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Abstract 

Snake-like manipulators are well suited for operation in restricted and 

confined environments where the manipulator body can bend around 

obstacles to place an end effector at a difficult to access location. They require 

high stiffness when self-supporting weight against gravity and undertake 

precision manipulation task, but also require soft properties when operating in 

complex and delicate environments. A controllable stiffness manipulator has 

the potential to meet the application demands as it can switch between rigid 

and soft state.  

This thesis experimentally investigates the properties of four materials, (low 

melting point solder, hot-melt adhesive, low melting point alloy and granular 

material) as candidates for mechanically altering the stiffness of the 

joints/modules in snake-like manipulators. These materials were evaluated for 

bonding strength, repeatability, and activation time. Modules for a snake-like 

manipulator were fabricated using 3D printing and silicone casting techniques 

including, for the first time, variable stiffness joints that use hot-melt adhesive 

and low melting point alloy. These modules were evaluated for stiffness 

properties and low melting point solder based module was found to achieve a 

stiffness change 150X greater than the state of the art granular material 

approach. In addition, the proposed modules were able to support 25X of their 

own weight.   
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Chapter 1 

Introduction 

This chapter discusses the background, motivation, aims and objectives of 

this research. The contribution of the study is highlighted, and the structure of 

the thesis is presented. 

1.1  Introduction 

There are many scenarios where there is a need to deploy a tool through a 

small hole to collect data or manipulate objects. These challenges include, for 

example: i) Robotic minimally invasive surgery where procedures are 

performed through the smallest incision and often require exerting cutting 

forces on tissue, the retraction of the surgically removed tissue or the 

transportation of relatively heavy tool. ii) Search and rescue where slender 

tools need to be inserted through small holes in collapsed structures.  

The challenge is to create a slender articulating tool that behaves ‘soft’ when 

navigating the environment to reach a location as not to exert undesired forces, 

but has the capability to become rigid when deploying tools or exerting 

external forces. Rigidity is particularly important as the length of the tool 

increases and it is required to support its own weight against gravity. Snake-

like manipulators offer the potential to meet these application demands. 

1.1.1  Snake-like Manipulator 

Snake-like manipulators are formed from large numbers of serially configured 

joints that allow the manipulator body to follow complex paths, with 

appearance similar to a biological snake. These manipulators are well suited 

for operation in restricted and confined environments where the manipulator 

body can bend around obstacles to place an end effector at a difficult to 

access location.     

Snake-like manipulators can be broken down into two classifications based 

on the actuation method. Distributed actuator snake arm manipulators have 

actuators distributed across their length, typically an actuator for each joint.  

They have the ability of large angle changes at each section and therefore 

can have a small radius of curvature – ideal for grasping or holding slender 

objects. However, the weight of distributed actuators across the snake body 

greatly reduces the robot’s capability for unsupported reaching, i.e. the 

number of body sections that can be lifted against gravity is limited.  
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Furthermore, snake robots with on-board actuators have a relatively large 

cross section area in order to accommodate the distributed motors [1, 2]. 

An alternative approach to the distributed actuators is to place all the actuators 

in one location at the base and use tendons (wires) to transmit forces from the 

base to the sections of the snake.  This removes the weight of the actuators 

from the snake sections and allows a much longer unsupported length and 

slender cross section. However, due to the design of many wires actuated 

snake arms, they are not capable of producing as large angles as distributed 

actuator snakes. In addition, externally actuated snake-manipulators have an 

inherent disadvantage comparing to its counterpart: lack of stiffness or 

strength.  

In application where self-supporting snake manipulators are required or where 

the snake-like manipulator is required to be as slender as possible (e.g. to 

enter through a small hole such in surgery or search and rescue tasks) tendon 

based snake arm manipulators are normally the only option. 

Snake-like manipulators can also be categorized into hard manipulators and 

soft manipulators on the basis of their underlying materials. Hard manipulators 

are designed to be stiff so that external forces do not affect the accuracy of 

movement or precision of manipulation. Soft manipulators are constructed 

with soft and deformable materials (e.g. silicone, rubber, or compliant 

mechanical parts like springs) of that the inherent compliance minimises the 

force applied during contact with objects to reduce damage [3, 4].  

While hard manipulators are capable of being accurate, many of them lack the 

ability to alter the rigidity or stiffness when required [5, 6]. One approach to a 

stiffness controlled snake-manipulator used friction between joints to 

modulate the overall stiffness of the manipulator [7, 8]. Although this design is 

impressive, it lacks the ability to alter the stiffness individual sections 

independently.    

Soft manipulators and hard manipulators exploit different mechanisms to 

enable dexterous mobility. Soft manipulators have large deformability and 

compliance, they can be deployed through opening diameter smaller than 

their original dimensions [3]. Soft manipulators can actively interact with the 

environment without causing damages, which makes them appeal for the 

medical application and human-safe industry. However, their inherent 

advantages result in limited output force, reducing the quality of manipulation 

precision. High forces are tough to achieve without the support of any rigid 
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components. The core challenge of soft robotics is the control of their 

deformability and softness. 

1.1.2  Stiffness Modulation 

In order to overcome aforementioned challenges, researchers have focused 

on robots with the capability of stiffness modulation. Stiffness modulation is 

the way for hard and soft robots to interact with the working environment 

effectively [9]. Softness enables dexterity and prevents the damage to the 

environment, whereas rigidity can transfer the forces to the environment when 

required. This kind of robot is undoubtedly promising, especially when robots 

need to operate in a confined or unstructured environment.   

The growing interest in stiffness modulation has led to an increased interest 

in smart materials. Specifically, materials can rapidly and reversibly change 

their stiffness. Examples include magnetorheological (MR) fluids [10], 

electrorheological (ER) fluids [11], thermorheological (TR) fluids [12, 13], and 

granular materials [14-16]. MR and ER fluids have fast transition time and 

good relative stiffness change. However, they suffer from low repeatability 

[17], i.e. fluids are subjected to thickening after prolonged use. TR fluids are 

an interesting solution to realize stiffness modulation. There have been a 

series of attempts with wax [18], hot-melt adhesive [18], and low melting point 

alloy [17, 19] to create controllable stiffness elements in soft robots. However, 

these materials are thermally activated, which means they require additional 

heating elements. Their efficiency is affected by thermal input. Granular 

jamming has been gaining attention recently as an alternative way to achieve 

soft manipulator with controllable stiffness capability [14-16]. Granular 

jamming uses vacuum pressure to cause powder materials to transition 

between solid-like and fluid-like states. However, it requires high vacuum 

pressure and a large volume of granular materials to achieve a significant 

stiffness modulation [9]. Therefore, it is challenging to scale smaller. Although 

there is no clear trend to provide stiffness modulation capability for robots, the 

awareness of the importance of such feature is emerging in robotics 

community.  

This research investigates the approaches for on-demand stiffness 

modulation capability, incorporates current technologies into the design of a 

snake-like manipulator. Although variable stiffness robotics is a very recent 

filed, this technique could potentially pave the way to new capabilities for 

manipulation, operation and extraction.  
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1.2  Motivation for Research 

The motivation for this research is to undertake study into controllable stiffness 

mechanisms for modular snake-like manipulator in order to expand 

capabilities of current systems. These capabilities will enable the manipulator 

to switch between soft state and rigid state when required. Softness will 

prevent the damage to the working environment, and rigidity will transfer the 

force and provide the stability during the operation. 

This thesis discusses the path taken from identifying the limitations of hard 

and soft robots to the synthesis, design, analysis and experimentation of the 

controllable stiffness mechanisms that can be employed by the snake-like 

manipulator. 

1.3  Aims and Objectives  

The aim of this research to analyse and validate methods for controllable 

stiffness modules for a modular snake-like manipulator. To fulfil the research 

aim, the following objectives are highlighted: 

1. To identify the possible materials that can be used for the development 

of the controllable stiffness mechanisms. 

2. To investigate the properties of the identified materials related to the 

design of the controllable stiffness mechanisms. 

3. To design the controllable stiffness mechanism that can be 

implemented as module of a snake-like manipulator. 

4. To experimentally characterise the performance of the single module 

with emphasis on measurement of stiffness and response time.  

1.4  Statement of Contribution 

The areas of the original work carried out in this research are highlighted 

below:  

1. Three thermorheological fluids (i.e. Field’s Metal, hot-melt adhesive, 

and Lens 136) were selected and investigated to develop controllable 

stiffness modules for modular snake-like manipulators. Field’s metal, 

hot-melt adhesive and Lens 136 materials were chosen for this 

application for the first time and found significant stiffness increases for 

the developed modules.  
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2. The properties of Field’s Metal were experimentally investigated under 

different conditions for the first time (i.e. the temperature influence on 

shear strength and the change of shear strength over repetitions).  

3. Finite element analysis was carried out on the bellows-like silicone 

structure. The number of the bellows was optimised. 

1.5  Structure of Thesis 

This thesis presents an exploration of modular approaches to construct a 

controllable stiffness manipulator through five related studies, each of which 

is discussed thoroughly in Chapter 2-6. The conclusion and future work are 

presented in the end. The structure of the thesis is given below: 

1. Chapter 1 discusses the background, motivation, aims and objectives 

of the reported research. 

2. Chapter 2 presents a thorough review on hard and soft robots with the 

emphasis on medical applications and human-safe industry. This 

chapter investigates application need and current state of the art of 

controllable stiffness robots. This process will shed light on the 

advantages and limitations associated with current robotic technology, 

and identify research gaps to be explored in this thesis.  

3. Chapter 3 introduces the experimental characterisation of materials 

used in this research, including smart materials for designing 

controllable stiffness elements and silicone materials for the fabrication 

of the soft structures. 

4. Chapter 4 presents the design and analysis of the single module for the 

modular manipulator. Mechanical models of the bonding torque are 

developed and FEA simulations are conducted on the single modules 

to estimate the bending stiffness. Thermal models are introduced in the 

end. 

5. Chapter 5 highlights the fabrication method of the single module. 

Application method of the low melting point solder and hot-melt 

adhesive are discussed.  

6. Chapter 6 presents the experimental characterisation of the single 

module. The prototypes of each design are presented with 

performance analysis, with the emphasis on the stiffness change and 

the response time.  

7. Chapter 7 discusses the results from the experimental studies. The 

advantages and limitations of each design are presented. The 

recommendations of the future research are presented in the end. 
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Figure 1.1 presents a visual representation of the thesis structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Graphical design of thesis structure. 
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Chapter 2 

Literature Review 

The chapter presents a thorough review on hard and soft robots with the 

emphasis on medical applications and human-safe industry. This process will 

shed light on the advantages and limitations associated with current robotic 

technology, and identify the research gaps to be explored in this thesis.  

2.1  Introduction 

Snake-like manipulators are formed from large numbers of serially configured 

joints that allow the manipulator body to follow complex paths, with 

appearance similar to a biological snake.  These manipulators are well suited 

for operation in restricted and confined environments where the manipulator 

body can bend around obstacles to place an end effector at a difficult to 

access location.     

 

Figure 2.1  Snake-like manipulator from OC Robotics [20]. 

In general, snake-like manipulators can be categorised into hard manipulators 

and soft manipulators on the basis of their underlying materials [4], as shown 

in Figure 2.2. Hard manipulators are composed of rigid components, such as 

joints and links. In comparison to hard manipulators, soft manipulators are 

constructed with soft and deformable materials. Soft manipulators can actively 

interact with the environment without causing damage, which makes them 

ideal for medical applications and human-safe industry.   
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Figure 2.2  Classification of Snake-like manipulators on the basis of 
materials and degree of freedom [4]. 

2.2  Hard Manipulators 

2.2.1  Discrete Hyper-Redundant Manipulators 

Hard hyper-redundant manipulator can be further classified as hyper-

redundant discrete manipulator and continuum manipulator. Hyper-redundant 

discrete manipulator combines short rigid links with a large number of joints. 

This creates highly dexterous mechanisms which appear to produce a snake-

like curve. Shang et al. [21] developed a snake-like robot, namely i-Snake® 

robot, for Natural Orifice Transluminal Endoscopic Surgery procedure. The 

main novelty of the device is the modular unit design based on a hybrid 

actuation scheme (tendon and motor driven) which allows independent control 

of each rotation DOF while leaving sufficient space for internal channels within 

the links. Three internal channels of diameters 3mm, 3mm and 1.8mm are 

available for passing visualisation, interventional instrumentation, and control 

lines. Although it is impressive to design and manufacture articulated joints in 

small dimension, the inherent advantage (independent actuation of each joint) 

also increases the complexity of the control. The model of the articulated joint 

is shown in Figure 2.3. 

Hard Hyper-redundant 

Continuum 

Discrete Soft 
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Figure 2.3  3D model of i-Snake articulated joint [21]. 

Kwok et al. [22] developed an articulated snake-like manipulator that 

consisted of universal joints and a series of identical links. Figure 2.4 

illustrates the structure of snake-like manipulator prototype. Two micromotors 

are embedded in each link. The links are connected by universal joints, each 

providing two degrees of freedom. The advantage of this design is the 

independent actuation of each joint. However, it also increases the complexity 

of the control.   

 

Figure 2.4  Schematic illustration of the robot showing the articulated joint 
structure [22] 

A highly articulated robotic probe (HARP) (see Figure 2.5) that can exploit its 

snake-like structure to navigate in a confined environment while minimally 

interacting with the environment along the path was developed at Carnegie 

Mellon University [8] [7]. The major contribution of HARP design is the 

stiffness control: two concentric tubes are used to construct the HARP, and 

each tube can alternate between rigid and passive states. These tubes consist 

of rigid cylindrical links strung together by four cables, three for the outer tube 

and the remaining for the inner tube. When the cables are pulled toward the 

back of the outer tube, the links are pulled toward each other increasing friction 

between the links eventually causing the mechanism to become rigid [7]; when 

they are relaxed, the outer tube becomes limp. Hence the control of the 

Tendon 

Motor 
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orientation is provided by the outer tube, and the inner tube is used to maintain 

the previous configuration. This feature leads to the ability to follow a curve in 

a three-dimensional confined environment. In comparison to the i-Snake 

robot, HARP is easier to control. 

 

Figure 2.5  Highly articulated robotic probe prototype [7]. 

A hyper-redundant multiple degrees of freedom (DOF) active surgical forceps 

instrument that enables more advanced and extensive laparoscopic surgery 

was developed by Ikuta et al. [23]. The device, as shown in Figure 2.6, 

features decoupled ring joint mechanism that allows 2 DOFs rotation, 

compensation mechanism for cable elongation, and detachable gripper 

mechanism. The advantage of this design lies in the design of compensation 

mechanism. One of the major challenges in the cable-driven system is the 

cable elongation that causes by repeated stress. The compensation 

mechanism that consists of friction bar, coil spring and tension pulley was 

adopted to solve the problem by maintaining the constant route length of the 

cable. 

 

Figure 2.6  Hyper redundant multiple DOFs active surgical forceps 
instrument [23]. 
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Ishii et al. [24] [25] [26] designed a robotic forceps manipulator, as shown in 

Figure 2.7, for minimally invasive surgery. The novelty of this system is the 

developed screw-driven mechanism, termed double-screw-drive (DSD) 

mechanism. This enables omnidirectional bending motion by rotating two 

linkages consisted of a right-handed screw, universal joint, and a left-handed 

screw [24]. The manipulator has high rigidity, which would guarantee the 

accuracy of the movement. However, the inherent advantage of this design 

also creates difficulty for the manipulator to adapt to the working environment. 

It could potentially damage the tissue or internal organ.  

 

 

 

Figure 2.7  Prototype of DSD forceps manipulator [24]. 

2.2.2  Continuum Manipulators 

In addition to the joint-type robots, there exists a type of robot that features a 

continuous backbone. This kind of robot, termed continuum robot, has no 

motioned joints, but it can realise the motion and manipulation with the help 

of its continuous flexible distortion [27]. Continuum robots can bend at any 

point along their structures, which improves their obstacle-avoiding capability 

when compared to joint type manipulators. Table 2.1 provides the overview of 

continuum manipulators describing their advantages and disadvantages. 

Table 2.1  Review of Design Method for Hard Continuum Manipulator. Five 
design methods are reviewed in this section, and their advantages and 
disadvantages are listed in the table. 

 

Design Method Examples Advantages Disadvantages 

Wire-Driven 

Spring Backbone 

[28] [29]  Spring backbone 

provides natural 

compliance 

 Difficult to 

control 

Wire-Driven 

Incompressible 

Backbone 

[30] [31] 

[6] [32] 

 Highly dexterous  

 More predictable 

behaviour 

 Unable to 

extend or 

contract 

Left-handed screw Universal Joint Right-handed screw 
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[33] [34] 

[35] [36] 

Screw-Driven 

Flexible 

Backbone 

[37]  Highly compliant 

and flexible 

 Bulky and 

difficult for 

minimization  

Flexure Joints [38] [39] 

[40] [41] 

 Simple design 

and easy to 

control 

 Suffer from low 

repetition 

Concentric Tube 

Backbone 

[42] [43] 

[44] [45] 

[46]  

 Simple and thin 

design 

 High compliance  

 The need for 

external 

actuator 

 Lack of actively 

controlled 

bending 

 

The Tendril robot developed by NASA’s Johnson Space Centre, finds its 

inspiration in the biology of snakes, tentacles, and climbing plants [28]. The 

Tendril’s backbone, as illustrated in Figure 2.8, is constructed by a series of 

extension and compression springs that are joined together by threaded links. 

The active bending is actuated by sets of antagonistic tendons that are 

attached to specific links, run the entire length of the backbone, and are 

terminated at pulleys inside the body housing structure. The spring backbone 

provides natural compliance. However, this also makes the design difficult to 

control, as control effort intended for backbone bending is lost in compression 

[27]. 

 

Figure 2.8  Tendril robot [28]. 

Spring Backbone 
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Hu et al. [29] proposed a snake-like robotic manipulator that features 

continuously deformable backbone. This device (see Figure 2.9) consists of 

five sections, and each is composed of universal joints, rivet, spring tube, drive 

cable and metal mesh. The novelty of this system is the implementation of the 

spring tube. It not only guides the cables properly along the manipulator but 

also bears the axial force produced by bending motion. Four cables located 

90 degrees apart and divided into two pairs are used to provide 2 DOFs 

actuation for each section. Although the manipulator is highly compliant, it is 

difficult to control. 

 

Figure 2.9  Snake-like continuum manipulator with continuously deformable 
backbone [29] 

A simple solution to the above-mentioned problems is to replace spring 

backbone with a flexible incompressible rod. Gravagne et al. [30] developed 

a planar continuum robot, as illustrated in Figure 2.10, under such concept. 

The manipulator is composed of two sections, each with two degrees of 

freedom. Its central backbone is a thin elastic beam, with four cables running 

through the guiding holes. Two cables terminate at the midpoint, the rest two 

at the endpoint. The advantages of this design include large deflection and 

more predictable behaviour. The limitation is that this approach excludes the 

use of incompressible backbone, which means the manipulator is unable to 

contract or extend.  

Spring Tube 
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Figure 2.10  Continuum snake-like manipulator with incompressible flexible 
backbone [30] 

Although incompressible backbone approach has its limitation, it has been 

proven to be popular and successful. In particular, Zhao et al. [31] proposed 

a Hook Joint type continuum robot, as shown in Figure 2.11, based on this 

approach. The external section of the device is serialised by multiple 

segments of parallel springs while the internal section is the backbone with 

multiple Hook Joints connected. External and internal sections are connected 

by circular thin slices. The manipulator is actuated by four cables, with every 

two cables forming one pair of antagonistic cables. 

 

Figure 2.11  Hook Joint type continuum robot [31]. 

Simaan et al. [6] [32] [33] developed an integrated system equipped with Distal 

Dexterity Units (DDU) for MIS of the throat and upper airway (see Figure 2.12). 

Each DDU is composed of a multi-backbone snake-like unit and a detachable 

parallel unit attached at its tip. The snake-like unit consists of a base disk, an 

end disk, several spacer disks, and four super-elastic NiTi tubes. The novelty 

that separates DDU from other snake-like unit is the implementation of four 

super-elastic NiTi tubes, thus removing the dependency on small universal 

joints and wires. These tubes are considered as the backbones of the snake-
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like unit. The central tube is the primary backbone that attached to both the 

base and end disks while the remaining three are the secondary backbones 

that attached only to the end disk and used for realizing the push-pull modes. 

The detachable parallel unit is capable for not only answering the need for tool 

detachability but also providing additional three DOFs for distal dexterity. The 

first prototype of a snake-like unit is shown in Figure 2.11. However, the 

limitation of this prototype is that it can only be bent to a continuous curve, 

which limits its application, especially in a space-constrained environment. 

 

Figure 2.12  Distal Dexterity Units [32]. 

Insertable Robotic End-effector Platform (IREP) by Ding et al. [34] addresses 

the need for self-deploying robots that provide sufficient dexterity in single 

entry point, while seamlessly supporting stereo vision feedback during 

surgical operation procedure. This system consists of two dexterous arms and 

a 3 DOFs (pan, tilt and zoom) visualisation module (see Figure 2.13). Each 

arm comprises a 5 DOFs continuum snake-like robot, a 2 DOFs parallelogram 

mechanism that can deploy each continuum robot, a wire-driven distal wrist, 

and a gripper. It acts as a surgical tele-operated slave for bimanual 

manipulation. The snake-like robot is based on the work done by Simaan et 

al.[6], where a multi-backbone design is implemented for the snake-like 

robotic unit. The novelty of robotic slave is the integration of parallel 

mechanisms and snake-like continuum robots, providing the deployable 

mechanical architecture and enhanced dexterity to the system. However, the 

actuation unit that includes 21 actuators and several sub-modules causes 

cumbersome footprint in theatre. 

NiTi Tubes 
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Figure 2.13  IREP robot [34]. 

Li et al. [36] developed a multi-section wire-driven manipulator for minimally 

invasive surgery. The manipulator, as shown in Figure 2.14, comprises an 

elastic backbone and a number of spherical joints. Wires are going through 

the pilot holes and are fastened at the end of each section. Therefore, each 

section can be controlled independently, and basic shapes, such as “S” and 

“C”, can be achieved. The elastic backbone is used to constrain spherical 

joints bending and to minimise the side effects of friction. The disadvantage 

of this design is that in order to increase the dexterity of the manipulator, more 

sections and cables are required.   

 
 

Figure 2.14  Multi-section wire-driven flexible robot [36]. 

Trunk-like manipulators have been studied by researchers as a form of hyper-

redundant continuum manipulator. Hannan et al. [35] [47] developed a four-

section elephant trunk manipulator (see Figure 2.15). Each section consists 

of four joints and is actuated by a hybrid cable and spring servo system. 

Although the system is highly dextrous (total of 32 degrees of freedom), it 

requires a large footprint.  
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Figure 2.15  Elephant trunk manipulator [35]. 

Yang et al. [37] proposed a novel trunk-like continuum manipulator, named 

ET arm. The manipulator, as shown in Figure 2.16, is composed of two 

sections. Each segment consists of elastic skeletons, artificial skin, and three 

artificial muscles. The novel artificial muscle includes a base, an actuator, 

couplings, a flexible rod and an end disk. Unlike traditional pneumatic muscle, 

the artificial muscle in this design adopts low-cost flexible rod and screw drive 

to create the shortening and extension of the muscle. The manipulator is 

flexible and highly compliant, it can be used in human-safe industry. 

     

Figure 2.16  ET arm and its bending experiments [37]. 

Compliant mechanisms, such as flexure linkages, have been used to design 

simple and lightweight continuum manipulators. Successful examples include 

Binary Robotic Articulated Intelligent Device (BRAID) [38] [39], cable-driven 

dexterous manipulator for minimally invasive surgery [40], and endoscopic 

manipulator from Peirs et al. [41]. As shown in Figure 2.17, BRAID is 

composed of a series of parallel linkage stages. Each stage has three flexure 

joints, and each with shape memory alloy (SMA) binary actuators. The 

advantages of this design include lightweight, dexterity and deployability. The 

manipulator can be deployed as a continuum manipulator and collapse to a 

small stowed volume.   
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Figure 2.17  Basic element of BRAID [38]. 

Segreti et al. [40] developed a snake-like manipulator for the surgical removal 

of osteolysis behind total hip arthroplasties. As shown in Figure 2.18, the 

manipulator is constructed with of two Teflon tubes with alternating slots cut 

on each side. There are fourteen slots cut on each side, resulting in 27 flexure 

joints. Two cables are used to actuate the manipulator; thus, the binary 

bending can be achieved.  

 

Figure 2.18  Compliant surgical manipulator [40]. 

Peirs et al. [41] developed an endoscopic manipulator with 2 DOFs. The 

flexible manipulator consists of a super-elastic NiTi tube which can be bent 

through four cables. The four cables are fixed at the tip and form two 

antagonistic pairs. Each antagonistic pair control one DOF. The tube is cut 

into a structure consisting of a series of rings connected by thin elastic joints 

to enhance the bending flexibility. The prototype of the device is shown in 

Figure 2.19. Although the flexure-based design is inherently simple and easy 

to control, lack of active control of individual section could limit the potential in 

medical applications. 
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Figure 2.19  Endoscopic manipulator [41]. 

Another form of continuum manipulator design is based on a backbone formed 

by concentric tubes. The tubes are free to rotate and translate with respect to 

each other, as illustrated in Figure 2.20. This feature thus achieves both 

torsion and extension. Lock et al. [42] used pre-curved elastic tubes to 

construct a continuum manipulator. Advantages of concentric tube robots 

include inherently clean and thin design, which makes them ideal for medical 

applications. It offers a good compromise between stiffness and shape control. 

The concentric tube robot can be constructed with the diameter comparable 

to catheters, and lengths sufficient enough to reach operation target. 

Disadvantage includes the lack of actively controlled bending since the 

curvature of the tube is predetermined. 

 

 

Figure 2.20  Concentric tube robot comprised of four telescoping sections 
that can be rotated and translated with respect to each other [42] 

Webster III et al. [43] [44] developed an “active cannula” that consisted of 

three pre-curved nitinol tubes (see Figure 2.21). Su et al. [45] proposed an 

MRI-guided, piezoelectrically actuated concentric tube robot for percutaneous 

interventions and stereotactic surgery. The proposed robots are unique in their 

use of backbone to transmit bending force. Unlike wire-driven or pneumatic 

controlled continuum robot, the bending forces are applied through external 

mechanisms, such as wires or pneumatic muscles. These external 

mechanisms are advantageous in terms of providing actively controlled 

curvature; however, they also limit miniaturisation.    

Four cables for actuation Elastic joints 
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Figure 2.21  Concentric tube robot [44]. 

A robot with snake-like configuration was proposed by Mahvash et al. [46] for 

the use of Laparoscopic Single-site Surgery procedure recently. This hybrid 

snake-like robot, as shown in Figure 2.22, is composed of a robotic probe and 

a set of pre-curved NiTi tubes. Two pre-curved tubes with the same length, 

initial curve, bending stiffness, and different diameters are selected so that 

they can be inserted inside each other and the combination can be introduced 

into the port of robotic probe. It can provide both tip dexterity and stiffness 

required for operational tasks. 

 

Figure 2.22  Hybrid snake-like robot [46]. 

2.3  Soft Manipulators 

Researchers have always found in biology an inexhaustible source of 

inspiration for devices and machines [4] [3]. Studying how animals exploit soft 

materials to move in unpredictable environments can draw inspiration on 

emerging robotic technology in the medical application and human-safe 

industry. In this section, fundamentally soft and highly deformable robotic 
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manipulators are reviewed, as listed in Table 2.2. Soft manipulators are 

classified by their design methods, and the advantages and disadvantages 

are presented. 

Table 2.2  Review of Design Method for Soft Manipulators. Four design 
methods are listed in the table, as well as their advantages and 
disadvantages. 

 

Design Method Examples Advantages Disadvantages 

Tendon-Driven 

Octopus-Like 

Manipulator 

[48] [49] 

[50] [51] 

 Simple design 

 Easy to control 

 Limited force 

 The need for 

external actuators 

SMA Actuated 

Octopus-Like 

Manipulator 

[52]  Simple design 

 Easy to control 

 Limited force 

Pneumatic 

Actuated Trunk-

Like Manipulator 

[53] [54] 

[55] 

 Actively 

controlled 

bending 

 Highly 

dexterous  

 Bulky design 

 The need for 

pressure 

regulation  

 Low force 

generation 

capability  

Other [56]  Independent 

control of 

robotic 

sections 

 Low force 

performance 

 2D Planar 

operation  

 

Muscular hydrostats such as elephant trunks and octopus arms represent 

paradigmatic soft structures that can bend, extend and twist [3]. These 

capabilities have inspired robotic engineers to incorporate soft technology into 

their designs. One successful example that applied muscular hydrostats to 

robotic design is the soft robotic octopus arm.  

Renda et al. [48] [49] developed a tendon-driven continuum manipulator (see 

Figure 2.23 and Figure 2.34) inspired by octopus arm, as well as a general 

steady-state theoretical model. Both manipulator and actuators were 

modelled. The model can be used for simulating many kinds of soft body 

continuum manipulators actuated by cables. According to the authors, the 
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developed approach is fast enough to be implemented in the embedded 

control of the manipulator. The manipulator is constructed by a single conical 

piece of silicone actuated by cables embedded in the body. Four cables are 

anchored at different distances between from the end through a rigid plastic 

disc built in the robotic arm. Thus, the manipulator can be bent and twisted by 

pulling the cables. The advantage of this design lies in its simplicity and being 

able to adapt to working environments; however, the inherent advantage 

comes with limited force.  

 

Figure 2.23  Illustration of the design of a tendon-driven octopus arm [49]. 

  

Figure 2.24  Tendon-driven soft continuum manipulator inspired by octopus 
arm [49]. 

Wang et al. [50] developed a cable-driven soft robotic manipulator inspired by 

octopus tentacle. As shown in Figure 2.25, it is made of silicone rubber and 

has no rigid structure inside. The soft manipulator is cone-shaped and 

actuated by four cables running through the structure. Since the manipulator 

has no rigid components, its safety and dexterity make it suitable for the 

medical application. However, this manipulator lacks the ability to module 

stiffness, which makes it difficult to operate in certain tasks.  

Four cables 

for actuation 
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Figure 2.25  Cable-driven soft robotic manipulator [50]. 

Cianchetti et al. [51] presented the design of an artificial muscular hydrostat 

for developing an octopus-like robot. The proposed robotic arm has octopus 

arm feature, such as the ability to elongate, to bend in all directions, and to 

control its stiffness. As shown in Figure 2.26, the robotic arm demonstrates 

the capacity to bend. The bending point is not predetermined, but 

automatically created thanks to the interaction of the object. Longitudinal 

muscles, transverse muscles and their reciprocal actions were taken into 

consideration in artificial muscular hydrostat design. The robotic arm consists 

of four longitudinal muscles and a number of transverse muscles in parallel. 

One of many advantages of this design is the ability to modulate stiffness. A 

series of small rigid components were embedded in the soft body. The 

longitudinal and transverse muscle groups act in an antagonistic way causing 

stiffness.  

 

Figure 2.26  Octopus-like robotic arm in grasping action [51]. 
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As shown in Figure 2.27, robotic octopus arm is developed by Cianchetti et al. 

[52]. It is completely soft and compliant when relaxed, but it is able to replicate 

the basic mechanism of the octopus’s muscular hydrostat when activated. It 

can elongate, shorten and bend in all directions at any point along the arm. 

The robotic arm consists of longitudinal and transverse elements, and external 

structure allowing large deformations and at the same time keeping the global 

shape, a very thin and elastic skin, and a sinusoidal arrangement of internal 

fibres. This work demonstrated an example of biomimetic with an efficient 

translation of biology into robotics and provided the possibilities of adapting 

soft robotics to manipulator designs in medical applications.  

 

Figure 2.27  Robotic Octopus Arm composed by a braided sheath and 
actuated by SMA springs [52] 

The incorporation of pneumatic actuation is another design approach for soft 

continuum manipulator. The backbone of continuum manipulator can be 

constructed from pneumatic actuators. Thus, a series of independently 

controlled sections is created. The torsion, extension and contraction can be 

realised by applying different pressure in various sections. Successful 

example includes OctArm continuum manipulator from Bartow et al. [27] [53]. 

As shown in Figure 2.28, the OctArm manipulator is inspired by biological 

trunks. It features three independent actuated sections. Each section is 

actuated by pneumatic muscles. The advantage of this design includes 

actively controlled the backbone, which is not provided by concentric tube 

design. However, the disadvantages of this design include low force 

generation capability, the requirement of pressure regulation equipment, and 

large footprint, which limit its potential in medical applications.  
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Figure 2.28  OctArm continuum manipulator [53]. 

An elephant trunk-like manipulator, as shown in Figure 2.29, developed by 

Tsukagoshi et al. [54] consisting of a spiral tube wound around the 

manipulator backbone like a coil. The novelty of this manipulator is the design 

of the spine. The spine of the manipulator installed in its centre aims to help 

the unit to be shrunk passively when the opposite side is stretched. The spine 

structure is composed of several blocks. Wire combination mechanism is used 

to connect blocks.  

 

Figure 2.29  Bending action of Active Hose [54]. 

Pritts et al. [55] developed a soft trunk-like manipulator with two sections that 

each provide two-axis bending and extension. Kang et al. [57] developed a 

pneumatically actuated continuum manipulator with six sections that can 
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elongate, shorten, and bend at any point along the arm length. As shown in 

Figure 2.30, each segment is supported and actuated by four pneumatic 

artificial muscle that is mounted on the connection plate. Although pneumatic 

actuation designs are highly dexterous, they suffer from a number of 

shortcomings to restrict in medical applications. They need a bulky air 

compressor for continuous operation, which restricts mobility and makes 

minimization difficult.  

 

Figure 2.30  Pneumatically actuated continuum manipulator [57]. 

The soft grasping manipulator shown in Figure 2.31 has six bidirectional 

sections with cylindrical cavities and combined with a soft gripper [56]. The 

planar arm has seven degrees of freedom and is made of soft rubber. The 

planar manipulator is capable of pick-and-place operations. The advantage of 

this design includes independent pneumatic control of robotic grasper since 

the manipulator is composed of 13 custom cylindrical segments. However, the 

manipulator is only able to perform under low payloads and limited to a 2D 

planar motion.  
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Figure 2.31  Soft grasping manipulator [56]. 

2.4  Controllable Stiffness Robots  

The need for building robots with the capability of stiffness modulation has 

emerged recently. Stiffness modulation is the way for hard and soft robots to 

interact with the working environment effectively [9]. Softness enables 

dexterity and prevents the damage to the environment, whereas rigidity can 

transfer the forces to the environment when required. Therefore, this type of 

robot is particularly suitable for medical applications and human-safe industry. 

In this section, variable robotic platforms with capabilities of stiffness 

modulation are reviewed. As listed in Table 2.3, controllable stiffness robots 

are classified by design methods. Five design methods, i.e. antagonistic 

principle, friction, electro- and magneto- rheological materials, 

thermorheological materials, and granular materials, are presented in the 

table, along with their working principles. 

Table 2.3  Review of design method for controllable stiffness robots. Five 
design methods are listed in the table, along with their working 
principles. 

  

Design Method Examples Working Principle  

Antagonistic principle  [51] [58]  The longitudinal and 

transverse muscle groups can 

act in an antagonistic way 

causing stiffness modulation. 

Friction  ShapeLock 

TSG 

HARP 

 Links are pulled toward each 

other increasing friction 

between the links eventually 
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 Layer 

Jamming 

Scale 

Jamming 

 

 

 Granular 

Jamming 

causing the mechanism to 

become rigid. 

 The mechanism is composed 

of multiple layers of thin film, 

and makes use of amplified 

friction between the films by 

applying vacuum pressure. 

 By applying vacuum 

pressure, the material can 

transition between solid-like 

state and fluid-like state. 

Electro- and 

magneto- rheological 

materials  

 ER fluids 

 MR fluids 

 When subjected to an 

external magnetic or electric 

field, the ER or MR particles 

orient and build chains in 

response to the particles 

interaction. This translates 

into an increased resistance 

to deformation  [9].  

Thermorheological 

materials 

 Solder 

 Low melting 

point alloy 

 Materials feature a low 

melting point, in which a 

phase change can be rapidly 

and reversibly obtained by 

thermal input 

2.4.1  Antagonistic Principle-based Controllable Stiffness Robots  

Variable stiffness soft robot can be achieved based on antagonistic principle. 

Successful examples include octopus-like robotic arm developed by 

Cianchetti et al. [51] (as reviewed in Section 2.3, the longitudinal and 

transverse muscle groups can act in an antagonistic way causing stiffness 

modulation) and a soft manipulator based on tendon-driven coupled with 

pneumatic-driven actuation method developed by Stilli et al. [58]. The 

proposed manipulator is composed of modules that are constructed of an 

internal stretchable latex bladder integrated with an outer, non-stretchable 

polyester fabric sleeve. Tendons connected to the distal ends of the robot 

modules run along the outer sleeve allowing each module to bend. As shown 

in Figure 2.32, the hybrid driven manipulator can modulate the stiffness by 

inflating the stretchable bladder and tightening the tendons at the same time. 
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Figure 2.32  CAD drawing of a hybrid actuation scheme manipulator [58]. 

2.4.2  Friction-based Controllable Stiffness Robots   

The friction-based method is one of the simplest ways to realise controllable 

stiffness for hard robots. Wires are usually used to initiate the stiffening 

process. When the wires are pulled toward the back, the links are pulled 

toward each other increasing friction between the links eventually causing the 

mechanism to become rigid. Successful examples include a highly articulated 

robotic probe (HARP) [8] [7], commercially available ShapeLock technology 

[59] and Tension Stiffening Guide-wire (TSG) [60]. ShapeLock technology is 

achieved by a series of titanium rings connected by wires, and rings lock into 

a set position when the connecting wires are tightened. The stiffened over-

sheath allows better force transmission when compared to fully flexible 

platforms. Figure 2.33 shows USGI Medical’s ShapeLock Endoscopic Guide 

and Cobra instruments.  

 

Figure 2.33  USGI Medical's ShapeLock Endoscopic Guide and ShapeLock 
Cobra [59] 

A catheter positioning system sharing similar design concept with the HARP 

was proposed by Chen et al. [60]. This system, named Tension Stiffening 

Guide-wire (TSG), is capable of manoeuvring a catheter through 

extravascular spaces with an arbitrarily defined number of turns. It consists of 

Polyester Fabric 

Sleeve 

Stretchable Latex 

Bladder 

Pneumatic Tube 
Tendons 
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two different custom designed “guide-wires” that are made of a series of 

modular beads. The catheter sheath is then developed to encase the two 

strands of controllable stiffness guide-wires.  One guide-wire has a body that 

can be stiffened and a distal end that can be steerable while the remaining 

one can only be stiffened or made flexible. Friction between different modular 

beads is used to stiffen the guide-wire. During the operation, two guide-wires 

are used in tandem: one guide-wire remains stiff while the other is kept 

flexible. The flexible one uses the stiff one as a reference track to move 

forward. Figure 2.34 shows the prototype of TSG system.  

 

Figure 2.34  Tension-stiffening guide wire prototype [60]. 

Recent research has focused on layer jamming technology to achieve 

controllable stiffness. Kim et al. [61] proposed a tubular snake-like manipulator 

based on this approach. The layer jamming mechanism, as shown in Figure 

2.35, is composed of multiple layers of thin Mylar film and makes use of 

amplified friction between the films by applying vacuum pressure. The layer-

jamming-based manipulator has highly flexible and under-actuated properties. 

However, it lacks the ability to alter the stiffness of arbitrary segments.  

 

Figure 2.35  Section view of the layer jamming joint [61]. 
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Sadati et al. [62] presented an idea of scale jamming inspired by fish and 

snake scales to control the stiffness of continuum manipulators by controlling 

the Coulomb friction force between rigid scales (see Figure 2.36). A low 

stiffness spring is used as the backbone for a set of round curved scales to 

maintain an initial helix formation while two thin fishing steel wires are used to 

control the friction force by tensioning [62]. The prototype was tested to control 

the bending stiffness of an STIFF-FLOP continuum manipulator.  

 

Figure 2.36  STIFF-FLOP manipulator with scale jamming for minimally 
invasive surgery [62]. 

2.4.3  Electro- and Magneto- rheological Materials-based Controllable 

Stiffness Robots 

The growing interest in stiffness modulation has led to an increased interest 

in smart materials. Specifically, materials can rapidly and reversely change 

their stiffness. Examples include magnetorheological (MR) fluids, 

electrorheological (ER) fluids, thermorheological (TR) fluids, and granular 

materials.  

MR and ER fluids are known for their capabilities to change rheological 

properties when magnetic or electric field is applied. When embedded in the 

soft structure, the same principle can be explored to increase the stiffness of 

the structure. Majidi et al. [10] presented a tuneable stiffness mechanism 

based on microconfined MR domains. As illustrated in Figure 2.37, when a 

magnetic field is applied, the fluid in the microchannels form confined 

magnetic domains that resist separation of the ribbons. Cao et al. [63] 

presented a theoretical study of the design of mesosturctures ER elastomers. 

A few studies have focused on experimental studies of stiffness change of ER 

fluids. This is probably due to the shortcomings of the use of ferroelectric 

particles, as the maximum yield stress they generate is, on average, two 

orders of magnitude lower [9].  
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Figure 2.37  (a) An ultrasoft polyurethane elastomer is embedded with rigid, 
micropatterned ribbons that slide past each other. The tabs are 
enclosed in a chamber filled with MR fluid. (b) The surface of each 
ribbon is patterned with an array of aligned microchannels. (c) In the 
absence of magnetic field, the MR microparticles are randomly 
dispersed. (d) Under an external field of 10–35 mT, the microparticles 
form magnetic domains that are confined to the microchannels [10].  

2.4.4  Thermorheological Materials-based Controllable Stiffness 

Robot 

TR fluids are another interesting solution to realise stiffness modulation. There 

have been a series of attempts with wax [18], solder [12] [13], and low melting 

point alloy [17] [19] to create controllable stiffness elements, and subsequently 

implemented in the soft structures. Cheng et al. [12] proposed a soft mobile 

robot composed of solder-activated joints. A solder-based locking mechanism 

was developed to selectively activate individual joints without requiring 

additional actuators. With the help of the solder-based locking mechanism, 

the robot can locally modulate the stiffness to dictate the robot’s global 

response to external loading [12]. The locking mechanism consists of a thin 

layer of 60Sn-40Pb solder, mixed with low melting point alloy sandwiched 

between two strips of copper tape. The use of low melting point alloy is to 

lower the melting point of 60Sn-40Pb solder (from 188 ̊C to 70 ̊C). Figure 2.38 

shows the locked and unlocked states of the prismatic joint.  
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Figure 2.38  Locked and unlocked states of the prismatic joint (left) and 
integrated solder-based locking mechanism in the prismatic joint (right) 
[12]. 

Telleria et al. [13] developed a single-actuator, centimetre-scale robot 

(Squishbot) composed of solder-activated joints. Figure 2.39 shows one of 

solder-activated flexure joints for Squishbot 1. The locking mechanism 

consists of 60Sn-40Pb solder and low melting point alloy mixture sandwiched 

between u-shaped copper elements. This work demonstrates the use of TR 

fluids, especially solder or low melting point solder, enable a new means of 

achieving complex tasks with a centimetre-scale robot. 

  

Figure 2.39  3D model of one of solder-activated joints for Squishbot 1 [13]. 

Wax and solder have successfully demonstrated their potentials, but higher 

stiffness variation can be achieved if metals are used directly instead. 

Specifically, the metal itself can be embedded in the soft structure. The 

combined mechanism can transition between rigid and soft states by 

controlling the phase of the metal. Schubert et al. [17] developed a variable 

stiffness device based on the combination of low melting point alloy 

microstructure embedded in soft poly (dimethylsiloxane), as shown in Figure 

2.40. The devices tested demonstrate a relative stiffness change of > 25× 
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(elastic modulus is 40 MPa when low melting point alloy is solid and 1.5 MPa 

when low melting point alloy is liquid) and a fast transition from rigid to soft 

states (< 1 s) at low power (< 500 mW) [17].  

    

Figure 2.40  Low melting point alloy microstructure embedded in soft poly 
(dimethylsiloxane) [17]. 

Shintake et al. [19]developed a variable stiffness dielectric elastomer actuator 

(VSDEA). As shown in Figure 2.41, the device consists of a dielectric 

elastomer actuator and low melting point alloy embedded in the silicone 

substrate. The device enables functional soft robots with a simplified structure, 

where the dielectric elastomer actuator generates a bending actuation and the 

low melting point alloy provides controllable stiffness between soft and rigid 

states [19].  

   

Figure 2.41  Variable stiffness dielectric elastomer actuator (VSDEA). 
Compared to an actuator without the LMPA, the rigidity of VSDEA is 
visible (LEFT). The compliance of the device is clear when the LMPA 
substrate is activated (RIGHT) [19]. 

2.4.5  Granular Materials-based Controllable Stiffness Robot 

Soft robotic manipulator requires stiffness to apply intentional forces to a 

particular task. Jamming is a useful variable stiffness mechanism for robotic 

applications due to its simplicity and combination of a relatively fast activation 

time and capability of transitioning between fluid-like and solid-like states. 
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Cheng et al. [14] developed a highly articulated manipulator based on 

jamming of granular materials, as shown in Figure 2.42, the device consists 

of five serial controllable stiffness segments. Each section consists of coarsely 

ground coffee as granular materials, a low-stiffness compression spring along 

its length, and an outer flexible membrane. Each segment includes hard end 

disks for connecting airline and for guiding the tension cables, which ran along 

the length of the entire manipulator. The airline in each segment is connected 

to a solenoid valve to enable independent jamming control. Controllable 

stiffness is thus achieved by applying a vacuum to enclosed granular 

materials.  

 

Figure 2.42  Highly articulated manipulator based on granular materials [14]. 

A soft robotic manipulator based on granular jamming was developed by 

STIFF-FLOP project [15] [16]. As shown in Figure 2.43, the manipulator is 

composed of a series of homogeneous modules, each consisting of a silicone 

matrix with a pneumatic chamber for bending and elongating, and one central 

channel for the integration of granular materials based stiffening mechanism. 

The manipulator is designed for minimally invasive surgery, where 

instruments are required to be flexible enough to enable insertion through 

body cavities without damaging tissues but that are also able to stiffen enough 

for applying forces to the target site. Granular materials jamming has 

interesting features, such as high deformability in fluid-like state and a drastic 

stiffness increase in the solid-like state. However, it requires a substantial 

volume of granular materials to achieve a significant stiffness change [9].  
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Figure 2.43  Stiff-Flop tuneable stiffness manipulator [15]. 

2.5  Summary 

This chapter provides a thorough review of hard, soft as well as variable 

stiffness manipulator for medical applications and human-safe industry. A 

selection of the highly-cited literature was selected and categorized on the 

basis of their underlying materials and design methods. The investigation of 

these articles is playing a vital role in developing new robotic systems. It is 

evident hard robots are not particularly suitable for medical applications or 

human-safe industry for lacking the capability to negotiate with the working 

environment. Whereas soft robots can interact with the environments without 

causing any damage. However, their inherent advantage comes with limited 

force generation capability, which makes them vulnerable when dealing with 

manipulation tasks.  

In order to overcome these challenges, researchers have shifted their 

attention to robots with the capability of stiffness modulation. The design of 

controllable stiffness robot is seen to have evolved into two different 

directions, i.e. (1) hard robot with soft capability and (2) soft robot with hard 

capability. A hard robot with soft capability can be realised by using the friction-

based method, as demonstrated in ShapeLock [59], TSG [60] and HARP [8] 

[7]. However, this technology requires a large contact area that can generate 

sufficient friction to cause stiffness modulation. Therefore, the scalability of 

this approach is not particularly remarkable.  

Robots based on soft materials need be able to modulate the stiffness to be 

effective. The possibility of altering stiffness can broaden a soft robot 

capability and enrich its behaviour. Five design methods that can provide a 

soft robot with hard capability have been summarised in this chapter, along 

with pros and cons. While MR and ER fluids have fast transition time and good 
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relative stiffness change, however, they suffer from sealing issue, 

environmental contamination, and low repeatability, i.e. fluids are subjected to 

thickening after prolonged use. TR fluids are an interesting solution to realize 

stiffness modulation. This chapter has reviewed several attempts on using 

wax, hot-melt adhesive, and low melting point alloy to create controllable 

stiffness elements in soft robots. However, these materials are thermally 

activated, which means they require additional heating elements. Their 

efficiency is affected by thermal input. Granular jamming has been gaining 

attention recently as an alternative way to achieve soft manipulator with 

controllable stiffness capability. However, it requires a large volume of 

granular materials to achieve the stiffness required. Therefore, it is challenging 

to scale smaller.  

Although there is no clear trend to provide stiffness modulation capability for 

robots, the awareness of the importance of such feature is emerging in 

robotics community. To the best knowledge of author, there are no attempts 

on using TR fluids to design a snake-like manipulator with the capability of 

stiffness modulation. Furthermore, there are no synthesis approaches to 

design a controllable stiffness manipulator, as well as a systematic 

comparison of the performances of the designs. Therefore, this research 

investigates the approaches for on-demand stiffness modulation capability, 

incorporates current technologies into the design of a snake-like manipulator. 

Although variable stiffness robotics is a very recent field, this technique could 

potentially pave the way to new capabilities for manipulation, operation and 

extraction.  
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Chapter 3 

Material Selection and Characterisation 

Two different design principles (bonding between moving surfaces and 

exploring phase change property) are investigated as active elements in 

variable stiffness modules. The materials can be used as bonding between 

moving surfaces and through phase change from solid to liquid are 

investigated. This chapter presents the selection and the characterisation of 

the materials used in this research.  

3.1  Introduction  

A novel snake-like manipulator consisting of multiple homogeneous 

controllable stiffness modules is developed in this thesis. Two design 

principles (the materials can be used as bonding agents between moving 

surfaces and through phase change from solid to liquid), as illustrated in 

Figure 3.1 and Figure 3.3, are proposed to create controllable stiffness 

modules: 

1) Bonding between surfaces: Materials bonding two surfaces together 

(e.g. low melting point solder and hot-melt adhesive), where the 

bonding strength is altered by the application of heat.  

 

(a) Initial rigid configuration: all joints are non-activated (locking state). 

 

(b) Thermally activated joint in black circle to achieve stiffness 

modulation (unlocking state).  

Figure 3.1  The design principle of the surfaces bonding approach. An 
external load F is applied at the end of the manipulator. 

Revolute joint and spherical joint with bending angle 56o, as shown in Figure 

3.2, are designed to exploit this principle. The variable stiffness manipulator 



- 39 - 

can be constructed by a series of revolute joints or spherical joints. The joints 

can be locked and unlocked when required, thus the stiffness modulation 

feature can be realized. Detailed design and analysis are provided in Section 

4.2.1.  

  

                                         (a)             (b) 

Figure 3.2  Illustration of the revolute joint (a) and spherical joint (b).  

2) Phase change property: Materials can be changed from a rigid solid 

state to a liquid-like state (e.g. low melting point alloy or granular 

materials) by the application of heat or vacuum pressure.  

 

 

Figure 3.3  A manipulator consisted of multiple variable stiffness single 
modules.  

Figure 3.3 shows a snake-like manipulator consisting of multiple variable 

stiffness continuum modules. The soft continuum module, as shown in 

Figure 3.4, is designed to accommodate the phase change material (fusible 

alloy or granular material). Detailed design and analysis are presented in 

Section 4.2.2. 

The variable stiffness manipulator is consisted of multiple soft modules. The 

stiffness modulation feature is realised by the controllable stiffness element of 

each module. The state of the phase change material can be altered by the 

application of the heat or vacuum pressure.   

 

Phase change material 

Revolute 

Joint 

Spherical 

Joint 
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Figure 3.4  Soft continuum module is designed to accommodate the phase 
change material.  

In this chapter, three thermorheological (TR) fluids, i) low melting point solder, 

ii) hot-melt adhesive, iii) low melting point alloy and iv) granular materials are 

investigated including: 

1) The ease at which materials enters the rigid state or soft state (i.e. 

response time between solidus temperature and liquidus temperature); 

2) The stiffness/strength of the system in rigid state; 

3) The stiffness/strength of the system in soft state;  

4) The cyclic repeatability of these metrics.  

The material properties, as illustrated in Table 3.1, are characterised in this 

chapter. 

Table 3.1  Proposed Materials and Their Experimental Characterisation. 

 

Design 

Principle  

Materials Experimental 

Characterisation 

Bonding 

between 

Surfaces 

Low Melting Point Solder 

(LMPS) 

 Solidus temperature 

 Temperature-dependent 

of bonding strength 

 Repeatability 

Hot-melt Adhesive 

(HMA) 

 Solidus temperature 

 Temperature-dependent 

of bonding strength 

 Adherend-dependent of 

bonding strength 

 Repeatability 

Phase Change 

Materials 

Low Melting Point Alloy 

(LMPA) 

 Solidus temperature 

 Elastic modulus  

Phase change 

material 
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Granular Material (GM)  Elastic modulus under 

different vacuum 

pressure 

 

The main body of the proposed modules is constructed by two different types 

of the silicone materials. The properties of the silicone materials are 

investigated in the end.  

3.2  Low Melting Point Solder (LMPS) 

LMPS has been increasingly used in the recent development of small-scale 

robots [12, 13, 64]. The idea is to use LMPS to form the rigid bond between 

interfaces when the solder temperature is below the melting point. The bond 

can be easily separated through thermal input. LMPS is utilized in the 

development of hard-jointed manipulator with soft capability. The proposed 

manipulator consists of multiple homogeneous modules. Each module is 

composed of thermally activated lockable joints (revolute joints or spherical 

joints) and soft structures. The compliance is achieved through the use of the 

soft structures. LMPS is used to design the locking mechanism that can be 

employed by robot joints. The joints can be selectively locked and unlocked, 

therefore modulating global stiffness of the manipulator. The concept is 

illustrated in Figure 3.1.  

3.2.1  Material Selection 

The most common solder for electrical and electronics applications is 63% Sn, 

37% Pb. The use of 63% Sn, 37% Pb solder for thermally activated lockable 

joints has been proven to be successful in [12, 13], where solder and low-

temperature alloy mixture was used to design thermally-activated locking 

mechanism for small-scale robot joints. Due to the high melting point 

temperature (188°C), a low melting point alloy (Chip Quik) is used to lower the 

melting point. However, there are several problems regarding solder and low-

temperature alloy mixture. First, there is no quantitative method to mix two 

materials (i.e. the ratio between solder and Chip Quik is unknown), the melting 

point is different for different batches. Second, the shear strength of the 

mixture was found to be too weak to be used in the design of the lockable 

mechanism. Therefore, solder with low melting point temperature needs to be 

considered. Candidate materials are listed in Table 3.2.   

When selecting candidate solder materials, several criteria need to be 

considered. First, solder with low melting point temperature is desirable. The 
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melting point determines the overall power consumption. It should be as low 

as possible to minimise power and to avoid the damage of single module as 

well as working environment. Secondly, it is necessary to select a solder with 

non-hazardous composition. Alloys containing Mercury or Cadmium do not 

meet this requirement due to their known health effects [64]. Of the materials 

listed in Table 3.2, 32.5% Bi, 51.0% In, 16.5% Sn (Field’s metal) is the lowest 

melting point (62 °C) that meets both requirements. Therefore, it was selected 

to design locking mechanism that can be employed by the joint. 

Table 3.2  Melting Points for a Selection of Low Melting Point Solders [65]. 

 

Composition or Common Name Melting Point (°C) 

40.3% Bi, 22.2% Pb, 10.7% Sn, 17.7% Cd, 8.1% In, 

1.1 % TI 

41.5 °C 

44.7% Bi, 22.6% Pb, 19.1% In, 5.3% Cd, 8.3% Sn 

(Cerrolow 117) 

47.2 °C 

49% Bi, 18% Pb, 21% In, 12% Sn (Cerrolow 136) 58 °C 

32.5% Bi, 51.0% In, 16.5% Sn (Field’s metal)  62 °C 

50.0% Bi, 25.0% Pb, 12.5% Sn, 12.5% Cd (Wood’s 

metal) 

71 °C 

42.5% Bi, 37.7% Pb, 11.3% Sn, 8.5 % Cd (Cerrosafe) 74 °C 

50.0% Bi, 28.0% Pb, 22.0 % Sn (Rose’s metal) 98 °C 

 

3.2.2  Experimental Characterisation  

3.2.2.1  Solidus Temperature 

In order to understand the temperature at which the solder becomes solidified, 

solidus temperature needs to be determined. Since this property is not 

provided by the manufacture, the simplest way to determine solidus 

temperature is through experiments. Figure 3.5 illustrates the experimental 

setup used to establish solidus temperature of LMPS. Solder-coated copper 

tapes and resistance wires were prepared for the experiments. Resistance 

wires were wound and closely attached to the copper taper. Solder was 

initially heated by the resistance wires behind the copper tape when the 

temperature reached the melting point. A copper wire was then used to poke 

the solder to determine when it solidified, a k-type thermocouple was attached 
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to the surface to record the temperature. Five trials were conducted, and the 

average solidus temperature for low melting point solder is 60.2°C. 

 

Figure 3.5  Experimental setup used to measure the solidus temperature of 
LMPS.   

3.2.2.2  Temperature-dependent of Bonding Strength 

After the bond has been formed, the bonding strength between LMPS and 

copper tapes could be influenced by the temperature. As the temperature 

reaches to the melting point, LMPS is becoming liquefied. The bond can be 

easily separated. To understand the temperature influence on bonding 

strength of LMPS, temperature-dependent bonding strength experiments 

were conducted.  

The test rig, as shown in Figure 3.6, consists of a heating element (Lite6, e3d-

online.com), a temperature controller, a k-type thermocouple, LMPS-coated 

copper tapes, and a wooden cylinder, and wooden plates. The direction of the 

separation of the wooden plates is illustrated in the figure. Specifically, LMPS-

coated copper types were initially glued on the wooden cylinder and plate. The 

wooden cylinder with solder-coated copper tape was manually placed above 

the cope tape, LMPS was heated by the heating element above the melting 

point to form the bond. When the bond returned to room temperature, top 

wooden plate was placed above the bottom plate through the cylinder. Then 

they were clamped on the Instron test machine. Then the heater was activated 

again, and the temperature was adjusted accordingly. The force that breaks 

the bond was recorded by Instron test machine when two plates were pulled 

apart. The bonding area was measured after the plates were separated. 

Thermocouple 

Solder 

Resistive wires 
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Bonding strength was evaluated as the ratio between breaking force and 

bonding area.  

 

Figure 3.6  CAD model of test rig for temperature-dependent of bonding 
strength test.  

Experimental setup for temperature-dependent of bonding strength test is 

shown in Figure 3.7. The direction of the separation of the wooden plates is 

illustrated in the figure. K-type thermocouple and temperature controller are 

illustrated in the graph. Three trials were conducted. 

 

Figure 3.7  Experimental setup for temperature-dependent of bonding 
strength test. 

Solder Copper 

Heating Element 

K-type Thermocouple 
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Figure 3.8  Test results of shear strength (MPa) at different temperature. 
Three trials were conducted. 

The result, as plotted in Figure 3.8, shows that when the temperature is below 

the melting point (62 °C), it has limited effect on the bonding strength of LMPS. 

However, when the temperature is above the melting point, bonding strength 

reduces dramatically. For example, the bonding strength is as high as 1.65 

MPa at room temperature. When the temperature reaches ~50 °C, the 

bonding strength is reduced only by 8.32%. When the temperature is above 

62 °C, bonding strength decreases by 94.2%.  

3.2.2.3  Repeatability 

LMPS can transition between solid-like state and fluid-like state. However, 

repeated transition may affect the bonding strength between LMPS and 

interfaces. To evaluate the repeatability of LMPS, repeated locking and 

unlocking experiments were conducted.  

The test rig, as shown in Figure 3.9, was used to mimic the locking and 

unlocking motion of the lockable mechanism. It is composed of a resistive 

heater, copper tapes, LMPS, a wooden cylinder, and wooden plates. The 

rotational motion of the joint was simulated by rotating the wooden cylinder. 

The circular motion of the cylinder is illustrated as a blue curved arrow in 

Figure 3.9. LMPS was first heated by resistive heater behind the copper tape 

to activate the joint, then wooden cylinder was rotated to mimic the motion of 

the joint. Each repetition contains one cycle of locking-rotating-unlocking 

motion. When the bond was cooled down to room temperature, two wooden 

plates were pulled apart by Instron test machine. The direction of the 
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separation is illustrated as black arrows in Figure 3.9 and Figure 3.10. Shear 

force was recorded by the Instron machine. Shear strength of each repetition 

was evaluated as the ratio between shear breaking force and the bonding 

area. Experimental setup for repeatability test of LMPS is shown in Figure 

3.10. Three trials were carried out, each trial consists of 80 repetitions. Shear 

strength was evaluated after 20, 40, 60 and 80 repetitions. 

 

Figure 3.9  CAD model of test rig that used to simulate the rotational motion 
of the joint. The circular motion of the cylinder is illustrated as a blue 
curved arrow. The direction of the separation of the wooden plates are 
illustrated as black arrows.  

 

Figure 3.10  Experimental setup for repeatability test of LMPS. 

Copper Tape LMPS 

Resistive Heater 
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Figure 3.11  Shear strength of LMPS over repetitions. 

Figure 3.11 shows experimental results for shear strength of LMPS over 

repetitions. Shear strength steadily decreases over the repetitions. 

Specifically, after 20 repetitions, shear strength is reduced by 17.8%, 

maintains steady between 20 to 60 repetitions, decreases by 19.2% after 80 

repetitions. A likely explanation for the decrease of the shear strength is the 

circular motion of the wooden cylinder, with the mass of the bonding materials 

being lost over the repetitions. When designing lockable module that employs 

LMPS as the locking mechanism, the material could be sealed in a confined 

space to improve the repeatability. 

3.3  Hot-Melt Adhesive (HMA) 

Another approach to design controllable stiffness mechanism is based on 

thermoplastic adhesives. HMA, also known as hot glue, is the most common 

form of thermoplastic adhesives. HMA is capable of being repeatedly softened 

by increasing temperature and solidified by decreasing temperature to form 

strong bonds between varieties of materials. When the temperature is below 

the melting point, interfaces are bonded firmly by a hot-melt adhesive. It can 

also be easily detached by increasing the temperature of HMA. 

3.3.1  Material Selection 

When seeking candidate materials, the low-temperature melting point is 

mostly desirable. Low-temperature glue stick with melting point 75 °C was 

therefore selected for HMA-based controllable stiffness mechanism. 
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3.3.2  Experimental Characterisation 

3.3.2.1  Solidus Temperature 

Solidus temperature of HMA was determined experimentally. The 

experimental setup was equivalent to the tests conducted on LMPS (as shown 

in Figure 3.5). A small piece of HMA was initially melted by the resistive wires 

placed behind the copper tape. A wire was then used to prod the HMA to 

determine when it solidified, a k-type thermocouple was attached to the 

surface of the taper to record the temperature change. Five trials were 

conducted, the average solidus temperature of HMA is 50.8 °C.  

3.3.2.2  Temperature-dependent of Bonding Strength 

After the bond has been formed, the bonding strength can be dramatically 

influenced by the temperature [66, 67]. To evaluate the temperature influence 

on bonding strength of HMA, temperature-dependent of bonding strength 

experiments were conducted. Experimental setup and test rig were equivalent 

to the LMPS test. The bond was initially formed and cooled down to room 

temperature. The wooden plates were then clamped on the test machine. The 

bond was separated from room temperature to 70 °C, the shear force was 

recorded accordingly. Afterwards, the bonding area was measured, and shear 

strength was calculated as the ratio between shear force and the bonding 

area.  

 

Figure 3.12  Shear strength of HMA at different temperature. 

The result, as shown in Figure 3.12, illustrates the bonding strength of HMA 

between copper tapes exponentially decreases as the temperature increases. 

For example, the shear strength is as high as 1.1 MPa at room temperature, 
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as the temperature increases to 70 °C, it is reduced to 0.007 MPa. By simply 

reheating the bond, the interfaces can be easily detached from one to another. 

This characteristic can be exploited by the single module to achieve the design 

locking mechanism. It is also important to point out that the bonding strength 

is varied at the different temperature. By varying the external force, separation 

of the bond can happen before the melting point temperature is reached. 

Therefore, minimising the response time can be realised. 

3.3.2.3  Adherend-dependent of Bonding Strength 

The bonding strength of HMA varies between materials of adherends. To 

understand the difference, direct shear tests of HMA between different types 

of adherends were conducted. Several adherends materials, such as 

aluminium, stainless steel, copper, plastic, wood, and glass could be 

considered. However, when seeking candidate adherends, two additional 

criteria apply. First, light weight material is desirable. Second, the material 

should be easy to use in the process of fabrication. Therefore, plastic 

(VeroWhitePlus), aluminium, and copper were investigated.  

 

Figure 3.13  Experimental setup for adherend-dependent of bonding 
strength test. Two copper plates were glued together by HMA.  

Two separate plates (80 mm x 30 mm) made of candidate adherends were 

first prepared. The surfaces of the plates were pre-treated to form effective 

bonds. The HMA was supplied manually by a hand-held hot glue gun. Once 

the bond was formed, two separate pieces were then clamped on Instron test 

machine. When the bond returned to room temperature, two plates were 

Copper Plate 
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pulled apart, the shear force needed to break the bond was recorded 

accordingly. The experimental setup for adherend-dependent of bonding 

strength test was shown in Figure 3.13, the direction of the separation of the 

plates is illustrated as a blue arrow.    

Table 3.3 details the numerical results for the shear strength between HMA 

and candidate adherends at room temperature. Five trials were conducted for 

each adherend. The bonding area was measured after the separation of 

plates. Shear strength was calculated as the ratio between shear force and 

the bonding area. Note that shear strength between HMA and aluminium is 

similar to the shear strength between HMA and copper. However thermal 

conductivity of copper (401 W/mK) is significantly greater than aluminium (205 

W/mK), copper was therefore selected as adherend for HMA.  

Table 3.3  Shear strength between HMA and candidate materials. 

 

Materials Shear Strength (MPa)  

Aluminium  1.0562±0.1770 

Copper  1.0496±0.2443 

Plastic 0.1846±0.0373 

3.3.2.4  Repeatability 

HMA-based locking mechanism should be able to withstand multiple cycles 

before failure occurs. To understand the importance of cycling, repeated 

locking-unlocking cycles tests were conducted. Three trials were carried out, 

each trial contains 80 repetitions. The test rig (see Figure 3.9) and 

experimental protocol were equivalent to the LMPS test.  The result is plotted 

in Figure 3.14. The shear strength of HMA is as high as 1.0713 MPa after the 

first separation. It decreases by 16% after 20 repetitions, by 24% after 80 

repetitions. The decrease of shear strength of the HMA over repetition is likely 

explained by the loss of the mass of bonding material. In comparison to the 

test results shown in [67], in which the author used HMA to construct a 

climbing robot, the bonding strength reduced by 50% after 25 repetitions. Due 

to the difference of design principal and test rig, oxidative degradation and 

complete separation happen in the case of [67]. Whereas for our repeatability 

test, there was no complete separation during the trial. Therefore, the 

difference of the decrease of bonding strength of HMA can be explained. 
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Figure 3.14  Shear strength of HMA over repetitions. 

3.4  Low Melting Point Alloy (LMPA) 

The phase change materials are alternative solution to create controllable 

stiffness module. They are capable of transforming between fluid-like state by 

increasing the temperature above the melting point and solid-like state by 

cooling. LMPA, as one of commonly used phase change materials, is 

proposed to design controllable stiffness mechanism for the single module. 

The idea is to design a soft silicone structure embedded with LMPA, the 

stiffness of the module is controlled by the state of the alloy.  

3.4.1  Material Selection 

Low melting point and inexpensive cost are considered as criteria to seek the 

candidate alloy for proof of concept design. Table 3.4 lists a selection of 

LMPA. Lens alloy is one of an interesting range of bismuth-based alloys to 

which the element indium is added to give a substantially lower melting point. 

It is easily melted and having extremely stable characteristics [68]. However, 

alloys containing Mercury or Cadmium do not meet this requirement due to 

their known health effects. Of the alloys listed in Table 3.4, Lens 136 

(bendalloy.co.uk) has the lowest melting point meets both requirements. 

Therefore, it was selected to design controllable stiffness mechanism that can 

be exploited by the single module. 
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Table 3.4  Melting Points for a Selection of Low Melting Point Alloys [65]. 

 

Composition or Common name Melting Point 

44.7% Bi, 22.6% Pb, 19.1 % In, 8.3% Sn, 5.3% Cd (Lens 

117) 

47 °C 

49% Bi, 21% In, 18% Pb, 12% Sn (Lens 136) 58 °C 

32.5% Bi, 51.0% In, 16.5% Sn (Field’s metal)  71 °C 

50.0% Bi, 25.0% Pb, 12.5% Sn, 12.5% Cd (Wood’s metal) 74 °C 

50.0% Bi, 28.0% Pb, 22.0 % Sn (Rose’s metal) 98 °C 

3.4.2  Experimental Characterisation 

3.4.2.1  Solidus Temperature 

Solidus temperature of LMPA was determined experimentally. The 

experimental setup was equivalent to the LMPS test. A small piece of LMPA 

was initially melted by the resistive wires placed behind the copper tape. A 

copper wire was then used to prod the alloy to determine when it solidified, a 

k-type thermocouple was attached to the surface to record the temperature. 

Five trials were conducted, the average solidus temperature is 56.7 °C.   

3.4.2.2  Elastic Modulus 

Due to the use of soft silicone materials, the proposed LMPA-based single 

module has a highly compressible structure. The stiffness of the single module 

can be characterised as elastic modulus in axial direction. In order to 

understand the rigidity of the module, the elastic modulus of LMPA needs to 

be determined first. This property was identified in the compression tests. 

  

Figure 3.15  Dimension and the prototype of the mould for casting cylindrical 
specimen. 
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Figure 3.16  Cylindrical specimen before (LEFT) and after (RIGHT) 
compression test.  

The ratio of initial length to diameter (L0/D) has the significant influence on the 

test results [69]. Medium-length specimens are typically used for determining 

the general compressive strength properties of metallic materials [70]. 

Medium cylinder specimens ( 2 ≤ 𝐿0 𝐷⁄ ≤ 8 ) were therefore used for the 

compression tests. The melted alloy was cast into 3D printed mould with a 

diameter of 10 mm and a height of 31 mm. Figure 3.15 illustrates the 

dimension and the components of the mould. The compression speed of 2 

min/min was maintained constant throughout the test. Before and after tested 

specimen were illustrated in Figure 3.16. Five samples were tested at room 

temperature. The average length of the specimen was 30.61 mm, the average 

diameter was 10.285 mm. Therefore, the medium specimen (𝐿0 𝐷⁄ = 2.98) 

requirement was met. 

 

Figure 3.17  Stress-strain curves of LMPA from compression tests. 
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Figure 3.17 shows stress-strain curves of low melting point alloys. The elastic 

modulus was determined based on the stress-strain graph where the curve is 

almost linear. The compression test was conducted for a short duration to limit 

the temperature growth on the samples. Average experimental elastic 

modulus of selected LMPA is calculated as 2884.96±401.03 MPa. 

3.5  Granular Materials (GM) 

Granular materials have recently been drawn attention to the field of soft 

robotics. They are also known to exhibit reversible transition behaviour. In 

recent robotic applications, granular materials were adopted as a simple 

mechanism to achieve controllable stiffness components [14]. The stiffness 

can be modulated by applying vacuum pressure to granular materials, which 

cause materials to push against each other, creating a rigid structure. Once 

the pressure is released, the material assembly becomes soft. The concept is 

illustrated in Figure 3.18.  

 

Figure 3.18  A schematic of a controllable stiffness mechanism consists of 
granular material contained in a flexible membrane.  

3.5.1  Material Selection 

Compression tests were conducted by Cheng et al. [14] [71] to investigate the 

mechanical properties of several lightweight granular materials. The tested 

materials include coarsely ground coffee, finely ground coffee, sawdust, 

diatomaceous earth, hollow glass spheres and solid glass spheres. Of all the 

materials studied, ground coffee produced the most desirable combination of 

high strength-to-weight ratio and large absolute strength [14]. Furthermore, in 

Cheng’s PhD thesis [71], where a total number of 25 granular materials were 

evaluated. Ground coffee yielded a favourable combination of exhibiting high 

strength and low density. Therefore, coarsely ground coffee was selected as 

granular media in this work.  
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3.5.2  Elastic Modulus 

Compression tests were conducted on coarsely ground coffee to evaluate the 

elastic modulus under different vacuum pressure. Cylindrical test samples, 

with average diameter and height of 13 mm and 32.24 mm, respectively, were 

prepared for the compression tests. As shown in Figure 3.19, the sample 

consists of coarsely ground coffee beans containing in a latex membrane. 1.5 

mm inside diameter tube is used as vacuum pipe, and the connection between 

the tube and membrane was sealed with Parafilm. The experiments were 

conducted five times, at the compression speed of 5mm/min. The 

experimental setup for the compression test was presented in Figure 3.20.  

 

Figure 3.19  Specimen for compression test. The test sample consists a 
latex membrane and coarsely ground coffee. 

 

Figure 3.20  Experimental setup for compression test. Vacuum pump, 
pressure gauge and test sample are illustrated in the figure. 
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Figure 3.21 shows the stress-strain curves of the granular material under three 

different pressure, i.e. atmospheric pressure, 100 mmHg, and 180 mmHg. 

Figure 3.22 shows the calculated elastic modulus of the tested sample at three 

different pressure levels. The elastic modulus of the granular material was 

calculated as 0.1192±0.0010 MPa at atmospheric pressure. The number 

reaches to 0.2683±0.0428 MPa at 100 mmHg pressure and 0.3967±0.009 

MPa at full vacuum pressure (180 mmHg).  

 

Figure 3.21  Stress vs strain of granular material at three different vacuum 
pressure.  

 

Figure 3.22  Elastic modulus of the tested sample at different vacuum 
pressure level. The numbers were calculated based on stress-strain 
curves obtained from compression tests. 
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3.6  Silicone Materials 

Silicone rubbers were used for the fabrication of soft structures of the single 

modules. They are widely used in the development of soft robots. It is 

generally non-reactive, stable, and resistant to extreme environments and 

temperatures from -55 °C to +300 °C while still maintaining its function [72]. 

Two types of silicone rubber, i.e. Ecoflex 0030 and Dragon Skin 30, were 

selected for the fabrication of the soft structures due to high flexibility and high 

Shore hardness, respectively. For non-granular devices, the silicone materials 

can also be used as heat sinks to isolate the heat flow out of the devices.  

The mechanical behaviour of silicone material is known to be strain rate 

dependent. In this section, the strain range of the proposed single modules 

was estimated in SolidWorks Simulation. The angular speed of the device was 

proposed. The strain rate dependent behaviour of the silicone material was 

investigated. Experiments were conducted to obtain the stress-strain 

behaviours of the silicone rubbers. The data is used to model the silicone 

materials in SolidWorks Simulation study.   

3.6.1  Strain Range of the Silicone Materials 

In order to understand the strain range for the silicone materials testing, initial 

estimation was conducted in SolidWorks. Due to the complex silicone bellows-

like structures used in this study, a detailed FEA simulation was provided in 

Chapter 4 to validate the initial estimation.  

  

(a) (b) 

Figure 3.23  2D drawing of a single module. (a) Initial configuration. (b) 
When the single module is bent 56o.  

A 2d drawing of a single module is presented in Figure 3.23. Detailed design 

will be provided in Chapter 4. The initial height of the bellows-like structure 
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was measured in SolidWorks (𝐿0 = 22.56 𝑚𝑚). When a single module was 

bent to 56o, the distances between top and bottom cap were changed to 29.73 

mm and 16.85 mm, respectively (as illustrated in Figure 3.23). Therefore, the 

strain change of the bellows-like structure can be calculated.  

𝜀1 =
𝐿1 − 𝐿0

𝐿0
=

29.73 − 22.56

22.56
= 0.3178 3.1 

𝜀2 =
𝐿2 − 𝐿0

𝐿0
=

22.56 − 16.85

22.56
= 0.2531 3.2 

The maximum strain change for the surface bonding module is estimated as 

0.3178. However, when the phase change module is subjected to the bending 

angle 56o, the strain change of the bellows-like structure is likely greater than 

0.3178. (Since there is no rigid joint to restrain the movement of the silicone 

structure). Therefore, the strain range for silicone materials testing was 

selected between 0 and 0.5. The estimation in this selection will be validated 

through FEA simulation in Chapter 4.  

3.6.2  Mechanical Properties Testing  

Two formulations of silicone rubber (Ecoflex 0030 and Dragon Skin 30) were 

prepared for the test. Both material consist of liquid A and B part. They were 

mixed in a 1:1 weight ratio. For this test series, a total of 10 specimens were 

produced, 5 of each silicone material.  

 

Figure 3.24  2D drawings of the mould used for the fabrication of the 
specimen for uniaxial tensile tests. 
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Figure 3.25  The prototype of the mould used for the fabrication of the 
silicone rubber and five specimens after curing.  

The 2D drawings of the mould used for the fabrication of the specimen is 

shown in Figure 3.24. The mould was made by 3D printer followed by ASTM 

D412 standard [73]. The mixed materials were poured into the mould and then 

placed into the vacuum chamber to remove the trapped air bubbles. The 

testing samples were cured at the room temperature, which was 4 hours for 

the Ecoflex 0030 [74] and 16 hours for the Dragon Skin 30 [74]. The prototype 

of the mould and the cured silicone specimens were illustrated in Figure 3.25.    

The uniaxial tensile test is a standardised approach for determining the 

mechanical properties of materials. The strain rate dependent behaviour of 

the silicone materials was first investigated. To the best of author’s knowledge, 

there is no design requirement regarding angular/bending velocity of a snake-

arm manipulator for the restricted environment and human-safe application. 

Assuming each joint can achieve angular velocity 0.6 rad/s, the time required 

to rotate to the designed bending angle 56o can be estimated below: 

𝑡 =
𝜃

𝜔
=

56 × 2𝜋
360
0.6

≈ 1.6𝑠 
3.3 

The maximum strain change was estimated in Section 3.6.1; thus, the strain 

rate of the proposed design can be calculated as: 

𝜀(𝑡) =
0.3178

1.6
≈ 0.2 𝑠−1 3.4 

3D printed Mould 

Silicone Specimen  
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In order to achieve the designed strain rate, test speed 100 mm/min, 200 

mm/min, 300 mm/min, 400 mm/min, and 500mm/min was selected. Based on 

the test results generated by Mecmesin testing machine (see Figure 3.26), 

strain rate of each testing speed was calculated. The result shows that the 

strain rate of 500 mm/min testing speed for Ecoflex 0030 and Dragon Skin 30 

(0.1891 s-1 and 0.1987 s-1, respectively) are closed to achieve the designed 

strain rate 0.2 s-1.  

Final tensile testing was conducted on 5 silicone stripes, using a Mecmesin 

tensile testing machine with a 10 N load cell, at speed 500 mm/min, where the 

top and bottom parts of the samples were clamped using force grips. The 

experimental setup is shown in Figure 3.26. The pulling direction is illustrated 

in the figure as a blue arrow. 

 

Figure 3.26  Experimental setup for standardised uniaxial tensile test of 
silicone rubber. 

The test results are illustrated in Figure 3.27 and Figure 3.28. Five trials were 

conducted. The average stress and strain values were plotted in the figure. 

Experimental data obtained from testing speed 500 mm/min were therefore 

used to conduct the hyperelastic models to represent accurate material 

behaviours.  

Test Specimen 
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Figure 3.27  Stress vs strain curves of Ecoflex 0030. The test samples were 
subjected to the test speed 500mm/s.  

 

Figure 3.28  Stress vs strain curves of Dragon Skin 30. The test samples 
were subjected to the test speed 500mm/s. 

3.6.3  Hyperelastic Material Models 

The stress-strain relationship of silicone rubbers can be described as non-

linear, isotropic, incompressible and generally independent of strain rate [72]. 

They are capable of undergoing large deformation, can be applied in various 

applications. However, this requires an accurate representation of material 

behaviours. Unfortunately, the only data which are available from manufacture 

are limited to tensile strength, cure time and Shore hardness. This has made 

impossible to model material in linear Finite Element Analysis, which requires 

a constitutive material law to describe the material. Hyperelastic material 
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models provide the means to describe the stress-strain behaviour of these 

materials [75]. 

Hyperelastic models representing the mechanical behaviour of the silicone 

rubber materials can be expressed in terms of strain energy potential W [76]. 

The strain energy potential W can be either a function of the principal stretch 

ratios 𝜆𝑖, or a function of the strain invariants 𝐼𝑖 [77]. 

𝑊 = 𝑊(𝜆1, 𝜆2, 𝜆3) 3.5 

Or 

𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3) 3.6 

There are stretch ratios 𝜆1 , 𝜆2  and 𝜆3 , which provide a measure of the 

deformation. The stretch ratio [77]  is defined as,  

𝜆 =
𝐿

𝐿0
= 1 + 𝜀𝐸 3.7 

Where 𝜀𝐸 is the engineering strain. Incompressible elastomer experienced a 

stretch ratio 𝜆𝑖 in the direction of elongation and zero stress in other directions 

during tensile test. Therefore, the stretch ratios for incompressible material 

are given by, 

𝜆1 = 𝜆 3.8 

𝜆2 = 𝜆3 =
1

√𝜆
 3.9 

The three strain invariants are defined as bellow, 

𝐼1 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2 3.10 

𝐼2 = 𝜆1
2𝜆2

2 + 𝜆2
2𝜆3

2 + 𝜆3
2𝜆1

2 3.11 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 3.12 

For incompressible elastomer, 

𝐼3 = 𝜆1
2𝜆2

2𝜆3
2 = 1 3.13 

Several hyperelastic material models, such as Neo-Hookean, 3-term Mooney-

Rivlin model, 5-term Mooney-Rivlin model, 3-term Yeoh model, 2-term Ogden 

model, and Arruda-Boyce model were used in this study (see Table 3.5) to 

describe the strain energy. The experimental tensile test data were substituted 

into each of the models to determine the hyperelastic parameters. The sum of 

square errors (sse) was used as one of the indicators to determine the most 

appropriate model for silicone rubber materials [78].  
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Table 3.5  Incompressible Hyperelastic Strain Energy Functions [78] Used in 
this Research. 

 

Hyperelastic Model Incompressible Strain Energy Function 

Neo-Hookean 𝑊 = 𝐶10(𝐼1 − 3) 

3-term Mooney-

Rivlin 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3) 

5-term Mooney-

Rivlin 

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 𝐶11(𝐼1 − 3)(𝐼2 − 3)

+ 𝐶20(𝐼1 − 3)2 + 𝐶30(𝐼1 − 3)3 

3-term Yeoh 𝑊 = 𝐶10(𝐼1 − 3) + 𝐶20(𝐼2 − 3)2 + 𝐶30(𝐼3 − 3)3 

2-term Ogden 𝑊 = ∑
𝑢𝑖

𝛼𝑖
(𝜆1

𝛼𝑖 + 𝜆2
𝛼𝑖 + 𝜆3

𝛼𝑖 − 3)
2

𝑖=1
 

Arruda-Boyce 𝑊 = 𝜇 ∑
𝑐𝑖

𝜆𝐿
2𝑖−2

(𝐼1
𝑖 − 3𝑖), 𝑐1 =

1

2
, 𝑐2 =

1

20
,

5

𝑖=1

𝑐3 =
11

1050
, 𝑐4 =

19

7050
, 𝑐5 =

519

673750
 

 

3.6.4  Test Results 

Experimental data, as shown in Figure 3.29 and Figure 3.30, were fitted to the 

hyperelastic models to determine the parameters for hyperelastic models. The 

results are listed in Table 3.6.  

Table 3.6  Parameters of Hyperelastic Models for Ecoflex 0030 and Dragon 
Skin 30. 

 

Hyperelastic Model Parameters Ecoflex 0030 Dragon Skin 30 

Neo-Hookean C10 0.0107 0.1210 

sse 2.1359e-04 0.0088 

3-term Mooney-

Rivlin 

C10 0.0056 0.0194 

C01 0.0063 0.1150 

C11 9.7302e-04 0.0318 

sse 3.6610e-06 0.0010 

5-term Mooney-

Rivlin 

C10 0.0041 0.1436 

C10 0.0079 -0.0180 
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C11 0.0194 -0.0731 

C20 -0.0074 0.0758 

C30 -0.0108 -0.0605 

sse 2.7106e-06 5.2669e-05 

3-term Yeoh C10 0.0109 0.1202 

C20 2.2204e-14 2.2204e-14 

C30 -4.2446e-04 0.0018 

sse 8.5719e-05 0.0073 

2-term Ogden μ1 -0.0020 -220.7030 

α1 -6.9180 -0.0023 

μ2 0.0211 0.0015 

α2 1.6224 9.8271 

sse 3.0485e-06 3.9064e-04 

Arruda-Boyce  0.0214 0.2307 

λm 8.0448e+03 3.8583 

sse 2.1359e-04 0.0084 

 

The MATLAB algorithm (Appendix A) was used to conduct curve fitting of the 

tensile data. Based on the sum of square (sse) values listed in Table 3.6, 5 

term Mooney-Rivlin model provided the best fitting. Therefore, 5 term Mooney-

Rivlin model was selected to characterise the material properties of Ecoflex 

0030 and Dragon Skin 30 in SolidWorks Simulation. 
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Figure 3.29  Stress-strain curve from uniaxial tensile test of Ecoflex 0030 
and hyperelastic model fitting curves. 

 

Figure 3.30  Stress-strain curve from uniaxial tensile test of Dragon Skin 30 
and hyperelastic model fitting curves. 
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3.7  Summary 

This chapter presents the experimental characterisation of materials used in 

this research. Four materials, i.e. low melting point solder, hot-melt adhesive, 

low melting point alloy and granular material, were investigated with the 

emphasis on the selection and the characterisation of material properties. 

Hyperelastic models of two formations of silicone rubber (Ecoflex 0030 and 

Dragon Skin 30) were developed, and the parameters of the models were 

calculated in the end. The results were summarised in Table 3.7. This chapter 

provides a systematic approach on how to experimental characterise the 

properties of the materials. They are the foundations of this research.   

Table 3.7  Summary of Materials Selection and Experimental 
Characterisation results. 

Materials Selection Results 

LMPS Field’s Metal  Solidus temperature: 60.2°C. 

 Temperature influence on bonding 

strength: Limited 

 Repeatability: Good 

HMA Low Melting 

Glue Stick 

 Solidus temperature: 50.8 °C 

 Temperature influence on bonding 

strength: Significant 

 Adherent selection: Copper 

 Repeatability: Weak 

LMPA Lens 136  Solidus temperature: 56.7°C 

 Elastic modulus: 2884.96±401.03 MPa 

GM Coarsely 

ground coffee  

 Elastic modulus:  

0.1192±0.0010 MPa (atmospheric 

pressure) 

0.2683±0.0428 MPa (100 mmHg) 

0.3967±0.009 MPa (180 mmHg) 

Silicone 

Rubber 

 Ecoflex 

0030 

 Dragon 

Skin 30 

 Curve fitting model: 5-term Mooney-Rivlin 

model   
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Chapter 4 

Design and Analysis of Single Module 

This chapter presents the design and analysis of the single module. The 

module has the capability of modulating stiffness when required. Four 

materials that were selected and experimentally characterised in Chapter 3 

are used to realise the controllable stiffness feature of the single module. 

Theoretical models and FEA simulations for each design are developed with 

the emphasis on the bonding torque and bending stiffness. The FEA 

simulations in this thesis were conducted in SolidWorks Simulation. Thermal 

models are developed. Furthermore, theoretical response time was estimated 

at the end. 

4.1  Introduction 

This chapter aims to develop controllable stiffness modules for tendon-driven 

self-supporting snake-like manipulator. Three wires are passed down the 

length of the snake-like manipulator to steer the tip. Stiffness modulation of 

the snake-like manipulator will be achieved through altering physical 

properties of the materials at each module.  

Two design principles, as illustrated in Table 4.1, are proposed to create 

controllable stiffness modules: 

Table 4.1  Proposed Materials and Design Principles. 

  

Design Principles  Proposed Materials 

Bonding between surfaces  Low melting point solder (LMPS) 

 Hot-melt adhesive (HMA) 

Phase change materials  Low melting point alloy (LMPA) 

 Granular material (GM) 

 

The materials characterised in Chapter 3 need to be incorporated into a 

module to be exploited by a snake-like manipulator. This chapter details the 

mechanical design of the single modules. Theoretical models of the bonding 

torque and FEA simulations on the bending stiffness of each modules are 

developed. Thermal models are presented as well. 
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4.2  Design and Analysis of Surface Bonding Modules 

4.2.1  Mechanical Design of Single Modules 

The proposed surface bonding module consists of a soft silicone structure and 

a thermally activated locking mechanism mounted on a rigid joint. Significant 

compliance is achieved through soft silicone structure. LMPS and HMA are 

used to design the locking mechanism that can be employed by the rigid joint. 

One degree of freedom revolute joint and spherical joint are developed in this 

research. The joint can be selectively locked and unlocked, therefore 

modulating the stiffness of the module. Details of the design are described 

below. 

4.2.1.1  Revolute Joint 

One degree of freedom revolute joint was developed in the initial study to 

prove the design concept. Figure 4.1 illustrates a CAD model of the revolute 

joint that employs LMPS- and HMA-based locking mechanism. The 

dimensions are illustrated in the figure. The module consists of a silicone 

bellows-like structure, a thermally activated locking mechanism, and a rigid 

revolute joint. It can be steered by two tendons; the guided tendon hole is 

shown in Figure 4.1.  

                            

  

Figure 4.1  CAD model of LMPS- and HMA-based single module. The 
components and dimension of the module is illustrated in the figure. 

The locking mechanism, as shown in Figure 4.2, is composed of a layer of 

bonding material (LMPS or HMA) sandwiched between two copper tapes. The 

heating element is placed behind the copper tape. Resistance wires were 

used to activate the bonding materials. They were wound and closely attached 

to a copper tape. The silicone bellows-like structure can be used to isolate the 

heat and prevent potential damage to the working environment. The prototype 

is presented in Figure 4.3. 

Base 

Revolute shaft 

Bellows-like 

structure 

Guided tendon hole 
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Figure 4.2  CAD model of thermally activated lockable mechanism. The 
bonding material in the figure represents LMPS or HMA. 

  

Figure 4.3  The prototype of LMPS- and HMA-based single module.  

The rigid revolute shaft (see Figure 4.1) is inserted into the base through a 

snap-fit method, resulting in an angle range of 56o. Snap-fit design is among 

the most rapid and easy assembly methods. It eliminates the separate 

fasteners to simplify manufacturing costs [79, 80]. Ball and socket snap-fit 

method was used to design the revolute joint, as shown in Figure 4.4 and 

Figure 4.5. 𝐷𝐺  represents the diameter of the ball section and 𝐷𝑘  is the 

opening diameter of the socket.  

 

 
 

Figure 4.4  Ball and socket snap-fit design. 

Bonding material 

Copper tape Heater 
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For the ball section to push into the socket, the undercut depth H must be 

overcome by expanding the hub of the socket. Because of the diameter 

change, the hub of the socket is deformed as follow. 

𝜀𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝐷𝐺 − 𝐷𝑘

𝐷𝑘
∙ 100% =

𝐻

𝐷𝑘
∙ 100% 4.1 

 

Figure 4.5  Illustration of the diameter of ball section DG and the diameter of 
the socket Dk in the first prototype of the single module. 

Assuming the diameter of the ball section 𝐷𝐺  is 10 mm, elongation of the 

material (VeroWhitePlus) can be obtained from manufacturer (𝜀𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =

10%~25%), the opening diameter of the socket can be obtained from the 

equation,  

𝐷𝑘 =
𝐷𝐺

𝜀𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 + 1
= 8~9.09 mm 4.2 

The simplest way to determine the opening diameter of the socket 𝐷𝑘  is 

through experiments. The experimental setup was shown in Figure 4.6. 

Four rigid revolute joints with bending angle 54°, 56°, 58° and 60° were 3D 

printed to determine the optimal opening diameter of the socket 𝐷𝑘. A hand-

held scale was used to record the force that separates the ball section from 

the socket. Five trials were conducted on each joint. The results are presented 

in Table 4.2. Without causing any damage to the rigid joints, the largest pull-

out force was found to be 81.7±12.3 N. Therefore, the optimal opening 

diameter of the socket was selected to be 8.72 mm.  
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Figure 4.6  Experimental setup for determining optimal opening diameter of 
the socket. 

Table 4.2  Numerical Results of Optimal Opening Diameter Experiments. 

 

Bending Angle 

(θ) 

Diameter 𝐷𝑘 

(mm) 

Pull-out Force 𝐹2 

(N) 

Joint Damage  

54° 8.89  48.8±2.5 NO 

56° 8.72 81.7±12.3 NO 

58° 8.58 83.5±6.1 YES 

60° 8.36 94.7±19.9  YES 

4.2.1.2  Spherical Joint 

The revolute joint of the single module has been successfully validated 

through a series of experiments (see Chapter 6). The concept of using LMPS 

and HMA in the development of controllable stiffness element has been 

demonstrated. However, one degree of freedom revolute joint inherently lacks 

dexterity, a spherical joint that can employ LMPS- and HMA-based locking 

mechanism is developed under this context.  

CAD model of the single module, as shown in Figure 4.7, is composed of a 

rigid spherical joint, a thermally activated locking mechanism and a silicone 

bellows-like structure. The bonding material (LMPS or HMA) is sandwiched 

between two copper tapes. Each copper tapes are glued on the surfaces of 

the spherical joint. The resistive wires are used to activate the bonding 

material. They are wound and attached to a copper tape. Figure 4.8 presents 

the prototype of the single module.  

Hand-held scale 

Rigid joint 
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Figure 4.7  CAD model of LMPS- and HMA-based single module is shown 
on the LEFT. The locking mechanism is illustrated on the RIGHT.  

  

(a) (b) 

Figure 4.8  The prototype of the single module consists of the spherical 
joint. (a) Spherical joint. (b) Fully assembled prototype. Revolute joint-
based module is shown on the left, the spherical joint-based single 
module is shown in the middle.  

4.2.2  Analysis of Surface Bonding Single Modules 

4.2.2.1  Bonding Torque 

1) Revolute Joint: The proposed single module can be used to construct a 

snake-like manipulator. Thanks to the LMPS- and HMA-based locking 

mechanism, the manipulator is capable of controlling the stiffness of the 

selected segments. To determine the torque required to lock the manipulator 

at an arbitrary position, an extreme configuration was considered. Such 

extreme configuration occurs when the manipulator is placed in the 

cantilevered position. 

Resistive 

Wires 

Copper 

tape 

Bonding 

material 
Spherical  

Joint Shaft 

Bellows-like 

structure 

Base 
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Figure 4.9  Robotic manipulator consists of rigid joint in the cantilevered 
configuration.  

The largest torque is imposed on the area of proximal joint, as shown in Figure 

4.9. Equation shows the relation between torque (T) and weight (W) of the 

manipulator via distance (L) between fix end and weight centre. 

𝑇 = 𝑊 ∙ 𝐿 4.3 

For LMPS- and HMA-based locking mechanism, shear torsional model is 

applied. In order for manipulator to be placed in the cantilevered position, 

shear bonding torque (𝑇𝑙𝑜𝑐𝑘) that LMPS or HMA can offer should be larger 

than the torque imposed by the weight of the manipulator.  

𝑇𝑙𝑜𝑐𝑘 > 𝑇 = 𝑊 ∙ 𝐿 4.4 

Figure 4.10 represents the bonding area on the locking mechanism of the first 

prototype of the single module. The locking force (𝐹𝑙𝑜𝑐𝑘 ) that the bonding 

material provides can be calculated by the shear strength (τ) of the bonding 

material and bonding area (A). Shear strength of LMPS and HMA are obtained 

from the Chapter 3.  

𝑑𝐹𝑙𝑜𝑐𝑘 = 𝜏 ∙ 𝑑𝐴 4.5 

 

 

Figure 4.10  Simplified shear torsional model (revolute joint).                      

The shear strength on the differential elements (𝑑𝐴) generates a moment 

around the centre of bonding area. 

𝑑𝑀 = 𝑟(𝜏 ∙ 𝑑𝐴) 4.6 

All these differential moments are equal to the applied bonding torque, 
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∫ 𝑑𝑀
𝐴

= ∫ 𝑟(𝜏 ∙ 𝑑𝐴)
𝐴

= 𝑇𝑙𝑜𝑐𝑘 
4.7 

Where 𝑇𝑙𝑜𝑐𝑘 can be obtained by integral in a polar coordinate system.   

𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃 4.8 

𝑇𝑙𝑜𝑐𝑘 = 𝜏 ∫ ∫ 𝑟2𝑑𝑟𝑑𝜃
𝑅

0

=
2𝜋

3
𝜏𝑅3

2𝜋

0

 4.9 

Where R is the radius of the bonding area. Given the length and weight of the 

manipulator, the torque that required to lock the manipulator at arbitrary 

position can be calculated. Therefore, the minimal radius of the bonding area 

can be estimated.  

2) Spherical Joint: For spherical joint, shear bonding torque is calculated on 

the spherical surface. Figure 4.11 illustrates simplified torsional model.   

 
 

Figure 4.11  Shear torsional model (spherical joint). Bonding area is 
illustrated on the right. 

Shear bonding area element can be calculated as, 

𝑑𝐴 = 2𝜋𝑟𝑑𝑆 4.10 

where R is the radius of the sphere, r (𝑟 = 𝑅 sin 𝜃) is the radius of the cross-

sectional area, and 𝑑𝑆 represents the arc element (𝑑𝑆 = 𝑅𝑑𝜃). 

Shear bonding torque can be written as a function of shear strength of the 

material 𝜏 and rotation angle 𝜃, 

𝑇𝑙𝑜𝑐𝑘 = 2𝜋𝑅3𝜏 ∫ sin 𝜃2 𝑑𝜃
𝜃

0

 
4.11 

This model provides the insight on the design of the radius of the sphere. 

Shear strength of LMPS ( 𝜏𝑠𝑜𝑙𝑑𝑒𝑟 = 1.3666 MPa ) and HMA ( 𝜏𝑎𝑑ℎ𝑒𝑠𝑖𝑣𝑒 =

1.0713 MPa ) have been determined through a series of experiments in 

Chapter 3. The radius of the bonding area and the radius of the sphere were 

purposely overdesigned. These parameters are validated through 

experiments to determine how much weights the manipulator can support 
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before failure occurs. Numerical results of the shear bonding torque that 

LMPS and HMA can provide are presented in Table 4.3.  

Table 4.3  Numerical Results of Shear Bonding Torque Calculation. 

 

 LMPS-based Module HMA-based Module 

Bonding Torque of 

Revolute Joint (Nmm) 

336.75 240.46 

Bonding Torque of 

Spherical Joint (Nmm) 

454.73 356.47 

 

 

4.2.2.2  FEA Simulation on Strain Range  

Strain range estimation (see Chapter 3) was first validated in SolidWorks 

Simulation. The material properties of Ecoflex 0030 were characterised in 

Chapter 3. 5-term Mooney-Rivlin was selected to model Ecoflex 0030 material, 

with parameters 0.0041, 0.0079, 0.0194, -0.0074, and -0.0108 (see Figure 

4.12). The material properties of the plastic material (VeroWhitePlus) can be 

found in reference [81].  

 

Figure 4.12  Material property of Ecoflex 0030 in SolidWorks.  
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The single module was cantilevered, the external load was applied to the end-

effector of the module. The direction of the force, as shown in Figure 4.13, is 

parallel to the surface of the end-effector. The simulation result, as illustrated 

in Figure 4.13, demonstrated the maximum strain is 0.4042 when the surface 

bonding module is subjected to a bending angle 56o. The maximum strain is 

within the range of the selected tensile testing strain range (between 0 and 

0.5). Therefore, the test is valid. 

 

Figure 4.13  Strain range of surface bonding module. Maximum strain is 
illustrated on the right.   

 

Figure 4.14  Mesh convergence study of the strain range simulation. 
Maximum resultant displacement is plotted in the figure.  

Mesh convergence study was conducted in SolidWorks Simulation. With more 

elements in the mesh, the solution is more accurate. As with more elements, 

there are more nodes available for calculating response. However, finding the 

practical limit where further refinements add no benefit to the solution can be 

time-consuming. SolidWorks provides h-adaptive option to make the mesh 

convergence process a little less tedious. Automatic h-adaptive method runs 
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the study multiple times (loop number). Refines the mesh in critical areas in 

each loop, reruns the study, until either the target accuracy is achieved or the 

max specified loops are run. The convergence study result, as demonstrated 

in Figure 4.14, justifies the accuracy of the simulation results in Figure 4.13.  

4.2.2.3  FEA Simulation on Bending Stiffness  

Bending stiffness is an important criterion for understanding the force that the 

single module can support in the thickness direction. It is used in this thesis to 

evaluate and compare the stiffness change of each design approach.  

The bending stiffness is given by, 

𝐾 =
𝐹

𝛿
 4.12 

Where F is the force applied at the end, and  is the deflection of the single 

module. 

The following assumptions are made for the simulation of the stiffness of the 

module: i) When a module is in the locking state, LMPS and HMA design 

approaches can achieve a complete shape lock. (Complete shape lock is 

defined as: The bonding materials do not contribute to the deflection of the 

module. The shaft is assumed to be bonded to the base). ii) When the module 

is unlocked, the bonding strength that the material can provide is assumed to 

be zero. The coefficient of friction between shaft and base is assumed to 0.3. 

The dimension of the module was given in Section 4.2, the properties of the 

plastic material (VeroWhitePlus) was provided in reference [81]. 5-term 

Mooney-Rivlin was used to model the Ecoflex 0030 material. Surface bonding 

modules (revolute joint and spherical joint) were cantilevered in the 

simulations. An external load was applied to the end-effector, the direction of 

the force was illustrated in the Figure 4.15, Figure 4.17, Figure 4.19 and Figure 

4.21. The modules were simulated in rigid state as well as in soft state. Mesh 

convergence studies were conducted by using h-adaptive method provided 

by SolidWorks. Simulation results on the bending stiffness of the surface 

bonding modules are provided in Figure 4.16, Figure 4.18, Figure 4.20 and 

Figure 4.22.  
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Figure 4.15  FEA model of revolute joint in rigid state. The equivalent strain 
is shown on the right.  

 

Figure 4.16  Mesh convergence study of revolute joint in rigid state. 
Maximum resultant displacement is plotted in the figure. 

 

 

Figure 4.17  FEA model of revolute joint in soft state. The equivalent strain 
is shown on the right.  

F 

F 
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Figure 4.18  Mesh convergence study. Maximum resultant displacement is 
plotted in the figure.  

  

Figure 4.19  FEA model of spherical joint in rigid state. The equivalent strain 
is shown on the right.  

 

Figure 4.20  Mesh convergence study of spherical joint in right state. 
Maximum resultant displacement is plotted in the figure.  

F 
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Figure 4.21  FEA model of spherical joint in soft state. The equivalent strain 
is shown on the right.  

 

Figure 4.22  Mesh convergence study of spherical joint in soft state. 
Maximum resultant displacement is plotted in the figure.  

The external loads used in the simulations, the displacement results, the 

maximum strain and the calculated bending stiffness are presented in the 

Table 4.4.  

The results show the maximum equivalent strain for surface bonding modules 

fall into the tensile testing strain range, the simulations are therefore valid. The 

theoretical simulations suggest the spherical joint in rigid state has greater 

bending stiffness than the rational joint. This is due to the difference of cross-

sectional area between revolute and spherical joint. Thermally activated 

spherical joint has greater stiffness change than its counterpart. The 

simulation results will be validated through experiments in Chapter 6.  

 

F 
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Table 4.4  Theoretical Calculation of Bending Stiffness for the surface bonding 
modules in rigid and soft state. 

 

 Load    

(N) 

Displacement 

(mm) 

Max Strain Bending Stiffness 

(N/mm) 

Revolute 

Joint (Rigid) 

5.880 0.6742 2.150e-002 8.7214 

Revolute 

Joint (Soft) 

0.196 7.291 1.651e-001 0.0269 

Spherical 

Joint (Rigid) 

5.880 0.6561 1.555e-002 8.9620 

Spherical 

Joint (Soft) 

0.098 5.744 1.878e-001 0.0171 

 

4.3  Design and Analysis of Phase Change Modules 

4.3.1  Mechanical Design of Single Module 

LMPA and GM are used to develop the phase change single module. The idea 

is to design soft silicone structure to contain the proposed materials.  Since 

LMPA and GM can transition between solid-like state and fluid-like state, the 

stiffness of the module is controlled by the state of the embedded materials.  

 

                            

Figure 4.23  CAD model of LMPA- and GM-based single module.  

Figure 4.23 shows a CAD model of the single module that was embedded with 

LMPA or GM. The module is composed of a silicone structure and a 

Tube-like  

Structure 

Controllable  

Stiffness Element 

Bottom Cap 

Guided Tendon 

Hole 

Top Cap 
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controllable stiffness element. Specifically, the silicone structure consists of 

three components, top cap, tube-like structure and bottom cap. The tube-like 

structure was cast out of soft silicone rubber material (Ecoflex 00-30, Smooth 

on Inc.) to provide compliance of the module. Ecoflex 00-30 was selected due 

to its high flexibility and the level of softness. The top cap and bottom cap, on 

the other hand, were fabricated by hard silicone rubber material (Dragon Skin 

30, Smooth on Inc.) to provide the rigidity and stability for LMPA or GM during 

bending. Three tendons are used to steer the module, the guided tendon hole 

is shown in Figure 4.23. The prototype of the single module is shown in Figure 

4.24. 

 

Figure 4.24  The prototype of the single module that embedded with LMPA- 
or GM-based controllable stiffness element. 

 

                                 

 

Figure 4.25  CAD model of the single module that embedded with LMPA- or 
GM-based controllable stiffness element. 

The silicone structure should be designed as flexible as possible to maximise 

the stiffness increase between solid-like state and liquid-like state. Design 

modification was made to replace a tube-like structure with a bellows-like 

structure. As shown in Figure 4.25, the modified module consists of top cap, 

Bottom Cap 

Guided Cable Hole 

Controllable  

Stiffness Element 

Bellows-like 

Structure 

Top Cap 

Dragon Skin 30 

Segment 

Ecoflex 0030 

Segment 
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bellows-like structure, controllable stiffness element and bottom cap. The top 

and bottom caps were made of Dragon Skin 30, and the bellows-like structure 

was cast out of Ecoflex 0030. The prototype of the single module is presented 

in Figure 4.26. LMPA-based single module is shown on the left, GM-based 

single module is presented on the right. 

  

Figure 4.26  The prototype of the single module. LMPA-based single 
module is shown on the left, GM-based single module is presented on 
the right. 

The modified design was compared with the original design through FEA 

simulations in SolidWorks. The space occupied by LMPA or GM is assumed 

to be empty in the simulation. 5-term Mooney-Rivlin was used to model the 

Ecoflex 0030 and Dragon Skin 30 materials. A series of simulations were 

carried out for the bending of the single module under different forces. The 

single modules were cantilevered in the simulations, the direction of the 

external load was illustrated in the figure. The comparison results are shown 

in Figure 4.27. 

 

  

Tube-like Design 0.196N Bending Bellows-like Design 0.196N Bending 
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Tube-like Design 0.294N Bending Bellows-like Design 0.294N Bending 

  

Tube-like Design 0.392N Bending Bellows-like Design 0.392N Bending 

Figure 4.27  FEA simulation of the bending of single module under different 
forces. 

The results demonstrate that when two designs subject to the same external 

load, the bellows-like design has greater magnitude of strain than the tube-

like design. One can predict when LMPA or GM in the liquid-like state, the 

bellows-like design is more flexible than the tube-like design. Therefore, the 

bellows-like design is used for the construction of the single module.  

4.3.2  Design Optimization of the Bellows-like Structure 

Design parameters of the bellows-like structure, as illustrated in Figure 4.28 

(b), include outer diameter of the bellows-like structure (D=24mm), the inner 

diameter (d=12mm), the diameter of the guided cable hole, the smallest 

distance between the cable hole and bellows-like structure (b=1.2mm and 

c=1mm), and the number of the pitch. The smallest distance between cable 

hole and bellows-like structure was too small to be altered. Outer diameter 

was designed as the same diameter of surface bonding modules. Inner 

diameter was selected to sufficiently contain the controllable stiffness element. 

Therefore, the number of the bellows (pitch) was selected to be optimized. 

Design optimisation of the bellows-like structure was carried out in SolidWorks 

Simulation. The material bellows-like structure was selected as Ecoflex 0030, 

the top and bottom cap was used as Dragon Skin 30 material. External load 

(F) was applied on the end effector of the single module, parallel to the top 
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surface of the module. The direction of the force was illustrated in Figure 4.29 

(a). The simulation result is shown in Figure 4.29 (a). The experimental setup 

and bending angle illustration are presented in Figure 4.29 (b). The numerical 

optimisation result, as presented in Table 4.5, shows that as the number of 

the bellows increases, the bending angle increases as well. However, as the 

number of the bellows increases, the distance of the pitch decreases. This will 

impose the difficulty of 3D printing the mould and casting the silicone bellows-

like structure. Due to the consideration between maximising the number of the 

bellows and the difficulty of manufacture, the total number of bellows was 

selected to be 10. 

  

(a) (b) 

Figure 4.28  Illustration of the bellows-like structure. (a) 3D model of the 
bellows-like structure. (b) Design parameters of the bellows-like 
structure.   

    

(a) (b) 

Figure 4.29  (a) FEA simulation result (number of bellows 10). (b) 
Experimental setup and bending angle illustration (number of bellows 
10). 

 

F 

F 
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Table 4.5  Optimization Results of Total Number of Bellows. 

 

Number of Bellows FEA Results Experimental Results 

8 25.31° 24.18±0.71° 

9 25.55° 24.78±0.39° 

10 25.78° 25.57±0.41° 

11 25.93° 27.01±0.23° 

12  26.20° 27.94±0.23° 

 

4.3.3  Analysis of Bending Stiffness for Phase Change Single 

Module 

4.3.3.1  Strain Range 

Strain range estimation (see Chapter 3) was validated in SolidWorks 

Simulation. The material properties of the silicone materials were 

characterised in Chapter 3. 5-term Mooney-Rivlin was selected to model the 

material properties of Ecoflex 0030 (see Figure 4.12) and Dragon Skin 30 (see 

Figure 4.30).   

 

Figure 4.30  Material property of Dragon Skin 30 in SolidWorks. 
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The single module was cantilevered, the external load was applied to the end-

effector of the module. The direction of the force is shown in Figure 4.31. The 

simulation result demonstrates the maximum strain is 0.4763 when the 

surface bonding module is subjected to a bending angle 56o. The maximum 

strain is within the range of the selected tensile testing strain range (between 

0 and 0.5). Therefore, the tensile test is valid. 

 

Figure 4.31  Strain range of the phase change module. Maximum strain is 
illustrated on the right. 

 

Figure 4.32  Mesh convergence study of the strain range of the phase 
change module. Maximum stress value is plotted in the figure.  

Mesh convergence study was conducted in SolidWorks Simulation by using 

h-adaptive method. The result, as shown in Figure 4.32, justifies the accuracy 

of the simulation. 

4.3.3.2  FEA Simulation on Bending Stiffness 

The following assumptions were made for the simulations of the phase change 

modules. When LMPA is in soft state, the space occupied by the LMPA was 

F 
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assumed to be empty. The temperature effect on the silicone material is 

negligible in the study. When LMPA is in the solid state, the contact set 

between the controllable stiffness element and the silicone material was 

assumed to be ‘no penetration’. The elastic modulus of LMPA and GM (2884.6 

MPa and 0.3967 MPa, respectively) are characterised in Chapter 3. The 

simulations were carried out in both rigid state and soft state. These modules 

were cantilevered in the studies, the external loads were applied to the end-

effectors of the modules. The direction of the force and the results were shown 

in Figure 4.33, Figure 4.35, Figure 4.37 and Figure 4.39. Mesh convergence 

study was conducted in SolidWorks Simulation by using h-adaptive method. 

The result, as shown in Figure 4.34, Figure 4.36, Figure 4.38 and Figure 4.40, 

justify the accuracy of the simulation results. 

 

Figure 4.33  FEA model of LMPA module in rigid state. The equivalent strain 
is shown on the right.  

 

Figure 4.34  Mesh convergence study of LMPA module in rigid state. The 
maximum resultant displacement is plotted in the figure. 

F 
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Figure 4.35  FEA model of LMPA module in soft state. The equivalent strain 
is shown on the right.  

 

Figure 4.36  Mesh convergence study of LMPA module in soft state. The 
maximum resultant displacement is plotted in the figure. 

 

Figure 4.37  FEA model of GM module in rigid state. The equivalent strain is 
shown on the right.  

F 

F 
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Figure 4.38  Mesh convergence study. The maximum resultant 
displacement is plotted in the figure. 

 

Figure 4.39  FEA model of GM module in soft state.  The equivalent strain is 
shown on the right.  

 

Figure 4.40  Mesh convergence study. The maximum resultant 
displacement is plotted in the figure. 

F 
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The external loads used in the simulations, the displacement results, the 

maximum strain and the calculated bending stiffness are presented in the 

Table 4.6. 

The results show the maximum equivalent strain for phase change modules 

fall into the tensile testing strain range, the simulations are therefore valid. As 

expected, the LMPA module has greater bending stiffness than GM module. 

The result also suggests when phase change modules are in soft state, 

LMPA-based approach has smaller bending stiffness than GM-base method.  

Table 4.6  Theoretical Calculations of Bending Stiffness for the Single 
Module. 

 

 Load    

(N) 

Displacement 

(mm) 

Max Strain Bending Stiffness 

(N/mm) 

LMPA (Rigid) 0.490 1.697 4.495e-001 0.2887 

LMPA (Soft) 0.098 2.418 6.919e-002 0.0406 

GM (Rigid) 0.098 1.301 3.665e-002 0.0753 

GM (Soft) 0.098 1.483 5.325e-002 0.0661 

 

4.4  Thermal Models of Single Module 

The thermal models of the single module are given in this section. This 

information is specific to the LMPS-, HMA-, and LMPA-based module. The 

goal of this section is to provide insights on melting energy, heating time and 

cooling time.  

4.4.1  Heating Process 

To understand the energy input required to melt the TR fluids (LMPS, HMA, 

and LMPA) is crucial given the limited power miniature heater can provide in 

the single module. During the heating process, the thermal input is distributed 

between raising the temperature of the components of the single module and 

introducing phase change in the TR fluids. Heat loss during the heating 

process is assumed to be small in this study. The energy 𝑄𝑇𝑅 required to melt 

the TR fluids in the single module can be estimated by the equation below. 

𝑄𝑇𝑅 = 𝑚𝑐(𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔 − 𝑇0) + 𝑚𝐿𝑓 4.13 
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where m is the mass of TR fluid, c is the specific heat capacity of the material, 

𝑇𝑚𝑒𝑙𝑡𝑖𝑛𝑔 is the melting temperature of the fluid, 𝑇0 is the initial temperature of 

the material, and 𝐿𝑓 is the material’s latent heat fusion.  

The melting time t can be estimated by using the energy input 𝑄𝑇𝑅  and the 

power of the heater 𝑃ℎ𝑒𝑎𝑡𝑒𝑟. 

𝑡 =
𝑄𝑇𝑅 

𝑃ℎ𝑒𝑎𝑡𝑒𝑟
 4.14 

Melting time model assumes that 100% of the power input is used to melt the 

TR fluids. In practice, heat is lost to the remaining materials of the module. 

Therefore, this model is the lower bound on melting time.  

Heat time calculation model can provide the insight into how to reduce the 

melting time. Increasing the power could minimise the melting time. 

Furthermore, the materials with low melting point temperature are desirable, 

as well as low specific heat capacity and low latent heat fusion. Although the 

reduction in the mass of LMPS and HMA could shorten the melting time, it 

may lead to the decrease in the bonding strength. However, for the LMPA-

based single module, the reduction of the material could provide a proportional 

decrease in heating time.  

4.4.2  Cooling Process 

The first step in the cooling analysis is to understand where the heat travels 

during the process. Figure 4.41 shows a schematic of the heat path of the 

single module during cooling.  

  

 

(a) (b) (c) 

Figure 4.41  Heat path of the single module during cooling process. (a) heat 
path of LMPS- and HMA-based single module (revolute joint). (b) heat 
path of LMPA-based single module. (c) heat path of LMPS- and HMA-
based single module (spherical joint). 
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The energy source is the TR fluid. The solidification energy of the TR fluid 

must be lost in order for the single module to enter the rigid state. The 

solidification energy can be calculated as, 

𝑄𝑠𝑜𝑙𝑖𝑑 = 𝑚𝑐(𝑇 − 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠) + 𝑚𝐻𝑓 4.15 

 

where m is the mass of the TR fluid, c is the specific heat capacity for the 

material, T is the temperature of the TR fluids at the beginning of the cooling 

step, 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠 is the solidus temperature of the materials, and 𝐻𝑓  represents 

the heat of fusion of the TR fluid.  

The energy of the remaining components must be conducted out before the 

TR fluid solidified. The path for energy to exit is through conduction to the heat 

sink components. The heat transfer rate during cooling be estimated as, 

𝑞 =
𝑇 − 𝑇𝑠𝑜𝑙𝑖𝑑𝑢𝑠

𝑅𝑠𝑖𝑛𝑘
 4.16 

where T represents the temperature of the heat sink components at the 

beginning of the cooling step, 𝑅𝑠𝑖𝑛𝑘 is the thermal resistance of the heat sink 

components, 𝑅𝑠𝑖𝑛𝑘 can be calculated as, 

𝑅𝑠𝑖𝑛𝑘 =
𝐿ℎ𝑒𝑎𝑡

𝐴𝑘𝑘
 4.17 

where 𝐿ℎ𝑒𝑎𝑡 is the length of the heat travels, 𝐴𝑘 is the conduction area, and k 

is the thermal conductivity of the material. 

Cylindrical model, as shown in Figure 4.42, is used for the thermal resistance 

calculation of LMPA-based single module. 

 

Figure 4.42  Cylindrical model for thermal resistance calculation. 

Thermal resistance of the heat sink component can be estimated,  

𝑅𝑠𝑖𝑛𝑘 =
ln(𝑟2 𝑟1⁄ )

2𝜋𝐿𝑘
 4.18 
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where 𝑟1 is the inter radius of the cylinder, 𝑟2 is the outer radius of the cylinder, 

L represents the length of the cylinder, k is the thermal conductivity of the 

material.  

Solid sphere model, as illustrated in Figure 4.43, is used for the thermal 

resistance estimation for the second prototype of LMPS- and HMA-based 

single module. 

 

Figure 4.43  Spherical model for thermal resistance estimation. 

Thermal resistance of the heat sink component can be estimated as, 

𝑅𝑠𝑖𝑛𝑘 =
1 𝑅⁄

4𝜋𝑘
 4.19 

where R is the radius of the sphere, k is thermal conductivity of the material.  

The cooling time for the single module t can be estimated in the following 

equation, 

𝑡 =
𝑄𝑠𝑜𝑙𝑖𝑑

𝑞
 4.20 

The temperature of the TR fluids and heat sink components is assumed to be 

equal to the melting point temperature of the TR fluids. However, due to the 

temperature difference caused by the thermal resistance of each component, 

components did not reach the melting point temperature of the TR fluid. In 

addition, the cooling time estimation model considers 100% the conduction 

cooling from one hot part to another cooler part.  

The model provides the insight on how to reduce cooling time. For example, 

the design of the heat sink is important to the cooling step. The smaller the 

length of the heat travels, the smaller the resistance the heat conducts out of 

the energy source. In addition to the heat sink, the reduction of the mass of 

the TR fluids could reduce the cooling time. This information is specific to the 

LMPA-based single module since the reduction of the mass of LMPS and 

HMA could lead to the decrease of the bonding strength.  
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4.5  Summary 

This chapter presents the design and analysis of the single module. Four 

materials that were selected and experimentally characterised in Chapter 3 

are used to realise the controllable stiffness feature of the single module. 

Mechanical and thermal models for each design were developed. Summary 

for each design is presented below. 

 Surface bonding single module  

(1) The first developed module consists of one degree of freedom revolute 

joint, a thermally activated locking mechanism and a bellows-like structure. 

(2) The second developed module is composed of a spherical joint, a 

thermally activated locking mechanism and a bellows-like structure.  

(3) Snap-fit approach was used to design the revolute joint and spherical 

joint, resulting in an angle range of 56o. 

(4) LMPS and HMA were used to develop the thermally activated locking 

mechanism, which enabled the module to be locked at arbitrary position. 

(5) The shear bonding torque that LMPS or HMA can provide is developed. 

The radius of the bonding area was estimated. The revolute joint: Tlock =
2π

3
τR3 . The spherical joint: Tlock = 2πR3τ ∫ sin θ2 dθ

θ

0
. τ  is the shear 

strength of the material, R is the radius of the bonding area, and θ 

represents the rotation angle.  

(6) Bending stiffness for the single modules are estimated through FEA 

simulations. The numerical results are provided. 

(7) Thermal models (melting time and cooling time) for single module were 

presented. These models provide insights on the reduction of response 

time.  

 Phase change single module 

(1) The module consists of a silicone structure and LMPA- or GM-based 

controllable stiffness element. 

(2) The reason of using bellows-like structure was justified through FEA 

simulations. The number of bellows was optimized through FEA 

simulations. Total number of bellows was selected to be 10. 

(3) Bending stiffness for the single modules were simulated for solid-like 

state and liquid-like state, respectively. The numerical results were 

provided.  

(4) Thermal models (melting time and cooling time) for LMPA-based 

module were presented. These models provide insights on the reduction 

of response time.  
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This chapter lays out the theoretical foundation for this research. The 

numerical results calculated in this chapter will be validated against 

experimental data (Chapter 6).  
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Chapter 5 

Fabrication of the Single Module 

5.1  Introduction 

This chapter presents the fabrication method of the single module. The 

proposed designs consist of rigid components, silicone structures and 

controllable stiffness elements. The plastic components of the single module 

were produced by a 3D printer (Object 1000, Stratasys Ltd). The fabrication 

method for the remaining of the components is discussed in this chapter. The 

method of applying LMPS (low melting point solder) and HMA (hot-melt 

adhesive) to the surface of the copper tapes is provided.  

5.2  Surface Bonding Single Module 

Surface bonding single module consists of cable-driven rigid joint (revolute 

joint and spherical joint were developed in this research), a thermally activated 

locking mechanism, and a flexible bellows-like structure. Fabrication of the 

flexible bellows-like structure is introduced in this section. The CAD models of 

the mould are presented in Appendix D. The methods of applying low melting 

point solder and hot-melt adhesive to the surface of copper tapes are 

described. 

5.2.1  Fabrication of the Flexible Bellows-like Structure 

5.2.1.1  Revolute Joint 

The components of the mould for the fabrication of the bellows-like structure 

of the revolute joint are shown in Figure 5.1. The mould is consisted of top 

cap, two stainless steel pins, two cylindrical structure and a bottom cap. 

Stainless steel pins were used to create the cable channels to actuate the 

joint. The plastic components were fabricated by using a 3D printer (Object 

1000, Stratasys Ltd).  

The silicone material was prepared by mixing two components (Part A and 

Part B) of Ecoflex 0030 in a 1:1 weight ratio. The mixed material was stirred 

well and then put in a degassing chamber to remove the air bubbles trapped 

in the liquid. The flexible bellows-like structure is fabricated by pouring the 

silicone material into the mould. Two stainless steel pins were then inserted 

into the bottom cap. Top cap was used to seal the mould and keep the pin in 

the position. Due to the limitation of the lab equipment, the material was cured 



- 98 - 

at room temperature. It takes four hours for Ecoflex 0030 to cure at room 

temperature.  

    

(a) (b) (c) (d) 

Figure 5.1  Components of the mould for the fabrication of the bellows-like 
structure. (a) Top and bottom cap. (b) Cylinder for creating the space 
for the revolute joint. (c) Stainless steel pin. (d) Two half cylindrical 
moulds.  

5.2.1.2  Spherical Joint 

The plastic components were fabricated by using a 3D printer (Object 1000, 

Stratasys Ltd). The components for the fabrication of the bellows-like structure 

for the spherical-joint-based module are shown in Figure 5.2. The silicone 

structure is slightly different than the one for the revolute joint. However, the 

same fabrication procedure was undertaken. The fabricated bellows-like 

structures are shown in Figure 5.3.  

    

(a) (b) (c) (d) 

Figure 5.2  Components of the mould for the fabrication of the bellows-like 
structure. (a) Top and bottom cap. (b) Stainless steel pin. (c) Cylinder 
for creating space for the spherical joint. (d) Two half cylindrical 
moulds.  
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(a) (b) 

Figure 5.3  The bellow-like structure after demoulding. (a) Bellows-like 
structure for the revolute joint. (b) Bellows-like structure for the 
spherical joint.  

5.2.2  Low Melting Point Solder (LMPS) and Hot-melt Adhesive 

(HMA) Application Method  

5.2.2.1  Low Melting Point Solder (LMPS) Application Method 

Due to the high surface tension and low reactivity with other metals, it is not 

possible to apply LMPS (Field’s Metal) to the surface of the copper tape 

without pre-treatment. Flux is commonly used for preparing the surfaces in 

electronics applications. Therefore, flux was used to pre-treat the surface of 

the copper before applying Field’s Metal.  

   

(a) (b) (c) 

Figure 5.4  The method for applying Field’s Metal to the surface of a copper 
tape. (a) Applying flux on the surface of the copper tape. (b) Dipping 
the copper tape into Field’s Metal. (c) The copper tape is fully covered 
with Fields’ Metal. 
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The application method of LMPS was taken in three steps. First, flux was 

applied to the surface of the copper tape by using a cotton swab [See Figure 

5.4 (a)]. Then pre-treated copper tape was dipped into Field’s Alloy at 

approximately 200 °C [see Figure 5.4 (b)]. As a result, the pre-treated surface 

was fully covered by Field’s Metal [see Figure 5.4 (c)]. Finally, flux residue 

was cleaned with warm water. 

5.2.2.2  Hot-melt Adhesive (HMA) Application Method 

Based on the thermal models provided in Chapter 4, the mass of the material 

affects the heating and cooling time of the single module. Therefore, a small 

piece of material was prepared by cutting from a low melting point temperature 

glue stick [see Figure 5.5 (a)]. The copper tape was then preheated by a 

hotplate to raise the surface temperature above the melting point [see Figure 

5.5 (b)]. Finally, the material was applied to the surface of the copper tape to 

form the bond [see Figure 5.5 (c)].  

 

   

(a) (b) (c) 

Figure 5.5  The method for applying hot-melt adhesive to the surface of a 
copper tape. (a) A small piece of HMA has been cut from a glue stick. 
(b) Preheat the copper tape with a hotplate. (c) The surface of the 
copper tape is fully covered with HMA. 

5.2.3  Fabrication of the Complete Module.  

The fabrication of shaft and base of the joint was using 3D printing technique 

(Object 1000, Stratasys Ltd). Resistance wires were used to activate the 
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bonding materials. They were wound and closely attached to a copper tape, 

as shown in Figure 5.6 and Figure 5.7. The application method of LMPS and 

HMA was introduced in Section 5.2.2. The copper tapes and resistive heater 

were glued on the joint shaft by Gorilla Super Glue. The joint shaft was then 

pushed into the base. The fabricated silicone bellows-like structure was glued 

on the plastic components by using Sli-Poxy Silicone Adhesive (Sil-Poxy, 

Bentley Advanced Materials). The fabricated modules are shown in Figure 

5.8.   

 

                    

 

Figure 5.6  The components for thermally activated revolute joint.  

 

                                     

 

Figure 5.7  The components for the thermally activated spherical joint.  
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Figure 5.8  The fabricated thermally activated revolute (Left) and spherical 
(Right) joint.  

5.3  Phase Change Single Module 

Phase change single module consists of a soft structure and a controllable 

stiffness Element. The fabrication steps of all the components are described 

as below. 

5.3.1  Fabrication of Controllable Stiffness Element 

5.3.1.1  LMPA-based Controllable Stiffness Element 

The LMPA-based controllable stiffness element consists of a solid cylindrical 

LMPA, an external membrane and resistive wires. The mould for producing 

the cylindrical LMPA is shown in Figure 5.9.  

 

Figure 5.9  Components of the mould for fabricating LMPA-based 
controllable stiffness element. 

The fabrication was conducted through several steps. First, liquefied LMPA 

was poured into the fully assembled mould to form a cylinder [See Figure 5.10 
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(a)]. The cylinder is 10 mm in diameter and 30 mm in length. Once the material 

is solidified, the mould is removed. The fabricated cylinder was dipped into 

liquid silicone (Dragon Skin 30, Smooth-On, Inc.) to form an external 

membrane [see Figure 5.10 (b)]. The membrane was used to insulate the 

heating element from LMPA since silicone material is typically heat-resistant. 

In the final step, the resistive wires were wound and attached closely to the 

cylindrical surface of the silicone membrane, as shown in Figure 5.10 (c).  

   

(a) (b) (c) 

Figure 5.10  Fabrication steps of LMPA-based controllable stiffness 
element. (a) Pouring liquefied LMPA into a fully assembled mould. (b) 
Dipping a cylindrical LMPA into silicone material. (c) Resistive wires 
were wound and closely attached to the silicone membrane. 

5.3.1.2  GM-based Controllable Stiffness Element 

The GM-based controllable stiffness element consists of a latex membrane 

and coarsely ground coffee (900 microns). The mould for fabricating the latex 

membrane, as shown in Figure 5.11, was produced by a 3D printer (Object 

1000, Stratasys Ltd).  

 

Figure 5.11  The mould for the fabrication of an external latex membrane.  
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The membrane was formed by dipping the mould into a liquid latex [see Figure 

5.12 (a) and (b)]. Once the latex was cured, it was filled with coarsely ground 

coffee [see Figure 5.12 (c)]. A plastic diameter tube (1.5mm in diameter) was 

used as vacuum pipe. A piece of Nylon tissue was used as filter. The 

connection between the tube and the membrane was sealed with Parafilm. 

   

(a) (b) (c) 

Figure 5.12  Fabrication steps of a GM-based controllable stiffness element. 
(a) The mould was dipping into a liquid latex. (b) Curing the latex 
membrane. (c) Fabricated GM-based controllable stiffness element 
(top) and ground coffee (bottom). 

5.3.2  Fabrication of the Complete Module 

The components of the mould for the fabrication of the soft structure are 

shown in Figure 5.13. Three stainless steel pins were used to create cable 

channels to actuate the module. The plastic components were produced by a 

3D printer (Object 1000, Stratasys Ltd).  

Two formulations of silicone rubber, i.e. Ecoflex 0030 (Smooth-On, Inc.) and 

Dragon Skin 30 (Smooth-On, Inc.), was used for the fabrication of the soft 

structure due to high flexibility and high Shore hardness, respectively. Ecoflex 

0030 was used for fabricating the flexible bellows-like structure. Dragon Skin 

30 was selected to create top and bottom cap to provide the stability and 

rigidity during bending.  

The Ecoflex 0030 and Dragon Skin 30 were first prepared by mixing two 

components (Part A and Part B) in a 1:1 weight ratio, respectively. The mixed 

materials were stirred well and then put in a degassing chamber to remove 

the air bubbles trapped in the liquids. Due to the lack of the lab equipment, the 

materials were cured at room temperature. It takes four hours for Ecoflex 0030 

to be cured at room temperature and sixteen hours for Dragon Skin 30. 
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(a) (b) (c) (d) 

Figure 5.13  The components for the fabrication of the soft structure of the 
single module. (a) Half cylindrical moulds for the fabrication of the 
bellows-like structure (top) and top and bottom cap (bottom). (b) 
Cylinder for creating the space for controllable stiffness element. (c) 
Stainless steel pin for creating the cable channels. (d) Top and bottom 
mould.   

   

(a) (b) (c) 

Figure 5.14  Fabrication of the complete module. (a) Pouring the Ecoflex 
0030 into a fully assembled mould. (b) Placing the controllable stiffness 
element into the bellows-like structure and pouring the Dragon Skin 30 
to create top cap. (c) Pouring the Dragon Skin 30 to create bottom cap. 

The fabrication of complete module was conducted through several steps. 

First, Ecoflex 00-30 was poured into the assembled mould to form bellows-

like structure, as shown in Figure 5.14 (a). Top mould, as shown in Figure 

5.14 (d), was used to seal the mould and keep the pin in the position. Once 
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the silicone was polymerised, the top mould and outer shells were removed. 

Second, new half cylindrical shells were enclosed the bellows-like structure, 

and the controllable stiffness element was placed inside the bellows-like 

structure [see Figure 5.14 (b)]. Dragon Skin 30 was then poured to seal the 

element and create the top cap. With this process, three stainless steel pins 

were kept inside the bellows-like structure. When the Dragon Skin 30 was 

cured, the same procedure was executed again on the opposite side [see 

Figure 5.14 (c)]. Thus, the controllable stiffness element was fixed to the top 

and bottom cap.  

The complete fabricated prototypes for Phase change single module are 

shown in Figure 5.15. The LMPA-based single module is shown in Figure 5.15 

(a), and the GM-based single module is shown in Figure 5.15(b).  

  

(a) (b) 

Figure 5.15  The fabricated prototypes. (a) LMPA-based single module. (b) 
GM-based single module. 

It is worth noticing that cure inhibition occurs when fabricating GM-based 

module. It occurs when contaminants on a model surface prevent the liquid 

silicone from properly curing. This could be mitigated by cleaning the surface 

of the latex chamber before applying silicone over the model.  

5.4  Summary 

This chapter presents the fabrication steps of the single modules. The 

proposed designs have been realised for the experimental validation. The 

methods of applying low melting point solder and hot-melt adhesive to the 

surface of the copper tape were introduced. The fabricated prototypes were 

presented.  
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Chapter 6 

Experimental Validation of Single Module 

6.1  Introduction 

This chapter presents the experimental characterisation of the single modules. 

The prototypes of each design are presented and analysed for performance 

with the emphasis on the increase in stiffness and the response time. The 

theoretical models and FEA simulation results presented in Chapter 4 are 

validated throughout the experiments. Failure modes are discussed in the 

end. 

6.2  Stiffness Validation of Single Module 

The validation of a single module stiffness was conducted in two separate 

experiments: (1) A single module was cantilevered, and weights were hung 

from its free end while the lateral displacement of the end effector was 

recorded. (2) Axial compression tests were conducted to characterise the 

stiffness change of phase change modules. All tests were carried out when 

the modules were in rigid and soft state.  

6.2.1  Lateral Displacement Test 

Bending stiffness is an important criterion for understanding the force that the 

single module can support against gravity when cantilevered. It is used in this 

thesis to evaluate and compare the stiffness change of each design approach. 

Bending stiffness is calculated as the slope of the first linear region in the load-

displacement graph obtained from the lateral displacement test.  

6.2.1.1  Surface Bonding Single Modules 

The experimental setup for surface bonding modules in lateral displacement 

test is shown in Figure 6.1. The modules were tested in rigid and soft state. 

Noted that an end-effector was designed to mount on the single module. A 

cable was tied at the end-effector to attach external loads. The deflection, as 

illustrated as “D” in Figure 6.1 (a), was defined as the change in position when 

supporting a load against gravity at the free end. Three trials were conducted, 

the average displacement was plotted in Figure 6.2. Experimental data from 

the trials were listed in Appendix B.  
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(a)  (b) 

Figure 6.1  Experimental setup for lateral displacement test. The direction of 
the imposed displacement is highlighted by the black arrow. (a) An 
external load was imposed at free end of the single module consists of 
revolute joint, where D is the displacement. (b) Single module consists 
of spherical joint in lateral displacement test.  

Figure 6.2 illustrates the load required to deflect the end effector of a single 

module in lateral displacement test. All four tested modules appear to show a 

linear elastic region and a yield point (indicated as ‘X’). ‘Yield point’ indicates 

the break of the LMPS/HMA bond (large displacement occurs). 

 

Figure 6.2  Load vs Displacement graph for the cantilevered surface 
bonding single modules in rigid state. “X” stands for the yield point. 
HMA (R) and LMPS (R) represent a revolute joint employs HMA- and 
LMPS-based locking mechanism, respectively. HMA (S) and LMPS (S) 
indicate a spherical joint explores HMA- and LMPS-based locking 
mechanism, respectively. 
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The average yield points for the revolute joint employs HMA-based and 

LMPS-based locking mechanism are 9.47 N and 13.23 N, respectively. The 

average yield points for the spherical joint utilizes HMA-based and LMPS-

based locking mechanism are 12.25 N and 16.01 N, respectively. This result 

indicates that surface bonding modules were able to support  a payload equal 

to more than 25X of their own weights (the average weight of surface bonding 

modules is 38 grams); in contrast, a granular jamming manipulator developed 

by Cheng et al. [71] can support a payload that is 2X of its own weight.  

 

Figure 6.3  Box plot of the bonding torque of surface bonding modules. 
Theoretical (yellow triangle) and experimental (blue square) data are 
presented in the figure. HMA (R) and LMPS (R) represent a revolute 
joint employs HMA-based locking mechanism and LMPS-based locking 
mechanism, respectively. HMA (S) and LMPS (S) indicate a spherical 
joint explores HMA- and LMPS-based locking mechanism, respectively. 

The torque imposed on the proximal revolute joint employs HMA- and LMPS-

based locking mechanism at the yield point can be calculated as 262.32 Nmm 

and 379.91 Nmm, respectively. The torque imposed on the proximal spherical 

joint explores HMA- and LMPS-based locking mechanism can be estimated 

as 370.56 Nmm and 484.20 Nmm, respectively. The theoretical estimations 

for aforementioned designs are calculated in Chapter 4 as: 240.46 Nmm, 

336.75 Nmm, 356.47 Nmm and 453.73 Nmm, respectively. The validation 

results, as plotted in Figure 6.3, follow the trends expected by the theoretical 

models.    

Figure 6.4 and Figure 6.5 illustrate the force required to deflect the single 

modules when they are in soft state. Three trials were conducted, the average 

displacements were plotted in the figure. The graphs indicate that when the 
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surface bonding modules were in soft state, the displacements of the modules 

when under same external load were similar.  

 

Figure 6.4  Load vs Displacement graph for revolute joint employs HMA- 
and LMPS-based locking mechanism in soft state. HMA (R) and LMPS 
(R) represent a revolute joint employs HMA- and LMPS-based locking 
mechanism, respectively. 

 

Figure 6.5  Load vs Displacement graph for spherical joint utilizes HMA- and 
LMPS-based locking mechanism in soft state. HMA (S) and LMPS (S) 
indicate a spherical joint explores HMA- and LMPS-based locking 
mechanism, respectively. 

The data plotted in Figure 6.2, Figure 6.4 and Figure 6.5 were used to 

determine the bending stiffness of the surface bonding module in rigid and 

soft state. The bending stiffness was calculated as the slope of the first linear 

region in the load-displacement graph. The numerical results for the bending 

stiffness and increase ratio of each design are presented in Table 6.1. The 
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stiffness increase ratio is defined as below to measure the level of increase in 

this research.   

𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑟𝑖𝑔𝑖𝑑 𝑠𝑡𝑎𝑡𝑒

𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 𝑖𝑛 𝑠𝑜𝑓𝑡 𝑠𝑡𝑎𝑡𝑒 
 6.1 

Table 6.1  Numerical Results from Lateral Displacement Test. HMA (R) and 
LMPS (R) represent a revolute joint employs HMA- and LMPS-based 
locking mechanism, respectively. HMA (S) and LMPS (S) indicate a 
spherical joint explores HMA- and LMPS-based locking mechanism, 
respectively. 

 

Design method Bending 

stiffness in soft 

state (N/mm) 

Bending 

stiffness in rigid 

state (N/mm) 

Stiffness 

increase ratio 

(rigid/soft) 

LMPS(R)  0.029±0.003 5.969±1.559 205.8 

HMA(R)   0.026±0.001 1.228±0.233 47.2 

LMPS(S)  0.017±0.000 3.669±0.468 215.8 

HMA(S)  0.021±0.000 1.274±0.113 60.7 

 

Based on the FEA simulations provided in Chapter 4, the bending stiffness for 

the revolute joint and spherical joint in rigid state are 8.7214 N/mm and 8.9620 

N/mm, respectively. The bending stiffness for the revolute joint and spherical 

joint in soft state are 0.0269 N/mm and 0.0171 N/mm, respectively. 

Experimental bending stiffness is calculated for all surface bonding modules 

in both rigid and soft state. The comparisons between FEA simulations and 

experimental data are shown in Figure 6.6 and Figure 6.7. The results show 

that the FEA simulations overestimate rigid phase stiffness. However, they 

closely predict the soft phase stiffness. The theoretical rigid phase stiffness 

was estimated on the assumption that all modules can achieve a complete 

shape lock (The influence of the bonding strength of the material was not 

considered, the shaft and base of the joint were assumed to be one 

component). The assumption can be used to explain the difference between 

FEA predictions and experimental results. The experimental results indicate 

that the module employs the LMPS-based locking mechanism has greater 

stiffness than HMA-based locking mechanism. Therefore, it is closer to 

achieve a complete shape lock than the HMA-based design approach.  
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Figure 6.6  Box plot of experimental (blue rectangular) and theoretical 
(yellow triangle) bending stiffness for surface bonding modules in rigid 
state. HMA (R) and LMPS (R) represent a revolute joint employs HMA- 
and LMPS-based locking mechanism, respectively. HMA (S) and LMPS 
(S) indicate a spherical joint explores HMA- and LMPS-based locking 
mechanism, respectively. 

 

Figure 6.7  Box plot of experimental (blue rectangular) and theoretical 
(yellow triangle) bending stiffness for surface bonding modules in soft 
state. HMA (R) and LMPS (R) represent a revolute joint employs HMA- 
and LMPS-based locking mechanism, respectively. HMA (S) and LMPS 
(S) indicate a spherical joint explores HMA- and LMPS-based locking 
mechanism, respectively. 

6.2.1.2  Phase Change Single Modules 

The experimental setup for the lateral displacement test of phase change 

single modules is shown in Figure 6.8. The modules were tested in both rigid 
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module. A cable was tied at the end-effector to attach the external loads. The 

deflection, as illustrated as “D” in Figure 6.8 (a) and (b), was defined as the 

change in position when supporting a load against gravity at the free end. 

Three trials were conducted, the average displacement was plotted in Figure 

6.9 and Figure 6.10. 

  

(a) (b)  

Figure 6.8  Experimental setup for lateral displacement test. The direction of 
imposed displacement is illustrated by the black arrow. (a) LMPA-
based single module. (b) GM-based single module. Displacement (D) is 
illustrated in the figure.  

 

Figure 6.9  Load vs Displacement graph for LMPA- and GM-based single 
module in rigid state. 

Figure 6.9 and Figure 6.10 illustrates the force requires deflecting the LMPA- 
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module without embedded controllable stiffness element (as illustrated as 

Empty in Figure 6.10) was fabricated as a comparison group. The results 

show that the force required to deflect LMPA-based module in rigid state is 

greater than the GM-based module. However, the force required to deflect 

LMPA-based module is smaller than its counterpart when the modules were 

in soft state. It is worth noticing that the force required to deflect the module 

without any controllable stiffness element (shown as ‘Empty’) is greater than 

the LMPA-based module in soft state.  

 

Figure 6.10  Load vs Displacement graph for LMPA- and GM-based single 
module in soft state. 

The numerical values of bending stiffness for each design are presented in 

Table 6.2. These values were calculated when single modules were in rigid 

and soft state. The stiffness increase ratio for each design is indicated.  

Table 6.2  Numerical Results from Lateral Displacement Test. 

 

Design 

Method 

Bending 

stiffness in soft 

state (N/mm) 

Bending 

stiffness in rigid 

state (N/mm) 

Stiffness 

increase ratio 

(rigid/soft) 

Empty 0.0644±0.002 - - 

LMPA 0.0349±0.0015 0.2783±0.0199 8.0 

GM 0.0803±0.0050 0.0896±0.0140 1.1 
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The results show that LMPA-based single module demonstrates higher 

bending stiffness increase than GM-based design approach. The single 

module without embedded controllable stiffness element has greater bending 

stiffness than LMPA-based module in soft state. This is possibly due to the 

temperature influence on the single module. The increased temperature has 

softened the silicone material. The detailed investigation will be presented in 

Section 6.3.  

Based on the FEA simulations provided in Chapter 4, the calculated bending 

stiffness (rigid state) for LMPA- and GM-based single module are 0.2887 

N/mm and 0.0753 N/mm, respectively. The bending stiffness for LMPA- and 

GM-based single module in the soft state are 0.0406 N/mm and 0.0661 N/mm, 

respectively. Theoretical and experimental bending stiffness of the modules 

in rigid state and soft state are illustrated in Figure 6.11 and Figure 6.12, 

respectively. 

The results show that the FEA simulations closely predict the bending stiffness 

of LMPA-based module in rigid state, but overestimate the bending stiffness 

of LMPA-based module in soft state. Furthermore, the FEA simulation slightly 

underestimates the bending stiffness of GM-based module in rigid state and 

soft state.   

 

 

(a) (b) 

Figure 6.11  Box plot of bending stiffness when LMPA- and GM-based 
single modules are in rigid state. (a) Experimental (blue rectangular) 
and theoretical (yellow triangle) bending stiffness of the LMPA-based 
single module. (b) Experimental (blue rectangular) and theoretical 
(yellow triangle) bending stiffness of the GM-based single module. 
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(a) (b) 

Figure 6.12  Box plot of bending stiffness when LMPA- and GM-based 
single modules are in soft state. (a) Experimental (blue rectangular) 
and theoretical (yellow triangle) bending stiffness of the LMPA-based 
single module. (b) Experimental (blue rectangular) and theoretical 
(yellow triangle) bending stiffness of the GM-based single module. 

The overestimation of the bending stiffness of LMPA-based module in soft 

state can be explained by understanding the assumption made in FEA 

simulations. The space occupied by the liquefied LMPA was assumed empty. 

The temperature influence and elastic modulus of the liquefied LMPA was not 

considered in the simulations. The temperature rise resulted from the liquefied 

LMPA could soften the silicone structure. The detailed explanation will be 

presented in Section 6.3. The theoretical FEA simulations are still useful to 

understand the upper limits on the bending stiffness of LMPA-based single 

module.  

The results from the lateral displacement tests show GM- and LMPA-based 

design approaches cannot achieve a complete shape locking of the module, 

rather a remarkable stiffness increase.  

All four design methods are seen to have a substantial stiffness increase. In 

comparison to the stiffness variation result from STIFF-FLOP group, which 

shows 36% stiffness increase (1.36 increase ratio) of the single module during 

the lateral displacement test [15], LMPS-, HMA-, and LMPA-based 

approaches were able to achieve the stiffness change respectively 150X, 35X, 

and 6X greater than the state of the art STFF-FLOP device.  
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6.2.2  Axial Displacement Test 

In the axial displacement experiments, the stiffness of single module is 

characterised by the experimental elastic modulus. Linear regression curve 

was used to fit on the linear regional of the stress-strain graph. The 

experimental elastic modulus was calculated as the slope of the fitting curve. 

The experimental setup is shown in Figure 6.13. LMPA-based single module 

is illustrated in Figure 6.13 (a), GM-based single module is shown in Figure 

6.13 (b). The direction of imposed displacement is illustrated in the figure as 

white arrow.  

 

  

(a) (b) 

Figure 6.13  Experimental setup for axial displacement test. The direction of 
imposed displacement is illustrated by the white arrow. (a) LMPA-
based single module. (b) GM-based single module.  

The axial displacement tests were conducted when the modules were in rigid 

and soft phase. Each experiment was repeated three times. The stress-strain 

curves obtained from the axial displacement tests are shown in Figure 6.14 

(GM-based module in rigid state), Figure 6.15 (GM-based module in soft 

state), Figure 6.16 (LMPA-based module in rigid state), and Figure 6.17 

(LMPA-based module in soft state. Experimental elastic modulus of each 

design was determined from these figures.   
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Figure 6.14  Stress-strain curve from axial displacement test (GM-based 
module in rigid state). 

 

 

Figure 6.15  Stress-strain curve from axial displacement test (GM-based 
module in soft state). 

It is worth noting that during low strain phase, the plots from Figure 6.14 and 

Figure 6.15 show a similar trend that results from compressing the external 

silicone components of the modules. During the axial testing, abrupt changes 

in the stiffness occurred due to the nature of the granular materials in the 

controllable stiffness element. If the external force is significant, the materials 
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that are pushed together by the vacuum pressure may start to separate, thus 

decreasing the stiffness.  

The small slope appears in low strain phase, as plotted in Figure 6.16, results 

from the compression of the external silicone parts of the module. An abrupt 

change occurs when the resistant force of LMPA-based element starts to 

dominate. The force that requires deforming the module increases, a higher 

slope appears in the figure.  

 

Figure 6.16  Stress-strain curve from axial displacement test (LMPA-based 
single module in rigid phase). 

 

Figure 6.17  Stress-strain curve from axial displacement test (LMPA-based 
single module in soft phase). 
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The plots in Figure 6.16 and Figure 6.17 show that the force required to 

compress increases significantly when the controllable stiffness element is 

rigidified.  

 

Figure 6.18  Stress-strain curve from axial displacement test (Single module 
without controllable stiffness element). 

Axial displacement tests were conducted on the single module without the 

embedded controllable stiffness element. When LMPA-based single module 

in soft state, the controllable stiffness element is completely liquefied. The 

behaviour of the module, as plotted in Figure 6.17, shows a similar trend with 

single module without controllable stiffness element, as illustrated in Figure 

6.18. The smaller slope of the stress-strain curve from Figure 6.17 can be 

explained by the increased temperature results in softening the silicone 

structure. 

Table 6.3  Experimental Elastic Modulus of the Single Module. 

 

Design 

method 

Elastic modulus 

in soft state 

(MPa) 

Elastic modulus 

in rigid state 

(MPa) 

Elastic modulus 

increase ratio 

(rigid/soft) 

LMPA 0.0753±0.0025 497.135±79.8677 6602.1 

GM 0.1729±0.0003 0.2186±0.0010 1.3 

 

Table 6.3 presents the calculated results for the experimental elastic modulus. 

As expected, the LMPA-based single module in rigid state has the largest 
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experimental elastic modulus. GM-based design approach, on the other hand, 

has limited elastic modulus increases. This situation could be improved by 

increasing the vacuum pressure (high pressure vacuum could be used). The 

result from Section 3.5 shows that when the vacuum pressure increases, the 

elastic modules of the granular materials increases as well. However, a 

substantial volume of the materials and high vacuum pressure may be used 

to increase the elastic modulus.   

6.3  The Rise of Temperature on the Silicone Materials 

To understand the rise of the temperature on silicone components when non-

granular material devices in soft state, the following experiments were 

conducted. The test setup is shown in Figure 6.19.  

                          

Figure 6.19  Experimental setup for understanding the rise of the 
temperature on the LMPA-based module.   

A k-type thermocouple was used to attach the silicone component of the single 

module. The temperature was recorded every 15 seconds. The temperature 

was recorded when the module entered soft state (LMPS-, HMA-, and LMPA-

based element was completely liquefied). The average power used to actuate 

the LMPS(R), HMA(R), LMPS(S), HMA(S), and LMPA-based element were 

2.9 W, 3.7 W, 3.6 W, 2.7 W, and 8.8 W, respectively. Three trials were 

conducted, the average temperature of the silicone components when LMPS, 

HMA and LMPA modules enter liquefied state are 31.8 °C, 33.1 °C, 36.4 °C, 

39.8 °C and 53.6 °C, respectively.  
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Figure 6.20  Stress vs strain of RTV silicone at 25 °C [82].  

 

Figure 6.21  Stress vs strain of RTV silicone at 100 °C [82].   

Figure 6.20 and Figure 6.21 show that stress vs strain of RTV silicone at 25 

°C and 100 °C, respectively [82]. The elastic modulus of the RTV silicone can 

be estimated from the graphs. For example, when the temperature increased 

from 25 °C to 100 °C, the elastic modulus of RTV-511/577 and RTV-560 

silicone decreased by ~ 35%. The linear dependence of the elastic modulus 
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on temperature can be predicted by the theromdymanic law [83]. The elasic 

modulus of the silicone is given, 

𝐸 =
3

2
𝑘 ∙ 𝑇 ∙ 𝜌𝐾 6.2 

where k stands for the Boltzman constant, T for the temperature, and 𝜌𝐾 for 

the degree of cross-linking [83]. The linear dependence of the elastic modulus 

on temperature could explain the difference (16.37%) between the simulation 

result and experimental bending stiffness of LMPA-based single module in 

soft state as well as the stiffness difference between single module without 

embedded controllable stiffness element and LMPA-based module in soft 

state.  

The theoretical FEA simulation assumed the temperature influence on the 

silicone rubber material was negligible. However, Figure 6.20 and Figure 6.21 

demonstrate the temperature influence on elastic modulus of RTV materials. 

The rise of temperature can decrease the elastic modulus of the material. The 

linear dependence of bending stiffness on elastic modulus can be explained 

by, 

𝑘 =
𝐴𝐸

𝐿
 

where A is the cross-sectional area, E is the elastic modulus, and L is the 

length of the element.  

Therefore, the linear dependence of bending stiffness on temperature can be 

predicted. Since Figure 6.20 and Figure 6.21 have demonstrated when the 

temperature increases from 25 °C to 100 °C, the elastic modulus decreases 

by ~ 35%, one can predict when the temperature increases from 25 °C to 53.6 

°C (measured temperature of LMPA-based module), bending stiffness could 

be decreased by ~ 17.5%. The discrepancy (16.37%) between the simulation 

result and the experimental result can be explained. Further investigation on 

the temperature influence on Ecoflex 0030 and Drag Skin 30 will be conducted 

in the future. 

6.4  Response Time Validation of Single Module 

Response time defined here as the time for a single module to transition 

between rigid phase and soft state. The softening time and rigidifying time are 

defined in this section to characterise the response time for the single 

modules.  
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6.4.1  Softening Time 

For the GM-based single module, the softening time is defined as the time 

between the vacuum switched off and when single module reached a flexible 

configuration. Because the transition time can be rapid, the experiments were 

recorded and softening time was determined by analysing the video frame by 

frame. For the rest of the designs, single modules were cantilevered in rigid 

state, and weight (500 grams) was hung from its free end. The softening time 

is defined as the time between when the resistance heater is activated to when 

the module is soft and flexible. Three trials were conducted. The power 

consumption and vacuum pressure that were used to activate the module are 

listed in the first row of Table 6.4, the softening time is presented in the second 

row.  

Table 6.4  Power Consumption and Softening Time of Each Design. HMA 
(R) and LMPS (R) represent a revolute joint that employs HMA- and 
LMPS-based locking mechanism, respectively. HMA (S) and LMPS (S) 
indicate a spherical joint that explores HMA- and LMPS-based locking 
mechanism, respectively. 

 

 LMPS(R) HMA(R) LMPS(S) HMA(S) LMPA GM 

Power  2.9±0.2 

W 

3.7±0.4 

W 

3.6±0.1 

W 

2.7±0.5 

W 

8.8±1.0 

W 

180 

mmHg 

Time (s) 13.0±3.9 8.0±1.5 29.4±7.8 18.6±2.5 63.3±7.1 0.2 

 

For GM-based single module, the time required to soften the module is 0.2 

seconds. It was the fastest among five tested modules. It took 63.3±7.1 

seconds for LMPA-based controllable stiffness element to transition from 

solid-like state to liquid-like state. It was the slowest among five tested 

modules. This is in line with theoretical estimation. The design can be 

mitigated by decreasing the diameter of the controllable stiffness element, 

therefore reducing the mass of the element. The LMPS- and HMA-based 

revolute joints reacted faster than the spherical joint. Furthermore, HMA is 

faster to soften than LMPA. This is due to the temperature influence on the 

bonding materials. (The bonding strength of HMA declined exponentially when 

the temperature increased, whereas the bonding strength of LMPS decreased 

steadily). HMA-based single module can exploit this characteristic by 

increasing the external loads to further shorten the softening time. 
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6.4.2  Rigidifying Time 

For the GM-based single module, the test for determining rigidifying time was 

undertaken by placing the module from a horizontal position and recording the 

time between vacuum activated and when the module reached a rigid 

configuration. The time was determined by parsing individual video frames. 

For the rest of the designs, the rigidifying time was measured as the time 

between when the resistance heater is turned off, and the module is rigid. This 

was done by manually pushing the module until it was rigid, and time was 

recorded accordingly. The numerical results are presented in Table 6.5. 

Table 6.5  Rigidifying Time of Each Design. HMA (R) and LMPS (R) 
represent a revolute joint that employs HMA- and LMPS-based locking 
mechanism, respectively. HMA (S) and LMPS (S) indicate a spherical 
joint that explores HMA- and LMPS-based locking mechanism, 
respectively. 

 

 LMPS(R) HMA(R) LMPS(S) HMA(S) LMPA GM 

Time (s) 7.8±1.9 42.7±7.2 18.5±2.8 30.2±5.8 114.2±27.8 0.2 

 

The result shows that the GM-based single module has the quickest rigidifying 

time, whereas LMPA-based design has the slowest rigidifying time. This is 

due to the large amount of the mass of LMPA in the single module. LMPS-

based design approach is faster to solidify than HMA-based method. The 

measured results are not representative of the limits of the proposed methods. 

Since there are no temperature sensors in the current design, the modules 

can be easily overheated. As a result, the rigidifying time can be affected. 

6.5  Failure Modes 

It is important to understand the limits of the design before failure occurs. For 

surface bonding approach, two main failure mechanisms were observed 

during the experiments. The detachment of the copper tapes from plastic 

components occurred before the break of the bond formed by LMPS or HMA. 

This can be mitigated by using high shear strength adhesive (The shear 

strength of adhesive is greater than the bonding materials) with high 

temperature resistance (above 80 °C). For the spherical joint, the failure 

occasionally occurred when the link broke before the separation of the bond 

during the lateral displacement tests. This can be improved by using high 
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Young’s Modulus of the material to construct the link or increasing the 

diameter of the link. 

For LMPA-based single module, the increased external load can lead to the 

detachment of the controllable stiffness element from the bottom silicone cap. 

The cap cannot fully support the embedded LMPA during the bending. This 

can be mitigated by using high Shore hardness silicone material and 

decreasing the diameter of the controllable stiffness element.  

6.6  Summary 

This chapter presented the experimental characterisation of the single 

module, with emphasis on the increase in stiffness and the response time. 

Failure modes were discussed in the end.  

 Lateral displacement tests were conducted to characterise the bending 

stiffness of each design. For surface bonding design approach, the 

experimental results indicate that modules employs the LMPS-based 

locking mechanism have better stiffness than HMA-based locking 

mechanism, and it is closer to achieve a complete shape lock. For phase 

change design method, LMPA-based single module demonstrated a 

significant stiffness increase ratio (8.0 ratio). In contrast, GM-based single 

module showed a minor increase in stiffness ratio (1.1 ratio).  

 Axial displacement tests were conducted on LMPA- and GM-based single 

module to characterise the experimental elastic modulus. As expected, 

LMPA-based demonstrated the highest elastic modulus (497.135±79.8677 

MPa) and highest increase ratio in elastic modulus (6602.1 ratio). GM-

based module, on the other hand, showed a minor elastic modulus 

increase, only 26.43%. In comparison with the results from STIFF-FLOP 

project, where the elastic constant increase is seen to be 75.7% (no 

chamber inflation). This is due to the different vacuum pressure used in 

the experiments, 0.024 MPa with respect to 0.098 MPa (STIFF-FLOP).  

 The conclusion draw from lateral and axial displacement tests is that all 

four design approaches cannot achieve a complete shape lock, rather a 

significant increase in stiffness. The results show that the proposed design 

methods can modulate the stiffness when required. This is an important 

capability for hard and soft robot to be utilized in variable environments.  

 Response time was interrupted as the time for a single module to transition 

between rigid phase and soft state. Softening time and rigidifying time were 

defined in this chapter to quantifiably measure the response time of each 

design. The results show that GM-based single module demonstrated the 
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quickest response time in terms of softening and rigidifying time. LMPS- 

and HMA-based module showed reasonable response time, this can be 

further improved by decreasing the mass of the bonding materials.  

 For surface bonding single modules, two main failure mechanisms were 

observed during the lateral displacement experiments. The detachment of 

the copper tapes from plastic components is the main source of the failure 

for surface bonding single modules. In addition, the link of the joint 

occasionally breaks when the external load is significant. For phase 

change single modules, the detachment of the controllable stiffness 

elements from the bottom silicone cap is the main reason of failure.  
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Chapter 7 

Conclusions and Future Work 

This chapter details the conclusions draw from the experimental 

characterisation of the single modules and recommendations for further 

research.  

7.1  Assessment of Research Objectives 

This section identifies the methodologies applied during the research.   

7.1.1  To Identify the Possible Materials that Can be Used for the 

Development of the Controllable Stiffness Mechanism.  

Four materials (i.e. low melting point solder, hot-melt adhesive, low melting 

point alloy, and granular material) that can be used for the design of the 

controllable stiffness mechanism were identified in Chapter 2. These materials 

have relatively fast transition time and good relative stiffness change. They 

can transition between solid-like state and liquid-like state. This characteristic 

can be exploited for the development of the controllable stiffness element. 

7.1.2  To Investigate the Properties of the Identified Materials 

Related to the Design of the Controllable Stiffness 

Mechanisms. 

The properties of four materials were investigated in Chapter 3. The 

experimental methods were used to characterise the relevant properties. 

Solidus temperature was measured for low melting point solder, hot-melt 

adhesive and low melting point alloy. This was used to estimate the solidified 

time. Temperature influence on the bonding strength was tested on low 

melting point solder and hot-melt adhesive. The understanding of this property 

can reduce the response time of the single module. The selection of the 

adherend can affect the bonding strength of the hot-melt adhesive. Different 

choices of the adherend were investigated, copper was selected as adherend 

for hot-melt adhesive. Compression tests were conducted on low melting point 

alloy and granular material, and tensile tests were carried out on silicone 

rubber materials. Hyperelastic fitting models were produced. These were used 

to estimate the stiffness of the single module in rigid and soft state. Finally, 

the repeatability of the materials was tested on low melting point solder and 

hot-melt adhesive. The change of the bonding strength over repetitions was 

analysed.  
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7.1.3  To Design the Controllable Stiffness Mechanism that Can 

be Employed by the Single Module. 

Design and analysis of the controllable stiffness single module were presented 

in Chapter 4. Design of the single module was broken down into two 

categories: design of surface bonding modules (LMPS- and HMA-based 

single module) and design of phase change modules (LMPA- and GM-based 

single module). Rigid revolute and spherical joints were developed to employ 

the LMPS- and HMA-based locking mechanisms. Furthermore, LMPA- and 

GM-based controllable stiffness elements were designed to be embed into the 

soft modules. FEA simulations were carried out to estimate the bending 

stiffness of the single modules and to optimise the silicone bellows-like 

structures.   

7.1.4  To Experimentally Characterise the Performance of the 

Single Module With Emphasis on Measurement of Stiffness 

and Response Time. 

The fabricated single modules were experimentally characterised in Chapter 

6. The characterisation was focused on the stiffness change and response 

time of each design.  

7.2  Summaries 

The following summaries of results are drawn from the work carried out in this 

research: 

7.2.1  LMPS-based Single Module 

The proposed single module consisted of a silicone bellows-like structure and 

a thermally activated joint. A LMPS-based thermally activated mechanism was 

developed. The mechanism consisted of a resistive heater, and a layer of 

LMPS sandwiched between two copper tapes. Revolute and spherical joints 

were designed to fully explore the locking mechanism.  

7.2.1.1  Bending Stiffness  

Lateral displacement tests were conducted on the single modules in the rigid 

and soft state. The results showed that the proposed designs experienced a 

significant increase ratio in stiffness: 205.8 and 215.8 increase ratio for 

revolute and spherical joint, respectively.  
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7.2.1.2  Response Time 

Response time (i.e. softening time and rigidifying time) was defined in this 

study as the time for a single module to transition between rigid phase and 

soft state. The measured softening time for the revolute joint, and spherical 

joint were 13.0±3.9s and 29.4±7.8s, respectively. The measured rigidifying 

time for the revolute joint and spherical joint were 7.8±1.9s and 18.5±2.8s, 

respectively.  

7.2.2  HMA-based Single Module 

The proposed single module consisted of a silicone bellows-like structure and 

a thermally activated joint. An HMA-based locking mechanism was developed 

under this context. The mechanism consisted of a resistive heater, and a layer 

of HMA sandwiched between two copper tapes. Revolute and spherical joints 

were developed to fully explore the locking mechanism.  

7.2.2.1  Bending Stiffness  

Lateral displacement tests were conducted to characterise the bending 

stiffness of the single module. The results indicated that single module that 

utilized HMA-based locking mechanism showed a remarkable increase in 

bending stiffness: 47.2 and 60.7 increase ratio for revolute and spherical joint, 

respectively.  

7.2.2.2  Response Time 

The measured softening time for the revolute joint and the spherical joint are 

8.0±1.5s and 18.6±2.5s, respectively. The measured rigidifying time for the 

revolute joint and spherical joint are 42.7±7.2s and 30.2±5.8s, respectively. In 

comparison to the modules that employ LMPS-based locking mechanism, 

single modules that utilized HMA-based locking mechanism are quicker to be 

unlocked (from solid-like state to liquid-like state), but they took longer time to 

be locked.  

7.2.3  LMPA-based Single Module 

The proposed single module was composed of a silicone structure and a 

LMPA-based controllable stiffness element.  

7.2.3.1  Bending Stiffness 

Lateral displacement experiments were conducted to characterise the 

bending stiffness of the single module in the soft and rigid state. The results 

showed that the module demonstrated a reasonable increase ratio in bending 

stiffness (8 increase ratio).  
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7.2.3.2  Elastic Modulus 

Axial displacement tests were carried out to estimate the elastic modulus of 

the LMPA-based single module in the soft and rigid state. As expected, the 

module demonstrated a significant increase ratio in elastic modulus (6602.1 

increase ratio). Theoretical models were validated throughout the experiments. 

The results showed that the theory closely predicts the elastic modulus for the 

LMPA-based single module in the soft and rigid state.  

7.2.3.3  Response Time 

The measured softening time and rigidifying time for the LMPA-based single 

module are 63.3±7.1s and 114.2±27.8s. LMPA-base single module has the 

slowest response time compared to the rest of the designs. Given the amount 

of the mass used in the LMPA-based controllable stiffness element, this was 

in line with theoretical prediction.  

7.2.4  GM-based Single Module 

The module consisted of a silicone structure and GM-based controllable 

stiffness element.  

7.2.4.1  Bending Stiffness 

Lateral displacement experiments were performed to evaluate the bending 

stiffness of a GM-based single module. The tests were carried out with and 

without activating the controllable stiffness element. Although the stiffness 

increase was not optimal (1.1 increase ratio), the module demonstrated the 

capability of modulating stiffness when required.  

7.2.4.2  Elastic Modulus 

Axial displacement experiments were conducted on the single module to 

evaluate the elastic modulus. The tests were performed when the controllable 

stiffness element was activated and when it was not. The results showed that 

the computed elastic modulus increased slightly (1.3 increase ratio). Although 

the increase was not optimal, the system was able to provide stiffness 

variation in different directions (vertical and horizontal).  

7.2.4.3  Response Time 

For the GM-based single module, the transition time of granular materials was 

rapid. The softening and rigidifying time were both 0.2s. In terms of response 

time, GM-based single module enjoyed a decided advantage with respect to 

the LMPS-, HMA-, and LMPA-based single module. 
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7.3  Conclusions and Future Work 

This research has presented the synthesis, design and analysis of the 

controllable stiffness single module for a modular manipulator. Four materials 

were proposed to design the controllable stiffness mechanisms. The 

fabrication of the components of the single modules has been detailed. 

Extensive characterisations of the selected materials and the performances of 

the modules have been provided. The theoretical FEA models were 

developed and validated through experimental tests. 

Due to the extensive materials used in this study, experimental approaches 

were used to evaluate the properties of the materials and the performances 

of the single modules. However, the analytic models were developed, and 

FEA simulations were performed to optimise the design parameters. These 

results were validated through experiments. Future research is required to 

develop detailed FEA models to accurately predict the response time of each 

design.  

In parallel to more accurate modelling, integration of temperature sensors will 

play an important role in modulating the stiffness of the module. Furthermore, 

the integration of sensors in the module could help understand the precise 

moment when the module enters the soft phase, as well as preventing 

overheating. Future work will address the need for the sensing elements.  

LMPS-, HMA-, LMPA-, and GM-based controllable stiffness mechanisms 

were introduced to modulate the overall stiffness of the module. LMPS-, HMA-, 

and LMPA-based approaches demonstrated a significant increase in bending 

stiffness, LMPS-based module was found to achieve a stiffness change 150X 

greater than the state of the art granular material approach, whereas GM-

based methods showed a minor increase than its counterparts. Although the 

increase was not optimal, GM-based single module was able to provide 

stiffness variation in different directions (vertical and horizontal). Future 

research will improve the designs through the optimisations of the controllable 

stiffness elements (i.e. non-cylindrical shape element and membrane 

material). In addition, by reducing the amount of the mass used in thermally 

activated joint, the slow response time can be mitigated, as well as lowering 

the rise of the temperature in silicone materials.  

Surface bonding modules are suitable for missions where high strength is 

required (i.e. manipulation and extraction). The results show that surface 

bonding modules were able to support a payload equal to more than 25X of 

its own weight. In addition, phase change modules demonstrated high 
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dexterity in terms of bending and compression. These modules have a highly 

compressible structure, which allows them to operate in the environment 

where the diameter of the insertion port is smaller than their nominal diameters. 

The soft silicone structures prevent the damage to the working environments. 

The capability of stiffening enables the modules to interact the environment 

efficiently. Future research is required to construct a snake-like manipulator 

based on the proposed single modules to perform various missions. 
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 Appendix A 

MATLAB .m files 

This section contains the .m files developed and used in the thesis. 

A.1  hyperelasticity_model.m 

This section of code reads the data from tensile experiments (Ecoflex 0030 

and Dragon Skin 30) and plots the fitting curve.  

clc 
clear 
  
%read uniaxial test data 
data=xlsread('/Users/bingyinma/Documents/MATLAB/DragonSkin_Specime
n.xls'); 
%data=xlsread('/Users/bingyinma/Documents/MATLAB/Ecoflex_Specimen.x
ls'); 
  
  
Stress=data(:,7); %Engineering stress 
Stretch=data(:,8); %Stretch values 
  
%polynomial fit of experimental stress-stretch curve 
Pol_UT=polyfit(Stretch, Stress, 5); %fifth order polynomial 
  
  
%calculate tension data to be fitted with function 
r=length(Stretch); 
Stretch_max=max(Stretch); 
Stretch=linspace (1, Stretch_max, r); %stretch values equally spaced 
between 1 and Stretch_max 
PKF_UT=polyval(Pol_UT,Stretch); %PK stress corresponding to 'Stretch' 
  
%calculation of optimal material parameters 
STR=[Stretch]; 
STS=[PKF_UT]; 
  
%NeoHookean model 
NeoHookean_C0= [10]; 
  
% Yeoh model 
Yeoh_C0 = [10, 2, 1]; %Initial guess 
Yeoh_lb = [0, 0, -inf]; %Lower bound of the optimal solution vector 
Yeoh_ub = [inf, inf, inf]; %Upper bound of the optimal solution vector 
  
%Mooney3 model 
Mooney3_C0 = [0.03, 2, 2]; 
Mooney3_lb = [-inf, 0, -inf]; %Lower bound of the optimal solution vector  
Mooney3_ub = [inf, inf, inf]; %Upper bound of the optimal solution vector 
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% Mooney5 model 
Mooney5_C0 = [0.03, 4, 5, 6, 2]; %Initial guess 
Mooney5_lb = [-inf, -inf, -inf, -inf, -inf]; %Lower bound of the optimal solution 
vector  
Mooney5_ub = [inf, inf, inf, inf, inf]; %Upper bound of the optimal solution 
vector 
  
% Ogden2 model 
Ogden2_C0 = [0.03, 4, 5, 6]; %Initial guess 
Ogden2_lb = [-inf, -inf, -inf, -inf]; %Lower bound of the optimal solution 
vector  
Ogden2_ub = [inf, inf, inf, inf]; %Upper bound of the optimal solution vector 
  
%Arruda model 
Arruda_C0 = [10, 2]; %Initial guess 
Arruda_lb = [-inf, -inf]; %Lower bound of the optimal solution vector  
Arruda_ub = [inf, inf]; %Upper bound of the optimal solution vector 
  
optnew = optimset('DiffMaxChange',0.000001,'DiffMinChange',1e-15,... 
    'TolFun',1e-15, 'TolX',1e-15,'MaxFunEvals',10000,'MaxIter',10000); 
  
%curve fit options 
[NeoHookean_C, NeoHookean_sse] = lsqcurvefit(@NeoHookean, 
NeoHookean_C0,STR,STS); 
  
[Yeoh_C, Yeoh_sse] = 
lsqcurvefit(@Yeoh,Yeoh_C0,STR,STS,Yeoh_lb,Yeoh_ub,optnew); %Yeoh 
optimal solution 
  
[Mooney3_C, Mooney3_sse] = 
lsqcurvefit(@Mooney3,Mooney3_C0,STR,STS,Mooney3_lb,Mooney3_ub,op
tnew); %Mooney3 optimal solution 
  
[Mooney5_C, Mooney5_sse] = 
lsqcurvefit(@Mooney5,Mooney5_C0,STR,STS,Mooney5_lb,Mooney5_ub,op
tnew); %Mooney5 optimal solution 
  
[Ogden2_C, Ogden2_sse] = 
lsqcurvefit(@Ogden2,Ogden2_C0,STR,STS,Ogden2_lb,Ogden2_ub,optnew
); %Ogden2 optimal solution 
  
[Arruda_C, Arruda_sse] = 
lsqcurvefit(@Arruda,Arruda_C0,STR,STS,Arruda_lb,Arruda_ub,optnew); %A
rruda optimal solution 
  
%plot the fitting curve 
times=linspace(STR(1),STR(end)); 
figure(1) 
  
plot(times,NeoHookean(NeoHookean_C,times)) 
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hold on 
plot(times,Yeoh(Yeoh_C,times),'g-') 
hold on 
plot(times,Mooney3(Mooney3_C,times),'y') 
hold on 
plot(times,Mooney5(Mooney5_C,times),'b-') %plot Mooney5 model curve 
hold on 
plot(times,Ogden2(Ogden2_C,times),'r-') 
hold on 
plot(times,Arruda(Arruda_C,times),'--') 
hold on 
plot(Stretch, Stress, 'k-') 
  
legend('Neo Hookean Fitting Curve','Yeoh Fitting Curve','3 term Mooney-
Rivlin Fitting Curve','5 term Mooney-Rivlin Fitting Curve','2 term Ogden 
Fitting Curve','Arruda-Boyce Fitting Curve','Experimental Data') 
xlabel('Stretch') 
ylabel('Stress (MPa)') 
  
title('Hyperelastic Models Fitting Curves') 

A.2  Arruda.m 

This section of code describes Arruda-Boyce function.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Stress for Arruda 
model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [S] = arruda(C,STR) 
%material constants 
mu1=C(1); 
lambda=C(2); 
S=2.*mu1.*(STR-
1./STR.^2).*[1./2+1./10.*(STR.^2+2./STR).*1./lambda.^2+ ... 
    33./1050.*(STR.^2+2./STR).^2.*1./lambda.^4+ ... 
    76./7050.*(STR.^2+2./STR).^3.*1./lambda.^6+ ... 
    2595./673750.*(STR.^2+2./STR).^4.*1./lambda.^8]; 
end 

A.3  Mooney3.m 

This section of code describes 3-term Mooney-Rivlin function. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Stress for Mooney3 
model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [S] = Mooney3(C,Stretch) 
%material constants 
mu1=C(1); 
mu2=C(2); 
mu3=C(3); 
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S=2.*mu1.*(Stretch-1./Stretch.^2)+ ... %Strain energy first term 
    2.*mu2.*(1-1./Stretch.^3)+ ... %Strain energy second term 
    6.*mu3.*(Stretch.^2-Stretch-1+1./Stretch.^2+1./Stretch.^3-
1./Stretch.^4); %Strain energy third term 
end 

A.4  Mooney5.m 

This section of code describes 5-term Mooney-Rivlin function.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Stress for Mooney5 
model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [S] = Mooney5(C,Stretch) 
%material constants 
mu1=C(1); 
mu2=C(2); 
mu3=C(3); 
mu4=C(4); 
mu5=C(5); 
S=2.*mu1.*(Stretch-1./Stretch.^2)+ ... %Strain energy first term 
    2.*mu2.*(1-1./Stretch.^3)+ ... %Strain energy second term 
    6.*mu3.*(Stretch.^2-Stretch-1+1./Stretch.^2+1./Stretch.^3-
1./Stretch.^4)+ ...%Strain energy third term 
    4.*mu4.*(Stretch.^2+2./Stretch-3).*(Stretch-1./Stretch.^2)+ ... ...%Strain 
energy fourth term 
    4.*mu5.*(2.*Stretch+1./Stretch.^2-3).*(1-1./Stretch.^3); ...%Strain energy 
fifth term 
end 

A.5  Ogden2.m 

This section of code describes 2-term Ogden function.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Stress for Ogden2 
model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [S] = ogden2(C,L) 
%material constants 
mu1=C(1); alpha1=C(2); 
mu2=C(3); alpha2=C(4); 
S=mu1.*(L.^(alpha1-1)-L.^(-(1+alpha1./2)))+ ... %Strain energy first term 
    mu2.*(L.^(alpha2-1)-L.^(-(1+alpha2./2))); %Strain energy second term 
end 

A.6  Yeoh.m 

This section of code describes 3-term Yeoh function.  



- 144 - 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%Stress for Yeoh 
model%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [S] = Yeoh(C,Stretch) 
%material constants 
mu1=C(1); 
mu2=C(2); 
mu3=C(3); 
S=2.*(Stretch-1./Stretch.^2).*[mu1+2*mu2.*(Stretch.^2+2./Stretch-
3)+3*mu3.*(Stretch.^2+2./Stretch-3).^2]; 
end 
 

A.7  linear_regression.m 

This section of code reads the test data from tensile experiments (Ecoflex 

0030 and Dragon Skin 30) and plots a linear regression fitting curve. 

clc 
clear 
  
%read uniaxial test data 
% 
data=xlsread('/Users/bingyinma/Documents/MATLAB/DragonSkin_Specime
n.xls'); %load DragonSkin data 
data=xlsread('/Users/bingyinma/Documents/MATLAB/Ecoflex_Specimen.xls'
); %load Ecoflex data 
  
Stress=data(:,4); %Engineering Stress 
Strain=data(:,5); %Strain Values 
  
% index=(Strain>=0.75)&(Strain<=2); % Get the index of DragonSkin 30 
index=(Strain>=0.75)&(Strain<=6); % Get the index of Ecoflex 0030 
  
p=polyfit(Strain(index),Stress(index),1); % Fit polynomial coefficients for line 
yfit = p(2)+Strain(index).*p(1);  % Compute the best-fit line 
plot(Strain,Stress,'o');            % Plot the data 
hold on              % Add to the plot 
plot(Strain(index),yfit,'--');     % Plot the best-fit line 
  
legend('Stress-Strain Curve','Linear Regression Curve') 
xlabel('Strain') 
ylabel('Stress (N/mm^2)') 
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Appendix B 

Results from Lateral Displacement Tests 

This section contains the results from lateral displacement experiments. 

B.1  Surface Bonding Modules 

The following data presents lateral displacements of the revolute joint that 

employs HMA-based locking mechanism in locking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

50 0.49 0.3 0.2 0.3 

100 0.98 0.5 0.5 0.5 

150 1.47 0.6 0.8 0.8 

200 1.96 1 1.1 1.2 

250 2.45 1.3 1.5 1.6 

300 2.94 1.5 1.8 2.1 

350 3.43 1.7 2.1 2.6 

400 3.92 2.1 2.2 2.8 

450 4.41 2.4 2.5 3.4 

500 4.9 2.7 2.9 3.7 

550 5.39 3.1 3.3 4.2 

600 5.88 3.4 3.9 4.7 

650 6.37 3.8 4.2 5.2 

700 6.86 4.4 4.5 5.9 

750 7.35 4.7 5.5 6.7 

800 7.84 5.2 6 7.1 

850 8.33 5.6 6.5 7.7 

900 8.82  7 8 

950 9.31  7.5 9.2 
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1000 9.8  8.1  

 

The following data presents lateral displacements of the revolute joint that 

employs LMPS-based locking mechanism in locking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

50 0.49 0.01 0.02 0.01 

100 0.98 0.07 0.05 0.04 

150 1.47 0.1 0.11 0.1 

200 1.96 0.2 0.16 0.14 

250 2.45 0.25 0.21 0.2 

300 2.94 0.3 0.25 0.24 

350 3.43 0.35 0.32 0.3 

400 3.92 0.5 0.38 0.33 

450 4.41 0.55 0.47 0.38 

500 4.9 0.65 0.54 0.44 

550 5.39 0.7 0.59 0.49 

600 5.88 0.9 0.65 0.53 

650 6.37 0.95 0.75 0.58 

700 6.86 1 0.84 0.65 

750 7.35 1.05 0.92 0.7 

800 7.84 1.15 0.99 0.84 

850 8.33 1.3 1.04 0.9 

900 8.82 1.4 1.1 0.95 

950 9.31 1.5 1.15 1.01 

1000 9.8 1.7 1.22 1.14 

1050 10.29 1.9 1.28 1.31 

1100 10.78 2.1 1.34 1.52 
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1150 11.27 2.2 1.42 1.61 

1200 11.76 2.3 1.54 1.67 

1250 12.25 2.5 1.64 1.99 

1300 12.74 2.7 1.7  

1350 13.23 3   

 

The following data presents lateral displacements of the spherical joint that 

employs HMA-based locking mechanism in locking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

50 0.49 0.15 0.04 0.4 

100 0.98 0.26 0.12 0.6 

150 1.47 0.54 0.24 0.8 

200 1.96 0.9 0.37 1 

250 2.45 1.04 1 1.35 

300 2.94 1.64 1.15 1.48 

350 3.43 1.98 1.38 1.7 

400 3.92 2.2 1.77 1.78 

450 4.41 2.53 2.2 1.99 

500 4.9 2.9 2.5 2.42 

550 5.39 3.14 2.9 2.53 

600 5.88 3.32 3.12 2.69 

650 6.37 3.93 3.39 2.8 

700 6.86 4.2 3.68 3.3 

750 7.35 5 4.12 3.59 

800 7.84 5.7 4.3 3.99 

850 8.33 5.92 4.5 4.42 

900 8.82 6.2 4.8 4.73 
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950 9.31 6.9 5.12 5.1 

1000 9.8 8 5.4 5.8 

1050 10.29 8.6 6.41 6.5 

1100 10.78 9.5 6.8 7.3 

1150 11.27  7.6 8.4 

1200 11.76  8.4 9.3 

1250 12.25  9.1  

1300 12.74  9.8  

 

The following data presents lateral displacements of the spherical joint that 

employs LMPS-based locking mechanism in locking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

50 0.49 0.01 0.09 0.07 

100 0.98 0.02 0.16 0.16 

150 1.47 0.04 0.24 0.29 

200 1.96 0.07 0.28 0.42 

250 2.45 0.09 0.36 0.5 

300 2.94 0.13 0.42 0.67 

350 3.43 0.17 0.56 0.89 

400 3.92 0.21 0.67 1.12 

450 4.41 0.26 0.74 1.44 

500 4.9 0.29 0.78 1.8 

550 5.39 0.33 0.84 2.04 

600 5.88 0.46 0.9 2.12 

650 6.37 0.65 0.95 2.17 

700 6.86 0.77 1.06 2.23 

750 7.35 0.85 1.24 2.26 
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800 7.84 0.97 1.42 2.32 

850 8.33 1.12 1.53 2.38 

900 8.82 1.26 1.59 2.42 

950 9.31 1.38 2.04 2.47 

1000 9.8 1.52 2.24 2.56 

1050 10.29 1.69 2.47 2.6 

1100 10.78 1.79 2.72 2.76 

1150 11.27 1.97 2.88 2.87 

1200 11.76 2.06 2.99 3.04 

1250 12.25 2.39 3.12 3.33 

1300 12.74 3.22 3.24 3.52 

1350 13.23  3.32 3.63 

1400 13.72  3.43 3.75 

1450 14.21  3.51 4.09 

1500 14.7  3.69 4.44 

1550 15.19  3.92 4.59 

1600 15.68  4.16 4.73 

1650 16.17  4.38  

1700 16.66  4.66  

1750 17.15  4.81  

1800 17.64  4.92  

 

The following data presents lateral displacements of the revolute joint without 

locking mechanism.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 3.4 3 2.8 

20 0.196 6.4 5.8 6.4 
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30 0.294 8.7 9.6 9.1 

40 0.392 13.4 13.4 14.4 

50 0.49 15.2 15 15 

60 0.588 15.9 16.6 16.2 

70 0.686 17.5 17.1 17.1 

80 0.784 18.3 17.7 18.2 

90 0.882 18.9 18.6 19.3 

100 0.98 20.1 19.1 20.2 

110 1.078 20.7 20.1 20.8 

120 1.176 21.5 20.7 21.5 

130 1.274 22.3 21.1 22 

140 1.372 22.8 22.1 22.7 

150 1.47 23.5 22.6 23.5 

 

The following data presents lateral displacements of the revolute joint that 

employs HMA-based locking mechanism in unlocking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 2.98 4 4.1 

20 0.196 6.5 7.6 7.8 

30 0.294 9.7 11.5 11.7 

40 0.392 14.3 15.6 15.7 

50 0.49 17.52 16.6 16.9 

60 0.588 18 18.3 19 

70 0.686 19.7 20 20.3 

80 0.784 21 21.2 21.7 

90 0.882 22.6 22.2 22.7 

100 0.98 23.8 23.6 23.4 
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110 1.078 24.88 24.4 24.7 

120 1.176 25.8 25.1 25.3 

130 1.274 26.9 26.2 26.2 

 

The following data presents lateral displacements of the revolute joint that 

employs LMPS-based locking mechanism in unlocking state. 

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 3.85 3.2 3.3 

20 0.196 6.05 6.5 6.6 

30 0.294 9.35 9.5 10.3 

40 0.392 13.55 14.2 14.6 

50 0.49 15.85 15.5 15.8 

60 0.588 17.85 17.5 17.9 

70 0.686 19.65 19.8 19.3 

80 0.784 20.95 20.8 20.6 

90 0.882 22.35 22 22 

100 0.98 23.55 23.2 22.9 

110 1.078 24.65 24.4 24 

120 1.176 25.85 25.2 24.7 

130 1.274 26.83 26.3 25.6 

 

The following data presents lateral displacements of the spherical joint without 

locking mechanism.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 3.4 2.9 3 
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20 0.196 6.5 6.2 6.6 

30 0.294 10 9.9 9.3 

40 0.392 14 13.6 13.1 

50 0.49 15.8 15.3 14.6 

60 0.588 16.4 17.1 16.8 

70 0.686 19.1 18.2 18.7 

80 0.784 19.6 19.4 20.2 

90 0.882 20.62 20.3 21.6 

100 0.98 21.5 21.2 22.3 

110 1.078 22.3 22 23.4 

120 1.176 23 23 24.2 

130 1.274 24.2 23.8 25 

140 1.372 25.1 24.9 25.4 

150 1.47 25.4 25.3 26.2 

160 1.568 26.3 26.5 26.7 

170 1.666 27.3 27.1 27.2 

 

The following data presents lateral displacements of the spherical joint that 

employs HMA-based locking mechanism in unlocking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 5 4.9 5.1 

20 0.196 9.6 10 9.9 

30 0.294 14.7 15.3 15.7 

40 0.392 18.6 18.5 18.8 

50 0.49 19.8 19.9 20.3 

60 0.588 22.7 22.6 22.9 

70 0.686 24.9 25.1 25.6 
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80 0.784 26.9 27.1 27.3 

 

The following data presents lateral displacements of the spherical joint that 

employs LMPS-based locking mechanism in unlocking state.  

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 6.4 6.7 6.7 

20 0.196 11.5 11.5 11.7 

30 0.294 16.6 17.3 17.4 

40 0.392 19.6 20.4 20.4 

50 0.49 20.7 21.1 21.3 

60 0.588 22.5 22.3 23.5 

70 0.686 24.6 24.7 25.2 

80 0.784 26.4 26.4 26.7 

 

B.2  Phase Change Modules 

The following data presents lateral displacements of LMPA-based single 

modules in rigid state. 

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

100 0.98 5.65 6.58 7.54 

150 1.47 8.18 9.64 10.5 

200 1.96 10.59 12.37 12.59 

250 2.45 13.03 14.76 15.42 

300 2.94 15.07 16.01 18.44 

350 3.43 17.31 17.86 21.05 
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400 3.92 19.52 19.61 23.92 

450 4.41 20.09 21.84 25.76 

500 4.9 21.37 23.91 27.7 

550 5.39 22.62 24.95 28.64 

600 5.88 24.52 26.96 29.69 

650 6.37 25.55 28.49 30.69 

700 6.86 27.28 29.35 32.71 

750 7.35 29.34 30.51 33.8 

800 7.84 29.34 32.18 34.37 

850 8.33 30.08 33.93 35.59 

900 8.82 32.33 34.41 36.81 

950 9.31 33.2 35.35 37.61 

1000 9.8 33.71 36.3 38.08 

  

The following data presents lateral displacements of GM-based single 

modules in rigid state. 

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

50 0.49 7 7.33 5.64 

100 0.98 12.34 14.08 10.51 

150 1.47 17.04 19.57 15.21 

200 1.96 22.39 22.86 19.06 

250 2.45 27 25.74 21.53 

300 2.94 29.9 29.66 24.38 

350 3.43 35.02 32.27 25.76 

400 3.92 35.85 35.89 28.44 

450 4.41 38.04 37.01 30.15 
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The following data presents lateral displacements of the single module without 

controllable stiffness element. 

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 2.1 1.9 2.4 

20 0.196 4.2 3.6 4.1 

30 0.294 6 5.2 6.4 

40 0.392 7.8 7.3 7.7 

50 0.49 8.6 8.3 8.7 

60 0.588 10.7 10.2 10.7 

70 0.686 12.1 12.1 12.4 

80 0.784 13.8 13.6 14 

90 0.882 15.4 15.3 15.6 

100 0.98 16.8 16.9 16.7 

110 1.078 17.9 18.2 18.1 

120 1.176 19.2 19.6 19.3 

130 1.274 20.3 20.9 20.4 

140 1.372 21.4 22 21.6 

150 1.47 22.3 23 22.5 

160 1.568 23.4 24.2 23.5 

 

The following data presents lateral displacements of LMPA-based single 

modules in soft state. 

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 2.9 3.7 3.6 

20 0.196 6.3 6.7 6.5 
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30 0.294 8.2 9.1 8.9 

40 0.392 10.6 11.7 11.6 

50 0.49 11.6 12.9 12.8 

60 0.588 13.4 14.8 14.5 

70 0.686 15.4 16.5 15.9 

80 0.784 17 17.7 18.1 

90 0.882 18.7 18.7 19.6 

100 0.98 20.4 20.7 20.7 

110 1.078 22 22 21.9 

120 1.176 23.4 23.5 23.2 

 

The following data presents lateral displacements of GM-based single 

modules in soft state. 

Load  

(gram) 

Load  

(N) 

Displacement (mm) 

Trial 1 Trial 2 Trial 3 

0 0 0 0 0 

10 0.098 1.2 1.2 1.2 

20 0.196 2.6 2.35 2 

30 0.294 3.9 3.6 3.3 

40 0.392 5.5 4.8 4.5 

50 0.49 6.4 5.6 6.3 

60 0.588 7.9 6.9 7.1 

70 0.686 9 8.2 8.2 

80 0.784 10.1 9.4 9.4 

90 0.882 11.3 10.5 10.9 

100 0.98 12.9 11.6 12.2 

110 1.078 14 13.2 13.6 

120 1.176 15.1 14.3 14.5 

130 1.274 16.2 15.3 15.5 
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140 1.372 17 16.2 16.4 

150 1.47 17.8 17.3 18 

160 1.568 18.9 18.3 18.8 

170 1.666 19.9 19.2 19.8 

180 1.764 20.5 20.2 20.7 

190 1.862 21.3 20.9 21.7 

200 1.96 22.1 21.9 22.3 
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Appendix C 

Results from Response Time Tests 

This section contains results from response time (rigidifying time and softening 

time) tests 

C.1  Softening Time 

The following data describes the softening time for single modules. 

 Power  HMA(R) softening time 

Unit W s 

Trial 1 3.64 9.18 

Trial 2 3.9 10.57 

Trial 3 4.55 8.82 

Trial 4 3.77 7.43 

Trial 5 3.12 6.91 

Trial 6 3.77 6.3 

Trial 7 4.03 10.43 

Trial 8 3.25 7.98 

Trial 9 3.64 7.54 

Trial 10 3.77 8.3 

Trial 11 3.77 6.37 

Trial 12 3.64 6.74 

  

 Power  LMPS(R) softening 

time 

Unit W s 

Trial 1 3 15.45 

Trial 2 2.64 9.24 

Trial 3 2.9 15.58 

Trial 4 2.88 5.81 
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Trial 5 3 16.51 

Trial 6 3 10.76 

Trial 7 2.5 12.75 

Trial 8 3 19.96 

Trial 9 3 9.64 

Trial 10 2.9 15.67 

Trial 11 3 11.84 

Trial 12 3.12 13.21 

 

 Power  HMA(S) softening time 

Unit W s 

Trial 1 3.24 23 

Trial 2 3 19.21 

Trial 3 2.64 21.12 

Trial 4 3.24 16.85 

Trial 5 2.16 21.77 

Trial 6 3.24 16.79 

Trial 7 2.04 19.09 

Trial 8 3 14.9 

Trial 9 3.12 18.5 

Trial 10 2.16 18.39 

Trial 11 2.04 18.22 

Trial 12 2.4 15.31 

 

 Power  LMPS(S) softening 

time 

Unit W s 

Trial 1 3.64 31.84 

Trial 2 3.51 27.99 
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Trial 3 3.77 43.49 

Trial 4 3.51 23.98 

Trial 5 3.51 21.59 

Trial 6 3.38 27.25 

 

 Power  LMPA softening time 

Unit W s 

Trial 1 10.695 63.9 

Trial 2 9.66 73 

Trial 3 7.935 67.3 

Trial 4 9.315 64.44 

Trial 5 9.315 60.83 

Trial 6 8.625 53.17 

Trial 7 7.935 68.17 

Trial 8 7.935 51.2 

Trial 9 7.935 67.27 

 

C.2  Rigidifying Time  

The following data describes the rigidifying time for single modules. 

 HMA(R) rigidifying time 

Unit s 

Trial 1 47.56 

Trial 2 56.19 

Trial 3 41.76 

Trial 4 39.78 

Trial 5 36.88 

Trial 6 43.04 

Trial 7 46.15 
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Trial 8 33.63 

Trial 9 48.5 

Trial 10 33.04 

 

 LMPS(R) rigidifying time 

Unit s 

Trial 1 9.71 

Trial 2 8.88 

Trial 3 6.24 

Trial 4 6.86 

Trial 5 5.93 

Trial 6 10.18 

Trial 7 6.49 

Trial 8 6.63 

Trial 9 7.61 

Trial 10 5.07 

Trial 11 8.14 

Trial 12 11.51 

 

 HMA(S) rigidifying time 

Unit s 

Trial 1 31.55 

Trial 2 31.5 

Trial 3 24.27 

Trial 4 34.29 

Trial 5 18.78 

Trial 6 29.62 

Trial 7 29.6 

Trial 8 34.02 
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Trial 9 28.08 

Trial 10 42.81 

Trial 11 28.04 

Trial 12 30.08 

 

 LMPS(S) rigidifying time 

Unit s 

Trial 1 22.67 

Trial 2 15.73 

Trial 3 20.65 

Trial 4 18.27 

Trial 5 18.5 

Trial 6 15.25 

 

 LMPA rigidifying time 

Unit s 

Trial 1 128.53 

Trial 2 92.46 

Trial 3 113.02 

Trial 4 150.94 

Trial 5 137.42 

Trial 6 135.6 

Trial 7 67 

Trial 8 84.3 

Trial 9 118.46 
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Appendix D 

CAD Models of the Moulds for Silicone Material Casting 

This section contains the CAD models of the moulds for silicone material 

casting.  

CAD models of the moulds for the fabrication of the bellows-like structure of 

surface bonding module are listed as bellow: 

 

 

(a) End (b) Cylinder 

  

(c) Semi-Ring (d) Assembled Mould for R-Joint 

  



- 164 - 

 

 

(e) End (f) Semi-Ring 

 

 

(g) Assembled Mould for S-Joint  

 

CAD models of the moulds for the fabrication of the phase change module are 

listed as bellow:  

  

(a) End (b) Cylinder 
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(c) Semi-Ring (d) Assembled Mould for Bellow 

 

 

(e) Semi-Ring for Top Cap (f) Assembled Mould for Top 

Cap 

 


