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Abstract 

The purpose of this research project is to investigate the limitations to algal growth, 

Dunaliella salina CCAP 19-30, by overcoming photosynthetic parameters such as CO2 

supply, O2 accumulation and light intensity. Therefore, this project aims to enhance D. 

salina growth by combining wavelength tuning material and supplying an optimum 

CO2 gas to the system. A breakthrough wavelength shifting material technology will 

help to increase the amount of light utilized by chlorophyll pigments. 

Wavelength tuning can be performed using fluorophores which will absorb the 

unutilised light at a certain wavelength and re-emit it at a longer wavelength as useful 

light; therefore, Coumarin 1 and 1,2-Diphenylacetylene were selected for UV to blue 

light conversion; whereas, Bestoil Red 5B and Bestoil Orange 2G were chosen for 

green to red light conversion. Wavelength tuning materials were generated by mixing 

different concentration of these organic dyes with various solvents (THF, toluene, 

chloroform and chlorobenzene), polymer (PMMA) or PDMS which will give 

robustness to generated material. 

Upon testing, using a Coumarin 1 film resulted in more efficient than 1,2-

Diphenylacetylene at absorbing between 320 -400 nm and emitting between 400-550 

nm. Also, Bestoil Orange 2G exhibited better mixing and absorption property than 

Bestoil Red 5B. It absorbed green light and re-emit red light between 620 nm and 780 

nm. These two dyes give better results since D. salina absorbs the light between 400-

500 nm and 630-680 nm. 

Incorporating these wavelength tuning materials into the system increases the algal 

growth by 17.6% and 11.2% with UV to blue light conversion and green to red light 

conversion, respectively, for small scale (50 ml cell culture flasks) algae growth. 

Moreover, using fine-bubble raises the mass transfer and mixing; hence the growth 

increases by more than double the amount compared to non-aerated system. 

D. salina growth in designed 3L photobioreactor was divided into two group as air 

supply and CO2 supply in order to compare the effect of wavelength shifting material 
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and CO2 amount, respectively. According to the air supplied algae growth results, 

reactor coated with Coumarin wavelength shifting materials produced the highest 

biomass with a final O 

D595nm value of 1.01 (26 days) among all other growth conditions as well as the Nile 

Red analysis and the fluorescent microscope images of Dunaliella cells supports this 

highest growth. Moreover, produced the most neutral lipid is also highest for the 

reactor with Coumarin shifting material applied at 0.31 µg ml-1 which is about 31.42% 

lipid.  

Different CO2 (air i.e.0.03% CO2, 0.5%, 1%, 5% and 10%) supplied reactor showed a 

similar growth pattern for individual wavelength shifting material at diverse CO2 

concentration. However, Coumarin material demonstrated the highest OD595nm growth 

in each dose as 0.931, 0.914, 0.939 and 0.936 at 595nm for 0.5%, 1%, 5% and 10%, 

respectively. Moreover, the growth period was decreased by half compared to the air 

supplied D. salina cultures. Apart from the 1% CO2 dosed culture, the reactor with 

Coumarin shifting material applied indicated the highest Nile Red fluorescence 

intensity as well as dry cell weight lipid percentage. 

Consequently, it was concluded that the Coumarin wavelength tuning material was 

demonstrated the best performance in terms of OD and the high density achieved in 

the D. salina cultures can be seen from the before and after photographs of the reactors 

for each experiment. D. salina produces β-carotene under stressed conditions and this 

is seen as green lipid dots inside the cells in fluorescence microscope images. UV light 

has detrimental effect on D. salina cell which was observed both in small and large 

scale algae growth. 
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1.1. Introduction 

Industry has an important place in human life in that it produces the goods to make life 

easier for people. However, the amount of carbon dioxide emission from factories is 

significant and needs to be reduced because it is the most abundant anthropogenic 

greenhouse gas. Due to the fact that 183 tons of carbon dioxide  is required to produce 

100 tons of algal biomass (Chisti, 2007), growing microalgae, is one of the useful 

methods to minimize this problem. Microalgae utilise carbon dioxide as a feedstock 

and convert it to beneficial products such as agriculture and aquaculture foods (Pulz, 

2001, Michels et al., 2014b) and high-value bioactives (Melis, 2002), complex oils, 

hydrocarbons and lipids (Guschina and Harwood, 2006) and with further process to 

biofuels (Chisti, 2010a, Chisti, 2010b, Stephenson et al., 2011, Batan et al., 2010). 

Using microalgae not only decreases carbon dioxide emissions but also preserves the 

productions derived from crops (Chisti, 2007). Algae growth is carried out under 

photosynthesis principles which requires light as an energy source (FAY, 1983), 

inorganic salts, water and carbon dioxide.           

Large scale algal biomass production is done using either open raceway ponds or 

closed photobioreactors (Molina Grima et al., 1999). As will be in discussed detail in 

section 1.4, open pond systems are the most commonly used method; nonetheless, 

photobioreactors (PBR) are attracting the attention of the industry because they offer 

more control. Currently available PBRs may cause oxygen accumulation which causes 

photo-respiration, an undesired situation for algae growth since it inhibits algal 

biomass production. The solution to this problem is increasing the mass transfer and 

aeration of the system; hence, studies aiming to introduce bubbling (fine bubble or 

microbubble) technology into the PBRs are being performed by many researchers 

(Zimmerman et al., 2009, Ying, 2013, Zimmerman et al., 2011, Al-Mashhadani et al., 

2015).  

After eliminating the problem of oxygen accumulation and providing all the nutrients 

to grow the algae (including suitable level of CO2), the only remaining parameter 

which may limit the photosynthesis rate is the light intensity. A major part of light 

absorption is performed by the chlorophyll pigments which can absorb blue and red 
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light at the peaks 450nm and 680 nm, respectively. As the sun is the light source for 

algal growth and it has a wide range of light emission wavelength, the light 

illumination using wavelength shifting materials will help to increase efficiency of 

growth. These wavelength shifting materials will convert the unused UV and green 

light to the usable blue and red light. 

 

1.1.1. Objectives of the Project  

The purpose of this research is developing photobioreactor (PBR) design by 

incorporating the wavelength shifting materials with an optimum amount of CO2 

supply in order to increase the algal biomass production. An optimized wavelength 

shifting material will be obtained by trying diverse coating techniques, by using a 

variety of dyes, solvents, polymers (matrix material to form robust structure on 

microscope slide) and PDMS (polymeric matrix to obtain smooth and robust films).  

Application of wavelength tuning materials will help to increase the amount of usable 

light, so algal growth will be shifted. On the other hand, bubbling from the bottom of 

the reactor will help to increase mass transfer and reduce O2 accumulation and increase 

the mixing of the growth medium. Also different CO2 concentrations will be tried to 

obtain an optimized CO2 amount to grow D. salina faster. Moreover, the design of the 

PBR will be driven by considering the algae growth conditions, allowing more light 

penetration and reducing the reflection by using UV transparent materials. (Molina et 

al., 2001, Molina Grima et al., 2000). 

 

1.2. What Are Microalgae? 

After prokaryotic life began, blue- green algae (cyanobacteria) started to grow 3.5 

million years ago.  Algae, photosynthetic living organisms, are classified as macro 

algae and micro algae. Basically, algae can be categorized according to their coloured 

pigments such as green algae, red algae or brown algae (Chapman, 2013).  In the 

literature, microalgae have been associated with fast growth typical doubling rates for 
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microalgae and cyanobacteria are 24 and 17 hours, respectively (Guschina and 

Harwood, 2006). This is a good feature producing biological products faster than other 

biological feedstocks such as crop, plants or energy plants for lignocellulosic materials 

(Hill et al., 2006).  

Several studies have estimated that there are over 30,000 algae species and reported 

that algae can grow in many conditions like extreme salinity, extreme pH values, and 

wide temperature range (FAY, 1983). According to species, they can grow in desert, 

marine, fresh water, waste water or sewage (Oilgae, 2013). On the other hand, as with 

all living organisms, microalgae require appropriate growth conditions which are 

fulfilled with nutrients, light and CO2.  

Nutrients such as phosphorus (P) and nitrogen (N) are essential for algal growth. The 

growth medium should contain sufficient amounts of these inorganic chemicals. Chisti 

claimed that 1.1 million tons of phosphorus and 5.4 million tons of nitrogen are needed 

for the production of 82 million tons of algal biomass (Chisti, 2013). On the grounds 

of the sustainability of the algal production, these two essential nutrients must be fully 

recycled (Chisti, 2010b). Therefore, P and N can be gained back from algal biomass 

by anaerobic digestion of algal oil (Chisti, 2008).  The last and most important input 

to the algal growth system must be CO2 and as mentioned earlier, 183 tons of CO2 is 

consumed while producing 100 tons of algal biomass (Chisti, 2007). Moreover, 

microalgae are a significant source for CO2 storage as a consequence of rapid growth 

rates (Sayre, 2010). On the basis of previous information, microalgae are considered 

as environmentally friendly and help naturally to reduce greenhouse gases.  

At the end of the photosynthesis reaction, diverse types of products are constructed 

depending upon the species of microalgae and the growth environment. These products 

can be listed as complex oils, hydrocarbons, lipids (Weyer et al., 2010), agricultural 

and aqua-cultural foods (Guzmán et al., 2010, Herrmann et al., 1997)and β-carotene 

as well as biofuels with further processing (Guschina and Harwood, 2006, Chisti, 

2007, Borowitzka, 2013, Chisti, 2008, Mata et al., 2010).  Moreover, the secondary 

red carotenoid astaxanthin, that has recently attracted notice as a nutraceutical food 
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because of its high antioxidant activity, is also used as a pigmentation addition agent 

in aquaculture (Ranjbar et al., 2008). 

Microalgae have the ability to produce high amounts of lipid and this amount increases 

with decreasing initial nitrogen concentration (Karatay and Dönmez, 2011). Besides, 

some microalgae contain a huge quantity of oil (Mata et al., 2010) which could be 

possibly used directly as biofuels to produce electricity and heat, or altered to make 

bio-hydrogen and biogas by discrete biological conversion. Thus, microalgae can be 

potential sources for reducing petroleum use, and some researchers claim that third 

generation biofuels derived from algae will eventually replace petroleum. If the growth 

conditions are suitable, the growth rate of microalgae may reach to 1 day-1, by way of 

contrast plants may reach to 0.1 day-1 or less (Chisti, 2010b). 

Additionally, microalgae are used in carbon dioxide and nitrogen fixation 

(cyanobacteria only), bioremediation processes, wastewater and sewage treatments, 

cosmetic industry and pharmaceuticals (Chisti, 2007, Ranjbar et al., 2008, Karatay and 

Dönmez, 2011, Borowitzka, 2013). Even though the application areas of microalgae 

are wide ranging, harvesting is a costly procedure which needs further investigations. 

Filtration, sedimentation, centrifugation and flotation are the main harvesting methods 

(Oilgae, 2013).  

 

1.2.1. Photosynthesis in Microalgae 

Photosynthesis is a process which is described as the forming of organic compounds 

like sugar by the fixation of CO2 (either free CO2 ions or bicarbonate ions) through 

using an energy source, light, as shown in the equation below. 

 



21 
 

 

Figure 1. 1. Calvin cycle. Image is adapted from ‘Photosynthesis’ book written by. 

(Kohen et al., 1995) 
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After supplying all nutrients and a carbon source in the aqueous solution where 

microalgae are present, the driving force, light, of the photosynthesis will be provided 

by the sun (Melis, 2002). Then, this light energy will be converted to the chemical 

energy inside the cells (Figure 1.1) (FAY, 1983, Kohen et al., 1995).  Photosynthesis 

is divided into two main parts; light-dependent and light-independent (Calvin cycle). 

In the first step of the Calvin cycle, CO2 is attached to the ribulose-1, 5-biphosphate 

(RuBP) that is a 5 carbon sugar, by Rubisco enzyme so as to generate two molecules 

of 3-phosphoglycerate. Next, a series of sugar phosphates are formed by NADPH 

(nicotinamide adenine dinucleotide phosphate) which is an electron carrier. Energy 

(ATP) and reductant (NADPH) are produced during the light dependent reactions and 

water is split to produce electrons to reduce NADP and produce free O2 as a by-product 

(FAY, 1983). 

All cyanobacteria, as well as microalgae utilize, the same solar spectrum wavelength 

range between 400 nm and 700 nm which is referred to as the “visible spectrum” and 

also named as the “photosynthetically active radiation (PAR)” (Kirk, 1994, 

Blankenship, 2002, Chisti, 2010b, Xia et al., 2013).  This harvested sunlight beams are 

used to drive the metabolic reactions during photosynthesis (Hu and Schulten, 1997). 

Table 1.1 illustrates the absorption wavelength ranges of photosynthetic pigments 

inside the phototrophic organisms. Among these pigments, chlorophyll and 

carotenoids are fundamental elements of light-harvesting complexes (LHCs) of 

photosynthetic cells. Photosynthetic light trapping progresses via these pigments 

which are present in microalgae and transfer it to the photosynthesis reaction systems. 

The colour of the incoming light ideally needs to overlap with the pigment absorption 

wavelength range that corresponds with the lowest excited state. (Ben-Amotz et al., 

2009, Matthijs et al., 1996). Antenna pigments absorb and pass the photons through 

the photosynthetic reaction centres (PSII and PSI). The primary photochemical 

reactions proceed from relatively low-energy, long (red) wavelengths of light (680 nm 

PSII and 700 nm PSI). Thus, shorter energy, high energy (blue) wavelengths of 

photons absorbed by the antennae is re-emitted as heat and fluorescence. Therefore, 

the photosynthesis process cannot utilise the extra blue photons energy of light which 
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is about 75% larger than red photons. Thus, an additional 6.6% energy loss from 

incident solar energy occurs (Barber, 2009). 

For the purpose of fast algal growth, the efficiency of photosynthesis should be high 

which can be obtained with overlap between photosynthetic pigments and solar 

irradiation (Wondraczek et al., 2013). The wavelength threshold can be exceeded by 

genetic engineering of algae. After discovering chlorophyll d and f ( the most red-

shifted chlorophyll), the spectral region was shifted to 750 which allowed 19% more 

photon flux access (Chen and Blankenship, 2011). A further application for enhancing 

light absorption may be the over-expression of photosystems (Stephenson et al., 2011) 

or truncating the light harvesting antenna size of chlorophylls (Melis, 2009).  

The efficiency of photosynthesis depends on the algae species as the pigments and 

their tolerance capacity to the environment varies. Burris (1977) showed the 

differences of algae photosynthesis efficiency by making a study on 7 different algae 

species. Photorespiration, which decreases photosynthetic carbon fixation efficiency 

by 20% to 30% (Zhu et al., 2008), is one of the main reasons for low photosynthetic 

efficiency. When the oxygen concentration rises the photosynthesis rate decreases 

since the oxygen is competing with CO2 fixation by Rubisco and this, Warburg’s 

effect, is taken into consideration as photorespiration. Moreover, even though UV 

photons are only about 8% of the total sunlight, it is thought that the significant 

photosynthesis inhibition caused by solar radiation in natural ecosystems, is due to 

UV. Some studies shows that in solar radiation UV-B is almost as effective in 

inhibiting photosynthesis as UV-A where the ratio between UV-B and UV-A photons 

in natural radiation is only about 3:100 (Herrmann et al., 1997). Furthermore, photons 

harvested by protein chlorophyll (Chl)–carotenoid complexes, then transferred to the 

photosystem reaction centre, is important for the photosynthetic efficiency. If the 

amount of harvested photons is too low, etiolation symptoms occurs and 

photosynthesis cannot work efficiently. On the other side, excessive light produces 

more oxygen and causes photo inhibition (Darko et al., 2014).  
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Table 1. 1. The major photosynthetic pigments of cyanobacteria and algae (Ben-

Amotz et al., 2009, FAY, 1983, Chen and Blankenship, 2011, Stephenson et al., 2011) 

Group Class Color Absorption 

wavelengths (nm) 

Chlorophylls Chlorophyll a green 435, 670, 680, 700 

 Chlorophyll b green 450, 640 

 Chlorophyll d and f green 700-750 nm 

Carotenoids β- carotene orange 431, 450-454, 478-480 

 echinenone  455-459, 475 

 zeaxanthin  430, 453, 479 

 Canthaxanthin  466 

 Xanthophyll yellow 400 - 530 

Phycobiliproteins Allophycocyanin  650 

 Phycocyanin blue 610-625 

 Phycoerythin red 555-565 
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1.2.2. Limitations of Photosynthesis 

More than 3800 zettajoules (1 zettajoule = 1021 joules) of solar energy are absorbed by 

Earth’s atmosphere and surface annually. About 0.05% of this energy is captured in 

biomass each year through the process of photosynthesis (Sayre, 2010). In spite of 

photosynthesis developing on the plant about 3.5 billion years ago, it is still not very 

efficient at converting solar energy into chemical energy and the maximum efficiency 

of photosynthesis was reported as 8–15% (Stephenson et al., 2011, Goetz et al., 2011). 

A considerable amount of literature has been published on photosynthesis in 

microalgae. It is obvious that salinity, temperature, pH, light intensity and penetration, 

CO2 amount and inorganic compounds like nitrogen, phosphorous and other trace 

elements play crucial roles during the growth of microalgae (Ben-Amotz and Avron, 

1992, Knud-Hansen, 1998). 

 pH –  Depending on the species, microalgae can grow in an 

environment with a wide range of pH from 5 to 8 (Karatay and Dönmez, 

2011, Ying et al., 2014). The pH value of the medium is related to the 

amount of CO2 present. When CO2 reacts with water molecules during 

the photosynthesis, carbonate ions (CO3
-2), bicarbonate ions (HCO3

- ) 

and carbonic acids (H2CO3) are formed after a series of chain reactions. 

Thus, the protons released to the medium cause a pH decrease.  Karatay 

et. al (2011) analysed the effect of discrete pH values (6-9) on the lipid 

production of cyanobacteria, and they concluded that maximum lipid 

production is obtained at pH 7.  

 Temperature – As mentioned earlier, different species of algae can 

grow both in deserts or ice fields since they can adapt to temperatures 

between -7 and 75oC (Oilgae, 2013). However, most of the species 

grow best between 20-30oC. Thus, the temperature should be kept 

between this range and the temperature control inside the 

photobioreactors can be done using cooling jacket or heat exchangers 

(Tredici and Materassi, 1992). Also, the reduction of temperature at 
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night in outdoor cultures will cause increased respiration, which leads 

to increased algal biomass loss (Chisti, 2007).   

 Nutrients – Algae need sufficient amount of nutrients (N, P, trace 

elements, iron, etc.) to survive. (Karatay and Dönmez, 2011, Chen and 

Blankenship, 2011).  

 Oxygen level – As a result of photosynthesis, oxygen is generated and 

the excess of the free O2 inhibits the algal growth (Molina et al., 2001). 

O2 production rate inside a photobioreactor should be no more than 10g 

O2 m
-3 min-1 (Chisti, 2007, Chisti, 2008). As a solution to the issue of 

oxygen accumulation, aeration systems with microbubble production 

can be used inside photobioreactors (Zimmerman et al., 2011).  

 Carbon dioxide level – CO2 is a key reactant of photosynthesis; no 

reaction takes place in the absence of CO2. A minimum of 1338 kJ of 

light energy is essential to form the two NADPH and three ATP 

molecules needed to fix one carbon atom that represents 466 kJ of 

chemical energy (Barber, 2009).  Depending on the species, glucose, 

acetate, bicarbonates or CO2 directly released from industry can be used 

as a source (Hard and Gilmour, 1996). Hence, the carbon dioxide 

should not be a limiting factor for algal growth if sourced from industry 

and this will also reduce production costs (Chisti, 2007, Chisti, 2013). 

Besides, the level of carbon dioxide should be considered carefully 

since more carbon dioxide means more oxygen generation which will 

inhibit the algal growth. 

 Available light, sunlight – Light is a driving force for photosynthesis 

and it provides the energy requirement. Phototrophic organisms utilize 

only the PAR region of the sunlight which is between 400 and 700 

(Kirk, 1994, Chen and Blankenship, 2011) and it is only 48.7% of the 

total solar system (Kruse et al., 2005) ; however, microalgae reflect the 

green light (500-650 nm) rather than absorbing. Also, in the literature, 

the relationship between algal growth and light intensity has been 

reported. Uyar et. al. (2007) claimed that inoculation for large scale 

production should be done in the morning, because a dark period after 
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inoculation will cause long lag time. Furthermore, light penetration 

through the reactor will be less if the density of the algal cells is too 

high (Zimmerman et al., 2011, Molina et al., 2001). Also, microalgae, 

generally, tend to produce saturated fatty acids in the shape of 

triacylglycerol (TAG) when the light intensity is high (Michels et al., 

2014a). 

 

 

1.2.3. Dunaliella salina as Algal Species 

 

Figure 1. 2. 13a - D. salina spp. salina fo. salina; 13b - D. salina spp. salina fo. 

magna; 13c - D. salina ssp. salina fo. oblonga; 13d - D. salina spp. salina spp. 

sibirica (Ben-Amotz and Avron, 1992) 

Dunaliella salina is a halotolerant, single-celled green microalga which has two 

flagella and various shapes such as oval, ellipsoidal, cup- or egg- shaped (Kleinegris 

et al., 2010, Kleinegris et al., 2011, Borowitzka et al., 1984). The flagella have a 

significant role by moving the cells in the medium and controlling the quantity of light 

that reaches the cells (Ben-Amotz and Avron, 1992, Ben-Amotz et al., 2009). 

Chlorophyll a and b, the main pigment s in Dunaliella cells, predominantly absorb 

light in the range 400-500 and 650-680.  

The first D. salina species was discovered by Michel Felix Dunal in 1838 (Ben-Amotz 

et al., 2009), although, the “D. salina” name was given by Teodoresco in 1905 and, so 

far, twenty nine D. salina species have been described and some of them are illustrated 
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in Figure 1.2 (Borowitzka et al., 1984). Dunaliella species can survive at distinct 

ranges of temperature (10 -30 oC), pH (5.5 - 10) and NaCl concentrations from 0.5 to 

5 M, and some species such as D. salina can be found in salt lakes (Ben-Amotz et al., 

2009). As displayed in Figure 1.3, the colour of the algae can be either green or red 

owing to the response of some strains to different salinities. At high level of salinity 

D. salina produces β-carotene and this causes red colour (Helena et al., 2016). 

Furthermore, there is no definite cell wall around D. salina cells, and glycerol is 

generated to balance osmotic pressure and sustain enzyme activity in high salinity. 

Problem can be faced during the growth of   D. salina when the salinity decreased to 

less than 15% NaCl (w:v), because cyanobacteria such as Aphanothece halophytica, 

Spirulína sp . and Phormidium sp., some pennate diatoms and the dinoflagellate 

Gymnodinium sp. (Borowitzka et al., 1984) and protozoa (Hard and Gilmour, 1996) 

can grow in the medium. Another bottleneck for D. salina growth is UV radiation and 

Dunaliella avoids this problem by producing β-carotene which will shift the process 

to Xanthophyll cycle (stimulate energy dissipation inside the light harvesting antenna) 

(FAY, 1983, Ben-Amotz et al., 2009, White and Jahnke, 2002). β-carotene  is also 

used in pharmaceutics as a precursor of vitamin A (Ben-Amotz and Avron, 1992, Stahl 

et al., 1993). Because of this ability of D. salina, bulk production of β-carotene was 

firstly suggested by Massyuk (Borowitzka et al., 1984) and then glycerol was 

suggested by Ben-Amotz (Ben-Amotz et al., 2009). Since 1978, Roche Research 

Institute of Marine Pharmacology (RRIMP) in Dee Why, Australia has been producing 

D. salina as a commercial source of ß-carotene. The aim of RRIMP was to isolate and 

culture marine microalgae and screen them to produce marketable chemical, 

antibiotics and pharmaceutically active compounds.  

Additionally, Dunaliella species can be grown in a specific medium depending on the 

strain but nitrogen and phosphorus are fundamentals for each species. Nitrate is the 

best resource of N for Dunaliella since ammonium derivatives are less effective N 

sources at high concentrations (Ben-Amotz and Avron, 1992, FAY, 1983). Also, 

phosphate is the best as P source at concentrations between 0.02 and 0.025 g l-1 

K2HPO4 (Borowitzka et al., 1984).  
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Figure 1. 3. Images of various D. salina species, isolated by Teodoresco, grown at 

different salinities; A – 1.5 M NaCl, B and C – 4.5 M NaCl (Ben-Amotz et al., 2009)  

 

1.3. Utilising Solar Radiation 

Photosynthesis requires light which can be provided either as artificial or natural. 

When both capital cost and labour cost are considered, using artificial light will cost 

too much (Molina Grima et al., 1999, Acién Fernández et al., 2013). In contrast, using 

natural source, sunlight, not only decreases the capital cost but also the labour cost 

since no manual control will be needed. Also, approximately 120000 TW solar energy, 

reaching the surface of the Earth, is a sustainable resource exceeding predicted human 

energy demands by >3 orders of magnitude. The sun has a wide spectral irradiance 

range from UV to radio wavelengths. The peak in Figure 1.4 represents the visible 

light emitted from the sun. As mentioned earlier, algae can utilize only some of this 

visible part which is also called as photosynthetically active radiation (PAR) (Kirk, 

1994, Chen and Blankenship, 2011), whilst UV light radiation causes damage to the 

cells (Herrmann et al., 1997, White and Jahnke, 2002). Approximately 43% of solar 

irradiance is visible light, 49% is near-infrared and 7% is UV light, which consist of 

UV – C (<280 nm), UV – B (280-320 nm) and UV – A (320-400 nm) which is 95% 

of UV irradiance released by sun (Ben-Amotz et al., 2009, White and Jahnke, 2002, 

Holzinger and Lütz, 2006) and filtered by the ozone up to 310 nm (Hagfeldt et al., 

2010). Additionally, only 48% of the solar radiation is absorbed by the atmosphere. 

Some green algae like Micrasterias can adapt its metabolism for the UV light by 

forming mucilage sheaths and internal UV absorbing compounds. On the contrary, 
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crucial and irreversible damages occur on the cell like as lesions in DNA (Holzinger 

and Lütz, 2006, White and Jahnke, 2002), when photosynthetic living organism are 

exposed to the UV light radiation.  

 

 

Figure 1. 4. Direct Normal Spectral Irradiance on 37° Tilted Sun-Facing Surface 

(ASTM, 2012)  

While using the sun as light source for algal growth, utilization of light must be 

considered. In order to enhance the utilization, unused wavelengths could be converted 

to the used ones which can be achieved by wavelength tuning materials.  
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1.3.1. Wavelength Tuning Films 

Table 1. 2. Research projects on the effect of spectral conversion and light intensity 

on phototrophic species (algae unless otherwise stated) 

Authors 
Phototrophic 

species  

Material / 

Equipments 
Results 

(Wondraczek et 

al., 2013) 

Haematococcus 

pluvialis 

Sr0.4Ca0.59Eu0.01S  

Conversion from 

green to red light  

>20% spectral 

conversion 

36 % increase in cell 

generation 

(Xia et al., 2013) 

Spinacia 

oleracea 

(spinach) 
Ca0.4Sr0.6S:Eu2+

 

enhancement of  

CO2 consumption by 

>25 % 

(Mohsenpour et 

al., 2012, 

Mohsenpour and 

Willoughby, 

2013) 

Chlorella 

vulgaris 

- Lumogen F dyes 

- Xenon arc lamp 

radiation 

increased biomass 

productivity of C. 

vulgaris up to 20 % 

(Delavari Amrei 

et al., 2014) 

Chlorella sp. 

(PTCC 6010) 
Uvitex OB 

an increase in the 

biomass productivity 

rate of 10 % 

(Ranjbar et al., 

2008) 

Haematococcus 

pluvialis 

White fluorescent  

light intensity 

from 21.5 to 94.3 

μmol m–2 s–1 

Increased 

astaxanthin 

accumulation by 

32% 

(Miyake and 

Kawamura, 

1987) 
Rhodobacter 

sphaeroides 8703 

(Photosynthtic 

bacterium) 

xeon lamp 

(50Wm-2) & 

xenon lamp-based 

solar simulator 

(75 Wm-2) 

20,000 lux at 

35°C  

Hydrogen 

evolution rate 262 

μl/h/mg  

(dry weight) at 

20,000 lux 

 Hydrogen 

evolution rate 151 

μl/h/mg (dry weight) 

at 10,000 lux  

(Almost 74% 

increased efficiency) 

(Mao et al., 

1986) 

10,000 lux 

illumination at 

30°C 
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(Uyar et al., 

2007) 

Rhodobacter 

sphaeroides 

(Photosynthtic 

bacterium) 

Rhodamine B 

solution and 

CuSO4 solution to 

filter the 

wavelength >760 

nm and <630nm, 

respectively 

 Enhancing the 

light intensity by 180 

W/m2 to produce 

hydrogen  

 Increased 

hydrogen production  

by 39% under 

infrared light (750-

950 nm) 

(Blair et al., 

2014) 

Chlorella 

vulgaris 

Green, red and 

blue LED 

Improved growth 

rate and biomass 

productivity 

compared to the 

green and red colour. 

(Chin‐Hang et 

al., 2012) 
Chlorella sp. 

Red and blue 

LED 

Higher lipid content 

with blue LED 

(Vadiveloo et al., 

2015) 

Nannochloropsis 

sp. 

Red, green, pink, 

blue LED 

Higher growth rates 

in pink, red LED 

compared to blue 

and green ones. 

(Gaytán-Luna et 

al., 2016) 

Chlamydomonas 

reinhardtii 

White and red 

light 

improved dry cell 

weight with red light 

(14.78% dcw ) 

compared to white 

light (4.4% dcw) 

(Wang et al., 

2010) 

Schistosoma 

japonica 

(parasitic worm) 

White and blue 

light 

Blue light decreases 

the egg formation 

time (6days) by half 

compared to white 

light 
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Green microalgae contain chlorophyll a and chlorophyll b which predominantly 

absorb light at the range 400-500 (blue light region) and 620-680 (red light region).  

There is no absorption between 500 and 620 which corresponds to green, yellow and 

orange light. Conversion of this unutilized light to absorbed wavelengths using 

wavelength tuning materials will raise the amount of useful solar irradiance reaching 

the microalgae cells (Lee and Palsson, 1994, Matthijs et al., 1996, Kohen et al., 1995, 

Koku et al., 2002, Wondraczek et al., 2013). Several experiments on spectral 

conversion and increasing light intensity have been done so far starting from early 

1970s, and their effects on phototrophic species have been investigated (see Table 1.2). 

While producing wavelength tuning materials, some criteria must be under 

consideration such as; (1) emission wavelength range which will overlap with algae 

cell’s absorbance wavelength; (2) quantum efficiency of the material; (3) reflection 

and refraction indexes of the material; (4) cost of production; (5) decomposition time 

of substances (Hovel et al., 1979, Van Sark et al., 2005, Klampaftis et al., 2009, Trosch 

et al., 2003, Prokop et al., 1984).   

 

Solar radiation absorption can be defined using Beer-Lambert law that explains the 

attenuation of light due to the features of the material where light is penetrating. The 

following equation indicates the Beer - Lambert law;  

𝑨 = 𝜶 𝒄. 𝒕 

where A absorbance (dimensionless), α absorption coefficient  c concentration 

t thickness of material (Fox, 2010).  

As illustrated in Figure 1.5, when the light interacts with a material, it can travel in 

different pathways (Rowan et al., 2008, Klampaftis et al., 2009, Delavari Amrei et al., 

2014). After being absorbed by the material, it can be re-emitted directly from the 

material interface.  Otherwise, based on the Snell’s law, which claims that luminous 

intensity of a reflecting surface has direct correlation to the cosine of the angle θ 

between the observer’s lines to the surface normal, the incident light may reflect if the 

angle θ is bigger than the critical angle of the material. The reflection angle will be the 
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same as the incident angle (like a mirror effect). If the angle θ is smaller than the critical 

angle, then the ray will be refracted (Ohanian, 1989, Kirk, 1994, Hovel et al., 1979).  

 

Figure 1. 5. Pathways of (1) incident photons (2) re-emitted directly with higher 

quantum yield (3); reflected through back to edge (4) and may exit through the sides 

(5). Without entering the material, it may reflect from surface (6). Transmit directly 

through another surface (7). Escape regarding Brewster angle (8) or absorbed by the 

host matrix (9) (Rowan et al., 2008, Mohsenpour et al., 2012) 

A good wavelength tuning material will absorb a high amount of unused wavelengths 

of light as well as emitting a high amount at the desired wavelengths overlapped with 

chlorophyll absorption bands. Anti-reflective materials are necessary so as to decrease 

the reflection from the surfaces of the materials and so increase the absorbed light 

amount. In his study, Fink (2009)  found that transmitted light for anti-reflecting 

applied material is 81% of incident light; whereas, it is 29% for non-anti-reflecting 

material.  
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The wavelength tuning materials, can be deposited using different coating methods 

like spray coating, dip coating, flow coating, laminar coating, roll coating, printing, 

spin coating, and sol-gel coating. Each of them has pros and cons but spin coating is 

the one which provides a good quality, smooth and reproducible thin-films; thus this 

method will be used in the current project. Another method that will be used in the 

project is sol-gel method or pre-baking which is crucial for the production of anti-

reflective and multilayer coatings (Qingna et al., 2007, Borsetto et al., 1996, Koc et 

al., 2005). For both techniques, the films are heated after each coating at temperature 

range 70-110oC; thus the thickness of the films reduces.   

Additionally, wavelength shifting material production requires a transparent polymer, 

e.g. PMMA (Poly(methylmethacrylate)), polystyrene and PDMS 

(Poly(dimethylsiloxane)) can be used as matrix material which will lock the dye inside 

and give robustness to the wavelength shifting material. Furthermore, wavelength 

shifting material, i.e. quantum dots or fluorophores are needed to absorb and re-emit 

light with high quantum efficiency. 

 

1.3.1.1. Quantum Dots 

Quantum dots are nano-sized semiconductor particles which show the quantum 

mechanical properties which examine the attitudes of materials and light at atomic 

sizes. Common types of quantum dots include core-type quantum dots (CdSe/CdS), 

core-shell quantum dots (core -CdSe and shell-ZnS) and alloyed quantum dots 

(CdSxSe1-x / ZnS) (Sigma Aldrich). These nano particles are used in a variety of 

applications like solar cells, LEDs, transistors, biosensors and cell targeting 

fluorescence. The size of the quantum dots range between 2-10 nm, and depending on 

the diameter, it can emit discrete colour of light (Fox, 2010, Lee et al., 2002) . If the 

dots are small, then blue light is emitted, but if the dot is large then red light is emitted. 

Also, quantum dots are very robust; thus are attractive to use in producing wavelength 

tuning material. Nevertheless, they are very expensive so it will not be economical 

while working at large scales for industry. 
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1.3.1.2. Organic Fluorophores  

Another material used for wavelength tuning material is fluorophores which are 

cheaper than quantum dots. There are two crucial features of fluorophores: (1) the 

fluorescence lifetime which is identified by the average time spent by a molecule in 

the exited state before returning to  ground state; (2) quantum yield that is described 

as the ratio of number of photons emitted to the number of photons absorbed 

(Lakowicz, 2006).  Fluorophores are organic luminescent chemicals which absorb 

light at a certain wavelength band and re-emit it at a longer wavelength band based on 

Stokes shift (see Section 1.3.2) and Pauli Exclusion  Principle (Fox, 2010). These 

luminescent organic dyes are commonly used in biological application for cell 

targeting and analysing instruments as well as used in lasers, textile dyeing, OLEDs 

solar panels and cosmetics. Currently, a wide range of organic dyes is available 

commercially; however, all of them are not suitable to use in this project. The reason 

for using the fluorescent dyes is to increase the availability of useful light; hence, the 

fluorophores which convert UV to blue light and green to red light are essential for 

this project. Additionally, the organic fluorophores chosen should be cheap and have 

chemical stability. Examples of organic dyes that have the ability to convert UV light 

to blue light are Coumarin derivatives and 1,2-,Diphenylacetylene which will be used 

in this project. Nile red, Texas red, Rhodamine derivatives (see Appendix 1) Bestoil 

Red 5B and Bestoil Orange 2G are the ones which absorb green light and emit red 

light (Prokop et al., 1984). Bestoil red and Bestoil orange dyes will be used in this 

project. 

 

 

1.3.2. Working Principle of Wavelength Tuning Films 

Luminescence which is an emission of light from a substance, generally occurs with 

two main mechanisms; electroluminescence (emission occurs by running an electrical 

current through the material) and photoluminescence (re-emission of light after 

absorption) (Fox, 2010).  
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Fluorophores emit using photoluminescence mechanism which is first observed by Sir 

George Gabriel Stokes in 19th century (Lakowicz, 2006). Based on the Stokes 

experiment which depends on the conversion of energy, Figure 1.6 is drawn.  Figure 

1.6 illustrated the sequence of luminescence process of a photon. A photon is absorbed 

at ground state (S0) and then atom reaches to the excited state (S2). Then the atoms in 

the excited states relax to lower energy level of S1 which is called as interval 

conversion and occurs within 10-12 s or less. Then the atoms return back to ground 

state with a lower energy but longer wavelength. The absorbed photon has higher 

energy yet the emitted one has lower; thus, there is energy lost due to energy transfer 

to the kinetic energy. This energy difference is called as Stokes shift (Fox, 2010, Hovel 

et al., 1979). 

 

 

 

 

 

 

 

 

 

 

Figure 1. 6. The schematic representation of Stokes Shift; a photon is absorbed and 

atom jumps to exited state (S2), and then relaxes to intermediate (S1) before returning 

ground state (S0) (Lakowicz, 2006) 

Stokes made the experiments before the advent of quantum theory, so after the 

quantum theory had been explained, Pauli Exclusion Principle has also been used to 

define photoluminescence. This principle states that two half-integer spin (fermions) 

cannot occupy the same quantum state at the same time. Thus the absorbed photons 

decay down to intermediate level (S1) before emission (Fox, 2010, Prokop et al., 1984) 

Interval 
conversion  

Emission  
Absorption  

S0 

S1 

S2 Excited State 

Ground State 
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1. 4. Algae Growth Systems 

1.4.1. A Brief Overview of Algae Growth Systems 

For large scale algae production, CO2 can be captured from the industries where it is 

emitted in large volume while producing their materials. Large scale algal growth 

systems require some fundamentals such as mass transfer, circulation of CO2 and O2 

gases, steady temperature (generally about 20-30oC), supply of nutrients and last but 

the most important one for this project, light (Molina Grima et al., 1999, Molina Grima 

et al., 2003, Ben-Amotz et al., 2009). Light penetration through the reactor depends 

upon the algae concentration, dimensions (height, radius, width, etc.) and the material 

that algae and reactor are made of as well as anti-reflective coating (Molina Grima et 

al., 2000, Nakada et al., 1998). Additionally, the cultivation of microalgae needs to be 

cost-effective in order to use it commercially for sustainable algal biomass generation. 

For this purpose, it is essential to decrease the growth time (lag phase) and increase 

biomass generation which can be achieved by using a fast growing seed culture as the 

inoculum (Ben-Amotz et al., 2009). Currently used algal growth systems are either 

open raceway ponds or photobioreactors (Molina Grima et al., 1999, Sánchez Mirón 

et al., 1999, Tredici and Materassi, 1992).  

Open raceway ponds are the most common commercially used systems since they are 

easy to operate and design, yet their contamination probability is higher than in 

photobioreactors. On the contrary, photobioreactors are assumed to be expensive 

because of the requirement for 24 h continuous artificial light illumination but this can 

be solved using transparent bioreactors and sunlight (Hard and Gilmour, 1996). 

Potentially, wavelength shifting materials will further improve light availability as 

mentioned in the previous section. Also, biomass accumulation in photobioreactors is 

more than open ponds. Numerous studies have compared both growth systems and the 

differences and similarities of design parameters as reported are represented in Table 

1.3. Compared to the open ponds, photobioreactors have a low area/volume ratio. 

Water and CO2 losses are almost zero whereas they are high for raceways (Pulz, 2001). 
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Table 1. 3. Design properties of open and closed growth systems (Bangert, 2013, Duan 

and Shi, 2014, Pulz, 2001) 

Feature Open system Closed system 

area-to- volume ratio large (4-10 times higher 

than closed counterpart) 

small 

algal species restricted flexible 

main criteria for species 

selection 

growth competition shear-resistance 

population density low high 

harvesting efficiency low high 

cultivation period limited extended 

contamination possible unlikely 

water loss through 

evaporation 

possible prevented 

light utilization efficiency poor/fair fair/excellent 

gas transfer poor fair/high 

temperature control none excellent 

most costly parameters mixing oxygen control, 

temperature control 

capital cost small high 

 

 

1.4.2. Open Raceway Ponds 

Open system algal ponds typically cover an area about 0.5-200 hectares with depth 

0.2-0.3 metres and have been used for large scale algal cultivation since 1950s (Duan 
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and Shi, 2014). Open ponds are composed of closed-loop recirculation channels and 

mixing inside the ponds is obtained by a paddlewheel (Chisti, 2007). Open pond 

systems include circular ponds, raceway ponds, inclined trapezoidal ponds, high rate 

algal ponds (HRAP) and rectangular “mixing board” ponds (Tredici and Materassi, 

1992, Craggs et al., 2012), most current commercial ponds are raceways, which are 

easy and cheap to build up and operate. Although, 98% of commercial algae 

cultivation is done in open ponds, it has drawbacks; decline of algal generation during 

the night due to respiration and the most important bottlenecks are contamination and 

cadmium (Cd) uptake, a toxic heavy metal. Rebhun and Ben-Amotz reported that 

chemicals (manganese (Mn) and sodium (Na)) in the Dunaliella growth medium have 

an effect on Cd uptake. Mn has an antagonist effect for Cd uptake (Rebhun and Ben-

Amotz, 1988) and NaCl at a concentration above 1M, reduces the Cd uptake to a 

minimum value of 0.1 pg Cd (mg alga)-1 (Rebhun and Ben-Amotz, 1986). 

 

1.4.3. Closed Photobioreactors 

Another growth system, photobioreactors, gives a chance to solve the issues related 

with the open ponds. Photobioreactors (PBR) can be used both inside the lab or 

outdoors for large scale cultivation (Duan and Shi, 2014). The crucial problem of open 

pond algae cultivation, contamination, is overcome using closed system 

photobioreactor since the researcher has more control over the system. However, the 

system is sophisticated because of the requirements for monitoring and adjustments of 

pH, temperature, gas inlet and outlet (Chisti, 2007, Pulz, 2001). As shown in Figure 

1.7, there are 4 fundamental kinds of photobioreactors; flat plate, tubular, air-lift and 

bubble column (Duan and Shi, 2014, Pulz, 2001, Acién Fernández et al., 2013). Light 

availability for the microalgae inside the culture base on the length of the light path in 

the PBR, the photon flux density (PFD) on the PBR surface, and the light attenuation 

caused by the self-shading effect of the cells. Therefore, biomass concentration an 

important factor for optimizing the productivity (Michels et al., 2014a). 
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Figure 1. 7. Several photobioreactors for algae growth; (a) flat plate, (b) tubular, (c) 

bubble column and (d) air-lift (ALB)  (Duan and Shi, 2014) 

 

A flat-plate photobioreactor is composed of multiple flat sections which are made from 

plastic and the height and width of the plates can be up to 1.5m and 0.1m, respectively 
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(Wang et al., 2012). Kitajima et al, (1998) examined the effect of depth on hydrogen 

production and concluded hydrogen production has an inverse relationship with depth. 

As can be seen from Figure 1.7, area to volume ratio, also, is very high in this type 

reactor, hence the light penetration is high and that means a large amount of algal 

production. The fluid flow inside the reactor is supplied by using either a pump or 

airlift mechanism (Acién Fernández et al., 2013, Duan and Shi, 2014). 

Secondly, tubular photobioreactor types are commonly used for algal biomass 

generation. This reactor is designed to maximize the solar ray penetration with 

horizontal oriented tubes which will increase the surface area where light can pass 

through. Tubes are made from either glass or plastic with diameter up to 0.1m (Chisti, 

2007, Molina et al., 2001). This reactor type has been used in Spain, Hawaii and 

Germany in pharmaceutical and food industries (Chisti, 2007). However, the presence 

of too many gas bubbles in the solar tubes will interfere with light absorption and 

reduce the flow of culture broth in the tubes. Also, pH of the medium increases because 

of consumption of carbon dioxide while the medium moves along a photobioreactor 

tube (Chisti, 2008). 

Next type is bubble column photobioreactors which are made from plastic or glass 

with dimensions up to; 0.2 m radius and 4m height. If the column height exceeds 4 m, 

then the O2 accumulation may increase and a CO2 gradient might exist (Xu et al., 

2009). Temperature control is ensured with heat exchangers. This photobioreactor type 

is favoured because of its good mixing features. That mixing feature not only strips 

the O2 accumulation but also reduces the nitrous oxide (N2O), greenhouse gas, 

generation during dark period (Batan et al., 2010), whilst ensuring a good CO2 supply. 

Last type, and the type used in this project is the airlift photobioreactor (ALB). It is a 

kind of bubble column reactor. However, ALB has an inner baffle which prevents 

mixing of the supplied CO2 and the generated O2 and allows better mass transfer as 

well as mixing  which will be explained in detail in the following sections (Duan and 

Shi, 2014). Flow pathway of the light part in the down-comer is nearly laminar, the 

light/dark cycle in the airlift photobioreactor is more regular than that in the bubble 

column. Therefore, oriented liquid circulation and regular light/dark cycle in the airlift 
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photobioreactor can give a better opportunity for cells to be illuminated by the average 

light intensity. Also, a portion of the cells inside the bubble column may stay in the 

dark zone for a long time and others may stay longer in the light zone, which may 

create stress on cells and cause morphological changes (Ranjbar et al., 2008). 

 

1.4.4. Airlift Loop Photobioreactors as Proposed Reactor 

Airlift loop photobioreactors consist of a CO2/air riser and down-comer as 

demonstrated  in Figure 1.7 (d) (Duan and Shi, 2014). ALB reactors supply better 

mixing and mass transfer due to bubble induced flow mechanism. Due to these 

properties, it is easy to overcome the drawbacks of algae production like slow CO2 

arrival to all cells, dissolved O2 accumulation, algae cells that stick on the walls and 

dark zones (Zimmerman et al., 2011). ALB design requires more investigation into 

these problems and also light penetration issue. It is crucial to know how to operate an 

ALB under natural sunlight, and the wavelengths which overlap with chlorophylls, the 

photosynthetic pigments (Uyar et al., 2007).  

 

Figure 1. 8. Representative image of ALB associated with wavelength shifting 

material and bubbling technology proposed by Dr. Alan Dunbar. 

A design for an ALB has been proposed by Dr. Alan Dunbar (Chemical and Biological 

department, University of Sheffield) for this project as shown in Figure 1.8, but the 

design was improved by me as the project progressed. In all cases the main efforts 

were to maximize surface-to-volume ratio, in order to give more efficient light source, 
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for efficient light delivery to the culture, and to increase mass transfer of gases (Lee 

and Palsson, 1994).  The precondition of the design is a transparent material to build 

the photobioreactor. Then, another requirement is light conversion of UV to blue light 

and green to red light for more light energy. Based on the design, CO2 will be supplied 

at the bottom of the reactor with a fine bubble sparger, and then the flow will be 

upward. Accumulated O2 absorbed into the bubbles will be circulated with fine 

bubbles from the sparger. As discussed earlier in the limitations part, dissolved O2 

level has an inhibitory effect on growth rate. Additionally, CO2 although desirable for 

photosynthesis, will lead to higher growth in turn will lead to high cell concentrations. 

These cells may attach to the reactor wall and cause a decline in the light penetration 

through the medium that yields dark zones in the reactor ( Figure 1.9) (Chisti, 2007). 

All these issues can be resolved by microbubbles due to their high surface area 

properties. Owing to the high mixing feature of microbubbles, algae cells in the dark 

zone and attached to the reactor walls will be circulated by bubbles. Thus, they will 

reach more CO2 and light.  Residence time of the bubble rises with decreasing bubble 

size, as a result of this, time for mass and momentum transfer increases too 

(Zimmerman et al., 2009). 

Controlling distribution of light will allow the control of the process performances so 

the physical light-limited regime will be eliminated (Pruvost et al., 2015). Therefore, 

the reactor will be coated with two different wavelength shifting materials; one outside 

the reactor walls and another one inside the reactor. Incident light will pass through 

the first wavelength shifting material and the light will be converted, a high amount of 

beneficial blue light will be absorbed by chlorophyll pigment and unused green light 

will be converted at the second wavelength shifting material and will be reflected back 

to enhance the algal growth.  
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Figure 1. 9. Illustration of light and dark zones inside the photobioreactor as a result 

of high cell concentration (Ben-Amotz et al., 2009). 

 

 

All in all, as stated in the aim of the project, the airlift photobioreactor which will be 

used in this thesis will be designed depending on the limitations mentioned above 

sections and enhancement of D. salina will be obtained. 
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2.1. Introduction  

As explained in Chapter 1, literature review, microalgae are photosynthetic living 

organisms and they require special (appropriate temperature, pH, salinity, etc.) 

conditions to grow better. Section 1.1.2 describes the fundamental parameters and 

limitations of the photosynthesis clearly. After supplying all the required nutrients to 

the growth system, the only remaining driving force for photosynthesis will be 

providing the light necessary. Since the use of artificial light will increase the capital 

and process cost of the algae growth, it is desirable to utilize a more sustainable energy 

source, such as sunlight. The light wavelength range of the sun is mentioned in the 

Section 1.3. (Utilising solar radiation), and unfortunately only a small portion of this 

wide range are used during photosynthesis. In order to increase the utilization of the 

available light source, it is possible to shift photons from the unused light ranges (UV 

and green light band) to used ranges (blue and red light band) by fabricating and using 

good wavelength tuning materials.  

This chapter will include the materials and methods for how the wavelength shifting 

materials are produced and results and discussion part of the fabricated materials. And 

depending on these results, choosing the appropriate wavelength shifting materials for 

the Dunaliella salina growth. 

 

Figure 2. 1. Direct and global spectral irradiance on 37o tilted sun-facing surface 

(ASTM, 2012) and absorbance spectrum of chlorophylls inside D. salina.  
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2.2. Materials and Methods 

2.2.1. Fabrication of Wavelength Tuning Materials 

The first step of the project is to generate the wavelength tuning material in order to 

convert harmful and unused UV light (100-400 nm) into blue light (400-500nm) using 

a blue emitting organic dye (see Figure 2.1 modified and repeated figure for easy 

reading). Two different UV to blue converting dyes have been identified and tested. 

Other wavelength tuning materials will convert the unused green light (500-577 nm) 

to more useful red light (620-680 nm). Another important point of this wavelength 

tuning material generation is selection of a suitable matrix material so as to get a robust 

shifting material. The matrix material must be UV transparent since UV light is needed 

to be converted. Furthermore, the host (matrix) material needs to show high 

transmittance and low scattering especially in the region of the absorbed light.  The 

host material can be glass, Perspex, PMMA, polystyrene, PDMS 

(poly(dimethylsiloxane)) or quartz (expensive). The selection of organic dyes was 

done based on previous research by MSc student David Hosking and 4th year MEng 

student Connor Smyth and Krys Bangert (Bangert, 2013, Smyth, 2014) (PhD student, 

Molecular Biology and Biotechnology). David Hosking used Coumarin 1 (blue 

emitting) and Rhodamine B (red emitting) as fluorophores and PMMA as polymer 

matrix. He reported the solubility of these chemicals in different solvents (See Table 

2.1) (Hosking, April, 2013). Additionally, Connor Smyth made experiments with 

Coumarin 1 and 1,2-Diphenylacetylene as blue emitting organic dye and Bestoil Red 

5B and Bestoil Orange 2G as red emitting fluorophores and PMMA and polystyrene 

as polymer matrixes (Smyth, 2014). 

On the basis of previous studies and their absorption and emission bandwidths (see 

Appendix 2 and3), organic dyes were chosen as Coumarin 1, 1,2-Diphenylacetylene, 

Bestoil Red 5B and Bestoil Orange 2G; polymer matrixes were PMMA and 

polystyrene and PDMS (poly(dimethylsiloxane)); solvents were THF 

(tetrahydrofuran), toluene, chloroform and chlorobenzene (See Appendix 4 for 

complete materials list). 
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Table 2. 1. Solubility of Coumarin 1 and Rhodamine B in diverse 

Solvent Rhodamine B Coumarin 1 
PMMA 

(Polymethylmethacrylate) 

Chloroform Yes No Yes 

Chlorobenzene Yes Partially Yes 

Toluene Yes Yes Yes 

THF 

(Tetrahydrofuran) 
Yes Partially Yes 

 

Wavelength tuning films were produced using both spin coating on microscope slides 

and curing PDMS which will be explained in sections 2.2.1.1 and 2.2.1.2.  Using 

PDMS for spin coating might not give a good result as dye/PMMA mixture because 

of the high viscosity of PDMS. Therefore, curing it into a mould was an appropriate 

method. 

 

Figure 2. 2. Spin coating apparatus – Laurell Technologies Corporation used for the 

coating the microscope slides with prepared dye/solvent solutions. 
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2.2.1.1. Dye Coating 

Dye/ solvent mixtures with different ratios were prepared before making the 

wavelength tuning coatings. THF was the solvent used since it is known this solvent 

can dissolve the organic dyes as proved in the previous studies. The concentration of 

organic dye in the solvent (mg/ml) for Coumarin 1 and 1,2-Diphenylacetylene was 

varied. Concentrations of 1, 0.1, 0.05, 0.01 and 0.001 mg/ml were used. Additionally, 

the concentration of organic dye in the solvent (mg/ml) for Bestoil Red 5B and Bestoil 

Orange 2G are as follows; 0.1, 0.05, 0.03, 0.01 and 0.001mg/ml. For all organic dyes, 

1:1 mg/ml dye to solvent concentration was kept as stock solution. In order to prepare 

these concentrations, 20 mg of each organic dye was weighed and poured into 20 ml 

vials, and then 20 ml of THF was added to each of the vials and shaken to dissolve the 

organic dyes. After shaking the stock solutions to mostly dissolve dye, vials were left 

24h in order to ensure complete dissolution. After all dye particles were dissolved, 

solutions were diluted to the concentrations given above.  These solutions were used 

for all applications to produce the wavelength shifting films.  

n the next step, a polymer matrix, PMMA, was added to the chosen dye solutions 

which are 0.01 mg/ml and 0.03 mg/ml for UV absorbed dyes (Coumarin 1 and 1,2-

Diphenylacetylene) and green light absorbing dyes (Bestoil Red 5B and Bestoil 

Orange 2G), respectively. These concentrations gave the highest absorption amount 

after analysis (see Results and Discussion, Section 2.3), therefore, they were selected 

for further experiments. The proportions for coating solutions were based on dye to 

PMMA and the ratio were obtained as indicated in Table 2.2. 

The initial experiment conducted used Coumarin 1 since the Coumarin 1 was the best 

fluorescent dye in the studies- reported previously (Hosking, April, 2013, Bangert, 

2013). Coumarin 1 produced from 95% solvent and 5% solid percentages by weight 

were used and found to be the most successful mixture. Preparation of the wavelength 

tuning films in the Hosking’s report can be explained as;  firstly, solid mixture (g/g) 

was obtained with Coumarin 1 and PMMA at different percentages 5%, 10%, 20% 

and 30%, and then dissolved in the solvent, toluene (Hosking, April, 2013). 
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Table 2. 2. Calculated target masses and the actual measured masses of dyes and 

PMMA used to obtain the wavelength tuning film solutions to be used for spin coating  

 
Dye amount 

(mg) 

Calculated 

PMMA amount 

(mg) 

Actual 

weighed 

PMMA 

amount (mg) 

Dye / PMMA 

ratio 

0.01 mg dye/ml 

solvent  

UV absorbed 

dye in THF 

0.15 

4.85 4.9 1: 32.33 

14.85 14.9 1: 100 

29.85 30 1: 200 

299.85 299.8 1: 2000 

0.03 mg/ml 

Green light 

absorbed dyes 

0.6 

7.5 7.56 1: 12.5 

10 10.28 1: 16.7 

15 15.1 1: 25 

20 20.7 1: 33.33 

 

The next step was to coat a substrate with the blend solution prepared by using a spin 

coater (See Figure 2.2). Glass microscope slides were used as the substrate; therefore, 

the microscope slides were cleaned. The glass slides were rinsed with toluene inside 

an ultrasonic bath for 20 minutes and then dried with compressed air. Then, each slide 

was put into the spin coater one at a time and the spin rate was set to 1000 rpm for 60 

seconds with an acceleration rate of 15 rpm/second. According to the spin coater 

working mechanism (Koc et al., 2005), film thickness reduces due to centrifugal 

effects in the first 10 seconds and then through evaporation during the remaining time. 

Moreover, concentration of the starting mixture and spin rate affects the thickness of 

the material.  
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Figure 2. 3. Construsted PDMS mould used to cure the PDMS/dye mixtures. The base 

of the mould is a thick clear glass and the edges of the mould is made using microscope 

slides. The slides were stuck to the base glass using Parafilm paraffin (melted inside 

the oven).  

 

 

 

 

2.2.1.2. Dye- PDMS Thin Films 

PDMS (SYLGARD(R) 184 silicone elastomer - supplied from Dow Corning) is 

supplied as two constituents which are the base polymer and a curing agent (silicone 

resin solution). These constituents are mixed with a fix base/curing agent ratio (10/1) 

by weight. As reported by Lee et al.(2003), THF, toluene, chloroform and 

chlorobenzene can be used to dissolve with PDMS. Thus, previously prepared organic 

dye / THF solutions as well as newly obtained solution by mixing Bestoil Orange 2G 

with chloroform or chlorobenzene (ratios are 1 and 0.5) are utilized to get PDMS thin 

films.  
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Table 2. 3. PDMS thin film production rates     

Organic dye 

Dye/Solvent 

(mg/ml) 

Dye/Solvent 

mixture 

amount (g) 

PDMS 

amount 

(g) 

Fluorophore 

(dye solution) / 

PDMS solution 

ratio (g/g) 

Coumarin 1 + 

THF 

0.1 0.8014 0.7996 10/10 

0.5 0.7005 0.7009 10/10 

1 3.0027 3.0363 10/10 

1 1.0352 0.5114 20/10 

1 1.5252 0.4908 30/10 

Bestoil Red 5B 

+ THF 

1 2.24 2.28 10/10 

1.5 0.8514 0.8513 10/10 

1.5 1.5103 1.0112 15/10 

1.5 0.776 1.5073 10/20 

Bestoil Orange 

2G +THF 

0.5 0.71 0.7082 10/10 

1 3.5104 3.5064 10/10 

1 3.255 2.17 15/10 

1 0.8014 1.6088 10/20 

Bestoil Orange 

2G + 

Chloroform 

0.5 0.7426 0.7320 10/10 

1 0.7382 0.7215 10/10 

Bestoil Orange 

2G + 

Chlorobenzene 

0.5 0.5218 0.5179 10/10 

1 0.8663 0.8658 10/10 
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A mould in which to cure the PDMS into a flat sheet was designed and constructed 

before all else (See Figure 3.1), then 6.5g of the PDMS base was put into a beaker and 

0.65g of curing agent was added to obtain raw PDMS solution some of which was 

spread to make a thin film (without any fluorophores) as a control sample. 

Additionally, fluorophore mixtures were added to PDMS solution with different 

weight ratios as indicated in Table 2.3. Before spreading in the mould each solution 

was mixed rigorously to obtain a very smooth mixture and, any large bubbles were 

burst using a small spatula. Then, it was poured onto the mould and any remaining 

bubbles were burst. Next, the mould was put into an oven for 24h at 80oC. After 24h, 

PDMS film was peeled off from mould ready for analysis with UV/VIS spectrometer. 

 

2.2.1.3. Absorbance Measurements 

After fabricating the wavelength tuning films, they were characterized by measuring 

their absorption wavelengths using an Ocean Optics spectrometer which can measure 

wavelengths between 200 nm and 850 nm (Figure 2.4). Data was analysed and 

recorded using the associated Ocean Optics SpectraSuite software. The spectrometer 

software mainly uses the equation below to calculate the absorption of photons. This 

equation is expressed as; 

𝐀 = 𝐥𝐨𝐠𝟏𝟎

𝑰

𝑰𝒐
 

where A absorbance (dimensionless), I transmitted radiation intensity (counts) 

and Io  incident radiation intensity (counts) (Ohanian, 1989, Van Sark et al., 2005) , 

and the SpectraSuite software gives the direct solution of above equation.  
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Figure 2. 4. Spectral test instruments Ocean Optics used for the absorption 

measurements of the produced wavelength shifting materials. 

Dye / PMMA mixtures were analysed for absorption; Ocean Optics spectrometer was 

turned on (light sources deuterium lamp and halogen bulb) to warm up for half an hour, 

then the Ocean Optics SpectraSuite software was opened and parameters were set as 

integration time,15; scans to average, 4; Boxcar width, 4. 1 ml of reference solvent, 

THF, was poured into the quartz cuvette (Hellma Analytics 111-QS) and reference 

was saved for Lambert equation. And then, 1 ml of mixture was poured into a quartz 

cuvette and put to the cuvette holder and data recorded and then exported as an Excel 

file. In order to measure the absorption of coated microscope slides and PDMS films, 

the cuvette holder was modified as in Figure 2.4 such that it can conveniently hold thin 

films. Then, the analysis was done as previously but this time an uncoated microscope 

slide and raw PDMS were used as the reference samples.  

 

2.2.1.4. Emission Measurements  

The emission measurements were done using a high sensitive FluoroMax 4 (Horiba 

Group) instrument. All these kind of spectrometers are mainly built up with a light 

source, sample holder and a detector. The working principle of these instruments is 

basically defined as; incident photons delivered by the light source firstly impinge 

Incident 

light from 

light source 

Light source 

Microscope 

slide and slide 

holder  

Emitted light 

from 

microscope slide 

USB2000 UV-VIS-

ES spectrometer 

connected to the 

PC  
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upon the monochromator and then it is transmitted through the slits which limits the 

light transmission so as to control the resolution. The slit width management allows to 

decrease the noise in the absorption/ emission spectrum of the materials. After slits, 

the light passes through the sample and then the absorption / emission counting is 

transferred to the software in order to calculate and draw the absorption / emission 

spectrum (see Figure 2.5).   

 

 

Figure 2. 5.  Optical layout of FluoroMax 4 machine where; 1- Xenon lamp, 1a- Xenon 

lamp power supply, 1b – Xenon flash lamp, 2- Excitation monochromator, 3- Sample 

holder, 4- Emission monochromator, 5- Signal detector, 6- Reference detector and 7- 

Instrument controller. (Image is adapted from user manual of FluoroMax 4).  

 

In order to measure the emission of the samples, firstly, the machine was turned on 

and left for 30 mins to warm up the lamps, then set the parameters were set as: For 

Coumarin: slit widths, 4; integration time, 1; excitation wavelength, 350nm; and 

emission wavelengths 365-650nm. For Bestoil Orange 2G and Bestoil Red 5B: slit 

widths, 10; integration time, 1; excitation wavelength, 510nm; and emission 

wavelengths 550-850nm. The parameters are different for each type of dye since their 

absorption range are different and these parameters gave the best smooth graphs. 
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Moreover, slit width differs for each sample and if the width is narrow, it gives better 

resolution and accurate results but lets in less light. Slit widths were adjusted to 4 for 

Coumarin, 10 for Bestoil Orange 2G and Bestoil Red 5B, because the emissivity of 

samples is different. 

Then the following were chosen within the instrument software settings; reference 

detector (R1c), signal detector (S1c) and PL corrected for variations (S1c/R1c). There 

are 2 important considerations for emission measurements; the sample must be put into 

the camber with a 30o angle so as to eliminate reflection, and the emission wavelength 

must start at a wavelength 20-30 nm longer than the given absorption peak wavelength, 

otherwise the emission peak will not be accurate.  

 

 

 

2.3. Results and Discussion 

2.3.1. Wavelength Tuning Material Analysis 

An appropriate wavelength tuning material is defined by its absorption and emission 

properties. A wavelength tuning material should absorb light at wavelengths that 

microalgae, Dunaliella salina, does not absorb, and re-emit light as intensely as 

possible at wavelengths that Dunaliella salina absorbs. Thus, Coumarin 1 and 1,2-

Diphenylacetylene should ideally absorb UV light and re-emit blue light; whereas, 

Bestoil Red 5B and Bestoil Orange 2G should absorb green light and re-emit red light.  
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Figure 2. 6. Absorption spectra of Coumarin1 solutions at different Coumarin 1(C) 

/THF ratios  

 

 

Figure 2. 7. Absorption spectra of 1,2-Diphenylacetylene solutions at diverse                                          

1,2-Diphenylacetylene (D) / THF ratios  

 

 

0

0.5

1

1.5

2

2.5

3

180 230 280 330 380 430 480

A
b

so
rb

an
ce

 (
O

D
)

Wavelength (nm)

0.001 C+THF 0.01 C+THF 0.02 C+THF 0.05 C+THF

0.1 C+THF 1 C+THF D. salina

0

0.5

1

1.5

2

2.5

150 200 250 300 350 400 450 500

A
b

so
rb

an
ce

 (
O

D
)

Wavelength ( nm) 

0.001 D+THF 0.005 D+THF 0.01 D+THF 0.1 D+THF

0.5 D+THF 1 D+THF D. salina



59 
 

2.3.1.1. UV Light to Blue Light Conversion Analysis 

The UV- A region is important for wavelength tuning material, because only this 

wavelength band of the sun reaches to the atmosphere surface and this will be absorbed 

by shifting material as discussed earlier in Literature Review. Experiments began with 

mixing organic dye with an appropriate solvent. Thereby, Coumarin 1 and 1,2-

Diphenylacetylene were individually mixed with THF at different concentrations. The 

analysis indicates that Coumarin 1 has a good absorption pattern (Figure 2.6) 

compared to 1,2-Diphenylacetylene (Figure 2.7) since it absorbs UV light between 

300-400 nm which is the wavelength band of UV ray reaches to the earth as shown in 

Section 2.1. THF was used as reference for each analysis. As demonstrated by Figure 

2.6, the absorbance of the 1 C+THF is very broad and there is no dip at 280 nm which 

is due to scattering. Furthermore, there are two peaks for all samples; one is real 

absorption spectrum of Coumarin 1 dye and the other one, most probably, occurred 

because of reflection which fooled the spectrometer. Moreover, the absorption band of 

Coumarin 1 ranges between 300 and 400 nm. After 400nm, visible spectrum starts, the 

Coumarin/THF mixtures mostly absorb UV light. On the other hand, there is no 

absorption over 310nm for 1,2-Diphenylacetylene that means it absorbs only UV – C 

and UV – B region not UV – A region. 
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Figure 2. 8. Absorption patterns of Coumarin 1(C) /PMMA (P) and 1,2-

Diphenylacetylene (D)/PMMA (P) mixtures at discrete rates.  

  

The next experiment demonstrates the absorption patterns of new solutions of UV 

absorbed fluorophores and PMMA. For this purpose, one of the organic dye/ THF 

solution concentrations which show better absorption results among others was chosen 

for each blue emitting dyes as 0.01 for both Coumarin 1 and 1,2-Diphenylacetylene 

(from Figure 2.6 and 2.7).  Then, PMMA was added to these solutions at various ratios 

in order to see if the polymer matrix is changing the absorption amount. The analysis 

results of these liquid solutions are given in Figure 2.8. The absorption pattern of 1,2-

Diphenylacetylene does not vary with changing PMMA amount, no absorption beyond 

310 nm. As mentioned previously in Section 1.3, solar irradiance below 310 nm is 
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filtered by atmosphere (Hagfeldt et al., 2010). It is clearly shown in Figure 2.6 and 2.7, 

1,2-Diphenylacetylene is not a convenient fluorophore for this project since it cannot 

absorb UV light after 310nm which is UV-A bandpass of the spectrum reaches to the 

atmosphere surface. Contrary, Coumarin 1 gives an absorption peak about 370 nm. It 

absorbs UV – A light and absorption finishes just before Dunaliella salina absorption 

starts. D. salina absorption data was measured by disrupting the algae by adding 

ethanol to the algal suspension in water and measuring the absorbance by Dr. Alan 

Dunbar from the Chemical and Biological Engineering department of University of 

Sheffield. 

Since Coumarin 1 gave the best absorption results, coatings of these mixtures were 

deposited onto microscope slide using spin coating. However, there was no measurable 

absorption, even if there was a coating present. This is due to low amount of Coumarin 

1 in the solution which resulted in no absorption feature. Therefore, more concentrated 

Coumarin 1/ PMMA mixtures are needed to ensure the strong absorbance.   

 

Figure 2. 9. Absorption result of coating (film) of Coumarin 1 - toluene - PMMA 

mixture with different Coumarin 1/PMMA percentages    

Since the initial coatings of Coumarin 1 mixtures were not successful, deposition of a 

previously successful mixture was performed and Figure 2.9 indicates that these were 

successful coatings since it is not absorbing the light that is absorbed by algae. There 

is a small overlap with Dunaliella and Coumarin shifting material’s absorption 
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the different percentages, 20% Coumarin 1 /PMMA (20% means the Coumarin 1 

amount inside the PMMA) coating was chosen to be used in algae growth experiments 

because OD amount is higher than others and overlap amount is less than 30% one.  

   

 

 

Figure 2. 10. (A) Absorption and (B) emission spectra of different Coumarin/PDMS 

mixtures. C represents Coumarin 1; and initial concentrations (0.1, 0.5, and 1) 

represent Coumarin 1/THF ratios.    
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Figure 2. 11. Fabricated Coumarin 1/ PDMS shifting materials at different mixture 

percentages 

Final experiment regarding UV to blue light emission was done by mixing Coumarin 

1 and PDMS at various concentrations. Figure 2.10 gives both absorption and emission 

wavelengths of these wavelength tuning materials; emission wavelength overlaps with 

D. salina absorption wavelength. The overlap is good but it is not covering fully the 

absorption of algae. Optimization of both absorption and emission curves shows that 

the best PDMS shifting material to be used in algae growth will be a dye: PDMS blend 

mixed in a ratio 10:10 ratio. Also, emission peak is about 450 nm which is almost the 

middle of D, salina absorption band. Figure 2.11 illustrates the physical images of the 

produced Coumarin/ PDMS materials and at lower concentration (dye to solvent) 

materials become thinner and this causes difficulties while peeling off the shifting film 

from the mould.  

 

 

2.3.1.2. Green Light to Red Light Conversion Analysis 

The same experiments done in Section 2.3.1.1 were done for both Bestoil Red 5B and 

Bestoil Orange 2G, but the organic dye/ solvent ratios were different (Figure 2.12). It 

is obvious that Bestoil Red 5B has an absorption with a slightly shorter range (455 – 

570 nm) compared to Bestoil Orange 2G (440 – 570 nm). For both fluorophores, when 

the concentration decreases below 0.01, no absorption is observed which might be due 
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to the limitation of the equipment. Whereas, increasing the concentration above 0.05 

organic dye/THF does not allow for easy measurement of the absorption properties of 

the solution since the dye amount is not sufficient to detect. Therefore, the fluorophore/ 

solvent ratio should be between 0.01 and 0.05 for red emitting organic dyes (Bestoil 

Red 5B and Bestoil Orange 2G). On the basis of this deduction, 0.03 fluorophore/ THF 

ratio was selected to be mixed with polymer, PMMA.  

 

 

 

Figure 2. 12. Absorption graphs of Bestoil Orange 2G and Bestoil Red 5B mixtures 

with THF as solution   
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Figure 2. 13. Absorption curves of PMMA (P) mixtures with Bestoil Orange 2G (O) 

and Bestoil Red 5B (R) as solution 
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concentration of the organic dye is not sufficient, no incident light will be detected by 

the wavelength tuning materials since PMMA is a highly transparent material. 

 

 

Figure 2. 14. (A) Absorption and (B) emission pattern of Bestoil Red 5B (R) mixtures 

with PDMS. Initial concentrations (1 and 1.5) represent Bestoil Red 5B/THF ratios. 
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Figure 2. 15. Mixture sample of 

Bestoil Red 5B with PDMS 

 

 

 

 

Since spin coating experiments for Bestoil Red 5B and Bestoil Orange 2G were not 

successful as expected (no absorption spectra was obtained), red emitting tuning 

material was fabricated by combining the fluorophore/THF mixture with PDMS. 

Different combinations were examined for both Bestoil Red 5B (Figure 2.14) and 

Bestoil Orange 2G (Figure 2.16). Unfortunately, Bestoil Red 5B has no ability to mix 

with PDMS well; therefore, no strong absorption peak is obtained for this fluorophore 

as can be seen from Figure 2.14. The absorption peak is between 300-400 nm but it is 

not the desired region. Also, it seems there is some absorption (500-700 nm) but the 

curve is broad with no strong peak existing; this is the result of dye molecules poorly-

dissolved dye particles inside the PDMS mixture. These particles are caused by 

agglomeration (Figure 2.15) which results in scattering and reflection. Since there is 

no absolute absorption, the emission is lower compared to Bestoil Orange 2G (Figure 

2.16). Actually, there are small emission peaks that might be related with PDMS itself, 

not organic dye. 
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Figure 2. 16. (A) Absorption and (B) emission pattern of Bestoil Orange 2G (O) 

mixtures with PDMS. Initial concentrations (0.5 and 1) represent Bestoil Orange 

2G/THF ratios. 

 

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800 900

A
b

so
rb

an
ce

 (
O

D
)

Wavelength (nm)

0.5 O10+PDMS 10 1 O10+PDMS 20 1 O10+PDMS 10

1 O15+PDMS 10 D. salina

0

0.1

0.2

0.3

0.4

0.5

0.6

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1.8E+07

2.0E+07

500 600 700 800 900

A
b

so
rb

an
ce

 o
f 

D
. 

sa
lin

a 
(a

rb
it

ra
ry

)

In
te

n
si

ty
 (

co
u

n
ts

)

Waelength  (nm)

0.5 O10+PDMS10 1 O10+PDMS20 1 O10+PDMS10

1 O15+PDMS10 D. salina

(A) 

(B) 



69 
 

 

Figure 2. 17. Fabricated Bestoil Orange 2G (O) / PDMS shifting materials at different 

mixture percentages 

In contrast to Bestoil Red 5B, Bestoil Orange 2G showed better results when mixed 

with PDMS, it is less aggregated, see Figure 2.15 and 2.17 for physical comparison. 

Notwithstanding it is small, there is a visible absorption peak for all samples. The 

absorption OD of the samples is not very high, but this is not a big problem since the 

emission is high. The reason for this small peak is some agglomeration of Bestoil 

Orange 2G/THF solution among the PDMS base. Moreover, as shown in Figure 2.16, 

the absorption band of the samples partially overlaps with D. salina absorption 

wavelengths. If the dye absorbs some useful light in the 380-480 nm range, this will 

cause a slower growth of D. salina, so it needs to be solved by changing concentrations 

or solvent or using another fluorophore. On the other hand, if this shifting material is 

located to an inner baffle, the incoming useful light will be absorbed by algae first so 

the overlap may not be neglected. Conversely, the emission bandwidth directly 

overlaps with D. salina absorption bandwidth at red region. As a result of this, stock 

(1) Bestoil Orange 2G (10) / THF + PDMS (10) mixture will be used for algae growth 

tests. 

Furthermore, experiments were implemented with other solvents in order see the effect 

of solvents on PDMS (boiling point 200oC) curing. After curing procedure, it was 

observed that the thin films were not uniform for both Bestoil Orange 2G – 

chlorobenzene and chloroform mixtures. Also, Figure 2.18 and 2.19 proves that these 
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mixtures result in lots of scattering which raises the curves. It is clear that adding 

chlorobenzene (boiling point 131oC) and chloroform (boiling point 61.2oC) make the 

aggregation worse. This might be because the chlorobenzene and chloroform may 

evaporate before PDMS was cured. 

 

Figure 2. 18. Absorption/ emission graph of Bestoil Orange 2G (O) /Chlorobenzene 

mixed with PDMS. Initial concentrations (0.5 and 1) represent Bestoil Orange 2G (O) 

/Chlorobenzene ratios.     

 

Figure 2. 19. Absorption/ emission graph of Bestoil Orange 2G (O)/ Chloroform 

mixed with PDMS. Initial concentrations (0.5 and 1) represent Bestoil Orange 2G(O) 

/Chloroform ratios.    
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2.4. Conclusion 

In summary, this chapter includes the explanation of how wavelength tuning films 

were fabricated. The effect of different solvents, dye and host materials and their 

concentrations on the absorption/ emission features of the material were examined.  

Fluorescent organic dyes are promising as wavelength tuning material owing to their 

high quantum efficiency and because they easily dissolve in many solvents and can be 

embedded in a polymeric matrix. Therefore, four different dyes, 1,2-

Diphenylacetylene, Coumarin 1, Bestoil Orange 2G and Bestoil Red 5B were used in 

this study. Depending on the spectral analysis of UV to blue light shifting dyes, it is 

clear that Coumarin 1 fits the needs of the project very well by absorbing UV light 

between 300-400 nm and re-emitting in the interval 400-550 nm where D. salina can 

absorb. On the other hand, 1,2-Diphenylacetylene is not suitable for the project 

because it only absorbs light below 320 nm which is largely filtered by atmosphere 

and therefore not present in the solar spectrum. The case for the green to red shifting 

dyes is a little bit different. Both Bestoil Red 5B and Orange 2G have very similar 

absorption and emission wavelength band, however the Orange 2G better serves the 

project because it mixes with PDMS better to produce wavelength tuning film. It 

absorbs green light and emits red light at wavelengths ranging from 620nm to 780 nm.  

All the polymers used in the experiment (PMMA, polystyrene and PDMS) work very 

well as host materials. Especially, PMMA and polystyrene showed good attributions 

for the spin coating experiments.  They mix very well with the dye and the solvent and 

application on the glass support is easy. On the other side, PDMS has a good feature 

as a host material as it is easily applied to the reactor. The spin coating process for 

small sizes is easy, however, it would be hard to apply this method on bigger sized 

reactors. Although the spectral analysis pattern of both films produced by spin coating 

and the PDMS curing methods are almost same as each other, PDMS curing is chosen 

for the further experiment when the large scale algae production is taken into 

consideration. Making only one mould for the PMDS cure was sufficient because use 

it repeatedly. After the curing process is completed, the material can be peeled off from 

the mould and attached to the reactor easily due to its elastic and sticky properties. 
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3.1. Photobioreactor Design 

While designing the photobioreactor, it is important to consider the light transmittance 

properties of the raw material. Therefore, the most appropriate material for the purpose 

is either glass or Perspex where both have the feature of the transmitting the light. As 

explained in the literature review part, Chapter 1, the thickness and the angle of the 

incident light is important for better emission and less reflection. It is important to get 

almost perpendicular incident light so as to minimize the reflection of the light. When 

the geometrical shapes considered it is easy to get a perpendicular light impingement 

to the flat surface compared to the round ones.  When the general photobioreactor 

designs are take account of, they are mainly made in either round or the flat shape. In 

order to eliminate the reflection during the Dunaliella salina growth with the 

illumination of light from a flat light box, it is decided to use the flat bioreactor for the 

further experiments.  

 

 

Figure 3. 1. Algae growth systems (a) UV light box, (b) visible light filter to cut the 

light 400nm over and (c) scheme of UV light box    

UV permeable glass Light source (UV/ white) 

Quarts diffuser plate 

Wavelength tuning films 

Culture flasks 
(c) 

(a) (b) 
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3.4.1. Small scale reactor and its coating process 

Dunaliella salina growth is divided into three sizes; small size with either 250 ml 

flasks (round shape) as preliminary experiments but not shown here, 50 ml cell culture 

flasks (flat shape) as small scale and 3L photobioreactor as large scale. The small scale 

growth flasks are designed to use inside modified UV light box (transilluminator) 

(Modified RS-555-279 UV Exposure Unit) (Figure 3.1 (a)) with different light 

exposure orientation with wavelength tuning material coating. The custom modified 

UV light box (Figure 3.17 (a)) includes a fused high transparency quartz diffuser 

(Instrument Glass – Optical white crown spectacle B270 Glass) with dimensions 

250mm x 150mm x t1.15mm; 1 UV light (Philips F8T5/BL Fluorescent Bulb); and 1 

white light (F8W/35 Fluorescent Bulb). For some experiments, algal growth was 

performed separately under UV light only or white light only; thus, 2 UV or 2 white 

light bulbs were used accordingly. The UV lights used in the box are Philips TL8W/10 

tubes and white lights are 8W – T5 cool white (see Figure 3.2 and Figure 3.3 for light 

intensities). UV and white bulbs were used for UV to blue light conversion with 

Coumarin shifting material and green to red light conversion with Bestoil Orange 2G 

shifting material, respectively. The temperature of the box was measured with a thermo 

couple (Farnell – Part no: TK-612) at several intervals.  

 

Figure 3. 2. Intensities of UV lights inside UV light box (old and new replacements) 

and black box (long wave and short wave) and absorbance of D. salina      
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As can be noticed from Figure 3.2, UV light inside the UV light box emits light at 

wavelengths over 400 nm which is in the visible light band. Therefore, a visible light 

filter was needed in order to cut the emission over 400nm (Figure 3.1 (b)); so a 320 

nm bandpass colour glass filter was supplied from Optical Filters (see Appendix 5 for 

transmission curve of filter).  

 

Figure 3. 3. Intensities of white lights in UV light box (old and new replacements) and 

H-floor growth room and absorbance of D. salina        

 

The growth chamber, transilluminator, is designed for using the culture flasks (VWR 

(CAT no; 737-2311), made from polystyrene). The working principle of the UV light 

box is given in the Figure 3.1 (c); light (UV and/or white light) is located to the bottom 

of the box and there is UV permeable glass on top of light tubes. And just over this 

glass, there is a quartz diffuser plate which is used to obtained better light distribution. 

After passing the quartz diffuser, the incident light hits to the wavelength material and 

re-emitted through the small culture reactors. These culture reactors are covered with 

aluminium foil except underside where light penetrated and located inside the UV light 

box as shown in Figure 3. 4 (b).  
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Figure 3. 4. (a) The wavelength tuning materials and their arrangement inside; (b) the 

UV light box (transilluminator)     

 

 

 

 

 

 

3.4.2. Fine bubble addition to the small culture reactors 

The second part of the project deals with fine-bubble injection of CO2 rich gases into 

the growth system. The proposed set-up can be seen in Appendix 6. The growth system 

incorporating fine-bubbles (Figure 3.5 (a)) was composed of a prototype sparger with 

5mm diameter (or air stones), a gas pump (5W, output stream is 7.2 L/min, supplier 

HAILEA), white light on the bench. 

First, 5mm holes were drilled in the side of the flasks to pass the connecting pipework 

into the flasks; 3 mm holes were also drilled in the lids to allow the gas to leave the 

flasks. Meantime, the pipes and sparger/ air stone (Figure 3.5 (b)) were put into an 

autoclave for sterilization. Next, the sparger / air stones were inserted into the flasks.   

(a) 

(b

) 
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Figure 3. 5. Introducing microbubble technology to algal growth system (a) growth 

set-up and (b) sparger used in the experiment     

 

3.4.3. 3L flat plate photobioreactor 

In this study, 3 litres flat plate airlift photobioreactor is used to grow Dunaliella salina. 

The main design of the photobioreactor, Figure 3.6, is taken from previous PhD student 

Krys Bangert (Bangert, 2013) and some modifications are done in order to prevent 

algae accumulations in some dead zones. Additional Perspex were put to the bottom 

of the reactor where the dead zones occur due to no circulation.  

(a) 

(b) (a) 



78 
 

                                          

 

Figure 3. 6. Technical drawing of 3L flat plate photo-bioreactor design. (Bangert, 

2013) 

There are two airlift photobioreactors with the same design, and these bioreactors were 

built by the technician Mike Omeara and subsequently modified by technicians Andy 

Patrick and Cliff Burton of Chemical and Biological Engineering Department 

workshop at The University of Sheffield. The photobioreactor was made from Perspex 

Altuglas. The two spargers at the bottom of the reactor were produced by Material 

Science and Engineering Department’s technician of The University of Sheffield by 

enclosing a 50µm pore sized ceramic microporous material with a stainless steel (316 

type). These spargers were attached to ETG ball valves which were connected to gas 

cylinder/ air pump in order to supply gases inside the reactor so as to obtain a good 

medium circulation and minimize the cell build up on the reactor walls and also to 

reduce the accumulation of dissolved O2. Triangular Perspex wedges were added on 

either side of both the spargers; thus, the problem of growth algae accumulation in 

these regions because of poor gas circulation was solved. The reactor lid that is sealed 
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with a 1mm thick nitrile rubber was closed properly using 18 screws and there is an 

outlet on this lid which is used to take culture sample every 24 hours.  

 

Figure 3. 7. Scheme of experimental set-up for Dunaliella salina growth (a) Design 

of the growth chamber showing the dark enclosure, baffles to allow air circulation. 

Note the front is shown as transparent and only one light box is shown for clarity. (b) 

Plan view of the reactor and light source positioning within growth chamber. For 

control experiments no wavelength shifting material was present. 

 

A black box is designed and built by me using Correx corrugated plastic sheets. This 

box has dimensions as 120cm x 80cm x 50cm for height x wide x depth, respectively. 

There are two small doors on the both side of the box to be able to put the 

photobioreactor inside/outside of the box while taking sample each day. The box is 

completely closed system to prevent daylight to come in or harmful UV light to come 

out; however, there are two baffles above the reactor as seen in Figure 3.7. These 

baffles help to circulate air inside the chamber and decrease of the ambient temperature 
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increase due to light boxes. Two A2 size light boxes were put inside the box for each 

UV (2 tubes of Philips 15W 18" 450mm Fly killer – TPX15-18) and white light (2 

tubes of GCL Fluorescent cool white, T8-15W 450mm) illumination, see Figure 3.8 

for the emission spectrum of these light boxes. For the UV light box, there is a UV 

transparent and grounded low iron glass with dimensions 460mmX635mmX3mm as 

heightXwideXdepth, respectively, for better UV light distribution. A temperature 

probe is added to record ambient temperature inside the chamber for 24 hours. The 

photobioreactor valves are attached to the rotameter to control the inlet gas flowrate at 

150cc/min. Each side of the photobioreactor is coated with fabricated dye/PDMS 

tuning films.  

 

 

 

Figure 3. 8. Emission spectra of the white and UV light inside the light box  
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3.2. Conclusion 

All in all, this chapter includes the explanation of design of small scale and 3L 

photobioreactor and the experimental set-up. The fundamental parameters to design 

the photobioreactor were to maximize surface-to-volume ratio in order to supply more 

useful light, to distribute the incident light more abundantly to the culture, and to 

increase the mass transfer of gases effectively (Lee and Palsson, 1994, Lee et al., 

2014).  When the light distribution inside the reactor is good, the total light utilization 

will be maximized by minimizing the photoinhibition and also self-shading. 

Gas transfer is another essential problem in photobioreactor design due to carbon 

dioxide needs to be supplied and accumulated oxygen should be removed. Sparging 

the system from the bottom will improve total utilized light like as: (1) presence of air 

bubbles will increase light penetration depth, and (2) increasing the bubbles’ 

movement will prompt some degree of mixing tangential to the flow direction 

On the basis of the small scale reactor design trials, flat surface was considered 

preferable geometrical shape for better light penetration. The temperature issue is a 

main problem for the reactor design as will be discussed in the algae growth chapter. 

Also, amount of the inlet gas flowrate and the light intensity for the illumination is 

important and effective parameters on the growth.  
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4.1. Dunaliella salina Medium 

The chosen algae strain is Dunaliella salina CCAP 19/30 supplied from Culture 

Collection of Algae and Protozoa (CCAP), Oban, UK. A suitable growth medium for 

Dunaliella was developed by Hard and Gilmour (1996), and is prepared as follows; 

2.4 M MgSO4.7H2O 133.1 g in 225 ml 

2.0 M MgCl2.6H2O 91.5 g in 225 ml 

1.0 M CaCl2.2H2O 33.1 g in 225 ml 

4.0 M NaNO3 34.0 g in 100 ml 

0.5 M Na2SO4 63.9 g in 900 ml 

0.1 M NaH2PO4 3 g in 250 ml 

2.0 M KCl 74.6 g in 500 ml 

1.0 M HEPES pH 7.6 59.6 g in 250 ml 

1.5 mM FeEDTA pH 7.6 0.0551 g in 100 ml 

Supplements (Trace elements) 

 

 

 

 

 

185 mM H3BO3 4.576 g  

7 mM MnCl2.4H2O 0.5541 g  

0.8 mM ZnCl2 0.0436 g All in a total of 400 ml 

0.02 mM CoCl2 4 ml of 2mM  

0.0002 mM CuCl2 0.4 ml of 0.2 mM  

CoCl2.6H2O (2mM) 0.1071 g in 225 ml 

CuCl2.2H2O (0.2 mM) 0.0307 g in 900ml 
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All stock solution chemicals were dissolved in distilled water and stored in Duran 

bottles at room temperature. Dunaliella medium was prepared in a 1 L Duran bottle as 

shown in the following table. First, the required amount of NaCl was dissolved into a 

1L flask containing approximately 850 ml of distilled water, and then all components 

except NaHCO3 were added to the flask. After that, pH was adjusted to 7.5 by adding 

NaOH or HCl; volume was made up to 1L and finally NaHCO3 was added as a carbon 

source. Then, the medium was put into an autoclave to sterilize it.  

Stock Solution 
Concentration wanted 

(mM) 

Volume of stock for     1 

liter (ml) 

Solid NaCl e.g. 1.5 M 87.75 g 

2 M KCl 10 5 

2 M MgCl2 20 10 

1 M CaCl2 10 10 

2.4 M MgSO4 24 10 

4 M NaNO3 5 1.25 

0.5 M Na2SO4 24 48 

100 mM NaH2PO4 0.1 1 

   

1.5 mM FeEDTA 0.0015 1 

Trace elements 1 ml litre-1 1 

1 M HEPES pH 7.6 20 20 

NaHCO3 (solid) 1 g litre-1 1 g 
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4.2. pH measurements 

An FE-20, Metler Toledo pH meter was used in order to measure the pH of the 

reactors. Since the ideal pH of the Dunaliella medium is about 7.5, calibration of the 

instrument was done at two points i.e. pH 7 and pH 10. Each day, 1.5 ml of the sample 

was taken from the reactor and transferred to a 15ml Falcon tube. After the pH probe 

was put inside the tube and the meter display showed a constant number, and the 

reading was taken. The probe was washed and cleaned before and after each 

measurement.     

 

 

 

 

4.3. CELL DENSITY MEASUREMENT 

4.3.1. Spectrophotometer 

Analysis of the algal growth was done by measuring optical density (OD) using a UV-

Vis Unicam Helios Alpha spectrophotometer where the integration time was set to 1 

second and the wavelength is set at 595nm. Samples were taken every 24h during each 

algae growth experiment starting from zero hours. For the small scale cell culture 

flasks, each of them was shaken before taking samples to eliminate uneven algae 

suspension; on the other hand, for the large scale algae growth, samples were directly 

taken from bottom of the 3L airlift photobioreactor. Each time 1 ml of sample was 

transferred to a 1ml plastic cuvette (634-0675 Polystyrene, VWR). 1ml of distilled 

water was used as the blank before measuring optical density of the sample, since the 

original Dunaliella media and the distilled water has the same OD reading as reference 

solvent.  
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4.3.2. Dry weight calculations versus OD concentration 

In order to understand how much biomass was produced in each algae growth 

experiments, it is essential to make the correlation between dry weight of the 

unstressed algae growth and all other stressed growth conditions. Therefore, D. salina 

cell dry weight was measured depending on the process explained in the study of 

Storms et al. (2014) after some modifications. Firstly, it is important to have a well 

grown (optically dense) D. salina culture with OD595 = 1. A set of dilutions were 

prepared based on Table 4.1 with a final volume of each dilution as 30ml. The dilution 

of the culture was done using fresh D. salina medium by adding the algal suspension 

and medium inside 50 ml Falcon tubes as shown in Table 4.1. After that, 1 ml sample 

from each tube was taken and OD at 595 nm was measured, then the sample was 

returned to the tube after measurement. 

Table 4. 1. Dunaliella salina concentrations used to prepare dry weight vs 

concentration curve 

Tube Number Concentration (%) Culture (ml) Media (ml) 

12 0.0 0.0 30.0 

11 8.3 2.5 27.5 

10 16.6 5.0 25.0 

9 33.3 10.0 20.0 

8 41.6 12.5 17.5 

7 50.0 15.0 15.0 

6 58.3 17.5 12.5 

5 66.6 20.0 10.0 

4 75.0 22.5 7.5 

3 83.3 25.0 5.0 

2 91.6 27.5 2.5 

1 100.0 30.0 0.0 
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All Falcon tubes were centrifuged at 3000 g, then the supernatants were discarded. 

Next, the pellets at the bottom of the tubes were resuspended (Tube 12 has no pellet, 

but it was treated as though it has) in 5 ml of distilled water and transferred into 15 ml 

Falcon tubes. Then, all tubes were centrifuged at 3000 g and the supernatants were 

discarded again. Then, the pellets were resuspended in 1 ml of distilled water and 

transferred to pre-weighed (on a fine balance) 1.5 ml Eppendorf (microcentrifuge) 

tubes. The tops of another set of fresh Eppendorf tubes were removed, and a hole was 

put in each extra top to dry the samples in freeze dryer, and then the Eppendorfs 

containing the samples were sealed using these tops with holes. As next step, the 

Eppendorf tubes were frozen overnight at -80oC and then freeze dried (lyophilised) for 

24 to 48 hours until samples were completely dried. After 2 days, tubes were taken 

from the freeze dryer, the extra tops with holes were removed and weighed on fine 

balance. Finally, dry weight of each tube was calculated and the concentration curve 

was plotted using Excel (Figure 4.1). Afterwards, the OD value of the optimum cell 

concentration was converted into the dry weight value, mg ml-1, as shown in the Excel 

sheet equation as y = 0.3089x (taken from Figure 5.1).  

Where y= Dry weight (mg/ml) and x = OD595 

Then, the percentage of neutral lipid was calculated by dividing the concentration of 

neutral lipid by the value of the cell dry weight and multiplying by 100. 
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Figure 4. 1. Dry weight vs OD concentration calibration curve of Dunaliella salina 

 
 
 
 
 
 
 
 
 
 

4.4. LIPID DETERMINATION 

4.4.1. Nile Red fluorescence for neutral lipid quantification 

The amount of intracellular neutral lipid in D. salina growth cultures was determined 

after each experimental set-up using the Nile Red dye to detect lipid droplets inside 

the cell. The analysis protocol was prepared combining some literature studies made 

by Alonzo and Mayzaud (1999), Bertozzini et al. (2011), Chen et al. (2009), Cooksey 

et al. (1987), Elsey et al. (2007), Gardner et al (2011), Gardner et al (2012), Pick and 

Rachutin-Zalogin (2012). Dunaliella salina cultures were grown until their stationary 
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phase which is about 15-30 days depending on CO2 supply to the system. At the end 

of each experimental run, at least 10 ml culture sample was aseptically removed from 

the photobioreactor and transferred to a 15 ml Falcon tube. 

 

Table 4. 2. Dilution concentration of algal cell using fresh medium for Nile Red peak 

time determination 

Percentage 100 87.5 75 62.5 50 37.5 25 12.5 Total (µl) 

Culture (µl) 1000 875 750 625 500 375 250 125 4.5 

Medium (µl) 0 125 250 375 500 625 750 875 3.5 

 

 

4.4.1.1. Optimization of cell concentration and peak fluorescence time for Nile Red 

analysis 

It is essential to decide the optimum peak fluorescence time and cell concentration 

using unstressed well grown algal cells so as to continue and analyse the lipid content 

of D. salina cells grown under stressed conditions. Therefore, the steps below are 

followed in order to determine the appropriate cell concentration.  

 A well grown D. salina culture (approximately OD595 = 1) was taken from a 

subcultured flask and transferred into 15 ml Falcon tube. Again distilled water, 

dH2O, was used as reference solvent.  

 The culture sample was centrifuged for 5 min at 3000 g. Then the supernatant 

was discarded and the required amount of fresh medium added to the pellet in 

order to make the OD 1 at 595nm. Then the pellet was mixed rigorously and 

the pellet was resuspended again inside the tube.  

 A series of 8 dilutions (see Table 4.2) of algal culture were then made in 1 ml 

from this adjusted culture using dH2O, at 12.5, 25, 37.5, 50, 62.5, 75, 87.5 and 

100% in 1.5ml Eppendorf tubes. 
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 The diluted samples were then transferred to 8 channels of one of the multi-

channel pipette reservoir (Thermo Scientific). Next the cultures were 

transferred to the 96 well flat bottom clear plate (Grenier Bio-One Cellstar 655 

185) from row E to H as shown in Table 4.3. Each cell of the plate has 200µl 

culture. 

 

Table 4. 3. 96 Well plate layout for Nile Red fluorescence peak time determination. 

Note that the rows from R1 to R4 are the replicates of the sample, as well as row R5 

to R8, too. 

Dilution 

from 

1(A) @ 

OD595 

(%): 

mg/ml 

100 87.5 75 62.5 50 37.5 25 12.5 Empty Wells 

1 2 3 4 5 6 7 8 9 10 11 12 

A R1 stain1 stain5 stain9 stain13 stain17 stain21 stain25 stain29 BLK BLK BLK BLK 

B R2 stain2 stain6 stain10 stain14 stain18 stain22 stain26 stain30 BLK BLK BLK BLK 

C R3 stain3 stain7 stain11 stain15 stain19 stain23 stain27 stain31 BLK BLK BLK BLK 

D R4 stain4 Stain8 Stain12 stain16 stain20 stain24 stain28 stain32 BLK BLK BLK BLK 

E R5 unsta1 unsta5 unsta9 unsta13 unsta17 unsta21 unsta25 unsta29 BLK BLK BLK BLK 

F R6 unsta2 unsta6 unsta10 unsta14 unsta18 unsta22 unsta26 unsta30 BLK BLK BLK BLK 

G R7 unsta3 unsta7 unsta11 unsta15 unsta19 unsta23 unsta27 unsta31 BLK BLK BLK BLK 

H R8 unsta4 unsta8 unsta12 unsta16 unsta20 unsta24 unsta28 unsta32 BLK BLK BLK BLK 
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 These eight tubes were then centrifuged at 3000 g for 10 minutes in a bench 

top centrifuge, the supernatant discarded, and the pellets resuspended in 20µl 

of dH2O.  

 Two 1.5 ml Eppendorf tubes were then prepared for each of the 8 culture 

concentrations, one for stained, one for unstained cells. 10 µl of the 

resuspended algal pellets was the transferred to each if the stained and 

unstained, labelled tubes.  

 Next, 50 µl of dimethyl sulfoxide (DMSO) was then transferred to each 

Eppendorf tube.  

 Then, 930 µl dH2O was added to tubes labelled stained and 940 µl dH2O to all 

unstained labelled tubes. 

 Then the stained tubes were prepared by adding 20 µl of Nile-red fluorescent 

dye (which contains 15.9µg/ml Nile Red stock solution dissolved in DMSO) 

was added to each stained tubes then the timer started. Next, the stained 

samples were transferred to the another multi-channel reservoir and the 

4*200µl samples were put inside the 96 well plate cell from row A to D for 

each concentration, see Table 4.3.  

 Then the 96 well plate was placed inside the chamber of the plate reader 

instrument (Biotek flx800) with the lid removed. The software, Gen5 2.05, was 

used to make readings of the samples. The reading was taken every 5 minutes 

interval for total of 30 minutes. The Peak Finder setting parameters for the 

software programme were identified by Krys Bangert in his PhD thesis 

(Bangert, 2013) and the details of these settings are given in Table 4.4. 

 The results of the readings were exported to Excel and the unstained 

fluorescence values subtracted from the stained values in order to remove any 

chlorophyll auto-fluorescence Average fluorescence values for the 4 technical 

replicates at each cellular concentration were obtained, allowing for optimum 

cell concentration, and thus optical density, and peak fluorescence time to be 

established. 
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Table 4. 4. Procedure and settings used for the Gen5 2.05 software programme to 

measure lipid amount at different culture concentration 

Procedure Details  

Plate Type 96 WELL PLATE 

Read 

Fluorescence Endpoint 

Full Plate 

Filter Set 1 

Excitation: 485/20, Emission: 580/50 

Optics: Top, Gain: 60 

Read Speed: Normal 
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4.4.1.2. Optimum Nile Red concentration determination 

The second stage optimization of the Nile Red analysis was finding the right 

concentration of Nile Red to be used. The optimization procedure was applied using 

the combination of previous work done by Alonzo and Mayzaud (1999), Bertozzini et 

al.(2011), Chen et al (2009), Cooksey et al.(1987), Elsey et al.(2007) , Gardner et al 

(2011), Gardner et al. (2012) and Pick and Rachutin-Zalogin (2012). Using the stock 

solution (1 mg/ml) which was kept in the -80oC to reduce the evaporation, 6 new Nile 

Red samples were prepared at different concentrations (0.05, 0.1, 0.2, 0.3, 0.4, and 0.6 

µmol /ml) Nile Red concentrations were prepared by dissolving in DMSO as indicated 

in Table 4.5.  

On the basis of the previous analysis procedure (Section 5.4.1.1), the optimized 

Dunaliella concentration was chosen at OD 595nm. The well grown Dunaliella culture 

(at least 10ml) was taken aseptically and centrifuged for 5min at 3000 g and the 

supernatant was discarded. Then fresh medium was added in order to adjust the culture 

to that concentration of OD 595 nm against dH2O. Then, the adjusted culture was 

divided into 6 different Eppendorf tubes and then centrifuged at 3000g for 10 minutes 

in a bench top centrifuge, the supernatant discarded, and the pellets resuspended in 

20µl of dH2O. Then the same procedure as explained in Section 5.4.1.1 was applied to 

all unstained and stained labelled tubes. The only difference, this time, 10 µl of the 6 

different Nile Red concentrations were added to each of the tubes labelled as stained. 

200 µl of the samples were placed in a 96 Well plate as described in Table 4.6. Then, 

the plate was located in the reader with the lid off and the software Gen5 2.05 was run 

for 30 minutes with 5 minutes intervals. And the readings were recorded using the 

same settings as described in Section 5.4.1.1. Then, the results were exported to the 

Excel file and the average and the standard deviation of the four replicates (stained and 

unstained) were calculated. The values of unstained cells were subtracted from the 

stained ones so as to avoid the chlorophyll auto-fluorescence. The net fluorescence 

results were normalised and the optimum Nile Red concentration was chosen along 

with best algal cell concentration and best peak fluorescence time. 
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Table 4. 5. Preparation of different Nile Red concentrations from Nile Red stock 

Nile Red (µmol ml-1) Primary Stock 1mg ml-1  

(µl) 

DMSO (µl) 

0.05 16 984 

0.1 32 968 

0.2 64 936 

0.3 100 900 

0.4 128 872 

0.6 192 808 

 

Table 4. 6. 96 Well plate layout for Nile Red peak time determination. Note that the 

rows from R1 to R4 are the replicates of the sample. 

NR Conc (µmol ml-1) 0.05 0.1 0.2 0.3 0.4 0.6 

   1 2 3 4 5 6 7 8 9 10 11 12 

Nile Red 

Stained 

Cells 

R1 A 200 200 200 200 200 200 0 0 0 0 0 0 

R2 B 200 200 200 200 200 200 0 0 0 0 0 0 

R3 C 200 200 200 200 200 200 0 0 0 0 0 0 

R4 D 200 200 200 200 200 200 0 0 0 0 0 0 

Unstained 

cells 

R1 E 200 200 200 200 200 200 0 0 0 0 0 0 

R2 F 200 200 200 200 200 200 0 0 0 0 0 0 

R3 G 200 200 200 200 200 200 0 0 0 0 0 0 

R4 H 200 200 200 200 200 200 0 0 0 0 0 0 
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4.4.2. TRIOLEIN CALIBRATION CURVE 

Triolein is a lipid standard often used in the food industry and values are expressed as 

triolein equivalent lipid levels. A concentration calibration curve for standard Nile Red 

fluorescence was carried out using triolein on the basis of work by Bertozzini et al. 

(2011). A 10 mg ml-1 triolein lipid standard stock was made by adding 50 mg of triolein 

(Sigma T7140) to 5ml isopropanol and dissolved. Then 1ml aliquots were transferred 

to 5 x 1.5 ml Eppendorf tubes labelled 1 to 5 in order to be used in the experiments 

later as stock.  

Eight algal samples were prepared under the conditions optimized in Section 5.4.1.1 

and taken through the procedure explained in Section 5.4.1.1 up to the addition of 50 

µl DMSO. At this stage, 910 µl dH2O was added to the tubes labelled stained and 920 

µl dH2O to all the unstained tubes. Then triolein and isopropanol (total volume 20 µl) 

were added to each stained and unstained tube as shown in Table 4.7 to give 

concentrations of 0.2, 0.16, 0.12, 0.08, 0.06, 0.04, 0.02, 0 mg ml-1.  

 

Table 4. 7. Amount of triolein and isopropanol used to obtain Nile Red lipid standard 

curve 

Conc Tiolein 

(mg/ml) 

0.2 0.16 0.12 0.08 0.06 0.04 0.02 0 

Triolein (µl) 20 16 12 8 6 4 2 0 

Isopropanol 

(µl) 

0 4 8 12 14 16 18 20 

 

In the next step, 10 µl of optimum Nile-red fluorescent dye concentration obtained in 

Section 5.4.1.2 was then added to each tube labelled stained. The method was then 
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continued as described in Section 5.4.1.1. Then 1ml of each stained and unstained 

sample were transferred to the multi-channel reservoir, and then 200 µl aliquots of 

each sample were poured into 96 well plate as shown in Table 4.8.  

Table 4. 8. 96 Well plate layout for Nile Red peak time determination. Note that the 

rows from R1 to R4 are the replicates of the sample 

Conc. of Triolein 

(mg/ml) 
0.2 0.16 0.12 0.08 0.06 0.04 0.02 0 

Empty Wells 

1 2 3 4 5 6 7 8 9 10 11 12 

St
ai

n
ed

 c
el

ls
  

A R1 200 200 200 200 200 200 200 200 0 0 0 0 

B R2 200 200 200 200 200 200 200 200 0 0 0 0 

C R3 200 200 200 200 200 200 200 200 0 0 0 0 

D R4 200 200 200 200 200 200 200 200 0 0 0 0 

U
n

st
ai

n
ed

 c
el

ls
 

E R5 200 200 200 200 200 200 200 200 0 0 0 0 

F R6 200 200 200 200 200 200 200 200 0 0 0 0 

G R7 200 200 200 200 200 200 200 200 0 0 0 0 

H R8 200 200 200 200 200 200 200 200 0 0 0 0 

 

Then, the 96 well plate was located in the reader with the lid off and the software Gen5 

2.05 was run for 30 minutes with data collected at 5 minutes intervals. And the readings 

were recorded using the same settings as described in Table 4.4. Then, the results were 

exported to the Excel file and the average and the standard deviation of the four 

replicates (stained and unstained) were calculated. The values of unstained cells were 

subtracted from the stained ones so as to avoid the cellular background fluorescence. 

The relationship between Nile Red fluorescence intensity and concentration of triolein 

mixture was exemplified by plotting the calibration curve, Figure 4.2. Afterward, each 
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fluorescence intensity amount obtained under different stressed conditions was 

converted into the concentration of lipid depending upon Excel sheet equation;  

x = y / 34162 

Where x is the concentration of Triolein in mg /ml and y is the Nile Red Fluorescence 

Intensity. 

 

 

Figure 4. 2. Standard addition Triolein concentration versus Nile Red fluorescence 

intensity calibration curve 

 

 

4.5. FLUORESCENT LIGHT MICROSCOPE IMAGING 

Another way of observing the neutral lipid bodies which look like oil droplets is using 

a light microscopes after staining the cell with Nile Red fluorescent dye. Thus, the 

shapes and sizes of the lipid bodies of D. salina under different stressed conditions 

were examined using the Fluorescence Microscope, Zeiss Axiovert 200M, (Carl Zeiss 

Microlmaging, Inc.) consist of an Exfo X-cite 120 excitation light source, band pass 

filters (Carl Zeiss Microlmaging, Inc. and Chroma Technology Corp.), an α 

plan=Fluor 100x/1.45 NA, plan-pochromat 63x/1.40 oil immersion lens and a digital 

CCD camera (Orca ER, Hamamatsu). 2 light channels; Green Channel (GFP, and 
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NeonGreen) and Red Channel (RFP, HcRed, mCherry, mKate, mRuby) which have 

excitation wavelength as 525 nm and 700 nm, respectively, were used inside the 

microscope. The procedure for this screening analysis were modified from the study 

done by Cooksey et al. (1987).  

Dunaliella salina cultures were grown until stationary phase which is about 14 – 30 

days depending on the amount of CO2 supplied to the system. At the end of this time 

5ml of culture was taken aseptically from photobioreactor and added to a 15 ml Falcon 

tube. Then, the sample was adjusted to an absorbance of OD 0.7 at 595nm, which is 

also the optimum cell concentration obtained in Nile Red analysis in Section 4.4.1.1, 

using fresh medium. One ml was then taken and added to a 1.5 ml Eppendorf tube and 

then; 8µl of Grams Iodine (purchased from Camlab Chemicals) was added to the 

sample and shaken to kill the cells and stop motility. Ten µl of 100 µl ml-1 Nile Red in 

100% DMSO (the concentration of Nile red is 0.2 µl ml-1, which was obtained in 

Section 5.4.1.2) was added and mixed by inversion. A timer was then started to check 

the progress of the dye penetration. 10 µl of the stained sample was then added to a 

clean slide and a coverslip was added gently. The edges of the slide were then sealed 

with nail varnish to avoid the possibility of evaporation. Once the varnish had dried, 

the slide was placed in the microscope, a single drop of mineral oil was placed on the 

cover slip and the image was brought in to focus using excitation light only. Three sets 

of photographs were taken for each cell of interest, one for bright field, one for red 

light and one for green light. All imaging was taken using a 60x oil immersing lens 

and a digital CCD camera as 0.5µm Z-stacks. The images were merged using software 

programme, Openlab (Improvision) and further scaling process done using Photoshop 

(Adobe). The capturing setting parameters were arranged as;  

 Bright Field  30 millisecond exposure time and gain is 0. 

 Red Colour  20 millisecond exposure time and gain is 0. 

 Green Colour  100 millisecond exposure time and gain is 0. 
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4.6. CULTURE CONDITIONS AND MAINTENANCE 

4.6.1. CULTURE MAINTENANCE 

Subculturing of D. salina was performed at regular intervals, typically every 10-14 

days and they were kept in growth room (Figure 4.3) in Molecular and Biology 

Department as described in Section 4.6.2. Each time, pre-autoclaved 250ml conical 

flasks were inoculated by adding 10 ml of an actively growing culture, which had been 

established for approximately 10 days, to 100 ml of D. salina growth medium. Both 

processes were carried out using aseptic techniques. The containers were flamed with 

a Bunsen burner before and after transfer, and all transfer pipette tips used were pre-

sterilised by autoclaving. The flasks were shaken manually before taking samples.  

 

 

          

Figure 4. 3. MBB H-Floor Growth room is used to keep subcultures and sample 

flasks after each experimental run 
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4.6.2. MBB H-FLOOR GROWTH ROOM  

Stock algal cultures were stored and incubated in 250 ml conical flasks (with foam 

bungs), under controlled environmental conditions (Figure 4.3). The MBB H-Floor 

growth room was maintained at a constant 25°C and had three different lighting 

intensities available depending on the tier of shelf used. The samples used in this 

project were kept at the bottom shelf to keep light intensity at an appropriate level, see 

Figure 4.4 for the relative light intensity next to the flask in H-floor growth room (25 

µmol m-2 s-1).  

 

 

Figure 4. 4. Intensities of lights in UV light box (old and new replacements) and H-

floor growth room and absorbance of D. salina 
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4.7. EXPERIMENTAL SET-UP AND MATERIALS 

4.7.1 SPECTRAL MEASUREMENTS LIGHT SOURCES 

In addition to Dunaliella salina culture growth and maintenance in the MBB H floor 

growth room, experimental cultures were set up in arrange of apparatus including 

modified UV light box for the small scale algae growth, and big growth chamber 

designed by me for algal growth in 3L photobioreactor (for more information see 

Chapter 3 – Bioreactor design). Each experimental set up had its own lighting system, 

so the light intensities were different in each of them. Therefore, the spectra shown in 

Figure 4.4 were recorded in order to explain the range of light intensities and 

wavelengths that were used during the project. The lights used in the growth 

environments were as follows; 

 Modified UV light box: UV light Philips TL8W/10 tubes and white lights 

were Philips 8W – T5 cool white 

 Closed system black box: Mineralight Lamp Multiband UV – 254 (short 

band) / 365 (long band) nm. Model UVGL -58 

 Large growth chamber: UV light – Philips TPX15-18 and white light GCL 

fluorescent tube 15W T8. 

The intensities of the light sources were measured using the Ocean Optics spectrometer 

and SpectraSuite software, details of how to use the instrument were given in Chapter 

2, Section 2.2.1.3 and 2.2.1.4 Absorbance and Emission Measurements. Other detailed 

information regarding the large growth chamber can be found in Chapter 3 

Photobioreactor design. 
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4.7.2. COATING OF REACTORS 

This part will not be covered in detail here, information about dye selection and dye 

coating procedures was described in detail in Chapter 2 – Fabrication of Wavelength 

Tuning Materials. The coating of the produced materials was done easily, there was 

no procedure for it because of easy appliance of the materials. The only things that 

needed to be done was placing the PDMS- dye wavelength shifting material on the 

reactor surface with care. The orientation and the location of the wavelength shifting 

material on the reactor surfaces was explained and illustrated fully in Chapter 3 – 

Bioreactor design, please see there for more information. 

 

 

 

 

4.7.3. PHOTOBIOREACTOR CLEANING 

Two different reactor formats (Figure 4.5) were used in order to perform all the 

experiments. One of them is 50 ml culture flasks (VWR (CAT no; 737 – 2311), made 

from polystyrene) for small scale D. salina growth to be used inside the modified UV 

light box. These culture flasks were ready to use directly, they were already sterilized, 

so no cleaning procedure was used. On the other hand, these flasks are not suitable to 

be autoclaved, unfortunately, they melted when they were the autoclaved.  

For large scale algae growth, 3L photobioreactor was used and the cleaning procedure 

for this reactor was as follows. Before each experimental runs, the reactor was taken 

apart and rinsed with distilled water 4 times. The reactor body was filled with Virkon 

(Dupont) solution for more than 15 minutes and the separate small parts and the pipes 

were then sterilised in a bath of the same solution for the same period. Then, all items 

were rinsed with autoclaved distilled water 4 times, with the exception of the spargers 

and control valves. The reactor and the other parts were then left on the bench upside 

down for a while to dry. Next, the reactor was then reassembled using gloves and was 

ready to be used. 
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Figure 4. 5. Culture flask and the 3L photobioreactor used in the experiments 

 

 

4.7.4. ALGAL GROWTH SYSTEM SET-UP 

Fresh and actively growing algae are necessary for each growth set-up; hence, 

maintenance culture inoculations were done every 15- 30 days.  Conical flasks (250 

ml) were autoclaved, and then 100 ml of growth medium was poured into the flask, 

next 5 ml of actively growing culture was added. All sub-cultures were kept in the 

growth room on H-floor in the MBB department at a constant temperature of 25oC as 

mentioned in Section 4.6.2.  
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Figure 4. 6. Algae growth systems (a) UV light box, (b) closed system black box, (c) 

H-floor growth room and (d) scheme of large growth chamber and wavelength shifting 

orientations inside the chamber 

Algae growth was carried out inside one of three different growth boxes; (1) modified 

UV light box (Modified RS-555-279 UV Exposure Unit), (2) closed system black box, 

and (3) large black box for 3L photobioreactor which is shown in Figure 4.6 (d), or 

some samples were grown in the H-floor growth room as control flasks. The custom 

modified UV light box includes a fused high transparency quartz diffuser (Instrument 

Glass – Optical white crown spectacle B270 Glass) with dimensions 250mm x 150mm 

x t1.15mm; 1 UV light; and 1 white light. For some experiments, algal growth was 
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performed separately under UV light only or white light only; thus, 2 UV or 2 white 

light bulbs were used accordingly. UV and white bulbs were used for UV to blue light 

conversion with Coumarin wavelength tuning material and green to red light 

conversion with Bestoil Orange 2G wavelength tuning material, respectively. The 

temperature of the box was measured with a thermometer (Farnell – Part no: TK-612) 

at several intervals. On the other hand, the black box has only a UV light for 

illumination which has short band (254 nm) and long band (365 nm) emission. 

After arranging growth boxes, several set-ups were run with different wavelength 

tuning films. For all growth set-ups, initially, culture flasks were covered with 

aluminum foil except the underside where light penetrated. Then, 25 ml of 1.5M NaCl 

growth medium with single bio-carbonated NaHCO3 amount as given in the medium 

recipe or double bio-carbonated NaHCO3 amount double that given in the medium 

recipe were infused into each culture flask. Then, 0.3 - 1 ml of inocula (depending on 

inoculation density) were added to the flasks, and then first samples were taken for the 

zero-hour measurement. After that, the flasks were put into UV light box, black box 

and growth room with and without wavelength tuning material as illustrated in Chapter 

3 – Photobioreactor design. Then, every 24 hours samples were taken and the optical 

density results were recorded (see Section 4.3.1).    

 

 

 

 

 

 

 

Figure 4. 7. Introducing fine-bubble technology to algal growth system (a) growth set-

up and (b) sparger used in the experiment 

(a) 
(b

) 
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The second part of the small scale algae growth in culture flasks applied with fine 

bubble injection into the growth system. Only a few set-ups were run to test the bubble 

effect on growth rate. The growth system incorporating fine-bubbles (Figure 4.7 (a)) 

was composed of a prototype sparger with 5mm diameter (or air stones), an air pump 

(5W, output stream is 7.2 L/min, supplier HAILEA), and a white light on the bench. 

First, 5mm holes were drilled in the side of the flasks to pass the connecting pipework 

into the flasks; 3 mm holes were also drilled in the lids to assure ventilation. Meantime, 

the pipes and sparger / air stone (Figure 4.7 (b)) were put into an autoclave for 

sterilization. Next, the sparger / air stones were inserted into the flasks. After that, 30 

ml of growth medium (either 1.5M NaCl single bio-carbonated or double bio-

carbonated) were put into the culture flasks. Next, all flasks were put under UV light 

(BioMat 2) for sterilization for 45 min. This UV light chamber is different from 

equipment used for algal growth. Finally, 1 ml of inoculum was added and first 

samples were taken. The flasks were connected to a gas pump as in Figure 4.7, which 

was set to its minimum working rate of 17.2 L/min. Every 24 hours samples were taken 

and data recorded.  

Large scale D. salina growth part of the project was completed using 3L flat plate 

photobioreactor inside a growth chamber as illustrated in Figure 4.6 and also explained 

in detail in Chapter 4 – Bioreactor design part. After the reactor was cleaned as 

described in Section 4.8.3, the autoclaved 1.5M NaCl D. salina medium (3 litres) was 

poured inside the reactor and approximately 150 - 200 ml of D. salina culture which 

was about 14 days old was inoculated. Initial inoculation OD was always arranged to 

be OD 0.068 at 595nm. Then the reactor was connected to air or CO2 supply (shown 

in Figure 4.6) at different percentages (only air, 0.5% CO2, 1% CO2, 5% CO2, and 10% 

CO2) depending on the experimental set-up. The wavelength tuning materials were 

placed on the reactor as illustrated in Figure 4.5 and explained in Chapter 3. Then 

every 24 hours samples were taken in order to check the OD.  
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5.1. Introduction 

An important parameter for algal biomass production is light, so to increase the useful 

light available wavelength shifting materials were produced as explained in Chapter 2, 

Section 2.2.1.2. Dye- PDMS Thin Films. Wavelength tuning materials chosen for 

Dunaliella salina 19/30 growth in small scale cell culture flasks were 20% 

Coumarin/PMMA + toluene coating, 1 (stock) Coumarin/THF + PDMS thin film and 

1 (stock) Bestoil Orange 2G/THF + PDMS thin film. And the ones used for the large 

scale D. salina 19/30 growth in 3L photobioreactor were 1 (stock) Coumarin/THF + 

PDMS thin film and 1 (stock) Bestoil Orange 2G/THF + PDMS thin film. In order to 

determine how effective, the films used are at tuning the wavelength of the light, the 

absorbance and emission spectra of the films were measured as shown in Figure 5.1, 

and these wavelength shifting materials are referred to as C +PDMS and O+PDMS. 

Figure 5.1 given below indicates the absorption and emission properties of each 

wavelength shifting film.  

The results discussed in this chapter include experiments where two different UV to 

blue light wavelength tuning films were used. The C coating (Coumarin dye coated on 

the glass) one was expected to be slightly better compared to C+PDMS (Coumarin dye 

and PDMS cured together) film because the percentage overlap of this material’s 

emission and the algae’s absorption is longer and larger. On the other hand, the 

absorption band of C+PDMS is larger than for the C coating. As mentioned previously, 

the O+PDMS thin film has less distinct absorption features which may cause less 

efficiency with respect to the C coating and the C+PDMS film. 

On the other hand, supplying different amounts of carbon to the small scale D. salina 

cultures was tested by changing the bicarbonate amount in the algae growth media. 

Moreover, as an initial study for this project fine bubbling was incorporated into the 

small scale culture flasks in a similar manner to the pilot scale studies on microbubble 

generation for D. salina growth done by Zimmerman, et al.(2011).  
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Figure 5. 1. Absorption/ emission spectra of the wavelength tuning materials used in 

the algae growth in cell culture flasks. C coating means that Coumarin- THF mixture 

was coated on the glass. C+ PDMS means that mixture of Coumarin and THF was 

combined and cured together with PDMS. O+PDMS means that mixture of Bestoil 

Orange 2G and THF was combined and cured together with PDMS. 

 

The next step for air supplied D. salina growth was carried out in 3L photobioreactors 

using an air pump with inlet flow of 150 cc/min. Four sets of experiment were 

performed; control (without shifting materials), UV to blue light shifting using 

Coumarin PDMS film, green to red light shifting using Orange 2G PDMS film and 

both UV to blue and green to red light shifting using both Coumarin PDMS and Orange 

2G PDMS films. At the end of the each run algae biomass was tested for lipid analysis.   

The protocol in order to measure the lipid accumulated in the algal cell is not made to 

conform to a standard among the researchers since each researcher  is using different 

methods so as to get precise and reliable results for the lipid accumulation in different 

algae species (Li et al., 2014).  There are various techniques to determine lipid such as 
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gravimetric (Bligh and Dyer, 1959), NMR, calorimetric (Van Handel, 1985), Nile Red 

staining (fluorometric) (Alonzo and Mayzaud, 1999, Cooksey et al., 1987, Chen et al., 

2009), etc. In this study Nile Red staining was used to determine the neutral lipid 

amount for different algal growth set-ups since it is recommended for in-situ algal lipid 

screening and is easy and cheap to apply. On the other side, the other methods have 

drawbacks e.g. gravimetric method is time consuming (Bertozzini et al., 2011) and 

also contains non-fatty acid lipids which will change the total lipid amount (Breuer, 

2013). 

While applying the Nile Red analysis to algae cells, many stress conditions were tried 

and described in the literature, such as, nutrient deprivation, nitrate depletion, 

temperature effect, and light exposure (Jiang et al., 2012, Roleda et al., 2013, Seunghye 

Park, 2013, Thompson, 1996). In this project, light exposure was used to stress the D. 

salina cells and the effect of the wavelength shifting materials on the lipid production 

was investigated. And also, the intracellular lipid was monetarized after each different 

light exposure experiment using Fluorescent light microscopy as explained in Chapter 

4, Section 4.5. 

 

 

 

 

 

5.2. Results of Dunaliella salina growth with air supply 

In this part, the results of the Dunaliella salina 19/30 growth with only air supply to 

the system in order to make bubbling will be explained. The results of this part are 

divided into two main sections i.e. small scale D. salina growth in 50 ml culture flasks 

and large scale growth of the D. salina inside the 3L airlift photobioreactor.  
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5.2.1. D. salina growth in small scale using cell culture flasks 

5.2.1.1. D. salina growth using normal growth media and doubled amount of 

bicarbonate in growth media 

The properties of the growth systems and the light intensities of the light inside growth 

boxes are given in materials and methods, Section 4.7 and Figure 4.4, and using these 

systems several algae growth curves were measured. Firstly, algal growth was carried 

out using 1.5 M NaCl single bicarbonate growth medium (as described in the materials 

and methods section) growth medium and in the UV light box equipped with only UV 

light. The wavelength shifting materials consisting of the C coating and C+PDMS, 

were located between the flask and the light and for the control flasks where there is 

no shifting film applied were also tested. The analysis of this experiment is shown in 

Figure 5.2 (A), and algae growth, unfortunately, stops within 5 days in all trials. The 

reason for the cell deaths might be dissolved O2 inhibition or a lack of carbon supplies 

(NaHCO3). Another observation from the graph concerns the growth rates for each 

sample. According to the graph, it seems that all samples grow at an equal rate which 

is likely to be a result of the UV lights producing some emission over 400nm and/or 

day light entering the UV light box. Day light penetrating into UV light box through 

the lid seal could result in growth inside the control flasks. 

In response to the problems faced in the previous experiment, a 3 mm hole was drilled 

in the lid of each flask in order to assist evacuation of accumulated O2. Subsequently 

as shown in Figure 5.2 (B), samples with wavelength shifting material in the UV light 

box equipped with both UV and white light grew; whereas control flasks inside the 

closed system black box equipped with only UV light (longest wavelength – 365 nm) 

did not. Figure 5.2 (B) reveals that D. salina cannot grow under UV light without using 

any wavelength shifting film and dies in just 3 days. Unexpectedly the flasks with 

shifting film grew up to an OD 0.4, similar to previous experiment and then all growth 

ceased within 6 days. This was attributed to insufficient NaHCO3.  
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Figure 5. 2. Growth rate of D. salina under 24 h (A) only UV light and (B) both UV 

and white light illumination with and without wavelength shifting material 

 

For the following experiment, the supplied NaHCO3 amount was doubled and more 

replicates were put inside the box; with the control flasks being placed in the growth 

room on H-floor of the MBB department.  Figure 5.3 demonstrates the growth pattern 

of this experiment which provides proof that the wavelength shifting materials are 

actively assisting algae generation. Maximum OD values are 0.934, 0.926, 0.864 and 

0.770 for C coating, C+PDMS, O+PDMS and control, respectively. These results 

mean that in comparison to control, there is 17.6% and 11.2% growth increments for 

UV to blue wavelength tuning and green to red wavelength tuning, respectively. 

0.00

0.10

0.20

0.30

0.40

0.50

0 1 2 3 4 5 6
O

D
 (

5
9

5
 n

m
)

Days

Control C coating C + PDMS

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

0 1 2 3 4 5 6 7

O
D

 (
 5

9
5

n
m

)

Days

C coating C+PDMS O+PDMS Control

(A) 

(B) 



113 
 

Actually, the light tubes in the H-floor growth room have more power and the number 

of lights are more than UV light box; hence, the light intensity is higher for control 

flasks. If there was more space inside the UV light box, and the control flasks were put 

in it, it is assumed that the growth enhancement with wavelength tuning material would 

be greater than current results. Additionally, the temperature inside the UV light box 

is higher than the growth room, which is another reason for slow growth.  

 

 

Figure 5. 3. Growth pattern of D. salina under 24h UV and white light illumination 

using double amount of NaHCO3 . C coating means that Coumarin- THF mixture was 

coated on the glass. C+ PDMS means that mixture of Coumarin and THF was 

combined and cured together with PDMS. O+PDMS means that mixture of Bestoil 

Orange 2G and THF was combined and cured together with PDMS. 
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Figure 5. 4. Influence of high temperature on D. salina growth 
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process was a significant increase in temperature to very high values, 36oC, in which 

D. salina cannot survive. Figure 5.4 illustrates the cell deaths of the D. salina and 

growth of bacteria in the flasks. Under normal conditions, this bacterium and D. salina 

can live together. However, bacteria can invade the growth culture and cause fast 
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the density of bacteria. Figure 5.5 highlights that the inoculum with 1.5M NaCl is also 

contaminated but this bacteria type and D. salina can live happily together in a suitable 

environment. Nonetheless, when the temperature was unintentionally increased, it 

caused a rapid cell death (Figure 5.4 and 5.5). Additionally, the graph in Figure 5.4 

shows the growth rates become almost equal at the end of the 5th day, although the 

control growth was slower at the beginning. This is the consequence of UV light used 

inside the box which emits over 400nm. A visible light filter that can cut out the light 

over 400 nm (see Appendix 5) was used for the next experiment. Nevertheless, growth 

experiments were not successful because of heating problem of the box. Some more 

modifications were done by adding more fans for cooling but the power of the fans 

was not sufficient to overcome the heating issues.  

 

 

Figure 5. 5. Microscopic images of D. salina at different salinity. The image was taken 

using a Nikon Eclipse E400 Microscope (phase 2 – 40X) endowed with a Nikon 

DXM1200 Digital Camera. The camera was attached to a software programme named 

LUCIA G Software and images were saved using this software with parameters; Red: 

44, Green: 68, Blue: 72, Gain: 0, Gamma: 1, Offset:0, Exposure: 64ms.  Sample 

preparation method was the same as explained for the Fluorescence light microscope 

in Section 4.5 Materials and methods Chapter. 
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5.2.1.2. D. salina growth by adding fine bubble to the system 

The final small scale experiment examines the influence of fine bubbles on algae 

growth. The experiment was carried out based on the Figure 4.7 in Chapter 3, Materials 

and Methods. Figure 5.6 shows that aeration results in a significant increase I the 

growth rate however, there is no significant variation in growth of single bicarbonate 

and double bicarbonate flasks when they are not aerated. Since normally, single 

bicarbonate medium is used, the focus will be on this flask, thus the maximum OD 

achieved during growth of aerated single bicarbonate is 1.051 OD while it is 0.419 for 

non-aerated single bicarbonate. The results show more than doubled growth increment 

with the application of aeration using microbubble technology. The experiment had to 

be stopped before stationary phase is completed because the volume of the medium 

fell below minimum working volume due to the number of samples taken during the 

experiment.  

 

 

Figure 5. 6. Effect of fine bubbles and carbon amount on algae growth. B.C. represents 

bicarbonate; A. indicates aerated and N.A. indicates non-aerated. 
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5.2.2. D. salina growth in large scale - 3L photobioreactor  

Dunaliella salina 19/30 CCAP was grown in an 3L airlift photobioreactor for the rest 

of the experiments. The reactor was put inside a big black chamber designed by me 

and the features of this box and the accessories used for the set-up are shown in Chapter 

4, Section 4.7.4 Algal Growth System Set-up. After completing the algae growth in 

cell culture flasks, it was clear that both UV to blue light shifting materials, either 

Coumarin coating on glass or the Coumarin PDMS curing, had almost the same 

positive effect on the growth of D. salina. Therefore, when the easy cure of the PDMS 

inside the mould and basic application on the reactor as well were considered, it was 

decided to use the Coumarin PDMS shifting materials during the experiment with 3L 

photobioreactor.  Thus, both shifting materials to convert UV to blue light and green 

to red light would be made from the same material, organic dye (Coumarin / Bestoil 

2G) + PDMS. The emission spectrum of the fluorescent lamp inside the light boxes 

are given in Figure 5.7 and the transmission spectra of the light beams from uncoated 

and coated reactor are given in Figure 5.8. The transmission spectrum is obtained using 

Ocean Spectroscopy as shown in Figure 5.9. The UV is largely absorbed and there is 

no clearly light between 400 nm and 500 nm for the UV only illuminated Coumarin 

coated reactor. The change and the light illumination for the green to red dye is not so 

obvious. The main observation is that the total intensity is slightly reduced with the 

film present, but there is a subtle change in the spectral shape of the curve.  

 

Figure 5. 7. Emission spectra of the white and UV light inside the light box  
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Figure 5. 8. Light transfer from the 3L photobioreactor with and without wavelength 

shifting materials.  

 

        

Figure 5. 9. Measuring the light transmission of the reactor with coating either UV to 

blue shifting material or green to red shifting material. 
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As explained in Chapter 5, Materials and methods, all experimental sets started with 

the same initial OD (0.069 at 595nm) and the samples were taken every 24 hours to 

obtain OD based growth pattern.  In order to obtain growth trend of D. salina supplying 

only air with inlet flow rate of 150 cc/min, 5 experimental set ups were run as a) 

Control 1 (see the UV light effect on D. salina growth using both UV and White light 

at the same time), b) Control 2 ( only white light was used), c) UV to blue wavelength 

tuning ( Coumarin – PDMS wavelength shifting material was used), d) green to red 

wavelength tuning ( Bestoil Orange 2G – PDMS wavelength shifting material was 

used) and finally e) both UV to blue and green to red wavelength tuning.  

 

 

Figure 5. 10. Growth curves of control and coated reactors. Control1 is done without 

shifting material but using both UV and white light in order to see the UV light effect 

which causes cell death in a few days; Control2 is done without wavelength shifting 

materials and only with white light; UV to blue wavelength tuning is done with only 

Coumarin 1 material and both light sources on; green to red wavelength tuning is done 

with only Bestoil Orange 2G material and only white light on; and for the final one 

both Coumarin 1 and Bestoil Orange 2G materials used with both lights on. 
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Figure 5.10 demonstrates the growth pattern of each set-up which provides proof that 

wavelength tuning actively assists algae generation. The maximum OD values are 

recorded as 1.048, 0.814, 0.942, 0.173 and 0.661 at 595nm for UV to blue wavelength 

tuning film, green to red wavelength tuning film, both UV to blue + green to red 

wavelength tuning films and control 1 and control 2, respectively. These results mean 

that in comparison to control 2, there is 39.9% and 18.8% increase in the final OD 

growth increments for UV to blue wavelength tuning and green to red wavelength 

tuning, respectively.  As mentioned previously in the introduction, there are two 

previous studies on wavelength tuning materials. One succeeded in reaching > 20% 

spectral conversion for green to red wavelength shifting (Wondraczek et al., 2013), the 

other one reached 10% enhancement on product rate using commercial UV to blue 

wavelength tuning material.  Compared to these studies, the work described in this 

thesis shows more microalgae production for UV to blue wavelength tuning as 

indicated with high final OD results and high density in the algal culture (see Figure 

5.11).  Furthermore, Figure 5.10 shows the result of these experiments, and as it can 

be seen from the graph, UV light caused a distinct and fast cell death just within 6 days 

on D. salina CCAP 19-30 growth. On the other hand, every other experimental run 

continues for approximately 30 days until the growth reached the stationary phase. The 

growth with wavelength shifting material reaches to the more dense culture faster than 

the control experiments. 

As illustrated in Figure 5.7, UV lamp used for the experiments also emits some visible 

light which is absorbed by the chlorophyll which helps the Dunaliella to survive but 

just for 7 days. The UV light clearly shows a harmful effect on Dunaliella growth. On 

the other hand, if only white light is used as in the Control 2 experiment, a final 

biomass of about 0.661 OD595 is obtained by the final day yet the growth time is longer 

than other wavelength tuning film set-ups. Figure 5.11 illustrates the growth achieved 

by Dunaliella cells in each experimental run, the starting and final day images of the 

reactors are shown. The reactor with UV to blue wavelength tuning is denser compared 

to control 2 and green to red wavelength tuning experiments. 
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Figure 5. 11. Images of the experimental runs at the starting and final days: (a) Control 

2, (b) UV to blue wavelength tuning, (c) green to red wavelength tuning (d) and both 

UV to blue and green to red wavelength tuning. 

 

5.2.3. Determination of Neutral Lipid in 3L photobioreactor cultures using Nile Red 

Although, in the literature, there are many application procedures for determination of 

the accumulated neutral lipid amount in algae biomass, it is still an uncertain process 

since researchers are applying different methods to different algae species. As 

explained in Section 5.1, there are many ways for lipid identification and using Nile 

Red dye is one of them. Depending on the published papers on Nile Red usage (Alonzo 

and Mayzaud, 1999, Cooksey et al., 1987, Chen et al., 2009) and owing to low biomass 

requirement, this method was used in the current work with the procedure clarified in 

Section 4.4.  
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Nile Red (NR, 9-diethylamino-5H-Benzo[α]phenoxazine-5-one or C20H18N2O2) is an 

effective lipid soluble fluorescent dye which has been utilised in order to detect the 

lipid amount inside various living organisms such as bacteria (Izard and Limberger, 

2003), yeast (Sitepu et al., 2012), zooplankton (Alonzo and Mayzaud, 1999), and algae 

(Bertozzini et al., 2011, Elsey et al., 2007) using flow cytometry and fluorescence 

microscopy (Guzmán et al., 2010). The initial study showing the Nile Red penetration 

inside the neutral lipid and the fluorescence emission was announced by Smith and 

Thorpe at the beginning of  20th century (Fowler, 1987).  

Nile Red goes through the cell barriers including the cell wall, cell membrane and 

fusing inside the neutral lipid emitting a golden yellow fluorescence for neutral lipids, 

red for chlorophyll auto-fluorescence and polar lipids. However, the studies done by 

Chen et al. (2009) and Chen and Blankenship (2011) showed that the cell walls of 

some algae species have an effect on the dye penetration which causes a time delay for 

the dye to pass through the membrane and penetrate to the lipid droplets. Thus, the 

methods proposed by Chen et al. so as to decrease the retention and raise the reaction 

use dimethyl sulfoxide (DMSO) as solvent and additionally microwaving the samples 

at temperature 35-40oC (Chen et al., 2009). DMSO was used in this study as suggested 

by Chen et al., however microwaving process was omitted since D. salina does not 

have a cell wall and has a fairly fragile structure (Ben-Amotz et al., 2009, FAY, 1983).  

The efficiency of Nile Red for evaluating the neutral lipid amount depends upon the 

exact excitation and emission wavelength of the spectroscopy filter. The wavelengths 

used for the Nile Red measurements are characterized by the hydrophobicity of the 

solvent used to dissolve Nile Red. These wavelengths for excitation and emission, in 

general, are identified as 480 and 575 nm for the neutral lipids and 549 and 628 nm 

for the polar lipids, respectively (Chen and Blankenship, 2011, Storms et al., 2014). 

Moreover, if the wavelength is longer than 590 nm, then the lipid will not be detected 

by the Nile Red (Greenspan et al., 1985). On the other hand, the excitation and the 

emission wavelengths may vary depending on the microalga species. Dunaliella salina 

CCAP 19/30 was analysed under wavelengths given in Table 5.4 in Section 5.4.1.1 as 

485nm and 580nm for excitation and emission, respectively. 
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Since the intensity of the Nile Red is changeable, the accurate neutral lipid 

determination in algae species like D. salina 19/30, can be obtained by optimizing two 

main determinants; algal cell concentration and Nile Red concentration. 

 

 

5.2.3.1. Optimization of Dunaliella salina concentration 

The optimization of the Nile Red staining peak time and the optimum concentration of 

the D. salina was determined based on the explanation in Material and Methods 

Chapter, Section 4.4.1.1. Different concentrations of D. salina (12.5, 

25,32.5,50,62.5,75,87.5 and 100%) were tested and the optimum peak time and the 

best concentration was obtained depending upon the cell normalization values 

balanced with concentration and the measured staining times. Figure 5.12 shows the 

normalized results of the D. salina samples, and considering the times and standard 

deviation of the samples, 75% concentration and 15 minutes were chosen as the ideal 

concentration and time, respectively.   

 

Figure 5. 12.  Optimization of cell concentration of D. salina and the determination 

of Nile Red staining peak time. Each column symbolises the normalised value of every 

single concentration (100 (pure sample), 87.5, 75, 62.5, 50, 32.5, 25, 12.5 %) 
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5.2.3.2. Optimization of Nile Red concentration 

The second part of the Nile Red analysis is defining the optimum Nile Red 

concentration in order to use the same concentration for all algae samples. For this 

reason, the experiment was done as described in Section 5.4.1.2 and Figure 6.13 gives 

the result of this experiment. It is obvious that the Nile Red concentration, 0.64 µg ml-

1, has highest fluorescent intensity for 15 minutes. 

 

 

 

Figure 5. 13. Optimization of Nile Red dye concentration for staining 75% 

concentrated D. salina samples. Nile Red staining readings were taken at diverse times 

10, 15, 20, 25 and 30 minutes. The error bars symbolise the technical repeats (3 

replicates) of four stained and four unstained readings.  
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5.2.3.3.  Effect of wavelength shifting material on the lipid content 

The stress condition on the neutral lipid accumulation for this part of the project is 

changing the light intensity using different wavelength shifting materials. As explained 

in previous chapters, there are 3 different stress conditions i.e. increasing blue light 

intensity using Coumarin shifting material (convert UV to blue light), increasing the 

red light intensity using Bestoil 2G wavelength shifting material (convert green to red 

light) and increasing both light types using both shifting materials on each side of the 

reactor. The control experiment was under normal conditions without using any 

wavelength shifting material.  

The neutral lipid analysis of each stress experiment set up was done at the end of the 

experimental run; therefore, the final times vary (see Table 5.1) depending on reaching 

the stationary phase. However, the time is approximately 30 days for each run (29 days 

+/- 3 days). The sample concentration used was 75% as determined in Section 6.2.3.1 

and the Nile Red dye concentration used was 0.64 µg ml-1 as obtained in Section 

6.3.2.2. The highest fluorescence intensity was obtained with Coumarin shifting 

material (2486.58) in the shortest experiment time period (26 days).  On the other hand, 

Coumarin + 2G experimental run gives the lowest value with 267.08 fluorescence 

intensity. 

 

Table 5. 1Nile Red Fluorescence Intensity analysis of D. salina samples grown in 

1.5M NaCl medium. Each Nile Red analysis for each experimental run has 3 replicates 

of four stained and four unstained readings.  

 Control Coumarin 2G Coumarin + 2G 

Fluorescence Intensity  845 2486.58 515.33 267.08 

Total experiment days 32 26 31 29 
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Figure 5. 14. Standard addition Triolein concentration versus Nile Red fluorescence 

intensity calibration curve 

 

5.2.3.4. Correlation between OD and Cell Dry weight 

In order to determine the percentage neutral lipid in the D. salina cultures, correlation 

between OD and cell dry weight was done. It was also necessary to plot a Triolein 

(standard neutral lipid) curve (Figure 5.14) in addition to the dry weight curve (Figure 

5.15) so as to find out x values in the equation in both graphs and correlate them to 

each other which is explained in Chapter 5, materials and methods. By doing this 

correlation, the OD value of culture recorded every day, can be converted to optimized 

dry weight of the cells (mg /ml). After that, Triolein values will be divided by the dry 

weight and multiplied by 100 to get the percentage neutral lipid value. 

 

Figure 5. 15. Dry weight vs OD concentration calibration curve of D. salina 
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Depending on the dry weight vs OD graph, Figure 6.15, the optimum dry weight 

amount for 75% concentrated D. salina is 0.2312 µg ml-1 at OD 595 nm. Table 5.2 

shows the calculated neutral lipid amounts and the percentage lipid amounts for the 

four different growth conditions. From the table it can be said that the highest lipid 

amount is obtained using the Coumarin shifting material which is 0.31 µg ml-1.  

 

 
Table 5. 2. Accumulated lipid amount of D. salina at normal and different stressed 

conditions.  

Stress 

condition Day 

Fluorescent 

Intensity  

Concentration 

mg/ml 

Neutral 

Lipid 

amount 

µg/ml 

Percentage 

Lipid 

Amount 

CDW % 

Control 32 845.00 0.0247 0.1068 10.6766 

Coumarin 26 2486.58 0.0728 0.3142 31.4181 

2G 31 515.33 0.0151 0.0651 6.5112 

Coumarin + 2G 29 267.08 0.0078 0.0337 3.3746 
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5.2.4. Fluorescence Microscope images to monitor lipid droplets 

A )                  

B )            

C )         

D )          

 

Figure 5. 16. Fluorescence microscopy images (both bright field and coloured) of D. 

salina stained with Nile Red after growth under different light intensities using 

different wavelength shifting materials. A) D. salina cells grown under normal 

condition without using any wavelength shifting material. B) D. salina cells grown 

under stress condition with more blue light using Coumarin shifting material. C) 

D.salina cells grown under more red light using Bestoil 2G wavelength shifting 

material. D) D. salina cells grown under more blue and red light using both Coumarin 

and Bestoil 2G wavelength shifting materials. 
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The fluorescence microscope was used to visually confirm the neutral lipid 

accumulation in the D. salina cells as visually. The Figure 5.16 shows the neutral lipid 

droplets inside the D. salina cells under various growth conditions i.e. control, 

Coumarin shifting material, Bestoil 2G shifting material and both Coumarin and 

Bestoil 2G shifting materials. The images were taken as explained in Section 4.5 using 

a fluorescence microscope; the grey captures represent bright field images and the 

colourful captures represent red and green lightening images. The yellowish droplets 

inside cells indicate the lipid droplets and as can be seen from the Figure 6.16 B, using 

Coumarin wavelength shifting materials increases the neutral lipid droplets number 

inside the cell. On the other hand, green droplets were observed in the Bestoil 2G 

wavelength shifting material used culture. As reported by Kleinegris et al. (2010, 

Kleinegris et al., 2011) , this is caused by the presence of β-carotene.  

 

 

 

5.3. Discussion 

Owing to the high CO2 uptake properties of microalgae, they have been considered as 

an alternative way of reducing CO2 emissions from industry by capturing CO2 from 

factories flue gas. More microalgae growth results in more CO2 capture. For this 

reason, the objectives of this project are to enhance microalgae (D. salina) growth by 

introducing wavelength shifting materials to the airlift photobioreactor (ALB).  

Wavelength shifting materials were prepared with fluorophores Coumarin and Bestoil 

Orange 2G and applied on the wall of photobioreactor in order to shift the light.   

Since sunlight will be used as light source, the algae will be exposed to the UV light 

and PAR region at the same time. The effect of UV light on the living organisms has 

been reported many times by scientists. Exposure to ultraviolet radiation causes 

metabolic problems for photosynthetic organisms since the UV light is absorbed by 

the nucleic acids and proteins (White and Jahnke, 2002, Holzinger and Lütz, 2006). It 

is also responsible for photo inhibition by incorporating oxygen formation.  Moreover, 
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the green light is not absorbed by the algae absorption pigments. Therefore, it is 

beneficial to convert these harmful and unused wavelength ranges to useful ones.  

So far, some scientists have published work on how various light intensities effect the 

algae growth (see the table in Literature Review, Section 1.3.1). Furthermore, to this 

studies, Blair et al. (2014) published that Chlorella vulgaris cells have an improvement 

on the biomass production and growth rate under blue light (475nm) in comparison to 

green (510nm) and red (650nm) lights.  

This section of the project examined the effect of wavelength shifting materials on 

Dunaliella salina CCAP 19/30 with air supply (where only %0.03 CO2 is present) for 

bubbling inside cell culture flasks (as preliminary study) and 3L photobioreactor (as 

normal growth conditions inside a designed big black growth chamber). Based on the 

results obtained both after preliminary study (Sections 6.2.1.1 ) and the 3L 

photobioreactor ( Section 6.2.2 ), it is definitely clear that the Coumarin wavelength 

shifting material which converts the harmful UV light to the utilised blue light, 

accelerates the D. salina growth more compared to the other growth conditions ( 

control, green to red light conversion and both UV to blue and green to red conversion) 

with the final OD595nm values of 0.934 (12 days) and 1.01 ( 26 days) for preliminary 

study and 3L photobioreactor, respectively. In many microalgae species blue light 

serves for enzyme activation during the photosynthesis and regulates gene 

transcription; thus the algae growth is enhanced (Matthijs et al., 1996). Furthermore, 

both study set ups illustrated the harmful effect of UV light during the control 

experiment without using any wavelength shifting materials or UV filter glass. 

However, it is also shown that the algae can survive after a couple of days lag phase 

after shutting off the UV light for the 3 L photobioreactor when it adapts itself to the 

new environment (Mohsenpour et al., 2012) . This might be because Dunaliella 

species produce β-carotene when they are exposed to more UV-A light in order to 

protect the cell from photo inhibition (White and Jahnke, 2002). Another observation 

is that using both wavelength shifting materials was not as effective as expected in 

increasing algal growth. There are two possible reasons for this: first, the green to red 

wavelength shifting material does not give perfect absorption and emission features as 

expected for a good overlap with chlorophyll absorption wavelengths; and second, 
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there might be photoinhibition because of high light intensity using both shifting 

materials at the same time which might be eliminated using a  larger photobioreactor 

or doing some metabolic engineering to the light harvesting antennae (Hovel et al., 

1979, Melis, 2009). Also the growth under green to red light shifting materials and 

control experiments are lower compared to blue light. Such a difference in results may 

be due to the fact that green light causes an inhibitory effect because the photon has 

less energy than a blue photon (Gaytán-Luna et al., 2016). 

In order to further investigation higher algae growth under blue light, the Nile Red 

analysis and the screening of the Dunaliella cells under the fluorescent microscope 

were carried out. Depending on the findings in previous sections, it is concluded that 

these analyses also support the positive effects. Nile Red analysis shows the highest 

fluorescence intensity was obtained with Coumarin shifting material within 26 

cultivation days as 2486.58 and it is about three fold higher than the control 

experiment. Besides this, the fluorescent light microscope images also indicate that the 

lipid droplets inside the cells grown in the Coumarin shifting material applied reactor 

are more than the others (Figure 5.16). And also in Figure 5.16, the light microscope 

images showed clear orange globules, the green fluorescence again was detected i.e.  

D. salina stores secondary carotenoids (predominantly β-carotene) in lipid globules in 

the chloroplast when cultivated under stress conditions. When the cells are stressed, 

the red fluorescence from chlorophyll partly disappears as the thylakoid membranes 

are broken down. At the same time, the cells start to produce carotenoid globules and 

green fluorescence appears simultaneously (Kleinegris et al., 2010, Kleinegris et al., 

2011).  

After the correlation of dry weight with the Nile Red analysis, it is concluded that the 

Coumarin shifting material applied reactor produce the most neutral lipid with the 

value 0.31 µg ml-1 which is about 31.42% lipid as a percentage of dry weight. 

Bubbling technology is an important parameter for the algae growth in order to 

prevent O2 accumulation and obtain well mixed cell and gas distribution inside the 

reactor. Therefore, an airlift photobioreactor was used for all large scale experiments. 

However, in the preliminary study, fine bubble supply to the system was investigated 
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in the second part of the initial experiments and the analysis indicates that 

incorporating fine bubbles in the system results in a more than double augmentation 

in algae growth. 

Consequently, introducing wavelength shifting materials to the growth system 

increases the algal growth with UV to blue light conversion had the greater effect 

which was more than previously reported for the wavelength shifting materials and 

control conditions. Additionally, bubbling technology enhances the growth. Therefore, 

using both technologies at the same time for algae growth can provide even greater 

efficiency gains for algal biomass production. 
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6.1. Introduction 

Similar to terrestrial plants, microalgae are also valuable living organisms for CO2 

fixation since they are the original CO2/O2 exchangers and initial biomass producers 

on the world (Pulz, 2001, Mohsenpour and Willoughby, 2016). CO2 is an important 

driving force for algal photosynthesis as it is the main carbon source for RuBP 

carboxylation as explained in Section 1.2.1 (photosynthesis in microalgae). Much 

research has been done on how the amount of CO2 affects microalgae growth; Ying et 

al. (2014)studied the effect of dissolved CO2 amount on D. salina applying 3 different 

CO2 concentrations (5%, 20% and 50%) and found out that extreme CO2 levels (50%) 

cause inhibition of photosynthesis and becomes fatal for the algae species. Moreover, 

another study completed by Mohsenpour and Willoughby (2016) was on the effects of 

the diverse algae culture condition using pure air (0.03% CO2), 5% and 15% CO2 

supply, and they concluded that the highest biomass content was obtained with 5% 

CO2 aeration and at 15% growth at early stage is inhibited making the media more 

acidic. 

The aim of this chapter is to show the effect of CO2 supply on the system for D. salina 

CCAP 19/30 growth. Therefore, gas mixtures with different percentages of CO2 

(balanced with air) were introduced to the photobioreactor. The D. salina growth was 

initially measured using the 1% CO2, then the 5% CO2 was checked. After that 10% 

CO2 was supplied since it is the closer to the levels found in fossil fuel power station 

fuel gas (~15% CO2) and finally growth with 0.5% CO2 was examined. In order to 

carry out the experiments the same 3L flat plate photobioreactor set-up explained in 

Figure 3.7 in Section 3.4.3. The wavelength tuning materials were also the same 

resulting in the same absorption and the emission spectrum was given in Figure 5.1 in 

Chapter 5. The reactors for the each experimental set up was inoculate using a 14 days 

old D. salina culture growth in a flask in the 25oC growth room, H floor of MBB and 

the initial concentration of each reactor was arranged to OD 0.069 at 595nm. Every 

day, 1ml of sample was taken from the bottom of the reactor and the OD was measured 

at 595nm to discover the growth pattern of the D. salina. At the end of the experiment 

which is the stationary phase, approximately 400ml of the sample was taken to be used 
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in Nile red lipid analysis (see Section 4.4) and Fluorescent microscope imaging (see 

Section 4.5) as described in Chapter 4, Materials and Methods. 

 

6.2. Results of Dunaliella salina growth with CO2 supply 

Dunaliella salina 19/30 CCAP was grown in an 3L airlift photobioreactor for the all 

experiments described in this chapter. The reactor was put inside a large black chamber 

designed by the author to control the illumination available to the algae and the features 

of this chamber and the accessories used for the set-up are shown in Chapter 4, Section 

4.7.4 Algal Growth System Set-up. Initially four experiments were run with 1% CO2 

including a Control, UV to blue wavelength tuning (Coumarin – PDMS wavelength 

shifting material was used), green to red wavelength tuning (Bestoil Orange 2G – 

PDMS wavelength shifting material was used) and finally both UV to blue and green 

to red wavelength tuning.  

 

 

Figure 6. 1. Growth Curves of 1% CO2 supplied control and coated reactors. The 

Control was measured without any wavelength shifting materials and only with white 

light; UV to blue wavelength tuning is measured with only Coumarin 1 material and 

both UV and white lights on; green to red wavelength tuning is measured with only 

Bestoil Orange 2G material and only white light on; and for the final one both 

Coumarin 1 and Bestoil Orange 2G materials were used with both lights on. 
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6.2.1. D. salina growth in 3L photobioreactor with 1% CO2 supply  

As initial experiment for the CO2 dosing to the system, 1% CO2 balanced with air was 

used. 4 experimental runs were carried out in a similar manner to the air supply 

experiments explained in Section 5.2.2. Each experimental run continues 

approximately 14 days until reach the stationary phase which is almost half time of the 

air supplied experiments. Figure 6.1 demonstrates the growth pattern of each set-up 

which provides proof that Coumarin wavelength tuning actively assists algae 

generation. The maximum OD values are recorded as 0.68, 0.914, 0.522 and 0.638 at 

595nm for control, UV to blue wavelength tuning film, green to red wavelength tuning 

film and both wavelength material, respectively. These results mean that in 

comparison to the control, there is a 25% increase in the final OD growth increments 

for UV to blue wavelength tuning. These results support the key hypothesis of this 

thesis and also Figure 6.2 supports the growth curve data by illustrating the high 

density in the algal culture for UV to blue wavelength tuning.  

 

Figure 6. 2. Images of the experimental runs at the starting and final days: (a) Control, 

(b) UV to blue wavelength tuning, (c) green to red wavelength tuning (d) and both UV 

to blue and green to red wavelength tuning.  
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6.2.1.1.  Neutral Lipid determination of 1% CO2 supplied D. salina growth using Nile Red 

As explained in previous chapters, there are 3 different stress conditions and the neutral 

lipid analysis of each stressed experiment set up were done at the end of the 

experimental run, in this case at day 14 (see Table 6.1). The sample concentration was 

75% as determined in Section 5.2.3.1 and the optimum Nile Red dye concentration 

was used as 0.64 µg ml-1 as obtained in Section 5.3.2.2. The highest fluorescence 

intensity was obtained with the Control experiment as 207.58 despite the Coumarin 

showing the highest growth OD.  On the other hand, Coumarin experimental run gives 

the lowest value with 81.33 fluorescence intensity. Thus, the highest percentage lipid 

amount, 2.62 % (0.0262 µg ml-1), was obtained for the Control experiment on the 

contrary to the results observed for the air supplied experimental results.  

 

Table 6. 1. Nile Red Fluorescence Intensity analysis and accumulated lipid amount of 

1% CO2 supplied Dunaliella salina samples grown in 1.5M NaCl medium. Each Nile 

Red analysis for each experimental run has 3 replicates of four stained and four 

unstained readings. 

1 % CO2  

Stressed condition Day 

Fluorescent  

Intensity  

Concentration  

mg/ml 

Neutral  

Lipid 

amount 

µg/ml 

Percentage 

 Lipid 

 Amount 

 CDW % 

Control 14 207.58 0.0061 0.0262 2.6228 

Coumarin 14 81.33 0.0024 0.0103 1.0277 

2G 14 164.92 0.0048 0.0208 2.0837 

Coumarin + 2G 14 222.42 0.0065 0.0281 2.8102 
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6.2.1.2. Monitoring lipid droplets 1% CO2 supplied D. salina with fluorescence microscope 

images 

A )            

B )            

C )          

D )         

Figure 6. 3. Fluorescence microscopy images (both bright field and coloured) of 1% 

CO2 supplied Dunaliella salina CCAP 19/30 stained with Nile Red after growth under 

different light intensities using different wavelength shifting materials. A) D. salina 

cells grown under normal condition without using any wavelength shifting material. 

B) D. salina cells grown under stress condition with more blue light using Coumarin 

shifting material. C) D. salina cells grown under more red light using Bestoil 2G 

wavelength shifting material. D) D. salina cells grown under more blue and red light 

using both Coumarin and Bestoil 2G wavelength shifting materials. 
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The fluorescence microscope images visually illustrate the neutral lipid accumulation 

in the D. salina cells. Figure 6.3 shows the neutral lipid droplets inside the 1% CO2 

supplied D. salina cells under various growth conditions. The images were taken as 

explained in Section 4.5 using a fluorescence microscope; the greyscale images 

represent bright field images and the colour images represent red and green 

fluorescence. The yellowish droplets inside the cells indicates the lipid droplets and as 

can be seen from Figure 6.3 A, Control experiment has more and smaller neutral lipid 

droplets number inside the cell which is also confirms the Nile Red and biomass 

correlation analysis in Section 6.2.1.1. On the other hand, greenish droplets were 

observed both in culture grown under the Control and Coumarin wavelength shifting 

conditions. As reported by Kleinegris et al. (2010, Kleinegris et al., 2011) , this green 

light is caused by β-carotene accumulation inside the cell.  

 

 

6.2.2. D. salina growth in 3L photobioreactor with 5% CO2 supply 

For the second experimental set the CO2 dosing to the system was increased to 5% 

CO2 balanced with air. As before, 4 experimental runs were carried out as explained 

in Section 6.2.1. Figure 6.4 shows the growth curve of each set-up and again the growth 

increment when using the Coumarin film for wavelength tuning can be seen. The 

maximum OD values are recorded as 0.705, 0.939, 0.5725 and 0.6345 at 595nm for 

control, UV to blue wavelength tuning film, green to red wavelength tuning film and 

both wavelength material, respectively. These results mean that in comparison to 

control, there is a 25% increase in the final OD for UV to blue wavelength tuning. 

These results support the hypothesis of this thesis and also the Figure 6.5 supports the 

conclusion from the growth curve. The high density in the algal culture for UV to blue 

wavelength tuning as D. salina biomass is further illustrated by the observed 

attachment of algae onto the reactor wall can be seen in the photos. On the other hand, 

each experimental run continues approximately 15 days until reach the stationary 

phase which is almost half time of the air supplied experiments but is the same as for 

the 1% CO2 supplied D. salina growth. 
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Figure 6. 4. Growth Curves of 5% CO2 supplied control and coated reactors. Control 

is done without wavelength shifting materials and only with white light; UV to blue 

wavelength tuning is done with only Coumarin 1 material and both lights on; green to 

red wavelength tuning is done with only Bestoil Orange 2G material and only white 

light on; and for the final one both Coumarin 1 and Bestoil Orange 2G materials were 

used with both lights on. 
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Figure 6. 5. Images of the experimental runs at the starting and final days: (a) Control, 

(b) UV to blue wavelength tuning, (c) green to red wavelength tuning (d) and both UV 

to blue and green to red wavelength tuning. 

 

 

 

6.2.2.1.  Neutral Lipid determination of 5% CO2 supplied D. salina growth using Nile Red 

The neutral lipid analysis of the 3 stress conditions was again done at the end of the 

experimental run, after 15 days ±1 (see Table 6.2). The sample concentration was 75% 

as determined in Section 5.2.3.1 and the optimum Nile Red dye concentration was 0.64 

µg ml-1 as obtained in Section 5.3.2.2. The highest fluorescence intensity was obtained 

with Coumarin shifting material at 180.75 and agrees with the Coumarin showing 
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highest growth OD.  On the other hand, 2G experimental run gives the lowest value 

with 82.92 fluorescence intensity. Thus, the highest percentage lipid amount, 2.28 % 

(0.0228 µg ml-1), was obtained for the Coumarin experiment which is contrary to the 

results found for 1% CO2 supplied experimental results. In addition, this results agrees 

with the OD growth pattern of the diverse wavelength shifting material used 

experiments.   

 

 

Table 6. 2. Nile Red Fluorescence Intensity analysis and accumulated lipid amount of 

5% CO2 supplied Dunaliella salina samples grown in 1.5M NaCl medium. Each Nile 

Red analysis for each experimental run has 3 replicates of four stained and four 

unstained readings. 

5 % CO2  

Stressed 

condition Day 

Fluorescent 

Intensity  

Concentration 

mg/ml 

Neutral 

Lipid 

amount 

µg/ml 

Percentage 

Lipid 

Amount 

CDW % 

Control 15 109.67 0.0032 0.0139 1.3856 

Coumarin 16 180.75 0.0053 0.0228 2.2838 

2G 14 82.92 0.0024 0.0105 1.0477 

Coumarin + 2G  15 63.83 0.0019 0.0081 0.8065 
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6.2.2.2. Monitoring lipid droplets 5% CO2 supplied D. salina with fluorescence microscope 

images 

The fluorescence microscope images, in Figure 6.6, are used to show the visual neutral 

lipid accumulation in the 5% CO2 supplied Dunaliella salina cells under various 

growth conditions. As in previous experiments, the images were taken as in Section 

5.5 using a fluorescence microscope; the greyscale image represents the bright field 

images and the coloured images represent the red and green fluorescence images. 

Although the lipid droplet images are not very clear because of the smashed cell view 

due to harsh addition of lamella or vigorous mixing during sample preparation, the 

yellowish droplets inside cells can be seen from the Figure 6.6. It can be said that the 

cells from the Coumarin shifting material used experiment have more numerous and 

smaller sized neutral lipid droplets number inside the cells compared to other 

experimental runs. This also certifies the highest Nile Red and biomass accumulation 

of Coumarin as demonstrated in Section 6.2.2.1. On the other hand, shining green 

droplets caused by the β-carotene accumulation inside the cell were distinctively 

observed in the Coumarin + 2G wavelength shifting material used culture (Figure 6.6 

D) (Kleinegris et al., 2010, Kleinegris et al., 2011). 
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A )         

 

B )           

 

C)           

D )        

Figure 6. 6. Fluorescence microscopy images (both bright field and coloured) of 5% 

CO2 supplied Dunaliella salina CCAP 19/30 stained with Nile Red after growth under 

different light intensities using different wavelength shifting materials. A) D. salina 

cells grown under normal condition without using any wavelength shifting material. 

B) D. salina cells grown under stress condition with more blue light using Coumarin 

shifting material. C) D.salina cells grown under more red light using Bestoil 2G 

wavelength shifting material. D) D. salina cells grown under more blue and red light 

using both Coumarin and Bestoil 2G wavelength shifting materials. 
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6.2.3. D. salina growth in 3L photobioreactor with 10% CO2 supply 

The third experimental set for the CO2 dosing to the system, 10% CO2 balanced with 

air was used. After getting the results of the previous CO2 supply experiments, this 

time only control and Coumarin wavelength shifting material applied experiments 

were performed as explained in Section 6.2.1. The 2G and Coumarin+2G experiments 

were considered unnecessary because they repeatedly showed worse results compared 

to control experiment in the previous CO2 experiment. This is thought to be due to the 

Bestoil 2G/PDMS wavelength shifting material not showing effective 

absorption/emission performance owing to aggregation within the film resulting 

scattering of the light and poor overlap of the 2G emission spectrum with the 

chlorophyll absorbance spectrum. Figure 6.7 shows the growth curve of each set-up 

and the maximum OD values are recorded as 0.7085 and 0.936 at 595nm for control 

and UV to blue wavelength tuning film, respectively. These results are also proof of 

growth increment when Coumarin wavelength tuning material is used and it means 

that in comparison to the control, there is approximately a 24% increase in the final 

OD for UV to blue wavelength tuning. Figure 6.8 supports the growth curve by 

illustrating high density in the algal culture for UV to blue wavelength tuning as D. 

salina biomass attachment on the reactor wall can be seen from the photos. 

Furthermore, each experimental run continued for 16 days until reaching the stationary 

phase which is about half the time of the air supplied experiments and but the same as 

previous CO2 supplied D. salina cultures.  

 

Figure 6. 7. Growth Curves of 10 % CO2 supplied control and coated reactors. Control 

is done without wavelength shifting materials and only with white light; UV to blue 

wavelength tuning is done with only Coumarin 1 material and both light on. 
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Figure 6. 8. Images of the experimental runs at the starting and final days: (a) Control, 

(b) UV to blue wavelength tuning. 

 

 

Table 6. 3. Nile Red Fluorescence Intensity analysis and accumulated lipid amount of 

10% CO2 supplied Dunaliella salina samples grown in 1.5M NaCl medium. Each Nile 

Red analysis for each experimental run has 3 replicates of four stained and four 

unstained readings. 

10 % CO2  

Stressed 

condition Day 

Fluorescent 

Intensity  

Concentration 

mg/ml 

Neutral 

Lipid 

amount 

µg/ml 

Percentage 

Lipid 

Amount 

CDW % 

Control 16 70.83 0.0021 0.0089 0.8950 

Coumarin 16 76.92 0.0023 0.0097 0.9718 
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6.2.3.1.  Neutral Lipid determination of 10% CO2 supplied D. salina growth using Nile Red 

The neutral lipid analysis of control experiment and stress condition were done at the 

end of the experimental run, after 16 days in this case. The sample concentration used 

was 75% as determined in Section 5.2.3.1 and the optimum Nile Red dye concentration 

was 0.64 µg ml-1 as obtained in Section 5.3.2.2. As the Table 7.3 indicates the Nile 

Red analysis results, higher fluorescence intensity was obtained with Coumarin 

shifting material as 76.92 as expected since the Coumarin showed highest growth OD.  

Thus, the highest percentage lipid amount, 0.8950 % (0.0089 µg ml-1), was obtained 

for the Coumarin experiment. In contrast to the previous 5% CO2 supplied experiment 

results, this time the obtained lipid amount as well as the percentage lipid 

concentrations were very low. This might be because the acidity amount of the culture 

due to the CO2 amount may increase the β-carotene amount instead of the neutral lipid. 

 

 

 

6.2.3.2. Monitoring lipid droplets 10% CO2 supplied D. salina with fluorescence microscope 

images 

The fluorescence microscope images, Figure 6.9, illustrate the neutral lipid 

accumulation visually in the 10% CO2 supplied D. salina cells under control and 

Coumarin wavelength shifting material growth conditions. The images were captured 

as in Section 4.5 using fluorescence microscope like previous experiments; the 

greyscale images represent bright field images and the coloured images represent red 

and green fluorescence images. Although the images of control experiments are not 

very clear because of the smashed cell view due to the harsh addition of lamella or 

vigorous mixing during sample preparation, the lipid droplets inside the cells of all 

experimental run can be seen from the Figure 6.9. It is clear that there are a greater 

number of smaller sized neutral lipid droplets inside the cells of Coumarin shifting 

material experiment as more compared to the control runs which also supports the 

higher Nile Red and biomass accumulation of Coumarin in Section 6.2.3.1. 
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Nevertheless, both experimental set-up result in shining green droplets instead of 

desired yellowish droplets (neutral lipid) which is caused by the β-carotene 

accumulation inside the cell. 

 

 

A )          

 

B )          

            

Figure 6. 9. Fluorescence microscopy images (both bright field and coloured) of 10 % 

CO2 supplied Dunaliella salina CCAP 19/30 stained with Nile Red after growth under 

different light intensities using different wavelength shifting materials. A) D. salina 

cells grown under normal condition without using any wavelength shifting material. 

B) D. salina cells grown under stress condition with more blue light using Coumarin 

shifting material. 
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6.2.4. D. salina growth in 3L photobioreactor with 0.5% CO2 supply 

The final experimental set for the CO2 dosing to the system, 0.5% CO2 balanced with 

air was used. As for 10% CO2 supply experiments, only control and Coumarin 

wavelength shifting material applied experiments were performed as explained in 

Section 6.2.1. For the same reason as explained in Section 6.2.3, 2G and Coumarin+2G 

experiments were not done. So, Figure 6.10 gives the result of Control and Coumarin 

wavelength shifting material growth curves and the maximum OD values are recorded 

as 0.7095 and 0.931 at 595nm for control and UV to blue wavelength tuning film, 

respectively. These results again prove the growth increment when wavelength tuning 

material are used and it means that in comparison to control, there is approximately a 

24% increase in the final OD for UV to blue wavelength tuning much the same as for 

10% CO2 experiments. The images in Figure 6.11 support the evidence from the 

growth curve by showing the high density in the algal culture for UV to blue 

wavelength tuning as D. salina and biomass attachment on the reactor wall above the 

culture. Also shown in Figure 6.11(b) is the blue light emitted from the Coumarin 

wavelength shifting material demonstrating it is emitting blue light efficiently after 

absorbing the UV light. Furthermore, each experimental run continued for 15 days 

until reaching the stationary phase which is also about half the time period of the air 

supplied experiments but similar to previous CO2 supplied D. salina cultures.  

 

Figure 6. 10. Growth Curves of 0.5% CO2 supplied control and coated reactors. 

Control is done without wavelength shifting materials and only with white light; UV 

to blue wavelength tuning is done with only Coumarin 1 material and both light on. 
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Figure 6. 11. Images of the experimental runs at the starting and final days: (a) 

Control, (b) UV to blue wavelength tuning,  

 

 

6.2.4.1.  Neutral Lipid determination of 0.5% CO2 supplied D. salina growth using Nile Red 

The neutral lipid analysis of the control experiment and the UV to blue light stress 

condition were performed at the end of the experimental run, after 15 days. The sample 

concentration was 75% as determined in Section 5.2.3.1 and the optimum Nile Red 

dye concentration was 0.64 µg ml-1 as obtained in Section 5.3.2.2. Table 6.4 displays 

the Nile Red analysis results; higher fluorescence intensity was achieved with 

Coumarin shifting material as 58.17 as expected since the Coumarin showed higher 

growth OD.  Thus, the highest percentage lipid amount, 0.7349 % (0.0073 µg ml-1), 

was obtained for the Coumarin experiment. Similar to the previous 10% CO2 supplied 
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experiment results, obtained lipid amount as well as the percentage lipid 

concentrations were very low, too. This might be because the supplied CO2 amount is 

not enough to produce neutral lipid.  

 

Table 6. 4. Nile Red Fluorescence Intensity analysis and accumulated lipid amount of 

10% CO2 supplied Dunaliella salina samples grown in 1.5M NaCl medium. Each Nile 

Red analysis for each experimental run has 3 replicates of four stained and four 

unstained readings. 

0.5 % CO2  

Stressed 

condition Day 

Fluorescent 

Intensity  

Concentration 

mg/ml 

Neutral 

Lipid 

amount 

µg/ml 

Percentage 

Lipid 

Amount 

CDW % 

Control 15 26.08 0.0008 0.0033 0.3296 

Coumarin 15 58.17 0.0017 0.0073 0.7349 

 

 

6.2.4.2. Monitoring lipid droplets 0.5% CO2 supplied D. salina with fluorescence microscope 

images 

The fluorescence microscope images, Figure 6.12, gives the visual neutral lipid 

accumulation in the 0.5% CO2 supplied D. salina cells under control and Coumarin 

wavelength shifting material growth conditions. The images were captured as in 

Section 4.5 using fluorescence microscope like previous experiments; the greyscale 

image represent bright field images and the coloured image represent red and green 

fluorescence images. The yellowish lipid droplets inside cells of all experimental run 

can be seen in Figure 6.12, though there are some green lipid droplets in both control 

and Coumarin samples owing to the accumulated β-carotene.  It is clear that the neutral 

lipid droplets are more numerous and smaller sized inside the cells of Coumarin 

shifting material experiment compared to control runs which also supports the higher 

Nile Red and biomass accumulation in the Coumarin experiment.  
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A )       

 

B )        

Figure 6. 12. Fluorescence microscopy images (both bright field and coloured) of 0.5 

% CO2 supplied Dunaliella salina CCAP 19/30 stained with Nile Red after growth 

under different light intensities using different wavelength shifting materials. A) D. 

salina cells grown under normal condition without using any wavelength shifting 

material. B) D. salina cells grown under stress condition with more blue light using 

Coumarin shifting material.  
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Figure 6. 13. Dunaliella salina growth with diverse percentages of CO2 supply (0.5%, 

1%, 5% and 10%). Control is done without wavelength shifting materials and only 

with white light; UV to blue wavelength tuning is done with only Coumarin 1 material 

and both lights on; green to red wavelength tuning is done with only Bestoil Orange 

2G material and only white light on; and for the final one both Coumarin 1 and Bestoil 

Orange 2G materials were used with both light on. 
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6.3. Discussion 

Since high CO2 uptake property of D. salina was stated in the literature (Ying et al., 

2014, Zimmerman et al., 2011), it was decided to examine different CO2 

concentrations for the D. salina growth over fairly short time periods in order to be 

used as an alternative way of decreasing CO2 emissions released by factory chimneys. 

Hence, the aim of the current thesis is improving microalgae, D. salina, growth by 

coating the airlift photobioreactor (ALB) with wavelength shifting materials with an 

optimum CO2 supply. For this reason, wavelength shifting materials were prepared 

with fluorophores Coumarin and Bestoil Orange 2G and applied on the wall of 

photobioreactor in order to shift the light (see Chapter 4, materials and methods) and 

the different CO2 concentrations were dosed (air (0.03% CO2) 0.5%, 1%, 5% and 10%) 

to the system.    

As proposed in thesis goal, sunlight will be used as a light source for photosynthesis, 

so the D. salina will be exposed to both the UV light and PAR region simultaneously. 

Exposure to the ultraviolet radiation causes metabolic problems for organisms since 

the UV light is absorbed by the nucleic acids and proteins (White and Jahnke, 2002, 

Holzinger and Lütz, 2006). It is also responsible for photo inhibition by incorporating 

oxygen formation.  Moreover, the green light is not absorbed by the algae absorption 

pigments. Therefore, it is beneficial to convert these harmful and unused wavelengths 

to useful ones. The effect of light intensities on algae growth has been studied by some 

scientists (Blair et al., 2014, Wondraczek et al., 2013, Delavari Amrei et al., 2014) (see 

the table in Literature Review, Section 1.3.1 for further information). Moreover, the 

effect of increased blue and red light on D. salina growth was examined and the results 

were given in previous Chapter. 

Under saturated light intensities, the rate of CO2 supply is vital for photosynthesis of 

microalgae because CO2 is major source for the carboxylation of RuBP. Some studies 

were done by Mohsenpour and Willoughby (2016)and Ying et al. (2014) to show the 

effect of CO2 concentration supplied to the system. They agreed that excess CO2 

amount (amount depending on the Algae species) has a fatal effect on the microalgae 
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growth. In this chapter, results are presented for the effects of the 0.5%, 1%, 5% and 

10% CO2 supply to the D. salina growth system inside the 3L photobioreactor. 

The experimental results of each CO2 concentration were given in the previous 

sections; on the other hand, Figure 7.13 gives the comparison of effect of each 

wavelength tuning materials at different CO2 dosing. As it is seen from the graphs, all 

the stress conditions and the control experiments has the similar pattern for OD growth 

curve. Furthermore, the growth period was decreased to half the time compared to the 

air supplied D. salina growth given in the previous chapter. Also, the high algal density 

cultures of the Coumarin material (UV to blue wavelength shifting) were shown 

visually by giving the initial and the final photos of the reactor. As reported in the 

literature, in many microalgae species blue light serves for the enzyme activation 

during photosynthesis and regulates the gene transcription; thus the algae growth is 

enhanced (Matthijs et al., 1996, Mohsenpour and Willoughby, 2016), our experiments 

also give  similar results to this literature explanation.   

In order to further investigate the higher algae growth under blue light, the Nile Red 

analysis and the screening of the Dunaliella cells under fluorescent microscope were 

carried out. According to the findings reported in the previous sections, it is concluded 

that these analyses also support the growth experiments. Nile Red analysis shows the 

highest fluorescence intensity was obtained with Coumarin shifting material except 

from 1% CO2 dosing. Also, the accumulated lipid amounts in the cells are shown in 

Figure 6.14. These summarized results of the lipid amounts indicate that Coumarin 

wavelength shifting materials best result for all CO2 dosing except 1% CO2 supplied 

one. Besides this, the fluorescent light microscope images also indicate that the lipid 

droplets inside the cells grown in Coumarin shifting material applied reactors are 

greater in number and smaller in size compared to the other stressed conditions and 

the control reactors. (Figure 6.3, 6.6, 6.9 and 6.12). And also, the fluorescence 

microscope images illustrated clear orange globules, the green lipid droplets were 

again detected indicating the D. salina stores secondary carotenoids (mainly β-

carotene) in lipid bodies inside the chloroplast while cultivated under stress conditions. 

The red fluorescence emitted from chlorophyll vanishes because the thylakoid 

membranes are destroyed under stress condition. The cells, simultaneously, start to 
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generate carotenoids and green fluorescence appears at that time (Kleinegris et al., 

2010, Kleinegris et al., 2011).  

All in all, coating the reactor with wavelength shifting materials and dosing the 

CO2 to the growth system increases the algal growth as well as decreases the 

experiment run time.  

 

Figure 6. 14. Accumulated lipid amount of different CO2 supplied (0.5%, 1%, 5% and 

10%) Dunaliella salina samples grown in 1.5M NaCl medium depending on the 

correlation with Nile Red Fluorescence Intensity. Each analysis for each experiment 

has 3 replicates of four stained and four unstained readings. 
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7.1. CONCLUSION 

Each year, more than 80% of global energy is generated from fossil fuels; thus the CO2 

production increases a lot and is now higher than 24 gigatons annually (Hill et al., 

2006, Melis, 2009). Therefore, it contributes to climate change, global warming and 

damages the world in which we live. Using a variety of renewable energy technologies 

is seen as the solution to this crisis, and biomass is one such technology. So far, 

researchers have mainly focused on producing fuel from first generation sources such 

as energy crops; however, the limitations of food storage for humanity and the lack of 

arable land availability makes it unsustainable and non-ecological. Consequently, new 

sources should be researched to protect the world, and microalgae is a very good option 

not only to produce biofuels as a third generation feedstock but also to reduce the CO2 

emissions via photosynthesis. As a result of algal growth, valuable biochemicals 

(e.g.hydrocarbons and lipids) are generated which can be used as food sources (for 

human, aquaculture and agriculture), biofuels, pharmaceuticals and for cosmetic 

applications. Algae were first used for commercial purposes in the 1940’s as a source 

of food and biochemicals (Borowitzka et al., 1984). 

Microalgae are photoautotrophic organisms which require light as an energy source to 

grow. This light is absorbed by the antenna complex which is made up chlorophyll and 

carotenoids pigments in green algae (see Literature review section 2.2.1 for more 

information) and then converted into chemical energy (ATP and NADPH) via electron 

transfer from reaction centres. Normally, green microalgae (e.g. D. salina) will absorb 

light in the ranges of 450– 475 nm (blue light) and 630–675 nm (red light) (Gaytán-

Luna et al., 2016). If the absorbed light is too weak, photosynthesis cannot work 

efficiently and etiolation (loss of pigments) may occur. On the other hand, if the light 

is too intense, then oxygen radicals are generated which causes photo inhibition. Both 

possibilities significantly limit primary biomass productivity, see Section 2.2.2 for 

more information about photosynthesis limitation factors (Darko et al., 2014, Chen 

and Blankenship, 2011, Nakajima and Ueda, 1997). By using fluorophores in the D. 

salina growth with suitable excitation/emission properties, the light conditions for 

microalgae can be adjusted to match the absorption spectra of chlorophyll, in this way 
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microalgae can increase their photosynthetic activity (Xia et al., 2013, Mohsenpour et 

al., 2012). 

As a consequence of the above mentioned criteria, the aim of this thesis was to develop 

an improved PBR design by coating it with wavelength shifting materials and by 

pumping in an optimum amount of CO2 gas to the system to enhance the D. salina 

growth and biomass production (shorter time and denser culture). Thus, optimized 

wavelength shifting materials, made from organic dyes (Coumarin 1 for UV light to 

blue light conversion and Bestoil Orange 2G for green light to red light conversion) 

and PDMS (polymeric matrix) were tested.  Moreover, bubbling from the bottom of 

the reactor was used to increase mass transfer and reduce O2 accumulation and increase 

the mixing of growth medium.  

In order to achieve our goals, the first step in the project was optimizing the wavelength 

shifting materials using various combinations of fluorophores, solvent and polymer 

matrixes. Chapter 2, Fabrication of wavelength shifting materials, explains how 

wavelength shifting materials used were produced and presents the absorption and 

emission spectra of the materials produced. The solvent/fluorophore/ polymer mixture 

graphs showed that the THF is the best solvent to dissolve both fluorophores and the 

polymers. From the spectrum patterns of the materials, it is obvious that the Coumarin 

is the best UV to blue light shifter which demonstrates the best overlap of the emission 

with the absorption spectrum of the D. salina chlorophyll pigments. Both Coumarin 

films produced either by spin coating or PDMS curing gave a similar spectrum, but 

PDMS curing was preferable because of the ease application to the 3L photobioreactor. 

However, Bestoil Orange 2G showed problems of light scattering and non-uniform 

material production. Figure 2.17 in Section 2.3.1.2 demonstrates that the material 

produced forms at different concentration. A uniform and clear material can be 

obtained with lower concentration but the absorption is low in that case. All in all, 

optimized wavelength shifting materials based on the absorption and emission spectra 

were used for the further D. salina growth experiment. Although, it is not shown inside 

the chapters, multi layered material production using sol-gel method was also tried to 

form better shifting material; however, we faced some problems during the 

experiments which needs further investigations. Producing second layer with spin 
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coating was successful but the next layers were come off when the third and fourth 

layer production was tried.  

The next step, which is explained in Chapter 3, was the designing the small scale and 

3L photobioreactor. The reactor designed by Krys Bangert (Bangert, 2013)was used 

as the basis of the 3L photobioreactor and other modification depending on the aim of 

D. salina growth for this thesis. And the scheme of the experimental set-up was shown 

in Figure 3.7. Considering the dye toxicity and the solubility of the material and the 

reflection problem, wavelength shifting materials were coated outside the reactors. As 

it is hypothesized that the supplemented blue light is activating cryptochrome (enzyme 

activation), a blue-light photoreceptor that mediates reduction of hypocotyl length in 

seedlings and it is well known for opening the stomata in plants; and also the red light 

enhancing the efficiency of the photosynthesis reaction centres (Matthijs et al., 1996). 

It would be beneficial to use both wavelength shifting materials at the same time for 

the D. salina growth (Darko et al., 2014, Wang et al., 2010).  Initially, 50ml cell culture 

flasks were used and then scaled up to the designed 3L photobioreactor. The initial 

studies with small cell culture flasks (Chapter 5, Section 5.2.1) showed that the 

Coumarin shifting material which tunes the UV light to the blue light has the maximum 

OD growth value as 0.934 at 595nm which was a 17.6% growth increment for growth 

with a UV to blue wavelength tuning film compared to the control experiment (no 

wavelength shifting material). On the other hand, the importance of better medium 

mixing to achieve high cell concentration, avoiding cell attachment to the walls inside 

the PBR has been indicated in many articles. Good mixing can keep the cells in 

suspension, help nutrient distribution, decrease the shading and improve gaseous 

exchange by increasing area to volume ratio to let more light exposure to more algae 

cells (Al-Mashhadani et al., 2015, Lee and Palsson, 1994). Therefore, initial studies 

with fine bubbles were also carried out in the small cell culture flasks and it was seen 

that the bubbling doubled the algal biomass produced.  

Furthermore, in Chapter 5, large scale D. salina cultures in the 3L photobioreactor 

with air supply were investigated. According to the results in Sections 5.2.2., 5.2.3 and 

5.2.4, tests with the Coumarin wavelength shifting materials produced the highest 

biomass with a final OD595nm value of 1.01 (26 days) among all other growth 
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conditions. Applied Nile Red analysis and the screening of the Dunaliella cells under 

fluorescent microscope showed that the highest fluorescence intensity was obtained 

with Coumarin shifting material (2486.58) and this correlated with the high biomass 

of the cultures grown with a Coumarin film. The fluorescence value is about three fold 

higher than the nearest high growth, control experiment. The fluorescent light 

microscope images also supported the result by showing that the lipid droplets inside 

cells grown in the reactor with Coumarin shifting material applied were more than the 

others (Figure 5.16). Moreover, the correlation of dry weight with the Nile Red 

analysis, showed that the reactor with Coumarin shifting material applied produced the 

most neutral lipid at 0.31 µg ml-1 which is about 31.42% lipid.  

Additionally, both studies set up in Chapter 5 illustrated the harmful effect of UV light 

during the control experiment without using any wavelength shifting materials or UV 

filter glass. However, it is also shown that the algae can grow again after a few days 

lag phase once the UV light was switched off. These findings agreed with the reports 

saying that UV radiation has a detrimental effect on the living cells by affecting the 

DNA (Mohsenpour et al., 2012, Holzinger and Lütz, 2006, White and Jahnke, 2002). 

Also, it was noted that the extended UV light exposure changes the colour and function 

of the Coumarin wavelength shifting materials. The shifting material faded after about 

6 months of use and needed to be renewed. The fading of the dyes when exposed to 

the sunlight were reported by Hovel et al. (1979).  

The final step of the work described in this thesis was investigating different dosages 

of CO2 (air i.e.0.03% CO2, 0.5%, 1%, 5% and 10%) bubbled into to the growth system, 

Chapter 6. The results of these experiments were given in Figure 6.13 which compare 

the effect of each wavelength tuning materials at different CO2 doses. Figure 6.13 

illustrated that all stressed conditions and the control experiments has a similar pattern 

for OD growth curve at different concentrations. However, Coumarin material 

indicates the highest OD (biomass) in each dose as 0.931, 0.914, 0.939 and 0.936 at 

595nm for 0.5%, 1%, 5% and 10%, respectively. Furthermore, the growth period was 

decreased by half compared to the air supplied D. salina cultures described in Chapter 

5. Also, the high algal density growth of the Coumarin material cultures (UV to blue 

wavelength shifting) were shown visually by presenting the initial and final 
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photographs of the reactor. The highest Nile Red fluorescence intensity was 

consistently obtained with Coumarin shifting material cells except for the 1% CO2 

dosed culture. Apart from this, the summarized results of the lipid amounts (Figure 

6.14) demonstrated that Coumarin wavelength shifting materials produced the best 

result over all other CO2 doses. In addition, the fluorescent light microscope images 

showed the lipid droplets inside the cells from the reactor with the Coumarin shifting 

material applied are more numerous and smaller sized compared to the other stressed 

conditions and the control reactor. 

All in all, it was observed that the Coumarin wavelength tuning material was showed 

the best performance in terms of OD and the high density achieved in the D. salina 

cultures can be seen from the before and after photographs of the reactors for each 

experiment. The fluorescence light microscope showed that the D. salina produces β-

carotene under stressed conditions and this is seen as green lipid dots inside the cells 

(Kleinegris et al., 2010, Kleinegris et al., 2011, Chen et al., 2009). Increasing the CO2 

amount to 10% decreases the biomass and increases the β-carotene amount.  

 

 

 

 

7.2. Future Work 

As a result of the literature review presented and the experimental work described in 

this thesis, the following suggestions for future work are made in order to achieve even 

higher biomass production in shorter time than is achieved by conventional growth 

systems: 

1. Finding a more suitable red dye and optimizing it with solvent and polymer in 

order to obtain a better green to red wavelength shifting material.  

For the current thesis, Bestoil Red 5B and Bestoil Orange 2G were used to produce 

green to red wavelength material; however, these dyes did not work as well as 

expected. They did not dissolve very well inside the PDMS resulting in light scattering. 
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Therefore, it is important to try other solvents which may be more suitable to mix the 

dye and PDMS and cure to get an efficient, uniform green to red shifting material film. 

On the other hand, other red wavelength emitting dyes (e.g. Rhodamine derivatives as 

listed in Appendix xx) can be tried to obtain better wavelength shifting materials that 

emit in the red light region that overlaps with the D. salina absorption wavelength 

band.  

2. Pilot scale photobioreactor design and optimization 

Application of the wavelength shifting coating on a larger scale and different shaped 

bioreactors with dye/polymer mixtures is a challenging process. It may not be possible 

to produce a smooth, uniform and clean dye/PDMS materials for large reactors, so 

other coating methods (spraying or roll-to-roll) should be tried and their advantages 

and disadvantaged should be investigated completely. Moreover, the dimensions and 

material of the pilot scale PBR should be studied with simulation programmes and 

optimization should be done for efficient light penetration and elimination of reflection 

and scattering. Consequently, mathematical modelling of the reactor using modelling 

software should be done for pilot scale D. salina production with PBR. 

3. Trying different algae species to obtain the highest efficiency and better algal 

biomass.  

Currently D. salina CCAP 19/30 strain is used for this project but other algal strains 

should be examined depending on the desired algal biomass and application area. For 

instance, Tetraselmis suecica is one of the species of microalgae that is most 

extensively used in aquaculture as feed for larvae and postlarvae of shellfish, penaeid 

shrimp larvae and abalone larvae (Michels et al., 2014a, Michels et al., 2014b) and is 

considered to be an optimal source of long-chain PUFAs, and especially of 

eicosapentaenoic acid (EPA). Furthermore, most of the previous work on Tetraselmis 

suecica agrees on the predominance of the fatty acids 16:0 and of 18:1 in SATs and 

MUFAs, respectively, whereas the most abundant fatty acid in the PUFAs is 18:3ω-3 

where the lipid content is determined based on the cultivation conditions.  As indicated 

by Guzman et al. (2010), that enhancing the photon flux density causes an increase in 

content in PUFAs in various species of microalgae. 
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4. Algal biomass harvesting studies 

Biomass harvesting studies have not been applied yet. Harvesting methods should be 

researched and then applied to the growth algal strains for lipid extractions.  

5. Metabolic engineering 

In order to harvest more light for the algae growth at the desired wavelength range, 

metabolic engineering should be considered. In all photosynthetic systems, however, 

over-absorption of bright sunlight and wasteful dissipation of most of it via non-

photochemical quenching is the primary and most important source of the low 

efficiency and productivity. Therefore, it is important to improve regeneration of 

RuBP for CO2 fixation (Melis, 2009).  

6. Optimising microbubbles and CO2 absorption 

Microbubble production has been attracting the attention of researchers in chemical 

and biological areas due to their fundamental characteristics; which aid efficient mass, 

heat and momentum transport (Zimmerman et al., 2008, Al-Mashhadani et al., 2015). 

Microbubbles can be generated via three alternative ways. First, released air into the 

system is dissolved in liquid solution, and then it is evacuated towards a nozzle system, 

then nano-bubbles are produced. After that, nano-sized bubbles are dissolved in the 

supersaturated liquid in order to shift to micron size. Second, ultrasonic power is used 

to commence cavitation. Third, a low pressured air stream is broken with fluidic 

oscillation, mechanical vibration or flow focusing devices (Zimmerman et al., 2008). 

The fluidic oscillator (see Figure 8.1), improved by Prof. Zimmerman (2008), 

generates a pulse gas stream useful for generating uniform monodispersed 

microbubbles using the Coanda effect (an inclination of a fluid jet to be caught by a 

closer surface). It is easy and simple to build up since there are no moving parts and it 

is economic (no electrical supply needed) and robust. A feedback loop, the length of 

which affects the output stream frequency is used in the design. Incorporating 

microbubble technology inside the airlift photobioreactor will increase the stirring 
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effect and mass transfer compared to the conventional large bubbles because of high 

internal surface area.  

 

Figure 7. 1. Working principle and geometric shape of oscillator developed by Prof. 

Zimmerman 

Zimmerman et al. (2011) embedded microbubble generation into a 250L 

photobioreactor and they obtained 30% higher algal growth compared to a non-aerated 

one. Ying et al. (2013) compared three systems (ALB with microbubble, ALB without 

microbubble and non-aerated flask) to see the effect of microbubbles and obtained 20-

40% chlorophyll content enhancement in an ALB with microbubbles due to high mass 

transfer.  

Microbubble production was tried as a final step for the work described in this thesis; 

however, the sparger inside the 3L reactor was not appropriate to produce 

microbubble. Because of the time limit of the PhD programme, further experiments 

could not be carried out. Thus, microbubble production with new spargers with diverse 

pore sizes is recommended as future work. 
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APPENDIX 

Appendix 1. Rhodamine derivatives 

Name of organic dye 
Absorption and 

emission wavelengths 
Application area 

Rhodamine B solution  

ready-to-use spray and 

dip reagent for 

chromatography 

Rhodamine B 
λex 554 nm; λem 627 nm 

(Acidic EtOH) 
H2O: soluble1 mg/mL 

Rhodamine B 

isothiocyanate 

λmax 555 nm  

absorption 

methanol: 

soluble10 mg/mL 

Rhodamine 6G 
λex 528 nm; λem 551 nm 

in methanol 
suitable for fluorescence 

 λmax 524 nm abs Suitable as laser dye 

Rhodamine 123  Useful as a laser dye  

5(6)-Carboxy-X-

rhodamine 

λex 570 nm; 

λem ~595 nm 

bioreagent / fluoroscence 

in nucleic acid 

5(6)-Carboxy-X-

rhodamine N-succinimidyl 

ester 

λex 575 nm; λem 605 nm bioreagent / fluoroscence 

5(6)-

Carboxytetramethylrhoda

mine (TAMRA) 

λex 543 nm; λem 572 nm 

in methanol 
bioreagent / fluoroscence 

5(6)-

Carboxytetramethylrhoda

mine N-succinimidyl ester 

λex 543 nm; λem 576 nm 

in methanol 
bioreagent / fluoroscence 

5-Carboxy-X-rhodamine 

N-succinimidyl ester 
λex 575 nm; λem 600 nm bioreagent / fluoroscence 

Tetramethylrhodamine B 

isothiocyanate  

λex 529 nm; λem 596 nm 

in DMSO 
suitable for fluorescence 
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Tetramethylrhodamine 

ethyl ester perchlorate 

λex 540 nm; λem 595 nm 

in DMSO 
suitable for fluorescence 

Sulforhodamine 101 acid 

chloride 

λex 586 nm; λem 605 nm 

in H2O 
 

Sulforhodamine 101 
λex 586 nm; λem 605 nm 

in H2O 

Rhodamine 110 chloride 
λex 498 nm; λem 520 nm 

in methanol 
suitable for fluorescence 

Rhodamine 6G 

perchlorate 
 λmax 528 nm  abs Suitable as laser dye 

Rhodamine B octadecyl 

ester perchlorate 

λex 554 nm; λem 575 nm 

in methanol 
Suitable as laser dye 

Rhodamine 19 perchlorate 
λmax 517 nm abs; λem 

544 nm in E 
Laser dye 

Rhodamine 800 
λex 682 nm; λem 712 nm 

in methanol 
Suitable as laser dye 

Sulforhodamine G λmax 529 nm abs Laser dye 

Sulforhodamine B λmax 554 nm  

Fluorescent Red Mega 520 

λex 527 nm; λem 663 nm 

in 0.1 M phosphate pH 

7.0 

suitable for fluorescence 
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Appendix 2. Reflection and transmission graphs of Bestoil Red 5B 

 

 

Appendix 3. Reflection and transmission graphs of Bestoil Orange 2G 
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Appendix 4.  Organic dyes, polymer material and equipments used for dye coating 

 Coumarin 1( C14H17NO2) – used as laser dye and supplied from Sigma-Aldrich 

( Product No: D87759) 

 1,2-Diphenylacetylene (C6H5C≡CC6H5) – supplied from Sigma-Aldrich 

(Product No: D204803) 

 Bestoil Red 5B - Fluorescent Red and supplied from FastColours (CAS No: 

522-75-8). See Appendix 2 for reflection and transmission wavelengths. 

 Bestoil Orange 2G - Fluorescent Orange and supplied from FastColours (CAS 

No: 16294-75-0). See Appendix 3 for reflection and transmission wavelengths.  

 THF (Tetrahydrofuran) ( C4H8O) – Fisher (CAS no: 109-99-9) 

 Toluene (C7H8) – Fisher (CAS no: 109-88-3) 

 Chlorobenzene (99%) (C6H5Cl) – Sigma- Aldrich (Product no: 101389) 

 PMMA ([CH2C(CH3)(CO2CH3)]n) – UV transparent polymer base supplied 

from Sigma-aldrich (Product no: 182265) 

 Polystyrene (PS) ([CH2CH(C6H5)]n) - UV transparent polymer base supplied 

from Sigma- Aldrich (Product no 441147)  

 Glass microscope slides - J. Melvin Freed Brand Premium Plain Glass 

Microscope Slides 2950WX- 003. Dimensions: 75mm x 25mm x 1mm. 

 Spin Coater - Technologies Corporation Model WS-400BZ-6NPP/LITE 

 Other laboratory equipments are vials, pipette, and balance.  

Instruments used for spectral testing are in the following; 

 UV/VIS Spectrometer - Ocean Optics USB2000+UV-VIS-ES UV/VIS 

spectrometer used for absorption wavelength measurement 

 UV/VIS Light Source - Ocean Optics UV-VIS-NIR Deuterium Tungsten 

Halogen with Shutter Light Source. Model DT-MINI-2-GS 

 SpectraSuit Spectrometer Operating Software – Ocean Optics (Document 

Number 000-20000-300-02-0607). Parameters are set-up as; integration time 

– 15, Scans to average – 4, Boxcar width – 4. 

 FluoroMax®-4 Spectrofluorometer– Horiba Scientific (Part number 810005 

version B) used for emission wavelength measurement.  
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Appendix 5. Transmission graph of 320 bandpass colour glass filter

 



179 
 

Appendix 6. Proposed aeration system for small scale enclosed air stones to the 

flasks 

 


