwidth for penalised estimates of β exists in range
(0.15,0.35) and the optimal bandwidth for penalised estimates
of fk(·) is in the range (0.25,0.35).

5.1.2 Bandwidth selection in practical
implementation

Since in the real dataset, the true parameters are unknown,
the MSE-criterion or RMISE-criterion discussed in Section
5.1 is unable to be applied.

The cross-validation is a possible way to select the band-
width. Wu et al.(1998) proposed to use this statistic to choose
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Figure 5.3: Sensitivity of MSE to bandwidth H in high-
dimensional situation
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the bandwidth.
However, it has been shown in Yang (2005) that cross-

validation is asymptotically equivalent to the Akaike informa-
tion criterion (AIC) and hence they share similar performance.
Meanwhile, it is also known that the hyper-parameters se-
lected by AIC may lead to overfitting (Shao, 1997). Therefore,
the cross validation cannot consistently identify the optimal
bandwidth, whose choice always leads to a relatively high
variance in the resulting estimates. The other shortcoming
is that the computational expense of a grid-search approach
based on cross validation is very high. From our experience, in
the high dimensional situation, the parallel computing should
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Figure 5.4: Sensitivity of RMISE to bandwidth H in high-
dimensional situation
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be applied to speed up the computation of cross-validation.
As it is supported by the empirical evidence in Section

5.1.1 that the ultimate estimates from our proposed approach
are not very sensitive to the choice of the bandwidth as long as
H is chosen to be within a reasonable range, we recommend
to follow the idea of Li, Ke and Zhang (2015) to choose the
bandwidth as H = 0.6(dn/n)0.2 in the practical implementa-
tion.
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5.2 Selection of tuning parameter

Selection of the tuning (regularization) parameters is essen-
tial to the procedure proposed in Section 4 for the purpose of
model selection and structure specification. The tuning pa-
rameter vector λ = (λ0,λ1, · · · ,λ2dn−1, λ̃1, · · · , λ̃dn) is of dimen-
sion 3dn, and to simultaneously choose a total of 3dn tuning
parameters is very challenging. Therefore, we consider a 2-
dimensional problem about λ = (λ f ,λβ) ∈ R2, which can be
selected by the generalized information criterion (GIC) pro-
posed by Fan and Tang (2013).

Since the non-zero coefficients of the models may consist
of both varying coefficients and the constant coefficients, we
need to work out how many constant parameters each func-
tional parameter amounts to. We follow the idea of Cheng,
Zhang and Chen (2009), which suggests that when sample size
n is sufficiently large, in the local linear fitting, an unknown
functional parameter approximately amounts to 1.028571h−1

constant parameters when Epanechnikov kernel is applied.
Consequently, the tuning parameters λ= (λ f ,λβ) ∈R2 can be
selected according to the following criterion

GIC(λ f ,λβ)= log(RSSλ)+ an

n
× (d̂ f +1.028571h−1d̃ f ), (5.2)

where

an = log(log(n)) log(1.028571h−1dn+dn),
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d̂ f is the number of significant constant parameters, d̃ f is
the number of the significant functional parameters and RSSλ

is defined as

RSSλ = 1
n

n∑
i=1

{Yi −
dn∑

k=0
f̂k(λ f )(xT

i β̂(λβ))xik}2.

Then, the tuning parameter λ= (λ f ,λβ) ∈R2 is obtained by

λ̂= argmin
λ f ,λβ

GIC(λ f ,λβ).

In the practical implementation, we apply an iterative algo-
rithm to get the optimal tuning parameters.

1. Step 1: by specifying an initial value of λ0
β

and based
on GIC in (5.2), we select the tuning parameter λ f ∈R1

through

GICλ f = log(RSSλ0)+ ān

n
× (d̂ f f +1.028571h−1d̃ f f ),

where

ān = log{log(n)} log(1.028571h−1dn),

d̂ f f is the number of relevant covariates with constant
coefficients, d̃ f f is the number of relevant covariates
with varying coefficients and RSSλ0 is

RSSλ0 = 1
n

n∑
i=1

{Yi −
dn∑

k=0
f̂k(λ̂ f )(x

T
i β̂(λ0

β
))xik}2.
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Then, we determine the tuning parameter λ f ∈R1 by

λ̂ f = argmin
λ f

GICλ f .

2. Step 2: by updating λ̂ f , the tuning parameter of index
parameter λβ ∈R1 is selected by

λ̂β = argmin
λβ

GICλβ,

with

GICλβ = log(RSSλ1)+n−1 log(log(n)) log(dn)×d fλβ,

where d fλβ is the number of significant index parame-
ters and RSSλ1 is

RSSλ1 = 1
n

n∑
i=1

{Yi −
dn∑

k=0
f̂k(λ̂ f )(x

T
i β̂(λ̂β))xik}2.

Now, we use a simulation study to illustrate the accuracy
of GIC and show that the sensitivity to the choice of λ f and λβ
are different. We introduce a criterion termed "Correct Rate"
to measure the performance of model selection. Whenever
an estimated model is exactly the true model that includes
all the relevant elements but does not contain any irrelevant
components, we classify it as a "correct model". The ratio of
obtaining the "correct model" from all the replications in the
simulation is defined as the "Correct Rate".

82



CHAPTER 5. SELECTION OF BANDWIDTH AND TUNING

PARAMETER

We first fix λβ = 40 and search the performance of GIC with
respect to λ f . We conduct simulations on the same simulated
example (5.1) described in Section 5.1.1 with dimensions d =
7 and d = 20. We execute the simulation with sample size
n = 600 in a total of 1000 replications. The simulated results
are reported in Table 5.1 and also depicted in Figure 5.5 and
Figure 5.6.

Figure 5.5: The performance of GICλ f in the modest dimen-
sionality
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Correct Rate and GIC and in the model with 7 dimensions

Tuning parameter  λf
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NOTE: The solid curve indicates the Correct Rate and the dashed curve

refers to the GIC with respect to different tuning parameters λ f .
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Table 5.1: The performance of GIC with respect to λ f

λ f
d = 7 d = 20

GICλ f CR GICλ f CR
1 0.5302 0.725 0.8153 0.223
2 0.5234 0.938 0.5727 0.802
3 0.5158 0.954 0.6277 0.788
4 0.5145 0.973 0.5785 0.905
5 0.5244 0.971 0.5702 0.921
6 0.5269 0.970 0.5451 0.944
7 0.5375 0.965 0.5635 0.934
8 0.5672 0.954 0.6226 0.907
9 0.6479 0.942 0.6534 0.862
10 0.7434 0.876 0.7370 0.783
12 0.8765 0.633 0.8682 0.641
15 1.0171 0.400 1.0188 0.457
20 1.2202 0.358 1.2106 0.388
30 1.4530 0.281 1.4244 0.224

NOTE: The label “CR” represents “Correct Rate”; d=7 and d=20 refer

to the simulation conducted on the model with 7 dimensions

and 20 dimensions, respectively.
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Figure 5.6: GIC with respect to different tuning parameters
λ f in the high dimensionality
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NOTE: The solid curve indicates the Correct Rate and the dashed curve

refers to the GIC with respect to different tuning parameters λ f .

It can be seen from Table 5.1 that GIC is able to precisely
detect the optimal tuning parameter λ f and from Figure 5.5
and Figure 5.6, we notice that this criterion can consistently
identify the pattern of the corresponding correct rates to a
sequence of different tuning parameters. All the simulated
results corroborate that the GIC works quite well in both
modest dimensional and the high dimensional models.

Then, by fixing λ f , we conduct another simulations to ob-
tain the performance of GIC concerning λβ in the model with
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7 dimensions and 20 dimensions, respectively. We intuitively
present the simulated results in Figure 5.7 and Figure 5.8
and reported the details in Table 5.2.

Figure 5.7: GIC with respect to different tuning parameters
λβ in the modest dimensionality

Correct Rate and GIC and in the model with 7 dimensions

Tuning parameter  λ β

1 4 7 10 15 20 25 30 35 40 45 50

NOTE: The solid curve depicts the Correct Rate and the dashed curve

indicates the GIC concerning different tuning parameters λβ.
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Figure 5.8: GIC with respect to different tuning parameters
λβ in the high dimensionality

Correct Rate and GIC and in the model with 20 dimensions

Tuning parameter  λ β

1 4 7 10 15 20 25 30 35 40 45 50

NOTE: The solid curve depicts the Correct Rate and the dashed curve

indicates the GIC concerning different tuning parameters λβ.

We can see from the Table 5.2 that the goodness of model
selection is not very sensitive to the choice of λβ but the tuning
parameter λβ determined by the GICλβ is precisely the opti-
mal one. In addition, we notice that that the sensitivity to λβ
is obviously different from the sensitivity to the λ f , which can
be regarded as an empirical evidence that considering the 2-
dimensional problem of tuning parameter is more reasonable
than only choosing one globally unified tuning parameter.

To conclude, the aforementioned simulation results corrob-
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Table 5.2: The performance of GICλβ

λβ
d=7 d=20

GICλβ CR GICλβ CR
1 0.4055 0.947 0.3846 0.931
2 0.4091 0.969 0.3820 0.938
3 0.4097 0.968 0.3817 0.939
4 0.4191 0.959 0.3781 0.940
5 0.4063 0.964 0.3824 0.931
6 0.4094 0.966 0.3743 0.937
7 0.4114 0.959 0.3762 0.931
8 0.4090 0.967 0.3747 0.937
9 0.4092 0.965 0.3787 0.935
10 0.4088 0.969 0.3762 0.934
11 0.4042 0.975 0.3712 0.940
12 0.4088 0.956 0.3748 0.927
15 0.4042 0.972 0.3735 0.943
20 0.4043 0.973 0.3695 0.944
25 0.4044 0.969 0.3677 0.947
30 0.4038 0.981 0.3646 0.949
35 0.4095 0.966 0.3697 0.939
40 0.4041 0.973 0.3676 0.944
45 0.4057 0.971 0.3698 0.943
50 0.4108 0.965 0.3721 0.937

NOTE: The label “CR” represents “Correct Rate”; d=7 and d=20 refer

to the simulation conducted on the model with 7 dimensions

and 20 dimensions, respectively.
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orates that the GIC can identify the true model consistently.
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6
ASYMPTOTIC PROPERTIES

In this chapter, we are going to present the asymptotic proper-
ties of the model selection and estimation procedure in Section.
Before that, we will list technical conditions needed for the
asymptotic properties of our proposed method in Section 6.1.
The detailed proofs of these theoretical results are given in
Chapter 9.

Before presenting the theoretic results, we first rewrite the
objective function (4.13), because the identification of constant
functions has to be based on the estimates of their derivatives,
which are somewhat unreliable. We, therefore, propose the
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following alternative to (4.13):

Qn(a,F,B,β|λ) = 1
n2

n∑
j=2

n∑
i=1

{Yi − X̃>
i (a+ f j)− (X>

i jβ/hn)X̃>
i b j}2

×Khn(X>
i jβ)

+ 1
n2

n∑
i=1

{Yi − X̃>
i a− (X>

i1β/hn)X̃>
i b1}2

×Khn(X>
i1β)+

d−1∑
k=0

pλk(|ak|+ |f(k)|)

+
d−1∑
k=0

pλk+d(|f(k)|)+
d∑

k=1
pλ̃k

(|βk|), (6.1)

which is minimized with respect to β= (β1, · · · ,βd)> ∈Rd, a=
(a0,a1, · · · ,ad−1)>, B = (b jk) = [b1, · · · ,bn]> = [b(0), · · · ,b(d−1)] ∈
Rn×d, and F = ( f jk) = [f2, · · · ,fn]> = [f(0), · · · ,f(d−1)] ∈ R(n−1)×d,
where hn is the smoothing parameter, such that hn → 0 as
n →∞. Write the minimiser as β̂, â= (â0, · · · , âd−1)>, B̂ and F̂,
respectively. We note that the columns of F̂, i.e., {f̂(k), k ∈ S0},
are respectively estimates of

f(k) = ( fk(X>
1β), · · · , fk(X>

nβ))>, k ∈ S0;

while {b̂(k), k ∈ S0}, the columns of B̂, are respectively esti-
mates of the derivatives of the functional coefficients

ḟn
(k) = hn( ḟk(X>

1β), · · · , ḟk(X>
nβ))>, k ∈ S0.

The function Qn(a,F,B|λ) in (6.1) is formed in such manner
so that, for k = 0, · · · ,d−1, âk acts as an estimate of fk(X>

1β0),
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while f̂(k), as an estimate of ( fk(X>
2β0)− fk(X>

1β0), · · · , fk(X>
nβ0)−

fk(X>
1β0))>, which is a vector of zeros if fk(.) is a constant

function. With the penalty imposed on |f(k)|, sparse solutions
(estimates) could be induced for these vectors. Because of a
slight abuse of notation, we emphasise that notations a, F
and B are defined differently from the previous chapters and
we merely use the newly defined notations in this chapter and
the Chapter 9. Then, based on (6.1) we rewrite the proposed
iterative procedure with brevity. Start with an initial estimate
β̃ of β0.

• Step 1: Minimize the quantity below with respect to a, F
and B:

Qn(a,F,B|β̃,λ) := 1
n2

n∑
j=2

n∑
i=1

{Yi − X̃>
i (a+ f j)− (X>

i jβ̃/hn)X̃>
i b j}2

Khn(X>
i jβ̃)

+ 1
n2

n∑
i=1

{Yi − X̃>
i a− (X>

i1β̃/hn)X̃>
i b1}2

×Khn(X>
i1β̃)

+
d−1∑
k=0

pλk(|ak|+ |f(k)|)+
d−1∑
k=0

pλk+d(|f(k)|);
(6.2)

denote the minimizer as â(β̃), F̂(β̃) = (f̂2(β̃), · · · , f̂n(β̃))>,
and B̂(β̃)= (b̂1(β̃), · · · , b̂n(β̃))>, respectively. Note that for
ease of notation, we have suppressed the dependency of
these quantities on complexity parameter vector λ.
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• Step 2: Minimize

1
n2

n∑
j=2

n∑
i=1

{Yi − X̃>
i (â(β̃)+ f̂ j(β̃))− (X>

i jβ/hn)X̃>
i b j(β̃)}2Khn(X>

i jβ̃)

+ 1
n2

n∑
i=1

{Yi − X̃>
i â(β̃)− (X>

i1β/hn)X̃>
i b1(β̃)}2Khn(X>

i1β̃)+
d∑

k=1
pλ̃k

(|βk|),

(6.3)

with respect to β = (β1, · · · ,βd)> ∈ Rd; denote the mini-
mizer as β̂.

Go to Step 1, and replace β̃ with β̂ and repeat these two
steps until convergence. denote the ultimate estimates as â=
(â0, · · · , âd−1)>, B̂= (b̂1, · · · , b̂n)>, F̂= (f̂2, · · · , f̂n)> = (f̂(0), · · · , f̂(d−1))
and β̂= (β̂1, · · · , β̂d), respectively. Again, we have suppressed
the dependency of these final estimates on λ. Provided that
the initial estimator β̃ is close enough to β0, the asymptotic
properties of these estimators are independent of the choice
of β̃; see, Theorem 6.2.1 for more details.

6.1 Technical Conditions

Let δn = (nhn/ logn)−1/2, τn = h2
n + δn and Θn = {β : |δβ̃| ≤

c1n−1/2+c2}, for some constants c1 > 0 and 0< c2 < 1/10. Write
T = {x>β : x ∈ D,β ∈Θn}. For any β ∈Θn, let δβ = β−β0 and
denote by f (·|β), the probability density of X>β; for any given
x ∈D, write f (x>β|β) as f (x|β).
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Let X̃i(1) and X̃i(2) are sub-vectors of X̃i indexed by S1 and
S1 ∪S2, respectively, i.e. X̃i(1) = (X ik,k ∈ S1), X̃i(2) = (X ik,k ∈
S1∪S2). Also for any β ∈Θn, and t ∈T , define the following:

Ω(t|β)= E(X̃iX̃
>
i |X>

i β= t),

Ω11(t|β)= E{X̃i(1)X̃
>
i(1)|X>

i β= t},

Ω22(t|β)= E{X̃i(2)X̃
>
i(2)|X>

i β= t},

Ω20(t|β)= E{X̃i(2)X̃
>
i |X>

i β= t},

V (t|β)= (Ω22−Ω21Ω
−1
11Ω12)(t|β),

C(t|β)= E{(X̃>
i(1)ḟ0(x))2XixX>

ix|X>
i β= t},

where all the expectations are taken with respect to Xi con-
ditional on X>

i β = t. With a slight abuse of notation, write
Ω(x>β|β) as Ω(x|β), and terms Ω11(x|β), Ω22(x|β), Ω12(x|β, V (x|β)

and C(x|β) should be interpreted in a similar manner. Let
C0 = E[( f .C)(X|β0)], with ( f .C)(x|β) ≡ f (x|β)C(x|β), and C02

denote the (d − d0)× (d − d0) sub-matrix from the lower-right
corner of C0.

The following conditions are assumed throughout the pa-
per unless stated otherwise.

(C1) There exists some constant α, such that for any k ∈ S1,
the second order derivative of function fk(.), is Hölder
continuous with exponent α.
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(C2) The density function f (t|β) is uniformly bounded away
from zero in t ∈T and β ∈Θn. Its second order (partial)
derivatives are uniformly bounded as functions of β ∈Θn

and t ∈T .

(C3) C02 is of rank d−d0−1 and λ0(x), the smallest eigen-
value of Ω(x|β0), is such that

λ0 =minx∈D
λ0(x)> 0. (6.4)

(C4) K(.) is a symmetric density function with a compact
support and a second moment equal to one.

(C5) The smoothing parameter hn ∝ n−1/5, while the com-
plexity parameter vector
λ= (λ0, · · · ,λ2d−1, λ̃1, · · · , λ̃d)> is chosen such that |λ|→ 0,
as n →∞.

6.2 Asymptotic properties

Write f0(X1) ≡ a0 = (a0
k, · · · ,a0

d−1)>, a0
(2) = (a0

k,k ∈ S1 ∪S2); for
j = 2, · · · ,n, f0

j = f0(X j)−f0(X1)= ( f 0
jk,k ∈ S0), and f0

j(1) = ( f 0
jk,k ∈

S1); for j = 1, · · · ,n, b0
j = ḟn0(X j). Correspondingly, we use â(2)

and f̂0
j(1) to denote the estimates of a0

(2) and f0
j(1), subvectors

of â and f̂ j. Write β02 ≡ (β0,d0+1, · · · ,β0d)>, the vector contain-
ing non-zero elements of β0, and consider the corresponding
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partition of β̂= (β̂
>
1 , β̂

>
2 )>. Further define

M0 = E{(Ω22. f )(X|β0)},

M(1)(2)(x|β)= E[X̃>
i ḟ0(x)Xix(2)X̃>

i(1)|X>
i β= x>β],

M(2)(2)(x|β)= E[X̃>
i ḟ0(x)Xix(2)X̃>

i(2)|X>
i β0 = x>β],

ν(x|β)= E(X|X>β= x>β)−x,

where Xix(2) stands for the subvector of Xix indexed by {d0+
1, · · · ,d}; ν(2)(x|β0) is the subvector of ν(x|β0) similarly defined.

We use a.s. to denote almost surely. For an arbitrary in-
dex set Z and a real-valued random matrix An(z), we write,
An(z)=O (an|Z ) or An(z)=O (an) for simplicity, if

lim
n

sup
z∈Z

|An(z)|/an =O(1) a.s;

write An(z)=Op(an) if P(supz∈Z |An(z)|/an =O(1))→ 1.

Theorem 6.2.1. Suppose conditions (C1)-(C5) in Section 6.1
hold and the initial estimator β̃ ∈Θn. In addition, assume the
complexity parameter vector λ is chosen such that as n →∞,

min{λk : k ∈ S0\S1∪S2}
τn +|δβ̃|

→∞;

min{λk+d : k ∈ S0\S1}
τn +|δβ̃|

→∞,

min{λ̃k, 1≤ k ≤ d0}}
(logn/n)1/2+|δβ̃|

→∞.

Then we have
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(a) [Sparsity] Pr( max
k∉S1∪S2

|âk| = 0, for large enough n)= 1;

Pr(max
k∉S1

|f̂(k)| = 0, for large enough n)= 1;

Pr( max
1≤k≤d0

|β̂k| = 0, for large enough n)= 1;

(b) As n →∞,

â(2)−a0
(2) = M−1

0
1
n

n∑
i=1

εi f (Xi|β0) [X̃ i(2)−Ω21(Xi|β0)

×{Ω11(Xi|β0)}−1X̃ i(1)]+ op(n−1/2|D,Θn),

f̂ j(1)− f0
j(1) = [ f .Ω11]−1(X j|β0)

1
n

n∑
i=1

εi X̃ i(1)Khn(X>
i jβ0)

+1
2

h2
nf̈0(X j)+O (hnτn|D,Θn),

b̂ j −b0
j = [Ω(X j|β0)]−1 1

n

n∑
i=1

Khn(X>
i jβ0)(X>

i jβ0/hn)X̃iεi

+O (hnτn|D,Θn).

(c) With C+
02 being the Moore-Penrose inverse of C02,

β̂2−β02 =
2
n

C+
02

∑
i
εi f (Xi|β)M(Xi)+O (hnτn),

where

M(Xi)= ν(2)(Xi|β0)X̃>
i f̈0(Xi)− (M(1)(2)Ω

−1
11 )(Xi|β0)X̃i(1)

−E{( f .M>
3(2))(X|β0)}M−1

0 [X̃ i(2)− (Ω21Ω
−1
11 )

×(Xi|β0)X̃ i(1)].
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7
SIMULATION STUDY

In this section, we use simulation studies to demonstrate and
augment our theoretical results and to evaluate the accuracy
of the proposed model selection and estimation procedure.
The kernel function we used in this section is Epanechnikov
kernel K(t)= 0.75(1− t2)+. Following the idea in Section 5.1.2,
we select the bandwidth in terms of H = 0.6(dn/n)0.2. The
tuning parameters are determined by the criterion described
in Section 5.2.

We initially show that the goodness of the ultimate es-
timators from our proposed approach is independent of the
choice of initial value β̃ in Section 4.2.2. Then present several
simulated examples to assess the accuracy of the proposed
model selection and estimation procedure and also examine
the oracle property of the proposed estimators in Section 7.2.
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7.1 Sensitivity to the choice of
initial value β̃

In this section, we consider the same simulation model (5.1)
in Section 5.1. Based on the constraints that ||β|| = 1, β1 > 0
and βdn 6= 0, we provide several candidate initial values β̃ as
follows:

β̃(1) =
1p
d

(1,1,1, . . . ,1)>, β̃(2) =
1p
3

(1,1,0, . . . ,1)>,

β̃(3) =
1p
2

(1,0,0 . . . ,1)>, β̃(4) =
1p
3

(2,0,0, . . . ,1)>.

We conduct simulation on the regression example (5.1)
with dimension d = 7 in 1000 replications, each with the
sample size n = 600.

Start with each candidate initial value given above; our it-
erative procedure will be executed to obtain the corresponding
Correct Rate (defined in Section 5.2), MSE of the estimated
index parameters and RMISE of the estimated functional co-
efficients (defined in Section 5.1), respectively. The bandwidth
is chosen as H = 0.30 and the tuning parameters are chosen
to be λ f = 4,λβ = 40. We summarise the simulated results in
Table 7.1.
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Table 7.1: Sensitivity to the choice of initial value β̃ on the
regression model with dimension d = 7

Initial value Correct Rate MSE RMISE
β̃(1) 0.989 0.003606 0.16129
β̃(2) 0.989 0.003599 0.16217
β̃(3) 0.988 0.003592 0.16182
β̃(4) 0.987 0.003604 0.16289

From the statistic of each criterion in Table 7.1, we can
easily find that the diverse candidates of initial value lead to
almost the same selection and estimation results, which all
performs remarkably well.

Furthermore, by setting the dimension of the regression
example (5.1) d = 20, we will conduct another simulation to
verify the fact again in the high-dimensional situation. The
simulated results are reported in Table 7.2.

Table 7.2: Sensitivity to the choice of initial value β̃ on the
regression model with dimension d = 20

Initial value Correct Rate MSE RMISE
β̃(1) 0.946 0.004673 0.14091
β̃(2) 0.945 0.004632 0.14106
β̃(3) 0.949 0.004571 0.14012
β̃(4) 0.950 0.004528 0.13809
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From the statistic results in Table 7.1 and Table 7.2, we
conclude that the our proposed approach of model selection
and estimation is not sensitive to the choice of initial value β̃.

7.2 Simulation examples

In this section, we shall begin with two varying coefficients
examples in a modest dimension that is d = 7. Then, to fur-
ther illustrate the goodness of the proposed method in higher
dimensionality, we will increase the dimension of both sim-
ulated examples to d = 20. Meanwhile, we will compare the
performance of the proposed method in different dimensions
on model selection, structure specification and the accuracy
of estimation.

Similar to the regression example (5.1), we consider the
following two examples of varying coefficient models.

1. Yi = 2exp(−Z2
i )+X i2+εi, with Zi =X>

i β0 = 1
3(2X i1+2X i2+

X id),

2. Yi = 2cos(0.5πZi)+Zi X i1+4exp(−Z2
i )X i2+εi, with Zi =

X>
i β0 = 1

3(X i1+2X i2+2X id),

where Xi = (X i1, X i2, . . . , X id)>, for i = 1, . . . ,n, are normally
distributed independent random vectors and noise εi are
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independent N(0,1) random variables. The regression mod-
els are based on the form (4.2) with β0 = 1

3(2,2,0, . . . ,1)> and
β0 = 1

3(1,2,0, . . . ,2)>, respectively. we will firstly consider these
models in the dimension of d = 7. Then, another simulation
will be conducted on the same regression functions but the
dimensions of models is replaced by d = 20. For each case,
we conduct simulation with sample size n = 600, in a total of
1000 replications.

To evaluate the performance of model selection, we report
the ratio of correct, under-fitted, over-fitted and other models.
Whenever the resulting model simultaneously detects the
true model and identifies the modeling structure correctly,
we classify it as a "correct model". Whenever the estimated
model eliminates at least one significant covariates but does
not include any irrelevant covariates, we classify it as an
"under-fitted model". Whenever the estimated model includes
at least one insignificant covariates but does not miss any
relevant covariates, it is labelled as an "over-fitted model".
The "other models" means that the estimated model not only
includes the irrelevant covariates but also ignores relevant
covariates.

The simulation results are reported in Table 7.3. We can
notice that, in all cases, the percentage of the correctly se-
lected models is no less than 94%, which verifies that the
proposed method indeed select the true model consistently.
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Besides, the fact that the ratio of correctly fitted models in-
creases slightly as the dimension decrease also makes sense.

Table 7.3: The ratios of model selection in 1000 replications

d Correct Under-fitted Over-fitted Others
Example 1

7 0.972 0.013 0.015 0
20 0.943 0.032 0.023 0.002

Example 2
7 0.971 0.007 0.022 0

20 0.940 0.023 0.037 0

Apart from assessing the correctness of the selection, we
will also evaluate the estimation accuracy of the proposed
estimate. In particular, instead of computing the MSE of the
vector of estimated index parameter, in this section, we cal-
culate the MSE in component-wise manner, namely, compute
the MSE of the estimate with respect to each significant index
parameter, which can be defined as

MSEβk =
1
L

L∑
l=1

(β̂l
k −βk)2,

where β̂(l)
k , k = 1,2, . . . ,dn, l = 1,2, . . . ,L, is the estimate from

the l−th replication with respect to the k−th index parameter
in the l− th; we also figure out the RMISE for the estimates
of each relevant coefficient, which is approximated as follows
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Relative MISE fk(·) ≈ 1
L

L∑
l=1

[

∑n
j=1( f̂ (l)

k (z j)− fk(z j))2∑n
j=1 fk(z j)2 ];

where f̂ (l)
k (·), k = 0,1, . . . ,dn −1, l = 1,2, . . . ,L, is estimator of

the k− th functional coefficient in the l − th replication and
z j = xT

j β̂ j = 1, . . . ,n. with some estimator β̂.
Additionally, introducing a benchmark to compare with is

essential for evaluating the accuracy of the estimation. We
employ the "oracle estimators" as the benchmark, who are the
estimators of coefficients from the models that have already
been correctly selected as the true model and whose estima-
tion procedure is free from penalised approaches. Hence, we
will report the RMISE and MSE of oracle estimators as well.
The simulation is also conducted in 1000 replications whose
results are summarized in Table 7.4.

As we can see from Table 7.4, all the values of MSE and
RMISE are reasonably small, who gradually become smaller
with the decrease of the dimension of models. Besides, the
oracle estimators are always more accurate than the estima-
tors from other models. Both of these findings confirm the
accuracy of our estimation. Therefore, we conclude that our
proposed method can simultaneously select the true model
correctly and estimate the model precisely.

Inspired by the fact that our proposed selection method can
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consistently select the true model and the oracle estimators
from the true model outperform the penalised estimates, we
decide to improve our proposed approach by the following
procedures:

1. Apply the model selection method proposed in Section
4.2.2 to select a sub-model which is expected to be the
true model;

2. Estimate the selected sub-model by the penalty free
iterative approach proposed in Section 3.2.2 to obtain
the final estimates for index parameters and functional
coefficients, respectively.

This modified procedure will be used in the real data anal-
ysis in Chapter 8.
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Table 7.4: The RMISEs and MSEs of the varying and constant
parameters

Model 1
d = 7 d = 20 Oracle

MSEβ1 0.0357 0.0452 0.0248
MSEβ2 0.0283 0.0299 0.0232
MSEβ3 0.0105 0.0111 0.0048
MSEc2 0.0067 0.0523 0.0005

RMISE f0 0.1584 0.1880 0.0699

Model 2
d = 7 d = 20 Oracle

MSEβ1 0.0020 0.0119 0.0008
MSEβ2 0.0015 0.0031 0.0005
MSEβ3 0.0016 0.0046 0.0006

RMISE f0 0.2017 0.2136 0.1556
RMISE f1 0.0535 0.2424 0.0386
RMISE f2 0.0766 0.0964 0.0630

NOTE: The rows labeled by d = 7 and d = 20 rep-
resent the estimators from the proposed method
in the 7-dimensional models and 20-dimensional
models, respectively. the rows labeled by “oracle”
depict the oracle estimators. In Model 1, there
exists a constant coefficient, which is denoted by
c2 and the column labeled as MSEc2is the MSE
of this costant coefficient.
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8
REAL DATA ANALYSIS

In this chapter, we are going to illustrate the Iterative kernel
smoothly clipped absolute deviation penalty method by two
real data examples. We first construct the single index varying
coefficient model on both datasets to solve regression problems
and then use the purposed method to select and fit the models.

8.1 Real data example I

We consider here an environmental data set from Hong Kong,
which was collected from January 1, 1994, to December 31,
1995 (courtesy of Professor T. S. Lau). In the dataset, we take
the numbers of daily total hospital admissions for circulatory
and respiratory problems as the response and the following
covariates as the X-variables: SO2 (coded by x1), NO2 (coded
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by x2), dust (coded by x3), ozone (coded by x4), temperature
(coded by x5), the change in temperature (which is the abso-
lute value of the temperature difference between two time
points, coded by x6) and humidity (coded by x7).

Among all these environmental factors, we would like to
detect which factors are significantly relevant to the number
of daily total hospital admissions for circulatory and respira-
tory problems (whose logarithm is coded by y), and whether
the effect of those factors vary over a comprehensive envi-
ronment index (coded by z = x>β, x= (x1, . . . , x7)>), which is a
linear combination of index parameter (coded by β) and some
of the collected environmental factors. Before the modelling,
as the variables are in different units, we need to standard-
ize the data such that they have sample mean 0 and sample
covariance matrix Id. To realize the objective, we employ a
single index varying coefficient model as follows:

yi = f0(zi)+ f1(zi)xi1+ f2(zi)xi2+ . . .+ f6(zi)xi6+εi,

with zi = x>
i β=β1xi1+β2xi2+ . . .+β7xi7, (8.1)

where we take xi0 = 1 as the intercept term. We apply the
proposed model selection method to identify the sub-model
with significant variables and important index parameters.
The tuning parameters are selected by the GIC approach
described in Section 5.2.
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The selected results suggest that SO2 , NO2, temperature
and the change in temperature have significant effects on the
response and all of their coefficients are functional coefficients.
Meanwhile, the important index parameters are selected as
β = (β1,β2,β5,β7)>, which indicates that the comprehensive
environment index includes SO2 , NO2, temperature and hu-
midity. Hence, we have such a selected model

yi = f0(zi)+ f1(zi)xi1+ f2(zi)xi2+ f5(zi)xi5+ f6(zi)xi6+εi,
with zi = x>

i β=β1xi1+β2xi2+β5xi5+β7xi7.
(8.2)

It states in Chapter 7.2 that, if the correct sub-model has
been consistently selected, smoothing the sub-model via the
penalty-free iterative approach leads to the estimates can
be treated as the approximation of "oracle estimators". The
"oracle estimators" are shown to outperform the penalised
estimates. Accordingly, We fit the selected model (8.2) by the
proposed penalty-free iterative approach, and hence work out
the estimators of the varying coefficients with respect to the
significant covariates and the estimators of index parameters,
which are

β̂= (β̂1, β̂2, β̂5, β̂7)> = (0.5981, 0.7226, 0.1177, 0.3260)>.

However, from an intuitive assessment, we notice that
the estimated curves are not very smooth. To ameliorate this

109



CHAPTER 8. REAL DATA ANALYSIS

issue, we decide to employ a "two-step" local linear regression
as a modification to produce better-estimated cures and, more
important, to get a more accurate estimation result. Precisely,
this straightforward smoothing is implemented as follows.

Specify a set S0 = {0,1, . . . ,d−1} and its subset S1 = {k : k ∈
S0, f̂k(·) is not constant}. From the aforementioned procedure,
we have obtained the local estimators of fk(·), k ∈ S1, which is
denoted by f̂k = ( f̂1k, . . . , f̂nk)> ∈Rn, k ∈ S1 and the estimator of
index parameters β̂k, k ∈ {k : k = 1, . . . ,d, β̂k 6= 0}. We consider
( f̂ ik, ẑi), i = 1, . . . ,n as the observations. A regression problem
assumes that

f̂ ik = mk(ẑi)+εi,

where ẑi = x>
i β̂ and εi is the random noise. The local linear

estimators for the unknown function mk(ẑ j), j = 1, . . . ,n is
obtained by minimizing the sum

1
n

n∑
i=1

{
f̂ ik − [A jk +B jk(ẑi − ẑ j)]

}2Kh(ẑi − ẑ j), (8.3)

with respect to A jk and B jk. We define the minimiser of (8.3)
as Â jk, which is the estimator of mk(ẑ j). Consequently, the
fitted value of f̂ jk, j = 1, . . . ,n is given by Â jk. By solving the
minimisation problem (8.3), we obtain the resulting estima-
tors of fk(·) from the "two-step" method as Â jk = (Â1k, . . . , Â1k).

Furthermore, in order to verify that the "two-step" local
linear regression leads to better estimates, we next compare
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the performance of the corresponding estimators from our
purposed methods with those from the "two-step" methods.
The "Leave-p-out Cross-Validation (LpO CV)" is introduced as
the measurement. The "LpO CV" of the "two-step" methods
is 0.0316, which is slightly smaller than the "LpO CV" of
our purposed method, which is 0.0375. Hence, implementing
the "two-step" local linear regression to smooth the curves is
reasonable. We now visualise our ultimate estimation results
in Figure 8.1.

As illustrated in Figure 8.1, the coefficients of those three
factors are unlikely to be null or other constants, and they
all vary over the range of comprehensive environment index.
Besides, we can easily discover some simple but convincing
conclusions from the estimated results. Firstly, from the esti-
mated curves, we find that both NO2 and SO2 become more
damaging to people’s circulatory or respiratory system in the
warm and moist climate. Secondly, the main air pollution puts
people at more risk for sickness with the increasing of their
concentration. Meanwhile, when the concentration of the toxic
gas is above some certain level (when the index z is larger
than zero), both NO2 and SO2 always have a positive impact
on people’s circulatory or respiratory problems. In addition,
from the last estimated curve in Figure 8.1, we notice that the
change of temperature has an index-varying positive effect
on the daily number of total hospital admissions when the
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Figure 8.1: Estimated curves of varying coefficients in the
selected model
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index is positive. This insight is in line with the fact that large
fluctuations in temperature may exacerbate people’s health
conditions and trigger many kinds of pains and diseases.

112



CHAPTER 8. REAL DATA ANALYSIS

Moreover, we would like to analyse our estimated results
by evaluating the residuals between yi (the logarithm of the
number of daily total hospital admission) and its estimator ŷi.
We depict the residuals in figure 8.2.

Figure 8.2: Residuals
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It can be seen in Figure 8.2, there is no obvious tendency,
which also corroborates our purposed selection and estimation
methods decently.

8.2 Real data example II

We now illustrate the application of the proposed methodology
in Boston housing data, which has been analysed in numer-
ous amounts of literature includes Fan and Huang (2005) and
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Wang and Xia (2009). The data set consists of 506 US bor-
oughs in the Boston area. The response variable is the median
value of owner-occupied homes (MEDV) in 1970 and there
are thirteen factors can be taken into account, some of which
may affect the variation in housing value significantly. The
description of these thirteen factors serving as the covariates
are given in Table 8.1:
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Table 8.1: The covariates in Boston houing dataset

CRIM (x1) per capita crime rate by town

ZN (x2)
proportion of residential land zoned

for lots over 25,000 sq.ft.

INDUS (x3)
proportion of non-retail business

acres per town

CHAS (x4)
Charles River dummy variable

(= 1 if tract bounds river; 0 otherwise)

NOX (x5)
nitric oxides concentration

(parts per 10 million)
RM (x6) average number of rooms per dwelling

AGE (x7)
proportion of owner-occupied units

built prior to 1940

DIS (x8)
weighted distances to five Boston

employment centres
RAD (x9) index of accessibility to radial highways
TAX (x10) full-value property-tax rate per $10,000

PTRATIO (x11) pupil-teacher ratio by town

B (x12)
1000(Bk−0.63)2 where Bk is the

proportion of blacks by town

LSTAT (x13)
percentage of lower status of

the population

In this empirical analysis, we are primarily interested in
the following three aspects.

1. Identifying which factors among the all the collected
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factors contribute significantly to MEDV.

2. Revealing whether the impacts of the relevant factors
are constant or vary over an index variable.

3. Detecting which factors are the real components of the
index.

To fulfil the objectives, we start by considering a single
index varying coefficient model

yi = f0(zi)+ f1(zi)xi1+ f2(zi)xi2+ . . .+ f12(zi)xi12+εi,
with zi = x>

i β=β1xi1+β2xi2+ . . .+β13xi13,
(8.4)

where xi0 = 1, i = 1, . . . ,50 is set as the intercept term. To unify
the scale of each covariate, we standardize the covariates and
response firstly. Then, we apply the proposed method to select
the true model in (8.4).

The estimated results suggest that CRIM, ZN, CHAS,
NOX, AGE, RAD, TAX, PTRATIO are the significant covari-
ates to the response. Among these relevant factors, only NOX
and AGE have a constant impact on MEDV, the rest of them
affect the median value of owner-occupied homes in varying
significant level. In addition, we identify that the variable
CRIM is the most crucial component of the index, which also
includes covariates ZN and LSTAT. Therefore, we have such
a selected model
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yi = f0(zi)+ f1(zi)xi1+ f2(zi)xi2+ f4(zi)xi4+C5(zi)xi5

+C7(zi)xi7+ f9(zi)xi9+ f10(zi)xi10+ f11(zi)xi11+εi,

with zi = x>
i β=β1xi1+β2xi2+β13xi13,

where C5 and C7 present the constant coefficient of covariate
NOX and AGE, respectively.

We next introduce a similar estimation procedure without
penalised approaches to estimate the specified model. By
applying the proposed method, we obtain the estimators of
index parameters, which are

β̂= (β̂1, β̂2, β̂13)> = (0.9453, 0.2861, 0.1567)>,

the estimated constant coefficients

Ĉ5 = 0.3752, Ĉ7 = 0.0808,

and the estimated curves of all the varying coefficients of the
corresponding covariate, which are provided in Figure 8.3.

Apparently, all the curves in Figure 8.3 indicate that those
six coefficients are unlikely to be null or other constants. More
importantly, we would like to explore some more insights from
the estimated results.

We can see visually that the estimated functional coeffi-
cient of CRIM is always negative, which reflects the fact that
crimes have a significant negative impact on prices of a house.
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Figure 8.3: Estimated curves of the varying coefficients
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Besides, as the main component of the index is CRIM, we
can state from the estimates that the negative impacts of
crimes are more sensitive to property value when the CRIM
stays at a very low level and the marginal impact of crime
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decreases. From the plot of the coefficient of ZN, we find that
the large property is highly demanded in the area with good
public security but largely devalued in those unsafe areas.
Meanwhile, the fact that located beside the river, good traffic
facilities and adequate education resource all have positive
effects on the property value also makes sense. Also, it can
be visually found that the effect of property taxes on house
values is consistently adverse once the index is positive. Addi-
tionally, houses based in the community with high crime rate
are more impressionable to the property taxes.

Following the idea in section 8.1, we also report the esti-
mated results in figure 8.4 for further evaluation.

Figure 8.4: Residuals
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As it is shown in Figure 8.4, there is no obvious tendency,
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which also corroborates that the purposed selection and esti-
mation methods is quite substantial.
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9
PROOF OF THEORETICAL RESULTS

In Chapter 9.1, we give some technical lemmas which are
needed to prove the asymptotic theory in Chapter 6 and their
proofs. Then, we provide the proofs of the main theoretical
results in Chapter 9.2. Like Chapter 6, this chapter based
on my submitted paper "An Iterative Approach for Model
Selection in Single-index Varying Coefficient Models", which
is the joint work with Prof. Efang Kong and Prof. Wenyang
Zhang.

9.1 Lemmas and Proofs

Under (C2), (C5) and (C6) in Section 6.1, the following results
are quite standard in the literature on strong uniform con-
vergence for nonparametric smoothing, e.g. Masry (1996) and
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Pollard (1984). implies

1
n

n∑
i=1

X̃iX̃
>
i (X>

ixβ/hn)Khn(X>
ixβ)

= hn[ f .Ω]′(x|β)+O (|δβ|τn|D, Θn)

= hn[ f .Ω]′(x|β0)+O (|δβ|+τn|D, Θn), (9.1)

1
n

n∑
i=1

X̃iX̃>
i (X>

ixβ/hn)lKhn(X>
ixβ)

= [ f .Ω](x|β)+O (τn|D, Θn) (l = 0,2)

= [ f .Ω](x|β0)+O (|δβ|+τn|D, Θn), (9.2)

where [ f .Ω](x|β)= f (x|β)Ω(x|β), and [ f .Ω]′(x|β) denotes the
matrix of element-wise (first order) derivative of [ f .Ω](t|β)
with respect to t, and evaluated at t = x>β.

We first establish the asymptotic properties relating to
â(β̃) = (âk(β̃)), F̂(β̃) := ( f̂ jk(β̃)) = (f̂2(β̃), · · · , f̂n(β̃))>, and B̂(β̃) :=
(b̂ jk(β̃)) = (b1(β̃), · · · ,bn(β̃))>, the minima of (6.2) with ini-
tial estimate β̃, as estimates of â0, F0 := ( f 0

jk) = (f0
2, · · · ,f0

n)> =
(f0

(0), · · · ,f0
(d−1)), and B0 := (b0

jk)= (b0
1, · · · ,b0

n)>, respectively. For
any real matrix A, let |A|∞ denote the greatest among the
absolute values of its elements.

Lemma 9.1.1. Under conditions in Theorem 6.2.1, we have

|â(β̃)−a0|∞ =O (|δβ̃|+τn|Θn), |F̂(β̃)−F0|∞ =O (|δβ̃|+τn|Θn),

|B̂(β̃)−B0|∞ =O (τn|Θn).
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Proof of Lemma 9.1.1 Write αn = τn +|δβ̃|. It thus suffices to
show that with probability one, for large enough C > 0 and n,

min
β∈Θn

{Qn(a0+Cαnw,F0+CαnU,B0+CτnV|β,λ)

−Qn(a0,F0,B0|β,λ)}> 0, (9.3)

for any generic vector w= (wk)0≤k≤d−1, matrices U= (u2, · · · ,un)>

= (u(0), · · · ,u(d−1)) ∈ R(n−1)×d and V = (v1, · · · ,vn)> = (v(0), · · · ,
v(d−1)) ∈ Rn×d, such that |w|∞ = 1, |U|∞ = 1, |V|∞ = 1. We first
show that with probability one, for large enough C > 0 and n,

min
β∈Θn

[
Q̄n(a0+Cαnw,F0+CαnU,B0+CτnV|β)

−Q̄n(a0,F0,B0|β)
]
≥ 0, (9.4)

where the equality holds if and only if w= 0, U= 0 and V= 0,
and

Q̄n(a,F,B|β) = 1
n2

n∑
j=2

n∑
i=1

{Yi − X̃>
i (a+ f j)− (X>

i jβ/hn)X̃>
i b j}2

×Khn(X>
i jβ)

+ 1
n2

n∑
i=1

{Yi − X̃>
i a− (X>

i1β/hn)X̃>
i b1}2Khn(X>

i1β);
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specifically, for any large enough C and n, with f0
1 ≡ 0

1
n

n∑
i=1

{Yi − X̃>
i (a0+Cαnw+ f0

j +Cαnu j)

−(X>
i jβ/hn)X̃>

i (b0
j +Cτnv j)}2Khn(X>

i jβ)

≥ 1
2

C2α2
n(w+u j)>[ f .Ω](X j|β)(w+u j)

+1
2

C2τ2
nv j

>[ f .Ω](X1|β)v j,

(9.5)

uniformly in j = 1, · · · ,n, and β ∈Θn. To illustrate, consider

1
n

n∑
i=1

{Yi − X̃>
i (a0+Cαnw)− (X>

i1β/hn)X̃>
i (b0

1+Cτnv1)}2

×Khn(X>
i1β)− 1

n

n∑
i=1

{Yi − X̃>
i a0− (X>

i1β/hn)X̃>
i b0

1}2Khn(X>
i1β)

= C2α2
nw>

[1
n

n∑
i=1

X̃iX̃
>
i Khn(X>

i1β)
]
w

+C2τ2
nv>

1

[1
n

n∑
i=1

X̃iX̃
>
i (X>

i1β/hn)2Khn(X>
i1β)

]
v1

+2C2αnτnw>
[1

n

n∑
i=1

X̃iX̃
>
i (X>

i1β/hn)Khn(X>
i1β)

]
v1

−2Cαnw>
[1

n

n∑
i=1

X̃i{Yi − X̃>
i a0− (X>

i1β/hn)X̃>
i b0

1}Khn(X>
i1β)

]
−2Cτnv>

1

[1
n

n∑
i=1

X̃i(X>
i1β/hn){Yi − X̃>

i a0− (X>
i1β/hn)X̃>

i b0
1}

×Khn(X>
i1β)

]
≥ 1

2
C2α2

nw>[ f .Ω](X1|β)w+ 1
2

C2τ2
nv1

>[ f .Ω](X1|β)v1, (9.6)
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uniformly in β ∈ Θn and X1 ∈ D, where the last inequality
follows from (9.2) and results in Corollary 9.2.1, for any large
enough C and n. (9.6) could be proved in exactly the same
manner. (9.4) thus holds where the equality hold if and only
if w= 0, U= 0, and V= 0.

We now move on to the penalty term. First note that we
needn’t be concerned with terms indexed by k ∉ S1∪S2, for in
these cases f0

(k) = 0, and a0
k = 0 and the penalty functions are

all positive except at the origin. For k ∈ S2, we have f0
(k) = 0,

and

|a0
k|+ |f0

(k)| = |a0
k| = mk > 0,

|a0
k +Cαnwk|+ |f0

(k)+Cαnu(k)| >
|a0

k|
2

= mk

2
> 0,

whence as max{λk : k ∈ S1∪S2}→ 0,

pλk(|a0
k|+ |f0

(k)|)− pλk(|a0
k +Cαnwk|+ |f0

(k)+Cαnu(k)|)= 0.(9.7)

For k ∈ S1, by SLLN, we have

|a0
k|+ |f0

(k)| ≥
1

n−1

n∑
j=2

| fk(X j)|→ mk > 0 a.s.,

|a0
k +Cαnwk|+ |f0

(k)+Cαnu(k)| >
|a0

k|+ |f0
(k)|

2
> mk

2
a.s.,

|f0
(k)| > 0, |f0

(k)+Cαnu(k)| > 0.
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Therefore, we have

pλk(|a0
k|+ |f0

(k)|)− pλk(|a0
k +Cαnwk|+ |f0

(k)+Cαnu(k)|)
= 0, (9.8)

pλk+d(|f0
(k)+Cαnu(k)|)− pλk+d(|f0

(k)+Cαnu(k)|)= 0, (9.9)

(9.3) thus follows from (9.4) and (9.7)-(9.9). �

Lemma 9.1.2. Under conditions in Theorem 6.2.1, we have,
with probability one for large enough n

|f̂(k)(β̃)| = 0, for any k ∉ S1; âk(β̃)= 0, for any k ∉ S1∪S2.

Proof of Lemma 9.1.2 Let a= (ak,k = 0, · · · ,d−1), F= ( f jk, j =
2, · · · ,n,k = 0, · · · ,d−1)= (f>1 , · · · ,f>n )> = (f(0), · · · ,f(d−1)), and B=
(b jk, j = 1, · · · ,n,k = 0, · · · ,d−1)= (b>

1 , · · · ,b>
n )> = (b(0), · · · ,b(d−1))

stand for any generic d× (1) vector, (n−1)×d and n×d ma-
trices such that

|B−B0|∞ =O (δn+h3
n+|δβ̃|2), |a−a0|∞ =O (τn+|δβ̃|),

|F−F0|∞ =O (τn+|δβ̃|). (9.10)

In view of Lemma 9.1.1, it suffices to show that with probabil-
ity one, there exists some small εn > 0, such that for any such
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a,F,B,

for k ∉ S1,
∂Qn(a,F,B|β,λ)

∂ f jk
< 0, if f jk ∈ (−εn,0),

∂Qn(a,F,B|β,λ)
∂ f jk

> 0, if f jk ∈ (0,εn);

(9.11)

for k ∉ S1∪S2,
∂Qn(a,F,B|β,λ)

∂ak
< 0, if ak ∈ (−εn,0),

∂Qn(a,F,B|β,λ)
∂ak

> 0, if ak ∈ (0,εn).

(9.12)

To prove (9.11), first note that

∂Qn(a,F,B|β,λ)
∂ f jk

= 1
n2

n∑
i=1

{Yi − X̃>
i (a+ f j)− (X>

i jβ/hn)X̃>
i b j}

×X ikKhn(X>
i jβ)+ ṗλd+k(|f(k)|)sign ( f jk)

+ṗλk(|ak|+ |f(k)|)sign ( f jk), (9.13)

where for the first term on the RHS of (9.13), we have that

1
n

n∑
i=1

{Yi − X̃>
i (a+ f j)− (X>

i jβ/hn)X̃>
i b j}X ikKhn(X>

i jβ)

=O
(
τn+|δβ̃|

∣∣∣X j ∈D,β ∈Θn

)
. (9.14)

as a result of (9.2), Corollary 9.2.1 and (9.10). As for the
penalty terms in (9.13), it holds that

k ∈ S2 : |ak|+ |f(k)| = |a0
k +Cαn|+Cαn > 0→ ṗλk(|ak|+ |f(k)|)= 0;

k ∉ S1∪S2 : |ak|+ |f(k)| =O(αn)= o(λk+d)→ ṗλk(|ak|+ |f(k)|)=λk.
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Meanwhile f(k) =O(τn+|δβ̃|)= o(λk+d), under condition (6.5), whence
ṗλk+d(|f(k)|)=λk+d. This together with (9.14) and (9.13) yields

k ∈ S2 :
∂Qn(a,F,B|β,λ)

∂ f jk
=λk+d{sign ( f jk)+ o(1)},

k ∉ S1∪S2 :
∂Qn(a,F,B|β,λ)

∂ f jk
= (λk +λk+d){sign ( f jk)+ o(1)},

where the term o(1) is uniform in X j ∈D, β ∈Θn. This finishes
the proof of (9.11).

To prove (9.12), we only need to note that for k ∉ S1∪S2,
|a0

k|+ |f0
(k)| = 0, hence |ak|+ |f(k)| =O (τn +|δβ̃)= o(λk) and ṗλk(|ak|+

|f(k)|)=λk. Consequently,

∂Qn(a,F,B|β,λ)
∂ak

= − 1
n2

n∑
j=2

n∑
i=1

{Yi − X̃>
i (a+ f j)− (X>

i jβ/hn)X̃>
i b j}

×XikKhn(X>
i jβ)

− 1
n2

n∑
i=1

{Yi − X̃>
i a− (X>

i1β/hn)X̃>
i b1}

×XikKhn(X>
i1β)

+ṗλk(|ak|+ |f(k)|)sign (ak)

= O (αn|β ∈Θn)+λksign (ak)

= λk{sign (ak)+ o(1)}.

The proof is thus complete. �
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For any x ∈D and β ∈Θn, define

M3(x|β)= E[X̃>
i ḟ0(x)X̃ iX>

ix|X>
i β0 = x>β],

M3(1)(x|β)= E[X̃>
i ḟ0(x)X̃ i(1)X>

ix|X>
i β0 = x>β],

M3(2)(x|β)= E[X̃>
i ḟ0(x)X̃ i(2)X>

ix|X>
i β0 = x>β].

Now we give the asymptotics regarding â(β̃), F̂(β̃), and B̂(β̃),
the minimizer of (6.2). Seeing Lemma 9.1.2, let â(2)(β̃) denote
the subvector of â(β̃) indexed by S2, and f̂ j(1)(β̃), the subvector
of f̂ j(β̃) indexed by S1.

Lemma 9.1.3. Under conditions in Theorem 6.2.1, we have
for j = 1, · · · ,n,

â(2)(β̃)−a0
(2) = M−1

0
1
n

n∑
i=1

εi f (Xi|β) [X̃ i(2)− (Ω21Ω
−1
11 )(Xi|β)X̃ i(1)]

+op(n−1/2+τn|δβ|), (9.15)

f̂ j(1)(β̃)− f0
j(1) = [ f .Ω11]−1(X j|β0)

1
n

n∑
i=1

εi X̃ i(1)Khn(X>
i jβ)

+Ω−1
11 (X j|β)M3(1)(X j|β)δβ+ 1

2
h2

nf̈0(X j)

+O (hnτn+|δβ|hn|D,Θn), (9.16)

b̂ j(β̃)−b0
j = [Ω(X j|β)]−1 1

n

n∑
i=1

Khn(X>
i jβ)(X>

i jβ/hn)X̃iεi

+O (hnτn+hn|δβ|). (9.17)

Proof of Lemma 9.1.3 For ease of composition, (β̃) is left
out in â(2)(β̃), f̂ j(1)(β̃) and b̂ j(β̃), so that these are replaced with
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â(2), f̂ j(1) and b̂ j, respectively. Nevertheless we should remem-
ber these estimates depend on β̃. Based on the results in
Lemma 9.1.2, we have with probability one, that among the
elements of â = (â0, · · · , âd−1)>, âk = 0, if k ∉ S1 ∪ S2; while
for f̂ j = ( f̂ j0, · · · , f̂ jd−1)>, f̂ jk = 0 if k ∉ S1. Now with ∆i j = Yi −
X̃>

i (a0+ f0
j )− (X>

i jβ/hn)X̃>
i b0

j , we have any k ∈ S1∪S2,

∂Qn(a,F,B|β,λ)
∂ak

= − 1
n2

n∑
j=2

n∑
i=1

{∆i j − X̃>
i (a−a0+ f j − f0

j )

−(X>
i jβ/hn)X̃>

i (b j −b0
j )}XikKhn(X>

i jβ)

+ 1
n2

n∑
i=1

{∆i1− X̃>
i (a−a0)− (X>

i1β/hn)

×X̃>
i (b j −b0

1)}XikKhn(X>
i1β)

+ṗλk(|ak|+ |f(k)|)sign (ak).

(9.18)

Regarding the penalty term within (9.18), since |a0
k|+ |f0

(k)| > 0
for k ∈ S1 ∪ S2, then according to Lemma 9.1.1, it is also
true that |âk| + |f̂(k)| > 0; whence ṗλ1k(|âk| + |f̂(k)|) = 0, since
max{λk,k ∈ S1∪S2}= o(1). Therefore, â(β),F̂(β),B̂(β) must sat-
isfy the following equation

1
n2

n∑
j=2

n∑
i=1

{∆i j − X̃>
i (â−a0+ f̂ j − f0

j )− (X>
i jβ/hn)X̃>

i (b̂ j −b0
j )}

×XikKhn(X>
i jβ)+ 1

n2

n∑
i=1

{∆i j − X̃>
i (â−a0)− (X>

i1β/hn)X̃>
i (b̂1−b0

1)}

×XikKhn(X>
i1β)= 0, k ∈ S1∪S2,
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the matrix form of which is such that
n∑

j=1

n∑
i=1
∆i jX̃i(2)Khn(X>

i jβ) =
n∑

j=1

n∑
i=1

Khn(X>
i jβ)X̃i(2)X̃>

i(2)(â(2)−a0
(2))

+
n∑

j=2
[

n∑
i=1

Khn(X>
i jβ)Xi(2)X̃

>
i(1)](f̂ j(1)− f0

j(1))

+
n∑

j=1
[

n∑
i=1

Khn(X>
i jβ)(X>

i1β/hn)X̃i(2)X̃
>
i ]

×(b̂ j −b0
j ). (9.19)

We now move on to the f̂ js. Note that for k ∈ S1, |f0
(k)| > 0,

whence |f̂(k)| = |f0
(k) +O(αn)| > 0 and |âk|+ |f̂(k)| > 0. Therefore,

â(β),F̂(β),B̂(β) must also satisfy the following equation

∂Qn(a,F,B|β,λ)
∂ f jk

= 1
n2

n∑
i=1

{∆i j − X̃>
i (a−a0+ f j − f0

j )

−(X>
i1β/hn)X̃>

i (b j −b0
j )}X ikKhn(X>

i jβ)= 0,

for k ∈ S1, the matrix form of which is such that for j = 2, · · · ,n,

1
n

n∑
i=1
∆i j X̃ i(1)Khn(X>

i jβ) =
{1

n

n∑
i=1

Khn(X>
i jβ)X̃ i(1)X̃>

i(2)

}
(â(2)−a0

(2))

+
{1

n

n∑
i=1

Khn(X>
i jβ)X̃ i(1)X̃

>
i(1)

}
(f̂ j(1)− f0

j(1))

+[
1
n

n∑
i=1

Khn(X>
i jβ)

(X>
i1β

hn

)
X̃ i(1)X̃

>
i ]

×(b̂ j −b0
j ). (9.20)
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Since b̂ j −b0
j = O (τn +|δβ|) (uniformly in j), from (9.20), we

have, for j = 2, · · · ,n,

f̂ j(1)− f0
j(1) = [S11, j]−1{T1 j −S12, j(â(2)−a0

(2))}

+O (hnτn+hn|δβ|
∣∣∣D,Θn), (9.21)

where

S11, j = 1
n

n∑
i=1

Khn(X>
i jβ)X̃ i(1)X̃

>
i(1)

= Ω11(X j|β) f (X j|β)+ (O)(τn|D,Θn)

S22, j = 1
n

n∑
i=1

Khn(X>
i jβ)X̃ i(2)X̃

>
i(2)

= Ω22(X j|β) f (X j|β)+ (O)(τn|D,Θn)

S12, j = 1
n

n∑
i=1

Khn(X>
i jβ)X̃ i(1)X̃>

i(2)

= Ω12(X j|β) f (X j|β)+ (O)(τn|D,Θn)

T1 j = 1
n

n∑
i=1
∆i j X̃ i(1)Khn(X>

i jβ),

T2 j = 1
n

n∑
i=1
∆i j X̃ i(2)Khn(X>

i jβ).

Plug (9.21) into ( 9.19), we have with S21, j = S>
12, j,

â(2)−a0
(2) =

{1
n

n∑
j=1

S22, j

}−1 1
n

n∑
j=1

(T2 j −S21, j[S11, j]−1T1 j)

=
{1

n

n∑
j=1

S22, j

}−1 1
n

n∑
j=1
∆i jKhn(X>

i jβ)

×(X̃ i(2)−S21, j[S11, j]−1X̃ i(1)). (9.22)
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To quantify the term on the RHS of (9.22), we make use of the
following facts

∆i j = Yi − X̃>
i (a0+ f0

j )− (X>
i jβ/hn)X̃>

i b0
j

= εi + X̃>
i ḟn jX>

i jδβ/hn+ 1
2

h2
nX̃>

i f̈0(X j)(X>
i jβ/hn)2

+1
2

X̃>
i f̈0(X j)δ>βXi jX>

i jδβ+hnX̃>
i f̈0(X j)(X>

i jβ/hn)X>
i jδβ

+O (|δβ|3+h3
n|D, Θn);

1
n2

n∑
j,i=1

εiKhn(X>
i jβ){X̃ i(2)−S21, j[S11, j]−1X̃ i(1)}

= 1
n

n∑
i=1

εi f (Xi|β)
[
X̃ i(2)−Ω21(Xi|β){Ω11(Xi|β)}−1X̃ i(1)

]
+op(n−1/2); (9.23)

and

1
n2

n∑
j,i=1

Khn(X>
i jβ){X̃ i(2)−S21, j[S11, j]−1X̃ i(1)}X̃

>
i ḟ0(X j)X>

i jδβ

= 1
n

n∑
i=1

f (Xi|β)[X̃ i(2)−Ω21(Xi|β){Ω11(Xi|β)}−1X̃ i(1)]X̃
>
i ḟ0(Xi)

×ν>(Xi|β)δβ+Op(τn|δβ|)
=Op(τn|δβ|); (9.24)
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where the last equality holds due to the fact that

E
[

f (Xi|β)[X̃ i(2)−Ω21(Xi|β)Ω−1
11 (Xi|β)X̃ i(1)]X̃

>
i ḟ0(Xi)ν>(Xi|β)

]
= E

[
f (Xi|β)E{[X̃ i(2)−Ω21(Xi|β)Ω−1

11 (Xi|β)X̃ i(1)]X̃
>
i(1)|X>

i β}ḟ0(Xi)

×ν>(Xi|β)
]
= 0.

Similarly,

1
n2

n∑
j,i=1

Khn(X>
i jβ){X̃ i(2)−S21, j[S11, j]−1X̃ i(1)}X̃

>
i f̈0(X j)(X>

ixβ/hn)2

= 1
n

n∑
i=1

f (Xi|β)[X̃ i(2)−Ω21(Xi|β){Ω11(Xi|β)}−1X̃ i(1)]X̃
>
i f̈0(Xi)

+op(τn)= op(τn), (9.25)

since

E[ f (Xi|β)[X̃ i(2)−Ω21(Xi|β){Ω11(Xi|β)}−1X̃ i(1)]X̃
>
i f̈0(Xi)]= 0.

From (9.23)-(9.25), we have (9.15), which means â(2)−a0
(2) of

order Op(n−1/2). This together with (9.22) leads to

f̂ j(1)− f0
j(1) = [S11, j]−1T1 j +O (hnτn+hn|δβ|

∣∣∣D,Θn),

from which (9.16) easily follows. Lastly,with the derivatives
with respect to B being zero, â(β),F̂(β),B̂(β) must also satisfy
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the following that for j = 2, · · · ,n,

1
n

n∑
i=1

Khn(X>
i jβ)(X>

i jβ/hn)X̃i∆i j

=
{1

n

n∑
i=1

Khn(X>
i jβ)(X>

i jβ/hn)X̃iX̃
>
i(2)

}
(â(2)−a0

(2))

+
{1

n

n∑
i=1

Khn(X>
i jβ)(X>

i jβ/hn)X̃iX̃
>
i(1)

}
(f̂ j(1)− f0

j(1))

+1
n

n∑
i=1

Khn(X>
i jβ)(X>

i jβ/hn)2X̃iX̃
>
i

}
](b̂ j −b0

j ), (9.26)

and also

1
n

n∑
i=1

Khn(X>
i1β)

(X>
i1β

hn

)
X̃i∆i j

= [
1
n

n∑
i=1

Khn(X>
i1β)

(X>
i1β

hn

)
X̃iX̃

>
i(2)](â(2)−a0

(2))

+1
n

n∑
i=1

Khn(X>
i1β)

(X>
i1β

hn

)2
X̃iX̃

>
i ](b̂1−b0

1). (9.27)

(9.17) is then a result of Lemma 9.1.1, (9.26) and (9.27). The
proof is thus complete. �

We now move on to the study of β̂, the minimizer of (6.3).
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Let f̂1 ≡ 0, and it is immediately clear that β̂ minimizes

Qn(β|λ, β̃) ≡ 1
n2

n∑
j=1

n∑
i=1

{Yi − X̃>
i (â(β̃)+ f̂ j(β̃))− (X>

i jβ/hn)X̃>
i b̂ j(β̃)}2

×Khn(X>
i jβ̃)+

d∑
k=1

pλ̃k
(|βk|)

= (β−β0)>Sn(β̃)(β−β0)− {Rn(β̃)}>(β−β0)

+
d∑

k=1
pλ̃k

(|βk|), (9.28)

where

Sn(β̃) = 1
n2h2

n

n∑
j=1

n∑
i=1

Khn(X>
i jβ̃)(X̃>

i b̂ j)2Xi jX>
i j,

Rn(β̃) = 2
n2hn

n∑
i, j=1

Khn(X>
i jβ̃){Yi − X̃>

i (â+ f̂ j)− (X>
i jβ0/hn)

×X̃>
i b̂ j}X̃

>
i b̂ jXi j.

Using results in Lemma 9.1.3, we understand that

Sn(β̃) = E[ f (X|β0)C(X|β0)]+O (|δβ̃|+τn|Θn)

= C0+O (|δβ̃|+τn|Θn), (9.29)

Rn(β̃) = 2
n

∑
i
εiν(Xi|β)X̃>

i b̂i − 2
n

∑
i

M>
3(1)(Xi|β)Ω−1

11 (Xi|β)X̃i(1)

× f (Xi|β)εi − 2
n

E{( f .M>
3(2))(X|β)}M−1

0

{ n∑
i=1

εi f (Xi|β)

× [X̃ i(2)− (Ω21Ω
−1
11 )(Xi|β)X̃ i(1)]

}
− 2

n2hn

∑
i, j

Khn(X>
i jβ̃)

×X̃>
i b̂ jX>

i jX̃
>
i(1)Ω

−1
11 (X j|β)M3(1)(X j|β)δβ̃+ o(n−1/2|Θn)

= O ((logn/n)1/2+|δβ̃|
∣∣∣Θn). (9.30)
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The first result states that β̂ is consistent, if the initial esti-
mator β̃ is.

Lemma 9.1.4. Suppose conditions in Theorem 6.2.1 hold. then

β̂−β0 =O ((logn/n)1/2+|δβ̃|
∣∣∣β̃).

Proof of Lemma 9.1.4 Let αn = (logn/n)1/2 +|δβ̃|. It suffices to
show that for any large enough C > 0, such that for any b=
(b1, · · · ,bd)> ∈ Rd such that b>β0 = 0 and |b| = 1,

Qn(β0+Canb|λ, β̃)>Qn(β0|λ, β̃),

which easily follows from the fact that

Q(β0+Canb|λ̃, β̃)−Q(β0|λ̃, β̃)

= C2a2
nb>Sn(β̃)b−2Canb>Rn(β̃)

+
d∑

k=1
{pλ̃k

(|β0k +Canbk|)− pλ̃k
(|β0k|)},

assumption (C4), (9.29) and (9.30) in exactly the same way as
in Lemma 9.1.1. The proof is thus complete. �

Lemma 9.1.5. Suppose conditions in Theorem 6.2.1 hold.
Then with probability one, β̂01 = 0 for large enough n.

Proof of Lemma 9.1.5 Let αn = (logn/n)1/2 + |δβ̃|. For any k =
1, · · · ,d0, consider

∂Qn(β|λ, β̃)
∂βk

= ṗλ̃k
(|βk|)sign (βk)+2[Sn(β̃)](k)(β−β0)

+[Rn(β̃)](k), (9.31)
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where [Sn(β̃)](k) stands for the kth row of Sn(β̃), and [Rn(β̃)](k),
the kth element of Rn(β̃). Therefore, due to 9.30, for any
β = (β1, · · · ,βd)> ∈ Rd such that β−β0 = O(αn), the last two
terms are of order O (αn|Θ)= o(λ̃k), whence

∂Qn(β|λ, β̃)
∂βk

= λ̃k{ṗλ̃k
(|βk|)sign (βk)/λ̃k + o(1)}.

Since βk =β0k +O(αn)= o(λ̃k), we have ṗλ̃1
(|βk|)= λ̃k for large

enough n. Therefore,

∂Qn(β|λ, β̃)/∂βk > 0, if βk > 0; ∂Qn(β|λ, β̃)/∂βk < 0, if βk < 0.

The proof is thus complete. �

9.2 Proofs of the main results

Proof of Theorem 6.2.1 Claims in part (a) are as given in
Lemma 9.1.2 and Lemma 9.1.5. Those in part (b) follows
directly from Lemma 9.1.3 and the root-n consistency of β̂.
Therefore, we need only concentrate on proving part (b). To
this aim, first of all as a follow-up on (9.29) and (9.30), we
claim that in the asymptotic expression for {Sn(β̃)}−1Rn(β̃),
the term which concerns δβ̃ (representing the effect of the ini-
tial estimate β̃) diminishes geometrically, due to the fact that
the (absolute) eigenvalues of C+

0 E[M>
3 (X|β)Ω−1

11 (X|β0)M3(X|β)]

138



CHAPTER 9. PROOF OF THEORETICAL RESULTS

are all strictly less than one for all β ∈ Thetan. This could be
argued as follows: by the Cauchy-Schwartz inequality, for any
real vectors a, b of conformable lengths, we have

{a>M3(X|β)b}2 ≤ a>Ω11(X|β0)ab>C0b,

i.e. the (nonzero) eigenvalues of

[Ω11(X|β0)]+M3(X|β)bb>[M3(X|β)]>,

identical to those of

b>[M3(X|β)]>[Ω11(X|β0)]+M3(X|β)b,

are all less than b>C0b; since this holds for any X, taking
expectation with X, the same conclusion still holds. A direct
consequence of this claim is that from now on when dealing
with Rn(β̃), we could safely ignore this term which involves
δβ̃.

For any β = (β1, · · · ,βd)> ∈ Rd, consider a partition β =
(β>

1 ,β>
2 )>, where β1 and β2 are of length d0 and d−d0, respec-

tively. According to Lemma (9.1.5), with n large enough, β̂ as
a local maximizer of (9.28), must take the form β̂= (0, β̂

>
2 )>,

and consequently satisfy the following normal equation

∂Qn(β|λ,β̃)
∂β2

∣∣∣
β=(0,β̂

>
2 )>

=[Sn(β̃)](2)(β̂2−β02)+ [Rn(β̃)](2)+ ṗλ̃(2)
(|β2|)

=0; (9.32)
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here [Sn(β̃)](2) is the (d−d0)×(d−d0) lower diagonal submatrix
of Sn(β̃), [Rn(β̃)](2) is the vector consisting the last d − d0

elements of Rn(β̃), and ṗλ̃(2)
(|β2|) is a (d−d0)×1 vector with

elements ṗλ̃k
(|βk|)sign (βk), d0+1≤ k ≤ d. As β̂2 is a consistent

estimator of β02 (Lemma 9.1.4), we have ṗλ̃(2)
(|β̂2|)= 0 which

together with (9.32) implies that

β̂2−β02 = [Sn(β̃)]+(2)[Rn(β̃)](2).

First of all, since [Sn(β̃)](2) = B02B>
02C02B02B>

02+O(τn +|δβ̃|),
where B02 is the (d−d0)×(d−d0−1) matrix with orthonormal
columns given by the (d−d0−1) eigen-vectors corresponding
to the nonzero eigen-values of C02, we have

[Sn(β̃)(2)]+ = B02(B>
02C02B02)+B>

02+O(τn+|δβ̃|)
= C+

02+O(τn+|δβ̃|),

and this together with (9.30) leads to

[Sn(β̃)]+[Rn(β̃)](2) = 2
n

C+
02

∑
i
εi f (Xi|β)ν(2)(Xi|β)X̃>

i b̂i

+O
(
δ2

n/hn+hn|δβ̃|
∣∣∣β̃)

−2
n

C+
02

∑
i

M(1)(2)(Xi|β)Ω−1
11 (Xi|β)X̃i(1) f (Xi|β)εi

−2
n

C+
02E{( f .M>

(2)(2))(X|β)}M−1
0

×
{ n∑

i=1
εi f (Xi|β) [X̃ i(2)− (Ω21Ω

−1
11 )(Xi|β)X̃ i(1)]

}
,
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where we have left out the term which involves δβ̃ in (9.30),
as argued at the beginning of the proof. Part (b) thus follows
easily from (9.33), and the continuity in β of functions such
as f (Xi|β). �

Corollary 9.2.1. Under conditions (C1)-(C4), we have

1
n

n∑
i=1

{Yi − X̃>
i f0(x)− X̃>

i ḟn0(x)(X>
ixβ/hn)}Khn(X>

i1β)

= 1
n

n∑
i=1

Khn(X>
i1β)εi +O (τn|δβ||D, Θn),

1
n

n∑
i=1

X̃iX̃
>
i (X>

i1β/hn){Yi − X̃>
i a0− (X>

i1β/hn)X̃>
i b0

1}Khn(X>
i1β)

= 1
n

n∑
i=1

XiX̃
>
i ((X>

i1β/hn)Khn(X>
i1β)εi +O (τn|δβ||D, Θn)=O (τn|D, Θn),

1
n

n∑
i=1

X̃i(X>
i1β/hn){Yi − X̃>

i a0− (X>
i1β/hn)X̃>

i b0
1}Khn(X>

i1β)

= 1
n

n∑
i=1

Xi(X>
i1β/hn)Khn(X>

i1β)εi +O (τn|δβ||D, Θn)=O (τn|D, Θn),

1
n

n∑
i=1

X̃i{Yi − X̃>
i a0− (X>

i1β/hn)X̃>
i b0

1}Khn(X>
i1β)

= 1
n

n∑
i=1

XiKhn(X>
i1β)εi +O (|δβ|+h2

n|D, Θn)=O (|δβ|+τn|D, Θn).

Proof of Corollary 9.2.1 These are standard results in ker-
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nel smoothing, which follow easily from the fact that

Yi − X̃>
i f0(x)− X̃>

i ḟn0(x)(X>
ixβ/hn)

= εi + X̃>
i ḟn0(x)X>

ixδβ/hn+ 1
2

h2
nX̃>

i f̈0(x)(X>
ixβ/hn)2

+1
2

X̃>
i f̈n0(x)δ>

β
XixX>

ixδβ+hnX̃>
i f̈n0(x)(X>

ixβ/hn)X>
ixδβ

+O (|δβ|3+h3
n|D, Θn),

which holds for Xi in close proximity of a given x ∈D. �
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