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Abstract

The Internet of things (IoT) represents a new era of networking, it envisions

the Internet of the future where objects or “Things” are seamlessly connected to

the Internet providing various services to the community. Countless applications

can benefit from these new services and some of them have already come to life

especially in healthcare and smart environments. The full realization of the IoT

can only be achieved by having relevant standards that enable the integration of

these new services with the Internet. The IEEE 802.15.4, 6LoWPAN and IPv6

standards define the framework for wireless sensor networks (WSN) to run using

limited resources but still connect to the Internet and use IP addresses. The

Internet engineering task force (IETF) developed a routing protocol for low-power

and lossy networks (LLN) to provide bidirectional connectivity throughout the

network, this routing protocol for LLNs (RPL) was standardized in RFC6550 in

2012 making it the standard routing protocol for IoT.

With all the bright features and new services that come with the futuristic IoT

applications, new challenges present themselves calling for the need to address

them and provide efficient approaches to manage them. One of the most crucial

challenges that faces data routing is the presence of mobile nodes, it affects energy

consumption, end-to-end delay, throughput, latency and packet delivery ratio

(PDR). This thesis addresses mobility issues from the data routing point of view,

and presents a number of enhancements to the existing protocols in both mesh-

under and route-over routing approaches, along with an introduction to relevant

standards and protocols, and a literature review of the state of the art in research.

A dynamic cluster head election protocol (DCHEP) is proposed to improve net-

work availability and energy efficiency for mobile WSNs under the beacon-enabled

IEEE 802.15.4 standard. The proposed protocol is developed and simulated us-

ing CASTALIA/OMNET++ with a realistic radio model and node behaviour.

DCHEP improves the network availability and lifetime and maintains cluster hier-

archy in a proactive manner even in a mobile WSN where all the nodes including
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cluster heads (CHs) are mobile, this is done by dynamically switching CHs allow-

ing nodes to act as multiple backup cluster heads (BCHs) with different priorities

based on their residual energy and connectivity to other clusters. DCHEP is a

flexible and scalable solution targeted for dense WSNs with random mobility. The

proposed protocol achieves an average of 33% and 26% improvement to the avail-

ability and energy efficiency respectively compared with the original standard.

Moving to network routing, an investigation of the use of RPL in dynamic

networks is presented to provide an enhanced RPL for different applications with

dynamic mobility and diverse network requirements. This implementation of RPL

is designed with a new dynamic objective-function (D-OF) to improve the PDR,

end-to-end delay and energy consumption while maintaining low packet over-

head and loop-avoidance. A controlled reverse-trickle timer is proposed based

on received signal strength identification (RSSI) readings to maintain high re-

sponsiveness with minimum overhead, and consult the objective function when a

movement or inconsistency is detected to help nodes make an informed decision.

Simulations are done using Cooja with different mobility scenarios for healthcare

and animal tracking applications considering multi-hop routing. The results show

that the proposed dynamic RPL (D-RPL) adapts to different mobility scenarios

and has a higher PDR, slightly lower end-to-end delay and reasonable energy

consumption compared to related existing protocols.

Many recent applications require the support of mobility and an optimised

approach to efficiently handle mobile nodes is essential. A game scenario is for-

mulated where nodes compete for network resources in a selfish manner, to send

their data packets to the sink node. Each node counts as a player in the non-

cooperative game. The optimal solution for the game is found using the unique

Nash equilibrium (NE) where a node cannot improve its pay-off function while

other players use their current strategy. The proposed solution aims to present

a strategy to control different parameters of mobile nodes (or static nodes in

a mobile environment) including transmission rate, timers and operation mode

in order to optimize the performance of RPL under mobility in terms of PDR,

throughput, energy consumption and end-to-end-delay. The proposed solution

monitors the mobility of nodes based on RSSI readings, it also takes into ac-

count the priorities of different nodes and the current level of noise in order to

select the preferred transmission rate. An optimised protocol called game-theory
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based mobile RPL (GTM-RPL) is implemented and tested in multiple scenarios

with different network requirements for Internet of Things applications. Simula-

tion results show that in the presence of mobility, GTM-RPL provides a flexible

and adaptable solution that improves throughput whilst maintaining lower en-

ergy consumption showing more than 10% improvement compared to related

work. For applications with high throughput requirements, GTM-RPL shows a

significant advantage with more than 16% improvement in throughput and 20%

improvement in energy consumption.

Since the standardization of RPL, the volume of RPL-related research has

increased exponentially and many enhancements and studies were introduced

to evaluate and improve this protocol. However, most of these studies focus on

simulation and have little interest in practical evaluation. Currently, six years

after the standardization of RPL, it is time to put it to a practical test in real

IoT applications and evaluate the feasibility of deploying and using RPL at its

current state. A hands-on practical testing of RPL in different scenarios and

under different conditions is presented to evaluate its efficiency in terms of packet

delivery ratio (PDR), throughput, latency and energy consumption.

In order to look at the current-state of routing in IoT applications, a discussion

of the main aspects of RPL and the advantages and disadvantages of using it

in different IoT applications is presented. In addition to that, a review of the

available research related to RPL is conducted in a systematic manner, based on

the enhancement area and the service type. Finally, a comparison of related RPL-

based protocols in terms of energy efficiency, reliability, flexibility, robustness and

security is presented along with conclusions and a discussion of the possible future

directions of RPL and its applicability in the Internet of the future.
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Chapter 1

Introduction

1.1 The Internet of Things

New technologies are constantly changing our modern life in many ways; some of

them already had a tremendous impact on education, communications, health-

care, government, environment, science, and humanity in general. The Internet is

one of the examples on that and it is clearly one of the greatest inventions of all

time. The Internet is the largest network of networks and it provides numerous

services through human-machine interaction and machine-machine interaction.

The new evolution for the Internet is to add objects to the network that can col-

lect data using wireless sensors and actuators and communicate seamlessly using

the available wireless technologies [1].

Adding physical and virtual objects or “things” to the Internet implies that

networks will have a much larger number of heterogeneous devices to provide

numerous new services but also raise new challenges depending on the application

requirements and the limitations of the used nodes [2]. These things include sensor

nodes, radio frequency identification (RFID) tags and near field communication

(NFC) devices [3, 4].

Wireless Sensor Networks (WSNs) consist of a number of smart devices with

limited capabilities in terms of energy, transmission power, processing and mem-

ory [5]. WSNs are playing a key element in many Internet applications especially

after enabling IP networking using the IEEE 802.15.4 standard and the Internet

protocol IPv6 for low-power wireless area networks (6LoWPAN) technology al-

lowing native communication between WSNs and the Internet [6]. The 6LoWPAN

adaptation layer allows objects to have IP addresses and thus makes them an ac-

tive part of the Internet [7]. This integration opens the path for a large number

of applications including healthcare, agriculture, smart environments, transporta-

tion, industry, military, etc. An IoT node can potentially host even more than one
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Figure 1.1: IoT Protocol Stack

application with different requirements, one of the applications may require real

time data while the other requires mobility support. In order to design and eval-

uate routing algorithms for WSNs and IoT, many aspects have to be taken into

consideration including energy efficiency, reliability, addressing scheme, flexibility

and scalability. As shown in figure 1.1, the protocol stack for 6LoWPAN-enabled

IoT networks uses IEEE 802.15.4 standard (or one of its variants) as the physical

and data link layers, the 6LoWPAN as an adaptation layer, IPv6 and routing

protocols as the network layer, UDP or TCP as the transport layer and CoAP as

the application layer.

1.2 Motivation

This research is motivated by the need for efficient data routing algorithms to

support the exponential growth of the Internet, and the inclusion of low powered

devices that can not accommodate the existing routing protocols.

While it can be easier to deal with single-hop data routing, the need for multi-
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hop routing in WSN and IoT applications is indispensable. The main source

of energy consumption in a sensor node is the radio transceiver [8], multi-hop

networking can limit the distance between nodes and thus minimize the energy

consumption as nodes no longer need to use high power to reach long distances.

In applications that require sensing large areas, multi-hop routing can save

energy by deploying additional nodes that can act as sensors and relays at the

same time, achieving a larger sensing area in addition to minimizing energy con-

sumption. Examples of these applications include smart agriculture, environment

monitoring, industrial applications and animal tracking.

Other applications are restricted by indoor environments, where it might not

be always feasible to use single-hop networking because of obstacles. Examples of

these applications include healthcare, smart buildings and military applications.

It is worth mentioning that multi-hop networking does not replace single-hop

networking but rather complements it where each approach can be more suitable

in different scenarios. However, the main focus of this research deals with multi-

hop routing in the presence of mobile nodes.

1.3 Problem Statement

Many researchers are showing interest in WSN routing for different applications

with different network requirements and numerous protocols are already available

for WSN routing but there are still some issues that need to be investigated in

order to cope with the fast evolution of this technology [9]. Most of the IoT

standards were originally designed for static networks, making nodes’ mobility

one of the most challenging issues that face data routing, especially in multi-hop

networks.

The IEEE 802.15.4 standard only supports mobility in the beacon-enabled

mode, and even in this mode it is still not reliable in demanding applications and

in dense networks. The existence of a mobile node in an IEEE 802.15.4 network

affects the reliability and lifetime of the whole network, and since most of the

modern applications require mobility support, an efficient mobility management

approach is essential to enable reliable futuristic applications.

RPL was also designed for static networks and it still has no mobility sup-

port in its standard description, many researchers worked on enhancing RPL to

3
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enable mobility support and created a number of improved mobility-aware ver-

sions of RPL. However, even with these improvements, RPL still lacks a dynamic

approach that can efficiently manage mobility in a multi-hop network.

Another problem that faces data routing is the fact that there are no efforts

in literature to optimize routing efficiency in a mobile environment in terms of

throughput, packet delivery ratio (PDR) and end-to-end delay. Most researchers

focus on either finding a way around mobility or improving mobility management

itself with hardly any considerations to applications’ requirements. In addition

to that, most papers rely solely on simulations and there is no actual practical

performance evaluation of data routing in real IoT application environments.

One of the most challenging problems for routing in WSNs and IoT appli-

cations is node mobility, the design of IEEE 802.15.4, 6LoWPAN and RPL all

assume that nodes are static. There is no mechanism to explicitly support mo-

bility in these standards, even though many IoT applications require hybrid net-

works with multihop connections and mobile nodes making it essential to address

mobility and tackle its additional overhead [10–12].

Low-powered nodes cannot always use GPS due to energy limitations and thus

need an efficient approach to detect and handle mobility. Many solutions require

changing the standard by adding extra fields for mobility support, making it no

longer compatible with the original design. This research targets the problem of

node mobility in the IEEE 802.15.4 and 6LoWPAN multi-hop networks without

changing the original standard.

1.4 Contributions

The main contributions in this thesis can be summarized as follows:

1. Chapter 1: An overview of the Internet of things as an emerging paradigm

with a brief discussion on the protocol stack and related technologies. It

focusses on the IEEE 802.15.4 standard and uses it as the basis for all

subsequent work. It discusses data routing in IEEE 802.15.4 and in 6LoW-

PAN networks outlining the advantages and disadvantages of each routing

approach. In addition to that, it outlines the performance metrics used in

literature and discusses the importance of using them. It also present the
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theory, simulation tools and practical test beds used in this work. Finally,

it lists the publications generated as part of this work and the co-authored

papers resulted from collaboration with the work group.

2. Chapter 2: A literature review of work related to improving RPL for IoT

applications. It presents an overview of popular IoT applications including

healthcare, smart environments, transport, industry and military applica-

tions. It also outlines the routing challenges that face the applications and

takes into account energy efficiency, mobility, reliability, congestion and se-

curity. It discusses papers related to overcoming these challenges underlining

the advantages and disadvantages of these algorithms and their applicabil-

ity to IoT applications. Finally, it introduces a summary of the review and

points out general views and recommendations for future development.

3. Chapter 3: A study and implementation of an IEEE 802.15.4 clustering

based routing protocol for dynamic data routing in mobile WSNs. It dis-

cusses the work related to mobile routing in the beacon-enabled mode of

IEEE 802.15.4 standard with a brief discussion of the advantages and limi-

tations of the work available in literature. It assumes a hierarchical network

with no static nodes and uses a backup cluster head to expedite the process

of changing parents in case of link failures (resulted from the mobility of

nodes). It shows that the hierarchical topology inherits the nature of the

Internet making it a good candidate for IoT development. It also shows

that the IEEE 802.15.4 clustering technique has the potential to manage

a large number of nodes in an energy efficient manner. Finally, it confirms

that while link availability is high, the mesh-under routing approach does

not guarantee reliable end-to-end delivery of data.

4. Chapter 4: A study on RPL in a mobile multi-hop IoT environment and

an implementation of a dynamic enhancement of RPL (D-RPL) that uses

an adaptive trickle and reverse-trickle timer, a reactive DIS messaging ap-

proach to increase responsiveness and a flexible objective function that uses

expected transmission count, expected energy consumption and link quality

to elect a reliable parent node. Simulations and practical testing show an

improvement in energy consumption, end to end delay and PDR compared

to related work.
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5. Chapter 5: A game theoretic design for managing mobility using RPL is

introduced, the design assumes a non-collaborative game where nodes com-

pete to send data at high rates where mobility plays a non-voluntary action

that affects link quality and signal strength for surrounding nodes. A util-

ity function and cost functions are formulated taking into account energy,

mobility and priority of nodes resulting in a final pay-off function. The op-

timum sending rate for each node is determined using Nash Equilibrium

and the protocol is implemented and tested through simulations in real life

scenarios based on blueprints and mobility patterns of actual health es-

tablishments. Results show a significant improvement in PDR, throughput,

energy consumption and delay for all simulated scenarios.

6. Chapter 6: A practical implementation of RPL, mRPL and GTM-RPL us-

ing TeleOS B (Tmote sky) nodes, the experiments were made for three dif-

ferent applications with varied requirements. A healthcare application for

hospital environment monitoring experiment was conducted in St. James’s

hospital in Leeds. A smart agriculture application based on robotic devices

moving in a formation behind the sink nodes was conducted in an outdoor

environment. A military application scenario based on the SWAT robot ap-

plication was conducted in an indoor environment using one mobile sensing

node mounted on a remote controlled vehicle. The practical results mostly

confirm our simulations showing a significant improvement in performance

using GTM-RPL compared to relevant protocols. The study also shows the

impact of indoor environments on communication and routing performance.

7. Chapter 7: Conclusions from this work and recommendations for future

development in the area of data routing in mobile environments.
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Chapter 2

Literature review

2.1 Introduction

The Internet has evolved rapidly in the past few decades introducing countless

applications in many fields including industry, transport, education, entertain-

ment, etc. During these years, many devices, services and protocols were created

and the Internet grew and is still growing exponentially. The next generation of

this worldwide network is the IoT, where a large number of ’Things’ is expected

to be part of the Internet introducing new opportunities and challenges. These

things include sensor nodes, radio frequency identification (RFID) tags, near field

communication (NFC) devices and other wired or wireless gadgets that interact

with each other and with the existing network providing futuristic applications

and at the same time, creating numerous challenges for the research community

to tackle.

Wireless sensor networks (WSNs) play a key role in the creation of the IoT,

allowing low end devices with limited resources to connect to the Internet and

potentially provide life-changing services. One of the main standards that sup-

ports low power and lossy networks (LLNs) is the IEEE 802.15.4 standard, which

forms the backbone of WSNs as part of the IoT. This standard defines the physi-

cal and data-link layers of the network and provides a framework of operation at

low costs.

To make these low end devices a part of the Internet, the IETF developed the

IPv6 low-power wireless personal area networks (6LoWPAN) which is used as an

adaptation layer that allows sensor nodes to implement the Internet protocol (IP)

stack and become accessible by other devices on the network. This adaptation

layers allows these nodes to implement routing protocols at the network layer

and provide an end-to-end connectivity that enables countless applications. With

the exponential growth of the Internet and the evolution of IoT, conventional
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Peer-To-Peer CommunicationStar Communication
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Figure 2.1: IEEE 802.15.4 Operation Modes

routing protocols can no longer accommodate the large number of added nodes.

For this reason, RPL was designed especially for LLNs and quickly gained popu-

larity among the research community. Until now, RPL is considered the de facto

standard for routing in 6LoWPAN networks and IoT applications, it is a flexible

and scalable protocol with both energy saving and QoS features making it a good

candidate for practical deployment.

2.1.1 IEEE 802.15.4

The IEEE 802.15.4 standard provides a framework for the physical layer and MAC

layer of the OSI network model for low rate wireless networks including WSNs.

This standard considers the limitations of power and processing of WSNs and

allows higher layer standards like ZigBee and 6LoWPAN to build their protocols

based on it. This standard defines two modes of operation for network devices,

the Full-Function Device (FFD) and the Reduced-Function Device (RFD). The

FFD as its name suggests is capable of all network operations and can serve as

a PAN coordinator, a local coordinator, or normal node. The RFD on the other

hand has reduced functionality and is assumed to have low resources and is only

capable of low profile applications. Figure 2.1 shows the FFD and RFD nodes in

a star and a peer-to-peer topologies. The PAN coordinator is an FFD that was

either preconfigured or elected by other nodes to act as the root node.

10



2.1 Introduction

Flat Topology Chain Topology

Cluster-based Topology Cluster Tree Topology

Figure 2.2: IEEE 802.15.4 Different Logical Network Topologies

Different applications require different network topologies, the use of FFDs

and RFDs and their communication in the network as peer to peer or as a star can

form a flat, chain based, cluster based, or cluster tree based logical topology [13]

as shown in figure 2.2.

• Flat Topology: In this topology, nodes communicate to each other directly

as peers using flooding to some or all neighbouring nodes. This topology

is very simple and it does not have an energy saving approach [14] causing

overlapping issues. Some of the flat topology protocols are SPIN [15], Direct

Diffusion [16], and COUGAR [17].

• Chain Topology: Some of the nodes in this topology are elected to act as

gateways; other nodes can only communicate to each other through the

formed chain path to reduce flooding. The main disadvantage of this topol-

ogy is the major delays especially for nodes at the bottom of the chain.

Some of the chain topology protocols are Greedy routing, PEGASIS [18],

and CREEC [19].
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• Cluster Based Topology: This topology is widely used in WSNs for differ-

ent applications due to its energy efficiency, flexibility, and scalability [20].

Cluster Heads (CHs) are elected in the set-up phase based on different fac-

tors like the residual energy or distance from the sink. Nodes in each cluster

send communicate through the CH and each CH communicates to the sink

directly or through other clusters in a multi-hop approach. Some of the clus-

ter based protocols are LEACH [21], HEED [22], MBC [23], EEHCA [24],

BCHP [25], etc.

• Cluster Tree Topology: This topology is an extension of the cluster based

topology to form a tree of clusters. The PAN coordinator initiates the tree

formation by electing cluster heads, each cluster head then starts to send

beacons to the neighbouring nodes until all nodes are connected to the

cluster tree. This topology offers a scalable and energy efficient solution and

some of the cluster based protocols applies to this topology, we proposed

DCHEP [26] especially for this topology with consideration to mobility and

high node density.

The IEEE 802.15.4 physical layer is responsible for managing the radio trans-

mission and reception, channel detection and selection, clear channel assess-

ment (CCA) link quality indicator (LQI) and received signal strength indica-

tion (RSSI). It operates at the 868 MHz, 915 MHz, and 2.4 GHz non-licensed

frequency bands.
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The IEEE 802.15.4 MAC layer is responsible for channel access, beaconing,

and node association or dissociation. It defines two modes of operation, the

beacon-enabled mode and the non-beacon-enabled mode [7]. In beacon-enabled

mode, the PAN coordinator sends periodic beacons in order to synchronize com-

munication with the sensor nodes and maintain connectivity. Beacons use the

first timeslot of the super frame leaving 15 timeslots for Contention Access Pe-

riod (CAP) and Contention Free Period (CFP) as shown in figure 2.3.

During the CAP which can occupy all the timeslots of the super frame, devices

can communicate to each other using slotted CSMA/CA mechanism. CFP is

introduced to avoid the latency of CSMA/CA, it consists of up to 7 Guaranteed

Time Slots (GTS) [27] where each GTS can use one or more timeslots. Devices go

to sleep mode in the inactive period of the super frame to save power. In the non-

beacon-enabled mode, devices communicate to the coordinator using un-slotted

CSMA/CA mechanism

2.1.2 6LoWPAN

IPv6 over Low Powered Wireless Personal Area Network working group optimized

IPv6 for networks using the IEEE 802.15.4 standard. The frame size of IEEE

802.15.4 standard is limited to 127 bytes, the high overhead of the MAC protocols

and the IPv6 header limits the available space for application layer data. Since

that is much smaller than the MTU of IPv6 which is 1280 bytes, the MAC layer

will need to fragment data packets. 6LoWPAN introduced an adaptation layer to

segment IPv6 packets into smaller pieces to be used by the MAC layer. 6LoWPAN

also allows header compression to minimize the overhead of IPv6 header and thus

considered a crucial technology for designing IoT over IEEE 802.15.4.

6LoWPAN layer resides between the data link and network layers creating a

bridge that connects the IEEE 802.15.4 standard to IPv6. One of the limitations

of the IEEE 802.15.4 standard is that it supports a frame size of 127 bytes, it

uses an overhead of 25 bytes leaving a maximum of 102 bytes for payload that

may go down to 81 bytes with security support. In addition to that, IPv6 using

UDP forces a header of 48 bytes limiting the payload even further making it

between 38 and 54 bytes depending on security requirements 6LoWPAN offers

header compression allowing up to 108 bytes for payload without affecting routing

efficiency using RFC 6282 [28].
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Another limitation of the IEEE 802.15.4 standard is that it only supports

a maximum transmission unit (MTU) of 127 bytes while IPv6 defines an MTU

of 1280 bytes. 6LoWPAN uses RFC 4944 [29] to perform fragmentation and re-

assembly on IPv6 packets that are larger than the MTU of IEEE 802.15.4.

figure 2.4 shows the protocol stack of smart IoT nodes compared to the

TCP/IP protocol stack, it also shows some of the most popular standards and

protocols used in each of them. 6LoWPAN makes it possible for new smart ob-

jects to communicate with TCP/IP devices and provide revolutionized services

and countless new applications.

2.1.3 RPL

RPL is a distant vector protocol designed for IPv6 low-power devices, it operates

on the IEEE 802.15.4 standard with the support of 6LoWPAN adaptation layer.

The routing over LLNs (RoLL) working group introduced the routing require-

ments for LLNs in general taking into account the resources limitations in terms

of energy, processing and memory in a vision to allow large number of nodes to
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communicate in a peer-to-peer topology or an extended star topology [30]. This

protocol creates a multi-hop hierarchical topology for nodes, where each node can

send data to its parent node which in turn forwards it upward until it reaches the

sink or gateway node. In the same way, the sink node can send a unicast message

to target a specific node in its network.

RPL successfully and efficiently manages data routing for nodes that have

restricted resources, it provides an operation framework that ensures bidirectional

connectivity, robustness, reliability, flexibility and scalability. The key features

of RPL come from its efficient hierarchy, the use of timers to minimise control

messages and the flexibility of the objective function.

RPL builds a directed acyclic graph (DAG) with no outgoing edges as the

base element of the topology, this ensure that no cycles exist in the hierarchy.

The sink node starts building the first DAG making itself the ultimate DAG root,

other nodes in this DAG start forming their own DAGs which are routed towards

the first one making a destination oriented DAG (DODAG). RPL uses a number

of control messages to build and maintain its hierarchy. The DODAG informa-

tion object (DIO) is sent from the root node with information about the rank

of the sending node, the instance ID, the version number and the DODAG-ID.

This allows nodes to decide whether or not to act upon receiving this message, in

addition to keeping valuable information about the network that can contribute

to making an informed decision. The destination advertisement object (DAO)

is sent from the child node to its parent (the DAG root or the DODAG root)

and it contains destination information which practically informs the root that

this node is still available. The root node may optionally send a DAO-ack ac-

knowledgement if required. The DODAG information solicitation is another form

of upward control messages that is used to request a DIO from the parent node,

this is one of the most relevant and important features that RPL uses to maintain

connectivity.

An RPL instance is a collection of DODAGs where traffic moves either from

or to the DODAG root (up or down). Because a DODAG consists of edge nodes,

multiple DODAGS do not share the same nodes at the same instance. RPL gives

different ranks to nodes in a DODAG with reference to the DODAG root, the

area of the ranks is a DODAG version [30].
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The root initiates the network by broadcasting a DODAG information object

(DIO), nodes receive the DIO and replay with a DODAG advertisement object

(DAO). The connected nodes will in turn send their DIO messages to more nodes

forming a cluster tree topology directed towards the DODAG root. Nodes can

also specifically request a DIO by sending DODAG information solicitation (DIS)

message to their parent node.

One of the main advantages of using RPL is the introduction of the trickle

timer [31]. It is used to minimise the number of redundant control messages using
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an exponentially incremented interval. RPL in its original design, assumes that

after the network connectivity is established, there is little need for DIO messages

and thus uses the trickle timer to keep control messages only when it matters to

the network. This assumption proved to be efficient in static networks but it is

one of the main problems that faces RPL with the presence of mobile nodes. The

main parameters of the trickle timer are Imin, Idoubling and Imax.

Imin = 2n (2.1)

Imax = 2n+Idoubling (2.2)

The interval n produces Imin (ms) which is the initial and minimum interval

size of the trickle timer as shown in equation (2.1). Idoubling decides Imax (ms)

which is the maximum interval size of the trickle timer as shown in equation (2.2).

The configuration of the trickle timer depends on these variables and it is critical

to select appropriate values to match the application requirements. High intervals

improve energy efficiency while leading to low responsiveness while lower intervals

improve responsiveness on at the cost of energy consumption and lifetime.

Another advantage of RPL is that each node can have a flexible objective

function that calculates a cost for each potential parent node and makes an in-

formed decision to choose an appropriate parent. The objective function can use

the rank of nodes, expected transmission count (ETX), expected energy con-

sumption, residual energy, link quality or any other metric depending on the

application requirements and the nature of the network.

Using these rules, RPL forwards data either upwards or downwards within

a DODAG as shown in figure 2.5, to send data upwards, nodes should always

forward to lower ranks until they reach rank 0 which is the DODAG root. To

send data downwards, nodes forward to the available destinations with higher

ranks.

Each RPL node, has its predefined objective function (OF), this function

carries the metrics upon which nodes select the ”better” parent among competing

nodes. There are currently two objective functions presented by the IETF, the first

one is Objective Function zero (OF0) [32] which is a simple and basic objective

function that has only one metric, it uses the rank of the node to determine its

distance from the root and selects the node with the lower (better) rank. The
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OF0 is designed as a general objective function used as a guide and base for

other implementations. The second one and the arguably most popular one is the

minimum rank with hysteresis objective function (MRHOF) [33] which is based

on routing metric containers. It allows the user to configure the metrics inside

the metric container which is transmitted as part of DIO messages. This function

uses the expected transmission count (ETX) as the default metric and provides

support for using path-specific expected energy consumption as a routing metric.

2.1.4 Transport Layer

The most common transport layer protocols are TCP and UDP, they are both

used in the Internet and in most modern networks. TCP is a reliable protocol

that supports end-to-end reliability by using acknowledgements and if necessary,

packet retransmission. However, TCP suffers from a large header of 20 bytes

making it an extra burden to the IEEE 802.15.4 payload. UDP on the other hand

does not support end-to-end reliability but it has a header of only 8 bytes making

it more suitable to the limited resources of 6LoWPAN networks. UDP is faster

than TCP, it supports broadcasting and is the most common transport protocol

in 6LoWPAN networks

2.1.5 Application Layer

The constrained restful environments (CoRE) working group has developed the

constrained application protocol (CoAP) and it was standardized in RFC 7252

targeted for constrained networks to provide web services that can easily inte-

grate with HTTP. Some of the features of CoAP are: i) It provides web services

for machine-to-machine communications. ii) It allows unicast and multicast com-

munication using UDP with the option to support reliable communication. iii) It

provides basic proxy and caching services. iv) It has low header overhead. v) It

deals with resources as Uniform Resource Identifiers (URIs).

The CoAP layers in the IoT protocol stack are shown in figure 2.6 , CoAP

methods are similar to the HTTP methods including GET to receive information

from a URI, POST to create a resource for a requested URI, PUT to update a

resource, and DELETE to remove the resource. A CoAP method can use multiple

transactions, transactions support reliable UDP communication using four types
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Figure 2.6: CoAP Layers in IoT

of messages, CON to send a Confirmable request that requires the receiver to

send an acknowledgement, NON to send a non-confirmable message that does

not require an acknowledgement, ACK to Acknowledge a received CON, and an

RST to reset the message transfer if something was missing [34].

2.2 Data Routing

Data routing is the process of finding a path to send data packets from a source

to a specific destination based on certain metrics and requirements, these metrics

constitutes the definition of a “good” path and an efficient protocol is expected

to fulfil all requirements with minimum cost. With the introduction of the 6LoW-

PAN adaptation layer, the layer responsible for routing acquired two new classifi-

cations, mesh-under and route-over routing [35] . As shown in figure 2.7, routing

decisions are made either in the data link layer or the network layer making them

either under or over 6LoWPAN layer.
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Figure 2.7: Mesh-Under Vs Route-Over

2.2.1 Mesh-Under Technique

Using the IEEE 802.15.4 standard, mesh-under routing provide clustering ar-

chitecture by which nodes can send their data towards a gateway or sink node

with low energy consumption and fewer collisions compared to the original IEEE

802.15.4 standard. In this technique, the overhead of routing is minimum because

the network layer is not involved in routing decisions. Nodes formulate clusters

where each group have a designated parent or cluster head (CH) to route data

towards the sink node, the number of clusters in a network depends on the pro-

tocol used, the size of the network, the density of nodes and the application
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requirements.

An IPv6 packet is fragmented into smaller IEEE 802.15.4 frames and sent to

the next hop which in turn forwards it to the next one until it reaches the final

destination, only then it would be reassembled into an IP packet and if any frame

was missing the entire packet would have to be retransmitted.

2.2.2 Route-Over Technique

In this approach, the network layer is responsible for routing decisions. This

technique involves adding an extra header to transmitted packets increasing both

energy consumption and transmission time. However, research shows that with

the standardization of RPL, this approach proves to be more reliable and has

the potential to satisfy a large number of futuristic applications [35]. It can still

take the advantage of the IEEE 802.15.4 clustering technique to form its own

cluster-based topology, in addition to the benefits of using 6LoWPAN allowing

the use of IPv6 in each node.

At the network layer of the sending node, the IPv6 packet is fragmented into

smaller IEEE 802.15.4 frames and sent to the next hop where the frames are re-

ceived, reassembled into an IPv6 packet by 6LoWPAN and then forwarded to the

network layer. The network layer checks the reassembled packet and determines

whether to send it to the transport layer or to forward it back to 6LoWPAN with

the next hop address.

2.3 Performance Metrics

Most researchers use one or more performance metrics to evaluate routing tech-

niques and to test the efficiency of their proposed schemes. While these routing

metrics can depend on the application requirements, they can still effectively

give an impression of the validity and efficiency of routing protocols. The main

performance metrics used in literature can be summarized in:

• Energy Consumption: The total amount of energy consumed by a certain

node, or the average amount of energy consumed by nodes in the same network

in a given period of time. This metric reflects the energy efficiency of routing

protocols and algorithms as it indicates the energy required for data processing,
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transmission, reception and control [36]. Some papers also use residual energy,

which is the amount of energy available in a node at a specific time. Knowing

the residual energy in a node can help decide whether it is a good candidate

to perform additional tasks [26]. Other papers also use energy tax which is

calculated by dividing the number of dropped packets by the number of received

packets [37].

• End-to-End delay: The average time required for a packet to travel from the

source node to its final destination, the destination can be one or more hops

away from the source. This metric gives an impression of the responsiveness of

the network and sometimes the reliability and suitability of the routing protocol

to use in certain applications [38, 39].

• Latency: The time it takes for a packet to be passed from the application layer

of the source node through the transmission medium and to the next hop. This

metric reflects the processing speed of nodes and the available bandwidth in

the network in addition to the channel access scheme and congestion in the

network [40].

• Packet delivery ratio: This metric represents the ratio between the number

of received packets at the sink and the number of sent packets in a given period

of time. This metric has a significant impact on the network performance as it

reflects the energy cost endured due to loss of transmitted packets [37]. It also

reflects the effective throughput of achieved at a given data transmission rate.

• Throughput: The total amount of received data bits in a given period of time.

This metric is very important in demanding applications, a high throughput

means that more data can be successfully sent to the sink node [41].

Other metrics that are less frequently used are hop count [42–44], overhead

[45–47] and efficiency [48].
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2.4 Simulation Tools and Test beds

In an IoT environment, devices interact with each other to provide countless

services, this interaction is enabled by hardware, software and communication

standards. Operating systems make it possible for IoT devices to function using

various new standards and limited resources. For this reason, an IoT operating

system has to support heterogeneous devices and provide reliable network con-

nectivity in addition to special features including energy efficiency and security.

The most common operating systems used for IoT devices are RIOT OS [49],

Tiny OS [50] and Contiki OS [51]. All of these operating systems have their ad-

vantages and disadvantages, however when it comes to data routing, Contiki OS

is the most popular operating system. Contiki OS is an open source operating

system designed for IoT devices, it supports a number of radio modules including

cc1200, cc2420, cc2520, etc. It also provides duty cycling support with a number

of implementations including ContikiMAC and NullRDC in addition to an imple-

mentation of CSMA, TSCH, etc. Contiki OS also provides a full implementation

of 6LoWPAN, RPL, TCP, UDP and CoAP, it supports both IPv4 and IPv6 and

runs on 10KB of RAM and 30 KB of ROM only [52].

While both Tiny OS and Contiki OS support a number of test beds including

TelosB, WSN430, Zolertia Z1, MSB-A2 and BCM-4356. Simulation tools are still

necessary to ease the testing and debugging process and provide a flexible and

safe environment for experimentation. A number of simulation tools are used in

literature including COOJA, TOSSIM, OMNET/Castalia, WSNet, NS2, NS3,

Matlab etc.

In chapter 3, Castalia WSN simulator is used for simulating and testing the

proposed protocol with realistic radio models and wireless channels [53]. It was

designed to be adaptable and expandable based on the OMNET++ [54] platform.

Each node in Castalia has a modular structure that enables simple modules to

be added or edited separately. It provides abstract classes for MAC protocols,

Routing layer, Application layer, Mobility manager, etc. Castalia uses NED lan-

guage for defining modules, and C++ for defining classes and functions. It also

uses configuration files (configuration.ini) for defining simulation parameter.

In chapters 4, 5 and 6, COOJA simulator is used with Contiki OS to simulate

the routing process. COOJA is also a network emulator, it uses the same code for
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both simulation and hardware. According to results in this work and in literature,

COOJA shows an excellent emulation of real hardware and very satisfactory

implementation of the wireless channel. Regarding RPL studies, COOJA is used

in more than 63% compared to other simulators. Also, while COOJA and Contiki

OS do not directly support mobility, a plug-in is available to define the mobility

scenario prior to simulation in addition to the ability to manually move nodes

during simulation.

An emulated node in COOJA is based on one of the available Contiki plat-

forms, all COOJA simulations in this thesis use Sky platform due to its popularity

and hardware availability. Figure 2.9 shows the network stack of a simulated node

in COOJA and Contiki OS. These layers are also complemented with a number of

tools and plug-ins including Powertrace that measures energy consumption using

state tracking with up to 94% accuracy [55], a mobility plug-in that allows users

to upload a mobility scenario prior to simulation and a timeline that shows a real

time status for simulated nodes and the wireless channel [56].

Different platforms are available for hardware testing, TelosB (or Tmote sky)

is used in this work because of its popularity in research and the support available

for using it. Tmote sky nodes shown in figure 2.10 are used in around 70% of RPL
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Figure 2.10: Tmote Sky node
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experimental papers, it is supported by COOJA and available at a relatively low

cost. It uses the 2.4GHz IEEE 802.15.4 CC2420 wireless transceiver, it has a

USB interface for programming and features a humidity, temperature and light

on board sensors with the option to add external analogue sensors.

2.5 Hierarchical routing in IEEE 802.15.4

There is a large number of WSN routing protocols with different approaches and

different requirements including location-based protocols, data-centric protocols,

hierarchical protocols, multipath-based protocols, and QoS-based protocols [57]

[58]. All of these approaches have their advantages and limitations and they are

all related to this work. However, the main focus is directed to hierarchical-

based routing through clustering because it is energy efficient and it inherits the

architectural nature of the Internet making it a flexible and scalable solution [59]

[20].

Sensor Protocols for Information via Negotiation (SPIN) was developed by [15]

for flat WSNs, it addresses the problems of flooding and overlapping using an

advertisement message to advertise data, a request message to request data, and

a data message that contains the actual data. Nodes need only local information

about their neighbours to advertise and send data but data delivery is not always

guaranteed. Direct Diffusion introduced a mechanism for the sink node to send

an on-demand query to the sensor nodes specifying the type of data required.

According to the type requested by the sink, nodes send their specific data using

flooding. Direct diffusion is energy efficient but limited to applications that do

not require periodic information [16].

COUGAR was developed by [17] to save energy by allowing sensor nodes to

pick a head node to do the data aggregation process using the query plan provided

by the sink. However, the extra queries consume energy at each node and because

it uses some nodes as relays, it makes it harder to maintain the network if a leader

node fails.

Power Efficient Gathering in Sensor Information Systems (PEGASIS) was

developed by [18] for chain topology WSNs. PEGASIS forms a chain of nodes

allowing each node to send data towards the sink using the chain path. It saves
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energy by avoiding multiple elections and formations of clusters but suffers from

high delays and the bottle-neck problem.

Chain Routing with Even Energy Consumption (CREEC) changes the chain

leader after each super round; the Sink predicts the cumulative energy consump-

tion of nodes in the chain and gives them different levels based on their hop

distance and decides when to change the head node [19].

The Hybrid Energy Efficient Distributed (HEED) clustering algorithm [25] se-

lects cluster heads based on a combined factor of node residual energy and node

degree. HEED overcomes the LEACH limitations by enabling multi-hop routes

to the base station and having a better cluster head distribution. However the

cluster formation in HEED does not ensure best coverage and it requires a lot

of control packets leading to slow convergence. Using this protocol, CHs that are

closer to the PAN coordinator fail sooner because of the higher load and over-

head they endure. HEED also makes an assumption that all nodes have a variable

transmission power which limits the applicability of using it in some applications.

In the Threshold sensitive Energy Efficient sensor Network (TEEN) [60] pro-

tocol, cluster heads broadcast two threshold values to their children nodes. These

values define a soft threshold and a hard threshold for the amount of sensed data

in each sensor node. If a node exceeds the soft threshold, it forwards its data to

its cluster head, if it exceeds the hard threshold, it forwards it directly to the sink

node. This approach ensures that cluster heads do not need to relay data that

is too large. However, this protocol does not consider periodic data transmission

and was only designed as an event driven routing protocol. This protocol was

later improved to include more features and cope with time critical events. An

adaptive TEEN (APTEEN) [61] was developed to include a periodic data trans-

mission that is activated if no threshold was reached within a user-configured

period of time. This additional functionality comes at a cost of high overhead

and high energy consumption.

Some routing protocols propose a backup cluster head to improve reliability

and energy efficiency like the Energy Efficient Hierarchical Clustering Algorithm

(EEHCA) [24], the backup cluster head is prepared to act as a primary clus-

ter head if the first one fails. EEHCA improves the life time of the network by

introducing the backup cluster head but it also assumes that all the nodes are

stationary. This protocol was improved by [62] to use multiple backup cluster
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heads instead of just one to further extend the lifetime and availability of a WSN

also with only static nodes.

Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol is a clustering

protocol that was developed in [21] to minimize energy consumption in WSNs

by introducing local control in clusters and randomly rotating cluster heads. The

LEACH protocol outperforms the direct routing approach in terms of energy con-

sumption and extends the life time of the network. However, it is not efficient in

larger networks because it performs single-hop transmission from cluster heads

to the base station and it doesn’t ensure real load balancing [63]. The random

rotation of cluster heads in LEACH does not consider residual energy, meaning

that all nodes need to start with the same battery level in order to efficiently

distribute energy consumption.

Many routing protocols were developed for WSNs and even though most of

them assume that nodes are static, there are some good efforts for designing

routing protocols for mobile WSNs and specifically cluster based networks includ-

ing CBR-Mobile [64], LFCP-MWSN [65], HAT-Mobile [66], LEACH-Mobile [67],

M-LEACH [68], etc. CBR-Mobile is Cluster Based Routing protocol for mobile

WSNs; this protocol allows mobile nodes to send their data to any available CH

if they lose connection to their original CH given that there is an available time

slot in the TDMA to minimize delays. CBR-Mobile lacks details on how to select

CHs and it does not address the problem of interference assuming that failure to

communicate can only be caused by mobility which is not a valid assumption.

LFCP-MWSN is a Location aware and Fault tolerant Clustering Protocol for

Mobile WSNs, the PAN coordinator or the sink node elects CHs based on their

location in the network. Then, nodes will measure their level of mobility and

assign different priorities based on this information. This protocol requires nodes

to be location aware and forces the network to be centralized which adds extra

communication signals for CH election and re-election.

Hierarchical Addressing Tree (HAT) and HAT-Mobile where developed by

[66], the HAT-Mobile introduced nodes tracking across clusters using a handover

table at each CH with information about connected nodes and previously con-

nected nodes. This protocol is not scalable due to the high memory requirements

and communication overhead to maintain the handover table especially in large
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and dense networks. LEACH-Mobile is based on LEACH routing protocol to sup-

port the mobility of nodes by adding a membership declaration to allow nodes to

join and leave clusters [67].

Various improvements were made to the LEACH protocol and a number

of extended-LEACH protocols were introduced to overcome the limitations of

LEACH including LEACH-Mobile, Multi-Hop LEACH and M-LEACH [69]. LEACH-

Mobile is based on LEACH routing protocol to support the mobility of nodes by

adding a membership declaration to allow nodes to join and leave clusters [67].

This protocol assumes a static CH and suffers from high delays caused by the

association and dissociation process, and it has high energy consumption. M-

LEACH supports mobility of nodes and CHs but it limits the communication to

only two levels making it less scalable, it also assumes that all nodes are equipped

with GPS and are location aware but this assumption is not always ideal since it

consumes a lot of energy [70]. In addition to that, it requires the base station (BS)

to make an informed decision and select CHs based on nodes information. This

approach requires the use of extra control signals and data overhead making it less

efficient in terms of energy consumption and is prone to transmission errors [64].

Various studies also introduce mobility management approaches including using

LQI to detect a mobile node [71] [72], this approach helps to predict the move-

ment of a node but needs a reliable method to distinguish false LQI readings.

Other studies suggest using centralized decisions causing excessive overhead and

high interference in the network [73] [74]

The Backup Cluster Head Protocol (BCHP) introduced by [25] proposes a

BCH for each cluster in a hierarchical structure to maintain connectivity and

take responsibility of the cluster in a reactive manner when a CH fails or leaves

the cluster. BCHP is targeted for mobile networks in general and not specifically

WSNs and it uses routing tables to determine a path to the destination making

it less applicable for WSNs with limited resources, it also assumes that nodes are

location-aware.

The rest of the chapter is organised as follows: Section 2.6 categorises WSNs

according to the applications they are used for, along with the requirements, de-

sign implications for each application. Section 2.7 discusses the challenges that

face RPL and the approaches used to tackle them. Finally, section 2.8 presents a
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summary and provides technical and chronological information about the evolu-

tion or RPL and the approaches used to build RPL in its current state.

2.6 Applications

It is difficult to list all areas that go under IoT applications, it is possible however

to cover some of the common applications, with the aim to summarize their dif-

ferent requirements and design implications and to have a general understanding

of the challenges that face their progress.

This section acknowledges the importance of RPL as the standard routing

protocol of IoT and provide for the first time, a systematic review of RPL and

RPL-based protocols within the context of IoT along with technical insights and

recommendations for more than 140 research papers. The approach of this re-

view uses Google scholar with the search keyword (“allintitle: RPL -pregnancy”)

to search for RPL in the title of a paper while removing unwanted similar ab-

breviation for example (”RPL” as recurrent pregnancy loss). This search comes

up with more than 700 papers and patents, to make sure nothing is missed, an-

other wider search is conducted using the phrase (IoT ”RPL” routing) to search

anywhere in the article and use the years filter to categorise results according to

the publication year and scroll through them to find possible candidates. This

search returns more than 2900 results including papers and patents, duplicate

articles are removed and then a number of papers is selected for each year where

improvements where made to RPL in any aspect. Papers that mentions RPL but

do not discuss its usage or do not propose an enhancement are also removed from

this review. The main contributions of this chapter are (i) Providing an extensive

and systematic review of RPL. (ii) Discussing the efficiency of each approach in

terms of applicability, energy consumption, flexibility, throughput and end-to-end

delay. (iii) Providing a technical guide to assess the RPL enhancements available

in the literature. (iv) Discussing recommendations for future developments.

There are countless potential applications that can fall under the IoT um-

brella, figure 2.11 shows some of the most used in literature. The general classi-

fication for applications used it this chapter includes healthcare, smart environ-

ment, transport, industry and military applications. All of these applications are

mentioned in literature and are popular in terms of WSNs studies and specifically
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RPL research. They also have their own special requirements they are looked at

from different points of view. This classification highlights the requirements for

IoT applications in terms of reliability, energy efficiency, security, responsiveness,

scalability and mobility. While it is difficult to discuss all applications, the follow-

ing sections present some of the popular fields for WSNs and IoT with examples

from the literature.

31



2. LITERATURE REVIEW

2.6.1 Healthcare

Many researchers are showing interest in the challenging and promising idea of

using WSNs and the IoT in the field of healthcare, the potential of these applica-

tions is unlimited and the benefits expected are countless. Examples of healthcare

applications include elderly care, patient vital status monitoring, hospital envi-

ronment monitoring, emergency detection, etc.

In healthcare applications, reliability, responsiveness, security and mobility

are key factors [10, 75]. The real time aspect and reliable data transmission can

be crucial in case of emergency detection applications, security ensures that the

privacy of patients is not breached while mobility management enables efficient

operation when nodes are moving. In rehabilitation applications, inaccurate data

can put the patient in a mortal peril and leads to a negative outcome where

medical staff of smart equipment might use the defective data and give misguided

treatment [76,77].

A study on casualty monitoring [78] uses medical information tags to track

patients in disaster scenarios, the reliability of transmitted data in this applica-

tion is essential to ensure that the right actions are taken (eg. locating the near-

est hospital, dispatching an ambulance or providing medical history). The same

applies for fall detection applications [79], tele-care [80], elderly and patient mon-

itoring [81–83] and status and activity detection [84–86]. Other non-emergency

applications like health environment monitoring and deaf people assistance [87]

may not be as critical but would still cause discomfort and in some cases health

deterioration for patients.

In activity monitoring applications, the collected data reflects the usual habits

of the monitored entity, the time they spend using an appliance or the exact

location of a person [88]. This application and other similar applications are used

to help the caretaker or the medical staff to know whether the “target” is following

recommended actions. It is not usually difficult to know whether a patient is

remembering to take their medication (by attaching a sensor or RFID tag on the

bottle or sheet of medicine) or whether they are being sufficiently mobile. Some

studies [89–91] successfully implemented wearable sensors that can identify the

symptoms of many diseases including Parkinson’s disease and epilepsy. However,

the collection of this data and the reliable transmission through one hop or multi-
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hops is more challenging, keeping in mind that the privacy of patients in this case

is a crucial point.

In more critical applications, like fall and emergency detection, the reliability

and responsiveness of the application become more important to the patients.

Falls are among the main causes of death in elderly people, the detection of such

an accident and the timely reporting to the appropriate entity is a key factor

in saving the patients life and preventing further developments. Accelerometers

are usually used to detect falls, [92–94] sometimes accompanied by cameras and

image sensors to increase the reliability of fall detection [95–97]. When a fall is

detected and confirmed by image sensors, the computer makes a phone call to

the emergency department or the health establishment, RSSI can also be used to

give an estimated location inside the building.

It is clear that even in the same field of applications, individual application

requirements can be diverse and meeting these requirements can be challenging.

RPL and its enhancements are proven to be able to tackle most of these problems

[98], the flexibility of RPL also make it possible to have the same routing protocol

for different applications by only changing some of the configuration parameters

according to application requirements. The experiments undertaken in chapter 6

prove that GTM-RPL can provide reliable data delivery at low costs with a high

flexibility to fit many healthcare applications.

2.6.2 Smart Environments

Applications of smart environment include smart cities, buildings, agriculture,

etc. These applications typically cover large areas, making scalability, mobility

management and energy consumption fundamental requirements. In addition to

that, security and privacy can be also a requirement especially in smart buildings

applications. The term “smart environments” is general and it can sometimes

overlap with other applications, a smart healthcare environment for example can

be classified as both a healthcare and a smart environment application. However,

it is still useful to have it as a separate classification given that it includes many

applications with similar requirements and it also attracts significant research.

In smart agriculture applications, sensor nodes are scattered around a large

area to provide useful data regarding temperature, humidity and light. This data

can be then used to support the decision making and can trigger automated
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actions or just report to the proper entity. Sensors can also be used to monitor

plants and detect certain diseases, stopping the spread of diseases can have a

significant economical advantage in addition to contributing to the welfare of the

environment [99]. In such applications, a good coverage and a long lifetime for

the network are very useful, as it usually comprises of large areas and requires

long periods of time to provide meaningful information.

Other applications like animal tracking and cattle monitoring report data

regarding the general environment in addition to individual animals. Attaching

sensor nodes to animals can also contribute to improving sensing and communi-

cation coverage in large areas. In [100], a wireless sensor network is used to detect

problems and diseases in cattle with the aims of improving their productivity. The

authors in [101] introduce a water environment monitoring system using wireless

sensor networks to ensure that animals always have a source of water that is safe

to drink.

An even larger example of smart environments applications is smart cities,

which usually comprises of a number of applications spread out in a city. One of

the examples of smart cities is the city of Padova in Italy, where data from multiple

applications are gathered and used to optimise the use of public resources [102].

With the typically vast area of deployment in these applications, sensor nodes

face environmental challenges as well as technical challenges. Rain, snow and high

temperature can affect the operation of sensors making it essential to have robust

nodes that can overcome these problems and still have the ability to communicate

data. In addition to that, mobility resulted from attaching sensor nodes to moving

animals or unintentional mobility caused by wind or water current must be taken

into account. It is good to know that mobile aware version of RPL can cope with

these problems, the practical results using GTM-RPL in chapter 6 show that in

a mobile environment, nodes can cover large areas and communicate in a reliable

and efficient manner.
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2.6.3 Transport

There are already many sensors on some of the major roads in many countries,

these sensors help in the detection of high traffic and the prevention of heavy

congestions. These sensors collect data by either counting the number of vehicles

or detect crashes and emergencies. In an IoT environment, these sensors can also

control traffic signals, call emergency services or even raise alarms to animals

crossing the road [103]. In assisted driving, sensors can also detect correct lane

positioning, apply emergency brakes and perform auto parking [104]. These sen-

sors become even more critical in the case of self driving vehicles, where sensors

and cameras collect information and drive the car in a safe and efficient manner.

Long delays and errors in the information provided by sensors can easily lead

to life threatening situations in both assisted driving and self-driving vehicles,

reliable and real-time information are crucial factors in transport applications

in addition to mobility support. Vehicle-to-vehicle and vehicle-to-infrastructure

communications both face the problem of nodes moving at very high speeds,

which complicates the process of routing. Also, targeted cyber attacks can pro-

vide misleading information to one or more vehicles causing disastrous outcomes,

security should be taken very seriously in such applications where life threatening

situations can occur.

Smart transportation can also categorized as a section of smart cities, the

information provided by road sensors and in-vehicle sensors can also be used

collectively by smart cities applications. This information can help in designing

future roads and coming up with new traffic management strategies. RPL can be

used for routing data in static on-road sensors, but very few papers discuss using

it in vehicular networking. The authors in [105] use RPL in a VANET scenario,

direction prediction helps in selecting a parent that is more likely to be in range.

The approach is excellent and the results are promising but in order to apply

RPL to this application, energy consumption has to be neglected, all aspects of

RPL that save energy are removed and while energy is not usually limited in a

vehicle that is usually equipped with a significantly large batteries, the use of

RPL and the IEEE 802.15.4 in VANETs is still debatable.

We still believe that RPL and RPL-based protocols can contribute to the

applications of smart transportation, but we also acknowledge that using it in
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mobile nodes travelling at vehicular speeds strips it from its energy saving ad-

vantages. We support the idea of using it for on-road sensors but we think that

further improvements are necessary for in-vehicle deployment.

2.6.4 Industry

The industry sector is one of the most important drivers for technology, it has

already seen radical changes in the last few decades with the introduction of new

technologies, automation and robotics. In control systems, sensor nodes monitor

the surrounding environment, collect data and act through actuators providing

full automation and control [106]. The smart-grid application is one of the ex-

amples of closed loop control systems, with the use of WSNs, the power grid is

being revolutionized to become a “smart” power grid that promises a number

of improvements [107]. In renewable energy applications, the smart generation

of power plays a key role in improving efficiency and facilitating the process of

power generation. Renewable energy sources are gradually becoming a part of the

grid, solar panels and wind turbines are generating a significant amount of power

that is incorporated into the grid.

Smart metering and remote sensing introduce a transparent solution for con-

sumers and makes it easy to track power usage and minimize wasted energy. It

can also allow people to control power usage remotely making it a convenient

solution as well as an economical advancement [108]. WSNs provide a solution

to detect failures, locate power outages and help in isolating faults as part of the

supervisory control and data access (SCADA) architecture.

Other industrial applications include safety systems, where sensor nodes de-

tect and report abnormal events. An example of safety application is fire monitor-

ing and control [109] where sensor nodes are used to detect fire and monitor the

surrounding environment. Using the data collected from these sensors, actuators

can trigger fire doors to isolate the fire area, apply automated fire extinguishing

procedures or contact the fire department to seek immediate assistance.

Industrial applications require reliable communication with minimum latency,

in addition to low energy consumption, security and mobility support. RPL is

gaining a significant interest in the field of industrial applications as it satisfies

most of the basic requirements and with the available improvements, it makes
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an appropriate routing solutions that is flexible, reliable and scalable. GTM-

RPL furthers the performance of RPL to support mobile nodes and optimize

throughput making it a promising candidate for industrial applications.

2.6.5 Military

Military applications introduce a challenging and sensitive field for any tech-

nology, it is often difficult to physically access nodes after deployment. For this

reason, energy consumption is an essential metric given that changing batteries is

rarely possible in war zones and hazardous areas. There are countless advantages

in using sensor nodes in military applications, it limits minimizes the dangers that

face soldiers and personnels by providing surveillance data, emergency navigation,

disaster prevention and robotic intervention.

WSNs can also be used to detect mines [110], or measure the physical state

of soldiers to detect problems and measure fatigue levels using wearable devices

[111]. It is also important to note that reliability, mobility support and security

are key metrics in this field of applications along with energy efficiency. Without

these factors, both active and passive monitoring can become very limited and

may also lead to undesired actions that are based on false data.

In chapter 6, a scenario of a SWAT robot is introduced where a vehicular robot

enters a danger location in a war zone. The robot collects data and sends it to

one of the gateways through intermediate sensors, efficient routing and reliable

data transmission plays a key factor in the success of the operation. RPL was

tested using a practical approach along with a mobile version of RPL (mRPL)

and our optimized GTM-RPL, results show that GTM-RPL successfully deliver

data at higher rates with no additional costs in terms of energy.
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2.7 Challenges

As seen from section 2.6, there are many aspects that routing protocols need to

cover in order to fulfil the application requirements. RPL is the most popular

candidate for data routing in LLNs and it has attracted a significant amount of

research, many enhancements were made to RPL in literature to tackle one or

more routing challenges. The main drivers for improving RPL are energy effi-

ciency, mobility, Reliability, congestion and security.

2.7.1 Energy Consumption

One of the most important issues that face LLNs is limited energy, the design

of the IEEE 802.15.4 and RPL both take energy consumption into account and

propose methods to minimize its usage. The problem of energy consumption in

RPL is addressed by the trickle timer [31], which aims to minimize the number

of unnecessary control messages. However, the trickle timer is proven to have

its own disadvantages dealing with dynamic environments [112], resulting in an

inefficient transmission of data and high energy loss due to failed packet delivery.

Many researchers take energy consumption into account when suggesting any

improvement to RPL, one of the most common approaches is using energy as a

routing metric in the objective function. A study also reveals that RPL in its

original standard is energy efficient and nodes can last for years [113,114]. These

conclusions were based on simulations were nodes generate 40 packets/minute.

Another study also uses energy consumption as a metric and confirmed the avail-

able results, they also note that energy consumption increases with higher node

densities and larger networks [115]. This is to be expected as nodes in these cases

suffer from a higher number of transmissions and added noise.

In a study on an energy efficient objective function targeted towards smart

metering and industrial applications [116], the authors use residual energy and

expected energy consumption in the objective function named smart energy ef-

ficient objective function (SEEOF). The results show 22%-27% improvement in

the network lifetime when compared to nodes using MRHOF as the objective

function.

The authors in [117] use a collaborative approach where nodes act as “ants” in

an ant colony, the approach assumes that nodes are independent decision makers
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where the gain of each node is desirable for the welfare of the entire network.

They also use residual energy as a metric to distribute energy consumption and

thus prolong the lifetime of the network.

In [118], residual energy is used as the only metric in the objective function,

while results show that it does improve the distribution of energy consumption

and extend the life time of the network, it does not consider other important

metrics like packet loss, latency or throughput. There are some studies that use

energy consumption as one of the metrics in the objective function, but since the

main aims of these studies are to improve other aspects of routing like mobility

and reliability, they will be discussed in the relevant sections. It is worth mention-

ing that most improved versions of RPL take energy consumption into account

while not necessarily making it their main objective [40, 44,119,120].

Studies that aim for load balancing have a significant impact on energy con-

sumption, distributing load reduces congestion and leads to higher throughput

but it also means that the energy consumption is distributed more efficiently

among nodes, giving a better lifetime for the whole network. In a study on sink

to sink coordination technique [121], The control messages of RPL are utilized to

adjust the sub-network size relative to other sink nodes. Simulation results show

an improvement in both throughput and energy distribution among nodes in the

network, leading to an improved lifetime.

In a study of energy balancing, the authors propose a method for estimating

energy consumption based on RDC [122], they use this estimation as a metric

for routing and achieved better distribution of energy and higher PDR. However,

the improvement in energy consumption is marginal compared to using MRHOF

as the objective function. In addition to that, the proposal doesn’t provide any

additional advantages other than marginal energy saving.

Other studies related to minimizing energy consumption use different ap-

proaches like improving failure detection to improve energy efficiency in RPL

[123]. This approach uses a suffering index that reflects the cost network fail-

ures and aims to improve energy consumption by pro-actively detecting failures.

Some studies propose energy harvesting techniques to efficiently transmit data.

A routing and aggregation for minimum energy (RAME) technique [124] uses the

information of the node with the lowest energy to regulate traffic. This approach

limits throughput but is very effective in energy critical applications. Table 2.1
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Table 2.1: RPL Enhancements for Energy Efficiency

Ref Strategy Advantages Disadvantages

[114] Contiki RPL implemen-

tation.

(i) Practical experiments. (ii)

Shows a lifetime of years using

Tmote sky nodes.

Takes only energy consumption

into account when testing.

[115] Using energy as a metric. (i) Includes ETX as a metric. (ii)

Considers mobile scenarios.

No improvements to RPL.

[116] Using a cost of combined

metrics

(i) Improves network lifetime. (ii)

Considers industrial applications.

(i) No practical testing. (ii) No

considerations for mobility.

[117] Using collaborative ap-

proach.

(i) Uses optimization techniques.

(ii) Improves lifetime.

(i) No practical testing. (ii) No

throughput optimization.

[118] Using residual energy as

a metric.

Improves lifetime. (i) Does not consider other rout-

ing metrics. (ii) No practical test-

ing.

[119] Using Fuzzy based met-

rics.

(i) Improves lifetime and through-

put. (ii) Practical experiments.

(i) Does not consider mobility.

(ii) Routing metrics are not op-

timized.

[40] Using combined metrics. (i) Considers congestion as a met-

ric. (ii) Improves Throughput, en-

ergy efficiency and delay

(i) Uses only Matlab simulations.

(ii) Does not consider mobility.

[44] Using Fuzzy logic and

“Corona” strategy.

(i) Considers mobility. (ii) Im-

proves throughput, lifetime and

delay.

(i) No practical experiments. (ii)

Limited mobility management.

[120] Using multiple parents. (i) Improves lifetime. (ii) Uses

a multipath approach. (iii) Es-

timates link quality on multiple

links.

(i) Does not consider mobility. (ii)

Incompatible with the RPL stan-

dard.

[121] Sinks coordination. (i) Considers multiple sinks. (ii)

Improves throughput and life-

time.

(i) No practical experiments. (ii)

No mobility considerations. (iii)

Incompatible with the RPL stan-

dard.

[122] RDC based energy bal-

ancing.

Improves load balancing and

throughput.

(i) Marginal improvement com-

pared to MRHOF. (ii) No mobil-

ity considerations.

[123] Failure detection. (i) Uses a combined cost metric.

(ii) Improves lifetime.

(i) No mobility considerations.

(ii) No practical experiments.

[124] routing and aggregation

for minimum energy.

Significantly improve lifetime. (ii) Limits throughput. (ii) No

mobility considerations.

shows a list of energy related studies with their advantages and disadvantages in

terms of implementation and performance, with a focus on implementations that

take energy consumption as a priority in the design.
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2.7.2 Mobility

There are several efforts on investigating routing for mobile WSNs and within

the IoT applications, most of the recent work is based on RPL since it became

the standard routing protocol for the IoT [125]. RPL is a flexible and scalable

routing protocol and using it as a standard makes it easier to build an inter-

operable solution for any application making it a part of IoT. There are many

efforts to improve and create enhanced versions of RPL taking advantage of its

flexible and scalable design. Since one of the obvious disadvantages of using RPL

is that it lacks mobility support, several researchers focus on providing solutions

to accommodate mobile nodes.

The DAG-based Multipath Routing for mobile sensor networks (DMR) [126]

was designed based on RPL with rank information and link quality identifier

(LQI) as routing metrics, it uses a multipath approach with redundant routes and

it has a DODAG maintenance and repair technique. However, RPL already covers

these methods and while DMR outperforms the ad-hoc on-demand distance vector

(AODV) [127] and the ad-hoc on demand multipath distance vector(AOMDV)

[128] protocols which were not designed for LLNs and it wasn’t compared to

native RPL.

The authors in [129] evaluated the use of RPL in IPv6 WSNs through simu-

lation of two case studies, the first case assumes two mobile sinks in a network of

up to 40 nodes and the second case uses Power Line Communication (PLC) nodes

which are not energy constrained to act as mobile sinks resulting in a better bal-

ance of the energy consumption throughout the network. Although this approach

does improve the lifetime of the network, it does not add any improvement to

RPL as a protocol and it does not consider other network metrics.

Similar to the last approach, the authors in [130] present a strategy for mobile

sinks in IPv6 WSNs. In this strategy, every node calculates its weight based on

three metrics: number of hops, residual energy and number of neighbour nodes.

The sinks look for the node with highest weight and moves towards it. This

approach considers only the lifetime of the network by balancing the energy con-

sumption, it is also limited to certain applications.

A hybrid routing protocol for WSNs with mobile sinks [131] aimed to improve

the parent selection in RPL by deploying one or more mobile sinks that move

towards nodes with higher residual energy in a controlled manner to overcome
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the problem of depleting nodes closer to the sink. This protocol improves the

lifetime of the network by balancing the energy usage among nodes. However, this

approach does not consider metrics other than energy and it is only applicable

in environments where it is feasible and efficient to have a controlled sink that

moves in this manner. In addition to that, the authors do not provide simulation

or practical results to validate this protocol.

In [132], the authors proposed a strategy to include the mobility status of each

node in the DIO message, static nodes will be preferred in the parent selection

process. This approach has a higher PDR and a better routes stability but as

it includes the mobility status in the DIO message, it changes the standard and

makes it no longer compatible with other versions or RPL. It is also limited in

application to some mobility scenarios because it does not include any routing

metrics in the parent selection process.

The authors in [105] proposed an enhanced version of RPL for vehicular ad-

hoc networks VANETs. They included geographical information as a new metric

in order to predict nodes in forward direction and select them as preferred parents

to minimize the number of dissociations and reformation of DODAGs. They also

modified the DIO timer to be adaptive to the speed of nodes in order to improve

the handover time and thus improve the PDR and end-to-end delay. However, this

protocol is tested only for data collection with only one cluster head that collects

data from static road side nodes regardless of application network requirements

and assuming the mobile node does not change direction. It is also aimed for

VANET-WSNs and does not take into account a dynamic environment.

The authors in [112] proposed analysis of RPL under mobility using a reverse

trickle algorithm. According to their proposal, mobile nodes are preconfigured

with a mobility flag and are set to act as leaf nodes to make sure they do not

participate in the DODAG building process. When a mobile node connects to a

DODAG, it sets the trickle timer to the maximum value and periodically decreases

it until it reaches the minimum value or moves to another parent. Using the reverse

trickle timer for mobile nodes reduces the disconnection time and improves the

detection of an unreachable parent. However, this approach assumes that there is

always a static node in range of any mobile node. It also requires using different

settings for static and mobile nodes making it less flexible. In addition to that,
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this protocol has no mobility detection scheme and it rather uses different trickle

settings for mobile nodes.

In [133], the authors introduced a mobility support layer called ”MoMoRo”

targeted at low-power WSN applications with human-scale mobility and low traf-

fic, it allows the nodes to send probes as soon as they observe that they are discon-

nected from their parent node, it also introduce a destination searching scheme

by sending adaptive flood messages to detect a missing node in the data collec-

tion tree. According to the simulation results, this protocol achieves similar PDR

when compared to the native RPL and to the AODV, it has less packet overhead

than AODV but slightly more than the native RPL. In an outdoor practical test

using three mobile nodes and one collection node, the PDR is similar to that of

AODV with less packet overhead. However, this protocol cannot accommodate

nodes that moves at higher speeds or require high amounts of traffic. In addition

to that, the practical experiment is done using only three mobile nodes which

cannot effectively show realistic results in a general manner.

The authors in [41] introduced a corona mechanism with RPL (Co-RPL)

for two main enhancements to the protocol, the first one is based on the corona

principle in which the network is divided into circular coronas around the DODAG

root, this principle allows the nodes to find an alternative parent in a faster

manner without needing to reform the DODAG, the second enhancement is the

fuzzy logic objective function FL-OF that uses end-to-end delay, hop count, link

quality and residual energy as routing metrics. This protocol achieves higher

PDR, less end-to-end delay and better energy than the native RPL. However,

this protocol is designed for nodes moving at low speeds of up to 4 m/s and it

does not address a hybrid network with a dynamic mobility model.

Another enhancement of RPL designed for healthcare and medical applica-

tions [134] presents an evaluation of RPL for hybrid networks with both mobile

and static nodes within the applications of healthcare. The authors do not intro-

duce any enhancement to the RPL itself but rather force mobile nodes to act as

leaf nodes which according to the RPL specifications cannot advertise themselves

as routers and do not send DIO messages with the objective function metrics. This

approach improves the stability of the network by allowing the mobile nodes to

connect to the DODAG but not to act as a parent node nor to participate in the

formation of the DODAG. The problem with this approach is that it assumes
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that there is always a fixed node in range of any other node, it also does not

add anything to the design of RPL but rather evaluates using it within the given

scenario.

In [45] the authors propose a mobile version of RPL called mRPL to manage

mobility in IoT environments. This protocol aims to improve the hand-off time

for mobile nodes by adding four timers to the original trickle algorithm in order to

detect disconnected nodes in a smart and fast approach. The connectivity timer

is responsible for detecting a loss of connectivity to the parent node. The mobil-

ity detection timer uses the average received signal strength indication (ARSSI)

to assess the reliability of the connection. The hand-off timer is responsible for

allocating an adaptive short period that is sufficient for sending bursts of DIS

and receiving DIO replies in order to reduce the hand-off delay. The reply timer

is responsible for sending replies to the mobile nodes using an adaptive period to

minimize collision. This protocol is compared with the native RPL considering

different simulation scenarios and the results show that mRPL outperforms the

native RPL in terms of PDR, packet overhead and hand-off delay. A practical

test is also conducted using Tmote-Sky nodes and the results were similar to the

simulation. However, mRPL relies heavily on ARSSI values and neglects other

metrics resulting in unnecessary hand overs and sometimes unreliable links estab-

lishment. This protocol is tested for only one mobile node moving at a constant

velocity (2m/s) near nine static nodes and does not consider more than one mo-

bile node or nodes moving at higher speeds. It also does not discuss the objective

function of RPL and its potential to improve mobility management.

More recently, a ”Smarter-HOP” version of mRPL for optimizing mobility in

RPL was introduced to improve the performance of mobility management. This

protocol is named mRPL++ [135] and it includes the objective function in the

parent selection process to make sure that nodes are aware of link metrics other

than RSSI. This approach improves the decision making by using the product of

ARSSI and the ratio between the metric costs in the objective function of the

competing parent nodes as the basis for parent selection. However, this protocol

still suffers from the weakness points of mRPL and is still dependant on RSSI so

that it cannot be neglected regardless of the objective function.

The authors in [136] present a routing strategy called Kalman positioning RPL

(KP-RPL), this protocol is based on RPL and it provides robust routing for WSNs
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with both static and mobile nodes. In KP-RPL, two modes of communication

are defined, the anchor to anchor (two static nodes) and the mobile to anchor.

The first mode uses the default RPL while the second one is managed by using

Kalman filter and blacklisting. Each mobile node creates an initial list of the static

nodes within its range and according to the Received Signal Strength Identifier

(RSSI), it blacklists those of low ETX that are considered ”potentially unreliable

links”. This approach improves the reliability of the network by 25% according

to simulation results. However, it assumes only one mobile node is moving within

range of a number of static nodes and does not take into account additional

mobile nodes. It also relies on positioning to estimate the position of the mobile

node and performs blacklisting based on that. Inaccurate positioning can result in

severe network degradation because not only the routing decision will be affected

but also reliable links might be blacklisted.

The authors in [137] proposed D-RPL for multihop routing in dynamic IoT

applications, aiming to improve the operation of RPL in mobile environments

with dynamic requirements. D-RPL uses some of the features of mRPL in ad-

dition to an adaptive timer that works as a reverse-trickle timer when mobility

is detected. It also includes routing metrics in the decision making to minimize

the number of unnecessary hand overs while maintaining high responsiveness

and smooth transitions. This design was also extended in [138] to optimize the

performance or RPL using a game theoretic approach. The game theory based

mobile RPL (GTM-RPL) uses RSSI readings to detect mobility, it also calculates

an energy cost based on density, a mobility cost based on link quality level and

a mobility metric and a priority cost to generate a total cost function used to

adaptively change transmission rate. This approach improves the performance of

RPL under mobility in terms of energy consumption, throughput and end to-

end-delay, providing a flexible solution that adapts to the network conditions.

Table 2.2 shows a list of mobility aware versions of RPL with their advantages

and disadvantages in terms of implementation and performance.
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Table 2.2: RPL Enhancements for Mobility Management

Ref Strategy Advantages Disadvantages

[129] Using mobile sinks (i) Improves lifetime. (ii) Consid-

ers multiple sinks.

(i) No improvements to RPL de-

sign. (ii) No other routing metrics

used.

[130] Sink node moves towards

nominated nodes.

(i) Improves lifetime. (ii) Im-

proves load balancing.

(i) Limited applicability. (ii) No

improvements to RPL design.

[131] Deploying a contingency

mobile sink.

(i) Improves lifetime. (ii) Im-

proves load balancing.

(i) Limited applicability. (ii) No

improvements to RPL design.

(iii) No simulations to validate it.

[132] Including mobility sta-

tus in DIO.

Improves PDR and routing sta-

bility.

Incompatible with the native

RPL.

[105] (i) Including geographi-

cal information as a met-

ric. (ii) Using an adap-

tive timer.

(i) Improves PDR and end to end

delay in VANETS.

(i) Assumes that nodes do not

change direction. (ii) Does not

consider dynamic scenarios.

[112] Using reverse trickle for

mobile nodes.

(i) Reduces disconnection time.

(ii) Improves PDR.

(i) No mobility detection scheme.

(ii) Requires different settings for

mobile nodes.

[133] (i) Sending probes when

disconnected. (ii) Us-

ing Adaptive flood mes-

sages.

Considers three mobile nodes. (i) No improvements in perfor-

mance compared to native RPL.

(ii) Additional overhead.

[41] Using a “Corona” mech-

anism.

Improves PDR, end to end delay

and energy efficiency.

Limited mobility management.

[134] Configuring mobile

nodes as “leaf” nodes.

(i) Improves stability and energy

efficiency.

(i) No improvements to the RPL

design. (ii) Limited mobility sup-

port.

[45] (i) Link monitoring us-

ing RSSI readings. (ii)

Additional timers.

(i) Improves mobility manage-

ment. (ii) Improves PDR. (iii)

Considers dynamic scenarios.

(i) Uses periodic timers that can-

cels the need for trickle. (ii) Ad-

ditional overhead.

[135] Using objective function

with mRPL [45].

Higher flexibility. (i) No improvements to mRPL.

(ii) The objective function is al-

ways dependant on RSSI.

[136] Using Kalman filter and

blacklisting.

(i) Uses localization techniques.

(ii) Improves PDR.

(i) Susceptible to inaccurate po-

sitioning. (ii) High energy con-

sumption.

[137] Adaptive timer and

adaptive DIS.

(i) Improves PDR, energy effi-

ciency and delay. (ii) Low over-

head.

Marginal improvement in low

mobility scenarios.

[138] Game theoretic opti-

mization of RPL.

(i) Improves PDR, Energy ef-

ficiency and delay. (ii) Change

transmission rate according to

network conditions.

-
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2.7.3 QoS

Reliable data transmission is a requirement most IoT applications, this is achieved

by minimizing lost packets, maximizing throughput and avoiding long delays.

Achieving high QoS requires improved routing decisions, optimized transmission

rates and efficient topology repair [139].

In [140], the authors present a reactive approach that uses the number of

received data packets to instead of counting on control messages to send link

quality updates. This approach forces nodes to change parents to measure link

quality, this approach improves the reliability of transmitted data as it maintains

a list of different link quality measurements for neighbouring nodes.

In [141,142], the authors proposed a cross layer design to improve link quality

estimation in RPL, this algorithm also uses an adaptive approach to achieve

reliable data transmission, low energy consumption and decrease end-to-end delay

compared to the native RPL. They also introduced a method to update link

quality information based on priority using unicast DIS messages.

In [44], a novel objective function was introduced based on fuzzy logic, it uses a

corona mechanism dividing the network into circular coronas around the DODAG

root, this scheme allows nodes to easily find an alternative parent without the need

to reform the DODAG. In the fuzzy logic objective function (FL-OF), it uses end-

to-end delay, hop count, link quality and residual energy as routing metrics. This

protocol achieves higher PDR, improved responsiveness and decreased energy

consumption, it also has the ability to manage mobility at low speeds due to the

corona mechanism.

A study based on merging routing metrics including ETX, remaining energy

and delay introduce a new fuzzy objective function [119], the algorithm uses fuzzy

logic to find a trade-off for these metrics. This algorithm was tested using practical

experiments and results claim an improvement in PDR, energy consumption and

end-to-end delay.

The authors in [123] use an approach to detect link failures, the algorithm

(Pro-RPL) counts the number of lost packets and uses a threshold to assume

a failed link. Nodes send DIO messages containing information about energy

consumption and link cost, these metrics contribute to decision making where

nodes select a parent that has the lowest cost. Simulation results show that this
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approach improves PDR and energy efficiency, however, a faster method to detect

failures is needed to improve its responsiveness.

A proposal in [143] presents an approach to detect root node failure that

results in loss of all data. Most papers assume that the sink node cannot fail, has

sufficient power and is always in range. The root node failure detection (RNFD)

uses a probabilistic approach to detect the failure of the root node or other main

nodes connecting large portions of the network. It also allows node to collaborate

in finding failures to improve responsiveness. Simulation results show that this

algorithm has the potential to detect failures but does not guarantee that, it also

introduces a control overhead leading to higher energy consumption and lower

throughput.

In [120], the authors propose a multipath routing approach where nodes use

multiple parents and transmit their data across all the available links. It uses an

estimated lifetime metric (ELT) to divide transmission among node according to

their residual energy and ETX. The metrics combination ensures a more reliable

connection compared to using MRHOF or OF0, in addition to improving load

balancing and energy efficiency performance.

Other studies introduce multicast techniques to improve routing reliability

[144–147]. These studies propose a stateless multicast RPL forwarding (SMRF),

an enhanced SMRF (ESMRF) and a bidirectional SMRF (BMRF) to control mul-

ticast messages in RPL. The experiment results show that these protocols have

the potential to outperform the trickle algorithm, they also claim that by using

link layer broadcast and link layer unicast they ensure higher reliability. However,

this improvement in reliability comes at a high cost of energy consumption and

delay.

Another approach for ensuring QoS and connection reliability, is the use of

multiple instances that is part of the original RPL description but is rarely dis-

cussed in research. This approach allows using different logical topologies of RPL

at the same time where each “instance” or topology can use unique QoS require-

ments. An algorithm called cooperative-RPL (C-RPL) [148] uses a cooperative

strategy for nodes with different sensing applications to save energy and reduce

cost. Table 2.3 presents a summary of RPL enhancements that focus on QoS

along with their main advantages and disadvantages in terms of implementation

and performance.
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Table 2.3: RPL Enhancements for QoS

Ref Strategy Advantages Disadvantages

[140] Passive link quality

probing

Improved reliability of data (i) Long delays caused by fre-

quent parent changes. (ii) No mo-

bility support.

[141] Improving link quality

estimation

Improved PDR, energy consump-

tion and delay.

(i) No mobility support. (ii) Some

conclusions do not agree with lit-

erature.

[142] Exploiting trickle algo-

rithm for Link quality

estimation.

(i) Improved PDR. (ii) Compati-

ble with native RPL.

(i) Additional overhead. (ii) In-

creased energy consumption and

delay. (iii) No considerations for

dynamic scenarios.

[44] QoS-aware fuzzy logic

objective function.

(i) Improves PDR, delay and en-

ergy efficiency. (ii) Considers mo-

bile scenarios.

(i) No practical experiments. (ii)

Limited mobility support.

[119] Fuzzy logic metrics. (i) Improves lifetime and

throughput. (ii) Conducts

practical experiments.

(i) Does not consider mobility.

(ii) Routing metrics are not op-

timized.

[123] Link failure detection. (i) Uses a combined cost met-

ric. (ii) Improves lifetime and

throughput.

(i) No mobility support. (ii) No

practical experiments.

[143] Root node failure detec-

tion.

(i) Allows node collaboration. (ii)

Improves reliability.

(i) Increased energy consump-

tion. (ii) Failure detection is not

guaranteed.

[120] Multiple parent nodes. (i) Improves lifetime. (ii) Esti-

mates link quality on multiple

paths.

(i) Does not consider mobility.

(ii) Incompatible with the native

RPL.

[144] Stateless multicast RPL

forwarding

(i) Improved energy efficiency

and delay. (ii) Potential improve-

ment to PDR.

(i) Incompatible with RPL stan-

dard. (ii) Not flexible. (iii) No

mobility support.

[145] Implicit acknowledge-

ments.

(i) Combines Trickle [31] and

SMRF [144] algorithms. (ii) Abil-

ity to select a trade off between

delay and PDR

(i) Increased delay. (ii) Increased

energy consumption. (iii) High

memory requirements.

[146] Enhanced stateless mul-

ticast RPL forwarding.

(i) Improved reliability. (ii) Im-

proved PDR and delay.

(i) Increased energy consump-

tion. (ii) Incompatible with the

native RPL.

[147] Bidirectional multicast

RPL forwarding.

(i) Improved reliability. (i) Con-

siders bidirectional traffic. (iii)

Adjustable parameters.

(i) Increased energy consumption

and delay. (ii) High memory re-

quirements.

[148] Cooperative interaction

among RPL instances.

(i) Improved reliability and en-

ergy consumption. (ii) Low im-

plementation cost. (iii) Considers

multiple objective functions

No mobility support.
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2.7.4 Congestion

One of the most challenging aspects in multi-hop routing is congestion, as the

number of hops increases the accumulated data causes congestion especially at the

node level. With multiple nodes transmitting at high rates, the risk of congestion

becomes greater and both the wireless channel and the nodes’ buffer become con-

gested [149]. Congestion leads to significant deterioration in energy consumption,

reliability and delay [150]. There are different approaches to solve the problem

of congestion, the most common are resource control, traffic control and hybrid

schemes.

The authors in [151] propose a duty cycle aware congestion control (DCCC6)

for controlling traffic in 6LoWPAN networks, it uses RPL to handle routing and

adjusts its traffic based on RDC and buffer occupancy. This protocol is tested

using 25 nodes in a random deployment, simulation results and practical results

show an improvement in performance in terms of energy consumption and delay,

this approach successfully mitigates congestion in RPL networks. Similarly, the

authors in [46] introduced three schemes for congestion control called Griping,

Deaf, and Fuse. These schemes use queue length, buffer length and a hybrid

combination of them respectively. According to simulation results, the last scheme

(Fuse) which uses a combination of queue and buffer length outperforms the other

two in managing congestion.

One of the problems of the aforementioned schemes is that they do not support

node priorities or application priorities, the authors in [152] introduced a game

theoretic framework to use an adaptive transmission rate in sensor nodes. The

game formulation is aware of the buffer occupancy, energy consumption and node

and application priorities. Simulation results show that this scheme improves the

performance in congested networks in terms of throughput, delay and energy

consumption.

In resource control strategies, the authors in [153] introduce a congestion con-

trol algorithm that detects least congested paths based on buffer occupancy. This

proposal was designed for CoAP/RPL networks and was compared to the CON

and NON transactions in CoAP. This approach improves the performance of the

network in the presence of congestion, however, it becomes counter productive

when used in non-congested networks. It is also worth mentioning that this al-
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gorithm uses “eavesdropping”, to passively listen to received packets leading to

high energy consumption.

In [42, 154] the authors follow a load balancing approach, they use a queue

utilization scheme where nodes send congestion information using DIO messages.

This approach successfully achieves load balancing and improves the performance

in congested networks. Similarly, the authors in [43, 155] propose a game theo-

retic approach that contributes to the parent change decision. In this algorithm,

the parent node sends a DIO when it detects congestion and the child node uses

the congestion information to change parent. Simulation results show that this

approach achieves up to 100% throughput improvement in highly congested net-

works compared to the native RPL.

Other load balancing schemes were also used in [156–158], distributing the

load on different routes through multiple parents. According to simulation re-

sults, these algorithms successfully avoid congestion and significantly improve the

energy efficiency and throughput. However, these protocols change the standard

of RPL by creating new control messages and changing the DODAG formation

procedure, making them incompatible with the native RPL. The lack of inter-

operability is a problem in IoT applications and RPL nodes are expected to be

flexible and scalable, these are important factors in making it the popular choice

for IoT routing.

Another approach to mitigate congestion is using multipath routing, the au-

thors in [159] propose using multiple routes for data delivery based on objective

function metrics. In [160], the protocol uses DIO information to trigger multi-path

operation only when congestion occurs.

In and [161], the authors introduce a congestion alleviation scheme based on

grey theory, it uses buffer occupancy, ETX and queuing delay in a multi attribute

optimization approach. It also uses a utility function to maximize throughput in

non-congested situations making it a hybrid solution that combines both traffic

control and resource control. Table 2.4 summarizes the relevant RPL enhance-

ments that deals with congestion along with the advantages and disadvantages

of using them.
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Table 2.4: RPL Enhancements for Congestion Control

Ref Strategy Advantages Disadvantages

[151] Duty cycle aware con-

gestion control.

Improves energy efficiency and

delay.

(i) Does not consider using un-

congested routes. (ii) Reduces

throughput. (iii) Does not sup-

port mobility.

[46] Using queue length and

buffer length to miti-

gate congestion.

Improves PDR and energy effi-

ciency.

(i) Does not consider using un-

congested routes. (ii) Does not

support mobility.

[152] Adaptive transmission

rate.

(i) Improved PDR, energy con-

sumption and delay. (ii) Sup-

ports node and application pri-

orities.

(i) Does not consider using un-

congested routes. (ii) Does not

support mobility.

[153] Detecting least con-

gested paths using bird

flocking technique.

Improves PDR in the presence of

congestion.

(i) Increase energy consumption.

(ii) Becomes counter productive

in non congested scenarios. (iii)

Does not support mobility.

[42,154] Sending congestion in-

formation in DIO.

(i) Achieves load balancing. (ii)

Improves PDR and energy effi-

ciency in congested routes.

(i) Does not adapt to non-

congested scenarios. (ii) Does

not support mobility.

[43,155] Using game theory

to find non-congested

paths.

Improves PDR and throughput. (i) Additional overhead. (ii)

Increased energy consumption.

(iii) Does not support mobility.

[156–158] Using multiple parents. (i) Improves throughput and en-

ergy efficiency. (ii) Achieves load

balancing.

(i) Incompatible with RPL stan-

dard. (ii) Does not support mo-

bility.

[159] Using multipath rout-

ing.

(i) Improves throughput and de-

lay. (ii) Achieves load balancing.

(i) Increased energy consump-

tion. (ii) Does not support mo-

bility.

[160] Using adaptive multi-

path routing.

(i) Improves energy efficiency,

throughput and delay. (ii)

Achieves load balancing.

(i) Additional overhead. (ii)

Does not support mobility.

[161] Using grey theory to

mitigate congestion.

(i) Improves energy efficiency,

throughput and delay. (ii) Uses

an adaptive transmission rate to

maximize throughput. (iii) Sup-

ports node and application pri-

orities.

Does not support mobility.
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2.7.5 Security

Most IoT applications require a certain level of security, depending on the type

of the application, the area of deployment and the sensitivity of transmitted

information. In general, IoT applications are expected to have integrity, confi-

dentiality, availability, privacy, authentication and trust. There are many attacks

that can easily target sensor nodes taking advantage of the relative simplicity

of their hardware, seeking gain by exploiting their data or just blocking their

services. From a routing perspective, the most common attacks that face sensor

nodes are denial of service (DoS), man in the middle, spoofing, black hole, sink

hole, worm hole and Sybil attacks [162].

According to the the RPL standard in RFC 6550, Three security modes are

defined:

• Unsecured: Control messages are sent without any security measures.

• Pre-installed: Nodes use a pre-installed key to join a network.

• Authenticated: Nodes use a pre-installed key to join the network as a leaf

node, nodes then request an authentication message that allows them to

operate as routers.

To the best of our knowledge, all RPL enhancements in the literature use

the “Unsecured” mode, the “Authenticated” mode is not specified in details in

the standard, it requires a “companion specification to detail the mechanisms by

which a node obtains/requests the authentication material” [30]. It is surprising

however that the “Pre-installed” mode has not been implemented in literature.

Since there are no studies on security as an RPL internal mechanism, a number

of studies on RPL attacks and their mitigation are presented in this section.

A DOS attack that forces the trickle timer to reset by causing inconsistencies

in the DODAG, this results in a loop of DODAG reformation and global repair.

This type of attacks prevent nodes from handling data packets and deprive them

from their energy used for pointless repairs. An IETF standard proposal in RFC

6553 [163] considers using a threshold for the number of allowed trickle resets

per hour. This solution does not solve the problem of dropped data packets but

at least, it limits the energy wasted for DODAG reformation after the threshold
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Table 2.5: RPL Enhancements for Security Features

Ref Strategy Advantages Disadvantages

[163] Limiting trickle resets

using a fixed threshold.

(i) Improves energy efficiency.

(ii) Improves DODAG stability

in case of DoS attacks.

(i) Decreases throughput. (ii)

Does not use RPL security fea-

tures.

[164] Limiting trickle resets

using an adaptive

threshold.

(i) Significantly improves energy

efficiency. (ii) Improves DODAG

stability in case of DoS attacks.

(i) Additional overhead. (ii)

Does not use RPL security fea-

tures.

[165] Using IDS to create

white and black lists.

(i) Isolates malicious nodes suc-

cessfully. (ii) Improves network

trust.

(i) High overhead. (ii) Does not

use RPL security features.

[166] Using signed DIO mes-

sages to detect sink

hole attacks.

(i) Detects and drops mali-

cious DIOs. (ii) Improves net-

work trust.

(i) Additional overhead. (ii)

Does not use RPL security fea-

tures.

[167] Using geographical

information to detect

spoofed DIOs.

Potentially mitigates spoofing

attacks.

(i) Not validated. (ii) Requires

location awareness. (iii) Does

not use RPL security features.

[168] Using geographical in-

formation with layer 2

keys.

Potentially mitigates replay at-

tacks.

(i) Not validated. (ii) Requires

location awareness. (iii) High

overhead. (iv) Does not use RPL

security features.

[169] Distributed monitoring

architecture.

(i) Mitigates version number at-

tacks. (ii) Potentially locates the

attacker. (iii) Scalable solution.

(i) High overhead. (ii) High de-

ployment cost. (iii) Does not use

RPL security features.

is reached. Another study in [164] improved this idea and proposed an adaptive

threshold that depends on the network conditions and type of attack. The strategy

shows a significant performance improvement in terms of energy consumption.

A study in [165] proposed an intrusion detection system (IDS) to detect the

problems of black hole and grey hole attacks where malicious nodes silently drop

all or some of the data packets. The algorithm detects malicious nodes by mon-

itoring the number of DIO messages, packet loss and delays. According to their

results, this approach successfully prevents malicious nodes from participating in

the DODAG formation process.

In case of a sink hole attack, where a node advertises itself with a high rank to

attract data from neighbouring nodes, the authors in [166] propose an algorithm

to use signed DIO messages to detect fake rank advertisements. The algorithm

was also studied and improved by [167,168] to cover spoofing and replay attacks.

A more recent study on detecting version number attacks in RPL claims

that sensor nodes cannot cope with cryptographic messages and thus introduce a
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monitoring strategy to detect attacks. The monitoring agents are different from

sensor nodes in this approach, their sole purpose is to monitor the network [169].

This approach implies that a high overhead is added to the network because

of the added monitoring nodes. However, the results show that this approach

mitigates the problem of version number attacks and presents a scalable solution

with the potential to identify and locate an attacker or a group of attackers.

Table 2.5 presents the main efforts to deal with security threats using RPL with

a summary of their advantages and disadvantages.

2.8 Summary

This chapter presents a systematic review of RPL-based routing protocols, with

technical insights and evaluation for the different implementations of RPL and

the optimisation approaches in literature. It also discusses the current state of

RPL, with regards to its applicability and efficiency in IoT applications.

Our study shows that RPL is gaining increasing interest with more topics

being covered every year since its standardisation. In the first few years (2010-

2013), the main focus was on studying RPL and improving energy saving without

worrying about missing functionalities. In later years however (2014-2015), the

focus changed towards adding functionalities and improving the core design of

RPL. Mobility, congestion, multi-path routing, load balancing and QoS witnessed

extensive studies that produced a number of invaluable improvements to RPL.

Currently (2018), many researchers accept RPL as the routing protocol for the

IoT. Thus, research is moving forward focussing on industrial uses of RPL, cross-

layer design and security-enabled RPL. Figure 2.12 presents the number of IEEE

research papers in each year since 2010, it is clear that after its standardization

in 2012, RPL is receiving increasing interest in research and implementation.

It is quite clear from the vast number of papers on RPL that the research

community sees it as a promising protocol that can be if not already is a key

player in the Internet of the future. The simulation results and practical imple-

mentations of RPL show that it can be efficiently used in different applications

including but not limited to healthcare, smart environments, transport, industry

and military applications. It is not easy to find a single adaptation of RPL and

declare it as the ultimate routing protocol but many of the protocols presented
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Figure 2.12: RPL research papers count

in this review are interoperable and backward compatible with the native RPL.

This also proves that the original design of RPL was successful in creating a

flexible and scalable basis. Having said that, it is also worth mentioning that

some of the design features that are documented in the original standard RFC

6550 and RFC 6551 including multiple instances and version numbers were rarely

investigated in literature, while some of the potentially game-changing function-

alities including mobility support and congestion control were not mentioned in

the original standard. It is our belief that RPL can significantly benefit from a

new standard design that takes into account its current state and opens the door

for new optimisation studies.
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Chapter 3

Dynamic Routing in IEEE 802.15.4

3.1 Introduction

WSNs consist of a number of smart devices with limited capabilities in terms

of energy, transmission power, processing and memory [5]. In order to design

and evaluate routing algorithms for WSNs many aspects have to be taken into

consideration including energy efficiency, reliability, addressing scheme, flexibility

and scalability. These requirements are even harder to accommodate in a mobile

environment where some or all the nodes keep moving and losing connectivity.

In a hierarchical WSN with multi-hop communication, if a CH moves away from

its parent node or gateway, all of its sub clusters will lose connectivity causing a

major deterioration in network reliability and efficiency.

Cluster-based topology provides a number of advantages for WSNs, it al-

lows higher flexibility and better scalability for the network by localizing routing

information inside clusters and minimizing the size of routing tables [170]. It

also allows data aggregation to remove redundant data save energy and band-

width [171]. Also, using a clustering tree allows for better load balancing and

improved quality of service.

There are many efforts to improve routing in cluster-based mobile WSNs us-

ing different approaches for rotating CHs. However, the existing protocols make a

number of assumptions that either limit their applications or cause high overhead

making them less flexible and less sustainable [172].

A Dynamic Cluster Head Election Protocol (DCHEP) is proposed to improve

the availability and lifetime of mobile WSNs using dynamic election of CHs and

BCHs. The proposed protocol uses the beacon-enabled IEEE 802.15.4 standard

and hierarchically elects CHs based on the beacon information and residual en-

ergy of the node. DCHEP doesn’t use any extra control messages and doesn’t

have any extra overhead, it’s rather triggered by the presence or absence of the
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periodic beacons and it lets every node decide whether it’s a candidate for be-

coming a CH or not, each node has a different probability of becoming a CH that

corresponds to the residual energy of the node.

DCHEP is different from other protocols because it uses a proactive approach

in rotating CHs where nodes do not need a decision from a parent node but

rather use their calculated probability and are triggered by the presence or ab-

sence of beacons to start the election process. It is designed to improve mobility

management and assess data routing using IEEE 802.15.4 clustering scheme.

3.2 Mobility problems in IEEE 802.15.4

Mobility of sensor nodes introduce new challenges for routing and complicate the

existing challenges even further, some of these challenges that affect cluster based

routing are:

• Black hole problem: cluster formation sometimes leads to isolating some

nodes, keeping them out of range of any CH. Mobile nodes suffer from

this problem because their mobility leads them to leave the cluster area

and thus disconnect from their CH which leads to deterioration in network

performance and availability.

• CH mobility: when a CH disconnects from the sink node (or its parent

node in cluster tree topology), it leads to major degradation in network

availability, energy efficiency, etc. because it affects the connectivity of all

the child nodes. Most of the routing protocols in literature assume a static

CH but this assumption is not always applicable.

• Reliability: nodes that are connected to a CH may lose connectivity due to

their mobility and fail to deliver packets as expected.

• Cluster maintenance: most of the mobility-aware routing protocols show

interest in the formation of clusters and the election of CHs but lack the

consideration of packet delivery to the sink especially in multi-hop scenarios.
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• Association/Dissociation delays: when sensor nodes enter or leave a cluster,

the process of adding the node or deleting it in the CH doesnt come with-

out cost. Delays caused by this process need to be minimized especially in

dynamic and dense networks.

Figure 3.1 shows a simple classification of mobility and its effects on the network.

There are different mobility models for mobile WSNs including the pathway mo-

bility model, obstacle mobility model, reference point group model, Gauss-Markov

model, smooth random mobility model, random direction model, random walk

model, and random waypoint model. Because of their generality, none of these

models can describe accurate behaviour for all different applications. However,

the random waypoint model is considered to best describe the mobility of nodes

in ad-hoc and WSNs [13]. The problem with random mobility models in general

is the sudden change of velocity especially at higher speeds, a node can be moving

at maximum velocity and suddenly stops or change direction. Another limitation

is that nodes are allowed to move freely within the simulation area where in real

applications nodes can be restricted by obstacles that affect their mobility. In

addition to that, the mobility of nodes are independent from each other, while

in some applications like undersea monitoring or animal tracking nodes usually

move in groups [173].

The random waypoint model defines the factors of mobility as velocity and

direction, both factors change with respect to a specific time interval. Sensor

nodes can move within the simulation area with a speed of 0 to Vmax and stays

static for a random period of time before starting to move again [174].

3.3 Dynamic Cluster Head Election Protocol

3.3.1 Network Setup

In order to build the hierarchy of the network, the sink node starts sending bea-

cons to advertise its presence, neighbouring nodes receive the beacon and send

an association request to the sender setting it as their parent node. In the setup

phase, connected nodes will decide whether or not to become a CH based on
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Figure 3.1: Mobility classification and effect

a Pseudo-random value that corresponds to the available residual energy. Con-

nected CHs start to advertise their presence in the same way forming a connected

tree as shown in figure 3.2.

As shown in equation (3.1), the priority of each node is calculated locally

using the available residual energy and the initial energy, the connectivity takes

the value of 1 or 0 and makes sure that nodes without an available path to the sink

do not become CHs. The probability of becoming a CH is calculated in equation

(3.2), this is triggered if a node receives a beacon for the first time or if it misses a

maximum number of beacons after being connected. The preferred number of CHs

is one of the most important parameters because it affects network coverage and

inter-cluster interference. Selection of the optimum number of CHs for a mobile

hierarchical tree WSN depends mainly on the application requirements and the

speed of mobile nodes, optimization of this value for different applications is a

future plan, it is given in the configuration file of each node in this simulation as

20% of the total number of nodes. Each node generates a random number using

the “rand()” function and uses the value of P(CH) to determine whether or not
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Figure 3.2: Hierarchical Architecture

to become a CH. For example, in the case of 20% ratio of CHs, the function

generates five integer numbers [1-5] and the node becomes a CH if the random

value was equal to 1.

Priority =
Current energy

Inital energy
× Connectivity (3.1)

P (CH) = Priority × Preferred number of CHs

Number of nodes
(3.2)

Because nodes are not stationary, it is not always possible to reach all the

nodes at a given time, node N in figure 3.2 is temporarily out of reach but the

maintenance of clusters with each beacon and the dynamic election of CHs and

BCHs makes a best effort to manage the mobility of nodes and maintain a path

to the sink. Nodes that receive beacons from more than one CH join the one with

best metrics and store the information of the second best as a BCH. In the event

of missing a given number of beacons, the nodes switches to the BCH without a

need reconstruct the whole network.
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Every node waits for a beacon signal according to the IEEE 802.15.4 standard

and updates its parameters based on the presence or absence of a beacon, the

residual energy, and the current node status as shown in figure 3.3. Some protocols

try to avoid the additional delay of using CSMA/CA but this is not possible in

dense networks with high probability of collisions [27], DCHEP is targeted for

dense networks so it employs slotted CSMA/CA mechanism to reduce collisions

between different clusters and throughout the network. In addition to that, CHs

assign a random time reference for each child node within the cluster, the nodes

use this timing to communicate with their parent nodes and minimize collisions

within the cluster [175].

Using the clustering tree simplifies processing at the network layer because

most of the routing decisions are made in the MAC layer and each node sends

information only to its parent CH while the network layer is responsible for assign-

ing addresses and packet encapsulation/decapsulation process. The short 16-bit

version of IEEE 802.15.4 standard is deployed by default to make sure that future

integration with the Internet of things (IoT) is possible.

3.3.2 Network Management

Network availability and lifetime are important measures for WSNs because of

the limitations in energy and processing. Availability is measured for each node

to have a connected path to the sink node. To extend the lifetime of the network

while ensuring an available path to the destination, the distribution of energy

consumption should be fairly divided for all the nodes. Because CHs are respon-

sible for beaconing and data aggregation, they consume more energy than normal

nodes and fail sooner than others affecting both energy efficiency and network

availability.

The mobility of a node or of its parent introduces another challenge to rout-

ing especially if it is a CH. The node is forced to lose connectivity from time

to time and requires a mechanism to maintain the connected tree and to ensure

the availability of a path to the sink. To achieve that without overwhelming the

network with extra control signals and overhead, each node has to decide when

and how to take action.
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Figure 3.3: Mobility Management Flowchart
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Figure 3.4: Association and Dissociation

Nodes receive periodic beacons from their parent CH to maintain connectivity

and so they can operate normally. A number of factors including the mobility of

nodes or the presence of collisions can result in a failure in receiving the beacon

signal. When a connected node misses a beacon, it calculates its priority based on

the level of residual energy to prepare for possible changes, if it misses a predefined

maximum number of beacons, it dissociates from its former parent and waits for

a beacon from a new one. Once connected, it uses the calculated priority value

to determine the probability of becoming a CH itself as shown in figure 3.4.

This way, nodes with higher residual energy will have a better chance to

become a cluster head as long as they have a path to the destination. If a CH

reaches a threshold value of residual energy or is disconnected from its parent, it

becomes a normal node and follows the same approach in deciding its new status.

This ensures that energy consumption is distributed among all the participating

nodes in a controlled manner without using extra control signals leading to a
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better lifetime for the network. In areas where there are too many collisions and

high interference with neighbouring clusters, the nodes might miss some beacons

and be forced to reform the clusters in that area leading to a better formation

but consuming extra power for the dissociation and association process.

3.4 Simulation Results and Analysis

The proposed routing protocol DCHEP is simulated using the Castalia WSN

simulator [53]. A number of scenarios were considered according to the simulation

parameters in table 3.1 to obtain results and validate the efficiency of DCHEP in

terms of energy consumption and availability. Nodes are placed with a uniform

distribution with the sink node at the middle, moving at a maximum speed of

2m/s using a random waypoint mobility model. Because other protocols assume

a static CH or use control signals for the election process and cannot adapt to

a large number of nodes, the simulation results are compared with the original

standard assuming an energy aware LEACH based rotation of CHs to measure the

advantages of using DCHEP especially for WSNs with high density and random

mobility.

LEACH protocol uses a random probability function for each node, to deter-

mine whether or not to become a cluster head. It does not include residual energy

in this decision, leading to a uniform distribution of energy consumption for all

nodes regardless of their battery capacity and starting conditions. DCHEP on the

other hand, considers the remaining energy to set a priority function as described

in equation 3.1. DCHEP also uses backup cluster heads to minimize the number

of hand-overs in case connection to the cluster head is lost.

The results obtained in figure 3.5 measure the average availability of a path

to the sink node as a percentage of time. It is affected by the time needed for a

node to join a cluster and by how many times it changes clusters. CHs do not

send beacons unless they are connected to a parent node in order to form the

cluster tree, for this reason, the fact that a node is connected implies that it has

a path to the sink although it doesn’t necessarily mean that it is a reliable path.

For a WSN with 100 nodes, DCHEP achieves around 40% slightly higher than

the original standard, it goes up with an increasing number of nodes up to 90% for
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Table 3.1: DCHEP Simulation Parameters

Parameter Value

Simulation Area 500m x 500m

Number of Nodes 100, 200, 500, 1000

Application Packet Rate 5 Packets/Second

Mobility Model Random Way Point, 0 to 2 m/s [176]

Simulation Time 3 Hours

Radio CC2420

Backoff exponent 7

Maximum number of backoffs 4

Maximum number of beacons lost 4

Minimum length of CAP 440

Figure 3.5: Path Availability
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Figure 3.6: Energy Consumption, 100 Nodes

DCHEP at 500 nodes compared to the 71% of the original standard. Above 500

nodes, the availability of DCHEP keeps going higher up to 94.4% at 1000 nodes

while the LEACH based rotation of CHs fail to accommodate the higher density

and starts to deteriorate down to around 60%. DCHEP performs significantly

better because of the efficient method of CH election and mobility management.

To measure the energy efficiency of the proposed protocol, we calculated the

average energy consumption for delivering an application packet from each node.

This value gives an indication of the energy efficiency and the lifetime of the

network.

DCHEP and the original standard both have low availability with 100 nodes

and the results in figure 3.6 show that they both have a good distribution of

energy consumption but DCHEP consumes slightly more energy for delivering

application packets because of the added processing in the election process. Some

nodes consume less energy than others depending on their distance from the sink

and their role in the cluster tree, this is directly affected by the mobility of these

nodes, those who change clusters less frequently and serve as CHs for a shorter

time can be seen as dips in the results and they get fewer and less obvious with
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Figure 3.7: Energy Consumption, 200 Nodes

longer simulation times.

For a mobile WSN with 200 nodes, the higher density leads to more inter-

ference and more hops to the sink. As shown in figure 3.7, DCHEP outperforms

the original standard consuming less energy for delivering application packets

because of the improved election of CHs. The results show that DCHEP makes

better decisions in selecting CHs to maintain good availability and ensure longer

lifetime.

With higher density at 500 nodes, the efficiency of DCHEP becomes more

obvious and the gap with the original standard increases further. The election of

CHs is also affected by interference and DCHEP gains an advantage of having

higher probability for nodes with lower interference to become CHs because they

have a better chance to transmit and receive beacons. Figure 3.8 shows that while

both protocols maintain a good distribution of energy consumption for almost all

nodes, DCHEP provides a much better energy efficiency, it is also obvious that

the energy consumption is going higher while increasing the number of nodes and

that is due to added information sources and higher interference. The presence of

backup CHs and the criteria for electing a parent node ensures better redundancy

and improved load balancing.
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Figure 3.8: Energy Consumption, 500 Nodes

Figure 3.9: Energy Consumption, 1000 Nodes

In figure 3.9, the gap between DCHEP and the original standard increases even

further. As shown earlier in figure 3.5, DCHEP maintains much better availability
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for a network with 1000 nodes and this gives it an advantage compared to other

protocols. The high density and interference lift the energy consumption for any

routing protocol but the simulation results show that DCHEP adapts much better

to these changes making it a good candidate for mobile and dynamic networks. In

high density networks, even though the energy consumption and path availability

are improved, it still does not mean that the path is reliable to deliver data nor

that quality of service is guaranteed. However, the results shown in this chapter

support the general approach of clustering and the use of backup parent nodes to

maintain fewer hand overs and better load balancing that leads to an improved

life time for the overall network.

3.5 Summary

The Dynamic Cluster Head Election Protocol (DCHEP) is implemented to pro-

vide network connectivity for beacon-enabled mobile WSNs under the IEEE

802.15.4 standard using backup cluster heads to improve the availability and life-

time of the network when all nodes including cluster heads are mobile. Simulation

results show that DCHEP maintains inter-cluster and intra-cluster connectivity

in a proactive manner to distribute energy consumption among the participating

nodes while maintaining connectivity.

Because of the nature of mobile networks especially with random mobility,

no routing protocol can guarantee a 100% availability of a path to the sink for

all the nodes but according to the simulation results DCHEP does provide and

average availability of 75% and up to 94.4% in dense networks. Unlike other pro-

tocols, DCHEP is highly scalable and has an improved performance for dynamic

and dense networks, it is also highly flexible and nodes can be easily added to

the network at any time. DCHEP improves the availability and lifetime of the

network by 33% and 26% respectively compared to the original standard.

The hierarchy of the clustering tree and the default addressing scheme of IEEE

802.15.4 makes it also a good candidate for IoT applications. This work highlights

the efficiency of hierarchical routing and the importance of making local repairs.

The following chapters focus on routing using and enhancing RPL which is a

layer 3 protocol and is built on the IEEE 802.15.4 standard.
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Chapter 4

Dynamic Multi-hop Routing in IoT Applications

4.1 Introduction

As mentioned earlier, RPL [30] is standardized as the routing protocol of the

IoT [125]. It is a distance vector tree based routing protocol designed for IPv6

enabled networks, where the routing tree is built as a number of Destination

Oriented Directed Acyclic Graphs (DODAG) routed towards the DODAG root.

Every DODAG is formed according to the defined Objective Function (OF) which

determines the routing metrics that will be used for selecting the preferred parent.

RPL is described in more detail in section 2.1.3. Many applications require some of

the nodes to be mobile which creates an extra challenge to routing especially when

nodes move at high speeds or in an unpredictable pattern [12, 26, 177]. RPL was

originally designed for static networks but there are some efforts that showed it

can be used for some mobile WSNs with a few alterations and enhancements [178].

Smart city applications are various and have dynamic mobility scenarios that

include static and mobile nodes. Some of these nodes can move in an unpre-

dictable manner at different speeds. This type of mobility has a large impact

on routing and it can significantly deteriorate the performance of the network.

In order to satisfy the network requirements of applications with such a diverse

mobility behaviour, it is imperative to have a dynamic routing protocol that can

accommodate this kind of mobility and satisfy the demanding requirements of

these applications.

To the best of our knowledge, none of the existing work on mobility enabled

versions of RPL takes into account multi-hop routing through mobile nodes or the

flexible interaction between the RPL timers and the objective function. Therefore,

this chapter is motivated by these considerations to propose an enhanced dynamic

version of RPL called D-RPL with a dynamic objective function called D-OF.
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In this chapter, we provide realistic analysis for using RPL in mobile network

based on extensive simulations for different mobility scenarios. We implement D-

RPL that is an enhanced dynamic version of RPL with its own objective function

(D-OF) designed for dynamic networks and compare it with existing related work

taking into account different applications and mobility scenarios. The rest of the

chapter is organized as follows: Section 4.2 introduces the description of D-RPL

and the design of the D-OF using relevant metrics. Section 4.3 describes the

simulation scenarios used to evaluate the proposed approach and provides results

and analysis with regards to PDR, end-to-end delay, and energy efficiency. Section

4.4 presents the hardware implementation and testing for D-RPL using Tmote

sky nodes MTM-CM5000-MSP. Finally, section 4.5 summarizes the performance

of D-RPL and discusses possible improvements.

4.2 D-RPL Description

The IoT covers a wide range of applications using different standards and tech-

nologies to serve a large number of applications. These applications have different

network requirements, different node distributions and different mobility scenar-

ios. D-RPL is designed for networks where nodes can be attached to people or

objects building a dynamic mobility scenario in which the DODAG formation

can involve multiple mobile nodes. In this chapter, healthcare and animal track-

ing are presented as realistic IoT applications with dynamic mobility scenarios

that require multi-hop routing to the root or gateway through mobile nodes.

The design of D-RPL includes improvements to the RPL trickle timer, a new

objective function and the interaction between these two factors to manage mobile

nodes in the network and improve the performance of RPL routing.

4.2.1 Timers

RPL relies on the trickle timer in sending DIO messages, if the network is stable

this timer will increase exponentially to limit the number of control messages and

keep a low overhead. When an inconsistency is discovered, this timer is reset to

Imin in order to recover and repair the lost links. In D-RPL we add a control

mechanism for the interval of the trickle timer based on the reception of data

packets and control packets.
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Algorithm 1 Trickle Timer in D-RPL

1: Begin :

Initialize trickle timer

If (Received a packet from node n) then

Read RSSIn;

If (RSSIn + KRSSI <lastRSSIn) then

TrickleI = (OldTrickleI / 2)

If(TrickleI <Imin)

TrickleI = Imin;

Send DIS to all neighbours;

Resume normal trickle algorithm;

End

Upon receiving a packet from node n, nodes read the RSSIn and compare it

to the last reading from the same node lastRSSIn. If the new reading is lower

by a redundancy constant Krssi it switches to the reverse-trickle setting and

decreases the current interval to half until it reaches Imin. It also sends a DIS

to all neighbours to assess the available options, otherwise it resumes the native

RPL mechanism. This is based on the fact that a moving node is not necessarily

going to leave its parent node and the decision on whether to switch to a new

parent is left to the objective function. The trickle timer operation in D-RPL is

defined in algorithm 1.

The idea of the reverse-trickle timer aims to gradually increase the respon-

siveness of RPL in a mobile environment, while keeping normal trickle operation

in a static scenario. Unlike cellular handover, the reverse-trickle algorithm does

not select a new contingency parent when detecting mobility, but rather ensures

that nodes have updated information about their neighbours using DIS messages.

4.2.2 The Objective Function

The proposed dynamic objective function D-OF utilizes the Minimum Rank with

Hysteresis Objective Function (MRHOF) that is already available in Contiki OS,

and it adds other metrics in the calculation of the path cost to the destination.

These metrics include ETX which is based on the expected number of trans-

missions required to send a packet from source to destination, the energy metric
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which is used as the estimated energy required to send a packet to the destination,

and the link quality indicator (LQI) which is based on the RSSI. The MRHOF

objective function defines a threshold for switching to a new parent and nodes

only switch if the rank difference is more than 1. However, in D-OF more than

one metric is used to produce the cost and changing the threshold is necessary

to minimize the number of unwanted hand-overs and improve the routing perfor-

mance. In this chapter, the threshold is set to 2 meaning that nodes will change

parents if two of the routing metrics were better.

The proposed RSSI-based reverse-trickle timer mechanism in D-RPL aims to

reduce the hand-over delay by sensing RSSI values and detecting mobility or

inconsistency while the proposed objective function D-OF which is responsible of

parent selection aims to reduce the number of unnecessary hand-overs by com-

paring the calculated cost to the parent switching threshold. The integration of

D-RPL and D-OF creates an optimization of these two crucial factors making it

an adaptable solution for dynamic IoT applications.

4.3 Simulation Results and Analysis

4.3.1 Simulation Setup

The implementation and simulation of D-RPL has been done using the Contiki

operating system 3.0 [51], with the COOJA [179] WSN simulator. Cooja has a

mature and reliable implementation of RPL and although it does not normally

support node mobility, it can import the coordinates of nodes through a mo-

bility plug-in to represent mobile nodes. Mobility scenarios are generated using

Bonnmotion [180], a free and widely used mobility scenario generation tool. Two

different scenarios are generated to test the proposed D-RPL and compare it with

relevant protocols.

RPL in its original standard, does not have an approach to handle mobility.

It rather assumes that all nodes are static and it faces major deteriorations in

the presence of mobility. mRPL uses a number of additional timers to detect

mobility based on RSSI reading, it forces a higher overhead on the network but

manages to provide good PDR. One of the disadvantages of mRPL is that it

does can make unnecessary hand-overs without consulting the objective function
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Figure 4.1: Node Distribution

metrics. D-RPL on the other hand, uses a reverse trickle algorithm to increase

the responsiveness of RPL. The timer settings is triggered by RSSI readings, but

instead of changing parents, D-RPL requests information from neighbours and

lets the objective function make the decision to keep or change parents based

on the flexible routing metrics. Also, D-RPL does not require relay nodes to

be static, it assumes that all nodes are mobile with the exception of the sink

node. It’s worth mentioning that using mRPL gives similar results to D-RPL in

scenarios where it is feasible to have static nodes in range of all mobile nodes.
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Table 4.1: D-RPL Simulation Parameters

Parameter Value

Simulation Area 150m x 150m

Number of Nodes 25 mobile nodes + 1 sink node

Transmission Range 50m

Healthcare Scenario Random Waypoint, 0 to 2 m/s

Animal Tracking Scenario Random Waypoint, 0 to 5 m/s

Imin / Idoubling 8 / 6

Simulation Time 1 hour

Radio CC2420

We used 25 mobile nodes and 1 static sink node in a 150m x 150m simulation

area as shown in figure 4.1, where the yellow node represents the static sink and

the green nodes are randomly scattered mobile nodes. These nodes move based

on the random waypoint mobility model at 0-2 m/s and 0-5 m/s for Healthcare

and Animal tracking scenarios respectively with a maximum pause of 30s. The

values of Imin and Idoubling are chosen to be 8 and 6 respectively giving a minimum

interval of 256ms and a maximum interval of 16s as shown in Table 4.1.

4.3.2 Simulation Results

In order to test the performance of D-RPL, we chose three metrics that reflect the

efficiency of the network. These metrics are end-to-end delay, energy consumption

and PDR. The end-to-end delay represents the average time required for each

node to successfully send a packet from source to destination. Energy consumption

represents the average amount of energy consumed to successfully transmit a

packet from source to destination at each node during 60 minutes of simulation.

PDR shows the percentage of delivered packets from each node compared to the

total number of packets sent by the same node.
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Healthcare Application

Healthcare is one of the most important IoT applications because it aims to

improve patients’ experience and potentially save lives. In this application, we

assume that low-powered mobile nodes are attached to people, objects and equip-

ment in a healthcare establishment and thus we consider a maximum speed of

2m/s which corresponds to human walking speed and can also be applied for other

IoT applications like smart cites and smart factory management. Healthcare is

estimated to dominate over 40% of the market for IoT applications by 2025 [181].

Figure 4.2 shows the percentage of the number successfully transmitted pack-

ets compared to the total number of sent packets. mRPL has high responsiveness

to mobility, and the simulation results show that it provides an average PDR of

75% which is much higher than the Native RPL but around 10% lower than D-

RPL. This is because mRPL was designed on the assumption that there is always

a static node in range of every mobile node, however in a dynamic scenario with

multi-hop communication through mobile nodes, it performs some unnecessary

hand-overs causing a loss in successfully delivered packets.

D-RPL gives a PDR of around 84% using the adaptive trickle technique and

its integration with the objective function which uses link quality as an indication

of mobility and thus contribute in making better routing decisions.

RPL was originally designed for static networks and thus it has low respon-

siveness to topology changes and it has an average of 36% PDR in this scenario.

Using RPL in these scenarios and comparing its results to mobility aware versions

of RPL reflects on the importance of mobility management and emphasises the

lack of mobility support in the design of RPL.

Figure 4.3 shows the average energy consumption per successfully transmitted

packet at each node after 60 minutes of simulation, it shows that D-RPL performs

better than mRPL and much better than the native RPL. This is due to multiple

factors including the fact that mobility triggers the trickle timer to be reset to its

minimum value in both RPL and mRPL, while D-RPL detects mobility based on

RSSI readings and this triggers a decrease in the DIO interval instead of resetting

it to the minimum value and only resets it when the link is broken or no longer

reliable according to the D-OF. Another factor is the higher packet loss in mRPL

and RPL that leads to more retransmissions and higher energy consumption.

While the total energy consumption for all three protocols is almost the same,
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Figure 4.2: PDR - Healthcare

the efficiency of managing mobility and the ability to maintain fewer lost packets

are much higher in mRPL and D-RPL, leaving the standard RPL at a significantly

worse performance in mobile environment.

The end-to-end delay in figure 4.4 is similar in all three protocols with marginal

difference. D-RPL performs slightly better for most of the nodes because of the

better decisions in parent selection. Although all three protocols are using the

same objective function, the operation of D-RPL is more flexible and less depen-

dant on RSSI than mRPL and the native RPL leading to less delay from source

to destination. This metric is based only on the successfully delivered packets

and does not take into account the dropped packets and so it does not reflect

the efficiency of routing unless incorporated with PDR. The end-to-end delay be-

comes higher with multiple hops, making it also a good indication on PDR and

throughput. With a high delay, the network becomes more prone to congestion

and packet loss due to insufficient buffer occupancy that is made even worse with

the presence of mobile nodes. The delay is measured by adding a time stamp to

each data message, and checked after being received at the sink node. At the end
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Figure 4.3: Energy Consumption - Healthcare

of the simulation, the delay is averaged for each node.

Animal Tracking Application

This application is another IoT application that aims to track a herd or a pack

of animals and provide information about not only the animals themselves but

also their surrounding environment. Having nodes attached to animals can cover

a larger area due to their mobility. This application can also be used to detect

fires in a forest or a field and provide invaluable data that can help in countless

scenarios. We chose this application because it has a dynamic mobility scenario

with nodes moving at relatively high speeds. It can also reflect the challenges of

applications with similar mobility scenarios like sports monitoring.

Simulation results in figure 4.5 shows that D-RPL and mRPL adapt to the

high mobility and provide reasonable results of around 78% and 68% PDR re-

spectively. While the native RPL fails to catch up and provide only 35% average

PDR. Similar to the healthcare application, although mRPL responds to inconsis-

tencies quicker than D-RPL it still relies on the presence of static nodes in range
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Figure 4.4: End-to-End Delay - Healthcare

and thus generates extra overhead and makes unwanted hand-overs that lead to

packet loss. D-RPL can detect mobility and gradually increase its responsiveness

to topology changes without the need to generate excessive control messages, it

also uses the link quality threshold to make a radical change when necessary and

resets the trickle timer to keep an appropriate level of redundancy. The native

RPL shows a similar performance to that of healthcare applications even though

nodes move at higher speeds, this is because it lacks any mobility management

scheme and shows unacceptable results in any mobile scenario.

Figure 4.6 shows that RPL has the highest energy consumption per packet

because of the very high packet loss caused by its low responsiveness to mobility.

The performance of mRPL is much better than RPL but still fails to catch up

with D-RPL because in addition to higher packet loss, the high mobility makes

its trickle timer act as a periodic timer and generates high overhead. The trickle

timer in D-RPL also acts more like as a periodic timer but at higher intervals

that are adaptive to the speed of mobile nodes and thus has the lowest energy

consumption.
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Figure 4.5: PDR - Animal Tracking

The end-to-end delay in this scenario shows that RPL, mRPL and D-RPL

have similar results for the successfully transmitted packets as shown in figure 4.7.

Taking PDR into account shows that D-RPL provides a higher routing efficiency

and a more reliable solution. D-RPL can also achieve higher throughput and

provide a reliable packet delivery that is even more pronounced when taking into

account the overall performance of the network.

4.4 Practical Testing

In order to test the real performance of D-RPL, we conducted hardware testing

using 10 Tmote sky nodes MTM-CM5000-MSP. The experiment was conducted

in 2 environments, an obstacle-free open field and an indoor environment with

obstacles. A simulation scenario is also created for comparison using a similar

topology to the real hardware experiments and a similar mobility scenario. The

aim of this test is to evaluate D-RPL in a practical manner and it does not reflect
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Figure 4.6: Energy Consumption - Animal Tracking

performance in a specific application. It does however give an indication of the

expected performance in both indoor and outdoor scenarios.

The testing scenario involves one static sink node and nine mobile nodes

moving at (0 - 1.5 m/s). Mobile nodes are connected to people moving at normal

human speeds and pausing for a maximum period of 30s. Nodes are placed with

a minimum overlap to ensure multi-hop communication. The sink node with ID

1 as shown in figure 4.8 is the only static node in the network, other nodes move

randomly to force topology changes.

The results in figure 4.9 show that RPL achieves around 42% PDR while

mRPL and D-RPL achieve around 88% and 90% respectively in simulation and

both practical tests. The lower density gives the objective function less options

making the difference in performance of mRPL and D-RPL down to 2% only.

Higher node density increases the chance of collisions and leads to higher packet

loss due to interference and congestion [182].

D-RPL depends on data packets as well as control packets to manage mobility

making it adapt to topology changes. It is also less prune to inaccurate RSSI
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Figure 4.7: End-to-End Delay - Animal Tracking

readings because it involves the objective function metrics in the parent selection

process.

The practical and simulation results are almost the same in spite of the ex-

ternal factors that are expected to affect practical testing. This confirms that

COOJA is successful in emulating the actual hardware and providing a realistic

channel model.

4.5 Summary

In this chapter, D-RPL is implemented for the dynamic applications of IoT to

accommodate the network requirements and mobility demands of these applica-

tions, it is based on and compatible with RPL making it a flexible and scalable

solution. Simulation results show that D-RPL improves the PDR, end-to-end de-

lay, and energy efficiency of the network for different mobility scenarios.

D-RPL shows that it adapts to mobility changes better than relevant RPL-

based protocols, achieving more than 10% improvement to PDR with better end-
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Figure 4.8: Hardware Testing Scenario

to-end delay and better energy consumption compared to mRPL. Simulation

results also show the importance of the objective function and its impact on mo-

bility management in RPL. The proposed objective function D-OF complements

the operation of D-RPL giving reliable performance and efficient routing mecha-

nism.

The design of D-RPL makes it adapt to other objective functions as well be-

cause it does not imply any metrics without consulting the objective function

and uses RSSI only to detect mobility and not to make a final decision. Using the

RSSI-based reverse-trickle algorithm in D-RPL leads to similar responsiveness to

mRPL in low density networks. Including the objective function metrics improves

the performance of D-RPL making it more efficient in highly dynamic scenarios.

The optimization of the objective function to improve mobility management is
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Figure 4.9: Practical Test Results

essential to achieve higher network performance.
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Chapter 5

Optimized Routing for Mobile IoT

5.1 Introduction

RPL was originally designed for static networks, once the connections are estab-

lished, it assumes that the network is in a steady state and does not take mobile

nodes into account. There are many efforts to enhance RPL and many are suc-

cessful in creating new versions of RPL that take into account the presence of

mobile nodes. However, none of these efforts consider analysing and optimizing

the efficiency of RPL in a mobile environment with regard to throughput, en-

ergy consumption and end-to-end delay. Therefore, in this chapter, an analytical

model is provided with a proposal for a game theoretic design of RPL (GTM-

RPL) using a variable transmission rate to achieve higher packet delivery ratio

(PDR), lower end-to-end delay and better throughput whilst maintaining efficient

energy consumption. To achieve this, a game is designed for nodes competing to

send data in a mobile environment, where mobility itself serves as an involuntary

action that influences decision making in all affected nodes. The payoff function

is defined to assess the profit gained from increasing data transmission rate (the

utility function) against the cost induced by the presence of mobile nodes (mobil-

ity function). Other factors are also taken into account in formulating the payoff

function including the priority of nodes (priority function) and the energy con-

sumption (energy function) . In order to prove the presence of at least one Nash

equilibrium, a discussion and analysis are provided along with the optimal solu-

tion of the game. Then, a proposal of a novel GTM-RPL protocol based on this

design and a performance evaluation in different IoT application scenarios are

provided and tested using COOJA over Contiki OS in a simulation environment.

The novel contributions in this chapter are: (i) Improving and optimizing

mobility management in RPL using a game theoretic approach. (ii) Introducing

an adaptive transmission rate that depends on the conditions of the network
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and the availability of resources. (iii) Using a RSSI and link quality indicator

(LQI) to assess the level of noise and the mobility conditions at each node. (iv)

Adding cost functions to reflect on energy efficiency and priority, leading to an

optimum transmission rate that matches the network conditions and application

requirements.

The rest of the chapter is organised as follows: Section 5.3 provides a descrip-

tion of the native RPL and the proposed GTM-RPL with a discussion on the

related aspects of the protocol and the formulation of the optimization game.

Section 5.4 presents the simulation settings and results, and provides a discus-

sion to compare GTM-RPL with relevant protocols in different scenarios. Finally,

Section 5.5 presents the conclusions from this chapter.

5.2 Game Theory

While most of the tests performed in this work involved simulations and prac-

tice as explained in section 2.4, Some theoretical techniques were also used to

tackle mobility and to optimize routing. Game theory was used in chapter 5

to pro-actively find an optimal transmission rate for nodes in a mobile envi-

ronment leading to an improved performance. Game theory is used in different

areas including politics, economy, philosophy, gaming, computer science, etc. In

a cooperative game, “Players” negotiate a strategy to find an overall common

profit. In non-cooperative games on the other hand, “Players” have a conflict of

interest and they compete to find a strategy that allows them maximum profit.

Non-cooperative games are the focus of this work as they allow individual nodes

to make a decision without the need for extensive overhead. Nodes assess their

environment and routing metrics to make an independent decision that nonethe-

less, leads to an improved profit for the single nodes and the overall network. The

scenarios of using a non-cooperative game to achieve a common performance goal

is further explained in chapter 5.

A non-cooperative game can be represented by Γ = (N, (Sk)K ∈ N, (φk)k ∈
N), where:

• N is the number of players or sensor nodes in the same collision space of

the network, (P1, . . . , Pk, . . . , Pn),∀k ∈ N .
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• Sk represents the strategies available for player Pk to take an action A =

(A1, . . . , Ak, . . . , An)∀k ∈ N . Where Ak = [0, λmax] represents the strategy

space for player Pk and thus the Cartesian product of the action sets A =∏N
k=1 Ak.

• φk(Ak) represents the total cost for node Pk to send data at a rate of λk to

the sink node in a mobile environment.

In order to make sure that the outcome of the game Γ = (N, (Sk)k ∈ N, (φk)k ∈
N) has an overall profit for the whole network, Nash equilibrium is used to solve

the game allowing nodes to reach an optimal pure strategy s∗k so that nodes can

no longer increase their payoff by changing strategy and thus have no incentive

to change it.

5.3 Game-Theory Based Mobile RPL (GTM-

RPL)

5.3.1 RPL Related Aspects

As previously explained in chapter 1, a node using RPL starts its operation by

waiting for a DIO message, the probability that a node receives this message in a

given time depends on the number of neighbouring nodes and their trickle timer

settings. Once the node receives a DIO, it sends a DAO message to the DODAG

root and moves to the active state. Depending on the application, the node trans-

mits or relays data towards the sink node and expects to receive periodic DIO

messages from its parent node.

The transition states of RPL are shown in figure 5.1. The main goal is to

optimize RPL so that a node can have a high probability of (b, c and d) and

a low probability of (a). When an RPL node starts, it waits for a DIO and the

probability that it stays in that state is represented by (a). If this node receives a

DIO, then it requests association from the potential parent node and this is given

a probability of (1-a). The probability of a successful association is represented

by (b) and therefore, the probability of a failed request is (1-b). Once the node is

successfully connected, it starts sending data towards the sink and this is denoted

by a probability (c). In this state, there is a (1-c) probability of dissociation due
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Figure 5.1: Markov chain for RPL nodes

to any reason including node mobility. Finally, there is a (d) probability that

the node is still in operation and in this case, it can restart the cycle and wait

for another DIO. In turn, if the energy is depleted, the node fails and cannot

resume operation until it is fitted with new batteries and that is represented by

a probability (1-d). With the presence of mobile nodes in the network, adaptive

settings need to be added to RPL and for that reason, a non-cooperative game is

formulated where nodes compete for network resources taking into account the

requirements of the application and the conditions of the network.

Although the application scenarios give an indication of cooperative behaviour,

nodes are competing to send data at higher transmission rates, causing higher

levels of noise. A node that increases its transmission rate, is maximising its util-
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Figure 5.2: RPL topology

ity function but is also negatively affecting the utility function of other nodes.

This means that increasing transmission rate will increase the payoff of the node

itself, but not necessarily the collective payoff of all players. For these reasons,

the game is considered a non-cooperative game with a goal to maximise gain and

minimise cost for the whole network.

5.3.2 GTM-RPL Game Formulation

Assuming a network with one static sink node that serves as a gateway, a number

of static nodes to ensure better coverage and a number of mobile sensor nodes as

shown in figure 5.2.

Players P = p1, p2,. . . ,pn are competing to send data packets to the sink
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node while playing the mobility management game. In game theory, each action

performed by a player affects the utility function of other players, actions include

changing data rate, parent node, trickle settings and transmission power. The

following rules define the game: (i) Each node pk can send data at a rate of [0

, λmax]. (ii) Mobile nodes have user-defined priorities R = r1,. . . ,rk,. . . ,rn where

rk is the priority of node pk ∀k ∈ N . Nodes with a higher priority assume lower

cost for energy consumption to allow them to send data at higher rates. (iii)

All nodes share an application specific mobility metric Mm that reflects the

expected mobility intensity in a specific application, and a density metric Dm

that depends on the number of nodes, the coverage area of each node and the

total simulation area. If these two metrics are not defined by the user, they are

assumed Mmo and Dmo respectively. (iv) Each node can measure the RSSI of

each message at the MAC layer to compute the link quality (LQ) at a given

time (t). (v) Sensor nodes have limited resources with the exception of the sink

node. (vi) All nodes use Contiki OS with 6LoWPAN adaptation layer and inherit

their benefits and restrictions. The mobility management game is defined by

Γ = (N, (Sk)k ∈ N, (φk)k ∈ N), where N is the number of players, Sk is a vector

of the possible strategies for player Pk, and φk is the payoff function for player

Pk. The payoff of each player represents the cost that a node Pk must endure for

taking an action Ak.

1. Players: represent the sensor nodes in the same collision space of the network,

(P1, . . . , Pk, . . . , Pn),∀k ∈ N .

2. Strategies: each node has a set of possible actionsA = (A1, . . . , Ak, . . . , An)∀k ∈
N . Where Ak = [0, λmax] represents the strategy space for player Pk and thus

A =
∏N

k=1Ak.

3. Payoff function: φk(Ak) defines the total cost for node Pk to send data at

a rate of λk to the sink node in a mobile environment. The payoff function is

defined to include the profit (the utility function), the cost induced by mobility,

the energy cost and the node priority cost as follows:

• Utility Function Uk(Ak): represents the profit of player Pk for using the

strategy Ak. This function reflects the gain of increasing transmission rate

λk as each node tries to maximise its throughput. In order to make sure that
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the utility function is concave and its second derivative is always negative,

the utility function is defined as:

Uk(a) = α log(λk + c) (5.1)

Where α is a user defined factor and c is a safety constant to make sure that

there is always a defined value for the utility function, otherwise at λ = 0,

the value goes to infinity. For each player, the goal is to increase transmission

rate to maximize the utility function and thus the profit, taking into account

the negative effects that may come with that, this trade-off is explained in

the other cost functions.

• Mobility Function Mk(ak, a−k): this function gives a measure of the cost

incurred by the presence of mobility, where a−k is the actions available for

all players except Pk(P1, . . . , Pk−1, Pk+1, . . . , Pn); k ∈ N . In order to have a

measure of mobility, (ARSSI) and LQI are used to evaluate the link quality

cost (LQ) as in [137]. Also, an estimated mobility metric that is application

specific is used to indicate the mobility level for a given application. The

calculation of this metric depends on the mobility scenario. In the simula-

tions, the random waypoint mobility model is used because it fairly reflects

the actual mobility behaviour in WSNs and IoT applications [12] [177].

Mk(ak, a−k) = β Mm LQ λ (5.2)

Where β is a factor that can be changed in accordance with the preference

of the user and the type of the application. Mm is the mobility metric and

it is estimated according to the mobility scenario. In order to calculate Mm

the following formula is used [183]:

Mm =
1

|N |

N∑
i=1

N∑
j=1

1

T

T∫
0

|Vi(t)− Vj(t)| dt (5.3)

Where N is the number of node pairs in the network and is equal to the total

number of nodes in the RPL topology. T is the total runtime in seconds.

Vi(t)−Vj(t) is the difference in speed between nodes i and j at time t. This

metric is not calculated based on the actual movement of nodes because it

is not possible to predict, but rather based on a generated mobility scenario
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using Bonnmotion [180] , a free and widely used tool for mobility scenario

generation. In order to calculate LQ, extensive simulations are conducted

to measure the effect of different LQ levels and the points where they can

be assumed reliable in terms of packet loss and transmission delay.

• Energy function Ek(ak, a−k): energy consumption is one of the most impor-

tant factors in many IoT applications, especially in cases where the cost

of replacing batteries is high. In any application, lower energy consumption

means better life span for the node itself and for the whole network. ARSSI

and DIS messages are used to control the trickle timer as in [137] [45] and

minimize the energy consumed due to control messages. However, with re-

gards to optimizing throughput, limitations arise from the increased energy

consumption caused by sending data packets to the sink node. A higher

data rate means more packet transmissions and thus higher energy con-

sumption. Another important factor is the density of the network, higher

density means more data is relayed which incurs additional packet transmis-

sions for all nodes. The density of the network also causes higher congestion

at the relay nodes leading to higher energy consumption for relaying data

and retransmitting lost packets.

Ek(ak, a−k) = γ Dm λ (5.4)

Where γ is the user defined weight given for energy saving requirements,

Dm is the density metric of the network. In order to express the level of

density in a network, this simple formula is used [184]:

Dm =
|N |πT 2

r

A
(5.5)

Where N is the number of nodes, Tr is the transmission range for each node

and A is the deployment area. In the simulations, it is assumed that the

deployment area has a good coverage giving a density metric Dm > 1.

• Priority function Prk(ak): In many IoT applications, some nodes can be of

higher importance than others. For example, in a healthcare application,

a node that monitors the well being of a patient and informs a member

of staff in case of an emergency (fall detection, health risk, etc.) is usually

given a higher priority than nodes used for controlling room temperature.
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The priority of nodes is set by the user to the preferred level, otherwise

nodes assume Prk = Pr0
k as the default priority.

Prk(ak) = δ prk λ (5.6)

Where δ is the user defined weighing factor, prk is the priority of node

k,∀k ∈ N .

The factors α, β, γ and δ are added to give higher flexibility to the design

of GTM-RPL, allowing the user to customize it according to the application

demands and requirements. For each player Pk∀k ∈ N , the payoff function can

be declared as:

φk(Ak) = α log(λk + C)− β Mm LQ λ− γ Dm λ− δ prk λ (5.7)

In order to find a solution to the game Γ = (N, (Sk)k ∈ N, (φk)k ∈ N), a

proof that it has a unique Nash equilibrium is required, this means that each

player can reach an optimal strategy s∗k = λ∗k where it has no incentive to change

its strategy given that all other players maintain their current strategies.

Theorem 5.3.1 The formulated game is a concave n-person game and it has at

least one Nash Equilibrium.

Proof: The strategy vector for player Pk can be represented by Sk = [0, ..., λmaxk ].

It is clear that the strategy set of player Pk is closed and bounded, meaning that

the set Sk is compact ∀k ∈ N . Consider x, y to be two points in the strategy

vector Sk in a Euclidean space where S =
∏n

k=1 Sk, the strategy set Sk is convex

if for any x, y ∈ Sk and η = [0, 1], ηx+ (1− η)y ∈ Sk as shown in figure 5.3.

The Hessian matrix of the payoff function φk(Ak) = α log(λk+C)−β MmLQ λ−
γ Dm λ− δ prk λ can be defined as:

H =


∂2φ
∂λ21

∂2φ
∂λ1∂λ2

. . . ∂2φ
∂λ1∂λn

∂2φ
∂λ2∂λ1

∂2φ
∂λ22

. . . ∂2φ
∂λ2∂λn

...
...

. . .
...

∂2φ
∂λn∂λ1

∂2φ
∂λn∂λ2

. . . ∂2φ
∂λ2n

 (5.8)
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Figure 5.3: The convex strategy set Sk∀k ∈ N

By applying the second derivative test on the payoff function φk, it is clear

that the leading principal minor of the Hessian matrix is negative definite at λ

meaning that it reaches a local maximum at λ as shown in equation (5.9) [185].

d2

dλ2
= φ′′k(λ) = − α

(λk + c)2
(5.9)

Theorem 5.3.2 The weighted non-negative sum σ(λk, r) is diagonally strictly

concave if the symmetric matrix [G(λk, r)+G′(λk, r)] is negative definite ∀λk ∈ S
where r is a non-negative vector [186].

Proof: The weighted non-negative sum σ(λk, r) can be written as a summation

of φk(λ)

σ(λk, r) =
n∑
k=1

rkφk(λ),∀k ∈ N, rk ≥ 0 (5.10)

96



5.3 Game-Theory Based Mobile RPL (GTM-RPL)

For each fixed value of r = (r1, r2, . . . , rn), a related mapping of g(λk, r) is

defined as gradients 5kφk(λk).

g(λk, r) =


r151 φ1(λ1)

r252 φ2(λ2)
...

rn5n φn(λn)

 (5.11)

Where g(λk, r) is the pseudo-gradient of σ(λk, r) and 5kφk(λk) is given by:

5kφk(λk) =
α

λk + C
− βMmLQ− γDm− δP r

k ,∀k ∈ N (5.12)

From g(λk, r) in equation 5.11, its Jacobian matrix can be defined by G(λk, r) as:

G(λk, r) =


r1

∂2φ
∂λ21

r1
∂2φ

∂λ1∂λ2
. . . r1

∂2φ
∂λ1∂λn

r2
∂2φ

∂λ2∂λ1
r2

∂2φ
∂λ22

. . . r2
∂2φ

∂λ2∂λn
...

...
. . .

...

rn
∂2φ

∂λn∂λ1
rn

∂2φ
∂λn∂λ2

. . . rn
∂2φ
∂λ2n

 (5.13)

Since the symmetric matrix [G(λk, r) + G′(λk, r)]∀k ∈ N, λk ∈ S, is negative

definite, then the weighted non-negative sum σ(λk, r) is diagonally strictly con-

cave and the game Γ = (N, (λk)k ∈ N, (φk)k ∈ N), has a unique Nash equilib-

rium [186].

5.3.3 Game Solution

To find the optimum solution of the game, the payoff function φk(λk) needs to be

maximised by choosing an optimal strategy according to the game design. The

optimal transmission rate λ∗k ∀k ∈ N, λ∗k ∈ S is restricted by 0 ≤ λk ≤ λmaxk . To

find the solution of the game, the Lagrangian function is defined by:

Lk = φk(λk) + ukλk + vk(λ
max
k − λk) (5.14)

Where uk and vk are the Lagrange multipliers and the Karush-Kuhn-Tucker

(KKT) [187] conditions for the maximization problem are:
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uk, vk ≥ 0

λk ≥ 0

λmaxk − λk ≥ 0

∇λkφk(λk) + uk∇λk(λk) + vk∇λk(λmaxk − λk) = 0

uk(λk), vk(λ
max
k − λk) = 0

The solution to the game can now be solved for each player Pk, ∀k ∈ N , the out-

come λ∗k is the optimum transmission rate depending on the state of the network

and the user-defined application parameters. The value of λ∗k can be found using

equation (5.15).

λ∗k =


0 Condition A

λmaxk Condition B
α

βMmLQ+ γDm+ δprk
− c Otherwise

(5.15)

where condition A and condition B respectively are:

βMmLQ+ γDm+ δprk ≥
α

c
(5.16)

βMmLQ+ γDm+ δprk ≤
α

λmaxk + c
(5.17)

The optimum transmission rate λ∗k is the Nash Equilibrium for that node,

∀k ∈ N . This value changes when a node moves (RSSI is affected) and when

another node changes its transmission rate (LQI is affected).

5.3.4 Protocol Implementation

The proposed protocol is implemented using the Contiki operating system 3.0

[188] and the COOJA [179] network simulator. Algorithm 2 shows the basic op-

eration of GTM-RPL. The main optimization point is the value of λ∗k. In the

simulation, the values of α, β, γ and δ are 4.7, 1, 0.05 and 0.1 respectively. These

values are chosen to provide a maximum transmission rate of 4.8 pkt/s at which

congestion starts to significantly affect communication. The value of Mm is 0.725

for the simulation scenarios and the Dm is 9.42 giving a reliable coverage. The
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Algorithm 2 GTM-RPL operation

1: Initialization :

Set α, β, γ & δk

Set λmax

Set application metrics Mm & Dm

Set prk

Initialize trickle timer Imin, Imax, Idoubling

Set λ0

2: Active mode :

Read ARSSI

λ∗k ← equation(5.15)

If (ARSSIt + KRSSI <ARSSIt−1) then

Send DIS to all neighbours

ITricklet = (ITricklet−1 /2)

If ITrickle <Imin then

ITrickle = Imin;

Else

Resume normal Trickle

End

priority of nodes can take a value of [1,10] depending on the application require-

ments. λmaxk is set to 2, 4, 8 and 16 pkt/s and the safety factor C = 0.1, these

values depend on the application requirement and were selected based on exten-

sive simulations.

The value of LQ is calculated and updated at each node based on RSSI

and LQI and the values are mapped in figure 5.4. Lower values for LQ indicate

better quality as LQ represents the cost incurred due to the link quality. The

initial transmission rate λ0
k is set at (λmaxk /2) pkt/s and then updated periodically

throughout the simulation according to equation (5.15).

The mobility detection part of the protocol is also shown in Algorithm 2 and

it uses the change in values of RSSI as a mobility detection parameter. It sends

multicast DIS messages to all neighbours and triggers the reverse-trickle timer to

improve responsiveness and maintain connectivity.

99



5. OPTIMIZED ROUTING FOR MOBILE IOT

145
138

131
124

117
110

103
96

0

0.2

0.4

0.6

0.8

1

-6
5

-6
8

-7
1

-7
4

-7
7

-8
0

-8
3

-8
6

-8
9

-9
2

-9
5

-9
8

-1
0

1

-1
0

4

LQ
ILQ

C
o

st

RSSI

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1

Figure 5.4: Link quality

5.4 Simulation Analysis

The simulations are focussed on two healthcare applications, the first one is pa-

tient monitoring in an elderly care unit, and the second application is hospital

environment monitoring. Both applications share some of the simulation param-

eters provided in Table 5.1.

The proposed protocol is evaluated and compared with related protocols in

terms of PDR, throughput and energy consumption using the Contiki OS and the

COOJA simulator. The simulation uses a Tmote Sky platform which is emulated

by COOJA, and a unit disk graph medium (UDGM) as the wireless channel

taking into account noise levels and interference.

5.4.1 Elderly Monitoring

In this application, wearable sensor nodes are attached to patients in the elderly

care unit shown in figure 5.5 to monitor their well being as well as information

about the environment around them. These sensors read the blood pressure of

patients and inform the medical staff of any abnormality. They also monitor the

mobility habits of patients and provide personalized health advice. In addition to
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Table 5.1: GTM-RPL Simulation Parameters

Parameter Value

λmax 2, 4, 8, 16 packets / s

Packet size 64 bytes

Simulation Area 1600 m2

Number of Nodes 11 nodes + 1 sink node

Transmission Range 20m

Mobility Scenario Random Waypoint, 0 to 2 m/s

Imin / Idoubling 8 / 6

Simulation Time 1 hour

Radio CC2420

fall detection sensors that alarm the staff of any accidents. In the simulation, one

sink node is used with three fixed sensor nodes to provide better coverage and

eight mobile nodes attached to patients. In the simulation, the sensor nodes are

all given the same priority of 5 and they compete to send periodic messages to the

sink node. The results show a performance evaluation of the proposed GTM-RPL

and compare it against the native RPL and mRPL. RPL has no way of managing

mobility but nonetheless it is shown as a baseline for comparison. mRPL on the

other hand has an excellent mobility management approach but it uses a fixed

transmission rate and does not adapt to the mobility of nodes. For the sake of

comparison, different transmission rates are used, 2 pkt/s and 4 pkt/s to show

the performance at different settings.

Fig 5.6 shows the PDR as a percentage for each node, all protocols achieve

high PDR (above 88%) for the first three static nodes but for mobile nodes, the

native RPL goes down to around 44% at 4 pkt/s and 47% at 2 pkt/s. mRPL at

4 pkt/s achieves around 78% PDR while at 2 pkt/s reaches up to 88%. GTM-

RPL achieves a similar PDR of around 88% at both transmission rates and it

outperforms mRPL by more than 10% in the 4 pkt/s scenario.

Although GTM-RPL does not show an advantage against mRPL at 2 pkt/s, it
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Figure 5.5: A typical elderly care unit

is clear that mRPL unlike GTM-RPL, is not trying to optimize the transmission

rate. The throughput shown in figure 5.7 shows that GTM-RPL provides almost

twice the size of successfully transmitted data. mRPL at (4pkt/s) is always send-

ing at the maximum transmission rate and yet it does not show an advantage

compared to GTM-RPL in terms of throughput. This is because it has a lower

PDR and thus a higher number of packets are dropped before reaching the sink

node.

Figure 5.8 shows the energy consumption (mj) per packet. The native RPL
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has a low PDR causing an increase in the number of lost packets and thus a high

energy consumption per successfully transmitted packets. At 2 pkt/s, mRPL and

GTM-RPL achieve similar energy consumption per packet but at 4 pkt/s, GTM-
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Figure 5.10: Hospital environmental monitoring

RPL shows an improvement of more than 16% energy consumption for the same

throughput compared to mRPL due to the higher packet loss in mRPL. Although

GTM-RPL aims to maximize the data transmission rate at each node, it takes into

account the mobility of nodes and the noise level caused by higher transmission

rates. The presence of mobility affects the value of RSSI and the transmission

rates of neighbouring nodes affect the value of LQI and thus LQ, both RSSI

and LQ are important parameters in the selection of the optimum transmission

rate.

Figure 5.9 shows the average end-to-end delay for packets travelling from the

application layer of the sending node to the application layer of the receiving

node. At a transmission rate of 2 pkt/s, GTM-RPL and mRPL show similar

results because the number of nodes and the frequency of transmission are not

high enough to cause an increase in the LQ cost. At a transmission rate of 4 pkt/s

however, GTM-RPL has 15% lower average end-to-end delay compared to mRPL.

The native RPL has an average end-to-end delay of more than five seconds for

both transmission rates because it is less responsive to network changes and has

no efficient way of managing mobility.
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5.4.2 Hospital Environmental Monitoring

In this application, one sink node and 11 sensor nodes are deployed in one of St

James’s hospital wards in Leeds. As shown in figure 5.10, the area in the middle is

not accessible leading to a different mobility limitation. Three of the sensor nodes

are fixed in range of the sink node while the other eight nodes are attached to

patients, equipment and staff to provide a wider sensing area and more accurate

readings. The sensor nodes read a range of information including temperature,

humidity and light levels and send it through the sink node to actuators in order

to take an action and either fix the problem automatically (e.g. opening a window)

or inform the appropriate entity, sensors also read patient data and monitor their

medical condition. It is assumed that two of the patient nodes, number 5 and

6, have a high risk of emergency and thus give them a high priority of 1 while

the rest of the nodes are given a normal priority of 5. Nodes with higher priority

focus more on sending the data at higher rates and worry less about energy

consumption compared to nodes with lower priority. This application requires

high throughput because of the wide range of data and the probability of urgent

incidents. For this scenario, three different transmission rates of 4, 8 and 16 pkt/s

are used for testing.

The simulation results for this application are shown for three protocols,

GTM-RPL, mRPL and the native RPL each at three transmission rates 4, 8

and 16 pkt/s. Figure 5.11 shows the PDR for each protocol using the three differ-

ent settings. GTM-RPL uses an adaptive transmission rate that changes during

operation and reaches a maximum of 4, 8 and 16 pkt/s depending on the con-

figuration, while RPL and mRPL use a fixed value of 4, 8 and 16 pkt/s and do

not change it during operation. At a transmission rate of 4 pkt/s, the results are

relatively similar to the first scenario with GTM-RPL outperforming mRPL by

around 10%. Using a transmission rate of 8 pkt/s, the effect of LQ becomes more

obvious and GTM-RPL transmits at around 6.2 pkt/s for normal priority nodes

and at 6.5 pkt/s for high priority nodes to avoid packet loss while mRPL and

RPL send data at 8 pkt/s causing higher packet loss due to high noise and traffic

congestion. It can be seen that GTM-RPL has an improvement of more than

25% in terms of PDR compared to mRPL. At a transmission rate of 16 pkt/s,

GTM-RPL keeps the same transmission rates (6.2 - 6.5 pkt/s) given the same

mobility model and the same network conditions. It is clear to see that mRPL
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and RPL nodes sending at 16 pkt/s have less than 25% PDR due to high noise

and congestion.
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Fig 5.12 shows that GTM-RPL achieves similar throughput at a transmis-

sion rate of 4 pkt/s while GTM-RPL outperforms mRPL by 10% and 50% at
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transmission rates of 8 and 16 pkt/s respectively. At 16 pkt/s, mRPL has lower

throughput compared to the same protocol sending at 8 pkt/s. This indicates

that, although increasing the transmission rate seems like the right solution to

optimize throughput. Sending data at rates that are too high can deteriorate the

throughput due to significantly higher levels of packet loss. The throughput at

nodes 5 and 6 show slightly higher throughput than the rest of the mobile nodes

showing the effect of priority on node performance.

The energy consumption levels in figure 5.13 show that GTM-RPL maintains

relatively low energy consumption for all settings outperforming both mRPL

and RPL. The native RPL has a very high energy consumption per successfully

transmitted packet due to high packet loss especially for mobile nodes. GTM-

RPL and mRPL on the other hand do not lack the efficiency in managing mobile

nodes and thus the difference in energy consumption between static and mobile

nodes is less significant.

The average end-to-end delay in figure 5.14 shows the average time that a

packet needs to travel from the application layer of the sending node to the

application level of the destination. One of the main causes of high delay in

RPL is congestion [152], and it is affected by both the presence of mobility and

the transmission rate of nodes. GTM-RPL avoids congestion by managing both

the mobility of nodes and their transmission rate. For this reason, GTM-RPL

maintains relatively low end-to-end delay at all simulated scenarios while mRPL

and the native RPL have higher delay especially at increased transmission rates.

5.5 Summary

This chapter provides comprehensive analysis for using RPL in a mobile envi-

ronment. Game theory is used in this chapter to find an optimal solution for

routing depending on the application requirements. The proposed approach uses

a mobility metric and a density metric that are application specific parameters,

to derive the mobility cost function and the energy cost function respectively.

The analysis in this chapter are all based on the IEEE 805.15.4 standard and

6LoWPAN protocol stack in the presence of mobile nodes. The proposed solution

is tested and evaluated using the COOJA emulator over the Contiki 3.0 OS, and

compared against related protocols. Simulation results confirm the analysis of this
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chapter and show that the proposed GTM-RPL outperforms existing protocols

in terms of PDR, throughput, energy consumption and end-to-end delay. It pro-

vides a flexible, adaptable and expandable solution for routing in IoT applications

with the presence of mobile nodes achieving higher throughput whilst consuming

less energy showing more than 10% improvement compared to relevant proto-

cols. The advantage of using GTM-RPL becomes more significant in demanding

applications where simulation results show that it improves throughput by 10%

- 50%, with better PDR, lower energy consumption and reduced end-to-end de-

lay. GTM-RPL offers higher performance at a lower cost taking advantage of the

various parameters that contribute to the optimization game. Using RSSI and

LQ in addition to the improved trickle timer provides an optimized solution for

routing in dynamic and mobile IoT applications.
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Chapter 6

A Practical Performance Evaluation

6.1 Introduction

The IoT paradigm is quickly moving from being a dream into a reality, many IoT

applications are already present especially in healthcare, smart environments and

transport. While simulation tools are helpful in the design, testing and enhance-

ment of routing protocols, a practical evaluation is essential to make sure that

unexpected factors including noise, reflection and absorption do not dramatically

deteriorate the performance of routing. There is no actual practical performance

evaluation in the literature, in real IoT application environments, but merely a

few simple tests that involve no performance evaluation.

A study of routing using the Contiki RPL implementation [114] presents an

experimental test for RPL, however, it does not include any routing metrics and

rather compares radio duty cycling in simulation to that in practice using Tmote

sky nodes. The paper is a short paper consisting of two pages only. Having said

that, this paper does show that the Tmote sky nodes can live up to several years

in non-demanding scenarios.

Another study addresses data delivery in RPL [141], it presents a test in

an office setting, using Contiki RPL and although the authors use performance

metrics including packet loss ratio, energy efficiency and delay, the paper does

not take into account mobile nodes and some of the conclusions of the paper

contradicts with most research. An example on that is the statement that “Packet

losses do not necessarily increase with path length (in hops)”, although this might

be true for nodes with low data rate, the trend of research shows a significant

deterioration in packet delivery ratio for nodes more than two hops further from

the sink node.

The authors in [119] conduct an experimental evaluation in an office premises

with a novel fuzzy objective function, the evaluation is sound but it also does not
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take into account mobile nodes and only used to evaluate one testing scenario.

Using mRPL in [45], the authors conduct simulations and experimental testing

taking into account mobile nodes. However, while the testing and evaluation

method are sound, they are also limited to one scenario with only one mobile

node and no real IoT application environment.

Another more recent study, BRPL [189], introduces the “QuickBeta” and

“QuickTheta” algorithms to improve mobility management and load balancing.

DT-RPL [190] uses upward and downward packets to update link quality, result-

ing in a more reliable end-to-end connectivity. These are the only two papers that

conduct a practical performance evaluation of RPL with the presence of mobility,

however, the evaluations are used only for comparing the proposed method with

the original standard and they do not use an actual IoT application scenario.

In this chapter, a hands-on practical evaluation of RPL is presented in real

IoT application scenarios with mobile nodes. The testing compares three routing

protocols, the standard RPL in its original design, mRPL [45] which is a widely

known version of RPL with an excellent approach to support mobility and our

implementation of GTM-RPL, optimized using game theory and thoroughly ex-

plained in chapter 5. In these tests, Tmote sky nodes were used with 2.4GHz

CC2420 RF radio, Null RDC for duty cycling, IEEE 802.15.4 MAC with an ap-

plication to send periodic data towards the sink node. These nodes include 48KB

flash memory, 10KB RAM and provide over 100m coverage in outdoor areas and

20m in indoor areas.

6.2 Applications

It is evident that the Internet has introduced a large number of applications

that would have sounded impossible a few years ago. It has dramatically changed

businesses, economy, politics, industry, transport and general life style. With the

introduction of the IoT and the large amount of data to be available through

connected objects, even more applications are expected to present themselves. It

is changing what was previously defined as “impossible” to mere technicalities, a

doctor no longer needs to be physically present to do surgery with the availability

of real time communications, artificial intelligence and advanced robotics. Build-

ing are starting to manage airflow, security, supplies and sunlight using sensors
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and computer programs. Self driving vehicles are proving to be more of a legal

issue than a technical difficulty and computers are deciding how to deal with wars

and in some cases, take actions without the need for human intervention.

The range of potential applications is vast and there seem to be no indication

of stopping this progress. On the contrary, it is widely accepted that IoT appli-

cations need to be encouraged by providing the required standards and protocols

to make them more reliable and less costly. In this section, three different futuris-

tic applications are selected for real hardware testing based on their importance,

environmental differences and mobility scenarios.

6.2.1 Healthcare

Healthcare is one of the fields that has gained interest among the research society

for many reasons, It affects people in a direct way promising to save lives, provide

a better life style, introduce new treatment methods and even supply virtual

doctors to treat and comfort people on demand. In addition to that, healthcare

applications usually require a small area that can be made available at a local

hospital, health centre, elderly home, etc.

One of the applications that are currently being studied, is the hospital envi-

ronment control, optimization and infection risk assessment [191]. This applica-

tion aims to deliver a healthy environment to patients in hospitals through differ-

ent procedures, it includes studying infection causes and contamination sources

with a plan to reduce them through controlling windows to allow sunlight to kill

certain germs and dynamically controlling airflow to create a virtually quaran-

tined area for patients with infectious diseases.

This application has the potential to deliver improved hospital environments,

provide better decisions to support medical staff and patients in addition to eco-

nomic benefits including faster well-being for patients and better resource man-

agement for healthcare establishments.

Simulations and practical tests are based on one of the wards at St James’s

university hospital in Leeds, UK. For simulation purposes, a blue print of the

hospital ward is used as a reference to place and move sensor nodes, the floor

plan and simulation results can be seen in chapter 5. In this chapter, the actual

practical testing is presented. Figure 6.1 shows the ward and sensor nodes used

for the test.

113



6. A PRACTICAL PERFORMANCE EVALUATION

Figure 6.1: Packet Delivery Ratio - Healthcare

Sensor nodes collect information about the environment including tempera-

ture, humidity and light levels, and then send the information periodically to the
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sink node. The aim of this test is to challenge GTM-RPL in a real environment

and compare its performance to simulation results in addition to comparing it

against RPL and mRPL.

Because it was essential not cause discomfort for any patient nor to discourage

staff from doing their duties, nodes were placed on desks, attached to equipment

or handled by non-staff members. These nodes were then manually moved follow-

ing typical paths for patients and nurses, to generate the appropriate mobility

scenario. Each test was done over a 60 minute period plus one minute for initial-

ization, data was sent from 11 sensor nodes towards the sink at different rates.

Nodes were configure to transmit at 4pkt/s, 8pkt/s and 16pkt/s, mRPL and the

native RPL use these rates to send data while GTM-RPL uses an optimized vari-

able transmission rate based on equation 5.15 regardless of the configured data

rate. This value varies between 0-4 pkt/s depending on network conditions given

that the values for α, β, γ and δ are 4.7, 1, 0.05 and 0.1 respectively. The value

of Mm is 0.725 for this scenario and the Dm is 9.42.

Looking at figure 6.2, at a configured transmission rate of 4pkt/s, it can be

seen that GTM-RPL has a reasonably high PDR of over 73% with mRPL at a
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Figure 6.3: Throughput - Healthcare

slightly lower value and the native RPL with a bad performance of only 36% PDR

due to the lack of mobility support. The performance of all three protocols was

lower than expectations due to the special conditions of the hospital building. The

thick walls and the insulation materials used in the hospital limits the effective

transmission range of sensor nodes because of higher reflection and absorption

rates. However, the performance of both GTM-RPL and mRPL is significantly

better than the native RPL even at 4pkt/s transmission rate which is close to the

optimum rate in a static network with the same settings according to extensive

simulations.

At a configured transmission rate of 8 pkt/s, GTM-RPL still uses the opti-

mized rate that can vary between 0-8 pkt/s but it peaks at around 5pkt/s in

the conditions of this experiment. mRPL and the native RPL both use a steady

transmission rate of 8pkt/s but show a significantly deteriorated performance due

to higher noise levels and congestion. While mRPL has the ability to efficiently

tackle the mobility problem, it cannot pro-actively adapt the transmission rate

to the network conditions and suffers from high packet loss. The native RPL is

not designed to handle mobility and at higher transmission rates, this problem
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becomes even greater showing impractical performance.

Using a 16pkt/s transmission rate results in even worse conditions for both

mRPL and the native RPL for the same reasons and at this point, it is clearly

not a wise decision to configure these nodes with higher data rates unless they are

using an adaptive approach similar to GTM-RPL which in turn shows a steady

performance.

Figure 6.3 shows the average node throughput in all three protocols, with

data rates lower than 5pkt/s, GTM-RPL and mRPL deliver similar throughput,

at higher data rates however, the performance of mRPL deteriorates due to much

higher packet loss. The native RPL algorithm suffers from the same problem as

mRPL, in addition to its lack of mobility management making its performance

even worse.

Although mRPL does perform well at 4pkt/s transmission rate and even

slightly outperforms GTM-RPL by up to 0.5% is some cases, figure 6.4 shows

that the energy consumption per successfully transmitted packet is also higher

than GTM-RPL. This is due to the fact the mRPL is sending at a higher rate than

GTM-RPL, but the higher packet loss that mRPL suffers from leads to a simi-
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lar throughput but higher energy consumption. The native RPL consumes more

energy and provides a lower throughput even at a transmission rate of 4pkt/s.

GTM-RPL consumes less energy in all scenarios and provide similar throughput

to mRPL at low data rates and higher throughput at data rates over 4 pkt/s.

In this application, GTM-RPL proves to be a flexible and adaptive solution

that gives better results at low costs and is therefore a good candidate for similar

applications. This scenario can also apply to any indoor area with the need for

multi-hop communications in a mobile environment.

6.2.2 Smart Agriculture

The quality of vegetables and fruits is directly related to the well-being of people,

in addition to the economic improvements that can create countless new oppor-

tunities and open the door for new investment. The Internet of things lays the

ground for futuristic applications that have the potential to achieve all that in

addition to gaining more data for future exploitation.

The application is chosen based on an IoT study that involves using robots to

patrol farms or fields to collect data, these robots are equipped with an artificial

intelligence software that allows them to create formations and move as a group

following by leader node [192]. The formation depends on the sensing range,

transmission range and area of the field. The main advantage of this scheme is

to cover large areas and have a collectively large sensing area, it also makes it

more reliable to read information from multiple sensors rather than depending

on one source only. For the purpose of testing, nodes were carried by friends and

colleagues and moved across Woodhouse Moor in Leeds. Nodes where moving at

similar speeds that change only when direction is changed to patrol the whole

area.

This is one of the applications that have a unique mobility scenario making

it an interesting candidate for testing the performance of GTM-RPL and analyse

the results. One of the issues that make this application special, is the fact that

nodes are mobile but almost static in relation to each other. Nodes move at

similar speeds, at steady distance from each other and thus are almost static in

relation to each other most of the time. This is a good opportunity to test the

performance of GTM-RPL in an almost static environment, which is expected to

be higher than other protocols given the optimized adaptive transmission rate.
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Figure 6.5: Packet Delivery Ratio - Smart Agriculture

The values for α, β, γ and δ are 4.7, 1, 0.05 and 0.1 respectively. The mobility

metric Mm is 0.1 for this scenario and the Dm is 9.42.

Figure 6.5 shows the PDR for GTM-RPL, mRPL and the native RPL using

three configured transmission rates, 4 pkt/s, 8 pkt/s and 16 pkt/s. mRPL and

the native RPL use a steady transmission rate while GTM-RPL uses an adaptive

value that changes dynamically according to network conditions and peaks at

the configured transmission rate. Using a data rate of 4pkt/s, all three protocols

perform well as the configured transmission rate is close to an optimum rate for a

similar topology in a static scenario. Also, nodes are moving at similar speeds and

the effect of mobility is only visible when robots are making a turn, causing some

sensors to be out of coverage for a short period of time. The performance of GTM-

RPL slightly outperforms that of mRPL and the native RPL at this data rate.

These results totally agree with simulations because of minimum interference and

absorption in open space outdoor environments.

At a transmission rate of 8 pkt/s, the PDR performance of mRPL and the

native RPL goes down to 72.55% and 71.59% respectively while GTM-RPL keeps

a steady performance of 89.75% PDR. The game-theoretic adaptive algorithm
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used in GTM-RPL uses LQI to detect mobility and congestion in the network,

it makes sure that a minimum number of packets are dropped while mRPL and

the native RPL need to be adjusted with a different value for each scenario to

perform reasonably even in static networks.

As expected, at a 16 pkt/s transmission rate, the PDR of both mRPL and the

native RPL becomes even worse because of the increased noise and congestion,

While GTM-RPL does not suffer from these problems.

The throughput in figure 6.6 shows similar performance for all three protocols

at rates below or equal to 4 pkt/s. It is also worth mentioning that mRPL has

a slightly better throughput than GTM-RPL in this test even though the latter

has a better PDR, this is due to the steady transmission rate of 4pkt/s in mRPL

as compared to the varying rate used in GTM-RPL. The effect of lost packets is

even more recognizable at higher data rates, the performance of mRPL and the

native RPL seems to deteriorate with increasing transmission rate after a certain

threshold even in static networks. GTM-RPL solves the problem of mobility and

incidentally avoids congestion by using the LQI metric in the game theoretic

design.
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The good performance of mRPL and the native RPL in terms of throughput

comes at a high cost in terms of energy consumption. Figure 6.7 shows that even

at a transmission rate of 4 pkt/s, GTM-RPL has a 20% improvement in energy

consumption compared to other protocols. The energy wasted for unsuccessful

packet transmissions is minimum in GTM-RPL, leading to a longer life span for

the network at a negligible cost in terms of throughput.

At higher data rates, the gap in performance becomes even wider and in the

extreme case of sending at a maximum rate of 16 pkt/s, GTM-RPL shows a

45% improvement in energy saving compared to other protocols. Because this is

a practical test, it is worth mentioning that the measured energy consumption is

accurate to 94% [55]. Nonetheless, the error rate is low enough to neglect in most

cases but is useful to keep in mind while looking at some of the results.

In this application, it is clear that GTM-RPL can cope with the network re-

quirements and provide a good performance that outperforms relevant protocols.

These results also indicate that in case of additional requirements (eg. security

features), GTM-RPL is less prone to deterioration caused by the added overhead.

It does not mean that GTM-RPL is more “secure” than other RPL protocols,
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Figure 6.8: Tmote sky node as a SWAT Robot

but it can accommodate security measures more efficiently due to the fact that

it can provide higher throughput.

6.2.3 Military Applications

Military personnel, police officers and all people working in war zones or dealing

with security threats occasionally face mortal danger finding themselves in an

unfriendly area with unknown threats. Technology has always been helpful in

minimizing these hazards and it is very important to find more solutions that can

potentially save lives.

One of the popular military applications is the SWAT robot, which is usu-

ally a mobile robotic device equipped with sensors or cameras. A SWAT robot

can go into areas that are marked as “unsafe”, collect information about the

environment, send data to inform the tactical team and possibly even take an

action [193]. One of the key challenging problems that face this application is

communication [194], it is clear that having a robot inside an unfriendly building

without communication is useless to the team.
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Figure 6.9: SWAT Robot Scenario

This application has challenging requirements, power efficiency is essential

because it is usually not possible to change batteries. Reliable connectivity and

the ability to send relatively large amounts of data is also a necessity, it can make

the difference between a successful or a failed operation. It also requires multi-

sinks and has a unique mobility scenario with only one node moving for most of

the time. These conditions also make it a good application for testing GTM-RPL

and relevant protocols in a practical manner.

Tmote sky nodes were used for this test, the mobile node was attached to a

remote controlled vehicle as shown in figure 6.8, while eight nodes were scattered

around the testing area and three sink nodes were placed outside the danger zone

as shown in figure 6.9. The tests were done inside one of the university of Leeds

buildings making sure that the testing area is surrounded by walls and that static

nodes and sink nodes are placed outside these walls.

For this test, the values for α, β, γ and δ are 4.7, 1, 0.05 and 0.1 respectively.

The mobility metric Mm is 0.25 for this scenario and the Dm is 9.42. As is the

previous tests, mRPL and the native RPL were tested using 4 pkt/s, 8 pkt/s

and 16 pkt/s. GTM-RPL uses the adaptive transmission rate that maximizes at
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4 pkt/s, 8 pkt/s and 16 pkt/s respectively.

Figure 6.10 shows the PDR for GTM-RPL, mRPL and the native RPL. Al-

though there is only one mobile node is this scenario, it is forced to change

parents many times during operation and use multihop communication to reach

the sink node. The native RPL achieves 48% PDR only at a transmission rate of 4

pkt/s, while mRPL and GTM-RPL achieve 77% and 84% PDR respectively. The

practical results are slightly lower than the COOJA simulations due to indoor

interference and absorption, but have the same trend nonetheless.

At an 8 pkt/s transmission rate, mRPL and the native RPL achieve only 56%

and 26% PDR respectively while GTM-RPL maintains its high PDR by using

the adaptive transmission rate that depends on the network conditions, the link

quality and mobility of nodes. As expected, increasing the transmission rate even

higher has little effect on GTM-RPL but causes higher packet loss in mRPL and

the native RPL.

Figure 6.11 shows the average throughput in bytes per second for the mo-

bile node. The trend of practical results agrees with expectations in this case,

GTM-RPL and mRPL have similar results at 4 pkt/s with GTM-RPL perform-
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ing slightly better. The native RPL having no means of managing or detecting

mobility shows a significantly lower performance. Increasing the configured trans-

mission rate to 8 pkt/s has the expected negative effect on both mRPL and RPL

while GTM-RPL maintains a variable transmission rate and does not suffer from

high packet loss.

Configuring nodes with higher packet transmission rates only worsens the per-

formance of mRPL and the native RPL. Although it does not improve through-

put in GTM-RPL, it does increase the potential of GTM-RPL to deliver higher

throughput in networks with less challenging conditions.

In figure 6.12, the energy cost per successfully transmitted packet is shown.

At low data rates, mRPL performance is close to GTM-RPL in terms of through-

put, but GTM-RPL always outperforms it in terms of energy consumption. At a

transmission rate of 4 pkt/s, GTM-RPL offers an improvement of 9% in energy

consumption compared to mRPL and 28% compared to the native RPL.

It is not difficult to spot also that the performance gap becomes wider af-

ter increasing the configured transmission rate. Since energy consumption is one

of the most important metrics in military applications, the improvements that
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GTM-RPL offers becomes even more necessary and comes at no additional cost.

6.3 Summary

This chapter follows a practical approach to test RPL and evaluates its perfor-

mance in real IoT applications. It takes into account, different scenarios with

different application requirements and challenges including mobility of nodes,

outdoor and indoor environments and deployment restrictions. While in gen-

eral, COOJA and Contiki provide a reasonably good simulation environment, the

practical testing faces more challenges especially in indoor environments. Some

hospital wards show unanticipated challenges due to high insulation making it

especially difficult to deploy WSNs in a hospital where thick walls and insulated

rooms limit the range of nodes to a few meters. Practical results in other scenar-

ios are almost identical to simulations results, showing that COOJA and Contiki

do provide accurate simulation of the wireless channel, and only lacks accuracy

in special situations where unanticipated circumstances present themselves. The

testing includes deployment of three versions of RPL, the first one is the native
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RPL which was designed for static networks, the second one is mRPL which

provides an excellent mobility management scheme to RPL and the third one

is our optimized protocol GTM-RPL that provides energy and throughput opti-

mization based on a game theoretic approach. Results show that even in worst

case scenarios, the proposed GTM-RPL algorithm outperforms the native RPL

and mRPL algorithms in terms of energy consumption, packet delivery ratio and

throughput.

127



6. A PRACTICAL PERFORMANCE EVALUATION

128



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This section concludes the thesis by outlining the main findings of this work and

presenting recommendations for development. It also shows solid contributions

with regards to studying and managing mobility in WSNs and IoT applications.

In chapter 3, a dynamic cluster head election protocol (DCHEP) is implemented

for beacon-enabled mobile WSNs using IEEE 802.15.4 standard. The proposed

approach uses backup cluster heads to improve the availability and lifetime of

the network assuming that all nodes including cluster heads are mobile. Simula-

tion results show that DCHEP successfully manages mobility inside clusters in a

proactive manner maintaining low energy consumption and high responsiveness

to changes. DCHEP guarantees up to 94.4% path availability in dense networks

and improves energy consumption by 26% compared to the original standard.

However, it does not guarantee QoS requirements and even though it shows an

available path to the destination, it does not promise successful data delivery.

This work investigates routing in a hierarchical topology and recommends using

it in IoT applications. However, it also confirms that layer 3 routing (eg. RPL) is

preferred in IoT applications where reliable connectivity and QoS requirements

are usually needed.

In chapter 4, a dynamic RPL (D-RPL) is implemented with an adaptive trickle

and reverse trickle timer to track mobility in multi-hop networks without the need

to compromise energy consumption. It also uses a reactive DIS control to trigger

parent changing depending on RSSI readings from received packets. A dynamic

objective function D-OF that uses ETX, energy consumption and link quality is

also proposed in this work to improve decision making in the parent selection

process. Simulation results show that D-RPL successfully manages mobility and
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improves PDR, end-to-end delay and energy consumption. It also concludes that

further optimization is required to fulfil IoT application requirements.

Chapter 5 presents a game theoretic approach to optimize RPL for mobility

management in IoT applications and find an optimal transmission rate adaptive

to the mobility scenario, application requirements and network conditions. It uses

a mobility metric that is application specific and a density metric that depends on

the number of nodes, transmission area and deployment area. These two metrics

are used to generate a cost function for mobility and energy consumption. It takes

into account the priorities of sensor nodes as well in calculating the final pay off

function. To improve mobility management itself, GTM-RPL uses RSSI and

LQ cost in addition to the improved trickle algorithm resulting in a responsive,

adaptive and efficient scheme. GTM-RPL improves PDR, throughput, end-to-end

delay and energy consumption in all tested scenarios and outperforms relevant

routing protocols.

A practical experimentation in real-life IoT applications using RPL, mRPL

and GTM-RPL is presented in chapter 6. The experiments consider three dif-

ferent applications: (i) Hospital environment monitoring. (ii) Smart agriculture

using mobile robots. (iii) Military SWAT robot application. The experiments

show that it is easy to deploy RPL and RPL-based protocols using Tmote sky

nodes and confirms simulation results in most cases. It also shows that thick and

insulated walls in hospitals make it more difficult to deploy sensors due to the

high absorption and reflection in these areas. Practical results show that even in

worst case scenarios, GTM-RPL outperforms relevant protocols in terms of PDR,

throughput and energy consumption.

The design of RPL aims to allow reliable and energy efficient routing for LLNs.

Interoperability is one of the crucial aspects of RPL that makes it such a popular

routing standard. With the implementations and proposals found in literature,

it is noted that many of RPL-based protocols are not backward compatible with

RPL. Changing the structure of DIO messages for example is a common cause of

incompatibility. This problem can be clearly observed in mobility management

implementations. The fact that RPL has no mechanism of its own to manage

mobility is worrying and can even be crucial enough to stop RPL being adopted

for IoT applications.
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The energy consumption side in RPL is quite satisfactory as most papers do

consider it and results agree that RPL is an energy efficient routing protocol. From

a QoS point of view, RPL maintains a high performance with the use of its flexible

and interoperable objective function. With regards to congestion, we believe that

there are excellent efforts published to mitigate this problem but it is still worth

reviewing the RPL standard and proposing a standardized mechanism to alleviate

congestion. To tackle the security challenges, we believe that routing layer security

needs to be addressed, the RPL standard also needs to revise the security features

and at least propose a mechanism to implement the “authenticated” mode of

RPL. The standard in RFC 6550 maintains that the “unsecured” mode does not

necessarily mean that the network is not secure as transport layer security can

still be used with this mode. Nonetheless, a mechanism for implementing security

as part of the standard will be a great advantage to RPL in our opinion.

With regards to mobility, the problem is studied extensively and many propos-

als introduce efficient mobility management including mRPL [45], D-RPL [137]

and GTM-RPL [138]. All of these protocols successfully and efficiently tackle the

problem of mobility at human speeds and are also compatible with RPL. How-

ever, we strongly recommend adding a mobility management mechanism in the

RPL standard due to the importance of this problem. We also recommend our

GTM-RPL for consideration in the mobility management standard proposal due

to the high performance, flexibility and efficiency of using it. It is our belief that

RPL will continue to be deployed in IoT applications and highly recommend a

new revision considering congestion, security and mobility management.

7.2 Future Work

A summary of future work recommendations based on this work is presented in

this section:

• An implementation of RPL with routing layer security using the “prein-

stalled” mode with an assessment of reliability and recommendation on

using the “authenticated” mode. Transport layer security like IPv6 security

can also be implemented and tested with RPL and GTM-RPL to assess

the impact of security overhead on routing. The performance of GTM-RPL
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also needs to be tested for security enabled networks. Some of the existing

intrusion detection systems that can be used for testing are SVELTE [165],

Specification-based IDS [195], NIDS [196] and DEMO [197].

• Considering mobility issues in LPWAN networks which face even more con-

straints than 6LoWPAN networks in terms of both node and link limita-

tions. In addition to that, an assessment of using 6LoWPAN and LPWAN

along with a comparison of their mobility management schemes can be

very useful for future implementations. Applying both standards to differ-

ent mobility scenarios can clearly present the advantages of each one of

them especially in scenarios with extreme mobility like VANETs.

• Considering a scenario with two-way traffic using GTM-RPL with real life

application where users can send requests to specific nodes through HTTP

and CoAP application protocols. The original design of RPL assumes that

traffic is moving upwards in the direction of sink node, it is interesting to

see how GTM-RPL can cope with high load in both directions.

• A full revision of the RPL standard to propose a mechanism for handling

mobility is very important, we recommend using our proposed GTM-RPL

for it’s reliability, efficiency and flexibility. We also hope that congestion and

security are addressed in more details in the new RPL standard. Submitting

a draft RFC with an enhanced trickle algorithm and additional fields for

mobility status, congestion flag and security features can make a significant

step towards the deployment of RPL.

• Deploying GTM-RPL to a practical application and measuring its perfor-

mance over a long period of time (A year for example), to have a realistic

view of its robustness and reliability. Practical data provides more tangible

results and gives a better understanding of the challenges that face practical

deployment of RPL nodes.
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