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Abstract

In this thesis we extend the work of Dummigan and Fretwell on congruences
of “local origin”. Such a congruence is one whose modulus is a divisor of
a missing Euler factor of an L-function. The main congruences we will
investigate are between the Hecke eigenvalues of a level N Eisenstein series
of weight k and the Hecke eigenvalues of a level Np cusp form of weight k .

We first prove the existence of a congruence for weights k ≥ 2. The proof
will be an adaptation of the one used by Dummigan and Fretwell. We then
show how the result can be further extended to the case of weight 1. The
same method of proof cannot be used here and so we utilise the theory of
Galois representations and make use of class field theory in order to prove
the existence of a congruence in this case.

Inspired by an analogy with the weight 1 case, we prove the existence of a
congruence between the Hecke eigenvalues of a weight k , level N cusp form
and the Hecke eigenvalues of a paramodular Siegel newform of a particular
level and weight. We will show how when k = 2 we end up with a scalar
valued Siegel modular form and when k > 2 we end up with a vector valued
Siegel modular form.

We will also consider the link with the Bloch-Kato conjecture in each case.
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Introduction

There have been many interesting examples of congruences between modular forms
studied over the years. Probably the first of such congruences that spring to mind is
found in the work of Ramanujan. Ramanujan was among the first to begin studying
modular forms in detail. He became quite interested in the discriminant function ∆(z)
and spent a great deal of time studying its Fourier coefficients. These coefficients are
denoted by τ(n). He stated many different results involving these coefficients, among
which were certain congruences. The most famous in the literature is the following:

τ(n) ≡ σ11(n) (mod 691).

Here σ11(n) =
∑

d|n d
11 is a power divisor sum. We therefore have values of a well

known number theoretic function congruent to the coefficients of a rather mysterious
function.

Naturally one might want to know why the modulus is 691 and also why σ11(n) ap-
pears. If, rather than simply studying ∆, we move to the larger space of all weight
12 modular forms we can explain both of these points. We see that the weight 12
Eisenstein series has the answer in its Fourier coefficients. We see both σ11(n) and
B12 = − 691

2730 appearing.

Of course there is actually something a little deeper going on here. The appearance of
the Bernoulli number B12 is actually via the Riemann zeta function ζ(n). We see that

691 is a prime dividing the “rational part” of ζ(12). That is 691| ζ(12)
π12 ∈ Q .

After the work of Ramanujan, many others became interested in congruences such as
the Ramanujan 691 congruence. There are many generalisations of this congruence.
Since a prime dividing the numerator of B12 gave a congruence between a weight 12
cusp form and a weight 12 Eisenstein series, one might naturally wonder whether, in
general, a prime divisor of the numerator of Bk could be the modulus of a congruence
between an Eisenstein series and a cusp form both of weight k and level 1. This is
indeed the case.

We can also obtain congruences of “local origin”. These are congruences between the
Hecke eigenvalues of higher level cusp forms and the Hecke eigenvalues of level 1 Eisen-
stein series. What do we mean by “local origin”? Earlier we saw that a prime divisor
of the numerator of the Bernoulli number Bk became the modulus of a congruence.

vii
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We can consider this as a divisor of the global Riemann zeta value. Recall that the
Riemann zeta function has an Euler product and can be written as

ζ(k) =
∏
p

1

1− p−k
.

If we fix a particular prime p and omit the factor (1 − p−k)−1 and denote this new
product by ζ{p}(k) then

(1− p−k)−1ζ{p}(k) = ζ(k),

that is

pkζ{p}(k) = (pk − 1)ζ(k).

We already know that primes dividing ζ(k) give level 1 congruences and it turns out
that we should expect primes dividing pk − 1 to give level p congruences. This is
exactly the result of Dummigan and Fretwell [DF].

Theorem 0.0.1. Let p be prime and let k ≥ 4 be an even integer. Suppose that
` > 3 is a prime such that ord`((p

k − 1)(Bk/2k)) > 0, where Bk is the k -th Bernoulli
number. Then there exists a normalised eigenform (for all Tq for primes q 6= p)
f =

∑∞
n=1 anq

n ∈ Sk(Γ0(p)), and some prime ideal λ|` in the field of definition Qf =
Q({an}) such that

aq ≡ 1 + qk−1 (mod λ)

for all primes q 6= p

If ` divides Bk/2k we may take f ∈ Sk(SL2(Z)) and the congruence just becomes a
generalisation of Ramanujan’s congruence. The interesting case is when ord`(Bk/2k) =
0 and `|(pk−1); this is when, in general, we get a level p congruence. Such an ` occurs
in the value at s = k of the partial zeta function precisely because of the missing Euler
factor. Following work of Harder [Har], using methods in Eisenstein cohomology, these
congruences are known as congruences of local origin. We also note that the value
1 + qk−1 appears since this is the Hecke eigenvalue when Tq is applied to Ek and so
we have a congruence between a level p cusp form and a level 1 Eisenstein series.

One thing to note here is that we were starting at level 1 and then raising the level to
level p . What about starting at level N ? This is precisely the main work involved in
this thesis. We first of all note that there is an analogue of Ramanujan’s congruence at
level N . That is, a congruence between the Hecke eigenvalues of a level N Eisenstein
series and the Hecke eigenvalues of a level N cusp form. This is work of Dummigan
in [D]. In this thesis we will be interested in the “local origin” analogue at higher levels.
That is we wish to obtain a congruence between the Hecke eigenvalues of a level N
Eisenstein series and the Hecke eigenvalues of a level Np cusp form. One difference now
is that the Euler factors and moduli of congruences come from Dirichlet L-functions
rather than the Riemann zeta function. In proving the congruence, we will adapt the
proof used in [DF]. Thus we produce a linear combination of level Np Eisenstein series
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that is a cusp form modulo ` and we will make use of the Deligne-Serre Lemma, among
other results, to obtain a genuine characteristic zero cusp form of level Np congruent to
a level N Eisenstein series. The main difficulty is obtaining a formula for the constant
term at each cusp. In [DF] this is quite straightforward as there are only two cusps to
consider. In the higher level case however there are many cusps. We note that Billerey
and Menares prove a similar but weaker result to our main theorem in [BM]. In this
paper they prove a formula for the constant term of the Eisenstein series at any cusp
but one character is taken to be trivial. In this thesis we generalise this argument to
the case where both characters can be non-trivial. They later proved the same constant
term formula in [BM2] using a different method to the one in this thesis.

Once we have dealt with the case of weight k ≥ 2 we move onto the more exotic case
of weight 1. A lot of standard results about modular forms fail to hold in the case
of weight 1. For example, there are no longer formulas for the dimensions of spaces
of modular forms of a particular level. Also the usual Riemann-Roch theory fails and
therefore we cannot apply the Deligne-Serre lemma in the same way that we will for
weights k ≥ 2. This forces a different approach. The one we will take is via Galois
representations and class field theory. The results given in this section will be very
similar to those of higher weight, however there will be certain restrictions.

One of the main results that we will rely on in this thesis is the case of Serre’s modularity
conjecture proven by Khare and Wintenberger. This result tells us how, given an odd,
irreducible two-dimensional complex linear representation of Gal(Q̄/Q), we have an
associated weight 1 cusp form. We note that, although we use this approach, the f
that we will construct is an explicit theta series. Such series are known to be modular
forms and so we actually didn’t need the result of Khare and Wintenberger. Our
main task will be to try to cook up a particular two-dimensional representation whose
associated cusp form satisfies a congruence with a weight 1 Eisenstein series. In the
case of weight 1 this basically boils down to the Hecke eigenvalue at q of the cusp form
f being congruent to a sum of character values ψ(q) and ϕ(q) modulo some λ . It turns
out that ψ and ϕ must be related to the character associated to an imaginary quadratic
field K . The results are separated into three theorems. Firstly we consider the case
where one character is trivial since this turns out to be more straightforward whilst
also laying out most of the groundwork for the more general result. We then look at
the general case where both characters could be non-trivial. This case is similar but we
make an adjustment in the method. This adjustment will have the effect of increasing
the level of the cusp form by the conductor of a particular character. We will then go
on to prove a theorem stating that these are the only such local origin congruences in
the case of weight 1. This will involve carefully considering the remaining cases and
showing that any possible congruence actually leads to a contradiction.

In order to produce the two-dimensional representation required to prove our theorems,
we will induce a one-dimensional representation of Gal(Q̄/K). We note that one way
we could get the desired congruence (in the case where one character is trivial) is by
inducing the trivial representation. This would give a representation with trace 1+η(q)
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when evaluated at a Frobenius element at q . Note that this is exactly what we want
on the right hand side of the congruence. This however would give a reducible two-
dimensional representation and we therefore would not be able to utilise the result of
Khare-Wintenberger. We will instead end up inducing a non-trivial ray class character
that is congruent to the trivial character modulo λ . Note that this induction is actually
level raising for GL(1).

We then finish off the thesis by generalising this argument. By instead inducing a two-
dimensional representation we will obtain a Siegel paramodular newform. This will
then, via a chain of results, satisfy a congruence with a weight k cusp form of level N .
We will first consider the scalar valued case. The method will involve beginning with
a weight 2 classical cusp form of level N with associated Galois representation, ρ say,
of Gal(Q̄/Q). We then consider the restriction, that is we view it as a representation
of Gal(Q̄/K) where K is a real quadratic field. This is analogous to considering
the trivial representation in the weight 1 case. Likewise, because this is obtained by
restriction, inducing would give a reducible representation. We therefore replace this
with a congruent representation that is trivial modulo λ . This representation will
then be induced to give a Siegel paramodular newform. If we instead consider this
process purely in terms of what is happening to the modular forms, we first begin with
a classical cusp form and take a base change to a Hilbert modular form. We then use
a level raising result proven by Taylor which is a generalisation of Ribet’s result for
classical forms. Finally we take a theta lift to get the Siegel paramodular newform. In
the case where we begin with a weight k (k > 2) classical cusp form, we will actually
end up producing a vector valued Siegel modular form that satisfies a congruence. The
method is largely the same. When we raise the level of the Hilbert modular form
however, we can no longer use the same theta lifting result. At this stage we have to
generalise the argument.

Notice that these results involve a congruence between two cusp forms rather than a
cusp form and an Eisenstein series. Although this is quite different to the previous
results, and involves a lot of new material, we will in fact see quite a few similarities
between the two cases. For example we will see how the correct L-function to be
considering here is a symmetric square L-function. We will also see how there is an
analogue of the Euler factor in this case.

In each case that we consider, we will show that our results agree with the Bloch-Kato
conjecture. In particular we will look in detail at what the Bloch-Kato conjecture says
for the weight k ≥ 2 case and the Siegel case. In the weight 1 case, although much of
the theory about modular forms is more difficult, the Bloch-Kato conjecture is actually
more straightforward. The Bloch-Kato conjecture is a far-reaching generalisation of
results such as the analytic class number formula and the Birch and Swinnerton-Dyer
conjecture. The Bloch-Kato conjecture gives us information about values at integer
points of L-functions associated to motives. In this thesis we won’t consider the full
generality of the conjecture, in particular, we will not cover material on motives. In the
case of our main theorem, it will involve Dirichlet L-functions and in the Siegel case,
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as mentioned, it will involve symmetric square L-functions. The conjecture relates
divisibility of certain L-values to divisibility of the order of certain Bloch-Kato Selmer
groups. The existence of congruences such as the ones in this thesis allow us to construct
non-trivial elements in these Bloch-Kato Selmer groups (or Tate-Shafarevich groups).
In general this is quite interesting since not much is known about these groups. We
note that the conjecture is known in the case of Dirichlet L-functions; it was proven
by Huber and Kings.

Chapter 1 contains an overview of the theory of classical (elliptic) modular forms.
Here we will see definitions of all the necessary objects including: Eisenstein series,
cusp forms, Hecke operators, congruence subgroups, etc.

Chapter 2 contains a brief overview of (global) class field theory. We begin with a brief
recap of the basics from algebraic number theory that are required. We then move
on to discuss inertia groups, decomposition subgroups and Frobenius elements. We
then state the main theorems of global class field theory: Artin Reciprocity and the
Existence Theorem. We finish off with a discussion of ray class fields and the Hilbert
class field as this will be essential in the work on weight 1.

Chapter 3 contains the work on local origin congruences for weights k ≥ 2. As pre-
viously mentioned the main bulk of work in this section is proving a formula for the
constant term of an Eisenstein series at any cusp. The method used is an adaptation of
the method used to prove a simpler case in [BM]. Although Billerey and Menares later
generalised the result in [BM2], they use a different method of proof to the one we use.
They also go a little further and show that the formula holds in the case of weight 2.
A discussion of this work is included. We then move on to prove the main theorem for
weights k ≥ 2. A discussion of Katz modular forms is required for this. The section is
finished off with a comparison with the Bloch-Kato formula for a partial L-value.

Chapter 4 contains the weight 1 case. We begin by stating a simplified result whose
proof will lay the groundwork for a generalisation. This simplified result is also most
analogous to the higher weight case. We also state the generalised version of this result
along with a statement that there are no other such congruences for weight 1. We then
move onto background material on Galois representations and the modularity results
necessary to link these representations with modular forms. We next discuss results
on dihedral representations as these are the ones that lead to a congruence. Once we
have all the necessary results we discuss comparisons with the higher weight case while
proving various different cases of the simplified theorem. We then give a sketch proof of
the generalised theorem pointing out the minor differences in the proof. We finish the
chapter by discussing the remaining classes of projective representations. We use Schur
covers to instead consider linear representations and then show that these could not be
reducible modulo p for any p . Hence there are no other possibilities for a congruence.

Chapter 5 contains the generalisation of the method used in the weight 1 case. We
begin with background material on Hilbert modular forms and Siegel modular forms.
We then discuss base change from a classical weight 2 cusp form to a Hilbert modular
form of parallel weight 2 over a real quadratic field K . This section involves a result
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about the level of such a base change along with a conjecture about a certain case. We
then discuss level raising congruences in both the classical case, as studied by Ribet,
and the Hilbert case, as studied by Taylor. Next we discuss a theta lifting result of
Johnson-Leung and Roberts that can be used to lift a Hilbert modular form to a Siegel
paramodular newform. We then show that each of these results can be combined to
give the existence of a congruence between a classical cusp form of weight 2 and a
Siegel paramodular newform of weight 2. We also give an example using this method.
We compare this with the Bloch-Kato conjecture in a similar way as in chapter 3.
After this we consider the symmetric square L-function and show that in fact you can
consider an Euler factor of this L-function in the same way as in chapter 3. That is,
a prime dividing the Euler factor should give the modulus of a congruence. We also
give an alternate argument for constructing a non-zero element in a Bloch-Kato Selmer
group. This argument is similar to ones used in the theory of Galois deformations.
Finally, to close out the chapter, we generalise the method to obtain a congruence
between a weight k classical cusp form and a vector valued Siegel modular form. This
involves introducing background material on L-parameters and L-packets along with
the notion of a limit of discrete series representation. We then make use of the Satake
isomorphism and Satake parameters in order to determine the Hecke eigenvalues of our
Siegel modular form.
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Chapter 1

Classical Modular Forms

In this section we will see an overview of the results we will need from the theory
of classical (elliptic) modular forms. We will see various definitions, examples and
important results along the way. Many standard references will be used with [DiSh]
being a primary source.

Although modular forms are objects belonging to the world of analysis, they still have
significant uses in number theory. They are functions, defined on the upper half plane
H , which are “almost” invariant under an action by the matrix group SL2(Z) and
satisfy certain holomorphy conditions. By studying modular forms we can often find
identities and congruences of number theoretical significance. They also played a part
in the proof of Fermat’s Last Theorem as there is a connection between elliptic curves
and modular forms (The Modularity Theorem). We will briefly mention some of the
links between modular forms and Elliptic curves but this is not a primary focus. There
are many different types of modular form, such as Hilbert modular forms, Maass forms,
Siegel modular forms and automorphic forms, but here we will only be concerned with
classical modular forms. For more details on Hilbert modular forms see Section 5.1 and
for details on Siegel modular forms see Section 5.2.

§ 1.1 First Definitions and Examples

Recall H = {a + ib ∈ C | b > 0} , the upper half plane. We may define an action by

SL2(R) on H . Take τ ∈ H and γ =

(
a b
c d

)
∈ SL2(R). The matrix γ then acts on

τ by a fractional linear transformation(
a b
c d

)
(τ) =

aτ + b

cτ + d
, τ ∈ H.

Lemma 1.1.1. The group SL2(R) = {A ∈ M2(R) | det(A) = 1} acts transitively on
the upper half plane H .

1
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Proof. We consider the orbit of the element i ∈ H . We will show that i has full

orbit. Let τ = a + bi . Let γ =

(
1 a
0 1

)( √
b 0

0
√
b
−1

)
=

( √
b a
√
b
−1

0
√
b
−1

)
. Then

γ(i) =
√
bi+a

√
b
−1

√
b
−1 = a+ bi = τ.

Suppose we try to consider functions invariant under this action. So we are after
functions f : H → C such that f(γz) = f(z) for all γ ∈ SL2(R). The transitivity of
this action tells us that the only such functions are the constant functions. In order to
obtain results of number theoretical importance it makes sense to instead restrict to
an action by the so called modular group, a subgroup of SL2(R). The modular group
is the group of 2× 2 matrices with integer entries and determinant 1,

SL2(Z) =

{(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

This group is generated by the matrices(
1 1
0 1

)
and

(
0 −1
1 0

)
.

We will see shortly that these matrices give some important properties that a modular
form must satisfy. Now that we have an action on the upper half plane H , it makes
sense to ask what it means to be modular.

Definition 1.1.2. Let k be an integer. A meromorphic function f : H −→ C is weakly
modular of weight k if

f(γ(τ)) = (cτ + d)kf(τ) for γ =

(
a b
c d

)
∈ SL2(Z) and τ ∈ H. (1.1)

Notice that we are no longer asking for invariance but are only interested in invariance
up to a factor of (cτ + d)k . Note that weak modularity of weight 0 is exactly SL2(Z)
invariance. We will not be interested in the theory of weakly modular functions (those
invariant under the action of SL2(Z)) but we make a brief remark about the history of
these functions. The first example of a weakly modular function arose in the theory of
elliptic curves. Recall that an elliptic curve over a field K is a non-singular projective
curve E/K of genus 1 over K together with a point O ∈ E(K).

Suppose K ⊂ C . Then E(C) is a Lie group and has the structure of a torus, i.e., there
is an isomorphism of Lie groups E(C) ∼= C/Λ for some lattice Λ. The details of this
can be found in chapter 6 of Silverman [Sil]. It is well known that the isomorphism
classes of elliptic curves are determined by the j -invariant of the curve. Suppose we
have a curve with Λ = Z ⊕ zZ = 〈1, z〉 . If we define j(z) to be the j -invariant of
the curve then it turns out that j(z) is actually a weakly modular function. This
shows that there are non-trivial examples of weakly modular functions, however this is
actually the only interesting one.
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Theorem 1.1.3. The C-algebra of weakly modular functions is isomorphic to C(j).

A proof of this result is given on page 73 of [DiSh].

We therefore look for functions which are weakly modular of weight k > 0. We may
consider the action of −I where I is the identity matrix. Letting γ = −I in (1.1)
we see that f(τ) = (−1)kf(τ), showing that there are no weakly modular functions of
odd weight except the zero function. By considering the action of the generators of the
modular group we obtain two properties that any weakly modular function for SL2(Z)
must satisfy. We have(

1 1
0 1

)
(τ) = τ + 1 and

(
0 −1
1 0

)
(τ) = −1/τ,

so in particular
f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ).

The first of these conditions tells us that f is Z-periodic. If in addition we know that
f is holomorphic on H and also at ∞ , it follows that f must have a Fourier expansion.
This expansion, often referred to as the q -expansion, is given by

f(τ) =
∞∑
n=0

an(f)qn, q = e2πiτ .

Before giving the full definition of a modular form we introduce some standard notation
that will become useful later.

Definition 1.1.4. For γ ∈ SL2(Z) define the factor of automorphy j(γ, τ) ∈ C for
τ ∈ H to be j(γ, τ) = cτ + d . For γ ∈ SL2(Z) and any integer k define the weight-k
slash operator [γ]k on functions f : H → C by

(f [γ]k) = j(γ, τ)−kf(γ(τ)), τ ∈ H.

Remark 1.1.5. The condition of being weakly modular can now be written as f [γ]k = f .

We are now ready to give the full definition of a modular form.

Definition 1.1.6. Let k be an integer. A function f : H −→ C is a modular form of
weight k if

(1) f is holomorphic on H ,

(2) f is weakly modular of weight k ,

(3) f is holomorphic at ∞ .

The set of modular forms of weight k is denoted by Mk(SL2(Z)). Note that being
holomorphic at ∞ means that limIm(τ)→∞ f(τ) exists and is finite.
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The first thing we might ask about this definition is whether such a thing even exists.
Note that the j -invariant is not a modular form of weight 0 as it is not holomorphic
at ∞ ; it has a simple pole there (it has q -expansion j(z) = 1

q + 744 + 196884q +

21493760q2 + 864299970q3 + 20245856356q4 + . . . ). In fact the condition of being a
modular form of weight 0 is so nice that there are no interesting examples.

Corollary 1.1.7. The C-algebra of modular forms of weight 0 is isomorphic to C,
i.e., the only modular forms of weight 0 are the constant functions.

We may also exclude a number of possible weights at this point.

Lemma 1.1.8. If k < 0 or k is odd then we have Mk(SL2(Z)) = {0}.

Proof. It is clear that if k < 0 then f would not be a holomorphic function. We also
know that since −I ∈ SL2(Z) the function f would have to satisfy f(τ) = (−1)kf(τ).
Hence k cannot be odd.

Fortunately there are many examples of modular forms; those functions which are only
invariant up to a factor of (cτ + d)k and satisfy the necessary holomorphy conditions.
The simplest of these is the Eisenstein series.

Definition 1.1.9. Let k > 2 be an even integer and define the Eisenstein series of
weight k to be

Gk(τ) =
∑
c,d∈Z

(c,d) 6=(0,0)

1

(cτ + d)k
, τ ∈ H.

Notice that this is a 2-dimensional analogue of the Riemann zeta function ζ(k) =∑∞
n=1 1/nk . It is fairly easy to show that this series satisfies the necessary conditions

to be a modular form and that its q -expansion is given by

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where the coefficient σk−1(n) is the power divisor function

σk−1(n) =
∑
m|n
m>0

mk−1.

The details of this can be found on pages 4-5 of [DiSh].

Notice that the coefficients of this q -expansion contain many things of number theoretic
interest. This occurrence is not isolated, there are many examples of modular forms
with interesting information contained in the Fourier coefficients.
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This q -expansion motivates the following normalised Eisenstein series

Ek(τ) = Gk(τ)/2ζ(k).

We may do this since ζ(k) 6= 0 for k > 2. This normalised Eisenstein series has the
following simpler looking q -expansion:

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn,

where Bk is the k -th Bernoulli number. Here we have used the fact that for even k ,

ζ(k) =
(−1)

k
2

+1Bk(2π)k

2(k!)
.

Notice how we have been avoiding the case of k = 2. The reason for this is that
although we can define the same series when k = 2, it doesn’t transform in the correct
way to be a modular form. In particular, the series is not absolutely convergent. We
can however organise the terms in a specific way in order to get conditional convergence.
If we consider the sum

G2(τ) =
∑
c∈Z

∑
d∈Z′c

1

(cτ + d)2

where Z′c = Z/{0} if c = 0 and Z′c = Z otherwise. This series does converge con-
ditionally and the terms are organised in such a way that we still obtain the same
q -expansion, i.e.,

G2(τ) = 2ζ(2)− 8π2
∞∑
n=1

σ(n)qn, q = e2πiτ , σ(n) =
∑
d|n
d>0

d.

The problem now however, is that the conditional convergence prevents this series from
being weakly modular. It can be shown (through a non-trivial calculation) that

(G2[γ]2)(τ) = G2(τ)− 2πic

cτ + d
for γ =

(
a b
c d

)
∈ SL2(Z).

This can be corrected, but it again comes with a drawback. The function G2(τ) −
π/Im(τ) is weight-2 invariant under SL2(Z) but it is not holomorphic. It is clear that
the case of weight 2 is not an easy one to deal with and there are many obstacles to
overcome. We will see later that in the case of level N , we can use methods simi-
lar to these in order to obtain a weight 2 Eisenstein series. This will be covered in
Section 1.4.3.

These Eisenstein series allow us to obtain many different relations between power divisor
sums that would be very difficult to deduce using another method. Before we see an
example of this we need to know more about the structure of the space Mk(SL2(Z)).
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This space forms a vector space over C , so addition and scalar multiplication is well-
defined. Further we can actually multiply two modular forms and get another, this
means that the set of all modular forms, denoted M(SL2(Z)) = ⊕∞k=0Mk(SL2(Z)), is
a structure known as a graded algebra. Essentially if we have f ∈ Mk(SL2(Z)) and
g ∈ Ml(SL2(Z)) then fg ∈ Mk+l(SL2(Z)). This is important because it allows us to
create new modular forms from ones we already know. In fact it turns out that the
only modular forms we really need to know are E4 and E6 .

Theorem 1.1.10. There exists an isomorphism of C-algebras:

M(SL2(Z)) ∼= C[E4, E6].

In particular:

Mk(SL2(Z)) =
⊕

4a+6b=k

CEa4Eb6.

There is also an important subspace within Mk(SL2(Z)).

Definition 1.1.11. A cusp form of weight k is a modular form of weight k whose
Fourier expansion has leading coefficient a0 = 0, i.e.,

f(τ) =
∞∑
n=1

anq
n, q = e2πiτ .

The set of cusp forms is denoted Sk(SL2(Z)) and is a subspace of Mk(SL2(Z)).

By Theorem 1.1.10 we see that each of the spaces Mk(SL2(Z)) has a basis. In fact this
basis is finite (non-obvious) and we have formulas for the dimension when k ≥ 2 is an
even integer:

dim(Mk(SL2(Z))) =

{
b k12c+ 1 if k 6≡ 2 (mod 12)

b k12c if k ≡ 2 (mod 12)

Also dim(Sk(SL2(Z)) = dim(Mk(SL2(Z))− 1.

Let us consider the space M8(SL2(Z)). By the dimension formulas we see that this
space is 1-dimensional. If we consider E2

4 and E8 , these are both modular forms of
weight 8. This means they must be linearly dependent but since they both have a0 = 1
they must actually be equal. So(

1 + 240

∞∑
n=1

σ3(n)qn

)2

= 1 + 480

∞∑
n=1

σ7(n)qn.

Equating coefficients of qn on both sides gives the identity

σ7(n) = σ3(n) + 120

n−1∑
m=1

σ3(m)σ3(n−m), n ≥ 1.
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Here we see that we have something entirely number theoretical arising from an object
belonging to the world of complex analysis. There are many more examples of identi-
ties such as this, arising in a similar manner. We can also obtain various interesting
congruences including the famous Ramanujan 691 congruence:

τ(n) ≡ σ11(n) (mod 691),

where τ(n) is the Ramanujan tau function, whose values are the coefficients of the
weight 12 cusp form

∆(z) = q
∞∏
n=1

(1− qn)24.

This function is known as the discriminant function and has important connections
with elliptic curves. Ramanujan conjectured that the τ function should satisfy certain
properties, including:

τ(mn) = τ(m)τ(n) if m,n are coprime
τ(pr) = τ(p)τ(pr−1)− p11τ(pr−2) for any prime p and integer r > 2.

This conjecture was correct and was originally proved by Mordell. This result can also
be proved using the theory of Hecke operators. We will look at the Hecke operators
later in Section 1.5.

§ 1.2 Congruence Subgroups

We can extend our study of modular forms to those with SL2(Z) replaced by a con-
gruence subgroup.

Definition 1.2.1. Let N be a positive integer. The principal congruence subgroup of
level N is

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)

}
.

We can extend this definition to a general congruence subgroup.

Definition 1.2.2. A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊂ Γ for
some N ∈ Z+ , in which case Γ is a congruence subgroup of level N .

If we consider the map SL2(Z)→ SL2(Z/NZ) it is clear that the kernel of this map is
exactly Γ(N) since this is exactly the definition of the matrices in Γ(N). Hence it is
clear that Γ(N) is a normal subgroup of SL2(Z) and that it has finite index. We have
[SL2(Z) : Γ(N)] = |SL2(Z/NZ)| by the first isomorphism theorem. Since we know
|SL2(Z/NZ)| we have

[SL2(Z) : Γ(N)] = N3
∏
p|N

(
1− 1

p2

)
,
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where the product is over all prime divisors of N . From this it follows that every
congruence subgroup has finite index in SL2(Z).

Although there are many different congruence subgroups that we could work with, there
are two standard congruence subgroups that are of particular interest in the theory of
modular forms. These congruence subgroups are as follows:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
(where “∗” means “unspecified”) and

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

These congruence subgroups satisfy the following inclusions:

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z).

Now consider the map

Γ1(N)→ Z/NZ,
(
a b
c d

)
7→ b (mod N).

It is clear that this map is a surjection since the upper right entry of a matrix in Γ1(N)
is arbitrary. It is also clear, by considering the above inclusions, that it has kernel
Γ(N). Hence Γ(N) is normal in Γ1(N) and we have [Γ1(N) : Γ(N)] = N . It follows
that

[SL2(Z) : Γ1(N)] = N2
∏
p|N

(
1− 1

p2

)
,

since

[SL2(Z) : Γ1(N)] =
[SL2(Z) : Γ(N)]

[Γ1(N) : Γ(N)]
.

Now consider the map

Γ0(N)→ (Z/NZ)×,

(
a b
c d

)
7→ d (mod N).

We see that it is a surjection by a similar argument to the previous case. Also it is clear
that the kernel is Γ1(N) as we need the lower right entry to be 1 (mod N). Hence
Γ1(N) is normal in Γ0(N) and we have [Γ0(N) : Γ1(N)] = ϕ(N), where ϕ is the Euler
totient function. This is a little less straightforward; for details see page 14 of [DiSh].
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Using the same argument as before we have

[SL2(Z) : Γ0(N)] =
[SL2(Z) : Γ1(N)]

[Γ0(N) : Γ1(N)]

=
N2
∏
p|N

(
1− 1

p2

)
ϕ(N)

=
N2
∏
p|N

(
1− 1

p2

)
N
∏
p|N

(
1− 1

p

)
= N

∏
p|N

(
p2−1
p2

)
(
p−1
p

)
= N

∏
p|N

p2 − 1

p2 − p

= N
∏
p|N

p+ 1

p

= N
∏
p|N

(
1 +

1

p

)
.

Note that Γ(1) = Γ0(1) = Γ1(1) = SL2(Z) and so level 1 modular forms are exactly
those we have considered.

Although SL2(Z) contains the matrix

(
1 1
0 1

)
, a particular congruence subgroup

may not contain this matrix. Therefore a modular form for a congruence subgroup Γ
is no longer necessarily Z-periodic. Instead, any congruence subgroup Γ contains a
translation matrix of the form (

1 h
0 1

)
: τ 7→ τ + h

for some minimal h ∈ Z+ . This follows because Γ contains Γ(N) for some N , but
h may properly divide N . Every function f : H → C that is weakly modular with
respect to Γ is therefore hZ periodic. If f is holomorphic on H and at ∞ it therefore
has a q -expansion given by

f(τ) =

∞∑
n=0

anq
n
h , qh = e2πiτ/h.

Since congruence subgroups are smaller than SL2(Z) it is easier for a function f : H →
C to satisfy the transformation property and therefore you would expect more modular
forms to be in the vector space Mk(Γ). Note that Mk(Γ) is standard notation to be
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introduced in definition 1.2.4. The first thing we might ask is whether these spaces are
still finite. Fortunately this is still the case and we do in general still have formulas
for the dimensions of these spaces. This is covered in detail in Sections 3.5 and 3.6
of [DiSh]. In order to keep these vector spaces finite-dimensional, we might expect
to have to impose more strict conditions for a function f : H → C to be a modular
form. In fact, modular forms for congruence subgroups need to be holomorphic not
only on H but at all cusps. In other words we no longer only have holomorphy at ∞
as a condition; there are other points that the function must be holomorphic at. These
points are known as the cusps. The idea now is to adjoin not only ∞ to H but also Q .
We therefore define the extended upper half plane to be H∗ = H∪Q∪ {∞} . We then
consider the Γ-equivalence classes of points in Q ∪ {∞} ⊂ H∗ . Such an equivalence
class is called a cusp. Note that when Γ = SL2(Z), there is only a single equivalence
class (represented by ∞) and so this is well-defined. We will briefly discuss cusps in
the next section when we talk about modular curves. For a more thorough description
of cusps, see chapter 2 of [DiSh]. If we write any cusp s ∈ Q ∪ {∞} as s = α(∞) for
some α ∈ Γ, holomorphy at s is naturally defined in terms of holomorphy at ∞ via
the [α]k operator. Note that s here is simply a representative for the equivalence class
of s under the action of Γ.

Before moving on to define a modular form for the congruence subgroup Γ we will
briefly discuss the action of a congruence subgroup on H∗ . We already know how
SL2(Z) acts on H (by fractional linear transformations) and similarly any congruence
subgroup Γ acts in the same way. The question we might ask is how SL2(Z) or any
congruence subgroup Γ acts on Q ∪ {∞} . We can consider Q ∪ {∞} as P1(Q), the
projective line with rational coordinates. We call P1(Q) the set of (rational) cusps. It
turns out that this view allows us to extend our definition and we may use the usual
formula. In other words, a congruence subgroup Γ acts on H∗ in the same way as it
acts on H . As we mentioned, there is only a single cusp in the case Γ = SL2(Z). We
have the following result of which the proof may illuminate the situation.

Lemma 1.2.3. SL2(Z) acts transitively on the set of cusps. In particular, ∞ is a
representative of the single Γ-equivalence class of cusps.

Proof. Write any given rational number as a/c with a, c coprime. We may use Euclid’s

algorithm to complete a and c to a matrix γ =

(
a b
c d

)
∈ SL2(Z). Then

γ(∞) =
a

c
.

This follows by considering the projective coordinates of ∞ . We have

γ(∞) =

(
a b
c d

)[
1
0

]
=

[
a
c

]
.
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We now define weakly modular of weight k with respect to Γ to mean meromorphic
and weight-k invariant under Γ, that is, a meromorphic function f on H is weakly
modular of weight k if

f [γ]k = f for all γ ∈ Γ.

The definition of a modular form with respect to a congruence subgroup is now very
similar to that of a modular form for SL2(Z) but we have the extra cusps to consider.

Definition 1.2.4. Let Γ be a congruence subgroup of SL2(Z) and let k be an integer.
A function f : H → C is a modular form of weight k with respect to Γ if

(1) f is holomorphic,

(2) f is weight-k invariant under Γ,

(3) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

If in addition,

(4) a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL2(Z),

then f is a cusp form of weight k with respect to Γ. The modular forms of weight k
with respect to Γ are denoted Mk(Γ), the cusp forms Sk(Γ).

We also note that whenever Γ1 ⊂ Γ2 we have Mk(Γ2) ⊂ Mk(Γ1). In other words
any modular form for the larger congruence subgroup is also a modular form for the
smaller congruence subgroup. However there could be modular forms for the smaller
congruence subgroup that are not modular forms for the larger congruence subgroup.
This gives us the notion of oldforms and newforms. We will see more about these later
when we discuss Hecke operators.

Since the easiest example of a modular form at level 1 was that of an Eisenstein series,
we might wonder whether there is a generalisation to level N . By the above, it is
clear that any modular form for SL2(Z) is also a modular form for Γ(N)(or any other
congruence subgroup Γ). Hence the level 1 Eisenstein series “is” a level N Eisenstein
series. As you may have guessed from the suggestive notation, this is regarded as an
oldform. So the question is whether there is anything genuinely new at level N , i.e., are
there any newforms? There is a generalisation, only the definition is somewhat more
complicated. Before giving the details of this, we will take a brief detour and discuss
modular curves.

§ 1.3 Modular Curves

Given a congruence subgroup Γ of SL2(Z) we can form a quotient known as a modular
curve. A modular curve is defined as the quotient space of orbits under Γ,

Y (Γ) = Γ\H = {Γτ : τ ∈ H}.
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The modular curves for Γ0(N), Γ1(N), and Γ(N) are denoted

Y0(N) = Γ0(N)\H, Y1(N) = Γ1(N)\H, Y (N) = Γ(N)\H.

These modular curves are in fact Riemann surfaces but they are not compact. The
problem is the cusps that we mentioned in the previous section. We can however
compactify the curves by adding the cusps. We then obtain compact Riemann surfaces.
So we now have a quotient of the extended upper half plane H∗ . Recall that this was
defined as H ∪Q ∪ {∞} . This quotient is defined by X(Γ) = Γ\H∗ . We have similar
definitions as before for each of the congruence subgroups:

X0(N) = Γ0(N)\H∗, X1(N) = Γ1(N)\H∗, X(N) = Γ(N)\H∗.

In order to understand these modular curves it is necessary to understand the orbits
{Γτ : τ ∈ H} . It is therefore necessary to introduce the notion of a fundamental domain
for the congruence subgroup Γ. This is essentially a region of the upper half plane for
which any point in H can be identified with one inside the region. In other words, there
is some γ ∈ Γ such that γτ1 = τ2 with τ1, τ2 ∈ H and τ2 ∈ D where D represents
a fundamental domain. Also the only points within the domain to be identified with
each other lie on the boundary of the domain.

The simplest example of a fundamental domain comes in the case when Γ = SL2(Z).
In this case we have

D = {τ ∈ H : |Re(τ)| ≤ 1/2, |τ | ≥ 1}.

If we consider the modular curve Y (1) = SL2(Z)\H and a map from D to this curve
we have the following result.

Lemma 1.3.1. The map π : D → Y (1) surjects, where π is the natural projection
π(τ) = SL2(Z)τ .

Proof. See page 53 of [DiSh].

We know that this map cannot be injective since we have some identifications at the
boundary of D . However, as we previously mentioned, these are the only identifications.

Lemma 1.3.2. Suppose τ1 and τ2 are distinct points in D and that τ2 = γτ1 for some
γ ∈ SL2(Z). Then either

(1) Re(τ1) = ±1/2 and τ2 = τ1 ∓ 1, or

(2) |τ1| = 1 and τ2 = −1/τ1 .

Proof. See pages 53-54 of [DiSh].
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If we map the fundamental domain D of SL2(Z) via stereographic projection to the
Riemann sphere this gives a triangle with a single vertex missing. This vertex is pre-
cisely the “cusp” at ∞ . It becomes clear looking at this that adding in this single cusp
will make the curve compact. In general, for a congruence subgroup Γ, there will be a
number of cusps like this that need to be added to make the curve compact. In fact,
this process will always be possible since the number of such cusps is always finite.

Lemma 1.3.3. The modular curve X(1) = SL2(Z)\H∗ has one cusp. For any con-
gruence subgroup Γ of SL2(Z) the modular curve X(Γ) has finitely many cusps.

Proof. This proof was left as Exercise 2.4.1 in [DiSh]. We have proved the first part
of the statement in Lemma 1.2.3. By the previous section we know that a congruence
subgroup Γ has finite index in SL2(Z). In other words SL2(Z) is a finite union of
cosets with ∪dj=1Γγj = SL2(Z). If there were infinitely many cusps, then there would
be infinitely many elements of Q∪{∞} not in the same coset. This is a contradiction.
So there are finitely many cusps.

This fact will be very useful in our later work as it will be necessary to know the
constant term of a particular Eisenstein series at each cusp. If there were infinitely
many cusps then the method we use would not be possible. For those interested in the
finer details of modular curves, see chapter 2 of [DiSh].

§ 1.4 Level N Eisenstein Series

Here we only give a detailed description of the Eisenstein series for Γ0(N) and Γ1(N).
Although we give the definition of an Eisenstein series for Γ(N) we will not look too
deeply at the Fourier expansion (or the relevant proofs). The reason for this is that we
simply need the Eisenstein series for Γ(N) as a building block for the Eisenstein series
we will be interested in. For those interested in seeing more about the Eisenstein series
for Γ(N), see Section 4.2 of [DiSh]. We can in fact view the space of Eisenstein series
as a quotient of the full space of modular forms. For a congruence subgroup Γ and any
integer k , we define the weight k Eisenstein space of Γ to be the quotient space of the
modular forms by the cusp forms,

Ek(Γ) = Mk(Γ)/Sk(Γ).

We will see later that this space can actually be redefined as a subspace of Mk(Γ)
complementary to Sk(Γ). That is, the space of modular forms is made up precisely of
Eisenstein series and cusp forms.

In order to define level N Eisenstein series we will need to consider modular forms with
character. We therefore introduce the necessary character theory in order to do this.
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1.4.1 Dirichlet Characters, Gauss Sums, and Eigenspaces

In order to ease notation, let GN denote the multiplicative group (Z/NZ)× for any
positive integer N .

Definition 1.4.1. A Dirichlet character modulo N is a homomorphism of multiplica-
tive groups,

χ : GN → C.

Recall that |GN | = ϕ(N) where ϕ is the Euler totient function. Given any two Dirichlet
characters χ and ψ modulo N , we can consider the product character defined by
(χψ)(n) = χ(n)ψ(n) for n ∈ GN . This is again a Dirichlet character modulo N . We
can also consider the set of Dirichlet characters modulo N ; this forms a multiplicative
group known as the dual group of GN , denoted ĜN , whose identity is the trivial
character modulo N . This character simply maps every element to 1 and is usually
denoted by 1 or 1N if N needs to be emphasized. The values taken by a Dirichlet
character are roots of unity. This follows since GN is a finite group. It therefore
follows that the inverse of such a character is simply the complex conjugate, defined by
χ(n) = χ(n) for every n ∈ GN .

It turns out that in fact there is a close link between these two groups.

Proposition 1.4.2. Let ĜN be the dual group of GN . Then ĜN is isomorphic to
GN . In particular, the number of Dirichlet characters modulo N is ϕ(N).

This isomorphism is noncanonical and involves arbitrary choices of which elements map
to which characters. However we now know exactly how many Dirichlet characters there
are modulo N . We also have certain orthogonality relations that are satisfied. We have∑

n∈GN

χ(n) =

{
ϕ(N) if χ = 1,

0 if χ 6= 1,

∑
χ∈ĜN

χ(n) =

{
ϕ(N) if n = 1,

0 if n 6= 1.

Another important operation we can do with Dirichlet characters is lifting to a larger
modulus. This will be something that we need to do in most of our main theorems.
Consider any positive integer N and suppose d|N . Every Dirichlet character χ mod-
ulo d lifts to a Dirichlet character χN modulo N . This is simply defined by χN (n
(mod N)) = χ(n (mod d)). In other words for each n ∈ GN you look at its reduction
n modulo d and then χN (n) is given the same value as is taken by χ(n).

One might wonder whether it is possible to go the other way; from a Dirichlet character
modulo N to a Dirichlet character modulo d . This isn’t always possible and so we
assign a value to each character called the conductor. This is the smallest positive
divisor such that a Dirichlet character modulo N factors through a character of smaller
modulus.

We know that (Z/NZ)× is the invertible elements of (Z/NZ) and that a Dirichlet
character can be defined as a function on this group. We might wonder if we can
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extend the definition to include the non-invertible elements as well. That is, can we
extend to a function χ : Z/NZ→ C? The answer is yes: we simply set χ(n) = 0 for all
non-invertible elements n ∈ Z/NZ . This can then be extended further to the whole of
the integers. We can let χ : Z → C by given by χ(n) = χ(n (mod N)) for all n ∈ Z .
It is then clear that for any n with gcd(n,N) > 1, we have χ(n (mod N)) = χ(0) = 0.
Although this function is no longer a homomorphism, it is completely multiplicative,
i.e., χ(nm) = χ(n)χ(m) for all n,m .

We may now modify the orthogonality relations slightly. If we sum over n = 0 to N−1
in the first relation and take n ∈ Z in the second we get

N−1∑
n=0

χ(n) =

{
ϕ(N) if χ = 1,

0 if χ 6= 1,

∑
χ∈ĜN

χ(n) =

{
ϕ(N) if n ≡ 1 (mod N),

0 if n 6≡ 1 (mod N).

We are now in a position to define a Gauss sum. The Gauss sum of a Dirichlet character
χ modulo N is the complex number

g(χ) =
N−1∑
n=0

χ(n)µnN , µN = e2πi/N .

If χ is primitive modulo N then for any integer m ,

N−1∑
n=0

χ(n)µnmN = χ(m)g(χ).

It therefore follows that the Gauss sum of a primitive character is non-zero. In fact the
square of the absolute value works out to be N , the details of which are on page 118
of [DiSh]. Gauss sums will appear at several points throughout this thesis, particularly
when we calculate the constant term of the Eisenstein series at other cusps.

We finish with a remark about the distribution of certain types of Dirichlet character.

Definition 1.4.3. Let χ be a Dirichlet character modulo N . If χ(−1) = 1, we say
that χ is an even Dirichlet character. If χ(−1) = −1 we say that χ is odd.

Lemma 1.4.4. Let N be a positive integer. If N = 1 or N = 2 then every Dirichlet
character χ modulo N is even. If N > 2 then the number of Dirichlet characters
modulo N is even, half of them being even, the other half being odd.

Proof. See page 118 of [DiSh].

The reason we are interested in Dirichlet characters, and in particular modular forms
with character, is because they decompose the space Mk(Γ1(N)) into a direct sum
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of subspaces. For a Dirichlet character χ modulo N we define the χ-eigenspace of
Mk(Γ1(N)),

Mk(N,χ) = {f ∈Mk(Γ1(N)) : f [γ]k = χ(dγ)f for all γ ∈ Γ0(N)} ,

where dγ denotes the lower right entry of γ . The eigenspace corresponding to the trivial
character is Mk(Γ0(N)). That is Mk(N,1) = Mk(Γ0(N)). Also the space Mk(N,χ)
is just {0} unless χ(−1) = (−1)k . We then have

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ).

This result also holds for the cusp forms, and therefore also for the quotients (the space
of Eisenstein series) as well,

Ek(Γ1(N)) =
⊕
χ

Ek(N,χ).

Consider the Riemann zeta function ζ(s) =
∑∞

n=1
1
ns . We could instead view this as

essentially ζ(s) =
∑∞

n=1
1(n)
ns where 1(n) is the trivial Dirichlet character. We might

wonder what happens if we had a different Dirichlet character. This in fact gives us
what is known as the Dirichlet L-function. Given any Dirichlet character χ modulo
N , there is an associated Dirichlet L-function,

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p∈P

(1− χ(p)p−s)−1, Re(s) > 1,

where P is the set of primes. This L-function extends to a meromorphic function
on the whole s-plane and the extension is entire unless the character is trivial. If
the character is trivial then as we discussed above, the L-function is essentially the
Riemann zeta function. The L-function satisfies a functional equation and its form
depends on the value of χ(−1). If χ(−1) = 1, the functional equation is

π−s/2Γ
(s

2

)
N sL(s, χ) = π−(1−s)/2Γ

(
1− s

2

)
g(χ)L(1− s, χ),

and when χ(−1) = −1 it is

π−(s+1)/2Γ

(
s+ 1

2

)
N sL(s, χ) = −iπ−(2−s)/2Γ

(
2− s

2

)
g(χ)L(1− s, χ),

where Γ(s) is the gamma function from complex analysis, defined by

Γ(s) =

∫ ∞
t=0

e−tts
dt

t
, s ∈ C, Re(s) > 0.
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1.4.2 Level N Eisenstein Series when k ≥ 3

The definition of Eisenstein series for Γ(N) isn’t too far away from that of the Eisenstein
series for level 1. We now simply look at a sum over certain congruence classes rather
than over all integers. Let N be a positive integer and let v ∈ (Z/NZ)2 be a row vector

of order N . Here the overline denotes reduction modulo N . Let δ =

[
a b
cv dv

]
∈

SL2(Z) with (cv, dv) a lift of v to Z2 , and let k ≥ 3 be an integer. Let εN be 1/2 if
N ∈ {1, 2} and 1 if N > 2. Define the weight k Eisenstein series for Γ(N) by

Evk(τ) = εN
∑

(c,d)≡v (mod N)
gcd(c,d)=1

(cτ + d)−k.

Note that if N = 1, then every pair of integers (c, d) ≡ v (mod 1). Hence this definition
reduces exactly to the level 1 (normalised) Eisenstein series when we set N = 1. We
also have the non-normalised series

Gvk(τ) =
∑′

(c,d)≡v (mod N)

(cτ + d)−k,

where
∑′

means we sum over non-zero pairs (c, d).

We are now in a position to define the Eisenstein series for Γ0(N) and Γ1(N). First
of all we note that vectors modulo N of the form v = (0, d) satisfy

(0, d)γ = (0, ddγ) for all γ ∈ Γ0(N),

where dγ is the lower right entry of γ . If we take a sum over all d ∈ (Z/NZ)× , this
gives a sum of Eisenstein series ∑

d∈(Z/NZ)×

G
(0,d)
k

lying in Mk(Γ0(N)). We can also introduce a character modulo N into the sum to get
something in Mk(N,χ), namely ∑

d∈(Z/NZ)×

χ(d)G
(0,d)
k .

This kind of process can be generalised to get a basis for the space of Eisenstein series
Ek(N,χ).

Given any two primitive Dirichlet characters ψ modulo u and ϕ modulo v such that
uv = N and ψϕ(−1) = (−1)k (note that the characters are both raised to level uv
here so that the product makes sense), we can consider a linear combination of the
Eisenstein series for Γ(N),

Gψ,ϕk (τ) =
u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)G
(cv,d+ev)
k (τ).
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If we take γ =

(
aγ bγ
cγ dγ

)
∈ Γ0(N), it is fairly easy to show that

(Gψ,ϕk [γ]k)(τ) = (ψϕ)(dγ)Gψ,ϕk (τ),

from which it follows that Gψ,ϕk (τ) ∈ Mk(N,ψϕ). The details of this are given on
page 127 of [DiSh]. The main thing that we will be interested in is what the Fourier

expansion of this series looks like. To ease notation, let Ck = (−2πi)k

(k−1)! .

Theorem 1.4.5. The Eisenstein series Gψ,ϕk takes the form

Gψ,ϕk (τ) =
Ckg(ϕ)

vk
Eψ,ϕk (τ),

where Eψ,ϕk has Fourier expansion

Eψ,ϕk (τ) = δ(ψ)L(1− k, ϕ) + 2

∞∑
n=1

σψ,ϕk−1(n)qn, q = e2πiτ .

Here δ(ψ) is 1 if ψ = 11 , and is 0 otherwise, and the generalised power sum in the
Fourier coefficient is

σψ,ϕk−1(n) =
∑
m|n
m>0

ψ(n/m)ϕ(m)mk−1.

Proof. See pages 127-129 of [DiSh].

Now that we know what the Eisenstein series look like at level N , we might be interested
in which Eisenstein series we need in order to form a basis. Recall that at level one
we simply needed E4 and E6 . Given any positive integer N and any k ≥ 3, let
AN,k be the set of triples (ψ,ϕ, t) with ψ and ϕ primitive Dirichlet characters modulo
u and v with ψϕ(−1) = (−1)k , and t a positive integer such that tuv|N . Then
|AN,k| = dim(Ek(Γ1(N))). For any triple (ψ,ϕ, t) ∈ AN,k define

Eψ,ϕ,tk (τ) = Eψ,ϕk (tτ).

Note that Eψ,ϕ,tk ∈ Mk(Γ1(tuv)) and since tuv|N we have Eψ,ϕ,tk ∈ Mk(Γ1(N)). In
fact these Eisenstein series are enough to form a basis.

Theorem 1.4.6. Let N be a positive integer and let k ≥ 3. The set

{Eψ,ϕ,tk : (ψ,ϕ, t) ∈ AN,k}

represents a basis of Ek(Γ1(N)). For any character χ modulo N , the set

{Eψ,ϕ,tk : (ψ,ϕ, t) ∈ AN,k, ψϕ = χ}

represents a basis of Ek(N,χ).
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Note that as it stands the Eisenstein space is defined as a quotient and not as a subspace.
Hence at the moment this set only represents a basis. When we redefine the Eisenstein
space as a subspace, we will be able to take the span of these elements giving us a basis.
If we take our character χ to be trivial this gives a basis for Ek(Γ0(N)).

1.4.3 Eisenstein Series of Weight 2

Recall that the level 1 Eisenstein series had to be modified in the case of weight 2.
Since the level N Eisenstein series reduce to the level 1 Eisenstein series when we set
N = 1, it is clear that we will also need to modify our level N Eisenstein series. In a
similar way to that of the level 1 Eisenstein series it isn’t too hard to obtain a series
that is weakly modular. It is slightly harder to obtain a series that is holomorphic.
Consider the following series:

gv2(τ) = Gv2(τ)− π

N2Im(τ)
, v ∈ (Z/NZ)2 of order N.

This series is weight-2 invariant with respect to Γ(N) but the term − π
N2Im(τ)

obviously

causes the series to be non-holomorphic. One way of getting rid of this problem would
be to take a difference of two such series. Differences such as gv1

2 − gv2
2 where v1

and v2 are cusps of Γ(N) are modular forms since they are holomorphic and weakly
modular and their Fourier coefficients are small enough. It follows that a basis for the
Eisenstein space E2(Γ(N)) is given by the linear combinations of these series such that
the coefficients sum to zero.

Theorem 1.4.7.

E2(Γ(N)) =

{∑
v

avg
v
2 :
∑
v

av = 0

}
,

where the sums are taken over vectors v of order N in (Z/NZ)2 .

For more details about this construction see Section 4.6 of [DiSh].

What about the Eisenstein series for Γ1(N) and its eigenspaces? Well it turns out that
in this case not much is different to the higher weight Eisenstein series. Let ψ and ϕ be
Dirichlet characters modulo u and v respectively with uv = N and ψϕ(−1) = (−1)k

and ϕ primitive. Consider the sums

Gψ,ϕ2 (τ) =
u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)G
(cv,d+ev)
2 (τ),

Eψ,ϕ2 (τ) = δ(ψ)L(−1, ϕ) + 2

∞∑
n=1

σψ,ϕ1 (n)qn, q = e2πiτ .
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These are the same series as before with k = 2. If either of ψ or ϕ is non-trivial then
the coefficients sum to 0 in Gψ,ϕ2 (τ), and so we have

Gψ,ϕ2 ∈M2(N,ψϕ), Gψ,ϕ2 (τ) =
C2g(ϕ)

v2
Eψ,ϕ2 (τ).

When both ψ and ϕ are trivial no sum G2,1u,1v(τ) is a modular form. However this
can be modified in a similar way to the level 1 weight 2 case. For any positive integer
t ,

G2,11,11(τ)− tG2,11,11(tτ) =
1

N2
G2,t(τ)

where G2,t ∈M2(Γ0(t)) is the series given by G2(τ)− tG2(tτ).

We can again ask which of these series are required for a basis. Let AN,2 be the set
of triples (ψ,ϕ, t) such that ψ and ϕ are primitive Dirichlet characters modulo u and
v with ψϕ(−1) = 1, and t is an integer such that 1 < tuv|N . Note that the triple
(11,11, 1) is excluded here. For any triple in AN,2 define

Eψ,ϕ,t2 (τ) =

{
Eψ,ϕ2 (tτ) unless ψ = ϕ = 11,

E11,11
2 (τ)− tE11,11

2 (tτ) if ψ = ϕ = 11,

Theorem 1.4.8. Let N be a positive integer. The set

{Eψ,ϕ,t2 : (ψ,ϕ, t) ∈ AN,2}

represents a basis of E2(Γ1(N)). For any character χ modulo N , the set

{Eψ,ϕ,t2 : (ψ,ϕ, t) ∈ AN,2, ψϕ = χ}

represents a basis of E2(N,χ).

1.4.4 Eisenstein Series of Weight 1 and Bernoulli Numbers

Now that we are working with Eisenstein series at level N , we can actually consider
modular forms of weight 1. Although there were no modular forms of odd weight
at level 1, we already know there are modular forms of odd weight at level N . The
question is whether there are any modular forms of weight 1. In fact, there are. We
just have to be clever about the functions we use. If we tried to use the same Eisenstein
series as before with k = 1 we would immediately run into problems. At weight 2 we
only managed to get conditional convergence. At weight 1 there is no convergence at
all, no matter how we arrange the terms. We can however use a modified function such
that we obtain a modular form of weight 1 satisfying the properties that we would like
an Eisenstein series of weight 1 to satisfy. In particular, it lies in the correct vector
space and has a similar q -expansion to that of an Eisenstein series. In order to do this
we will first define a generalisation of the Bernoulli numbers. These will both be useful
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in defining the weight 1 Eisenstein series and will also appear in our later work. If we
consider the computation of power sums

10 + 20 + · · ·+ n0 = n,

11 + 21 + · · ·+ n1 =
1

2
(n2 + n),

12 + 22 + · · ·+ n2 =
1

6
(2n3 + 3n2 + n),

etc,

then the Bernoulli numbers arise naturally. In order to study these, let n be a positive
integer and let the k -th power sum up to n− 1 be

Sk(n) =

n−1∑
m=0

mk, k ∈ N.

The power series with these sums as coefficients is their generating function

S(n, t) =

∞∑
k=0

Sk(n)
tk

k!
.

This can also be written as

S(n, t) =
ent − 1

t

t

et − 1
.

The second term here is independent of n and actually contains the Bernoulli numbers.
We have

t

et − 1
=

∞∑
k=0

Bk
tk

k!
,

where Bk is the k -th Bernoulli number.

The k -th Bernoulli polynomial is defined by

Bk(X) =

k∑
j=0

(
k
j

)
BjX

k−j .

These Bernoulli polynomials then have a generating function given by

tetX

et − 1
=
∞∑
k=0

Bk(X)
tk

k!
.

We can use this generating function to define a generalised Bernoulli number, a special
case of which involves Dirichlet characters.
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Definition 1.4.9. Let χ be a Dirichlet character modulo u . The generalised Bernoulli
numbers attached to χ are defined by

u−1∑
c=0

χ(c)
tect

eut − 1
=

∞∑
k=0

Bk,χ
tk

k!
.

Note that if χ = 11 , then Bk,11 = Bk . We also note that there is an explicit formula
for the generalised Bernoulli numbers. We have

Bk,χ = uk−1
u−1∑
c=0

χ(c)Bk(c/u).

Recall that there was a relation between the standard Bernoulli numbers and the Rie-
mann zeta function. This can be generalised to obtain a relation between the gener-
alised Bernoulli numbers and the L-function attached to the character χ . We have the
following for all k ≥ 1:

L(1− k, χ) = −
Bk,χ
k

.

This will become extremely important in our later work as it will appear as the constant
term of an Eisenstein series whose Fourier coefficients satisfy a congruence.

We are now in a position to define the weight 1 Eisenstein series. Although we didn’t
go too deeply into the details of the weight 2 Eisenstein series we note that in fact the
Weierstrass ℘-function defines a weight 2 Eisenstein series. Recall that this function
arises in the theory of elliptic curves. In particular, every elliptic curve is a rational
linear combination of ℘ and ℘′ . These functions are associated to a lattice Λ. There
is another function, also related to a lattice Λ which leads naturally to series of weight
1. The function in question is the Weierstrass σ -function

σΛ(z) = z
∏′

ω∈Λ

(
1− z

ω

)
ez/ω+ 1

2
(z/ω)2

, z ∈ C.

Taking the logarithmic derivative σ′/σ gives the Weierstrass zeta function, denoted by
Z in order to avoid confusion with the Riemann zeta function,

ZΛ(z) =
1

z
+
∑′

ω∈Λ

(
1

z − ω
+

1

ω
+

z

ω2

)
, z ∈ C.

This function has simple poles with residue 1 at the lattice points. It isn’t periodic
with respect to Λ, instead, since Z ′Λ = −℘Λ is periodic, if Λ = ω1Z ⊕ ω2Z then the
quantities

η1(Λ) = ZΛ(z + ω1)− ZΛ(z) and η2(Λ) = ZΛ(z + ω2)− ZΛ(z)

are lattice constants such that

ZΛ(z + n1ω1 + n2ω2) = ZΛ(z) + n1η1(Λ) + n2η2(Λ), n1, n2 ∈ Z.



CHAPTER 1. CLASSICAL MODULAR FORMS 23

Under the normalising convention ω1/ω2 ∈ H the lattice constants satisfy the Legendre
relation η2(Λ)ω1−η1(Λ)ω2 = 2πi . The second lattice constant appears in the q -product
expansion of σ specialised to Λ = Λτ ,

σΛτ (z) =
1

2πi
e

1
2
η2(Λτ )z2

(eπiz − e−πiz)
∞∏
n=1

(1− e2πizqn)(1− e−2πizqn)

(1− qn)2
,

where q = e2πiτ . The logarithmic derivative is therefore

ZΛτ (z) = η2(Λτ )z − πi1 + e2πiz

1− e2πiz
− 2πi

∞∑
n=1

(
e2πizqn

1− e2πizqn
− e−2πizqn

1− e−2πizqn

)
.

For any vector v ∈ (Z/NZ)2 of order N , the function of modular points

F v1 (C/Λ, (ω1/N + Λ, ω2/N+Λ))

= ZΛ

(
cvω1 + dvω2

N

)
− cvη1(Λ) + dvη2(Λ)

N

is well-defined and degree-1 homogeneous with respect to Γ(N). The corresponding
function

gv1(τ) =
1

N
ZΛτ

(
cvτ + dv

N

)
− cvη1(Λτ ) + dvη2(Λτ )

N2

is weakly modular of weight 1 with respect to Γ(N). It can be shown (see page 139
of [DiSh]) that

gv1(τ) = Gv1(τ)− C1

N

(
cv
N
− 1

2

)
, 0 ≤ cv < N.

Here the series Gv1 is analogous to Gvk for k ≥ 3. Since gv1 is holomorphic and weakly
modular with respect to Γ(N) and its n-th Fourier coefficient grows as Cn , it is a
weight 1 modular form with respect to Γ(N).

We can extend this to Γ1(N) and Γ0(N) in a similar way as in the weight 2 case. Let
ψ and ϕ be Dirichlet characters modulo u and v with uv = N and ϕ primitive and
(ψϕ)(−1) = −1. As before, consider the sums

Gψ,ϕ1 (τ) =
u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)g
(cv,d+ev)
1 (τ),

Eψ,ϕ1 (τ) = δ(ϕ)L(0, ψ) + δ(ψ)L(0, ϕ) + 2
∞∑
n−1

σψ,ϕ0 (n)qn.

Notice the difference in the constant term of Eψ,ϕ1 . The details of the calculation are
given on page 140 of [DiSh]. As before we get

Gψ,ϕ1 ∈M1(N,ψϕ), Gψ,ϕ1 (τ) =
C1g(ϕ)

v
Eψ,ϕ1 (τ).
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Using the same techniques as the previous basis theorems we may obtain a basis for
the weight 1 Eisenstein subspace. There are however slight differences in this case. Let
AN,1 be the set of triples ({ψ,ϕ}, t) such that ψ and ϕ , taken this time as an unordered
pair, are primitive Dirichlet characters modulo u and v satisfying the parity condition
(ψϕ)(−1) = −1, and t is a positive integer such that tuv|N . Suppose such a triple
contained the same character ψ twice. If ψ was even then ψ(−1)ψ(−1) = 1.1 = 1.
If ψ was odd then ψ(−1)ψ(−1) = (−1).(−1) = 1. Hence the parity condition shows
that AN,1 contains no triples ({ψ,ϕ}, t) with the same character twice, so taking the
characters in unordered pairs means that AN,1 contains half as many elements as it
would otherwise, and we have |AN,1| = dim(E1(Γ1(N)). Since the Fourier coefficients

of Eψ,ϕ1 are symmetric in ψ and ϕ , the series depends on the two characters only as
an unordered pair, and it makes sense to define for each triple ({ψ,ϕ}, t) ∈ AN,1

Eψ,ϕ,t1 (τ) = Eψ,ϕ1 (tτ).

Theorem 1.4.10. Let N be a positive integer. The set

{Eψ,ϕ,t1 : ({ψ,ϕ}, t) ∈ AN,1}

represents a basis of E1(Γ1(N)). For any character χ modulo N , the set

{Eψ,ϕ,t1 : ({ψ,ϕ}, t) ∈ AN,1, ψϕ = χ}

represents a basis of E1(N,χ).

§ 1.5 Hecke Operators

The main aim of this section is to give a canonical basis for the space Sk(Γ1(N)).
One particularly useful way of learning more about the Fourier coefficients of modular
forms is by making use of Hecke operators. The idea is to create some linear operators
for which certain modular forms will be eigenforms and the Fourier coefficients will
be precisely the Hecke eigenvalues. This rather clever idea came about while trying
to prove various relations such as the Ramanujan congruence. In this section we will
describe the theory of Hecke operators.

1.5.1 The Double Coset Operator

First, we fix congruence subgroups Γ1 and Γ2 of SL2(Z). We can therefore view
these congruence subgroups as subgroups of GL+

2 (Q), the group of 2-by-2 matrices
with positive determinant and rational entries. Our aim is to construct certain maps
between Mk(Γ1) and Mk(Γ2). That is we would like maps that turn modular forms
for Γ1 into modular forms for Γ2 . We can do this by making use of a particular type
of coset. For any α ∈ GL+

2 (Q), the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}
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is a double coset in GL+
2 (Q).

We can act on such a double coset by left multiplication by Γ1 . This action partitions
the double coset into orbits. These orbits have the form Γ1β with representative
β = γ1αγ2 . Hence the orbit space Γ1\Γ1αΓ2 is a disjoint union

⋃
Γ1βj for some choice

of representatives βj . This is a finite union, the proof of which can be found on page
164 of [DiSh].

Now that we are working with elements of GL+
2 (Q) it makes sense to extend our

definition of the weight-k slash operator. For any β ∈ GL+
2 (Q) and k ∈ Z , the

weight-k β operator on functions f : H → C is given by

(f [β]k)(τ) = (detβ)k−1j(β, τ)−kf(β(τ)), τ ∈ H.

We may now use this extended operator to define the double coset operators.

Definition 1.5.1. For congruence subgroups Γ1 and Γ2 of SL2(Z) and α ∈ GL+
2 (Q),

the weight-k Γ1αΓ2 operator takes functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k =
∑
j

f [βj ]k

where {βj} are orbit representatives, i.e., Γ1αΓ2 =
⋃
j Γ1βj is a disjoint union.

We might wonder what happens when we choose different representatives {βj} . In
fact, this is not an issue at all. The double coset operators are well-defined and are
independent of how the representatives {βj} are chosen. As mentioned briefly we want
maps that transform modular forms for Γ1 into modular forms for Γ2 . These maps
are exactly the right ones.

Theorem 1.5.2. For any α ∈ GL+
2 (Q), the weight-k double coset operator [Γ1αΓ2]k

defines a linear map Mk(Γ1) → Mk(Γ2). This map induces a linear map Sk(Γ1) →
Sk(Γ2).

Proof. A proof of this result is given on pages 165-166 of [DiSh].

There are a few interesting examples we can consider. Suppose that Γ1 ⊃ Γ2 and
we take α = I . Here the double coset operator is f [Γ1αΓ2]k = f . This gives us the
natural inclusion of Mk(Γ1) into Mk(Γ2). Suppose instead that α−1Γ1α = Γ2 . Then
the double coset operator is simply f [Γ1αΓ2]k = f [α]k , giving the natural translation
from Mk(Γ1) to Mk(Γ2).

1.5.2 The 〈d〉 and Tp Operators

Suppose we take Γ1 = Γ2 = Γ. Then Theorem 1.5.2 says we have an endomorphism of
Mk(Γ). This is the kind of map we will be most interested in. We will now introduce
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two operators on the space Mk(Γ1(N)). Take Γ1 = Γ2 = Γ1(N), let α ∈ Γ0(N) and
consider the double coset operator [Γ1(N)αΓ1(N)]k . Recall that Γ1(N) is normal in
Γ0(N). This followed by considering the map

Γ0(N)/Γ1(N)
∼−→ (Z/NZ)×where

(
a b
c d

)
7→ d (mod N).

Since Γ1(N) / Γ0(N), we have α−1Γ1(N)α = Γ1(N) for all α ∈ Γ0(N). By the above
property, we have for each f ∈Mk(Γ1(N)),

f [Γ1(N)αΓ1(N)]k = f [α]k, α ∈ Γ0(N),

again in Mk(Γ1(N)). It follows that the group Γ0(N) acts on Mk(Γ1(N)), and since
the subgroup Γ1(N) acts trivially, its really an action of the quotient (Z/NZ)× . The

action of α =

(
a b
c d

)
, determined by d (mod N) and denoted by 〈d〉 , is

〈d〉 : Mk(Γ1(N))→Mk(Γ1(N))

given by

〈d〉f = f [α]k for any α =

(
a b
c δ

)
∈ Γ0(N) with δ ≡ d (mod N).

This operator is known as a diamond operator and is the first type of Hecke op-
erator. These operators have an immediately useful property. For any character
χ : (Z/NZ)× → C , the space Mk(N,χ) is precisely the χ-eigenspace of the diamond
operators,

Mk(N,χ) = {f ∈Mk(Γ1(N)) : 〈d〉f = χ(d)f for all d ∈ (Z/NZ)×}.

The second type of Hecke operator will again have Γ1 = Γ2 = Γ1(N), but this time we

let α =

(
1 0
0 p

)
, with p prime. This operator is denoted by Tp . We have

Tp : Mk(Γ1(N))→Mk(Γ1(N)), p prime

given by

Tpf = f [Γ1(N)

(
1 0
0 p

)
Γ1(N)]k.

The double coset here is given by

Γ1(N)

(
1 0
0 p

)
Γ1(N) =

{
γ ∈ M2(Z) : γ ≡

(
1 ∗
0 p

)
(mod N), detγ = p

}
.

The two types of Hecke operator here commute and the proof of this can be found
on pages 169-170 in [DiSh]. Of the two operators here, the Tp operator is the one
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we will be most interested in as this is the one that will appear in our main theorem.
The following results will give us more information about how the Tp operator acts on
modular forms. The required orbit representatives needed for the action are calculated
on page 170 of [DiSh]. Here we just state the results.

Proposition 1.5.3. Let ∈ Z+ , let Γ1 = Γ2 = Γ1(N), and let α =

(
1 0
0 p

)
where p

is prime. The operator Tp = [Γ1αΓ2] on Mk(Γ1(N)) is given by

Tpf =


∑p−1

j=0 f [
(

1 j
0 p

)
]k if p|N,∑p−1

j=0 f [
(

1 j
0 p

)
]k + f [(m n

N p )
(
p 0
0 1

)
]k if p - N , where mp− nN = 1.

A similar result holds for the action on modular forms for Γ0(N) although the final
orbit representative is replaced by β∞ =

(
p 0
0 1

)
. This follows since (m n

N p ) ∈ Γ0(N) (We
know that mp−nN = 1 so (m n

N p ) ∈ SL2(Z) and the bottom left entry is 0 (mod N)).
Therefore f [(m n

N p )]k = f as f is weakly modular with respect to Γ0(N). The next
result gives us the action on Fourier coefficients.

Proposition 1.5.4. Let f ∈ Mk(Γ1(N)). Since ( 1 1
0 1 ) ∈ Γ1(N), f has period 1 and

hence has a Fourier expansion

f(τ) =
∞∑
n=0

an(f)qn, q = e2πiτ .

Then:

(1) Let 1N : (Z/NZ)× → C be the trivial character modulo N . Then Tpf has Fourier
expansion

(Tpf)(τ) =
∞∑
n=0

anp(f)qn + 1N (p)pk−1
∞∑
n=0

an(〈p〉f)qnp

=
∞∑
n=0

(anp(f) + 1N (p)pk−1an/p(〈p〉f))qn.

That is,

an(Tpf) = anp(f) + 1N (p)pk−1an/p(〈p〉f) for f ∈Mk(Γ1(N)).

(Here an/p = 0 when n/p 6∈ N, 1N (p) = 1 when p - N,1N (p) = 0 when p|N .

(2) Let χ : (Z/NZ)× → C be a character. If f ∈Mk(N,χ) then also Tpf ∈Mk(N,χ),
and now its Fourier expansion is

(Tpf)(τ) =

∞∑
n=0

anp(f)qn + χ(p)pk−1
∞∑
n=0

an(f)qnp

=
∞∑
n=0

(anp(f) + χ(p)pk−1an/p(f))qn.
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That is,

an(Tpf) = anp(f) + χ(p)pk−1an/p(f) for f ∈Mk(N,χ).

Proof. See page 172 of [DiSh].

Double coset operators take modular forms to modular forms and they also respect the
subspace of cusp forms. That is, they take cusp forms to cusp forms. It follows that we
may restrict Tp to Sk(Γ1(N)). Recall that the space S12(SL2(Z)) was 1-dimensional
with the discriminant function ∆ lying in this space. This tells us that in fact ∆ must
be an eigenform for the Tp operator. In fact the Hecke eigenvalues are exactly the
Fourier coefficients, i.e., the values of the Ramanujan τ function. This is enough to
prove the conjectured relations that the τ function should satisfy.

It also turns out that the Eisenstein series are eigenvectors of the Hecke operators. By
definition of Mk(N,χ) as an eigenspace, 〈d〉Eψ,ϕ,tk = χ(d)Eψ,ϕ,tk . Also if we apply the
Hecke operator Tp to this series we see the following

Theorem 1.5.5. Let χ : (Z/NZ)× → C be a Dirichlet character modulo N . Let ψ
and ϕ be primitive Dirichlet characters modulo u and v , let t be a positive integer
with tuv|N and (ψϕ)(−1) = (−1)k . Let p be prime and k ≥ 1. Excluding the case
k = 2, ψ = ϕ = 1,

TpE
ψ,ϕ
k = (ψ(p) + ϕ(p)pk−1)Eψ,ϕk if uv = N or if p - N .

Also,

TpE
11,11,t
2 = (1 + 1N (p)p)E11,11,t

2
if t is prime and N is a power of t

or if p - N .

Proof. This proof is Exercise 5.2.5 in [DiSh]. We omit the proof of the case k = 2.

We start by showing that the generalised divisor sum σψ,ϕk−1(n) is multiplicative, i.e.,

σψ,ϕk−1(nm) = σψ,ϕk−1(n)σψ,ϕk−1(m) when gcd(m,n) = 1 .

If we let f be the function sending m to mk−1 , then we have

σψ,ϕk−1(n) = (ϕf ∗ ψ).

Since ψ and ϕ are Dirichlet characters, it follows that ψ and ϕf are multiplicative.
It then follows that the Dirichlet convolution is also multiplicative. Therefore σψ,ϕk−1 is
multiplicative.
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We now let p be prime and let n ≥ 1. Write n = n′pe with p - n′ and e ≥ 0. Then

σψ,ϕk−1(np) = σψ,ϕk−1(n′)σψ,ϕk−1(pe+1)

= σψ,ϕk−1(n′)

 ∑
m|pe+1

ψ

(
pe+1

m

)
ϕ(m)mk−1


= σψ,ϕk−1(n′)

(
ψ(pe+1) + · · ·+ ψ(p)ϕ(pe)(pe)k−1 + ϕ(pe+1)(pe+1)k−1

)
= ψ(p)σψ,ϕk−1(n) + ϕ(pe+1)(pe+1)k−1σψ,ϕk−1(n′).

Also

σψ,ϕk−1(n/p) = σψ,ϕk−1(n′)σψ,ϕk−1(pe)

= σψ,ϕk−1(n′)

∑
m|pe

ψ

(
pe

m

)
ϕ(m)mk−1


= σψ,ϕk−1(n′)

(
ψ(pe) + · · ·+ ψ(p)ϕ(pe−1)(pe−1)k−1 + ϕ(pe)(pe)k−1

)
.

So

χ(p)pk−1σψ,ϕk−1(n/p) = ψ(p)ϕ(p)pk−1σψ,ϕk−1(n/p)

= ϕ(p)pk−1σψ,ϕk−1(n′)
(
ψ(pe+1) + · · ·+ ψ(p)ϕ(pe)(pe)k−1

)
.

If we add and subtract ϕ(pe+1)(pe+1)k−1 in the sum, this can be written as

χ(p)pk−1σψ,ϕk−1(n/p) = ϕ(p)pk−1σψ,ϕk−1(n)− ϕ(pe+1)(pe+1)k−1σψ,ϕk−1(n′).

Hence when e ≥ 0 and p - N we have

σψ,ϕk−1(np) + χ(p)pk−1σψ,ϕk−1(n/p) = (ψ(p) + ϕ(p)pk−1)σψ,ϕk−1(n).

But this precisely says that

an(TpE
ψ,ϕ
k ) = (ψ(p) + ϕ(p)pk−1)an(Eψ,ϕk ).

This result holds more generally for Tn where n ∈ N , but we won’t prove that here.

We now state the result saying that these Hecke operators commute.

Proposition 1.5.6. Let d and e be elements of (Z/NZ)× , and let p and q be prime.
Then

(1) 〈d〉Tp = Tp〈d〉,
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(2) 〈d〉〈e〉 = 〈e〉〈d〉 = 〈de〉,

(3) TpTq = TqTp .

Proof. See page 172 of [DiSh].

These results can all be extended to work with general n . In other words, we have
operators 〈n〉 and Tn which still commute and still act on modular forms in similar
ways. The following section will give the details.

1.5.3 The 〈n〉 and Tn Operators

Up to this point we have only considered 〈d〉 for d ∈ (Z/dZ)× and Tp for p prime.
These definitions can be extended in a natural way.

For n ∈ Z+ with (n,N) = 1, 〈n〉 is determined by n (mod N). If (n,N) > 1 then
we simply define 〈n〉 = 0, the zero operator on Mk(Γ1(N)). For n,m ∈ Z+ we have
〈nm〉 = 〈n〉〈m〉 . In other words the diamond operator 〈n〉 is totally multiplicative.

In order to define Tn we use the Tp ’s as building blocks. Set T1 = 1. We already have
Tp defined for primes p ; for prime powers, define inductively

Tpr = TpTpr−1 − pk−1〈p〉Tpr−2 , for r ≥ 2 .

Note it can be shown that TprTqs = TqsTpr for distinct primes p and q . We then
extend this definition multiplicatively to Tn for all n ,

Tn =
∏

Tpeii
where n =

∏
peii .

It follows by Proposition 1.5.6 that the Tn all commute and

Tnm = TnTm if (n,m) = 1 .

The formulas for the Fourier coefficients can be generalised in a fairly obvious way for
these new operators. For a statement of the result, along with a proof, see page 179
of [DiSh].

1.5.4 The Petersson Inner Product and Adjoints of the Hecke
Operators

Often we are interested in knowing about the space Sk(Γ1(N)). In order to learn more
about this space we can turn it into an inner product space. The inner product, known
as the Petersson inner product, will be defined as an integral. This integral however
only converges on the space of cusp forms, not on the larger space Mk(Γ1(N)).
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We define the hyperbolic measure on the upper half plane,

dµ(τ) =
dxdy

y2
, τ = x+ iy ∈ H.

It turns out that this measure is invariant under the automorphism group GL+
2 (R) of

H . This means that for all α ∈ GL+
2 (R) and τ ∈ H we have dµ(α(τ)) = dµ(τ). It

therefore follows, since SL2(Z) is a subgroup of GL+
2 (R), that dµ is SL2(Z)-invariant.

Since the set Q ∪ ∞ is countable and has measure zero, the measure dµ suffices for
integrating over the extended upper half plane H∗ = H∪Q∪∞ . Using what we know
about the fundamental domain for the action of SL2(Z) on H , we can easily extend to
a fundamental domain for the action of SL2(Z) on H∗ . This is given by

D∗ = {τ ∈ H : Re(τ) ≤ 1/2, |τ | ≥ 1} ∪ {∞}.

For any continuous bounded function ϕ : H → C and any α ∈ SL2(Z), the integral∫
D∗ ϕ(α(τ))dµ(τ) converges. We therefore need to come up with a function with these

properties. We omit the details here (they can be found in Section 5.4 of [DiSh]) but
state the definition of the Petersson inner product.

Definition 1.5.7. Let Γ ⊂ SL2(Z) be a congruence subgroup. The Petersson inner
product,

〈, 〉Γ : Sk(Γ)× Sk(Γ)→ C,

is given by

〈f, g〉 =
1

VΓ

∫
XΓ

f(τ)g(τ)(Im(τ))kdµ(τ).

Here X(Γ) is the modular curve and VΓ is the volume of the modular curve given by

VΓ =

∫
X(Γ)

dµ(τ).

It is clear that this inner product is linear in f , conjugate linear in g , Hermitian-
symmetric, and positive definite. Even though this inner product is defined on Sk(Γ)
and doesn’t converge on the larger space Mk(Γ), the argument showing this actually
only requires the product fg to vanish at each cusp. Therefore it suffices that only
one of f and g be a cusp form. In particular we could consider one of f and g as
an Eisenstein series and the other as a cusp form. This in fact always gives 0 and so
in some sense we can consider the Eisenstein series and the cusp forms as orthogonal.
This is exactly what we would like as we wish to define the Eisenstein space as the
orthogonal complement of the cusp forms. We see this shortly in Section 1.5.6.

As with any inner product we might be interested in knowing about the adjoints of our
Hecke operators using this inner product. Recall that if V is an inner product space
and T is a linear operator on V , then the adjoint T ∗ is a linear operator on V defined
by the condition

〈Tv,w〉 = 〈v, T ∗w〉, for all v, w ∈ V .
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Also if an operator T commutes with its adjoint it is called normal. Finding the
adjoints of the Hecke operators makes up the bulk of Section 5.5 of [DiSh]. Here we
simply state the main result.

Theorem 1.5.8. In the inner product space Sk(Γ1(N)), the Hecke operators 〈p〉 and
Tp for p - N have adjoints

〈p〉∗ = 〈p〉−1 and T ∗p = 〈p〉−1Tp.

Thus the Hecke operators 〈n〉 and Tn for n relatively prime to N are normal.

Proof. See page 186 of [DiSh]

We are now able to make use of the Spectral Theorem of linear algebra. We have
a commuting family of normal operators on a finite-dimensional inner product space,
therefore there is an orthogonal basis of simultaneous eigenvectors for the operators.
Since such vectors are modular forms in this case, we call them eigenforms. The result
is the following.

Theorem 1.5.9. The space Sk(Γ1(N)) has an orthogonal basis of simultaneous eigen-
forms for the Hecke operators {〈n〉, Tn : (n,N) = 1}.

1.5.5 Oldforms and Newforms

As mentioned previously at any given level N , we have the notion of oldforms and
newforms. As can be guessed from the name, an oldform is a modular form that comes
from a level M |N with M < N . A newform is a modular form that is in Mk(Γ1(N))
(Or any other space at level N ) but does not come from a lower level. We now make
this notion more precise.

The most trivial way we can view an oldform is by the observation that for M |N we
have Sk(Γ1(M)) ⊂ Sk(Γ1(N)), i.e., the inclusion of Sk(Γ1(M)) into Sk(Γ1(N)). This
isn’t the only way of embedding Sk(Γ1(M)) into Sk(Γ1(N)) however. We can compose
with the multiply-by-d map, where d is any factor of N/M . For any such d , let

αd =

(
d 0
0 1

)
so that (f [αd]k)(τ) = dk−1f(dτ) for f : H → C . The linear map [αd]k is injective
and takes Sk(Γ1(M)) to Sk(Γ1(N)). Naturally we need some way of distinguishing
between the oldforms and genuine newforms. To do this we make use of a collection of
maps.

Definition 1.5.10. For each divisor d of N , let id be the map

id : (Sk(Γ1(Nd−1)))2 → Sk(Γ1(N))
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given by

(f, g) 7→ f + g[αd]k.

The subspace of oldforms at level N is

Sk(Γ1(N))old =
∑
p|N

p prime

ip((Sk(Γ1(Np−1)))2).

The subspace of newforms at level N is the orthogonal complement with respect to the
Petersson inner product,

Sk(Γ1(N))new = (Sk(Γ1(N))old)⊥.

As one would hope, the Hecke operators respect this decomposition of the space
Sk(Γ1(N)).

Proposition 1.5.11. The subspaces Sk(Γ1(N))old and Sk(Γ1(N))new are stable under
the Hecke operators Tn and 〈n〉 for all n ∈ Z+ .

Proof. See pages 188-189 of [DiSh]

Corollary 1.5.12. The spaces Sk(Γ1(N))old and Sk(Γ1(N))new have orthogonal bases
of eigenforms for the Hecke operators away from the level, {Tn, 〈n〉 : (n,N) = 1}.

1.5.6 Eigenforms and Eisenstein Series

Since eigenforms are a central part of the theory of modular forms it would be nice to
know a little more about them. Corollary 1.5.12 told us that the spaces Sk(Γ1(N))old

and Sk(Γ1(N))new have orthogonal bases of eigenforms for the Hecke operators. Let f
be such an eigenform. It can be shown that if f ∈ Sk(Γ1(N))new then in fact f is an
eigenform for all Tn and 〈n〉 . The details of this can be found in Section 5.8 of [DiSh].

Definition 1.5.13. A non-zero modular form f ∈ Mk(Γ1(N)) that is an eigenform
for the Hecke operators Tn and 〈n〉 for all n ∈ Z+ is a Hecke eigenform or simply
an eigenform. The eigenform f(τ) =

∑∞
n=0 an(f)qn is normalised when a1(f) = 1. a

newform is a normalised eigenform in Sk(Γ1(N))new .

Theorem 1.5.14. Let f ∈ Sk(Γ1(N))new be a non-zero eigenform for the Hecke oper-
ators Tn and 〈n〉 for all n with (n,N) = 1. Then

(1) f is a Hecke eigenform, i.e., an eigenform for Tn and 〈n〉 for all n ∈ Z+ . A
suitable scalar multiple of f is a newform.

(2) If f̃ satisfies the same conditions as f and has the same Tn -eigenvalues, then
f̃ = cf for some constant c.
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The set of newforms in the space Sk(Γ1(N))new is an orthogonal basis of the space.
Each such newform lies in an eigenspace Sk(N,χ) and satisfies Tnf = an(f)f for all
n ∈ Z+ . That is, its Fourier coefficients are its Tn -eigenvalues.

Proof. See pages 195-196 of [DiSh]

Now that we have considered the theory of Hecke operators and the Petersson inner
product we are in a position to redefine the Eisenstein subspace. We redefine

Ek(Γ(N)) = {f ∈ span({Evk(τ) : v ∈ (Z/NZ)2})|f is holomorphic}.

So now Ek(Γ(N)) is a subspace of Mk(Γ(N)) linearly disjoint from the cusp forms
Sk(Γ(N)), replacing the earlier definition as the quotient space Mk(Γ(N))/Sk(Γ(N)).
That is

Mk(Γ(N)) = Sk(Γ(N))⊕ Ek(Γ(N)).

This decomposition is orthogonal, the details of this can be found on pages 206-207
of [DiSh]. For any congruence subgroup Γ at level N we define

Ek(Γ) = Ek(Γ(N)) ∩Mk(Γ),

and this applies in particular when Γ = Γ1(N). Redefine for any Dirichlet character χ
modulo N

Ek(N,χ) = Ek(Γ1(N)) ∩Mk(N,χ).

For any congruence subgroup Γ the Eisenstein space is linearly disjoint from the cusp
forms and similarly for the eigenspaces, we thus have a direct sum,

Mk(Γ) = Sk(Γ)⊕ Ek(Γ) and Mk(N,χ) = Sk(N,χ)⊕ Ek(N,χ),

and the decompositions are orthogonal. The sets of Eisenstein series specified earlier
as coset representatives for bases of the Eisenstein spaces as quotients are now actual
bases of the Eisenstein spaces as complements.
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Class Field Theory

Class field theory is one of the most ground breaking areas of modern algebraic number
theory. It gave the answers to some very important questions. Given a number field
K , is there a way to classify all possible finite extensions of K purely in terms of the
arithmetic in K ? This question is very broad in scope and is not yet fully answered.
A well known result concerning abelian extensions is the Kronecker-Weber Theorem.
This theorem states that the abelian extensions of Q are all subfields within some
cyclotomic extension of Q , therefore they are expressible in terms of roots of unity.
This therefore characterises all possible abelian extensions of Q . We could then ask
about all abelian extensions of any number field K . If we restrict to this case, then this
question is answered by class field theory. Along the way many interesting questions
will be answered. For example: Given a number field K and a finite extension L ,
in what way does the prime ideal p ∈ K factorise in L? Further, which primes of
K ramify in L? Given a number field K , what are all the abelian extensions of K ?
Suppose we want a particular prime to ramify in an abelian extension of K , what
should this extension be? All of these questions can be answered by using (global)
class field theory.

Ultimately class field theory is about the intricate link between the so called generalised
ideal class groups and the Galois groups of abelian extensions of a number field, i.e.,
Gal(L/K). We will see, via a special map known as the Artin map, a tight correspon-
dence known as the Artin reciprocity law. In fact this relation will be an isomorphism.
This result is very broad and can be used to prove all previously known reciprocity
laws such as Gauss’ quadratic reciprocity law. The Artin reciprocity law tells us pre-
cisely how primes factorise in abelian extensions via mod m behaviour for a particular
modulus to be defined later. In other words, we know exactly how primes behave in an
extension, purely by information from the base field. We will also see that we can in
fact go the other way. We can choose our modulus in such a way that we are fixing the
primes we would like to ramify; this then completely determines the abelian extension
L/K !

35
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Given this close relationship between the generalised ideal class groups and the Galois
groups of abelian extensions, we might also wonder whether it is possible to determine
the maximal abelian extension with given ramification. This is in fact possible and these
fields are known as ray class fields. We could also consider the case of determining the
maximal unramified abelian extension; the corresponding field is known as the Hilbert
class field. Once we have described the main results of class field theory we will see
more about these fields.

The following background material follows the structure of some notes by Fretwell [Fret].
For some motivation on why class field theory can be useful, see the introduction of
these notes. There are many well known sources that can be used for class field theory
such as [Mil], [Ch], [N] and [Cox]. Of course there are also many other useful sources.

§ 2.1 Recap of Basic Algebraic Number Theory

2.1.1 Number Fields

For a more thorough background any good text in algebraic number theory will suffice.
For example [J] or [StTa] cover all of the necessary algebraic number theory. We begin
with the definition of a number field.

Definition 2.1.1. A number field is a field Q ⊂ K ⊂ C such that the extension K/Q
has finite degree.

It is easy to show that any such extension must be algebraic. It follows that any
element α ∈ K must satisfy a minimal polynomial over Q . Clearing denominators,
this polynomial has coefficients in Z .

Definition 2.1.2. The ring of integers of a number field K is:

OK = {α ∈ K|f(α) = 0 for some monic f(x) ∈ Z[x]}.

The ring of integers is a Dedekind domain and is therefore Noetherian. This means
that we always have a factorisation into irreducibles; although this need not be unique.
We can however get unique factorisation if we consider factorisation of ideals into prime
ideals.

Theorem 2.1.3. Given a proper ideal a ∈ OK , there exist prime ideals p1, p2, . . . , pg
of OK and positive integers e1, e2, . . . , eg such that

a = pe11 pe22 . . . p
eg
g .

Further, this factorisation is unique up to reordering.

Given a non-zero ideal a ∈ OK we can consider the quotient ring OK/a . We get the
following result:
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Proposition 2.1.4. If K is a number field and a is a non-zero ideal of OK , then the
quotient ring OK/a is finite.

Another benefit of OK being a Dedekind domain is that every non-zero prime ideal is
also maximal. This tells us that the quotient OK/p is a field. Proposition 2.1.4 then
tells us that this is a finite field. In fact it is a finite field of characteristic p and so must
contain pfi elements for some fi . Now consider one such pi from the factorisation of
Theorem 2.1.3.

Definition 2.1.5. The finite field OK/pi is called the residue field of pi . This is
denoted by Fpi . The positive integer fi is known as the inertia degree. The positive
integer ei is called the ramification degree of pi . We say that a ramifies in OK (or
simply in K ) if some ei > 1.

As we previously mentioned, there is a nice relation between each of these numbers.

Theorem 2.1.6. Let K be a number field with ring of integers OK . Then for any
prime ideal factorisation

a = pe11 pe22 . . . p
eg
g

we have
∑g

i=1 eifi = [K : Q].

This is quite a useful result as it tells us a lot about how certain ideals can factorise. In
general there are three types of behaviour that can occur. We say an ideal a is inert if
it is already a prime ideal of OK . We say that a splits if a is a product of two or more
prime ideals. Further we say that a splits completely if ei = fi = 1 for each i . Finally,
as already mentioned, we say that a ramifies if some ei > 1. In general it is possible
to see a combination of splitting and ramification together. However consider the case
of K being a quadratic extension of Q . Then there are only three possibilities for the
factorisation type of an ideal a . We have either:

1 a = p is inert. So g = e = 1, f = 2.

2 a = p1p2 splits. So g = 2, e1 = e2 = f1 = f2 = 1.

3 a = p2 ramifies. So g = 1, e = 2, f = 1.

It turns out, as we will see later, that this result will give even fewer possibilities for
possible factorisation types when working in a Galois extension.

For any ideal a we define the norm to be N(a) = |OK/a| . This norm is multiplicative
and always gives integer values. Note that for a prime ideal p we have N(p) = pf

where f is the inertia degree.



38

2.1.2 Relative Extensions of Number Fields

So far we have purely been considering the factorisation of ideals in K for some number
field K . What about if we consider a (finite) extension L/K ? We could still ask how
ideals factorise further in L . In particular, given a prime ideal p of OK , what does pOL
look like? Given a prime ideal p of OK we get an ideal pOL of OL with factorisation

pOL = qe11 qe22 . . . q
eg
g .

Each qi defines a prime ideal p = qi ∩ OK of OK . Hence the finite field Fqi = OL/qi
contains Fp as a subfield. It follows that Fqi/Fp is a finite extension of finite fields.
This extension has degree pfi where p is the rational prime lying below qi . In other
words we have qi ∩ Z = p ∩ Z = p .

As before we define the various numerical quantities in a similar fashion.

Definition 2.1.7. The positive integer fi is called the inertia degree of qi in K . The
positive integer ei is called the ramification index of a in L . We say that a ramifies
in OL (or simply in L) if some ei > 1.

Again, we end up with a similar relation as before.

Theorem 2.1.8. Let L/K be a finite extension of number fields. For any prime ideal
p of OK we have a factorisation

pOL = qe11 qe22 . . . q
eg
g

satisfying
∑g

i=1 eifi = [L : K].

Similarly to the way we defined the norm earlier we can define a norm relative to the
extension L/K .

Definition 2.1.9. Given a proper prime ideal q of OL we define the relative norm to
be NL/K(q) = pf where q ∩ OK = p .

This definition can be extended multiplicatively to define a relative norm for any non-
zero proper ideal of OL . This norm will turn out to be very important as it will appear
in the statement of the Artin reciprocity law.

2.1.3 The Ideal Class Group

Given that certain number fields do not have unique factorisation, it was a natural
question to wonder how far away from having unique factorisation a particular number
field was. The reason a number field can fail to have unique factorisation is because
certain ideals are not principal. This is because, in some sense, you are trying to
consider multiples of elements that shouldn’t be in whichever ring you are working
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with. However if you were to work with an extension of that ring, the elements would
genuinely exist there and you would end up with unique factorisation. If all ideals of
your ring were principal, then you would obtain unique factorisation. This led to the
idea of trying to consider when two ideals were different (in the sense of not being
the same upto a multiple of a principal ideal). This can be achieved by considering a
particular quotient group known as the ideal class group.

For a number field K , the ideals of OK almost form a group under multiplication. The
only issue is that we do not have inverses. The way to solve this is by introducing the
notion of a fractional ideal.

Definition 2.1.10. A fractional ideal of a number field K is a non-zero OK -submodule
of K .

For any α ∈ K× we write a fractional ideal in the form α−1a . We then have the
following:

Theorem 2.1.11. Every fractional ideal of K is invertible. Hence the set IK of
fractional ideals of K is an abelian group under multiplication. The principal fractional
ideals form a subgroup denoted PK .

We note that the unique factorisation of an ideal a of K into prime ideals of OK can
be extended to the fractional ideals. In other words, every fractional ideal has a unique
factorisation into prime fractional ideals. We may now define the ideal class group.

Definition 2.1.12. The ideal class group CK of a number field K is the abelian group
IK/PK . The order of this group is called the class number of K denoted hK or simply
h .

A number field K has unique factorisation precisely when hK = 1, in other words, all
ideals are principal. We might wonder what the possibilities are for hK ; in particular,
can it be infinite? Fortunately, it is always finite. This is due to the fact that the ideal
class group is a finite abelian group (non-obvious). There are methods of determining
the class number for a given number field K but we will not go into that here.

§ 2.2 The Main Theorems of Global Class Field Theory

Now that we have covered the necessary background on basic algebraic number theory
we are ready to work our way towards the Artin Reciprocity Theorem and the Existence
Theorem. In doing so we will restrict our attention to Galois extensions of number
fields. This makes the results much nicer while not really restricting us too much as
the problems we are often interested in involve Galois extensions.
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2.2.1 The Action of the Galois Group and Frobenius Elements

Consider a Galois extension L/K of number fields. Given a prime ideal p of OK we
have the following factorisation:

pOL = qe11 qe22 . . . q
eg
g .

As we have already stated, we don’t really need to know each qi , we simply want to
know the value of each ei, fi and g . This will tell us precisely the behaviour of the
factorisation, i.e., does the prime split? Is it inert? Does it ramify? One way that we
can do this is by considering the primes qi as a set. We can then study that set by
using a group action. The particular group we will use is the Galois group Gal(L/K).

Lemma 2.2.1. The Galois group Gal(L/K) acts on each of the sets Xp =
{q1, q2, . . . , qg} of prime ideal divisors of pOL . Further, this action is transitive.

Consider an element σ ∈ Gal(L/K). It is easy to see that the set σ(qi) is again a
prime ideal of OL . Also we have that

pOL = σ(p)σ(OL) = σ(pOL) = σ(q1)e1σ(q2)e2 . . . σ(qg)
eg .

We then see, by unique factorisation, that σ(qi) = qj ∈ Xp for some j . This shows that
the operation on Xp is well-defined. The other group action axioms can be checked
easily. The proof of transitivity can be found in any good book on algebraic number
theory.

This group action will tell us a lot about the various factorisation types. Another result
which helps make things easier involves the relation between the ei ’s, fi ’s and g . By
the previous lemma, we see that in the case of a Galois extension, things become much
simpler.

Corollary 2.2.2. If L/K is a Galois extension then for any factorisation of a prime
ideal p ⊂ OK in OL we have that e1 = e2 = · · · = eg (call the common value e) and
f1 = f2 = · · · = fg (call the common value f ). Hence efg = [L : K].

In particular our factorisation now looks much simpler; we have

pOL = (q1q2 . . . qg)
e.

One way we might think to study the set Xp is via the stabilizer subgroups. From now
on, we fix a p ∈ OK .

Definition 2.2.3. Let L/K be a Galois extension of number fields. Given a prime
ideal p of OK and a prime ideal q of OL such that q|pOL we define the decomposition
group to be:

Dq := Stab(q) = {σ ∈ Gal(L/K)|σ(q) = q}.
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One of the first questions we might ask about this group is about the size of the group.
Fortunately, since the group is defined as a stabilizer, we can make use of the Orbit-
Stabilizer Theorem.

Lemma 2.2.4. We have |Dq| = ef for all q|pOL .

Proof. Since the action is transitive, there is a single orbit. Namely Xp containing g
elements. The Orbit-Stabilizer Theorem then tells us that

|Dq| =
|Gal(L/K)|
|orb(q)|

=
[L : K]

g
=
efg

g
= ef.

Here we have used the assumption that L/K is a Galois extension.

Notice that this result gives us a way of finding the value of g . If we can determine any
of the decomposition groups, we will be able to calculate its size. We can then simply
calculate g by working out [L:K]

|Dq| . The question now is how to calculate e and f . This

turns out to be a little harder; but not too much harder.

The idea is to try and cook up a map from Dq into the Galois group of residue fields.
This map will be created in such a way that the kernel will have size e .

First of all, notice that for any σ ∈ Gal(L/K), there is an induced isomorphism:

σ̃ : Fq → Fσ(q)

x+ q 7→ σ(x) + σ(q).

Since Dq is a subgroup of Gal(L/K) it makes sense to restrict this map to elements
σ ∈ Dq . It is clear that if we do this, the induced isomorphism will be an automorphism
of Fq . Further, these automorphisms will fix elements of the subfield Fp . Hence σ̃ is
a well-defined element of Gal(Fq/Fp).

We therefore obtain the following:

Theorem 2.2.5. The map

Dq → Gal(Fq/Fp)

σ 7→ σ̃

is an epimorphism of groups inducing an isomorphism:

Dq/Iq ∼= Gal(Fq/Fp),

where Iq = {σ ∈ Dq|σ(x) ≡ x (mod q) for all x ∈ OL}.

Definition 2.2.6. The group Iq above is called the inertia group of q .

We are now in a position to finally get our hands on the values of e and f .
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Corollary 2.2.7. We have that |Iq| = e and |Dq/Iq| = f for each q|pOL .

Proof. The right hand side of the above isomorphism has order f by definition. We
already know that |Dq| = ef , therefore the isomorphism gives |Iq| = e .

We now have two subgroups of the Galois group Gal(L/K) whose sizes give us informa-
tion about the factorisation types of ideals in the extension L/K . Although we know
a lot from these subgroups, there is actually more information that we can extract.

A finite extension of finite fields has a cyclic Galois group whose canonical generator
is the Frobenius automorphism x 7→ x|K| . In other words Gal(Fq/Fp) is cyclic with
generator being the Frobenius automorphism. However, we already know that this
group is isomorphic to Dq/Iq . There must therefore be a unique element of Dq/Iq that
corresponds to the Frobenius automorphism. Recall that N(p) = |OK/p| = |Fp| . It
therefore follows that this map is given by x + q 7→ xN(p) + q . Since the group Dq/Iq
is a quotient, this element will in general be a coset.

Theorem 2.2.8. Let p be a fixed prime ideal of OK and let q be a fixed prime ideal
of OL dividing pOL . Then there exists an element σ ∈ Dq that satisfies σ(x) ≡ xN(p)

(mod q) for all x ∈ OL . The set of such elements forms a coset of Iq in Dq . If p is
unramified in L then σ is a unique element of Dq .

Definition 2.2.9. The coset σ(Iq) ∈ Dq/Iq in the above theorem is called the Frobenius
coset of q in L/K . For an unramified prime p , we call the unique element the Frobenius

element of q . We denote this element by
(
L/K
q

)
or simply Frobq when the extension

is understood.

Since this Frobenius element is related to the Frobenius automorphism which is a
canonical generator for Gal(Fq/Fp) we can easily determine the order of this element.

Lemma 2.2.10. Let p be unramified in L. The Frobenius element
(
L/K
q

)
has order

f in Dq for all q dividing pOL .

Further, the Frobenius element is the identity automorphism if and only if p splits
completely in L.

Proof. Since we assume p is unramified, it follows that Iq is trivial and we have Dq
∼=

Gal(Fq/Fp). Since the right hand side of this isomorphism is cyclic of order f , we
conclude that Dq is cyclic of order f . Since this is generated by the Frobenius element,

we conclude that
(
L/K
q

)
has order f .

The second claim follows since p is unramified (i.e. we have e = 1) and an element of
a group is the identity if and only if it has order 1.
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We now know that each of the Frobenius elements for a given q has the same order
when p is unramified. We might wonder whether each of the Frobenius elements are
actually equal. In general, they won’t be. We have the following result:

Theorem 2.2.11. Let p be unramified in L and let q divide pOL . Then for all
σ ∈ Gal(L/K) we have that (

L/K

σ(q)

)
= σ

(
L/K

q

)
σ−1.

This tells us that in fact Frobenius elements have more structure to them than it first
appears. They in fact form a conjugacy class in Gal(L/K). This result will be quite
important in our later work on modular forms of weight 1. For now we state a result
which explains why our extensions being abelian is so important.

Corollary 2.2.12. If Gal(L/K) is abelian then the Frobenius elements are all equal
for a given unramified p.

Proof. We know that conjugacy classes of abelian groups consist of single elements.
Hence Theorem 2.2.11 tells us that the Frobenius elements are equal, since they lie in
the same conjugacy class.

Definition 2.2.13. We call L/K an abelian extension if L/K is Galois and Gal(L/K)
is abelian. In such an extension, we may denote the single Frobenius element attached

to all q|pOL by
(
L/K
p

)
, where p is unramified.

We now notice that, in the case of an abelian extension, the Frobenius elements depend
only on p , not on the q ’s. In other words, there is only a dependence on an ideal coming
from the base field. It turns out that we will be able describe the Frobenius elements
in terms of congruence conditions.

2.2.2 The Artin Map for Abelian Extensions

Our main aim will be to construct a group homomorphism between a certain set of ideals
(which will actually have a group structure) and the Galois group Gal(L/K). We know
that the nicest type of situation is when we are considering unramified prime ideals
p ⊆ OK of an abelian extension L/K . We therefore restrict to this case. Consider the
following map:

{unramified prime ideals p ⊆ OK } → Gal(L/K)

p 7→
(
L/K

p

)
.

Considering this set alone will not get us very far since there is no group structure on
the left hand side. We somehow need to come up with a set of ideals, not containing
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any ramified primes, with a group structure. We obviously can’t just take the set of
fractional ideals IK . We therefore need some way of modifying this set to cut out all
of the ramified primes. This is where we need the notion of a modulus. The reason for
this notation is because this will be the modulus of our congruence conditions.

Recall that a number field may be viewed as a subfield of the complex numbers. Each
such number field has a number of embeddings into C (corresponding to the degree
of the extension). If the embedding is genuinely contained in C it is called a complex
embedding and if it is contained in R it is called a real embedding. We can extend the
embeddings of K → C to embeddings L→ C . It is now possible that a real embedding
of K can extend to give two conjugate embeddings of C .

The importance of the real embeddings here is that they give us a notion of positivity.
Consider the quadratic field Q(

√
3). Here there are two real embeddings:

σ1 : a+ b
√

3 7→ a+ b
√

3,

σ2 : a+ b
√

3 7→ a− b
√

3.

How might we define positivity here? Consider 1 +
√

3. We have σ1(1 +
√

3) > 0,
σ2(1 +

√
3) < 0. Notice that this element is positive under one embedding but not

the other. Consider however the element α = 19 + 2
√

3. We now have σ1(α) > 0,
σ2(α) > 0. Hence α is positive under all real embeddings. Such elements are called
totally positive. This behaviour extends to other number fields. We now define a
modulus for a general number field.

Definition 2.2.14. A modulus of a number field K is a formal product m = m0m∞ ,
where m0 is an ideal of OK and m∞ is a collection of real embeddings K → R .

We may now use a given modulus m to create a nice subgroup of IK . We note that two
fractional ideals a and b are said to be coprime if they share no prime ideal factors.

Theorem 2.2.15. Given a modulus m of K , the set IK(m) =
{a ∈ IK | a coprime to m0} is a subgroup of IK . It contains the set P1,K(m) = {〈α〉 ∈
PK |α ≡ 1 (mod m0) and σ(α) > 0 for all σ ∈ m∞} as a subgroup.

Now consider an abelian extension L/K . This extension has a finite set of ramified
primes (which may include infinite primes, i.e., real embeddings that extend to give
conjugate complex embeddings). We may therefore put each of these ramified primes
together to form a modulus m . We will then be able to define the Frobenius element
on IK(m). We have a map:

Φm : IK(m)→ Gal(L/K).

Definition 2.2.16. Given an abelian extension of number fields L/K and a modulus
m of K divisible by all ramified primes of K in L the map Φm is called the Artin map
of L/K with respect to m .
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This map contains all of the information we would like to know on the splitting be-
haviour of ideals. It is clear that the map is a homomorphism, but it would be beneficial
if we could form an isomorphism. This would immediately tell us that the Frobenius
elements were completely determined by classes of ideals in K . In other words, we
would know about the splitting of primes in the extension L purely from arithmetic
information coming from K . This is exactly what the Artin Reciprocity Theorem tells
us.

2.2.3 Artin Reciprocity

Since we wish to create an isomorphism, we are going to have to quotient IK(m) by
some subgroup. Recall that the ideal class group was defined as IK/PK . The first
thing you might think of as a generalisation of this would be IK(m)/PK(m). However
PK(m) would not satisfy the correct positivity criteria under each real embedding. This
is where the subgroup P1,K(m) comes in. We would expect this subgroup to lie in the
kernel of a suitable Artin map. In fact, this won’t in general be the full kernel, but the
Artin Reciprocity Theorem tells us precisely what the kernel is.

Theorem 2.2.17 (Artin Reciprocity Law). Let L/K be an abelian extension of number
fields. Suppose m is a modulus of K divisible only by primes of K that ramify in L.
Then:

(1) The Artin map Φm is a surjective homomorphism.

(2) If the powers of the prime ideals in m are big enough then we are able to guarantee
that ker(Φm) is a congruence subgroup for m, meaning that:

P1,K(m) ⊆ ker(Φm) ⊆ IK(m)

so that IK(m)/ker(Φm) is a generalised ideal class group for m (the definition of
this is a quotient IK(m)/H where H contains P1,K(m)).

(3) Further, for such an m we have that ker(Φm) = P1,K(m)NL/K(IL(m)), giving an
isomorphism:

IK(m)/P1,K(m)NL/K(IL(m)) ∼= Gal(L/K).

This theorem is very powerful and is one of the most important results of modern
number theory. It tells us precisely how primes split in an extension L/K based purely
on congruence conditions coming from the arithmetic of K . We can in fact give a
rough converse to this result. We may first fix a modulus containing primes we would
like to ramify in an extension L/K , this then completely determines the extension.
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2.2.4 The Existence Theorem

We let K be a number field. Given a modulus m , can we find a number field L
such that L/K is an abelian extension satisfying the behaviour contained in the Artin
reciprocity law? As we have previously stated, the answer to this question is yes.

Theorem 2.2.18 (Existence Theorem). Let K be a number field and m be any modulus
of K . Then for each congruence subgroup H of m, there exists a unique number field
L such that L/K is abelian, m is divisible by the ramified primes of this extension and
the Artin map induces an isomorphism:

IK(m)/H ∼= Gal(L/K).

This theorem together with the Artin Reciprocity Theorem gives a correspondence
between finite abelian extensions of K and generalised ideal class groups, with the
choice of modulus corresponding to the choice of ramified primes. Now that we have
this correspondence we might be interested in further questions. For example: Given
a number field K , what is the maximal unramified abelian extension? What is the
maximal abelian extension with given ramification? This leads to the theory of the
Hilbert class field and ray class fields.

2.2.5 Ray Class Fields and the Hilbert Class Field

The Existence Theorem tells us that we are free to choose our modulus m and also
the congruence subgroup producing a number field with given properties. Fix a mod-
ulus m and choose the congruence subgroup H = P1,K(m). The Existence Theorem
then tells us that there is a unique number field Km such that Km/K is an abelian
extension whose ramified primes are exactly those appearing in m and is such that
IK(m)/P1,K(m) ∼= Gal(Km/K). In fact, this field is unique (non-obvious).

Definition 2.2.19. The field Km is called the ray class field of K with respect to m .
The group Cm = IK(m)/P1,K(m) is called the ray class group.

Ray class groups (in particular, characters of this group) will become important in our
later work on modular forms of weight 1.

It is clear that any other congruence subgroup H for m will correspond to a field lying
inside Km by Galois theory. Hence these fields really are the maximal abelian extensions
with given ramification. We might wonder what the maximal abelian extension is
without any ramified primes. This is the Hilbert class field. Recall that the primes
appearing in the modulus m are precisely those to ramify in the abelian extension.
Therefore in order to guarantee that our abelian extension is unramified, we must take
m to be the trivial modulus 1 . The Existence Theorem then guarantees that we can
find a field K1 such that K1/K is the maximal unramified abelian extension of K .
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Definition 2.2.20. The Hilbert class field of a number field K is the field K1 defined
above.

Using the Artin reciprocity law we have the following isomorphism:

IK/PK ∼= Gal(K1/K).

The fact that the left hand side is now the classical ideal class group is due to the fact
that our extra conditions on coprimality and positivity have effectively been dropped
by using the trivial modulus. This gives some very nice results.

Lemma 2.2.21. The Hilbert class field is a degree hK extension of K . Also a prime
ideal p ∈ OK splits completely in the Hilbert class field if and only if p is principal.

Corollary 2.2.22. The following are equivalent:

(1) K = K1 .

(2) hK = 1.

(3) OK is a principal ideal domain (or equivalently a unique factorisation domain).

One may wonder how to actually construct ray class fields and Hilbert class fields.
Unfortunately this is not always an easy task and not much is known beyond some
of the more basic cases. For example, as previously mentioned, the Kronecker-Weber
Theorem tells us about the maximal abelian extensions of Q . In the case of an imag-
inary quadratic field Q(

√
−d), we know how to construct these fields. We begin by

constructing an elliptic curve with complex multiplication by the ring of integers of
Q(
√
−d). The j -invariant of this curve is adjoined to Q(

√
−d) to get the Hilbert class

field and we also adjoin certain torsion points related to Weber functions in order to
construct the ray class fields. Details of this can be found in chapter 2 of [Sil2]. Beyond
these two cases, not much is known.



Chapter 3

Congruences of Local Origin for
Weights k ≥ 2

As we have already mentioned, our aim is to make a generalisation of the congruence
given in [DF]. This congruence itself is a generalisation of the famous Ramanujan
691 congruence. Recall that the Ramanujan congruence is one between the Hecke
eigenvalues of a level 1 Eisenstein series and a level 1 cusp form with the modulus
being a prime dividing ζ(12)/π12 . The congruence in [DF] is then one between the
Hecke eigenvalues of a level 1 Eisenstein series and a level p cusp form with modulus
being a prime dividing an “Euler factor”, i.e., a partial zeta value. There is then the
level N generalisation of Ramanujan’s congruence proven by Dummigan [D]. This is
a congruence between the Hecke eigenvalues of a level N Eisenstein series and a level
N cusp form. Here the modulus is now a prime dividing a certain Dirichlet L-value.
We aim to prove the next logical step in these results. We prove the existence of a
congruence between the Hecke eigenvalues of a level N Eisenstein series and a level
Np cusp form, the modulus being a divisor of an Euler factor of a Dirichlet L-value.

Choose a weight k ≥ 2, a level N = uv > 1 (with u and v coprime), and a Dirichlet
character χ of conductor N . Let ψ and ϕ be primitive Dirichlet characters of con-
ductors u, v respectively, with ψϕ = χ , uv = N , and χ(−1) = (−1)k . Then we have

Eψ,ϕk new at level N .

Theorem 3.0.1. Let p be a prime with p - N and let k ≥ 2 be an integer. Let λ′ - 6N
be a prime of the ring of integers of Q[ψ,ϕ] such that ordλ′

(
(ϕ(p)pk − ψ(p))(Bk,ψ−1ϕ/k)

)
>

0. Then there exists a normalised Hecke eigenform f ∈ Sk(Γ1(Np), χ′) (where χ′ is χ
raised to level Np) such that for all n with n - Np,

an(f) ≡ σψ,ϕk−1(n) (mod λ),

where λ|λ′ is a prime of the ring of integers of the extension of Q(ψ,ϕ) generated by
the an .

48
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There are a few things to notice immediately about this result. One important feature
is that we are including the case of weight 2. At level 1 this was an issue as it only
worked in certain cases. A famous theorem of Mazur [M, Prop. 5.12(iii)] states that the
congruence holds for some cuspidal eigenform f ∈ S2(Γ0(p)) if and only if ` divides
the numerator of (p − 1)/12. But p2 − 1 = (p − 1)(p + 1), so ` can divide p2 − 1
(by dividing (p + 1)) without there being a congruence. Note that the factor of 1/12
comes from the value ζ(−1). However if we take N = 1 and change the weight range
to k ≥ 3 we would have exactly Theorem 1.1 of [DF]. In particular the characters ψ
and ϕ would be trivial giving pk − 1 as the Euler factor. The generalised Bernoulli
number Bk,ψ−1ϕ would also reduce to Bk .

We might wonder in what way each part of the theorem has been generalised. The
first question we might ask would be regarding how the Euler factor has been obtained.
Since we are now working with level N Eisenstein series, the moduli of our congruence
will come from a prime dividing the value of a particular Dirichlet L-function. The
particular L-function is L(1− k, ψ−1ϕ). The reason for this is that this L-value is the
constant term of the level N Eisenstein series. Recall that Theorem 1.4.5 gave us the
following Fourier expansion:

Eψ,ϕk (τ) = δ(ψ)L(1− k, ϕ) + 2
∞∑
n=1

σψ,ϕk−1(n)qn, q = e2πiτ .

This is in fact equivalent to

Eψ,ϕk (τ) = δ(ψ)L(1− k, ψ−1ϕ) + 2

∞∑
n=1

σψ,ϕk−1(n)qn, q = e2πiτ .

This follows since δ(ψ) = 1 if ψ = 11 , in which case L(1−k, ϕ) = L(1−k, ψ−1ϕ), and
δ(ψ) = 0 otherwise, in which case the constant term vanishes. We now make use of the
functional equation given in Section 1.4.1 to work with L(k, ψϕ−1). In the same way
as in [DF] we consider the missing Euler factor coming from this L-function. Recall
from Section 1.4.1 that this L-function has the following Euler product expansion:

L(k, ψϕ−1) =
∏
p

(
1

1− (ψϕ−1)(p)p−k

)
.

If we fix a particular prime p and pull out the factor (1− (ψϕ−1)(p)p−k)−1 and denote
this product by L{p}(k, ψϕ

−1) then

(1− (ψϕ−1)(p)p−k)−1L{p}(k, ψϕ
−1) = L(k, ψϕ−1),

that is
ϕ(p)pkL{p}(k, ψϕ

−1) = (ϕ(p)pk − ψ(p))L(k, ψϕ−1).

We can now use the functional equation to go back to the original L-function appearing
as the constant term of the Eisenstein series. Ignoring various small factors and signs,
the right hand side becomes

(ϕ(p)pk − ψ(p))L(1− k, ψ−1ϕ).
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Recall also from Section 1.4.1 that L(1 − k, ψ−1ϕ) = −Bk,ψ−1ϕ

k , where Bk,ψ−1ϕ is the
generalised Bernoulli number defined by

N∑
a=1

(ψ−1ϕ)(a)
teat

eNt − 1
=
∞∑
k=0

Bk,ψ−1ϕ
tk

k!
.

Just like before we might expect that dividing L(1 − k, ψ−1ϕ) will give a level N
congruence, whereas dividing ϕ(p)pk − ψ(p) should give a level Np congruence. This
also addresses the appearance of the generalised Bernoulli numbers. The remaining
generalisations in the theorem are the obvious choices for a generalisation.

The method we will use to prove Theorem 3.0.1 will be a generalisation of the proof
of Theorem 1.1 of [DF]. We aim to produce a linear combination of Eisenstein series
which vanishes modulo a prime divisor of ϕ(p)pk−ψ(p) at each cusp. This would then
be lifted to a cusp form in characteristic 0 and replaced by a Hecke eigenform using
the Deligne-Serre Lemma. In the level 1 case this proof was rather straightforward as
there were only two cusps to consider and a particular Atkin-Lehner involution could
be used to determine the constant term of the Eisenstein series at each cusp. At a
general level N , there are more cusps to consider. It is therefore necessary to try and
obtain a formula for the constant term of the level N Eisenstein series at any cusp.
Once we have this information it will be possible to find the correct combination of
Eisenstein series.

A similar result to Theorem 3.0.1 was proven by N. Billerey and R. Menares [BM]. Their
work focused on proving that certain reducible Galois representations are modular. As
a consequence this in fact proves a weaker version of Theorem 3.0.1 for k ≥ 3. We
state Theorem 2.1 from [BM].

Theorem 3.0.2. Every odd representation which is the direct sum of two characters
arises from a cuspidal eigenform.

This result is essentially a translation of Theorem 3.0.1 into the language of Galois
representations. However in proving this theorem, the level of the cusp form is not
guaranteed to be Np , it could be at a higher level. Hence the result proven is weaker
than Theorem 3.0.1.

We now look towards proving Theorem 3.0.1. The first step of which is proving a
formula for the constant term of the level N Eisenstein series at any cusp.

§ 3.1 A Formula for the Constant Term of the Level N Eisenstein Series

In the process of proving Theorem 3.0.2, Billerey and Menares compute a formula for
the constant term of a level N Eisenstein series with one of the two characters being
trivial. The reason being that they could use a clever trick on the Galois representation
side to consider the case where both characters are non-trivial. This therefore made
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the computation of the constant term much simpler. The same method they use can
however be applied in the general case. We therefore generalise the method to the
case where both characters could be non-trivial. One thing to note however is that
they are only working with the case k ≥ 3. Recall that the weight 2 Eisenstein series
only converges conditionally, in other words the order of summation matters. Since the
calculation we will use involves working with the sums making up the Eisenstein series,
and in particular, manipulating those sums, we will need to consider the case of weight
2 separately.

3.1.1 The Weight k ≥ 3 Case

The constant term of the Eisenstein series at any given cusp is calculated by determining
the action of the slash operator by an arbitrary matrix γ ∈ SL2(Z). Recall that there
is only one equivalence class of cusps under the action of SL2(Z). We will therefore be
able to move from a given cusp to any other cusp via the slash operator with a matrix
γ ∈ SL2(Z). The proof of the formula however will require us to work with a matrix γ
with top left entry coprime to N . This may sound like we are restricting the generality
of the result; this is not the case however. First we state and prove the result; we then
explain why this is not a restriction.

Lemma 3.1.1. Let N > 1 and let γ1 =

(
a b
c d

)
∈ SL2(Z). Then we can choose

γ2 =

(
A B
C D

)
∈ Γ1(N) such that γ2γ1 has top left entry coprime to N .

Proof. Suppose N = pa1
1 p

a2
2 . . . pann . Consider the matrix γm =

(
1 1
0 1

)m
∈ Γ1(N).

Then γmγ1 =

(
1 1
0 1

)m(
a b
c d

)
=

(
a+mc b+md

c d

)
. By Dirichlet’s Theorem,

as m varies, there are infinitely many primes in the arithmetic progression a+mc since
a and c are coprime. Since N only contains finitely many primes we may choose m
such that a+mc is a prime not appearing in N . Hence the top left entry of γmγ1 is
coprime to N . Hence we may take γ2 = γm .

Since the Eisenstein series we will be using is a modular form for Γ1(N), it is invariant
under the action of matrices γ ∈ Γ1(N). In particular, if we have γ1 ∈ SL2(Z) and
γ2 ∈ Γ1(N), then f [γ2γ1]k = (f [γ2]k)[γ1]k = f [γ1]k since f [γ2]k = f . Hence there is
actually no restriction. We are now in a position to prove a formula for the constant
term. The proof we are adapting is that of Proposition 1.2 of [BM]. In the following
we use the notation ϕ instead of ϕ−1 in order to keep the notation cleaner. From now
on we may use either interchangeably.
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Proposition 3.1.2. Let N = uv with u and v coprime, and let k ≥ 2 be an integer.
Let ψ and ϕ be primitive Dirichlet characters of conductors u, v respectively. Let M ≥

1 be an integer coprime to N and γ =

(
a β
b δ

)
∈ SL2(Z). Let αM be the operator

acting on complex-valued functions on the upper half plane H by αM (f)(z) = f(Mz).

Then the constant term of the q -expansion of (αME
ψ,ϕ
k )[γ]k is0 if v - b′,

−g(ψϕ)
g(ϕ)

ϕ(M ′a)ψ(−b
′

v
)

ukM ′k
Bk,ψϕ
k otherwise,

where b′ = b
gcd(b,M) and M ′ = M

gcd(b,M) .

Proof. Recall from Section 1.4, we have

Gψ,ϕk =
Ckg(ϕ)

vk
Eψ,ϕk ,

where

Ck =
(−2πi)k

(k − 1)!
and g(ϕ) =

v−1∑
n=0

ϕ(n)e
2πin
v .

We also have

Gψ,ϕk (τ) =
u−1∑
c=0

v−1∑
d=0

u−1∑
e=0

ψ(c)ϕ(d)G
(cv,d+ev)
k (τ),

where

G
(cv,d+ev)
k (τ) =

∑
(f,g)∈Z2\{(0,0)}

(f,g)≡(cv,d+ev) (mod N)

1

(fτ + g)k
.

Then

(αM (G
(cv,d+ev)
k ))[γ]k(τ) =

∑
(f,g)∈Z2\{(0,0)}

(f,g)≡(cv,d+ev) (mod N)

1

((fMa+ gb)τ + fMβ + gδ)k
.

Hence the constant term of (αM (G
(cv,d+ev)
k ))[γ]k is given by

Υc,d,e =
∑

(f,g)∈Z2\{(0,0)}
(f,g)≡(cv,d+ev) (mod N)

fMa+gb=0

1

(fMβ + gδ)k
.

We first consider the case a = 0. If a = 0, then for fMa + gb to be 0 we must have
g = 0 as b must be non-zero (since γ ∈ SL2(Z)). This means d+ ev ≡ 0 (mod N), or
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in other words Υc,d,e = 0 unless d+ ev ≡ 0 (mod N). But

d+ ev ≡ 0 (mod N)⇒ d+ ev ≡ 0 (mod v)

⇒ d ≡ 0 (mod v)

⇒ d = 0 (since 0 ≤ d ≤ v − 1)

⇒ ev ≡ 0 (mod N)

⇒ e = 0 (since 0 ≤ e ≤ u− 1).

Hence Υc,d,e = 0 unless d = e = 0. But now we must have c = 0 and N = 1 otherwise

the contribution to the constant term of Gψ,ϕk is 0. Hence

Υ0,0,0 =
∑

f∈Z\{0}
f≡0 (mod N)

1

(fMβ)k
=

1

(Mβ)k

∑
f∈Z\{0}

f≡0 (mod 1)

1

fk

=
1

(Mβ)k

∑
t∈Z\{0}

1

tk

=
2

Mk
ζ(k),

since β = ±1 (this follows since a = 0) and k is even (Here N = 1). Therefore the

constant term Υ of (αMG
ψ,ϕ
k )[γ]k is 0 if N > 1 and is −Ck

Mk
Bk
k when N = 1.

Now we consider the case a 6= 0. Given g ≡ d+ev (mod N), g ∈ Z, d 6= 0 the following
conditions are equivalent:

there exists f ∈ Z, f ≡ cv (mod N) such that fMa+ gb = 0; (3.1)

M ′a|g, v|b′ and u|cvM ′a+ gb′, (3.2)

where M ′ = M
gcd(b,M) and b′ = b

gcd(b,M) .

If the first condition holds, then fMa+ gb = 0. But fMa+ gb = 0⇔ fM ′a+ gb′ = 0.
Hence M ′a|gb′ but M ′a and b′ are coprime ((M ′, b′) = 1 and γ ∈ SL2(Z)), so M ′a|g .
Now suppose f = cv + rN and g = d+ ev + sN . Then we have (cv + rN)M ′a+ (d+
ev + sN)b′ = 0 and rearranging gives (cvM ′a+ db′ + evb′) + (rM ′a+ sb′)N = 0. For
this to be 0 we must have cvM ′a + db′ + evb′ ≡ 0 (mod N). In particular db′ ≡ 0
(mod v) and so either v|b′ or d = 0. But we assumed d 6= 0, so v|b′ . Also we have
cvM ′a+ db′ + evb′ ≡ 0 (mod u) , i.e., u|cvM ′a+ gb′ .

On the other hand, if the second condition holds, put f = −gb′
M ′a ∈ Z . Then f ∈ Z

satisfies fM ′a+ gb′ = 0 and further u|cvM ′a+ gb′ ⇒ cv ≡ −gb
′

M ′a (mod u), i.e., f ≡ cv
(mod u). Here we have used the assumption that (a,N) = 1, which we can do due to
Lemma 3.1.1. Also f ≡ 0 (mod v), since v|b′ , so f ≡ cv (mod N).

If these equivalent conditions are satisfied, then we have

fMβ + gδ =
1

a
(fMaβ + gaδ) =

1

a
(gaδ − gbβ) =

g

a
.
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Therefore the constant term Υ of (αMG
ψ,ϕ
k )[γ]k is 0 when v - b′ and is otherwise given

by

Υ =

v−1∑
d=0

u−1∑
e=0

ϕ(d)
∑

g≡d+ev (mod N)
g 6=0
M ′a|g

(
a

g

)k u−1∑
c=0

u|cvM ′a+gb′

ψ(c).

Let g = M ′at . Then

M ′a(cv + tb′) ≡ 0 (mod u)⇒ cv + tb′ ≡ 0 (mod u)

⇒ c ≡ −tb
′

v
(mod u).

Note that here we use the fact that u and v are coprime.

Hence

Υ =

v−1∑
d=0

u−1∑
e=0

ϕ(d)
∑

t≡ d+ev
M′a (mod N)

t6=0

(
1

M ′t

)k u−1∑
c=0

c≡−tb
′

v
(mod u)

ψ(c)

=
ϕ(M ′a)

M ′k

v−1∑
d=0

u−1∑
e=0

∑
t≡ d+ev

M′a (mod N)

t6=0

ϕ(t)

tk

u−1∑
c=0

c≡−tb
′

v
(mod u)

ψ(c)

=
ϕ(M ′a)ψ(−b

′

v )

M ′k

v−1∑
d=0

u−1∑
e=0

∑
t≡ d+ev

M′a (mod N)

t6=0

ϕ(t)ψ(t)

tk

=
ϕ(M ′a)ψ(−b

′

v )

M ′k

∑
t∈Z\{0}

ϕ(t)ψ(t)

tk

= 2
ϕ(M ′a)ψ(−b

′

v )

M ′k
L(k, ψϕ).

We may now use the functional equation to get the desired form of the constant term.

We must now consider the case of weight 2 separately.

3.1.2 The Weight 2 Case

The proof of Proposition 3.1.2 makes it clear that the conditional convergence of the
weight 2 Eisenstein series will mean that this case needs careful consideration. In fact it
requires quite a bit of analysis in order to prove, but luckily enough, the same formula
still holds. Another paper by Billerey and Menares [BM2], submitted a couple of
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months after the completion of the proof of Proposition 3.1.2, actually proves the same
formula (See Proposition 4). They however prove the result in a similar but different
way. They essentially run through mostly the same steps as in [BM, Proposition 1.2]
but they combine this with the method used in [BD, Proposition 2.8]. In doing so they
produced a unified and (slightly) simplified proof. In proving the formula however, they
also consider the weight 2 case. We now describe the necessary results needed in order
for Proposition 3.1.2 to hold in the case of weight 2. The following is due to Billerey
and Menares and is not original material. We state the results without proof.

We first set some notation. For ε ≥ 0, we let

w2,ε = w2|w|2ε, w ∈ C.

Let y > 0 be a positive real number. The notation g1 �y0 g2 means that there exists
a positive constant C , depending only on y0 , such that |g1(r)| ≤ C|g2(r)| for all r in
the common domain of g1 ,g2 .

Let

Sε(z) =
∑
n∈Z

1

(z + n)2,ε
, z ∈ C\R.

We now state a series of lemmas which are required in order to prove that the constant
term formula still holds in the case of weight 2.

Lemma 3.1.3. Fix y0 > 0. Then, we have that

Sε(z)�y0

1

Γ(ε)|y|1+2ε
+ e−2π|y|, y = Im(z), |y| ≥ y0, 0 < ε ≤ 1,

where for any real number s > 0,Γ(s) =
∫∞

0 e−tts−1dt.

Lemma 3.1.4. For any a1, a2, D ∈ Z with D 6= 0, set

σε(z; a1, a2, D) =
∑

(m,n)∈Z2

a1+Dm6=0

1

(z(a1 +Dm) + a2 +Dn)2,ε
.

Then we have that

lim
Im(z)→∞

lim
ε→0+

σε(z; a1, a2, D) = 0.

Lemma 3.1.5. Proposition 3.1.2 holds in the case of weight 2.

For proofs of each of these results see pages 10-12 of [BM2]. Now that we have a
formula for the constant term of the level N Eisenstein series at any cusp, we are in
a position to construct a linear combination of Eisenstein series vanishing modulo a
prime divisor of the Euler factor at each cusp.
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§ 3.2 Proving the Main Theorem

Our aim was to try and generalise the proof used in [DF]. Now that we have a formula
for the constant term of the Eisenstein series at the cusps, we can try to find a particular
linear combination of Eisenstein series that vanishes modulo λ′ at each cusp. In [DF]
the combination used was Ek(z)−Ek(pz) where Ek(z) is the level 1 Eisenstein series.
Recall that Ek(pz) = αpEk(z). We would therefore hope that something similar would
work in the general case of level N . It isn’t exactly this but we only need to twist
by a character. The following lemma uses the same notation as Theorem 3.0.1 and
Proposition 3.1.2.

Lemma 3.2.1. Suppose λ′ is a prime dividing
Bk,ψϕ
k

(
ϕ(p)pk − ψ(p)

)
. Here p is a

prime with (p,N) = 1. Then the linear combination of Eisenstein series

E = Eψ,ϕk − ψ(p)αpE
ψ,ϕ
k

vanishes modulo λ′ at each cusp.

Proof. We compute the constant term, say Υ, of the q -expansion of E[γ]k for γ =[
a β
b δ

]
∈ SL2(Z). By Proposition 3.1.2 we have,

Υ =

−g(ψϕ)
g(ϕ)

ϕ(a)ψ(−b
v

)

uk
Bk,ψϕ
k

(
1− ψ(p)ϕ(p)

pk

)
if v|b′ and p - b,

0 otherwise.

To see this, we consider various cases. Firstly, if v - b′ then the constant term is
0. Now suppose v|b′ and p|b . For the part of the constant term of E contributed

by Eψ,ϕk we have M = 1 and therefore M ′ = 1 and b′ = b , so the constant term

is −g(ψϕ)
g(ϕ)

ϕ(a)ψ(−b
v

)

uk
Bk,ψϕ
k . For the part contributed by −ψ(p)αpE

ψ,ϕ
k we have M = p

and therefore M ′ = 1 and b′ = b
p , so the constant term is g(ψϕ)

g(ϕ)

ϕ(a)ψ(−b
pv

)

uk
Bk,ψϕ
k ψ(p) =

g(ψϕ)
g(ϕ)

ϕ(a)ψ(−b
v

)

uk
Bk,ψϕ
k

ψ(p)
ψ(p) . Hence the constant term of E in this case is 0. Now suppose

v|b′ and p - b . For the part of the constant term of E contributed by Eψ,ϕk we have

M = 1 and therefore M ′ = 1 and b′ = b , so the constant term is −g(ψϕ)
g(ϕ)

ϕ(a)ψ(−b
v

)

uk
Bk,ψϕ
k .

For the part contributed by −ψ(p)αpE
ψ,ϕ
k we have M = p and therefore M ′ = p and

b′ = b (since p - b), so the constant term is g(ψϕ)
g(ϕ)

ϕ(a)ψ(−b
v

)

uk
Bk,ψϕ
k

ψ(p)ϕ(p)
pk

. Hence the

constant term of E is −g(ψϕ)
g(ϕ)

ϕ(a)ψ(−b
v

)

uk
Bk,ψϕ
k

(
1− ψ(p)ϕ(p)

pk

)
in this case.

Therefore, under the assumption that λ′ divides
Bk,ψϕ
k

(
ϕ(p)pk − ψ(p)

)
, E vanishes

modulo λ′ at each cusp.
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We have now done most of the hard work in proving Theorem 3.0.1. The rest of the
proof relies on some well known results which we now explain.

First of all, we will need to introduce the notion of Katz modular forms. Katz modular
forms are a geometric formulation of modular forms whose properties agree with those
of the classical modular forms. Rather than view a modular form as a holomorphic
function on the upper half plane satisfying certain transformation properties, Katz
instead considered them as a particular type of rule associated to elliptic curves and
their invariant differentials. He also went a little further and considered them purely in
terms of modular varieties. This is beyond the scope of what we need here. For precise
details of Katz modular forms and some of the basic properties see [Ka, §1] or [E, §1].
Here we will just give a broad overview following the outline of [Ka] covering only the
material required for the proof of Theorem 3.0.1.

The notion of an elliptic curve defined over a field can be extended to the notion of
an elliptic curve defined over a commutative ring. In order to do this we first give the
definition of an elliptic curve over a scheme. Although we won’t need the full generality
of the definition we include it for completeness.

Definition 3.2.2. By an elliptic curve over a scheme S , we mean a proper smooth
morphism p : E → S , whose geometric fibres are connected curves of genus one,
together with a section e : S → E .

E

S

p e

We denote by ωE/S the invertible sheaf p∗(Ω
1
E/S) on S , which is canonically dual

(Serre duality) to the invertible sheaf R1p∗(OE) on S .

Most of this definition is outside the scope of what we need for the purposes of this
thesis. However we note that if we take S = Spec(R), then this gives us the notion of
an elliptic curve defined over a commutative ring R . Here Spec(R) is the spectrum of
the ring R . The spectrum of R is the set of prime ideals of R . For more details of
this construction, see [Ka].

The basic idea of Katz modular forms is that for an elliptic curve E over a commutative
ring R we can consider a modular form f to be a particular kind of rule on the pair
(E/R, ω) where ω is an “invariant differential”. We use inverted commas here since
this is slightly looser language than that used by Katz. Katz defined a modular form
of weight k and level 1 to be a rule f which assigns to the pair (E/R, ω) an element
f(E/R, ω) ∈ R , such that the following conditions hold
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(1) f(E/R, ω) depends only on the R-isomorphism class of the pair (E/R, ω),

(2) f is homogeneous of degree −k in the second variable; for any λ ∈ R×, f(E, λω) =
λ−kf(E,ω),

(3) The formation of f(E/R, ω) commutes with arbitrary extension of scalars g : R→
R′ (meaning f(ER′/R

′, ωR′) = g(f(E/R, ω ))).

If we consider a ring R lying over a fixed ground ring R0 in the previous definition, and
only base changes by R0 -morphisms, this gives the notion of a modular form of weight
k and level one defined over R0 , the R0 -module of which is denoted Mk(SL2(Z), R0).
Notice how there is no condition on holomorphy of these forms, hence the unusual
notation. We also note that Katz uses slightly different notation but we have opted to
stick with notation that resembles that used in this thesis.

Since we have no condition on holomorphy yet it would be nice to try and incorporate
this. In order to do this in this new setup we have to consider the q -expansion. This
involves using the Tate curve. The Tate curve is a projective plane curve defined over
the ring Z[[q]] of formal power series. Note that although the Tate curve is defined over
Z[[q]] , it is only an elliptic curve over Z((q)). For more details see [Sil2, Chapter V,
§3]. A modular form f of weight k defined over R0 can then be evaluated on the pair
(Tate(q), ωcan)R0 consisting of the Tate curve and its canonical differential, viewed as
an elliptic curve with differential over Z((q)) ⊗Z R0 (and not just over R0((q))). The
q -expansion of the modular form f is then given by the finite-tailed Laurent series

f((Tate(q), ωcan)R0) ∈ Z((q))⊗Z R0.

The modular form f is said to be holomorphic at ∞ if its q -expansion lies in the
subring Z[[q]] ⊗Z R0 ; we now denote these modular forms with the familiar notation
Mk(SL2(Z), R0). The submodule of cusp forms Sk(SL2(Z), R0) comprises of those
modular forms whose q -expansion has constant term zero.

As we have previously mentioned, this notion of a Katz modular form in fact coincides
with the notion of a classical modular form when we take R = C . Although the
language is more technical here, hopefully it is clear that the notions of q -expansion,
holomorphicity and the transformation property all reduce to the same thing on both
sides.

Similar definitions hold in the case of level N except now it involves a level N struc-
ture on the elliptic curve E . Although Katz uses a more general notion of level N
structure, we will only consider the case which gives Katz modular forms for Γ1(N)
since these are the forms we will consider in our proof. For details of the more general
case, see [Ka, §1.2]. For our purposes, the level N structure will consist of an isomor-
phism ϕ : Z/NZ−̃→C where C is a cyclic subgroup of E[N ] . This is determined by
ϕ(1) = P where P is a point of order N . In this case we will obtain the R0 -module
Mk(Γ1(N), R0). Recall these are the modular forms without holomorphicity. To con-
sider the q -expansion in the level N case we have some extra conditions on the ring
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R0 . In particular we require R0 to contain 1
N and a primitive N -th root of unity ζN .

We may then evaluate the modular form f on triples (Tate(qN ), ωcan, P )R0 where P
is a point of order N . The q -expansions of the modular form f are then the finitely
many finite-tailed Laurent series

f((Tate(qN ), ωcan, P )R0) ∈ Z((q))⊗Z R0

obtained by varying P over all points of order N . A modular form f defined over a ring
R0 containing 1

N and a primitive N -th root of unity ζN is said to be holomorphic at ∞
if all of the q -expansions lie in Z[[q]]⊗ZR0 . This gives the R0 -module Mk(Γ1(N), R0).
Again, the submodule of cusp forms is denoted Sk(Γ1(N), R0). Note that each of these
q -expansions corresponds to an expansion around a different cusp and a cusp form
is one such that the constant term of each of these expansions is zero. In particular
since we are considering all level N structures here (corresponding to Γ1(N)) we have
q -expansions at all cusps. In the case when R = C this will correspond to the q -
expansions at each of the cusps of X1(N).

Our main proof will involve viewing classical modular forms as Katz modular forms.
We wish to consider our Eisenstein series E as a Katz modular form whose reduction
modulo λ′ lies in the module Sk(Γ1(Np),F`). In order to do this however, we will
need to make use of the q -expansion principle. The principle was first introduced by
Katz in 1972 and was later published in 1973. Corollaries 1.6.2 and 1.12.2 of [Ka]
give the precise statements. The principle basically states that a modular form f is a
Katz modular form over a ring R as long as its q -expansion at sufficiently many cusps
has coefficients in the ring R . Clearly in our case this will mean that we have a Katz
modular form with coefficients in Fλ′ , which we can then view as lying inside F` ; see
the proof of Theorem 3.0.1 for more details.

Now that we have defined Katz modular forms we might wonder whether there is still a
notion of Hecke operators acting on the spaces Mk(Γ1(Np), R). In the classical case we
had double coset operators acting on holomorphic functions. Here our modular forms
are no longer holomorphic functions. However, it turns out that we can still define
Hecke operators acting on the spaces of Katz modular forms. These Hecke operators
are defined in such a way that when we take R = C , they agree with the Hecke operators
in the classical case. For details see [Ka, §1.11].

We have now covered sufficient background material on Katz modular forms necessary
to prove Theorem 3.0.1.

Proof of Theorem 3.0.1. Recall that we have the linear combination of Eisenstein series
E = Eψ,ϕk (z)−ψ(p)αpE

ψ,ϕ
k (z) = Eψ,ϕk (z)−ψ(p)Eψ,ϕk (pz). We know that E is a classical

modular form. We can view this as a Katz modular form in the module Mk(Γ1(Np),C).

Consider the Z[1/N ]-algebra R , with R = Z[ζNp, ψ, ϕ] where ζNp is a primitive Np-
th root of unity. Then, by an application of the q -expansion principle, we have E ∈
Mk(Γ1(Np), R). This follows since the coefficients of the q -expansion of E at each
cusp lie in R .
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By Lemma 3.2.1 we know that the holomorphic function E vanishes modulo λ′ at
each of the cusps (viewed as a classical modular form). It follows by the properties of
Katz modular forms that this still holds when we view E ∈ Mk(Γ1(Np), R). That is,
each of the q -expansions at different cusps has constant term divisible by λ′ . It follows
from the q -expansion principle that the reduction of E gives rise to an element E ∈
Sk(Γ1(Np),Fλ′). Note that this can be viewed as a base change by a homomorphism
from R to Fλ′ . The element E is a common eigenvector for each of the Hecke operators
Tq for q - Np . Note that we now have Hecke operators acting on a space of Katz
modular forms. These Hecke operators behave in a way compatible with the classical
Hecke operators acting on E viewed as a classical modular form. Since Fλ′ ⊂ F` (since
λ′|`), we can view E ∈ Sk(Γ1(Np),F`).

We know by [E, Lemma 1.9] that the reduction map from Sk(Γ1(Np),Z`) to
Sk(Γ1(Np),F`), where λ′|` , is surjective. Hence E is the reduction of some element
g ∈ Sk(Γ1(Np),Oλ′′), with Oλ′′ the ring of integers of some finite extension Kλ′′ of
Q` . That is E is the reduction of a characteristic 0 cusp form. This cusp form how-
ever may not be an eigenvector for each of the Hecke operators. Let F denote the
residue field of Oλ′′ . Each of the Hecke operators Tq for q - Np then commute and
act on Sk(Γ1(Np),F) with E a common eigenvector, eigenvalue ψ(q) + ϕ(q)qk−1 for
Tq . By the Deligne-Serre lifting lemma [DeSe, Lemme 6.11], there exists a common
eigenvector f ′ ∈ Sk(Γ1(Np),Oλ) with Oλ the ring of integers in some finite extension
Kλ of Kλ′′ , with eigenvalues congruent to ψ(q) + ϕ(q)qk−1 (mod λ), where λ|λ′ . As
a consequence of Carayol’s lemma (Proposition 1.10 of [E]) we see that f ′ arises from
an f ∈ Sk(Γ1(Np), χ′) (rather than f ∈ Sk(Γ1(Np), χ̃) with χ̃ ≡ χ′ (mod λ)) with χ′

as in the Theorem. This f is an eigenform for the Hecke operators Tq when q - Np
with corresponding eigenvalues aq satisfying

aq ≡ ψ(q) + ϕ(q)qk−1 (mod λ),

for all q - Np .

Remark 3.2.3. There are many ways that this work could be further generalised. For
example we could try raising the level by a power of a prime, or a product of primes.
Another way that we could generalise is by changing the modular forms that we are
working with. Although it will not be covered in this thesis, it is worth noting that
I am currently working with Daniel Fretwell and Catherine Hsu to try and generalise
this work to the case of Hilbert modular forms. In the process of this work it has been
brought to my attention that a constant term formula in the Hilbert case (see [O]) is
proven without the condition that u and v be coprime. It should be possible to drop
this condition also in my case, however I have not had the time to try and prove this.
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§ 3.3 Comparison with the Bloch-Kato Formula for a Partial L-Value

The Bloch-Kato conjecture is a far reaching generalisation of the Birch and Swinnerton-
Dyer conjecture for elliptic curves. Whereas the Birch and Swinnerton-Dyer conjecture
relates arithmetic information associated to an elliptic curve and the behaviour of the
Hasse-Weil L-function at s = 1, the Bloch-Kato conjecture goes further and gives us
information about values at integer points of L-functions associated to motives. This
thesis will not deal with the general conjecture; in particular we will not cover material
on motives.

The aim of this section is to make use of the congruence we have found in Theorem 3.0.1
and construct a non-zero element in a Bloch-Kato Selmer group. This then gives the
divisibility of the partial L-value by the modulus of the congruence. Although the case
of the Bloch-Kato conjecture that we will be considering has already been proven, we
can show that what we obtain agrees with the result. Naturally we would also like to
go the other way. That is, given a non-zero element of a Bloch-Kato Selmer group, we
would like divisibility of the partial L-value to give the existence of a congruence. In the
case of the L-function being a Dirichlet L-function, this is exactly what we have proved
in Theorem 3.0.1. Recall from the discussion after the statement of Theorem 3.0.1, that
we interpreted ordλ(ϕ(p)pk − ψ(p)) > 0 as there being a λ dividing the missing Euler
factor at p of the Dirichlet L-function L(1− k, ψ−1ϕ). This is exactly the L-function
that will appear in the Bloch-Kato conjecture. This condition implies the existence of a
non-zero element in the λ part of the Bloch-Kato Selmer group. In more general cases
however, divisibility of an L-function by λ need not imply the existence of a mod λ
congruence.

Let k, p, `, λ and f =
∑∞

n=1 anq
n ∈ Sk(Γ1(Np), χ) be as in Theorem 3.0.1 on page 48.

Suppose that p 6= ` and let L = Q({an}). There exists a continuous representation
attached to f given by:

ρf = ρf,λ : GQ → GL2(Lλ),

unramified outside Np` , such that if q - Np` is a prime, and Frobq is an arithmetic
Frobenius element, then

Tr(ρf (Frob−1
q )) = aq(f), det(ρf (Frob−1

q )) = χ(q)qk−1.

We may conjugate so that ρf takes values in GL2(Oλ) and reduce modulo λ to get a
continuous representation

ρf = ρf,λ : GQ → GL2(Fλ).

This depends in general on a choice of invariant Oλ -lattice. However the irreducible
composition factors are well-defined.

In order to determine these composition factors we will need a couple of results. The
first is the Cebotarev density theorem.
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Theorem 3.3.1 (Cebotarev density theorem). The (lifts of) Frobenius elements are
dense in the absolute Galois group GQ .

What this result is really telling us is that we can completely determine a representation
by considering the image of all the Frobenius elements. In fact, we don’t actually need
all of them; we may remove finitely many Frobenius elements and we can still determine
the representation. This is useful since we only consider Frobenius elements Frobq such
that q - Np` here.

The second result that we require is the Brauer-Nesbitt theorem.

Theorem 3.3.2 (Brauer-Nesbitt). Let ρ1, ρ2 be semisimple n-dimensional Galois rep-
resentations over a field K of characteristic 0 or ` > n. Then ρ1 ∼ ρ2 if and only if
Tr(ρ1) = Tr(ρ2).

This theorem is essentially saying that we can determine when two Galois representa-
tions are equivalent purely by considering the character values. We note that the full
theorem is a little stronger as the case ` ≤ n is also considered but we do not require
the full generality as we always have ` > n .

Since we know the character values of ρf at all but finitely many Frobenius elements,
we may combine the Cebotarev density theorem with the Brauer-Nesbitt theorem in
order to fully determine the irreducible composition factors. Since Tr(ρf (Frob−1

q )) =

aq = ψ(q)+ϕ(q)qk−1 in Fλ we see that the composition factors are the one-dimensional
modules Fλ(ψ) and Fλ(1 − k)(ϕ). Note that Fλ(ψ) is simply ψ viewed as a Galois
representation (via Class Field Theory) on an Fλ vector space. Similarly Fλ(1− k)(ϕ)
is the (1 − k)-th Tate twist of ϕ viewed as a Galois representation on an Fλ vector
space. The Tate twist here is simply multiplying ϕ by χ1−k

` where χ` is the `-adic
cyclotomic character.

Without loss of generality we may choose our invariant Oλ -lattice such that

ρf ∼
[
ϕχ1−k

` ∗
0 ψ

]
.

Moreover an argument of Ribet [Rib3, Proposition 2.1] says that we may also choose
our invariant Oλ -lattice in such a way that ρf is realised on a space V such that

0 −→ Fλ(1− k)(ϕ)
ι−→ V

π−→ Fλ(ψ) −→ 0

is a non-split extension of Fλ[GQ]-modules. Choose a map s : Fλ(ψ) → V that is Fλ
linear and x ∈ Fλ(ψ). For g ∈ GQ consider g(s(g−1(x)))− s(x). Note that

π(g(s(g−1(x)))− s(x)) = g(π(s(g−1(x))))− π(s(x)) = g(g−1(x))− x = x− x = 0.

Hence g(s(g−1(x))) − s(x) ∈ ker(π). Since the sequence is exact we see that
g(s(g−1(x))) − s(x) ∈ im(ι). We therefore have a map C : GQ → Hom(Fλ(ψ),Fλ(1 −
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k)(ϕ)) defined by C(g)(x) := ι−1(g(s(g−1(x))) − s(x)). Note that g acts on x
by g(x) = ψ(g)x and the action of g on C(h) in Hom(Fλ(ψ),Fλ(1 − k)(ϕ)) is
by g on the codomain and by g−1 on the domain. We also note that C(g)(x) =
ψ(g)−1g(s(x)) − s(x) = g(s(g−1(x))) − s(x). We omit the ι−1 to ease notation. We
have

C(g)(x) + [gC(h)] (x) = g(s(g−1(x)))− s(x)

+ g
[
h(s(h−1(g−1(x))))− s(g−1(x))

]
= g(s(g−1(x)))− s(x)

+ gh(s(h−1g−1(x)))− g(s(g−1(x)))

= gh(s((gh)−1(x)))− s(x) = C(gh)(x).

We therefore see that C defines a cocycle as it satisfies the necessary condition.

We note that choosing a different map s would result in a different cocycle, but this
would only differ by a coboundary. We therefore obtain a unique class c := [C] ∈
H1(GQ,Hom(Fλ(ψ),Fλ(1 − k)(ϕ)) independent of the choice of x . This class is non-
zero since the extension is non-split. The fact that c must be non-zero is proven by
contradiction. If C were a coboundary (so the class c would be zero), we could adjust
s in such a way that we have Galois equivariance, thus producing a splitting. Therefore
since the extension is non-split, the class c must be non-zero.

We note that we may simplify Hom(Fλ(ψ),Fλ(1− k)(ϕ)). We have

Hom(Fλ(ψ),Fλ(1− k)(ϕ)) ' (Fλ(ψ))∗ ⊗ Fλ(1− k)(ϕ)

' Fλ(ψ−1)⊗ Fλ(1− k)(ϕ)

' Fλ(1− k)(ψ−1ϕ).

We therefore have c ∈ H1(GQ,Fλ(1 − k)(ψ−1ϕ)). Let Vλ = Lλ(1 − k)(ψ−1ϕ), let
Mλ = Oλ(1 − k)(ψ−1ϕ), let Aλ = Vλ/Mλ = (Lλ/Oλ)(1 − k)(ψ−1ϕ) and let A[λ] be
the kernel of multiplication by λ in Aλ . Consider the inclusion i : A[λ]→ Aλ and let
d := i∗(c) ∈ H1(GQ, Aλ). Consider the following short exact sequence:

0 −→ A[λ]
i−→ Aλ

“λ”−→ Aλ −→ 0.

Here “λ” means multiplication by some uniformiser for λ . This short exact sequence
gives rise to a long exact sequence in cohomology. We consider a piece of this sequence:

H0(GQ, Aλ)
δ−→ H1(GQ, A[λ])

i∗−→ H1(GQ, Aλ).

We wish to know when i∗ is injective. Since the sequence is exact, this is equivalent
to knowing when the image of δ is trivial. This will be the case when H0(GQ, Aλ)
is trivial. Since we can multiply by an appropriate power of λ , this is equivalent to
H0(GQ, A[λ]) being trivial. Consider 0 6= x ∈ Fλ(1 − k)(ψ−1ϕ). Then for q - Np` ,
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Frob−1
q (x) = (qk−1ψ−1ϕ(q))(x). Since ` - N we may choose q such that

q ≡

{
ζ (mod `)

1 (mod N),

where ζ is a primitive root modulo ` . Now if (l− 1) - (k − 1) then ψ−1ϕ(q) = 1 since
q ≡ 1 (mod N) and qk−1 ≡ ζk−1 (mod `). But then ζk−1 6≡ 1 (mod `). It follows
that Frob−1

q (x) 6= x in Fλ . For example, this condition is satisfied when ` > k . Hence
H0(GQ, Aλ) is trivial, so we see that i∗ is injective and d 6= 0.

We would like d to belong to a Bloch-Kato Selmer group. We therefore now define
these groups. Following [BlKa, §3], for q 6= ` let

H1
f (GQq , Vλ) := ker

(
H1(GQq , Vλ)→ H1(Iq, Vλ)

)
.

Here GQq has been identified with some decomposition subgroup at a prime above q , Iq
is the inertia subgroup and the cohomology is for continuous cocycles and coboundaries.
For q = ` let

H1
f (GQ` , Vλ) := ker

(
H1(GQ` , Vλ)→ H1(D`, Vλ)⊗Q` Bcrys

)
.

For a definition of Fontaine’s ring Bcrys see [BlKa, §1]. Let H1
f (GQ, Vλ) be the subspace

of those elements of H1(GQ, Vλ) which, for all primes q , have local restriction lying in
H1
f (GQq , Vλ). We have the natural exact sequence

0 −→Mλ −→ Vλ
π−→ Aλ −→ 0.

Let H1
f (GQq , Aλ) = π∗H

1
f (GQq , Vλ). Define the Selmer group H1

f (GQ, Aλ) to be the

subgroup of elements of H1(GQ, Aλ) whose local restrictions lie in H1
f (GQq , Aλ) for

all primes q . Since we have ` - 6N, in particular ` 6= 2, we may omit q = ∞ . More
generally, given a finite set Σ of primes with ` /∈ Σ, we define H1

Σ(GQ, Aλ) to be the
subgroup of elements of H1(GQ, Aλ) whose local restrictions lie in H1

f (GQq , Aλ) for all
primes q /∈ Σ.

Proposition 3.3.3. Let Σ = {q : q|N}. Then d ∈ H1
Σ∪{p}(GQ, Aλ).

Proof. For q - Np` (with λ|`) we have ρf unramified at q , that is ρf |Iq is trivial. It
follows that the restriction of d to H1(Iq, Aλ) is 0 for such q . It follows from [Br,
Lemma 7.4] that d ∈ H1

f (GQq , Aλ). If we assume that ` > k the representation ρf at
` is crystalline, we see that it satisfies the necessary local condition at ` ; that is d ∈
H1
f (GQ` , Aλ). This is a consequence of the second part of [DFG, Proposition 2.2]. Since

the necessary local conditions are satisfied it follows that d ∈ H1
Σ∪{p}(GQ, Aλ).

We now give a different way of producing a non-zero element of H1
Σ∪{p}(GQ, Aλ) =

H1
Σ∪{p}(GQ, (Lλ/Oλ)(1− k)(ψ−1ϕ)). Let LΣ∪{p}(k, ψϕ

−1) be the partial Dirichlet L-

function with Euler factors at primes q ∈ Σ ∪ {p} omitted. We now reformulate the
λ-part of the Bloch-Kato conjecture, as in (59) of [DFG], similarly using the exact
sequence as in their Lemma 2.1.



CHAPTER 3. CONGRUENCES OF LOCAL ORIGIN FOR WEIGHTS
K ≥ 2 65

Conjecture 3.3.4 (Case of λ-part of Bloch-Kato).

ordλ

(
LΣ∪{p}(k, ψϕ

−1)

g(ψϕ−1)(2πi)k

)

= ordλ

(
Tam0

λ((Lλ/Oλ)(k)ψϕ−1)#H1
Σ∪{p}(GQ, (Lλ/Oλ)(1− k)(ψ−1ϕ))

#H0(GQ, (Lλ/Oλ)(1− k)(ψ−1ϕ))

)
.

Note that here the period g(ψ−1ϕ)(2πi)k follows from the calculation at the end
of [DFG, §1.1.3]. Recall that g(ψ−1ϕ) is the Gauss sum of ψ−1ϕ . We omit the
definition of the Tamagawa factor Tam0

λ((Lλ/Oλ)(k)ψϕ−1), but note that (assuming
` > k+ 1, recall that λ|` here), its triviality is a direct consequence of [BlKa, Theorem
4.1(iii)]. In their notation we have i = −k and j = 1. This case of the Bloch-Kato
conjecture is actually known to be true. It was proven by Huber and Kings [HK,
Theorem 5.4.1].

Recall that we have already shown that H0(GQ, (Lλ/Oλ)(1 − k)(ψ−1ϕ)) =
H0(GQ, Aλ) is trivial. Since the Tamagawa factor is also trivial, we see that if

ordλ

(
LΣ∪{p}(k,ψϕ

−1)

g(ψϕ−1)(2πi)k

)
> 0, then ordλ

(
#H1

Σ∪{p}(GQ, (Lλ/Oλ)(1− k)(ψ−1ϕ))
)
> 0 and

vice versa. Therefore if we can guarantee divisibility of the partial L-value by λ then
we know that there must be a non-zero element in the Bloch-Kato Selmer group.

Proposition 3.3.5. ordλ

(
LΣ∪{p}(k,ψϕ

−1)

g(ψϕ−1)(2πi)k

)
> 0.

Proof. We will show that ordλ′
(
LΣ∪{p}(k,ψϕ

−1)

g(ψϕ−1)(2πi)k

)
> 0. Since λ|λ′ this will imply that

ordλ

(
LΣ∪{p}(k,ψϕ

−1)

g(ψϕ−1)(2πi)k

)
> 0. Concentrating on the {p} part of LΣ∪{p}(k, ψϕ

−1) here (re-

call ` 6= p), we see that ϕ(p)pkL{p}(k, ψϕ
−1) = (ϕ(p)pk − ψ(p))L(k, ψϕ−1). Note that

if λ′|ϕ(p)pk then we cannot have λ′|
(
ϕ(p)pk − ψ(p)

)
. Also a generalisation of the Von

Staudt-Clausen theorem, proven by Carlitz [Carl] tells us that the denominator of L(1−
k, ψ−1ϕ) will not cancel any potential divisors of the Euler factor (see below for more

details). Therefore if ` > k+1 and λ′|(ϕ(p)pk−ψ(p)), then ordλ′
(
LΣ∪{p}(k,ψϕ

−1)

g(ψϕ−1)(2πi)k

)
> 0.

So the formula implies that H1
Σ∪{p}(GQ, (Lλ/Oλ)(1 − k)(ψ−1ϕ)) contains a non-zero

element. Of course here we are assuming that the factors in Σ do not cause any
cancellation.

We may use the functional equation of the Dirichlet L-function to consider L(1 −
k, ψ−1ϕ) instead of L(k, ψϕ−1). We then have L(1 − k, ψ−1ϕ) = −Bk,ψ−1ϕ

k . The
generalisation of the Von Staudt-Clausen theorem proven by Carlitz then gives us

conditions on this being an algebraic integer. Suppose we write
Bk,ψ−1ϕ

k = B
D with

(B,D) = 1. If the conductor of ψ−1ϕ , in this case N , contains at least two distinct

primes then
Bk,ψ−1ϕ

k is an algebraic integer as D is the unit ideal. If instead N = pa
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for some a , then D contains only prime ideal factors of p . In this case we have
Bk,ψ−1ϕ

k ≡ 1
kNCk(ψ

−1ϕ) (mod 1) where

Ck(ψ
−1ϕ) =

N∑
r=1

ψ−1ϕ(r)rk.

Recall that since ` - 6N there will be no cancellation in this case either.



Chapter 4

The Weight 1 Case

Now that we have proved our main result we wish to extend this to the case of weight
1 modular forms. This is not straightforward however, as there are several differences
in this case as we have already seen partially in Section 1.4.4. One such difference
is that we no longer have formulas for the dimensions of the spaces M1(Γ1(N), χ)
and S1(Γ1(N), χ). This is down to certain terms in the Riemann-Roch formula not
necessarily canceling each other out anymore. There are however some conjectured
formulas for the dimension of S1(Γ1(q), χ) by Trotabas; See conjecture 2.1 of [Tr]. In
fact, this same issue means we will not be able to make use of the same method of
proof as we used for Theorem 3.0.1. The Deligne-Serre Lemma [DeSe] is not applicable
in the case of weight 1. This is because the reduction map from S1(Γ1(Np), Z̄`) to
S1(Γ1(Np), F̄`) is no longer surjective. Evidence of this was found by Buzzard [Bu].
In this paper he finds a mod 199 weight 1 cusp form of level 82 which does not lift
to a cusp form of characteristic zero. There are many more examples of these kinds of
modular forms in Schaeffer’s thesis [Sch]. He refers to these particular modular forms
as ethereal forms.

Although there are differences we still have methods for trying to generalise our main
statement. Recall the construction of the weight 1 Eisenstein series from Section 1.4.4.
Although this construction is rather different, we still end up with something that is
very similar to the Eisenstein series of higher weight. In particular it is a modular
form inside the correct vector space, has a similar Fourier expansion to higher weight
Eisenstein series, and also has the Hecke eigenvalues you would expect of a weight 1
Eisenstein series. One difference now is that the constant term has a slightly different
form, namely δ(ϕ)L(1 − k, ψ) + δ(ψ)L(1 − k, ϕ) instead of δ(ψ)L(1 − k, ϕ), where k
is the weight of the corresponding Eisenstein series. We can naively work in the same
way as before and ask the question: If a prime ` divides ϕ(p)p−ψ(p), does there exist
a congruence modulo λ (with λ|`), of Hecke eigenvalues, between a level N Eisenstein
series and a level Np cusp form?

We will be looking first at the simplified case where we take one character to be trivial.
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First assume that ϕ is trivial, i.e., we are looking at the series Eψ,11 . Hence we are
interested in the Euler factor associated to L(k, ψϕ−1) = L(k, ψ). In exactly the same
way as before we obtain the factor p−ψ(p) (note that k = 1 and ϕ is trivial). Similarly
if we take ψ to be trivial we obtain the factor ϕ(p)p− 1. We might expect divisors of
these factors to be moduli of congruences. Also note that the Hecke eigenvalues (at a
prime q ) of these Eisenstein series are now simply ψ(q) + 1 and 1 + ϕ(q) respectively.
We may expect to have to place some restrictions on our characters given the differences
of the weight 1 case. But how can we decide on these restrictions? It turns out that
the construction of a particular weight 1 cusp form will give us the answer to this. A
special case of the result we will prove is the following:

Theorem 4.0.1. Let K = Q(
√
−d) be an imaginary quadratic field with discriminant

N and associated quadratic character η : (Z/NZ)× → C× . Let p be a prime such
that p - N . Let ` - 6N be a prime such that ord` ((p− η(p))h) > 0 where h is the
class number of K . If p splits in K then there is a normalised Hecke eigenform
f ∈ S1(Γ1(Np), η′) (where η′ is congruent to η modulo λ) such that for all q with q
prime,

aq(f) ≡ 1 + η(q) (mod λ),

where λ|` is a prime of Q({an(f)}) = Q(ζ`). If p is inert in K then there is a
normalised Hecke eigenform f ∈ S1(Γ1(Np2), η′) (where η′ is congruent to η modulo
λ) such that for all q with q prime,

aq(f) ≡ 1 + η(q) (mod λ),

where λ|` is a prime of Q({an(f)}) = Q(ζ`).

Notice the very similar structure of this result to Theorem 3.0.1. The Euler factor
ϕ(p)pk−ψ(p) now simplifies to p−η(p); this follows because we are considering ϕ = 11 ,
ψ = η and k = 1. The class number of K is now the simplification of Bk,ψ−1ϕ/k , both
of which come from L(1 − k, ψ−1ϕ). Note that this is because L(1 − k, ψ−1ϕ) is
now L(0, η) which gives the class number. The Hecke eigenvalues of the Eisenstein
series are now much simpler due to the fact that one character is trivial and k = 1;
ψ(q)+qk−1ϕ(q) is simply η(q)+1. The main difference with this result is the second half
where we consider an inert prime in K . In this case the level of the cusp form is Np2

and so we have raised the level by p2 . Although this isn’t something we considered in
the higher weight case it is a special consequence of the particular construction that we
use. This is the simplest case and its proof will serve as a template for the more general
result. As long as we have primitive Dirichlet characters ψ and ϕ , of conductors u
and v respectively, with uv = N and ψ ≡ ηϕ (mod λ), then we obtain a congruence.

Theorem 4.0.2. Let K = Q(
√
−d) be an imaginary quadratic field with discriminant

N and associated quadratic character η : (Z/NZ)× → C× . Suppose ψ and ϕ are
primitive Dirichlet characters of conductors u and v respectively with uv = N . Let p
be a prime such that p - N . Let ` - 6N be a prime such that ord` ((ϕ(p)p− ψ(p))h) > 0
where h is the class number of K . Assume that ψ ≡ ηϕ (mod λ). If p splits in K
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then there is a normalised Hecke eigenform f ∈ S1(Γ1(Nvp), ε) (where ε is congruent
to ψϕ modulo λ) such that for all q with q prime,

aq(f) ≡ ψ(q) + ϕ(q) (mod λ),

where λ|` is a prime of Q({an(f)}) = Q(ζ`). If p is inert in K then there is a
normalised Hecke eigenform f ∈ S1(Γ1(Nvp2), ε) (where ε is congruent to ψϕ modulo
λ) such that for all q with q prime,

aq(f) ≡ ψ(q) + ϕ(q) (mod λ),

where λ|` is a prime of Q({an(f)}) = Q(ζ`).

Notice how Theorem 4.0.1 is a special case of this result. The differences here are that
η is now related to two Dirichlet characters ψ and ϕ via a congruence condition and
the level of the cusp forms have now been raised by an additional factor of v . This
choice is arbitrary however, we could have just as easily raised the level by u instead.
The details of this will become clear when we work through the proof.

We will later show that these two results cover everything that is happening in the
weight 1 case. Basically if we have any Dirichlet character that isn’t associated to a
quadratic field then there isn’t a congruence.

Theorem 4.0.3. Suppose ψ and ϕ are primitive Dirichlet characters of conductors
u and v respectively with uv = N , so Eψ,ϕ1 ∈ M1(Γ1(N), ψϕ). Let f ∈ S1(Γ1(M), ε)
have associated Galois representation ρf . There exists a congruence between the Hecke

eigenvalues of Eψ,ϕ1 and f only if ρ̃f (GQ) ∼= Dn for some n.

In order to prove these results we will need some background on the theory of Galois
representations. Once we have the necessary background we will combine this with some
class field theory in order to prove Theorem 4.0.1. The proof of Theorem 4.0.2 will then
be a fairly straightforward adaptation of the method used to prove Theorem 4.0.1. We
will then need to consider Schur covers of certain groups in order to complete the proof
of Theorem 4.0.3.

§ 4.1 Galois Representations and Weight One Modular Forms

As with the higher weight cases we aim to try and construct a weight 1 cusp form
whose Hecke eigenvalues satisfy a congruence. We already know that we will not be
able to apply the same method as before. We therefore need to come up with a new
construction without using the Deligne-Serre Lemma. Our aim is to use the theory of
Galois representations. We will make use of the work of Khare-Wintenberger [KhWi]
proving that a certain type of Galois representation is modular; that is, it gives rise to
a newform of weight 1. This will be made precise once we have some basic definitions
regarding Galois representations.
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Let Q̄/Q be an algebraic closure of Q and let GQ = Gal(Q̄/Q) denote the absolute
Galois group. Let ρ : GQ → GL2(C) be a two dimensional continuous complex linear
representation of GQ . Such a representation is called a Galois representation. Note
that we will assume our representations are continuous from now on. This essentially
corresponds to having open kernel, and hence, finite image. It then follows that ρ
factors through Gal(K/Q) for some finite Galois extension K/Q . We let ε = det(ρ),
which is a one dimensional representation of GQ .

If we take any embedding of Q̄ in C then complex conjugation on C induces an auto-
morphism of Q̄ . Any such automorphism is known as a Frobenius element at infinity
or simply a complex conjugation. Suppose χ is a one dimensional linear representation
of GQ . If χ(c) = −1, where c is a complex conjugation, we say that χ is odd. Note
that all such c are conjugate, so the condition χ(c) = −1 is independent of the choice
of embedding of Q̄ into C .

Let N be the Artin conductor, and L(s, ρ) the Artin L-function, of the representation
ρ . The Artin L-function is defined by an Euler product over prime ideals p :

L(s, ρ) =
∏
p

det[I −N(p)−sρ(Frob−1
p )]−1

For a definition of the Artin conductor and some basic properties of the L-function,
see [Cog]. The conductor of the representation ε = det(ρ) divides N and so it may be
viewed as a Dirichlet character mod N

ε : (Z/NZ)× → C×.

Note that we may do this by using class field theory since (Z/NZ)× is the Galois group
of a cyclotomic quotient of GQ (namely Gal(QζN /Q)). The representation ε is odd if
and only if this Dirichlet character satisfies ε(−1) = −1.

Now that we have set up the basic notation we are in a position to discuss the work
of Khare-Wintenberger. The main result of the paper [KhWi] was a proof of Serre’s
modularity conjecture. This result involves mod p representations. Although we will
not be directly interested with these representations, we will consider them when prov-
ing Theorem 4.0.3. We therefore give a basic overview of the conjecture. Suppose
ρ : GQ → GL2(F) is an absolutely irreducible, continuous, two-dimensional, odd, mod
p representation, with F a finite field of characteristic p . Such a representation is said
to be of Serre type. Given a normalised eigenform

f = q + a2q
2 + a3q

3 + . . .

of some level N , weight k , and character χ : Z/NZ → F× , a theorem of Deligne,
Eichler, Serre and Shimura attaches to f a representation ρf : GQ → GL2(O), where
O is the ring of integers in a finite extension of Q` . For primes p - N` , we have

Tr(ρf (Frob−1
p )) = ap
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and

det(ρf (Frob−1
p )) = pk−1χ(p).

The reduction of this representation modulo the maximal ideal of O gives a mod `
representation ρf of GQ . Serre’s conjecture states that for ρ of Serre type, there is
an eigenform f of level N(ρ), weight k(ρ) and character χ : Z/NZ → F× such that
ρf ' ρ . In their paper, Khare and Wintenberger prove this conjecture and then go
on to deduce some results about representations in characteristic 0. These are the
representations we will be interested in while proving Theorem 4.0.1.

The result that we are interested in, namely modularity of irreducible, two-dimensional,
complex, odd Galois representations, is intimately tied in with the problem of solving
Artin’s conjecture on L-functions. For any ρ : GQ → C× such that ε is odd, define:

Λ(s, ρ) = N s/2(2π)−sΓ(s)L(s, ρ).

The function Λ then extends to a meromorphic function on the whole complex plane,
and satisfies the following functional equation:

Λ(s, ρ) = W (ρ).Λ(1− s, ρ∗).

Here W (ρ) is a certain complex number with absolute value 1 known as the Artin
root number and ρ∗ is the complex conjugate representation. The Artin conjecture
(in the two-dimensional case) states that the function Λ(s, ρ) actually has an analytic
continuation to the whole complex plane.

Over the years many different people have proven different cases of Artin’s conjec-
ture. Many of the two-dimensional cases were known by 1981. The final (odd) two-
dimensional case was proven in 2009 by Khare and Wintenberger. Langlands had made
a general conjecture, which in our case states that ρ arises from a cuspidal automorphic
representation π of GL2(AQ). From this we get that L(s, ρ) = L(s, π). It is known
that L(s, π) has an analytic continuation to the whole complex plane and therefore one
may deduce Artin’s conjecture from this. In fact Theorem 10.1(i) of [KhWi] implies
Langlands’ conjecture, and therefore Artin’s conjecture. This then provides a converse
to a theorem of Deligne-Serre which attaches a complex representation to a newform
of weight one. That is they proved the modularity of ρ and deduced Artin’s conjecture
from this. The result of Khare-Wintenberger is Corollary 10.2(ii) of [KhWi] and the
result of Deligne-Serre is Theorem 2 from Section 3 of [S]. We state both here.

Theorem 4.1.1 (Khare-Wintenberger). Let ρ be an irreducible two-dimensional com-
plex linear representation of GQ with conductor N and ε = det(ρ) odd. Suppose
L(s, ρ) =

∑∞
n=1 ann

−s , and let f(z) =
∑∞

n=1 anq
n . Then f ∈ S1(Γ1(N), ε) is a nor-

malised newform.

Theorem 4.1.2 (Deligne-Serre). Let f ∈ S1(Γ1(N), ε) be a normalised newform. Then
there exists an irreducible two-dimensional complex linear representation ρ of GQ such
that Lf (s) = L(s, ρ). Further, the conductor of ρ is N , and det(ρ) = ε.
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Note that the even two-dimensional case is still an open problem but we only deal with
odd representations so this is not an issue. The case that Khare and Wintenberger
proved was the case when the projective image of ρ is non-solvable, that is, the projec-
tive image is A5 . The cases of solvable projective image were proven by various people.
The case when the projective image is S4 was proven by Tunnell [Tu] in 1981. The case
when the projective image is A4 was proven by Langlands [L] in 1980. The cases when
the projective image is dihedral or cyclic were proven by Artin and Hecke. We will see
more about the projective images of complex representations later, in particular, why
these are the only possible images.

Before these cases had been proven it was necessary to rely on a technical condition in
order to ensure that two-dimensional, odd, irreducible complex Galois representations
were modular. This condition can be found in [S] from 1977; we state the condition
here.

Condition 4.1.3. There exists a positive integer M such that, for all one dimen-
sional linear representations χ of GQ with conductor coprime to M , Λ(s, ρ ⊗ χ) is a
holomorphic function of s for s 6= 0, 1.

Notice that this condition is simply the Artin conjecture for ρ ⊗ χ . Since ρ is two-
dimensional, det(ρ ⊗ χ) = det(ρ)χ2 , so if ρ is odd, then so is ρ ⊗ χ . The repre-
sentation ρ was known to satisfy Condition 4.1.3 if it was reducible or induced from
a one-dimensional representation. Assuming this condition was enough to give the
result proven by Khare-Wintenberger for this ρ . This was originally a result of Weil-
Langlands. Note that for this representation ρ we have that Tr(ρ(Frob−1

p )) = ap and

det(ρ(Frob−1
p )) = χ(p).

The theorems of Khare-Wintenberger and Deligne-Serre are of great importance since
they give a concrete link between cusp forms of weight 1 and two-dimensional Galois
representations. Since we know quite a bit about Galois representations this will make
studying weight 1 cusp forms much easier. After looking at a little more theory we will
be in a position to construct a weight 1 cusp form whose Hecke eigenvalues will satisfy
a congruence as stated in Theorem 4.0.1. This cusp form will be constructed from a
particular type of Galois representation making use of Theorem 4.1.1. It turns out that
the existence of a congruence will depend on the projective image of the representation
ρ . We therefore need to know some background material on projective representations.

4.1.1 Projective Representations

Firstly we note that a two-dimensional representation ρ gives rise to a projective linear
representation, ρ̃ , of GQ :
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GQ GL2(C)

PGL2(C)

ρ

π
ρ̃

where PGL2(C) = GL2(C)/C× . The image of ρ̃ is a finite subgroup of PGL2(C), and
is therefore one of the following:

(1) Cn - cyclic of order n ;

(2) Dn - dihedral of order 2n, n ≥ 2;

(3) the alternating groups A4, A5 , or the symmetric group S4 .

This classification is well known. A purely algebraic proof can be found in Section 1.1
of Dolgachev’s notes [Do]. Notice that these are exactly the cases that were checked
for the Artin conjecture.

First of all we consider the case that im(ρ̃) is cyclic. Suppose we have a, b ∈ im(ρ).
Then π(a), π(b) ∈ im(ρ̃). Since im(ρ̃) is cyclic, we have π(a) = gr and π(b) = gs for
some g ∈ im(ρ̃) and r, s ∈ Z . Hence under the preimage of π we see that a = λag

r

and b = λbg
s for some λa, λb ∈ C× . It therefore follows that ab = ba and im(ρ)

is abelian. From this we deduce that ρ is reducible. We therefore wouldn’t be able
to use Theorem 4.1.1 to obtain a weight 1 cusp form. Hence we ignore this case.
The case we will be interested in to begin with is case (2), the representations whose
projective image is dihedral. It will turn out that this is the only case in which we can
obtain a congruence as stated in Theorem 4.0.1 and Theorem 4.0.2. The remaining
cases will all be considered when we prove Theorem 4.0.3 since none of these cases
lead to a congruence. We note that, as implied in the argument above, a projective
representation ρ̃ can be lifted to a linear representation ρ . We defer the details of this
until Section 4.2.3 where we will need to consider the liftings in proving Theorem 4.0.3.
For the proof of Theorem 4.0.1, and then the more general proof for Theorem 4.0.2, it
is simply enough to know that such a lift exists.

4.1.2 Dihedral Representations

Now that we know the basics of Galois representations and their projective image, we
can study the case that we are interested in. For now we simply assume results about
liftings, for those wanting to know the details, consult Section 4.2.3. The following
discussion, up to the statement of Proposition 4.1.4, is largely based on [S, §7]. Let
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ρ̃ be a two-dimensional projective representation of GQ , and let ρ be some lifting of
ρ̃ . (This is possible by Theorem 4.2.11 since Q is a global field.) We say that ρ̃ (or
ρ) is dihedral if ρ̃(GQ) ⊂ PGL2(C) is isomorphic to the dihedral group Dn of order
2n , for some n ≥ 2. If ρ is dihedral, then it is an irreducible representation. We
would therefore be able to use such a representation to construct a weight 1 cusp form
using Theorem 4.1.1. In constructing the dihedral representation ρ , there will be a few
technical details that need to be checked which we now discuss.

Let Cn be a cyclic subgroup of Dn of order n ; if n ≥ 3, Cn is uniquely determined.
Suppose ρ̃ is a dihedral representation. Consider the composition

ω : GQ Dn Dn/Cn = {±1}
ρ̃

.

This is again a representation of GQ . It is a one-dimensional linear representation of
order 2, which corresponds to some quadratic extension K/Q . Let GK = Gal(Q̄/K) ⊂
GQ . Then ρ̃(GK) = Cn , and ρ|GK is reducible:

ρ|GK = χ⊕ χ′ ,

say, for some one-dimensional representations χ, χ
′

of GK . If σ lies in the non-identity
coset of GQ/GK , then χ

′
= χσ , where χσ(γ) = χ(σγσ−1), γ ∈ GK . Further, ρ =

IndK/Q(χ), the representation of GQ induced by χ .

Conversely, suppose we start with a quadratic number field K/Q , corresponding to
a character ω of GQ , and a one-dimensional linear representation χ of GK . Let
ρ = IndK/Q(χ), and let ρ̃ be the associated projective representation of GQ . If σ
generates Gal(K/Q), let χσ be as above. Let f be the conductor of χ , and dK the
discriminant of K/Q .

Proposition 4.1.4. With the above notations

(1) The following are equivalent:

(1) ρ is irreducible;

(2) ρ is dihedral;

(3) χ 6= χσ .

(2) The conductor of ρ is |dK |.NK/Q(f).

(3) The representation det(ρ) = ωχQ of GQ is odd if and only if either:

(1) K is imaginary

or

(2) K is real and χ has signature +,− at infinity; that is, if c, c
′ ∈ GK are

Frobenius elements at the two real places of K , then χ(c) 6= χ(c
′
). So

{χ(c), χ(c′)} = {1,−1}.
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(4) If ρ̃(GQ) = Dn , then n is the order of χ−1.χσ .

For a proof see page 239 of [S]. Note that the determinant of ρ has the form ωχQ
where ω is the quadratic character associated to the quadratic field K and χQ is the
restriction of χ to a character of Q . A detailed description of χQ is given in the proof
by Serre [S, p.239]. We give a brief description in the following section when we choose
a particular χ , see the map given in (4.1).

It therefore follows that if we use a one-dimensional representation χ of GK and induce
to a representation of GQ , we will obtain a dihedral representation providing that
χ 6= χσ . This representation will then be irreducible and, combining Proposition 4.1.4
and Theorem 4.1.1, we see that we are able to construct a weight 1 cusp form of level
|dK |.NK/Q(f) where f is the conductor of χ . In detail, suppose ρ = IndK/Q(χ) is a
dihedral representation of GQ . If ε = det(ρ) is odd, and we put

L(s, ρ) =

∞∑
n=1

ann
−s, f(z) =

∞∑
n=1

anq
n,

then, by Theorem 4.1.1, f(z) ∈ S(Γ1(N), ε = ωχQ) where N = |dK |.NK/Q(f). There
are several examples given in [S]. We are now in a position to tie all of the theory
together and prove Theorem 4.0.1.

§ 4.2 Proving the Weight 1 Theorems

4.2.1 Proof of Theorem 4.0.1

Before moving on to construct a particular cusp form we take a brief pause to explain
the strategy. Although we are seeking an irreducible Galois representation in order to
make use of the modularity we are also seeking the existence of a congruence modulo ` .
That is, we require the representation to be reducible modulo ` . This will correspond
to the requirement that Tr(Frob−1

q ) = aq where aq is the q -th Hecke eigenvalue of

the cusp form f , and det(Frob−1
q ) = η(q) where η is the quadratic character given in

Theorem 4.0.1. Over the course of this section we will see exactly how to guarantee
that this occurs. We note that we will also be able to observe the congruence simply
by knowing the Hecke eigenvalues of the cusp form that we will construct.

Let us first consider an imaginary quadratic field, that is K = Q(
√
−d) for some square-

free d > 0. Associated to this field, we have the quadratic character η : Gal(K/Q) →
{±1} , or equivalently η : (Z/|dK |)× → {±1} . Now take a Hecke (ray class) character
χ : IK(m)/P1,K(m) → C× , where m is a particular modulus. Later we will be inter-
ested in the case where m consists of a single prime ideal but for now we will work with
a general modulus. Note that, via class field theory, we may view χ as a character of
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GK . We then have

L(s, χ) =
∑
a∈OK

a integral
(a,m)=1

χ(a)

N(a)s
=

∏
p∈OK
pprime
(p,m)=1

1

1− χ(p)N(p)−s
.

We would like ρ = IndK/Q(χ) to be an irreducible representation. We therefore, for
now, assume that χ 6= χσ . We will split the proof of Theorem 4.0.1 into three separate
cases, each using a different ray class character, and we will check this condition in each
case. We then use a general result about Artin L-functions to tell us that L(s, ρ) =
L(s, IndK/Qχ) = L(s, χ). It then follows (from Proposition 4.1.4 and Theorem 4.1.1)
that

f =
∑
a∈OK

a integral

χ(a)qN(a)

is a modular form of weight 1, level |dK |.N(m) and character ηχQ . Here we note that
we have a map

IQ(m)/P1,Q(m)
i→ IK(m)/P1,K(m) (4.1)

where m = Z∩m . Here χ is a character of the ray class group on the right and χQ is
the restriction defined as a character of the group on the left. We will take a particular
character χ such that χQ becomes trivial modulo ` . That is, the determinant of ρ ,
and therefore the character of f becomes η . This suggests that, as alluded to earlier,
we should consider the Eisenstein series E1,η

1 of level |dK | . Unlike the higher weight
case, we may now observe the congruence at all primes q , including those that divide
N and p . Since η is the quadratic character associated to K , the Hecke eigenvalue of
the Eisenstein series E1,η

1 (or Eη,11 ) at a prime q is given by

1 + η(q) =


0 if q is inert in OK ,
1 if q ramifies in OK ,
2 if q splits in OK .

We note that the Hecke eigenvalues for the cusp form f can simply be read off from
the Fourier expansion. The Hecke eigenvalue at a prime q for the cusp form f is given
by

af (q) =


0 if q is inert in OK ,
χ(q) if q = q2 ramifies in OK ,
χ(q1) + χ(q2) if q = q1q2 splits in OK .

It is clear that at a prime q which is inert in OK both the Hecke eigenvalue of the
Eisenstein series and the cusp form f is 0. Therefore there will automatically be a
congruence at such a prime. Can we ensure that there is a congruence also at split
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or ramified primes? Note that for a ramified prime q we are really considering the
extension of the Dirichlet character η : (Z/NZ)× → C× to η : (Z/NZ) → C× , where
η(q) = 0 for all ramified primes. We therefore want to ensure that χ(q) ≡ 1 (mod λ)
or χ(q1) + χ(q2) ≡ 2 (mod λ) for some prime λ . Here λ will be a prime of a large
enough coefficient field (i.e. containing the values of χ). Note that the Hecke character
takes its values in C× , in other words, the d-th roots of unity for some d which will
be a divisor of the order of the ray class group. It is known that for ` coprime to d ,
these values will be inequivalent modulo λ . It is clear that if we can guarantee that
the values taken by χ are all congruent to 1 modulo λ then the congruence will be
satisfied. If we have ` = d then this will be possible since we have x` − 1 ≡ (x − 1)`

(mod `). That is, all `-th roots of unity will be congruent to 1 modulo λ . Hence one
necessary condition is that we must have ` dividing the order of the ray class group
Cm = IK(m)/P1,K(m).

There is a known formula for the size of a ray class group. This formula holds for any
number field K , although it is not always easy to calculate. In our case (K being
imaginary quadratic) it is simple.

Recall the definition of a modulus m = m0m∞ . We can write the finite part m0 as

m0 =
∏
p

pm(p)

where m(p) is 1 if p divides m and 0 otherwise.

Theorem 4.2.1. For every modulus m of K there is an exact sequence

0→ U/U1,K(m)→ PK(m)/P1,K(m)→ Cm → C → 0

and canonical isomorphisms

PK(m)/P1,K(m) ∼=
∏
p real
p|m

{±} ×
∏

pfinite
p|m

(OK/pm(p))× ∼=
∏
p real
p|m

{±} × (OK/m0)×,

where

U = O×K , the group of units in K,

U1,K(m) = U ∩ P1,K(m).

Therefore Cm is a finite group of order

hm =
hK .2

r0 .N(m0).
∏

p|m0

(
1− 1

N(p)

)
[U : U1,K(m)]

where r0 is the number of real places of m and hK is the class number of K .
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A proof of this formula is given on page 147 of [Mil]. The idea of the proof is to calculate
the order of the groups in the exact sequence and then use this to calculate the order
of Cm . Note that when K is imaginary quadratic there will be no real places in m .
Also the unit group U is either {±1}, {±1,±i} or {±1,±ζ,±ζ2} where ζ is a cube
root of unity. Note that the last two cases only occur when K = Q(i) or K = Q(

√
−3)

respectively. The factor [U : U1,K(m)] is therefore either 1, 2, 3, 4 or 6. In each case
the only primes involved are 2 or 3 and these are exactly the primes we avoid. This
factor therefore does not cancel out any potential moduli.

We also note that our Eisenstein series E1,η
1 has level |dK | and the cusp form will have

level |dK |.N(m). The level of the cusp form will depend on our choice of modulus.
If we take our modulus to be m = p for a prime p lying above a rational prime p
which splits in K , the cusp form will have level |dK |p . If we took the modulus to be
(m) = p with p lying above an inert prime p , then the level of the corresponding cusp
form would be |dK |p2 . These statements follow because the conductor of ρ is given
by Proposition 4.1.4 and then Theorem 4.1.1 gives the level of the corresponding cusp
forms.

Let us now return to the Eisenstein series and consider the Euler factors which arise.
This should allow us to find some conditions for the modulus ` . First of all considering
E1,η

1 , the corresponding Euler factor is η(p)p − 1. Since η is the quadratic character
we have associated to K

η(p)p− 1 =

{
−(p+ 1) if p is inert in OK ,
p− 1 if p splits in OK .

If we now consider the series Eη,11 we have p− η(p) as our Euler factor. We then have

p− η(p) =

{
p+ 1 if p is inert in OK ,
p− 1 if p splits in OK .

Note that whether we consider E1,η
1 or Eη,11 , the primes dividing the Euler factor will

be the same. This suggests that we should expect to find a congruence with a cusp
form of higher level with modulus λ|` if ` divides the Euler factor, in particular if
it divides either p + 1 or p − 1. Also, as was mentioned in the discussion following
Theorem 4.0.1, we now expect a prime dividing L(0, η) to give a congruence between
the Hecke eigenvalues of an Eisenstein series and a cusp form of the same level. As we
will see, this is where the class number appears. We now split the proof of Theorem 4.0.1
into three separate propositions each dealing with a congruence at a different level.

We will first deal with the case that `|hK .

Proposition 4.2.2. Let K = Q(
√
−d) be an imaginary quadratic field with discrimi-

nant N and associated quadratic character η : (Z/NZ)× → C× . Let ` - 6N be a prime
such that `|hK . Then there exists a normalised Hecke eigenform f ∈ S1(Γ1(N), η′)
(where η′ is congruent to η modulo λ) such that for all q with q prime,

aq(f) ≡ 1 + η(q) (mod λ),
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where λ|` is a prime of Q({an(f)}) = Q(ζ`).

Proof. Since `|hK , the order of CK ' IK/PK , we may choose χ : CK → C× of exact
order ` . Via the isomorphism CK ' Gal(H/K) where H is the Hilbert class field,
we may also view χ as a character of Gal(H/K). Then for a prime ideal q we have
χ([q]) = χ(Frobq) since [q] 7→ Frobq via the Artin isomorphism. We write χ(q) for
χ([q]). We would like to show that χ 6= χσ . We have

χσ(q) = χσ(Frobq)
by def of χσ

= χ(σFrobqσ
−1)

by Theorem 2.2.11
= χ(Frobσq).

Now qσ(q) ∈ PK so χ(qσ(q)) = 1. So χ(q)χσ(q) = χ(q)χ(σ(q)) = χ(qσ(q)) = 1. It
follows that χσ = χ−1 . Since ` is odd and χ has order ` , χ 6= χ−1 . Hence χ 6= χσ ,
as required. This argument is taken from Serre [S, p.241]. Hence by Proposition 4.1.4,
IndK/Qχ is irreducible. By Proposition 4.1.4 and Theorem 4.1.1, there is an associated
cusp form f ∈ S1(Γ1(N), η′). Here η′ = ηχQ . Since χ takes values in `-th roots of
unity that are all congruent to 1 (mod λ), we see that the restriction χQ is also trivial
modulo λ . Hence η′ reduces to η modulo λ . Recall that the Hecke eigenvalues of the
Eisenstein series E1,η

1 at a prime q , are given by

1 + η(q) =


0 if q is inert in OK ,
1 if q ramifies in OK ,
2 if q splits in OK .

Similarly the Hecke eigenvalue at a prime q for the cusp form f is given by

af (q) =


0 if q is inert in OK ,
χ(q) if q = q2 ramifies in OK ,
χ(q1) + χ(q2) if q = q1q2 splits in OK .

Since the values of χ are `-th roots of unity, which reduce to 1 (mod λ), we have that
aq(f) ≡ 1 + η(q) (mod λ) for all primes q .

As we have previously mentioned, the appearance of hK is related to L(0, η), that
is, we can explain this by looking at the Eisenstein side. In the higher weight cases,
dividing the constant term of the Eisenstein series, i.e., dividing the L-value, gave a
congruence between a level N Eisenstein series and a level N cusp form. It turns out
that the same is true here. The constant term now is given by L(0, η) or L(0, η−1)
depending on whether we are considering E1,η

1 or Eη,11 . But since η is a quadratic
character, L(0, η) = L(0, η−1). Since we are working with a quadratic field we have

L(0, η) =
ζK(0)

ζ(0)
= −2ζK(0),
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where ζK is the Dedekind zeta function. We can calculate this value using the following
formula:

lim
s→0

s−rζK(s) = −hK .R(K)

w(K)
,

where R(K) is the regulator of K , w(K) is the number of roots of unity contained
in K and r is the rank of the unit group. Since K is an imaginary quadratic field
R(K) = 1 and r = 0. Hence

lim
s→0

s−0ζK(s) = lim
s→0

ζK(s) = − hK
w(K)

.

We then have

L(0, η) =


hK
2 if K = Q(i),
hK
3 if K = Q(

√
−3),

hK otherwise.

This explains the appearance of the class number hK on the Eisenstein side. Again
since ` > 3, the denominators in the first two cases will not cancel out any potential
moduli.

We now consider the case `|(p− 1) for p a prime that splits in K .

Proposition 4.2.3. Let K = Q(
√
−d) be an imaginary quadratic field with discrimi-

nant N and associated quadratic character η : (Z/NZ)× → C× . Let p be a prime that
splits in K such that p - N . Let ` - 6N be a prime such that `|(p− 1). Then there is
a normalised Hecke eigenform f ∈ S1(Γ1(Np), η′) (where η′ is congruent to η modulo
λ) such that for all q with q prime,

aq(f) ≡ 1 + η(q) (mod λ),

where λ|` is a prime of Q({an(f)}) = Q(ζ`).

Proof. We follow the same strategy as for the proof of Proposition 4.2.2. Our modulus
is now m = p where p ∈ OK is a prime lying above p . We see from the formula in
Theorem 4.2.1 that

hp =
hK .2

r0 .N(p).
(

1− 1
N(p)

)
[U : U1.K(p)]

=
hK .(N(p)− 1)

[U : U1.K(p)]

=
hK .(p− 1)

[U : U1.K(p)]
.

Since `|(p − 1), we see that ` divides the order of IK(p)/P1,K(p). We therefore may
choose χ : IK(p)/P1,K(p) → C× of exact order ` . By Proposition 4.2.2 we assume
the order does not divide the class number, i.e., it divides p − 1 but not hK . Recall
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that [U : U1,K(p)] = 1, 2, 3, 4 or 6 and so does not cancel out any potential moduli
(since ` - 6N ). We would like to show that χ 6= χσ . The character χ factors through
a quotient of the ray class group, namely PK(p)/P1,K(p) ' (OK/p)× ' F×p since p
splits as say pp . We now consider the action of σ on this quotient. Recall that we
have Gal(K/Q) = {1, σ} . It is clear that σ maps p to p , therefore it maps (OK/p)×

to (OK/p)× . It follows that χ and χσ are characters that factor through different
quotients, and have different conductors (one has conductor p , the other p). Hence
it follows that χ 6= χσ . Therefore IndK/Q(χ) is irreducible. By Proposition 4.1.4 and
Theorem 4.1.1, there is an associated cusp form f ∈ S1(Γ1(Np), η′). Here η′ = ηχQ .
Since χ takes values in `-th roots of unity that are all congruent to 1 (mod λ), we
see that the restriction χQ is also trivial modulo λ . Hence η′ reduces to η modulo
λ . (Note that m = p here and N(p) = p). Recall that the Hecke eigenvalues of the
Eisenstein series E1,η

1 at a prime q , are given by

1 + η(q) =


0 if q is inert in OK ,
1 if q ramifies in OK ,
2 if q splits in OK .

Similarly the Hecke eigenvalue at a prime q for the cusp form f is given by

af (q) =


0 if q is inert in OK ,
χ(q) if q = q2 ramifies in OK ,
χ(q1) + χ(q2) if q = q1q2 splits in OK .

Since the values of χ are `-th roots of unity, which reduce to 1 (mod λ), we have that
aq(f) ≡ 1 + η(q) (mod λ) for all primes q .

We now consider the case `|(p+ 1) for p a prime that is inert in K .

Proposition 4.2.4. Let K = Q(
√
−d) be an imaginary quadratic field with discrim-

inant N and associated quadratic character η : (Z/NZ)× → C× . Let p be a prime
that is inert in K such that p - N . Let ` - 6N be a prime such that `|(p + 1). Then
there is a normalised Hecke eigenform f ∈ S1(Γ1(Np2), η′) (where η′ is congruent to
η modulo λ) such that for all q with q prime,

aq(f) ≡ 1 + η(q) (mod λ),

where λ|` is a prime of Q({an(f)}) = Q(ζ`).

Proof. We follow the same strategy as for the proof of Proposition 4.2.2 and Proposi-
tion 4.2.3. Our modulus is now m = p where p ∈ OK is a prime lying above p . We
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see from the formula in Theorem 4.2.1 that

hp =
hK .2

r0 .N(p).
(

1− 1
N(p)

)
[U : U1,K(p)]

=
hK .(N(p)− 1)

[U : U1,K(p)]

=
hK .(p

2 − 1)

[U : U1,K(p)]

=
hK .(p− 1)(p+ 1)

[U : U1,K(p)]
.

Since `|(p + 1) with ` > 3, we see that ` divides the order of IK(p)/P1,K(p). We
therefore may choose χ : IK(p)/P1,K(p) → C× of exact order ` . By Proposition 4.2.2
we may assume the order does not divide the class number, i.e., it divides p+1 but not
hK . Recall that [U : U1,K(p)] = 1, 2, 3, 4 or 6 and so does not cancel out any potential
moduli (since ` - 6N ). We would like to show that χ 6= χσ . The character χ again
factors through the same quotient as in the proof of Proposition 4.2.3 but the modulus
has changed giving us a different finite field. We now factor through PK(p)/P1,K(p) '
(OK/p)× ' F×

p2 . Again we consider the action of σ on this quotient. Since p is now an
inert prime, this quotient is fixed under the action of σ , namely it acts as a non-trivial
automorphism on the quotient. The only non-trivial automorphism of F×

p2 is the p-th

power Frobenius map. Hence if we consider some ideal q ∈ PK(p)/P1,K(p) we have
χ(σ(q)) = χ(qp). Hence χ(q) = χ(σ(q))⇒ χ(q) = χ(qp). That is χ(q)p−1 = 1. Hence
χ = χσ if and only if ` is a prime dividing (p− 1). Since `|(p+ 1) we see that χ 6= χσ .
Hence IndK/Qχ is irreducible. By Proposition 4.1.4 and Theorem 4.1.1, there is an
associated cusp form f ∈ S1(Γ1(Np2), η′). Here η′ = ηχQ . Since χ takes values in
`-th roots of unity that are all congruent to 1 (mod λ), we see that the restriction χQ
is also trivial modulo λ . Hence η′ reduces to η modulo λ . (Note that m = p here and
N(p) = p2 ). Recall that the Hecke eigenvalues of the Eisenstein series E1,η

1 at a prime
q , are given by

1 + η(q) =


0 if q is inert in OK ,
1 if q ramifies in OK ,
2 if q splits in OK .

Similarly the Hecke eigenvalue at a prime q for the cusp form f is given by

af (q) =


0 if q is inert in OK ,
χ(q) if q = q2 ramifies in OK ,
χ(q1) + χ(q2) if q = q1q2 splits in OK .

Since the values of χ are `-th roots of unity, which reduce to 1 (mod λ), we have that
aq(f) ≡ 1 + η(q) (mod λ) for all primes q .
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Remark 4.2.5. Note that in the case where p is an inert prime, the Euler factor is p+1
but the order of the ray class group has (p2− 1) = (p+ 1)(p− 1) in the numerator. We
would therefore expect that dividing p+ 1 should give a congruence when considering
the Eisenstein side, and, as we have shown, this is indeed true. We could have asked
what would happen if `|(p−1) instead. In this case ` would still have divided the order
of the ray class group but not the Euler factor. Hence we shouldn’t have expected a
congruence. This is verified by the fact that χ = χσ in the case where `|(p− 1). That
is IndK/Qχ is not irreducible in this case.

We have now proved Theorem 4.0.1. Our next task will be to prove the generalisation
of this result where we no longer restrict ourselves to having a trivial character.

4.2.2 The Generalisation of Theorem 4.0.1

We now no longer want to assume that one of our characters is trivial and the other
quadratic. Suppose we have an Eisenstein series Eψ,ϕ1 ∈M1(Γ1(N), ψϕ). Here suppose
ψ is primitive with conductor u , ϕ is primitive with conductor v and ψϕ has conductor
N = uv . We know by Proposition 4.1.4, that a dihedral representation comes from
the induction of a character χ of GK = Gal(Q̄/K) where K is a quadratic field.
Associated to this dihedral representation is a cusp form f . We will first show that in
order for a congruence to exist we must have ψ ≡ ηϕ (mod λ) where η is the character
associated to the quadratic field K .

Proposition 4.2.6. Let ψ and ϕ be as above. Let K be an imaginary quadratic field
of discriminant N with associated quadratic character η : (Z/NZ)× → C× . Let χ be
a ray class character for K and fχ the associated cusp form. Then

aq(fχ) ≡ ψ(q) + ϕ(q) (mod λ),

where λ|` is a prime of Q({an(fχ)}) if and only if ψ ≡ ηϕ (mod λ).

Proof. Recall that for an inert prime q in K , the Hecke eigenvalue of fχ is 0. We
therefore would need ψ(q) + ϕ(q) ≡ 0 (mod λ) at such a prime. We immediately see
that we must have ψ(q) ≡ −ϕ(q) (mod λ). Hence we must have ψ = αϕ for some α
such that α(q) ≡ −1 (mod λ) for all inert primes q . We may define α : (Z/NZ)× →
C× by α = ψ

ϕ (where ψ and ϕ are viewed as functions on (Z/NZ)× ). Hence α is a
Dirichlet character modulo N .

Suppose we consider the reduction α viewed as a character α : GQ → F×` . For any
τ ∈ GQ\GK we have α(τ) = −1. For σ ∈ GK we have σ = (στ−1)τ . Hence α(σ) =
α(στ−1)α(τ) = (−1)(−1) = 1. Hence we see that α is a character which takes the
values ±1. Also since the character factors through the quotient GQ/GK = Gal(K/Q)
which is cyclic of order 2, we see that α is in fact quadratic. In particular it is
exactly the quadratic character η associated to K . Hence we deduce that ψ ≡ ηϕ
(mod λ).
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Here we have proven that ψ ≡ ηϕ (mod λ) is a necessary condition. We will now try
and construct a cusp form satisfying a congruence in a similar manner to the method
used to prove Theorem 4.0.1 using this condition. That is, we will prove that the
condition is sufficient. Rather than give separate results with proofs as we did when
proving Theorem 4.0.1, we simply give a sketch proof detailing the differences. We first
investigate the new Euler factors. Associated to the Eisenstein series Eψ,ϕ1 is the Euler
factor ϕ(p)p− ψ(p). We may consider the Euler factor modulo λ .

Suppose first that p is an inert prime in OK . Then η(p) = −1 and we see that
ψ(p) ≡ −ϕ(p) (mod λ). Hence

ϕ(p)p− ψ(p) ≡ ϕ(p)p+ ϕ(p) (mod λ)

≡ ϕ(p)(p+ 1) (mod λ).

Suppose instead we consider a prime p that splits in OK . We now have η(p) = 1 hence
ψ(p) ≡ ϕ(p) (mod λ). Hence

ϕ(p)p− ψ(p) ≡ ϕ(p)p− ϕ(p) (mod λ)

≡ ϕ(p)(p− 1).

Note that in both cases we see (p+ 1) and (p− 1) appearing as before. We therefore
see that ` divides (p+ 1) in the inert case and (p− 1) in the split case since λ|` . We

could also consider the Eisenstein series Eϕ,ψ1 . However since ψ and ϕ are related via a
congruence condition, we will end up with the same factors. We would therefore expect
that dividing p − 1 in the split case or dividing p + 1 in the inert case should give a
congruence just as in Theorem 4.0.1. Whether there is a congruence will depend on our
choice of ray class character. It will turn out that we only need a slight modification.

If we again consider a potential congruence, now using what we know about the char-
acters ψ and ϕ , we will be able to determine which ray class character we will need
to use. In the proof of Proposition 4.2.6, we considered a potential congruence at inert
primes in order to determine conditions for the Dirichlet characters ψ and ϕ . We now
want to consider the split primes. For a ray class character χ (i.e. a character of GK )
we want

ψ(q) + ϕ(q) ≡ χ(q1) + χ(q2) (mod λ) if q = q1q2 splits in OK .

We already know that ψ ≡ ηϕ (mod λ). Hence at a split prime q we have ψ(q) ≡
η(q)ϕ(q) (mod λ) ≡ ϕ(q) (mod λ). We therefore need

2ϕ(q) ≡ χ(q1) + χ(q2) (mod λ) if q = q1q2 splits in OK .

If we take χ = χ1χ2 , where χ1 is the ray class character we use in Theorem 4.0.1, which
depends on which particular case we are in, we then need to determine χ2 . Note that
in all cases χ1 ≡ 1 (mod λ). We note that before we simply had 2 on the LHS of the
congruence so it was enough to guarantee that the `-th roots of unity were congruent
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to 1 (mod λ) in order for the congruence to be satisfied. However, since ϕ is arbitrary,
we now have more possibilities for the LHS. If we take χ2 = ϕ ◦NK/Q , where NK/Q is
the norm map, then we see that the congruence will be satisfied. This follows since

χ(q1) + χ(q2) = χ1(q1)χ2(q1) + χ1(q2)χ2(q2)

≡ (ϕ ◦NK/Q)(q1) + (ϕ ◦NK/Q)(q2) (mod λ)

≡ 2ϕ(q) (mod λ).

Here the second line follows since χ1(q1) ≡ χ1(q2) ≡ 1 (mod λ) and the third follows
since NK/Q(q1) = NK/Q(q2) = q . The conductor of χ2 will depend on the conductor of
ϕ . Assume the conductor of ϕ is given by v = p1 . . . pn . Since v|N , these are ramified
primes in K . In particular v factors as p2

1 . . . p
2
n in OK . The conductor of χ2 will

then be v = p1 . . . pn . Taking the norm of any factor we see that NK/Q(pi) = pi . This
explains why we are adding a factor of v to the level of the cusp form in Theorem 4.0.2
since NK/Q(v) = p1 . . . pn .

We can also consider the congruence at the ramified primes. Since uv = N , the ramified
primes are exactly those appearing in the prime factorisation of u and v . We again
use the extended definition of a Dirichlet character. That is we have ψ : (Z/uZ)→ C×
and ϕ : (Z/vZ) → C× . For any non-invertible element q ∈ (Z/uZ) we have ψ(q) = 0
and for any non-invertible element q ∈ (Z/vZ) we have ϕ(q) = 0. We want to satisfy

ψ(q) + ϕ(q) ≡ χ(q) (mod λ) if q = q2 ramifies in OK .

Suppose first that q|u . We have ψ(q) = 0 but ϕ(q) depends on whether q|v We
therefore need to satisfy

ϕ(q) ≡ χ(q) (mod λ).

Since χ1(q) ≡ 1 (mod λ) and NK/Q(q) = q , so χ2(q) = ϕ(q), we see that the congru-
ence is satisfied for such a ramified prime regardless of whether q|v .

Now suppose q|v . We have ϕ(q) = 0 and ψ(q) depends on whether q|u . By the
argument above the RHS of the congruence will be congruent to ϕ(q) (mod λ). Hence
the RHS is congruent to 0 (mod λ). We therefore need

ψ(q) ≡ 0 (mod λ).

However we know that ψ(q) ≡ η(q)ϕ(q) (mod λ) ≡ 0 (mod λ). It follows that the
congruence holds for these primes as well.

In conclusion we see that the only modification we have made is to the ray class char-
acter χ . We have simply multiplied by another ray class character χ2 = ϕ◦NK/Q with
conductor v = p1 . . . pn . This has the effect of raising the level of the cusp form f in
each case by v = p1 . . . pn since NK/Q(v) = v . Note that this choice is arbitrary, we
could just have easily had χ2 = ψ ◦ NK/Q due to the fact that ϕ ≡ ηψ (mod λ) as
well since η is quadratic. This would instead have the effect of raising the level by u .
We note that in Theorem 4.0.1, χ2 was trivial since we had a trivial character (which
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we could choose to be ϕ arbitrarily and so v = 1 in this case). This choice of χ2 for
Theorem 4.0.1 was enough because we had already chosen a ray class character that
would guarantee the congruence held mod λ . We also note that in each case we still
obtain the same conditions on when χ = χσ . This is because we can simply consider
what is happening to χ1 . This follows since we have χ2 = χ2σ (This can be seen
by considering the norms of ideals in OK ). If χ1 6= χ1σ , then we see that χ 6= χσ .
We also note that modulo λ the ray class character χ reduces to χ2 = ϕ ◦ NK/Q .
It follows that in this case χQ ≡ ϕ2 (mod λ). Hence the character of the induced
representation, and therefore the character of the cusp form, will be ε = ηχQ ≡ ηϕ2

(mod λ) ≡ ψϕ (mod λ). Other than these changes we could state results similar to
Propositions 4.2.2, 4.2.3 and 4.2.4 along with proofs following largely the same steps.
We have therefore given a (sketch) proof of Theorem 4.0.2.

Although we will not cover the details of the Bloch-Kato conjecture in the case of
weight 1, we note that the exact same argument as in Section 3.3 still applies in this
case. Although the standard results of modular forms break down in the case of weight
1, so in some sense the theory is harder, the Bloch-Kato conjecture is actually more
straightforward. Here the conjecture is basically a consequence of Dirichlet’s analytic
class number formula.

In order to prove Theorem 4.0.3, we will need to see some preliminaries on lifting
projective representations.

4.2.3 Liftings of Projective Representations

Let K be a global or local field. We assume throughout that our non-Archimedean
local fields have finite residue field. Let K̄/K be a separable closure of K , and let
GK = Gal(K̄/K). Let ρ̃ be a projective representation of GK :

ρ̃ : GK → PGLn(C) = GLn(C)/C×.

We will assume throughout that all representations of GK are continuous.

Definition 4.2.7. A lifting of ρ̃ is a (continuous) linear representation ρ : GK →
GLn(C) such that the diagram

GK GLn(C)

PGLn(C)

ρ

ρ̃

commutes.
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Note that although we have given a general definition here, we will only be interested
in the case K = Q and n = 2.

If ρ is a lifting of ρ̃ , then so is a twist by any one dimensional linear representation χ
of GK , i.e., χ⊗ ρ is a lifting of ρ̃ ; further any lifting of ρ̃ is of this form, for some χ .

We would like to know when a particular projective representation can be lifted. It
turns out that this is related to cohomology. We give the basic definitions that we will
need. In the following G is a group with A a G-module.

Definition 4.2.8. (1) The group of i-cochains of G with coefficients in A is the set
of functions from Gi → A :

Ci(G,A) = {f : Gi → A}.

(2) The i-th differential di = diA : Ci(G,A)→ Ci+1(G,A) is the map

di(f)(g0, g1, . . . , gi) = g0.f(g1, . . . , gi)

+
i∑

j=1

(−1)jf(g0, . . . , gj−2, gj−1gj , gj+1, . . . , gi) + (−1)i+1f(g0, . . . , gi−1).

Definition 4.2.9. (1) We set Zi(G,A) = kerdi , the group of i-cocylces of G with
coefficients in A

(2) We set B0(G,A) = 0 and Bi(G,A) = imdi−1 for i ≥ 1. We refer to Bi(G,A) as
the group of i-coboundaries of G with coefficients in A .

Definition 4.2.10. We define the i-th cohomology group of G with coefficients in A
to be

H i(G,A) = Zi(G,A)/Bi(G,A).

These are the definitions for group cohomology. There are some technical differences
when working with profinite groups (as we will be doing) but the basic ideas still work.
Refer to [Sha] for the technical aspects of Galois cohomology. We may consider C× as
a GK module, on which GK acts trivially. Let H2(GK ,C×) denote the 2-cohomology
group of the profinite group GK with coefficients in C× . Suppose for each g ∈ GK
we fix a lifted element P (g) where we have lifted from PGL2(C) to GL2(C). The lifts
then satisfy

P (gh) = α(g, h)P (g)P (h)

for some α(g, h) ∈ C× . In fact the map α : GK×GK → C× is a 2-cocycle and satisfies
the relation

α(g, hk)α(h, k) = α(g, h)α(gh, k)

for all g, h, k ∈ GK . The cocycle α depends on the choice of lift P ; a different choice
Q(g) = δ(g)P (g) will result in a different cocycle

β(g, h) = δ(gh)δ−1(g)δ−1(h)α(g, h).
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Hence P defines a unique class in H2(GK ,C×). If H2(GK ,C×) is non-trivial, this
may prevent the lifting process as it leads to an extension problem. Thankfully this is
not an issue in our case.

Theorem 4.2.11 (Tate). Let K be a global or local field. Then H2(GK ,C×) = 1.

Corollary 4.2.12. Every projective representation of GK has a lifting.

For a proof of Theorem 4.2.11 see Section 6.5 of [S].

4.2.4 Proof of Theorem 4.0.3

In this section we will prove Theorem 4.0.3, that is, we will show that there are no
other congruences in the weight 1 case. Note that we have already covered all possible
congruences in the dihedral case in proving Theorem 4.0.2. We now consider the
remaining cases where our projective Galois representation ρ̃ has image isomorphic
to one of A4, S4 or A5 . Since representation theory works much the same way in
characteristic p for p a prime unless p divides the order of the group, we expect there
to be only a handful of possible moduli for congruences. Namely 2 and 3 in the cases
of A4 and S4 and 2, 3 and 5 for A5 . Note that earlier, we avoided 2 and 3 as they
were considered small primes. Here we won’t consider 2, but we will be interested in
potential congruences modulo 3 or 5.

Our first task is to consider the 2-dimensional, odd, irreducible (in characteristic 0)
projective representations of A4, S4 and A5 . It turns out that it is quite hard to come
up with these representations and in fact it is easier to consider certain linear repre-
sentations that are in one-to-one correspondence with these projective representations.
This leads us to the notion of a Schur cover.

In the early 20th century, Issai Schur began studying projective representations, de-
veloping the theory for finite groups. He wrote two papers, one in 1904, one in 1907,
laying the foundations of the theory. In his 1911 paper [Schur] he applied the work he
had been doing to the case of the symmetric and alternating groups. The basic idea
is that each of the symmetric and alternating groups have a corresponding covering
group of which linear representations give you the projective representations you want
to know about.

4.2.5 Schur multipliers and Schur Covers

In this section we cover the basic material needed in order to study the projective
representations of A4, S4 and A5 . The following background material is from [HoHu].
In order to make the definition of the Schur multiplier more intuitive we first restate
our definition of a projective representation.
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Definition 4.2.13. Let V be a finite dimensional complex vector space. A (complex)
projective representation of a group G on V is a function P from G into GL(V ), the
group of automorphisms of V , such that

(1) P (1G) is the identity linear transformation of V ; and

(2) given elements x and y in G , there is a non-zero complex number α(x, y) such
that

P (x)P (y) = α(x, y)P (xy).

Suppose the dimension of V is d . If we choose a basis for V , we obtain a projective
matrix representation P : G→ GLd(C).

Each linear transformation P (g) is invertible. It therefore follows from (1) that, for all
g in G ,

α(g, 1) = 1 = α(1, g). (4.2)

Using associativity of composition and of group multiplication to evaluate
P (x)P (y)P (z) gives that

α(x, yz)α(y, z) = α(x, y)α(xy, z) (4.3)

for all x, y and z in G . Any map α : G×G→ C× := C\{0} satisfying conditions (4.2)
and (4.3) is said to be a 2-cocycle. Notice that this is the same relation that came up
when we were considering cohomology.

Definition 4.2.14. A linear representation of a group G on a finite dimensional vector
space V is a homomorphism R : G → GL(V ). Thus a linear representation is a
projective representation with trivial 2-cocycle.

It is clear that this notion is another way of viewing the familiar notion that two
elements u, v in a projective space P (V ) are equivalent under the relation u ∼ v if
and only if u = λv for some λ ∈ C× . An element f in GL(V ) induces an action f∗

on P (V ) by

f∗[v] = [f(v)].

Thus f∗ may be regarded as an element of PGL(V ) = GL(V )/C×I where I is the
identity matrix. In matrix terms, suppose V has dimension d , let Z(d) be the set
of non-zero multiples of the identity matrix, and define PGLd(C) to be the quotient
group GLd(C)/Z(d). The isomorphic groups PGL(V ) and PGLd(C) are known as
projective linear groups. Given a projective representation P of degree d for the group
G , the map P ′ : G→ PGLd(C) which takes an element g of G to the coset P (g)Z(d)
is a homomorphism. Conversely, any such homomorphism P ′ gives a projective repre-
sentation in the original sense, by choosing a representative P (g) for the coset P ′(g)
(with the convention that P(1) = I). The homomorphism P ′ determines a 2-cocycle
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α by this process, but the association to P ′ of P and α is not unique. If we make a
different choice Q(g) for P (g), then

Q(g) = δ(g)P (g)

for all g in G , where δ(1) = 1 and δ(g) is in C× . If β is the 2-cocycle associated with
Q , it is related to α by the rule:

β(x, y) = δ(x)δ(y)(δ(xy))−1α(x, y)

for all x and y in G . Two 2-cocycles related in this way are said to be cohomologous.
Denote the cohomology class of a 2-cocycle α by [α] . The set of such classes forms an
abelian group, the Schur multiplier, denoted H2(G,C×) or M(G), under the operation

[α][β] = [αβ],

where

(αβ)(x, y) = α(x, y)β(x, y)

for all x and y in G .

Hopefully it is clear that the Schur multiplier is the second cohomology group of G
with coefficients in C× where we consider C× as a G-module with trivial G-action.
It would be nice if we knew a little more about the structure of the Schur multiplier.
Luckily the following theorem addresses this very issue.

Theorem 4.2.15. For any finite group G, the Schur multiplier has finite exponent
dividing the order of G. Furthermore, if a cohomology class has order e, then there is
a representative of that class which takes only e-th roots of unity as its values. Thus
M(G) is a finite group.

A proof of this result is given on pages 3 and 4 of [HoHu]. We can now produce a
central extension of M(G) by G containing M(G) as its commutator subgroup. In
other words we have a central extension

1→ A→ C → G→ 1,

where C is known as a representation group or Schur covering group of G .

Definition 4.2.16. A Schur covering group for G is any group C satisfying the fol-
lowing conditions:

(1) C has central subgroup A contained in the commutator subgroup of C .

(2) C/A ∼= G .

(3) A ∼= M(G).
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Such a group always exists and can be constructed in a particular way as is proven
in [HoHu, Theorem 1.2, p.5]. One thing to note from this construction is that we
choose a set of symbols r(g) in bijective correspondence with the elements of G . Now
that we have these covering groups we need to find a way to relate these to projective
representations. The next theorem will address this issue. Note that this result relies
on the choice of symbols r(g).

Theorem 4.2.17. Let C be a Schur covering group of G. Given a projective repre-
sentation P of G, there is a function δ : G→ C× and a linear representation R of C
such that, for all g in G,

P (g) = δ(g)R(r(g)).

Proof. See pages 7 and 8 of [HoHu].

We also have a converse to this result.

Theorem 4.2.18. Let C be a Schur covering group for G and let λ : A→ C× be any
homomorphism with A as above. Suppose that R is a linear representation of C such
that R(a) = λ(a)I for each a in A. Define P by P (g) = R(r(g)) for all g in G.
Then P is a projective representation whose associated cocycle is α , where

α(x, y) = λ (Φ(x, y))

for all x and y in G.

Proof. The proof of the previous result can simply be reversed.

The definition of Φ here is not too important (it appears in Theorem 1.2 of [HoHu]).
The most important thing is that we now have a bijective correspondence between
projective representations of a group G and linear representations of its Schur covering
group. This will allow us to more easily study the cases we are interested in.

4.2.6 Completing the Proof

We are now in a position to prove Theorem 4.0.3. We first show that considering the
linear representation associated to the Schur cover is in fact equivalent to considering
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the projective representation. Consider the following diagram:

GQ G C

GL2(OK) PGL2(OK) GL2(OK)

GL2(Fλ) PGL2(Fλ) GL2(Fλ)

θ θ θ̃

If we had a congruence (` > 2) this would imply that ψ and ϕ would be the composition
factors of the residual representation in the lower left of the above diagram. We would
therefore have a line invariant under the GL2 action. This invariance would still hold
in PGL2 . It follows that this line must also be invariant in the lower right of the above
diagram. In other words, the existence of a congruence implies that there exists a line
L ⊂ F2

λ , which is a 1-dimensional subspace, satisfying

θ(g)L = L for all g ∈ GQ ⇒ θ(g)L = L for all g ∈ G⇒ θ̃(g)L = L for all g ∈ C.

It therefore follows that we may consider reducibility of the linear representation asso-
ciated to the Schur cover in order to determine if a congruence exists.

We need to know what the Schur multipliers and Schur covers are for each of A4, S4

and A5 . It turns out that each of these groups has the same Schur multiplier, namely
Z/2Z . We then have the following Schur coverings:

1→ Z/2Z→ SL(2, 3)→ PSL(2, 3) ∼= A4 → 1

1→ Z/2Z→ GL(2, 3)→ PGL(2, 3) ∼= S4 → 1

1→ Z/2Z→ SL(2, 5)→ PSL(2, 5) ∼= A5 → 1

Note that there is a second non-isomorphic Schur covering group for S4 but we need
only work with one of them so we ignore this extra group. We therefore now need to
know about the irreducible 2-dimensional linear representations of SL(2, 3),GL(2, 3)
and SL(2, 5). Character tables for each of these groups can be found online. We present
these below.

The character table given in Table 4.1 is for SL(2, 3) and can be found online at [2].
This group has size 24 and therefore we should only expect there to be potential con-
gruences modulo 2 or 3. Since we are looking for potential congruences we simply need
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to consider the traces (i.e. character values) modulo 2 and 3 of the two-dimensional
representations compared to a sum of two one-dimensional representations. This is sim-
ply because if a congruence exists, then the irreducible two-dimensional representation
will reduce to a sum of two characters (one-dimensional representations) and the traces
would have to match modulo p . Suppose we call the one-dimensional representations
χ1, χ2 and χ3 respectively. We may then form a table comparing the traces of sums of
characters against the traces of the two-dimensional representations. These are given
in Table 4.2.

It is fairly clear that there can be no possible congruence modulo 3 here. Also note
that we are avoiding congruences modulo 2. So we conclude that there can be no
congruences when our projective image is A4 .

The character table given in Table 4.3 is for GL(2, 3) and can be found online at [3].
We now use the same process as before. Let the one-dimensional representations be χ1

and χ2 . The comparisons of traces are given in Table 4.4.

Again we should only be expecting potential congruences modulo 2 or 3 here. However

it is clear, looking at the

(
1 1
0 1

)
column, that the two-dimensional representations

cannot match the possible traces modulo 2 (even though we are avoiding this any-
way). It is also fairly clear that the only match modulo 3 is between the second row
(χ1 + χ2 ) and the fourth row (the first two-dimensional representation). Therefore

this two-dimensional representation reduces to

(
χ1 ∗
0 χ2

)
modulo 3. However if we

compare the character values of this particular two-dimensional representation with
the unique two-dimensional representation of S4 , we notice that these values match
up. In particular, this representation must factor through S4 . Now S4 has a normal
subgroup of order 4, namely the Klein four-group. If we take the quotient of S4 by
this subgroup we get S3 and this particular two-dimensional representation descends
to a faithful representation of this group. Hence the two-dimensional representation
of GL(2, 3) that we are interested in must factor through S3 . We therefore cannot
possibly have full projective image S4 . Hence we conclude that there are no possible
congruences when the projective image is S4 .

It turns out that the only one-dimensional representation of SL(2, 5) is the trivial
representation. Therefore there is no possibility for the reduction modulo p of a two-
dimensional representation leading to a congruence when we have projective image A5 .
We therefore do not give the character table for SL(2, 5), but note that it can be found
here [4].

The only other possibility that we could have for a congruence is the so called “ethereal
forms”. These forms are mod p forms that cannot be lifted to characteristic 0 and are
the subject of Schaeffer’s thesis [Sch]. Since these forms are in characteristic p it would
only make sense to try and reduce a particular two-dimensional Galois representation
modulo p in order to try and find a congruence. However it turns out that this is not
possible. Proposition 8.1.3 of [Sch] says that these forms are cusp forms. We then have
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the following which is Theorem 2.4.1 of [Sch].

Theorem 4.2.19. Let k ≥ 1 and f ∈ Mk(N,χ;Fp) be a newform. There exists a
continuous semisimple representation

ρf : Gal(Q̄/Q)→ GL2(Fp)

unramified outside Np, such that for all ` - Np and any Frobenius σ` above ` we have

Trρf (σ`) = a(f ;T`) and detρf (σ`) = χ(`)`k−1.

Furthermore, this representation is irreducible only if f is a cusp form.

We note that the case k ≥ 2 follows from results of Eichler-Shimura and Deligne. Since
all ethereal forms are cusp forms, this implies that the associated Galois representation
is irreducible in characteristic p . Therefore there cannot be any congruences in this
case either.



C
H

A
P

T
E

R
4
.

T
H

E
W

E
IG

H
T

1
C

A
S

E
95

Representation/conjugacy class

(
1 0
0 1

) (
−1 0
0 −1

) (
0 −1
1 0

) (
1 1
0 1

) (
1 −1
0 1

) (
−1 1
0 −1

) (
−1 −1
0 −1

)
representative and size (size 1) (size 1) (size 6) (size 4) (size 4) (size 4) (size 4)

trivial one-dimensional (χ1) 1 1 1 1 1 1 1
non-trivial one-dimensional (χ2) 1 1 1 ω ω2 ω2 ω
non-trivial one-dimensional (χ3) 1 1 1 ω2 ω ω ω2

two-dimensional 2 -2 0 -1 -1 1 1
two-dimensional 2 -2 0 −ω −ω2 ω2 ω
two-dimensional 2 -2 0 −ω2 −ω ω ω2

three-dimensional 3 3 -1 0 0 0 0

Table 4.1: Character Table for SL(2, 3)

Here ω denotes a primitive cube root of unity.
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Sums of characters and

(
1 0
0 1

) (
−1 0
0 −1

) (
0 −1
1 0

) (
1 1
0 1

) (
1 −1
0 1

) (
−1 1
0 −1

) (
−1 −1
0 −1

)
two-dimensional

representations/conjugacy class
representative and size (size 1) (size 1) (size 6) (size 4) (size 4) (size 4) (size 4)

χ1 + χ1 2 2 2 2 2 2 2
χ1 + χ2 2 2 2 1 + ω 1 + ω2 1 + ω2 1 + ω
χ1 + χ3 2 2 2 1 + ω2 1 + ω 1 + ω 1 + ω2

χ2 + χ2 2 2 2 2ω 2ω2 2ω2 2ω
χ2 + χ3 2 2 2 ω + ω2 ω + ω2 ω + ω2 ω + ω2

χ3 + χ3 2 2 2 2ω2 2ω 2ω 2ω2

two-dimensional 2 -2 0 -1 -1 1 1
two-dimensional 2 -2 0 −ω −ω2 ω2 ω
two-dimensional 2 -2 0 −ω2 −ω ω ω2

Table 4.2: Comparison of traces of sums of characters of SL(2, 3) and two-dimensional representations
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Representation/conjugacy class

(
1 0
0 1

) (
−1 0
0 −1

) (
0 1
−1 0

) (
0 1
1 −1

) (
0 1
1 1

) (
1 1
0 1

) (
−1 1
0 −1

) (
1 0
0 −1

)
representative and size (size 1) (size 1) (size 6) (size 6) (size 6) (size 8) (size 8) (size 12)

trivial (χ1) 1 1 1 1 1 1 1 1
non-trivial one-dimensional (χ2) 1 1 1 -1 -1 1 1 -1

two-dimensional 2 2 2 0 0 -1 -1 0

two-dimensional 2 -2 0
√
−2 −

√
−2 -1 1 0

two-dimensional 2 -2 0 −
√
−2

√
−2 -1 1 0

three-dimensional 3 3 -1 -1 -1 0 0 1
three-dimensional 3 3 -1 1 1 0 0 -1
four-dimensional 4 -4 0 0 0 1 -1 0

Table 4.3: Character Table for GL(2, 3)

Reduction/conjugacy class

(
1 0
0 1

) (
−1 0
0 −1

) (
0 1
−1 0

) (
0 1
1 −1

) (
0 1
1 1

) (
1 1
0 1

) (
−1 1
0 −1

) (
1 0
0 −1

)
representative and size (size 1) (size 1) (size 6) (size 6) (size 6) (size 8) (size 8) (size 12)

χ1 + χ1 2 2 2 2 2 2 2 2
χ1 + χ2 2 2 2 0 0 2 2 0
χ2 + χ2 2 2 2 -2 -2 2 2 -2

two-dimensional 2 2 2 0 0 -1 -1 0

two-dimensional 2 -2 0
√
−2 −

√
−2 -1 1 0

two-dimensional 2 -2 0 −
√
−2

√
−2 -1 1 0

Table 4.4: Comparison of traces of sums of characters of GL(2, 3) and two-dimensional representations



Chapter 5

Congruences Between Genus 1
and Genus 2 Cusp Forms

Now that we have proven a congruence in the case of weight 1, the next step would be
to either consider similar congruences with prime powers as the moduli of a congruence,
or to consider congruences involving different types of modular forms. In attempting
to adapt the method used in the weight 1 case, it will turn out that we are considering
the latter case.

One of the main ingredients of the weight 1 case was the one-dimensional representation
of GK (i.e. the Hecke character). This representation was induced to GQ to give a
two-dimensional representation whose associated modular form (a weight 1 cusp form)
satisfied a congruence. We now aim to start with a two-dimensional representation and
induce this to get a four-dimensional representation. The modular form attached to
this representation will be a Siegel cusp form. Again it will turn out that this modular
form will satisfy a congruence.

The first question we might be interested in asking is: Which two dimensional repre-
sentation should we induce? The correct representation will be the one attached to a
Hilbert modular form. The induction of the Galois representation will be equivalent to
taking a theta lift of the Hilbert modular form. Just as in the weight 1 case where we
needed χ 6= χσ , we will need the two-dimensional Galois representation associated to
the Hilbert modular form to be non Galois-invariant. We will first cover the case which
leads to a scalar valued Siegel cusp form before moving on to the more general case of
vector valued Siegel modular forms.

We start by choosing a weight 2 cusp form f ∈ S2(Γ0(N)). We will then take a base
change of this to get a Hilbert cusp form which, as we will show later, will usually
have level norm N2 . The level norm will only be lower if N contains primes that
ramify in the field K that we base change to. As a base change, this modular form
is Galois-invariant. We therefore use a result of Taylor, which is a generalisation of a
result of Ribet, to raise the level of the Hilbert modular form. If we raise the level by

98
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a prime that splits in K , then this step will ensure that the Hilbert modular form is
no longer Galois-invariant. We will then be able to use a result of Johnson-Leung and
Roberts to take a theta lift of this Hilbert modular form to obtain a Siegel paramodular
cusp form whose level and Hecke eigenvalues we will know. This cusp form will then
satisfy a congruence, moreover it will be compatible with the congruence satisfied by
the Hilbert modular forms involved in the level raising.

Before we move on to explaining this process we first need to cover some background
material. First we will discuss the more standard material on Hilbert modular forms
and Siegel modular forms. We then move on to discuss base change, level raising and
theta lifts.

§ 5.1 Hilbert Modular Forms

There are many references for the theory of Hilbert modular forms such as Freitag [Frei],
van der Geer [Geer], Goren [Goren] and The 1-2-3 of Modular Forms [1-2-3]. Here we
follow the treatment given by Dembélé and Voight [DemVoi].

When working with classical (elliptic) modular forms we often consider the action of
the modular group SL2(Z) on the upper half plane. Of course, SL2(Z) is a discrete
subgroup of SL2(R), which is itself a subgroup of GL2(R). Here we can consider Z as
the ring of integers of Q . Let K be a totally real field with [K : Q] = n and let OK
be the ring of integers of K .

For simplicity we assume that the narrow class number of K is 1. Recall that the
class group was defined as CK = IK/PK . The narrow class group is defined to be
C+
K = IK/P

+
K where P+

K is the totally positive principal fractional ideals. The narrow
class number is then the order of this group.

When n = 1 we are in the case of classical modular forms. When n ≥ 2, let
v1, v2, . . . , vn : K → R be the real places of K . Given an element x ∈ K ,
write vi(x) = xi for the i-th embedding of x . Given a matrix γ ∈ M2(K) write
vi(γ) = γi ∈M2(R).

Consider the group

GL+
2 (K) = {γ ∈ GL2(K) : detγi > 0 for i = 1, . . . , n}.

Since we have n different embeddings it is natural to consider an action on Hn (n
copies of the upper half plane H) by coordinatewise fractional linear transformations

z 7→ γz = (γizi)i =

(
aizi + bi
cizi + di

)
i=1,...,n

.

As one might expect, we could consider the action of the Hilbert modular group
SL2(OK) ⊂ GL+

2 (OK) ⊂ GL+
2 (K). We also have the notion of congruence subgroups
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in this new setting. Suppose N ∈ OK is a non-zero ideal. Then we define

Γ0(N) =

{
γ =

(
a b
c d

)
∈ GL+

2 (OK) : c ∈ N

}
⊂ GL+

2 (OK) ⊂ GL+
2 (K).

We almost have the tools necessary to give the definition of a Hilbert modular form.
First however, we define the automorphy factors.

Definition 5.1.1. For γ =

(
a b
c d

)
∈ GL2(R) and z ∈ H , define

j(γ, z) = det(γ)−1/2(cz + d).

Definition 5.1.2. A Hilbert modular form of weight (k1, . . . , kn) and level N is a
holomorphic function f : Hn → C such that

f(γz) =

(
a1z1 + b1
c1z1 + d1

, . . . ,
anzn + bn
cnzn + dn

)
=

(
n∏
i=1

j(γi, zi)
ki

)
f(z)

for all γ ∈ Γ0(N). If k1 = k2 = · · · = kn = k , then f is said to be of parallel weight k .

We will be interested in the case where K = Q(
√
d) is a real quadratic field and f is

of parallel weight 2. This will be the case from now on, unless otherwise stated. In
other words, we will consider functions f : H2 → C such that

f(γz) =

(
a1z1 + b1
c1z1 + d1

,
a2z2 + b2
c2z2 + d2

)
= j(γ1, z1)2j(γ2, z2)2f(z)

=
(c1z1 + d1)2(c2z2 + d2)2

det(γ1)det(γ2)
f(z).

In this case we denote the space of Hilbert modular forms of parallel weight 2 and
level N by M2(N) and we denote the cusp forms by S2(N). For modular forms of
non-parallel weight, these spaces would be denoted Mk1,k2(N) and Sk1,k2(N). Again,
these spaces are finite dimensional C-vector spaces.

We note that the definition of a Hilbert modular form makes no reference to holomorphy
at the cusps. This is because it automatically follows from Koecher’s principle [Geer,
§1] that we have holomorphy at the cusps. Just as in the classical case, there is an
orthogonal decomposition of M2(N) = S2(N)⊕ E2(N) where E2(N) is spanned by the
Eisenstein series of level N .

Hilbert modular forms, just like classical modular forms, have a Fourier expansion.
This expansion however, is a little more complicated. For a fractional ideal a of K let,

a+ = {x ∈ a : xi > 0 for i = 1, . . . , n}.

In other words a+ is all the elements of a that are positive under all real embeddings
of K . If d denotes the different ideal of K , then the inverse different d−1 = {x ∈ K :
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Tr(xy) ∈ Z for all y ∈ OK} is a fractional ideal of K containing OK . The different
ideal d is then the inverse of this ideal. A Hilbert modular form f ∈ M2(N) then
admits the following Fourier expansion

f(z) = a0 +
∑

µ∈(d−1)+

aµe
2πiTr(µz).

Notice how the Fourier coefficients are no longer simply indexed by integers, they are
now indexed by elements of an ideal. Suppose f ∈M2(N) and n is a non-zero ideal of
OK . Since we assumed that K has narrow class number 1, we may write n = νd−1 for
some ν ∈ d+ . If we define an = aν then the transformation rule implies that an does
not depend on the choice of ν . We therefore call an the Fourier coefficient of f at n .

Just as in the classical case there are Hecke operators acting on the spaces M2(N) and
S2(N). Again these operators are pairwise commuting diagonalisable operators. They
are now however indexed by ideals rather than integers. Given a prime ideal p - N and
a totally positive generator p of p we have

(Tpf)(z) = N(p)f(pz) +
1

N(p)

∑
a∈Fp

f

(
z + a

p

)
,

where Fp = OK/p is the residue field of p . We could also write this in terms of the
usual double coset decomposition. We have

(Tpf)(z) =
∑

a∈P1(Fp)

(f |kπa)(z)

where π∞ =

[
p 0
0 1

]
and πa =

[
1 a
0 p

]
for a ∈ Fp .

As in the classical case, if f ∈ S2(N) is an eigenform, normalised so that a(1) = 1, then
Tnf = anf , and each an is an algebraic integer.

We can also easily generalise the notion of an L-function attached to f . Associated to
an eigenform f ∈ S2(N) is the L-function

L(f, s) =
∑
n

an
N(n)s

.

We also have an associated l-adic Galois representation

ρf,l : Gal(K/K)→ GL2(OK,l)

for primes l of OK such that, for any prime p - Nl , we have

Tr(ρf,l(Frobp)) = ap(f) and det(ρf,l(Frobp)) = N(p).
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Note that in this section we have assumed that the narrow class number is 1. This
simply made it easy to consider the Fourier expansion of a Hilbert modular form and
also to define the Hecke operators. We however note that the definitions can be gen-
eralised to the case where the narrow class number is not 1. For those wishing to see
the details of this see [DemVoi, §7-9]. We also use this condition later when discussing
the level raising result for Hilbert modular forms.

§ 5.2 Siegel Modular Forms

As with Hilbert modular forms, there are many references for Siegel modular forms.
Among these are Andrianov [A], Kohnen [Ko], Buzzard [Bu2] and [1-2-3]. Here we
broadly follow the outline given in Fretwell’s thesis [Fret2], omitting any details irrele-
vant to this thesis.

Siegel modular forms are a different kind of generalisation of classical modular forms.
Whereas Hilbert modular forms involved working over a totally real field and looking
at an action on Hn , we instead consider an action of a different group on a higher
dimensional upper half plane. Consider the symplectic group of genus g

Sp2g(R) = {γ ∈M2g(R) : γJγT = J},

where:

J =

[
0 Ig
−Ig 0

]
.

This group can be thought of as a higher dimensional version of SLn(R). Just as we
have SLn(R) ⊂ GLn(R), with SLn(R) the kernel of the determinant map of GLn(R),
we have Sp2g(R) ⊂ GSp2g(R) where

GSp2g(R) = {γ ∈M2g(R) : γJγT = µ(γ)J, µ(γ) ∈ R×}.

The group GSp2g(R) is known as the group of similitudes of Sp2g(R). The similitude
map µ : GSp2g(R) → R× is analogous to the determinant map for GLn(R) and in
particular Sp2g(R) is the kernel of this map. We note that µ(γ) is sometimes also
known as the multiplier of γ .

Now that we have a generalisation of the special linear and general linear groups, we
next generalise the upper half plane. The Siegel upper half space of genus g is given
by

Hg = {Z ∈Mg(C) : ZT = Z, Im(Z) > 0}.

Here Im(Z) > 0 means that Im(Z) is positive definite. Note that when g = 1,
this reduces to the usual upper half plane H . In this case we already know that
Sp2(R) = SL2(R) acts transitively on the upper half plane H by fractional linear
transformations. As one might expect, this result generalises.
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Lemma 5.2.1. The group Sp2g(R) acts transitively on Hg by fractional linear trans-

formations, i.e., if Z ∈ Hg and γ =

(
A B
C D

)
∈ Sp2g(R) is written in g × g blocks

then

(γ, Z) 7→ γZ =
AZ +B

CZ +D

defines a transitive group action.

This action is the obvious generalisation of the classical case to higher dimension. As
usual we define the automorphy factor by j(γ, Z) = (CZ +D).

Definition 5.2.2. A holomorphic function F : Hg → C is a classical Siegel modular
form of genus g and weight k for Sp2g(Z) if

(1) F (γZ) = det(j(γ, Z))kF (Z) for all γ ∈ Sp2g(Z).

(2) If g = 1 then F is holomorphic at infinity.

As with Hilbert modular forms, we do not need to check holomorphicity at infinity
when g ≥ 2 because of Koecher’s principle [Geer, §1]. We note that this definition is
of scalar valued Siegel modular forms. We will see shortly a more general definition of
Siegel modular form known as a vector valued Siegel modular form.

We denote the space of classical Siegel modular forms of weight k and genus g for
Sp2g(Z) by Mk(Sp2g(Z)). As usual, these spaces are finite dimensional. Just as with
classical modular forms, we require k ≥ 0 in order for these spaces to be non-trivial.
We also require that kg be even in order for the spaces to be non-trivial. Note that
this fits with the classical case if we consider g = 1.

As mentioned earlier there is a more general notion of Siegel modular form known as a
vector valued Siegel modular form. Let

ρ : GLg(C)→ GL(V )

be a finite dimensional irreducible complex representation.

Definition 5.2.3. A holomorphic function F : Hg → V is a Siegel modular form of
genus g and weight ρ for Sp2g(Z) if

(1) F (γZ) = ρ(j(γ, Z))F (Z) for all γ ∈ Sp2g(Z).

(2) If g = 1 then F is holomorphic at infinity.

Remark 5.2.4. If we take ρ = detk , then we obtain the scalar valued Siegel modular
forms defined above.
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Similarly to the classical Siegel modular forms we denote the C-vector space of Siegel
modular forms of genus g and weight ρ for Sp2g(Z) by Mρ(Sp2g(Z)).

As would be expected, Siegel modular forms have a Fourier expansion. This expansion,
just like that of Hilbert modular forms, is more complicated than in the classical case.
First we fix a genus g . Let Sg be the set of g × g half integral matrices with integral
diagonal elements. If F ∈Mρ(Sp2g(Z)) then the Fourier expansion of F is given by

F (Z) =
∑
T∈Sg

a(T )e2πiTr(TZ).

The first thing to notice about this expansion is that, like with Hilbert modular forms,
the coefficients are no longer indexed by integers. They are now indexed by matrices
T ∈ Sg . For T that are not positive semi definite, we have a(T ) = 0. This is
analogous to an = 0 for n < 0 in the classical case. We note that these matrices
actually parametrise quadratic forms in g variables with integer coefficients.

Now that we have the Fourier expansion we can consider what it means for a Siegel
modular form to be a cusp form.

Definition 5.2.5. A Siegel modular form F ∈Mρ(Sp2g(Z)) is a cusp form if a(T ) = 0
for all T ∈ Sg such that T is positive semi-definite, but not definite.

As in the classical case we can consider congruence subgroups of Sp2g(Z). For the
purposes of this thesis we will not be interested in Siegel modular forms for the standard
congruences subgroups. These are the obvious generalisations of the genus 1 congruence

subgroups, e.g., Γ
(g)
0 (N) is the set of matrices in Sp2g(Z) with bottom left g× g block

congruent to 0 modulo N . For those wanting to know the details, see [Fret2].

5.2.1 Genus 2 Siegel Modular Forms

In this thesis we will only need to consider genus 2 Siegel modular forms, so from now
on we restrict to this case.

Suppose we have an irreducible representation ρ : GL2(C) → GL(V ). We note that
it is enough to consider irreducible representations since the space Mρ(Sp4(Z)) =
Mρ1(Sp4(Z)) ⊕ Mρ2(Sp4(Z)) if ρ is reducible (This also holds for higher genus). It
is known that the representation ρ is parametrised by its highest weight. It is known
that for integers j, k ≥ 0, the irreducible representation of highest weight (j+k, k) has
an explicit description as the representation Symmj(C2)⊗ detk , where GL2(C) is act-
ing via matrix multiplication on C2 . If ρ = Symmj(C2)⊗ detk we write Mj,k(Sp4(Z))
and Sj,k(Sp4(Z)) for the spaces of Siegel modular forms and Siegel cusp forms of genus
2.

We now consider the subgroup that we will be interested in working with; the paramod-
ular group.
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Definition 5.2.6. The paramodular group of level N is given by

K(N) =


Z NZ Z Z
Z Z Z 1

NZ
Z NZ Z Z
NZ NZ NZ Z

 ∩ Sp4(Q).

Although this group looks very different to the groups we are used to working with, it is
a very important one. This is the group that appears in the paramodularity conjecture;
the genus 2 analogue of the modularity theorem. This result was conjectured by Brumer
and Kramer [BrKr, Conjecture 1.1].

Although the theory is more complicated, there is a theory of newforms for the
paramodular group. We omit the details but refer the reader to [RS1].

As would be expected there is a family of Hecke operators acting on the spaces of
Siegel modular forms. Before defining these, we generalise the weight-k slash operator
to genus 2. If F : H2 → V and α ∈ GSp+

4 (Q), then the weight (j, k) slash operator is
defined by

(F |j,kα)(Z) = µ(α)j+k−3ρ(j(α,Z))−1F (αZ).

For each prime p we may define Hecke operators Tp and Tp2 . The process is similar
to the classical case. We decompose the double cosets

K(N)


1 0 0 0
0 1 0 0
0 0 p 0
0 0 0 p

K(N) =
∐
i

K(N)µi,

K(N)


1 0 0 0
0 p 0 0
0 0 p2 0
0 0 0 p

K(N) =
∐
i

K(N)ηi.

Each of these decompositions has finitely many representatives.

If F ∈ Sj,k(K(N)) we set

Tp(F ) =
∑
i

F |j,kµi,

Tp2(F ) =
∑
i

F |j,kηi.

The operators Tp and Tp2 are then the Hecke operators at the prime p . There are more
Hecke operators than this, but we only work with these operators. More specifically we
will mostly be interested with the Tp operator. As with the classical case, we can find
bases for the spaces Sj,k(K(N)) consisting of eigenforms for the Hecke operators. The
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Hecke operators also preserve the newspace and we can again find a basis consisting of
eigenforms for the Hecke operators.

We can also consider the Galois representation attached to such a modular form. This
will be important as this will be the representation obtained by inducing the representa-
tion attached to the level raised Hilbert modular form. The trace of this representation
will then correspond to the Hecke eigenvalues of the Siegel paramodular newform.
These eigenvalues will then satisfy a congruence. Part 1 of the following result is a re-
statement of part of Theorem 1 of [W]. Part 2 is a restatement of Theorem 2 of [W2].
Note that this was originally stated in [W, Theorem IV] with an additional assumption
that was later dropped.

Proposition 5.2.7. Suppose F is a newform in Sj,k(K(N)). Let L be a number field
containing all the Hecke eigenvalues λ(p) for Tp and µ(p) for Tp2 for all primes p - N .

(1) For any prime λ′ of OL , there exists a finite extension E of L (and Eλ′ of Lλ′ ),
and a 4-dimensional semisimple Galois representation

ρF,λ′ : Gal(Q̄/Q)→ GL4(Eλ′),

unramified outside {N, `} (where λ′|`), such that for each prime p /∈ {N, `},

det(I − ρF,λ′(Frob−1
p p−s)) = Lp(s, F, spin)−1

where Lp(s, F, spin) = Pp(p
−s)−1 , with

Pp(X) = 1− λ(p)X + (λ(p)2 − µ(p)− pj+2k−4)X2 − λ(p)pj+2k−3X3 + p2j+4k−6X4,

the Euler factor at p in the (shifted) spinor L-function of F .

(2) Further, the representation ρF,λ′ is symplectic. In particular the image of ρF,λ′ is
contained in GSp4(Eλ′).

For those wanting to know the details of the spinor L-function and other L-functions
associated to Siegel modular forms, see [1-2-3, §20-21].

§ 5.3 Base Change

In this section the main result will tell us the level and Hecke eigenvalues of the base
change Hilbert modular form given the level and Hecke eigenvalues of the classical
modular form we start with. Before we state this result however, we first need to know
that a base change actually exists. In fact we do always have a base change, and further,
it is unique; see the Theorem in Gelbart’s article on page 194 of [MFFLT]. Although
this result is in the language of automorphic representations, all we need is the first
part of the theorem which is easy to translate into the language of modular forms. It
says that given a classical cusp form, there is a unique base change that is also cuspidal.
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We now consider the base change from a classical modular form to a Hilbert modular
form. As was mentioned at the beginning of this section, starting with a classical weight
2 modular form of level N and taking a base change will usually result in a Hilbert
modular form of level norm N2 .

Theorem 5.3.1. Let f ∈ S2(Γ0(N)) and let K = Q(
√
d) with d > 0 and squarefree.

Assume that (N, dK) = 1 where dK is the discriminant of K . Then the base change
of f to K will be a Hilbert modular form f ′ defined over K with f ′ ∈ S2(N) where
N = (N). Further the Hecke eigenvalues of f ′ at a prime p are given by

ap(f
′) =


ap(f) if p = pp splits in OK ,
ap(f)2 − 2p if p = p is inert in OK ,
ap(f) if p = p2 ramifies in OK .

Before we prove this result, there are a few definitions and results we will need which
we now state. Firstly, rather than considering the level of the Hilbert modular form, we
can instead consider the conductor of the associated Galois representation since these
will be equal. This is not a straightforward result. In fact it requires the combination
of two other results. It follows from Théorème(A) of [Cara] and Theorem 1 of [Cas]
which makes use of the local Langlands correspondence.

We therefore need to know a little about the conductor of a Galois representation. We
first consider the case of a finite Galois extension L/K . The discriminant d of this
extension can be expressed by the following product decomposition

d =
∏

f(χ)χ(1),

where χ varies over the irreducible characters of the Galois group G = Gal(L/K).
Each of the f(χ)’s are ideals given by

f(χ) =
∏
p-∞

pfp(χ)

with

fp(χ) =
∑
i≥0

1

[G0 : Gi]
codimV Gi ,

where V is a representation with character χ and Gi is the i-th ramification group of
LP/Kp . The ideal f(ρ) is the Artin conductor and each fp(ρ) is a local Artin conductor.
We now define the ramification groups Gi . For σ ∈ G we define,

iG(σ) = vL(σx− x),

where x is an element such that OL = OK [x] , and vL is the normalised valuation of
L . The i-th ramification group is then defined as

Gi = {σ ∈ G| iG(σ) ≥ i+ 1}.
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We note that if L/K is unramified, then iG(σ) = 0 for all σ ∈ G, σ 6= 1.

In our case we are working with two-dimensional representations, ρ and ρ′ say, which
are representations of Gal(Q̄/Q) and Gal(Q̄/K) respectively. We can therefore use the
same process to calculate the conductor except we now need to take the appropriate
inverse limit over all such finite extensions. We now prove Theorem 5.3.1.

Proof of Theorem 5.3.1. The Galois representation associated to f , ρ say, will be a
representation of GQ . The Galois representation associated to f ′ , ρ′ say, will be the
restriction of ρ to GK . We therefore aim to find the conductor of ρ′ given the conductor
of ρ .

First we consider a prime p that splits in K , as say p = pp . We aim to show that
fp(ρ

′) = fp(ρ
′) = fp(ρ). We note that since Kp and Kp are both one-dimensional

extensions of Qp we have Gal(Q̄p/Qp) = Gal(Q̄p/Kp) = Gal(Q̄p/Kp). It follows that
the whole chain of ramification groups is the same in both cases and therefore we have
fp(ρ

′) = fp(ρ
′) = fp(ρ) in the split case.

We now consider the inert case. We now aim to show that fp(ρ
′) = fp(ρ). Again we will

do this by showing that the whole chain of groups must in fact be equal. This time Kp

is a degree two extension of Qp so we do not simply have Gal(Q̄p/Qp) = Gal(Q̄p/Kp).
However the inertia groups are still the same in each case since Kp/Qp is an unramified
extension. From this it follows that the whole chain must actually be the same since
we can replace σ ∈ G with σ ∈ G0 in the definition of the ramification groups. Hence
we conclude that fp(ρ

′) = fp(ρ).

It therefore follows that the base change is an element of S2(N) with N = (N) and
N(N) = N2 .

For details of the Hecke eigenvalues, refer to [Cre].

Remark 5.3.2. The calculations carried out in [Cre] are for imaginary quadratic fields
and weight k = 2. These results also hold in the case of real quadratic fields. We also
note that in the case of more general weights k , the Hecke eigenvalue at an inert prime
becomes ap(f)2 − 2pk−1 .

Notice that in the statement of Theorem 5.3.1, we avoid levels containing primes that
ramify in K . The reason for this is that the level of the base changed form is not so
straightforward in this case. If N contains ramified primes then the norm of N is in
fact smaller than N2 .

Conjecture 5.3.3. Let f ∈ S2(Γ0(N)) with N = pr11 p
r2
2 . . . prnn . Let K = Q(

√
d) with

d > 0 and squarefree. Let I = {i1, i2, . . . , im} be an indexing set for the primes that
ramify in K . Then the base change of f to K will be a Hilbert modular form f ′ defined
over K with f ′ ∈ S2(N) where

N(N) =
p2r1

1 p2r2
2 . . . p2rn

n∏
i∈I p

ri
i

=
N2∏
i∈I p

ri
i

.
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This conjecture has been tested in many cases and should hold. The proof however
would not be as straightforward as for Theorem 5.3.1. In particular the chain of rami-
fication groups will not be the same in each case. Therefore a more in depth argument
would be required. It should be possible to prove on a case by case basis by so called
local-global arguments. We also note that although these results have been stated with
weight 2 classical cusp forms in mind, the results still hold in the case of weight k > 2.
This will be important when we consider the vector valued case later as the first part
of the method remains the same.

§ 5.4 Level Raising Congruences

In this section we will look at congruences between modular forms of the same type
but different level. What we mean by this is that, rather than having a congruence
between a non cusp form and a cusp form like the congruences we have investigated
so far, these congruences will be between two cusp forms. The levels however will be
analogous to the congruences we have already considered. That is, one modular form
will have level N , for some N , and the other will have level Np for some prime p .
We will first consider the case of classical modular forms as an introduction to the idea
of level raising as introduced by Ribet in 1990. We will then move on to look at the
case of Hilbert modular forms. Here we will make use of a result of Taylor in order to
raise the level of a Hilbert modular form. This will be the second step in our process
of producing a congruence involving a Siegel modular form.

5.4.1 Classical Modular Forms

Ribet’s original paper [Rib] from 1990 only covers the case of weight 2 modular forms.
Although we will only be working with weight 2 forms at first, we will be considering
higher weights in the vector valued case. It is therefore worth noting that the result
can be extended to any weight k ≥ 2. The result was generalised by Diamond and can
be found in another paper of Ribet. See [Rib2, §5]. The following is a restatement of
Theorem 1 of [Rib].

Theorem 5.4.1. Let f ∈ S2(Γ0(N)) be a newform. Let p - `N be a prime satisfying
one or both of the identities

ap(f) ≡ ±(p+ 1) (mod `).

Further, assume that the reduction ρf modulo ` of the associated Galois representation
is irreducible. Then there exists a newform g ∈ S2(Γ0(Np)) with Tr(ρf (Frobq)) ≡
Tr(ρg(Frobq)) (mod `) for all q with (Np`, q) = 1.

Remark 5.4.2. The identity to be satisfied can be viewed instead as ap(f)2 ≡ (p+ 1)2

(mod `).
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Remark 5.4.3. The generalisation to higher weight only changes the identity that needs

to be satisfied and adds a condition on ` . The identity changes to ap(f) ≡ ±(p
k
2 +p

k
2
−1)

(mod `) and we require 2 ≤ k ≤ `+ 1.

Let us now consider a couple of examples to see how this theorem works in practice.

Example 5.4.4. Consider f ∈ S2(Γ0(11)) with

f = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 + . . . .

Suppose we choose p = 3. That is we wish to find g ∈ S2(Γ0(33)) with ap(f) ≡ ap(g)
(mod `) for some ` . The condition we must check is `|a3(f)2 − (3 + 1)2 . This gives

`|
(
(−1)2 − (3 + 1)2

)
`|(1− 16)

`| − 15.

Hence ` = 3 or ` = 5. If we consider ` = 5, it turns out that the Galois representation
associated to f becomes reducible modulo ` . Hence there is no congruence modulo
5 in this case. However we can find a congruence modulo 3. Consider the following
modular forms:

f ∈ S2(Γ0(11)), f = q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 + . . . ,

g ∈ S2(Γ0(33)), g = q + q2 − q3 − q4 − 2q5 − q6 + 4q7 − 3q8 + q9 + . . . .

It is clear that the Hecke eigenvalues of these two modular forms are congruent modulo
3. Note that the congruence holds for those q with 3|q even though the theorem
doesn’t cover these cases.

We will also consider an example of higher weight.

Example 5.4.5. Consider f ∈ S4(Γ0(7)) with

f = q − q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 + 15q8 − 23q9 + . . . .

Suppose we choose p = 2. That is we wish to find g ∈ S4(Γ0(14)) with ap(f) ≡ ap(g)
(mod `) for some ` . The condition we must check in this case is `|a2(f)2 − (22 + 2)2 .
This gives

`|
(
(−1)2 − (4 + 2)2

)
`|(1− 36)

`| − 35.

Hence ` = 5 or ` = 7. If we consider ` = 7, then we see that `|N since N = 7.
Hence there is no congruence modulo 7 in this case. However we can find a congruence
modulo 5. Consider the following modular forms:

f ∈ S4(Γ0(7)), f = q − q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 + 15q8 − 23q9 + . . . ,

g ∈ S4(Γ0(14)), g = q − 2q2 + 8q3 + 4q4 − 14q5 − 16q6 − 7q7 − 8q8 + 37q9 + . . . .
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It is clear that the Hecke eigenvalues of these two modular forms are congruent modulo
5 except when 2|q . This is because p = 2 and so we shouldn’t expect a congruence at
these coefficients anyway.

Now that we have seen a couple of examples of the level raising result we move on to
look at an analogous result for Hilbert modular forms that was proven by Taylor.

5.4.2 Hilbert Modular Forms

A very similar result exists for Hilbert modular forms. Here we will state the result
in the case we are currently looking at, the case of parallel weight 2 Hilbert modular
forms. The following is a restatement of Theorem 1 of [Ta].

Theorem 5.4.6. Let f ∈ S2(N) be a newform. Let p - `N be a prime ideal satisfying
the identity

ap(f)2 ≡ (N(p) + 1)2 (mod λ),

for some λ|`. Further assume that the reduction ρf modulo λ is irreducible and that ` -
N(p)+1. Then there exists a newform g ∈ S2(Np) with Tr(ρf (Frobq)) ≡ Tr(ρg(Frobq))
(mod λ) for all q with (Np`dK , q) = 1, where dK is the discriminant of K and λ|`.

Remark 5.4.7. The assumption that ` - N(p) + 1 allows us to ignore the error term in
Taylor’s result. For details of this error term, see Section 1 of [Ta].

Remark 5.4.8. This result of course holds for more general weights. We will need this
result for parallel weight k > 2 when working in the vector valued case later. Just like
the result in the classical case, it generalises in the same way.

Recall that we need to raise the level of our Hilbert modular form by a prime p that
splits in K in order to guarantee that we have a Hilbert modular form that is not
Galois-invariant. Suppose we have p = pp . Note that since p splits we have N(p) = p
and ap(f

′) = ap(f). Hence the condition required for there to exist a congruence raising
the level of f ′ by p will be the same as the condition for there to exist a congruence
raising the level of f by p . This might imply that we could either base change and
then level raise, or first raise the level and then take a base change. However this is not
the case. Using our current method, taking a base change and then raising the level,
we end up with a Hilbert modular form with level (N)p that is not Galois-invariant.
This follows since its Galois conjugate will have level (N)p and hence be a different
form. If we however raised the level first and then took a base change, we would end up
with a Hilbert modular form of level (Np) that is Galois-invariant. This would cause
the induced four-dimensional representation to be reducible. Another incarnation of
the same problem is that we require non Galois invariance in order to apply the theta
lifting result that we give in the next section. Also note that in this case the level is
larger. In particular we could obtain this Hilbert modular form by first base changing
and then raising the level twice, once by p , and once by p . This explains why we must
first base change and then raise the level.
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We will now consider an example to illustrate how the level raising theorem for Hilbert
modular forms works in practice. The following data was obtained using the LMFDB’s
database on Hilbert modular forms [LMFDB] and we use their notation. In particular,
an ideal N is given a label [N,m,α] where N is the norm of the ideal N , m is the
smallest rational integer in the ideal, and α is an element chosen so that (m,α) = N .

Example 5.4.9. Consider f of level [17, 17, 3
√

2 + 1]. This Hilbert modular form is
not a base change. The following list gives the norm of each prime ideal in the first
column, its label in the second, and the Hecke eigenvalue in the third.

Norm Prime Eigenvalue

2 [2, 2,−
√

2] 0

7 [7, 7,−2
√

2 + 1] − 4

7 [7, 7,−2
√

2− 1] 2

9 [9, 3, 3] − 2

17 [17, 17, 3
√

2 + 1] − 1

17 [17, 17, 3
√

2− 1] 6

23 [23, 23,
√

2 + 5] − 6

23 [23, 23,−
√

2 + 5] 0

25 [25, 5, 5] 2

31 [31, 31, 4
√

2 + 1] 2

31 [31, 31,−4
√

2 + 1] − 4

41 [41, 41, 2
√

2− 7] 6

41 [41, 41,−2
√

2− 7] − 6

Suppose we choose p to be a prime above 23 with label [23, 23,
√

2 + 5]. Then we have
ap(f) = −6 and N(p) = 23. Hence, ignoring the error term, the level raising condition
is

`|
(
ap(f)2 − (N(p) + 1)2

)
`|
(
(−6)2 − (23 + 1)2

)
`|(36− 576)

`| − 540 = −22 × 33 × 5.

We find g of level [391, 391,−5
√

2 + 21] that satisfies a congruence. We now give
another list with the previous information along with a new column containing the
eigenvalues of g .
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Norm Prime Eigenvalues of f Eigenvalues of g

2 [2, 2,−
√

2] 0 0

7 [7, 7,−2
√

2 + 1] − 4 1

7 [7, 7,−2
√

2− 1] 2 − 3

9 [9, 3, 3] − 2 − 2

17 [17, 17, 3
√

2 + 1] − 1 − 1

17 [17, 17, 3
√

2− 1] 6 − 4

23 [23, 23,
√

2 + 5] − 6 1

23 [23, 23,−
√

2 + 5] 0 5

25 [25, 5, 5] 2 − 3

31 [31, 31, 4
√

2 + 1] 2 − 8

31 [31, 31,−4
√

2 + 1] − 4 − 9

41 [41, 41, 2
√

2− 7] 6 − 4

41 [41, 41,−2
√

2− 7] − 6 − 1

It is clear that these two modular forms have Hecke eigenvalues that are congruent
modulo 5 except at the prime p . Note that we shouldn’t expect the congruence to
hold at the prime [17, 17, 3

√
2 + 1] since this is the level of f . However the congruence

does hold in this case. We also shouldn’t expect a congruence at the prime [2, 2,−
√

2]
since this divides dK . Again, however, the congruence holds in this case.

We will see another example of level raising for Hilbert modular forms later when we
apply our method, see Example 5.6.2. In that case we will be raising the level of a
Hilbert modular form that is a base change of a classical weight 2 modular form. In a
way this case may be viewed as a little harder for a congruence to exist. This is because
at primes q that split in K , as say q = qq , the eigenvalues of f ′ at q and q will be
the same. The level raised form however will not be a base change. So in general the
Hecke eigenvalues of this form at q and q will be different. Hence the differences will be
non-zero but we still require them to be divisible by ` for there to exist a congruence.
Since the differences are bounded by 2q1/2 , using small q will in general force ` to be
small. In particular, the example we check will have ` = 2.

We now move on to explain the next step in our process. Once we have base changed
our classical weight 2 modular form to obtain a Hilbert modular form of parallel weight
2 and then raised the level of this form, we then want to take a theta lift to obtain a
Siegel paramodular cusp form.
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§ 5.5 Theta Lifts of Hilbert Modular Forms

There are many different results involving theta lifts, the result we will be interested
in is a result of Johnson-Leung and Roberts. This results takes a theta lift of a weight
(2, 2n+ 2) Hilbert modular form and gives a genus 2 weight n+ 2 Siegel paramodular
newform. Since we are working with a parallel weight 2 Hilbert modular form (i.e.
n = 0) we will obtain a genus 2, weight 2 Siegel paramodular newform. The result
also gives us all the information we require about the Hecke eigenvalues of this Siegel
form.

The following is a restatement of (part of) the main theorem of [JLR].

Theorem 5.5.1. Let K be a real quadratic extension of Q. Let f ∈ S2,2n+2(N0) be
a Hilbert cusp form whose associated Galois representation ρ is irreducible. Assume
that ρ is not Galois-invariant. Let M = d2

KN
K
Q (N0), where dK is the discriminant of

K/Q. Then there exists a non-zero Siegel paramodular newform F : H2 → C of weight
k = n+ 2 and paramodular level M such that:

For every prime p,

TpF = ap(F )F and Tp2F = bp(F )F

with

ap(F ) = pk−3λp and bp(F ) = p2(k−3)µp

where λp and µp are determined by the Hecke eigenvalues of f as follows. If p splits,
let p and p be the places above p. If p does not split, let P be the place above p.

(1) If valp(M) = 0,

λp =

{
p(ap(f) + ap(f)) if p is split,

0 if p is not split.

µp =

{
p2 + pap(f)ap(f)− 1 if p is split,

−(p2 + paP(f) + 1) if p is not split.

(2) If valp(M) = 1, then p splits and valp(N0) = 1, valp(N0) = 0, and

λp = pap + (p+ 1)ap(f), µp = pap(f)ap(f).

(3) If valp(M) ≥ 2, then:

p inert:

λp = 0, µp = −p2 − paP(f);

p ramified:

λp = pλP, µp =

{
0 if valP(N0) = 0,

−p2 if valP(N0) ≥ 1;
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p split and valp(N0) ≤ valp(N0):

λp = p(ap(f) + ap(f)), µp =

{
0 if valp(N0) = 0,

−p2 if valp(N0) ≥ 1.

For particular ρ, λp and µp , see Proposition 4.2 of [JLR].

Since we are working with parallel weight 2 Hilbert modular forms, we are taking n = 0
in this theorem. Hence the theta lift will produce a Siegel paramodular cusp form of
weight 2. The Hecke operator we will be interested in is Tp ; this is the generalisation
of the Tp operator from the classical case. We are therefore interested in the ap(F )
eigenvalues. Also when checking for a congruence we would only expect to find one at
primes not dividing the level. So we will be in the case where valp(M) = 0.

§ 5.6 The Main Theorem

We have now covered each of the steps that we will need to prove the existence of a
congruence between the Hecke eigenvalues of a Siegel paramodular cusp form of weight
2 and the Hecke eigenvalues of a classical weight 2 cusp form. We now state the main
theorem.

Theorem 5.6.1. Let f ∈ S2(Γ0(N)) and let K be a real quadratic field with discrim-
inant dK . Suppose (dK , N) = 1. Choose a prime p that splits in K . Suppose p - `N ,
` - (p+ 1) and

ap(f)2 ≡ (p+ 1)2 (mod λ),

for some λ|`. Further assume that ρf |GK is irreducible modulo λ.

Then there exists a Siegel paramodular cusp form F ∈ S2(K(N2d2
Kp)) satisfying

aq(F ) ≡ aq(f) (1 + χK(q)) (mod λ)

for q - N2d2
Kp, where χK is the quadratic character associated to K .

The proof of this result will simply require us to apply the method we have described
in this section.

Proof. Let f = a1q+a2q
2 +a3q

3 +· · · ∈ S2(Γ0(N)). By Theorem 5.3.1, the base change
of f will be f ′ ∈ S2(N) with N = (N) and N(N) = N2 . We note that at a prime q
that splits as say qq we have aq(f

′) = aq(f
′) = aq(f) since f ′ is a base change.

We now use the level raising result for Hilbert modular forms. Choose a prime p that
splits in K as say p = pp . Suppose p - `N and

ap(f
′)2 ≡ (N(p) + 1)2 (mod λ).



116

Further assume that the reduction ρf ′ modulo λ is irreducible and ` - N(p) + 1. Note
that here N(p) = p and ap(f

′) = ap(f), hence the congruence condition reduces to

ap(f)2 ≡ (p+ 1)2 (mod λ).

We also have ` - (N(p) + 1) reducing to ` - (p+ 1).

By Theorem 5.4.6 there exists a newform g ∈ S2(Np) with Tr(ρf ′(Frobq)) ≡
Tr(ρg(Frobq)) (mod λ) for all q with (Np`dK , q) = 1 and λ|` . Further since p was
chosen to be a prime that splits in K , this newform will be non Galois-invariant so its
Galois conjugate will be different. This ensures that for a split prime q = qq we have
aq(g) 6= aq(g) in general.

By Theorem 5.5.1 there exists a non-zero Siegel paramodular newform F ∈
S2(K(N2d2

Kp)) whose Hecke eigenvalues are determined by those of g . We have

aq(F ) =

{
aq(g) + aq(g) if q is split,

0 if q is not split.

We now note that by the level raising congruence of Hilbert modular forms we have
aq(g) ≡ aq(f

′) (mod λ). Since f ′ is a base change, we have aq(f
′) = aq(f

′) = aq(f)
for primes q that split. We also note that the quadratic character χK associated to
the quadratic field K satisfies

χK(q) =

{
1 if q splits in K,

−1 otherwise.

It therefore follows that we have the congruence

aq(F ) ≡ aq(f) (1 + χK(q)) (mod λ)

for q - N2d2
Kp .

We will now consider an example.

Example 5.6.2. We begin with a classical weight 2 cusp form. Consider f ∈
S2(Γ0(15)) with

f = q− q2− q3− q4 + q5 + q6 + 3q8 + q9− q10−4q11 + q12−2q13− q15− q16 + 2q17 + . . . .

Suppose we wish to take a base change to K = Q(
√

2). We have dK = 8. Hence
the only prime to ramify in K is 2. Since 2 - 15, we know from Theorem 5.3.1,
that there exists a Hilbert modular form f ′ ∈ S2(N) that is a base change of f with
N(N) = 152 = 225. Checking in the LMFDB we find a Hilbert modular form with
label [225, 15, 15] that is a base change of f . This form has the following eigenvalues:
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Norm Prime Eigenvalue

2 [2, 2,−
√

2] − 1

7 [7, 7,−2
√

2 + 1] 0

7 [7, 7,−2
√

2− 1] 0

9 [9, 3, 3] 1

17 [17, 17, 3
√

2 + 1] 2

17 [17, 17, 3
√

2− 1] 2

23 [23, 23,
√

2 + 5] 0

23 [23, 23,−
√

2 + 5] 0

25 [25, 5, 5] 1

31 [31, 31, 4
√

2 + 1] 0

31 [31, 31,−4
√

2 + 1] 0

41 [41, 41, 2
√

2− 7] 10

41 [41, 41,−2
√

2− 7] 10

Note that at the split primes 7 and 17, we see that f and f ′ both have the same
eigenvalues as expected.

We now use Theorem 5.4.6 to raise the level of this Hilbert modular form, and in
the process, we ensure that the associated Galois representation is no longer Galois-
invariant. Suppose we choose p to be a prime above 7 with label [7, 7,−2

√
2 + 1].

Note that this is a split prime, so the level raised form will be non Galois-invariant.
We have ap(f

′) = 0 and N(p) = 7. Hence

`|
(
ap(f

′)2 − (N(p) + 1)2
)

`|
(
02 − (7 + 1)2

)
`|(0− 64)

`| − 64 = −26.

We find g of level [1575, 105,−30
√

2 + 15] that satisfies a congruence modulo 2.
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Norm Prime Eigenvalues of f ′ Eigenvalues of g

2 [2, 2,−
√

2] − 1 0

7 [7, 7,−2
√

2 + 1] 0 − 1

7 [7, 7,−2
√

2− 1] 0 0

9 [9, 3, 3] 1 − 1

17 [17, 17, 3
√

2 + 1] 2 0

17 [17, 17, 3
√

2− 1] 2 − 4

23 [23, 23,
√

2 + 5] 0 0

23 [23, 23,−
√

2 + 5] 0 8

25 [25, 5, 5] 1 1

31 [31, 31, 4
√

2 + 1] 0 2

31 [31, 31,−4
√

2 + 1] 0 − 10

41 [41, 41, 2
√

2− 7] 10 − 2

41 [41, 41,−2
√

2− 7] 10 − 2

We can see clearly that the Hecke eigenvalues are congruent modulo 2 at all primes
except 2 and 7. These primes are ones where we wouldn’t expect the congruence to
hold since 2|dK and we chose p = 7. We also note that at the split primes, the Hecke
eigenvalues of g are different in general. Hence the associated Galois representation ρg
will not be Galois-invariant. We are therefore able to use Theorem 5.5.1 to produce a
Siegel paramodular cusp form.

We know that N(N) = 1575 = 7 × 32 × 52 and that dK = 8. Hence Theorem 5.5.1
produces a Siegel paramodular newform F : H2 → C of weight 2 and paramodular
level 100800 = 82 × 7 × 32 × 52 . The theorem also tells us precisely what the Hecke
eigenvalues are in terms of those of the Hilbert modular form g . We are interested in
the Tp eigenvalues. These are given by TpF = ap(F )F where

ap(F ) =

{
pk−2(ap(g) + ap(g)) if p is split,

0 if p is not split.

Since we have k = 2, the eigenvalues at split primes are just the sum of the eigenvalues
ap(g) and ap(g). The following table shows the first few eigenvalues of F along with
the RHS of the congruence and the difference between the two.
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p ap(F ) ap(f) (1 + χK(p)) ap(F )− ap(f) (1 + χK(p))

2 0 0 0

7 -1 0 -1

9 0 0 0

17 -4 4 -8

23 8 0 8

25 0 0 0

31 -8 0 -8

41 -4 20 -24

We can see clearly from the right hand column that we have a congruence modulo 2
except at the prime 7. However as we have mentioned, this is the prime that we raised
the level of the Hilbert modular form by. Hence we wouldn’t expect there to be a
congruence at this prime.

Remark 5.6.3. Notice that this example had ` = 2. It therefore does not satisfy the
condition that ` - (p + 1) that is required in order for the error term of Taylor’s level
raising result to be ignored. The method however still works and illustrates the general
method.

§ 5.7 Comparison with the Bloch-Kato Formula

We have proved the existence of a congruence between the Hecke eigenvalues of a
classical cusp form of level N and a Siegel paramodular newform of level N2d2

Kp in
Theorem 5.6.1. We might be interested in how we could link this congruence with
the Bloch-Kato conjecture. In particular we might expect such a congruence to allow
us to construct a non-zero element in a Bloch-Kato Selmer group. This would in turn
hopefully give the divisibility of an incomplete L-value. The statement of Theorem 5.6.1
however, has no mention of the divisibility of an Euler factor arising from a partial
L-value but we do have a divisibility criterion. We might be interested in whether
this divisibility criterion can be linked with a particular L-value. In our main result
(Theorem 3.0.1) the modulus came from a divisor of an Euler factor arising from a
Dirichlet L-function. This came about because the Dirichlet L-function appeared as
the constant term of the Eisenstein series appearing in the congruence. In this case, we
have no such analogy as we are now working with two cusp forms. We will see however,
that there is a particular L-function with an Euler factor that will be very familiar.
The modulus of the congruence will then be a divisor of this Euler factor.

5.7.1 Reduction of the Four-Dimensional Representation

Just as in Section 3.3, we consider the reduction of a Galois representation modulo
λ . In this case it will be the four-dimensional Galois representation associated to the
Siegel paramodular newform.
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Let k, p, `, λ,N, dK , f and F be as in Theorem 5.6.1. Assume also that ` 6= p , and let
L = Q({an}). As in Section 3.3, there exists a continuous representation attached to
f (note that we have a different f here) given by:

ρf = ρf,λ : Gal(Q̄/Q)→ GL2(Lλ),

unramified outside N` , such that if q - N` is a prime, and Frobq is an arithmetic
Frobenius element, then

Tr(ρf (Frob−1
q )) = aq(f), det(ρf (Frob−1

q )) = qk−1.

We may conjugate so that ρf takes values in GL2(Oλ) and reduce modulo λ to get a
continuous representation

ρf = ρf,λ : Gal(Q̄/Q)→ GL2(Fλ).

We assume that this reduced representation is irreducible as this will appear as a
composition factor of our four-dimensional representation.

We can also do the same with the Siegel paramodular cusp form F . As in Proposi-
tion 5.2.7, we have an attached representation:

ρF = ρF,λ : Gal(Q̄/Q)→ GL4(Lλ),

unramified outside NdKp` , such that if q - NdKp` is a prime, and Frobq is an arith-
metic Frobenius element, then

Tr(ρF (Frob−1
q )) = aq(F ), det(ρF (Frob−1

q )) = q4k−6

We may assume that this representation is irreducible. We may again conjugate so
that this representation takes values in GL4(Oλ) and reduce modulo λ to obtain a
continuous representation

ρF = ρF,λ : Gal(Q̄/Q)→ GL4(Fλ).

This depends in general on the choice of invariant Oλ -lattice but the composition
factors are well-defined. This representation is reducible with composition factors ρf
and ρf (χK) where χK is the quadratic character associated to K . This follows because
of the Cebotarev density theorem, the Brauer-Nesbitt theorem and the existence of the
congruence in Theorem 5.6.1 as we have ap(F ) ≡ ap(f) (1 + χK) (mod λ).

Without loss of generality we may choose our invariant Oλ -lattice in such a way that
ρF has the form

ρF ∼
[
ρf (χK) ∗

0 ρf

]
.

Moreover, an argument of Ribet [Rib3, Proposition 2.1] says that we can also choose
our invariant Oλ -lattice such that ρF is realised on a space V such that

0 −→W (χK)
ι−→ V

π−→W −→ 0
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is a non-split extension of Fλ[Gal(Q̄/Q)]-modules. Note that here W is the space of
the representation ρf . Choose a map s : W → V that is Fλ linear and x ∈ W .
As in Section 3.3, for g ∈ Gal(Q̄/Q) consider g(s(g−1(x))) − s(x). As before we
have g(s(g−1(x))) − s(x) ∈ ker(π). Since the sequence is exact, we therefore see that
g(s(g−1(x))) − s(x) ∈ im(ι). Then we define C : Gal(Q̄/Q) → Hom(ρf , ρf (χK)) such
that C(g)(x) := ι−1

(
g(s(g−1(x)))− s(x)

)
. As in Section 3.3, this is a cocycle. The

same argument can be used to show this. Choosing a different map s here would result
in a different cocycle but it would only differ by a coboundary. We therefore see that
we get a unique class c := [C] ∈ H1(GQ,Hom(ρf , ρf (χK))) independent of the choice
of x . Again this is non-zero since the extension is non-split.

Now we have a pairing ρf × ρf → Lλ(1 − k). This pairing is similar to the Weil
pairing for elliptic curves. In particular, it satisfies the same kind of properties, i.e.,
it is bilinear, Galois-equivariant, non-degenerate and skew-symmetric. We see that
ρf ' Hom(ρf , Lλ(1 − k)) ' ρ∗f (1 − k) where ρ∗f represents the dual representation.
From this it follows that ρ∗f ' ρf (k − 1). We therefore see that

Hom(ρf , ρf (χK)) ' ρ∗f ⊗ ρf (χK) ' (ρf ⊗ ρf )(k − 1)(χK).

In fact, part 2 of Proposition 5.2.7 tells us that ρF actually lands inside GSp4(Lλ).
We see that the class c actually lands in Sym2(ρf )(k − 1)(χK). Hence c ∈
H1(GQ, Sym2(ρf )(k−1)(χK)). Similarly to Section 3.3, let Vλ = Sym2(W )(k−1)(χK),

Mλ = Sym2(Mλ)(k − 1)(χK), where Mλ is an invariant Oλ -lattice in W , and
let Aλ = Vλ/Mλ . Also let A[λ] be the kernel of multiplication by λ in Aλ . Let
i : A[λ] → Aλ be the inclusion and let d := i∗(c) ∈ H1(GQ, Aλ). In a similar manner
to Section 3.3 we will show that i∗ is injective and therefore d 6= 0. As before we have
the short exact sequence

0 −→ A[λ]
i−→ Aλ

“λ”−→ Aλ −→ 0.

Again, “λ” means multiplication by some uniformiser for λ . This sequence gives rise
to a long exact sequence in cohomology of which we consider the following piece:

H0(GQ, Aλ)
δ−→ H1(GQ, A[λ])

i∗−→ H1(GQ, Aλ).

Again knowing when i∗ is injective is the same as knowing when the image of δ is trivial
since the sequence is exact. This is when H0(GQ, Aλ) is trivial. Note that H0(GQ, Aλ)
consists of those elements of Aλ fixed by GQ . Suppose that (dK , N) = 1, ` - dK and
consider q|dK . We will restrict to the local Galois group and then take inertia in there.
That is we have Iq ⊂ GQq ⊂ GQ . Now Iq acts trivially on Sym2(W )(k − 1) since
Sym2(W ) is only ramified at ` and primes dividing N , and the (k − 1) twist is by
the `-adic character χ` only ramified at ` . However Iq does not act trivially on the
character (χK). Take σ ∈ Iq with χK(σ) = −1. Then σ(v) = −v ∀ v ∈ Vλ . Hence
σ is an element of GQ which does not fix any non-zero element of Aλ . It follows that
H0(GQ, Aλ) is trivial. Hence i∗ is injective and therefore d 6= 0.

We define the Bloch-Kato Selmer group in the same way as in Section 3.3.
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Proposition 5.7.1. Let Σ = {q : q|N}. Then d ∈ H1
Σ∪{p}(GQ, Aλ).

We omit the proof here but note that it follows in exactly the same way as Proposi-
tion 3.3.3. That is, the necessary local conditions all hold and so d ∈ H1

Σ∪{p}(GQ, Aλ).
Note that we now require ` > 2j + 3k − 2 in order for the local condition at ` to be
satisfied. This follows from Lemma 7.2 of [D2]. Note that here we have j = 0.

We now consider the λ-part of the Bloch-Kato conjecture. This will give (conjec-
turally) a condition on there being a non-zero element of H1

Σ∪{p}(GQ,Sym2(W/Mλ)(k−
1)(χK)). Let LΣ∪{p}(Sym2(f)(χK), k) be the symmetric square L-function with Euler
factors at primes q ∈ Σ ∪ {p} omitted.

Conjecture 5.7.2 (Case of λ-part of Bloch-Kato).

ordλ

(
LΣ∪{p}(Sym2(f)(χK), k)

Ω

)

= ordλ

(
Tam0

λ(Sym2(W/Mλ)(k)(χK))#H1
Σ∪{p}(GQ,Sym2(W/Mλ)(k − 1)(χK))

#H0(GQ,Sym2(W/Mλ)(k − 1)(χK))

)
.

Here Ω is an appropriately chosen period. We omit the definition of the Tamagawa
factor Tam0

λ(Sym2(W/Mλ)(k)(χK)), but note that (assuming ` > 2k − 1, see [D2,
§5](recall that λ|`)), its triviality is a direct consequence of [BlKa, Theorem 4.1(iii)].
Also note that H0(GQ, Sym2(W/Mλ)(k − 1)(χK)) = H0(GQ, Aλ), which we have
shown to be trivial. Since this factor and the Tamagawa factor are both trivial,

we see that divisibility of
LΣ∪{p}(Sym2(f)(χK),k)

Ω by λ is equivalent to divisibility of
#H1

Σ∪{p}(GQ, Sym2(W/Mλ)(k − 1)(χK)) by λ . In the same way as Section 3.3 if we

could show that ordλ

(
LΣ∪{p}(Sym2(f)(χK),k)

Ω

)
> 0, this would imply that

ordλ

(
#H1

Σ∪{p}(GQ,Sym2(W/Mλ)(k − 1)(χK))
)
> 0. This would then imply there

was a non-zero element in the Bloch-Kato Selmer group.

Since we have already constructed a non-zero element in H1
Σ∪{p}(GQ, Sym2(W/Mλ)(k−

1)(χK)), we see that the Bloch-Kato conjecture predicts a λ appearing in
LΣ∪{p}(Sym2(f)(χK),k)

Ω . Also, a similar Bloch-Kato formula holds if we drop the ∪{p} ,
however we wouldn’t be able to construct a non-zero element in the Bloch-Kato Selmer
group in this case. This suggests that we should expect λ to appear in the p-part of
the L-value. This gives some evidence for the Bloch-Kato conjecture in this case. We

would also like to go the other way. That is, if ordλ

(
LΣ∪{p}(Sym2(f)(χK),k)

Ω

)
> 0, with

λ appearing in the p-part, we would like λ to divide #H1
Σ∪{p}(GQ,Sym2(W/Mλ)(k−

1)(χK)).

As usual, since we are raising the level by p , we would like to deduce divisibility of the
Euler factor at p arising from the L-value. In fact, in this case since we chose a p that
splits in K , we in fact don’t actually need the χK here since χK(p) = 1. Since we
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expect the λ to appear in the p-part we consider Lp(Sym2(f), k). We therefore expect
that if we have λ|Lp(Sym2(f), k) then, since the other factors cause no cancellation, we
must also have λ|H1

Σ∪{p}(GQ, Sym2(W/Mλ)(k−1)(χK)). We also note that the critical
values in this case are the odd integers 1, . . . , k−1 and the even integers k, . . . , 2k−2,
which in this case gives 1 and 2 as critical values since k = 2.

Remark 5.7.3. Congruences such as those studied in [D2] and [U] give evidence for
Conjecture 5.7.2 in the case of higher weights. Here we are dealing with the low weight
case of k = 2. In the higher weight cases there exist congruences between Siegel cusp
forms and Klingen Eisenstein series. In the case of weight 2 however, the weight is too
low for such a congruence to exist and we instead end up with a congruence between a
Siegel cusp form and a classical cusp form.

Now that we have linked our congruence with the Bloch-Kato conjecture, we see that
we should expect divisibility of an Euler factor arising from a symmetric square L-
function to give a congruence as in Theorem 5.6.1. We will see in the next section that
this is exactly the case.

5.7.2 The Symmetric Square L-Function

Suppose we have a normalised cuspidal Hecke eigenform f =
∑∞

n=1 anq
n ∈ Sk(Γ0(N)).

Associated to this f is the usual L-function

Lf (s) =
∞∑
n=1

ann
−s =

∏
p

(
1− app−s + pk−1−2s

)−1

=
∏
p

[
(1− αpp−s)(1− βpp−s)

]−1
.

From this we can deduce that αp + βp = ap and αpβp = pk−1 . In a similar way we can
define the symmetric square L-function associated to f . This is given by

L(Sym2(f), s) =
∏
p

[
(1− α2

pp
−s)(1− β2

pp
−s)(1− αpβpp−s)

]−1
.

We will now expand out this expression and simplify using the expressions deduced for
αp and βp . We first note that α2

p + β2
p = (αp + βp)

2 − 2αpβp = a2
p − 2pk−1 . We have

L(Sym2(f), s) =
∏
p

[
(1− α2

pp
−s)(1− β2

pp
−s)(1− αpβpp−s)

]−1

=
∏
p

[
(1− α2

pp
−s)(1− β2

pp
−s)(1− pk−1−s)

]−1

=
∏
p

[
(1− (α2

p + β2
p)p−s + α2

pβ
2
pp
−2s)(1− pk−1−s)

]−1

=
∏
p

[
(1− a2

pp
−s + 2pk−1−s + p2k−2−2s)(1− pk−1−s)

]−1
.
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We now concentrate on the first factor in this expression for a particular choice of p .
Multiplying through by ps to clear denominators we get

ps(1− a2
pp
−s + 2pk−1−s + p2k−2−2s) = ps − a2

p + 2pk−1 + p2k−2−s

= −
[
a2
p − (p2k−2−s + 2pk−1 + ps)

]
.

Note that in our case we have f ∈ S2(Γ0(N)). Hence when k = 2 this factor reduces
to

−
[
a2
p − (p2−s + 2p+ ps)

]
.

Note now that if we take s = 2 we get the following:

−
[
a2
p − (1 + 2p+ p2)

]
= −

[
a2
p − (p+ 1)2

]
.

Recall that it makes sense to consider s = 2 by our argument in the previous section.
Notice how if we assume there is an ` dividing this factor, we have exactly the con-
dition for there to exist a level raising congruence. The modulus of the congruence in
Theorem 5.6.1 is then a prime λ|` . We could therefore say that we expect a congruence
to exist when we divide an Euler factor coming from the symmetric square L-function
associated to the cusp form f .

5.7.3 Galois Deformations

There is actually another way that we could construct a non-zero element in a Bloch-
Kato Selmer group using the information we know about the congruence in Theo-
rem 5.6.1. Recall that in our case the condition for the existence of a level raising
congruence of Hilbert modular forms is the same as the condition for there to be such
a congruence between two classical cusp forms. This follows since we are working with
a quadratic field and N(p) = p where p = pp is a split prime in the quadratic field K .
However in order for our method to work we need to level raise after base changing to
a Hilbert modular form. Since the condition is the same in both cases however, we can
consider the case where we first level raise and see what happens when we consider the
Bloch-Kato formula. The argument we will use is similar to those used in the theory
of Galois deformations.

Take f ∈ S2(Γ0(N)). Assume this satisfies a level raising congruence with some g ∈
S2(Γ0(Np)). That is we have ap(f) ≡ ap(g) (mod λ) for some λ|` where `|(ap(f)2 −
(p+ 1)2). Then we have ρf ' ρg where these are the associated Galois representations
reduced modulo λ . We assume that these representations are irreducible. Since we
know that a congruence exists we may choose a maximal r ≥ 1 such that ρf and ρg
are the same modulo λr . We then know that ρf and ρg differ modulo λr+1 . We have

ρg(σ) ≡ ρf (σ) (I + λrθg(σ)) (mod λ)r+1,
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where θg(σ) ∈ M2(Fλ) = Hom(F2
λ,F2

λ). Here θg(σ) actually lies in the space of trace
0 matrices since det(ρf ) = det(ρg). We now consider ρg(στ) and show that we can
produce a non-trivial cocycle. We have

ρg(στ) ≡ ρf (στ) (I + λrθg(στ)) (mod λ)r+1

≡ ρf (σ)ρf (τ) (I + λrθg(στ)) (mod λ)r+1

But we also have

ρg(στ) = ρg(σ)ρg(τ)

≡ ρf (σ) (I + λrθg(σ)) ρf (τ) (I + λrθg(τ))

We deduce that

θg(στ) = ρf (τ)−1θg(σ)ρf (τ)θg(τ),

and so

θg(στ) = τ(θg(σ))θg(τ).

Here the action of τ is the adjoint ρf action Adρf . This action is really the Ad0

action by the above argument. This gives us a non-trivial cocycle which then leads to
a non-zero element lying in some Bloch-Kato Selmer group by a similar argument to
those we used in Sections 3.3 and 5.7.

Although this argument was for a congruence between two classical cusp forms f ∈
Sk(Γ0(N)) and g ∈ Sk(Γ0(Np)) with ap(f) ≡ ap(g) (mod λ), we still actually end
up with the same conditions arising in the Bloch-Kato formula as we would for the
congruence in Theorem 5.6.1. This arises because of the level raising condition being
the same in both cases and the fact that it is analogue of the Euler factor of an L-
function.

§ 5.8 The Vector Valued Case

Now that we have dealt with the scalar valued case, we move on to the more general
case of vector valued Siegel modular forms. This will mean that we can start with a
classical modular form f ∈ Sk(Γ0(N)) with k > 2. Running through our process, we
will base change to a Hilbert modular form of parallel weight k , which we will then level
raise to get a non Galois-invariant Hilbert modular form. This is the point at which we
need a different approach. We will no longer be able to make use of the theta lifting
result of [JLR] since the only parallel weight that is covered by the result is parallel
weight 2. As we know, this leads to a scalar valued Siegel modular form. We will
however be able to slightly modify the work of [JLR] in order to obtain a vector valued
Siegel modular form. In order to do this we will need to consider L-parameters and
L-packets. Before we do this however, we will explain the construction of the Siegel
modular form.



126

5.8.1 Constructing the Siegel Modular Form

In this section we will give an outline of the construction of the Siegel modular form.
There will be many new concepts introduced in this section, most of which will be
properly defined or explained in later sections. The method we will use is the same
as that of Johnson-Leung and Roberts from Section 3 of [JLR]. Let K be a real
quadratic field and π0 a cuspidal, irreducible, automorphic representation of GL2(AK)
with trivial central character, where AK is the adeles of K . Note that this will be
the automorphic representation associated to our level raised Hilbert modular form. In
particular we will have taken a base change of our classical weight k cusp form to a
Hilbert cusp form over the field K . For every place v of Q we define π0,v = ⊗w|vπ0,w .
In particular, for a prime v that is inert in K , π0,v = π0,(w) , for a prime v that splits
in K , π0,v = π0,w1 ⊗ π0,w2 and for a prime v that ramifies in K , π0,v = π0,w .

Let ϕ(π0,v) : WQv → GSp4(C) be the L-parameter associated to π0,v . Here WQv is
the Weil group of Qv . This is a dense subgroup of Gal(Q̄v/Qv), and consists of all
elements whose image in the Galois group of the residue field is an integral power of the
Frobenius automorphism. Note that these L-parameters, along with the L-packets,
will be defined in Section 5.8.2. By the remark in Section 2.2 of [Bla], the represen-
tation π0,w is tempered for all finite places w of K . Let Π (ϕ(π0,v)) be the L-packet
of tempered, irreducible, admissible representations of GSp4(Qv) with trivial central
character associated to ϕ(π0,v) as in [Rob]. For finite v = p , the packet Π (ϕ(π0,p)) co-
incides with the packet associated to ϕ(π0,p) in [GT]. This packet may contain several
representations but it contains a unique generic representation πp of GSp4(Qp). We
will show in Section 5.8.2 that Π (ϕ(π0,∞)) contains the lowest weight representation
of GSp4(R) denoted by πλ[0]. This is a particular type of discrete series representation
where λ is a vector since we are in the vector valued case.

We note that the Langlands correspondence between the L-parameters and the rep-
resentations of GSp4(R) means that the L-parameter, in a sense, labels the repre-
sentation. Now, GSp4(R) is not a compact group, however Sp4(R) ⊂ GSp4(R) is a
semisimple group whose maximal compact subgroup is a connected compact Lie group.
In order to understand the representations of GSp4(R), we may restrict to the subgroup
Sp4(R) and then further restrict to its maximal compact subgroup. The Lie algebra of
Sp4(R) is given by

g = {X ∈M4(R)|XJ + JXT = 0}

=

{(
A B
C D

)
∈M4(R)|B = BT , C = CT , A = −DT

}
.

The standard maximal compact subgroup K∞ of Sp4(R) is

K∞ =

{(
A B
−B A

)
∈ GL4(R)|ATA+BTB = 1, ATB = BTA

}
.

We have K∞ ' U(2) via

(
A B
−B A

)
7→ A+ iB .
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If we consider the restriction of our representation to the maximal compact subgroup
K∞ ' U(2), we obtain a set of finite dimensional pieces. This restriction makes our
calculations easier as the representation theory of compact Lie groups is completely
understood and we do not lose any information about the larger group GSp4(R). If
we consider the maximal torus T inside K∞ , we can determine the representations
of K∞ , from those of T . In general, such tori are isomorphic to several copies of the
circle S1 and therefore the representations of T can be determined from the represen-
tations of the circle. Since T is commutative, Schur’s lemma says that each irreducible
representation ρ of T is one-dimensional:

ρ : T → GL1(C) = C×.

It must also map into S1 ⊂ C since T is compact. We let t be the Lie algebra of T
and we let points h ∈ T be denoted

h = eH , H ∈ t.

In these coordinates, ρ has the form

ρ(eH) = eiλ(H)

for some linear functional λ on t . As it stands the linear functionals do not give a
well-defined map of T into S1 . This is because the exponential map H → eH is not
injective. We let Γ denote the kernel of the exponential map:

Γ = {H ∈ t| e2πH = Id},

where Id is the identity element of t . Then for the linear functional λ to give a
well-defined map ρ , it must satisfy

λ(H) ∈ Z, H ∈ Γ.

Such a linear functional is called an analytically integral element.

The irreducible representations of K∞ break up as a direct sum of irreducible represen-
tations of T . As we have seen, these representations are described by linear functionals
λ . Let Σ be a finite-dimensional irreducible representation of K∞ . If a given functional
λ appears in the restriction of Σ to T , we call λ a weight of Σ. These weights can then
be determined by considering a root system for K∞ . When we restrict a representation
such as Σ to T we have an ordering on the weights of the irreducible representations in
the direct sum. This ordering gives rise to a highest weight for each irreducible piece.
The representation with lowest highest weight is said to have minimal K∞ -type. The
irreducible representations of K∞ ' U(2) are parametrised by elements in the weight
lattice Λ = Ze1 + Ze2 , modulo the action of the real Weyl group (to be defined later).
Since the Weyl group acts by permuting the ei , the irreducible representations of K∞
are are in 1-1 correspondence with the weight

λ = r1e1 + r2e2, r1, r2 ∈ Z, r1 ≥ r2.
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We denote the finite-dimensional irreducible representation of K∞ corresponding to
this λ by τλ . For us, λ = (k − 1, 0); so we have r1 = k − 1 and r2 = 0. We will
show this in Section 5.8.2. This will mean that we actually have a limit of discrete
series representation. There is an irreducible, admissible representation πλ of Sp4(R)
which is exactly this limit of discrete series representation. This representation has
minimal K∞ -type τλ for our choice of λ . In other words, the piece with lowest highest
weight of the restriction of πλ to K∞ is τλ . We also note that πλ is itself a piece
of the restriction of a larger limit of discrete series representation of GSp4(R). This
representation is denoted πλ[0]. We have πλ[0] ∼= πλ ⊕ π̂λ . We set π∞ = πλ[0].

5.8.1.1 Siegel to Automorphic

Our next step will be to produce an automorphic representation from which we can
extract the Siegel modular form that we are interested in as a particular vector. Before
we do this however we will describe the general process in the opposite direction. That
is, we will show how given a Siegel modular form, we can produce an automorphic
form. We will then be able to essentially run the argument backwards to determine
our Siegel modular form. Here we will describe the process for general Siegel modular
forms of genus n , but we note that for us n = 2.

Let (ρ, V ) be a finite-dimensional rational representation of GLn(C). As defined in Sec-
tion 5.2, a vector valued Siegel modular form of genus n and weight ρ is a holomorphic
function F : Hn → V such that

F (γ〈Z〉) = ρ(j(γ, Z))F (Z) for all γ =

(
A B
C D

)
∈ Γ, Z ∈ Hn,

where Γ is some congruence subgroup of Sp2n(R) and j(γ, Z) = (CZ +D).

Assuming ρ is irreducible, we may associate a function Φ on GSp2n(A) to the modular
form F . Let m ∈ R be the number such that ρ(s) = s2midV , for each scalar matrix
s = diag(s, . . . , s) ∈ GLn(C), s > 0.

Remark 5.8.1. In the scalar valued case ρ = detk . We therefore have ρ(s) = det(s)k =
(sn)k = snk . Hence m must satisfy snk = s2m . It follows that in this case m = nk/2.
Hence in the genus 2 case we have m = k .

Remark 5.8.2. We also note that the definition of the slash operator in [AS] differs
from the definition in this thesis. This therefore affects the choice of m . We will point
out the difference later when we define our Siegel modular form. The general theory
however remains the same.

Let G = GSp(2n). We note that using strong approximation (see [Kne]) we have

G(A) = G(Q)G(R)+
∏
p<∞

Kp,
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where G(R)+ denotes the elements of G(R) with positive multiplier, and Kp is G(Zp)
for all but finitely many p and G(K(pn)) otherwise, where K(pn) is the local paramod-
ular group. We note that here Kp could be any open compact subgroup of G(Qp) as
explained in [SS], but the local paramodular group is the one that we need for our case.
We write an element g ∈ G(A) as

g = gQg∞k0 with gQ ∈ G(Q), g∞ ∈ G(R)+, k0 ∈ K0, (5.1)

where K0 =
∏
p<∞Kp . We may now define

Φ̃(g) = µ(g∞)mρ(CI +D)−1F (g〈I〉),

with g = gQg∞k0 as in (5.1) and g∞ =

(
A B
C D

)
.

The factor µ(g∞)m ensures that Φ̃ descends to a function on PGSp2n(A). Further,
Φ̃(γgk0) = Φ̃(g) for all γ ∈ G(Q) and k0 ∈ K0 , and

Φ̃(gk∞) = ρ(k∞)−1Φ̃(g) for all k∞ ∈ K∞ ' U(n).

As it stands, the function Φ̃ is vector valued, but we would like to obtain a scalar
valued function. We let L be any non-zero linear form on V , the space of ρ , and
define

Φ(g) = L(Φ̃(g)), g ∈ G(A).

It can be shown that the map F 7→ Φ is a norm-preserving map of Hilbert spaces
from Sρ(Γ) to L2(Z(A)G(Q)\G(A)) whose image is contained in the space of cus-
pidal functions. That is Φ can be realised as being inside the space of functions
L2

0(Z(A)G(Q)\G(A)). We then consider the subspace of this L2
0 space spanned by

all the right translates of Φ. Note that this means the choice of linear form L above
is arbitrary. We let π be any irreducible constituent of this unitary representation.
Then π is an automorphic representation of G(A) which is trivial on Z(A). We may
therefore consider π as an automorphic representation of PGSp2n(A). Let

π =
⊗
v

πv

be the decomposition of π into local representations. For finite places, these are ir-
reducible representations πp of the local groups Gp = G(Qp). Note that this is a
restricted tensor product. Because Φ is right Kp -invariant at each finite place p , the
representation πp is spherical (to be defined later) for every such p . As we will see,
these representations take a particular form that tell us about the related Satake pa-
rameters. As explained in [AS, §4.5, p.196], π∞ is the lowest weight representation of
G(R) with minimal K∞ -type τλ for some weight λ . The representation τλ contains a
vector v0 that is annihilated by the compact positive root vectors. This v0 is a highest
weight vector; further, we have Φ = v0 .
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5.8.1.2 Automorphic to Siegel

We have now discussed the process of going from a cuspidal Siegel modular form to
an automorphic representation. We now wish to go in the other direction. We note
that with some careful choices we can do this. We define π to be the restricted tensor
product

π =
⊗
v

πv,

where πv is the unique generic representation inside Π(ϕ0,v)) for finite v and π∞ is the
lowest weight representation πλ[0]. Note that these are all representations of GSp4(R).
What we have done here is create a tensor product of local representations for each
place v of Q . It isn’t immediately obvious that this should create an automorphic
representation. However, by Theorem 8.6 of [Rob], π is a cuspidal, irreducible, admis-
sible, automorphic representation of GSp4(AQ) with trivial central character. We note
that for our case we take F = Q and E = K , then part (1) gives us the result.

Now that we have the automorphic representation, we need to identify the correct vector
inside this representation. For each prime p of Q , let Φp be the local paramodular
newform in πp , and let Φ∞ ∈ π∞ = πλ[0] be the highest weight vector v0 lying in
τλ . By [RS2], Φp exists and is unique up to scalars; we may assume that for almost
all p , Φp is the unramified vector used to define the tensor product. Note that the
L-packet is unramified for almost all primes and contains spherical representations (to
be defined in Section 5.8.4). We set

Φ =
⊗
v

Φv.

This tensor product is now the Siegel modular form viewed as an automorphic form,
so we have Φ : GSp4(A)→ C . This Φ is a scalar valued function that we can view as
lying inside the space of cuspidal functions L2

0(Z(A)G(Q)\G(A)). We now wish to move
from the scalar valued Φ to a vector valued function Φ̃. As explained in the discussion
preceding Lemma 6.2 of [D2], this can be achieved in the vector valued case. The results
of the scalar valued case need some slight modifications. We do not go into the details
here. Given that we now have Φ̃ as defined in Section 5.8.1.1, we will define the Siegel
modular form in classical notation. Let (ρ, V ) be the representation Symk−2(C2)⊗det2 .
We will see later in Section 5.8.2 why this is the correct representation. Define F :
H2 → V by F (Z) = µ(g)−(k−3)ρ(j(g, I))Φ̃(g∞) where g ∈ GSp4(R)+ is such that

g〈I〉 = Z and I =

(
i 0
0 i

)
∈ H2 .

Remark 5.8.3. We note that in our definition of F we have the factor µ(g)−m where
m = k − 3. This is in order to match our definition of slash operator so that we have
appropriate cancellation and therefore trivial central character. If we had instead used
the normalisation used in [AS] we would have ended up with m = (k+2)/2. Note that
for the representation Symj(C2)detκ we have m = j + κ− 3 in our normalisation and
m = (j + 2κ)/2 in the normalisation of [AS].
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By a generalisation of Lemma 7 of [AS] to the vector valued case, F is holomorphic.
Since we started with an automorphic form whose local pieces comprised of paramod-
ular newforms and have run through the argument of Section 5.8.1.1 backwards, it
follows that F ∈ Snew

ρ (K(M)). Again, we will see in Section 5.8.2 that M is the same
as in the scalar case; that is M = N2d2

Kp .

Remark 5.8.4. We note that we could have chosen any representation at the finite places
and the restricted tensor product would still have given us an automorphic represen-
tation. Recall that the L-packet Π(ϕ(π0,p)) may contain several representations but
contains a unique generic representation for each prime p . Our choice of the unique
generic representation is what leads us to a Siegel paramodular newform.

Now that we have shown how we will construct the Siegel newform, we go into more
details on the local conditions. That is, we now consider the L-parameters and L-
packets that were critical in this construction. This will explain how we determined
both the level and weight of the Siegel paramodular form. They will also help us
determine the Hecke eigenvalues of F . We will see exactly how in Section 5.8.4.

5.8.2 L-parameters and L-packets

As we have seen, the way to obtain the correct Siegel modular form together with its
Hecke eigenvalues is by considering the automorphic representation obtained by the
process outlined above. The Siegel modular form that we want is then associated to
a particular vector in this automorphic representation. We will need to consider the
local components at each finite place and at the infinite places. Each of these pieces
has an associated L-parameter. We then package together certain isomorphism classes
of these representations to form an L-packet. From this packet we can then extract
the necessary information. The L-parameters at the finite places will tell us about the
Hecke eigenvalues of the Siegel modular form, whereas the L-parameters at the infinite
places will tell us about the weight of the Siegel modular form. We also note that the
level of the modular form is determined by the local behaviour at finite places.

In constructing the representation of GSp4(R) we can use both the work in Section 4
of [JLR] and the examples on pages 206-207 of [Mor]. In order to determine the weight
of our Siegel modular form we must consider the infinite places. Here we are dealing
with discrete series representations; or rather, limit of discrete series representations as
it will turn out in our case.

Define two-dimensional representations ϕµ,N : WR → GL2(C) (µ ∈ C, N ∈ Z≥0) as
follows:

ϕµ,N

(
reiθ

)
=

(
r2µ−Ne−iNθ 0

0 r2µ−NeiNθ

)
, ϕµ,N (j) =

(
0 (−1)N

1 0

)
.

Here WR is the Weil group of R , defined by WR = C× t C× · j (jz = zj, j2 = −1).
The representation ϕµ,N is irreducible if N > 0, which for us, will always be the case.
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Our main work will involve applying our case to two examples from [Mor, p 207]. In
order to do this however we first consider a simpler example to introduce some notation
that will be necessary in both these examples and in later work.

This is part of [Mor, §1, Ex1]. Consider G = SL2(R). Here we may fix an Iwasawa
decomposition G = NAK as follows:

N :=

{(
1 x
0 1

)
|x ∈ R

}
, A :=

{( √
y 0

0 1/
√
y

)
|y > 0

}
,

K :=

{
rθ =

(
cosθ sinθ
−sinθ cosθ

)
|θ ∈ R

}
.

As a C-basis of the Lie algebra sl2(C), we take

H :=

(
0 −

√
−1√

−1 0

)
, X± :=

1

2

(
1 ±

√
−1

±
√
−1 −1

)
.

Then {H,X+, X−} is an sl2 -triplet. For each k ∈ C , consider the Verma module

M(k) = U(g)⊗U(b) Ck with b = C ·H ⊕ C ·X−.

Here Ck = Cvk is a one-dimensional b-module characterised by H · vk = kvk and
X− · vk = 0. It is well known that M(k) is unitarisable if k ∈ Z>0 . In other words,
there exists an irreducible unitary representation D+

k of G such that its underlying
(g,K)-module is M(k). We denote by D−k the contragredient representation of D+

k .
The representation D±k (k ≥ 2) is called the discrete series representation with Blattner
parameter ±k (to be defined later). These representations are limit of discrete series
representations.

We now consider the two examples from [Mor, p 207]. We note that in the following
Ĝ denotes the Langlands dual of the reductive algebraic group G .

Example 5.8.5 (G = GL2(R)). In this case, Ĝ ' GL2(C). We denote by π =
Dk[c](k ≥ 1, c ∈ C) the irreducible admissible representation of GL2(R) characterised
by π|SL2(R) ' D+

k ⊕D
−
k and π(zI2) = zc × id(z > 0). Then we have

Πϕµ,N (GL2(R)) = {Dk[c]}, with µ = (c+ k − 1)/2, N = k − 1.

Example 5.8.6 (G = GSp4(R)). In this case, Ĝ ' GSp4(C). Let πλ[c] be the
representation of GSp4(R) with πλ[c]|Sp4(R) ' πλ ⊕ π̂λ and π(zI4) = zc × id(z > 0).
Note that πλ is a particular discrete series representation of Sp4(R). For λ1 > λ2 > 0,
we consider the Langlands parameter ϕ : WR → Ĝ = GSp4(C) defined by

ϕ(w) =


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 with

(
ai bi
ci di

)
= ϕµi,Ni(w) (i = 1, 2),
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where we set

µ1 = (c+ λ1 − λ2)/2, N1 = λ1 − λ2;µ2 = (c+ λ1 + λ2)/2, N2 = λ1 + λ2.

Then the corresponding L-packet consists of two elements:

Πϕ (GSp4(R)) = {π(λ1,λ2)[c], π(λ1,−λ2)[c]}.

In our case we have a parallel weight k Hilbert modular form which at each infinite
place, has an associated irreducible admissible representation of GL2(R). For both
places, this is Dk[c] , where c = 0 since we have trivial central character. Using ex-
ample 5.8.5 we see the associated L-parameter has µ = k−1

2 and N = k − 1. In
order to obtain the four-dimensional representation that we require we will be inducing
the two-dimensional representation associated to our Hilbert modular form. Strictly
speaking this is by automorphic induction from GL2(AK) to GSp4(AQ) and amounts to
combining the two representations at the infinite places of K to get a four-dimensional
representation. Hence using example 5.8.6 we will have two copies of the representation
ϕµ,N with µ = k−1

2 and N = k − 1.

We note that

ϕ k−1
2
,k−1

(
reiθ

)
=

(
r(k−1)−(k−1)e−i(k−1)θ 0

0 r(k−1)−(k−1)ei(k−1)θ

)
=

(
ei(1−k)θ 0

0 ei(k−1)θ

)
.

Alternatively we can write

ϕ k−1
2
,k−1(z) =

(
(z/z)

1−k
2 0

0 (z/z)
k−1

2

)
,

with z = reiθ . Following example 5.8.6, we therefore have the L-parameter ϕ : WR →
GSp4(C) given by

ϕ(z) =


(z/z)

1−k
2 0 0 0

0 (z/z)
1−k

2 0 0

0 0 (z/z)
k−1

2 0

0 0 0 (z/z)
k−1

2

 .

We note that in the example 5.8.6, we have µ1 = c+λ1−λ2
2 , N1 = λ1−λ2, µ2 = c+λ1+λ2

2 ,

and N2 = λ1 + λ2 . Since we know that c = 0, µ1 = µ2 = k−1
2 and N1 = N2 = k − 1,

we see that λ1 = k − 1 and λ2 = 0. Although example 5.8.6 deals with the case
λ1 > λ2 > 0 this process is actually still applicable. We are working in the case of
limit of discrete series representations. See Section 5.8.3 for more details. Hence the
L-packet consists of a single element:

Πϕ(GSp4(R)) = {π(k−1,0)[0]}.
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Now that we know what the L-parameters and L-packets look like in our case, we need
to consider Harish-Chandra parameters and Blattner parameters in order to determine
the weight that our Siegel modular form will have. In 1965-1966 Harish-Chandra
classified the discrete series representations of connected semisimple groups G . It
turns out that such a group G has discrete series representations if and only if the rank
of G is equal to the rank of some maximal compact subgroup K . The Harish-Chandra
parameter is then a way to measure this. We also have some associated parameters
called Blattner parameters. If λ denotes the Harish-Chandra parameter, then the
Blattner parameter is given by

Λ = λ+ δnc − δc,

where δnc (respectively δc ) is half of the sum of the non-compact (respectively compact)
positive roots. For more details see [Mor, Theorem 2.2].

In our case we have the Harish-Chandra parameter λ = (λ1, λ2) = (k − 1, 0). This
tells us that the Blattner parameter Λ is given by Λ = λ+ (1, 2) = (k, 2). This follows
since λ ∈ Ξ3,0 as defined in [Mor, p.205]. We note that we could have λ ∈ Ξ2,1 but
this would lead to a contradiction as we would end up with a Siegel modular form
with scalar weight 0. As we mentioned earlier, the representation π∞ is the one of
minimal K∞ -type τλ . This representation is then associated with the representation
of highest weight (j + κ, κ), this is the representation Symj(C2) ⊗ detκ . In our case
we have (k, 2) = (j + κ, κ). Hence it follows that the scalar part of the weight is
given by κ = 2 and then j = k − 2. Therefore the representation of highest weight is
Symk−2(C2)⊗ det2 .

We note that the L-parameters at the finite places are constructed in a very similar
manner. These are constructed in the same way as in Section 4 of [JLR]. Due to the
special nature of our case, we end up with the split and non-split cases behaving in
the same way. In fact we end up with a four dimensional representation that has the
same form as the ones at the infinite places in both cases. In order to consider the
L-parameters at finite places we consider our quadratic field K tensored with Qp for
each prime p . We end up with the following

K ⊗Qp =

{
Qp ⊕Qp if p splits in K,

Kp otherwise.

We note that in the notation of [JLR] we have F = Qp and E = K ⊗Qp . For ease of
notation we will use F and E in the following.

The split case is parametrised by pairs (π1, π2) where π1 and π2 are irreducible, ad-
missible representations of GL2(F ) having the same central character. In our case,
this will be trivial. The non-split case is parametrised by triples (E, π0, η) where
E is a quadratic extension of F , π0 is an irreducible, admissible representation of
GL2(E) with Galois-invariant central character ωπ0 , and η a character of F× such
that ωπ0 = η ◦NE

F .
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To define the parameter ϕ(π1, π2) : WF → GSp4(C) associated to a pair (π1, π2), let
ϕ1 : WF → GL2(C) and ϕ2 : WF → GL2(C) be the L-parameters of π1 and π2 ,
respectively. We define

ϕ(π1, π2)(x) =


a1 0 b1 0
0 a2 0 b2
c1 0 d1 0
0 c2 0 d2

 (5.2)

for ϕ1(x) =

(
a1 b1
c1 d1

)
, ϕ2(x) =

(
a2 b2
c2 d2

)
and x ∈WF .

The definition of the L-parameter in the non-split case is a little more involved. For
more details see Section 4 of [JLR]. We note here however that we end up with a
very similar matrix. For y ∈ WE and g0 a representative for the non-trivial coset of
WE\WF ,

ϕ(E, π0, η)(y) =


a 0 η(g0)−1b 0
0 a′ 0 b′

η(g0)c 0 d 0
0 c′ 0 d′

 (5.3)

for ϕ0(y) =

(
a b
c d

)
, and ϕ0(g0yg

−1
0 ) =

(
a′ b′

c′ d′

)
.

Since the character η will be trivial in our case, we see that we end up with the same
kind of interleaved matrix.

Since the level of the Siegel modular form that we end up with is determined by what
happens at the finite places, we see that we still get a Siegel paramodular form of
level N2d2

Kp . Here N is the level of the classical cusp form we start with, dK is the
discriminant of K and p is the prime we raise the level of the Hilbert modular form by.
This follows because the local components at finite places are constructed in exactly
the same way as in [JLR]. The only change we have in the vector valued case is with
the local component at the infinite place, hence the change in weight.

5.8.3 Limit of Discrete Series Representation

As was mentioned in the previous section, we aren’t working exactly in the case of
Example 5.8.6 from [Mor]. This is because we end up with λ2 = 0. We therefore
are not working with a typical discrete series representation, rather a limit of discrete
series representation. Here we aim to give a rough description of such series. As
we know, Harish-Chandra classified the discrete series representations in 1965-1966.
Recall from Section 5.8.1, that in order to study the representations of GSp4(R), we
instead consider the subgroup G = Sp4(R) which is a connected semisimple group.
Then K∞ is the maximal compact subgroup and we let T denote the maximal torus in
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K∞ . As described earlier the Z-lattice generated by the ei is called the weight lattice.
If we let L be the weight lattice, then we have a discrete series representation πλ for
every vector λ of

L+ ρ,

which is not orthogonal to any root of G , where ρ is the Weyl vector (half sum of
the positive roots) of G . If we consider the hyperplane perpendicular to each root
in our system and consider the group generated by the set of reflections about these
hyperplanes, we get the Weyl group. The complement of the set of hyperplanes is
disconnected and each connected component is called a Weyl chamber. In the notation
of [Mor], the Weyl chambers are the Ξp,q . Elements that lie inside these chambers, but
not on the walls of the chambers, parametrise the discrete series representations. All
discrete series representations occur in this way. Two vectors v correspond to the same
discrete series representation if and only if they are conjugate under the action of the
Weyl group of K .

The elements that lie on the walls of Weyl chambers are known as limit of discrete
series representations. These representations still behave very much like discrete series
representations, for example the character formulas still make sense but the parameter
that is plugged into such formulas has been allowed to move into the wall of a Weyl
chamber. Two limit of discrete series representations give the same representation
if they are conjugate under the action of the Weyl group of K . Recall that in our
case we have the Harish-Chandra parameter λ = (k − 1, 0) with λ ∈ Ξ3,0 . Now
Ξ3,0 := {λ = (λ1, λ2) ∈ T̂ |λ1 > λ2 > 0} , where T̂ is the character group of T . Since
we have λ2 = 0 we see that our Harish-Chandra parameter doesn’t quite satisfy the
correct inequalities. This amounts to our parameter lying in the wall of the Weyl
chamber since we actually have λ1 > λ2 = 0.

Since we are working with a slightly unusual case we might wonder whether we can
still carry out the process of moving from an automorphic representation to a Siegel
modular form as described in Section 5.8.1.2. Fortunately, this is still the case. Recall
that we are working at the infinite place here. The main result that is important to us
is Theorem 3.1 from [Mor]. We now state this result.

Theorem 5.8.7. Suppose that Λ1 ≥ Λ2 ≥ 3. If we set λ = (Λ1 − 1,Λ2 − 2), then we
have

Homg,K(πλ,A(Γ\G)) 'Mholo
Λ (Γ\G) 'MΛ(Γ\X).

This result is essentially saying that from the representation in our L-packet we can
associate to it a modular form. Here A(Γ\G) is the space of automorphic forms on G
with respect to Γ, with Γ a congruence subgroup of Sp4(R), and we identify X = G/K
with the Siegel upper half space H2 . This result is therefore saying that the infinite
dimensional representation πλ has an associated automorphic form. We then have an
associated vector valued Siegel modular form.

Now in our case we have Λ2 = 2 so we do not satisfy the conditions of the theorem.
However, by remark (ii) on page 210 of [Mor] the theorem still holds if we replace πλ



CHAPTER 5. CONGRUENCES BETWEEN GENUS 1 AND GENUS 2
CUSP FORMS 137

with the generalised Verma module M(Λ). This is essentially a method of dealing with
the fact that we are in the case of limit of discrete series representations. In this case
we end up with

Homg,K(M(Λ),Acusp(Γ\G)) ' Homg,K(L(Λ),Acusp(Γ\G)) ' Sholo
Λ (Γ\G) ' SΛ(Γ\X).

Here Sholo
Λ (Γ\G) (respectively SΛ(Γ\X)) is the space of cusp forms in Mholo

Λ (Γ\G)
(respectively MΛ(Γ\X)), and L(Λ) is isomorphic to the limit of discrete series repre-
sentation.

5.8.4 The Satake Isomorphism and Satake Parameters

Our process so far comprises of starting with a classical modular form f ∈ Sk(Γ0(N))
and base changing to a Hilbert modular form f ′ say. We then raise the level of this
modular form to get another Hilbert modular form g say. We then induce the associ-
ated Galois representation in order to obtain a four-dimensional representation whose
associated modular form is a Siegel paramodular newform. We now wish to know, given
the L-parameters and L-packets that we have obtained, what the Hecke eigenvalues of
this Siegel paramodular newform are. This will be determined via Satake parameters
and the Satake isomorphism. There are many different sources that cover the Satake
isomorphism. We will stick mostly with the treatment given in [AS], however for a
more thorough treatment, the reader might like to consult [Gross].

We first set up some notation. The following is from [AS, §2 & §3]. Let G = GSp2n .
Here we work with general n but note that we will be interested in the case n = 2. An
element t of the standard maximal torus T is often written in the form

t = diag(u1, . . . , un, u
−1
1 u0, . . . , u

−1
n u0), ui ∈ GL(1); (5.4)

then u0 = µ(t), the multiplier homomorphism. We fix the following characters of the
maximal torus T ⊂ G . If t ∈ T is written in the form (5.4), then let

ei(t) = ui, i = 0, 1, . . . , n.

These characters are a basis for the character lattice of G ,

X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen.

We also fix the following cocharacters of T :

f0(u) = diag(1, . . . , 1︸ ︷︷ ︸
n

, u, . . . , u︸ ︷︷ ︸
n

),

f1(u) = diag(u, 1, . . . , 1︸ ︷︷ ︸
n

, u−1, 1, . . . , 1︸ ︷︷ ︸
n

),

...

fn(u) = diag(1, . . . , 1, u︸ ︷︷ ︸
n

, 1, . . . , 1, u−1︸ ︷︷ ︸
n

).
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These elements are a Z-basis for the cocharacter lattice of G ,

X∨ = Zf0 ⊕ Zf1 ⊕ · · · ⊕ Zfn.

With the natural pairing 〈, 〉 : X ×X∨ → Z , we have

〈ei, fj〉 = δij .

We now choose the following set of simple roots:

α1(t) = u−1
n−1un, . . . , αn−1(t) = u−1

1 u2, αn(t) = u2
1u
−1
0 ;

here t is written in the form (5.4). In other words,

α1 = en − en−1, . . . , αn−1 = e2 − e1, αn = 2e1 − e0.

The corresponding coroots are

α∨1 = fn − fn−1, . . . , α
∨
n−1 = f2 − f1, α̂n = f1.

If we let R = {α1, . . . , αn} ⊂ X,R∨ = {α∨1 , . . . , α∨n} ⊂ X̂ , then

(X,R,X∨, R∨)

is the root datum of G . The Cartan matrix is

〈αi, α∨j 〉 =



2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −1

−2 2


.

We have the Borel subgroup B = TN , where N consists of matrices of the form(
A 0
0 tA−1

)(
1 B
0 1

)
, with A ∈ GL(n) lower triangular unipotent and B sym-

metric. The torus T acts on the Lie-algebra n of N by the adjoint representation Ad.
The modular factor δB(t) = det(Adn(t)) is given by

δB(t) = u
−n(n+1)/2
0 u2

1u
4
2 . . . u

2n
n .

We note that for our purposes, we are dealing with G = GSp4(R) so n = 2. We are
now in a position to consider the Satake isomorphism.

In the following F will denote a p-adic field, O will be its ring of integers, ω ∈ O
a generator of the maximal ideal and q = |O/ωO| the size of the residue field. Let
G = GSp4(F ), let K = GSp4(O), and let T = T (F ) be the maximal torus of G .
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Let H(G,K) be the unramified Hecke algebra of G , consisting of locally constant,
compactly supported functions f : G → C which are left and right K -invariant. The
product in H(G,K) is given by convolution

(f ∗ g)(x) =

∫
G
f(y)g(y−1x)dy.

Here we have used the definition from [Gross, §2] since it is slightly easier to work with.
We note that here dy is a particular (in fact unique) Haar measure on G giving K
volume 1. We note that functions f ∈ H(G,K) are constant on double cosets KxK
since f is left and right K -invariant. It also follows, since f has compact support, that
f must be a linear combination of the characteristic functions char(KxK) of double
cosets. It follows that these characteristic functions form a basis for H(G,K).

We also consider the Hecke algebra H(T, T (O)). Note that this Hecke algebra consists
of locally constant, compactly supported functions f : T → C which are left and right
T (O)-invariant. Recall that T ⊂ B = TN ⊂ G and T (O) = T ∩K . Again, it follows
that this Hecke algebra must be generated by characteristic functions. As in [Gross,
Proposition 2.6], we see that T has a Cartan decomposition

T =
∐
i

fi(ω)T (O),

where ω is a uniformising element (prime) of F . We therefore have the following
special elements in this Hecke algebra:

X0 := char (diag(O∗, . . . ,O∗, ωO∗, . . . , ωO∗)) ,
X1 := char

(
diag(ωO∗,O∗, . . . ,O∗, ω−1O∗,O∗, . . . ,O∗)

)
,

...

Xn := char
(
diag(O∗, . . . ,O∗, ωO∗,O∗, . . . ,O∗, ω−1O∗)

)
,

where “char” stands for characteristic function. By considering the product in
H(T, T (O)), we see that

Xi ∗Xj(x) =

∫
T
Xi(y)Xj(y

−1x)dy

=

∫
fi(ω)T (O)

Xj(y
−1x)dy

=

∫
x−1fi(ω)T (O)

Xj(y
−1)dy

=

∫
xf−1
i (ω)T (O)

Xj(y)dy

=

∫
xf−1
i (ω)T (O)∩fj(ω)T (O)

1dy

= Xi,j(x),



140

where Xi,j has ω in the i-th and j -th positions (and ω−1 in (n+ i)-th and (n+ j)-th
positions). It follows that we have

Xk
0 = char

(
diag(O∗, . . . ,O∗, ωkO∗, . . . , ωkO∗)

)
, k ∈ Z,

and similarly for the other Xi . This follows since Xi,i = X2
i . It is fairly clear that the

C-algebra generated by these Xi together with their inverses is therefore the Hecke
algebra H(T, T (O)). That is

H(T, T (O)) = C[X±1
0 , X±1

1 , . . . , X±1
n ].

For an element f ∈ H(G,K), the Satake transform is defined by

(Sf)(t) = |δB(t)|1/2
∫
N
f(tn)dn = |δB(t)|−1/2

∫
N
f(nt)dn.

We note that the element Sf is an element of H(T, T (O)), and S actually defines an
isomorphism

S : H(G,K)
∼−→ H(T, T (O))W ,

where W denotes the Weyl group of G with respect to T . This group is defined as
the quotient of the normaliser of the torus N(T ) by the centraliser of the torus Z(T ).
Note that

N(T ) := {x ∈ G|xtx−1 ∈ T for all t ∈ T},

and
Z(T ) := {x ∈ G|xtx−1 = t for all t ∈ T}.

We now consider spherical representations. An irreducible admissible representation of
G is called spherical if it contains a non-zero vector fixed by K . Let χ0, . . . , χn be
unramified characters of F ∗ . Note that an unramified character of F ∗ is one which
is trivial on O∗ . These characters then define an unramified character on the Borel
subgroup B = TN which is trivial on N and which, on T , is given by

t 7→ χ0(u0)χ1(u1) . . . χn(un),

with t = diag(u1, . . . , un, u
−1
1 u0, . . . , u

−1
n u0) and ui ∈ GL1(R) the parameters in the

standard maximal torus T . If we use normalised induction (see [1] for a definition) to
G , we obtain a representation with a unique spherical constituent. This representation
is denoted by

π(χ0, χ1, . . . , χn).

The isomorphism class of this representation only depends on the unramified characters
modulo the action of the Weyl group. It is known that each spherical representation
is obtained in this way. We therefore have a bijection between unramified charac-
ters of T modulo the action of the Weyl group, and isomorphism classes of spherical
representations of G .
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Each of the unramified characters χi of F ∗ are determined by their value on a prime
element ω ∈ F . This value is known as a Satake parameter and may be any non-zero
complex number. We denote these Satake parameters by bi := χi(ω). We therefore see
that the character of the Borel subgroup is determined by the vector (b0, b1, . . . , bn) ∈
(C∗)n+1 . The Weyl group acts on this complex torus, and we see that the unramified
representations of G are parametrised by the orbit space (C∗)n+1/W . It follows that
the Satake isomorphism

S : H(G,K)
∼−→ C[X±1

0 , X±1
1 , . . . , X±1

n ]W

allows us to identify the Hecke algebra with the coordinate ring of (C∗)n+1 . Re-
call that this follows since H(T, T (O))W = C[X±1

0 , X±1
1 , . . . , X±1

n ]W . Each point
(b0, . . . , bn) ∈ (C∗)n+1 determines a character, i.e., an algebra homomorphism
C[X±1

0 , X±1
1 , . . . , X±1

n ]W → C , by mapping Xi to bi . Via the Satake isomorphism, this
also defines a character of H(G,K). This character is simply the action of H(G,K)
on the one-dimensional space of spherical vectors in π(χ0, . . . , χn). We therefore end
up with the following commutative diagram, in which all the maps are bijections:

{spherical representations} HomAlg(H(G,K),C)

(C∗)n+1{unramified characters}/W

The left arrow here is by normalised induction and taking the unique spherical con-
stituent. The top arrow is the action of H(G,K) on the space of spherical vectors.
The right arrow comes form the identification H(G,K) ' C[X±1

0 , X±1
1 , . . . , X±1

n ]W .
Finally the bottom arrow assigns to the Satake parameters (b0, . . . , bn) the unramified
character with χi(ω) = bi .

Remark 5.8.8. Although it is not immediately obvious that this diagram should com-
mute, it turns out that it is a consequence of the way the process works as we move
from step to step.

5.8.5 The General Theorem

Since the Satake parameters are closely linked with the Hecke algebra, it is clear that
they contain information on the behaviour of the Hecke operators acting on Siegel
modular forms. In particular if we take a given Hecke operator, we see from the
above diagram, that there is an associated vector in (C∗)n+1 containing the Satake
parameters, from which we will be able to read off the Hecke eigenvalues of the Siegel
modular form that we construct.
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Recall that for each finite prime q , the generic representations πq were spherical repre-
sentations. By the above, and the discussion in the introduction of [Rob], it follows that
we can determine the Satake parameters from the L-parameters ϕ(π0,q) by evaluation
at a Frobenius element at q . This process will give us a matrix with the Satake param-
eters along the diagonal. We will at this point need a way of determining the Hecke
eigenvalues from this matrix. For this, we turn to [Gross, §6]. Here we see that each
element of the Hecke algebra has an associated semisimple conjugacy class, namely the
matrix containing the Satake parameters. It turns out that plugging this semisimple
conjugacy class into a particular representation of Ĝ determined by the choice of Hecke
operator, and taking the trace will, up to some normalisation factors, give us the Hecke
eigenvalues we want.

In our case the semisimple conjugacy classes will be exactly the interleaved matrices
((5.2) and (5.3)) defining the L-parameters ϕ(π0,q) evaluated at a Frobenius element at
q . Since we are working with trivial central character, we can view our representation
of GSp4(F ) as a representation of G = PGSp4(F ). We may actually use the example
with G = SO(5) from [Gross, p. 233] as PGSp(4) ∼= SO(5). The dual group in this case
is Sp4(C). Here we see that the standard representation is the one corresponding to the
Tq Hecke operator. In the example of Gross, we see that by plugging the semisimple
conjugacy class, which we denote by s , into the standard representation V = C4 and
taking the trace, we get the following:

q3/2Tr(s|V ) = q
3−j−2k

2 aq(F ),

where aq(F ) is the Hecke eigenvalue of the Tq operator applied to F . We therefore

multiply by q
j+2k−3

2 in order to get the Hecke eigenvalue. This choice of normalisation
is in order to make the eigenvalues algebraic integers. The exponent j+2k−3

2 of q is
half the weight of a particular cohomology. We will therefore simply be able to read
off the Hecke eigenvalues from this trace.

In order to actually calculate these eigenvalues we use our knowledge of the GL2 case.
Recall that for each finite place q , we defined π0,q = ⊗w|vπ0,w . Since the L-parameters
for GSp4(F ) come from the ones for GL2(F ) associated to the Hilbert modular form,
it follows that we may use the known theory of the GL2 case to determine what is
happening in this case. For details of this, the reader might like to consult an as yet
unfinished book by Harder [Har2], or the case of G = GLn from [Gross, §6]. In the
GL2(F ) cases, evaluation of the L-parameters ϕ(π0,w1) and ϕ(π0,w2) at a Frobenius
element gives matrices whose trace gives the Hecke eigenvalues of the Hilbert form at
each prime above q . This then tells us that when we plug the semisimple conjugacy
class associated to ϕ(π0,q) into the standard representation we simply get the sum of
these Hecke eigenvalues. It follows that we have

aq(F ) =

{
aq(g) + aq(g) if q is split,

0 if q is not split,

where g is the level raised Hilbert modular form. Hence, just as in the scalar valued
case, we have a congruence between the Hecke eigenvalues of f and those of F .
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We have therefore proven the following theorem.

Theorem 5.8.9. Let f ∈ Sk(Γ0(N)) with k ≥ 2 and let K be a real quadratic field
with discriminant dK . Suppose (dK , N) = 1. Choose a prime p that splits in K .
Suppose p - `N , ` - (p+ 1) and

ap(f)2 ≡
(
p
k
2 + p

k
2
−1
)2

(mod λ),

for some λ|`. Further assume that ρf |GK is irreducible modulo λ. Let ρ =
Symk−2(C2)⊗ det2 .

Then there exists a Siegel paramodular cusp form F ∈ Sρ(K(N2d2
Kp)) satisfying

aq(F ) ≡ aq(f) (1 + χK(q)) (mod λ)

for q - N2d2
Kp, where χK is the quadratic character associated to K .

Notice how we now have the more general level raising condition ap(f)2 ≡(
p
k
2 + p

k
2
−1
)2

(mod λ). We might wonder if this can also be viewed as an Euler

factor arising from the Symmetric square L-function like in the scalar valued case. It
turns out that this is indeed the case. Recall from Section 5.7.2 that we ended up with
the factor

−
[
a2
p − (p2k−2−s + 2pk−1 + ps)

]
.

We also have (
p
k
2 + p

k
2
−1
)2

= pk + 2pk−1 + pk−2.

It is clear that if we take s = k in the Euler factor we get

p2k−2−s + 2pk−1 + ps = pk−2 + 2pk−1 + pk.

We therefore see that the Euler factor matches the level raising condition in the vector
valued case as well. This is as would be expected as the argument of Section 5.7 still
holds for weight k > 2. Note also that this agrees with our choice of s = 2 in the scalar
valued case.
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