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Abstract 
 

Assessment of non-dietary, human exposure to pesticides is an integral part of pesticide 

authorisation at the EU level. In this thesis, models were used to predict exposure of vulnerable 

human sub-populations to pesticides and thus to assess risks to health. Two high-quality 

pesticide usage datasets previously collected by Fera Science Ltd. and for EFSA were analysed. 

Trends in pesticide usage and major drivers of exposure and thus risk were identified, including 

any implications for regulatory procedures over the period investigated. 

Residential exposure of pregnant women living at 100 and 1000 m downwind of treated 

orchards indicated improving fate (vapour pressure) and hazard profiles 

(reproductive/developmental toxicities) of pesticides applied in England and Wales over a 25-

year period (1987, 1996, 2004 and 2012). Overall, results reflected the influence of changing 

policies during the 1990s and the ongoing review programme at national level. 

Assessment of 50 agricultural professional operators across five cropping systems in Greece, 

Lithuania and the UK indicated a range of applications with potential for risk. Estimated 

exposure was significantly influenced by variations in agricultural practices and working 

behaviours involving the use of personal protective measures, including the extensive use of 

wettable powder formulations in Greece and large areas of land treated per day in Lithuania and 

the UK. 

The 50 selected professional operators handled a range of active substances and/or co-

formulants with known/possible endocrine disrupting activity during single spray days. At 

maximum, one operator handled five such active substances and ten such co-formulants in a 

single day. Thus, higher risk is expected in mixture than that predicted for single active 

substances. 

Although the use of models in risk assessment has inherent uncertainties, these results add to the 

existing body of knowledge and allow a holistic assessment of the pesticide regulatory 

procedures over the period investigated.  
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Chapter 1 Introduction 
 

Current agricultural activities rely to a large extent on the use of pesticides to secure yields and 

so help to meet demands from the rapid world-wide population growth, accelerated urbanisation, 

climate and dietary changes, and resource shortages (Schrijver, 2016). Agricultural activities are 

the primary target for pesticide applications with variability in loads in the environment 

explained by a range of factors including the physicochemical behaviour of active substances, 

agricultural practices, atmospheric conditions, nature of surfaces of application, and competing 

processes (Houbraken et al., 2016; Zhang et al., 2016; Villiot et al., 2018). During an 

application, 20-30% of pesticides may not reach the target area and are lost into the 

environment as spray drift (Villiot et al., 2018). After an application is complete, volatilisation 

followed by transport in the vapour phase may cause vapour drift from the treated plant and soil 

surfaces, accounting for as much as 90% of the applied dose at the extreme (Bedos et al., 2002). 

Pesticide drift may cause problems including damage to nearby plants, environmental 

contamination, illegal pesticide residues on food, and adverse effects on human health (Felsot et 

al., 2010; Hvezdova et al., 2018).  

Studies on non-dietary exposure of humans to pesticides have been increasingly well 

documented over time. Upon contact with pesticides, active substances may dissolve and 

penetrate through the layer of wax on the skin and then enter into the blood stream (Herzfeld, 

2017), whilst deposited soluble airborne chemicals in the lungs can be directly absorbed 

(ATSDR, 2005). Occupationally, professional agricultural operators may be confronted with 

particularly high exposure to complex mixtures of pesticides at levels hundreds of times greater 

than those for the general population (Sacchettini et al., 2015). There is also some evidence to 

indicate potential risks for residents living near to agricultural fields, particularly for sensitive 

sub-populations such as foetuses, children, pregnant and nursing mothers, and the elderly 

(Shirangi et al., 2010; Costa et al., 2014). The investigation of health issues related to exposure 

to pesticides can provide an important check on how pesticides have been and should be 

regulated (Andersson et al., 2014; Barnett et al., 2007). Nevertheless, poor exposure assessment 

remains a major limitation in the post-authorisation monitoring and epidemiological 

investigations (Mandic-Rajcevic et al., 2015; Kalliora et al., 2018). 



   14 

Models that can simulate accurately scenarios for exposure of humans to pesticides are 

important tools in pesticide authorisation at the EU level. Much effort is expended to improve 

the existing exposure models to reflect current agricultural practices and scientific knowledge. 

For example, the UK Predictive Operator Exposure Model (UK POEM; UK MAFF, 1992) and 

the German Operator Exposure Model (the German model, Lundehn et al., 1992) were 

superseded recently by the harmonised Agricultural Operator Exposure Model (AOEM, 

Groβkopf et al., 2013a), and the Bystanders, Residents, Operators, and WorkerS Exposure 

models (BROWSE; Ellis et al., 2017) was introduced for regulatory application. Nevertheless, 

these models have some limitations mainly owing to sparcity of data and adopting reasonable 

worst-case assumptions, including a lack of exposure data for knapsack mixing/loading 

activities in the AOEM (Groβkopf et al., 2013b) and a maximum downwind distance of 10 m 

for pesticide vapour exposure in the BROWSE model (van den Berg et al., 2016). Whilst 

improvement to the existing models is needed as additional data become available, adjustable 

model parameters that allow exposure estimation for different scenarios are also important. 

At the EU level, the control of pesticide use dates back to the first introduction of pesticide 

policies at this level in 1979 (Skevas et al., 2013). This was followed by Directive 91/414/EC 

that entered into force in 1993 and was repealed on 14 June 2011 with the Plant Protection 

Products Regulation (EC) 1107/2009 entering into force on 14 December 2009. Under the 

regulations, the authorisation of pesticide products is only granted if they have no immediate or 

delayed harmful effect on human health based on good agricultural practice and realistic 

conditions of use. Over time, persistent pesticides have been replaced by more biodegradable 

chemicals with currently about 400 active substances approved within the EU (Carvalho, 2017; 

Rieke et al., 2017). Despite much effort to minimise pesticide risk on human health, levels of 

exposure can be influenced by a wide variety of factors under actual use conditions. Equally, 

pesticide regulations usually require risk assessments on single active substances with 

additional, generally fewer data needed for commercial product formulations (Kienzler et al., 

2016), whilst the CLP Regulation (EC) 1272/2008 on the classification, labelling and packaging 

of substances and mixtures transfers the responsibility to characterise toxicological hazard for 

pesticide co-formulants to industry. As such, mixture effects of pesticide chemicals comprising 

multiple active substances and/or co-formulants with similar toxicological endpoints have rarely 

been assessed to date.  
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The aim of this PhD is to assess the non-dietary exposure of vulnerable human populations to 

pesticides and to evaluate the efficiency of pesticide regulations in managing pesticide risk over 

the period investigated. The main objectives of this work are:  

i. to identify the trends over 25 years (1987-2012) of pesticide usage and associated risk 

of exposure of pregnant women living at different distances downwind from treated 

orchards in England and Wales; 

ii. to investigate how field practices in handling and applying pesticides influence the 

long-term exposure of agricultural professional operators to pesticides for different EU 

agricultural systems; 

iii. to assess the real-world operator exposure to pesticide products/mixtures with potential 

endocrine activity comprising the range of active substances and co-formulants used in 

different EU agricultural systems; and 

iv. to evaluate the major drivers of predicted exposure of target populations to pesticides 

including any implications for the regulatory assessment scheme.  

 

Chapters of the present thesis have been prepared as stand-alone papers for submission to 

international peer-reviewed journals. The status of the different papers with regard to the 

publication process is presented in Table 1-1. An appendix is added at the end of this thesis with 

an initial evaluation of the mathematical model that is developed in Chapter 2 for the prediction 

of airborne pesticide concentrations near to treated fields (Appendix 4). 

 

Chapter 2 presents the patterns of pesticide usage in orchards over a 25-year period (1987-2012) 

in England and Wales, and the risk of environmental exposure to pesticides for pregnant women 

living at 100 and 1000 m downwind of treated orchards. A mathematical model is developed to 

predict levels of exposure to pesticides via indirect dermal contact with spray deposits and 

inhalation of volatilised pesticides. The impact of regulatory intervention in improving the fate 

and hazard profiles of pesticides over the period is investigated.  

 



   16 

Chapter 3 reports the occupational exposure of professional agricultural operators to pesticides 

incurred during mixing/loading and application activities. The analysis considers five different 

cropping systems and regions in the EU. Levels of exposure are estimated using the harmonised 

Agricultural Operator Exposure Model (AOEM) and compared with the acceptable operator 

exposure level (AOEL) to assess the levels of risk associated with exposure to individual active 

substances applied. Any predicted exposures greater than the AOELs are investigated to identify 

the influencing factors including agricultural practices and working behaviours. The 

implications for operator exposure assessment within regulatory procedures are considered.  

 

Chapter 4 presents the exposure of agricultural professional operators to constituents of all 

pesticide products applied on a single working days and comprising multiple active substances 

and/or co-formulants with known/possible endocrine disrupting activity. Levels of exposure to 

single chemicals are assessed using the AOEM and potential risk from such active substances is 

assessed using the lowest no observed (adverse) effect levels (NO(A)ELs) for endocrine 

disrupting effects and an assumption of concentration addition. Knowledge gaps in the current 

risk assessment for multiple pesticides with similar toxicological endpoints are identified. 

 

Chapter 5 summarises the use of models for risk assessment, major drivers of exposure and 

associated risk, the implications for the regulatory assessment scheme, the limitations 

encountered, and the recommendations for further studies in the risk assessment of non-dietary, 

human exposure to pesticides. 

 

Appendix 4 present an initial evaluation of the model developed for the prediction of airborne 

pesticide concentrations at a chosen distance downwind from a treated area. Field experimental 

data are used that were collected by the Swedish University of Agricultural Sciences during the 

periods of summer and autumn between 2008 and 2010 and five pesticide active substances. 

The results are analysed to determine the performance and limitations of the model and to 

identify any improvements to the model required for the future. 
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Chapter 2 How does exposure to pesticides vary in space and 
time for resident living near to treated orchards? 

 

Introduction 
 

Pesticides are bioactive substances that have been widely used to improve agricultural 

production, reduce yield losses and maintain high product quality in order to meet the increasing 

demand for food from the world’s growing population, particularly in intensive agricultural 

systems. Pesticides are chemical or biological agents designed to kill potential disease-causing 

organisms and control insects, other pests and weeds in both open and protected environments. 

Due to their intrinsic toxicity, it is necessary to quantify potential for transportation away from 

the point of application, exposure to humans and non-target ecosystems, and risk to human and 

ecological health. Pesticides are amongst the most highly regulated chemical classes due to the 

combination of bioactivity and use in open environments. 

Spray drift and volatilisation followed by transport in the vapour phase are potential routes for 

dispersal of pesticides via the air. Spray drift is the downwind movement of spray droplets 

beyond the treated area at the time of application or soon after (Felsot et al., 2010). It is 

influenced by the nozzle and operating pressure of the equipment, height of the spray boom, and 

weather conditions at the time of application (Hofman and Solseng, 2001). After an application 

is complete, volatilisation followed by transport in the vapour phase can be an important 

pathway for pesticide emission from treated soil and plant surfaces, at the extreme accounting 

for as much as 90% of the applied dose over a period of a few days to several weeks (Bedos et 

al., 2002; Lichiheb et al., 2014). Sarigiannis et al. (2013) proposed that volatilisation from plant 

surfaces can be up to three times greater than that from soil, and volatilisation can be more 

important for total emissions of active substances compared to spray drift in the long term.  

After entering into the atmosphere, spray drift can be transported by the wind before deposition 

of spray droplets locally while pesticide in the vapour phase following volatilisation can be 

transported over longer distances (Briand et al., 2002). Whilst much work has been done to 

measure downwind deposition of spray droplets, there is a lack of consistent methodology for 

quantifying airborne pesticide concentrations at a range of scales (Zivan et al., 2016; Lichiheb et 
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al., 2016). Mathematical models are useful in complementing expensive and time-consuming 

field trials by including the complex processes that mediate the transfer of pesticides between 

different environmental compartments (Salcedo et al., 2017). A number of previous studies 

calculated vapour exposure using volatilisation models coupled with different dispersion 

modelling approaches including 3D Gaussian and a 2D version of OPS (Operational 

Atmospheric Transport Model for Priority Substances) (van den Berg et al., 2016). The 

BROWSE model (Bystanders, Residents, Operators and WorkerS Exposure models for plant 

protection products) is a recent development that combines a mechanistic volatilisation model 

and an advanced 3D dispersion model of OPS (van den Berg et al., 2016). Development of 

models for aerial transport and exposure to pesticides is still restricted by data availability. For 

example, the best data available while developing the airborne spray component of the 

BROWSE’s orchard model did not give sufficient confidence in quantifying spray drift under 

different meteorological conditions and at different distances of exposure, implying that further 

experimental data are needed (Ellis et al., 2017).  

There is evidence to suggest that residents living close to agricultural fields have greater 

exposure to pesticides compared to the general population, but very few studies have examined 

the dose-response relationships between exposure and health outcomes of interest (Shirangi et 

al., 2010). Sensitive sub-populations amongst residents could be at higher risk of health impacts 

than the general population and include foetuses, children, pregnant and nursing mothers, and 

the elderly (Costa et al., 2014). A systematic review and meta-analysis on residential exposure 

to pesticides and childhood leukaemia for 13 case-control studies published between 1987 and 

2009 indicated stronger risk for exposure during pregnancy (meta-rate ratio (mRR): 2.19, 95% 

confidence intervals (CI): 1.92-2.50) compared to after pregnancy (mRR: 1.65, 95% CI: 1.33-

2.05) (Van Maele-Fabry et al., 2011). Nevertheless, the study highlighted recall bias as a major 

limitation of case-control studies where questionnaire data are used to assess past exposure. 

Shirangi et al. (2010) suggested that residential proximity to pesticide applications during 

pregnancy could be associated with adverse reproductive outcomes in offspring. However, 

epidemiological evidence from 25 studies published between 1950 and 2007 was generally 

weak, primarily due to limitations in the assessment of exposure. The study suggested that 

future research should refine the methods on exposure modelling by incorporating 

environmental monitoring studies on pesticide drift. Weselak et al. (2007) reviewed 

epidemiological evidence on periconceptual pesticide exposures and developmental outcomes 
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based on studies published between 1966 and 2005 and reported generally poor exposure 

estimations and limited evidence for causality in all the associations examined due to self-

reported, indirect, or proxy exposure measures.  

Regulatory assessments prior to authorisation of plant protection products require quantitative 

estimates of exposure to pesticides via the air for comparison with toxicological reference levels, 

below which no adverse health effects is expected (Galea et al., 2015). In Europe, the estimation 

of exposure to pesticides for operators, workers, residents and bystanders is underpinned by the 

guidance of EFSA (2014). However, sparcity of data on concentrations of volatilised pesticides 

in air has been noted as a limitation on exposure assessment (Ellis et al., 2010), as has a general 

lack of research into methods for estimating exposure and risk to the general public (Coscolla et 

al., 2017).  

The Pesticide Authorisation Directive 91/414/EEC, ratified in 1993, legislated for a 

comprehensive review of plant protection products already on the market; of the ca. 1,000 

active substances on the market in 1993 in at least one Member State, only around 250 (26%) 

passed the EU harmonised safety assessment, with the remainder either unsupported by industry 

(67%) or rejected following review (7%) (Balderacchi and Trevisan, 2010; EU Commission, 

2009). These pesticides were mainly deregistered due to either their toxicity profile or restricted 

efficacy due to the development of resistance in the control target (Karabelas et al., 2009).  

Post-authorisation monitoring schemes provide an important check that regulatory procedures 

are robust in the protection afforded to human health. In the UK, the Pesticide Incidents 

Appraisal Panel (PIAP) of the Health and Safety Executive (HSE) reviews incidents of alleged 

ill health that are attributed to pesticide exposure both at work and for members of the public 

(HSE, 2015). The Pesticide Incident Report 2012/13 (HSE, 2015) investigated 45 pesticide 

incidents (64% lower than the average for the previous ten years), with 15 complaints involving 

allegations of ill health of which 20-25% were classified as ‘confirmed’ or ‘likely’. An earlier 

scheme based on general practitioners estimated the prevalence and incidence of pesticide-

related illness between 2004 and 2008. That study identified significant limitations in defining a 

pesticide-related cause of ill health because there is generally limited information on actual 

chemicals used and no routine confirmation of exposure through biological tests (Rushton and 

Mann, 2008). These are important caveats on the overall conclusion from post-authorisation 
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monitoring that there is no evidence for widespread impacts of agricultural pesticides on human 

health in the UK. 

Whilst much work considers the risks to human health from use of pesticides, there is a gap 

between risk assessment as part of regulatory procedures, post-authorisation monitoring, and 

longer-term epidemiological investigations. Regulatory assessments are the only place where 

exposure is routinely quantified, but this is done one chemical at a time and there is no oversight 

of total exposure to pesticides or of how this may be changing in time. Post-authorisation 

monitoring and epidemiological studies take a more holistic perspective on potential for health 

impacts, but have generally failed to include quantitative estimates of exposure. Thus an 

independent study of how exposure to pesticides varies in space and time provides an important 

check for the regulatory process. 

This study investigates how pesticide usage and associated exposure and risk vary in space and 

time to provide a holistic evaluation of the impact of regulation. We selected off-target exposure 

to residents living close to treated areas as our test system, focusing on orchards which have 

relatively high usage of pesticides and treatments that are often directed into crop canopies, and 

pregnant women who are a vulnerable group because they may spend long periods at home and 

because some pesticides have potential for reproductive and/or developmental effects. We 

assessed variation in pesticide usage, exposure and risk (i) between orchard crops, (ii) between 

regions of England and Wales, (iii) across different seasons, and (iv) between different years 

over a time series spanning 25 years (1987-2012). Supplementary information for this study is 

provided as Appendix 1. 
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Methodology 
 

Identification of potential routes/pathways of exposure 
Cornelis et al. (2009) developed a GIS-based indicator for environmental exposure to pesticides, 

proposing the selection of cut-off values for the radii of zones around the site of application 

based on the decrease in airborne concentrations of pesticides. Following this procedure, two 

categories of proximity were identified in the current study, namely 0-200 m (central point at 

100 m) and 0-2000 m (central point at 1000 m) such that airborne pesticide concentrations 

decreased by approximately 5-fold from 100 m to 1000 m. 

Off-target movement of pesticides can result in contaminated food, water, air, dust, and soil and 

the potential for human exposure via inhalation, ingestion or dermal absorption through contact 

with contaminated surfaces (Sutton et al., 2011). Four pathways of exposure are considered in 

the standard EU risk assessment for residents which uses a model of residents living 8 m 

downwind from the middle of the last row in orchard crops (EFSA, 2014); these pathways are (i) 

spray drift resulting in direct exposure via dermal penetration and inhalation; (ii) spray drift 

causing deposits on the ground and other surfaces leading to dermal exposure; (iii) vapour 

dispersal leading to inhalation of airborne pesticides following volatilisation from residues on 

soil and/or the treated crop; and (iv) entry into treated crops causing exposure through direct 

contact with surface residues. Spray drift decreases very rapidly with distance from the treated 

field (Rautmann et al., 1999) and preliminary modelling showed that direct dermal and 

inhalation exposure from spray drift were insignificant contributors to total exposure for 

residents living 100 or 1000 m from the treated area due to the combination of rapid fallout of 

spray droplets from the air with increasing distance from the site of application (Sarigiannis et 

al., 2013; van de Zande et al., 2014), and short duration of exposure. As direct exposure to 

airborne spray droplets occurs only at the time of application or soon after, residents are mainly 

exposed to pesticides via the indirect dermal route from spray drift deposits (e.g. working, 

standing or sitting in a garden near to the application) and inhaled pesticide vapour that may 

occur continuously throughout the day (Felsot et al., 2010; Martin et al., 2008). We assumed 

that there was no entry of our target population into the treated crop. Calculations thus 

considered the potential for individuals living in the vicinity of treated orchards to be exposed 
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via inhalation of pesticide vapour and indirect dermal contact with contaminated surfaces for a 

period of time following the application. 

 

Pesticide usage data 
Information on the use of plant protection products in the UK is required under EU legislation 

(EC Regulation 1185/09). Pesticide usage data have been collected systematically since 1965 by 

the Pesticide Usage Survey carried out by Fera Science Ltd. (formerly Central Science 

Laboratory, and the Food and Environment Research Agency). Field level data were not stored 

on relational databases until 1987. Prior to this only summary data from the published reports 

were stored on a relational database. The survey relies on a stratified random sample of farms to 

estimate total use, allowing comparability of data over time. For the current investigation, 

orchard data had been collected on a four-year rolling basis, i.e., 1987, 1992, 1996, 2000, 2004, 

2008, and 2012. Collecting data via personal visits to the farms improves accuracy as surveyors 

can scrutinise all potential pesticide uses which might have occurred to ensure the farmers do 

not omit or forget anything important (Thomas, 1999; Eurostat, 2008).  

In this study, we first evaluated changes in usage across all survey years and then selected four 

years for more detailed analysis to estimate changes in exposure and risk to health. The first 

orchard usage data were collected in 1983, but methodology was not consistent with subsequent 

studies. Hence, 1987 was chosen as the starting year and 1996, 2004, and 2012 were included to 

give approximately 8-year intervals up to the latest survey reported at the time of analysis. The 

main orchard crops grown in England and Wales are listed in Table 2-1 alongside the four 

regions of England and Wales included in the analysis on the basis that together they accounted 

for 95.8% of total orchard cultivation in 2012 (Figure A1-1). A total of 132 individual active 

substances are identified within the usage surveys as having been applied to major orchard 

crops in at least one of the years considered. The application rate, !" of an active substance for 

every application was one of the major factors in the exposure modelling. We estimated the 

average rate applied to each hectare of orchard from statistics for total amount applied and total 

area of each crop grown in a region. We calculated the exposure from applications of individual 

active substances based on monthly usage statistics. Hence, both treatments with a single 

substance in successive months or a single treatment with a product containing two active 

substances would both count as two applications in the exposure calculation.  
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Table 2- 1. Area of major orchard crops in four regions that accounted for 95.8% of total 
orchard cultivation in England and Wales in 2012 (Garthwaite et al. 2012). 

Crop type 

Crop grown area (ha) 

Eastern 
West 

Midlands 

South- 

Eastern 

South- 

Western 

Total for 

England and 

Wales 

Cherries 27 187 464 1 697 

Cider apples/perry pears 83 5,244 41 2,731 8,619 

Culinary apples (Bramley) 585 47 1,438 10 2,140 

Culinary apples (others) 129 - 1 8 146 

Dessert apples (Cox) 277 288 1,317 33 1,960 

Dessert apples (others) 419 414 3,367 86 4,447 

Other top fruit (incl. nuts) 45 - 131 36 213 

Pears 340 88 1,295 24 1,757 

Plums 160 170 426 150 973 

Total grown area 2,065 6,438 8,480 3,079 20,952 

% of total area 9.9 30.7 40.5 14.7 100.0 

 

Models for pesticide fate and exposure  
Exposure calculations predicted the maximum daily exposure (mg kg bw-1 day-1) to each active 

substance applied to orchard crops, calculating the exposure as that for the first 24 hours after 

pesticide application. The EFSA assessment for residents’ exposure to pesticides is currently 

based on the highest time-weighted average exposure for the first 24 hours after application via 

inhalation from vapour and 2 hours of dermal exposure to surface deposits (EFSA, 2014). The 

FOCUS Air group considered that the largest exposure would occur within a 24-hour period 

following application when taking into account the effects of dilution and dispersion of residues 

due to changing meteorological conditions (FOCUS, 2008). Here, we used a simplified additive 

method to calculate the exposure to and the cumulative reproductive and/or developmental risk 
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associated with all pesticides applied to a single orchard crop type across a chosen year. 

Dissipation of active substances in soil and on plant surfaces was not included, so no attempt 

was made to estimate the change in exposure during the days/weeks after treatment.  

A new model was developed to estimate exposure via inhalation of vapour, drawing on existing 

algorithms used in PEARL (Pesticide Emission Assessment at Regional and Local scales; van 

den Berg and Leistra, 2004), PELMO (Pesticide Leaching Model; Ferrari et al., 2005), and 

ISCST2 (Industrial Source Complex Short Term 2; US EPA, 1992a). Indirect dermal contact 

with contaminated ground was estimated from the equations provided by EFSA (2014) for 

systemic exposures of residents via dermal routes. Where parameters were set to default values, 

these are listed in Table A1-1.  

 

Volatilisation from treated surfaces (source emission) 
Algorithms from the PEARL and PELMO models were adjusted to estimate the rate of pesticide 

emissions after application from plant and soil surfaces, respectively. The PEARL model 

incorporates the concept of atmospheric resistance to pesticide volatilisation based on the 

thickness of laminar air boundary layers and diffusion of vapour from the plant surface to the 

turbulent air. It incorporates the effect of prevailing meteorological conditions on the initial 

estimation of pesticide volatilisation from crops in the field. PELMO estimates volatilisation 

from soil water by assuming negligibly low concentration of pesticide in the air above the soil 

(not including soil-air partitioning) (Wolters et al., 2003). Other competing processes for 

dissipation of pesticides in different environmental compartments were not included in our 

calculations so that leaching, transformation and wash-off from plant surfaces were all excluded, 

creating a more protective risk assessment.  

The saturated vapour concentration of pesticide in the gas phase at the plant surface, #$,&' 

(g m-3), depends on its substance-specific vapour pressure at the prevailing temperature. #$,&' is 

calculated using the Gas Law as described by van den Berg and Leistra (2004):  

(),*+ = ,∙	/0(2)
4∙2

         (Eqn. 1) 

where 5 is the molecular mass (g mol-1), 67(8) is the vapour pressure of the pesticide (Pa) as a 

function of temperature based on PPDB (2017), " is the universal gas constant (Pa m3 K-1 mol-1), 
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and 8 is the air temperature (K). The potential rate of volatilisation of pesticide from the leaf 

surface, 9&:;<= (g m-2 day-1) is calculated as: 

>?,*@A	= 
(),*+B	(CDE

E
        (Eqn. 2) 

where #;FG is the concentration in the turbulent air just outside the laminar air layer (g m-3), and 

H is the resistance to transport from plant surface to atmosphere (d m-1) calculated as the ratio of 

thickness of the boundary air layer, d (m) to the adjusted air diffusion coefficient, I; (m2 day-1). 

It has been proposed that d ranges between 0.05 and 0.1 cm depending on the 

micrometeorological conditions (e.g. air velocity and turbulence) and surface properties 

(e.g.  temperature and roughness) (Leistra and Wolters, 2004; FOCUS, 2008; Lichiheb et al., 

2014; Houbraken et al., 2016). We used default values of 0.06 and 0.1 cm for the thickness of 

the boundary air layers on plant leaves and soil surfaces, respectively (van den Berg et al., 2016); 

sensitivity of rate of pesticide volatilisation to the value of d (Figure A1-2) illustrates the 

inversely proportional relationship (a doubling in d halves the emission rate). However, all the 

areic quantities such as fluxes are expressed per m2 field surface (not plant surface). 

Consequently, the actual rate of pesticide volatilisation from plant surfaces, 9&:;<=	(g m-2 day-1; 

maximum daily emission is the mass of pesticide per unit area of plant immediately after 

application) is estimated by taking into account the mass of pesticide on the plants: 

>*JCKA 	= 	 MNC+ ∙ >?,*@A        (Eqn. 3)	

with OP;Q (dimensionless) is the factor to adjust amount of pesticide present on the plants as 

described by: 

MNC+= 
R*

R*,ESM
         (Eqn. 4) 

where !& refers to the areic mass of pesticide on the plants (g m-2) obtained by multiplying 

application rate, !" (g m-2) with the crop interception factor, and !&,GTU is the reference areic 

mass of pesticide on the plants. This assumes that thinner deposits on the leaves will be depleted 

sooner and the volatilising surface decreases along with the mass of pesticide in the deposit. 
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Algorithms from PELMO were used in the estimation of pesticide emission rates from exposed 

soil surfaces on a daily basis (Wolters et al., 2003; Ferrari et al., 2005): 

>+@DJ	= V
WX+@J
E

         (Eqn. 5) 

where 9QYF: is the volatilisation rate from soil (g m-2 day-1; maximum daily emission is the mass 

of pesticide per unit area of soil immediately after application), Z�is the non-dimensional 

Henry’s law constant, and [QY: is pesticide concentration in the soil pore water (g cm-3), and H is 

the resistance to transport from the soil surface to the atmosphere as calculated in Eqn. 2 (d m-1). 

Adjustments were required for three temperature-dependent parameters, namely I;,  Z� and 

67, while [QY: depends on application rate and the substance-specific organic carbon partition 

coefficient, \Y] (mL g-1) with the use of default values for fraction of organic carbon, OY] and 

dry soil bulk density (g cm-3). According to Leistra et al. (2001), I; was adjusted with: 

^C = ^C,ESM ( 2

2ESM
)_.ab        (Eqn. 6) 

where I;,GTU is the diffusion coefficient in air at 20°C, and 8GTU is the reference temperature at 

20°C. Zc was adjusted with a d10 factor that was derived as the median value of a range of 

factors (1.15-2.28) that have been reported for different active substances (Staudinger and 

Roberts, 2001; Feigenbrugel et al., 2004; Cetin et al., 2006). d10 is defined as the ratio of 

degradation rates between the rates at 20° and 10°C (EFSA, 2007). According to Sarigiannis et 

al. (2013), 

/0 = 	/0ESM ∙ Sg*	[−
∆V?C*
4

	
_

2
−

_

2ESM
]      (Eqn. 7) 

where 67GTU is the saturated vapour pressure of the substance at reference conditions (mPa), 

∆Zl;&  is the molar enthalpy of evaporation (J mol-1), "  is the universal gas constant (J K-1 

mol-1), and 8 is the air temperature (K), and 8GTU is the reference air temperature (K). 

Two parameters were shared between calculations for volatilisation from the two surfaces, 

namely the crop interception factor (CI) and monthly air temperature. For CI, emission rates of 

the pesticide from treated surfaces (plant and soil) were both estimated based on pesticide 

deposition at different growth stages (Leistra et al., 2001). CI values for apple trees were 

obtained from FOCUS (2000) and applied in calculations for all other orchard crops (Table A1-
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2). The proportion of sprayed pesticide reaching the soil surface was calculated by difference. 

Mean monthly air temperatures for the past 35 years (1980-2015) were obtained from the 

Meteorological Office as regional climatic records and the 35 values for each month were 

averaged to derive monthly air temperature values to input into the calculations (Table A1-3).  

The area source emission rate (d;]=, g m-2 s-1) from all treated surfaces was calculated for each 

application of an active substance: 

mCXA = 
(>*JCKA	n	>+@DJ)

op,qrr
        (Eqn. 8) 

where 86,400 converts the units of time from days to seconds. 

 

Dispersion of volatilised pesticides downwind 
A Gaussian diffusion model was used to estimate airborne concentrations of pesticide at 

different distances downwind of the emission source. ISCST2 was chosen because it is 

adaptable to various types of source emissions (i.e., point sources, volume sources, and area 

sources). The area source model of ISCST2 has frequently been used to assess the effects of 

pollutants on local air quality using emission rates and meteorological conditions as model 

inputs (Abdul-Wahab, 2004). It is adjustable for various parameters including height of crops 

(m), treated area (ha), wind speed (m s-1), and mixing height (m). 

By assuming that no crosswind (s=0) occurs at the area source and that atmospheric conditions 

are neutral, the total emission rate from both soil and plant surfaces was translated into airborne 

pesticide concentration at downwind distance, t (m) (measured from the downwind edge of the 

source area) by: 

u = mCXA∙/∙v∙u@
q∙ w∙x+∙yz

          (Eqn. 9) 

where d;]= is the area source emission rate (g m-2 s-1), 6 is the vertical term (-), { is the error 

function term (-), tY is the length of the side of the square area source (m), |Q is the wind speed 

(m s-1), and }~ is the vertical standard deviation (-).  
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The parameter, 6  was required to change the form of the vertical concentration distribution 

from Gaussian to rectangular (uniform concentration within the surface mixing layer) at 

downwind distances as follows: 

/ = Sg*[−r. b(
zEB	�S
yz

)w]  + Sg*[−r. b(zEn�S
yz

)w]  + {Sg*[−r. b	(
zE	–	(wDzD–	�S)

yz
)wÇ

DÉ_ ] + 

Sg*[−r. b(
zEn	(wDzD–	�S)

yz
)2] +	Sg*[−r. b(zE	–	(wDzD	n	�S)

yz
)2] +	Sg*[−r. b(zE	n	(wDzD	n	�S)

yz
)2]} 

          (Eqn. 10) 

where ℎT is the crop height (m), ÖG is the adult height above ground (m), and ÖF is the mixing 

height (m) adjusted based on crop height (Randerson, 1984) with: 

zD = 	
r.Ü	á∗

M
         (Eqn. 11) 

where O  is the Coriolis parameter (s-1 at 40° latitude) and â∗  is friction velocity (m s-1) 

calculated for the reference wind speed, â Ö  at 2.0 m above the ground using the logarithmic 

wind profile relationship: 

á z = 	
ä∗

ã
åK	(

z

zr
)        (Eqn. 12) 

where ç is the von Karman’s constant (dimensionless) and Öé is the roughness parameter (m) 

approximated as 10% of the height of the crop surface.  

The error function term,	{ is described by:  

v = SEM(	
E@Wnè

wyè
) + SEM(E@

WBè

wyè
)       (Eqn. 13) 

where HY′ is the effective radius of area source ëí
√î

 (m), and σñ is the lateral vertical standard 

deviation.   

The dispersion parameters were calculated according to a power-law fit to wind tunnel data (US 

EPA, 1992b): 

yè = r. aÜbqa	ur.pqóÜ_       (Eqn. 14) 

yz = r. wobpb	ur.a_wob       (Eqn. 15) 
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Calculation of inhalation exposure 
Concentrations in air derived from the air dispersion modelling were converted into individual 

exposures according to EFSA (2014): 

òv4å= /(∙å4∙åR
ôö

         (Eqn. 16) 

where õ{"ú  is defined as the systemic exposure of residents via the inhalation route (mg 

kg bw-1 day-1), 	6#  is the estimated pesticide vapour concentration (mg m-3) at the selected 

proximity, ù"  is inhalation rate (m3 day-1), ù!  is inhalation absorption (-), and ûü  is body 

weight (kg).  

Inhalation rate was set to 13.8 m3 day-1 based on default values for an adult female of 0.23 

m3 day-1 kg-1 daily inhalation rate of residents to vapours and 60 kg body weight for adults (US 

EPA, 2009; EFSA, 2010). A literature search was undertaken for information on absorption 

factors via the lungs following inhalation of pesticides; there is no consistent information on this 

process, so a default value of 100% absorption via inhalation was used (Ellis et al., 2013; EFSA, 

2014; GroBkopf et al., 2013). Body weight for an adult female was set to 60 kg as 

recommended by EFSA (2014). 

 

Calculation of indirect dermal exposure 
Systemic exposure via the dermal route, õ{"†	(mg kg bw-1 day-1) was calculated according to 

EFSA (2014):  

òv4^ = R4∙^∙224∙2(∙V∙^R
ôö

       (Eqn. 17) 

where !" is the application rate (mg cm-2), 88" is the turf transferable residue (-), 8# is the 

transfer coefficient (cm2 hr-1), Z is the exposure duration (hour), I! is the dermal absorption (-), 

and ûü is the body weight (kg). I is the drift fraction which is calculated in accordance with 

crop growth stages:  

For early	growth	stages, ^ = (Üóro.Ü
∗(u¨w.qw_)

_rr
)     (Eqn. 18) 

For late	growth	stages, ^	= (wóo.oÜ
∗ u¨_.opaw

_rr
)     (Eqn. 19) 
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For downward herbicide applications, ^ = w. aarb∗ uBr.óaoa    (Eqn. 20) 

where t is the selected downwind distance (m) (Rautmann et al., 1999).  

Dermal absorption (DA) values for individual active substances (n=132) were extracted from 

the EFSA scientific reports on peer review of risk assessments for individual active substances, 

EFSA DAR and the Risk Characterisation Documents from the California Department of 

Pesticide Regulation; a default value of 75% was used for substances where no measured values 

were found (EFSA, 2012).  

 

Calculation of total exposure 
Estimated levels of exposure (mg kg bw-1 day-1) to individual active substances for the two 

identified routes/pathways were summed to give an aggregated exposure: 

≠vg*@+áES(Rò) 	= vg*+@áES(åK�CJSÆ	?C*@áE) + vg*@+áES(DKÆDESXA	ÆSENCJ) (Eqn. 21) 

Subsequently, the total exposures to individual substances were summed to give an aggregated 

exposure for individual crops:  

≠vg*@+áES(XE@*	Aè*S) = 	vg*@+áES(RòD) + ⋯+ vg*@+áES(RòD±K)  (Eqn. 22) 

Timing of exposure to different compounds was not explicitly considered in the calculation and 

is discussed as a constraint on the methodology in “Discussion” section. 
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Risk estimation 
Generally, regulatory risk assessment of pesticides in the EU is undertaken for single active 

substances or single pesticide products (Stehle and Schulz, 2015). The implementation of 

cumulative and combined exposures to pesticides is explicitly required by the regulatory 

agencies under Regulation (EC) 1107/2009 (Stein et al., 2014; Panizzi et al., 2017). The use of 

dose addition in regulatory risk assessment is considered sufficiently conservative as a default 

first tier approach for cumulative assessment, where the risk is deemed acceptable if the sum of 

all hazard quotients (HQ) ≤1 (Sarigiannis and Hansen, 2012; Stein et al., 2014). The risk from 

exposure to individual active substances was calculated based on the hazard quotient (HQ) 

approach:  

Vm = 	
vg*@+áES	S+ADNCAS	M@E	DKÆD?DÆáCJ	Rò	

4SMSESKXS	*@DKA	
      (Eqn. 23) 

The reference point in this research refers to the no observed (adverse) effect level (NO(A)EL) 

for reproductive and/or developmental effects for individual substances. Reference points were 

extracted from four established toxicological databases, namely the EFSA Draft Risk 

Assessment Report (DAR) and Assessment Report (AR) (http://dar.efsa.europa.eu/dar-

web/provision), the Joint Meeting on Pesticide Residues (JMPR) of the International 

Programme on Chemical Safety (IPCS INCHEM, http://www.inchem.org/pages/jmpr.html), the 

Integrated Risk Information System (IRIS, https://www.epa.gov/iris), and the Hazardous 

Substances Data Bank (HSDB) in the Toxicology Data Network (TOXNET, 

https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm).  

One of the major issues in selecting the most relevant threshold for an individual active 

substance was the unclear boundary between reproductive and developmental effects for 

different periods of exposure (i.e. before pregnancy and during different trimesters). For 

instance, the EFSA DAR defines reproductive toxicities based on endpoints such as reduced 

offspring body weight or liver weight in two- and/or three-generation studies while 

developmental toxicities are assessed based on endpoints such as skeletal malformation, 

teratogenicity, and foetotoxicity. Meanwhile, the JMPR interprets the reproductive parameters 

as number of implants, resorptions, and dead foetuses, and developmental parameters refers to 

post-implantation variation in foetuses, and decreased viability indices. Generally, reproductive 

toxicity refers to any toxicological effects that may occur at different phases within the 

reproductive cycle while developmental toxicity refers to any effects in prenatal developmental 
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studies and in one- or multi-generation studies (Wolterink et al., 2013). Since the test 

parameters were not uniquely classified, the lowest NO(A)ELs for reproductive and/or 

developmental effects were selected for use. As for the different thresholds in four different 

toxicological databases due to different study designs, the lowest NO(A)ELs for either 

reproductive or developmental toxicity were selected for use. This approach avoids any 

exclusion of potential higher toxicity for an individual active substance. It was found that 8 out 

of the 132 active substances applied to orchards in our dataset have no published toxicological 

thresholds for reproductive and/or developmental effects due to their chemical structure and 

here no NO(A)ELs was allocated (Table A1-4). For four active substances with significant use 

in at least one of the study years, the NO(A)EL were allocated based on either a major 

constituent in the compound (benzo-a-pyrene for tar oil), or similarity of chemical structures 

(dichlorprop-P/dichlorprop and mecoprop-P/mecoprop). Heptenophos has no data but is 

expected to be hazardous, so the NOAEL for chlorpyrifos was used, whilst the NOAEL for 

metiram was estimated by dividing the published LOAEL by two.  

Studies on inhalation toxicity are lacking for most pesticides. Approximately 80% of inhalation 

risk assessments are based on route-extrapolated oral studies, whilst 20% of inhalation NOAEL 

data are route-extrapolated to dose (in mg kg bw-1 day-1) from measured air concentrations 

(Salem and Katz, 2006). In the absence of data, the inhalation NOAEL is typically extrapolated 

from an oral study by assuming inhalation absorption is 100% of oral absorption due to the 

likelihood of higher absorbed dose via the inhalation route (Kegley and Conlisk, 2010).  
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Results 
 

Pesticide usage 
Figure 2-1 shows changes in total amount of pesticides applied to orchards in the four regions 

over a 25-year period with 4-year intervals. Data are shown with (Figure 2-1a) and without 

(Figure 2-1b) applications of tar oils as some of the associated rates of application were large 

and could mask changes in the other active substances used. Across the full period, the total 

amount of pesticide applied in any one year ranged between 2.0 and 21.0 kg ha-1. Generally, 

there was greater usage of pesticide for orchards in the Eastern and South-Eastern regions 

compared to the West Midlands and South-Western regions. The total amount of pesticide 

applied was always greatest in 1987 and had decreased by 1992 and 1996 in all four regions. In 

contrast, no consistent changes were found for the later survey years (1996-2012) with some 

increases in total amounts applied in specific years between 2000 and 2012. The results revealed 

that the South-Western region had a large decrease in total applied amounts from 1987 to 1992, 

followed by a constant decline from 1992 to 2004 and inconsistent changes between 2004 and 

2012. In contrast, total pesticide used in the South-Eastern region was approximately equal in 

1987 and 2012 independent of whether or not tar oils were included. 

 

a b 

 

 

Figure 2- 1. Changes between 1987 and 2012 in total amount of pesticide applied to 
orchards cultivated in four regions of England and Wales. Data are shown either with tar 
oils included (a) or excluded (b). 
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The results were further analysed for four chosen years with approximately 8-year intervals 

from 1987 up to 2012 to investigate trends in pesticide usage for individual crop types. Tar oils 

were excluded from this analysis as they significantly skewed the total application amounts for 

plums and cherries in 1987 and to a lesser extent in 1996 and 2004. For instance, the highest 

application rate for plums in the South-Western region in 1987 (60.2 kg a.s. ha-1) and cherries in 

the West Midlands region in 1987 (35.6 kg a.s. ha-1) comprised 98.6 and 99.8% tar oils, 

respectively (Figure A1-3). 

Total amount of pesticides applied to individual crop types was generally less than 30.0 kg a.s. 

ha-1 when tar oils were excluded (Figure 2-2). Some consistently low application amounts were 

identified for crops such as cherries, other top fruit and plums in all four regions (Figures 2-3b 

and A1-4b) although sample size was small due to the small area of each crop grown. The 

Eastern region showed declining trends of total application amounts for culinary apples 

(Bramley and others) and dessert apples (Cox) from 1987 to 2012. Meanwhile, the West 

Midlands and South-Western regions with relatively smaller pesticide usage showed no 

significant trends. Most crop types in the South-Eastern region had higher total application 

amounts in 2012 as compared to 2004. When tar oils were removed from the dataset, the 

greatest total amount of pesticide applied was for culinary apples (others) in the South-Eastern 

region in 2012 that comprised 71.5% captan, 8.3% chlorpyrifos, 6.0% dithianon, and 14.2% 

other substances. 
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a  b 

 

c      d 

 

 

Figure 2- 2. Total amount of pesticide applied to major orchard crop types between 1987 
and 2012 for Eastern (a), West Midlands (b), South-Eastern (c), and South-Western (d) 
regions. Blanks indicate that none of that orchard types were sampled in that region and 
tar oils are excluded from the data as large application rates obscure other trends. 

 

Figure 2-3 presents the usage data as total number of applications of an active substance and as 

average rate of application across all treatments. There has generally been an increase in the 

number of applications of an active substance (Figure 2-3a), but this has been accompanied by a 

general decrease in the average rate of application (Figure 2-3b). The average application rate 

(Figure 2-3b) better explains the trends in pesticide usage with similar patterns to those shown 

in Figure 2-1, i.e. the highest average application rates and total applied amounts were in 1987 

for all chosen regions (Figure A1-4).  
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a  b 

  

 

Figure 2- 3. Usage of pesticide for orchard crop types cultivated in the South-Eastern 
region with usage of tar oils excluded. Data are expressed as number of applications (a) 
defined as treated area divided by area grown, and average application rate (b) defined 
as total amount applied divided by number of applications. Here, application is defined 
as one treatment with one active substance, so successive treatments with a single 
active substance or a single treatment with a product containing two active substances 
would both count as two applications.  

 

Aggregated exposures for residents living 100 m downwind 
Aggregated exposure to pesticides via inhaled pesticide vapour and contact with contaminated 

ground were estimated for residents living 100 m downwind of individual crop types. Tar oils 

were included in all estimations of exposure and risk. Aggregated exposures to individual crop 

types were generally smaller than 2.0x10-3 mg kg bw-1 day-1 with most of the largest estimates in 

1987 and values decreasing over the survey years (Figure 2-4). The Eastern and South-Western 

regions showed decreasing trends for most of the crop types while the West Midlands region 

showed less consistency in aggregated exposures. In comparison, the South-Eastern region 

indicated relatively high and constant exposures with small changes over the years. Overall, the 

exposures were smallest in 2012 with a couple of exceptions including culinary apples (Bramley) 

in the West Midlands region that increased approximately seven-fold from 2004 (1.4x10-4 

mg kg bw-1 day-1) to 2012 (9.6x10-4 mg kg bw-1 day-1). In some cases, aggregated exposures 

greater than 2.0x10-3 mg kg bw-1 day-1 were strongly affected by tar oils, i.e., plums in the 

South-Western region in 1987 (6.1x10-3 mg kg bw-1 day-1) and cherries in the West Midlands 

region in 1987 (3.6x10-3 mg kg bw-1 day-1) where total exposure was approximately 99.5% 

attributable to tar oils.  
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a  b  

 

c d 

 

 

Figure 2- 4. Aggregated exposures to applied pesticide for residents living 100 m 
downwind of individual crop types. Data are shown for four years between 1987 and 2012 
and for Eastern (a), West Midlands (b), South-Eastern (c), and South-Western (d) regions. 

 

Aggregated hazard quotients for residents living 100 m downwind 
Exposure estimates were converted into HQs using reproductive and/or developmental toxicities 

of the applied pesticides. Figure 2-5 shows that all aggregated HQs were at least two to three 

orders of magnitude smaller than 1, despite the inherent simplifications of assuming co-

occurrence of exposure to all pesticides and additivity of effects. 1987 had the highest 

aggregated HQs and these decreased greatly by 1996, followed by smaller changes between 

1996 and 2012. Generally, the Eastern, West Midlands, and South-Western regions had 

relatively lower aggregated HQs for most of the crop types compared to those for the South-

Eastern region. Aggregated HQs were smallest in 2012 for most crop types, but with exceptions 

including culinary apples (Bramley) in the West Midlands region that increased approximately 
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six-fold in 2012 (6.2x10-4) when compared to 2004 (9.9x10-5). For individual crop types with 

relatively larger aggregated HQs, results were influenced significantly by one or two dominant 

active substances. For instance, the highest aggregated HQ for plums in the South-Eastern 

region in 1987 (6.8x10-3) comprised 95.6% demeton-S-methyl and 4.4% other substances; that 

for 1996 (5.0x10-4) comprised 47.8% chlorpyrifos, 36.4% tar oil, 7.6% demeton-S-methyl, and 

8.2% other substances; that for 2004 (5.5x10-4) comprised 72.3% chlorpyrifos, 26.0% tar oil, 

and 1.7% other substances; and that for 2012 (4.1x10-4) comprised 96.3% chlorpyrifos and 3.7% 

other substances.  

 

a b 

 

c d 

 

 

Figure 2- 5. Aggregated hazard quotients of reproductive and/or developmental toxicities 
to applied pesticide of resident pregnant women living 100 m downwind of individual 
crop types. Data are shown for four years between 1987 and 2012 and for Eastern (a), 
West Midlands (b), South-Eastern (c), and South-Western (d) regions. 
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Aggregated exposures and hazard quotients at 1000 m downwind 
Aggregated exposures and risks to health were also estimated for residents living 1000 m from 

the treated orchard. Aggregated exposures to most of the crop types were smaller than 3.0x10-4 

mg kg bw-1 day-1 (Figure A1-5) with exposure in 1987 and 1996 again estimated to be generally 

larger than that in 2004 and 2012. The estimations indicated decreasing trends in exposure for 

most crop types, particularly between 1996 and 2012. The aggregated exposures at 1000 m were 

converted into corresponding aggregated HQs and the results showed the same trends as at 100 

m but with much smaller absolute values (Figure A1-6). Overall, the aggregated exposures and 

HQs at 1000 m for different crop types were approximately 5 to 16 times smaller than the 

equivalent values at 100 m.  
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Discussion 
 

We applied consistent methodologies to compare year-on-year changes in pesticide usage, 

potential for residential exposure to pesticides, potential risk for reproductive or developmental 

effects on human health, as well as the major drivers of any changes over the past 30 years in 

England and Wales. It is important to note that aggregated exposures and risks summed daily 

values into a single measure even though exposure to different active substances will be widely 

dispersed in time; thus the data should not be taken as true estimates of daily exposure for direct 

comparison with daily dose thresholds for toxicity. 

Based on four representative regions, average of total pesticide usage across the surveyed years 

showed a significant decrease from 1987 (66.2 kg a.s. ha-1) to 1996 (49.8 kg a.s. ha-1), followed 

by smaller changes through to 2012 (41.7 kg a.s. ha-1) (Figure A1-7).  This finding is supported 

by a time-series analysis of orchard fruit production in Great Britain with a decrease of 

approximately 22% in the mean usage from 1992 (42,000 kg) to 2008 (33,000 kg) (Cross, 2013). 

Our results show an average 13% increase in total usage in 2012 (41.7 kg a.s. ha-1) compared to 

2008 due to widespread application of fungicides (Figures A1-7 and A1-8) to control scab and 

powdery mildew in the wet weather conditions (Garthwaite et al., 2012). Our results are 

expressed as amount of pesticide applied to one hectare of crop, so are adjusted for any changes 

in the area of cultivated orchards over time (Thomas, 2003). There was a small but relatively 

consistent increase in the number of applications of individual active substances to crops; this 

was offset by a small, but relatively consistent decrease in average application rates over the 

surveyed years (Figures 2-3 and A1-4). This could reflect an increased uptake of reduced-rate 

applications at less than the maximum recommended label rate and the introduction of new 

molecules that are active at lower dose rates (Thomas, 2003).  

We simplified the estimation of exposure by only considering that part of the dose received 

within 24 hours of the pesticide treatment. This should give a maximum dose when expressed 

on a daily basis. We further simplified within our aggregation procedure, by summing the daily 

doses and hazard quotients calculated for each individual treatment, independent of when those 

treatments occurred. Analysis shows that usage and thus exposure were significantly larger 

between April and July than for the remainder of the year (Figure A1-9). The relative sensitivity 

for reproductive and/or developmental outcomes of exposure pre-conception or during a 
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specific trimester is unknown (Gonzalez-Alzaga et al., 2015). This is because the critical 

embryologic period is short and limited to the early stage of gestation before the diagnosis of 

pregnancy (Castilla et al., 2001). The peak in exposure each year suggests that temporal 

differentiation in health outcomes would be expected if such outcomes were associated with 

pesticide use (Li et al., 2014). The CHAMACOS study of associations (95% CI) of proximity to 

methyl bromide use within a 5 km radius during pregnancy (n=442) showed that the second 

trimester was a critical period for gestational growth and that exposure was associated with a 

decrease in means of birth weight (21.4 g), length (0.16 cm) and head circumferences (0.08 cm) 

(Gemmill et al., 2013). Despite the simplifications in producing aggregated estimates of risk, all 

values for the aggregated hazard quotient were two to three orders of magnitude or more smaller 

than one. Overall, this suggests a low level of risk to human health for the situation because co-

occurrence of exposure to all pesticides applied to a single crop and additivity of effects from all 

individual active substances were implicit assumptions that will not hold true. 

Figures 2-4 and 2-5 indicate that although there was no consistent change in total pesticide 

applied to orchard crops over time, there were small decreases in exposure and larger decreases 

in risk over time for most of the crop and region combinations. To investigate this further, data 

were normalised to express exposure per unit pesticide applied and risk per unit of exposure 

(Figure 2-6).  
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a      b 

 

 

Figure 2- 6. Data for aggregated exposure normalised by expressing per kg of pesticide 
applied (a) and aggregated hazard quotient normalised by expressing per mg kg bw-1 
day-1 of exposure (b). All data are for resident pregnant women living 100 m downwind of 
treated crops and are shown for four years between 1987 and 2012 and for Eastern (a), 
West Midlands (b), South-Eastern (c), and South-Western (d) regions. Error bars 
represent standard deviations of exposures and hazard quotients for identified crop 
types, respectively. 

 

Overall, there was a small increase in estimated exposure per unit application between 1987 and 

1996, but a steady decrease thereafter in all four regions (Figure 2-6a). In contrast, there was a 

relatively large decrease in risk per unit exposure between 1987 and 1996 for three of the four 

regions, with only small changes thereafter (Figure 2-6b). The decrease in risk per unit exposure 

between 1987 and 1996 can be attributed to the review and withdrawal from the market of 

compounds with relatively high toxicity for reproductive/developmental effects, including DDT, 

methidathion, azinphos-methyl, and cyhexatin. This initial impact of deregistrations after the 

introduction of Directive 91/414 is not apparent in the calculations for exposure per unit 

application (Figure 2-6a). However, it is interesting to note that this metric does decrease during 

the period 1996 to 2012, primarily due to the cessation of use of active substances with 

relatively higher volatility such as demeton-S-methyl, gamma-HCH, and fenitrothion. Over the 

full period considered, there has been a clear shift in the properties of pesticides applied to 

orchards away from compounds with large vapour pressures and small NO(A)ELs (high toxicity) 

(Figure A1-10). FOCUS (2008) proposed a vapour pressure trigger of >1.0x10-5 Pa to indicate 

those substances with potential for significant volatilisation from treated plant surfaces. 61% of 
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the 76 compounds applied to orchards in 1987 had relatively large vapour pressure (>1.0x10-5 

Pa) and relatively high reproductive/developmental toxicity (NO(A)EL <10 mg kg bw-1 day-1); 

by 2012, this group of substances had reduced to 44% of the 54 compounds applied (Figure A1-

10). The decreasing trend in total emission rate from treated surfaces and in the resulting 

concentration in air also indicates the improving fate profile of pesticides applied over the 25-

year period (Figure A1-11). The sum of airborne concentrations for all pesticides at 100 m 

decreased by a factor of 3.5 from 1987 (0.14 mg m-3) to 2012 (0.04 mg m-3) with concentrations 

for individual pesticides in the range 4.3x10-17 to 1.3x10-2 mg m-3. Zivan et al. (2016) measured 

chlorpyrifos in air collected 74 m downwind from a persimmon orchard in the range 6.3x10-4 to 

2.0x10-3 mg m-3, whilst Coscolla et al. (2010) detected 41 pesticides in ambient air in central 

France (2006-2008) with individual average concentrations ranging between 1.7x10-7 mg m-3 for 

vinclozolin and 2.5x10-5 mg m-3 for captan. Overall, the results reflect the influence of changing 

policies during the 1990s; Cross and Edwards-Jones (2006) found it impossible to identify any 

single policy leading to changes in pesticide risk over time, but the longer time series analysis 

possible in our study suggests that the introduction of European Directive 91/414 as well as the 

ongoing pesticides review programme at national level had a substantive effect in decreasing the 

overall toxicity profile of pesticides applied to orchards in the UK. 

The present study estimated risk of applied pesticides based on maximum aggregated exposure 

on the first day after the application was made. This is likely to give the maximum daily dose of 

the pesticide (dose is expressed on a ‘per day’ basis) and indeed some studies show that 

volatilisation losses of pesticides including chlorpyrifos, prosulfocarb and trifluralin can be 

nearly complete within 24 hours (Rudel, 1997; Carlsen et al., 2006; Zivan et al., 2016). 

Volatilisation of other pesticides including fenpropimorph and parathion-methyl has been 

shown to proceed over several days or weeks after application (Rudel, 1997; Leistra et al., 2008; 

Kosikowska and Biziuk, 2010; Yusa et al., 2014). Whilst the fate of substances beyond the first 

day after application is not considered in the present work, more prolonged emission of 

pesticides is possible and could be considered in future studies to provide a more refined 

assessment of how exposure varies over time. The present work used the hazard quotient as a 

single figure to assess the risk to human health, combining the toxicity, amount and degree to 

which humans are exposed (Toronto Public Health, 2002). Relatively small exposures were 

estimated at our selected proximities due to the strong influence of proximity to spraying on 

magnitude of exposure. Ramaprasad et al. (2009) showed that children of agricultural operators 
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living less than 61 m from an orchard had higher frequencies and greater levels of detectable 

urinary dimethyl thiophosphate levels than those living farther away. Our results also indicate 

higher potential hazard for inhalation exposure compared to dermal contact with spray deposits 

at distances farther downwind from treated orchards. This is due to longer duration of vapour 

drift as volatilization followed by aerial dispersion generally occurs over longer periods than 

spray drift and ground deposition (FOCUS, 2008). Active substances with greater volatility 

contributed more to total exposure at 1000 m compared to 100 m; for example, demeton-S-

methyl applied to plums in the West Midlands region in 1987 contributed 15.0% and 25.0% of 

total exposure at 100 m and 1000 m, respectively. In contrast, exposure to spray droplets is less 

likely at greater proximities due to the relatively short time that droplets stay in the air; for 

example, duration in air is approximately 4 seconds for fine spray (200 microns in diameter) 

and 2 seconds for coarse spray (400 microns) to fall 3 m in still air (Klein et al., 2007).  

Several limitations in data availability were encountered during the study. Atmospheric 

dispersion was the most significant transport pathways for volatilised pesticides yet it is poorly 

studied with most research focusing on measurements of downwind deposition of pesticide 

rather than airborne concentrations (Ellis et al., 2010; Zivan et al., 2016). Lack of data on 

airborne pesticide concentrations and spray deposition at different proximities from treated 

orchards has been noted previously as a constraint on model validation (Ellis et al., 2013). Our 

exposure estimates assume that residents receive 24 hours of exposure via inhalation of 

pesticide vapour and 2 hours of dermal exposure through activities on the contaminated ground; 

there is no consideration of structures that might interrupt pathways of exposure such as tree 

windbreaks, hedges, fences, or houses. We only considered toxicity for reproductive and/or 

developmental endpoints and did not consider all toxic mechanisms to assess overall potential 

for impact on health of residents. We also ignored some additional pathways of exposure such 

as dietary intake because these were assessed as relatively insignificant in the initial problem 

definition phase. Set against this, we summed daily exposures to all pesticides into a single 

aggregated value for exposure, even though these exposures will actually be widely spaced in 

time.  
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Conclusion 
 

This study investigated trends in pesticide usage, exposure to pesticides via inhaled vapour and 

dermal contact with contaminated ground, and risk posed by pesticides applied to orchards for 

resident pregnant women living 100 or 1000 m downwind of treated areas. The exposure model 

is flexible and can be adjusted for a range of physicochemical properties of pesticides and 

atmospheric dispersion parameters. The model should be further validated and improved as field 

data become available for deposition and airborne concentrations of pesticides at greater 

distances from the site of application. The explicit calculation of exposures and the long time 

series of analysis add to the existing body of knowledge and allow a holistic assessment of the 

impact of pesticide regulation on use, exposure and risk. It is found that quantitative estimation 

of exposure can express the causal relationship between usage and associated risk in terms of 

space and time, which is a common caveat in post-authorisation monitoring and epidemiological 

investigations. There has not been a consistent change in usage over time, with a small increase 

in number of applications compensated in a small reduction in the average rate applied. Risk 

levels are generally small and have declined over time, with the cessation of use of several 

active substances with relatively high toxicity, and a net change to active substances with lower 

volatility. This evaluation of changes in pesticide use, exposure and risk over a 25-year time 

span can inform public debate about the effectiveness of regulatory interventions.  
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 Chapter 3 Assessment of exposure of professional 
agricultural operators to pesticides 

 

Introduction 
 

Pesticides are widely used in agriculture to increase crop productivity and quality in order to 

meet the increasing demand for food from the world’s growing population. Off-target 

movement of pesticides, however, may pose a risk to human health and the environment due to 

the intrinsic toxicity of this class of chemicals. Three major categories of human exposure to 

pesticides are identified, namely occupational, environmental, and dietary exposures (Mehrpour 

et al., 2014). Occupational exposure to pesticides is of particular interest in epidemiology 

because the exposure could be at levels hundreds of times greater than that for the general 

population (Sacchettini et al., 2015), and because this may cause excess risk for some diseases 

(Brouwer et al., 2016). For example, an association between occupational exposure and cancer 

was first reported around 50 years ago with higher prevalence of lung and skin cancers among 

farmers who used insecticides in vineyards (Mostafalou and Abdollahi, 2013). A review on the 

consequences of occupational exposure to pesticides on the male reproductive system proposed 

that the majority of pesticides could affect the system by mechanisms including reduction of 

sperm counts and density, inhibition of spermatogenesis, sperm DNA damage, and increasing 

abnormal sperm morphology (Mehrpour et al., 2014). 

Agricultural operators are mainly exposed to pesticides during the preparation and application 

of the spray solution (Damalas and Abdollahzadeh, 2016). Due to spills and splashes, direct 

spray contact, or even drift, they are potentially exposed to pesticides via two routes of exposure, 

namely dermal absorption and respiratory inhalation (Gao et al., 2013; Moon et al., 2013; Ye et 

al., 2013; Damalas and Koutroubas, 2016). Whilst the dermal route is usually considered to 

constitute the major route of exposure to pesticides for agricultural operators (Zhao et al., 2015; 

Atabila et al., 2017), the inhalation route should not be neglected because of the presence of 

airborne spray droplets or vapour resulting from the spray preparation; the application could be 

dangerous as the lungs can rapidly absorb the dissolved pesticides into the bloodstream (Ogg et 

al., 2012; Choi et al., 2013). Generally, the operator is expected to engage in both 
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mixing/loading and application tasks, and exposures via the dermal and inhalation routes arising 

from these tasks are summed to give the total potential exposure (EFSA, 2014).  

The exposure of agricultural operators to pesticides could be influenced by a range of factors 

including the properties of the compound, agricultural factors (e.g. crop height, application 

equipment and technique), environmental factors (e.g. wind velocity and direction, temperature 

and relative humidity), protection measures, working behaviour, experience, and training 

(Aprea, 2012; Gao et al., 2013; Tsakirakis et al., 2014; Zhao et al., 2016). Generally, the levels 

of exposure during typical activities are predicted rather than measured due to complexities in 

measuring dose via different routes and limitations in biological monitoring together with the 

very wide range in climatic and working conditions that need to be considered (Colosio et al., 

2012). Conventionally, the potential risk from human exposure to pesticide is expressed with a 

risk quotient which is the ratio of predicted exposure to a toxicological reference value that 

combines the risk with the amount and conditions of pesticide use (Cunha et al., 2012). Several 

predictive models are available to estimate operator exposure to pesticides including the 

EUROpean Predictive Operator Exposure Model (EUROPOEM), the UK Predictive Operator 

Exposure Model (UK POEM), the German Operator Exposure Model (German model), and the 

Bystanders, Residents, Operators, and WorkerS Exposure models (BROWSE) (Lammoglia et 

al., 2017).  

Operator exposure must be estimated in the risk assessment for pesticides in accordance with 

EU Regulation (EC) 1107/2009 (Thouvenin et al., 2016). The exposure is normally estimated 

separately for mixing/loading and application tasks and for the recommended conditions of use 

(EFSA, 2014). Two operator exposure models were officially recommended by Regulation 

1107/2009 for lower-tier risk assessment of agricultural operators to pesticides in the EU, 

namely the UK POEM (UK MAFF, 1992) and the German model (Lundehn et al., 1992) 

(NASDA, 2013). These are deterministic models derived from statistical analysis of data from 

exposure studies conducted before 1990. They have been superseded by the newly developed 

Agricultural Operator Exposure Model (AOEM; Groβkopf et al., 2013a). The AOEM is the first 

harmonised European operator exposure model, relying on empirical data from 34 exposure 

studies (1994-2009) to reflect agricultural practices and scientific knowledge. Despite the large 

database used for model development, the AOEM has some data gaps including the lack of 

exposure data for knapsack mixing/loading and hand-held applications in low crops (Groβkopf 

et al., 2013b).  
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European Union Directive 91/414/EEC concerning the placement of plant protection products 

on the market required that application of plant protection products following good practice 

should have no harmful effects on human health and no unacceptable influence on the 

environment. Regulation (EC) No 1272/2008 on classification, labelling and packaging of 

substances and mixtures ensures that the intrinsic toxicological potential of hazardous products 

is clearly communicated to users in the EU for the necessity of protection measures 

(Lichtenberg et al., 2015). In performing risk assessments of exposure to plant protection 

products in the EU, the zonal approach has been introduced by Regulation (EC) 1107/2009 for 

the evaluation and registration of plant protection products by taking into account national 

agronomics and regional differences (i.e. environmental conditions and application techniques) 

(Tsakirakis et al., 2014). The wide diversity of agriculture throughout the EU including farming 

practices and farm size incurs some challenges for European policy-makers in making decisions 

(EPRS, 2016).  

This study investigates how field practice in handling and applying pesticides influences 

exposure for professional agricultural operators. To do this we apply information from a 

European database of pesticide application practices where, for the first time, all pesticide 

handling activities across individual working days were quantified for a large number of 

individuals and over protracted periods of up to a full year (Garthwaite et al., 2015).  We select 

individuals from different cropping systems and different regulatory zones (northern, central, 

southern) of the EU and applied the AOEM (Groβkopf et al., 2013a) to assess levels of 

exposure for professional operators. We analyse results to determine differences in behaviours 

and patterns of exposure with cropping, region and working practices and compare exposures 

with Acceptable Operator Exposure Levels (AOELs) to investigate any implications for 

operator assessments within regulatory procedures. Supplementary information for this study is 

provided as Appendix 2.  
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Methodology 
 

Pesticide application data 
We used a dataset for pesticide application collected on behalf of the European Food Safety 

Authority (EFSA) in view of performing environmental risk assessments for pesticides in 

response to Regulation 1107/2009 (Garthwaite et al., 2015). Previous pesticide surveys 

undertaken within the EU provide little information on how pesticides are applied by 

agricultural operators or details of mitigation measures used to reduce exposure. In contrast, the 

EFSA dataset (Garthwaite et al., 2015) allows determination of risk of exposure from combined 

toxicity resulting from the cumulative non-dietary exposure of professional operators. The data 

were collected based on specifically designed survey forms in eight EU member states that 

together represent the three regulatory zones comprising Northern (Lithuania), Central (Belgium, 

Netherlands, Poland and United Kingdom) and Southern (Greece, Italy and Spain). Overall, the 

surveys collected information regarding >36,000 individual application events for operators on 

over 400 farms, with 645 sprayers used on nine different crops. A minimum of twenty fields 

were surveyed for each crop for between two and five crops in each member state, with at least 

two member states collecting information on each crop (Garthwaite et al., 2015). It is 

noteworthy that the data collected may not be representative of all farms in the sampled regions 

or across the country, but this should not limit the significance of the data collected since the 

aim of the survey was to collect data to improve models of operator and worker cumulative 

exposure; it was not intended to produce regional or national estimates of pesticide usage 

(Garthwaite et al., 2015). 

We assessed the long-term patterns of professional agricultural operators’ exposure to pesticides 

handled for Lithuania, the UK, and Greece to represent the three regulatory zones. These three 

member states were also the only ones that met the data quality requirements of our study with 

respect to finalised quality checking and data entry (Garthwaite et al., 2015). The data for other 

member states are generally poor because the budget was exceeded for the extra time needed in 

data management processes. The temporal unit of assessment was whole working days in 2012-

2013; the periods of data collection were selected to quantify application practice across a 

cropping season, and up to one year where available (Garthwaite et al., 2015). Whilst the main 

thrust of the survey was to investigate the extent of a professional operator’s exposure over a 
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12-month period, the period of data collection varied between cropping systems for various 

reasons; these included an unusually late spring and short growing season in Lithuania in 2013 

and late contact with the operators in Greece whereby pesticide applications had already 

commenced (Garthwaite et al., 2015). Ten professional operators were chosen randomly whilst 

ensuring representation of different sizes of arable and orchard holdings in the UK (sum of area 

for all crops for arable system: 28-1040; orchard system: 16-121 ha) and Greece (arable system: 

9-106 ha; orchard system: 1-9 ha) (Table A2-1). The surveyed farm sizes comprised classes A-F 

for the UK cropping systems (arable system: <50->500; orchard system: <10->80 ha), classes 

A-E for the Lithuanian arable system (<10->400 ha), and the Greek cropping systems (arable 

system: <2.4->4.5; orchard system: <0.5->1.9 ha) in order to represent operators’ behaviours 

that may vary significantly between smaller and larger farms (Garthwaite et al., 2015). There 

are no data for orchards in Lithuania as no survey was carried out and this country was analysed 

for arable operators only (sum of area for all crops: 10-483 ha) (Table A2-1). The dataset for a 

single operator combined applications to all crops on the holding. The major crops were wheat, 

potatoes, and oilseed rape in Lithuania, citrus, grapes, and vegetables in Greece, and wheat, 

oilseed rape, sugar beet and apples in the UK (Garthwaite et al., 2015). Individual holdings 

comprised of different numbers of fields from 1 up to 70. The selected operators had spraying 

experience ranging from 3 to 54 years and differing levels of training in handling pesticides 

(Table A2-1). Overall, data were extracted for 50 randomly selected operators; the information 

for each application event comprised pesticide active substance, total amount of active 

substance handled, date of application, application technique, pesticide formulation, content of 

active substance in pesticide product, area treated per application, and PPE used. 

 

Agricultural Operator Exposure Model (AOEM) 
We employed the AOEM to estimate the levels of exposure during mixing/loading and 

application tasks because it reflects the latest scientific knowledge and application practices in 

the EU (Groβkopf et al., 2013a). The AOEM is developed to generate 75th- and 95th-percentile 

exposure based on the empirical data of 34 unpublished exposure studies that were conducted to 

Good Laboratory Practice standards between 1994 and 2009. In regulatory risk assessment, the 

75th percentile is used for assessing longer-term operator exposure to pesticides to provide a 

realistic upper estimate of daily exposure that will be exceeded very rarely over the course of a 
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spraying season (EFSA, 2010). The 95th percentile is designed to support acute risk assessment 

as methodologies develop (EFSA, 2014).  

The AOEM is usually applied to single active substances whereas here we applied it to all 

applications across a season; hence, we adopted algorithms from the AOEM to estimate the 

median exposure for all pesticides handled during each working day and over periods up to one 

year. The algorithms (Table 3-1) describe the dependency of exposure on the amount of 

pesticides handled. One constraint in these empirical equations is that any exponent greater than 

1 (α >1) may result in a superlinear dependency on the amount of active substance handled and 

needs to be forced to 1 (Groβkopf et al., 2013a). Thus, we selected the algorithms with an 

exponent smaller than or equal to 1 where available (α ≤1) for four identified exposure 

situations, namely tank mixing/loading for vehicle-mounted/-trailed or hand-held spray 

equipment (tank ML), low crop application using vehicle-mounted/-trailed boom sprayers 

(LCTM AP), high crop application using vehicle-mounted/-trailed broadcast air-assisted 

sprayers (HCTM), and high crop application using hand-held spray equipment directed upwards 

(HCHH AP). Each exposure calculation comprised total exposures via dermal and inhalation 

routes. Dermal exposure was further segregated into protected or total exposure via hands and 

body dependent on whether PPE was used or not (Table 3-1). Here, total exposure refers to that 

without PPE use and protected exposure includes any PPE use (e.g. gloves and coveralls). The 

equation to calculate exposure to the head has a different structure that incorporates various 

types of PPE that modify exposure to differing extents. 
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Table 3- 1. Equations to predict median exposure to pesticides on a daily basis; the total 
amount of active substance (TA) is the major parameter for exposure, the slope α was 
set to 1 in case α >1; exposure is given in μg/person (Groβkopf et al., 2013a). 

Tank ML ≤≥¥ Sg*@+áES = 	µ ∙ ≤≥¥ 2R + M@ENáJCAD@K	Aè*S + X@K+ACKA 
Total hands log I{∂∑(∏) = 0.71

∙ 	log 8! + 0.57	 ªºΩâºæ + 1.55	 ü7 − 0.34	 ¡ª¬√ƒ	≈∆«ℎ + 2.73 
Protected 
hands 

log I{∂∑(∏&) = 0.39 ∙ log 8! + 0.17	 ªºΩâºæ + 1.74	 ü7 + 1.02  

Total body log I{∂∑( ) = 0.71 ∙ log 8! + 0.24	 ªºΩâºæ + 1.69	 ü7 + 2.87  
Protected 
body 

log I{∂∑( &) = 0.95 ∙ log 8! − 0.05	 ªºΩâºæ + 1.99	 ü7 + 0.87  

Head log	I{∂∑(Õ) = 	log 8! + 0.55	 ªºΩâºæ + 1.31	 ü7 + 1.52	 Œ¬	O∆[ƒ	«ℎºƒªæ − 1.07  
Inhalation log ù{∂∑ = 0.53 ∙ log 8! − 0.73	 ªºΩâºæ + 2.26	 ü7 + 0.61  

 
LCTM APa ≤≥¥ Sg*@+áES = 	µ ∙ ≤≥¥ 2R + ÆE@*JSA + SœáD*NSKA + X@K+ACKA  
Total hands log I{–—(∏) = log 8! + 1.43	 Œ¬H“∆ª	æH¬”ªƒ‘ − 1.41	 Œ¬H“∆ª	ƒΩâº”“ƒŒ‘ + 1.30  
Protected 
hands 

log I{–—(∏&) = log 8! + 1.46	 Œ¬H“∆ª	æH¬”ªƒ‘ − 0.61	 Œ¬H“∆ª	ƒΩâº”“ƒŒ‘ − 0.67  

Total body log I{–—( ) = log 8! + 0.56	 Œ¬H“∆ª	æH¬”ªƒ‘ − 1.62	 Œ¬H“∆ª	ƒΩâº”“ƒŒ‘ + 2.52  
Protected 
body 

log I{–—( &) = ª¬¡	8! + 0.34	 Œ¬H“∆ª	æH¬”ªƒ‘ − 0.94	 Œ¬H“∆ª	ƒΩâº”“ƒŒ‘ +
0.49  

Head log I{–—(Õ) = log 8! + 0.32	 Œ¬H“∆ª	æH¬”ªƒ‘ − 0.22	 Œ¬H“∆ª	ƒΩâº”“ƒŒ‘ − 0.22  
Inhalation log ù{–— = 0.46 ∙ log 8! + 0.13	 Œ¬H“∆ª	æH¬”ªƒ‘ + 0.65	 Œ¬H“∆ª	ƒΩâº”“ƒŒ‘ −

0.89  
 

HCTM AP ≤≥¥ Sg*@+áES = 	µ ∙ ≤≥¥ 2R + [XC’DK] + X@K+ACKA 
Total hands log I{–—(∏) = 0.49 ∙ log 8! + 0.89	[Œ¬	[∆÷ºŒ] + 2.29  
Protected 
hands 

log I{–—(∏&) = 0.88 ∙ log 8! + 1.18c 

Total body log I{–—( ) = log 8! + 0.86	[Œ¬	[∆÷ºŒ] + 2.86  
Protected 
body 

log I{–—  & = log 8! + 0.50	 Œ¬	[∆÷ºŒ + 1.30  

Head log I{–—(Õ) = log 8! + 1.46	 Œ¬	[∆÷ºŒ + 0.82  
Inhalation log ù{–— = 0.63 ∙ log 8! + 1.00	 Œ¬	[∆÷ºŒ + 0.51  

 
HCHH APb ≤≥¥ Sg*@+áES = 	µ ∙ ≤≥¥ 2R + XáJAáES + X@K+ACKA   
Total hands log I{–—(∏) = log 8! − 0.94	 Œ¬H“∆ª	[âª‘âHƒ + 4.02    
Protected 
hands 

log I{–—(∏&) = log 8! − 1.26	 Œ¬H“∆ª	[âª‘âHƒ + 1.90     

Total body log I{–—( ) = 		0.32 ∙ log 8! − 1.50	 Œ¬H“∆ª	[âª‘âHƒ + 5.75   
Protected 
body 

log I{–—( &) = log 8! − 1.48	 Œ¬H“∆ª	[âª‘âHƒ + 3.72 

Head log I{–—(Õ) = 0.34 ∙ log 8! − 1.18	 Œ¬H“∆ª	[âª‘âHƒ + 2.87   
Inhalation log ù{–— = 0.74 ∙ log 8! − 0.57	 Œ¬H“∆ª	[âª‘âHƒ + 2.13   
AP, application; ML, mixing/loading; DE, dermal exposure; IE, inhalation exposure; H, total hands; Hp: 
protected hands; B, total body; Bp, protected body; C, head; WP, wettable powder formulation 
a For LCTM AP, the droplet sizes are grouped into ‘normal’ and ‘coarse’ subsets with the latter size being 
chosen when drift reducing nozzles are used; the ‘normal’ and ‘small’ equipment subsets are used with 
the small equipment for treatment in small areas/high crops.  
b For HCHH AP, the ‘normal’ and ‘dense’ culture subsets with the dense culture refers to unavoidable 
direct contact with sprayed crop during applications.  
c The dependency of the factor [cabin] was not significant. 
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Exposure calculation 
Total exposure of an operator to individual active substances handled across a whole working 

day (mg kg bw-1 day-1) comprised of dermal (I{, mg kg bw-1 day-1) and inhalation (ù{, mg kg 

bw-1 day-1) routes for both mixing/loading (5◊) and application (!7) tasks:  

vg*@+áES,ÿ =
((^v,ÿ V	@E	V* n	^v,ÿ(ô	@E	ô*)n	^v,ÿ(())	×	^R,ÿ)n(åv,ÿ	×	åR,ÿ)

ôö	×	x⁄
 (Eqn. 24) 

vg*@+áESR0 = 	
((^vR0 V	@E	V* n	^vR0(ô	@E	ô*)n	^vR0(())	×	^RR0)n(åvR0	×	åRR0)

ôö	×	x⁄
  (Eqn. 25) 

2@ACJ	Sg*@+áES = vg*@+áES,ÿ +	vg*@+áESR0    (Eqn. 26) 

where subscripts Z and Z” are exposures via total hands and protected hands respectively, û 

and û” are exposures via total body and protected body respectively, and # is exposure to the 

head. ûü is the body weight of an operator (75 kg as a default), and |€ is the unit conversion 

factor from µg to mg (1000). Dermal absorption (I!, %) defines absorption of pesticide via 

skin surfaces and is a function of the percentage of active substance(s) in the product (EFSA, 

2012; So et al., 2014); I!∂∑ is assumed to be 25 and 75% for formulated products that contain 

proportions of active substances >5% and ≤5%, respectively; I!–—  is 75% with active 

substance ≤5% in the spray solution; and I! is 10% during both tasks for active substances 

with log octanol-water coefficient (Pow) <-1 or >4 together with molecular weight greater than 

500 g mol-1. Inhalation absorption (ù!, %) refers to the adjustment of inhalation uptake for the 

use of respirators based on protection factors reported by EFSA (2010); values are 10% for a 

power-assisted respirator, 25% for a valved filtering half mask, reusable half mask with filters, 

disposable filtering half mask, or full-face mask, and 100% for no respirator use for both ù!∂∑ 

and ù!–—, separately. ù!–— is 100% for all LCTM and HCTM sprayers independent of the cabin 

status.  

All handled pesticides were classified into three major formulation types to determine potential 

exposure during tank mixing/loading (Table 3-2), namely wettable powders which have 

relatively larger exposure, liquid formulations which have intermediate exposure, and wettable 

granules which have relatively smaller exposure (Groβkopf et al., 2013b). Two formulation 

categories were removed from the analyses, namely rodenticide bait (ready for use) and others 

(unknown). All LCTM and HCTM applications were grouped into two classes for sprayers with 

the presence of a cabin (i.e. cab with no filter, cab with carbon filter and closed cab) and 
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sprayers with no cabin (open and no cab). Exposure to pesticides during application in a cabin 

and/or with PPE use was calculated using the equation for protected exposure, and with no 

cabin and no PPE use was calculated based on the equation for total exposure.  

 

Table 3- 2. Classification of pesticide formulations into wettable powder, liquid and 
wettable granule groups included in the AOEM model. 

Wettable Powder Liquid Wettable Granule 

dustable powder (DP), 

wettable powder (WP), 

water-soluble powder (SP) 

capsule suspension (CS), emulsifiable 

concentrate (EC), emulsion-oil in water 

(EW), microemulsion (ME), oil 

dispersion (OD), oil miscible flowable 

(OF), oil miscible liquid (OL), soluble 

concentrate (SL), suspension concentrate 

(SC), suspo-emulsion (SE) 

Granule (GR), tablet (TB), 

water dispersible (WG), 

water soluble granules 

(SG) 

 

Several assumptions were made during the study. We assumed that the listed PPE were worn 

continuously during the mixing/loading and/or application tasks because no data were collected 

for individual applications. For a number of holdings where there was no information collected 

on the use of PPE for an individual application method, we assumed that the operators used the 

same types of PPE as used for other application methods on the same holdings. Where the use 

of specific types of PPE were not listed in the survey, we assumed that the operators did not 

wear PPE during either mixing/loading or application tasks. For a small number of applications 

in the UK where dates of application were not recorded, the summed exposure to the same 

active substance on the same working day could not be calculated and these remained as 

separate applications.   
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Comparison between predicted exposure and the respective AOELs 
Exposure was combined for all applications of a single active substance on a single working day 

and this value was compared with the respective Acceptable Operator Exposure Level (AOEL, 

mg kg bw-1 day-1) established during EU regulatory assessment. The AOEL is the maximum 

amount of an active substance to which an operator may be exposed internally without causing 

any adverse health effects (Marrs and Ballantyne, 2004). It is usually derived from the no 

observed adverse effect level based on the most relevant sub-acute or sub-chronic toxicity study 

divided by a safety factor (100) to account for differences in sensitivity between test animals 

and humans, and the variation in sensitivity between individuals (Matthews, 2002). We 

extracted the AOELs for a total of 180 substances from the EU Pesticides Database (2016), 

Pesticide Properties Database (PPDB, 2017), and Bio-Pesticides Database (BPDB, 2017). Three 

active substances where AOELs were not available were removed from the analyses, namely 

calcium and derivatives, sulphur, and paraffin oil. 
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Results 
 

Pesticide application data 
Table 3-3 summaries application data for the 50 professional operators from different cropping 

systems in Lithuania, the UK and Greece. The total number of active substances handled by the 

selected operators was larger in the arable system of the UK (24-66 compounds) and smaller for 

those in Lithuania (4-24 compounds). Operators in the cropping systems of Greece and the 

orchard system of the UK generally handled around 20 different active substances over the 

cropping season. The total mass of pesticides handled over the survey period was largest in the 

UK arable (median: 580 kg a.s.) and orchard system (437 kg a.s.), intermediate for the arable 

systems in Greece (151 kg a.s.) and Lithuania (77 kg a.s.), and smallest in the Greek orchard 

system (22 kg a.s.). 

Figure 3-1 shows cumulative frequency distributions of the area treated with a single active 

substance on single working days. The percentage of days when at least one treatment occurred 

varied across the selected operators, with some operators in the Greek arable system and the UK 

orchard system applying pesticides on ca. 40% of all days covered by the survey period (Table 

A2-1); more commonly, operators carried out spraying on ca. 20% of days. EFSA (2014) 

proposed representative values of 50 and 10 ha for the area of arable and orchard crop, 

respectively, treated with an individual active substance in a single day using vehicle-mounted 

equipment (EFSA, 2014). Median values for area treated with an individual active substance in 

one day were below the EFSA values in all cropping systems. However, the EFSA values were 

exceeded at the 95th percentile in UK arable and orchard systems (132 and 19 ha day-1, 

respectively) and in the Lithuanian arable system (103 ha day-1) (Table 3-4). The absolute 

maximum area treated by a single operator on one day was 199 ha on one of the UK arable 

holdings, necessitating 11 separate mixing/loading procedures across the day.  
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Table 3- 3. Summary of application data for 50 selected professional operators showing 
the total number and total mass of active substances handled during the survey period. 

Holding code LTAB UKAB GRAB UKOR GROR 

Total number of active substances handled 

01 15 33 19 6 20 

02 7 29 20 30 3 

03 24 34 20 23 33 

04 7 24 13 17 16 

05 15 27 17 23 32 

06 18 48 13 25 14 

07 9 49 21 41 23 

08 7 55 19 18 15 

09 4 30 8 12 19 

10 18 66 12 26 14 

Median 12 34 18 23 18 

Total mass of active substances handled 

01 166.0 103.5 268.5 131.4 21.1 

02 27.8 184.3 191.4 275.6 1.9 

03 808.7 926.1 122.6 557.4 69.8 

04 7.3 64.1 11.6 452.0 16.9 

05 431.6 249.2 148.2 422.2 68.9 

06 410.2 911.6 153.1 876.7 17.6 

07 53.1 3128.8 423.7 1051.5 35.3 

08 18.1 2547.4 188.2 819.7 21.8 

09 3.2 93.8 67.4 331.0 10.4 

10 99.9 2088.8 38.8 380.2 25.3 

Median 76.5 580.4 150.7 437.1 21.5 
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a b 

  

c      d  

 

e 

 

Figure 3- 1. Cumulative frequency distributions of maximum areas treated with a single 
active substance on a single working day for arable operators in Lithuania (a), the UK (b) 
and Greece (c), and orchard operators in the UK (d) and Greece (e). The EFSA default 
values for total area treated per day with individual substances (50 and 10 ha day-1 in 
arable and orchard systems, respectively) is indicated by the dashed lines. Different 
symbols represent individual operators and each value shown is one substance applied 
on a single working day. 
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Table 3- 4. Comparison between areas treated with individual active substances on a 
single spray day expressed as 50th, 75th and 95th percentiles, and the EFSA default values 
(EFSA, 2014). 

Cropping system Area treated per active substance per day (ha) 

Summary of database information (percentile) EFSA valuea 

25th 50th 75th 95th Maximum 

Lithuania arable 7.8 29.8 47.0 102.9 129.6 50.0 

UK arable 14.5 26.2 58.6 132.2 198.7 50.0 

Greek arable 2.8 5.0 9.3 19.6 30.7 50.0 

UK orchard 4.0 6.9 10.1 18.5 42.8 10.0 

Greek orchard 1.5 2.7 3.2 5.0 5.0 10.0 

a For vehicle-mounted equipment. 

 

Estimated total exposure for professional operators 
Figure 3-2 shows that the total exposure per working day for the selected operators estimated 

for the full study period varied across the different cropping systems. Here, the exposure is 

expressed for all days with applications to correct for differences in the cropping period with 

applications across different operators. Overall, the medians of total daily exposure were largest 

in the Greek arable system (9.7x10-3 mg kg bw-1 day-1) and orchard system (7.7x10-3 mg kg bw-1 

day-1), intermediate for the UK orchard system (6.9x10-3 mg kg bw-1 day-1) and arable system 

(1.8x10-3 mg kg bw-1 day-1), and smallest for the Lithuanian arable system (1.1x10-3 mg kg bw-1 

day-1). For individual cropping systems, the variance around the mean daily exposure for the 10 

operators was largest in the UK cropping systems (coefficients of variation 116% and 105% for 

arable and orchard systems, respectively), intermediate for the arable systems in Lithuania (93%) 

and Greece (73%), and smallest in the Greek orchard system (43%).  
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Figure 3- 2. Estimated exposures for 10 randomly selected professional operators from 
the cropping systems in Lithuania, the UK and Greece. Values are calculated for 
individual operators based on the respective total number of working days. Boxes show 
the median and quartiles, and whiskers show the range. 

 

Comparison of levels of exposure with the respective AOEL 
Figure 3-3 categorises all applications made by each individual operator according to ratios 

between the predicted exposure and the respective AOEL for each active substance handled on 

a single working day. Here, the same substance applied several times on the same working day 

is considered as one application whereas the same active substance applied on successive days 

counts as two applications. Overall, Greek cropping systems had the largest number of 

applications with AOELs exceeded (estimated exposure: AOEL >1.0) and the Lithuanian arable 

system had the least. There were seven arable and eight orchard operators in the Greek cropping 

systems where at least one application exceeded the AOEL, four arable and nine orchard 

operators in the UK cropping systems, and two operators in the Lithuanian arable system. Table 

3-5 shows that the percentage of applications with AOEL exceeded were larger in Greek 

cropping systems compared to the UK and Lithuania. Generally, most of the applications had 

exposure estimates that were at least a factor of 10 smaller than the respective AOELs. 
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a b 

 

c d 
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Figure 3- 3. Bar charts showing the total number of applications made by a single 
operator (each bar is one operator) and how these applications classify into instances 
where predicted exposure:AOEL was >1.0, 0.1-1.0, 0.01-0.1, or <0.01. Separate charts 
show the data for the arable systems of Lithuania (a), the UK (b), Greece (c), and the 
orchard systems of the UK (d) and Greece (e). Each individual application refers to one 
active substance applied on a single working day. 
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Table 3- 5. Summary of instances in the different cropping systems when predicted 
exposure exceeded the AOEL. 

Cropping 
system 

No. of operators with any 
instance of exposure > AOEL 

Applications with AOEL exceeded 
(% of total number of applications) 

Lithuania arable 2 2.9-4.5 

UK arable 4 1.1-5.6 

Greece arable 7 1.1-14.3 

UK orchard 9 0.8-6.5 

Greece orchard 8 2.8-16.0 
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Discussion 
 

The structure of agriculture varies across the EU due to differences in topography, geology, 

climate, natural resources, infrastructure, and social customs. In this study, the size of farm 

holding was largest in the UK (median areas of 165 and 38 ha for arable and orchard systems, 

respectively), intermediate for the Lithuanian arable system (44 ha), and smallest for Greece 

(arable 32 ha; orchard 3 ha) (Table A2-1). Individuals spent different amounts of time spraying 

crops with an absolute range across all holdings of 1 to 418 hours over the period investigated 

(Table A2-2). Cumulative time spent spraying was longest in the UK orchard system (median 

306 hours; 95th percentile 412 hours) and arable system (median 75 hours; 95th percentile 308 

hours). The total amount of active substance handled during each working day is the dominant 

input parameter for estimating operator exposure within the AOEM (Groβkopf et al., 2013a).  

Figure 3-3 indicates the potential risk of exposure to pesticides handled amongst the selected 

professional operators with some applications generating predicted exposures where the AOEL 

was exceeded. Exposures during mixing/loading tasks were larger than those during application 

(Figure A2-1), and varied by formulation type (Table 3-1) with wettable powder > liquid > 

wettable granule formulations. Moon et al. (2013) undertook a risk assessment of operator 

exposure to pesticides in apple orchards and proposed a greater dermal exposure during 

mixing/loading of wettable powders (0.003-0.007% of total prepared amount) when compared 

to liquid formulations (0.001-0.002%) due to direct contact with fine pesticide powders when 

tearing the pouch and pouring into the mixing tank. In comparison, wettable granules are 

formulated to be non-dusty and have relatively lower potential for exposure (Zhao et al., 2015). 

The exposure calculations for mixing/loading of wettable powders in AOEM rely on just two 

exposure studies for hand-held applications to citrus in Spain with similar application conditions 

and equipment (Groβkopf et al., 2013b). Given the dominance of wettable powders in the 

exposure estimates, priority should be given to improving the statistical power of the AOEM 

model with more studies on the exposure to different formulations using tractor-mounted and 

hand-held equipment (Groβkopf et al., 2013a).  

A dramatic shift from wettable powder formulations to wettable granules was identified 

previously in a study on advances in agrochemical formulation (Mulqueen, 2003). Nevertheless, 

the current study indicates significant use of wettable powder pesticides in Greece, whilst liquid 
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formulations were more commonly used in the UK and Lithuania, and there was relatively little 

use of wettable granules in any of the cropping systems. There is a range of potential factors 

that could influence the physical forms (solid/liquid) of a pesticide product including the 

application technique, customer acceptability and business need, and the regional market 

requirements (Mulqueen, 2003; Green and Beestman, 2007). 

Generally, the predicted exposures for the HCTM applications in orchard systems were high 

compared to LCTM applications in arable systems. Whereas cabin status was identified 

previously as having no great impact on the operator’s exposure to pesticides and was therefore 

excluded from the LCTM scenario of the AOEM, it was identified as an important influence in 

the HCTM scenario (Groβkopf et al., 2013a). In the present study, we classified the HCTM 

sprayers into two major groups for sprayers with and without cabins. This classification 

contributes significantly to those exposures with AOELs exceeded amongst the orchard 

operators, particularly amongst the Greek operators where none of the HCTM sprayers in our 

sample set were fitted with cabins (Table A2-1). Eight out of ten cabins in both UK cropping 

systems and a smaller proportion in the Lithuanian and Greek arable systems were fitted with 

carbon filters (Table A2-1); this exposure reduction measure is not included into the AOEM so 

it is likely that exposure during application is overestimated for these operators.  

Occupational exposure to pesticides is affected significantly by working practices relating to the 

use of PPE. Agricultural operators are protected by the requirements on PPE as proposed by 

regulations to reduce the exposure to levels deemed acceptable (Woodruff et al., 1994). The 

requirements are usually determined based on the intrinsic toxicological properties and exposure 

profile of the products (e.g. formulation types and application scenarios) (Lichtenberg et al., 

2015). Whilst the use of PPE is considered in the AOEM, there are some limitations in the 

exposure calculations due to the lack of data for inhalation routes both during mixing/loading 

and application tasks and for exposure to the head during application when protected by PPE 

(Groβkopf et al., 2013a). Overall, the EFSA dataset indicates that the selected professional 

operators generally wore gloves and protective clothing during mixing/loading activities with 

less PPE used during applications (Table A2-3). During mixing/loading activities, there was 

slightly higher use of face shields for liquid pesticides and respirators for solid pesticides (i.e. 

wettable powders and wettable granules). For the application tasks, there was less 

implementation of PPE in the UK and Lithuania due to the presence of cabins as compared to 

Greece where open tractors are more common (Table A2-1). Lichtenberg et al. (2015) proposed 
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that the use of respirators for inhalable droplets during mixing/loading of liquid pesticides is 

less relevant compared to use for powder/dust pesticides and that the assigned PPE can be 

omitted when spraying occurs from a closed cabin. In practice, the use of PPE could be affected 

by other factors including personal preference, availability in the workplace, toxicity of 

pesticide, and thermal comfort (MacFarlane et al., 2013).  

In the regulatory risk assessment, predicted total absorbed doses (sum of skin and respiratory 

absorbed doses) of agricultural operators to pesticides should not be greater than the AOEL for 

an individual active substance or combination of active substances formulated into a single 

product. EFSA (2014) proposed default assumptions that the total area treated with each 

substance per day using vehicle-mounted equipment be taken as 50 and 10 ha for arable and 

orchard crops, respectively. However, these values were exceeded relatively frequently for at 

least one compound per working day for some operators from the UK and Lithuanian cropping 

systems (Figure 3-1). It is known that the area treated is influenced by the type of equipment 

used (for example, newer sprayers may allow spraying with a stable boom at faster ground 

speeds) and EFSA (2014) states that values were derived based on “relatively simple and older 

model”. Equipment used by the operators ranged from 1 to 43 years old, but nearly 50% of 

operators from the orchard systems used equipment that was at least 20 years old (Table A2-4). 

The representative values for area treated from EFSA guidance are intended to be towards the 

upper end of the range in values occurring in the field and not the absolute maxima. 

Nevertheless, the analysis presented here suggests a need to review how representative these 

values are for spraying practice across the whole of the EU. 

According to Regulation (EC) No 1107/2009, the AOEL is used as a limit in the authorisation 

process of the use of any active substances, and further work or ultimately no authorisation is 

triggered if the exposure estimate exceeds the AOEL (Aprea et al., 2016; Thouvenin et al., 

2016). The AOEL is generally derived from the most sensitive no observed adverse effect level 

for relevant endpoints based on an oral short-term toxicity study as a default procedure (i.e. 90-

day study or occasionally 1-year study) (European Commission, 2006). In practice, an 

agricultural operator’s exposure to pesticides occurs mainly through the dermal route, and to a 

lesser extent through the inhalation route (CTGB, 2016). Route-to-route extrapolation is only 

appropriate if the type and extent of effects of a substance are independent of the route of 

exposure (European Commission, 2006). We did not adjust the AOEL for route of exposure, so 

uncertainties are introduced because of the lack of information on any association between 
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adverse effect and route of exposure, as well as by the repeated dose that is used in most toxicity 

studies to determine the no observed adverse effect level.  

Our study indicates that a few relatively hazardous substances contributed significantly to the 

working days with estimated exposures greater than the AOELs (Table A2-3); these included 

diquat, glufosinate-ammonium, prosulfocarb, chlorothalonil, and chlorpyrifos, all of which have 

AOEL <0.1 mg kg bw-1 day-1. Chlorpyrifos made a significant contribution to those exposures 

where AOELs were exceeded in the UK orchard system, but all uses in the UK were withdrawn 

with effect from April 2016 except use as a drench for brassica seedlings. Besides this 

restriction on use of chlorpyrifos, several other active substances have been restricted or 

removed from the market in one or more of the member states since the period of data collection 

including amitrole, carbendazim, flusilazole, ioxynil, and tepraloxydim. However, only amitrole 

was associated with a single exceedance of the AOEL in the UK orchard cropping system 

(Table A2-3).  

Limitations within the current study include the reliance on the assumptions and underpinning 

data embedded into the AOEM and the derivation of regulatory AOEL values. A particular 

constraint within the AOEM is the relatively simple treatment of protection factors to 

incorporate efficiency of personal protective equipment and the influence of cabin design on 

exposure under different field conditions. There is a clear need for validation of exposure 

predictions against field measurements and biological monitoring, and this should include 

generation of data for modern spray machinery and in a range of countries with different 

cropping, environmental and cultural conditions. Three active substances where AOELs were 

not available were removed from the analyses, namely calcium and derivatives, sulphur, and 

paraffin oil. The data collection was designed to make broad comparisons across cropping 

systems and countries and did not allow direct comparison of individual crop types because a 

particular crop may only have been grown on a small number of holdings. A direct comparison 

of pesticide usage and application practice between individual crops would be useful to add into 

any future study. 
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Conclusion 
 

This study allows an evaluation of the European regulatory exposure assessment against a high-

quality dataset on operator practices across three member states and two cropping systems. The 

dominant influences on estimated exposure were the extensive use of wettable powder 

formulations in Greece and multiple mixing and loading activities associated with large areas of 

crop treated with a pesticide product each day in the UK and Lithuania. The model predicted 

clear differences in exposure across the different systems, driven by variations in agricultural 

practices and working behaviours, and there were some applications that generated predicted 

daily exposures that exceeded the AOEL, particularly for more hazardous active substances. 

Agricultural operators have limited control over the toxicity of products that they apply, but 

their use of pesticides can be regarded as safe through the adoption of effective exposure 

mitigation measures, including the use of PPE during mixing and loading and undertaking 

application activities from a closed cabin. Study results can be used to evaluate current 

assumptions in regulatory exposure calculations and to identify situations with potential risk 

that require further analysis including measurements of exposure to validate model estimations.  



   69 

Chapter 4 Assessment of occupational exposure to pesticide 
mixtures with endocrine disrupting activity 

 

Introduction 
 

Agricultural operators can be exposed to complex mixtures of pesticides when applying tank 

mixes of two or more products or when making sequential applications of different products 

(Panizzi et al., 2017). Complexity of mixtures to which operators are exposed may be further 

increased because pesticide products comprise both the declared active substances that control 

the target pests/plant diseases and co-formulants that aid application and/or improve the 

effectiveness of the product (Yusoff et al., 2016). To date, little is known about the risk from 

cumulative exposure to different combinations of pesticides in mixtures (Kienzler et al., 2016).  

Pesticides with endocrine disrupting activity are of particular health concern because the 

endocrine system regulates the secretion of almost all hormones that control the metabolism and 

function of the body, influencing almost every cell, organ and function of an organism (EFSA, 

2013a). They can interfere with the function of the hormone system, thus dysregulating 

homeostatic mechanisms, reproduction and development (Sidorkiewicz et al., 2017). Numerous 

studies have suggested effects from occupational exposure to endocrine disrupting pesticides on 

the reproductive system including reduced semen quality and lower luteinizing hormone 

(Hossain et al., 2010; Mehrpour et al., 2014; Cremonese et al., 2017). Other studies suggest 

higher risk of hypospadias, and allergic and non-allergic wheeze (Rocheleau et al., 2009; 

Mesnage et al., 2017). Pesticides with endocrine disrupting activity can instigate effects at very 

low doses that are not always predicted from tests at higher doses (Futran Furhrman et al., 2015). 

Similarly, chemicals that are present individually at ineffective doses can produce substantial 

effects when combined in mixtures (Christiansen et al., 2012; Hass et al., 2012). 

Cumulative risk from exposure to mixtures of pesticides that can produce common adverse 

effects on the same target organ or organ system is a particular concern (EFSA, 2013b); 

concentration/dose addition is generally used as the default first tier approach for hazard 

quantification (Sarigiannis and Hansen, 2012). For instance, good agreement was found 

between observed and predicted effects on sexual development in rats based on dose-additivity 
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for a mixture of five low-dose endocrine disrupting pesticides comprising epoxiconazole, 

mancozeb, prochloraz, tebuconazole and procymidone (Hass et al., 2012). Generally, the 

concentration/dose addition approach is considered sufficiently conservative to assess the risk 

from combined exposure to multiple chemicals, irrespective of the similarity and dissimilarity 

of their mechanisms or modes of action in the mixtures (Kienzler et al., 2016). 

European pesticide regulations require risk assessments that usually focus on the declared active 

substances with additional, but generally fewer, data requirements for commercial product 

formulations (Kienzler et al., 2016). Regulation (EC) 1107/2009 concerning the placing of plant 

protection products on the market requires that individual active substances to be included in 

pesticide products should have no harmful effect on human health nor the environment on the 

basis of harmonised criteria at Community level. Meanwhile, pesticide co-formulants are 

authorised in the Member States with responsibility for characterising toxicological hazard 

transferred to industry under the CLP Regulation (EC) 1272/2008 on the classification, labelling 

and packaging of substances and mixtures (Hernandez and Tsatsakis, 2017). The potential for 

mixture effects from different combinations of pesticides applied in multiple products is not 

covered within pesticide regulation and has rarely been tested (Kienzler et al., 2016;). 

Professional agricultural and horticultural operators often handle large amounts of pesticides 

and thus have high potential for exposure to multiple products with similar toxicological 

endpoints. They thus represent a vulnerable group for combined effects of pesticide mixtures. 

This study investigates actual scenarios of pesticide use for professional operators in order to: 

determine the pesticide mixtures to which individuals are potentially exposed; quantify the 

exposure to and risk from pesticide active substances with known/possible endocrine disrupting 

activity; and investigate whether co-formulants in pesticide products might be an additional 

source of exposure to endocrine disruptors. To do this, we analyse usage of known and possible 

endocrine disrupting substances over an agricultural season for a total of 50 professional 

operators from different cropping systems in Greece, Lithuania, and the UK. Exposure of 

operators is assessed on a daily basis using the Agricultural Operator Exposure Model (AOEM; 

Groβkopf et al., 2013a) and potential risk is assessed using the lowest no observed (adverse) 

effect levels (NO(A)ELs) for endocrine disrupting effects and an assumption of concentration 

addition. We analyse results to determine gaps in knowledge in the current risk assessment. 

Supplementary information for this study is provided as Appendix 3. 
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Methodology 
 

Pesticide application data 
We used a dataset of pesticide applications made by professional operators that was collected on 

behalf of the European Food Safety Authority (EFSA) with the purpose of addressing 

cumulative exposure and potential for combined, non-dietary effects of pesticide products 

(Garthwaite et al., 2015). The dataset comprises long-term records of all pesticide handling 

activities for a large number (> 400) of professional operators, including details on the pesticide 

products used, application methods, and personal protective measures. This allows in-depth 

investigations of operators’ exposure during mixing/loading and application tasks. Based on an 

earlier study (Wong et al., 2018), a total of 50 professional operators were randomly selected to 

give ten individuals each from arable and orchard farming systems in the UK and Greece, and a 

further ten from arable agriculture in Lithuania. These countries were selected as having robust 

data quality (Garthwaite et al., 2015). Data for each operator covered all pesticide spraying and 

handling activities over an agricultural season (2012/13) and comprised crop, pesticide product, 

area applied, mass applied, volume applied, spray equipment and personal protective equipment.  

 

Identification of pesticides with endocrine disrupting activity 
An endocrine disruptor is defined as “an exogenous substance or mixture that alters the 

functions of the endocrine system and consequently cause adverse effects in an intact organism, 

or its progeny, or (sub) populations” whilst a possible endocrine disruptor is “an exogenous 

substance or mixture that possesses properties that might be expected to lead to endocrine 

disruption in an intact organism, or its progeny, or (sub) populations” (WHO/IPCS, 2002). We 

classified the declared active substances of products applied in our dataset for their known or 

possible endocrine disrupting activity based on the Pesticide Properties Database (PPDB, 2018), 

which is an international database for pesticide risk assessments and management that is 

endorsed by the International Union of Pure and Applied Chemistry and promoted by major 

organisations including the Food and Agricultural Organisation (Lewis et al., 2016). Four 

triazole fungicides had no relevant data available (i.e. difenoconazole, metconazole, 

paclobutrazol, and tebuconazole; Table A3-1), but were included here because studies have 
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identified that triazoles and structurally similar chemicals are potential endocrine disruptors 

(Andersen et al., 2002; Marx-Stoelting et al., 2014; Lv et al., 2017; Teng et al., 2018).  

Determination of whether or not co-formulant chemicals have potential for endocrine disrupting 

activity was undertaken for a single, exemplar scenario (UK orchards). A total of 93 pesticide 

products that were applied by at least one operator from the UK orchard system were identified 

for their co-formulants based on individual material safety data sheets (MSDS). Where no 

MSDS was found, the most similar product from the same manufacturing company and 

formulation type was substituted. Afterwards, individual co-formulants were assessed for their 

potential endocrine disrupting activity based on their chemical abstract service numbers (CAS 

No.) in accordance with the Hazardous Substances Data Bank in the Toxicological Data 

Network (TOXNET, https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm) and the PPDB (2018). We 

extracted all endocrine-relevant data from animal-based studies including information on 

different routes and durations of exposure as there is limited toxicological data for co-

formulants (Table A3-2). Co-formulants where no data were found to indicate endocrine 

disrupting properties were assumed not to be active as endocrine disruptors. 

 

Quantification of exposure 
Professional operators are mainly exposed to pesticide products during mixing/loading and 

application tasks via two major routes, namely dermal absorption and respiratory inhalation 

(Damalas and Abdollahzadeh, 2016). These exposure scenarios are included within the 

harmonised Agricultural Operator Exposure Model to reflect agricultural practices in the EU 

(AOEM; Groβkopf et al., 2013a). The AOEM is based upon empirical data from 34 exposure 

studies conducted between 1994 and 2009. The model allows the adjustment of a range of 

exposure parameters including the formulation type (liquid, wettable powder, wettable granule), 

personal protective equipment (PPE; gloves, face shield, coverall), and application equipment 

(knapsack, vehicle-mounted tractors, cabin status) (Groβkopf et al., 2013a). Here, we employed 

the AOEM to assess the median exposures of operators to individual active substances with 

known/possible endocrine disrupting activity during mixing/loading and application tasks 

across individual spray days (Table 3-1).  
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In the AOEM algorithms, the total mass of active substance handled during a day is the 

dominant input parameter to the exposure modelling. However, pesticide products consist of the 

declared active substance plus co-formulants that may be hazardous in themselves. The AOEM 

algorithms were also adopted to assess the occupational exposure to any co-formulants that 

were identified on the MSDS for the respective product and that were identified as having 

possible endocrine disrupting activity. The MSDS rarely gives precise information on the exact 

proportions of different co-formulants, so we used the mean value where a range was given (e.g. 

3% for “1-5%”) and the defining number for compositional formulations (e.g. 5% for “<5%”, 

“£5%” or “>5%”). Exposure to individual co-formulants was calculated as for active substances, 

considering exposure to the hands, body, head, and via inhalation; the influence of any personal 

protective equipment and/or equipment design was included in the calculation and adjustments 

for dermal and inhalation absorptions were based on the content of individual co-formulants in 

the products. Full details of the exposure model are provided in Wong et al. (2018). The total 

exposures to active substances and co-formulants with known/possible endocrine disrupting 

activity were summed separately for each individual spray day.   

 

Risk estimation  
According to EFSA (2013b), the combined effects of individual pesticide active substances 

should be determined based on their toxicological profiles where experimental measurements of 

combined effects are not available. To estimate risk from exposure to multiple active substances 

with known/possible endocrine disrupting activity handled on a single spray day, we adopted an 

application of the concept of concentration addition to calculate the combined dosages in the 

mixture based on the point of departure index (PODI) (Christiansen et al., 2012): 

0‹^å = 	 	[	
vÿD
0‹^D
x⁄

]K
DÉ_         (Eqn. 27) 

where {◊ is the estimated exposure level (mg kg bw-1 day-1) and POD is the point of departure 

for endocrine disrupting effects (NO(A)ELs in mg kg bw-1 day-1). |€ is the default uncertainty 

factor of 100, frequently characterised as a factor of 10 for interspecies extrapolation and a 

further factor of 10 for different sensitivities among humans (Bang et al., 2012). A PODI >1 

indicates that significant effects are possible.  
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For the POD, we extracted the short-term NO(A)ELs (subacute or subchronic) for endocrine 

disrupting effects from six established toxicological databases, namely the EFSA Draft Risk 

Assessment Report and Assessment Report (http://dar.efsa.europa.eu/dar-web/provision), the 

Joint Meeting on Pesticide Residues of the International Programme on Chemical Safety, 

http://www.inchem.org/pages/jmpr.html), the Hazardous Substances Data Bank of TOXNET, 

the Integrated Risk Information System (https://www.epa.gov/iris), the EPA Endocrine 

Disruptor Screening Program Tier 1 screening determinations and associated data evaluation 

records (https://www.epa.gov/endocrine-disruption/endocrine-disruptor-screening-program-tier-

1-screening-determinations-and) the European Commission (EC) Endocrine Disruptors 

Database (EDS, http://ec.europa.eu/environment/chemicals/endocrine/strategy/substances_en.ht

m), ECHA Classification and Labelling  report, and other open literature (Table A3-3). Active 

substances that lacked a short-term NO(A)EL were assessed against individual chronic 

NO(A)ELs for endocrine disrupting effects; this was necessary for captan, chlorothalonil, 

flusilazole, linuron, paclobutrazol, propiconazole and pyriproxyfen. When neither short-term 

nor chronic NO(A)ELs were available (i.e. for deltamethrin and s-metolachlor), the lowest 

observed (adverse) effect levels (LO(A)ELs) for endocrine disrupting effects were applied with 

an adjusted uncertainty factor of 1000 (Bullock and Ignacio, 2006) (Table A3-3). 

A major challenge was encountered during the identification and extraction of NO(A)ELs for 

endocrine disrupting effects. As the disrupting process may affect different endpoints due to an 

alteration of function of the endocrine system, it is often difficult to assess the endocrine 

mediated mechanism or mode of action (Marx-Stoelting et al., 2014). The endocrine system 

communicates with the nervous and immune systems via multiple common pathways, so 

chemical exposure may affect the function of these systems together (Liu et al., 2006). For 

instance, observed effects on testicular and uterine weight in test organisms could be due to 

endocrine disruption even though no mechanistic evidence is available (Ewence et al., 2013). 

The problem associated with determining adversity and risk from endocrine disruptor 

compounds remains unresolved (Futran Fuhrman et al., 2015). Hence, we extracted NO(A)ELs 

for any observed (adverse) effects on the thyroid, adrenal, pancreas, pituitary, prostate, gonad 

(testes and ovaries), hormones, spleen, and growth retardation for the current assessment 

(Table A3-3).  
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Results 
 

Pesticide application data 
The pesticide programmes used across five cropping systems included eight active substances 

that are known to have endocrine disrupting activity (Table 4-1), comprising bifenthrin, 

bromoxynil, deltamethrin, fenoxycarb, ioxynil, picloram, tau-fluvalinate, and triadimenol 

(PPDB, 2018). All systems included applications of at least one such substance, with a 

maximum of six active substances with known endocrine disrupting activity applied in the UK 

arable system. More than half (48-67% across the different cropping systems) of active 

substances with known/possible activity were fungicides, with 13-35% insecticides and 10-28% 

herbicides (Table 4-1).  

 

Table 4- 1. Summary of pesticide active substances (AS) with known/possible endocrine 
disrupting activity (PPDB, 2018) used in the different cropping systems and classified by 
pesticide type. 

Cropping system 

Number of AS with 
endocrine activity 

Number of AS with known/possible endocrine 
activity used on different targets 

Known Possible Fungicides Herbicides Insecticides 

Lithuania arable 2 15 9 3 5 

UK arable 6 23 14 8 7 

Greece arable 1 10 6 2 3 

UK orchard 1 14 10 3 2 

Greece orchard 2 18 11 2 7 

All systems combined 8 40 25 11 12 

 

Overall, the UK cropping systems were treated with a larger number of active substances with 

known/possible endocrine disrupting activity during the survey period (medians of 11 and 10 

chemicals for arable and orchard systems, respectively) than the Greek cropping systems (6 and 

5 chemicals for orchard and arable systems, respectively) and the Lithuanian arable system 
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(4 chemicals) (Figure 4-1a). The masses of identified active substances applied were also largest 

in the UK (medians of 305 and 256 kg a.s. for orchard and arable systems, respectively) 

(Figure 4-1b). Active substances with known/possible endocrine disrupting activity were 

handled relatively frequently with 86% of the 50 professional operators handling at least one 

such substance on more than 50% of total spray days during the period investigated (Figure 4-

1c), and up to five identified active substances applied on a single day in the UK orchard system 

(Figure 4-1d).  

 

a b 

 

c d 

 

Figure 4- 1. Application data for 50 professional operators from the cropping systems in 
Lithuania, the UK and Greece expressed as total number (a), total mass (b), percentage 
of spray days (c), and maximum number applied on a single day (d) of active substances 
(AS) with known/possible endocrine disrupting activity. 
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Predicted exposure and risk from active substances with known/possible endocrine 
disrupting activity 
Figure 4-2 shows that the estimated exposure to active substances with known/possible 

endocrine disrupting activity on single spray days varied greatly across the 50 selected 

professional operators. Overall, all operators had at least one spray day with predicted exposure 

to such active substances over the survey period. At median level, the predicted daily exposure 

was generally larger amongst the orchard operators from the UK (1.1x10-3 - 5.1x10-2 mg kg bw-1 

day-1) and Greece (2.4x10-4 - 2.2x10-2 mg kg bw-1 day-1) compared to individuals working in 

arable systems in Greece (8.3x10-5 - 2.0x10-2 mg kg bw-1 day-1), the UK (1.1x10-4 - 3.7x10-3 mg 

kg bw-1 day-1), and Lithuania (8.7x10-5 - 1.6x10-3 mg kg bw-1 day-1). Over the survey period, the 

Greek arable operators had relatively larger variance around mean daily exposure (coefficients 

of variation 103-340%), whilst variance was intermediate for those from the orchard systems in 

the UK and Greece (78-232% and 88-180%, respectively), and relatively smaller amongst the 

arable operators from Lithuania and the UK (51-148% and 62-116%).  

Figure 4-3 shows the predicted risk per spray day from exposure to active substances with 

known/possible endocrine disrupting activity across the 50 selected operators. Generally, the 

Greek and UK orchard operators had larger risk estimates (medians of PODI 5.0x10-3 - 5.5x10-1 

and 7.6x10-3 - 2.2x10-1, respectively) than those from arable systems of Lithuania and the UK 

(8.6x10-4 - 2.4x10-1 and 1.1x10-3 - 3.3x10-2, respectively). Overall, 14 of the 50 operators had at 

least one spray day with PODI >1; the largest number of individuals meeting this criterion were 

from the Greek cropping systems (five and four operators for arable and orchard systems, 

respectively) and the least for the UK cropping systems (only one operator in each system). 

Individuals with maximum PODIs >1 generally had larger variance around mean daily PODI 

over the survey period; for example, three Lithuanian arable operators with maximum PODIs of 

3.5, 5.6 and 4.1 had estimated coefficients of variation 233, 398 and 263%, respectively (Figure 

4-3a). 
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a      b 

 

c      d  

 
e 

 

Figure 4- 2. Estimated total exposure on individual spray days when at least one active 
substance with known/possible endocrine disrupting activity was applied. Data are 
shown for individual operators from the arable systems in Lithuania (a), the UK (b) and 
Greece (c), and the orchard systems in the UK (d) and Greece (e). Boxes show the 
median and quartiles, and whiskers show the range. 
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a b 

 

c d 

 

e 

 

Figure 4- 3. Estimated risk from exposure on individual spray days when at least one 
active substance with known/possible endocrine disrupting activity was applied. Data 
are shown for individual operators from the arable systems in Lithuania (a), the UK (b) 
and Greece (c), and the orchard systems in the UK (d) and Greece (e). Boxes show the 
median and quartiles, and whiskers show the range. 
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Figure 4-4 shows cumulative frequency distributions for estimates of total exposure and total 

risk on single spray days and for individual operators from the five cropping systems. Across all 

of the operators, at least one active substance with known/possible endocrine disrupting activity 

was applied on ca. 60 to 80% of the total spray days that were recorded in the database. On 

single spray days, the total exposure to such active substances varied greatly across all operators, 

ranging between 6.7x10-6 and 2.7x10-1 mg kg bw-1 day-1 (Figure 4-4a). Estimated exposure was 

largest for the UK orchard system at all points on the cumulative frequency distribution 

(Figure 4-4a). For example, at the 95th percentile, estimated exposure in the UK orchard system 

(4.1x10-2 mg kg bw-1 day-1) was more than an order of magnitude larger than that in the 

Lithuanian arable system (2.6x10-3 mg kg bw-1 day-1).  Estimated risk was only largest for UK 

orchards up to the 60th percentile (Figure 4-4b); at percentiles above this, risk was always 

largest in the Greek orchard system mainly due to the applications of a few relatively hazardous 

substances (e.g. deltamethrin and chlorpyrifos-methyl with points of departure for endocrine 

disrupting activity of 0.001 and 1.0 mg kg bw-1 day-1, respectively). At the 95th percentile of the 

distribution, the Greek cropping system had largest estimated risk (PODI of ca. 5.3x10-1 in each 

system), whilst this was intermediate for the UK orchard system and the Lithuanian arable 

system (3.0x10-1 and 2.5x10-1, respectively), and least for the UK arable system (9.0x10-2; 

Table 4-2). All five cropping systems had at least one operator with a point of departure index 

for endocrine disrupting effects on a single spray day greater than one (maximum PODIs ranged 

between 1.2 and 10.7; Table 4-2). 
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a      b 

 

 

Figure 4- 4. Cumulative frequency distributions of total exposure (a) and total risk 
expressed as the PODI (b) on single spray days with at least one active substance with 
known/possible endocrine disrupting activity applied by 50 individual operators across 
the cropping systems. Each data point represents the value for an individual operator on 
a single day. 

 

Table 4- 2. Distribution of predicted total risk (expressed as the PODI) from exposure to 
active substances with known/possible endocrine disrupting activity. Different 
percentiles and the maximum are given for the five cropping systems based on 10 
operators and all spray days with at least one active substance applied. 

 Total PODI per spray day (percentile) 

Cropping system 25th 50th 75th 95th Maximum 

Lithuania arable - 9.53x10-4 6.29x10-3 2.47x10-1 5.58 

UK arable - 1.27x10-3 1.80x10-2 9.02x10-2 2.61 

Greece arable - 3.25x10-3 2.15x10-2 5.32x10-1 1.74 

UK orchard 3.37x10-4 1.05x10-2 3.44x10-2 3.03x10-1 1.15 

Greece orchard - 5.28x10-4 1.06x10-1 5.28x10-1 10.72 
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Predicted exposure to pesticide co-formulants with possible endocrine disrupting 
activity 
Figure 4-5 shows that co-formulants increased the complexity of potential exposure of the UK 

orchard operators to mixtures of chemicals with possible endocrine disrupting activity. At 

maximum, one operator applied five such active substances and ten such co-formulants on a 

single spray day. Only one active substance classified as having known endocrine disrupting 

activity was applied by any of the ten operators working in UK orchards. Figure 4-6 shows that 

estimated exposure of operators to co-formulants classified as having possible endocrine 

activity was at a level lower than that for active substances; exposure to co-formulants 

contributed up to ca. 0.1 mg kg bw-1 and 46% of an individual’s total exposure to pesticides 

with endocrine disrupting activity over the survey period. 

 

Figure 4- 5. Maximum number of active substances and co-formulants with known or 
possible endocrine disrupting activity applied on a single spray day for ten operators 
working in UK orchards. 

 

Figure 4- 6. Predicted total exposure to active substances and co-formulants with 
known/possible endocrine disrupting activity over the survey period for 10 operators 
working in UK orchards.    
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Discussion 
 

Professional agricultural operators across five agricultural systems in three European member 

states were potentially exposed on single spray days to complex mixtures of active substances 

and co-formulants with known/possible endocrine disrupting activity (Figures 4-1d and 4-5). 

The majority of active substances identified as having known/possible endocrine disrupting 

activity were fungicides (48-67% of total active substances across the five agricultural systems; 

Table 4-1). In a review of recent literature on the effects of pesticide mixtures in human and 

animal models based on 78 studies published between 2000 and 2014, mixture effects of 

fungicides were associated predominantly with endocrine regulation and/or reproduction 

(Rizzati et al., 2016). Figure A3-1 compares the relative contributions of fungicides, herbicides, 

and insecticides to the use, exposure and risk associated with endocrine disrupting activity. 

Overall, fungicides made the largest contribution to total usage and associated exposure across 

all cropping systems (48-67% and 58-99%, respectively) compared to herbicides (10-28% and 

0.7-38%) and insecticides (13-35% and 0.2-26%; Figures A3-1a and A3-1b). In contrast, 

insecticides and fungicides contributed similarly to risk across the five systems as a whole 

(Figure A3-1c). Fungicides were the major component of risk in the Greek arable system and 

the UK cropping systems (64% and ca. 50% of total PODI in each system, respectively), 

whereas insecticides dominated the risk profile in the Lithuanian arable system and the Greek 

orchard system (94% and 79% of total PODI, respectively). Herbicides contributed least to the 

risk associated with endocrine disrupting activity, representing at maximum, 22% of the PODI 

in the UK orchard system. 

Figures 4-1d and 4-5 indicate that the professional operators in our dataset can be exposed to up 

to five active substances with known/possible endocrine disrupting activity on a single spray 

day, with predicted exposure ranging between 6.7x10-6 and 2.7x10-1 mg kg bw-1 day-1 (Figure 4-

4a). Table 4-2 indicates that all cropping systems had at least one operator with potential risk 

from exposure to active substances with known/possible endocrine disrupting activity indicated 

by a point of departure index greater than 1 on a spray day. The instances with potential risk are 

primarily due to uses of deltamethrin where the LO(A)EL had to be used as the point of 

departure, and uses of mancozeb and copper oxychloride where the AOEM estimates larger 

exposure because they are formulated as wettable powders. Many of the copper oxychloride 

formulations are no longer approved as plant protection products, although growers can 



   84 

continue to use copper oxychloride based products as foliar feeds. Predicted concentrations 

below individual points of departure do not mean that there is no risk as the NOAELs cannot be 

equated with zero-effect levels (Kortenkamp et al., 2007). The endocrine system usually 

responds to hormone concentrations of parts-per-trillion and parts-per-billion and endocrine 

disruptors can coexist in the system to cause low-dose effects that are not predicted at higher 

dose (Vandenberg et al., 2012). A minor change in the concentration of an endocrine disrupting 

chemical can induce significant changes in biological endpoints even though the dose is small 

(Futran Fuhrman et al., 2015). Currently, risk assessment methodologies do not sufficiently 

assess the hazard associated with low-dose exposure to endocrine active substances (Melching-

Kollmuss et al., 2017) and the lack of a universal definition for “low dose” is one obstacle to 

this. 

Based on the UK orchard system, Figures 4-5 and 4-6 indicate that professional operators can 

be simultaneously exposed to multiple co-formulants with possible endocrine disrupting activity; 

levels of exposure are generally lower than for the declared active substances, with co-

formulants accounting for up to 46% of total exposure at maximum due to their relatively 

smaller proportions in the products. The AOEM was developed to simulate active substances 

and the algorithms of the model might require modification for co-formulants such as 

surfactants that have an amphiphilic structure consisting of a long-chain hydrocarbon and an 

ionic or highly polar group (Castro et al., 2014). Co-formulants are usually assessed for acute 

ocular and dermal properties, but there is no specific requirement for medium- and long-term 

regulatory experiments on mammals and acceptable daily intake values are not required to be 

established (Defarge et al., 2016). It was not possible to estimate risk from exposure to co-

formulants here because of the lack of appropriate experimental endpoints; the total risk 

associated with use of the products will thus be greater than that reported here based on the 

active substances alone. 

In the EU, pesticide formulations are typically registered at the national level and require more 

risk assessment data for the declared active substances than for the authorisation of co-

formulants (Kienzler et al., 2016). It is usually the responsibility of industry to classify the co-

formulants and this may result in different classifications, labelling, and levels of protection for 

substances with identical CAS numbers (Lichtenberg et al., 2015). The lack of complete 

disclosure of identity and concentrations of co-formulants and formulation ingredients coupled 
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with inadequate analytical methods constrain a comprehensive risk assessment for commercial 

plant protection products (Mullin et al., 2016).  

There is currently no consensus on a science-based approach to the assessment of endocrine 

disrupting properties (Marx-Stoelting et al., 2016). The assessment is affected by different 

issues including the existence of safe thresholds for adverse effects, the significance of dose-

response relationships, and the influence of different modes of action (Solecki et al., 2017). The 

adoption of scientific criteria for endocrine disruptors needs a clear definition of the hazard as 

the first step to developing test methods, identifying hazardous chemicals, and managing risk 

for regulatory purposes (Slama et al., 2016). Typically, chemicals with observed endocrine 

effects in experimental animals based on the test guidelines of Organisation for Economic Co-

operation and Development need to be addressed for their relevance to humans including 

consideration of species, strain, exposure route (OECD, 2012), and species-specific differences 

such as endocrine signalling, toxicokinetics, and bio-transformation (Testai et al., 2013). The 

dose thresholds/guidance values for “Specific Target Organ Toxicity Repeated Exposure” were 

used to determine whether the hazardous property of endocrine disruption should be identified 

for regulatory purposes in accordance with the CLP Regulation (Ewence et al., 2015). 

Nevertheless, the OECD framework is inadequate for the identification of all aspects of 

endocrine disrupting effects, because it mainly focuses on estrogenicity, anti-androgenicity, and 

thyroid disruption (Manibusan and Touart, 2017).  

 
 
 
 
 
 
 
 
 
 
 

 



   86 

Conclusion 
 

Professional agricultural operators handling plant protection products can be exposed to 

complex mixtures of chemicals comprising both the declared active substances and co-

formulants, and some of these chemicals have known/possible endocrine disrupting activity. At 

the extremes, our results show that exposure to pesticide active substances can result in risk 

quotients for mixtures handled on a single day that indicate potential for risk (i.e. point of 

departure index greater than 1). Additional risk might also be expected from simultaneous 

exposure of operators to pesticide co-formulants with endocrine disrupting activity. This study 

suggests the need for clarity on the identification of endocrine disrupting activity, particularly as 

many of the substances considered in this study were classified as having “possible” rather than 

“known” endocrine disrupting activity. Further work is also required on risk assessment for 

pesticide co-formulants, particularly where complex mixtures can occur with multiple active 

substances and co-formulants that have similar toxicological endpoints.  
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Chapter 5 Conclusion and Perspectives 
 

Literature review 

Pesticides are widely used in agriculture to control a range of pests and crop diseases. Due to 

the intrinsic toxicity of this class of chemicals, off-target movement of pesticides may pose a 

risk to human health. Risk assessment for non-dietary, human exposure to pesticides is an 

integral part of pesticide authorisation at the EU level, with a range of models introduced for 

regulatory application. Typically, investigation of association between pesticide exposure and 

health issues provides an important check for the regulatory process in minimising pesticide risk. 

Nevertheless, a review of the literature has identified exposure estimation as a major gap 

between risk assessment as part of regulatory procedures, post-authorisation monitoring, and 

epidemiological investigations:  

1. Much effort is expended in epidemiology to express major associations between exposure of 

vulnerable humans to a range of pesticides and ill health. Pregnant women are of particular 

concern because they may spend long periods at home and are susceptible to pesticides that 

have the potential to cause adverse reproductive and developmental effects. However, the 

strength of evidence for any association with birth outcomes is generally weak because of 

methodological limitations including the relative weakness in measurement and prediction of 

exposure.  

2. Occupationally, agricultural operators can be exposed to complex mixtures of pesticides 

during mixing/loading and application activities at levels much higher than the general 

population. Operator exposure can be influenced by a wide range of factors under actual 

conditions of use and thus is generally predicted rather than measured. A range of models is 

available to assess the operator exposure, however, the major drivers of exposure have rarely 

been assessed against agricultural practices under field conditions. 

3. European pesticide regulations require risk assessment that usually focuses on the declared 

active substances with generally fewer data requirements for co-formulants. Regulatory 

assessment is the only place where exposure is routinely quantified, but this is done one active 

substance at a time and there is no oversight of total exposure to pesticides or of how this may 

be changing in time. In mixtures, active substances and/or co-formulants with similar 
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toxicological endpoints may cause combined effects at levels higher than that predicted for 

single active substances. Nevertheless, mixture toxicities of multiple active substances and/or 

co-formulants, other than those occurring in tank mixes, have typically been ignored within the 

regulatory assessment scheme.  

4. Exposure models that can describe the complex interactions between agronomic and 

environmental conditions and pesticide exposure are important tools in regulatory risk 

assessment that can be used to supplement limited field measurements in a cost-effective way. 

Nevertheless, the existing models have some limitations including limited data for some 

pathways of operator exposure in the AOEM and the maximum distance of 10 m for residential 

exposure in the BROWSE models. Improvement to the models is necessary as additional data 

become available, and adjustable parameters are also important to simulate different situations 

more accurately.  

5. Pesticide risk is typically assessed against the respective lowest NO(A)EL value, with a range 

of established toxicological databases available. For the identification of the lowest relevant 

value, however, there are currently no scientific criteria to define different health diseases 

including a clear boundary between reproductive and developmental effects or of endocrine 

induced effects. Questions remain concerning inherent uncertainties in the NO(A)ELs and the 

impact on the risk assessment.  

  

The aim of this PhD study was to assess non-dietary exposure of vulnerable humans to 

pesticides and to evaluate the regulatory process in managing pesticide risk over time. A 

mathematical model for pesticide volatilisation and aerial dispersion was developed and the 

harmonised Agricultural Operator Exposure Model (AOEM) was used to quantify the levels of 

exposure and thus risk for residents and professional agricultural operators, respectively. Two 

high-quality pesticide application datasets previously collected by Fera Science Ltd. and for 

EFSA at the UK and the EU levels, respectively were used to drive the analyses. Trends in 

pesticide usage and major drivers of exposures and thus risks were identified, including any 

implications for the regulatory assessment scheme over the period investigated. The main 

conclusions of this thesis can be summarised as follows.  
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Use of models for risk assessment 

In this thesis, the use of models for risk assessment enabled non-dietary routes of human 

exposure to pesticides to be quantified across a range of agronomic and environmental 

conditions, which is a common requirement in post-authorisation monitoring and 

epidemiological studies. Model simulation can supplement the available exposure data cost-

effectively, but there are inherent limitations owing to the embedded assumptions and data 

availability at the time of model development.  

In Chapter 2, a mathematical model was developed that allows estimation of exposure to 

pesticides for residents living at different distances from treated fields. The model consists of 

three components, namely pesticide volatilisation and aerial dispersion, deposition of spray 

droplets, and then residential exposure. For modelling purposes, the following assumptions 

were made: (i) two major routes of exposure were considered dominant, namely vapour 

inhalation and indirect dermal contact with contaminated ground, (ii) maximum daily exposure 

was estimated for the first day after an application is completed, and (iii) no other dissipation 

pathways or competing processes on treated surfaces were included as the simulation only 

considered the first day after treatment. The developed model provides a promising starting 

point to estimate pesticide exposure and associated risk for residents living at different 

proximities from treated fields. The explicit calculations can be used as an improvement to the 

relatively weak exposure prediction and measurement in epidemiological methodologies. 

Nevertheless, a complete evaluation of the model is required and is discussed further below.  

In Chapters 3 and 4, the use of the AOEM allows simulation of a range of parameters to reflect 

latest agricultural practices and scientific knowledge including the use of different pesticide 

formulations, application methods, and protective measures under field conditions. More field 

measurements are needed to improve the statistical power of the estimated dominance of 

wettable powder formulations in the AOEM as this relied on just two exposure studies for hand-

held applications. The AOEM was developed based on empirical data and application is thus 

restricted to situations that are covered by the measurements. A range of assumptions are 

adopted in the model including: use of LCTM situation for arable crops and HCTM situation for 

orchard crops treated with vehicle-mounted/vehicle-trailed sprayers; use of HCHH situation for 

orchard crops treated with hand-held equipment; use of tank mixing/loading situation for all 

vehicle-mounted/-trailed sprayers and hand-held equipment; a relatively simple treatment of 
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protection levels to incorporate the efficiency of PPE use; and an assumption of 100% 

inhalation absorption independent of the cabin status, which is a dominant parameter for 

relatively higher exposure estimates in HCTM applications.  

In Chapter 4, the AOEM algorithms were used to predict exposures from individual active 

substances and co-formulants with known/possible endocrine disrupting activity. However, the 

algorithms were developed for active substances that have different chemical structures and thus 

properties compared to co-formulants. Co-formulants such as surfactants have an amphiphilic 

structure consisting of a long-chain hydrocarbon and a highly polar group, which is typically 

designed to aid application and/or improve the effectiveness of the product. Therefore, errors 

are possible when using the AOEM for co-formulants and tests would be required to identify the 

appropriateness and accuracy of such use. 

 

Model evaluation  

In Chapter 2, the developed mathematical model was not evaluated as data were not available at 

the time of model development. Subsequently, a small unpublished dataset collected by the 

Swedish University of Agricultural Sciences during summer and autumn 2008 to 2010 became 

available for a preliminary evaluation as presented in Appendix 4. Five of six measured active 

substances were selected for the evaluation, namely fenpropimorph, lindane, pendimethalin, 

pirimicarb, and prosulfocarb. Results for the first day after application were calculated to match 

the model outputs, thus all variables were averaged to derive daily values including wind speeds, 

air temperatures, and measured airborne concentrations at a chosen height of 1.0 m above 

ground.  

Results indicated that model outputs for concentrations of pesticides in air matched field 

observations to within an order of magnitude in most cases (Table A4-4), with ca. 86% of total 

comparisons lying within a factor of ten during the periods of summer and autumn (Table A4-5). 

The factor of ten for comparison was modified from a factor of two that was used to evaluate an 

urban air quality model (Derwent et al., 2010); this allows for uncertainties introduced by a 

variety of agronomic and environmental variables that were not parameterised in the developed 

model. Meanwhile, the correlation coefficients of the scatter plots indicated relatively poor 

correlations between the model outputs and field observations with R2 values of 0.21 and 0.59 
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during the summer and autumn, respectively (Figure A4-6). More processes would need to be 

tested and factored into the model for a more accurate estimation, including the consideration of 

formulation effects and dissipation pathways other than volatilisation on treated surfaces.  

Overall, the preliminary evaluation indicated that the developed model for pesticide 

volatilisation and aerial dispersion is a promising starting point to measure the residential 

exposure to pesticides, helping to address a common gap in epidemiological studies. The model 

enables the quantification of total inhalation exposure from a large number of active substances 

and applications at different proximities from treated fields. Meanwhile, deposition of spray 

droplets and thus indirect dermal contact with contaminated ground could not be assessed due to 

lack of data for locations remote from the treated area. More field data measuring agronomic 

and environmental conditions, airborne concentrations, and spray deposits for a range of active 

substances and at larger proximities, would supplement the limited data in the initial evaluation, 

improving current understanding of the influences of pesticide properties and environmental 

conditions on fate and allowing a more complete evaluation of the model. Detailed information 

on the preliminary evaluation comprising an introduction, methodology, results, discussion, and 

conclusion for this work are included in Appendix 4. 

 

Major drivers of pesticide exposure and risk  

In general, resident pregnant women living in the vicinity of treated fields had exposure 

estimates at levels relatively smaller than those for the professional operators who are directly 

involved in pesticide handling activities. Residents usually take no action to avoid or to control 

pesticide exposure and might be present in the home for up to 24 h per day (longer-term 

exposure; EFSA, 2014), whilst the professional operators generally handle large amounts and 

complex mixtures of pesticides during mixing/loading and application tasks.  

In Chapter 2, results regarding resident pregnant women confirmed the impact of regulatory 

intervention in improving fate and hazard profiles of pesticides applied in orchards in England 

and Wales over a 25-year period (1987, 1996, 2004 and 2012). Based on four regions and nine 

orchard crops, there was significant decrease in total pesticide usage from 1987 to 1996, 

followed by smaller changes through to 2012 (Figure A1-7). This was attributable to reduced-

rate applications at less than the maximum recommended label rate and the introduction of new 
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molecules that are active at lower dose rates. There were also overall decreasing trends in total 

pesticide emission rate, the estimated exposure per unit application, and the risk per unit 

exposure across four chosen years (Figures 2-6 and A1-11). The analysis showed a clear shift in 

the properties of pesticides applied to orchards away from active substances with relatively high 

volatility and high reproductive/developmental toxicity from 1987 to 2012 (Figure A1-10). At 

1000 m from treated fields, active substances with higher volatility contributed more to total 

exposure compared to that at 100 m. Hazard quotients for reproductive/developmental effects at 

1000 m were 5 to 16 times smaller than those at 100 m, indicating the strong influence of 

proximity on magnitude of exposure and thus risk. Meanwhile, the relatively larger hazard 

quotients in the analysis were driven by one or two dominant active substances with relatively 

high toxicity for reproductive/developmental effects, with a number of hazardous substances 

that have been restricted or removed from the market over the period investigated.  

In Chapter 3, analysis of 50 professional operators from cropping systems in Greece, Lithuania, 

and the UK identified agricultural practices as the dominant influence on their estimated daily 

exposures between 2012 and 2013. In Greece, the extensive use of wettable powder 

formulations contributed significantly to the relatively larger exposure estimates in agreement 

with empirical data (exposure due to wettable powder > liquid > wettable granule formulations). 

Meanwhile, the UK and Lithuania were influenced by the total area of land treated with each 

active substance per day as this frequently exceeded the regulatory assumptions suggested by 

EFSA (50 and 10 ha using vehicle-mounted equipment for arable and orchard crops, 

respectively; Figure 3-1). There were also influences of individual working behaviours 

involving the use of PPE, and the use of several hazardous active substances that have been 

restricted or removed from the market since the period of data collection. Crop types might 

influence operator exposure through different pesticide usage and application practices, but such 

influence was not assessed because a particular crop may have only been grown on a small 

number of holdings.  

In Chapter 4, further analysis regarding the 50 selected professional agricultural operators 

indicated that individuals handled multiple active substances and/or co-formulants with known 

or possible endocrine disrupting activity during a single spray day. Across five cropping 

systems, the analysis identified eight active substances with known endocrine disrupting activity, 

whilst 40 other substances and 27 co-formulants were classified as having possible endocrine 

disrupting activity (Tables A3-1 and A3-2). In mixtures, all pesticide constituents with similar 
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toxicological endpoints have potential to cause combined effects at levels higher than those 

predicted for individual active substances alone. At maximum, one operator handled five active 

substances with known/possible endocrine disrupting activity and ten co-formulants with 

possible activity in a single day (Figures 4-1d and 4-5). In everyday life, the operators can also 

be exposed to other classes of endocrine disrupting chemicals through their use in detergents, 

industrial and household products, brominated flame retardants, plastics, and as ingredients in 

personal care products based on varied lifestyle choices (Darbre, 2017). A review on endocrine 

disruptors and their possible impacts on human health demonstrated that previous studies on 

endocrine disruptors mainly focused on steroid hormones, synthetic steroids, polychlorinated 

dibenzo dioxins, and biphenyls with generally little work on alkylphenol ethoxylate, 

gonadotropin compounds, and pesticides due to their dependency upon diverse applications 

(Kabir et al., 2015). In a case-control study conducted by Den Hond et al. (2015) to investigate 

the association between endocrine disrupting chemicals and male fertility based on semen 

analysis for 163 patients, chlorinated pesticides from historical source (chlordane and 

hexachlorobenzene) and emerging chemical brominated flame retardants (polybrominated 

diphenylethers, BDE209) were identified as risk factors for subfertility compared to other 

endocrine disruptors including phthalates, triclosan and bisphenol A. In Chapter 4, pesticides 

appear as a major risk factor for the agricultural operators who may frequently handle large 

amount of endocrine disrupting chemicals during single spraying days compared to other 

sources like dietary intake, but should this be further investigated in the future studies.  

Overall, regulatory interventions were a common driver of human exposure to pesticides. In 

Chapters 2 and 3, the analysis indicated improving pesticide hazard profile through the review 

and removal of hazardous active substances from the market over the period investigated. In 

Chapter 4, the analysis indicated the need to account for combined effects of multiple pesticide 

constituents with similar toxicological endpoints in regulatory risk assessment. On the other 

hand, the operator exposures in Chapters 3 and 4 were also driven by agricultural practices 

including the choices of pesticide formulations, application methods, and multiple applications 

of pesticide products on single spraying days. Generally, operator exposure at work can be 

minimised through working behaviour involving the use of PPE, whereas residents have very 

limited control over pesticide exposure in their daily activities.  
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Implications within regulatory procedures 

Much work is expended to improve risk assessment and thus authorisation of pesticide active 

substances. Overall, results of this study confirmed the significant impact of Directive 

91/414/EC and Regulation (EC) 1107/2009 in minimising pesticide risk over the period 

investigated. Persistent and hazardous active substances have been gradually removed from the 

market, with a reduction from ca. 1,000 substances in 1993 to currently about 400 substances 

approved within the EU.  

In Chapter 3, the total area of land treated with each active substance per day was assessed 

against EFSA default assumptions that were derived based on relatively simple and older data. 

These representative values are intended to be towards the upper end of the range in values 

occurring in the field and not the absolute maxima. Nevertheless, there is a need to review how 

representative these values are for current spraying practice across the whole of the EU. To a 

lesser extent, the analysis also showed the need to account for the effects of formulation type in 

the pesticide risk assessment. 

In Chapter 4, the analysis confirmed that active substances and/or co-formulants can have 

similar toxicological endpoints that may cause combined effects in mixtures. Meanwhile, the 

substance-driven risk assessment has typically ignored such combined effects in the 

authorisation of pesticide products and formulations. Until now, there is no specific regulatory 

requirement for medium- and long-term mammal experiments to establish acceptable daily 

intake values for co-formulants. The identification of co-formulants here based on the material 

safety data sheets showed a need to disclose the exact information on co-formulants for risk 

assessment purposes. It also showed a need to have one authority responsible for authorising 

both active substances and co-formulants, whereas to date these have been approved at the EU 

and the national levels, respectively.  

Hazard-based inclusion criteria do not provide a science-based approach to assess health issues 

of concern, including the identification of reproductive and developmental endpoints (Chapter 

2), or of known and possible endocrine disrupting activities (Chapter 4). The regulatory use of 

AOEL as a limit in the authorisation process of the use of any active substances is an internal 

dose (Chapter 3), whilst the major route of exposure in the post-marketing phase is the skin; 

hence, risk assessment can be carried out only by conducting dermal exposure studies (Mandic-

Rajcevic et al., 2015). 



   95 

The current pesticide regulatory system does not require post-registration monitoring to provide 

real exposure information for non-dietary and environmental risks at the EU level (EFSA, 2018). 

Pre-registration studies are usually conducted based on all the recommendations for use (e.g. the 

representative recommended rate of application and the likely maximum area of crop treatable 

in a working day), so post-registration surveillance studies are important to ensure 

representation of actual use conditions and exposure variability (e.g. use of protective clothing 

and equipment) in exposure assessment (OECD, 1997). The monitoring data including post 

marketing vigilance by applicants can be used to refine the hazard assessment and the exposure 

estimates, and/or to guide risk management to revisit approval conditions (EFSA, 2018).  

 

Limitations in analyses 

In this thesis, the longer-term analysis of pesticide application data and explicit exposure 

estimations add to the existing body of knowledge and allow a holistic assessment of the 

effectiveness of regulatory interventions in minimising pesticide risk within the EU over the 

period investigated. Nevertheless, several inherent limitations are present within the analyses. In 

Chapter 2, results regarding residential exposure were summed into single measures to give 

total exposure and total risk estimates associated with individual crops. However, the implicit 

assumption of co-occurrence of exposure to all pesticides applied to a single crop and additivity 

of such effects will not hold true. Under field conditions, the exposure to individual active 

substances will be widely dispersed in time whilst this is not considered in the present work. 

The analysis indicated the strong influence of proximity to the sprayed area on magnitude of 

residential exposure and thus risk, however, such influence could not be verified due to the lack 

of data on airborne pesticide concentrations and spray deposits at the selected proximities. 

Results suggested a temporal differentiation in health outcomes for the estimated peak exposure 

between April and July each survey year, but this could not be assessed without relevant health 

data. Other inherent limitations were also introduced in the analysis, including no consideration 

of the fate of substances beyond the first day after application, of the structures that might 

interrupt pathways of exposure, of different mechanisms between reproductive and 

developmental toxicities, and of additional exposure pathways such as dietary intake.  

In Chapter 3, major limitations within the analysis of operator exposure during mixing/loading 

and application activities resulted from the relatively simple treatment of protection factors to 
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incorporate efficiency of PPE use and the influence of cabin design on exposure under field 

conditions. The AOEL that was used as a safety threshold is derived based on the most sensitive 

NO(A)EL for relevant endpoints and is thus not appropriate to inform actual level of risk. 

Uncertainties were also introduced because there was no adjustment to the AOELs for route of 

exposure, or for the use of repeated dose in the determination of the values in most toxicity 

studies.  

The analysis in Chapter 4 confirmed that co-formulants may share similar toxicological 

endpoints as their declared active substances and may increase toxicities of pesticide products in 

mixtures. Nevertheless, errors are possible with the use of the AOEM for co-formulants as the 

model was developed for active substances with different chemical structures and thus different 

characteristics. As co-formulants are usually assessed for acute ocular and dermal properties, 

additional toxicity attributed by co-formulants could not be assessed due to the lack of 

appropriate toxicological data. 

The identification of the lowest NOAEL for a specific health issue from a range of toxicological 

datasets remains a challenge, including the definition of safety thresholds for adverse effects 

and determination of relevant toxicological endpoints. Inherent uncertainties were also 

introduced through data extrapolation from LO(A)ELs and chronic NO(A)ELs where short-term 

NO(A)ELs were lacking and through inter-species extrapolation from test animals to humans.  

 

Further research 

This PhD study reports useful information on the use of models for risk assessment on non-

dietary routes of pesticide exposure for two vulnerable human sub-populations, comprising 

resident pregnant women and agricultural professional operators. Nevertheless, models consist 

of inherent uncertainties that depend on scientific data availability and assessment assumptions 

(Beronius and Agerstrand, 2017). More data on pesticide airborne concentrations and spray 

depositions for a range of active substances and at larger distances from treated areas would 

permit a complete evaluation and thus overall improvement to the developed mathematical 

model for residential exposure. The use of the harmonised AOEM would require further 

refinement for a range of assumptions that were applied in practice for a more accurate 

estimation, including the relatively simple incorporation of protection efficiency for the PPE use 
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and 100% inhalation absorption independent of cabin status during application. The use of the 

AOEM algorithms to predict exposure from co-formulants would need to be tested for its 

appropriateness and accuracy of use for the future.  

 

Risk assessment for residential exposure based on maximum dose within 24 h of pesticide 

treatment is a worst-case assumption. In reality, residents can be exposed to some kinds of 

pesticides at lower concentrations over a period of a few days to several weeks after an 

application is complete. Consideration of pesticide fate after entering different environmental 

compartments would be useful to add to the existing knowledge about cumulative residential 

exposure beyond the first day after application, while other refinements of limitations are 

possible for the future as discussed in the previous section. For the occupational risk assessment, 

some aspects of operator exposure would be useful to add into any further study including the 

incorporation of more specific protection factors for the PPE use and inhalation absorption 

based on cabin design when additional data and improved scientific knowledge become 

available.  

 

Mixture risk assessment of pesticide constituents comprising multiple active substances and/or 

co-formulants with similar toxicological endpoints appeared to be a major gap in current 

regulatory risk assessment at the EU level (Chapter 4). Neglecting such mixture effects may 

miss higher risk than that predicted for single active substances alone. More toxicological 

studies are required to understand the combined effects of multiple active substances with 

similar toxicological endpoints in every potential combination. Equally, experimental data are 

needed to understand the chemical behaviours of individual co-formulants and their interactions 

with active substances in a range of mixtures. The general lack of toxicological data for co-

formulants would need to be addressed based on medium- and long-term mammal experiments 

for risk assessment purposes. 

 

An important issue concerning the need for clear definition of hazard and thus scientific criteria 

in the risk assessment was also raised in this thesis. In Chapter 2, there was an unclear boundary 
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between reproductive and developmental outcomes for different windows of exposure, i.e. 

before pregnancy and during different trimesters. In Chapter 4, there are no agreed scientific 

criteria to identify the endocrine mediated mechanisms and thus endpoints, whilst 48 of 180 

active substances were identified with known/possible endocrine disrupting activity (Table A3-

1; Chapter 3). Inclusion of all possible health endpoints in this thesis would be over 

conservative (e.g. spleen effects and growth retardation for endocrine disrupting effects), thus 

identification of endpoints based on a science-based approach would permit a more realistic 

estimation when a consensus becomes available in the future.  

 

Some aspects of the exposure assessment that lie outside the remit of this thesis would deserve 

further research. Predicted pesticide risks with exposures below the respective safety thresholds 

did not mean risks are impossible or negligible. Validation of exposure predictions against 

biological monitoring and health data is necessary to evaluate the model simulations, but there 

are relatively scarce data to date.  
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Appendix 1 Supplementary Chapter 2 
 

Table A1- 1. Default parameter values used in modelling exposure to residents. 

Parameter Default value 

Adult height, ÖG 1.4 m 

Body weight, ûü 60 kg (for adult as recommended by EFSA, 2014) 

Concentration in the turbulent air outside the 
laminar air layer, #;FG Set as zero (= 0 g m-3) 

Coriolis parameter, O 9.374x10-5 s-1 (at 40° latitude) 

Crop height, ℎT 2.0 m (for orchard crop) 

Diffusion coefficient in air at 20°C, I;,GTU 0.43 m2 d-1 (BROWSEa) 

Dry soil bulk density 1.1 g cm-3 

Fraction of organic carbon, OY] 0.02 g g-1 

d10 factor 1.78 (for every 10°C increase or decrease) 

Indirect dermal exposure duration, Z 2 hrs (EFSA, 2014) 

Inhalation rate, ù" 13.8 m3 d-1 (for adult as recommended by US EPA) 

Inhalation absorption, ù! 100% (= 1.0) 

Molar enthalpy of evaporation, ∆Zl;& 95,000 J mol-1 

Reference aeric mass of pesticide on the plants, 
!&,GTU 1.0 x 10-4 kg m-2 (= 1 kg ha-1) 

Soil water content 0.3 g g-1 

Transfer coefficient, 8# 7,300 cm2 hr-1 (for adult as recommended by EFSA, 
2014) 

Turf transferable residues, 88" 5 % (= 0.05 for products applied in liquid sprays as 
recommended by EFSA, 2014) 

Treated area 200 x 200 m 

Universal gas constant, R 8.314 Pa m3 K-1 mol-1 

von Karman’s constant, ç 0.4 

Wind speed, â Ö  2.8 m s-1 at 2.0 m above the ground (BROWSEa) 
a BROWSE refers to the Bystanders, Residents, Operators and WorkerS Exposure models for plant 
protection products (Ellis et al., 2013).  
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Table A1- 2. Main stages of apple development and associated interception factors for 
pesticide applied to the canopy (Olesen and Jensen, 2013; Jensen and Spliid, 2003). 

Apple Without leaves Flowering Leaf 
development 

Full 
foliage 

Month November-March April May-June July-Oct 

CI (%) 50 65 70 80 

Fraction on plant 0.5 0.65 0.7 0.8 

Fraction on soil 0.5 0.35 0.3 0.2 

 

 

Table A1- 3. Average monthly temperature between 1980 and 2015 for the regions 
considered in the study (Met Office, 2015). 

Month Eastern West Midlands South-Eastern South-Western 

January 4.2 3.9 4.6 4.8 

February 4.4 4.0 4.6 4.7 

March 6.5 6.1 6.7 6.4 

April 8.8 8.2 8.9 8.3 

May 11.9 11.2 12.0 11.2 

June 14.8 14.1 14.8 13.8 

July 17.2 16.3 17.1 15.8 

August 17.1 16.0 16.9 15.7 

September 14.6 13.6 14.5 13.7 

October 11.1 10.2 11.2 10.7 

November 7.2 6.7 7.5 7.5 

December 4.8 4.4 5.2 5.4 
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Table A1- 4. Pesticide active substances with no NO(A)ELs for reproductive and/or 
developmental effects reported in the literature or reported in concentration unit other 
than daily exposure. 

No. Active substance 

1 Alloxydim-sodium 

2 Benodanil 

3 Ditalimfos 

4 Nitrothal-isopropyl 

5 Nuarimol 

6 Propyzamide 

7 Pyrifenox 

8 Tetradifon 

 

 

Figure A1- 1. Map of regions in the UK derived from the Office for National Statistics 
(2011). 
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a 

 

b 

 

 

 

Figure A1- 2. Sensitivity analysis for the effect of boundary air layers on the emission 
rates of active substances with low volatility (propyzamide; VP: 5.8x10-5 Pa) (a) and 
medium volatility (chlorpyrifos; VP: 1.43x10-3 Pa) (b) from the treated surfaces.  
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a      b 

 

c      d 

 

 

Figure A1- 3. Total amount of pesticide (including tar oils) applied to major orchard crop 
types between 1987 and 2012 for Eastern (a), West Midlands (b), South-Eastern (c), and 
South-Western (d) regions. Blanks indicate that none of that orchard type was sampled 
in that region. 
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a b   

 

a b 

 

a      b 

 

 

Figure A1- 4. Usage of pesticide for orchard crop types cultivated in the Eastern, West 
Midlands, and South-Western regions with usage of tar oils excluded. Data are 
expressed as number of applications (a) defined as treated area divided by area grown, 
and average application rate (b) defined as total amount applied divided by number of 
applications. Here, application is defined as one treatment with one active substance, so 
successive treatments with a single active substance or a single treatment with a 
product containing two active substances would both count as two applications. 
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a      b 

 

c d 

 

 

Figure A1- 5. Aggregated exposures to applied pesticide for residents living 1000 m 
downwind of individual crop types. Data are shown for four years between 1987 and 2012 
for Eastern (a), West Midlands (b), South-Eastern (c), and South-Western (d) regions.  
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c d 

 

 

Figure A1- 6. Aggregated hazard quotients based on reproductive/developmental toxicity 
for pesticide exposure to resident pregnant women living 1000 m downwind of individual 
crop types. Data are shown for four years between 1987 and 2012 and for Eastern (a), 
West Midlands (b), South-Eastern (c), and South-Western (d) regions. 
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Figure A1- 7. Average of total amount of pesticide applied to all crop types in four 
regions in England and Wales at approximately 4-year intervals between 1987 and 2012.  

 

 

 

Figure A1- 8. Total amount of pesticide applied in four regions in England and Wales for 
4 years between 1987 and 2012 based on pesticide chemical groups. 
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Figure A1- 9. Monthly estimates for total amount of pesticide applied to orchards in the 
South-Eastern region (a) and aggregated exposures for resident pregnant women living 
100 m downwind of individual crop types (b) in 1987.  
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Figure A1- 10. Plot of NO(A)ELs of reproductive and/or developmental toxicity and 
vapour pressure of individual active substances; plot is divided into approximate 
quadrants using divisions at 10 mg kg bw-1 day-1 and 1.0x10-5 Pa.  

 

 

 

Figure A1- 11. Total emission rates of applied pesticides and their respective airborne 
concentrations at 100 m downwind in four regions in England and Wales for 4 years 
between 1987 and 2012. 
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Appendix 2 Supplementary Chapter 3 
 

Table A2- 1. Information on the holding, operator details and agricultural practices for 50 selected professional operators. 

Operator 
code 

Total 
crop 
grown 
area (ha) 

Crop type Age Spray 
experience 
(year) 

Nationally 
recognized spray 
certificate type 
(year of most 
recent training) 

Date range 
for data 
collection 

Total 
number of 
spray days 

Method of 
application 

Sprayer cab type 

Lithuania arable (LTAB) 

LTAB01 129 Barley, other cereals, oilseed 
rape, wheat 

65 40 Theory (2008) 05/09/2012 – 
13/09/2013 

16 HD - hydraulic 
boom (downwards) 

Closed cab 

LTAB02 24 Other cereals, peas (dry), 
potatoes 

44 6 Theory and 
Practical (2013) 

06/05/2013 – 
01/08/2013 

8 HD Closed cab with 
no filter 

LTAB03 416 Potatoes, oilseed rape, wheat 29 5 Theory (2013) 18/05/2013 – 
15/09/2013 

26 HD Closed cab 

LTAB04 10 Barley, oilseed rape, wheat 43 12 Theory (2012) 19/05/2013 – 
31/05/2013 

3 HD Closed cab 

LTAB05 483 Maize, potatoes, oilseed rape, 
wheat 

49 16 Theory (2013) 18/04/2013 – 
15/07/2013 

19 HD Closed cab with 
carbon filter 

LTAB06 244 Barley, maize, other kind of 
root and tuber vegetables 
except sugar beet, potatoes, 
oilseed rape, wheat 

39 14 Theory (2012) 15/05/2013 – 
28/06/2013 

11 HD Closed cab with 
carbon filter 

LTAB07 34 Barley, grass, oats, other 
cereals, potatoes, wheat 

48 15 Theory and 
Practical (2009) 

12/05/2013 – 
22/08/2013 

8 HD Closed cab 
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LTAB08 13 Barley, potatoes, wheat 44 14 Theory (2012) 01/05/2013 – 
28/09/2013 

6 HD Closed cab 

LTAB09 18 Barley, oats, potatoes, wheat 55 18 Theory (2011) 01/06/2013 – 
24/06/2013 

4 HD Closed cab 

LTAB10 53 Potatoes, wheat 54 12 Theory (2011) 08/05/2013 – 
03/09/2013 

8 HD Closed cab 

UK arable (UKAB) 

UKAB01 28 Head cabbage, potatoes, wheat 55 35 No 24/04/2013 – 
18/09/2013 

20 HD Closed cab 

UKAB02 112 Peas (dry), sugar beet, wheat 33 10 Theory (2013) 11/10/2012 – 
04/07/2013 

16 HD Closed cab with 
carbon filter 

UKAB03 235 Peas (dry), potatoes, oilseed 
rape, sugar beet, wheat 

44 25 Theory and 
Practical (1992) 

01/11/2012 – 
06/10/2013 

33 HD Closed cab with 
carbon filter 

UKAB04 39 Sugar beet, wheat 57 41 Theory and 
Practical (2013) 

16/05/2013 – 
20/06/2013 

7 HD Closed cab with 
carbon filter 

UKAB05 120 Oilseed rape, sugar beet, 
wheat 

42 20 Theory (2012) 26/08/2012 – 
06/08/2013 

17 HD Closed cab with 
carbon filter 

UKAB06 210 Barley, beans (dry), oilseed 
rape, sugar beet, wheat 

33 13 Theory and 
Practical (2013) 

27/09/2012 – 
01/08/2013 

30 HD Closed cab with 
carbon filter 

UKAB07 374 Potatoes, sugar beet, wheat 45 25 Theory (2012) 31/10/2012 – 
17/09/2013 

30 HD Closed cab with 
carbon filter 

UKAB08 1040 Barley, beans (dry), oilseed 
rape, sugar beet, wheat 

21 3 Theory and 
Practical (2013) 

11/09/2012 – 
04/09/2013 

57 HD Closed cab with 
carbon filter 

UKAB09 67 Beans (dry), oilseed rape, 
sugar beet, wheat 

51 - Theory and 
Practical (2013) 

03/09/2012 – 
06/08/2013 

17 HD Closed cab with 
carbon filter 
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UKAB10 663 Barley, beans (dry), oilseed 
rape, sugar beet, wheat 

55 35 No 18/09/2012 – 
12/09/2013 

47 HD No cab 

Greek arable (GRAB) 

GRAB01 41 Maize, tomatoes 53 25 No 10/04/2013 – 
08/07/2013 

38 HD No cab 

GRAB02 27 Tomatoes 52 30 No 25/04/2013 – 
09/07/2013 

30 BA, HD Closed cab with 
carbon filter 

GRAB03 25 Maize, tomatoes 55 35 No 27/04/2013 – 
04/07/2013 

19 BA, HD No cab 

GRAB04 9 Maize, tomatoes, wine grapes 38 22 No 07/04/2013 – 
12/07/2013 

18 BA, HD Closed cab 

GRAB05 86 Maize, peppers, tomatoes 31 11 No 15/04/2013 – 
02/07/2013 

23 BA, HD BA - closed cab 
with carbon filter; 
HD - no cab 

GRAB06 106 Maize, tomatoes 34 15 No 09/04/2013 – 
08/07/2013 

26 BA, HD Closed cab 

GRAB07 40 Maize, tomatoes 53 35 No 18/04/2013 – 
07/07/2013 

35 BA, HD Closed cab 

GRAB08 36 Maize, peppers, potatoes, 
tomatoes 

42 27 No 07/04/2013 – 
05/10/2013 

37 BA, HD Closed cab 

GRAB09 25 Maize, tomatoes 58 30 No 22/04/2013 – 
15/06/2013 

5 BA, HD No cab 

GRAB10 27 Maize, tomatoes 40 20 No 
 

05/04/2013 – 
01/07/2013 

13 BA, HD Closed cab with 
carbon filter 

UK orchard (UKOR) 

UKOR01 16 Apples, pears, plums 69 54 No 28/03/2013 – 
11/07/2013 

8 BA – broadcast air 
assisted  

Closed cab with 
carbon filter 

UKOR02 30 Apples, hops (dried, including 54 30  Theory (2013) 25/10/2012 – 61 BA, HD Closed cab with 
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hop pellets unconcentrated) 27/11/2013 carbon filter 

UKOR03 35 Apples 54 20 Theory and 
Practical (2013) 

26/03/2013 – 
29/08/2013 

59 BA, HD BA -  closed cab 
with carbon filter; 
BA – no cab 

UKOR04 17 Apples, pears 63 40 Theory and 
Practical (2013) 

10/04/2013 – 
28/11/2013 

23 BA, HD Closed cab with 
carbon filter 

UKOR05 24 Apples, pears, plums 52 - Theory (2013) 06/03/2013 – 
31/07/2013 

36 BA, HD Closed cab with 
carbon filter 

UKOR06 43 Apples 61 43 Theory (2013) 24/10/2012 – 
02/09/2013 

63 BA, HD Closed cab with 
carbon filter 

UKOR07 52 Apples, cherries, currants (red, 
black and white), hops (dried, 
including hop pellets 
unconcentrated), pears 

50 30 Theory (2013) 12/10/2012 – 
31/08/2013 

71 BA, HD Closed cab 

UKOR08 121 Apples, currants (red, black 
and white), gooseberries, 
pears, plums 

32 6 Theory (2013) 05/03/2013 – 
15/09/2013 

69 BA Closed cab with 
carbon filter 

UKOR09 112 Apples, pears, plums 30 3 Theory (2013) 10/04/2013 – 
13/08/2013 

49 BA Closed cab with 
carbon filter 

UKOR10 41 Apples, currants (red, black 
and white) 

56 36 Theory (2013) 05/03/2013 – 
04/12/2013 

43 BA, HD Closed cab 

Greek orchard (GROR) 

GROR01 3 Wine grapes 54 30 Theory (2008) 28/03/2013 – 
04/08/2013 

13 HD No cab 
 

GROR02 7 Wine grapes 38 18 Theory (2009) 12/02/2013 – 
25/03/2013 

2 LA – lance sprayer No cab 
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GROR03 9 Peaches, pears, wine grapes 53 28 Theory (2009) 12//02/2013 – 
10/08/2013 

36 BA, LA No cab 
 

GROR04 1 Wine grapes 62 50 Theory (2009) 05/03/2013 – 
03/08/2013 

16 BA, HD, LA No cab 
 

GROR05 6 Pears, wine grapes 60 45 Theory (2009) 28/01/2013 – 
02/08/2013 

30 BA, HD, KN No cab 
 

GROR06 2 Wine grapes 62 34 No 19/03/2013 – 
15/07/2013 

10 HD, LA No cab 
 

GROR07 3 Wine grapes 42 10  Theory (2009) 02/04/2013 – 
07/08/2013 

14 BD, HD No cab 
 

GROR08 3 Wine grapes 38 20 Theory (2009) 19/03/2013 – 
20/07/2013 

12 BA, HD, LA No cab 
 

GROR09 1 Wine grapes 36 25 Theory (2009) 10/03/2013 – 
15/08/2013 

16 BA, HD No cab 
 

GROR10 3 Wine grapes 70 40 Theory (2009) 01/03/2013 – 
18/08/2013 

17 BA, HD No cab 
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Table A2- 2. Total number of hours spent spraying during the surveyed period for each 
individual operator, together with the median, 75th and 95th percentiles for each cropping 
system. 

Holding code LTAB UKAB GRAB UKOR GROR 

01 44 125 132 43 52 

02 16 85 78 316 14 

03 145 64 57 418 72 

04 1 20 33 127 32 

05 141 54 159 193 103 

06 48 65 79 390 20 

07 9 360 138 293 77 

08 7 244 103 379 63 

09 5 30 26 404 36 

10 49 225 26 295 63 

      

Median 30 75 79 306 58 

75th perc. 49 200 125 387 70 

95th perc. 143 308 150 412 91 
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Table A2- 3. Details of all applications with predicted exposure in excess of the AOEL. 

Holding 
code Date Crop type 

Active 
substance 

Form-
ulation 

Area 
treated 
(ha d-1) 

AOEL 
(mg kg 
bw-1 d-1) 

Exposure:
AOEL 

PPE use 

Mixing/loading –
liquid 

formulations 

Mixing/loading – 
solid formulations 

Application 

Lithuania arable (LTAB) 

01 28/05/2013 Wheat Spiroxamine EC 47.0 0.0006 1.3 
Normal workwear; 

Gloves-non 
specified rubber 

 Normal workwear 

05 15/07/2013 
Potatoes, 
oilseed 

rape 
Diquat SL 129.6 0.001 3.0 

Workwear: 
breathable 

(cotton/polyester); 
Gloves-non 

specified rubber; 
Face shield 

 None 

UK arable (UKAB) 

06 12/11/2012 Wheat Prosulfocarb EC 41.7 0.007 1.2 
Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56; Gloves-nitrile 

 
Type 6 (e.g. Tyvek 

Classic/Kleeguard T56 

07 

16/05/2013 Potatoes Diquat SL 72.7 0.001 1.8 
Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56; Face shield; 

Gloves-nitrile 

 

Long clothes 

22/05/2013 Potatoes Diquat SL 59.5 0.001 1.5 
03/09/2013 Potatoes Diquat SL 99.4 0.001 1.8 

10/09/2013 Potatoes 
Glufosinate-
ammonium 

SL 99.4 0.0021 1.2 

02/07/2013 Potatoes Cymoxanil WP 132.2 0.01 4.6  

Type 6 (e.g. Tyvek 
Classic/Kleeguard 

T56; Gloves-nitrile; 
Respirator-half 

mask, reusable with 
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filters 

08 

15/08/2013 
Beans 
(dry) 

Diquat SL 43.4 0.001 2.5 
Apron; Gloves-

nitrile 
 

 Normal workwear 16/08/2013 
Beans 
(dry) 

Diquat SL 46.0 0.001 2.6 

04/09/2013 
Beans 
(dry) 

Diquat SL 29.6 0.001 1.9 

10 

08/04/2013 Barley Prosulfocarb EC 105.0 0.007 10.0 
Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56; Gloves-nitrile 

 
Workwear: breathable 

(cotton/polyester) 
30/04/2013 Wheat Chlorothalonil SC 80.8 0.009 1.4 
13/05/2013 Wheat Chlorothalonil SC 43.3 a) 0.009 1.6 

29/08/2013 
Beans 
(dry) 

Diquat SL 12.2 0.001 2.1 

Greece arable (GRAB) 

01 

18/06/2013 Tomatoes Mancozeb WP 5.9 0.035 1.1 

 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 

T56; Gloves-nitrile; 
Respirator-

disposable filtering 
half mask 

Long sleeved shirt, full 
length trousers; 

Respirator-disposable 
filtering half mask 

22/06/2013 Tomatoes Mancozeb WP 5.8 0.035 1.1 

03 

12/05/2013 Tomatoes Mancozeb WP 5.9 0.035 1.2 

 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 

T56; Gloves-nitrile; 
Respirator-power 

assisted 

Type 6 (e.g. Tyvek 
Classic/Kleeguard T56; 

Gloves-nitrile 

05/06/2013 Tomatoes Cymoxanil b) WP 13.5 0.01 1.8 
05/06/2013 Tomatoes Mancozeb b) WP 13.5 0.035 1.2 

11/06/2013 Tomatoes Mancozeb WP 9.4 0.035 1.3 

05 

12/06/2013 Tomatoes Cymoxanil b) WP 28.7 0.01 3.5 

 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 

T56; Gloves-nitrile; 
Respirator-valved 
filtering half mask 

Long sleeved shirt, full 
length trousers 12/06/2013 Tomatoes Mancozeb b) WP 28.7 0.035 2.5 

06 
10/04/2013 Tomatoes Mancozeb WP 4.3 0.035 1.1 

 
Workwear: 
breathable 

(cotton/polyester); 

Long sleeved shirt, full 
length trousers 10/05/2013 Tomatoes Mancozeb WP 11.8 0.035 2.5 

25/05/2013 Tomatoes Cymoxanil WP 16.0 0.01 1.4 
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04/06/2013 Tomatoes Cymoxanil WP 16.8 0.01 1.5 Gloves-nitrile; 
Respirator-full face 

mask 
07/06/2013 Tomatoes Cymoxanil WP 2.0 0.01 1.0 
14/06/2013 Tomatoes Cymoxanil WP 10.3 0.01 1.4 

08 10/09/2013 Potatoes Propineb WP 8.0 0.003 7.5  

Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56; Gloves-nitrile 
latex; Respirator-

full mask 

Long sleeved shirt, full 
length trousers 

09 

27/05/2013 Tomatoes Mancozeb WP 20.2 0.035 1.6 

 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 

T56; Gloves-nitrile; 
Respirator-full 

mask 

Type 6 (e.g. Tyvek 
Classic/Kleeguard T56; 

Gloves-nitrile; 
Respirator-full mask 

08/06/2013 Tomatoes Mancozeb WP 17.0 0.035 1.2 

10 04/06/2013 Tomatoes Cymoxanil WP 6.8 0.01 1.2  

Type 6 (e.g. Tyvek 
Classic/Kleeguard 

T56; Gloves-nitrile; 
Respirator-

disposable filtering 
half mask 

Long sleeved shirt, full 
length trousers 

UK orchard (UKOR) 

02 14/03/2013 Apples Chlorpyrifos EC 4.4 a) 0.001 2.2 
Normal workwear; 

Gloves-nitrile 
 Normal workwear 

03 

29/04/2013 Apples Chlorpyrifos EC 10.4 0.001 2.3 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56); Face shield; 

Gloves-nitrile 

 
Normal workwear; 

Gloves-nitrile 

30/04/2013 Apples Chlorpyrifos EC 7.6 0.001 1.7 
02/05/2013 Apples Chlorpyrifos EC 8.4 0.001 1.9 
28/05/2013 Apples Chlorpyrifos EC 10.4 0.001 4.4 
29/05/2013 Apples Chlorpyrifos EC 7.6 0.001 3.2 
03/07/2013 Apples Chlorpyrifos EC 10.4 0.001 4.4 
04/07/2013 Apples Chlorpyrifos EC 7.6 0.001 3.2 

04 22/07/2013 Apples Chlorpyrifos WG 6.0 0.001 2.5  

Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56); Face shield; 

Gloves-nitrile; 

Workwear: breathable 
(cotton/polyester) 
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Respirator-valved 
filled filtering half 

mask 

05 

07/03/2013 
Apples, 
pears 

Copper 
oxychloride 

WP 11.2 0.25 1.1 

Long clothes; 
Respirator-half 

mask, reusable with 
filters 

 
Workwear: breathable 

(cotton/polyester) 
06/06/2013 Apples Chlorpyrifos EC 15.0 0.001 4.7 

 
Workwear: 
breathable 

(cotton/polyester) 
31/07/2013 Apples Chlorpyrifos EC 15.0 0.001 6.6 

06 

24/10/2012 Apples Chlorpyrifos EC 13.7 0.001 4.7 

Long clothes; 
Gloves-nitrile 

 Long clothes 

08/11/2012 Apples Amitrole SL 8.1 0.001 1.1 
15/04/2013 Apples Chlorpyrifos EC 5.6 0.001 2.0 
16/04/2013 Apples Chlorpyrifos EC 18.2 0.001 6.0 
23/04/2013 Apples Chlorpyrifos EC 8.3 0.001 2.9 
24/04/2013 Apples Chlorpyrifos EC 10.7 0.001 3.7 
07/05/2013 Apples Chlorpyrifos EC 42.8 0.001 13.5 

07 

04/04/2013 Pears Chlorpyrifos WG 2.4 0.001 1.0 

 

Apron; Face shield; 
Gloves-nitrile; 

Respirator-
disposable filtering 

half mask 

Normal workwear 

24/04/2013 
Currants 

(red, black, 
and white) 

Chlorpyrifos WG 6.6 0.001 2.3 

31/05/2013 
Currants 

(red, black, 
and white) 

Tebufenpyrad WP 7.4 0.01 1.3 

19/07/2013 

Hops 
(dried, 

including 
hop pellets 
unconcentr

ated) 

Flonicamid WG 1.5 0.025 2.0 

20/07/2013 

Hops 
(dried, 

including 
hop pellets 

Flonicamid WG 5.5 0.025 3.5 
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unconcentr
ated) 

24/07/2013 

Hops 
(dried, 

including 
hop pellets 
unconcentr

ated) 

Flonicamid WG 3.0 0.025 3.9 

09/05/2013 Apples Chlorpyrifos EC 6.7 0.001 1.5 Normal workwear; 
Face shield; 

Gloves-nitrile 
 26/06/2013 Pears Chlorpyrifos EC 2.4 0.001 1.2 

29/06/2013 Pears Chlorpyrifos EC 2.4 0.001 1.1 

08 

30/04/2013 Apples Chlorpyrifos EC 13.5 0.001 2.9 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56); Face shield; 

Gloves-nitrile 

 Long clothes 

03/05/2013 Apples Chlorpyrifos EC 16.7 0.001 3.6 
17/05/2013 Plums Chlorpyrifos EC 6.9 0.001 3.0 
04/06/2013 Apples Chlorpyrifos EC 3.2 0.001 1.5 
05/06/2013 Apples Chlorpyrifos EC 6.6 0.001 2.9 
21/06/2013 Plums Chlorpyrifos EC 6.9 0.001 3.0 
01/07/2013 Apples Chlorpyrifos EC 8.4 0.001 3.6 
02/07/2013 Apples Chlorpyrifos EC 4.9 0.001 2.2 
12/07/2013 Plums Chlorpyrifos EC 6.9 0.001 3.0 
22/07/2013 Apples Chlorpyrifos EC 4.4 0.001 2.0 
25/07/2013 Apples Chlorpyrifos EC 9.8 0.001 4.1 
26/07/2013 Apples Chlorpyrifos EC 3.5 0.001 1.6 

09 

10/04/2013 Apples Dithianon SC 93.6 0.0135 1.0 Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56); Face shield; 

Gloves-nitrile 

 Normal workwear 
17/04/2013 Plums Chlorpyrifos EC 13.4 0.001 4.2 

10 03/05/2013 Apples Chlorpyrifos EC 18.6 0.001 3.9 

Type 6 (e.g. Tyvek 
Classic/Kleeguard 
T56); Face shield; 

Gloves-nitrile 

 Long clothes 

Greece orchard (GROR) 

01 20/04/2013 Wine Chlorpyrifos CS 2.7 0.001 1.4 Workwear:  Workwear: rainwear 2 
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grapes rainwear 2 piece 
(vinyl, Goretex 

etc); Gloves-latex; 
Respirator-

disposable filtering 
half mask 

piece (vinyl, Goretex 
etc); Gloves-latex; 
Respirator-full face 

mask 

29/06/2013 
Wine 
grapes 

Chlorpyrifos CS 2.7 0.001 3.5 

04/08/2013 
Wine 
grapes 

Chlorpyrifos CS 2.7 0.001 2.2 

03 

27/02/2013 Peaches Ziram WP 2.4 0.015 2.2 

 

Workwear: 
rainwear 2 piece 
(vinyl, Goretex 

etc); Gloves-nitrile; 
Respirator-full face 

mask 

Workwear: rainwear 2 
piece (vinyl, Goretex 
etc); Gloves-nitrile; 
Respirator-full face 

mask 

08/03/2013 Peaches Formetanate WP 0.8 0.004 1.5 

08/04/2013 Peaches Ziram WP 2.4 0.015 2.2 

23/05/2013 Pears Chlorpyrifos EC 2.8 0.001 4.5 Workwear: 
rainwear 2 piece 
(vinyl, Goretex 

etc); Gloves-nitrile; 
Respirator-full face 

mask 

 
17/06/2013 

Wine 
grapes 

Chlorpyrifos CS 3.5 0.001 5.5 

04/07/2013 Pears Chlorpyrifos EC 2.8 0.001 4.6 

04 22/04/2013 
Wine 
grapes 

Propineb WP 1.0 0.003 3.2 

Workwear: 
rainwear 2 piece 
(vinyl, Goretex 

etc); Gloves-nitrile; 
Respirator-full face 

mask 

 

Workwear: rainwear 2 
piece (vinyl, Goretex 
etc); Gloves-nitrile; 
Respirator-full face 

mask 

05 

10/05/2013 
Wine 
grapes 

Chlorpyrifos CS 5.0 0.001 7.7 Long sleeved shirt, 
full length trousers; 

Gloves-nitrile; 
Respirator-full face 

mask 

 

Long sleeved shirt, full 
length trousers; Gloves-
nitrile; Respirator-full 

face mask 
22/05/2013 Pears Chlorpyrifos EC 1.5 0.001 3.5 

18/06/2013 
Wine 
grapes 

Chlorpyrifos CS 5.0 0.001 6.2 

07 

01/05/2013 
Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 2.5 Long sleeved shirt, 
full length trousers; 

Gloves-nitrile; 
Respirator-full face 

mask 

 

Long sleeved shirt, full 
length trousers; Gloves-
nitrile; Respirator-full 

face mask 
07/06/2013 

Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 2.5 

01/07/2013 Wine Chlorpyrifos CS 3.2 0.001 5.5 
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grapes 

03/08/2013 
Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 4.7 

08 

26/04/2013 
Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 2.2 
Long sleeved shirt, 
full length trousers; 

Gloves-nitrile; 
Respirator-full face 

mask 

 

Long sleeved shirt, full 
length trousers; Gloves-
nitrile; Respirator-full 

face mask 

06/06/2013 
Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 4.0 

04/07/2013 
Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 4.0 

20/07/2013 
Wine 
grapes 

Chlorpyrifos CS 3.2 0.001 4.7 

09 20/04/2013 
Wine 
grapes 

Propineb WP 1.0 0.003 1.9 

Long sleeved shirt, 
full length trousers; 

Gloves-nitrile; 
Respirator-full face 

mask 

 

Long sleeved shirt, full 
length trousers; Gloves-
nitrile; Respirator-full 

face mask 

10 20/07/2013 
Wine 
grapes 

Cymoxanil WP 3.2 0.01 1.5  
Long sleeved shirt, 
full length trousers; 

Gloves-nitrile 

Long sleeved shirt, full 
length trousers; Gloves-

nitrile 

a) The maximum area treated for a single active substance that applied more than one application across a day. 
b) Estimated exposures with AOELs exceeded for different types of active substance on the same working day. 
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Table A2- 4. Summary of age of sprayers (all in years) for the selected holdings. 

Holding 

code 

LTAB 

(BA only) 

UKAB 

(BA only) 

GRAB 

(BA & HD) 

UKOR 

(BA & HD) 

GROR 

(BA, HD, KN & LA) 

01 1 1 - BA: 22 HD: 3 & 12 

02 13 17 BA: 3 

HD: 5 

BA: 1 & 30 

HD: 30 

LA: 10 

03 4 5 - BA: 9 & 15 

HD: 43 

BA: 5 

LA: 5 

04 3 10 BA: 15 BA: 4 

HD: 4 

BA: 20 

HD: 7 

LA: 2 

05 - 20 - BA: 5 

HD: 18 

BA: 20 

HD: 20 

06 4 5 HD: 9 BA: 3 

HD: 8 

HD: 20 

LA: 10 

07 15 5 - BA: 2 & 7 

HD: 30 

BA: 6 

HD: 15 

08 6 1 - BA: 3 

HD: 10 

BA: 11 

HD: 30 

LA: 20 

09 3 14 - BA: 2, 3 & 5 

HD: 40 

BA: 10 

HD: 15 

10 2 3 BA: 5 BA: 4 

HD: 5 

BA: 10 

HD:4 

BA-broadcast-air assisted sprayer; HD-hydraulic boom sprayer (downward); KN-knapsack sprayer; LA-
lance sprayer 

 

 

 

 

 

 

 



   125 

a      b 

 

c      d 

 

e 

 

Figure A2- 1. Estimated daily exposures for the 10 professional operators from the arable 
systems of Lithuania (a), the UK (b), Greece (c), and the orchard systems of the UK (d) 
and Greece (e) during applications (AP) and mixing/loading (ML) of pesticides with 
different application methods and formulation types. Values are calculated based on the 
respective total number of working days. 
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Appendix 3 Supplementary Chapter 4 
 

Table A3- 1. Classification of 48 pesticide active substances with known or possible endocrine activity by pesticide type, chemical group, 
and approval status in the EU. All information sourced from the Pesticide Properties Database (PPDB, 2018). 

Active substances 
Pesticide 

type 
Substance group Endocrine disrupting classification Status of use 

2,4-D Herbicide Alkylchlorophenoxy Possibly Approved 

Amitrole Herbicide Triazole Possibly Not approved 

Beta-cyfluthrin Insecticide Pyrethroid Possibly Approved 

Bifenthrin Insecticide Pyrethroid Yes Approved 

Bromoxynil Herbicide Hydroxybenzonitrile Yes Approved 

Bupirimate Fungicide Pyrimidinol Possibly Approved 

Captan Fungicide Phthalimide Possibly Approved 

Carbendazim Fungicide Benzimidazole Possibly Not approved 

Chlorothalonil Fungicide Chloronitrile Possibly Approved 

Chlorpyrifos Insecticide Organophosphate Possibly Approved 

Chlorpyrifos-methyl Insecticide Organophosphate Possibly Approved 

Copper oxychloride Fungicide Inorganic compound Possibly Approved 

Cypermethrin (alpha-

/zeta-cypermethrin) 

Insecticide Pyrethroid Possibly Approved 

Cyproconazole Fungicide Triazole Possibly Approved 

Deltamethrin Insecticide Pyrethroid Yes Approved 

Difenoconazole Fungicide Triazole Possibly (based on open literature; 

Teng et al., 2018) 

Approved 
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Epoxiconazole Fungicide Triazole Possibly Approved 

Esfenvalerate Insecticide Pyrethroid Possibly Approved 

Fenbuconazole Fungicide Triazole Possibly Approved 

Fenoxycarb Insecticide Carbamate Yes Approved 

Fluazinam Fungicide Phenylpyridinamine Possibly Approved 

Flusilazole Fungicide Triazole Possibly Not approved 

Glyphosate Herbicide Phosphonoglycine Possibly Approved 

Indoxacarb Insecticide Oxadiazine Possibly Approved 

Ioxynil Herbicide Hydroxybenzonitrile Yes Not approved 

Linuron Herbicide Urea Possibly Approved 

Mancozeb Fungicide Carbamate Possibly Approved 

Maneb Fungicide Carbamate Possibly Approved 

Metconazole Fungicide Triazole Possibly (based on open literature; 

Marx-Stoelting et al., 2014) 

Approved 

Methoxyfenozide Insecticide Diacylhydrazine Possibly Approved 

Metiram Fungicide Carbamate Possibly Approved 

Metribuzin Herbicide Triazinone Possibly Approved 

Myclobutanil Fungicide Triazole Possibly Approved 

Paclobutrazol Fungicide Triazole Possibly (based on open literature; 

Andersen et al., 2002) 

Approved 

Penconazole Fungicide Triazole Possibly Approved 

Pendimethalin Herbicide Dinitroaniline Possibly Approved 

Picloram Herbicide Pyridine compound Yes Approved 

Prochloraz Fungicide Imidazole Possibly Approved 

Propamocarb 

(hydrochloride) 

Fungicide Carbamate Possibly Approved 
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Propiconazole Fungicide Triazole Possibly Approved 

Pyrimethanil Fungicide Anilinopyrimidine Possibly Approved 

Pyriproxyfen Insecticide Unclassified Possibly Approved 

S-metolachlor Herbicide Chloroacetamide Possibly Approved 

Tau-fluvalinate Insecticide Synthetic pyrethroid Yes Approved 

Tebuconazole Fungicide Triazole Possibly (based on open literature; 

Lv et al., 2017) 

Approved 

Triadimenol Fungicide Triazole Yes Approved 

Tribenuron-methyl Herbicide Sulfonylurea Possibly Approved 

Ziram Fungicide Carbamate Possibly Approved 
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Table A3- 2. List of pesticide co-formulants used in the UK orchard system that were 
identified as having potential endocrine activity based on the Hazardous Substances 
Data Bank (HSDB) of the TOXNET database and the Pesticide Property Database (PPDB, 
2018). 

Chemical name CAS No. Potential ED effect(s) 

1-methoxy-2-propanol 107-98-2 Mild damage to the liver and adrenal glands 

were observed in laboratory rats following 

repeated exposure to high vapour levels. 

1,2-propanediol/propane-1,2-

diol/propylene glycol 

57-55-6 Seizures developed in an 11-year old boy 

with multiple endocrine problems and 

systemic candidiasis who ingested a 

medication containing propylene glycol. 

Endocrine modulation: did not cause any 

significant changes in adrenal 

steroidogenesis in the rat; spleen weights 

were increased in the treatment groups in 

acute exposure. 

1,2,4-trimethylbenzene 95-63-6 Rat (4-week): observations in high dose 

group (2.0g/kg) included enlarged adrenals 

(only 2 doses tested; low dose: 0.5 g/kg 

diet). 

2-ethylhexan-1-ol 104-76-7 Rat (11-day): absolute spleen weights of 

both sexes were reduced at 1000 mg/kg 

bw/d; decreased absolute spleen and adrenal 

weights at 1500 mg/kg bw/d. 

3-pyridinecarboxamide, 2-chloro-N-

(4'-chloro(1,1'-biphenyl)2-yl)- 

188425-85-6 Induction of liver microsomal enzyme 

system resulting in increased 

glucuronidation of thyroxine, resulting in an 

increase in TSH secretion as a 

compensatory response of the physiological 

negative feedback system; increased TSH 

resulted in increased thyroid weight. 

4,4’-methylenediphenyl 

diisocyanate/diphenylmethane-4,4’-

diisocyanat 

101-68-8 Repeated doses for 5 days in corn oil 

produced slight spleen enlargement in rats. 

Amines, tallow alkyl, 

ethoxylated/polyetoxylated N-tallow 

alkyltrimethylenedi-

amine/tallowalkylamineethoxylate 

61791-26-2 Polyethoxylated tallow amine: decrease of 

aromatase activity, a key enzyme in the 

balance of sex hormones (Defarge et al. 

2016). 
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Ammonium sulphate/sulfate 7783-20-2 Rat (1-year): absolute spleen weights were 

decreased in high dose males. 

Citric acid 77-92-9 Rat (6-week): slight degeneration of the 

thymus gland and spleen. 

Cumene 98-82-8 Rat (2-week inhalation): For females in the 

two highest dose groups, the relative and 

absolute adrenal weights were increased 

significantly over control values. 

Ethylene glycol 107-21-1 Target organ cellular damage is seen in the 

kidney, brain, myocardium, pancreas, and 

blood vessel walls. 

Hydrocarbon, C9, aromatics N/A Polycyclic aromatic hydrocarbons (PAHs): 

Endocrine modulation: PAHs exhibited 

either weakly estrogenic or antiestrogenic 

responses.   

Hydrocarbon, C10, aromatics, <1% 

naphthalene 

N/A 

Hydrocarbons, C11-C14, n-alkanes, 

isoalkanes, cyclics <2% aromatic 

N/A 

Lignin, alkali, reaction products with 

sodium bisulfite and 

formaldehyde/Lignosulfonic acid, 

sodium salt/sodium ligninsulfonate 

8061-51-6 When given to rats in drinking-water 16-

week; spleen changes. 

Naphtha/petroleum distillates 64742-94-5 Rat (7/8-week developmental/reproductive 

toxicity, f/m): increased spleen weights in 

parental females at 7500 ppm. 

Naphthalene 91-20-3 Mice (14- and 90-day): Females had 

decreased spleen at the high dose, 267 

mg/kg and 133 mg/kg, respectively. Mice 

(14- and 90-day): Females had decreased 

spleen at the high dose, 267 mg/kg and 133 

mg/kg, respectively. 

N-methyl-2-pyrrolidone/methyl 

pyrrolidone 

872-50-4 Subchronic exposure of rats had atrophy of 

lymphoid tissue in the spleen and thymus. 

Nonylphenol 

ethoxylated/polyethylene glycol 

nonylphenyl ether 

9016-45-9 Nonylphenol: discovered to have estrogenic 

activity. 

Talc 14807-96-6 There was clear evidence of carcinogenic 

activity of talc in female F344/N rats based 

on increased incidences of 

alveolar/bronchiolar adenomas and 

carcinomas of the lung and benign or 

malignant pheochromocytomas of the 
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adrenal gland. 

Cyprodinil 121552-61-2 Cyprodinil acts as an aryl hydrocarbon 

receptor activator, a potential endocrine 

disrupter, and an extracellular signal-

regulated kinase disrupter. Weak androgen 

receptor binding was shown for cyprodinil. 

Dicamba 1918-00-9 Rat (115-118 weeks): adrenal enlargement 

was increased at >/= 250 ppm in both sexes. 

Diquat (diquat dibromide) 2764-72-9 Diquat dibromide (1-year): reductions in 

adrenal and epididymal weights were noted 

in males. 

Fludioxonil 131341-86-1 Endocrine modulation: fludioxonil showed 

endocrine disruptor activity as 

antiandrogens in an androgen receptor 

reporter assay in engineered human breast 

cancer cells. 

Fumaric acid 110-17-8 Rabbit (17-29 weeks): by the end of the test 

period, gonadotropic activity of the serum, 

as well as estrogenic activity was detected. 

Chromophobe cells were increased in the 

pituitary. 

Metribuzin 21087-64-9 Metribuzin shows effects in single high 

doses corresponding to a depression of the 

CNS system. With repeated high doses, it 

effects the thyroid and stimulates the 

metabolizing enzymes of the liver. 

Pyraclostrobin 175013-18-0 Subchronic or prechronic exposure/ Mice, 

in a 90-day feeding study, also showed 

thickening of the duodenal mucosa together 

with erosion or ulcers in the glandular 

stomach and a decrease in lipid 

vacuolization in the adrenal cortex. Females 

were more sensitive than males with adrenal 

effects occurring at 50 ppm (12.9 

mg/kg/day). 
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Table A3- 3. Summary of toxicological data for 48 active substances with known or possible endocrine activity. 

Active substance Species / study Doses NO(A)EL/LO(A)EL 

(mg/kg bw/d) 

LOAEL / effects Toxicological 

database 

2,4-D Rat 

90-day oral diet 

0, 1, 15, 100, 300 mg/kg/d 

(average daily compound 

intake: 0.93, 13.98, 93.93, 

278.39 mg/kg/d for males 

and 0.96, 14.39, 96.16, 

293.42 mg/kg/d for 

females) 

NOAEL: 15 LOAEL: 100 mg/kg/d based on the 

alterations in some hematology and 

clinical chemistry (decreased T3 

(females) and T4 (both sexes)) 

parameters, and cataract formation in 

females. 

EPA  

(EDSP Tier 1) 

Amitrole Rat 

90-day oral 

0, 2, 10, 50 ppm (0.11, 

0.58, 2.85 mg/kg bw/d) 

NOAEL: 0.11 

(2 ppm) 

LOAEL: 10 ppm equivalent to 0.58 

mg/kg bw/d based on the thyroid 

effect. 

EFSA (DAR) 

Beta-cyfluthrin 

(cyfluthrin) 

Rat 

4-week gavage 

(once daily) 

0, 5, 20, 80 mg/kg bw/d NOEL: 20 Increased absolute and relative 

weights of the adrenal glands in 

female rats at the end of treatment at 

the highest dose. 

TOXNET 

(HSDB) 

Bifenthrin Rat 

28-day 

0, 50, 100, 200, 300, 400 

ppm (approximately 0, 4.4, 

10.75, 21.9 and 34.5 mg/kg 

bw/d in males and 0, 5.4, 

11, 21.6 and 32.6 mg/kg 

bw/d in females) 

NOAEL: 21.9 (m) (200 

ppm) 

Based on significantly elevated 

adrenal weight and depressed testes 

weight and relative adrenal in males at 

300 ppm group. 

IPCS INCHEM 

(JMPR; ECHA, 

2009) 
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Bromoxynil Dog 

13-week oral 

(7 days/week) 

0, 0.43, 1.43, 7.14 mg/kg/d 

 

NOEL: <0.43 Increased absolute and relative 

adrenal weights. 

TOXNET 

(HSDB) 

Bupirimate Dog 

90-day oral diet 

0, 3, 15, 30, 600 mg/kg 

bw/d 

NOAEL: 3 LOAEL: 15 mg/kg bw/d based on 

Increased thyroid weight. 

EFSA (DAR) 

Captan Rat 

2-year 

0, 25, 100, 250 mg/kg/d NOEL: 25 

 

Increased relative organ weights of 

liver and thyroid/parathyroid (F) and 

kidney (m & f). 

TOXNET 

(HSDB) 

Carbendazim Dog 

13-week diet 

0, 100, 300, 1000 ppm NOAEL: 7.5 

(300 ppm) 

On the basis of minor changes in 

clinical chemistry and organ weights. 

There were slight increases in relative 

thyroid weight in the group at the 

highest dose. 

IPCS INCHEM 

(JMPR) 

 

Chlorothalonil Dog 

1-year 

0, 160, 1280, 10240 ppm 

(0, 5.10, 43.26, 374 

mg/kg/d in males and 0, 

5.92, 45.30, 354 mg/kg/d in 

females) 

NOAEL: 43.3/45.3 (m/f) 

(1280 ppm) 

LOAEL: 10240 ppm based on a very 

slight hypertrophy of the cells in the 

zona fasciculate of the adrenal glands. 

EPA  

(EDSP Tier 1) 

Chlorpyrifos Rat 

13-week 

- NOAEL: 5 Increased fatty vacuolation of the 

adrenal zonal fasciculate and changes 

in haematological and clinical 

chemical parameters. 

IPCS INCHEM 

(JMPR) 

Chlorpyrifos-methyl Rat 

13-week 

0, 0.1, 1, 10, 250 mg/kg 

bw/d 

NOAEL: 1 On the basis of histological alterations 

detected in adrenals at 10 mg/kg 

bw/d. 

IPCS INCHEM 

(JMPR) 
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Copper oxychloride 

(copper) 

Rat 

15-day 

0, 1000, 2000, 4000, 8000, 

16000 ppm (23, 44, 162, 

196, 285 mg/kg bw/d in 

males and 23, 46, 92, 198, 

324 mg/kg bw/d in females 

NOAEL: 23  

(1000 ppm) 

A minimal to mild decrease in 

erythroid haematopoesis was seen in 

the spleens at ≥ 2000 ppm. (No 

guideline GLP with deviations of 15-

day instead of 28-day). 

ECHA (2013) 

Cypermethrin 

(alpha-

cypermethrin/zeta-

cypermethrin) 

Rat 

15-day oral 

gavage 

0, 6.25, 12.5, 25, 50 

mg/kg/d 

NOEL: 6.25 Damage to the seminiferous tubules 

and spermatids in studies reported as 

other scientifically relevant 

information (OSROI; Hu et al., 2011). 

EPA  

(EDSP Tier 1) 

 

Cyproconazole Rat 

90-day 

5, 15, 300, 600 ppm (0.7, 

2.2, 43.8, 88.8 mg/kg bw/d 

in males and 1.0, 3.2, 70.2, 

128.2 mg/kg bw/d in 

females) 

NOAEL: 0.7/1.0 (m/f) (5 

ppm) 

Increased relative adrenal weight in 

females at 15 ppm (2.2/3.2 mg/kg 

bw/d). 

ECHA (2014) 

Deltamethrin Rat 

65-day 

1, 2 mg/kg w/d LOEL: 1 (divided by 1000-

factor for NOEL: 0.001) 

Based on spermatogenesis, 

testosterone levels and pituitary 

weight in vivo.  

EC (EDS) 

Difenoconazole Dog  

6-month diet 

0, 100, 1000, 3000, 6000 

ppm (0, 3.6, 31.3, 96.6, 

157.8 mg/kg/d in males and 

0, 3.4, 34.8, 110.6, 203.7 

mg/kg/d in females) 

NOAEL: 31.3/34.8 (m/f) 

(1000 ppm) 

Based on decreased prostate weight. EFSA (DAR) 

Epoxiconazole Rat 

13-week dietary 

30, 90, 270, 800 ppm NOAEL: 7/8 (m/f)  

(90 ppm) 

Both absolute and relative adrenal 

weights were slightly reduced in all 

treated groups, but more clearly so at 

the upper two dose levels.  

EFSA (DAR) 
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Esfenvalerate Rat 

90-day diet 

0, 50, 150, 300 or 500 ppm NOAEL: 7.5 

(150 ppm) 

On the basis of parenchymal-cell 

hypertrophy in the parotid salivary 

and pituitary glands in some rats at 

300 ppm. 

IPCS INCHEM 

(JMPR) 

Fenbuconazole Rat 

3-month dietary 

0, 20, 80, 400, 1600 ppm NOAEL: 1.3 

(20 ppm) 

Hypertrophy of thyroid gland 

follicular cells at higher doses. 

IPCS INCHEM 

(JMPR) 

Fenoxycarb Rat 

3-month oral 

0, 30, 150, 750, 3000 ppm NOEL: 9.71/10.14 (m/f) 

(150 ppm) 

Based on histological changes in 

thyroid. 

TOXNET 

(HSDB) 

 

Fluazinam Rat 

90-day oral 

- NOAEL: 4.1 LOAEL: 41 mg/kg bw/d. Effect on 

uterus weight may be indicative of 

endocrine disruption with no 

mechanistic evidence. 

Ewence et al. 

(2013) 

Flusilazole Rat 

2-year diet 

0, 125, 375, or 750 ppm (0, 

5.03, 14.8, 30.8 mg/kg 

bw/d for males and 0, 6.83, 

20.5, 45.6 mg/kg bw/d for 

females) 

NOAEL: 14.8 Increased incidence of testicular 

interstitial-cell (Leydig-cell) tumours 

in males at the highest dose. 

IPCS INCHEM 

(JMPR) 

 

Glyphosate Dog 

13-week oral 

0, 30, 300, 1000 mg/kg 

bw/d 

NOAEL: 300 LOAEL: 1000 mg/kg bw/d based on 

prostate and uterus atrophy. 

ECHA (2016) 

Indoxacarb Rat 

90-day 

0, 10, 25 (females only), 

50, 100, 200 (males only) 

(0, 0.62, 3.09, 6.01, 15 

mg/kg/d for males and 0, 

0.76, 2.13, 3.78, 8.94 

NOEL: 0.62/<0.76 (m/f) 

(10 ppm)  

Histologic effects in the spleen. TOXNET 

(HSDB) 
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mg/kg/d for females) 

Ioxynil Rat 

90-day oral 

- NOEL: 0.7 to 1.4 LOAEL: 10 mg/kg bw/d. There 

appears to be an increase in basal 

metabolism and an effect on the 

thyroid. 

Ewence et al. 

(2013) 

Linuron Rat 

2-year 

 

- NOEL: 6.25  

(125 ppm) 

Spleen and bone marrow changes 

indicative of haemolysis, increased 

mortality, growth retardation.  

IRIS 

Mancozeb Rat 

13-week oral 

0, 30, 60, 125, 250, 1000 

ppm 

NOAEL: 7.4 

(125 ppm) 

Increased serum TSH and decreased 

T4 values at 250 ppm. 

IPCS INCHEM 

(JMPR) 

Maneb Dog 

13-week dietary 

0, 100, 400, 1600 ppm NOAEL: 3.7 

(100 ppm) 

Based on thyroid follicular cell 

hyperplasia at 400 ppm. 

IPCS INCHEM 

(JMPR) 

Metconazole Mouse  

90-day oral 

0, 30, 300, 2000 ppm  NOAEL: 4.6  

(30 ppm) 

LOAEL: 50.5 mg/kg/d (300 ppm) 

based on increased spleen weight and 

spleen lymphoid hyperplasia. 

EFSA (DAR) 

Methoxyfenozide Rat 

2-week diet 

250, 1000, 5000, 20000 

mg/kg diet 

NOAEL: 24 

(250 mg/kg diet) 

On the basis of follicular cell 

hypertrophy and/or hyperplasia of the 

thyroid in both sexes at 1000 mg/kg 

(equal to 98 mg/kg bw/d). 

IPCS INCHEM 

(JMPR) 

Metiram Rat 

13-week dietary 

0, 50, 100, 300, 900 (equal 

to 0, 3, 6, 20, 61 mg/kg 

bw/d for males and 0, 4, 8, 

24, 76 mg/kg bw/d for 

females) 

NOAEL: 6 

(100 ppm) 

Decreased serum T4 levels and 

increased thyroid weights at dietary 

levels of 300 and 900 ppm. 

IPCS INCHEM 

(JMPR) 
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Metribuzin Rat 

9-week oral 

0, 35, 100, 300, 900 ppm NOAEL: £ 2.41 

(£ 35 ppm) 

LOAEL: ³ 35 ppm: effects on thyroid 

gland and liver. 

EFSA (DAR) 

Myclobutanil Rat 

13-week diet 

0, 100, 300, 3000 ppm (0, 

6.2, 18.8, 192 mg/kg bw/d 

in males and 0, 6.9, 19.6, 

225 mg/kg bw/d in 

females) 

NOAEL: 18.8 

(300 ppm) 

Histomorphological alterations of the 

liver, kidney and adrenal glands at the 

highest dietary level of 3000 ppm. 

IPCS INCHEM 

(JMPR) 

Paclobutrazol Dog 

1-year 

0, 15, 75, 300 mg/kg/d NOAEL: 75 Based on the slight increase of adrenal 

weights in females at 300 mg/kg 

bw/d. 

EFSA (DAR) 

Penconazole Rat 

28-day gavage 

0, 100, 500 mg/kg bw/d NOAEL: < 100 Thyroids and adrenals (males) with 

histopathological findings at ³ 100 

mg/kg bw/d. 

EFSA (DAR) 

Pendimethalin Rat 

90-day oral 

- NOAEL: 41.3 Based on thyroid effects. EFSA (DAR) 

Picloram Rat  

90-day 

- NOEL: 50  

(1000 ppm) 

LEL: 150 mg/kg/d (3000 ppm) based 

on liver histopathology, necrosis, and 

bile duct proliferation.  

IRIS 

Prochloraz Dog 

13-week gastric 

intubation 

1, 2.5, 7, 20 mg/kg bw/d NOAEL: 2.5 On the basis of effects on prostate and 

testes weights at the next highest 

dose. 

IPCS INCHEM 

(JMPR) 

Propamocarb 

hydrochloride 

Rat 

2-generation oral 

reproductive 

- NOAEL: 37.5 (parental & 

reproductive) 

Some evidence of disruption of the 

male reproductive system (sperm 

concentration and count). 

Ewence et al. 

(2013) 
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Propiconazole Dog 

1-year diet 

(short-term) 

0, 50, 250, 1250 ppm NOAEL: 7 

(250 ppm) 

Organ weights were not different than 

those of control animals except for 

significantly decreased relative 

pituitary weight in males of the 

highest dose group. 

IPCS INCHEM 

(JMPR) 

Pyrimethanil Rat 

90-day oral 

- NO(A)EL: 5.4 Follicular epithelial hypertrophy and 

pigment deposits in thyroid. 

EFSA (DAR) 

 

Pyriproxyfen Rat 

78-week diet 

0, 120, 600, 3000 mg/kg 

food 

NOAEL: 16.4/21.1 (m/f) 

(120 mg/kg food) 

Increased severity of systemic 

amyloidosis was noted in several 

organs as the adrenal cortex, thyroid, 

heart, spleen, kidneys, liver, stomach, 

ovary, testes, etc. 

EFSA (DAR) 

S-metolachlor 

(metolachlor) 

Rat 

Post-natal day 22 

to 42 oral gavage 

0, 300, 600 mg/kg/d LO(A)EL: 300 (divided by 

1000 for NO(A)EL: 0.3)  

Based on a dose-related increase in 

serum T4 levels of 14% and 25% in 

the 300 and 600 mg/kg/d groups, 

respectively; the increase was 

significant (p<0.05) at 600 mg/kg/d 

only. 

EPA  

(EDSP Tier 1) 

Tau-fluvalinate Dog 

6-month 

0, 2, 5, 15, 50 mg/kg/d NOEL: 2 Decreased spleen weight. TOXNET 

(HSDB) 

Tebuconazole Rat 

90-day feeding 

0, 100, 400, 1600 ppm NOAEL: 9/11 (m/f) 

(100 ppm) 

Histopathological changes (vacuoles) 

in the adrenal cortex. 

EFSA (DAR) 

Triadimenol Mice 

13-week 

0, 160, 500, 1500, 4500 

ppm (0, 25, 77, 235, 872 

mg/kg/d in males and 0, 31, 

NOAEL: 235/297 (m/f) 

(1500 ppm) 

Reduced adrenal weights in the high-

dose groups only in males and 

females.  

ECHA (2011) 
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94, 297, 797 mg/kg/d) 

Tribenuron-methyl Rat 

90-day oral 

- NOAEL: 7/8 (m/f) LOAEL: 118/135 mg/kg/d (m/f). 

Increased relative brain, heart, liver, 

kidney, testes, and spleen weights. 

TOXNET 

(HSDB) 

Ziram Rat 

28-day oral 

0, 100, 500, 2500, 5000 

ppm (0, 10, 50, 250, 500 

mg/kg bw/d) 

NOAEL: 10 

(100 ppm) 

On the basis of growth retardation. IPCS INCHEM 

(HSDB) 

EC (EDS), European Commission Endocrine Disruptors Database; EFSA (DAR), EFSA Draft Risk Assessment Report and Assessment Report; EPA (EDSP Tier 1), 

EPA Endocrine Disruptor Screening Program Tier 1 screening determinations and associated data evaluation records; IPCS INCHEM (JMPR), Joint Meeting on 

Pesticide Residues of the International Programme on Chemical Safety; IRIS, Integrated Risk Information System; LO(A)EL, lowest observed (adverse) effect level; 

NO(A)EL, no observed (adverse) effect level; TOXNET (HSDB), Hazardous Substances Data Bank of Toxicology Data Network  
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a  b 

  

c 

  

Figure A3- 1. Comparison of relative contributions of fungicides, insecticides and 
herbicides to the total use (a), total exposure (b) and total risk (c) associated with 
known/possible endocrine disrupting activity across the five cropping systems over the 
survey period. 
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Appendix 4 Model Evaluation 
 

Introduction 

 

After application of pesticides, volatilisation followed by transport in the vapour phase is a 

significant pathway for pesticides to enter into the environment (Bedos et al., 2002; Reichman 

et al., 2013). Quantification of these volatilised pesticides is important to have information on 

the state of their contamination in the atmosphere (Villiot et al., 2018). Models describing the 

volatility and potential fate of active substances are important tools in pesticide authorisation at 

the EU level, because they can cost-effectively supplement the limited number of field 

experiments (Kennedy et al., 2012; Houbraken et al., 2016). Nevertheless, the existing 

regulatory assessment models for pesticide vapour exposure were developed based on 

reasonable worst-case conditions at a maximum downwind distance of 10 m from the edge of 

the treated area; they provide a conservative first tier as set out in the guidance of EFSA (2014) 

and the Bystanders, Residents, Operators and WorkerS Exposure models (BROWSE model; 

van den Berg et al., 2016). Thus, a model was developed that allows the simulation of pesticide 

airborne concentration at different proximities from the treated field (Wong et al., 2017). 

This work evaluates the performance of the model developed by Wong et al. (2017) in the 

simulation of airborne concentrations of pesticides at two selected distances downwind from the 

treated field (18 and 36 m), using a field dataset collected by the Swedish University of 

Agricultural Sciences between 2008 and 2010 (Karlsson and Arvidsson, 2015). On a daily basis, 

airborne concentrations of pesticides at a height of 1.0 m above ground were compared between 

the model outputs and the measurements. Results are analysed to determine any limitations of 

the model in the simulation of pesticide airborne concentrations under field conditions. 
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Methodology 

 

Field data  

We applied a dataset of pesticide applications and field observations collected by the Swedish 

University of Agricultural Sciences during the periods of summer (June/July) and autumn 

(September) for three years (2008-2010), with the purpose of understanding the volatilisation 

and dry deposition of pesticides under Swedish climatic conditions based at Funbo-Lovsta, 

Sweden (Karlsson and Arvidsson, 2015). The field experiment was a 54 m radius circular area 

with an untreated inner circular area of 18 m radius (where the air sampling and meteorological 

masts were located with 16 m in height for each); the remaining 36 m outer circle radius was 

treated with pesticides (Figure A4-1). This meant that the sampling equipment intercepted air 

flowing across the treated area independent of wind direction.  

The treated area was cultivated with winter wheat/barley (crop heights ranged between 0.75 and 

0.9 m) during summer and had no crop (bare soil) in autumn. The experiment was started during 

2008 with a mixture of four pesticide active substances comprising pirimicarb (Pirimor), 

prosulfocarb (Boxer), fenpropimorph (Forbel), and pendimethalin (Stomp). Two further active 

substances, namely lindane and tolclofos-methyl (Rizolex), were added to the mixture during 

2009-2010. Applied field doses ranged between 7.8 and 398 mg m-2 for individual active 

substances (Table A4-1).  

In the field experiment, the airflow through the air sampling mast was measured by individual 

thermic mass flow meters at seven heights above ground comprising 0.25, 0.6, 1.0, 2.0, 4.0, 8.0, 

and 16.0 m, with sampling durations ranging between 24 and 232 h across seven sampling 

periods. At the same intervals, the meteorological masts measured a variety of weather variables 

including the wind speed, wind direction, solar radiation, air temperature, and relative humidity 

at the corresponding heights (Karlsson and Arvidsson, 2015). Here, the height of 1.0 m above 

ground was selected for all evaluation and results for the first day after application were 

considered to match the simulation output of the model. 
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Figure A4- 1. Schematic of the layout of the field experiment (Karlsson and Arvidsson, 
2015).  

 

Table A4- 1. Applied field doses (mg m-2 of active substance) for six selected pesticide 
active substances during the periods of summer and autumn for the years 2008-2010. 

Active substance 2008 2009 2010 

June Sept July Sept July Sept 

Fenpropimorph 75 75 93.4 89.2 73.5 78.4 

Lindane N/A N/A 10.0 9.5 7.8 8.4 

Pendimethalin 160 160 199 19 15.7 16.7 

Pirimicarb 15 15 18.7 89.2 14.7 78.4 

Prosulfocarb 320 320 398 19 15.7 16.7 

Tolclofos-methyl N/A N/A 31.1 29.8 24.5 26.1 

 

Model description 

The newly developed model is described by Wong et al. (2017). It combines algorithms taken 

from PEARL (Pesticide Emission Assessment at Regional and Local scales; van den Berg and 

Leistra, 2004), PELMO (Pesticide Leaching Model; Ferrari et al., 2005), and ISCST2 

(Industrial Source Complex Short Term 2; US EPA, 1992a), to account for volatilisation and 

transport in air for pesticides with different properties and under varying field conditions (Wong 

et al., 2017).  
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Model set-up  

Five pesticide active substances were simulated comprising fenpropimorph, lindane, 

pendimethalin, pirimicarb, and prosulfocarb. The five selected active substances were 

parameterised for their specific physicochemical properties based on the Pesticide Properties 

Database (PPDB, 2018); where, data for !"# were missing, these were derived from the open 

literature (Table A4-2). When a crop is present, the model predicts volatilisation from both 

target plant surface (here 90% crop interception was assumed) and the exposed soil surface (10% 

by difference) at release heights of 0.75-0.9 and 0.1 m, respectively (Figure A4-2). Any 

differences between the winter wheat and barley crops were assumed to be negligible due to the 

short period of observation, and the small difference in crop interception factors and crop height 

(Houbraken et al., 2016).  

The ISCST2 model requires that the area source must be a square, with recommendation of 

subdivision into smaller areas when the separation between the area and a receptor is less than 

the length of the side of the area source, $"(US EPA, 1992a). Thus, the treated circular area 

with radius of 36 m was subdivided into two smaller areas each with $" of 18 m at distances of 

18 and 36 m from each edge to the air sampling mast (Figure A4-1). As the air sampling mast 

was surrounded by the treated area, the receptor was assumed to be always downwind of the 

emission source. Wind speeds and airborne concentrations measured at sub-daily resolution 

were averaged to derive daily values in order to match the resolution of model output (Table 

A4-3). An overall Pasquill stability B-class was assigned with a dimensionless default value of 

0.07 for the rural wind profile exponent based on overall mean wind speed £3 m s-1 and mean 

solar radiation £640 W m-2 (US EPA, 1992a; Essa et al., 2006; Karlsson and Arvidsson, 2015). 

Where parameters were set to default values, these are listed in the supplementary information 

(Table A1-1; Wong et al., 2017).  
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Table A4- 2. Physicochemical properties for the five selected pesticide active substances 
(PPDB, 2018). 

Active substance 
Pesticide 

type 

Molecular 

weight 

(g mol-1) 

Vapour 

pressure at 

25°C (mPa) 

Henry’s law constant 

at 20°C 

(dimensionless) 

Koc 

(mL g-1) 

Fenpropimorph Fungicide 303.5 3.9 5.5x10-5 2772a 

Lindane Insecticide 290.8 4.4 6.1x10-5 1270 

Pendimethalin Herbicide 281.3 3.3 1.5x10-3 17491 

Pirimicarb Insecticide 238.3 0.4 1.4x10-7 290b 

Prosulfocarb Herbicide 251.4 0.8 5.4x10-5 1367c 
a EFSA (2008). Conclusion regarding the peer review of the pesticide risk assessment of the active 

substance: fenpropimorph. EFSA Scientific Report, 144, 1-89. 
b MacBean, C. (2012). A world compendium: the pesticide manual. 6th edn. Hampshire: British Crop 

Production Council (BCPC). 
c EFSA (2007). Conclusion regarding the peer review of the pesticide risk assessment of the active 

substance: prosulfocarb. EFSA Scientific Report, 111, 1-81. 
 

 

Table A4- 3. Average values of wind speeds and air temperatures for 24 h after the 
application during the periods of summer and autumn for the three selected years. 

 
Average mean wind 

speed (m s-1) 

Average mean air 

temperature (°C) 

Height above 

ground (m) 
1.0 m 

0.15 m 

(soil surface) 

2.0 m 

(plant surface) 

Summer    

2008 2.1 13.6 13.4 

2009 1.3 15.2 15.1 

2010 1.3 22.3 22.6 

Autumn    

2008 0.8 7.7 N/R 

2009 1.2 9.9 N/R 

2010 1.5 12.9 N/R 

 

 



   146 

 

Figure A4- 2. Illustration of the model set-up for the simulation of pesticide airborne 
concentration at a downwind distanced of air sampling mast (source: Google image). 

 

Model evaluation 

To compare between the model outputs and the observed concentrations at 1.0 m above ground 

on a daily basis, the measured mean values during different sampling periods and durations 

were averaged on a 24 h basis. Derwent et al. (2010) considers that an urban air quality model is 

acceptable when more than half of the model outputs lie within a factor of 2 of the observations; 

here the factor was modified to up to 10 to allow for uncertainties introduced by many other 

variables that were not parameterised in the model, e.g., the effects of adjuvants and 

formulations, competing factors, and agricultural practices under actual field conditions.  
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Results 

 

Model simulation of pesticide volatilisation 

Figure A4-3 shows that simulated losses of pesticide via volatilisation from treated surfaces was 

larger during summer (6-92% of total applied doses) than during autumn (0.04-12%). Overall, 

the volatilisation increased from 2008 to 2010 by 14-39% of applied dose during summer and 

up to 5% of applied dose during autumn. During the summer, active substances fenpropimorph, 

lindane, and pendimethalin had relatively larger estimated volatilisation (>50% of total applied 

doses) compared to pirimicarb and prosulfocarb (<40%; Figure A4-3a). During the autumn, 

pendimethalin had largest estimated volatilisation (7-12% of total applied doses), intermediate 

for lindane (5-7%), prosulfocarb (3-5%) and fenpropimorph (2-3%), and least for pirimicarb 

(0.04-0.1%; Figure A4-3b).  

 

a      b 

  

 

Figure A4- 3. Model simulation for volatilisation of the five pesticide active substances 
following applications in summer (a) and autumn (b) for the years 2008-2010.  

 

 

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f f
ie

ld
 d

os
e 

vo
la

til
is

ed
 (%

)

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 o

f f
ie

ld
 d

os
e 

vo
la

til
is

ed
 (%

)



   148 

Model output of pesticide airborne concentration 

Figure A4-4 shows that model outputs were generally larger than the observed concentrations in 

air for fenpropimorph (2220-5450 and 36-1120 ng m-3, respectively), pendimethalin (990-9380 

and 441-2380 ng m-3, respectively) and lindane (486-634 and 163-209 ng m-3 respectively) 

during the periods of summer with highest outputs in 2009. The reverse was true for 

prosulfocarb (425-4060 and 568-5190 ng m-3, respectively) and there was no consistent pattern 

for pirimicarb (Figure A4-4d). Overall, the model simulated largest airborne concentrations for 

pendimethalin and fenpropimorph (9380 and 5450 ng m-3, respectively; Figures A4-4b and A4-

4a) in 2009 while prosulfocarb had the largest observed concentrations for the years 2008 and 

2009 (2750 and 5190 ng m-3, respectively; Figure A4-4e). 

Figure A4-5 shows the model outputs were larger than the observed concentrations during 

autumn for pendimethalin (149-1520 and 5.7-515 ng m-3, respectively) and fenpropimorph 

(162-171 and 1.3-129 ng m-3, respectively) whilst the reverse was true for lindane (42-44 and 

73-112 ng m-3, respectively) and there was no consistent pattern for pirimicarb and prosulfocarb 

(Figures A4-5d and A4-5e). Overall, the model simulated largest airborne concentrations for 

pendimethalin and fenpropimorph for all three years (Figures A4-5b and A4-5a) while the 

largest observed concentration was prosulfocarb in 2008 (2570 ng m-3; Figure A4-5e). 
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a b 

 

c d 

 

e 

 

Figure A4- 4. Comparison between model outputs and observed concentration for active 
substances fenpropimorph (a), lindane (b), pendimethalin (c), pirimicarb (d), and 
prosulfocarb (e) during the survey periods of summer over the years 2008-2010. 
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a b 

 

c d 

 

e 

 

Figure A4- 5. Comparison between model simulation and observed concentration for 
active substances fenpropimorph (a), lindane (b), pendimethalin (c), pirimicarb (d), and 
prosulfocarb (e) during the survey periods of autumn over the years 2008-2010. 
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Model evaluation 

Table A4-4 shows that most of the model outputs were within a factor of ten of the observed 

concentrations during both summer and autumn over the three years (average of ca. 86% of total 

model outputs; Table A4-5). Overall, two active substances had factors of difference that 

exceeded the 10-factor, namely fenpropimorph during summer 2008 and 2009 (at maximum 61- 

and 40-factor of difference, respectively) and autumn 2009 (26-factor), and pendimethalin 

during autumn 2009 (26-factor). Table A4-5 shows that ca. 86% and 79% of the model outputs 

were within a factor of 5 for the summer and autumn, respectively.  

Figure A4-6 shows a linear relationship for prosulfocarb and pirimicarb during summer with the 

model outputs generally lying within or close to the one-to-one line. Pendimethalin was also a 

linear relationship, but with model outputs consistently over-estimated. The other two active 

substances for summer and all autumn simulations had no linear relationship identified. Overall, 

the correlation coefficients of the scatter plots indicate relatively poor correlations between the 

model outputs and observations during the periods of summer and autumn with R2 values of 

0.21 and 0.59, respectively (Figure A4-6). 

 

Table A4- 4. Comparison between the model outputs and observed concentrations based 
on the factor of difference for the five selected pesticide active substances during the 
periods of summer and autumn for the three years 2008-2010. 

 Factor of difference between model and observation (Mi/Oi) 

Fenpropimorph Lindane Pendimethalin Pirimicarb Prosulfocarb 

Summer      

2008 61.4 N/A 3.0 1.0 0.6 

2009 40.4 3.9 3.9 1.6 0.8 

2010 4.0 2.3 2.2 1.0 0.7 

Autumn      

2008 1.3 N/A 2.9 0.1 0.5 

2009 126.4 0.6 26.0 1.1 6.1 

2010 2.0 0.4 3.3 0.1 1.1 
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Table A4- 5. Cumulative frequency of total number of model outputs within a factor of 2, 
5 and 10 of the observed concentrations.  

 Summer Autumn 

Factor of 

difference 

Total 

number 

Cumulative 

frequency (%) 

Total 

number 

Cumulative 

frequency (%) 

0 < Mi/Oi £ 2 6 42.9 9 64.3 

2 < Mi/Oi £ 5 6 85.8 2 78.6 

5 < Mi/Oi £ 10 0 85.8 1 85.7 

Mi/Oi > 10 2 100 2 100 

 

 

a  b 

  

Figure A4- 6. Scatter plots of the model outputs vs observed concentrations for five 
selected active substances with the one-to-one line during the periods of summer (a) and 
autumn (b) of the years 2008-2010. Each dot represents predicted average daily 
concentration at 1.0 m above the ground.  
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Discussion 

 

Overall, initial evaluation indicates that model outputs for concentrations of pesticides in air 

matched field observations to within an order of magnitude in most cases (Table A4-4). There 

was ca. 86% of model outputs lying within a factor of ten of the observations during the periods 

of summer and autumn between 2008 and 2010 (Table A4-5). On the other hand, the correlation 

coefficients of the scatter plots indicate relatively poor correlations between the model outputs 

and observations during the periods of summer and autumn (R2 of 0.21 and 0.59, respectively; 

Figure A4-6), indicating more processes and factors would need to be considered as further 

discussed below. 

For the summer, the model simulated relatively larger pesticide volatilisation from the plant 

surface than from the exposed soil surface (5.7-90% and 0.01-2.2% of applied doses, 

respectively), with the vapour pressure as the indicator for the volatilisation from the plant 

surface. There were some large variations in field application rates across the study period, 

including a drastic decrease of prosulfocarb from 398 mg m-2 in summer 2009 to only 15.7 mg 

m-2 in the following year (Table A4-1). Figure A4-3a indicates an overall increasing trend of 

volatilisation for the five active substances over the three years, mainly due to increased air 

temperatures on treated surfaces by ca. 2°C and 10°C from 2008 to 2009 and to 2010, 

respectively (Table A4-3). This is solely based on the assumption that all applied doses were 

available for the volatilisation, whilst 20-30% of pesticide may not reach the target site during 

an application (Villiot et al., 2018). 

Figure A4-4 indicates correct order-of-magnitude with higher measured concentrations 

corresponding to higher simulated concentrations for three active substances pendimethalin, 

pirimicarb, and prosulfocarb, whilst no association was found for fenpropimorph and lindane. 

This may indicate that other processes not parameterised by the vapour pressure determine the 

volatilisation. This includes the assumption that there are no other dissipation pathways and 

formulation effects on the plant surface, inaccuracies in the value of (mixture) vapour pressures, 

and the possibility that the model algorithms are not completely correct (Houbraken et al. 2016). 

Ellis et al. (2017) proposed that improvement to the PEARL model should include descriptions 

of formulation attributes and leaf wetness during application. For instance, the volatilisation of 
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up to 90% of pure fenpropimorph and lindane in 48 h was subjected to reductions of up to 80% 

through addition of adjuvants (Houbraken et al., 2015). Besides, the fraction of pesticide 

available for volatilisation is still not well quantified due to the difficulties to describe the 

competing processes occurring at the leaf surface including photo-degradation and rain wash-off 

(Lichiheb et al., 2016), and foliar absorption that is known to be enhanced by high humidity 

(Farha et al., 2016).  

For the bare soil surface during the periods of autumn, the dimensionless Henry’s law constant 

is the indicator for pesticide volatilisation with largest simulated volatilisation of applied doses 

for pendimethalin and least for pirimicarb (6.7-11.6% and 0.04-0.1% of applied doses, 

respectively; Figure A4-3b). Meanwhile, inaccuracy in the values of Henry’s law constant 

remains a major issue, particularly for low-volatility chemicals due to difficulties in its 

determination (Chao et al., 2017). What is more, the Henry’s law constant alone may not 

explain the under- and over-estimated airborne concentrations for pirimicarb in 2010 and 

fenpropimorph in 2009 with factors of difference of 0.1 and 126, respectively (Table A4-4). 

This indicates that other influential factors have not been factored into the simulation of 

pesticide volatilisation from the soil surface. 

Numerous studies proposed soil moisture content as an important factor for the volatilisation of 

pesticides from bare soil, whereby a moist surface can increase the volatilisation (Gish et al., 

2009; Reichman et al., 2013; Karlsson and Arvidsson, 2015). Therefore, the observed 

concentrations in 2009 would be expected to be generally smaller than those for 2010 owing to 

smaller soil moisture content in 2009 (17-18% and 27% of the mass of the dry soil for 2009 and 

2010, respectively; Karlsson and Arvidsson, 2015). Furthermore, it was less humid in 2009 with 

an overall average humidity of around 70% compared to both 2008 and 2010 with overall 

averages around 87% (Karlsson and Arvidsson, 2015). Schneider et al. (2013) in their study on 

the effect of humidity on volatilisation from bare soil proposed that an increase in the relative 

humidity in the adjacent air from 60 to 85% resulted in up to 8 times greater volatilisation of the 

pesticides triallate and trifluralin. 

The simplicity of the present model in simulating atmospheric transport of airborne pesticides 

does not take into account the dissipation of pesticides after entering into the atmosphere. 

Nevertheless, the residence time of airborne pesticides in the atmosphere can be affected by 

physical processes and/or chemical reactions including dry and wet deposition, photolysis, and 
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oxidation (Villiot et al., 2018). For instance, the over-estimated simulation for fenpropimorph 

does not factor in its rapid degradation process in air with a half-life of 1h (Hassink et al., 2007); 

that may in turn be influenced by the relative humidity (Mattei et al., 2018). Moreover, Zivan et 

al. (2017) proposed that increased concentration of airborne spiroxamine from levels of tens of 

ng m-3 after six hours of application up to several hundred ng m-3 during night-time is likely 

attributable to the increased atmospheric stability. However, such effects of atmospheric 

stability are not reflected in the present simulation due to a lack of data on cloudiness to assign a 

relevant atmospheric stability class for the night time.  

Much work is expended to improve the existing regulatory models to simulate accurately 

scenarios for human exposure to pesticides. All models have common limitations owing to data 

availability and the worst-case assumptions that are probably over-conservative for some 

pesticides (Ellis et al., 2017). Despite the inherent limitations, one major advantage of the 

present model is that it is possible to select any distance downwind from treated fields, rather 

than having a worst-case distance for volatilisation conditions at 10 m (van den Berg et al., 

2016). More field measurements are needed to permit a better understanding of the 

volatilisation process, pesticide fate, and atmospheric dispersion for a range of active substances 

at different proximities. Improvement to the model can be made by incorporating more relevant 

processes and factors into the simulation.  
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Conclusion 

 

Overall, the initial evaluation indicates the developed model for pesticide volatilisation and 

aerial dispersion is a promising starting point to measure the residential exposure to pesticide 

vapours at different proximities. Nevertheless, improvement to the model is necessary when 

additional data, enhanced scientific knowledge, and advanced model algorithms become 

available to quantify the amount of pesticide available for volatilisation after an application, and 

to describe the fate and atmospheric transportation of airborne pesticides after entering into the 

atmosphere.  
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