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Abstract 

This thesis is concerned with the dynamic behaviour of oil lubricated journal 

bearings and particularly with the small vibrations about the equilibrium 

position known as 'oil whirl'. The importance of shaft flexibility and oil 

film cavitation to this phenomena are investigated. 

Several authors have shown that by the use of linear techniques it is 

possible to derive a stability borderline which can be used for design 

purposes to ascertain whether or not a bearing is stable. These linear 

techniques are used to examine journal bearings with flexible shafts 

operating under a range of cavitation boundary conditions. It is demonstrated 

that these boundary conditions, particularly the behaviour of a lubricant 

during a vibration, play a crucial role in determining the predicted 

stability of the bearing. The effect of shaft flexibility is to make the 

bearing less stable, but the extent of this change is also governed by the 

oil film behaviour. 

Nonlinear analytical techniques are used to carry out an investigation into 

the behaviour of a journal bearing operating with a rigid shaft close to the 

stability borderline for a particular set of cavitation boundary conditions. 

It is found that two types of behaviour are possible: (i) supercritical, in 

which small stable whirl orbits are possible at speeds just above the 

threshold speed (the speed above which the bearing is unstable according to 

linear theory). (ii) subcritical, in which small unstable orbits exist at 

speeds just below the threshold speed. The parameter space is split into two 

regions, one subcritical and the other supercritical. Several methods are 

used in the investigation; it is shown that the methods give identical 

results, but only if they are applied correctly. These results are 

subsequently confirmed by a numerical integration of the equations of motion. 

The thesis concludes with an investigation of the application of nonlinear 

techniques to a variety of cavitation boundary conditions. 
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Nomenclature 

A shaft centre 

BXX, Byy etc nondimensional damping coefficients 

D diameter of bush 

F bearing load 

F nondimensional bearing load 

K y. Byy etc nondimensional stiffness coefficients 

Fr, Ft radial and tangential hydrodynamic forces 

Fr, Ft nondimensional forces 

Fx, Fy cartesian force components 

FX, Fy nondimensional forces 

L axial bearing length 

0 centre of bush 

R radius of bush 

S Sommerfeld number (R3LW /Fc2 ) 

Sm modified Sommerfeld number (RL3W/L/(Fc2)) 

X, Y nondimensional co-ordinates 

a, amp ratio of whirl amplitude to a perturbation of the rotor speed 

ae whirl amplitude ratio (stable whirl) 

al, a2... a34 Taylor expansion coefficients 

bl, b2... b34 Taylor expansion coefficients 

a1, a2". "a34 a]Jws2 etc. 

bl, b2... b34 b1/WS2 etc. 

c bearing radial clearance 

e journal eccentricity 

h fluid film thickness 

2m mass of shaft plus rotor 

p hydrodynamic pressure 

r shaft radius 



t time 

x1, yl rotor centre coordinates 

x, y nondimensional coordinates (x=x1/c, etc. ) 

z axial co-ordinate 

real part of the eigenvalue -X of the Jacobian matrix 

e eccentricity ratio (e/c) 

ES value of ES above which the system is always stable 

8 angular co-ordinate 

non-dimensional eigenvalue 

{t lubricant viscosity 

v stability parameter (F/mcw2) 

V1 stiffness term (F/mcw12) 

a system parameter (Sm/w) or (S/@) 

T nondimensional time (wt) 

V attitude angle 

w rotational speed 

nondimensional speed ((mc/F)1/2(j) 

wl first critical speed in bending of the shaft 

f2 whirl frequency 

f2 whirl frequency ratio (f)/w ) 

subscripts 

s refers to steady state conditions 

" time derivative (d/dt) 

nondimensional time derivative (d/dT) 

note 

There are several sections in this thesis where the use of a symbol is 

particular to that section. Where this is the case the symbol is defined 

where it is introduced. 



INTRODUCTION 
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In a plain journal bearing, a circular shaft rotates in a bush of circular 

cross-section. The load on the shaft causes its centre to take an eccentric 

position within the bush, thus forcing fluid into a converging/diverging 

space and creating a pressure distribution, which in turn supports the load. 

Instability in a journal bearing often manifests itself in the form of oil 

whirl, in which the journal, as well as rotating about its own axis, performs 

a secondary orbit around the bush. This can have disastrous consequences, 

particularly as in practice the inner diameter of the bush is only one or two 

parts per thousand greater than that of the shaft. 

An important factor affecting the stability or otherwise of a journal bearing 

is the existence of air cavities within the fluid film. In fact both the 

stability and the dynamic behaviour of a journal bearing are very sensitive 

to the cavitation boundary conditions; an apparently small and subtle change 

in the position of the cavity can have a dramatic effect on the vibrational 

characteristics of the bearing. 

Oil whirl can manifest itself in two different forms: cylindrical whirl and 

conical whirl. In cylindrical whirl the two ends of the shaft are in phase; 

in conical whirl they are 1800 out of phase (see Figure 1). However, for all 

but the shortest shafts the lowest natural mode of vibration is the 

cylindrical one and therefore this investigation will ignore conical whirl. 

Another important influence on stability is shaft stiffness. Much of the 

analytical work on journal bearings has assumed a rigid shaft, but in 

practice this is not the case. Intuitively one might suppose that the lower 

the first critical speed in bending of the shaft, then the greater the 

likelihood of the motion being unstable, since fluid film instabilities might 

interact with other vibrations. It is possible, however, to find a 

quantitative relationship between shaft stiffness and stability. 
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Journal bearing instability can result in several types of oil whirl (these 

are discussed in more detail in Chapter 1), which are characterised by 

particular frequencies and amplitudes. It may well be the case that although 

a bearing is unstable in the conventional sense, the resulting whirl is 

stable and of small amplitude. Frequently this represents an acceptable mode 

of operation for the bearing and consequently the determination of criteria 

for this kind of motion constitutes a valuable exercise. 

The objectives of this thesis are: 

(1) To examine the effects of cavitation and oil supply position on the onset 

of bearing instability; in particular, to quantify the role played by shaft 

flexibility. 

(2) To use analytical and numerical methods to consider the motion outside 

the region of stability and in particular to investigate the existence of any 

small, closed whirl orbits (limit cycles). 

(3) To contrast the use of different nonlinear techniques for the 

investigation of oil whirl. 

(4) To extend the use of nonlinear analytical techniques beyond their 

application to the simplest bearing models in order to find realistic 

criteria for the existence of small, stable whirl orbits. 

The model used in this investigation is as follows. A horizontal, flexible, 

massless shaft supports at its midpoint a rotor of mass 2m. The shaft is 

mounted between two identical journal bearings; consequently we need only 

examine one bearing supporting a load m (Figure 2). In addition it is assumed 

that: 

(1) The rotor is symmetric and perfectly balanced and is in perfect alignment 

to the bearing axis. 

(2) The shaft spins with constant angular velocity about its axis. 

(3) The load carried by the rotor is due solely to gravity. 



(4) The bearing mountings are fixed and rigid. 

(5) The viscosity of the lubricant is constant. 
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CHAPTER 1 

BASIC CONCEPTS AND HISTORICAL REVIEW 
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1.1 Reynolds' equation 

The differential equation describing the pressure distribution in a fluid 

being used to lubricate two surfaces was first defined by Osborne Reynolds 

(1886). It can be deduced from the Navier-Stokes equation using the following 

assumptions: 

(1) The lubricant is a Newtonian fluid. 

(2) Inertia and body force terms are small compared with pressure and viscous 

terms. 

(3) The flow is laminar. 

(4) No-slip boundary conditions exist between the lubricant and the bearing 

solids. 

(5) The lubricant properties (e. g. density, viscosity) remain constant across 

the film thickness. 

(6) Pressure variation across the film thickness is negligible. 

(7) The velocity d. er; vav; ves with respect to the film thickness are large 

compared to all other derivatives. 

(8) Effects due to the curvature of the bearing surfaces can be ignored. 

The full Reynolds' equation is not only very cumbersome, but also contains 

many terms that would only arise in the most general of lubrication 

situations. Cameron (1970) has pointed out that although it might be possible 

to construct a mental picture of a bearing for which the full equation was 

required, it would certainly not be possible to conceive of a use for such a 

bearing. consequently, although many analytical derivations are available 

(e. g. Pinkus and Sternlicht (1961)), it is more useful to derive from first 

principles a specialised equation, applicable to the particular lubrication 

circumstances under consideration. In particular, the situation shown in 

Figure 1.1 is analogous to that of the journal bearing with a stationary 

bush. A cartesian co-ordinate system is assumed, such that (u, v, w) correspond 
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to the movement of the shaft in the (x, y, z) directions respectively. In order 

to derive Reynolds' equation for this situation, first consider a column of 

fluid as shown in Figure 1.2. The net mass flow into the column of fluid is 

given by the difference between the flow in and the flow out. Therefore: 

Net mass flow = Mx dz - (Mx+ aMxdx)dz 
ex 

aM dxdz 
aXx 

Similarly, if we consider a column of fluid in the z-y plane, it can be seen 

that the net mass flow into the column is given by: 

- aM dzdx 
8zx 

The mass of the control column shown in Figure 1.2 is given by: 

MC = phdzdx 

Conditions of continuity demand that the rate of increase of the mass of the 

control column is equal to the net mass flow into the column. This leads to 

the relationship: 

d (phdzdx) aM dxdz - am dzdx 
dt xx A 

d(ph) aM - aM X1.1) 
at dxx azz 

It is now necessary to find an expression for the flow rates Mx and MZ. 

Consider an element of fluid of sides dx, dy, dz (as shown in Figure 1.3). The 

equilibrium of this element requires that the pressure and stress terms 

cancel each other out. First consider the x-direction: 

pdydz + (Tx+ aTxdy)dxdz = Txdxdz + (p + ap dx)dydz 
ay ax 

" aT -ap 
a7yx ax 
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Under assumption (1), the fluid is Newtonian, and so the stress/strain rate 

relationship is given by: 

TX = uau 

ay 
aT =a (gau) 
ý-y ay ay 

p=a (uau) 
ax ay ay 

(1.2) 

Similarly, by considering the equilibrium of the fluid in the z-direction, we 

can obtain the relationship: 

at) =a (Law) 
az ay ay 

In order to find the flow rate, consider equation (1.2). Since the pressure 

is independent of y (under assumption (6)), we can integrate to obtain: 

µau = 13p y+ C1 
ay ax 

Since the viscosity is independent of y (under assumption (5)), we can 

integrate a second time to obtain: 

µu = öý y2+ C1y + CZ 
ax 2 

From the boundary conditions in Figure 1.1, this leads to: 

u= (y2- hy) (3p + Uy 
2µ ax h 

The mass flow rate per unit width in the x-direction is given by: 

h 

MX pudy 

0 

Mh+ pUh (1.3) 
X 12k ax 2 
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Similarly, the mass flow rate per unit width in the z-direction is given by: 

Mz =-h 2a2 
12u az 

(1.4) 

There is no Couette term analogous to pUh/2 in (1.4) since the upper surface 

does not move along the z-axis. Equations (1.3) and (1.4) can now be 

substituted into (1.1) to obtain the following relationship: 

- aX{-ham ä+ pUh 1- a_t-h13p äl= däph) (1.5) 

In many engineering situations the lubricant density and viscosity are 

assumed to be constant, so p and u can be taken outside the derivatives in 

(1.5). In this case the moving surface is rigid, so U is independent of x. 

Hence (1.5) becomes: 

at -h3 ap l+a( -h3 ap 6/Uah + 12µV (1.6) 

xax J zl az J -d-x 

This is one form of Reynolds' equation appropriate to the analysis of a 

journal bearing. The terms on the right hand side indicate the way in which 

the pressure is built up. 

(1) The first term corresponds to the physical wedge, since the variation of 

film thickness with respect to height leads to an increase in pressure as the 

lubricant is swept into a converging region. 

(2) The second term represents the squeezing of the fluid film with respect 

to time (due to the vertical movement of the upper surface), and is known as 

the squeeze-film term. 
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1.2 The journal bearing 

In a journal bearing under normal operating conditions, the shaft adopts an 

eccentric position within the surrounding bush. The two co-ordinates which 

are required to fix its position with respect to the bush are the 

eccentricity e (this represents the distance between the centres of the bush 

and the shaft) and the attitude angle 'p (this is given by the angle between 

the line of centres and the downwards vertical). The eccentricity ratio is 

defined by ewe/c. The parameters which are required to specify the bearing 

geometry are: 

R= radius of the bearing L bearing length 

r= shaft radius c= radial clearance (=R-r) 

An angular co-ordinate e is also defined in order to locate positions within 

the bearing relative to the. line of centres (see Figure 1.4). 

In order to facilitate the application of Reynolds' equation to the journal 

bearing, it is more convenient to express it in polar co-ordinates. This can 

be achieved by the use of the following substitutions: 

x= RO 

h= c(1+ecosO) 

(1.7) 

(1-8) 

The expression for the film thickness (1.8) is an approximation based on the 

fact that c/R<<1. Its derivation is straightforward and can be found in 

several texts (e. g. Cameron (1970)). The shaft has instantaneous radial and 

tangential velocity components: 

de and ed'p 
dt dt 

These expressions permit the calculation of the velocity components for any 

general point M on the bearing surface: 
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Figure 1.4 The Journal Bearing 
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U= Rw + esin9 - e'pcose (1.9) 

V= ecose + epsin6 (1.10) 

substituting (1.7)-(1.10) into (1.6) yields: 

a 
6I 

(l+icose)3ap 

el+ 
R2äz{ (l+ECOBe)3ä I 

= 61LR2 
{ 

-E(w-2p)sine + 2ECOS6 + 0(c/R) 
} 

(1.11) 
2 c 

Since the terms O(c/R) are small compared to the rest of the right hand side 

of (1.11), they can be neglected. Equation (1.11) represents a second order 

partial differential equation for the pressure distribution within a journal 

bearing under operating conditions. Unfortunately, despite the many 

simplifying assumptions already made during its derivation, it cannot, in 

general, be solved analytically. It is, however, possible to make a number of 

simplifying approximations, two of which are as follows: 

The long bearing approximation 

This approximation assumes that the bearing is sufficiently long for there to 

be no pressure variation along its axial length. In this case: 

aap - az 

Hence (1.11) reduces to: 

af (1+ecos6)3ap 
9l 12 ax 

= 6/R2 
f 

-¬(w-2ýp)sin6 + 2ecos6 
2 c 

(1.12) 

An equivalent assumption is that side leakage (loss of lubricant at the 
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bearing ends) is neglected. 

The short bearing approximation 

Ocvirk (1952) assumed that the bearing was very short. This assumption is 

based on the fact that in many applications L/D < 3/4, so that the pressure 

gradient with respect to z is much greater than that with respect to 0. In 

this case: 

aP « aP 
ae az 

Hence (1.11) reduces to: 

äf (1+¬cose)3 p 
d-z 1211 az 

= 6u 
f 

-E(w-2*p)sin9 + 2¬cos9 (1.13) 
2 

c 

Although the pressure distributions obtained by the use of these 

approximations are by no means quantitatively accurate, they do enable 

analytical techniques to be used to investigate the static and dynamic 

behaviour of the journal bearing. It is possible to combine the two 

approximations to develop a more sophisticated bearing model, which gives a 

more realistic pressure distribution in a finite bearing e. g. Warner (1963). 

However, since all the qualitative features of the dynamic behaviour of the 

journal bearing are present in the long and short approximations, this thesis 

will not examine finite bearing models. 
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1.3 Cavitation 

One of the main features of the solution of Reynolds' equation common to both 

long and short bearing approximations is the existence of subambient 

pressures in the diverging part of the gap between the bush and the shaft. A 

typical pressure distribution is shown in Figure 1.5. It is assumed that the 

lubricant pressure is ambient as it is fed into the bearing (this assumption 

can be modified later). The presence of subambient pressures in the diverging 

part of the film causes the single phase flow of the lubricant to break down 

as the film ruptures or cavitates. The tendency of liquids to cavitate in the 

presence of subambient pressures is well known (Batchelor (1967)). The 

phenomenon occurs in three forms: 

(1) Gaseous cavitation - which can be caused by the growth of suspended 

bubbles of gas (usually air), or the release of dissolved gases within the 

lubricant. 

(2) Ventilated Cavitation - wherever subambient pressures occur, air from the 

surrounding atmosphere is sucked into the low pressure region. 

(3) Vaporous Cavitation - as the pressure in the lubricant falls below its 

vapour pressure, the lubricant boils and cavities of its own vapour form. 

For a journal bearing the contribution from ventilated cavitation by far 

outweighs the contribution from the other two forms, although vaporous 

cavitation can be important in dynamic situations. It is important to 

understand the crucial role played by cavitation in the dynamic behaviour of 

the bearing if a realistic analysis is to be undertaken. 

For small loads which generate pressures whose order of magnitude is small 

compared to atmospheric pressure, the space between the bush and the shaft 

may be filled completely with oil (Figure 1.6). This situation has been shown 

to be inherently unstable (Holmes (1963), Myers (1981)) for all 

eccentricities and speeds. The shaft does not assume an equilibrium position, 



18 

Figure 1.5 
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A typical pressure distribution 

lubricant 

Figure 1.6 

0- bearing centre 

A- shaft centre 

A journal bearing with a full film 

lubricant 

avity 

Figure 1.7 A journal baring with a cavi toted film 
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but orbits outwards towards the bearing casing i. e. E-'1. For higher loads 

with generated superambient pressures well in excess of atmospheric, the oil 

film ruptures close to the position of minimum film thickness (Figure 1.7), 

creating a cavity, or series of cavities, in the divergent section. Work by 

several authors (e. g. Poritsky (1953), Holmes (1960)) has confirmed that the 

presence of this air cavity stabilises the journal bearing, thus permitting, 

under certain conditions, the centre of the shaft to take up an equilibrium 

position. This investigation will be concerned with bearings operating with 

an air cavity distributed over some section of the gap between bush and 

shaft. It is possible to feed the lubricant into-the bearing at a 

superambient pressure, thus ensuring that the pressure is greater than 

atmospheric everywhere in the bearing; however, due to the destabaising 

effect of a noncavitated film, this thesis will not consider such a 

situation. 

The present understanding of the phenomenon of cavitation is by no means 

complete. Previous attempts to determine the position of the cavity and its 

behaviour under dynamic conditions will be discussed in Chapter 2. It will be 

shown that the vibrational/stability characteristics are very sensitive to 

the location and extent of the cavity. This in turn illustrates the need to 

model the cavitation phenomena as accurately as possible. 

1.4 Different types of rotor instability 

Before proceeding to the main part of this thesis, it is necessary to specify 

exactly which type of dynamic behaviour is under consideration. This 

clarification is necessary because of the confusion that has built up over 

the years in the terminology of the subject. This will be considered in 

greater depth in Section 1.6. Essentially there are two different types of 



20 

fluid film instability: 

(1) Oil Whirl - this is a phenomenon determined by the properties of the 

bearing film. It is typically a small amplitude motion with a frequency close 

to that of half shaft speed. 

(2) Resonant Whip - this is a large amplitude motion occuring with a 

frequency close to that of the first critical speed in bending of the shaft. 

It is commonly encountered when the shaft speed exceeds twice this critical 

speed. 

This thesis is concerned with oil Whirl. 

1.5 The hydrodynamic forces 

Once a particular version of Reynolds' equation has been solved, the 

hydrodynamic forces on the shaft are found by integrating the pressure 

distribution over the oil film - Ar. Traditionally, these forces are resolved 

into two mutually perpendicular components (see Figure 1.4). 

(1) A radial component - Fr - acting outward along the line of centres. 

(2) A tangential component - Ft - acting in an anticlockwise direction 

perpendicular to the line of centres. 

Fr= pcosO d(Ar) 

A 
r 

Ft= if psinO d(A (1.14) 

A 
r 

For the long bearing (1.14) becomes: 

2 

Fr= LR 

9 

p(6)cosed6 

el 

1e2 
Ft= LR p(e)sin(e)dO (1.15) 

el 
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For the short bearing: 

e2 e2 

FrmR p(e, z)cos(6)dedz ; Ft=R p(6, z)sin(6)d6dz (1.16) 

0 91 0 61 

91 and 92 refer to the beginning and end of the fluid film, where we assume 

that a cavity exists in the region 91<A<82. The values of el and 62 will 

depend on the particular film rupture model under consideration; they will be 

dealt with in Chapter 2. The forces can be nondimensionalised as shown below. 

First, note that the bearing load is given by: 

F= (Fr + Ft)1/2 

Define: 

Fr - Fr Ft - Ft (1.17a) 

SF SF 

Fr = Fr Ft = Ft (1.17b) 

SFSF 
mm 

T= wt d= wd (1.18) 
dt äT 

(1.17a) applies for the long bearing and (1.17b) for the short bearing. S and 

S. are nondimensional quantities, known as the Sommerfeld number and modified 

Sommerfeld number, respectively; they are defined by: 

S= R3Lwµ ; Sm = RL3WA 

Fc Fc2 2 

Evaluation of Fr and Ft for both long and short bearing models, yields, for 

given geometry and viscosity: 

Fr= Fr(E. E(IPºvv) Ft= Ft(E, E, 9ºýP) (1.19) 

The nature of the functions F. and Ft reflects the cavitation boundary 



22 

conditions and bearing geometry. The steady state (equilibrium) position of 

the journal is easily found by putting: 

t 

E_ ýQ =0 

the steady state force components (see Figure 1.8) are denoted by: 

Frs- Frs(E8) I Fts Fts(ES 

and the steady state value of the attitude angle is given by: 

ps = tan-'I -Ftsl 

lFr rs 

In practice the relationship between Es and ýPs is almost semicircular. 

(1.20) 

Figure 1.9 shows the possible steady state positions for a number of typical 

fluid film models. The nondimensional load capacity is given by: 

V(Frs+ Fts) = F(ES) or 1 (1.21) 
SS 

m 

So it can be seen that the value of the Sommerfeld number (modified 

Sommerfeld number) represents the inverse of the nondimensional load 

capacity. 
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Figure 1.8 A journal bearing under steady state conditions 
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Figure 1.9 Steady state locus of the shaft centre for two 

models with different cavitation boundary conditions 
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1.6 Historical Review 

The principle of hydrodynamic lubrication was first established by Beauchamp 

Tower (1883) when he noticed that if two loaded surfaces are kept apart by a 

film of oil, then a pressure distribution exists within the lubricant. This 

observation motivated Reynolds' (1886) to study the slow viscous flow of 

fluids in thin films, with the result that he provided the mathematical 

formulation for the pressure distribution between two bearing surfaces that 

is known today as Reynolds' equation. 

Fluid film instability was initially identified experimentally by Newkirk 

(1924), although the first hydrodynamic study of the journal bearing had been 

carried out by Harrison (1919). He assumed an infinitely long bearing, 

operating with a complete film, and succeeded in deriving the radial and 

tangential force components. By neglecting the inertia of the shaft, he was 

able to show that stable whirl orbits could exist for E<1. 

Stodola (1925) and Hummel (1926) independently reached the conclusion that 

the fluid film forces cause instability when E<0.7. Stodola developed a 

direct method to test the stability of an equilibrium position which is 

widely used today. His method is as follows: assume the journal to have mass 

m and the journal centre's position to be defined by cartesian co-ordinates 

(x, y). The fluid film force components FX, Fy which depend on. the position 

and velocity of the journal centre are linearised about the equilibrium 

position so that the equations of motion become: 

md2x =F (x, y, dx, ý) = aF x+ aF dx + aF y+ aF 

dt2 
x dt dt ýxx 

a dx dt äyx 
ax dt {dt} {dt} 

Hd y=F (x, y, dx,. ýy) = aF x+ aF dx + aF y+ aF j2X 
dt2 

y dt dt xy a dx dt äyy 
a dt 19-EI 1dt} 
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Once the eight Taylor expansion coefficients are known, these two 

simultaneous linear differential equations can be readily tested for 

stability (see Chapter 5 for full details). Although Stodola recognised that 

it was appropriate to ignore subambient pressures when calculating the fluid 

film forces, he neglected the velocity (damping) terms in the linearised 

equations of motion, including only the displacement (stiffness) terms in his 

analysis. Robertson (1933) extended Stodola's work by including the damping 

terms, applying the technique to a journal bearing with a complete film, 

which he concluded was unstable. 

I 
in the last thirty years, the widespread introduction of high speed rotating 

machinery has led to a greater interest in the problem of journal bearing 

instability. It became clear that it was of two distinct types. Newkirk 

(1956), in an experimental study, contrasted the results obtained previously 

with a rigid shaft and a flexible shaft. The flexible shaft had a first 

critical speed in bending of 1210 r. P. m.; it was observed to whirl with a 

frequency of 1250 r. p. m. over the speed range 2300-5000 r. p. m. (resonant 

wbip), the amplitude of this whirl increased with speed. The rigid shaft had 

no bending critical speeds below 30000 r. p. m.; oil whirl was observed at low 

speeds with a frequency slightly less than half running speed. Interestingly, 

this oil whirl died out at higher speeds between 7000 r. p. m. and 18000 r. p. m. 

Sternlicht (1962) identified three different types of rotor instability: half 

frequency whirl, fractional frequency whirl and resonant whip. Smith (1970) 

also found three different types: light load instability, half frequency 

whirl and low frequency whirl. It is, however, generally agreed that half 

frequency whirl, fractional frequency whirl and light load instability are 

different manifestations of oil whirl; whereas low frequency whirl is really 

resonant whip. This plethora of terminology, with the additions of 

synchronous and nonsynchronous whirl, make a study of the literature most 
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confusing, especially for the nonspecialist. The author would like to suggest 

that in general, only the terms 'oil whirl' and 'resonant whip' should be 

used. The use of 'half frequency whirl' should be restricted to the 

description of the pure half frequency whirl observed in the case of the 

unloaded bearing. 

Early analytical studies of the fluid film were restricted to Sommerfeld's 

(1904) solution to the long bearing. Another major development which occurred 

shortly after the second world war was Ocvirk's (1952) introduction of the 

short bearing approximation. The latter solution is now accepted as being the 

more realistic. This is reflected in the fact that although the first 

attempts to model a finite bearing were based on the long bearing e. g. Warner 

(1963), recent attempts have been based on the short bearing e. g. Pan (1980), 

Pan and Ibrahim (1980). 

Two important contributions to the understanding of fluid film instability 

were made by Poritsky (1953) and Hori (1959). In a study confined to small 

eccentricities, Poritsky showed that although a flexible rotor operating in a 

long bearing with an uncavitated film is inherently unstable, if cavitation 

is introduced, it is possible to derive a stability criterion, i. e. for 

stability, the following must be satisfied: 

mw 2f1+1<4 or w< 2w1 
Kr R51 

where: Kr = rotor stiffness, K. = oil stiffness 

w- rotational speed, wl = rotor's first critical speed in bending 

Although Poritsky's approach was rather crude in that fluid film damping was 

assumed to be linear, he succeeded in showing that for w>2w1, the rotor will 

whirl with frequency wl as observed experimentally. He was also one of the 

first to appreciate the importance of cavitation as a stabilising agent. 
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Hori calculated the fluid film forces under the assumption that the bearing 

was infinitely long and that the lubricant occupied only the converging part 

of the gap between the shaft and the bush. By linearising the equations of 

motion about the steady state position in a similar fashion to that adopted 

by Stodola, he used Hurwitz criteria to derive a stability condition: 

F2) K1(ES)t K2(E8, +F 
Z1 

mcw mcml 

where: F= load supported by the bearing, m= rotor mass 

es = steady state value of the eccentricity ratio 

W1 = first critical speed in bending of the rotor 

c= radial clearance, K1, K2 = functions of es 

The second part of Hori's work consists of a part analytical, part 

experimental examination of the motion of a rotor mounted on a flexible shaft 

operating well above the threshold speed (the maximum speed for which the 

rotor is stable, as calculated by linear techniques). Although some of his 

assumptions are rather vague, he succeeded in showing that resonant whip 

cannot occur unless &J>2w,, as well as explaining some of the observations of 

Newkirk and Lewis (1956) and Pinkus (1956). 

Recent work in this area of the subject has harnessed the power of high speed 

digital computers to solve Reynolds, equation for finite L/D ratios and for 

noncircular bearing shapes. This has enabled several techniques to be 

developed to calculate the eight bearing coefficients, e. g. Woodcock and 

Holmes (1970), Lundholm (1971), Lund and Thomsen (1978). Akers, Michaelson 

and Cameron (1971) combined a numerical integration of Reynolds' equation 

with a Runge-Kutta solution of the equations of motion to calculate stability 

borderlines for a variety of L/D ratios. They achieved good agreement with 

results obtained by standard techniques. it has become common practice to use 
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a combined computational/experimental approach to confirm the accuracy of 

computer programs developed for stability analysis. Lund and Tonnesen (1978) 

obtained excellent agreement between experimental results obtained by an 

examination of two different rotor systems and numerically calculated 

stability borderlines, thus validating the use of theoretical models in 

bearing analysis. Allaire (1980) has presented a detailed survey of the 

stability characteristics of several bearing geometries by a similar 

combination of experimental and computational methods. 

Interest in the nonlinear features of oil whirl has arisen from the 

observation that several machines have been successfully run at speeds in 

excess of the threshold speed e. g. Mitchell, Holmes and Byrne (1965-6), 

Newkirk and Lewis (1956) and Tondl (1965). However, with very few exceptions, 

mathematical investigations of the nonlinear motion have been based on 

numerical integration, the results of which have been inconclusive. Using 

both long and short bearing theory, Mitchell, Holmes and Byrne concluded that 

the journal was unstable for all rotor speeds if a complete oil film is 

assumed; whereas Reddi and Trumpler (1962) and Tolle and Muster (1969), also 

using a complete film, found that under certain conditions stable whirl 

orbits exist. Badgley and Booker (1969) considered the effects of cavitation 

by neglecting the subambient*pressure region for the long bearing, the short 

bearing, and Warner's (1963) finite length approximation. However, their 

investigation was restricted to the consideration of the effects of initial 

transients on the linear stability borderline. McKay (1981) using a time-'step 

technique, found that under certain conditions the long bearing with 

oscillating half film (originally developed by Hori) can sustain stable whirl 

orbits. 

Lund (1966) made an analytical investigation of the short bearing by means of 

the method of averaging. Myers (1981) employed a similar technique for the 
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long bearing. Both these studies showed the existence of stable whirling at 

speeds just above and below critical, depending on the value of a certain 

speed independent param ter. In the case of Myers, a study of the same model 

by means of Hopf bifurcation and multiple scaling gave excellent agreement, 

but showed discrepancies with the method of averaging, suggesting an error in 

its application. The author is not aware of any further analytical studies 

other than the work of Lund and Myers. 

other numerical studies include work by Jennings (1960), Huggins (1963-4) and 

Someya (1963-4). Recently, attention appears to have concentrated on the use 

of numerical techniques to examine the effects of extraneous features such as 

load imbalance and rotating loads on whirling motion e. g. Kirk and Gunter 

(1975), Bannister (1980). Lund and Nielsen (1980) have adapted the method of 

averaging to examine the effect of mass imbalance. 
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CHAPTER 2 

CAVITATION MODELS AND LINEAR ANALYSIS OF THE 

STABILITY OF THE EQUILIBRIUM POSITION 
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in Chapter 1, cavitation was discussed in general terms and the hydrodynamic 

pressure forces due to the fluid film were derived. These were found to be 

functions of the position and velocity of the journal within the bush. A 

steady state (equilibrium) position was found by equating the velocity 

components within the force expressions to zero, and balancing the steady 

state forces against the load (Figure 1.8). This led to a relationship 

between the load (F), the steady-state eccentricity ratio (es) and the 

rotation speed (w). In this-chapter, the experimental and analytical basis of 

various attempts to model cavitation phenomena will be examined and the fluid 

film forces for particular cavitation models will be derived. In addition, 

linearised stability analysis will be used to determine the stability of the 

equilibrium position giving rise to a neutral curve in ( es, V) parameter 

space (see section 2.3) and also the frequency of small vibrations at the 

stability threshold (critical frequency). Finally the effect of shaft 

flexibility on the stability of the models will be considered. 

2.1 The application of cavitation boundary conditions 

The pressure distribution in a journal bearing is found by solving Reynolds, 

equation subject to appropriate boundary conditions. The simplest solution to 

the long bearing approximation, known as the Sommerfeld (1904) solution and 

representing a journal with a full fluid film (no cavitation), is obtained by 

applying the conditions: 

p0 at 0=0,2n (2.1) 

This solution ignores cavitation and leads to an antisymmetric pressure 

distribution in the static case (see Figure 2.1); as observed in Section 1.3 

it has been shown to be inherently unstable. The simplest modification to 

this model is known as the Gumbel (1921) condition, for which the following 
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boundary conditions are specified: 

p=0 at 0=0, n 

p=0 at n<0< 2n 

This model gives reasonably accurate results for the static properties of the 

bearing and consequently it hes been widely used as a first approximation, 

e. g. Hori (1959), McKay (1981). Another relatively straightforward 

modification to the non-cavitating model is the half Sommerfeld solution. 

Here, Reynolds, equation is integrated as for the Sommerfeld solution with 

boundary conditions (2.1); however subambient pressures are simply ignored 

when calculating the hydrodynamic forces. It is easy to confuse the Gumbel 

and half Sommerfeld solutions in the literature of the subject, since in the 

static case they are identical in predicting the existence of a cavity 

filling exactly the whole of the converging region (Figure 2.1). Consequently 

some authors have been imprecise as to which boundary conditions they are 

applying. The Gumbel solution has the fluid film filling exactly the whole of 

the converging region under both static and dynamic conditions; whereas under 

dynamic conditions, the half Sommerfeld solution (see section 2.6) has: 

P>0 for 0<0< 7T+a (a > 0) 

And p=0 for 7T+a <0< 27T 

As we shall see later on, this apparently small distinction gives rise to a 

very different neutral stability curve in (e, tv) space. 

To obtain a more accurate representation of the behaviour of the oil film, 

Reynolds' boundary conditions can be used. This condition constitutes a more 

realistic attempt to reconcile the mathematical model with experimental and 

visual evidence of the region around film rupture. This evidence (e. g. Dowson 

(1957)) suggests that the breakdown of the lubricant flow is characterised by 

a finger pattern of air cavities (see Figures 2.2 and 2.3). The flow rate per 
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Figure 2.3 Plan view of film rupture 
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Figure 2.4 Flow separation 

line of film rupture 
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unit width is given by (equation (1.3)): 

h dp + Uhl 
12µ dx 2 

we have assumed that the pressure in the cavities is constant and ambient. 

Therefore if the cavities are sharply pointed, the flow rate per unit width 

immediately after rupture is given by: 

Uhp 
2 

Consequently, continuity requirements imply that: 

do 
dx 

The Gumbel and half Sommerfeld solutions fail to satisfy this continuity 

condition. The Reynolds' boundary conditions can be summarised as: 

p=0 at 9=0 

p= dp =0 at e=e 
d6 

p=0 for 9,1 <9< 21T 

The Reynolds' boundary condition represents the most sophisticated model of 

cavitation commonly in use in bearing analysis. However, it is not ideal, 

since further evidence (Hopkins (1957), Birkhoff and Hays (1963)) suggests 

that just upstream of film rupture, the lubricant pressure drops below that 

of the cavity (Figure 2.1). As the use of Reynolds' condition cannot predict 

this subcavity pressure loop, new attempts have been made to explain the 

circumstances around film rupture. It has been suggested that a reverse flow 

eddy might provide a mechanism for cavity formation, with the result that a 

cavity would form where the fluid separates from the bush (where velocity and 

tangential stress are both zero) (Figure 2.4). In this case some of the fluid 

will be carried over or under the cavity attached to the rotating shaft. The 
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zero shear stress assumption leads to the condition: 

de = 21LU (2.2) 
dx h2 

This pressure relationship combined with the chosen pressure value for the 

cavity can be used to determine the position of the lubricant/cavity 

interface. When (2.2) is satisfied and separation occurs (in general, when 

E>0.3), this condition implies that the cavity forms at the position of 

separation. Therefore, the application of this condition involves the 

assumption that the existence of a cavity does not affect separation. 

Nevertheless, this work does represent a step forward in explaining the 

presence of the subcavity loop and the absence of cavitation for lightly 

loaded bearings at low eccentricities (E<0.3). The method has since been 

reformulated by Coyne and Elrod (1970,1971) who carried out a planar 

analysis, taking account of surface tension, gravity and fluid inertia. 

Having determined the rupture interface they derived the following boundary 

conditions (gravity and fluid inertia are neglected here): 

dp = 6µU(1-2h ) 
dx h2 he 

c 

p= -T+Ap 
R 

0 

h,, = uniform fluid film downstream of film rupture 

Ro = radius of curvature of free film at separation point 

T= surface tension between lubricant and air 

AP = measure of the pressure change across the transition region from the 

lubrication type flow just upstream of the cavity 

Coyne and Elrod also succeeded in deriving the ratios (hm/hc) and (RO/b,, ) as 

functions of the capilliary number gU/T. The importance of these ratios in 

low Reynolds, number fluid dynamics has already been demonstrated by 

Bretherton (1960) and Taylor (1963). 

UNIVERSITY LIBRARY LEEDS 
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The question arises as to when are the Coyne and Elrod conditions and the 

Reynolds' conditions valid. Coyne and Elrod assumed that the fluid/air 

interface is unperturbed, i. e. a straight line along the axis of the bearing. 

This situation arises at low pressures and low eccentricity ratios. The 

Reynolds' condition assumes that the interface is perturbed in a 'finger 

pattern' (see Figures 2.2 and 2.3), which is most likely to occur when 

moderate to high pressures are generated, i. e. at higher eccentricity ratios. 

The problem of film reformation has not received the detailed treatment 

afforded film rupture, indeed in common usage the term 'cavitation 

conditions' has come to represent film rupture conditions; this thesis adop;: s 

this convention. Floberg (1975) has developed some rather complex governing 

equations, whilst Coyne and Elrod remarked that the general formulation of 

their equations was applicable to film reformation. Application of the Coyne 

and Elrod technique, however, leads to an infinite number of possible film 

shapes at reformation. Dowson and Taylor (1979) suggest that in an analysis 

of lightly loaded bearings across the eccentricity range, a mixture of 

physical models might produce the best results. clearly there is scope for 

more research into the conditions governing film reformation. 

The approach adopted in this thesis (except in the case of the short bearing. 

which will be considered later in this section) is that the film begins 

either at the line of maximum film thickness, or at the axial groove, if one 

is included in the model. This assumption is rather hard to justify, yet it 

is made in the light of the observations that film reformation occurs in the 

region (just upstream) of the position of maximum film thickness. 

Dynamic Conditions 

The cavitation models so far considered have been concerned with the 
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behaviour of the lubricant under static conditions (with the exception of the 

short bearing model, which implies its own dynamic conditions). If a linear 

or nonlinear dynamic analysis is to be carried out, the behaviour of the 

fluid film during a vibration of the journal must be known. In particular, 

does the lubricant remain in a fixed position relative to the shaft, or to 

the bush? Even during very small vibrations this can have a dramatic effect 

upon stability (see Section 2.10 for a discussion of this phenomenon). 

Short Bearing Theory 

The above discussion of cavitation boundary conditions is applicable to long 

and finite bearing theory. However, in recent years, short bearing theory has 

come into prominence as a more'realistic description of the physics involved 

since typically L/D < 3/4 (Holmes (1960,1963), Lund (1966), Lund and Nielsen 

(1980)). Due to the nature of equation (1.13) it is not possible to implement 

arbitrary boundary conditions, because the pressure distribution imposes its 

own zero (i. e. cavitation) values. Recently Pan (1980) has examined a short 

bearing which can sustain negative pressures, but in general, only two short 

bearing models are available: 

(1) Full film model. This has already been shown to be inherently unstable 

(Holmes (1963)), and will therefore be ignored. 

(2) Half film model. In this model the fluid film extends from 01<0<7T+01P 

where el is determined by the position and velocity of the journal. 

Summary 

The remainder of this chapter will be concerned with an investigation of 

journal bearing stability for various models incorporating the boundary 

conditions already discussed. Initially the simpler cavitation models are 

analysed, then the more sophisticated Reynolds' approximation is studied. The 
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latter condition has been chosen not only for the advantage of relative ease 

of application, but also because of its success in predicting those bearing 

properties that have been confirmed by experiment. The use of Reynolds, 

condition allows an additional sophistication to be built into the physical 

model, namely the introduction of fluid supply through an axial groove. 

Finally the a short bearing operating with a half film will be analysed. 

2.2 The equations of motion 

The derivation of the equations of motion and the analysis of their stability 

in this and the following section are a generalisation and extension of a 

technique developed by Hori (1959) to study the long bearing oscillating half 

film model. To derive the equations of motion, rectangular co-ordinate axes 

are introduced with the origin 0 at the eqUIlibrium point of the journal 

centre (Figure 2.5). Denote the co-ordinates of the shaft centre and rotor 

centre by A(4,7? ), R(x, y') respectively (note that for a rigid shaft A and R 

are coincident). 

It is important to point out that it is assumed that the shaft is 

sufficiently stiff for static deflections to be ignored. If static 

deflections were to be included, the problem would be greatly complicated by 

the presence of sinusoidal forcing terms in the equations of motion. 

There are two forces acting on the rotor centre: 

(1) The load due to gravity. 

(2) The force due to the bending of the shaft. 

Consequently the rotor centre has equations of motion: 
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mx'+k(x'-ý)+mgsinss= 0 (2.3) 

my'+k(y'-7))+mgcosv5= 0 (2.4) 

The force balance between the bending force in the shaft and the reaction at 

the bearings leads to the relationship: 

k(x'-4) = -Frcos(ýP-PS)+Ftsin(P-ws) 

k(y'-n) = -Frsin(ýp-Ps)-Ftcos(g-IPs) 

(2.5) 

(2.6) 

Equations (2.3)-(2.6) represent four equations of motion describing the 

behaviour of the system. If the terms in ý and 71 are eliminated they can be 

used to calculate the stability of the rotor. 

2.3 Linearised stability analysis 

Equations (2.3 )-(2.6) can be linearised about the equilibrium point ( ES, Vs) 

for the purpose of examining the stability of the bearing. The first step is 

to perturb the eccentricity ratio and attitude angle about their equilibrium 

values: 

E= ES+Ö Ö << ES (2.7) 

%OS+y y << 
S 

(2.8) 

It can be seen from Figure 2.5, in which OA =e= Cc, that: 

71 = cssiny ;ý= C¬COS7-ces 

y<< <ps ý cosy =1, s my =y 

yEC CE-CES = CO ; 71 - CESy 

The equations of motion can be nondimensionalised by use of the following 

quantities (in addition to those introduced in (1.17) and (1.18)): 
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x= x' v=F; vl =F (2.9) 
cc 

mcw2 mcw2 
1 

where (j, - the first critical speed in bending of the shaft (=, V(k/m)). 

Linearising the equations about the equilibrium position yields: 

X+ v(x-ö) + vsinps =0 (2.10) 
v 

y+ v(y-esy) + vcosvs =0 (2.11) 
v i 

(x-b) + Sv1Fr - ySv1Ft =0 (2.12) 

(y-es y) + SvI 
r+ YSv1Ft =0 (2.13) 

Equations (2.10)-(2.13) can be reduced to two tbird order linear equations in 

x and y by removing terms in 6 and 7. The procedure is as follows (full 

details are given in Appendix 1): 

(1) Note that the fluid film forces (equations (1.19)) can linearized to 

become: 

rABCDE 
(2.14) 

Ft = At+ Bt5- Cty +Dt6+ Ety (2.15) 

(2) Use (2.10), (2.11) to find 6,51,, y, -y' in terms Of X, Y, X', Y', Es and ýPs- 

(3) substitute (2.14), (2.15) into (2.12), (2.13) and remove constant terms by 

considering an equilibrium position: 

The system now reduces to: 

nfl 1 I11 � 

a1v1x+(a 2v1 +1)x+a 1 vx+a 2 vx-a 3v1 y+(a i-a 5 )v 1y 

-a3Vy+(a4-a5)vy =0 (2.16a) 
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to of I M, 

l 
b5)vl}y bvlx+bZvlx+blvx+b2vx-b3vly-{1+(b4- 

-b3vy+(b4-b5)vy =0 (2.16b) 

Each of the coefficients ai, bi are functions of cs alone. They are time- 

independent and constant for a given value of cs. The stability of (2.16a) 

and (2.16b) can be examined by a standard method, in which x and y are 

assumed to be of the form: 

x= xoes7 y= y0esT 

This leads to a characteristic equation: 

Aos6+A1s5+A2 s4+A33 
3 

+A4s2+A5sl+A6 

Ai = Ai(ai, bi, v, v2) 

(2.17) 

For the equilibrium point to be stable, all the roots of the characteristic 

must have negative real parts, and we can find necessary and sufficient 

conditions for this by applying Hurwitz criteria (Gantmacher (1959)). These 

criteria state that for (2.17) to have roots with negative real parts, the 

following inequalities must be satisfied simultaneously: 

A6 J 0, AS > 0, A4 > 0, A > 0, 

A2 > 0, A1 > 0, A0 > 0. (2.18) 

A1 A3 A5 0 0 

A A A A 0 
o 2 4 6 

0 A A A 0>0 (2.19) 
1 3 5 

0 A AA A 
0 24 6 

0 0 A A A 
l 3 5 

AAA 
135 

A0 A2 A4 >0 (2.20) 

0AA 
13 

In general, condition (2.18) is always satisfied, and after a considerable 
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amount of algebra, which is straightforward but tedious, (2.19) can be 

written in the form: 

(2,21) V> KI(¬ )[K2(¬ )+v 
1} 

If (2.20) is written in a similar form to (2.21) it can be seen that it is a 

weaker condition than (2.19), i. e. if (2.19) is satisfied, so is (2.20). 

Since K, and K2 are functions of Es alone, it is therefore possible to 

express the stability parameter v in terms of the eccentricity ratio and the 

stiffness parameter vj. A typical stability graph is shown in Figure 2.6. It 

can be seen that in the case of the rigid shaft, -, for which: 

(v - CO 
1 

V1 -$ 0 

the stability criterion reduces to the traditional criterion used by other 

workers in this area of research (e. g. Myers (1981), Holmes (1960)): 

v> L(¬ ) 

where the expression L is derived from a fourth order characteristic. In 

passing we note that it is possible to show that: 

L(Es) = K1(Es)K2(Es) 

This does, however, involve a great deal of algebraic manipulation, which 

would be of little benefit since the result can easily be verified for any 

particular bearing model by simply comparing the numerical results yielded by 

the two methods. 

The analysis so far has produced a pair of simultaneous linear third order 

O. D. E. 's in x and y, to which we have assumed existence of solutions of the 

form: 
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ST ST 
x= xoe ;y= Yoe 

At the threshold of stability, the small oscillations about the equilibrium 

position are neither growing nor shrinking, so s is wholly imaginary. In this 

case, suppose that the motion has critical frequency Fls, such that: 

S= i(1 
S 

on substitution into (2.17) we obtain: 

-A 
6n 6 +iA fins+A A 4_ iA n 3_A fin 2 +iA fal +A 0 (2.22) 

0s1S2S3S4S5s6 

Equating real and imaginary parts leads to: 

-A f16+A t 4-A l12+A =0 0S2S4S6 

A n5-A f23+A fl =0 1S3S5S 

solving the latter, we obtain: 

n2 = A3± (A2- 4A1A5)1/2 (2.23) 

2A 
i 

which after some manipulation (see Appendix 1), yields solutions: 

ns = Wi (2.24) 

s 

and ns = vsf(¬S vl) (2.25) 

Solution (2.24) is clearly a resonance solution, and corresponds to large 

vibrations occurring when twice the critical speed of the shaft is reached, 

and for which this type of linearized analysis is invalid. (2.25) is the 

appropriate solution for small vibrations. From (2.21), at the stability 

threshold: 
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Vs = K1 (E3){KZ (E5)+V1} (2.26) 

Substituting (2.26) into (2.25), we obtain (see Appendix 1 for details): 

z fts = K1(es) 

i. e. the critical frequency of small vibrations is independent of the shaft 

stiffness. 

It we replace K, by hs2 in (2.26), we find that for a flexible shaft vs is 

given by: 

v=v +nZv 
s so si 

(2.27) 

where vsO is the corresponding threshold value for a rigid shaft. In the 

case of the rigid shaft: 

v -" 0 k cc) w1 -, 00 tt1 

in this case (2.27) becomes: 

v=v s so 

Hence the results for the rigid and flexible shafts are consistent. 

n. b. Since deriving the expression (2.27) it has come to the author's 

attention that an equivalent result is stated by Allaire (1980). However, it 

is the author's opinion that the expression given here shows more clearly the 

relationship between the rigid and flexible cases. 

We are now in a position to apply the linearised stability analysis to the 

various bearing models described in Section 2.1. It should be pointed out 

that since the algebra involved in deriving the hydrodynamic forces for these 

models can be found throughout the literature of the subject, it has not been 
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considered necessary to reproduce it in detail here, other than when it is of 

particular interest. 

For the purposes of a comparison of these results with those produced by 

other techniques, it may be necessary to convert the values of the stability 

parameter v to the nondimensional rotor speed U). In fact, @ is used in the 

nonlinear part of this research, since it seemed more appropriate to a 

dynamic study of the behaviour at different speeds. The parameters are 

related by: 

v=1 
-2 w 
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2.4 A long bearing operating with an oscillating half film 

In this model the fluid film extends. from the line of maximum film thickness 

(0=0), to the line of minimum film thickness (e=77) in the converging half of 

the bearing. A cavity is assumed to exist in the diverging half (see Figure 

2.7). The pressure in this cavity is assumed to be ambient, therefore it 

makes no contribution to the hydrodynamic force exerted on the shaft. It is 

important to point out, for comparison with other models, that the position 

of the cavity remains fixed relative to the shaft and not to the bush. As the 

shaft vibrates about its equilibrium position, the fluid film also vibrates 

in such a way that the extent of the lubricant is constantly between (0=0) 

and (O=n). 

The appropriate boundary conditions are: 

P(o) = P(7T) =0 

Integrating (1.12) we obtain: 

c2 dp = c(w-2ýo)(cose+C + 2csine 
6gR 

2 d0 
(l+EC0S9) 

3 (l+ECOSO) 

C2p2ý E(co-2tp) 
f 

(cose+c., )de + 2ef sinede 
3+ 

C2. 

6/LR (1+ecose )3 (1+Ecose) 

The constants C1, C2 can be eliminated by using the above boundary 

conditions. The integrals can be performed by means of the Sommerfeld 

substitution (see Appendix 2), and we obtain the pressure distribution: 

c2P= E(w- ýp)(2+Esine)sine 

61LR 2 (2+ 62) (1+ccose )3 

+, E 4sinO (4- 62 )+3ccosO 4cos-lu +1 
1 

77 

ý( 

1_62 ) 3/2 (2+E 2)v2 
IT( 1_6 )2Eýv2 (1+C )2 

U= E+cose ;v= I+¬cos8 
Z+¬cose 
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Evaluating the hydrodynamic force components by means of (1.15) we obtain: 

-c2Fr = Fr = 
LR3uw 

czFj- = Ft = 
LR 3 µcß 

12E2(1-2*) + 

(2+E2)(1-E2) 

6irc(1-2'p) 
(1-E2)1/2(2+E2 

6( 2 (2+ 62)_ (2.28) 

iT(2+ 62)(. 1_62)3/2 

f 24¬ (2.29) 

(1_¬2)(2162) 

Expressions (2.28) and (2.29) can be linearised by means of (2.7) and (2.8) 

to give: 

24211 Fr 12 cs 24c 
s 

(2+ Es )6 + 24e 
s 

126 77 -8 (2.30) 

pq p2q2- pq 
-q 

3/2[ f 77P 

F 61TE + 67T(2-C2+2e4 12e iT; + 24e (2.31) 
tss-5s 

pq 
1/2 

p2q 
3/2 pq pq 

L P= 2+¬2 r Q= 1-ES 

Given a bearing load F and a rotation speed w, we can find the equilibrium 

value of the eccentricity ratio. It is possible to find the steady state 

value of the attitude angle and the load capacity by the use of (1.20) and 

(1.21). This can be achieved by putting ý=O, 
tý=O in (2.28) and (2.29), or 

5'=O, 'Y'=o in (2.30) and (2.31). 

This leads to: 

222 1/2 6E 
s 

[77 (1-E 
s 

)+4e 
s 

pq 

tanVs = -ff(l-E'*) 
1/2 

s 
2c 

s 

It is now possible to analyse the stability of this equilibrium position 

since (2.30) and (2.31) are in the required form of (2.14) and (2.15). By 

substituting the terms in Ar, At etc. into (2.21) a stability borderline can 

be established for various values of the shaft stiffness. 



52 

2.5 A long bearing operating with a static half film 

This model is similar to the previous one in that under steady state 

conditions it has an oil film of 1800 extent in the converging part of the 

bearing and a cavity in the diverging part. The crucial difference between 

the two is the behaviour of the oil film when the shaft vibrates about its 

equil ibrium position. In this model the film remains at its equilibrium 

position (see Figure 2.8) during a vibration of the shaft, so that it extends 

from 0=-, y to 0=77-Y under dynamic conditions (note that T/n << 1). At 

equilibrium, however, it fills the space o<e<n. 

Since the extent of the fluid film in equilibrium is the same as in the 

oscillating half film model, the equilibrium properties of the two models 

(i. e. attitude angle, load capacity, etc. ) are identical. However, it will be 

seen in Section 2.10 that the apparently insignificant difference in the 

behaviour of the fluid film under dynamic conditions has a great effect on 

the stability characteristics. 

The pressure distribution can be found by integrating (1.12) with the new 

boundary conditions: 

P(-Y) = POT-Y) =0 7/n << 1 

This enables the force components to be determined by means of (1.15). The 

hydrodynamic force components are: 

2 Fr +6t 7r2 (2+E 21 
-c 12E(1-2ý) )-16)E - 96E-Y 

LR 3 
g(d (1-E 2) (2+E 2 

7T(1-E 
2) 3/2 (2+ E2) 7T(2+E 

2) (1-E 2)3/2 

-C 
2F 

t-_ = 67TE (1-2ý) 

LR 3 
Aw (1-E 2)3/2 (2+e 2 

24c¬ 
ýZ+E2)(1-E2) 

- 12E4y 

(2+E2)(1-E2) 

These expressions are identical to those for the oscillating film model with 
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the addition of the y terms which arise since the pressure distribution is no 

longer radially symmetric with respect to the shaft position. Similarly the 

linearised force expressions include terms involving 

2 
64)6 

2 Fr 12c 
s 

24c 
s 

(2+ 
S- + 24c 

s7- 
125 ! -, 

7ýTp 
+ 96csy 

pq p2q2 pq q 
3/2( 2 

7TP 
2q 3/2 

(2.32) 

24114 
Ft 67TE 

s+ 
67r(2-E 

s 
+2E 

s 
)6 - 12e 

s iT-y + 24 Es6- 12C 
s7 

(2.33) 

q 1/2 pp2q 3/2 q 1/2 p pq p2q 

The equilbrium values of load capacity and attityde angle can be found as 

before. Since (2.32) and (2.33) are in the form of (2.14) and (2.15) a 

stability borderline can be found by their substitution into (2.21). 

2.6 A long bearing operating with a half Sommerfeld film 

In this model, no constraints are placed on the pressure distribution, other 

than the assumption that the pressure build-up begins at the line of maximum 

film thickness (0=0). Equation (1.12) is integrated by means of the 

Sommerfeld substitution using the boundary conditions: 

p=00,21T 

This is the identical procedure carried out when finding the pressure 

distribution for a full (uncavitated) film. In this case, however, a cavity 

is assumed to exist wherever subambient pressures are predicted (see Figure 

2.9). on integrating (1.12), we obtain: 

c2p= c(w-2, p)(2+Ecose)sine +c (2.34) 
6gR 2 (2+ C2) (1+ecose )2 El(l+ECOSe )2 (1+c: j 

-00,21T, iT+a 
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where a satisfies 

-c(w-2ýp)(2-ccosa)sina +E10 (2.35) 

(2+ E2)(, _ECOSa)2 
Ef(, +CCOBa)2 (1+E) 21 

We assume a cavity exists (p = 0) in the region iT+a<e<2u. In the steady 

state a is zero and hence the equilibrium properties of this model are the 

same as in the previous two. When considering the full nonlinear motion of 

the journal, a must be determined numerically from (2.35); however, during a 

small amplitude vibration of the journal, a is small and can be found from 

(2.35) by neglecting second order terms: 

4(2+E 
5)ý 

s 
(1+cs)ý(2-c 

s 

The linearised force terms can now be found by substituting (2.34) into 

(2.36) 

(1.15) and using (2.36) wherever a occurs. The linearised force components 

are: 

Fr C2 
4)6 12 

s- 
24E 

s 
(2+E 

s+ 
24E 

s 
67T6 

Lpq p2q2 
pq 

q 
3/2 

Ft = 6e -ff + 67T(2-c 2 +2c 4 )6 - 127TE + 24(1-e 
-ssss 
pq 

1/2 p2q 
3/2 - pq 

1/2 
q2 

These expressions are very similar to those for the oscillating half film 

model, only the 
ý 

terms differ. However, the stability characteristics for 

the two models are very different, as we shall see later. 
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2.7 A long bearing operating with a film satisfying Reynolds' Boundary 

conditions 

In this model the oil film is assumed to begin at the line of maximum film 

thickness and to end beyond the point of minimum film thickness at the point 

where both the pressure and pressure gradient are zero. In the first 

instance, the oil film is assumed to be oscillating, as in the case of 

Section 2.3, i. e. its position remains fixed relative to the shaft during a 

vibration (see Figure 2.10). This assumption will be modified later, and in 

the next section the model will be further refined by the inclusion of oil 

supply through an axial groove. Therefore, to avoid reproduction of the 

algebra, the 01-term (corresponding to the film start) will be retained in 

the calculations, although it is zero for this particular model. The algebra 

for all these models is especially tedious, and has been kept to an absolute 

minimum here so as not to obscure the main features of the work. Full details 

of the derivation of the pressure distribution and hydrodynamic forces for 

this and the following section can be found in the Ph. D. thesis of C. J. Myers 

(1981). 

The Reynolds, boundary conditions for the oscillating film model are: 

p=o 0=0 

dp =00=0 
dO 

Integrating (1.12) we obtain: 

dp = 6/JR 21 

dO 2 c 

e(w-2v)cose+2csine+C 

(, +ECOSe)3 
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Since: 

dn =0 at e=e 
=-Z- 2 de 

this implies that: 

21 
=dn = 6gR e(w-2p)(cose-cose )+2e(sinO-sinO X- 22 de 

c2(, +ECOSO)3 

I 

This equation can be solved by the Sommerfeld substitution, and 02 can be 

found numerically by solving P( 02 ýýO . We have: 

C2pý c(w-2ý)F(E, **, f 
1 IV, 2) 

6jLR 24( 
1_ E2) 3/2 ( 1-ccoso. 

2 

2EQ(E, V, Vl' 102 (2.37) 

_IE2 )2(, _CC; OS. 0, ) 

The variables It, V*1 and V'2 are the Sommerfeld angles corresponding to 0,01 

and 02 respectively. As previously mentioned, 01 and hence f, are zero for 

the oscillating case, but they are retained here so as to make the 

application of the method to the static and axial grove cases easier. The 

steady state value of V2 can be found numerically by solving: 

1ý 2S " Vis ,v 2S 
)=0 (2.38) 

We can now find the steady state pressure distribution: 

C2pEs F(E 
s IVIV, is' 

V, 
2S 

) 

6gR 2 
(1 4(1-E 2) 3/2 (1-ECOSIt 

s 2S 

The hydrodynamic force components can be found by substituting (2.37) into 

(1.15) and after linearisation they are of the form: 

Fr = -A r -B r 
5+C 

r Y-D r5 
(2.39) 

Pt =At +B t 6-C t 
ý+D 

t; (2.40) 

Ar=Ar (E 
5? 

fIS'f2S ) etc. 
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These expressions are of the required form for the stability analysis, since 

they are functions of Cs. The variable fl, is specified by the type of 

Reynolds, model chosen; in this case it is zero, but for the axial groove 

model *'js is a function of es. In both cases 1P2S is dependent on ES from 

(2.38). 

The model with Reynolds' boundary conditions and static fluid film is partly 

analogous to the static half film model discussed in section 2.5. It is 

assumed that lubricant is supplied to the bearing through an axial groove 

positioned at the line of maximum film thickness, i. e. at an angle v-ýps 

before the load-line (see Figure 2.11). During a vibration of the shaft, the 

beginning of the fluid film remains fixed relative to the bush. In 

equilibrium, the oscillating and static versions of the Reynolds' boundary 

conditions are identical, but they have very different stability 

characteristics. 

2.8 A long bearing operating with th2 lubricant supplied through an axial 

groove 

Of all the long bearing models considered, this is the most refined, 

incorporating an axial groove (a groove aligned with the axis of the 

bearing), thus removing the need to assume that the pressure becomes 

superambient at the line of maximum film thickness. We assume that the 

pressure build-up begins at the groove and continues until p=dp/de=o. The 

groove is fixed in space, and its position is measured with respect to an 

imaginary line through the centre of the bearing, parallel to the load on the 

journal. The angle between the line of centres and the groove is denoted by 8 

(see Figure 2.11). In all the previous models examined, the pressure build-up 

has begun at the line of maximum film thickness (e=o), but here it 



60 

9=0 

groc 
(fitm ý 

fluid film 

loadline 

ty 

fitm rupture 
(0 = 02) 

Figure 211 The ctxicLt groove bearing 



61 

is necessary to locate the groove i. e. to find 0,,, for every equUibrium 
I 

position. This is done numerically using the relationship: 

is 
+a+p8= 7T 

During a vibration, e1 does not remain constant, but changes from el to el-, Y. 

if the model is to be an accurate description of the lubricant behaviour, 

this -Y-variation' must be taken into account. Interestingly, Lundholm (1971) 

omitted to include this variation in his work on axial groove bearings; once 
I 

he became aware of the error, he produced an addendum to his results 

(Lundholm (1973)). 

The hydrodynamic force components are found as in the previous section, 

noting that '0*100. Linearisation yields: 

Fr = -A r 
(r: 

s . 
O)-B 

r 
(c 

s , 8)5+C 
r 

(E 
s , O)y-D 

r 
(E 

s , 
8)6+E 

r 
(c 

s . B)y (2.41) 

Ft = At(c: 
srfl)+B t (E 

s , 8)6-C t (E 
s . 

S), Y+D t (cs,, 6); +E t (c 
S, 

R)y (2.42) 

The expressions Ar... Dt in (2.41) and (2.42) are identical to those in (2.39) 

and (2.40). A full stability analysis can be carried out for any particular 

groove position, provided that the groove is not more than 1800 before the 

load-line. It will be seen in section 2.10 that the groove position has a 

significant effect upon the stability characteristics of the bearing. If 

, 8>180* the groove would be positioned well into the diverging region, where 

we would normally expect a cavity to be found; in this case, the numerical 

scheme to find 01, fails to converge. It is possible to construct a 

mathematical model with R>180', in which the fluid film terminates at the 

axial groove, but since this configuration is fundamentally different from 

the other lubrication models examined in this thesis, it has not been 

considered here; indeed, as such it is of no practical interest. 
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2.9 A short bearing operating with a half film 

The final model to be examined is a short bearing operating with a half (or 

7T) film. For the short bearing, the assumptions made in simplifying Reynolds' 

equation do not allow the arbitrary imposition of boundary conditions as in 

the long bearing models previously considered. In this case, we must impose 

the conditions: 

O, L 

i. e. the pressure must be ambient at the bearing ends, since they are open to 

the atmosphere. This leads to the pressure distribution (integrating (1.13)): 

2 
cp= 3z(z-L) E(w-2ýp)sinO+2ccose (2.43) 

gL 
2L2(, +CCOSO)3 

I 

which implies: 

p=0 at e=eI, 7T+ 01 277+e, 

tane 2i (2.44) 

Thus the imposition of boundary conditions at the bearing ends completely 

determines the nature of the circumferential pressure distribution. In 

equilibrium, the pressure is identically zero at the lines of maximum and 

minimum film thickness, but under dynamic conditions the zero points depend 

on the position and velocity of the shaft through (2.44). A typical pressure 

distribution is shown in Figure 2.12. 

Since the values of 6 giving zero pressure are determined via (2.44), we are 

faced with two possible physical models. The full film model has been shown 

to be inherently unstable (Holmes (1963)), and will, therefore be ignored 

here. The half film model, in which a cavity is assumed to exist in the 
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region e I< 0< 27T+e 1 will be considered in detail (see Figure 2.13 ). 

The hydrodynamic forces are found by integrating the pressure distribution 

(2.43) in (1.16) from 01 to 7T+ej. A direct integration is possible (see 

Chapter 4), but for the linear analysis adopted here, use of the Sommerfeld 

substitution is more convenient. 

In a small vibration of the shaft about its equilibrium position, c and 

are small quantities, and so el will also be small, since (2.44) reduces to: 

e tan-'I 2; 1= tan-'I 2; 1 

CwE Ss 

In practice, all occurrences of 01 in the force integrals cancel out, or are 

of second order, since in equilibrium, or to first order for small 

vibrations, the pressure distribution is antisymmetric about e=u+el. 

Consequently, when evaluating the linearised fluid film forces, the same 

result can be obtained by integrating from 0 to 7T. Clearly this approach 

cannot be adopted in a full nonlinear analysis of the motion, since the 

second order terms would not be trivial in this case. The linearised forces 

a. re: 

Fr ý- E2_ 2c (1+E 2 )6 +2 E2 7T(1+2 E2)ý 
S S S s S 

q q3 q2 
- 

2q 5/2 

Pt = ne + u(1+2 E2 )6 _ 7T + 2c 
s S s 

4q 3/2 5/2 4q 3/2 2q 2 
q. 

Note that for the short bearing, Pr and Pt are defined as: 

Fr ý Fr Ft = Ft 
T-S FS 

m 
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2.10 Results and discussion 

A full stability analysis has been carried out by the author for all the 

models discussed in Sections 2.4-2.9, but since this work has generated a 

very large amount of data, only the most important results have been included 

in this thesis. Figures 2.14-2.19 display the essential features. 

Figure 2.14 shows the stability borderline for the case of the rigid shaft, 

for all those models operating without an axial groove. If a bearing is 

operating in a region of parameter space below the relevant borderline, then 

the equilibrium position will be unstable (i. e. at least one of the roots of 

the characteristic equation will have a positive real part). If it is 

operating above the stability borderline, then it will be stable. one feature 

common to all models is the existence of a particular value for the steady 

state eccentricity ratio es , above which the bearing is always stable. With 

the exception of the long bearing static half film model, Es always lies in 

X the range 0.75<ES<0.85 (the tendency of journals to become stable when 6>0.7 

was first observed by Stodola (1925)). The oscillating half film model is by 

far the least stable, and the half Sommerfeld model displays even greater 

stability at low eccentricities, with the additional feature of predicted 

stable behaviour at cs=O, corresponding to an unloaded, or vertical shaft. 

The only difference in the hydrodynamic force components in each of these 

models is the presence of a Y-term in the static half film case, and a slight 

modification to the 6-term for the half Sommerfeld boundary conditions. 

The most sophisticated model, incorporating Reynolds, boundary conditions, 

has very similar stability characteristics to the half Sommerfeld film (as 

seen in Figure 2.14); although the static Reynolds' film is surprisingly less 

stable than the oscillating version, which is contrary to the results 

obtained for the half film. The two static film versions do have remarkably 



CC) 

Co 
i -i - 

4- E 2 v) cci (11 

(ii d - 
- -0 

-1-- -f- 0 
Ln 

-0 
-o 

-q - 

Li C U, - 
Ei ei ei c5 

C: ) (A 3: üý 0-1 

c, -i m 

I V- 

0% 

C5 

m cq 

�, m -e:: ý 

/I 

(ii 

.0 

. 
rr 

/ 

Cý4 %. 0 

Cli OZ! ýy --Jý %, - 

C> C) C) 6 

ia4awi)ji)d ýjq! qr-)4S 



67 

CD 

V) 
ui 

0 

CC) ý40 -t C--) CO -%D C) CD 10 --t 
C, 4 T--: c; 

(ý jalawi)jlDd 44! 1! qi)4S 

4- 

C- 
4- 
C: 
cu 
u 
u 

LLJ 

I 



68 

c13 E I Ei E 

L) V) -j: - cb C) (n 

c: CJ 
Z J-- 

E 
0 -(1) 

-0 
-(n i-= 
-0 - 

Li 
V) ý 

0 
-ý 

zz 

0 

Lj 
(ii v) . 4- 

CD 
Ej 
M 

oi 

Ln -Ln '10 Lri 

%0 

C14 

V- 

rr) 

--t 

C 

X: ) E 

0 
Z 

L) 

CI) 
t- 

m CL) 
%4- Z; 4- (n 
-0 
C-- 0 

c: 

Li 
LU 

%tD 
Ir": 
cs't 

tc; 0 

V-ý 
C) 

clý CQ %-q --j: &N 
c:: ) CD C) C> 

014.01 k) uE)nbE)j4 ljiqtA 
I 



C 

T- 

E 
-ON 6 

0i 
4- ýT- co Q) 4- C; Et 
E 
0 

Ln u 
4- 

c C: 

cl ci 
Qj 0i 

-0 -0 

cn Im C: c 
00 

Ln 

c 

-T . ----v I. 
II. 

.--.. 
II-. 

c 

CC) ýo -t C) a: ) --4.14-ý 

T- qc- 

jajawwnd 41! 1! qt)4S 



C71% 

-6 
I 

d 
-0 -4- 

CD 

0 
C> 
m 

- If C) 

%M 

CD 

_: t 

Cý 

rr 
0 c 
CD 
co 0 

C) 

cia- 
If 

0 
t-n 
m 
V- 0 
If 

COL 

co %D --t Cý4 (D OD %P -3: Ci C: ý cp -, o --T 

C, j rNi c'! N 
V-: V- Tl- v- C5 C5 C5 

(k jalawnind 41! 1! qi)4S 



71 

CZ) 
C--: 

00 

U) 
w 

0 
4- 

E! 

C- 4- 
cz 
c3i 
u 
u 

LLJ 

rrt 
cD 

46 

T7 
CD 

0 

C> 
CD 
V- 

If 

Ca 
0 Ln m 

COL 0 

C) 
(X% 
if 0 CD 

0 CO. C) 
rn 

0 

W C) C> C-w; l k-. i 
cu CD -t CC) %-D 
cu M Cý4 
C- 
C31 4 

-: 
Sz 

0) (0 0) 4ua4x; 3 WN 
,U 

(ii 

ci 

U- 



72 

similar stability borderlines, being generally less stable than the other 

models (with the exception of the oscillating half film, which as will be 

discussed later, has features inconsistent with oil whirl). A rather 

speculative explanation is that the natural movement of the oil film with the 

shaft has a stabilising effect by approaching a new equilibrium position as 

the shaft vibrates. If the oil film is constrained to remain in the same 

place, any perturbation of the shaft position is more likely to lead to 

instability, since the oil film cannot maintain the fine balance of the 

equilibrium position. However, it is not clear why the static half film model 

should become automatically stable at a much lower value of Es than all the 

other models. 

Although the simplifying assumptions for the short bearing half film model 

are very different, its stability characteristics are, rather surprisingly, 

similar to those for the long bearing models. 

Intuitively, one would expect that shaft flexibility would make the system 

less stable. This is indeed the case, although it should be stressed that 

flexibility adds no new qualitative features to the stability charts. 

Equation (2.27) shows that the threshold value of the stability parameter for 

a flexible shaft at a given eccentricity ratio, is simply the value of the 

parameter for a rigid shaft at that eccentricity, plus a quantity due to the 

flexibility. This quantity is given by the square of the appropriate value of 

the critical frequency multiplied by the stiffness parameter vj. The 

stability chart for the long bearing static half film model for various 

values of V, is shown in Figure 2.15. one feature that remains unaffected by 

shaft flexibility is the value of e for each model. The effect of shaft 

flexibility is simply to lower the stability threshold, rather than to change 

the nature of the onset of instability. This was first demonstrated by Hagg 

and Warner (1953) and shows that oil whirl is caused exclusively by forces 
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generated within the oil film. 

The critical frequency for each model is shown in Figure 2.16. It can be seen 

that the majority of the cavitation models fulfill the necessary criterion 

for oil whirl, i. e. a whirl frequency close to half that of the shaft 

frequency. In each case ns decreases monotonically to zero as the 

eccentricity ratio approaches the value c'. The critical frequency for the s 

long bearing oscillating half film model is much higher than that predicted 

for the other models; in fact over most of the range Of ES, Cis is well in 

excess of 0.5. This suggests that this model is unsuitable as a tool in the 

investigation of oil whirl, since the motivation for studying the subject was 

provided by the original observations by Newkirk et al. (1924), (1925), 

(1930) etc. of small vibrations at frequencies close to half the value of the 

shaft speed. 

The importance of critical frequency becomes clear when we examine its 

implications for the flexible shaft. Figure 2.17 shows a comparison of the 

threshold values of v for two values of V, for the half Sommerfeld and 

static half film models. It shows that at low eccentricities the half 

Sommerfeld model is more stable if the shaft is rigid, whereas fcr v1=5 the 

static half film model is more stable. This is due to the higher value of 5s 

for the half Sommerfeld film. 

Figure 2.18 shows the effects on stability of different axial groove 

positions for the case of the rigid shaft. For groove positions less than 300 

before the load line, the journal is very unstable (hence the results are not 

shown here), but stability improves as fl is increased to 900. Beyond this 

point, the stability deteriorates for all except the highest eýcentricity 

ratios. As discussed in section 2.8 it is not possible to consider values of 

,G greater than 1800, for which this physical model is inappropriate. It 
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appears that for journals operating over a range of speeds and loads, a 

groove position around 900 before the load line is the most stable. 

The axial groove model demonstrates the importance of cavity size; Figure 

2.19 shows the film extent for different groove positions. The stability 

results suggest that both too much and too little cavitation are conducive to 

instability (as remarked earlier, it is well known that a bearing operating 

with a complete film is unstable). one explanation of this might be that a 

film operating with a short lubricant arc e. g. 6=300 would be more 

susceptible to disturbances of the shaft from the eqifilibrium position, since 

the shorter contact area with the shaft is less able to provide a large 

enough restoring force to provide stability. 

To illustrate the results, consider a rotor mounted on a shaft supported by 

two plain journal bearings. The dimensions of the system are as follows: 

L=0.05m g=O. OlPa s 

D=0.05m F= 30ON (total load = 600N) 

R=0.025m c=0.00025M 

If we assume a rotation frequency of 5ooorpm, it is possible to calculate the 

equilibrium position and its stability for each cavitation model. The results 

are summarised in Table 2.1; three sets of results are shown, which 

correspond to: a rigid shaft, a shaft with first critical speed in bending of 

3000rpm and a shaft with first critical speed in bending of 100OOrpm. The 

table shows the discrepancies in the results obtained by using different 

models, and hence the importance of modelling the fluid film correctly if 

these results are to be meaningful. 

Another interesting feature is the relatively small effect of shaft 

flexibility on oil whirl in a real rotor system. For the higher critical 

speed the threshold speeds are reduced, but not by enough to change the 
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Table 2.1 

model 

1 
2 
3 
4 
5 
6 
7 
8 
9 

A typical rotor sytem - variation in the threshold speed 
for different cavitation models-and shaft stiffnesses 

rigid shaft 

(J) I= CX3 

flexible shaft 

w1=3000rpm wi=looooorpm 

ES VS0 cis stability 

. 44 . 77 -2150 unstable 

. 44 . 08 6700 stable 

. 44 . 15 5600 stable 

. 37 . 17 4600 unstable 

. 37 . 27 3650 unstable 

. 64 . 43 2900 unstable 

. 49 . 27 3650 unstable 

. 35 . 28 3600 unstable 

. 58 . 14 5150 stable 

Key to models: 
1 Long bearing 
2 Long bearing 
3 Long bearing 
4 Long bearing 
5 Long bearing 
6 Long bearing 
7 Long bearing 
8 Long bearing 
9 Short bearing 

ws stability 

1750 unstable 
5700 stable 
3700 unstable 
3650 unstable 
3200 unstable 
2550 unstable 
3150 unstable 
3150 unstable 
4050 unstable 

oscillatng half film 
static half film 
half Sommerfeld film 
Reynolds, conditions (oscillating) 
Reynolds' conditions (static) 
axial groove 600 before loadline 
axial groove 90* before loadline 
axial groove 1200 before loadline 

half film 

cis stability 

2100 unstable 
6700 stable 
5500 stable 
4450 unstable 
3650 unstable 
2850 unstable 
3550 unstable 
3500 unstable 
5050 stable 
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stability of any of the models (although it would be possible to achieve this 

effect by a careful choice of parameters). The reason for this effect is the 

small value of v, for all but the slowest critical speeds. A critical speed 

of 100OOrpm gives vl-0.036. This is far too small to give the spectacular 

effects shown in Figure 2.17. There is a substantial effect on stability if 

the shaft has a critical speed of 30OOrpm, giving vl=0.398. However, if the 

shaft were rotating at 50OOrpm it would be operating close to twice its 

critical speed, where oil whip effects come into play (see Section 1.4). 

Since oil whip is a large amplitude motion, it is likely to swamp any oil 

whirl. 

The intention of this chapter has been to extend the application of linear 

techniques to flexible rotors across a variety of cavitation models, in order 

to confirm the small but significant role played by shaft flexibility in the 

onset of instability. Although the effects shown in Figure 2.17 are unikely 

to be observed, this work has succeeded in highlighting the widely differing 

implications of shaft flexibilty for different cavitation models and the 

necessity for accurate modelling of the fluid film behaviour for the 

successful design of systems with flexible shafts. 

This chapter has been concerned with the calculation of threshold values for 

the stability parameter to define regions in ( es, v) space in which small 

vibrations are naturally damped. However, just inside these stable regions 

the damping may be very weak. Hahn (1976) concluded that just inside the 

stable region, although the bearing may be theoretically stable, the degree 

of damping may be insufficient for stable running in practice. There is wide 

theoretical evidence, e. g. Lund (1966), Myers (1981), of the existence of 

whirl orbits existing as limit cycles just above and below the threshold 

value. Since a small amplitude whirl orbit might well be an acceptable mode 

of operation, the next stage is to examine nonlinear effects around the 
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region of neutral stability in order to confirm or deny the existence of 

whirl orbits, and to ascertain whether or not they are stable. 

Before progressing to the remainder of this thesis, it is important to 

justify the omission of a detailed analysis of the effect on bearing dynamic 

characteristics of the latest developments in cavitation theory e. g. Coyne 

and Elrod, Floberg and the recent work of Pan (1980) on the improved short 

bearing model. It has been the author's intention not to provide a 

supplementary contribution to the theory of cavitation, but to give a flavour 

of the mathematics that can be used to study the implicatons of film rupture 

and reformation on journal bearing dynamic behaviour. Since the majority of 

these advanced studies are concerned with the static situation, it is more 

appropriate in a work of this kind to confine our attention to the more 

familiar models, whilst at the same time investigating their different 

implications for oil whirl. such is the complexity of the latest cavitaton 

models, that it will be necessary to resort to numerical techniques to carry 

out an anlytical study of their behaviour. An introduction as to how this can 

be achieved is included in Chapter 8. Ho, ýqever, as the short bearing half film 

model represents the best compromise between relative mathematical simplicity 

and accurate physical representation, it is the author's intention to make a 

detailed study of this model using the nonlinear theory developed in Chapter 

3. 

2.11 Conclusions 

1. The choice of cavitation models is the crucial factor affecting the 

predicted stability of a journal bearing system. It is important to model 

cavity behaviour correctly under both static and dynamic conditions. 

2. Shaft flexibility has a destabilising effect which is related to the 

value of the critical frequency. The introduction of flexibility does not, 
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however, affect the value of Es , the eccentricity ratio above which a model 

is always stable. 

3. Shaft flexibility adds no new qualitative features to the si-a6lUF 'Y 

charts. Its effect on oil whirl is relatively small, except in the case of 

very flexible shafts, where it is likely to be swamped by oil whip. 

4. The long bearing with an oscillating half film displays features 

inconsistent with oil whirl. 

0 
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CHAPTER 3 

NONLINEAR ANALYTICAL TECHNIQUES 
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The examination of journal bearing behaviour has, thus far, been restricted 

to analysis considering the linear terms in the two equations of motion of 

the rotor. The next stage is to reintroduce the nonlinear terms in order to 

obtain a more accurate description of the behaviour close to the stability 

borderline. Three analytical techniques are used: Hopf bifurcation, the 

method of multiple scales and the method of averaging. Due to the complexity 

of the journal bearing equations (a fourth order system with highly nonlinear 

forcing terms), the application of these techniques is by no means 

straightforward; a clear exposition of the techniques is called for before 

their application to the journal bearing problem. The objective of this 

chapter is, therefore, to consider each method in turn, outline the 

underlying theory and describe the method of application to a simple 

nonlinear, second order system. 

3.1 Hopf bifurcation 

Bifurcation theory deals with the bifurcation of periodic orbits from certain 

critical points (steady states) of a general n-dimensional (n>2), real, first 

order system of autonomous ordinary differential equations of the form: 

dxF(, x, v) (3.1) 

where V is a real parameter and av is a critical point. It is assumed that F 

is analytic in a neighbourhood of (x, v)=(aO, O), and that the Jacobian 

fx(AO, O) has exactly two non-zero purely imaginary eigenvalues ±iA. with the 

remaining n-2 eigenvalues having non-zero real parts. Hopf (1942) proved that 

a periodic orbit bifurcates from the critical point (? S, v). (au, o) as long as 

al(O)OO where a(v)+in(v) denotes the eigenvalue of Fx that is a continuous 

extension of +in,. Hopf also provides information about the uniqueness of 
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these bifurcated orbits, although by itself Hopf'S theorem is iMPrecise about 

predicting the stability of bifurcated orbits and the direction of 

bifurcation. 

The direction of bifurcation is defined by the values of V for which it 

occurs. In general it can only occur for one of the following cases: 

v<0v>0 

If bifurcation occurs for v<O, i. e. for values of v less than its critical 

value, the bifurcation is said to be subcritical. If it occurs for v>O, i. e. 

for values of v above critical, the bifurcation is said to be suPercritical. 

The existence of a bifurcation at v=0 is a special case and will not be dealt 

with in this thesis. Hassard, Kazarinoff and Wan (1981) suggest that it is an 

open question whether a bifurcation can occur at v=0. 

The questions of bifurcation direction and stability are clearly important 

ones if the technique is to be used in the analysis of periodic phenomena. 

Several authors have attempted to simplify its application e. g. Marsden and 

McCracken (1976) and Friedrichs (1965). Using a slightly different approach 

to that of Hopf, Friedrichs established an existence theorem for the two 

dimensional problem by making the additional assumption that F is only three 

times continuously differentiable. An advantage of Friedrichs' formulation is 

a more explicit dependence of orbit properties on free parameters. 

The work of Hopf was further extended by Poore (1976), who, as well as 

extending it to n dimensions, greatly simplified the problem by establishing 

algebraic criteria which are sufficient to guarantee that the bifurcated 

periodic orbit exists only for v<0 or v>0 in a sufficiently small 

neighbourhood of (2S, V)=(aO, O). If these criteria are met, the direction of 

bifurcation, the change in period of oscillation and the stability of the 
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bifurcated orbit are reduced to an algebraic problem. 

It is the author's intention to utilise Poore's results in the analysis of 

the nonlinear behaviour of the journal bearing. It will therefore be 

advantageous to examine briefly the theorems on which they are based. Before 

applying the technique however, it is necessary to specify those conditions 

which must be satisfied if a bifurcated orbit is to exist. 

Conditions for Hopf bifurcation 

(1) A critical point (2S, v)=(LO, O) exists such that the Jacobian matrix 

fx(ýý(), O) has exactly two non-zero, purely imaginary eigenvalues ±i0off where 

f10>0. If n>2 the remaining n-2 eigenvalues have nonzero real parts. 

(2) E(2S, V)C Ck ( DX( -V0#V0)] where D is a domain in Rn containing A0 . 

Also v0>0, although it can be small, and ký13. 

(3) al(O)>O, where a(v)+i(1(v) denotes the eigenvalue of Fx that is a 

continuous extension of +iAO- 

(4) If n>2, the n-2 eigenvalues with nonzero real parts have negative 

real parts. 

In practice conditions (1) and (4) are often satisfied when there is an 

exchange in the stability of a critical point as two (complex conjugate) 

eigenvalues cross the imaginary axis as a parameter is varied. Condition (3) 

is not strictly necessary, but it has been introduced to avoid a confusion 

which has developed in the literature over the meaning of Isubcriticall and 

Isupercriticall. Any system can be modified to satisfy this condition by 

substituting 7=-v. The implicit function theorem now guarantees the 

existence of a solution av which satisfies F(AV, V)=O, and is k-times 

continuously differentiable. 

It is necessary to introduce a change of variables: 
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v x 

Fx 

(1+g-n) s= 

vB V= AV-A 0; 

IL 2 Q(y, g, v) = FQý v +gy, v) - gAvy ; 

0 B= dAvlv=o (3.2) 
dv 

g6 

IL, 6,7) are parameters to be defined. This transformation reduces (3.1) to: 

ýq y= Acly + gG(y, g, 6, n) (3.3) 
ds 

g(y, g, 6,71) = 6B 46 y+ 7)A 
g6 

y+ (1+977)Q(Y, 9,6,96) 

It is now possible to make several observations: 

(1) At 9=0 (3.3) has two linearly independent 2 ITI! n 0 -periodic solutions 

corresponding to the eigenvalues tiflo of AO. 

(2) The problem of periodic solutions of (3.3) is a perturbation problem in 

A. 

(3) since x= av + gy, g is a measure of the amplitude of the periodic 

orbit. 

(4) In general, the bifurcated periodic orbit will not be differentiable in v 

at V=0, but will be differentiable in g at g=0. 

(5) The parameter 6 determines the relationship between v and g. 

(6) The parameter 71 shows the change in the period of oscillation as 

varies. 

(7) IL is the independent small parameter; 7) and 5 are to be determined. 

Theorem 1 

If (3.1) satisfies conditions (1), (2) and (3) and the transformation (3.2) 

is performed, then for some sufficiently small g>O there exist real functions 

6=6(g) and 71=71(/J. ) 6 Ck-2[(-jL1, jL1)] satisfying 6(0)=? 7(0)=O, such that for 

T=277p/A0 (p = positive integer): 
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x(t, A) = Lav + iLy( 1 g) (3.4) 
l+AV(A) 

is a (1+977(/L))T-periodic solution of: 

dx= F(X, v(g)) 

for V=96(g). If 5=6(g) and 7)=77(g) in (3.3), then y=y(s, g) is a T-periodic 

solution of (3.3) with y(S, A) E Ck-2[-g.,, g1], uniformly in s. 

The main implications of this theorem are as follows: 

(1) since V= V(g) = g6(g) = g2E)o(O)+O(g3) as g-0, the bifurcated periodic 

orbit for (3.4) exists for Qi, v) in a sufficiently small neighbourhood of 

(av, o) only for v>0 if 5'(O)>o and only for v<O if 61(0)<O. Hence the sign 

of 61(o) determines the direction of bifurcation. 

(2) Those critical points av where 61(0)=o are special cases in which it is 

necessary to compute 611(o) or possibly higher derivatives in order to 

determine the direction of bifurcation. These degenerate cases are not 

considered in this thesis (the work involved in caLculating 611(o) is 

formidable), but brief reference will be made to them in later sections. 

(3) The period of oscillation of ý(t, g) in (3.4) is T(I+--7, )(jt)) = 

( 1+g 2 7) 9(0 )+0(113 )) 2-gp/fl (I as g-0. This period of orbit increases or decreases 

from T-27Tp/AO according to the sign of 71'(0). 

Theorem 2 

if a, (o)61(0)>O and Condition (4) holds, then the bifurcated periodic orbit 

will be asymptotically stable. If either of these conditions fail, then the 

bifurcated orbit will be unstable near the bifurcation point. 
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Theorem 3 

Let F(2j, V) satisfy the conditions for Theorem 1, and let u and v denote the 

left and right eigenvectors respectively of the eigenvalue +ino of the 

matrix AD. If u and v are normalised by the requirement u. v = 1, tben: 

a(o); (O) + i(ý(0); (O)+no; (O)) 

k2 ul a3F1vivkvp+ 2u 1 a2F 1. vi (A 0-1 )kr a2Frvpvq 

ax I axp ax ax ax ax jc3xk ikpq 

+u1 c3 
2F1 vj ( (A 0- 2 ifi 

oI) 
') 

kr a2F 
r-, vpvq (3.5) 

ax 
1 

jaxk axpaxq 

where k is an arbitrary constant, (AO-I)kr denotes the element in the ktb 

row and the rth column of AO-I and repeated indices within each term imply a 

sum from 1 to n. Equation (3.5) represents a pair of real equations for 6'(0) 

and 711(0). Although their values can only be found to within an arbitrary 

positive constant k2, this is sufficient to indicate whether the period of 

these orbits is increasing or decreasing. 

It is important to emphasise the first implication of Theorem 1, which states 

that bifurcation can only occur for v? O (supercritical) or v<0 (subcritical) 

depending on whether the sign of 6'(0) is positive or negative respectively. 

Bifurcations are, therefore, unique (a formal statement of uniqueness exists, 

but it is omitted here, since it is the application rather than the theory of 

this technique that is of interest). The stability of the bifurcated orbits 

follows from Theorem 2. since al(O) is positive under condition 3, the 

stability is also decided by the sign of 51(o). Supercritical orbits are, 

therefore, stable and subcritical orbits are unstable. The two possible types 

of behaviour are shown in Figure 3.1. Figure 3.1a shows an unstable limit 

cycle; any perturbtion from this cycle will cause the system to 'wind away' 
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Figure 31 Limit cycles 
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v 

<0 stable critical point 0 stable critical point 
or unstable limit cycle 

%d >0 unstable critical point V> 0 stable Limit cycle 
or unstable critical point 

32 a subcriticaL bif urcation 3.2,. supercritical bifurcation 

Figure 3.2 Hopf bifurcation 

amp itude 

31a unstable Limit cycle 

arnp Ii tudp 
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either to an equilibrium point, or to completely unstable behaviour. Figure 

3.1b shows a stable limit cycle; if the system is perturbed from this limit 

cycle, it will 'wind back' to its original orbit. 

Figure 3.2 shows the two types of possible behaviour as the bifurcation 

parameter approaches its critical value (v=O). For both supercritical and 

subcritical bifurcation, the system has a stable equilibrium point for v<O 

and an unstable equilibrium point for v>0 (as predicted by linear theory). 

Figure 3.2a shows subcritical bifurcation, for which an unstable limit cycle 

exists for V<O. Figure 3.2b shows supercritical bifurcation; in this case the 

system can manifest a stable limit cycle for v>0. 

Remark Note the shape of the amplitude/bifurcation patameter curve in Figure 

3.2. We have: 

amplitude = kg (for some constant k) 

u 61(o) + O(A 3) 

- amplitude = 1-0 (foi some constant 1) 

Application of Hopf Bifurcation 

It is possible to illustrate the above ideas by applying Hopf bifurcation to 

a simple second order system. Consider a damped harmonic oscillator whose 

motion is described by: 

It 212 
x+dx+w0x=0 (3.6) 

where d2 is assumed to be constant. By subjecting the oscillator to a 

mechanism which provides nonlinear negative damping, the equation of motion 

becomes: 
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It 122 
x+ x(d -L(x)) +w0x=0 (3.7) 

in which we shall assume L(x) to be of the form: 

L(x) = 12 _ YX2 (3.8) 

and 12 and Y to be constants. If we examine the linear system: 

11 1 
x+ x(d 2- 1 2) + U)2x =0 (3.9) 

0 

we obtain a characteristic: 

(d2-12) ± ((d 2_12)2_ 4c, ) 
2) 1/2 (3.10) 
0 

2 

Thus the stability of the equilibrium point x=0 is governed by the following 

criteria (this situation is illustrated in Figure 3.3a): 

12 < d2 stable 

12 > d2 unstable 

12 = d2 neutrally stable 

The application of Hopf bifurcation techniques should enable us to 

investigate the nonlinear behaviour close to the point where the stability 

changes, i. e. at 12 = d2, where the positive and negative damp-ing are in 

balance. Introduce a bifurcation parameter: 

1 2_ d2 

The system becomes: 

of 1 
(, YX2_V) + U)2 x+x (3.11) 

Replacing this second order system by two first order ordinary differential 

equations, we obtain: 
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1 
x2 

1 
(, YX2_V) _ W2 x2x210x1 

Hence we have the Jacobian: 

0 
vý 

-2, yx x _C02 120 

0 

A O= 
20 
01 

1 

- (IYX 2-v 

AO has eigenvalues: X= ±iw,. From (3.13) or (3.10) we can obtain: 

dXj 1 
a-v 

V=o 
2 

cl(o) 

(3.13) 

We also require the following eigenvectors and matrix inverses, all of which 

are straightforward to calculate: 

u= (iw 
0 

1) v -i/2wol 

i/2w 
0 

A 0-1 0 -1/w 
2 (AO-2iA I)- 1= 2i 
00 3w 'ýw 

10 
-1 2i 

If the second and third order derivatives of F are evaluated at xj=X2ý0 and 

v=O, only a3F2/a2X, aX2 is found to be non-zero, i. e.: 

a3F22, y 

aX2aX 12 

(3.12a) 

F2 (3 . 12b) 

The summation (3.5) can be reduced to: 
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amý(O) + i(ý(O); (O)+n 
0; 

(0)) 

2 3 3 3 k _U a F vv v -u a F vv v -u C3 F vv v 
1 I 

ax ax ax axax ax ax ax ax , 2 2 i 2 , , 
2k 2 

'y .1 

8w 2 
0 

2 

a(o); (O) + in 0 
; (0) =k 'y 

4w 
2 

0 

; (0) k2, y (3.14) 
2w 

2 

0 

; (0) o (3.15) 

Therefore a supercritical bifurcation exists for this system, i. e. stable 

limit cycles exist for V>O (for 12>d2, see Figure 3.3b). The period of these 

orbits, however, does not vary from the critical value 2U/Wo - 
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3.2 The method of multiple scales 

This method can be used to extend the range of application (the time span 

for which solutions are valid) of the standard perturbation technique. For 

certain systems, the standard procedure provides a solution that is only 

valid for small time. For example consider the simple second order system: 

11 
X+X= ex ; E<<1 (3.16) 

This has a solution: 

x= acos 
f 

(1-E)'I 
/2 

T+a (3.17) 

The standard approach is to look for solutions of the form: 

x=x0 (-r)+ ex 
I 

(T) + C2X 
2(7-) 

+'-'. 

Substituting (3.18) into (3.16) and equating coefficients of equal powers of 

E leads to: 

x0+x00 (3.19) 

x1+X., =x0 (3.20) 

x2+x2=x1 (3.21) 

The general solution of (3.19) is: 

X0 = acos(T+a) (3.22) 

on substituting into (3.20) and solving, we obtain: 

x, = aTsin(T+a) (3.23) 

substituting for xi in (3.21) and solving for X2' we obtain: 
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x=a 
f_T2COS(T+a) 

+ aTsin(T+a) 
21 

Therefore: 

x(c, T) = acos(T+a) + lEaTsin(T+a) 
f 

62af -rs in (-r+a) -T 
2 

COS ( T+Ct) + O(e 3 

ii 

(3.24) 

This expansion will eventually fail, since the second and third terms cease 

to be small compared to the first term, which was implicitly assumed when 

expansion (3.18) was carried out. As long as T is Of 0(l), the first three 

terms are 0(1), 0(, E), 0( C2 ) respectively. However, if T is 0( C--' ), the first 

three terms are all 0(1). This type of failure occurs for any finite number 

of terms in this particular series. 

It is possible to find another series representation for (3.17) by 

considering the first two terms in the Taylor series for (I-E)1/2. This 

leads to: 

X(E, T) = acos[(T-ET)+al +E2 aTsinf(T-eT)+al + 
8 -f 

This expansion is valid for -r of o( c--L); it is possible to extend this 

approach to obtain any desired accuracy of solution to 

The above example shows that alternative series expansions, valid for longer 

time, exist for these singular perturbation problems. However, the above 

procedure can only be carried out if the analytical solution is already 

known. Since this is not normally the case, a new approach is needed to 

generate approximate solutions; this is the method of multiple scales. 

several detailed expositions of the theory exist e. g. Nayfeh (1972) and Cole 

(1968). Essentially the method looks for a solution that is characterised by 
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behaviour along two different time scales. These are 'fast time,, which 

relates to the short term dynamic behaviour of the system and 'slow time,, 

which governs slower variations over a longer time span. The technique is 

ideally suited to the search for limit cycles in journal bearings; here fast 

time relates to the motion of the individual orbits, slow time is the time 

scale on which the orbit evolves to the limit cycle amplitude. 

Application of the metbod of multiple scales 

The application of this method and its consistency with Hopf bifurcation, can 

be seen by examining the simple second order system examined in Section 3.1 

of I 
x+ X(, YX2_V) + W2X 

0 

Bifurcation theory shows that stable periodic orbits bifurcate from 

(X, V)=(O, O). To investigate these orbits by multiple scaling, put: 

(3.25) 

Introduce time scales: 

T=A2T "slow time" (3.26) 

s= (1+ILCJ +A 2W +A 3w+.... )-r I'fasL time" (3.27) 
123 

and look for a solution of the form: 

Ax = AX 
I 

(S, T 
* 

)+A 2x2 (5, T 
*)+A3X 

3 
(S, T*)+... (3.28) 

Much of the literature on this subject is rather vague on the choice of forms 

(3.25)-(3.28). However, if a system has already been analysed by bifurcation 

theory, the correct forms are easy to identify. 

(1) Since V=A26P(O)+O(g3), choose V=. U2. 

(2) Since (via Hopf) the amplitude is proportional to A, look for a series 

with leading term O(A). 
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(3) The correct scaling for slow time is given by the growth rate of the 

linearised exponential as V-0: 

ea(V)T ýe 
Oft(O)VT 

as V-0 

consequently the slow time scale must be O(VT), i. e. O(g2T). 

The wi and xi are calculated according to the principal that secular terms in 

xi (terms with an explicit dependence on s) must be suppressed. Consequently 

the functions xi should display modulation only in the slow time T*. Finally 

it should be pointed out that (3.28) is expressed as a series for Ax since 

small perturbation solutions about an equlibrium position (x=o) are sought. 

It is possible to derive the following identities from (3.25)-(3.28): 

dAx = A(ax I 
)+g2 (ax 2 

+w 
I ax I 

)+ 43 (ax 3 
+w 

I ax 2 
+(, ) 

2 ax, +ax, ) (3.29) 
d7- 

as as as as as as aT* 

d2 Ax = A(a 
2x )+42 (a 

2X 
2 +2w Ia 

2X 
1 

)+43 (a 
2X 

3 +2w Ia 
2X 

+2w a2x 
dT 2 

as 
2 

as 
2 

as 
2 

as 
2a 

S2 a S2 

+w 2a2x+a2x 
11 (3.30) 

as 
2 

asaT 

Substituting (3.28)-(3.30) into (3.11) yields as far as third order: 

order (g) (3 
2x '+ 

co 2x0 (3.31) 
101 

C3 s2 

Order (g 2a2x+ 
(1 

2x 
-2ci a2x (3.32) 

202 11 

as 
2 

as 
2 

Order (43): a2x+w2x ax (, _, YX2) - 2w a 
2X 

- 2w a 
2X 

_3 
0311 1_2 21 

as 
2 'ýi-s 

as 
2 

as 
2 

2a2x 2a 2x (3.33) 

as 
2 

asaT* 
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The solution to (3.31) is: 

iwos +A- 
iwos (T )e 

1 
(-r )e (3.34) 

The function A, ( T*) and its complex conjugate A, ( 7-") are to be determined 

later. The substitution of (3.34) into (3.32) leads to: 

a2x+ (1 
2x 2ci ci 

2 (A e 
iwos 

+ Tý e- 
iwos 

2021011 
aS2 

Clearly the suppression of secular terms requires that wl=O, giving 

solutions: 

(. T 
*) jiw os 

A2(T*ý is to be found later. Equation (3.33) now becomes: 

a2x+w2x 
j(iA, 

+2G) woAl-iYA IA 1-2idA )w e'(Jls 
_3 

032 
-1 

0 

aS3 dT 
I 

-i-yw Ae 
3iwos 

in order to suppress secular terms we require: 

2idA A1 (i + 2w 
2w0- 

i-YIA 
1 

12 

dT 

(3.35) 

This is a complex amplitude equation for A,. It can be solved by separating 

the real and imaginary parts. To do this, write: 

AI (T 
*)= 

R(T 
* 

)ele(T 
* 

which then yields: 

I 
complex conjugate 

dR R (1-YR 2) 
amplitude equation (3.36) 

dT 
f 
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de w 20 
dT 

phase shift equation (3.37) 

We are primarily concerned with the amplitude equation, since the condition 

for the existence of stationary orbits is that: 

dR 0 

dT 

Equation (3.36) gives the amplitude of these orbits: 

1/2 

the stability of these orbits follows immediately, since: 

R > R ý dR < 0 
dT 

R < R - dR > 0 
e - * 

dT 

i. e. if R is less than Re, the system will spiral outwards, if R is greater 

than Re it will spiral inwards. This-corresponds to the stable limit cycle 

shown in Figure 3.1b. Integrating (3.37) and incorporating (3.34) and (3.28), 

it can be shown that the system approaches a limit cycle of the form: 

Ax = -jv 2 cos (ci 
a T(1+0(V 3/2 + O(V) (3.38) 

V-Y 

The period of solution (3.38) is given by: 

2 7T 
_= 

27T (, + C) (43)) (3.39) 

w0 (i+o(V 3/2 » ci 
0 

In order to examine the existence of stationary orbits for V<O, put: 

2 
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A repetition of the above analysis, incorporating this modification, leads to 

the amplitude equation: 

dR R (-l-YR 2) 

dT 

This gives negative dR/dT* for all values of R except R=O, consequently all 

orbits spiral towards the equlibrium point. 

The results of this analysis exactly match those obtained by Hopf 

bifurcation, and in addition provide extra information relating to the 

evolution toward the limit cycle solution. In the region V>O there is a 

stable limit cycle, and in the region v<0 all states regress to the (linear) 

equilibrium point. This corresponds to a supercritical bifurcation. 

Remarks 

(1) The inexact nature of (3.38) is due to presence of 02 in (3.35), which 

is indeterminate at this order of approximation. It does not appear, however, 

in the amplitude equation which is the most important result of this 

analysis. 

(2) The coefficient of R in the amplitude equation represents the linear 

growth rate a'(O)=1/2. 
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3.3 The method of averaqing 

The method of averaging, as a technique for solving dynamical problems with a 

restraining force, was first developed by Krylov and Boyoliubov (1947) and 

later extended by Bogoliubov and Mitropolski (1961). It is very similar in 

concept to the method of multiple scales; Morrison (1966) has shown that in 

certain cases the two methods are equivalent. However, for the journal 

bearing problem, the relationship between the two techniques has been unclear 

(see the discussion at the end of Chapter 7); this thesis will attempt to 

remove the existing discrepancies. 

The method of averaging, in common with the previous two methods described, 

relies on the existence of a small parameter in the restraining force (the 

system must be weakly nonlinear), as in equation (3.16) which is repeated 

here: 

n 
X+X= EX E«l (3.16) 

An equation of this type is said to be in standard form. The application of 

the method of averaging assumes the existence of an asymptotic expansion of 

the form: 

x= acosIP + Cu 
.1 

(a, V, ) +c2u2 (a, V) + (3.40) 

The expansion (3.40) is simply a perturbation of the solution to the 

corresponding linear problem. Each ui is periodic in 'W, and a, f are assumed 

to vary in time according to: 

da = cA 
.1 

(a) + C2 A2 (a) + (3.41) 
JT 

dIP =0+ 'Ef 1 
(a) +E2 IP 

2 
(a) + (3.42) 

d -r 

Therefore, in common with the method of multiple scales, this method provides 
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information about the evolution to limit cycle solutions. A necessary 

requirement to uniquely determine the Ai and jPi is that the ui contain no 

terms in cos*, hence the first term in (3.40) represents the full first 

harmonic of the solution. A brief outline of the procedure to find the ui, Ai 

and IPi is as follows. First the derivatives of x with respect to 7- are 

transformed using (3.40)-(3.42). These results are then substituted into 

(3.16) in order to equate like powers of c. The Ai and Vi can then be found 

using the principle that secular terms in the ui must vanish. 

Application of the method of averaginq 

The consistency of this technique with the two previously examined can be 

seen by its application to the example: 

of 12 
x+ X(-/X -V) +w0x 

The existence of stationary orbits in the region v>0 can be examined by 

putting: 

IL (3.43) 

As in the case of multiple scaling, it is possible to use the results from 

bifurcation theory to obtain an indication of the correct choice of forms 

( 3.43 )-( 3.46 ). 

(1) Since V= /1215t(O)+ O(g3), put V=g2. 

(2) Since the amplitude is proportional to IL, look for a series: 

Ax = gacosf +g2uI (a, f) + 43U 2 
(a, f) + (3.44) 

(3) In the application of multiple scaling, the correct form for slow time is 

given by the growth rate of the linearised exponential as v-0, i. e. T*=g2T. 

Consequently an expansion of the form: 
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da = gA 
.1 

(a) + A2 A2 (a) 
j-T 

(3.45) 

will be consistent with multiple scaling and bifurcation theory if A1=0, 

since slow time relates to the growth in amplitude of the whirl orbits. It 

will be seen that this is the case. 

(4) Hopf bifurcation sugests that the leading term in the phase shift 

equation should be valid to O(, U3 ), since the change in the period of 

oscillations is given by a factor I+g271-(O)+O(IL3) and in this case 7)1(0)mo. 

Hence an expansion of the form: ' 

91 = rl + gf (a) + IL 
2 
'? (a) +u3V, (a) + (3.46) 

dT 0122 

will be consistent with the previous two methods if 10*1ýf2ý0' This is indeed 

SO. 

The following results can be obtained from (3.44)-(3.46): 

dAx =A (-n 
0 as inV) + IL2 (A 

1 cosf +00 au, - ? Jr, asinf) dT 
af 

3 
(A au +A Co S'0' +n0 cl u2+e18u 

i- 
lý 

2 as inV, ) (3.47) 
-ä-a -ä-e -ä _V, 

d2 Ax = g(-n 
2 

acos3Y, ) +g 2(n2 
a 

2U 
- 2n A sinf-2n 0* acos*, ) 

20 
01 0101 

dT 
(3 V, 2 

+g3 
JA 

1 
dA 

1 
cose - Ald, 0, 

lasinV, 
+ 2n 

0A1 
a2U1 - 2n 

Oý'2 
acoslf 

u-a 7i-a aaalf 

- 2V' A sinV - 2A A sinir + n2a u+ 2A V, 
2aua2 

cosv- 
1020201 1- 

av 
2af2 

(3.48) 

Now substitute (3.44), (3.47) and (3.48) into (3.11) and equate powers of A. 

Order (g): -n 
2 

acoslP +w2 acosf =0 (3.49) 
00 
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Order (, a2 ): 02a2u+w2 ul= 2fl aVr cosV, + 2fl A sinf (3.50) 
01 0101 

av 
2 

order (. U3 ): fl 
2a2u+w2u= 

yn a3 Cos 
2 
fsinIP -A asino, - 2n ip a2u 0 

__2 
0200011 

alp 
2 

a** 
+ af 2 C()SV + 2n T acosW -A dA coslP +A df asin*- I U-a U-a 

- 2flOA, a2UJ+ 2f 
1A1 sinV- + 2flOA 2 sinV) (3.51) 

aaalp 

(3.49) implies that: 

0 0=± (A) 

This represents the solution to the linear problem. From (3.50) it can be 

seen that if ul is to contain no secular terms, we must have: 

A1 ==0 

(3.51) is now reduced to: 

a2u2+u 2ý 
1 

2' 
ya 

3 
Cos 

2 
Vsinf - asinV + 2f 

2 acoslP + 2A 
2 simir 

(3 lp 
2 (A) 

0 

3 (, y a 
3+ 2A 

2- 
a)sin#, + 2ý, 

2 
acosiý + ya s in3f 

Z 
(4) 

21 
0 

If U2 is to contain no secular terms, both the coefficients of sinv and coso, 

must be zero. This implies: 

V, 
2ý0 

(3.52) 

A2ýa (1-ya 2 (3.53) 

For stationary orbits we require A2 =0 (see (3.45)). This requirement gives 

the amplitude of these orbits: 
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a=2 

The amplitude equation (3.53) is equivalent to the analogous equation 

obtained in the two-timing technique (3.36); the divisor 4 appears in (3.53) 

because of the different form of expansions (3.28) and (3.40). The resulting 

limit cycles are thus of the form: 

Ax = g2cos 
I 

T(n 
0+ 

o(g, )) + O(JU2) 

.3 

Ax = -JV2C0S 
1 

Co 0 T(l + O(v 2»1+ o(V) (3.54) 
ýZY 

This is in complete agreement with (3.38), the result obtained by multiple 

scaling. A further check on the consistency is provided by the fact that the 

conditions: 

IP, = lp 
2ý 

are satisfied. 

ACcuracy of the method of averaqinq 

Equation (3.54) represents the first approximation to the system (3.11). In 

this case it would be possible to find the second approximation by 

calculating ul, and even the third approximation by calculating U2. In 

general, however, this is not possible, since the amount of computation 

require to find the ui rapidly becomes unacceptably large. It is, however, 

necessary to consider ul and U2 in order to ensure the existence of 

stationary orbits. consider the following solution: 

x= jLacosf + g2U 1 
(a, -i, ý) + JU3U 2( aL, 

da = gA I 
(a) +g2A2 (a) 

j-T 
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dVI 
0+ ILVI I 

(a) + 112V 
2 (a) U-T 

The change in the value of a as T changes from zero to T is given by: 

Aa = a(T) - a(O) - TK 
1A 

where A, denotes the average value of A, in the period (0, T). The error in 

da/dT is O(jL3 ), and after a time T has elapsed the error in IaI will be be 

O(g3 T). If T-O(g-1), the error will be O(g2 ), consequently it would be 

meaningless to retain the ul term in the solution for any but the shortest 

time span. In order to include the u term it would be necessary to work to II 

order to O(jL3 ) in A and V% In general finding An and fn entails working to 

order n+1 or n+2; for n=3 this would require considerable effort, which would 

yield no extra information of significance. Bogoliubov and Mitropolski 

suggest that in all but the most unusual cases the qualitative features of 

the nonlinear behaviour are present in the first approximation. Consequently, 

this thesis will restrict itself to the first approximation. 
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CHAPTER 4 

THE APPLICATION OF HOPF BIFURCATION TO THE EQUATIONS 

OF MOTION GOVERNING OIL WHIRL IN THE 'SHORT' BEARING 
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4.1 Introduction to the use of nonlinear tecbniques 

This chapter is concerned with the application of those analytical techniques 

developed in Chapter 3 to the short bearing operating with a half film (see 

Section 2.9). Hopf bifurcation theory is used to prove the existence of small 

amplitude closed orbits close to the stability borderline; further 

information about the nature of these limit cycles can then be found by 

employing the method of multiple scales and the method of averaging. The 

authenticity of these results is confirmed by a numerical integration of the 

equations of motion. It is then possible to derive criteria for the existence 

of oil whirl for this particular physical model, and to compare the 

effectiveness of the different techniques for predicting rotor behaviour. 

For the remainder of this thesis, the bearing system described in the 

Introduction will be modified. In Chapter 2, it was found that shaft 

flexibility has a very small effect on the system's linear stability. This 

may or not be the case for the nonlinear behaviour, but the inclusion of 

flexibility necessitates the study of a cumbersome sixth order system; it is 

therefore ignored, and the shaft is assumed to be rigid (wl,, vjýO)- This 

has the effect of simplifying the analysis by reducing the equations of 

motion (2.3)-(2.6) to two second order nonlinear ordinary differential 

equations. 

The analytical techniques under consideration examine the effect of varying a 

small parameter. In this investigation the variable parameter is the 

nondimensional rotor speed Ci relative to its equilibrium value @s. The 

reason for this choice is that 0 is the parameter most easily changed in an 

experimental investigation, and engineers are most interested in bearing 

performance at different running speeds. It is possible to find U)s, the 

critical running speed corresponding to es, by the methods of Chapter 2, but 
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for these purposes it is more convenient to use standard linear techniques. 

Full details if these calculations can be found in several references e. g. 

Holmes (1960), Lundholm (1969). For convenience, a brief outline of the 

technique is given here. 

4.2 Standard theory of linear stability analysis 

For a horizontal, massless, rigid shaft, supporting a rotor of mass 2m, the 

equations of motion in polar coordinates are (see Figure 1.4): 

mld'2e -e 12 ,21= FC0B9 +Fr (e, ýp-, de, dýp) (4. la) 
dt 2 dt u-t «d t 

m ed 2v+ 2de do -Fsinp + Ft(e, v, de, dv) (4. lb) I 

dt 2 dt dt 
I 

dt dt 

These equations may be nondimensionalised by means of the quantities defined 

in (1.17) and (1.18)to give: 

cosýp +SmFr (4.2a) 
-2 (i 

ev +. 2ep = -1 
1 

sinp -SmFt (EOPfEfýp) (4.2b) 

-2 W 

clearly, equations (4.2) apply for any cavitation model (for the long bearing 

model the Sommerfeld number S replaces Sm). For the short bearing half film 

model, the hydrodynamic forces can be found by integrating the pressure 

distribution (2.43) from 01 to 77+01 in (1.16). They can be expressed as 

follows: 

ec (1-2ý) I+ 2EI (4.3 a) 

Ft e(1-2p)I 3+ 
2cI 

1 
(4.3b) 

wbere integrals 11,12 and 13 are given in Appendix 3. 
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The equations of motion (4.2) have a steady state solution as discussed in 

Section 1.5 and defined by (1.20). Since the equations are nonlinear it is 

not possible to solve them analytically; consequently it is necessary to 

linearise them in order to examine the stability of the steady state 

position. 

It is convenient to introduce a cartesian coordinate system (fixed with 

respect to the bush), with the origin at the bearing centre as shown in 

Figure 4.1. 

(X, Y) are nondimensional quantities analogous to (x, y) defined in (2.9). The 

polar coordinates ( E, ýP) are related to the Cartesian coordinates by the 

relationship (see AppendiX 4): 

Ecosýp esinp (4.4) 

The total forces acting on the shaft become: 

FX = 
_I 

+F 
rcosýp - Ftsinv (4.5a) 

s 
m 

F ýc =Fr sinV +Ft cosýp (4.5b) 

This leads to the nondimensional equations of motion: 

X=SmFX (X, Y, X, Y, S 
M) 

(4.6a) 

-2 cli 

y=SmFy (X, Y, X, Y, S 
M) 

(4.6b) 

*Z 2 ci 

In order to perform the linear and nonlinear analysis on these equations of 

motion, a perturbation (AX, AY) from the equilibrium position (XS, Ys) is 

considered (Figure 4.1b). This is defined by: 

AX =X-X AY =y-y 
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Y 

0= bearing centre 
A=shaft centre 

.1 CL 

Y 

41 b 

Figure 41 Co-ordinate system for the nonlinear anatysis 
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Define stiffness and damping coefficients as follows: 

K xx Smi aýx Is 
-6 R 

B xx s. 1 afx I 
I ax s 

K XY s. 1 afx I 
ý-y 

K YX S. 1 afy I 
d-x 

K yy S. 1 afy I 
d -y 

Bxy s,,, i afx I 
1 (3y 

B YX S. 1 af, I 
I ax 5 

B yy Sý,, l afy 
I ay 

(4.7) 

The subscript s indicates steady state conditions XS=YS=O. 

Equations (4.6) can be linearised about the equilbrium point (XS, Ys) (note 

that PXS=Pys=O) to give: 

ei 
AX +1B xx +B XY 

äý +K xx 
AX +K XY läy 0 (4.8a) 

2 

AY +1 
21 

B YX +B yy Aý + Y, YX AX + KYYAY 0 (4.8b) 

w 

As in Section 2.3, the stability of these equations can be investigated by 

assuming the existence of a solution of the form: 

AX = AX e AY AY e 
XT 

This leads to a characteristic equation: 

K4 + i(B xx +B yy ) V+ 11 (K xx +K yy +I (B xx B yy-B XY B YX )I X2 
2 

=2 
-2 

+ l(B xx K yy +B yy KXX-B XY KyX-B YX K XY + . 1(y, xx K yy-K XY K YX 
-4 -4 

... (4.9) 

which can be written in the form; 
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A1 K3 +A2 K2 +A3K+A4=0 (4.10) 

solutions of this quartic can be examined by means of a reduced version of 

the Hurwitz criteria (2.18)-(2.20). These state that necessary and sufficient 

conditions fo the roots to have negative real parts are: 

(i) A1>0, (ii) A2>0, (iii) A3>0, (iv) A4> 01 

(v) R, = A (A A -A ) -A 
2A>0 

312314 

For equation (4.9) these become: 

.1 
(B xx +B yy >0 

I 
(K 

xx +K yy + l(B 
xx Byy-B XY B YX 

>0 
2 -2 

1: (B xx K yy +B yy KXX-B XY KyX-B YX KXy) >0 

1: (K 
xx Kyy-K XY K YX 

In general conditions (i) to (iv) are always satisfied, and so condition (v) 

becomes the effective test for stability. This can be expressed as a 

condition on @, i. e. for stability, the following must be satisfied: 

1/2 
w< (is 

SRT 

where: 

R=B xx Byy-B XY B YX 

S- (B xx +Byy)(KXXKyy-K XY K YX) 

(4.11) 

B xx K yy +B yy KXX-B XY KyX-B YX K XY 
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T=B xx K xx +B yy K yy +B XY K YX +B YX K XY 

B xx +B yy 

A similar execrcise to that carried out in Section 2.3 can be performed to 

find the critical frequency fjS. At the stability threshold, two of the roots 

of (4.9) are purely imaginary (), =±i? ýs); hence write: 

=+ ins 

After substitution into (4.9), the following expression can be obtained by 

equating real and imaginary parts: 

BXXKyy+ ByyKXX- BX, K, 
X- 

B 
YX 

K 
XY 

1/2 (4.12) 

(B 
xx +B yy 

) 12 

1 

As expected the results for Ujs and j5s defined by (4.11) and (4.12) are in 

complete agreement with those obtained by the methods described in Section 

2.3. Their values are plotted 
ýgainst es in Figure 4.2. 

The next stage in the analysis is to determine the effect on the system as a 

whole of a change in the value of the chosen perturbation parameter 0. 

4.3 The system parameter 

For a journal bearing with fixed geometry and lubricant properties, there are 

only two parameters which can be varied in practice. These are the load F and 

the rotation speed w; in nondimensional terms these are represented by the 

modified Sommerfeld number Sm and the nondimensional rotor speed @. 

3 1/2 S=L RwA w= w(mc/F) (4.13) 
LLL 2 FC 
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There is a direct relationship between the load and the equilibrium position 

(see section 1.5). By (4.13) the load is related to the Modified Sommerfeld 

Number and for every value of SM there is a corresponding equilibrium 

position Es. The relationship between Sm and es is shown in Figure 4.3. 

Clearly, the effect of a change in the rotor speed is to alter S. Via (4.13), 

which in turn affects es via (1.21). For example, consider a system operating 

with Cj=@, just below @s; an increase in @ might cause a change in the system 

behavior from a stable equilbrium, position at E=E. 1 to small orbits in the 

linearly unstable region with centre at E=CS2* This is shown in Figure 4.4. 

If the techniques described in Chapter 4 are to be used to investigate the 

behaviour of a real system, it is necessary to define a system parameter 

which remains unaffected by variations in rotor speed. Lund and Saibel (1967) 

introduced such a parameter for their work on this model. Define a system 

parameter c as: 

Sm =L3 Rg 
5 1/2 

w (Fmc ) 

It is important to point out that the system parameter remains fixed for a 

particular rotor system (i. e. bearing-geometry, load and lubricant 

viscosity). For a given value of a it is possible to draw an operation line 

showing the change in cs as @ is varied. Figure 4.5 shows this relationship 

for 0=0.4. clearly the area of greatest interest is the region around the 

point where the operation line crosses the stability borderline. This 

research will consider the behaviour of the journal bearing for various fixed 

values of the system parameter. consequently it is necessary to consider the 

relationship between G and es, which can be found as follows: 

dw =d SM( Ec q) 2: dSm(es) (4.14) 
aE 

s 
a-E 

sl 
aIýa dE 
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4.4 Hopf bifurcation applied to the equations of motion 

Before applying Hopf bifurcation theory to the equations of motion (4.6), it 

is necessary to convert them to a first order system, which is done by 

writing: 

X, = X; X 
2ý 

ý; 
x 

3ý 
y; X 

4ý 

Equations (4.6) now become: 

ý, 
= 

2ý 
SmFX (X 

1x2x3x4 Is M) 
-2 Co 

I X 

X4=SmFy (X 
1x2x3x4sm) 

dX = E(ýrwjS 
M) 

These equations have a steady state solution: 

ci's m 

which implies: 

IS" 
cs cosy 

s; 
X 

2S" 
0; X 

3S" 
Es sinv s; 

X 
4S" 

(4.15a) 

(4.15b) 

(4.15c) 

(4.15d) 

This solution is governed by Sm; for every value of Sm, there corresponds a 

unique value of Es. The stability of this equilibrium Postion can be examined 

by the method described in Section 4.1; for the first order system (4.15) the 

characteristic equation equivalent to (4.9) can be obtained by writing down 

the Tacobian: 
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A(U)) = (VX E(ý, w, S 
M))X=X 5 

0100 

-KXX -BXX -KXy -B XY 
-2 -2 -2 2 W (1 (4) (A) 

0001 

-KyX -B YX -Kyy -B yy 
-2 -2 -2 -2 (i C$i (i (i 

The eigenvalues of A(@) satisfy (4.9). For an equilibrium point to be stable, 

the rotor speed must satisfy the condition @<Cjs. 
- If this criterion is 

satisfied, then all four roots of (4.9) will have negative real parts. At 

@=Cj, (neutral stability) two of the roots are purely imaginary and the 

remaining two have negative real parts. For @>0s the two wholly imaginary 

eigenvalues now have positive real parts. Equilibrium Points are always 

stable above ES-0.75 (see Figure 4.2); consequently a bifurcation point 

exists at the stability borderline for every value of Es less than 

approximately 0.75. Figure 4.2 shows that the critical frequency is never 

zero in this range, therefore the eigenvalues never pass through the origin, 

since the critical frequency corresponds to the wholly imaginary eigenvalue 

at neutral stabilty +i? ýS. Finally, it can be seen that dff/dZj is always 

positive at neutral stability, if the system is becoming unstable, where d is 

defined in Condition 4, Section 3.1 as the the real part of ý. 

Conditions (1) to (4) of Section 3.1 are satisfied; hence a Hopf bifurcation 

has been proved to exist for all values of es up to approximately 0.75. Since 

dU/d@>o and the remaining eigenvalues have negative real parts, Theorem 2 

implies that stable whirl orbits exist only at speeds above the threshold 

(supercritical bifurcation), conversely for Uj<@s whirl orbits are unstable 

(subcritical bifurcation). In order to calculate the direction of bifurcation 



118 

for each value Of Es and the change in period of whirl orbits as U) moves 

away from its threshold value, the algebraic formula defined in Theorem 3 are 

utilised. To do this, it is necessary to calculate the following: 

fdal_ f dfl 

dw- w=w dw-lw=w 
s8 

(a, 0 are analogous to a, n in section 3.1) 

Method The characteristic (4.9) is expanded in a Taylor series about zj-=i5s 

and first order terms are retained. Note that: 

at w= (i s ks = ins 

at w= ci s+ 
6w X= ins + fdcxl_5cj + if dnl 6w 

dcj w=(j aw w=w s 

=Ks+ 6K (4.16) 

Expression (4.16) can be substituted into the characteristic expansion and 

real and imaginary terms equated. This yields real equations for da/dw and 

df)/dw (see Appendix 5). 

U, v 

(the left and right eigenvectors corresponding to eigenvalue +i5s of the 

matriX A((, Js), normalised so that u. v=l) 

Method A straightforward process of algebraic manipulation. 

(3) a2F1a3F1i, j, k, l = 1,2,3,4 

ax i ax k ax i ax i ax k 

Method These derivatives can be found analytically using the transformation 

(4.4), some details of which are included in Appendix 4. 
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(A(ci (A(ci 
s 

)-2iii 
s 

I)- 

Method These matrix inverses can be found by standard techniques, which 

involve the solution of a system of simultaneous linear algebraic equations. 

Performing the above algebra was an extremely tedious operation, the process 

taking several weeks to complete and check. The most arduous task was the 

calculation of the second and third derivatives of the force vectors, 

although the author was fortunate in that J. W. Lund (1966) had performed the 

calculations in his own Ph. D. thesis. It was the extreme tedium of this 

aspect of the research that prompted the numerical approach adopted in 

Chapter 6. 

Ar 13-. 14- 

The analysis has been carried out for equilbrium positions in the range 

0.014CS40.75 (for cs>0.75 the short bearing half film model is always 

stable). The results are shown in Table 4.1. The ( cs, ig) parameter space can 

be split into two regions. 

Region 1 Es<0.14 In this region 61(0)<O, therefore subcritical bifurcation 

takes place. since a'(0)61(0)<O the orbits are unstable. By the uniqueness 

theorem of Hopf, no small amplitude orbits may exist for UJ>ýis. Also V'(O)>O 

so the period of the unstable orbit increases from its threshold value 

277p/fls 

Region 2 0.15<es<0.75 In this region 61(0)>O, therefore supercritical 

bifurcation occurs. The bifurcated orbits are stable. Since 77'(O)>O the 

period of these orbits increases as ZU moves away from its threshold value. 

The implications of these results for two different rotor systems with system 
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Table 4.1 

Results obtained by Hopf bifurcation for the short bearinq 

operating with a half film 

ES sTn (JJ S f7s a 6'(0) a'(0)6'(O) 71'(0) 

0.01 31.82 2.76 0.50 11.51 < 0 < 0 > 0 

0.05 6.33 2.76 0.50 2.29 < 0 < 0 > 0 

0.10 3.11 2.74 0.51 1.13 < 0 < 0 > 0 

0.14 2.17 2.72 0.51 0.80 < 0 < 0 > 0 

0.15 2.01 2.72 0.51 0.74 > 0 > 0 > 0 

0.20 1.45 2.68 0.51 0.54 > 0 > 0 > 0 

0.30 0.86 2.61 0.52 0.33 > 0 > 0 > 0 

0.40 0.54 2.55 0.52 0.21 > 0 > 0 > 0 

0.50 0.33 2.54 0.52 0.13 > 0 > *o > 0 

0.60 0.20 2.70 0.47 0.07 > 0 > 0 > 0 

0.70 0.10 3.63 0.35 0.03 > 0 > 0 > 0 

0.75 0.07 9.74 0.13 0.01 > 0 > 0 > 0 
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parameter 0=0.06 and 0=2. o are shown in Figure 4.6. 

0=0.06 The operation line crosses the stability borderline at 

es=0.625 in the supercritical region. As the speed is increased,. the 

equilibrium position moves towards the centre of the bearing (es is 

decreasing). This equilibrium position remains stable until U reaches a value 

of 2.81. At this point the operation line crosses into the linearly unstable 

region; however, bifurcation theory shows that small stable limit cycles 

exist around the equilibrium point. At higher speeds, the corresponding 

equilibrium points will continue to be the centres of stable whirl orbits. 

The question of how far it is possible to increase Ei before the theory breaks 

down will be discussed in Section 7.2. 

(3=2.0 The operation line crosses the stability borderline at CJ=2.76, es=0.061 

in the subcritical region. As in the previous case, es decreases with 

increasing @; this equilibrium point remains stable until @ approaches 2.76, 

here bifurcation theory predicts that small unstable whirl orbits surround 

the equilibrium point. The behaviour, therefore, will depend an the initial 

conditions, i. e. the values of E and V at T=O. If they are close to Es and 

ps, then the system will move towards a stable critical point,. otberwise it 

will move into an unstable limit cycle of growing amplitude. For @>@s there 

are no limit cycles, consequently the system is completely unstable. 
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CHAPTER 5 

THE APPLICATION OF THE METHOD OF MULTIPLE SCALES TO THE EQUATIONS 

OF MOTION GOVERNING OIL WHIRL IN THE 'SHORT' BEARING 
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5.1 The application of the method of multiple scales 

In section 3.2 the method of multiple scales was discussed in detail and its 

application to a second order system in 'standard form, was demonstrated. 

Equations (4.6), which represent the equations of motion for the journal 

bearing, are however not in 'standard form' due to the absence of a small 

parameter. It is, therefore, necessary to introduce a modification to the 

technique. This can easily be demonstrated by reference to a simple example. 

Consider a second order system: 

d2x= g(x, dx, w) 
dT 2 

'a-T 

Suppose that an equilibrium solution exists: 

X dx =0 a-T 

In order to introduce a small parameter perturb the rotational speed about its 

equilibrium value to: 

6 

It is possible to apply 'small parameter' techniques to the above system by 

considering a Taylor expansion of the force expression about the equilibrium 

position; thus a strongly nonlinear system can be considered to be weakly 

nonlinear close to a critical point. The appropriate form of 6Cj depends on 

the nature of the problem, a consideration of the results obtained by Hopf 

bifurcation can give an indication as to the most efficient choice. 

The above approach can be adopted in the analysis of the equations (4.6) by 

using a similar expansion about: 

XsYs 
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When applying the two-timing technique to larger dimensional systems, it is 

necessary to assume monofrequency oscillations. This is the case for system 

(4.6); it is postulated that the system vibrates with the same frequency in 

both the X and Y directions. 

In order to investigate the existence of small amplitude, periodic solutions 

to (4.6), we define the following forms: 

2 
A=w-w (f or (i > ci 

5) 

Tg2T (5.2) 

s (1+gw 
1 

+JL 2w2+ 
IL 

3 
Gj 

3 
+. )T* (5.3) 

and look for solutions of the form: 

AX(s, T*) = gX 
I 

(S, T 
*)+A2X2 

(S, T*) + AL3 x3 (S, T 
*)+.. 

(5.4a) 

AY(S, 7'*) = 9Y 
I 

(S, T 
*)+A2Y2 

(S, T*) + g3 y3 (S, T 
*)+.. 

(5.4b) 

As observed in Section 3.2 the correct scaling for these forms can be deduced 

from a consideration of the Hopf bifurcation results. 

(1) Theorem I (Section 3.1) implies that C)Ej=g26*(O)+O(g3). Therefore in 

perturbing @ to @S+60, the correct form is (5.1). 

(2) The transformation of variables (3.2) implieý that the amplitude of the 

small periodic orbits is proportional to g, therefore look for expansions in 

AX and AY in powers of /i as in (5.4) 

(3) The correct scaling for slow time, is governed by the linearised growth 

rate of the exponential function as 60-0: 

a(6(J)T a(O)5WT 
ee as 6(d 

= g2. r 

Thus the slow time scale must be O(IL2T). 
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The forms (5.1)-(5.4) are identical to those employed for the damped harmonic 

oscillator used as an example in Chapter 3. The derivatives remain as in 

(3.29) and (3.30) 

dAX = g(clX 1 
)+42 (ax 2 +(1 1 ax I 

)+IL3 (ax 3 
+w 

1 ax 2 
+w 

2 ax, +ax, ) (5.5a) 
dT 

as as as as as as aT* 

d 2AX 
= tt(a2X 

I 
)+42(a2X 

2 +2w la2XI)+IL3(a2X 3 +2w I 
a2X 

2 +2ci 2a 
2X 

1 
dT 2 

as2 aS2 CIS2 aS2 aS2 as 
2 

+w 2a2X 
+2a 

2X 
II 

a82 asaT* 

( 5.6a) 

Similar expressions exist for dAY/dT and d2AY/dT2, which are denoted by 

(5.5b) and (5.6b). Before carrying out the two-timing analysis, it is 

necessary to appreciate some results from the elementary theory of ordinary 

differential equations. Consider the following system of two simultaneous 

o. d. els: 

d2x-a dx -aax-ay=qe 
in-r+ 

me2 
'nT 

n 3 j- 412111 
d-r 2r d7- 

+ complex conjugate (5.7a) 

d2y-b dx -bbx-by=qe+me 
2iAT 

+n 3aT 412222 
2r dT 

dr+ 
complex conjugate. (5.7b) 

(q. 1, q 21 Mli M2 complex, nj, n2 real) 

Neglecting transients, the solutions to equations (5.7) may be written: 

X(T) = Ae 
iOT 

+r Te 
ifIT 

+se 
ifIT 

+ue 
2inT 

+v+C. C. (5.8a) 
III fl 

Y(T) = XAe 
inT 

+kr -reinT +s einT +ue 
2inT 

+v+C. C. (5.8b) 
122 ý2 

where A is constant and: 

3- 
A 

x 
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represents the eigenvector corresponding to the eigenvalue +iii of the 

homogeneous form of (5.7). The quantities r,, sj, s 2' Ull U2' V1' V2 can be 

found by calculating the appropriate particular integral. This is an 

elementary but rather tedious exercise. It follows from the linearity of the 

equations that: 

(B 
IB2q, 

B. 
1, 

B 
2 

constant 

q2 

Therefore the elimination of secular terms from (5.8) requires: 

BqI+B2q2ý0 (5.9) 

we are now ready to expand the right hand side side of equations (4.6) about 

the equilibrium position. For reasons of brevity only the results for (4.6a) 

are given here, the expressions for (4.6b) are very similar, with the ai's 

replaced by bi's, and a's by b's in the numbering scheme. 

to 
421 +JU 2 +g2 AX =1 

21 
1-2 

l(a., 

. 
dal)AX + (a 

2 
da 

2)AY 
0i w dw dw 

ss 

2 +42 
1 2+ 

a AXAY +a AXAý (a +1L da )Aý + (a da )AY +a AX 
3-34-4 YS 67 

dw dcj 

a 6X6ý +a AY 
2+a 

AYAý +a AYAý +aA+a ALý 8 -i 9 10 11 -ýl 2 13 

6ý2 AX3 AX2Ay 6X2,6 2ý a+a+a+a+a AX A-Y 
ý14 16 17 18 

2112 
a AXAY +a AXAYAX +a AXAYAY +a AXAý +a AXALý 
V9 20 21 . 2" 23 

a AXAý 2+a AY 3+a AY 2 Aý +a Ay2Aýý +a AyAA2 
ý24 'ý2 S -f26 -f 27 -f 28 

a AYALý +a Ay A 
ý2 

+a AX 
13 

+a AA2, ýý +a 6ýAý2 
29 2 30 6 31 f32 -f 33 

aA3 (5.10a) 
ý3 41 
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where: 

s 'xj a2ýsm c3F X mI ax 
( 

ay 

the derivatives are evaluated at W=Fjs 

34ý Sm [ aFX] 
8ý s 

Now substitute (5.4)-(5.6) into (5.10a) and (5.10b) and equate powers of IL. 

This leads to: 

order (9): 

2X aa ax a ay C-L Xy (5.11a) 

as 
2 'ý-s ýi-s 

order (g2). 

a2Xa aX -a ay -aX-aY 2w a- 
2XI 

+a3wI ax 
SI 

32 4T2 1222 

as 
2 as s as 

2 as, 

a ci aY +ax2+aXY+ax ax +aX ay +ay2 
4 ldSl V1611,7 118 1-ýTs 1 =9 1 

as z 
2 

aY aX +aY aY +a ax, +a ax ay 10 lisi II I-iýs 1 12 
1 

as I 3-jS IýTS I 

ay ] 
14 

1 

as' 

Order ( IL 3 ): 

(5 . 12a) 

a2X -a ax -a ay -ax-aY 2w a2x- 2w a2x 
as 

2 
3- 3-ý 

S3 
4-j 

S313231 
as 

222a 
S2 

1 

- 2a 2x- 
Gi 

2a2X+a 
(ax +(j ax +(, ) ax +aa 1 1-1 3 -1 2 ý--- I 1-jS 24 

(-ý-y 
I 

+G) 
2 -8 

y +(Jj 
2 

s j-s- I 
as6T* 8S2 (3T* 

s aT* s c3s 

3+1 da 3) 
ýx 

1+ 
(-«ýa4+ 1 da4) 

. 
2Y1 + (-. Zal+ 1 da, ) Xi 

-3 -2 - as -3 -2 - as -3 -2-- 
ww dw wsw5 dw (0 sws aw 

(-2a +1 da )y+aXX+a (X Y+YX)+aYY 
-3 

2 
-2 

:: 2 11261212912 
(4) (f) (. i 

ss 
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a7 fxl(w, axl+ axlj + a. lx., (w., ay., + al 8X2) + X2 
2) 

+ X2ayl] 

as as as 'ý-s -dS d-S 

a+a,, IY, (( lOf'll(WI-85-X--I+d-X2) 
+ Y2CIXII )lc3yl+ay2) + Y2CIyll 

ES3 B j-s -6-S -j-B 

a+ay+ allaX2) + aj4ayl-ý-Y2 + X3 
I 

A-X 
1-ý-X 2 13(aXs 1-2w d-s 'ý-s -d-S as 615 as as s2 

aX2Y+ax2 ax +ax2 ay +aXY2+axY ax V6 11 -f 17 1-d-s 1 -f 18 1 ýi-s I -f 19 11201 I-j-Sl 

axY ay +a xl( ax J2 +ax axlay +aX( aY, ]2 
21 111 22 ýs V4 1 'ýi-s -Y 1 23 I-jS -ýTSI as 

aY3+aY2 ax +a y2ay +aY2+a 
V5126 1-ý-l 27 11281( c3X 1 29ylýaý-XSlayS 

'S 
-f -j-s -Y C3 s ý- .1 

+aY (aY )2+a 8XI] 
3+a2+a aX q ayl, 2 

30 11 131 32( 
aXII A 

33 

as 
I 

as as as as as 
3 

+ay 
134 qSl (5.13a) 

s 

Define a. etc. by: 

(A) 
s 

The solution of equations (5.11) is: 

XI (S, 7- A1 (-r*)e inss+ 
complex conjugate (5.14a) 

y (s, T*) XA 
1 

(7-*)e'nss+ complex conjugate (5.14b) 

If these expressions are substituted into equation (5.12), it can be seen 

that the elimination of secular terms requires that wl=O. It is then 

possible to write the right hand side of (5.12) in the form: 

A2 (T*)m e 
2inss 

+ IA 12n + complex conjugate 111 -f I 

2 (-r*)m e 
2iF)ss 

+ IA + complex conjugate 
.1 '2 

and the solution is therefore: 
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x (S, T A (T*)e 
inss 

+A2 (T*)u e 
2inss 

2211 

2 IA 
I 

(T')I v+ complex conjugate (5.15a) 
2 

y (S'T XA (T*)e 
inss 

+A2 (T*)u e 
2inss 

2212 

IA 
.1 

(-r )1 2v2+ complex conjugate (5.15b) 
2 

The process for finding Ul, U2'Vl, V2 is identical to that for finding 

Ul, 'U2'Vl, V2 in equations (5.8). The next stage in the analysis is the 

substitution of expressions (5.14) and (5.15) into (5.13). It is not possible 

to write down the solution to (5.13), but it is possible to specify a 

requirement for the elimination of secular terms. These terms arise from the 

presence of exp(iiiss) on the right hand side of (5.13), for which the 

coefficients are: 

q., y ýIA 1+A1( 
'y 

2+ 
'Y 

31A112 
dT* 

ly 
4 ! jA 

1+A1 
'Y 

5+y6 [A 
1 

12 

d-r* 

The elimination of secular terms requires (see equation 

Yl ! 4A, + A,. ('y 
2 

+y 
3 

IA, 12) 
1+B 

21 
y4 ! jA 

I+A .1(, 
y 

5 
+Y 

61A1120 
dT* dT* 

This relationship can be manipulated to yield the complex amplitude equation: 

dA 
i=A1(7? 2- 

71 
3 

IA 
112 

dT* 

It is possible to separate real and imaginary parts by writing: 

A1 (T )= R(T )e 
io(T*) 

7) 
2ý 

71 
2r+ 

i7) 
2i 

71 
3= 

71 
3r 

+ i7) 
3i 
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which yields amplitude and phase shift equations which are analogous to 

equations (3.36) and (3.37): 

dR R(77 
2r- 

77 
3rR2 

dT 

Amplitude Equation (5.16) 

de 7) 
2 

77 
3R 

dT 

Phase Shift Equation (5.17) 

The coefficient of R in the amplitude equation corresponds to the linear 

growth rate dd/d@ and for @>@s this is positive, since the system is 

becoming unstable. Therefore periodic solutions (stationary orbits) can exist 

for 713? 0* The stability of these orbits followT from an identical argument 

to that adopted in Section 3.2. For stationary orbits we require: 

2 
77 

2r- 
77 

3rR 

71 
Zr 

71 
3r 

For @>0s, there are two possible cases: 

(3-) 713r ý' 0R- -417)2r/7)3rl as T- I= 

The solution of (4.6) approaches a stable limit cycle of the following form 

as E)-w-s: 

1/21-_- 11/2 AX (r) =2 1712r I ci ci 
S 

Cos 1+0 (W-Cjs TI+0 (W-W 
S) 

77 
3r 

(5.18a) 

1/21-_- 1/2 
AY(T) = 21XI 1712r Iw (i 

sI sin 
f (1+0 (W-W 

s))6 sT 
+'W., +os 

77 
3r 

(5.18b) 

fl. - tan- I (Xr/Xi) ;X= Xr -ý' Xi 
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The period of this orbit is: 

2-ff (1 + O(w-w 
S)) 

s 

(2) 723r 40 The amplitude equation (5.16) shows that dR/dT It >0 for all T 

Therefore the motion is unstable. 

In order to investigate the existence of orbits at speeds below the 

threshold, the alternative substitution: 

--2 

w=- 

can be used. If the analysis is repeated, an identical amplitude equation to 

(5.16) is obtained. However, in this case the sign of the coefficient of R is 

reversed, since n2r-(dFz/dw)<O. There are two cases to consider; 

(3) 773r. -"' 0 Equation (5.16) implies that R(T*)-o as -r-0, since dR/dT*<O for 

all R. Therefore the system moves towards its equilibrium position. 

(4) 713r_ý_O A periodic solution is Possible with: 

Rc 772r 

71 
3r 

However, this orbit is unstable, since for R>PC, dR/dT*>O and for R<Rc, 

dR/dT*<O. Theoretically an orbit can exist, provided R(7"*=O)=Rc, but it is 

unstable. 

The cases (1) to (4) are shown in Figure 5.1 
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R 

R 

-q, 

-11 
- -< 

-C w 

R I. - 

R 

iR (0) >R 
ii R(O) =R 
iii R(O) <R 

-C 

-V it 

Figure 5.1 The relationship between the orbit ampti[ude 
and 'sLow' time 
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5.2 Results 

In order to carry out a detailed investigation, the values of 712r and 713r 

must be found for all possible values fo es. As in the previous section, this 

is done for equilibrium positions in the range 0.01<Cs<0.75. The type of 

nonlinear behaviour observed is governed by the value of 713r- If 7)3r'o then 

stable limit cycles exist for D>Uis, if n3r"O then unstable limit cycles 

exist for U)<i0s. These two types of behaviour correspond to supercritical and 

subcritical bifurcation respectively. The results are shown in Table 5.1. The 

parameter space splits into two regions which ex4ctly match those found using 

Hopf bifurcation. 

Region I Es < 0.14 In this region n3r"O' therefore the behaviour is 

subcritical. 

Reqion 2 0.15 <Eq < 0.75 In this region 713r, "O' therefore the behaviour 

is supercritical. 
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Table 5.1 

Results obtained by the method of multiple scales for the short bearing 

operating with a half film 

ES S, E)s ? Is a '0 2r 713 r amp 

0.01 31.82 2.76 0.50 11.51 0.01 -0.02 0.61 

0.05 6.33 2.76 0.50 2.29 0.03 -0.07 0.67 

0.10 3.11 2.74 0.50 1.13 0.06 -0.07 0.95 

0.14 2.17 2.72 0.51 0.80 0.07 -0.002 5.88 

0.15 2.01 2.72 0.51 0.74 0.08 0.02 2.07 

0.20 1.45 2.68 0.51 0.54 0.09 0.12 0.84 

0.30 0.86 2.61 0.52 0.33 0.09 0.24 0.60 

0.40 0.54 2.55 0.52 0.21 0.08 0.25 0.56 

0.50 0.33 2.54 0.52 0.13 0.06 0.26 0.48 

0.60 0.20 2.70 0.47 0.07 0.04 0.46 0.28 

0.70 0.10 3.63 0.35 0.03 0.01 1.03 0.09 

0.75 0.07 9.74 0.13 0.01 . 0003 1.01 0.02 

aMP ý 4(7)2r/773r) 
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CHAPTER 6 

THE APPLICATION OF THE METHOD OF AVERAGING TO THE THE EQUATIONS 

OF MOTION GOVERNING OIL WHIRL IN THE 'SHORT' BEARING 
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6.1 The application of the method of averaqinq 

There are a number of parallels between the applications of the method of 

averaging and the method of multiple scales to equations (4.6). As in Chapter 

5, it is necessary to modify these equations by introducing a perturbation 

about the threshold speed @S. The method of averaging utilises a similar 

expansion about the equlibrium point: 

XY=Y CL) = G) 

and in addition assumes the existence of monofrequency oscillations. The 

existence of small, stationary, periodic orbits in the region C)>U)S will be 

investigated by expressing the rotor speed in the form: 

--2 

w=w +ji (6.1) 
S 

Suppose that there exists a solution of the form: 

AX gaco SV+42U 
I 

(a, f) +43U 
2 

(a, V) +.... (6.2a) 

AY gracos(V+ý )+42V 
I 

(a, V") +IL 3v2 (a, V*)+- (6.2b) 

such that r and ý are constants denoting the shape and phase of the 

elliptical orbits of the first approxiMation. a and 'W are given by: 

da = gA I 
(a) +42 A2 (a)+.... 

if-T 

2 

s +A-fý I 
(a) +jL V2 (a)+. (6.4) 

dT 

Once again, it is a consideration of bifurcation theory which suggests the 

above forms for (6.1)-(6.4). The arguments are similar to those adopted in 

Sections 3.3 and 5.1. Since the above forms are identical to (3.43)-(3.46), 

the derivatives are: 
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dAX 
s as inf) + g2 (A 

1 Cos jp+n, au 1-v as inV') 
dr ý-f 

3 
+ it (A 

1 
au 

1 
+A 2 coslv+C) s au 2 

+e 
1-ý-U 1- 

V2 as inf) (6.5a) 
ja-- -iii a ir 

2,6X 
+ 

2(-2 2u d acos*, ) fis a1- 2n 
s af 1 cosf -2fl 3A1s 

inf) 
dT alp 

3-2222 
+g Msa u2 +2f1, V'lcl -u 

1-cielcoslý-2f1�V' 2 acos^O, +A, ý2A, COSIV 

cl v' 2 
(3 e2 da 

-A 1 ! 
21, as inlf+2f1. A1 a2U 

1-2e, 
Alsinlr-2f1. A 

2B 
ine) (6.6a) 

da aaav» 

Similar expressions exist for dAY/dr and d2, &y/(fT2: - (6.5b) and (6.6b) 

Expressions (6.2), "6.5) and (6.6) are now substituted into (5.10) in order 

to equate powers of g. As in the previous section, only the results for 

(5.10a) are given here, where the results from (5.10b) are referred to later 

in the text, they will be denoted by the suffix Ibl. The following 

abbreviations are used. 

COS-4p 

c2= cos(f+ý) 

order (g): 

s inV- 

;s2= 

-2 
-As ac 1a3nS as, - a4ns ras 2+aI ac 1+a2 rac 2 

order (A2 ) 

n2a2u- 2n aLv* C- 2n Asa (A c as +ý au S-1 s11s113111SI 
av 

2a -fp 

+a (A rc ras +n av +au+av+aa2c2 41212s 
af 11121251 

(6.7a) 

a ra cc-ana2cs-a jj ra 
2cs+ar2a2c 2_ 

a ra 
2cs 

6127S118S12294 10 21 
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2 2- -2 22-22-2222 

- allr an8c252+a 12 
n5as 

1+ a 13 
ns ra s, s 2+a 14 

nsras2 
y2 

( 6.8a) 

order ( IL 3) 

2+ 2n av, 2c- 2n r cic +A ýýA cA ýII as S. 
ýmu 

js1. 
ýmu -11s2111111 

alp alr - 

+ 2n 
5A18U i- 

2e 
1A1s i- 

2n 
5A2s, =11a3 (A 

2c1+ 
fi 

s 
au 

2+A1 au -ä-a 
EI a8 

j, qu, -v 2 asj - da 
3 is as 1+a4 

(A 
272 

+5 
s ay 2 +Alav, +vlav, 

af A af aa we 

-e2 ras 
2)- ! ýa 4 

ýI 
S ras 2+a1u2+. da 

1 ac 1+a2v2+ 
da 2 rac 21 

d(i dw dw 

a5 (2aLu, c, ) +a6 (avlc, +rau Ic2+a9 (2ravc 2 'f -i 

+a (ac (Ac+flau-fas )-anus 
7111s ýTt_ 111sII 

a (ac (A rc+n av -V ras )-raf) us a112 S-ýi-f 112312 

+a (rac (A c +n au -jP as )-an vs 10 211s ýii IIIs11 

a 11 
(rac 

2 
(A 

I 
rc 

2 
+A 

s avl-*lras 2 
)-ran 

SvIs 2) d _f 

+a (-2n as (A c +n au -yr as 
f12 s111s -j-f 111 

+a as (A rc +n ay -Vr ras )-n ras (A c +fl au -Vr as 13 s112s 
a*- 112s211s ýii III 

a 14 (-2n 
s ras 2 (A 

1 
rc 

2 
+fl 

s av, -flras 2 

3332 3- 2 3- 2 
aac+a ra cc+a (-a ncs+a (-a n rc s V5 12 16 122 17 s112 18 S12 

3223 -2 3 
a (a rcc+a ra ccs+araccs V9 12 20 s121 21 s122 



140 

-2 32 -2 3 (52 2 3C 2 
+aMacs+a (0 ra css+ara5 -i 22 S11 23 S112 224 B12 

333232332 
a 25 (r ac2a 26 srac2s1a 27 rac2s 2) 6 -f -f 

a2 ra 
3cs2+a2r2a3css+a (ýi2 r3a 

3C 
s2 

j28 S21 29 S212 -f30 S22 

-3 33 -3 323232 
aas+a ra ss+arass -6 31s1 -6 32 s12 f33 B12 

- (_63r3 a 
353 

A3 
4s2 6 

-2 
f- 

a3 ii B as 1-a4 ns ras 2+aI ac I+a2 rac 21 (6.9a) 
-3 (i 

Consider the O(g) expressions, and equate terms in cosV, sinV'to obtain: 

2a 
siný+a +a cosý 4sr12 

-a IS -a 4 
n. cosý-a 2 siný 

r 

-2 
s cosý = -b 4nS sint+b I +b 2 

COS4 

r 

-2 
-n s siný = -b 3nS -b 4nS cosý-b 2 siný 

r 

Two of these equations are redundant,, the remaining pair can be solved to 

find r and C: 

_2 1S 

-a 4nS siný+a 2 
cosý 

tanE = (-b 2-As )(-a 
I-f) s 

)-a 2bI 
- -2 (-a 

1-f) s 
)(-b 

4ns 
)-b 

1a4 
fl 

S 

The presence of terms involving cosV' and sinf in (6.8 ) can lead to the 

appearance of secular terms in u, and vj; in order to suppress them it is 
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necessary to equate the coefficients of cosf and sinjP to zero. This can be 

achieved by putting: 

A1 ==0 (6.10) 

The solutions of (6.8) can be written: 

U, = Pi +q I cos2lP+r I sin2f ; V, = P2 +q 2 cos2**+r 2 sin2lP 

The pi, qi and ri are all functions of a2. Result (6.10) leads to a 

considerable simplification of (6.9). these equations can now be written: 

282uaa ay -a u -a v S-2 B 1A-U2 8223242 

av 
2 

av alp 

cosIP(2i5 5 
0,2 a+a, A 

2 
+a 

2A2 xcosý-a 2v2 rasiný+f I 
(a)) 

(a) ) sinV(2n SA 2- aIV2 a-a 2A2 rsin6-a 2f2 racos6+f 2 

higher harmonics 

n2a2v -n b au -n b av -b u -b v= S-2 S 1-2 S 2-2 3242 

a -#- 
2a-? 

af 

cos, IP(2A- Sf 2 racosý+2(1 s rA 2 siný+b IA2 +b 2A2 rcosE-b 2102 rasink+f 3 
(a)) 

sinIP(2n SA2 rcosý-2n SVI 2 rasiný-b I IP 2 a-b 2A2 rsiný-b 27ý2 racosý+f 4 
(a)) 

higher harmonics (6. l1b) 

The terms fl to f4 are formed by the product of ul and v, with powers of 

cos*", sinV, cos(V+ý ) and sin(f+ý ). It is possible to write: 

f1(a) = g1(a)+h1(a3) 

where the gi and hi are functions of a and a3 respectively. Before proceeding 

to the next stage of the analysis, it is necessary to introduce an elementary 

result from the theory of ordinary differential equations (Cohen (1972)). 
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Lemma 

Given a pair of ordinary differential equations: 

d2 x-a I 
dx-a 2 ! ýX-a 3 x-a J= aCOST+bsinT 

dT 2 dT d-r 

d2 y-b I 
dx-b 2 ! qy-b 

3 x-b 4y= ccosT+dsinr 
2 UT dT 

d 7. 

the condition for the elimination of secular terms in x and y is: 

B 
ir a+B ic 

b+B 
2r c+B 2C 

d= 

-B ir 
b+B 

Ic a-B 
2r 

d+B 
2C 

c= 

where Bir, B2rBlcB2C are linear functions of a.,. .. b4, It is a 

straightforward but tedious process to find them (this result is analogous to 

(5.9)). This lemma can be applied to (6.11) and the conditions for the 

elimination of secular terms in u2 and v2 become: 

Vl 
2 

a7l 
I 

+A 
2 

71 
2ý 

-B ir 
gl-B 

lCg3 -B 2rg 5-B 2C97 -B irg2 -B lCg4 -B 2rg6 -B 2C98 
(6.12a) 

f2 a7l 
3 

+A 
2 

7) 
4 

=: 

B 
lrg3 -B Ic g1 +B 

2rg7 -B 2C g5 +B 
irg4 -B ic g2 +B 

2rg 8-B 2Cg6 
(6.12b) 

where, 71.1 to 7)4 are all functions of a, ... 
b 

4, r, ý, jýs. Equations (6.12) can 

be written in the form: 

3 
71 

IV2 a+71 2A2ý 
Al a+ IL 

2a 

7) 
3 

le 
2 a+71 4A2wA3 a+g 4a3 



143 

Solving gives:: 

2a=(, u 1 a+g 2a3 
)71 

4- 
( IL 

3 a+ji 4a3) 
77 

2 (6.13) 
71 

1 
71 

4 -7? 2 
77 

3 

A2= (Al a+g 2a3 
)77 

3- 
OL 

3 
a+A 

4a3 
)71 (6.14) 

71 
3 

71 
2 -71 1 

71 
4 

It is possible to write (6.14) in the form: 

a(K 
I- 

a2K2) 

For the existence of periodic orbits Up to O(g3 ý (see the discussion at the 

end of Section 6.3), we require A2ý0. Also, since in general Kl>Ot we 

require K2>0' In this case stationary orbits exist for: 

a e 

The orbits are given by: 

AX = ga e cosr ; AY = gra e cos(jp+ý) (6.16) 

The stability of these orbits is guaranteed, since: 

aA(0- da (0 

a<ae- A2» >0- da >0 
3 --r 

In order to examine the existence of whirl orbits at speeds just below the 

threshold speed, put 

--2 

w= (A)2- /L 

Reworking the analysis leads to an identical equation to (6.15). In this 

case, however, Kj<O in general. Consequently, the condition for the 
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existence of stationary orbits becomes K2'ýO* Clearly these orbits cannot be 

stable. 

The method of averaging displays four types of behaviour, which are identical 

to those observed in the case of multiple scaling: 

C) > U) S 

(1) K, > 0, K2 > 0' Stable whirl orbits of type (6.16). 

(2) K, > 0, K2 < 0' The system is completely unstable. 

@< Os 

(3) K, < 0, K2 > 0' The system moves towards an equilibrium point. 

(4) K, < 0, K2 < 0' Unstable whirl orbits exist. 

6.2 Results 

The results are shown in Table 6.1. They are in exact agreement with those 

obtained by Hopf bifurcation and multiple scaling. As before, the parameter 

space can be split into two regions. 

Region 1 Cg < 0.14 unstable limit cycles exist for w<ws- 

Reqion 2 0.15 < Eq < 0.75 Stable limit cycles exist for (-j>c-js. 

6.3 Comparison with the results obtained by Lund 

The initial motivation for the work described in this chapter was the failure 

to obtain agreement for the short bearing half film model between the results 

obtained by Hopf bifurcation and multiple scaling, and those obtained by Lund 

(1966) using a method of averaging. In order to introduce a small parameter 

into the system of equations (4.6), Lund relies on the concept of a small 

error from a computed solution. In several instances this method gives 
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Table 6.1 

Results obtained by the method of averaqinq for the short bearing 

operating with a half film 

ES WS 

0.01 2.76 

0.05 2.76 

0.1 2.74 

0.14 2.72 

0.15 2.72 

0.2 2.68 

0.30 2.61 

os 0r 

0.500 11.51 -1.00 

0.501 2.29 -1.00 

0.503 1.13 -0.99 

0.506 0.80 -0.97 

0.506 0.74 -0.97 

0.511 0.54 -0.95 

0.519 0.33 -0.91 

ta 

89.6 

88.2 

86.2 

84.4 

84.0 

81.4 

74.8 

K1K2a 

0.0069 -0.0047 1.2196 

0.0333 -0.0187 1.3362 

0.0601 -0.0165 1.9088 

0.0746 -0.0006 11.7668 

0.0773 0.0045 4.1438 

0.0858 0.0303 1.6834 

0.0863 0.0608 1.1918 

0.40 2.55 0.524 0.21 -0.88 65.8 0.0762 0.0613 1.1156 

0.50 2.54 0.515 0.13 -0.87 54.2 0.0596 0.0637 0.9670 

0.60 2.70 0.474 0.07 -0.92 40.0 0.0360 0.1141 0.5614 

0.70 3.63 0.345 0.03 -1.04 22.1 0.0088 0.2575 0.1850 

0.75 9.74 0.127 0.01 -1.15 6.9 0.0003 0.2543 0.0332 
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fundamentally different results from those found by the methods adopted here. 

since the method used in this thesis is restricted in its validity to rotor 

speeds close to the threshold, it is not possible to confirm evidence of 

hysteresis found by Lund; however it is of interest to make a comparison with 

his results, wherever it is possible to do so. In order to do this, the 

author first carried out Lund's analysis to confirm the accuracy of his 

results. 

Figure 6.1 compares the predicted response of the journal to a small change 

in the rotor speed from the threshold, as found 
- 
by this work and by Lund. For 

each value of a there is a corresponding threshold speed and equilibrium 

eccentricity ratio, where the operation line crosses the stability 

borderline. Results are shown for four such values of a; since the linear 

theory used to calculate @s and es is common to both methods, it is possible 

to make a comparison. The behaviour close to the threshold speed is shown by 

the direction of the slope of the amplitude/rotor speed curve. A line sloping 

to the right indicates the existence of whirl orbits above the threshold 

speed; a line sloping to the left indicates their existence for CJ<Ds. Figure 

6.1 shows that for very small eccentricities (Es=0.051) there is agreement on 

the existence of whirl orbits at speeds below the threshold, but disagreement 

on stability. For medium eccentricities ( Es=O. 251 and ES=O. 450) there is 

complete agreement with Lund's results, whereas for higher eccentricities 

(cs=0.600) the two methods disagree as to whether limit cycles exist at 

speeds above or below the threshold speed. 

The stability of Lund's whirl orbits was originally found by forming the 

variational equations from the averaged equations of motion. This method is 

clearly anomcklous in that it predicts stable orbits in the subcritical 

region, e. g for a=2.24. An alternative approach is possible, based on forming 

the variational equations from the original equations of motion (Lund and 
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Figure 6.1 The nonLinear response cLose to the stability borderline: - 
comparison of the resutts obtained by two different 
appLications of tha method of averaging 
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Nielsen (1981)). It was the author's original intention to examine this 

alternative course as a possible clue to the reasons for the discrepancies in 

the results obtained by the two 'different, methods of averaging. However, 

this was abandoned when it became clear that the methods were in disagreement 

not only over stability, but also over the direction of bifurcation in the 

case of CT=0.07. Here Lund's method predicts small stable whirl orbits below 

the threshold speed well into the supercritical region, contrary to the Hopf 

bifurcation results. The author's method was subsequently vindicated by 

numerical integration (see Chapter 7). 

No satisfactory explanation has, as yet, been found for the existing 

discrepancies. It is felt, however, that if the anomalies within the Lund 

method could be eliminated, it might well prove a powerful tool in the 

analysis of nonlinear rotor behaviour, since it has two important advantages 

over the method adopted in this thesis. 

(1) It is not restricted in its validity to values of U) close to @s. 

(2) It is relatively simple to apply and does not require the calculation of 

second and third order derivatives. 
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CHAPTER 7 

THE APPLICATION OF NUMERICAL INTEGRATION TO THE EQUATIONS 

OF MOTION GOVERNING OIL WHIRL IN THE 'SHORT' BEAMNG 

AND A DISCUSSION OF THE RESULTS OBTAINED BY NONLINEAR TECHNIQUES 
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7.1 Numerical integration of the equations of motion 

In order to confirm the results of the previous three sections and to 

identify any other periodic behaviour which might occur as Kichanges, the 

equations of motion (4.6) were integrated numerically using standard library 

routines developed by the Numerical Algorithm Group (NAG libraries). These 

routines integrate a series of first order, nonlinear, ordinary differential 

equations (equations (4.15)) using a variable order, variable step Adams' 

method (Hall and Watt (1976)). The programs were run on the University of 

Leeds Amdahl V7 computer and the results displayed visually by means of a 

Calcomp graph plotter. 

The approach adopted was to follow the development of solutions as E) 

increased for two values of the system parameter, whose corresponding 

operation lines crossed the stability borderline in the two different regions 

identified by analytical methods. The values chosen were 0=0.06 and CY=2.0 

(see Section 4.3 and Figure 4.6). Particular attention was paid to the effect 

on the subsequent motion of the starting position of the journal centre 

( EO, VO ). Several values of a were, in fact, investigated in order to 

eliminate any special phenomena peculiar to the two chosen values. None were 

observed. The results of the analysis are shown in Figures 7.1-7.3 and 

summarised in Table 7.1. 

Figure 7.1 shows the behaviour for a system operating with 0=2.0, crossing 

the stability borderline in the subcritical region. At values of @ well below 

the threshold value of 2.76, the system is stable, although the time taken 

for convergence to the equilibrium position grows with increasing 0 (Figures 

7.1a and 7.1b). The behaviour as U) approaches US depends on the initial 

position. Close to the equilibrium point the system is stable, although 

convergence is Slow (Figure 7.1C). For values of co and v. further away from 
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Figure Tle 
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Figure 7. lg 
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Figure 7.1i 
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Figure 7.2a 
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Figure 7.2c 
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Figure 7.2e 
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Figure 7.2g 

aý--0,06 cj=2.92 
E =0.8 0.0 
0 

Figure 7.2h 

cy-=0.06 ý-)=2.95 
E 
0=0.8 ý, = 0.7 

S 
� S 

/ S 
S 

S 

I 
I 

5 
55 

55 

F 
F 

F 
/ 

/ 
/ 

/ 
/ 



160 

Figure 72i 
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Figure 7.2k 
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Figure 7.3a 
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Figure 7.3c 
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Figure 7.3e 
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Table 7.1 

Results found by numerical integration 

CF = 2.0 

(is = 2.76, es = 0.06, Vs ý 1.5 radians 

Uj < 2.55 stable equilibrium point 

2.55 <<2.76 stable equilibrium point or large amplitude limit cycle 

2.76 << 10.0 large amplitude limit cycle 

10.0 < completely unstable 

0=0.06 

cis = 2.81, es = 0.63, ýps = 0.77 radians 

Ci < 2.76 stable equilibrium point 

2.76 < (J < 2.81 stable equilibrium point or large amplitude limit cycle 

2.81 < CJ < 2.96 small whirl orbit or large amplitude limit cycle 

2.96 <@<5.0 large amplitude limit cycle 

5.0 < Z3 completely unstable 
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es and Vs, however, a large amplitude (growing with stable limit cycle' 

can be observed (Figures 7 . 1d and 7.1e). For E)Zs, even for E. and W. close 

to es and ps, the system is completely unstable, as far as small amplitude 

oscillations are concerned. There is, however, evidence of large amplitude 

orbits, growing with @, well into the linearly unstable region (Figures 7.1f, 

7.1h, 

Figure 7.2 shows the behaviour for a system operating with 0=0.06, crossing 

the stability borderline in the suPercritical region, at U)S=2.81. For Fj<<@s 

the system is stable for all values of E. and V. (Figures 7.2a and 7.2b). 

For @ close to @s the solution depends on the initial conditions. If the 

starting position is close to the equilibrium point, the system is stable for 

@<@S and has a small amplitude limit cycle for @>@S, whose amplitude is 

proportional to JID-U)sI (Figures 7.2d, 7.2f and 7.2h). If the initial 

position is away from the equilibrium point, a stable, large amplitude limit 

cycle existsfor 0 just above and below @s (Figures 7.2c, 7.2e and 7.2g). 

when @ reaches a value of 2.96, the smaller orbit ceases to exist and all 

solutions grow to the large amplitude solution (Figure 7.2i). This large 

amplitude orbit continues to grow with U) (Figures 7.2j and 7.2k) until the 

system becomes completely unstable well into the linearly unstable region. 

Figure 7.3 shows the variation of the journal centre location in the X- 

direction for certain values of a, @, EO and vo as T increases. Figures 7.3a 

and 7.3b correspond to Figures 7.1a and 7.2a; they show the quickly decaying 

oscillations as the system moves towards its equilibrium point. Figure 7.3c 

corresponds to Figures 7.2f and shows that the period of small stable limit 

cycles in the supercritical region is approximately equal to 4n. This is in 

agreement with the half frequency whirl observed experimentally (see Chaptel 

1) and predicted analytically. Interestingly, the large amplitude orbits 

surounding both the sub and supercritical solutions are also of half 
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frequency (Figures 7.3d and 7.3e, which correspond to Figures 7.1d and 7.2g). 

Numerical integration is in essence, supplementary to the analytical 

techniques, since it cannot provide information about the system's general 

behaviour. It merely provides a solution for a given set of parameter values. 

A numerical study of a complex system such as (4.6) is a very time consuming 

operation, since, for a given value of a it is necessary to integrate the 

equations for a large number of rotor speeds and initial positions to be 

certain of identifying the full range of behaviour. Numerical integration 

does, however, confirm the subcritical and supercritical regions predicted by 

the earlier analysis. In both cases the small bifurcated orbits are 

surrounded by stable large amplitude limit cycles; these additional orbits 

will be discussed further in the next section. 

7.2 Discussion of the results obtained by the use of nonlinear techniques 

The main features of the methods used in this chapter are set out in Table 

7.2. A major achievement of this Part of the research has been the 

consistency of the results obtained by the application of four different 

techniques to the equations 4.6. In particular, it has been shown that it is 

possible to achieve agreement between the method of averaging and the method 

of multiple scales by the correct choice of small parameter. Although the two 

methods as employed here are essentially different representations of the 

same technique, this was previously unclear in their application to the 

journal bearing problem (Myers (1981)). 

Now that the consistency of the analytical techniques has been demonstrated, 

it is clearly of little value to continue to work through all three in the 

future analysis of otber cavitation models. Hopf bifurcation provides a 
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Table 7.2 

Summary of the nonlinear tecbniques 

Bifu. rcation Theo 

Description i) Rigorous mathematical technique ii) Existence theorem which 
establishes the existence of small amplitude whirl orbits for rotor speeds 
close to the threshold speed iii) Direction of bifurcation determined 
algebraically iv) Amplitude = kj I M-Fis I as G-Gs - 
Advantages i) Mathematical rigour ii) Theory provides detailed information 
about the structure of periodic solutions close to the threshold speed 
Disadvantages i) Algebraic formula is tedious to apply ii) Theory is valid 
only close to the threshold speed. 

Multiple Scaling/Method of Averaging 
I 

Description i) Singular perturbation technique ii) Series solution based on 
physical insight iii) Evolution from equilibrium position is described by an 
amplitude growth equation iv) The direction of bifurcation is determined by 
the sign of terms in the amplitude equation v) Consistent with bifurcation 
theory. 
Advantages i) Method is conceptually straightforward ii) Stability of 
solutions is easily deduced from the amplitude equation 
Disadvantages i) Method is tedious to apply ii) Theory is valid only for 
rotor speeds close to the threshold speed. 

Numerical Integration 

Description i) Straightforward step-by-step integration of the equations of 
motion on a digital computer. 
Advantages i) Pictorial representation of the journal motion ii) Valuable for 
confirming theoretical solutions iii) It can be used for any bearing model 
iv) Valid away from the threshold speed. 
Disadvantages i) Expensive in computer time ii) Errors may accumulate 
significantly over many time steps iii) It does not identify the important 
regions of parameter space. 
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rigorous proof of the existence of small amplitude oscillations and an 

indication of the correct line of approach to be adopted in the 

scaling/averaging procedure. However, the latter solutions give a more 

explicit expression for orbit amplitudes (c. f. solutions (5.18) and (6.16) 

with (3.4)), as well as an indication of the system's evolution to limit 

cycles. It was necessary to choose between these two methods fo r the analysis 

of further boundary conditions in Chapter B. The method of multiple scales 

was chosen, since the corresponding algebra is rather less tedious. 

it is possible to combine the analytical and numerical results to obtain an 

overall picture of rotor behaviour at speeds close to the threshold. This is 

shown in Figure 7.4. The appearance of large amplitude oscillations is rather 

surprising for this particular rotor configuration; larger orbits are 

normally associated with oil whip (see Introduction and Chapter 1), which is 

a resonance effect peculiar to flexible shafts. Figures 7.3d and 7.3e show 

that these orbits are of half frequency. Oil whip, on the other hand, occurs 

at full frequency since it takes place when the rotor speed is equal to twice 

the first critical speed in bending of the shaft. It is not possible at this 

stage to speculate as to whether these larger limit cycles represent a real 

effect or are a feature of the numerical scheme used. It is interesting, 

however, that Myers (1981), in his numerical study of the long bearing 

oscillating half film model, found evidence of large amplitude orbits in a 

subcritical region, but not in the corresponding supercritical region. 

A defect of the purely analytical approach is that it gives no indication as 

to how far along the operation line the solutions remain accurate. Figures 

7.1 and 7.2 show that they become invalid as. soon as FA) strays far from its 

threshold value. It is, however, necessary to resort to trial and error when 

integrating the equations numerically to find where this breakdown takes 

place. 
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Figure 7.4 System behaviour close to the threshold speed 
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An examination of the graph of -417? 2r/773ri plotted against Es shows that 

infinite amplitudes are predicted at the borderline between the two regions 

at es=0.141 (Figure 7.5). This singularity arises because af the small number 

of terms considered in the series. expansions for AX and AY (5.4). The 

crudeness of these approximations is especially marked close to the 

subcritical/supercritical exchange, where W3rýO- In order to achieve a 

smooth transition it would be necessary to consider the problem up to Oýo), 

or in the case of bifurcation theory, to calculate 6"(0). This would require 

an unacceptably large amount of computation, since it involves the 

calculation of the fourth order derivatives of PX and Py. 

The 'describing function, method presents a possible way round this problem 

(the author is grateful to Dr. D. Taylor of Cornell University for bringing 

this technique to his attention, Taylor (1981)). This method averages the 

effective contribution from the nonlinear terms over one cycle; this leads to 

an expression in terms of the amplitude, which can replace the nonlinear 

terms in the equations of motion. An outline of the method of solution for 

the simple nonlinear oscillator considered in Chapter 3 is as follows. 

(1) For the system: 

if I 
x+X(, YX2_V) + (j) 

2x 
0 

assume a solution of the form: 

I 
Asinw Tx= Aw cosw T 

(2) Approximate the nonlinear solution by seeking the-first term B, in its 

Fourier series expansion. 

21=32 
xxA(, ) sin Ed T COSW T= BAcj COSCJ T 

00000 

1 

= Bx 

(3) Replace the nonlinear part of (3.11) with BxI. Since B is an algebraic 
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expression of the amplitude a, a condition for periodicity can be found. 

(4) The stability of the nonlinear periodic solutions can be found by 

examining the direction of the effective' damping. 

This procedure yields exactly the same results as those found by the other 

analytical methods introduced in Chapter 3. The describing function technique 

is much easier to apply, however, since it does not require transformations 

for x, or the calculation of higher derivatives. This facility of application 

is particularly important for more complex nonlinear damping terms. In the 

case where (see equation (3.8)): 

2_, 2 L(x) =1 . 
1-d)x 

the solution is analogous to that for the journal bearing. A supercritical 

solution exists for d<l, a subcritical solution exists for d>1 and infinite 

amplitude solutions are predicted at d=l. This third case can be avoided by 

refining the damping force to include an additional term: 

.L. 
(X) =12_ (1-d) X2 _ flX4 

It is possible to apply bifurcation or scaling/averaging techniques to this 

refined system, although the process is rather tedious. In contrast, the 

describing function method is both simple to apply and spectacularly 

successful. It is only necessary to perform an additional integral in the 

, effective damping, calculation. The inclusion of this refinement smooths out 

the discontinuity at d=1 and introduces a second large amplitude oscillation 

in the subcritical region. It is felt that this approach might well improve 

the understanding of nonlinear phenomena in journal bearings, particularly 

with respect to: (i) large amplitude orbits (ii) behaviour away from the 

stability borderline. 

Both the analytical and numerical techniques employed in this chapter have 
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been consistent in splitting the ( ES, CJ) parameter space into two regions. 

Unfortunately, no satisfactory physical explanation for this has been found. 

Intuitively, one might expect the system to become more stable at greater 

values of es, since the linear theory states that the system is always stable 

above cs=0.756. This intuition is partly borne out by the nonlinear results; 

Figure 7.5 shows the amplitude of oscillations monotonically decreasing with 

increasing es in the supercritical region. However, this does not explain why 

the system should suddenly become supercritical when es reaches a value of 

0.141. 

7.3 Conclusions to Chapters 3-7 

(1) The three analytical techniques are consistent in their predictions about 

nonlinear behaviour. In particular, provided that the correct small parameter 

has been identified, the methods of multiple scales and the method of 

averaging produce identical results. 

(2) The method of multiple scales/method of averaging approach has the 

advantage of providing a more explicit form for the orbit amplitudes'and an 

indication of the evolution to the limit cycles. 

(3) For the short bearing half film model, the ( cs, U)) parameter space is 

split into two regions: 

(i) CS < 0.14 subcritical bifurcation takes place. 

(ii) 0.15 < Es 0.75 : supercritical bifurcation takes place. 

(4) The validity of the analytical solutions is restricted to values of Z; ) 

close to Os- 

(5) A numerical integration of the equations of motion confirms the accuracy 

of the analytical results. There are, however, additional large amplitude 

solutions to the equations of motion, which cannot be predicted by the 

analytical methods adopted here. 
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CHAPTER 8 

THE EFFECT OF DIFFERENT CAVITATION BOUNDARY CONDITIONS 

ON THE NONLINEAR BEHAVIOUR OF THE JOURNAL BEARING 
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Although the effects of different cavitation boundary conditions on the 

linear stability of the plain cylindrical journal bearing are well documented 

(see Chapter 1), there is very little published work examining their 

influence away from the stability borderline. The intention of this chapter 

is to attempt to fill this vacuum Partially by applying the method of 

multiple scales to the equations of motion arising from several cavitation 

models. The rotor configuration is that described at the beginning of Chapter 

4, hence the equations of motion remain as in (4.6). 

8.1 Description of the computer program NOSCAL 

The major disincentive for detailed investigation of equations (4.6) is the 

complexity of the force terms FX and Fy; all three methods described in the 

previous chapter require the calculation of 68 derivatives up to third order 

for each value of ES. However, the format of the equations of motion is 

unaffected by the choice of boundary conditions (with the obvious exception 

that the Modified Sommerfeld Number S. is replaced by the Sommerfeld Number S 

for long bearing approximations) and in all cases, the forces acting on the 

journal remain functions of X, Y, X', Yl and S or Sm. The application of 

the method of multiple scaling therefore remains the same for any cavitation 

model, it is as described in section 5.1 and summarised in Table 8.1 below. 

Table 8.1 

For a given Es 

(1) Calculate al"'a3,, bl ... b34 

Calculate dal/d@ ... dbg/d@ 

(2). Find the threshold speed Fds 

Find fis, S or Sm and c at the threshold 

(3) Calculate 712r and 713r 
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A Fortran coMPuter program has been written to perform the application for 

any set of boundary conditions. This will be referred to as NOSCAL . Since it 

is clearly out of the question to perform stage 1 analytically for the more 

complex boundary conditions, the program calculates the required values 

numerically. This program is common to all cavitation models, the forces FX 

and Py are supplied through a subroutine. 

calculation of the derivatives 

The right hand side of the equations of motion (4.6) can now be written in 

the form: 

f(x 
1x2x3x4) 

The equilibrium values of x 11** x4 are: 

X, -x is 
;x2-x 

2S ;x 3- 
x 

3S ; X4- X4S 

It is possible to perturb these independent variables about their equilibrium 

values to obtain: 

1- Is 1 2ý 2S 
m2; x 

3ý 
x 

3S 
m3; x 

4ý 
x 

4S 
m4 

If (8.1) is expanded in a Taylor series about the steady state position, it 

is possible to derive the following expressions: 

af f(m, ) - f(-m, ) (8.2) 
ýT-x 

2m i 

a2f- f(m + f(-mi) 2f(O) (8.3) 

ax 
22 
imi 

a3f- f(2m f(-2m 2(f(m f(-m i)) (8.4) 
3 

axi2 M3 i 
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2 f- f(m 
I Im + f(milm f(-Mirm + f(-m 

i, -M 

axiax 4m mi 

(8.5) 

a3 f- f(m 
1 'm + f(m 

i, -M f(-Mirm -f(-m i, -M 

ax ax' 2 ii 2m imi 

2(f(-mi) - f(mi)) .... (8.6) 

2m imi 

a3f= f(mirmilm k )-f(m 
1 f-m 1 Im k)-f(-mi'Mjrmk )+f(-m i *, -mitm k) ax i ax i EI xk 8m imim 

f (Mir-milm k)-f(ml' ml, -m k )+f(-. Milmif-m k)-f(-Mi'-Mjl-mk) 
8m imimk 

(8.7) 

where: 

f(M i)= f(x is +mipx js x ks' x ls) 

f(M i 'm i)= f(x is +mipx js +mi(X ks' x ls) 

f(Mirmirm k f(x is +m ix js +mjrx ks +m k' x ls) 

f(0) = f(x 
is x 2S x 3S x 4S) 

Expressions (8.2)-(8.7) can be used to calculate the derivatives al,,, b34 ;a 

similar expression to (8.2) can be used to find dal/dg etc. 

In order to check the program and to determine the most effective values for 

the mi, NOSCAL was run for the short bearing half film model and the results 
I 

obtained were compared with those found analytically and listed in Table 6.1. 

The program was run on the Leeds University Amdahl V7 computer, which 

operates at three levels of accuracy: single Precision (approximately 6 

decimal digits), Double Precision (approx. 15 decimal digits), Quadruple 
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Precision (approx. 33 decimal digits). Since NOSCAL involves the inherently 

inaccurate numerical calculation of derivatives, it was felt that the maximum 

possible accuracy should be sought. It was therefore run under both Double 

and Quadruple Precision. At the Double Precision level, the following values 

of mi were chosen after a process of trial and error: 

MM 10 -5 for the calculation of df ,d2f and d 2f 

dx id X2 
dx 

i 
dx 

i 

M 10- 4 for the calculation of d 3f 

dx 3 
i 

I 
MM j= M ký 5xlO- 5 for the calculation of d3f and d3f 

dx i dx i 
dx 

i 
dx 

i a-x k 

These increments gave the most accurate results for the derivatives; it was 

not possible to reduce the step size at this precision level due to the onset 

of rounding errors. NOSCAL calculated n2r and 713r correct to three 

significant figures for es>0.18, however their sign was calculated correctly 

for es>0.02. To improve the results obtained at low eccentricity, NOSCAL was 

run again under Quadruple Precision with increments reduced by a factor of 

10-4. In this case 772r and 713r were calculated correctly to within three 

significant figures for all values of es. 

As a further check, NOSCAL was also run for the long bearing, oscillating 

half film model; the results were compared with those obtained analytically 

by Myers (1981). It was found that accuracy to within four significant 

figures could be obtained by the use of Double Precision. The problem of 

accuracy was kept in mind whilst running NOSCAL for other boundary 

conditions; surprisingly, it was found that the short bearing half film model 

was unique in requiring the highest level of precision. 



180 

8.2 Results and discussion 

In addition to the short bearing half film model, NOSCAL was run for four 

other sets of boundary conditions: - (1) long bearing, oscillating half film 

(2) long bearing, static half film (3) long bearing, half Sommerfeld film 

(4) long bearing, Reynolds film. The derivation of the hydrodynamic forces 

for these models is described in Chapter 2 where the full nonlinear 

expressions for models (1) and (2) can be found. The full nonlinear forces 

for models (3) and (4) are not given since they are particularly complex and 

shed little light on the results that follow (th ey can be found in Myers 

(1981)). The results are shown in Tables 8.2-8.5 and Figures 8.1-8.4, which 

are analogous to Table 5.1. and Figure 4.6. 

With the exception of the static half film boundary conditions, the models 

are consistent in their prediction of two major features of the nonlinear 

behaviour, i. e. subcritical bifurcation at low eccenticities and 

supercritical bifurcation at medium eccentricities. The extent of the 

subcritical region varies between o<Es<o. o9 and O<cs<0.21; the end of the 

supercritical region varies between 0.64<ES<0.75. For higher values of ES, 

the results are inconclusive. Whereas the short bearing half film model 

predicts supercritical behaviour up to the point where the system becomes 

completely unstable, both the long bearing half Sommerfeld film and the long 

bearing oscillating half film models show a third, subcritical region in a 

small band just before complete stability is attained. Whilst preserving this 

additional supercritical region, the long bearing Reynolds, film has a 

fourth, supercritical region in the interval 0.806<ES<0.815. 

There is very little correlation between linear and nonlinear behaviour; for 

example, the oscillating half film and half Sommerfeld film models have a 

very different stability borderline (see Figure 2.14), whereas their 
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Table B. 2 

Results obtained by the method of multiple scales for the long bearing 

operating with an oscillating half film 

ES s &js 5s cy 1772 r 713 r amp 

0.01 10.61 0.94 1.15 11.26 0.04 -522.8 0.01 

0.05 2.12 0.95 1.15 2.24 0.19 -87.02 0.05 

0.10 1.06 0.95 1.14 1.11 0.36 -22.24 0.13 

0.14 0.76 0.96 1.13 0.79 0.47 - 2.66 0.17 

0.15 0.70 0.96 1.13 0.73 0.47 0.41 1.03 

0.20 0.53 0.98 1.11 0.54 0.58 9.64 0.25 

0.30 0.35 0.98 1.11 0.34 0.64 13.53 0.20 

0.40 0.25 1.10 1.02 0.23 0.59 11.35 0.20 

0.50 0.19 1.21 0.96 0.16 0.49 8.01 0.21 

0.60 0.15 1.37 0.88 0.11 0.37 4.71 0.22 

0.70 0.11 1.75 0.72 0.07 0.23 1.42 0.27 

0.74 0.10 2.31 0.55 0.04 0.14 0.09 0.75 

0.75 0.10 2.31 0.55 0.04 0.14 -0.22 0.43 

0.79 0.08 6.43 0.20 0.01 0.02 -0.54 0.19 

alnP ý V(7)2r/713r) 
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Table 8.3 

Results obtained by the method of multiple scales for the lonq bearinq 

operatinq with a static half film 

ES s Fj 
s 

F, 
sa ±7) 2r 713 r amp 

0.01 10.61 1.72 0.50 6.17 0.01 0.002 2.78 

0.10 1.06 1.76 0.49 0.61 0.11 0.13 0.92 

0.20 0.53 1.90 0.46 0.28 0.13 0.22 0.78 

0.30 0.35 2.19 0.41 0.16 0.10 0.15 0.83 

0.40 0.25 2.87 0.32 0.09 0.06 0.11 0.73 

0.50 0.19 8.21 0.12 0.02 0.01 0.08 0.29 

0.51 0.19 18.19 0.05 0.01 0.001 0.003 0.18 

alnP ý V(712r/7? 3r) 
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Table 8.4 

Results obtained by the meth2d of multiple scales for the long bearing 

operating with a half Sommerfeld film 

ES s WS iýs a ±712r 713 r amp 

0.01 10.61 13.47 0.59 0.79 0.02 -650.9 0.01 

0.09 1.18 4.54 0.59 0.26 0.05 -0.36 0.37 

0.10 1.06 4.31 0.58 0.17 0.07 0.19 0.33 

0.20 0.53 3.1G 0.58 0.17 0.07 0.19 0.20 

0.30 0.35 2.73 0.56 0.13 0.09 0.15 0.25 

0.40 0.25 2.56 0.53 0.09 0.10 0.99 0.31 

0.50 0.19 2.54 0.50 0.08 0.10 0.53 0.43 

0.60 0.15 2.66 0.46 0.06 0.08 0.12 0.83 

0.64 0.14 2.77 0.44 0.05 0.07 0.02 1.88 

0.65 0.13 2.80 0.43 0.05 0.07 -0.01 2.53 

0.70 0.11 3.05 0.39 0.04 0.06 -0.15 0.62 

0.80 0.08 5.44 0.22 0.01 0.01 -0.14 0.29 

0.81 0.08 6.76 0.18 0.01 0.01 -0.08 0.28 

aMP = "4012r/713r) 
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Table 8.5 

Results obtained by the method of multiple scales for the long bearing 

qperating with a film satisfying Reynolds, boUndary conditions 

ES s iDs ffs 0 : 0) 2r 17 3r amp 

0.01 7.38 9.84 0.59 0.75 0.01 -1639. 0.00 

0.10 0.76 3.40 0.57 0.22 0.05 -10.7 0.07 

0.20 0.39 2.68 0.55 0.15 0.07 -0.44 0.17 

0.21 0.37 2.65 0.55 0.14 0.08 -0.19 0.64 

0.22 0.35 2.61 0.55 0.14 0.08 0.03 1.72 

0.30 0.26 2.46 0.53 0.11 0.09 0.80 0.34 

0.40 0.19 2.41 0.50 0.08 0.09 0.81 0.34 

0.50 0.15 2.45 0.48 0.06 0.09 0.53 0.41 

0.60 0.12 2.58 0.45 0.05 0.07 0.20 0.60 

0.66 0.11 2.76 0.42 0.04 0.06 0.01 3.36 

0.67 0.10 2.80 0.41 0.04 0.06 -0.03 1.52 

0.70 0.28 2.97 0.39 0.03 0.05 -0.11 0.45 

0.80 0.07 6.41 0.18 0.01 0.01 -0.05 0.35 

0.81 0.06 10.54 0.11 0.01 0.002 0.03 0.23 

alnP ý V( 712 r/71 3r) 
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nonlinear behaviour is very similar. The rather anomalous prediction of 

linear stability at zero eccentricity for two of the models (in particular 

Reynolds' boundary conditions are not designed to be realistic for low 

eccentricities) does not affect the consistency of the nonlinear results at 

low values of Es. 

The value of -4lV2r/V3r' gives a measure of the amplitude of the orbits. AS 

observed in Chapter 5, V2r corresponds to the linear growth rate, i. e. the 

rate at which the root is crossing the imaginary axis. 773, is inversely 

proportional to the magnitude of the cubic terms required to balance the 

linear terms in the amplitude equation (5.16). Consequently (and logically) 

the smaller the nonlinear content of the forces relative to their linear 

element, then the larger the predicted orbits. Tables 8.2 and 8.3 show that 

another discrepancy between the two long bearing half film models, despite 

the very small difference in oil film behaviour, is that the predicted limit 

cycle amplitudes for the static half film model are much greater than those 

for the oscillating half film model. 

In the previous chapter, the concept of an operation line was introduced to 

demonstrate the behaviour of the system as the rotor speed w increases. It 

might well be possible, under a particular set of boundary conditions, for 

the operation line to cross the stability borderline twice, as shown in 

Figure 8.5. This situation might well lead to hysteresis, since the region in 

which the stability borderline was crossed would depend on whether the rotor 

speed was being increased or decreased. In the notional example shown above, 

the following situation might occur. Increasing the rotor speed from Fil 

would lead to the stability borderline being crossed in the supercritical 

region at A, giving rise to stable orbits persisting until the system becomes 

linearly stable at B. Decreasing the roor speed from jJ2 would lead to 

unstable limit cycles as the system approached B, followed by completely 
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unstable behaviour beyond B, persisting until the system returns to the 

linearly stable region at A. There is evidence of hysteresis observed in 

experimental investigations e. g. Hori (1959); however, the example described 

above is a purely notional one, none of the boundary conditions examined by 

the author displayed the two-cross feature of Figure 8.5. The failure of the 

boundary conditions to produce the two-cross characteristic is clearly a 

shortcoming, since hysteresis is an observed effect. Any future attempts to 

model the fluid film behaviour should therefore incorporate this feature. 

This chapter represents the first attempt to determine the nonlinear 

behaviour of a journal bearing operating under a variety of boundary 

conditions. Although the results are somewhat inconclusive, the author feels 

that they constitute a significant step forward. The larger questions arising 

from the results given in this chapter and chapters 4-7 are: - 

(1) What are the reasons for the number and position of the different 

regions for each model? 

(2) Why should the models differ? 

Unfortunately, throughout the course of this research it has not been 

possible to provide satisfactory answers to these questions. one might expect 

the short bearing results to be the most realistic, since they show the 

stability of both the linear and nonlinear behaviour improving with 

increasing cs. However, this is not the case with the more sophisticated 

Reynolds, and half Sommerfeld film models with their subcritical regions just 

prior to complete stability. It is rather surprising that the crudest 

physical model (long bearing, oscillating half film) gives results which are 

very similar to most sophisticated model (Reynolds' film). The broad 

similarity between these two models and the half Sommerfeld model, compared 

with the completely different behaviour shown by the static half film model, 

suggests that it is film movement rather than film extent which governs the 

nonlinear characterisitics. 
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8.3 Conclusions 

(1) With one exception, the cavitation models are consistent in predicting 

two features within the system behaviour: - (i) subcritical bifurcation at low 

eccentricities (ii) supercritical bifurcation at medium eccentricities. 

(2) The predicted system behaviour for YO. 65 is imprecise and highly model- 

dependent. 

(3) There is little or no correlation between linear and nonlinear behaviour. 

(4) Oil film movement rather than oil film extent appears to govern the 

nonlinear characteristics. 
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CHAPTER 9 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 
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9.1 Conclusions 

1. The boundary conditions concerning film rupture and reformation play a 

crucial role in determining the linear stability characteristics of the 

journal bearing operating with a rigid shaft. These characteristics are 

particularly sensitive to the behaviour of the oil film during a small 

vibration of the rotor. 

2. A journal bearing which has a flexible shaft becomes unstable at a lower 

shaft rotational speed than an identical bearing operating with a rigid 

shaft. However, shaft flexibility has no qualitative effect upon the onset of 

instability; in particular, the value of the eccentricity ratio above which 

the bearing is always stable remains the same. 

3. The fluid film boundary conditions influence the quantitative change in 

the stability borderline obtained with a consideration of shaft flexibility 

(via the critical frequency). Therefore, to predict accurately the behaviour 

of a journal bearing operating with a flexible shaft, it is necessary to 

model the oil film behaviour correctly. 

4. Although shaft flexibilty is important in determining the speed at which a 

journal bearing becomes unstable, its effect on oil film instability is 

likely to be small. If the shaft is flexible enough to cause a substantial 

reduction in this speed, any oil whirl encountered will be swamped by 

resonant whip. 

5. Hopf bifurcation, the method of multiple scales and the method of 

averaging produce identical results if correctly applied to the journal 

bearing problem. The techniques are complementary in that Hopf bifurcation 

can provide an indication of the appropriate expansion forms to be adopted in 
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the scaling/averaging approach. 

6. The nonlinear analytical techniques show that a short bearing, operating 

with a half film, manifests two types of nonlinear behaviour close to the 

stability borderline: 

(i) Supercriti al bifurcation: small stable whirl orbits exist at 

speeds just above the speed at which the system becomes unstable. 

Below the threshold speed, the system regresses to the equilibrium 

point. 

(ii) Subcritical bifurcation: small unstable whirl orbits exist at 

speeds just below the threshold speed. No small limit cycles exist 

above the threshold speed. 

The (Es, @) parameter space is split into two regions: - 

(1) Cs40.14 . subcritical, (ii) 0.15<Cs<0.75 : supercritical. 

7. A numerical integration of the equations of motion confirms the results 

found by analytical methods for the short bearing. This approach also shows 

that, since the limit cycles are close to 'half frequency,, they fulfill the 

necessary criteria for oil whirl. However, the existence of small, stable 

whirl orbits is confined to a very narrow speed range. In both the 

subcritical and supercritical cases, numerical integration shows that large 

amplitude limit cycles (also of half frequency) surround the small orbits 

above and below the threshold speed. 

8. The application of the method of multiple scaling to other cavitation 

models for the long bearing shows that the number and position of the 

nonlinear regions is highly model-dependent. As in the case of the linear 

stability borderline, subtle changes in the boundary conditions can lead to 

dramatic differences in behaviour. The models are, however, consistent in 

their prediction of two particular features in the ( Es, @) parameter space: 
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(i) subcritical behaviour in the range O<cs<0.09, (ii) supercritical 

behaviour in the range 0.21<ES<0.64 (with the exception of the long bearing, 

operating with a static half film). 

9.2 Suggestions for further work 

1. Two important questions have remained unanswered throughout this research. 

(i) What is the physical explanation for the differences in the 

predicted behaviour (both linear and nonlinear) for the different 

boundary conditions? 

(ii) What accounts for the number and position of the regions of 

nonlinear behaviour in ( es, @) parameter space? 

No satisfactory answers have been found to these questions. A tentative 

attempt to answer the first question might be that since the long bearing, 

operating with a static half film, appears to stand out from the other 

models, then film behaviour, rather than film extent, is the most important 

feature governing oil whirl. There is clearly a need to provide answers to 

the above questions , since a full understanding of oil whirl is unlikely to 

be achieved until the effects of different fluid film boundary conditions are 

appreciated. A straightforward, although tedious, approach to this problem 

would be to complete a numerical integration of the other boundary conditions 

like that the one described in Section 7.1. Unfortunately, since the journal 

bearing equations of motion are so complex, it is not possible to get a 

, feel' for the type of nonlinear behaviour they are likely to predict. 

Therefore, a study of a simple second order system displaying similar 

features might well be fruitful. 

2. The nonlinear analytical techniques used in this thesis have three major 

deficiencies: (i) they are tedious to apply, (ii) they cannot predict the 
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existence of large amplitude orbits, (iii) they are restricted in their 

validity to speeds close to the threshold speed. This final point is 

particularly important, since it might well be possible for a small stable 

limit cycle to exist well away from the stability borderline. Further 

nonlinear studies should concentrate on the development of analytical methods 

to overcome these difficulties; the describing function technique appears to 

be an excellent starting point. 

3. The majority of analytical work on journal bearings has been hampered by 

its restriction to simple and often unrealistic physical models. The main 

reason for this being that the equations of motion are highly complex for 

even the simplest cases. Indeed, however sophisticated the mathematical 

techniques adopted, if the models to which they are applied are inaccurate, 

the results obtained will be erroneous. For a bearing model to represent the 

physics accurately, it should incorporate shaft flexibility and mass 

unbalance, as well as realistic cavitation boundary conditions. Noncircular 

bearing geometries present another problem that arises in engineering 

applications. It is clearly beyond the scope of the methods described in 

Chapters 4,5 and 6 to handle the equations of motion that would result from 

the inclusion of these effects, but it is envisaged that the method of 

multiple scales might be used to introduce the additional effects 

individually. 

4. This thesis has been exclusively concerned with a mathematical study of 

journal bearing dynamic instability. There is, however, a great deal of 

experimental work to be done in two particular areas in this field: 

(i) An investigation into lubricant cavitation and in particular the 

determination of the behaviour of the oil film during a vibration of 

the shaft. The importance of lubricant behaviour to oil whirl has 

been demonstrated; if the techniques described here are to be used 
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effectively, they should be applied to realistic cavitation models. 

(ii) An investigation to determine the onset and dimensions of oil 

whirl in a simple journal bearing sydtem. It is clearly important to 

validate the theoretical predictions experimentally, particularly in 

the light of recent scepticism amongst some engineers about the 

existence of small, stable limit cycles. 

9.3 Some observations 

A mathematical study of journal bearing dynamics is a particularly difficult 

one to undertake, due to the number and diversity of the subjects that need 

to be mastered before any progress can be made. The major obstacle is that 

the study is concerned with both mathematics and engineering. Journal 

bearings are complex machine elements which are not easy to understand. 

Moreover, the mathematical techniques used study the physical models need to 

be studied carefully and often require some understanding of pure 

mathematics, e. g. Hopf bifurcation. The physics of the cavitation conditions 

provides another difficulty. A further problem arises from the fact that 

there is a vast amount of literature and very little of it is of interest to 

mathematicians. 

It is very easy, therefore, to become obsessed with one aspect of the problem 

to the detriment of one's understanding of the problem as a whole, 

particularly because the equations resulting fr om the models are so 

complicated that the mathematics is very difficult to apply. The time spent 

checking algebra can run into weeks. 

It must be stressed that to produce results in this field, it is necessary to 

understand both the working of the journal bearing and the theory of 
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nonlinear ordinary differential equations. The author would suggest that any 

future research student should spend the first six to nine months studying 

these two subjects independently, in order to equip himself with a thorough 

understanding of both before tackling the problem as a whole. 
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Appendix I Details of the linearisation of equations 2.10-2.13 

The following relationships can be obtained from (2.10) and (2.11): 

vx+x+vs inp vx+x (Al. 1) 
-1 1s1 vv 

of II 
cs 'Y =V1y+y+vI COSP 5csv ly 

+y (Al. 2) 
vv 

The substitution of (2.14) and (2.15) along with (A1.1) and (Al. 2) into 

(2.12) and (2.13) leads to: 

+ x(SD rv1. x(l+SB rvI+ x(SD r V) + x(SB r V) 

III if I 
X(sc rv .1+ 

y(SE rv I- 
SA tv Y(SC r v) + y(SE rv- 

SA t V) 
EsEsEsEs 

+ constant terms 0 

x(SD tv1+ x(SB tvI+ x(SD t v) + x(SB t V) 

III to I 
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In equation (2.17) we have: 
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A 2B vv +BIv2+ B"v 
2012121 

A 2B vv+B, v 3111 

2 A 2B2'vlv + B"V + Bo v 42 

As =B1 

2 B 

BO#Bj etc. are all functions of Es which can easily be found for any 

cavitation model by considering the characteristic equation. 

To obtain relationships (2.24) and (2.25), first nute that at the stablity 

threshold: 
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The solution of (2.23) can be written in the form: 
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Consider the second result, substuting (A2.3) for V in the numerator yields: 
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Appendix 2 The Sommerfeld substitution 

In order to evaluate integrals of the type: 

f2 
cosne sinme de 

e, (i + ecose )3 

the following substitution can be used: 

1- ccose =i- EI 
1+ ccose 

n, m = 1,2 

This is known as the Sommerfeld substitution and as the Sonunerfeld angle 

(which coincides with e at o, 7T, 27T). Some typical examples are given below 

(Vrl and V2 correspond toe, and e2 ): 
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Appendix 3 Force integrals for the short bearing half film model 

+ 7T 
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In the case of I, the sign is taken to be positive if the sign of 1-2V' is 

positive and vice versa. In the cases of 12 and 13 the sign is taken to be 

positive if the sign of C' is positive and vice versa. 
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Appendix 4 Transformation of the coordinate systems 

The relationship between the cartesian (X, Y) coordinate system and the Polar 

(6, v) system is defined by (4.4) to be: 

ECOSP Y= Esinp 

2=x2+ y2 COSP X simp =Y 
Ee 

Differentiate with respect to T, to obtain: 

I Xý II 
ECOS'Y + evsinv 

II. Y 
ESinp + 

I 

EVCOSP (A4.1) 

I 
e= 

II xcosýp + Ysinp II 
EV YCOSCP + 

I Xsinv (A4.2) 

The force components are defined by eq uations (4.5). In order to derive 

8Fx/ax etc., the relationship between the force derivatives is required, 

these can be established by the use of (4.4) and (A4.1), (A4.2). For example: 

8F, =, aE+aF. a %o ýLF -, - aF a F,, aýp aE + 

ax a 1E ýTX -j-P aX ae ax ax 

wbere: 

aE = cosýp ap = -1 sinp aE 4 
ax ax E ax ax 

Full details of these transformations can be found in Lund (196b). 
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Appendix 5 The calculation of dZi/dw and dff/dw 

The characteristic (4.9) can be written the form: 

4+1 
A(e 

8 
)K3+ 1 (B(E 

8+1 
C(E 

5 
))K2 

74 :: 2 -2 (i (A) (i 

+1 D(a 
s 

)X +1 E(E 
s)= 

where: 

A=B xx +B yy 

BK xx +K yy 

CB xx B yy B XY B YX 

DB xx K yy +B yy K xx B XY K YX B YX K XY 

EK xx K yy K XY K YX 

using relationships (4.16) and (4.14) and retaining first order terms only, 

(A5.1) can be written as follows: 

3-2 4 (if) 
s3 

Ans + 2i(B + C) +D 
-2 -2 -2 -41 W C$j (t) w 

ifS) 3 JQ: da dE - 4D) [(I: dB +1 dC)! qe - ýB - 4C 1,12 
s 

-2JE 
a(d 

-5 -2 je 4 i! E dw -3- ww (d ci w 

(. l ! 2D ý2 4D) n (1 dE dE - 4E» öw 
-4 dE dco -5 -4äC 

7i(0 
-5 wwww 

It is now possible to determine the value of dK/dg at the stability 

threshold; dii/d@ and dil/d@ can then be found by separating real and 

imaginary parts. 


