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Abstract 

Wind energy has experienced remarkable growth in recent years, both globally and 

in the UK. As a low carbon source of electricity this progress has been, and 

continues to be, encouraged through legally binding targets and government policy. 

However, wind energy is non-dispatchable and difficult to predict in advance. In 

order to support continued development in the wind industry, increasingly accurate 

prediction techniques are sought to provide forecasts of wind speed and power 

output.  

This thesis develops and tests a hybrid numerical weather prediction (NWP) and 

Gaussian process regression (GPR) model for the prediction of wind speed and 

power output from 3 hours to 72 hours in advance and considers the impact of 

incorporating atmospheric stability in the prediction model. In addition to this, the 

validity of the model as a probabilistic technique for wind power output forecasting 

is tested and the economic value of a forecast in the UK electricity market is 

discussed.  

To begin with, the hybrid NWP and GPR model is developed and tested for 

prediction of 10 m wind speeds at 15 sites across the UK and hub height wind 

speeds at 1 site. Atmospheric stability is incorporated in the prediction model first 

by subdividing input data by Pasquill-Gifford-Turner (PGT) stability class, and then 

by using the predicted Obukhov length stability parameter as an input in the model. 

The model is developed further to provide wind power output predictions, both for a 

single turbine and for 22 wind farms distributed across the UK. This shows that the 

hybrid NWP and GPR model provide good predictions for wind power output in 

comparison to other methods. The hybrid NWP and GPR model for the prediction of 

near-surface wind speeds leads to a reduction in mean absolute percentage error 

(MAPE) of approximately 2% in comparison to the Met office NWP model. 

Furthermore, the use of the Obukhov length stability parameter as an input reduces 

wind power prediction errors in comparison to the same model without this 

parameter for the single turbine and for offshore wind farms but not for onshore 

wind farms. The inclusion of the Obukhov length stability parameter in the hub 

height wind speed prediction model leads to a reduction in MAPE of between 2 and 
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5%, dependent on the forecast horizon, over the model where Obukhov length is 

omitted. For the prediction of wind power at offshore wind farms, the inclusion of 

the Obukhov length stability parameter in the hybrid NWP and GPR model leads to 

a reduction in normalised mean absolute error (NMAE) of between 0.5 and 2%. The 

performance of the hybrid NWP and GPR model is also evaluated from a 

probabilistic perspective, with a particular focus on the appropriate likelihood 

function for the GPR model. The results suggest that using a beta likelihood function 

in the hybrid model for wind power prediction leads to better probabilistic 

predictions than implementing the same model with a Gaussian likelihood function. 

The results suggest an improvement of approximately 1% in continuous ranked 

probability score (CRPS) when the beta likelihood function is used rather than the 

Gaussian likelihood function. 

After considering new techniques for the prediction of wind speed and power 

output, the final chapter in this thesis considers the economic benefit of 

implementing a forecast. The economic value of a wind power forecast is evaluated 

from the perspective of a wind generator participating in the UK electricity market. 

The impact of forecast accuracy and the change from a dual imbalance price to a 

single imbalance price is investigated. The results show that a reduction in random 

error in a wind power forecast does not have a large impact on the average price per 

MWh generated. However, it has a more significant impact on the variation in price 

received on an hourly basis. When the systematic bias in a forecast was zero, a 

forecast with NMAE of 20% of capacity results in less than £0.05 deviation in mean 

price per MWh in comparison with a perfect forecast. However, the same forecast 

leads to an increase in standard deviation of up to £21/MWh. This indicates that 

whilst a reduction in random error in a forecast might not lead to an improvement in 

mean price per MWh, it can lead to a more stable income stream. In addition to this, 

Chapter 6 considers the use of the probabilistic and deterministic forecasts 

developed throughout this thesis to choose an appropriate value to bid in the UK 

electricity market. This shows that using a probabilistic forecast can limit a 

generator’s exposure to variable prices and decrease the standard deviation in hourly 

prices.
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Chapter 1. Introduction 

1.1 Background and policy 

Extensive scientific evidence over many years has shown that human activity is 

playing a key role in altering the global climate [1]. In the last 60 years, average sea 

surface temperatures have exceeded all previous recordings, global sea levels have 

risen and sea ice has receded [2]. Increased consumption of fossil fuels since the 

industrial revolution has resulted in increased concentration of CO2 and other 

greenhouse gases (GHG) in the atmosphere. If nothing is done to change current 

trends, it is likely that global warming will have a significant effect on ecological 

systems and human life, through increases in extreme weather events, effects on 

food and water supplies and rising sea levels. Whilst exact consequences of climate 

change cannot be predicted it is important that GHG emissions are cut to reduce 

long-term impacts [3]. 

The potential impact of climate change, socially, politically and economically, has 

been acknowledged by international leaders for many years. In 1992 the United 

Nations Framework Convention on Climate change (UNFCCC) was implemented in 

order to establish a framework for stabilising GHG emissions to avoid potentially 

dangerous climate change [4]. This was extended in 1997 with the Kyoto agreement, 

which took effect in 2005 and gave individual limits on GHG emissions for 

countries within the agreement [5]. In 2015 the Paris agreement was negotiated, 

aimed at strengthening current actions to combat climate change [6].  

Following the agreements outlined above targets for GHG emission reductions have 

been established by some parties. Within the European Union (EU) the 2020 

package was legislated in 2009 in order to ensure targets were met for 2020 [7]. The 

three key targets were: 

(i) 20% reduction in GHG emissions from 1990 levels; 

(ii) 20% of EU energy to be generated from renewable sources;  
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(iii) 20% improvements in energy efficiency. 

These were updated in 2014 [8] to extend targets for 2030 with new targets of: 

(i) At least a 40% cut in GHG emissions from 1990 levels; 

(ii) At least a 27% of EU energy to be generated from renewable sources; 

(iii) At least a 27% improvement in energy efficiency. 

The UK government has outlined measures to limit and reduce UK emissions of 

GHG, through objectives protected by law. The 2008 climate change act includes a 

system for carbon budgeting and outlines a number of targets [9]. Of these the most 

notable being the aim to reduce GHG emissions by 80% in 2050 based on 1990 

levels. In the short term the act outlines ‘carbon budgets’ which provide a 

framework for five-year limits on GHG emissions.  The fifth carbon budget outlined 

in 2016 covering 2028 – 2032 requires a reduction in GHG emissions of 57% 

compared to 1990 levels [10]. Furthermore, the UK government defined a target of 

15% of total energy demand being met by renewables by 2020. This objective 

included three sub-targets, one of which being to generate 30% of electricity from 

renewable sources which would be achieved by increasing renewable energy 

operational capacity to 29 GW [11]. Reaching these targets will not be an easy task, 

and significant changes will need to be made to current status quo in order to reduce 

emissions. Increasing the use of renewable electricity and reducing the use of gas 

and coal to generate electricity is fundamental to achieving these targets.  

1.2 Development and deployment of renewable electricity  

Globally, 21.6% of electricity produced came from renewables in 2015 [12]. In 

Europe, this figure was 30% and in the UK 17.6%. The main source of renewable 

energy worldwide is hydropower, with over 60% of renewable electricity generated 

by hydropower in 2015 [12]. However, wind energy is a rapidly growing source of 

renewable energy. Wind energy is an abundant source of renewable energy and the 

cost of wind energy projects is decreasing as technology advances. This suggests 

that wind energy will be a significant part of delivering a low cost, low emissions 

electricity system in the future. The importance of wind energy in the meeting of 
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UK renewable energy targets is highlighted by the UK renewable energy roadmap, a 

document produced by the former UK Department of Energy and Climate change 

(DECC) to outline how the targets in Section 1.1 will be achieved. From this, it is 

expected that between 57 and 90 TWh of renewable electricity will come from wind 

energy by 2020, both onshore and offshore, as shown in Table 1-1. This is larger 

than the contribution of any other source. 

Table 1-1: UK government renewable energy output targets for 2020 [11] 

Renewable energy type Annual output target for 

2020 (TWh) 

Onshore wind 24-32 

Offshore wind 33-58 

Biomass electricity 32-50 

Marine electricity 1 

Biomass heat (non-domestic) 36-50 

Air source and ground source heat pumps (non-domestic) 16-22 

Others (including hydro, geothermal, solar and domestic 
heat) 

14 

Renewable transport Up to 48 

Total to meet 15% target 234 

 

Since 2007, progress has been made in increasing wind energy capacity globally. 

Figure 1-1 shows wind energy capacity from 2007 to 2016, showing that capacity 

has significantly increased worldwide. 
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Figure 1-1: Installed wind energy capacity from 2007-2016 [13]. 

 

In addition to the global impact of wind energy, this form of renewable energy also 

contributes significantly to the UK electricity supply. It can be seen in Table 1-2 that 

in 2012 around 11% of electricity in the UK was generated from renewable sources, 

which rose to nearly 25% by 2015 [14]. Of this, nearly 50% came from wind energy, 

as highlighted in Figure 1-2. 

Table 1-2: Renewable energy contributions in the UK [14, 15] 

Year Total renewables (% of electricity generation)  

2012 11.3% 
2013 14.9% 
2014 19.1% 
2015 24.6% 
2016 24.4% 

 

Despite increases in the amount of electricity generated from renewable sources 

between 2012 and 2015, 2016 saw a plateau in renewable electricity generation. 

Renewables’ share of electricity generation in 2016 fell by 0.2% in comparison to 

2015 despite increases in installed capacity [15]. Furthermore, total electricity 

generated from wind fell by 7% between 2015 and 2016 [15]. According to a 
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summary report by the UK Department for business, energy and industrial strategy 

(BEIS) this was due to an 11% fall in average wind speed [16]. This indicates that 

simply increasing installed capacity of renewable energy is insufficient to reach 

renewable energy targets in terms of electricity generated from renewable sources. 

Looking to the future, it is anticipated the increase in installed capacity of wind 

energy will continue in the UK. As of September 2017 there were nearly 7600 

turbines operational in the UK, providing 17.1 GW of installed capacity [17]. A 

further 4.6 GW was under construction and 16.4 GW currently had planning 

permission, which if all projects are completed will deliver targets for 2020, in terms 

of capacity installed. Of the wind farm capacity currently operational in the UK, 

35% is onshore and 65% is offshore. Of the 16.4 GW with planning permission for 

the future, 14% is onshore and 86% is offshore. This demonstrates a clear move 

towards offshore wind power production in the future of the UK electricity supply.  

Figure 1-2: UK Renewable energy generation in 2015. [18] 

 

*Other includes electricity from wave, tidal, sewerage, co-firing with fossil fuels, 
anaerobic digestion, and animal biomass. 

 

Alongside the increase in installed capacity of wind energy, technical advancement 

in size and efficiency of wind turbines has helped increase wind power output. The 

size and height of turbines have grown significantly in the past 30 years. 

Commercial offshore turbines are now normally 3 MW or larger [17]. The largest 

commercially available turbine is currently the Vestas V164 9.5 MW turbine, and a 
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number of turbines are available with rated capacity exceeding 7 MW [19]. Onshore 

turbines are now normally between 1 and 3.5 MW [17]. The increase in size 

increases the power which can be generated from individual turbines; however also 

limits where they can be placed. Large wind developments are crucial to reaching 

2020 government targets. As of September 2017, the largest operational wind farm 

in the UK was the London Array, a 630 MW development of 175 turbines. A further 

5 offshore wind farms with rated capacity over 1GW currently have planning 

permission, as detailed in Table 1-3, offering 9 GW of further capacity [17]. This 

increase in size of wind farm projects has helped deliver sufficient capacity to reach 

renewable energy targets. 

Table 1-3: Wind farms over 1 GW with planning consent [17] 

Project Location 
Installed 
capacity 
(MW) 

Turbine 
capacity 
(MW) 

No. of 
turbines 

Dogger Bank Creyke 
Beck A & B 

125km off coast of 
Yorkshire 

2,400 5.0 480 

Dogger Bank 
Teesside  A & B 

125km off coast of 
Yorkshire 

2,400 5.0 480 

Hornsea Project Two 
– Optimus and 
Breesea 

Off coast of 
Yorkshire 

1,800 5 360 

East Anglia 3 
Offshore, East of 
England 

1,200 7 172 

Hornsea Project One 
- Heron & Njord 

Off coast of 
Yorkshire 

1,200 7 174 

 

Despite significant progress towards achieving targets in producing electricity from 

renewable sources, there is much more work required than simply building sufficient 

renewable energy capacity. As seen in Table 1-2 and Figure 1-1, despite an increase 

in installed wind energy capacity in the UK between 2015 and 2016 there was a 

decrease in the proportion of electricity generated from renewable sources. Further 

work is required to ensure that a low carbon electricity system is achieved whilst 

maintaining the security of supply and providing electricity at an affordable rate. In 

addition to this, large wind farms and large individual wind turbines present new 

problems for the electricity grid in terms of power balancing and planning, such as 
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the potential for significant highs and lows in power output dependent on regional 

weather events.  In order to ensure increased wind energy capacity can be effectively 

used to provide low carbon electricity, the integration of wind energy in the 

electricity system needs to be effectively managed. In the next sections, some of the 

issues in integration of wind energy are discussed. 

1.3 Challenges of integrating wind energy  

Integration in electricity systems is the process of coordinating the operation of 

numerous individual power generation units to provide a reliable and cost-effective 

electricity supply. To do this, demand for electricity must be met by generation in 

real time. In contrast to traditional sources of power, renewable energy (particularly 

non-dispatchable renewable energy such as wind and solar power) cannot be 

produced on demand and can only be predicted with limited accuracy. This creates a 

number of issues. Firstly, the uncertain nature of wind power available leads to 

scheduling difficulties [20]. As electricity needs to be generated to meet demand, 

predictions of demand and generation are made in advance. This allows power 

generation units to be scheduled to supply sufficient power to meet demand. 

Electricity storage systems can be used to aid this process of balancing by storing 

electricity when production is greater than expected and discharging when electricity 

production is less than expected. However, currently electricity storage systems are 

used infrequently due to the costs associated. Therefore the issues related to the 

integration of wind energy considered here assume large scale electricity storage 

systems are unavailable. Prediction of electricity demand is relatively well 

understood but still contains some uncertainty. Uncertainty in prediction of 

renewable energy generation adds to the difficulty of scheduling power delivery. 

Secondly, uncertainty in renewable energy generation can lead to additional actions 

to balance the system being needed. This can increase costs. Finally, variations and 

uncertainty in renewable energy production require alternative load to be available 

to meet demand. For example, coal or gas plants may be required to change power 

output. These changes can increase wear and tear and decrease operating efficiency. 

This both increases costs and limits the emissions reductions achieved through the 

use of renewable electricity.  
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In the UK, the integration of a large amount of wind energy has been managed so 

far. However, the cost of balancing the system has been increasing over the last 

decade due to an increase in supply from intermittent generators [21]. If energy 

supply cannot be effectively balanced, some generators may be forced to stop 

producing electricity, known as curtailment. For wind energy this is significant as 

the wind farms can only produce power at certain times, if this power cannot be 

used, income cannot be maximised. System management and balancing are 

discussed further in Section 2.3.1. However, the examples shown here indicate some 

of the issues with increasing use of wind energy and other forms of variable 

renewable energy. 

Despite the integration of wind energy being a complex task, significant progress 

has been made in other countries. For example in Denmark in 2015 42% of 

electricity consumed was produced by wind energy [22]. In Denmark, a high 

penetration of wind is managed using interconnections with Norway, Sweden, and 

Germany [23]. Given the relatively small size of Denmark’s electricity system in 

comparison with connected countries, this allows the fluctuations of wind power to 

be balanced with the relatively reliable and stable power provided by hydropower in 

Norway. This is an example of the different natural resources available in 

neighbouring countries being used to complement one another. Alternatively, in 

Spain, substantial interconnections like those that exist in Denmark are not 

available. Spain has one connection with France which covers approximately 2% of 

installed capacity which is insufficient to cover potential voltage drops caused by 

renewable energy [23]. To combat balancing issues, large suppliers in Spain are 

mandated to forecast their energy production. The centre for control of renewable 

energy (CIEMAT) monitors the production of renewables over 10 MW in real time 

and uses this control to balance supply and demand [23]. These are two of the 

different ways of dealing with the balancing issues presented by the use of non-

dispatchable renewable energy sources.  

In the UK, large interconnections are not available. Large generators are required to 

submit their expected power output to the system operator, the National Grid, half 

an hour in advance of generation. The National Grid is then responsible for grid 

balancing. The cost of deviating from the expected electricity production is passed 
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on the generator through an imbalance price. If a substantial number of deviations 

from the predicted schedule need to be balanced this imbalance price may rise 

significantly. Therefore there is an incentive for generators to accurately predict 

power output, ultimately enabling the system operator to manage numerous variable 

electricity producers. This method relies on market forces to enable effective 

integration of variable electricity generators. This can make it challenging for them 

to be economically competitive in a system still dominated by well-established 

thermal generators such as gas power plants.  

1.4 Need for research 

So far, it has been identified that there is a need to continue increasing the use of 

renewable electricity and that wind energy can contribute to this. However, issues 

with the integration of wind energy in an electricity system have been acknowledged 

and these need to be managed if the use of wind energy is to be increased in a cost-

effective manner. 

In the UK significant interconnections with other power systems are not available. 

However, wind power prediction could be used to limit the impact of increased use 

of wind power in the electricity system. For example, wind power prediction can be 

used to effectively schedule generating units to meet demand. Alternatively, it can 

be used to set the amount of excess capacity required to ensure reliable delivery of 

electricity. Furthermore, it can be used to allow wind generators to effectively 

compete in electricity markets and increase revenue. This, in turn, encourages 

investment in wind energy in the future. The contribution of wind power forecasting 

is not limited to the examples given above. A more detailed discussion of the 

applications of wind power is given in Section 2.3. However, the examples shown 

here indicate that wind power forecasting can play an important role in ensuring 

reliable and efficient operation of an electricity system with increased wind energy 

capacity. This will allow the targets outlined in Section 1.1 to be met and a low 

carbon electricity system to be realised. Because of this, new wind power 

forecasting techniques and methods which may increase forecasting accuracy 

continue to be important.  Many forecasting techniques already exist, an overview of 
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which is given in Section 2.2. However, improvements can still be made and it is 

important to consider alternative techniques. Furthermore, the use of forecasts which 

provide a way of quantifying uncertainty is of growing interest. Quantification of 

uncertainty can help minimise or hedge against risk of financial loss or manage 

capacity requirements in a stochastic way in order to reduce system costs. 

Probabilistic forecasting is one way of providing an estimate of prediction 

uncertainty. Therefore methods for probabilistic wind power forecasting are an 

important area of research. 

1.5 Aims and objectives 

The overall aim of this thesis is to develop and test a method for short to medium 

term wind power forecasting. Here short to medium term refers to forecasts from 3 

hours to 72 hours in advance. The method employed is a hybrid numerical weather 

prediction (NWP) and Gaussian process regression (GPR) model. This is first used 

to predict near surface wind speeds and then adapted to provide wind power 

predictions for both an individual turbine and a whole wind farm.  

The main objectives of this thesis are: 

(i) To investigate the use of GPR as a method for the prediction of wind speed 

and power output, focusing on how it can be used to improve upon NWP 

wind predictions and make wind power predictions. 

(ii) To explore whether incorporating atmospheric stability into the GPR model 

leads to improvements when predicting wind speed and power output. This 

thesis will consider the atmospheric conditions under which NWP wind 

speed predictions could be improved and develop this to make wind power 

predictions. 

(iii) To study whether a GPR model is appropriate as a probabilistic method for 

wind power forecasting and how best to formulate the model to make good 

probabilistic wind power predictions. 

(iv)  To evaluate the value of wind power forecasting from a user perspective, 

particularly focusing on the economic value of a forecast for a wind 

generator participating in the UK electricity market.  
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1.6 Outline of thesis 

Chapter 2 begins by giving an outline of the concepts fundamental to wind and wind 

power generation. Next, a discussion of wind speed and power forecasting 

techniques is given. This covers both basic techniques and current state of the art 

methods. This includes an overview of current literature on wind speed and power 

forecasting techniques. In addition, applications of wind forecasting are discussed. A 

summary of electricity system management and electricity markets is given, 

followed by a discussion of current literature on the applications of wind 

forecasting.   

In Chapter 3 a hybrid NWP and GPR model for wind speed prediction is developed. 

The model is used for the prediction of 10 m wind speeds at 15 sites across the UK 

and hub height wind speeds at one turbine. The model for the prediction of 10 m 

wind speed aims to correct NWP predictions, whilst for hub height wind speed 

prediction the model translates NWP predictions to hub height predictions. The 

impact of subdividing input data by atmospheric stability class on model 

performance is also investigated. Furthermore, the influence of improved wind 

speed predictions on power predictions is considered for one turbine.  

In Chapter 4 the hybrid NWP and GPR model is developed further to give power 

predictions both for a single wind turbine and for 22 wind farms across the UK. In 

addition to this, the use of the Obukhov length stability parameter is introduced, and 

the impact of its inclusion as an input parameter in the GPR model on model 

performance is investigated.  

Chapter 5 evaluates the hybrid NWP and GPR model for wind power prediction 

developed in Chapter 4 in a probabilistic framework. This allows the performance of 

the model for probabilistic predictions to be evaluated. In addition to this, the use of 

a beta likelihood function in the GPR model is discussed in comparison to a 

Gaussian likelihood function. 

Chapter 6 evaluates the economic value of a wind power forecast from the 

perspective of a wind generator participating in the UK electricity market. The 

impact of forecast accuracy on price received for electricity generated is discussed. 
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Furthermore, the influence of ongoing changes to the imbalance pricing system in 

the UK on price received for electricity generated is considered. Finally, an example 

of how a deterministic or probabilistic forecast might be used to choose the volume 

of electricity to bid in the electricity market is given. 

Chapter 7 gives the overall conclusions of this work and discusses potential further 

work. 
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Chapter 2. Background and Literature 

This chapter introduces the underlying theoretical concepts upon which this thesis 

relies. In addition to this, a review of relevant literature is presented which gives the 

reader an overview of both the historical developments in the field and current state 

of the art techniques. First, the fundamentals of wind and wind power production are 

explored. This is followed by a review of forecasting methods and a review of state 

of the art wind speed and power forecasting techniques. A discussion of grid 

operations and power markets follows, giving context to the problems caused by 

wind energy as a power source. Once these issues have been considered, the 

applications of wind power forecasting are discussed.  

2.1 Fundamental concepts 

In this section three of the fundamental concepts related to wind forecasting are 

explored. These are: the atmospheric and physical processes which generate and 

affect wind, how wind speed increases with height above ground level and how 

wind is converted to power output. These concepts form an important background 

for considering how wind speed and power output are predicted. These concepts are 

included, either implicitly or explicitly, in many forecasting methods [24]. 

2.1.1 Wind meteorology 

The troposphere is the lowest part of the atmosphere, which can be split into the 

planetary boundary layer (PBL) and the free atmosphere. The PBL is directly 

influenced by the Earth’s surface, reacting to things such as frictional drag, 

evaporation, transpiration and heat transfer [25]. The PBL can be broken down 

further into the surface boundary layer, a well-mixed layer and a capping 

entrainment layer [26]. The PBL depth is variable in space and time. Wind occurs in 

the PBL due to the movement of air in the troposphere. This movement of air is 

driven by differences in atmospheric pressure, known as pressure gradients. 

Convective processes are driven by changes in atmospheric pressure due to uneven 

solar heating and cooling of the earth [27], a process which can happen on both a 
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regional and global scale. For example, on a small scale, pressure gradients created 

by variations in heating due to different surfaces, such as land and sea, lead to the 

movement of air. On a global scale, areas closer to the equator receive increased 

solar insolation comparative to the poles, leading to the circulation of air. Variations 

in heat flux in time occur due to seasonal, inter-annual and diurnal changes in solar 

heating. Variations in space are affected by height above ground and topography 

(both local and regional) [27]. Wind patterns are also affected by the Coriolis effect. 

This stops air simply flowing from areas of high pressure to low pressure causing 

circulation in global wind patterns. This influences prevailing wind conditions at a 

location [28]. 

Another key process which influences wind characteristics is mechanical turbulence. 

Mechanical turbulence is caused by the interaction between wind and the ground. 

Mechanical turbulence results from wind flowing over irregular terrain. This can 

include natural obstacles such as trees or hills or manufactured obstructions such as 

buildings. The magnitude, vertical and horizontal extent of mechanical turbulence 

depends on the wind speed, roughness of the terrain and atmospheric stability.  

Atmospheric stability is an important component in modelling wind characteristics. 

Atmospheric stability is a measure of the atmosphere’s tendency to encourage or 

deter vertical motion [29]. Under stable conditions, vertical motion is suppressed 

and under unstable conditions, vertical motion is encouraged. In the absence of 

either of these conditions, the atmosphere is said to be neutral. Atmospheric stability 

is affected by convective processes and wind speed. The convective processes 

affecting atmospheric stability follow a diurnal pattern. Typically, over land, at 

night, the ground becomes a heat sink and the lower atmosphere becomes stably 

stratified. In the morning, surface heating eventually becomes strong enough to 

cause convective mixing of air leading to unstable conditions before gradually 

becoming stable again as night-time heat patterns return. The rate at which this 

process occurs depends on the strength of surface heating and is therefore seasonal. 

As the atmosphere changes between stable and unstable conditions neutral 

conditions are seen where thermal processes have less effect on the vertical profile 

of flow. Neutral conditions are also seen when wind speeds are high. In these 

conditions, mechanical turbulence overrides convective processes resulting in 

neutral conditions. Atmospheric stability has a significant influence on atmospheric 
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circulation and momentum transfer [30]. This is particularly true for offshore wind 

climates as changes in surface roughness seen at the coastline affect wind profiles 

differently dependent on stability conditions [30, 31]. It is therefore important to 

consider atmospheric stability in wind prediction.   

2.1.2 Vertical wind profiles 

In addition to the processes outlined above, understanding how wind speeds change 

with height is an important part of making predictions relevant to the wind industry. 

Surface friction causes wind speeds to be lowest close to the ground and to increase 

with height. The power law, given by Equation 2-1 [32], is a simple way of 

estimating horizontal wind speed, 𝑢ଶ, at a height, 𝑧ଶ, above ground level given a 

reference wind speed, 𝑢ଵ, and height, 𝑧ଵ.  

𝑢ଶ = 𝑢ଵ(𝑧ଶ 𝑧ଵ⁄ )ఈ Equation 2-1 

In this equation, α is the power law exponent which is determined empirically. The 

appropriate value depends on surface roughness and atmospheric stability. Von 

Karman showed that under some conditions 𝛼 =  1 7⁄  is appropriate [33]. This value 

is used where no surface roughness or atmospheric stability data is available. The 

power law is frequently used due to its mathematical simplicity [34]. However, it 

does not account for the impact of surface roughness on vertical wind profiles. 

An alternative way of estimating vertical wind profiles is using the logarithmic wind 

profile, developed from a combination of theoretical relationships and empirical 

research based on boundary layer fluid dynamics [27]. This is a relationship between 

three variables, the height above ground level, the roughness length and the 

frictional velocity given by Equation 2-2 [25]. 

𝑢(𝑧) =
𝑢∗

𝑘
ln ൬

𝑧

𝑧଴
൰ Equation 2-2 

where 𝑢(𝑧) is the wind speed at height 𝑧 above the surface, 𝑢∗ is the friction 

velocity, 𝑧଴  is the roughness length and 𝑘 is the Von Karman constant. This is a 

simple version of the logarithmic wind profile, more complex versions include a 

displacement height. The roughness length 𝑧଴ is a parameterisation of the drag force 

exerted on the flow due to the roughness of the surface [35] and the frictional 
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velocity parameterises the frictional force between the flow and the ground [29]. 

The roughness length is usually estimated based on a general classification of the 

area in question. Roughness length can be estimated from land surface use as shown 

in Table 2-1. Classifications are frequently crude (as they are based on satellite 

imagery of large areas) which can introduce significant errors to calculations. 

Table 2-1: Roughness lengths for various terrain types [36] 

Surface Description z0 (m) 

Sea Open sea, fetch at least 5 km 0.0002 

Smooth Mud flats, snow, little vegetation, no obstacles 0.005 

Open Flat terrain: grass few isolated obstacles 0.03 

Roughly open Low crops: occasional large obstacles 0.1 

Rough High Crops: scattered obstacles 0.25 

Very rough Orchards, bushes: numerous obstacle 0.5 

Closed Regular large obstacle coverage (suburban area, forest) 1.0 

Chaotic City centre with high and low rise building >2 

 

Vertical wind profiles are also affected by atmospheric stability. The wind speed 

gradient is reduced in unstable conditions and increased in stable conditions. This is 

because of the increased vertical mixing in unstable conditions and decreased 

vertical mixing in stable conditions. Neutral conditions are frequently assumed in 

order to simplify calculations. However, the effects introduced by non-stable 

conditions can be significant.  It is suggested that a slightly more realistic estimation 

of vertical wind profile may be given by Equation 2-3, the logarithmic profile 

corrected for stability [29]. 

𝑢(𝑧) =
𝑢∗

𝑘
൬ln ൬

𝑧

𝑧଴
൰ − 𝜓൰ 

Equation 2-3 

where 𝜓 is a stability dependent function which is positive for unstable conditions 

and negative for stable conditions and all other parameters are as in Equation 2-2. 

As shown in Figure 2-1, further above ground level (e.g. above 30 m above ground 

level in this example) under unstable conditions wind speeds increase with height at 

a slower rate than under neutral conditions, and under unstable conditions the 
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increase in wind speed with height is faster than under neutral conditions. Closer to 

the ground (e.g. below 30m above ground level in this example), higher wind speeds 

are seen under unstable conditions for the same height above ground. Under stable 

conditions changes in wind direction with height are also observed [29]. The height 

above ground level at which changes like this will be seen is site dependent and 

must be observed empirically.  

Figure 2-1: Wind profiles under different stability conditions according to Equation 2-2. 

Source: Peterson et al. [29] 

 

The relationships discussed here can be used either implicitly or explicitly in wind 

power predictions to estimate hub height wind speed from near surface wind speed 

predictions or observations. This is useful as near surface wind speed observations 

and predictions are more frequently available than hub height wind speeds as these 

are valuable in many industries and not specific to the wind industry. However, 

there are many atmospheric variables which can affect the vertical wind speed 

profile and site specific vertical scaling relies on spatial and temporal averaging of 

wind conditions which can reduce the accuracy of predictions. Because of this, 

statistical forecasting techniques which aim to directly predict hub height wind 

speeds may produce more accurate predictions. 

2.1.3 Converting wind speed to power 

Thus far the meteorological mechanisms which generate wind have been introduced, 

followed by vertical wind profiles. The method by which this kinetic energy is 

converted into electrical energy is now discussed. Kinetic energy in an air flow may 
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be exploited by converting it into electricity using a rotor, which is connected to an 

electricity generator. This can be done via vertical or horizontal axis turbines, on a 

scale of a few kilowatt up to multi-megawatt units. The most frequently used 

turbines are 3 blade horizontal axis turbines. Power is a measure of kinetic energy 

per unit time. Using fluid mechanics, a derivation of the power ‘P’ extracted from a 

volume of air passing the area of a flow at a given speed is given by Equation 2-4. 

𝑃 =
1

2
𝜌𝐴𝑢ଷ, 

Equation 2-4 

where 𝜌 is air density, A is the cross-sectional area of the flow and u is wind speed. 

Equation 2-4 gives the maximum power which could be extracted from a flow. 

However, a wind turbine cannot extract all power from a flow of air. The power 

coefficient gives the fraction of power extracted by the turbine given the maximum 

power available. The German physicist Albert Betz concluded that no wind turbine 

can convert more than 59.3% of the kinetic energy from the wind into mechanical 

energy in the rotor. This is known as the Betz limit and is the theoretic maximum 

power coefficient [37]. In reality, this limit is not reached, and the actual limit is 

unique to a turbine and the operating conditions. Hence the actual extractable power 

from a wind turbine is given by Equation 2-5. 

𝑃 =
1

2
𝜌𝜋𝑟ଶ𝑢ଷ𝐶௣௢௪௘௥ , 

Equation 2-5 

where Cpower is the power coefficient, r is the rotor radius and all other parameters 

are as defined in Equation 2-4. From this, it is obvious that the electrical output is 

related to both the wind speed and the rotor area of the turbine. The power 

coefficient, Cpower, used in Equation 2-5 varies between different wind turbines and 

also varies with wind speed. For example it is affected by the aerodynamic 

efficiency of the turbine design, turbulence intensity of the wind and condition of 

turbine blades and other mechanical parts [38]. It is a measure of how efficiently a 

wind turbine extracts power from a flow.  

The expected power output for a turbine at different wind speeds is given by a 

power curve. Power curves are usually found by taking concurrent measurements of 

wind speed and power output and plotting average values. They are normally 
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produced by a wind turbine manufacturer in order for potential customers to 

compare turbine performance. As an example, a power curve for a 300 kW turbine is 

given in Figure 2-2. Power curves can be estimated from measurements taken in the 

field or in a wind tunnel. For a power curve estimated from measurements taken in 

the field, concurrent wind speed and power output measurements are taken over a 

period of time and used to estimate the expected power output for a given wind 

speed. There is a degree of uncertainty in field measurements of wind speed which 

can cause problems in estimating wind power output at a given wind speed using 

this method. Anemometer measurements of wind speed can introduce some errors 

into the observed relationship between wind speed and power output. Additionally, 

the observed power output is measured as an average for a period of time, which 

may include some very short term fluctuations in wind speed. This can affect the 

observed relationship between wind speed and power. 

Figure 2-2: Power curve for a Bonus 300 kW wind turbine. Data obtained from The Wind 

Power [39]. 

 

 

In some cases, power curves are made using measurements taken from a wind 

tunnel. Using this method, a constant wind speed is artificially generated and the 

power output measured as this is varied. Whilst this improves the accuracy of 

measured wind speed, they can be overly optimistic when compared to observations 

taken from operational wind turbines. This is due to an inability to model very short 
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term fluctuations in wind speed or other atmospheric conditions seen in operational 

conditions which can reduce power output. 

Power curves published by manufacturers rarely include an estimate of uncertainty 

in the expected power output. In addition to this, both methods require some 

averaging of observed  power output at a given wind speed. Whilst power curves 

can be very useful in some situations, the use of a power curve to predict power 

output from predicted wind speed can introduce significant errors and therefore 

power prediction methods which avoid this are valuable. For example, some 

statistical forecasting techniques use measured power output as an input variable in 

order to establish a relationship between predicted wind speed and power output 

rather than relying on a power curve. This approach is taken in the model introduced 

for wind power prediction in Chapter 3 and Chapter 4. 

The relationship between wind speed and power output is an important 

consideration when predicting power output and power curves give some indication 

of how they are related for a single turbine. However, there are limitations to the use 

of power curves for predicting power output and uncertainty in the expected power 

output is important to consider. 

The conversion of wind to power and the accuracy of power curves is also affected 

by atmospheric stability [40-42]. This is largely due to the difference in wind speed 

and turbulence across the rotor blade and leads to higher output under stable 

conditions and lower output under unstable conditions [40]. For example, under 

different stability conditions the rotor-averaged wind speed may differ from the hub 

height wind speed due to differences in wind shear. The use of power curves to 

estimate power output at a given wind speed assumes that the increase in wind speed 

with height will be linear over the area of the wind turbine rotor [42]. However, 

given the differences noted in Figure 2-1 this is not necessarily the case, particularly 

for modern turbines with large rotor areas. Wharton and Lundquist [40] found that 

for an American wind farm the rotor-averaged wind speed was higher than the hub 

height wind speed under stable conditions which led to an over performance in 

power output in comparison to what would be expected from a standard power 

curve. The opposite was observed under unstable conditions. Because of this, the 

inclusion of stability parameters in wind power predictions can lead to improved 
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accuracy [40]. This has motivated the discussion in this thesis into whether the 

inclusion of a stability parameter in the GPR model for wind power prediction can 

improve wind power predictions.  

Overall, it can be seen from some of the issues noted here that the use of standard 

scaling methods to predict hub height wind speed and power output can introduce 

significant errors. Therefore the use of other prediction methods which take 

advantage of statistical techniques and numerical weather prediction are crucial.  

2.2 Predicting wind speed and power output 

Estimating wind speed or power output is not an easy task due to the unpredictable 

nature of global weather systems. However, it has many uses and applications. One 

of the key objectives of this thesis is to develop a model for wind speed and power 

prediction. Before doing this, currently available prediction techniques and the 

results that they achieve are discussed.  Wind prediction falls into two areas: 

resource assessment and forecasting. Resource assessment is concerned with 

establishing the potential wind characteristics experienced by an area. This includes 

daily, seasonal and annual wind characterises as well as the uncertainty of the wind 

resource and turbulence in a given area. This is of use when considering wind farm 

siting and considering the strategic planning of wind energy generation. Secondly, 

wind prediction can refer to the prediction of wind speed and power at a specific 

point in time, from minutes to days ahead. This is used to aid electricity supply 

planning, grid balancing and turbine maintenance amongst other things discussed in 

Section 2.3. It is this definition of wind prediction that is the focus of this thesis. 

Wind prediction can be broken down into three areas, numerical weather prediction 

(NWP), statistical approaches and hybrid models. Models which employ a 

combination of NWP methods and statistical methods are known as hybrid models. 

Current techniques for both wind speed and power prediction are discussed in this 

section. Wind speed and power forecasts can be deterministic, where a single value 

is predicted, or probabilistic, where the probability of a possible value occurring is 

predicted. This section begins with a discussion of deterministic forecasting. This 

starts with an overview of the types of deterministic forecasts available, followed by 

forecast evaluation techniques and finally a summary of the results presented in the 
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literature. Subsequently, a discussion of probabilistic forecasting techniques is 

given. This covers the types of probabilistic forecasts available, how probabilistic 

forecasts can be used, how probabilistic forecasts are evaluated and a summary of 

results presented by literature.  

2.2.1 Numerical weather prediction 

Numerical weather prediction (NWP) is the process of predicting weather conditions 

through the numerical evaluation of differential equations using current weather 

observations. A basic summary of the physical approximations made by a numerical 

weather prediction is given by Peterson et al. [29] and is summarised here.  

The state of the atmosphere at any time is defined by a number of parameters 

including pressure, temperature, density, moisture and three components of velocity. 

These parameters are governed by the first law of thermodynamics, Newton’s 

second law and continuity equations. From these, fundamental physical laws of the 

conservation of mass, momentum and energy equations are derived. These form the 

basis for calculating the atmospheric state at a given point in time. These are 

outlined in Equations 2-6 to 2-9. 

Momentum equations: D𝐯

D𝑡
+ 𝑓𝐤 × 𝐯 = −

1

𝜌
∇𝑝 − 𝑔𝐤 + 𝐹 

Equation 2-6 

Continuity equation: D𝜌

D𝑡
+ 𝜌∇ ∙ 𝐯 = 0 

Equation 2-7 

Thermodynamic equation: D𝜃

D𝑡
= 0 

Equation 2-8 

Equation of state: 𝑝 = 𝜌𝑅𝑇 Equation 2-9 

where: 

𝐯 Velocity vector (𝑢, 𝑣, 𝑤) for a flow 

𝐤 Vertical unit vector 

𝑡 Time 

𝑓 
Coriolis parameter 𝑓 = 2Ωsin𝜑 (Ω is the rate of the earths rotation, 𝜑 is 

latitude). 
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𝑝 Pressure of the gas in the flow (Pa) 

𝜌 Density of air in the flow (kg m-3) 

𝐹 Force of friction (N) 

𝑅 Specific gas constant (J kg-1 K-1) 

𝑇 Temperature (K) 

𝜃 
Potential temperature (K), defined as 𝜃 = 𝑇 ቀ

௣

௣బ
ቁ

ିோ
௖೛ൗ

  

(𝑐௣ is specific heat capacity (J kg-1 K-1), 𝑝௢ is reference pressure (Pa)) 

The Equations 2-6 – 2-9 allow the development of models which may be solved 

numerically to establish meteorological conditions at any point in time and space. 

The mathematical model can be solved through integration in time and space subject 

to initial boundary conditions. However, the continuous atmosphere must be 

approximated by discrete grid points, resulting in a loss of accuracy. Furthermore, 

the initial state of the atmosphere is not known for many locations across the earth 

due to a lack of observations and potential errors in observations. The spatial and 

temporal resolution of a model is constrained by the computer power available, as 

solving the numerical equations becomes more computationally intensive with more 

grid points. Generally, full global models are run on coarse resolution grids and then 

local area models are computed for areas of interest using the global model as input. 

Global models are usually run by large weather forecast providers such as The UK 

Meteorological Office (the Met Office). The Met Office unified model is an 

operational NWP model run in a number of configurations to provide short and long 

range weather forecasts on both a global and regional scale. The global model 

supports a higher resolution regional model which is able to capture more detail in 

atmospheric processes. The model has been updated to incorporate a variable 

resolution UK model (UKV). This resolves atmospheric conditions over two scales, 

a high-resolution inner domain (1.5 km) and a coarser resolution (4 km) near grid 

boundaries, which limits the effects of the boundaries on the forecasts [43]. The 

details of the global model and UKV including resolution, frequency which the 

model is run, forecast length and initial conditions are given in Table 2-2. Various 

other NWP models have been developed including Global Forecasting System, 

MM5, Prediktor and HIRLAM [44]. 
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Weather observations are used to gain an accurate representation of the initial state 

of the atmosphere and inform the NWP. In a process known as data assimilation, 

recent observations are combined with previous weather forecasts to estimate the 

current atmospheric conditions [45]. The process of data assimilation allows for the 

model and observational uncertainty to be accounted for. Globally the vast majority 

of data is obtained from satellites [46]. However, radiosonde, surface land 

observations, marine observations, aircraft measurement and radar data are also 

used. The UK has an extensive network of synoptic observation stations, as shown 

in Figure 2-3, which give detailed observations which are used within the high-

resolution model. At these stations, various observations are made such as wind 

speed and direction, rainfall and temperature. Measurements are taken at 10 m above 

ground level. 

Table 2-2: Comparison of Met office global and UKV models [43] 

Model Grid length in 

mid-latitudes 

Grid 

points 

Vertical 

levels 

Maximum 

height 

Forecast 

length 

Run times 

(UTC) 

Global 17 km 1536 x 

1152 

70 

 

80 km  6 days 

 

00, 06, 12, 

18 

UKV 1.5 km inner 

4 km outer 

744 x 928 70 

 

40 km 36 

hours 

03, 09, 15, 

21 

 

Previously, statistical interpolation and 3D variational (3DVAR) algorithms were 

the most frequently used data assimilation techniques for weather forecasting [47]. 

More recently 4D variational data assimilation has been incorporated into the Met 

office operational models, which allows the development of weather systems over 

time to be better modelled. This uses covariance matrices incorporating recent 

observations and predicted conditions allowing for relationships in time and space to 

be modelled [48]. 
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Figure 2-3: UK synoptic observation network. Source: The Met Office [49] 

 

Traditionally NWP models were deterministic weather predictions. However, 

innovation in computer capacity has allowed multiple models to be run at any one 

time, enabling forecasters to generate a representative sample of future 

meteorological scenarios. This process is known as ensemble forecasting and 

involves running multiple models with different initial conditions which allow the 

uncertainty to be assessed. Ensemble forecasting has many applications from 

ecology [50] to economics [51]. The use of ensemble forecasting for weather 

prediction has been subject to a number of studies. Eckel and Mass [52] reviewed 

the potential of using a short-range ensemble forecasting system to produce useful 
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information about the forecast probability of a mesoscale model for up to 2 days in 

advance, commenting that whilst ensemble forecasts were advanced for a range of 

up to 10 days, shorter timescales had received limited attention. Toth et al. [53] 

considered the use of an ensemble forecast to give a relative measure of uncertainty 

on forecasts and suggest that the economic advantage of using forecasts can be 

enhanced by incorporating a measure of uncertainty. Zhu et al. [54] compare the 

economic benefit of using an ensemble forecast over using a higher resolution 

mesoscale model, concluding that the probabilistic model is of higher economic 

benefit than a point forecast even if the point forecast is from a higher resolution 

model.  

NWP models provide good forecasts for wind speed prediction particularly allowing 

medium to long term forecasts to be made. However, some of their key features 

limit the model accuracy. Firstly the grid length of an NWP model is limited by 

computer power. Higher resolution models require huge computational capacity. As 

computers improve and costs decrease the resolution upon which these models can 

be run has increased. For example, the Met Office UKV model with a 1.5 km grid 

lengths replaced the previous UK4 model with 4 km grid lengths in 2009 [55]. 

However, these higher resolution models can still only be run for shorter term 

forecasts (up to 36 hours for UKV) and may still not capture some terrain 

characteristics. For example, a hill, outcrop of rock or body of water contained in a 

1.5 km area. Because of this, some adjustments might need to be made to NWP 

forecasts of wind speed to improve forecast accuracy. This can be beneficial for both 

shorter term higher resolution models and longer term lower resolution models. It is 

because of this that throughout this thesis a hybrid NWP and statistical model (GPR) 

is developed so that corrections can be made to NWP predictions where necessary.  

2.2.2 Statistical approaches 

NWP models are a good way of predicting weather conditions over a large area and 

can be effective for long forecast periods [24]. Despite this they can be expensive to 

run and, due to coarse resolution, may not be able to account for small-scale effects 

of terrain.  



27 

 

  

Statistical models make predictions based on analysis of past trends and patterns. 

Statistical models attempt to find relationships between explanatory variables and 

output variable employing a range of techniques. Explanatory variables can be NWP 

results, power output data, observed weather data, local area topographical data and 

more. Using a statistical approach, the wind speed and direction can be predicted 

and wind power estimated from this, or the wind power can be directly predicted.  

Time series methods for wind forecasting largely focus on the autoregressive nature 

of wind speed time series. For very short-term wind forecasting, wind speeds are 

expected to follow relationships seen in the past few hours, and extrapolation is used 

to predict wind speed or power in the coming hours. The simplest type of time series 

model is the persistence model. The persistence model forecasts wind speed or 

power by assuming the forecasted value is equal to that of the prior time period. It 

relies upon the autocorrelation seen in wind speed and power time series and is 

commonly used as a benchmark for model performance to allow a comparison 

between forecasts when different datasets are used.  Whilst simple, this method is 

only effective for time periods up to a few hours. A number of alternative methods 

have been explored, including ARMA (autoregressive moving average), ARIMA 

(autoregressive integrated moving average), fractional ARIMA (f-ARIMA), linear 

predictors or exponential smoothing. Torres et al. [56] outline a seasonally adjusted 

ARMA model to predict wind speeds up to 10 hours in advance. In this study, the 

time series was transformed to account for the non-Gaussian nature of wind speed 

evolution. The model was applied to data from 5 different locations in Spain over a 

period of 9 years and reports better results than a persistence model, but notes the 

model is only valid for a short time period. Kavasseri and Seetharaman [57] present 

an f-ARIMA model to forecast wind speeds up to 48 hours ahead. The results are 

combined with wind turbine power curves to produce wind power forecasts. This 

time the model is applied to 4 potential wind farm sites in North America and 

concludes the forecast is again better than a persistence model. However, the use of 

power curves in this model can propagate some errors due to the problems with 

power curves noted in Section 2.1.3. Time series approaches may perform well for 

short forecast horizons (minutes – a few hours ahead), but their performance is 

reduced for forecasts further in advance. Therefore, more complex methods have 

been investigated. 
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Artificial Neural Networks (ANN) are a family of statistical methods named as such 

due to their learning processes resembling that of a neural network in the brain. 

They are interconnected, independent computational units know as neurons. They 

are ‘trained’ with respect to certain data sets until they recognise patterns in the data 

presented to them. They can be used for the purpose of wind speed and power 

prediction and could be particularly useful as they can deal with noisy and 

incomplete data, which is often a feature of historical wind data [58]. A number of 

different ANN techniques exist, including feed forward, recurrent, multilayer 

perceptron (MLP), radial basis function (RBF) and adaptive linear element network 

(ADALINE). The use of artificial neural networks has been explored by a number of 

authors. These include More and Deo [59], Li and Shi [60], Li et al. [61], Ramirez-

Rosado et al. [62] and Cadenas and Rivera [63]. 

More and Deo [59] compare the use of a feed-forward ANN and a recurrent ANN. 

The model inputs were daily average wind speeds for a coastal area in India over 12 

years. The network was used to calculate monthly, weekly and daily average wind 

speeds. The study concluded that neither the feed forward nor the recurrent network 

produced consistently better results. In another study by Li and Shi [60] RBF, 

ADALINE and BP networks are compared. The results showed that the minimum 

errors depended on the individual site and the error metric used, with no formulation 

outperforming all others. This led to an approach introduced by Li et al. [61] which 

combines the use of a Bayesian combination algorithm and three neural network 

models. The neural network models used in this study are the ADALINE, BP and 

RBF networks. The method is used to predict the hourly wind speed for 120 hours at 

two sites in North Dakota. The author suggests some benefits of neural network 

forecasting including their ability to learn from past data, recognise hidden patterns 

and model linear and non-linear relationships. However, the study suggests that the 

results of different neural networks have been variable and no model reliably 

performs better than all others. The paper concludes that the individual neural 

networks are not consistent in predicting the one-hour-ahead wind speed under 

different evaluation criteria, but the Bayesian combination method provides an 

adaptive and comparatively reliable forecast.  Ramirez-Rosado et al. [62] present a 

multi-layer perceptron neural network to predict power output for individual 

turbines in a wind farm, in order to predict total wind power output. This was done 
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for half hour periods up to 72 hours ahead. The models used wind power data from a 

SCADA system and an NWP model to train the model. Supervisory control and data 

acquisition (SCADA) systems are control systems which manage data collection 

from wind farms. The use of power data collected in real time from a SCADA 

system in a prediction model avoids the need to use a power curve to estimate power 

output given a wind speed and the issues associated with this. The use of power 

output data in a wind power prediction model is vital for estimating the overall wind 

farm output given the expected meteorological conditions. Cadenas and Rivera [63] 

present the use of ANN to predict an hourly time-series for a single month for a site 

in Mexico. A number of different network configurations are tested, which the study 

states show the technique is able to accurately predict short-term wind speed. 

However, the use of only one site and one month make the results difficult to 

evaluate in comparison to other techniques.  

A number of other methods have been used to predict wind and power output, 

including wavelet transform, support vector machines and fuzzy logic methods. 

Wavelet transform methods have been used in a number of studies to process time 

series data prior to model input. In a study on wind power forecasting in Portugal by 

Catalão et al. [64], wavelet transform is used to decompose the wind power series 

into a set of filtered constitutive series. The processed time series is subsequently 

used to forecast the future power output through the use of a neural network. In this 

study wind power output for 3 hours ahead is predicted using the previous 12 hours 

of power output data with a time step of 15 minutes. Damousis et al. [65] present a 

method for predicting wind speed and power from 30 minutes to 2 hours ahead 

using a fuzzy model trained using wind speed and direction data from a 

neighbouring site. The fuzzy logic inference system provides estimates of the future 

wind speed based on variations at a neighbouring site. The study suggests that over 

flat terrain and where the reference and neighbouring site show sufficient correlation 

in wind speed and power output, the results for short-term forecasting were better 

than persistence.  

The range of methods introduced here gives an overview into the many statistical 

methods which are available to predict speed and power output. In general these 

methods are only effective on short time scales, therefore to make longer term 

predictions must be combined with NWP models, as discussed in the next section. 
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Whilst numerous statistical methods exist for the prediction of wind speed and 

power there is still improvements to be made and new methods are continually 

sought to increases predictive accuracy.  

2.2.3 Hybrid forecasting techniques 

Different prediction techniques have different strengths and weaknesses. For 

example, statistical techniques generally perform better for short term predictions 

whilst NWP methods give better long term predictions. Because of this, different 

techniques are frequently combined to give hybrid forecasting techniques. For 

example, Liu et al. [66] proposed a hybrid approach using wavelet transform to 

analyse the original time series. In addition to this, an improved time series method 

(ITSM) was used to predict future value in the time series. The wavelet transform 

was used to decompose the time series and then a three-step approach was taken to 

implement the ITSM. Firstly, the Box-Jenkins methodology was used to establish 

the autoregressive integrated moving average (ARIMA) models which best fit the 

time series behaviour. Using the equation proposed by the ARIMA model the next 

value is predicted. The model parameters are then re-estimated using this predicted 

value. This new equation is used to calculate the step-ahead forecast. This method 

was applied to 200 hours of time series data, with errors considered for between 3 

and 10 hours ahead. The study compares the method with a simple backpropagation 

neural network approach and concludes that the proposed method performs better 

according to a number of error measures such as mean absolute error (MAE), root 

mean squared error (RMSE) and mean absolute percentage error (MAPE).  

Larson and Westrick [67] use hybrid NWP and statistical methods to predict hourly 

average wind speeds. The authors investigate the use of off-site observations 

combined with a numerical prediction model to increase forecast accuracy over 

short timescales. The study uses on and off-site observations and NWP forecasts as 

predictor variables and applies a number of statistical algorithms, including neural 

networks, support vector machines and conditional neural networks. This report only 

considered one site in the USA but reported that the use of on or off-site data 

improved the forecast accuracy of a 2 hour forecast. 
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Throughout this thesis, a hybrid NWP and GPR model is developed for wind speed 

and power forecasting. This allows the long term predictive ability of an NWP 

model to be combined with the skill of a statistical model for shorter term 

predictions.  

2.2.4 Deterministic forecast evaluation techniques 

In order to make a comparison of the numerous forecasting methods in use and to 

establish how well a forecast is performing, some numerical methods for measuring 

accuracy of a forecast need to be defined. This allows the objective comparison of 

different methods and consideration of the strengths and weaknesses a forecast 

exhibits. Many different ways of evaluating accuracy can be used. Jolliffe and 

Stephenson [68] give a full discussion of forecast verification. In general, a 

combination of 4 error metrics is used to compare forecasts. Throughout this thesis, 

a combination of these metrics will be used to evaluate and compare forecasts. Each 

metric provides different information on the performance of a forecast. The error 

metrics most commonly used to measure model performance are mean bias error 

(MBE), mean absolute error (MAE), mean absolute percentage error (MAPE) and 

root mean squared error (RMSE). These are calculated using Equation 2-10 to 

Equation 2-13. MBE is a measure of the overall over performance or under 

performance of a forecast. A large value for MBE can indicate a systematic 

tendency to deviate from the observed value which may need to be corrected. A 

small value for MBE may simply be considered as noise. Positive and negative error 

values cancel out in the bias calculation, therefore, other error metrics are also 

required. MAE is used to give an average magnitude of all deviations, giving a 

general value to the model performance. MAPE presents the average magnitude of 

errors as a percentage of the observed value, which allows some comparison 

between different datasets to be achieved. However, MAPE can be very sensitive to 

small deviations. RMSE is another metric which shows the average magnitude of 

errors. In comparison to MAE, RMSE gives a higher weighting to large error values. 

MAE gives equal value to all errors whilst larger error values affect the RMSE more 

heavily. This means that the RMSE can be more sensitive to outliers. A number of 

authors have compared the relative merit of using MAE and RMSE. Wilmott and 

Matsuura [69] conclude that MAE is favourable over RMSE as RMSE is a function 
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of both the magnitude of errors and the distributions of errors. They also state that 

RMSE is ambiguous and hence should not be used to compare model performance. 

On the other hand, Chai and Draxler [70] refute the claims made by Willmott and 

Matsuura [69], concluding that there are some circumstances where using RMSE 

can be beneficial and in general using a variety of error metrics (not limited to 

RMSE and MAE) should be used to evaluate and compare models. In Equations 2-

10 to 2-13 𝑦௧ = observed wind speed or power and 𝑦௧ෝ = predicted wind speed or 

power. 

MBE =  
1

𝑛
෍(𝑦௧ෝ − 𝑦௧)

௡

௧ୀଵ

 
Equation 2-10 

MAE =  
1

𝑛
෍|𝑦௧ − 𝑦௧ෝ |

௡

௧ୀଵ

 
Equation 2-11 

MAPE =  
1

𝑛
෍

|𝑦௧ − 𝑦௧ෝ |

𝑦௧

௡

௧ୀଵ

× 100 
Equation 2-12 

RMSE =  ඩ
1

𝑛
෍(𝑦௧ − 𝑦௧ෝ )ଶ

௡

௧ୀଵ

 

Equation 2-13 

In the case of wind power forecasts frequently it is desirable to compare model 

performance at different sites. In this case, it is necessary to normalise error metrics 

to allow the comparison of results at different sized wind farms. Error metrics can be 

expressed as a percentage of the total wind farm capacity. These are referred to as 

normalised error metrics. Calculation of normalised MBE, MAE and RMSE is 

achieved using Equations 2-14 to 2-16. In these equations 𝐶 refers to the installed 

capacity of a wind power producer under evaluation. This could be an individual 

turbine, a full wind farm or part of a wind farm. In Equations 2-14 to 2-16 𝑦௧ = 

observed wind power and 𝑦௧ෝ = predicted wind power. 

NMBE =  
1

𝑛
෍(𝑦௧ − 𝑦௧ෝ )

௡

௧ୀଵ

 ×  
100

𝐶
 

Equation 2-14 
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NMAE =  
1

𝑛
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Equation 2-15 

NRMSE =  ඩ
1

𝑛
෍(𝑦௧ − 𝑦௧ෝ )ଶ

௡

௧ୀଵ

 ×  
100

𝐶
 

Equation 2-16 

In order to define the quality of a forecast, it is common practice to compare 

performance measures against a baseline forecast. This baseline could be a number 

of things. A commonly used baseline is ‘persistence’. This is a forecast which 

assumes the future value of the forecast variable will be the same as the currently 

observed value. In short term wind speed and power forecasts this can be quite 

successful and a skilful forecast must be able to perform better than this. An 

alternative baseline could be another forecast which is known to be relatively 

successful. For example, an ARIMA model may be compared against an ANN for 

the same site to establish which gives the better performance.  

In the evaluation of model performance presented later in this thesis, a combination 

of error metrics is used to provide an overview of model performance. Furthermore, 

results are compared to either a persistence model or other forecasting techniques 

depending on the most appropriate baseline.  

2.2.5 Summary and comparison of deterministic forecasting 

methods 

Sections 2.2.1, 2.2.2 and 2.2.3 cover some of the currently available deterministic 

forecasting methods. In this section, the results demonstrated by different authors for 

different prediction techniques are presented. The error metrics used to present 

results vary across the literature, but an attempt is made to consolidate the results in 

a comparable way. In Table 2-3 an overview of some of the currently available 

deterministic forecasting techniques is given and the key points form this are 

discussed here. For wind speed forecasting methods RMSE, MAE and MAPE are 

shown where possible. For wind power forecasting RMSE and MAE are normalised 

by capacity to allow comparison between installations of different sizes, giving 

NRMSE, NMAE and MAPE as comparison statistics for power forecasts. MBE and 
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NMBE is discussed too infrequently in literature to be included in comparisons. 

Where sufficient detail is given in the literature, the results are shown in comparison 

to the persistence model.  

The wind speed prediction methods reviewed in Table 2-3 comprise 4 statistical 

methods and 2 hybrid methods and cover a variety of timescales, from 1 hour ahead 

to 120 hours ahead. Firstly comparing short term predictions,  Chen et al. [71], Li 

and Shi [60], Li et al. [61] and Torres et al. [56] present results for prediction up to 4 

hours in advance. The method presented by Chen et al. [11] is a hybrid method, 

whilst the other are statistical methods. For these methods, MAE and RMSE do not 

differ significantly. MAE varies between 0.7 and 1.14  ms-1 for a forecast 1 hour 

ahead and RMSE varies between 0.96 and 1.5 ms-1 for a forecast 1 hour ahead. 

MAPE has the largest variation for forecasts 1 hour ahead with the largest (23%) 

reported by Li and Shi [60] and the smallest (11%) reported by Chen et al. [71]. The 

method presented by Li et al. [61] has the highest MAE and RMSE at 1 hour ahead, 

with an MAE of 1.14 ms-1 and an RMSE of 1.5 ms-1. The hybrid model presented by 

Chen et al. [71] shows very similar results to the statistical models presented by 

other authors at this timescale. The use of statistical and hybrid models for very 

short term models is popular due to their ability to exploit the fact that wind 

conditions tend to persist for periods of time. In addition to this, they are frequently 

less computationally intensive than NWP models to generate and so are less 

expensive. However, the methods presented here do not incorporate an NWP model 

in any way therefore may fail to predict more extreme or changeable weather 

conditions.  

 Kavasseri and Seetharaman  [57], Torres et al. [56], Chen et al. [71] and Louka et 

al. [72] show results for forecasting methods further in advance (5-120 hours ahead). 

The methods discussed by Kavasseri and Seetharaman [57] and Torres et al. [56] are 

statistical, whilst Chen et al. [71] and Louka et al. [72] present hybrid methods. The 

results presented by Kavasseri and Seetharaman [57] are difficult to compare to the 

other methods due to how the results are aggregated. Of the other three methods, 

Torres et al. [7] only show results for forecasts up to 10 hours ahead whilst Louka et 

al. [72]  presents results up to 120 hours ahead and Chen et al. [71] up to 72 hours 

ahead. The hybrid methods presented by Louka et al. [72] and Chen et al. [71] 

perform much better than the statistical method presented by Torres et al. The hybrid 
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method by Louka et al. has an MAE of 2.04 ms-1 and an RMSE of 2.88 ms-1 as far 

ahead as 120 hours in advance, whilst the statistical method has an MAE of 2.5 ms-1 

and an RMSE of 3 ms-1 at just 10 hours ahead. MAPE is only given by Chen et al. 

[73] hence this is not comparable. This indicates, as other literature suggests, that 

hybrid methods can perform well in the short term and frequently outperform 

statistical methods further in advance. This is due to the reliance of statistical 

methods on the persistence of past wind conditions to predict future condition whilst 

hybrid methods usually incorporate NWP models which are able to better model 

weather systems further in advance. There is still room for improvements in 

predictive accuracy in current state of the art hybrid models. Because of this, the 

investigation of new hybrid models offers an interesting area of research in wind 

speed and power prediction models.  

Five wind power prediction methods are compared in Table 2-3, including 3 hybrid 

methods and 2 statistical methods. The first statistical method, presented by Catalão 

et al. [64], is difficult to compare to the other techniques due to the errors shown. 

The only other statistical method is that presented by Ramirez-Rosado et al. [62] 

which reports results for forecasts up to 72 hours in advance. However, RMSE 

averaged over 3 time periods is shown (12-24 hrs ahead, 24-48 hrs ahead and 48-72 

hrs ahead), again making it difficult to compare to other methods. For the remaining 

three hybrid methods only NMAE and NRMSE are compared as MAPE is only 

given in one case. The hybrid methods presented by Chen et al. [73] and Shu et al. 

[74] report very similar results. The model presented by Chen et al. [73] reports 

results for forecasts from 1 – 24 hours ahead, with an NMAE of between 7.5 and 

11.1% and an NRMSE of between 11 and 16%. The model given by Shu et al. [74] 

gives results for forecasts from 1 – 48 hours ahead, with an NMAE of between 7 and 

15% and an NRMSE of between 11 and 21%. The model presented by Louka et al. 

[72] shows results for forecasts between 24 and 120 hours ahead. This model seems 

to outperform others with an NMAE of between 11 and 15.5% and an NRMSE of 

between 15 and 21%.  

The methods presented in Table 2-3 give an idea of the results which are possible 

with currently available forecasting techniques.  It can be seen from these methods 

that for good wind speed forecasts, MAE should be around 1 ms-1 for forecasts up to 

3 hours ahead and 2 ms-1 for forecasts further in advance. In addition to this, for 
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good wind power forecasts, NMAE should be below 11% for forecasts up to 3 hours 

ahead and below 16% for forecasts up to 24 hours ahead. The forecast results are 

highly dependent on the data sets used, some sites may have complex terrain which 

is more difficult to predict whilst others are simpler. However, this gives some point 

of reference for a new forecast developed. The results shown in this table suggest 

that statistical methods are appropriate for forecasting up to a few hours in advance 

and hybrid models which incorporate an NWP model enable accurate predictions 

further in advance. This indicates that a flexible model which is able to rely more 

heavily on prior observations for short term predictions and NWP outputs for 

predictions further in advance will enable good predictions from 1 hour up to days in 

advance, This thesis focuses on the development of a forecast for wind speed and 

power output from a few hours up to 3 days in advance. Because of this a hybrid 

NWP and statistical model is used. 
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Table 2-3: Overview of currently available deterministic forecasting techniques 

Authors Year 
Speed or 
power 

Method 
type 

Method 
summary Data 

Forecast 
period Results 

Catalão, et 
al. [64] 2011 Power Statistical 

ANN + 
wavelet 
transform 

All wind farms in Portugal 
that connect with the 
national electric grid.  

3 hours 
ahead. 

MAE not given 
RMSE: 392.3 MW (Persistence not given) 
MAPE: 7% (Persistence 19%).  
Total capacity forecasted not given so cannot 
compare NRMSE.  

Chen, et al. 
[71] 2013 Speed Hybrid 

Wavelet and 
Gaussian 
process 

Wind farm in southern 
China. 15 turbines, 
installed capacity 2000kW 

1-4 hours 
ahead, and 1-
3 days ahead 

MAE: 0.72-1.6 ms-1 (Persistence: 0.74 – 1.83ms-

1) 
RMSE: 0.96 -2.04 ms-1 (Persistence: 1.0 – 2.23 
ms-1) 
MAPE: 11.24 -44% (Persistence: 11.1 – 42%) 

Chen, et al. 
[73] 2014 Power Hybrid 

Gaussian 
process and 
NWP 

3 wind farms in China. 3 
years for 2 wind farms and 
2.5 months for one.  

1-24 hours. 
Results not 
shown 
separately 

Results given for 4 wind farms: 
NMAE: 7.5-11.1% (Persistence 9.8 – 18.6%) 
NRMSE: 11.69 – 15.96% (Persistence 15.7 – 
26.3%) 
MAPE: 7.6 – 11.12% (Persistence 10.1 – 18.4%) 
Best results for the largest wind farm.  

Kavasseri 
and 
Seetharama
n [57] 2009 Speed Statistical f-ARIMA 

Wind speed from 4 
potential wind farm sites 
in North Dakota 

24 and 48 
hours ahead 

MAE not given  
RMSE: 5.35% (Persistence: 8.43%) 
MAPE (24hrs): 47% (Persistence 117%). 

Li and Shi 
[60] 2010 Speed Statistical 

Comparison 
of 3 ANN 
methods 

1 year of hourly mean 
wind speed from two 
observation sites in North 
Dakota 1 hour ahead 

MAE: 0.9-1.05 ms-1 
RMSE:1.2-1.4 ms-1 
MAPE:19%-23%  
No single ANN outperforms the other on all 
error metrics (MAE, RMSE, and MAPE).  
No comparison to persistence given. 

Li, et al. 
[61] 2011 Speed Statistical 

Bayesian 
adaptive 
combination 
from ANN 
models 

1 year of hourly wind 
speed at 10m above 
ground 1 hour ahead 

MAE: 1.137 ms-1 
RMSE: 1.508 ms-1 
MAPE: 18% 
No comparison to persistence given 
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Louka, et 
al. [72] 2008 

Speed 
and 
Power Hybrid 

Kalman 
filtering to 
post process 
NWP 

1 year wind speed and 
power data at Rokas wind 
farm 

24, 48, 72, 96 
and 120 
hours ahead 

Speed:  
MAE: 1.75 - 2.04 ms-1  
RMSE: 2.38 – 2.88 ms-1 
Power:  
NMAE: 11 - 15.5%; 
NRMSE: 15 - 20.5% 
MAPE not given, comparison to persistence not 
given. 

Ramirez-
Rosado, et 
al. [62] 2009 Power Statistical 

Two ANN 
methods 
(FORECAS 
and SGP) 

Wind farm with rated 
power of 21,600kW, 12 
turbines of 1.8MW. 

0.5 - 72 
hours, time 
step 0.5 
hours. 

Average RMSE given for 3 time periods: 12-
24h, 24-48h and 48-72h.  
FORECAS: 14-19.7%,  
SGP: 14-18.8%, 
Persistence: 31.2- 37.5%. 
MAE and MAPE not given 

Shu, et al. 
[74] 2009 Power Hybrid 

Two-stage 
hybrid 
network with 
Bayesian 
clustering 
and SVR. 

74 MW wind farm in 
Oklahoma, US.  

1-48 hours 
ahead 

Errors are given for 1, 24 and48hrs.  
NMAE: 7-15% (Persistence 8-25%),  
NRMSE: 11-21% (Persistence 11-34%) 
MAPE not given 

Torres, et 
al. [56] 2005 Speed Statistical ARMA  

5 locations, 9 years. Wind 
measured every 10 mins at 
10m and averaged over 1 
hour.  

up to 10 
hours ahead 

MAE: 0.9 - 2.5  ms-1  (Persistence  0.9 - 2.9 ms-1) 
RMSE: 1.2 - 3 ms-1 (Persistence 1.25 - 3.7 ms-1).   
MAPE not given 



39 

2.2.6 Probabilistic forecasting 

The forecasting methods presented so far provide point predictions of expected wind 

speed or power at a given point in time. In contrast, probabilistic forecasts consider 

the probability of a range of possible values occurring by treating the forecast as a 

random variable. This gives more information regarding the confidence in a 

forecasted value and a range of probable values. This information can be 

incorporated into the scheduling of power generating units, managing financial risk 

whilst bidding in electricity markets or managing reserve levels to minimise risk. 

The uses and applications of probabilistic wind power forecasting are discussed in 

more detail in Section 2.3. All forecasts contain a certain level of uncertainty, and in 

probabilistic forecasting this uncertainty is conveyed by expressing the probability 

of an event occurring. Probabilistic forecasts provide additional information which 

can be useful to a forecast user and add value in the wind industry. However, they 

can be difficult to evaluate and implement in an operational setting. In this section, 

the main types of probabilistic forecast available will be introduced and a forecast 

evaluation framework will be discussed. Finally, a summary and comparison of state 

of the art wind power forecasting methods will be given.  

An introduction to the types of probabilistic forecast is given by Pinson et al. [75], a 

summary of which is given here. If a forecast is made at time t for k hours ahead, 

then for a probabilistic forecast it is assumed that the actual output at time t+k is an 

unknown random variable, 𝑌௧ା௞. The observed power output at time t+k is 

𝑦௧ା௞which is a realisation of the random variable 𝑌௧ା௞. For 𝑌௧ା௞, a probability 

density function (pdf) is given by 𝑓௧ା௞and a cumulative density function (CDF) is 

given by 𝐹௧ା௞ . The CDF, given by Equation 2-17, is a function which defines the 

probability of different values of 𝑌௧ା௞ occurring.  

𝐹௧ା௞(𝑥) = 𝑃(𝑌௧ା௞ ≤ 𝑥)  

 

Equation 2-17 

where the values x can take depend on the distribution of 𝑌௧ା௞ . For example for a 

random variable 𝑋 ∈ [−∞, ∞] which is normally distributed with parameters 𝜇 = 0 

and 𝜎 = 1, the CDF,  𝐹௧ା௞(𝑥), evaluated at 𝑥 ∈ [−4,4] is shown in Figure 2-4. 
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Figure 2-4: Cumulative distribution function for a random variable with a standard 

normal distribution 

 

The aim of probabilistic forecasting is to predict the distribution of 𝑌௧ା௞ . 

Probabilistic forecasts can loosely be categorised as quantile forecasts, interval 

forecasts or density forecasts. The different types of forecast can give subtly 

different information, however are often linked. Quantiles and intervals can be 

obtained from a density forecast, or they can be forecast independently. 

Alternatively, a density forecast can be formulated from quantile or interval 

forecasts, or it can be predicted separately. 

A quantile forecast is a point in the predictive distribution which corresponds with a 

certain probability of an event occurring. Assume that the predictive CDF of 𝑌௧ା௞ is 

given by 𝐹෠௧ା௞(𝑥). Provided the CDF, 𝐹෠௧ା௞, of a random variable 𝑌௧ା௞ is a strictly 

increasing function, a quantile with proportion 𝛼 ∈ [0,1] is defined by Equation 2-

18. A quantile forecast, 𝑞ො௧ା௞
(ఈ)  produced at time 𝑡 for time 𝑡 + 𝑘 aims to estimate a 

quantile based on the predictive information available.  

𝑞ො௧ା௞
(ఈ)

=  𝐹෠௧ା௞
ିଵ (𝛼) = 𝑖𝑛𝑓൛𝑥 ∈ ℝ ∶ 𝐹෠௧ା௞(𝑥) ≥ 𝛼ൟ Equation 2-18 

where inf is the infimum of the set, the largest value which satisfies the conditions.  

Considering the standard normal distribution as shown in Figure 2-5, a prediction 

may be desired where there is a high probability that the observed value will be less 

than the predicted value. In this case, 𝛼 = 0.8 may be chosen. Hence a prediction of 

C
D

F



41 

  

𝑞ො௧
(଴.଼)

=  𝐹෠௧
ିଵ(0.8) = 0.84 would be made. The quantiles corresponding to different 

values of 𝛼 can either be obtained by using a model which predicts the full CDF, 

 𝐹෠௧ା௞(𝑥) or by using a model which predicts the values of 𝑞ො௧ା௞
(ఈ)  for values of 𝛼 

which are of interest. 

Figure 2-5: Quantile forecast with 𝛼 = 0.8 for a standard normal distribution. 

 

Alternatively, an interval forecast gives a range of values in which the expected 

value is expected to lie with a certain probability. The interval lower and upper 

bounds can be defined in terms of quantiles. The probability of the actual value 

falling with the range of values predicted is called the coverage rate and is given by 

(1 − 𝛽), 𝛽 ∈ [0,1]. An interval forecast for 𝛽 is given by Equation 2-19.  

 𝐼෡௧ା௞|௧
ఉ

= [𝑞ො௧ା௞|௧
(ఈ೗)

 , 𝑞ො௧ା௞|௧
(ఈೠ)

] Equation 2-19

where 𝛼௨ − 𝛼௟ = 1 − 𝛽  

A prediction interval is not uniquely defined by a coverage rate. The way the 

interval is centred on the CDF also needs to be defined. Most commonly the interval 

is centred on the median. Returning to the standard normal distribution, if 𝛽 = 0.2 

and the prediction interval is centred on the median then 𝛼௨ = 0.9, 𝛼௟ = 0.1 and 

𝐼መ௧ା௞|௧
଴.ଶ = ቂ𝑞ො௧ା௞|௧

(଴.ଵ)
 , 𝑞ො௧ା௞|௧

(଴.ଽ)
ቃ = [−1.28,1.28]. This is demonstrated visually in Figure 2-

6. 
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Figure 2-6: Interval forecast with 𝛽 = 0.2 for a standard normal distribution. 

 

As with quantile forecasts, interval forecasts can be obtained from a model where 

the full predictive CDF is provided, as in the example above, or intervals can be 

directly predicted from a model using parameterisations. 

The final type of probabilistic forecast considered here is a density forecast. In this 

type of forecast, the entire predictive distribution is forecast. The predictive 

distribution can be modelled through the use of parametric and non-parametric 

models by assuming the predictive distribution type and learning suitable 

parameters. Alternatively, a discrete CDF can be obtained by predicting multiple 

quantiles. Using a model to predict a set of 𝑚 quantiles, the predictive CDF is given 

by Equation 2-20. 

𝐹෠௧ା௞|௧ = ቄ𝑞ො௧ା௞|௧
(ఈ೔)

, 𝑖 =  1, … , 𝑚 ቚ 0 ≤ 𝛼ଵ < ⋯ < 𝛼௠ ≤ 1} Equation 2-20 

The definitions and example given above show how a density forecast can be 

obtained from quantile or interval forecasts, or vice versa depending on the model. 

In some applications forecasting specific quantiles or intervals is all that is required, 

in which case this can be simpler than producing a full predictive distribution. In 

other applications, the full predictive distribution is of interest. However, looking at 

specific quantiles can still offer useful insights.  
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D
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2.2.7 Forecast evaluation for probabilistic forecasts 

In Section 2.5.1.4 forecast evaluation techniques were discussed for deterministic 

forecasts. In order to quantify the quality of a deterministic forecast the deviation 

between the predicted value and observed value is considered. However, as noted by 

Pinson et al. [75] and Gneiting et al. [76], it is not quite so simple to evaluate the 

quality of a probabilistic forecast. For example, just because the observed value fell 

outside the range of values predicted with a certain probability does not mean that 

the predicted interval was wrong. Therefore an alternative framework for evaluating 

the success of a probabilistic model is required. Frameworks for evaluating the 

quality of a probabilistic forecast are discussed by Pinson et al. [75] and Gneiting et 

al. [76]. Gneiting et al. [76] propose evaluating forecasts according to 3 main 

features: calibration, sharpness and resolution. Furthermore, Gneiting et al. [77] 

suggest the use of skill scores to evaluate the relative contribution of calibration, 

sharpness and resolution in different models and to compare between models. 

Calibration is defined as the statistical consistency between the predictive 

distribution and the observed values [76]. This is also referred to as reliability. 

Whilst reliability is important, it does not alone define a good probabilistic forecast. 

Take, for example, if the long term frequency distribution of a meteorological 

variable is used to make a probabilistic forecast. In the case of a wind speed 

forecast, this could be the long term observed frequency of wind speeds at a site. 

This would be a reliable forecast, yet is not the most valuable forecast [68]. This is 

because over a significant number of forecasts the predictive distribution would be 

consistent with the observed distribution, however, it would offer the user limited 

insight into short term predicted conditions. In addition to being reliable, the 

predictive distributions or quantiles should be focused and able to differentiate 

between different predictive conditions in order to be useful. The first property is 

known as sharpness and the second as resolution. Sharpness quantifies a forecasts 

ability to minimise uncertainty surrounding a prediction. Resolution quantifies a 

forecast ability to deviate from a simple climatological predictive distribution [75]. 

Gneiting et al. [76] consider a good probabilistic forecast to be one which produces 
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narrow prediction intervals (maximised sharpness) subject to calibration. It is worth 

noting at this point that a calibrated probabilistic forecast with zero spread is 

equivalent to a perfect deterministic forecast. 

Assume a probabilistic prediction of power output made at time t for time t+k is 

given by a CDF 𝐹෠௧ା௞(𝑥). The actual output at time t+k is assumed to be an unknown 

random variable 𝑌௧ା௞. The observed power output at time t+k, 𝑦௧ା௞ is a realisation 

of the random variable 𝑌௧ା௞. The CDF for 𝑌௧ା௞ is given by 𝐹௧ା௞(𝑥) = 𝑃(𝑌௧ା௞ ≤ 𝑥). 

𝐹௧ା௞ is unobserved as only one realisation of 𝑌௧ା௞ is ever seen.  

First, consider reliability. Reliability is assessed by considering the observed 

frequency of an event and the forecast probability of an event. Reliability is 

concerned with whether the forecast has the correct statistical properties.  

For example, consider forecasts are given for 100 hours. The hour the forecast is 

made is denoted by t and the forecast horizon is denoted by k. At each of the time 

periods, the forecast is given by a probability distribution which defines the 

probability of a value or range of values occurring. The predicted CDF at time t+k is 

𝐹෠௧ା௞(𝑥) = 𝑃(𝑌௧ା௞ ≤ 𝑥) . The CDF for a normally distributed random variable is 

given by Equation 2-21.  

𝐹෠௧ା௞(𝑥) = 𝑃(𝑌௧ା௞ ≤ 𝑥) =  
1

2
൤1 + 𝑒𝑟𝑓 ൬

𝑥 − 𝜇

𝜎√2
൰൨ 

Equation 2-21 

where erf is the error function given by erf(𝑥) =  
ଵ

√గ
∫ 𝑒ି௧೟

𝑑𝑥
௫

ି௫
. For example, 

assume that a forecast for time t+k = 4 is given by a normal distribution with 

parameters 𝜇 = 6, 𝜎 = 1. The CDF and the pdf of the forecast are shown in Figure 

2-7. From the CDF we can calculate the probability that the observed value will be 

less than a certain value. For example, the probability that the observed value will be 

less than 4 is 𝐹෠ସ(4) = 0.0228. Alternatively, if we wish to find the value, x for 

which the probability that the observed value will be less than or equal to with 

probability p the inverse CDF is used, given by Equation 2-22. In Equation 2-22 inf 

refers to the infimum of the set, the largest value which satisfies the conditions.   
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𝐹௑೟

ିଵ(𝑝) = 𝑖𝑛𝑓{𝑥 ∈ ℝ ∶  𝐹௑೟
(𝑥) ≤ 𝑝} Equation 2-22 

For example, using the normal distribution with parameters 𝜇 = 6, 𝜎 = 1 the value x 

for which 𝑃(𝑌௧ା௞ ≤ 𝑥) = 0.4 is 𝑥 = 5.74. This is also shown on Figure 2-7. 

Figure 2-7: pdf, CDF and  𝐹௧ା௞
ିଵ (0.4) for normal distribution with μ=6, σ=1 

 

Once the observed value at the forecasted time is known, then for any value of x the 

event 𝑌௧ା௞ ≤ 𝑥 either occurs or it does not. For example, using the forecasted 

distribution above the probability that the observed value is less than 5.74 is 0.4. 

This is equivalent to saying the probability of the event  𝑌௧ା௞ ≤ 5.74 occurring is 

0.4. However if the actual value is 𝑌௧ା௞ = 3 then the event occurs, whilst if 𝑌௧ା௞ =

6 the event does not occur. If the forecast is reliable then over a sufficient number of 

forecasts the observed frequency of an events occurrence will equal the forecasted 

probability of its occurrence. This is how reliability is measured. 

The method for calculating reliability for a forecast is given by Pinson et al. [75]. To 

compare the forecasted probability of an event occurring with the frequency with 

which an event occurred, a probability 𝛼 ∈ [0,1] is chosen. In the work of Pinson et 

al. [75] and Gneiting et al. [76], the value 𝛼 is referred to as the “nominal 

probability”.  For each forecast and for each value of 𝛼 calculate 𝐹෠௧ା௞
ିଵ (𝛼) and 

consider the proportion of times over all forecasts that the observed value is less 

than this value. For a perfect forecast this proportion should be equal to 𝛼. 
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Mathematically, for a nominal probability, 𝛼, reliability is calculated over the entire 

forecast using a two-step process. First, for each prediction in the forecast an 

indicator variable is calculated using Equation 2-23. This indicator variable takes a 

value of 1 if the observed value at time t+k is less than 𝐹෠௧ା௞
ିଵ (𝛼), and takes a value of 

0 otherwise. 

𝜀௧ା௞
ఈ = ൜1 if 𝑦௧ା௞ < 𝐹෠௧ା௞

ିଵ (𝛼)

0 otherwise             
  

Equation 2-23 

An estimate of the observed frequency of the event 𝑦௧ା௞ < 𝐹෠௧ା௞
ିଵ (𝛼) for a given 

look-ahead time 𝑘 is given by Equation 2-24 for a test set of size 𝑁.  

𝑎ො௞
ఈ =  

1

𝑁
෍ 𝜀௧ା௞

ఈ

ே

௧ୀଵ

 
Equation 2-24

For example, assume hourly power output is predicted for a wind farm on the 1st 

January from 10 am – 3 pm. The forecasts are made 3 hours ahead, hence k = 3 and 

the first forecast is made at 7 am on 1st Jan (t = 1). All the forecasts are normally 

distributed with mean μ and standard deviation σ, hence 𝑌෠௧ା௞~𝑁(𝜇, 𝜎ଶ). Examples 

of the predictions and observed values are given in Table 2-4.  

Table 2-4: Example probabilistic predictions and observed values 

Forecast 
period 
(t+k) 

Predictive 
distribution 

of 𝑌෠௧ା௞ 

Observed 
output (MW) 

(𝑦௧ା௞)  

4 N(6,1) 10 

5 N(7,2) 3 

6 N(4,1) 8 

7 N(8,2) 6 

8 N(9,3) 2 

Next, take a nominal probability value for example, 𝛼 = 0.4. For each 

forecast 𝐹௧ା௞
ିଵ (0.4) and 𝜀௧ା௞

଴.ସ   can be calculated. The values for these are given in 

Table 2-5.  
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Table 2-5: Inverse cumulative distribution and indicator variable for example forecasts 

Forecast 
period 
(t+k) 

Predictive 
distribution 

of 𝑌෠௧ା௞ 

Observed 
output 
(MW) 
(𝑦௧ା௞) 

 𝐹෠௧ା௞
ିଵ (0.4) 
(MW) 

𝜀௧ା௞
଴.ସ  

4 N(6,1) 10 5.75 0 

5 N(7,2) 3 6.49 1 

6 N(4,1) 8 3.75 0 

7 N(8,2) 6 7.49 1 

8 N(9,3) 2 8.24 1 

 

From Table 2-5, 𝑎ො௞
ఈ can be calculated for k = 3 and 𝛼 = 0.4 using Equation 2-24. 

This gives 𝑎ොଷ
଴.ସ =  

ଵ

ହ
× 3 = 0.6. In a perfect forecast 𝛼 = 𝑎ො௞

ఈ for all values of 𝛼 ∈

[0,1]. 

Reliability is frequently considered in terms of the deviation from perfect reliability, 

𝑏௞
ఈ, given by Equation 2-25. In the example given above, this would give a value of 

𝑏ଷ
଴.ସ = 0.4 − 0.6 = −0.2. 

𝑏௞
ఈ = 𝛼 − 𝑎ො௞

ఈ Equation 2-25

Reliability can be displayed graphically by using a reliability diagram. In this either 

𝑎ො௞
ఈ or 𝑏௞

ఈ is plotted against 𝛼, as shown in Figure 2-8. In this a sample forecast is 

shown in comparison to a perfect forecast. When comparing results from different 

studies, the maximum deviation between observed and nominal probability for any 

value of α is compared. This is calculated by evaluating max{|𝑏ఈ|} ∀𝛼. 
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Figure 2-8: Example reliability diagrams showing (a) observed probability against 

nominal probability and  (b) deviation between observed probability and nominal 

probability against nominal probability. 

 
(a) 

 
(b) 
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Visually, a few features of the forecasted distributions can be seen from a reliability 

diagram. Consider a simplified forecast made k hours ahead where for all time 

periods t, the forecast is a normal distribution with 𝜇 = 6, 𝜎 = 1. If this forecast was 

correct for all values of t then 𝑏௞
ఈ = 0 for all values of 𝛼. If the observed values at 

all values of t were actually from a normal distribution with 𝜇 = 6, 𝜎 = 0.5 then the 

forecasted standard deviation is larger than the actual standard deviation. In this 

case, for low values of 𝛼, e.g 𝛼 = 0.2 the observed frequency of the event 

൫𝑦௧ା௞ ≤ 𝐹෠௧ା௞
ିଵ (0.2)൯ will be less than 0.2. When calculating reliability for the 

forecast, for 𝛼 = 0.2, the value 𝑥௙ would be calculated such that 𝑃൫𝑌෠௧ା௞ ≤ 𝑥௙൯ =

0.2 holds for the forecasted distribution. In this example, the forecasted distribution 

for all t is normal with 𝜇 = 6, 𝜎 = 1 and so 𝑥௙ = 5.16. To evaluate reliability, 

calculate the proportion of observations that are below 5.16. The actual distribution 

is  normal with 𝜇 = 6, 𝜎 = 0.5. For the actual distribution,  𝐹௧ା௞
ିଵ (0.2) =  𝑥௔ = 5.58 . 

Because of this, 𝑎ො௞
଴.ଶ would be less than 0.2, as in the actual distribution a proportion 

of 0.2 of the observations should fall below 5.58. The observations are a finite set, 

so the actual proportion of observations which fall below 5.58 may not exactly equal 

0.2, but it should be close for a set of sufficient size. Conversely, for higher values 

of 𝛼, e.g 𝛼 = 0.8 the observed frequency of the event 𝑃൫𝑦௧ା௞ ≤ 𝐹෠௧ା௞
ିଵ (0.8)൯ will be 

greater than 0.8. To add clarity the forecasted and actual CDFs are shown in Figure 

2-9 with the values for 𝑥௔  and 𝑥௙ for 𝛼 = 0.2 and 𝛼 = 0.8. 
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Figure 2-9: CDF of an example forecast distribution in comparison the actual distribution. 

 

Because of this property, if the standard deviation of the forecasted distribution is 

larger than that of the actual distribution a plot of 𝑏௞
ఈ against nominal probability 

(α) will follow a pattern similar to that seen in the top graph in Figure 2-10. On the 

other hand if the standard deviation of the forecasted distribution is smaller than that 

of the actual distribution a plot of 𝑏௞
ఈ  against nominal probability (α) will follow a 

pattern similar to that seen in the bottom graph in Figure 2-10.  

Figure 2-10: Deviation between observed and nominal probability for a forecast with a 

larger standard deviation than the observed values and a forecast with a smaller standard 

deviation. 
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Regardless of whether the forecasted standard deviation is larger or smaller than the 

actual distribution, the closer the forecasted distribution is to the actual distribution 

the smaller max{|𝑏௞
ఈ|} ∀𝛼 will be. Because of this, in a plot of 𝑏௞

ఈ against nominal 

probability, α, the peak will be smaller for a forecasted distribution that is closer to 

the actual distribution. This is demonstrated in Figure 2-11.  

For an actual forecast, the interpretation of a reliability diagram is more complex. 

For a real probabilistic forecast, the forecast distribution is not the same for all 

values of t, and reliability is calculated for a finite set. Hence 𝑏ఈ = 0 ∀𝛼 will not 

occur due to sampling errors and the interpretation of the reliability diagram will not 

be as clear as those in Figures 2-10 and 2-11. However, the closer  𝑏ఈ = 0 ∀𝛼 and 

the smallest value of  max{|𝑏ఈ|} ∀𝛼 indicates the most reliable forecast.  

Figure 2-11: Deviation between observed and nominal probabilities for 3 different 

example forecasts. 

 

Next, consider a method for measuring sharpness. Such a method is given by Pinson 

et al. [75]. Sharpness is a measure of mean interval size for different prediction 

intervals from a forecast. Sharpness is measured by considering the mean central 

prediction interval size for a chosen nominal coverage rate 𝛽 for the whole forecast 

made at look ahead time 𝑘. This is calculated using Equation 2-26. Sharpness of 
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different forecasts can be compared by calculating 𝛿௞
ఉതതതത for a full range of nominal 

coverage rates or, most commonly, for specific rates such as 𝛽 = 0.5, 0.75, 0.9.  

𝛿௞
ఉതതതത

=
1

𝑁
෍ ൭𝐹෠௧ା௞

ିଵ ൬
1 + 𝛽

2
൰ − 𝐹෠௧ା௞

ିଵ ൬
1 − 𝛽

2
൰൱

ே

௧ୀଵ

 Equation 2-26 

For example, returning to the example forecasts given in Table 2-5. In Table 2-6 the 

interval lengths are calculated for 𝛽 =  0.75 and 𝛽 = 0.9 for intervals centered on 

the median.  

For the examples in Table 2-6, 𝛿௞
଴.଻ହതതതതതത = 3.22 and 𝛿௞

଴.ଽതതതതത = 5.92. In general forecasts 

with a smaller mean interval size contain less uncertainty and are therefore more 

useful. However, it is important to consider sharpness and reliability together. This 

is because as the mean interval size decreases, reliability can decrease if the standard 

deviation of the forecasted distribution is less than the actual distribution.  

Table 2-6: Interval lengths for 𝛽 =  0.75 and 𝛽 = 0.9 for example forecasts 

Forecast 
period 
(t+k) 

Predictive 
distribution 

of 𝑌෠௧ା௞ 

𝛿௞
଴.଻ହ 𝛿௞

଴.ଽ 

4 N(6,1) 2.30 3.29 

5 N(7,2) 4.60 6.58 

6 N(4,1) 2.30 3.29 

7 N(8,2) 4.60 6.58 

8 N(9,3) 6.90 9.87 

 

Finally, consider resolution. The most frequently used measure of resolution is the 

standard deviation of central prediction interval size. This gives an estimate of how 

different levels of uncertainty are represented by the model. Resolution 𝜎௞
ఉ, can be 

calculated for different values of 𝛽 using Equation 2-27. 
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𝜎௞
ఉ

= ඩ
1

𝑁
෍ ቀ𝐹௧ା௞

ିଵ ቀ1 −
𝛽

2ൗ ቁ − 𝐹௧ା௞
ିଵ ቀ

𝛽
2ൗ ቁ − 𝛿௞

ఉതതതത
ቁ

ଶ
ே

௧ୀଵ

 Equation 2-27 

A larger value for 𝜎௞
ఉ indicates a more useful forecast, as this indicates a forecast is 

better able to represent uncertainty in different conditions. For example, if for all 

values of t the forecast distribution is normal with 𝜇 = 6, 𝜎 = 1, then for all values 

of β 𝜎௞
ఉ

= 0.Whilst this might be a reliable forecast, it does not give the user any 

information about the uncertainty at time t.  

As with reliability, sharpness and resolution can be displayed graphically. Sharpness 

can be considered in terms of forecast horizon or nominal probability, as shown in 

Figure 2-12. A forecast which gives a lower mean interval length is generally more 

useful, as there is less uncertainty surrounding predictions. For example, for the 

sample forecasts given in Figure 2-12 “Forecast 2” gives a more useful forecast than 

“Forecast 1”. In contrast, a higher value for resolution indicates a more valuable 

forecast. This is because a larger standard deviation of interval size indicates a more 

expressive forecast and ability to differentiate between predictive conditions. 
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Figure 2-12: Example sharpness diagram is shown (a) for increasing nominal probability 

and (b) for a selection of nominal probabilities for increasing look ahead time. 

 

(a) 

 

(b) 

Whilst reliability, sharpness and resolution give an overview of model performance, 

it can be difficult to compare competing models on the basis of these properties. For 

this reason, scoring rules are used to give a numerical value to forecast performance. 

A variety of probabilistic scores are available. However, the most commonly 
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reported amongst wind power prediction literature is the continuous ranked 

probability (CRPS) score given by Equation 2-28 [68]. 

𝐶𝑅𝑃𝑆൫𝐹෠௧ା௞ , 𝑦௧ା௞൯ =  න ൫𝐹෠௧ା௞(𝑥) − 𝐻(𝑥 − 𝑦௧ା௞)൯
ଶ

𝑑𝑥

ஶ

ିஶ

 
Equation 2-28

where 𝐹෠௧ା௞(𝑥) is the forecasted CDF, 𝑦௧ା௞ is the observed value and 𝐻 is the 

Heaviside step function given by: 

𝐻(𝑧) =  ቄ
0, 𝑧 < 0
1, 𝑧 ≥ 0

 

CRPS is a strictly proper scoring rule which is equivalent to MAE for deterministic 

forecasts. It provides a summary statistic for evaluating probabilistic forecasts [77]. 

Whilst CRPS is a useful method for evaluating probabilistic forecasts, finding a 

closed form expression for Equation 2-28 causes difficulties in practical 

implementation. Lerch et al. [78] present equations for calculating CRPS for 

different predictive distributions. For a normal distribution with parameters μ and σ 

a closed form expression for CRPS is given by Equation 2-29 [78] where 𝐹෠௧ା௞ , the 

forecasted distribution is normally distributed with parameters μ and σ, and 𝑦௧ା௞ is 

the observed value at time t+k. In Equation 2-29 φ and Φ refer to the pdf and CDF 

of the standard normal distribution respectively.  

𝐶𝑅𝑃𝑆൫𝐹෠௧ା௞, 𝑦௧ା௞൯ = 𝜎 ቂ
௬೟శೖିఓ

ఙ
ቀ2Φ ቀ

௬೟శೖିఓ

ఙ
ቁ − 1ቁ − 2𝜑 ቀ

௬೟శೖିఓ

ఙ
ቁ −

ଵ

√గ
ቃ  Equation 2-29 

CRPS over the full forecast is given as an average of CRPS calculated for all t. The 

average value over the full forecast is what is usually referred to as CRPS in 

literature, hence this notation is used here. Average CRPS is calculated using 

Equation 2-30. 
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𝐶𝑅𝑃𝑆൫𝐹෠௞൯ =
1

𝑁
෍ 𝐶𝑅𝑃𝑆൫𝐹෠௧ା௞ , 𝑦௧ା௞൯

ே

௧ୀଵ

 
Equation 2-30 

As CRPS is equivalent to MAE for deterministic forecasting, a forecast with a lower 

CRPS is better than one with a higher CRPS. Other closed form equations for CRPS 

relevant to the discussion in this thesis are given in Chapter 5. 

2.2.8 Summary and comparison of probabilistic forecasting 

methods 

In this section, current state of the art forecasting techniques are discussed. This 

gives an idea of the methods employed to generate probabilistic forecasts for wind 

forecasting and the results reported for these methods. Table 2-7 gives an overview 

of current probabilistic forecasting techniques described in the literature.  

Beginning with quantile forecasts, Bremnes [79] used local quantile regression to 

provide forecasts from 24 – 47 hours ahead. Haque et al. [80] also use quantile 

regression, this time providing forecasts from 1-24 hours in advance. Sideratos and 

Hatziargyriou [81] used a neural network to provide quantile forecasts from 1-60 

hours ahead. Whilst the results of this method seem promising, it is time consuming 

and complex to train for numerous relevant quantiles. Messner et al. [82] used an 

inverse power curve to try and estimate uncertainty, giving forecasts 24 and 48 

hours in advance. The main issue with this method is that there is uncertainty 

introduced by different meteorological conditions when making power predictions 

from power curves, as discussed in Section 2.1.3. For example, different stability 

conditions have been shown to affect the appropriate power curve for a site 

[40].These conditions are not accounted for when an estimate of uncertainty is 

given. Finally, Nielson et al. [83] used ensemble wind speed forecasts to give 

quantile forecasts of wind power production. This was done for longer term 

forecasts than any of the other methods, giving forecasts up to 7 days ahead. The use 

of NWP ensemble forecasts allows for good predictions and estimates of uncertainty 

to be made quite far in advance. However, this method could be impractical for 



57 

  

many users as it requires an NWP model to be run with different starting conditions 

which is expensive. The results for these methods are given in terms of length of 

average prediction intervals, or sharpness as described by Equation 2-26. Most 

authors at least gave results for 50% and 90% prediction intervals. However, some 

only gave average width of 40% or 80% intervals, making it difficult to compare. 

Because of the different forecast horizons used, and in some cases different 

prediction intervals it can be difficult to compare the results. From the results shown 

in Table 2-7 it can be seen that for forecasts at 24 hours ahead, the average length of 

a 50% or 90% confidence interval is around 20% or 50% of capacity respectively. 

These results are very similar for the methods presented by Bremnes [79], Haque et 

al. [80] and Nielson et al. [84]. There is no single method which outperforms the 

others and the results are consistent despite the capacity of the test site varying from 

2 MW to 168 MW. Quantile forecasts offer a good way of highlighting the 

quantities of interest in a probabilistic forecast and allow for easier visualisation and 

comparison. However, difficulties can be encountered when many scenarios need to 

be considered when applying a forecast, in which case a full predictive distribution 

can be more valuable. One issue noted with quantile regression is that that model 

needs to be re-optimized to predict more than one different quantile, which can 

make the model slow and complex if many quantiles or forecast periods are 

required. 

Only one author reviewed described their method as an interval forecast. Carpinone 

et al. [85] used a Markov chain model to estimate an interval forecast from a point 

forecast. In this case the results were given in terms of NRMSE so cannot be 

compared to other probabilistic forecasts.  

Finally, density forecasts are considered. The most common method for density 

forecasting is a kernel density estimator. Bessa et al. [86] presented a method which 

used a kernel density estimator to give a predictive pdf for forecasts from 6 to 48 

hours ahead. The advantage of this model is its ability to be updated to reflect new 

data obtained. Reliability and sharpness were given for a single wind farm 

(unknown size) and 15 hypothetical sites. At the single wind farm the maximum 



58 

  

deviation from nominal probability (max(|𝑏௞
ఈ|) ∀𝛼) was 8% and for the 15 

hypothetical sites it was 4%.  The average length of a 50% prediction interval was 

12% over the 15 sites and 20% at the single wind farm. Juban et al. [87] also used a 

kernel density estimator, this time presenting results averaged across three wind 

farms. The reliability and sharpness were similar to the results presented by Bessa et 

al. [86] for the 15 hypothetical wind farms. Zhang et al. [88] also used a kernel 

density estimator to predict power from 1 – 24 hours in advance. Maximum 

deviation from nominal probability was given as 3%, and average length of a 50% 

interval was 12% of capacity. Again, this is very similar to the results given by 

Bessa et al. [86] and Juban et al. [87]. Kou et al. [89] used a Gaussian process model 

with warping function to predict power output from 15 minutes to 36 hours ahead. 

The only comparable results given is reliability, which shows a maximum deviation 

from nominal probability of 3%. This is similar to the reliability shown by Juban et 

al. [87]. Tatsu et al. [90] generated predictive distributions based on a point forecast 

and average errors in the area. Forecasts were given from 15 minutes – 8 hours 

ahead. The only comparable result presented is CRPS which is between 4 and 11% 

of capacity. The work outlined by Kou et al. [91] indicates that the GPR model is 

successful in modelling wind power and uncertainty in these forecasts. However the 

few results are shown in a framework which allows comparisons to other methods to 

be drawn. Density forecasts are a popular method for estimating uncertainty in wind 

power predictions. This is because, despite their complexity, they typically offer 

more information than quantile or interval forecasts and can be adapted well to suit 

the user. This allows wind power uncertainty to be incorporated into optimization 

problems, for example establishing an appropriate trade-off between risk and profit 

when generators are competing in electricity markets. 

It can be seen from the methods presented above that there is a large range of 

suitable techniques which have been used for generating probabilistic wind 

forecasts. Overall no single method outperforms other methods reliably. However, 

there is still room from decreasing prediction errors. Furthermore, the results show 

the value of providing a number of evaluation metrics to enable comparison of 

results with other methods.  
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The practicality of density forecasts in the wind industry, and the promising results 

shown using a hybrid NWP and GPR model make this an interesting area for future 

research. GPR has been shown to be flexible and able to model the complex 

relationships between wind speed and power output. However, further work is 

required to establish whether the inclusion of further meteorological variables can 

improve model performance. In addition to this, appropriate ways to implement the 

model given the non-Gaussian nature of wind power predictions require further 

research. It is for these reasons that this thesis focuses on the use of GRP for wind 

speed and power predictions.  
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Table 2-7: Overview of currently available probabilistic forecasting techniques 

Author Year Title Forecast type Summary Test data 
Forecast 
period 

Results 

Bessa et al. [82] 2012 

Time-adaptive 
quantile-copula for 
wind power 
probabilistic 
forecasting 

Density forecast 

Uses kernel density 
estimator to give a 
predictive pdf. Results 
are compared to splines 
quantiles regression. 
Predicts wind power at 
one wind farm in the 
mid-west US 

15 hypothetical 
sites in Illinois 
and one wind 
farm in mid-west 
US 

6 to 48 
hours 
ahead 

Reliability: up to 4% (15 
sites), up to 8% (single 
wind farm) deviation from 
nominal proportions. 
Average length of 50% 
interval: ~12% (15 sites), 
~20% (single wind farm). 
Average length of 90% 
interval: ~30% (15 sites), 
60% (single wind farm). 

Bremnes [76] 2004 

Probabilistic wind 
power forecasts 
using local quantile 
regression 

Quantile 
forecast 

Predictions of different 
quantiles are made for 
predictions based on 
regression. 

Vikna wind farm 
in Norway (2.2 
MW) 

24, 30, 36, 
42 and 47 
hours 
ahead. 

Average length of 50% 
prediction interval: 0.25 - 
0.45 MWh. Average length 
of 90% prediction interval: 
1.2 - 1.5 MWh. 

Carpinone et al. 
[81] 

2010 

Very short-term 
probabilistic wind 
power forecasting 
based on Markov 
chain models 

Interval forecast 

Uses a discrete time 
Markov chain model to 
estimate an interval 
forecast from a point 
forecast. 

One American 
wind farm 

10 mins 
intervals 
up to 200 
mins 
ahead 

NRMSE (% of nominal 
power): 4 - 36% 

Haque et al. [77] 2014 

A hybrid intelligent 
model for 
deterministic and 
quantile regression 
approach for 
probabilistic wind 
power forecasting 

Quantile 
forecast 

Uses quantile regression 
to predict wind power 
output at a wind farm in 
Colorado 

Cedar Creek 
wind farm in 
Colorado 

1 - 24 
hours 
ahead 

Average length of 50% 
prediction interval: ~20% 
% of capacity. Average 
length of 90% prediction 
interval:  51 % of capacity. 
Reliability: deviation from 
nominal proportion 1-4%. 



61 

  

Juban et al. [83] 2007 

Probabilistic short-
term wind power 
forecasting based on 
kernel density 
estimators 

Density forecast 
Produces pdf based on 
kernel density 
estimation.  

3 wind farms in 
France.  

up to 60 
hours 
ahead 

Reliability: +/-2% 
deviation from nominal 
probabilities. Average 
length of 50% interval: 
~13%. Average length of 
90% interval: ~32%. 
CRPS: between 0 and 12%. 

Kou et al. [85] 2014 

Probabilistic wind 
power forecasting 
with online model 
selection and warped 
Gaussian process 

Density forecast 

Extends a standard 
Gaussian process by 
including a warping 
function. Uses an online 
ensemble model. 

A 300 MW wind 
farm 

15 minute 
intervals 
up to 36 
hours 
ahead 

Reliability: +/-3% 
deviation from nominal 
probabilities.  

Messner et al. 
[79] 

2014 

 Probabilistic wind 
power forecasts with 
an inverse power 
curve transformation 
and censored 
regression 

Quantile 
forecast 

Generates quantiles 
using an inverse power 
curve.  

A 2 MW Turbine 
in Austria/ 

24 and 48 
hours 
ahead 

Average length of 40% 
prediction interval at 24 
hours ahead: 15-16%. 
Average length of 80% 
prediction interval at 24 
hours ahead: 41-42%. Also 
shows a market skill score. 

Nielsen et al. 
[80] 

2006 

From wind 
ensembles to 
probabilistic 
information about 
future wind power 
production - results 
from an actual 
application 

Quantile 
forecast 

Uses ensemble wind 
speed prediction to 
generate quantile 
forecasts 

166 MW 
Offshore wind 
farm, Denmark 
(Nysted), and the 
region of western 
Denmark, 2200 
MW. 

Up to 7 
days 

Average length of 50% 
prediction interval: 20 - 60 
% of capacity (for single 
farm), 10 - 40% of capacity 
(for region. Average length 
of 80% prediction interval:  
50 - 90 % of capacity (for 
single farm), 20 - 60% of 
capacity (for region).  
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Sideratos and 
Hatziargyriou 
[78] 

2012 

Probabilistic wind 
power forecasting 
using radial basis 
function neural 
networks 

Quantile 
forecast 

Uses point predictions of 
an existing wind power 
forecasting model and 
forecasts the prediction 
uncertainty due to the 
inaccuracies of the 
NWP. Predicts set of 
quantiles with 
predefined nominal 
probabilities 

2 wind farms: 
Lasithi, Crete (18 
MW) and Klim, 
Denmark (21 
MW). 

up to 60 
hours 
ahead 

CRPS: 10% (Lasithi) 6-
10% (Klim). Reliability: 
+/-2% (Lasithi), +/- 1.5% 
(Klim) deviation from the 
nominal probabilities. 
Average 50% interval 
length: 20% (Lasithi), 15% 
(Klim). Average 90% 
interval length: ~50% 
(Lasithi), 40% (Klim) 

Tastu et al. [86] 2014 

Probabilistic 
forecasts of wind 
power generation 
accounting for 
geographically 
dispersed 
information 

Density forecast 

Generates predictive 
distribution based on 
average point forecast 
errors in the local area.  

offshore wind 
farm in Denmark 
(Nysted, 165 
MW) 

15 mins to 
8 hours 

CRPS between 4% and 
11% 

Yan et al. [88] 2016 

Hybrid probabilistic 
wind power 
forecasting using 
temporally local 
Gaussian process 

Density forecast 

Uses a temporally local 
GP employing nearby 
local datasets and a 
moving window 
technique 

A 300 MW wind 
farm in the USA 
and a 60 MW 
wind farm in 
Ireland. 

1 - 12 
hours 
ahead 

The results are not 
evaluated in a probabilistic 
framework. 

Yang et al. [89] 2012 

Probabilistic short-
term wind power 
forecast using 
componential sparse 
Bayesian learning 

Density forecast 

Generates a predictive 
distribution by 
estimating the 
probabilistic density of 
the weights of Gaussian 
kernel functions. Tested 
on a 74 MW wind farm 
in Oklahoma. Time 
horizon 48 or 72 hours 
ahead 

74 MW wind 
farm in 
Oklahoma 

48 and 72 
hours 
ahead 

The results are not 
evaluated in a probabilistic 
framework. 
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Zhang et al. [84] 2015 

Probabilistic wind 
power forecasting 
based on logarithmic 
transformation and 
boundary kernel 

Density forecast 

Uses a kernel density 
estimator to give non-
Gaussian predictive 
distributions. Evaluated 
for a 542 MW wind farm 
in Iowa. Forecast 
horizon 1 - 24 hours 

542 MW wind 
farm in Iowa 

1 - 24 
hours 
ahead 

Reliability: +/-3% 
deviation from nominal 
probabilities. Average 50% 
interval length: ~12%. 
Average 90% interval 
length: ~30%. CRPS: 0.02 
- 0.08 (1-24 hours). 
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Probabilistic forecasting is an area of research which presents an opportunity for 

methods which would aid the advancement of wind energy integration and 

potentially improve planning and balancing mechanisms. The development of 

probabilistic prediction techniques allows those responsible for grid management to 

have not only an estimation of the potential power output but also an idea of 

uncertainty and range for potential generation. This enables backup power and 

balancing mechanisms to be planned more efficiently which can reduce costs. 

Whilst some methods have been developed as mentioned above, this area has 

received relatively little attention and comparisons of methods are sparse. The 

hybrid NWP and GPR model presented in this thesis allows for probabilistic 

forecasting and provides an alternative way of developing probabilistic wind power 

forecasting. The method and its contribution to probabilistic literature are discussed 

further in Chapters 3, 4 and 5.  In the next section, the applications of both 

deterministic and probabilistic forecasts are discussed. 

2.3 Applications of wind power forecasting 

So far, the available techniques for wind speed and power prediction have been 

discussed alongside methods for evaluating their performance. In this section, the 

applications of wind power forecasting are examined. This allows us to consider 

how wind speed and power forecasts might be used in a commercial setting and why 

improving these forecasts is important. In Section 1.4 three ways in which wind 

power forecasting is used were introduced.  These were: using wind power 

forecasting to schedule generating units to meet demand, to set reserve requirements 

to maintain system reliability and to enable wind power producers to compete in 

electricity markets. These applications are discussed further here. In addition to 

these applications, wind power forecasting can help with the design and operation of 

electricity storage facilities. Knowledge of the normal discrepancy between 

predicted power output and actual power output helps users to assess the storage 

capacity which would be beneficial and forecasting future power output allows 

operators to assess when to charge and discharge from storage facilities. For 

example, Pinson et al. [92] develop a method for optimising required storage 

capacity on a dynamic basis based on the uncertainty in wind power forecasts, 
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concluding that various non-dispatchable electricity generators could use forecasting 

and combined storage capacity to reduce costs. Alternatively, Garcia-Gonzales et al. 

[93] developed a method which takes into account the uncertainty in both day ahead 

prices and wind generation to optimise the use of energy storage facilities. Currently 

electricity storage devices are infrequently used in the UK, particularly alongside 

renewable generators to manage intermittency hence storage is not considered in 

detail in this thesis. However, as the cost of storage capacity decreases and if market 

mechanisms encourage investment storage may become more relevant to the UK 

electricity system. In order to consider how wind forecasting may be helpful in these 

scenarios, an explanation of electricity system management and electricity markets 

is given. This allows a discussion of how wind forecasting can be used to balance 

supply and demand and to improve revenue for a wind farm. The applications 

discussed here highlight why wind power forecasting is important and how 

improvements in wind power forecasting might impact various aspects of the 

electricity system. The concepts introduced here inform the discussion of how the 

value of a forecast might be evaluated, one of the objectives of this thesis 

highlighted in Section 1.5. The concept of the value of forecasting is discussed 

mostly in Chapter 6. However, the concepts introduced here are fundamental to 

considering why improved wind forecasting is valuable. 

2.3.1 Electricity system management and grid balancing  

Electricity systems are a complex network linking the electricity generators to end 

users by a collection of transmission and distribution systems. Electricity is 

produced by generators who deliver electricity to suppliers via the transmission 

network. Suppliers then deliver electricity to consumers via the distribution network. 

In the UK, the transmission system is owned and operated by the National Grid. The 

UK electricity system requires continuous supply and demand balancing to manage 

variations in supply and demand for electricity and to maintain a secure supply at all 

times. The National Grid is responsible for this system balancing, ensuring that 

supply meets demand on a second by second basis. The process of planning the 

delivery of electricity to meet demand is known as dispatch planning or unit 
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commitment planning. This is a complex optimisation problem referred to as the 

unit commitment problem. The planned delivery of electricity is usually optimised 

to reduce costs or minimise the chance of there being insufficient generation to meet 

demand (loss of load probability). This has to be done taking into account 

constraints such as individual unit capacity, time taken to start up and minimum run 

time of units [94]. Methods employed to solve this include dynamic programming, 

integer programming, Lagrangian relaxation and Tabu search [95]. The unit 

commitment problem is the subject of ongoing research, with attempts being made 

to solve the problem in more efficient ways which better reflect real conditions.   

In most countries with a well-established electricity system, the supply network first 

began operating with the majority of power supplied by coal-fired power stations, 

with gas power stations adding to capacity subsequently. With the addition of 

variable renewable energy to the electricity system the unit commitment problem 

becomes even more complicated. Not only do the start-up times, minimum run times 

and the unit capacity need to be taken into account but also the uncertainty in 

variable renewable generation.  

In addition to planning generation of electricity to meet expected demand, some 

capacity must be available to meet demand if units are unable to generate as 

scheduled. For example in the event of a technical failure. This capacity is known as 

reserve. Reserve can be either capacity available to either increase generation or 

decrease demand. Reserve capacity comprises of spinning (synchronised) and non-

spinning (non-synchronised) reserve. Spinning reserve is additional capacity 

available from units already providing power at that moment and non-spinning 

reserve is reserve available from units which can be brought online in addition to 

units already providing power. Spinning reserve can usually respond more quickly 

than non-spinning [96]. Reserve is sometimes categorised as frequency response 

reserve and capacity replacement reserve. Most electricity system users require 

frequency to be stable. In the UK the National Grid is obligated to maintain the 

frequency within operational limits of 49.8 Hz – 50.2 Hz. Frequency response 

reserve is fast response reserve used to return the system frequency to an acceptable 
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level. Capacity replacement reserve is capacity available over a longer time period 

to cover the loss of generation. For example, due to a technical failure at a power 

plant. The amount of reserve required depends on the volume and type of electricity 

required at any one time. The allocation of reserve must balance the cost of 

providing reserve with the risk of loss of load.  

Planning the dispatch of units to maintain system reliability is a complicated task. 

Both demand and supply for electricity are variable over time, and predictions of 

each contain some uncertainty. In order to effectively match supply and demand 

energy systems must contain some flexibility. Denholm and Hand [97] define 

system flexibility as “the general characteristics of the ability of the aggregated set 

of generators to respond to net load”. Traditional thermal electricity generators such 

as coal and gas provide flexibility in the supply due to vast stores of fuel. They are 

only constrained by ramping capacity and total capacity and can typically respond to 

fluctuations in demand needed to maintain a stable grid. Maintaining a portfolio of 

different types of power plant allows the provision of a flexible reaction to demand 

[98]. Kondziella and Bruckner [99] state that the magnitude of costs of integration of 

large amounts of renewable energy is directly linked to system flexibility. Costs for 

system balancing, grid-related costs and curtailment (hence the subsequent loss of 

revenue) all increase if a system is unable to respond to fluctuations in net load and 

deviations from predicted supply and demand. Increasing non-dispatchable 

renewable energy generation in a system requires a more flexible generation mix, 

relying on capacity which can be called upon on different time scales. Different 

technologies can contribute to this flexibility. For example, new gas turbines can 

generate power at full capacity in up to 1 or 2 hours (depending on the type) while 

coal power stations take much longer (between 12 and 72 hours) [100]. Because of 

this coal and nuclear power plants are used to provide baseload power and gas plants 

can be used to react to demand. In addition to this, pumped hydropower can provide 

power at very short notice. In the UK flexibility in the electricity system is achieved 

in a number of ways. Pumped hydro facilities located in North Wales can provide an 

extra 2 GW of power the UK network in up to 16 seconds [101]. Interconnections 

also exist between the UK and France, Ireland, the Isle of Man and the Netherlands, 
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allowing 4 GW capacity to be transferred in total [102]. Further capacity is available 

from fast response plants such as open-cycle gas turbines which can provide some 

power in a few minutes [103]. Some power stations are paid to run partly loaded so 

that power may be increased where necessary, known as spinning reserve. 

Alternatively, some large consumers of electricity can be called upon to reduce their 

demand to balance available supply of electricity. All these methods allow the 

power supply to be balanced on a very short term basis to account for any mismatch 

between supply and demand. Other ways that an electricity system can be flexible 

include demand side response and the use of energy storage. 

Given the importance of a flexible system for the successful integration of variable 

renewable energy, we must consider how a flexible electricity system can be 

maintained with reduced use of fossil fuels and continued security of supply. Wind 

power is non-dispatchable and cannot provide the same ability to meet demand. 

Hence in order to effectively integrate a large amount of wind into the electricity 

system other strategies must be considered. One way of doing this is through the 

introduction of market mechanisms aimed at supporting the growth of renewables 

and ensuring sufficient capacity is available. Some mechanisms introduced in the 

UK to support the growth of renewables are discussed in Section 2.3.3. Forecasting 

output from variable renewable energy sources is another way of reducing the total 

system requirement for flexibility. If wind power can be accurately forecasted there 

is less requirement for a large amount of plant with very fast start-up times in order 

to cover a potential lack of generation. This is because electricity can be procured 

further in advance to meet demand allowing more efficient use of power plants. The 

use of wind power forecasting for system management is discussed further in 

Section 2.3.4. 

2.3.2 Electricity markets 

As mentioned previously, in the UK electricity is produced by generators which 

deliver electricity to suppliers via the transmission network. Suppliers then deliver 

electricity to consumers via the distribution network. Suppliers estimate 
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consumption in any given settlement period and contract to buy electricity from 

generators. Electricity is traded in half hour settlement periods. Trading of contracts 

occurs from many years in advance up to one hour before the settlement period, 

known as gate closure [102].  

The National Grid electricity transmission (NGET) is responsible for managing 

supply and demand on a second by second basis, as suppliers and generators may 

not always match supply and demand perfectly before gate closure. This is done 

using the balancing mechanism which allows NGET to manage contracts for 

increases or decreases in both supply and consumption at very short notice. The 

adjustments made at this time are known as balancing actions. After the trading 

period, the actual volume of electricity supplied or used is calculated for each 

participant in the electricity market. If suppliers or generators demand or supply 

more or less than they contracted for, they are liable to an imbalance price for the 

difference, based on the NGET cost of balancing. Prior to November 2015, this was 

achieved through a dual pricing system. Under this system, energy generated that 

exceeded the final contracted volume of electricity is sold at the system sell price 

(SSP), and generators must pay for energy not generated at the system buy price 

(SBP) [23]. If a generator does not generate sufficient electricity to meet their 

contracts they are short on their contracts, whereas if they produce an excess of 

electricity they are long on their contracts. If at gate closure the total volume of 

contracts to supply electricity is less than the total volume of contracts for demand 

then the system is said to be short. If the opposite is true, the system is said to be 

long. Under this system, SBP was always greater than SSP, and the market price 

would fall between the two. The idea of this was that the payment for being long 

should be less than the market price and the charge for being short should exceed the 

market price [104]. 

 Since November 2015, through the implementation of balancing and settlement 

code (BSC) modification P305, this has moved to a single imbalance price (SIP) 

which is paid to the generator for surplus energy and the generator must pay to the 

National Grid for energy deficits [105]. The imbalance price is based on the average 
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cost of balancing actions. This is calculated by averaging over a specified volume of 

the most expensive balancing actions in a half hour delivery period. This volume is 

known as the price average reference (PAR) volume. Prior to the implementation of 

P305, a PAR volume of 500 MWh was used (PAR500). Under the system prior to 

November 2015 the most expensive 500 MWh of balancing actions was used to set a 

value for the main imbalance price (SSP if the system was long, SBP if the system 

was short) [104]. The alternative imbalance price was set as the market index price 

(MIP). This is the average value of contracts traded in a settlement period, and 

reflects the wholesale price of electricity at that time [106]. Since the 

implementation of P305, the average of the most expensive balancing actions is used 

to calculate the SIP. In addition to the change from a dual pricing system to a single 

pricing system, the PAR volume was reduced from 500 MWh to 50 MWh in 

November 2015. This will change further in November 2018 when the SIP will be 

based on the average price of the most expensive 1 MWh of balancing actions. To 

illustrate this an example of prices for a hypothetical settlement period is shown. In 

this period there were 600 MWh of balancing actions required, made at prices 

ranging from £70/MWh to £96/MWh as shown in Table 2-8. These are shown 

ordered by descending price in Figure 2-13.  

When the PAR volume is 50, the imbalance price is the average of 50 cumulative 

MWh of the most expensive balancing actions. From the example given in Table 2-8 

and Figure 2-13, the imbalance price when PAR volume is 50 MWh is given by 

𝑆𝐼𝑃௉஺ோହ଴ =
(ଵଷ×ଽ଺)ା(ଷ଻×଼଺)

ହ଴
= £90.8/MWh. With a PAR volume of 500 MWh the 

imbalance price would be £84.40/MWh, increasing to £96/MWh when the PAR 

volume is decreased to 1 MWh. The changes to the imbalance pricing system and 

PAR volumes have led to an increase in volatility in system prices [107]. This is 

discussed further in Chapter 6. 

Electricity is bought and sold through contracts made through either power 

exchanges or bilateral agreements made between generators, electricity suppliers, 

large consumers and non-physical traders. This trading creates a liberal market 

where prices are established according to supply and demand. 
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Table 2-8: Cost and volume of balancing actions for example trading period 

 Volume of balancing  

action (MWh) 

Price of balancing  

action (£/MWh) 

 156 82 

 100 83 

 67 78 

 67 86 

 65 79 

 64 73 

 36 70 

 32 77 

 13 96 

Total: 600 724 

 

Figure 2-13: Cost of balancing actions in example balancing period shown in Table 2-8 

and resultant imbalance prices. 

 

Whilst trading is mostly governed by profitability, certain behaviour needs to be 

encouraged through financial incentives. For example investment in low carbon 

technologies to reduce the emissions from electricity generation and investment in 

capacity to ensure the security of supply in the future must be incentivised 
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financially. In the next section the market reforms which have been introduced in the 

UK are discussed. These are designed to encourage investment in renewable energy 

and to encourage the system flexibility required to support increased renewable 

energy.  

2.3.3 Electricity market reform 

Various market mechanisms have been introduced to encourage investment in low 

carbon technologies and maintain system reliability. The electricity market reform 

(EMR) was proposed by the UK government in 2011, and embedded in legislation 

through the energy act in 2013 [108]. The EMR was introduced to encourage 

investments in low carbon electricity to support future growth in renewables whilst 

improving security of the UK electricity supply and maintaining affordability. Since 

electricity generation units in the UK are owned by private companies the 

government cannot simply build capacity required to meet future demand. The aim 

of the EMR is to encourage low carbon investment in the UK electricity supply to 

ensure sufficient capacity is available to meet demand in the future. The 

mechanisms introduced aim to encourage investment in low carbon technologies and 

develop an electricity system with sufficient flexibility to enable the integration of 

variable renewable energy.  

The EMR proposes the introduction of two mechanisms; feed-in tariffs with 

contracts for difference and capacity agreements within a capacity market supported 

by a carbon price floor and emissions performance standard [109]. The details of 

these are outlined in the following sections. 

2.3.3.1 Feed-in Tariffs with Contracts for Difference 

Contracts for difference (CFD) are private contracts between low-carbon electricity 

generators and the Low Carbon Contracts Company which is owned by the UK 

government [110]. This is a mechanism for payment for low carbon generation in 

which a pre-agreed electricity price is guaranteed to the generator. This means that 

when the price of electricity falls, an additional payment will be made to the 
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generator and when it rises the generator will pay some money back. CFDs replace 

renewable obligation certificates (ROC). Under the ROC system, electricity 

generators receive ROCs from Ofgem for renewable energy generated [111]. 

Electricity suppliers were obligated to obtain a (annually increasing) proportion of 

their annual sales from renewable sources [112] giving evidence of this by buying 

ROCs. If a supplier did not buy enough ROCs they were required to pay a buy-out 

price which was collected by Ofgem and redistributed to suppliers with ROCs [111]. 

This gave another source of revenue for renewable energy generators [113]. The 

ROC scheme was closed to new onshore wind generators in May 2016 and other 

new generators in March 2017 [114]. However, support will continue for those 

already registered for 20 years from registration [113].  

The new system of CFDs aims to encourage investment in low-carbon generation by 

providing a stable and predictable income. However significant issues surround how 

to price technologies such that private companies will invest, whilst keeping 

electricity prices from rising drastically. The first CFD allocation was completed in 

2014, with the results published in 2015 [115]. The total allocation of contracts and 

the average strike price are listed by technology type in Table 2-9. From this it can 

be seen that the strike price for offshore wind was high in comparison to other 

technologies. 

Table 2-9: Summary of CFD allocation round 1 [115] 

Technology 
Total Contracts 

(MW) 

Average strike 

price (£/MWh) 

Advanced Conversion Technology (ACT)* 62 118.05 

Energy from waste with combined heat and power  94.75 80 

Offshore Wind 1162 117.14 

Onshore Wind 748.55 81.94 

Solar PV** 71.55 67.53 

*ACT refers to a range of technologies which convert waste to energy. 
**Solar PV refers to larger solar photovoltaic farm projects, with an average capacity of 14 MW. 
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The second auction was held in April 2017 [116]. This included caps on the 

maximum strike price for some technologies, outlined in Table 2-10. These 

maximum prices are designed to encourage the industry to reduce the price of 

technologies. The contract amounts and values by technology are shown in Table 2-

11 [116].  

Table 2-10: Maximum strike prices for CFD allocation 2 [117] 

 £/MWh, 2012 prices 

Technology 2018/19 2021/22 2022/23 

Offshore wind 140 105 100 

Advanced conversion technologies 140 125 115 

Anaerobic digestion 140 140 135 

Biomass with CHP 125 115 115 

Wave 305 310 300 

Tidal stream 305 300 295 

Geothermal 140 Under consultation  

 

Table 2-11: Summary of CFD allocation round 2 [116] 

Technology 

Total 

Contracts 

(MW) 

Average strike 

price (£/MWh) 

Advanced Conversion Technology (ACT)* 64.31 40.43 

Biomass with combined heat and power (CHP) 85.64 74.75 

Offshore Wind 3196 62.14 

*ACT refers to a range of technologies which convert waste to energy. 

From Table 2-11 it can be seen that there was a significant reduction in the strike 

prices of all technologies in the second CFD allocation round. For offshore wind 

there was a 48% decrease in the strike price, indicating there has been significant 

accomplishments in reducing the cost of delivering offshore wind projects in the last 

few years. This is likely to lead to increasing numbers offshore wind projects in the 
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future, which will need to be managed carefully to avoid increases in the cost of 

delivering electricity due to managing the integration of variable renewable 

electricity. Onshore wind was not included in the second round of CFD allocation as 

this is considered a mature technology. Hence onshore wind energy developers are 

subject to market prices without the support or security of guaranteed income from 

CFD. This suggests that for new onshore wind farms the ability to predict power 

output and participate in electricity markets effectively will become increasingly 

important as alternative revenue streams have been removed. 

2.3.3.2 Capacity Markets 

Traditionally in the UK investment in energy relied on high peak energy prices to 

encourage investment. However, in order to maintain a secure supply and support 

highly polluting power stations coming offline, a capacity market has been 

introduced in the UK which sets a price for available capacity, not just generating 

capacity. The main aim of the capacity market is to ensure the security of supply in 

the coming years. Generators and consumers with demand management processes 

can bid for capacity provision 4 years in advance, receiving payments for capacity 

provided and incurring charges if capacity is unavailable [109]. This will reward 

availability of supply when the system is heavily loaded and penalise capacity that is 

not available when needed. Generators, consumers who can manage their demand 

and power storage assets can all participate. The first capacity auctions were held at 

the end of 2014 for capacity delivery in 2018/2019 [118] and subsequent auctions 

have been held annually the results of which are summarised in Table 2-12.  

Table 2-12: Details of T4 capacity auctions held from 2014 - 2016 

Auction held December 2014 

[119] 

December 2015 

[118] 

December 2016 

[120] 

Year to be delivered 2018/2019 2019/2020 2020/2021 

Total capacity 

agreements 

49.2 GW 46.3 GW 52.4 GW 

Clearing price £19.40 / kW / year £18.00 / kW/ year £22.50 / kW/ year 



76 

  

 

Whilst the UK government is optimistic about the ability of this mechanism to 

deliver a secure electricity supply, others have indicated that the uncertainty 

surrounding this new concept may stagnate investment as investors seek stability 

and assurance before committing to projects. However, it will hopefully encourage 

flexibility in the electricity grid which is beneficial for the integration of renewable 

generation [98]. A significant problem with this mechanism is that it encourages and 

continues to pay for fossil fuel based generators, which does not aid the aim of 

decarbonising the electricity supply. For example for electricity capacity procured in 

2020/2021 over 50% will come from gas turbines of different types. This 

encourages a reliance on fossil fuel generators for many years to come. The capacity 

market has the potential to offer a revenue stream to electricity storage operators, 

which may support the integration of variable renewable electricity. However, so far 

very few storage projects have been successful in the capacity market, with less than 

6% of the capacity procured coming from storage projects in the auctions held so far 

[118-120]. 

2.3.3.3 Carbon Price Floor 

Electricity generation companies in the EU are required to buy permits to emit 

greenhouse gases under the EU emissions trading scheme (ETS). The idea of this 

was to give a financial incentive to reduce the use of cheap polluting fuels and 

encourage investment in low carbon technologies. This market has been volatile and 

in April 2013 the daily price fell to €3.13/tonne of CO2 [121]. As can be seen in 

Figure 2-14, the monthly average price around this time remained low, at around 

€4/tonne of CO2. Despite an increase in prices between 2013 and 2015, prices fell 

again in 2016 with the monthly average price remaining at around €5/tonne CO2. 

The low prices have largely been attributed to an excess of permits being available 

and has led to an inadequate incentive to reduce emissions [122].  

The carbon floor price was introduced in the UK in April 2013 [122]. The carbon 

floor price meant that there would be a minimum payment for emissions, and if the 
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EU ETS allowance price fell below this companies in the UK would be required to 

make top-up payment to the UK government, known as the carbon price support. 

This was introduced in 2013 and was proposed to steadily rise from £15.70/ tonne 

CO2 in 2013 to £30/ tonne CO2 in 2020. The carbon floor price was levied via the 

existing climate change levy. The problem with this is that some argued the 

suppliers will simply pass on increased costs to consumers, maintaining profits with 

no need to invest in low-carbon technologies or drive out high emission businesses 

to other countries.   

Figure 2-14: Average Monthly Price of EU ETS from 2010 to 2016 [121] 

 

The actual price for the carbon price support was set at £4.94/tonne CO2 for 2013, 

£9.55/tonne CO2 for 2014 and £18.08/tonne CO2 for 2015 [122]. However, in the 

2014 budget the carbon price support was frozen at £18.08/tonne CO2 until 2020 to 

avoid excessive cost to business and rises in electricity prices for customers [123]. 
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This price freeze was extended to 2021 in the 2016 budget [124]. Whilst the price 

has not increased as originally planned this mechanism has contributed to a 

reduction in the amount of electricity generated from coal.  

2.3.3.4 Emissions Performance Standard 

 The emission performance standard (EPS) introduced in February 2014 sets an 

upper limit on emissions from power plants. It is applied to new power plants over 

50 MW and the replacement of any main boiler after February 2014. This prevents 

coal-fired power stations without carbon capture and storage (CCS) technology 

being built. It is set at 450g CO2/kWh and fixed until 2044 [109]. In a year a power 

plant must not exceed the total volume of CO2 emissions if the plant were operated 

at 85% of full capacity for the whole year. For example, a plant with a capacity of 

60 MW operating at 85% capacity over the year would generate 

60 x 24 x 365 x 0.85 = 446,760 MWh of electricity. Hence the limit on its CO2 

emissions would be 201,042 tonnes/year. The aim of this is to maintain the use of 

some fossil fuel plant to provide flexible base load supply whilst encouraging 

investment in CCS and biomass plants. Any plant with CCS installed will be exempt 

from the EPS until 31 December 2027 [109]. The implementation of the EPS could 

have an impact on wind energy. For example, if this is successful as a policy, some 

of the electricity previously supplied by coal is likely to be replaced by other sources 

of electricity. Whilst some of this may come from renewable sources, some may be 

replaced by gas power plants. Gas power plants, particularly of modern designs, are 

more flexible than coal power plants resulting in an electricity system which may be 

able to accommodate wind power more easily [97]. This is the trend which has been 

observed in the UK between 2012 and 2017, with an increase in electricity generated 

from gas and a decrease in electricity generated from coal [16, 125].  

2.3.4 Uses of wind power forecasting 

There are various uses for wind forecasting for example turbine control, integration 

in the grid or turbine maintenance planning. The optimal time scale of a forecast 
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depends on its intended use. Forecasts from milliseconds to seconds ahead are used 

for turbine controls. For integration in the electricity grid, longer predictions are 

important. Forecasts from a few minutes up to an hour are used to support balancing 

mechanisms, whilst forecasts from 1 hour to a few days ahead are used to optimise 

dispatch of conventional power and allocate reserve power [24]. Forecasts from a 

few days to a few months ahead are used to schedule maintenance activities, which 

is of particular importance with the increased developments in offshore power as the 

conditions for maintenance may be hazardous. An overview of applications of wind 

power forecasting is given by Soman et al. [44] and summarised in Table 2-13. 

Table 2-13: Applications of different forecasting horizons [44] 

Range Use  

Few seconds to 30 

minutes ahead 

-Electricity market clearing 

-Regulation actions 

30 minutes to 6 hours 

ahead 

- Economic load dispatch planning  

- Load increment/decrement decisions 

6 hours to 1 day ahead - Use of generators/ backup power 

- Participation in day-ahead electricity market 

1 day to 1 week or more - Unit commitment decisions  

- Reserve requirement decisions  

- Maintenance scheduling to reduce operating costs 

 

The forecasts developed in this thesis are for between 3 and 72 hours ahead. 

Therefore the forecasts are of most relevance for unit commitment decisions, setting 

reserve requirements and participation in electricity markets. Alstrom and Zavadil 

[126] explored the role of wind power forecasting in making unit commitment 

decisions. They tested the impact of wind on an area in the USA with peak demand 

of 9000 MW and wind capacity of 300 MW estimating there was a cost of 

$4.37/MWh to provide electricity contracted but not produced. The authors 

concluded that this could be reduced through the use of wind forecasting, however 
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they did not assess the cost benefit which could be achieved through better 

forecasting. Doherty and O’Malley [127] used wind power forecasting to quantify 

the level of reserve required in the Irish electricity system, concluding that 

increasing wind penetration would require higher levels of reserve but decreased 

wind forecast errors decreased the reserve requirements. In this paper the authors 

consider the correlation between standard deviation of wind power forecast error 

and reserve requirement. This is not an error metric used in many studies, making it 

difficult to compare the costs estimated in this paper with the forecast accuracy 

achieved by state of the art forecasts. Lowery and O’Malley [128] also considered 

the impact of wind forecasting error on unit commitment decisions and how 

forecasting can be used to reduce system costs. 

Forecasts can enable wind energy to become cost-competitive with other, more 

established, generation methods [67]. This is particularly important given that 

onshore wind energy is considered an established technology and so does not qualify 

to bid for CFDs under the electricity market reforms. Barthelmie et al. [23] looked at 

the benefits of using short-term forecasting to participate in electricity markets from 

an economic point of view. The paper created a simulation of 2003 electricity prices 

for different forecasting strategies. The authors concluded that optimal price per 

kWh of electricity is achieved when the smallest possible discrepancy between the 

forecast and produced power and the optimal trading window in the market are 

obtained. The authors also noted that ideally wind energy would be accurately 

predicted and sold at the highest trade price. Failing that, it is preferable to under 

predict output, rather than over predict and risk being charged the current system 

buy price. The difference between the system buy price and the system sell price is 

used in this study to quantify the benefit of an accurate forecast but this difference is 

variable. Using the method outlined by Barthlemie et al. [23] if a perfect forecast is 

achieved, the average benefit of the forecast for 2003 – 2007 was estimated to be 

£4.50/MWh. This estimate just considers the price of electricity and does not take 

into account the traded price of a ROC, which also makes up some of the income for 

wind energy. The work presented by Barthelmie et al [23] looks at several scenarios: 

no forecast being used, a simple mean annual wind speed, a perfect forecast, and a 
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simulation based on time series data. The results show that for reasonable wind 

speed forecast errors, wind speed forecasts are economically valuable. It suggests 

that once the systematic error in forecasted winds speeds exceeds +/- 10% the 

benefit of a forecast is close to zero. It aims to understand the size of the wind farm 

for which short-term forecasting becomes economically viable. The work done in 

this paper does not directly evaluate the impact of random error (MAE) on price 

received for electricity generating and only concludes that systematic error (forecast 

bias) has most impact on prices. The prices used for this study are from 2003 under 

a dual pricing system and the same conclusions may no longer hold in the current 

UK electricity markets. As stated in Section 2.2.4 bias is rarely discussed in 

literature therefore it is difficult to assess whether current state of the art forecasting 

techniques achieve the forecast accuracy required to be economically successful. 

As seen in the work performed by Barthelmie et al. [23] accurate forecasting allows 

operators to trade electricity for the maximum possible income. Further to this, 

forecasting reduces the need for balancing power and reserve load, which in turn 

leads to lower integration costs for wind, lower emissions from power plants used 

for balancing and subsequently a higher value for wind energy [20]. If no wind 

forecasting were performed, then wind energy would require significant balancing.  

In addition to the use of deterministic wind power forecasts, incorporating 

uncertainty into the operational management of wind farms through the use of 

probabilistic forecasting can be beneficial over the simple use of deterministic 

forecasts. Probabilistic forecasts have been used to define reserve levels, determine 

electricity storage system size and determine an optimum bidding strategy. Some 

examples of the uses of probabilistic wind power forecasts are discussed here.  

Matos and Bessa [129] used probabilistic forecasting to develop a reserve 

management tool which enables system operators to define reserve needs for day-

ahead and intraday markets. The tool aimed to balance risk and cost. In this the 

benefit is measured in terms of the reduction in the expected energy not supplied. 

The trade-off is then between reducing the expected energy not supplied whilst 

maintaining acceptable costs. The acceptable costs in this case can be defined by the 
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user. Bludszuweit et al. [130] proposed a method for energy storage system 

operation using probabilistic forecasting. It aimed to reduce uncertainty in wind 

power delivery up to 48 hours ahead. The method optimised the size of an energy 

storage system given a defined acceptable level of uncertainty in wind power 

delivery. The method allowed the optimum size of an energy storage system to be 

based on the cost-benefit analysis of the cost of storage compared to the benefit of 

reducing unserved energy. Botterud et al. [131] looked at how probabilistic wind 

power forecasting can be used to determine reserve requirements and how these 

change with uncertainty. They also discussed how demand dispatch and wind power 

forecasting should be factored into unit commitment and economic dispatch 

decisions. A cases study of the electricity market in Illinois, USA was used to show 

how more efficient scheduling of resources can be achieved by setting reserves 

based on uncertainty rather than fixing levels. This, in turn, reduced operating costs. 

Zhou et al. [132] also considered the use of a probabilistic wind power forecast to 

schedule operating reserve in a market with day-ahead and real-time trading. This 

again showed that dynamic operating reserve setting is more efficient than using 

fixed reserve setting. However neither Botterud et al. [131] nor Zhou et al. [132] 

discuss how the accuracy of a power forecasts affects operating decisions.  

In addition to the use of probabilistic forecasts for defining reserve requirements, a 

number of authors have looked at operational strategies for trading wind energy in a 

liberalised energy market using probabilistic forecasts. Zugno et al. [133], Botterud 

et al. [134] and Pinson et al. [135] presented optimal bidding strategies for wind 

power producers participating in electricity markets making use of wind power 

forecasts. Zugno et al. [133] used probabilistic forecasts of both wind power and 

market prices to develop a bidding strategy which optimises market revenue. The 

methods developed were tested on the Eastern Danish price area of the Nordic 

Power Exchange for 10 months of 2008. They concluded that the use of a bidding 

strategy alongside forecasts lead to increased revenue through a decrease in 

imbalance costs of 2.3%. Botterud et al. [134] proposed a methodology for optimal 

day-ahead bidding again concluding that the use of wind power forecasts led to 

increased profit and decreased financial risk. This was due to the avoidance of 
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penalties for deviating from amount of electricity contracted. Pinson et al. [135] 

used a probabilistic wind power forecast to develop an optimal bidding strategy. 

When tested on a Dutch wind farm this lead to an average reduction in cost of 

regulation of €2.20 - €5.90 per MWh. Robu et al. [136] introduced the idea of a 

payment mechanism based on the use of probabilistic forecasts of power production 

from small renewable energy sources. The aim was to present a method for small 

renewable energy cooperatives to estimate a confidence interval on power output 

estimates to aid grid planning, hence aiding integration of renewable energy in the 

grid. 

As discussed in Chapter 1, moving towards a low carbon electricity system is crucial 

to avoiding increasing emissions. Many different scenarios have been outlined in 

literature for how a low carbon electricity system might be achieved. In Table 1-1 

one such proposal of how sufficient electricity might be generated from renewable 

sources is outlined. In this, as in most low carbon electricity scenarios, a high 

proportion of variable or intermittent renewable energy is anticipated. In addition to 

this, some level of demand side management of electricity is likely to be required. 

As we move towards a system with a greater level of renewable electricity, all the 

applications of wind power forecasting mentioned so far are likely to become 

increasingly important. Firstly, with more renewable electricity the need to predict 

power output in advance will increase to allow efficient planning of power 

production in order to meet demand. In addition to this, in future low carbon energy 

systems predicting periods of high power production in advance will allow some 

electricity consumption to be shifted to utilise power production fully. For example, 

batteries or electric vehicles could be charged during periods of high production. 

Similarly, consumption could potentially be reduced during periods of low power. 

However, in order to do this and avoid disruption to consumers predictions will need 

to be accurate. These techniques allowing effective use of resources will be essential 

in ensuring that sufficient power can be generated from renewable resources and 

forecasting can enable this. 
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The applications and literature shown here indicate that there is value in forecasting 

power for many different users in a variety of applications. The value can be 

evaluated in many ways, however multiple studies conclude that more accurate 

forecasting is beneficial to the user. Few authors discuss the impact of predictive 

accuracy on the value added by a forecast. However, there is some indication that 

more accurate forecasting increases the value added by a forecast. Because of this, 

continuing research into new methods for forecasting wind power output is both 

interesting and important.  

The literature available which discusses applications of wind power forecasting 

indicates that there is value in improving wind power forecasts. It also indicates that 

probabilistic wind power forecasts can be effectively used for both grid management 

and participation in electricity markets. The potential applications considered above 

indicate that wind power forecasting can provide value for a number of users. The 

value of wind power forecasting and the appropriate way to quantify this is 

discussed further in Chapter 6. In Chapter 6 the impact of forecast accuracy on value 

is also considered. Within this, the impact of the changes to the UK electricity 

markets discussed in Section 2.3.2 on the value of a wind forecast are considered. 

Thus far, there is limited literature which assesses the impact of these changes to the 

electricity market on renewable energy generators. This is a significant gap in 

literature which this thesis aims to address.  
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Chapter 3. Near surface wind speed 

prediction using a hybrid NWP and Gaussian 

process regression model. 

3.1 Overview 

As outlined in Section 2.3 wind power forecasts can be valuable to a number of 

users. Literature outlined in Section 2.2 suggests that for short to medium range 

forecasts hybrid statistical and NWP methods are likely to provide the best results. 

This is because the combination of a statistical and NWP approach enables the NWP 

predictions to be corrected to provide better predictions for specific locations. 

Furthermore, the use of the NWP model allows predictions to be made further in 

advance than would be possible with a purely statistical model. Because of this, 

throughout this thesis, a hybrid method for predicting wind power output is 

developed and evaluated. To make an initial assessment of the suitability of the 

method in the context of wind energy this chapter focuses on wind speed 

predictions. This chapter presents a hybrid numerical weather prediction model 

(NWP) and a Gaussian process regression (GPR) model for near-surface wind speed 

prediction up to 72 hours ahead. It also considers whether subdividing data by 

atmospheric stability class can aid model performance. In Section 2.1 atmospheric 

stability was introduced and its influence on wind speed profiles and the conversion 

of wind to power is discussed. Because of the influence of atmospheric stability on 

the key components of wind speed prediction, one objective of this chapter is to 

assess whether sub-dividing data by atmospheric stability class can improve model 

performance. In this chapter stability conditions are estimated based on observations 

at the time of prediction, using the Pasquill-Gifford-Turner classification scheme 

given in Section 3.2.5. This shows the potential of the method using commonly 
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available data. However, the method is not technically a forecast as it relies on 

observations of stability conditions rather than predicted stability conditions. The 

results shown in this chapter indicate motivation for developing this method further, 

based on data obtained from publicly available resources. In Chapter 4 this is 

developed further into a predictive model using additional data obtained from the 

Met Office.  

In this chapter the NWP performance is discussed, giving motivation for the 

consideration of atmospheric stability in wind speed prediction. Next, the model is 

introduced and the results are shown for a selection of 15 weather observation sites 

across the UK. The model is also tested for the prediction of hub height wind speeds 

for one turbine in the UK. At this site, predicted wind speed is compared to 

measured wind speed. Finally, the impact of improved wind speed forecast on power 

forecasting is considered.  

 A three hourly wind speed forecast from an NWP provided by the Met Office was 

corrected using a GPR model, where the data was subdivided using the atmospheric 

stability class calculated using the Pasquill-Gifford-Turner method based on 

observations at the time of prediction. The method was validated using data from 15 

UK MIDAS (Met Office Integrated Data Archive System) sites with a 9-month 

training and 3 month test period. Results are also shown for hub height wind speed 

prediction at one turbine. Additionally, power output is predicted for this turbine by 

translating hub height wind speed to power using a turbine power curve. While 

various forecasting methods exist, limited methods consider the impact of 

atmospheric stability on prediction accuracy. Outputs show the GPR model 

improves forecast accuracy over the original NWP data and subdividing data by 

atmospheric stability class further reduces prediction errors. Comparing predicted 

power output to measured output reveals power predictions are also enhanced, 

demonstrating the potential of this novel wind speed prediction technique. 

The main objectives of this chapter are: 
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(i) To develop a hybrid numerical weather prediction model (NWP) and Gaussian 

process regression (GPR) model for near surface wind speed prediction up to 72 

hours ahead. 

(ii) To investigate the impact of using data partitioned on atmospheric stability class 

on model performance.  

(iii) To evaluate the model performance for wind speed prediction at 15 MIDAS 

sites across the UK. 

(iv) To evaluate the model performance for prediction of hub height wind speed at 

one wind turbine site in the UK. 

This chapter will be structured as follows: Section 3.2.1 gives details of the data 

used in this section to train and evaluate the model. Section 3.2.2 gives the definition 

of atmospheric stability used in the current work, its potential role in wind 

forecasting, and methods for calculation.  Sections 3.2.4 to 3.2.6 introduce the GPR 

model, giving an overview of the mathematical concepts. Section 3.2.7 gives details 

of the model formulation. Section 3.3 presents the results for prediction of 10 m 

wind speed at 15 MIDAS sites, hub height wind speed at one site and the 

significance of these results in power forecasting for a single turbine. Section 3.4 

gives conclusions and outlines how this work will be continued in the remainder of 

this thesis.  

3.2 Methodology 

3.2.1 Introduction to Gaussian process regression 

Regression analysis is the process of finding a relationship between a variable and a 

number of independent variables or predictors. This is achieved by estimating the 

relationship between observed values of the dependent and independent variables. 

This may then be used to estimate future values of the dependent variable, given 

values for the predictor variables. Given 𝑛 observations of a dependent variable 𝐲 =

[𝑦ଵ, … , 𝑦௡] a relationship is estimated by considering 𝑓(𝐗), the underlying function 
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of 𝐗 = [𝐱𝟏, … , 𝐱𝐧] where 𝐱୧ is a vector of predictor variables for observation 𝑖 ∈

[0, 𝑛]. To predict the values of a dependent variable based on new input values a 

training dataset is used develop a general relationship between input and output 

variables [137]. 

This type of analysis is known as supervised learning. Traditionally this is done 

using a parametric model, where the relationship is defined and parameters learnt 

from data. Once parameters have been fit this can be used to make predictions [138]. 

One example is linear regression, where the function is assumed to be linear and the 

parameters defining the relationship can generally be calculated analytically. 

Functions could also be assumed to be polynomial, exponential or any other type. 

This type of regression can suffer due to the process of choosing the class of 

functions to consider. If the underlying function, f, is not modelled well by the class 

chosen, predictions made will be inferior. Increasing the number of variables 

included to attempt to give a good prediction can lead to overfitting, where the 

chosen function fits the training data well but is a poor generalisation of the 

function. This leads to substandard predictions.  

An alternative solution is provided by Gaussian process regression. GPR is a 

supervised learning method where an input-output mapping is learnt from empirical 

data [137]. It is a non-parametric Bayesian regression technique which does not 

initially restrict the relationship between the target and input variables to a specific 

form. This allows a flexible model. Prior knowledge is combined with observed data 

to determine posterior predictive distributions for future inputs.  

Rather than defining a relationship and learning parameters, Gaussian process 

regression defines a probability of every function possible and evaluates the 

likelihood of these by updating prior knowledge of the probabilities given some 

observed data. This is done by defining a prior probability distribution over all 

functions possible [137]. This is a non-parametric technique as it involves 

attempting to infer how measured data is correlated rather than fitting parameters in 

a model [138]. A Gaussian process is a collection of random variables, any finite 
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number of which have a joint Gaussian distribution [137]. Gaussian processes can 

be considered as a generalisation of the Gaussian probability distribution to 

infinitely many variables [138]. The advantage of GPR is its ability to provide 

uncertainty estimates and to learn parameters from data [138]. Rasmussen and 

Williams [137] provide an extensive mathematical background of GPR, of which a 

summary is provided here. The Gaussian process 𝑓(𝐱) is completely specified by its 

mean and covariance function, 

𝑓(𝐱) ~𝐺𝑃(𝑚(𝐱), 𝑘(𝐱, 𝐱ᇱ)) 

This Gaussian process is used as a prior for Bayesian inference which is updated to 

reflect the training data available. Different mean and covariance functions can be 

used to specify some properties of the functions, these are discussed further in 

Section 3.2.2.  

GPR aims to identify a relationship between input variables and target variables, 

based on the observational data available. Assume a set of measured values, 𝐲 =

[𝑦ଵ, … , 𝑦௡] are observed at points 𝐗 = [𝐱𝟏, … , 𝐱𝐧]. These measurements represent 

noisy observations of a function, 𝑓, which is affected by noise, 𝜀 ~ 𝑁(0, 𝜎௡). The 

aim is to discover the underlying function that satisfies 𝑦௜ = 𝑓(𝐱௜) + 𝜀௜ where 𝑦௜ ∈

𝐲 is the target variable, 𝐱௜ ∈ 𝐗 are the input variables and 𝜀 is normally distributed 

additive noise. This is used to define a distribution over functions which can be 

updated using training data. The prior distribution is the initial specification of the 

distribution which gives information on the mean and covariance functions used. 

Being a linear combination of Gaussian variables, 𝐲 is also Gaussian, with 

distribution 𝐲 ~ 𝑁(𝑚(𝐱), 𝐾(𝐗, 𝐗) + 𝜎ଶ𝐈 where 𝐾୧,୨ = 𝑘(𝐱𝐢 , 𝐱𝐣), is the covariance 

matrix calculated from the covariance function. The covariance is a crucial part of 

the model specification, as it includes assumptions about the functional relationship. 

Despite this, establishing the correct covariance function for a regression problem is 

a significant issue in the inference process. The covariance function is discussed in 

more detail in Section 3.2.2.  
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Given the training set 𝐃 = (𝐗, 𝐲), and a new set of inputs 𝐗∗ the aim is to estimate 

output values 𝐟∗ where 𝐟∗ = 𝑓(𝐗∗). 𝐲∗, the target variables are the noisy observed 

values of the underlying function, 𝐟∗. The set 𝐃∗ = (𝐗∗, 𝐲∗) of new input and target 

variables is known as the test set. In the Bayesian framework, this is done by 

calculating the conditional distribution of 𝐟∗ given y, X and 𝐗∗. Alternatively, this 

can be thought of as conditioning the prior distribution on the observations. This 

conditional distribution is referred to as the posterior distribution. Bayes rule can be 

used to calculate this conditional distribution, as shown in Equation 3-1.  

𝑝(𝐟∗|𝒚, 𝐗, 𝐗∗) =
𝑝(𝐲|𝐟, 𝐗)𝑝(𝐟|𝐗)

𝑝(𝐲|𝐗)
 

Equation 3-1 

posterior= 
likelihood ×prior

marginal likelihood
 

 

The prior distribution incorporates assumptions about the model before evidence 

from the data is taken into account. The likelihood allows assumptions about the 

underlying function. In this chapter, the likelihood is assumed to be Gaussian as this 

allows exact inference. However, the choice of likelihood function is explored 

further in Chapter 5. The joint distribution of the training data and the predicted 

output is Gaussian, given by Equation 3-2 [137]. 

ቂ
𝐲
𝐟∗

ቃ ~ 𝑁 ൬
𝑚(𝐗)
𝑚(𝐗∗)

, ൤
𝐾(𝐗, 𝐗) + 𝜎ଶ𝐈 𝐾(𝐗, 𝐗∗)

𝐾(𝐗∗, 𝐗) 𝐾(𝐗∗, 𝐗∗)
൨൰ 

Equation 3-2 

The principle of joint Gaussian distributions allows the prediction results for the 

target to be inferred from the posterior distribution given by Equation 3-1, leading to 

equations for the mean and covariance of 𝐟∗ [137] given by Equation 3-3 and 

Equation 3-4. 

𝐟∗
ഥ = 𝐸[𝑝(𝐟∗|𝐗, 𝐲, 𝐗∗)] = 𝐾(𝐗∗, 𝐗)[𝐾(𝐗, 𝐗) + 𝜎௡

ଶ𝐈]ିଵ𝐲 Equation 3-3 

𝑐𝑜𝑣(𝐟∗) = 𝐾(𝐗∗, 𝐗∗) − 𝐾(𝐗∗, 𝐗)[𝐾(𝐗, 𝐗) + 𝜎௡
ଶ𝐈]ିଵ𝐾(𝐗, 𝐗∗) Equation 3-4 

GPR has been used for prediction in a number of applications. For example, 

spectroscopic calibration [139], robot control [140] and image processing [141]. In 
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the context of wind energy applications, a method which uses GPR to assess 

resource availability for small-scale wind energy projects was developed by Weekes 

[142]. In this context GPR was used in a measure-correlate-predict method to 

estimate wind resource at potential locations for wind turbines. Through these 

applications, GPR has shown an ability to predict well in situations where complex 

nonlinear relationships exist between variables. Because of this, it is a good method 

for wind speed prediction, given the typically complex patterns and relationships 

between wind and other weather variables. Chen et al. [73] describe a method in 

which an NWP model is combined with a GPR model to predict wind speeds up to 1 

day ahead. The corrected wind speeds are used to predict wind power using another 

GPR model. In this example, three data sets from different wind farms in China are 

used to validate the method, reporting reductions in mean absolute error compared 

to an Artificial Neural Network (ANN) model. In a different study Chen et al. [71] 

present the potential for a composite wavelet analysis and GPR forecasting 

technique. Small improvements over a simple GPR model were noted, 

demonstrating that the concept merits further investigation. Zhang et al. [143] 

combine an autoregressive model with GPR for probabilistic wind speed 

forecasting. The model was used to predict mean hourly wind speed one hour ahead 

for wind speeds at 3 wind farms in China. Furthermore, Hu et al. [144] combine 

empirical wavelet transform, partial auto correlation function and GPR to predict 

wind speeds at one wind farm in China. The results are shown for both half hourly 

wind speed prediction (up to 2 hours ahead) and hourly wind speed prediction (up to 

4 hours ahead). These studies show some potential for GPR models to predict wind 

speed and power output well. However, they focus on short term predictions, mostly 

up to a few hours ahead. The model presented in this chapter focuses on wind speed 

forecasts further in advanced, presenting a hybrid NWP and GPR model for wind 

speed predictions up to 72 hours ahead. In addition, the impact of subdividing data 

by atmospheric stability on model performance is discussed. 
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3.2.2 Choosing mean and covariance functions 

The covariance function incorporates important information about the model. It is 

described informally by Rasmussen and Williams [137] as the similarity between 

data points. GPR assumes that points which are ‘close’ in the input space are likely 

to have similar target values. This means that for the prediction of a point in the test 

set, training points with input points which are close to the test point will inform the 

prediction. How points which are close are related and how this relationship changes 

with increased distance is defined mathematically by the covariance function. The 

covariance between points 𝑥ଵ, 𝑥ଶ is given by a function 𝑘(𝑥ଵ, 𝑥ଶ). The covariance 

matrix is given by 𝐊 where the element in position (𝑖, 𝑗) is given by 𝑘௜,௝ = 𝑘(𝑥௜, 𝑥௝). 

The function 𝑘 can be any function which gives a positive semi-definite symmetric 

covariance matrix 𝐊. Many structures can be incorporated into a covariance function 

for example periodicity, interactions between variables and symmetry [137]. The 

squared exponential covariance function, defined by Equation 3-5 is a smooth, 

infinitely differentiable function which is commonly used in GPR models. It is a 

universal function, thus can be used to approximate any continuous function given 

enough training data [145, 146]. It is a very flexible and adaptive covariance 

function. Because of this, the squared exponential covariance function is used 

throughout this thesis. 

𝑘ௌா(𝑥ଵ, 𝑥ଶ) =  𝜎ଶ𝑒𝑥𝑝 ൤−
1

2
ቀ

𝑥ଵ − 𝑥ଶ

𝑙
ቁ

ଶ

൨ 
Equation 3-5 

where 𝜎, 𝑙 are the noise and lengthscale parameters respectively. Another property of 

covariance functions is that they can be combined using addition or multiplication. 

Multiplying or adding positive definite covariance functions will always result in a 

positive definite function. This property is used by Duvenaud [145] to define 

covariance functions which can be used for models in multiple dimensions. This is 

used to give a covariance function with a different lengthscale parameter for every 

input variable in the model. For example, for a model with 𝐷 input variables the 

covariance function is given by Equation 3-6. 
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𝑘ௌா,஽(𝐱, 𝐱ᇱ) =  ෑ 𝜎ௗ
ଶ𝑒𝑥𝑝 ൥−

1

2
ቆ

𝑥ௗ − 𝑥ௗ
ᇱ

𝑙ௗ
ቇ

ଶ

൩

஽

ௗୀଵ

=  𝜎௙
ଶ𝑒𝑥𝑝 ൥−

1

2
෍

(𝑥ௗ − 𝑥ௗ
ᇱ )

𝑙ௗ
ଶ

ଶ஽

ௗୀଵ

൩ 

Equation 3-6 

The set of length scale parameters 𝐥 = {𝑙ଵ, … , 𝑙஽} allows the relevance of each 

variable to be determined separately. This is known as automatic relevance 

determination (ARD). If the lengthscale parameter of a particular variable is small, 

then the parameter has a large impact on the predicted output and is therefore highly 

relevant. If the parameter is large it has little impact. This allows the most relevant 

variables to be given a higher weighting in the model.  

The mean function incorporates less information about the model and generally 

receives less attention in the literature. Usually, a simple mean function is employed, 

either assuming the mean function is equal to zero everywhere or using a linear 

mean function. The covariance function allows sufficient expressivity within the 

model for the mean function to be less important [145]. However, it can incorporate 

assumptions about model prediction at points which are far away from training data. 

Whilst making predictions based on extrapolation far from the training set should 

generally be avoided, the mean function can add information from the modeller's 

expertise about areas of the input space which have limited training data. In this 

chapter, a linear mean function with a constant term is used, given by Equation 3-7.  

𝑚(𝐱) =  𝑏 + ෍ 𝑎ௗ𝑥ௗ

஽

ௗୀଵ

 Equation 3-7 

where the hyperparameters 𝑏, 𝑎ଵ, … , 𝑎஽ are set in the training phases. 

3.2.3 Learning the hyperparameters 

To enable flexible modelling, there are a number of free parameters in the mean, 

covariance and likelihood functions. These are known as hyperparameters. Usually, 

the value of these is not known in advance. Because of this, the set of 
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hyperparameters, θ, is considered as a random variable [147] and through the model 

training phase the probability of the hyperparameters given the data is considered. 

This is known as the a posteriori hyperparameter likelihood. In order to find the 

optimum value for the hyperparameters, a maximum of Equation 3-8 is sought. 

Using Bayes rule Equation 3-9 is obtained. 

𝑝(𝛉|𝐲, 𝐗) Equation 3-8 

𝑝(𝛉|𝐲, 𝐗) =  
𝑝(𝐲|𝛉, 𝐗)𝑝(𝛉|𝐗)

𝑝(𝐲|𝐗)
 Equation 3-9 

If no prior knowledge of the hyperparameters is incorporated into the model, 

𝑝(𝛉|𝐗)is constant. 𝑝(𝐲|𝐗), is also constant with respect to the hyperparameters 

therefore the a posteriori hyperparameter likelihood is proportional to 𝑝(𝐲|𝛉, 𝐗). The 

optimal values for 𝛉 can then be obtained by considering the likelihood of 𝐲 given 

the input data 𝐗. Hence finding the optimum values for the hyperparameters is 

equivalent to maximising the marginal likelihood of the target variables given the 

hyperparameters. For ease of mathematical manipulation this is done using an 

equivalent optimisation problem of minimising the negative log marginal likelihood. 

When the Gaussian likelihood function is used, the log marginal likelihood function 

can be inferred exactly. Given these conditions the log marginal likelihood can be 

calculated using Equation 3-10. 

log 𝑝(𝐲|𝛉, 𝐗) = −
1

2
𝐲்(𝐊 + 𝜎௡

ଶ𝐈)ିଵ𝐲 −
1

2
𝑙𝑜𝑔|𝐊 + 𝜎௡

ଶ𝐈| −
𝑛

2
log (2𝜋) 

Equation 

3-10 

The terms in the log marginal likelihood enable model fitting whilst avoiding 

overfitting.  Overfitting occurs when a model is parameterised to ensure agreement 

with measured values in such a way which impedes generalisation to an unseen data 

set. The second term in the log marginal likelihood function adds a penalty as the 

model complexity increases. This is similar to the role of a regularisation term in 

parametric regression techniques. This is balanced by the first term which reduces 

with improved model fit.  
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This minimisation cannot be solved analytically therefore numerical methods must 

be used [137]. Throughout this thesis the GPML toolbox [146] is used. In this, a 

minimisation function is included which is used to optimise the hyperparameters. 

The function uses a Polack-Ribiere conjugate gradient method which is a non-linear 

optimisation technique. It implements a line search using quadratic and cubic 

approximations. Furthermore, Wolfe-Powell stopping criteria and the slope ratio 

method are used to calculate the initial step size. An in depth discussion of these 

techniques is given in [148]. Whilst the optimisation of marginal likelihood 

functions allows the most appropriate values for hyperparameters to be chosen, there 

are some difficulties with implementation which need to be considered. 

Optimisation requires initial values for the hyperparameters to be chosen. A 

common problem is that the marginal likelihood may not have a single global 

optima with respect to the hyperparameters [149]. Chen et al. [149] investigate the 

sensitivity of the hyperparameter estimation on the choice of initial values and the 

influence this has on GPR predictability. The authors conclude that the prior choice 

of hyperparameters has little influence on the performance of the GPR model, 

particularly when a squared exponential covariance function is used, as it is here.  

3.2.4 NWP prediction and meteorological observations 

Wind speeds predicted using an NWP model and observed wind speeds are used as 

inputs in the GPR model. A detailed discussion of the model inputs is given in 

Section 3.2.7. Before this, the data sets which will be used are discussed. 

The predicted wind speeds which are used to inform the hybrid model are taken 

from an NWP model developed by the Met Office. This NWP model provides three 

hourly forecasts up to 5 days in advance, employing a global forecast model to 

predict longer range weather forecasts (48+ hours ahead) combined with a 

mesoscale model to generate a more accurate short-range forecast. The forecast data 

used in this work are a weighted combination of the Met Office UKV and Euro4 

models. UKV is a variable resolution deterministic model, with a resolution of 1.5 

km over the UK and decreased resolution at the model boundaries to aid integration 
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in a nested model [150]. Euro4 is a 4 km resolution deterministic model covering 

Europe. UKV runs up to 36 hours in advance and Euro4 up to 120 hours. The 

forecast data is available from the UK governmental public data website [151] for 

over 6000 sites. The meteorological observations which have been used for 

reference have been taken from the Met Office Integrated Data Archive System 

(MIDAS), available from the British Atmospheric Data Centre (BADC) [152]. The 

archive consists of UK land surface observations, global marine observations, and a 

selection of radiosonde observations both in the UK and at international stations 

operated by the Met Office. This data provides hourly observations of a selection of 

meteorological variables including wind speed and direction, cloud cover, 

temperature, air pressure and humidity amongst others. The data provided including 

units is shown in Table 3-1. The MIDAS observation stations are set up so that the 

observation data can be the best quality possible with details given by the BADC 

[152]. Cup anemometers are used to measure wind speed, at a height of 10 m above 

ground level. The site must be free from obstructions to avoid measurements in the 

wake of obstructions and quality control is performed to avoid inclusion of spurious 

data where possible. For example, automatic algorithms are applied to ensure 

consistency of wind measurements with other local stations. From the available data, 

nearly 300 sites were identified where both observational and forecast data was 

available. Not all weather variables are available at every MIDAS site and data 

coverage is variable, dependent on factors such as equipment failure. Subsequently, 

from the available sites, sites were considered where 80% data coverage was 

available. Furthermore, certain meteorological variables are not available at all sites. 

Due to the variables required to estimate stability conditions only sites where 

information on cloud coverage was available were considered. 

Table 3-1: Met Office forecast variables 
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Variable Description or unit 

Wind speed Miles per hour (mph) 

Wind Direction 16 point compass  

Temperature Degrees Celsius (OC) 

Significant weather Description of weather i.e. sunny, mist, fog, light rain 

etc.   

Relative humidity Percentage (%) 

Visibility range Given within a range of km 

Visibility description Poor to excellent 

Wind gust Miles per hour (mph) 

Feels like temperature Degrees Celsius (OC) 

UV Index  Index of 1-11. In the UK this does not exceed 8. 

Precipitation probability Percentage (%) 

 

From this reduced set of potential sites, a sample of 15 sites across the UK was 

investigated. A map of these is shown in Figure 3-1. The MIDAS datasets are taken 

from various locations across the UK, with different weather conditions and site 

characteristics across the selection. The sites were categorised into 4 types; rural, 

urban, mountain and coastal. Categories were chosen for the sites based on visual 

inspection of the site itself and the local area, considering the proximity to the 

coastline, building density, elevation and terrain complexity. The model 

performance was considered within the different categories as well as overall.  The 

locations and classification of these sites are shown in Figure 3-1. 

To demonstrate the potential for wind power prediction, the model was also tested 

for one location in the UK where hub height wind speed and power were available. 

The data comprised of measured wind speed data at approximately 65 m above 

ground level and power output from a 1.5 MW turbine in a suburban location.  



98 

  

Figure 3-1: Map of MIDAS sites used, including site classification 

 

3.2.5 Treatment of atmospheric stability 

In addition to the performance of the hybrid NWP and GPR model, this chapter 

considers whether an improvement is seen in near surface wind speed predictions 

when the input data is subdivided by atmospheric stability class. In order to do this, 

atmospheric stability is now discussed alongside methods for classifying 

atmospheric stability conditions. 

Atmospheric stability is a measure of the atmosphere’s tendency to encourage or 

deter vertical motion [29]. Vertical motion in the PBL can be driven be convective 

processes (i.e. temperature gradient) or mechanical processes (i.e. wind shear). 

When dominated by wind shear the PBL is said to be neutral. When convective 

processes dominate, two situations can occur. When heat flows from the surface of 

the earth to the atmosphere a convective current is generated. This encourages 
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vertical motion and resulting in unstable conditions. When a convective current is 

not generated vertical stratification occurs, resulting in stable conditions. 

Neutral conditions occur during high winds and when cloud cover prevents strong 

heating or cooling of the earth’s surface. Unstable conditions occur when strong 

surface heating and low wind speed conditions occur, encouraging vertical motion 

of air. Stable conditions usually occur as a result of a cool surface, either the earth at 

night or over cool oceans. The flow of air is affected by atmospheric stability and 

consequently a number of different aspects of wind power forecasting can be 

affected. NWP models must parameterise numerous atmospheric processes in order 

to provide predictions of many variables at a point in time. This is a complex 

process which is difficult to balance as changes to the model may increase model 

performance in the prediction of some variables at the expense of others. The 

representation of turbulent mixing in stable atmospheric conditions is one such 

problem in most NWP models as discussed by Sandu et al. [153] and Holtslag et al. 

[154]. Artificially increasing turbulent mixing in stable conditions can improve 

prediction of near surface temperature, however, reducing turbulent mixing in stable 

conditions is required to improve near surface wind speed predictions [153]. The 

need to balance NWP model performance for many atmospheric variables means the 

predictions may not be optimised for every process. Because of these issues, the 

correction of the Met office NWP predictions of 10 m wind speed under different 

stability conditions is of interest.  

In addition to the issues with predicting 10 m wind speeds under different stability 

conditions, stability impacts other aspects of wind speed and power forecasting. For 

example, Peterson et al. [29] document the difference in vertical wind profiles under 

different stability conditions. The difference in the power law under different 

stability conditions is also explored by Irwin [32]. This was further investigated 

empirically by Focken and Heinemann [155], using data from a meteorological 

observation mast at Cabouw in the Netherlands. In addition to affecting 

meteorological conditions, it has been observed that the efficiency of extracting 

energy from the wind is affected by stability, particularly at offshore sites [156]. For 
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example, Jenson [157] reported a difference of 6% between stable and unstable 

conditions in annual mean array efficiency at an offshore wind farm. Because of 

this, consideration of atmospheric stability in hub height wind speed prediction and 

in wind power prediction is potentially important.  

Numerous methods exist for classifying stability, each requiring a range of 

meteorological parameters for calculation. Most methods involve some way to 

estimate contributions of convective and mechanically driven turbulence. Some 

examples include the Obukhov length, Richardson number, temperature gradient, 

wind speed ratio and Pasquill-Gifford stability class. The main issue surrounding 

calculation of some stability parameters is that they require estimates of variables 

such as friction velocity and heat flux which are not commonly available from either 

forecasts or meteorological observations. The Pasquill-Gifford method was 

developed to categorise the stability class based upon variables that are commonly 

measured at meteorological stations. The method uses solar insolation as an 

indication of convective turbulence and wind speed as an indication of mechanical 

turbulence [158]. This method for calculating stability was developed predominantly 

for the purpose of pollutant dispersion models but has become a commonly used 

classification scheme. It requires wind speed at one height, daytime solar insolation 

or night time cloud cover. This was further modified by Turner by using net 

radiation index (NRI) to estimate solar insolation based on cloud cover and cloud 

ceiling height, resulting in the Pasquill-Gifford-Turner (PGT) method for stability 

condition classification.  The PGT method classifies 7 different stability conditions 

as given in Table 3-2.  
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Table 3-2: Stability categories for PG and PGT stability methods 

PGT class Stability condition 

1 Highly unstable or convective 
2 Moderately unstable 
3 Slightly unstable 
4 Neutral 
5 Slightly stable 
6 Stable 
7 Extremely stable 

 

The first step in obtaining the stability classification is to calculate the insolation 

class number. This is obtained based on solar altitude as outlined in Table 3-3. NRI 

is calculated using the algorithm given in Figure 3-2, where cloud cover is given in 

tenths, with 1/10 indicating low cloud cover and 10/10 indicating opaque cloud. 

Finally, using NRI and wind speed, the stability classification is obtained from  

Table 3-4.  

Table 3-3: Insolation class number 

Solar Altitude (φ) Insolation Insolation class number 

60 < φ Strong 4 
35 < φ ≤ 60 Moderate 3 
15 < φ ≤ 35 Slight 2 

φ ≤ 15 Weak 1 

 

The PGT method allowed stability conditions to be estimated based on MIDAS 

observations. However, the forecasted variables available from the Met Office 

forecast data do not include sufficient details of cloud conditions to allow the use of 

the PGT method. Because of this, stability conditions used in this chapter have been 

based on MIDAS observations at the time of the prediction. Hence this chapter 

presents preliminary results exploring the benefit of using atmospheric stability in a 

GPR model for predicting wind speed. Chapter 4 explores how this work could be 

extended to explore the impacts of using predicted stability conditions.  
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Figure 3-2: Algorithm for calculating net radiation index [159]. 

 

 

Table 3-4: PGT stability classes 

Wind speed (ms-1) 
Net radiation index (NRI) 

4 3 2 1 0 -1 -2 

0-0.7 1 1 2 3 4 6 7 
0.8-1.8 1 2 2 3 4 6 7 
1.9-2.8 1 2 3 4 4 5 6 
2.9-3.3 2 2 3 4 4 5 6 
3.4-3.8 2 2 3 4 4 4 5 
3.9-4.8 2 3 3 4 4 4 5 
4.9-5.4 3 3 4 4 4 4 5 
5.5-5.9 3 3 4 4 4 4 4 

≥6 3 4 4 4 4 4 4 

3.2.6 NWP performance 

In this section, the performance of the Met Office NWP predictions for near-surface 

wind speed are evaluated. The NWP predictions of near surface wind speed contain 

some errors, which the hybrid NWP and GPR model for near surface wind 

prediction aims to improve upon. In order to understand the conditions under which 

the NWP predictions of 10 m wind speed may require improvement, a brief analysis 
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of the NWP performance is performed. The model performance for different 

prediction time frames and how model performance is affected by atmospheric 

stability is considered. This provides some motivation for the work performed. The 

Met Office NWP is evaluated at 15 sites over a range of forecast horizons to 

consider how these predictions can be improved through the use of GPR model. 

In Figure 3-3 the mean error statistics over the 15 sites are shown alongside the 

highest and lowest errors and any individual site (the range). In Figure 3-3 RMSE 

ranges between approximately 0.8 and 1.6 ms-1 for 3 hours ahead and between 1 ms-

1 and 2.5 ms-1 at 72 hours ahead. The lowest RMSE varies between site 6 and site 2, 

whilst the highest is at site 11. This is similar to what is seen for MAE, where the 

lowest values are seen at site 6 (with site 2 a close second), and the highest values 

seen at site 11. For MBE, positive values imply an over prediction whilst negative 

values imply an under prediction. This indicates that at most sites there is a slight 

under-prediction. Overall, the magnitude of bias is small but increases as the 

forecast horizon increases.  This indicates a tendency in the NWP wind speed 

predictions which could potentially be reduced using the GPR model. There is a 

significant difference in the performance of the NWP model at each site. This 

indicates that some sites potentially have more complex site characteristics that are 

not always correctly captured by the NWP model. For example, where there are 

trees, bodies of water, hills or outcrops of rock which are smaller than the grid 

resolution of the NWP model the impact of these on wind profiles are unlikely to be 

well modelled. Furthermore, it highlights that any results and potential 

improvements of a model will be highly site specific which should be considered 

carefully when drawing comparisons with other predictive models.  
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Figure 3-3: Summary of NWP error statistics at all 15 MIDAS sites. Mean error over all 

15 sites and the highest and lowest errors at any one site are shown. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Further to considering the error statistics at different time horizons, the variation in 

error with different wind speed is considered. As some higher wind speeds are only 

observed at some sites, the absolute error over all observations at 15 sites are 

considered. These are shown in Figure 3-4. It can be seen that there is a larger 

variation in absolute error at low wind speeds (up to about 3 ms-1) with lower 

absolute errors seen between 3 and 5 ms-1. Then as the wind speed increases both the 

MAE and the range of absolute errors increases with wind speeds above 5 ms-1. 

When considering models for wind power production low wind speeds are an issue 

when considering turbine cut in, and hence whether any power will be produced, 

and for higher wind speeds the difference in power output with wind speed will be 
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more pronounced. This can be seen from the power curve shown in Section 2.1.3. 

For the turbine shown, the curve is steepest for wind speeds between 5 and 15 ms-1. 

Hence, differences between observed and predicted speeds around this range will 

result in larger changes in power output. Furthermore, because the datasets 

considered here are for 10 m wind speeds the errors may be compounded when 

scaled to hub height as wind speeds generally increase with height above ground 

level as discussed in Section 2.1.3. Hence it is worth considering errors over the full 

range of wind speeds in order to look at how to reduce errors. 

Figure 3-4: Graphs showing the change in absolute error with wind speed for all 

observations at all 15 sites. This shows a boxplot of the spread of absolute error, |𝜖௧| =

|𝑦ො − 𝑦௧|, at different observed wind speeds. The blue box represents the interquartile 

range, the horizontal red line represents the median and the vertical dashed line represents 

the range (maximum and minimum values). 

 

Following an analysis of the change in errors with wind speed, the difference in 

error under different stability classes was considered. For the sites chosen, the PGT 

stability class was calculated for every hour of observations using the method 

outlined in Section 3.2.5. Figure 3-5 shows the percentage of observations in each 

stability class, shown as the range and mean overall 15 sites. Most observations fall 

into the neutral stability class, with the maximum at any site being 89% and an 

average of 66%. The lowest percentage of observations falling into the neutral 
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category at any site was 49%. The stability conditions vary from site to site and are 

influenced by the local site characteristics. Whilst neutral conditions are most 

frequent, and most frequently attributed to higher wind speeds, considering stability 

conditions can help to understand the NWP performance.  

Figure 3-5: Percentage of observations in each stability class.  

 

In Figure 3-6 the range and mean error statistics across all 15 sites are shown for 7 

stability classes. From this, it can be seen that the MAE is typically slightly higher 

under neutral conditions than under slightly stable or unstable conditions. This could 

be due to the higher wind speeds included in this category. RMSE shows similar 

trends. MAPE is lowest for all time horizons either under neutral conditions or 

slightly stable conditions. Furthermore, MBE shows an over prediction outside of 

neutral conditions, which is more pronounced as the time horizon increases. This is 

in contrast to the under prediction seen in the overall NWP predictions seen in 

Figure 3-3(c). This is because there is a high frequency of neutral conditions 

observed, as shown in Figure 3-5, in which there is a negative bias. This indicates 

that separating the observations by stability class may allow the positive bias seen 

under non-neutral conditions to be corrected more effectively than if all data is 

considered together. Figure 3-7 shows a sample of the error statistics for one site so 

that the characteristics can be seen more clearly. The average error for the time 
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horizon (averaged over observations in all stability classes) are shown as a dashed 

line for reference. It can be seen that MAPE is smaller under neutral conditions, and 

increases significantly for stable conditions. It also shows that MAE is slightly 

higher under neutral conditions compared to slightly stable or unstable conditions at 

this site. This could be because under the PGT classification scheme observations 

with a high wind speed are classified as neutral, and as seen in Figure 3-4 at higher 

wind speeds the absolute error is higher. Furthermore, MBE approaches zero for 

neutral conditions and shows an over prediction in non-neutral conditions. It is 

unclear why this positive bias occurs under non-neutral conditions. However, this 

suggests that a model which subdivides data by stability class could reduce bias in 

these conditions. The trends seen at this site are representative of all 15 sites, as seen 

in Figure 3-6. The difference in error characteristics seen under different stability 

conditions suggests that considering this in a wind prediction model may be 

beneficial. 

Figure 3-6: Mean, highest and lowest NWP prediction errors across all 15 sites for 

different stability classes. (a) Shows MAE, (b) MAPE, (c) MBE and (d) RMSE. 
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(b) 
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Figure 3-7: The difference in error statistics for a sample site. (a) Shows MAE, (b) 

MAPE, (c) bias and (d) RMSE. In all four graphs, the dashed lines (of the same colour as 

in the legend) indicates the average error for that time horizon (averaged over 

observations in all stability classes). 

 

(a) 

 

 

(b) 
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(c)  

 

(d) 

 

3.2.7 Model set-up 

An introduction to the GPR model is given above, in addition to an overview of the 

data used in this chapter. However, the model inputs and outputs require further 

definition. As detailed in Section 3.2.1 the model develops a relationship between 
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target variable y and input variables x of the form 𝑦୧ = 𝑓(𝐱௜) + 𝜀௜ . The model is a 

multivariate regression model with 4 predictor variables; 

(i) The Met Office prediction of near surface wind speed.  

(ii) 3 hours of observed hourly wind speed data prior to the beginning of the 

forecast.  

Forecasts up to 72 hours in advance were considered, at 3 hour intervals. Hence the 

predictor variables are given by Equation 3-11. 

𝐗௧ = [𝐦௧, 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ] for 𝑡 = 4, … , 𝑛 Equation 3-11 

where:  

𝑡 = time of observation 
𝐦௧ = Met Office forecast of 10 m wind speed at time (ms-1) 
𝐲௧ = observed wind speed at time t (ms-1) 
𝑘 = Forecast horizon 

The regression model is used for the prediction of 10 m wind speeds and hub height 

wind speeds. For both applications the Met Office forecast of 10 m wind speeds 

used as input variable 𝐦௧ are taken from the Met Office NWP model described in 

Section 3.2.4. The source of the observed wind speeds 𝐲௧ differ depending on the 

application of the forecast. 

Section 3.3.1 presents the results of the forecast model for predicting wind speed at 

10 m above ground level for 15 MIDAS sites across the UK. In this case, the target 

variables, 𝐲௧, are the MIDAS observations of 10 m wind speed at the site. Due to the 

variables required to estimate stability conditions, only sites where information on 

wind, cloud depth and coverage was available were considered. 15 sites were 

investigated and the location of these sites was shown in Figure 3-1. 

Further to this, for one turbine in the UK hub height wind speed and power output 

data was available. Section 3.3.2 presents results of the forecast model for wind 

speed prediction at hub height for a suburban location in the UK. In this case, the 

target variables, 𝐲௧, are the hub height wind speed observations at the site. Hub 

height wind speeds were obtained from the wind farm operator at one site in the UK 

for a 1.5 MW turbine. Power output and hub height wind speed data for wind 
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turbines is generally difficult to obtain due to commercial sensitivity, hence only one 

dataset is used to show results for this work. Wind speed was measured at 

approximately 65 m above ground level. MIDAS data from an observation site 

located approximately 8 km from the turbine is used to calculate the stability class at 

the time of forecast, and the Met Office forecast data is taken from the same location 

as the MIDAS data. 

Finally, Section 3.3.3 explores the potential impact of improved hub height wind 

speed forecasting on wind power forecasting. In this case, the wind speed 

predictions from Section 3.3.2 were translated into power output using a power 

curve. A power curve is a relationship between wind speed and power output, these 

were discussed in Section 2.1.3. The turbine in use at the location in question is an 

old model, for which the manufacturer’s power curve is not available. Hence the 

power curve used has been chosen from a database of available power curves 

obtained from “The Wind Power” a wind energy market intelligence company [39]. 

A power curve was chosen for a turbine of the same size, for which the relationship 

between wind speed and power approximately matched the observed wind speed 

and power data for the turbine. The observed data and the power curve chosen are 

shown in Figure 3-8. Whilst it would be preferable to obtain the power curve for the 

actual wind turbine from which the data was obtained, the approximate relationship 

between wind speed and power observed in the power curve used is sufficient for 

this initial analysis.  

To ensure an independent forecast, the data was split into a training dataset and a 

test dataset. This avoids an overestimate of the skill of a forecast which can occur 

when model performance is assessed on a data set which has been used to train the 

model. The training dataset was used to train model hyperparameters and the test 

dataset to assess the model performance. The training data are defined as the 

concurrent observations and Met Office forecast data for the first 9 months of 2014 

and the test data are same data from the final 3 months of 2014. 
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Figure 3-8: Observed data for the 1.5 MW wind turbine used in this chapter and an 

estimated power curve for a similar turbine [39]  

 

The observation data was available at hourly intervals and the forecast data at 3 

hourly intervals. This describes the formulation of the GPR model with no stability 

data. To test the impact of using atmospheric stability to improve the model, the data 

was split into 7 stability classes and the model trained separately for each class. 

From the variables available in the Met Office forecast an indication of forecasted 

stability conditions is difficult to obtain, therefore currently this study uses the 

stability conditions at the time of the observation, as calculated from the MIDAS 

data using the method described in Section 3.2.5. Whilst in the case of an actual 

forecast scenario this information would not be available it gives an indication of the 

potential improvements possible using stability information in a GPR model.  
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3.3 Results 

3.3.1 MIDAS site wind speed prediction 

The hybrid NWP and GPR model was first used to predict 10 m wind speeds at 15 

MIDAS locations. Wind speeds predicted by the GPR model are compared to the 

MIDAS observations with several criteria used to assess performance. Here three 

criteria are shown, mean absolute error (MAE), mean absolute percentage error 

(MAPE) and root mean squared error (RMSE), calculated using Equations 2-11 to 

2-13 given in Section 2.2.4. The comparison of different error metrics allows a full 

overview of the model performance. 

The model errors are shown for a GPR model in which the datasets were split by 

stability class and a GPR model using the full dataset (referred to as a simple GPR 

model). These results are compared to the NWP predictions made by the Met Office. 

In order to fully illustrate the model results, detailed results are shown for 4 of the 

15 MIDAS sites tested, and summary results are shown for the 15 sites.  In Figure 

3-9 and Figure 3-10 MAE and MAPE are shown for 4 of the 15 MIDAS sites. This 

shows how the errors increase as the forecast period increases, and also how the 

model error is reduced by using the GPR model with data subdivided by stability 

class. Overall, the simple GPR trained using the full dataset reduces the error in 

predicted wind speed compared with predictions made by the NWP. The 

improvement is site specific, with the greatest error reduction seen at a forecast 

period of 3 hours ahead for some sites, and further ahead for others. Figure 3-13 

shows a summary of errors over the 15 sites. This shows an average reduction in 

MAPE of approximately 2% for the simple GPR model in comparison to wind 

speeds predicted by the NWP. For the GPR model with stability information there is 

a reduction in MAPE of 5% for a 3 hour forecast period, rising to 9% for a 72 hour 

forecast period. The simple GPR model also shows an average of 2% improvement 

in MAE and RMSE for all forecast periods, whilst the GPR model with stability 

information shows a 10% improvement in MAE and a 7% improvement in RMSE.  
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Figure 3-9: MAE (with 95% confidence interval) for 4 sample MIDAS sites shown for 

GPR models both with and without stability, and the NWP. 

 

Figure 3-10: MAPE (with 95% confidence interval) for 4 sample MIDAS sites shown for 

GPR models both with and without stability, and the NWP. 

 

In Figure 3-6 (c) MBE averaged over the 15 MIDAS sites was shown for the NWP 

model. This indicated that in unstable and stable conditions the NWP over predicted 

10 m wind speeds and in neutral conditions MBE approached zero but was slightly 

negative. In Figure 3-11 MBE averaged over the 15 MIDAS sites is shown for the 

simple GPR model and the GPR model with input data subdivided by stability class. 

MBE is shown for each stability class. The results indicate that the GPR model with 

input data sub divided by stability class is able to reduce over prediction in stable 
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and extremely stable conditions much more than the simple GPR model. The simple 

GPR model reduced MBE in comparison to the NWP predictions. However, not as 

much as the GPR model with data sub divided by stability class. There was not as 

much difference between the two GPR models for slightly and moderately unstable 

conditions. This was because there was less data for these classes in the training data 

set. There was still some over prediction in these conditions when the GPR models 

were implemented. Both GPR models reduced the under prediction seen for 

predictions in neutral stability conditions, with the GPR model with data subdivided 

by stability class having MBE closer to zero than the simple GPR model. 

Figure 3-11: Average MBE for all 15 MIDAS sites for different stability classes. 

 

These results indicate that the hybrid NWP and GPR model with data subdivided by 

stability class is offers improved near surface wind speed predictions over the NWP 

predictions or a simple NWP and GPR model. This is largely attributed to the GPR 

models with data subdivided by stability class being able to correct the bias in 

predictions in non-neutral conditions in the NWP predictions.  

In Figure 3-12 MAE and MAPE for the simple GPR model and the GPR with data 

subdivided by stability are shown in comparison to the persistence model. It can be 
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persistence method for MAE, RMSE and MAPE. For the GPR model with stability, 

the reduction in MAPE over the persistence model is 14.5% at 3 hours ahead, 

increasing to 57.6% at 72 hours ahead.  

Figure 3-12: Average MAE and MAPE for all 15 MIDAS sites shown in 

comparison to the persistence method. 

 

The average RMSE and MAE overall 15 sites can be compared with other wind 

speed prediction models using the results shown in Table 2-6. Figure 3-13 shows the 

average RMSE across the 15 sites for the GPR model with stability is 1.1 ms-1 at 3 

hours ahead. At 1 hour ahead Li and Shi [60], Chen et al. [71] and Li et al. [61] give 

an RMSE of between 0.96 ms-1 and 1.5 ms-1. Hence an RMSE of 1.1 ms-1 at 3 hours 

ahead is within the range of a good forecast. For the same three studies, an MAE of 

between 0.72 ms-1 and 1.13 ms-1 is reported for a forecast 1 hour ahead. Figure 3-13 

shows an average MAE of 0.82 ms-1 at 3 hours ahead for the GPR model with 

stability, again falling within the range shown by other studies.  

At 72 hours the average RMSE for all 15 sites for the GPR model with stability is 

1.54 ms-1 which is smaller than the RMSE reported by Louka et al. [72] of 2.38 – 

2.88 ms-1 and Chen et al. [71] of 2.04 ms-1. Similarly, the average MAE over 15 
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sites for the same model at 72 hours ahead is 1.17 ms-1 compared to 1.75 – 2.04 ms-1 

reported by Louka et al. [72] and 1.6 ms-1 reported by Chen et al.[73]. Furthermore, 

the MAPE shown in Figure 3-13 for the GPR model with stability at 72 hours is 

42%, slightly lower than the 44% reported by Chen et al.[73]. Overall the model 

performs well in comparison to other similar models, and improvements are seen 

when stability is incorporated in the GPR model for predicting near-surface wind 

speed. 

Figure 3-13: Average RMSE, MAE and MAPE for all 15 MIDAS sites. Error bars are not 

shown here to allow clarity. 

 

The model performance was also considered for the 4 different site categories 

observed; rural, urban, mountain and coastal. Differing meteorological effects 

present different forecasting issues dependent on site characteristics. For example at 

coastal sites wind speed is affected by changes in surface roughness, and availability 

of heat and moisture [30]. In mountainous areas, complex orography and changes in 

temperature drive wind speeds, and within urban areas high densities of buildings 

can interfere with expected wind patterns. Taking this into account one might expect 

the model results to vary with different site characteristics. Within the 15 MIDAS 

sites considered there was 1 mountain site, 3 coastal sites, 4 urban sites and 7 rural 
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sites observed. Figure 3-14 shows how the Met Office NWP error varies within 

different classifications. Average NWP error is shown for each site, calculated as an 

average over the time periods considered (3 hours ahead, 6 hours ahead, up to 72 

hours ahead). For the three coastal sites in the dataset, the average NWP model error 

is higher than for the rural and urban classifications. Only one mountain site is 

identified within the set, hence it is difficult to suggest whether the results seen at 

this site are representative of all mountain sites. The NWP errors observed for this 

mountainous site are higher than the errors seen at rural and urban sites. The 

difference between errors in rural and urban sites seems to be small. However, 

marginally higher errors are seen at the urban sites.  

Figure 3-14: Average mean absolute error of the NWP forecast across all time periods 

considered (3 hours ahead – 72 hours ahead). A single average is shown for each site, 

with the sites split by site classification. 
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Having examined the NWP prediction error for different site classes, the reduction 

in error achieved using both GPR models is considered. This is calculated using 

Equation 3-12. 

Reduction in average MAE =  ෍൫MAE୲,୒୛୔ − MAE୲,ୋ୔ୖ൯

଻ଶ

௧ୀଷ

 Equation 3-12 

where t is the time ahead forecasted. This reduction in error is shown in Figure 3-15 

for both the simple GPR model and the GPR model with data subdivided by PGT 

stability class. It can be seen that for the simple GPR model, lower errors are seen at 

all but one site. The site which did not achieve an improvement over the NWP was a 

rural site at which the NWP prediction error was the lowest of any sites considered, 

making it difficult to make enhanced predictions. Despite this, an improvement was 

seen when using GPR with stability at this site. Figure 3-15 shows that for the 

simple GPR the reduction in model error is not significantly different between site 

classes. However for the GPR model with data sub divided by stability classes a 

larger improvement is seen at coastal sites and at the mountain site. This is because 

the over prediction in the NWP model for stable and unstable conditions was higher 

at coastal and mountainous sites and the GPR model with data subdivided by 

stability class was better able to address this. Given that in Figure 3-14 it was 

observed that coastal and mountain sites had the highest prediction errors from the 

NWP model, this shows that the method improves upon sites where prediction 

accuracy is lower, which may be useful for wind farms located in regions with 

highly variable wind regimes. An improvement is also seen when using the GPR 

model with stability for prediction over both the simple GPR and the original NWP 

model in urban and rural areas. However, the achievement of the GPR model with 

stability at urban and rural sites is slightly less pronounced than for the coastal and 

mountain sites.  
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Figure 3-15: Reduction in error achieved by applying the GPR model compared to Met 

Office NWP model (A larger reduction indicates better model performance). (a) Shows 

results for simple GPR model, whilst (b) shows results for GPR model with data 

subdivided by PGT stability class. 

 

(a) 

 

(b) 
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3.3.2 Hub height wind speed prediction 

Whilst looking at the prediction of 10 m wind speeds shows the potential of the GPR 

model and the importance of stability in the reduction of model error, for wind 

power prediction hub height wind speed prediction is more important. In Figure 3-16 

MAPE and MAE are shown for hub height wind speed for both the simple GPR 

model and the GPR with data subdivided using PGT stability class. It shows a 

reduction in MAPE of between 1 and 2% and between 3 and 5% reduction in MAE 

using a GPR model with data subset by stability class. In Figure 3-16 the persistence 

results are omitted in order to show more clearly the difference between the two 

models. In Figure 3-17 the MAE, MAPE and RMSE for both GPR models are 

shown in comparison with a persistence model. It can be seen in Figure 3-17 that the 

GPR model shows significant improvements over the persistence model.  

Taking the results for the GPR model with data subdivided according to stability 

class, comparisons can be drawn with other methods seen in Table 2-6. The GPR 

model with stability has an MAE of 0.95 ms-1 at 3 hours ahead, as shown in Figure 

3-16 and Figure 3-17. This is lower than some of the results shown in Table 2-6. For 

example, Chen et al. [71] report an MAE of between 0.72 and 1.1 ms-1 for a forecast 

between 1 and 4 hours ahead, Li and Shi [60] between 0.9 and 1.05 ms-1 for a 

forecast 1 hour ahead and Li et al. [61] 1.137 ms-1 at 1 hour ahead. Similarly the 

GPR model with stability has an RMSE of 1.2 ms-1 at 3 hours ahead, compared to 

Chen et al. [71] who reported between 0.96 and 1.95 ms-1 for a forecast between 1 

and 4 hours ahead, Li and Shi [60] who reported between 1.2 and 1.4 ms-1 for a 

forecast 1 hour ahead, and Li et al. [61] 1.5 ms-1 at 1 hour ahead.  

At 72 hours ahead MAE for the GPR model with stability rises to 1.36 ms-1, 

however this is still lower than the results presented by Louka et al.[72] and Chen et 

al. [73] for this timescale in Table 2-6. Similarly, RMSE rises to 1.7 ms-1, again 

lower than the results from Louka et al. [72] and Chen et al. [73]. Figure 3-17 shows 

MAPE at 72 hours ahead for this model is 24%, which is 1% lower than for a GPR 
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model without using stability, and 31% lower than the persistence method. MAPE is 

not given for predictions 72 hours ahead for any other model shown in Table 2-6. 

It is difficult to make direct comparisons of the results seen in this section with other 

models presented in literature as each study uses a distinct dataset. Because of this it 

is not possible to state that one model exclusively outperforms others. However, the 

results seen in this section are similar to results seen in literature indicating that this 

model is competitive with other models for hub height wind speed predictions.  

 Figure 3-16: MAPE and MAE (with 95% confidence interval) for hub height wind 

speeds predicted with a simple GPR model and a GPR model with stability 

 

These results indicate that using a hybrid GPR and NWP model for hub height wind 

speed prediction can improve wind speed predictions over a benchmark method (the 

persistence model). Furthermore, hub height wind speed prediction errors are 

reduced when the input data is subdivided by stability class. This suggests that this 

method could be used to predict wind speeds in a way which would be valuable to 

users in the wind industry. It would be beneficial to use this model to predict hub 

height wind speeds at for other sites to see whether this result is replicated. 

However, at the time of this analysis sufficient data was not available to enable this. 



124 

  

Figure 3-17: RMSE, MAE and MAPE for hub height wind speed predicted using GPR 

model with and without stability information. The persistence model is shown for 

comparison. Error bars are not shown here to allow clarity. Error bars for the GPR models 

can be seen in  Figure 3-16. 

 

3.3.3  Significance of results in power output forecasting 

In Section 3.3.2, it was seen that using a GPR to predict hub height wind speed leads 

to a reduction in prediction error in comparison to using the persistence method. 

Additionally, a further reduction is seen when the data is split using PGT stability 

class at the time of observation. In order to establish whether the reduction in error 

seen in hub height wind speed prediction is sufficient to suggest a reduction in 

power output prediction error, predicted power output is calculated from the 

predicted wind speed using a wind turbine power curve.  

In order to allow comparison between other models based on different datasets, the 

model errors are shown as a percentage of turbine capacity, giving normalised MAE 

(NMAE) and normalised RMSE (NRMSE). This allows model results from larger or 

smaller turbines to be compared in a meaningful way. The equations for NMAE and 

NRMSE were given in section 2.5.1.4. 

Figure 3-18 shows the difference in NMAE and NRMSE between power output 

predicted from wind speeds using a persistence model, a simple GPR model and a 



125 

  

GPR model with stability classification. It shows a reduction in NMAE of between 2 

and 12% for the power output predicted using wind speeds from the simple GPR 

model over a persistence model, and a further 0.5% for the GPR model with data 

subdivided by stability class. Additionally, a reduction of between 4 and 16% in 

NRMSE for the simple GPR model is observed in comparison to the persistence 

model with a further 0.5% improvement using the GPR model with data subdivided 

by stability classes. 

Figure 3-18: MAE and RMSE normalised by turbine capacity, shown for simple GPR and 

GPR with stability information 

 

Due to the power curve for this turbine not being available the method for predicting 

power output could be improved upon significantly. Furthermore, this is a very 

simplistic method power prediction which aims to see whether the improvement in 

hub height wind speed predictions seen in section 3.3.2 lead to improved wind 

power predictions. It shows that there may be some potential for improvement in 

power output forecast using the GPR model with data subdivided by stability classes 

to predict hub height wind speed. However, these improvements are quite small. 

This is because, looking at the power curve in Figure 3-8, a 1 ms-1 change in wind 

speed leads to, at most, a 225 kW change in power output. This is 15% of capacity. 

The difference in wind speed prediction error between the simple GPR model and 



126 

  

the GPR model with data subdivided by stability class is around 0.1 ms-1 which will 

lead to small differences in predicted power output using this method. 

3.4 Conclusions  

The motivation for this chapter has been to assess the performance of a hybrid 

numerical weather prediction model (NWP) and Gaussian process regression (GPR) 

model in predicting near surface wind speeds up to 72 hours ahead, and show how 

subdividing data using the PGT atmospheric stability class can improve model 

performance.  

The results show that when the simple GPR model is used for 10 m wind predictions 

there is a reduction in MAPE for all forecast periods of 2% over the NWP wind 

speed predictions. When the GPR model is used with data partitioned by 

atmospheric stability there is a reduction in MAPE of 5% for forecasts made 3 hours 

ahead and 9% for forecasts made 72 hours ahead. This indicates that the GPR model 

with data partitioned by stability class leads to improved wind speed predictions 

over the NWP model. Particular improvements are seen at mountainous and coastal 

sites. Furthermore, using the GPR model using data partitioned by stability class for 

the prediction of hub height wind speeds lead to a reduction in MAPE of between 1 

and 2% over the simple GPR model. It can also be seen that the improvements 

achieved using this model have a positive impact on wind power output predictions. 

Implementing the GPR model with data partitioned by stability class lead to a 

reduction in NMAE of 0.5% over the simple GPR model, and a reduction of 

between 2% and 12% in comparison to the persistence methods.  In general the 

results seen for wind speed prediction are of comparable magnitude to those 

observed in other methods listed in Table 2-6, as discussed in Section 3.3.  

The work so far demonstrates the potential of the method. If additional data was 

available it is possible that improvements could be made to the method shown. For 

example, as highlighted at the beginning of this chapter, due to the availability of 

forecasted weather variables, this work has so far relied upon the use of stability 
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class as calculated from observed weather variable rather than predicted stability 

class. In Chapter 4 this work is developed further to show a fully predictive model. 

Whilst many methods for wind speed and power prediction exist, GPR has not been 

used widely for wind speed prediction. Furthermore, despite the numerous methods 

that exist, the impact of atmospheric stability on predictions is rarely considered. 

Because of this, the method provides a novel approach to forecasting and indicates 

promising results.  
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Chapter 4. Developing wind power 

predictions using a hybrid NWP and 

Gaussian process regression model. 

4.1 Overview 

In this chapter the hybrid numerical weather prediction model (NWP) and Gaussian 

process regression (GPR) model for near surface wind speed prediction developed in 

Chapter 3 is investigated using predicted atmospheric stability as an input variable, 

rather than subdividing data by atmospheric stability class observed at the time of 

prediction. Predicted atmospheric stability conditions are incorporated into the GPR 

model by calculating the Obukhov length using data obtained from the Met Office 

UKV and Euro4 models. The Obukhov length stability parameter is then used as an 

input variable in a hybrid NWP and GPR model. Results are shown for the 

prediction of near-surface wind speeds at 15 MIDAS sites across the UK and hub 

height wind speeds at one turbine site. To develop the method further the model is 

adapted to predict wind power output. The results show how this method can be 

used to predict wind power output for both an individual wind turbine and a whole 

wind farm. The results are shown for a single 1.5 MW turbine and for 22 wind farms 

across the UK.  

In Chapter 3 a Gaussian process regression model for predicting near surface wind 

speeds was introduced. Furthermore, the potential benefit of subdividing data by 

PGT atmospheric stability class was demonstrated. Key atmospheric variables 

needed to predict stability class were not available in the publically available Met 

Office forecast data obtained from the UK government online data portal [151]. 

Because of this, the PGT stability class used to divide data in the GPR model in 

Chapter 3 was based on observed rather than predicted values. Whilst this meant that 
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the method did not give a true prediction, this allowed a preliminary investigation of 

the hypothesis that including subdividing data by atmospheric stability class within 

the GPR model could improve wind speed prediction accuracy. This chapter extends 

upon this work by calculating predicted atmospheric stability conditions based on 

data provided by the Met Office, and using this as an input variable in the GPR 

model for wind speed and power predictions. To calculate the predicted stability 

conditions estimates of other meteorological variables such as heat flux and 

frictional velocity are required, which are not routinely available. Further data is 

obtained from the Met Office to allow this. The work done in this chapter aims to 

show whether using predicted stability conditions calculated using a different 

stability parameter can also aid wind speed predictions. This is also developed 

further to show a model for prediction wind power output for both individual 

turbines and wind farms 

There are few examples in literature of a GPR model being used for wind speed and 

power predictions. Examples include Chen et al. [71] and Hu et al. [160] which use 

a hybrid GPR and wavelet transform models to predict wind speed, and Chen et al. 

[73] where hybrid NWP and GPR model was used to predict wind power output. 

However, to the best of the author’s knowledge there no examples wind speed or 

power forecasting literature where the Obukhov length stability parameter has been 

included as a model input. Therefore this presents a novel approach to wind speed 

and power forecasting.  

The main objectives of this chapter are: 

(i) To investigate whether using a predicted atmospheric stability parameter as 

an input variable in the GPR model leads to improved wind speed 

predictions over a GPR model without this input. 

(ii) To develop the GPR model for wind power output prediction and test 

performance on both a small scale (1.5 MW turbine) and a larger scale (12 

MW to 322 MW wind farms). 

(iii) To consider how the GPR model for wind speed and power prediction, both 

with and without stability, compares to other models presented in literature. 
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This chapter will be presented as follows: In Section 4.2 the method employed in 

this chapter is introduced. This starts with an introduction to the hybrid GPR and 

NWP model focusing on the model inputs and outputs. This is followed by a 

discussion of the method used to predict atmospheric stability conditions and finally 

a discussion of the data used. In Section 4.3 the results are presented. This section is 

subdivided into 4 sections; near surface wind speed predictions, hub height wind 

speed predictions, power prediction for a single turbine and power prediction at a 

wind farm. Section 4.4 gives conclusions and highlights how this work will be 

continued.  

4.2 Methodology 

The model used for predicting wind speed and power output is a hybrid NWP and 

GPR model as outlined in detail in Chapter 3. In Chapter 3 the mathematical basis 

for the GPR model was introduced. The mathematical concepts remain the same in 

this chapter. The GPR model develops a relationship between the input variables x 

and target variable y of the form 𝑦௜ = 𝑓(𝐱𝒊) + 𝜀௜ . The target variables and predictor 

variables differ depending on the application of the GPR model.  

In Section 4.3.1 the hybrid NWP and GPR model is used for the prediction of 10 m 

wind speeds at 15 MIDAS sites across the UK. These sites are the same as those 

detailed in Section 3.2.4. In Section 4.3.2 the same model is used to predict hub 

height wind speeds for one wind turbine in the UK.  Again, this turbine is as used in 

Chapter 3 and described in Section 3.2. The predictor variables for these prediction 

models are given by Equation 4-1 for the model including atmospheric stability, and 

by Equation 4-2 for the model without.  

𝐗௧ = ൤𝐦௧,௞, 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ,
ଵ

𝐋೟,ೖ
൨ for 𝑡 = 4, … , 𝑛 

Equation 4-1 

𝐗௧ = ൣ𝐦௧,௞ , 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ൧ for 𝑡 = 4, … , 𝑛 Equation 4-2 
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where: 

𝑡 = time of prediction 

𝑘 = forecast horizon 

mt,k=Met office 10 m wind speed forecast for time, t  at k  hours ahead 

𝐲𝒕 = Observed wind speed at time 𝑡 (msିଵ) 

𝐋𝒕,𝒌 = Stability parameter predicted for time 𝑡, 𝑘 hours ahead. 

In each case the target variable at time t, is the observed wind speed 𝐲𝒕. The 

observed wind speed is dependent on the application of the model. In Section 4.3.1 

the observed wind speed is 10 m wind speed at 15 MIDAS sites across the UK. In 

Section 4.3.2 the observed wind speed is hub height wind speed. This data was 

obtained from the wind turbine operator for a 1.5 MW wind turbine. The hub height 

was 65 m above ground and the Met Office forecast site used is located 8 km from 

the turbine in question. The stability parameter, 𝐋𝒕,𝒌 is the Obukhov length which is 

discussed in Section 4.2.1. The Met Office 10 m wind speed forecasts, mt, k are 

taken from the Met Office NWP model described in Chapter 3, available from the 

UK governmental public data website [151]. 

Next, in Section 4.3.3, the hybrid GPR and NWP model was used for the prediction 

of hub height wind speed. The wind power output data used here was for the same 

turbine used in Section 3.3.2, a 1.5 MW turbine located in the UK. For this turbine, 

observed wind speed data is available in addition to power output data therefore this 

is incorporated into the model. A two-stage model is used to first predict hub height 

wind speed and then use this to predict power output. This allowed uncertainties to 

be minimised. In stage one the hub height wind speeds are predicted using the model 

described by Equations 4-1 and 4-2. The inputs for stage 2 are given by Equation 4-

3 and 4-4. The target variable, 𝐲𝒕 in this case is power output for the 1.5 MW wind 

turbine.  

𝐗௧ = ൤𝐠௧,௞, 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ,
ଵ

𝐋೟,ೖ
൨ for 𝑡 = 4, … , 𝑛 

Equation 4-3 

𝐗௧ = ൣ𝐠௧,௞, 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ൧ for 𝑡 = 4, … , 𝑛 Equation 4-4 
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where: 

𝑡 = time of prediction 

𝑘 = forecast horizon 

𝐠௧,௞ = GPR hub height wind speed forecast for time, t at k hours ahead 

𝐲𝒕 = Observed wind power at time t (msିଵ) 

𝐋𝒕,𝒌 = Stability parameter predicted for time 𝑡, 𝑘 hours ahead. 

 

Finally, in Section 4.3.4 the hybrid NWP and GPR model is used for the prediction 

of wind power output at wind farms. Wind power output data was obtained for 22 

sites across the UK as shown in Figure 4-1. This data was obtained on a half hourly 

basis was obtained from the Balancing Mechanism Reporting System (BMRS) 

[161]. At these sites observed wind speed data was unavailable, therefore forecasts 

were based on predicted wind speeds and prior power output. The inputs used are 

given in Equation 4-5 and Equation 4-6. The wind farms used are described in 

Section 4.2.2. In this case, the Met Office 10 m forecasts are taken from the closest 

available MIDAS site to the wind farm. Only wind farms where there was a MIDAS 

sites within 10 km were considered.  

𝐗௧ = ൤𝐦௧,௞, 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ,
ଵ

𝐋೟,ೖ
൨ for 𝑡 = 4, … , 𝑛 

Equation 4-5 

𝐗௧ = ൣ𝐦௧,௞ , 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ൧ for 𝑡 = 4, … , 𝑛 Equation 4-6 

where: 

𝑡 = time of prediction 

𝑘 = forecast horizon 

𝐦௧,௞ = Met office 10 m wind speed forecast for time, t  at k hours ahead 

𝐲𝒕 = Observed wind power at time t (msିଵ) 

𝐋𝒕,𝒌 = Stability parameter predicted for time 𝑡, 𝑘 hours ahead. 

This gives the model inputs and outputs used in each section of this chapter. Next, 

the process for calculating a stability parameter, the Obukhov length is discussed, 

before returning to discuss in more detail some of the data used for predictions.  
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4.2.1 Atmospheric stability using Obukhov length 

As outlined in Section 3.2.2 atmospheric stability is a measure of the atmospheric 

tendency to encourage or deter vertical motion [158]. This vertical motion can be 

driven by convective or mechanical processes, and most methods for parameterising 

atmospheric stability use an estimate of convective turbulence and mechanically 

driven turbulence. In Chapter 3 this was done using the Pasquill-Gifford-Turner 

stability classification, which uses solar insolation and cloud cover to estimate 

convective turbulence and wind speed to estimate mechanical turbulence. This 

method gives a rudimentary estimation of an atmospheric stability class, from highly 

unstable to extremely stable. The PGT method has the advantage that it can be 

calculated based on commonly available meteorological parameters. Because of this, 

the PGT stability was used to give an initial indication of the merit of including 

stability class in a prediction of wind speed. Alternatively, the Obukhov length is a 

parameter which is proportional to the height above the surface at which convective 

factors first dominate over the mechanical production of turbulence [25]. Above this 

height convection dominates, below this shear forces dominate. The Obukhov length 

is denoted by L and is given in metres. L can be calculated using a buoyancy term 

and a shear production term, given by Equations 4-7 and 4-8. Through additional 

data obtained from the Met Office UKV and Euro4 NWP models, the Obukhov 

length was calculated and used to obtain a predicted stability parameter. 

𝑏 = bouyancy term =  
𝑔

𝜃
 
𝐻௦௘௡

𝜌𝐶௣
 

Equation 4-7 

𝑠 = shear term =  
𝑢∗

ଷ

𝑘
 

Equation 4-8 

where: 

g = Acceleration due to gravity = 9.81 ms-2 

θ = Surface temperature (K) 

𝐻௦௘௡ = Sensible surface heat flux (Wm-2) 

𝐶௣ = Specific heat of air (kJ kg-1K-1) 
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ρ = Air density  (kg m-3) 

𝑢∗ = Friction velocity (msିଵ) 

k = Von Karman constant = 0.4  

Using Equations 4-7 and 4-8 L can be calculated using Equation 4-9 [162] 

𝐿 =  
𝑠

𝑏
=  

𝜃𝜌𝐶௣ 𝑢∗
ଷ

𝑔 𝐻௦௘௡𝑘
 

Equation 4-9 

Within this, the specific heat of air is 1005 JkgିଵKିଵ and air density is 1.225 kg m-3 

[25]. The von Karman constant is a dimensionless parameter, an appropriate range is 

generally given by 0.35 ≤ 𝑘 ≤ 0.42 [25]. Sensible heat flux is a measure of heat 

transfer between the earth’s surface and the atmosphere. From the Obukhov length a 

non-dimensional stability parameter is given by Equation 4-10, where z is height 

above ground and L is the Obukhov length.  

𝜁 = 𝑧/𝐿 Equation 4-10 

A relationship between L and PGT stability classes defined by Gryning et al. [163] 

is shown in Table 4-1. However, Golder [164] states that the relationship between 

Obukhov length and stability classes is site specific. In the hybrid NWP and GPR 

model the parameter 1/L is used as the stability parameter as for each application z 

will be constant and can be omitted. 

Table 4-1: Obukhov length and stability classes 

Stability class Obukhov length 

Highly unstable  -100<L<-50 
Moderately unstable -200<L<-100 

Slightly unstable -500<L<-200 
Neutral |L|>500 

Slightly stable 200<L<500 
Stable 50<L<200 

Extremely stable 1-<L<50 
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4.2.2 Training and validation data 

As in the previous chapter, wind speed predictions are used to inform the hybrid 

model. These are taken from the Met office’s NWP model, as outlined in Section 

3.2.1. Further predictions of atmospheric variables are obtained from the Met Office 

to allow a prediction of atmospheric stability via the Obukhov length, as outlined in 

Equation 4-9. These included sensible surface heat flux, surface temperature and the 

x, y components of surface wind stress. For shorter prediction horizons (up to 36 

hours ahead) the prediction of these variables are obtained from the Met Office 

UKV model. For longer prediction horizons (up to 72 hours ahead) the predicted 

values are obtained from the Met Office Euro4 model. The Euro4 model is run 4 

times per day in contrast to the 8 times per day that the UKV model is run. The data 

used for analysis was for 1st Jan 2015 – 31st Dec 2015. For the model development 

the data was split into a training and a test dataset to ensure the forecast is 

independent. The training set contains data from the first 9 months of the data set 

and the test set contains data from the final 3 months. 

Near-surface wind speed observations used in the model are the same as in Chapter 

3, with the same 15 sites used to explore the model results. Identical hub height 

wind speed and power data are used to that in Chapter 3. That is power output and 

hub height (65 m) wind speed at one 1.5 MW turbine located in the UK. This 

chapter also investigates the use of the hybrid NWP and GPR model for predicting 

power output for wind farms. Power output data at 22 wind farms across the UK is 

obtained from the publically available Balancing Mechanism Reporting System 

(BMRS) [161]. Data is available in half hourly settlement periods for individual 

generation units. The location of these wind farms is shown in Figure 4-1. The site 

details are given in Table 4-2.  Overall there are 18 standard sites (onshore sites with 

1 year data set), 2 offshore sites and 2 sites where only a short data set was 

available.  

For the offshore sites, the NWP wind speed predictions are taken from the nearest 

available sites. These sites are onshore, coastal locations. The difference in surface 



136 

  

roughness when moving from land to sea and the availability of heat and moisture 

can affect wind speeds. It might be expected that wind speed would increase with 

distance offshore due to a reduction in surface roughness. However, Barthelmie et 

al. [165] state that vertical and horizontal changes in wind speed in coastal regions 

are significantly influenced by atmospheric stability conditions. For example, in 

stable conditions wind speeds may only increase lightly (or even decrease) with 

increasing distance from the shoreline whilst in unstable conditions the increase in 

wind speed is larger than would be expected for a reduction in surface roughness 

[30]. These effects can be important for the prediction of wind power output at wind 

farms up to around 70 km offshore [165]. Because of this, the prediction results for 

offshore wind farms are separated from onshore wind farms. 

Figure 4-1: Wind farm locations. 
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Table 4-2: Wind farms location details 

Wind farm name Capacity (MW) Location 

An Suidhe 19 Argyll & Bute 

Baillie 52 Highland 

Berryburn 66 North Cairngorms 

Black Law 134 North Lanarkshire 

Braes of Doune 74 Stirling 

Clyde South 128 South  Lanarkshire 

Dalswinton 30 Dumfries and Galloway 

Edinbane 42 Skye 

Fallago rig 144 Scottish Borders 

Farr 2 47 Invernesshire 

Glens of Foundland 26 Aberdeenshire 

Gordonstown 12 Aberdeenshire 

Griffin 2 102 Perth and Kinross 

Hadyard Hill 130 South Ayrshire 

Minsca 38 Dumfries and Galloway 

Toddleburn 28 Scottish Borders 

Whitelee 322 East Ayrshire 

Whitelee Extension 238 East Ayrshire 

Offshore Sites 

Wind farm name Capacity (MW) Location 

Burbo Bank 90 Offshore - off Merseyside 

Barrow Offshore 90 Offshore - off Cumbria 

Short data sets 

Wind farm name Capacity (MW) Location 

Beinn Tharsuinn 30 Ross & Cromarty 

Mark Hill 56 South Ayrshire 

 

For the short datasets, only 3 months of data was available. In this case, 2 months 

was used for training and 1 month for testing. These short datasets are of interest as 

for newly established wind farms limited data may be available. In this case, 

generating a wind power forecast based on limited data is important. This can allow 
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new wind farms to bid in electricity markets or schedule maintenance. These two 

datasets are used to assess how the hybrid NWP and GPR model performs for a 

short dataset. 

In addition to the lack of wind speed data available at the wind farms under 

investigation, there are some limitations to the power data which are worth 

considering when evaluating the predictive ability of this model. The wind power 

data provided is an aggregate wind power figure given on a half hour basis. There is 

no additional information regarding turbine operation, maintenance or any other 

conditions which may lead to suboptimal wind farm operation in any specific half 

hour period. In order to eliminate some issues associated with data some filtering is 

applied. Where long periods (longer than 24 hours) of zero power output were 

recorded, data was removed, particularly if power recorded immediately before or 

after was high. Further information detailing operational conditions at the wind farm 

could eliminate some of these issues. However, at the time of analysis, this data was 

not available. 

4.3 Results 

In this section, the results for the prediction of near surface wind speeds, the 

prediction of hub height wind speed, the prediction of power output for a single 

turbine and the prediction of wind farm power output are shown. The models 

employed in this chapter builds on the GPR model introduced in Chapter 3. 

4.3.1 Near-surface wind speed prediction 

In this section the results for a GPR model with and without stability are shown for 

the prediction of near-surface wind speed. The model set-up was described in 

Section 4.2 by Equations 4-1 and 4-2. Predicted wind speeds are compared to 

MIDAS observations of wind speeds at 15 sites across the UK. RMSE, MAE and 

MAPE are shown for these sites, the equations for which were provided by Equation 

2-12, Equation 2-13 and Equation 2-14 given in Section 2.2.7. The results for a 
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simple GPR model and a GPR model with Obukhov length as an input parameter are 

shown alongside the Met Office NWP performance. This allows the results to be 

compared to a benchmark model. In Figure 4-2 it can be seen that on average over 

the 15 sites under evaluation there is some reduction in error seen when the standard 

GPR model is implemented. However, there is no additional reduction in error 

achieved when implementing the GPR model with Obukhov length. The errors seen 

are largely the same for both GPR models. In Figure 4-2 it can be seen the reduction 

in error for the GPR models is larger for MAPE than for RMSE and MAE. In terms 

of MAE and RMSE, there is a bigger difference in the errors between the NWP 

model and the GPR models at 3 hours ahead than for further in advance. As 

highlighted in Chapter 3, the model performance is highly site specific.  

Figure 4-3 and Figure 4-4 show the errors seen for the NWP model and both GPR 

models at 4 of the 15 sample sites. It can be seen in Figure 4-3 and Figure 4-4 that 

the difference in errors between the NWP model and the GPR models is different at 

each of the sites. For example, at site 1 there is not much difference between the 

models and at site 9 the difference is more pronounced.  

 

Figure 4-2: Average RMSE, MAE and MAPE for all 15 MIDAS sites. 
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Figure 4-3: MAE (with 95% confidence interval) for 4 sample MIDAS sites shown for 

GPR models both with and without stability, and the NWP. 

 

Figure 4-4: MAPE (with 95% confidence interval) for 4 sample MIDAS sites shown for 

GPR models both with and without stability, and the NWP. 
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wind speed were the most relevant predictor variables for forecasts 3 hours ahead, 

whilst for forecasts further in advance the NWP wind speed prediction becomes the 

most relevant parameter. In particular, for forecasts further than 6 hours ahead the 

wind speed 3 hours ago has little relevance. In addition, the Obukhov length was 

less relevant that that the NWP wind speed predictions and the previous 3 hours of 

observed wind speed. 

Whilst the preliminary results shown in Chapter 3 suggested that including 

atmospheric stability in the predictions of near-surface wind speed lead to improved 

model results, these results are not replicated here. When using Obukhov length no 

difference is seen in the results from the GPR model with and without stability. This 

could be because the predictions of 1/L are inaccurate. The variables required to 

calculate 1/L are not measured at the MIDAS sites hence it is not possible to 

establish whether the predictions of 1/ L reflect the observed conditions. This could 

impact the results. It still holds that whilst using the GPR model to predict wind 

speeds without stability there is some reduction in error over the wind speeds 

predicted using the Met Office NWP model. The improvements over the NWP 

model are modest. However, even small improvements in wind speed predictions 

could result in improvements in wind power modelling. 

4.3.2 Hub height wind speed prediction 

In this section, the results of a wind speed prediction model for hub height wind 

speeds are shown. As in Chapter 3, the results are only shown for one turbine as 

commercial sensitivity limited the data which was available. The model set-up was 

described in Section 4-2 by Equations 4-1 and 4-2. Figure 4-5 shows MAE and 

MAPE for both GPR prediction models. It can be seen for the prediction of hub 

height wind speeds significantly lower errors are seen when the GPR model 

including Obukhov length is implemented. The difference between the two models 

increases from around 2% at 3 hours ahead to 5% at 24 hours ahead and reduced to 

around 1% difference above 24 hours in advance. This reduction could be due to 

changes in the accuracy of stability parameter predictions with the transition 
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between UKV predictions and Euro4 predictions seen between 24 and 48 hours. It is 

difficult to verify this as the variables needed to calculate Obukhov length are not 

included in observation data sets. Figure 4-6 shows the results in comparison to the 

benchmark model, this time the persistence model is used as a benchmark. Both 

models achieve a significant reduction in errors over the persistence method in terms 

of RMSE, MAE and MAPE. The improvements when using the GPR models are 

smallest at 3 hours ahead and gradually increase as the forecast horizon increases. 

This is largely due to the persistence method quickly reducing in accuracy as the 

forecast horizon increases. However, there is still an improvement at 3 hours ahead 

where the persistence model can be seen as a valid model.   

The results shown here indicate that the GPR model with Obukhov length as an 

input parameter provides hub height wind speed predictions with higher accuracy 

than the simple GPR model. This is despite the fact that this model does not 

outperform the simple GPR model for 10 m wind speed predictions. This could be 

because the inclusion of the Obukhov length stability parameter aids the translation 

from 10 m met office predicted wind speeds up to hub height wind speed. The 

change in wind speed with height and the effect of stability on this is well 

documented and was discussed in Section 2.1.2.   
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Figure 4-5: MAPE and MAE (with 95% confidence interval) for hub height wind speeds 

predicted with a simple GPR model and a GPR model with stability. 
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the GPR method with stability. RMSE ranges from 1.2 – 1.5 ms-1 at 1 hour ahead for 

the methods listed, in contrast to 1.14 ms-1 seen at 3 hours ahead for the GPR 

method with stability. The results shown by Chen et al. [71] indicate lower errors at 

1 hour ahead. However, the results seen at 3 hours ahead are higher than those 

shown for the GPR model in the same time frame. 

 

Figure 4-6: RMSE, MAE and MAPE for hub height wind speed predicted using GPR 

model with and without stability information. Persistence model shown for comparison. 

Error bars are not show here to allow clarity. 
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The results suggest that including Obukhov length to parameterise stability 

conditions can improve predictions of hub height wind speed. However, it is 

difficult to establish whether this is a universal or a site-specific result as there is 

only one data set available. If the additional predicted atmospheric variables needed 

to calculate Obukhov length were more widely available these results could be 

tested for hub height wind speed prediction at additional locations. Given the 

advantages seen here of using atmospheric stability in hub height wind speed 

predictions, the next sections continues by developing a method for wind power 

prediction at an individual turbine. 

4.3.3 Power prediction for a single turbine 

The results shown are for the prediction of wind power for one turbine in the UK. 

The model set-up was described in Section 4-2 by Equations 4-3 and 4-4. Results 

are compared using MBE, MAE and RMSE normalised by turbine capacity 

(equations found in Section 2.2.4). Figure 4-7 compares NMAE and NMBE for the 

GPR models both with and without the Obukhov length being included. NMAE is 

reduced when using the GPR model with Obukhov length in comparison to the GPR 

model with no stability. The reduction in error is more significant for forecast 

horizons between 3 and 24 hours in comparison to predictions further ahead. The 

reduction in error is modest: between 3 and 24 hours ahead a reduction in NMAE of 

between 0.5% and 0.7% of capacity is seen. For 48 and 72 hours ahead this is 

reduced to 0.1%. The reduction in difference in the predictions with the two models 

is a result of the changes in accuracy observed in hub height wind speed prediction 

between 24 and 48 hours in advance. This was observed in Figure 4-4. NMBE is 

closer to zero for the GPR model with stability. However, both GPR models show 

some under prediction overall. In Figure 4-7 NMAE, NMBE and NRMSE are 

shown in comparison to the persistence model. Both GPR models show between 

10% and 14% reduction in NMAE over the persistence method and between 14% 

and 19% reduction in NRMSE.  



146 

  

Figure 4-7: NMAE and NMBE (with 95% confidence interval) for single turbine power 

predicted with a simple GPR model and a GPR model with stability. 
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Figure 4-8: NMAE, NMBE and NRMSE for single turbine power prediction. Results are 

shown for simple GPR and GPR with stability in comparison to a persistence prediction. 

 

For individual wind turbine predictions, the length scale hyperparameters of the 

covariance function indicate that the Obukhov length stability parameter is more 

relevant as the observed data 2 and 3 hours before the prediction for forecasts over 6 

hours ahead. For forecasts 3 hours ahead the Obukhov length stability parameter is 

more relevant than the observed data from 3 hours prior to the forecast but less 

relevant than the observed data 2 hours prior to the forecast. In all forecasts, the 

NWP prediction is the most informative predictor variable. This suggests that the 

Obukhov length has some value in the prediction of individual turbine wind power 

output. 

It can be seen here that there is some benefit in including atmospheric stability in 

wind power predictions. However, the difference between the models is small and it 

would be useful to obtain further data to test this result more rigorously. Prediction 

power output from an individual turbine can be useful for small businesses and other 

stakeholders in renewable energy projects. However, the prediction of power output 

for a full wind farm is of greater commercial value. Therefore, this work is extended 

in the next section to predict wind power output for a selection of UK wind farms.   

10

20

30

3 6 12 24 48 72

GPR no stability
GPR with stability
Persistance

3 6 12 24 48 72
Hours ahead forecast

-4

-2

0

2

NMAE NRMSE

NMBE



148 

  

4.3.4 Wind farm power prediction 

The results presented in this section evaluate the GPR model for 22 wind farms 

across the UK, with the locations shown in Figure 4-1. Figure 4-9 shows NMAE for 

18 standard sites. The model set-up was described in Section 4-2 by Equations 4-5 

and 4-6. It can be seen in Figure 4-9 that there is limited difference in the NMAE 

seen using a GPR model with stability in comparison to the GPR model without 

stability. The average NMAE over 18 sites is shown to be 10.2% of capacity at 3 

hours ahead rising to 14.8% at 72 hours ahead. The difference ranges from no 

difference (at 3 hours ahead) to a 0.2% improvement when atmospheric stability is 

included (seen at 24 hours ahead). The lowest and highest errors seen at any one site 

are also shown in Figure 4-9. At 3 hours ahead NMAE ranges from 7.2% -13.1% of 

capacity, whilst at 72 hours ahead NMAE ranges from 10.0% to 18.9% of capacity. 

In Figure 4-10 NMAE for the 18 standard sites is shown in comparison to the 

persistence model. It can be seen here that the GPR models (both with and without 

stability) are around 4% better than persistence at 3 hours ahead, rising to 12% 

better at 12 hours ahead and 14% better at 72 hours ahead. At 3 hours ahead there is 

a smaller improvement over persistence than seen for a single turbine power 

forecast, most likely because the wind farm power predictions do not use hub height 

wind speed predictions. This introduces additional uncertainty and difficulties into 

the prediction model. 



149 

  

Figure 4-9: NMAE for 18 standard sites wind farms 
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Figure 4-10: NMAE for 18 standard sites wind farms in comparison to the persistence 

model 
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valuable to consider whether the location of the Met office prediction site in 

comparison to the wind farm might impact upon model performance. Figure 4-11 

explores the relationship between the distance between Met office sites and the wind 

farm and average NMAE in wind power predictions. This figure and the R-squared 

value of 0.082 suggests that there is no linear relationship between distance and 

error. This suggests that the distance between the wind farm site and the Met Office 

site does not result in excessive deterioration of model results and good power 

output predictions can be made using offsite wind speed predictions. This is useful 

as site specific wind speed predictions may be costly to obtain. In Figure 4-12 the 

relationship between Met office sites elevation and NMAE is explored. In general, 

predictions can be less accurate at mountainous sites or those with complex terrain. 

Here it can be seen that there is no increase in model error at mountainous sites in 

comparison to flatter, less complex sites. This suggests that good wind power 

predictions can be made from forecast locations on complex terrain, allowing a large 

range of sites to be considered for future predictions. 
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Figure 4-11: Correlation between NMAE and distance between prediction-observation 

sets 

 

 

 

Figure 4-12: Correlation between NMAE and elevation at Met office prediction sites 
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In Figure 4-13 NMAE is shown for the 2 offshore sites considered. For both 

offshore sites the Met office predictions used were the nearest onshore site. In this 

figure NMAE is shown for both GPR models and the average NMAE over 18 

standard sites is shown for comparison. It can be seen here that whilst there is 

limited difference between the GPR model with and without stability for the 18 

standard sites, for both offshore sites the difference is larger, with the GPR model 

with Obukhov length stability parameter better predictions.  

For Burbo Bank wind farm there is between 0.6% and 1.9% reduction in NMAE for 

all forecast horizons when the GPR with atmospheric stability is used in comparison 

to the GPR  model with no atmospheric stability. For Barrow offshore wind there is 

between 0.5% and 1.5% reduction in NMAE. The GPR model with stability has 

higher NMAE than the average seen for all 18 standard sites, indicating some 

difficulty in making predictions at offshore locations. However, the difference 

between the GPR model with and without stability was more pronounced. In Figure 

4-14 NMAE for the GPR models is shown alongside the persistence method for the 

two offshore sites. The improvement over persistence is quite similar to that seen in 

Figure 4-10 for the standard sites. In addition, the length scale parameter in the 

covariance function associated with the Obukhov length indicated that the Obukhov 

length is more important when predicting wind power output at offshore sites. 

Previous work by Barthelmie et al. [165] suggested that atmospheric stability 

conditions impact the difference in wind conditions between onshore and offshore 

sites. The results shown here indicate that using the Obukhov length stability 

parameter as an input parameter enables the difference in wind conditions between 

onshore and offshore sites to be modelled more accurately. It would be beneficial to 

obtain data from further offshore sites to see if this trend is seen at other sites. This 

result is important given the increasing number of offshore wind farms currently 

planned in the UK.  
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Figure 4-13: NMAE for offshore wind farms 

 

Figure 4-14: NMAE for offshore wind farms 
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In Figure 4-15 NMAE is considered for 2 sites where only a short data set was 

available. Both sites were onshore wind farms with a 3 month data set available. 2 

months of data was used in the training set and 1 month for the test set. NMAE for 

the two sites with a short dataset are shown alongside average NMAE over 18 

standard sites. It can be seen in Figure 4-15 that there is little difference between the 

GPR models with and without stability at these two sites. Furthermore, NMAE is 

higher than the average for the 18 standard sites. However it can be seen in Figure 4-

16 that the hybrid NWP and GPR model can offer improved predictions over the 

persistence method. This indicates that whilst the method can be used with short 

data sets with good results, the model may not be able to predict quite as well with a 

shorter dataset. This agrees with some of the work performed by Chen et al. [73] 

who tested a hybrid NWP and censored GPR model for wind farm prediction at a 

site with 2.5 months of data. A short training data set could be useful in practice as 

less time is needed to gather the dataset allowing the method to be used to provide 

predictions at newly established wind farms. This enables new wind farms to be 

competitive in the electricity markets from an early stage, thus encouraging 

investment. Furthermore it can help in electricity system planning. In order to 

establish how long a data set is needed to provide reliable predictions further work is 

required.  
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Figure 4-15: NMAE for wind farms with a short data set 

 

Figure 4-16: NMAE for wind farms with a short data set in comparison to persistence 

method 
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4.4 Conclusions 

This chapter has further developed the hybrid NWP and GPR model first introduced 

in Chapter 3 by using the Obukhov length stability parameter as an input in the 

model. This allows predicted stability conditions to be incorporated into models for 

the prediction of wind speed and power output. The model was tested for the 

prediction of near-surface wind speeds, hub height wind speeds, individual turbine 

power output and wind farm power output. Overall it was seen that the hybrid NWP 

and GPR model produces competitive forecasts for all 4 applications. However, 

including stability in predictions did not prove useful in all applications.  

For the prediction of near-surface wind speeds atmospheric stability was found to 

have little impact on predictive performance. However, the hybrid NWP and GPR 

model both with and without the Obukhov length stability parameter lead to a 

reduction in MAPE of approximately 2% over the Met Office NWP predictions 

across all time periods investigated.  

For hub height wind speed predictions some improvement in wind speed prediction 

performance was observed when the hybrid NWP and GPR model was implemented 

with the Obukhov length stability parameter as an input in comparison to the model 

without. For predictions from 3 hours to 24 hours ahead there was between 2 and 

5% reduction in MAPE and for predictions 48 or 72 hours in advance there was an 

improvement of 1%. In addition, this improvement lead to slight improvements in 

wind power predictions for an individual turbine. In order to improve this work it 

would be beneficial to test the model for an individual turbine for other locations. 

This is because, as seen for the other model applications, model performance can be 

highly site specific so it would be valuable to see if the results would be replicated at 

other sites. 

The hybrid NWP and GPR model was also used to predict wind power output. This 

was done for 18 onshore sites, 2 offshore sites and 2 sites with a short data set. 

Whilst the GPR model produced wind farm power output forecasts which were 

competitive in performance to other methods in literature it was found that in 
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general including atmospheric stability did not lead to reduced prediction errors. 

However, at the offshore sites it was seen that including stability in predictions did 

lead to improved model performance. This indicates that the model could be a good 

method for predicting power output for offshore sites if limited wind speed 

predictions are available. To verify this result further it would be useful to obtain 

data for other offshore wind farms. At the 2 sites where only a short data set was 

available the errors were higher than for the 18 other sites. However, there was still 

a significant reduction in NMAE in comparison to the persistence method. At all 

sites investigated, it would have been valuable to have observed wind speed data at 

the wind farms investigated to see if the inclusion of wind speed data would lead to 

improved wind power output predictions. This data was unavailable at the time of 

research, however, could provide valuable additional insights.  

In order to further explore the difference between the models in each application, an 

ANOVA (analysis of variance) test could be used to analyse the difference between 

the mean error in each model. ANOVA test can be used to determine whether the 

difference in errors seen between two models is statistically significant. This tests 

the null hypothesis that both group means are the same against and alternative 

hypothesis that there is a difference between the means. In this case, it could be used 

to check that the difference in MAE between the hybrid NWP and GPR model with 

Obukhov length and the model without Obukhov length is statistically significant.  

It can be seen here that the GPR model captures the complex relationships between 

variables necessary for the prediction of wind speed and power output. In the 

deterministic framework the GPR model performs well in comparison to other 

methods available. However, the GPR model is able to give more information which 

has not been exploited here. The GPR model is a probabilistic forecasting technique 

which provides a density forecast. It gives the predictive probability distribution for 

each forecast point. In Chapter 5 the GPR model for wind farm power prediction is 

evaluated in a probabilistic framework. In addition to this, the choice of likelihood 

function in the GPR model is discussed.  
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Chapter 5. Probabilistic forecasting of wind 

farm power output 

5.1 Overview 

In Chapters 3 and 4 the hybrid NWP and GPR model showed promising results for 

both wind speed and power prediction. This demonstrates the potential of the model, 

particularly for wind farm power prediction which has value in a commercial 

setting. The results presented in Chapters 3 and 4 focused on the interpretation of 

predictions from the GPR model as a deterministic forecast. This is because this 

allows the results to be easily compared to other models, to show the benefit of 

using a GPR model. However, one of the key benefits of the GPR model is that it 

gives the user more information than simply point prediction. It gives a predictive 

distribution, which allows the user to obtain an expected value at the point of 

prediction and an estimate of the prediction uncertainty. This estimate of uncertainty 

has a number of practical benefits which were discussed in Section 2.3.4. For 

example, suppose a system operator wishes to use a wind power forecast to define 

an appropriate level of reserve capacity to ensure that demand for electricity is met. 

To evaluate this in a simplistic sense, consider a single generating unit and the 

expected power output at this unit. Suppose at time t the forecasted power output is 

60 MW. There is a chance that the actual power output may exceed 60 MW and a 

chance that the actual power output may be lower than 60 MW. If the actual power 

output is lower than 60 MW, power must be procured from an alternative generator 

to meet demand. Where this is not possible, demand will not be met and will need to 

be curtailed. This scenario is generally avoided where at all possible. Alternatively, 

if the actual power output is greater than 60 MW, the wind farm may be curtailed or 

a different generating unit within the system will need to be curtailed to ensure 

supply of electricity matches demand. In order to plan in advance for either 

eventuality, the system operator must set aside a level of capacity (reserve capacity) 
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to increase and decrease production or demand at short notice. This level of reserve 

capacity within the system must be set such that the probability of failing to meet 

demand is low whilst keeping the cost of reserve capacity reasonably low. If a 

deterministic forecast is used, the level of uncertainty in the forecast is not predicted. 

In order to estimate the level of reserve required in this case, system operators 

usually consider the historical forecast errors of the particular method used [166]. 

Whilst this can give some indication of the reserve required it is a crude estimate 

and can lead to higher system costs [131, 167]. Alternatively, if a probabilistic 

forecast is used the level of reserve required can be set using predictive uncertainty 

specific to the forecasted time period in question. This enables a more adaptable 

representation of uncertainty and can lower costs whilst maintaining an appropriate 

probability of not meeting required demand. This use of probabilistic forecasts is 

becoming increasingly common with system operators moving away from a 

stochastic method for defining reserve to considering uncertainty in forecasts of both 

generation and demand. For example ERCOT (Texas independent system operator) 

and REE (Spanish system operator) have included some variety of forecast error into 

their definition of reserve requirements [167]. Improving forecast accuracy allows 

this system balancing to be performed with greater certainty and is hence valuable to 

a system operator. This is particularly important as non-dispatchable renewable 

energy generators form an ever increasing proportion of the electricity mix. This is 

just one example of why improving probabilistic forecasts is important.  

In this chapter, the hybrid NWP and GPR model for wind farm power prediction 

developed in Chapter 4 is evaluated in a probabilistic framework and compared to 

other probabilistic wind power forecasting techniques. This chapter focuses on wind 

farm power prediction, as probabilistic forecasts have most relevance for larger scale 

wind power forecasting. In addition to evaluation of the GPR model in a 

probabilistic framework this chapter discusses appropriate likelihood functions for 

the GPR model. Thus far a Gaussian likelihood function has been used. However, in 

this chapter an alternative likelihood function is introduced. This chapter explores 

how, from a probabilistic perspective, an alternative likelihood function may be 

appropriate for wind power predictions. A number of authors have employed a GPR 
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model for wind speed or power forecasting. For example, Chen et al. [71] and Hu et 

al. [160] use hybrid GPR and wavelet transform models to predict wind speed and 

Chen et al. [73] use a hybrid NWP and GPR model to predict wind power output. 

However, to the best of the author’s knowledge there no examples of hybrid NWP 

and GPR used in a wind power forecasting model which is evaluated from a 

probabilistic perspective.  Additionally, no current literature explores the impact of 

using different likelihood functions in a GPR model for wind power prediction. 

The main objectives of this chapter are: 

(i) To evaluate the GPR model as a probabilistic forecast for wind power 

predictions at 22 UK wind farms.  

(ii) To compare the hybrid NWP and GPR model for wind power forecasting to 

other available probabilistic forecasting techniques. 

(iii) To consider the validity of a Gaussian likelihood function in the GPR model 

and introduce an alternative likelihood function. 

In this chapter, predictions of wind farm power output made using the hybrid NWP 

and GPR model are evaluated in a probabilistic framework for the 22 wind farms 

detailed in Chapter 4. This includes 18 onshore sites with a 1 year dataset, 2 offshore 

wind farms with a 1 year dataset and 2 onshore sites with a short dataset. Section 5.2 

explores how a more appropriate likelihood function might be chosen whilst the 

results are discussed in Section 5.3.  

5.2 Methodology 

GPR is a non-parametric Bayesian regression technique, as discussed in Section 3.2. 

Regression is used to learn a mapping from an input space to an unbounded 

observation space of the dependent variable [168]. In the prediction model presented 

here, the dependent variable is wind power. However in this case, particularly for 

wind power predictions, the value predicted at time t, 𝑦ො௧, should lie within the range 

0 ≤ 𝑦ො௧ ≤ 𝐶 where 𝐶 is the capacity of the turbine or wind farm for which 
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predictions are made. The Gaussian distribution for a random variable 𝑋~𝑁(𝜇, 𝜎ଶ) 

is defined on a continuous range −∞ ≤ 𝑋 ≤ ∞. This implies that on any interval of 

real numbers 𝑋 has a probability greater than zero. In the case of the predictive 

distribution for wind power this means 𝑃(𝑦ො௧ > 𝐶) > 0 and 𝑃(𝑦ො௧ < 0) > 0. Whilst 

using a well-trained model probability of 𝑦௧ෝ > 𝐶,  𝑦ෝ௧ < 0 will be very small, it is 

still infeasible from a probabilistic perspective [168].  

Equation 5-1 first given in Chapter 3 and repeated here gives the formula for 

posterior distribution, obtained using Bayes formula.  

𝑝(𝐟∗|𝐲, 𝐗, 𝐗∗) =
𝑝(𝐲|𝐟, 𝐗)𝑝(𝐟|𝐗)

𝑝(𝐲|𝐗)
 

Equation 5-1 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =  
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
 

 

where 𝐲, 𝐗 are the dependent and predictor variables in the training set, 𝐗∗ are 

predictor variables in the test set and 𝐟∗ is the underlying function at 𝐗∗. If the 

likelihood is Gaussian then, the posterior distribution and the predictive distribution 

will be Gaussian. From a deterministic standpoint, this can still be used to obtain the 

most likely point value for a prediction. This is demonstrated in Figure 5-1. Here 

three distributions are shown: a Gaussian distribution, a beta distribution and a 

truncated Gaussian distribution. All three distributions give the same value if the 

most likely value is required, shown as the maximum value of the pdf. However, the 

Gaussian distribution allows 𝑃(𝑦௧ෝ < 0) > 0. In the case of wind power forecasts, 

the predictive distributions are bounded as wind power will always be positive, but 

less than the wind farm capacity. This indicates that whilst the Gaussian likelihood 

function can be used to find the most probable value for a prediction it is not 

appropriate from a probabilistic perspective. 
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Figure 5-1: Example predictive distributions a random variable, y. 

 

Other distributions which could be used for predicting bounded data are a warped 

Gaussian distribution, a beta distribution and a truncated Gaussian distribution. A 

warped Gaussian distribution applies a transformation from the bounded variable to 

an unbounded variable so it can be modelled by a Gaussian process [169]. The beta 

distribution is a continuous  probability distribution defined on the bounded domain 

[0,1] [170]. The truncated Gaussian distribution is a Gaussian distribution which is 

altered to have a bounded domain [157]. These are discussed by  Jensen et al. [168] 

who conclude that the beta distribution and the truncated normal distribution provide 

better model fits for bounded data than a warped Gaussian distribution. At the time 

of writing, no stable function was available for the implementation of the truncated 

likelihood. The beta likelihood function for implementation using the GMPL 

toolbox [146] is described by Rasmussen and Nickisch [170]. They state that 

interval data 𝑦 ∈ [0,1] can be modelled in the Gaussian process framework using the 

beta likelihood function. For a random variable, y, the beta likelihood function is 

given by Equation 5-2. 

𝑝(𝑦) =
𝑦ఈିଵ(1 − 𝑦)ఉିଵ

𝐵(𝛼, 𝛽)
 , for shape parameters 𝛼, 𝛽 > 0 Equation 5-2 

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Beta distribution
Gaussian distribution
Most likely value
Truncated Gaussian distribution



164 

  

where the beta function, 𝐵(𝛼, 𝛽) is given by Equation 5-3. 

1

𝐵(𝛼, 𝛽)
=

Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
 Equation 5-3 

In Equation 5-3, Γ refers to the standard mathematical gamma function. The beta 

distribution has mean 𝜇 =  
ఈ

ఈାఉ
 and variance 𝜎ଶ =  

ఈఉ

(ఈାఉ)మ(ఈାఉାଵ)
 and is multimodal 

for 𝛼, 𝛽 < 1. It is a flexible distribution which allows different characteristics of 

probability functions to be modelled. Some examples of the beta distribution with 

different shape parameters are given in Figure 5-2.  

Figure 5-2: Example beta distribution for different shape parameters.  

 

As introduced in Section 3.2.4, the GPR model predicts values 𝐲∗ for a test set of 

inputs 𝐗∗. The posterior distribution first introduced in Chapter 3 and shown in 

Equation 5-1 is required to obtain predictive distributions for test data points 𝐃 =

(𝐗∗,𝐲∗). 

 For the Gaussian likelihood function, the posterior distribution is analytically 

tractable. However, for the beta distribution approximate inference techniques must 

be used. In the work performed here Laplace approximation is used, implemented 

using the GPML toolbox [146]. Using a Laplace approximation the posterior 

distribution is approximated using a single Gaussian, 𝑞(𝐟) as shown by Equation 5-4 

[168]. 
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𝑝(𝐟|𝐲, 𝐗, 𝛉) ≈ 𝑞(𝐟) = 𝑁൫𝐟ห𝐟መ, 𝐀ି𝟏൯ Equation 5-4 

where 𝐟, 𝐲, 𝐗 are as used previously, 𝛉 is the set of hyperparameters used in the GPR 

model, 𝐟መ is the mode of the posterior distribution and 𝐀 is the Hessian of the 

negative log posterior at the mode. The predictive distribution of a set of test points 

𝐲∗ is calculated using the integral shown in Equation 5-5. 

𝑝(𝐲∗|𝐲, 𝐗, 𝐗∗) = න 𝑝(𝐲∗|𝐟∗)𝑝(𝐟∗|𝐲, 𝐗, 𝐗∗)𝑑𝐟∗ 
Equation 5-5 

For the Gaussian likelihood function, Equation 5-5 has a closed form solution. 

However, when using the beta likelihood functions, the integral must be solved 

using numerical methods [168]. This is implemented using the GMPL toolbox 

[146]. 

In this chapter, the hybrid NWP and GPR model developed in Chapter 4 is 

implemented for the prediction of power output at 22 wind farms across the UK. 

The model is implemented twice, firstly with Obukhov length as an input parameter 

and then without.  This allows the impact of Obukhov length on model performance 

to be evaluated. The predictor variables used for the model with and without 

Obukhov length are shown in Equation 5-6 and Equation 5-7 respectively. The 

dependent variable at time t for both models is power output at an individual wind 

farm. The wind farm power output was obtained from the Balancing Mechanism 

Reporting System (BMRS) [161]. This data was obtained for 22 sites across the UK 

as shown in Figure 4-1 in Chapter 4. At these sites observed wind speed data was 

unavailable, therefore forecasts were based on predicted wind speeds and prior 

power output. The Met Office forecast wind speed was obtained from the Met 

Office NWP model as described in Chapter 3. The data used for analysis was for 1st 

Jan 2015 – 31st Dec 2015. For the model development the data was split into training 

and test datasets to ensure the forecast is independent. The training set contains data 

from the first 9 months of the dataset and the test set contains data from the final 3 

months. 
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𝐗௧ = ൤𝐦௧,௞, 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ,
ଵ

𝐋೟,ೖ
൨ for 𝑡 = 4, … , 𝑛 

Equation 5-6 

𝐗௧ = ൣ𝐦௧,௞ , 𝐲௧ି௞ିଵ, 𝐲௧ି௞ିଶ, 𝐲௧ି௞ିଷ൧ for 𝑡 = 4, … , 𝑛 Equation 5-7 

where: 

𝑡 = time of prediction 

𝑘 = forecast horizon 

𝐦௧,௞ = Met office wind speed forecast for time 𝑡  at 𝑘 hours ahead 

𝐲𝒕 = observed wind power at time 𝑡 (msିଵ) 

The key aim of implementing this model is to evaluate the performance of the 

hybrid NWP and GPR model for wind power forecasting in a probabilistic 

framework and to investigate the use of an alternative likelihood function in the 

GPR model. The model is implemented using the predictor variables in Equation 5-6 

and Equation 5-7 with a Gaussian likelihood function and a beta likelihood function. 

The results are shown for an individual wind farm, on average over 18 standard 

wind farm sites, on average at 2 offshore sites and for 2 locations with short data 

sets. These sites were shown in Section 4.3.4. The results are discussed from a 

probabilistic perspective. Hence the measures used to compare results are those 

discussed in Section 2.2.6, reliability, sharpness, resolution and continuous ranked 

probability score (CRPS). An overview of these is given here to add clarity. 

The first measure of a probabilistic forecast to be discussed is reliability. This was 

discussed in Section 2.2.6. Reliability is a measure of the statistical consistency 

between the predictive distribution and the observed values [76]. A prediction of a 

test point 𝑦௧ା௞ 
∗ made at time t with forecast horizon k is denoted by 𝑦ො௧ା௞ 

∗ . The 

predictive distribution 𝑦ො௧ା௞ 
∗ is given by a cumulative distribution function (CDF), 𝐹, 

where 𝐹௬ො೟శೖ
∗ (𝑥) = 𝑃(𝑦ො௧ା௞

∗ ≤ 𝑥) = 𝛼, 𝑥 ∈ ℝ for a Gaussian distribution and 𝑥 ∈

[0,1] for a beta distribution. To allow forecasts to be compared at different sites, 

predictive distributions are given as a proportion total capacity. For a nominal 

probability, α, reliability compares the inverse CDF to the observed frequency of 

outcomes. The inverse CDF, 𝐹௬ො೟శೖ
∗

ିଵ, is a function of 𝛼 given by Equation 5-8. 
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𝐹௑೟

ିଵ(𝑝) = 𝑖𝑛𝑓{𝑥 ∈ ℝ ∶  𝐹௑೟
(𝑥) ≤ 𝑝} Equation 5-8 

Subsequently, reliability, 𝑎ො௞
ఈ, for a nominal probability 𝛼 and forecast horizon 𝑘 can 

be calculated using Equation 5-9 and Equation 5-10, first given in Section 2.2.7. 

𝜀௧ା௞
ఈ = ቊ

1 if 𝑦௧ା௞ < 𝐹௬ො೟శೖ
∗

ିଵ (𝛼)

0 otherwise             
  

Equation 5-9 

𝑎ො௞
ఈ =  

1

𝑁
෍ 𝜀௧ା௞

ఈ

ே

௧ୀଵ

 
Equation 5-10 

Reliability diagrams are shown in this chapter. In these, the deviation between 

observed and nominal probability, 𝑏௞
ఈ = 𝛼 − 𝑎ො௞

ఈ  is plotted against the nominal 

probability, 𝛼. Perfect reliability is achieved if 𝑎ො௞
ఈ = 𝛼, ∀𝛼, or alternatively if 𝑏௞

ఈ =

0  ∀𝛼. 

Sharpness is measured by considering mean interval length given different 

probability intervals. Predictions with a lower level of uncertainty are more useful, 

provided reduced uncertainty does not lead to reduced reliability, as discussed in 

Section 2.2.6. For a chosen coverage rate, β sharpness is calculated using Equation 

2-26 introduced in Section 2.2.7 repeated here for clarity (Equation 5-11). A lower 

value of 𝛿௞
ఉതതതത for any value of β indicates a more useful forecast. 

𝛿௞
ఉതതതത

=
1

𝑁
෍ ቆ𝐹௬ො೟శೖ

∗
ିଵ ቀ1 −

𝛽
2ൗ ቁ − 𝐹௬ො೟శೖ

∗
ିଵ ቀ

𝛽
2ൗ ቁቇ

ே

௧ୀଵ

 Equation 5-11 

In addition to the mean interval length considered above, resolution is considered by 

calculating the standard deviation of interval size for different nominal probabilities. 

The standard deviation of interval size gives an indication of the model ability to 

differentiate between different circumstances. For a chosen coverage rate, β 

resolution is calculated using Equation 5-12. A higher value of 𝜎௞
ఉ for any values of 

β indicates a more useful forecast. 
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𝜎௞
ఉ

= ඩ
1

𝑁
෍ ቀ𝐹௧ା௞

ିଵ ቀ1 −
𝛽

2ൗ ቁ − 𝐹௧ା௞
ିଵ ቀ

𝛽
2ൗ ቁ − 𝛿௞

ఉതതതത
ቁ

ଶ
ே

௧ୀଵ

 Equation 5-12 

The final measure of the predictive ability of a model is given by the continuous 

ranked probability score (CRPS). This gives an overall score which can be used to 

compare between models. This was introduced in Section 2.5.2 and is defined by 

Equation 5-13. 

𝐶𝑅𝑃𝑆(𝐹௧ , 𝑦௧) =  න (𝐹௧(𝑥) − 𝐻(𝑥 − 𝑦௧))ଶ𝑑𝑥

ஶ

ିஶ

 Equation 5-13 

where 𝐻 is the Heaviside step function given by 𝐻(𝑧) =  ቄ
0, 𝑧 < 0
1, 𝑧 ≥ 0

  

In order to implement CRPS in practice a closed form expression for Equation 5-12 

must be established. Jordan [171] derives a closed-form expression for CRPS given 

different distributions and Lerch et al. [78] give software for calculating CRPS. For 

a normal distribution with mean μ and standard deviation σ CRPS is given by 

Equation 5-14 where φ denotes the pdf and Φ denotes the CDF of the standard 

normal distribution. For a beta distribution with shape parameters α, β CRPS is 

given by Equation 5-15. 

𝐶𝑅𝑃𝑆൫𝑁ఓ,ఙ, 𝑦൯ = 𝜎 ൤
𝑦 − 𝜇

𝜎
ቀ2Φ ቀ

𝑦 − 𝜇

𝜎
ቁ − 1ቁ − 2𝜑 ቀ

𝑦 − 𝜇

𝜎
ቁ −

1

√𝜋
൨ 

Equation 

5-14 

𝐶𝑅𝑃𝑆൫𝐹ఈ,ఉ , 𝑦൯ = 𝑦 ቀ2𝐹ఈ,ఉ(𝑦) −
ଶ஻(ଶఈ,ଶఉ)

ఈ஻(ఈ,ఉ)మ ቁ  Equation 

5-15 

where 𝐵 is the beta function given in Equation 5-3. The CRPS is equivalent to MAE 

for a deterministic forecast. As for MAE, a lower value for CRPS indicates an 

improved performance. 
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5.3 Results 

5.3.1 Investigation of probabilistic power forecasting at one site 

To begin with, the results are shown in detail for one site. This allows the key 

features of the GPR model with a beta likelihood function to be compared to the 

GPR model with a Gaussian likelihood function. In this section, the results for 

Toddleburn wind farm are discussed. Toddleburn is a 27.6 MW onshore wind farm 

located in Scotland. It consists of 12 2.3 MW turbines.  

In Figure 5-3 reliability is shown for Toddleburn wind farm. The results are shown 

for 𝛼 = 0, 0.05, 0.1, … , 0.95, 1 for forecast horizons from 3 hours ahead to 72 hours 

ahead. For comparison a horizontal line is shows reliability for a perfect forecast.  

Figure 5-3: Reliability of GPR models at Toddleburn wind farm 

 

It can be seen here that the deviation between observed and nominal probabilities is 

usually closer to zero for the beta distribution. This indicates that the model which 

used the beta likelihood function gives more reliable predictions. Whilst the beta 

distribution provides more reliable predictions, there is limited difference between 
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the GPR model performance with stability and without stability for both likelihood 

functions. 

Alongside reliability, sharpness of predictive distributions is used as a measure of 

the level of uncertainty. In Figure 5-4 sharpness is shown for GPR with Gaussian 

likelihood and beta likelihood. For both likelihood functions, it can be seen that the 

GPR model with and without stability shows no difference in mean interval length. 

However, mean interval length is smaller for the GPR model with a beta likelihood 

for all forecast horizons. Mean interval size gradually increases as forecast horizon 

increases. As the nominal probability increases, the difference between the GPR 

model with a beta likelihood function and with a Gaussian likelihood function 

becomes larger. For a 90% nominal probability for a beta distribution mean interval 

size ranges from 56% of capacity at 3 hours ahead to 68% at 72 hours ahead. For a 

Gaussian likelihood function its ranges from 63% at 3 hours ahead to 79% at 72 

hours ahead. The smaller mean interval size seen when using the beta likelihood 

function indicates a more certain prediction of wind farm power output. In order to 

understand why this might be useful, consider again the example given in Section 

5.1 of a probabilistic forecast used to define the reserve requirement considering a 

forecast at time t. Comparing two scenarios, one in which there is a lower level of 

prediction uncertainty and an alternative with a higher level of uncertainty. In the 

first case, the range of output values expected with 99% confidence might be 58 – 

62 MW. In the second scenario, for the same confidence level the range of output 

values might be 50 – 70 MW. In the first case it might be reasonable to suggest a 

reserve level of 2 MW whilst in the second scenario a higher level of reserve would 

be required. The higher level of reserve would come at an additional cost; hence a 

smaller mean interval size would be valuable in a forecast. Whilst this is a simplistic 

example, it gives some suggestion of the properties which make a good probabilistic 

forecast. In general, this type of reserve capacity definition would be done on a 

system wide scale considering power forecast uncertainty and load forecast 

uncertainty, however the reduction of uncertainty in a probabilistic forecast is still 

useful.  
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Figure 5-4: Sharpness of GPR models at Toddleburn wind farm 

 

In addition to the mean interval length considered above, resolution is considered. 

The standard deviation of interval length for different forecast horizons is shown in 

Figure 5-5. The higher standard deviation of interval width seen for the GPR model 

with beta likelihood shows that this model is better able to distinguish between 

predictive points which have higher or lower uncertainty. For the GPR model with 

Gaussian likelihood the standard deviation of interval width reduces as forecast 

horizon increases, indicating that by the time the forecast horizon reaches 72 hours 

ahead the forecast uncertainty is mostly uniform over all the predictions made. This 

again indicates that the model with beta likelihood is superior to the model with 

Gaussian likelihood. However, as shown when considering sharpness in Figure 5-4, 

there is no difference in terms of uncertainty in predictions for the GPR model with 

stability in comparison with the GPR model with no stability.  
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Figure 5-5: Resolution of GPR models at Toddleburn wind farm 

 

CRPS for the GPR model with a Gaussian likelihood and a beta likelihood are 

shown in Figure 5-6. It can be seen here that there is largely no difference between 

the GPR model with stability and the GPR model without stability. However, it can 

be seen that CRPS is lower for the GPR model with a beta likelihood function. The 

lack of difference between the GPR model with and without stability mimics the 

results seen in the deterministic evaluation of the GPR model shown in Section 

4.3.4. It is unclear why the inclusion of stability in wind farm power output does not 

improve model performance. This could be due to inaccuracy in the prediction of 

parameters used to calculate the Obukhov length stability parameter. From the 

observed variables available it is not possible to analyse the accuracy. Alternatively, 

it could be because the atmospheric stability conditions to do not explain a 

significant amount of the uncertainty seen when predicting wind power output from 

10 m wind speed predictions. The 10 m NWP wind speed predictions used in the 

wind power prediction model were from sites up to 10 km away from the wind farm. 

Changes in wind speed between the sites, increases in wind speed with height and 
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converting wind speed to wind power amongst other things will all contribute to 

errors in the prediction of wind power output. It is likely that any uncertainty which 

might be explained by stability conditions is overshadowed by other errors in the 

prediction model. The lower CRPS for the GPR model with a beta likelihood 

function indicates that this is more appropriate for purpose of predicting wind power 

output.  

Figure 5-6: CRPS for GPR models at Toddleburn wind farm 

 

Overall, it can be seen from all the measures shown here that the hybrid NWP and 

GPR model with a beta likelihood function gives better probabilistic predictions 

than the same model with a Gaussian likelihood function. The reduced level of 

uncertainty in predictions and the increased ability to distinguish between different 

predictive conditions show that this model is useful for the probabilistic prediction 

of wind power output. This can have benefits in a number of practical applications 

of wind power forecasting. As mentioned in Section 5.1, using accurate probabilistic 

forecasts when predicting reserve levels can lead to lower system costs whilst 

maintaining system security [167]. Additionally, probabilistic wind power forecasts 

can be used alongside electricity price forecasts to manage financial risk whilst 
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bidding in electricity markets [172] or to decide when to charge or discharge an 

electricity storage system.  

5.3.2 Probabilistic forecasting for 18 standard sites 

Having evaluated the GPR models in a probabilistic framework at one site the next 

section looks at the overall results for 18 standard sites. This allows for a full 

evaluation of the model performance and allows comparisons with other 

probabilistic models to be made. In Figure 5-7 the average CRPS overall 18 standard 

wind farms is shown alongside the maximum and minimum CRPS at any of the 18 

sites.  

Figure 5-7: Average and range of CRPS for GPR models across 18 wind farms 

 

It can be seen here, as with MAE shown in Chapter 4 CRPS gradually increases as 

forecast horizon increases, indicating the erosion of forecast accuracy with 

prediction horizon. It can also be seen that CRPS is lower for the GPR model with a 

beta likelihood (both with and without stability) than for the GPR model with 

Gaussian likelihood. This is because using the beta likelihood function the predictive 
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distribution is limited to a feasible range which improves predictions. The difference 

between the models with different likelihood functions gradually increases with 

forecast horizon, from 0.85% at 3 hours ahead to 1.1% at 72 hours ahead. On 

average, the difference between the GPR model with and without stability is 

negligible, as shown in Chapter 4. The use of the beta likelihood function in the 

GPR model has not altered this result. 

Next, the reliability over all 18 sites is discussed. Figure 5-8 shows the average 

deviation between observed and nominal probability for different nominal 

probabilities. This indicates that the deviation is closer to zero for the GPR model 

with beta likelihood in comparison to the GPR model with beta likelihood. This is 

true for all forecast horizons. This shows that the predictions made using a beta 

likelihood function are more statistically consistent with the underlying unobserved 

distributions. It can be seen that there are very small differences between results for 

the models with and without stability, however, these are not significant.  

Figure 5-8: Average reliability over 18 standard wind farms 

 

In Figure 5-9 sharpness is studied. Figure 5-9 shows the mean interval length over 

all 18 sites for different nominal probabilities. It can be seen that the mean interval 

length gradually increases over increasing forecast horizon, which is particularly 

notable for larger nominal probability. Furthermore, the mean interval size is lower 
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for the GPR model with beta likelihood function in comparison to the GPR model 

with Gaussian likelihood function. This indicates reduced uncertainty surrounding 

the predictions.  

Figure 5-9: Average sharpness over 18 standard wind farms 

 

The difference between the two largely increases as the prediction horizon increase 

from 3 – 24 hours ahead, and is slightly lower for 48 and 72 hours ahead. For 

example, for a nominal probability of 90% the difference between models increases 

from 5% at 3 hours ahead to 9% at 72 hours ahead. Again, the difference between 

models with and without stability is small. This indicates that as the forecast horizon 

increases, the GPR model with a beta likelihood function is able to offer forecasts 

with less uncertainty, which are more useful. 

In addition to sharpness, resolution is reviewed in Figure 5-10. The standard 

deviation of interval length is given as a measure of sharpness, and the average 

sharpness value for nominal probability β at forecast horizon k over all 18 sites is 

given by Equation 5-16. 
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1
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෍ 𝜎௞

ఉ

ଵ଼

௦ୀଵ

 Equation 5-16 

where 𝜎௞
ఉ is the standard deviation of interval length for nominal probability β at 

forecast horizon k is given by Equation 2-27 and s refers to the site indices. In this 

case a higher value for resolution indicates an increased ability to differentiate 

between levels of uncertainty under different predictive conditions. Figure 5-10 

shows the mean value over 18 sites for resolution given difference nominal 

probabilities.  

Figure 5-10: Mean resolution over 18 standard wind farms 

 

This indicates higher resolution for the GPR with a beta likelihood function in 

comparison to the Gaussian likelihood function. Resolution for the GPR model with 

beta likelihood is largely constant irrelevant of the forecast horizon, whilst 

resolution decreases with forecast horizon for the GPR model with Gaussian 

likelihood. This indicates that the model with beta likelihood is better able to 

differentiate between levels of uncertainty under different circumstances. This also 

indicates that the ability to differentiate between circumstances is not eroded as 

forecast horizon increases for the model with beta likelihood. This indicates a better 
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forecast as the level of uncertainty in a prediction is dependent on the model inputs 

rather than being largely constant. 

The results shown here indicate that the GPR model with a beta likelihood function 

performs better under a probabilistic framework in all terms of all 4 evaluation 

criteria: reliability, sharpness, resolution and CRPS. As described above, this is 

because the beta likelihood functions ensures the predictions made only have 

probability greater than zero when the predictions are in a feasible region.  

In order to assess whether the results seen for here are reflective of other state of the 

art methods, some of the results seen in Table 2-7 are discussed. It can be difficult to 

draw comparisons between models, as results are frequently averages over different 

forecast horizons and given for different sites. However, some attempt is made at 

considering the performance of the GPR model in comparison with others. As 

discussed in Section 2.2.5 CRPS gives an overall scoring rule hence a discussion of 

CRPS is used to consider the achievements of other state of the art probabilistic 

wind power predictions. On average over 18 standard sites CRPS for the GPR model 

with a Gaussian likelihood ranges from 7.9% at three hours ahead to 11.8% at 72 

hours ahead. For the GPR model with a beta likelihood function CRPS ranges from 

7% at 3 hours ahead to 9.5% at 72 hours ahead. CRPS is only given for 4 of the 

methods discussed in Table 2-7. Juban et al. [87] give CRPS for forecasts from 0-60 

hours ahead. CRPS ranges from 6.5% at 3 hours ahead to 11% at 48 hours ahead, 

higher than average CRPS for the GPR model with beta likelihood. Sideratos and 

Hatziargyriou [81] give CRPS for 2 sites. At the first site, CRPS is given as a near 

constant 10% over forecasts up to 60 hours in advance. At the second site, CRPS is 

given as around 6% at 3 hours ahead rising to 10% 42 hours ahead. CRPS given by 

the GPR model with a beta likelihood function is lower on average than at the first 

site, but slightly higher than at the second. Tastu et al. [90] give a density forecast 

generated based on average point forecast errors in the area. CRPS is shown for 

forecasts from 15 mins to 8 hours in advance. At 4 hours ahead CRPS is given as 

approximately 10%, staying as such for forecasts 6 hours ahead. This is again higher 

than CRPS seen for the GPR model. Finally, Zhang et al. [88] give CRPS for 
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forecasts from 1 – 24 hours ahead. At 3 hours ahead CRPS of 2.5% at 3 hours ahead 

rising to 8% at 24 hours ahead. This is much lower than the results presented in this 

chapter at 3 hours ahead, but similar at 24 hours ahead. Overall the GPR model with 

a beta likelihood function performs well, with CRPS in the same range as other 

probabilistic models seen in Table 2-7.  It is not possible from this to suggest that 

one model outperforms others overall as different data sets are used. However, this 

shows that the GPR model has the potential to make good probabilistic predictions 

for wind farm power output. From the discussion in Section 2.3.4 and the example 

given in Section 5.1 it can be seen that accurate probabilistic forecasts are valuable 

to a number of users. There is limited literature which considers the incremental 

benefit (economic or otherwise) of an improved probabilistic forecast. Because of 

this it is difficult to pinpoint the potential economic gain from improving forecast 

accuracy. However, many authors suggest that there is benefit in using probabilistic 

forecasts, therefore developing new methods and ensuring accurate probabilistic 

forecasts are available is important.  

5.3.3 Probabilistic wind power forecasting at 2 offshore wind farms 

Figure 5-11 explores CRPS for predicted wind power at 2 offshore wind farms. 

Reducing and anticipating uncertainty in wind power predictions for offshore wind 

farms is particularly important given the increase in offshore wind capacity. 

Decreasing commercial costs and higher offshore wind speeds has led to a 

significant increase in planned offshore wind capacity in the UK. These projects are 

usually large, with some planned wind farms having capacity up to 2.4 GW [17]. 

This means they can deliver a significant amount of power to the grid, but also have 

the potential to cause significant deviations from planned power output. In order to 

integrate this capacity in the electricity system without balancing costs increasing 

substantially, increasingly accurate wind power forecasts at these sites will be 

valuable. In addition to this, better forecasting of uncertainty in wind power output 

allows units to be scheduled effectively, again reducing system costs. 
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As it was seen in Chapter 4 where MAE was considered, in contrast to the onshore 

sites investigated the inclusion of stability reduces GPR error at these offshore sites. 

For Barrow wind farm the reduction in prediction error is approximately 1% from 

12 – 72 hours ahead, for both likelihood functions. For shorter forecast horizons the 

improvement is reduced. At 3 and 6 hours ahead, the improvement for the GPR 

model with stability is 0.35% for both likelihood functions. Similar trends in CRPS 

are seen at Burbo Bank wind farm, also shown in Figure 5-11.  

Figure 5-11: CRPS for GPR models for offshore wind farms 

 

At 3 hours ahead there is no difference between the model with and without stability 

for either likelihood function. At 6 hours ahead using Obukhov length as an input 

parameter leads to between 0.3% and 0.4% improvement and for 12 hours to 72 

hours the improvement is between 0.6% and 0.9% for both likelihood functions. In 

addition to the improvement seen when using Obukhov length as an input parameter 

within the GPR model for offshore wind prediction for both offshore wind farms the 

GPR model with a beta likelihood function offers improved predictions. At both 

sites, lower CRPS is seen using the GPR model with a beta likelihood function both 

with and without stability. In both cases the improvement ranges from 0.6% to 

0.9%. 
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The results shown here indicate that the hybrid NWP and GPR model with a beta 

likelihood function can provide probabilistic forecasts at offshore wind farms with 

similar accuracy to onshore wind farms, particularly if the Obukhov length stability 

parameter is included as an input parameter. 

5.3.4 Probabilistic wind power forecast for 2 sites with short 

datasets 

Figure 5-12 considers CRPS for 2 wind farms where only a short data set was 

available. Probabilistic forecasts using short term data sets can be particularly useful 

to new wind farms 

Figure 5-12: CRPS for GPR models for wind farms with a short data set 

 

. Estimating uncertainty in power output allows a new wind farm to not only bid in 

the power markets, but to hedge against possible losses by understanding the 

uncertainty with the forecast. The results shown here mimic those seen in Chapter 4 

for MAE, in that there are small differences between the GPR models with and 

without stability and the overall results are at slightly higher than those seen for the 

18 standard sites. At Beinn Tharsuinn wind farm for the GPR model with a beta 

likelihood function CRPS is approximately 1% lower for forecasts 3-24 hours ahead, 
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reducing to 0.4% lower at 48 and 72 hours ahead. For the Mark Hill wind farm the 

improvement when using the beta likelihood function varies between 0.5% and 

1.5%. Overall, the results suggest that the beta likelihood function offers better 

probabilistic predictions. In addition to this, the CRPS for these short sites is only 

between 1.5% and 2% higher than at the standard sites, showing that reasonable 

predictions can be made with shorter datasets. 

The hybrid NWP and GPR model shows some success in probabilistic predictions 

for short term data sets. However, further work would be required to establish the 

length of data set required to produce predictions with confidence. 

5.4 Conclusions 

This chapter has developed the hybrid NWP and GPR model for probabilistic 

forecasts and investigated the potential use of a beta likelihood in comparison the 

Gaussian likelihood function used originally. The results are presented in a 

probabilistic framework and compared to other probabilistic prediction methods first 

presented in Table 2-7.  

It can be seen from the results presented that the hybrid NWP and GPR model with a 

beta likelihood function gives improved probabilistic predictions in comparison to 

the hybrid NWP and GPR model with a Gaussian likelihood. This is due to the fact 

that the beta likelihood is more appropriate as it is based on a distribution which has 

upper and lower limits. This is important as wind power output predictions must be 

positive but less than the wind farm capacity. For the 18 standard sites the hybrid 

NWP and GPR model with a beta likelihood function outperforms the same model 

with a Gaussian likelihood in all 4 evaluation criteria used: CRPS, sharpness, 

resolution and reliability. There is a 0.85% decrease in CRPS for the predictions 

with a beta likelihood function in comparison to the Gaussian likelihood function at 

3 hours ahead, rising to 1.1% at 72 hours ahead. Furthermore, the mean size of the 

90% interval is 5% smaller at 3 hours ahead and 10% smaller at 72 hours ahead. 

This indicates that the hybrid NWP and GPR model with a beta likelihood function 
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provides a more accurate prediction of the predictive distribution and reduces 

uncertainty in the forecast. Overall the GPR model with a beta likelihood function is 

competitive with other probabilistic models for wind power prediction.  

As seen in Chapter 4 there is limited difference between the power prediction 

models using atmospheric stability and the model which does not include stability. 

This result still holds when considering the models in a probabilistic framework. 

However, some difference is noted for offshore sites, at which the GPR model 

including stability gives more accurate predictions than the model without stability. 

This is true for both the Gaussian likelihood function and the beta likelihood 

function. This result is significant as the offshore wind capacity in the UK is 

increasing. The increased prediction accuracy when the Obukhov length is included 

in this forecast could allow offshore wind power to be more accurately scheduled, 

thus improving grid reliability.  

As discussed in Chapter 4 the prediction of wind power output using the GPR model 

could possibly be improved if hub height or local wind speeds were available for the 

wind farms. In general, the use of a probabilistic forecast gives more information 

than an equivalent deterministic forecast. However, this is only true if the prediction 

intervals given are not too wide and the model is able to give different level of 

uncertainty dependent on the circumstances. It can be seen from the results here that 

the GPR model with a beta likelihood gives uncertainty information which gives 

added benefit to the user. It is difficult to evaluate specific economic gains which 

can be made by increasing probabilistic forecast accuracy. However, as probabilistic 

forecasts are increasingly used by system operators to define reserve requirements or 

to make economic decisions in electricity markets it is important to ensure accurate 

forecasts are available.  
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Chapter 6. An investigation of the economic 

benefit of employing wind power forecasts. 

6.1 Overview 

This chapter evaluates the economic value of wind power forecasting in the current 

UK electricity market. The economic benefit is evaluated by considering the price 

per MWh paid for electricity to generators participating in the UK electricity market. 

This chapter considers how forecast accuracy and changes in the imbalance pricing 

mechanism might impact the price per MWh obtained by wind generators. After 

studying the economic impact of wind power forecasts in general and the additional 

income which may be received from more accurate forecasts, the forecasts 

developed throughout this thesis are considered. In particular, this chapter considers 

whether the use of the hybrid NWP and GPR model for the prediction of wind 

power output leads to a higher price for electricity generated in comparison to the 

use of a simpler forecast in the current UK electricity system. In addition to this, this 

chapter considers how the deterministic and probabilistic forecasts developed in 

Chapter 4 and Chapter 5 of this thesis might be employed practically to choose an 

appropriate bid volume. In doing this, the value the forecasts developed throughout 

this thesis for a renewable generator participating in the UK electricity market is 

quantified.  

Chapters 3, 4 and 5 have focused on evaluating the quality of predictions using a 

hybrid NWP and GPR model. Quality of the forecast is evaluated using a statistical 

framework. In this chapter the link between quality and economic value of a forecast 

is considered. The analysis performed considers how the price received per MWh 

generated for a wind farm participating in the electricity market may be affected by 

wind power forecast accuracy, and how this may change as further modifications are 

made to balancing system prices. As discussed in detail in Section 2.3.2, imbalance 
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pricing in the UK is currently undergoing a series of changes. These have been 

implemented through balancing and settlement code (BSC) modification P305. This 

modification has changed the imbalance pricing system from a dual pricing system 

to a single imbalance price and changed the way in which imbalance prices are 

calculated. One of the key objectives of this chapter is to assess the impact of these 

changes on price received per MWh generated for a wind farm where electricity 

output cannot be predicted perfectly in advance.  

Whilst there is a wide body of literature covering the applications of wind power 

forecasting, to the best of the authors knowledge there are no attempts in the 

literature so far to assess the impact of the changes in the UK imbalance pricing 

system introduced through BSC modification P305, particularly for wind generators. 

Therefore, this chapter provides novel insights into the changes which are taking 

place in the UK electricity market and the importance of wind power forecasting.  

As discussed in Section 2.3.4, there are three applications of wind power forecasting 

which are most frequently discussed in the literature. These are: using wind power 

forecasts to make unit commitment decisions, to set reserve requirements and to aid 

participation in electricity markets. The value of a power forecast in these situations 

can be financial or non-financial. As an example, consider a power forecast used to 

make unit commitment decisions. That is, a power forecast is used as part of the 

decision process when the number and type of generators required to provide 

electricity in a delivery period. If an accurate forecast of wind power output is given, 

an appropriate combination of units can be planned to match demand. This leads to a 

financial benefit of reducing costs (less balancing actions will be required) and a 

non-financial benefit of reduced emissions (reserve requirement can be reduced and 

fossil fuel plant can be used more efficiently leading to lower emissions).  

The value of employing a forecast is quantified in different ways depending on the 

user and the application. Most frequently in literature the value is quantified from an 

economic perspective, though value is also discussed in terms of system reliability. 

Whilst wind power forecasting can lead to non-financial benefits such as reduced 
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emissions from electricity generation, there is no evidence in the literature of an 

attempt to quantify this.  

One way economic benefit can be quantified is by evaluating the additional revenue 

achieved for electricity market participants when a forecast is used. Wind power 

forecasting has particular financial value where balancing markets are used as part 

of an electricity trading system as these provide financial incentives for accurate 

power predictions [23]. Economic benefit in terms of increased revenue is discussed 

by Barthelmie et al. [23], Zugno et al. [133] and Botterud et al. [134]. Barthelmie et 

al. [23] considered the imbalance penalty of deviating from a forecast and how 

forecasts can help to reduce this. Zugno et al. [133] used probabilistic forecasts of 

both wind power and market prices to develop a bidding strategy which optimises 

market revenue. The method developed was tested on the Eastern Danish price area 

of the Nordic Power Exchange for 10 months of 2008. They concluded that the use 

of a bidding strategy alongside forecasts lead to increased profits. Botterud et al. 

[134] proposed a methodology for optimal day-ahead bidding again concluding that 

the use of wind power forecasts lead to increased profit and decreased financial risk. 

This was due to the avoidance of penalties for deviating from the amount of 

electricity contracted.  

Alternatively, economic benefit can be quantified by evaluating the reduction in 

system costs achieved when a forecast is used. These costs can include the fuel costs 

for thermal generators needed for reserve capacity, cost of unserved reserve, cost of 

unserved energy or the additional start-up costs of fast response plant. Pinson et al. 

[135] used a probabilistic wind power forecast to develop an optimal bidding 

strategy. When tested on a Dutch wind farm this lead to an average reduction in cost 

of regulation of €2.20 - €5.90 per MWh.  Lowery and O’Malley [128] also 

considered the impact of wind forecasting error on unit commitment decisions and 

how forecasting can be used to reduce system costs. They concluded that a precise 

representation of forecast error can impact the optimal level of reserve a system 

should carry to reduce system costs. 
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When forecasting is used to make scheduling decisions or set reserve requirements 

value is often expressed in terms of system reliability. System reliability is usually 

quantified in terms of loss of load probability (LOLP) or loss of load expectation 

(LOLE) [173]. LOLE is a measure of the number of hours per year it is likely supply 

will not meet demand [174]. LOLP is the probability that supply will not meet 

demand for a given settlement period [175]. Matos and Bessa [129] developed a tool 

for setting adequate levels of reserve using a probabilistic wind power forecast. The 

authors considered how to balance cost of reserve with risk of loss of load. Doherty 

and O’Malley [127] showed how the use of wind power forecasts with a short 

forecast horizon can reduce the level of reserve needed whilst maintaining LOLE. 

Bessa and Matos [176] considered how wind power forecasting used in a 

probabilistic method for setting reserve requirement. In this case, the LOLP is used 

to assess whether the reserve requirements set are appropriate. 

As identified by the examples above, there are a number of ways in which the value 

of a wind power forecast could be evaluated. In this chapter, the economic benefit of 

wind power forecasting is evaluated in terms of price received for electricity sold. 

This is an important measure of the value of a wind power forecast as in a liberalised 

electricity market wind farms must trade in electricity markets and generate 

sufficient income to be profitable. Whilst this work does not account for subsidies 

paid to wind power generators or other sources of income, it considers the price 

obtained through the electricity markets which is a major source of income. This is 

particularly relevant given the changes in support mechanisms for renewable 

technologies introduced through the electricity market reform (EMR) discussed in 

Section 2.3.3. As part of the EMR contracts for difference (CFD) replace renewable 

obligation certificates (ROC) in providing financial support for renewable 

technologies. However, onshore wind projects are not eligible for CFD auctions 

therefore in future will rely on income obtained from participation in the electricity 

markets. As a result of BSC modification P305, between 2015 and 2018 the UK 

electricity market is undergoing changes which will affect how generators are paid 

or charged for deviating from their contracted position in the electricity market. As 

wind power is less predictable than other forms of electricity generation, it is likely 
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that these changes will affect wind power producers. Because of this, it is interesting 

to evaluate how the price paid for electricity might be affected by these changes and 

how the economic benefit of employing a forecast might be affected.  

The main objectives of this chapter are: 

(i) To evaluate the effect of forecast accuracy on price per MWh obtained for 

electricity generated. 

(ii) To investigate how BSC modification P305 may affect price per MWh 

obtained for electricity generated and the value of wind power forecasts. 

(iii) To assess the value added by the forecasts developed throughout this thesis. 

(iv)  To demonstrate how the deterministic and probabilistic forecasts developed 

through this thesis might be used to choose how much electricity to bid in the 

electricity markets. 

6.2 Methodology 

As described in Section 2.3.2 electricity is traded in half hour settlement periods 

ahead of delivery. Bids and offers for electricity demand and generation are made 

from months and years ahead, up to gate closure, one hour ahead of the trading 

period. After gate closure, the system operator (the National Grid) accepts bids and 

offers to increase or decrease demand and generation in order to balance electricity 

delivery on a short term basis. These are known as balancing actions. Finally, after 

the trading period, the actual volume of electricity used or generated by a market 

participant is calculated and payments or charges are received for deviations from 

the contracted level of generation or demand. These charges/payments are based on 

the average cost of the most expensive balancing actions, known as the imbalance 

price. An example of the process for a generator or a consumer participating in the 

electricity market is shown in Figure 6-1.  
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Figure 6-1: Diagrammatic example of the imbalance system for a generator or a consumer 

participating in the electricity market. 

 

Prior to November 2015, the UK used a dual pricing system. Under this system the 

amount charged for generators producing less than their contracted volume of 

electricity or consumers using more than their contracted volume was charged at the 

system buy price (SBP) and the amount paid to generators producing more than their 

contracted volume of electricity or consumers using less than their contracted 

volume is paid at the system sell price (SSP). BSC modification P305, introduced in 

November 2015, changed the imbalance pricing system from a dual pricing system 

to a single pricing system. Under this system the same price is paid or charged for 

deviations in either direction. Alongside the change from a dual pricing system to a 

single imbalance price, BSC modification P305 changed how the imbalance price 

was calculated. Imbalance prices are calculated using the average cost of the most 

expensive balancing actions. Prior to November 2015 this was set using the most 

expensive 500 MWh of balancing actions (PAR500) which reduced to the most 

expensive 50 MWh of balancing actions (PAR50) in November 2015. This will 

change to the single most expensive MWh of balancing actions (PAR1) in 

November 2018 [104]. A full example of the imbalance price calculated under the 

new system is given in Section 2.3.2. The price obtained per MWh generated is a 

combination of the price agreed through bidding in the electricity market for 
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electricity produced as contracted, and payments/penalties for deviating from the 

contracted volume of electricity.  

The work presented in this chapter is split into three sections.  Throughout the 

chapter different forecasts are used to establish the volume of electricity bid in 

electricity markets, and thus the volume the generator is contracted to sell for the 

trading period. Firstly, the price received per MWh generated when a perfect 

forecast is used is discussed. In addition to this, the price per MWh received when a 

persistence forecast is used. This gives a benchmark at either end of the forecasting 

spectrum. The perfect forecast shows the price which could be obtained if a forecast 

with zero error was achievable, whilst a persistence forecast shows what would be 

obtained if state of the art forecasts were rejected and a simple forecast was used. 

Secondly, a simulated forecast is used to show the price obtained when a forecast 

with different levels of error is used to establish the contracted volume of electricity. 

Finally, an example of how a deterministic and a probabilistic forecast could be used 

to bid in the electricity market is shown. The price obtained per MWh of electricity 

generated using each of these methods is investigated. Throughout all three sections 

the impact of changing PAR volume is discussed. 

To begin with, the method used to calculate the price received per MWh generated 

is introduced. The method is based on an adaptation of the simple economic model 

introduced by Barthlemie et al. [23]. Barthlemie et al. [23] used a simulated wind 

power forecasts to assess at what size of wind farm a wind power forecast became 

economically viable based on electricity prices in 2003. The authors concluded that 

the accuracy of the forecast and the cost of obtaining it were key factors in 

quantifying the economic value. The price obtained per MWh generated is a 

combination of the price agreed through bidding in the electricity market for 

electricity produced as contracted, and payments/penalties for deviating from the 

contracted volume of electricity. The price agreed through contracts in the electricity 

market is referred to as the trade price. This was paid for electricity produced as 

forecast. Under the system for balancing payments in place in the UK prior to 

November 2015 the system sell price (SSP) was paid for electricity produced in 
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excess of the forecasted amount and the system buy price (SBP) was the price which 

the wind energy generator must buy electricity at if they produced less than the 

forecasted amount of electricity. Under this system, the price obtained for electricity 

generated in trading period t is given by Equation 6-1. 

𝑅௧ = ቐ
𝑃௙௢௥,௧ × 𝑇𝑃௧ − ቀ൫𝑃௙௢௥,௧ − 𝑃௢௕௦,௧൯ × 𝑆𝐵𝑃௧ቁ

𝑃௙௢௥,௧ × 𝑇𝑃௧ + ቀ൫𝑃௙௢௥,௧ − 𝑃௢௕௦,௧൯ × 𝑆𝑆𝑃௧ቁ
  
if  𝑃௙௢௥,௧ > 𝑃௢௕௦,௧

if  𝑃௙௢௥,௧ < 𝑃௢௕௦,௧
 Equation 6-1 

where 𝑃௢௕௦,௧ and 𝑃௙௢௥,௧ are observed and forecasted power output for trading period t 

respectively, TPt is the trade price, SSPt is system sell price and SBPt is the system 

buy price (for trading period t). In the work of Barthelmie et al. [23] the trade price 

was the annual average of SBP and SSP, a fixed value for all values of t.  

As discussed in Section 2.3.2 BSC modification P305 was introduced in November 

2015, changing balancing payments from a dual pricing system to a single pricing 

system. In this chapter the method outlined by Equation 6-1 for calculating 

electricity prices is adapted for an electricity system with a single imbalance price 

(SIP) rather than the dual pricing system used by Barthlemie et al. [23]. In an 

electricity system with a SIP, the price received for electricity generated in surplus 

to the forecasted amount is equal to the price paid by the generator when the amount 

of electricity forecasted is not met. The price received by electricity generators per 

MWh generated in trading period t in a system with a SIP is given by Equation 6-2.  

𝑅௧ = 𝑃௙௢௥,௧ × 𝑇𝑃௧ − 𝑆𝐼𝑃௧൫𝑃௙௢௥,௧ − 𝑃௢௕௦,௧൯ Equation 6-2 

where 𝑃௙௢௥,௧ and 𝑃௢௕௦,௧ are observed and forecasted power output for trading period t 

respectively, TPt is the trade price paid for electricity generated as contracted, and 

𝑆𝐼𝑃௧ is the SIP for trading period t. The data used throughout this chapter for the 

trade price, SIP and observed power is described next. 

In this chapter market index price (MIP) is used as an estimate of the trade price for 

electricity. MIP is the average value of all contracts traded in a settlement period. It 

reflects the wholesale price of electricity at that time [104] and is obtained from 
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ELEXON [106]. This is slightly different to the strategy taken by Barthelmie et al. 

[23] which used an annual average of SSP and SBP to estimate the trade price of 

electricity. Using MIP allows the difference between MIP and SIP to be considered 

for each trading period, giving a more detailed analysis. However, it can be seen 

from Table 6-1 that the annual average MIP for 2003 – 2007 is very similar to the 

trade price used by Barthelmie et al. [23] indicating that both methods suggest 

similar values for the trade price. 

Table 6-1: ‘Trade’ price for electricity used by Barthelmie et al. [23] in comparison to MIP. 

 MIP (£/MWh) [106] TP used by Barthelmie et al. [23] 

(£/MWh) 

2003 18.37* 19 

2004 20.80** 21 

2005 36.55 36 

2006 38.51 39 

*data available for approx. 45% of trading periods. **data available for approx. 20% of trading 
periods. 
 

The SIP data used in the chapter is based on recalculated imbalance prices published 

by ELEXON [177]. In order for interested parties to establish how the changes 

introduced by BSC modification P305 will affect them, ELEXON reproduced 

imbalance prices for January 2010 – May 2014 based on different PAR volumes 

[177]. Prior to November 2015 a PAR volume of 500 MWh was used to calculate 

SIP. SIP for a PAR volume of 500 MWh was not provided by ELEXON [177]. SIP 

was provided for PAR volumes of 350, 250, 100, 50 and 1 MWh.  

The observed power data used in this chapter is from one of the wind farms used in 

Chapters 4 and 5. The wind farm chosen was Baillie wind farm, a 52 MW wind farm 

located in Scotland. Wind power output from a single wind farm is assumed to be 

independent of electricity system prices. This is because individual wind farms are 

not assumed to influence system prices, due to the fact they usually contribute a 

relatively small amount to the entire UK electricity system in a single trading period. 
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This assumption is commonly used in the economic analysis of wind farms for 

example by Pinson et al. [135]. This is currently a reasonable assumption but may 

need reassessing as the use of wind energy increases. Because of this assumption, 

and the lack of available concurrent wind power and pricing data, the analysis was 

performed using pricing data from 1st January 2013 – 31st December 2013 and wind 

power data from 1st January 2015 – 31st December 2015.  

In each section, Equation 6-2 is evaluated using 𝑃௢௕௦,௧, 𝑆𝐼𝑃௧  and 𝑇𝑃௧ as defined 

above. Different forecasted values are used for  𝑃௙௢௥,௧ in each section. To begin with, 

in Section 6.3.1, the impact of forecast accuracy is considered by using a benchmark 

forecast. Price received per MWh is calculated for a persistence forecast with 

different forecast horizons using Equation 6-2. The impact using different PAR 

volumes to calculate SIP is also considered. Subsequently, in Section 6.3.2, price per 

MWh is considered for simulated forecasts with different levels of systematic bias 

and random error. The use of simulations allows the effect of different levels of 

error to be investigated in a more statistically robust way. The forecasts used were 

simulated in a similar manner to that used by Barthelmie et al. [23]. Simulated 

forecasts with different levels of error were generated combining the observed wind 

power time series with a randomly generated error. Errors were assumed to be 

random variables from a normal distribution. Therefore the forecast power output at 

time t is given by Equation 6-3.  

𝑃௙௢௥,௧ = 𝑃௢௕௦,௧ + 𝜀௧,ఓ,ఙ Equation 6-3 

where 𝜀௧,ఓ,ఙ~ N(𝜇, 𝜎) and 𝑃௙௢௥,௧is constrained such that 0 ≤ 𝑃௙௢௥,௧ ≤ Capacity 

The parameters 𝜇, 𝜎 used to simulate forecast error are varied to change the level of 

systematic bias and random error in the simulated forecast. The values of 𝜇, 𝜎 

considered were 𝜇 ∈ [±100% of capacity], 𝜎 ∈ [0, 100% of capacity]. Changing 

the value of 𝜇 changes the level of systematic bias in the forecast. For example if 

𝜀௧,ఓ,ఙ~ N(−2,0) then the forecasted power is 2% lower than the observed value with 

no random error. This is equivalent to systematically under predicting from a perfect 

forecast by 2% of capacity. If 𝜀௧,ఓ,ఙ~ N(0,1), then the bias in the annual forecast 
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would tend to 0 (there is no under or over prediction). However, forecasts at an 

individual trading period t may deviate from the observed value. This would be 

observed as different levels of NMAE and NMBE in the forecast. NMBE and 

NMAE were defined in Section 2.2.4. In this case NMBE over the whole forecast 

would be close to zero but NMAE would increase with increasing values of σ. For 

each value of 𝜇, 𝜎 100 forecast time series simulations are made. This enables the 

impact on price per MWh to be evaluated in a statistically robust manner. Whilst 

this work does not investigate the actual distribution of forecast errors, nor the 

impact of error distribution on price per MWh, it allows the impact of systematic 

bias and random error to be investigated.  

For the perfect forecast, the persistence forecast and the simulated forecast the 

impact on price per MWh is discussed by considering mean price per MWh and the 

standard deviation of price per MWh. These are calculated using Equation 6-4 and 

Equation 6-5 respectively. 

Mean price per MWh =  
1

𝑛
෍

𝑅௧

𝑃௢௕௦

௡

௧ୀଵ

 
Equation 6-4 

Standard deviation of price per MWh =
ඨ

∑ (
𝑅௧

𝑃௢௕௦
− 𝑅തெௐ )ଶ௡

௧ୀଵ

𝑛 − 1
 

Equation 6-5 

Mean price received for electricity generated per MWh gives an indication of the 

average level of income which would be received over the year. Standard deviation 

of the price paid for electricity generated per MWh allows the variation between 

different time periods to be analysed. This is equally important as it indicates the 

level economic risk a wind energy generator may be exposed to on a short term 

basis. Showing these results in terms of price per MWh allows the results to be 

generalised for other wind farms. The results are therefore independent of the size of 

wind farm in question. Whilst the size of wind farm will impact the point at which 

the cost of a wind power forecast is justified, this is not the focus of this work.  
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6.3 Results 

6.3.1 Price obtained using a persistence forecast 

To begin with, to set a benchmark position, consider the price per MWh which 

would be obtained if a perfect forecast was available. In this case, Equation 6-2 is 

used to calculate price per MWh with 𝑃௙௢௥,௧ = 𝑃௢௕௦,௧. Hence, from Equation 6-2, 

price received per MWh generated becomes 𝑅௧ =  𝑃௙௢௥,௧ × 𝑀𝐼𝑃௧. So the price 

received is a function of MIP and the average price (£/MWh) is the average MIP. It 

can be seen from Figure 6-2 the average price for the period 1st Jan 2013 – 31st 

December 2013 would be £50.70/MWh. The maximum price achieved in any 

trading period would be £161.73/MWh.  

Figure 6-2: Box plot showing Market Index Price for 2013. Box shows 25, 50 and 75 

percentiles. Circles show the maximum and minimum values and square shows the mean 

value.  

 

Next, consider the price per MWh if the persistence forecast was used. The 

persistence forecast was used in Chapter 3 and Chapter 4 as a benchmark for 

forecast model performance. Figure 6-3 shows the mean and standard deviation of 



196 

  

price per MWh which would be received if a persistence forecast was used to predict 

wind power output for the test period. In Figure 6-3 the SIP used is for PAR volume 

of 50 MWh (PAR50). This allows average and standard deviation of price per MWh 

under the current (2017) market conditions to be considered. The price per MWh is 

calculated for increasing forecast horizon or lag in the persistence forecast. The 

mean and standard deviation of price per MWh are shown alongside the error 

metrics NMAE and NMBE for the persistence forecast. The equations for NMBE 

and NMAE were given by Equations 2-14 and 2-15 in Chapter 2. In Figure 6-3 it 

can be seen that NMAE rises from 3% of capacity at 1 hour ahead to 20% of 

capacity at 12 hours ahead. NMBE is roughly the same for all forecast horizons, 

staying at less than 1% of capacity. Because of this, it is difficult to assess the 

impact of NMBE on price per MWh. From Figure 6-3 it can be seen that there is 

very little change in average price paid per MWh as forecast horizon and NMAE 

increase. 

Figure 6-3: Price per MWh achieved when the persistence forecast is used with different 

lag times.  

 

The average price is £50.70/MWh for a perfect forecast and only changes by 

£0.20/MWh across the forecast. However, the standard deviation varies significantly 

with increasing forecast error. For a persistence forecast at 1 hour ahead the standard 

0

20

40

60
Average hourly
price per MWh
Standard deviation
of hourly price
per MWh

0 2 4 6 8 10 12
Lag in persistance forecast (Hours)

0

10

20
NMAE
NMBEErrors in persistance forecast

Price under PAR50 scenario



197 

  

deviation in hourly price is £13/MWh, whilst at 24 hours ahead this rises to 

£34/MWh. This indicates that a forecast with higher NMAE may not have a 

significant impact on mean price per MWh but will impact upon the deviation in 

hourly prices. Because of this, the income for a wind generator will be more stable 

when a more accurate forecast is used to bid in the electricity market. 

The results shown in Figure 6-3 show the price per MWh which would be received 

if a persistence forecast was used and the SIP was calculated using a PAR volume of 

50 MWh. This reflects the SIP from November 2015 to November 2018. In Figure 

6-4 the effect of changing PAR volume is investigated. From Figure 6-4 it can be 

seen that mean price obtained per MWh decreases with increasing forecast horizon 

(hence NMAE) when a PAR volume of 1 MWh is used, and remains mostly 

constant for higher PAR volumes.  

Figure 6-4: Price per MWh achieved when the persistence forecast is used with different 

lag times using different PAR volumes. 

 

The trend in mean and standard deviation of price per MWh seen in Figure 6-4 is the 

same as seen in Figure 6-3. Mean price per MWh does not vary much and standard 

deviation of price increases with increasing forecast horizon. However, the 
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magnitude of change in both mean and standard deviation of price per MWh with 

increasing forecast error changes with PAR volume. 

When the PAR volume is 50 MWh, as seen in Figure 6-3, mean price per MWh 

varies by £0.20/MWh when the forecast horizon increases from 1 hour to 24 hours. 

For all PAR volumes there is a decrease in mean price per MWh at around 6 hours 

ahead, which then increases up to 12 hours ahead. The decrease in mean price per 

MWh seen in Figure 6-4 at 6 hours ahead correlates with a larger NMBE of -1.5%, 

and the increase with a smaller NMBE of -0.2%. It is difficult at this point to 

properly assess the impact of NMBE of price per MWh. However, this will be 

investigated further in Section 6.3.2. The difference between mean price per MWh 

for different PAR volumes is most pronounced at 12 hours ahead. At this point for a 

PAR volume of 1 MWh, there is a decrease of £0.25 in mean price per MWh. For a 

PAR volume of 350 MWh there is an increase of £0.20 in mean price per MWh 

when the forecast horizon and NMAE increase. Overall, the effect of decreasing 

PAR volume on mean price per MWh obtained by a generator is small. Furthermore, 

Figure 6-4 shows that when the forecast error is larger, the standard deviation in 

price per MWh increases more rapidly for smaller PAR volumes. For a persistence 

forecast 12 hours ahead standard deviation in price per MWh is £29 when the PAR 

volume is 350 MWh and £36 when the PAR volume is 1 MWh. These results 

indicate that when the PAR volume is reduced to 1 MWh in November 2018 

forecast accuracy will have a larger impact on deviation in hourly price. However, 

there will be very little impact on mean price per MWh when the PAR volume 

reduces from 50 MWh to 1 MWh in November 2018.  

The difference in price per MWh can be explained by considering the distribution of 

SIP calculated using different PAR volumes. Figure 6-5 shows that the range of 

prices per MWh seen in the data set used here is larger when the PAR volume is 

lower, and the interquartile range is larger. This leads to the increase in standard 

deviation in price per MWh seen in Figure 6-4. This is because when forecast error 

increases the price paid per MWh is more dependent on the imbalance price, and so 

there is more variation in the price paid per MWh. The average difference between 
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MIP and SIP increases as PAR volume decreases. For PAR1 the imbalance price 

was on average £2.74 higher in 2013 than MIP. For PAR350 SIP was on average 

£0.84 higher. These differences influence the mean price per MWh. However, the 

analysis of the persistence forecast indicates that the decreasing forecast accuracy 

has little impact on mean price per MWh. This implies that while increasing forecast 

accuracy may not increase mean price per MWh achieved, it could reduce 

fluctuations in income. This creates a more secure income for wind farm generators. 

Therefore the increase in forecast accuracy is still valuable, despite not having a 

significant impact on mean price per MWh. 

Figure 6-5: Distribution of SIP with different PAR volumes. Box shows 25, 50 and 75 

percentiles. Circles show the maximum and minimum values and squares show the mean 

value. 

 

Through analysis of the persistence forecast, we begin to understand the impact of a 

forecast on price per MWh. However, further analysis is required to separate the 
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impact of systematic bias and random error on price per MWh. Increased systematic 

bias leads to an increase in NMBE, whilst increase random error leads to an increase 

in NMAE. In the persistence forecast, NMAE increased with forecast horizon whilst 

NMBE remained fairly constant. In the next section, systematic bias and random 

error are explored through the use of simulated forecasts. 

6.3.2 Impact of forecast error on price per MWh  

Simulated forecasts with different levels of error were generated combining the 

observed wind power time series with a randomly generated error, as described by 

Equation 2-3 in Section 6.2. 𝜇, 𝜎 are varied to change the level of systematic bias 

and random error in the simulated forecast. To begin with, consider simulated 

forecasts where 𝜇 = 0 is used in Equation 6-3 to generate a simulated forecast. With 

𝜇 = 0 the forecast has no systematic bias and 𝜎 is varied to change the amount of 

random error in the forecast. In this case NMAE for the forecast is directly 

correlated to the level of random error in the forecast. Figure 6-6 shows mean and 

standard deviation of price per MWh for different PAR volumes in relation to 

NMAE. From Figure 6-6 it can be seen that as NMAE increases, there is very little 

difference in mean price per MWh. However, standard deviation in price per MWh 

increases. This mimics the results seen in Section 6.3.1 but attempts to remove the 

impact of systematic bias in the forecast on price. In Figure 6-6 mean price per 

MWh increases by less that £0.05 when NMAE increases up to 20% of capacity and 

there is no clear trend between different PAR volumes. This is smaller than the 

difference seen when using the persistence forecast in Figure 6-3. This perhaps 

indicates that the systematic bias in the persistence forecast had an impact on price 

per MWh. This follows mathematically from the formula for price and mean price. 

When the systematic bias approaches zero, 𝑃௙௢௥,௧ − 𝑃௢௕௦,௧ approaches zero in 

Equation 6-6, hence the impact of SIP on mean price also tends to zero. This results 

in a nearly constant mean price per MWh equal to annual mean MIP. 
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Mean price per MWh =  
1

𝑛
෍

𝑅௧

𝑃௢௕௦,௧
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=
1
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𝑃௙௢௥,௧ × 𝑀𝐼𝑃௧ − (𝑃௙௢௥,௧ − 𝑃௢௕௦,௧)𝑆𝐼𝑃௧
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Equation 6-6 

In addition, Figure 6-6 shows that the standard deviation in price is higher when the 

PAR volume is lower, due to the higher variation in SIP when the PAR volume is 

lower as seen in Figure 6-5.  

Figure 6-6: Average and standard deviation of price per MWh for simulated forecast with 

𝜇 = 0  

 

In order to see the impact of systematic bias in a forecast on the price per MWh, 

next consider simulated forecasts where 𝜎 = 0 is used in Equation 6-3 to generate a 

simulated forecast. If 𝜎 = 0 and the value of μ is varied then there is no random 

error in the forecast but the systematic bias is varied. In this case the value of μ is 

equal to NMBE. A negative value for NMBE indicates an under prediction whilst a 

positive value indicates an over prediction. Figure 6-7 shows mean and standard 

deviation of price per MWh against NMBE. It can be seen here in comparison to 

Figure 6-6 that systematic bias has more of an impact on mean price per MWh than 

random error has. Also, Figure 6-7 indicates that under predicting leads to an 
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increase in mean price per MWh whilst over predicting leads to a decrease in mean 

price per MWh. This is because on average, for all PAR volumes MIP<SIP in 2013. 

This indicates that for wind farm generators under predicting can lead to a higher 

mean price per MWh and so it is better financially to under predict than to over 

predict. This may not hold for all years as the difference between MIP and SIP is 

variable. This is explored further in Table 6-2 and 6-3.  

Figure 6-7: Average and standard deviation of price per MWh for simulated forecast with 

𝜎 = 0 

 

For mean price per MWh the difference for an under prediction or an over prediction 

is approximately symmetric. An under prediction of 20% of capacity leads to an 

increase in price of £1.45/MWh in comparison to a perfect forecast and an over 

prediction of 20% of capacity leads to a reduction of the same amount. However, 

this is not the case for standard deviation of price per MWh. For standard deviation 

in price per MWh, the increase with an over prediction or under prediction is equal 

up to NMBE = ±10%. However, for higher or lower NMBE there is more of an 

increase in the standard deviation for an over prediction than for an under prediction. 

The trends seen in mean and standard deviation of price are the same for all PAR 

volumes. However, for both mean and standard deviation larger changes are seen 

when the PAR volume decreases. When the PAR volume is 1 MWh a 20% under 

49

50

51

52

53
PAR1
PAR50
PAR100
PAR250
PAR350

-20 -15 -10 -5 0 5 10 15 20
NMBE (% of capacity)

10

20

30

40



203 

  

prediction leads to an increase in mean price per MWh of £1.50 in comparison to a 

perfect forecast. For a PAR volume of 350 MWh a 20% under prediction leads to an 

increase in mean price per MWh of £0.50 in comparison to a perfect forecast. This 

indicates that as the PAR volume decreases the value of a forecast will increase as 

the difference in income for a deviation from a perfect forecast increases. In addition 

to this, it will remain beneficial to under predict power output rather than over 

predict. 

Figure 6-7 shows that a higher average price per MWh is obtained if an under 

prediction is made in comparison to a perfect forecast. This does not necessarily 

indicate that a forecast which consistently under predicts (has negative systematic 

bias) is more valuable than a perfect forecast, but rather that value may be obtained 

from bidding an amount which deviates from a perfect forecast. This is explored 

further in Section 6.4.  

In reality a wind power forecast with no random error (i.e. where 𝜎 = 0) is 

infeasible. Figures 6-8 and 6-9 explore the combined impact of different levels of 

systematic bias and random error on mean and standard deviation of price per MWh. 

To do this 𝜇, 𝜎 used in Equation 6-3 to generate a simulated forecast are varied 

simultaneously. 

Figure 6-8 shows the change in mean price per MWh as 𝜇 and 𝜎 are varied in the 

simulated forecasts. It can be seen here that the change in systematic bias (𝜇) has 

more significant impact on mean price per MWh than random error (𝜎). The mean 

price per MWh increases to £53.67 per MWh if an under prediction of 100% of 

capacity (equivalent to bidding zero for all trading periods) is made and decreases to 

£47.93 if an over prediction of 100% is made (equivalent to bidding at capacity for 

all trading periods). Regardless of the systematic bias, increasing the random error 

by up to 100% of capacity reduces the average price per MWh by approximately £1 

per MWh. This indicates that whilst average price per MWh can be increased by a 

negatively biased forecast, reducing random error in the forecast can increase mean 

price per MWh by a small amount. This indicates that reducing random error in a 
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forecast can be valuable and that the impact of systematic bias on mean price 

increases as random error reduces. 

Figure 6-8: Average of price per MWh for simulated forecast with different values of 

𝜇 and 𝜎 for PAR50. The average price is shown by both the vertical axis and the colour 

bar. 

 

Figure 6-9 evaluates the standard deviation in price per MWh as 𝜇 and 𝜎 are varied 

in the simulated forecasts. This shows, as in Figure 6-6 that the standard deviation in 

higher when a forecast is positively biased and reduced when negatively biased. The 

standard deviation is lowest for a perfect forecast, indicating that a perfect forecast 

would create a more stable income than biased forecasts. Furthermore, for any 

amount of systematic bias the standard deviation is reduced if random error is 

reduced. 
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Figure 6-9: standard deviation of price per MWh for simulated forecast with different 

values of  𝜇 and 𝜎 for PAR50 

 

Overall this section indicates that both systematic bias and random error impacts 

mean and standard deviation in price per MWh. The results indicate that despite the 

change to a single imbalance price, in the absence of a perfect forecast it is still 

better to under predict than to over predict. This is the same as the results shown by 

Barthelmie et al. [23]. In addition to this, when the SIP is used, a higher mean price 

per MWh can be obtained by under predicting. However, this comes with a higher 

standard deviation in price per MWh. This indicates that whilst the price received 

over the year might be higher, there will be a larger difference in day to day income 

which might be an issue to some generators. If this was taken to the extreme then the 

highest mean price per MWh would be achieved by bidding zero power output for 

all trading periods. However, this strategy would expose the market participant to 

significant fluctuations in income. Furthermore, in a competitive market this 

behaviour is likely to lead to changes in prices which would make the strategy non-

profitable.  
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Whilst a forecast with negative bias might increase mean price per MWh, this could 

also be achieved by deviating from a perfect forecast. Hence a perfect forecast is 

still the desired result, as this can be used to derive an appropriate way of choosing 

an amount to bid in the electricity market. 

As discussed in Section 6.2 the analysis performed uses MIP and SIP data from 

2013 to calculate price received for each trading period t using Equation 6-2. Now 

consider how the results shown so far might be affected by the use of pricing data 

from different years. This gives an insight into whether the same trends might be 

seen using pricing data from other years. To do this, first consider Equation 6-2, 

which can be rewritten as Equation 6-7.  

𝑅௧ = 𝑃௢௕௦,௧ × 𝑀𝐼𝑃௧ − (𝑆𝐼𝑃௧ − 𝑀𝐼𝑃௧)൫𝑃௙௢௥,௧ − 𝑃௢௕௦,௧൯ Equation 6-7 

In this, the first term 𝑃௢௕௦,௧ × 𝑀𝐼𝑃௧ is the price which would be received if a perfect 

forecast was used. The second term, (𝑆𝐼𝑃௧ − 𝑀𝐼𝑃௧)൫𝑃௙௢௥,௧ − 𝑃௢௕௦,௧൯ is therefore the 

difference seen if an imperfect forecast is used. It can be seen that this term is 

dependent on both the forecast error and the difference between MIP and SIP for 

each trading period. Therefore, the price per MWh received is dependent on both the 

forecast error and the difference between MIP and SIP. In order to consider whether 

the results seen in this section are likely to reflect prices in subsequent years 

consider the annual average MIP and SIP. One particular issue to bear in mind is the 

SIP used in the analysis are recalculated imbalance prices generated by ELEXON to 

reflect historic market prices under the changing PAR volume. ELEXON note that 

this dataset will not model any behavioural change that might occur due to changes 

in the imbalance system [177]. In Table 6-2 recalculated imbalance prices from 

2010 – 2014 are compared to MIP. From Table 6-2 it can be seen that in 2013 both 

MIP and SIP for PAR50 were higher than for other years. However, the difference 

between MIP and SIP was similar to that seen in 2010, 2012 and 2014. The 

difference between MIP and SIP was significantly lower in 2011, though it is 

unclear why this occurs. This indicates that the impact of wind power forecast error 
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on mean and standard deviation of price per MWh seen in Section 6.3.1 and 6.3.2 

are likely to be reflective of the trends which would be seen in 2010, 2012 and 2014.   

Table 6-2: Annual average MIP and recalculated SIP for 2010 – 2014 (PAR50) 

Source: ELEXON Ltd [161]  

Year 
Annual average 

MIP (£/MWh) 

Annual average SIP 

(PAR50) (£/MWh) 

1

𝑛
෍(𝑆𝐼𝑃௧ − 𝑀𝐼𝑃௧)

௡

௧ୀଵ

 

(£/MWh) 

2010* 41.96 43.51 1.55 

2011 47.83 47.59 -0.24 

2012 45.19 48.68 3.49 

2013 50.58 52.94 2.36 

2014** 44.13 46.36 2.23 

*data available from 15/02/2010 – 31/12/2010 
**data available from 01/01/2014 – 17/05/2014 

 

Table 6-3: Annual average MIP and actual SIP for 2015-2017 (PAR50).  

Source: ELEXON Ltd [161]  

Year 
Annual average 

MIP (£/MWh) 

Annual average SIP 

(PAR50) (£/MWh) 

1

𝑛
෍(𝑆𝐼𝑃௧ − 𝑀𝐼𝑃௧)

௡

௧ୀଵ

 

(£/MWh) 

2015* 39.92 37.87 -2.05 

2016 38.87 40.03 1.16 

2017** 42.82 43.09 0.27 

*data available from 05/11/2015 – 31/12/2015 

*data available from 01/01/2017 – 31/08/2017 

Furthermore, to explore whether the recalculated imbalance prices reflect the 

difference in MIP and SIP observed once BSC modification was introduced in 
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November 2015 annual average MIP, SIP and the difference are shown in Table 6-3. 

So far it is difficult to draw conclusions about the continuing trends in MIP and SIP. 

In 2016 the difference between MIP and SIP was lower than that seen in the 2010 - 

2014 dataset. So far in 2017 there is not much difference between MIP and SIP. 

However, it is likely that winter prices will change this. This difference will have an 

impact on the price per MWh and the potential value of using a wind power forecast. 

Having considered the overall economic impact of different forecast errors, the 

value added by the hybrid NWP and GPR model developed in chapter 4 is 

considered. The hourly income when using the GPR forecast, a perfect forecast and 

a persistence forecast are compared. Again, these forecasts are for Baillie wind farm, 

with pricing data from 2013 and a PAR volume of 50 MWh. In Figure 6-10 a box 

plot of the hourly price per MWh is shown. Both the persistence forecast and the 

GPR forecast have very small negative bias. As expected, the mean price received 

per MWh is very similar between all 3 forecasts indicating that over an extended 

period of time there would be limited difference in total income using either 

prediction. However, the range in hourly prices is much higher when the persistence 

forecast is used in contrast to the GPR forecast. The range of prices for the 

persistence forecast was £440/MWh with a standard deviation of £22.50/MWh 

whilst for the GPR forecast the range was £170/MWh with a standard deviation of 

£15.20/MWh. This means that the fluctuation in short term income would be much 

higher when the persistence forecast is used. In addition to this, the results shown in 

Figure 6-8 and 6-9 indicate that there may be some benefit in deviating from the 

predicted output value. Using a more accurate forecast would allow a wind farm 

operator to choose an appropriate bid volume which manages risk and income with 

less uncertainty. The next section shows how the deterministic and probabilistic 

forecasts developed in Chapter 4 and 5 might be used to choose a bid value and the 

price which would be obtained.   
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Figure 6-10: Box plot showing price per MWh for a perfect forecast, a hybrid NWP and 

GPR forecast and a persistence forecast at Baillie wind farm. Box shows the 25, 50 and 

75 percentiles, square shows the mean value and the whiskers show the maximum and 

minimum values. 

 

6.4 Electricity trading with deterministic and probabilistic 

forecasts 

Section 6.3 has demonstrated that with the introduction of BSC modification P305 

and the associated changes to the balancing system that the mean price per MWh 

can be higher when an under prediction is made in comparison to a perfect forecast 

whilst an over prediction leads to a reduction in mean price per MWh. Furthermore, 

an under prediction would lower the hourly exposure to deviations in price, creating 

a steadier income than would be achieved if an over prediction was made. With this 

in mind, the economic impact of deviating from the most likely prediction of power 

output is considered.  
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In this section, how a forecast might be employed to bid in the electricity market is 

discussed. Of particular interest in this section is how using a probabilistic forecast 

might differ from the use of a deterministic forecast. Thus far it has been assumed 

that the most likely power output forecasted is used to bid in the electricity market, 

and the impact of forecast error is investigated. In Section 2.3.4 the use of wind 

power forecasts in the derivation of optimal bidding strategies is discussed. 

Numerous methods exist for choosing the optimal amount to bid in the day ahead 

electricity markets. Sometimes the optimal bid from an economic perspective may 

require deviating from the most likely prediction of power output. In this chapter the 

optimal bidding strategy is not the main concern, as optimal bidding requires 

forecasting of electricity prices. Instead, the way in which a probabilistic or 

deterministic forecast could be used is discussed, and the economic impact of doing 

so. The forecast developed throughout this thesis is used for this purpose. 

Particularly, the hybrid NWP and GPR power predictions made with a beta 

likelihood function in Chapter 5 are used. The deterministic forecast is calculated 

using the most likely value of the predictive distribution calculated in Chapter 5, 

whilst for the probabilistic forecast the full predictive distribution is used. In Chapter 

5 predictions were made for the final 3 months of 2015. Hence price per MWh is 

calculated for this period.  

To begin with, the price per MWh obtained and the standard deviation in price over 

the year is considered for various deviations from a deterministic forecast. This is 

done by assuming the bid volume, 𝐵௧ at trading period t is the forecasted amount +/- 

a percentage of capacity, A, whilst maintaining 0 ≤ 𝐵௧ ≤ 𝐶. Hence 𝐵௧ is calculated 

using Equation 6-8, and the price per MWh is calculated using Equation 6-9. 

𝐵௧ =

⎩
⎪
⎨

⎪
⎧𝑃௙௢௥,௧ + ൬

𝐴 × 𝐶

100
൰ 𝑖𝑓 0 ≤ 𝑃௙௢௥,௧ + ൬

𝐴 × 𝐶

100
൰ ≤ 𝐶

0 𝑖𝑓 0 ≥ 𝑃௙௢௥,௧ + ൬
𝐴 × 𝐶

100
൰

𝐶 𝑖𝑓 𝑃௙௢௥,௧ + ൬
𝐴 × 𝐶

100
൰ ≥ 𝐶

 

where  𝐴 ∈ [−100,100]  

Equation 6-8 
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𝑅௧ = 𝐵௧ × 𝑇𝑃௧ − 𝑆𝐼𝑃௧൫𝐵௧ − 𝑃௢௕௦,௧൯ Equation 6-9 

In Equation 6-8 𝑃௙௢௥,௧ is a deterministic forecast obtained from the method used in 

Chapter 5 for Baillie wind farm at time t,  𝑃௢௕௦,௧ is the observed power output, A is 

the percentage under or over bid and C is the capacity of the wind farm. In Equation 

6-9 𝑇𝑃௧ and 𝑆𝐼𝑃௧ are as used in Equation 6-2.  

Next, consider how a bid could be obtained from a probabilistic forecast. In the 

forecasts developed in Chapter 5 a full predictive distribution is derived. A random 

variable 𝑋௧ is used to forecast the possible values for the power output at time t. A 

CDF for the power output at time t is given by Equation 6-10. In this, 0 ≤ 𝑥 ≤ 𝐶 

and 𝑝 ∈ [0,1].  

𝐹௑೟
(𝑥) = 𝑃(𝑋௧ ≤ 𝑥) = 𝑝 Equation 6-10 

The inverse CDF for a value p gives a value x such that the probability that the 

forecasted value is less than x is equal to p. The inverse CDF is given by Equation 6-

11. 

𝐹௑೟

ିଵ(𝑝) = {𝑥 ∈ [0, 𝐶] ∶  𝐹௑೟
(𝑥) = 𝑝} Equation 6-11 

Again, for each trading period t, a bid 𝐵௧ must be defined.  Rather than obtaining the 

bid amount at time t by increasing or decreasing the forecasted value by a fixed 

amount as in Equation 6-8, the bid amount is chosen using the inverse likelihood 

function. If it is expected price per MWh would be increased through underbidding a 

value to bid at time t,  𝐵௧ would be calculated by evaluating Equation 6-12 for a low 

value of p. Alternatively, if it is expected price per MWh would be increased 

through overbidding a value to bid at time t,  𝐵௧ would be calculated by evaluating 

Equation 6-12 for a high value of p. Choosing 𝐵௧  with p = 1 is equivalent to bidding 

full capacity for all trading periods, i.e. choosing 𝐵௧ = 𝐶, ∀𝑡. Whilst choosing 

𝐵௧ with p = 0 is equivalent to bidding zero for all trading periods, i.e. choosing 𝐵௧ =

0, ∀𝑡. 
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𝐵௧ = 𝐹௑೟

ିଵ(𝑝) Equation 6-12 

In Figure 6-11 the economic impact of deviating from the deterministic forecast is 

explored. It can be seen here that the average price obtained per MWh generated is 

increased by underbidding from the forecasted amount and decreased by 

overbidding. Furthermore, any deviation from the forecast leads to an increase in the 

standard deviation of price per MWh. However, there is a larger increase in standard 

deviation of price per MWh when overbidding than underbidding. This shows, as in 

Section 6.3.2, that the economic value of using a forecast to make bidding decisions 

is likely to become more important as the PAR volume decreases.  

Figure 6-11: Economic impact of deviation from a deterministic forecast for Baillie wind 

farm. 

 

 

Figure 6-12 explores the economic impact of using a probabilistic forecast with bids 

chosen using Equation 6-12 for different values of p. In this, it can be seen that there 

is an increase in mean price per MWh when a low value of p is chosen and a 

decrease when a high value of p is chosen. However, the impact on standard 
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deviation of price is smaller. This method of bidding can help limit exposure to 

changes in MIP and imbalance price using the uncertainty information provided by 

the probabilistic forecast. 

Figure 6-12: Average and standard deviation of hourly price per MWh when a 

probabilistic forecast is used to choose bid volume. 

 

Figures 6-11 and 6-12 indicate that whilst there may be some increase in the average 

price per MWh that there is also an increase in the standard deviation in price 

achieved when a wind power producer under or over bids. This suggests that bidding 

as close as possible to the actual amount produced can lead to a more stable revenue 

stream. In order to explore this further, consider the average price received for 

electricity generated on a monthly basis. Figure 6-13 shows the monthly average 

price per MWh under extreme underbidding, overbidding and bidding the forecasted 

volume of electricity. Underbidding leads to an increase in price per MWh over the 

12 month period, however, it can be seen in some months it leads to a reduction in 

price per MWh. In the most extreme case, seen in April in Figure 6-13, the 

difference between under and overbidding leads to an average difference of 
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£70/MWh. In addition, even in months where there is less variation between the 

overbidding and underbidding scenarios the difference between the two is around 

£20/MWh.  

Figure 6-13: Monthly average price per MWh of electricity under different bidding 

scenarios when the PAR volume is 50MWh. 

 

This means that choosing to underbid based on the annual average price could lead 

to a significant loss in revenue in some months. For example, in Figure 6-13 in 

September, choosing to underbid rather than bidding the forecasted volume would 

lead to a reduction in income of around £175,000 for a wind farm with a 50MW 

installed capacity. This indicates that forecasting the expected power output from a 

wind farm can lead to a steadier income for wind farms, and prevent huge 

fluctuations in income on a monthly basis. This is the case for both deterministic and 

probabilistic forecasts. In Figure 6-13 an example is shown when the PAR volume is 

50 MWh. As the PAR volume decreases further the fluctuations in monthly income 

will be even larger. 
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This gives an example of how a deterministic or probabilistic forecast might be used 

to bid in the electricity market, and shows the potential issues with choosing to bid 

away from the forecasted volume of electricity. It shows how the additional 

information provided by the probabilistic forecast could be used to limit exposure to 

risk. In practice, power output forecasts would be used alongside electricity price 

forecasts to establish a bidding strategy which optimises price received for 

electricity generated subject to an acceptable level of risk defined by the wind power 

producer.  

6.5 Conclusions 

This chapter has investigated the economic value of a wind power forecast from the 

perspective of a wind generators participating in the UK electricity market. This has 

been done by considering the price received per MWh generated. The analysis 

performed considered the effect of forecast accuracy on price received per MWh and 

the impact of changing PAR volume for calculating imbalance prices on price 

received by the generator. Moreover, the hourly price received when the forecasts 

developed in this thesis were used to define bid volume were considered. Finally, an 

example of how a deterministic or a probabilistic forecast might be used to bid in the 

electricity market is given, showing the impact on price of each. 

The results shown in Section 6.3 indicate that random error in a wind power forecast 

has a relatively small impact on mean price per MWh but a larger impact on 

standard deviation in price per MWh. When the systematic bias in a forecast was 

zero, a forecast with NMAE of 20% of capacity resulted in less than £0.05 deviation 

in mean price per MWh in comparison with a perfect forecast. However, the same 

forecast lead to an increase in standard deviation of up to £21/MWh. This indicates 

that whilst a reduction in random error in a forecast might not lead to an 

improvement in mean price per MWh for pricing data from 2013, it can lead to a 

more stable income stream. It was also shown that systematic bias has a larger 

impact on mean price than random error. Additionally, it was shown that using the 
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GPR forecast developed in this thesis to bid in the UK electricity market lead to a 

reduction in standard deviation of hourly prices of £7.30/MWh in comparison to 

using a persistence forecast. Because of this, the forecasts developed through this 

thesis can add value to a wind farm operator participating in the UK electricity 

market.  

Whilst the results in Section 6.3.2 indicate that under predicting wind power output 

can lead to a higher mean price per MWh than is achieved for a perfect forecast, this 

doesn’t necessarily indicate that a biased forecast is desirable, rather an optimal 

bidding strategy may require bidding a different volume to the forecasted power 

output. In addition to this, the results shown in Section 6.3 indicate that as the PAR 

volume for calculating imbalance prices is reduced the impact of forecast error on 

price will be amplified. For example, the difference in mean price for a biased 

forecast is larger for a smaller PAR volume, and the standard deviation in hourly 

price is higher. This shows that as the PAR volume is reduced a more accurate 

forecast will be required to maintain a stable source of income. The use of a 

probabilistic forecast and a deterministic forecast to choose a bid in the electricity 

market investigated in Section 6.4 indicates that using a probabilistic forecast can 

limit a generator’s exposure to variable prices and decrease the standard deviation in 

hourly prices. 

In general, it can be concluded that a more accurate forecast will limit a generators 

exposure to the more variable imbalance price and lead to a more stable income. As 

the PAR volume decreases, imbalance prices are likely to become more variable, 

and so this may become an important benefit of wind power forecasting. Whether 

this will lead to a higher mean price depends on the difference between MIP and SIP 

seen over an extended period of time.  It is likely that, as financial support for wind 

farms is reduced by ROCs being phased out, the price received per MWh will 

become more important to a wind farms revenue. Therefore, reducing error in a 

forecast and choosing an appropriate bidding strategy will become increasingly 

important. 
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Chapter 7. Conclusions 

Wind power has the potential to contribute significantly to the decarbonisation of the 

electricity supply. Rapid developments have been seen in the wind industry both 

globally and in the UK in the last decade. This increase in the use of wind and other 

renewable electricity sources is vital to reducing GHG emissions from the electricity 

sector. In order to continue this growth, it is important to consider how wind energy 

can be effectively integrated into the electricity system to maintain a secure and cost 

effective electricity supply. Wind power forecasting has a part to play in many 

aspects of integration of wind energy in the UK electricity system, from unit 

scheduling to meet demand to ensuring a stable income source for wind power 

producers. Therefore, increasingly accurate wind power forecasts are vital in the 

electricity sector.  In light of this, the main aim of this thesis was to develop and 

implement a hybrid NWP and GPR model for the prediction of hourly wind speed 

and power output from 3 – 72 hours ahead. In addition to this, the use of 

atmospheric stability as an input in the hybrid model, and the value of using a wind 

power forecast were considered. In this chapter, the overall conclusions drawn from 

the work performed in this thesis are discussed.  

7.1 Research summary and key results 

The first object of this thesis was to investigate the use of GPR for the prediction of 

wind speed and power output, and the second was to explore whether incorporating 

atmospheric stability into the model could improve model performance. In Chapter 3 

the hybrid NWP and GPR model used throughout this thesis was introduced and 

tested for the prediction of 10 m and hub height wind speeds. The model showed 

promising results as a method for predicting wind speed, with improvements over an 

NWP model and the persistence methods. At this stage atmospheric stability was 

incorporated by subdividing data by atmospheric stability class at the time of the 

prediction. The hybrid GPR model for the prediction of 10 m wind speed with data 
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subdivided by atmospheric stability lead to a reduction in MAPE of between 5 and 

9% over the Met office NWP. In contrast, the same model without data being 

subdivided by atmospheric stability class lead to a 2% reduction in MAPE over the 

met office NWP model. In addition to this, the hybrid NWP and GPR model for the 

prediction of hub height wind speeds with data subdivided by atmospheric stability 

class lead to a reduction in MAPE of between 1 and 2% over the same model 

without subdividing data. Whilst this was not strictly a prediction, it indicated that 

subdividing data by atmospheric stability class could improve predictions.  

This investigation was extended in Chapter 4. In this chapter, the hybrid NWP and 

GPR model was employed for the prediction of 10 m and hub height wind speeds 

and wind power for an individual turbine and whole wind farms. In this, the impact 

of atmospheric stability on predictive performance was tested by using the Obukhov 

length stability parameter as an input in the model. It was found here that for wind 

speed prediction the inclusion of the Obukhov length as an input parameter did not 

lead to improved predictions for 10 m wind speeds but did improve predictions of 

hub height wind speeds. Using the hybrid NWP and GPR model with the Obukhov 

length stability parameter as a model input for the prediction of hub height wind 

speed lead to between 1 and 5% reduction in MAPE over the same model with the 

Obukhov length stability parameter omitted. The hybrid NWP and GPR model 

without the stability parameter lead to improved predictions over the NWP model 

and persistence for both applications. The model was then extended to predict wind 

power output for both a single turbine and power output for whole wind farms. It 

was found that including the Obukhov length stability parameter lead to 

improvements of around 1% in power predictions for a single turbine.  

For power predictions at a wind farm the inclusion of the Obukhov length stability 

parameter did not in general lead to improved prediction. However, some 

improvement was seen at the 2 offshore sites which were tested. At these sites there 

was between 0.5 and 1.9% improvement in NMAE when the Obukhov length 

stability parameter was used as an input parameter in comparison to the simple 

hybrid NWP and GP model. Overall, the investigation of a hybrid NWP and GPR 
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model for wind speed and power prediction showed that this method gives results 

which are comparable to other state of the art forecasting techniques. The inclusion 

of the Obukhov length stability parameter is beneficial for the prediction of wind 

power output at offshore wind farms, a result which is important given the current 

expansion of offshore wind capacity in the UK.  

The third objective of this thesis was to explore whether the hybrid NWP and GPR 

model was appropriate for probabilistic wind power forecasting. In Chapter 5 the 

model was evaluated in a probabilistic framework for 22 wind farms across the UK. 

Through this, it is clear that the model generates probabilistic wind power forecasts 

which are competitive with other state of the art forecasting techniques. In addition 

to this, it was seen that using a beta likelihood function was more appropriate from a 

probabilistic perspective than the Gaussian likelihood function. Predicting 

uncertainty well is an increasingly important aspect of wind power forecasts. It 

allows wind power generators to define optimal bidding strategies and system 

operators to define a sufficient level of reserve capacity. The use of the hybrid NWP 

and GPR model with a beta likelihood function allows predictions to be made with 

narrower prediction intervals, thus containing less uncertainty. In addition to this, 

this model is better able to vary the level of uncertainty based on predictive 

conditions.  

The final objective was to consider the economic value of a wind power forecast 

from a wind farm generators perspective. In Chapter 6, the mean and standard 

deviation of price received per MWh generated were investigated for forecasts with 

different levels of systematic bias and random error. In addition to this, Chapter 6 

considered the effect of ongoing changes to the imbalance pricing system in the UK 

electricity market. The results showed that systematic bias had a large effect on both 

mean price per MWh and standard deviation in price. In addition, random error has a 

significant impact on standard deviation in price per MWh but less impact on mean 

price per MWh. This indicated that increasing forecast accuracy has the potential to 

create a more stable revenue stream for wind farms, leaving them less exposed to 

fluctuations in day to day price. The hourly price received for electricity generated 
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when the hybrid NWP and GPR model developed throughout this thesis was used to 

define the bid volume was also investigated. It was shown that when this method 

was used to predict wind power output there was no difference in the mean price per 

MWh obtained over the length of the forecast in comparison to the persistence 

forecast or a perfect forecast. However, there was a decrease in standard deviation of 

price per MWh of £7.30. The effect of systematic bias on mean price per MWh also 

suggests that some benefit may be obtained from bidding a different value to the 

most likely power output. Many bidding strategies exist which aim to economise on 

the use of wind power forecasts to improve revenue. This thesis did not focus on 

developing an optimal strategy, however, did show how a deterministic and a 

probabilistic forecast might be used to choose a bid volume. The impact on price 

was discussed for each of these. It was shown that using a probabilistic forecast 

could help limit a wind farm generators exposure to price fluctuations. Overall, the 

work in this chapter indicated that the use of a wind power forecast had the ability to 

limit a wind farms generators exposure to fluctuating electricity prices and charges 

for deviating from their contracted position. The success of this was dependent on 

the forecast accuracy. The results shown in this chapter indicate that the forecasts 

developed throughout this thesis may have some financial value to a wind farm 

operator participating in the UK electricity market.  

Overall, this thesis has demonstrated that a hybrid NWP and GPR model can 

provide high-quality wind speed and power forecast. Both deterministic and 

probabilistic forecasts made using this method offered a reduction in error over a 

simple benchmark model and had the potential to add value for a user.  

7.2 Opportunities for further work 

The model developed throughout this thesis has proved effective for wind power 

forecasts. There are various aspects of the model and its applications which would 

make interesting further research.  
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In chapters 3 and 4, the hybrid NWP and GPR model was implemented for the 

prediction of hub height wind speed and power prediction for a single turbine. This 

was only tested at one site due to the availability of power data and parameters 

which enabled the calculation of atmospheric stability. It would be beneficial for the 

future development of the model to test the performance of this model at other sites. 

The results for the prediction of 10 m wind speeds at 15 MIDAS sites indicated that 

there was some variation in model performance between sites. The results in 

Chapter 4 showed that the inclusion of the Obukhov length stability parameter as an 

input in the model improved the prediction of hub height wind speed and power 

prediction at a single turbine. It would be beneficial to consider whether this result 

holds for other sites and whether the site characteristics have any impact on model 

results.  

In chapters 4 and 5, it was shown that for wind farm power prediction the inclusion 

of the Obukhov length stability parameter as an input had limited impact on 

prediction accuracy for onshore sites. However, it did improve prediction accuracy 

for offshore sites where predictions were made using a wind forecast for the nearest 

onshore location available. This was limited to wind farms where predictions were 

available for a site within 10 km of the wind farm. It would be beneficial to see 

whether this result holds for wind farms further offshore, as the majority of UK 

wind farms are located up to 20 km from the coastline. In addition to this, in the 

wind farm power predictions made throughout this thesis the wind speed predictions 

used are for the nearest site. It would be useful to obtain wind speed predictions and 

observations for offshore sites to attempt to improve predictive accuracy for 

offshore sites. These extensions could be particularly valuable to both system 

operators and wind farm operators in the future as the use of offshore wind power in 

the UK is due to increases significantly. 

Additionally, in chapters 4 and 5 the results were shown at 2 sites where only short 

wind power output datasets were available. This showed that this model was capable 

of making reasonable wind power predictions for these short datasets. However, it 

would be useful to consider the length of dataset required to best inform the model. 
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This would enable the user to create a model which was not too computationally 

expensive whilst giving accurate predictions.   

Finally, chapter 6 showed the value of the forecasts developed throughout this thesis 

from the perspective of a wind farm operator participating in the UK electricity 

market and considered the economic impact of improving forecast accuracy. This 

indicated that there could be some value obtained from increasing forecast accuracy. 

However, it would be interesting to considering how pricing structures and 

electricity market mechanisms could be changed to encourage accurate forecasting 

of electricity generated from non-dispatchable sources. From the perspective of 

transmission system operators, such as the National Grid in the UK, accurate 

predictions allow more efficient planning of unit dispatch to meet electricity 

demand. More efficient unit dispatch can reduce GHG emissions, through reduced 

reserve requirements, and therefore are important from an environmental 

perspective. Because of this, it would be useful to consider mechanisms which may 

increase the economic incentive to increase wind power forecast accuracy. 

7.3 Data quality and availability 

The availability of high quality wind power output and wind speed forecast data was 

crucial to the success of the forecasting technique developed throughout this thesis. 

Furthermore, the availability of data is key to developing efficient, low emission 

electricity systems. However, obtaining data from the wind industry is not an easy 

task. Firstly, wind power output data was required. This is generally considered to 

be commercially sensitive and so only aggregated data was available. This was 

obtained from Elexon in the form of hourly output from a whole wind farm. It would 

have been useful in this work to have more detail than this. For example, knowing 

the number of turbines operational at any one time or individual turbine performance 

may have allowed wind power forecasts to be improved. 

In addition to this, atmospheric stability predictions were only available at a small 

selection of sites, limiting the site choice and the potential to explore how site 



223 

  

characteristics affected prediction accuracy of wind speed or power output. In 

particular, the availability of atmospheric stability predictions at more coastal sites 

would allow a more in-depth study into offshore wind power predictions using the 

hybrid NWP and GRP model. 

On a smaller scale, the data obtained for a single which was used to look at hub 

height wind speed and power predictions in Chapters 3 and 4 was good quality wind 

speed and power data available at 10-minute intervals over 3 years. This was very 

useful for looking at model performance. However, this level of detailed data was 

only available at one site which limited the potential for further study. 

Finally, the lack of publicly available datasets mean that it is difficult for model 

performance to be compared across different methods seen in literature. This makes 

it difficult to consider whether new models developed can outperform other models 

available.  

Generally, further availability of high quality detailed wind speed and power data 

over a selection of sites has the potential to advance wind forecasting techniques and 

encourage development in the area. Such data is likely to lead to increasingly 

accurate wind power forecasts and a greater use of such forecast in the wind 

industry. 

7.4 Wider impact 

Overall, the aim of reducing emissions from the UK electricity system will not be 

achieved solely through an increase in renewable electricity capacity. A system-

wide approach will need to be employed, making use of a wide range of 

technologies. For example, reductions in emissions will be achieved through 

increasing efficiency, reducing demand and increasing the use of renewable 

electricity. Wind energy alone may not provide the increase in renewable electricity 

required. However, it will provide a significant contribution, particularly in the UK 
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where there is an abundant wind resource and a large range of suitable locations for 

offshore wind farms. 

A steady reduction in annual electricity demand since around 2007 and an increase 

in the use of renewable energy has helped the UK towards its emissions targets so 

far. However, the UK government’s announcement of plans to end the sale of petrol 

and diesel car and van sales by 2040 is likely to result in an increase in the use of 

electric vehicles and with it, an increase in electricity demand in the future. In 

addition to this, increasing the use of variable renewable energy sources further 

without careful consideration of whole system security could lead to significant 

increases in the cost of delivering electricity. We have a societal responsibility to 

ensure that delivering a low carbon electricity system does not lead to an excessive 

increase in the cost of electricity to consumers, as this is likely to significantly 

impact upon low-income households. Because of this, continued research focusing 

on ways to effectively manage renewable energy generation are important. 

The forecasting method developed throughout this thesis contributes to the body of 

literature which has the potential to increase the efficiency of integration of wind 

energy in the electricity system and reduce the costs associated with this. This has 

benefits for electricity consumers, generators and the global community who 

collectively benefit from attempts to reduce GHG emissions. The hybrid NWP and 

GPR model could be implemented by a number of users as it has shown great 

potential for the prediction of wind power output. The investigation of forecasting 

techniques and of input parameters that can increase predictive accuracy continues 

to be an important area of research. It is unlikely that one method can provide 

accurate predictions in all scenarios at all sites. For example, as shown in this thesis, 

the inclusion of the Obukhov length stability parameter is effective in increasing 

prediction accuracy for power output at offshore sites, but not at onshore sites. 

Because of this, the work presented throughout this thesis provides an important 

contribution to the available literature on wind power forecasting.  
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