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Abstract

Image recognition and image restoration are important tasks in the field of image pro-

cessing. Image recognition are becoming very popular due to the state-of-the-art deep

learning methods. However, these models usually require big datasets and high com-

putational costs, which could be challenging. This thesis proposes an online learning

framework that deals with both small and big datasets. For small datasets, a Cauchy

prior logistic regression classifier is proposed to provide a quick convergence, and the

online weight updating scheme is efficient due to the previously trained weights be-

ing reused. For big datasets, convolutional neural network could be implemented.

For image recognition, non-parametric classifiers are often used for image recogni-

tion such as K-nearest neighbours, however, K-nearest neighbours are vulnerable to

noise and high dimensional features. This thesis proposes a non-parametric classi-

fier based on Bayesian compressive sensing; the developed classifier is robust and it

does not need a training stage. For image restoration, which is usually performed

before image recognition as a preprocessing process. This thesis proposes such a

joint framework that performs image recognition and restoration simultaneously. In

image restoration, image rotation and occlusion are common problems but convo-

lutional neural networks are not suitable to solve these due to the limitation of the

convolutional process and pooling process. This thesis develops a joint framework

based on capsule networks. The developed joint capsule framework could achieve

a good result on recognition, image de-noising, recovering rotation and removing

occlusion. The developed algorithms have been evaluated for vehicle logo restora-
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tion and recognition, however, they are transferable to other implementations. This

thesis also developed an automatic detection and recognition framework for badger

monitoring for the first time. Badger plays a key role in the transmission of bovine

tuberculosis, which is described by government as the most pressing animal health

problem in the UK. An automatic badger monitoring system could help researcher

to understand the transmission mechanisms and thereby to develop methods to deal

with the transmission between species.



Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Lyudmila Mihaylova

for her continuous support. It has been my honour to be one of her PhD students.

She encouraged me though my whole PhD study with great enthusiasm and patience.

I appreciate her encouragement and support for guiding my PhD. Also, I will never

forget that she helped me amend papers sentence by sentence. She helped me to

build social connections with other universities and companies, which is very helpful.

I could not have imagined having a better supervisor for my PhD study.

I would like to express my gratitude to my second supervisor Dr. Wei Liu, for

the insightful discussions. I would also like to thank Dr. Matthew Hawes, for his

continuous help and valuable suggestions in writing academic papers. During the

PhD study, I have also appreciated the knowledge sharing from collaborations with

Dr. Olga Isupova, Dr. Jingjing Xiao, Dr. Hao Zhu and Dr. Ruth Little.

I would like to thank my wife, Sofiana Millati, for her valuable care and love.

I am so lucky to have her and she makes my PhD life very happy. I would also

like to thank my best friend in Sheffield, Bo Zhang, for his tremendous support and

valuable advice. I am grateful to my parents and my sister, for always providing me

with unconditional support in my life.

v



To my family

vi



Contents

Abstract iii

Acknowledgements v

List of Symbols and Notations xii

Nomenclature xiv

List of Figures xviii

List of Tables xx

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7

2.1 Traditional Methods for Image Recognition . . . . . . . . . . . . . . . 7

2.1.1 Image Features . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Deep Learning Framework for Image Recognition . . . . . . . . . . . 20

2.3 Online Learning for Vehicle Logo Recognition . . . . . . . . . . . . . 23

2.4 Back-propagation Bayesian Compressive Sensing Classifier . . . . . . 25

2.5 Image Restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



Contents

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Online Learning for Vehicle Logo Recognition 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Cauchy Prior Logistic Regression . . . . . . . . . . . . . . . . . . . . 33

3.3 Conjugate Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Online Weight Updating . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Convolutional Neural Networks for Online Learning . . . . . . . . . . 41

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Logistic Regression with the Cauchy Prior Logistic Regression 45

3.6.2 Online and Offline Cauchy Prior Logistic Regression . . . . . . 46

3.6.3 Convolutional Neural Networks for Large Dataset . . . . . . . 48

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Spatial Invariant Feature Transform and Back-propagation Bayesian

Compressive Sensing Classifier 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Spatial Scale Invariant Feature Transform . . . . . . . . . . . . . . . 54

4.3 Back-propagation Bayesian Compressive Sensing . . . . . . . . . . . . 57

4.3.1 Bayesian Compressive Sensing . . . . . . . . . . . . . . . . . 57

4.3.2 Back-propagation Bayesian Compressive Sensing with the Column-

based Subspace Sampling . . . . . . . . . . . . . . . . . . . . 62

4.4 Performance Evaluations on Spatial Scale Invariant Feature Transform 65

4.4.1 Feature Comparisons . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 Feature Robustness to Noise . . . . . . . . . . . . . . . . . . . 68

4.5 Performance Evaluations on Non-parametric Classification Methods . 71

4.5.1 Evaluations on the Vehicle Logo Recognition Dataset . . . . . 71

4.5.2 Performance Evaluation for Scene Recognition . . . . . . . . . 79

4.5.3 Evaluations on External Dataset . . . . . . . . . . . . . . . . 81

viii



Contents

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Learning Capsules and Joint Frameworks 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Joint Framework for Recognition and Restoration by Convolutional

Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Learning Capsules for Recognition and Restoration . . . . . . . . . . 89

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Capsule Networks for Classification . . . . . . . . . . . . . . . 95

5.4.2 Joint Framework for Image Recognition and Restoration . . . 98

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Wildlife Monitoring Based on Deep Learning Methods 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Deep Learning for Badger Recognition . . . . . . . . . . . . . . . . . 109

6.2.1 Badger Recognition Framework 1 . . . . . . . . . . . . . . . . 110

6.2.2 Badger Recognition Framework 2 . . . . . . . . . . . . . . . . 111

6.3 Detection Algorithm in Videos . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Performance Evaluation on the Badger Dataset . . . . . . . . . . . . 115

6.4.1 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4.2 Badger and Non-Badger Classification . . . . . . . . . . . . . 116

6.4.3 Multinomial Classification Based on the Badger Dataset . . . 119

6.4.4 Detection and Classification to Videos . . . . . . . . . . . . . 121

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7 Conclusions and Future Works 123

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Direction for Future Works . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



Contents

A Back-propagation Compressive Sensing Extended and the Deep Learn-

ing Architecture in an External Dataset 127

A.1 Marginal Likelihood Maximisation . . . . . . . . . . . . . . . . . . . . 127

A.2 Evidence Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.3 Deep Learning Framework Parameters on the External Dataset . . . 132

B Deep Learning Framework Parameters for Badger Recognition 133

Bibliography 137

x



List of Symbols and Notations

A list of the symbols and notations used in this thesis is defined below. The defini-

tions will be used throughout unless otherwise stated.

x Vector

X Matrix

x∗ A testing data

x̂ The estimation of x

xT, XT Transpose of x, X

min Minimum

max Maximum

arg min Argument that minimises

arg max Argument that maximises

∑N
i=1 Sum operation from index 1 to N

∏N
i=1 Production operation from index 1 to N

df(x)
dx

First derivative of the function f(x) with respect to a variable

x

∂f(x,y)
∂x

Partial derivative of the function f(x, y) with respect to a

variable x

xi



Contents

N (µ,Σ) Normal distribution with mean µ and covariance Σ

p(·) Probability operator

p(·|·) Conditional probability operator

RM Real numbers of dimensions M

∝ Proportional to

ln(·) The natural logarithm

exp(·) Exponential function

|| · ||1 l1-norm

|| · ||2 l2-norm

|| · ||F Frobenius norm

∗ The convolutional operation

s.t. Subject to

| · | The determinant

〈·, ·〉 Inner product

xii



Nomenclature

BBCS Back-propagation Bayesian Compressive Sensing

BCS Bayesian Compressive Sensing

BOW Bag of Words

bTB Bovine Tuberculosis

CNNs Convolutional Neural Networks

CS Compressive Sensing

DoG Difference of Gaussian

HOG Histogram of Oriented Gradient

ITS Intelligent Transportation Systems

KNN K Nearest Neighbours

LR Logistic Regression

PCA Principle Component Analysis

PSNR Peak Signal-to-Noise Ratio

ReLU Rectified Linear Unit

RVM Relevance Vector Machine

xiii



Contents

SGD Stochastic Gradient Descent

SIFT Scale Invariant Feature Transform

SURF Speeded Up Robust Features

SVM Support Vector Machine

VLR Vehicle Logo Recognition

xiv



List of Figures

2.1 The ways in which humans and computers understand an image . . . 8

2.2 The process of dividing an image into cells and blocks in the histogram

of gradient algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 An example of scale invariant feature transform descriptors . . . . . . 13

2.4 An example of data can be separated by infinite lines . . . . . . . . . 16

2.5 An example of the maximum margin in the support vector machines . 17

2.6 A typical convolutional neural network architecture example . . . . . 21

2.7 A typical restoration architecture based on convolutional neural net-

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The developed vehicle logo recognition framework for increasing size

of dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 The developed online recognition framework for vehicle logo recognition 40

3.3 The developed convolutional neural network architecture . . . . . . . 42

3.4 Image examples of the vehicle logo dataset . . . . . . . . . . . . . . . 43

3.5 Examples of some challenge images in the testing dataset . . . . . . . 44

3.6 Accuracy and computational costs comparisons between logistic re-

gression and Cauchy prior logistic regression when the dataset size is

increasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Offline and online Cauchy prior logistic regression comparisons up to

10000 training images . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv



List of Figures

3.8 Accuracy and computational costs comparisons between offline and

online Cauchy prior LR up to 3000 random training images . . . . . . 48

3.9 An example of three testing images and the effects by adding Gaussian

white noise with different noise variances . . . . . . . . . . . . . . . . 50

4.1 Illustration of spatial pyramid interest points. . . . . . . . . . . . . . 55

4.2 Illustration of the bag of words representation model . . . . . . . . . 56

4.3 The developed recognition framework by using spatial scale invariant

feature transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 An example of a training image and its effects by adding Gaussian

noises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Accuracy of the recognition framework by using the histogram of gra-

dient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Accuracy of the recognition framework by using the scale invariant

feature transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Accuracy of the recognition framework using the spatial scale invariant

feature transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Illustration of some challenging images . . . . . . . . . . . . . . . . . 73

4.9 Noise robustness comparisons of KNN, SRC and SBCS using the full

training dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 The total number of local features detected from images with different

noise variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.11 Noise robustness comparisons of KNN, SRC and SBCS when there are

10% training examples in each class using the column-based subspace

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 Noise robustness comparisons of KNN, SRC and SBCS when there are

1% training examples in each class using the column-based subspace

sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Image examples in the traffic scene dataset . . . . . . . . . . . . . . . 80

xvi



List of Figures

4.14 An example of a traffic scene image with Gaussian noises . . . . . . . 81

4.15 An example of an image from external dataset with Gaussian noises . 82

5.1 A general joint framework for image restoration and recognition . . . 86

5.2 The joint convolutional neural network framework for image recogni-

tion and restoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 The architecture of capsule networks for classification . . . . . . . . . 92

5.4 The capsule generation process in the proposed primary capsule layer 92

5.5 The reconstruction process of the capsule networks . . . . . . . . . . 93

5.6 The accuracy of the convolutional neural networks and the developed

capsule networks on the original testing data . . . . . . . . . . . . . . 95

5.7 Ilustration of rotation and noise effects on 20 random testing images . 96

5.8 The accuracy of the convolutional neural networks and the developed

capsule networks on the challenge testing dataset . . . . . . . . . . . 97

5.9 Twenty testing images for illustration purpose . . . . . . . . . . . . . 98

5.10 De-noising results by the joint convolutional neural networks and the

joint capsule networks . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.11 Rotation restoration result by the joint convolutional neural networks 101

5.12 Rotation restoration result by the joint capsule networks . . . . . . . 102

5.13 Occlusion restoration results by the joint convolutional neural net-

works and the joint capsule networks . . . . . . . . . . . . . . . . . . 103

5.14 The restoration results of the joint convolutional neural networks and

joint capsule networks with Gaussian noise, rotation and concussion . 105

6.1 The architecture of badger recognition framework 1 . . . . . . . . . . 110

6.2 The architecture of badger recognition framework 2 . . . . . . . . . . 111

6.3 The diagram of applying the trained convolutional neural networks to

videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Some random testing images from the badger dataset. . . . . . . . . . 116

6.5 Illustration of a detected frame activated by a badger . . . . . . . . . 121

xvii





List of Tables

3.1 Performance comparisons between logistic regression and Cauchy prior

logistic regression when dataset size is increasing . . . . . . . . . . . . 45

3.2 Accuracy comparisons between Cauchy prior logistic regression and

convolutional neural networks when dataset size is increasing . . . . . 49

3.3 Comparisons between Cauchy prior logistic regression with convolu-

tional neural networks when training and testing images are noisy . . 50

4.1 Performance of histogram of gradient by using different classifiers . . 65

4.2 Classification accuracies by using scale invariant feature transform,

according to different dictionary sizes in the k-means clustering . . . 66

4.3 Classification accuracies by using spatial scale invariant feature trans-

form, according to different dictionary sizes in the k-means clustering 67

4.4 Computational costs using different features with the logistic regres-

sion classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Non-parametric classifier comparisons . . . . . . . . . . . . . . . . . . 72

4.6 Accuracies obtained using challenging data . . . . . . . . . . . . . . . 73

4.7 Comparisons between using the full and partial dictionaries . . . . . . 76

4.8 Classifier comparisons on traffic scene dataset using features extracted

by AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Classifier comparisons on external dataset using features extracted by

AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xix



List of Tables

5.1 Performance of the joint convolutional neural networks and the joint

capsule networks on noisy images . . . . . . . . . . . . . . . . . . . . 100

5.2 Performance of the joint convolutional neural networks on rotated

images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Performance of the joint capsule networks on rotated images . . . . . 102

5.4 Performance of the joint convolutional neural networks and the joint

capsule networks on occluded images . . . . . . . . . . . . . . . . . . 104

5.5 Performance of the joint convolutional neural networks and the joint

capsule networks on combined degradations . . . . . . . . . . . . . . 105

6.1 Categories and number of images in the badger dataset . . . . . . . . 115

6.2 Badgers and non-badgers in the badger dataset . . . . . . . . . . . . 117

6.3 The performance of the badger recognition framework 1 without a

re-sampling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 The performance of the badger recognition framework 1 with a re-

sampling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 The performance of the badger recognition framework 2 . . . . . . . . 118

6.6 The performance of the badger recognition framework 1 without a

re-sampling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.7 The performance of the badger recognition framework 1 with a re-

sampling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.8 Result of the badger recognition framework 2 without a re-sampling

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.9 The performance of the badger recognition framework 2 with a re-

sampling process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xx



Chapter 1

Introduction

Image recognition became very popular in many applications following the success of

the Convolutional Network Networks (CNNs [1]) in 2012. Before the CNNs, major-

ity image recognition frameworks included a hand-crafted feature detection process

and a feature description process [1, 2]. Image features transfer an image from the

pixel level to a feature level and then features are used for classification purpose.

Unlike the traditional hand-crafted feature methods, CNNs automatically learn the

image feature by multiple convolutional operations. A CNN framework has many

parameters, therefore, big datasets are required in order to learn these parameters.

However, big datasets are not always available and the image data are obtained in-

crementally in some applications. This leaves the question of what the best solution

is for a small dataset or an incremental dataset. In addition, CNNs have recently

achieved good results on image restoration such as image de-noising and image super-

resolution. However, automatically recovering rotated images and occluded images

are challenging tasks but not well studied [3]. Rotation and occlusion are common

image degradations and it would be valuable if a degraded image can be recovered

to a clear version. Moreover, most existing deep learning frameworks are focusing

on dealing with one particular problem such as image recognition and image restora-

tion [4]. This appraises the question of whether we can develop a joint framework

that could perform image recognition and restoration simultaneously using a shared

1



1.1. Thesis Outline

network.

The focus of this thesis is on the development of novel machine learning methods

for autonomous image recognition and restoration. Chapter 3 proposes an online

recognition framework in order to deal with incremental datasets. Chapter 4 focuses

on the development of a spatial image feature method and a non-parametric clas-

sification method. Chapter 5 proposes joint frameworks for image recognition and

restoration based on CNNs and capsule networks. Chapter 6 develops automatic

detection and recognition methods for badger recognition. This thesis starts with

the application of Vehicle Logo Recognition (VLR) and some other datasets have

been applied. The developed methods could also be extended to other fields.

1.1 Thesis Outline

The structure of the thesis is outlined below:

Chapter 1 introduces the research topic and purpose of this thesis, followed by

the outline of this thesis and key contributions in each chapter. Relevant publications

are listed in the last section of this chapter.

Chapter 2 reviews some fundamental feature methods and classification meth-

ods. The state-of-the-art deep learning methods are introduced for image recognition,

followed by an overview of methods for VLR and and image restoration.

Chapter 3 focuses on online learning, considering a small training image

dataset at the beginning. In this case, CNNs would not be appropriate due to

the high computational costs and a limited size of training data. A dynamic online

learning framework is developed for streaming data where models are updated from

small to big datasets. The developed framework includes the Histogram of Oriented

Gradient (HOG) feature method and the Cauchy prior Logistic Regression (LR) with

the conjugate gradient descent. The Cauchy prior assumes most of the weights are

near zero-valued; this results in accurate and quick convergence in the weight up-

date scheme. The Cauchy prior LR could be applied online using a weight update

2



1.1. Thesis Outline

scheme, this further decreases the computational costs. When the training data is

big enough, the CNNs could be applied in order to further increase the accuracy and

the robustness to image degradations such as noise.

Chapter 4 begins with a recognition framework based on the spatial Scale

Invariant Feature Transform (SIFT) features. This feature method takes the ad-

vantage of considering spatial information of the SIFT features in an image. The

spatial SIFT features could increase the robustness to noise by incorporating the

geographical information of the local features. This chapter also investigates non-

parametric classifiers and proposes a Similarity-based Bayesian Compressive Sensing

(SBCS) classifier. The proposed SBCS classifier takes the advantage of the Bayesian

approach when compared with the traditional compressive sensing approaches. In

addition, a column-based subspace sampling is introduced in order to select rep-

resentative samples in the training dataset, aiming at decrease the computational

costs while keeping high accuracy. The SBCS proved to be robust to noise, when

compared with the state-of-the-art CNNs.

Chapter 5 introduces the learning capsules and develops capsule networks

for VLR. Capsule networks contain multiple layers similarly as in CNNs, however,

the connections between adjacent layers are changed to vector-vector, rather than

scalar-scalar in CNNs and in neural networks. This chapter also proposes joint

frameworks targeted at simultaneously performing image recognition and restoration

tasks. Combining the recognition and restoration could help the weight updating

process by a shared network. Image rotation and occlusion are considered in the

restoration process. These image degradations can be recovered while giving high

recognition accuracies at the same time.

Chapter 6 develops an automatic recognition framework for badger moni-

toring. Automatic badger monitoring is beneficial to enhance understanding of the

transmission of Bovine Tuberculosis (bTB), which is described by government as

the most pressing animal health problem in the UK. This is due to the transmis-

3



1.2. Key Contributions

sions of the disease including cattle-badger, badger-badger and badger-cattle. In

this chapter, an image dataset has been created. Based on the created dataset, two

recognition frameworks have been developed based on CNNs. The trained recogni-

tion frameworks are combined with a video frame detection algorithm, which aims

at selecting frames of interest in videos.

Chapter 7 gives a summary of the thesis and discusses the future work.

1.2 Key Contributions

Key contributions of this thesis are highlighted below.

• For the first time, an online recognition framework is developed for VLR; this

framework considers both small dataset and big dataset.

• The Cauchy prior LR classifier is proposed with the conjugate gradient de-

scent. The developed maximum a posterior model gives a quicker solution

when compared with the maximum likelihood model in LR.

• A novel VLR framework has been developed with a spatial SIFT feature

method. This framework considers the spatial correlation of different SIFT

features and improves the robustness to noise.

• A novel Similarity-based BCS non-parametric classifier is proposed. The Bayesian

compressive sensing is applied to estimate the weights vector. The proposed

classifier proved to be quicker when compared with the state-of-the-art sparse

representation classifier while giving similar recognition results.

• A column-based subspace sampling is developed to pick up representative data

from the dataset for VLR. This process significantly decreases the computa-

tional costs while keeping the feature space unchanged.

• For the first time, a learning capsule framework is proposed and developed

in the field of intelligent transportation systems. The proposed framework

4
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achieves higher accuracy and better robustness to image degradations than the

state-of-the-art CNNs.

• Joint frameworks are proposed for image recognition and image restoration

based on CNNs and capsule networks. The proposed joint framework based

on capsules achieves good results on recognition, image de-noising, rotation

correction and occlusion removal.

• For the first time, an image dataset is created for badger recognition.

• For the first time, an automatic recognition framework is developed for badger

recognition.

• An automatic detection scheme is developed aiming at identifying frames of

interest in videos.

1.3 Publications

The author’s publications with relevance to this thesis are listed below:
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itoring with deep learning methods”, Methods in Ecology and Evolution, 2018

6



Chapter 2

Literature Review

2.1 Traditional Methods for Image Recognition

Recognising content in an image is easy for humans as we have advanced visual

systems which are good at detecting edges and describing the abstract contents. In

contrast, computers are good at describing digitised information such as how many

pixels are in an image and what their intensity values are. However, it is challenging

for computers to describe the abstract content inside an image. For instance, Figure

2.1 shows how humans and computers see an image. We humans automatically

detect a big cycle inside the picture, the ‘V’, and ‘W’ shape inside the cycle as

shown in Figure 2.1 (a). We can even understand that the main content is a vehicle

logo representing the Volkswagen company if we have the knowledge in advance. In

contrast, Figure 2.1 (b) shows how the image is stored in a computer, only intensity

values of pixels are recorded. The digital image can be easily influenced by noise,

shift, rotations, and occlusions. For example, if one row in the image matrix is

deleted, humans find it hard to detect the difference, whereas the matrix stored in

the computer has been totally changed.

Even though recognising images is easy for human beings, we still wish to let

computers do such tasks as it can save cost and avoid mistakes by human fatigue.

One simple way of letting computers recognise a vehicle logo image is to send pixel
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2.1. Traditional Methods for Image Recognition

Figure 2.1: The ways in which humans and computers understand an image, respectively.

intensity values from well-segmented logo images directly into a classifier. However,

this is not feasible for images of large size due to the computational costs. More

importantly, the accuracy is low. For instance, simply reshaping the raw pixel in-

tensities into a SVM could only achieve an accuracy of 16.40 % on a vehicle logo

dataset (methods developed in chapter 5 could achieve up to 100% accuracy on the

same dataset by using the capsule networks). While the dataset has ten classes and

a random guess has an expectation of 10 % accuracy according to the probability

theory. Hence, more advanced techniques are required for image recognition.

2.1.1 Image Features

In order to let computers recognise the content in an image, hand-crafted features

that explore the image pattens are often applied instead of using the raw pixel

values. Hand-crafted features define an image by engineering rules. For example,

colour information including colour histogram and colour moment is used as image

features [5]; Yang et al. [6] use shape and contour information as the image fea-

tures; distinguishable edges and corners information is extracted as features in [2,7].

Presently, automatic feature extraction methods inspired by neurons in the human

visual systems have become the mainstream in the field of image recognition. The
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automatic learned features proved to be more accurate when associated with big

data [1]. The following introduce different image feature methods, from the tradi-

tional hand-crafted features to the state-of-the-art deep learning features.

Global Features

Hand-crafted features can be separated as global features and local features. Global

features take all pixels into consideration and represent an image with a single vector.

In the following, the well-known global feature method HOG is introduced in detail.

HOG was originally introduced as a representation method for human detection

[7, 8]. HOG calculates the horizontal gradient Gx and the vertical gradient Gy on

every pixel by use of a 1-D filter [-1, 0, 1]:

Gx(i,j) = I(i+ 1, j)− I(i− 1, j), (2.1)

Gy(i,j) = I(i, j + 1)− I(i, j − 1), (2.2)

where I(i, j) is the intensity value at pixel location index (i, j).

Then the horizontal gradient and vertical gradient can be applied to calculate the

orientation of gradient θ(i, j) and the magnitude of gradient H(i, j) for every pixel

in the image:

θ(i, j) = arctan(Gy(i,j)/Gx(i,j)), (2.3)

H(i, j) =
√
G2
x(i,j) +G2

y(i,j), (2.4)

where θ(i, j) and H(i, j) represent the orientation and the magnitude of the gradient

at pixel location index (i, j) respectively.

The next step is quantizing the orientation into bins evenly spaced over 0◦−180◦

in order to build an orientation histogram. The image is divided into cells, with

a certain number of cells building up a block. Figure 2.2 shows how an image is
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Figure 2.2: The process of dividing an image into cells and blocks in the HOG algorithm.
In (a), images are divided into cells, a group of cells form a block denoted as red lines in
(b), the block shifts from left to right in (c).

divided into cells and blocks. The original image can be divided into different cells

of the same size (Figure 2.2.a). Each cell can be represented as a histogram, with the

quantized orientations as histogram bins and the magnitude as weights. Histograms

in a block (a block is a 2 × 2 cell in the example) are concatenated together and get

normalised in order to be robust to illuminance variations. The block is then shifted

one cell (or one block) forward from either left to right or top to bottom. In the

example shown in Figure 2.2, a block is shifted cell by cell; this results in overlaps

among adjacent blocks. In the Figure 2.2.b and Figure 2.2.c, the area within red

lines indicates the first and second block, respectively. The block shifts from the

top left corner to the bottom right corner. Histograms generated from all blocks are

then concatenated together in order to generate a vector, which is the HOG feature.

The HOG feature method has been applied to many fields, for example, human

detection [7, 9], action recognition [10, 11], face and emotion recognition [12–15],

handwritten digit recognition [16] and traffic sign recognition [17]. The advantage

of the HOG features lies in its efficiency and good performance on certain images

without complex content.

Another global feature method is the GIST feature [18], which is inspired by the

fact that humans can grasp the “gist” information of an image in a few seconds [19].

The GIST features are designed to describe an image by some perceptual dimensions
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using Gabor filters [20]. In the feature generation process, a group of Gabor filters

are convolved with the image in order to generate a group of feature maps. These

Gabor filters are designed in advance in order to extract different orientations at

multiple scales. Each feature map is divided into sub-regions, similar to the HOG

algorithm, and the mean values of each sub-region are concatenated together to

form a GIST feature vector. The GIST features share similarity with the state-of-

the-art CNN features, which will be introduced in later sections. The Gabor filters

can be regarded as convolutional kernels in CNNs and the averaging process is a

pooling process. However, the CNNs are more advanced by having multi-layers and

an automatic weights updating scheme.

The designing process of the global features made their drawbacks straightfor-

ward. If the content of interest moves from one area to a distinct area, the feature

vector would be changed dramatically. This limits the global features only suitable

for well segmented images, or the contents of interest always appear at similar lo-

cations. The feature vectors will also be easily influenced by scale variations and

orientation changes. In order to deal with these challenges and extract more robust

features, local feature methods are proposed and they are more favoured than global

features in many applications.

Local Features and Bag of Words

Compared with the global features mentioned above, local descriptors are interested

in fractional areas in an image rather than the whole image. In general, global repre-

sentations are sensitive to challenges such as illuminance variation, noise background,

and rotations [21]. In contrast, local features tend to be more robust under these

conditions [22]. the SIFT feature method is the most widely used example of the

local features.

The SIFT method contains a feature detection process and a description process.

In the feature detection process, different 2-D Gaussian filters are convolved with the
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original image I(x, y) to get smoothed images, with each denoted as a L(x, y, hσ),

where h is a constant multiplicative factor. This thesis uses f(·) presenting a function

and a 2-D Gaussian filter can be denoted as:

f(x, y, σ) =
1

2πσ2
e−(x

2+y2)/2σ2

, (2.5)

and

L(x, y, σ) = f(x, y, σ) ∗ I(x, y), (2.6)

with x, y as spatial coordinates and σ2 as the variance of the Gaussian filter; ∗ denotes

the convolution operation.

Then the Difference of Gaussians (DoG) is generated by calculating the differences

between these Gaussian smoothed images. The DoG map D(i, j, σ) is defined as:

D(x, y, σ) = L(x, y, hσ)− L(x, y, σ). (2.7)

The DoG is not only applied on the original image but also on the up-sampled and

down-sampled images in order to be scale invariant. The potential interest points are

extrema among its neighbours in the DoG maps. All the extrema are then revalued

in order to reject some unstable extrema, aiming to improve the robustness of the

interest points. Finally the location and scale of remaining extrema are chosen as

the location and the scale of interest points.

After the location and scale of an interest point have been detected, its neigh-

bourhood area is chosen in order to describe the interest point. All the gradients in

the selected area are rotated relative to the main orientations in order to make each

interest point invariant to rotation variations. Weights of orientations are controlled

by both the magnitude of gradients and a Gaussian kernel which is centred on the

interest point [2]. All histograms are then concatenated into a vector of fixed length.

Finally, the vector is normalised in order to be invariant to illumination variations.

The final normalised vector is a SIFT descriptor.
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Figure 2.3: An example of SIFT descriptors.

Figure 2.3 gives an illustration of the SIFT descriptor; only five interest points

are chosen for the convenience of the illustration. Centres of the yellow circles are

locations of interest points, and the arrows inside the circles are the main orientations.

Each block of 4 × 4 cells (green boxes) is chosen based on the location and orientation

of the corresponding interest point. Sizes of blocks are different in Figure 2.3 because

they are in different scales. Orientations of gradients are quantized into eight bins,

with the result that a final SIFT feature has a dimension of 4×4×8=128.

Hand-crafted local features have been well studied in the last decade, including

the interest point detection process and the description process. Another popular

local feature method is Speeded Up Robust Features (SURF) [23], which use a Hes-

sian matrix of an image as the interest point detector and apply a similar description

process similar to that in SIFT, with the gradient histogram replaced by the Haar

wavelet response. As local features have both detection and description processes,

different combinations can be applied in order to get the local features. For example,
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one can use the Harris corner detector [24] to find the interest points and use the

SIFT descriptor to generate features. Compared with global features, local features

have a broader range of implementations apart from image recognition. For example,

image retrieval [25–27] and image alignment [28,29]. This is due to the local features

being robust to scale variations, shift and rotations.

Bag of Words

Different images may have a different number of local interest points because the

number of interest points is determined by the number of local extrema, which

varies from image to image. In other words, images are represented by matrices

with different sizes using local features. In order to solve this problem, the Bag of

Words (BOW) representation model is required prior to classification.

Csurka et al. [30] proposed the BOW model on top of local features in order to

represent an image by a feature histogram. This representation process is efficient

in terms of computational costs and practical implementation. The BOW model

consists of two main parts: a dictionary generation process by the k-means clustering

[31] and a histogram representation process.

The k-means clustering is an unsupervised vector quantisation algorithm. It

clusters n observations into k clustering centroids by allocating all the observations

into its nearest centroid. The algorithm involves four steps:

Algorithm 1 The process of the k-means clustering

1: Randomly choose k points as the initial group centroids in the training dataset.

2: Assign all the training data points to its nearest centroid.

3: When all data points have been assigned, find the centre of each group and assign it

as the new centroid.

4: Repeat steps 2 and 3 until all of the centroids become stable.

Using the k-means clustering method, a dictionary is generated by k ‘words’

(centroids) and each ‘word’ has the same dimensions as a feature vector. For an

image that consists of a few local interest points, each feature descriptor can find its
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closest ‘word’ from the dictionary, where the closest distance is defined as the minimal

l2-norm distance [32]. If a descriptor has found its nearest ‘word’ in the dictionary,

the number of occurrences of this ‘word’ will have increased by 1. The BOW model

represents an image as a histogram by using each ‘word’ in the dictionary as a

histogram bin and the occurring frequency of each ‘word’ as its magnitude [30]. The

normalised vector is the final representation vector. Using the BOW representation

model, all images can be represented as a vector of the same dimensions, no matter

how many local features were generated in each image.

2.1.2 Classification

After images are represented as representation vectors (note, a global feature itself

is a representation vector because there is no BOW process required), they can then

be classified by a classifier. An accurate recognition framework requires both good

feature methods and classifiers. In supervised learning, labels for training data are

given beforehand. In such a case, denote N training data as X = (x1,x2, · · · ,xN)T

with each data x ∈ RM×1 and their corresponding labels as y = (y1, y2, · · · , yN)T

with y ∈ RN×1. The goal of a parametric classifier is to learn an accurate model

from the training data; this model can then be further applied to predict the label

y∗ for the testing data point x∗ ∈ RM×1.

Take the VLR problem with a parametric classifier as an example. For a BMW

logo image x, its corresponding class y is ‘BMW’. For numeric computation purpose,

‘BMW’ can be denoted as ‘1’, ‘Honda’ can be denoted as ‘2’ etc. In the testing

stage, the model generated in the training stage could then be applied to predict

the label information y∗ for any incoming image x∗ ∈ RM×1. For instance, if the

predicted label y∗=2 is generated for the testing image x∗, the testing image is

recognised as a ‘Honda’ image. The label information for testing data is only used

as the ground truth in order to evaluate the performance of a model. In supervised

learning where all labels are given, there are parametric approaches and the non-
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parametric approaches [33].

Non-parametric Classifier

In parametric approaches such as SVM, the goal in the training stage is to esti-

mate a fixed number of parameters in the model by giving the training data X and

their corresponding labels y. SVM has been one of the most important classifica-

tion methods in the field of computer vision in recent years [34–36]. Taking the

linear SVM as an example, the training data is separated by a maximal margin in

a linearly separable space. In the binary classification, denote a set of training data

(x1, y1), (x2, y2), · · · , (xN , yN), where xi ∈ RM×1 (i = 1, 2, ..., N) is a M-dimensional

feature vector and the data belongs to two categories yi ∈ {−1, 1}.
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Figure 2.4: An example of data can be separated by infinite lines.

Figure 2.4 gives an example of xi in Euclidean space with axis x1 and x2. In this

situation, there are infinite hyperplanes that could separate all the training data.

Hence, the learning algorithm stops when it finds the first line that satisfies the

criteria in the training stage. However, the testing data are usually different from

the training data. This results in some lines performing better than the others in

the testing stage, despite all lines performing perfectly in the training stage.
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Figure 2.5: An example of the maximum margin in the SVM.

The key process in the SVM classifier is to find the hyperplane that separates the

training data with the largest margin, as shown in Figure 2.5. The largest margin

minimises the risk of making an error for the testing data, in other words, having

a good generalisation ability [37]. If the training data is linearly separable, the two

hyperplanes that guarantee the margin (dash lines in Figure 2.5) can be formulated

as follows:

wTxi + b ≥ +1, for yi = +1, (2.8)

wTxi + b ≤ −1, for yi = −1, (2.9)

where w ∈ RM×1 and b are the weights vector and the bias, respectively. These two

equations can also be combined into:

yi(w
Txi + b) ≥ 1, ∀i, (2.10)

where ∀i denotes for all i.

Considering the data lie on the hyperplane wTxi + b = +1 in equation (2.8),

the perpendicular distance between the hyperplane and the origin is |1 − b|/||w||2.
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Similarly, for data lying on the hyperplane wTxi + b = −1 in equation (2.9), the

perpendicular distance between the hyperplane and the origin is |−1−b|/||w||2, where

|| · ||2 represent the l2-norm. Therefore, the margin between these two hyperplanes

is 2/||w||2. The problem of finding the maximum margin 2/||w||2 equals to finding

the minimum value of ||w||22 subject to the constraints in equation (2.10), which can

be formed as:

min
w,b

1

2
||w||22, s.t. yi(w

Txi + b) ≥ 1, ∀i. (2.11)

The equation (2.11) can be interpreted in the Lagrangian formulation, which finds

extrema for the function f(x, y) given its constraints function g(x, y) = 0. Similarly,

in the SVM, function f(w) needs to be minimised given the inequality constraints

function g(w, b) = yi(w
Txi + b)− 1 ≥ 0. Therefore, the problem is solvable by using

the positive Lagrange multipliers αi, i = 1, · · · , N , this gives the primal Lagrangian:

LP =
1

2
||w||22 −

N∑
i

αiyi(w
Txi + b− 1)

=
1

2
||w||22 −

N∑
i

αiyi(w
Tx + b) +

N∑
i

αi. (2.12)

Here LP must be minimised with respect to w and b without considering αi

first. Then it can be maximised after w and b are substituted back, subject to the

constraints that the αi ≥ 0. This is a convex quadratic programming problem [37].

LP is minimised by taking partial derivatives for w and b and setting them to 0:

∂LP
∂w

= 0 ⇒ w =
N∑
i

αiyixi, (2.13)

∂LP
∂b

= 0 ⇒ b =
N∑
i

αiyi = 0. (2.14)

After w and b has been substituted into equation (2.12), the dual Lagrangian is
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given:

LD =
1

2
wTw −wT

N∑
i

αiyixi − b
N∑
i

αiyi +
N∑
i

αi

= −1

2
wTw +

N∑
i

αi

= −1

2

N∑
i

N∑
j

αiαjyiyj 〈xi,xj〉+
N∑
i

αi, (2.15)

where 〈xi,xj〉 is the inner product of xi and xj. The solution is found by maximising

LD subject to:
N∑
i

αiyi = 0, and αi ≥ 0, ∀i. (2.16)

This can be solved by the convex quadratic programming [37]. Notice that every

training data xi is associated with a Lagrange multiplier αi. In the solution, most

values of αi are zeros as they are far away from the margin hyperplane, which satisfy

either yi(w
Txi + b) > 1 or yi(w

Txi + b) < −1. Those xi with non-zero αi are the

support vectors. If the training data are not linearly separable, there are techniques

that can either map the data into a linearly separable space by a kernel function or

find a soft margin that is tolerant to some errors. This section gives an example of

how a parameter classifier works and further reading about SVM can be found in [38].

In this example, the training process aims to find a fixed number of parameters in

w and b. The learned w and b can then be applied to classify testing data, with the

training data being no longer required in the testing stage.

Non-parametric Classifier

For non-parametric approaches such as K Nearest Neighbours (KNN) [39], a testing

data is compared with the entire training dataset. KNN is the simplest method for

classification where a testing data is classified based on its nearest neighbours in the

training dataset. Normally the Euclidean distance is used. When K = 1, the input
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point is assigned to the same class of its nearest neighbour. When K > 1, the input

point is assigned to the class that the majority of these K nearest neighbours belong

to. Easy implementation and good recognition results make KNN very popular for

image classification [40–42].

Algorithm 2 The process of the KNN classification

1: For a testing data, calculate the Euclidean distance with all the training data.

2: Rank the distance from low to high and pick up the first K corresponding labels.

3: Find the majority vote from the K picked up labels and assign the label to the testing

data.

The KNN algorithm is an example of a non-parametric method that is often

used for classification [43, 44]. However, a straightforward drawback of KNN is

that the computational costs increase with the size of the training dataset. This

is due to a testing data compared with all training data. Another drawback is

that KNN algorithm is not stable in high dimension spaces [45]. This is because

the shortest Euclidean distance is not necessarily the best match to the testing

data, especially when the number of training data are limited [45, 46]. Besides, the

KNN algorithm has proven to be vulnerable to the effects of noise [47]. Meanwhile,

the KNN algorithm gives an example that non-parametric classifiers do not need a

training stage. While parametric classifiers might learn insufficient weights from the

training stage, the non-parametric classifiers do not have this problem.

2.2 Deep Learning Framework for Image Recog-

nition

Traditional image recognition frameworks require image feature methods, followed

by classification methods. There are plenty of methods and each method has pa-

rameters that need to be defined by users. This raises the question: can we design

a “black” box that takes images as the input and their corresponding labels as the

output, without choosing image feature methods and classifiers? Neural networks

20



2.2. Deep Learning Framework for Image Recognition

are designed in this manner but the input reshapes an image to a vector. However,

changing an image matrix to a vector loses the spatial information of the content,

which is essential for images. Hence, the input of the “black” box should be a matrix

in order to keep the spatial information at the beginning. The CNNs are designed

to solve this problem. They use convolutional processes to preserve the spatial in-

formation of the content; weights in the convolutional processes are automatically

learned in a way similar to neural networks.

Lecun et al. proposed the first CNN framework LeNet [48]. Different CNN

frameworks have been developed quickly after the AlexNet [1] achieved the best

performance on ImageNet in 2012. Unlike neural networks, where neurons in each

layer are fully connected to neurons in the next layer, each layer in a CNN shares

the weights by using convolutional kernels. This process tremendously decreases the

number of weights when compared with neural networks; therefore, it can prevent

the over-fitting problem, which is one of the main problems in neural networks [49].

Another advantage is that the spatial information of the content is preserved by the

convolutional process, while neural networks simply reshape an image into a vector,

without preserving the spatial information. CNN frameworks are mainly composed

of the convolution operations and the pooling operations. Figure 2.6 illustrates a

typical CNN framework.

Figure 2.6: A typical CNN architecture example.

In a convolution stage, feature maps are convolved with different convolutional
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kernels, which are equivalent to filters in the field of image processing. Kernels

can be regarded as the shared weights connecting two layers. Suppose kernels of size

[a×b×n] ([height × width × depth]) are used, the ith (i = 1, 2, · · · , n) convolutional

feature map can be denoted as:

Ci = f

(∑
j

Vi ∗ Ij

)
, (2.17)

where Vi is the ith kernel and Ij (j = 1, 2, · · · , J) is the jth feature map (Ij can be

a channel of the original image, a pooling map and a convolutional map). Here f(·)

denotes a non-linear activation function and ∗ represents the convolutional operation.

The Rectified Linear Unit (ReLU), where g(x) = max(0, x), is often applied as the

non-linear function [1].

A convolutional process is often followed by a pooling process. In the pooling

operation, a pooling process decreases the size of the input feature maps, which can

be regarded as a down-sampling operation. Each pooling map Pi is usually obtained

by a pooling operation over the corresponding convolutional map Ci:

Pi = pool(Ci), (2.18)

where pool(·) represents a pooling method [50]. A window shifts on the previous

map Ci and the mean value (or the maximum value) in each window is extracted in

order to form a pooling map Pi.

The convolution and pooling operations are the two main techniques in CNNs.

As shown in Figure 2.6, these two processes are repeated. Note that convolutional

processes are followed by pooling operations in Figure 2.6. However, this is not a

requirement; different CNN structures are valid. Different CNN architectures have

been developed rapidly subsequent to the AlexNet in 2012. For example, the ZF-Net

[51] applied smaller kernel size in order to save more original pixel level information

and achieved better results on ImageNet [52]. The VGG-NET [53] also enhanced the
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depth of the CNNs up to 19 layers and suggested only using a unique kernel size of

[3× 3]. The Google-Net [54] even increased the number of layers to 22 and applied

the inception module, in which different convolutional feature maps (generated by

convolutional kernels of different sizes) and the pooling feature maps were combined

together. The Res-Net [55] built a 152 layer architecture and introduced the idea of

the residual learning, which built short-cut connections between layers and achieved

the best result on ImageNet in 2015.

It is found that the CNNs automatically learn simple structures of an image,

such as edges in the initial convolutional layers, and more abstract information can

be learned in later convolutional layers [51]. This is very similar to Hubel and

Wiesel’s discovery [56] back in the 1960s, which suggests different orientation acti-

vates different groups of neurons in the cat’s visual system. The CNNs have achieved

great success and they currently dominate various image recognition tasks [57]. For

example, face and motion recognition [58–60] and action recognition [61,62].

2.3 Online Learning for Vehicle Logo Recognition

For the applications, this thesis start with the VLR problem, however, the developed

methods can also be adapted to other image recognition tasks. VLR is important

in Intelligent Transportation Systems (ITS) as the vehicle logo is one of the most

distinguishable marks on a vehicle [63], and can assist in vehicle identification [43].

It has many potential applications in traffic monitoring and vehicle management

systems. For instance, VLR can detect fraudulent plates if the combination does

not match the data stored on the police security database [64]. As a result, this

gives a more robust vehicle identification system. VLR could also provide guidance

for autonomous driving systems and intelligent parking systems [65, 66]. In addi-

tion, recognising vehicle logos is also useful for commercial investigations [67] and

document retrieval [65].

Global features that take all pixels into consideration are often used in VLR. For
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example, Rezaei and Farajzadeh [68] used the horizontal and vertical histograms to

compare with a pre-defined template; it is, however, not robust to illuminations,

noise and rotation variations. Sharpness histogram features [69] are used on well-

segmented logo images. However, the accuracy is around 80%, which cannot make

an effective recognition system. The Tchebichef moment invariants method is used

on VLR but the computation costs are high [65,70]. Peng [44] proposed a statistical

random sparse distribution feature method which performs well in the low-resolution

situation. The DenseSIFT is a global feature method that shares the same descrip-

tion method with the SIFT descriptor while using every pixel as an interest point;

this saves the computational costs for feature detection. However, it decreases the

robustness of interest points. HOG [7] separates an image into small blocks and it

calculates the horizontal gradients as well as vertical gradients in each block; it is a

very successful global feature method and it is often used for VLR [7,63,71,72].

However, local features are more favoured as they are robust to image noise, shift

and rotations. For example, Yang [73] used the Harries corner detector to find

the interest point for VLR. Psyllos et al. [43] and Lipikorn et al. [74] applied

SIFT [2] features for vehicle logos. Badura and Foltan [75] used Speed Up Robust

Features(SURF) [23] and achieved good results. Among local features, the SIFT

feature method is the most popular on VLR [43,74–76].

Currently CNN frameworks have been dominant in VLR, for instance, Gao and

Lee [77] built a seven layer CNNs framework and achieved an accuracy of 88.4% on a

self-selected dataset. Huang et al. [50] developed a pre-training process on CNNs for

VLR, Xia et al. [78] created more images based on the dataset provided by [50] and

developed a multi-task CNN framework for VLR. In general, CNN based methods

are more accurate when there is a large training dataset. In the literature, transfer

learning methods [79] have been developed, which fine tunes the weights based on the

trained weight from big datasets in other domains. However, the automatic feature

extraction method is particularly suitable for images from the source domain [79] .
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In practice, there may only be an initially small training dataset, with additional

images becoming available during the implementation. In order to take advantage of

these additional images, new models can be built independently when more images

become available. However, retraining new models increases the computational costs,

especially when new models are updated frequently. CNNs update the weights online;

however, it would not be useful in the earlier stage because training a CNN framework

needs a huge dataset and involves huge computational costs. This motivates the work

in Chapter 3, which develops a Cauchy prior LR framework for small dataset and

CNNs are then applied when a big dataset becomes available.

2.4 Back-propagation Bayesian Compressive Sens-

ing Classifier

Parametric classifiers such as SVM and LR assume a functional distribution of the

data [46]. Hence, the relationship between the label and the input data can be

modelled using a fixed number of parameters. An advantage of parametric classi-

fiers is that an increasing size of training dataset would not increase the number of

parameters in the model. Therefore, the computational costs in the testing stage

remain constant as classifying a testing data only needs these parameters. However,

in practice, parametric classifiers can result in an inadequately trained model be-

cause of inappropriate assumptions of prior distributions, leading to inappropriate

predictions in the testing phase [33,46]. In contrast, non-parametric classifiers do not

assume any particular distribution of the data, neither do they require a model with

a fixed number of parameters [46]. In turn this increases the computational costs

in the testing stage [80]. However, by avoiding models that can be insufficiently

trained, they can be more flexible than the parametric classification methods [80].

A non-parametric classification approach based on sparse representation proposed

by Wright et al. [81] has proved to be more accurate than the linear SVM and the
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2.4. Back-propagation Bayesian Compressive Sensing Classifier

KNN classifier for face recognition. The SRC assumes that the testing data x∗ ∈

RM×1 can be represented as a linear combination of the training samples X ∈ RM×N

where M is the length of the vector representing the data being considered and N

gives the number of entries in the training dataset. The linear representation of a

testing image can be denoted as:

x∗ = Xw + z. (2.19)

In equation (2.19), w ∈ RN×1 is the weight vector that controls the contribution of

each image in the training dataset to the linear combination representing the testing

image, z ∈ RM×1 is a noise term with ||z||2 6 ε and ε is a threshold constant.

Conventionally, the solution of w is often solved by choosing the minimum l2-norm

distance:

ŵ = arg min
w

(||w||2), s.t ||x∗ −Xw||2 6 ε. (2.20)

where ŵ ∈ RN×1 is the estimated solution for the weight vector. However, the

training dataset is often big enough to make N > M . Therefore, equation (2.19)

represents an under-determined system and there is no unique solution by using

conventional methods [81].

The SRC classification method assumes that a testing image can be sufficiently

represented by instances from its corresponding class. Therefore, the solution is

naturally sparse as coefficients for unrelated classes are zero valued. For instance, if

there are 20 classes, only approximately 5% of the coefficients in ŵ will have non-

zero values [81]. In fact, the sparser the recovered w is, the easier it is to accurately

classify the testing image x∗ [81]. This motivates the use of the l0 to find the sparest

solution for w in equation (2.19), where l0 represents the number of non-zero entries.

However, l0 minimisation is an NP hard problem. Instead an l1-norm minimisa-
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tion is typically used as an approximation [82–84], giving:

ŵ = arg min
w

(||w||1), s.t ||x∗ −Xw||2 6 ε. (2.21)

The solution to the l1-norm minimisation in equation (2.21) can be solved by kernel

reconstruction [85], or estimated by standard linear programming methods such as

Basis Pursuit [86], greedy optimisation such as Orthogonal Matching Pursuit [87],

and approximate kernel reconstruction method [88]. The solution of equation (2.19)

gives the optimal w for classification purpose in the SRC [81].

Recently the Bayesian Compressive Sensing (BCS) [89] approach has been ef-

ficiently applied to synthetic aperture radar target classification [90] and phonetic

classification [91]. This Bayesian approach provides an alternative to the l1-norm

minimisation for optimising the linear combination coefficients required for the clas-

sification framework. Similar to Zhou et al. [92], by comparing the magnitudes of

the coefficients, the testing data can then be classified by assigning it to the class

whose coefficients have the highest l2-norm magnitude. Inspired by the Bayesian

approach, this thesis proposes a back-propagation process based on BCS, which will

be presented in Chapter 4.

2.5 Image Restoration

The image restoration process aims to recover a clear image from its corrupted ver-

sion, including noise, rotation and occlusion. It is known as an ill-posed inverse prob-

lem [93] and plenty of searches have been conducted in the literature. The majority

of works are focused on single image de-noising and single image super-resolution.

For example, total variation [94] and BM3D algorithm [95] achieved good perfor-

mance in single image de-noising. [96–99] achieved a state-of-the-art performance

on single image super-resolution [100]. However, these methods are only applicable

for a particular image degradation. For example, BM3D is designed only for im-
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age de-noising. Deep learning based methods extract image features from groups of

images and hence can be used for image de-noising and image super-resolution. In

fact, deep neural network based methods take the advantage of the big data and the

automatic learning scheme, and outperform the traditional image restoration meth-

ods [93, 100]. Recently, the deep neural networks have been developed in order to

solve different image restoration problems. For example, Mao et al. [93] proposed a

CNN architecture that could perform image de-nosing and image super-resolution.

The automatic learned restoration frameworks are more promising as they did not

have any assumption about the degradation of the image, hence they are purely

data driven [93]. Figure 2.7 shows the general structure of applying CNNs to image

restoration similarly to [93].

Figure 2.7: A typical restoration architecture based on CNNs.

The restoration framework is based on the same convolutional operations as in

CNNs. The main difference lies in there being no pooling operation and fully con-

nected layers for restoration tasks. CNNs for recognition and restoration are different

because recognition discards information layer by layer and ends up with a represen-

tative feature vector (neurons in the last fully connected layer). In other words, the

CNNs for classification discard information step by step in order to extract the most

representative information of an image, while CNNs for restoration need to keep de-

tailed information of the input image; hence, the pooling process is not appropriate.

Image degradations also include image occlusion and image rotation. These

problems are more challenging than image de-noising and image super-resolution,

however, these problems are not well studied using state-of-the-art deep learning

methods. This motivates the author to investigate the advanced image restoration

methods dealing with image rotation and occlusion. In addition, it will be ben-
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eficial if the recognition and restoration could share a joint network, which could

perform both tasks at the same time, rather than in a pipeline manner (restoration

followed by recognition). The author investigates these problems and develops joint

frameworks for image recognition and image restoration. The joint frameworks could

simultaneously perform image recognition and restoration with image degradations

such as noise, rotation and occlusion. The related work will be presented in Chapter

5.

2.6 Summary

This chapter first introduces traditional recognition frameworks, which comprise im-

age feature methods and classification methods. Among image features, local feature

methods such as SIFT features are more robust to image degradations than global

feature methods such as HOG features. For the classifier, parametric and non-

parametric classifiers are introduced with examples of SVM and KNN. The state-

of-the-art recognition methods are shifting from traditional methods to the more

advanced deep learning based methods such as CNNs. CNNs take advantage of the

automatically learned features on big datasets and perform better than traditional

methods in many application fields. However, CNNs contain many parameters that

need big data and high computational costs to support. Considering the limitations

of the CNNs, an online recognition for VLR is introduced, which will be extended

to the proposed online Cauchy prior LR in Chapter 3. Considering the drawbacks

for the non-parametric classifier such as KNN, this thesis develops a non-parametric

classifier and this will be presented in Chapter 4. CNNs have also been applied for im-

age restoration and classification separately in the literature, with image restoration

tasks particularity focused on image de-noising and image super-resolution. Hence,

Chapter 5 considers image degradation including rotation and occlusion, and devel-

ops deep learning based joint frameworks in order to simultaneously perform image

recognition and restoration tasks.
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Chapter 3

Online Learning for Vehicle Logo

Recognition

3.1 Introduction

Existing VLR frameworks train models on large fixed image training datasets. In

practice, there may only be an initially small training dataset, with additional images

becoming available during the implementation of the recognition scheme. In order

to take advantage of these additional images, new models can be built independently

when more images become available. However, retraining new models increases the

computational costs, especially when new models are updated frequently. In order

to deal with this problem, this chapter proposes a novel online framework for model

learning, in which models are rebuilt efficiently using a weight updating scheme when

dealing with datasets of an increasing size.

Figure 3.1: The developed framework of VLR with increasing size of dataset.

The general solution is illustrated in Figure 3.1. When the training dataset is
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small, the HOG features are applied for feature extraction and the online multinomial

Cauchy prior LR classifier is applied for online model updating. The HOG algorithm

is applied because of its efficiency. More importantly, it always gives the same

feature vector for an image in any training stages. On the contrary, local feature

methods involve a dynamic dictionary generation process, which results in different

representation vectors for an image in different training stages. For example, using

SIFT features with the BOW representation model, an image is represented by two

different vectors when the training dataset contains 200 images and 500 images,

respectively. In the parametric classification stage, weights are associated with the

input vector. Therefore, if an image is represented by irrelevant vectors in different

training stages, the corresponding weights will not be relevant. Hence, local features

cannot be applied to the online weights updating scheme. Unlike local features

requiring a representation model before the classification stage, the HOG algorithm

does not need this process and it will always give the same vector despite different

training scenarios. When large size datasets are available and high computational

costs are acceptable, the CNN classifier can be applied in order to increase the

robustness to noise and further improve the accuracy. Unlike hand-crafted features,

which use fixed rules, features in CNNs automatically update according to more

incoming data; hence, it could be more representative when there are more training

images fed in.

For the choice of the classifier, LR can be easily extended for online model updat-

ing and it explores the confidence level of the decision that the data has been correctly

classified [33, 101]. However, when all training data can be perfectly classified, the

LR suffers a common problem called separation, in which the maximum likelihood

gives implausible estimates [102]. In order to have a generalised LR classifier without

the separation problem, Gelman et al. [103] suggested a default Cauchy prior for LR

and the posterior can be computed using Gibbs sampling, which involves high com-

putational costs. This work combines the Conjugate Gradient Descent (CGD) with
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LR for both online and offline classification. In section 3.2, the Cauchy prior logistic

regression is introduced. Section 3.3 introduces the CGD and Section 3.4 explains

the online weight updating scheme. The developed CNNs in Section 3.5 are applied

when the large datasets become available. The performance and the summary of

this chapter are presented in Section 3.6 and Section 3.7.

3.2 Cauchy Prior Logistic Regression

Given a training data (x, y), where x ∈ RM×1, in linear regression, the linear function

is applied:

y = wTx + b, (3.1)

where w ∈ RM×1 is the weight vector and the scalar b is the bias associated with the

linear regression. For the binary classification where y is a label variable that can

either be ‘1’ (positive) or ‘0’ (negative). Using a ‘logistic’ function f(x) = 1/(1+e−x),

the probability p(y = 1|x,w, b) that the training data belongs to class ‘1’ can be

expressed by:

p(y = 1|x,w, b) = s = f(wTx + b) =
1

1 + e−(wTx+b)
. (3.2)

Therefore, the probability of a negative outcome is 1− s:

p(y = 0|x,w, b) = 1− s =
e−(w

Tx+b)

1 + e−(wTx+b)
. (3.3)

Assuming that there are N independent training data (x1, y1), (x2, y2), · · · , (xN , yN),

a Bernoulli distribution can be used to form the likelihood function for the ith data

by combining equation (3.2) and equation (3.3), which gives:

p(yi|xi,w, b) = syii (1− si)1−yi , (3.4)
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where si represents the probability that the ith data belongs to the positive class.

The likelihood of all the training data is therefore given by the product:

p(y|w,X, b) =
N∏
i=1

syii (1− si)1−yi , (3.5)

where X = [x1,x2, · · · ,xN ] is the training dataset and y ∈ RN×1 is a vector repre-

senting all the training labels. Maximising the likelihood in equation (3.5) is equiv-

alent to minimising the negative of its natural logarithm likelihood, i.e.

L = −ln (p(y|w,X, b))

= −
N∑
i=1

yiln(si)−
N∑
i=1

(1− yi)ln(1− si)

= −
N∑
i=1

yiln
(
f(wTxi + b)

)
−

N∑
i=1

(1− yi)ln(1− f(wTxi + b)), (3.6)

where ln(·) denotes the natural logarithm.

Before going any further, it is worth to mention that the ‘logistic’ function has a

useful property that its derivation is a function of itself:

f ′(x) =
d

dx

(
1

1 + e−x

)
=

1

(1 + e−x)2
(e−x)

=
1

1 + e−x
·
(

1− 1

1 + e−x

)
= f(x)(1− f(x)). (3.7)

In order to minimise equation (3.6), the partial derivative with respect to w and

b can be used. Combining equation (3.7) gives:

∂L
∂w

= −
N∑
i=1

yi
f(wTxi + b)

f ′xi +
N∑
i=1

1− yi
1− f(wTxi + b)

f ′xi
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= −
N∑
i=1

yi(1− f(wTxi + b))xi +
N∑
i=1

(1− yi)f(wTxi + b)xi

=
N∑
i=1

(f(wTxi + b)− yi)xi, (3.8)

here f ′ represents the partial derivative of f(wTxi + b) with respect to w. In the

same way take the partial derivative with respect to b:

∂L
∂b

=
N∑
i=1

(f(wTxi + b)− yi). (3.9)

Notice that the LR is a maximum likelihood model that does not involve any prior

information. However, when the maximum likelihood perfectly separates the training

dataset, there are infinite possible solutions caused by the separation problem.

A Cauchy prior on LR can avoid the separation problem. It assumes that the

coefficients in LR are sparse, this could provide a quicker convergence in the gradient

descent process. A zero mean Cauchy prior is assumed for the weights, this gives:

p(w) =
1

π

(
γ

w2 + γ2

)
, (3.10)

where γ is a scale parameter. According to the Bayes rule:

p(w, b|y) =
(y|w, b)p(w|b)p(b)

p(y)
. (3.11)

Since w and b are independent, it gives:

p(w, b|y) ∝ p(y|w, b)p(w)p(b). (3.12)

The weights are assumed sparse which makes the majority of the weights zero

(or close to zero) valued. However, b is the intercept of the decision line which

does not have any prior knowledge associated with it. As a result, here assume b is

controlled by a non-informative prior. Therefore, maximising the posterior p(w, b|y)
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is equivalent to maximising:

p(y|w, b)p(w) =
1

π

(
γ

w2 + γ2

) N∏
i=1

syii (1− si)1−yi . (3.13)

Maximising the likelihood in (3.13) is equivalent to minimising the negative of

its natural logarithm, which is given by:

L = −ln ( p(y|w, b)p(w))

= −
N∑
i=1

yiln(si)−
N∑
i=1

(1− yi)ln(1− si)− ln(γ) + ln((wTw + γ2)π)

= −
N∑
i=1

yiln
(
f(wTxi + b)

)
+ ln

(
(wTw + γ2)π

)
−

N∑
i=1

(1− yi)ln
(
1− f(wTxi + b)

)
− ln(γ). (3.14)

In order to minimise (3.14), taking the partial derivative with respect to w gives:

∂L
∂w

= −
N∑
i=1

yi
f(wTxi + b)

f ′(wTxi + b)xi +
2w

wTw + γ2

+
N∑
i=1

(1− yi)
1− f(wTxi + b)

f ′(wTxi + b)xi

= −
N∑
i=1

yi(1− f(wTxi + b))xi +
2w

wTw + γ2
+

N∑
i=1

(1− yi)(f(wTxi + b))xi

=
2w

wTw + γ2
+

N∑
i=1

(f(wTxi + b)− yi)xi. (3.15)

In the same way taking the partial derivative with respect to b gives:

∂L
∂b

= −
N∑
i=1

yi
f(wTxi + b)

f ′(wTxi + b) +
N∑
i=1

(1− yi)
1− f(wTxi + b)

f ′(wTxi + b)

= −
N∑
i=1

yi(1− f(wTxi + b)) +
N∑
i=1

(1− yi)(f(wTxi + b))

=
N∑
i=1

(f(wTxi + b)− yi). (3.16)
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For a new testing image x∗, the probability that it belongs to the positive class

is:

p(y∗ = 1|w, b) =
1

1 + e−(wTx∗+b)
(3.17)

and the probability that it belongs to the negative class is therefore:

p(y∗ = 0|w, b) = 1− p(y∗ = 1|w, b). (3.18)

Here, y∗ represents the predicted label for a testing image. Hence, the testing image

can be allocated into the class that has the higher probability.

The Cauchy prior LR in binary classification can be easily extended to multino-

mial classification. Given the training data from C categories yi ∈ {1, 2, · · · , C}, the

probability of p(yi = c|W,b) for each c = (1, 2, · · · , C) can be denoted as:


p(yi=1|W,b)
p(yi=2|W,b)

...
p(yi=C|W,b)

 =
1∑C

c=1 e
(wT

cxi+bc)


e(w

T
1xi+b1)

e(w
T
2xi+b2)

...

e(w
T
Cxi+bC )

 , (3.19)

where W = [w1,w2, · · · ,wC ] is a matrix consisting of the weights and b = [b1, b2, · · · , bC ]

is the bias of the multi-class LR models. The term
∑C

c=1 e
(wT

cxi+bc) normalises the

distribution so that all of the probabilities sum up to one. Hence, for a testing image

x∗, the probability that its label y∗ equals c is :

p(y∗ = c|W,b) =
e(w

T
cx

∗+bc)∑C
c=1 e

(wT
cx

∗+bc)
. (3.20)

The incoming testing image is then assigned to the class that has the highest prob-

ability.
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3.3 Conjugate Gradient Descent

Carpenter [104] proposed using the Stochastic Gradient Descent (SGD) to solve

this problem and the Cauchy gradient is derived without considering a bias term

in LR. However, the key disadvantage of SGD is that it requires manual tuning

of parameters such as learning rates and stopping criteria [105]. Meanwhile, the

CGD [106] automatically chooses a learning rate that could avoid this problem [105].

Equation (3.15) and equation (3.16) are optimisation problems that can be solved

using gradient descent which updates the weights iteratively:

w(j+1) = w(j) − η ∂L
∂w(j)

, (3.21)

b(j+1) = b(j) − η ∂L
∂b(j)

, (3.22)

where η is a fixed learning rate that controls the speed of convergence and j ∈

{1, · · · , J} is the iteration index.

One key disadvantage of gradient descent methods, such as batch gradient descent

and SGD is that a good learning rate is difficult to find [105]. In order to avoid

this problem, this chapter proposes using the Cauchy prior LR with CGD, which

automatically chooses a learning rate in each iteration.

Denote all the variables as v = (b,wT). Therefore L in equation (3.14) can be

written as a function of v, giving L = g(v). For the first iteration, the gradient

update for all the variables is:

v2 = v1 − η1
∂L
∂v1

, (3.23)

where v1 represents the initial bias and weights (initialised as zero values) when

j = 1. A line search is applied to find the initial learning rate [106]:

η1 = argmin
η

g

(
v1 − η

∂L
∂v1

)
. (3.24)
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For the following iterations where j > 1, gradients are along the conjugate direc-

tions. In order to avoid a zig-zagging path, the new gradient direction combines the

gradient − ∂L
∂vj

and the previous direction:

dj+1 = −ηj
∂L
∂vj

+ βjdj, (3.25)

with d1 = − ∂L
∂v1

. According to the Polak-Ribiere rule [107], the value of βj is given

by:

βj =

(
∂L
∂vj

)T (
∂L
∂vj
− ∂L

∂vj−1

)
(
∂L
∂vj

)T
∂L
∂vj

. (3.26)

The gradient update process is:

vj+1 = vj + ηjdj, (3.27)

and a line search process is applied to find the optimal learning rate:

ηj = argmin
η

g (vj + ηdj) . (3.28)

3.4 Online Weight Updating

In order to deal with training datasets that increase in size, the classifier needs to be

retrained as more training images become available. However, rather than retraining

different classifiers independently, the weights trained for the previous stages can be

useful. Figure 3.2 shows the general process of retraining models when the size of

training images is increasing.

Using the HOG features, each image is represented by a vector x and its label

y. Algorithm 3 shows the offline method, which retrains a new model independently
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Figure 3.2: The developed online recognition framework for VLR.

when additional training data become available. More specifically, the initial model

was trained using a small amount of training data Dstart. When there are extra

training data available, Dbatch, the model is retrained using all the available data

Dava. This now includes both the additional data and the previously available data.

This process is repeated each time when additional data become available. The batch

size is a parameter that controls how often the model is updated, i.e. the number of

additional data required before retraining occurs.

Using the offline methods, models are retrained independently as W and b are

initialised to either random values or zeros. However, W and b from the previous

models might be good initial values which could help the current model converge

faster. Therefore, the current model can be updated based on a previously trained

model rather than a model retrained independently. Algorithm 4 shows the general

process of online model updating.
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Algorithm 3 Framework of offline Cauchy prior logistic regression

Input:

The initial training data Dstart

The sequential training data, D = {(x1, y1), (x2, y2), · · · (xi, yi), · · · }, with i is the index

of the ith image and label

Output:

The model parameters in Cauchy prior LR and accuracies on the testing dataset

1: Apply the Cauchy prior LR on the initial training data Dstart and save the initial

model (Model 1 in Figure 3.2)

2: for each i = 1, i+ + do

3: if i/(batch size)==int then

4: Retrain a new model using the all available training data Dava =

{(x1, y), (x2, y2), · · · , (xi, yi)} with Cauchy prior LR

5: end if

6: Use the retrained model to classify the testing images

7: end for

8: return The model parameters and accuracies

3.5 Convolutional Neural Networks for Online Learn-

ing

The HOG features have an advantage and limitation. The advantage is that the HOG

is easy and fast to implement while the disadvantage lies in the accuracy bottleneck.

The HOG features could not make full use of a big dataset; the accuracy saturates

at some point. In contrast, CNNs need a big dataset to support. In order to take

advantage of both, HOG features and CNNs can be combined to deal with different

scenarios.

Figure 3.3 shows the developed CNN architecture for VLR. It contains three

convolutional layers, three pooling layers, and two fully connected layer. In the first

convolutional stage, six kernels with a size of [5×5] ([width × height]) are convolved

with an input image in order to generate six convolutional maps in C1. A Max-

pooling process with [2× 2] is applied to 6 convolutional maps; therefore six pooling
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3.5. Convolutional Neural Networks for Online Learning

Algorithm 4 Framework of online Cauchy prior logistic regression

Input:

The initial training data Dstart

The sequential training data, D = {(x1, y1), (x2, y2), · · · , (xi, yi), · · · }, with i is the

index of the ith image and label

Output:

The model parameters in Cauchy prior LR and accuracies on the testing dataset

1: Apply the Cauchy prior LR on the initial training data Dstart and save the initial

model (Model 1 in Figure 3.2)

2: for each i = 1, i+ + do

3: if i/(batch size)==int then

4: Update the model using all available training data Dava =

{(x1, y), (x2, y2), · · · (xi, yi)} with the previous W and b are used as the

initial start values of the model parameters.

5: end if

6: Use the updated model to classify the testing dataset

7: end for

8: return The model parameters and accuracies

Figure 3.3: The designed CNN architecture.

maps are generated in P1. The same process is repeated in C2 with 12 kernels of size

[6×6] and in C3 with 12 kernels of size [7×7], respectively. The same Max-pooling is
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applied in P2 and P3 with a non-overlapping window of size [2× 2]. The 12 pooling

maps with the size of [4 × 4] in P3 are then reshaped into a vector form, which is

further fully connected with the 1024 neurons. These neurons are then connected

to a softmax output layer. A dropout process [49] is applied to the fully connected

layer with a dropout rate of 0.5.

3.6 Performance Evaluation

In this section, the proposed framework is evaluated on the open dataset provided by

Huang et al. [50] in order to evaluate the performance. This dataset is currently the

biggest available vehicle logo dataset; it has ten categories and each category contains

1000 training images and 150 testing images. All images have a size of [70×70] pixels.

Figure 3.4 shows an example of these ten vehicle categories by randomly choosing

one image from each category in the training dataset and Figure 3.5 shows some

challenging testing images, which can be easily mis-classified.

Figure 3.4: Image examples of the vehicle logo dataset.

The performance evaluation of the online Cauchy LR with HOG features is con-

ducted in MATLAB 2015 on a computer with the following specification: Intel CPU

I5-4590 (3.4Ghz) and 24GB of RAM. The proposed Cauchy prior LR is compared

with LR and the Cauchy prior LR is evaluated for training datasets that increase in

size. The performance of each method is measured in terms of accuracy (percentage
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3.6. Performance Evaluation

Figure 3.5: Examples of some challenge images in the testing dataset.

of correctly classified images among the entire testing dataset), total number of mis-

classified images and the computation time (to indicate the relative computational

complexities). Accuracies and computational times are given as average values taken

from 30 simulation runs.

In the implementation, the HOG features are different from the original HOG

method as implemented in [7]. Here, a histogram vector is built for each block rather

than each cell and 12 bins with uniform spacings are applied on the angular range

from 0◦ to 180◦. The block window shifts on the whole image taking the size of a

cell as the sliding size. A block window is made up by 2 × 2 cells and each cell is

made from [5×5] pixels. These techniques give an improvement of accuracy more

than 3% when the model is trained on the whole training dataset (from 93.53% to

97.13% when LR with CGD is applied). Each HOG feature vector is normalised with

zero mean and the standard deviation is set to 1. This process is able to increase

accuracy about 2% (from 97.13% to 98.80% when LR with CGD is applied).

Finding the learning rate is a difficult issue in SGD. Using the whole train-

ing dataset with the testing dataset as the validation data, the best accuracy SCD

(95.35%) achieved is about 3% lower when compared with CGD (98.80%). However,

when applied in practice, the testing dataset is not known in advance. As a result,

it is not possible to find the optimal learning rate for use in classification. This

means a further degradation in performance would be expected for methods based

on SGD. In the following, the optimised HOG features with normalisation and CGD

are applied in order to compare LR and Cauchy prior LR.

44



3.6. Performance Evaluation

3.6.1 Comparisons of the Logistic Regression with the Cauchy

Prior Logistic Regression

Table 3.1: Performance comparisons between LR and Cauchy prior LR when dataset
size is increasing (average values from 30 simulation runs).

Training size 100 500 1000 2000 3000 4000

LR (%) 67.05 91.02 96.07 98.11 98.56 98.67

Misclassified images 494.24 135.70 58.95 28.35 21.60 19.95

Time (s) 4 23 49 94 135 179

Cauchy LR (%) 66.24 90.35 95.33 97.59 98.06 98.35

Misclassified images 506.40 144.75 70.05 36.15 29.10 24.75

Time (s) 2 8 17 36 54 74

Training size 5000 6000 7000 8000 9000 10000

LR (%) 98.72 98.84 98.83 98.76 98.72 98.80

Misclassified 19.20 17.40 17.55 18.60 19.20 18

Time (s) 216 261 302 339 386 437

Cauchy LR (%) 98.38 98.42 98.42 98.51 98.48 98.80

Misclassified images 24.30 23.70 23.70 22.35 22.80 18

Time (s) 92 119 149 175 180 182

Different training dataset sizes are tested and accuracies are evaluated on the

complete testing dataset. Results are given in Table 3.1 and Figure 3.6. The accura-

cies of both classifiers are close while the Cauchy prior LR has a significant reduction

on computational costs. Taking the training size that equals 10000 as an example,

the Cauchy prior is able to decrease the computational time from seven minutes (437

seconds) to approximately three minutes (182 seconds) when the whole dataset is

applied, i.e. a 58% reduction in computational time. This can be explained by the

prior information resulting in a quicker convergence. As a result, only LR with the

Cauchy prior will be considered in the remaining comparisons of online and offline

training.
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Figure 3.6: Accuracy (a) and computational costs (b) comparisons between LR and
Cauchy prior LR when the dataset size is increasing (average values of 30 simulation runs).

3.6.2 Comparisons of Online and Offline Cauchy Prior Lo-

gistic Regression

Figure 3.7 shows the performances of the online method and the offline method using

the Cauchy prior LR. A random set of training data for each class is picked and used

for the initial classifier training (the same initial set for each method). When the

training size is increasing, training models are updated when the available number

of training data meets the requirement described in Algorithm 3. Here the batch

size Dbatch=100 is used. The offline method means the weights are retrained on the

available images, with all weights initialised to 0, while the online method involves

a weight initialisation from the previous models. For Cauchy prior LR, different γ

have been tested. It is found that when γ is larger than 15, the accuracy becomes
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Figure 3.7: Accuracy and computational costs comparisons between offline and online
Cauchy prior LR up to 10000 training images ( Dbatch = 100).

saturate. In the following experiment, γ=30 is used for Cauchy prior LR.

It is shown in Figure 3.7 that the HOG features can achieve a good accuracy

when there is a small dataset (90% accuracy is achieved when the training size is

around 500). Once the training size is above 2000, both accuracies become high

and stable. The time in seconds shows the computation time for the whole process,

which includes the testing scenario and the model updating process. The online

scheme reduced the computational time by 33%, which indicates that the weights

initialisation can help with the convergence in CGD.

Figure 3.7 indicates the accuracies become stable when the training size is above

2000. Therefore a more detailed comparison can be made by using a smaller dataset

while updating the model more frequently because a smaller batch size gives more

comparison results. Figure 3.8 shows more detailed results by setting Dbatch =20

and the training size varies from 100 to 3000. It indicates that the online method

provides a quicker convergence speed.
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Figure 3.8: Accuracy (a) and computational costs (b) comparisons between offline and
online Cauchy prior LR up to 3000 random training images with (Dbatch =20).

3.6.3 Convolutional Neural Networks for Large Datasets with

the Noise Robustness Evaluation

Unlike the HOG features, which can achieve a good result using a small dataset,

CNNs need a large dataset to automatically learn good features, otherwise the over-

fitting problems can be serious. Over-fitting is a common problem; it means the

model fits too well on the training dataset but has a bad generalisation ability on

the testing dataset. The experiment in this subsection considers different dataset

sizes, from small to big, with an equal number of training images in each class. The

experiment for CNNs was conducted on a laptop with the following specification:

Intel CPU I5 and Nvidia GTX 1070 (extended GPU); the Tensorflow toolbox is used

and the accuracy is evaluated once the weights are learned, after 100 training epochs.
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Table 3.2 shows that when the training dataset is below 2000, HOG features

combined with the Cauchy prior LR achieve a higher accuracy than CNNs. With an

increasing size of the training data, the CNNs outperform the HOG features in terms

of accuracy. The highest accuracy achieved by CNNs is 99.87%; this means only two

testing images were wrongly classified among 1500 testing images. The CNNs need

high computational costs; taking the whole training dataset as an example, the CNNs

take about five hours running on an Nvidia GTX 1070 GPU using Tensorflow, while

HOG features combined with Cauchy LR only need about 13 minutes. The improve-

ment in terms of accuracy seems trivial (from 98.80% to 99.87%) when compared

with the computational costs invested in CNNs. This is due to the images in the

dataset being clear and the HOG features therefore can be representative.

Table 3.2: Accuracy comparisons between Cauchy prior LR and CNNs when dataset
size is increasing.

Training size 100 500 1000 2000 3000 4000

Cauchy LR (%) 70.33 90.47 95.07 96.87 97.73 97.73

CNNs (%) 29.6 58.2 72.40 89.00 98.13 98.47

Training size 5000 6000 7000 8000 9000 10000

Cauchy LR (%) 98.20 98.47 98.73 98.80 98.33 98.80

CNNs (%) 99.53 99.67 99.60 99.67 99.60 99.87

In practice, it is unlikely that the logos being classified will be clearly visible.

Figure 3.9 shows an example of three clear testing images and the effects of adding

noise with increasing variances. The intensity values of all pixels are normalised,

giving values between 0 and 1. Zero mean white Gaussian noise is then added to

each pixel, with the effects of noise variances of 0.1, 0.2 and 0.3. As shown in Figure

3.9, an image is highly contaminated if the variance of the Gaussian noise is above

0.2, and even difficult to distinguish by human vision when the noise variance has

been increased to 0.3.

In this simulation, image from both training and testing images are added with

zero mean Gaussian white noise, with the noise variance σ2 being a random value
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Figure 3.9: An example of three testing images (the first column) and the effects by
adding Gaussian white noise to image intensities with zero mean and variances of 0.1, 0.2,
0.3 from left to right respectively.

between 0 and σ2
max, where σ2

max = {0.1, 0.2, 0.3}.

Table 3.3: Comparisons between Cauchy prior LR with CNNs when training and testing
images are noisy.

σ2max 0.1 0.2 0.3

HOG 79.47 68.20 62.20

CNNs 98.80 97 93.40

Table 3.3 indicates that HOG features are sensitive to noise, while CNNs are

robust to noise. For example, when random zero-mean Gaussian noises are generated

with the variance within 0 to 0.2, the HOG features could only achieve an accuracy

of 68.20% while CNNs achieve an accuracy of 97%. As aforementioned the 1% of

accuracy improvement on clear images seems trivial; the robustness to noise suggests

CNNs can be applied when HOG features fail.
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3.7 Summary

State-of-the-art VLR approaches typically consider training models on large datasets.

However, there might only be a small training dataset to start with and more data

can be obtained during the real-time applications. This chapter proposes an on-

line image recognition framework which provides solutions for both small and large

datasets. Using this recognition framework, models are built efficiently using a weight

updating scheme. The Cauchy prior logistic regression with CGD is proposed to deal

with the multinomial classification tasks. The motivation of using a Cauchy prior

is due to the sparsity on the weights. The Cauchy prior results in a quick conver-

gence speed for the weight updating process which could decrease the computational

costs. By testing with a publicly available dataset, the Cauchy prior LR decreases

the classification time by 58%. The Cauchy prior LR has been tested in both offline

and online situations, and the online weight updating scheme further decreases the

computational costs. The HOG features and Cauchy prior LR framework give an

efficient solution to VLR when there are fewer than 300 images in each category.

However, when giving more training datasets for training, the HOG features could

not improve the accuracy any further. This chapter further develops a CNN frame-

work when the dataset is very large. The CNNs take advantage of the automatic

feature extraction scheme based on large training dataset. Hence, it could be more

accurate and robust to image challenges such as noise. Notice that CNN frameworks

and HOG features with Cauchy prior LR are two independent systems. However,

future work could be conducted in order to make smooth transition between the two

systems.
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Chapter 4

Spatial Invariant Feature

Transform and Back-propagation

Bayesian Compressive Sensing

Classifier

4.1 Introduction

An efficient traditional recognition framework requires both good feature representa-

tion and effective classification methods. The reason for investigating the traditional

framework lies in the deep learning based methods requiring high computational

costs and big datasets, which might not be available in some applications; in con-

trast traditional frameworks could give good results in some applications. For the

image features, this chapter develops such a framework based on spatial SIFT fea-

tures. The performance of the developed framework is compared to methods based

on the HOG features and SIFT features. The spatial information of SIFT features

gives more representative vectors than in HOG features and SIFT features.

For the classification, this chapter proposes a novel non-parametric classifier.
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State-of-the-art parametric classifiers such as LR and SVM can result in inadequately

trained models, leading to inappropriate predictions in the testing phase. Unlike

parametric classifiers, the proposed SBCS classifier does not train a model and thus

avoids this problem. In addition, the proposed classifier is combined with a column-

based subspace sampling process in order to deal with high computational costs

situations. By testing with a publicly available vehicle logo dataset, it is shown that

the proposed classifier gives accurate results when compared with the state-of-the-

art non-parametric classifiers. The SBCS is also tested on other applications such as

scene recognition and the CIFAR-10 dataset. The proposed approach outperforms

the CNNs in noisy conditions by using only a small fraction of the original dataset.

The rest of this chapter is organised as follows. Section 4.2 introduces how the

pyramid idea based on the SIFT feature is applied and how the LR is employed

in order to solve the multinomial classification problem. Section 4.3 introduces the

proposed SBCS classifier. Evaluations of the spatial SIFT features and the SBCS

classifier are presented in Section 4.4 and Section 4.4. Section 4.6 summarises this

chapter.

4.2 Spatial Scale Invariant Feature Transform

In the BOW model, the magnitude of each ‘word’ in the histogram is only decided by

its occurring frequency in an image. The information of where the feature originates

from does not influence the representation vector. In fact, the geographical infor-

mation of the interest points is deliberately avoided in order to ensure that interest

points at different locations can be matched, making the process invariant to shifts.

However, applications such as vehicle logos often occupy the entirety of the train-

ing and testing images after a segmentation process. The geographical information

might be useful in such a case. For example, the ‘V’ is always above the ‘W’ in a

detected Volkswagen logo image and using such information can potentially give a

more accurate classification.
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Lazebnik et al. [108] proposed the idea of partitioning the image into sub-regions

and then using the BOW model over each sub-region for natural images. Specifically,

the original image is first partitioned into four sub-regions, then into 16 sub-regions

in the next level and so on. The BOW model is applied over each sub-region and

the final feature is formed by concatenating the histograms from the original image

and all the sub-regions. The result is a pyramid-like structure, where each level, as

you move down the pyramid, is focused on a smaller region of the image. Each level

is often called a pyramid scale.

The pyramid idea has been applied in VLR tasks by using the Dense-SIFT global

descriptor [67, 109]. However, the Dense-SIFT feature method regards all pixels in

the original map as interest points, which makes the interest points not robust as

there is a lack of feature detection process [110]. Instead, this chapter proposes using

the pyramid idea with the SIFT descriptor for VLR.

Figure 4.1: An example of spatial pyramid interest points. The centre of the yellow
circles are locations of SIFT features in their corresponding maps and the yellow bars
represent the main orientations. Since the interest points are from different DOG maps,
the size of the yellow circles varies.
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4.2. Spatial Scale Invariant Feature Transform

Figure 4.1 illustrates the pyramid partition of an image. By using the BOW

representation model, the original image can be represented by a histogram of k

dimensions (k is defined by k-means clustering) in the first pyramid scale; then, the

image is divided into four sub-regions and 16 sub-regions in the second and third

pyramid scales, respectively. The BOW model is applied over each region to obtain

histogram vectors and all these histogram vectors generated from both original scale

and sub-scales are concatenated into a histogram vector to represent the image.

Figure 4.2 shows an example of how the BOW model represents the image in

Figure 4.1, using the SIFT features and the spatial SIFT features. For illustration

purpose, k=50 is applied in the k-means clustering and two pyramid levels are applied

for the spatial SIFT features. By using the SIFT features, the BOW is only applied to

the original image therefore the image is represented by a histogram vector of length

50 (Figure 4.2 (a)). However, using the spatial SIFT features, BOW is applied to

both the original image and the sub-regions. Hence, the image is represented by a

vector of length 250 (Figure 4.2 (b)). As both SIFT and spatial SIFT features are

sharing the same dictionary, the SIFT vector forms the first portion of the spatial

SIFT vector.
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( b ) BOW representation based on spatial-SIFT features

Figure 4.2: The BOW representation for the image in Figure 4.1 based on the SIFT
features (a) and the spatial SIFT features (b).
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Figure 4.3: The developed recognition framework by using Spatial SIFT features.

In the performance evaluations, the spatial SIFT features are compared with

the HOG and SIFT features. Three common classifiers are applied as the choice of

classifiers (LR, SVM and KNN). The developed VLR framework, which combines

the spatial SIFT features with the LR classifier, is shown in Figure 4.3. According

to the experimental results, it is found that the non-parametric classifier KNN is

vulnerable to noise when compared with parametric classifiers such as LR and SVM.

KNN does not require a training stage, therefore, it would not suffer from insufficient

training models. This motivates the author to find such a non-parametric classifier

that could get rid of the training stage while achieving good robustness to noise.

4.3 Back-propagation Bayesian Compressive Sens-

ing

4.3.1 Bayesian Compressive Sensing

The Sparse Representation Classifier (SRC) proposed by Wright et al. [81] is a non-

parametric classifier based on sparse representation. It has proved to be more accu-

rate than the linear SVM and the KNN classifier for face recognition. However, the

high computational costs associated with the SRC can be a problem. In addition,

the SRC works only when the system is under-determined [82]. In practice, this

criterion cannot be met when there is a lack of training data. The Bayesian Com-

pressive Sensing (BCS) method [89] uses the same assumption that a testing image

can be represented as a linear combination of few training images, where the relative
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4.3. Back-propagation Bayesian Compressive Sensing

importance of each training image is controlled by the weights vector w ∈ RN×1. It

provides an alternative to the l1-norm minimisation as in SRC by incorporating prior

knowledge with a Bayesian approach. Here, w can be separated into wv ∈ RN×1

and we ∈ RN×1, where wv contains the significant weights and we the remaining

negligible weights. Hence, w = wv + we and equation (2.19) can be written as:

x∗ = Xwv + Xwe + z. (4.1)

Both Xwe and z can be approximated as a zero-mean Gaussian noise [89], allowing

equation (4.1) to be written as:

x∗ = Xwv + n, (4.2)

where n = Xwe + z. The variance of n is then given by Σn = σ2IM , where IM is an

identity matrix of size [M ×M ]. Note that each entry in n has the same variance

σ2 and hence the likelihood function can be given by:

p(x∗|w, σ2) = (2πσ2)−
M
2 exp

{
−||x

∗ −Xw||22
2σ2

}
, (4.3)

rather than in the standard multivariate form which includes the covariance matrix

Σn. Note, in equation (4.3) and henceforth the subscript v is dropped on w.

A zero mean Gaussian prior is used to impose a belief that w is sparse. This is

given by:

p(w|α) =
N∏
i=1

N (wi|0, α−1i )

=
N∏
i=1

(2πα−1i )−
1
2 exp

{
−1

2
αiw

2
i

}
= (2π)−

N
2 |A|

1
2 exp

{
−1

2
wTAw

}
, (4.4)
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where A = diag(α1, α2, · · · , αN) and α = [α1, α2, · · · , αN ]T, αi is a precision value

and | · | denotes the determinant. Furthermore, Gamma hierarchical priors are con-

sidered over αi and σ2:

p(α) =
N∏
i=1

Gamma(αi|a, b), (4.5)

p(σ2) = Gamma(σ2|c, d), (4.6)

where a, b, c and d are shape and scale parameters.

The overall prior over w can be evaluated by marginalising over the hyper-

parameters α:

p(w|a, b) =
N∏
i=1

∫ ∞
0

N (wi|0, α−1i )Gamma(αi|a, b)dαi. (4.7)

Since the prior of w is assumed to be a zero-mean Gaussian distribution which

conjugates to a Gamma prior, the probability density p(w|a, b) corresponds to a

Student’s t-distribution [111]. This achieves sparsity as the Student’s t-distribution

can be strongly peaked at wi = 0 with appropriate choices of a and b [89, 111].

Combining the likelihood and the prior given in equations (4.3) and (4.4), the

posterior distribution of the weights can be found from:

p(w|x∗,α, σ2) =
p(x∗|w, σ2)p(w|α)

p(x∗|α, σ2)
. (4.8)

As the likelihood and prior are both Gaussian, the posterior distribution over w is

also a Gaussian distribution:

p(w|x∗,α, σ2) = N (w|µ,Σ),

= (2π)−N/2|Σ|−1/2exp
{
−1

2
(w − µ)TΣ−1(w − µ)

}
, (4.9)
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where the mean and covariance are given by:

µ = σ−2ΣXTx∗ (4.10)

and

Σ = (A + σ−2XTX)−1, (4.11)

respectively.

Notice that µ and Σ are dependent on σ2 and α. Therefore, the goal is to find

the posterior probability density function over all the unknown parameters given the

training data and the testing image. Hence, the aim is to find the values for w, α

and σ2 which maximise the following posterior probability density function:

p(w,α, σ2|x∗) = p(w|x∗,α, σ2)p(α, σ2|x∗). (4.12)

Finding the optimal w, α and σ2 involves two steps. Firstly, for the current

values of µ and Σ the values of α and σ2 are calculated to maximise p(α, σ2|x∗).

Then these values are substituted to re-evaluate µ and Σ. This process is then

repeated until a convergence criterion is met. In the first step µ and Σ are fixed

then maximising equation (4.12) is equivalent to maximising:

p(α, σ2|x∗) =
p(x∗|α, σ2)p(α)p(σ2)

p(x∗)
, (4.13)

where the denominator is independent ofα and σ2. Therefore, only p(x∗|α, σ2)p(α)p(σ2)

has to be maximised. Furthermore, by selecting a, b, c and d to be small positive val-

ues, there are flat, uninformative priors over α and σ2 [111]. Thus, maximising

equation (4.13) is approximately equal to maximising the marginal likelihood:

p(x∗|α, σ2) =

∫
p(x∗|w, σ2)p(w|α)dw, (4.14)
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with p(x∗|w, σ2) and p(w|α) being given in equations (4.3) and (4.4), respectively.

Details for the derivation of the marginal likelihood are given in Appendix A.

Equation (4.14) is a convolution of two zero-mean Gaussians and the natural

logarithm of the result gives:

L(α, σ2) = ln
(
p(x∗|α, σ2)

)
= ln (N (x∗|0,C))

= −1

2

(
Mln(2π) + ln|C|+ x∗TC−1x∗

)
, (4.15)

where the M ×M matrix C is given by:

C = σ2IM + XA−1XT. (4.16)

A type-II maximum likelihood approximation can be used to estimate α and

σ2 [111], which gives:

αnewi =
1− αiΣii

µ2
i

, (4.17)

(σnew)2 =
||x∗ −Xµ||22

M −
∑N

i (1− αiΣii)
, (4.18)

where Σii is the i-th diagonal element of Σ in equation (4.11). Notice that α and

σ2 are functions of µ and Σ, while µ and Σ are functions of α and σ2. As previ-

ously discussed, this suggests an iterative algorithm to update each variable until a

convergence criterion has been met. A derivation for the update equations in (4.17)

and (4.18) is provided in Appendix A.
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4.3.2 Back-propagation Bayesian Compressive Sensing with

the Column-based Subspace Sampling

Back-propagation Bayesian Compressive Sensing

Given that the training images in X belong to C classes, where the class label

i ∈ {1, 2, · · · , C}, the training images can be separated according to their labels.

This gives X = [X1,X2, · · · ,Xi, · · · ,XC ], where Xi contains all of the training

images belonging to the ith class. Suppose that there are ni samples in the ith class,

then all of the training images in the ith class are given by Xi = [xi1,x
i
2, · · · ,xini

].

Notice, this process only separates the training images by their labels; the total

number of training images does not change. Hence,
∑C

i ni = N .

Therefore the original testing image can be reconstructed by ŵ:

x̃∗ = [X1,X2, · · · ,XC ]

 ŵ1

ŵ2

...
ŵC

 , (4.19)

where x̃∗ is an estimation of the original image x∗ and

ŵ =
[
[ŵ1]T, [ŵ2]T, · · · , [ŵC ]T

]T
. Based on the assumption that a testing image is

a linear combination of a few images from its corresponding class, non-zero valued

elements in ŵ should be only in ŵi if the testing image belongs to the class i. The

BCS approach [90, 91] assigns the testing image to the class i if it has the highest

norm-2 magnitude of ŵi.

However, when there are training images with no or a very small number of points

of interest, most of the resulting feature vectors will be zero valued. This would allow

large weight values in ŵ without detrimentally affecting the likelihood value when

evaluating equation (4.3). These inappropriately large weight values can lead to

a logo being misclassified when using the l2-norm of the weights as a classification

mechanism. To overcome this problem this chapter proposes a classification approach

based on a back-propagation process.
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The proposed method reconstructs the testing images by a BCS process in which

the images are represented by equation (4.19). The weights vector ŵ is separated into

C vectors with each vector keeping the value in its corresponding weights locations

and setting the remaining values to zero:

 ŵ1

ŵ2

...
ŵC

 =

[
ŵ1

0
...
0

]
+

[
0
ŵ2

...
0

]
+ · · ·+

[ 0
0
...

ŵC

]

ŵ = w̃1 + w̃2 + · · ·+ w̃C , (4.20)

where w̃i ∈ RN×1 and i ∈ {1, 2, · · · , C}. Each w̃i is used to reconstruct the testing

image xicons as follows:

xicons = Xw̃i. (4.21)

The testing image x∗ will be assigned to the class with the corresponding recon-

structed image to which it is most similar. More specifically, if the testing image

recovered by w̃i has the highest similarity with the original testing image x∗, then

this testing image can be classified into the ith class. In order to compute the simi-

larity between the image recovered by w̃i and the original image x∗, an error term

is defined for each class:

Err(i) = ||x∗ − xicons||2. (4.22)

Then the testing image can be classified into the class which gives the minimum

error.

Column-based Subspace Sampling

Since all the training data are used to evaluate the weights, it is time consuming to

implement the algorithm when the dataset is very large. Methods in [112,113] map

the data into a reduced dimension space, as for Principle Component Analysis (PCA).

However, these new latent spaces make the original data difficult to interpret. To

combat this issue the column-based subspace sampling can instead be used [114–116].
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In this case it is still possible to work in the original space, just with fewer data points.

Estimating the coefficients in equation (4.2) for SBCS can be time consuming

when X is in a high dimension. PCA can solve this problem by mapping the data

into a lower dimensional data space. However, as the space has been altered, each

entry can be difficult to interpret. In addition, all the testing data are transferred

into the new space. This restricts the system to only work in offline applications,

as adding more data would change the previous feature space entirely. The column-

based subspace sampling method can avoid these problems [114]. It selects the “best”

subset of d columns from X, where d < N .

Let Xn represent the “best” rank-n approximation to X by singular value de-

composition. The output matrix D ∈ RM×d consists of d columns from X such that

the inequality in equation (4.23) is valid for a probability at least 1− δ.

||X−DD+X||F 6 (1 + ρ)||X−Xn||F , (4.23)

where || · ||F is the Frobenius norm, D+ is a Moore-Penrose generalized inverse of D,

ρ is an error parameter and δ is the failure probability.

Define a score for each column in “X” in the following form:

πj =
1

n

n∑
ξ=1

(vξj)
2, (4.24)

where vξj (j = 1, 2, · · · , N) is the jth coordinate of vξ and vξ ∈ RN×1 (ξ = 1, 2, · · · , n)

is the top right n singular vectors of X. A random sampling process is applied on

X and the jth column of X is adopted with probability min{1, dπj}, where d =

O(nln(n/ρ2)). All the adopted columns then generate the target matrix D, with d

examples to represent the original dataset. The detailed proof is given in [114,116].
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4.4 Performance Evaluations on Spatial Scale In-

variant Feature Transform

In this section, the proposed framework is applied on the open dataset provided by

Huang et al. [50] in order to evaluate the performance. The dataset is the same as the

dataset used in Chapter 3. The performance evaluation is conducted in MATLAB

on a computer with the following specification: I5, 3.4G Quad-core, and 8G mem-

ory. The open source library VLFeat [117] is used for SIFT features extraction and

LIBSVM toolbox [118] is used for SVM classification. The following result shows the

performance of the HOG, SIFT and spatial SIFT features when they are combined

with different classifiers such as the SVM, LR and KNN. Different levels of noise are

added in order to examine the robustness of the proposed framework.

4.4.1 Feature Comparisons

Three classifiers are used in this section and the following for feature classification,

which are the KNN, SVM and LR. The SVM uses the default radial basis function

kernel in LIBSVM and λ = 0.1 is set in the LR classifier.

Table 4.1: Performance of HOG by using different classifiers.

HOG features

Classifier SVM LR KNN

Accuracy (%) 88.40 97.53 95.67

Misclassified images from

1500 testing images 174 37.05 64.95

From Table 4.1 it can be seen that LR outperforms SVM and KNN in terms

of classification accuracy. This validates the use of LR in VLR. For local features

such as SIFT and spatial SIFT, the dictionary size will influence the performance in

terms of accuracy. Hence, the SVM, KNN and LR with ten different dictionary sizes
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are tested. Centroids of k-means clustering are randomly initialised, which results in

different outcomes with each run; therefore, the experiments are conducted 30 times

and the mean results with variances are presented.

Table 4.2: Classification accuracies (µ± σ) on 1500 testing images using SIFT features,
according to different dictionary sizes in the k-means clustering (30 runs).

SIFT features

K 50 100 200 300 400

SVM (%) 88.09± 1.01 92.87± 0.55 95.89± 0.61 97.09± 0.46 97.64± 0.27

Misclassified images 178.65 106.95 61.65 43.65 35.40

LR (%) 88.76± 1.13 95.18± 0.62 98.56± 0.32 99.11± 0.22 99.37± 0.16

Err(/1500) 170.40 72.30 21.60 13.35 9.45

KNN (%) 96.55± 2.33 97.93± 0.37 98.55± 0.33 98.60± 0.26 98.46± 0.28

Misclassified images 51.75 31.05 21.75 21 23.10

K 500 600 700 800 900

SVM (%) 97.77± 0.25 97.96± 0.26 98± 0.19 98± 0.25 98.05± 0.19

Misclassified images 33.45 30.60 30 30 29.25

LR (%) 99.54± 0.12 99.63± 0.11 99.70± 0.10 99.70± 0.13 99.76± 0.14

Misclassified images 6.90 5.55 4.50 4.50 3.60

KNN (%) 98.66± 0.25 98.68± 0.27 98.73± 0.29 98.69± 0.25 98.81± 0.24

Misclassified images 20.10 20.10 19.05 19.65 17.85

Table 4.2 shows that increasing dictionary size improves the classification accu-

racy. This is because the feature naturally contains more information in a higher

dimensional space. Among these three classifiers, the LR classifier always achieves a

slightly higher accuracy than the SVM on this dataset, while the KNN achieves high

accuracy than the rest when the dictionary size is smaller than 300. However, when

the dimension increases, the improvement of KNN is not as obvious as for both the

SVM and LR. Furthermore, the variance of accuracy achieved when using the LR

is smaller than for both SVM and KNN on this dataset. This indicates that the

performance of the LR classifier is more stable. By combining SIFT features with

the LR classifier, a recognition accuracy of 99.76± 0.14 is achieved on this dataset,

which is slightly higher than the previous highest accuracy achieved by PCA-CNNs

(99.13± 0.24) [50].
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Table 4.3: Classification accuracies (µ±σ) on 1500 testing images by using spatial SIFT
features, according to different dictionary sizes in the the k-means clustering (30 runs).

Spatial SIFT features

K 50 100 200 300 400

SVM (%) 89.52± 0.88 94.26± 0.59 96.36± 0.37 96.84± 0.32 97.04± 0.38

Misclassified images 157.20 86.10 54.60 47.40 44.40

LR (%) 95.34± 0.63 98.55± 0.25 99.55± 0.16 99.71± 0.12 99.81± 0.13

Misclassified images 69.90 21.75 6.75 4.35 2.85

KNN (%) 92.48± 0.45 93.11± 0.60 93.56± 0.69 93.85± 0.59 94.12± 0.53

Misclassified images 112.80 103.35 96.60 92.25 88.20

K 500 600 700 800 900

SVM (%) 97.10± 0.26 97.12± 0.25 97.08± 0.31 97.08± 0.26 97.20± 0.24

Misclassified images 43.50 43.20 43.80 43.80 42

LR (%) 99.87± 0.09 99.86± 0.08 99.90± 0.09 99.92± 0.08 99.93± 0.07

Misclassified images 1.95 2.10 1.50 1.20 1.05

KNN (%) 97.14± 0.49 96.82± 0.68 97.02± 0.60 96.98± 0.35 96.77± 0.38

Misclassified images 42.90 47.70 44.70 45.30 48.45

The pyramid level is set to 2 as the number of SIFT features is very limited in such

low resolution images. The recognition accuracies using the spatial SIFT features

and different classifiers are shown in Table 4.3. For both SVM and LR, the result

indicates that the spatial SIFT features achieves a slightly higher accuracy on this

dataset than the SIFT features no matter how large the dictionary is. However, for

KNN, using spatial SIFT features have the opposite effect and accuracy is reduced.

This lies on the features having been extended into a high dimensional space by

segmenting the image into pyramid sub-regions and studies show that KNN is not

sufficient when it is applied in a high dimensional space [45].

The efficiency of these features using the LR classifier has been compared. In this

subsection and the one that follows only the LR is adopted as the classifier. This is

because the results up to this point indicate that it is the most accurate of the clas-

sifiers. The experiment sets k=300 as a compromise between computational costs

and accuracy. It is a dilemma here as increasing the dictionary size also increases

the computational costs. For example, by the proposed framework, recognising all
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Table 4.4: Computational costs by using different features with the LR classifier on
10000 training images and 1500 testing images.

Features HOG SIFT spatial SIFT

Accuracy (%) 97.53 99.11 99.71

Misclassified images 37.05 13.35 4.35

Time-whole-process (s) 190 571 967

Time-per-test (s) 0.06 0.08 0.23

the testing images needs 847 and 1291 seconds when k = 200 and k = 400, respec-

tively with its accuracy almost unchanged. The result in Table 4.4 indicates that

spatial SIFT obtained the an average accuracy of 99.71%, with the SIFT achieving

an average accuracy of 99.11%, and the HOG of 97.53%, respectively. The difference

in accuracies seems negligible, however, the coming subsection will show that the

spatial SIFT features are more robust to noise.

4.4.2 Feature Robustness to Noise

Figure 4.4: An example of a training image and effects by adding Gaussian noise with
zero means and variance values 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 from left to right,
respectively.

In practice, we would not expect to always have clear logos in the images. As a

result, here noises are added to the images in order to test the robustness of these

features with the LR classifier. The noise is Gaussian with zero mean and differing

levels of variance. Since the Gaussian noise is random, all experiments have been
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conducted for ten times and their mean values are applied. Figure 4.4 shows an

original training example and the effects by adding noise with increasing variances.

Normally an image is highly contaminated if the Gaussian noise variance is above

0.2. The noise is added to the training and testing images separately with variances

given by σtrain and σtest, respectively.
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Figure 4.5: Accuracy of the recognition framework by using the HOG features.

Figure 4.5 illustrates how different noise variance levels for both training and

testing images influence the accuracy when using the HOG features. Without sur-

prise, adding noise in the image decreases the accuracy compared to the noise free

case. Generally speaking, when the noise variance in the training set is fixed, the

higher the noise variance added to the test images, the lower the accuracy will be.

For example, σ2
test=0.02 always outperforms σ2

test=0.3 in terms of accuracy. However,

when the noise in the testing images is fixed, the highest accuracy tends to be found

when the training images have similar noise variance levels. For instance, the highest

accuracy for σ2
test=0.05 is found when σ2

train=0.05; in contrast, the model trained by

clearer training images (when σ2
train=0.02) gives a less accurate recognition result.

As a result, a higher accuracy can be achieved by matching σ2
train to σ2

test.

Compared with the HOG features, the SIFT features are more robust to noise as

shown in Figure 4.6. The main reason why some misclassifications occur in extreme

noise scenarios is that no SIFT features are detected. However, this does not always
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Figure 4.6: Accuracy of the recognition framework by using the SIFT features.

happen, meaning a good overall recognition accuracy is achieved.
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Figure 4.7: Accuracy of the recognition framework using the spatial SIFT features.

As shown in Figure 4.7, the spatial SIFT features give the highest accuracy when

compared with the SIFT features and the HOG features. All accuracy results in

Figure 4.7 are above the corresponding ones in Figure 4.6. This improvement shows

that the geographic information included in spatial SIFT features have resulted in a

more robust performance than for SIFT features.
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4.5 Performance Evaluations on Non-parametric

Classification Methods

This section focuses on the evaluations of the proposed SBCS classifier. Three differ-

ent datasets are evaluated: vehicle logo dataset [50], traffic scene dataset [119] and

CIFAR-10 dataset [120].

4.5.1 Evaluations on the Vehicle Logo Recognition Dataset

As the focus is the non-parametric classifier comparisons, the SIFT features are

applied in this section due to its accuracy and efficiency. The open source library

VLFeat [117] is applied for extracting the SIFT features. A comparison is made with

the SRC (implemented using CVX [121,122]), BCS classifier and KNN classifier. In

the experiment, K=1 achieves the best result for clear images. Different K values

influence the result when images are noisy, while the prior knowledge of images is

unknown. Therefore, as is commonly done in the literature, [81, 115], here, a value

of K = 1 is selected for all considered examples. The performance of each method is

evaluated in terms of accuracy (percentage of correctly classified images), the total

number of misclassified images and the computation time (to indicate the relative

computational complexities).

This subsection compares the performances of the classification methods when

applied to the images that are provided in the dataset [50], the same dataset as in

Chapter 3. The simulation is repeated 30 times and the average accuracy is found

and given with the corresponding standard deviation. The computation time and

the number of misclassified images are also given as the mean results for all the

simulation runs.

Table 4.5 shows that the SBCS classifier achieves the highest accuracy of 98.91%.

Table 4.5 also indicates that the BCS classifier is less accurate than the SRC and

SBCS classifier. For example, when k=300, the BCS classifier incorrectly classifies
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Table 4.5: Non-parametric classifiers comparisons using SIFT descriptors with k=100,
200, 300, 400, 500, where k is the number of centroid in k-means clustering.

Classifiers KNN SRC BCS SBCS

M=100 (Accuracy%) 98.29± 0.36 98.30± 0.44 92.17± 0.77 98.24± 0.32

Misclassified images 25.65 25.50 117.45 26.40

Time (s) 0.97 6357 868 868

M=200 (Accuracy%) 98.72± 0.24 98.73± 0.25 91.36± 0.54 98.60± 0.28

Misclassified images 19.20 19.05 129.60 21

Time (s) 1.84 7804 2358 2358

M=300 (Accuracy%) 98.63± 0.27 98.78± 0.24 90.77± 0.75 98.86± 0.22

Misclassified images 20.55 18.30 138.45 17.10

Time (s) 2.70 8360 3120 3120

M=400 (Accuracy%) 98.67± 0.30 98.83± 0.23 90.37± 0.77 98.91± 0.24

Misclassified images 19.95 17.55 144.45 16.35

Time (s) 3.54 9116 3360 3360

M=500 (Accuracy%) 98.74± 0.23 98.86± 0.19 90.25± 0.95 98.84± 0.25

Misclassified images 18.90 17.10 146.25 17.40

Time (s) 4.17 9582 3497 3497

138 images, while this is reduced to 17 images for the SBCS classifier. In this case, the

number of misclassifications is reduced by 88% without increasing the computational

costs. For all the values of k considered, there was a mean reduction in the number

of misclassified logos of 87% for SBCS classifier as compared to the BCS classifier.

The computation times in Table 4.5 show that this improvement in classification

accuracy comes without an increase in computational time.

The SRC and SBCS classifier give very similar classification accuracies. However,

the SBCS classifier has a significant advantage in terms of computational time. For

the example when k=300, the proposed SBCS classifier reduces the computational

time by 63% when compared with the SRC whilst giving a slightly improved accuracy

compared with the SRC algorithm. When comparing the computation times of the

proposed SBCS classifier to the SRC, for all values of k considered, there is a mean

reduction in the computation time of 68%. It only takes about two seconds to

recognise an image using the SBCS classifier (note, that the times in Table 4.5
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are for classifying all images in the testing dataset). The computation times show

that the KNN classifier is quicker than the proposed SBCS classification approach.

However, later results will show that it is more vulnerable to the effects of noise.

Note that, according to these results, the computation times for the BCS and

SBCS based classifiers are the same. However, the accuracy is consistently lower for

the BCS classifier as compared to the SBCS classifier. The accuracy of the other two

classifiers considered in the comparison also outperforms the BCS based method. As

a result, the BCS based classifier will not be considered further in this performance

evaluation.

Figure 4.8: The first row illustrates some challenging images, the second, third and
fourth rows are the corresponding results classified by KNN, SRC and SBCS, respectively.

Figure 4.8 shows 20 images (from the original testing dataset) that the KNN

algorithm fails to satisfactorily classify. The first row gives the images that are

under consideration and the second row gives the classification results from the KNN

classifier. For comparison the SRC and SBCS classification results are shown in rows

3 and 4, respectively. The relative performances of the three methods are also further

summarised in Table 4.6. Here it can be seen that both methods outperform the

KNN algorithm in terms of classification accuracy. Note that the 30 independent

simulation runs are conducted with the final selected class being the most frequent

overall.

Table 4.6: Accuracies obtained using challenging data.

Classifier KNN SRC SBCS

Accuracy 19.17% 43.83% 47%
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Classification Comparisons with Noise

0 0.02 0.05 0.1 0.15 0.2 0.25 0.3

Training noise varances  
2

train

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

(a) KNN classifier

Testing noise

variance 2
test

0

0.02

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.05 0.1 0.15 0.2 0.25 0.3

Training noise varances  
2

train

40

60

80

100

A
c
c
u

ra
c
y
 (

%
)

(b) SRC classifier

Testing noise

variance 2
test

0

0.02

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.05 0.1 0.15 0.2 0.25 0.3

Training noise varances  
2

train

40

60

80

100

A
c
c
u
ra

c
y
 (

%
)

(c) SBCS classifier

Testing noise

variance 2
test

0

0.02

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4.9: Noise robustness comparisons of KNN, SRC and SBCS using the full training
dataset.

The same noise scheme as shown in Figure 4.4 is applied to compare to the
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performances of KNN, SRC and SBCS. Figure 4.9 shows that the KNN classifier is

the most vulnerable to the effects of noise. This can be explained by the fact that the

KNN classifier only calculates the Euclidean distance between two feature vectors,

while the other two allow for some errors when modelling a testing image as a linear

combination of the training images. The performances of the SBCS classifier and the

SRC are similar, while the SBCS classifier tends to be more accurate compared with

the SRC when the training images are heavily contaminated by noise. For instance,

when the noise variances are 0.25 in the training and testing images, the SBCS

classifier, the SRC and KNN achieve 75.87 %, 73.79% and 57.31%, respectively.

Furthermore, when the noise variances increase to 0.3, the SBCS classifier, the SRC

and KNN can achieve 70.05 %, 67.82% and 51.30%, respectively.
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Figure 4.10: The total number of SIFT features detected from images with different
noise variances.

Figure 4.10 shows that different numbers of SIFT features could be detected from

the training dataset by adding noise with different variances. The result shows that

in slightly noisy images there are more SIFT features could be detected; this could

result in the image representation vector being more representative. However, when

increasing the noise variance, less SIFT features could be detected as the images

are seriously damaged by noise. Apart from the number of SIFT features, the prior

knowledge of the noise can also influence the result. When the testing and training

75



4.5. Performance Evaluations on Non-parametric Classification
Methods

images have the same noise variance, this could potentially perform better than other

scenarios.

Column-based Subspace Sampling

In this subsection, a reduced number of training images are used to evaluate the

situation where the size of the dictionary is large. Table 4.7 shows the time and

computational costs comparisons for different classifiers. Using the column-based

subspace sampling method, the partial dictionary size is decreased to 20% and 10%

(denoted as p1 and p2, respectively) when compared to the original dataset (denoted

as all). The computational costs decrease about six times (p1) and 11 times (p2),

while the accuracy drops slightly. The proposed SBCS approach requires an overall

time 500 and 277 seconds, respectively, which is 0.3s and 0.18s per image. The

experiments are performed over 1500 images. This could still be applied to real-time

applications. Even though the computational costs of the proposed algorithm are

still higher than the computational costs of the KNN algorithm, it is more robust

than the KNN when applied to noisy images. Since 10% data reduction does not

decrease the accuracy significantly, the next experiments are performed with 10%

data reduction as a trade-off between the computational costs and accuracy.

Table 4.7: Comparisons between using the full and partial dictionaries.

Classifiers KNN(f) SRC(f) SBCS(f)

Accuracy(%) 98.63± 0.27 98.78± 0.24 98.86± 0.22

Misclassified images 26.33 18.30 17.10

Time(s) 2.70 8360 3120

Classifiers KNN(p1) SRC(p1) SBCS(p1)

Accuracy(%) 97.32± 0.47 98.54± 0.31 98.24± 0.35

Misclassified images 40.20 21.83 26.83

Time(s) 0.25 1436 500

Classifiers KNN(p2) SRC(p2) SBCS(p2)

Accuracy(%) 96.75± 0.86 97.49± 0.61 96.94± 0.52

Misclassified images 40.20 21.83 26.83

Time(s) 0.13 1170 277
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Figure 4.11: Noise robustness comparisons of KNN, SRC and SBCS when there are
10% training examples in each class using the column-based subspace sampling.

Figure 4.11 shows the result of different classifiers when the dictionary size is

decreased to 10% by the column-based subspace sampling method. When comparing

the accuracies to those shown in Figure 4.9, the accuracy of each classification method
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Figure 4.12: Noise robustness comparisons of KNN, SRC and SBCS when there are 1%
training examples in each class using the column-based subspace sampling.

has been reduced when compared to Figure 4.11. Moreover, Figure 4.11 shows that

the KNN classifier is significantly affected by noise and the SRC is only marginally

more accurate than the SBCS classifier, despite having previously been shown to be
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less computationally efficient. However, the computational costs are dropped as the

dictionary size has decreased by 10 times.

The size of the training dataset is further decreased to only 1% selected images for

each class in each of the ten independent simulations, with the resulting classification

accuracies being shown in Figure 4.12. In this case, the accuracies of the KNN

classifier are not as high as the SBCS algorithm, especially when the noise levels

increase. The SRC no longer works since M > N and the system is no longer under-

determined. Note, that the conventional compressive sensing framework (as used in

the SRC) is specifically designed for systems which are under-determined [82]. This

leads to a random guess which can only achieve 10% accuracy as there are ten classes

with equal number of logos in each class.

4.5.2 Performance Evaluation for Scene Recognition

So far, the last section has considered the application of SBCS for VLR. Traffic

scene recognition is a very similar topic in Smart Cities. Here, the FM2 dataset

[119] is considered. This dataset contains 6237 images from eight classes: highway,

road, tunnel, tunnel exit, settlement, overpass, toll booth and dense traffic. Seventy

percent of the images are randomly chosen for the training stage and the other 30%

of images are for testing purposes. Figure 4.13 illustrates some examples of the

FM2 dataset. A pre-trained framework (AlexNet [1]) is used for feature extraction.

Instead of using the original weights from the network, which was trained on other

images, this work replaces the last fully connected layer to 200 neurons and fine

tunes the weights based on traffic scene images. Hence, each image is represented

by a vector of length 200. Note that the focus is on the classification method rather

than on the image feature extraction.

The column-based subspace sampling is applied to each training group. Since

each class has an imbalanced training data, the experiment set a maximum number of

200 to each class. When a class has more than 200 training images, the column-based
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Highway Road Tunnel

Exit Settlement Overpass

Booth Traffic

Figure 4.13: Image examples in the traffic scene dataset.

subspace sampling method is applied to this class. A comparison with a recently

developed deep learning approach, the CNNs from [1] is performed, where the weights

are trained for classification. Note that in CNNs the classification is applied directly

without using column-based subspace sampling. Since the parameters are fixed based

on the whole training dataset, there is no need of retraining a network using a much

smaller dataset. However, the results for KNN, SBCS and SRC are achieved on the

new dataset after the column based sub-sampling.

Table 4.8 shows the result from each classifier. Zero-mean Gaussian noises with

different noise variances are applied on these training images and testing images.

Without adding any noise, the CNNs achieve the highest accuracy. However, when

increasing the noise, the CNNs become fragile. Similar research shows that when

changing a few pixel values the classification result changes [123, 124]. However,
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Table 4.8: CNNs, KNN, SBCS and SRC comparisons on traffic scene dataset using
features extracted by AlexNet.

Noise variance CNN(%) KNN(%) SRC(%) SBCS(%)

0 87.70 84.41 87.00 86.31

0.01 57.01 73.21 79.73 79.89

0.1 10.59 56.04 57.59 64.39

0.2 7.43 52.03 42.51 54.33

using the extracted features from CNNs and applying them to other classifiers leads

to better results. Increasing the noise level, the proposed SBCS achieves the best

results. This is important as the real images are not always clear. Figure 4.14

illustrates how different noise levels influence an image.

Figure 4.14: An example of a traffic scene image with Gaussian noises.

4.5.3 Evaluations on External Dataset

The proposed SBCS approach has the potential to be applied to other areas, not

only restricted to VLR and traffic scene recognition. In the performance validation

the CIFAR-10 dataset [120] is used. This dataset consists of 50000 training images

and 10000 testing images. Here, a CNN framework similar to [1] is trained on the

new dataset, with the last fully connected layer extracted to give the feature vector.

Hence, each image is represented by a vector of length 200. Parameters of the network

can be found in Appendix A.

The column-based subspace sampling is applied to each training group. This

process picks 200 image feature vectors from 5000 image feature vectors in each group

(4% of the original size). Hence, in order to avoid using all image feature vectors, the
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dictionary X is formed by only 2000 representative image feature vectors. Both the

CNNs and SBCS approaches train the weights for classification. Similarly, in CNNs

the classification is applied directly without using column-based subspace sampling.

Table 4.9: CNNs, KNN, SBCS and SRC comparisons on CIFAR-10 dataset using
features extracted by AlexNet.

Noise variance CNN(%) KNN(%) SRC(%) SBCS(%)

0 81.87 68.79 78.53 73.40

0.01 47.60 52.77 52.51 58.36

0.02 36.37 42.39 43.80 46.98

Figure 4.15: An example of an image from CIFAR-10 with Gaussian noises.

Table 4.9 gives the performance of each classifier. Zero-mean Gaussian noises with

different noise variances are added on these training images and testing images. Note

that here the noise level is lower than the noise added in the VLR dataset. The reason

for this is the images in CIFAR-10 are tiny colour images. A small colour image can

be easily contained by adding up the noise effects from each channel. Figure 4.15

illustrates the effect of the noise contamination. Similar to the traffic scene dataset,

the result shows that the CNN classifier is not robust to noise. However, using the

features extracted by the CNNs and applying it to other classifiers could achieve

better accuracy. This is important as clear images are not always guaranteed in real

applications. Table 4.9 also shows that SRC should achieve good accuracy when the

images are noise free, even if only 4% training images are applied. However, when

the images are noisy, the SBCS algorithm achieves the best accuracy.
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4.6 Summary

In this chapter, a framework based on spatial SIFT features combined with LR has

been proposed for VLR. The spatial SIFT features, which include the geographical

knowledge of SIFT features, are more robust than both SIFT and HOG features in

noisy images. Three classifiers (SVM, LR, and KNN) are tested and the LR shows an

overall higher accuracy than both the SVM and KNN on this dataset. The proposed

framework achieved an average recognition accuracy of 99.93%, which exceeded the

previous record.

This chapter also proposes a novel non-parametric classification approach, namely

the BBCS classifier. The novelty of the work has two main components: i) the pro-

posed back propagation process, ii) the proposed column-based subspace sampling

to reduce the size of the dataset and associated computation costs. The developed

approach relies on the construction of the testing image using partial information

from the weights estimated by BCS. Note, that for each class there is a correspond-

ing reconstructed image. By comparing the reconstructed images with the testing

image, the objects of interest are reconstructed and classified. The proposed back-

propagation process gives a significant reduction of the misclassification error. For

VLR, the number of misclassified testing images reduces by 87% when compared

with the BCS classifier. Compared with the SRC, the SBCS algorithm gives a sim-

ilar recognition accuracy while decreasing the mean computational time by 68%.

However, the SRC does not work when the training dataset is small while the SBCS

algorithm gives a good performance in the same situation. Moreover, the KNN

classier is the most often applied non-parametric classifier for VLR and many other

applications. However, the proposed classifier and column-based subspace sampling

have been shown to be robust to the effects of heavy noise, unlike the KNN classi-

fier. The proposed approach is also valid on traffic scene recognition dataset and the

CIFAR-10 image dataset by using CNNs as feature method.
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Chapter 5

Learning Capsules and Joint

Frameworks

5.1 Introduction

In real applications, images can be damaged by different causes; for instance, an

image can be corrupted by occlusion, blurring, noise, etc. Recognising these images

usually requires an image restoration process in advance. The aim of image restora-

tion is to recover an image from its corrupted version. Restoration methods are

usually developed only for a particular image degradation, for example, BM3D [95]

is only designed for image de-noising and the work in [99] is only designed for image

super-resolution. Recently, the deep learning based methods, such as CNNs, achieved

state-of-the-art results in image de-noising and super-resolution. However, image oc-

clusion and orientation are common and challenging problems but less explored by

the state-of-the-art deep learning methods.

Conventional methods use the restoration and classification pipeline, in which a

restoration stage is followed by a classification process [4]. However, a joint frame-

work that simultaneously performs recognition and restoration would be valuable.

This chapter aims to develop such a joint framework, in which recognition and

restoration share weights and both tasks are performed simultaneously. Figure 5.1
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Figure 5.1: A general joint framework for image restoration and recognition.

illustrates the general architecture of a joint framework. In the restoration part,

image rotation and occlusion are considered. The proposed joint framework could

perform classification, remove the noise, correct a rotated image and recover an oc-

cluded image simultaneously. In Section 5.2, the joint framework based on CNNs

is introduced. Section 5.3 explains the mechanism of the capsule networks and how

to extend the capsule networks for the restoration task. Section 5.4 evaluates the

performance and Section 5.5 summarises this chapter.

5.2 Joint Framework for Recognition and Restora-

tion by Convolutional Neural Networks

The proposed joint framework composes both restoration and recognition processes

by incorporating common layers, restoration layers and classification layers. All com-

mon layers and restoration layers are generated by convolutional processes, while

classification layers consist of both pooling layers and convolutional layers. For im-

age restoration, which requires the output matrix to have the same size as the input

matrix, zero padding convolutions are applied to the common layers and restoration

layers. For the same reason, no pooling process shall be applied for these layers. On

the contrary, classification needs the pooling process and the valid padding convolu-
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tion process in order to decrease the size of the feature maps.

Common layers are layers shared by both restoration and classification tasks. In

the forward propagation, the corrupted images (input) are convolved with kernels

in the common layers and restoration layers. For each input image, the restoration

error function is given:

Lres =
1

nm

i=n∑
i=1

j=n∑
j=1

(R(i, j)− I(i, j))2 , (5.1)

where R(i, j) is the predicted value at the location index (i, j) in the last restoration

layer and the I(i, j) is the ground truth training image intensity at the location index

(i, j).

The loss function for the classification is the cross-entropy loss is defined as:

Lcla =
∑
i

(−yiln(ŷi)− (1− yi)ln(1− ŷi)) , (5.2)

here y and ŷ are the ground truth label and the predicted label for an image in the

one-hot coded matter (a vector only contain a value of 1, the rests are zero valued),

with the ith entry denoted as yi and ŷi. The gradient descent method is then applied

to minimise Lres and Lcla for the three-pathway framework. Hence, the total loss

function is given as:

Ltotal = Lcla + λLrec, (5.3)

where λ is the controlling factor for the restoration and classification. Then the

weights in both section could be updated according to the gradient. Algorithm 5

summarises the process of a joint framework.

Figure 5.2 illustrates a proposed joint framework based on CNNs. The joint

framework is composed of two common layers, two restoration layers and five classi-

fication layers (three pooling layers and two convolutional layers). In order to keep

the image size, kernels of the size [5× 5] are applied to all the common and restora-
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Algorithm 5 Training process of a joint framework

Input:

The original training images and labels.

The designed joint framework. The image degradation parameters.

Output:

Random initialise the convolutional kernels.

Separate the training data into small batches.

1: for iteration index=1, iteration index ++ do

2: for batch index=1, batch index ++ do

3: Contaminate the source image with image degradations such as rotation and oc-

clusion.

4: Run the network forward using the degraded images.

5: Calculate the total loss, combined by the classification loss and the restoration

loss.

6: Calculate the gradient of all the weights and update the weights.

7: end for

8: Decrease the learning rate.

9: end for

10: return The weights in the common layers, restoration layers and classification layers.

tion layers with a padding size of [2 2]. For recognition, two convolutional processes

and three pooling processes are applied. A fully connected layer is then connected

with the output label. The softmax process is applied in the last stage of the clas-

sification; hence, the output can present the probability of the input data belonging

to the corresponding class.

Notice that the loss function in the restoration is calculated from pixel to pixel;

this is naturally fragile to image rotation, as the rotation does not change the con-

tent while involving a huge variation in the loss function. In fact, the rotation can

seriously influence the classification accuracy in CNNs as its inherent properties of

the spatial pooling process [125,126]. A recent idea of capsules has been proposed by

Sabour et al. [127] in order to deal with the limitations of CNNs. A capsule is a group

of neurons, whose length represents the probability of the object’s (or part of the

object) existence, and the orientation represents the instantiation parameters [127].

Compared with a convolutional process which transfers scalar inputs to scalar out-
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Figure 5.2: The joint CNN framework for image recognition and restoration.

puts, a capsule transfers data from a group of neurons to a group of neurons between

adjacent capsule layers. Instead of using the Max-pooling process which only finds

the local response from an individual layer, a routing process is applied in capsule

networks in order to detect active capsules cross layers. Using a routing process,

each capsule predicts the output of higher level capsules. A lower level capsule be-

comes active if its prediction agrees with the true output of higher level capsules

using a dot product measurement. In the last fully connected capsule layer, weights

are optimised by a margin loss function. In the following, the capsule networks [127]

are introduced, with a proposed joint framework based on the learning capsules.

5.3 Learning Capsules for Recognition and Restora-

tion

In CNNs, connections between layers and layers are scalar-scalar. However, in a cap-

sule network, a group of neurons are combined in order to present an object or part
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of an object. Therefore, a neuron is replaced with a group of neurons and the con-

nections between capsule layers become vector-vector. For each capsule (represented

as a vector), a non-linear squash function f(·) is defined:

f(x) =
||x||22

1 + ||x||22
x

||x||2
, (5.4)

with x is the input vector of the squash function. This function makes the length

of short vectors shrink close to 0 and long vectors shrink close to 1, notice that the

length of the vectors is decided by the values in each input dimension. Hence, the

output length can be used to represent the probability that an object (or part of an

object) exists. The output of the capsule j (vj) is given by:

vj = f(hj), (5.5)

where hj is the input of the capsule j. Parameters in each capsule represent various

properties such as position, scale and orientation of a particular object (or part of

an object) [127].

Except the capsules in the first capsule layer, the total input of the capsule hj

is a weighted sum of all “predictions” oj|i (the predicted output of capsule j in the

current layer by the input capsule i from the previous layer) is given by:

hj =
∑
i

cijoj|i, (5.6)

where cij are coefficients determined by a routing process. Let qij denote the log prior

probabilities that the capsule i (in the previous layer) is coupled with the capsule j

(in the current layer); the coefficients cij can then be denoted as:

cij =
exp(qij)∑
d exp(qid)

, (5.7)

where the index d refers to capsules in the current layer. qij are initialised with zeros
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and updated by a routing algorithm. In the routing algorithm, qij is updated by the

following process:

q
(r+1)
ij = q

(r)
ij +

〈
vj,oj|i

〉
, (5.8)

where r is an iteration index. Note that the term
〈
vj,oj|i

〉
is the inner product of

the predicted output and its actual output (of the capsule j in the current layer).

The assumption is intuitive as for the capsule j in the current layer, all capsules from

the previous layer will predict its value. If the prediction made by the capsule i from

the previous layer is similar to the actual output vj, the capsule i should have a high

probability of the contribution. Hence, the coupling coefficient cij increases.

In equations (5.6) and (5.8), the predictions oj|i can be calculated by the output

capsules ui from the previous layer:

oj|i = Wijui, (5.9)

where Wij are transformation matrices connecting capsules between two adjacent

layers.

Suppose there are C classes, then the final capsule layer has C capsules, with the

length of each capsule representing the existence probability of the corresponding

object. To allow multiple classes exist in the same image, a margin loss is used, with

the loss Li for the class i (i = 1, 2, · · · , C) is given by:

Li = yi max(0,m+ − ||vi||2)2 + λ(1− yi) max(0, ||vi||2 −m−)2, (5.10)

where yi = 1 if and only if the object of the class i exists and ||vi||2 is the length of

the vector vi in the final capsule layer. This encourages the length of the capsule vi

to be above m+ if an object of the class i is present, and encourages the length of

the capsule vi to be below m− when an object of the class i is absent. Here λ is a

controlling parameter and the total classification loss is calculated by Lcla =
∑

i Li,

which simply sums the losses from all the final layer capsules.
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Figure 5.3: The architecture of capsule networks (similar to [127]).

In capsule networks, the back-prorogation is applied to update the convolutional

kernels and the transformation matrices. A routing process is applied to update the

weights for the coupling coefficients c and the log prior probabilities q. In capsule

networks, the vector-vector transformation could potentially extract more robust

features than scalar-scalar transformation in CNNs. In order to illustrate the general

architecture, a developed capsule network’s architecture for VLR is shown in Figure

5.3. It contains two convolutional layers and one fully connected layer. The size of

the first convolutional kernels is [21 × 21 × 128] ([height × width × depth]), and

a convolution operation is applied with a stride of two, followed by a ReLU non-

linear activation function. Hence, the output size of the first convolutional layer is

[25× 25× 128].

Figure 5.4: The capsule generation process in the proposed primary capsule layer.

The second convolutional process generates the primary capsule layer. Figure 5.4
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illustrates the capsule generation process from a convolutional layer. There are ten

groups of convolutional kernels, each is of the size [12×12×10] and is applied with a

stride of two. This process generates ten convolutional units, each of them is of the

size [7×7×10]. These units are re-grouped into ten channels, each channel containing

one layer from all convolutional units. Each channel is made up from 7 × 7 = 49

capsules with each capsule being a vector with ten entries. The primary capsule

layer connects with the final capsule layer by transformation matrices. This process

is the same with a fully connected layer in neural networks, except the scalar-scalar

transform is changed to a vector-vector transform.

Figure 5.5: The reconstruction process of the capsule networks.

The reconstruction process is a decoder using neural networks, with each layer

having 2048 neurons. By combining the recognition and reconstruction, the joint

framework could perform both recognition and reconstruction. However, if the in-

put is a degraded image, the capsule network could potentially be developed for

the restoration purpose. The joint framework based on capsule networks is named

as Joint-Cap-Net in this thesis. The training process of the Joint-Cap-Net is sum-

marised in Algorithm 6. The routing process is applied only between the primary

capsule layer and the final capsule layer. There are 7 × 7 × 10 = 490 capsules in

the primary capsule layer and ten (C=10) capsules in the final capsule layer. This

requires 4900 transformation matrices with the size of [10× 30]. The length of each

capsule in the final capsule layer represents the existence probability of the corre-

sponding object.
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Algorithm 6 The training process of the proposed Joint-Cap-Net

Input:

Input images.

Number of iterations r for the routing algorithm.

Output:

1: A convolutional operation with ReLU is applied to the input images.

2: A convolutional operation is applied to the convolutional layer 1 using convolution

kernel groups.

3: Reshape the primary capsule layer to capsules ui, each ui is squashed by the function

in (5.4).

4: Define a final capsule layer.

5: Define a corresponding restoration network.

6: For all capsule i in the primary capsule layer and capsule j in the final capsule layer:

initialise qij to zeros.

7: for r iterations do

8: for all capsule i in the primal capsule layer, apply equations (5.7) and (5.9) in order

to get cij and oj|i.

9: for all capsule j in the final capsule layer, apply equation (5.6) in order to get hj .

10: for all capsule j in the final capsule layer, apply equation (5.5) in order to get vj .

11: update all qij , apply equation (5.8).

return vj

12: end for

13: Calculate the loss and update the weights.

5.4 Performance Evaluation

In order to compare the CNN classifier with the joint framework based on CNNs,

it would be fair to use the same CNN architecture. Hence, the architecture in

Figure 5.2 is applied as the designed CNN architecture in both scenarios, with the

restoration parts deleted for the recognition task. Another reason of not using big

CNN frameworks such as AlexNet [1] and VGG [53] is that there are too many

parameters in big CNN frameworks, which cause over-fitting problems. Meanwhile,

the proposed CNN framework has proved to be a good model as it has achieved more

than 99% accuracy on the testing dataset while containing many fewer parameters

than in AlexNet and VGG. In the proposed capsule network, there are three iterations
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in the routing process and the restoration loss is considered for the weights updating.

The largest open VLR dataset provided by Huang et al. [50] is used to evaluate the

proposed recognition approach. The performance evaluations of both the CNNs

and the capsule networks are conducted in Python with the Pytorch toolbox on a

laptop with the following specification: Intel CPU I5 and Nvidia GTX 1070 (extended

GPU). The performance of each method is measured in terms of accuracy (percentage

of correctly classified images) on the entire testing dataset (1500 images).

5.4.1 Capsule Networks for Classification
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Figure 5.6: The accuracy of the CNNs and the developed capsule networks on the
original testing data.

The model is trained on the original training dataset with 100 epochs. In each

training epoch, the corresponding testing accuracy is recorded in order to give more

detailed results. Figure 5.6 illustrates the testing accuracies in each training epoch,

up to 100 epochs. Both the CNNs (accuracy of 99.42% at the 100th epoch) and the

capsule networks (accuracies keep at 100% after the 4th epoch) can achieve good

results after a limited number of epochs. However, the advantage could not be

significant as there is a limit space for the improvement. Hence, image degradations

are applied to evaluate the trained CNNs and the capsule networks.

Figure 5.7 illustrates the effects of adding noise and rotation to 20 random testing

images. The first two rows are original testing images and the third and fourth rows
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are the effects of adding zero-mean Gaussian noises with the variance of 0.1. The

fifth and sixth rows are the effects of images that are rotated randomly within the

angle within −50o to 50o. The last two rows are the combined effects of noise and

random rotation. These scenarios are tested in order to compare performances of

the developed CNNs and the developed capsule networks.

Figure 5.7: Illustration of rotation and noise effects on 20 random testing images. The
first and second rows are clear image, the third and fourth rows are the noise effects on
clear image, the fifth and sixth rows are the effects by adding rotation, and the last two
rows are the effects with both noise and rotation.

Figure 5.8 shows the accuracies of the CNNs and the developed capsule networks

on the challenge testing dataset. Both accuracies have dropped because of the testing

images become more challenging. However, the capsule networks are more robust to

noises and rotation variations. Compared with the CNNs which achieve an accuracy

of 81.02% after 100 training epochs, the capsule networks achieve an accuracy of

98.49% in the same scenario. In terms of robustness to rotation, the capsule networks
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achieve 63.55% while the CNNs achieve 51.40% after 100 training epochs. When the

noise and rotation are combined, the testing images become even more challenging.

In this case, the capsule networks achieve an accuracy 59.09% and the CNNs achieve

an accuracy of 39.47% after 100 training epochs.
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Figure 5.8: The accuracy of the CNNs and the developed capsule networks on the
challenge testing dataset with noise, rotation and the combined challenges.

The reason for decreasing performances in both frameworks is the images be-

come more challenging; this results in the features extracted in the testing images

not being representative. Another important reason is the weights are learned from

clear training images. This results in the automatic learned features not considering

changes such as noise and rotation. However, the capsule networks perform much

better than the CNNs in the same scenarios. This indicates the capsule networks

automatically learn more robust image features than the CNNs. One possible solu-

tion in order to improve the robustness of features is to add challenging data in the

training dataset. However, when there are degraded images like the images in the

last two rows in Figure 5.8, it would be also good to recover them to their clear ver-

sions. In the following section, joint frameworks for both recognition and restoration

are developed.
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5.4.2 Joint Framework for Image Recognition and Restora-

tion

In this subsection, the Joint-CNN-Net and the Joint-Cap-Net are evaluated with

noise, rotation and occlusion. In the joint frameworks, all the degraded training

images are used as the input and the ground truth image and labels are used to

update the weights. All the accuracies are evaluated using the model generated at

the 100th epoch in the training stage. The Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity (SSIM) index [128] are applied with each original testing image

being compared with its degraded version (O-D) and its recovered version (O-R).

PSNR (ranges from 0 to 1, the higher the better) and SSIM (ranges from -1 to 1,

the higher the better) are measurements for comparing the differences between two

images. The PSNR focuses on the difference of the pixel-pixel intensity values and

the SSIM considers the structure image within an image [129]. Figure 5.9 illustrates

20 testing images, which will be used for demonstration purpose.

Figure 5.9: Twenty testing images for illustration purpose.

Noise Robustness Evaluation

The first two rows in Figure 5.10 show the noisy effects when noises are added to 20

testing images. All the images are noisy by adding zero-mean Gaussian noises with

the variance of 0.1. In the training stage, the degraded noisy images are the input of

both frameworks, the original training images and their corresponding labels are the

ground truth for updating the weights. In the testing stage, noisy images are used

to evaluate the trained model. The middle two rows illustrate the covered image by
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the Joint-CNN-Net, and clearly the noisy effects have been removed. The last two

rows illustrate the restoration effects by Joint-Cap-Net. Clearly, the noise effects

have also been removed.

Figure 5.10: De-noising results by the Joint-CNN-Net and the Joint-Cap-Net.

By comparing these restored images with their corresponding ground truth as

shown in Figure 5.9, some of the recovered images by Joint-Cap-Net have even better

visual quality than the ground truth. For example, the two ground truth “Lexus”

images have slight noise inside, while the Joint-Cap-Net removes these noise in the

recovered images. For image de-noising, both frameworks achieve good results. The

Joint-Cap-Net is not always better than Joint-CNN-Net, for instance, the second

“Hyundai” image recovered by the Joint-Cap-Net has a much lower visual quality

than the recovered image by Joint-CNN-Net. Notice that the last “VW” image has

been rotated automatically. These are due to the 2D convolutional kernels preserving

the spatial information in CNNs while the capsules are not restricted on pixel-to-pixel

recovery.

Table 5.1 summarises the performance of the Joint-CNN-Net and the Joint-Cap-
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Table 5.1: Performance of the Joint-CNN-Net and the Joint-Cap-Net on noisy images.

Accuracy% PSNR (O-D) PSNR (O-R) SSIM (O-D) SSIM (O-R)

Joint-CNN-Net 96.83% 12 21.18 0.32 0.61

Joint-Cap-Net 99.57% 12 22.16 0.32 0.65

Net. The Joint-CNN-Net achieves an accuracy of 96.83% with noisy images. Mean-

while, the Joint-Cap-Net is slightly more robust to noise and 99.57% accuracy is

achieved under the same noise condition. The PSNR and SSIM are both improved

by the restoration process due to the noisy effects having been removed. The im-

provement in PSNR and SSIM indicates the recovered images are more similar to the

original images than the noisy images. Compared with the PSNR and SSIM index,

the Joint-Cap-Net has better performance than the Joint-CNN-Net. The PSNR and

SSIM only indicate how ”similar” two images are. However, both indices are based

on pixel-pixel comparison. This would be unfair if the Joint-Cap-Net changes the

rotation of an image. Even in this case, the PSNR and SSIM of Joint-Cap-Net are

higher than in Joint-CNN-Net.

Rotation Robustness Evaluation

Since the Joint-Cap-Net shows the ability of automatically rotating an image, differ-

ent rotation angles are tested for both the Joint-CNN-Net and the Joint-Cap-Net.

In both training and testing stages, rotated images are the input of the joint frame-

works. Each image is randomly rotated within the maximum bounds of 20◦, 40◦, 60◦

and 80◦.

Figure 5.11 shows the rotation restoration results of the Joint-CNN-Net by setting

the rotation angle bound to 40◦. The first two rows are the input images and the last

two rows are the corresponding restoration outputs. The restoration results show the

recovered images are becoming blurred with the main objects keeping the rotation

unchanged. Figure 5.11 only shows the effects when a maximum rotation of 40◦ is

applied; higher bounds would result in more blurred effects on the recovered images.
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Figure 5.11: The rotation restoration result of the Joint-CNN-Net when the rotation
angle bound is 40◦.

Since the loss function of the restoration is based on pixel-pixel, every pixel in the

restored image is forced to be close to the ground truth value. However, the correct

mapping between the input pixels and the restoration pixels has been changed when

the input image is rotated. This mapping distortion requires that an input pixel be

close to both the corresponding ground truth pixels and its neighbourhood pixels.

Hence, the restoration image becomes blurred.

Table 5.2: Performance of the Joint-CNN-Net on rotated images.

Angles 0 20◦ 40◦ 60◦ 80◦

Accuracy 98.92 % 97% 95.83 % 91.88% 91.23%

PSNR (O-D) 100 16.36 11.39 10.48 9.87

PSNR (O-R) 30.79 15.21 13.16 12.52 12.23

SSIM (O-D) 1 0.35 0.19 0.14 0.11

SSIM (O-R) 0.89 0.30 0.12 0.07 0.05

The corresponding accuracy, PSNR and SSIM are given in Table 5.2. The PSNR

and SSIM in Table 5.2 indicates the performance of Joint-CNN-Net is bad. The

SSIM (O-R) is even lower than SSID (O-D) in the Joint-CNN-Net when images are

rotated. This means the recovering process even decreases the image similarity when

compared with the original image degradation. According to the result, the CNNs

are not suitable for image rotation recovering.
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Figure 5.12: The rotation restoration result of the Joint-Cap-Net when the rotation
angle bound is 80◦.

Figure 5.12 illustrates the rotation restoration effects by the capsule networks

with the rotation bound is set to 80◦. Again the first two rows are the input images

and the last two rows are the corresponding recovered images. Due to the good per-

formance achieved by the Joint-Cap-Net, a maximum rotation up to 80◦ is illustrated

for demonstration. As shown in Figure 5.12, the Joint-Cap-Net is able to recover the

rotated images automatically when large rotations are applied.

Table 5.3: Performance of the Joint-Cap-Net on rotated images.

Angles 0◦ 20◦ 40◦ 60◦ 80◦

Accuracy 100% 100% 100 % 99.78% 99.57%

PSNR (O-D) 100 15.89 11.45 10.84 9.78

PSNR (O-R) 23.61 22.26 21.65 20.55 20.84

SSIM (O-D) 1 0.37 0.19 0.14 0.11

SSIM (O-R) 0.68 0.65 0.63 0.59 0.60

Different angles have been tested and the result is summarised in Table 5.3. When

comparing the performance with Joint-CNN-Net shown in 5.2, the Joint-Cap-Net has

much better performance in terms of accuracy and robustness to image rotations.

For instance, when all training and testing images are randomly rotated with the

angle range from −60◦ to 60◦, the Joint-Cap-Net achieves an accuracy of 99.78%,

while Joint-CNN-Net could only achieve an accuracy of 91.88%. This is due to the
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capsules extracting more robust features than the Max-pooling in CNNs. The PSNR

and SSIM have been greatly improved. Notice that the PSNR and SSIM are pixel-

pixel based calculations, therefore, improvement in Joint-Cap-Net does not mean

better visual quality.

Occlusion Robustness Evaluation

In addition, the developed Joint-Cap-Net could recover images which are partly

occluded. In both training and testing stages, occluded images are used as the input

of the joint framework. A white square box of a random size is applied to cover

image contents in order to simulate the occlusion effects. The occlusion boxes are

randomly located in an image and the length of the box is a random integer varying

from 0 to 30 pixels.

Figure 5.13: Occlusion restoration results by the Joint-CNN-Net and the Joint-Cap-Net
with the maximum occlusion box of size [30× 30].

The first two rows in Figure 5.13 show the effects when the occlusion boxes are

added to 20 example images. The intermediate two rows show the recovered version

of the corresponding testing images by the Joint-CNN-Net. As shown in Table 5.4,
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the Joint-CNN-Net achieves an accuracy of 95.76%. The last two rows illustrate the

corresponding recovered images by the Joint-Cap-Net and an accuracy of 99.78%

is achieved. This indicates the Joint-Cap-Net achieves a slightly higher recognition

accuracy than the Joint-CNN-Net.

Table 5.4: Performance of the Joint-CNN-Net and the Joint-Cap-Net on occluded im-
ages.

Accuracy% PSNR (O-D) PSNR (O-R) SSIM (O-D) SSIM (O-R)

Joint CNNs 95.76% 26.36 22.08 0.92 0.76

Joint-Cap-Net 100% 26.92 22.42 0.92 0.67

In terms of the restoration result, the Joint-CNN-Net has limited recovery effects,

and the white boxes become slightly transparent. However, the occlusion effects

remain. In contrast, the Joint-Cap-Net has removed the blocking effects totally.

The PSNR and SSIM of recovered images have decreased in both situations when

compared with degradations. The reasons lie in the occlusion only changing a limited

small area of the image, while the recovered images by the Joint-CNN-Net and

Joint-Cap-Net change value on every pixel. However, the occlusion effects have been

removed and the visual qualities have been improved by both frameworks, especially

by the Joint-Cap-Net .

5.4.2.1 Mixed-degradation Evaluation

The first two rows in Figure 5.14 show the combined degradation including zero-

mean Gaussian noises (variance =0.05), rotation (random angle from −60◦ to 60◦)

and the occlusion (a square white box with a random size from 0 to 30 pixels). The

intermediate two rows show the recovered images by Joint-CNN-Net: clearly there

is no more noise effect; however, the rotation and occlusion are not recovered. This

results in the recovered images being difficult to distinguish by human vision. The

last two rows illustrate the restoration result by the Joint-Cap-Net. The recovered

images become blurred like the Joint-CNN-Net; however, it successfully recovers the
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Figure 5.14: The restoration result of the Joint-CNN-Net and the Joint-Cap-Net with
Gaussian noise, rotation and concussion.

rotation, occlusion and noise.

Table 5.5: Performance of the Joint-CNN-Net and the Joint-Cap-Net on combined degra-
dations.

Accuracy% PSNR (O-D) PSNR (O-R) SSIM (O-D) SSIM (O-R)

Joint-CNN-Net 66.57% 8.03 12.19 0.06 0.06

Joint-Cap-Net 94.75% 8.03 18.37 0.06 0.49

For the recognition, the Joint-CNN-Net achieves an accuracy of 66.57% and the

Joint-Cap-Net achieves an accuracy of 94.75%. In terms of the restoration, the

recovered images by the Joint-CNN-Net are poor as it is not suitable for image

occlusion and image rotation. In contrast, the Joint-Cap-Net gives a good restoration

result. Table 5.5 shows the corresponding improvement in term of PSNR and SSIM.
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5.5 Summary

Image restoration and recognition are traditionally implemented in a pipeline man-

ner. For example, noise images are first de-noised, followed by a recognition process.

This chapter develops a joint framework for recognition and restoration. A joint

framework has three parts: common layers, classification layers and restoration lay-

ers. Two joint frameworks are developed, one is based on CNNs and the other is

based on the learning capsules. An image can be damaged by many degradations,

such as noise, rotation and occlusion, this chapter also investigates the robustness of

the two proposed joint frameworks. The capsule networks achieve higher recognition

accuracy and better visual quality under different image degradations than the joint

CNN framework on the VLR dataset. The key to the success of learning capsules

is due to a more effective routing process rather than the pooling process in CNNs.

In addition, the method is not only restricted on the VLR application but also has

potential in other image recognition and restoration applications.
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Chapter 6

Wildlife Monitoring Based on

Deep Learning Methods

In previous chapters different methods have been developed for image recognition

and restoration. This chapter extends image recognition to videos by incorporating

a detection process. The application of this chapter focuses on badger recognition,

which is helpful for studying the transmissions route of Bovine tuberculosis (bTB).

Transmissions of the disease are mainly cattle-cattle, but also can be cattle-badger,

badger-badger and badger-cattle. Therefore, an automatic badger monitoring sys-

tem would be beneficial in order to enhance the understanding of transmissions of

the disease. This chapter, for the first time, develops a deep learning based auto-

matic recognition framework capable of identifying and isolating badger activity in

still image and video footages. Section 6.1 gives an introduction on the background

of badger recognition. Section 6.2 develops two CNN frameworks for badger recog-

nition. Section 6.3 introduces the developed frame detection algorithm in videos.

Experimental results are presented in Section 6.4. Section 6.5 summarises this chap-

ter.
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6.1 Introduction

Bovine tuberculosis (bTB) is described by government as the most pressing animal

health problem in the UK. Taxpayers paid over 100 million pounds in 2015 alone

in order to deal with bTB in England. The Strategy to Achieve Officially TB Free

Status (OTF) for England was published in 2014 and established a framework for

controlling all routes of transmission of the disease. The transmission of bTB is

principally from cattle-cattle, but also includes cattle-badger, badger-badger and

badger-cattle [130]. There remains a lack of clear understanding of how the disease

is transmitted between cattle and badgers and vice versa [131]. Hence, monitoring

the badger activity could help us to understand the transmission mechanisms and

thereby to develop methods to deal with the transmission between species.

Similar research has been conducted for elephant monitoring [132]. However,

this uses the colour information to segment the elephant and the background, which

is not valid in badger videos. This is due to badgers being mainly active at night

and the lighting conditions meaning that the image does not contain much colour

information. Automatic video processing has also been trailed in the dairy sector to

provide information on the mobility of dairy cows without requiring human interven-

tion; the research team succeeded in showing how cows can be accurately located and

tracked in video [133]. It uses the hand-crafted SIFT features while the-state-of-art

deep learning features would give better results than SIFT features on big datasets.

While previous studies have proved that automatic recognition is feasible and

adaptable to other animal species, they have limitations due to the insufficient im-

age detection and image feature methods. This work aims at developing a robust

and accurate automatic wildlife monitoring framework. The framework is tested on

badger images but it could be also implemented in other wildlife species monitor-

ing. Badger activity detection and monitoring is a challenging task for a number of

reasons - the video data can be collected under different illumination conditions and
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from cameras situated at different positions with respect to the monitored area, lack

of colour information as badger images are usually captured at night, changeable

weather and other factors. However, the ability to identify and isolate badger activ-

ity would have multiple benefits. In the short term, it would enable more efficient

and cost effective analysis of existing footage. In the longer term, automated detec-

tion, using cheaper and more effective badger recognition on live-feed cameras, could

increase the number of farms and locations that can be monitored. Further appli-

cations could include the development of a hand-held application, alerting farmers

to badger activity on their farm. This would benefit disease control strategies by

providing more efficient badger monitoring on farms to help farmers identify areas

for intervention (e.g. to prevent badger entry or badger-cattle contact), thus reduc-

ing opportunities for disease transmission. In order to monitor the badger activities,

this chapter develops deep learning based frameworks for image recognition; the de-

veloped recognition frameworks are combined with a developed detection process in

order to only classify frames of interest in videos.

6.2 Deep Learning for Badger Recognition

In this section, two CNN frameworks have been proposed to recognise the badger

images. The first framework is a self trained CNN framework based on the cre-

ated badger dataset, which is named Badger-CNN-1. The second framework is a

transferred framework based on AlexNet [1], followed by a fine-tuning process on

the badger dataset, which is named Badger-CNN-2. Developing two different frame-

works give options for users. For example, the size of the Badger-CNN-1 is about

20Mb but gives a less accurate result. In contrast, the size of the Badger-CNN-2 is

about 200Mb.
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Figure 6.1: The architecture of the Badger-CNN-1.

6.2.1 Badger-CNN-1 Diagram

Figure 6.1 shows the architecture of the proposed deep learning framework Badger-

CNN-1. There are four convolutional layers and four Max-pooling layers and a

fully connected layer. The input image of size [480 × 640 × 3] is transferred to 50

convolutional maps of size [117×157] in the first convolutional layer (C1). In the first

pooling layer (P1), 50 pooling maps are generated based on C1. This transformation

is achieved by using 50 convolutional kernels of the size [13× 13] with a stride of [4

4].

The second convolutional process is applied on P1 by using 100 convolutional

kernels; hence, 100 convolutional maps are generated in C2. The same process is

repeated in P2, C3, P3, C4 and P4. In P4, there are 100 pooling maps with the

size of [7× 10]. Elements in P4 are reshaped to a vector form of 7000 neurons, and

these neurons are fully connected to 1000 neurons in the first fully connected layer

(Fc1). Fc1 is then fully connected with the output neurons, which represent the

corresponding label information. Algorithm 8 in the Appendices section gives the

detailed steps of the Badger-CNN-1.
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6.2.2 Badger-CNN-2 Diagram

Figure 6.2: The architecture of the Badger-CNN-2.

In Badger-CNN-1, all weights are randomly initialised and updated based on a

badger training dataset. However, there are ways to “borrow” weights from other

trained models. Researches show that the CNNs learned from a large-scale dataset

in the source domain can be effectively transferred to a new target domain [134,135].

The transfer learning uses the already trained weights as the initial weights, this

gives a start point and the weights are then fine-tuned based on the task dataset.

Here, the weights are transferred from the AlexNet, which were trained on a very

big image dataset consisting of 1.2 million labelled images with 1000 categories (Im-

ageNet [52]). A badger training dataset is only applied in the fine-tuning process.

Figure 6.2 illustrates the architecture of Badger-CNN-2. The Badger-CNN-2 keeps

all the weights except for the last three layers from the AlexNet. The output layer

is self-defined, and weights are fine-tuned based on a badger dataset. The developed

Badger-CNN-2 framework has five convolutional layers, three Max-pooling layers and
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two fully connected layers. Algorithm 9 in the Appendices section gives the detailed

parameters for the Badger-CNN-2.

6.3 Detection Algorithm in Videos

The trained CNNs can directly be applied to videos as videos are sequential image

frames. Most of the time, cameras only capture the background because animal

activities rarely happen in front of a camera being installed in the wild. Therefore,

detecting images of interest in the first place and then classifying them would be

beneficial. For example, an alarm system could be built for badger monitoring. In

the system, the user can get immediate feedback when there is a badger moving in

front of a camera. In addition, this could also save storage space by only saving

frames of interest. For this purpose, this section develops a detection algorithm

combined with the aforementioned recognition framework for video recognition and

live streaming data recognition. In order to speed up the detection process, all images

are converted to grey scale. If an image is detected as an interest frame, the colour

framework is used for recognition.

Figure 6.3: The diagram of applying the trained CNNs to videos.

Images of interest should contain objects of interest (animals). An object of

interest, such as a badger or a fox, has motions and these motions result in pixel
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value variations in adjacent frames. Intuitively, frame difference among adjacent

frames could be calculated. Here, instead of directly applying frame difference, a

dynamic background (B) is involved with the following updating process:

Bt(i, j) = (1− α)It(i, j) + αBt−1(i, j), (6.1)

where (i, j) represents the vertical and horizontal pixel location index, and It(i, j)

represents the current pixel value at the location index (i, j). The initial B is set as

the first input frame and it dynamically updates. Hence, the difference between the

current frame and the background is given:

Et(i, j) = |It(i, j)− Bt(i, j)|, (6.2)

when | · | calculates the absolute value.

Frame difference does not necessarily indicate that there is an animal. The dif-

ference has many causes, for instance, grass motion caused by wind or noise caused

by camera sensors. Here, the following assumptions are made in order to decrease

the false positive detections: 1) if an animal moves, the frame difference should be

considerably large; 2) the movement of the animal is the main cause of the pixel

changes and the camera is not occluded by the animal’s body.

In order to remove tiny variations, a dynamic thresholding process is applied

based on the maximum value among all Et(i, j):

Et(i, j) =


0 if Et(i, j) < β ·max(Et),

Et(i, j) Otherwise,

(6.3)

where max(Et) is the maximum value in Et. This process is followed by a median

filter aimed at removing noise. As animal movements usually happen in a small area,

if a big area is moving, this means the camera is either moving or it has been blocked

113



6.3. Detection Algorithm in Videos

by the animal’s body. Hence, a frame is omitted when its E has either too little or

too many non-zero values. Here, an animal size is restricted between 200 pixels and

half of the total number of pixels in an image. Frames that have large pixel variations

are removed in order to decrease the false positive detections caused by other factors

such as the camera movement, extremely windy weather and suddenly changing the

scene.

For the considered frames, an energy term Et
total is accumulated by summing all

the non-zero values in Et:

Et
total =

∑
i,j

Et(i, j). (6.4)

The average variation of each pixel is given by:

Et
avg = Et

total/n
t, (6.5)

where n is the number of non-zero valued pixels in E. For frames that have ani-

mal motions, the image should have big total energy Et
total. In addition, the pixel

variations caused by animals should be larger than other factors, which results in

the variations caused by animals contributing the main portion of the total energy.

Hence, its Et
avg should be large. Hence, by comparing the Et

avg with a threshold, the

frame t would further be sent to the classification stage if its value was beyond the

threshold.

If an animal is detected, the classification result should be consistent in a short

period (for example, 0.1 second). Therefore, a confirmation process as shown in

Figure 6.3 is applied in order to further decrease false alarms. When the prediction

agrees with the previous prediction, the classification result will be confirmed as the

output.
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6.4 Performance Evaluation on the Badger Dataset

6.4.1 Dataset Generation

Table 6.1: Categories and number of images in the badger dataset.

Categories Total images Training images Testing images

Badger 1556 1089 467

Bird 1528 1070 458

Cat 1083 758 325

Fox 2693 1885 808

Rat 570 399 171

Rabbit 938 657 281

8368 5858 2510

The images were captured in the UK and all images were unlabelled. In order

to make a new dataset, all images were manually checked and assigned to their

corresponding classes. The created dataset contains six categories: badger, bird,

cat, fox, rat and rabbit. Seventy percent of the images are randomly chosen as the

training images and the rest are assigned for the testing. Detailed information of the

created dataset is given in Table 6.1. Figure 6.4 shows some random images in the

testing dataset. From the first row to the last row are badger, bird, cat, fox, rat and

rabbit, respectively.

In this section, two different scenarios are considered. The first scenario consid-

ers the binary classification problem, which distinguishes an image either belong-

ing to the badger or the non-badger category. The second scenario considers the

multinomial classification problem, which further distinguishes what animal is in a

non-badger image, e.g. a fox or a rabbit.
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Figure 6.4: Some random images of the testing dataset.

6.4.2 Badger and Non-Badger Classification

In the badger dataset, images are grouped into only two categories: the badger group

and the non-badger group. Details are given in Table 6.2. In this subsection, both

frameworks are evaluated based on the binary classification dataset.
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Table 6.2: Badgers and non-badgers in badger dataset.

Categories Total images Training images Testing images

Badger 1556 1089 467

Non-Badger 6812 4769 2043

Performance of Badger-CNN-1

Table 6.3 gives the performance of the Badger-CNN-1 framework. The True Positive

(TP) refers to the number of the badger testing images that are correctly classified to

the badger category. The False Positive (FP) refers to the number of the non-badger

testing images that are wrongly classified to the badger category. False Negative

(FN) represents the number of the badger testing images that are wrongly classified

to the non-badger category, and True Negative (TN) gives the number of the non-

badger testing images that are correctly classified to their corresponding category.

Table 6.3: The performance of the Badger-CNN-1.

Badger(test) Non-Badger(test) Accuracy F1 score

Predicted as badger 384 (TP) 28 (FP)
95.58% 0.87

Predicted as non-badger 83 (FN) 2015 (TN)

Here two evaluation methods, accuracy and F1 score, are applied to evaluate the

binary classification result. Accuracy represents the ratio between correctly classified

testing images and the entire testing dataset. F1 score is the harmonic average of

the precision ( TP
TP+FP

) and recall ( TP
TP+FN

). Its value is between 0 and 1, the higher

the better.

Accuracy =
TP + TN

TP + FP + FN + TN
. (6.6)

F1 score =
2TP

2TP + FP + FN
(6.7)

Table 6.3 indicates that the false negative rate ( FN
FN+TP

= 17.77%) is much higher
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than the false positive rate ( FP
FP+TN

=1.37%). This is due to there being unbalanced

data in each category, which results in a testing image having a higher probability

to be classified to the majority group in the training dataset. In order to decrease

this effect, a re-sampling process is applied to the minority group. In the training

dataset, images under the badger folder are re-sampled four more times in order to

provide an equivalent number of images in both categories. This re-sampling process

drops the false negative rate from 17.77% to 10.71% and improves the F1 score from

0.87 to 0.89 as shown in Table 6.4.

Table 6.4: The performance of the Badger-CNN-1 with a re-sampling process.

Badger (test) Non-Badger (test) Accuracy F1 score

Predicted as badger 416 (TP) 53 (FP)
95.86% 0.89

Predicted as non-badger 51 (FN) 1990 (TN)

Performance of Badger-CNN-2

As the imbalanced training dataset causes biased results as shown in the previous

subsection, here considers both the training dataset with a re-sampling process and

without.

Table 6.5: The performance of the Badger-CNN-2.

Without re-sampling With re-sampling

Badger (test) Non-Badger (test) Badger (test) Non-Badger (test)

Predicted as badger 429 (TP) 22 (FP) 442 (TP) 24 (FP)

Predicted as non-badger 38 (FN) 2021 (TN) 25 (FN) 2019 (TN)

Accuracy and F1 score

Accuracy F1 Score Accuracy F1 Score

97.61% 0.93 98.05% 0.95

As shown in Table 6.5, the performance of Badger-CNN-2 performs better than

the Badger-CNN-1. The highest accuracy of 98.05% is achieved by Badger-CNN-2.

Compared with Badger-CNN-1, Badger-CNN-2 takes the advantage of weights that

have learned from millions of images from other image sources.
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6.4.3 Multinomial Classification Based on the Badger Dataset

The previous subsection evaluates the frameworks with the purpose of distinguishing

badger and non-badger images. However, it would also be helpful to give more

specific answers when the testing images belong to the non-badger category, e.g, a

badger or a fox. In this subsection, the binary classification problem is extended

to the multinomial-classification problem. The performances of both Badger-CNN-1

and Badger-CNN-2 are evaluated for the multinomial classification task.

Performance of the Badger-CNN-1

The accuracies of six categories can be illustrated in a Confusion Matrix. In the

multinomial classification case, the F1 score is not valid. Accuracy and mean ac-

curacy are instead applied to evaluate the performance. Mean accuracy is obtained

by averaging all the accuracy from individual classes. Table 6.6 and Table 6.7 show

the results of the multinomial classification without and with a re-sampling process

being applied, respectively. Both accuracies are lower than the binary classification.

The re-sampling process slightly improves both accuracies and the mean accuracy

in the Badger-CNN-1 framework. This can be explained by the imbalanced training

data causing bias. The re-sampling process improves the accuracy of categories that

have less training dataset, such as cat, rat and rabbit. The general accuracies are

above 83% for multinomial classification.

Table 6.6: The performance of the Badger-CNN-1 without a re-sampling process.

Predictions

Testing data
Badger Bird Cat Fox Rat Rabbit Accuracy Mean Accuracy

Badger 395 2 6 29 9 6

83.07% 79.98%

Bird 1 441 3 7 2 4

Cat 4 3 207 34 10 6

Fox 54 11 90 704 24 46

Rat 7 0 5 3 122 3

Rabbit 6 1 14 31 4 214

Individual Accuracy 84.58% 96.29% 63.69% 87.13% 71.35% 76.87%
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Table 6.7: The performance of the Badger-CNN-1 with a re-sampling process.

Predictions

Testing data
Badger Bird Cat Fox Rat Rabbit Accuracy Mean Accuracy

Badger 402 2 2 34 8 5

83.51% 82.71%

Bird 0 438 4 12 0 3

Cat 4 3 235 41 8 4

Fox 11 0 9 652 12 29

Rat 11 0 9 7 132 3

Rabbit 5 5 14 62 11 237

Individual Accuracy 86.08% 95.63% 72.31% 80.69% 77.19% 84.34%

Performance of Badger-CNN-2

Table 6.8: Result of the Badger-CNN-2 without a re-sampling process

Predictions

Testing data
Badger Bird Cat Fox Rat Rabbit Accuracy Mean Accuracy

Badger 431 1 6 10 3 11

90.32% 87.57%

Bird 2 447 3 5 3 5

Cat 3 0 251 8 6 5

Fox 16 5 47 763 10 15

Rat 5 2 3 6 133 3

Rabbit 10 3 15 16 16 242

Individual Accuracy 92.29% 97.60% 77.23% 94.43% 77.78% 86.12%

Table 6.8 and Table 6.9 show the results of the Badger-CNN-2 without and with

a re-sampling process being applied, respectively. Even though there are six cate-

gories in the dataset, Badger-CNN-2 could achieve an accuracy of 90.32%. Table

6.8 indicates that the accuracies are much higher and more balanced than results

achieved by Badger-CNN-1. The lowest accuracy (77.23%) is in the cat category;

this can be explained by their similar appearances, especially when looking from the

back. Comparing Table 6.8 with Table 6.9, the re-sampling process does not have

any improvement on Badger-CNN-2. This is due to the well trained weights from

AlexNet being less likely to have over-fitting problems. Over-fitting means the model

perfectly performs on the training dataset only, while giving bad performance on the

testing dataset.
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6.4. Performance Evaluation on the Badger Dataset

Table 6.9: The performance of the Badger-CNN-2 with a re-sampling process.

Predictions

Testing data
Badger Bird Cat Fox Rat Rabbit Accuracy Mean Accuracy

Badger 434 3 6 24 2 11

86.85% 87.04%

Bird 2 439 1 2 3 4

Cat 13 2 281 90 7 7

Fox 7 1 26 644 7 8

Rat 6 5 2 13 137 6

Rabbit 5 8 9 35 15 245

Individual Accuracy 92.93% 95.85% 86.46% 79.70% 80.12% 87.19%

6.4.4 Detection and Classification to Videos

This section gives the result of applying the trained Badger-CNN-2 on videos. Figure

6.5 (a) shows an input frame. Figure 6.5 (b) shows the average variation of the

activated pixels in the current frame. A threshold is set to 20. A frame whose

average variation above 20 is sent for classification. Figure 6.5 (c) illustrates the

cleared version of the activated pixels, with the optical flow indicating the motion

estimations. Figure 6.5 (d) shows the classification result of the interest frame. In

videos, the recognition results for adjacent frames shall be agreed; this process would

further decrease the mis-recognition probability.

Figure 6.5: Illustration of a detected frame activated by a badger.
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6.5. Summary

6.5 Summary

Monitoring badger activities is important for understanding the transmission of bTB,

which is the most pressing animal health problem in the UK as described by govern-

ment. This work, for the first time, develops an automatic recognition framework

capable of identifying and isolating badger activity in still images and video footages.

This work has shown that machine learning algorithms can be beneficial to wildlife

monitoring applications. Instead of involving human labour for video inspection, a

machine learning based framework could detect an animal from a video sequence and

identify the species of animal. This would be helpful for automatically monitoring

wildlife such as badgers.

In this work, a new image dataset has been created that contains 8368 images

belonging to six categories: badger, bird, cat, fox, rat and rabbit. For each cate-

gory, 70% of images are randomly chosen for the training purpose. The remaining

30% of images are used in order to test the accuracies of the trained models. Two

CNN frameworks are developed for automatically recognising animal images. Both

frameworks give good performances on the testing dataset. For badger and non-

badger recognition, they achieve accuracies of 95.86% and 98.05%, respectively. For

the multinomial classification, they achieve accuracies of 83.07% and 90.32%, re-

spectively. The proposed recognition frameworks give options according to different

equipment that may be available to organisations. The more accurate framework

requires more computational memories. In addition, a detection algorithm has been

developed for videos. Therefore, activated frames can be detected and further be

classified using the trained recognition models.
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Chapter 7

Conclusions and Future Works

7.1 Conclusions

This thesis aims to develop machine learning methods for autonomous object recog-

nition and restoration in images. The main development includes: development

of an efficient online recognition framework valid for both small datasets and big

datasets; development of a non-parametric classifier based on Bayesian compressive

sensing; development of automatic learned joint networks for image recognition and

restoration. The proposed methods are mainly evaluated on the application of vehi-

cle logo recognition, an important research area in intelligent transportation systems.

However, the developed methods can also be extended to other application domains.

The developed online recognition framework providing solutions for both small

datasets and big datasets has been presented in Chapter 3. When the dataset is

small, the HOG feature method and the proposed Cauchy prior LR provides a quick

and accurate solution. When the dataset size is increasing, the weights in the Cauchy

prior LR can be updated based on the previously trained models. The Cauchy prior

assumes the useful weights are sparse, this results in a quick convergence speed for

the weight updating process. When the dataset becomes big, a developed CNN

framework is involved in order to further increase the accuracy and robustness.

This thesis also developed a framework based on spatial SIFT features, in Chap-
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7.2. Direction for Future Works

ter 4. As the feature representation model only counts the occurring frequency of

detected local features, the spatial SIFT features incorporate the spatial information

of SIFT features and achieve good results. A non-parametric classifier, SBCS, is

also proposed in Chapter 4. The proposed SBCS relies on the construction of the

testing image using partial information from the weights estimated by BCS. Note

that for each class there is a corresponding reconstructed image. By comparing the

reconstructed images with the testing image, the testing image can be classified to

the class that has the least Euclidean distance. In addition, a column based subspace

sampling process is combined with SBCS which gives good results while only using

a small fraction of the training data.

Image restoration and recognition are often addressed in a pipeline manner, where

the recognition process is applied after the image restoration. Chapter 5 proposed

deep neural network based joint frameworks for simultaneously classifying and re-

covering images. The joint frameworks consist of common layers in which weights

are shared for both tasks, classification layers which are trained for recognition, and

restoration layers that aim to recover a corrupted input image to a clear version.

For the restoration, the image rotation and occlusion are considered and the joint

framework based on learning capsules gives a good performance.

Chapter 6 developed a recognition framework for badger detection and badger

recognition. In order to build a robust badger recognition framework, a dataset is

created. Two CNN frameworks have been developed. A detection process is proposed

in order to detect frames of interest, which will be further classified using the trained

recognition models. The proposed frameworks give effective and accurate badger

recognition solutions.

7.2 Direction for Future Works

Image recognition and restoration remain challenging tasks with a large scope for

future researches. Based on the findings in this thesis, there are several extensions,
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7.2. Direction for Future Works

potential new frontiers and applications to be explored in future:

• Chapter 3 developed a Cauchy prior logistic regression classifier with the con-

jugate gradient descent. The Cauchy prior assumes the weights are sparse,

which is similar to dropout [49] and Adam optimiser [136] in CNNs. Since the

softmax layer in CNNs is based on LR, the proposed Cauchy prior LR has the

potential to be extended in a deep learning framework.

• Object detection and segmentation methods could be developed in future. The

state-of-the-art methods are based on R-CNN [137], which is a regional based

CNN. In R-CNN, small regions are extracted in order to compute the image

features. The feature extraction mechanism is the same as in CNNs. However,

this thesis shows that the learning capsules are more robust to image degrada-

tion such as noise, occlusion and rotation. Therefore, the learning capsules and

the joint capsule framework could potentially be extended to R-CNN. In addi-

tion, the recognition and restoration layers are separate, future work could be

considered to link both layers similarly as in Generative Adversarial Networks

(GANs) [138].

• For the wild monitoring, algorithms can be further developed to a customised

camera system which will give real-time alerts and will only record images of

interest, without requiring huge amounts of storage capacity. In the current

stage, the work in Chapter 6 considers the situation of an image containing

an animal; it shall also work for animals in the same category. However, this

framework is not designed for multi-label classification, e.g. it will only give

one answer if an image contains two categories. In the future, this problem can

also be investigated. In addition, the work in Chapter 6 only recognises which

animal appears in an image, not how many animals. However, an automatic

animal population estimation algorithm may be helpful and could be developed

in future.

125





Appendix A

SBCS Extended and the Deep

Learning Architecture in

CIFAR-10 Dataset

A.1 Marginal Likelihood Maximisation

The following gives a detailed derivation for the marginal likelihood in equation

(4.14). By combining equations (4.3) and (4.4), the marginal likelihood can be

expanded to:

p(x∗|α, σ2)

=

∫
p(x∗|w, σ2) p(w|α)dw

=

∫
(2πσ2)−

M
2 exp

{
− 1

2σ2
||x∗ −Xw||22

}
(2π)−

N
2 |A|

1
2 exp

{
−1

2
wTAw

}
dw

= (2πσ2)−
M
2 (2π)−

N
2 |A|

1
2

∫
exp

{
− 1

2σ2
||x∗ −Xw||22 + wTAw

}
dw. (A.1)

In order to simply equation (A.1), define:

Q =
1

2

{
1

σ2
||x∗ −Xw||22 + wTAw

}
. (A.2)
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Combining with equations (4.10) and (4.11), (A.2) can be given as:

Q =
1

2

(
x∗Tx∗

σ2
− 2x∗TXw

σ2
+

wTXTXw

σ2
+ wTAw

)
=

1

2

(
x∗Tx∗

σ2
− 2x∗TXw

σ2
+ wTΣ−1w

)
=

1

2

(
x∗Tx∗

σ2
− 2(ΣXTx∗)TΣ−1w

σ2
+ wTΣ−1w

)
=

1

2

(
x∗Tx∗

σ2
− 2µTΣ−1w + wTΣ−1w

)
=

1

2

(
x∗Tx∗

σ2
− µTΣ−1µ

)
+

1

2
(w − µ)TΣ−1(w − µ). (A.3)

In order to simply equation (A.3), set

T =
1

2

(
x∗Tx∗

σ2
− µTΣ−1µ

)
, (A.4)

Therefore the integral part in the right hand side of equation (A.1) is given by:

∫
exp{−Q}dw

=

∫
exp

{
−T− 1

2
(w − µ)TΣ−1(w − µ)

}
dw

= exp {−T}
∫
exp

{
−1

2
(w − µ)TΣ−1(w − µ)

}
dw

= exp {−T} (2π)
N
2 |Σ|

1
2

∫
1

(2π)
N
2 |Σ| 12

exp

{
−1

2
(w − µ)TΣ−1(w − µ)

}
dw

= (2π)
N
2 |Σ|

1
2 exp {−T} . (A.5)

Substituting this back in equation (A.1) have:

p(x∗|α, σ2)

= (2πσ2)−
M
2 (2π)−

N
2 |A|

1
2 (2π)

N
2 |Σ|

1
2 exp{−T}

= (2πσ2)−
M
2 |A|

1
2 |Σ|

1
2 exp{−T}. (A.6)
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This can be further simplified by:

p(x∗|α, σ2) = (2πσ2)−
M
2 |A|

1
2 |Σ|

1
2 exp{−T}

= (2πσ2)−
M
2
|Σ| 12
|A−1| 12

exp{−T}

= (2π)−
M
2

1

σM
1

|A−1Σ−1| 12
exp{−T}

= (2π)−
M
2

1

σM
1

|IN + σ−2A−1XTX| 12
exp{−T}, (A.7)

where IN = A−1A. Using the matrix determinants properties [139] that |IN +

XTY| = |IM + XYT| with X ∈ RM×N and Y ∈ RM×N , the above equation can be

updated to:

p(x∗|α, σ2) = (2π)−
M
2

1

σM
1

|IM + σ−2A−1XXT| 12
exp{−T}

= (2π)−
M
2

1

|σ2IM |
1
2

1

|IM + σ−2A−1XXT| 12
exp{−T}

= (2π)−
M
2

1

|σ2IM + XA−1XT| 12
exp{−T}. (A.8)

Recall the T is given in equation (A.4) and it can be expressed as follows:

T =
1

2

(
x∗Tx∗

σ2
− (σ−2ΣXTx∗)TΣ−1σ−2ΣXTx∗

)
=

1

2

(
x∗Tx∗

σ2
− σ−2x∗TXΣXTx∗σ−2

)
=

1

2

(
x∗T
[
σ−2IM − σ−2X(A + σ−2XTX)−1XTσ−2

]
x∗
)
. (A.9)

According to the Woodbury inversion identity [111]:

[σ−2IM − σ−2X(A + σ−2XTX)−1XTσ−2] = (σ2IM + XA−1XT)−1, (A.10)
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equation (A.9) can be expressed as:

T =
1

2

(
x∗T(σ2IM + XA−1XT)−1x∗

)
. (A.11)

Therefore, equation (A.8) can be given as:

p(x∗|α, σ2)

= (2π)−
M
2 |σ2IM + XA−1XT|−

1
2 exp

{
−1

2

(
x∗T(σ2IM + XA−1XT)−1x∗

)}
=

1√
(2π)M |C|

exp

{
−1

2
x∗TC−1x∗

}
, (A.12)

which links back to equation (4.15), with the M ×M matrix C is given by:

C = σ2IM + XA−1XT. (A.13)

A.2 Evidence Approximation

This subsection presents the derivation of the marginal log-likelihood function and

its maximisation with respect to αi and σ2. Notice that T in equation (A.4) can be

expressed as follows:

T =
1

2

(
1

σ2
x∗Tx∗ − µTΣ−1µ

)
=

1

2σ2

(
x∗Tx∗ − σ−2x∗TXΣΣ−1µ

)
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1

2σ2
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=
1

2σ2

(
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)
=
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2σ2
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)
=

1

2σ2
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)
=

1

2σ2
||x∗ −Xµ)||22 +

1

2
µTAµ. (A.14)
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Hence, taking the logarithm of the marginal likelihood given in equation (A.6),

the logarithm of the marginal likelihood can be obtained in the following form:

L(α, σ2) = −M
2
ln(σ2)− M

2
ln(2π) +

1

2

N∑
i=1

ln(αi)

+
1

2
ln|Σ| − 1

2σ2
||x∗ −Xµ)||22 −

1

2
µTAµ. (A.15)

The procedure of maximising equation (A.15) with respect to αi and σ2 is known

as the evidence approximation procedure.

Following the approach in [140], the derivative of ln|Σ| with respect to αi is:

∂

∂αi
ln|Σ| = ∂

∂αi
(−ln|Σ|−1) = −TraceΣ = −Σii, (A.16)

where Σii is the ith diagonal component of the posterior covariance matrix Σ and

Trace is the trace of a matrix. Therefore, the derivative of equation (A.15) with

respect to αi gives:

∂L(α, σ2)

∂αi
=

1

2αi
− 1

2
Σii −

1

2
µ2
i . (A.17)

Setting the derivative to zero gives equation (4.17).

In order to simplify the ∂L(α,σ2)
∂σ2 , set β = 1/σ2. Following the approach in [141],

the derivative of ln|Σ| with respect to β is:

∂

∂β
ln|Σ| = ∂

∂β
(−ln|Σ|−1)

= −Trace(ΣXTX)

= −Trace(ΣXTX + β−1ΣA− β−1ΣA)

= −Trace(Σ(βXTX + A)β−1 − β−1ΣA)

= −Trace(IN −ΣA)β−1 (A.18)
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Therefore, the derivative of equation (A.15) with respect to β is:

∂L(α, σ2)

∂β
=
M

2β
− 1

2
||x∗ −Xµ)||22 −

1

2
Trace(IN −ΣA)β−1. (A.19)

Setting the derivative to zero gives equation (4.18).

A.3 CIFAR-10 Feature Extraction Parameters

Algorithm 7 gives the detailed steps of image feature extraction in the CIFAR-10

dataset. The last fully connected layer is use as the feature. Hence, each image is

represented by a vector of length 200.

Algorithm 7 CNN feature extraction parameters

Output:

1: Image input layer [32×32×3] (image size [32×32] and image channel [3]).

2: Convolution layer [3×3×48] (kernel size [3×3] and number of kernels [48], zero padding

is applied).

3: Batch normalisation.

4: Relu non-linear function.

5: Max pooling with size [2 2] with stride 2.

6: Convolution layer [3×3×96].

7: Batch normalisation.

8: Relu non-linear function.

9: Max pooling.

10: Convolution layer [3×3×192].

11: Batch normalisation.

12: Relu non-linear function.

13: Max pooling.

14: Dropout with probability is set to 0.25.

15: Fully connected layer with 512 neurons.

16: Relu non-linear function.

17: Dropout with probability is set to 0.5.

18: Fully connected layer with 200 neurons.

19: Dropout with probability is set to 0.5.

20: Softmax and classification layer.
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Appendix B

Deep Learning Framework

Parameters for Badger

Recognition

This section gives the detailed parameters in the developed Badger-CNN-1 and

Badger-CNN-2 in Section .
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Algorithm 8 Badger-CNN-1 procedures

Input:

Load images from the source, weights are randomly initialised.

Output:

1: Image input layer [480×640×3] with ‘zero centre’ normalisation.

2: Convolution layer 1. 50 [13×13×3] convolution kernels with stride of [4 4], no padding

is applied.

3: ReLU non-linear function 1.

4: Max pooling 1, with size [3 3] with stride 2, no padding is applied.

5: Batch normalisation 1.

6: Convolution layer 2. 80 [5×5×50], with padding [1 1 1 1] applied ([top bottom left

right]).

7: ReLU non-linear function 2.

8: Max pooling 2, with size [2 2] with stride [2 2], no padding is applied.

9: Batch normalisation 2.

10: Convolution layer 3. 100 [3×3×80] with stride of [1 1], with padding [1 1 1 1] is applied.

11: ReLU non-linear function 3.

12: Max pooling 3, with size [2 2] with stride [2 2], no padding is applied.

13: Batch normalisation 3.

14: Convolution layer 4. 100 [3×3×100] with stride of [1 1], with padding [1 1 1 1] is

applied.

15: ReLU non-linear function 4.

16: Max pooling 4, with size [2 2] with stride [2 2], with padding [0 0 0 1] is applied.

17: Batch normalisation 4.

18: Fully connected layer 1, with 1000 neurons.

19: ReLU non-linear function.

20: Dropout layer, with probability is set to 0.5.

21: Fully connected layer 2, with 6 neurons. (If the task is only to distinguish badger and

non-badger, change the number of neurons to 2.)

22: Softmax layer.

23: classification layer.
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Algorithm 9 Badger-CNN-2 procedures

Input:

Resize the input images to the size of [227×227×3] (image size [227×227] and image

channel [3]).

Output:

1: Image input layer [227×227×3] with ‘zero centre’ normalisation.

2: Convolution layer 1. 96 [11×11×3] convolution kernels with stride of [4 4], no padding

is applied.

3: ReLU non-linear function 1.

4: Max pooling 1, with size [3 3] with stride 2, no padding is applied.

5: Batch normalisation 1.

6: Convolution layer 2. 256 [5×5×48] with stride of [1 1], padding size of [2 2 2 2].

7: ReLU non-linear function 2.

8: Batch normalisation 2.

9: Max pooling 2.

10: Convolution layer 3. 384 [3×3×256] with stride of [1 1], padding size of [1 1 1 1].

11: ReLU non-linear function 3.

12: Convolution layer 4. 384 [3×3×192] with stride of [1 1], padding size of [1 1 1 1].

13: ReLU non-linear function 4.

14: Convolution layer 5. 256 [3×3×192] with stride of [1 1], padding size of [1 1 1 1].

15: ReLU non-linear function 5.

16: Max pooling 5.

17: Fully connected layer 1, with 4096 neurons.

18: ReLU non-linear function.

19: Dropout layer 1, with probability is set to 0.5.

20: Fully connected layer 2, with 4096 neurons.

21: Relu non-linear function.

22: Dropout layer 2, with probability is set to 0.5.

23: Fully connected layer 3, with 6 neurons. (If the task is only to distinguish badger and

non-badger, change the number of neurons to 2.)

24: Softmax layer.

25: classification layer.
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