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Abstract

Abstract

Nearest neighbour searching is a fundamental concept for many ligand-based
virtual screening applications. The system searches for the nearest molecule by
quantifying their similarity using various molecular representations and
similarity coefficients. These similarity measures are the key components of the
system where the variability and the characteristic of the components affect the

effectiveness of the search.

The first aim of this thesis was to investigate the effects of 2D fingerprint
dimensionality on the effectiveness of chemoinformatics applications and the
contributing factors were analysed. Two nearest neighbour search applications,
similarity searching and molecular clustering were conducted. Various types of
coefficients were used to measure the similarity and distances of the chemical
dataset. It was observed that the effectiveness of the similarity search and
clustering applications varied depending on the coefficient used to measure the
degree of similarity or distances. The sparseness of the representations also
affects the similarity measures. The second aim of the study was to quantify the
relative importance of the components influencing 2D fingerprint similarity
searching and this research was carried out using cross-classified modeling.
Effectiveness values produced by different types of 2D fingerprints and
similarity coefficients were used to model the more important component. The
bioactivity of the molecule was the most important factor identified, followed by
the reference structure. Evaluation between the fingerprint representation and
the similarity coefficient revealed that the fingerprint had a greater role in
determining the effectiveness of the similarity searching than the similarity
coefficient. This research contributes to the knowledge of similarity measures in
the chemoinformatics domain on the impact of high dimensional space and the
similarity search components. This contribution provides a practical implication
on the effectiveness of the similarity search application in particular and ligand-

based virtual screening applications.
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

The discovery of new medications for many diseases such as depression and
gastrointestinal disorders has increased the health, quality of life and life
expectancy of patients. All of this was made possible through drug discovery

processes conducted by various pharmaceutical companies for many decades.

Drug discovery is a process that aims to identify new drug candidates for a
disease in pharmaceutical industry. The modern drug discovery pipeline
consists of seven steps: (1) target identification, (2) target validation, (3) hit and
lead identification, (4) lead optimisation, (5) pre-clinical testing, (6) clinical
testing and (7) new drug application (NDA) and food and drug administration
(FDA) approval (Rao & Srinivas, 2011).

The first step in this process is the target identification, which identifies and
understands the role of a potential therapeutic drug target (i.e., a protein
involved in a particular disease). Next step is to validate the target in order to
make sure that the properties of the target produces the desired therapeutic
effect. This is followed by the hit and lead identification, and lead optimisation,
which involve the target and lead compound interactions. Hit and lead
identification is a process of evaluating the initial screening hits assessed by
technology-based approaches like high-throughput screening. The hits are often
undergoing limited optimisation to identify promising lead compounds. For
example, the limited optimisation may improve the binding affinities for

biological target of initial screening hits (Crasto, 2016).

The lead optimisation involves more extensive techniques such as docking to
improve the characteristics (i.e, ADMET - structure-based absorption,
distribution, metabolism, excretion and toxicity) and the efficacy (i.e., bioactivity
or bioavailability) of the drug. In this process, the quantitative structure-activity
relationship (QSAR) methods are used to study the features of molecule that
influence the ADMET characteristics. The docking and scoring computations

will then be applied on the three-dimensional structures resulted from the
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QSAR study to produce drug-like lead compounds (Moroy et al.,, 2012). The
result of this process is the identification of final compounds that will be

selected for clinical trials.

Finally, the NDA provides all information for the FDA, which approves that the
new drug is safe and effective to be used. The drug discovery process can take
about twelve to fifteen years and costs the pharmaceutical company about
US$2,870 million (2013 dollars currency) per compound brought to the market
(DiMasi et al., 2016).

The need for screening larger compound libraries to increase the number of
marketable drugs has encouraged the emergence of high throughput screening
(HTS). Through HTS process, hundreds of thousands of compounds can be
screened per drug target per year. The technology was developed in the 1980s
and the HTS capacity evolved greatly in the 1990s. The evolution includes
focusing on small compound libraries and expands into improving several
fundamental technologies such as high density microplates, high performance

microliter dispensers, imaging and laboratory automation (Carnero, 2006).

The increase of HTS capacity has allowed thousands of compounds to be tested
at the same time. This has led to the use of combinatorial chemistry (CC)
technologies to produce more new compounds in a shorter time. Using this
technology, a large array of compounds from sets of different types of building
blocks is repeatedly produced in a systematic way (Terrett et al., 1995).
Although there are millions of new compounds created, the drug discovery
process could not be enhanced due to the lack of chemical diversity and drug-
like compounds in the compound libraries. Therefore, various computational
approaches are needed to process chemical structure in order to create a highly
diverse and drug-like chemical compound library. One of these approaches, and

the focus of this thesis, is chemoinformatics.

1.2 Basis of Chemoinformatics

Chemoinformatics is known as the application of informatics methods to solve

chemical problems (Gasteiger, 2006). As defined by Brown (1998, p. 375),
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chemoinformatics is “the mixing of those information resources to transform data
into information and information into knowledge for the intended purpose of
making better decisions faster in the area of drug lead identification and
optimization”. In simple terms, chemoinformatics can be understood as a
computational approach and scientific discipline that interface between
chemistry, computer science and information science to process chemical data

structure (Vogt & Bajorath, 2012).

The main focus of chemoinformatics is the manipulation of two-dimensional
(2D) or three-dimensional (3D) chemical structures for searching, modeling and
statistics (Willett, 2011a). The implementation of chemoinformatics approaches
is not limited to research in chemistry and pharmaceutical domains. It has been

adapted to other domains such as food sciences, agrochemicals and perfumes.

For example, the approaches have been used to: (1) process and characterise
the structure-property relationship of chemicals relevant to food chemistry
(Martinez-Mayorga & Medina-Franco, 2009; (Martinez-Mayorga, Peppard,
Ramirez-Hernindez, Terrazas-Alvarez, & Medina-Franco, 2014), (2) predict the
toxicity of aquatic pesticides (Casalegno et al., 2006) and (3) predict sensory

characteristics of chemical structures (Keller et al., 2017).

These studies contribute to the development of, among others, better food or
supplements for health productivity, effective fertilizers for agricultural
productivity and chemical agents for perfumed products. A latest review on
chemoinformatics applications of QSAR in food and agricultural sciences was

recently published by Kar et al., (2017).

The rise of computational technology has improved the ways in which
chemoinformatics analysis is conducted and can be optimised (Chen, 2006). The
growth of big data analysis has encouraged chemoinformatics studies to
venture into more sophisticated methods such as deep learning for analysing

chemical information (Gawehn et al., 2016; Goh et al., 2017).
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1.3 Aims of Research

Molecular similarity is an important concept in chemoinformatics based on the
“Similar Property Principle” (Johnson & Maggiora, 1990). According to this
principle, molecules that have similar structures are likely to have similar
properties. This principle underlies many chemoinformatics applications
involving searching for the nearest neighbour molecule of a specified query

molecule such as similarity searching and clustering (Willett et al., 1998).

The search for nearest neighbour molecules involves two important
components: (1) the molecular representations or descriptors and (2) the
similarity or distance coefficients. The process involves a comparison between
the representations of two molecules using one of many existing coefficients.
These coefficients measure the degree of similarity of the two molecules, in
which the standard coefficient for chemoinformatics applications has been the
Tanimoto coefficient (Willett, 2014). Chapter 2 introduces different similarity
searching techniques and reviews different molecular representations and

coefficients that are used in chemoinformatics applications.

One of the main obstacles of the nearest neighbour search is the “curse of
dimensionality”, a term coined by Richard Bellman (Bellman, 1961). The
phenomenon occurs when the performance of nearest neighbour search
decreases as the dimensionality of the data representation increases (Agrawal
et al., 1998; Weber et al., 1998). Beyer et al. (1999) reported that, as the
dimensionality of the data increases, the ratio of the distance of a query point to
its nearest neighbour and to its furthest neighbour tends to unity when
measured by arbitrary distance measure. France et al. (2012) suggested that the
effects of the nearest neighbour searching vary considerably, depending on the
nature of the similarity coefficient that is used. Chapter 3 reviews issues of
nearest neighbour search concerning high dimensionality data. It also
introduces methods for dimensional reduction, including methods applicable to

chemoinformatics datasets.



Chapter 1 Introduction

In chemoinformatics applications, a single molecule structure can be
represented by multi-dimensional representations or descriptors (Todeschini &
Consonni, 2000). These dimensions can be much higher than the object
representations in most applications of pattern recognition and data mining.
Despite the use of high dimensionality representations, nearest neighbour
searches in the chemoinformatics domain have been found to be effective.
Sastry et al. (2010) suggested that the use of larger bits representation is more
effective than 1024 bits when searching for nearest neighbour using 2D binary

fingerprints.

Therefore, a substantial study on the effect of dimensionality on the
effectiveness of the nearest neighbour search application involving chemical
datasets is essential to understand the reason why the behaviour seems to
contradict the effect observed by the curse of dimensionality. To the
researcher’s knowledge, there has been no study conducted as such, and any

possible behaviour to the changes of the dimensionality remains unclear.

Hence, the first aim of this study is to investigate the effect of dimensionality on
the effectiveness of nearest neighbour search in chemoinformatics applications.
Chapter 4 describes the methodology of the investigations. The investigations
were conducted on two different applications and discussed in two different
chapters: (1) similarity search in Chapter 5 and (2) molecular clustering in
Chapter 6. These applications can be considered as involving large numbers of

nearest neighbour searches.
The specific research objectives for the first aim are as follows:

e To provide a detailed, step by step evaluation of the effects of changing
dimensions of 2D fingerprints on the effectiveness of the applications.

e To analyse the effects of using various types of similarity (or distance)
coefficients on the effectiveness of the application when changing the

dimensionality of the 2D fingerprints.
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e To identify other potential factors contributing to the effects of changing
the dimensionality of the 2D fingerprints on the effectiveness of the

applications.

Next, as mentioned earlier, the search for nearest neighbour molecules involves
two important components, i.e., the molecular representations and the
similarity coefficients. Many studies have evaluated the effects of using different
types of molecular representations or different types of similarity coefficients
by varying only a single component. Todeschini et al. (2012) compared various
types of similarity coefficients used for comparing the similarity of 2D
fingerprints, while Hert et al. (2004) and Riniker and Landrum (2013) evaluated
different 2D fingerprints used as molecular representations for similarity
measures. Sastry et al. (2010) on the other hand, compared various
combinations of parameter settings which include both 2D fingerprints and
similarity coefficients. The research set out to determine the most generally

useful parameter settings for the effectiveness of the similarity searching.

In other domains, researchers have investigated the relative importance of
different components which contributed the performances of various
applications (Garner & Raudenbush, 1991; Leckie, 2009; Bell et al., 2016). A
novel method called cross-classified multilevel modeling has made it possible to
investigate the relative importance of different sources of influences on a
response (Goldstein, 1987; 2011). However, in the chemoinformatics domain,
the relative importance between the similarity search components remains

inconclusive. Despite their importance, this issue has not yet been investigated.

The reasons above have motivated the second aim of this study, which is to use
cross-classified multilevel modeling to model the relative importance of
similarity measure components. Different from previous comparison studies,
this study considers both 2D fingerprints and similarity coefficients, and uses a
novel statistical method in order to model their relative importance in
determining the effectiveness of similarity-based virtual screening. The findings

are reported in Chapter 7.

The specific research objectives for the second aim are as follows:
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e To demonstrate the use of cross-classified multilevel modeling for the
analysis of relative importance of various similarity search components.
e To identify the more important component between the 2D fingerprints
and similarity coefficients in determining the effectiveness of the

similarity measures.

The conclusions that can be drawn from the work conducted in this thesis are

summarised in Chapter 8, along with suggestions for future research.

1.4 Organisation of Thesis
The dissertation is organised as follows:

Chapter 2 begins by discussing the concept of virtual screening applications in
chemoinformatics. This involves the key components of molecular similarity
application that are molecular representation and descriptor, weighting scheme
and similarity coefficient. It also introduces the basic concept of two other

chemoinformatics applications, that are clustering and molecular diversity.

Chapter 3 is concerned with nearest neighbour searching in high
dimensionality. It discusses issues concerning high dimensionality data and

methods for dimensional reduction.

Chapter 4 presents the methodology of the experiments conducted in this
thesis. This includes the introduction of the chemical datasets (i.e., MDDR,
WOMBAT and ChEMBL), molecular representations, similarity and distance

measures, application procedures, evaluation methods and statistical methods.

Chapter 5 is the first experimental chapter on the investigation of the effect of
high dimensionality on the effectiveness of the similarity search application. The

results are analysed and discussed within this chapter.

Chapter 6 expands the investigation in the previous chapter and looks at the
effect of high dimensionality on the effectiveness of the clustering application.
The results are analysed and compared between different clustering methods

implemented.
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Chapter 7 introduces cross-classified multilevel modeling and uses this method
to identify the relative importance of similarity search components in

determining the effectiveness of a similarity search.

Finally, Chapter 8 provides the reader with the conclusions of this thesis, its

limitations and an overview of possible future research directions.
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Chapter 2 Similarity Searching in
Chemoinformatics

2.1 Virtual Screening

Virtual screening is an in silico technique in chemoinformatics which aims to
identify and prioritize candidate compounds for in vitro experiments. It uses
computational methods to search large sets of chemical compounds in order to
find compounds that are most likely to be bioactive. HTS, on the other hand,
screens large numbers or sets of chemical compounds in the laboratory
experiment, which involves a controlled environment and equipment. The
increasing size of compound databases has led to the implementation of virtual
screening using high-performance computing, which can involve advanced
computer processors and parallel programming. This approach is more cost

effective to drug discovery than the traditional HTS (Heikamp et al., 2013).

The types and amounts of data that are available determine the virtual
screening method. First, similarity-searching methods are used when only a
single active molecule is available. Second, pharmacophore methods are used
when there are several active molecules with associated structures available.
Third, machine-learning methods are used when significant numbers of both
active and inactive molecules are available. Finally, docking methods are used
when the 3D structure of the biological target is available. Categorised into two
groups, similarity searching, pharmacophore mapping and machine learning are
examples of ligand-based virtual screening (Ripphausen et al, 2011), while

docking is a structure-based virtual screening method (Lyne, 2002).

Similarity searching identifies compounds in a database that are structurally
similar to the target structure. The approach implements a quantitative
comparison between the target structure with each structure in the database to
produce a ranking of database compounds in decreasing order of similarity to
the target, which is usually a known active structure. The top of the list are the
nearest neighbours to the target structure, which exhibit the most structural

resemblance. Willett (2014) summarised the main components of similarity
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measures in similarity searching (Willett, 2014). Recent research studies have
considered the technique of combining different approaches, i.e., data fusion to
improve the effectiveness of similarity searching. Data fusion can be used to
combine different similarity measures, e.g. combining different fingerprints, or
different virtual screening methods. The approach captures different chemical
information resulting to the highest-ranked hits from the combinations. Hence,
this optimal search and combination may increase the performance (Cereto-

Massagué et al., 2015a).

Pharmacophore methods aim to identify the key common features from a set of
active molecules that bind to an identical target molecule. The common features,
which represent the essential interactions between the ligand and a specific
molecular target, were extracted from 3D structures of known active molecules.
Thus, one can make an assumption that the other molecules which contain the
similar pattern may also exhibit the same biological activities. The main
advantage of this method is to provide better understanding on target and
ligand interactions as well as improving the screening hit rates during in vitro

experiments (Langer et al., 2004).

Machine learning also aims to analyse the structural characteristics of molecules
but for the purpose of classifying the active or inactive compounds. This method
works by developing and training a model using machine learning methods. It
requires input of a training set, which consists of a set of molecules that had
previously been tested and shown to be either active or inactive. These training
set molecules are then analysed to develop a decision rule that is used to classify
new molecules (the test set). Geppert et al. (2010) surveyed data mining
approaches which are applicable to machine learning in compound
classification. Their analysis focused on the novel algorithms and methods of
data mining that are support vector machines, Bayesian classifiers, decision

trees and inductive logic programming.

Docking programs identify 3D structures that are complementary to, and are
predicted to bind to, the 3D protein active site. Docking is performed by the

search algorithm and the scoring function. The docking algorithm is used to
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determine an optimal position and conformation of the ligand in the active site.
Following this, the scoring function evaluates the conformation of the
positioned ligand in the active site and its interactions. Several studies have
reviewed in-depth methods and applications of scoring and docking (Kitchen et
al, 2004; Ghosh et al., 2006). Cheng et al. (2012) suggested a few practical
aspects to improve docking programs while (Wojcikowski, Ballester, &
Siedlecki, 2017) proposed a new machine-learning scoring function that
improves the performance of virtual screening and the prediction of binding

affinity.

Ranking the truly active molecules as high as possible and inactive ones as low
as possible has become one of the issues in virtual screening. This is because
virtual screening evaluates large amounts of chemical data, in which the number
of actives retrieved is important. A study by Scior et al. (2012) mentioned
several drawbacks of various aspects in virtual screening methods which
related to this issue. Among the possible solutions, as suggested, are careful
preparations of database, correct parameter settings and good choice of

algorithm for implementation.

As described above, the similarity searching approach is used to rank the active
molecules in a chemical database. Having introduced what is meant by this
approach, the chapter will now move on to describe the similarity searching

approach in detail and discuss its main components in the next section.

2.2 Molecular Similarity

The past decades have seen the rapid development of molecular similarity in
chemical structures database research. Molecular similarity is a concept that
aims to identify molecules which have the same bioactivity as a bioactive target

structure.

Molecular similarity is a concept based on the similar property principle that
was first presented by Johnson and Maggiora (1990). The principle states
molecules that are structurally similar are likely to have similar properties. This

also indicates that the nearest neighbours of a bioactive target structure are also
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likely to possess that same bioactivity. One of the exceptions to this concept is
called the activity cliffs (Stumpfe & Bajorath, 2012). In general, an activity cliff is
a pair of structurally similar compounds having a large difference in potency. It
happens when a small change in molecular structure causes large changes to its
activity. However, despite this exception, the impact of activity cliffs provides
researchers with fundamental information to understand the underlying
structure-activity relationship (SAR) of the datasets (Cruz-Monteagudo et al,,

2014).

The significant contribution of the similar property principle to the lead
generation and optimisation efforts can be the reason why the principle remains
applicable to the development of molecular similarity applications. The most
important application of molecular similarity is probably similarity searching as
introduced in Section 2.1. It was developed as a way of overcoming the
limitations of substructure searching, i.e.,, finding all molecules in a database

that contain a user-defined query substructure (Leach & Gillet, 2007).

The main component of the similarity searching approach is the measure used
to quantify the similarity between the target structure and each database
structure. A measure comprises these components: molecular descriptors,
weighting scheme and similarity coefficient. Molecular descriptors are used to
represent characteristics of molecules that are being compared in a computer
readable format. The weighting schemes, on the other hand, prioritise the
contributions of different parts of the representation. The similarity coefficient
is used to quantify the degree of structural resemblance between pairs of

molecules (Willett, 2014).

The search starts with calculating the degree of similarity between the target
structure and each of the molecules in the database. Following this, the database
is ranked in order of decreasing similarity. As the principle stated, the top
ranked molecules, which are the nearest neighbour molecules, are considered
as the most similar to the target structure’s bioactivity. Results of this search,
which are the top ranked molecules, are therefore selected for the subsequent

experimental testing (Willett, 2009).
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Stumpfe and Bajorath (2011) discussed important principles of similarity
searching and reviewed major categories of searching methods, i.e., molecular
representation and descriptors of similarity searching (e.g., 2D and 3D). The
review highlighted several reasons for the development and application of
similarity searching, e.g., similarity searching can be applied when little or
nothing is known about compound structure-activity relationship. This view
was mentioned earlier by Sheridan and Kearsley (2002), who pointed out the
similar reason for the establishment of similarity methods in the
pharmaceutical setting. It has also been suggested by Stumpfe and Bajorath
(2011) that the chemoinformatics community needs to establish calculation
standards and evaluation criteria that enable a meaningful comparison for

different similarity search methods.

The next sections focus on the detail of (a) different types of representation and
descriptors (b) implementation of weighting schemes (c) various groups of
similarity coefficients as the key components of the similarity measures that lie

at the heart of the similarity searching approach.

2.2.1 Representation and Descriptors

A molecule’s structure is an important data for chemoinformatics applications,
e.g., similarity searching. To enable the computer to process such applications, a
molecule’s structure is represented by a machine-readable format, which can be
identified by a unique compound identifier. One of the common identifiers is
referred to as a CAS Registry Number, which is a numeric identifier designated
by the Chemical Abstract Service (CAS) (Chemical Abstracts Service, 2015).
Warr (2011) pointed out several limitations for these compound identifications:
(i) complexity of the identifier for chemical structure processing and (ii)

meaningless identifier to the chemists.

The limitations of compound identification motivate the widespread
implementation of encoding molecular structures into more meaningful and
unique molecular representation. A few examples of encoded molecular

structures are line notations (a linear string of alphanumeric symbols) and
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connection tables (a table form of molecular graph). Simplified Molecular Input
Line Entry System (SMILES) is one of the well-known line notations because of
its easy implementation while connection tables are often used by common file
formats, e.g., Structure-Data File (SDF), for describing molecule structure

information (Weininger, 1988).

Molecular descriptors, on the other hand, are numerical values that characterize
properties of molecules. As stated by Brown (2009), “molecular descriptor are
descriptions of molecules that aim to capture the salient aspects of molecules for

application with statistical methods”.

Molecular descriptors can be classified into 1D (whole molecule), 2D and 3D.
Todeschini and Consonni (2000) have briefly introduced various types of
descriptors. For implementation, a wide range of software has been developed
for generating and calculating molecular descriptors for the use of molecular
similarity applications (Steinbeck et al, 2003; Yap, 2011; Cao et al., 2013;
Vasilyev et al,, 2014).

2.2.1.1 1D Descriptors

1D descriptors define a molecule by a single value. Pipeline Pilot can be used to
calculate (or model) a molecule’s structure or its chemical properties using
certain mathematical (or modeling) functions to produce 1D descriptors, i.e.,
structural features or physicochemical properties. There are various examples of
1D descriptors, i.e., simple integer counts (e.g., number of atoms, bonds and ring
assemblies) and chemical properties that could be in either integer or real

values (e.g., logP and molecular weight).

LogP (octanol-water partition coefficient), for example, is a chemical property
that quantifies molecular hydrophobicity. It determines the activity and
transport of drugs, e.g., drug absorption, bioavailability and hydrophobic drug-

receptor interactions.

Although 1D is the most simple and computationally fast descriptor (Leach &

Gillet, 2007), it does suffer from a number of flaws. A single such descriptor on
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its own is an insufficient molecular discriminant (Willett, 2014). Hence, a
molecule will normally be represented by a vector, each element of which
represents a single 1D descriptor. The values are calculated and normalised
using certain mathematical functions or models to ensure that all of the
attributes in the molecular representation are measured on the same scale (Chu

etal., 2009).

However because of the advantage and importance, many researches are still
using 1D descriptors as part of their QSAR studies (Nicolotti & Carotti, 2006) as
well as the components in rule-based approaches (Bajorath, 2001). For
example, four physicochemical parameters, i.e.,, molecular weight and sum of
nitrogen, oxygen, and hydrogen-bond acceptors were used by Lipinski et al.
(2012) in the experiment of solubility and permeability prediction in drug

discovery.

2.2.1.2 2D Descriptors

A molecular graph representation provides a useful way of organizing
molecular structure for 2D molecular database analysis (Bemis & Murcko,
1996). It consists of sets of nodes and edges, which represents a molecule’s
framework. The nodes of the graph correspond to the molecule atoms, while the
edges correspond to the chemical bonds of the atoms. This information,
therefore, becomes the basis of many 2D descriptors. Examples of 2D
descriptors are topological indices and structural fragments as described in this

section.

Topological indices or connectivity indices are single-valued 2D descriptors that
are calculated based on the molecular graph of a chemical structure. Topological
indices aim to characterize molecules based on size, degree of branching,
flexibility and overall shape as a whole. A typical way to calculate a topological
index is by multiplying the values or some function of adjacent vertices such as
square root, and then summed across all edges (Dearden, 2017). In 1947,
Wiener reported the first example of topological indices, i.e., the Wiener Index

(Wiener, 1947). The Wiener Index is defined as the sum over all topological
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distances in the molecule. It counts the number of bonds between each pair of
atoms and sums the distances between each pair. It can be calculated using the

following Eq. (1),

N

N
. .0 (1)

i=1 j=1

W =

N| =

where N is the number of atoms in the molecules, subscripts i and j are the

atoms and D is the shortest path distance between i and j.

Another example is the molecular connectivity index, which is one of the well-
known topological indices that was first reported by (Randi¢, 1975). The
molecular connectivity index is defined as the sum of bond contributions
calculated from the vertex degrees (number of graph edges) of each atom in the

hydrogen suppressed (non-hydrogen atoms) molecular graph.

As suggested by Kier and Hall, (2001) and Estrada (2002), the molecular
connectivity index is a good measurement for the molecular surface area (i.e. a
measure of molecular size) and is rich in molecular structure information. The
molecular area is useful in measuring the extension of intermolecular
interactions. The molecular connectivity index is also valuable in quantifying

the relationship between structure and physical properties.

By drawing on the concept of molecular connectivity index, a simple example of
connectivity index calculation is described by (Livingstone, 2000). First, each
atom in a molecule is assigned a degree of connectivity, which indicates the
number of adjacent non-hydrogen atoms (hydrogen-suppressed). Second, the
bond connectivity, Cy, for each bond in the structure is calculated by taking the
reciprocal of the square root of the product of the connectivities of the atoms.

The calculation is given by the following Eq. (2),
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1
Cp = ——

2
(8:5;) )

where §; and §; refer to the degree of connectivity to each atom i and j. Finally,

the molecular connectivity index, y, for a molecule is calculated by summation of

the bond connectivities over all of its bonds given by Eq. (3),

N
X =ch (3)

k=1

Extended chi indices were developed to overcome one of the issues with the
molecular connectivity index, i.e. direct representation of molecular structure,
which require more than single index of molecular connectivity indices to
encode structure information (Hall & Kier, 2001). They aim to provide greater
sensitivity to structure variation by adopting an algorithm similar to the
molecular connectivity index algorithm. Extended chi indices involve a set of chi
indices that encode a wide range of structure features for a molecular

characterization.

However recently, (Randi¢, 2014) suggested that single topological indices may
be suitable for molecular similarity studies. The research outlined a general
approach for constructing ‘generalized connectivity indices’ that was used as a
single molecular descriptor for molecular characterisation. The new topological
descriptor is also appropriate for screening huge combinatorial libraries due to

its conceptual and computational simplicity.

The second example of a 2D descriptor is based on structured fragments. For
structural fragment descriptors, a molecule is characterised by its fragment
substructures. The occurrence of these fragment substructures is derived from
a connection table and encoded into a 2D vector of elements called a fingerprint.

Each 2D fingerprint element describes the presence or absence of molecular
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features, thus two molecules are considered similar if their fingerprints share

common values for many of the constituent elements (Willett, 2014).

2D fingerprints became the most common descriptors used for molecular
similarity due to their simplicity and efficiency. Many researchers have
reviewed and studied various aspects of 2D fingerprints in molecular similarity,
which includes 2D fingerprint comparisons and their application in similarity

searching (Duan et al., 2010; Willett, 2014; Cereto-Massagué et al,, 2015).

There are many types of 2D fingerprints; the most common fingerprints are
binary (Hert et al., 2004). Binary fingerprints are represented by a bit string,
which encodes the present features by ‘1’ and ‘0’ for the absent ones (Figure
2-1). Binary fingerprints are especially useful, as there are highly efficient

computer science algorithms that work with binary strings.

0
0, OH 7N ©

0 b

..100110011011..

H

X

H

Figure 2-1 Example of 2D Binary Fingerprints

2D binary fingerprints can be classified into fragment based dictionary
fingerprints or hashed fingerprints. Fragment based dictionary fingerprints are
based on pre-defined fragments. Each bit position in the fingerprint
corresponds to a specific substructure fragment. The fragment dictionary

contains different predefined molecular fragments (Figure 2-2).
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Atom Sequence Augmented Couple

Figure 2-2 Example of Fragment Dictionary in Fragment Based Dictionary Fingerprints

Common examples of fragment based dictionary fingerprints are MDL MACCS
keys (Keys, 2002) and BCI keys (Barnard & Downs, 1997). For example, MDL
166-key structural key (known as MACCS keys) defines 166 fragments that are

considered important in medicinal chemistry.

A number of authors have attempted to implement fragment based dictionary
fingerprints in their experiment. Durant et al. (2002) have demonstrated that
reoptimised MDL fingerprints have shown an improvement in the performance
when applied to the standard 166 and 960-bit keysets in molecular similarity

application.

In contrast, hashed fingerprints do not need a fragment dictionary. Each
fragment is processed using several hash functions that each set one or more
bits in the fingerprint (Figure 2-3). Based on a specified length of bond
connection, each fragment in a molecule is analysed for its linear path. These
paths are hashed to produce the bits in a fingerprint. Fragments and bits in the

bit string are mapped by many-to-many.
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Figure 2-3 Example of Hashed Fingerprints

A common example of hashed fingerprints is the Daylight fingerprint (James et
al., 1995). In the Daylight algorithm, the fingerprint is derived from hashing all
possible linear paths for a given length of bond connection. The fingerprint is
then hashed into a fixed length of bit string. Fingerprints may be folded to
decrease the length and increase the bit density. Typical sizes for Daylight
fingerprints are 512 or 1024 bits in length depending on the hashing algorithm.

2.2.1.3 3D Descriptors

In 3D similarity searching systems, the geometric patterns of functional groups
in molecules is one of the contemporary methods used to derive 3D descriptors
(Bajorath, 2001). These patterns are chosen based on their importance to
specific molecule activities. Many studies have implemented the 3D descriptors
to find the correlation between similarities of individual compounds and their
biological activities (Kubinyi, 1997; Nicolotti & Carotti, 2006; Almeida et al,,
2014). The common examples for 3D descriptors are 3D pharmacophore, 3D

fingerprint and electrostatic interaction fields.

A pharmacophores is the spatial arrangement of atoms or groups in a small

molecule that are responsible for its biological activity (Martin, 1992). The key
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importance of pharmacophore representations is the type of features (e.g.,
hydrophobic) and distance between the features (e.g., distance matrix) (Bender
& Glen, 2004). A pharmacophore query is searched against 3D conformations of
database compounds. It preenumerates multiple conformations for each
compound in the database to identify compounds that have similar chemical
features to the query. This process requires prior knowledge (hypothesis) of the
features, which determine the activity. The hypothesis of the features can be
derived from the pharmacophore elucidation methods, which involve the
preparation of data set, generation of possible pharmacophores and

pharmacophore validation.

3D fingerprints captures pharmacophore arrangements derived from systematic
conformational analysis of test molecules. In 3D pharmacophore fingerprints,
each bit position is assigned to an individual pharmacophore pattern of
predefined feature points and inter-feature distance ranges. The bit is set to ‘1’ if
the conformational ensemble of a molecule satisfies the features and distance

ranges of a given pattern and vice versa (Cereto-Massagué et al., 2015b).

Electrostatic interaction fields, which are derived from 3D grid representations,
are another example of descriptors in 3D similarity studies. In this approach,
interaction field energies from each grid point of query and test compound are
calculated. Based on the result, both interaction fields are then aligned to best
match interaction energies. Despite being time consuming, this type of
descriptor provides a global measurement of molecular similarity and continues

to interest many studies (Cheeseright et al., 2006).

The 3D descriptors, which are based on molecular shapes, are also widely
implemented in molecular shape similarity applications (Finn & Morris, 2013).
One of the common approaches is to use a mathematical function, e.g., Gaussian
function, to calculate the volume of a molecule as a descriptor (Grant et al,

1996).

The 3D descriptors provide different degree of molecular information as
compared to the 2D descriptors that are based on molecular graphs. For

example, the intermolecular forces that are important for ligand-receptor
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binding are more dependent on the 3D structural properties rather than the
presence of 2D fragments (Brown & Martin, 1997). However, 3D descriptors
suffer from several important drawbacks, e.g. high in computational cost
because of its intensive calculations. This also includes finding correct common

features and ability to align molecules in a 3D similarity searching.

2.2.1.4 Effect of Descriptor Correlations

The selection of the descriptors has become one of the important steps in
chemoinformatics applications. This is because the use of highly correlated
descriptors can affect the data representation and analysis. Several reviews
have also suggested to avoid the use of highly correlated descriptors (Xu &

Hagler, 2002; Maldonado et al., 2006; Leach & Gillet, 2007; Clarke et al., 2008).

Correlation methods offer an effective way to measure the degree of the linear
correlation between two variables (descriptors). The sign and the value of the
correlation coefficient describe the direction and the degree of the correlation.
Pearson correlation is one of the common measures used to calculate the
correlation (Field, 2013). The calculation for the Pearson correlation is defined

in Eq. (4):

COVyy

r = O_xo_y (4)

where 7 is the correlation coefficient and cov,, is the covariance of the two
variables divided by the product of their standard deviations. The covariance is
calculated by multiplying the deviations of one variable by the corresponding
deviations of a second variable. The averaged sum of combined deviations is
then divided by the number of observation (Field, 2013). A coefficient of +1
indicates a perfect positive correlation, while the coefficient of -1 indicates a
perfect negative correlation. A coefficient of 0 indicates no linear correlation

between the measured variables.
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The correlation matrix is used to represent the pairwise correlation when
multiple variables are being measured (Leach & Gillet, 2007). For each entry in
the matrix, the calculation for the correlation coefficient is performed using

another variation of Eq. (4) as defined in Eq. (5):

h=a| G = %) (0 — %)

\/leg=1(xi,k - fi)z Y= (K6 — ’Ej)z

(5)

where 7 is the correlation coefficient between variables x; and x;.

(Kimmel et al, 2011) used a correlation matrix to eliminate the highly
correlated variables in the multivariable data analysis. This method calculates a
pairwise correlation matrix for all of the variables. Next, it determines a pair of
variables with the highest correlation coefficient. For these two variables, this
method calculates the sum of all correlation coefficients to all other variables.
The variable with the highest sum of correlation coefficients is then eliminated.
This method was used to reduce the number of variables. Thus, it was repeated

until the desired number of variables is reached.

2.2.2 Weighting Scheme

The weighting scheme is another main component in molecular similarity
searching, which is important for prioritisation of features in molecular
similarity (Maggiora et al., 2014). The weighting scheme aims to emphasise the
differences between the various components of a molecular representation. It
assigns different degrees of importance to the various components of molecular
representations. If applied to molecular features, a certain feature in a molecule
is considered more important than other features if it has higher weight

assigned to it.

There have been a few types of weighting scheme discussed in the molecular
similarity domain. First, a weighting scheme based on the number of times that

a fragment occurs in an individual molecule. Second, a weighting scheme based
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on the number of times that a fragment occurs in the entire database. Third, a
weighting scheme based on the total number of fragments within a molecule
(Willett et al., 1986). Extensive experiments have been carried out by Arif et al.
(2009) focusing on weighting of fragments on the basis of their frequencies of
occurrence in molecules. The work continues with an introduction of inverse
frequency weighting, which discussed specifically the use of weights that assign
greatest importance to the substructural fragments that occur least frequently

in the compound database (Arif et al., 2010).

The next subsections describe how weighting schemes, are being implemented
in binary and non-binary fingerprints for molecular similarity purposes. These

sections require an understanding of the different types of fingerprints.

2.2.2.1 Binary Fingerprints

In 2D binary fingerprints, the weighting scheme is applied to encode merely the
presence and absence (incidences) of topological substructures in a molecule.
Although binary fingerprints are an extremely simple type of structural
representation, they contain sufficient information for effective similarity
searching to be successfully carried out. Ewing et al. (2006) have demonstrated
the development of a set of new 2D fingerprints for virtual screening, which
involved weighting in order to assess the range of frequencies encoded for drug-
like molecules. In another study, binary fingerprints have also been used for

similarity coefficient analysis (Todeschini et al., 2012).

However, binary fingerprints may not be able to describe the relative degree of
importance of substructure fragment occurrence in a molecule. This
disadvantage limits the identification of which fragments are making higher
contribution to the overall degree of similarity and which are not. The weighted
fingerprint (count fingerprint) overcomes this limitation. It is introduced and

described in the next section.
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2.2.2.2 Weighted Fingerprints

The weighted fingerprint is another type of 2D fingerprint, which encodes the
substructural fragments in a molecule based on their occurrence rather than the
incidence. It aims to differentiate the level of contribution from each
substructure fragment in a molecule. The weighted fingerprint, which is
commonly referred to as the count fingerprint, yields an integer or real vector

rather than a binary fingerprint.

In the weighted fingerprint, a high-weighted fragment that is common to both
target structure and database compounds determines the importance of that
fragment, among others in both molecules. Thus, this fragment provides greater
contribution to the overall degree of similarity than the low-weighted

fragments.

Arif et al. (2009) investigated the effect of weighted fingerprints using
individual molecule fingerprints. They have concluded that the weighted
fingerprints are more effective than the non-weighted, conventional binary
fingerprints in molecular similarity searching. The result suggests the
standardization of raw occurrence frequencies to maximise the effectiveness.
They also found that small variations in weighting scheme could potentially
affect the magnitude of the Tanimoto coefficient due to its defined mathematical

formulation.

Arif et al. (2010) have further investigated the inverse frequency weighting,
which considers the occurrence of fragments within the entire database by
assigning the greatest weights to those substructural fragments that occur least
frequently in the screened database. The experiment found that if two
molecules have in common a fragment that occurs only rarely in the database as
a whole, then they should be regarded as being more similar than if they have in

common a fragment that occurs very frequently.
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2.2.2.3 Standardisation Method

Standardisation is a mathematical function that is implemented in molecular
similarity searching as well as in many other domains of data mining (Su et al,,
2009). In molecular similarity, standardisation aims to ensure that all of the
attributes comprising a molecular representation are measured on the same
scale. This is to avoid any variable domination in similarity calculation, which

involves descriptors measured on different scales.

Standardisation calculates on real-valued or integer-valued data of molecular
representation such as different types of physicochemical attributes. Examples
of these attributes include the logP, molecular weight and number of rotatable
bonds. One of the most common standardisation methods in molecular
similarity is Z standardisation (Milligan et al., 1988). It computes the mean and
standard deviation for molecular representation attributes into zero and unity,
respectively. To get a z-score, subtract the mean from each data value and
divide by the standard deviation. The new set of data is then comparable for the

similarity calculation.

Previous research investigated the effectiveness of standardization in chemical
clustering and similarity searching, and concluded that the choice of
standardisation method is not a critical component of procedures for molecular
clustering and searching. This is because there is no consistent performance
benefit that is likely to be obtained from the use of any particular

standardization method (Chu et al., 2009).

2.2.3 Similarity Coefficient

The effectiveness of measurement in molecular similarity is highly dependent
on the third component described in this section, the similarity coefficient. The
similarity coefficient provides the quantitative measure of the degree of
structural relatedness between two comparable molecules. The usefulness of
similarity coefficients has been addressed in various applications such as
similarity, clustering and molecular diversity (Todeschini et al, 2012;

Haranczyk et al., 2008; Matter, 1997).
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Studies focusing on the comparative studies between similarity coefficients
have been conducted in various methodologies. Early work by Willett et al.
(1986) compared the effectiveness of six similarity coefficients for
intermolecular structural similarity. Haranczyk et al. (2008) also reported the
relative performance of association and correlation coefficients in their
clustering and compound selection studies. Al Khalifa et al. (2009) continued
the work by investigating the relative performance of similarity coefficients on
non-binary data using (dis)similarity-based techniques. Todeschini et al. (2012)
recently analysed and compared a large number of similarity coefficients for

binary fingerprint similarity searching.

The similarity coefficient may be divided into three main categories, which are
based on the practical uses: (i) association coefficient, if the molecular query
needs to measure the compound’s degree of association; (ii) correlation
coefficient, if the molecular query requires a degree of proportionality and
independence; (iii) distance coefficient, if the molecular query seeks for distance
between the target compound and itself in the descriptor space (Ellis et al,
1993; Willett et al,, 1998; Holliday et al., 2002). Coefficients for each category

are described below.

2.2.3.1 Association Coefficient

The Association coefficient aims to measure similarity according to the number
of common features between the two representations. It reflects the association

or resemblance of two molecules that are being compared.

There are many types of association coefficient, with the Tanimoto coefficient
being the most effective due to its simplicity and accuracy in binary similarity
searching (Willett et al., 1998). The Tanimoto coefficient, also known as the
Jaccard coefficient, can be used with both binary and weighted variables (Al

Khalifa et al., 2009). The binary variant of the Tanimoto coefficient is defined by
Eq. (6):
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Tc(A,B) =

c
(a+b—-2c) (6)

where a is the number of set bits in fingerprint A (target compound), b is the
number of set bits in fingerprint B (compared compound) and c is the number of
set bits common to both fingerprints. For binary similarity measurement, the
output value ranges between 0 to +1, where the highest similarity is indicated
by the value +1. In a non-binary case (i.e., using non-binary descriptors), the

Tanimoto coefficient is defined as Eq. (7):

2 a; b
Z aiz +Zb12 - Zaibi

where the summation of all elements in the fingerprint is divided by the
magnitude of fingerprint A added to the magnitude of fingerprint B, minus the

summation of all elements. For non-binary similarity measurements, the output
value ranges between _1/3 to +1. More examples of common association

coefficients used for binary variables in chemoinformatics are listed in Table

2-1.

Willett (2006) has demonstrated the effectiveness of various similarity
coefficients when applied to binary similarity searching. The research concludes
that Tanimoto is effective for 2D fingerprint similarity searching. However,
research by Todeschini et al. (2012) suggest that other coefficients are

potentially effective for the similarity searching of binary fingerprints.

The latter outcome is similar to that experimented with non-binary descriptors.
Likewise, Holliday et al. (2012) also found out that another coefficient, the
Cosine coefficient, is more robust than the Tanimoto coefficient when applied to
weighted fingerprint similarity searching. It is reported that the Cosine
coefficient’s screening abilities are much less affected by the precise nature of
the weights applied to the fingerprints for both target structure and database

structures, which has become the limitation of the Tanimoto coefficient.

28



Chapter 2 Similarity Searching in Chemoinformatics

2.2.3.2 Distance Coefficient

The Distance coefficient is also referred to as the dissimilarity coefficient. It aims
to measure the difference between the two representations. There are many
types of distance coefficients, which are based on simple geometric
interpretation. The Euclidean distance coefficient is one of the examples used in
many applications including molecular similarity and multivariate statistics
(Champely et al., 2002). The binary variant of the Euclidean distance coefficient
is defined as in Eq. (8):

Ec(A,B)=Va+b—2c (8)

where a is the number of set bits in fingerprint A (target compound), b is the
number of set bits in fingerprint B (compared compound) and c is the number of
set bits common to both fingerprints. The output value ranges between 0 to N,
where N is the total bit length. The minimum value of 0 indicating that two
compounds are identical, and the maximum value of N indicating the most
dissimilarity. In a non-binary case (i.e., using non-binary descriptors), the

Euclidean distance coefficient is defined by Eq. (9):

Ec(A,B) = [lex - yi|2]1/2 (9)

where q; is the value for each fragment of fingerprint A (target compound) and
b; is the value for each fragment of fingerprint B (compared compound). For
non-binary similarity measurements, the output value ranges between 0 to oo,
where the minimum of 0 indicates that two compounds are identical. More
examples of common distance coefficients used for binary variables in

chemoinformatics are listed in Table 2-1.

Distance coefficients are used to measure the distance between structures in a
molecular space. Since it is difficult to visualise the geometry of a space of M

dimensions when M is more than 3, the validity of geometric distances between
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objects in a hyperspace of M dimensions are said to be preserved if the
coefficient that is used has the property of a metric. If a distance coefficient
fulfils a few properties it can be described as a metric (Willett et al., 1998). The
properties are: (i) distance values must be zero or positive, and the distance
from an object to itself must be zero; (ii) distance values must be symmetric;
(iii) distance values must obey the triangular inequality and (iv) distance

between non-identical objects must be greater than zero.

Interestingly, some distance coefficients are complementary to an association
coefficient. Based on the coefficient value, subtraction from unity can be
performed to convert between association coefficients to distance coefficients.
An example of a coefficient complementary to the Tanimoto coefficient is the
Soergel distance coefficient. In the case of bit vectors, the Soergel distance

coefficient is one minus the Tanimoto coefficient (Cheng et al., 1996).

2.2.3.3 Correlation Coefficient

The Correlation coefficient aims to identify the correlation between the sets of
values characterising each of a pair of molecules. It calculates the degree of
correlation in terms of the proportionality and independence between the sets

of values used to describe the pair of compounds.

There are many types of correlation coefficient; the Pearson correlation
coefficient is probably the least biased for dissimilarity analysis (Maldonado et
al., 2006). The binary variant of the Pearson correlation coefficient is defined by

Eq. (10):

P.(AB) = nc —ab
ST fnab(—b)(n — a) (10)

where a is the number of set bits in fingerprint A (target compound), b is the
number of set bits in fingerprint B (compared compound) and n is the total bit
length. The values for correlation coefficient range between -1 to +1. Results of

the coefficient calculation determine (i) -1, anti-correlated; (ii) 0, no correlation;
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or (iii) +1, perfectly correlated, between the database compound and the target
structure. Like the other coefficients, the value of attributes may also rescale
into the range of 0 to 1. More examples of common correlation coefficients used

for binary variables in chemoinformatics are listed in Table 2-1.
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Table 2-1 Common Binary Similarity Coefficient (Holliday et al., 2003; Leach & Gillet, 2007)

Type Name Equation Value range
i ‘ 0 1
Jaccard/ Tanimoto atb—c to +
c
Cosine \/ﬁ Oto+1
. 2c
Dice Oto+1
o a+b
Association
Coefficient c
Russell/ Rao - Oto1l
cn
Forbes — 0 to o
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* The definitions apply to the combination of bit-string of length n where a is the number of set bits in A
(target string), b is the number of set bits in B (compared string), c is the number of set bits common to
both strings and d is the number of set bits in neither string.
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2.3 Similarity Searching Application

Two other important applications that are developed from the molecular
similarity approach and widely implemented in the chemoinformatics domain,
are (i) clustering and (ii) molecular diversity. Both applications are described in

the next section.

2.3.1 Clustering

Clustering provides a simple and effective overview of the range of structural
types in a molecular database. It helps to save cost and rationalise the basis for
molecular biological testing (Willett, 2011). A representative molecule of a
cluster is selected for the biological testing. If the representative proves to be
bioactive, then the other molecules in the same cluster will be tested. But if the
representative is not bioactive, then the other molecules in the same cluster will

be disregarded from the biological testing.

In chemoinformatics, clustering is used as a tool for molecular database
analysis. It aims to identify clusters of molecules that exhibit strong intra-cluster
similarities as well as strong inter-cluster dissimilarities (Willett, 2014). The
review by Downs and Barnard offers a comprehensive introduction to
clustering methods in the chemoinformatics context (Downs & Barnard, 2002).
Many comparative studies have been conducted on the performance of different
clustering methods when applied to chemoinformatics datasets, with the first
undertaken by Willett (1987). Clustering is also widely implemented as a

multivariate statistical analysis tool in other domains (Di Giuseppe et al., 2014).

For each compound in the dataset, the clustering process for compound
selection includes: (i) generation of descriptors, (ii) calculation of similarity or
distance, (iii) compound clustering using a cluster algorithm and (iv) selection
of one compound from each cluster as a representative of the subset (Leach &
Gillet, 2007). There are various methods available for molecular clustering,

which groups compounds by means of distances in the descriptor or fingerprint
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space. The methods can be classified into (i) hierarchical clustering or (ii) non-

hierarchical clustering methods.

In the hierarchical clustering methods, each molecule (or cluster of molecules)
merges with other similar molecules resulting in a cluster of two molecules or
clusters of molecules. There are two types of this clustering, which are
agglomerative (bottom-up) and divisive (top-down). Ward’s method is one of the
best-known hierarchical agglomerative clustering methods (Bajorath, 2001).
Although it is widely implemented in chemical database clustering, Ward’s
method consumes more computational resources as compared to the non-

hierarchical clustering methods described below.

The non-hierarchical clustering method is another approach, K-means method is
one of the examples for a non-hierarchical clustering method. In the K-means
clustering algorithm, the number of clusters is denoted by the value of ‘K. First,
the 'k’ points are selected at random. The remaining molecules are assigned to
the nearest %’ point. This will give the initial sets of ‘k’ clusters. Then, the
method calculates the centroid for each cluster. Each molecule is reassigned to
the nearest centroid. The centroids are then recalculated for relocation and the
procedure repeated until a cluster condition is satisfied (Leach & Gillet, 2007).
The advantage of this method is the ability to process large databases with low

computational demand.

Recent reviews from MacCuish and MacCuish (2014) suggested a few potential
research areas for molecular clustering, which include bi-clustering for feature
selection and polypharmacology as well as determining SAR clusters. The bi-
clustering algorithm is commonly used in gene expression and bioinformatics
applications. It uses a dataset to generate sets of: (i) samples and (ii) features.
Bi-clustering provides better data representation and allows the molecular

similarity based on subset of attributes.

2.3.2 Molecular Diversity

Molecular diversity is a technique used to maximize the diversity of the

molecules for biological testing. This technique selects the diverse compounds
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by calculating the (dis)similarities between pairs of molecules in the dataset. A
diverse subset of molecules in a dataset is selected by considering their inter-

molecular structural similarities (Willett, 2005).

The cluster-based selection method is a typical approach for selecting adverse
subset together with a few others, which are: (i) partition-based selection, (ii)
dissimilarity-based selection and (iii) optimisation-based selection (Maldonado

etal., 2006).

The partition-based selection method matches and assigns each molecule into a
partition that was created based on a defined set of molecular properties, in
which a compound representative is selected from each partition. This method
can be used to find the difference between databases, but is limited to low

dimensional datasets.

The dissimilarity-based selection method chooses the most dissimilar molecule
from the earlier molecule selected. This approach results in a subset that
contains most diverse molecules. The optimisation-based selection method, on
the other hand, predefines the diversity measurement based on optimisation
procedure. The key importance of the optimisation procedure relies on a
diversity function, in which the MaxMin maximum-dissimilarity algorithm was
identified by Snarey et al. (1997), as the most effective algorithm based on its

operation and ability to process very large datasets.

2.4 Evaluation Measurement

An important criterion of any similarity searching application is the ability to
retrieve a significantly higher number of active compounds than if selected at
random. The measurement of this criterion can be evaluated using various
methods that are available, e.g., Enrichment Factor (EF), Receiver Operator
Characteristic (ROC), Robust Initial Enhancement (RIE) and the Boltzmann-
Enhanced Discrimination of ROC (BEDROC).

The enrichment factor (EF) is one of the common evaluation methods used in

virtual screening application because of its simple calculation and
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straightforward interpretation (Kirchmair et al., 2009). It measures the active
compounds retrieved compared to active compounds from random selection.

The calculation of the EF is defined in Eq. (11):
EF = — (11D

where AR is the number of active compounds retrieved, and R is the number of
actives expected based on random selection, for a given cut off value. The typical

cut off values for this method are 1% and 5% (Geppert et al., 2010).

The receiver operator characteristic (ROC) is a widely used method for
evaluation in machine learning applications (Witten & Frank, 2000). It
generates a detection rate between hit rate and false rate by plotting the
percentage of the total number of true positives as the vertical axis (i.e., active
compounds retrieved) against the percentage of total number of false positives
as the horizontal axis (i.e., inactive compounds retrieved) (Witten & Frank,

2000). The calculation for the percentage of true positives is defined by Eq. (12):

TP
Percentage of true positive rate = (TP‘F—FN) x 100% (12)

where TP is the number of true positives and FN is the number of false negatives
(i.e., active compounds that are not retrieved). The calculation for the

percentage of false positives is defined by Eq. (13):

FP
Percentage of false positive rate = m X 100% (13)

where FP is the number of false positives and TN is the number of true negatives
(i.e., inactive compounds that are not retrieved).

The robust initial enhancement (RIE) is another evaluation method that was

developed to discriminate ‘early recognition’ in the correct order, i.e., rank
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actives early in an ordered list (Sheridan et al.,, 2001). This method uses a
continuously decreasing exponential weight as a function of rank that places
heavier weight on early ranked actives. The calculation of the RIE is defined in

Eq. (14):

1
_Zn e_axi
RIE = =8
1| 1—ea (14)
o
N T

where x; = % is the relative rank of the ith active and « is a tuning parameter

(Zhao et al.,, 2009).

However, this method is dependent on the exponential weight and ratio of
actives to inactives (Riniker & Landrum, 2013). Thus, the Boltzmann-enhanced
discrimination of ROC (BEDROC) method of evaluation is derived to avoid the
dependency on the ratio of actives to inactives by forcing the RIE to be bounded
by 0 and 1 (Truchon & Bayly, 2007). The calculation of the BEDROC is defined
by Eq. (15):

1 .
N sinh(%/,) 1

BEDROC = RIE X + —
cosh(%#/,) — cosh (“/2 - a%) 1 — e“(¥)

(15)

The focus of this research evaluation is to identify the number of actives
retrieved from the similarity searching application rather than identifying the
ranking order of the actives retrieved. Thus, the enrichment factor was chosen
to evaluate the effectiveness of the proposed research method in this thesis’s

subsequent chapters.

2.5 Conclusion

This chapter has introduced the key components, methods, applications and

evaluation measurements for molecular similarity in virtual screening. It has
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shown that molecular representation and descriptor, weighting scheme and
similarity coefficients are the main components of any similarity searching
system. The literature showed that the effectiveness of a similarity search relies
on the components, which many reported as the similarity coefficients. This can
be seen from previous comparative studies mentioned in Section 2.2.3. Taken
together, these key components are implemented as a basis to any similarity

search applications.
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Chapter 3 Nearest Neighbour Searching in High
Dimensionality

3.1 Introduction

The main task of an information retrieval application is to use a dataset to
search for relevant information. The objects in the dataset are usually
represented by a large number of variables, i.e., high dimensionality in the
variable space. Nearest neighbour searching is one of the applications that
involves searching for data in high dimensional datasets (Clarke et al., 2008;
Willett et al., 1998) . However, the effects of performance in high dimensional

datasets have become an issue for many years.

This chapter intends to describe the concepts and issues of nearest neighbour
searching in high dimensionality datasets. These include the possible methods
and solutions that can be applied in chemoinformatics applications. The overall
structure of this chapter takes the form of three sections. It starts with the
introduction to issues in high dimensionality datasets, followed by the review of
previous research on the effectiveness of nearest neighbour search in high
dimensionality. The final section introduces and discusses several approaches
for nearest neighbour search in high dimensionality. This chapter also provides

important insights for the methodology of this research investigation.

3.2 Issues with High Dimensionality Data

Dimensionality refers to the number of variables used to characterise the
objects in a dataset (Leach et al., 2007). High dimensionality involves the use of
a large number of variables to represent a dataset. Chemoinformatics datasets
are also known for their representation using high dimensionality descriptors
(Todeschini & Consonni, 2000). These descriptors describe the characteristics

of a molecular compound in many aspects as discussed in Chapter 2.

Despite the ability to describe data in various ways, there are several issues
inherent in high dimensionality analysis. One is the “curse of dimensionality”,

introduced in the 1960s (Bellman, 1961). The curse of dimensionality is a
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phenomenon that arose during the analysis of data in high dimensional space. In
this phenomenon, the degree of compactness of a dataset becomes sparser as

the dimensionality of the dataset increases.

The phenomenon is often interpreted to cause the decrease in the performance
of high dimensionality applications. Figure 3-1 illustrates an example of a
variation of performance level for an application using n dimensional features.
The performance increases up to the dimension of m. The performance starts
decreasing with each continuous increment of dimension to n. Here, the optimal
performance of the application is produced when the dimension of features is

equal to m.

[

\
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\

Performance of Application
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n Dimension (Number of Features)

Figure 3-1 Effect of the Curse of Dimensionality Phenomenon

Clarke et al. (2008) discuss several properties of high dimensional data space in
the context of gene data. Among the properties are: (i) the performance of
several statistical learning techniques degrades as the dimensionality increases
and (ii) the scalability of distance measures in Euclidean space is generally poor

when the dimensionality is increased.

The effect of dimensionality on the nearest neighbour search was investigated

by Beyer et al. (1999). The study proved that as the dimensionality increases,
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the difference of the distances between the nearest and the furthest neighbours
to the query object becomes insignificant, while the variance of the distance
distributions converges to zero. The experimental results showed that the
nearest neighbour search becomes meaningless with as few as 10 to 20

dimensions when tested on a synthetic dataset of one million data points.

The importance of determining the nearest neighbour is illustrated in the
following figures. In Figure 3-2, the nearest neighbour point to the query point
can be identified more clearly compared to the scenario in Figure 3-3. Although
the nearest neighbour point in Figure 3-3 is well-identified based on the
location of the circle, the difference between the distance of the nearest
neighbour and the distances of the remaining points in the dataset to the query
point is so small. Hence, this scenario affects the confidence level when

determining the nearest neighbour of a query point.

» [ ] .
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Figure 3-2 Query point and its nearest neighbour (from Beyer et al. 1999)
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Figure 3-3 Another query point and its nearest neighbour (from Beyer et al. 1999)

The sparse sampling in high dimensions also creates the “empty space
phenomenon”, that is, the density of data in a compartment of space decreases
during a partition dimension (Rupp et al, 2009). The partition dimension
divides each dimension into two compartments. In this process, the number of
compartments increases exponentially as the dimensionality increases. It is
important that each compartment contain at least one data point. Thus, a
calculation of the maximum covered dimension can be used to estimate the
maximum number of dimensions in a dataset. This is to ensure that each
compartment has a minimum of one data point. The calculation can be defined

by Eq. (16):

dmax = [log,(n)] (16)

where d is the dimensionality of the compound descriptor and n is the size of
dataset. Rupp et al. (2009) uses an example of a common molecule dataset,
which contains 108 = 100,000,000 molecules. The above equation is used for the
calculation. The maximum number of dimensions is calculated to be 26

dimensions.

The above calculation is a general estimation that does not consider the

distribution of the dataset. However, the estimation of a maximum number of
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dimensions for the dataset that has an independent and uniform distribution of
data can be measured differently. It is defined as the probability that at least one
compartment is shared by two or more molecules. The probability can be

calculated by Eq. (17):

P(d)=1- (m):l— (17)

n n

where d is the dimensionality of the compound descriptor, n is the size of

datasetand m = 2¢.

Regardless of various problems in high dimensionality, the increased size of
data and improvements in methods and software have generated many
interesting high dimensionality studies in a number of domains (Mikolajczyk et
al, 2005; Palmer et al., 2013; (Audain, Sanchez, Vizcaino, & Perez-Riverol,
2014). In particular, a study by Godden and Bajorath (2006) supports the
success of virtual screening methods in extremely high dimensionality chemical
representations. The study investigated molecular similarity using a simple
distance approach. The experiment selects a centre of a group of compounds
with similar activity in high dimensional space. Euclidean distances were
calculated between each compound in the dataset to the centre. This produces a
distance-based ranking, indicating the molecular similarity ranking. A set of
123 descriptors was used in this experiment containing 1D, 2D and 3D
descriptors. These descriptors were generated from the compounds in the
Molecular Drug Data Report (MDDR) dataset. The result showed that this
method successfully ranked compounds according to the biological activity in

high dimensional space.

3.3 Effectiveness of Nearest Neighbour Search in High
Dimensionality Data

A nearest neighbour search in high dimensional data aims to find the closest
match to the query object in multivariable datasets. The curse of dimensionality

affects nearest neighbour search in many applications. When dimensionality
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increases, the nearest neighbour search tends to be meaningless when, among
others, the data space is sparse, i.e., scattered (Weber et al., 1998; Hinneburg et
al., 2000). As a result, the difference between the distances of nearest and
farthest points to the query object in high dimensional space approximates to
zero (Beyer et al., 1999). This section reviews previous studies related to the
effectiveness of nearest neighbour search in high dimensional datasets. It
identifies existing approaches and effectiveness criteria, which are implemented

in the search.

3.3.1 Distance Measure Approach

Aggarwal et al. (2001) analysed the general behaviour and effects of using
various distance metrics on the nearest neighbour searching in high
dimensional data mining datasets. The investigation was conducted using
different Lk distance metrics: fraction (k < 1), Manhattan (k = 1) and Euclidean
(k = 2) on a uniformly distributed dataset. The effectiveness criterion measured
for this experiment is the ratio of distance between the nearest and farthest
neighbours. The higher ratio indicates higher effectiveness of the nearest
neighbour search. The results of the above study showed that the fraction
distance metric provides the highest effectiveness. This was followed by the

Manhattan and Euclidean distance metrics.

In a more recent study, France et al. (2012) further investigated the
effectiveness of nearest neighbour recovery on clustering of high dimensional
document datasets. The study was conducted using the Euclidean and
Manhattan distance functions. Additional metrics such as cosine and correlation
distance metrics were also used as similarity measures. The effectiveness
criterion measured for this experiment is the number of nearest neighbours

found.

Similar to Aggarwal et al. (2001), the results showed that the Manhattan
distance metric resulted in the highest effectiveness of nearest neighbour
search. A comparison was also made between the correlation and cosine

metrics. It was found that the correlation metric produced better results than
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the cosine metric on the nearest neighbour search. The above study also
recommended data standardisation to enhance the effectiveness of

neighbourhood classification.

3.3.2 Approximate Nearest Neighbour Approach

Another approach to the nearest neighbour search in high dimensionality
datasets is based on approximate nearest neighbour. This approach may return
near optimal nearest neighbour but is more efficient than linear search in high

dimensionality (Muja & Lowe, 2009).

Indyk and Motwani (1998) introduced an approximate nearest neighbour
search based on a hashing technique called the locality-sensitive hashing (LSH)
method. This is followed by an improved LSH method on the execution time by
Gionis et al. (1999). This approach uses a hash function in order to identify the
nearest object to the query objects. The objects in a dataset are hashed into hash
values and mapped into hash tables. The closest object to the query is identified
based on the probability of their collision in the table entry, i.e., bucket. The
experiment conducted by Gionis et al. (1999) on an image dataset showed that

the method performed well even with more than 50 dimensions.

A series of investigations have been conducted by Muja and Lowe (2009; 2014)
on several tree-based algorithms for approximate nearest neighbour search in
high dimensionality. These include multiple randomized kd-tree and hierarchical
k-means tree algorithms, which are different based on the way that the search
region is constructed. Multiple randomized kd-tree splits data on the dimension
randomly from the first D dimensions, which contains data with the greatest
variance. Hierarchical k-means tree splits the objects recursively using k-means
clustering. The nearest neighbour searches are then performed within the

regions that have been constructed.

The experiments conducted on real-world image datasets by Muja and Lowe
(2009; 2014) were evaluated based on: (1) the precision of the search, i.e., the
percentage of exact nearest neighbours returned by the approximate method

and (2) the performance, i.e., the search time over linear search time. The
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performances and precisions (i.e, 81% and 85%) of the nearest neighbour

searches have been found to increase for as high as 4,096 dimensions.

The above studies highlight existing approaches, i.e., distance measurements
and approximation nearest neighbour approaches. They have been used to
investigate the effectiveness of different nearest neighbour searches in high
dimensionality datasets of different domains. They also indicate a few
effectiveness criteria used to measure the effectiveness of the nearest neighbour
search. The following section introduces an approach, which involves the

dimensional reduction of high dimensionality datasets.

3.4 Dimensionality Reduction Approach

The issues of high dimensional data decrease the performance of any data
analysis, e.g., the nearest neighbour search. One of the solutions reviewed by
Clarke et al. (2008) is to reduce the original set of variables into a new set of
uncorrelated variables using dimensional reduction methods. The purpose of
these methods is to reduce the high dimensional variables into a lower number
of dimensional variables. These contain the most meaningful information to
describe the pattern of the datasets and for better data interpretation (Howe et

al, 2007).

Dimensional reduction methods have been widely implemented in many areas,
including image and text analysis (Bingham et al., 2001). Fodor (2002) reviewed
the state-of-the-art for dimensional reduction in statistics, signal processing and
machine learning areas. There are two main categories of dimensional

reduction methods: (i) feature selection methods and (ii) projective methods.

3.4.1 Feature Selection Method

The feature selection method is an approach that reduces the feature
dimensionality. These new, reduced features preserve the meanings of the
features. It selects the most relevant features or subset of features from original
high dimensional features. Advantages of this approach include (i) facilitating

data visualization and understanding, and (ii) defying the curse of
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dimensionality to improve prediction performance. Guyon and Elisseeff (2003)
discussed several methods for feature selection. These include the variable

ranking and variable subset selection.

3.4.1.1 Variable Ranking Method

The variable ranking method implements a ranking criterion. It measures the
goodness of linear fit of individual features and then results in a ranking of
features. An example of the variable ranking criterion is the coefficient of
determination, R?, which indicates the fraction of variance explained by
individual features. One of the advantages of this method is that it is
computationally efficient as it only requires computation and the sorting of

ranking scores.

3.4.1.2 Variable Subset Selection Method

The variable subset selection method includes a “wrapper” methodology. This
uses the prediction performance of a given learning machine to assess the
relative usefulness of subsets of variables. This methodology may include the

following steps:
Step 1 : Select a subset of features;

Step 2 : Evaluate the performance for the selected subset using an

objective function;
Step 3 : Repeat Steps 1 & 2 until predefined termination condition is met;
Step 4 : Return the subset that yields the best performance.

One of the limitations of this method is that it is intensive in computation.
Several strategies have been implemented to overcome this limitation. One
example is a backward elimination approach. In 2013, Vogt and Bajorath (2013)
implemented this strategy for the variable subset selection in fingerprint
similarity searching. It begins by selecting all features and then evaluates

performance of the application. The process is repeated after each feature is

47



Chapter 3 Nearest Neighbour Searching in High Dimensionality

being individually removed. This implementation produces a subset of reduced
fingerprint representation, which is able to increase the performance of the

similarity searching.

3.4.2 Projective Method

The projective method, on the other hand, reduces the dimensionality by
combining features of all variables. There are two types of combinations: a
linear or non-linear combination. Linear combination methods use the least-
square regression line in their computation. The linear fit minimises the sum of
squares of the measured data. Non-linear combination methods, on the other
hand, use the properties of data. It reproduces the distances of high dimension
variables in the low dimension variables (Maaten et al, 2009). Linear
combination methods are more attractive compared to non-linear combination
methods. This is because they are simple in computation and analytically

tractable.

3.4.2.1 Linear Dimensional Reduction Approach

A common method of linear dimensional reduction is the Principal Component
Analysis (PCA). It is the most widely used linear dimensional reduction method
and is considered the most effective in its group because of its ability to reduce

mean-square error, i.e., the difference of squared error loss (Fodor, 2002).

PCA aims to seek a projection that preserves as much of the data information as
possible. It measures the multidimensional data and reduces it to lower
dimensions. The aim is to remove the correlations between descriptors (Bayada
et al, 1999). This method also reveals the correlations and relationships

between data, thus providing easier interpretations (Akella & DeCaprio, 2010).

PCA uses a covariance matrix of the multivariable descriptors to compute the
orthogonal projections (principal components) with the least squared error. If
dimensional reduction is needed, the original data is projected into the

perpendicular lines (the reduced dimensions). This results in a set of data with
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the highest variance (Wold et al, 1987). The computation of principal
components involves a few steps (Smith, 2002; Andrew, 2015; Nimrod, 2014):

Step 1 : Computation of the covariance matrix

Step 2 : Computation of the eigenvectors and selection of reduced number of

dimensions

The eigenvectors are the uncorrelated linear combinations and are referred to as
the principal components. These are derived from the original variables in
decreasing order of importance. The eigenvalues are the variances of each
eigenvector to each variable. For n variables, as many as n eigenvectors can be
computed from the n x n matrix of variables. The calculation of eigenvectors is

defined by Eq. (18):

n
PCi = Z Ci’ij (18)
j=1

where PC; is the ith eigenvector, c¢;; is the covariance matrix and x; is the

eigenvalue for n variables.

The first principal component, PC; maximises the variance in the data. It is
represented by the largest eigenvalue. The second principal component, PC, is
orthogonal to the first. It contains as much of the remaining variance as possible
(i.e., second largest eigenvalue). This is followed by the rest of the principal
components, which are ordered in decreasing eigenvalues (Leach & Gillet,

2007).

The eigenvalues are useful in determining the selection of the reduced number
of principal components, k. It is based on the percentage of variance retained
from the data. This is typically represented by the value of above 90%. It also

indicates how well the reduced dimensions, k, approximate the original dataset.

Step 3 : Projection of original data into the reduced dimensions
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The reduced k dimensions form a matrix with the k eigenvectors in the rows
and the variables in the columns. The eigenvectors are arranged in a descending
order of corresponding eigenvalues. The original data, which is also represented
by a matrix, has the original variables in the row and the data points in the

column.

The multiplication of both matrices produces the projection of the original data
into the reduced dimensions. It represents the final data in a matrix that has the
eigenvectors in the rows and the data points in the columns. The projection is
defined by Eq. (19):

=~

Di,j = PCi,k X Dk,j (19)

where ﬁi, ; is the final data, which is projected by the principal components,

PC; . is the reduced dimensions and Dy ; is the original data.

The calculation of principal components requires the variable’s standardization
to have a mean of zero and standard deviation of one. This is because the result
of variance depends on the scale of the variable. Thus, it is important to have an
equal contribution between the variables. Figure 3-4 illustrates an example of
the projection from high dimensions (3 dimensions) to low dimensions (2

dimensions) using PCA (Matthias, 2014).

original data space

component space

Gene 3

L

Figure 3-4 Example of the projection from high dimensional to low dimensional variables using
principal component analysis

50



Chapter 3 Nearest Neighbour Searching in High Dimensionality

PCA has been used in chemoinformatics applications for molecular descriptor
reduction. Bayada et al. (1999) implemented the PCA as a method to remove the
descriptor’s correlations in clustering analysis. Ten principal components that
represent 87% of the variance from a diverse database, i.e., the Available
Chemicals Directory (ACD) database, were identified from 86 descriptors. The
combinations of the ten principal components were used as a new set of
descriptors for each compound. The compounds were then clustered using
several clustering methods. The result using Ward'’s algorithm and ten principal
components was more effective in separating biological activities than random

selection.

The Bajorath group have implemented PCA for the reduction and combination
of both molecular descriptors and binary fingerprints (Xue et al., 1999a; Xue et
al., 1999b; Xue & Bajorath, 2000). However, there are more effective methods of
molecular fingerprint reduction. These have been described elsewhere (Baldi et
al., 2007; Swamidass & Baldi, 2007; Geppert et al., 2010). For the purpose of this

research, these methods will be introduced and discussed in Section 3.5.3.

Linear discriminant analysis (LDA) is another example of a linear combination
method. This method aims to seek projections of low dimensionality. This low
dimensionality preserves as much of the class discriminatory information that
best separates the data. The result achieves maximum data discrimination by
maximizing the ratio between class distances to the within-class distances

(Balakrishnama & Ganapathiraju, 1998).

In comparison to PCA, LDA results in the direction that maximizes the difference
between two classes, which is more applicable for data classification. PCA on the
other hand, results in the direction that maximizes the variance in the data and

generates new variables that represent maximum variance in the dataset.

3.4.2.2 Non-Linear Dimensional Reduction Approach

An example of a common method in drug discovery for non-linear reduction is
Multidimensional Scaling (MDS) (Xu et al., 2002). This method aims to model the

dissimilarity and similarity relationships between two sets of variables by
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rescaling the distance. It reproduces approximate distances between original
high dimension and new generated low dimension, by (i) generating projection
of low dimension coordinates, and then (ii) modifying distance between the
original and projected coordinates for optimization (Leach et al., 2007). The key
component for the reproduction of the distance is the optimization procedure,
using a stress function, e.g., Kruskal (1964). The stress function is a sum-of-
squares error function. It measures the degree of correspondence between the
original and the projected coordinates. The output of a stress function must not

exceed a threshold value to ensure the optimisation.

Another example of a non-linear method is Locally Linear Embedding (LLE). It
transforms high dimensional data to a low dimension, while retaining the
surrounding neighbourhood. One of the advantages of this method is that it
preserves the neighbourhood mapping. It provides the underlying structure
identification, i.e., the small scale resembles a Euclidean space of data in a

specific dimension (Roweis and Saul, 2000).

3.4.3 Binary Fingerprint Dimensional Reduction Approach

The molecular fingerprint has been the most effective molecular representation
for many chemoinformatics applications as noted in Section 2.2.1. Molecular
fingerprints are typically represented by a very long binary bit length, i.e.,, 512
or 1024 bits. These indicate the fingerprint’s dimensions. Several methods have
been introduced to reduce the dimensions of a molecular fingerprint. Geppert et
al. (2010) described several methods, which include folding, hashing (James et
al., 1995) as well as reduction based on a statistical fingerprint model (Baldi et

al., 2007).

One of the most common methods of binary fingerprint reduction is folding.
This method takes the original number of fingerprint bits and folds it to a
reduced number, using the modulo operator. Let F be the original number of
fingerprint bits, F is the reduced number of fingerprint bits and N is the length
of bits in the reduced fingerprint. A bit in F with index, J, is set to 1 if there is at

least one bit of F; set to 1, where F; mod N is equal to index j.
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Figure 3-5 illustrates the binary fingerprint folding steps. The original
fingerprint bits F;, which has a size of 16-bits, is reduced to fingerprint bits Fj,
where N=4 is the length of ;. The bit position of F; and F; are set to 1 because

there are bits in F; that are set to 1, when F; mod N is equal to index F; and F;.

16-bits

rldodofofofoifofrfofifofofofofof
L JL JL JL J
T T T T

Figure 3-5 Binary Fingerprint Folding Steps

The reduced binary fingerprints can provide a rapid search in the chemical
database. However, one limitation of this method is that it ignores the weighted
information of the bits. This, however, can be solved by bit rearrangement,
using a hashing algorithm or random permutation. Nevertheless, this method is
the most effective for an application that treats all bits equally, e.g., the specific

ordering of the bits is not important (Swamidass & Baldi, 2007).

Bit dependency is one of the reasons for bit fingerprint reduction. This is
because, the dependant bits can affect the similarity measurement. The bit
dependencies are the universal presences of a bit given the presence of another.
Chen and Golovlev (2013) analysed the bit dependencies of 881 bits structural
keys from PubChem dataset. The study showed a method to identify and

eliminate the dependant bits.
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First, the frequency of occurrence of each bit was tabulated from the matrix of
bit values. The number of bits that were set for each compound was also noted.
Next, to identify the dependencies, each of the bit positions (A) was selected and
checked against all other bit positions (B). Positions (B) in which bits were set
when set in the selected bit position (A) were noted. Thus, each bit position is
not dependent upon itself. The two way dependencies were identified by
examining all pairs of bit positions. The pairs which bits were always identically
set are the two way dependencies bits. The dependent bits within the structural
keys were stripped. The number for set independent bits for each compound

was then recorded.

Similarity searching using the Tanimoto similarity measure was then
experimented on both the complete 881 keys and the subset of 160 non-
dependant bits. The results showed that the similarity search using the set of
non-dependant bits affect the similarity scores. It returns a large numbers of
nearly identical compounds. However, this does not mean that the non-
dependant set is better because the similarity searches resulted in different
compounds as compared to the similarity searches using the complete keys.
Further analysis on the non-dependant bits based on bit occurrence frequencies
showed that a non-dependant bit can also be the most common bit and often

encodes features similar to the dependant bits.

3.5 Conclusion

This chapter focused on the concept of nearest neighbour search in high
dimensional datasets. It was seen that high dimensional datasets cause
difficulties in data interpretation and visualization. This is because, as the
dimension of data increases, the density of data decreases. As a result, this
phenomenon degrades the performance of nearest neighbour search

applications.

The third section of this chapter reviewed a number of studies conducted to

identify the effects of the nearest neighbour search as dimensionality increased.
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One of the solutions for high dimensionality datasets is to reduce highly

dimensional descriptors into a lower number of dimensions.

The appropriate dimensional reduction methods are discussed in the final
section of this chapter. This study will evaluate the effect of changing the
dimensions of molecular representations on the effectiveness of nearest
neighbour searching. Thus, the methods introduced in this chapter provide
ideas on how to reduce the molecular representations and descriptors. They can
also be used for the binary and non-binary data representation, which are the

common molecular representations in chemoinformatics applications.
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Chapter 4 Methodology

4.1 Introduction

This chapter will outline the experimental design used for the three
investigations reported in this thesis. The three investigations are: 1. the effects
of dimensionality on the effectiveness of similarity searching (reported in
Chapter 5); 2. the effects of dimensionality on the effectiveness of clustering
(reported in Chapter 6); 3. the relative importance of the fingerprint and the
similarity coefficient components on the effectiveness of similarity searching

using cross-classified multilevel model analysis (reported in Chapter 7).

This chapter provides the details of methodology which are common to all three
chapters mentioned above in terms of the databases, molecular representations,
and similarity (and distance) coefficients. All evaluation methods will be

introduced in this chapter together with the statistical methods.

4.2 Dataset

Three chemical datasets have been used within the investigations, i.e., the MDL
Drug Data Report (MDDR) (MDL Drug Data Report, 2005), the WOrld of
Molecular BioAcTivity (WOMBAT) (“World of Molecular Bioactivity,” 2011) and
the ChEMBL dataset (Gaulton et al., 2012). These datasets are commonly used

within the chemoinformatics research group at the University of Sheffield.

Each dataset is described separately in the subsections below. Each description
also includes a table that contains information about: (i) the activity class with
its abbreviation, (ii) the number of active molecules in each activity class, (iii)
the number of distinct scaffolds present in the class and (iv) the value of mean
pairwise similarity (MPS). The distinct scaffolds describe the core structure that
is the central component of a molecule. This is a substantial substructure that
contains the important molecular material to ensure that the functional groups
are in a desired geometric arrangement and therefore produce similar
biological properties. This study used the definition of scaffold by Bemis and
Murcko (1996). The MPS value describes the diversity of each activity class in a
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dataset. It is measured based on the inter-molecular similarities using the
standard UNITY 2D fingerprints and the Tanimoto coefficient. The mean intra-
set similarity is then calculated and noted. A higher MPS value means higher

inter-molecular similarity and vice versa.

4.2.1 MDDR

The MDDR dataset is a commercial dataset produced by BIOVIA and Thomson
Reuters (“BIOVIA Datasets | Sourcing Datasets: BIOVIA Available Chemicals
Directory (ACD),” n.d.). The dataset contains molecules compiled from resources
such as patent literature, journals, meetings and congresses. The activity data is
qualitative, i.e., a molecule is active if it is known to exhibit a specific activity and

assumed to be inactive if no activity has been reported.

The MDDR dataset utilised in this study was the version from 1995, which
contained 102,540 molecules and 11 activity classes. It was used in the previous
studies by Todeschini et al. (2012) and Holliday et al.,, (2015). As shown in Table
4-1, the Renin activity class is known to be the most homogeneous (highest MPS
value, i.e., 0.57), while the Cyclooxygenase activity class is the most

heterogeneous in this dataset (lowest MPS value, i.e., 0.27).

The first investigation on the similarity search application in Chapter 5 uses a
total of 102,540 molecules and 11 activity classes. The second investigation on
the clustering application in Chapter 6 uses 10% of the molecules in the dataset
that are randomly selected. This yields a dataset containing a total of 10,254
molecules. This is because the large number of pairwise distance calculations in
the clustering applications demands a lot of computation. As a result, the subset
of the dataset contained between 36 and 125 active molecules, depending on

the activity class.

4.2.2 WOMBAT

The WOMBAT dataset is a leading small molecule chemogenomics dataset
released by Sunset Molecular (“World of Molecular Bioactivity,” 2011). The

dataset contains molecules extracted from important drug-discovery journals
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such as the Journal of Medicinal Chemistry and Bioorganic & Medicinal Chemistry.
The activity data is quantitative, e.g., a molecule is assumed to be active if an
associated IC50 (the half maximal inhibitory concentration) value is equal or
more than a defined threshold value (or inactive if the activity value is less than

the threshold value).

The WOMBAT dataset used in this study has been described and compiled by
Gardiner et al. (2009). A molecule is marked to be active or inactive for a
specific activity class based on the drug potency. A threshold of pIC50 at 5.0 is
defined. For each activity class, molecules with pIC50 >= 5.0 are marked as
active for that class, and molecules with pIC50 < 5.0 are removed from that
class. The resulting database contained a total of 138,127 molecules reduced
from the original version which has 186,117 molecules by removing duplicated

molecules.

There are 14 activity classes used throughout the study (Chapters 5 and 6), of
which eleven classes are similar to the MDDR and three others are the
additional activity classes. Like the MDDR dataset, the Renin activity class is also
known to be the most homogeneous with the highest MPS value, i.e., 0.59, while
the Cyclooxygenase activity class is the most heterogeneous with the lowest

MPS value, i.e., 0.32 (Table 4-2).

The first investigation on the similarity search application in Chapter 5 uses a
total of 138,127 molecules. For similar reason as the MDDR dataset, the second
investigation on the clustering application in Chapter 6 uses 10% of the
molecules in the dataset that are selected at random, yielding a dataset
containing a total of 13,813 molecules. Hence, the subset of the dataset

contained between 14 and 113 active molecules, depending on the activity class.

4.2.3 ChEMBL

The ChEMBL dataset is one of the largest publicly available Open Data datasets
created by the European Bioinformatics Institute (EMBL-EBI). It consists of a
large number of drug-like bioactive compounds compiled from the main

published literature on a regular basis. The ChEMBL dataset used in this study is
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ChEMBL 18, which was released on 2 April 2014 and available for download at
https://www.ebi.ac.uk/chembl/. It contains a total of 1,352,681 molecules. For
this experiment, the molecules are quantitatively selected based on three
properties: (i) homo sapiens target organism; (ii) compounds with pIC50 >= 5.0
and (iii) compounds with a confidence score equal to nine (Williams, 2014). The
confidence score for the ChEMBL dataset is a score value that reflects the target
type assigned to a particular assay and the assurance that the target assigned is

the correct target for that assay.

The first and third investigations in Chapters 5 and 7 used only 10% from the
total number of molecules in this dataset that are randomly selected for two
reasons: (1) for a comparable number of compounds used for the MDDR and
WOMBAT datasets and (2) to avoid intensive computation as the searches
involve repetition of very highly dimensional fingerprints. The resulting
database contained a total of 134,362 molecules. Similar activity classes to
MDDR and WOMBAT were used including one additional activity class resulted
in a total of 15 activity classes. Among the 15 activity classes, Type-1
Angiotensin II activity class is known to be the most homogeneous with the
highest MPS value of 0.52, while Cyclooxygenase-1 activity class is the most
heterogeneous with lowest MPS value of 0.28 (Table 4-3).
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4.3 Molecular Representation

The MorganR2 fingerprints (i.e., RDKit equivalent of ECFP_4-like) have been
used as a molecular representation in all investigations. The fingerprints were
generated using the RDKit standard Morgan fingerprints from the KNIME
software (Landrum, 2016), which applies the Morgan algorithm that uses the
connectivity information similar to those used for the well-known ECFP family
of fingerprints. The only difference is about the atom typing definition to the
ECFP fingerprints, i.e., isotope information is added and the valance-hydrogen
count parameter is removed. A radius of two has been chosen when generating
the Morgan fingerprints, which is similar to the ECFP_4 fingerprint found in
Pipeline Pilot (Rogers & Hahn, 2010). The fingerprints were folded based on the
size of the convention power of two, which is aligned to the word sizes on

hardware and computer libraries.

To investigate the effect of changing the dimensionality of molecular
representation in Chapters 5 and 6, a set of different fingerprint bit sizes was
used. The set was prepared to avoid bit collisions, i.e., two different chemical
features setting the same bit. Bit collisions can happen when folding the
fingerprints to a particular size, which possibly results in a loss of information.
In this study, meaningful information is important in assessing the effect of
dimensionality to similarity searching. Although inevitable, the bit collisions can
be reduced by increasing the number of fingerprint bit size to a larger number

of bit spaces (Sastry et al., 2010).

The thirteen different folded dimensions that were generated are: 32 (2%) bits,
64 (2°) bits, 128 (27) bits, 256 (28) bits, 512 (2°) bits, 1,024 (21°) bits, 2,048
(211) bits, 4,096 (212) bits, 8,192 (23) bits, 16,384 (21*) bits, 32,768 (21°) bits,
65,536 (21°) bits, 131,072 (217) bits. Throughout this thesis, the power of two
convention will be used to represent the fingerprint dimensions or sizes, e.g.,

210,

The third investigation in Chapter 7 also used MorganR2 fingerprints and nine

other types of fingerprints in order to observe the relative importance of the
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similarity search components. In total, ten different types of fingerprints have
been used in the third investigation as listed in Table 4-4 Fingerprints used in
this study (Riniker & Landrum, 2013; Landrum, 2016)4. All fingerprints were
generated for a size of 1,024 (219) bits using the RDKit from the KNIME software
(Landrum, 2016).
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Chapter 4 Methodology
4.4 Similarity and Distance Measures

4.4.1 Similarity Coefficients

The similarity measures in Chapter 5 were initially calculated using all 51
similarity coefficients as previously compared by Todeschini et al. (2012). The
coefficients are those suitable for the type of binary representation used in this
experiment. Several of the coefficients are the most common measurements
used for binary data types, e.g., the Jaccard-Tanimoto coefficient. As noted in
Chapter 2, the Jaccard-Tanimoto coefficient has been the most effective

measurement in binary similarity searching.

The formulation of the similarity coefficients used in this experiment may
consist of the components of g, b, ¢, d and p. The definition of the components is

based on Todeschini et al. (2012). Each component indicates:

e a = the number of common presence features between molecules x
and y

e ) =the number of features which molecule x has and molecule y lacks

e =the number of features which molecule y has and molecule x lacks

e d = the number of common absence features between molecules x
and y

e p = the total number of features (dimensions) that is equal to the

summation of a, b, cand d

Table 4-5 provides the following information: ID, symbol, name, formula, two
coefficient definitions and the metricity. The first definition was based on the
symmetric and asymmetric definition of the Tversky index (Tversky, 1977). It
indicates that an index (i.e, coefficient) is symmetric if Sy, = S,, and
asymmetric if Sy, # S,x. As such, the coefficients were denoted based on the
formulation, i.e., symmetric if both component b and c are weighted equally, and
asymmetric if not. This is because b and c represent unique features of
molecules that are being compared, e.g., b is the number of unique features of

molecule x and c is the number of unique features of molecule y. Thus, the
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condition of S, = S, will be satisfied if the coefficient considers both unique
features of the compared molecules. The second definition was based on
Todeschini et al. (2012). It defines a coefficient based on the formulation as: (i)
symmetric if components a and d are equally considered, (ii) asymmetric if only
a is considered and (iii) intermediate if both a and d are considered, but d is
underweighted with respect to a. The metric properties have already been
discussed in Chapter 2. The coefficient IDs in Table 4-5 will be used to refer to

the similarity coefficients throughout the study in Chapters 5 and 7.

Based on the statistical test conducted in Chapter 5, 20 similarity coefficients
were found to be monotonic with other coefficients. Therefore, these
coefficients have been excluded from being further investigated. As a result,
only 31 non-monotonic similarity coefficients from 51 similarity coefficients
were used in the investigations in Chapters 5 and 7. The retained coefficients

were marked with an asterisk in the ID column in Table 4-5.

4.4.2 Distance Coefficients

The clustering algorithm in Chapter 6 used the distances of the molecules as a
basis for grouping molecules in which two molecules that are closer will be
clustered together. Therefore, ten distance coefficients have been implemented
in this experiment to measure the pairwise distance between the molecules in
the clustering procedure. The distance coefficients are available in the distance
computations package library from SciPy (Jones et al, 2001). The distance
coefficients are listed in Table 4-6, which describes the molecules x and y as
represented by an n-binary vector, i.e., dimension. The binary vector element x;
contains the presence or absence of the i-th binary in x (and similarly for

molecule y).
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Table 4-6 The list of the distance coefficients (Jones et al., 2001)

No. ID Symbol Name Formula
n
1 D1 BC Bray-Curtis Dgc = M
malxi + il
n
2 D2 CB City-Block Dcg = Z 1Ixi -yl
i=
_ =1 XY
3 D3 COS  Cosine Deos =1 - i,
[Z?=1 x;? P Yiz]
) n Yy
4 D4 EUC Euclidean Deyc = [Z 1|xi — Yi|2]
i=
n Ly
5 D5 HAM  Hamming Dyay = M
n
Dizilx = wil
6 D6 JAC Jaccard Diac =
rac axy + Xl =yl
Yimalx —yil =X oy +n
7 D7 KUL Kulsinski D =— —
ok Iilxi —yil+n
Rogers- Drr n
8 D8 RT oo _ 2%ialxi — yil
Yy + (= Qg xy + Xl — vil)) + 2 X lx — vl
—_yn SV
9 D9  RR  Russell-Rao Dy = Mo Ziz1 X
n
10 D10 SS Sokal-Sneath Dgs Lizal%i — yil

Xy 23 — vl

The definitions describe the molecules x and y as represented by an n-binary vector, i.e., dimension. The
binary vector element x; contains the presence or absence of the i-th binary in x (and similarly for

molecule y).
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4.5 Experimental Procedure

4.5.1 Procedure of Similarity Searching

The experiment carried out in Chapter 5 replicates the virtual screening based
similarity searching application, which calculates the similarity values between
a reference structure and each structure in a dataset. Ten random reference

structures from each activity class were used for the similarity searching.

Also, each similarity search was conducted for different fingerprint dimensions
as described in Section 4.3. The similarity values were calculated based on
different similarity coefficients as described in section 4.4.1. The similarity
values computed were used to rank the molecules in decreasing order. A
threshold was applied to retrieve a fixed number of top-ranked molecules, i.e.,
top 1%. Numbers of active molecules within the retrieved list were used to
measure the effectiveness of the search based on the enrichment factor. The
enrichment factors were then averaged over the ten searches and the value
denoted by the symbol EF,q,. For the first investigation, the total number of
similarity searches using all three datasets, thirteen fingerprint dimensions and

fifty-one similarity coefficients was 265,200.

A similar similarity search procedure was applied in the third experiment as
reported in Chapter 7. The difference was that the searches were conducted
using ten types of fingerprints which were represented by one size of dimension
(i.e, 219 or 1,024 bits), measured by only 31 similarity coefficients and using
only the ChEMBL dataset (which has 15 activity classes). This investigation

yielded a total number of 46,500 similarity searches.

4.5.2 Procedure of Clustering

The agglomerative hierarchical non-overlapping clustering method has been
chosen as the method for clustering the molecules in Chapter 6. Based on this
method, each molecule (or cluster of molecules) merges bottom-up with other
similar molecules. The merges were determined by different types of methods,

resulting in a cluster of two molecules or clusters of several molecules. The
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procedure is non-overlapping, which means that a molecule can occur only in
one cluster. Two types of algorithms were implemented in the experiment,

which are the Ward'’s algorithm and the Group Average algorithm.

Ward’s algorithm has been the most widely used clustering algorithm in
chemoinformatics applications (Brown & Martin, 1996; Bayada et al., 1999). It
has also been found to perform better than other non-hierarchical cluster
algorithms in terms of its predictive ability (Downs et al., 1994). Based on
Ward'’s algorithm, the clusters are grouped so as to minimise the total variance
for each cluster (Ward, 1963). At each process, a pair of clusters is chosen
whose merger leads to the minimum change in total variance. The variance of a
cluster is measured as the sum of the squared deviations from the mean of the
cluster. For a cluster, c, of N, objects where each object j is represented by a

vector r j, the mean (or centroid) of the cluster, 7; and the intracluster variance,

v, are determined by Eq. (20) and Eq. (21):

1 Nc¢
T =—Z T, i 20
c Nc j=1 c,j ( )

N¢
ve=) " (rey—7l)’ (21)
j=1

The total variance is measured as the sum of the intracluster variances for each
cluster. For each iteration, a pair of clusters is chosen whose merger leads to the

minimum change in total variance.

Ward'’s algorithm tends to produce spherical clusters which may not accurately
reflect the true shape of the clusters present in the dataset (Willett, 1987). For
this reason, further experiment has been conducted using the Group Average
algorithm. In this algorithm, the intercluster distance is measured as the
average of the distances between all pairs of compounds in the two clusters. As
a result, each cluster member has a smaller average distance to the remaining

members of that cluster than to all members of any other cluster. The results
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from both Ward’s and Group Average algorithms were considered in order to

identify a comparable and conclusive finding about the experiment.

4.6 Evaluation Method

4.6.1 Enrichment Factor

In the investigations described in Chapters 5 and 7, the enrichment factor (EF)
was chosen to measure the effectiveness of the similarity search application.
This method is commonly used when the number of actives retrieved is more
important than the active ranking order. It measures the active compounds
retrieved compared to active compounds from a random selection. The

calculation of the EF is defined by Eq. (22):
EF = — (22)

where AR is the number of active compounds retrieved, and R is the number of
actives expected based on random selection, for a given cut off value. The typical
cut off value used in these experiments is 1%. The search effectiveness for each
representation was measured by the mean enrichment factor when averaged

over the ten searches for each activity class.

4.6.2 F-Measure

The F-measure was first devised to evaluate methods for document clustering in
information retrieval (van Rijsbergen, 1979). It evaluates the extent to which a

method clustered together molecules that belonged to the same activity class.

Assume that a cluster contains n molecules, that a of these are active and that
there is a total of A molecules with the chosen activity. The precision, P, and the

recall, R, for that cluster are then calculated by Eq. (23):

a
P = — R =
- and (23)

x| Q
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F is the harmonic mean of P and R that is calculated by Eq. (24):

F=——r1u (24)

This calculation is carried out for each cluster. The F-measure is the maximum
value obtained across all clusters. This value describes the single cluster that
provides the best combination of precision and recall for the current bioactivity

assuming both P and R are of equal importance.

4.6.3 QPI-Measure

QPI-measure is a method for evaluating the clustering effectiveness that was
developed from the QCI (Quality Clustering Index) (Varin et al., 2008). It is used
to evaluate the performance of a clustering algorithm by measuring the
separation between active and inactive molecules resulting from the use of a

clustering method.

In this approach, an active cluster is defined as a non-singleton cluster where the
percentage of active molecules in the cluster is greater than the percentage of
active molecules in the database as a whole. Let p be the number of active
molecules in the active clusters, g the number of inactive molecules in the active
clusters, r the number of active molecules in the inactive clusters (i.e., clusters
that are not active clusters) and s the number of singletons that are active

molecules. The quality partition index, QP], is then calculated by Eq. (25):

1%
Pl=—m7m7—
O = g +s (25)

This calculation will result in a high value when the active molecules are
clustered tightly together and separated from the inactive molecules.
The QPI-measure describes the entire set of clusters, while the F-measure

describes the single best cluster. These approaches have been used to evaluate
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the performance of molecular clustering by several previous studies in
chemoinformatics domain (Chu et al., 2012; Gan et al., 2014). For each algorithm
(i.e, Ward’s and Group Average), the clusters were generated for all 260
combinations of fingerprint dimensions measured by ten distance coefficients
for two datasets to obtain each of the six partitions of 500, 600, 700, 800, 900
and 1000 clusters. The F and QPI values were also computed for each cluster
partition. Both evaluation methods were implemented in the second

investigation in this thesis as reported in Chapter 6.

4.7 Statistical Method

4.7.1 Spearman’s Rank Correlation

The Spearman’s rank correlation test was used to identify monotonicity, i.e.,
when two different similarity coefficients produce the same similarity rankings,
which is another important characteristic of a similarity coefficient. Similarity
search results for each similarity coefficient measuring similar fingerprint size
and reference molecule were chosen. The results were tested using the
Spearman’s rank correlation. The monotonic coefficients were identified and
grouped together, i.e., coefficients with correlation value = 1. This statistical test

was implemented in the first investigation as reported in Chapter 5.

4.7.2 Kendall’s W Test

The Kendall’s W test was used to test the significance of the performance of each
similarity coefficient. The test was done using IBM SPSS version 22 (IBM Corp.
IBM SPSS Statistics for Windows, 2013) and by measuring the EF;,, from all
activity classes using all fingerprint dimensions. For each dataset, the mean
EF,, obtained from all fingerprint dimensions were averaged and the similarity
coefficients were ranked based on their average mean EF;, value. The
similarity coefficient with the largest average mean EF, value would be
ordered as the highest in the row (i.e., first in the rank position) and vice versa.
This statistical test was also implemented in the first investigation as reported

in Chapter 5.
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4.7.3 Sign Test

The Sign test was used to validate the significance of the contribution between
the compound representations and the similarity coefficients in determining the
performance of similarity searching using the cross classified multilevel
modeling in Chapter 7. It was implemented to measure the contribution in order

to make a conclusion about which factor is more important.

The Sign test is based on the direction of the differences between the two

components to test the following null hypothesis, H, using Eq. (26):
1
P[X; > Y] = P[X; < Y{] =5 (26)

where P is the number of pairs which have X; or Y; scores greater or less than
the other for two different components that are to be compared, X and Y. In this
test, the sign of the difference between each pair of X; and Y; scores is noted as
positive (+) or negative (-). H; is true if half of the differences are negatives and

half are positives. Hj is rejected if too few differences of one sign occur.

In the case of “tie” occurrences, all tied pairs are dropped from the analysis and
the sample size (i.e.,, number of pairs), N is reduced correspondingly. In other
words, N is the number of pairs whose differences show a sign (+ or -). This is

because it is not possible to discriminate between the values of a tied pair.

Two different methods can be used to determine the probability associated with
the occurrence of data, which depends on the sample size. For a small sample

size of N < 35, the probability can be determined by reference to the binomial
distribution with p = q = % . The significance of the probability values can be

looked up by referring to the binomial distribution table (Siegel & Castellan Jr,
1988).

For a large sample size of N > 35, the probability can be determined by normal
approximation to the binomial distribution and measured using the z-score in

Eq. (27):
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2x + 1— N 27)
Z=—
VN

where N is the number of pairs and x is the number of fewer signs, for which +1
is used when x < % and -1 when x > g The significance of the obtained z value

can be looked up by referring to the normal distribution table (Siegel &

Castellan Jr, 1988).

The sign test may be either one-tailed or two-tailed. In a one-tailed test, the
alternative hypothesis states which sign (+ or -) will occur more frequently. The
two-tailed test predicts the frequencies with which the two signs occur that will

be significantly different.

In the study in Chapter 7, the sign test was conducted to evaluate the differences
of variances of the two components. Each variance acts as a judge of the
similarity search effectiveness, where the significance of the differences is
measured by the number of (i) fingerprint level > similarity coefficient level, (ii)
fingerprint level = similarity coefficient level and (iii) fingerprint level <
similarity coefficient level. The two-tailed test was considered for the sign test
in which the probability values obtained from the lookup tables are doubled.
The test was done using IBM SPSS version 22. Detailed explanation about the
implementation of the test is explained separately in the corresponding sections

in Chapter 7.

4.7.4 The Wilcoxon Signed-rank Test

In addition to the Sign test, the Wilcoxon signed-rank test was also implemented
to validate the significance of the contribution between the compound
representations and the similarity coefficients in determining the performance
of similarity searching. The Wilcoxon signed-rank test is a more powerful test
that can be used to compare two sets of components which not only utilises the
direction of the preferences of a component, but also includes the relative
magnitude of the direction in the comparison. Hence, it gives more weight to a

pair, which shows larger difference than a smaller one.
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In order to carry out this test, first the sign’s differences d; of each pair X; and Y;
need to be determined, where d; = X; — Y;. All resulting d; values will be ranked
without regard to sign with 1 being the smallest |d;|. Next, the sign of the
difference is affixed to each rank to indicate which rank is positive or negative

from d;.

The null hypothesis H, is true when there exist equal values of summation of
positive d; as well as negative d;. Here, N is again the number of non-zero d;,

which is used in defining these two statistics:
T* = the sum of the positive d;'s ranks

T~ = the sum of the negative d;'s ranks

N(N+1) _ N(N+1)

Since the sum of all of the ranks is , then T~ — T*. The Hy is
rejected when the T or T~ is too small, i.e., when either summation of the ranks

is different from the other.

The “tie” case may occur when the two scores of any pair are equal, i.e,
X; —Y; =d; = 0. The same practice with the sign test will be followed, which
excludes the tied pairs from the analysis and reduces the number of pairs, N
correspondingly. Another tie case can occur when two or more differences, d's
are of the same magnitude. For this case, the same rank, which is the average of

the ranks of the same d’s, will be assigned.

For a small sample size of N < 15, the probability value is determined based on
the sum of the positive d;'s ranks, T which can be looked up by referring to the
probabilities table for critical values of T* for the Wilcoxon signed-ranks test
(Siegel & Castellan Jr, 1988). The one-tailed test is appropriate if the direction of

the differences has been predicted in advance.

For a large sample size of N > 15, the probability of the sum of the positive
ranks, T* can be determined by normal approximation and measured using the

z-score (Eq. (28)):
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. NV + 1)
e
o7 \/N(N + DN + 1) (28)
24

where N is the number of pairs and the significance of the obtained z value can
be looked up by referring to the normal distribution table (Siegel & Castellan Jr,
1988).

If the probability value is less than or equal to the significance level, a, then the
H, can be rejected in favour of the alternative hypothesis by concluding that
there is a significant difference between components X and Y and that either X

or Y has shown better performance than the other.

Similar to the sign test, the two-tailed test was considered for the Wilcoxon
signed-ranked test in the third investigation in Chapter 7. IBM SPSS version 22
was used to compute the statistical test, making it a very useful statistical
software for carrying out such analysis. Detailed explanation about the
implementation of the test is explained separately in the corresponding sections

in Chapter 7.

4.8 Conclusion

This chapter presented the methodologies involved in the investigations
reported in this thesis. It introduced the datasets that have been tested, the
experimental design involved, the evaluation and the statistical methods that
have been implemented. The other experimental details, which vary depending
on the investigations conducted, will be introduced separately in each

experimental chapter.
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Chapter 5 Investigation into the Effect of
Dimensionality on the Effectiveness of Similarity
Searching

5.1 Introduction

The effects of the curse of dimensionality have been discussed in Chapter 3. The
previous study has reported that the effectiveness of a nearest neighbour search
application decreases as the dimensionality increases (Donoho, 2000). This
study will investigate the effect of changing the dimensionality of molecular
representations on the effectiveness of virtual screening based similarity search

applications.

This study seeks to test the hypothesis that as the dimensionality increases, the
effectiveness of the nearest neighbour searches decreases. In contrast, studies
carried out in the chemoinformatics domain have shown that similarity
searching is found to be effective using high dimensional molecular
representation (Willett, 2011b). Thus, the aim of this study is to identify the
characteristics of chemical datasets that contribute to the effectiveness of the
application in high dimensionality. It also explains the observed performance
using various molecular dimensions and similarity coefficients, which simulate

a practical virtual screening process.

5.2 Experimental Design

In this investigation, the experiments simulate virtual screening experiments,
which calculate the similarity between a reference structure and each structure
in a dataset. The experiments were carried out for all activity classes from three
datasets, i.e, MDDR, WOMBAT and ChEMBL. These datasets have been

introduced in Chapter 4, along with the similarity searching procedures.

Each compound in the datasets was represented using the binary fingerprint,
i.e,, ECFP_4-like (MorganR2) fingerprint. To investigate effect of changing the

dimensionality of molecular representations on the effectiveness of similarity
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search applications, thirteen different fingerprint sizes have been used in this

study. These fingerprints have been introduced in Chapter 4.

To observe the performance using various similarity coefficients, 51 similarity
coefficients were implemented to measure the similarity of the compounds.
These coefficients have been used in the previous study by Todeschini et al.

(2012) and introduced in Chapter 4.

5.3 Results and Discussion

5.3.1 Analysis of Spearman’s Rank Correlation

The Spearman’s rank correlation test has been carried out for all similarity
coefficients used in this experiment as described in Chapter 4. Table 5-1 shows
twenty nine coefficients that were grouped into nine monotonic groups. All
coefficients in the same group were monotonic to each other. Twenty-two other
coefficients are the singletons, i.e., non-monotonic coefficients. As can be seen
from Table 4-5, several coefficients were derived by a very similar equations.
For example, the B3 (JT) and B4 (GLE/DICE) are monotonic based on their

formulation which differs in the weightings of the component a.

Only one coefficient from each group, i.e., the best known coefficient, and the
singletons were retained for the results and discussion. The total number of
retained coefficients is 31, which are shown in bold in the Table 5-1. Several
correlated groups are in agreement with the previous study by Todeschini et al.

(2012), e.g., B3 (JT), B4 (GLE/DICE), B12 (SS1) and B14 (JA).
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Table 5-1 Spearman’s rank correlations result

Monotonic Group Correlated Similarity Coefficients p value
1 B1, B2, B13, B39, B40, B44, B45, B47 1
2 B3, B4, B12, B14, B27 1
3 B5,B31,B41 1
4 B6,B24,B32 1
5 B10, B48 1
6 B11,B49 1
7 B18,B50 1
8 B20,B21 1
9 B26, B35 1
Singletons B7, B8, B9, B15, B16, B17, B19, B22, B23, B25, B28,

B29, B30, B33, B34, B36, B37, B38, B42, B43, B46, B51

5.3.2 Analysis of Kendall’s W Test

The Kendall's W tests have been carried out for the mean EF,q, values of all
similarity coefficients as explained in Chapter 4. For each fingerprint dimension,
the similarity coefficient with the largest average mean EF,,, value would be
ordered first in the rank position. For example, in Table 5-2, the B18 coefficient
has the largest value of average mean ﬁl%, i.e, 24.59 (refer to the second last
column). Hence, it is ordered as the highest in the row (i.e., rank position 1). The
B7 coefficient is ordered as the lowest in the row (i.e., rank position 31) because
it has the smallest value of average mean ﬁl%, i.e., 3.80 (refer to the second last
column). In addition, the table also presents the mean EF;, and rank position of
the similarity coefficients obtained for each dimension. The other values, i.e., the

W, x2 and significant values were also recorded.

For the MDDR average mean values, with k = 31, N = 11 and the searches with
EF,,, the test yields the values of W between the range of 0.433 to 0.613 and x2
between 142.73 to 202.38. The values are highly significant with value p <
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0.001. Thus, the results from Table 5-2 suggest the following rankings (see
Figure 5-1):

B18>B38>B34>B3>B19>B37>B8>B29>B42>B30>B51>B22>B33>
B9 >B10>B23>B28>B26>B11>B17 >B46 >B25>B16 >B43 >B15 > B20
>B36 >B5>B6>B1>B7

It is interesting to see that the B3 (JT) coefficient demonstrated a good
performance in the similarity search using seven fingerprint dimensions, i.e., 28,
29,210,212 213 214 215 bits. Of all seven dimensions, 214 bits dimension equals to
the highest W value of 0.613 while the x2 value yielded is 202.38. This has also
been the highest W value calculated for all thirteen dimensions investigated in
the MDDR dataset. However, the B3 coefficient was ranked the fourth in the
final rank position because the final rank position is based on the average mean
values. The B1 coefficient was the worst for nine out of all thirteen dimensions
(from 29 until 217) with the highest W and x2 values obtained from the same

dimension, i.e., 214,

Table 5-3 and Figure 5-2 shows results for WOMBAT dataset suggested the
following rankings in both tabular and graphical form. With k = 31, N = 14 and
the searches with EF,,, the test yields values for W between the range of 0.506
to 0.726 and x2 between 212.50 to 304.82 (all values have p <0.001):

B38>B18 >B34>B3>B37>B19>B42>B8>B29>B22>B30>B9=B33>
B51>B10>B23>B26>B28>B11>B17 >B46 >B25>B15>B16 > B43 >B5
>B20>B36>B1>B7 >B6

For the WOMBAT dataset, the B42 coefficient demonstrated a good
performance in the similarity search using seven fingerprint dimensions
starting from 211 until 217 dimensions. Of all seven dimensions, 211 equals to the
highest W value of 0.659 while the x2 value yielded is 276.96. Similar to the
MDDR ranking, the B1 coefficient was also the worst for the same nine

dimensions, i.e., 2° until 217,
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And finally, for ChEMBL with k = 31, N = 15 and the searches with Wl%, the test
yields values for W between the range of 0.392 to 0.676 and x2 between 176.50
to 304.03 (all values have p < 0.001). Results from Table 5-4 suggest the

following rankings (see Figure 5-3):

B38>B42 >B3>B18 >B34>B37>B19>B26>B22>B29>B9>B33>B8 >
B30=B51=B17>B10>B25>B23>B28>B11>B46>B16 >B43 >B20 >
B15>B5>B36 >B6>B1 > B7

Both B38 and B42 coefficients demonstrated good performances in the
similarity search using the eight high dimensions from 210 until 217 bits for the
ChEMBL dataset. The test for bit dimension of 212 yields the highest W value of
0.676 and the x2 value is 304.03 which was demonstrated by the B38
coefficient. Similar to the MDDR and WOMBAT rankings, the B1 coefficient was

also the worst for the same nine bits dimensions, i.e., 2° until 217,

Overall, the average Kendall's W rankings using all thirteen dimensions as
mentioned above seem comparable. For searches with EF,, across all
fingerprint dimensions, B38 performs extremely well in all datasets, except for
MDDR where B18 is shown to be the best performer. B7 is the worst similarity
coefficient suggested to be used for MDDR and ChEMBL while B6 is the worst
suggested for WOMBAT. When referring to the previous study, the best
performance and the worst performance using the 210 bit dimension for MDDR
is in line with the Todeschini et al.’s finding (i.e., B3 as the best performance and

B1 as the worst performance).

89



Chapter 5 Investigation into the Effect of Dimensionality on the Effectiveness of Similarity Searching

SZ-HITT ST-AYLT 9Z-480°1T L2-98L°T LT-HLE'E SZ-HEE'S YZ-qeee 12-31%'S 0Z-9ZL°€ 91-48C°1 22-929'8 €C-416'T d
SSZ61 1L161 61'861 8€£'70¢C 25002 60'68T L8'Y8T STLIT 29291 ELTYT YOTLT L9081 X
€850 1850 1090 €190 8090 €LS0 0950 L0S°0 €670 EEV'O 0250 L¥S0 M
1€ 08¢ 0€ [4:34 0€ S6'% 0€ [4:57% 0€ 98'% 0€ 891 0€ St'S 0€ 454 0€ LLE 0€ 433 |13 LT°C 0€ 00°C 0€ T6'T S0€ 1544 JA]
0€ ¥8'S 1€ SY'1 T€ SY'1 1€ SS'T 1€ SS'T 1€ SS'1 1€ SO'T 1€ Y91 1€ S6'T 1€ 00°€ 87 8'S 1X4 Z8'€ET S 81°€C (4 SY'LT 1d
6C Y9 6C 8'S 62 Z8'S 6C 009 62 €L'S 62 009 6C LL'S 62 65°S 6C 89'S 6C 00°'s 62 §§°S 6C S¥9 6C Y18 i44 81°Ct 94
8¢ 6L S¢ L2701 S¢ L7001 S¢ 0001 S¢ S0°0T SC 0001 S¢ S6'6 S¢ LT LL'8 8¢ ¥9'9 0€ Sv'e 1€ SST ES €Lt 62 009 sd
LT 0t'8 8T 9€'9 8C S¥'9 8T €9 8T 8T 99 8T 8T 8C 00°L LT S6'9 LT 0S8 514 00ZT €T 16'81 92 S6'6 9ed
9¢ 8¥°0T e 7901 [44 0S°0T j44 I¥'01 (44 €T 4311 [44 (44 €C 980T {44 6S'1T ST YT'TL j44 eL’et €T €Tl S0€e e 0zd
14 Y601 LT 818 LT 608 LT 60'8 LT LT 008 LT 9T Sc 86 144 T6°€T Y1 v'el L 9€'TC §9¢ S6'8 S¢ 15408 s1d
24 90°TT €T [ €2 SO'TT 14 65°0T €T 24 1601 14 €T [44 ZeTT €T S6'TT 44 (430 514 1671 [44 8971 82 99 £vd
€T 87’11 9C 6598 9¢ 16'8 9¢ 168 9C 9¢ 5598 9¢ LT 9¢ S0'6 9C 000T (44 811 91 8991 6 LL0T €1 60°LT 914
(44 LT S6l 98'€T g6l 98°€T S6l LTET Sel (14 89°CT 0z 0z 1C [ANA% [44 81°CT 9z S9°6 8¢ 89'8 8¢ 798 LT 9¢€'6 qzd
%4 6271 (44 Y911 (44 LLTT (44 SSTL (44 (44 vrer (44 1% 0¢ S6'€T 0z LLYT 1 LLYT 9¢ 1601 ST Y16 (44 YTET 974
0z 621 12 6S°€T 12 6S°€T 12 00°€T 1z 0z 8971 12 [44 24 €201 ST Y101 €T SPTT €1 0581 LT 9€'91 44 871 L1d
61 81T LT €TVl LT ETYL LT EYT LT LT 00°ST LT LT 91 1691 91 S09T 61 60'ST LT 89°0T §9¢ S6'8 1 %4 9¢€’€T 114
81 S9'ST S6l 98'€T Sel 98°€T Sel LTET S6l 0¢ 89C1 61 61 61 8YL 81 S6'ST ST €L'6T 8 81'T¢ [ SS6T 129 8181 9zd
LT €L'ST 81 (454" 81 S6'€T 81 S6'€L 81 81 981 81 81 LT 16'ST 61 zeSsT 81 SS9T [4" 89°LT 11 89'61 (129 8981 8zd
91 8€°LT 6 861 6 16’61 6 S0'TC 0T Y1 16'LT ST ST ST Y9'LT LT 0091 0Z S6'¥T 61 00'ST 114 LTET 61 LLYT €z
ST 7881 91 9€91 91 €291 91 €L9T ST 91 6S9T 91 91 8T E€L'ST ST 9¢'81 S 81'CC T ¥ve € ¥ve 8 LLTT ord
1 06'81 S0t LL6T 11 9861 S0t 0002 A S0t 0S'61 st SoT S0t S0°'1Z STt 1602 S'6 65°0C 81 15425 z61 Y9ET SLT YT'ST 6d
€1 1681 | SOT  LL6I 11 9861  S0T 000 SZI §0T 096l  STT S0t §0T S0tz ST1L 1607 56 6502 LT 0S9T 76l  ¥9€T  SLT  +T'ST €ed
1 90'6T ST 6561 [41 81’61 1 00'6T 6 6 6012 6 8 6 ¥9'1¢C L ¥9'1¢ 8 €L°0C 0z 6SYT {44 8911 0¢ 544" [44:!
11 0€6l ST 00°LT ST S6'9T ST 00°LT 91 €1 0081 o1 1 S 87 € 81°€C € 60°€C 6 S0°0¢ 9'ST LLLT SYI S6'9T 1sd
o1 LS61 Al 6561 11 9861 [44 2861 1 ST LLLY Y1 Y1 v 9€'61 Y1 ¥'81 g'sT €L'8T 1 89'81 (129 0502 € 81T oed
6 ¥1°0C 8 89'7C 8 £TET 8 1454 8 8 81°2C 8 L S'L 98'1C 6 60'TC LT €781 [44 LTET 8T 89°€T 91 €L'ST e
8 0202 Y1 SS6T €1 e€L6l €1 6561 Y1 S6'8T 49 LT61 191 €1 1 1602 (128 S6'02 4 S¥'ee 4 [ Y44 L S6'1¢C L S6'€T 6zd
L S1'2¢ L 81%¢ L 00vZ L LL'ET L 8TV L LTET 9 4 9 002z 8 6512 1 S0°0C ST 8T'LT Y1 ¥9°81 6 6002 84
9 v6'2C 14 LLYT S 89'1C 9 SYve 9 £7°ST S ¥'ve S 9 S'L 98'1Z 9 89T  STI  €Le6l 1T SS'61 8 v1'1e 9 8T'+C Led
S 60°€C S SSve ER 89'%¢C 4 81'S¢C Sy 1¥'SC 9 89°€C L 6 €T LL0T €T €202 g'sT €L'8T 9 6S'1¢C T 0092 4 LLYT 61d
4 6G°€C 9 9€YT 9 0Sve T LT'ST T 89'ST ST 65°9¢ 1 € T 89'S¢ T 81'S¢ T 0S°€C o1 9861 9'ST LLLT SYI S6'9T €d
€ 611C ST 60'SC ST S6'¥C S'€ S0'S¢ € 05°'SC 14 §092 14 S S€ 6S°€C 14 60°€Z L 89'1¢ S 81°C¢ 14 LTET T 819¢ Yed
4 [4 4744 € S0'ST S 19T S 984T SY ¥'sT ST 6592 4 65'ST T LL'ST 4 601C S 0§22 9 (V44 € €TET 9 S0'€T S 9T 8ed
T 65vC ST 60'SC ST S6'%C S'€ S0'S¢ 14 §6'S¢ € 60'9¢ € 60'SC 4 8T'€C S'€ 6S°€C [4 05°€C Z [4%X4 Z 4544 Z LLYT 14 I¥'ST 81d
uonisod uel [uonisod uer uonisod juer uonisod uel uonisod yuer uonisod juer uonisod uel uonisod yuer uonisod juer uonisod uel uonisod yuer uonisod juer uonisod uel uonisod yuel
Jjuer uesaw juer uesuwx Jquer uesw juer uesw juer uesuwx Jquer uesw Nuer uesw juer ueswt Jquer uesaw juer ueswx Jquer uesw Jjuer uesaw juer uesuwx Jquer uesaw | SaInseajN
aSeroay at orl sil ne erC uC 1l 0l Anrequag
AN 10 yuey UBIN M S, [[EPUY

"90U2.19Ja.1 JO 9SEd 10J X0 93UueI0 AQ payue.l 31S9MO] Y3 pue xoq anjq £q

payIew S aunseaw AjLie[iuls payued 3saysiy ay3 ‘uoisuswip juridiaduy yoes 104 19SeIep ay3 Ul Sasse[d A11Anoe 1T 9y} 19A0 padelase sanfea #hyg ay) woy
paureiqo %’ g ueaw Jo an[eA 9y} S9ILIIPUI YUEL UBIA 19SLIRP YN 10J PIASLIIDL S9ANIE d5RI9AR 9]} UO paseq % dol 9y 10 SINsa 4] S,[[EPUS) Z-G 3[qeL

90



Chapter 5 Investigation into the Effect of Dimensionality on the Effectiveness of Similarity Searching

(san[ea yuel ueawr moJ) 3s.1om 03 (Sanfea

juel ueaw Y31y) 1S9q Wo.lj patap.lo 4aserep YAJA WO paurelqo se ‘Syualdlyjood AJLIe[IWIs T ¢ aY3 Jo 9d0ueULIOJIad T-S aInd1]

saInNsesp AUEIWIS

& @ ® £ FFPLPPPRPLRLPL L0 LPLLEL R P9 PPe®

Haaw

— 00

oe

oy

09

oe

= 001

- 0¢l

= ovl

— 09l

= 08l

— 002

- 022

- 0ve

[~ 08¢

— 082

HUEY UEBy

91



Chapter 5 Investigation into the Effect of Dimensionality on the Effectiveness of Similarity Searching

Y€-409'C S€-deee SE-HSLE SE-ASLT YE-dITT SE€-46S°€ 7v-48L'8 Zv-dL6'T Y¥-469°C 0¥-419°C Tv-3v9°C LY-3L6'C 62-412°C d
6E8ET S8'EVT LLTVT 617 Zrove L8TVT 96'9LC 87°08Z 08’682 17'69¢ 1SvL2 28%0¢€ 0SZ1C X
8950 1850 8LS0 2850 ZLS0 8LS°0 6590 £99°0 0690 1490 590 92L0 9050 M
1€ LTV 0€ 6EY 0€ 0S¥y 0€ 0S¥ 0€ 1744 0€ 6EY 0€ Eiad 0€ (4% 0€ 96'C 0€ JARS 6C LS'E 62 89t 62 0S¥ L2 118 9d
0€ 96V 8¢ €9 8¢ €v'9 8¢ LS9 8¢ 9€9 8¢ €6'S 8¢ 9€9 87 (4% 8¢ LSS 6C 6€Y 0€ ST 0€ €61 0€ 00C S0€ 8TV L4
62 ve9 1€ vl 1€ vl 1€ vl 1€ 171 1€ 9T 1€ vS'T 1€ vl 1€ e 1€ €6C 8¢ ST'S (44 L0CT € 00°L2 6 0022 14
8¢ 859 62 €67 62 98" 6C €6'v 62 €6'v 62 ST'S 62 (4% 62 8TY 62 Eiad 8¢ 0S¥ LT 96'S Sc 98'8 ST €691 144 Y901 9ed
LT L0'6 S¢ L0'6 14 176 14 YT'6 Sc (443 SZ 6€6 S¢ 006 S¢ 626 Sve £v'e 144 YT'6 (44 ¥9'6 e 980T (44 120t S0€ 8TV ozd
9C €96 81 6€'ST 81 0S°'ST 81 £¥'ST 81 (4248 81 06'ST 61 [4%4" €C 6€0T LT 008 LT 87 1€ LS'T 1€ 9€'T 1€ 621 62 96'9 sd
S¢ €86 e 196 144 686 (44 LS6 (44 196 (44 56 (44 126 (44 056 €T 986 €z €v'e €C 00°0T €z ST1T 44 LOTT 9z 626 €vd
i44 6’6 LT ZEL LT STL LT 1L LT YL LT Yo'L L2 00°Z L2 9€'9 9¢ Y18 9¢ LS'L 14 LS6 61 96%1 1 8961 11 96’61 91d
€z SO'TT 9C S8 9¢ 18 9¢ 818 9¢ 818 9C [4%] 9¢ €68 9z €68 (44 ST0T 1z LSTT L1 SL'8T L TLET SZ €68 €z V1T s1d
44 6611 S'6l 1St S'6l LSYT Sel Yovi Sel TLYT 0z TLYT 0z 96'€l 12 ZEEl 1z 1911 e 6L°0T 9z 9€'8 8¢ 98'S 9z 4L SZ 9€'0T sed
12 STt €C 6€TT €z 0S'TT €C [4°091 €z 1911 €z €611 €z | YAAH 0z SLET S'6l 191 0¢ L0'ST 1z Yovi S9C ¥S'8 LT 'L LT 6EYT 9%4d
0z [A%3" 1z Y9v1 1z 00%T 1z j4%21 1z 9EYT 1% (454" 44 €671 44 111 Sve £v'e 14 96'8 zz 6211 €1 vS6l Y1 89°'LT 87 L0'8 L1d
61 Y9v1 91 S291 91 96'ST 91 9€91 91 6L91 91 96'ST LT 9€'sT 91 SZ91 91 Y591 LT 6291 0¢ 96%1T §9C ¥S'8 8¢ 9€'L 44 89°€l 114
81 9991 LT 1191 LT Z8'ST L1 1191 L1 8191 LT LS'ST 81 62'ST LT 0S°ST S'6l 191 61 89'ST 81 96'ST v 481 11 1oz 0T 6€1Z 8zd
LT LTLT S'6l 1St S'6l LSYT S'6l Yovi Sel TLYT 61 6L%1 91 Z8'ST 81 62'ST LT 68'ST 81 8191 11 6202 9 96'€C 8 00°€Z €T 7881 9zd
91 YL 11 €661 1 €61l €1 L0'6T Y1 L0'6T €1 1481 Y1 Y181 €1 sZel ST 9¢€'LT 91 1491 61 TSt LT 89'ST 1%4 98'T1 12 96'€l €
ST €ELT (44 96'€1 44 96'€T 144 96'€T 44 454" 44 98'€l 12 TLET 61 681 81 L0°ST ST 8181 L 122z 4 9€'ST L ZEET L v9'2e ord
Y1 06'8T ST LOLT ST LT ST 9891 ST 00LT ST €6'LT 1 Y061 1 89'61 6 0512 S 89°€C 14 98'€C STt €02 S91 991 SY1 Y0'ST 184
st e€T6et SET SL6T 11 861 11 (44114 S0t 861 ST1 1402 01 6€°0Z S0t €v'0Z ST1 8112 [4s 6212 S'6 (444 91 0591 g6l 6L71 81 9€YT ced
Szt €T6t SET SL'6T 11 861 11 (44114 S0t 861 ST1 1402 1T €02 S0t €v'0Z ST1 8112 1 6212 S'6 e'1e ST LS9T g6l 6L71 81 9€YT 6d
11 85961 11 €6'61 €1 6€'61 1 9881 €1 6€'61 i 8981 ST €6'LT Y1 1261 1 1981 1 Y061 ST 1261 0t 8902 0T 9Y'TC 8 12 oed
0T 26’61 8 Fra4s 6 1122 6 81'2¢ S'L 6€'7C L €6'TC 6 6L1C S8 1ee 8 9822 0T 0022 4" §2°02 02 8T¥1 €2 SL0T 02 14941 zzd
6 9Y'1C 11 €6'61 11 7861 11 €02 4" 6L°61 0T 9802 €T 9881 ST 8161 €1 12°02 6 9'ee 4 LSYT 14 89%C 9 6LYT 9 9¥'€T 62d
8 8L1¢ 6 1zee 8 6222 8 9€'2Z S'L 6€'7C 8 6L12 9 SL'ET 14 19'S2 4 05'SZ L LO€T 1 £v'6T 81 9Y'ST €T 6€'61 [4s 98'61 84
L 9€ce T S92 T 1992 T 9t'92 T 98'SZ T 78'SC T 9€'9¢ T §2°92 Sy SLYT 9 6€'€T 91 7881 12 vSa1 8T 871 91 TLYT [4%:!
9 £€9°CC 14 14514 14 9'ET L 7872 6 81T 6 0512 8 §L2T S8 e 0T 9Y'1C [4° 6212 €1 Y961 8 81'2¢ 4 v0°LT 4 00'SZ 614
S 98'7¢ 9 89°CC S'S EV'ET 9 98'2¢ 9 9€'€T 9 1Tee L (4244 L Y0'€C L TL€ET 8 Y0'€T 8 9€'1Z 6 1212 6 022 Sy 96'€C Led
14 0Z°€C 4 (4% 44 4 EVve 4 89'%C € 13474 € 0S'v2 4 68T 4 78'ST T SL'ST T 91’92 € 9'¥e STt ze0z S91 Y991 SvI v0'ST €d
€ 06'€C 9 89°CC S'S EV'ET S (4% 14 14 78'€C 14 9€'€T S 68°€C 9 6€°€T 9 9€¥C S€ 17%2 S Y9°€C S 00%Z 14 9’92 € 9€¥T ved
[4 {4444 9 89°CC L TT€T 14 62°€C S 1L€T S 12°€C € (4% ¢4 S 14944 Sy SLYT 4 62'ST T 81'SZ € Y1'Se T 62°LT T 9%'ST 81d
T 9L'¥C € 12544 € L0vT € 4344 4 +0'SZ 4 12'SC 4 81'%¢ € 6L'ST € 81'ST S€ 12ve 9 YS'ET T ELT S 00'SZ Sy 96'€C 8€d
uonisod  suexr | uomsod  suer uomisod  yuer uomisod juer uomisod juer uomisod juer uopisod juer uopisod juer uopisod juer uopisod juer uonisod yuer uonisod yuel uonisod yuer uonisod  yuel

juex ueaw juer ueaw yuer ueaw yuer  ueaw yuer  ueaw juer  ueawt Juel  ueaw jues ueaw jues ueaw jyuel  ueaw yuer  ueaw yuel  ueaw juel  ueawr Suel  ueaw | Saunseapy

LIB[IWUL:

mmwhm>< N~N wnN mﬁN ¢~N m_N N_N :N 6 wN NN wN mN \mu ~ s

LVEINOM 10j jUey UBIN M S,[[epUaY

'90U9.19J3.1 JO 3SEd 10J X0 93Ur.I0 AQ payue.l 1S9MO] 9} pUE X0q

an|q Aq pay1ew s1 aanseaw ALie[iwls payuel 1saY3Iy ay3 ‘uoisusawip juridiaduly yoes 10, 19SeIep ay3 Ul Sasse[d ANANDE T 9y} 1940 pagelae sanfea #l g ay) woy
paureiqo %7 ueaw Jo an[eA ay) SaIeIIPUI JURI UBSIA 19SeIRp LYIINOM 10J PASLIAL S9ANOE 95RI9AR 3} U0 paseq %7 do) ay) J10j SHNSaI ) S,[[BpUY| £-S d[qe,

92



Chapter 5 Investigation into the Effect of Dimensionality on the Effectiveness of Similarity Searching

ueaw Y31y) 1s9q WOJ paIaplo 4aserep LVINOM WO.IJ paureiqo Se ‘Sjusidlja0d AJLIe[IWIS T§ 9Y3 JO 90UBULIOLIR] Z-S 21n31]

EXR

(senpea juel ueaw mof) 31s10M 0} (San[ea Juel

sainses|y Ajejuig

& 220 Ry R PP P2 PP PP 182 T2 252

1vanom

— 00

oe

oy

09

08

— 00l

— 0¢lL

= 0¥l

— 09l

— 08l

— 0'0C

— 0¢e

— 0'¥C

— 092

— 082

Muey Ues|y

93



ing

f Similarity Search

1veness o,

Chapter 5 Investigation into the Effect of Dimensionality on the Effect

TH-H21°1 Zh-498°1 EV-HIYY Yr-420°C Yy-4S0°C LY-4STY €4-306'S Zh-d1€'S SP-418'% 6€-4ZL°E 9E-HLY'Y 2Z-AITT Zy-40L'S d
EV'9LT 1¥°08¢C 09°€8¢ v'062 0¥'062 €0v0€ 96'78¢C 80'8LC 09°€62 8¥°€9¢C 99°LYT 0S'9LT Z6'LLT X
¥19°0 €290 0€9°0 S$¥9°0 S$¥9°0 990 6290 8190 2590 9850 0SS0 26€°0 8190 M
1€ 98¢ 6C L6V 67 €0'S 62 €0°'S S'8C €6V 6C 0Ly 8¢ 09v 8¢ £8Y 6C 0€Y 6C LY'E 1€ €9°C 0€ 00C 1€ L0°C S0€ 091 L4
0€ AN 4 T€ LY'T 1€ LY'1 1€ LY'T 1€ LY'T 1€ 091 1€ 0€'T T€ LY'T T€ LLT T€ L0°C 8¢ €Sy 8¢ LEL 6T L6'ST [44 LS'TT 14
62 Y 0€ €SY 0€ 0SS+ 0€ 1544 0€ €Ty 0€ €9°¢ 0€ eTe 0€ orT'e 0€ L8E 0€ €LT 62 €Ty 62 LYY 62 354 LT €6'L 9d
8¢ 899 8¢ LTS 8¢ LTS 8¢ LE'S '8¢ €6'% 8¢ 08'% 6¢ LEY 6C LTV 8¢ 0z's 8¢ €9v LT LY'S LT 01’8 i1 EL'LT €C €911 9¢ed
LT 5’8 44 0s2t [44 0611 [44 ELTT [44 L8'TT [44 €Vl 44 06'TT §Ce LLOT SC LE6 LT 0Z'L 0€ €€°€ 1€ LLT 0€ €LT 62 LS'E sq
9z £8'8 LT L29 LT €79 LT 029 LT €19 LT 0v'9 LT €L9 LT 0¥’ 9z €98 €T LT6 (44 0G°€T ST €781 LT o€or 14 €96 s1d
14 ST'6 14 L8'6 ST €86 ST L96 e 09'6 S¢ 09'6 SC 016 S¢ 06'6 e €96 14 L9'8 9z €€'6 9C 0T'otT 514 JANAS S0€ 09T 0zd
44 Y66 €C L6'6 €C €001 €C €66 14 LS'6 144 L8'6 i44 05’6 i44 LT0T €C L9'6 {44 €6'8 Sve LY'6 14 €¥'0T j44 06CT 9¢ €L'8 €vd
€T 90°0T 9z L8L 9¢ L8L 9¢ L8L 9¢ eLL 9¢ LEL 9¢C €E€'L 9T €8°L LT L8'L 9z LL'L SPYe LY'6 €T €871 9 ev'1C 91 09°LT 914
[44 1021 e 06’6 24 186 24 086 14 06’6 514 €6'6 €T €6'6 §'ze LLOT [44 0LTT 1z €EVT 81 L0791 S6T LOVT §ze LEET 8T 0591 9td
1 %4 9S'¥T 144 LT'ET 0c LTET 0 LEET 0cC 06'€T 0z ESET 0z LEYT 0z €0'ST 0z EL’ST 8T €991 91 0L9T S6T LOPT Y44 LEET 61 0€91 11d
0z 98'¥1 0z €TET 12 0Z°€T 12 €TET 12 0L°€T 12 €671 12 LOET 1z 08°€T 1z €TET 0z LS 61 LL'ST 81 LE'ST €1 L6'LT 8 (U4 8zd
61 0L°ST 91 L8'8T LT L6'LT LT ETLT LT 0€'LT LT €0°LT LT L89T 91 LTLT LT €091 LT €991 0z 0¥'ST i44 €L°0T 8¢ €86 1C L6'CT €zd
81 8T'LT ot 00'TZ ST L6'0C 11 £6'0C S0t E€T'1T ST €502 1) L9°0C Y1 LE8T 1 0S'8T 91 LL9T ¥4 08°CT [44 06'CT 9C 0911 8T 0z'L szd
LT I¥'LT 61 0Z'vT ()9 €TYT 6T 0€YT 6T LTYT 61 €6'vT 61 0SvT 61 €TST 61 08'ST 61 L8'ST 1 ov'61 € €EYC T LS'ET 1 04'ST ord
ST SZ'81 0T 00'TZ (128 00'TC 11 £€6'0C 1 0012 S1T £59°0C 11 L7202 LT LT'LT 81 €8'ST (44 0Zv1 144 €TST 9 08'T¢ LT LELT j44 0601 L1d
ST §SZ'81 81 08T 81 LT'ST 8T 0Z'ST 8T €5°ST 8T L091 8T %91 8T 0891 €T €981 S 0€°€T 14 0Z°€T S 0Tv2 S8 LE0T S€T LY'LT 1sd
ST ST81 LT LL8T ST LS8T 91 €8°LT 91 €6'LT 91 or'LT 91 LS'LT ST LY'LT 91 00°LT j41 €781 ST 0¥'LT 91 €0°LT 1 €9'81 L LY'ET oed
€1 95’61 49 €402 6 0S'1Z 8 €L1T S8 LT12 8 0812 A" 0L'61 6 €802 4 L8ET €1 0061 LT 0%'91 12 €5°€T 12 €871 1) L0'61 8d
1 TL61 SE€T €61 SET €681 SET LT61 SET L¥'8T SET £v'el SYI e€Te6l S0t €402 121 0902 S8 €r'ee S'L €v'ee S'6 L9'02 LT LELT STt 08°LT c€ed
11 ZL61 S€T €761 €T £6'81 S€T LT61 S€T LY'81 S€T £¥'61 ST £T61 S0t €L°0C ot €80T S8 €12 S'L £4'2C S'6 L9'02 LT LELT ST 08°LT 6d
0T L7°0C ST L0'61 91 €981 ST 08'81 ST €781 ST Ly'8T €T €961 €1 €961 1 €561 11 €9TC 6 €6'TC L €V'1C € 08°1¢ 4 LT'ST 624
6 r1e 8 09'TC 8 LS'TT 6 0€'TZ S8 LT 6 0€'1Z 8 0L12 L 0622 S 00°€Z 9 ET'ET S 0622 8 0402 0z 08'ST LT ov'LT [44:
8 61°1C 0T 00'TZ STT L6'0C 11 €6°0C S0t E€T1C o1 0402 6 €9°TC 1 £€9°0C L 05°2¢ 0T LLTT € (A 44 4 L0°SC 11 LT'6T 0¢C €6'ST 9zd
L 0¥'12 9 €E'ET L €6'CC L 0€'€T L LOET L 0S'€C L LE'TT 8 LETT ST E¥'8T ST 09°LT Y1 09°LT LT €L9T 4 L8CC € 0T'ST 614
9 LETT S 0L°€T 9 09'€C S L6'ET §'S (U744 S'S 0042 S 0542 9 0S°€T 6 €ETT 49 E€T'TC €1 00'6T 1 LE'8T 0T 0Z'61 S £VvT Led
S LOET ST 06'€C S LL'ET S€ €0'vC 14 €9'%C 4 0¥'ve 9 LTVT S 0L€C 9 0L2Ze L €€ 1 €902 €T 08'8T 4 LLTT 4 €0'SC red
14 1€€C ST 06'€Z S'€ 08'€Z S'€ €0vC € 08'tZ 4 00'SZ 14 L8YT 14 LTYT 8 0+'2e 4 L9'€T ot €TTT 49 €002 S €9'1C 9 £5°€T 81d
€ S9°€C L €Lee S€ 08°€C 9 LL'ET S'S 0T've S'S 00vC 4 06'ST € L0'ST € €8V T €0'9¢ 4 L0°ST 4 LTV S8 LE0T SET L9LT €d
4 98'€T T L1'9C T L1'9C T €292 4 L9'ST T 08'SZ € 0€'ST T L8'ST 4 LY'9T € LY'vT 9 €L72T 1T L1T'0Z ST LY'LT ST €9'LT vd
T 98'v¢ 4 LL'ET Z €1°S¢ 14 £8'%¢ T LL'ST € L8V 15 £¥'9¢ Z E£¥'ST T £€6'9C Z 06'SC T 09'S¢ T L6'ST L £9°0C 6 L8'1C 8¢d
uonsod  yuexr [uonisod yuer uonisod yuer uonisod yuer uonisod yuer uonisod yuer uonisod uer uonisod uer uonisod uer uonisod uer uopisod uer uomisod uer uomisod uer uomisod  yuel

Jquer ueaw quer ueawr Jqued ueawr juer ueawr Nuer ueawr juel ueaw juelr ueaw quex ueaw quer ueaw qued ueawr Jquer ueawr Jued ueawr juer ueawr juer ueawr Saanseapy

Arequr,

mmmhm>< 5N EN mNN zN maN NﬁN :N oﬂN mN mN nN oN mN ens

THINHYD -10] Huey UBSN M S,[[BpUY

"90Ua.19Ja.1 JO 3Sed 10J X0q 93Ue.I0 AQ paxue. 1S9MO] 943 puEe X0q

an|q Aq pay1ew s1 aanseaw ALie[iwls payuel 1saYSIy ay3 ‘uoisuswip juridiaduly yoes 10, 19SeIep ay3 Ul Sasse[d ANANOE GT 9y} J9A0 pagelae sanfea #l g ay) woy
paureiqo %Ly ueaw Jo anjea ay) S9IeIIPUI YU UBSN J9seIep TIWAYD 10j PaAaLIaL S9ANIDR agelaAe 9y} U0 paseq %] dol ay3 Joj S}Nsal 4] S,[[epusy #-S d[qel],

94



Chapter 5 Investigation into the Effect of Dimensionality on the Effectiveness of Similarity Searching

(senjea yuel ueawr Moj) 3s.10m 03 (Sanjea qued

ueaw Y31y) 3s9q Wo.1j paIap1o ‘1aserep TWHYD WOy paurelqo se ‘Sjusidljjood AJLIe[IWIS € a3 JO 9IUBULIOJI] £-G a.In31,]

sainses|y Aejuig

& @ P 2@ PP BB R LR L9 PP
T8NIHD

P

0/ & A..A&D.P

— 00

0¢

14

09

08

— 00l

— 0cl

— 0¥l

— 09l

— 08l

— 0'0C

— 0'ce

— 0'vC

— 0'9¢

— 08¢

MUy uesjy

95
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5.3.3 Effect of Dimensionality on the Effectiveness of Similarity
Searching

Figure 5-4 A subset of average enrichment values using top 1% of the ranked
dataset in searches for the eleven MDDR activity classes using various Morgan
Radius 2 fingerprint dimensions illustrates the effectiveness of similarity
searching over the changes of the dimensionality for the MDDR dataset . It
presents a subset of effectiveness to show the main trends resulted from the
experiments. Detailed values for all results are available in Table 5-5. The
enrichment values were averaged over 10 searches for 11 activity classes. There
was a significant trend that the effectiveness of similarity searching increases as
the dimensionality increases. The effectiveness remains consistent for
fingerprint dimensions from 212 until 217 bits. This behaviour was shown by
twenty-nine similarity coefficients. It is also interesting to see that there was a
slight drop in the effectiveness using two similarity coefficients, i.e., B1 (SM) and
B15 (FAI). A similar trend for the similarity search results using the WOMBAT
and ChEMBL datasets can be found in Appendix A (results in Table A-1 are
illustrated by Figure A-1 for WOMBAT dataset and Table A-2 by Figure A-2 for
ChEMBL dataset).

In general, the observed behaviour showed that changing the dimensionality of
the Morgan R2 fingerprint did not suffer from the curse of dimensionality.
However, the results indicate that the effectiveness maybe affected by the

similarity coefficients.

Further analysis was carried out to investigate the reasons that contribute to
the trends. This chapter will first discuss the increase effects followed by the
decrease effects and the consistent effects that were obtained as the dimension
increases. This was made either by: (i) investigating the characteristic of the
molecule in the dataset that contribute to such effects, (ii) investigating the
formulation of the similarity coefficients or (iii) analysing the bit collision in the

datasets.
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Chapter 5 Investigation into the Effect of Dimensionality on the Effectiveness of Similarity Searching
5.3.3.1 Observation of Retrieved Compounds

In the literature, the increase of search performance in high dimensionality has
been reported to be associated with the intrinsic (“fractal”) dimensionality of
the data, not the dimensionality of the address space (Korn et al, 2001). In
relation to the chemical data, fractals in the form of iterated substructures or
fragments exist in a compound. Compounds that have similar bioactivity are
also likely to have similar fractals (substructures) exhibited in the compounds
(Johnson & Maggiora, 1990). Based on these relations, it would be useful to
conduct an investigation on the molecular intrinsic structure to explain the

characteristic of the chemical data that contribute to the increasing trend.

The ECFP_4-like (Morgan R2) fingerprints did not give any direct information
about the structure of the molecule. This can be because of a few reasons. First,
it is not possible to directly decode the integer identifiers (and the bits) of the
ECFPs to a particular feature that it represents. Second, the relationship
between the bit fingerprint and the molecule structure may not always be one-
to-one during the generation of the ECFP fingerprints. Hence, it is difficult to
identify the structures by analysing the bit fingerprint based on the bit position
(Rogers & Hahn, 2010).

There are however, other ways to identify the similar fractals in a compound.
That is using the SMILES representation or the molecular scaffold. In
chemoinformatics, the Murcko scaffold has been used to define the frameworks
of a molecule (Bemis & Murcko, 1996). It can also be used to find the common
features present in molecules. Thus, for this reason we will investigate the
Murcko scaffold of the molecules to identify the characteristics of the chemical

data.

A few examples of molecules have been chosen to be analysed. These molecules
are the active molecules retrieved from the EF;q, resulting from the similarity
search using a single reference. The similarity of these molecules was measured
using the B3 (JT) coefficient. The B3 coefficient has been chosen as an example

of similarity measure based on three reasons: (i) it shows a resemblance of
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increasing effectiveness, (ii) it ranks the highest in the MDDR and WOMBAT
datasets for the commonly used 1024 bits fingerprint and (iii) it is the most

effective similarity measure in the literature.

The identification of similar features that exist in each increasing dimension was
conducted. For the first dimension (i.e., 25 bits), the active molecules retrieved
and the distinct scaffolds of the active molecules retrieved were recorded. Next,
we identified the new active molecules retrieved for the next dimension (i.e., 26
bits). These are the new actives which were retrieved using the 26 bits but not
retrieved when searched using the 25 bits. The distinct scaffolds of the new
active molecules retrieved were compared with the distinct scaffolds of the
previous active molecules retrieved. The number of similar scaffolds was
recorded, i.e., identical scaffolds that exist in the active molecules retrieved in
the previous and current dimensions. The process was continued for the next
following dimension.

Table 5-6 Identification of identical scaffold based on the active molecules retrieved using a
single reference from the Renin activity class of the MDDR dataset

Morgan R2 Numlf)er of Number of Number. of Nu.mber of .
No. Dimensions Act}ves Scaffolds New Actlves Ngw Actlvgs Retrieved
Retrieved Retrieved with Identical Scaffold
1 25 160 120 - -
2 26 565 318 431 32
3 27 769 392 236 38
4 28 798 402 88 14
5 29 798 404 46 17
6 210 777 389 25 9
7 211 790 393 21 12
8 212 795 394 15 7
9 213 796 395 7 2
10 214 797 396 3 1
11 215 797 396 1 1
12 216 799 397 2 1
13 217 799 397 0 0

The result, as shown in Table 5-6, indicates that identical scaffolds to the
previous active molecules retrieved exist in the new active molecules retrieved
for each increasing dimension. For example, one of the two new active

molecules retrieved in the higher dimension (216 bits) has the identical scaffold
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to the existing active molecules retrieved in the lower dimension (i.e., 215 bits).
Figure 5-5 illustrates an example of identical scaffolds that have been found. It
provides the illustrations of the original molecule and its Murcko scaffold. The
first two rows are the existing active molecules retrieved using the 215
dimension. The third row is the new active molecule retrieved using the 216

dimension.

Original Molecule Murcko Scaffold

Existing Active Molecule Retrieved
1D: 145928
(25 bits dimension)

SIS c§

Existing Active Molecule Retrieved

N
§
~
ID: 145935 /_{f' ’ e H
(2% bits dimension) . ) — £
s & ;

X
N
R ™
{ ) b
New Active Molecule Retrieved 7 D 1 <
ID: 145932 <_ N — '\)_(
(2% bits dimension) ) 7 {
— ~~
W e W
72 g

Figure 5-5 Identification of identical scaffold using Murcko scaffold between the existing active
molecules retrieved in a lower dimension and new active molecule retrieved in a higher
dimension

As observed, the new retrieved molecule has an identical scaffold to the other
two existing retrieved molecules. These scaffolds can be used to represent the
intrinsic feature (substructure) of the molecules. There is, however, a single
exception in the last dimension, i.e., 217. This is because the active molecules
retrieved were the identical active molecules retrieved in the previous
dimension, i.e., 216, Thus, there is no new active molecule retrieved to be

analysed.
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It is also worth to mention that there was a loss of the active molecules
retrieved when searched using a higher dimension. These are the actives which
were retrieved using the lower dimension but not retrieved when searched
using the higher dimension. For example, there were 798 active molecules
retrieved using the 2° dimension and 777 active molecules retrieved using the
210 dimension. This indicates that several active molecules were not retrieved
even when the dimension has been increased. These findings may show a
possible behaviour of clumping effect in the database due to the analogous of
molecular scaffolds. However, the interpretation cannot be extrapolated to all

dimensions as the similar behaviour was not observed in a higher dimension.

Taken together, these results suggest that there is an association between the
increases of search performance with the intrinsic dimensionality of the data.
The nearest neighbour search in high dimensions can still be effective for a

chemical dataset if the molecules have similar intrinsic features (structures).

However, these findings do not show the occurrence of the curse of
dimensionality. It is possible, therefore, that this outcome is contrary to the
curse of dimensionality as no evidence of decrease in the performance of high

dimensionality was detected.

5.3.3.2 Effect of Similarity Coefficient

The next discussion on the decrease trends involves the understanding of the
global and local similarity. Hence, it is worth explaining about the global and
local similarity before discussing about the results. In general, global similarity
measures the similarity of two objects using the complete vectors (i.e., the
object representations). In contrast, local similarity measures the similarity of
two objects by looking for the best internal matching region between the two
vectors. In the former case, the similarity indicates the total percentage of match

while the latter indicates the percentage matches of the internal region.

The review by Maggiora et al. (2014) interpret and provide examples of global
and local similarities in molecular similarity. The computation of global

similarity is generally derived from structural information associated with the
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entire compounds. On the other hand, the local similarity focuses only on
selected fragments or functionalities of the molecules. In relation to this
experiment, the global similarity measures the similarity of two molecules
associated with the entire fingerprint whilst the local similarity focuses only on

selected bits in the fingerprint.

When focusing on the decreasing trends, it can be seen from Table 5-5 that the
B1 (SM) coefficient resulted in a decreased effect starting at 210 bits for the
MDDR dataset. A similar observation can be found using the WOMBAT dataset
in Table A-1 (Appendix A). The decreasing effect for the ChEMBL dataset using
the similar coefficient starts from 2° bits as shown in Table A-2 (Appendix A).
This coefficient has also resulted in the lowest EF;o, value for the last eight
fingerprint dimensions in the MDDR and WOMBAT datasets, i.e., 210 until 217 as
compared to the other coefficients. For the ChEMBL dataset, the B1 coefficient
has also resulted in the lowest EF;y, value for the last nine fingerprint
dimensions, i.e., 29 until 217 fingerprint dimensions. This is in the agreement
with the previous study, which ranked B1 coefficient among the lowest rank of

similarity coefficient to be used (Todeschini et al., 2012).

The B1 coefficient is measured according to the following formulation in Eg.

(29):

a+d

(29)

Ssm =

where Sg), is the similarity value, a is the number of common bits set, d is the
number of common bits unset and p is the total bits size (dimension). This
coefficient has the components a and d in its numerator and denominator,
which means it compares the number of matching bits (both set and unset) with
the entire possible bits dimension. This also means that it evaluates the
similarity between two molecules based on their similarity relative to the
possible whole dimensions (i.e., global similarity). This is different to evaluate
the similarity relative to the internal matching features (i.e., local similarity)

which is effectively measured by the other coefficients, e.g, B3 (Jaccard-
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Tanimoto) and B9 (Cosine). As shown in Table 5-5, Table A-1 and Table A-2,
these coefficients have resulted in increasing effectiveness in similarity

searching using all three datasets, correspondingly.

In this study, the results using the B1 coefficient did show a minor resemblance
to the curse of dimensionality. There is however, a possible explanation for this
effect. As the dimensionality increases, the distribution of the data becomes
increasingly sparse with the increasing number of zero attributes, i.e.,, d — p. As
a result, a global similarity between two molecules can be increased and

approaches to unity because of the existence of zero attributes.

In relation to the virtual screening experiment, it is possible for an inactive
molecule to be measured more similar to the reference molecule if it has a
larger number of common zero bits, i.e., bits unset (due to the sparsity) although
it was structurally different. As a result, the inactive molecules will be ranked to
the top of the ranking while the active molecules were not. This could probably
be the reason why there were less active molecules retrieved as the
dimensionality increases hence the decreases of the effectiveness of similarity

searching.

To illustrate this effect we show in Figure 5-6 three molecules which were
measured by the B1 coefficient in this experiment. The similarity value (Ssm),
number of common bits set (a), number of common bits unset (d), number of
total bits (p) and the similarity ranking between the molecules are also shown.
The inactive molecule has a larger similarity value as compared to the active
molecule. As a result, the inactive molecule is ranked higher than the active
molecule. One possible reason is because it has more common unset bits (d)

which can increase the similarity value when measured using the B1 coefficient.
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Sene: 0.969 Sen: 0.966
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d: 1979 d: 1931
p: 2048 p: 2048
Rank: 717 (higher rank) Rank: 100884 (lower rank)

Figure 5-6 A comparison of the Simple Matching similarity values for two molecules (inactive
and active) to illustrate the effect of global similarity measure

There is also another similarity coefficient which has shown a similar result to
the B1 coefficient, i.e, B15 (FAI). The possible reason for this behaviour is
because of the formulation of the coefficient. The B15 coefficient is measured

according to the following formulation in Eq. (30):

a+ 0.5d
Spar = T (30)

The formulation of this coefficient only differs in terms of the weighting of the
component d as compared with the formulation of the B1 coefficient, i.e., equal
to half of the number of common unset bits. However, as the dimensionality
increases, the inactive molecules which have more zero bits will possibly still be
ranked higher as compared to the active molecules. This is because the
coefficient is still measuring the similarity associated with the whole dimension.
Hence, this produced similar trends of reduced effectiveness that can be
observed in Figure 5-4 for the MDDR dataset, and for WOMBAT and ChEMBL in
Appendix A (Figure A-1 and Figure A-2, correspondingly). The other two
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coefficients, i.e., B35 (PE1) and B45 (HAM) which have similar formulation to
the B1 coefficient have been excluded. This is because they were monotonic to

the B1 coefficient as listed in Table 5-1.

5.3.3.3 Effect of Fingerprint’s Bit Collision

Finally, we further investigate the constant effects starting with the 211 bits size.
This is done by measuring the average bit collisions of all references used in this
experiment, across all dimensions. In general, the number of bits set will
increase with the size of the addressable space until there are no collisions. The

bit collision is calculated as follows in Eq. (31):

Bit collisionrate; = X; — Xj_1 (31)

i = {25’ 26’ 27, 28’ 29’ 210, 211, 212’ 213214’ 215‘ 216‘ 217}
Xx = set bits

Table 5-7 shows the bits set, average bits set and average bit collisions
calculated from the MDDR dataset. A higher value of bit collision rate indicates a
higher bit collision in the particular fingerprint dimension and vice versa. As can
be seen, more collisions were particularly apparent for fingerprint sizes of 2>
until 210 bits. There were almost zero bit collisions for fingerprint sizes of 211
until 216 bits, and zero bit collisions for 217 bits fingerprint. These results
suggest that 217 bits is large enough to ensure that, in most cases, there will be
no collision occurring and even 212 bits have very few collisions. This result is
almost similar to the other two datasets used in this experiment (Table A-3 and

Table A-4 in Appendix A).
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It is further shown that the effect of the bit collisions and bits set to the
similarity search values. Figure 5-7 shows the effect of the addressable bit
space (fingerprint dimensions) on the EF;q, across all 11 activity classes in the
MDDR dataset using the B3 (JT) similarity coefficient. As can be seen, there were
constant effects to the EF;q, from 211 bits fingerprint until the final dimensions.
A possible reason for this is because of the similar number and the position of
bits set starting from the 211 bit fingerprint. Hence, the similarity value
measured will also be the same. A similar trend can also be observed in

Figure A-3 and Figure A-4 for the WOMBAT and ChEMBL datasets.

5.4 Conclusion

This chapter investigates the effect of changing the dimensionality of molecular
representations on the effectiveness of virtual screening based similarity search
applications. Overall, the results suggest that the effectiveness of the chemical
search was not affected by the curse of the dimensionality phenomenon. The
effect of changing the dimension related to two possible reasons: (i) the

molecular representation and (ii) the formulation of the similarity coefficient.

First, the use of Morgan R2 fingerprint as the molecular representation does not
decrease the effectiveness of the similarity search application. As defined in
Chapter 4, the Morgan R2 representation encodes the connectivity invariants of
circular atom environments for a molecule up to two bond radius from its
central atom. The fingerprints were then folded into certain bit dimensions. At a
certain number of bits, increasing the fingerprint dimensions only increases the
bit spaces to describe the information of a molecule. The information captured
however, is limited by the function of the Morgan algorithm, which is two bond
radii in the case of the study. This was supported by the analysis of the bit
collisions in Section 5.3.3. The analysis showed the possible number of bits
required to capture the information of a sample of molecules used in this study
and its relation with the effectiveness of the similarity search application. Other
molecular representations or descriptors may have different effects on the
performance of the similarity search application. The physicochemical

descriptors for example, capture different properties of a molecule. The use of
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high dimensionality of physicochemical descriptors may have a different effect

to the performance of the similarity search application.

Second, the effectiveness of the similarity search application increased as the
dimensionality increases when measured by the similarity coefficients tested in
this experiment. The only exception is when the similarity is measured by the
global similarity coefficient, which measures the similarity of the molecules
associated with the entire fingerprint, i.e.,, whole dimensions. As discussed in
Section 5.3.3, as the dimensionality increases, the distribution of the data
becomes increasingly sparse with the increasing number of zero attributes.
Hence, the number of zero attributes will affect the global similarity measure of

the molecules in high dimensionality fingerprint representation.

The above conclusion was made based on the experimental work for the
similarity search application. The following chapter will describe the effect of
dimensionality on the effectiveness of other virtual screening applications. The
study will allow the investigation and conclusion to be made on other common

types of virtual screening applications, i.e., molecular clustering.
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Chapter 6 Investigation into the Effect of
Dimensionality on the Effectiveness of Clustering

6.1 Introduction

Clustering the molecular structures in a chemical database provides a way of
identifying and viewing the groups that are present in a chemical dataset.
Clustering helps to save costs and rationalise the basis for molecular biological
testing. A representative molecule of a cluster is selected for the biological
testing. If the representative proves to be bioactive, then the other molecules in
the same cluster will be tested. But if the representative is not bioactive, then
the other molecules in the same cluster will be disregarded from the biological
testing (Willett, 1987; Downs & Willett, 1994; Downs & Barnard, 2002;
MacCuish & MacCuish, 2014).

The clustering procedure involves grouping molecules based on their distance,
i.e., closest molecules (as most similar) will be grouped together. The pairwise
distance approximations between the molecules can be measured using various
distance coefficients. One of the most commonly used coefficients is the
Euclidean distance, which measures the straight line distance between two
molecules. The other common coefficient is the City Block (or Manhattan)
distance that measures the distance in x and the distance in y in the xy
coordinates. This is similar when moving in a city where one has to move
around the buildings instead of moving straight through the buildings to reach

the destination.

Different clustering methods require different types of distance (or similarity)
coefficients to measure the distances (or similarity) between molecules.
Therefore, in the chemoinformatics domain, many studies have been conducted
using different types of coefficients depending on the clustering algorithms, and
also on different types of clustering method (Downs et al., 1994; Brown &

Martin, 1996; Bayada et al.,, 1999; Chu et al,, 2012; Gan et al., 2014).

The effects of high dimensional data and distance coefficient on document

clustering have been studied by France et al. (2012). These authors found that

111



Chapter 6 Investigation into the Effect of Dimensionality on the Effectiveness of Clustering

increased dimensionality aids the clustering performance dependent upon the
particular dataset being examined. The study also reported that different effects
on the clustering performances were obtained using different distance

coefficients.

In the chemoinformatics context, many virtual screening applications have been
successfully conducted even though the molecules are represented by very high
dimensional representations (Willett, 2011). The cluster application, in
particular, is a method that can be used with high dimensionality descriptors
such as the binary fingerprint. However, the effect of the application
performance using high dimensional data has not yet been investigated.
Furthermore, as far as the research in chemoinformatics is concerned, there is
no work carried out on the effect of high dimensionality in the effectiveness of

the molecular clustering application.

This chapter will investigate the effect of changing the dimensionality of
molecular representations on the effectiveness of the molecular clustering
applications. The purpose is to test the hypothesis that as the dimensionality
increases, the effectiveness of the application decreases. The aim of this study is
to identify the characteristics of chemical datasets that contribute to the
effectiveness of the molecular clustering application in high dimensionality. It
also aims to explain the observed performances using various molecular
dimensions and distance coefficients, which simulate a practical clustering

procedure.

6.2 Experimental Design

The experiments were carried out to replicate the clustering application, which
calculates the distance between all possible pairs of molecules in the dataset.
These distance proximities, which were measured by various distance
coefficients were used to build an agglomerative hierarchical non-overlapping
clustering. In a virtual screening application, a representative molecule of the
cluster will then be selected as a sample for the biological testing. These

experiments were carried out for subsets of data from two datasets, i.e., MDDR
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and WOMBAT. These datasets have been introduced in Chapter 4 including the

molecular clustering procedures.

Similar molecular representation in Chapter 5 has been used in this study. Each
compound in the datasets was represented using the binary fingerprint, i.e,
ECFP_4-like (MorganR2) fingerprint, and folded into thirteen different

fingerprint sizes as introduced in Chapter 4.

Ten distance coefficients were used to measure the pairwise distances of the
compounds, which allow observations on various clustering performance using
different distance coefficients. These coefficients have been introduced in

Chapter 4 and listed in Table 4-6.

6.2.1 Clustering Method

Chapter 4 has introduced the two clustering methods used in this study, i.e.,
Ward’s and Group Average algorithms. The following steps summarise the

clustering procedures applied to this experiment:
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Summary of clustering procedure.

Step 1:  Each molecule, x, is assigned a class label, [, identifying its activity
class. The set of all labels for a database @ is = {l;, ..., [}, where k is
the number of activity classes. For example, the MDDR dataset used
in this experiment has 11 activity classes. Hence, the set of all labels
for the database ® is = {l;,..,l1;}. A similar procedure was
performed for the WOMBAT dataset which has 14 activity classes,
yielding a set of labels & = {l4, ..., [14}.

Step 2:  Each molecule, X, is converted into a specific type and length of
fingerprint representation, i.e., Morgan R2. The fingerprint consists
of a binary vector of n dimensions: x = (x, ... Xy,).

Step 3:  The pairwise distance matrix of all possible pairs of molecules in the
database is measured using the ten distance coefficients listed in
Table 4.6. This procedure was repeated for each fingerprint
dimension.

Step4: The closest molecules were clustered based on the chosen
clustering method. The clustering is repeated until there is only a
single cluster. This procedure was repeated for each fingerprint
dimension.

Step 5:  The generated cluster for each fingerprint dimension was analysed
and evaluated using two evaluation methods that were introduced

in Chapter 4.

In terms of computational resources, Ward’s agglomerative hierarchical
algorithm consumes more computational resources compared to the non-
hierarchical clustering methods. For N molecules in a dataset, the stored-matrix
algorithm for the procedure requires storage (or memory) space proportional
to N2, which is written as “O(N?)“, and the time to perform the clustering is
proportional to N3 (O(N?3)). This becomes a severe restriction if the algorithm is

to be implemented on large data sets.
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Due to the computer intensive calculations, the Ward’'s procedures in the
current experiment were implemented on the Sheffield Advanced Research
Computer (ShARC) cluster of the University of Sheffield. The high performance
computing was developed and managed by the Research Software Engineering
Group, Faculty of Engineering of the University of Sheffield. Figure 6-1 shows
the general workflow of cluster implementation using ShARC. Each job contains
a batch script of single or task array jobs that requests the high performance
computing’s scheduler for CPU and execution time resources, job notification
configuration and user environment creation, which install specific modules and
libraries for the implementation (Figure 6-1). The application was coded using
the Python language and the hierarchical clustering package from SciPy has

been used to generate the Ward’s clustering (Jones et al., 2001).

The performance of the ShARC implementation has been recorded. Figure 6-2
shows the example of performance based on CPU memory and time usage when
used to cluster the dataset in this experiment that contains 10,254 molecules for

different fingerprint dimensions using the Euclidean distance coefficient.

Create job Submit job Job run Job complete Retrieve
« Python « Batch script « High « Email result
executable file « Python dimensional notification « User directory
executable file chemical data
clustering

Figure 6-1 General workflow of high dimensional chemical data clustering implementation
using ShARC
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ShARC Cluster Performance
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Figure 6-2 ShARC performance for various high dimensional chemical data clustering based on
Ward'’s algorithm using MDDR dataset of 10,254 molecules measured by Euclidean distance
coefficient

[t is not surprising to see that the highest increase in the usage of computational
resources is observed for the fingerprint dimensions above 215 bits. This is
because the sizes of the dimensions are very high (65,536 and 131,072 bits).
This requires more memory and time for the computer to convert the initial
molecule representation into the fingerprint descriptors, measure the pairwise
distance and clustering. However, in this implementation, the overall memory
and time have taken much less than expected, suggesting that this is becoming

less of a restriction for a large dataset.

6.2.2 Cluster Analysis

A common way to visualise the cluster for analysis is by drawing a dendrogram,
which displays the distance level at which there was a combination of objects
and clusters (Leach & Gillet, 2007). Figure 6-3 shows an example of a cluster

dendrogram in which the y-axis indicates the distance level and x-axis indicates
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the clustered molecules. The dendrogram is being read bottom up to see at
which distance molecules have been combined. For example, in Figure 6-3,
molecules b, ¢ and e are combined at a distance level of 1.5 while a and d at
distance level of 2.0. Molecules f and g are the examples of two singletons (until

a distance level of 3.0 when f merges with a-e).

3.5

3.0

Distance Levels

2.0

15

10 A

0.0

A J

Compounds

Figure 6-3 Hierarchical cluster dendrogram with the red horizontal dotted line indicating the
level of partition to define the number of clusters

Cluster analysis can be performed on the cluster partitions which contain the
number of clusters. Any desired number of clusters can be obtained by ‘cutting’
the dendrogram at the proper distance level. For example, the red dotted line in
Figure 6-3 indicates such a horizontal line, resulting in four clusters. In the SciPy
package library, the number of clusters can be determined simply by setting a
threshold value in a function that indicates the number of clusters required

(Jones etal., 2001).

In this experiment, the procedures described in Section 6.2.1 yielded 520

classifications from Ward’s and Group Average clustering methods using two
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datasets, one type of fingerprint representation which has thirteen fingerprint
dimensions and measured by ten distance coefficients. A partition value was
applied to the cluster hierarchies to obtain cluster partitions that contain a set
of 500, 600, 700, 800, 900 and 1000 clusters following the previous research by
Chu, et al. (2012). The analysis and cluster evaluation were conducted based on

these cluster partitions.

Two methods have been used to evaluate the effectiveness of the clustering
application in this experiment: (i) F-measure and (ii) QPI-measure (Quality

Partition Index). These methods have been introduced in Chapter 4.

6.3 Results and Discussion

The F-measure and the QPI-measure were used to evaluate the effectiveness of
the molecular clustering in this experiment. The mean F and QPI values were
averaged over the eleven activity classes in the MDDR dataset and the values
resulted from Ward’s clustering are shown in columns (a) F-Measure and (b)
QPI-Measure in Table 6-1. The range of standard deviation for the mean F is also
reported above the table. The results were presented for all distance coefficients
and fingerprint dimensions where the best-performing fingerprint dimension
for each partition in each column of the table is italicised, bold-faced and
marked in red. In addition, Figure 6-4 represents the results in Table 6-1,
visualising the effects of the clustering performances over different fingerprint

dimensions.

As mentioned in section 6.2.1, further experiments have been conducted using
the Group Average algorithm, the results of which are given in Table B-1 and
Figure B-1 in Appendix B. Using similar clustering algorithms and evaluation
methods, the results averaged over the fourteen activity classes in the WOMBAT
dataset are listed and visualised in the tables and figures in Appendix B
(Table B-2 and Figure B-2 for Ward's clustering, Table B-3 and Figure B-3 for

Group Average clustering).
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Table 6-1 Effectiveness value of Ward’s clustering measured by (a) F-measure and (b) QPI-
measure for the MDDR dataset using various distance coefficients and fingerprint dimensions.
The range of the standard deviation, o, for the mean F is between 0.022 and 0.446

. . . Partition
Cooffitionts  Dinaemaions (a) F-Measure (b) QP -Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0.645 0749 0.756 0.783 0.822 0.897 0.133 0.138 0.143 0.148 0.151 0.156
26 0.766 0.843 0.860 0.997 0.997 0.993 0.194 0.206 0215 0.221 0.228 0.238
27 1.039 1.046 1.063 1.123 1.123 1.141 0.247 0262 0269 0.287 0299 0.311
28 1.006 0.988 1.009 1.074 1.168 1.107 0.283 0306 0316 0.326 0.335 0.338
2° 1.029 1.045 1.046 1.058 1.085 1.091 0.290 0307 0.319 0.334 0.337 0.345
210 0996 1.021 1.106 1.106 1.127 1.207 0.286 0.299 0.309 0.332 0.339 0.344
[D1] Bray-Curtis 21 1.023 1.023 1.043 1.063 1.074 1.075 0.299 0.325 0.338 0.346 0.356 0.368
212 0983 1.053 1.060 1.066 1.056 1.091 0.283 0301 0311 0.327 0340 0.346
21 1.044 1.057 1.085 1.091 1.099 1.098 0.290 0314 0325 0.330 0.340 0.349
21 1.075 1.136 1.114 1.148 1150 1.135 0.304 0308 0.333 0.345 0.343 0.353
2% 1.054 1.066 1.100 1.102 1.104 1.090 0.310 0314 0327 0336 0.348 0.355
216 1.018 1.046 1.101 1.104 1.104 1.090 0.300 0320 0.333 0.335 0.347 0.350
2V 1.053 1.099 1.099 1.102 1.103 1.089 0.300 0322 0.332 0332 0344 0.351
25 0.764 0.831 0.831 0.937 0942 0.969 0.141 0.146 0.152 0.157 0.163 0.165
2° 1.016 0960 1.032 1.019 1.060 1.076 0.199 0.209 0219 0.228 0.233 0.241
27 1.089 1.089 1.065 1.069 1.093 1.140 0.271 0.286 0.290 0.298 0.308 0.315
28 0.888 0936 0954 0961 0.983 0.983 0.281 0.308 0311 0318 0321 0.340
2° 0997 1.019 1019 1.056 1.060 1.070 0.275 0.296 0.298 0312 0.325 0.344
210 0947 0965 1.001 1.004 1.072 1.144 0.299 0303 0.318 0325 0.328 0.338
[D2] City-Block o1 0971 1.091 1.124 1.161 1.180 1.153 0.283 0.292 0.307 0319 0.334 0.334
212 0.876 0951 1.032 1.067 1.078 1.085 0.287 0302 0315 0.330 0.345 0.347
2B 0.896 0996 1.014 1.039 1.046 1.097 0.299 0305 0.323 0332 0.352 0.353
2 0.878 0901 0956 1.003 1.032 1.073 0.275 0.289 0318 0.336 0.347 0.347
21 0.870 0909 0963 1.032 1.061 1.101 0.274 0289 0306 0.331 0.349 0.356
216 0.870 0905 0946 1.017 1.017 1.073 0.294 0304 0314 0329 0340 0.358
2V 0.898 0.898 0.957 1.003 1.003 1.073 0.291 0.293 0318 0.329 0.348 0.356
2° 0.653 0.834 0.909 0.983 0991 1.008 0.136 0.142 0.149 0.152 0.155 0.158
2° 0.810 0.854 0.909 0915 0911 0.937 0.195 0.205 0.213 0.220 0.226 0.236
27 1.191 1.135 1.153 1.172 1210 1.219 0261 0.262 0274 0.284 0291 0.301
28 1.014 1.011 1.047 1.086 1.070 1.160 0.281 0.290 0.305 0.316 0319 0.332
2° 1.011 1.064 1.052 1.048 1.071 1.122 0.298 0307 0319 0.330 0.340 0.341
210 1.016 1.013 1.071 1112 1.112 1.104 0.285 0305 0.322 0341 0352 0.355
[D3] Cosine 2t 1.049 1.056 1.054 1.054 1.054 1.059 0.282 0310 0331 0.342 0.353 0.363
212 1.047 1.055 1.101 1.068 1.074 1.112 0.291 0304 0319 0337 0.345 0.366
23 1.045 1.069 1.099 1.127 1.133 1.119 0.285 0.307 0.328 0.330 0.345 0.354
214 1.039 1.056 1.073 1.112 1.134 1.119 0.296 0.306 0.318 0.325 0.339 0.351
2 1.062 1.062 1.134 1152 1.168 1.119 0.313 0.327 0.340 0342 0.348 0.360
21 1.059 1.059 1.124 1153 1.168 1.119 0.307 0324 0338 0.342 0.349 0.363
2V 1.057 1.057 1.122 1152 1.168 1.119 0.300 0311 0339 0.349 0.355 0.366
25 0.691 0.705 0.740 0.740 0.761 0.800 0.145 0.149 0.156 0.162 0.169 0.171
20 0935 1.001 1.019 1.029 1.082 1.105 0.199 0.217 0.224 0234 0.240 0.244
27 0938 1.017 1.042 1.068 1.088 1.073 0.248 0262 0.281 0.289 0.295 0.306
28 0.893 1.022 1.037 1.037 1.113 1.112 0.266 0.290 0312 0.329 0335 0.341
2° 1.050 1.056 1.098 1.085 1.068 1.090 0.297 0312 0315 0330 0.337 0.345
21 0960 1.095 1.103 1.144 1106 1.130 0.281 0316 0.334 0.338 0344 0.351
[D4] Euclidean 21 0.909 1.008 1.024 1.034 1.011 0.990 0.291 0319 0327 0335 0342 0.352
21 0931 1.032 1079 1.079 1.036 1.042 0.290 0317 0.336 0.335 0.337 0.348
2B 0.895 1.041 1.047 1.047 1.042 1.046 0.284 0314 0326 0.344 0345 0.343
21 0.891 1.010 1.027 1.042 1.047 0.993 0.296 0.325 0330 0339 0.343 0.343
2 0.870 0951 1.028 1.040 1.046 1.046 0.278 0301 0315 0.331 0333 0.338
21 0.870 0981 1.011 1.015 1.015 0.979 0.277 0302 0311 0.337 0337 0.340
2V 0.891 0969 1.031 1.031 1.026 0.990 0.284 0307 0319 0.341 0.348 0.348

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Table 6-1 (continued)

. . . Partition
Cootfcionts  Dirmencions (2) F-Measure (b) QP -Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0.764 0.831 0.831 0.937 0942 0.969 0.141 0.146 0.152 0.157 0.163 0.165
2° 1.016 0.960 1.032 1.019 1.060 1.076 0.199 0.209 0219 0.228 0.233 0.241
27 1.089 1.089 1.065 1.069 1.093 1.140 0.271 0.286 0.290 0.298 0.309 0.315
28 0.888 0.936 0954 0961 0.983 0.983 0.281 0.308 0311 0.317 0321 0.340
2° 0.997 1.021 1019 1.056 1.060 1.070 0.275 0.296 0.298 0.312 0325 0.344
210 0.975 0981 1.001 1.004 1.072 1.144 0.299 0304 0.317 0.331 0.333 0.338
[D5] Hamming 21t 0971 1.091 1.124 1.161 1.180 1.136 0.281 0.292 0307 0.315 0334 0.331
21 0.857 0951 1.032 1.032 1.078 1.085 0.283 0302 0315 0.324 0.344 0.348
2 0.852 0903 0996 1.014 1.051 1.097 0.295 0.298 0313 0.329 0342 0.354
2 0.837 0.875 0945 0.945 0945 1.021 0.270 0280 0312 0312 0312 0.345
21 0.833 0.909 0.909 0.909 0.909 0.909 0.267 0.289 0.289 0.289 0.289 0.289
216 0.841 0.841 0.841 0.841 0.841 0.841 0.287 0.287 0.287 0.287 0.287 0.287
2V 0.818 0.818 0.818 0.818 0.818 0.818 0.238 0.238 0.238 0.238 0.238 0.238
25 0.717 0734 0774 0.774 0.760 0.772 0.135 0.138 0.143 0.148 0.153 0.158
26 0.779 0779 0.860 0.889 1.013 1.044 0.190 0.200 0.214 0.217 0232 0.236
27 1.062 1.068 1.092 1.107 1.127 1.127 0.275 0.291 0.304 0.305 0310 0.310
28 0976 1.011 1.037 1.010 1.041 1.041 0.262 0.283 0.295 0.304 0.321 0.328
2° 1.071 1.065 1.060 1.099 1.101 1.110 0.285 0.307 0317 0.333 0346 0.346
210 1.034 1.127 1.115 1131 1.150 1.150 0.277 0289 0311 0.329 0340 0.345
[D6] Jaccard o1 1.010 1.067 1.071 1.075 1.076 1.076 0.305 0313 0.329 0346 0.360 0.363
212 1.013 1.088 1.099 1.075 1.122 1.132 0.296 0.323 0.336 0.338 0.348 0.353
21 1.023 1.051 1.095 1.138 1.112 1.112 0.283 0306 0319 0.325 0342 0.350
21 0997 1.061 1064 1.077 1.079 1.079 0.281 0315 0.332 0.333 0.345 0.344
2 0.995 1.058 1.068 1.083 1.079 1.079 0.283 0304 0334 0.354 0357 0.352
21 1.012 1.054 1.091 1.106 1.106 1.106 0.285 0.308 0.333 0351 0.353 0.353
217 1.008 1.050 1.076 1.101 1.101 1.101 0.288 0.318 0.331 0.343 0347 0.355
25 0.640 0.763 0.800 0.817 0.847 0.856 0.139 0.147 0.150 0.153 0.159 0.163
26 0.925 0979 0.999 1.080 1.080 1.106 0.200 0.207 0.221 0.223 0.230 0.239
27 1.000 1.000 1.002 1.038 1.067 1.080 0.263 0272 0275 0.287 0.295 0.299
28 0932 0970 0972 1.039 1104 1.110 0.272 0290 0303 0.311 0319 0.332
2° 0.920 0969 0972 1.021 1.038 1.047 0.294 0306 0314 0333 0334 0.337
210 0.943 1.025 1.073 1.073 1.104 1.091 0.274 0.301 0.316 0.309 0.322 0.337
[D7] Kulsinski o 1 0939 1.091 1102 1.147 1.147 1.129 0.295 0.305 0.331 0.351 0.364 0.364
212 0908 1.063 1.066 1.079 1.079 1.079 0.298 0308 0.322 0332 0.338 0.341
283 0917 1.053 1.086 1.086 1.109 1.109 0.272 0.286 0.303 0.331 0.347 0.347
21 0966 0995 1.119 1119 1119 1.073 0.271 0301 0311 0311 0311 0.350
2% 0.897 1.040 1.040 1.040 1.040 1.040 0.276 0.311 0311 0311 0311 0311
216 0.896 0.896 0.896 0.896 1.096 1.096 0.264 0264 0264 0264 0334 0.334
2 0.947 0947 0947 0.947 0947 0.947 0.275 0275 0275 0.275 0275 0.275
25 0.660 0.681 0.741 0.799 0.818 0.835 0.144 0.148 0.150 0.156 0.162 0.168
26 0.835 0.884 0.891 0.977 1.013 1.020 0.205 0.213 0219 0.221 0231 0.237
27 0960 0992 1.023 1.023 1.045 1.093 0.268 0.284 0.294 0.308 0311 0.325
28 0.849 0.871 0.887 0.941 0964 0.964 0.286 0.296 0311 0.318 0.330 0.344
2° 0931 1.011 1.022 1.049 1.063 1.131 0.293 0303 0.325 0330 0.337 0.348
210 0.980 1.048 1.017 1.043 1.043 1.127 0.279 0295 0.324 0.336 0.344 0.358
[])T?n}?;iigs’ o1 0973 1.023 1.069 1.069 1127 1.150 0277 0292 0300 0311 0328 0327
212 0919 0955 1.051 1.099 1.130 1.085 0.283 0.306 0317 0.332 0.352 0.357
213 0.852 0983 1.014 1.039 1.051 1.097 0.281 0.297 0311 0.341 0347 0.352
2 1 0.878 0905 0927 0956 1.032 1.073 0.273 0.279 0303 0.319 0338 0.348
21 0.838 0.870 0.963 0.963 0.963 1.049 0.254 0.275 0302 0.302 0302 0.347
216 0.839 0905 0.905 0.905 0.905 0.905 0.262 0305 0.305 0.305 0.305 0.305
2V 0.875 0.875 0.875 0.875 0.875 0.875 0.281 0.281 0281 0.281 0.281 0.281

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Table 6-1 (continued)

. . . Partition
Cootticionts  Dimncions (s) F-Measure (6) QPI-Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0.619 0.708 0.704 0.741 0.810 0.888 0.132 0.136 0.141 0.143 0.146 0.149
26 0900 0.935 0.971 0983 1.032 1.121 0.195 0.200 0.205 0.212 0.219 0.223
27 1.026 1.045 1.051 1.059 1.087 1.087 0.274 0.287 0.290 0.301 0.303 0.313
28 0934 0984 0.981 0986 0.986 1.052 0.292 0.305 0.315 0.328 0.333 0.340
2° 0980 0979 1.022 1.020 1.067 1.063 0.290 0.302 0.320 0.329 0.331 0.349
21 0953 0968 1.004 1.063 1.112 1.080 0.283 0.300 0.311 0.324 0.336 0.343
Rus[s[:lgl]—Rao 21 0939 1.065 1.050 1.097 1.097 1.102 0.281 0.304 0.312 0.326 0.330 0.335
212 0962 1.029 1.087 1.094 1.094 1.094 0.281 0.291 0.318 0.325 0.344 0.352
2B 0920 1.052 1.099 1.095 1.095 1.095 0.293 0.294 0.298 0.324 0.336 0.336
2 0990 1.023 1.060 1.060 1.060 1.083 0.286 0.301 0.324 0.324 0324 0.356
21 0.885 1.012 1.012 1.012 1.012 1.012 0.258 0.290 0.290 0.290 0.290 0.290
216 1.016 1.016 1.016 1.016 1.044 1.044 0.281 0.281 0.281 0.281 0.322 0.322
2V 0.945 0.945 0.945 0.945 0.945 0.945 0.293 0.293 0.293 0.293 0.293 0.293
2° 0.704 0.745 0.761 0.832 0.899 0.899 0.139 0.145 0.149 0.152 0.156 0.160
20 1.118 1.118 1.153 1.159 1.145 1.126 0.215 0.219 0.226 0.228 0.240 0.244
27 0985 1.030 1.031 1.034 1.128 1.151 0.248 0.256 0.272 0.280 0.288 0.304
28 1.020 1.038 1.034 1.064 1.106 1.107 0.272 0.289 0.299 0.320 0.330 0.337
2° 1.001 1.049 1.062 1.066 1.064 1.069 0.269 0.284 0.296 0.316 0.326 0.328
210 1.035 1.110 1.106 1.106 1.106 1.064 0.291 0.319 0335 0.342 0.337 0.360
Sokg?-ls(r)l]eath 21 1.011 1.059 1.086 1.115 1.142 1.115 0.289 0.300 0.316 0.341 0.328 0.339
21 1.048 1.082 1.114 1.129 1.156 1.163 0.288 0.304 0.322 0.332 0.339 0.355
2B 1.028 1.082 1.101 1.101 1.098 1.114 0.290 0.310 0.341 0.337 0.348 0.358
214 0933 1.030 1.034 1.056 1.103 1.109 0.283 0.311 0.327 0.334 0.338 0.354
21 0978 1.012 1.062 1.078 1.064 1.114 0.279 0.299 0.309 0.321 0.322 0.339
21 0978 1.043 1.045 1.047 1.064 1.114 0.266 0.289 0.307 0.320 0.333 0.343
2V 0975 1.045 1.048 1.069 1.125 1.135 0.276 0.299 0.314 0.314 0.330 0.343

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Figure 6-4 Effects of dimensionality on Ward’s clustering measured by (a) F-measure and (b)
QPI-measure for MDDR dataset using various distance coefficients
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Figure 6-4 (continued)
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Figure 6-4 (continued)

6.3.1 Effects of Low Dimensionality on the Effectiveness of
Clustering

The inspection of Figure 6-4 shows a common general behaviour across all
distance coefficients and hierarchical partitions. Lowest clustering performance

was obtained from the lowest fingerprint dimension considering both

evaluation criteria.

The possible reason for this behaviour is the fewer bit vector spaces of the
lowest dimension, which only has 32 (i.e., 2°) bits space, and hence involves
very large numbers of collisions when bits are being set. This is considered
small to represent the information of 10,254 molecules belonging to the MDDR
dataset and 13,813 molecules in the WOMBAT dataset used in this experiment.
Hence, there is a possibility that most of the bits will be utilised to represent the
features in the molecules or most of the molecules will have the same bit sets in

the fingerprint.
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The bits dimension of Morgan R2 fingerprints used in this experiment were
analysed. Table 6-2 lists the summary statistics obtained from analysis of bits
set for the molecules in the MDDR and WOMBAT datasets. In addition, it
provides the bit collision rate for each dimension that was obtained by
subtracting the average bits set of a lower dimension from the average bits set
of a higher dimension.

Table 6-2 Summary statistics of bits set and bit collision rate for (a) 10,254 molecules in MDDR

dataset and (b) 13,813 molecules in WOMBAT dataset using various Morgan R2 fingerprint
dimensions

. Morgan R2 Fingerprint Dimension
Dataset Bits Set 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17

Min 8 9 9 9 10 10 10 10 10 10 10 10 10

(2) MDDR Max 32 62 94 127 148 157 162 165 165 165 166 166 166
Average 25.62 35.60 43.31 48.18 50.61 52.00 52.68 53.37 53.50 53.58 53.61 53.62 53.63
Bit Collision Rate 9.98 7.71 4.86 2.44 1.39 0.67 0.70 0.13 0.07 0.03 0.01 0.01

Min 6 8 8 8 8 8 8 8 8 8 8 8 8
(b) WOMBAT Max 32 63 114 163 192 206 220 222 222 223 223 223 223
Average 25.11 34.62 41.86 46.33 48.61 49.89 50.53 51.17 51.28 51.35 51.39 51.40 51.40
Bit Collision Rate 9.52 7.23 4.47 2.29 1.28 0.64 0.64 0.10 0.07 0.04 0.01 0.01

It can be seen that the lowest fingerprint dimension (i.e., 2°) of both datasets has
molecules with a maximum number of bits set of 32 bits. Similar behaviour can
be seen from the fingerprint dimension of 26, which has a maximum number of
bits set of 62 bits for MDDR and 63 bits for WOMBAT. In addition, the average
number of bits set increases and the bit collision rate decreases to zero as the

dimensionality increases.

This indicates that the use of low fingerprint dimensions can result in a
maximum utilisation of bits fingerprint, therefore increasing the chances of
higher bit collisions. As a result, this will affect the pairwise distance calculation
between the molecules since the distances between a molecule and its nearest
and furthest molecules can be difficult to distinguish. Hence, the performance of
the clustering using lower dimensions will also be affected, explaining the
behaviour observed in Figure 6-4 for the MDDR dataset and similarly from the
WOMBAT dataset in Appendix B.

125



Chapter 6 Investigation into the Effect of Dimensionality on the Effectiveness of Clustering

6.3.2 Effects of High Dimensionality on the Effectiveness of
Clustering

The results from the QPI measure are discussed because they provide general
interpretations of the separation between the actives and inactives in the MDDR
dataset. As shown in Figure 6-4, two distinct trends on the effects of

dimensionality on the effectiveness of clustering can be observed.

First, the effectiveness of clustering increased as the fingerprint dimension
increases until it reached a maximum QPI value and remains thereafter. This
behaviour can be observed by using six distance coefficients, which are Bray-
Curtis [D1], City-Block [D2], Cosine [D3], Euclidean [D4], Jaccard [D6] and Sokal-
Sneath [D10].

Second, the cluster performance increased as the fingerprint dimension
increases followed by a decrease after it reached a maximum QPI value, which
can be seen by using the other four distance coefficients that are Hamming [D5],

Kulsinski [D7], Rogers-Tanimoto [D8] and Russell-Rao [D9].

The trends observed varied depending on the coefficients used to measure the
pairwise distance of the molecules in the dataset. Two distance coefficients
were chosen as the examples in this discussion, i.e., the Euclidean [D4] and

Hamming [D5] distance coefficients, which represent the distinct behaviours.

As listed in Table 4-6, the Euclidean [D4] and Hamming [D5] distance
coefficients are defined by Eq. (32) and Eq. (33):

Dgyc = [Z;Ixi - )’i|2]1/2 (32)

n
Dyam = Z—l_ll r; yll (33)

In relation to the fingerprint dimensionality, Hamming [D5] is different from

Euclidean [D4] because it measures the differences between two molecules
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from the overall dimensions. Based on the Hamming [D5] formulation, the
distance between two molecules will be transformed into a much shorter
distance in very high dimensional space compared to the distance measured in a
lower dimensional space. These assumptions are investigated separately in the

following Sections 6.3.2.1 and 6.3.2.2.

6.3.2.1 Analysis of Distance Measures by Euclidean Distance Coefficient

The pairwise distances of the molecules in the MDDR dataset measured by the
Euclidean [D4] distance coefficient for each fingerprint dimension were
analysed using the histogram distribution. Table 6-3 lists the statistical
information about the distribution, which includes the mean, standard
deviation, minimum and maximum distance values. The difference between the
maximum and minimum distances for an extreme case is also included. In
addition, Figure 6-5 represents the histogram distribution plot for the distance
values against the frequency of the observations for each dimension.

Table 6-3 Summary statistics for distribution of pairwise distance measured by Euclidean [D4]
distance coefficient for MDDR dataset using various fingerprint dimensions

Distance Fingerprint Mean Standard Minimum Maximum (Maximum - Minimum)
Coefficient Dimensions Distance Deviation Distance Distance Distance
2° 3.025 0.542 0.000 5.385 5.385
2° 5.236 0.408 0.000 7.348 7.348
27 6.986 0.508 0.000 9.592 9.592
28 8.089 0.716 0.000 11.747 11.747
2° 8.678 0.854 0.000 14.000 14.000
210 9.004 0.944 0.000 15.133 15.133
[D4] Euclidean 21 9.166 0.995 0.000 15.843 15.843
21 9.283 1.018 0.000 16.248 16.248
21 9.318 1.027 0.000 16.371 16.371
2 9.338 1.033 0.000 16.492 16.492
2 9.348 1.036 0.000 16.523 16.523
21 9.352 1.037 0.000 16.523 16.523
2V 9.354 1.037 0.000 16.583 16.583
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Figure 6-5 Distribution histograms of pairwise distances for molecules in MDDR represented by

various fingerprint dimensions and measured by Euclidean distance coefficient
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Distribution of Pairwise Distance
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Distribution of Pairwize Distance
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Figure 6-5 (continued)

Inspection of Figure 6-5 shows an overall symmetric and well spread pattern of
distributions when measured by the Euclidean [D4] distance coefficient for all
dimensions. The centre and variance values of the distributions can be obtained

from the mean and standard deviation values provided in each plot.

As listed in Table 6-3, the mean values for the distances increased from 3.025 to
9.354 as the dimensionality increases. However, the increase of mean values is
very small from the 210 until 217 bits dimension. This indicates that, the increase
of bits dimension increases the average distance values until a certain

dimension and remains constant thereafter.

The standard deviation values have also increased from 0.542 to 1.037. This
similar behaviour indicates that there is more variance of distances in the
higher dimensionality space than in the lower dimensions. In this condition, a
better separation between the molecules is likely to be seen in the dataset. As an
effect, the clustering process will likely be effective because it can distinguish

between the nearest and the furthest molecule in the higher dimensional space.

Considering the effect of clustering, it is assumed that these criteria enable
better discrimination between the molecules when Ward’s algorithm is used.

This is because the algorithm considers distance values in determining the
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minimal variance when performing the merger, which can be more effectively
quantified when better discrimination is available. Therefore, these criteria
have resulted in the first trend observed in Figure 6-4. The effectiveness of
clustering increased as the fingerprint dimension increases until it reached a

maximum QPI value and remains constant thereafter.

In general, the results from the F measure show a similar pattern of
effectiveness to the QPI measure, with the exception of being more variable due
to the effects of different homogeneity classes when averaging the F values. The
highest F value corresponds to the average of optimal cluster for each

dimension in the MDDR dataset.

Finally, similar trends can be observed by using the Bray-Curtis [D1], City-Block
[D2], Cosine [D3], Jaccard [D6] and Sokal-Sneath [D10] distance coefficients

suggesting similar behaviour on the distance distributions.

The findings were also consistent for the results using the Group Average
algorithm, suggesting the consistency of the findings using another algorithm
that considers the distances for the merger. Similarly, results using the
WOMBAT dataset also suggest the consistency of the findings on different

datasets. The corresponding tables and figures can be found in Appendix B.

6.3.2.2 Analysis of Distances Measured by Hamming Distance Coefficient

Pairwise distance distribution measured by Hamming [D5] distance was
analysed to quantify the second trend observed in Figure 6-4, ie. the
effectiveness of the clustering increased as the fingerprint dimension increases
followed by a decrease after it reached a maximum QPI value. Table 6-4 lists the
statistical information about the distribution and Figure 6-6 plots the histogram

distribution.
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Table 6-4 Summary statistics for distribution of pairwise distance measured by Hamming [D5]
distance coefficient for MDDR dataset using various fingerprint dimensions

Distance Fingerprint Mean Standard Minimum Maximum (Maximum - Minimum)
Coefficient Dimensions Distance Deviation Distance Distance Distance
25 0.295 0.100 0.000 0.906 0.906
26 0.431 0.066 0.000 0.844 0.844
27 0.383 0.055 0.000 0.719 0.719
28 0.258 0.046 0.000 0.539 0.539
2° 0.148 0.030 0.000 0.383 0.383
210 0.080 0.017 0.000 0.224 0.224
[D5] Hamming 21 0.042 0.009 0.000 0.123 0.123
2 0.021 0.005 0.000 0.064 0.064
2B 0.011 0.002 0.000 0.033 0.033
2t 0.005 0.001 0.000 0.017 0.017
21 0.003 0.001 0.000 0.008 0.008
21 0.001 0.000 0.000 0.004 0.004
2 0.011 0.000 0.000 0.002 0.002

Figure 6-6 shows a different behaviour compared to the previous discussion in
Section 6.3.2.1. As the dimensionality increases towards the highest dimension,
the distribution of distances between the molecules changing from symmetric to
relatively uniform. As listed in Table 6-4, with the exception of the 25 bits
dimension, the mean values for the distances decrease as the dimensionality
increases from 0.431 to 0.011. This indicates that, the increase of bits dimension
decreases the average distance values when measured by the Hamming [D5]

distance coefficient.

Another important behaviour is the change of the variances of the distributions,
which decrease from the standard deviation value of 0.100 to 0.000. This
indicates three behaviours: (1) in general, the low standard deviation value
means that almost most of the distances are very close to the average distance,
(2) there were less variances of distances in the higher dimensionality spaces
than in the lower dimensions and (3) there were zero variances in the two

highest dimensional spaces, i.e., 216 and 217 bits.
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Figure 6-6 Distribution histograms of pairwise distances for molecules in MDDR represented by
various fingerprint dimensions and measured by Hamming distance coefficient
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Figure 6-6 (continued)

In this situation, no substantial separation between the molecules can be found
in the higher dimensional space. It is expected that the relative difference of the
distances of the closest and furthest neighbours is zero. As an effect, the
clustering process will likely be not effective because it is almost impossible to
distinguish between the nearest or the furthest molecule (or even the active or
inactive molecules) because they are all approximately at the same distance

level.

These criteria affect the Ward'’s clustering because non-discrimination between
the molecules resulted in the difficulty to quantify the minimal variance for the
merger. Therefore, this could be the basis for the behaviour observed in the

second trend evaluated by both QPI and F methods in Figure 6-4.

Finally, similar trends were observed by using the Kulsinski [D7], Rogers-
Tanimoto [D8] and Russell-Rao [D9] distance coefficients suggesting similar
behaviour to the distance distributions. In addition, similar findings using the

Group Average algorithm and the WOMBAT dataset can be found in Appendix B.
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6.3.3 Effects of Clustering Partition on F Measure and QPI
Measure

A general observation on Figure 6-4 indicates that the effectiveness values of
both F and QPI measures increased as the number of cluster partitions increases
from 500 to 1000 partitions across almost all dimensions and distance
coefficients. This can be seen by the coloured line plots, which are mostly
plotted in a sequence of the lowest effectiveness value being from 500 partitions
and increasing up to 1000 partitions, i.e., black (500), red (600), green (700),
blue (800), turquoise (900) and magenta (1000). Similar behaviour can be
observed from using the Group Average algorithm and the WOMBAT dataset in
Appendix B.

It can be seen that in most cases, the larger number of cluster partitions have
resulted in the higher values of QPI and F measures. These results demonstrate
the effectiveness of small clusters in separating the actives and inactives, and
identifying the best cluster with a balance of precision and recall. Therefore, this
finding suggests the use of a larger number of cluster partition to obtain

optimum effectiveness for molecular clustering.

6.4 Conclusion

The molecular clustering application implements the distance between
molecules as a basis for grouping the molecules. Many studies have been
conducted on clustering involving the search for efficient cluster algorithms and
effect of distance coefficient. These applications typically involved high
dimensional descriptors as the molecular representation. However, to the
researcher’s knowledge, there are no previous studies conducted on the effect
of a high dimensionality dataset on the performance of the molecular clustering

in the chemoinformatics context.

This chapter investigated the effect of changing the dimensionality of molecular
representations on the effectiveness of molecule clustering applications. It
aimed to observe the performance of the clustering application using various

descriptor dimensions and distance coefficients used in this application.
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The findings suggest two main conclusions. First, the effectiveness of molecular
clustering increases with the increase of the fingerprint dimension until it
reached a certain maximum value and remains at similar levels thereafter. This
finding suggests that the molecular cluster performance is not affected by the
changes of the fingerprint dimension. This finding is in line with the result
obtained in the previous experiment in Chapter 5, which investigated the

effectiveness of the similarity search application in high dimensionality.

Second, the findings are varying depending on the distance coefficient that is
used to measure the distance of molecules during the clustering procedure. The
effectiveness of molecular clustering decreases when the distance of the
molecules is measured by the distance coefficients, which measure the distance
of the molecules over the molecular fingerprint dimensions. This also suggests
that, as the dimensionality increases, the ratio of distances between a molecule
to its nearest and furthest neighbours becomes unity when measured by these
types of distance coefficients. Hence, is it difficult to cluster molecules
represented by very high dimensions as the distances between the molecules

become incomparable.

This chapter also suggests two additional conclusions. First, the need to avoid
the use of very small fingerprint dimensions, e.g., 2> or 2¢ bits dimension, which
can result in more bit collisions, hence affecting the effectiveness of the
molecular clustering. Second, smaller clusters are more effective than larger

clusters in separating the actives and inactives in a dataset.
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Chapter 7 Investigation into the Relative
Importance of the Similarity Search Components
using a Cross-Classified Multilevel Model

7.1 Introduction

Previous studies have evaluated the effects of different types of compound
representations and similarity coefficients on similarity measures (Hert et al,,
2004; Todeschini et al., 2012; Riniker and Landrum, 2013). The performance of
a similarity measure is affected by the choice of both compound representation

and similarity coefficient.

The molecular fingerprints are the most effective compound representations
that describe compound features in several different ways. The performance of
a similarity measure depends on the ability of the molecular fingerprints to
describe the molecules (Riniker & Landrum, 2013). The similarity coefficients,
on the other hand, are the mathematical measures that are derived from
different formulations. The ability to quantify the degree of similarity for the
similarity coefficients has been evaluated in previous research (Todeschini et

al, 2012).

However, the measure of contribution to the overall effectiveness in similarity
measure between the similarity components has not been investigated. Thus,
this chapter aims to analyse the measure of contribution between the
compound representations (i.e, molecular fingerprints) and the similarity
coefficients to the enrichment factor. The investigation seeks to identify which
component in the similarity measure matters more than the other. The results
from the similarity search application will be investigated via a cross-classified
multilevel approach to measure the contribution between the similarity

components.
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7.2 Cross-Classified Multilevel Modeling

Multilevel modeling is a statistical tool that is designed to model data based on
its influence factor (Goldstein, 1987). In this approach, the influence factors are
treated as different levels. The initial structure of the model involves a pure
hierarchical data structure where data is nested within the higher levels. For
example, a student is nested within the school. Hence, the student’s
achievement can be influenced by the school that the student attended

(Goldstein, 2011).

However, in many cases, data can involve other potential influence factors
which are not purely nested in the form of a hierarchical data structure. There
can also be more than one type of influence factor in each level. For example, a
student who attended more than one type of school in different
neighbourhoods. In this case, the student’s achievement can be influenced by
the schools they attended and the neighbourhood they lived in. Incorporating
neighbourhood as a further level is not straightforward since schools and

neighbourhoods are not strictly nested within one another.

Cross-classified multilevel modeling can be used to model and analyse such
complex non-hierarchical data structures (Goldstein, 1987). It has been applied
to investigate various potential influence factors in areas such as education
(Garner & Raudenbush, 1991; Leckie, 2009) and sport (Bell et. al., 2016). This
model decomposes the total variance of the response variable into separate
components in order to estimate the variance contributed by each influence
factor, i.e., influence variable. It measures the proportion of the observed
response variation that lies at a given level of the model and represents the
percentage variance explained by the levels. Hence, it allows making
conclusions about the relative importance of different sources of influence
(different levels) on the response (Goldstein, 2011). As well as assessing the
overall influence of a given level, the model can estimate and rank the
magnitude of individual random effects (i.e., different types of influence

variables).
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In the chemoinformatics context, each enrichment value of a similarity search
can be produced in part by a combination of compound representation,
similarity coefficient and weighting scheme. In this case, the effectiveness of the
similarity searches will generally be influenced by the molecular representation,
the similarity coefficient and the weighting scheme. Common similarity search
applications will involve many types of molecular representations, similarity
coefficients and weighting schemes. There are also other potential influence
factors that have an effect on the enrichment value, such as the bioactivity of the

molecule and the specific reference structure used.

Since the effectiveness of a similarity search can result from many components,
it is important to investigate which component is strongly affecting the
effectiveness. As mentioned in Section 7.1, the measure of contribution to the
overall effectiveness in similarity measure between the similarity components

has not been investigated in previous studies.

The cross-classified multilevel model can be used to identify the importance of
these similarity measure components that contribute to the effectiveness of
similarity-based virtual screening. The total variation in similarity search
effectiveness (i.e, response variable) can be modelled as the sum of
contributions from various influence variables that are the molecular
representation, similarity coefficient, bioactivity and weighing scheme

(Figure 7-1).

Reference
Structure
Similarity ..
Activiy class

. . Weighting

Enrichment
Factor

Figure 7-1 Diagram illustrating the influence variables of the enrichment factor in similarity
search application
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However, the focus of this chapter is to evaluate the relative importance
between the compound representation (i.e., binary fingerprint) and the
similarity coefficient components. The weighting scheme will not be
implemented in the similarity search as the compound representation is not
weighted fingerprints, i.e. integer or real values fingerprints that denote the
relative importance of the fragments. Hence, its role as an influence variable will

not be investigated in this study.

7.3 Model Implementation

The cross-classified models were run in MLwiN version 2.36 (Rasbash et. al,,
2012) using the runmlwin command in Stata (Leckie & Charlton, 2013). The
MLwiN is a software package that allows users to set up, fit and manipulate
multilevel models. The parameter variances are estimated based on a Bayesian

algorithm using Markov chain Monte Carlo (MCMC) estimation (Browne, 2015).

In the Bayesian algorithm, the probability of finding a certain value for the
unknown parameter given the data (i.e., posterior probability), is proportional to
the probability prior to the experiment (i.e., prior probability) multiplied by the
likelihood function. In relation to the cross-classified model, each parameter of
the model is equivalent to the unknown parameter in the Bayesian algorithm.
For example, a cross-classified model such as the one defined below has three

parameters to be estimated:

Vi =PBo+uj,+u;+e (34)

where y; is the response variable, 8, is the fixed parameter and u;,, u;; and e;
are considered as the unknown parameters in the Bayesian algorithm. The
algorithm measures the posterior probability distribution for each parameter
and combines the posterior probability distributions into the joint posterior

distribution.
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7.3.1 MCMC Estimation

The MCMC method is a simulation-based procedure that aims to generate
sample points (i.e, draws) in the space defined by the joint posterior
distribution of all the parameters. The generation of the sample point is based

on the proposal distribution as defined by Eq. (35):

Draw 6,~N(6;_4,0) (35)

where Draw 6, is a sample point of parameter, O, for iteration, t, and ¢ is an
arbitrary deviation. The sample points are generated using a user defined
starting value, for example, 6, = 1. This then makes a large number of iterated
random estimates; each iteration produces a new estimation value that is

dependent on the estimation value from its previous iteration, 6;_;.

These random estimates form a summary of the underlying distributions. It is
then possible to calculate the posterior means and the standard deviations of
the complete posterior distributions. MCMC is implemented because of its

ability to handle more complex statistical models and structures.

In this method, the initial sample points may not be from the desired posterior
distribution. It depends on the starting values in which the chain of iterations
may take some time to converge. The period before a chain has converged is
known as the burn-in. This part of the chain will be discarded. The remaining
chain is known as the monitoring chain. The summary statistics of the
monitoring chain provide the means and standard deviations for the model

parameters.

A longer monitoring period can assure that the method has fully explored the
parameter space and the chain has converged to yield a reliable estimate, that is,
the chain is not trending in a particular direction. In MLwiN, the default value
for burn-in length is 500 iterations and monitoring chain length is 5000
iterations. However, the length of iterations can be increased for better

convergence.
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7.3.2 MCMC Diagnostics

A wide range of MCMC diagnostics can be used to check the convergence of
MCMC models. This is important to give an indication of whether the chain has
been run for long enough to provide robust values for the mean and standard
deviation of the estimated parameters. This experiment used two MCMC
diagnostics that are commonly used in cross-classified model analysis (Rasbash

et.al,, 2012).

First, a visual inspection of the monitoring chain trajectories window in MLwiN
for each parameter estimated was performed. Through visualisation inspection,
an equilibrium pattern or stationary distribution in the trajectories indicates

that the chains have sufficiently converged.

A second common diagnostic is the quantification of the effective sample size
(ESS). During the MCMC iterations, it is common for the value of the draw to be
correlated with the value of the preceding draw i.e., autocorrelation. This is
because each subsequent sample is drawn by using the current sample as

mentioned in Section 7.3.1.

The ESS measures the number of iterations in a way that accounts for the
autocorrelation of the chain. It is automatically calculated in MLwiN using the
implementation by Browne (2015). It defines the ESS as the number of
iterations, n, divided by a measure of the correlation of the chain called the

autocorrelation time, py:

n

ESS =
M =12y

(36)

A higher ESS number indicates high independence (or less autocorrelation) in
the chain and thus provides more information about the posterior distribution.
It is common practice to terminate the simulation once the ESS is greater than a

pre-specified threshold. This experiment uses a rule of thumb for sample size of
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at least 400 iterations for all parameters. It is considered enough for the model

to make a reasonable estimation of the posterior mean.

The example given in Figure 7-2 shows a comparison of the visual diagnostics
for one model which runs for two different numbers of iterations; (a) 10,000
and (b) 500,000. For both trajectories, the X axis represents the number of

iterations and the Y axis represents the draws from the parameter estimate.
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Figure 7-2 Comparison of two visual diagnostics for monitoring chain trajectories of one model
which runs for different iterations; (a) 10,000 iterations and (b) 500,000 iterations

The monitoring chain trajectories in Figure 7-2 (a and b) are the examples of
trajectories which have resulted from the current experiment. The trajectories

showed different behaviour as explained below:

(a) Inconsistent-looking graph which has the estimated posterior mean = 5.113
and ESS = 156 iterations. This is considered low (i.e., not enough) for the
model to make a reasonable estimation of the posterior mean as the
effective sample size is less than 400 iterations. Whilst there is no trending,

the chain is not long enough to promote confidence in the results.

(b) Consistent-looking graph which has the estimated posterior mean = 5.126
and ESS = 7,062 iterations. Here, the chain is much longer and the ESS is also
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higher. This is considered enough for the model to make a reasonable
estimation of the posterior mean as it produces an effective sample size

much higher than 400.

7.4 Experimental Design

The existing similarity search experiment uses several types of fingerprints and
similarity coefficients that are combined with each other. There are ten different
types of fingerprints, which describe a compound’s different features as listed in
Table 4-4. The features were hashed into the bits in the binary fingerprints. All
fingerprints were generated for a size of 1024 bits using the RDKit from the
KNIME software (Landrum, 2016). The thirty-one similarity coefficients used in
this experiment were the same as the previous experiment described in Chapter

5.

Ten random reference compounds from each of 15 activity classes in the
ChEMBL dataset were used for the similarity search, resulting in a total of
46,500 similarity searches (i.e., 10 reference compounds, 15 activity classes, 10
types of fingerprints and 31 types of similarity coefficients). The effectiveness of
these similarity searches was measured based on the top 1% enrichment factor

(EFi4,)- The variables used in this study are summarised in Table 7-1.

Table 7-1 Variables used in this study

Variables Descriptions

Fixed part variable

Enrichment factor The dependent variable: The overall effectiveness of each similarity measure
Constant The variable associated with the intercept coefficient

Random part variables
Activity class The chemical dataset grouped by similar biological properties (e.g. 5HT)
Fingerprint The representation of chemical compound (e.g. ECFP_4)
Similarity coefficient The measurement that quantifies the degree of similarity (e.g. Tanimoto)
Reference structure The chemical compound used as reference structure in similarity search

7.5 Initial Model

An initial cross-classified model with four levels was implemented for all

similarity search results. The model will decompose the total variance of the
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enrichment values (i.e., the response variable) into separate activity classes,
fingerprints, similarity coefficients and similarity searches (i.e., the reference
structures) variance components (i.e., the influence variables). A basic, null

model can be expressed as:

efi = Fo + ug?c)tssid(js) t u;gz)id(jz) + ugi)efid(ﬂ) +e
ugzssid(ﬁ)“’]v (0, 05(4))
u/g;)id(jz)NN(O' Oi(3)) (37)
ug)efid(jl)NN(O' 03(2))

ei"’N(O, 0.62)

where ef; is the observed enrichment value for a given similarity search i (i =1,

.., 46,500), B, is the mean EF;q, across all activity classes, fingerprints and

similarity coefficients, ugc)lssid(ﬁ) (classid(j3) = 1, ..., 15) is the effect of

similarity search i‘s activity class, ug))l 4(2) (fpid(j2) = 1, ..., 10) is the effect of
similarity search i‘s fingerprint, ugi)eﬂd(jl) (coefid(j1) = 1, ..., 31) is the effect of
similarity search i‘s similarity coefficient, and e; is the level 1 residual error
term, incorporating other factors (and random variation) that affect the
enrichment value. The activity class, fingerprint, similarity coefficient and

residual error are assumed independent and normally distributed with zero

means and constant variances.

The proportion of the observed response variation can be measured at activity
class, fingerprint, similarity coefficient and similarity search levels. As a result, it
is possible to establish the relative importance of the activity class, fingerprint,
similarity coefficient and level one residual variation as sources of variations to

the enrichment values. Furthermore, the magnitude and ranking of individual
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activity classes, fingerprints and similarity coefficients can also be examined

using their individual random effects.

The model was fitted in the MLwiN software using the MCMC method as
described in Section 7.3. A starting value of 1 and the default value for the burn-
in length of 500 iterations were used. The model was run for 500,000 iterations
of monitoring chain length. These values were found to be sufficient for the
chains to have converged (i.e., monitored by the consistent-look of visual
diagnostics in the model trajectories window). The ESS value was over 800 for
all parameters of the model which indicates the number of independence (or
less autocorrelation) samples in the 500,000 iterations. The results are

presented and discussed in the following sections.

7.5.1 Relative Importance of Similarity Measures

The results from fitting the initial model in Eq. (37) for all 46,500 similarity
searches using the ChEMBL dataset are listed in Table 7-2. It reports the
variances and standard errors estimated for each level (i.e., component) in the
model. Hence, the comparison of the relative importance between the activity
class, fingerprint and similarity coefficient can be observed based on the

estimated variance in each level.

As shown in Table 7-2, the mean EF,q, across all levels is estimated to be 12.725,
with a standard error of 1.857. The effect of L4 variance (i.e., between-activity
class variance) is estimated as 54.170 (S.E. = 23.635). The effect of L3 variance
(i.e., between-fingerprint variance) is estimated as 4.689 (S.E. = 3.042) while the
effect of L2 variance (i.e., between-similarity coefficient variance) is estimated
as 4.222 (S.E. = 1.772). The residual error, i.e., reference compound as affect to

the enrichment value, is estimated as 92.473 with a standard error of 0.607.
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Table 7-2 Variance estimation of similarity search components (4 level cross-classified model)
for ChEMBL dataset

Intercept Effect L4 Effect L3 (gifrfr?i(i;:iz Effect L1
Model No. Dataset (Mean EF) (Activity Class) (Fingerprint) Coefﬁciergl) (Residual Error)
Variance S.E. Variance S.E. Variance S.E. Variance S.E. Variance S.E.
1 ChEMBL  12.725 1.857 54.170 23.635 4.689 3.042 4.222 1.772 92.473 0.607
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Overall, the residual errors are larger compared to the variances estimated for
the activity class, fingerprint and similarity coefficient levels. The variance
estimated for activity class level is also larger compared to the fingerprint and
similarity coefficient variances. This indicates larger disparities between the
activity classes and the reference structures as compared to the fingerprint and
similarity coefficient components. However, the difference between the
fingerprint and similarity coefficient variances is relatively small. This shows
that the fingerprint and the similarity coefficient are almost equally important

to the enrichment value when considered across the entire dataset of searches.

The larger variation for the residual error (i.e., 92.473) can be due to the
iterations of the model and the different structure of the reference compounds.
All similarity values that were fitted in this cross-classified model were
measured from 15 different activity classes which have different properties. As
mentioned in Section 7.4, ten reference compounds were chosen randomly from
each activity class to be measured in the similarity search experiment. These
reference compounds were structurally different depending on which activity
class they belong to. Hence, the residual error is large as it is affected by the
nature of the activity class. This is supported by the estimated variance for the
activity class level, which is the second largest after the residual error (i.e.,
54.170). The variance between-activity class and individual ranking will be

discussed in the next section.

7.5.2 Estimation of the Individual Activity Class Effect

Figure 7-3 presents the caterpillar plot for the activity class variable effect (i.e.,
level 4) estimated by the model. The plots in the diagram indicate the ranking of
different types of activity classes used in this experiment. They were ordered by
the value of residuals (i.e., predicted activity class effect). The horizontal scale
indicates the rank order with vertical scale surrounded by 95% Bayesian

confidence interval (CI) limits.
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The residual value represents the difference when compared to an average
activity class, i.e.,, the grid line y-axis equal to zero. Higher residual values
indicate a better rank position. The activity class with the highest residual value
will be ranked highest and can be considered the best according to the model.
The activity classes with the Cls that do not overlap the grid line y-axis equal to

zero (i.e., the average line) are considered ‘better than the average’.

As shown in Figure 7-3, the highest ranked activity class is AT1. This is followed
by the SubP, MMP1, HIVP, PKC, Thrombin, 5HT3, AChE, PDE4, COX, 5HT1A, D2,
Renin, FXA and 5HT activity classes. According to the model, four out of 15
activity classes are considered better than the average (i.e., activity classes with
CIs that do not overlap the average line). These are the top four activity classes,

i.e, the AT1, SubP, MMP1, HIVP activity classes.
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Figure 7-3 Caterpillar plot of the activity class-level residuals with 95% Bayesian credible
intervals for ChEMBL dataset
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It is also interesting to observe that all but one homogeneous class (i.e., Renin)
were ranked highest. This also indicates that the EF;q, results produced by the
homogeneous classes (except for Renin) are higher than the heterogeneous
classes, in which the EF;q, has been used as the response variable for the cross-
classified model implementation. The level of homogeneity for each activity
class in the ChEMBL dataset can be referred to the mean pairwise similarity

value (MPS) in Table 4-3 in Chapter 4.

There is a possible reason for this occurrence. In similarity search applications,
the homogeneous class is expected to produce higher EF;q, results than the
heterogeneous class. This is because the compounds that belong to the
homogeneous class are structurally more similar than the compounds that
belong to the heterogeneous class. It will be easier to differentiate between the
actives from inactives for the homogeneous class compared to the
heterogeneous class. Hence, the performance of the similarity searches for

homogeneous activity class is higher.

However, in the case of Renin, further observation of the EF;q, values resulted
from this activity class showed that they are relatively low compared to the
other EFj¢ values resulting from the other homogeneous classes. This is
probably due to the reference structures that have been randomly selected for
the Renin activity class. The use of these reference structures may affect the
effectiveness of the similarity search results and also the ranking of Renin in the

cross-classified model.

The fingerprint and the similarity coefficient components have been found to be
almost equally important in this model. However, it would still be interesting to
observe the individual effect of the various types of fingerprints and similarity
coefficients, across the entire dataset of searches. Therefore, the following

sections present the results of an individual effect for each component.
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7.5.3 Estimation of the Individual Fingerprint Effect

Figure 7-4 presents the caterpillar plot for the fingerprint variable effect (i.e.,
level 3) estimated by the model. As shown in Figure 7-4, the highest ranked
fingerprint is MorganR2. This is followed by the FeatMorganR2, MorganR1,
Torsion, Atom Pair, FeatMorganR1, Avalon, Layered, RDKit and Pattern
fingerprints. According to the model, three out of ten fingerprints are
considered better than the average (i.e., fingerprints with Cls that do not
overlap the average line). These are the top three fingerprints, i.e.,, MorganR2,

FeatMorganR2 and MorganR1.
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Figure 7-4 Caterpillar plot of the fingerprint-level residuals with 95% Bayesian credible
intervals for ChEMBL dataset

From the rankings, it can be observed that all six fingerprints that were ranked
on the top are the similarity types of fingerprints (refer Table 4-4). The
remaining four fingerprints that were ranked lower are the substructure types

of fingerprints. Three of the four circular fingerprints, Morgan R2,
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FeatMorganR2 and MorganR1, were indeed found to be significantly better than
the average in this model. It is also observed that one of the topological types of
fingerprints, Torsion, has been ranked among the top circular fingerprints. This
implies that Torsion fingerprint has a certain degree of discrimination ability,

which is similar to circular fingerprints.

The finding of the top ranked fingerprints supports previous research that has
examined the comparison of 2D fingerprints used for similarity-based virtual
screening with multiple reference structures (Hert et al, 2004). The study
conducted on the MDDR dataset found that the circular types of fingerprint are
generally more effective, with the best results obtained from the ECFP_4

fingerprints (i.e., the Morgan R2 in this investigation).

A more recent research, which implemented the similar types of 2D fingerprints
used in this study, has also being reviewed. Riniker and Landrum (2013)
developed an open-source platform for virtual screening to evaluate the
performance of 12 commonly used fingerprints. Six of the 12 types of 1024 bits
fingerprint used in the previous study have been used in this experiment, i.e.,
Atom Pair, Torsion, RDKit, Avalon, ECFP_4, FCFP_4. For RDKit, the maximum
path length that was used in the previous study (i.e., path length of 5) is
different than the path length used in this experiment. This is because this

experiment uses the default maximum path length which is 4.

Riniker and Landrum (2013) have found that the circular fingerprints are
generally ranked higher by the enrichment factor as the evaluation method;
which are consistent with the finding in this research. Another interesting
finding is that the Torsion fingerprint has been found to be exceptionally ranked
among the top fingerprints by all of the evaluation methods used. This matches
the finding of this study, in which the Torsion has been ranked among the top

circular fingerprints as shown in Figure 7-4.
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7.5.4 Estimation of the Individual Similarity Coefficient Effect

Figure 7-5 presents the caterpillar plot for the similarity coefficient variable
effect (i.e., level 2) estimated by the model. The highest ranked fingerprint is the
B37 (Maxwell-Pilliner) similarity coefficient as shown in Figure 7-5. This is
followed by the B38, B34, B26, B18, B30, B29, B19, B42, B3, B28, B22, B9, B33
and B10 similarity coefficients. These fifteen similarity coefficients are
estimated to be significantly better than the average by the model. The
remaining similarity coefficients in the ranking were B51, B11, B8, B17, B46,

B23, B15, B25, B16, B43, B20, B1, B36, B5, B7 and B6.
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Figure 7-5 Caterpillar plots of the similarity coefficient-level residuals with 95% Bayesian
credible intervals for ChEMBL dataset

Further observation of Figure 7-5 showed that many of the higher ranked
similarity coefficients are plotted almost equally on the same horizontal line.
This is another way of illustrating the variances resulting from using the

similarity coefficients. It indicates that there are almost equally similar
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variances and small differences of the residual values among the similarity

coefficients.

A previous study by Todeschini et al. (2012) has observed that the similarity
coefficients B38 (Harris-Lahey) and B42 (CT4) yield very good results on their
retrieval abilities in similarity based virtual screening using the WOMBAT
dataset. Both similarity coefficients were also superior to the well-established
B3 (Jaccard-Tanimoto). The present findings seem to agree with Todeschini et
al. (2012), who showed that the B38 similarity coefficient is ranked among the
top (i.e., second rank with variance = 1.528). The first ranked is B37 with a
variance of 1.529. The B42 similarity coefficient was at rank nine. All of the

similarity coefficients were still ranked higher than B3 (i.e., 10t in rank).

7.6 Extended Model I

Results from the previous section have shown that the variation of the cross-
classified model is highly influenced by the activity class component. Therefore,
further analysis was conducted to investigate the importance of the components
independently of the activity classes. Fifteen three-level models were developed
and implemented in this analysis, one for each activity class in the ChEMBL
dataset. Each model uses only the total number of 3,100 EF,q, values resulting
from the similarity searches for a particular activity class. The model can be

expressed by:

_ @® @
efi = Bo + Uppiagjz) T Ycoeriagn) T €i

3) 2
Uppia(j2)~N(0,0433))

(38)

(2) 2
ucoefid G ~N (0’ O'u(z))

e;~N(0,0¢)
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where the response variable, ef; is the observed enrichment value for a given

similarity search i (i = 1, ..., 3,100), 8, is the mean EF;, across all fingerprints
and similarity coefficients, ug)l.d(jz) (frid(j2) = 1, ..., 10) is the effect of similarity
search i's fingerprint, ug(z))eﬁd(jl) (coefid(j1) = 1, ..., 31) is the effect of similarity
search i‘s similarity coefficient, and e; is the level 1 residual error term,
incorporating other factors (and random variation) that affect the enrichment

value. The fingerprint, similarity coefficient and residual error are assumed

independent and normally distributed with zero means and constant variances.

The models produced the proportion of the observed response variation and
individual random effects at fingerprint, similarity coefficient and similarity
search levels. Hence, the relative importance and individual random effects can
only be examined on these levels. The model was fitted in the MLwiN software
with the similar settings as described by the previous model. The results are

discussed in the following sections.

7.6.1 Relative Importance of Similarity Measures

The results from fitting the model in Eq. (38) for all activity classes of the
ChEMBL dataset are listed in Table 7-3. It reports the variances and standard
errors estimated for each parameter (i.e, component) of all fifteen cross-
classified models. The relative importance between the fingerprint and the

similarity coefficient levels can be compared in Figure 7-6.

The values in Table 7-3 indicate that the estimated variances and standard
errors of mean EF,q, vary depending on the nature of the activity classes. The
highest mean EF,q, across all fingerprints and all similarity coefficients is from
the AT1 activity class (i.e., the most homogeneous with MPS = 0.52). The
estimated variance for this activity class is 27.806 with a standard error of
2.184. The lowest mean EF;q, (i.e., variance 5.125 of and S.E. of 0.398) is from
the S5HT activity class which is one of the heterogeneous classes in the ChEMBL

dataset (i.e., MPS = 0.34). The mean EF;q, variances resemble the ranking of
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activity class obtained in Figure 7-3 if the variances are sorted in descending

order.

Further observation of Figure 7-6 shows that in the majority of cases the
fingerprint effect is higher than the similarity coefficient effect. This can be seen
for the SHT1A, 5HT3, AChE, D2, HIVP, MMP1, PDE4, PKC, Renin, SubP and
Thrombin activity classes. The differences of these variance levels were also
very large. The remaining four activity classes have higher similarity coefficient
effects than the fingerprint effects, i.e, SHT, AT1, COX and FXA. However, in
contrast with the other eleven activity classes, the differences of these variance

levels are relatively small

70 —

I Fingerprint Level
I Similarity Coefficient Level

66.16

Variance

ChEMBL

Figure 7-6 Bar chart comparing the relative importance between the fingerprint and similarity
coefficient effects for 15 activity classes of ChEMBL dataset
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A sign test and a Wilcoxon signed-rank test were conducted to evaluate the
differences of variances of the two components (i.e., fingerprint and similarity
coefficient). For the Wilcoxon signed-rank test, the SPSS application will
automatically measure the significance of the data using the large-sample test
although there are only 15 pairs of observations (N = 15). This is acceptable as
the large-sample test for the Wilcoxon signed-rank test appears to produce a
good approximation even for relatively small samples (Siegel & Castellan Jr,
1988). In the present context, each variance acts as a judge of the effectiveness
of the various activity classes, where the significant of the differences is
measured by the number of (i) fingerprint level > similarity coefficient level, (ii)
fingerprint level = similarity coefficient level and (iii) fingerprint level <

similarity coefficient level.

The sign test resulted in the significance of the probability value of p = 0.118
that is higher than the significant level of o = .05. This indicates that there is no
significant difference in variances between the two components considering all
15 cross-classified models using the sign test. However, the result of the
significance of the probability value using the Wilcoxon signed-rank test is p =
0.008. This means that when measured using the Wilcoxon signed-rank test, the
variances between the two components are significantly different at a = .01
level considering all 15 cross-classified models. The possible reason for this is
because the Wilcoxon sign-rank test considers the direction and the relative

magnitude in its measurement which makes it more powerful than the sign test.

The results in Table 7-3 also show that the estimated variances for the residual
errors were still large compared to the fingerprint and the similarity coefficient
levels. All but one residual error value are higher than the L3 and L2 variances
(where fourteen residual values were emphasised in italic and bold faced in
column 10). This indicates that even after the separation of activity classes, in
most of the cases the variation influenced by the reference structure far
outweighs the influence of the fingerprint and the similarity coefficient. This is
supported by the results from one of the statistical tests, i.e., the sign test, that

has shown no significant difference between the fingerprint and the similarity
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coefficient components. Therefore, another investigation, which developed a
different cross-classified model for each reference structure, has been

conducted and will be described in Section 7.7.

7.6.2 Estimation of the Individual Fingerprint Effect

Figure 7-7 presents the heat map of fingerprint level reflecting the ranking of
the fingerprints across all activity classes according to the model. The rows
indicate the types of fingerprints while the columns represent the activity
classes. Each cell point in the heat map represents the rank position, i.e., low
rank positions tend towards darker green tones while high rank positions tend

to hotter orange and red tones.
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Figure 7-7 Heat map summarising the ranking of the variable effects for level 3 (fingerprint) for
15 activity classes of ChEMBL dataset

Overall, it can be seen that different fingerprints are best for different activity

classes. Interestingly, five fingerprints were observed to reveal a consistent
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ranking across all activity classes. The MorganR1, MorganR2 and FeatMorganR2
fingerprints were found to be mostly ranked among the top six fingerprints
while the RDKit and Pattern fingerprints were found to be mostly ranked among
the lowest. The top ranked fingerprints for most activity classes are the
similarity fingerprints (i.e., circular type) while the low ranked fingerprints are

the substructure fingerprints (i.e., topological type).

The details of these ranks are presented in Figure C-1 in Appendix C. The figure
illustrates the caterpillar plots of the level 3 variable effects (i.e., the
fingerprints) for each activity class. The plots in the diagrams were ordered by
the value of residuals (i.e., predicted fingerprint effect). The horizontal scale
indicates the rank order with vertical scale surrounded by 95% Bayesian
confidence interval (CI) limits. The average fingerprint was determined by the

same method explained in the Section 7.5.2 (second paragraph).

The variance of the fingerprint level for each of the activity class relates to the
value of the fingerprint residual in the caterpillar plots. An activity class which
has a high value of variance in the fingerprint level will also have high residual
values between the fingerprints. By referring to Table 7-3, the SubP activity
class has the highest value of variance in the fingerprint level that is 66.164

while FXA has the lowest value of variance, i.e., 1.098.

A previous study by Hert et al. (2004) has found the FeatMorganR2 (FCFP_4)
fingerprints being better for heterogeneous classes while MorganR1 (ECFP_2)
being better for homogeneous classes in the MDDR dataset. In this study,
FeatMorganR2 has been found to be very effective in both heterogeneous and
homogeneous classes, e.g.,, S5HT (Model 1), AChE (Model 4), COX (Model 6),
MMP1 (Model 10) and Renin (Model 13) in Figure C-1. The MorganR1
fingerprints have also been found to be among the most effective for both types

of activity classes.
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7.6.3 Estimation of the Individual Similarity Coefficient Effect

Figure 7-8 presents the heat map of similarity coefficient level reflecting the
ranking of the coefficients across all activity classes. The rows indicate the types
of similarity coefficients while the columns represent the activity classes.
Similar to Figure 7-7, each cell point in the heat map represents the rank
position, i.e., low rank positions tend towards darker green tones while high

rank positions tend to hotter orange and red tones.
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Figure 7-8 Heat map summarising the ranking of the variable effects for level 2 (similarity
coefficient) for 15 activity classes of ChEMBL dataset

It can be observed that the higher or lower ranked similarity coefficients are
easily identified across all activity classes. The B3 (Jaccard-Tanimoto), B18
(Rogot-Goldberg), B19 (Hawkins-Dotson), B34 (Cohen), B37 (Maxwell-Pilliner)

and B38 (Harris-Lahey) similarity coefficients were visually observed to be

167



Chapter 7 Investigation into the Relative Importance of the Similarity Search Components using a Cross-
Classified Multilevel Model

consistently ranked higher. Bl (Sokal-Michener, Simple Matching), B5
(Russel-Rao), B6 (Forbes), B7 (Simpson), B20 (Yule) and B36 (Peirce) were

found to be consistently ranked lowest across all activity classes.

The details of these ranks are presented in Figure C-2 (Appendix C). The figure
illustrates the caterpillar plots of the level 2 variable effects (i.e., the similarity
coefficients) for each activity class. The highest value of variance in the
similarity coefficient level can be observed from homogeneous classes, e.g., ATI
(Model 5) and SubP (Model 14) in Figure C-2. For both classes, B26 has shown
to be the highest ranked coefficient and B6 as the lowest ranked coefficient. For
the most heterogeneous class COX (Model 6), the B23 has shown to be the

highest ranked coefficient and the B5 coefficient at the lowest rank.

Model 12 which represents the PKC activity class has shown an interesting
observation. The variances among the similarity coefficients were low and
almost equally the same. These were indicated by the value of the residuals,
which were nearly zero and showed an equal horizontal pattern in the
caterpillar plot. This is the only case that has shown this behaviour across all

activity classes.

In comparison with the previous study, B26 has also been found to work well
and performed better than B3 in homogeneous classes of the MDDR and
WOMBAT datasets (Todeschini et al, 2012). The B38 and B42 similarity
coefficient were also found to rank higher in both homogeneous and

heterogeneous classes and mostly ranked higher than the B3 coefficient.

7.7 Extended Model 11

The previous results in Table 7-3 have shown that the estimated residual errors
were still large compared to the fingerprint and similarity coefficient variances.
This indicates that the similarity search experiments were still influenced by the
variation of the reference compounds. The sign test also showed that the
fingerprint is not significantly different from the similarity coefficient

component.
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Thus, this section will make a conclusion about the variances between the
fingerprint and the similarity coefficient levels independently of the reference
structures. Another 150 three-level models were developed, one for each
reference structure. Each model uses only the total number of 310 EF;q, values

resulting from the similarity searches based on a single reference compound.

Using the same model expression in Eq. (38), the response variable, ef; is the
observed enrichment value for a given similarity search i in which i equal to 1
until 310. The other parameters in the model remain the same. The models also
produced the proportion of the observed response variation and individual
random effects at fingerprint, similarity coefficient and similarity search levels.
A better conclusion can be drawn about which component is more important
between the fingerprint and the similarity coefficient based on these models.

Next section discusses the results of the models.

7.7.1 Relative Importance between Fingerprint and Similarity
Coefficient

The results from Table C-1 (Appendix C) report the variances estimated for each
level of all 150 cross-classified models. A general inspection of the table showed
that many variances estimated for the fingerprint were higher than the
variances estimated for the similarity coefficient and residual errors. This can
be seen by the models that have the L3 variances emphasised in italic and bold

face.

Comparison between the fingerprint and similarity coefficient variances also
showed that the fingerprint variance was superior to the similarity coefficient
variance, which can be observed by 136 models, which have the L3 variances
marked by grey boxes. Only 14 models have L2 variances higher than the L3

variances.

The same statistical tests were repeated to evaluate these performances. Both
the sign test and the Wilcoxon signed-rank test indicate that there were

statistically significant differences in variances between the two components
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considering all 150 cross-classified models (z =-10.024, p < .01 for the sign test
and z = -9.880, p < .01 for the Wilcoxon signed-ranks test). Hence, these tests
showed that the fingerprint component is significantly more important than the

similarity coefficient component in this study.

In addition to the changes of the variances above, it has also been observed that
the residual errors have lessened compared to the L3 and L2 variances in most
models. Only 18 out of 150 models have the residual errors larger than the
other two levels of variances. This indicates that there were no higher variances
between the reference structures as seen in the previous model in Section 7.5.2
because the current models were modelled based on each reference structure.
Of all cases, only one homogeneous activity class still has many models with
higher residual errors than the L3 and L2 variances, i.e.,, PKC (7 models). The
other homogeneous classes were SubP (1 model), AT1 (2 models), HIVP (1
model) and Renin (3 models). The heterogeneous classes were 5HT (1 model),

FXA (2 models) and Thrombin (1 model).

The results from using 150 models showed that the use of different reference
structures can result in substantial difference in the more important component
of a similarity search. A robust conclusion was made considering all of the
reference structures used in this experiment. Hence, it highlights another
important finding that the role of the number of reference structures is an

important factor in the comparative study of similarity measures.

Arif et al. (2013) conducted a study that ranks different similarity measures
based on the effectiveness of the similarity searches resulting from the use of
different number of reference structures. The study found that rankings
produced by the results of using all reference structures could be substantially

different from the results of using a small number of reference structures.

The findings in the current experiment seem to support the findings by Arif et
al. (2013). The models have shown that different reference structures can result

in different identification of the relative importance between similarity
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measures, and therefore, a conclusion can only be made using a considerably

large number of reference structures.

7.8 Conclusion

This chapter has carried out a detailed investigation into the relative
importance between the fingerprint representation and the similarity
coefficient components in similarity-based virtual screening. The experiment
involved the use of cross-classified multilevel modeling to estimate the
variances produced by various factors contributing to the similarity search.

These variances were analysed to identify the importance of the components.

The main findings in this study indicate that the fingerprint component is more
important than the similarity coefficient in determining the effectiveness of
similarity based-virtual screening. Based on the implemented dataset, the
results suggest MorganR2 (ECFP_4) as the best fingerprint and B37 as the best

similarity coefficient.

Compared with the previous studies by Hert et al. (2004), Riniker and Landrum
(2013) and Todeschini et al. (2012), this study carried out a different
investigation that combines both similarity search components, i.e. the
molecular representation and the similarity coefficient. Many of the results from

this study seem to match those observed in earlier studies.

Another important finding in this study also highlights the role of different
reference structures in determining the relative importance of similarity
measures. The use of large number of reference structures has allowed a robust
conclusion to be made on the main findings, which seem to agree with the
previous study by Arif et al. (2013). Therefore, the number of reference
structures in determining the effectiveness of similarity search can be a basis

for future studies of similarity search in virtual screening.

In addition to these practical findings, it was also observed that the influences of
the biological activity and the reference structure were also very important.

These influences have been shown by the high variances estimated by the
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models in Sections 7.5 and 7.6. However, the generalisability of these results is
subject to limitation such as the non-normality of the residuals which can be

investigated in the future.

Hence, apart from the novelty of the cross-classified multilevel modelling and its
implementation in chemoinformatics research, this chapter also highlights the
importance of the similarity search component to help improving similarity-

based virtual screening.
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Chapter 8 Summary and Future Work

8.1 Introduction

This thesis has conducted three investigations: (1) The effects of dimensionality
on the effectiveness of similarity search applications (reported in Chapter 5);
(2) The effects of dimensionality on the effectiveness of clustering applications
(reported in Chapter 6); (3) The relative importance of the fingerprint and the
similarity coefficient components on the effectiveness of similarity searching
using cross-classified multilevel model analysis (reported in Chapter 7). This

chapter summarises the overall key findings.

8.2 Overall Summary of Work and Findings

The search for nearest neighbour molecules in chemoinformatics applications
involves two important components: (1) the molecular representations or
descriptors and (2) the similarity or distance coefficients (Willett et al., 1998).
The molecules are usually represented by a very high dimensionality
representation (Todeschini & Consonni, 2000). For example, a common number
of bits used for a 2D binary circular fingerprint is 1024 bits. However, the
fingerprint dimension could be higher depending on the space required to
represent the structure of the molecule (Sastry et al., 2010). The similarity or
distance coefficients quantify the similarity or the distances of the molecules
based on various formulations which consider different attributes of the
fingerprint representation (Todeschini et al., 2012). The search process starts
with converting the molecules into various types of representations and then
measuring the similarity (or distance) between the molecules using different
types of coefficients. Based on the underlying similar property principle, the
nearest molecule which has the closest distance (or is most similar) to the query
molecule is considered as the molecule with the most similar properties to the
query molecule (Johnson & Maggiora, 1990). The nearest neighbour search has
become the foundation of many chemoinformatics applications such as

similarity searching and clustering.
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In other domains, increasing the dimensionality of data representations has
been found to decrease the effectiveness of nearest neighbour searches, a
phenomenon known as the curse of dimensionality (Bellman, 1961). It happens
when the ratio of the distance of a query point to its nearest neighbour and to its
furthest neighbour tends to unity measured by a distance coefficient (Agrawal
et al,, 1998; Weber et al., 1998; Beyer et al., 1999). Hence, the effectiveness of
the nearest neighbour search decreases and the results become meaningless,
i.e., difficult to distinguish between the nearest (most similar) or the furthest
(most dissimilar) neighbour since the distances are almost the same (Clarke et

al,, 2008).

However, the effectiveness of nearest neighbour searches in the
chemoinformatics domain does not seem to be affected by the use of high
dimensionality representations. This behaviour has led this researcher to
investigate the effect of nearest neighbour search in high dimensionality
chemical datasets. Despite the proven effectiveness of the nearest neighbour
search in chemoinformatics applications, a detailed study was needed to
investigate the effects of nearest neighbour search when increasing the
dimensionality of chemical datasets. This includes evaluating the effects of using
different similarity or distance coefficients to the effectiveness of the searches.
Experimental Chapters 5 and 6, were hence investigating the first aim of this
study, i.e., the effects of dimensionality on the effectiveness of similarity

searching and clustering applications.

The first experiment in Chapter 5 conducted a similarity search using three
chemical datasets. Each molecule in the datasets was represented by thirteen
different dimensions of ECFP_4-like binary fingerprints. The similarity between
the reference molecules and the rest of the molecules in the datasets was
measured using thirty-one non-monotonic similarity coefficients. The
effectiveness of the application was evaluated based on the EF;, ranked

molecules.

It was observed that an increase in fingerprint dimensions increases the

effectiveness of the similarity search up to a certain fingerprint dimension
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which is maintained thereafter. The evidence from this study suggested that this
behaviour depends on the number of bits that is required to represent the
information of the molecules. In addition to these findings, the variations in
performance are due to the characteristics of the similarity coefficients used as
the similarity measure. The use of a similarity coefficient that measures the
internal (or local) representation of the molecules has proven not to be affected
by the sparsity of high dimensional data. Instead, it can be used to identify the
molecules with similar scaffolds or having a similar local structure to the query

molecule.

Further investigations were performed in Chapter 6 to study the effects of
dimensionality on the effectiveness of another chemoinformatics application,
i.e, molecular clustering. Similar to the experiment conducted in Chapter 5, the
molecules were represented using thirteen dimensions of an ECFP_4-like binary
fingerprints and clustered by two clustering methods. The pairwise distances
were measured by ten distance coefficients and the effectiveness was measured
based on the ability to separate the actives/ inactives and the identification of

the single best cluster.

The experiments revealed that the effectiveness of the clustering application in
high dimensionality varies depending on the nature of the distance coefficient.
Distance coefficients which measure the proportion of distances between two
molecules from the overall dimensions tend to decrease the performance of the
application in very high fingerprint dimensions. A detailed investigation of the
distribution of the distances of two distance coefficients resulted in the
identification of two significant behaviours. The results showed that, for a
certain type of distance coefficient, as the dimensionality increases, it is difficult
to discriminate the distances between the nearest or the furthest molecules as
their distances were almost similar. This strengthens the conclusion made for
the investigation reported in Chapter 5 that the variation of the effectiveness

depends on the nature of the similarity measures.

With regards to the second aim of this study, as mentioned in Section 1.3, the

molecular fingerprint and similarity coefficient are among the key components
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of a similarity search application. Many comparative studies have investigated
the effect of varying the components of the searches (Hert et al., 2004; Riniker
and Landrum, 2013; Todeschini et al., 2012). However, the studies focused on
varying a single component while the other components were held constant in

the investigations.

Hence, Chapter 7 was designed to determine the relative importance of the
components influencing 2D fingerprint similarity searching. A novel statistical
approach called cross-classified multilevel modeling was adapted to model the
results of similarity searches from all possible combinations of 2D fingerprints
and similarity coefficients used in this experimental chapter. In contrast to
previous comparative studies, this research considered all variations of

components in the investigation.

It was found that the activity class plays the greatest role in determining the
effectiveness of the application followed by the reference structure, then the
fingerprints and finally the similarity coefficients. Further analysis was carried
out to assess the most important factor between the fingerprint and the
similarity coefficient and showed that the fingerprint component is significantly
more important than the similarity coefficient. This study also supports
previous findings by Arif et al. (2013) that more reference structures should be

used in comparative studies of similarity measures.

8.3 Implication of Results

The results from the high dimensional effect studies in Chapters 5 and 6 seem to
contradict the curse of dimensionality phenomenon. In general, the increase of
the dimensionality did not decrease the performance of the similarity searches.
An implication of this is the possibility that the effectiveness was influenced by
the coefficients used to measure the similarity or the distance of the molecules.
Hence, these conclusions support the influence of the similarity coefficient in

high dimensional similarity measure as suggested by France et al. (2012).

The findings also suggested that the number of bits in the fingerprint and the

types of similarity measure can have a significant impact on the performance of
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nearest neighbour search in virtual screening applications. This is especially the
case for searches involving high dimensionality with sparse binary
representations. Hence, any research involving such representations should
consider pre-analysing the binary fingerprint for bit collision (as conducted in
this study) and carefully choose the coefficient for the similarity measure before

performing the nearest neighbour searching.

In addition, the conclusions made from Chapter 7 implied that the cross-
classification multilevel modeling, which has proven to be very useful in social
science research, was also effective in this study. Such an approach is able to
quantify the importance of components for similarity searching applications.
Hence, this method can be used by researchers in the chemoinformatics domain
to identify the components that could improve other virtual screening

applications.

8.4 Contribution to Knowledge

The findings from this study make several contributions to the current

literature in chemoinformatics context and in other domains.

First, with appropriate dimensions of representations and suitable coefficients
to measure the neighbourhood of the molecules, the effectiveness of the search
can be improved. Researchers may consider higher dimensions than the
commonly used 1024 bits fingerprint to represent the chemical dataset as also

suggested by Sastry et al. (2010).

Second, the findings of this investigation support those of earlier studies on high
dimensionality data analysis that the effect of nearest neighbour search in high
dimensionality is influenced by the neighbourhood measures (France et al,,

2012).

Third, this is the first study reporting the use of cross-classified multilevel
modeling to analyse various factors concerning chemical datasets and virtual-
based screening applications. It quantifies the importance of activity classes, 2D

fingerprints, similarity coefficients and reference structures on the effectiveness
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of similarity searches, which has not been studied previously in the
chemoinformatics domain. It also identifies the variances of 2D fingerprint and
similarity coefficient effects and suggests the relative importance of these two
components. In addition, the findings of this investigation confirm the
suggestion made by the previous study that more reference structures should

be used in comparative research of similarity measures (Arif et al., 2013).

8.5 Strengths and Limitations

The key strengths of this study are that: (1) this is the first time an extended
study of dimensionality effects was conducted in the chemoinformatics domain,
and (2) it is also the first ever research in which the cross-classified multilevel

modeling was implemented in a chemoinformatics domain.

On the other hand, this work is subject to at least two limitations. First, the
processing of high dimensionality data requires high computational resources
of processing time and memory. However, this might not be the case if the
experiment is conducted using high performance computing. Second, the
current implementation of the cross-classified multilevel modeling is limited by
the use of one chemical dataset. The implementation involving other datasets

might provide more evidence for the conclusion.

8.6 Suggestion for Future Research
It is recommended that further research be undertaken in the following areas:

1. The current study investigated the effects using various dimensions of 2D
fingerprint. The results corroborate those of a previous study that
highlighted the importance of using the proper number of 2D fingerprint
dimensions (Sastry et al., 2010). The dimension of the 2D fingerprints can be
considered as another influencing factor in determining the effectiveness of
the similarity search application. Therefore, in future work, the dimension of
the fingerprints can be added as another level modelled by the cross-
classified method. This is to quantify the importance of the dimension and

suggest the best dimension that might be used to optimise the similarity
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search application. In addition, the work can be extended to investigate the
effects of dimensionality on the effectiveness of chemoinformatics

applications using 3D fingerprints.

2. There has been interest in optimising the similarity search application by
evaluating the best combination of components (Riniker & Landrum, 2013;
Sastry et al,, 2010). Previously, this has been done by performing all the
possible combinations of components and comparing the results using basic
statistical methods. Alternatively, the cross-classified multilevel modeling
has the ability to provide such an investigation in a different way. That is, by
adding more levels to the models of any possible interactions between the
similarity search components. For example, in order to identify the best
combination of molecular representation and similarity coefficient, an
analysis is conducted, a result is achieved by adding a new level to the model
that represents the combination of different types of representation and
coefficient. Upon the completion of the iterations, the model will produce the
rank and variances for all possible combinations of representations and
coefficients. Based on this rank, the best pair of performers can be identified
and its relative importance can be measured by the level of the variances
compared to the other combinations. It might be possible to use the best
combinations identified for the purpose of optimising the similarity search

application.

3. Many previous studies in molecular clustering have compared and evaluated
different clustering methods with the focus on identifying an effective
method for grouping chemical data (e.g., Willett, 1987; Chu et al., 2012).
However, there are other aspects that need to be considered for optimising
the molecular clustering. MacCuish and MacCuish wrote a review that
emphasised the importance of the molecular representation and the
similarity measure used in the clustering process (MacCuish & MacCuish,
2014). This highlights another perspective that is important in influencing
the effectiveness of the clustering application. Therefore, a further study
focusing on the identification of relative importance of components that

influence molecular clustering is suggested. The cross-classified multilevel
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modeling can be implemented to quantify the more important factors
between the molecular representations, distance measures and clustering
methods. In addition, the number of cluster partitions can be added as
another component because it has been shown to have an influence on the

current study in Chapter 6.
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Figure A-3 Line plot measuring the average bits set, average enrichment curves and bit collision
rate based on the average of 10 random molecules for WOMBAT dataset using various Morgan
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Figure A-4 Line plot measuring the average bits set, average enrichment curves and bit collision
rate based on the average of 10 random molecules for ChEMBL dataset using various Morgan R2

fingerprint dimensions (Refer to Table A-4 for detail values)

209






Appendix B Additional Results of Chapter 6

Appendix B Additional Results of Chapter 6

Table B-1 Effectiveness value of Group Average clustering measured by (a) F-measure and (b)
QPI-measure for the MDDR dataset using various distance coefficients and fingerprint
dimensions. The range of the standard deviation, o, for the mean F is between 0.000 and 0.625

. . . Partition
i i o Fessr ® e
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0.539 0.605 0.665 0.713 0.750 0.869 0.097 0.101 0.105 0.109 0.113 0.116
2° 0.802 0.887 0974 1.060 1.060 1.043 0.109 0.112 0.122 0.131 0.140 0.146
27 0.785 0.877 0.943 0.972 0.981 0.896 0.142 0.161 0.175 0.189 0.206 0.229
28 0.741 0.830 0.876 0.938 0.977 0.971 0.203 0.225 0.248 0.282 0.305 0.314
2° 0.818 0.891 0.931 0.967 0977 1.009 0.231 0.244 0.260 0.270 0.283 0.300
21 0.898 0.934 0934 0.924 0924 1.049 0.235 0.248 0.256 0.260 0.274 0.290
[D1] Bray-Curtis 21 0.918 0937 0946 0945 1.003 1.039 0.229 0.256 0.261 0.260 0.273 0.289
21 0.891 0.987 0.987 0.888 0911 0.951 0.229 0.243 0.246 0.257 0.277 0.286
2B 0914 0954 0965 0.996 1.007 0.987 0.235 0.240 0.253 0.273 0.279 0.283
2 0.842 0954 0952 1.053 1.046 1.046 0.227 0.252 0.254 0.266 0.270 0.281
2 0.830 0.921 0.946 1.003 1.018 1.103 0.232 0.243 0.259 0.270 0.280 0.286
210 0.850 0918 0944 0970 1.015 1.103 0.227 0.254 0.258 0.268 0.280 0.293
2 0915 0.923 0947 0973 1.006 1.008 0.226 0.246 0.259 0.268 0.277 0.292
2° 0.495 0.507 0.577 0.612 0.643 0.758 0.112 0.114 0.118 0.123 0.126 0.129
2° 0.851 0.946 0.956 0.983 1.007 1.008 0.172 0.179 0.191 0.198 0.211 0.217
27 1.072 1.126 1.079 1.038 1.044 1.045 0.276 0.273 0.294 0.296 0.305 0.316
28 0.851 0.862 0908 0976 0976 1.021 0314 0.276 0.286 0.293 0.313 0.330
2° 0959 0947 1.020 1.091 1.064 1.064 0.324 0.332 0.327 0.343 0.347 0.348
210 0.840 0.887 0943 0921 0928 0976 0.309 0.327 0.339 0.347 0.363 0.367
[D2] City-Block 21t 0.880 0.889 0.931 0.929 1.053 1.086 0.309 0.324 0.325 0.345 0.359 0.361
212 0950 1.018 0961 1.001 1.039 1.087 0.299 0315 0.324 0.313 0.353 0.372
2B 0982 1.012 0971 0990 1.042 1.043 0.300 0.325 0.316 0.337 0.349 0.357
2 0963 0963 0933 1.001 1.030 1.096 0.308 0.335 0.334 0.338 0.349 0.379
21 0962 0963 1.002 1.019 1.055 1.121 0.310 0.337 0.348 0.348 0.354 0.339
21 0963 0.982 0972 0988 1.022 1.070 0.306 0.327 0.339 0.339 0.344 0.330
2V 0954 0956 0968 0.994 1.032 1.070 0.309 0.334 0.342 0.347 0.353 0.371
25 0.737 0.791 0.843 0.843 0.877 0.878 0.098 0.101 0.104 0.109 0.113 0.118
26 0.721 0.812 0.857 0.860 0.864 0.871 0.109 0.116 0.123 0.133 0.141 0.145
27 0.727 0.825 0.865 0.884 0.854 0.996 0.150 0.164 0.173 0.183 0.189 0.244
28 0.774 0.823 0.863 0.972 0.968 0.978 0.208 0.222 0.238 0.270 0.274 0.293
2° 0.855 0.870 0.875 0.887 0.900 0.909 0.225 0.244 0.256 0.265 0.278 0.288
21 0.845 0906 0974 0979 1.007 1.109 0.221 0.244 0.259 0.271 0.273 0.281
[D3] Cosine 2 1 0.839 0929 1.012 0.987 0.988 1.056 0.235 0.241 0.260 0.270 0.279 0.287
21 0.863 0.850 0.895 0.855 0.865 0.875 0.226 0.233 0.251 0.268 0.284 0.284
2B 0.861 0.961 0.990 1.018 1.032 1.032 0.229 0.237 0.255 0.266 0.276 0.294
214 0905 0955 0977 1.049 1.061 1.063 0.230 0.243 0.262 0.283 0.285 0.290
2 0.820 0.994 1.016 1.036 1.023 1.031 0.245 0.264 0.272 0.275 0.275 0.309
210 0.908 0989 0.998 1.050 1.068 1.030 0.246 0.240 0.265 0.268 0.275 0.284
2 0.881 0.968 0.998 1.050 1.068 1.030 0.231 0.237 0.264 0.268 0.275 0.283
2° 0.753 0.818 0.857 0.874 0.874 0.935 0.109 0.115 0.121 0.124 0.128 0.132
26 0.808 0.835 0.848 0.920 0.943 0.955 0.173 0.185 0.194 0.201 0.217 0.225
27 0908 0.955 0987 0996 1.037 1.043 0.254 0.264 0.278 0.287 0.283 0.310
28 0.797 0.888 0.903 0.934 1.035 1.098 0.297 0304 0.295 0.278 0.292 0.307
2° 0910 0965 1.011 1.053 1.038 1.064 0.319 0324 0329 0336 0342 0.335
210 0.922 0976 0983 0950 0968 1.010 0.313 0.323 0.329 0.341 0.369 0.381
[D4] Euclidean 21 0.877 0910 1.009 1.013 1.025 1.124 0.313 0.328 0.341 0.342 0.339 0.369
212 0924 0.887 0908 0928 1.018 1.052 0.313 0313 0.327 0.336 0.341 0.375
2 0.882 0919 0901 0913 1.034 1.034 0.306 0.330 0.336 0.347 0.360 0.356
2 0990 1.023 0977 1.058 1.081 1.065 0311 0.337 0.344 0.344 0.359 0.377
215 1.016 0.993 0.994 1.043 1.050 1.113 0.302 0.333 0.342 0.337 0.341 0.388
21 1.036 1.072 1.018 1.043 1.058 1.052 0.295 0.333 0.327 0.346 0.357 0.390
27 1.037 1.072 1.018 1.043 1.058 1.046 0.295 0326 0.321 0.341 0.351 0.378

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Appendix B Additional Results of Chapter 6

Table B-1 (continued)

. . . Partition
Cooltctonts  Dimsensions (a) F-Measure (b) QPI-Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0495 0507 0577 0612 0643 0.758 0110 0113 0118 0.123 0126 0.128
26 0849 0946 0956 0983 1.007 1.008 0172 0180 0.186 0.198 0211 0217
27 1.072 1126 1.079 1038 1.038 1.045 0254 0273 0293 0291 0304 0314
28 0851 0.862 0908 0915 0976 1.021 0314 0274 0279 0293 0312 0.329
2° 0959 0947 1.020 1.082 1.064 1.064 0.324 0332 0324 0345 0347 0347
210 0840 0872 0943 0907 0928 0976 0311 0324 0333 0343 0.363 0.367
[D5] Hamming 21 0825 0940 0910 0931 0929 1.053 0307 0325 0328 0325 0347 0.359
212 0950 0950 0962 0962 1.011 1.011 0299 0299 0325 0325 0349 0.349
2B 0949 0949 0949 0990 0990 0.990 0298 0298 0298 0340 0340 0.340
21 0764 0764 0764 0764 0764 0.764 0228 0228 0228 0228 0228 0228
215 0248 0248 0906 0906 0906 0.906 0084 0084 0.336 0336 0336 0336
21 0758 0758 0.758 0.758 0.758 0.758 0146 0.146 0.146 0.146 0.146 0.146
2V 0161 0161 0.161 0.161 0161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
2° 0588 0.584 0.622 0.698 0716 0.766 0097 0101 0104 0109 0113 0.116
26 0.806 0.872 0.880 0901 0993 1.017 0109 0114 0118 0.129 0142 0.151
27 0736 0798 0930 0949 0968 0.930 0145 0.160 0.183 0.196 0209 0.222
28 0734 0922 0910 0954 0944 0967 0204 0232 0253 0270 0283 0293
2° 0874 0837 0.846 0932 0989 1.039 0244 0243 0253 0264 0275 0.286
210 0909 0919 0.986 0966 0987 1.099 0240 0257 0.275 0278 0.288 0.300
[D6] Jaccard 21 0870 0.825 0.822 0839 0849 0.890 0229 0248 0260 0268 0273 0277
21 0933 0.952 0952 0907 0949 0936 0229 0244 0249 0258 0275 0.287
21 0930 0948 0972 1.030 1.030 1.020 0234 0246 0252 0267 0282 0.289
21 0904 0949 0971 0983 1.026 1.071 0.249 0241 0266 0272 0281 0.290
21 0.936 0938 0959 0980 1.038 1.103 0226 0245 0259 0266 0277 0284
216 0914 0932 0932 0980 1.015 1.103 0233 0250 0256 0262 0274 0.285
2V 0837 0932 0935 0983 1.015 1.038 0208 0239 0257 0260 0270 0.281
2° 0553 0592 0.699 0761 0846 0.846 0.088 0.090 0.092 0.093 0.094 0.096
2°¢ 0627 0747 0.809 0.847 0865 0.866 0.090 0.092 0.095 0.097 0.099 0.103
27 0586 0.657 0709 0801 0.878 0.879 0.095 0.099 0103 0106 0.110 0117
28 0700 0742 0725 0.759 0773 0.795 0101 0106 0117 0.129 0.135 0.139
2° 0.836 0.818 0.874 0.875 0.875 0815 0119 0124 0134 0.147 0147 0157
210 0688 0768 0768 0.850 0.850 0.850 0.120 0.136 0136 0.149 0149 0.149
[D7] Kulsinski 21 0456 0.648 0.648 0.648 0.648 0.808 0096 0.134 0134 0134 0134 0211
212 0569 0569 0.569 0569 0569 0.569 0.109 0.109 0.09 0109 0.109 0.109
2B 0161 0.161 0786 0786 0.786 0.786 0081 0081 0170 0170 0.170 0.170
21t 0386 0.386 0386 0386 0386 0.386 0.090 0.090 0.090 0.090 0.090 0.090
215 0161 0161 0161 0.161 0161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
21 0161 0161 0161 0.161 0161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
2V 0161 0161 0.161 0.161 0161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
25 0725 0773 0.802 0.813 0951 0.969 0113 0115 0118 0.122 0.128 0.130
26 0860 0902 0.859 0920 0947 0.990 0183 0190 0.195 0202 0220 0.223
27 0902 0962 0995 1.003 1.023 1.027 0253 0259 0274 0283 0307 0307
28 0.756 0.850 0917 0926 1.030 1.090 0282 0270 0278 0289 0311 0.319
2° 0923 0975 0964 1.031 1.039 1.059 0304 0.329 0336 0344 0349 0.345
210 0851 0958 0979 0943 0959 1.006 0.309 0320 0.342 0345 0373 0.373
[[)Ti]n?;i‘igs' 21 0843 0925 0950 0950 0989 1.019 0301 0321 0322 0326 0333 0353
21 0947 0960 0904 0933 1.019 1.042 0293 0311 0323 0320 0309 0318
213 0934 0934 0954 0954 1.010 1.010 0296 0296 0337 0337 0346 0346
21 0.996 0.996 0996 1.058 1.058 1.058 0302 0302 0302 0352 0352 0.352
215 0776 0776 0.776 0776 0776 0.776 0245 0245 0245 0245 0245 0.245
216 0317 0317 1.033 1.033 1.033 1033 0083 0083 0335 0335 0335 0.335
2V 0629 0629 0629 0.629 0629 0.629 0162 0162 0162 0.162 0162 0.162

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Appendix B Additional Results of Chapter 6

Table B-1 (continued)

Distance Fingerprint Partition
Coefficients Dimensions (2) F-Measure (b) QPI -Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0.546 0.622 0.698 0.699 0.699 0.774 0.084 0.085 0.086 0.087 0.087 0.088
2°¢ 0.562 0.633 0.634 0.729 0.805 0.834 0.086 0.087 0.089 0.090 0.092 0.093
27 0.601 0.646 0.700 0.765 0.816 0.816 0.089 0.091 0.093 0.097 0.098 0.101
28 0.600 0.656 0.671 0.694 0.767 0.867 0.095 0.101 0.103 0.109 0.113 0.115
2° 0.692 0.678 0.683 0.714 0717 0.737 0.106 0.115 0.124 0.132 0.140 0.150
21 0.734 0.734 0.774 0.774 0.806 0.806 0.117 0.117 0.130 0.130 0.150 0.150
Rus[sztﬁ]_Rao 21t 0.580 0.580 0.580 0.580 0.800 0.800 0.122 0.122 0122 0.122 0.179 0.179
212 0.667 0.667 0.667 0.667 0.667 0.667 0.117 0.117 0.117 0117 0.117 0.117
2B 0.161 0.161 0.816 0.816 0.816 0.816 0.081 0.081 0.168 0.168 0.168 0.168
21t 0.397 0397 0397 0.397 0397 0.397 0.088 0.088 0.088 0.088 0.088 0.088
2 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
210 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
2V 0.161 0.161 0.161 0.161 0.161 0.161 0.000 0.000 0.000 0.000 0.000 0.000
2° 0.574 0.654 0.675 0.699 0.738 0.756 0.097 0.100 0.104 0.108 0.112 0.116
26 0.641 0.805 0.902 0.903 0.997 1.019 0.108 0.116 0.125 0.131 0.139 0.143
27 0.729 0.858 0.859 0.911 0936 0.994 0.141 0.158 0.183 0.203 0.206 0.221
28 0.850 0.814 0.858 0.950 0.982 0.966 0.211 0.243 0249 0272 0.291 0.295
2° 0.853 0.839 0921 1.000 1.014 1.036 0.235 0.248 0.255 0.269 0.282 0.290
210 0.791 0.817 0860 0.873 0.916 0.999 0.239 0247 0262 0.265 0.268 0.278
Sok[a?_ls(:}eath 21t 0.878 0.814 0.829 0.831 0.868 0.928 0.231 0.240 0.249 0258 0.267 0.270
212 0.894 0.932 0.985 0940 0.996 1.007 0223 0.241 0244 0262 0273 0.285
2B 1.028 0900 0.936 0.952 0.988 1.009 0.232 0.241 0253 0260 0.271 0.285
21 0.786 0.907 0963 0.974 0966 1.020 0219 0.255 0266 0269 0277 0.284
21 0.899 0.941 00937 0952 0.957 1.064 0.224 0.254 0271 0.282 0.281 0.285
218 0.945 0.959 0.955 0970 0.955 1.064 0.231 0.246 0.272 0281 0.284 0.289
2 0.904 0.921 0924 0927 0.955 1.064 0.235 0.251 0.266 0.280 0.287 0.291

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Figure B-1 Effects of dimensionality on Group Average clustering measured by (a) F-measure
and (b) QPI-measure for MDDR dataset using various distance coefficients (Refer to Table B-1
for detail values)
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Figure B-1 (continued)
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Appendix B Additional Results of Chapter 6

Table B-2 Effectiveness value of Ward’s clustering measured by (a) F-measure and (b) QPI-
measure for the WOMBAT dataset using various distance coefficients and fingerprint
dimensions. The range of the standard deviation, o, for the mean F is between 0.055 and 0.336

. . . Partition
Costicents  Dincentions (a) F-Measure (b) QP -Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
2° 0.430 0449 0494 0.530 0552 0.555 0.103 0.110 0.116 0.119 0.123 0.126
26 0.774 0.788 0.796 0.802 0918 0.918 0.196 0.205 0.224 0.234 0243 0.251
27 0.779 0.808 0.846 0.866 0.891 0.931 0.263 0.271 0272 0.287 0307 0.320
28 0.862 0915 0.925 0946 0976 0.994 0.280 0.296 0.311 0337 0.346 0.360
2° 0954 0974 0.968 0.973 0974 0.988 0269 0.279 0306 0.331 0357 0.370
2 10 0.870 0.886 0917 0941 0972 1.020 0.282 0.282 0319 0.342 0363 0.373
[D1] Bray-Curtis 21 0.899 0932 0958 0969 1.004 1.004 0.275 0.289 0306 0.333 0349 0.374
212 0.885 0.905 0952 0.952 0979 0.986 0.285 0304 0.322 0.344 0.364 0.369
28 0.920 0949 0955 0.967 0.987 0.999 0.267 0.277 0301 0.323 0.343 0.354
2 1 0.870 0.891 0910 0922 0.945 0.945 0.277 0.298 0325 0.335 0347 0.366
215 0.963 0.983 0951 0.951 00987 0.987 0.297 0.303 0326 0.330 0339 0.361
21 0.964 0.985 0951 00951 0987 0.987 0299 0.312 0333 0.337 0348 0.363
2 0.964 0.985 0942 0951 0987 0.987 0.311 0.329 0.348 0341 0.347 0.363
2° 0.520 0.521 0536 0.590 0.600 0.603 0116 0.119 0.121 0.129 0.133 0.135
2° 0.887 0908 0927 0999 1049 1.068 0.192 0.206 0219 0.234 0.248 0.260
27 0.832 0.884 0903 0915 0919 0.955 0.284 0.295 0315 0.332 0339 0.350
28 0.890 0.920 0.935 0.940 0.990 0.998 0.296 0.318 0321 0.334 0343 0.368
2° 0926 0958 0982 1.040 1.040 1.040 0.279 0303 0322 0.335 0342 0.361
210 0.916 0.953 0971 1.040 1.040 1.049 0.303 0.313 0.344 0.345 0.351 0.379
[D2] City-Block 21 0.904 0934 0971 1.005 1.005 1.005 0310 0.317 0340 0.355 0360 0.377
212 1.033 1.017 1.022 1.051 1.101 1.101 0.325 0.354 0.351 0.356 0.384 0.399
2 13 1.002 1.004 1.016 1.039 1.039 1.039 0.294 0311 0346 0355 0372 0.386
2 0955 1.011 1.011 1.041 1.041 1.041 0.297 0.311 0313 0.342 0367 0.397
21 0973 1.021 1.021 1.039 1.039 1.039 0310 0.324 0338 0.351 0357 0.374
210 0962 1.021 1.031 1.039 1.039 1.039 0.301 0.323 0329 0.344 0350 0.375
2V 0976 1.021 1.021 1.039 1.039 1.039 0310 0.329 0.320 0337 0.358 0.376
2° 0.472 0530 0562 0.596 0.669 0.677 0111 0.117 0122 0.124 0127 0.128
2°¢ 0.802 0.820 0.844 0.875 0967 1.039 0.193 0.210 0216 0.229 0235 0.240
27 0.856 0.899 0.873 0.873 0910 0.910 0.253 0.275 0306 0.310 0322 0.328
28 0.849 0916 0936 0960 0.979 0.983 0271 0.299 0307 0.336 0350 0.373
2° 0.903 0.956 0920 0931 0932 0.932 0.292 0302 0316 0349 0.371 0.386
210 0.892 0950 0951 0.970 1.005 1.005 0.280 0.293 0323 0.334 0357 0.381
[D3] Cosine 21 0.864 0944 0944 0957 0.995 0.995 0.264 0.277 0298 0.317 0343 0.367
212 0.906 0926 0.963 0.977 0.983 0.988 0.281 0.308 0.327 0.351 0362 0.375
2B 0.847 0.888 0.891 0.906 0.947 0.947 0.295 0301 0312 0337 0361 0.380
2t 0.824 0.884 0901 0913 0939 0.955 0.266 0.295 0313 0.336 0360 0.374
21 0.872 0928 0944 0968 0991 0.995 0.281 0.303 0318 0.333 0350 0.365
21 0.873 0.945 0944 0968 0991 0.995 0.280 0.302 0313 0.333 0352 0.370
2 0.876 0.940 0.939 0.968 0.991 0.995 0.278 0.292 0311 0.318 0338 0.353
25 0.520 0.563 0.589 0.641 0.640 0.753 0.120 0.125 0.128 0.129 0.132 0.135
26 0.995 1.083 1.086 1.137 1.140 1.149 0.207 0.231 0248 0.260 0267 0.272
27 0.901 0925 0925 0932 0940 0.974 0.257 0.271 0.294 0.324 0335 0.338
28 0.930 0.951 0958 0.978 0986 0.994 0.293 0.302 0326 0.340 0359 0.379
2° 1.009 0973 0.995 00986 0.990 1.040 0.294 0.323 0355 0362 0.378 0.380
2 10 0.874 0923 0939 0939 0939 0.942 0.297 0310 0336 0.341 0358 0.379
[D4] Euclidean 21 0.928 0950 0.967 0987 00987 1.028 0.300 0.318 0.348 0360 0.368 0.384
212 0916 0.962 0967 0967 1017 1.020 0.287 0.304 0334 0.354 0367 0.404
2B 0917 0966 0986 1.041 1.041 1.040 0311 0.332 0342 0.365 0369 0.383
2 1 0.901 0966 0981 1.035 1.035 1.034 0.316 0.340 0.357 0.365 0.370 0.395
215 0.925 0.965 0986 1.041 1.044 1.040 0.308 0.318 0345 0.357 0362 0.389
21 0936 0982 0986 1.041 1.041 1.040 0.304 0.334 0344 0361 0365 0.400
27 0.898 0928 0971 1.025 1.025 1.024 0.290 0.314 0332 0.346 0351 0.386

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked

in red for ease of reference.
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Table B-2 (continued)

. . . Partition
Coctheients  Dimsensions (2) F-Measure (b) QPI-Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0520 0521 0536 0590 0.600 0.603 0116 0119 0121 0129 0133 0135
26 0.887 0908 0927 0999 1.049 1.068 0192 0206 0219 0234 0248 0260
27 0.832 0884 0903 0915 0919 0955 0286 0294 0311 0332 0339 0349
28 0.890 0920 0935 0940 0990 0.998 0296 0317 0321 0331 0343 0368
2° 0926 0958 0982 1.040 1.040 1.040 0279 0303 0322 0335 0342 0361
210 0916 0953 0971 1.040 1.040 1.049 0300 0313 0342 0345 0351 0372
[D5] Hamming 21 0904 0934 0971 1005 1005 1.005 0308 0316 0340 0354 0358 0376
212 1033 1.017 1013 1025 1101 1.101 0.322 0354 0356 0361 0379 0.398
213 1.002 0965 1.016 1.039 1.039 1.039 0284 0311 0345 0356 0375 0384
214 0936 0997 0997 1.041 1.041 1.041 0299 0309 0309 0335 0335 0371
215 0.899 0973 0973 0973 1039 1.039 0269 0318 0318 0318 0358 0358
216 0896 0896 1.031 1031 1031 1.031 0.245 0245 0323 0323 0323 0323
217 0939 0939 0939 0939 0939 0939 0299 0299 0299 0299 0299 0.299
25 0500 0530 0534 0559 0564 0.586 0108 0113 0117 0120 0122 0.126
26 0.979 1.006 1.067 1.068 1.068 1.050 0200 0211 0214 0226 0238 0241
27 0.890 0931 0944 0962 1010 1.010 0256 0279 0285 0305 0321 0329
28 0.908 0942 0955 0982 0988 0.992 0285 0301 0312 0332 0350 0359
29 0943 0964 0964 0996 1.000 1.000 0275 0301 0323 0344 0350 0.368
210 0950 0950 0977 1.000 1.000 1.000 0283 0290 0312 0330 0340 0359
[D6] Jaccard 1 0950 0956 0975 0982 0995 0.995 0277 0302 0336 0357 0361 0.375
212 0959 0978 1.017 0999 0999 0.999 0281 0307 0324 0354 0362 0372
213 0941 0954 0981 0998 0998 0.999 0279 0300 0325 0349 0365 0371
2 0939 0960 0986 0998 1.002 1.002 0282 0304 0329 0338 0351 0366
215 0924 0965 1.002 1.002 1.002 1.002 0282 0297 0316 0340 0357 0372
216 0945 0973 1.002 1.002 1.002 1.002 0293 0296 0316 0336 0346 0358
217 0967 0997 1.002 1002 1.002 1.002 0287 0315 0324 0348 0363 0367
25 0427 0454 0510 0.601 0.606 0.669 0113 0117 0121 0125 0128 0.131
26 0.833 0935 0972 1.043 1.043 1.049 0200 0210 0226 0237 0247 0251
27 0921 0953 1.000 1.000 0996 0.996 0292 0301 0307 0320 0327 0337
28 0950 0962 0983 0990 0990 0.990 0286 0308 0315 0321 0337 0361
2° 0944 0952 0985 0990 0990 0.990 0284 0297 0328 0336 0345 0355
210 0.885 0935 0951 0951 0951 0951 0294 0308 0320 0329 0342 0359
[D7] Kulsinski 21 0925 0.983 0990 0990 0990 0.999 0306 0315 0325 0330 0343 0364
212 0.878 0933 0949 0949 0949 0.949 0334 0349 0341 0365 0367 0.381
21 0928 0978 1.003 1003 1.003 1.002 0296 0314 0324 0338 0345 0355
21 0.975 0980 1.002 1.002 1.002 1.002 0283 0294 0319 0327 0352 0352
215 0940 0940 1.003 1003 1.003 1.002 0296 0296 0329 0329 0329 0366
216 0.883 0972 0972 0972 0972 0972 0246 0334 0334 0334 0334 0334
2V 0.784 0784 0784 0784 1.036 1.036 0239 0239 0239 0239 0335 0335
25 0484 0493 0529 0593 0.624 0.630 0115 0118 0122 0125 0.128 0.133
26 0940 1.025 1.021 1024 1039 1.108 0214 0229 0239 0252 0263 0277
27 0.845 0901 0925 0941 0981 0.996 0253 0286 0310 0323 0328 0.343
28 0921 0948 0972 0975 0978 0.990 0311 0321 0322 0324 0347 0378
29 0927 0953 1.007 1.029 1.029 1.029 0285 0316 0336 0355 0362 0377
210 0879 0916 0937 0995 0995 1.006 0312 0324 0347 0356 0349 0359
[])T?n?;%igs' 21 0914 0967 0971 1.039 1.039 1.039 0302 0334 0339 0344 0346 0376
212 1.006 0995 1006 1.041 1.091 1.091 0305 0331 0353 0361 0378 0.393
213 0998 1.002 1.021 1.039 1.039 1.039 0291 0340 0352 0.367 0.383 0388
214 0965 0978 1.011 1039 1039 1.039 0290 0298 0308 0342 0368 0388
218 0951 1016 1016 1029 1029 1.039 0305 0320 0320 0341 0341 0361
216 0914 0976 0976 0976 1.039 1.039 0273 0312 0312 0312 0352 0352
217 0.842 0842 1.021 1021 1.021 1.021 0258 0258 0319 0319 0319 0319

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Appendix B Additional Results of Chapter 6

Table B-2 (continued)

. . . Partition
Coeficionts  Dimmenions (s) F-Measure (6) QPI-Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
2° 0.468 0.483 0.487 0.552 0.585 0.596 0.105 0.108 0.110 0.114 0.116 0.119
20 0919 1.021 1.010 1.010 0.998 1.002 0.190 0.207 0.218 0.228 0.234 0.246
27 0927 0946 0950 0.997 0.997 1.004 0.267 0.278 0.295 0.307 0.325 0.333
28 0.955 0959 0987 1.005 0.994 0.994 0.268 0.285 0.309 0.335 0.349 0.348
2° 0952 0975 0985 0.994 0.994 0.994 0.290 0.330 0.363 0.355 0.373 0.388
210 0.932 0979 1.002 1.002 1.002 1.002 0.282 0327 0.345 0.361 0.374 0.386
Rus[slzzllal]-Rao 21t 0923 0995 1.002 1.002 1.040 1.040 0.303 0.312 0.320 0.337 0.353 0.367
212 0.891 0915 0956 0956 1.006 1.052 0.299 0309 0.317 0.341 0.365 0.368
213 0952 0969 1.003 1.003 1.003 1.002 0309 0.332 0326 0.331 0.336 0.338
21 0904 0924 1.002 1.002 1.002 1.002 0.287 0.284 0.298 0.321 0.344 0.344
215 0941 0941 1.002 1.002 1.002 1.002 0.314 0314 0.333 0.333 0.333 0.365
21 0.864 0.953 0.953 0.953 0.953 0.953 0.268 0.330 0.330 0.330 0.330 0.330
2V 0.839 0.839 0.839 0.839 1.036 1.036 0.231 0.231 0.231 0.231 0.342 0.342
25 0.488 0.567 0.570 0.592 0.611 0.661 0.115 0.119 0.124 0.127 0.133 0.135
26 0920 1.021 1.047 1.117 1.146 1.146 0.208 0.228 0.243 0.257 0.259 0.264
27 0941 0941 0974 0.992 0.999 1.016 0.249 0.264 0.287 0.310 0.327 0.350
28 0950 0.991 1.050 1.020 1.020 1.020 0.307 0.308 0.322 0.336 0.335 0.364
2° 0.952 0984 1.002 1.002 1.002 1.002 0.268 0.279 0.299 0.309 0.332 0.350
210 0923 0969 0.990 0.990 0.990 0.990 0.292 0339 0.334 0335 0.349 0.364
Sok[a?—ls(l)lleath 2t 0.888 0.934 0951 0951 0951 0951 0.256 0.296 0.315 0.318 0.330 0.353
212 0959 0964 1.002 1.002 1.002 1.002 0.319 0.333 0.347 0.353 0.357 0.373
213 0.981 1.034 1.043 1.034 1.034 1.034 0.320 0.342 0354 0.365 0.377 0.390
2t 0976 0978 1.002 1.002 1.002 1.002 0.300 0.318 0.348 0.354 0.355 0.357
21 0976 1.000 1.002 1.002 1.002 1.002 0.303 0.321 0.332 0.334 0.347 0.359
210 0.975 1.000 1.002 1.002 1.002 1.002 0.346 0.360 0.351 0.358 0.372 0.380
2V 0975 1.012 1.002 1.002 1.002 1.002 0312 0356 0.356 0.361 0.363 0.394

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Appendix B Additional Results of Chapter 6
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Figure B-2 Effects of dimensionality on Ward’s clustering measured by (a) F-measure and (b)
Q@PI-measure for WOMBAT dataset using various distance coefficients (Refer to Table B-2 for

detail values)
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[D5] Hamming
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[D9] Russell-Rao
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Appendix B Additional Results of Chapter 6

Table B-3 Effectiveness value of Group Average clustering measured by (a) F-measure and (b)
QPI-measure for the WOMBAT dataset using various distance coefficients and fingerprint
dimensions. The range of the standard deviation, o, for the mean F is between 0.000 and 0.466

. . . Partition
o et @ e ) 07 s
500 600 700 800 900 1000 500 600 700 800 900 1000
2° 0.393 0.400 0.495 0.514 0.560 0.578 0.076 0.078 0.081 0.084 0.086 0.089
2°¢ 0434 0460 0.600 0.644 0.669 0.688 0.088 0.092 0.101 0.106 0.113 0.123
27 0469 0.533 0.624 0.621 0.683 0.718 0.131 0.135 0.155 0.190 0.194 0.191
28 0.630 0.795 0.785 0.817 0.897 0917 0.166 0.180 0.191 0.209 0.226 0.242
2° 0.748 0.802 0.843 0.856 0.869 0.894 0.190 0.214 0.222 0.250 0.250 0.257
21 0.725 0.753 0.805 0.835 0.909 0.909 0.186 0.224 0.245 0.244 0.264 0.273
[D1] Bray-Curtis 21t 0.767 0914 0903 0903 0.929 0.957 0.211 0.215 0.236 0.246 0.258 0.311
212 0.768 0.854 0.874 0.915 0937 0.963 0.205 0.229 0.241 0.257 0.319 0.326
2B 0.917 0.932 0.893 0.898 0.941 0.966 0.205 0.228 0.241 0.254 0.307 0.313
21t 0.788 0.846 0901 0914 0922 0.966 0.207 0.234 0.234 0.270 0.310 0.323
21 0.784 0.847 0.899 0912 0914 0.961 0.215 0.228 0.234 0.276 0.310 0.321
21 0.775 0.847 0.899 0912 0.936 0.961 0.208 0.223 0.234 0.273 0.310 0.321
2 0.733 0.843 0.911 0912 0936 0.961 0.199 0.238 0.232 0.272 0.307 0.317
25 0.407 0.480 0.549 0.557 0.614 0.648 0.089 0.091 0.096 0.097 0.099 0.101
2° 0.712 0.721 0.773 0.838 0.901 0.927 0.178 0.190 0.188 0.194 0.202 0.214
27 0.922 0.985 0.999 1.004 0.999 0.999 0.267 0.281 0.264 0.302 0.315 0.332
28 0.850 0.905 0.973 0974 1.005 1.013 0.238 0.254 0.303 0.391 0.388 0.402
2° 0.792 0910 0976 0.979 0.942 0.997 0.246 0.238 0.269 0.294 0.313 0.344
210 0.821 0.881 0925 0946 0.966 0.987 0.253 0.263 0.280 0.280 0.304 0.345
[D2] City-Block 2t 0.826 0.858 0.937 0.951 0.964 0.983 0.246 0.306 0.324 0.321 0.328 0.338
212 0.840 0.874 0.905 0.973 0.987 0.981 0.251 0.313 0.312 0.325 0.330 0.355
213 0.841 0.857 0911 0949 0975 0976 0.242 0.273 0.320 0.331 0.350 0.350
2 0.805 0.864 0926 0926 0.987 0.936 0.241 0.303 0.310 0.280 0.356 0.380
21 0.845 0921 0939 0959 0.987 0.937 0.241 0.294 0.323 0.292 0.357 0.380
21 0916 0.921 0.941 0.945 0.966 0.922 0.231 0.288 0.327 0.287 0.347 0.355
2V 0.875 0.920 0936 0940 0.966 0.922 0.236 0.320 0.328 0.280 0.346 0.358
2° 0.306 0.365 0.414 0.467 0.496 0.541 0.076 0.079 0.081 0.083 0.086 0.089
2° 0.435 0.483 0.569 0.643 0.669 0.691 0.087 0.095 0.100 0.106 0.114 0.121
27 0.549 0.570 0.610 0.637 0.680 0.743 0.123 0.136 0.150 0.179 0.193 0.197
28 0.643 0.742 0.821 0.839 0.926 0.927 0.171 0.181 0.200 0.217 0.227 0.241
2° 0.750 0.781 0.810 0.821 0.851 0.890 0.179 0.198 0.221 0.218 0.247 0.249
21 0.728 0.832 0.827 0.850 0.906 0.939 0.215 0.220 0.240 0.249 0.274 0.283
[D3] Cosine 21 0.818 0.891 0.899 0.906 0.920 0.960 0.204 0.232 0.229 0.240 0.258 0.318
212 0.854 0.921 0.933 0.944 0.944 0.957 0.210 0.234 0.243 0.271 0.275 0.354
2B 0.843 0.810 0.874 0.907 0.921 0.956 0.195 0.217 0.222 0.250 0.260 0.345
21t 0.819 0.821 0.866 0.904 0.923 0.956 0.199 0.228 0.240 0.244 0.267 0.329
2 0.798 0.845 0.862 0.905 0.909 0.957 0.195 0.224 0.234 0.248 0.281 0.350
210 0.728 0.906 0.925 0.961 0.961 0.987 0.203 0.237 0.247 0.248 0.267 0.348
2 0.793 0906 0.925 0.961 0.961 0.987 0.200 0.243 0.254 0.251 0.267 0.350
2° 0.448 0.535 0.559 0.588 0.645 0.674 0.088 0.090 0.095 0.097 0.098 0.102
26 0.652 0.707 0.781 0.847 0.858 0.979 0.180 0.188 0.201 0.208 0.213 0.226
27 0.940 0.979 0.959 0958 0.958 0.962 0.224 0.253 0.262 0.310 0.304 0.316
28 0.868 0.901 0.942 0.981 0.989 0.990 0.258 0.282 0.279 0.313 0.362 0.370
2° 0.836 0.886 0.940 0.946 0.947 0.983 0.249 0.261 0.252 0.285 0.307 0.338
210 0.817 0.857 0.925 0.944 0973 0.975 0.219 0.262 0.277 0.268 0.284 0.320
[D4] Euclidean 21 0.832 0.873 0917 0917 0966 1.008 0.234 0.297 0.315 0.306 0.332 0.338
22 0.883 0936 0955 0960 0.964 0.973 0.242 0.283 0.312 0.297 0.302 0.361
213 0.877 0.901 0.945 0930 0936 0.984 0.255 0.329 0.343 0.299 0.314 0.364
2 0.865 0.892 0.930 0915 0.970 0.922 0.246 0.280 0.312 0.307 0.348 0.348
21 0.847 0913 0925 0.928 0.980 0.937 0.252 0.282 0.329 0.322 0.344 0.337
21 0.833 0.882 0910 0919 0972 0.928 0.233 0.286 0.316 0.322 0.334 0.348
2V 0.841 0.877 0.923 0.924 0.984 0.934 0.231 0.287 0.311 0.315 0.338 0.354

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Table B-3 (continued)

. . . Partition
Cooltctonts  Dimsensions (a) F-Measure (b) QPI-Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
25 0.407 0480 0529 0557 0.614 0.648 0.089 0091 0.095 0097 0.099 0.101
26 0707 0721 0759 0.838 0901 0927 0176 0.190 0.189 0.194 0201 0214
27 0.916 0.979 0.999 1.004 0999 0999 0.267 0281 0264 0302 0316 0332
28 0820 0905 0957 0974 1.003 1.013 0223 0250 0301 0391 0387 0.402
2° 0792 0910 0954 0979 0942 0979 0246 0238 0257 0277 0310 0.340
210 0788 0.881 0.888 0946 0.966 0987 0234 0262 0282 0282 0297 0344
[D5] Hamming 21 0826 0858 0925 0943 0963 0963 0246 0303 0310 0296 0329 0.329
212 0772 0772 0.875 0973 0973 0973 0228 0228 0.318 0290 0290 0.290
2B 0743 0858 0.858 0.858 0.858 0.975 0154 0250 0250 0.250 0.250 0.346
21 0619 0619 0619 0926 0926 0926 0133 0133 0133 0309 0309 0.309
215 0805 0.805 0.805 0.805 0.805 0.805 0214 0214 0214 0214 0214 0214
21 0467 0467 0.467 0467 0467 0.467 0.091 0.091 0091 0.091 0.091 0.091
2V 0126 0126 0.126 0126 0126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
2° 0388 0427 0.460 0491 0586 0618 0.075 0.078 0.080 0.083 0.085 0.088
26 0.408 0444 0582 0706 0732 0745 0.085 0092 0.100 0105 0.114 0.120
27 0460 0516 0675 0716 0.691 0.795 0121 0137 0149 0.164 0.196 0.196
28 0627 0796 0790 0.803 0.832 0918 0172 0179 0.198 0203 0223 0238
2° 0780 0821 0840 0.874 0878 0.903 0205 0216 0222 0242 0251 0.262
210 0745 0.828 0832 0.848 0.958 0.958 0214 0237 0.248 0257 0271 0279
[D6] Jaccard 21 0734 0867 0.891 0.892 0918 0943 0202 0219 0231 0241 0257 0271
21 0806 0.903 0.874 0.887 0920 0929 0204 0233 0245 0249 0268 0.306
213 0.896 0896 0.903 0903 0933 0939 0.220 0219 0245 0256 0.306 0312
21 0771 0812 0.881 0904 0928 0930 0202 0222 0233 0275 0296 0.314
21 0845 0.868 0.894 0.908 0924 0950 0206 0221 0230 0248 0292 0295
2t 0855 0.858 0.894 0.908 0929 0.950 0214 0231 0233 0253 0259 0.291
2V 0855 0.858 0.894 0.908 0924 0.950 0212 0232 0232 0285 0287 0291
25 0327 0391 0425 0502 0520 0556 0068 0.069 0.070 0071 0073 0.074
2°¢ 0318 0337 0389 0435 0462 0462 0070 0.071 0.073 0.075 0.077 0.079
27 0325 0416 0441 0432 0438 0.500 0.073 0077 0081 0084 0.087 0091
28 0331 0334 0379 0427 0513 0538 0081 0.083 0092 0.099 0.105 0.109
2° 0408 0579 0.618 0.618 0.720 0.730 0.093 0100 0110 0.110 0.118 0.128
210 0429 0429 0515 0515 0586 0586 0.100 0100 0118 0.118 0.131 0131
[D7] Kulsinski 21 0287 0475 0475 0475 0475 0.608 0082 0.120 0.120 0.120 0.120 0.156
212 0350 0350 0350 0350 0350 0.350 0.098 0.098 0.098 0098 0.098 0.098
2B 0127 0127 0127 0531 0531 0531 0.064 0064 0064 0131 0.131 0131
21t 0163 0163 0.163 0.163 0.163 0.163 0073 0.073 0073 0.073 0073 0073
215 0126 0126 0126 0126 0126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
21 0126 0126 0126 0126 0126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
2V 0126 0126 0.126 0126 0126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
25 0414 0438 0513 0559 0.653 0.674 0.085 0.089 0.094 0.098 0.102 0.103
26 0646 0701 0769 0.872 0878 0913 0168 0.178 0.184 0.195 0205 0211
27 0869 0.966 0932 0942 0949 0943 0227 0236 0263 0301 0284 0294
28 0.901 0948 0956 1.042 1.063 1.058 0262 0.273 0283 0273 0300 0.320
2° 0811 0888 0.971 0975 0982 0.997 0254 0259 0280 0292 0301 0.328
210 0832 0.861 0894 0954 0944 0976 0.310 0268 0269 0270 0286 0.305
[[)Ti]n?;i‘igs' 21 0832 0838 0925 0937 0973 0992 0233 0268 0290 0278 0319 0338
21 0738 0.837 0914 0985 0948 0948 0234 0258 0.309 0298 0.324 0324
213 0.810 0810 0916 0939 0939 0939 0240 0240 0278 0289 0289 0.289
21 0759 0.868 0.868 0.868 0.868 0.891 0151 0256 0256 0256 0256 0.355
215 0586 0.586 0586 0931 0931 0931 0134 0134 0134 0306 0306 0306
216 0822 0822 0822 0822 0822 0822 0218 0218 0218 0218 0218 0218
2V 0466 0466 0.466 0466 0466 0.466 0091 0.091 0091 0.091 0.091 0.091

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Table B-3 (continued)

Distance Fingerprint Partition
Coefficients Dimensions (2) F-Measure (b) QPI-Measure
500 600 700 800 900 1000 500 600 700 800 900 1000
2° 0.355 0.356 0.381 0.381 0.420 0.459 0.066 0.066 0.067 0.067 0.068 0.069
2°¢ 0.275 0.328 0.367 0.397 0.437 0.461 0.067 0.068 0.069 0.069 0.071 0.071
27 0.291 0.348 0.435 0.470 0.535 0.535 0.070 0.070 0.073 0.074 0.078 0.078
28 0.327 0364 0.397 0.471 0483 0.498 0.074 0.076 0.081 0.087 0.089 0.093
2° 0.511 0.633 0.646 0.675 0.748 0.811 0.080 0.089 0.094 0.100 0.104 0.117
21 0.325 0.538 0.538 0.601 0.601 0.601 0.087 0.102 0.102 0.118 0.118 0.136
Rus[sDeﬁ]—Rao 21t 0.222 0.402 0.402 0.402 0.402 0.603 0.078 0.107 0.107 0.107 0.107 0.137
21 0.338 0.338 0.338 0.338 0.338 0.338 0.093 0.093 0.093 0.093 0.093 0.093
2B 0.127 0.127 0.127 0.619 0.619 0.619 0.064 0.064 0.064 0.138 0.138 0.138
21 0.178 0.178 0.178 0.178 0.178 0.178 0.075 0.075 0.075 0.075 0.075 0.075
2 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
210 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
2V 0.126 0.126 0.126 0.126 0.126 0.126 0.000 0.000 0.000 0.000 0.000 0.000
2° 0365 0.420 0.422 0474 0.546 0.570 0.075 0.077 0.079 0.082 0.084 0.087
26 0.425 0.531 0.699 0.733 0.737 0.739 0.088 0.092 0.102 0.107 0.117 0.121
27 0.476 0.587 0.653 0.675 0.735 0.802 0.127 0.140 0.155 0.185 0.187 0.196
28 0.637 0.767 0.796 0.808 0.908 0.912 0.167 0.185 0.194 0.207 0.228 0.233
2° 0.758 0.808 0.827 0.874 0.884 0.910 0.200 0.210 0.233 0.248 0.267 0.265
210 0.735 0.744 0.785 0.832 0917 0917 0.210 0.229 0.246 0.260 0.276 0.286
Sok[a?—lS?l]eath 21t 0.723 0.816 0.850 0.853 0.875 0.923 0.215 0.223 0.232 0.238 0.252 0.265
212 0.855 0.903 0.869 0.871 0.908 0.918 0.205 0.231 0.244 0.257 0.323 0.332
2B 0.862 0.888 0.897 0.910 0912 0.940 0.197 0.260 0.280 0.315 0.311 0.320
21 0.817 0.824 0.908 0.909 0.926 0.932 0.203 0.219 0.238 0.248 0.306 0.315
21 0.893 0.858 0.908 0909 0.926 0.940 0.206 0.214 0.233 0.305 0.304 0.315
21 0.783 0.860 0.907 0.909 0.926 0.940 0.204 0.224 0.233 0.244 0.306 0.316
27 0.777 0.860 0.907 0.909 0.926 0.940 0.195 0.220 0.238 0.307 0.305 0.315

The best-performing fingerprint dimension in each column of the table is italicised, bold-faced and marked
in red for ease of reference.
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Figure B-3 Effects of dimensionality on Group Average clustering measured by (a) F-measure
and (b) QPI-measure for WOMBAT dataset using various distance coefficients (Refer to
Table B-3 for detail values)
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Figure B-3 (continued)
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Appendix C Additional Results of Chapter 7

Table C-1 Variance estimation of similarity search components (3 level cross-classified model)
for 150 reference structures

Model No. Intercept (Mean EF) Effect L3 Variance Effect L2 Variance Effect L1 Variance
(Fingerprint) (Similarity Coefficient) (Residual Error)
SHT (MPS = 0.34)
1 4.437 13.365 0.668 0.969
2 5.465 1.729 2.484 1.334
3 1.594 3.117 0.139 0.698
4 4.243 3.286 1.029 1.463
5 3.105 2.390 0.363 0.946
6 7.702 7.574 2.303 2.437
7 7.007 5.408 2.389 1.887
8 9.180 9.165 4.587 3.092
9 6.155 3.582 1.130 4.438
10 2.324 2.299 0.136 0.571
SHT1A (MPS = 0.37)
11 1.637 0.249 0.033 0.141
12 7.914 9.349 1.391 2.242
13 3.931 7.408 0.762 1.871
14 5.794 9.715 1.973 2.758
15 7.080 22.093 3.138 6.911
16 7.854 21.028 3.435 6.326
17 3.225 5.609 0.598 0.980
18 12.045 39.632 5.434 9.414
19 12.546 50.677 5.781 9.008
20 12.042 51.400 5.649 8.431
SHT3 (MPS = 0.35)
21 4.403 5.371 0.602 2.634
22 1.776 1.662 0.153 0.407
23 12.831 84.702 3.821 15.112
24 2.674 6.270 0.150 1.249
25 3.579 3.664 0.024 2.342
26 7.221 22.094 1.387 7.777
27 27.357 50.438 9.619 23.631
28 26.556 42.110 10.397 25.137
29 27.782 56.359 14.899 21.284
30 25.515 73.787 8.988 13.962
AChE (MPS = 0.36)
31 8.322 23.009 1.374 3.979
32 7.933 19.183 1.618 2.741
33 8.884 19.328 2.311 2.855
34 9.524 10.567 0.525 3.505
35 9.521 14.459 1.123 3.209
36 1.079 0.300 0.005 0.163
37 11.836 6.023 0.691 1.543
38 22.586 20.633 10.385 11.419
39 10.106 20.699 2.134 4.118
40 6.760 5.878 1.476 3.314
AT1 (MPS = 0.52)
41 6.430 42.396 2.355 11.679
42 34.558 87.156 66.798 82.178
43 30.310 111.689 53.158 62.094
44 30.327 108.162 46.212 57.823
45 28.705 137.240 41.022 80.110
46 30.157 104.919 44.730 74.675
47 46.634 114.361 98.825 130.524
48 36.678 95.607 33.328 95.962
49 27.345 162.659 36.485 83.347
50 6.720 27.571 3.036 9.350

The grey box indicates larger variance when compared between the variance estimated for L3 and L2
while the italic and bold faced indicate largest variance when compared between the variance estimated
for L3, L2 and the residual error within the same reference compound.
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Table C-1 (continued)

Effect L3 Variance

Effect L2 Variance

Effect L1 Variance

Model No. Intercept (Mean EF) (Fingerprint) (Similarity Coefficient) (Residual Error)
COX (MPS = 0.28)
51 10.036 10.325 1.299 3.362
52 7.153 5.564 2.593 3.153
53 4918 11.729 0.113 4.067
54 4.413 3.443 0.317 1.515
55 14.601 7.234 6.561 4.396
56 13.195 24.094 6.503 13.357
57 7.181 5.455 3.648 3.727
58 8251 14.597 3.822 7.486
59 5.354 16.845 1.373 7.636
60 7.260 12.167 3.219 4.945
D2 (MPS = 0.35)
61 3.583 5.366 0.372 1.051
62 5.007 6.779 0.539 0.909
63 4.897 7.621 0.482 0.913
64 1.490 0.266 0.006 0.235
65 13.933 42.849 4.272 11.753
66 5.064 6.886 0.554 1.627
67 5.432 8.589 0.493 1.692
68 10.869 22.406 3.082 4722
69 6.495 37.475 0.468 2.964
70 13.869 32.004 4.890 15.634
FXA (MPS = 0.39)
71 6.776 3.452 1.251 1.941
72 6.494 2.196 1.052 1.445
73 5.915 6.396 1.315 4.555
74 6.898 8.463 2.421 5.680
75 5.187 2.692 0.974 2.162
76 5.280 2.733 1.276 1.956
77 5.941 5.840 6.072 6.477
78 2.286 0.884 0.913 1.124
79 2.812 1.915 1.237 1.881
80 17.355 7.787 14.204 11.082
HIVP (MPS = 0.43)
81 18.610 30.666 6.086 14.873
82 9.257 1.925 1.107 1.585
83 8.800 4.822 1.722 2.226
84 20.425 29.896 7.982 12.380
85 20.864 19.862 7.302 12.413
86 20.445 46.468 6.787 20.709
87 20.140 6.458 7.616 11.354
88 12.194 2.981 2.465 2.283
89 16.418 18.318 7.626 9.326
90 16.472 47.030 6.982 16.631
MMP1 (MPS = 0.40)
91 31.471 127.166 17.645 24.619
92 29.731 117.006 11.234 22.563
93 30.987 94.372 13.847 16.106
94 12.477 4.003 10.833 7.599
95 15.573 54.817 7.320 10.008
96 20.196 147.754 15.280 23.406
97 19.727 35.765 6.438 11.552
98 13.109 11.696 4.842 6.540
99 30.706 137.315 12.970 21.345
100 16.369 47.924 5.037 7.557

The grey box indicates larger variance when compared between the variance estimated for L3 and L2
while the italic and bold faced indicate largest variance when compared between the variance estimated

for L3, L2 and the residual error within the same reference compound.
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Table C-1 (continued)

Effect L3 Variance Effect L2 Variance Effect L1 Variance
Model No. Intercept (Mean EF) (Fingerprint) (Similarity Coefficient) (Residual Error)

PDE4 (MPS = 0.31)
101 5.729 37.694 1.112 3.171
102 1.188 1.229 0.031 0.912
103 6.408 27.319 1.662 4.372
104 9.770 38.629 3.287 6.561
105 10.078 45.134 2.995 7.247
106 8.523 48.335 2.325 6.009
107 14.236 77.454 4414 17.463
108 10.611 18.559 0.346 2.898
109 10.981 20.105 0.954 3.403
110 11.451 25.748 1.256 3.408

PKC (MPS = 0.42)
111 12.451 1.904 1.367 2.470
112 53.141 193.366 8.106 28.016
113 5.715 26.661 0.738 4.396
114 4.642 8.877 0.342 1.336
115 13.390 1.898 2.861 4.751
116 11.165 1.574 0.802 1.921
117 11.695 1.323 1.119 2.037
118 13.673 0.534 1.386 2.959
119 13.929 0.101 0.680 1.826
120 13.767 0.428 1.093 1.982

Renin (MPS = 0.45)
121 6.444 8.269 2.352 3.888
122 11.987 8.010 6.077 3.241
123 7.199 7.062 2.959 1.672
124 9.749 20.062 8.930 8.556
125 0.840 0.084 0.157 0.574
126 1.014 0.172 0.073 0.303
127 1.020 0.113 0.423 1.094
128 9.366 15.843 2.785 2.967
129 9.459 2.145 3.732 2.589
130 12.490 41.097 13.101 12.682

SubP (MPS = 0.43)
131 37.015 258.794 57.147 87.199
132 14.757 49.111 6.762 14.710
133 10.854 25.991 7.177 13.103
134 6.106 4971 1.275 6.796
135 37.747 225.417 82.373 114.124
136 15.063 76.002 11.654 15.141
137 36.127 336.515 76.101 125.003
138 36.635 232.465 76.079 112.295
139 14.947 128.740 9.467 25.072
140 11.632 29.336 7.215 10.475

Thrombin (MPS = 0.35)

141 15.477 57.288 9.861 10.508
142 18.917 48.530 19.911 15.043
143 15.496 19.484 12.267 6.558
144 3.092 1.810 0.687 1.498
145 8.578 6.184 3.030 4.882
146 19.844 15.377 11.024 9.058
147 21.456 10.008 12.515 9.481
148 17.983 10.948 10.229 6.131
149 14.071 28.830 9.949 11.604
150 16.754 8.991 8.067 10.047

The grey box indicates larger variance when compared between the variance estimated for L3 and L2
while the italic and bold faced indicate largest variance when compared between the variance estimated
for L3, L2 and the residual error within the same reference compound.
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Figure C-1 Caterpillar plot of the fingerprint-level residuals with 95% Bayesian credible

intervals for 15 activity classes of ChEMBL dataset
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Figure C-2 Caterpillar plots of the similarity coefficient-level residuals with 95% Bayesian
credible intervals for 15 activity classes of ChEMBL dataset
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Figure C-2 (continued)
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