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Abstract 

Anaerobic digestion, the decomposition of organic matter to biogas and digestate in the 

absence of oxygen, is carried out by diverse communities of microorganisms. Until recently, 

16S rRNA gene amplification has been the main focus towards better understanding of 

these communities, ultimately for their exploitation in industry and waste management. 

Metagenomics and shotgun whole genome sequencing now offers a different approach, 

allowing for the functional analysis of individual members of the community without the 

need for cell culturing. But metagenomics is not without its own pitfalls. Currently there are 

limited tools and methods available for use with large and complex datasets from 

sequencing of anaerobic digestion communities. Here we present the development of a 

rapid fully automated software pipeline for the large-scale identification and functional 

analysis of quality genomes extracted from anaerobic digestion metagenomic datasets. The 

pipeline consists of two new tools for the analysis of metagenomic data; the MCCR tool for 

reducing contamination in proposed genomes formed from metagenomic data, and the 

MPP tool for simultaneously predicting metabolic pathways across the large numbers of 

organisms found in metagenomes. The tools and pipeline were tested on both synthetic 

and real datasets during their development, and while further development will be needed 

in the future, this pipeline shows high potential to be both viable and extremely useful in 

understanding complex metagenomic datasets.  
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1. Introduction 

Increasing concerns over a changing climate require us to take a new approach to resource 

management in regard to both implementing alternate energy production strategies and 

better protection of the natural environment. Anaerobic digestion (AD) of organic waste 

material provides a solution to both of these challenges, capable of exploiting multiple 

waste streams as resources in energy generation, and by preventing the various 

environmental harms that are associated with our current waste management1. The 

second largest contributor to global warming after carbon dioxide (CO2) is methane, having 

~85 times the potency of CO2 as a greenhouse gas (GHG) over the short term of 20 years2. 

Atmospheric methane concentrations have increased by 150% since the 1750’s and 

although only contributing ~17% towards the total effects of GHGs, 50-65% can be 

attributed to human activity2,3. Reduction of methane emissions will be necessary in order 

to control global temperature increases and keep them below the 2°C rise laid out in the 

Paris Agreement.  

Methane is generated largely through uncontrolled AD in intensive farming, waste water 

treatment and municipal waste landfills where it is released into the atmosphere1,4. 

However, methane is also the main component in natural gas used for industry, heating 

and electricity generation, and biogas generated from AD plants has the potential to cost 

effectively replace fossil fuels in grid balancing5. Volatile renewable energy sources such as 

wind and solar are predicted to provide a large proportion of the electrical energy demand 

in Western Europe over the coming years, but renewable energy systems from wind and 

solar exhibit large temporal fluctuations in output5,6.  By combining variable and 

intermittent renewable resources with those renewable resources offering high levels of 

predictability, for example electricity generation from burning biogas, a larger proportion 

of renewable energy can be integrated into energy systems6. Biomethane, upgraded from 

biogas, is also important for direct energy generation rather than conversion to electricity. 

In 2011, 52% of gas in the UK was used for heat generation compared to 34% to generate 

electricity7. The potential value of AD has not been overlooked, and as of 2012 over 13,800 

biogas plants had already been built in Europe, with the United Kingdom producing 1764 

kilo tonnes of petroleum equivalent of biogas per year8. For biogas and biomethane to 

become leading energy sources, better understanding of the processes and the complex 

microbial community behind AD is needed to optimize biogas yields. Metagenomics helps 

to provide insight into this community where before much of it was unknown, but better 

tools to reconstruct these complex communities computationally are needed before 
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genetic analysis can be used to positively alter the microbial community for robustly 

increased methane yields. 

1.1 Anaerobic digestion 

1.1.1 The role of uncontrolled environmental anaerobic digestion 

AD is a natural part of carbon cycling in which organic matter is degraded by 

microorganisms in environments where oxygen is limiting. 35-50% of the global methane is 

from biotic sources, including wetlands, ruminant animals and even some termite 

mounds3,9. In these environments the methane produced cannot be harnessed and is 

simply released into air, and so understanding and manipulation of the microbial 

community to reduce methane production is desirable. 

1.1.1.1 Anaerobic digestion in wetlands 

Natural wetlands, such as marshes, peatlands and swamps, are estimated to produce ~30% 

of global methane emissions3,10,11. As global temperatures increase, it predicted that 

methane emissions from wetlands will increase3. This is partially due to larger areas of 

northern tundra annually and perennially being released from permafrost, which have the 

potential to release an additional 63% of stored carbon in the region for decomposition to 

CO2 or methane 3,12,13. The release of soil carbon creates a positive feedback loop, where by 

carbon is released in response to rising temperature, which rises in response to increased 

release of soil carbon as CO2 and methane. Peatlands show the highest ratio of carbon 

release of the three tested ecosystem types (boreal forest, tundra and peatland) in 

response to a 10°C rise in temperature from the northern tundra12, and are therefore of 

particular interest in helping to reach global GHG emission targets14. 

1.1.1.2 Anaerobic digestion in agriculture 

An additional ~20% of global methane production can be attributed to agriculture, the two 

largest contributors being ruminant livestock (~13%) and rice paddies (~5%)3. Global food 

demand over the last 50 years has tripled, and several modelling scenarios of future global 

food demand indicates that both plant- and animal-based demand will continue to strongly 

increase15. Within the stomachs of many ruminant livestock, including sheep, cattle and 

goats, plant material is fermented generating the H2 and CO2 necessary for methane 

production. Not only does this generate GHGs but loss of energy via methanogenesis, 

which utilizes 2-12% of that ingested by the animal, is also undesirable16. Manipulation of 

the enteric microbial community to supress methane production has been met with mixed 
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results in vitro17–19, and so many have turned to a bioinformatic approach to better 

understand methanogenesis in the ruminant microbiome16,20–23.  

Methane production in rice paddy agriculture is a result of similar conditions to those 

found in wetlands due to substantial amounts of submerged anoxic organic carbon in soil. 

Similarly to wetlands, methane emissions from paddies are expected to increase in 

response to increasing atmospheric CO2 and global temperatures24. Methane emissions in 

rice paddies can be far more easily controlled than emissions by ruminants or wetlands and 

there is clear experimental evidence to support this9. Manipulation of the microbial 

community through intermittent drainage or irrigation of waterlogged paddies, a system 

often used throughout Asia, has been shown to significantly decrease methane production 

and alterations in nitrogen fertilizer usage can also have a large impact9. But the conditions 

in rice paddies are highly variable and methane production unpredictable. To mitigate the 

likely rise in methane output in response to increases in global population and food 

requirements, a number of computational models have been built to more accurately 

simulate methanogenesis in rice paddies25–27. 

1.1.2 The role of controlled anaerobic digestion in industry 

CO2 and methane represent the 2 largest contributors to GHGs. The exponential use of 

fossil fuels since the start of the Industrial Era (1750), in addition to their well-known 

increasing of atmospheric CO2 levels, also accounted for 30% of anthropogenic methane 

emissions between 2000-20093. Methane emissions from landfills and waste accounted for 

an additional 23% of anthropogenic sources between 2000-2009, and in the 6 years 

between 2005 and 2011 alone, atmospheric methane concentrations have increased by 

1.5%2,3. In contrast to understanding microbial communities in biotic methane generation 

to reduce methane emissions, the appeal of understanding abiotic methane producing 

communities is to increase end product yields and decrease reliance on fossil fuels. 

1.1.2.1 Anaerobic digestion in biotechnology 

While a large focus of industrial AD lies in biogas generation from bio-waste, AD is also 

being investigated as a potential cost-effective method to produce a wide variety of high 

value products. In addition to methane, AD can be manipulated to produce a number of 

fermentative products including alcohols, aldehydes and organic acids. The production of 

biofuel has become a booming industry across the Americas28. Crops such as maize (corn) 

or sugarcane are grown specifically for fermentation into biofuel precursors such as 

ethanol (or biogas). Volatile fatty acids (VFA) produced by fermentation in AD systems, 
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such as acetic acid, propionic acid or butyric acid, are another area of interest for 

biotechnology. Propionic acid and it’s salts are primarily used in the food industry as food 

preservatives, although it is also used on a smaller scale for the production of cellulose 

derived biodegradable plastics29. Acetic acid is also used as a preservative in the food 

industry as the main compound in vinegar, and the production of various plastics30. Despite 

100 years of research into utilizing a microbial community for large-scale production of 

VFAs, they are still largely produced using fossil fuels29–31. Although the potential in using 

microbial communities for the production of value added products is high, currently in 

many instances it is not cost effective to do so due to low yields and/or high downstream 

processing costs28,29,32. Optimization of operating conditions combined with genetic 

manipulations to utilize alternate waste resources are paving a way for lower costs and 

higher use8,28,30,33. 

1.1.2.2 Anaerobic digestion in waste management 

Industrialised AD in waste management utilizes biodegradable waste as a resource by 

converting it to biogas. It is classed as a low carbon impact process responsible for dealing 

with a wide range of different organic waste products, ranging from human and animal 

waste to organic waste from cheese production1,34,35. As a result of the low cost 

implications, AD has been gaining in popularity and functionality over the last 40 years as 

both a solution to biological waste management from agricultural, industrial and municipal 

waste, and as a clean energy source1,8. The study of AD of solid bio-waste has existed for 

several decades, long before the need to reduce global carbon emissions became apparent. 

One of the earliest papers on AD by Cooney and Wise in 1975 saw the potential of AD as 

both a solution for the disposal of organic waste and as a means of converting waste into 

fuel36. During the 1970’s the main focus of AD was for the treatment of organic waste 

material rather than energy generation, part of its attractiveness being that the gaseous 

end products could be easily disposed of by venting or burning, but also the stabilization of 

various organic substrates and decreases in volume before disposal36. Nowadays biogas 

production is a burgeoning industry. 

To further reduce the volume of solids produced from waste water treatment (WWT), 

approximately 75% of solids from WWT now undergoes AD in the UK generating biogas as a 

byproduct37. Biogas is a combination of methane (50-70%), CO2 (30-50%) and trace gases 

such as hydrogen sulphide that can be used in combined heat and power plants, or 

requires costly upgrading to biomethane before it can be directly injected into the national 

grid5,6. To sustainably balance the environmental and economic costs of WWT and 



15 
 

converting it to the required >90% biomethane, far higher yields of biogas and 

concentrations of methane are needed. From a biochemical point of view this is achievable: 

it is estimated that the amount of energy that can be generated from AD of WWT is 10 

times higher than the energy currently used to treat it38. Better understanding of the 

microbial community is needed in order to optimise energy recovery from waste water 

treatment. 

1.1.3 Biochemical Steps 

AD and biomethanation are carried out by a complex community of microorganisms, with 

each species contributing to one or more stages of the syntrophic process. Simply put, AD 

can be split into 4 steps: hydrolysis, fermentation, acetogenesis and methanogenesis, and 

illustrated as in Figure 1.1 1,39.  

1.1.3.1 Hydrolysis 

The hydrolysis stage of AD relies upon a multitude of extracellular enzymes and reactions 

to hydrolyse large polymeric compounds into readily available substrates for the entire 

microbial community (Equation 1.1). As such, hydrolysis can be considered the rate limiting 

step in many digesters40.  

 

Figure 1.1 The 4 key steps of AD 

A simplified overview of key steps involved in AD: hydrolysis, fermentation/acidogenesis, 

acetogenesis and methanogenesis. Bacteria are responsible for 3 of the 4 key steps, while 

methanogenic archaea are responsible for the final step. 
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Depending on the origin, municipal or agricultural, biomass added to AD systems can 

consist of a high percentage of plant or lignocellulosic material made up of complex 

insoluble polymers including cellulose and hemicelluloses. Because the polymers that make 

up lignocellulose are so large and chemically inert, they require specialized extracellular 

glucosidases to be hydrolysed into their component sugars for uptake. Hemicelluloses are a 

wide class of many branched polysaccharides including xylans and glucomannans which 

consist of sugar monomers such as glucose, xylose, mannose, galactose and arabinose. 

Cellulose is a linear polysaccharide of hundreds to thousands of glucose molecules. 

Extracellular glucosidases such as cellulases and xylanases are in part responsible for the 

hydrolytic decomposition of lignocellulosic material. Hydrolysis is also important for 

hydrolysing proteins into amino acids and lipids into glycerol and long chain fatty acids.  

 

1.1.3.2 Fermentation/Acidogenesis 

The released sugars, amino acids and glycerol from hydrolysis are fed into fermentative 

pathways producing CO2, hydrogen (H2), ammonia and a variety of reduced mono or poly-

carbon compounds including alcohols, aldehydes and VFAs. Pathways in fermentation can 

be homofermentative, only producing a single end product like acetate (Equation 1.2), or 

heterofermentative, for example with acetic acid as a coproduct to propionic or butyric 

acid (Equation 1.3)30.  

 

1.1.3.3 Acetogenesis 

Acetogenesis is the formation of acetate from single or poly-carbon compounds. The 

simplest form of acetogenesis is the stepwise combination of H2 and the acetyl groups from 

two single carbon compounds to form acetate41. Often this is CO2 (Equation 1.4), but can 

also be formate, methanol or methyl groups from methoxylated aromatic compounds41.  

Complex polymers  tri, di and monomers 

Equation 1.1 

 

C6H12O6 + 2H2O  2CH3COOH + 2CO2 + 4H2 

Equation 1.2 

2C6H12O6  2CH3COOH + 2CH3CH2COOH + 2CO2 + 2H2 

Equation 1.3 
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Acetogenesis is a combination of the reductive acetyl-CoA or Wood-Ljungdahl pathway 

which fixes carbon into acetyl-CoA, and the acetate kinase pathway which converts acetyl-

CoA into acetate coupled to ATP synthesis41. The Wood-Ljungdahl pathway is split into the 

Eastern (or Methyl) and Western(or Carbonyl) branches. All microbes have the Eastern 

branch of the Wood-Ljungdahl pathway as it’s important in one-carbon metabolism, while 

only those using the full Wood-Ljungdahl pathway for carbon fixation have the Western 

branch41. 

1.1.3.4 Methanogenesis 

Methanogenesis consists of a few select pathways that convert simple carbon molecules, 

most often CO2 generated from the previous steps of AD into methane, and represents the 

final step in carbon reduction. It is not a particularly thermodynamically favourable, and 

will only take place in the absence of alternate electron acceptors42. Methanogenesis can 

be split into 3 classes based on their terminal electron acceptor, hydrogenotrophic, 

acetoclastic and methylotrophic methanogenesis. Hydrogenotrophic and acetoclastic 

represent the predominant pathways of methanogenesis although there is increasing 

evidence that the importance of methylotrophic methanogenesis to global methane 

emissions has been underestimated43. 

In hydrogenotrophic methanogenesis H2 and CO2 generated during 

fermentation/acidogenesis are combined to generate methane and energy (Equation 1.5). 

H2 acts as an electron donor, which can sometimes be replaced by formate, with CO2 as the 

electron acceptor. 

 

Acetoclastic methanogens use acetic acid produced from either the 

fermentation/acidogenesis or acetogenesis steps as a substrate, generating methane and 

CO2 (Equation 1.6)41. As a result the gaseous products of AD are not purely methane, but a 

combination of methane and CO2 as a result of the combined efforts of acetoclastic and 

hydrogenotrophic methanogens 5.  

2CO2 + 4H2CH3COOH + 2H2O 

Equation 1.4 

 

CO2 + 4H2  CH4 + 2H2O 

Equation 1.5 
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Methylotrophic methanogenesis encompasses all the methanogenesis pathways utilizing 

methyl-compounds as electron acceptors. The substrates used include methanol, 

methylated-amines or methylated-sulphides instead of CO2 or acetate. Despite being 

considered one class of methanogenesis each substrate uses a slightly different pathway 

and require substrate specific methyltransferases. Only 8 sequenced methanogens are 

known to obligately use a combination of H2 and methyl-compounds43. 

Although there are 3 classes of methanogenesis, the terminal step in methane generation 

is always the same utilizing the methyl-coenzyme M reductase complex McrABCDG in the 

conversion of methyl-coenzyme M into methane and a heterodisulphide of coenzyme M 

and coenzyme B44. 

1.1.4 The role of microbes 

Both 16S rRNA gene and metagenomic sequencing of anaerobic digesters have emphasized 

the complexity of the microbial community within them40,45–48. The competition and 

syntrophy between microorganisms carrying out different pathways and steps is essential 

for a balanced AD community. 

1.1.4.1 The Bacteria 

Bacteria can make up 95% of the diversity/biomass in AD communities and are responsible 

for carrying out all the steps of AD except methanogenesis45. Unlike the specificity of 

methanogenesis, the metabolic pathways for hydrolysis, fermentation and acetogenesis 

are spread throughout the bacterial phyla. Bacterial diversity in AD largely depends on the 

physical conditions and substrates within the system however a few phyla tend to be more 

abundant regardless. Members of Firmicutes, Bacteroidetes and Proteobacteria often 

dominate in AD and can be considered as the leading decomposers, having prominent roles 

in all 3 bacterial stages of AD40,45–48.  

Aerobic cellulose hydrolyser genera such as Bacillus (Firmicutes) or Cytophaga 

(Bacteroidetes) secrete multiple extracellular enzymes, whereas anaerobic hydrolysers 

such as Clostridium (Firmicutes) and Bacteroides (Bacteroidetes) produce stable enzyme 

complexes tightly attached to the cell containing cellulases, xylanases and chitinases40.  

CH3COOH  CH4 + CO2 

Equation 1.6 
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Metagenomic studies of AD provide evidence for members of Bacteroidetes and Firmicutes 

to also be key fermentative bacteria along with members of Proteobacteria30,48. 

Proteobacteria such as the Acetobacter and Gluconacetobacter are some of the most 

important acetate fermenters in biotechnology. The heterofermentation to propionic acid 

by the Proteobacteria Acidipropionibacterium (formerly Propionibacterium) has been the 

subject of research for a century, and members of Clostridium have been researched for 

their production of butyric acid29,30. Heterofermentation of amino acids is a metabolism 

only found in two phyla: Firmicutes and Synergistetes49. 

Members of Firmicutes, Proteobacteria, Bacteroidetes and Thermotogae are known 

acetogens 40,47. Acetogens, or homoacetogens which only generate acetate, are obligate 

anaerobic bacteria and typically have a flexible metabolism, able to utilize a number of 

carbon sources41. For example, in high partial pressures of H2 and low acetate 

concentrations they metabolise H2 and CO2 into acetate, but at low partial pressures of H2 

and high acetate concentrations, acetogenesis is reversed producing H2 and CO2 from 

acetate50. They are also able to use a variety of electron acceptors other than CO2 often 

found in AD including fumarate and nitrate41. 

1.1.4.2 The Archaea + methanogenesis 

The final step of AD in waste treatment, methanogenesis, is unique to a small number of 

highly specialised archaea: the methanogens, which form syntrophic relationships with 

fermentative bacteria. The archaea are phylogenetically distinct to both Eukaryotes and 

Bacteria, representing the 3rd, and most recently defined, domain of life51,52. The first 

prokaryotes assigned to the new kingdom of archaea were often isolates from extreme 

environments, such as acidic mud ponds, that had been previously thought incompatible 

with life53,54. Advances in culturing and sequencing technologies have proved this to be 

inaccurate. In fact, archaea have been found in a wide variety of niches, from the human 

gut55 to the ocean56, but are often much less abundant than bacteria and/or have highly 

specific requirements for culturing39,45,56. As a result, the archaeal domain is less 

understood than its counterparts. 

Methanogens are typically strict anaerobes, able to grow at both mesophilic or 

thermophilic temperatures, and tend to have highly specialised and restricted energy 

metabolisms revolving around methanogenesis. They are phylogenetically diverse and split 

across 7 orders within the phyla Euryarchaeota44. 5 of the 7 orders utilize hydrogenotrophic 

methanogenesis while members of Methanosarcinales are able to use a broader spectrum 
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of substrates, capable of utilizing hydrogenotrophic, acetoclastic and methylotrophic 

methanogenesis44,57.  

1.1.5 Anaerobic digestion: A summary 

Energy yields from AD are much lower than the predicted energy present58. Large portions 

of this potential energy is either not readily available due to limiting steps of hydrolysis or 

fermentation, or converted to unusable levels of CO2 disproportionate to that of H2 for 

methanogenesis10,39. Bioaugmentation of the AD community with specific cellulose-

degrading bacteria is one approach that has been investigated to increase yields and in vivo 

experiments show increases in pH can lead to increases of up to 697% in methane 

production, likely as a result of increased fermentation10,39,59. Acetogenesis and 

methanogenesis are both competitive and syntrophic steps in that they compete for H2, 

but the acetate formed by acetogenesis is ultimately used in acetoclastic methanogenesis 

generating CO2. This competition over H2, and the use of acetoclastic rather than 

hydrogenotrophic methanogenesis, is one of the reasons for the mixed composition of 

biogas from AD and typically methane yields do not exceed 50-70% of total gas, with CO2 

making up a large percentage of the rest. The initial competition depends largely on H2 

uptake kinetics, where acetogens out compete methanogens for the uptake of H2
50. By 

augmenting AD systems with engineered hydrogenotrophic methanogens with higher H2 

uptake kinetics than acetogens, higher methane: CO2 ratios in biogas could in theory be 

achieved.  

Currently only a small number of organic waste streams are directed into AD and a large 

amount of organic matter is still sent to landfill. In the future it is likely AD will grow into a 

global scale process for reclaiming material, energy and nutrients.  Interestingly the issues 

Cooney and Wise highlighted in 1975 limiting greater application of AD, system instability 

and long digester residence time, are still issues today 4 decades later36. Ultimately better 

understanding of the microbial communities and metabolic diversity in AD is needed for 

what in future will most likely be a vital process. 

1.2 Metagenomics 

It is estimated that over 99% of microorganisms are unculturable using classical methods, 

making whole genome sequencing and functional annotation impossible60. Until recently, 

the diversity of environmental samples was often measured using phylogenetic marker 

genes, and many bacterial and archaeal species are only known by their 16S rRNA gene 

sequence. In fact, studies of amplicon PCR of the 16S rRNA gene have shown the most 
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abundant microorganisms in a sample can be unculturable and we can only guess at their 

metabolic contribution to the microbiome, hindering our understanding of the complexity 

of microbial communities 39,61–63 . The advent of high throughput sequencing in 1970s 

paved the way for PCR amplification of marker genes, while advances in next generation 

sequencing (NGS) and third generation sequencing (3GS) has allowed for the growth of a 

new discipline: metagenomics, where the total DNA of a sample is sequenced and the 

microbial community reconstructed computationally. Metagenomics provides an 

alternative to classical sequencing from pure culture and has the potential to yield near 

complete genomes allowing for functional analysis and increased understanding of 

individual contributions to the community metabolism60.  

1.2.1 -omics 

Meta-omics, a discipline that includes metagenomics, metatranscriptomics, 

metaproteomics and metabolomics, attempts to view the microbial community as a whole, 

rather than the sum of its culturable parts. Metagenomics is the study of total DNA while 

metatranscriptomics, metaproteomics and metabolomics are the study of total mRNA, 

total protein and total metabolites respectively. While metagenomics, metatranscriptomics 

and metaproteomics is the study of a community of micro-organisms, metabolomics can 

also refer to the metabolites in a single species culture. Collectively they have the potential 

to provide a complete picture of the metabolic activities within a microbial community. 

Metagenomics may also provide better measures of microbial diversity, by negating primer 

bias that can occur with PCR amplification, and of relative abundance, by negating the 

varying copy numbers of target genes. 

1.2.2 Assembly and binning 

The reads from sequencing can be analysed directly using programs such as SSuMMo64, 

assembled into contigs using programs such as Megahit65, or binned into operational 

taxonomic units (OTU’s) by programs such as COCACOLA66 or MetaBAT67. Unassembled 

reads allow for the relative quantification of taxa or functional information, while assembly 

into contigs allows for the reconstruction of genes or genomes for more reliable 

phylogenetic or functional assignment. Binning, or clustering, aims to reconstruct either full 

or partial fragmented genomes from contigs and provides the best way of viewing a 

microbial community as a whole. 

Individual sequencing reads are assembled into longer contigs using overlapping 

sequences, and the contigs can then be binned into clusters of contigs using a variety of 
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parameters, but often relative abundance. Each cluster represents a single genome as an 

operational taxonomic unit, or OTU. However, the recovery of genomes from metagenomic 

data is a complex task and binning is an error prone process. Often contigs are falsely 

assigned to OTU’s during the binning process leaving the user with a choice: either re-bin 

the contigs, ignore the data from those OTU’s, or accept that their data is inaccurate. 

1.2.3 Metabolic analysis 

One of the largest advantages of shotgun metagenomic sequencing over 16S rRNA gene 

amplification and sequencing is the functional information gained that can be used to infer 

and assign metabolic pathways to individual species. 

Pathway mapping is becoming an increasingly useful tool for metabolic analysis and a 

variety of databases are available to link individual genes into pathways. EcoCyc is an 

extensive database, for probably the most comprehensively studied organism in history, 

ideal for detailed pathway mapping in Escherichia coli68. It’s sister site MetaCyc contains a 

repertoire of 2609 pathways from 2914 organisms designed for understanding 

metagenomic data, as well as a tool for the building of metabolic networks from annotated 

genomes69. Kyoto Encyclopaedia of Genes and Genomes (KEGG) also contains a pathway 

mapping database, KEGG Mapper, comprising of manually drawn diagrams built from 

published literature70. However, to analyse the metabolism of a novel genome using KEGG 

annotation using their web- based genome annotation services BlastKOALA or GhostKOALA 

is required70,71. Unfortunately, while comprehensive, these databases and pathways are 

often built only for specific species or specific purposes and use web-based servers, 

unpractical for use with large metagenomes from AD which can have hundreds or 

thousands of OTU’s1,40. There is not a tool currently available that allows quick and 

automated mapping for large metagenomic data sets. 

1.3 Aims 

Anaerobic digesters have rich and complex communities consisting of hundreds of different 

potential species and many suspected intra-/inter-species interactions39,45. Low abundance 

species that are indiscernible during “normal” conditions can provide robustness to AD 

systems during environmental changes, and communities can vary greatly in taxonomic 

complexity between systems complicating attempts to reconstruct the AD microbiota in its 

entirety1,46. Often only a small number of relatively complete genomes are recovered from 

a metagenome sample, even in samples that are less taxonomically diverse than those in 

AD62. As a result, the microbiology behind AD communities remains relatively unknown. 
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In the face of ever increasing datasets, better tools and pipelines for the automated 

analysis of metagenomic data from AD are required. Towards this aim, a pipeline has been 

built for use with UNIX multicore workstations consisting of 5 custom Python scripts, 

CheckM72 and Prokka73. The pipeline consists of a number of steps helping to identify near 

complete genomes, remove contamination and assign metabolic pathways to individual 

genomes.  
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2.  Development of Tools and Materials  

 

2.1 Multi-contig contamination removal tool 

Metagenomic binning represents a “best guess” approach and the miss-binning of contigs 

is of particular concern when reconstructing genomes63. Before attempting to analyse the 

metabolic capabilities of an OTU, multi-species bins must be split into their component 

genomes and contamination removed. Genome completeness and contamination are 

typically measured using a number of universal single copy genes. CheckM provides 

information on genome completeness and contamination that could be used to identify 

contaminating contigs containing these genes and remove them into a separate bin72. 

However the single copy genes used for estimating completeness and contamination 

typically constitute less than 10% of genes and are unevenly distributed across the genome 

meaning that simply removing contigs identified by CheckM is not enough to ensure an 

uncontaminated OTU metabolically63. 

For the identification and removal of contaminating contigs the multi-contig contamination 

removal (MCCR) tool, 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/Multi-

Contig_Contamination_Removal.py), a custom Python script utilizing both sequence 

composition and taxonomy, was designed. 

GC content (%GC) is a compositional tool that has been used for many years in the analysis 

of DNA and genomes.  Individual species have each evolved their own specific %GC, 

although we know little about why74. %GC does vary throughout a genome, sometimes due 

to the acquisition of genetic elements through horizontal gene transfer, but over long 

stretches of DNA %GC is relatively consistent. The same can be said for the frequencies of 

individual tetranucleotides as shown in Figure 2.175. This makes both %GC and the 

frequencies of tetranucleotides (TNF) potentially good methods of identifying miss-binned 

contigs through sequence composition and these compositional statistics already feature in 

some binning software66,75. However, the contigs within a metagenome are not always of a 

length where the %GC or the TNF are representative of the genome as a whole, and 

therefore it is unwise to make binning decisions on sequence composition alone. For this 

reason, the MCCR tool uses sequence composition to identify potentially miss-binned 

contigs but uses taxonomy and alignments to known organisms to ultimately make the 

decision of where a contig belongs.  
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The MCCR tool takes an OTU in FASTA format generated during binning of contigs from a 

metagenome and builds any number of putative genomes from it depending on the level of 

contamination. An overview of the process can be found in Figure 2.2. The core script 

consists of 3 key steps: 

Assignment of a putative phylum:  The putative genome is assigned a putative phylum 

based on a blastn76 search of the longest contig. The phylum is assigned from the 

blastn result using searches of the genus name against 53 phylum TXT files adapted  

      (A)   (B) 

 
(C) 

 Figure 2.1 Example tetranucleotide frequency profiles  

Tetranucleotide frequency profiles generated from clustered heatmaps of the tetranucleotide 
frequencies from 20 kb contigs of Acidipropionibacterium acidipropionici (A) and Defluviitoga 
tunisiensis (B)(C). Darker colours represent a higher frequency of a specific tetranucleotide 
within a contig, better shown in an expanded section of (B) in (C). Each contig has a specific 
tetranucleotide frequency pattern, which is similar to the other contigs of that genome but 
different to that of a different genome. A. acidipropionici has a %GC of 68.9 whereas D. 
tunisiensis has a %GC of 31.4. As such in (A) containing a GC-rich genome, the centre columns 
containing tetranucleotides starting with C and G tend to be darker than those in (B), while in 
(B), an AT-rich genome, the outer columns containing tetranucleotides starting with A or T 
tend to be darker than those in (A). 
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from NCBI taxonomy browser77, each containing lists of all the known genera 

within that phylum. 

Filtering by %GC:  The putative genome is assigned a putative %GC based on the %GC 

of the longest contig. Any contig with a %GC too dissimilar to that of the longest 

contig are identified for taxonomic analysis using the top 10 hits (arbitrarily chosen) 

from a blastn search of the contig. If the assigned putative phylum of the genome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Overview of the MCCR tool to remove contamination  

Each OTU of pre-binned contigs is assigned a putative phylum and putative %GC. Contigs with 

a dissimilar %GC to that assigned to the OTU are analysed and either accepted as part of the 

new putative genome, or rejected and removed. The TNF of each contig is calculated, and 

those with a TNF profile least similar to the rest are analysed in a looping fashion until all the 

contigs can be assigned to the putative phylum via blastn searches, creating an 

uncontaminated genome. All those contigs that have been rejected now act as a new OTU to 

be analysed, looping until all the contigs can be assigned to an uncontaminated genome.  
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appears within the phyla of the top 10 hits, the contig is accepted as part of the 

genome, otherwise it is rejected. 

Tetranucleotide frequency analysis: The TNF percentages of the remaining contigs are 

calculated and clustered on a heatmap as in Figure 2.1. The 10 (arbitrarily chosen) 

least similar contigs based on this TNF percentage clustering are identified for 

taxonomic analysis as described above. If a rejected contig is found in the outliers, 

it is removed, the contigs re-clustered and the new outlying 10 analysed iteratively 

until all 10 are accepted. 

After analysis, two FASTA files are generated from the original OTU, one containing all the 

contigs that have been rejected from the OTU and one containing the contigs that have 

not. The FASTA file of rejected contigs then feeds back into the script as an OTU to be 

analysed, and this continues until all contigs have been built into a putative genome. 

Numerous versions of the MCCR tool were built during development in order to maximise 

the efficiency and accuracy with which the contigs were binned through this script. 

2.1.1 Testing 

To test the accuracy of this tool in identifying and removing contamination and in splitting 

OTU’s of contigs from different phyla/species, mock community 1 was created. 11 

randomly chosen genomes of varying %GC and phyla were downloaded from Genbank78 

(Table 2.1(A)). These were split into contigs of varying length using a custom python script, 

Contig_Creator.py 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/ContigCreat

or.py), to better model data from metagenome datasets. Contig_Creator.py split whole 

genomes into contigs modelling metagenomic genomes with a bias towards shorter 

contigs, as these are typically harder to bin and analyse correctly. Contig lengths started at 

arbitrarily chosen 2 kb, and every 10th contig the contig length would increase by 80 bp, 

creating a wide range of contig lengths from a single genome. Genomes split into contigs 

were then combined into 15 highly contaminated synthetic OTU’s such that each OTU 

contained 2 full genomes and the genomes were from different phyla (Table 2.1(B)). Since 

the MCCR tool relies on the sequence composition differences between contigs and 

genomes, a variety of differences in %GC between the two genomes were created. 3 

synthetic OTU’s for each difference in %GC, 0-1.5%,1.5-5%,5-10%,10-15%, and 15-20% 

were created (Table 2.1(B)). Since they are known organisms, to prevent alignments with 

the original genome in the NCBI database, a negative GI list was used containing the GI  
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numbers of all samples from metagenome datasets and from the organisms in the 

synthetic dataset. 

  

Kingdom Phylum Species Name GenBank Reference %GC 

Bacteria Actinobacteria 
Acidipropionibacterium 
acidipropionici GCA_000310065.1_ASM31006v1 68.9 

Bacteria Synergistetes Cloacibacillus evryensis GCA_000585335.1_ASM58533v1 56.0 

Bacteria Thermotogae Defluviitoga tunisiensis GCA_000953715.1_DTL3 31.4 

Bacteria Chloroflexi 
Dehalococcoides 
mccartyi 

GCA_000009025.1_ASM902v1 
47.0 

Bacteria Bacteroidetes 
Leadbetterella 
byssophila GCA_000166395.1_ASM16639v1 40.4 

Archaea Euryarcheota 
Methanobrevibacter 
ruminantium GCA_000024185.1_ASM2418v1 32.6 

Archaea Euryarcheota 
Methanoregula 
formicica GCA_000327485.1_ASM32748v1 55.2 

Archaea Euryarcheota 
Methanothermobacter 
wolfeii GCA_900095815.1_SIV6 48.9 

Bacteria Proteobacteria Orrella dioscoreae GCA_900089455.2_OrrDiv2 67.4 
Bacteria Firmicutes Paenibacillus borealis GCA_000758665.1_ASM75866v1 51.4 

Bacteria Aquificae Thermocrinis albus GCA_000025605.1_ASM2560v1 46.9 

(A) 
 

Synthetic 
OTU 

Genome 1 Genome 2 
Difference in 
%GC 

A Defluviitoga tunisiensis Methanobrevibacter ruminantium 1.2 (0-1.5%) 

B Cloacibacillus evryensis Methanoregula formicica 0.8 (0-1.5%) 

C Thermocrinis albus Dehalococcoides mccartyi 0.1 (0-1.5%) 

1A Paenibacillus borealis Methanoregula formicica 3.8 (1.5-5%) 

1B Paenibacillus borealis Cloacibacillus evryensis 4.6 (1.5-5%) 

1C Orrella dioscoreae Acidipropionibacterium acidipropionici 1.5 (1.5-5%) 

2A Defluviitoga tunisiensis Leadbetterella byssophila 9.0 (5-10%) 

2B Cloacibacillus evryensis Methanothermobacter wolfeii 7.1 (5-10%) 

2C Dehalococcoides mccartyi Cloacibacillus evryensis 9.0 (5-10%) 

3A Cloacibacillus evryensis Acidipropionibacterium acidipropionici 12.9 (10-15%) 

3B Paenibacillus borealis Leadbetterella byssophila 11 (10-15%) 

3C Leadbetterella byssophila Methanoregula formicica 14.8 (10-15%) 

4A Defluviitoga tunisiensis Methanothermobacter wolfeii 17.5 (15-20%) 

4B Leadbetterella byssophila Cloacibacillus evryensis 15.6 (15-20%) 

4C Paenibacillus borealis Acidipropionibacterium acidipropionici 17.5 (15-20%) 

(B) 

Table 2.1 Building of a synthetic mock community 

11 complete genomes were downloaded from Genbank (A) and combined into 15 highly 

contaminated synthetic OTU’s (B), each OTU containing 2 full genomes, based on the 

differences in %GC between their genomes to create a variety of testing conditions. All OTU’s 

fit in one of 5 difference in %GC brackets: 0-1.5%, 1.5-5%, 5-10%, 10-15% and 15-20%, and all 

5 difference in %GC brackets had 3 representatives. 

 

 

 

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Acidipropionibacterium_acidipropionici/all_assembly_versions/GCA_000310065.1_ASM31006v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Cloacibacillus_evryensis/all_assembly_versions/GCA_000585335.1_ASM58533v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Defluviitoga_tunisiensis/all_assembly_versions/GCA_000953715.1_DTL3
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Leadbetterella_byssophila/all_assembly_versions/GCA_000166395.1_ASM16639v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/archaea/Methanobrevibacter_ruminantium/all_assembly_versions/GCA_000024185.1_ASM2418v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/archaea/Methanoregula_formicica/all_assembly_versions/GCA_000327485.1_ASM32748v1
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/archaea/Methanothermobacter_wolfeii/all_assembly_versions/GCA_900095815.1_SIV6
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/Orrella_dioscoreae/all_assembly_versions/GCA_900089455.2_OrrDiv2
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2.1.2 Development of the script  

2.1.2.1 Assignment of a putative phylum 

 

The longest contig in an OTU is assumed to create the most reliable alignment through its 

blastn search of the NCBI database and therefore can be most reliably assigned the correct 

taxonomy. Because of this it is used as an anchor point in which to build the new “genome” 

around from a contaminated OTU. Initial measurements of accuracy were promising. Over 

the 15 samples, Version 5A was able to correctly bin 79% of contigs accurately (Figure 

2.3(A)). However unnecessary numbers of genomes were created, an average of 3, due to 

genomes being created around less reliable BLAST results (Figure 2.3(B)). 

For example, OTU 2C generated 4 “genomes” rather than the 2 it should. The first genome 

was built around a contig from C. evryensis, correctly assigned to Synergistetes from a 

blastn result with an evalue of 0. The second genome was built around a second contig 

from C. evryensis, incorrectly assigned to Proteobacteria from a blastn result with an evalue 

of 0.092. The third genome was built around a contig from D. mccartyi, correctly assigned 

to Chloroflexi from a blastn result with an evalue of 0. The forth genome was built around a 

contig that was unable to be assigned a phylum, as well as having an evalue of 0.049 from 

its blastn result. Although the contigs were binned with 88% accuracy for this OTU, the 

generation of so many genomes is misleading as to how many organisms were present in 

the OTU. 

To prevent the generation of misleading numbers of genomes, in Version 5B, for a contig to 

act as an anchor point, the contig must fulfil the condition that the BLAST result must have 

(A)  (B) 

Figure 2.3 Comparing Version 5A and Version 5B of the MCCR tool 
Comparison of binning accuracy (A) and number of genomes (B) created from each OTU in mock 

community 1 between Version 5A and Version 5B of the MCCR tool. In Version 5A, the putative 

phylum of a genome was calculated using a blastn search of the longest contig within an OTU, 

regardless of the result. In Version 5B, the blastn search had to return a result with an evalue of 

0 for the contig to be used for assigning a putative phylum, else the next longest contig was used 

until an appropriate result was found. 
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an evalue of 0. If the condition is not met, the next longest contig is used iteratively until a 

result that meets the condition is found. By adding this condition, it prevents new genomes 

being generated around contigs that can’t be firmly assigned to an existing species. This 

increases accuracy, measured using Equation 2.1, from 79% to 81% and reduces the 

number of genomes generated from a sample from 3 to 2.2 (Figure 2.3).  

 

If an anchor point can’t be found, or there is only a single contig left that hasn’t been 

assigned to the genomes previously built, the remaining contigs will be placed in a FASTA 

file of unassigned contigs. 

From these initial results in Figure 2.3(A) it is obvious that both Version 5A and Version 5B 

finds OTU’s where the difference in %GC is largest easier to separate more accurately. On 

average there was a large jump in accuracy once the difference in %GC was greater than 

5%. For Version 5B those with a difference of less than 5% in %GC had an average accuracy 

of 62% whereas those with a difference of greater than 5% in %GC had an average accuracy 

of 94%. 

2.1.2.2 Size vs %GC 

To measure the effect of contig size on binning accuracy and to assess whether contig 

length needs to be a considered variable when binning, 5 additional mock communities 

were generated using contigs of a specific size. Each genome from Table 2.1(A) was split 

into contigs of length 2kb, 4kb, 6kb, 10kb and 20kb using a slight variation of 

Contig_Creator.py and combined as in Table 2.1(B), generating 75 OTU’s of varying 

differences in %GC and contig length.  

Averages for the 3 synthetic OTU’s in each difference in %GC bracket were taken and 

compared across the different contig lengths in Table 2.2. The binning accuracy increases 

slightly on average in response to longer contigs, however binning accuracy was only 

increased by 4% in response to a 10-fold increase in length between 2kb and 20kb contigs. 

As can be seen in Figure 2.4(A), when contig length is plotted against accuracy, length 

doesn’t appear to have a clear effect on accuracy in comparison to Figure 2.4(B) where the  

Accuracy = 
Total number of correctly binned contigs 

*100 Total number of contigs within an OTU 

Equation 2.1 
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 Length of Contigs  

2 kb 4 kb 6 kb 10 kb 20 kb Average 

Difference 
in %GC 

0-1.5% 64% 53% 59% 77% 75% 65% 

1.5-5% 81% 85% 74% 82% 88% 82% 

5-10% 82% 82% 91% 90% 95% 89% 

10-15% 93% 96% 97% 89% 99% 95% 

15-20% 95% 97% 96% 98% 98% 97% 

 Average 83% 84% 83% 84% 87%  

Table 2.2 Binning accuracies of Version 5B: %GC vs contig length 

Analysing the effect of contig length on binning accuracy across differing difference in %GC 
brackets using Version 5B. Mock communities 2-6 were created as in Table 2.1(B) using 
contigs of specific sizes: 2 kb, 4 kb, 6 kb, 10 kb and 20 kb respectively to assess if contig length 
effects binning accuracy. 
Since it has previously been established that differences in %GC affect binning accuracy, 
averages of accuracy scores for each difference in %GC bracket containing 3 representatives 
are shown and compared across 5 contig lengths. Scores of >90% accuracy are highlighted in 
yellow. 

 

               (A)   

              (B) 

Figure 2.4 Comparative graphs of the effect of contig length (A) and difference in %GC (B) on 
binning accuracy using Version 5B. 

Graphical representation of data taken from Table 2.2. 5 additional mock communities were 

created as in Table 2.1(B) using contigs of specific sizes: 2 kb, 4 kb, 6 kb, 10 kb and 20 kb 

respectively to assess if contig length effects binning accuracy across the 5 difference in %GC 

brackets. (A) Binning accuracy of the 5 differences in %GC against contig length using Version 

5B (B) Binning accuracy of 5 different contig lengths against differences in %GC using Version 

5B. 
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difference in %GC between the two genomes has a clear effect on binning accuracy 

regardless of contig length. 

An additional 2 mock communities, mock community 7 and 8, were created using contigs of 

varying but increasingly smaller lengths rather than contigs of all the same length to further 

analyse the effect on contig length against accuracy using Version 5CE2. The lengths of 

contigs of mock community 7 and 8 were ~65% and ~50% of those in mock community 1 

respectively. As shown in Figure 2.5, on average accuracy only marginally decreased with 

decreasing average contig length. Even using a later and more accurate version of the 

MCCR tool and using mixed length contig OTU’s, average contig length still has little effect 

on accuracy.  

2.1.2.3 Development of GC filter 
By calculating the likely %GC content of one species in a OTU using the longest contigs, 

particularly different contigs from potentially different species, can be easily identified for 

further analysis. Initially in Version 5A and Version 5B the %GC filter was the longest contig 

%GC +/- 5% such that any contig with a %GC higher than the %GC of the longest contig + 

5% or less than the %GC of the longest contig – 5%, was analysed. However different 

combinations of genomes within mock community 1 differ in the range of %GCs the contigs 

produce. The %GC of contigs from OTU’s generated from genomes with a 0-1.5% difference 

were only spread across 26%, whereas those from a 15-20% were spread across 35%.   

OTU’s generated from genomes that are more similar in their %GC will have far more of 

their contigs within that 10% window that aren’t analysed as highlighted in Figure 2.6(A). 

This one of the reasons why contigs from those with only 0-1.5% difference in %GC are 

 

Figure 2.5 Binning accuracy of Version CE2 in respect to contig length 

Mock community 7 and 8 were created as in Table 2.1(B) containing variable but increasingly 
smaller average contig lengths compared to mock community 1. 
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binned ~30% less accurately than those with a 15-20% difference as shown in Table 2.2. 

Changing the %GC filter to reflect the differences in the total range of %GCs in an OTU 

seemed more appropriate. To identify a better method of identifying contigs based on 

%GC, the %GC filter was changed to be +/- either 5%, 10%, 20% or 40% of the %GC range, 

calculated as in Equation 2.2. 

%GC range = highest %GC – lowest %GC of the OTU 

Equation 2.2 

Overall the most accurate %GC filter proved to be using +/-5% of the %GC range (Figure 

2.7(A)), but this created an additional problem. Speed has not been measured as part of 

the development of this tool, however the most computationally exhaustive part of this 

script is the use of blastn even when using a local database rather than web interface. 

Therefore, for these analyses speed is roughly inversely equal to the number of alignments 

that take place. When using +/- 5% of the %GC range, the number of alignments that took 

place was much higher, making the script quite slow. Steps towards ensuring the script was 

more efficient had been taken in creating a TXT file of all the blastn results that could be 

searched through for the results first, before any additional alignments took place,  

 (A) (B) 
Figure 2.6 Graphical comparison of %GC filter between Version 5A/B and Version 5CE2. 

A graphical representation of the distribution of contigs across length and %GC for OTU’s C(A) 
and 4C(B) showing the upper and lower bounds of the %GC filter of the MCCR tool. The upper 
and lower bounds of Version 5A/B are shown using dashed lines, while those of Version 5CE2 
are shown with solid lines. For contigs outside of the lines, blastn is used to assign a 
taxonomy and assess whether the contig belongs in the genome. (A) OTU C has a difference 
in %GC of 0.1 and a range of %GC of 20.3 The use of Version 5CE2, rather than Version 5A/B, 
increases the number of contigs analysed. (B) OTU 4C has a difference in %GC of 17.5% and 
range of %GC of 42.3. The use of Version 5CE2, rather than Version 5A/B, slightly decreases 
the number of contigs analysed. 
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preventing anything needing to be analysed twice. But still a balance needed to be struck 

between accuracy and efficiency. 

The percentage of the %GC range that gave the highest accuracy for each synthetic OTU 

was taken and compared to the %GC range. A scatter graph of preferred percentage of 

%GC range vs %GC range indicated that the smaller the %GC range, the smaller the 

percentage of the %GC that should be used as shown in Figure 2.8.  

Two exponential functions were devised using a trendline so that where the %GC range is 

very large or small, the %GC filter reflects this, creating a balance between efficiency and 

accuracy. These were the longest contig %GC +/- 0.07*e(0.13*%GC range) in Version 5CE 

and the longest contig %GC +/-  0.04*e(0.14*%GC range) in Version 5CE2. 

(A) 

(B) 

Figure 2.7 Comparison of binning accuracies and efficiencies 
A number of different percentages of the %GC range were used for development of the %GC 
filter. 5%, 10%, 20% and 40% for 5C.05, 5C.1, 5C.2 and 5C.4 respectively. Binning Accuracy (%) 
denotes the accuracy with which contigs are binned as a result of that %GC filter, while number 
of unnecessary alignments is the number of BLASTS that had no effect on the outcome of the 
accuracy (%). 
 



35 
 

 

 

By using an exponential function, the average accuracy was increased by 4% to 85% using 

Version 5CE and by 5% to 86% using Version 5CE2 (Figure 2.9). The exponential function 

had a marked increase on OTUs with a difference of less than 5% in %GC, increasing 

average accuracy of 62% using Version 5B to 77% using Version 5CE2. 

 

                      

Figure 2.8 Calulating the exponential function used in the %GC filter of Versions 5CE and 5CE2 

The %GC filter was changed so that it was calculated using a percentage of the %GC range of 
an OTU highlighted in Figure 2.4. Plotting of the %GC range against the % of the %GC range 
that gives the highest result from Table 2.5 finds an exponential relationship used in the %GC 
filter of Version 5CE and Version 5CE2 of the MCCR tool. 
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Figure 2.9 Development of the MCCR tool 

An additional 6 versions of the MCCR tool were created and their binning accuracies measured. 
5CE and 5CE2 use two different exponential functions for the %GC filter, while 5DE2 explores 

increasing the depth of the TNF analysis to 20 contigs, and in 5DE2-D removing the TNF step 

entirely. 5EE2 explores setting a minimum evalue of 1e-05 for all blastn analysis. 
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2.1.2.4 Development of TNF profiling 

 

In addition to the %GC filter, a second measure of sequence composition is used: the 

percentage frequency of tetranucleotides within a given contig. Similar to the %GC filter, it 

is based on the assumption that the majority of a genome will have a similar percentage 

frequency across the 256 tetranucleotide combinations66,75. This is far more sensitive than 

using %GC content alone for analysis, and can be used to separate species that have similar  

%GC, but have different TNF profiles, shown in Figure 2.10. TNF is calculated as a 

percentage, the frequency of a given tetranucleotide divided by the total length of the 

contig. 

Initially the 10 least clustered contigs, or more specifically the top 5 and bottom 5 contigs 

of the clustered heatmap, are analysed. To see if increasing or decreasing the number of 

contigs analysed in this way increased accuracy, the top 10 and bottom 10 contigs were 

analysed in Version 5DE2 and this step was removed entirely in Version 5DE2-D (Figure 

2.9). Surprisingly by increasing the number of contigs taken, the average accuracy 

marginally decreased. Comparing Version 5CE2 and Version 5DE2, the accuracy of only 4 

 

                       

Figure 2.10 TNF profiles highlight compositional differences in sequences between highly similar 
genomes. 

The TNF profile of OTU 1C with a 1.5 difference in %GC between the %GC of A. acidipropionici 
and O. dioscoreae genomes within it. The contigs from A. acidipropionici (highlighted in blue) 
and O. dioscoreae (highlighted in orange) although very similar in terms of %GC clearly separate 
according to the TNF profiles of their contigs. 
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 1C Tetranucleotide frequency profile 

Tetranucleotides 
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synthetic OTU’s increased when increasing the number of contigs analysed by this step, 3 

decreased while 8 had no change in accuracy. Unsurprisingly, removing this step altogether 

also resulted in a decrease in accuracy to 85% and it is better to use both %GC and TNF to 

identify potentially contaminating contigs. 

Finally, in Version 5EE2 a minimum evalue was placed on the blastn results from both the 

%GC filtering and TNF analysis to ensure higher quality blastn results. A minimum evalue of 

1e-05 resulted in a marginal decrease in binning accuracy (Figure 2.9). 

2.1.3 Discussion 

The MCCR tool version with the highest average binning accuracy developed was Version 

5CE2 at 86.23%. In this version a contig must have a blastn evalue of 0 to act as an anchor 

point for building a genome from an OTU, the %GC filter is calculated using the longest 

contig %GC +/-  0.04*e(0.14*%GC range), 10 contigs are used for each loop of the TNF 

analysis, and there is no minimum evalue required for the blastn results from either the 

%GC filter or TNF analysis. 

As shown in Table 2.5(A), on average the MCCR tool is far more effective at splitting 

synthetic OTU’s with a difference in %GC of > 5% than < 5%, likely due to the difficulties 

with identifying contigs in a sample that is made of sequences that are compositionally 

similar. A rough estimate of potential accuracy of the script and synthetic OTU’s was 

calculated by using the MCCR tool on each individual genome split into contigs before 

combining into synthetic OTU’s and taking an average of the two genomes that constitute 

each synthetic OTU. This estimate is not OTU specific and doesn’t take into account the 

possibility of the blastn results of contigs from one genome containing the phyla of the 

opposing genome, and only calculates the percentage of contigs that would be rejected 

from their own genome. The calculated potential accuracies vs current accuracies shown in 

Table 2.5(B) highlight 4 OTU’s where the accuracy of the script is far less that what it could 

be. 3 of these OTU’s were in the <5% difference in %GC bracket. The 4th, 3A, is low because 

the blastn results from a large amount of C. evryensis contigs have various Actinobacteria 

species in them, and so the contigs are kept with the rest of the A. acidipropionici genome. 

The issue of genetic material showing high levels of similarity to that of another phylum is 

an issue that could be quite prevalent in genomes that have aquired genetic elements 

through horizontal gene transfer. These additional pieces of DNA take time to acclimatise 

to their new host genomes’s %GC/TNF, and so would likely be singled out using these 

compositional tools and potentially not binned with the genome with which it truly belongs 
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resulting in further genome fragmentation. Although this is an area that will need some 

investigation in the future, it is important to remember that the MCCR tool was designed to 

be used on OTUs that would otherwise be unuseable rather than as a preferred binning 

method. 

Difference in %GC 
(%) 

Potential 
Accuracy (%) 

Current 
Accuracy (%) Current - Potential Accuracy (%) 

0-1.5 93 77 -16 

1.5-5 99 77 -22 

5-10 94 94 0 

10-15 98 88 -10 

15-20 95 95 0 

(A) 

 OTU 
Potential 
Accuracy (%) 

Current 
Accuracy (%) 

Current - Potential 
Accuracy (%) 

A 85 76 -9 

B 97 61 -36 

C 97 95 -2 

1A 99 82 -17 

1B 98 60 -38 

1C 100 90 -10 

2A 88 85 -3 

2B 98 99 1 

2C 96 97 1 

3A 98 72 -26 

3B 99 94 -5 

3C 98 98 0 

4A 89 93 4 
4B 97 93 -4 

4C 100 100 0 

Average 96 86 -10 

 (B) 

Table 2.3 Potential vs current binning accuracies of the MCCR tool  

(A) Averages of potential and current accuracies are taken for each difference in %GC 

bracket highlighting areas for improvement.  

(B) Potential and current accuracies of each OTU in mock community 1. Potential 

accuracies are calculated by determining the percentage of all contigs in an OTU that 

return results for their own phylum. In theory this is the maximum binning accuracy the 

MCCR tool could achieve. Current accuracy is the current binning accuracy of the tool. 

OTU’s with current accuracies of < 75% are highlighted in yellow.  
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Both A and 2A have relatively low accuracies, both potential and current, because of D. 

tunisiensis. The MCCR tool bins the D. tunisiensis genome alone with only 78% accuracy, 

compared to the >90% for the others, meaning only 78% of its contigs have alignments to 

species within Thermotogae. Both this low score and that from 3A with C. evryensis is likely 

a result of how limited the diversity of the phyla and genera are and their current under-

representation in the tree of life of cultured organisms. C. evryensis belongs to 

Synergistetes, with only 17 genera within the phylum and only 4 species in Cloacibacillus. D. 

tunisiensis belongs to Thermotogae with only 14 genera and is the only species within 

Defluviitoga (Table 2.6). Attempts were made to circumvent this problem by introducing 

greater flexibility around the blastn e-value condition by allowing alignments with up to a 

maximum of 1e-05. In the case of A and 2A this instead decreased the binning accuracy by 

up to ~6%, although it is valuable to note that a decrease in accuracy was not shown for all 

synthetic OTU’s and as such should perhaps be a flexible and user defined parameter.  

These results highlight a very specific problem with using taxonomy to bin contigs, in that it 

works well if the genome belongs to a phylum that is very well represented such as 

Proteobacteria, but it will always be less accurate if the phylum is smaller like Synergistetes 

or Thermotogae. 

2.2 Metabolic pathway prediction tool 

In order to quickly find genomes with pathways of interest in a metagenome the metabolic 

pathway prediction (MPP) tool, written in Python, was created 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/Metabolic_P

athway_Prediction.py). This tool uses gene names from a number of manually built  

Kingdom Species Name Phylum 
# genera within 
the phylum 

# species within 
the genus 

Bacteria A. acidipropionici Actinobacteria 424 6 

Bacteria C. evryensis Synergistetes 17 4 

Bacteria D. tunisiensis Thermotogae 14 1 

Bacteria D. mccartyi Chloroflexi 38 39 

Bacteria L. byssophila Bacteroidetes 421 2 

Archaea M. ruminantium Euryarcheota 120 112 

Archaea M. formicica Euryarcheota 120 19 

Archaea M. wolfeii Euryarcheota 120 14 

Bacteria O. dioscoreae Proteobacteria 889 1 

Bacteria P. borealis Firmicutes 587 ~4170 

Bacteria T. albus Aquificae 14 9 

Table 2.4 Taxonomy statistics for each genome of mock community 1 according to the NCBI 

taxonomy browser77 
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pathway files each containing a metabolic pathway and its enzymes. These were adapted 

from KEGG70, MetaCyc69 and literature searches57 and are used in combination with GBF 

files generated from genome annotation using Prokka73. By searching for the enzyme 

name, or names, involved in each step of a given pathway within an annotated genome, an 

estimated measure of pathway completeness can be given and shown on a heatmap where 

the darkest colours indicate more complete pathways (Figure 2.11). In this way, by 

searching up the column of a pathway in the heatmap, genomes containing that pathway 

can be easily identified. The heatmap itself is built from a tab delimited TSV file containing 

all the numerical pathway percentages, which can be used instead of or in combination 

with the heatmap.  

The MPP tool is designed to give a general overview of a metagenome through its 

heatmap, however it also generates a 3rd type of output: metabolism files for each  

 
Figure 2.11 MPP heatmap of known organisms 

A heatmap of the given metabolic pathways against each genome, where darker colours 

indicate more complete pathways. This provides an easy method of searching for pathways of 

interest within a metagenome 
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Glycolysis 
 
--Glucose-->Glucose-6-Phosphate(G6P)-- 
 -ppgK- glucokinase   -glkA- glucokinase   
 
--Glucose-6-Phosphate(G6P)-->Fructose-6-Phosphate(F6P)-- 
 -pgi- glucose-6-phosphate isomerase  
 
--Fructose-6-Phosphate(F6P)-->Fructose-1,6-Phosphate(FBP)-- 
 -pfkA2- 6-phosphofructokinase  -pfp- 6-phosphofructokinase
  -pfkA- 6-phosphofructokinase  
 
--Fructose-1,6-Phosphate(FBP)-->Glyceraldehyde-3-phosphate(GAP) + Dihydroxyacetone 
Phosphate(DHAP)-- 
 -fda- fructose-bisphosphate aldolase  -fba- fructose-
bisphosphate aldolase  -fbaA- fructose-bisphosphate aldolase  
 
--Glyceraldehyde-3-phosphate(GAP)<-->Dihydroxyacetone Phosphate(DHAP)-- 
 -tpiA- triosephosphate isomerase  
 
--Glyceraldehyde-3-phosphate(GAP)-->1,3-Bisphosphoglycerate (1,3-BPG)-- 
 -gap2_1- glyceraldehyde 3-phosphate dehydrogenase  -gap2_2-
 glyceraldehyde 3-phosphate dehydrogenase  -gpr_1- glyceraldehyde 3-
phosphate dehydrogenase  -gpr_2- glyceraldehyde 3-phosphate dehydrogenase
  
--1,3-Bisphosphoglycerate (1,3-BPG)-->3-Phosphoglycerate(3PG)-- 
 -pgk- phosphoglycerate kinase  
 
--3-Phosphoglycerate(3PG)-->2-Phosphoglycerate(2PG)-- 
 -gpmA_1- 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase 
 -gpmA_2-2,3-bisphosphoglycerate-dependent phosphoglycerate mutase  
 
--2-Phosphoglycerate(2PG)-->Phosphoenolpyruvate(PEP)-- 
 -eno_1- enolase  -eno_2- enolase  
 
--Phosphoenolpyruvate(PEP)-->Pyruvate-- 

 -pyk- pyruvate kinase                                                                                                                (A) 
 
--Xylan Degradation-- 
 -xynA_1- endo-1,3-beta-xylanase   

-xynC_1- glucuronoarabinoxylan endo-1,4-beta-xylanase   
-xynC_2- glucuronoarabinoxylan endo-1,4-beta-xylanase    
-xynA_2- endo-1,3-beta-xylanase    
-xynC_3- glucuronoarabinoxylan endo-1,4-beta-xylanase    
-xynB_1- endo-1,4-beta-xylanase B   
-xynB_1- Exoglucanase/xylanase   
-xynA_3- endo-1,3-beta-xylanase    
-aguA_3- xylan alpha-(1->2)-glucuronosidase   
-xynB_2- endo-1,4-beta-xylanase B   
-xynB_2- Exoglucanase/xylanase   
-xynC_4- glucuronoarabinoxylan endo-1,4-beta-xylanase    
-xynB_3- endo-1,4-beta-xylanase B   
-xynB_3- Exoglucanase/xylanase   
-xynA_4- endo-1,3-beta-xylanase    

-cex- Exoglucanase/xylanase                                                     (B) 
 

Figure 2.12 Individual metabolism file output of the MPP tool 
(A) The glycolysis pathway of A. acidipropionici. For each step in the pathway the 

substrates and products are shown, as well as any enzymes found in the genome 
that are known to catalyse that step.  

(B) The P. borealis genome encodes for many different xylanases, indicating that this 
could be an important pathway in P. borealis metabolism. 
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individual genome. Each metabolism file includes a breakdown of each compound and 

enzymatic step within each analysed pathway so the user can make independent informed 

decisions on the completeness of that pathway (Figure 2.12). These metabolism files can be 

particularly useful in identifying the genes present/missing when pathways are partially 

complete or when pathways are highly similar with similar completeness percentages, but 

differ in a couple of genes, e.g. acetoclastic and hydrogenotrophic methanogenesis. They 

can also show where pathways and genes are present in high copy numbers in genomes 

(Figure 2.12(B)), as well as in linking pathways together, for example linking glycolysis to 

pyruvate fermentation or intermediates from the citrate cycle into glycolysis, as each 

metabolism file shows all compounds used and produced during each step in a pathway. 

2.2.1 Testing 
For testing of the MPP tool, the same 11 genomes used for building mock community 1 in 

testing of the MCCR tool were used (Figure 2.11). Genome information can be found in 

Table 2.1(A). To measure how effectively the MPP tool was able to predict the presence of 

certain pathways the results were compared to those of KEGG, a highly curated database, 

in Tables 2.7-11. If a pathway was >80% complete, it was counted as a complete pathway. 

In total 18 pathway files were built and used for analysis with several from each of the key 

steps in AD: 2 involved in hydrolysis (Table 2.7), 2 involved in acetogenesis (Table 2.8), 6 

involved in fermentation (Table 2.9), and 5 pathways involved with methane production 

and use (Table 2.10) as well as other miscellaneous pathways of interest such as hydrogen 

sulphide production and 2 pathways in central carbon metabolism (Table 2.11). 

In comparison to KEGG, the MPP tool is 93% accurate in predicting the presence of the 

given pathways. Of the 198 results gained from the MPP tool, 18 were excluded from the 

comparison because C. evryensis isn’t in the KEGG database, and an additional 20 were 

excluded as KEGG doesn’t have a pathway for xylan degradation or the use of hydrogen as 

an electron donor during methanogenesis (Tables 2.7 and 2.10). Of the remaining 160, only 

11 results were inconsistent with the annotated data from KEGG. 

From the literature C. evryensis has been shown to be an anaerobic, amino acid utilizing 

bacterium, unable to grow on carbohydrates49. It appears to have a proteolytic 

heterofermentative metabolism showing growth on several amino acids and producing 

acetate, butyrate, H2 and CO2 as well as propionate and valerate in some cases49. It is 

unable to use sulphate, thiosulphate or sulphite as electron acceptors49. The results from 

the MPP are supported by the literature. Through the MPP tool, C. evryensis is shown to be 
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unable to hydrolyse cellulose or xylan (Table 2.7), both polysaccharides, nor does it contain 

the citrate cycle or the assimilatory sulphate reaction (Table 2.11). Contrary to expected for 

a proteolytic metabolism it does contain 80% of the glycolysis pathway (Table 2.11), but 

many of these enzymes could also be used in the pentose phosphate pathway for building 

cell carbon. The MPP tool also found the expected fermentation pathways, showing that C. 

evryensis has the pathways for producing acetate via the acetate kinase pathway, and 

butanoate from pyruvate (Table 2.9). 

 

 

 Hydrolysis pathways 

 

Cellulose 
degradation Xylan degradation 

Species Name KEGG MPP KEGG MPP 

A. acidipropionici - - NA - 

C. evryensis NA - NA - 

D. tunisiensis + - NA + 

D. mccartyi - - NA - 

L. byssophila + + NA + 

M. ruminantium - - NA - 

M. formicica - - NA - 

M. wolfeii - - NA - 

O. dioscoreae - - NA - 

P. borealis + + NA + 

T. albus - - NA - 

Table 2.5 Comparison table of hydrolysis pathways between KEGG and MPP tool 

 

 Acetogenesis 

 

Acetate kinase 
pathway 

Wood-Ljungdahl 
pathway 

Species Name KEGG MPP KEGG MPP 

A. acidipropionici - - - - 

C. evryensis NA + NA - 

D. tunisiensis + + - - 

D. mccartyi - - - - 

L. byssophila - - - - 

M. ruminantium - - - - 

M. formicica - - - - 

M. wolfeii - - - - 

O. dioscoreae + - - - 

P. borealis + - - - 

T. albus - - - - 

Table 2.6 Comparison table of acetogenesis pathways between KEGG and MPP tool 
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2.2.2 Discussion 
One of the problems with metabolic pathway analysis using annotation servers such as 

KEGG is the very rigid structure of the pathway maps. It can be difficult trying to build a 

metabolic network of organisms with unusual metabolisms from each of these rigid 

pathways. However, with the genome metabolism files of the MPP tool, since each step in 

a metabolic pathway is shown including the intermediates, the genome pathway file also 

allows for easy linking between pathways. For example, the intermediates from the TCA 

cycle enter into many different pathways.  

Metabolism can be difficult to predict simply from a genome, especially when enzymes are 

not specific to one pathway like in methanogenesis. The MPP tool shows M. ruminantium 

to contain similar percentages of completeness for acetoclastic and hydrogenotrophic 

methanogenesis, while KEGG and the literature shows it to be purely hydrogenotrophic16.  

Hydrogenotrophic methanogenesis has far more steps, consisting of multi subunit enzymes 

and so from the heatmap acetoclastic and hydrogenotrophic methanogenesis can look 

equally complete. The breakdown of the pathway in the genomes metabolism file shows 

acetoclastic to be missing an essential gene, while hydrogenotrophic is only missing a 

couple of subunits from multi-subunit complexes. M. formicica has been shown to be a 

hydrogenotrophic methanogen rather than acetoclastic experimentally79. However, from 

analysing its genome both through the MPP tool and KEGG, it does contain all the genes 

required for acetoclastic methanogenesis.  

It is also important to remember with fragmented genomes that assumptions shouldn’t be 

made based on the presence of a small number of genes, even with pathways as specific as 

 Other energy metabolism 

 

Assimilatory 
sulphate 
reduction Citrate cycle Glycolysis 

Species Name KEGG MPP KEGG MPP KEGG MPP 

A. acidipropionici + + + + + + 

C. evryensis NA - NA - NA + 

D. tunisiensis - - - - + + 

D. mccartyi - - - - - - 

L. byssophila - + + + + + 

M. ruminantium - - - - - - 

M. formicica - - - - - - 

M. wolfeii - - - - - - 

O. dioscoreae - - + + - + 

P. borealis + + + - + + 

T. albus - - - - - - 

Table 2.9 Comparison table of other energy metabolism pathways between KEGG and MPP 
tool 
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methanogenesis. Several of the genomes in the order Archaeoglobales, which are not 

methanogens, contain a few genes involved in hydrogenotrophic methanogenesis, which 

are instead used in lactate utilization44. The MPP tool attempts to circumvent this issue by 

creating a pathway completeness percentage that can be used in the context of how 

complete the genome is and how complete other pathways in the genome are. 

2.3 Development of a pipeline for the analysis of metagenomic data 

Metagenomic datasets, particularly from AD, are often large and complex. The analysis of 

such datasets can be time consuming with many different steps. In response to this, a 

modular pipeline for the analysis of pre-binned contigs was designed 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/Metagenom

e_Analysis_Pipeline.sh). The automated pipeline consists of 5 custom Python scripts and 

their associated TXT files, CheckM72 and Prokka73 and an overview of this can be seen in 

Figure 2.13. The aim of the pipeline is such: to be easily usable to those with limited 

bioinformatics experience, to analyse the quality of genomes and where possible or 

necessary increase that quality, annotate genomes of a suitable quality and build metabolic 

pathways from the annotated genomes.  

To fulfil the first aim, variables within the pipeline such as which dataset to analyse and 

what levels of completeness and contamination are acceptable are all controlled using a 

single TXT file, “Parameters.txt” 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/Parameters.

txt), meaning the user does not need to enter variables directly into each separate script. 

Metagenome binning is difficult and, regardless of the algorithm used, can result in a large 

number of OTU’s being formed containing only a few short contigs. Towards the second 

aim and to avoid unnecessary analysis on OTU’s too small to contain a full genome, the first 

step is to create a directory for all the analysis to take place in, containing only those 

genomes large enough to contain a genome. This is achieved using FileSize_Filter.py 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/FileSize_Filte

r.py). The user is able to specify the minimum size of an OTU in kilobytes, since 1 kilobase is 

approximately equal to 1 kilobyte, through the Parameters.txt file. Depending on the 

quality of the dataset, measuring the size of an OTU in kilobytes rather than kilobases is 8 

times faster. If the OTU only contains a few long contigs, measuring in kilobases would be 

faster, however the complexity of AD datasets can result in highly fragmented genomes  
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Figure 2.13 Overview of the metagenone analysis pipeline. 

A basic overview of pipeline workflow consisting of 8 steps, 7 programs, and one .txt file to 

provide user submitted variables.  

(A) A directory containing a metagenome, pre-binned into OTU’s, is filtered by size using 

FileSize_Filter.py and the minimum size dictated by a user in the Parameters.txt file. The 

completeness, contamination and taxonomy of these OTU’s is then measured and 

interpreted using CheckM and CheckM_Parser1.py respectively.  

(B) User defined completeness and contamination thresholds in Parameters.txt direct OTU’s 

to different parts of the pipeline depending on the OTU’s contamination. If an OTU is above 

the completeness and below the contamination threshold in Parameters.txt, it is deemed 

acceptable and annotated. If the contamination is too high, the MCCR tool attempts to 

decrease it using the MCCR tool. The contamination and completeness is remeasured using 

CheckM and CheckM_Parser2.py. If the contamination is decreased and the completeness 

still above the threshold from Parameters.py, the OTU is annotated. 

(C) OTU’s are annotated using Prokka as either bacteria or archaea depending on the 

taxonomy assigned by CheckM. The GBF output files generated by Prokka feed into 

Metabolic_Pathway_Prediction.py which screens OTU’s for pathways of interest. 

FileSize_Filter.py 

 

CheckM 

CheckM_Parser1.py 

Multi-contig_Contamin 
ation_Removal.py 

CheckM_Parser2.py 

Prokka 

CheckM 

Metabolic_Pathway_Predition.py 

Directory of OTU’s 

Parameters.txt 

Parameters.txt 

(A) 

(B) 

(C) 
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into thousands of contigs and measuring the size of the file rather than the cumulative size 

of each contig is much faster for roughly the same results. 

 Next CheckM is used to assess genome contamination and completeness using single copy 

marker genes. CheckM_Parser1.py 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/CheckM_Par

ser1.py) rewrites some of the results from 

CheckM into a more readable format containing OTU name, length, assigned taxonomy, 

completeness and contamination. The minimum acceptable completeness and maximum 

acceptable contamination is specified by the user in Parameters.txt, and 

CheckM_Parser1.py uses this information to direct OTU’s, or what could now be 

considered genomes, with acceptable completeness and contamination towards genome 

annotation. 

OTUs with acceptable completeness but too high contamination are directed into the 

MCCR tool, where attempts to decrease contamination are made using sequence 

composition and taxonomy as described in Chapter 2.1. After this CheckM and 

CheckM_Parser2.py 

(https://github.com/KimBarnes/Metagenome_Analysis_Pipeline/blob/master/CheckM_Par

ser2.py) are used to search for OTU’s, or genomes, within the results of the MCCR tool with 

acceptable completeness and contamination and direct them to genome annotation. 

Towards the third aim, genomes are annotated using Prokka73 as either bacteria or archaea 

depending on the taxonomy assigned by CheckM. The GBF output file of Prokka is then fed 

into the MPP tool to create graphical and text representations of the metabolic pathways 

present within each genome. 

2.3.1 Testing 

2.3.1.1 Results 

Mock community 1, shown in Table 2.1(B), consisting of 30 genomes in 15 “highly 

contaminated” synthetic OTU’s was used for the testing of the pipeline. Since all the OTU’s 

contained full genomes the file size threshold was set to an arbitrary 1 kb, completeness 

threshold was set to 90%, and the contamination threshold set to 10%. Of the 15 synthetic 

OTU’s, all were over 1 kb, had a completeness over 90% and contamination over 10% and 

were pushed into the MCCR tool to reduce the contamination. 16 genomes with a 

completeness of >90% and contamination of <10% were created as a result, although an 
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additional 2 had a completeness of >75%. The 16 genomes consisted of 3 archaeal 

genomes and 13 bacterial genomes noted in Table 2.13, that were then annotated using 

Prokka and analysed using the MPP tool. A comparison of the MPP output from the 

pipeline with that from Figure 2.11 of the whole genomes showed that the results were 

fairly consistent and that, for these metabolic pathways at least, use of the MCCR tool did 

not only decrease contamination of the single copy marker genes used by CheckM to 

estimate contamination. 

2.3.1.2 Genome Quality 

7 OTU’s were split only into 2 FASTA files, generating two genomes with completeness and 

contamination within the accepted bounds. These were OTU’s C, 2B, 2C, 3B, 3C, 4B and 4C, 

while OTU’s 2A and 4A both only created 1 genome. However, both 2A and 4A contained D. 

tunisiensis which can’t form a genome with >90% completeness due to its propensity to 

split itself into two genomes as discussed in section 2.1.3. It is interesting to note that there 

were small variations in amount of contamination found in each OTU by CheckM. All the 15 

OTU’s pre-MCCR tool should have a contamination of 100% exactly since they’re made of 2 

full genomes, however this was the case for only 1 of the 15 OTU’s, 1B. 6 OTU’s had 

contamination of less than 100%, and 8 OTU’s had contamination greater than 100%. 

Genome Species 

C-A T. albus 

C-B D. mccartyi 

2A-A L. byssophila 

2B-A C. evryensis 

2B-B M. wolfeii 

2C-A C. evryensis 

2C-B D. mccartyi 

3B-A P. borealis 

3B-B L. byssophila 

3C-A L. byssophila 

3C-B M. formicica 

4A-C M. wolfeii 

4B-A L. byssophila 

4B-B C. evryensis 

4C-A P. borealis 

4C-B A. acidipropionici 

Table 2.10 16 genomes created using the MCCR tool from mock community 1 

16 genomes were created using the MCCR tool with completeness and contamination of >90% 
and <10% respectively, 13 bacterial and 3 archaeal 
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Deceases and increases in contamination could occur from the single copy genes CheckM 

uses to measure contamination being split into two, and either both halves are too small to 

be recognised making the contamination <100% or both halves are big enough to be 

recognised as two copies of the same gene making the contamination >100%. This would 

also explain why CheckM found small amounts of contamination, up to 3.5%, for C-B, 1A-B, 

1C-B, 2A-C, 2B-B, 2C-B, 3B-B, 3C-B, 4A-C, 4B-C and 4C-B, despite them only containing 

contigs from a single species. 

OTU 3C has a completeness of 100% and generates 2 genomes, 3C-A and 3C-B, of 

completeness >98% but only has a contamination of 36.57%, far lower than the other 14 

OTU’s of the mock community. For some reason CheckM only identifies 90 and 47 marker 

genes for L. byssophila and M. formicica respectively within 3C, however when split into 

3C-A (L. byssophila) and 3C-B (M. formicica), CheckM finds 393 and 203 marker genes 

respectively. There appears to be no explanation for why this happens. 

Unsurprisingly those OTU’s that showed the lowest binning accuracies also showed the 

highest levels of contamination post MCCR. For 1B-A, which has the lowest binning 

accuracy at 60%, the contamination measured by CheckM wasn’t decreased at all, despite 

the removal of 170,720 bp in 28 contigs. Opposite to this CheckM found only 11% 

contamination in 1A-A, despite it containing the whole of the P. borealis genome, and 119 

(1,269,738 bp) of the 287 contigs (2,820,858 bp) of M. formicica. 

2.3.1.3 Metabolic Pathway Mapping 

Of the 16 genomes extracted, 13 were annotated as bacteria and 3 annotated as archaea 

based on the taxonomy assigned by CheckM. The GBF output from Prokka of each genome 

was then searched for the 18 metabolic pathways involved in AD. 

Comparing Figure 2.14 of the genomes extracted from mock community 1 and the results 

from Figure 2.11 of the individual genomes, all 16 genomes formed by the MCCR tool 

produced a heatmap that looked visually the same as their original genomes. Although the 

16 genomes, 13 bacterial and 3 archaeal, appeared to have no changes in pathway 

completeness there were a few differences that could be seen in either the TSV file of 

numerical pathway completeness values, or the individual metabolism files. For example, 

the L. byssophila genome from 4B-A contained 10% more of the citrate cycle and 16% more 

of the pyruvate fermentation to butanoate pathway than the original genome. This does 

not appear to be to the detriment of its sister genome 4B-B from C. evryensis which still 

contains the same pathway completeness for those two pathways as the original genome.  
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The D. mccartyi genome from C-B lost 10% of its citrate cycle, which caused the T. albus 

genome in C-A to gain 5% of a citrate cycle. 

2.3.2 Discussion 

It is perhaps unsurprising that only 16 genomes were created from the 15 OTU’s when a 

completeness threshold of >90% is set, as the MCCR tool had a binning accuracy >90% for 

only 8 OTU’s. 7 of the OTU’s with a binning accuracy of >90% created two genomes while 1, 

4A, only formed 1 genome, 4A-C, that was >90% complete. The second genome present in 

4A, D. tunisiensis, split into two “genomes” and although 90% of contigs and 92% of 

sequence from D. tunisiensis, were binned into the same genome, 4A-A, this only 

                         

Figure 2.14 Metabolic pathway analysis of mock community 1. 

16 genomes were formed from the analysis of 15 OTU’s by the metagenome analysis 
pipeline, which were annotated using Prokka and 18 metabolic pathways searched for. 
Representative pathways from each step in AD are shown: (left to right) acetogenesis, 
fermentation, hydrolysis and methanogenesis as well as 3 other pathways involved in energy 
metabolism. Darker colours indicate more complete pathways. 

 

G
en

o
m

e 

Pathways 



53 
 

amounted to 77% of the genome in terms of completeness. This obviously highlights the 

issue with using single copy marker genes in measuring genome completeness, as genome 

completeness measured in this way is not always indicative of functional completeness or 

how much of an organisms’ metabolism is still intact. However it is still the most commonly 

used method for assessing genome completeness72,80,81. The creation of the metabolic 

pathway analysis heatmap made it easy to identify potential genomes of interest. For 

example, it is easy to pick out the 3 methanogenic archaea 2B-B, 3C-B and 4A-C, or the 

hydrolysers 2A-A, 3B-A, 3B-B, 3C-A, 4B-A and 4C-A simply by looking for darker squares in 

the columns of each pathway of interest.  

Although only 16 genomes were extracted from the 15 OTU’s at a completeness of >90%, a 

success rate of only 53%, these are still 16 genomes that would otherwise be considered 

too contaminated to be functionally analysed in a metagenome. There is still much work to 

be done on the MCCR tool in regards to increasing its accuracy, however the remainder of 

the tool was both easy and efficient to run and understand the results. 
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3. Analysis of large metagenomic datasets from anaerobic 

digestion 

A previously unpublished AD metagenome dataset resulting from investigations into the 

effect of DNA extraction methodology was used to better understand both the capabilities, 

and pitfalls, of the pipeline on a real metagenome and to better understand the community 

within the dataset.  

DNA was extracted from 4 samples for each of two commercial mesophilic (35°C) 

wastewater AD systems (Naburn, York, UK and Blackburn Meadows, Sheffield, UK) and one 

lab-scale (5 litre) thermophilic (55°C) AD reactor inoculated with sludge from a waste water 

treatment plant and acclimatised to thermophilic conditions for two weeks (Millbrook, 

Southampton, UK, 50°54'33.4"N 1°26'44.6"W). Paired end sequencing on an Illumina HiSeq 

3000 resulted in an average of 32 million pair-end reads per sample and can be found in 

the European Nucleotide Archive under accession number PRJEB20855. Reads from all 12 

samples were pooled and assembled using Megahit with a minimum contig length of 1 

kb65. Binning was done using a custom Python script using differential coverage of reads 

between different samples resulting in 15,025 OTU’s. 

3.1 Aims 

To understand the effectiveness of the pipeline on real metagenomic datasets from AD, 

and start to understand the unique role each genome plays in the complex community of 

AD. 

3.2 Methods 

The pipeline was run using Python 2.7 on a UNIX multicore workstation. The size filter was 

set at 500 kb based on the smallest known bacterial genome at 530 bp82, completeness 

arbitrarily set to a minimum of 75% and contamination arbitrarily set to a maximum of 

10%. A negative GI list containing environmental and metagenome samples was used with 

the MCCR tool to ensure BLAST hits to known organisms. 

3.3 Results 

The AD dataset consisted of 15,025 OTU’s varying between 2 kb and 131,495 kb in length. 

Cluster_k99_1504826 was excluded from the analysis due to its size. It contained 

131,495,035 bp in 26,600 contigs with 2855% contamination and likely contained contigs 

from a variety of bacterial and archaeal species with similar differential coverage of reads. 
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Not only is the pipeline not designed to deal with that amount of contamination, but many 

of the analysis files would be difficult to open due to their size.  

Excluding Cluster_k99_1504826, of the 15,024 OTU’s in the metagenome, only 85 were 

over 500 kb, and of those 85 only 23 had a completeness greater than 75%. 9 of the 23 

OTU’s, 1 archaeal and 8 bacterial, had contamination of less than 10%, while the remaining 

14 had contamination greater than 10% and were directed through the MCCR tool.  

3.3.1 Reducing Contamination 

Of the 14 OTU’s directed into the MCCR tool in an attempt to reduce contamination, none 

were altered to the required parameters of completeness greater than 75% and 

contamination to less than 10%. The tool was successful in reducing contamination in many 

cases, but either did not decrease it to below 10% or the completeness decreased to below 

75%. This was largely the result of three problems: the OTU containing multiple species 

from the same phyla, the %GC filter was not narrow enough, or the resulting genomes 

were not considered complete enough. One example of each issue is discussed below. 

3.3.1.1 Single phyla OTU’s 

Cluster_k99_382050 is a 6.6Mb, 81% complete OTU with relatively small 24% 

contamination. Both the amount of contamination measured by CheckM and the 

distribution of contigs as shown in Figure 3.1(A) indicates the presence of two organisms, 

however the MCCR tool was unable to decrease the contamination. The longest contig 

showed highest similarity to Planctomyces sp. SH-PL14, and 56% of contigs BLAST results 

returned this species. Of the 808 contigs analysed, 83% were related to a Planctomycetes 

species, including those clustering around ~50% %GC that could be assumed to be a 

different species (Figure 3.1(A)). This data combined with the distribution of contigs over 

%GC indicate that there were two species of Planctomycetes, and both a %GC of ~50% and 

~59% are well within the range of currently known Planctomycetes species83,84. The MCCR 

tool would not be able to distinguish between since it is currently only designed to 

differentiate species on their phylum. 

3.3.1.2 Incorrect %GC filter 

A second problem that had not been suitably anticipated lies in the exponential function 

that the %GC filter used. Bacterial genomes typically have a %GC within the range of 20-

75%, and some OTU’s contained almost the whole spectrum. Cluster_k99_6047478  
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contained 10.7 Mb in 2154 contigs with a contamination of 127%. From the distribution of 

contigs shown in Figure 3.1(B), it is obvious that those clustering around 48% %GC are likely 

from a different genome. However, the contigs were spread from %GC of 26-77%, which 

meant that the lower bound of the %GC filter was 20% while the upper bound was 115% 

and no contigs were removed by this step in the analysis. In total only 3 contigs were 

removed via the TNF analysis. 

 (A)  (B) 

 (C) 

Figure 3.1 Distribution of contigs in OTU’s analysed by the MCCR tool from a real 
metagenome dataset 

 (A) Contigs from Cluster_k99_382050-A, related to Planctomycetes species are highlighted in 
blue. Contigs from Cluster_k99_382050-B, unrelated to Planctomycetes, are highlighted in 
orange. Lines show the upper and lower bounds of the %GC filter. The overall distribution of 
contigs, with one cluster around 50% %GC and another around 60% %GC indicates the 
presence of two genomes within the OTU. 
(B Contigs from Cluster_k99_6047478. Lines show the upper and lower bounds of the %GC 
filter. The overall distribution of contigs, with one cluster around 50% %GC and another 
around 70% %GC indicates the presence of two genomes within the OTU. The 3 contigs 
removed from the OTU are in orange. 
(C) Contigs from Cluster_k99_3431346-A, related to Synergistetes, are highlighted in blue. 
Contigs from Cluster_k99_3431346-B, related to Proteobacteria, are highlighted in orange. 
Lines show the upper and lower bounds of the %GC filter. The overall distribution of contigs, 
compared to Figures 3.2 and 3.3, do not indicate the presence of two genomes, however the 
orange ones are largely distributed to the right, and blue to the left.  
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3.3.1.3 Incomplete genomes 

Cluster_k99_3431346 is a 6.4Mb, 96% complete genome with 147% contamination 

indicating 2.5 genomes. This is supported by the presence of 3 copies of RNA polymerase 

alpha subunit, and 2 gene clusters of RNA polymerase beta and beta’ subunits. Since there 

were no 16S rRNA gene sequences, blastn of the RNA polymerase subunits indicated 2 

closely related members of Synergistetes and a member of Alphaproteobacteria, or more 

specifically Rhodobacter. The MCCR tool was able to pull out a large portion of the 

Alphaproteobacteria genome, reducing the contamination from 147% to 112%, however 

the resulting Alphaproteobacteria genome was only 37% complete. Analysis of the binning 

of the RNA polymerase genes and ribosomal protein genes used by CheckM to assign 

completeness and contamination72, show that where possible the genes were largely 

redistributed in a 2:1 ratio, with those with BLAST hits to Alphaproteobacteria successfully 

pulled out. Plotted on the same graph in Figure 3.1(C) it is clear that those with higher %GC 

tended to be part of the Alphaproteobacteria genome, while those with lower %GC were 

part of the Synergistetes genomes in keeping with the literature85–87. In this respect the 

MCCR tool worked as well as could be expected. 

3.3.2 Metabolic analysis 

Only 9 OTU’s, or genomes, from the metagenome went on to have their metabolism 

analysed. From Figure 3.2 generated as part of the metabolic analysis we can see that 

Cluster_k99_3668352 is likely the only methanogen as none of the other genomes have 

high pathway completeness for any of the methane related pathways. There are 3 

genomes with complete cellulose and xylan degradation pathways: Cluster_k99_1276485, 

Cluster_k99_4934154 and Cluster_k99_466860. Far more prevalent were the fermenters. 

All 8 of the bacterial genomes had at least one fermentative pathway, with the acetate 

kinase pathway, forming acetate and ATP from acetyl-CoA, the most prevalent. No 

complete pathways for hydrogen sulphide production by the assimilatory sulphate 

reduction pathway were found.  

By using the graph in combination with the individual metabolic genome files describing 

each step in the pathway for each genome, a clearer picture of the metabolisms in each 

OTU is given. 
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Cluster_k99_1276485 – Bacteria, 96% complete, 2% contamination 

A hydrolyser able to hydrolyse both cellulose and xylan, though likely having a preference 

towards xylan as it has 9 different xylanases compared to 3 cellulases. The glycolysis 

pathway is 80% complete, only missing a glucokinase to phosphorylate glucose to glucose-

6-phosphate which is not necessary if the bacterium contains a phosphotransferase 

transport system for importing glucose, and glyceraldehyde 3-phosphate dehydrogenase. It 

 

Figure 3.2 Metabolic analysis of 9 genomes from an AD metagenome. 

9 genomes were extracted from the AD metagenome with a completeness >75% and 

contamination <10%. Each were screened for 18 different pathways and given a score of 0-1 

of how complete the pathway was. A heatmap was created for a graphical representation of 

pathway completeness across the metagenome, where darker colours indicate more 

complete pathways. 
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is able to ferment pyruvate from glycolysis into lactate and into acetate via acetyl-CoA. It 

also has 3 different alcohol dehydrogenases, so while it doesn’t appear to be able to 

ferment pyruvate into ethanol through the specific pathways tested, the organism could 

potentially generate an alcohol end product. The TCA cycle is only 50% complete, and in 

the context of the genome being 96% complete, it is difficult to predict whether the 

pathway is likely to be complete or whether it is used for creating metabolic intermediates. 

Cluster_k99_212276 – Bacteroidetes, 80% complete, 3% contamination 

The only pathway that is complete is the acetate kinase pathway. The glycolysis pathway is 

70% complete, and in the context of a genome completeness of 80% it is likely the pathway 

could be complete. The genome contains one cellulase, but no xylanases. The pathway for 

pyruvate fermentation to butanoate is 60% complete, with the genes for last 2 steps for 

butanoate synthesis present, indicating it may be able to produce butanoate, but not 

necessarily from pyruvate   

Cluster_k99_2932296 – Bacteroidetes, 96% complete, 2% contamination 

Another potential hydrolyser with the genome containing 2 cellulases. Glycolysis is 90% 

complete, only missing the last gene of the pathway: pyruvate kinase. The citrate cycle is 

67% complete, missing the genes for the 3 steps in converting acetyl-CoA to 2-

oxoglutarate. This organism has several fermentation pathways from pyruvate including 

pyruvate directly to acetate as well as to acetate via acetyl-CoA. The pyruvate fermentation 

to butanoate pathway is 75% complete. Of the 7 steps in fermenting pyruvate to butanoate 

the genome has representatives for 5, although not all subunits are present, indicating the 

bacterium is able to ferment pyruvate to butanoate. This is unsurprising, many bacteria 

only heteroferment pyruvate to butanoate with acetate and other VFA’s as sub-products30. 

Cluster_k99_3719172 – Bacteria, 84% complete, 1% contamination 

This bacterium appears to have a variety of different energy producing metabolisms. The 

assimilatory sulphate reduction pathway is 67% complete, with all the genes present that 

are required for sulphate reduction to sulphite. The microbe also likely has a 

heterofermentative metabolism, having all the genes for glycolysis and both acetate 

fermentation pathways, as well as a 60% complete pyruvate fermentation pathway to 

butanoate, including the last step in the pathway generating butanoate from butanoyl 

phosphate. 
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Cluster_k99_466860 – Clostridiales, 92% complete, 0% contamination 

This bacterium is another hydrolyser, with genes for both cellulose and xylan degradation, 

instead specialising in cellulose with 9 cellulases to 3 xylanases. Despite its high genome 

completeness, only the two hydrolysis pathways and pyruvate fermentation to formate are 

complete. The assimilatory sulphate reduction pathway contains the genes to reduce 

sulphate to PAPS, but no further. 4 of the 6 fermentative pathways are 50% complete and 

glycolysis is only 60% complete.  

Cluster_k99_4934154 – Bacteria, 84% complete, 6% contamination 

The third hydrolyser/fermenter containing 7 cellulases and 6 xylanases. The glycolysis 

pathway is 90% complete, and the fermentative pathways of pyruvate to acetate and 

lactate as well as acetyl-CoA in the acetate kinase pathway. The acetate kinase pathway has 

several copies of the genes involved, in comparison to the other pathways where there are 

single copies. 

Cluster_k99_6984615 – Bacteria, 88% complete, 4% contamination 

This bacterium could be considered a dedicated fermenter. The glycolysis pathway is 90% 

complete, and the genome contains 4 different complete fermentative pathways: acetate 

kinase, acetyl-CoA to ethanol and pyruvate fermentation to acetate and lactate. 

Cluster_k99_7255216 – Clostridiales, 92% complete, 2% contamination 

This bacterium only contains 70% of the glycolysis pathway despite being 91% complete, 

however the presence of two cellulases indicate that glucose is a likely growth substrate. 

The organism also has 2 of the least common fermentative pathways in this metagenome, 

pyruvate fermentation to formate, and acetyl-CoA fermentation to ethanol. The organism 

is also able to produce acetate via the acetate kinase pathway. 

Cluster_k99_3668352 – Euryarchaeota, 76% complete, 1% contamination 

At only 75.7% complete it is perhaps unsurprising that the genome has no complete 

pathways. From the heatmap of pathway completeness it is difficult to tell which 

methanogenesis pathways the genome contains as they all look roughly the same 

completeness. From analysis of the individual steps in each pathway, there is at least one 

subunit for each step in hydrogenotrophic and acetoclastic methanogenesis, but only the 

methane producing step that all three classes of methanogenesis have in common is 

present in the methanol methanogenesis pathway.
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The genome contains 4 copies of the acsA gene, indicating that acetoclastic 

methanogenesis might be preferentially used. 

All 9 OTU’s had varying percentages of the citrate cycle present. Although not shown on 

the heatmap, none had cytochrome oxidases for aerobic respiration and so the citrate cycle 

likely performs a different function than in aerobic respiration. All had genes involved in 

the conversion of 2-oxoglutarate to succinyl-CoA which can replenish the supply of NAD+ 

from NADH, and many had genes involved in the conversion of succinyl-CoA to succinate 

for the release of CoA and direct generation of ATP. Pyruvate fermentation to propanoate 

was not a pathway covered by the MPP tool, but succinyl co-A acts as a precursor in this 

pathway. 2-oxoglutarate, another intermediate in the citrate cycle, is a precursor in the 

biosynthesis of several amino acids. The intermediates produced by the citrate cycle are 

involved in many metabolic pathways, and high pathway completeness in this pathway is 

not just indicative of a complete pathway.  

The detailed information from the MPP tool can be used to generate basic metabolic 

networks between organisms within a metagenome like in Figure 3.3. While this map is not 

an accurate representation of the metagenome, which contains many more organisms than 

the 9 analysed, it helps to provide clear linkages between each organism.  

 

Figure 3.3 Metabolic networking of a metagenome 

Detailed functional information gained using the MPP tool can be used to build metabolic 

networks that shown the interactions between microorganisms within a microbial 

community. Extracellular enzymes from 6 microorganisms hydrolyse cellulose and xylan into 

glucose and other soluble sugars which are taken up by all 8 bacterial species for 

fermentation into various products. The by-products of fermentation, acetate, CO2 and H2, 

are used by the archaeal methanogen to produce methane. 
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3.3.3 Adjusting the completeness and contamination thresholds 

The completeness threshold for genomes for metabolic analysis was set to 75%. However 

as already pointed out, the single copy genes CheckM uses only constitute ~10% of the 

genome giving a potentially lower measure of completeness than is actually there. This is 

supported by Figure 3.4, where all 86 OTU’s over 500 kb were analysed for the 13 bacterial 

metabolic pathways regardless of completeness or contamination. 

Although on average, those with a lower % completeness had fewer complete pathways, 

that’s not always the case. Cluster_k99_10585819 has a measured completeness of 47.3%, 

but has a higher total percentage of pathway completeness than 8 of the 25 OTU’s with a 

completeness >75% (data not shown). Pathways such as cellulose or xylan degradation or 

many of the fermentation pathways only consist of one or two steps, so they’re far more 

likely to be “complete” compared to longer pathways like glycolysis or the Wood-Ljungdahl 

pathway. An additional 15 hydrolysers, either for cellulose, xylan or both, could be found 

from genomes >500 kb and <75% completeness. Even for longer pathways such as 

glycolysis with 10 steps, examples can be found. Cluster_k99_2622967 has a measured 

completeness of 32%, but has an 80% complete glycolysis pathway, 70% complete 

assimilatory sulphate reduction pathway (the 3rd highest) and almost half of a pyruvate to 

butanoate pathway, all of which are above average compared to the other 86 OTU’s, while 

the completeness was below average. 

3.4 Discussion 

AD communities consist of a wide variety of microbes predominantly from only a few phyla 

working in tandem. It is not unexpected for many of these organisms to be closely related 

and have similar relative abundances, resulting in OTU’s containing more than one species 

although this was perhaps exacerbated by combining reads from 3 dissimilar sources 

running on vastly different parameters (thermophilic vs mesophilic, lab vs commercial 

scale). This incorrect binning by using differential coverage creates several problems. Many 

species in AD are still unknown, making binning contigs from closely related species based 

on taxonomy and BLAST searches much harder. Secondly, when assembling short read 

data, highly conserved genes such as ribosomal RNA can co-assemble both creating hybrids 

of multiple closely related organisms and vastly decreasing the number of these genes, 

which are often used in estimating genome completeness88,89. Only 6 full and 6 partial 16S 

rRNA genes were identified by Prokka in the entire metagenome of 15,025 bins, all of 

which were most closely related to uncultured organisms and none of which were in the 9 
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good quality genomes (completeness >75%, contamination <10%) identified using CheckM. 

This made it impossible to compare the assignment of a phylum by the MCCR tool to the 

assignment of a phylum based on the 16S rRNA gene sequence and better understand how 

practical the MCCR tool is in a more realistic setting. CheckM also attempts to assign a 

taxonomy based on homology of the core genome rather than just the 16S rRNA gene 

sequence but was unable to assign anything more specific than a kingdom for 4 of the 9 

OTU’s. 

Arguments can be made both for and against setting completeness and contamination 

thresholds. On the one hand it is important to use high quality genomes in analysis, but it is 

also important to include as much of the functional annotation as possible to really 

understand the complexities of microbial communities in metagenomes. Although only 9 

OTU’s underwent functional analysis 3 of the key steps of AD, hydrolysis, fermentation and 

methanogenesis were represented by these 9.  

In this case based on the scarcity of 16S rRNA gene sequences, the number of bins, and the 

levels of completeness/contamination of some of those bins, it is likely that a large number 

of the contigs contain chimeric sequences and perhaps the analysis should be restarted 

from the assembly stage, pooling data from the 4 different extraction methods but 

assembling each of the 3 sources independently. 
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Figure 3.4 Metabolic analysis of a metagenome from AD. 

Metabolic pathway analysis for all 86 OTU’s over 500 kb. Only bacterial pathways are shown. 
Each were screened for 18 different pathways and given a score of 0-1 of how complete the 
pathway was. A heatmap was created for a graphical representation of pathway 
completeness across the metagenome, where darker colours indicate more complete 
pathways. 
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4. General Discussion 

4.1 Assembly quality is essential to accurate genomes 

Better assemblies, creating high quality contigs for binning into OTU’s are essential for 

better understanding of the AD microbial communities. The AD metagenome used in this 

study could be considered low quality, only 86 OTU’s were more than ¾ complete 

according to CheckM out of 15,000 and there were very few 16S rRNA gene sequences 

indicating likely co-assembly of these genes into chimeras based on their highly conserved 

nature. This co-assembly of conserved genes into chimeras and highly fragmented 

genomes are two of the issues that prevent the extraction of complete and contamination 

free genomes from AD metagenomic datasets. Long reads, such as those from MinION, go 

a long way to solve this, and can assemble whole genomes into single contigs90,91. Fewer 

contigs would also result in more accurate binning. Although the MCCR tool has been 

shown to remove contamination up to 100% in testing, when used on a real metagenome it 

is difficult to tell if its inability to extract genomes from contaminated OTU’s is a result of 

the algorithm used by the MCCR tool or the quality of the genome. There were several 

OTU’s from the AD metagenome in which the MCCR tool was able to significantly reduce 

the amount of contamination, but this was always at the cost of genome completeness. 

Additional testing on a wide variety of different datasets will be needed to properly 

understand the capabilities of this tool and pipeline, however two things are clear: when 

using single copy marker genes for measuring genome completeness a high quality 

assembly is essential, and while the MCCR tool can potentially help to polish OTU’s there is 

a limit to which the tool can act as binning software. 

4.2 Taxonomy-dependent binning can be misleading for unknown organisms 

Taxonomy dependent binning, used by the MCCR tool, relies upon alignments of nucleotide 

sequence to known organisms and this method can create inaccurate results if the 

nucleotide sequence in question is relatively novel. This became clear with the test 

genomes D. tunisiensis and C. evryensis, both of which were binned less accurately than 

their counterparts likely as there were few close relatives within their respective phyla. It is 

difficult to say if this is an issue that would be prevalent in AD metagenomes. On the one 

hand a large proportion of microbes from AD are completely novel since their syntrophic 

inter/intra species interactions largely prevent isolation and sequencing. However, on the 

other hand the typically most prominent phyla in AD, Proteobacteria, Firmicutes and 
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Bacteroidetes, are quite diverse and all contain several hundred genera within them which 

would lend itself to more accurate binning (Table 2.6) 40,45–48. 

Horizontal gene transfer would also be a potential area in which this method of binning 

would fall down and recently acquired genetic material would likely be removed from a 

genome unnecessarily. Despite the potential issues the MCCR tool might create or be 

unable to solve, it is important to remember that in this pipeline it is only used on OTU’s 

that might be considered too contaminated, and although the resulting genomes may not 

be complete, that doesn’t mean that the functional information in their genome is 

insignificant to the understanding of a metagenome.  

4.3 Towards a better understanding of functional annotation in AD 

metagenomes 

Although the MPP tool is not always 100% accurate compared to more curated tools such 

as KEGG, it has been shown to be 93% accurate and provides a much faster and wide-

reaching approach to analysing functional annotation in metagenomes. Many of the 

bacterial genomes in both the mock community and AD metagenome appeared to contain 

genes involved in methanogenesis, a strictly archaeal pathway. Prokka uses BLAST searches 

against the UniProt database to assign annotation, however protein sequences submitted 

to UniProt are not always consistently named. In archaea mcr and mta gene clusters 

encode for the final step in methane production and the first step in methanol conversion 

to methane respectively and are specific to the production of methane. In bacteria mcrB 

encodes for a 5-methylcytosine-specific restriction enzyme while mtaB encodes for 

threonylcarbamoyladenosine tRNA methylthiotransferase used in tRNA modification, both 

of which appear relatively commonly within the bacterial genomes. While each of these 

gene names only represent one subunit in multimeric complexes part of the multi-step 

pathways of methanogenesis, representing only 10% of the shortest methanogenesis 

pathway, they do highlight the issue of false positives when using text matching to gene 

names. For this reason, the tool will likely never be able to give a comprehensive and in-

depth analysis of each genome in a metagenome, for that there are already many highly 

curated databases and annotation services. However, it is able to give a general overview 

of the metabolic pathways present in 100’s of individual OTU’s within the context of the 

metagenome as a whole, something that other services cannot. This allows for the 

relatively quick and easy identification of genomes of metabolic interest, be those 
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methanogens, hydrolysers or even hydrogen sulphide producers, to then be analysed using 

a more specific database. 

There are alternatives to using the current method of text matching gene names. Hidden 

Markov Models could instead be used to identify the genes themselves, however a model 

would need to be built for each protein within a complex within each step of a pathway 

and this was beyond the scope of this project. Alternatively, the Prokka annotation 

software can be supplied with a user created and curated database of genes rather than 

using that from UniProt, to ensure all genes were labelled consistently. This way rather 

than using the shorter gene name, the longer protein name could be used for searching, 

making the process more specific e.g. using the protein name methyl-coenzyme M 

reductase beta subunit rather than the gene name mcrB which can be confused with the 

bacterial gene for threonylcarbamoyladenosine tRNA methylthiotransferase, also labelled 

mcrB. 

4.4 Future work 

Many issues were flagged up through development of the pipeline and custom Python 

scripts. Analysis of Cluster_k99_1504826 highlighted the need for there to be a size limit on 

which files the pipeline will try and analyse. Not only do files of this size and complexity 

create issues with the size of some graphical outputs, the script is really not designed to 

split that many genomes apart. It would be far more practical in that situation to re-bin the 

contigs and start again. 

The MCCR tool was not as effective on a real metagenomic dataset in comparison to the 

synthetic dataset. An alternate method of binning might be to use mathematical modelling 

to determine the likely number of genomes in each OTU based on the distribution of 

contigs and measure of contamination from CheckM. As shown in Figure 3.1, contigs from a 

single genome tend to follow a Gaussian distribution when length is plotted against %GC, 

that could be used to estimate the number of genomes and build each genome within an 

OTU simultaneously rather than iteratively. This method would potentially require a larger 

number of alignments and taking much longer. This could be negated by using a different, 

faster alignment algorithm than blastn. Kraken is estimated to be 909 times faster than 

Megablast and would significantly decrease running time92. 

CheckM provides consistent taxonomic classification at domain level for each OTU however 

it would be better to include a separate more specific dedicated taxonomy assignment 

feature in the pipeline. There are a wide range of tools able to do this, from SSuMO64 
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specifically designed for 16S rRNA gene fragments to extracting the assembled 16S rRNA 

gene sequences and using BLAST, or perhaps both. By adding a taxonomy assignment 

feature at both the beginning and end of the pipeline it would reflect both the total 

diversity within the metagenome, as well as automatically assigning taxonomy to individual 

OTU’s which could be graphically represented. 

Finally, additional user variables could be integrated into the Parameters.txt file, as 

currently it only contains 4 parameters: directory, and thresholds for file size, completeness 

and contamination. For example, Python scripts typically only use one core at a time when 

run on a multicore machine, however the blastn command within the MCCR tool can be 

instructed to use any number of cores which should be another user specified parameter. 

As should the maximum evalue for the longest contig, which is currently set to 0, but could 

easily become a user submitted variable. 

 

4.5 Summary 

As metagenomic datasets become larger and more detailed as a result of advances in 

sequencing technologies, the need for automated pipelines and software to analyse this 

overwhelming influx of data in an efficient manner will be needed. The pipeline and tools 

described here attempt to address this problem through their polishing of OTU’s to extract 

as much information from a metagenome as possible, as well as rapid and simple 

metagenomic metabolic pathway mapping.  

Although the MCCR tool will potentially become redundant in the future as long reads, 

which are easier to assemble and bin, become more frequently used currently 

metagenome sequencing is largely done using high throughput short reads. These can be 

difficult to bin correctly, and so there is still much improvement to be made in this area. 

However, as genome quality improves, and the number of genomes able to be 

reconstructed from a metagenome increases, the need for rapid functional annotation and 

assignment of metabolic pathways will also increase. Through the MPP tool, and its 

approach of viewing all the functional information from a metagenome collectively, better 

understanding of some of the many inter/intra species interactions that occur within an AD 

community can be achieved. 
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