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Abstract

Despite significant advances in both understanding and technology, complications of
surgical care have become a major cause of death and disability worldwide. A substan-
tial proportion of these complications are deemed preventable. It has been hypothesised
that preparing surgeons to operate may improve performance and, by extension, pa-
tient outcomes. This thesis is concerned with three fundamental investigations into the
effect of preparation (described as preoperative simulation) on surgical performance.

First is an investigation into the current understanding of preoperative simulation,
which involves a systematic review of the literature. Broad support for preoperative
simulation is demonstrated, however, the studies suffer from methodological shortcom-
ings and lack theoretical grounding.

Building on this, a laparoscopic sequence learning task was developed to allow the
investigation of preoperative simulation under controlled conditions. This was used in
three controlled, randomised crossover trials. These experimental trials demonstrated
that a simplified, relevant preoperative simulation can improve simulated laparoscopic
performance. Exactly what form the preoperative simulation should take is deter-
mined by the nature of the task/operation being performed and is likely to reflect how
that procedure was learnt. Additionally, preoperative simulation can alter an opera-
tors approach to completing a task, overriding a suboptimal but preferred method, to
condition them to use a better method of completing the procedure.

Finally, the natural experiment of repeating a procedure during an operative list
was used to explore the effect of preoperative simulation in clinical practice. An inves-
tigation of approximately a half million operations was conducted, which demonstrated
that the order in which procedures are performed has a predictive relationship with
operative duration (a surrogate for operative quality). This finding was relatively con-
sistent across the thirty-five most common operations, and reinforced by the finding
that switching procedures leads to significantly increased operative times.

These investigations support the view that preoperative simulation improves surgi-
cal performance.
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Chapter 1

Introduction

‘Complications of surgical care have become a major cause of death and
disability worldwide.’

World Health Organisation, 2009

Approximately one major operation is performed annually for every twenty-five
human beings alive; data from fifty-six countries in 2004 showed an estimated 187-
281 million operations were performed worldwide [1]. This has significant implications
for public health and well-being; it is almost double the number of childbirths per
year [2] and is at least an order of magnitude more dangerous [3]. Complications
following surgery are difficult to quantify due to the diversity of patients and procedures
performed, but in industrialised countries, major complications following in-patient
surgical procedures have been found to occur in 3-22% of all patients, with an associated
mortality rate of 0.4-0.8% [4, 5]. Nearly half the adverse events that affected patients
in these series were deemed to be preventable. In developing countries, studies suggest
a mortality rate of 5-10% associated with major surgery [6–8].

Potentially avoidable complications are consequently responsible for a large pro-
portion of preventable medical injuries and deaths globally [3]. In spite of significant
improvements in surgical safety understanding, at least half of these events occur during
surgical care [4, 5]. As deliberate, targeted public health interventions and educational
programmes have led to dramatic improvements in maternal and neonatal survival,
similar efforts may result in comparable improvements in surgical care and patient
safety [9].

The World Health Organisation (WHO) has identified some of the major challenges
to improving surgical safety [3]. One of these difficulties is the dearth of basic data.
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Improvements in maternal and neonatal mortality have relied on the routine surveil-
lance of obstetric care, which allows for the evaluation of interventions. Accepting that
surgery presents quite a different challenge from childbirth, a similar robust system of
monitoring does not exist globally in surgical care. Another reason identified by the
WHO was the complexity of the entity being evaluated. For even the most simple
operation to be successfully conducted, a prodigious number of component steps must
be completed by an entire team of healthcare professionals and ancillary staff. How-
ever, simple interventions have been shown to have a significant impact on surgical
safety and patient outcomes; the WHO Surgical Safety Checklist has been shown to
approximately halve the total number of surgical complications and halve in-hospital
mortality [10].

This work aims to explore some of the challenges faced when performing surgery,
specifically related to the technical aspects of operating. Following the example of
the WHO Surgical Safety Checklist, can simple preoperative interventions improve
the practice of surgery? This introductory chapter describes some of the theoretical
background to motor task learning and performance, on which all surgical performance
is dependent. Surgery as a motoric skill is discussed in §1.1. Subsequently, in §1.2,
motor skill learning and performance is discussed, with particular attention paid to
sequence learning (§1.2.1) and adaptation (§1.2.2). The need for off-line processing
and consolidation of learnt behaviour is reviewed in §1.3, with a summary provided in
§1.4. A summary of the ground covered in this thesis is finally given in §1.5.

1.1 Surgery as a Motoric Skill

Surgery is a complicated, multifaceted undertaking, requiring the coordinated effort of
multiple teams of healthcare professionals and supporting staff. Within the individual
surgeon, a multitude of skills and attributes are required, which are encapsulated in
Good Surgical Practice [11]. However, at its core, surgery relies upon practical, motoric
skills.

In recent years, there has been increasing emphasis placed on the vital ancillary
skills required by a surgeon, exemplified by the recognition of the importance of non-
technical skills [12]. This recognition has lead to the development of assessment meth-
ods for Non-Technical Skills for Surgeons (NOTSS) [13], which is starting to be incor-
porated into postgraduate surgical training, as part of the major expansion in post-
graduate assessment within the medical and surgical professions [14]. While recognising
the importance of these non-technical skills, fundamentally, a surgeon must be able to
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perform an operation. This ability to operate is contingent on the motor skills of the
attending surgeon.

A motor skill can be broadly defined as an action which produces some measurable
outcome of ‘success’ or ‘quality’ [15]. In contrast to habits or reflexes, motor skills
require an intentional act [15]. The development of motor skills often requires extensive
practice and the eventual evolution to skilled performance reflects the interplay of
a variety of different factors. Coordination of the neuromuscular system, including
elements such as biomechanics, postural control and reflexive constrains are required,
as well as cognitive factors such as working memory, perception and characterisation
[15]. This interaction of multiple factors can allow for the potentiation or impediment
of the processes involved during both learning and performance of a task [16, 17]. For
example, it has been demonstrated that both learning and performance of a task can be
degraded by instructions that would intuitively seem to aid performance. Additionally,
thinking too much about the task to be performed is particularly disadvantageous in
stressful situations [18]. These findings support the accepted notion that educational
or preparatory interventions may have a profound impact on skill performance. In
the case of surgery, the archetypal high-stakes endeavour, any intervention should be
soundly grounded in theory and have substantial experimental backing before being
implemented in clinical practice. A core set of principles for motor skill learning and
performance are discussed below.

1.2 Learning and Performance Behaviour

Early investigation of learning hypothesised lawful relationships between the properties
of a task and its performance; Fitts’ law [19] details the compromise between accuracy,
speed and movement amplitude, while the Hick-Hyman law [20, 21] describes how in-
formation uncertainty increases reaction times. However, these laws have been shown
to degrade with substantial practice [22], indicating motor performance is dependent
on acquired knowledge about the task [15]. With practice, performance improvement
is initially rapid, but the rate of improvement decreases as the practitioner becomes
more skilled. Consequently, simple non-linear functions have long been used to de-
scribe the effects of practice across multiple tasks [23]. The supposed ‘power law for
practice’ has become ubiquitous in describing this phenomena [24], however, as more
fully explored later (see §3.3.1), the exponential function more accurately describes the
effect of repeated practice on performance.

Regardless of how it is best modelled, initial rapid performance improvement fol-
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lowed by subsequent slower improvement to eventual plateau is thought to be, at least
partly, a consequence of the ‘chunking’ of information1 [26]. Chunking combines the
individual components of a task into functional units. On first encountering a new
task, each movement is executed in isolation, i.e. a continuous movement between two
pauses of the effector. As learning occurs, the individual elements become smoother
and faster. There is also a progressive iteration where several contiguous elements
are combined into ‘chunks’, resulting in a more efficient system with fewer and fewer
chunks [27]. Classically, typing is used as an example of chunking, with the assumption
that chunks are learnt hierarchically, i.e. chunks may be developed for representations
of letter combinations, words or entire phrases [28].

Chunks have been considered representative of cognitive functions (spatial chunks),
or as cooperations between forces, joints and muscles (motor chunks) [29–31]. The
prominent Dual Processor Model (DPM) proposes a cognitive model of sequential mo-
tor skill development [29, 31]. The DPM suggests a cognitive and motor processor
that execute discrete movement sequences. In early practice, the cognitive processor
is responsible for translating each external stimulus into an associated response, and
prompting the motor system to execute this response. In response to novel but ex-
plicitly known sequence, i.e. in the case of following instructions, a limited number of
individual responses may be loaded into the motor buffer. The motor buffer is pre-
sumed to be part of working memory [32–34]. It is thought that, as short series of
movements are repeatedly performed in succession, these sequences are integrated into
a single representation; the motor chunk, Figure 1.1. Motor chunks eventually allow
the cognitive processor to load the motor chunk(s) from long term memory into the
motor processor as a single processing step, as if each motor chunk was a single re-
sponse [32]. After loading chunks into the motor buffer, the cognitive processor signals
the motor processor to begin reading the chunks and perform the movement series in
a relatively autonomous manner. This process allows familiar sequences to be selected
and executed in a rapid and precise fashion; a learnt skill. Consequently, as learning
occurs, control of motor performance shifts from a general-purpose cognitive system
to specialised motor system [27]. This allows the cognitive system to be ‘freed up’ to
attend to other tasks while motor performance is executed by the motor system. In
relation to laparoscopic surgery, this may allow experienced surgeons to dedicate more
cognitive processing power to other aspects of operating, by requiring less dedicated
cognition to be concerned with movement planning and motor control, when compared

1Though initially developed to explain the power law of practice, chunking is also applicable to
an exponential model of learning, as it predicts a relative learning rate decrease to zero with practice
[25].
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lines). Motor selection must be sensitive to the expected
rewards, the motor cost, and task instructions. Selection is
a time-consuming process because it needs to consider
multiple alternatives and then settle on the most appro-
priate set of motor primitives – and, as for all choice-
reaction time tasks, the time necessary will depend on
the number [17] and dissimilarity [18] of the response
alternatives.

When learning takes place in a serial reaction time task
(SRTT), initial decreases in reaction times are likely due to
the fact that the selection level becomes more adept in
predicting the next stimulus, rather than by improvement
of the execution of the button press itself. Other motor
tasks, such as visuomotor tracking or tracing of an arc [10],
appear to involve learning at the execution level – the
person knows exactly which movement to select, but
improves the speed and accuracy with which this move-
ment can be executed. Many skill-learning tasks, however,
involve learning both at the selection and the execution
level, with learning possibly progressing from an abstract
to a more motor-oriented representation [19]. For example,
in the discrete sequence production task (DSP), learning
starts as in the SRTT at the selection level as the partici-
pant remembers the sequence. Because there is no imposed
temporal gap between responses, the learner will then
form an execution-oriented sequence representation that
allows production of the elements in rapid succession
(Figure 1B).

The formation of skill representations reduces the load
at the selection level: the next action does not have to wait
for the time-consuming processes of memory recall or
stimulus-response mapping [20,21]. Instead, the selection
level only needs to trigger the corresponding network,

which binds the execution elements into one dynamical
control network.

This process predicts that the learner should be able to
produce movements using less motor planning or prepara-
tion time. Indeed, shifts in time–accuracy trade-offs should
be considered as one of the hallmarks of skill learning
[9,10]. A recent study [13] demonstrates such shifts also
occur when learning to reach during mirror-reversed feed-
back. By contrast, a very similar task – adaptation to a
visual rotation – does not show a time–accuracy trade-off.
These results indicate that visual rotations are learned
through recalibration of already automatized processes
(adaptation) while mirror-reversal is initially achieved
through a time-consuming selection processes, followed
by subsequent automatization (skill learning).

Although skill improvements can be achieved through
the formation of a new motor primitive at the execution
level, many studies provide evidence that such representa-
tions are formed in a hierarchical fashion, with encoding
also occurring at an intermediate level between selection
and execution (purple, Figure 1B). Such hierarchical repre-
sentations would allow generalization and the flexible
generation of novel behaviors (Box 1).

Automatization of selection processes may not be limit-
ed to sequential tasks, and may also extend to the simul-
taneous activation of specific groups of muscles – the
learning of new synergies. For example, in a recently
developed finger configuration task [12], participants
had to press down with a selected set of fingers onto a
keyboard, while stabilizing the force produced by the non-
selected set. Initially, participants were unable to produce
some of these configurations directly, because the required
muscle synergy was very unnatural. Instead participants
sequentially adjusted each finger, slowly approximating
the correct configuration. After multiple days of training
they generated the same hand configuration directly in one
coordinated movement. Thus, through learning partici-
pants moved from sequential selection to the development
of a new synergy.

Most movement tasks involve both sequence and syn-
ergy learning. For example, a tennis serve involves the
sequence of throwing the ball, taking a back swing, and
accelerating the arm forward. Each of these phases
involves the coordination of multiple body parts. A skill
representation would bind these disparate elements to-
gether into a single skilful sequence of multi-joint move-
ments.

Neuronal correlates: recruitment versus efficiency
What are the neural correlates of skill learning? Investi-
gation of this question is complicated by the fact that
plasticity may involve multiple overlapping processes.
Learning leads to neuronal recruitment – in other words,
neurons not previously activated by the task become en-
gaged [22,23]. This process may explain why the activity
observed in fMRI studies often increases with learning
[8,24–26].

Equally commonly, however, studies find that activity
decreases with learning, especially after prolonged train-
ing [27–31]. Often these signal decreases are interpreted
as a sign the region has stopped to play a role in the
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Figure 1. Levels of skill learning. The execution level (red) encodes motor
primitives, which produce stable spatio-temporal patterns of muscle activity.
Each primitive is formed by a dynamical neural network with a stable state–space
trajectory (indicated by the curved black lines). It is also sensitive to proprioceptive
feedback from the controlled limb. (A) Early in learning, the appropriate primitives
are activated (white broken lines) from the selection level (blue), and this involves
explicit processing of task instruction. (B) Skill learning may involve the formation
of association between the selected elements at an intermediate level (purple),
which enables easier recall and production of complex sequences or movement
combinations.
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Fig. 1.1 Levels of Skill Learning, reproduced from Diedrichsen and Kornysheva [37].
In early learning (A), movement elements are activated (white broken line) from the cognitive
processor (selection level, blue), which involves explicit processing of the task instruction.
Skilled performance (B) seems to involve the formation of motor chunks at an intermediate
level (purple), enabling easier recall and performance of complex movement combinations.

to junior surgeons. This may account for the improved intra-operative decision making
senior surgeons demonstrate, despite potentially equivalent technical (motor) ability
[35, 36].

Discrete chunks of motor performance are produced as a result of an efficiency
computation trade-off [27]. Optimal motor performance requires the computation of
muscle movements and joint angles to try and produce smooth trajectories and lower
energetic requirements of execution (both of which are desirable in all movements).
Importantly, these movements are calculated using dynamic programming and become
exponentially harder to solve as the sequence of movements becomes longer [38–40].
Consequently, the computational cost of one extended sequence of movements is greater
than the sum of shorter portions of the same sequence performed in series. Therefore,
long sequences of movements are combined into a series of computationally simpler (and
shorter) sequences; chunks. Experimentally, it has been shown that in the initial period
of learning a motor skill, a large number of (short) chunks keeps the cost of computation
low [27]. As learning occurs, movements within chunks are optimised, resulting in
more efficient movements. Interestingly, Ramkumar et al. [27] suggested another
method for the optimisation of movements over time; switching chunk orders to more
efficient arrangement (for example, 3-3-2-2 versus 2-2-3-3), but found no evidence that
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this occurs experimentally in primates. Although selecting chunk order for maximal
efficiency across a set appears to offer an attractive strategy for developing optimal
movements, it requires identifying the global minima; the smallest value across the
entire domain of a function [41]. While optimisation can lead to a local minima, defining
the global minima is dependent on finding the minima of each chunk individually,
necessitating the generation of internal models of efficiency and re-learning chunk order
from one trial to the next, which is likely to introduce additional demands on working
memory. Additionally, the most efficient order for a set of chunks will be dependent
on the structure of the constituent chunks, meaning that a change to the order of
an individual chunk is likely to necessitate a change to overall order. Consequently,
optimisation within chunks, even if better potentially unexplored chunk orders exist,
appears to be an effectively simple solution.

1.2.1 Sequence Learning

Sequences of information and/or actions are encountered in almost all tasks; from se-
quencing the compound sounds of speech, to the individual movements when typing, to
the sequence of actions required to perform minimally-invasive surgery. Serial reaction
time (SRT) tasks have long been used to study sequence learning. This commonly
requires a participant to push a key in correspondence to a visual signal, similar to a
simplified form of typing. Reaction time has been shown to reduce when responding
to predictable stimuli, and provides a measure of sequence learning [42]. The flexibil-
ity of a learnt skill can be examined by assessing performance of the skill in a novel
environment, using a transfer study design. In transfer tasks, the performance of a
task with the finger movements of one hand have been shown to effectively transfer to
arm movements, finger movements with the opposite hand and even verbal responses
[43, 44], but interestingly, the degree of transfer is dependent on the amount of practice
[15]. For example, inter-manual transfer has been shown to occur after one hour of
practice, but not after five weeks of training [45], suggesting extended practice ties a
skill to a particular mode of performance. This has significant potential implications for
the development of minimally-invasive surgery training regimes. With the exponential
increase in use of simulation in surgical education [46], trainees have a much greater
exposure to predictable stimuli (simulators replicate exactly the same operations again
and again but are unable to replicate the diversity found in the population), when com-
pared to previous generations of surgical trainees. While simulator training has been
shown to be beneficial [47, 48], it may be possible to overtrain on a simulator, result-
ing in a lack of ability to transfer to real-world operating. This may also explain why
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These new representational analysis methods are there-
fore beginning to provide new insight into the neural
organization of skill. Traditionally, signal decreases in
premotor areas have been taken to indicate that these
regions only play a role early in learning, and later make
way to more execution-related representations [32,35]. It
can be shown that some premotor regions actually exhibit a
stronger representation of the learned skill despite equal
or lower overall activity [43]. More importantly, it is now
possible to more precisely pinpoint the actual structure of
such representations (see below and [47]).

Chunking
Motor chunking is one of the key arguments for a hierar-
chical representation of motor skill. Proposed by Lashley in
1951 [48], the concept of motor chunking has come again to
prominence over the last years. With learning, in addition
to sequence completion becoming faster and more accu-
rate, performance starts to show idiosyncratic temporal
groupings or chunks [49]. Elementary movements that are
bound into one chunk (Figure 2A) are retrieved faster and
more accurately than when the selection level triggers
them individually [50]. In addition to a more fluent se-
quence production, this hierarchical organization also has
the advantage that acquired chunks can be used in the
context of novel sequences [49]. For example, learning of
one sequence (S1) that consists of two chunks (C1, C2)
generalizes to the execution of another sequence (S2),
which contains the same chunks in a different order
(Figure 2B). Thus, a chunk- or intermediate-level repre-
sentation of motor skills ensures both flexibility and effi-
ciency in motor skill learning.

One challenge is to identify chunk boundaries from
behavioral data. Traditionally, chunks were defined by

especially long temporal gaps or error increases at the
beginning of the chunk [49,51,52]. One group has sug-
gested [53] that the correlational structures between
neighboring inter-press-intervals (IPIs) may also be used
as a criterion for chunk length. They hypothesized that
IPIs are correlated more within than between chunks,
because within each chunk the individual presses are
controlled by a common process.

Whereas older approaches require averaging across
trials, recent methods are able to detect chunks at a
trial-by-trial level while still using the consistency of IPI
profiles across a series of trials [54]. A Bayesian model has
been been proposed [55] that combines response times and
error rates, as well as their correlations across presses, to
detect chunk boundaries with high sensitivity. The new
approach enables automatic detection of dynamic changes
in chunking structure over the course of learning, and
provides evidence not only for the segregation of sequences
into chunks but also for the increase of chunk length with
learning (concatenation).

At a neural level, chunk formation is likely distributed
across cortical premotor and striatal centers. A recent
study in mice has shown firing patterns in both the direct
and indirect pathways that suggest a role of the basal
ganglia in chunk selection and execution [56]. Some stria-
tal medium spiny neurons showed phasic activity increases
at the beginning of a series of four lever presses, suggesting
a role in the initiation of the chunk. Others exhibited tonic
increases of decreases in the firing rate during chunk
execution, possibly providing sustained disinhibition of
the selected motor chunk. Importantly, the majority of
cells were specific to the actions performed, but invariant
to the speed of these actions. This suggests that the
striatum is involved in controlling whole chunks of

Box 2. Stages of learning

Skill learning is associated with complex, often non-monotonic,
changes of neural activity across the time-course of learning
[31]. Early phases of learning are often associated with increases
in overall activity, followed by reductions in activity and neural
variability in later phases [22]. This has led to the idea that skill
learning develops in discrete stages with different learning rules and
plasticity mechanisms [72,73]. While stages of learning may be a
useful descriptive concept, it is very tempting to use it to explain
non-linear changes across the time-course of learning, which is a
form of circular reasoning (using a descriptor of Y to explain Y). The
problem is that we currently do not have a clear behavioral criterion
to distinguish different stages and to determine when one transi-
tions into the next. While the rate of learning slows down as
learning progresses, the same is true for simple exponential decay,
which is governed by a single process. An absolute temporal
criterion also cannot be found – a recent review allows the early
stage of learning to last between ‘minutes’ to ‘several months’ –
depending on the situation [72].

For the concept of learning stages to be fruitful, a description of
the underlying processes is required. What signals the motor
system to re-enter the stage of ‘early’ learning? What dictates the
transition to ‘late’ stages of learning? Until independent criteria are
established, the notion of learning stages remains descriptive
without explanatory value. Indeed, it is more likely that the
explanation for non-monotonic neuronal changes arise from the
interplay of multiple plasticity processes that are always active no
matter whether we are early or late in learning, similarly to current
proposed models for adaptation [74].
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Figure 2. Hierarchical representation enables movement chunking. (A) Sequence
units at the selection level can trigger chunks (C1, C2) at the intermediate level
(purple), which then in turn trigger individual movement elements (F1–F5). The
chunk representations are efficiently shared across sequences S1 and S2. (B)
Training on sequence S1 can lead to behavioral savings (faster and more accurate
production) in novel sequences. Savings occur when the acquired chunks (C1 and
C2) are preserved (S2), but not when they are broken up (S3).
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Fig. 1.2 Movement Chunking, reproduced from Diedrichsen and Kornysheva [37].
(A) Triggering individual chunks (C1, C2) from the selection/cognitive level results in the
performance of individual movement elements (F1-F5). (B) Training using the S1 sequence
leads to faster and move accurate in novel sequences when acquired chunks are preserved
(S2), but not when the chunks are broken up (S3).

proficiency in one minimally-invasive technique does not necessarily correlate with pro-
ficiency in another; operative outcomes are dependent on a surgeon’s experience with
a single procedure [49–51]. This hypothesis is supported by the finding that partici-
pants demonstrated different functional magnetic resonance imaging (fMRI) activity
after one hour and five weeks of training when repeatedly performing a motor task [45],
demonstrating a change within the motor cortex that suggests extended practice may
anchor a skill to a particular form of execution. However, such findings do not take into
account the performance of an expert surgeon who is able to accommodate variations
from the norm and operate in novel situations (see Lodge et al. [52] as an example).
Consequently, consolidation may initially limit flexibility, producing performance with
minimal variation and stability, but eventually allow a plasticity of ‘chunks’ (discussed
above) that can be flexibly varied and combined to allow performance under novel
conditions [37, 53]; Figure 1.2. The reconfiguration of learnt chunks may be employed
by experts to perform at high levels in novel environments. Such performance would
necessitate the recruitment of additional cognitive resources, but, as discussed above,
expert performance is less cognitively demanding than novice performance, permitting
the use of additional cognitive processing for other tasks such as chunk reconfiguration.

Variation in ability to transfer skills is likely to reflect the involvement of differ-
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ent learning pathways with differing timescales. Early during the learning process,
‘fast’ learning processes may produce abstract representations of the task that can
easily generalise across different effectors and domains. As learning continues, ‘slow’
effector-specific processes become predominant. Although more able to generalise,
faster systems may be disrupted by additional, unrelated task requirements, whereas
slower systems are likely to be more automated and consequently better at mitigating
the effects of distraction [15]. This is demonstrated in practice by the trainee who is
able to perform a certain task on a box-trainer, but struggles to do so when operating
in theatre, compared to the expert surgeon who is able to perform a task under both
controlled conditions (simulation) and during times of significant distraction (operating
in theatre).

1.2.2 Adaptation

All minimally invasive surgery forces the surgeon to adapt to a visuospatial transfor-
mation. During laparoscopic abdominal surgery, the surgeon views a two-dimensional
representation of the three-dimensional abdominal cavity which is positioned away from
the field of operating and all movements are perturbed, sometimes reversed, by the ful-
crum effect of laparoscopic ports. Once again, as above, parallel systems of learning,
operating on differing timescales, have been proposed to account for the experimental
findings of adaptation tasks. During visuomotor adaptation, normal visual input /
motor output mappings are modified, for example, a participant’s visual feedback may
be rotated around a fixed point or the participant may experience perturbing forces
during performance. Adaptations to such manipulations typically demonstrate expo-
nential decay over repeated trials [23], mirroring the learning trials discussed above.
This phenomenon can be explained as the result of multiple systems of learning work-
ing in parallel [54]. ‘Fast’ learning systems result in rapid learning, but also rapid
decay. ‘Slow’ systems require a greater number of trials to achieve the same degree of
adaptation, but are relatively stable and resistant to degradation, which again mirrors
the sequence learning trials discussed above.

Awareness of the need to adapt to a visuomotor transformation has produced inter-
esting observed effects. Participants have been shown to be able to adapt to a forty-five
degree visuomotor rotation immediately, after being told to aim for a strategic target
placed forty-five degrees in the opposite direction to the rotation [55]. Paradoxically,
over time the participants’ accuracy declined as greater rotations than required were
produced. It was suggested that this apparent contradiction is again due to differing
learning systems operating on different information. Operating on strategic instruc-
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tions (i.e. "aim for this target"), one system may generate a motor plan that involves
aiming to a strategic target forty-five degrees from the actual target. Concurrently,
another system may try and calibrate movement based on the difference between the
predicted and perceived endpoints, while lacking information regarding the actual tar-
get. Combining these two systems will result in a compound movement away from the
actual target towards the strategic target. This has led to the hypothesis that, when
trying to account for visuomotor transformations, a participant can engage control sys-
tems under explicit instruction, which may assist in rapid learning, but hamper expert
performance of the task [17]. Such findings have an implication for surgical education
and preoperative preparatory regimes - explicit instructions may aid the development
of surgical skills, but impair expert performance.

1.3 Off-line Processing and Consolidation

In the United Kingdom, surgical trainees’ are unlikely to finish higher surgical training
and reach consultant (independent practitioner) level before the age of thirty-five [56],
though this does not mean that learning ceases at this point. In order to continue to
learn over such protracted periods of time, a balance between flexibility and longevity
is required. This is again provided by multiple learning systems operating over different
timescales. ‘Fast’ learning mechanisms are able to generate new representations when
confronted with novel tasks or environments, but require greater attention and are
comparatively cognitively demanding. ‘Slow’ learning systems are able to decrease
cognitive load and retain learnt skills despite experiencing novel learning [15]. Skills
retained over prolonged periods of time (a hallmark of motor skills in general) are
considered ‘consolidated’. There is increasing evidence that, for at least some aspects,
consolidation has to occur ‘off-line’, when the task is not actively being performed
[57–60]. For some forms of learning, this consolidation is dependent on sleep to occur
(particularly ‘fast’ systems), while others will occur after the passage of time.

Consolidation of learning can be difficult to examine, but can be demonstrated as
savings in relearning; when a task is repeated after an extended break, performance
improves faster then during the initial acquisition of the skill [15]. Additionally, con-
solidation can be evident in resistance to interference during task performance. After
initial training, resistance is more pronounced the following day (i.e. after sleep),
whereas after prolonged training similar resistance to interference is demonstrated af-
ter a five-minute break or the following day [61]. It is possible that allowing a period
of ‘washout’ after initial trials may be useful in consolidating more abstract repre-
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Table 1.1 Characteristics of Multiple Systems for Motor Learning, reproduced from Clark
and Ivry [15].

‘Fast’ Learning Systems (I) ‘Slow’ Learning Systems (II)
Large amount of learning per trial that satu-
rates quickly (high gain)

Small, incremental amount of learning per
trial (low gain)

Requires extra time, cognitive resources for
processing Learns automatically without effort

Required for contextual learning Unimodal or modular learning
Accessible to awareness and conscious inten-
tion

Impenetrable to awareness, operates indepen-
dent of conscious strategies

Consolidation processes are enhanced during
sleep

Consolidates off-line with the simple passage
of time

Ready transfer to related tasks Effector-specific and inflexible

sentations of the task, generated from ‘fast’ learning systems, while further training
shifts performance into more specific (less plastic) representations, derived from slower
systems, which are more consolidated and less affected by interference.

Practically, the development of surgical skills occurs over many years, allowing
ample opportunity for off-line processing and consolidation. However, the need for the
off-line processing and consolidation of skills needs to be considered in experimental
designs examining the effects of surgical education and the potentiation of learnt task
performance.

1.4 Summary of Motor Skill Learning Theory and
Relation to Laparoscopic Surgery

The theoretical evidence presented above suggests that multiple independent systems,
operating over different time scales, support motor learning; see Table 1.1. Whilst it has
been suggested that more precise characterisation of motor learning mechanisms will be
provided in neural terms [15], the above delineative provides a useful framework which
can be utilised in developing methods to aid both learning and learnt performance.

Minimally-invasive surgery can be thought of as a (albeit complicated, multidi-
mensional) sequence learning task, as a surgeon must perform a series of tasks, in a
predetermined order, to successfully complete an operation. During minimally-invasive
surgery (cf. open surgery), all of the task must be completed while coping with a visu-
ospatial transformation of normal visual input and motor output, which places greater
demand on a surgeon’s cognitive functions.

There has been a proliferation of minimally-invasive surgery in recent years and, at
the same time, a reduction in training time for surgeons [62–64]. As surgery remains a
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major cause of death and disability worldwide, and half of all the adverse events that
affect patients occur during the practice of surgery, could an intervention that improves
a surgeon’s operative performance result in better clinical outcomes? The WHO Surgi-
cal Safety Checklist [10] has demonstrated that simple preoperative interventions can
have a significant impact on patient outcomes. Might surgeons benefit from some form
of ‘warm-up’, which is utilised extensively in other high-stakes motoric performances,
such as elite sport? In such domains, warming up, both physically and ‘mentally’, has
been shown to benefit performance [65, 66]. This concept has recently begun to be
investigated in surgery [67, 68], though such investigations are nascent, as discussed in
Chapter 2. As such warm-ups in surgery most commonly employ a surgical simulator,
the practice of warming up prior to operating is hereafter referred to as preoperative
simulation.

This work aims to explore the effect of preoperative simulation on surgical perfor-
mance. Three approaches are utilised to try and achieve this goal; firstly, a systematic
evaluation of the current understanding is undertaken. Secondly, experimentation un-
der strictly controlled conditions is performed. In order to achieve rigorous control
over the varied extraneous factors than can affect surgical performance, the experi-
ments performed in this thesis are necessarily removed from the reality of undertaking
surgery. As discussed in Chapter 2, this is not always the case when surgical technolo-
gies are being developed or evaluated. However, without stringent controls, at least
during the initial development and assessment of a supposedly useful intervention, the
precise beneficial components of any technology are likely to be lost in noise. Once a
principle has been demonstrated under controlled conditions, evaluation under less well
controlled, more true to life scenarios can occur. Such an approach is analogous to the
initial basic science behind any novel pharmaceutical development. Finally, in order
to glean some insight into the effect of preoperative simulation in clinical practice, the
natural experiment of repeating a procedure on a operating list is explored.

1.5 Structure of Thesis

Chapter 2 summarises the current literature that examines the effect of preoperative
simulation on surgical performance. A systematic review was conduced according
to PRISMA guidelines [69], which identified thirteen relevant articles. The results
of these studies, including a frank appraisal of methodological shortcomings, are
discussed.

Chapter 3 is the first of seven chapters of original work. To try and identify the
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effective component(s) of a beneficial preoperative simulation routine, a bespoke
laparoscopic sequence learning task was developed (§3.1), which can produce
detailed metrics of performance (§3.1.1). The overarching structure of subsequent
experimental work utilising this program is subsequently discussed (§3.3).

Chapters 4 & 5 detail the first of three experiments utilising the laparoscopic se-
quence learning task (Experimentα). Chapter 4 reports the specific task devel-
oped for this experiment (§4.1), as well as the methods (§4.2) and results (§4.4)
of learning trials, designed to teach participants the experimental task. A dis-
cussion of these result is subsequently presented (§4.5). Following, Chapter 5
presents the methods (§5.1), results (§5.2) and a discussion (§5.3) of the effect of
preoperative simulation on performance of the Experimentα task.

Chapters 6 & 7 provides the results from Experimentβ, which follows a very similar
experimental design to Experimentα, but examines the effect of learning (Chap-
ter 6) and preoperative simulation (Chapters 7) on a different task, developed
using the laparoscopic sequence learning task program presented in Chapter 3.
A synthesis of the results of both Experiment α and β is discussed in §7.4.

Chapters 8 & 9 are the final experimental chapters and report the results of
Experimentγ, which again following a similar experimental structure to the pre-
vious two experiments. A consolidation of all experimental results, including
the shared characteristics of effective preoperative simulations, is presented in
§9.3. The potential implications for the use of preoperative simulation in clinical
practice are developed in §9.4.

Chapter 10 outlines a big data investigation into the natural experiment of repeat-
ing a procedure on a single operating list, allowing an exploration of the effect
of preoperative simulation in current clinical practice. Following on from pre-
liminary analysis utilising local data (§10.1), the analysis of 478,713 operations
from thirty-eight Spire Healthcare hospitals across the UK is presented (§10.2).
These results demonstrate, for the first time, that the order in which procedures
are performed has a predictive relationship with operation duration (§10.3). A
discussion of this finding, including its application to preoperative simulation is
discussed in §10.4.

Finally, Chapter 11 summarises the main results of this thesis and discusses the
various paths that have opened for further work.



Chapter 2

Systematic Review of Current
Evidence

To understand the processes driving an effective preoperative simulation, a system-
atic review of the literature on preparation and surgical success was conducted. After
identifying studies examining the efficacy of preoperative simulation, the task charac-
teristics of a successful preoperative simulation and the performance metrics that are
modulated by this process were considered.

2.1 Methods

A search strategy according to the Preferred Reporting Items for Systematic Reviews
and Meta-analysis (PRISMA) guidance [69] was developed. An electronic search of rel-
evant databases (Cochrane Library (1995-), PubMed, PsycINFO (1967-), ERIC (1964-)
and Google Scholar) was conducted utilising the following key words: “Surgery”, “La-
paroscop*”, “Minimally Invasive”, “Simulat*”, “Educat*”, “Technolog*”, “Warm-up”,
Warm up”, “Preparation”, “Planning”, “Rehearsal”, “Mental Rehearsal”, “Cognitive”,
“Decision Making”, “Decision”, “Outcome”, “Performance”, “Preoperative” and “Pre-
operative”. Key words were grouped using “AND” or “OR” terms. Bibliographies of
relevant studies and the “related articles” link in PubMed were used to identify any
additional studies. All citations and abstracts identified were thoroughly reviewed.
The last date for this search was 1st May 2015.

2.1.1 Inclusion Criteria

All included studies analysed the effect that a preoperative simulation had on subse-
quent surgical performance (simulated or real-life). Studies were restricted to those
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that examined a deliberate intervention prior to an operation or procedure as opposed
to a training regime or educational programme. There was no restriction applied to
the type of skills trained or assessed. All study designs were considered for inclusion.

2.1.2 Exclusion Criteria

All citations published only as an abstract or unpublished report were excluded from
further analysis. All studies were carefully evaluated for duplication or overlapping
data and such reports removed.

2.1.3 Outcome Measures

The primary outcome of interest was surgical performance, however defined. Of sec-
ondary interest were the outcome measures reported by each study.

2.1.4 Study Selection

The search was performed according to the strategy described above. The identified
abstracts were reviewed those that did not meet the inclusion criteria and excluded.
If no abstract was available or the abstract did not contain adequate information, the
full article was reviewed.

2.1.5 Data Extraction

Data extraction was performed using a standardised pro forma. The following param-
eters were recorded: study characteristics (first author, year of publication, place of
publication), population characteristics and outcomes of interest.

2.1.6 Risk of Bias Assessment

The method for objectively assessing the risk of bias of included studies depended on
the type of study. Randomised control trials were reviewed using the Cochrane risk of
bias tool [70] while cross-over trials were analysed using a modified version of a tool
developed by Mills et al. [71], specifically for reviewing cross-over trials.

2.1.7 Statistical Analysis

The heterogeneity of included studies prevented a quantitative synthesis of reported
outcomes.
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Articles identified through database search n = 483

Duplicates removed n = 25

Abstracts screened n = 458

Excluded n = 422 

Inappropriate publication type n = 6 
No paper available (abstract only) n = 54 

 Review article n = 1

Full-text articles assessed for eligibility n = 36

Studies included in systematic review n = 13

Excluded n = 23 

Inappropriate publication type n = 22 
Review article n = 1

Fig. 2.1 PRISMA flowchart depicting the search strategy and selection of articles for the
review.

2.2 Results

Four hundred and eighty three articles were identified by the search strategy described
above. Following a review of abstracts, full articles and references, 13 studies were
included in this systematic review: Figure 2.1.

2.2.1 Study Characteristics

Four randomised control trials (RCTs) [72–75] and four randomised cross-over studies
[76–79] were included, all of which reviewed operative outcomes following a practice of
technical skills, prior to an operation versus no practice. A further four studies were
case studies, two of which compared a technical skills practice to no practice [80, 81]
and two of which [82, 83] did not contain a control group. One RCT [84] examined the
effect of mental practice prior to an operation on subsequent laparoscopic performance.

Eight of the studies [72, 74, 75, 79–81, 83, 84] examined the effect of preoperative
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simulation on general surgery procedures, three looked at obstetrics and gynaecological
procedures [73, 76, 82] and the last two examined the effect of preoperative simulation
on endovascular [77] and urological [78] procedures. Four of the studies [72, 78–80]
examined outcomes in real patients, the other nine [73–77, 81–84] reviewed simulated
outcomes.

Three mediums of simulation were employed by the included studies; in seven
studies a virtual-reality simulator [75, 77–80, 83], in four a laparoscopic box trainer
[72, 73, 76, 82], and in two video-games [74, 81] were used as preoperative simulation.
Though various forms of simulation were employed, there was general concordance
across the studies as to what constituted preoperative simulation. All studies, ex-
cept one [84], used a similar or simplified motor task as preoperative simulation before
performing the assessed task.

2.2.2 Assessment of Bias

There was significant variability in the quality of studies included. Only one study [75]
was judged to be at low risk of bias: Appendix A. Five studies [72, 73, 75, 76, 79] were
found to be at low risk of randomisation bias, with explicit detailing of the methods
of randomisation and allocation concealment employed. Two studies [72, 75] reported
a priori power calculation, but one of these studies [72] calculated that a significantly
larger number of participants would be required than were actually recruited. The
sample sizes within each study were generally modest, with only one RCT or cross-
over study [75] reporting more than 20 participants per group. The included case
studies could not be objectively assessed by the methods used to review the RCT and
cross-over studies, but each demonstrated methodological shortcomings, as discussed
below.

2.2.3 Reported Outcomes

The included articles report 103 different outcome metrics, often combined to form a
compound score. A summary of the main findings of each study is detailed in Appendix
B. Twelve [73–84] of the thirteen manuscripts concluded that a preoperative simulation
improves subsequent surgical performance. No study found a preoperative simulation
to have a detrimental effect on surgical performance or suggested any negative aspect
of preoperative simulation.
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2.2.4 Studies Reporting Global Rating Score

The most often reported outcome was the effect of preoperative simulation on a global
rating score of performance. Seven of the included studies [72, 73, 77–80, 84] reported
this outcome metric, defined as a summary of objective assessment parameters by an
expert examiner. Nine global rating scales [72, 73, 75, 85–91] were employed in the
seven studies, with all but two studies reporting a different global rating scale. In
a majority of studies validated global rating assessments were used. In three studies
[72, 78, 80] a modification of a previously published global rating scale was employed.

In two RCTs [73, 84] and one cross-over trial [79], the authors reported unequiv-
ocally that preoperative simulation improves subsequent real-world operative perfor-
mance, as assessed by a global rating scale. Two cross-over trials [77, 79] report am-
biguous findings for the effect of preoperative simulation on surgical performance; one
study [77] reported a significant effect as measured by one global rating scale, but no
effect according to another also-reported scale. The other study [78] found a significant
improvement in one assessed task, but not another. One RCT [72] and one cross-over
trial [80] found that preoperative simulation had no effect on subsequent performance,
as judged by a global rating scale.

2.2.5 Studies Reporting Performance Time

Five of the included studies [74, 75, 77, 81, 83] reported ‘pure’ performance time, defined
as the time taken to perform an assessed task. Those articles that reported duration
as part of a global rating scale were not included as such studies have been discussed
above. The authors in one RCT [75] and one case study [76] reported that preopera-
tive simulation shortens subsequent performance time in a simulated environment. In
one cross-over trial [77] and one case study [83] equivocal results were reported, with
preoperative simulation reducing the time of some performance metrics, but not all.
Finally, in only one RCT [74] did preoperative simulation not affect the time taken to
perform simulated laparoscopic surgery.

2.2.6 Studies Reporting Time-based Score

In three studies [76, 81, 82] a time-based score was reported, either in combination
with errors made (resulting in a time penalty) or as the number of occasions a task was
performed within a set time. The authors in one case study [82] found that preoperative
simulation increases the number of times a laparoscopic task can be performed within
a set time period. The authors in another case study [81] found that preoperative
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simulation reduces time taken and errors made during the placement intracorporeal
sutures, but not the time taken and errors made during two other laparoscopic tasks.
Finally, in one cross-over study [76] it was found that preoperative simulation did not
improve simulated laparoscopic performance as assessed by a time-based score.

2.2.7 Studies Reporting Cognitive Performance

In four studies [74, 75, 78, 83] the effect of preoperative simulation on participants’
cognitive performance, most commonly defined as errors made during a procedure
(determined by a simulator or expert assessor) but also based on electroencephalograph
(EEG) readings during performance, was reported. The authors of one RCT [74] and
one case study [83] found that preoperative simulation significantly reduced the number
of errors that occurred during simulated laparoscopic performance. Conversely, another
RCT [75] found that preoperative simulation did not affect the number of cognitive
errors made. In one cross-over study [78] it was found that preoperative simulation
improved attention, reduced distraction / drowsiness and reduced mental workload
when compared to no simulation.

2.2.8 Studies Reporting Simulator-generated Metrics

The authors of four studies [74, 75, 78, 83] reported outcome metrics generated by
the laparoscopic simulator used during their experiments. Hand and tool movement
smoothness and instrument path length were reported, but there was no concordance
across the studies; some reported significant results in certain outcome metrics while
others did not.

2.2.9 Studies Reporting Mental Imagery

One RCT [84] reported participants’ mental imagery following mental practice (ex-
perimental group) or an online academic activity (control group) immediately prior
to performing a simulated laparoscopic cholecystectomy. Mental practice was defined
as “the cognitive rehearsal of a task in the absence of overt physical movement” [84].
The authors reported undertaking structured mental practice significantly improved
participants’ mental imagery of a procedure.
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2.2.10 Studies Reporting Participants’ Perception

The authors of one cross-over study [77] explored participants’ perception of how useful
they found the preoperative simulation and whether participants felt preoperative sim-
ulation improved their subsequent performance. This was assessed by a questionnaire
utilising a five-point Likert scale. Participants reported that they felt patient-specific
simulation to be more helpful than generic simulation, which was more useful than no
simulation. Participants also reported that they felt that patient-specific simulation
helped with decision making, improved safety, increased their confidence levels and
resulted in reduced preoperative anxiety (of the operator).

2.2.11 Studies Examining Outcomes in Real Patients

In four studies [72, 78–80], the effect of preoperative simulation on real patients was
examined. Three of these studies [78–80] concluded that pre-operative simulation im-
proves real operative outcomes. These studies assessed participants’ performance dur-
ing laparoscopic renal surgery (mobilisation of the colon and intracorporeal suturing
and knot tying) [78] and laparoscopic cholecystectomy [79, 80], reporting improvements
in cognitive and psychomotor performance [78], and some global rating score metrics
[78–80]. Weston et al. [72] found preoperative simulation to have no effect on subse-
quent performance. However, as discussed above, Weston et al. performed an a priori
power calculation that demonstrated a larger number of participants than were actu-
ally recruited would be required to achieve statistical significance. Consequently, the
absence of a significant result may be due to a lack of statistical power in the study.

2.2.12 Underlying Processes Examined by the Included Stud-
ies

In order to explore the underlying mechanisms for the observed performance improve-
ments through preoperative simulation, a rudimentary analysis of the tasks performed
was conducted, using the frameworks discussed in Chapter 1; see Appendix C. Whilst
acknowledging that these systems work in concert, and although necessarily specula-
tive in nature, investigation into the degree of engagement of each system could assist
with the future development of optimal preoperative simulation interventions. Thus,
we categorised the preoperative simulation routines employed in each study into those
more likely to engage ‘fast’ learning processes (e.g. motor practice) and those more
likely to utilise ‘slow’ learning processes (e.g. those deliberated, overtly effortful and
requiring cognitive control). The majority of included studies [72–83] indicate a greater
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degree of ‘fast’ processes in their preoperative simulation routines. In most of these
cases, a simplified simulated task (cf. the assessment task) was used to prepare the
participants for surgery (real-life or simulated). Two studies [77, 80] are likely to have
engaged both ‘fast’ and ‘slow’ learning processes and one study [84] relied more heavily
on ‘slow’ learning processes.

2.3 Discussion

This systematic review was conducted to investigate the utility of preoperative simu-
lation as a means of improving decision-making and performance in surgery. All but
one of the studies included in this review concluded that preoperative simulation sig-
nificantly improves subsequent surgical performance. However, the results presented
above, when synthesised, do not appear to present such a coherent picture. One of
the reasons for this discrepancy is the number of outcome metrics used in each study;
see Appendix B. Only four studies [72, 73, 79, 82] report unequivocal results i.e. there
is concordance between all reported outcome measures within the studies. Three of
these studies [73, 79, 82] concluded that preoperative simulation improves surgical
performance. One study [72] reported that preoperative simulation does not affect
subsequent performance. However, as noted earlier, this study recruited a significantly
smaller sample size than the authors calculated would be required. The nine other
studies [74–78, 80, 81, 83] included in this review reported significant results in some,
but not all, recorded outcome measures. All of these studies concluded that preoper-
ative simulation improves surgical performance, but only two studies [75, 78] include
an explanation as to why significant results are prioritised over non-significant results.
This selective reporting of significant outcome measures may bias the conclusions drawn
from these studies. This is an issue that generalises; a consensus opinion on outcome
reporting is imperative to allow effective meta-analysis of results and allow a high qual-
ity evidence base to be developed. Surgical education and training needs to follow the
example being set by clinical research by agreeing a set of standardised outcomes to
report [90, 92–94]. Whilst this issue is one that is beyond the scope of the current re-
view, it appears that consensus is particularly necessary in the assessment of simulated
surgical skills. Surgery performed on real patients can be assessed by reviewing patient
outcomes (although none of the included studies reported such outcomes), which must
be considered the gold-standard of outcome reporting. However, simulation-based re-
search often relies on outcomes of convenience. For example, one of the most frequently
reported outcome metrics in this systematic review was performance time. Whilst it
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is recognised that expert performance is faster than novice performance [47, 48], the
converse is not necessarily true, i.e. faster performance does not necessarily confer
better quality surgery [95]. The same applies to simulator-generated metrics; for ex-
ample, while experts tend to have smoother movements, having smoother movements
does not necessarily mean the operator is an expert. Consequently, such metrics, par-
ticularly when reported without additional objective or subjective data, can only be
interpreted with considerable caution. Despite this, the majority of reported outcomes
demonstrate that preoperative simulation does have a beneficial effect on subsequent
surgical performance, in both simulated and real-patient environments

In this review, studies were included irrespective of the type of surgical skill being
examined. The heterogeneity of the included studies can be viewed as a strength of
this review as the generic concept of preoperative simulation can be explored across
multiple surgical specialties, using a variety of assessment methods. Conversely, the
disparity between studies and the number of different outcome metrics used, prevent
a quantitative synthesis of reported outcomes. In addition, because of the paucity of
studies in the literature, designs that are often excluded from systematic review have
been included.

The majority of included studies examined the effect on surgical performance of a
simplified motoric task. However, the included studies were conducted without any
reference to a theoretical framework, as evidence by the narrow focus of preparatory
procedures employed. As outlined in Chapter 1, motor learning and performance can
be understood as an interaction between ‘fast’ and ‘slow’ systems. The studies reviewed
here predominantly focused on more automated behaviours (‘fast’) at the neglect of
controlled cognitive processes (‘slow’). We speculate that interventions relying on both
are likely to produce greater benefit than focusing on a single process alone [96].

In conclusion, the majority of reported outcomes demonstrate that preoperative
simulation does have a significantly beneficial effect on subsequent surgical perfor-
mance, in both simulated and real-patient environments. Importantly, no study re-
ported preoperative simulation had a detrimental effect on subsequent performance.
Thus, it appears that surgeons may benefit from engaging in formalised preparation
routines before carrying out an operation.



Chapter 3

ESOX: A Programmable
Laparoscopic Sequence Learning
Task

The evidence presented in Chapter 2 suggests that preoperative simulation has a signif-
icant impact on operative performance. However, all of the studies included in the sys-
tematic review demonstrated methodological shortcomings which may confound their
conclusions. Thus, an exploration of the fundamental underpinnings of preoperative
simulation was undertaken, through experimentation under controlled conditions, to
try to establish the components underlying a beneficial preoperative routine. In this
chapter, the development of a bespoke computer program - ESOX - is described.

3.1 The ESOX program

A computer program, ESOX, was developed by the author to allow exploration of
factors that affect the performance of laparoscopic surgery, under strictly controlled
conditions. ESOX was created using HyperText Markup Language (HTML) 5, and
utilising additional Cascading Style Sheets (CSS) and JavaScript (JS) code. Conse-
quently, ESOX can run on any device that supports a web browser.

ESOX was designed to allow the development and rapid deployment of sequence-
learning tasks. It generates a user-specified x by y grid which can then be populated
by numbered, coloured squares, as determined by an accompanying comma-separated
value file (.csv); see Figure 3.1 as an example. Participants are asked to move to
each square, in order. Once the correct square is reached it ‘disappears’. Participants
are given feedback about their performance in the form of time taken (seconds) and
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Click anywhere on the grid to begin. Mouse coordinates = 285.2099609375
px, 187.02249145507812 px
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Fig. 3.1 Example of ESOX output (Experimentα)

distance travelled (pixels) at the end of the task. ESOX is also able to vary the position
of squares within the grid between trials randomly by automatically applying a Fisher-
Yates shuffle [97] every time the program is loaded1, if required. In addition, it is
able to use ‘fuzzy’ spatial location parameters, altering the position of squares by a
predetermined amount (i.e. ±2 squares in the x or y direction).

ESOX records the position of the cursor every 10 milliseconds (ms) the program is
running, as well as when each individual coloured square is reached. This information
is automatically downloaded as a CSV file every time the task is completed. Post-
performance processing of these files allows for detailed metrics of performance to be
calculated.

In order to simulate laparoscopic surgery, ESOX is designed to run on a touch-
enabled tablet computer contained within a laparoscopic box trainer. The program
is then controlled using a laparoscopic stylus, with information being displayed on a
wide-screen monitor in front of participants (participants are unable to see within the
box trainer): Figure 3.2.

1A Fisher-Yates shuffle elegantly generates an unbiased random permutation of a finite set.
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Fig. 3.2 Diagram of Laparoscopic Experimental Setup

3.1.1 ESOX Metrics

Post-performance processing of the output CSV files generated by ESOX allows for de-
tailed evaluation of performance. From the relative cursor position, overall performance
time, overall path length and time and distance between each coloured square can all
easily be calculated. The ESOX task can only be completed in order, and consequently,
deviation from the correct sequence will increase both time taken and distance trav-
elled. Additionally, precise, controlled movements (desirable in laparoscopic surgery)
reduce path length and time taken. Equal weighting is given to both time and path
length and consequently a composite score of performance can be calculated:

ESOX Score (pxs) = distance(px)× time(s) (3.1)

Although often used in the analysis of sequence learning tasks [42], performance time
alone is not utilised independently by ESOX. This is to try to better reflect the out-
come of interest; the performance of laparoscopic surgery, where timely and accurate
execution is necessary.

The above metric is appropriate when the position of coloured squares does not
change between repeat trials. However, as described above, ESOX can randomly de-
termine the position of squares, if requested to do so. In such an instance, the optimum
distance between squares will differ with each repeat. In order to account for this vari-
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ation, a modified compound score of performance can be employed:

Modified ESOX Score (Mpxs) = Actual Distance Travelled (px)
Optimum Distance (px) × time(s) (3.2)

Where optimum distance is defined as the shortest possible distance between each
individual layout of coloured squares.

Note: To allow comparisons to be drawn between different experimental setups and
both the ESOX Score and Modified ESOX Score, a dimensionless Z-score is used at
times in this thesis. This standardised score (z) of a raw score x is calculated thus:

z = x− µ
σ

(3.3)

Where µ is the mean of the population and σ is the standard deviation of the popula-
tion.

The position and time information recorded by the ESOX program also allows for the
production of detailed topographical ‘maps’ of performance: Figure 3.3.

3.2 Premise of the ESOX Program

As described in Chapter 1, minimally invasive surgery can be thought of as a sequence
learning task, requiring skilled, coordinated motor performance of sequential tasks.
The components of the ESOX task have been designed to broadly mirror the concepts
important in performing minimally invasive surgery. The sequence of component steps
required to perform an operation is duplicated in ESOX, along with the identifica-
tion of key components (coloured squares), which can be recognised through different
modalities; colour and spatial location. Participants are required to demonstrate ‘pro-
cedural knowledge’ by performing ESOX, i.e. the sequence and location of squares and
how to progress between them as well as developing ‘technical ability’, adapting to the
visuomotor transformation inherent in minimally invasive surgery.

Spatial location and colour are used as discriminators in the ESOX program as they
are fundamental components of visual perception [98]. Although most studies of visual
attention have investigated the effect of location within the visual field [99], attention
can be selectively deployed to visual features, such as colour and direction of motion,
regardless of their locations [100–103]. Consequently, both spatial location and colour
can be manipulated independently to assess their relative importance in learning and
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Fig. 3.3 Visual overlay of the path taken during two trials by the same participant. The blue
line was produced at the first attempt, the orange line was produced on the eighth attempt.

performance facilitation.
Whilst the ESOX setup is removed from the reality of performing laparoscopic

surgery, it has some important benefits; Participants can be rapidly taught to perform
a task and, consequently, both learning and the effect of preoperative simulation can
be quickly examined (cf. surgical training). Additionally, as the task is unique, the
oft-found confound of differing levels of surgical experience is eliminated. Another
significant advantage of the ESOX program is it allows the experimental conditions to
be strictly controlled, something that is impossible in real-world laparoscopic surgery.
Finally, ESOX can easily generate highly accurate metrics of performance to allow
comparison between different performances. Again, this is something that is very
difficult to achieve in real-world minimally-invasive surgery.
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3.3 Experimental Designs

The ESOX program was used to conduct three randomised, controlled cross-over ex-
periments - Experimentα (Chapters 4 and 5), Experimentβ (Chapters 6 and 7) and
Experimentγ (Chapters 8 and 9). These experiments are discussed in detail in their
relevant chapters but share some important characteristics.

Each experiment aims to examine the effect of preoperative simulation on learnt
and consolidated (comparable to expert) performance. Previous work [104] has demon-
strated that learning is a substantial confound to the effect of preoperative simulation;
with repeated trials, novice participants improve their performance due to the effect
of learning, which is difficult to parse from any effect of preoperative simulation. This
confound can be removed by examining learnt performance, where any effect of learning
is negligible. Whilst it is possible that preoperative simulation may play an important
role in shortening a learning curve and hastening a plateau of performance, a systematic
investigation of such is beyond the purview of this thesis.

Each experiment can be divided into two distinct phases - a learning phase and
an assessment phase. During the learning phase, participants are taught to perform a
specific laparoscopic sequence-learning task, through a series of complementary learning
trials. The nature of each differs with each experiment, but they all share the same basic
characteristics. Three learning trials are employed, the first two emphasising either
motor performance or a more abstract conceptualisation of the task. Participants are
randomly allocated to receive either one first, but all then progress to the final learning
trial, which combines both aspects. In addition, all participants learnt the task on two
separate days, permitting off-line processing and consolidation of the learnt skill(s).

Those participants who are able to demonstrate having learnt the task, are sub-
sequently examined performing the laparoscopic sequence-learning task following a
preoperative simulation; the assessment phase. How participants were deemed to have
learnt is described below. Each assessment of preoperative simulation was temporally
separated by a day, to reduce the effect of prior performance on the assessment. Par-
ticipants were block randomised to perform each preoperative simulation in a random
order, to reduce any effect of extended practice and avoid order effects.

3.3.1 Assessment of Learning

To avoid the confound of learning, participants had to demonstrate having learnt the
specific task in each experiment during the learning trials. Participants who were
unable to demonstrate having learnt were not included in the analysis of preoperative
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simulation. Learning was assessed by reviewing repeated measures of performance. As

"The benefits from practice follow a nonlinear function: improvement is
rapid at first but decreases as the practitioner becomes more skilled..." [25]

simple non-linear functions have long been used to describe the effects of practice on
multiple tasks [23], with the log-linear or power law for practice becoming ubiquitous
[24]. The power law of practice is defined as [23]:

R = a+ bN−β (3.4)

Where R is a random variable, a is the asymptote (reflecting the end of learning), b is
the difference between initial and asymptotic performance, N is the amount of practice
(measured as number of trials) and β is the rate of learning.

However, Heathcote, Brown and Mewhort [25] questioned the use of the power
law as a descriptor for practice, particularly as they found the majority of research
published since the introduction of the supposed power ‘law’ assumed a power function
of learning, but did not examine the validity of other functions to describe the observed
results. Heathcote, Brown and Mewhort [25] retrospectively reviewed the results of 40
sets of data, representing 7910 learning series from 475 subjects in 24 experiments
taken from 13 published and 3 unpublished sources. The included data sets were
drawn from memory search, counting, mental arithmetic, alphabetic arithmetic, visual
search, motor learning, learning rules from examples and mental rotation paradigms
and consequently correlate well with the type of learning necessary to complete the
ESOX task. When reviewing the shape of the practice function, Heathcote, Brown
and Mewhort [25] found the exponential function provided a better fit than the power
function in 82.2% of cases. This result ranged from 64% to 93% for the individual
included data sets, but in every case the authors found, at the 95% confidence interval,
the exponential function to be a better descriptor of repeat performances. In addition,
the exponential function accounted for more variance than the power function, with an
R2 of 0.498 for the exponential function cf. 0.426 for the power function. On average,
the exponential function provided a 17% [range 3.7% - 28.6%] improvement relative
to the power function. Interestingly, it has been suggested by Rickard [105] that the
reason the power law of practice fails to model learning behaviour is because subjects
use a combination of memory and algorithmic-based process, which individually follow
a power function, but do not once amalgamated. Heathcote, Brown and Mewhort
[25] also explored this hypothesis, examining a subset of the included data sets which
reported their processing strategies. They again found that the exponential function
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Fig. 3.4 Model of the Exponential Function of Learning.
a is the asymptote/plateau of performance, b is the difference between initial and asymptotic
performance, N is the number of trials, and α is a rate constant of learning (not shown).

gave a better fit than the power function for both algorithmic (75.1% better) and
memory (79.2% better) systems (overall 77.8% better), leading them to conclude that
the better fit for the exponential function is not due to a mixture of component power
functions. Overall, Heathcote, Brown and Mewhort [25] state that:

"...practice produces a simple exponential improvement and a constant rel-
ative learning rate..."2

Consequently, it appears clear that learning is best modelled by the exponential func-
tion, defined as [23]:

R = a+ be−αN (3.5)

Where R is a random variable, a is the asymptote (reflecting the effective end of
learning), b is the difference between initial and asymptotic performance, N is the
amount of practice (measured as number of trials) and α is the rate of learning: Figure
3.4.

2The authors do add the caveat that some change in the relative learning rate may occur in early
practice, but this is of little practical import for the assessment of learning required for this thesis;
Establishing if a participant has successfully learnt (i.e. achieved plateau) was the aim, as opposed to
the relative change in rate of performance improvement in the early stages of learning.
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Throughout this thesis, the exponential function was used to model the learning
of participants. Initially, the average performance across all participants was reviewed
by averaging performance across individual curves. There have been concerns raised
about arithmetically averaging learning curves across participants [106–109], as the
parameters of the average function may not equal the average of the parameters of the
component functions [110]:

"...we might have an explanation of an average subject, but one that does
not apply to any of the actual individuals making up the average." [111]

Understanding these concerns, there remains support for the use of averaged data,
particularly as the use of averaged data is often useful at revealing general trends
[25, 112].

After analysing the average performance across participants, individual partici-
pant’s performance were reviewed. Individual learning curves were assessed by block
averaging within curves, following the example of Brown and Heathcote [110]. Once
again, averaging within curves is somewhat controversial, with Newell, Liu and Mayer-
Kress [113] arguing that blocking data from groups of trials can modify or mask both
transient and persistent changes. However, Brown and Heathcote show mathemati-
cally that block averaging N blocks of M trials results in a linear change of the scale
parameter, but no distortion of shape of the exponential function (see Equations (3)
and (4), page 16, Brown and Heathcote [110]). This mathematical proof was fur-
ther consolidated by reanalysis of published data, which confirmed the Brown and
Heathcote’s findings. Consequently, Brown and Heathcote [110] conclude that block
averaging can take advantage of the noise reduction inherent in arithmetic averaging,
without introducing any averaging distortion to the exponential function.

Participants were deemed to have learnt if repeated performances during the learn-
ing trials following a decreasing exponential curve of performance with an arbitrary
goodness of fit measurement of at least R2 = 0.5 and reached a predicted plateau
of performance. Plateau of performance (a) was calculated from the equation above
(Equation 3.5, Figure 3.4) and mathematically represents the value of performance
(ESOX Score) at infinite trials.



Chapter 4

Experimentα: Learning-Phase

Experimentα is the first of three randomised, controlled cross-over experiments, de-
signed to explore the effects of preoperative simulation on subsequent laparoscopic
performance under regulated, laboratory conditions. Experimentα can be can be di-
vided into two stages - a learning phase and an assessment phase. The learning phase
was designed to teach participants the experimental task, and the assessment phase
was used to examine the effect of preoperative simulation on subsequent performance.
This chapter discusses the initial learning phase.

4.1 Experimental Task α

The experimental task is a sequence-learning task that is designed to contain both
spatial, kinematic and colour components. Participants are shown a sequence of num-
bered, coloured squares on a 14 by 28 array and are asked to move a laparoscopic stylus
to each square, in sequence: Figure 3.1. Though participants are initially shown the
sequence order, once the program is started by pressing on the tablet, the numbers are
removed, necessitating the participants to remember the sequence order of coloured
squares. To enhance learning, once the correct square is reached, it is no longer visible,
reinforcing to participants that they have reached the correct sqaure.

The Experimentα task was designed to give equal weighting to both spatial and
colour information - the task could be successfully completed by utilising just one of
these descriptors, or a combination of both.
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4.2 Methods

The aim of this phase of the experiment was to teach the participants the Experimentα
task. Though this task was designed to contain spatial, kinematic and colour compo-
nents, previous work has demonstrated that under such a system, participants tend to
only learn spatial information and are unable to continue to follow the sequence if a
spatial transformation is applied [114]. Consequently, to try to encourage participants
to learn spatial, kinematic and colour information, participants progressed through
three stages of training:

1. Learning Kinematic and Spatial Information (αLearn:K&S): in this task, the
squares were distributed in the array in the same manner as the Experimentα
task, but no colour information was provided (all squares were coloured grey):
Figure 4.1. This task was performed using a laparoscopic stylus in a box trainer.

2. Learning Colour Information (αLearn:C): in this task, all squares were distributed
evenly around a centre point. Colour information was provided and maintained
throughout each repetition (i.e. Square 1 was always blue), but the position of
each square in each repetition was randomly determined by applying a Fisher-
Yates shuffle [97] before each array was built: Figure 4.2a, Figure 4.2b. To
differentiate between spatial and colour information, and to remove the inherent
kinematic transformation of laparoscopic surgery, this task was not performed
in a laparoscopic box trainer but instead on a separate tablet computer using a
normal pen-like stylus.

3. Learning Colour, Kinematic and Spatial Information (αLearn:C,K&S): This trial
combined both of the above tasks; the positioning of squares was maintained
from Task 1 while the colouring of squares was as per Task 2. Consequently,
participants could use spatial information, colour information, or combination
of both to complete the task: Figure 3.1. This task was performed using a
laparoscopic stylus in a box trainer. This task has the same configuration as that
used during assessment.

Participants were randomised to receive either Task 1 then Task 2, or Task 2 and
then Task 1. Subsequently, all participants completed Task 3 (αLearn:C,K&S). This
randomisation was performed to ensure that participants did not gain a significant
advantage by performing the tasks in a certain order. To further try and enhance
learning, after each trial (for all tasks), participants were automatically given feedback
about their performance from the ESOX program in the form of time taken (seconds
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Fig. 4.1 Array for Learning Kinematic and Spatial Information (αLearn:K&S)

(s)) and distance travelled (pixels (px)) while completing the task. Such feedback has
been demonstrated to improve student learning of technical surgical skills [115–118].
This information was displayed on the screen after each task was completed; Figure
4.3.

All participants were trained to complete Tasks 1, 2 and 3 on two separate occa-
sions. These training sessions were temporally limited to a maximum of one hour. As
participants had to learn three tasks, they were encouraged to spend approximately
20 minutes on each. However, this timing was not fixed, as pilot data suggested spa-
tial information was easier to learn than colour information in the above experimental
paradigm. In addition, previous work has shown that people learn at different rates
and can reach differing plateaus of performance [119–121]. If participants felt they
had learnt the tasks prior to one hour, the session could be terminated early by the
participant. Sessions were performed on separate days to enable off-line processing and
consolidations of the tasks [57–60].
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Fig. 4.2 Arrays for Learning Colour Information (αLearn:C)
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Fig. 4.3 Feedback given to participants at the end of the ESOX task.
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4.3 Analysis

Performance was assessed using the metrics discussed in §3.1.1 and learning was anal-
ysed using the methods detailed in §3.3.1. The demographics of study participants
were analysed and are reported as medians with ranges. Performance at preoperative
simulation (discussed in Chapter 5) was analysed using a repeated measures analysis
of variance (ANOVA), comparing performance following the control condition to other
preoperative simulation routines. These results were graphed, with within-subject er-
ror bars being computed using a modification of Loftus and Masson’s method [122] as
proposed by Bakeman and McArthur [123], Cousineau [124], Morey [125], and Mor-
rison and Weaver [126]. The effect of learning trial order on performance during the
learning trials and performance following preoperative simulation was analysed using
an independent samples t-test and an analysis of covariance (ANCOVA), respectively.

Statistical analysis was performed using Prism, Version 6.0C (GraphPad Software,
Inc. La Jolla, CA, USA), IBM SPSS Statistics for Macintosh, Version 21.0. (IBM
Corp. Armonk, NY, USA) and G*Power: Statistical Power Analyses for Mac, Version
3.1.9.2 [127].

4.3.1 Sample-size Calculation

Data were analysed using a repeated measures analysis of variance (ANOVA). To ac-
count for a moderate effect size (f = 0.25), the most conservative estimate based
on pilot data taken from previous experimentation [104] and the development of the
ESOX program, a priori power calculations showed 25 participants (in total) would
be required to achieve an α error probability of 0.05 and power (1-β error) of 0.8. To
ensure this sample size was achieved (accounting for potential drop outs), we aimed to
recruit 40 participants.

4.3.2 Participants

Participants were recruited from the Participant Pool Scheme employed by the School
of Psychology, University of Leeds. Such participants were chosen as being represen-
tative of the surgically-naive population, being drawn from students and staff at the
University of Leeds. Participants with motor or cognitive impairment, impaired colour
vision, or previous surgical experience were excluded from the study. Participants were
reimbursed £30 for their time.
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4.3.3 Randomisation and Blinding

The order participants performed the preoperative simulation routines was determined
by a stratified, permuted block randomisation sequence with a block size of 5 and
an allocation ratio of 1:1. All assessment metrics were calculated by computer and
consequently blind.

4.3.4 Ethical Approval

Experimentα received ethical approval from the School of Psychology, The University
of Leeds (ref: 15-0038, 04-Feb-2015 and 15-0199, 06-Aug-2015).

4.4 Results

Forty participants were recruited, with thirty-eight undertaking all stages of the study
(26 female : 12 male, average age 28 years [range 19 - 51], 32 right-hand dominant: 6
left-had dominant).

4.4.1 Averaged Learning Results

Although interpreted with some caution (see § 3.3.1), review of the average learning
curves across participants revealed two interesting findings.

All conditions (αLearn:K&S, αLearn:C, αLearn:C,K&S) demonstrated a consistent
pattern across the average of participants of exponential decay - rapid early improve-
ment, followed by a phase of slower incremental performance improvement and eventual
plateau: Figure 4.4. The exponential function models the averaged results very well,
as shown by high coefficients of determination (R2): Table 4.1. It is also worth noting
that the power law of practice (log-linear) did not model the observed results as well
as the exponential function overall: Table 4.2.

Secondly, review of the raw averaged results of the αLearn:K&S and αLearn:C,K&S
trials demonstrate both closely follow an exponential decay pattern (and as evidenced
by the high coefficients of determination in Table 4.1), but when compared directly,
αLearn:C,K&S shows a comparatively flatter curve of performance improvement: Fig-
ure 4.5.
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Table 4.1 Coefficients of determination (R2) for the averaged results of Experimentα
Learning-Phase

Learning Trial R2

αLearn:C 0.8361
αLearn:K&S 0.9820
αLearn:C,K&S 0.9157

Table 4.2 Coefficients of determination (R2) for the averaged results of ESOXα Learning
Phase (Log-linear Function)

Learning Trial R2

αLearn:C 0.7435
αLearn:K&S 0.7683
αLearn:C,K&S 0.9458
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Fig. 4.5 Average Performance during αLearn:K&S and αLearn:C,K&S.
Note: A difference in y-axis scale in the first two graphs.
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4.4.2 Individual Learning Results

Blocked individual learning results were compared to an exponential function of learn-
ing, as described in §3.3.1. The coefficients of determination, predicted plateaus of
performance and the smallest (best) result achieved during the Learning Phase are
reported in Tables D.1, D.2 and D.3 in Appendix D.

The order participants undertook the learning trials did not have an effect on
their performance at plateau: an independent samples t-test indicated no difference
in performance at plateau for those participants who progressed through αLearn:K&S,
αLearn:C and then αLearn:C,K&S learning tasks (x̄ = −0.173925, σ = 1.008262) when
compared to those who performed αLearn:C, αLearn:K&S and finally αLearn:C,K&S
(x̄ = −0.190484, σ = 0.713461), t(36) = 0.058, p = 0.954, d = 0.02.

4.5 Discussion

The above results demonstrate the majority of participants were able to satisfactorily
learn the laparoscopic sequence learning task, though a number of participants failed to
reach a plateau of performance at one of the three learning trials. Participants appear
to have found learning the kinematic and spatial (αLearn:K&S) task (32 successful)
easier than learning colour, kinematic and spatial (αLearn:C,K&S) task (20 success-
ful), and both easier than colour (αLearn:C) task (16 successful). This seems somewhat
counterintuitive as the αLearn:C,K&S trial contains the kinematic and spatial infor-
mation from the αLearn:K&S trial and the colour information from the αLearn:C trial.
Consequently, it seems reasonable to assume that information from the first two trials
would inform performance at the αLearn:C,K&S trial. There are a number of potential,
complementary explanations for this apparent paradox:

1. Participants only performed the αLearn:C,K&S trial after completing the other
two trials. Consequently, those participants that were unable to reach a plateau
of performance may have been trying to use a different strategy to complete
the αLearn:C,K&S trial than they had previously successfully employed dur-
ing αLearn:K&S and αLearn:C. In such a scenario, the preceding trials may have
acted as confounds to each other, hampering performance during the αLearn:C,K&S
trial for some participants.

2. Individual participant’s performance at plateau was significantly better for the
αLearn:C,K&S trial than the αLearn:K&S trial: a paired-samples t-test showed
that ESOX scores were significantly lower at plateau during αLearn:C,K&S (x̄ =



4.5 Discussion 54

234857pxs, σ = 126014pxs) than during αLearn:K&S (x̄ = 379316pxs, σ =
351189pxs), t(16) = 2.46, p = 0.025, d = 0.55. Participants who did not achieve a
plateau of performance during the αLearn:C,K&S trial may have terminated their
repetitions when they reached a similar performance level to the αLearn:K&S
trial, while others continued to an improved plateau.

3. As shown in Figure 4.5, participants demonstrated a substantially flatter curve
during αLearn:C,K&S compared to αLearn:K&S, on average. Accordingly, as
αLearn:C,K&S can be completed by utilising kinematic and spatial information
alone, it may be that some participants only utilised kinematic and spatial infor-
mation to complete αLearn:C,K&S and consequently had already reached their
plateau of performance during αLearn:K&S. Similarly, very poor initial perfor-
mance with substantial subsequent improvement may appear to exhibit ‘better’
learning than mediocre initial performance which improves to a lower plateau
of performance under the assessment of learning framework utilised during this
experiment (see §3.3.1).

Participants seemed to have the most difficulty in learning the αLearn:C trial. All
trials were designed to be challenging, but achievable, and were extensively trialled
during their development utilising both surgeons and surgically-naive volunteers, prior
to experimentation. It has been argued that spatial location is a ‘special’ feature in
selecting information and assumes priority over other modalities [128, 129] and is the
default of selective attention [130, 131]. Consequently, participants may have found it
difficult to utilise other information (i.e. colour) during the αLearn:C trial, particu-
larly as some may have been primed to use spatial location information during prior
performance of αLearn:K&S. There is no consensus regarding the primacy of location
information, but it does appear to be activated before other feature-based mechanisms
[99, 132]. The time pressure exerted on participants (they were asked to complete the
task as fast as they were able), could have prompted certain participants to utilise
the first discriminator available to them - spatial location - which was unhelpful in
completing αLearn:C.

Alternatively, it may be that participants simply did not find the αLearn:C trial as
interesting or captivating as the other trials and consequently invested less time and
effort in this trial. Anecdotally, as participants were given feedback about their perfor-
mance at the end of all trials (time taken and distance travelled), they tended to become
competitive and try to beat their previous performance during the αLearn:C,K&S
and αLearn:K&S trials. This did not seem to happen during the αLearn:C trial.
Again anecdotally, participants tended to become more frustrated during the αLearn:C
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trial, which may have hampered their progression. Removing feedback from all trials
may adjust for this in further experimentation (though participants would still be
able to infer their relative performance without explicit feedback). Additionally, both
αLearn:C,K&S and αLearn:K&S were conducted using a laparoscopic stylus in a la-
paroscopic box trainer. The αLearn:C trial was conduced on a tablet PC. The included
participants were all interested in performing simulated laparoscopic surgery (as they
self-selected themselves for the study). The fact that the αLearn:C trial seemed to have
less to do with laparoscopic surgery may have decreased some participants interest (and
consequently their performance).

All participants were able to demonstrate having learnt at least one of the learning
trials, but only four participants (Participant No. 7, 25, 29 and 37) were able to demon-
strate having learnt all three learning trials. This does suggest that the Experimentα
tasks are not trivial, but require significant motoric control and cognitive performance.
That the Experimentα tasks require high levels of cognitive and motor performance
implies they are good surrogates for laparoscopic surgery (another task that cannot be
considered trivial).



Chapter 5

Experimentα: Assessment of
Preoperative Simulation

Those participants that were able to demonstrate having successfully learnt the αLearn
tasks were assessed following a preoperative simulation, to examine the effect of prepa-
ration on learnt performance. As discussed in Chapters 1 and 2, there is theoretical and
literature evidence to support the notion that preparation can improve performance.
This Chapter aims to delineate the effective components (if any) of a preparatory
routine for the experimental task.

5.1 Methods

Once they had successfully progressed through the Learning-Phase, participants were
asked to perform five preoperative simulation exercises (including one control), one
per day, in a randomly determined order, prior to performing an assessment task.
This phase of the experiment took place in the week following the learning phase.
The assessment task was very similar to the αLearn:C,K&S task described in §4.2,
as the same spatial and colour information was maintained, but it did not give the
participants any order information (there were no numbers in the squares): Figure 5.1.
Each assessment was temporally separated by one day.

Participants were asked to perform one of each of the following preoperative sim-
ulation routines, in a randomly determined order, prior to performing the assessment
task.

1. Kinematic and Spatial Preoperative Simulation (αPS:K&S): Participants were
asked to repeat Learning Task 1 (αLearn:K&S). This provided participants with
spatial and kinematic, but no colour information.
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Fig. 5.1 Array for Assessment (without sequence information)

2. Colour Preoperative Simulation (αPS:C): Participants were asked to repeat Learn-
ing Task 2 (αLearn:C). This provided the participants with colour, but no spatial
or kinematic information relating to the assessment task.

3. Observe Performance of Task (αPS:O): Participants were asked to view a record-
ing of ESOXα being performed. This provided participants with both spatial and
colour information, but without direct physical involvement from the participant
(no direct kinematic information). The recording was shown on the laparoscopic
screen used to perform the ESOXα task.

4. Colour, Kinematic and Spatial Preoperative Simulation (αPS:C,K&S): Partici-
pants were asked to perform the sequence-learning task (αLearn:C,K&S), imme-
diately prior to performing the assessment task (specific warm-up).

5. Control Group: Participants were asked to play Tetris®. This was chosen to
occupy participants during the preoperative simulation period, without giving
them any specific information about the upcoming assessment task. Although
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not specific to the experimental task, Tetris®involves visual identification based
on spatial and colour information, a kinematic transformation between physical
action and outcome and brightly coloured squares displayed on a computer mon-
itor. Consequently, while not directly related to the Experimentα task, it could
be considered a general preparation of the visual-motor system, as employed by
some studies in Chapter 2 [74, 81]. This preoperative simulation routine was
performed utilising the monitor on the laparoscopic stack, but was completed
using a keyboard.

Each preoperative simulation trial was limited to three minutes. This was controlled
by computer script in all cases, aside from the control group which was timed by a su-
pervising investigator. Participants could repeat the preoperative simulation routine as
many times as was their preference during this time. This time restraint, chosen from
pilot data, was employed to ensure parity between different participants and preoper-
ative simulation routines. To further ensure this, each participant was given the same
written instruction before each preoperative simulation and assessment: Appendix E.

The above preoperative simulation routines were designed to offer the participants
varying amounts of colour, spatial and kinematic information. Repeated performance
of the assessment task (αLearn:C,K&S) was included as the theoretical ‘ideal’ preop-
erative simulation.

5.2 Results

Three participants (Participant No. 6, 16 and 33) were excluded from analysis of
preoperative simulation because their performance during assessment were more than
3 standard deviations away from the mean of other participants’ performance (3.48,
4.98 and 10.3, respectively). They were consequently deemed to be statistical outliers
and thus excluded. Unfortunately, data for one participant’s performance following one
preoperative simulation was lost due to a technical error. Consequently, this participant
(Participant No. 7) also had to be excluded from further analysis. The following results
are therefore based on 34 participants’ results.

Analysis of performance following preoperative simulation was assessed using a re-
peated measures ANOVA. Mauchly’s test indicated that the assumption of sphericity
had been violated (χ2 = 40.6, p < 0.001), therefore degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity (ε = 0.677). A main effect of preop-
erative simulation on performance, F (2.71, 89.32) = 3.184, p = 0.0321, η2

p = 0.088,
was demonstrated. Post-hoc analyses using Fisher’s LSD revealed this was driven by



5.3 Discussion 59

Control Observe K&S C C,K&S
0

100000

200000

300000

400000

Preoperative Simulation

ES
O

X 
Sc

or
e 

(p
xs

)

p = 0.02

p = 0.01

Fig. 5.2 Performance following Preoperative Simulation during the Experimentα. Significant
within-subject effects are highlighted. The error bars represent the 95% CI of the mean.
Note: Smaller scores represent better performance.

significantly better performance following a kinematic and spatial (K&S) preopera-
tive simulation when compared to control (p = 0.0108) and better performance after
a colour, kinematic and spatial (C,K&S) preoperative simulation when compared to
control (p = 0.0211). These results are summarised in Figure 5.2.

The order in which participants performed the learning trials did not affect their
performance at assessment: an ANCOVA [between-subjects factor: preoperative sim-
ulation (Control, Observe, K&S, C and C,K&S); covariate: learning order] revealed
no interaction between preoperative simulation and learning order, F (1, 32) = 0.748,
p = 0.513254, η2

p = 0.023.

5.3 Discussion

A repeated-measures ANOVA of the four different preoperative simulation routines
(and one control) demonstrated significant differences between the groups. Post-hoc
analysis revealed that this difference was driven by changes across the control condi-
tion and the K&S preoperative simulation and between the control and αPS:C,K&S.
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In addition, αPS:C seemed to diminish performance (although it did not reach signif-
icance when compared to the control condition). Indeed, there is a significant differ-
ence between performance following the αPS:C and both αPS:K&S (p = 0.007) and
αPS:C,K&S (p = 0.012). These results have some interesting implications for surgery:

1. Preoperative simulation routines may have an effect on subsequent performance.
These results suggest that not only could an effective preoperative routine en-
hance performance, but that an ‘incorrect’ routine may adversely affect perfor-
mance (and potentially, by extension, patient outcomes).

2. Preoperative simulation routines may have to be specific to the information that
is important to the operator, which is likely to reflect how the operator learnt
the procedure. In this experiment participants were assessed performing the
Experimentα task, which contains both spatial and colour information. There is
robust evidence [133–135] that such information is retained as a bound represen-
tation in memory:

"... we do not remember a jumble of different kinds of information or
features. We do not remember blue, brown, pen, table, but rather a
blue pen on a brown table." [134].

There is equally strong evidence that the binding of this information is not sym-
metrical, i.e. not all features of an object are equally important [136, 137]. That
a spatial preoperative simulation routine was beneficial, whereas a colour routine
was detrimental, suggests that spatial information is the dominant aspect of the
bound information. Other studies in the literature have reported similar findings
[134], as well as work within our group [114].

3. The preoperative simulations that provided participants with relevant informa-
tion were effective. Participants utilised spatial information during completion of
the Experimentα task, as shown during the learning trials and as discussed above.
Subsequently, those PS that provided participants with spatial and kinematic in-
formation (αPS:K&S and αPS:C,K&S) were effective preoperative simulations.
As both of these PS were useful, and produced similar results, it may well be
that the colour information provided by αPS:C,K&S was not utilised by par-
ticipants, but instead participants were able to disregard this information and
extract the useful spatial information from αPS:C,K&S - it would appear the ad-
dition of colour in αPS:C,K&S (cf. αPS:K&S) did not help participants. αPS:O
also provided participants with spatial information, but did not help subsequent
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performance. αPS:O did not allow participants to prepare for the kinematic
transformation involved in the assessment task, which may explain this differ-
ence, and/or, active use of the motor system may be required for an effective
spatial preoperative simulation.



Chapter 6

Experimentβ: Learning Phase

The results of Experimentα demonstrated that a greater number of participants were
able to learn the αLearn:K&S task than the other learning tasks, and that participants
reached a plateau of performance most quickly when performing αLearn:K&S (see
Figure 4.4). In addition, preoperative simulations that provided spatial and kinematic
information were effective (αPS:K&S, αPS:C,K&S). Conversely, participants had most
difficulty in learning the αLearn:C task (as evidenced by the greater number of par-
ticipants who did not reach plateau) and αPS:C appeared to, if anything, diminish
performance. The Experimentα task was designed to give equal weighting to both
spatial and colour information and could be successfully completed by utilising just
one modality. Under such a paradigm, it would appear that participants will pref-
erentially utilise spatial information when completing a sequence learning task that
contains bound spatial and colour information.

As discussed in Chapter 3, the spatial and colour components of the ESOX task
were utilised as they are fundamental components of colour vision [98], but also to try
and represent the different fundamental aspects of skill/knowledge required to perform
minimally-invasive surgery. Crudely, one might see the spatial information in this task
as analogous to the physical movements required to perform surgery, while colour infor-
mation maps onto the more abstract academic knowledge necessary. Experimentα in-
dicates participants can learn the physical movements necessary to complete an ESOX
task, and will preferentially utilise spatial information when spatial or colour infor-
mation could be used. However, surgeons are unable to utilise spatial information
alone when performing minimally-invasive surgery in the real-world. Consequently,
Experimentβ was performed in order to explore the effects of preoperative simula-
tion in a colour-dependent paradigm. This experiment was designed to assess if the
same forms of preoperative simulation that were beneficial in Experimentα also con-
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ferred an advantage when different descriptors of information were of primary import.
Experimentβ is the second of three randomised, controlled cross-over experiments.

6.1 Experimental Task β

The Experimentβ task shares a number of characteristics with the Experimentα task.
It remains a sequence-learning task that contains spatial, kinematic and colour com-
ponents. However, in contrast to Experimentα, Experimentβ was designed to give
predominance to colour information. Participants were shown a sequence of numbered,
coloured squares on an 18 by 18 array and asked to move a laparoscopic stylus to each
square, in order. Though participants are initially shown the sequence order, once the
program is started by the participant, the numbers are removed, necessitating the par-
ticipants to remember the sequence order of coloured squares. To aid learning, once
the correct square was reached, it ‘disappears’. Colour information was maintained
throughout each repetition, but the position of squares within the circular design was
randomised each time the program was reloaded by applying a Fisher-Yates shuffle [97]
before each array was built: Figures 6.1a, 6.1b.

Two further changes to the experimental task were made (cf. Experimentα). The
sequence of squares was empirically reduced from 16 to 12 to try and promote complete
learning of the sequence by all participants. Additionally, in view of verbal feedback
from participants in Experimentα, the colour of squares was modified (see Figures
6.1a, 6.1b) to increase discrimination between different squares. ColorBrewer [138], a
cartographical tool for producing maximally diverging colour schemes and consequently
legible maps, was employed to determine the colours.

6.2 Methods

As in Experimentα, participants progressed through three stages of training:

1. Learning Kinematic Information (βLearn:K): in this task, the squares were dis-
tributed in the array in the same manner as the Experimentβ task, but no colour
information was provided (all squares were coloured grey). Each time the task
was repeated, a Fisher-Yates shuffle [97] randomly determined the location of
squares within the circular arrangement: Figures 6.2a, 6.2b. As no colour in-
formation was provided, upon starting the trial, the numbers within the squares
remained (they did not disappear). This task was performed using a laparoscopic
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Fig. 6.1 Examples of Experimentβ output (βLearn:C&K)

stylus in a box trainer (see Figure 3.2) to mirror the kinematic transformation
that occurs during the assessment task.

2. Learning Colour Information (βLearn:C): in this task, colour information was
provided and maintained throughout each repetition (i.e. Square 1 was always
peach-coloured), but the position of each square within the circular arrangement
was randomly determined by applying a Fisher-Yates shuffle [97] before each
array was built: Figures 6.3a, 6.3b. This task was not performed in a laparoscopic
box trainer but instead on a separate tablet computer using a normal pen-like
stylus, thereby providing no information regarding the kinematic transformation
inherent in (simulated) laparoscopic surgery.

3. Learning Colour and Kinematic Information (βLearn:C&K): This trial combined
both of the above tasks; the distribution of squares was maintained from Task 1
while the colouring of squares was as per Task 2. Once again, each time the task
was performed, a Fisher-Yates [97] determined the position of coloured squares
within the circular arrangement: Figure 6.1a, 6.1b. This task was performed
using a laparoscopic stylus in a box trainer and had the same configuration as
that used during assessment.

Mirroring Experimentα, participants were randomised to receive either Task 1 then
Task 2, or Task 2 and then Task 1. Subsequently, all participants completed Task
3 (βLearn:C&K). To further try and enhance learning, after each trial (for all tasks),
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Fig. 6.2 Array for Learning Kinematic Information (βLearn:K)

participants were automatically given feedback about their performance from the ESOX
program in the form of time taken and distance travelled in completing the task (Figure
4.3). Such feedback has been demonstrated to improve student learning of technical
surgical skills [115–118].

All participants were trained to perform all three tasks on two separate occasions.
These training sessions were temporally limited to a maximum of one hour. As par-
ticipants had to learn three tasks, they were encouraged to spend approximately 20
minutes on each. However, this timing was not fixed, as the results of ESOXα demon-
strated that spatial information was easier to learn than colour information in the
above experimental paradigm. Equally, participants were shown to learn at different
rates and reach differing plateaus of performance, a finding supported by other studies
[119–121]. If participants felt they had learnt the tasks prior to one hour, the session
could be terminated early by the participant. Sessions were performed on separate
days to enable off-line processing and consolidations of the tasks [57–60].

6.3 Analysis

Performance was assessed using the metrics discussed in §3.1.1 and learning was anal-
ysed using the methods detailed in §3.3.1. The demographics of study participants were
analysed and are reported as medians with ranges. Performance at preoperative sim-
ulation was analysed using a repeated measures analysis of variance (ANOVA), com-
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Fig. 6.3 Array for Learning Colour Information (βLearn:C)

paring performance following the control condition to other preoperative simulation
routines. These results were graphed, with within-subject error bars being computed
using a modification of Loftus and Masson’s method [122] as proposed by Bakeman
and McArthur [123], Cousineau [124], Morey [125], and Morrison and Weaver [126].
The effect of learning trial order on performance during the learning trials and perfor-
mance following preoperative simulation was analysed using an independent samples
t-test and an analysis of covariance (ANCOVA), respectively. Models of learning were
compared using Akaike’s Information Criterion (AICc, described in detail in §6.4.1).

Statistical analysis was performed using Prism, Version 6.0C (GraphPad Software,
Inc. La Jolla, CA, USA), IBM SPSS Statistics for Macintosh, Version 21.0. (IBM
Corp. Armonk, NY, USA) and G*Power: Statistical Power Analyses for Mac, Version
3.1.9.2 [127].

6.3.1 Sample-size Calculation

Data were analysed using a repeated measures ANOVA. A similar effect size to Experimentα
was assumed (f = 0.311) and consequently a priori power calculations showed 15 par-
ticipants (in total) would be required to achieve an α error probability of 0.05 and
power (1-β error) of 0.8. To ensure this sample size was achieved, accounting for
drop-outs and those participants who may need to be excluded from analysis for not
demonstrating having learnt the task, forty participants were targeted for recruitment.



6.4 Results 67

6.3.2 Participants

Participants were recruited from the Participant Pool Scheme employed by the School
of Psychology, University of Leeds. Such participants were chosen as being represen-
tative of the surgically-naive population, being drawn from students and staff at the
University of Leeds. Participants with motor or cognitive impairment, impaired colour
vision, previous surgical experience, or those who had participated in Experimentα,
were excluded from the study. Participants were reimbursed £30 for their time.

6.3.3 Randomisation and Blinding

The order participants performed the preoperative simulation routines was determined
by a stratified, permuted block randomisation sequence with a block size of 5 and
an allocation ratio of 1:1. All assessment metrics were calculated by computer and
consequently blind.

6.3.4 Ethical Approval

Experimentβ received ethical approval from the School of Psychology, The University
of Leeds (ref: 15-0038, 04-Feb-2015 and 15-0199, 06-Aug-2015).

6.4 Results

Thirty-eight participants were recruited, with thirty-six undertaking all stages of the
study (28 female : 8 male, average age 25 years [range 19 - 62], all (36) right-hand
dominant).

6.4.1 Averaged Learning Results

All learning tasks (βLearn:K, βLearn:C and βLearn:C&K) demonstrated a consistent
pattern of exponential improvement over successive trials: Figure: 6.4. As was found
in Experimentα, the exponential function modelled the averaged results very well, as
shown by high coefficients of determination (R2): Table 6.1.

βLearn:C&K and βLearn:C appear to show very similar graphical features - they
seem to demonstrate similar intercepts, rate of change and plateaus (represented by b,
α and a in Equation 3.5, §3.3.1). Consequently, Akaike’s Information Criterion (AIC)
[139] was used to compare models. AIC is an estimation of the (relative) expectation
of the Kullback-Leibler ‘distance’ (in actuality, probability distributions) between two
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Fig. 6.4 Average Performance during the Experimentβ Learning Trials.
Learning Colour Information trials (βLearn:C) are represented in blue, Learning Kinematic
Information trials (βLearn:K) are shown in green and Learning Colour and Kinematic Infor-
mation trials (βLearn:C&K) in red. The dotted lines represent the 95% CI of the mean.
Note: Results are shown as dimensionless Z-scores to allow comparison between different
trials.

Table 6.1 Coefficients of determination (R2) for the averaged results of Experimentβ Learn-
ing Phase

Learning Trial R2

βLearn:C 0.8923
βLearn:K 0.9188
βLearn:C&K 0.9270



6.4 Results 69

models, based on Fisher’s maximised log-likelihood [140]. The Kullback-Leibler dis-
tance [141] in turn is the difference between two probability distributions P and Q, in
which P represents the ‘true’ distribution of data, while Q represents the model of P .
AIC is calculated using residual sums of squares from regression:

AIC = n·ln
(
RSS

n

)
+ 2K (6.1)

Where n is the number of data points(observations), ln is the natural logarithm, RSS
is the residual sums of squares and K is the number of parameters in the model.

AIC requires a bias-adjustment for small sample sizes, with a rule of thumb de-
scribed by Burnham and Anderson [140] of if the ratio of n/K is less than 40, then use
the bias-adjusted version of AIC - AICc, calculated thus:

AICc = n·ln
(
RSS

n

)
+ 2K + 2K(K + 1)

n−K − 1 (6.2)

with the parameters being defined as above1. Calculating AICc for the individual
models permits comparison between models and an estimation of how much better
the best approximating model is compared with other model(s) [142]. The difference
between values of AICc (∆i) can be used to calculate the Akaike weight, wi, thus:

wi =
exp(−1

2∆i)∑R
r=1 exp(−1

2∆r)
(6.3)

The Akaike weight can be considered analogous with the probability that a given model
is the best approximation [142]. Alternatively, the difference between models can be
compared using the evidence ratio (ER):

ER =
exp(−1

2∆best)
exp(−1

2∆i)
(6.4)

The different models of learning are compared in Table 6.2.

Table 6.2 Comparison of individual and combined models of learning, βLearn:C and
βLearn:C&K

Model K RSS AICc ∆i wi ER

Combined Curve 3 8.580 -213.2 0 0.875
Individual Curves 4 4.672 -209.3 3.9 0.125 7.03

1As the size of a dataset (n) increases, the bias adjustment term becomes very small. Consequently,
some authors argue that the small-sample adjustment (AICc) should always be used [142].
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Fig. 6.5 Average Performance during βLearn:C and βLearn:C,&K with a combined (shared)
learning curve. The dotted lines represent the 95% CI of the mean.

The results shown in Table 6.2 demonstrate that it is 7 times more likely that the
results of βLearn:C and βLearn:C&K are explained by a single curve (87.5% likelihood)
as opposed to two separate curves (12.5% likelihood). The combined curve is shown in
Figure 6.5.

6.4.2 Individual Learning Results

Blocked individual learning results were compared to an exponential function of learn-
ing, as described in §3.3.1. The coefficients of determination, predicted plateaus of
performance and the smallest (best) result achieved during the Learning Phase are
reported in Appendix F; Tables F.1, F.2 and F.3.

The order participants undertook the learning trials did not have an effect on their
performance at plateau: an independent samples t-test indicated no difference in per-
formance at plateau for those participants who progressed through βLearn:K, βLearn:C
and then βLearn:C&K learning tasks (x̄ = −0.183, σ = 0.700) when compared to those
who performed βLearn:C, βLearn:K and finally βLearn:C&K (x̄ = 0.1376, σ = 1.312),
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t(23) = 0.883, p = 0.384, d = 0.305. Levene’s test [143] indicated unequal variances
(F = 4.80, p = 0.036), so degrees of freedom were adjusted from 31 to 23.

6.5 Discussion

The results of βLearn indicate the majority of participants were able to learn at least
one aspect of the laparoscopic sequence learning task, but that Experimentβ presented
a greater challenge to learn than Experimentα. Mirroring the results of Experimentα,
participants found learning kinematic information (βLearn:K, 26 participants success-
ful) easier than the other two learning tasks. However, colour information (βLearn:C,
16 successful) appeared easier to learn than the combined colour and kinematic infor-
mation (βLearn:C&K, 9 successful), in contrast to Experimentα.

Participants were more successful at learning colour information (βLearn:C) than
the combined colour and kinematic information (βLearn:C&K) during βLearn, in con-
trast to Experimentα. One explanation for this findings may be because spatial infor-
mation is not helpful in performing the Experimentβ task, as the spatial arrangement
changes each time the task is completed. Consequently, while βLearn:C&K does pro-
vide participants with the required colour information necessary to complete ESOXβ,
it does so in a way that is not as ‘clean’ as βLearn:C; βLearn:C&K requires participants
to account for a kinematic transformation that is not required to complete βLearn:C.
This appears to have acted as a confound for some participants trying to learn the
colour-sequence information during βLearn:C&K. This hypothesis is further supported
by the finding that those participants who were able to successfully learn βLearn:C&K
showed exactly the same pattern of learning as those who were able to successfully
learn βLearn:C (see Figure 6.5), suggesting these participants were learning the same
information (i.e. colour-sequence information), in the same manner. For these partici-
pants, the kinematic transformation inherent in performing the task in a laparoscopic
box trainer during βLearn:C&K (cf. βLearn:C which is performed with a pen-like sty-
lus on a tablet-PC) appears to have had a negligible effect on their performance. Both
tasks require the participants to plan and execute physical movements to complete, but
βLearn:C&K disrupts the 1:1 ratio of movement of the upper limb to execution of the
sequence found in βLearn:C. Some participants appear to have been able to account for
this transformation. This finding suggests that the importance of the manner in which
information is presented differs between discrete information modalities. For spatial
information, incorporating a kinematic transformation is important when imparting
information (see Chapter 5), whereas these learning trials indicate having to adjust to
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a kinematic transformation makes no difference to colour information learning.



Chapter 7

Experimentβ: Assessment of
Preoperative Simulation

After completing the learning phase, participants progressed to an assessment of pre-
operative simulation. Two forms of preoperative simulation were of benefit during
Experimentα - αPS:C,K&S, which provided a specific preparation for participants, al-
lowing them to practice exactly the same task before undertaking the assessed task
and αPS:K&S which provided relevant information to the participants. This chapter
follows a similar experimental design to α:PS.

7.1 Methods

Once they had progressed through the learning phase, participants were asked to per-
form five preoperative simulation exercises (including one control), one per day, in a
randomly determined order, prior to performing an assessment task. This assessment
task was very similar to the βLearn:C,K&S task described above, as the same spatial
and colour information was maintained, but it did not give the participants any order
information (there was no numbers in the squares): Figure 7.1. Each assessment was
temporally separated by one day.

Participants were asked to perform one of each of the following preoperative sim-
ulation routines, in a randomly determined order, prior to performing the assessment
task.

1. Kinematic Preoperative Simulation (βPS:K): Participants were asked to repeat
Learning Task 1 (βLearn:K). This provided participants with kinematic (and
spatial), but no colour information.
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Fig. 7.1 Array for Assessment (without sequence information)

2. Colour Preoperative Simulation (βPS:C): Participants were asked to repeat Learn-
ing Task 2 (βLearn:C). This provided the participants with colour, but no kine-
matic information relating to the assessment task.

3. Observe Performance of Task (βPS:O): Participants were asked to view a screen-
recording of ESOXβ being performed by an expert. This recording was performed
by the author and was a ‘perfect’ performance of the task; no errors or deviations
from the correct path were shown. This provided participants with colour infor-
mation, but without direct physical involvement from the participant (no direct
kinematic information). The recording was shown on the laparoscopic screen
used to perform the ESOXβ task.

4. Colour and Kinematic Preoperative Simulation (βPS:C&K): Participants were
asked to perform the sequence-learning task (βLearn:C&K), immediately prior
to performing the assessment task (specific warm-up).

5. Control Group: Participants were asked to play Tetris®. This was chosen to
occupy participants during the preoperative simulation period, without giving
them any information about the upcoming assessment task and to provide a
generic warm up of the visual-motor system. This preoperative simulation routine
was performed on the laparoscopic stack using a keyboard.
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Each preoperative simulation trial was limited to three minutes. This was controlled
by computer script in all cases, aside from the control group which was timed by a
supervising investigator. Participants could repeat the preoperative simulation routine
as many times as was their preference during this time. This time restraint, chosen
from pilot data, was employed to ensure parity between different participants and
preoperative simulation routines. To further ensure this, each participant was given
the same written instruction before each preoperative simulation and assessment, which
were very similar to those used in ESOXα: Appendix E.

The above preoperative simulation routines were designed to offer the participants
varying amounts of colour, spatial and kinematic information. Repeated performance of
the assessment task (βLearn:C&K) was included as the theoretical ‘ideal’ preoperative
simulation.

7.2 Results

Three participants (Participant No. 18, 22 and 35) met the exclusion criteria because
they did not reach a predicted plateau of performance at any of the βLearn trials.
Two participants (Participant No. 1 and 27) were excluded because their performance
during assessment was more than 3 standard deviations (5.8 and 10.3, respectively)
away from other participants’ performance. One further participant (Participant No.
5) was also excluded from analysis, for reasons detailed in §7.2.1.

Analysis of performance following preoperative simulation was assessed using a
repeated-measures ANOVA. Mauchly’s test indicated that the assumption of sphericity
had been violated (χ2 = 65.9, p < 0.001), therefore degrees of freedom were corrected
using Greenhouse-Geisser estimates of sphericity (ε = 0.694). A main effect of preop-
erative simulation on performance, F (2.78, 80.5) = 3.01, p = 0.0384, η2

p = 0.0942, was
demonstrated. Post-hoc analyses using Fisher’s LSD revealed this was driven by sig-
nificantly better performance following the observe (O) preoperative simulation when
compared to control (p = 0.0459) and better performance after the colour and kine-
matic (C&K) preoperative simulation when compared to control (p = 0.0229). These
results are summarised in Figure 7.2.

Once again, the order participants performed the learning trials did not affect their
performance at assessment: an ANCOVA [between-subjects factor: preoperative sim-
ulation (Control, Observe, K, C and C&K); covariate: learning order] revealed no
interaction between preoperative simulation and learning order, F (1, 28) = 0.0268,
p = 0.871, η2

p = 0.001.



7.2 Results 76

Control Observe K C C&K
0

2000

4000

6000

8000

M
od

ifi
ed

 E
SO

X 
Sc

or
e 

(m
px

s)

Preoperative Simulation

p = 0.046

p = 0.02

Fig. 7.2 Performance following Preoperative Simulation during Experimentβ. Significant
within-subject effects are highlighted. The error bars represent the 95% CI of the mean.
Note: Smaller scores represent better performance.
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Fig. 7.3 Comparison of Performance following Preoperative Simulation during Experimentβ
with and without Participant No. 5

7.2.1 Exclusion of Participant No. 5

An initial repeated measures ANOVA of the effects of preoperative simulation on sub-
sequent assessed performance did not detect a main effect of preoperative simulation,
but did closely approach statistical significance (F (2.93, 87.9) = 2.59, p = 0.0594,
η2
p = 0.0794). Consequently, the individual results of participants during the assess-
ment conditions were examined more closely. Overall, as shown in Figure 7.3b, the
Observe and the Colour and Kinematic preoperative simulations appear to be the
most beneficial for subsequent task performance. Looking specifically at these two
conditions, the majority of participants exhibited similar patterns of results, with one
exception; Participant No. 5 exhibited results following βPS:O and βPS:C&K that
were 5.53 and 5.75 standard deviations away from all other participants, respectively.
Interestingly, Participant No. 5 is a statistical outlier following all forms of preoperative
simulation, with the exception of Colour, the only learning trial in which Participant
No. 5 was able to demonstrate reaching a plateau of learning1: Figure 7.4. Further re-
view of the learning trial results may demonstrate a cause for this finding; Participant
No. 5 recorded the fewest number of learning trial repeats of any participant during
Experimentβ. Consequently, while being able to satisfy the criteria for having learnt
part of the Experimentβ task detailed in §3.3.1, Participant No. 5 may not have been
truly able to satisfactorily learn the task, a conjecture supported by their deterioration
of performance during βLearn:C&K.

1Although Table F.2 appears to demonstrate that Participant No. 5 was able to reach a plateau
of learning during βLearn:C&K, review of the individual learning graphs show that Participant No. 5
produced a positive exponential graph of repeated performance, i.e. their performance became worse
with repetition (see Figure 7.4a).
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Post hoc analysis of results is controversial, however, it seems justified in this in-
stance, for the following reasons:

1. Review of Figures 7.3a and 7.3b reveals that the exclusion of Participant No. 5 did
not alter that overall pattern of the effect of preoperative simulation. Both figures
suggest that βPS:O and βPS:C&K improve performance relative to control, while
βPS:C and βPS:K appear to have little effect.

2. The evidence that Participant No. 5 has effectively learnt the ESOXβ task is not
as robust as that demonstrated by the majority of participants. Participant No.
5 was only able to demonstrate a plateau of repeat performances during one of
the three learning trials (βLearn:C). During both βLearn:K and βLearn:C&K,
Participant No. 5’s performance worsened with repetition, counter to the major-
ity of participants and expectations: Figures 7.4a and 7.4b. Participant No. 5
was able to meet the criteria for learning during βLearn:C, however, as described
in §3.3.1. Although an exponential decrease in performance is expected (and has
robust theoretical and literature support) if learning is occurring with repeated
trials, the threshold goodness-of-fit measure (R2 > 0.5) was chosen arbitrarily.
This was done because no agreed standard of threshold measurement exists (and
is likely to be dependent on the task being assessed). While strict adherence
to an exponential model (R2 ' 0.8) is very likely to represent learning and the
converse of no exponential improvement (R2 / 0.1) is likely to demonstrate a
lack of learning, an intermediate R2 is much more difficult to interpret, particu-
larly with the paucity of data provided by Participant No. 5 (given their limited
repeat performances). In addition, review of a graph of repeat performances dur-
ing βLearn:C with a calculated exponential curve of performance improvement
(Figure 7.4c) seems to show that Participant No. 5 does not demonstrate an
initial significant performance improvement. These factors in combination - a
worsening of performance during two of the learning trials, the lowest number
of repeat trials of any participant during βLearn and a questionable goodness-
of-fit measure - undermine the initial finding that Participant No. 5 successfully
learnt βLearn:C. As shown previously [104], learning is a significant confound of
preoperative simulation.

3. Participant No. 5’s results at assessment of preoperative simulation were signif-
icantly divergent from all other participants. Preoperative simulation has been
assessed throughout using a repeated-measures ANOVA, in order to examine
between-subjects effects and allow for differing levels of performance by individ-
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Fig. 7.4 Participant No. 5’s performance during the βLearn trials. The dotted lines are an
attempt to fit an exponential function (of learning) to successive trials.

ual participants. Consequently, a significant variation in the level of performance
achieved by individual participants can be accounted for. However, Participant
No. 5 produced results that are so far removed from those of all other partic-
ipants (more than five standard deviations away from the population following
βPS:O and βPS:C&K) it suggests entirely different processes are occurring when
Participant No. 5 undertakes the preoperative simulation routines when com-
pared to all other participants, which may be as a result of incomplete learning,
as described above.

These factors; significantly divergent results during assessment of preoperative sim-
ulation and apparent lack of having learnt the ESOXβ task satisfactorily, demonstrate
compelling evidence for the necessity of excluding Participant No. 5.

7.3 Discussion

The results of Experimentβ reveal preoperative simulation to have a significant effect
on subsequent performance. This effect is driven by an improvement in performance
following an observation of expert performance and a similar improvement following
a colour and kinematic preoperative simulation. It seems intuitive that repeat perfor-
mance of a task (as provided by βPS:C&K) would result in subsequent performance
improvement and is discussed in more detail below in §7.4. That βPS:O was beneficial
whereas βPS:C has no effect is an interesting finding. Experimentβ was designed to
give predominance to colour information, with spatial information being randomised
each time Experimentβ was performed. It was consequently expected that colour infor-
mation would be a beneficial form of preoperative simulation (particularly compared
with kinematic information alone, which was shown to be equivalent to the control
condition during the assessment of PS). However, it appears that the way in which
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colour information is presented is critical. βPS:C and βPS:O contain the same colour
information, i.e. that Square 1 is peach-coloured, Square 2 is pale green, Square 3 is
red, etc. However, βPS:C requires participants to actively demonstrate their under-
standing of the colour order by moving a pen-like stylus to each coloured square, in
order, on a tablet computer. βPS:O only required participants to watch a recording
of expert performance. One pre-test hypothesis was that βPS:C would be a more
beneficial form of preoperative simulation as it necessitates the active involvement of
participants, whereas participants could choose to ignore or not actively engage with
βPS:O. The findings of Experimentβ do not support this prediction. This may be
because βPS:C requires the utilisation of multiple neural processes (both higher-order
cognitive processes involved in the interpretation of colour and sequence information
but also movement planning and execution processes necessary for moving the stylus
to the right coloured square on the tablet computer), whereas βPS:O provides the req-
uisite colour sequence information in a ‘cleaner’, less cognitively demanding manner,
i.e. without the need to consider subsequent movement.

This is similar to the conjecture, described in §6.5, for the reason that βLearn:C
seems to have been easier to learn than βLearn:C&K and again mirrors the findings of
Experimentα.

7.4 Experimental Comparisons

Both Experimentα and Experimentβ demonstrate preoperative simulation has an effect
on subsequent performance. In both experiments, two preoperative simulation routines
were shown to be effective; the kinematic and spatial PS and the colour, kinematic and
spatial PS in Experimentα and the observe PS and the colour and kinematic PS during
Experimentβ.

That repeated performance of a task would result in an improvement in performance
of that task seems intuitive. αPS:C,K&S allowed participants to practice exactly the
same task as they were subsequently assessed on after three minutes. βPS:C&K allowed
participants to practice almost exactly the same task as they were subsequently assessed
on, with the difference of a random spatial arrangement, within the constant circular
design, each time the task was performed. These findings support the notion that
performing the same laparoscopic operation twice could lead to improved performance
during the second case (see Chapter 10 for an exploration of this effect in clinical
practice). This is the same finding as the majority of studies systematically reviewed
in Chapter 2. However, the practical application of this finding is questionable as
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two of the same operations can vary significantly in the real world. Exactly the same
operation can be recreated within a simulator, but the ability to generate a simulation
of a procedure for a specific patient prior to performing that operation is not currently
technically feasible. With improvements in simulation technology and non-invasive
imaging modalities, it is unlikely that such a capability will remain theoretical for very
long. Alternatively, it may be that structuring operating lists to involve the repetition
of the same procedure produces a tangible benefit (though this would not help the
first patient on an operating list). However, it is the other finding of Experimentα
and Experimentβ that is arguably more interesting - that performing other simplified,
relevant procedures/tasks prior to a simulated operation can improve a participant’s
performance during that operation.

Experimentα was designed to give equal weighting to both spatial and kinematic
information, with participants being able to successfully complete the task using either
colour information or spatial information or a combination of both modalities. The re-
sults of αLearn (comprising of all the learning trials within Experimentα; αLearn:K&S,
αLearn:C and αLearn:C,K&S) demonstrate that participants had a preference for kine-
matic and spatial information, with the subsequent finding of αPS that a kinematic
and spatial preoperative simulation was beneficial. The reason for this preference is
likely to reflect the preference of human cognitive processing for the interpretation and
storage of spatial information compared with more abstract colour processing.

Experimentβ was designed to necessitate the use of colour information to complete
the laparoscopic sequence learning task. Successfully learning this information was
more difficult than learning the spatial information preferred in Experimentα, but once
learnt, observing expert performance of the task (which included the correct colour
sequence information) significantly improved subsequent performance. The efficacy
of βPS:O is likely a reflection of the fact that βPS:O provided participants with a
reminder of the the requisite colour information in the ‘simplest’ way (in particular
when compared to βPS:C).

These findings would also suggest that active engagement of the motor system is
important in facilitating performance that relies on spatial information - αPS:K&S was
most effective at preparing participants to perform the Experimentα task. However,
such active engagement of motor systems is not required for other components of visual
information - namely colour. This may reflect the differences in spatial and colour
neural processing [144].

In both Experimentα and Experimentβ the preoperative simulations that provided
participants with the necessary information to complete the assessed task in the most
simple manner were found to be beneficial. In both experiments, the nature of the
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advantageous preoperative simulation is dependent on the nature of the task being
performed and is likely to reflect the cognitive strategies employed in performing that
task (which in turn are likely to reflect how that task was learnt).



Chapter 8

Experimentγ: Learning-Phase

Experimentα and Experimentβ have demonstrated that preoperative simulation can
have a significant impact on subsequent performance. It seems that simplified, rele-
vant procedures/tasks are of benefit as a preoperative simulation, which holds great
promise for the use of preoperative simulation in clinical practice. The Experimentα
and Experimentβ tasks engendered a distinct preference for one type of information in
participants; spatial information during Experimentα and colour during Experimentβ,
and this was subsequently reflected in the preoperative simulation routines that were
beneficial. Experimentα could be completed by utilising spatial information, colour
information or a combination of both, with participants demonstrating a preference
for spatial information during both the learning and assessment of preoperative simu-
lation phases. Experimentβ could only be completed by utilising colour information,
forcing participants to use this information during the learning phase and subsequently
it formed an effective preoperative simulation.

Relating these abstract experiments back to MIS, Experimentα demonstrates that
if a surgeon could complete a laparoscopic operation by utilising spatial information
alone, a spatial preoperative simulation would be beneficial, i.e. if an operation could
be completed successfully using technical ability alone, a technical preoperative simu-
lation would be helpful. However, under such an experimental design, more abstract
knowledge (represented by colour) is of no benefit.

Experimentβ explored the effect of a knowledge-based preoperative simulation un-
der conditions in which knowledge (colour) was paramount. In this scenario, a technical
(spatial) preoperative simulation was of no benefit, but a revision of previously learnt
information (colour) was helpful as a preoperative simulation.

Experimentγ, the third randomised, cross-over study utilising the ESOX program,
has been designed to create a more balanced distribution of importance between colour
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and spatial information, to try and better reflect clinical practice; Anatomical varia-
tions are common1 [145, 146] and the attending surgeon needs to have an understanding
of both ‘normal’ anatomy and the common deviations. To return to the crude analo-
gous aspects of the experimental descriptors discussed in §6, spatial information relates
to the physical actions of operating while colour information relates to the more ab-
stract, academic knowledge required to perform surgery. Both of these aspects are
required; an operation cannot be completed by only relying on either in isolation. The
previous two experiments have examined each of these aspects in turn, but not when
both are relied upon by the participants.

In order to achieve a situation in which both colour and spatial information are
utilised, the reliability of spatial information must be degraded, as described below.
Here the aim was to make spatial information useful, but not to the exclusion of colour
information.

8.1 Experimental Task γ

Experimentγ is another randomised, controlled cross-over trial that utilises a sequence-
learning task developed using the ESOX program. It exhibits many similar characteris-
tics to the two previous iterations (Experimentα and Experimentβ), but is designed to
deliver spatial and colour information in a manner that ensures both are useful. Util-
ising both colour and spatial as independent, though related, sources of information,
results in a preference for spatial information; see Experimentα, Chapters 4 and 5. It
is very difficult in such a design to increase the importance of colour information and
make it more likely that participants would use colour information in order to complete
the task. However, as shown in Experimentβ (Chapters 6 and 7), participants will use
colour information to complete the laparoscopic sequence-learning task if they are un-
able to rely on spatial information. This would suggest there is a point between the
two previous distributions of information at which both forms of information would be
of equivalent benefit to participants. In order to achieve such a balance, the integrity
of spatial information has to be degraded.

In Experimentγ, participants were shown a sequence of eight numbered, coloured
squares distributed on a 14 by 28 array and were asked to move a laparoscopic stylus
to each square, in order. Though participants are initially shown the correct sequence
order, once a trial is started by the participant, the numbers are removed, necessitating
the participants to remember the sequence order of coloured squares. To aid learning

1For example, a recent review of over one thousand magnetic resonance cholangiopancreatography
images revealed over forty percent demonstrated anatomical variations of the biliary tree [145].
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Fig. 8.1 Example of the fuzzy location parameter employed in Experimentγ. The original
(primary starting) location is shown in dark red, with two possible subsequent locations
shown in lighter red. The square has been programmed to move ±2 squares.

and provide feedback, once the correct square is reached, it ‘disappears’, informing par-
ticipants that they have reached the correct square. Colour information was maintained
throughout each repetition, but the spatial location of squares could change randomly
each time a trial was conducted. Each individual square could be programmed to ‘walk’
a certain distance from its primary starting location (PSL) at the beginning of each
trial. This ‘walk’ is actually a fuzzy location parameter [147], allowing squares to move
a predetermined distance in either the x or y (or both) direction(s), before being made
visible to participants: Figure 8.1.

The number of coloured squares in the sequence utilised was reduced from twelve
in Experimentβ to eight, to try and improve the learning phase of the experiment.
This was in light of the previous experiments, during which some participants failed to
learn the complete sequence and did not reach a plateau of performance, and in view
of the added complexity of an uncertain spatial arrangement. Additionally, the colours
used for each square was again modified to try and make them more categorical i.e. a
distinct colour that could be named (such as red, blue) as opposed to varying shades of
colours. The selection of colours were made using the cartographical tool ColorBrewer
[138].

8.2 Methods

As during Experimentα and Experimentβ, participants progressed through three stages
of training during week one of Experimentγ:

1. Learning Colour Information (γLearn:C): in this task, colour information was
provided and maintained through each repetition (i.e. Square 1 was always red),
but the position of each square with a circular arrangement was randomly deter-
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mined by applying a Fisher-Yates shuffle [97] before each array was built (as per
αLearn:C and βLearn:C; see Figures 4.2 and 6.3). This task was performed on
a tablet computer using a normal pen-like stylus. It was employed to promote
learning of the colour sequence, independent of spatial location.

2. Learning Colour, Kinematic and Spatial Information (γLearn:C,K&S): during
this task, coloured squares were distributed in a set spatial pattern across the
experimental array: Figure 8.2a. The spatial location of squares did not change
with each repetition of the task and the colour information was maintained
from γLearn:C. As in previous experiments, this task was performed on a tablet
computer within a laparoscopic box trainer using a laparoscopic stylus: Figure
3.2. This task was utilised to promote the learning of spatial information (see
Experimentα).

3. Learning Colour, Kinematic and Fuzzy Spatial Information (γLearn:C,K&FS):
in this task, coloured squares were distributed in a fuzzy set [147] pattern across
the experimental array: Figure 8.2b. In this task, the location of each individual
square could vary from the set position found in γLearn:C,K&S by ±3 squares, in
either the horizontal, vertical or both plains. To reinforce the ‘correct’ distribu-
tion of squares (PSL), participants alternated between fuzzy spatial and regular,
‘non-fuzzy’ spatial information. As demonstrated in Figures 8.2a and 8.2b, the
general location of a square could not change dramatically - square 3 will remain
in the bottom left hand corner of the array, but the precise location of squares
will change with each repetition. This task was performed on a tablet computer
within a laparoscopic box trainer using a laparoscopic stylus. It was designed to
promote the learning of both colour and spatial information.

As with Experimentα and Experimentβ, participants were randomised in groups
to receive either Task 1 then Task 2, or Task 2 and then Task 1. Subsequently, all
participants completed Task 3 (γLearn:C,K&FS), to control for any effects of learning
order. To further try and aid learning, after each trial (for all tasks), participants
were given feedback about their performance from the ESOX program in the form
of time taken and distance travelled in completing the task. Such feedback has been
demonstrated to improve student learning of technical surgical skills [115–118]. This
information was displayed on the screen after each task was completed.

All participants were trained to perform Task One, Two and Three in two separate
training sessions. These training sessions were temporally limited to a maximum of
one hour. As participants had to learn three tasks, they were encouraged to spend



8.3 Analysis 87

(a) γLearn:C,K&S (b) γLearn:C,K&FS

Fig. 8.2 Arrays for γLearn

approximately 20 minutes on each. However, this was not fixed. If participants felt
they had learnt the tasks prior to one hour, the session could be terminated early by
the participant. Sessions were performed on separate days to enable off-line processing
and consolidations of the tasks [57–60].

8.3 Analysis

Analysis of Experimentγ mirrored that of Experimentα and Experimentβ, as detailed
in §4.3 and §6.3. Learning was assessed by comparing participants’ performance to an
expected negative exponential function and the effects of preoperative simulation were
analysed using a repeated measures ANOVA.
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8.3.1 Ethical Approval

The Experimentγ study received ethical approval from the School of Psychology, The
University of Leeds (ref: 16-0151, 24-May-2016).

8.4 Results

Forty-three participants were recruited, with thirty-four undertaking all stages of the
study (23 female : 11 male, average age 28 years [range 18 - 64], 26 right-hand : 8 left-
hand dominant). The results of preoperative simulation are discussed in further detail
in §9.2. Three participants dropped out of the study (Participant No. 4, 8 and 9) and
three were unable to demonstrate having learnt any of the γLearn trials (Participant
No. 16, 38 and 40).

8.4.1 Averaged Learning Results

All learning tasks (γLearn:C, γLearn:C,K&S and γLearn:C,K&FS) demonstrated a
consistent pattern of exponential improvement over successive trials: Figure 8.3. Dur-
ing the γLearn:C,K&FS trial participants alternated between fuzzy and ‘normal’ spa-
tial information, and consequently, these results are presented separately (γLearn:F0

without fuzzy information, γLearn:F1 with fuzzy spatial information; Figure 8.3 in-
sert) and in combination (γLearn:C,K&FS). As was found during the previous two
experiments, the exponential function modelled the results well: Table 8.1.

Mirroring the results of Experimentβ, γLearn:C and γLearn:C,K&S seem to demon-
strate very similar features - apparently comparable intercepts, rates of change and
plateaus, as do γLearn:F0 and γLearn:F1. Comparing these seemingly equivalent curves
using AICc [139], reveals that γLearn:F0 and γLearn:F1 are best explained by a single
curve while γLearn:C and γLearn:C,K&S are more accurately explained using individ-
ual curves: Tables 8.2 and 8.3. These results show that it is more than sixteen times
more probable that the results of γLearn:F0 and γLearn:F1 are explained by a single
curve (94.3% likelihood), when compared to two separate curves (5.7% likelihood).
Conversely, γLearn:C and γLearn:C,K&S are three times more likely to be explained
by individual curves.

8.4.2 Individual Learning Results

Blocked individual learning results were compared to an exponential function of learn-
ing, as described in §3.3.1. The coefficients of determination, predicted plateaus of
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Fig. 8.3 Average Performance during the Experimentγ Learning Trials.
Learning Colour Information trials (γLearn:C) are represented in blue, Learning Kinematic
Information trials (γLearn:C,K&S) are shown in green and Learning Colour and Kinematic
Information trials (γLearn:C,K&FS) in red.
γLearn:C,K&FS is further subdivided into trials in which fuzzy spatial location (F1, grey)
and without fuzzy locations (F0, orange), insert.
The dotted lines represent the 95% CI of the mean.
Note: Results are shown as dimensionless Z-scores to allow comparison between different
trials.

Table 8.1 Coefficients of determination (R2) for the averaged results of Experimentβ Learn-
ing Phase

Learning Trial R2

γLearn:C 0.7252
γLearn:C,K&S 0.8997
γLearn:C,K&FS 0.7117
γLearn:F0 0.7530
γLearn:F1 0.6843
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Table 8.2 Comparison of individual and combined models of learning, γLearn:F0 and
γLearn:F1

Model K RSS AICc ∆i wi ER
Combined Curve 3 27.91 -128.4 0 0.943
Individual Curves 4 13.8 -122.8 5.6 0.0567 16.63

Table 8.3 Comparison of individual and combined models of learning, γLearn:C and
γLearn:C,K&S

Model K RSS AICc ∆i wi ER
Combined Curve 3 46.8 -322.0 0 0.250 2.99
Individual Curves 4 22.5 -319.8 -2.188 0.740

performance and the smallest (best) result achieved during the Learning Phase are
reported in Appendix G; Tables G.1, G.2 and G.3.

The order participants undertook the learning trials did not have an effect on
their performance at plateau: an independent samples t-test indicated no difference
in performance at plateau for those participants who progressed through γLearn:C,
γLearn:C,K&S and then γLearn:C,K&FS (x̄ = 10.2, σ = 2.07) when compared to
those who performed γLearn:C,K&S, γLearn:C and finally γLearn:C,K&FS (x̄ = 9.51,
σ = 2.74), t(41) = 1.01, p = 0.384, d = 0.318.

8.5 Discussion

The results of γLearn are similar to those of αLearn and βLearn; the majority of
participants were able to learn at least one aspect of the simulated laparoscopic task,
but the task remained a significant challenge to participants, with only two participants
demonstrating they reached a clear plateau of performance in all of the learning trials.
Once again, when participants could rely on spatial information to complete the task
(γLearn:C,K&S), they performed better. When spatial information was uninformative
(γLearn:C) or unreliable (γLearn:C,K&FS), participants found the task much harder
to learn, as evidenced by the fewer number who reached a plateau of learning.

The two aspects of γLearn:C,K&FS, γLearn:F0 and γLearn:F1, are best explained
by a single learning curve. As participants alternated between γLearn:F0 and γLearn:F1

during γLearn:C,K&FS it may have been the case that participants switched ‘modes’
of performance between each repeat and interacted differently with the primary layout
when compared to the fuzzy layout. However, it appears they are the product of a
single learning curve, possibly suggesting that participants used the same strategy to
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complete both iterations of the task (with and without fuzzy spatial locations). This
also acts as a demonstration of the usefulness of AICc in investigating comparable
learning curves.

γLearn:C and γLearn:C,K&S are best described by individual curves, suggesting
these tasks are learnt in different ways, utilising different information. This could
suggest that while participants had to use colour information to complete γLearn:C,
different information was utilised to learn γLearn:C,K&S. It could be argued that the
different methods of completing the two tasks resulted in different learning curves (a
laparoscopic stylus and box trainer during γLearn:C,K&S and a pen-like stylus on
a tablet during γLearn:C), but such an argument is contradicted by the findings of
βLearn; βLearn:C and βLearn:C&K demonstrated a shared curve of learning, suggest-
ing the same information was being learnt, despite different methods of executing the
tasks. Therefore, it seems reasonable to assume that colour information was utilised
exclusively during γLearn:C (other information was not helpful), but spatial (or a com-
bination of spatial and colour) was used during γLearn:C,K&S, echoing the findings
from αLearn - participants will preferentially utilise spatial information, if able to do
so.



Chapter 9

Experimentγ: Assessment of
Preoperative Simulation

Following the learning phase of Experimentγ, participants performed an assessed ‘pro-
cedure’ after experiencing a variety of preoperative simulations. Experimentα and
Experimentβ have shown that repeating the same task prior to assessed performance
is beneficial but also that providing participants with information which is relevant to
completing the task is also of significant benefit. Experimentγ follows a similar de-
sign to the preceding two experiments. Consequently, the beneficial forms of PS from
Experimentα and β were assessed, along with an investigation into the effect of task
variation on preoperative simulation.

9.1 Methods

Having proceeded through the learning phase, all participants were asked to perform
five assessments with a different preceding preoperative simulation exercise (including
one control), one per day, in a randomly determined order. This assessment phase of
the experiment took place in the week following the learning phase. The assessment
task was very similar to γLearn:C,K&FS, but it did not give the participants any order
information (there were no numbers in the squares): Figure 9.1. Each assessment was
temporally separated by one day.

Participants were asked to perform one of each of the following preoperative sim-
ulation routines, in a randomly determined order, prior to performing the assessment
task.

1. Colour, Kinematic and Spatial Preoperative Simulation (γPS:C,K&S): Partici-
pants were asked to perform Learning Task 2 (γLearn:C,K&S). This provided the
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(a) Array for Assessment (Config. 1) (b) Array for Assessment (Config. 2)

Fig. 9.1 Array for Assessment, demonstrating different configurations with fuzzy spatial
location

participants with colour and spatial information, as well as information about the
kinematic transformation. The task remained unchanged with each repetition.
This task was undertaken on a tablet computer within a laparoscopic box trainer
using a laparoscopic stylus (Figure 3.2).

2. Observe Performance of Task (γPS:O): Participants were asked to view a screen-
recording of Experimentγ being performed by an expert. This recording was
performed by the author (who is highly proficient at the task) and was an essen-
tially ideal performance of the γPS:C,K&FS task; no errors or deviations from
the correct path were shown. This provided participants with colour and spa-
tial information, but without direct physical involvement from the participant
(no direct kinematic information). The recording was shown on the laparoscopic
screen used to perform the experimental task.

3. Colour, Kinematic and constant Fuzzy Spatial Preoperative Simulation (γPS:-
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C,K&FS): Participants were asked to perform the third learning task (γLearn:-
C,K&FS), immediately prior to performing the assessment task. The conditions
of fuzzy spatial arrangement (i.e. the distance the squares could ‘walk’) did
not change with repetition of the task, squares continued to be able to move
±3 squares in the x and/or y dimension from their stating location. Note: the
starting location (PSL) remains as per γLearn:C,K&S / γPS:C,K&S.

4. Colour, Kinematic and Random Fuzzy Spatial Preoperative Simulation (γPS:-
C,K&RFS): this preoperative simulation is very similar to the above γPS:C,K&FS,
but the degree of fuzzy spatial distribution varied with each repetition - squares
could be distributed from ±1 to ±5 from their starting locations (PSL). This
task was performed on a tablet computer within a laparoscopic box trainer using
a laparoscopic stylus.

5. Control Group: Participants were asked to play Tetris®. This was chosen to
occupy participants during the preoperative simulation period, without giving
them any information about the upcoming assessment task. This preoperative
simulation routine was performed using the same monitor as the laparoscopic
stack utilised in previous trials, but was completed using a keyboard.

Each preoperative simulation trial was limited to three minutes. This was controlled
by computer script in all cases, aside from the control group which was timed by a
supervising investigator. Participants could repeat the preoperative simulation routine
as many times as was their preference during this time. This time constraint was
based on pilot data and was employed to ensure parity between different preoperative
simulation routines. To further ensure equivalent conditions, each participant was
given the same written instructions before each preoperative simulation and assessment,
which were very similar to those used in Experimentα: Appendix E.

The first three forms of preoperative simulation were chosen as they were shown
to be effective during Experimentα and Experimentβ; repetition of the task was ben-
eficial during the previous two experiments, as was the PS that provided relevant
information to the participants (αPS:K&S and βPS:O). The final preoperative sim-
ulation (γPS:C,K&RFS) was developed to investigate the effect of task variation in
preparing a surgeon to operate. Varying a task during learning has been shown to
improve performance at subsequent novel (though related) tasks [104, 148–151]. When
presented with a novel task after experiencing random variation of similar tasks, par-
ticipants demonstrate key components of structural learning: a facilitation of learning
tasks with the same structure, a significant reduction in the interference that typically
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occurs when switching between tasks that have alternative control strategies, and a
preference to explore a novel task along the previously learnt structure [149]. Con-
sequently, to investigate if such an effect could also be demonstrated in preoperative
simulation, γPS:C,K&RFS was intended to introduce further variation into the la-
paroscopic sequence learning task. Some variation exists within the assessment task
due to the fuzzy location parameter (squares could vary in location by ±3). However,
the amount of variation is fixed and squares will remain in the same basic location
as their PSL (i.e. Square 3, Green will remain in the bottom left corner of the array
during each repetition). However, γPS:C,K&RFS breaks both of these conventions
by varying the amount that squares can move (from one - five squares in the x or y
direction), which can result in squares entirely changing their location (Square 3 could
be in the top left corner). γPS:C,K&RFS aims to determine if increased exploration
can improve preparation in a similar manner that it aids learning.

In relation to clinical practice, γPS:C,K&RFS aims to explore the effect of variation
in preoperative simulation. This is crucial as the majority of current preoperative
simulation routines utilise unchanging simulations (see Chapter 2). This have been
criticised [152] as not being representative of the surgical population, where anatomical
variations are common [145, 146].

9.2 Results

Three participants (Participant No. 4, 8 and 9) did not complete any assessment of PS
as they chose not to finish the study. Three participants (Participant No. 16, 38 and 40)
were unable to demonstrate having reached a plateau of performance during any of the
γLearn trials and were consequently excluded. Six participants (Participant No. 5, 14,
21, 27, 34 and 42) did not complete all preoperative simulations and consequently had
to be excluded from initial analysis, but four did complete four of the five assessments
of PS and so were included in planned comparisons. Three participants (Participant 7,
22 and 34) were excluded because their performance during assessment was more than
3 standard deviations (4.3, 4.2 and 10.1, respectively) away from other participants’
performance. Consequently, the analysis of preoperative simulation is based on twenty-
nine participants.

A repeated-measures ANOVA, adjusted as Mauchly’s test indicated the assumption
of sphericity had been violated (χ2 = 29.8, p < 0.001) using Green-house-Geisser esti-
mates of sphericity (ε = 0.638), did not show a main effect of preoperative simulation
on performance F (2.55, 71.48) = 1.37, p = 0.261, η2

p = 0.047. Although previously
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Fig. 9.2 Performance following Preoperative Simulation during Experimentγ. Significant
effects are highlighted. The error bars represent the 95% CI of the mean.
Note: Smaller scores represent better performance.

described as post-hoc analysis, each experiment (α, β and γ) has planned compar-
isons - the interaction of interest is control cf. preoperative simulation. Consequently,
while the overall ANOVA did not reach significance, it is not always necessary for
the null hypothesis of homogeneity to be rejected before performing further compar-
isons [153]. Planned comparisons revealed significantly better performance following a
colour, kinematic and random fuzzy spatial preoperative simulation, when compared
to control (p = 0.027); Figure 9.2. Details of all comparisons are given in Table 9.1.

Table 9.1 All planned comparisons performed in Experimentγ.

Comparisons
Factor 1 Factor 2 Mean Difference p
Control Observe 2.032 0.304

Spatial 1.758 0.373
Fuzzy 1.068 0.588

Random Fuzzy 4.403 0.027
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9.3 Discussion

The results of Experimentγ suggest preoperative simulation can have an effect on
subsequent performance, but this improvement is seen in only one of the conditions -
γPS:C,K&RFS. The nature of the effective preoperative simulation differed in Experimentγ
from the previous two experiments.

Experimentα did not differentiate between colour and spatial information in terms
of importance - the task could be completed using colour alone, spatial alone or a com-
bination of both. However, participants showed a strong preference for utilising spatial
information, both during the learning trials and at assessment of preoperative simu-
lation, where spatial information alone was the most effective preoperative simulation
method. Repetition of the same task was also a beneficial form of PS, and interestingly,
a colour only preoperative simulation seemed (if anything) to hamper performance.

During Experimentβ colour information had primacy - given the random spatial
arrangement each time the task was performed, spatial information was not helpful
in completing the task. Providing a participant with the relevant information (colour
sequence information) by way of watching a video was the most effective preoperative
simulation. Requiring the participant to plan and execute movements that were not
subsequently associated with the assessed task, in addition to this colour information
(βPS:C), was not beneficial. Again, repetition of the task was also found to be an
effective preoperative simulation.

Experimentγ was an attempt to balance the importance of spatial and colour infor-
mation and create a hybrid of the two previous experiments. Consequently, it followed
a similar design to Experimentα, but with a reduction in the reliability of spatial in-
formation - using fuzzy spatial location parameters results in a general spatial location
that a square could occupy, but this location could change to a certain degree with each
repetition. As well as balancing the informational importance between Experimentα
and β, this reduction in spatial accuracy was designed to reflect clinical practice, as pre-
viously described. The altered distribution of importance between spatial and colour
information in Experimentγ resulted in findings that are quire different to the preceding
experiments.

Repeating a task prior to performing an assessed version of the same task was
not beneficial during Experimentγ. Providing participants with colour and spatial
information, by watching a video of performance (γPS:O), was not a beneficial form of
preoperative simulation. The PS that was helpful during Experimentγ was arguably
the most demanding of all the preoperative simulation tasks; γPS:C,K&RFS. One
potential explanation for the observed results could be the ambiguity, introduced by
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the inherent variability, of the Experimentγ task.
In all of the experimental tasks (α, β&γ) the stimuli of interest is considered biva-

lent; it has two dimensions (colour and spatial location), which is of relevance to the
task being performed. Bivalent stimuli have dual affordances and have the potential
to activate both the correct and incorrect response, in a bottom-up manner, which can
lead to interference between the two competing responses [154]. Though first demon-
strated ninety years ago [155], there has been increasing evidence that even single trials
are enough to link a specific stimulus (e.g. picture-word combinations) to a specific task
set (e.g. picture naming) and that later involvement of the same stimulus in a different
task (e.g. word reading) is associated with significant slowing of the task, above and
beyond that associated with switching between tasks [156–158]. The use of bivalent
stimuli can create task ambiguity by the bottom-up cuing of the incorrect task set,
and this ambiguity has a greater influence under conditions of task uncertainty [159].
It should also be noted that when utilising bivalent stimuli, participants also have the
ability to filter out irrelevant variation in the stimulus, though this has been associated
with a performance cost in some studies [160, 161], but not others [159].

During the performance of Experimentα, colour information was not utilised by
participants in order to complete the task and during Experimentβ spatial information
was unhelpful. Participants seem able to discount the irrelevant information in each
trial, after they have been cued by an appropriate preoperative simulation, without a
significant performance cost. However, Experimentγ was designed so that both colour
and spatial information need to be used to complete the task optimally, meaning nei-
ther aspect of the bivalent stimuli can be simply discarded. Cueing participants to
do this (as with γPS:O or γPS:C,K&S) could result in the stimulus being bound to
the wrong response and consequently interfering with performance. The difference in
the experimental tasks could be responsible for the difference in effective preoperative
simulations between Experiments α, β and γ, as different information (colour, spatial
or both) was relevant to performing the task. Alternatively, γPS:O may not be effec-
tive at engaging the colour set during Experimentγ, in contrast to Experimentβ, as
discussed below.

The ineffectiveness of γPS:C,K&FS (the other contrast to Experiments α and β)
may be explained by the lack of the reverse Stroop effect. A counterintuitive finding of
recent experimentation in the cognitive psychology literature has been that it can be
more difficult to switch to an easy task than a more challenging one. This was initially
demonstrated by Allport, Styles and Hsich [157], and has been subsequently replicated
by a number of studies [162–166].

Participants take longer to name a colour if displayed as an incongruent stimu-
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lus (e.g. the word ‘red’ written in green ink) than for congruent (‘green’ written in
green ink) or neutral (‘xyz’ displayed in green ink) stimuli - the Stroop effect [167].
However, word-naming trials are only minimally affected by displaying the word in a
contradictory colour; there is only a marginal or no reverse Stroop impediment. This
asymmetrical finding has been hypothesised to be due to the much greater practice a
participant has at reading than colour-naming, resulting in a much greater tendency
to name a word than the colour it is written in [168, 169].

Allport et al. [157] reasoned that when participants want to name a colour, a strong
top-down control is required to overcome the formidable tendency to name the word
and assist the weaker response to name the colour. This bias will necessitate greater
activation of the colour-naming set and/or active suppression of word-naming set. It
is thought these biases can persist over time, resulting in what Allport et al. described
as task-set inertia (TSI). This results in persistent facilitation of colour-naming and/or
suppression of word-naming even after a switch to a word-naming task. This causes
a significant cost when participants switch from colour- to word-naming. Conversely,
the more dominant word-naming task does not require a strongly imposed control as
there is minimal competition to name the colour. This lack of strong control inertia
makes is relatively easier to switch from word- to colour-naming.

Returning to Experimentγ, it is highly likely that participants will preferentially
locate a square due to its spatial location, as humans are much more practiced at iden-
tifying objects by their location (cf. an arbitrary colour) [128–131], and as evidenced
by the results of Experimentα. Consequently, utilising colour information is likely to
require a strong top-down control to overcome the tendency to utilise spatial location.
This can occur, as shown in Experimentβ. However, it is likely to result in task-set
inertia. While Experimentγ was designed to create a balance between spatial location
and colour information, even if this balance was perfectly 50:50, the innate preference
for spatial information is likely to drive participants to try and utilise spatial informa-
tion. Consequently, while γPS:O was initially envisioned as the effective colour-PS, as
participants could also use it to glean spatial location information, they are likely to
do just that. The same is true of γPS:C,K&S and γPS:C,K&FS - while spatial infor-
mation is less reliable during γPS:C,K&FS when compared to γPS:C,K&S, it may still
be reliable enough for participants to attempts to utilise the information, given their
preference for spatial information. γPS:C,K&RFS presents the least reliable spatial
information, as squares can move between ±1 and ±5 squares with each repetition.
Under such conditions, the general spatial rules can be broken - using Figure 9.1a as
an example, the orange square will remain in the bottom right corner for each repe-
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tition of all PS conditions1, with the exception of γPS:C,K&RFS, where, if able to
move ±5 squares, the orange square may end up in the bottom left or top right area
of the array. This increased unreliability of spatial information may have been enough
to encourage participants to utilise colour information during γPS:C,K&RFS. Such
an approach would necessitate active facilitation of the colour-processing set and/or
suppression of the spatial-location set, which would confer a TSI that could persist to
the assessment trial. Use of colour information, by prior (and persistent) activation by
the γPS:C,K&RFS preoperative simulation, during the assessment trial may explain
why γPS:C,K&RFS improved participants’ performance. Utilising colour information,
being always consistent with each repetition of the task, may represent the most effec-
tive way of completing the Experimentγ assessment task, but is likely to be at odds
with participants innate strategy preference. This suggests participants may not use
the best approach to complete a task, unless primed by an appropriate preoperative
simulation, despite previous exposure to the more effective method.

9.4 Implications for Preoperative Simulation in Clin-
ical Practice

The results of the three experimental investigations of preoperative simulation present
some fascinating insights into the potential use of PS in clinical practice.

Preoperative simulation has a significant effect on subsequent performance. All of the
experimental conditions revealed some forms of PS that improved performance
relative to control, and this tallies with the conclusions presented in Chapter 2.

A simplified, relevant preoperative simulation can prepare participants to complete a
laparoscopic sequence learning task (Experiments α and β). The nature of this
PS is dependent on the strategy utilised by the participant to complete the task,
and may not require ‘active’ (motoric) performance of the participant.

Repetition of a task improves subsequent performance. The results of Experimentα
and β demonstrate this phenomena, and this finding is supported by a wealth of
literature from disparate fields. While the importance of this finding is arguably
less relevant than the above statement, it does present a opportunity to examine
the practice of PS in current clinical practice - see Chapter 10.

1During γPS:C,K&FS and γPS:O squares could move ±3 squares, which resulted in squares re-
maining in the same general area, though their precise location changes with each repetition. During
γPS:C,K&S the spatial location of squares was fixed.



9.4 Implications for Preoperative Simulation in Clinical Practice 101

Experimentγ illustrates what is potentially a very interesting finding; preoperative
simulation has the ability to change a participants method of completing a task,
resulting in improved performance. It should be noted that, during all of the
experimental conditions, participants had to complete each repetition of the task
before moving onto the next. Therefore, the assessment of preoperative simula-
tion does not examine if participants could complete the task (all of the assess-
ment tasks were completed), but if they could complete it optimally. Applying
this to clinical practice, it may be that a surgeon could perform an operation, but
in a way that is suboptimal. Preoperative simulation may be able to optimise a
surgeons performance, even overcoming a preferred (but less optimal) strategic
approach. This could be particularly influential for trainees, facilitating optimal
performance in practice and the development of ideal operative strategies.

To try and extrapolate these experimental findings to current clinical practice, an
investigation into the effect of operating list order, used as a real-world surrogate of
preoperative simulation, on operative outcomes was conducted; Chapter 10.



Chapter 10

Evaluation of Preoperative
Simulation in Clinical Practice

The experimental results of the previous chapters demonstrate that a simplified, rel-
evant preoperative simulation can prepare a participant to complete a laparoscopic
sequence learning task. These findings suggest that performing a relevant, simplified
PS prior to performing laparoscopic surgery may improve a surgeon’s performance
and hopefully, by extension, patient outcomes. The findings of experiments α, β and
γ are strengthened by the rigorously controlled nature of the investigations and are
supported by the existing (less well controlled) literature and theoretical framework.
However, in order to achieve adequate control of extraneous factors that may affect per-
formance, the aforementioned experiments are significantly removed from the reality
of performing minimally-invasive surgery. To counter this reduction in direct clinical
relevance, a ‘big data’ investigation of the effect of preoperative simulation on actual
clinical practice was utilised.

‘Big data’ is variously defined [170], but practically relates to large datasets that are
routinely collected in healthcare and require advanced data processing and analytics.
The utility of big data to surgical practice is being increasingly explored [171–174], and
there is great hope for its application - it has been argued that it has the potential to
allow personalised, precision healthcare [174, 175], and deliver significant cost savings
[176]. However, the application of big data is in its infancy [177], and implementation
issues remain [178]. Despite these concerns, if the problems surrounding implemen-
tation can be overcome, big data analysis remains a powerful method of examining
current practice.

In order to investigate the effect of preoperative simulation in clinical practice,
the natural experiment [179] of repeating a procedure during an operating list was
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examined. It was reasoned that, if a surgeon performs more than one of the same type
of procedure during an operating list (which frequently occurs in clinical practice),
it may be that the first operation can act as a form of preoperative simulation and
prepare the surgeon for the second case. This would mirror the findings of Experimentα
and Experimentβ, both of which demonstrated performing a preoperative simulation
which was the same as the assessed task significantly performed performance: §5.2,
§7.2. Due to the inherent difference in people and their disease processes, repeating
the same operation will not involve the surgeon performing exactly the same procedure,
however, the same overarching sequence of steps that will need to be performed will be
the same, and consequently repetition may aid performance. Alternatively, allowing
a degree of exploration within a single procedure, by performing the same procedure
on two different individuals sequentially, may improve performance during the second
procedure (as per Experimentγ).

10.1 Preliminary Analysis

A preliminary, proof-of-concept investigation was conducted using locally available
data. Utilising a previously published dataset of all laparoscopic cholecystectomies
performed at Leeds Teaching Hospitals NHS Trust over a fifteen year period [178],
we reanalysed the data, looking specifically at the effect of performing more than one
laparoscopic cholecystectomy, by the same surgeon, on the same list.

Basic statistical analysis (Mann-Whitney U) was used to compare the operative
time of the first laparoscopic cholecystectomy to that of subsequent laparoscopic chole-
cystectomies performed by the same surgeon on the same list. Operative time was
shown to be significantly shorter for subsequent cases (x̃ = 62mins) when compared
to the first case (x̃ = 65mins), U = 676368, p = 0.0239, r = 13786.213. Interestingly,
despite shorter operating times, patients who were not operated on first had a signifi-
cantly longer inpatient stay (x̃ = 1) than the first case on the list (x̃ = 1), U = 783692,
p = 0.0007, r = 15316.537.

There are a number of potential explanations for the above findings, which cannot
easily be differentiated between using the preliminary dataset. Subsequent operative
times could be reduced because the surgeon was prepared to operate by the first case,
while a longer inpatient stay was due to subsequent patients returning to the ward
at a later time to those first on the operative list. Alternatively, surgeons may have
operated faster, but not better, during subsequent cases and the longer inpatient stay
was due to a higher complication rate experienced during subsequent cases. The longer
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operative time found during the first case may be because some surgeons will prioritise
what is thought to be the most difficult case to the beginning of an operative list.
The dataset was also unable to quantify the effect of training on the reported outcome
metrics - the reduction in operative times of subsequent cases may reflect a learning
process in junior surgeons. The preliminary dataset is unable to explore any potential
causal relationship between the data, but it does suggest that operative list order has
an effect on operative performance and patient outcomes, and consequently is worthy
of further investigation.

10.2 Analysis of Spire Healthcare Operative Data

To further investigate the effect of operative list order on surgical performance, oper-
ative data from all Spire Healthcare hospitals was obtained following ethical approval
from the Spire Research Ethics Committee (SRECSE01, 13-Feb-2015); Appendix H.

Although the majority of healthcare delivery in the United Kingdom is provided
by the National Health Service (NHS), the private sector is used by 10-22% of the
population, dependent on region [180, 181], and this dataset was chosen to address
the above research question for three reasons. First, these data could be pooled across
multiple hospitals (a considerable logistical challenge in the NHS, due to the (quite
public) failure to develop a single, integrated electronic patient record [182–184]). Sec-
ond, all operations performed in private hospitals in the UK must be conducted by
consultant (attending) surgeons - thus eliminating the effects of training and ensuring
all procedures on a theatre list are performed by a single practitioner. Third, the use
of private healthcare data from the UK more closely mirrors that of other Western
countries [185].

Data from all operations performed across Spire Healthcare’s thirty-eight UK hos-
pitals between 1st April 2013 and 31st May 2015 was extracted from Spire Healthcare’s
electronic theatre management system (SAP SE, Walldorf, Germany). Patient demo-
graphics, procedural/operative information, prognosticators of operative outcome (age
and American Society of Anaesthesiologists’ classification of physical status; ASA-PS
[186]) and hospital length of stay (LOS) were included in the dataset. Age was di-
vided into blocks, to allow adequate anonymisation of data (<18 years; 19-24; 25-34;
35-44; 45-54; 55-64; 65-75 and >75 years). Only cases with complete information were
included. This dataset contained 478,713 operations.

The 35 most frequently observed operations in the dataset were the primary focus
of investigation. No restriction was placed on the surgical sub-speciality, the type of
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Table 10.1 Illustration of absolute and procedure specific list number and ‘switch’ classifi-
cation

Procedure Absolute List No. Procedure Specific List No. Switch?
Laparoscopic Cholecystectomy 1 1
Open Inguinal Hernia Repair 2 1 Yes
Laparoscopic Cholecystectomy 3 2 Yes
Laparoscopic Cholecystectomy 4 3
Open Inguinal Hernia Repair 5 2 Yes

procedure performed, or the techniques used by the operating surgeon to perform the
procedure. The collated data were parsed to allow further analysis; individual surgeon’s
operating lists were identified and any instance when one of the most frequent 35
operations was performed during an operating list was included in the dataset (98,291
lists). Any other procedure performed during said list was also included in the dataset
(total procedures = 255,757 cases).

Component operations were allocated ‘absolute’ and ‘procedure specific’ order num-
bers. The absolute list number refers to the number of procedures performed by the
operating surgeon on the list, whereas the procedure specific list order is the number of
times a certain procedure has been performed by the surgeon on a list. All cases that
did not involve repeating the same procedure were coded as a ‘switch’ – because they
involved some form of task switching [187]: Table 10.1. Procedures were also classified
by modality (open or minimally invasive surgery [MIS]) and complexity, as per the
AXA Specialist Procedure Codes, which is used to grade the magnitude of surgical
procedures in UK independent hospitals [188]: Table 10.2.

From the original dataset comprising 478,519 individual procedures, we excluded
8,807 cases because they had no surgeon ID associated with them and 1,422 cases where
no start time was recorded. Thirty-two duplicate records were also removed (Figure
10.1). Whilst such instances were relatively trivial to identify, a more difficult challenge
in analysing routinely collected data lies in identifying cases where erroneous data might
have been entered e.g. the wrong start type or procedure type or instances where
missing data might have been due to procedures that were ultimately cancelled. All of
these factors are likely to influence procedure order classification. This introduced noise
but we reasoned that the noise would work against the hypothesis being tested (because
our hypothesis suggests that the preceding operation n–1 affects the subsequent one,
so in instances where data are missing, using n-2 would make it more likely that we
would reject the hypothesis). Importantly, because of the statistical power afforded
to us by a dataset of this size, we were willing to tolerate this noise in the data and
adopt a conservative approach to the hypothesis testing and therefore did not adjust
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Table 10.2 Procedure modality and complexity classification of the included 35 operations

Procedure
Code

Procedure Description Modality Complexity

G451 Oesophago-gastro-duodenoscopy (OGD, with biopsy of
lesion) MIS Intermediate

H229 Endoscopic Examination of Colon (Unspecified, Diag-
nostic) MIS Intermediate

F0910 Extraction of Impacted/Buried Tooth/Teeth Open Intermediate
O291 Subacromial Decompression Open Intermediate
T202 Primary Inguinal Hernia Repair (with mesh) Open Intermediate
J183 Cholecystectomy Open Complex
V544 Spinal Injection NA Intermediate
B3121 Bilateral Augmentation Mammoplasty Open Intermediate
Q1800 Hysteroscopy MIS Intermediate

Q3800 Laparoscopy and Therapeutic Procedure (Gynecologi-
cal) MIS Major

A5770 Facet Joint Injection NA Intermediate
C751 Lens Implant Open Major
A577 Injection Around Spinal Nerve Root (Therapeutic) NA Intermediate
J1830 Laparoscopic Cholecystectomy MIS Complex
W371 Primary Total Hip Replacement with Cement Open Complex
W401 Primary Total Knee Replacement (with cement) Open Complex
T2000 Primary Inguinal Hernia Repair Open Intermediate
W903 Joint injection (Therapeutic) NA Minor
W381 Primary Total Hip Replacement (without cement) Open Complex
A6510 Endoscopic Carpel Tunnel Release MIS Intermediate
W822 Endoscopic Resection of Semilunar Cartilage MIS Intermediate
W4210 Total Knee Replacement +/- Cement Open Complex
W3712 Primary Total Hip Replacement +/- Cement Open Complex
W8500 Knee Arthroscopy (multiple) MIS Major
A5210 Epidural Injection NA Minor
C7122 Phakoemulsification of Lens with Implant Open Intermediate
A651 Carpal Tunnel Release Open Intermediate
W8200 Arthroscopic Meniscectomy MIS Major
M4510 Cystoscopy (Diagnostic) MIS Minor
H2002 Colonoscopy (Diagnostic) MIS Intermediate
G6500 OGD (Diagnostic) MIS Minor
G8082 OGD + Colonoscopy MIS Intermediate
H2502 Flexible Sigmoidoscopy (Diagnostic) MIS Minor
W9030 Joint Injection (with image guidance) NA Minor
25120 Dorsal Root Ganglion Block NA Intermediate
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list order numbering (which would have required us to make subjective inferences).
Operating time was employed as the primary outcome measure. Generally, this

measure was defined as the time from skin incision to skin closure and in procedures
where a skin incision is not made (such as endoscopic examinations), we analysed
the time taken for the procedure to be performed (defined as the time from insertion
to withdrawal of the endoscope in the case of endoscopic examinations). This was
chosen because: (i) it is strongly correlated with surgeon performance (the focus of
this study) [189] and (ii) others have shown a relationship between this metric and
clinical outcomes across a range of operations [189–192]. In addition, operative time
is routinely recorded in Spire Healthcare hospitals, and is not affected by a loss of
patients to follow up, unlike other measures of clinical outcome e.g. hospital mortality.
Length of hospital stay (in minutes) was investigated as a secondary outcome measure.

10.2.1 Statistical Analysis

Operation times are zero-bound and present a skewed distribution [193]. Therefore,
for all analyses, a change in natural logarithmic operation time (which can be seen as
equivalent to measuring proportional time changes for relatively small magnitudes) was
focussed on. A model was created to capture the effects of absolute list order, procedure
specific list order and procedure switching across the full range of list positions to
understand the relationship between list composition and operating time. As different
operations might yield distinctly different patterns of results, analysis was conducted
at an operation level to allow individual operations to be compared against the same
types of procedures (i.e. total knee replacements were only compared to total knee
replacements and not to lens phakoemulsification).

The dataset included information on factors known to correlate with postopera-
tive outcomes (ASA-PS [194–197] and age [198–200]) and consequently these poten-
tial confounds were controlled for. Different patient ages and ASA-PS scores along
with different surgical procedures would imply different ‘normal’ operation lengths and
therefore, these baseline operation lengths were treated as random effects, shared by
all operations of the same type, on the same age block and with the same ASA-PS. In
reality, operations on similar age blocks or similar ASA-PS will have similar baselines:
For example, a 34 year old with a ASA-PS classification score of II is more similar to a
40 year old with a score of II than an 80 year old with a score of IV. However, we did
not wish to make assumptions about the relationship between operating time and these
factors. Instead, we adopted a statistically more conservative approach by assuming
that these random effects are independent between pairs of operations (unless all three
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of these variables were identical). The restricted-likelihood maximisation via the Lme4
package [201] was used to fit the linear mixed effects model in R (R Development
Core Team, 2016) and estimate the effect-size and probability values (alpha threshold
of p < 0.05) for the fixed effects of list order (absolute and procedure specific) and
switching.

For a closer examination of the primary effects observed in the data, a form of
matched analysis was performed on a subset of the data. This analysis was inspired
by (but not identical to) a novel method for identifying causal relationships in natural
experiments [202]. Here, the data were stratified into multiple sets of pairs by explicitly
matching individuals who had the same age, ASA-PS and operation type, but differed
in list order by one position. Specifically, the data was initially filtered by procedure
type, then all cases that were ordered as procedures 1 and 2 were identified and sepa-
rated into different data frames (List Order 1 and List Order 2). Then all cases in List
Order 1 (presented in a randomly determined order) were sequentially cycled through
to compare with elements of List Order 2 which had the same Age block and ASA-
PS score. If a case could be matched, then this pair was included in the subsequent
analysis and removed from the pool. In the case of multiple matches from List Order
2 with List Order 1, the computer programme randomly selected one case for the pair
and the non-selected case(s) were returned to the pool for a future possible matches.
Each patient was paired to only one other individual and only patients for whom a pair
could be found were included. The matching process terminated when no more unique
pairs could be found. This approach presents a method for statistically controlling for
all the potential confounding variables available in our dataset.

In addition to these primary analyses, an investigation was undertaken to identify:
(i) whether these effects translated across modality (i.e. open and MIS); and (ii) if
the impact of list order was modulated by procedure difficulty. For this first question,
procedures were separated by classifying them as those performed using open tech-
niques and MIS and for the second question, procedures were classified by difficulty
and subsequently the matched analysis was repeated.

To provide a measure of the magnitude (or effect size) of the analysed variables on
list order, the change in the log scale for the linear effects model and mean difference
in the log duration of the procedures in the matched analysis is reported. Change in
log duration is, to a high degree of approximation, the geometric average of the pro-
portional percentage (%) change in operation duration, thus change % for all outcomes
is referred to, to provide an intuitive means of understanding these data. The Flow
Chart in Figure 10.1 provides an illustration of how sample sizes for the linear effects
model and matched analyses were determined.
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Fig. 10.1 Flow chart illustrating how sample sizes were determined for the linear mixed
effects and matched analyses from the original dataset.
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Fig. 10.2 Forest plot showing the percentage change in operative time for the influence
of fixed model parameters absolute list order, procedure specific list order, and procedure
switch. Negative values indicate the percentage reduction in operative time given an increase
in each parameter and positive values indicate the percentage increase in operating duration.
The top row in each panel shows the overall effect of each fixed parameter. Error bars denote
standard error.
Note: For details of procedure codes see Table 10.2.

10.3 Results

The linear mixed effects model revealed statistically reliable differences in operating
time for the fixed effects of absolute list order, procedure specific list order and switching
(p′s < 1 × 10−16) when pooling across operations. The effect sizes – which can be
treated as percentage change in operative time as a function of list position change –
were largest for procedure specific list order and switching. The percentage change in
operative time for each procedure can be seen in Figure 10.2.

For absolute list order, statistically significant effects suggesting each position in the
list decreases operation time by 0.39% (SE = ±0.02%) were found across all operations.
These effects are substantially greater when the same procedure is repeated in a list,
with the effect of procedure specific list order leading to a 0.98% (SE = ±0.05%)
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Fig. 10.3 The effect of procedure specific list order on operative time (minutes) for open
hernia repair, oesophageal-gastro-duodenoscopy (OGD) and lens replacement. Error bars
denote standard error.

reduction. A cost associated with switching between different operations in a list –
leading to an increase in operation time by 6.48% (SE = ±0.22%) was also found for
each increase in position on list order.

To illustrate this effect on individual procedures, Figure 10.3 demonstrates the ef-
fect of procedure specific list order on operative time for three exemplar procedures,
routinely performed a differing numbers of times on an operative list. There was a
marked similarity in the pattern of results across these distinct procedures, indicat-
ing that fatigue, inattention and monotony-related performance impairments following
multiple repetitions of a procedure are not present in these data.

Using the same linear mixed model to analyse LOS, statistically reliable effects
of absolute and procedure specific list order (p′s < 1 × 10−16), but not switching
procedure (p = 0.0136) were found. Specifically, the data indicates that for every
increase in absolute position, LOS increases by 0.53% (SE = ±0.03%). However,
procedure specific list order results in a decrease in LOS by 0.72% (SE = ±0.07%).

The matched analysis allows a focus on the effects of repeating a procedure in more
detail on the primary outcome measure of operating duration. A total of 48,632 pairs
were matched out of a maximum 48,699 cases (99.86% of total cases; with the sample
size being constrained by the number of cases with procedure specific list order of 2
in the dataset). Here, we found statistically reliable improvements (p < 0.05) in 29
out of the 35 procedures, with changes in operative time ranging from a reduction of
3.84% (SE = ±1.21%) to 17.25% (SE = ±3.34%): Figure 10.4. Pooling across all 35
procedures showed a 6.18% (SE = ±0.27%) reduction in operating time (p < 1×10−16)
on average when performing the second procedure relative to the first.

Supplementary analyses allowed these results to be teased apart in more detail. The
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Fig. 10.4 Forest plot of matched analysis illustrates the percentage change in operative
time for procedure specific list order 2 procedures compared to list order 1. Twenty-nine
procedures showed statistically reliable reductions in operating time, with a pooled effect of
6.48% reduction. Error bars denote standard error.
Note: For details of procedure codes see Table 10.2.
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Fig. 10.5 Percentage change in operation time for (A) modality and (B) procedure com-
plexity in matched analysis. There were no statistically reliable differences in each panel,
illustrating the effects are consistent across modality and procedural complexity. Error bars
denote standard error.

matched analysis was conducted separately for open and minimally invasive procedures,
and comparable effects of list order on operating duration were found – indicating that
this phenomenon transcends operating modality: Figure 10.5A. Finally, by separating
procedures based on their complexity, a weak positive trend was found but, overall,
there were no differences in effect size as a function of difficulty, with the reduction in
operating time ranging between 4.80%- 7.50%: Figure 10.5B.

10.4 Discussion

The above data demonstrates, for the first time, that the order in which procedures are
performed has a predictive relationship with operation duration. Most notably, this
result was relatively consistent across thirty-five different types of operations, suggest-
ing the effect is independent of procedure type. The effects were similar for open and
MIS procedures, and operations of differing complexity yielded comparable results. In
contrast, switching between different procedures resulted in increased operating du-
ration. These changes in operating time are particularly significant given that they
were observed in highly trained individuals with several years of practice (consultant
surgeons). The results are all the more remarkable when one considers the wide range
of factors that can potentially influence procedure duration. The consistency of this
pattern of results across procedure type, modality and complexity provides compelling
evidence that operating list order plays an important role in surgical performance.

The reduction in operative time may be a consequence of the attending surgeons
being prepared to operate by the preceding case. This finding is supported by the more
significant reduction in operative time demonstrated by increasing procedure specific
list number (cf. absolute list number) and that switching tasks produced the oppo-
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site effect. This suggests that the preceding case may act as a form of preoperative
simulation. It would also suggest that there are generic aspects operating that can
be facilitated by any preceding case (as demonstrated by reduced operative time with
increased absolute list number), but the effect is greater with a specific form of preop-
erative simulation, as evidenced by the greater effect on operative time with increased
procedure specific list number.

This hypothesis is further supported by the findings of list order on LOS. These
initially seem contradictory; increasing absolute list number increases LOS, whereas in-
creasing procedure specific list order reduces LOS. However, these results may also be
explained if a specific preoperative simulation is more effective than a generic preoper-
ative simulation. That absolute list number increased LOS seems intuitive, as patients
who are operated on later in a list are less likely to be discharged on the same day as
surgery (although Spire Healthcare hospitals will discharge patients up until 22:00 for
day-case procedures, if a procedure hasn’t finished until 21:30, it is less likely that said
patient will be discharged the same day cf. a patient whose operation finished at 11:00).
This effect is likely to act to increase the LOS for increasing list numbers. However, a
specific preoperative simulation may have a profound effect on performance, resulting
in better clinical outcomes and a reduced LOS. For procedure specific list order, this
improved performance may exert a greater effect than the inherent increase in LOS
associated with later cases, indicating a specific preoperative simulation is particularly
impactful (and reducing LOS for increasing procedure specific list order). A generic
preoperative simulation (as provided by increasing absolute list order) does not pro-
duce a large enough effect to overcome the inherent effect of increasing LOS on later
procedures.

Switching procedures was associated with a cost. Increased task duration as a con-
sequence of switching has long been established in experimental psychology [187], but
this is the first demonstration of its influence on surgical performance. This finding is
significant as the vast majority of the experimental psychology literature demonstrates
this effect on dramatically simplified tasks (cf. surgery). It is also important to note
that the cost of switching described in the experimental psychology literature is usu-
ally a time cost; increased errors are associated with switching, but the finding is less
reproducible experimentally [187], and usually of a lesser magnitude, than an increase
in time: see Figure 10.6 as an example. It is possible that participants take longer in
order to ensure fewer errors occur, under certain conditions.

A switching cost may also explain some of the experimental findings of the ESOX
experiments, for example, the effect of a colour preoperative simulation on performance
during EXOSα (see Chapter 5). During ESOXα, spatial information was strongly
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part of TSR cannot be done until exogenously triggered
by stimulus attributes that are associated with the
task; Rubinstein et al. [14] characterize this part as
retrieval of stimulus–response rules into working
memory. An alternative account, from De Jong [15],
makes no distinction between endogenous and exogen-
ously-triggered TSR. It proposes that, although sub-
jects attempt TSR before stimulus onset (given the
opportunity), they succeed on only a proportion of
switch trials. If they succeed they are as ready for the

changed task as on a task-repetition trial. If they ‘fail
to engage’, the whole TSR process must be performed
after stimulus onset. This idea of TSR as a probabil-
istic all-or-none state change is supported by the fit of
a discrete-state mixture model to the distribution of
reaction times (RTs) on prepared switch trials [15,16].
But why should TSR be all-or-none? One rationale is
that TSR includes an attempt to retrieve either the
goal or the task rules from memory; retrieval attempts
either succeed or fail [17,18].

Fig. 1. Predictable and unpredictable task switching. In this experiment (Ref. [42], Exp. 2), the tasks were to classify the digit as either odd/even or high/low, with a left or
right key-press. (a) For some subjects, the task was cued by the background colour (as illustrated) and for others by the background shape; the colour or shape changed at
the beginning of every trial. The response–stimulus interval in different blocks was 50 ms, 650 ms and 1250 ms, during which subjects could prepare for the next stimulus.
In some blocks, the task changed predictably every four trials (with a ‘clock hand’ rotating to help keep track of the sequence): the ‘switch cost’ was limited to the first trial
of the changed task (b). In other blocks, the task varied randomly from trial to trial and recovery from a task switch was more gradual. In both cases, the switch cost was
reduced by ,50% by extending the time available for preparation to 650 ms (the ‘preparation effect’); a further increase had little effect (the ‘residual cost’). These data
demonstrate that, at least in normal, young adults, even with complete foreknowledge about the task sequence, switch costs are large, and that recovery from a task switch
is characteristically complete after one trial. When the task is unpredictable, recovery might be more gradual, but a few repetitions of a task results in asymptotic readiness
for it. (Data redrawn with permission from Ref. [42].)
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Fig. 2. Preparation effect and residual cost. (a) In this experiment (Ref. [13], Exp. 3), the stimulus is a character pair that contains a digit and/or a letter. The tasks were to clas-
sify the digit as odd/even, or the letter as consonant/vowel. The task changed predictably every two trials and was also cued consistently by location on the screen (rotated
between subjects). (b) The time available for preparation (response–stimulus interval) varied between blocks. Increasing it to ,600 ms reduced switch cost (the ‘prep-
aration effect’), but compared with non-switch trials there was little benefit of any further increase, which illustrates the ‘residual cost’ of switching. (Data redrawn with per-
mission from Ref. [13].)
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Fig. 10.6 The effect of predictable and random switching, reproduced from Monsell et al.
[203] (Experiment 2). In this experiment, designed to look at the effect of predictable and
unpredictable switching, the tasks were to classify the digit as either odd/even or high/low,
with a left or right key-press. The effect of switching was significant in terms of time (RT) for
both conditions, but only made a significant difference to errors when switching was random,
not predictable.

preferred by participants, both during the learning and assessment of preoperative
simulation phases. A colour preoperative simulation seemed to diminish performance
(though this did not reach significance cf. control). Having undertaken the colour
preoperative simulation (which was performed on a tablet computer), participants
then had to switch to perform the experimental task in a laparoscopic box trainer,
possibly reverting to try and utilise spatial information. This switch in approaches
and/or methods of performing the task may be responsible for the lack of efficacy of a
colour preoperative simulation during ESOXα.

Switching was associated with a significant increase in operative time, which tallies
with the experimental psychology literature [187, 204, 205] and the previous experi-
mental findings. Switching had no effect on LOS which may be because surgeons took
additional time in order to ensure errors did not occur. Errors are inconsistently re-
ported in clinical practice [206], but the majority of errors in surgery have been shown
to be as result of technical errors during routine procedures performed by experienced
surgeons [207], which can lead to significant disability and death [208]. Any significant
technical error is consequently likely to increase LOS.
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As well as demonstrating a cost associated with switching, the experimental psy-
chology literature also shows this cost can be reduced if advanced knowledge of an
upcoming task is provided [187], although preparation does not usually eliminate the
cost entirely [209, 210]. The operating surgeon will know, in the elective setting, what
procedure is due to be performed next and this knowledge, in conjunction with a pri-
oritisation of error-free surgery at a additional time cost, may be responsible for the
switching results demonstrated. The causative mechanism for the cost associated with
switching is still in dispute; although initial theories attempted to explain the phenom-
ena using a single description [157, 211], there now seems to be consensus that there
are a multitude of causes, although the precise mix remains in contention [187].

One limitation of the current analyses is that it cannot speak to the exact mech-
anism of performance facilitation. Such a method of study as utilised here results in
a loss of experimental control over the factors that affect surgical practice. However,
there are significant advantages with a big data approach, which stem from the very
large sample sizes involved. Some of the importance placed upon experimental control
during other forms of investigation is due to the loss of statistical power that can result
from uncontrolled measurement [212]. A loss of statistical power is not an issue with
large sample sizes. Consideration does need to be given to the ways in which a loss of
experimental control could introduce systematic confounds into the data. ‘Slicing’ can
attempt to rectify this issue. During conventional experimentation, attempts are made
to control potential confounds in advance of conducting the study. The slicing of big
data allows the post hoc control of potential confounds, by selecting multiple different
sub-datasets, without a loss of statistical power [212] (for example, the matched anal-
ysis performed on pairs of patients explicitly matched for the potential confounds of
age and ASA-PS). Additionally, the results presented in this chapter triangulate well
with existing empirical work showing preoperative simulation reduces operative times,
as described in Chapter 2, and demonstrated experimentally in Chapters 5, 7 and 9.

The data presented here also have practical implications. An overall 6.2% saving
in operation time (which could be as large as 18% in some procedures) was found for
repeating the same procedure on the list – even after controlling for age and ASA-PS.
This control is particularly important as anecdotal evidence indicates that surgeons
typically take these factors into account when compiling their lists, but the data indi-
cate that the process of list ordering itself impacts on operative time above and beyond
the variance captured by age and ASA-PS.

It is possible to argue that these effects are modest on average (for example, per-
forming two successive laparoscopic cholecystectomies results in the second procedure
being 6 minutes shorter, on average). On the other hand, the cumulative accrual of
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even modest gains can produce substantial benefits when scaled across health services
- particularly important in the context of surgical service delivery given the growing
economic pressures to optimise elective surgeries [213]. This idea is central within com-
petitive sport where many disciplines have been transformed by identifying small but
readily implementable changes. These ‘marginal gains’ have produced a substantial
aggregate effect of performance improvements, as evidenced by ever-improving world
records. While the full extent of the impact of these effects remains to be seen, to
put the results in context, it is worth noting the potential benefits. Just over half of
the cases (52%) analysed are a switch from the preceding case, and the results demon-
strate switching is responsible for a 6.48% increase in operative time. Consequently,
as a crude approximation, in Spire Leeds Hospital over the course of a year, switching
between different operations accounts for approximately 24 days of operating time.

In summary, the results demonstrate, for the first time, that the duration of an
operation is modulated by list order and this effect is robust to operation complexity
and modality.



Chapter 11

Conclusions

In this thesis, three approaches to investigate the effect of preparing to operate be-
fore performing minimally-invasive surgery have been undertaken; systematic review,
experimental psychology, and big data analytics.

Having outlined the theoretical background for this work (Chapter 1) and performed
a systematic review of current understanding (Chapter 2), a bespoke simulator was
developed to study the effect of preoperative simulation under controlled laboratory
conditions (Chapter 3). The following six chapters (4-9) present the results of three
controlled, randomised crossover trials examining the effects of preoperative simulation
on a laparoscopic sequence learning task. Finally, a big data investigation of the effect
of a proxy of preoperative simulation in current clinical practice was presented (Chapter
10).

The main results of this thesis are summarised in greater detail in §11.1. Following
this, in §11.2, is a discussion of some of the main areas that have emerged for further
work.

11.1 Summary of Results

Chapter 2 presents a review of the current literature evidence for preoperative sim-
ulation, conducted in accordance with PRISMA guidelines [69]. From four hundred
and eighty-three articles identified using the search strategy, thirteen were included
for review. A variety of experimental designs were included, from RCTs to case stud-
ies that did not contain a control group. All of the included studies suffered from
methodological shortcomings, but twelves of the thirteen studies concluded that pre-
operative simulation improves surgical performance, in both real-patient and simulated
environments. The work in this chapter is published in Ref. [46].
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In stark contrast to the development of novel pharmaceutical compounds, the ma-
jority of surgical techniques and procedures have not been developed in a structured
manner, utilising animal or artificial models, prior to their practice on patients [214];
they have evolved in current clinical practice, through a process of ‘trial and error’
[215]. Though it has been argued that such a process drives innovation [216], it also
presents an ethical conundrum by experimenting on patients. Chapter 3 attempts to
address such ethical concerns by detailing the development of a bespoke laparoscopic
sequence learning task that can be utilised in the assessment of preoperative simulation
under controlled, laboratory conditions, building on some of the theoretical frameworks
discussed in Chapter 1. Though somewhat necessarily removed from the practice of
minimally-invasive surgery, the task (ESOX) allows for detailed metrics of performance
to be generated without (significant) risk.

Utilising the ESOX program, three randomised, controlled crossover experiments
were conducted, Experiments α, β and γ. All shared similar experimental designs of a
learning phase (Chapters 4, 6 and 8), designed to teach participants the specific laparo-
scopic sequence learning task and a subsequent assessment of the effect of preoperative
simulation on the previously learnt task (Chapters 5, 7 and 9).

The experimental chapters demonstrated that repetition of a procedure improves
subsequent performance; a theorem that was subsequently demonstrated in clinical
practice in Chapter 10. Perhaps more relevant to the concept of preoperative simula-
tion, a simplified, relevant procedure was also shown to be able to improve subsequent
performance. Exactly what form the preoperative simulation should take is determined
by the nature of the task/operation being performed and is likely to reflect how that
procedure was learnt. Interestingly, preoperative simulation was also shown to be able
to modify participants’ approach to completing a task, overriding their initial preferred
method, to condition participants to use a better method of completing the task. These
findings could have the potential to improve trainee performance, allowing a shortening
of the learning curve and a hastening of independent practice (of particular import due
to the reduction in both training time and opportunities afforded to current trainees
[217]). Additionally, it may have a significant impact on expert performance by mit-
igating the effect of switching operations, demonstrated in Chapter 10, which cannot
always be avoided in practice. The majority of work in this chapter is published in
Ref. [218].

Finally, in Chapter 10, the results of a big data investigation into the effects of
a proxy of preoperative simulation in current practice was presented. As there are
currently no uniformly accepted methods of preoperative simulation and methods of
preparing to operate vary significantly between surgeons, the natural experiment of
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repeating a procedure during a operating list was used to investigate PS, with the
first case acting as the preoperative simulation for the second. For the first time, the
order in which procedures are performed was shown to have a predictive relationship
with operative duration (a surrogate for operative quality). This finding was relatively
consistent across thirty-five different procedures (open and MIS, and from minor to
complex), suggesting the effect is independent of procedure type. This finding was
reinforced by the demonstration of the effect of switching procedures, which lead to
significantly increased operative times. The work in this chapter has been published
in Ref. [219].

11.2 Further Work

There are two main further areas of work emerging from this thesis.
The potential of preoperative simulation has been demonstrated in the literature,

through empirical laboratory-based experimentation and by big data investigation of
current practice. Expanding on this evidence base by using preoperative simulation in
simulated clinical practice is the next step in developing this nascent field. The most
effective way of proceeding might be to incorporate preoperative simulation into current
training; this could both accelerate the learning curve of trainees and demonstrate the
relevant information that may form the basis of an effective preoperative simulation.

The utility of big data investigation has been effectively demonstrated in this thesis.
Further exploration of large-scale datasets could provide further insights, particularly
by utilising NHS data, which may allow parsing of the effect of preoperative simulation
on training, among other avenues of investigation.



Appendix A

Risk of Bias Tables

Risk of bias tables for included RCTs, as per Cochrane risk of bias tool [70].
Risk of bias table for included cross-over trials, as per Mills et al. [71].

Table A.1 Summary of risk of the included RCTs

Random
Sequence
Generation

Allocation
Concealment

Bliniding of
Outcome

Assessment

Incomplete
Outcome
Data

Addressed

Selective
Reporting

Plerhoples et al. ? ? + - +
Weston et al. + + + + +
Chen et al. + + - + +
Lendvay et al. + + + + +
Arora et al. ? + + - +
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Appendix B

Outcome Measures of Included
Studies

Table B.1 Outcome measures reported by the included studies [72–84].

Authors Outcome Measure Details Results Significance

Kroft et al. Timing Score 600 - Time - 10(penalties) NS †

Willaert et al.

Global Rating
Scale

OSATS-derived Global Rating
Scale

Patient-specific PS >

Generic PS > control

p = 0.038
&
p = 0.050

Procedure-specific rating
scales

NS

Dexterity
Metrics’

Total Procedure Time
Patient-specific PS >

Generic PS > control
p = 0.001

Fluroscopy Time
Patient-specific PS >

Generic PS > control
p = 0.022

Contrast Volume NS
Number of Roadmaps NS
Time to catheterise the CCA NS
Time to catheterise the ICA NS
Total time that the embolic
protection device was deployed
in the ICA

Patient specific PS >

Generic PS & control
p < 0.001

Subjective Ques-
tionnaire

5-point Likert scale
Patient-specific PS >

Generic PS > control
p = 0.017

Do et al.
Timing Score ‡ Time Taken

No. of tablets transferred PS > control p = 0.0001
% difference be-
tween warm-up &
follow-up

Warm-up−Follow-up
Warm-up ∗ 100 PS > control

p = 0.0001
&
p = 0.0112

Moldovanu et al.
Global Rating
Scale

Total OSATS Score NS
Respect for Tissue PS > control p = 0.034
Time & Motion NS
Instrument Handling NS
Depth Perception NS
Bimanual Dexterity NS
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Authors Outcome Measure Details Results Significance

Overall Impression NS

Rosser et al.

Cobra Rope Task Time taken to uncoil a string PS > control p < 0.05
Triangle Transfer
Drill

Time taken & errors made NS

Slam Dunk Drill Time taken & errors made NS
Interrupted Intra-
corporeal Sutures

Time taken & errors made PS > control p < 0.05

Composite Score
Time taken performing each
drill + errors (error = 5s)

NS ¶

Lee et al.

Cognitive
Performance

Attention PS > control p < 0.02
Distraction / drowsiness PS > control p < 0.001
Mental Workload PS > control p < 0.02
Index of Cognitive Activity Unclear

Psychomotor
Performance

Hand Movement Smoothness PS > control p < 0.03
Tool Movement Smoothness PS > control p < 0.05
Posture Stability PS > control p < 0.05

Global Rating
Scale

For Mobilisation of the Colon PS > control p = 0.04
For Intracorporeal Suturing &
Knot Tying

NS

Calatayud et al.
Global Rating
Scale

Total OSATS Score PS > control p = 0.042
Respect for Tissue NS
Time & Motion NS
Instrument Handling NS
Knowledge of Instruments NS
Use of Assistants NS
Flow of Operation & Operative
Planning

NS

Knowledge of Specific Opera-
tion

NS

Lendavay et al.

Time Time to Complete Task PS > control p = 0.001

Simulator-generated
metrics

Tool Path Length PS > control p = 0.014
Economy of Motion NS
Technical Errors NS
Cognitive Errors NS

Global Technical
Error

Error Count PS > control p = 0.020

Kahol et al.

Experiment 1

Gesture-level Proficiency PS > control p < 0.005
Hand-movement Smoothness PS > control p < 0.005
Tool-movement Smoothness PS > control p < 0.005
Time Elapsed PS > control p < 0.005
Cognitive Errors PS > control p < 0.005

Experiment 2

Gesture-level Proficiency PS > control
p < 0.001
&
P < 0.004

Hand-movement Smoothness PS > control
p < 0.02 &
p < 0.001

Tool-movement Smoothness Unclear
Time Elapsed NS

Cognitive Errors PS > control
p < 0.004
&
p < 0.001
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Authors Outcome Measure Details Results Significance

Plerhoples et al.

Object Positioning
Task

Time NS
Path Length NS
Smoothness NS
Hand Dominance NS
Errors PS > control p = 0.01

Tissue
Manipulating
Task

Time NS
Path Length NS
Smoothness NS
Hand Dominance NS
Errors PS > control p = 0.05

Total Scores

Time NS
Path Length NS
Smoothness NS
Hand Dominance NS
Errors PS > control p = 0.002

Weston et al.
Global Rating
Scale

Depth Perception NS
Bimanual Dexterity NS
Efficiency NS
Tissue Handling NS

Chen et al.
Global Rating
Scale

Reznick subscale (Total Score) PS > control p < 0.001
Respect for Tissue PS > control p = 0.005
Time & Motion PS > control p = 0.004
Instrument Handling PS > control p < 0.001
Knowledge of Instruments PS > control p < 0.001
Use of Assistants PS > control p = 0.028
Knowledge of Specific Proce-
dures

PS > control p = 0.001

Vassiliou subscale
(Total Score)

PS > control p < 0.001

Depth Perception PS > control p < 0.001
Bimanual Dexterity PS > control p < 0.001
Efficiency PS > control p < 0.001
Tissue Handling PS > control p = 0.004
Autonomy PS > control p < 0.001
Kundhal subscale
(Total Score)

PS > control p < 0.001

Respect for Tissue PS > control p = 0.028
Precision of Operative Tech-
nique

PS > control p < 0.001

Economy of Movement PS > control p < 0.001
Confidence of Movements PS > control p = 0.001

Arora et al. ?

Global Rating
Scale

Total OSATS Score PS > control p < 0.001
Respect for Tissue Not Reported
Time & Motion Not Reported
Instrument Handling Not Reported
Knowledge of Instruments Not Reported
Use of Assistants Not Reported
Flow of Operation & Forward
Planning

Not Reported

Knowledge of Specific Proce-
dure

Not Reported
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Authors Outcome Measure Details Results Significance

Mental Imagery
Questionnaire

How ready or ‘energised’ do
you feel..?

PS > control p < 0.01

How confident do you feel..? PS > control p < 0.001
How well do you think you can
perform... compared with oth-
ers..?

PS > control p < 0.001

How helpful is the [PS] activity
in preparing you..?

PS > control p < 0.001

How easily can you ‘see’ your-
self performing..?

PS > control p < 0.001

How vivid & clear are the im-
ages in your mind..?

PS > control p < 0.001

How easily can you feel yourself
performing..?

PS > control p < 0.001

How easily would you be able
to talk someone through the
steps..?

PS > control p < 0.001

† Kroft et al. report a significant result but only when junior residents were excluded from
analysis and when the warm-up was completed in the second session.
‡ Note: if participants failed to complete the task within the allotted time, a different scoring
system was used (number of tablets transferred).
¶ Reported as "marginally significant" at p = 0.07.
? Results from Session 5 (final session).



Appendix C

Underlying Processes Examined by
the Included Studies

Table C.1 Summary of the underlying cognitive processes examined by the included studies

Author Preoperative Simulation Learning Processes
Kroft et al. Simple Simulated Task ‘Fast’
Willaert et al. Generic Simulation and Specific Simulation ’Fast’ & ’Slow’
Do et al. Simple Simulated Task ‘Fast’
Moldovanu et al. Simplified Simulated Task ‘Fast’ & ‘Slow’
Rosser et al. Motor System Warm-up (Computer Game) ‘Fast’
Lee et al. Simplified Simulated Task ‘Fast’
Calatayud et al. Simplified Simulated Task ‘Fast’
Lendavay et al. Simplified Simulated Task ‘Fast’
Kahol et al. Simplified Simulated Task ‘Fast’
Plerhoples et al. Motor System Warm-up (Computer Game) ‘Fast’

Weston et al. Simplified Simulated Task and Motor System Warm-
up (Computer Game) ‘Fast’

Chen et al. Simplified Simulated Task ’Fast’
Arora et al. Mental Practice ‘Slow’
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Individual Learning Results from
Experimentα
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Table D.1 Individual Performance during αLearn:K&S.
Results marked with † indicate participants who did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.9425 282078 174000
2 0.9072 5045 235000 †
3 0.9482 78846 125000 †
4 Interrupted - -
5 0.9488 94152 164000 †
6 1 1060000 1030000
7 0.994 566365 407000
8 0.9881 193195 131000
9 0.9657 371853 225000
10 0.9975 393726 295000
11 0.9703 171458 127000
12 0.8976 563518 279000
13 0.8193 193442 146000
14 0.9768 288912 147000
15 0.9934 335772 220000
16 0.8688 160486 198000 †
17 0.9803 229611 189000
18 0.8481 464381 223000
19 0.8625 383330 179000
20 0.9824 268816 177000
21 0.9919 180560 176000
22 0.9974 199826 138000
23 0.8931 131865 134000 †
24 0.9862 256263 158000
25 0.7216 137334 128000
26 0.9909 211437 141000
27 0.7255 198583 134000
28 0.9498 165974 104000
29 0.5738 572038 153000
30 0.9981 229843 147000
31 0.9848 230144 149000
32 0.9951 230144 169000
33 0.878 1619000 876000
34 0.5908 139186 107000
35 0.8429 371423 156000
36 0.9928 279865 172000
37 0.9888 209210 127000
38 0.9724 289983 197000
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Table D.2 Individual Performance during αLearn:C,K&S.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.5529 191609 129000
2 0.6138 326107 183000
3 0.6788 120555 96000
4 0.01352 ‡ 251049 146000
5 0.9963 170957 156000
6 0.8332 -959226 378000
7 0.9455 339257 278000
8 0.6833 185799 146000
9 0.7365 260772 174000
10 0.94 -41570000 265000
11 0.5522 39433 132000 †
12 0.737 203047 175000
13 0.8831 166667 127000
14 0.6742 239329 170000
15 0.6742 239329 170000 †
16 0.6964 230751 146000
17 0.8723 -85570000 169000
18 0.9752 -333300000 206000
19 0.8935 200059 140000
20 Interrupted - -
21 0.9999 151761 177000 †
22 0.9999 151761 177000 †
23 0.7194 -36408 130000
24 0.1912 ‡ 219864 149000
25 0.5507 256263 98500
26 0.522 123630 133000 †
27 0.9426 126934 111000
28 0.2137 ‡ 60497 110000
29 0.823 233299 147000
30 0.7001 -82430000 149000
31 0.7034 -151400000 134000
32 0.5382 65324 141000 †
33 0.8175 675711 518000
34 0.8144 131611 112000
35 0.8543 -59988 117000
36 0.6078 238871 131000
37 0.9062 125989 118000
38 0.9749 186602 160000
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Table D.3 Individual Performance during αLearn:C.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.1825 ‡ 8444 3850
2 0.9682 6560 4260
3 0.2041 ‡ 1344 1570 †
4 0.8653 5242 2870
5 0.6716 2736 1730
6 0.6246 14682 10600
7 0.9726 3531 2260
8 Interrupted - -
9 0.3935 -3919 1930
10 0.4207 -96828 1310
11 0.9319 3067 1050
12 0.7793 512.1 1770 †
13 0.8409 1212 1670
14 0.01191 ‡ -167500000 4630
15 0.7767 3965 2970
16 0.9805 7622 2970
17 0.8791 2447 1630
18 Interrupted - -
19 0.6339 1912 2480 †
20 0.5644 -5660000 4270
21 Interrupted - -
22 Interrupted - -
23 0.6703 1718 1260
24 0.8146 4161 2430
25 0.6519 2557 1440
26 0.6174 1785 3590 †
27 0.7016 -1570000 1960
28 0.04231 ‡ 3378 920
29 0.7628 3417 3060
30 0.5884 -6661 1670
31 0.5989 2313 1580
32 0.6985 4153 1760
33 Interrupted - -
34 0.2241 ‡ 2278 1350
35 0.389 4061 1960
36 Interrupted - -
37 0.8252 2564 1200
38 Interrupted - -



Appendix E

Instructions to Participants
(Experimentα)

E.1 Learning-Phase Instructions

E.1.1 Learning Sequence Information
Please enter your participant code. Once you press return, you will see 16 numbered, coloured
squares in a circle. The aim of this task is to move a pen-like stylus to each square, in order.
You start the task by clicking on the screen. Once you do this, the numbers will disappear.
You need to remember the order of squares and move to each in order. Once you reach the
correct square, it will disappear.

We would like you to be both quick and accurate. During this part of the experiment, we
aim to teach you the colour of the squares and so you can repeat the task as many times as
you’d like. However, each time you repeat the task, the position of the squares in
the circle will change. The numbers will always stay the same (i.e. Square 1 will always
be blue).

E.1.2 Learning Motoric Information
Please enter your participant code. Once you press return, you will see 16 numbered squares
distributed across a grid. The aim of this task to to move the laparoscopic instrument to
each square, in order. You start the task by clicking on the screen. Once you do this, the
numbers will disappear. You need to remember the order of squares and move to each in
order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. During this part of the experiment, we
aim to teach you the location of the squares and so you can repeat the task as many times
as you’d like.
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E.1.3 Learning Combined Information
Please enter your participant code. Once you press return, you will see 16 numbered, coloured
squares distributed across a grid. The aim of this task to to move the laparoscopic instrument
to each square, in order. You start the task by clicking on the screen. Once you do this, the
numbers will disappear. You need to remember the order of squares and move to each in
order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. During this part of the experiment, we
aim to teach you the sequence of the squares and so you can repeat the task as many times
as you’d like.

E.2 Assessment of Preoperative Simulation Instruc-
tions

E.2.1 Warm-up A (αPS:K&S)
Please enter your participant number. Once you press return, you will see 16 numbered
squares distributed across a grid. The aim of this task to to move the laparoscopic instrument
to each square, in order. You start the task by clicking on the screen. Once you do this, the
numbers will disappear. You need to remember the order of squares and move to each in
order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. You have three minutes to perform
this warm-up task, during which time you can repeat the task as many times as you’d like.

After three minutes, you will see another 16 coloured squares distributed across a grid.
This is the same task that you learnt during the earlier part of this experiment. The aim of
this task to to move the laparoscopic instrument to each square, in order. You start the task
by clicking on the screen. You need to remember the order of squares from before and move
to each in order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. This is an assessed task; you will
only have one attempt.

E.2.2 Warm-up B (αPS:C)
Please enter your participant number. Once you press return, you will see 16 numbered,
coloured squares in a circle. The aim of this task to to move the mouse to each square, in
order. You start the task by clicking on the screen. Once you do this, the numbers will
disappear. You need to remember the order of squares and move to each in order. Once you
reach the correct square, it will disappear.

We would like you to be both quick and accurate. You have three minutes to perform
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this warm-up task, during which time you can repeat the task as many times as you’d like.
Please remember that each time you repeat the task, the position of the squares in
the circle will change.

After three minutes, you will see another 16 coloured squares distributed across a grid.
This is the same task that you learnt during the earlier part of this experiment. The aim of
this task to to move the laparoscopic instrument to each square, in order. You start the task
by clicking on the screen. You need to remember the order of squares from before and move
to each in order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. This is an assessed task; you will
only have one attempt.

E.2.3 Warm-up C (αPS:O)
For this trial, you will see a video of someone performing the task you learnt during the
earlier part of this experiment. You have three minutes to review the video.

After three minutes, you will see another 16 coloured squares distributed across a grid.
This is the same task that you learnt during the earlier part of this experiment and the same
as shown in the video. The aim of this task to to move the laparoscopic instrument to each
square, in order. You start the task by clicking on the screen. You need to remember the
order of squares from before and move to each in order. Once you reach the correct square,
it will disappear.

We would like you to be both quick and accurate. This is an assessed task; you will
only have one attempt.

E.2.4 Warm-up D (αPS:K,S&C)
Please enter your participant number. Once you press return, you will see 16 numbered,
coloured squares distributed across a grid. This is the same task that you learnt during the
earlier part of this experiment. The aim of this task to to move the laparoscopic instrument
to each square, in order. You start the task by clicking on the screen. You need to remember
the order of squares from before and move to each in order. Once you reach the correct
square, it will disappear.

We would like you to be both quick and accurate. You have three minutes to perform
this warm-up task, during which time you can repeat the task as many times as you’d like.

After three minutes, you will see the same 16 coloured squares distributed across a grid.
The aim of this task to to move the laparoscopic instrument to each square, in order. You
start the task by clicking on the screen. You need to remember the order of squares from
before and move to each in order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. This is an assessed task; you will
only have one attempt.
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E.2.5 Warm-up E (Control)
For this trial, you get to play the game Tetris. You have three minutes to play the game
using the computer keyboard in front of you.

After three minutes, you will see another 16 coloured squares distributed across a grid.
This is the same task that you learnt during the earlier part of this experiment. The aim of
this task to to move the laparoscopic instrument to each square, in order. You start the task
by clicking on the screen. You need to remember the order of squares from before and move
to each in order. Once you reach the correct square, it will disappear.

We would like you to be both quick and accurate. This is an assessed task; you will
only have one attempt.
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Individual Learning Results from
Experimentβ
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Table F.1 Individual Performance during βLearn:K.
Results marked with † indicate participants who did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.831 3413 2250
2 0.9184 2798 1720
3 0.8562 2471 2070
4 0.6629 2304 1570
5 Interrupted - -
6 Interrupted - -
7 0.958 2751 1850
8 0.9712 1940 1600
9 0.8908 4268 2620
10 0.6488 2011 1990
11 Interrupted - -
12 0.9451 1740 1460
13 0.7002 1930 1320
14 0.621 1697 1780 †
15 0.9595 5533 3440
16 0.8856 2034 1960
17 0.8162 2109 1640
18 0.6021 -76785 2160
19 0.9255 3967 3540
20 0.4432 2887 1886
21 0.8739 3624 2950
22 0.6428 -138681 2810
23 0.9285 2955 2050
24 Interrupted - -
25 0.5215 3491 2740
26 0.6747 2178 1600
27 0.7132 4048 2870
28 0.7255 3020 2840
29 0.9983 5725 3590
30 0.7797 2337 2040
31 0.9279 1963 1630
32 0.728 1146 1750 †
33 0.5658 3324 2690
34 0.9335 2725 2210
35 0.9598 734.7 3520 †
36 Interrupted - -
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Table F.2 Individual Performance during βLearn:C&K.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.8566 3290 1880
2 0.7649 2767 1800
3 0.8155 2194 1760
4 0.9094 2732 1550
5 0.6472 11294 2920
6 Interrupted - -
7 0.4281‡ 713 1470 †
8 0.5085 1509 1130
9 Interrupted - -
10 0.7006 3012 1790
11 Interrupted - -
12 0.2137 ‡ 1811 1400
13 0.303 ‡ 1262 1130
14 Interrupted - -
15 0.6528 -3498000 3280
16 0.7923 1184 1940 †
17 Interrupted - -
18 Interrupted - -
19 0.6405 1740 2710 †
20 Interrupted - -
21 Interrupted - -
22 Interrupted - -
23 Interrupted - -
24 0.9217 -20851 3670
25 Interrupted - -
26 0.243 ‡ 2149 1380
27 0.9734 5530 6360 †
28 Interrupted - -
29 Interrupted - -
30 Interrupted - -
31 0.04266 ‡ 1872 1440
32 0.197 ‡ 1832 1420
33 Interrupted - -
34 0.6432 2518 1840
35 Interrupted - -
36 0.7974 7666 4070
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Table F.3 Individual Performance during βLearn:C.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.4118 ‡ -1239000 1670
2 0.6144 1141 1520 †
3 0.9404 1548 1080
4 Interrupted - -
5 0.6447 2671 1620
6 0.8044 997.9 525
7 Interrupted - -
8 0.7878 1365 688
9 0.05696 ‡ 3043 1050
10 0.5167 -653388 2080
11 0.8477 5710 1680
12 0.9199 909.1 521
13 0.7637 885.8 601
14 0.9047 1135 766
15 Interrupted - -
16 0.7073 -2386000 878
17 0.754 1884 1150
18 0.6319 -556.6 1210
19 Interrupted - -
20 0.8652 1246 733
21 0.4035 ‡ 432.1 1090 †
22 Interrupted - -
23 0.1639 ‡ 2391 1160
24 0.3982 1488 686
25 0.5357 -93864 851
26 0.7933 1397 666
27 Interrupted - -
28 0.9613 1438 1260
29 0.8438 1132 922
30 Interrupted - -
31 Interrupted - -
32 0.5359 1032 637
33 0.5488 1351 816
34 Interrupted - -
35 0.01584 ‡ 2993 1220
36 0.5418 533.7 944 †



Appendix G

Individual Learning Results from
Experimentγ
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Table G.1 Individual Performance during γLearn:C.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.05693 ‡ 2.256 4.32 †
2 Interrupted - -
3 Interrupted - -
4 Interrupted - -
5 0.1822 ‡ 9.123 4.3
6 Interrupted - -
7 Interrupted - -
8 0.8135 8.019 5.31
9 0.7576 8.703 4.4
10 0.2769 ‡ 3.083 3.36 †
11 0.5402 5.166 3.76
12 0.5454 7.4 5.02
13 0.2692 ‡ 3.878 6.24 †
14 0.2472 ‡ 4.874 3.31
15 0.8347 4.837 3.47
16 0.6361 -3896 7.03 †
17 0.5304 5.968 3.15
18 0.3725 ‡ 6.765 4.51
19 0.8738 4.171 3.58
20 0.1894 ‡ 2.047 3.49 †
21 Interrupted - -
22 0.9498 7.497 4.76
23 0.371 ‡ 6.708 3.02
24 Interrupted - -
25 0.4469 ‡ 7.144 3.04
26 0.7147 9.56 4.85
27 0.44 ‡ 4.867 3.56
28 0.5904 8.534 3.88
29 0.844 5.185 2.93
30 0.7581 9.044 4.42
31 0.2392 ‡ 8.099 5.41
32 0.9577 6.714 2.88
33 Interrupted - -
34 0.07585 ‡ 6.519 3.03
35 0.6291 4.108 2.62
36 0.5218 3.26 2
37 0.7337 6.216 3.17
38 0.08294 ‡ 7.472 3.15
39 0.06069 ‡ 5.351 3.21
40 0.2971 ‡ 4.17 2.43
41 Interrupted - -
42 0.3701 ‡ 7.374 4.28
43 0.7652 6.739 4.74
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Table G.2 Individual Performance during γLearn:C,K&S.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.5877 33447 28000
2 0.679 43592 33400
3 0.5838 34898 24100
4 0.002902 ‡ 913400000 52100
5 0.5838 34898 24100
6 0.4725 ‡ 49558 29500
7 0.9521 90606 51100
8 0.9968 65542 53700
9 0.809 62151 42800
10 0.8547 29375 29200
11 0.9111 44604 32500
12 0.927 41258 29100
13 0.7066 52419 36900
14 0.4992 ‡ 48927 33900
15 0.8608 46783 28200
16 0.058 ‡ 68080 41300
17 0.1209 ‡ 56837 28000
18 0.9666 41746 28300
19 Interrupted - -
20 0.998 39746 27200
21 0.4717 ‡ 42033 27400
22 0.8008 41438 34200
23 0.8741 35092 25300
24 0.5087 32983 28500
25 0.5395 13257 18700 †
26 0.8131 89193 50000
27 0.8444 56097 36800
28 0.8441 46795 35100
29 0.6342 27956 21300
30 Interrupted - -
31 0.7316 58698 40100
32 0.9128 96731 54600
33 0.6537 34349 29500
34 Interrupted - -
35 0.8808 34936 21400
36 0.6141 33768 23800
37 0.8156 40357 29300
38 Interrupted - -
39 0.2936 ‡ 50578 39100
40 0.459 ‡ 38309 24800
41 Interrupted - -
42 0.7389 62226 47400
43 0.911 46884 35100



145

Table G.3 Individual Performance during γLearn:C,K&FS.
Results marked with a ‡ indicate a low R2. Results marked with † indicate participants who
did not achieve a predicted plateau.

Participant No. Coefficient of
Determination (R2)

Predicted Plateau Minimum Achieved

1 0.001957 ‡ 14.18 8.62
2 0.285 ‡ 7.619 10 †
3 0.08494 ‡ 10.56 8.24
4 0.4138 ‡ 15.02 12
5 Interrupted - -
6 Interrupted - -
7 0.3615 ‡ 21.41 16.4
8 Interrupted - -
9 0.1021 ‡ 62151 42800
10 0.3468 ‡ -77.51 8.17 †
11 0.1739 ‡ 6.554 8.96 †
12 Interrupted - -
13 Interrupted - -
14 0.1341 ‡ 13.47 9.84
15 Interrupted - -
16 Interrupted - -
17 0.08419 ‡ 13.78 8.84
18 Interrupted - -
19 0.1719 ‡ -0.01834 9.14 †
20 0.1345 ‡ 9.512 7.95
21 0.9425 11.33 9.14
22 0.4512 ‡ 12.38 11
23 0.5666 11.34 6.94
24 Interrupted - -
25 Interrupted - -
26 0.3416 ‡ -129.5 14.4 †
27 0.2179 ‡ 13.67 11.7
28 0.6668 13.66 11.1
29 0.3879 ‡ 8.902 7.19
30 Interrupted - -
31 Interrupted - -
32 Interrupted - -
33 0.2722 ‡ 8.166 9.58 †
34 0.4615 ‡ 12.44 8.84
35 Interrupted - -
36 0.1518 ‡ 10.61 8.79
37 Interrupted - -
38 Interrupted - -
39 0.03023 ‡ 15.59 10.5
40 0.08697 ‡ 4.289 7.4 †
41 0.9543 9.829 8.03
42 Interrupted - -
43 0.5833 12.03 8.44
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Ž, et al. The impact of age on post-operative outcomes of colorectal cancer patients
undergoing surgical treatment. BMC Cancer. 2005;5(1):177–5.

[200] Al-Refaie WB, Parsons HM, Habermann EB, Kwaan M, Spencer MP, Henderson WG,
et al. Operative Outcomes Beyond 30-day Mortality. Ann Surg. 2011;253(5):947–952.

[201] Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using
lme4. J Stat Soft. 2015;67(1):1–48.

[202] Schutte S, Donnay K. Matched wake analysis: finding causal relationships in spa-
tiotemporal event data. Polit Geogr. 2014;41:1–10.

[203] Monsell S, Sumner P, Waters H. Task-set reconfiguration with predictable and unpre-
dictable task switches. Mem Cognit. 2003;31(3):327–342.

[204] Nieuwenhuis S, Monsell S. Residual costs in task switching: testing the failure-to-engage
hypothesis. Psychon Bull Rev. 2002;9(1):86–92.

[205] De Jong R. An intention-activation account of residual switch 43 costs. In: Monsell
S, Driver J, editors. Control of Cognitive Processes: Attention and Performance. MIT
Press; 2000. p. 357–376.

[206] White AD, Skelton M, Mushtaq F, Pike TW, Mon-Williams M, Lodge J, et al. In-
consistent reporting of minimally invasive surgery errors. Ann R Coll Surg Engl.
2015;97(8):608–612.



References 162

[207] Regenbogen SE, Greenberg CC, Studdert DM, Lipsitz SR, Zinner MJ, Gawande AA.
Patterns of technical error among surgical malpractice claims: an analysis of strategies
to prevent injury to surgical patients. Ann Surg. 2007;246(5):705–711.

[208] Vincent C, Neale G, Woloshynowych M. Adverse events in British hospitals: prelimi-
nary retrospective record review. BMJ. 2001;322(7285):517–519.

[209] Sohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS. The role of prefrontal
cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci USA.
2000;97(24):13448–13453.

[210] Kimberg DY, Aguirre GK, D’Esposito M. Modulation of task-related neural activity
in task-switching: an fMRI study. Brain Res Cogn Brain Res. 2000;10(1-2):189–196.

[211] Rogers RD, Monsell S. Costs of a predictible switch between simple cognitive tasks. J
Exp Psychol. 1995;124(2):207–231.

[212] Stafford T, Dewar M. Tracing the trajectory of skill learning with a very large sample
of online game players. Psychol Sci. 2014;25(2):511–518.

[213] Fletcher D, Edwards D, Tolchard S, Baker R, Berstock J. Improving theatre turnaround
time. BMJ Qual Improv Report. 2017;6(1):u219831.w8131–6.

[214] Reitsma AM, Moreno JD. Ethical regulations for innovative surgery: the last frontier?
JACS. 2002;194(6):792–801.

[215] Miskovic D. Proficiency gain and competency assessment in laparoscopic colorectal
surgery. Department of Surgery and Cancer. Imperial College London; 2012.

[216] King B, Jatoi I. The mobile Army surgical hospital (MASH): a military and surgical
legacy. J Natl Med Assoc. 2005;97(5):648–656.

[217] Pike TW, Stobbs N, Mushtaq F, Lodge JPA. The effects of an e-textbook and the
’reverse classroom’ on surgical training. Ann R Coll Surg Engl (Suppl). 2015;p. 10–13.

[218] Pike TW, Mushtaq F, Wilkie RM, Lodge J, Mon-Williams M. How should surgeons
warm up? An experimental psychology approach. JSS. 2017;4:B6–B6.

[219] Pike TW, Mushtaq F, Mann RP, Chambers P, Hall G, Tomlinson JE, et al. Operating
list composition and surgical performance. Br J Surg. 2018;.


	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Surgery as a Motoric Skill
	1.2 Learning and Performance Behaviour
	1.2.1 Sequence Learning
	1.2.2 Adaptation

	1.3 Off-line Processing and Consolidation
	1.4 Summary of Motor Skill Learning Theory & Relation to Laparoscopic Surgery
	1.5 Structure of Thesis

	2 Systematic Review of Current Evidence
	2.1 Methods
	2.1.1 Inclusion Criteria
	2.1.2 Exclusion Criteria
	2.1.3 Outcome Measures
	2.1.4 Study Selection
	2.1.5 Data Extraction
	2.1.6 Risk of Bias Assessment
	2.1.7 Statistical Analysis

	2.2 Results
	2.2.1 Study Characteristics
	2.2.2 Assessment of Bias
	2.2.3 Reported Outcomes
	2.2.4 Studies Reporting Global Rating Score
	2.2.5 Studies Reporting Performance Time
	2.2.6 Studies Reporting Time-based Score
	2.2.7 Studies Reporting Cognitive Performance
	2.2.8 Studies Reporting Simulator-generated Metrics
	2.2.9 Studies Reporting Mental Imagery
	2.2.10 Studies Reporting Participants' Perception
	2.2.11 Studies Examining Outcomes in Real Patients
	2.2.12 Underlying Processes Examined by the Included Studies

	2.3 Discussion

	3 ESOX: A Programmable Laparoscopic Sequence Learning Task
	3.1 The ESOX program
	3.1.1 ESOX Metrics

	3.2 Premise of the ESOX Program
	3.3 Experimental Designs
	3.3.1 Assessment of Learning


	4 Experiment: Learning-Phase
	4.1 Experimental Task 
	4.2 Methods
	4.3 Analysis
	4.3.1 Sample-size Calculation
	4.3.2 Participants
	4.3.3 Randomisation and Blinding
	4.3.4 Ethical Approval

	4.4 Results
	4.4.1 Averaged Learning Results
	4.4.2 Individual Learning Results

	4.5 Discussion

	5 Experiment: Assessment of Preoperative Simulation
	5.1 Methods
	5.2 Results
	5.3 Discussion

	6 Experiment: Learning Phase
	6.1 Experimental Task 
	6.2 Methods
	6.3 Analysis
	6.3.1 Sample-size Calculation
	6.3.2 Participants
	6.3.3 Randomisation and Blinding
	6.3.4 Ethical Approval

	6.4 Results
	6.4.1 Averaged Learning Results
	6.4.2 Individual Learning Results

	6.5 Discussion

	7 Experiment: Assessment of Preoperative Simulation
	7.1 Methods
	7.2 Results
	7.2.1 Exclusion of Participant No. 5

	7.3 Discussion
	7.4 Experimental Comparisons

	8 Experiment: Learning-Phase
	8.1 Experimental Task 
	8.2 Methods
	8.3 Analysis
	8.3.1 Ethical Approval

	8.4 Results
	8.4.1 Averaged Learning Results
	8.4.2 Individual Learning Results

	8.5 Discussion

	9 Experiment: Assessment of Preoperative Simulation
	9.1 Methods
	9.2 Results
	9.3 Discussion
	9.4 Implications for Preoperative Simulation in Clinical Practice

	10 Evaluation of Preoperative Simulation in Clinical Practice
	10.1 Preliminary Analysis
	10.2 Analysis of Spire Healthcare Operative Data
	10.2.1 Statistical Analysis

	10.3 Results
	10.4 Discussion

	11 Conclusions
	11.1 Summary of Results
	11.2 Further Work

	A Risk of Bias Tables
	B Outcome Measures of Included Studies
	C Underlying Processes Examined by the Included Studies
	D Individual Learning Results from Experiment
	E Instructions to Participants (Experiment)
	E.1 Learning-Phase Instructions
	E.1.1 Learning Sequence Information
	E.1.2 Learning Motoric Information
	E.1.3 Learning Combined Information

	E.2 Assessment of Preoperative Simulation Instructions
	E.2.1 Warm-up A (PS:K&S)
	E.2.2 Warm-up B (PS:C)
	E.2.3 Warm-up C (PS:O)
	E.2.4 Warm-up D (PS:K,S&C)
	E.2.5 Warm-up E (Control)


	F Individual Learning Results from Experiment
	G Individual Learning Results from Experiment
	H Spire Research Ethics Committee Approval
	References

