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Abstract

This thesis tackles the problem of T-cell receptor (TCR) diversity, from two

different points of view. On one hand, the observed TCR diversity is studied

from a mathematical perspective, concentrating on the probability of a sample

to reproduce a certain percentage of the total TCR diversity. On the other

hand, biological samples are considered, focusing on statistical analysis of the

observed VDJ gene segments. To conclude, a stochastic model is developed

to explore the population dynamics of a simulated TCR repertoire. Com-

puter simulations complete this multidisciplinary approach, helping verifying

the different mathematical theories behind the stochastic models.
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4.15 J frequency plots for each näıve mouse compared to average frequencies of
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4.20 VJ plot for the näıve mouse BA3. . . . . . . . . . . . . . . . . . . . . . . . . 73
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Chapter 1

Biological Introduction

Immunology is the study of the different mechanisms of defense of the body against in-

fections. The disease-causing agents can be divided into viruses, bacteria, parasites and

fungi. Our body is constantly in contact with millions of them but only few represent a

real threat for it. The human body has three possible layers of defense against pathogens:

physical and chemical barriers, the innate immune system and the adaptive immune sys-

tem. Physical and chemical barriers, such as skin and mucosal epithelial lining of the

airways and gut, prevent pathogens from entering the body [113, 80]. When these barriers

are not sufficient for a certain pathogen, the innate immune system comes into play.

Before going further into the details of the innate part of the immune system, it is

worth clarifying that the immune system has four general main functions. The first one,

called immunological recognition, defines the very first step of defense after the physical

barriers have been overcome [28]. This task requires the ability of recognizing an infection

in the shortest possible time. The second important task includes all the so called immune

effector functions, such as the T-cell and B-cell activities. As for the third task, the immune

system has to have the capacity of self-regulation. This function is extremely important

and, in case of failure, it could bring to autoimmune diseases, allergies or over reactions

to pathogens [76]. Immunological memory is the last of the four tasks: once the body has

been exposed to a certain pathogen, a class of cells of the immune system, called memory

cells, are generated and remain in the circulation and tissues patrolling the environment

inside the body [1]. These cells will be the first reacting to a second possible entrance of

the same pathogen in the body, generating a much stronger and faster response than the

first one [113].

The innate immune system (or non-specific immune system) [3, 123], mainly composed

by cells that recognize and respond to pathogens in a generic way such as macrophages

[15], is able to set up a quick response (within hours) to microbial infections. The main

goal is to delay the growth of pathogen numbers in the body as much as possible, while the

adaptive immune response gets ready for action. This process is initiated when antigens,
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that is molecules or microbial components capable of inducing an immune response, reach

the secondary lymphoid organs such as lymph nodes, tonsils and spleen. Dendritic cells

[18], usually present in those tissues that are in contact with the environment such as skin,

play a critical role in the immune system activation. They are the main carriers of these

antigens from peripheral tissues to secondary lymphoid organs, where antigens will be

presented to T-cells and B-cells [19]. Macrophages, the mature form of monocytes (bone

marrow derived cells), are also a fundamental part of the innate response. Their role is to

kill microbes ingesting them [72]. During this process, macrophages secrete chemokines

and general cytokines [96], small molecules that cause inflammation and attract cells of

the adaptive immune system [114]. It is in fact this last mentioned property that gives the

name to chemokines, chemotactic cytokines. It refers to the ability to induce chemotaxis

(the movement of an organism in response to a chemical stimulus) in nearby responsive

cells. In this way, cells like monocytes or neutrophils are recruited from the bloodstream

into the infected tissue.

The inflammation process has now begun. Some pathogens have, unfortunately for us,

evolved in such a way to be able to evade these first two barriers. When this happens,

an action far more specific than the ones before is evoked: the activation of the adaptive

immune system. Its action is highly specific for a particular pathogen and takes longer

(maybe days) to be started. The main steps are the recognition of specific non-self antigens

among millions of self antigens, the generation of a response that is tailored to the specific

pathogen and the development of immunological memory [113, 23]. This capillary and

specific response is obtained thanks to specialized antigen receptors present on the surface

of the adaptive immune system cells [51]. Billions of cells are part of this system, generating

a vast repertoire of different antigen receptors and allowing the body to respond to ideally

every possible pathogen it could be exposed to [113, 172, 46]. Lymphocytes are the main

cells of the adaptive response, grouped in B-cells, T-cells, and natural killer cells (NK

cells) [10].

As previously said, the effectiveness of this response relies on the accuracy with which

the antigen is presented to these cells. Basically all cells in the body are able to present

a certain antigen on their cell surface, thanks to a biological complex called MHC (Ma-

jor Histocompatibility Complex) [87]. Some cells are more specialized than others in

the presentation process, being equipped with specific co-stimulatory ligands that can be

recognized by the co-stimulatory receptors on the surface of the T-cells [98]. These spe-

cialized cells are mainly B-cells and dendritic cells, and are known by the name of antigen

presenting cells (APCs). Next section will describe the T-cells, the main focus of this

thesis.
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1.1 T cells

T cells are a type of lymphocyte that play a central role in the adaptive immune system

response. They can be distinguished from other lymphocytes, such as B-cells and natural

killer cells (NK cells), by the presence of a T-cell receptor (TCR) on their cell surface, a

molecule responsible for recognizing antigens [152]. The co-evolution of TCR and MHC

complexes is the basis of an impressive recognition system, thanks to which minor changes

in the binding site (between MHC complex and the peptide) may lead to many different

coordinated T-cell responses [37].

Their name “T-cells” is due to their maturation process in the thymus [4, 113], an

organ in the upper chest. In fact, like B cells, they derive from multi-potent hematopoietic

stem cells in the bone marrow and, only after, they migrate to the thymus via the blood.

Here they undergo a strict selection process with thymic cells, shaping the mature T-cell

repertoire in the body. At this stage, they enter the bloodstream as mature näıve T cells.

Their main task is now to circulate through the peripheral lymphoid tissues looking for

their corresponding antigens. From these encounters the adaptive immune response will

be initiated against the particular pathogen.

There are two different groups of T cells, each with a distinct function. The first group

represents CD4+ T cells. Their name is due to the expression of the CD4 (Cluster of

Differentiation 4) glycoprotein on their cell surface [174]. The second one is constituted

by CD8+ T cells, expressing the CD8 (Cluster of Differentiation 8) glycoprotein [113, 127].

CD4+ T cells can be further split into helper T cells TH [122], T follicular helper cells

(TFH) [39] and regulatory T cells (Treg) [158, 22]. T helper cells (TH cells) assist (therefore

the name “helper”) other white blood cells during different immunologic processes, such as

the maturation of B cells and activation of cytotoxic T-cells and macrophages. They can be

further subdivided in different functional classes, mainly TH1, TH2 and TH17. The former,

TH1, produce a particular kind of cytokines called interferon gamma (IFNγ), capable to

activate macrophages [60]. TH2 produce other cytokines, IL-4, IL-5 and IL-13, helping

the recruitment of eosinophils and basophils [169]. TH17, so called from the cytokine

IL-17 that they produce, induce the arrival of neutrophils to the sites of infection. TFH

cells focus on helping B-cells in the lymphoid follicles, while Treg cells have the important

function of suppressing other T-cells responses when needed, helping to prevent negative

outcomes such as autoimmune diseases.

The activation of CD4+ T cells begins with the presentation and recognition processes

of peptide antigens between TCRs and MHC class II molecules, molecules expressed on

the surface of APCs [55]. Thanks to this, CD4+ T cells become activated starting to divide

rapidly and to secrete cytokines that regulate or assist the active immune response [4, 127].

Cytotoxic T-cells (CTLs or T-killer cells) are involved in the destruction of virally infected
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cells, tumor cells or cells that have been exposed to DNA damage for different reasons [20].

In order for the TCR to bind to the class I MHC molecule, a molecule expressed on the

surface of nearly all host cells, the former must be accompanied by a glycoprotein called

CD8, which is able to bind to the constant region of the class I MHC molecule. Once

being exposed to infected or nonfunctional host cells, CTLs release the cytotoxins that

enhance apoptosis (programmed cell death) in the infected cell.

Thanks to molecules secreted by other T cells called regulatory T cells, the CD8+ cells

can be inactivated to an anergic state, which prevents autoimmune diseases [4, 127]. It is

worth noticing that, as explained above, TCR is incomplete by itself. Its need to encounter

the stimulating ligand through the help of another cell is the main difference between a

TCR and antibodies, that can bind to antigens in absence of other structures [37]. Under

normal conditions of absence of any infection, the majority of the lymphocytes circulate

in the body (blood and limph) as small inactive cells with few cytoplasmatic organelles.

In this form they are referred to as näıve lymphocytes and all together they create the

näıve repertoire. A lymphocyte is then activated, by binding to an APC through the TCR

[65, 67]. Following activation, T cells undergo clonal expansions and their daughter cells

start differentiating into different functional classes [112, 33].

1.2 T-cells and repertoire development

As already outlined before, T cells develop from progenitors (same progenitors of the B

cells) that derive from pluripotent hematopoietic stem cells in the bone marrow. Their

maturation journey starts with the migration of these progenitors to the thymus, the

organ situated in the upper anterior thorax, above the heart. It is lobulated on its surface

and each of these lobules contains cortical and medullary regions. Once the progenitors

arrive in the thymus, they receive a strong signal from stromal cells directly through one

of their receptor called Notch1. This is the sign for the progenitors, to switch on specific

genes that induce the commitment to undergo the T-cell lineage rather than the B-cell

one. Once in the thymus, T-cell precursors start differentiating for up to a week before

undergoing a phase of massive proliferation. These developing thymocytes have to pass

through different steps before being able to leave the thymus. The first stage for this

population is called double negative (DN), reflecting the absence of both CD4 and CD8

molecules on their cell surface [114].

This phase can be further subdivided into four different passages, known as DN1, DN2,

DN3 and DN4. DN1 cells express the CD44 glycoprotein, typically used to track early

T-cell development. At this point the genes encoding for both chains of the TCR are still

in the germline configuration. Following with the maturation process, these lymphocytes

start expressing the alpha chain of the IL-2 receptor, known as CD25. This is step DN2,
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while the DN3 step is characterized by the decrease of CD44 expression. The somatic

recombination of the beta chain of the TCR starts in the DN2 phase and continues until

the DN3 one. Here the beta chain is coupled with a pre-T-cell alpha chain (pTα), form-

ing the pre-TCR. This immature TCR pairs with the CD3 (cluster of differentiation 3)

protein complex, inducing cell proliferation, the end of the β-chain rearrangement and the

expression of both CD8 and CD4. This step is the interface between DN4 and the first

step of the double-positive (DP) phase [69].

From this stage we have two different lineages: γ/δ and α/β T cells. The lineage α/β

represents the majority of the lymphocytes in the body and it is the only one presenting

the CD4 or CD8 molecules. The DP stage is characterized by cells that enlarge and start

dividing, reaching a following resting state after some divisions. The rearrangement of the

alpha chain of the TCR takes place now. These resting cells express low levels of TCR

and are now tested for their ability to recognize self-peptide: self-MHC complexes. Only

the ones that recognize these self-complexes are positively selected, and go on to mature

and express high levels of TCR. At the same time, they stop the expression of either CD4

or CD8, becoming single-positive T cells (SP) [53].

The other hard examination for these lymphocytes is the so called negative selection,

in which all the T-cells responding to self-peptides with high affinity are eliminated. This

is the main process that avoids possible autoimmune diseases. It has been clear for the

past 20 years that only 5% of the total DP lymphocytes are actually able to survive

this double-check, maturing as single positive and entering the blood stream [69, 162].

In these studies it was found that nearly 90% of developing thymocites die for neglect

(process killing those T cells which would not be functional due to their inability to bind

MHC), while a further 5% die for deletion. When we add this small survival percentage

to the thymic involution due to aging, it is clear that much more effort is needed in order

to understand the functional relationship between diversity and immune robustness.

An interesting fact is that thymic involution cannot be considered, by itself, the cause

of observed loss in diversity of the repertoire. In particular, a study [82] argues the im-

portance of future experimental capabilities, mathematical modeling and data analysis in

unraveling the interconnections among thymic involution and clonal expansions due to

virus infections or genetic mutations. On this matter, another study found challenging

results [130]. A part from confirming the fact that thymic involution does not imply a low

diversity in the repertoire, they found that age had an important impact on the inequality

of clonal sizes. In particular, the results were indicating an uneven homeostatic prolifera-

tion in elderly individuals, where this unevenness was not related to clonal expansions in

the memory sub-population. Most remarkably, the authors clearly state their opinion on

the difference between human and animals repertoires, comparing their results to those
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of a similar study [52] :“Conclusions for the human repertoire from animal models are

unreliable because the size of the T-cell compartment and mechanisms and kinetics of

T-cell homeostasis are fundamentally different in humans and mice”. The author of this

manuscript fully agrees with this particular point of view.

Many studies have been focusing on the impact of positive and negative selection on

repertoire diversity. Some of them, have particularly focused on the impact that the

self-peptides sampling process deployed by APCs has on the repertoire diversity both in

the thymus and in the periphery [88]. In particular, these authors recall the importance

of maintaining the well established affinity model to understand selection in the thymus

[2], which proposes that selection outcome is established by the affinity of the TCR for a

pMHC complex, but they also emphasize how important it would be, for a coherent model

of thymocyte selection, to consider also the spatial and temporal aspects of self recogni-

tion in different micro-environments within the thymus itself. The molecular mechanism

that distinguishes positive and negative selection and their impact on repertoire diversity

remains nowadays a complex system not fully understood, and it is striking to think that

nearly 20 years ago we were already starting thinking about this unresolved problem [144].

The problem of repertoire diversity in the periphery has been studied for a long time,

and a “flight for survival” was suggested for lymphocytes in the periphery [64]. The

authors discuss the importance of considering a continuous selective pressure throughout

the entire lymphocyte life story, due to the constant need to acquire selective advantage

on their competitors. The importance of different life stages is also underlined, as well as

the presence of specific survival niches to which different lymphocytes belong in different

stages of their cell differentiation.

1.3 Biological terminology

• AIRE: The autoimmune regulator (AIRE) is a protein encoded by the AIRE gene

in humans. It is a transcription factor mainly present in a part of the thymus called

medulla and it controls the mechanism underlying the prevention of autoimmune

diseases. T cells recognise epitopes presented on a MHC molecule complex, and

those T cells that attack the body’s own proteins are eliminated in the thymus.

The main goal of AIRE is to induce transcription of a wide selection self genes that

creates proteins which a T cell could only usually encounter in peripheral tissues,

creating what has been defined as an “immunological self-shadow” in the thymus

[11]. These proteins, called “tissue-specific self-antigens” (TSAs), are then expressed

by medullary thymic epithelial cells (mTECs) or general stromal cells, and T cells

that respond to those proteins are eliminated through cell death (apoptosis). This

is the reason why AIRE it is thought to drive negative selection [114].
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• Antibody: Also known as immunoglobulin (Ig), it is a protein produced by plasma

cells, a type of white blood cells. They recognize a unique part of the foreign target,

called antigen [99]. Antibodies can either be secreted from the cell, having a soluble

form, or they can be bound to the B cell surface. In this case, they are known as B

cell receptors (BCRs)[114].

• Antigen: An antigen (Ag) is any molecule that serves as target for the T or B cell

receptors and antibodies. The name is an abbreviation of antibody generator [114].

• Apoptosis: Apoptosis is the process of programmed cell death (PCD). It is a

complex set of activation mechanisms that, once started, inevitably lead to cell

death. Apoptosis should not be confused with necrosis, that is the death of a cell

caused by external factors [58].

• Artemis: One of the key enzymes involved in V(D)J recombination process [50].

This is the process by which T cell or B cell receptors are created by recombining

gene segments known as variable (V), diversity (D) and joining (J). The joining of

a V and D segment starts with the RAG (recombination activating gene) nuclease

cutting both DNA strands besides the V segment and the D segment. A hairpin

structure is formed at the two remaining ends, called the coding ends. Here is when

Artemis nuclease comes into play, together with the DNA-dependent protein kinase

(DNAPK), binding to these DNA ends and making a single cut near the center of

the hairpin. Further processing is applied to the exposed 3’ termini, mainly deletion

and addition of nucleotides, before the V and D segments are ligated to restore the

integrity of the chromosome. The exact cutting point for Artemis is variable and this

variability, combined with random nucleotide deletion and addition, is the source of

extreme diversity in the resulting antibody or T cell receptor genes [114].

• ATP hydrolysis: Reaction in which chemical energy is released from the high-

energy phosphoanhydride bonds in adenosine triphosphate (ATP) where it is usually

stored. This reaction produces mechanical energy. Adenosine diphosphate (ADP)

and an inorganic phosphate, orthophosphate (Pi), are the two main products. A fur-

ther hydrolyzation process can then occur on the ADP to produce energy, adenosine

monophosphate (AMP), and another orthophosphate (Pi) [105].

• Autophosphorylation: Modification of proteins occurring after the translation

process. A phosphate group is added to serine, threonine or tyrosine residues within

protein kinases, normally to regulate the catalytic activity [149].
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1. BIOLOGICAL INTRODUCTION

• Blunt end: Blunt end refers to the simplest DNA end of a double stranded molecule.

In a blunt-ended molecule both strands terminate in a base pair, leaving no overhangs

or unpaired bases.

• DNA-PK: DNA-dependent protein kinase is an enzyme very important for the

V(D)J recombination process. DNA-PKcs is the catalytic subunit of DNA-PK. The

second component is the enzyme Ku [73].

• Hairpin: Also known as stem-loop, it is an intramolecular structure. It consists of

a single-strand DNA (or just a RNA molecule) in which two complimentary regions

come together, forming a double-helix that ends with a non-pairing base sequences,

leaving the end open in a loop [43].

• In-frame: See ORF and Reading frame.

• Ku: Ku is an important enzyme for the V(D)J recombination process. It is a het-

erodimer of two polypeptides, Ku70 (XRCC6) and Ku80 (XRCC5). In humans, Ku

forms a complex with the DNA-dependent protein kinase catalytic subunit (DNA-

PKcs) to form the full DNA-dependent protein kinase, DNA-PK [110].

• Locus: In genetics, a locus is the specific location of a gene, DNA sequence, or

position on a chromosome.

• ORF: An open reading frame (ORF) is the part of a reading frame that has the

potential to code for a protein or peptide. It is a continuous stretch of DNA typically

starting with the a methionine sequence (ATG), and ending with a stop codon (TAA,

TAG or TGA in most genomes).

• RAGs: The recombination-activating genes (RAGs) encode enzymes that play an

important role in the VDJ recombination process. There are two recombination-

activating gene products known as RAG-1 and RAG-2, whose cellular expression is

restricted to lymphocytes during their developmental stages [139, 114].

• Reading frame: A reading frame is a way of dividing the sequence of nucleotides

in a nucleic acid (DNA or RNA) molecule into a set of consecutive, non-overlapping

triplets. In particular, these triplets are called codons if they represent amino acids

or stop signals during translation.

• RSSs: Recombination signal sequences (RSSs) are short stretches of DNA flank-

ing the V, D and J gene segments of the V(D)J recombination process. They are

composed of seven conserved nucleotides (a heptamer) that reside next to the gene
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1.4 V(D)J recombination

Figure 1.1: Sequential rearrangement of TCR αβ genes.

encoding sequence followed by a spacer (containing either 12 or 23 variable nu-

cleotides) followed by a conserved nonamer (9 base pairs). Only a pair of dissimilar

spacer RSSs are efficiently recombined (i.e. one with a spacer of 12 nucleotides will

be recombined with one that has a spacer containing 23 nucleotides). This is known

as the 12/23 rule of recombination (or the one-turn/two-turn rule) [21, 114].

• TdT: Terminal deoxynucleotidyl transferase (TdT) is a specialized DNA polymerase

heavily involved in the V(D)J recombination process. It adds N-nucleotides to the

V,D, and J exons during gene recombination, enabling the phenomenon of junctional

diversity [25].

• Transcription factor: Protein that binds to specific DNA sequences, thereby con-

trolling the rate of transcription of genetic information from DNA to messenger RNA

[34].

The reader might want to refer to Figure 1.1 to better understand the following sections.

1.4 V(D)J recombination

The adaptive immune system has to constantly cope with millions of possible pathogens

and, in order to recognize them all, it requires an enormous diversity in its lymphocytes
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repertoire. This high level of diversity would not be possible without a unique genetic

mechanism called V(D)J recombination process, also known as somatic recombination.

The entire process, occurring only in developing lymphocytes during their early stage

of maturation, aims at rearranging different gene segments and it occurs in both B cells

and T cells, generating a wide repertoire of antibodies/immunoglobulins (Igs) and T cell

receptors (TCRs) respectively. The question of whether the recognition system in T cells

and B cells differs and, if so, how, has been present from the very beginning of the studies

on V(D)J recombination [42].

The lymphatic system of a human being comprises lymphatic organs, lymphatic vessels

and the circulating lymph. Thymus and bone marrow are known to be the two primary

lymphoid organs. They represent, respectively, the maturation centers for T-cells and

B-cells. As previously said, somatic recombination occurs in these organs and its ultimate

results are new antigen-binding regions of Igs and TCRs, allowing for the recognition of

antigens from nearly all pathogens.

This incredible process was first discovered in 1987 by Susumu Tonegawa, Ph.D. who

has then been awarded the Nobel Prize in Physiology or Medicine [159].

1.4.1 Recombination in T cell receptors

T-cell receptors (TCRs) are heterodimers built of two different protein chains. In humans,

the great majority of TCRs consist of an alpha (α) and a beta (β) chain, while only a

minority is built from two different chains: gamma (γ) and delta (δ). We focus here on

α/β TCRs, although the recombination process for the γ/δ ones is very similar. Both

TCR α and β chains consist of a variable (V ) protein region (Vα and Vβ) and a constant

(C) region (Cα and Cβ) [114].

The DNA sequence of the human Vα region (TCRα locus, chromosome 14) contains

∼ 70 variable (V) segments and 61 joining (J) segments, followed by a single constant

(C) gene which contains separate exons for the different parts of the constant region of

the protein chain. The human TCRβ locus (chromosome 7) has a different organization:

52 V segments, 1 diversity (D) segment (Dβ1), 6 J segments (Jβ1), 1 constant gene, 1 D

segment (Dβ2), 7 J segments (Jβ2) and another final constant gene [127]. Different from

humans, the mice TCRβ locus (chromosome 6) contains 35 V segments, 2 D segments and

12 J segments [95]. The mice Vα region contains instead ∼ 132 V segments and ∼ 60 J

segments [66, 95].

The variable regions in both chains contain three hyper-variable regions, also called

complementarity determining regions (CDR1, CDR2, CDR3). The first two regions are

only encoded by V segments, while the CDR3 region is the main focus of the entire V(D)J

recombination [166]. The recombination process starts with the joining of a D segment to
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a J segment in the β chain, which can involve either the joining of the Dβ1 gene segment

to one of the six Jβ1 segments or the joining of the Dβ2 gene segment to one of the

seven Jβ2 segments. The next step is the joining of a V segment to the newly formed DJ

complex, followed by deletion of all other gene segments among them. At this stage, the

incorporation of the constant domain gene (Vβ −Dβ − Jβ − Cβ) occurs, followed by the

synthetisation of the primary transcript. Transcription of the mRNA brings to the full

length protein for the TCRβ chain. The α-chain undergoes the same process, differing

only in the lack of the D segments. The β- and α- chains are then assembled, resulting in

the formation of the αβ-TCR that is expressed on the majority of T lymphosytes. In the

next section we will focus on the main joining process that gives rise to any D-J, V-DJ or

V-J coupling.

1.4.2 V(D)J recombination process

The V(D)J recombination process starts with the binding of the recombination activating

gene 1 and 2 enzymes (RAG1 and RAG2) to a recombination signal sequence (RSS) flank-

ing a coding gene segment (V, D, or J). These 2 genes were first discovered in the late 80s

[142] but it was not clear from the very beginning whether these genes could only encode

tissue-specific components of the main structure governing the somatic recombination pro-

cess, the V(D)J recombinase [7]. The recognition of RSS by the RAG complex is fairly

straightforward given the very conservative shape of RSSs. There are three important

elements that help this recognition: a heptamer of seven conserved nucleotides, a spacer

region of 12 or 23 basepairs in length, and a nonamer of nine conserved nucleotides. These

consensus heptamer and nonamer are highly conserved (CACAGTG and ACAAAAACC).

On the other hand, the spacer region is highly variable but with a highly conserved length

[38].

Gene segments that have to be recombined are usually adjacent to RSSs of different

spacer lengths, that is one has a “12RSS” and one has a “23RSS” [160], following what

is well known as the 12/23 Rule. Once two RAG complexes have bound to two different

RSS, the two complexes are brought together and, once close to each other, they create

a single-strand notch in the DNA between the two first bases of the two RSSs (just

before the heptamers) and the respective coding segments attached to these two RSSs

(e.g. V and D segments) [114]. The presence of these breaks introduced at these junctures

was demonstrated early during the studies on somatic recombination [140] but a proper

understanding on the type of notches was not immediately clear [7].

Two different DNA ends are thus created: a hairpin (stem-loop) on the coding segment

and a blunt end on the signal segment [143]. The two double stranded breaks at the

blunt end are then ligated together by the action of a heterodymer protein called Ku
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(Ku70:Ku80) in association with X-ray repair cross-complementing protein 4 (XRCC4),

producing a circular piece of DNA containing the material between the coding segments,

known as signal joint. It is still not clear whether this signal joint is discarded or then

reused in different ways. On the hairpin side, the coding ends are processed prior to their

ligation, leading eventually to junctional diversity [126].

A Ku protein also binds on this side, followed by the DNA-dependent protein kinase

(DNA-PK) and Artemis nuclease complex. Artemis usually has an exonuclease activity,

but it can gain endonuclease activity once bound to the DNA-PK complex, enabling the

opening of the hairpins. Artemis is activated and opens the coding end hairpins [101]. If

the cleavage is in the center of the hairpin, a blunt end is created. If the cleavage is not

centered, the result is an overhang of extrabases on one of the two ends. These bases are

called palindromic (P) nucleotides.

Next, DNA ligase IV, XRCC4, Ku, and DNA-PK align the DNA ends (from the two

different gene segments) and recruit the template-independent DNA polymerase (TdT) in

order to add, in a 5’ to 3’ direction, non-templated (N) nucleotides to the coding end. This

enzyme was immediately designated, from its very discovery, as one (if not the only one)

of the tissue-specific enzymes capable of modifying the V(D)J junctions [6, 7]. Although

it is thought that the addition is random, there have been signs of TdT exhibiting a G/C

preference for the added nucleotides [126].

As last stage, exonucleolytic activity takes place, removing bases to adjust the process

and finally pair the two ends, eventually ligated by DNA ligase IV in association with

XRCC4. The result of this process is a highly variable TCR binding region, allowing the

adaptive immune response to be almost always ready for novel pathogens. The entire pro-

cess requires a high amount of energy, which needs to be strictly regulated and controlled.

As it is now clear, somatic recombination is a highly complex process involving highly

specific procedures.

This mechanism is essential to our survival, being the only process capable of creating

such a diversity against the nearly infinite pathogens possibilities. Being so specific, it has,

unfortunately, the potential to generate aberrant DNA damage in developing lymphocites

[138]. Although the study of these negative effects is not the goal of this thesis, we thought

it was necessary to at least cite the problem for the awareness of the reader [173, 125].

1.5 Studies on T-cell repertoire diversity

Numerous studies examined the T-cell repertoire diversity during the last 30 years, many

of them focusing on the impact of viral infections on the diversity itself [124, 69, 151, 89].

In particular, some studies focused on the stability of the diversity of the TCR repertoire

during and following a viral infection [97]; the authors showed how the Lymphocytic
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Choriomeningitis Virus (LCMV) induced repertoire changes following the clearance of

the viral antigens. The authors also realized the T-cell repertoire skewing properties of

LCMV infections at the memory level. Another interesting result was the generation,

by genetically identical mice, of different T cell responses to the same peptides. Other

authors studied the dynamics of the CD8+ TCR repertoire in response to LCMV infection,

identifying differences of the order of 101 − 102 in the expansion of the T-cell population

in response to two different peptides of the same virus [44]. Thanks to the usage of

mathematical models, they show how this difference in expansion could be due to an

actual difference in proliferation rates or in the proliferation period. Following studies

aimed at determining the main differences among acute and chronic LCMV infections [9],

where mathematical modelling was able to detect the immunodominance effect caused

by chronic infection, as previously showed by [171]. The impact of different epitopes on

CD8+ T-cell response gave even more insights [141], indicating that the magnitude of the

response might be influenced by the epitope specificity but the same does not seem to hold

for the TCR β chain repertoire diversity (in mice). In fact, the β-repertoires showed very

little difference in response to three different infections. The main goal of the authors was

to address the question on whether or not it would be possible to modify the diversity and

specificity of the CD8+ repertoire by changing the vector used to deliver the particular

epitope taken into consideration.

A different aspect of the T-cell repertoire diversity has also been studied during the

years: the bias present at the very first steps of the TCR repertoire creation, that is

the unbalanced process of the somatic recombination. An important result was shown

[136], and for the first time it was clarified that the V(D)J recombination process is

biased towards some specific V-D-J combinations, contrarily to what was believed until

that moment. The authors proved this striking result thanks to an analysis of the size

of the V-D-J overlap in unrelated adult humans. As previously described, the positive

and negative selections play a main role in shaping the repertoire. It becomes even more

important when considering the possibility that T cells could escape negative selection

even though presenting the potential to express two different functional TCR α chains

[41]. The results from this study came from a new PCR technique for the simultaneous

analysis of both α and β chains from single cells experiments, developed by the same

authors. The authors discuss the importance of these findings, suggesting the possibility

of triggering autoimmunity as a consequence of infection, in case one of these special

double-TCR T cells were to be the respondent to some infection. Other authors have

discussed the problem of autoimmunity related to the cross-reactivity concept [120]. The

focus was on the possibility, for an incompletely deleted näıve T cell population specific for

a tissue-restricted self peptide, to be triggered by systemic production of self-peptides and
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cause autoimmune problems. Studies on CD8+ and CD8− TCR repertoire in troutes were

carried with some interesting results [32]: different regulatory patterns for the diversity

of TCR β chains by CD8+ and CD8− in trout and mammals could exist. The authors

in fact found out that the CDR3 region for the different β chains had much more regular

profiles after the viral infection, suggesting a mechanism for which the infection itself lead

to multiple expansions of CD8− T cell clonotypes, possibly reducing the importance of the

large peaks otherwise observed in the uninfected troutes. The authors argue that precisely

this finding could favor the idea of different impact of infections on CD8− and CD8+, in

both trout and mice.

TCR diversity was also studied in relation to T-cell subsets, such as effector, cen-

tral/effector memory and näıve cells, in both CD8+ and CD4+ populations [27]. TCR

expansions were found in the effector subpopulations as opposed to näıve or memory ones.

Following these findings, the authors argued the importance of including subset analysis in

TCR repertoire studies and suggest the idea of a more polyclonal-oriented antigen-driven

expansion in long-lived T central memory cells as opposed to a more oligoclonal expan-

sion in short-lived T effector cells. The importance of T-cell subsets was also the focus

of other authors [119]. T-cell precursor frequencies were found not to be correlated with

immunodominance hierarchies induced by pathogen presentation; public clonotypes were

found to be rare in the precursor pool while the memory pool presented narrower TCR

repertoire diversity. A broad analysis of CDR3β from healthy mice was carried out in 2014

[103]. An extensive number of publicly shared sequences was found and it was suggested

that despite the random generation process of TCR repertoires, a sort of uniformity was

present in the mice repertoires’ diversity, suggesting ongoing selection tends to modify

the initial ranomized diversity. A different study suggested instead a possible connection

between T-cell precursors and immunodominance hierarchies [132]: in fact the authors

suggest that the age-related modifications in T-cell immunodominace hierarchies may be

driven by changes in numbers of T-cell precursors.

A deeper insight into the mechanism of somatic recombination and TCR repertoire

diversity was given by a study aiming at assessing the impact of individual genetic factors

on the immune diversity [175]. Exciting discoveries emerged from this study: first, the

overlap between TCR repertoires of monozygous twins was not that different to the overlap

of unrelated individuals. Second, and possibly even more striking, the authors discuss

results in which the TCR V genes choice for recombination in the thymus is strictly related

to genetic traits, as already shown in a previous study [109], while the choice of TCR J

genes seems to be completely random. They also discuss the preference, in subsequent

selection in the thymus, of some α J segments as opposed to β J segments.
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The potential of bioinformatics to detect the immunological status of a patient was

studied in a very interesting piece of work [75]. Here the authors introduce a bioinformatics

framework working on Hill-based diversity profiles enabling quantification of immunolog-

ical information enclosed in immune repertoires. A broad range of immunological states

such as healthy or transplantation recipient were able to be predicted with high accuracy,

instilling the idea that, in the near future, repertoire profiling could help recovering a

great amount of what they define as immunodiagnostic fingerprints. In a similar way,

other authors reviewed different biotechnological methodologies (mainly high-throughput

sequencing HTC) for the study of TCR repertoire diversity, highlighting the profound

effect of these techniques on our knowledge of the immune system dynamics during health

or diseases [78]. Going back on the topic of the importance of bioinformatics on immune

repertoire analyses, it is worth mentioning a recently developed computational model

called TraCeR [154]. This method is able to reconstruct full-length, paired TCR sequences

from single-cell analysis.

The first analysis of both the näıve and the epitope-specific TCR αβ repertoires was

developed only recently [40]. The authors argue the scarce and not accurate information

carried on by studies of subsets of cells or of single TCR chains. They claim in fact that

TCRα usage is at least as diverse as TCRβ usage. Before concluding this section, we

would like to give a quick overview of the different clonal size estimations that have been

given during the years, in order to give a taste of the difficulty of this research area. From

bulk studies on mouse, TCRβ uniquess was said to be around 10% [30], 28% [31], 55%

[128] and 68% [131] of the total sequences analyzed. In humans the situation is not much

better, as the number of distinct clonotype classes was estimated to be between 106 and

2× 107 [13, 130, 135].

So far, we have given an overview of the general understanding of the biology behind

those immunological complex systems that somatic recombination and diversity mainte-

nance are. More could be said, especially from the point of view of the quantitative efforts

made during the last 30 years to broaden the knowledge in this area, but we will leave

these themes for the next chapter, in a specific section dedicated exactly to the evolution

of quantitative methods in this research area.
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Chapter 2

Mathematical Introduction

This section focuses on the definition of the basic probability concepts generally used

in this thesis. Firstly we will introduce the general concepts of a probability space,

which will help defining a general random variable X, together with some of their main

properties, such as its expected value E(X), its variance Var(X) and probability generating

function φX(z). We will then focus on some important general properties of the pgf, before

introducing different examples of both discrete and continuous distributions. Finally,

we will move the attention to stochastic processes and Markov chains, introducing basic

results.

2.1 Probability spaces

In probability theory probability space (Ω,F,P) is defined as a mathematical construct

[77]. The first part of a probability space is the sample space Ω, defined as the set of all

possible outcomes of the considered random process. We define now the other two parts:

F and P.

2.1.1 The set of events F

Let Ω and 2Ω be respectively a set and its power set, where the power set 2Ω is defined

as the set of all possible subsets of Ω including the empty set Ø and Ω itself. The set

of events F ∈ 2Ω is mathematically defined as a σ-algebra [77], that is a subset of 2Ω

satisfying three important properties:

• Ω ∈ F;

• F is said to be closed under complementation, that is if f ∈ F, then Ω \ f ∈ F;

• F is said to be closed under countable unions, that is if f1, f2, f3, · · · ∈ F, then

f = f1 ∪ f2 ∪ f3 ∪ · · · ∈ F.
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It is important to notice that the term event must be seen as a set of zero, one or multiple

outcomes, that is a subset of the sample space.

2.1.2 The probability measure P

Let us consider a set of events F in a probability space (Ω,F,P). A probability measure

P is defined as a real-valued function P(f) on F satisfying two main requirements:

• P(f) ∈ [0, 1], with P(Ø) = 0 and P(Ω) = 1;

• Countable additivity property i.e., for all countable collections {fk} of pairwise dis-

joints sets, P

(⋃
k∈K

fk

)
=
∑
k∈K

P(fk).

2.2 Random variables

A real-valued random variable X is a real-valued function X : Ω → R = (−∞,∞). In

this probability space, the probability P(X ≤ k) represents the probability of the set of

outcomes {ω ∈ Ω : X(ω) ≤ k}. From now on P(X ≤ k) will be indicated by Pr(X ≤ k).

Real-valued random variables can be divided in two distinct cathegories: discrete and

continuous random variables. Discrete random variables may only take a countable number

of values, such as {0, 1, 2, · · · }, while a continuous random variable takes an uncountable

(infinite) number of possible values. Examples of both kinds will be given in the next

sections. We are now defining the cumulative distribution function for a generic random

variable, which will allow us to define the probability mass function for a discrete random

variable and the probability density function for a continuous random variable. We will

also introduce the expected value, variance of a general random variable, distinguishing

between the discrete and the continuous case. Finally, we will introduce the concept of

probability generating function for a discrete random variable.

2.2.1 Cumulative distribution function (cdf)

Given a random variable X : Ω → E(E ⊆ R), the cumulative distribution function (cdf)

FX(x) : E → [0, 1] for the random variable X is the function defined as

FX(x) = Pr(X ≤ x) = Pr({ω ∈ Ω : X(ω) ≤ x}).

2.2.2 Probability mass function (pmf)

Given a discrete random variable X : Ω→ E(E ⊆ R), the probability mass function (pmf)

fX(x) : E → [0, 1] for the random variable X is the function defined as
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fX(x) = Pr(X = x) = Pr({ω ∈ Ω : X(ω) = x}).

2.2.3 Probability density function (pdf)

Given a continuous random variable X with cdf FX , and assuming the existence of a

non-negative, integrable function fX(x) : E → [0,∞) such that

FX(x) =

∫ x

−∞
fX(y)dy,

then the function fX(x) is called the probability density function (pdf) for the random

variable X.

2.2.4 Independent random variables

Consider two continuous random variables X and Y , with probability density functions

fX(x) and fY (y) respectively. Let their joint probability distribution be f(x, y). The

random variables X and Y are said to be independent if and only if

f(x, y) = fX(x)fY (y) ∀(x, y) ∈ Ωx × Ωy.

If we consider discrete random variables, the same holds considering probability mass

functions instead of probability density functions.

2.2.5 Expected value and variance

Given a discrete random variable X taking values x1, x2, x3, · · · with probabilities p1, p2, p3, · · · ,
its expected value E(X) is defined as

E(X) =
∞∑
i=1

pixi,

while its variance Var(X) is defined as

Var(X) =

∞∑
i=1

pi(xi − E(X))2.

Given a continuous random variable X taking values in A ⊆ R with pdf fX(x), its expected

value E(X) is defined as

E(X) =

∫
A
xfX(x)dx,

while its variance Var(X) is defined as

Var(X) =

∫
A

(x− E(X))2fX(x)dx.
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2.2.6 Conditional probability

Consider two random variables X and Y . The conditional probability that X = x given

that Y = y is defined as

Pr(X = x|Y = y) =
Pr(X = x and Y = y)

Pr(Y = y)
.

2.2.7 Probability generating function (pgf)

Let X ≥ 0 be a discrete random variable with probability mass function fX(x). The

probability generating function (pgf) of X is defined as

φX(z) = E(zX) =

∞∑
x=0

fX(x)zx. (2.1)

Some important basic properties of pgf are now given. The reader is directed to any uni-

versity textbook on probability theory for the proof of these properties. A good reference

book for stochastic processes applied to biology where these properties can be found is [5].

The first property is the relation between the pmf fX(x) and the pgf, given by

fX(k) = Pr(X = k) =
φ

(k)
X (0)

k!
, (2.2)

where k! indicates the factorial of k while, for a general function g(x), g(k)(0) indicates

the kth derivative of the function g calculated at x = 0.

The second important property is

φX(1−) =
∞∑
x=0

f(x) = 1, (2.3)

where φX(1−) = limz→1−φX(z) and z is going to 1 from below.

A third important property of the pgf is as follows:

E(X) = φ
(1)
X (1−). (2.4)

Finally, we cite the following useful property: let X1, X2, · · · , Xn be a set of indepen-

dent random variables. Define Sn =
n∑
i=1

Xn. The pgf of Sn is

φSn(z) = φX1(z)φX2(z) · · ·φXn(z). (2.5)
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2.3 Discrete random variables

In this section we give a quick overview of the main discrete distributions that will be used

in different chapters of this manuscript. We briefly recall that a discrete random variable

takes values on a finite (or countable) list of possible values with certain probabilities

described by the probability mass function.

2.3.1 Bernoulli distribution

Probability distribution of a random variable X taking value 1 with probability p ∈ (0, 1)

and value 0 with probability q = 1− p. We have

• Pr(X = k) =

{
p for k = 1

q for k = 0
,

• E(X) = p,

• Var(X) = pq,

• φX(z) = q + pz.

2.3.2 Binomial distribution

Probability distribution of a random variable X representing the number of successes in a

sequence of n independent Bernoulli trials, where each trial has a probability p of success.

The special case n = 1 represents the Bernoulli distribution. We have

• Pr(X = k) =

(
n

k

)
pk(1− p)n−k,

• E(X) = np,

• Var(X) = np(1− p),

• φX(z) = (1− p+ pz)n.

2.3.3 Geometric distribution

Probability distribution of the number X of Bernoulli trials needed to get the first success,

where each trial has a probability p of success. We have

• Pr(X = k) = p(1− p)k−1, k = 1, 2, ...

• E(X) =
1

p
,

• Var(X) =
1− p
p2

,

• φX(z) =
pz

1− (1− p)z
.
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2.3.4 Poisson distribution

Probability distribution of the number X of events occurring in a fixed interval of time,

knowing that these events occur independently and with a fixed average rate λ. We have

• Pr(X = k) =
λke−λ

k!
, k = 0, 1, 2, ...

• E(X) = λ,

• Var(X) = λ,

• φX(z) = eλ(z−1).

2.3.5 Logarithmic distribution

Probability distribution originally used for the modelling of species abundance. The only

parameter is p. We have

• Pr(X = k) =
−1

log(1− p)
pk

k
, k = 1, 2, ...

• E(X) =
−1

log(1− p)
1

1− p
,

• Var(X) = −p p+ log(1− p)
(1− p)2log2(1− p)

,

• φX(z) =
log(1− pz)
log(1− p)

.

2.3.6 Hypergeometric distribution

Probability distribution of the number of successes X in n draws without replacement,

where the draws are taken from a finite population of size N that contains exactly K

successes. It is similar to the Binomial distribution, with the exception that the draws are

taken without replacement. We have

• Pr(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , k = 0, ... min(n,k)

• E(X) =
nK

N
,

• Var(X) =
nK

N

N − n
N − 1

N −K
N

,

• φX(z) =

(
N−K
n

)
2F1 (−n,−K;N −K − n+ 1; z)(

N
n

) ,

where 2F1 (−n,−K;N −K − n+ 1; z) represents the ordinary hypergeometric function.
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2.4 Continuous random variables

In this section we give a quick overview of the main continuous distributions that will be

used in different chapters of this manuscript. We briefly recall that a continuous random

variable takes values on an uncountable list of possible values with certain probabilities

described by the probability density function.

2.4.1 Exponential distribution

Probability distribution describing the time between events in a process where events

occur in a continuous way, independently from each other, and at a constant average rate

(known as Poisson process). It can be seen as the continuous analogue of the geometric

distribution. We have

• f(x) = λe−λx, x ≥ 0

• E(X) =
1

λ
,

• V ar(X) =
1

λ2
.

2.4.2 Gamma distribution

This probability distribution can be parametrized by a shape parameter α and a rate

parameter β. Different parametrizations are possible. We have

• f(x) =
βαxα−1e−xβ

Γ(α)
, x ≥ 0

• E(X) =
α

β
,

• V ar(X) =
α

β2
,

where Γ(z) represents the Gamma function defined as

Γ(z) =


(z − 1)! for z positive integer number

∫ ∞
0

tz−1e−tdt for z complex number with positive real part

2.4.3 Beta distribution

This probability distribution is parametrized by two shape parameters α and β. We have

• f(x) =
xα−1(1− x)β−1e−xβ

B(α, β)
, 0 ≤ x ≤ 1
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• E(X) =
α

α+ β
,

• V ar(X) =
αβ

(α+ β)2(α+ β + 1)
,

where B(x, y) represents the Beta function defined as

B(x, y) =


(x− 1)!(y − 1)!

(x+ y − 1)!
for x, y positive integer numbers

∫ 1

0
tx−1(1− t)y−1dt for x, y complex numbers with positive real part

2.5 Stochastic processes

Consider a subset T of [0,∞). Consider a family of random variables {Xt(s) : t ∈ T, s ∈
Ω}. This family is called a stochastic process. Depending on whether T is countable or

uncountable, and depending on whether Xt(s) are discrete or continuous random variables,

{Xt(s) : t ∈ T, s ∈ Ω} needs different techniques to be analyzed. For a countable T , we

have a discrete-time stochastic process; when instead we have an uncountable T , the

process is defined as continuous-time stochastic process. The literature and knowledge

on stochastic processes are very broad but, for the purposes of this thesis, the following

sections will only briefly introduce a special class of stochastic processes, the Markov

processes.

2.5.1 Markov processes and Markov chains

Briefly speaking, a stochastic process has the Markov property if its future behaviour

depends on the present state only, and not on all the previous ones. In particular we

are interested in expressing this property for a discrete-time stochastic process where

T = {0, 1, 2, . . .}. We say that the process {Xt}t∈T has the Markov property if

Pr(Xt = xt|Xt−1 = xt−1, . . . , X0 = x0) = Pr(Xt = xt|Xt−1 = xt−1).

In particular, the probabilities Pr(Xt = xt|Xt−1 = xt−1) are called transition probabilities.

Given the set T being discrete, we define this Markov process as discrete-time Markov

chain. The natural extension of this property to the continuous-time case can be stated in

the following way. Consider T uncountable. A continuous-time stochastic process {Xt}t∈T
with space of states S is a continuous-time Markov chain if

Pr(X(t) = j|X(tn) = in, . . . , X(t1) = i1) = Pr(X(t) = j|X(tn) = in)
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where 0 ≤ t1 ≤ · · · ≤ tn ≤ t is any non-decreasing sequence of n+1 times and i1, . . . , in, j ∈
S are any n+ 1 states in the space of states, for any integer n ≥ 1.

2.6 Mathematical analyses of repertoire diversity

Species diversity has been the focus of a broad amount of work for more than 70 years

now. A great amount of literature has been produced during these years, but an overview

of this literature is not the goal of this section. Here we aim at reviewing mathematical

models and species diversity similarity measures, as well as statistical methods, applied

to the study of T-cell receptor repertoire diversity. An enormous effort has been made

by scientists from all over the world in the last 20 years to deepen the knowledge of the

mathematical bases of V(D)J recombination process, TCR repertoire diversity, immune

sampling diversity and immunenodiversity-related problems. We here review the main

steps of this journey, trying to maintain a certain historical continuity.

One of the first contributions in this sense focused on the development of a probabilis-

tic model trying to explain the connection between repertoire diversity, self antigens and

foreign antigens [46]. The authors basically address the question of how diverse the reper-

toire should be in order to be able to recognize all the theoretically possible pathogens.

The importance of the diversity of self antigens that the immune system needs to avoid

reactivity with is established, showing that the number of these particular peptides is the

main driver of repertoire diversity, rather than the number of foreign antigens. A few years

later, similar work was carried out focusing specifically on the immunological feature of

cross-reactivity [106]. In this study, the necessity of a wide cross-reactive ability of T cells

were analysed, leading to the well known problem of the lymphoid system of an hypothet-

ical mouse with one clonotype for each possible MHC-associated peptide: such a mouse,

even considering the best case in which it had only one cell in each clone, would need a

lymphoid system 100 times larger than the mouse body itself. In 1999, interesting work

was done on affinity-driven TCR repertoire selection and the problem of alloreactivity

[53], the problem of T cells responding to foreign MHC entering the body, for example

following an organ transplant [116]. The authors simplify the structural complexity of a

TCR to a digit string representation, claiming the advantage of such a formalism, over

previously proposed bit strings approaches [45], in order to control the resolution of affinity

distribution.

A different interesting problem was also studied in those years: the requirement for

regulatory T cells (Tregs) [107]. The existence of Tregs had already been experimentally

established, but the reasons behind their presence in the immune system were not clear.

Apart from preventing autoimmunity problems, the authors suggest that Tregs may be a

subset directly generated in the thymus with the goal of controlling inflammatory responses
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induced by enteric organisms. In 2003 a very interesting article was published, suggesting

the possibility for the repertoire to have fractal properties [118]. The main striking result

concerned the possibility to describe not only the population of ranked clonotypes, but

also the clonal frequencies of many different subsets of the repertoire, by a power law-like

distribution.

A quantitative model of thymic selection, involving structural differences within the

thymus, was developed in those years [59]; the main goal of the model was to estimate the

fractions of T cells positively (and negatively) selected in both main areas of the thymus,

namely the cortex and the medulla. Results indicated that the majority of the thymocytes

die due to neglect selection in the cortex, and that the negative selection might happen

with a higher probability in the medulla. During those years, another important research

area was being explored: mathematical methods to compare the diversity of samples drawn

from a given TCR repertoire. Facing this problem means facing the same problems that

mathematical ecology had been facing (and was still facing) in trying to estimate species

diversities from selected samples, but in a much more hostile mathematical environment.

In fact, as the reader will be able to appreciate in this manuscript, the number of lym-

phocytes in a human body is of the order of 1012 while the estimated number of different

clonotype classes is approximately 108. Established methods for comparing sample di-

versity were discussed in a work of 2007 [164]. In particular, one method was discussed

(applied in this manuscript in Section 4.3.2): the use of a non-parametric statistical test

called randomization test, based on a test statistic called Simpson’s diversity index.

Stochastic models were used to study TCR repertoire diversity [153]. The authors built

a stochastic model incorporating competition for survival signals among competitors. In

particular, they built on the concept of niche overlap previously introduced by [47, 48, 49]

and defined the concept of robust repertoire as one in which the loss of some classes

wouldn’t affect its capabilities that much, but at the same time with the least possible

overlap in the coverage of the epitope space. The main result was, for a robust repertoire,

the biological property for which the majority of the clonotype classes clusters around

a mean value of niche overlap ν = 1. The authors avoided to include other types of

competition in the model, such as the non-TCR specific one for cytokines previously

studied in [26], arguing that this non-TCR specific competition impact the total number

of T cells, and not repertoire diversity, as discussed in [104].

Different Poisson abundance models (PAMs) were presented in [145], where the authors

discussed the statistical incompleteness of previous studies on TCR diversity estimates

comparing the repertoires of T-cell subsets [62, 170, 92]. In particular, the PAMs were

used to study the clonal size distributions of mice with limited TCR diversity. The ex-

ponential distribution is among those theoretical distributions obtained as possible clonal
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size distributions. Although we believe that discrete distribution would better fit the

modelling of clonal size distributions, an interesting point of discussion was proposed in

1957: the broken stick model of [102]. In particular, the authors argue that, even though

the exponential distribution can be derived by this model, this model itself might not be

well representative for the TCR repertoire given the time-dependent changes of thymic

micro-environments, described as structural niche, together with signal niche as described

above. To overcome this problem, they recall a similar model, the sequential broken stick

model [155]. This model would be a better representative of the time dependent structural

properties of the thymic niches, and would bring to the hypothesis of a Lognormal clonal

size distribution. The application of the analytical solution to the unseen species problem

given by [63] to the problem of TCR diversity was followed by [135], with the main result

being a much higher diversity (∼ 4-fold) than what reported in the previous studies [13].

A mathematical model taking into account both intra- and inter-clonal competition

was developed to evaluate the different impacts of TCR-specific and TCR-nonspecific reg-

ulatory signals over T cells coming from a transplanted thymus in patients affected by

DiGeorge Anomaly [35]. The main result of this stochastic model was the little impor-

tance of TCR-specific regulatory signals if a homeostatic case was considered. As previ-

ously said, there are many statistical measures developed by ecological studies on species

richness or species overlap. Many of these non-parametric models have been used in TCR

repertoire diversity with many limitations and very little insight. To possibly overcome

these problems, a parametric model, based on a multivariate Poisson-lognormal distribu-

tion, was suggested and tested on transgenic mice populations [134]. The particular idea

of Poisson-lognormal was based on previous studies indicating that mixtures of Lognormal

distributions might be good estimation of clonal size distributions [145]. A follow up on

similar ideas has been made some years later (2013) by [74], where the observed receptor

counts were modelled by a multivariate Poisson abundance mixture (mPAM). The new

idea proposed was a Bayesian parameter fitting model not based, as in previous studies,

on the conditional posterior likelihood (conditioned on the number of observed species)

but on the complete one, showing this technique to be more effective in modelling TCR

count data. On a very different line of reasoning, a work for the statistical inference of the

generation probability of TCRs was carried out [115]. The authors built a model capable

of predicting the probability of being generated, for a given CDR3 region, by the primitive

recombination process. The typical CDR3 sequence could be produced by something like

30 different recombination events, suggesting that a deterministic approach would cause

great systematic biases and correlation in the model which could not be overcome. In

particular, they focused on nonproductive CDR3 sequences, allowing the description of

the generation probability of the CDR3 sequences before any kind of functional selection.
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A remarkable result is the importance of insertions in the enhancement of the diversity

level: around 60% of the total diversity is due to insertions.

Following the interesting idea of 2003 explained above, some authors described the

fractal properties of the human TCR repertoire in both health and after stem cell trans-

plantation conditions [108]. In particular, they find a diminished (but still present) fractal

distribution of TCR gene segments in patients after stem cell transplantation.

In 2013, a comprehensive overview of the existing technological and mathematical

analysis for repertoire diversity studies was carried out by [148]. From the mathematical

point of view, the authors drew a sketch of the recent mathematical efforts to unravel TCR

repertoire diversity, in particularly the ones inspired by the advances in sequencing tech-

nologies such as [135, 168]. They cite anyway some recent works on population dynamics

based on differential equations [129, 12], while for the various systems-biology approaches

to signal processing and population survival, they refer to [68, 8].

A fascinating biological hypothesis, especially for its simplicity, accounting for the

great difference between potential and actual TCR repertoire diversity was named as

“evolutionary sloppiness” by [172]. The authors suggests that the theoretical potential

diversity of the thymus could be attributed to a simple fact: reducing the amount of

potential diversity could require much more energy-consuming check in the recombination

process, energy that evolution simply decided not to waste. The authors also argue for

the idea that cross-reactivity in response to different pathogens is indeed a rare event in

näıve repertoires, but that it can become much less than rare in repertoires subject to

successive infections. A different attempt to study the immune system has been made by

bioinformatics. In particular, a review on immunological profiling and computational tools

to analyse high-dimensional data was published in 2014 [86]. The main goal of the paper

is to highlight the need of a more general framework able to integrate different data sets,

and they achieve this goal while describing some of the main analysis and visualization

tools for systems immunology.

The different shortcomings of recent mathematical methods for the diversity estimation

that had been applied to TCR studies were discussed again in 2015 [93]. One of the main

problems brought to light is the well-known “unseen species” problem. Some estimators

were shown to be biased by sample sizes, as well as by what they define as the problem

of “under-sampling”. Parametric statistical methods were argued to be based on the

need of an a priori frequency distribution which we actually do not know. In response

to this, the authors developed a new estimator (DivE) which does not require any a

priori assumption. DivE had been previously tested, against five different non-parametric

estimators, on three independent datasets [94]. DivE was proved to be much more efficient

in estimating diversity with different sample sizes. In particular, the other estimators
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tended to increase the estimated diversity with the increase of sample sizes, while DivE

was able to maintain an accurate estimate for all datasets. On the same line of [115], a

second paper was published to infer somatic recombination processes of B cells [57]. The

resulting similarities with the previous work on T cells were expected to be very common,

given the existence of a unique underlying recombination process for both T and B cells.

A very interesting aspect of these studies is given by the authors’ suggestion for a sort of

evolutionary adaptation of the generation process, due to the main results indicating that

sequences with higher probability to be produced are also the ones with higher probability

to pass the selection process in the thymus. Besides the many similarities, there was an

important difference between T- and B-cell repertoires: the former are much less diverse

than the latter ones, due to the lower number of insertions in the T-cell recombination

machinery.

A different study, defined by its authors as the first of its kind, focused on in-depth

analysis of CD8+ T-cell repertoire at the single level lineages [54]. In particular the

authors aimed at a deeper understanding of the dynamics of CD8+ T-cell repertoire upon

vaccination of a particular attenuated yellow fever virus vaccine. High-throughput data

and an algorithm based on the well-known Fisher exact statistical test were the basis for

this study. Thanks to these techniques, the authors were able to identify 2000 different

clones, 12% of which was then detected in the long-term memory compartment. Different

authors also focused on long-term maintenance of human T cells, with a particular focus

to the näıve repertoire [157]. The study aimed at assessing the spatial distribution of

diversity in different lymphoid tissue sites. Results revealed an interesting tendency of the

repertoire diversity: for individuals forty years old (or older), site-specific clonal expansions

were detected and a minimal overlap among the different lymphoid tissues. These main

results were suggested by the use of Simpson’s diversity index, Shannon entropy and

Jensen-Shannon divergence measure. In 2016 two papers were published, proving once

more the increasing importance of bioinformatics and data-driven modelling in solving

immunological problems [83, 165]. From the creation of a statistical method (Recon), based

on maximum-likelihood theory, to the perspectives emerging from a particular workshop of

the National Institute of Allergy and Infectious Diseases, the importance of computational

data-driven modelling which enhance the quality of immune studies is becoming clearer

and clearer.

A different mathematical approach to the study of clonotype diversity in the repertoire

was used by [14]. The authors apply the idea of stochastic descriptors to a previous work

[153], aiming at a deeper understanding of the survival probability distribution of a single

clonotype emigrating from the thymus into the repertoire. In particular, two possible fates

are shown, the first being extinction of the clone in the short-term in case of a too hostile
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environment, while the second representing its long-term survival in the periphery. The

authors also showed that the probability distribution of the maximum size obtained by

the clonotype in the second case is bi-modal.

Finally, to conclude this journey through mathematics applied to the study of TCR

repertoire diversity, and to give the reader the possibility to have a more general glance

at the broad use of mathematics in immunology, it is important and necessary to cite

the beautifully-written, latest review on the area of mathematical immunology [56]. Even

though its focus on TCR diversity is very restricted, citing only a few of the latest contri-

butions in this area such as [153, 17, 100], this review range over an incredible number of

mathematical techniques, from agent-based modelling to eco-immunology, passing through

Gillespie and Monte-Carlo algorithms, besides cellular automata, ordinary, partially and

stochastic differential equations (ODEs, PDEs and SDEs), sensitivity analysis and prin-

cipal component analysis (PCA). Model validation and parameter estimation are deeply

discussed, and the literature review is organized by levels, from the molecular to the pop-

ulation one. As a mathematician and PhD student in systems immunology, I believe this

review can be easily defined as a goldmine for whomever is researching in the area of

mathematical and systems immunology.
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Chapter 3

Mathematics for T-cell sampling

3.1 Abstract

Modern next generation sequencing (NGS) technologies allow us to sequence DNA or

RNA from single cells. In particular, single-cell sequencing techniques enable the study

of the DNA or RNA sequences of T-cell receptors (TCRs) from a sample, one cell at a

time. The upscaling of fundamental properties from the sample to the whole repertoire

remains one of the biggest mathematical challenges in systems immunology. This chapter

focuses on the distribution of number of repeats of any particular TCR clonotype in a

sample of T cells, trying to give some insights on the true clonal size distribution of a

repertoire. We compute the mean number of T-cell extractions needed to find a repeat

with a given probability. We give insights on the mathematical relation that binds the

clonal size distribution in a repertoire with the one observed in a sample. Equal clonal sizes

in the repertoire is the first hypothesis that we consider, although not biologically relevant.

We then consider a different case where the number of T cells per clonotype class in the

repertoire is a random variable with a geometric, Poisson or logarithmic distribution. A

repertoire in which a small fraction of clones are expanded is also considered.

3.2 Introduction

The number of T cells circulating in an adult human body has been estimated to be

approximately 4× 1011 [81]. Each one of these T cells is able to express on its cell surface

something like 30,000 T-cell receptors (TCRs), usually all being a clone of each other

[163]. In the thymus, T cells are constantly accurately selected, based on their ability

to bind with self-peptides expressed in association with major histocompatibility complex

molecules (self-pMHC) [137], [81], [16], [161]. More details regarding this selection process

can be found in Section 1.2. If we could arrange all the T cells in classes based on their

TCR, the result would be a repertoire of classes, each one defined as “clonotype class”. T
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cells follow two different paths for peptide recognition depending on whether they belong

to the CD8+ type or to the CD4+ one. The former type recognises peptides bound to

MHC class I molecules while the second one, CD4+ type, recognises peptides bound to

MHC class II molecules [163], [150], [114]. Once TCR clonotypes have been defined,

some very important questions naturally come up, such as how many TCR clonotypes are

actually present in a human, mouse or other mammal immune systems? How many T

cells does a clonotype class maintain? And what kind of clonal size distribution does a

body maitain? [91], [24], [36], [156]. Nowadays, sequencing technologies do not allow us to

directly answer these questions. Both chains (α and β) of each single TCR are created by

a complex semi-random process called somatic recombination or VDJ recombination (see

Section 1.4). Some estimates of the total possible number of different TCRs that could, in

principle, be produced by this process are about 1015 [146], [121], [172], [115]. However,

it is well known the paper showing how these estimates could never be achieved, as 1015

T cells would weigh about 500 kg [106]. We define here the number of distinct TCR

clonotypes, N , as the total number of T cells divided by the mean number of cells per

clonotype class. Equivalently, N can be seen as the product of the rate of release of new

clonotypes from the thymus to the periphery, θ, times the mean lifetime of a clonotype

in the periphery [100]. Some lower limits on the number of distinct TCR β chains in the

repertoire have been given in the literature 4 × 106 [13], [85], [135], [168]. If each TCR

β chain can combine with 25 α chains, then the number of possible distinct clonotypes

in a human immune system should be at least 108 [130]. Even though direct estimates

of TCR diversity have been made by PCR amplification of mRNA from pools of cells,

it is necessary to keep in mind that numbers of mRNA vary from cell to cell and PCR

amplification may depend on the particular TCR sequence. This problem makes PCR

amplification a questionable technique for the measurement of clonal size distributions. A

possibility to overcome this problem, therefore avoiding TCR-related biases, is given by

single-cell measurements, where PCR and sequencing are performed on one cell at a time.

However, these experiments are very expensive, allowing us to sequence only hundreds of

cells from a single individual. This is the point where mathematical analyses can help,

allowing estimates of diversity based on samples of small sizes [164], [135], [145], [93]. We

consider the number of T cells per clonotype class to be a random variable with a given

distribution. Once a random sample has been extracted from the repertoire, we want to

study the random variable representing the number of copies, actually found in the sample,

of a particular TCR. We approach this problem by making use of probability generating

functions. The absence of most of the clonotypes in a small sample it is not surprising,

given the enormous size of the repertoire itself. Besides, the majority of clonotypes that are
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3.3 Sampling from a repertoire

in the sample present no repeats. We show the subtle relationship between the observed

distribution of clonal sizes in the sample and the theoretical distribution in the repertoire.

3.3 Sampling from a repertoire

What can be deduced from a sample of m cells taken from a repertoire of T cells if the total

number of cells in the repertoire, S, is very large? Let us begin by describing the structure

of the repertoire, which is divided into N subsets, called TCR clonotypes. Denote by ni

the number of cells of a clonotype labeled i. The index i runs from 1 to N , and
∑

i ni = S

(see Figure 3.1). Typically S is known, but N and the ni are not.

Figure 3.1: The repertoire contains S cells, divided up into N TCR clonotypes. Here, cells

are represented by small coloured circles, a TCR clonotype is the set of cells of one colour,

and a random sample of cells is represented by those circles inside the black square.

When the number of cells in the sample, m, is much smaller than the number of cells

in the repertoire, S, and much smaller even than the number of TCR clonotypes, N , it

is not obvious how to draw direct conclusions. On the other hand, some mathematical

simplifications can be made. Let us consider one TCR clonotype, with label i. If mni � S

then, instead of the full expressions involving multivariate hypergeometric distributions,

we can use the binomial approximations that

1. the probability that none of the m cells in the sample are of clonotype i is
(
1− ni

S

)m
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3. MATHEMATICS FOR T-CELL SAMPLING

2. the probability that exactly one of the m cells in the sample is of clonotype i is

mni
S

(
1− ni

S

)m−1
.

3. the probability that exactly two of the m cells in the sample are of clonotype i is

1
2m(m− 1)niS

ni−1
S

(
1− ni

S

)m−2
.

It is worth noting that here we use the quantity ni(ni − 1) rather then n2
i (as it would be

expected from a binomial distribution) due to the small general values of ni. In fact, this is

trying to reproduce the sampling without replacement of the hypergeometric distribution

that is not present in the binomial one. If m� 1 but mni/S � 1 then we can approximate

the last expression by ri, where

ri =
1

2

(m
S

)2
ni(ni − 1). (3.1)

We say there is a repeat in the sample if two (or more) of the m cells are of the same

clonotype. Let us consider a group of M identified clonotypes in the repertoire, with

numbers of cells n1, n2, . . . , nM . How many repeats, of clonotypes in this group, will we

see in our sample? If

ri � 1 ∀i = 1, . . . ,M ,

so that the occurrences of repeats in distinct clonotypes can be taken as independent

events, then

E(number of repeats of identified clonotypes) =
M∑
i=1

ri =
1

2

(m
S

)2
M∑
i=1

ni(ni − 1).

That is,

E(number of repeats of identified clonotypes) =
1

2

m2

S2
M E(ni(ni − 1)) , (3.2)

where the expectation is taken over the M clonotypes:

E(ni(ni − 1)) = M−1
M∑
i=1

ni(ni − 1) .

Repertoires can be constructed and sampled inside a simple computer program, where

each clonotype is assigned a label i and values of ni are assigned according to a probability

distribution. We have constructed repertoires with uniform, geometric, Poisson, logarith-

mic and heterogeneous distributions of clonal sizes to verify the conclusions presented

here.
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Figure 3.2: Mean number of repeats as a function of the number of cells in the sample,

from a repertoire of N = 105 clonotypes and a geometric distribution of clonal sizes, with

n̄ = 10.

3.4 The mean number of repeats

To find the mean number of repeats of any clonotype from the repertoire in the sample,

we put M = N in (3.2) and write S = N E(ni), to obtain

E(number of repeats) =
N∑
i=1

ri =
m2

2N

E(ni(ni − 1))

E(ni)2
. (3.3)

The expression (3.3) is the product of the factor m2

2N , that does not depend on the distri-

bution of clonal sizes, and the factor E(ni(ni−1))
E(ni)2

, that does. The latter can be written

E(ni(ni − 1))

E(ni)2
=

E(n2
i )

E(ni)2
− 1

E(ni)
.

• If ni = n̄ for every i then

E(n2
i )

E(ni)2
= 1 and

E(ni(ni − 1))

E(ni)2
= 1− 1

n̄
.

• If ni has a geometric distribution with mean n̄ (that is, Pr(ni ≤ k) = 1−
(
1− 1

n̄

)k
,

k = 1, 2, . . .) then

E(n2
i )

E(ni)2
= 2− 1

n̄
and

E(ni(ni − 1))

E(ni)2
= 2

(
1− 1

n̄

)
.

See Figure 3.2.
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3.5 Number of draws to find the first repeat

Let us consider the probability of finding no repeats in a sample of m cells. With ri defined

in (3.1), we approximate by 1− ri the probability that fewer than two cells of clonotype i

are found in the sample, so that

Pr(no repeat in a sample of m cells) =
N∏
i=1

(1− ri) . (3.4)

We can then write

log (Pr(no repeat in a sample of m cells)) =
N∑
i=1

log(1− ri) (3.5)

' −
N∑
i=1

ri , (3.6)

assuming ri � 1 for every i and applying Taylor approximation log(1 + x) = x + O(x2).
Thus, we have

Pr(no repeat in a sample of m cells) = exp (−λ) , (3.7)

where

λ =
N∑
i=1

ri =
m2

2N

E(ni(ni − 1))

E(ni)2
(3.8)

is the mean number of repeats in a sample of m cells, as seen in Eq. 3.3.

How many cells do we need to sample in order to have a 50 percent chance of finding

a repeat? Let this number be m0.5. This implies λ = log 2. Then, using (3.8),

m2
0.5 =

E(ni)
2

E(ni(ni − 1))
2N log 2 . (3.9)

In the simplest case, when all clonotypes have the same number of cells, n̄, we find

Pr(no repeats) = exp(−m2

2N (1− 1
n̄)) and

m0.5 =

√√√√(2N log 2

1− 1
n̄

)
.

When the distribution of the number of cells per clonotype is geometric with mean n̄, and

the desired number is

m0.5 =

√√√√(N log 2

1− 1
n̄

)
.

See Figure 3.3. For a more general case, if we want to answer the question on how many

cells we need to sample in order to have a certain probability p of finding a repeat, we

should use the relationship

1− p = e−λ ⇒ λ = log

(
1

1− p

)
.

36



3.6 Poisson distribution of number of repeats in a sample
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Figure 3.3: Mean number of cells that need to be sampled in order to have a 50 percent

chance of one repeat, from a repertoire of N clonotypes and a geometric distribution of

clonal sizes, with n̄ = 10.

3.6 Poisson distribution of number of repeats in a sample

Let k be the total number of repeats in a sample of m cells. For example, if 96 sequences

are found once and 2 sequences are found twice, then m = 100 and k = 2. We have already

seen Pr(k = 0) in (3.7). Let us consider the case k = 1:

Pr(k = 1) =

N∑
i=1

ri

N∏
j=1
j 6=i

(1− rj).

If ri � 1 for every i then, from (3.4) and (3.7), we have
N∏
j=1
j 6=i

(1 − rj) '
N∏
i=1

(1 − ri) = e−λ

and, from (3.8),

Pr(k = 1) = λe−λ .

The same argument works for all k � m, so that the number of repeats in a sample has

approximately a Poisson distribution:

Pr(number of repeats is k) =
λk

k!
e−λ .

3.7 Estimating the size of the repertoire from one repeat

Suppose there is one repeat in a sample of m cells. We then use (3.8) to estimate N .

Putting λ = 1 and, assuming a geometric distribution of clonal sizes, we conclude that

N = m2 n− 1

n
' m2 .
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If we find one repeat per 100 cells, we estimate the number of distinct clonotype classes

to be around 104. If we find one repeat per 1000 cells, we estimate that the size of the

repertoire is 106. In practice, the estimate m2 is likely to be conservative, because any

clonal expansion will increase the number of observed repeats.

3.8 The observed distribution of clonal sizes

In this section, our goal is to find the probability distribution of the number of instances

of k copies of a TCR in a random sample of m cells. Firstly, consider the point of view of

one cell in the total of S cells in the repertoire. The probability, which we denote q, that

this cell is one of the m cells in the sample is

q =
combinations of S − 1 elements in m− 1 places

combinations of S elements in m places
=

(
S−1
m−1

)(
S
m

) =
m

S
. (3.10)

Next, let us define the Bernoulli random variable B:

Pr(B = 0) = 1− q and Pr(B = 1) = q, where q =
m

S
.

The probability generating function of B is

φB(z) =
∞∑
k=0

Pr(B = k)zk = 1− q + qz . (3.11)

If ni is the number of cells of a clonotype labeled i, then the number of cells of type i in

the sample is the random variable Yi, which can be written

Yi = B1 + · · ·+Bni , (3.12)

where Bj , j = 1, . . . , ni are random variables with the same distribution as B. With the

approximation that the Bj are independent random variables, the probability generating

function of Yi is (See Sec. 2.2.7)

φYi(z) = φB(z)ni = (1− q + qz)ni . (3.13)

In Appendix A we show that the random variable Yi can be approximated as a binomial

distribution with parameters ni and q = m/S. Here we use though a slightly different

approximation, for which the random variable Yi is approximated with a binomial distri-

bution with parameters ni and q = m/S. It is easy to simulate these distributions and

check that they overlap for large enough values of the parameter S. Now, let Y be the

number of copies of a randomly-chosen clonotype found in the sample of m cells, which
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3.8 The observed distribution of clonal sizes

can be 0 or any integer greater than 0 (up to min{m,ni}). To find the probability distri-

bution of Y , we must take the distribution of values of ni into account. Suppose that the

probability generating function of the random variable ni is φn(z). Then

φY (z) =
∑
k

Pr(ni = k)(1− q + qz)k = φn(1− q + qz). (3.14)

Let us recall the Taylor expansion of a function f(x) around the point x = 0, defined as

f(x) =

∞∑
k=0

f (k)(0)

k!
xk

where f (k)(0) represents the kth derivative of the function calculated in x = 0. Therefore,

the Taylor expansion of the general φY (z) is

φY (z) =

∞∑
k=0

φ
(k)
Y (0)

k!
zk.

By definition of probability generating function, we can write

φY (z) =

∞∑
k=0

Pr(Y = k)zk,

which results in

Pr(Y = k) =
φ

(k)
Y (0)

k!
. (3.15)

It is important to notice that the random variable Y describes the probability, for a general

clonotype in the repertoire, of being present (k ≥ 1) or not being present (k = 0) in the

sample. What is interesting, especially from an experimental point of view, is to rescale

these probabilities so that they can describe the observed clonal size distribution. In other

words, we want to focus on the probability that a certain clonotype is present in the

sample with a certain number of copies k ≥ 1, given that this clonotype has been seen in

the sample. Let us define pk = Pr(Y = k) and sk = Pr(Y = k|Y 6= 0). It follows that, for

k ≥ 1, we have

sk =
Pr(Y 6= 0|Y = k ≥ 1) Pr(Y = k)

Pr(Y 6= 0)
=

Pr(Y = k)

Pr(Y 6= 0)
=

pk
1− p0

. (3.16)

These probabilities represent the observed distribution of clonal sizes; that is, the his-

togram that is obtained by plotting number of TCRs versus number of cells in the sample.

We can consider them as the probabilities of the random variable Y obs, defined as the

number of copies of a randomly-chosen clonotype actually seen in the sample. It is also

of interest to try to say something about the probability generating function of Y obs.

Dividing φY (z) by 1− p0 we obtain

φY (z)

1− p0
=

p0

1− p0
+

p1

1− p0
z +

p2

1− p0
z2 + · · · = s0 + s1z + s2z

2 + · · ·
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3. MATHEMATICS FOR T-CELL SAMPLING

where sk are defined in (3.16) for k ≥ 1. What we want though, for our random variable

Y obs, is s0 = 0. Therefore, we obtain

φY obs(z) =
φY (z)

1− p0
− s0 =

φn(1− q + qz)− φn(1− q)
1− φn(1− q)

. (3.17)

Since φn(1 − q) is a constant, this last result shows that the distribution of a generic

clonotype class in the repertoire is transferred, with different parameters, to the distribu-

tion of the same clonotype class in the sample. We will validate this general result in the

following sections based on specific cases of clonal size distributions. In particular, the

general property E(X) =
[
φ

(1)
X (z)

]
z=1

for any general r.v. X brings us to

E(Y obs) =
[
φ

(1)

Y obs
(z)
]
z=1

=

[
φ

(1)
n (1− q + qz)

1− φn(1− q)

]
z=1

=
qE(ni)

1− φn(1− q)
. (3.18)

Let us try to give now a different interpretation of (3.15). Recalling (3.14), we can prove

that

φ
(k)
Y (z) = qk φ(k)

n (1− q + qz).

In particular, we obtain

φ
(k)
Y (0) = qk φ(k)

n (1− q).

This gives us a different interpretation of (3.15)

Pr(Y = k) =
qkφ

(k)
n (1− q)
k!

, (3.19)

in particular when we are dealing with q � 1. In fact, in this case, we can write

φ(k)
n (1− q) ' φ(k)

n (1) = E [(ni)k] ,

where E [(ni)k] represents the kth factorial moment of the random variable ni. In order to

check the validity of the last equation, let us consider a general random variable X. Its

probability generating function φX(z) = E(zX) can be differentiated k times obtaining

φ
(k)
X (z) = E[X(X − 1) . . . (X − k + 1)zX−k],

resulting in

φ
(k)
X (1) = E[X(X − 1) . . . (X − k + 1)] = E [(ni)k] . (3.20)

To conclude, (3.19) can be written as a function of the raw moments of the random variable

ni as

Pr(Y = k) '
qk
∑k

t=0 S(k, t)E(nti)

k!
, (3.21)

where the coefficients S(k, t) represent the Stirling numbers of the first kind, that is the

coefficients in the expansion

(x)n =
n∑
k=0

S(n, k)xk,
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where (x)n denotes the falling factorial (x)n = x(x− 1)(x− 2) . . . (x− n+ 1).

Using (3.19), we can then observe the following relationship

sk+1

sk
=
pk+1

pk
' q

k + 1

φ
(k+1)
n (1− q)
φkn(1− q)

' q

k + 1

E [(ni)k+1]

E [(ni)k]
. (3.22)

In particular, (3.22) can be further simplified in cases such as Poisson and geometric

distributions for ni. In fact, (3.22) would become
q

k + 1
λ and

q

k + 1
(k + 1)(n− 1) for the

two cases respectively. As a last observation, we can use (3.19) to obtain

sk =
qkφ

(k)
n (1− q)
k!

[1− φn(1− q)]−1. (3.23)

3.9 Homogeneous cases

In this section we will consider a consistant clonal size distribution in the repertoire.

We analyze four different distributions: constant, geometric, Poisson and logarithmic

clonal size distribution. The constant case is somehow the basic type of possible discrete

clonal size distributions, although unrealistic. The Poisson distribution has been chosen

for its well-known ability in representing count data. The geometric and logarithmic

distributions were chosen as being different discrete distributions from the Poisson one,

and also for a different reason. In a work published in 2011 [111], the authors firstly

consider a general birth and death process and discuss two possible approximations for

the limiting conditional probability distribution (LCD) of the process, deriving them from

a previous work [117]. Defining λn and µn as the birth and death rates of the process, the

first approximation is given by
π

(1)
1 = 1

1+
∑∞
n=2

λ1λ2...λn−1
µ2µ3...µn

,

π
(1)
n = λ1λ2...λn−1

µ2µ3...µn
π

(1)
1 for n ≥ 2.

(3.24)

The second approximation is given instead by
π

(2)
1 = 1

1+
∑∞
n=2

λ1λ2...λn−1
µ1µ2...µn−1

,

π
(2)
n = λ1λ2...λn−1

µ1µ3...µn−1
π

(2)
1 for n ≥ 2.

(3.25)

The authors apply then these approximations to a specific birth and death process. Here

we focus on the process with birth and death rates λn = λnk and µn = µnk. It is easy to

show that the first approximation for these rates can be written as
π

(1)
1 = [Lik(λ/µ)]−1 ,

π
(1)
n = (λ/µ)n−1

[
nkLik(λ/µ)

]−1
for n ≥ 2,

(3.26)

41



3. MATHEMATICS FOR T-CELL SAMPLING

where Lik(z) represents the polylogarithmic function of order k defined as

Lik(z) =

+∞∑
i=1

zi

ik
.

The second approximation can be written as
π

(2)
1 = 1− (λ/µ),

π
(2)
n = (λ/µ)n−1[1− (λ/µ)] for n ≥ 2.

(3.27)

As can be seen, the second approximation suggests that a birth and death process with

rates of the kind λn = λnk and µn = µnk would reach an LCD closely related to geometric

distribution, which could be seen as the distribution of the clonal size of a particular

clonotype subject to the previously explained process. From here, and from the relation

between the logarithmic distribution and the polylogarithmic one, we decided to explore

geometric and logarithmic clonal size distributions.

3.9.1 Constant clonal size distribution

Let us consider a repertoire of N different clonotype classes and let us suppose that

ni ≡ n ∀i ∈ {1, 2, . . . N}. It follows that

φn(z) = zn, (3.28)

so that

φY (z) = (1− q + qz)n. (3.29)

Considering the known property of probability generating functions, for which

E(Y ) = φ
′
Y (1), (3.30)

we obtain that E(Y ) = nq. Moreover, applying (3.15) we obtain

Pr(Y = k) =


(1− q)n, for k = 0

(n)kq
k(1− q)n−k

k!
=

(
n

k

)
qk(1− q)n−k, for k ≥ 1

where (n)k = n(n− 1) . . . (n− k + 1).

3.9.2 Geometric clonal size distribution

Let us now consider the case in which ni has a geometric distribution with mean n. It is

worth noting that we have to consider the geometric distribution with support on the set
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{k = 1, 2, 3, . . .} given that we are working on clones which are present in the repertoire

(that is k > 0). Thus

Pr(ni = k) =
1

n
(1− 1

n
)k−1.

It follows that

φn(z) =
z

n− (n− 1)z
, (3.31)

so that

φY (z) =
1− q + qz

n− (n− 1)(1− q + qz)
=

1− q + qz

1 + (n− 1)q(1− z)
. (3.32)

Applying (3.15) we obtain

Pr(Y = k) =


1− q

1 + q(n− 1)
, for k = 0

(n− 1)k−1nqk

(1 + q(n− 1))k+1
, for k ≥ 1

The following recursive formula holds

pk = p1γ
k−1 k ≥ 1, (3.33)

where

γ =
(n− 1)q

1 + q(n− 1)
. (3.34)

To understand the distribution of Y , let us factorize p1 as

p1 = θp,

where p = (1 + q(n− 1))−1 and

θ =
nq

1 + q(n− 1)
.

Therefore γ = 1− p, resulting in

pk = θp(1− p)k−1 k ≥ 1. (3.35)

Being q < 1, it follows that θ < 1. An important observation comes from (3.30) for which,

in this case too, the expected value of the random variable Y is E(Y ) = nq.

Applying (3.16), we obtain

sk =
θp(1− p)k−1

1− p0
= p(1− p)k−1. (3.36)

We conclude that the observed distribution of clonal sizes (the histogram that is obtained

by plotting number of TCRs versus number of cells) is geometric with parameter p, result-

ing in a mean of 1 + (n− 1)q. This validate, as previously discussed, the relation (3.17),
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that is the property for which the distribution of a generic clonotype class in the repertoire

is transferred, with different parameters, to the same clonotype class found in the sample.

It is worth noting the following relation:

sk+1 = γsk. (3.37)

This is a particular property of all positive geometric distributions. See Figure 3.4 for

a particular case of this relation. For both constant and geometric unimodal cases, see

Figure 3.5.
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Figure 3.4: Relation between sk+1 and sk, with q = 0.0001 and n = 10. See (3.37).

3.9.3 Poisson clonal size distribution

Let us now consider the case in which ni has a Zero-Truncated Poisson distribution (ZTP)

with mean n. It is worth noting that we have to consider this distribution because of its

support on the set {k = 1, 2, 3, ...} given that we are working on clones which are present

in the repertoire (that is a Poisson distribution with k > 0). Thus, we have

Pr(ni = k) =
λk

(ek − 1) k!
.

We need the expected value of the ZTP(λ) to be equal to n:

n =
λeλ

eλ − 1
. (3.38)

In order to find an expression for our parameter λ, we rearrange (3.38) and we multiply

both sides by e−n, in order to obtain

−ne−n = eλ−n(λ− n),
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Figure 3.5: Observed clonal size distribution in a sample of 1000 cells, from repertoires

containing different numbers of clones, N . A “constant” repertoire means that there are 10

cells of each clonotype. In a “geometric” repertoire, the number of cells in each clonotype

is drawn from a geometric distribution with mean 10.

that in turn gives the solution

λ = n+W
(
− n

en

)
, (3.39)

where W (·) represents the Lambert W function, defined as the set of functions for which

the solution of zez = f(z) is x = W (f(z)). In particular, here we have

eλ−n(λ− n) = f(λ− n), with f(λ− n) = −ne−n.

It is important to notice that for −1

e
< x < 0 the function W (·) is double-valued taking

two possible branches: W0(·) or W−1(·). Therefore, we need to understand which one to

use so that we can obtain uniqueness for the solution (3.39). For −1

e
< x < 0, we have

−1 < W0(·) < 0 and −∞ < W−1(·) < −1. Substituting (not inside the W function) (3.38)

in (3.39), we obtain

W
(
− n

en

)
= − λ

eλ − 1
.
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For λ > 0, we have −1 < − λ

eλ − 1
< 0, indicating W0(·) as the right branch to be chosen.

Thus,

Pr(ni = k) =
λk

k! (ek − 1)
, (3.40)

and

φni(z) =
eλz − 1

eλ − 1
, (3.41)

with λ given by (3.39). We can then find φY (z) a

φY (z) =
eλ(1−q+qz) − 1

eλ − 1
. (3.42)

It follows that

Pr(Y = 0) =
eλ(1−q) − 1

eλ − 1

and

Pr(Y = k) ≡ pk =
λkqkeλ(1−q)

k! (eλ − 1)
k = 0, 1, 2, ...

The observed distribution is then defined by

sk =
(λq)k

k! (eλq − 1)
k = 1, 2, ... (3.43)

showing that the observed distribution is also a ZTP distribution with parameter λ
′

=

qλ. This confirms the previously shown relation (3.17). It is worth noting the following

relation:

sk+1 =
λq

k + 1
sk. (3.44)

This is a particular property of all ZTP distributions.

3.9.4 Logarithmic clonal size distribution

Let us now consider the case in which ni has a logarithmic distribution with mean n.

Thus, we need the expected value of the Log(p) to be equal to n:

− 1

ln(1− p)
p

1− p
= n. (3.45)

In order to find an expression for our parameter p, we define x = 1− p and we rearrange

(3.45), obtaining

x ln(x) +
1− x
n

= 0.

This gives
1 + nx

[
ln(x)− 1

n

]
n

= 0,

which in turns can be seen as

x ln(xe−
1
n ) = − 1

n
.
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Multiplying both sides by e−
1
n , we obtain

xe−
1
n ln(xe−

1
n ) = − 1

n
e−

1
n ,

that can be written as

eln(xe−
1
n ) ln(xe−

1
n ) = − 1

n
e−

1
n .

The solution of this equation is given by

ln(xe−
1
n ) = W

(
− 1

n
e−

1
n

)
,

where W (·) represents the Lambert W function, defined as the function for which the

solution of xex = a is x = W (a). In particular, we obtain

x = e
1
n

+W
(
− 1
n
e−

1
n

)
,

that gives us the final relation

p = 1− e
1
n

+W
(
− 1
n
e−

1
n

)
. (3.46)

As previously stated in Section 3.9.3, for −1

e
< x < 0 the function W (·) is double-valued

taking two possible branches: W0(·) or W−1(·). Therefore, we need to understand which

one to use so that we can obtain uniqueness for the solution (3.46). For −1

e
< x < 0, we

have −1 < W0(·) < 0 and −∞ < W−1(·) < −1. Substituting (not inside the W function)

(3.45) in (3.46), we obtain

W

(
− 1

n
e−

1
n

)
=

ln(1− p)
p

.

For 0 < p < 1, we have
ln(1− p)

p
< −1, indicating W−1(·) as the right branch to be

chosen. Thus,

Pr(ni = k) =
−1

ln(1− p)
pk

k
, (3.47)

and

φni(z) =
ln(1− pz)
ln(1− p)

, (3.48)

with p given by (3.46). Using (3.23), we can then find

sk =
−1

ln(1− a)

ak

k
with a =

pq

1− p(1− q)
k = 1, 2, ... (3.49)

showing that the observed distribution is also a logarithmic distribution with parameter

a =
pq

1− p(1− q)
. This confirms the previously shown relation (3.17). It is worth noting

the following relation:

sk+1 =
ak

k + 1
sk. (3.50)

This is a particular property of all logarithmic distributions.

47



3. MATHEMATICS FOR T-CELL SAMPLING

3.10 Heterogeneous cases: expansion of a subset of the reper-

toire

In this section we assume that a fraction f � 1 of clones undergoes expansion following

an immune response to a certain infection. We call E the expanded part and U the

unexpanded one. We consider two special cases: constant and geometric repertoire.

3.10.1 Constant clonal size distribution: expansion case

Let us consider the case in which the random variable ni of T cells of type i is

ni ≡


n, if clone i is in the unexpanded part U

nα, if clone i is in expanded part E.

Recalling (3.14), we need to focus on finding the probability generating function φn of the

random variable ni. By definition,

φn(z) =

∞∑
k=0

Pr(ni = k)zk. (3.51)

Thus we have to find Pr(ni = k). From the theory we have that

Pr(ni = k) = Pr(ni = k i ∈ E) Pr(i ∈ E) + Pr(ni = k i ∈ U) Pr(i ∈ U).

In our case, we have

Pr(ni = k | i ∈ D) =


1, for {D = E and k = nα} or for {D = U and k = n}

0, otherwise

and

Pr(i ∈ D) =


f, for D = E

1− f, for D = U.

At this point, we can write (3.51) as

φn(z) = (1− f)zn + fznα. (3.52)

Therefore, the probability generating function of the random variable Y is

φY (z) = φn(1− q + qz) = (1− f)(1− q + qz)n + f(1− q + qz)nα. (3.53)
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Following the same procedure as in Section 3.9.2, we can find that

pk =

(
n

k

)
(1− f)qk(1− q)n−k +

(
nα

k

)
fqk(1− q)nα−k k ≥ 0 (3.54)

and

sk =
pk

1− p0
k ≥ 1.

The E(Y ) can be easily found following (3.30), obtaining E(Y ) = nq[1 + (α− 1)f ]. There-

fore,

E(Y obs) =
nq(1 + (α− 1)f)

1− p0
. (3.55)

3.10.2 Geometric clonal size distribuion: expansion case

We consider the case in which the random variable ni of T cells of type i is:

ni ∼


Geom( 1

n), if clone i is in the unexpanded part U

Geom( 1
nα), if clone i is in expanded part E.

We now follow the same procedure as in Section 3.10.1. In this case, we have

Pr(ni = k | i ∈ D) =


(
1− 1

nα

)k−1 ( 1
nα

)
, for D = E

(
1− 1

n

)k−1 ( 1
n

)
, for D = U

and

Pr(i ∈ D) =


f, for D = E

1− f, for D = U.

Therefore we obtain

Pr(ni = k) = f

(
1− 1

nα

)k−1( 1

nα

)
+ (1− f)

(
1− 1

n

)k−1( 1

n

)
.

At this point, we have

φn(z) = f

∞∑
k=1

(
1− 1

nα

)k−1( 1

nα

)
zk + (1− f)

∞∑
k=1

(
1− 1

n

)k−1( 1

n

)
zk .

We see now that

φn(z) = f φe(z) + (1− f) φu(z), (3.56)

where e and u are random variables with a geometric distribution with parameters 1
nα and

1
n respectively.
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Therefore, the probability generating function of the random variable Y is

φY (z) = φn(1− q + qz) = f φe(1− q + qz) + (1− f) φu(1− q + qz) (3.57)

where

φe(1− q + qz) =
1− q + qz

nα− (nα− 1)(1− q + qz)
=

1− q + qz

1− q(nα− 1)(z − 1)

and

φu(1− q + qz) =
1− q + qz

n− (n− 1)(1− q + qz)
=

1− q + qz

1− q(n− 1)(z − 1)
.

Following the main ideas of Section 3.9.2, we find

Pr(Y = k) =


f

1− q
1 + q(nα− 1)

+ (1− f)
1− q

1 + q(n− 1)
, for k = 0

f
(nα− 1)k−1 nα qk

(1 + q(nα− 1))k+1
+ (1− f)

(n− 1)k−1 n qk

(1 + q(n− 1))k+1
, for k ≥ 1.

We can find sk as defined in (3.16). Moreover, applying (3.30), we find

E(Y ) = nq(1 + (α− 1)f). (3.58)

Therefore,

E(Y obs) =
nq(1 + (α− 1)f)

1− p0
. (3.59)

Case q� 1

Let us consider the case in which S � m, that is q � 1. In this case, excluding all the

parts proportional to q2, the quantity 1− p0 can be approximated by

1− p0 '
1 + q(n(α+ 1)− 2)− [f(1− q) + fq(n− 1) + (1− f)(1− q)q(1− f)(nα− 1)]

1 + q(n(α+ 1)− 2)
,

which turns out to be

1− p0 '
nq(1 + (α− 1)f)

1 + q(n(α+ 1)− 2)
.

Therefore,

E(Y obs) ' 1 + q(n(α+ 1)− 2) ' 1 + qnα. (3.60)

It is interesting to notice that this quantity does not depend on the fraction f of expanded

clones in the repertoire. In fact, this quantity is a good estimation of E(Y obs) for f ≥ 0.1.

See Figure 3.6.
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Figure 3.6: Expansion case with geometric clonal size distributions. Independence of

E(Y obs) from f for f ≥ 0.1. S = 106.

3.11 Analysis of the TCRβ repertoire of naive CD8+ T cells

Suppose the repertoire, from which cells are sampled, contains a total of S cells that are

shared among N TCRβ clones. That is, N is equal to the total number of distinct TCRβ

sequences in the repertoire.

We use the letter i to denote a clone in the repertoire that consists of ni cells. Thus

i = 1, 2, . . . , N and n1 + n2 + · · · + nN = S. The mean clonal size is denoted by n̄. It

is equal to S/N , the mean number of cells per clone. Three types of hypothesis are as

follows:

(i) that each individual clone has the same number of cells;

(ii) that the clonal sizes follow a simple geometric distribution, where the probability of

finding clones with small size is higher than that of finding large clones;

(iii) that there are two types of clones in the repertoire, the majority of clones made up

of only a few cells, and a small minority of clones that contain many cells.

Suppose that a sample ofm cells is taken and the TCRβ of each of the cells is sequenced.

We define q (as in Section 3.8) to be the probability that one cell, randomly-chosen from

the total of S cells, is part of the sample of size m:

q =
m

S
.
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Let m0 be the number of distinct sequences found in the sample, and let m1 be the number

of sequences found only once in the sample. If mk, k = 1, 2, · · · is the number of sequences

found once, twice, ... then

m0 = m1 +m2 +m3 + · · · and m = m1 + 2m2 + 3m3 + · · ·

3.11.1 The mean clonal size of the CD8+ GP33+ subset

Here we analyse the single cell data from our QuanTI collaborators on the CD8+ GP33+

subset, where GP33+ is a specific LCMV (Lymphocytic Choriomeningitis Virus) epitope.

The value of S is the total number of GP33+ cells, estimated to be 441 (BM) or 2293

(SP+LN). Thus, with sample sizes m between 94 and 271, the value of q is between 0.04

and 0.12. Hypothesis (i) is not consistent with the data: if n = 1 then m is always equal to

m0; if n = 2 or larger, the predicted values of the ratio m
m0

are larger than those observed.

In fact, defining Y obs as in Section 3.8, we can write

E(Y obs) =
∞∑
k=1

kPr(Y obs = k) ≈
∞∑
k=1

k
mk

m0
=

m

m0
.

That is, the mean of the ratio
m

m0
is

nq

nq + 1
2n(n− 1)q2

. Thus, we consider hypothesis (ii).

Geometric

We first consider the geometric distribution of values of number of cells per clone, ni. The

statement that ni has a geometric distribution with mean n̄ is that

Pr(ni = k) =
1

n̄

(
1− 1

n̄

)k−1

, k = 1, 2, . . . .

Note that n̄ ≥ 1. The fraction of clones that consist of only one cell is

Pr(ni = 1) =
1

n̄
.

If the distribution of values of ni is geometric, then the distribution of the number of

copies of each Tcrb sequence found in a sample of m cells is also geometric, with mean

equal to 1 + (n̄− 1)q (as shown in Section 3.9.2). Defining Y obs as in Section 3.8, we can

write

E(Y obs) =
∞∑
k=1

kPr(Y obs = k) =
∞∑
k=1

k
mk

m0
=

m

m0
.

That is, the mean of the ratio m
m0

is 1 + (n̄ − 1)q. Because the values of S and m are

known, we obtain one estimate of n̄ from each measured value of m0:

n̄ = 1 + S

(
1

m0
− 1

m

)
. (3.61)
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We use (3.61) to estimate n̄ in the GP33+ repertoire, where S = 2300. There are five

independent measurements, summarised:

Mouse 5: 271 sequences, 268 unique, so estimate n̄ = 1.09.

Mouse 6: 188 sequences, 186 unique, so estimate n̄ = 1.13.

Mouse 7: 128 sequences, 127 unique, so estimate n̄ = 1.14.

Mouse 10: 244 sequences, 240 unique, so estimate n̄ = 1.16.

Mouse 11: 165 sequences, 165 unique, so estimate n̄ = 1.00.

The mean of the estimated values of n̄ is 1.10, with standard deviation 0.05.

Poisson

We next consider the hypothesis that the number of cells per clone, in the repertoire, has

a Poisson distribution. The statement that ni has a positive Poisson distribution with

mean n̄ is that

Pr(ni = k) =
1

eλ − 1

λk

k!
k = 1, 2, . . . , and n̄ =

λeλ

eλ − 1
. (3.62)

In this case, the distribution of the number of copies yi of each TCR sequence found in a

sample of m cells is also positive Poisson, with

Pr(yi = k) =
1

eλq − 1

(λq)k

k!
k = 1, 2, . . . .

The mean value of m
m0

is λqeλq

eλq−1
which, because λq � 1, we can write as m

m0
= 1 + 1

2λq +

1
4(λq)2 + · · · .. Retaining up to first order in λq,

λ = 2S

(
1

m0
− 1

m

)
. (3.63)

For each mouse, we estimate λ using (3.63), then calculate n̄ using (3.62).

Mouse 5: 271 sequences, 268 unique, so estimate n̄ = 1.10.

Mouse 6: 188 sequences, 186 unique, so estimate n̄ = 1.14.

Mouse 7: 128 sequences, 127 unique, so estimate n̄ = 1.15.

Mouse 10: 244 sequences, 240 unique, so estimate n̄ = 1.17.

Mouse 11: 165 sequences, 165 unique, so estimate n̄ = 1.00.

The mean of the estimated values of n̄ is 1.11, with standard deviation 0.05.

We also estimate n̄ from one sample of the GP33+CD44+ repertoire, where S = 441.

Mouse 12: 94 sequences, 93 unique, so estimate n̄ = 1.05.

Thus the two cases, based on distributions of different shapes, give similar estimates

of the mean number of cells per clone, corresponding to a repertoire in which 91% ± 4%

of clones consist of one cell only.
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3.12 Discussion

The study of TCRs repertoire is of great importance nowadays. A very diverse repertoire

could imply a much higher probability, for the immune system, of being able to properly

react to certain foreign peptides. As discussed in the biological introduction, single-cell

sequencing techniques allow us to obtain small samples from the totality of the repertoire

of a particular individual. As it has been shown in this chapter, estimates of TCR diversity

depend on the clonal size distribution in the repertoire, though small samples allow the

simplifying approximation that random variables describing quantities of interest, such as

the numbers of cells of different types in the sample, are independent. We have proved

that the probability generating function of the distribution of clonal sizes in the sample

can be seen as the composition of that of a Bernoulli random variable (that takes values 0

or 1) and that of the true distribution of clonal sizes in the repertoire that is being sampled

from. In particular, we have expressed the relation between the clonal size distribution

in the repertoire and the one in the sample for different distribution cases. Our work

is motivated by studies of the repertoire of T cells in humans and mice. As previously

discussed in the introduction, in this type of experiment, where mRNA is extracted from

a pool of cells, it is difficult to obtain statistics of the number of cells of each clonotype

(abundance data) that is free from biases. Single-cell TCR sequencing can eliminate biases

but can, at present, only be carried out on a few hundred cells from one individual. This

is, though, a great opportunity to apply mathematical techniques to such an important

research area related to human health.
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Chapter 4

VDJ recombination & Data

analysis

4.1 Abstract and Introduction

Single-cell sequencing techniques probably represent the most reliable way to study the

DNA or RNA sequences of T-cell receptors (TCRs) from a sample, one cell at a time. In

the previous chapter we focused on the relation between the true clonal size distribution

(i.e., the distribution of the repertoire) and the observed clonal size distribution (i.e., the

distribution of the sample). This chapter focuses on a slightly different question, which can

be expressed as follows: given the observed clonal size of a specific TCR clonotype class,

what can we deduced about the true clonal size distribution of that particular clonotype

class? As we will see, this question will provide new insights on the study of the diversity

of a repertoire.

4.2 Data

The data considered in this study are part of a broader study on TCR diversity on näıve

and LCMV (lymphocytic choriomeningitis virus) infected mice, of which only the näıve

part has been published so far [71]. Samples from 10 specific-pathogen-free (SPF) B6 mice

were analysed; five were not infected (näıve) and labelled as BA1, BA2, BA3, BA4 and

BA5; the other five mice were subdivided in two subgroups, two being only immunized,

labelled EF1 and EF2, and three being infected with LCMV and labelled EF3, EF4 and

EF5. In particular, EF1 and EF2 were immunized with the epitope GP33 (from here their

alternative label GP33i1 and GP33i2). The mice were obtained from breeding colonies

at the Centre de Distribution, Typage et Archivage (CDTA, Orleans, France), and all

the experiments were performed in accordance with the National European Commission

guidelines for the care and handling of laboratory animals and were approved by the site
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etichal review committee. In this section we present the data related only to V and J

distributions and only related to GP33-specific repertoire. For each mouse, both 2D and

3D plots were created representing the V-J distribution. Tables with the actual data can

also be found in Appendix B.

Figure 4.1: V-J plot for the uninfected mouse BA1.
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Figure 4.2: V-J plot for the uninfected mouse BA2.

Figure 4.3: V-J plot for the uninfected mouse BA3.
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Figure 4.4: V-J plot for the uninfected mouse BA4.

Figure 4.5: V-J plot for the uninfected mouse BA5.
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Figure 4.6: V-J plot for the infected mouse EF1.

Figure 4.7: V-J plot for the infected mouse EF2.
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Figure 4.8: V-J plot for the infected mouse EF3.

Figure 4.9: V-J plot for the infected mouse EF4.
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Figure 4.10: V-J plot for the infected mouse EF5.
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4.3 Statistics

This statistical section will serve as a reference for the entire chapter in which we will try

to answer some biological questions related to diversity inter (and intra) groups of infected

and uninfected mice. The analyses will focus on the V-J repertoire of the data collected

from our QuanTI collaborators Prof. Benedita Rocha and Dr. Pedro Filipe Fernandes

Goncalves [71]. The goal will be to apply some of the techniques of [164], in particular

the technique known as Randomization Test, to the data. Other analyses for public and

private V-J repertoires will also follow.

4.3.1 Statistical terms

We recall here the definition of two important statistical terms:

• test statistic: A test statistic is a single measure of some attribute of a sample

(i.e. a statistic) and it’s used in statistical hypothesis testing. The main idea behind

the test statistic is to summarize the data to a single value, that will be ultimately

used to perform an hypothesis test. The test statistic, together with the p-value

associated to the hypothesis test, allow to determine whether to accept or reject the

null hypothesis (H0) of the hypothesis test.

• p-value: The p-value is defined as the probability of obtaining a result equal to

or more extreme than the result that was actually observed. It is a function of the

observed sample and it is used for testing a statistical hypothesis. Before the test

is performed, a threshold value is chosen, called the significance level of the test,

traditionally 5% or 1%. A small p-value (≤ 0.05) indicates strong evidence against

the null hypothesis, that is the data suggest to reject the null hypothesis. A large

p-value (> 0.05) indicates weak evidence against the null hypothesis, that is the data

are not sufficient to reject the null hypothesis.

4.3.2 Randomization Test

The Randomization test is a statistical test to determine the significance of some observed

test statistic aimed at assessing a particular hypothesis. The assessment is achieved thanks

to the generation of a distribution of the test statistic assuming the null hypothesis. The

proportion of the distribution that is at least as extreme in absolute value as the observed

test statistic is then determined. This proportion is a good estimate of the p-value and

represents the probability that the observed test statistic could have been achieved by the

distribution of the test statistic under the null hypothesis. See [164] for an illustration of

the methodology of the randomization tests (in particular Fig. 4.11).
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Figure 4.11: The randomization test for comparing the diversity of TCR samples. A

schematic of the randomization test method for determining the statistical significance

of the difference in a diversity measure (DB − DA) between two TCR sets, A and B.

The method involves first pooling all sequences from Set A and Set B and then randomly

drawing two new sets (of the same sizes as the original Set A and Set B), and calculating the

difference in diversity that arose from this random sampling. This procedure is repeated

multiple times (i.e.: repeat steps 3 and 4 multiple times) to obtain a distribution of the

difference in diversity measures assuming the null hypothesis that both samples are drawn

from the same distribution. The p-value for the difference in diversity (DB −DA) is the

proportion of the distribution (highlighted in red) from the random draws for which the

difference in diversity was greater than that observed experimentally (i.e.: (DB −DA)).
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4.3.3 Simpson’s diversity index

The Simpson’s diversity index is a measure of the degree of concentration of a sample

when individuals are classified into types, and it is defined as

DS = 1−
∑c

i=1 ni(ni − 1)

n(n− 1)
, (4.1)

where ni is the number of individuals of the i-th type (or class) in the sample, c is the

number of different types in the sample, and n is the total number of individuals in the

sample. This index ranges between 0 (all individuals of the sample belong to the same

type) and 1 (each individual in the sample belongs to a different type or class) representing

minimal and maximal diversity (within the sample) respectively [147].

4.3.4 Jaccard distance

The Jaccard distance between two sets A and B is a measure of overlapping dissimilarity

between sample sets. It is defined as

dJ(A,B) = 1− J(A,B) ,

where J(A,B) is the Jaccard index and it is defined as

J(A,B) =
|A ∩B|
|A ∪B|

.

This index ranges between 0 (the two sets share everything) and 1 (the two set share

nothing) representing minimal and maximal dissimilarity respectively [79, 133].

4.3.5 Wilcoxon-Mann-Whitney U test

The Wilcoxon-Mann-Whitney U test is a non-parametric statistical test, that is a statis-

tical hypothesis testing test which make no a priori assumptions on the variables taken

into consideration. As opposed to parametric tests, the parameters are present but they

are determined by the data rather than by the model assumptions. Consider two different

independent samples X and Y . Consider also generic observations x from sample X and

y from sample Y . The hypotheses associated to the test are as follows:

• H0: Pr(x > y) = Pr(y > x);

• H1: Pr(x > y) 6= Pr(y > x).

The test is based upon a statistics called U which, under H0 and considering samples

with size greater or equal than 20, can be approximated with a normal distribution. For

smaller samples, tables for the exact distribution of U exist. To compute the statistic U ,

an easy and intuitive way is as follows:
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• Consider an observation x and define nx the number of times an observation in

sample X is greater than any other observation y in sample Y ;

• Start with nx = 0 and increase nx of 1 each time x is greater than y, while increase

it of 0.5 each time x meets a tie;

• Define UX =
∑

x∈X nx;

• Define UY with the contrary procedure.

4.3.6 Pearson’s χ2 test

The χ2 test is is a statistical test in which the sampling distribution of the test statistic

follows a chi-squared distribution when the null hypothesis is true. It is commonly used to

assess independence of unpaired observations of two different random variables X and Y ,

where in general the random variables are expressed in contingency tables. Before giving

the mains steps for the computation of this statistical test, we define the Pearson’s χ2 test

statistic (which asymptotically approaches the χ2 distribution) as follows:

χ2 =
∑
i,j

(ni,j − ei,j)2

ei,j
,

where

ei,j =

(∑
j ni,j

)
(
∑

i ni,j)∑
i,j ni,j

represents the expected frequency of type (i, j) if the occurrences were distributed ran-

domly over the contingency table. The test is structured in 5 different steps, as follows:

• Compute the Pearson’s χ2 test statistic as specified above;

• Determine the number of degrees of freedom, df = (r − 1)× (c− 1), where r and c

represent the number of rows and columns in the contingency table respectively;

• Define the confidence level for the test result (i.e. significance level of the test);

• Compare the χ2 (computed in the first point) with the tabulated values of the χ2

distribution (critical value) with degrees of freedom computed in the second point

and with selected level of confidence chosen in the third point;

• If the test statistic exceeds the critical value of the fourth point, reject the null

hypothesis H0 for which the two random variables X and Y are independent.
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4.4 Js and Vs frequency plots

We show here the plots for the fraction of all V and J gene segments in the data for

both näıve, infected and immunized mice. Single V and J plots per mouse can be found

with greater resolution in Appendix B. Figure 4.12 shows a clear preference for V13−1,

V13−2 and V13−3 in näıve mice. It also shows a preference for J2 genes rather than for J1

genes. Figure 4.13 shows instead the importance of V29 for infected and immunized mice.

Different exploratory plots for the marginal distributions are shown in Figures 4.14, 4.15,

4.16 and 4.17, while plots for the joint distributions are shown in Figures 4.18 to 4.27. It

is important to notice that the results for näıve mice are in concordance with previous

studies, for both V [84] and J [29] segments.

Figure 4.12: V-J frequency plots for the näıve mice BAs.
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Figure 4.13: V-J frequency plots for the infected mice EFs.
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Figure 4.14: V frequency plots for each näıve mouse compared to average frequencies of

näıve mice.
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4.4 Js and Vs frequency plots

Figure 4.15: J frequency plots for each näıve mouse compared to average frequencies of

näıve mice.

69



4. VDJ RECOMBINATION & DATA ANALYSIS

Figure 4.16: V frequency plots for each infected mouse compared to average frequencies

of infected mice.
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Figure 4.17: J frequency plots for each infected mouse compared to average frequencies of

infected mice.
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Figure 4.18: VJ plot for the näıve mouse BA1.

Figure 4.19: VJ plot for the näıve mouse BA2.
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Figure 4.20: VJ plot for the näıve mouse BA3.

Figure 4.21: VJ plot for the näıve mouse BA4.
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Figure 4.22: VJ plot for the näıve mouse BA5.

Figure 4.23: VJ plot for the infected mouse EF1.
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Figure 4.24: VJ plot for the infected mouse EF2.

Figure 4.25: VJ plot for the infected mouse EF3.
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Figure 4.26: VJ plot for the infected mouse EF4.

Figure 4.27: VJ plot for the infected mouse EF5.
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4.5 Js and Vs Simpson’s diversity

This section presents the plots for Simpson’s indices for näıve and infected mice. It is

worth noting that the two immunized mice (EF1 and EF2) have higher diversity index with

respect to the infected ones, probably suggesting that infection induce a higher skewness in

the diversity distribution with respect to immunization. Figure 4.28 indicates a minimum

in the Vs diversity of mouse EF3. This agrees with Figure 4.13, where the V distribution

in mouse EF3 is shown to be have low diversity. More interestingly, Figure 4.28 shows

how important the diversity of the J component is for the general diversity of VJs, as it

can be seen in the case of mouse BA3. Here, the V diversity is low with respect to the

other mice, but a value of J diversity similar to the other mice implies a level of total VJ

diversity comparable to that of other mice.

Figure 4.28: V-J-VJ Simpson’s indices for näıve and infected mice.

4.5.1 Wilcoxon-Mann-Whitney U test

Three Wilcoxon-Mann-Whitney U tests were performed on the data representing näıve

and infected mice. The first test was performed between the two sets

• SBA,V = {DBA1,V , DBA2,V , DBA3,V , DBA4,V , DBA5,V }

• SEF,V = {DEF1,V , DEF2,V , DEF3,V , DEF4,V , DEF5,V },

where the generic DBAn,V represents the Simpson’s diversity index of the näıve mouse

BAn with respect to the V segments distribution. Similar reasoning holds for DEFn,V .

The second test was performed between the two sets

• SBA,J = {DBA1,J , DBA2,J , DBA3,J , DBA4,J , DBA5,J}

• SEF,J = {DEF1,J , DEF2,J , DEF3,J , DEF4,J , DEF5,J},
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where the generic DBAn,J represents the Simpson’s diversity index of the näıve mouse

BAn with respect to the J segments distribution. Similar reasoning holds for DEFn,J .

The third and last test was performed between the two sets

• SBA,V J = {DBA1,V J , DBA2,V J , DBA3,V J , DBA4,V J , DBA5,V J}

• SEF,V J = {DEF1,V J , DEF2,V J , DEF3,V J , DEF4,V J , DEF5,V J},

where the generic DBAn,V J represents the Simpson’s diversity index of the näıve mouse

BAn with respect to the V J combination distribution. Similar reasoning holds forDEFn,V J .

The result are shown here:

• BAV and EFV: U = 18, p-value = 0.3095

• BAJ and EFJ: U = 12, p-value = 1

• BAVJ and EFVJ: U = 23, p-value = 0.03175

Given the high p-values for the first two tests, we cannot consider the results as conclusive.

The third test though, has a p-value lower than 0.05, suggesting that Simpson’s diversity

index is statistically higher in näıve mice with respect to infected mice.

4.6 Randomization tests for VJ’s diversity

This section focuses on the distribution of diversity, using Simpson’s diversity index as

a test statistic. In other words, the study of this section focuses on how much a single

mouse CD8+ TCR V-J repertoire differs from a flat CD8+ TCR V-J repertoire (case

Simpson’s index equal to 1) and how much these differences vary among mice and within

groups. It is important to understand that we are not focusing on the actual V-J profile

of a repertoire. This means that two different V-J profiles could have the same Simpson’s

diversity index. As an example, let us imagine that mouse X has the same V-J repertoire

of mouse Y except for the fact that the number of sequences of class {V1J1−1} and the

number of sequences of class {V1J1−2} are inverted. In this case, the two mice would

have two different V-J profiles but the same Simpson’s diversity index. Thus, this section

focuses on the “amount” of V-J diversity.

Randomization tests based on Simpson’s index were applied to each possible pair of

mice (within the näıve group and within the infected group), resulting in a series of p-

values plotted in Figure 4.29. The tested hypotheses are

H0 : the two samples come from the same diversity distribution

H1 : the two samples do not come from the same clonal size diversity distribution.

78



4.6 Randomization tests for VJ’s diversity

Figure 4.29: p-values for the randomization test based on Simpson’s index, for both näıve

and infected mice.

Figure 4.29 implies that we can exclude the null hypothesis (i.e. coming from the same

diversity distribution) for the pairs of mice BA3-BA1, BA3-BA2, BA3-BA4, BA3-BA5,

EF1-EF3, EF1-EF4, EF1-EF5, EF2-EF3, EF2-EF5, EF3-EF4, EF3-EF5. The EF1-EF2

pair is particularly interesting cause it represents the two previously immunized mice; see

Tables 4.1 and 4.2.

BA1 X

BA2 0.07011 X

BA3 0.00578 0.00031 X

BA4 0.08240 0.91210 0.00003 X

BA5 0.29003 0.68246 0.00323 0.74695 X

BA1 BA2 BA3 BA4 BA5

Table 4.1: p-values for the randomization test (105 simulations) based on Simpson’s index

for näıve mice.
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EF1 X

EF2 0.59052 X

EF3 0.00000 0.00004 X

EF4 0.04211 0.07309 0.00000 X

EF5 0.00000 0.00211 0.03837 0.0000 X

EF1 EF2 EF3 EF4 EF5

Table 4.2: p-values for the randomization test (105 simulations) based on Simpson’s index

for infected mice.

4.6.1 χ2 test

Two Pearson’s χ2 tests were performed on the data. The first test was performed between

the two categorical variables X1 = V segments and Y1 = näıve mice, with a number of

degrees of freedom of (23− 1)× (5− 1). The second test was performed between the two

categorical variables X2 = Jsegments and Y2 = näıve mice, with a number of degrees of

freedom of (12− 1)× (5− 1). We show here the results

• Result for test 1: χ2 = 126.06, df = 88, p-value = 0.004872

• Result for test 2: χ2 = 47.655, df = 44, p-value = 0.3264.

Considering a confidence level of 0.05, we see that the results from test 1 allow us to reject

H0, that is the two variables X1 and Y1 are not independent. Test 2 does not allow to

reject H0 instead. The same procedure was applied to immunised/infected mice. The

results were

• Result for test 1: χ2 = NaN, df = 88, p-value = NA

• Result for test 2: χ2 = 224.94, df = 44, p-value < 2.2e− 16.

Considering a confidence level of 0.05, we see that the results from test 2 allow us to reject

H0, that is the two variables X2 and Y2 = infected mice are not independent. Test 1 did

not work because three of the columns of the contingency table (precisely the columns

related to V21, V23 and V24) were full of 0s (each line represents a particular mouse),

not allowing the computation of the ei,j described in 4.3.6. To overcome this issue, and to

try to understand the relationship between the non-zero columns and the mice, the three

columns were removed from the contingency table and the test was repeated (Test 3). The

result was

• Result for test 3: χ2 = 456.19, df = 76, p-value < 2.2e− 16.

This last result shows how the different V segments are not independent on the different

immunized/infected mice.
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4.7 Public & Private VJ repertoire

A map of shared and not shared V-J repertoires among näıve and infected mice has been

computed and plotted. Results are shown in Fig. 4.30 and Fig. 4.31.

Figure 4.30: V-J repertoires sharing plot for naive mice.

The Jaccard distance was applied in order to vizualize the diversity in public and

private V-J repertoires. It is immediately clear from the analysis that the average Jaccard

distance for näıve mice is lower than the one for infected or immunised ones, suggesting

that infected or immunized mice share less among each other than the näıve ones. See

Figures 4.32 and 4.33.

4.8 Sample and repertoire frequencies

In this section we find a general result on the relation between frequencies in the repertoire

and frequencies in a sample. We recall Chapter 3 and, in particular, (3.10)

q =
combinations of S − 1 elements in m− 1 places

combinations of S elements in m places
=

(
S−1
m−1

)(
S
m

) =
m

S
. (4.2)
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Figure 4.31: V-J repertoires sharing plot for infected mice.

Figure 4.32: Jaccard indices among näıve mice.
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Figure 4.33: Jaccard indices among infected mice.

and (3.13)

φYi(z) = (1− q + qz)ni , (4.3)

where ni is the number of T cells in the clonotype class i in the repertoire. If we define

pk = Pr(Yi = k), we have φYi(z) = p0 + p1z + p2z
2 + · · · and if we want to consider Y obs

i ,

that is the number of observed T cells of clonotype i in the sample, then we have to

consider

Pr(Y obs
i = k) = Pr(Yi = k|Yi 6= 0) =

Pr(Yi = k)

Pr(Yi 6= 0)
=

pk
1− p0

. (4.4)

If we divide φYi(z) by 1− p0 though, what we obtain is not exactly φY obsi
(z). In fact, we

obtain
φYi(z)

1− p0
=

p0

1− p0
+

p1

1− p0
z +

p2

1− p0
z2 + · · ·

Defining qk =
pk

1− p0
, we have that q0 6= 0, which is not what we want, given that we

expect q0 = Pr(Y obs
i = 0) = 0. Therefore, we need

φY obsi
(z) =

φYi(z)

1− p0
− q0 =

(1− q + qz)ni − (1− q)ni
1− (1− q)ni

. (4.5)

Defining fi = ni/S as the frequency of clonotype i in the repertoire, it is easy to compute

E(Y obs
i ) =

E(Yi)

1− p0
=

niq

1− (1− q)ni
=

mfi

1−
(
S−m
S

)Sfi , (4.6)

and

Var(Y obs
i ) =

Var(Yi)

(1− p0)2
=

niq(1− q)
[1− (1− q)ni ]2

=
mfi(S −m)

S
[
1−

(
S−m
S

)Sfi]2 . (4.7)
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Defining gi as the frequency of clonotype i in a sample of m cells, we can write E(Y obs
i ) =

mE(gi). Therefore, from (4.6) we obtain

E(gi) =
fi

1−
(
S−m
S

)Sfi . (4.8)

4.8.1 General solution of (4.8)

Equation (4.8) can be written as

E(gi) =
fi

1− αfi
where α = (1− q)S . (4.9)

This allows us to write

αfi = 1− 1

E(gi)
fi. (4.10)

We focus now on the solution of the general equation pax+b = cx+ d, where p > 0 and

a, c 6= 0. Using the substitution −t = ax+
ad

c
, which can be seen as x = −d

c
− t

a
, this

equation can be transformed into

tpt = R = −a
c
pb−

ad
c .

This can be seen as

tet ln(p) = R and, therefore, t ln(p)et ln(p) = R ln(p),

which gives

t =
W (R ln(p))

ln(p)
where W represents the Lambert W function.

Thus, we have the general solution

x = −
W
(
−a ln(p)

c pb−
ad
c

)
a ln(p)

− d

c
. (4.11)

We can now see (4.10) as a special case of this general case, where p = α, a = d = 1, b = 0

and c = −E(gi)
−1. Thus, we obtain the solution

fi = E(gi)−
W
(
E(gi) ln(α)αE(gi)

)
ln(α)

. (4.12)

This solution, as can also be seen in (4.10), strongly depends on the value of E(gi) or fi.

In fact, no matter how small α could be, if raised to the fi (See Eq. (4.10)) or to the

E(gi) (See Eq. (4.12)), it can still range between 0 and 1. For example, α = 10−20 can

still become α0.001 = 0.95. On the other hand, α = 10−20 becomes α0.1 = 0.01. For this

reason, in the next section we try to give some approximation for fi.
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4.8.2 Approximation of (4.8)

Using Laurent expansion at fi ' 0, we can approximate (4.8) as

E(gi) ' −
1

S ln
(
1− m

S

) +
fi
2

+ O(f2
i ), (4.13)

which gives us

fi ' 2

(
E(gi) +

1

S ln
(
S−m
S

)) . (4.14)

Applying Taylor expansion, we obtain

1

ln
(
1− m

S

) ' − S
m

+ O(1/2), (4.15)

and therefore

E(gi) '
1

m
+
fi
2
. (4.16)

On the other side, it is clear from (4.9) that if fi is not small enough, then we have αfi ' 0

and, therefore,

E(gi) ' fi. (4.17)

It is interesting to notice that (4.16) and (4.17) have only one point in common, which is

fi =
2

m
. This value of fi represents also the point in which both (4.16) and (4.17) have

maximum distance from the real trajectory (4.8). This distance (or error) is the difference

between (4.8) in fi =
2

m
and (4.17) in fi =

2

m
:

2
m

1− (1− q)
2
q

− 2

m
=

2

m

[
(1− q)

2
q

1− (1− q)
2
q

]
.

Using Taylor approximation, we can write

(1− q)
2
q

1− (1− q)
2
q

' 1

e2 − 1
+ O(q).

This allows us to give a definitive answer to our approximation problem:

• For fi ∈
(

0,
2

m

]
, we use (4.16) to approximate (4.8);

• For fi ∈
(

2

m
, 1

]
, we use (4.17);

• The maximum error produced is erri =
0.3

m
at frequency fi =

2

m
.

Thus, we have

fi '

{
2
(
E(gi)− 1

m

)
for E(gi) ∈

(
1
m ,

2
m

]
E(gi) for E(gi) ∈

(
2
m , 1

]
.

(4.18)
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Figure 4.34: Test of goodness of (4.17), (4.16) and (4.20) for (4.8). Parameters are S =

1000 and m = 100.

As we can see from (4.18), the case E(gi) = 1
m would give us no information at all about

fi. The reason behind this comes from the approximation (4.15). Therefore, we consider

a better Taylor approximation

− 1

S ln
(
1− m

S

) ' − 1

S

1[
−q − q2

2

] =
2

m(2 + q)
. (4.19)

Thus, we can write

E(gi) '
2

m(2 + q)
+
fi
2
, (4.20)

eventually obtaining

fi '

{
2
(
E(gi)− 2

m(2+q)

)
for E(gi) ∈

[
1
m ,

2
m

]
E(gi) for E(gi) ∈

(
2
m , 1

]
.

(4.21)

In Figure 4.34 we can see a plot of these results.

4.8.3 Approximation of Var(gi)

Similar steps can be done to approximate Var(Y obs
i ). In fact, applying Taylor expansion

to Eq. (4.7), we have

Var(Y obs
i ) ' m(S −m)

S

[
1

fiS2 ln2
(
1− m

S

) − 1

S ln
(
1− m

S

) + O(fi)

]
. (4.22)
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If we consider now (4.15) and the other Laurent expansion

1

ln2
(
1− m

S

) ' S2

m2
− S

m
+ O(1/12),

we obtain

Var(Y obs
i ) ' (S −m)

S

[
1

fim
− 1

Sfi
+ 1

]
, (4.23)

and

Var(gi) '
(S −m)

m2S

[
1

fim
− 1

Sfi
+ 1

]
:= α(fi), (4.24)

which in turn gives

σgi '
√
α(fi). (4.25)

4.8.4 Standard error of ḡi

Let us imagine to extract K independent samples and to observe the quantities Y
(1)
i , Y

(2)
i ,

· · · , Y (K)
i , where Y

(j)
i represents the number of T cells of clonotype i found in the jth

sample of size m. Let us define the sample mean of {Y (j)
i , j = 1, 2, · · · ,K} as Ȳi. In the

same way, we define the sample mean of {g(j)
i , j = 1, 2, · · · ,K} as ḡi.

Given the relations expressed in (4.21), we want now to focus on the standard error of

ḡi. We want to do this to understand how much ḡi differs from E(gi) with a small number

of samples K and, in turn, how good is the estimate in (4.14).

Let us now focus on the standard error of ḡi. We know from statistical theory that

SEḡi =
s√
K
, where s =

√√√√ 1

K − 1

K∑
j=1

(
g

(j)
i − ḡi

)2
. (4.26)

We know that SEḡi is an estimate of how far the sample mean ḡi is likely to be from the

population mean E(gi), giving us an idea of the goodness of using ḡi in place of the general

E(gi) in (4.18).

We would like now to find an upper bound for SEḡi which could be expressed as a

function of the only variable K. The following steps show our upper bound:

• Kḡi =
∑K

k=i g
(k)
i ;

• ḡi − g(j)
i = 1

K

∑
k 6=j g

(k)
i −

(K−1)g
(j)
i

K ≤ K−1
K

[
1− g(j)

i

]
≤ K−1

K ;

•
∣∣∣g(j)
i − ḡi

∣∣∣ ≤ K−1
K ∀j ∈ {1, 2, · · · ,K};

•
(
g

(j)
i − ḡi

)2
≤ (K−1)2

K2 ∀j ∈ {1, 2, · · · ,K};

•
√∑K

j=1

(
g

(j)
i − ḡi

)2
< K−1√

K
;
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which gives us the upper bound

SEḡi <

√
K − 1

K
. (4.27)

Figure 4.35 shows numerical simulations of frequencies in the repertoire and their relative

frequencies in the samples (average values over 100 samples). Other simulations, showing

sampling from different kind of clonal size distributions, are shown in Figures 4.36-4.53. In

particular, for each kind of distribution (e.g., geometric distribution with mean 3), three

different plots are shown, for three different sampling and plotting procedures: (i) extrac-

tion of one single sample and plotting of all of the classes in the sample, (ii) extraction of

five samples and plotting of all of the classes in the five samples, and (iii) extraction of

five samples and plotting of the classes that are present in all of the samples. The third

kind is the reason why some plots do not show any point. Each figure also plots (4.8) ±
(4.25).

Figure 4.35: Simulation of frequencies in the repertoire and related frequences of observed

classes in the sample. Average values over 100 samples.
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Figure 4.36: Geometric repertoire with mean 3. One sample of size 100 is taken. Param-

eters: S = 104, N = 3250.

Figure 4.37: Geometric repertoire with mean 3. Five samples of size 100 are taken.

Parameters: S = 104, N = 3307.
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Figure 4.38: Geometric repertoire with mean 3. Five samples of size 100 are taken and

only the common classes (common to all samples) are displayed. Parameters: S = 104,

N = 3274.

Figure 4.39: Geometric repertoire with mean 10. One sample of size 100 is taken. Param-

eters: S = 104, N = 1029.
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Figure 4.40: Geometric repertoire with mean 10. Five samples of size 100 are taken.

Parameters: S = 104, N = 991.

Figure 4.41: Geometric repertoire with mean 10. Five samples of size 100 are taken and

only the common classes (common to all samples) are displayed. Parameters: S = 104,

N = 1002.
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Figure 4.42: Poisson repertoire with mean 3. One sample of size 100 is taken. Parameters:

S = 104, N = 3118.

Figure 4.43: Poisson repertoire with mean 3. Five samples of size 100 are taken. Param-

eters: S = 104, N = 3202.
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Figure 4.44: Poisson repertoire with mean 3. Five samples of size 100 are taken and

only the common classes (common to all samples) are displayed. Parameters: S = 104,

N = 3166.

Figure 4.45: Poisson repertoire with mean 10. One sample of size 100 is taken. Parameters:

S = 104, N = 995.
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Figure 4.46: Poisson repertoire with mean 10. Five samples of size 100 are taken. Param-

eters: S = 104, N = 991.

Figure 4.47: Poisson repertoire with mean 10. Five samples of size 100 are taken and

only the common classes (common to all samples) are displayed. Parameters: S = 104,

N = 1019.
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Figure 4.48: Heterogeneous repertoire: unexpanded part geometric with mean 3 and

expanded part (0.01 of total clones) constant with mean 75. One sample of size 100 is

taken. Parameters: S = 104, N = 2688.

Figure 4.49: Heterogeneous repertoire: unexpanded part geometric with mean 3 and

expanded part (0.01 of total clones) constant with mean 75. Five samples of size 100 are

taken. Parameters: S = 104, N = 2687.
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Figure 4.50: Heterogeneous repertoire: unexpanded part geometric with mean 3 and

expanded part (0.01 of total clones) constant with mean 75. Five samples of size 100 are

taken and only the common classes (common to all samples) are displayed. Parameters:

S = 104, N = 2677.

Figure 4.51: Heterogeneous repertoire: unexpanded part geometric with mean 10 and

expanded part (0.01 of total clones) constant with mean 250. One sample of size 100 is

taken. Parameters: S = 104, N = 806.
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Figure 4.52: Heterogeneous repertoire: unexpanded part geometric with mean 10 and

expanded part (0.01 of total clones) constant with mean 250. Five samples of size 100 are

taken. Parameters: S = 104, N = 806.

Figure 4.53: Heterogeneous repertoire: unexpanded part geometric with mean 10 and

expanded part (0.01 of total clones) constant with mean 10*25. Five samples of size 100

are taken and only the common classes (common to all samples) are displayed. Parameters:

S = 104, N = 807.
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4.9 Data frequencies and implications on frequencies in reper-

toire

This section presents the frequencies for all V and J segments in the 10 different mice. If the

samples were of the same sizes, the reader could directly apply the techniques developed

in Section 4.8 to obtain an estimate of the respective frequencies in the repertoire. In fact,

the expected value (4.8), representing the mean of the random variable Y obs
i , has to be

considered over samples of the same size m. Our data do not follow this criterion, as we

have different sample sizes for each mouse. There might be a way out of this situation

though, considering the following reasoning. Define m1 and m2 as two different sample

sizes, and S as the repertoire size. As long as m1 ≈ m2 and m1,m2 � S, we can easily

verify (even just by simulations) that a binomial distribution with parameters ni and m1/S

would not be distinguishable from another binomial distribution with parameters ni and

m2/S. This is in fact our current situation, as we have different similar sample sizes mj

for j = 1, . . . , 5 and a binomial distribution for the random variable Yi, representing the

number of T cells of type i in the sample. Similar reasoning holds for the random variable

Y obs
i , represented by the zero-truncated Yi. For this reason, we apply here the analyses

of Section 4.8 to obtain some estimates of the V and J segments in the GP33-specific

repertoire of näıve, immunized and infected mice. We start by plotting the frequencies in

Figures 4.54 to 4.61. See Appendix C for more details.

Figure 4.54: V frequencies for näıve mice.

In order to apply the techniques of Section 4.8, we need to use a unique value for the

sample size, which we define as the mean over the different values. In particular, we will
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Figure 4.55: V frequencies for näıve mice and mean V frequency.

Figure 4.56: J frequencies for näıve mice.

use mBA = 205 and mEF = 208 for the näıve and infected respectively.

Mean frequencies for both V and J segments are displayed in Tables 4.3 and 4.4, sub-

divided in the two groups of mice (näıve and immunized/infected). It can be immediately

seen that the V segments V21 V23 and V24 are never found in immunized/infected mice. All

the other average values are above zero, wrongly suggesting that we could substitute these

values in (4.21) in place of E(gi) to approximate fi. In fact, gi represents the frequency of
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Figure 4.57: J frequencies for näıve mice and mean J frequency.

Figure 4.58: V frequencies for immunized and infected mice.

a particular type i (V or J particular segment in our case) which is actually observed in

the samples. Therefore, before applying (4.21), we need to understand if and which are

the V and J segments absent in one or more mice. In these cases, we won’t be able to

estimate the respective frequency in the repertoire. Of course, one could apply the same

equation only to those mice with actually these particular V or J segments missing from

the other mice, but we decided not to do it here, given the low number of available samples.
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Figure 4.59: V frequencies for immunized and infected mice and mean V frequency.

Figure 4.60: J frequencies for immunized and infected mice.

Looking at the data, we realize that all J segments are present in all mice. Regarding the

V segments, here the result of what is missing for each mouse:

101



4. VDJ RECOMBINATION & DATA ANALYSIS

Figure 4.61: J frequencies for immunized and infected mice and mean J frequency.

V segment BA1 BA2 BA3 BA4 BA5 EF1 EF2 EF3 EF4 EF5

V1 X
V2 X X X X
V15 X
V20 X X
V21 X X X X X X X X X
V23 X X X X X X X X
V24 X X X X X X X X
V26 X
V30 X X X X

We now give an example of how we would apply (4.21) to the described experimental

data, and in particular to the estimation of the frequency of the V1 gene segment in the

repertoire. As previously shown, the V1 gene segment is present in all 5 samples from

the 5 näıve mice. Therefore, its average frequency (i.e., E(gi) = 0.0547) shown in Table

4.3 in the BAs column is free from interference due to mice without that particular gene

segment. Considering mBA = 205, we obtain [1/mBA, 2/mBA] = [0.0048, 0.0097]. E(gi)

falls out of this interval, therefore suggesting that we should use the second part of (4.21).

Thus, we believe that the percentage of V1 gene segments in the whole repertoire of the

näıve mice is around 5.47%.
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BAs EFs

V1 5.47 · 10−2 2.07 · 10−2

V2 2.71 · 10−2 5.98 · 10−3

V3 3.21 · 10−2 2.76 · 10−2

V4 2.83 · 10−2 2.61 · 10−2

V5 4.23 · 10−2 1.77 · 10−2

V12−1 4.85 · 10−2 2.27 · 10−2

V12−2 3.48 · 10−2 5.41 · 10−2

V13−1 0.11 0.12

V13−2 0.15 6.05 · 10−2

V13−3 0.13 7.49 · 10−2

V14 5.43 · 10−2 3.45 · 10−2

V15 2.46 · 10−2 2.68 · 10−2

V16 7.59 · 10−2 0.13

V17 2.52 · 10−2 5.05 · 10−2

V19 6.22 · 10−2 8.67 · 10−2

V20 1.58 · 10−2 1.73 · 10−2

V21 1.03 · 10−3 0

V23 1.93 · 10−3 0

V24 3.91 · 10−3 0

V26 1.96 · 10−2 1.66 · 10−2

V29 4.54 · 10−2 0.18

V30 4.05 · 10−3 9.43 · 10−4

V31 1.29 · 10−2 2.57 · 10−2

Table 4.3: V means over the five näıve and five immunized/infected mice, that is including

mice without some V genes.

BAs EFs

J1−1 0.1 0.14

J1−2 6.74 · 10−2 5.14 · 10−2

J1−3 2.82 · 10−2 2.98 · 10−2

J1−4 5.42 · 10−2 6.21 · 10−2

J1−5 2.17 · 10−2 2.93 · 10−2

J1−6 3.2 · 10−2 4.75 · 10−2

J2−1 0.14 0.13

J2−2 5.72 · 10−2 3.83 · 10−2

J2−3 7.42 · 10−2 6.82 · 10−2

J2−4 9.62 · 10−2 5.89 · 10−2

J2−5 0.13 0.15

J2−7 0.2 0.19

Table 4.4: J means over the five näıve and five immunized/infected mice, that is including

mice without some J genes.
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4.10 Discussion

This chapter focused on exploratory analyses of the data described in Section 4.2 and

on some probabilistic results connecting a particular frequency in the repertoire with

frequencies in different samples. A clear preference for V13−1, V13−2 and V13−3 in näıve

mice was shown in Figure 4.12. The same figure also shows a preference for J2 genes in

näıve mice with respect to J1 genes. This result can be also seen in Figure 4.30. The

importance of V19 for infected mice is shown in Figure 4.13. Interestingly, Figure 4.28

shows how important the diversity of the J component is for the general diversity of VJs.

The V diversity of mouse BA3 is low with respect to the other mice, but a value of J

diversity similar to the other mice implies a level of total VJ diversity comparable to all

the mice. Figure 4.29 shows the p-values for the randomization test on different mice.

The data exclude the hypothesis of similar diversity distribution for all the couples of

mice a part from the couples BA2-BA3, BA3-BA4, BA3-BA5, EF1-EF2, and EF2-EF4.

The last pair is particularly interesting, representing the two previously immunized mice.

This could indicate that these two mice have reached a similar diversity distribution due

to immunization. A higher level of clonal sharing among näıve mice rather than among

infected mice is shown in Figures 4.32 and 4.33. The major innovative point of this

chapter is represented by (4.21). The importance of this formula depends on the kind

of data we would like to use it for. In fact, E(gi) represents the average of gi taken

over all those samples where the clonotype i was actually observed. This means that to

estimate the frequency fi of a clonotype with this equation, we should first observe the

clonotype in all of our samples (or at least 2 samples). This could be very challenging

for a general clonotype but could become much easier if we considered V, J or even VJ

classes, rather than clonotype classes. It is worth noting that the formula is perfectly able

to work at different levels of diversity, clonotype classes included, although the currently

available single-cell technologies are not developed yet to produce enough frequency data

for clonotype classes. To properly understand the level of diversity on which our formula

can work nowadays, see Figure 4.62.
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V s

Js

V1J1

clonotype class iclonotype class i

fi approximation

Figure 4.62: Example of the level of diversity (VJs) where (4.21) could work rather than

at the clonotype class level.
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Chapter 5

Markov chains and TCR

repertoire renewal

5.1 Abstract and Introduction

Let us consider a TCR repertoire at a given time t with N distinct clonotype classes.

It is well known that the thymus is constantly producing new clonotypes, while in the

periphery a certain diversity is maintained due to a balanced birth and death process based

on competition among classes for biological signal. The biological questions we address

concern the time evolution of diversity in the repertoire. In particular, we first explore

(i) the random variable describing the average time at which a given percentage of the

original N clonotype classes have disappeared from the repertoire due to competition or

natural death, (ii) the size of the repertoire at such time, and (iii) the maximum repertoire

diversity achieved in this time interval. We believe that these questions are of foremost

importance in order to understand the real value of sampling from a repertoire and try

to estimate its diversity at a given point in time. These three points will be described as

specific stochastic descriptors, in connection to the Markov model that will be explained

in the following section.
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5.2 Mathematical model

We present here an unidimensional continuous-time Markov chain (CTMC) representing

the dynamical process of competition among clonotype classes. In particular, we consider

the CTMC X = {X(t) : t ≥ 0} defined over the space of states S = {0, 1, 2, . . .} and with

initial condition X(0) = N , where X(t) represents the number of distinct clonotype classes

present in the repertoire at time t ≥ 0. The birth rate λn represents thymic production

of new clonotypes in the repertoire, and it is described by a constant thymic output rate

λn ≡ θ, as defined in [100]. The extinction of a given clonotype, in reality dependent on

reception of survival stimuli from the environment and on competition among classes [64],

is represented here by a rate µn of transition of process X from state n to state n − 1;

see Figure 5.1. In the following sections, we propose two different choices for µn, denoted

µ
(1)
n and µ

(2)
n , which incorporate clonotype competition in two different ways. According

to the choice of µn, we will label the process X as X(1) or X(2).

n+ 1 · · ·nn− 1· · ·210

λ0 λ1 λ2

µn+2µn+1µnµn−1

λn−2 λn+1λnλn−1

µ3µ2µ1

Figure 5.1: Continuous-time birth-and-death process X.

5.2.1 Implicit competition

We consider the process X(1) with a linear death rate µ
(1)
n = µ̃n, where µ̃−1 is defined as

the average survival time of a clonotype in the repertoire, where clonotypes are assumed

to act independently from each other. This average survival time was previously evaluated

in [100] as

T (α, nθ) =
1

αµ
(γE − eαnθ · Ei(−αnθ) + log(αnθ)), (5.1)

where γE represents the Euler-Mascheroni constant, Ei(x) represents the exponential in-

tegral defined as

Ei(x) =

∫ x

−∞

et

t
dt

and α =
θnθ
γM

represents the strength of the thymic production relative to the peripheral

division. Moreover, the main assumptions in [100] are that: (i) each clonotype comes out

of the thymus at a rate θ and a fixed size nθ, and (ii) the environment is populated by M

distinct self pMHC subsets. The parameter µ in (5.1) represents the single cell death rate,

while γ represents the single cell division rate. The dependence of (5.1) on parameters nθ,

M , γ, θ, µ is shown in Appendix D.
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We are therefore expressing competition among clonotypes intrinsically through the

rate µ̃. T (α, nθ) is in fact defined as the mean time until the stochastic process Xt, where

Xt is defined as the diffusion process on the real line approximating the number of T cells

ni(t) of clonotype class i. The process Xt satisfies the stochastic differential equation (15)

in [100]

dXt = −αµXtdXt +
√

2µXtdWt,

where Wt represents a Wiener process. The term −αµ in this stochastic differential

equation is the term including competition among clonotypes in the general scenario,

therefore inducing implicit competition in the time T (α, nθ).

Thus, we set µ̃−1 = T (α, nθ), where the values of the parameters in (5.1) will be

chosen for our numerical results according to Table 1 in [100], and to the rescaling process

described in Section 5.7, with µn = µ
(1)
n = µ̃n for process X(1).

5.2.2 Explicit competition

We consider here a second alternative for the choice of µn, defining the process X(2) with

death rate µn = µ
(2)
n = n(β1 + β2p(n − 1)). In process X(2), parameter β1n represents a

linear contribution, while parameter β2pn
2 is used to model clonotype competition in a

similar way to Mathematical Ecology models [90]. In particular, the parameter p = 10−6 is

defined in [100] as the probability that any given self pMHC is recognised by a randomly-

selected T-cell clonotype. This quadratic term can be seen as the environmental pressure

a single clonotype is subject from that fraction p of clonotypes with which it competes. In

order to give biological meaning to the parameters β1 and β2, we need to find two different

equations relating β1 and β2. We start by recalling that in Section 5.2.1 the death rate was

defined as µ
(1)
n = µ̃n, where µ̃ = [T (α, nθ)]

−1. We notice that the authors in [100] compute

the time T (α, nθ) as the average extinction time of a single clonotype in a repertoire of

an average number of clonotypes N∗. Thus, we assume µ
(1)
n to be equal to µ

(2)
n for the

particular case n = N∗. This allows us to write the first equation

µ
(1)
N∗ = µ

(2)
N∗ ⇒ β2 =

µ̃− β1

p(N∗ − 1)
. (5.2)

We choose µ̃ > β1 so that β2 > 0. This condition comes naturally from the definitions of

β2 and β1. In fact they represent the environmental pressure that a clonotype is subject to

when it belongs to an environment with multiple and no competing clonotypes respectively.

We need now to find a second equation to pair with (5.2). We notice µ
(2)
1 = β1, meaning

that β1 represents the death rate of a single clonotype subject to no environmental pressure.

We consider the birth and death process C = {C(t) : t ≥ 0} representing the number of

T cells belonging to this clonotype subject to no competition, where the death rate is µ

(0.5 year−1 for human, 1 month−1 for mouse), the birth rate is γ (10 year−1 for human,
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10−4 month−1 for mouse) and the initial state is C(0) = nθ. The parameters µ, γ and nθ

were defined in [100]. Define T0,nθ as the time until absorption of process C. Therefore we

can assume β1 = [T0,nθ ]
−1. It is clear that, focusing on mice, T0,nθ < +∞ as µ > γ. The

same does not hold for humans as µ < γ. Define η0,nθ = E [T0,nθ |T0,nθ < +∞]. Therefore

for this case we choose

β1 =
Pr(T0,nθ < +∞)

η0,nθ

. (5.3)

It is possible to analyse η0,nθ with a first step argument, considering a maximum number

of T cells S belonging to a clonotype class; see Gillespie simulations for η0,nθ in Figure

5.2, and Figure 5.3 for simulations of Pr(T0,nθ < +∞). Figure 5.4 shows the dependence

of the parameter β2 on β1.

Figure 5.2: Gillespie simulations of η0,nθ . Parameters in accordance with Section 5.7:

µ = 0.5 year−1, γ = 1.25 year−1, and maximum number of T cells allowed in a clonotype

class S = 1000. Number of simulations = 105.

5.3 Certainty of first visit to state 0 in finite mean time

In this section we focus on proving that process X(2) visits the state 0 with probability 1

and in finite mean time. Similar arguments apply to process X(1) and are here omitted.

To this goal, we consider the state 0 to be an absorbing state; see Figure 5.5.

Thus, process X(2) can be seen as a birth-and-death process defined on S = {0}∪C, with

C = {1, 2, . . .} and 0 being the absorbing state; see Chapter 6 in [5]. Our goal is therefore

to prove that for any initial state x, α(x) = limt→+∞ Pr(X(t) = 0|X(0) = x) = 1. This,

accordingly to Theorem 6.2 of [5], occurs if and only if

+∞∑
k=1

µ1µ2 · · ·µk
λ1λ2 · · ·λk

= +∞,
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Figure 5.3: Gillespie simulations of Pr(T0,nθ < +∞). Parameters in accordance to Section

5.7: µ = 0.5 year−1, γ = 1.25 year−1, and maximum number of T cells allowed in a

clonotype class S = 1000. Number of simulations = 105.

Figure 5.4: Plot of (5.2). Parameters in accordance to Section 5.7: µ = 0.5 year−1,

γ = 1.25 year−1, θ = 2.5 year−1, nθ = 4, p = 0.05, and N∗ = 50. Number of simulations

= 105.

where λk ≡ θ and µk = k(β1 + β2pk) for k ∈ C. We have

+∞∑
k=1

µ1µ2 · · ·µk
λ1λ2 · · ·λk

=
+∞∑
k=1

(β1 + β2p)(2β1 + 4β2p)(3β1 + 9β2p) · · · (kβ1 + k2β2p)

θk
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n+ 1 · · ·nn− 1· · ·210

λ1 λ2

µn+2µn+1µnµn−1

λn−2 λn+1λnλn−1

µ3µ2µ1

Figure 5.5: Continuous-time birth-and-death process X.

which is bounded by the case β2p = 0, that is

+∞∑
k=1

µ1µ2 · · ·µk
λ1λ2 · · ·λk

≥
+∞∑
k=1

βk1k!

θk
= +∞.

The last equality holds because ∀x ∈ R+, ∃k ∈ N such that k! > xk. Thus, α(x) =

1 ∀x ∈ S. We note here that α(x) can be re-expressed as α(x) = Pr(Tx < +∞), where

Tx represents the time until absorption for the initial state X(0) = x. We can prove that

E [Tx] < +∞ by considering Theorem 6.3 of [5]. In particular, E [Tx] < +∞ if and only if

+∞∑
k=2

λ1 · · ·λk−1

µ1 · · ·µk
< +∞.

We have

+∞∑
k=2

λ1 · · ·λk−1

µ1 · · ·µk
=

+∞∑
k=2

θk−1

(β1 + β2p)(2β1 + 4β2p)(3β1 + 9β2p) · · · (kβ1 + k2β2p)

≤
+∞∑
k=2

θk−1

βk1k!
< +∞,

so that E(Tx) < +∞.

5.4 Time TN(A) from N to A original clonotypes in the reper-

toire

Our interest here is to analyse the random variable TN (A) representing the time to reach for

the first time a number A < X(0) = N of original clonotypes in the repertoire. The main

reason behind the study of this stochastic descriptor is the quest to understand the timings

of regenerative capabilities of a repertoire. We follow here a first step argument. In order

to analyse the random variable TN (A), we need to keep track of the original clonotypes as

the stochastic process evolves. This is due to the fact that TN (A) is not the time of first

visit to state A; that is, TN (A) 6= inf{t ≥ 0 : X(t) = A}, since when process X reaches state

A, the A clonotypes remaining in the repertoire are not necessarily among the original

ones (some of them might be new ones as a result of thymic output). Thus we consider an

auxiliary random variable Y (t) and an augmented process Xaug = {(X(t), Y (t)) : t ≥ 0}
defined on Saug = {(n,m) : m ∈ {0, 1, 2, . . . , X(0)}, n ≥ m}, where Y (t) amounts to the
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number of original clonotypes in the repertoire at time t ≥ 0, which constantly decreases.

Thus we have TN (A) = inf{t ≥ 0 : Y (t) = A}. For process Xaug we define µ
(X)
n,m and µ

(Y )
n,m

as the death rates of new and original clonotypes, respectively, accordingly to the original

rate µn; see Figure 5.6. To note that, even though X(t) represents the total number of

clonotypes (original + newly created), we nevertheless use here µ
(X)
n,m to express the death

rate of only the newly created clones. We do this with the only aim to ease the notation.

(n− 1,m)

(n− 1,m− 1)

(n,m) (n+ 1,m)
µ

(X)
n,m θ

µ
(Y )
n,m

Figure 5.6: Transitions diagram for bivariate continuous-time birth-and-death process

Xaug.

5.4.1 Implicit competition

We consider here µ
(X)
n,m = µ

(X,1)
n,m = µ̃(n − m) and µ

(Y )
n,m = µ

(Y,1)
n,m = µ̃m, so that µ

(X,1)
n,m +

µ
(Y,1)
n,m = µ

(1)
n , leading to the analysis of process X

aug
(1) . These rates are directly obtained by

assuming clonotypes going to extinction at a common rate µ̃ in an independent fashion.

We recall that Y (t) is just an auxiliary variable keeping track of original clonotypes without

affecting the dynamics of X(t), so that both variables go necessarily to extinction with

probability one in mean finite time, according to Section 5.3; see Figure 5.7. Moreover,

since every clonotype behaves independently, the process Y = {Y (t) : t ≥ 0} defined on

{0, 1, 2, . . . , X(0)}, is a pure-death linear process with death rate µ̃m; see Figure 5.8.

Thus, TN (A) can be analysed by noting that FTN (A)(t) = Pr(TN (A) ≤ t) = Pr(Y (t) ≤
A) for any initial state X(0) = Y (0) = N . Moreover, from Section 6.4.2 of [5], we can

write

pk(t) = Pr(Y (t) = k|Y (0) = N) =

(
N

k

)
e−kµ̃t(1− e−µ̃t)N−k. (5.4)
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(n− 1,m)

(n− 1,m− 1)

(n,m) (n+ 1,m)
µ̃(n−m) θ

µ̃m

Figure 5.7: Bivariate continuous-time birth-and-death process X
aug
(1) with µ

(X)
n,m = µ

(X,1)
n,m =

µ̃(n−m) and µ
(Y )
n,m = µ

(Y,1)
n,m = µ̃m.

m · · ·m− 1m− 2m− 3· · ·

m · µ̃(m− 1) · µ̃(m− 2) · µ̃

Figure 5.8: Continuous-time pure-death process Y, representing the death of original clono-

types.

This equation can be seen as the different possible ways of choosing k surviving clonotypes

at time t out of the initial N , where a clonotype survives until time t with probability

e−µ̃t, leading to the binomial formula in (5.4). Given (5.4), we have

FTN (A)(t) = Pr(Y (t) ≤ A) =

A∑
k=0

pk(t) =

A∑
k=0

(
N

k

)
e−kµ̃t(1− e−µ̃t)N−k.

We would like to find a closed form for FTN (A)(t), in order to compute the density function

fT (t) =
d

dt
FTN (A)(t).

We follow now arguments of Section (3-7) in [167] in order to prove the last equality of

1− FTN (A)(t) = 1−
A∑
k=0

pk(t) =
N∑

k=A+1

pk(t) = Ie−µ̃t(A+ 1, N −A), (5.5)

where Ix(a, b) = B(x; a, b)/B(a, b) represents the regularized incomplete beta function,
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with

B(x; a, b) =

∫ x

0
sa−1(1− s)b−1ds

and

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!
.

To prove the last equality of (5.5), we prove a more general case represented by Eq. (3-3)

of Section 3-7 of [167], that is

N∑
k=A+1

(
N

k

)
pk(1− p)N−k =

∫ p
0 y

A(1− y)N−A−1dy∫ 1
0 y

A(1− y)N−A−1dy
= Ip(A+ 1, N −A). (5.6)

We start by defining

QA+1 =

∫ 1

0
yA(1− y)N−A−1dy, (5.7)

SA+1 =

∫ p

0
yA(1− y)N−A−1dy. (5.8)

Recalling the Beta function

B(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, (5.9)

we have QA+1 = B(A+ 1, N −A). The Beta function verifies

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
, (5.10)

where Γ(t) is the Gamma function, defined as

Γ(t) =

∫ +∞

0
st−1e−sds (5.11)

or, for any integer n, as

Γ(n) = (n− 1)! . (5.12)

Thus, we can write

QA+1 =
A!(N −A− 1)!

N !
=

[
(A+ 1)

(
N

A+ 1

)]−1

. (5.13)

We focus now on finding an expression for SA+1. The following steps could also be applied

in order to find (5.13). We recall the rule of integration by parts, that is∫ b

a
u dv = [uv]ba −

∫ b

a
v du (5.14)

where u = u(x) and v = v(x) are functions of the variable x. Thus, using (5.14) and

defining the function

q(x) =
px(1− p)N−x

x
, (5.15)
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we can write

SA+1 = q(A+ 1) +

(
N −A− 1

A+ 1

)
SA+2. (5.16)

This relationship can be written for the general case

Sa = q(a) +

(
n− a
a

)
Sa+1 for a = A+ 1, A+ 2, · · · , N − 1 (5.17)

and, for the case a = N , it becomes

SN = q(N). (5.18)

This brings us to the final expression

SA+1 = q(A+ 1) +
N −A− 1

A+ 1
q(A+ 2) +

(N −A− 1)(N − (A+ 2))

A+ 1(A+ 2)
q(A+ 2) + · · ·

+
(N −A− 1)(N − (A+ 1)) · · · (N − (N − 1))

A+ 1(A+ 2) · · · (N − 1)
q(N). (5.19)

Is is now sufficient to divide each single term of (5.19) by (5.13) to obtain

N∑
k=A+1

(
N

k

)
pk(1− p)N−k =

∫ p
0 y

A(1− y)N−A−1dy∫ 1
0 y

A(1− y)N−A−1dy
. (5.20)

This gives the relationship

N∑
k=A+1

(
N

k

)
pk(1− p)N−k = Ip(A+ 1, N −A). (5.21)

Thus, using (5.5), we obtain

FTN (A)(t) = I1−e−µ̃t(N −A,A+ 1), (5.22)

using the property of the regularised incomplete beta function for which

Ix(a, b) = 1− I1−x(b, a). (5.23)

To prove this property, we recall that Ix(a, b) = B(x; a, b)/B(a, b), where

B(x; a, b) =

∫ x

0
ta−1(1− t)b−1dt

and

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt =

(a− 1)!(b− 1)!

(a+ b− 1)!
,

and we notice that B(a, b) = B(b, a) for obvious properties of the factorials. Therefore, in

order to prove (5.23), we need to show that

1

B(a, b)

[∫ x

0
ta−1(1− t)b−1dt+

∫ 1−x

0
qb−1(1− q)a−1dq

]
= 1.
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We change the variable in the second integral, introducing the new variable t = 1 − q,
which gives dt = −dq. Thus, we obtain∫ 1−x

0
qb−1(1− q)a−1dq = −

∫ x

1
ta−1(1− t)b−1dt.

Therefore we have

1

B(a, b)

[∫ x

0
ta−1(1− t)b−1dt−

∫ x

1
ta−1(1− t)b−1dt

]
=

1

B(a, b)

[∫ 1

0
ta−1(1− t)b−1dt

]
= 1.

This proves (5.23). Thus, from (5.22) we obtain

FTN (A)(t) = (N −A)

(
N

A

)∫ 1−e−µ̃t

0
sN−A−1(1− s)Ads, (5.24)

and the density function can be obtained as

fTN (A)(t) =
d

dt
FTN (A)(t).

In order to compute this derivative, we need to state the general form of the Leibniz

integral rule:

d

dt

(∫ b(t)

a(t)
g(t, s)ds

)
= g(t, b(t)) · b′(t)− g(t, a(t)) · a′(t) +

∫ b(t)

a(t)

∂

∂t
g(t, s)ds. (5.25)

In our case, we have

a(t) ≡ 0, b(t) = 1− e−µ̃t and g(t, s) ≡ g(s) = (N −A)

(
N

A

)
sN−A−1(1− s)A.

Thus, we obtain

fTN (A)(t) = g(1− e−µ̃t) · d
dt

(1− e−µ̃t)

= (N −A)

(
N

A

)
(1− e−µ̃t)N−A−1(e−µ̃t)A · µ̃e−µ̃t

= (N −A)

(
N

A

)
(1− e−µ̃t)N (eµ̃t − 1)−(A+1)µ̃.

(5.26)

We check that the area under fTN (A)(t) is actually 1, as it should be for a probability

density function, that is∫ +∞

0
fTN (A)(t) = (N −A)

(
N

A

)
µ̃

∫ +∞

0

(eµ̃t − 1)N−A−1

eNµ̃t
= 1.

We introduce the new variable p = eµ̃t, which gives dp = µ̃eµ̃tdt. Thus we can write∫ +∞

0
fTN (A)(t) = (N −A)

(
N

A

)∫ +∞

1

(p− 1)K1

pK2
dp,
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where K1 = N −A− 1 and K2 = N + 1. We recall the definition of Gamma function

Γ(z) =

∫ +∞

0
xz−1e−xdx = (z − 1)!

where the first equality holds for any z complex number, while the second equality holds

only if z is a positive integer. We also recall a particular way of defining the Beta function

B(x, y) =

∫ +∞

0

tx−1

(1 + t)x+y
.

With the change of variable t = p− 1 we can write∫ +∞

1

(p− 1)K1

pK2
dp =

∫ +∞

0

tK1

(1 + t)K2
dt = B(K1 + 1,K2 −K1 − 1).

Recalling that

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

we have ∫ +∞

1

(p− 1)K1

pK2
dp =

Γ(K1 + 1)Γ(K2 −K1 − 1)

Γ(K2)
.

Thus we obtain ∫ +∞

0
fTN (A)(t) = 1.

When considering numerical results in Section 5.7, computation of the function fTN (A)(t)

from (5.26) is practically limited for numerical and computational reasons. In these cases,

we can consider an approximation f̃TN (A)(t) for fTN (A)(t) = elog(fTN (A)(t)) by using the

approximation

log(fTN (A)(t)) ' N log

(
N

N −A

)
+Alog

(
N −A
A

)
+ log(N −A) + (N −A− 1)log

(
eµ̃t − 1

)
−Nµ̃t+ log(µ̃) +

1

2
log

(
N

2πA(N −A)

)
. (5.27)

To prove that this approximation holds, we start recalling the Stirling’s approximation for

large values of n

n! '
√

2πn
(n
e

)n
,

so that

log(n!) ' 1

2
log(2πn) + nlog(n)− n

and, consequently,

log

((
m

n

))
' mlog(m)−m+

1

2
log(2πm)− nlog(n) + n− 1

2
log(2πn)

− (m− n)log(m− n) + (m− n)− 1

2
log(2π(m− n))

= mlog(m)− nlog(n)− (m− n)log(m− n) +
1

2
log

(
m

2πn(m− n)

)
.

118



5.4 Time TN (A) from N to A original clonotypes in the repertoire

Thus we can write

log(fTN (A)(t)) ' log(N −A) +N log(N)−Alog(A)− (N −A)log(N −A)

+
1

2
log

(
N

2πA(N −A)

)
+ (N −A− 1)log

(
1− e−µ̃t

)
+ (A+ 1)log(e−µ̃t) + log(µ̃).

This can be written as

log(fTN (A)(t)) ' N log

(
N

N −A

)
+Alog

(
N −A
A

)
+ log(N −A) +

1

2
log

(
N

2πA(N −A)

)
+ (N −A− 1)log

(
eµ̃t − 1

)
−Nµ̃t+ log(µ̃).

This concludes the proof. See Figure 5.9 where f̃TN (A)(t) is plotted forN = 50 and different

values of A. See Figure 5.10 for the counterparts obtained by Gillespie simulations of the

process.

Figure 5.9: Plot of f̃TN (A)(t) vs t, for process X(2) an parameter values θ = 2.5 years−1,

γ = 1.25 years−1, µ = 0.5 years−1, M = 200, and nθ = 4. Different colours correspond to

different values of A.
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Figure 5.10: Approximations of fTN (A)(t) obtained from 104 Gillespie simulations of pro-

cess X(2), and parameter values θ = 2.5 years−1, γ = 1.25 years−1, µ = 0.5 years−1,

M = 200 and nθ = 4. Different colours correspond to different values of A.
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Using (5.26) we find the moment generating function of the random variable TN (A) as

MTN (A)(s) = E
[
esTN (A)

]
=

∫ +∞

0
etsfTN (A)(t)dt

= (N −A)

(
N

A

)
µ̃

∫ +∞

0
(eµ̃t − 1)N−A−1et(s−µ̃N)dt. (5.28)

Defining the new variable p = exp{µ̃t}, we have dp = µ̃ exp{µ̃t} dt and t = log(p)/µ̃.

We can therefore rewrite (5.28) as

MTN (A)(s) = (N −A)

(
N

A

)∫ +∞

1
pk1(p− 1)k2 dp, (5.29)

with

k1 =
s− µ̃(N + 1)

µ̃
,

k2 = N −A− 1.

To find an explicit solution for (5.29), we need to find a solution for the integra∫ +∞

1
pk1(p− 1)k2 dp. (5.30)

To this aim, we apply integration by parts with

du = pk1 dp ⇒ u =
pk1+1

k1 + 1
,

v = (p− 1)k2 ⇒ dv = k2(p− 1)k2−1 dp.

Thus we obtain the recursion∫ +∞

1
pk1(p− 1)k2 dp =

[
pk1+1(p− 1)k2

(k1 + 1)

]+∞

1

− k2

(k1 + 1)

∫ +∞

1
pk1+1(p− 1)k2−1 dp. (5.31)

We can now apply (5.31) recursively to its own right side of the equation. We apply it

(k2 − 1) times until we reach, as part of the right hand side, the integral∫ +∞

1
pk1+k2(p− 1)0 dp,

which can be computed as

[
pk1+k2+1

k1 + k2 + 1

]+∞

1

. Therefore we obtain the solution

∫ +∞

1
pk1(p−1)k2 dp =

[
pk1+1(p− 1)k2

(k1 + 1)

]+∞

1

+

k2+1∑
k=2

(−1)k−1

[
pk1+k(p− 1)k2−(k−1)

∏k−2
i=0 (k2 − i)∏k

i=1(k1 + i)

]+∞

1

.

(5.32)

We can therefore apply (5.32) to (5.29) finding

MTN (A)(s) = (N−A)

(
N

A

)[
pk1+1(p− 1)k2

(k1 + 1)
+

k2+1∑
k=2

(−1)k−1 p
k1+k(p− 1)k2−(k−1)

∏k−2
i=0 (k2 − i)∏k

i=1(k1 + i)

]+∞

1

.

(5.33)
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We note that the highest power of p in (5.33) is k1 + k2 + 1, which gives the condition for

the existence of MTN (A)(s), that is

k1 + k2 + 1 < 0 ⇒ s < µ̃(A+ 1).

We also note that, due to this condition, all the elements in (5.33) evaluated in p = +∞
tend to 0. Evaluating in p = 1, everything results in being 0 because of the elements

(p− 1)k2−k+1, except for k = k2 + 1. Thus we can write

MTN (A)(s) = (N −A)

(
N

A

)
(−1)k2+1

∏k2−1
i=0 (k2 − i)∏k2+1
i=1 (k1 + i)

= (N −A)

(
N

A

)
(−1)k2+1B(k1 + 1, k2 + 1), (5.34)

where

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt =

(a− 1)!(b− 1)!

(a+ b− 1)!

represents the Beta function. It is easy to prove that MTN (A)(0) = 1 as should be for

a moment generating function. Higher moments for the random variable TN (A) can be

computed as

E
[
TN (A)k

]
=

dk

dsk
MTN (A)(s)

∣∣∣∣
s=0

.

However, computation of these moments can also be carried out if we note that TN (A)

is the time to absorption of a pure-death process formed by a sequence of independent

exponentially distributed times, corresponding to death events. Define Ti,j the time for the

process to go from state i to state j. We can then write TN (A) = TN,N−1+TN−1,N−2+· · ·+
TA+1,A, so that E [TN (A)] = E(TN,N−1) + E(TN−1,N−2) + · · ·+ E(TA+1,A). As previously

said, we know that Ti,i−1 is distributed as an exponential random variable with parameter

iµ̃. We recall that, if Z is an exponential random variable with parameter λ, its expected

value is λ−1. This implies (see Figure 5.11)

E(TN (A)) =
1

µ̃

N∑
i=A+1

1

i
=

1

µ̃

(
1

A+ 1
+

1

A+ 2
+ · · ·+ 1

N

)
. (5.35)

As shown in Section (6.7) of [5], we can write

E(TN (A)) ≈ 1

µ̃
log

(
N

A

)
.

In a similar way, recalling that if Z is an exponential random variable with parameter λ,

then its variance is λ−2, we can write

Var(TN (A)) =
1

µ̃2

N∑
i=A+1

1

i2
=

1

µ̃2

(
1

(A+ 1)2
+

1

(A+ 2)2
+ · · ·+ 1

N2

)
. (5.36)
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Figure 5.11: Plot of (5.35) (orange) and simulations of death process (blue). Time until

absorption (years) as a function of the % of original clones removed from the repertoire.

Parameters: θ = 2.5 years−1, γ = 1.25 years−1, µ = 0.5 years−1, M = 200, nθ = 4 and

N = 50.

Let us focus now on the general higher moment E
[
TN (A)k

]
. We want now to prove that

E
[
TN (A)k

]
=
k!

µ̃k

∑
k1+k2+...+kN−A=k

[
1

Nk1(N − 1)k2 · · · (A+ 1)kN−A

]
,

where the sum is taken over all possible combinations of non-negative integer indices

k1, k2, . . . , kN−A such that
N−A∑
j=1

kj = k. Let us consider the process Y(1). We recall that

the random variable TN (A), representing the time to reach for the first time a number

A < X(0) of original clonotypes in the repertoire, can be written as TN (A) = TN,N−1 +

TN−1,N−2+· · ·+TA+1,A, where Ti,j amounts to the time spent by the process Y(1) to go from

state i to state j. We are interested in computing the higher moments E
[
TN (A)k

]
of the

random variable TN (A). We write E
[
TN (A)k

]
= E

[
(TN,N−1 + TN−1,N−2 + · · ·+ TA+1,A)k

]
.

In order to find a formula for the higher moments of TN (A), we first state an important

theorem of combinatorics: the multinomial theorem. For any positive integer m > 0 and

any integer n ≥ 0, and considering m terms x1, x2, . . . , xm, we can write

(x1 + x2 + . . .+ xm)n =
∑

k1+k2+...+km=n

(
n

k1, k2, . . . , km

) m∏
j=1

x
kj
j ,
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where the sum is taken over all possible combinations of integer indices k1, k2, . . . , km ≥ 0

such that
m∑
i=1

ki = k and

(
n

k1, k2, . . . , km

)
=

n!

k1!k2! . . . km!

is called multinomial coefficient, so that the case m = 2 represents the famous binomial

theorem. We can therefore write

E
[
TN (A)k

]
= E

 ∑
k1+k2+...+kN−A=k

(
k

k1, k2, . . . , kN−A

)
T k1N,N−1T

k2
N−1,N−2 · · ·T

kN−A
A+1,A

 ,
and linearity properties of the expected value can transform this last equality as follows

E
[
TN (A)k

]
=

∑
k1+k2+...+kN−A=k

[(
k

k1, k2, . . . , kN−A

)
E
[
T k1N,N−1T

k2
N−1,N−2 · · ·T

kN−A
A+1,A

]]
.

We recall that Ti,i−1 are independent exponentially distributed random variables with

parameter iµ̃, so that E
[
T ki,i−1

]
=

k!

(iµ̃)k
and

E
[
TN (A)k

]
=

∑
k1+k2+...+kN−A=k

[(
k

k1, k2, . . . , kN−A

)
k1!

(Nµ̃)k1
k2!

((N − 1)µ̃)k2
· · · kN−A!

((A+ 1)µ̃)kN−A

]
.

It follows that

E
[
TN (A)k

]
=
k!

µ̃k

∑
k1+k2+...+kN−A=k

[
1

Nk1(N − 1)k2 · · · (A+ 1)kN−A

]
.
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5.4.2 Explicit competition

We consider here µ
(X)
n,m = µ

(X,2)
n,m = (n−m)(β1 + β2pn) and µ

(Y )
n,m = µ

(Y,2)
n,m = m(β1 + β2pn),

so that µ
(X,2)
n,m + µ

(Y,2)
n,m = µ

(2)
n , leading to the process X

aug
(2) ; see Figure 5.12.

(n− 1,m)

(n− 1,m− 1)

(n,m) (n+ 1,m)
(n−m)(β1 + β2pn) θ

m(β1 + β2pn)

Figure 5.12: Bivariate continuous-time birth-and-death process Xaug
(2) with µ

(X)
n,m = µ

(X,2)
n,m =

(n−m)(β1 + β2pn) and µ
(Y )
n,m = µ

(Y,2)
n,m = m(β1 + β2pn).

Unlike in the previous section, the process Y(2) = {Y (t) : t ≥ 0} cannot be considered

here as a pure-death linear process, since the death rate µ
(Y,2)
n,m depends on both n and

m. Therefore, in order to find the expected value E(TN (A)) of the time TN (A), the

same arguments cannot be applied and a different method has to be followed. We start

by considering the process X
aug
(2) defined over the space of states S = {(n,m) : m ∈

{0, 1, . . . , X(0)}, n ≥ m} and with initial conditions (X(0), Y (0)) = u. Once defined u,

and defining A ⊂ S as a set of states reachable from initial state u, we define Tu(A) as

the time at which the process reaches A. A system of equations for the expression of the

expected value τu = E(Tu) is shown. In order to give the general result for the expected

value τu, we define qu′,u′′ as the transition rate from state u′ to state u′′. We use the

notation u → u′ to define the event describing the first step of the process, from initial

state u to the second state u′. Thus,

τu =
∑
u′∈S

[
E(Tu|u→ u′) · Pr(u→ u′)

]
, (5.37)
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where (see Eq. (5.12) of [5])

Pr(u→ u′) =
qu,u′∑

u′′∈S qu,u′′
.

In order to fully understand (5.37) we need to focus on its first factors E(Tu|u→ u′). The

random variable Tu|u→ u′ can be written as

Tu|u→ u′ = (Tu′ + tu→u′)|u→ u′ = (Tu′) + (tu→u′ |u→ u′),

where the random variable tu→u′ represents the time for the process to go from state u

to state u′. The last equality stands because of the independence of the random variable

Tu′ from the past event {u→ u′}, that is because of the Markov property of the process.

Being X
aug
(2) a continuous-time Markov chain, the random variable tu→u′ takes non-negative

real values and has an exponential distribution with parameter qu,u′ , that is

tu→u′ ∼ Exp(qu,u′).

We need though to focus on the random variable Ψ = tu→u′ |u→ u′, which is representing

the random variable tu→u′ knowing that the first movement of the process is u→ u′. This

can be read as Ψ = minu′′∈S(tu→u′′), where the minimum is taken over all the possible u′′

first movements from the initial state u. Thus, from the properties of exponential random

variables, it follows

Ψ ∼ Exp

(∑
u′′

qu,u′′

)
.

We can now write

E(Tu|u→ u′) = E(Tu′ + Ψ) = τu′ +
1∑

u′′∈S qu,u′′
,

leading us to

τu = E(Tu) =
∑
u′∈S

[(
τu′ +

1∑
u′′∈S qu,u′′

)
·

qu,u′∑
u′′∈S qu,u′′

]
(5.38)

Eq. (5.38) can now be applied to the process Xaug
(2) with µ

(X)
n,m = µ

(X,2)
n,m = (n−m)(β1+β2pn)

and µ
(Y )
n,m = µ

(Y,2)
n,m = m(β1 + β2pn). We consider u = (n,m) as the starting point of the

process and we define the set of states A = {(n,m) : m ≡ A} ⊂ S that the augmented

process X
aug
(2) has to reach. There are three possible u′ states reachable from u with one

step: (n−1,m), (n+ 1,m) and (n−1,m−1). The three transition rates are, respectively,

(β1 + β2pn)(n−m), θ and m(β1 + β2pn), giving∑
u′′∈S

qu,u′′ = n(β1 + β2pn) + θ.
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Thus, applying (5.38) we obtain

τ(n,m) =
θ · τ(n+1,m) + (β1 + β2pn)(n−m) · τ(n−1,m) +m(β1 + β2pn) · τ(n−1,m−1) + 1

n(β1 + β2pn) + θ
.

(5.39)

To find explicit solutions for the recursive equation (5.39), we start focusing on the par-

ticular states {(n,m) : m = A + 1}. In order to solve the (infinite) system of equations

given by (5.39), we consider a maximum number of total clonotype classes M that the

random variable X(t) cannot exceed, so that (5.39) becomes a finite system of equations

represented by the equality

τ(n,A+1) =
δn<M · θ · τ(n+1,A+1) + (β1 + β2pn)(n− (A+ 1)) · τ(n−1,m)

n(β1 + β2pn) + δn<M · θ

+
(A+ 1)(β1 + β2pn) · τ(n−1,A) + 1

n(β1 + β2pn) + δn<M · θ
,

(5.40)

where δD is defined as

δD =

{
1 if D is satisfied,

0 if not.

We define the functions

v(2)(n) = n(β1 + nβ2p) + δn<M · θ

g(2)(n,m) = (β1 + nβ2p)(n−m).

Note that the notation v(2)(n) and g(2)(n,m) is due to the usage of the second kind of

death rates µ
(X)
n,m = µ

(X,2)
n,m = (n − m)(β1 + β2pn) and µ

(Y )
n,m = µ

(Y,2)
n,m = m(β1 + β2pn) in

this section. For the same reason, in the following sections we will also use the notation

v(1)(n) and g(1)(n,m) when dealing with the cases µ
(X)
n,m = µ

(X,1)
n,m = (n−m)(β1 +β2pn) and

µ
(Y )
n,m = µ

(Y,1)
n,m = m(β1 + β2pn). Definitions v(2)(n) and g(2)(n,m), together with (5.40),

give

τ(M,A+1) =
1

M(β1 +Mβ2p)
+

(β1 +Mβ2p)(M − (A+ 1))

M(β1 +Mβ2p)
· τ(M−1,A+1)

=
1

v(2)(M)
+
g(2)(M,A+ 1)

v(2)(M)
· τ(M−1,A+1). (5.41)

Thus, τ(M,A+1) can be written as

τ(M,A+1) =
aM
bM

+
cM
bM
· τ(M−1,A+1),

where aM = 1; bM = v(2)(M); cM = g(2)(M,A + 1). Let us focus now on τ(M−1,A+1).

Following similar arguments as for τ(M,A+1), we have

τ(M−1,A+1) =
θ

v(2)(M − 1)
· τ(M,A+1) +

g(2)(M − 1, A+ 1)

v(2)(M − 1)
· τ(M−2,A+1) +

1

v(2)(M − 1)

=
θ + v(2)(M)

v(2)(M − 1)v(2)(M)
+
θg(2)(M,y) · τ(M−1,A+1)

v(2)(M − 1)v(2)(M)
+
g(2)(M − 1, A+ 1) · τ(M−2,A+1)

v(2)(M − 1)
,

(5.42)
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where the last equality is obtained by replacing (5.41) in the first equality. We can now

rearrange (5.42) to obtain

τ(M−1,A+1) =
θ + v(2)(M)

v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)
+
v(2)(M)g(2)(M − 1, A+ 1) · τ(M−2,A+1)

v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)
,

(5.43)

so that

τ(M−1,A+1) =
aM−1

bM−1
+
cM−1

bM−1
· τ(M−2,A+1),

where aM−1 = θ + v(2)(M); bM−1 = v(2)(M − 1)v(2)(M) − θg(2)(M,A + 1); cM−1 =

v(2)(M)g(2)(M − 1, A+ 1). Let us focus now on τ(M−2,A+1). We have

τ(M−2,A+1) =
θ · τ(M−1,A+1)

v(2)(M − 2)
+
g(2)(M − 2, A+ 1) · τ(M−3,A+1)

v(2)(M − 2)
+

1

v(2)(M − 2)

=
θ[θ + v(2)(M)]

v(2)(M − 2)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)]

+
θv(2)(M)g(2)(M − 1, A+ 1)

v(2)(M − 2)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)]
· τ(M−2,A+1)

+
g(2)(M − 2, A+ 1)

v(2)(M − 2)
· τ(M−3,A+1) +

1

v(2)(M − 2)
, (5.44)

where the last equality is obtained by replacing (5.43) in the first equality. We can now

rearrange (5.44) to obtain

τ(M−2,A+1) =
θ[θ + v(2)(M)] + [v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)]

v(2)(M − 2)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)]− θv(2)(M)g(2)(M − 1, A+ 1)

+
g(2)(M − 2, A+ 1)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)] · τ(M−3,A+1)

v(2)(M − 2)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)]− θv(2)(M)g(2)(M − 1, A+ 1)
.

so that

τ(M−2,A+1) =
aM−2

bM−2
+
cM−2

bM−2
· τ(M−3,A+1),

where

aM−2 = θ[θ + v(2)(M)] + [v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)],

bM−2 = v(2)(M − 2)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)]− θv(2)(M)g(2)(M − 1, A+ 1),

cM−2 = g(2)(M − 2, A+ 1)[v(2)(M − 1)v(2)(M)− θg(2)(M,A+ 1)].

Noticing the two first sets of relations

aM−1 = bM + θaM ,

bM−1 = bMv
(2)(M − 1)− θcM ,

cM−1 = bMg
(2)(M − 1, A+ 1),
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and

aM−2 = bM−1 + θaM−1,

bM−2 = bM−1v
(2)(M − 2)− θcM−1,

cM−2 = bM−1g
(2)(M − 2, A+ 1),

we can write the general recursive relations

aM−k = bM−k+1 + θaM−k+1,

bM−k = bM−k+1v
(2)(M − k)− θcM−k+1, (5.45)

cM−k = bM−k+1g
(2)(M − k,A+ 1),

with initial values aM = 1, bM = v(2)(M), cM = g(2)(M,A+ 1) and

τ(M−k,A+1) =
aM−k
bM−k

+
cM−k
bM−k

· τ(M−k−1,A+1). (5.46)

In order to obtain explicit solution for the general values τ(n,A+1), an algorithm has to

be followed. Before showing the different steps of the algorithm, it is worth noticing that

(5.39) and (5.46) give, respectively, the two equations of the following system


τ(A+1,A+1) =

θ

v(2)(A+ 1)
τ(A+2,A+1) +

1

v(2)(A+ 1)
,

τ(A+2,A+1) =
aA+2

bA+2
+
cA+2

bA+2
τ(A+1,A+1),

which gives


τ(A+1,A+1) =

θaA+2 + bA+2

bA+2v(2)(A+ 1)− θcA+2
,

τ(A+2,A+1) =
aA+2v

(2)(A+ 1) + cA+2

bA+2v(2)(A+ 1)− θcA+2
.

Given these values τ(A+1,A+1) and τ(A+2,A+1) dependent on aA+2, bA+2 and cA+2, we can

now give the steps of the algorithm:

• Start with aM = 1, bM = v(2)(M), cM = g(2)(M,A+ 1);

• Use the recursive relations (5.45) to find aA+2, bA+2 and cA+2;

• Find τ(A+1,A+1) and τ(A+2,A+1) as explained above;

• Use (5.46) to find all the different values of τ(n,A+1), up to τ(M,A+1).
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We focus now on the more general states {(n,m) : m ∈ {A+ 2, A+ 3, · · · , N}}. We recall

the functions v(2)(n) and g(2)(n,m) and we define the new function q(n,m) as

v(2)(n) = n(β1 + nβ2p) + δn<M · θ

g(2)(n,m) = (β1 + nβ2p)(n−m)

q(n,m) = 1 +m(β1 + nβ2p) · τ(n−1,m−1).

Note that for the function q(n,m) we do not use any index as this function will be

used only in this case for this particular section. These definitions, together with (5.39),

give

τ(M,m) =
q(M,m)

v(2)(M)
+
g(2)(M,m)

v(2)(M)
· τ(M−1,m). (5.47)

With the same techniques used for computing (5.43), we can find

τ(M−1,m) =
θq(M,m) + v(2)(M)q(M − 1,m)

v(2)(M − 1)v(2)(M)− θg(2)(M,m)
+

v(2)(M)g(2)(M − 1,m)

v(2)(M − 1)v(2)(M)− θg(2)(M,m)
· τ(M−2,m),

obtaining the relationships

aM−1 = bMq(M − 1,m) + θaM ,

bM−1 = bMv
(2)(M − 1)− θcM ,

cM−1 = bMg
(2)(M − 1,m),

and, recursively, the general ones

aM−k = bM−k+1q(M − k,m) + θaM−k+1,

bM−k = bM−k+1v
(2)(M − k)− θcM−k+1, (5.48)

cM−k = bM−k+1g
(2)(M − k,m),

with aM = q(M,m), bM = v(2)(M), cM = g(2)(M,m) and

τ(M−k,m) =
aM−k
bM−k

+
cM−k
bM−k

· τ(M−k−1,m). (5.49)

In order to obtain explicit solution for the general τ(n,m), similar steps have to be followed

as for the particular case m = A + 1. Thus, we notice that (5.39) and (5.49) give,

respectively, the two equations of the following system
τ(m,m) =

θ

v(2)(m)
τ(m+1,m) +

q(m,m)

v(2)(m)
,

τ(m+1,m) =
am+1

bm+1
+
cm+1

bm+1
τ(m,m),
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which gives


τ(m,m) =

θam+1 + bm+1q(m,m)

bm+1v(2)(m)− θcm+1
,

τ(m+1,m) =
am+1v

(2)(m) + cm+1q(m,m)

bm+1v(2)(m)− θcm+1
.

Given these two values τ(m,m) and τ(m+1,m) dependent on am+1, bm+1 and cm+1, the steps

of the algorithm are as follows:

• Start with aM = q(M,m), bM = v(2)(M), cM = g(2)(M,m);

• Use the recursive relations (5.48) to find am+1, bm+1 and cm+1;

• Find τ(m,m) and τ(m+1,m) as explained above;

• Use (5.49) to find all the different values of τ(n,m), up to τ(M,m).

The reader can find simulations for this algorithm and for a Gillespie code representing

the same biological process in Figures 5.38 and 5.39 respectively. The hitting times are

also plotted for a specific initial state as function of both the β1 and β2p variables, as a

heat map in Figure 5.40.

5.5 Size of the repertoire at time TN(A)

We recall the definition of our augmented process Xaug = {(X(t), Y (t)) : t ≥ 0} defined on

the space of states Saug = {(n,m) : m ∈ {0, 1, 2, . . . , X(0)}, n ≥ m}. We also recall the

definition of TN (A) as the time when, for the first time, the process Xaug reaches the space

of states A = {(n,m) : m = A}, representing thus the first time until only A < X(0) of

the original clonotypes remain in the repertoire. The aim of this section is to analyse the

probability p(n,m)(n̄, A) = Pr(X(TN (A)) = n̄|(X(0), Y (0)) = (n,m)) that the size X(t)

of the repertoire at time TN (A) equals a particular value n̄ ≥ A. As for the previous

section, we consider a maximum number of total clonotype classes M that the random

variable X(t) cannot exceed. We believe this stochastic descriptor represents a significant

aspect of the internal dynamics of a repertoire, as it has the capability to describe the

probability distribution of the size of the renewed part of the repertoire at time TN (A).

The last section focused on the use of a first step argument to find an equation for the

stochastic descriptor TN (A). In the following sections a similar argument will be applied

to the study of the probabilities p(n,m)(n̄, A), known as hitting probabilities.
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5.5.1 Implicit competition

Analytical analysis

We consider the auxiliary random variable Z(t) = X(t)−Y (t) and the process Z = {Z(t) :

t ≥ 0} defined on Sz = {0, 1, 2, . . .}, where Z(t) amounts to the number of newly generated

clonotypes in the repertoire at time t ≥ 0. We note that Z can be seen as a pure-death

linear process with immigration, with death rate µz = µ̃z and immigration rate θ. We

want to analyse the probability, for the process Xaug, to be in the state (z+A,A) at time

TN (A). This is equivalent to analyse the probability that the process Z is in state z at

time TN (A). Thus we want to analyse the following probabilities

Pr (Z(TN (A)) = z) = Pr (X(TN (A)) = z +A) , z = 0, 1, 2, ...

Given the independence between process Y = {Y (t) : t ≥ 0} defined on {0, 1, 2, . . . , X(0)}
and process Z, and given the probability density function fTN (A)(t) of the random variable

TN (A) given by (5.26), we can write

Pr (Z(TN (A)) = z) =

∫ +∞

0
pz(t) · fTN (A)(t) dt, (5.50)

where pz(t) = Pr(Z(t) = z). Therefore, we need to find pz(t). We start writing the

forward Kolmogorov equations for process Z as
dpz(t)

dt
= θpz−1(t) + µ̃(z + 1)pz+1(t)− (θ + µ̃z)pz(t), z = 1, 2, . . . ,

dp0(t)

dt
= µ̃p1(t)− θp0(t).

From these equations, we find now the partial differential equation for the probability gen-

erating function φZ(s, t) of the random variable Z(t), following the arguments of Chapter

6 in [5]. We multiply the differential equations by sz and sum over z. Then

∂φZ(s, t)

∂t
= θ

+∞∑
z=2

pz−1(t)sz + µ̃

+∞∑
z=0

(z + 1)pz+1(t)sz − θ
+∞∑
z=1

pz(t)s
z − µ̃

+∞∑
z=1

zpz(t)s
z

= θ

+∞∑
z=1

pz(t)s
z+1 + µ̃

+∞∑
z=1

zpz(t)s
z−1 − θ

+∞∑
z=1

pz(t)s
z − µ̃

+∞∑
z=1

zpz(t)s
z

= θs

+∞∑
z=1

pz(t)s
z + µ̃

+∞∑
z=1

zpz(t)s
z−1 − θ

+∞∑
z=1

pz(t)s
z − µ̃s

+∞∑
z=1

zpz(t)s
z−1.

Thus we have 
∂φZ(s, t)

∂t
= µ̃(1− s)∂φZ(s, t)

∂s
+ θ(s− 1)φZ(s, t),

φZ(s, 0) = sZ(0) = 1.
(5.51)

We notice that this equation agrees with arguments in Section (6.4.4) of [5]. In fact, it

would be sufficient to consider the partial differential equation for the moment generating

132



5.5 Size of the repertoire at time TN (A)

function for the special case λ = 0 and using the substitution θ = log(s) in order to find

our equation (Note that θ in the equation from [5] is not representing our immigration

rate θ, but just the independent variable of the moment generating function). We use

the method of characteristics to find a solution φZ(s, t) for the general initial condition

Z(0) = Z0. We will then apply it to our specific case where Z0 = 0. We start by rewriting

the system as followsµ̃(s− 1)
∂φZ(s, t)

∂s
+
∂φZ(s, t)

∂t
+ θ(1− s)φZ(s, t) = 0,

φZ(s, 0) = sZ0 .

We write the ODEs system
ds/dw = µ̃(s− 1),

dt/dw = 1,

dφZ(s, t)/dw = θ(s− 1)φZ(s, t).

We solve the first two ODEs of the system, finding{
s(w) = c1e

µ̃w + 1,

t(w) = c2 + w.
(5.52)

We consider the characteristic line (s(w), t(w)), setting (s(0), t(0)) = (s0, 0). Therefore,

substituting in (5.52), we obtain c1 = s0 − 1 and c2 = 0. We can now find{
s(s0, w) = (s0 − 1)eµ̃w + 1,

t(s0, w) = w.
(5.53)

Using the initial condition φZ(s(s0, w), t(s0, w) = 0) = sZ0 together with (5.53), we can

write the initial condition as φZ(s(s0, w), t(s0, w) = 0) = sZ0
0 . Thus{

dφZ(s0, w)/dw = θ(s(s0, w)− 1)φZ(s0, w) = θ(s0 − 1)φZ(s0, w),

φZ(s0, 0) = sZ0
0 .

Therefore we have φZ(s0, w) = c3e
θ(s0−1)eµ̃w

µ̃ ,

φZ(s0, 0) = sZ0
0 ,

which gives c3 = sZ0
0 e
− θ(s0−1)

µ̃ . We now use (5.53) to find{
s0(s, t) = (s− 1)e−µ̃t + 1,

w(s, t) = t.

Finally, we obtain

φZ(s, t) = c3(s0(s, t), w(s, t)) · e
θ(s0(s,t)−1)eµ̃w(s,t)

µ̃ ,
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which gives

φZ(s, t) =
[
1 + (s− 1)e−µ̃t

]Z0 · exp

{
θ(s− 1)

µ̃

(
1− e−µ̃t

)}
. (5.54)

As previously said, we now apply this general solution to our particular case, where Z(0) =

Z0 = 0. Thus we have

φZ(s, t) = exp

{
θ(s− 1)

µ̃

(
1− e−µ̃t

)}
. (5.55)

Recalling the general property of the probability generating function for which

pz(t) = Pr(Z(t) = z) =
1

z!

∂zφZ(s, t)

∂sz

∣∣∣∣
s=0

,

we can write

pz(t) =
1

z!

(
(1− e−µ̃t)θ

µ̃

)z
e
− (1−e−µ̃t)θ

µ̃ . (5.56)

We substitute pz(t) in (5.50) to obtain

Pr (Z(TN (A)) = z) =

∫ +∞

0

1

z!

(
(1− e−µ̃t)θ

µ̃

)z
e
− (1−e−µ̃t)θ

µ̃ (N −A)

(
N

A

)
(1− e−µ̃t)N

(eµ̃t − 1)A+1
µ̃ dt.

This can be rewritten as

Pr (Z(TN (A)) = z) = Ω

∫ +∞

0
e
− (1−e−µ̃t)θ

µ̃

(
1− e−µ̃t

)N+z

(eµ̃t − 1)A+1
dt, (5.57)

where

Ω =
θz(N −A)

(
N
A

)
µ̃

z! µ̃z
.

We will now find an explicit solution for (5.57). First we define the new variable p =

exp{µ̃t}, which implies dp = µ̃ exp{µ̃t} dt, t = log(p)/µ̃ and

Pr (Z(TN (A)) = z) = Ω1

∫ +∞

1

(
e
a p−1

p

) (p− 1)b

pc
dp, (5.58)

where

Ω1 =
θz(N −A)

(
N
A

)
z! µ̃z

,

a = − θ
µ̃
,

b = N −A− 1− z,

c = N + z + 1.

Following similar steps, we define the new variable q = p−1
p , which implies dq = dp

p2
,

p = 1
1−q and

Pr (Z(TN (A)) = z) = Ω1

∫ 1

0
eaqqb(1− q)A dq. (5.59)

134



5.5 Size of the repertoire at time TN (A)

Solving the integral on the right hand side of (5.59) is possible but requires quite a few

steps. Therefore we focus now on the solution of this integral, coming back only later to

the explicit solution of (5.59). Using integration by parts with

u = qb(1− q)A and

dv = eaqdq,

we obtain the recursive formula∫ 1

0
eaqqb(1−q)A dq =

1

a

[
eaqqb(1− q)A

]1

0
− b
a

∫ 1

0
eaqqb−1(1−q)A dq+

A

a

∫ 1

0
eaqqb(1−q)A−1 dq.

(5.60)

It is fundamental at this point to notice that[
eaqqb(1− q)A

]1

0
6= 0 only in the cases b = 0 or A = 0.

For simplicity of notation, define the function

f(b, A) =
[
eaqqb(1− q)A

]1

0
.

Thus, (5.60) becomes∫ 1

0
f(b, A) dq =

1

a
[f(b, A)]10 −

b

a

∫ 1

0
f(b− 1, A) dq +

A

a

∫ 1

0
f(b, A− 1) dq, (5.61)

where

[f(b, A)]10 6= 0 only in the cases b = 0 or A = 0. (5.62)

Applying recursively (5.61) to itself and eliminating all the different [f(b− x,A− y)]10 for

x 6= b and y 6= A, it can be proved that each remaining item is of the kind

(−1)x
(
x+ y

x

)
bxAy

ax+y

∫ 1

0
f(b− x,A− y) dq,

where nk = n(n−1)(n−2) . . . (n−k+1). Given (5.62), the only integrals we are interested

in are for y = A and x = b that is, respectively,

(−1)x
(
x+A

x

)
bxA!

ax+A

∫ 1

0
f(b− x, 0) dq,

(−1)b
(
b+ y

b

)
b!Ay

ab+y

∫ 1

0
f(0, A− y) dq.

It can also be proved that all these integrals have to be taken into consideration, that is for

x ∈ {0, 1, . . . , b} and y ∈ {0, 1, . . . , A}, excluding only the case (x, y) = (0, 0) which does

not exist. Therefore, in order to solve (5.59), we need now to focus on the two integrals

I1(x) =

∫ 1

0
eaqqb−x dq,

I2(y) =

∫ 1

0
eaq(1− q)A−y dq.
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First we notice that, defining the new variable w = 1− q, we have

I2(y) = ea
∫ 1

0
eãttA−y dt,

with ã = −a. Thus, to solve both I1 and I2, we focus on finding a solution for the generic

integral ∫ 1

0
ecuun du.

Integrating by parts, it is easy to show that

∫ 1

0
ecuun du =

[
ecu

n∑
i=0

(−1)i
n! un−i

(n− i)! ci+1

]1

0

= ec
n∑
i=0

(−1)i
n!

(n− i)! ci+1
.

Therefore, we can write

I1(x) = ea
b−x∑
i=0

(−1)i
(b− x)!

(b− x− i)! ai+1
,

I2(y) = eaeã
A−y∑
i=0

(−1)i
(A− y)!

(A− y − i)! ãi+1
=

A−y∑
i=0

− (A− y)!

(A− y − i)! ai+1
.

We are now finally able to write an explicit formula for Pr (Z(TN (A)) = z). In fact we

have

Pr (Z(TN (A)) = z) = Ω1

∫ 1

0
f(b, A) dq,

with

Ω1 =
θz(N −A)

(
N
A

)
z! µ̃z

, and

∫ 1

0
f(b, A) dq =

b−1∑
x=0

(−1)x
(
x+A

x

)
bxA!

ax+A
I1(x) +

A−1∑
y=0

(−1)b
(
b+ y

b

)
b!Ay

ab+y
I2(y),

where

I1 = ea
b−x∑
i=0

(−1)i
(b− x)!

(b− x− i)! ai+1

I2 =

A−y∑
i=0

− (A− y)!

(A− y − i)! ai+1
.

The next section follows the first step argument analysis to find similar analytical results.
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First step argument analysis

This section focuses on finding a formula for the probabilities p(n,m)(n̄, A), when we con-

sider the death rates µ
(X)
n,m = µ

(X,1)
n,m = µ̃(n−m) and µ

(Y )
n,m = µ

(Y,1)
n,m = µ̃m for the augmented

process Xaug. We recall that these probabilities are defined as

p(n,m)(n̄, A) = Pr(ū = (n̄, A)|u = (n,m)), (5.63)

where u represents the initial state (X(0), Y (0)) and ū represents the state hit by the

process Xaug at time TN (A). The first step argument analysis gives

p(n,m)(n̄, A) =
δn<M · θ · p(n+1,m)(n̄, A) + g(1)(n,m) · p(n−1,m)(n̄, A) + r(1)(n,m)

v(1)(n)
, (5.64)

where we define the functions v(1)(n), g(1)(n,m) and r(1)(n,m) as

v(1)(n) = nµ̃+ δn<M · θ,

g(1)(n,m) = (n−m)µ̃,

r(1)(n,m) = mµ̃ · p(n−1,m−1)(n̄, A).

Note that the notations v(1)(n), g(1)(n,m) and r(1)(n,m) are due to the usage of the first

kind of death rates µ
(X)
n,m = µ

(X,1)
n,m = (n − m)µ̃ and µ

(Y )
n,m = µ

(Y,1)
n,m = mµ̃ in this section.

For the same reason, in the following section we will use the notation v(2)(n), g(2)(n,m)

and r(2)(n,m) when dealing with the cases µ
(X)
n,m = µ

(X,2)
n,m = (n − m)(β1 + β2pn) and

µ
(Y )
n,m = µ

(Y,2)
n,m = m(β1 +β2pn). In order to find explicit solutions for the recursive equation

(5.64), we first analyse the particular space of states {(n,m) : m = A+ 1}. The functions

v(1)(n), g(1)(n,m) and r(1)(n,m), together with (5.64) give

p(M,A+1)(n̄, A) =
r(1)(M,A+ 1)

v(1)(M)
+
g(1)(M,A+ 1)

v(1)(M)
p(M−1,A+1)(n̄, A), (5.65)

where r(1)(M,A+ 1) = (A+ 1)µ̃ · p(M−1,A)(n̄, A) and

p(M−1,A)(n̄, A) =

{
1 if n̄ = M − 1,

0 otherwise.,

Let us define

aM = r(1)(M,A+ 1); bM = v(1)(M); cM = g(1)(M,A+ 1),

so that p(M,A+1)(n̄, A) can be written as

p(M,A+1)(n̄, A) =
aM
bM

+
cM
bM
· p(M−1,A+1)(n̄, A). (5.66)

We continue with p(M−1,A+1)(n̄, A). As for p(M,A+1)(n̄, A), it can be written
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p(M−1,A+1)(n̄, A) =
θ · p(M,A+1)(n̄, A)

v(1)(M − 1)
+
g(1)(M − 1, A+ 1) · p(M−2,A+1)(n̄, A)

v(1)(M − 1)
+
r(1)(M − 1, A+ 1)

v(1)(M − 1)

=
θaM + bMr

(1)(M − 1, A+ 1)

bMv(1)(M − 1)− θcM
+
bMg

(1)(M − 1, A+ 1)

bMv(1)(M − 1)− θcM
· p(M−2,A+1)(n̄, A),

(5.67)

where the last equality is obtained by replacing (5.66) in the first equality. We define

aM−1 = θaM + bMr
(1)(M − 1, A+ 1),

bM−1 = bMv
(1)(M − 1)− θcM ,

cM−1 = bMg
(1)(M − 1, A+ 1),

so that p(M−1,A+1)(n̄, A) can be written as

p(M−1,A+1)(n̄, A) =
aM−1

bM−1
+
cM−1

bM−1
· p(M−2,A+1)(n̄, A).

Thus, the general recursive relations

aM−k = θaM−k+1 + bM−k+1r
(1)(M − k,A+ 1),

bM−k = bM−k+1v
(1)(M − k)− θcM−k+1, (5.68)

cM−k = bM−k+1g
(1)(M − k,A+ 1),

with aM = r(1)(M,A+ 1), bM = v(1)(M), cM = g(1)(M,A+ 1) and

p(M−k,A+1)(n̄, A) =
aM−k
bM−k

+
cM−k
bM−k

· p(M−k−1,A+1)(n̄, A). (5.69)

In order to obtain explicit solution for the general p(n,A+1)(n̄, A), an algorithm has to be

followed, as previously done for the study of the stochastic descriptor TN (A). Before show-

ing the different steps of the algorithm, we notice that (5.64) and (5.69) give, respectively,

the two equations of the following system
p(A+1,A+1)(n̄, A) =

θ

v(1)(A+ 1)
p(A+2,A+1)(n̄, A) +

r(1)(A+ 1, A+ 1)

v(1)(A+ 1)
,

p(A+2,A+1)(n̄, A) =
aA+2

bA+2
+
cA+2

bA+2
p(A+1,A+1)(n̄, A),

which gives


p(A+1,A+1)(n̄, A) =

θaA+2 + bA+2r
(1)(A+ 1, A+ 1)

bA+2v(1)(A+ 1)− θcA+2
,

p(A+2,A+1)(n̄, A) =
aA+2v

(1)(A+ 1) + cA+2r
(1)(A+ 1, A+ 1)

bA+2v(1)(A+ 1)− θcA+2
.

Given the two values p(A+1,A+1)(n̄, A) and p(A+2,A+1)(n̄, A) dependent on aA+2, bA+2 and

cA+2, the steps of the algorithm is as follows:
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• Start with aM = r(1)(M,A+ 1), bM = v(1)(M), cM = g(1)(M,A+ 1);

• Use the recursive relations (5.68) to find aA+2, bA+2 and cA+2;

• Find p(A+1,A+1)(n̄, A) and p(A+2,A+1)(n̄, A);

• Use (5.69) to find all the different values of p(n,A+1)(n̄, A), up to p(M,A+1)(n̄, A).

The same steps are now applied to the more general states {(n,m) : m ∈ {A+ 2, A+ 3, · · · , N}}.
We recall the functions v(1)(n), g(1)(n,m) and r(1)(n,m) as

v(1)(n) = nµ̃+ δn<M · θ,

g(1)(n,m) = (n−m)µ̃,

r(1)(n,m) = mµ̃ · p(n−1,m−1)(n̄, A).

These definitions, together with (5.64), give

p(M,m)(m̄, A) =
r(1)(M,m)

v(1)(M)
+
g(1)(M,m)

v(1)(M)
p(M−1,m)(n̄, A). (5.70)

With the same techniques used for computing (5.67), we can find

p(M−1,m)(n̄, A) =
θ · p(M,m)(n̄, A)

v(1)(M − 1)
+
g(1)(M − 1,m)

v(1)(M − 1)
· p(M−2,m)(n̄, A) +

r(1)(M − 1,m)

v(1)(M − 1)
,

(5.71)

obtaining the relations

aM−1 = θaM + bMr
(1)(M − 1,m),

bM−1 = bMv
(1)(M − 1)− θcM ,

cM−1 = bMg
(1)(M − 1,m),

and, recursively, the general ones

aM−k = θaM−k+1 + bM−k+1r
(1)(M − k,m),

bM−k = bM−k+1v
(1)(M − k)− θcM−k+1, (5.72)

cM−k = bM−k+1g
(1)(M − k,m),

with aM = r(1)(M,m), bM = v(1)(M), cM = g(1)(M,m) and

p(M−k,m)(n̄, A) =
aM−k
bM−k

+
cM−k
bM−k

· p(M−k−1,m)(n̄, A). (5.73)

To obtain explicit solution for the general p(n,m)(n̄, A), we notice once again that (5.64)

and (5.73) give, respectively, the two equations of the following system
p(m,m)(n̄, A) =

θ

v(1)(m)
p(m+1,m)(n̄, A) +

r(1)(m,m)

v(1)(m)
,

p(m+1,m)(n̄, A) =
am+1

bm+1
+
cm+1

bm+1
p(m,m)(n̄, A),
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which gives


p(m,m)(n̄, A) =

θam+1 + bm+1r
(1)(m,m)

bm+1v(1)(m)− θcm+1
,

p(m+1,m)(n̄, A) =
am+1v

(1)(m) + cm+1r
(1)(m,m)

bm+1v(1)(m)− θcm+1
.

Given these two values p(m,m)(n̄, A) and p(m+1,m)(n̄, A) dependent on am+1, bm+1 and

cm+1, the algorithm is as follows:

• Start with aM = r(1)(M,m), bM = v(1)(M), cM = g(1)(M,m);

• Use the recursive relations (5.72) to find am+1, bm+1 and cm+1;

• Find p(m,m)(n̄, A) and p(m+1,m)(n̄, A);

• Use (5.73) to find all the different values of p(n,m)(n̄, A), up to p(M,m)(n̄, A).

Simulations of this algorithm and numerical results of a Gillespie code representing the

same biological process can be found in Figures 5.13 and 5.14 respectively. The hitting

probabilities of a particular final state are also plotted for a specific initial state as function

of the variables nθ, θ, γ, Mc and µ, as a heat map in Figures 5.15 to 5.24.

5.5.2 Explicit competition

This section focuses on finding a formula for the probabilities p(n,m)(n̄, A), when we con-

sider the death rates µ
(X)
n,m = µ

(X,2)
n,m = (n−m)(β1+β2pn) and µ

(Y )
n,m = µ

(Y,2)
n,m = m(β1+β2pn)

for the augmented process Xaug. As for the previous section, probabilities are defined as

p(n,m)(n̄, A) = Pr(ū = (n̄, A)|u = (n,m)), (5.74)

where u represents the initial state (X(0), Y (0)) and ū represents the first state hit by the

process Xaug at time TN (A). Following a first step argument we obtain the equation

p(n,m)(n̄, A) =
δn<M · θ · p(n+1,m)(n̄, A) + g(2)(n,m) · p(n−1,m)(n̄, A) + r(2)(n,m)

v(2)(n)
, (5.75)

where we define the functions v(2)(n), g(2)(n,m) and r(2)(n,m) as

v(2)(n) = n(β1 + nβ2p) + δn<M · θ,

g(2)(n,m) = (β1 + nβ2p)(n−m),

r(2)(n,m) = m(β1 + nβ2p) · p(n−1,m−1)(n̄, A).

140



5.5 Size of the repertoire at time TN (A)

In order to find explicit solutions for the recursive equation (5.75), we focus on the

particular space of states {(n,m) : m = A+ 1}. The functions v(2)(n), g(2)(n,m) and

r(2)(n,m), together with (5.75) give

p(M,A+1)(n̄, A) =
r(2)(M,A+ 1)

v(2)(M)
+
g(2)(M,A+ 1)

v(2)(M)
p(M−1,A+1)(n̄, A), (5.76)

where r(2)(M,A+ 1) = (A+ 1)(β1 + β2pM) · p(M−1,A)(n̄, A) and

p(M−1,A)(n̄, A) =

{
1 if n̄ = M − 1,

0 otherwise.

Let us define

aM = r(2)(M,A+ 1); bM = v(2)(M); cM = g(2)(M,A+ 1),

so that p(M,A+1)(n̄, A) can be written as

p(M,A+1)(n̄, A) =
aM
bM

+
cM
bM
· p(M−1,A+1)(n̄, A). (5.77)

We consider p(M−1,A+1)(n̄, A). As for p(M,A+1)(n̄, A), it can be written

p(M−1,A+1)(n̄, A) =
θ · p(M,A+1)(n̄, A)

v(2)(M − 1)
+
r(2)(M − 1, A+ 1)

v(2)(M − 1)

+
g(2)(M − 1, A+ 1)

v(2)(M − 1)
· p(M−2,A+1)(n̄, A),

(5.78)

that is

p(M−1,A+1)(n̄, A) =
θaM + bMr

(2)(M − 1, A+ 1)

bMv(2)(M − 1)− θcM

+
bMg

(2)(M − 1, A+ 1)

bMv(2)(M − 1)− θcM
· p(M−2,A+1)(n̄, A),

(5.79)

where the equality is obtained by replacing (5.77) in (5.78). We define

aM−1 = θaM + bMr
(2)(M − 1, A+ 1),

bM−1 = bMv
(2)(M − 1)− θcM ,

cM−1 = bMg
(2)(M − 1, A+ 1),

so that p(M−1,A+1)(n̄, A) can be written as

p(M−1,A+1)(n̄, A) =
aM−1

bM−1
+
cM−1

bM−1
· p(M−2,A+1)(n̄, A).

The general recursive relations follow

aM−k = θaM−k+1 + bM−k+1r
(2)(M − k,A+ 1),

bM−k = bM−k+1v
(2)(M − k)− θcM−k+1, (5.80)

cM−k = bM−k+1g
(2)(M − k,A+ 1),
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with aM = r(M,A+ 1), bM = v(M), cM = g(M,A+ 1) and

p(M−k,A+1)(n̄, A) =
aM−k
bM−k

+
cM−k
bM−k

· p(M−k−1,A+1)(n̄, A). (5.81)

We notice that (5.75) and (5.81) give, respectively, the two equations of the following

system
p(A+1,A+1)(n̄, A) =

θ

v(2)(A+ 1)
p(A+2,A+1)(n̄, A) +

r(2)(A+ 1, A+ 1)

v(2)(A+ 1)
,

p(A+2,A+1)(n̄, A) =
aA+2

bA+2
+
cA+2

bA+2
p(A+1,A+1)(n̄, A),

which gives
p(A+1,A+1)(n̄, A) =

θaA+2 + bA+2r
(2)(A+ 1, A+ 1)

bA+2v(2)(A+ 1)− θcA+2
,

p(A+2,A+1)(n̄, A) =
aA+2v

(2)(A+ 1) + cA+2r
(2)(A+ 1, A+ 1)

bA+2v(2)(A+ 1)− θcA+2
.

These two values p(A+1,A+1)(n̄, A) and p(A+2,A+1)(n̄, A), dependent on aA+2, bA+2 and

cA+2, are now used as part of the following algorithm:

• Start with aM = r(2)(M,A+ 1), bM = v(2)(M), cM = g(2)(M,A+ 1);

• Use the recursive relations (5.45) to find aA+2, bA+2 and cA+2;

• Find p(A+1,A+1)(n̄, A) and p(A+2,A+1)(n̄, A);

• Use (5.81) to find all the different values of p(n,A+1)(n̄, A), up to p(M,A+1)(n̄, A).

We focus now on the general space of states {(n,m) : m ∈ {A+ 2, A+ 3, · · · , N}}, recall-

ing the functions v(2)(n), g(2)(n,m) and r(2)(n,m)

v(2)(n) = n(β1 + nβ2p) + δn<M · θ,

g(2)(n,m) = (β1 + nβ2p)(n−m),

r(2)(n,m) = m(β1 + nβ2p) · p(n−1,m−1)(n̄, A).

We have from (5.75)

p(M,m)(n̄, A) =
r(2)(M,m)

v(2)(M)
+
g(2)(M,m)

v(2)(M)
p(M−1,m)(n̄, A). (5.82)

With the same techniques used for computing (5.79), we can find

p(M−1,m)(n̄, A) =
θ · p(M,m)(n̄, A)

v(2)(M − 1)
+
g(2)(M − 1,m)

v(2)(M − 1)
· p(M−2,m)(n̄, A) +

r(2)(M − 1,m)

v(2)(M − 1)
(5.83)
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obtaining the relations

aM−1 = θaM + bMr
(2)(M − 1,m),

bM−1 = bMv
(2)(M − 1)− θcM ,

cM−1 = bMg
(2)(M − 1,m),

and, recursively, the general ones

aM−k = θaM−k+1 + bM−k+1r
(2)(M − k,m),

bM−k = bM−k+1v
(2)(M − k)− θcM−k+1, (5.84)

cM−k = bM−k+1g
(2)(M − k,m),

with aM = r(2)(M,m), bM = v(2)(M), cM = g(2)(M,m) and

p(M−k,m)(n̄, A) =
aM−k
bM−k

+
cM−k
bM−k

· p(M−k−1,m)(n̄, A). (5.85)

Equations (5.75) and (5.85) give, respectively, the two equations of the following system
p(m,m)(n̄, A) =

θ

v(2)(m)
p(m+1,m)(n̄, A) +

r(2)(m,m)

v(2)(m)
,

p(m+1,m)(n̄, A) =
am+1

bm+1
+
cm+1

bm+1
p(m,m)(n̄, A),

which gives 
p(m,m)(n̄, A) =

θam+1 + bm+1r
(2)(m,m)

bm+1v(2)(m)− θcm+1
,

p(m+1,m)(n̄, A) =
am+1v

(2)(m) + cm+1r
(2)(m,m)

bm+1v(2)(m)− θcm+1
.

The final algorithm follows:

• Start with aM = r(2)(M,m), bM = v(2)(M), cM = g(2)(M,m);

• Use the recursive relations (5.84) to find am+1, bm+1 and cm+1;

• Find p(m,m)(n̄, A) and p(n+1,m)(n̄, A);

• Use (5.85) to find all the different values of p(n,m)(n̄, A), up to p(M,m)(n̄, A).

Simulations of this algorithm and numerical results of a Gillespie code representing the

same biological process can be found in Figures 5.41 and 5.42 respectively. The hitting

probabilities of a particular final state are also plotted for a specific initial state as function

of both the β1 and β2p variables, as a heat map in Figure 5.43.
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5.6 Maximum repertoire diversity in [0, TN(A)]

Given the augmented process Xaug = {(X(t), Y (t)) : t ≥ 0} defined on the space of

states Saug = {(n,m) : m ∈ {0, 1, 2, . . . , X(0)}, n ≥ m}, we recall the definition of

TN (A) as the time when, for the first time, the process Xaug reaches the space of states

A = {(n,m) : m = A}. Our goal here is to derive the distribution of the maximum

value of total clonotypes Xmax = max{X(t) : t ∈ [0, TN (A)]} that the augmented process

Xaug = {(X(t), Y (t)) : t ≥ 0}, defined on the space of states Saug = {(n,m) : m ∈
{0, 1, 2, . . . , X(0)}, n ≥ m}, reaches during the period of time [0, TN (A)]. In particular,

we analyse the probabilities φ(n,m) = Pr(Xmax ≥ M |(X(0), Y (0)) = (n,m)}) for the

stochastic descriptor Xmax to reach (and maybe overpass) a certain value M > X(0). We

believe this descriptor is an important measure of the renewal dynamics of the repertoire,

as able to describe the overpopulation effects of a population subject to renewal. Such a

descriptor has been previously studied in the literature in relation to a generic two-species

competition process [70]. Other authors apply similar steps to the study of the repertoire

dynamics, not considering though the renewal problem we are focusing on [14]. This

descriptor is also relevant from a technical point for the section on numerical results. In

fact, it is only through the analyses of these probabilities that we can obtain a good idea

of which value of M to use for the simulations of the two previously discussed stochastic

descriptors.

5.6.1 Implicit competition

We find a formula for the probabilities φ(n,m), when we consider the death rates µ
(X)
n,m =

µ
(X,1)
n,m = µ̃(n −m) and µ

(Y )
n,m = µ

(Y,1)
n,m = µ̃m for the augmented process Xaug. We recall

that these probabilities are defined as

φ(n,m) = Pr(Xmax ≥M |(X(0), Y (0)) = (n,m)}). (5.86)

Using the first step argument as explained in the previous sections, we write

φ(n,m) =
δn<M · θ · φ(n+1,m) + g(1)(n,m) · φ(n−1,m) + w(1)(n,m)

v(1)(n)
, (5.87)

where the functions v(1)(n), g(1)(n,m) and w(1)(n,m) are defined as

v(1)(n) = nµ̃+ δn<M · θ

g(1)(n,m) = (n−m)µ̃

w(1)(n,m) = mµ̃ · φ(n−1,m−1).

Note that the notations v(1)(n), g(1)(n,m) and w(1)(n,m) are due to the use of the first

kind of death rates µ
(X)
n,m = µ

(X,1)
n,m = (n − m)µ̃ and µ

(Y )
n,m = µ

(Y,1)
n,m = mµ̃ in this section.
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For the same reason, in the following section we will use the notation v(2)(n), g(2)(n,m)

and w(2)(n,m) when dealing with the cases µ
(X)
n,m = µ

(X,2)
n,m = (n − m)(β1 + β2pn) and

µ
(Y )
n,m = µ

(Y,2)
n,m = m(β1 + β2pn). The boundary conditions for this stochastic descriptor are

φ(M,m) = 1 ∀m ∈ [A,N ], (5.88)

φ(n,A) =

{
1 if n = M,

0 otherwise.
(5.89)

In order to find explicit solutions for the recursive equation (5.87), we focus on the general

space of states {(X(t), Y (t)) : Y (t) = m, m ∈ {A+ 1, A+ 2, . . . Y (0)}}, as shown in the

previous section. Following the same steps of the previous sections, the functions v(n),

g(n,m) and w(n,m), together with (5.87), give (for k ≥ 1)

aM−k = θaM−k+1 + bM−k+1w
(1)(M − k,m),

bM−k = bM−k+1v
(1)(M − k)− θcM−k+1, (5.90)

cM−k = bM−k+1g
(1)(M − k,m),

with aM−1 = θ + w(1)(M − 1,m), bM−1 = v(1)(M − 1), cM−1 = g(1)(M − 1,m) and

φ(M−k,m) =
aM−k
bM−k

+
cM−k
bM−k

· φ(M−k−1,m). (5.91)

In order to obtain explicit solution for the general φ(n,m), an algorithm has to be followed.

Equations (5.87) and (5.91) give, respectively, the two equations of the following system
φ(m,m) =

θ

v(1)(m)
φ(m+1,m) +

w(1)(m,m)

v(1)(m)
,

φ(m+1,m) =
am+1

bm+1
+
cm+1

bm+1
φ(m,m),

which gives


φ(m,m) =

θam+1 + bm+1w
(1)(m,m)

bm+1v(1)(m)− θcm+1
,

φ(m+1,m) =
am+1v

(1)(m) + cm+1w
(1)(m,m)

bm+1v(1)(m)− θcm+1
.

Given these two values φ(m,m) and φ(m+1,m) dependent on am+1, bm+1 and cm+1, we can

now give the steps of the algorithm as follows:

• Start with aM−1 = θ+w(1)(M −1,m), bM−1 = v(1)(M −1), cM−1 = g(1)(M −1,m);

• Use the recursive relations (5.90) to find am+1, bm+1 and cm+1;

• Find φ(m,m) and φ(m+1,m);
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• Use (5.91) to find all the different values of φ(n,m), up to φ(M−1,m).

The reader can find simulations for this algorithm and for a Gillespie code representing the

same biological process in Figures 5.25, 5.26 and 5.27 respectively. The hitting probabilities

of a particular final state are also plotted for a specific initial state as function of the

variables nθ, θ, γ, Mc and µ, as a heat map in Figures 5.28 to 5.37.

5.6.2 Explicit competition

We find a formula for the probabilities φ(n,m), when we consider the death rates µ
(X)
n,m =

µ
(X,2)
n,m = (n−m)(β1 +β2pn) and µ

(Y )
n,m = µ

(Y,2)
n,m = m(β1 +β2pn) for the augmented process

Xaug. We recall that these probabilities are defined as

φ(n,m) = Pr(Xmax ≥M |(X(0), Y (0)) = (n,m)}). (5.92)

Using the first step argument as explained in the previous sections, we can write

φ(n,m) =
δn<M · θ · φ(n+1,m) + g(2)(n,m) · φ(n−1,m) + w(2)(n,m)

v(2)(n)
, (5.93)

where the functions v(2)(n), g(2)(n,m) and w(2)(n,m) are defined as

v(2)(n) = n(β1 + nβ2p) + δn<M · θ,

g(2)(n,m) = (β1 + nβ2p)(n−m),

w(2)(n,m) = m(β1 + nβ2p) · φ(n−1,m−1).

The boundary conditions for this stochastic descriptor in this process are

φ(M,m) = 1 ∀m ∈ [A,N ], (5.94)

φ(n,A) =

{
1 if n = M,

0 otherwise.
(5.95)

In order to find explicit solutions for the recursive equation (5.93), we focus, as shown

in the previous section, on the general space of states {(X(t), Y (t)) : Y (t) ≡ m}. The

functions v(2)(n), g(2)(n,m) and w(2)(n,m), together with (5.93) give (for k ≥ 1)

aM−k = θaM−k+1 + bM−k+1w
(2)(M − k,m),

bM−k = bM−k+1v
(2)(M − k)− θcM−k+1, (5.96)

cM−k = bM−k+1g
(2)(M − k,m),

with aM−1 = θ + w(2)(M − 1,m), bM−1 = v(2)(M − 1), cM−1 = g(2)(M − 1,m) and

φ(M−k,m) =
aM−k
bM−k

+
cM−k
bM−k

· φ(M−k−1,m). (5.97)

146



5.6 Maximum repertoire diversity in [0, TN (A)]

Equations (5.93) and (5.97) give, respectively, the two equations of the following system
φ(m,m) =

θ

v(2)(m)
φ(m+1,m) +

w(2)(m,m)

v(2)(m)
,

φ(m+1,m) =
am+1

bm+1
+
cm+1

bm+1
φ(m,m),

which gives 
φ(m,m) =

θam+1 + bm+1w
(2)(m,m)

bm+1v(2)(m)− θcm+1
,

φ(m+1,m) =
am+1v

(2)(m) + cm+1w
(2)(m,m)

bm+1v(2)(m)− θcm+1
.

Given these two values φ(m,m) and φ(m+1,m) dependent on am+1, bm+1 and cm+1, we can

now give the steps of the algorithm as follows:

• Start with aM−1 = θ+w(2)(M −1,m), bM−1 = v(2)(M −1), cM−1 = g(2)(M −1,m);

• Use the recursive relations (5.96) to find am+1, bm+1 and cm+1;

• Find φ(m,m) and φ(m+1,m);

• Use (5.97) to find all the different values of φ(n,m), up to φ(M−1,m).

The reader can find simulations for this algorithm and for a Gillespie code representing the

same biological process in Figures 5.44, 5.45 and 5.46 respectively. The hitting probabilities

of a particular final state are also plotted for a specific initial state as function of both the

β1 and β2p variables, as a heat map in Figure 5.47.
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5.7 Numerical results

In this section we display results from small-scale numerical simulations. We decided to

rescale the system with different parameters than those chosen in [100] for computational

reasons. We explain here the reasoning behind the rescaling procedure, and the invariances

maintained from the clonotype perspective. Let us consider a repertoire, in homeostasis

conditions, made of N(0) = 50 initial clonotype classes. The average clonal size equals 10

T cells. Thus, we consider a total of 500 initial T cells. The number of T cells of any new

clonotype coming out of the thymus is nθ = 4. The mean cell death rate is maintained to

µ = 0.5 year−1, as in [100]. The total number of self pMHC subsets is chosen following

the relation Mc = 4N(0) = 200. This relation is kept from the simulations of Figure 7 in

[100]. It is important to notice that we changed the notation of the total number of self

pMHC subsets, from M to Mc, since in our notation M represents the maximum number

of possible clonotype classes in the simulated repertoire. This parameter is important

for the realization of the first step argument analysis, as explained in (5.40). We set

pMc = 10, to maintain an invariance from the clonotype perspective, since pMc is the

mean number of self pMHC recognised by a single TCR clonotype. This gives p=0.05,

which also gives pN(0) = 2.5, that is the mean number of TCR clonotypes that are able

to recongnise a given self pMHC. As explained in [100], we consider to biological case in

which the division of peripheral cells gives the dominant contribution (as it is for adult

humans), therefore approximating the mean number of total T cells in the system with

(γMc)/µ. Thus we have (γMc)/µ = 500, giving γ = 1.25 year−1. We extrapolate the

relation 50θnθ = (γMc)/µ. Thus we obtain θ = 2.5 year−1. Sensitivity analysis will

be done on the parameter θ, as well as on the other parameters. To conclude, we note

that the average number of clonotype classes (i.e., 50) equals θ/µ̃, being µ̃ = 0.05 year−1

(see definition of µ̃ explained in Section 5.2.1). This is coherent with the fact that, in

homeostasis conditions, the average number of clonotype classes should be around θ/µ̃.
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5.7.1 Implicit competition

This section presents the numerical results for the stochastic model with implicit compe-

tition, as described in Section 5.2.1. Results are shown for both the stochastic descriptors

defining (i) the size of the repertoire at time TN (A) and (ii) the maximum repertoire di-

versity in [0, TN (A)]. Solutions of the first step argument methods of Section 5.5.1 and

Section 5.6.1 are shown for different initial states, together with Gillespie simulations

which confirm the correctness of the first step argument methods. Sensitivity analysis is

also performed over the different paramenters θ, nθ, Mc, γ and µ.

Size of repertoire at time TN (A)

We present here the results for the stochastic descriptor defining the size of the repertoire

at time TN (A). Parameters are chosen in accordance to Section 5.7. Figure represents

the solution of the system described in Section 5.5.1. The hitting state (35, 25) and the

different initial states {(x, y) : x ∈ {48, . . . , 60}, y ∈ {47, . . . , 50}} have been chosen just

as examples. Numerical (Gillespie) simulations of the same process are shown in Figure

5.14, with hitting state (35, 25) and initial states {(x, 50) : x ∈ {50, . . . , 60}}. Sensitivity

analyses are then presented in Figures 5.15 - 5.24.

Figure 5.13: Parameters: A = 25, M = 60, θ = 2.5 year−1, nθ = 4, Mc = 200, γ = 1.25

year−1 and µ = 0.5 year−1. Different colours represent different values of y. The hitting

probabilities, for a given y, are plotted as functions of x.
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Figure 5.14: Parameters: A = 25, M = 60, θ = 2.5 year−1, nθ = 4, Mc = 200, γ = 1.25

year−1 and µ = 0.5 year−1. The plot represents the hitting probabilities of state (35, 25)

from different states (x, 50). Number of simulations = 105.

Figure 5.15: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both nθ and θ variables. Fixed parameters are Mc = 200,

γ = 1.25 year−1 and µ = 0.5 year−1.
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Figure 5.16: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both nθ and γ variables. Fixed parameters are θ = 2.5

year−1, Mc = 200 and µ = 0.5 year−1.

Figure 5.17: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both nθ and Mc variables. Fixed parameters are θ = 2.5

year−1, γ = 1.25 year−1 and µ = 0.5 year−1.
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Figure 5.18: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both nθ and µ variables. Fixed parameters are θ = 2.5

year−1, Mc = 200 and γ = 1.25 year−1.

Figure 5.19: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both θ and γ variables. Fixed parameters are nθ = 4,

Mc = 200 and µ = 0.5 year−1.
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Figure 5.20: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both θ and Mc variables. Fixed parameters are nθ = 4,

γ = 1.25 year−1 and µ = 0.5 year−1.

Figure 5.21: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both θ and µ variables. Fixed parameters are nθ = 4,

Mc = 200 and γ = 1.25 year−1.
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Figure 5.22: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both γ and Mc variables. Fixed parameters are θ = 2.5

year−1, nθ = 4 and µ = 0.5 year−1.

Figure 5.23: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both γ and µ variables. Fixed parameters are θ = 2.5 year−1,

nθ = 4 and Mc = 200.
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Figure 5.24: The plot represents the hitting probabilities of state (35, 25) from the initial

state (50, 50) as a function of both Mc and µ variables. Fixed parameters are θ = 2.5

year−1, nθ = 4 and γ = 1.25 year−1.
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Maximum repertoire diversity in [0, TN (A)]

We present here the results for the stochastic descriptor defining the maximum repertoire

diversity in the time interval [0, TN (A)]. Parameters are chosen in accordance to Section

5.7. Figure represents the solution of the system described in Section 5.6.1, that is the

Pr(Xmax > x̄). The maximum diversity value x̄ = 52 to be exceeded, and the different

initial states {(x, y) : x ∈ {46, . . . , 52}, y ∈ {46, . . . , 50}} have been chosen just as exam-

ples. Figure 5.26 represents the Pr(Xmax = x), while Figure 5.27 represents its Gillespie

counterpart. Sensitivity analyses are then presented in Figures 5.28 - 5.37.

Figure 5.25: Parameters: A = 25, θ = 2.5 year−1, nθ = 4, γ = 1.25 year−1, Mc = 200 and

µ = 0.5 year−1. Different colours represent different values of y. The hitting probabilities,

for a given y, are plotted as functions of x.
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Figure 5.26: Parameters: A = 25, θ = 2.5 year−1, nθ = 4, γ = 1.25 year−1, Mc = 200,

µ = 0.5 year−1 and initial state (50, 50). The plot represents the probabilities for Xmax

being equal to x from the initial state (50, 50).

Figure 5.27: Parameters: A = 25, θ = 2.5 year−1, nθ = 4, γ = 1.25 year−1, Mc = 200,

µ = 0.5 year−1 and initial state (50, 50). The plot represents the probabilities (from

Gillespie algorithm) for Xmax being equal to x from the initial state (50, 50). Number of

simulations = 105.
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Figure 5.28: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both nθ and θ variables. Fixed parameters

are Mc = 200, µ = 0.5 year−1 and γ = 1.25 year−1.

Figure 5.29: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both nθ and γ variables. Fixed parameters

are θ = 2.5 year−1, Mc = 200 and µ = 0.5 year−1.
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Figure 5.30: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both nθ and Mc variables. Fixed parameters

are θ = 2.5 year−1, µ = 0.5 year−1 and γ = 1.25 year−1.

Figure 5.31: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both nθ and µ variables. Fixed parameters

are θ = 2.5 year−1, Mc = 200 and γ = 1.25 year−1.
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Figure 5.32: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both θ and γ variables. Fixed parameters

are nθ = 4, Mc = 200 and µ = 0.5 year−1.

Figure 5.33: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both θ and Mc variables. Fixed parameters

are nθ = 4, µ = 0.5 year−1 and γ = 1.25 year−1.
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Figure 5.34: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both θ and µ variables. Fixed parameters

are nθ = 4, Mc = 200 and γ = 1.25 year−1.

Figure 5.35: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both γ and Mc variables. Fixed parameters

are θ = 2.5 year−1, nθ = 4 and µ = 0.5 year−1.
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Figure 5.36: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both γ and µ variables. Fixed parameters

are θ = 2.5 year−1, nθ = 4 and Mc = 200.

Figure 5.37: The plot represents the probabilities for Xmax being greater or equal to 52

from the initial state (50, 50), as a function of both Mc and µ variables. Fixed parameters

are θ = 2.5 year−1, nθ = 4 and γ = 1.25 year−1.
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5.7.2 Explicit competition

This section presents the numerical results for the stochastic model with implicit compe-

tition, as described in Section 5.2.2. Results are shown for the three stochastic descriptors

defining (i) the time TN (A) to reach for the first time a number A < X(0) of original clono-

types in the repertoire, (ii) the size of the repertoire at time TN (A) and (iii) the maximum

repertoire diversity in [0, TN (A)]. Solutions of the first step argument methods of Sec-

tions 5.4.2, 5.5.2 and 5.6.2 are shown for different initial states, together with Gillespie

simulations which confirm the correctness of the first step argument methods. Sensitivity

analysis is also performed over the parameter β1 and the product pβ2. The choice to

vary the product pβ2 instead of the single parameter β2 comes from the importance of

the product itself, defined as the environmental pressure due to clonotype competition in

Section 5.2.2.

Time TN (A) to reach for the first time a number A < X(0) of original clonotypes

in the repertoire

We present here the results for the stochastic descriptor defining the time TN (A) to reach

for the first time a number A < X(0) of original clonotypes in the repertoire. Parameters

are chosen in accordance to Section 5.7. Figure 5.38 represents the solution of the system

described in Section 5.4.2. The value A = 25, as well as the initial states {(x, y) : x ∈
{48, . . . , 60}, y ∈ {47, . . . , 50}} have been chosen just as examples. Figure 5.39 represents

the Gillespie counterpart of Figure 5.38, for the particular value y = 50. Sensitivity

analyses are then presented in Figure 5.40.
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Figure 5.38: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the hitting times of level A, that is one of the

general states (x,25), from the different states (x, y). Different colours represent different

values of y. The hitting probabilities, for a given y, are plotted as functions of x.

Figure 5.39: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the hitting times (from Gillespie algorithm) of

level A, that is one of the general states (x,25), from the initial state (50, 50). Number of

simulations = 105.
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Figure 5.40: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the hitting times of level A, that is one of

the general states (x,25), from the initial state (50, 50) as a function of both β1 and β2p

variables.
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Size of repertoire at time TN (A)

We present here the results for the stochastic descriptor defining the size of repertoire at

time TN (A). Parameters are chosen in accordance to Section 5.7. Figure 5.41 represents

the solution of the system described in Section 5.5.2. The hitting state (35, 25), as well

as the initial states {(x, y) : x ∈ {46, . . . , 60}, y ∈ {46 . . . , 50}} have been chosen just as

examples. Figure 5.42 represents the Gillespie counterpart of Figure 5.41, for the particular

value y = 50. Sensitivity analyses are then presented in Figure 5.43.

Figure 5.41: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the hitting probabilities of state (35, 25) from

the different states (x, y). Different colours represent different values of y. The hitting

probabilities, for a given y, are plotted as functions of x.
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Figure 5.42: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the hitting probabilities of state (35, 25) from

the initial state (50, 50). Number of simulations = 105.

Figure 5.43: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the hitting probabilities of state (50, 25) from

the initial state (50, 50) as a function of both β1 and β2p variables.
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Maximum repertoire diversity in [0, TN (A)]

We present here the results for the stochastic descriptor defining the maximum repertoire

diversity in the time interval [0, TN (A)]. Parameters are chosen in accordance to Section

5.7. Figure 5.44 represents the solution of the system described in Section 5.6.2, that

is the Pr(Xmax > x̄). The maximum diversity value x̄ = 52 to be exceeded, and the

different initial states {(x, y) : x ∈ {46, . . . , 52}, y ∈ {46, . . . , 50}} have been chosen just

as examples. Figure 5.45 represents the Pr(Xmax = x), while Figure 5.46 represents its

Gillespie counterpart. Sensitivity analyses are then presented in Figure 5.47.

Figure 5.44: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. Different colours represent different values of y. The plot represents

the probabilities for Xmax being greater or equal to 52 from the initial state (x, y).
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Figure 5.45: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the probabilities for Xmax being equal to x from

the initial state (50, 50).

Figure 5.46: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the probabilities (Gillespie simulations) for Xmax

being equal to x from the initial state (50, 50). Number of simulations = 105.
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5. MARKOV CHAINS AND TCR REPERTOIRE RENEWAL

Figure 5.47: Parameters: A = 25, M = 60, θ = 2.5 year−1, β1 = 0.004 year−1, β2 = 0.02

year−1 and p = 0.05. The plot represents the probabilities for Xmax being greater or equal

to 52 from the initial state (50, 50), as a function of both β1 and β2p variables.
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5.8 Discussion

5.8 Discussion

This chapter focused on the biological problem concerning the evolution of diversity in a

CD4+ T-cell repertoire. In particular, we follow the dynamics of both original and new

clonotype classes. The study of these dynamics is of foremost importance to evaluate

the relevance of sampling from a repertoire and trying to estimate its diversity at a given

point in time. To this aim, we built a continuous-time Markov chain (CTMC) representing

the stochastic processes of competition and natural death of the original and new TCR

clonotypes. We then decided to further consider two different types of competitions:

implicit and explicit competition. The implicit case considers a death rate µ
(1)
n = µ̃n,

where n represents the number of different clonotype classes, and µ̃ represents the average

survival time of a clonotype in the repertoire, incorporating competition within its very

definition, as explained in Section 5.2.1. The explicit case considers a death rate µ
(2)
n =

n(β1+β2p(n−1)), where n represents the number of different clonotype classes, p represents

the probability that any given self pMHC is recognised by a randomly-selected TCR

clonotype, β1 represents the average survival time of a clonotype in the repertoire, and

β2 represents the strength of competition among clonotypes competing for the same self

pMHCs, as explained in Section 5.2.2. Three different stochastic descriptors were studied:

(i) the time TN (A) needed for the N original clonotype classes to become A (with A < N),

(ii) the size of the repertoire at time TN (A), and (iii) the maximum repertoire diversity

achieved in the time interval [0, TN (A)].

The first descriptor was analysed analytically for the implicit case, and its density

function was computed, together with the moment generating function. The results were

seen to be very similar to those from the explicit case, which was analysed by the first step

argument analysis. Figure 5.11 and Figures 5.38–5.39 show the average time until half of

the original clonotype classes are lost, starting with N(0) = 50 clonotypes. The time is

around 13.5 years for both implicit and explicit cases.

The second descriptor was analysed with the first step argument technique for both im-

plicit and explicit cases, showing slightly different results. Figures 5.13–5.14 and 5.41–5.42

show the probability of hitting the state (35, 25) from the state (50, 50). The probabilities

are 0.0025 and 0.00075 for the implicit and explicit case respectively.

The third descriptor was also analysed with the first step argument technique for both

implicit and explicit cases, showing very similar results. Figures 5.25 and 5.44 show the

probability for the maximum number of distinct clonotypes to be greater than 52, starting

with N(0) = 50 clonotypes. The probability is around 0.75 for both cases.

Small-scale simulations are of course far from reality, representing a simplified version

of the dynamics of the homeostasis conditions of the immune system. Nevertheless, we

believe these simulations carry two important results. First, they show the power of the
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5. MARKOV CHAINS AND TCR REPERTOIRE RENEWAL

first step argument for the analysis of stochastic descriptors which cannot be analytically

studied. This is proven by the accuracy of the analyses compared with the Gillespie

simulations. Second, these results show that within a life-time period, the repertoire of

an individual could easily evolve in a way that it could become very different from the

starting one. This enhances the importance of our first question: up to what point does

it really make sense to have an estimate of the actual repertoire diversity of an individual

at a specific point in time?
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Chapter 6

Conclusions

The immune system is a complex machine, whose mechanisms are indispensable to life

itself. Its outstanding power is given by the unique ability of recognising virtually almost

all the possible existing pathogens. This singular characteristic is maintained, among

others, thanks to an incredibly broad army of distinct T-cell classes, characterised by

different T-cell receptors (TCRs), and able to recognise different overlapping groups of

pathogens. Understanding the biological mechanisms behind the creation of the immune

system diversity is one of the central aspects of current research in immunobiology.

The present work tried to shed some light on different facets of this crucial aspect,

producing some interesting quantitative results and suggesting future research areas in

mathematical immunology. Data analysis and stochastic models were the main drivers of

the thesis, together with statistical and probabilistic analysis.

Starting from the probabilistic side of the subject, Chapter 3 studied the relation

between the total (unmeasurable) TCR repertoire diversity, and the observable diversity,

shown by small biological samples. The probability generating function (PGF) of the

distribution of the observed clonal sizes is proven to be the composition of two PGFs

of two distinct random variables: (i) a Bernoulli random variable and (ii) the random

variable of the true clonal size distribution in the repertoire that is being sampled from. In

particular, different clonal size distributions were studied and their sample distributions

were analysed. The expected number of TCR repeats in a sample, and the number of

draws to find the first repeat are also studied, and analytical formulae are given. These

techniques were then used to estimate the clonal size distribution of a subset of the mice

immune system (GP33+ repertoire), following different distribution hypotheses.

Chapter 4 targeted the TCR diversity problem from a data analysis point of view, fo-

cusing on experimental data gathered from a broader study on TCR diversity in näıve and

LCMV (lymphocytic choriomeningitis virus) infected mice. The analyses centered on the

distributions of the V and J gene segments of the TCR β chains. Statistical tests such as
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Wilcoxon-Mann-Whitney U test, Randomization test, and χ2 test were conducted. Simp-

son’s diversity index, which was used to quantify genetic diversity among mice, resulted

to be statistically higher in the näıve mice than in the infected ones. Though, this result

only concerned the diversity at the V-J pair level, and was not found for the single V or J

diversities. The clonal sharing was also studied, trying to distinguish public from private

VJ classes, in both näıve and infected mice. The chapter continued with the development

of a mathematical relation among the observed (gi) and unobserved (fi) frequency of a

given TCR clonotype class (i) of the repertoire. The chapter is concluded with a quick

application of this relation to some of the data taken into consideration: the frequency of

the V1 gene segment is suggested to be around 5.47% in the näıve repertoire of a mice.

Chapter 5 focused on the evolution of diversity in a CD4+ T-cell repertoire. A

continuous-time Markov chain was built, to follow the dynamics of TCR clonotype classes

of a simulated repertoire. Two different cases for inter clonal competition were considered:

implicit and explicit competition. The first case considered the competition intrinsically

defined into the constant µ̃ within the definition of the death rate of each clonotype

class (µ
(1)
n = µ̃n), where n represented the number of different clonotype classes in the

repertoire. The second case considers the competition in an explicit way, through a sec-

ond death rate µ
(2)
n = n(β1 + β2p(n − 1)). Both cases were analysed and three different

stochastic descriptors were taken into consideration: (i) the time TN (A) needed for the

N original clonotype classes to become A (with A < N), (ii) the size of the repertoire

at time TN (A), and (iii) the maximum repertoire diversity achieved in the time interval

[0, TN (A)]. Small-scale simulations were displayed, showing strong similarities between the

two cases for both the first and third stochastic descriptor. The driving question of the

chapter was about the importance of a time-point estimate of the actual TCR diversity,

taking into consideration the renewal process. The simulations, although representing an

overly simplified reality, suggest the existance of a renewal process that should be taken

into consideration when studying the TCR repertoire diversity.

The study of TCR repertoire diversity is of foremost importance for immunology to-

day. Its complexity is such that even the smallest step forward in knowledge could have

incredibly positive repercussions for human and animal health. Difficulties are found at

each level of the research, from genetics up to population studies, from the biological to

the modelling point of view. This work tackled some of these problems from a quantitative

perspective, and the author is well aware that the path to a final understanding of TCR

diversity remains an uphill battle. With this in mind, the author looks at this thesis as

a small step on an ambitious path, with the hope that somehow, someday science will

eventually unravel this unbelievable mystery of the immune system.
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Appendix A

Binomial approximation of

hypergeometric distribution

Let’s define Di as the clonotype class i for i ∈ 1, 2, ..., N . Thus the repertoire will be

D =
⋃N
i=1Di. Let ni be the number of T cells in the clonotype class i, that is ni = |Di|.

Let S =
∑N

i=1 ni be the total number of T cells in the repertoire. Now let us extract a

sample X = (X1, X2, ..., Xm) of size m, where Xj is the jth extracted T cell. Define Yi as

the number of T cells of type i in the sample X, for i ∈ 1, 2, ..., N . Note that
∑N

i=1 Yi = m.

The distribution of (Y1, Y2, ..., YN ) is called multivariate hypergeometric distribution with

parameters (S, (n1, ..., nN ),m). In particular, the marginal distributions are described by

Pr(Yi = y) =

(
ni
y

) (
S−ni
m−y

)(
S
m

) for y ∈ 0, 1, ...,m. (A.1)

Defining Pr(Yi = y) as pi, we can rewrite this equation as

pi =

(
ni
y

)
m!

(m− y)!

(S −m)!

S!

(S − ni)!
(S − ni − (m− y))!

=

(
ni
y

)
m(m− 1) · · · (m− (y − 1))

S(S − 1) · · · (S − (m− 1))

m−y−1∏
k=0

(S − ni − k)

(A.2)

We now assume ni � m, which in turn implies y � m, obtaining

pi ≈
(
ni
y

)
my

SySm−y

m∏
k=0

(S − ni − k). (A.3)

We also assume that ni � S, therefore approximating pi as

pi ≈
(
ni
y

)
qy

1

Sm−y
(S)(S − 1)(S − 2) · · · (S −m). (A.4)
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A. BINOMIAL APPROXIMATION OF HYPERGEOMETRIC
DISTRIBUTION

We now realize that (A.4) can be rewritten as

pi ≈
(
ni
y

)
qy

1

Sm−y
(S −m+m)(S −m+ (m− 1))(S −m+ (m− 2)) · · · (S −m)), (A.5)

and then approximated by

pi ≈
(
ni
y

)
qy

1

Sm−y

(
(S −m) +

m

2

)m−y
. (A.6)

Assuming m� S, we obtain

pi ≈
(
ni
y

)
qy

(S −m)m−y

Sm−y
=

(
ni
y

)
qy(1− q)m−y. (A.7)
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Appendix B

V-J data

Tables B.1-B.10 show, for each individual mouse, the number of T cells with a particular

combination of V and J genes.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 1 3 1 0 0 0 0 1 1 0 0 3

V2 2 2 0 0 1 0 1 0 2 0 0 1

V3 2 0 1 0 0 0 0 1 1 0 2 2

V4 0 0 0 0 0 0 0 0 3 1 0 3

V5 2 0 1 1 2 0 0 0 0 1 0 0

V12−1 0 2 2 0 0 0 1 1 1 0 0 2

V12−2 0 1 0 0 0 0 1 0 0 0 4 4

V13−1 2 4 0 3 1 2 4 2 2 2 2 5

V13−2 4 3 0 3 0 1 6 1 3 6 7 8

V13−3 0 2 3 4 0 2 6 2 5 3 6 7

V14 2 0 0 1 0 0 3 0 1 0 1 1

V15 3 0 0 0 0 0 2 1 0 0 0 0

V16 1 2 1 1 0 0 3 0 0 2 0 7

V17 0 0 0 0 0 0 0 0 0 1 1 2

V19 0 0 0 0 0 2 0 1 1 0 4 4

V20 2 2 0 0 0 0 1 1 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 1 0 0 0 1 0 3 0 0 1 1 3

V29 2 0 0 0 0 0 2 1 0 2 2 1

V30 0 0 0 0 0 0 0 0 0 0 1 0

V31 0 0 0 0 0 0 0 0 0 0 3 3

Table B.1: V-J distribution of the 253 T cells of mouse BA1.
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B. V-J DATA

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 2 0 2 1 0 2 2 0 0

V2 0 1 0 0 1 0 1 0 1 1 3 0

V3 0 1 0 2 0 0 0 0 0 0 0 0

V4 0 1 1 0 0 0 1 0 1 0 0 1

V5 0 0 0 1 0 0 2 0 0 2 1 3

V12−1 0 4 1 0 0 0 1 0 0 1 3 3

V12−2 0 1 0 0 0 0 2 1 0 0 0 1

V13−1 3 2 0 0 0 2 3 2 0 3 2 1

V13−2 3 2 0 0 0 2 0 1 1 1 2 5

V13−3 2 0 0 0 0 1 2 0 1 1 3 2

V14 0 1 0 0 0 0 2 0 1 0 4 3

V15 1 0 0 0 0 0 1 1 0 0 1 2

V16 1 0 0 3 0 0 1 2 1 1 1 1

V17 0 0 0 0 0 0 0 1 1 0 3 4

V19 3 0 1 1 0 0 1 1 1 0 0 4

V20 0 0 0 0 0 0 0 0 0 2 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 1 0 0 0 0 0 0

V24 0 0 0 0 0 0 1 0 0 0 1 0

V26 0 1 0 0 0 0 0 0 0 0 0 1

V29 1 2 0 1 0 1 1 1 1 1 0 0

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 0 0 0 0 1 0 0 0 1 0 0

Table B.2: V-J distribution of the 166 T cells of mouse BA2.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 3 1 0 0 0 0 2 0 0 1 1 1

V2 0 0 0 0 0 0 0 0 0 0 0 3

V3 0 0 0 0 0 0 1 2 1 0 0 3

V4 0 0 1 1 0 0 0 2 0 2 0 1

V5 1 0 0 1 0 0 4 1 1 1 1 2

V12−1 0 0 1 0 0 0 2 0 0 1 0 0

V12−2 0 0 1 0 0 0 1 0 0 0 1 2

V13−1 5 3 1 1 2 0 6 3 2 2 5 6

V13−2 7 4 2 1 0 1 8 1 8 6 7 12

V13−3 5 5 0 0 1 1 5 3 8 5 8 13

V14 2 0 1 0 0 0 2 0 1 2 2 4

V15 0 1 0 0 0 0 0 1 0 0 0 0

V16 1 0 0 1 1 0 3 0 3 5 2 0

V17 0 0 1 0 0 0 2 1 0 1 1 1

V19 10 0 0 2 0 0 1 0 0 1 2 3

V20 0 0 0 0 0 0 0 0 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 1 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 0 0 0 1 1 0 0 0 1

V29 3 0 0 0 0 0 2 0 1 5 4 2

V30 0 0 0 0 0 0 0 0 0 0 0 1

V31 0 0 0 0 0 1 0 0 0 0 0 0

Table B.3: V-J distribution of the 275 T cells of mouse BA3.
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J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 2 0 2 3 0 1 1 0 2 2 0 1

V2 0 0 0 0 0 0 1 0 2 1 1 0

V3 1 0 0 0 0 0 4 0 0 1 1 3

V4 0 0 0 1 0 2 0 0 0 1 0 3

V5 1 0 0 2 0 1 0 0 0 0 2 2

V12−1 0 2 0 0 0 0 1 1 1 0 1 3

V12−2 1 0 0 0 1 0 2 1 1 0 2 0

V13−1 2 0 1 1 0 0 1 0 1 3 2 6

V13−2 1 2 0 0 1 0 2 3 0 4 3 5

V13−3 1 2 1 2 0 3 3 0 1 2 3 3

V14 0 0 1 1 0 0 1 0 0 2 0 2

V15 0 0 0 0 0 0 1 0 0 1 0 3

V16 0 2 1 0 0 0 3 1 5 3 4 3

V17 0 0 0 0 0 0 0 2 0 0 1 0

V19 2 1 1 0 1 1 3 0 1 1 1 3

V20 0 1 0 0 0 0 2 0 1 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 1 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 1 0 0 0 0 0 0 0 1 1 0 1

V29 2 2 0 0 2 0 1 0 0 1 0 3

V30 0 0 0 0 1 0 0 0 0 0 0 0

V31 1 0 0 0 0 1 0 0 0 0 0 0

Table B.4: V-J distribution of the 195 T cells of mouse BA4.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 1 0 0 0 0 1 3 2 0 0 2 1

V2 0 0 0 0 0 0 0 0 0 0 1 1

V3 0 0 0 2 0 0 1 0 1 0 0 0

V4 1 0 0 0 0 0 1 0 0 1 0 0

V5 1 0 0 1 0 0 2 1 0 0 0 1

V12−1 0 1 1 1 0 0 1 2 0 2 0 1

V12−2 0 0 0 0 0 0 0 0 1 1 3 1

V13−1 4 0 0 0 1 0 4 1 1 1 0 3

V13−2 1 1 0 0 1 0 2 3 0 4 4 3

V13−3 3 1 0 1 0 1 2 1 0 1 2 3

V14 2 0 0 1 0 0 4 0 2 0 0 2

V15 1 0 1 1 1 0 0 0 0 0 0 0

V16 2 2 1 1 0 0 0 0 1 0 2 1

V17 1 0 0 1 0 0 0 0 0 0 0 0

V19 0 0 0 1 1 0 0 1 1 0 0 2

V20 0 1 0 0 0 0 0 0 0 0 1 1

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 1 0 0 0 0 0 0 0 0

V26 0 0 0 0 1 0 1 0 0 0 0 0

V29 0 0 0 0 0 0 1 0 0 0 0 1

V30 0 0 0 0 0 0 1 0 0 0 0 0

V31 0 0 0 0 0 0 0 0 0 0 1 1

Table B.5: V-J distribution of the 133 T cells of mouse BA5.
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J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 0 0 0 1 0 0 1 3 0

V2 0 0 0 0 0 0 1 2 0 0 4 0

V3 0 0 1 1 1 0 3 0 0 0 6 0

V4 2 1 0 0 0 0 0 2 1 0 3 1

V5 1 1 1 0 1 1 0 1 4 0 0 0

V12−1 0 1 0 1 0 1 2 0 0 1 0 0

V12−2 0 0 0 0 0 1 0 0 1 2 2 2

V13−1 13 0 0 1 0 1 4 0 3 0 4 3

V13−2 0 2 1 1 0 0 3 1 3 2 1 6

V13−3 1 0 0 0 0 3 0 0 0 1 1 3

V14 0 0 1 0 4 0 1 0 1 0 1 8

V15 0 0 0 0 0 0 2 0 1 0 0 3

V16 9 6 0 0 0 1 3 0 1 4 2 1

V17 4 1 1 1 0 0 4 2 1 1 2 4

V19 2 1 0 1 0 2 4 0 0 1 1 2

V20 0 1 0 0 0 0 0 0 0 0 0 1

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 1 0 0 0 0 0 1 1 0 0 0 3

V29 1 1 3 0 2 2 0 5 0 7 2 0

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 1 0 0 0 0 1 0 0 0 1 0

Table B.6: V-J distribution of the 234 T cells of mouse EF1.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 1 0 0 0 0 1 0 0 2 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 1 0 3 0 0 0 0 0 0

V4 0 0 0 0 0 0 0 0 0 1 0 0

V5 1 0 0 0 0 0 0 0 0 0 0 0

V12−1 0 0 0 0 0 0 1 0 0 0 1 0

V12−2 0 0 0 0 0 1 2 0 0 0 0 1

V13−1 0 0 0 0 2 1 3 0 1 0 2 1

V13−2 2 0 0 1 0 0 0 0 0 0 1 1

V13−3 0 0 0 0 0 1 2 1 0 1 0 0

V14 0 0 0 0 0 0 2 0 0 0 0 0

V15 0 0 0 0 1 0 0 0 1 0 0 0

V16 0 0 0 0 0 0 1 0 3 0 0 4

V17 1 0 0 1 0 0 1 0 1 0 0 2

V19 1 0 0 2 0 2 0 0 1 0 1 0

V20 0 0 0 0 0 0 0 0 0 0 1 1

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 2 0 0 0 0 0 0 0 0

V29 1 0 3 1 0 1 0 0 0 2 0 1

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 0 0 0 0 0 0 0 1 0 0 0

Table B.7: V-J distribution of the 75 T cells of mouse EF2.
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J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 0 0 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 1 0 0 0 0 0

V4 3 0 0 0 0 0 2 0 0 0 0 11

V5 0 0 0 0 0 0 1 0 0 0 0 0

V12−1 0 0 0 1 0 1 1 0 0 0 0 0

V12−2 0 0 0 0 7 0 0 8 2 1 0 0

V13−1 20 0 1 0 0 0 0 0 0 1 0 0

V13−2 0 0 0 0 0 0 1 0 0 0 0 0

V13−3 10 0 0 0 0 1 2 0 0 0 0 2

V14 0 0 0 0 0 0 1 0 0 0 0 1

V15 0 0 0 0 0 0 0 0 0 0 0 0

V16 0 1 0 0 0 2 13 0 0 0 2 6

V17 1 0 0 0 0 0 3 0 0 0 0 0

V19 2 0 0 0 0 0 2 0 0 0 0 5

V20 0 0 0 0 0 0 0 0 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 0 0 0 0 0 0 0 0 0

V29 7 13 0 25 1 0 23 3 0 5 41 1

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 0 0 0 0 0 0 0 0 0 23 0

Table B.8: V-J distribution of the 258 T cells of mouse EF3.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 1 0 0 0 0 0 0 3 0 0 1

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 2 0 0 0 0 0 0 0 0 0 1 1

V4 0 0 0 0 0 0 0 0 0 0 0 2

V5 0 0 0 0 0 0 0 0 1 1 2 1

V12−1 1 0 0 1 0 0 1 2 1 0 1 1

V12−2 2 3 0 0 0 0 1 0 0 1 12 3

V13−1 13 9 0 1 0 0 1 1 2 3 2 3

V13−2 3 0 2 1 0 1 4 0 8 1 2 0

V13−3 12 4 0 1 4 0 1 1 3 2 1 0

V14 0 0 0 1 0 2 0 0 2 6 0 1

V15 0 0 0 0 1 0 0 0 0 5 3 0

V16 0 0 0 0 0 0 0 0 2 0 0 7

V17 1 0 1 0 1 1 0 0 0 3 6 2

V19 4 0 3 2 0 3 0 2 5 4 0 10

V20 2 6 1 1 0 0 1 0 0 0 0 1

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 1 0 0 0 1 1 0 0 0

V29 4 1 3 5 1 0 3 3 2 0 10 1

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 1 0 0 0 0 0 0 0 0 0 0

Table B.9: V-J distribution of the 259 T cells of mouse EF4.
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J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 1 0 0 0 0 0 1 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 1 0 0 0 0 0 0 0 1 0 1 0

V4 0 0 0 0 0 0 0 0 0 0 0 1

V5 0 0 0 0 0 1 1 0 0 0 0 0

V12−1 0 0 0 0 1 0 3 0 0 0 0 0

V12−2 0 0 0 1 0 0 0 1 0 2 2 0

V13−1 15 1 0 0 0 3 2 0 0 1 0 1

V13−2 5 0 0 0 0 1 3 0 1 0 0 3

V13−3 7 3 0 0 0 0 1 0 0 0 0 10

V14 0 0 0 0 0 0 1 0 0 0 0 4

V15 0 0 0 0 0 0 1 0 1 0 7 1

V16 0 1 0 0 0 0 2 0 2 1 1 55

V17 0 0 0 0 0 0 1 1 0 0 0 0

V19 1 1 4 0 2 0 12 0 0 0 1 4

V20 0 0 0 0 0 0 0 1 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 3 0 0 0 0 0 0 0 1

V29 3 2 0 0 0 0 1 1 4 1 11 2

V30 0 0 0 0 0 0 0 1 0 0 0 0

V31 0 0 0 0 0 0 0 0 0 0 1 1

Table B.10: V-J distribution of the 212 T cells of mouse EF5.
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VJ frequency plots

Figure B.1: V-J frequency plots for the näıve mouse BA1.
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Figure B.2: V-J frequency plots for the näıve mouse BA2.

Figure B.3: V-J frequency plots for the näıve mouse BA3.
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Figure B.4: V-J frequency plots for the näıve mouse BA4.

Figure B.5: V-J frequency plots for the näıve mouse BA5.
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Figure B.6: V-J frequency plots for the infected mouse EF1.

Figure B.7: V-J frequency plots for the infected mouse EF2.
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Figure B.8: V-J frequency plots for the infected mouse EF3.

Figure B.9: V-J frequency plots for the infected mouse EF4.
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B. V-J DATA

Figure B.10: V-J frequency plots for the infected mouse EF5.
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Appendix C

VJ frequencies

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 4 · 10−3 1.2 · 10−2 4 · 10−3 0 0 0 0 4 · 10−3 4 · 10−3 0 0 1.2 · 10−2

V2 7.9 · 10−3 7.9 · 10−3 0 0 4 · 10−3 0 4 · 10−3 0 7.9 · 10−3 0 0 4 · 10−3

V3 7.9 · 10−3 0 4 · 10−3 0 0 0 0 4 · 10−3 4 · 10−3 0 7.9 · 10−3 7.9 · 10−3

V4 0 0 0 0 0 0 0 0 1.2 · 10−2 4 · 10−3 0 1.2 · 10−2

V5 7.9 · 10−3 0 4 · 10−3 4 · 10−3 7.9 · 10−3 0 0 0 0 4 · 10−3 0 0

V12−1 0 7.9 · 10−3 7.9 · 10−3 0 0 0 4 · 10−3 4 · 10−3 4 · 10−3 0 0 7.9 · 10−3

V12−2 0 4 · 10−3 0 0 0 0 4 · 10−3 0 0 0 1.6 · 10−2 1.6 · 10−2

V13−1 7.9 · 10−3 1.6 · 10−2 0 1.2 · 10−2 4 · 10−3 7.9 · 10−3 1.6 · 10−2 7.9 · 10−3 7.9 · 10−3 7.9 · 10−3 7.9 · 10−3 2 · 10−2

V13−2 1.6 · 10−2 1.2 · 10−2 0 1.2 · 10−2 0 4 · 10−3 2.4 · 10−2 4 · 10−3 1.2 · 10−2 2.4 · 10−2 2.8 · 10−2 3.2 · 10−2

V13−3 0 7.9 · 10−3 1.2 · 10−2 1.6 · 10−2 0 7.9 · 10−3 2.4 · 10−2 7.9 · 10−3 2 · 10−2 1.2 · 10−2 2.4 · 10−2 2.8 · 10−2

V14 7.9 · 10−3 0 0 4 · 10−3 0 0 1.2 · 10−2 0 4 · 10−3 0 4 · 10−3 4 · 10−3

V15 1.2 · 10−2 0 0 0 0 0 7.9 · 10−3 4 · 10−3 0 0 0 0

V16 4 · 10−3 7.9 · 10−3 4 · 10−3 4 · 10−3 0 0 1.2 · 10−2 0 0 7.9 · 10−3 0 2.8 · 10−2

V17 0 0 0 0 0 0 0 0 0 4 · 10−3 4 · 10−3 7.9 · 10−3

V19 0 0 0 0 0 7.9 · 10−3 0 4 · 10−3 4 · 10−3 0 1.6 · 10−2 1.6 · 10−2

V20 7.9 · 10−3 7.9 · 10−3 0 0 0 0 4 · 10−3 4 · 10−3 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 4 · 10−3 0 0 0 4 · 10−3 0 1.2 · 10−2 0 0 4 · 10−3 4 · 10−3 1.2 · 10−2

V29 7.9 · 10−3 0 0 0 0 0 7.9 · 10−3 4 · 10−3 0 7.9 · 10−3 7.9 · 10−3 4 · 10−3

V30 0 0 0 0 0 0 0 0 0 0 4 · 10−3 0

V31 0 0 0 0 0 0 0 0 0 0 1.2 · 10−2 1.2 · 10−2

Table C.1: Table for BA1.
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C. VJ FREQUENCIES

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 1.2 · 10−2 0 1.2 · 10−2 6 · 10−3 0 1.2 · 10−2 1.2 · 10−2 0 0

V2 0 6 · 10−3 0 0 6 · 10−3 0 6 · 10−3 0 6 · 10−3 6 · 10−3 1.8 · 10−2 0

V3 0 6 · 10−3 0 1.2 · 10−2 0 0 0 0 0 0 0 0

V4 0 6 · 10−3 6 · 10−3 0 0 0 6 · 10−3 0 6 · 10−3 0 0 6 · 10−3

V5 0 0 0 6 · 10−3 0 0 1.2 · 10−2 0 0 1.2 · 10−2 6 · 10−3 1.8 · 10−2

V12−1 0 2.4 · 10−2 6 · 10−3 0 0 0 6 · 10−3 0 0 6 · 10−3 1.8 · 10−2 1.8 · 10−2

V12−2 0 6 · 10−3 0 0 0 0 1.2 · 10−2 6 · 10−3 0 0 0 6 · 10−3

V13−1 1.8 · 10−2 1.2 · 10−2 0 0 0 1.2 · 10−2 1.8 · 10−2 1.2 · 10−2 0 1.8 · 10−2 1.2 · 10−2 6 · 10−3

V13−2 1.8 · 10−2 1.2 · 10−2 0 0 0 1.2 · 10−2 0 6 · 10−3 6 · 10−3 6 · 10−3 1.2 · 10−2 3 · 10−2

V13−3 1.2 · 10−2 0 0 0 0 6 · 10−3 1.2 · 10−2 0 6 · 10−3 6 · 10−3 1.8 · 10−2 1.2 · 10−2

V14 0 6 · 10−3 0 0 0 0 1.2 · 10−2 0 6 · 10−3 0 2.4 · 10−2 1.8 · 10−2

V15 6 · 10−3 0 0 0 0 0 6 · 10−3 6 · 10−3 0 0 6 · 10−3 1.2 · 10−2

V16 6 · 10−3 0 0 1.8 · 10−2 0 0 6 · 10−3 1.2 · 10−2 6 · 10−3 6 · 10−3 6 · 10−3 6 · 10−3

V17 0 0 0 0 0 0 0 6 · 10−3 6 · 10−3 0 1.8 · 10−2 2.4 · 10−2

V19 1.8 · 10−2 0 6 · 10−3 6 · 10−3 0 0 6 · 10−3 6 · 10−3 6 · 10−3 0 0 2.4 · 10−2

V20 0 0 0 0 0 0 0 0 0 1.2 · 10−2 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 6 · 10−3 0 0 0 0 0 0

V24 0 0 0 0 0 0 6 · 10−3 0 0 0 6 · 10−3 0

V26 0 6 · 10−3 0 0 0 0 0 0 0 0 0 6 · 10−3

V29 6 · 10−3 1.2 · 10−2 0 6 · 10−3 0 6 · 10−3 6 · 10−3 6 · 10−3 6 · 10−3 6 · 10−3 0 0

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 0 0 0 0 6 · 10−3 0 0 0 6 · 10−3 0 0

Table C.2: Table for BA2.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 1.1 · 10−2 3.6 · 10−3 0 0 0 0 7.3 · 10−3 0 0 3.6 · 10−3 3.6 · 10−3 3.6 · 10−3

V2 0 0 0 0 0 0 0 0 0 0 0 1.1 · 10−2

V3 0 0 0 0 0 0 3.6 · 10−3 7.3 · 10−3 3.6 · 10−3 0 0 1.1 · 10−2

V4 0 0 3.6 · 10−3 3.6 · 10−3 0 0 0 7.3 · 10−3 0 7.3 · 10−3 0 3.6 · 10−3

V5 3.6 · 10−3 0 0 3.6 · 10−3 0 0 1.5 · 10−2 3.6 · 10−3 3.6 · 10−3 3.6 · 10−3 3.6 · 10−3 7.3 · 10−3

V12−1 0 0 3.6 · 10−3 0 0 0 7.3 · 10−3 0 0 3.6 · 10−3 0 0

V12−2 0 0 3.6 · 10−3 0 0 0 3.6 · 10−3 0 0 0 3.6 · 10−3 7.3 · 10−3

V13−1 1.8 · 10−2 1.1 · 10−2 3.6 · 10−3 3.6 · 10−3 7.3 · 10−3 0 2.2 · 10−2 1.1 · 10−2 7.3 · 10−3 7.3 · 10−3 1.8 · 10−2 2.2 · 10−2

V13−2 2.5 · 10−2 1.5 · 10−2 7.3 · 10−3 3.6 · 10−3 0 3.6 · 10−3 2.9 · 10−2 3.6 · 10−3 2.9 · 10−2 2.2 · 10−2 2.5 · 10−2 4.4 · 10−2

V13−3 1.8 · 10−2 1.8 · 10−2 0 0 3.6 · 10−3 3.6 · 10−3 1.8 · 10−2 1.1 · 10−2 2.9 · 10−2 1.8 · 10−2 2.9 · 10−2 4.7 · 10−2

V14 7.3 · 10−3 0 3.6 · 10−3 0 0 0 7.3 · 10−3 0 3.6 · 10−3 7.3 · 10−3 7.3 · 10−3 1.5 · 10−2

V15 0 3.6 · 10−3 0 0 0 0 0 3.6 · 10−3 0 0 0 0

V16 3.6 · 10−3 0 0 3.6 · 10−3 3.6 · 10−3 0 1.1 · 10−2 0 1.1 · 10−2 1.8 · 10−2 7.3 · 10−3 0

V17 0 0 3.6 · 10−3 0 0 0 7.3 · 10−3 3.6 · 10−3 0 3.6 · 10−3 3.6 · 10−3 3.6 · 10−3

V19 3.6 · 10−2 0 0 7.3 · 10−3 0 0 3.6 · 10−3 0 0 3.6 · 10−3 7.3 · 10−3 1.1 · 10−2

V20 0 0 0 0 0 0 0 0 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 3.6 · 10−3 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 0 0 0 3.6 · 10−3 3.6 · 10−3 0 0 0 3.6 · 10−3

V29 1.1 · 10−2 0 0 0 0 0 7.3 · 10−3 0 3.6 · 10−3 1.8 · 10−2 1.5 · 10−2 7.3 · 10−3

V30 0 0 0 0 0 0 0 0 0 0 0 3.6 · 10−3

V31 0 0 0 0 0 3.6 · 10−3 0 0 0 0 0 0

Table C.3: Table for BA3.
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J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 1 · 10−2 0 1 · 10−2 1.5 · 10−2 0 5.1 · 10−3 5.1 · 10−3 0 1 · 10−2 1 · 10−2 0 5.1 · 10−3

V2 0 0 0 0 0 0 5.1 · 10−3 0 1 · 10−2 5.1 · 10−3 5.1 · 10−3 0

V3 5.1 · 10−3 0 0 0 0 0 2.1 · 10−2 0 0 5.1 · 10−3 5.1 · 10−3 1.5 · 10−2

V4 0 0 0 5.1 · 10−3 0 1 · 10−2 0 0 0 5.1 · 10−3 0 1.5 · 10−2

V5 5.1 · 10−3 0 0 1 · 10−2 0 5.1 · 10−3 0 0 0 0 1 · 10−2 1 · 10−2

V12−1 0 1 · 10−2 0 0 0 0 5.1 · 10−3 5.1 · 10−3 5.1 · 10−3 0 5.1 · 10−3 1.5 · 10−2

V12−2 5.1 · 10−3 0 0 0 5.1 · 10−3 0 1 · 10−2 5.1 · 10−3 5.1 · 10−3 0 1 · 10−2 0

V13−1 1 · 10−2 0 5.1 · 10−3 5.1 · 10−3 0 0 5.1 · 10−3 0 5.1 · 10−3 1.5 · 10−2 1 · 10−2 3.1 · 10−2

V13−2 5.1 · 10−3 1 · 10−2 0 0 5.1 · 10−3 0 1 · 10−2 1.5 · 10−2 0 2.1 · 10−2 1.5 · 10−2 2.6 · 10−2

V13−3 5.1 · 10−3 1 · 10−2 5.1 · 10−3 1 · 10−2 0 1.5 · 10−2 1.5 · 10−2 0 5.1 · 10−3 1 · 10−2 1.5 · 10−2 1.5 · 10−2

V14 0 0 5.1 · 10−3 5.1 · 10−3 0 0 5.1 · 10−3 0 0 1 · 10−2 0 1 · 10−2

V15 0 0 0 0 0 0 5.1 · 10−3 0 0 5.1 · 10−3 0 1.5 · 10−2

V16 0 1 · 10−2 5.1 · 10−3 0 0 0 1.5 · 10−2 5.1 · 10−3 2.6 · 10−2 1.5 · 10−2 2.1 · 10−2 1.5 · 10−2

V17 0 0 0 0 0 0 0 1 · 10−2 0 0 5.1 · 10−3 0

V19 1 · 10−2 5.1 · 10−3 5.1 · 10−3 0 5.1 · 10−3 5.1 · 10−3 1.5 · 10−2 0 5.1 · 10−3 5.1 · 10−3 5.1 · 10−3 1.5 · 10−2

V20 0 5.1 · 10−3 0 0 0 0 1 · 10−2 0 5.1 · 10−3 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 5.1 · 10−3 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 5.1 · 10−3 0 0 0 0 0 0 0 5.1 · 10−3 5.1 · 10−3 0 5.1 · 10−3

V29 1 · 10−2 1 · 10−2 0 0 1 · 10−2 0 5.1 · 10−3 0 0 5.1 · 10−3 0 1.5 · 10−2

V30 0 0 0 0 5.1 · 10−3 0 0 0 0 0 0 0

V31 5.1 · 10−3 0 0 0 0 5.1 · 10−3 0 0 0 0 0 0

Table C.4: Table for BA4.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 7.5 · 10−3 0 0 0 0 7.5 · 10−3 2.3 · 10−2 1.5 · 10−2 0 0 1.5 · 10−2 7.5 · 10−3

V2 0 0 0 0 0 0 0 0 0 0 7.5 · 10−3 7.5 · 10−3

V3 0 0 0 1.5 · 10−2 0 0 7.5 · 10−3 0 7.5 · 10−3 0 0 0

V4 7.5 · 10−3 0 0 0 0 0 7.5 · 10−3 0 0 7.5 · 10−3 0 0

V5 7.5 · 10−3 0 0 7.5 · 10−3 0 0 1.5 · 10−2 7.5 · 10−3 0 0 0 7.5 · 10−3

V12−1 0 7.5 · 10−3 7.5 · 10−3 7.5 · 10−3 0 0 7.5 · 10−3 1.5 · 10−2 0 1.5 · 10−2 0 7.5 · 10−3

V12−2 0 0 0 0 0 0 0 0 7.5 · 10−3 7.5 · 10−3 2.3 · 10−2 7.5 · 10−3

V13−1 3 · 10−2 0 0 0 7.5 · 10−3 0 3 · 10−2 7.5 · 10−3 7.5 · 10−3 7.5 · 10−3 0 2.3 · 10−2

V13−2 7.5 · 10−3 7.5 · 10−3 0 0 7.5 · 10−3 0 1.5 · 10−2 2.3 · 10−2 0 3 · 10−2 3 · 10−2 2.3 · 10−2

V13−3 2.3 · 10−2 7.5 · 10−3 0 7.5 · 10−3 0 7.5 · 10−3 1.5 · 10−2 7.5 · 10−3 0 7.5 · 10−3 1.5 · 10−2 2.3 · 10−2

V14 1.5 · 10−2 0 0 7.5 · 10−3 0 0 3 · 10−2 0 1.5 · 10−2 0 0 1.5 · 10−2

V15 7.5 · 10−3 0 7.5 · 10−3 7.5 · 10−3 7.5 · 10−3 0 0 0 0 0 0 0

V16 1.5 · 10−2 1.5 · 10−2 7.5 · 10−3 7.5 · 10−3 0 0 0 0 7.5 · 10−3 0 1.5 · 10−2 7.5 · 10−3

V17 7.5 · 10−3 0 0 7.5 · 10−3 0 0 0 0 0 0 0 0

V19 0 0 0 7.5 · 10−3 7.5 · 10−3 0 0 7.5 · 10−3 7.5 · 10−3 0 0 1.5 · 10−2

V20 0 7.5 · 10−3 0 0 0 0 0 0 0 0 7.5 · 10−3 7.5 · 10−3

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 7.5 · 10−3 0 0 0 0 0 0 0 0

V26 0 0 0 0 7.5 · 10−3 0 7.5 · 10−3 0 0 0 0 0

V29 0 0 0 0 0 0 7.5 · 10−3 0 0 0 0 7.5 · 10−3

V30 0 0 0 0 0 0 7.5 · 10−3 0 0 0 0 0

V31 0 0 0 0 0 0 0 0 0 0 7.5 · 10−3 7.5 · 10−3

Table C.5: Table for BA5.
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C. VJ FREQUENCIES

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 0 0 0 4.3 · 10−3 0 0 4.3 · 10−3 1.3 · 10−2 0

V2 0 0 0 0 0 0 4.3 · 10−3 8.5 · 10−3 0 0 1.7 · 10−2 0

V3 0 0 4.3 · 10−3 4.3 · 10−3 4.3 · 10−3 0 1.3 · 10−2 0 0 0 2.6 · 10−2 0

V4 8.5 · 10−3 4.3 · 10−3 0 0 0 0 0 8.5 · 10−3 4.3 · 10−3 0 1.3 · 10−2 4.3 · 10−3

V5 4.3 · 10−3 4.3 · 10−3 4.3 · 10−3 0 4.3 · 10−3 4.3 · 10−3 0 4.3 · 10−3 1.7 · 10−2 0 0 0

V12−1 0 4.3 · 10−3 0 4.3 · 10−3 0 4.3 · 10−3 8.5 · 10−3 0 0 4.3 · 10−3 0 0

V12−2 0 0 0 0 0 4.3 · 10−3 0 0 4.3 · 10−3 8.5 · 10−3 8.5 · 10−3 8.5 · 10−3

V13−1 5.6 · 10−2 0 0 4.3 · 10−3 0 4.3 · 10−3 1.7 · 10−2 0 1.3 · 10−2 0 1.7 · 10−2 1.3 · 10−2

V13−2 0 8.5 · 10−3 4.3 · 10−3 4.3 · 10−3 0 0 1.3 · 10−2 4.3 · 10−3 1.3 · 10−2 8.5 · 10−3 4.3 · 10−3 2.6 · 10−2

V13−3 4.3 · 10−3 0 0 0 0 1.3 · 10−2 0 0 0 4.3 · 10−3 4.3 · 10−3 1.3 · 10−2

V14 0 0 4.3 · 10−3 0 1.7 · 10−2 0 4.3 · 10−3 0 4.3 · 10−3 0 4.3 · 10−3 3.4 · 10−2

V15 0 0 0 0 0 0 8.5 · 10−3 0 4.3 · 10−3 0 0 1.3 · 10−2

V16 3.8 · 10−2 2.6 · 10−2 0 0 0 4.3 · 10−3 1.3 · 10−2 0 4.3 · 10−3 1.7 · 10−2 8.5 · 10−3 4.3 · 10−3

V17 1.7 · 10−2 4.3 · 10−3 4.3 · 10−3 4.3 · 10−3 0 0 1.7 · 10−2 8.5 · 10−3 4.3 · 10−3 4.3 · 10−3 8.5 · 10−3 1.7 · 10−2

V19 8.5 · 10−3 4.3 · 10−3 0 4.3 · 10−3 0 8.5 · 10−3 1.7 · 10−2 0 0 4.3 · 10−3 4.3 · 10−3 8.5 · 10−3

V20 0 4.3 · 10−3 0 0 0 0 0 0 0 0 0 4.3 · 10−3

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 4.3 · 10−3 0 0 0 0 0 4.3 · 10−3 4.3 · 10−3 0 0 0 1.3 · 10−2

V29 4.3 · 10−3 4.3 · 10−3 1.3 · 10−2 0 8.5 · 10−3 8.5 · 10−3 0 2.1 · 10−2 0 3 · 10−2 8.5 · 10−3 0

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 4.3 · 10−3 0 0 0 0 4.3 · 10−3 0 0 0 4.3 · 10−3 0

Table C.6: Table for EF1.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 1.3 · 10−2 0 0 0 0 1.3 · 10−2 0 0 2.7 · 10−2 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 1.3 · 10−2 0 4 · 10−2 0 0 0 0 0 0

V4 0 0 0 0 0 0 0 0 0 1.3 · 10−2 0 0

V5 1.3 · 10−2 0 0 0 0 0 0 0 0 0 0 0

V12−1 0 0 0 0 0 0 1.3 · 10−2 0 0 0 1.3 · 10−2 0

V12−2 0 0 0 0 0 1.3 · 10−2 2.7 · 10−2 0 0 0 0 1.3 · 10−2

V13−1 0 0 0 0 2.7 · 10−2 1.3 · 10−2 4 · 10−2 0 1.3 · 10−2 0 2.7 · 10−2 1.3 · 10−2

V13−2 2.7 · 10−2 0 0 1.3 · 10−2 0 0 0 0 0 0 1.3 · 10−2 1.3 · 10−2

V13−3 0 0 0 0 0 1.3 · 10−2 2.7 · 10−2 1.3 · 10−2 0 1.3 · 10−2 0 0

V14 0 0 0 0 0 0 2.7 · 10−2 0 0 0 0 0

V15 0 0 0 0 1.3 · 10−2 0 0 0 1.3 · 10−2 0 0 0

V16 0 0 0 0 0 0 1.3 · 10−2 0 4 · 10−2 0 0 5.3 · 10−2

V17 1.3 · 10−2 0 0 1.3 · 10−2 0 0 1.3 · 10−2 0 1.3 · 10−2 0 0 2.7 · 10−2

V19 1.3 · 10−2 0 0 2.7 · 10−2 0 2.7 · 10−2 0 0 1.3 · 10−2 0 1.3 · 10−2 0

V20 0 0 0 0 0 0 0 0 0 0 1.3 · 10−2 1.3 · 10−2

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 2.7 · 10−2 0 0 0 0 0 0 0 0

V29 1.3 · 10−2 0 4 · 10−2 1.3 · 10−2 0 1.3 · 10−2 0 0 0 2.7 · 10−2 0 1.3 · 10−2

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 0 0 0 0 0 0 0 1.3 · 10−2 0 0 0

Table C.7: Table for EF2.
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J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 0 0 0 0 0 0 0 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 0 0 0 0 0 0 3.9 · 10−3 0 0 0 0 0

V4 1.2 · 10−2 0 0 0 0 0 7.8 · 10−3 0 0 0 0 4.3 · 10−2

V5 0 0 0 0 0 0 3.9 · 10−3 0 0 0 0 0

V12−1 0 0 0 3.9 · 10−3 0 3.9 · 10−3 3.9 · 10−3 0 0 0 0 0

V12−2 0 0 0 0 2.7 · 10−2 0 0 3.1 · 10−2 7.8 · 10−3 3.9 · 10−3 0 0

V13−1 7.8 · 10−2 0 3.9 · 10−3 0 0 0 0 0 0 3.9 · 10−3 0 0

V13−2 0 0 0 0 0 0 3.9 · 10−3 0 0 0 0 0

V13−3 3.9 · 10−2 0 0 0 0 3.9 · 10−3 7.8 · 10−3 0 0 0 0 7.8 · 10−3

V14 0 0 0 0 0 0 3.9 · 10−3 0 0 0 0 3.9 · 10−3

V15 0 0 0 0 0 0 0 0 0 0 0 0

V16 0 3.9 · 10−3 0 0 0 7.8 · 10−3 5 · 10−2 0 0 0 7.8 · 10−3 2.3 · 10−2

V17 3.9 · 10−3 0 0 0 0 0 1.2 · 10−2 0 0 0 0 0

V19 7.8 · 10−3 0 0 0 0 0 7.8 · 10−3 0 0 0 0 1.9 · 10−2

V20 0 0 0 0 0 0 0 0 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 0 0 0 0 0 0 0 0 0

V29 2.7 · 10−2 5 · 10−2 0 9.7 · 10−2 3.9 · 10−3 0 8.9 · 10−2 1.2 · 10−2 0 1.9 · 10−2 1.6 · 10−1 3.9 · 10−3

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 0 0 0 0 0 0 0 0 0 8.9 · 10−2 0

Table C.8: Table for EF3.

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 3.9 · 10−3 0 0 0 0 0 0 1.2 · 10−2 0 0 3.9 · 10−3

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 7.7 · 10−3 0 0 0 0 0 0 0 0 0 3.9 · 10−3 3.9 · 10−3

V4 0 0 0 0 0 0 0 0 0 0 0 7.7 · 10−3

V5 0 0 0 0 0 0 0 0 3.9 · 10−3 3.9 · 10−3 7.7 · 10−3 3.9 · 10−3

V12−1 3.9 · 10−3 0 0 3.9 · 10−3 0 0 3.9 · 10−3 7.7 · 10−3 3.9 · 10−3 0 3.9 · 10−3 3.9 · 10−3

V12−2 7.7 · 10−3 1.2 · 10−2 0 0 0 0 3.9 · 10−3 0 0 3.9 · 10−3 4.6 · 10−2 1.2 · 10−2

V13−1 5 · 10−2 3.5 · 10−2 0 3.9 · 10−3 0 0 3.9 · 10−3 3.9 · 10−3 7.7 · 10−3 1.2 · 10−2 7.7 · 10−3 1.2 · 10−2

V13−2 1.2 · 10−2 0 7.7 · 10−3 3.9 · 10−3 0 3.9 · 10−3 1.5 · 10−2 0 3.1 · 10−2 3.9 · 10−3 7.7 · 10−3 0

V13−3 4.6 · 10−2 1.5 · 10−2 0 3.9 · 10−3 1.5 · 10−2 0 3.9 · 10−3 3.9 · 10−3 1.2 · 10−2 7.7 · 10−3 3.9 · 10−3 0

V14 0 0 0 3.9 · 10−3 0 7.7 · 10−3 0 0 7.7 · 10−3 2.3 · 10−2 0 3.9 · 10−3

V15 0 0 0 0 3.9 · 10−3 0 0 0 0 1.9 · 10−2 1.2 · 10−2 0

V16 0 0 0 0 0 0 0 0 7.7 · 10−3 0 0 2.7 · 10−2

V17 3.9 · 10−3 0 3.9 · 10−3 0 3.9 · 10−3 3.9 · 10−3 0 0 0 1.2 · 10−2 2.3 · 10−2 7.7 · 10−3

V19 1.5 · 10−2 0 1.2 · 10−2 7.7 · 10−3 0 1.2 · 10−2 0 7.7 · 10−3 1.9 · 10−2 1.5 · 10−2 0 3.9 · 10−2

V20 7.7 · 10−3 2.3 · 10−2 3.9 · 10−3 3.9 · 10−3 0 0 3.9 · 10−3 0 0 0 0 3.9 · 10−3

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 3.9 · 10−3 0 0 0 3.9 · 10−3 3.9 · 10−3 0 0 0

V29 1.5 · 10−2 3.9 · 10−3 1.2 · 10−2 1.9 · 10−2 3.9 · 10−3 0 1.2 · 10−2 1.2 · 10−2 7.7 · 10−3 0 3.9 · 10−2 3.9 · 10−3

V30 0 0 0 0 0 0 0 0 0 0 0 0

V31 0 3.9 · 10−3 0 0 0 0 0 0 0 0 0 0

Table C.9: Table for EF4.
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C. VJ FREQUENCIES

J1−1 J1−2 J1−3 J1−4 J1−5 J1−6 J2−1 J2−2 J2−3 J2−4 J2−5 J2−7

V1 0 0 0 4.7 · 10−3 0 0 0 0 0 4.7 · 10−3 0 0

V2 0 0 0 0 0 0 0 0 0 0 0 0

V3 4.7 · 10−3 0 0 0 0 0 0 0 4.7 · 10−3 0 4.7 · 10−3 0

V4 0 0 0 0 0 0 0 0 0 0 0 4.7 · 10−3

V5 0 0 0 0 0 4.7 · 10−3 4.7 · 10−3 0 0 0 0 0

V12−1 0 0 0 0 4.7 · 10−3 0 1.4 · 10−2 0 0 0 0 0

V12−2 0 0 0 4.7 · 10−3 0 0 0 4.7 · 10−3 0 9.4 · 10−3 9.4 · 10−3 0

V13−1 7.1 · 10−2 4.7 · 10−3 0 0 0 1.4 · 10−2 9.4 · 10−3 0 0 4.7 · 10−3 0 4.7 · 10−3

V13−2 2.4 · 10−2 0 0 0 0 4.7 · 10−3 1.4 · 10−2 0 4.7 · 10−3 0 0 1.4 · 10−2

V13−3 3.3 · 10−2 1.4 · 10−2 0 0 0 0 4.7 · 10−3 0 0 0 0 4.7 · 10−2

V14 0 0 0 0 0 0 4.7 · 10−3 0 0 0 0 1.9 · 10−2

V15 0 0 0 0 0 0 4.7 · 10−3 0 4.7 · 10−3 0 3.3 · 10−2 4.7 · 10−3

V16 0 4.7 · 10−3 0 0 0 0 9.4 · 10−3 0 9.4 · 10−3 4.7 · 10−3 4.7 · 10−3 2.6 · 10−1

V17 0 0 0 0 0 0 4.7 · 10−3 4.7 · 10−3 0 0 0 0

V19 4.7 · 10−3 4.7 · 10−3 1.9 · 10−2 0 9.4 · 10−3 0 5.7 · 10−2 0 0 0 4.7 · 10−3 1.9 · 10−2

V20 0 0 0 0 0 0 0 4.7 · 10−3 0 0 0 0

V21 0 0 0 0 0 0 0 0 0 0 0 0

V23 0 0 0 0 0 0 0 0 0 0 0 0

V24 0 0 0 0 0 0 0 0 0 0 0 0

V26 0 0 0 1.4 · 10−2 0 0 0 0 0 0 0 4.7 · 10−3

V29 1.4 · 10−2 9.4 · 10−3 0 0 0 0 4.7 · 10−3 4.7 · 10−3 1.9 · 10−2 4.7 · 10−3 5.2 · 10−2 9.4 · 10−3

V30 0 0 0 0 0 0 0 4.7 · 10−3 0 0 0 0

V31 0 0 0 0 0 0 0 0 0 0 4.7 · 10−3 4.7 · 10−3

Table C.10: Table for EF5.
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Appendix D

Dependance of T (α, nθ) on its

parameters

We focus here on the dependance of

T (α, nθ) =
1

αµ
(γE − eαnθ · Ei(−αnθ) + log(αnθ)), (D.1)

on the parameters nθ, M , γ, θ and µ. Figures D.1 to D.5 show the dependence of the

equation on the different parameters, while Figures D.6 to D.10 represent the elasticity of

(D.1) with respect to the different parameters, where the elasticity Ef(a) of a function f

in the point x = a is defined as

Ef(a) =
a

f(a)
f ′(a),

with f ′(a) representing the derivative of the function f calculated in the point x = a.

Figure D.1: Parameters: θ = 109, γ = 10, µ = 0.5, M = 1010.
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D. DEPENDANCE OF T (α,Nθ) ON ITS PARAMETERS

Figure D.2: Parameters: nθ = 4, γ = 10, µ = 0.5, M = 1010.

Figure D.3: Parameters: nθ = 4, θ = 109, µ = 0.5, M = 1010.

Figure D.4: Parameters: nθ = 4, θ = 109, γ = 10, µ = 0.5.

Figure D.5: Parameters: nθ = 4, θ = 109, γ = 10, M = 1010.
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Figure D.6: Parameters: θ = 109, γ = 10, µ = 0.5, M = 1010.

Figure D.7: Parameters: nθ = 4, γ = 10, µ = 0.5, M = 1010.

Figure D.8: Parameters: nθ = 4, θ = 109, µ = 0.5, M = 1010.
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D. DEPENDANCE OF T (α,Nθ) ON ITS PARAMETERS

Figure D.9: Parameters: nθ = 4, θ = 109, γ = 10, µ = 0.5.

Figure D.10: Parameters: nθ = 4, θ = 109, γ = 10, M = 1010.
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