
 
 

 
 

 

 

 

 

Building Humanised Models  

of Staphylococcus aureus Infection 

 

 

 

 

Kyle David Buchan 

 

Submitted for the degree of Doctor of Philosophy 

Department of Infection, Immunity and Cardiovascular Disease 

University of Sheffield 

 April 2018 



2 
 



3 
 

Abstract 
 

Staphylococcal infection is shaped by a large repertoire of virulence factors, 

complicating both pathology and treatment. A large number of these factors attack the 

innate immune system directly, allowing S. aureus to resist phagosomal killing and target 

phagocytes using cytolytic toxins. Many of these factors display great species-specificity 

for humans, with as few as two amino acid changes reducing binding affinity by 100-

fold. A lack of targetable components in existing in vivo models makes accurate 

representation of staphylococcal infection impossible, necessitating the creation of 

humanised models in order to fully understand the roles of these factors during 

infection. 

One component targeted by at least three virulence factors is the human C5a receptor 

(hC5aR), a critical chemotactic receptor in neutrophils. Another component targeted by 

S. aureus is the peroxidase enzyme myeloperoxidase (MPO), which potentiates the 

neutrophil respiratory burst to facilitate phagosomal killing. To investigate these 

adapted virulence factors, I generated two humanised zebrafish models that permit 

investigation of the interactions between human-adapted virulence factors and 

components of the innate immune system. I overexpressed the hC5aR and MPO as 

fluorescently-tagged fusion proteins in zebrafish neutrophils, and assessed the impact 

on neutrophil function and staphylococcal infection. 

Both constructs were successfully expressed in zebrafish neutrophils, with the hC5aR 

expressed at the cell membrane and MPO colocalising with the primary granules. 

Expression of MPO had no impact on neutrophil migration; however, expression of the 

hC5aR at the cell surface produced a broad defect in chemotaxis, likely due to disruption 

of endogenous chemotactic signals. Neutrophils expressing the hC5aR gained the ability 

to migrate to human C5a as a chemotactic agent and became susceptible to targeting 

by staphylococcal leukocidins, recapitulating human neutrophils. MPO was found to be 

enzymatically inactive in this model, potentially producing an in vivo marker of 

neutrophil granules that does not interfere with endogenous myeloperoxidase activity.
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RNA, Sod Superoxide Dismutase, SPIN Staphylococcal Peroxidase Inhibitor, SSL 

Staphylococcal Superantigen-Like, TALEN Transcription Activator-Like Effector 

Nuclease, TIIA Tanshinone IIA, TLR Toll-Like Receptor, TNF Tumour Necrosis Factor, UAS 

Upstream Activating Sequence, v/v Volume Per Volume, vWf von-Willebrand Factor, 

vWfbp von-Willebrand Factor Binding Protein, w/v Weight Per Volume, ZFN Zinc-Finger 

Nuclease, βC-φS β-Haemolysin Converting Bacteriophage 
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Chapter 1: Introduction 
 

1.1 The Innate Immune System 
 

1.1.1 The Role of the Innate Immune System 
 

The human body is protected from infection by two distinct arms of the immune system: 

the adaptive and innate immunity. The adaptive immunity is highly-specific and long-

lived, but is slow to develop due to the necessary acquisition of immune memory 

followed by the expansion of specific cell types. The innate immune system is rapid and 

can recognise a broad number of pathogens, allowing the body to respond and prevent 

the initiation of infection as the first line of defence against invading microbes. The 

innate immune system is comprised of the physical barrier to infection, antimicrobial 

proteins, receptors that recognise specific molecules associated with pathogens and 

phagocytic cells that engulf and destroy microbes. The function of the innate immune 

system is to provide protection from invading pathogens where the adaptive immune 

system is unable, by preventing, recognising and destroying pathogens before they can 

establish an infection, as well as providing the signals required for efficient activation of 

the adaptive immune response.  

 

1.1.2 Components of the Innate Immune System 
 

The first line of defence an invading microbe encounters is the host tissue, such as the 

skin, respiratory tract or gut. At the cellular level, these structures are made of epithelial 

cells joined together by tight-junctions to create a continuous physical barrier to 

pathogens. Disruption of these tight-junctions is a specific strategy of many pathogens 

including C. perfringens, H.pylori and S. flexneri, and facilitates the onset of infection 

through penetration of the bacteria into the deeper tissues (Guttman and Finlay, 2009). 

A notable example of this is the enteric pathogen Salmonella enterica serovar 

Typhimurium, which utilises effectors on the SPI-1 pathogenicity island to disrupt tight-

junctions and induce uptake of the bacteria, allowing Salmonella to proliferate in an 

intracellular vacuole that is protected from lysosomal degradation (Boyle et al., 2006).  
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The physical barriers are formed of layers of tissue containing antimicrobial peptides 

(AMPs) and enzymes that act to kill or inhibit the growth of invading microbes. Among 

the largest of the classes of AMPs are the defensins, which are generally short (12-50 

amino acids), positively-charged peptides that kill bacteria by disrupting structural 

elements of the cell membrane (Selsted and Ouellette, 2005). Where these barriers fail, 

further immune defences become necessary to prevent infection. 

Once a pathogen has accessed the deeper tissues, it is essential that host cells are able 

to recognise invading cells and respond accordingly to prevent infection. This is made 

possible by pattern-recognition receptors (PRRs) which recognise specific molecules 

that are associated with pathogens, known as pathogen-associated molecular patterns 

(PAMPs). In addition to PAMPs, PRRs sense damage-associated molecular patterns 

(DAMPs), which are generated when cells become damaged or undergo necrosis, 

allowing the surrounding cells to mount an appropriate inflammatory response (Anders 

and Schaefer, 2014). The major PRRs found at the cell surface are the Toll-like Receptors 

(TLRs), which recognise a wide range of PAMPs from different pathogens including 

bacterial and fungal PAMPs (e.g. zymosan, lipopolysaccharide and peptidoglycan) and 

viral PAMPs (single and double-stranded DNA and RNA) (Kawai and Akira, 2010). In the 

cell cytoplasm, there are two groups of PRRs known as the NOD-like receptors (NLRs) 

and RIG-I-like receptors (RLRs), which sense PAMPs and DAMPs present in the 

cytoplasm. Once activated, PRRs act against invading pathogens by triggering the 

production of signalling molecules, recruiting phagocytic cells, generating bactericidal 

compounds and activating the inflammatory response (Hato and Dagher, 2015). 

The inflammatory response begins with changes in transcription that result in the 

production signalling molecules, mediated by transcription factors such as NF-κB 

(Alberts et al., 2002). Consequently, lipid signalling molecules such as prostaglandins and 

protein signalling molecules including cytokines are produced by a broad range of cells. 

Cytokines function by amplifying the production of more signalling molecules, 

stimulating the adaptive immune system and triggering the recruitment of effector cells 

such as phagocytes. These cells typically have numerous PRRs (including TLRs) that 

permit them to recognise pathogens, in addition to surface receptors that detect 

cytokines. Together, these receptors allow phagocytes to migrate up a chemical gradient 

and towards a site of infection or inflammation.  
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After reaching the site of infection, phagocytes engulf and destroy invading pathogens 

in a process known as phagocytosis. There are several types of phagocytic cells, including 

macrophages, neutrophils, dendritic cells and eosinophils; each have their own specific 

function. Dendritic cells act to bridge the innate and adaptive immune responses by 

controlling their bactericidal activity in order to present antigens to naïve T-cells, priming 

the adaptive immune system (Savina et al., 2006). Eosinophils are also able to present 

antigens to the adaptive immune system, and are specialised towards responding to 

parasitic infections (Shamri et al., 2011). During the early phases of infection, the two 

major phagocytic cells present are macrophages and neutrophils. Macrophages are 

large cells that are typically the first immune cells to respond to an infection. They reside 

in tissues throughout the body, and are found abundantly at sites where there is an 

increased risk of infection, such as the lungs and gut (Alberts et al., 2002). Once 

activated, they recruit phagocytes which in turn amplify the response by producing pro-

inflammatory cytokines like IL-8, IL-1β and TNF-α, which are sensed by their cognate 

receptors CXCR2, IL-1R and TNFR (Amulic et al., 2012; Duque and Descoteaux, 2014). In 

mammals, neutrophils are primarily found in the blood, and unlike macrophages are 

absent from healthy tissues. Despite being smaller and more short-lived than 

macrophages, they are the most abundant phagocyte found in the body, and are 

recruited in large numbers to sites of infection and inflammation (Amulic et al., 2012). 

After phagocytosis, pathogens are initially contained in a vacuole called the phagosome 

which rapidly fills with microbicidal compounds to destroy pathogens. This is achieved 

by fusion of the phagosome with lysosomes or cytotoxic granules, which contain 

enzymes that degrade bacterial cell walls, proteins and DNA, and produce a respiratory 

burst that generates antimicrobial reactive oxygen species (ROS). The respiratory burst 

is induced by the assembly of NADPH oxidase on the phagosomal membrane, initiating 

a series of reactions to produce toxic compounds including superoxide (O2
-), hydrogen 

peroxide (H2O2), hypochlorous acid (HOCl), hydroxyl radical (•OH) and nitric oxide (NO). 

Although both macrophages and neutrophils are essential for destroying pathogens, 

neutrophils produce much greater levels of ROS than macrophages, which is thought to 

be a principal reason why neutrophils are the most short-lived cells in the human body 

(Amulic et al., 2012). 
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1.1.3 Stimulation of the Adaptive Immunity by the Innate Immune System 
 

The adaptive immunity is capable of two distinct effector functions, the cell-mediated 

immunity carried out by T-cells, and the humoral immunity performed by B-cells. T-cells 

act to support other leukocytes or directly kill infected cells, and B-cells function by 

producing antigen-specific proteins called antibodies, which recognise invading 

organisms and opsonise the cell surface, facilitating recognition and destruction by the 

immune system. 

The adaptive immune response is activated by the presentation of antigens on the 

surface of innate immune cells known as antigen-presenting cells (APCs); consequently, 

the adaptive immunity relies on the innate immunity for activation. The professional 

APCs include macrophages and dendritic cells, and function by phagocytosing and 

partially degrading pathogens; this allows them to retain antigens that are then 

presented to the adaptive immune system. After acquiring antigens, APCs migrate to 

the peripheral lymphoid organs and present the antigen in the context of a protein 

known as the major histocompatibility complex (MHC). 

Once APCs have presented antigen to the adaptive immunity, naïve T-cells proliferate 

and differentiate into one of two subsets of effector T-cells, both of which are necessary 

for almost all adaptive immune responses. These are the CD4+ T-helper cells, which are 

crucial for the defence against extracellular and intracellular pathogens by activating 

other immune cells, and the CD8+ cytotoxic T-cells, which kill cells directly by secreting 

enzymes and stimulating a form of cell death known as apoptosis.  

CD4+ T-helper cells are activated by antigen presentation in the context of class II MHC, 

which is performed by professional APCs including macrophages and dendritic cells. 

They support the immune system by producing cytokines and expressing a number of 

costimulatory molecules. After activation, T-helper cells differentiate further into two 

distinct subsets, known as the Th1 and Th2 cells. Th1 cells are predominantly pro-

inflammatory, producing cytokines such as IFN-γ as well as activating macrophages and 

CD8+ T-cells, while Th2 cells are anti-inflammatory, producing cytokines including IL-4, 

IL-5 and IL-10, and activating B-cells. 
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In contrast to T-helper cells, CD8+ cytotoxic T-cells are activated by the presentation of 

antigen in the context of class I MHC, which can be presented by virtually any nucleated 

cell and are collectively known as non-professional APCs. This allows CD8+ T-cells to 

directly and rapidly kill almost any infected cell, efficiently preventing the spread of 

infection. 

Antibodies are an important aspect of adaptive immunity; accordingly, it is essential that 

B-cells are successfully activated to produce antibodies. B-cells can be activated by 

direct recognition of antigens, or by CD4+ T-helper cells. B-cells are also capable of 

antigen presentation, immunomodulation of costimulatory molecules, stimulation of 

the respiratory burst, and antimicrobial factor production (Lee and Koretzky, 1998; 

Roosnek and Lanzavecchia, 1991; Yi et al., 1996). The cells of the adaptive immune 

system rely heavily on the presentation of antigens by the innate immune system, and 

represents an essential bridge between both systems that allows them to function 

effectively. 

 

1.1.4 The Complement System 
 

Adding to the central components of the innate immune system is the complement 

system, a cascade of over 30 proteins that act to ‘complement’ the immune response 

(reviewed in Serruto et al., 2010). Complement carries out three main functions during 

infection: opsonisation of the bacterial surface to enhance phagocytosis, generation of 

inflammatory signals to recruit phagocytes and the destruction of pathogens by the 

formation of the membrane attack complex (MAC). There are three distinct pathways 

of complement activation; the classical, lectin and alternative pathways, all of which are 

shown in detail in Figure 1.1. Each are initiated in different ways, with early proteins 

acting as proenzymes that sequentially cleave the next protein; importantly, all three 

converge with the cleavage of C3 by a C3 convertase. Cleavage of C3 produces C3a, a 

potent chemoattractant, and C3b, which opsonises pathogens by binding covalently 

with the pathogen surface, promoting phagocytosis and other effector functions. C3b 

bound to the pathogen surface is then able to form a proteolytic complex with other 

complement components, amplifying the cascade by cleaving more C3 and depositing 

more C3b at the cell surface. 
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The classical pathway is dependent on the adaptive immune system, as it requires 

antibody-antigen complexes (usually IgM or IgG) bound to the bacterial surface to 

initiate. It begins with the formation of the C1 complex, which is assembled after C1q 

binds to an antibody-antigen complex; this cleaves two C1r molecules, followed by two 

C1s molecules, creating the C1 complex (C1qr2s2). The C1 complex then cleaves C4 and 

C2 into C4a and C4b, C2a and C2b, forming the classical C3 convertase C4b2a. The lectin 

pathway is similar to the classical pathway, but involves the recognition of mannose 

residues on the bacterial surface by mannose-binding lectins (MBLs), instead of C1q 

binding to antibody-antigen complexes. Once MBL binds to the bacterial surface, MBL-

associated serine proteases 1 and 2 (MASP-1, MASP-2) are activated which cleave C4 

and C2, converging with the classical pathway at the formation of the classical C3 

convertase C4b2a. 

The alternative pathway differs from the other pathways in that it does not rely on 

mannose residues or antibody-antigen complexes to initiate. It is constantly active at a 

low level, and involves the constitutive hydrolysis of C3 into C3a and C3b, due to the 

breakdown of an unstable internal thioester bond. Normally, C3b generated in the fluid 

phase is instantly inactivated by factors H and I to prevent unnecessary complement 

activation, however when C3 is hydrolysed by an amino or hydroxyl group from a 

bacterial surface, the C3b that is generated is deposited on the bacterial surface. C3b 

bound to a bacterial surface cannot be inactivated by factors H and I, and the pathway 

proceeds to form the alternative C3 convertase. Surface-bound C3b recruits factor B, 

making the complex C3bB, which is cleaved by factor D into Ba and Bb. The Bb fragment 

remains associated with C3b, forming the alternative C3 convertase C3bBb. Lastly, 

binding of factor P stabilises the convertase, which greatly enhances the cleavage of C3 

and amplifies the cascade. 

As mentioned, C3 convertases cleave C3 into C3b, which opsonises bacteria and 

continues the cascade, and C3a, which acts as a chemoattractant that recruits 

phagocytic cells. Another chemoattractant produced by the complement cascade is C5a, 

which is produced when C5 is cleaved by a C5 convertase. During the classical and lectin 

pathways, the C5 convertase is formed by free C3b binding to the classical C3 convertase 

C4b2a, creating C4b2a3b. In the alternative pathway, C3b binds to the alternative C3 

convertase (C3bBb) to create the alternative C5 convertase (C3bBbC3b). C3a and C5a 
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are highly potent chemoattractants known as anaphylatoxins, acting through their 

cognate receptors (C3aR and C5aR respectively) which are expressed ubiquitously and 

at high levels in neutrophils and macrophages (Laumonnier et al., 2017; Zwirner et al., 

1999). C4a is also an anaphylatoxin, and mediates chemotaxis and ROS generation in 

neutrophils, however its functions are incompletely understood, and appear to differ 

greatly from the other anaphylatoxins (Barnum, 2015). C3a and C5a add a critical role to 

the complement system in recruiting effector cells, and also in activating the 

inflammatory response by producing cytokines including IFN-γ, TNF-α, IL-6, IL-10 and IL-

1β (Mueller-Ortiz et al., 2014; Pandey et al., 2017). 

In addition to enhancing phagocytosis, activating the inflammatory response and 

recruiting effector cells, the complement system can kill pathogens outright by forming 

pores in the cell membrane. C3b deposited on the bacterial surface activates the late-

stage proteins of the complement system, forming the membrane attack complex (MAC) 

which forms pores in the membranes of gram-negative bacteria; gram-positive bacteria 

are protected from MAC-mediated lysis by their thicker cell wall (Laarman et al., 2012). 

The MAC is composed of C5b, C6, C7, C8 and 10-16 subunits of C9, which insert 

sequentially to form a large transmembrane channel that disrupts the membrane and 

causes bacterial lysis.  

The complement system is an essential aspect of the innate immune system. Its critical 

role and range of functions is highlighted by patients with complement deficiencies, who 

exhibit predictable immune defects depending on the affected protein. C5 deficiencies 

result in impaired recruitment of phagocytes, low levels of C6-C9 correlate with an 

absence of serum bactericidal activity, and C3 deficiency produces multiple immune 

defects that are accompanied by serious illnesses, illustrating the central role of the 

complement system in immunity (Figueroa and Densen, 1991). 
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1.1.5 Complement Receptors 
 

The complement system interacts closely with the effector cells of the immune system. 

These interactions are mediated by a repertoire of cell surface receptors that allow cells 

to recognise when and where complement is activated. The five major complement 

receptors are expressed ubiquitously, and are enriched in leukocytes. These receptors 

activate effector cells, priming them for antimicrobial defence by inducing ROS 

generation, inflammatory cytokine release and amplification of the complement 

cascade.  

Complement receptor 1 (CR1) is expressed by erythrocytes, B-cells and leukocytes, and 

is enriched on the surface of neutrophils (Medof et al., 1982). CR1 recognises a broad 

range of complement components, including C1q, C4b, C3b, inactivated C3b (iC3b), 

C3b/C4b complexes and mannose-binding lectin (MBL) (Paoliello-Paschoalato et al., 

2015). CR1 stimulates complement by cleaving C3b into iC3b; it also mediates essential 

adhesion steps with bacterial surfaces prior to phagocytosis (Changelian et al., 1985; 

Medof et al., 1982). Complement receptor 3 (CR3, also known as Mac-1) is expressed 

constitutively in neutrophils and macrophages, and binds iC3b to induce phagocytosis, 

ROS generation, chemotaxis and apoptosis (Huang et al., 2011; Paoliello-Paschoalato et 

al., 2015). Notably, CR1 and CR3 are expressed at higher levels in patients with 

autoimmune or chronic inflammatory conditions such as systemic lupus erythematosus 

and rheumatoid arthritis, suggesting that these receptors must be tightly regulated to 

prevent disease (Hepburn et al., 2004). Complement receptor 2 (CR2) differs from CR1 

and CR3 in that it is predominantly expressed on B-cells, and binds a domain of C3 known 

as C3d, modulating B-cell activation and development (Bohnsack and Cooper, 1988). The 

CR2 receptor is a critical factor bridging the innate and adaptive immune responses, 

which is illustrated by extensive targeting by both viral and bacterial pathogens 

(Fingeroth et al., 1984; Ricklin et al., 2008). 

C3a and C5a are the two major chemoattractants released during complement 

activation. These proteins are recognised by their cognate receptors, C3aR for C3a, and 

C5aR1 or C5aR2 for C5a. These receptors are seven-transmembrane loop G-protein 

coupled receptors which mediate effector functions through an intracellular G-protein. 

They are expressed ubiquitously, and are enriched at the surface of innate immune 
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effector cells including macrophages and neutrophils. All three are expressed in human 

myeloid cells isolated from the blood, as well as alveolar and peritoneal macrophages, 

however their expression in other tissues is less clear (Laumonnier et al., 2017).  

All three receptors exert a broad range of complex immunomodulatory functions. C5aR1 

is primarily an inflammatory receptor, as C5aR1 activation upregulates pro-

inflammatory cytokines including IL-1β and TNF-α (Samstad et al., 2014), and is 

implicated in the chronic inflammatory condition rheumatoid arthritis (Neumann et al., 

2002). Frustrating these observations is that the function of C5aR1 is highly context-

dependent, as there is also evidence for anti-inflammatory roles of C5aR1 (Wiese et al., 

2017). Outwith inflammation, C5aR1 also has several non-immune functions, including 

regulation of metabolism and differentiation (Arbore et al., 2016; Hess and Kemper, 

2016), illustrating the complex nature of the receptor. The secondary C5a receptor, 

C5aR2, differs from C5aR1 in structure, as it is an atypical GPCR that unlike C5aR1 is not 

coupled to a G-protein. This observation led to the hypothesis that C5aR2 acts as a 

‘decoy’ receptor for C5aR1, effectively acting as an antagonistic, anti-inflammatory 

receptor. The roles of C5aR2 are now known to be similarly complex, with evidence for 

pro- and anti-inflammatory effector functions depending on the experimental context 

(Kovtun et al., 2017; Li et al., 2013). These observations also apply to the C3aR. The C3aR 

also has pro-inflammatory functions, and is important for defence against bacterial 

infections by producing IFN-γ and TNF-α (Mueller-Ortiz et al., 2014); similarly to the 

C5aR, it is also upregulated during rheumatoid arthritis (Neumann et al., 2002). 

Conversely, animal models have reported anti-inflammatory roles for the C3aR (Ames 

et al., 2001). Mixed conclusions have arisen from contradictory and context-dependent 

findings. Many of these findings have been variously supported and contradicted by in 

vivo data that is often unclear and does not accurately represent humans. Importantly, 

receptor expression is drastically different in mice compared with humans (Laumonnier 

et al., 2017), and should be considered when assessing these receptors in animal 

models. 
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1.1.6 Macrophages and Neutrophils 
 

Cells of the immune system generally develop in three distinct lineages; the lymphoid 

lineage, which gives rise to B- and T-lymphocytes, the myeloid lineage, which consists 

largely of phagocytic cells, and the erythroid lineage, which produces red blood cells. All 

cells of these lineages originate with progenitor cells. Lymphoid progenitors become T-

cells, B-cells and Natural Killer (NK) cells, while myeloid progenitors first differentiate 

into myeloblasts, mast cells and erythrocytes (red blood cells). Myeloblasts become 

monocytes, eosinophils, basophils and neutrophils and lastly, monocytes differentiate 

into macrophages (Kondo, 2010). As briefly introduced above, macrophages and 

neutrophils are critical phagocytic cells which perform important functions of the 

immune response. 

Prior to becoming macrophages, mammalian monocytes circulate in the blood, and 

differentiate into macrophages after extravasation into tissues (Auffray et al., 2007). 

Macrophages are large (~20µm) phagocytic cells that specialise in phagocytosing and 

degrading large volumes of bacteria, or dead and dying cells. They are found in all 

tissues, but are enriched at sites where infection is a recurrent threat, such as the skin, 

gut and lungs (Alberts et al., 2002). Elsewhere in the body, long-lived self-renewing 

macrophages from non-myeloid lineages are present, such as microglial cells in the 

brain, which are unique due to the immune privilege of the site.  

Macrophages recognise pathogens directly using PRRs such as the TLRs, and also 

indirectly using receptors that recognise opsonins or inflammatory signals, including 

complement receptors (CR3, C5aR1, C3aR), immunoglobulin receptors (FcγR) and 

chemotaxis receptors (FPR, CX3CR1) (Weiss and Schaible, 2015). Macrophage activation 

causes release of cytokines, generation of ROS and uptake of foreign material into an 

intracellular vesicle derived from the plasma membrane, a process known as 

phagocytosis. This vesicle is known as a phagosome, and proceeds to degrade its 

contents by acidifying using a vesicular ATPase, fusing with intracellular vesicles 

containing proteolytic/hydrolytic enzymes and generating microbicidal ROS, ultimately 

leading to the destruction of the pathogen (Weiss and Schaible, 2015).  

In addition to degrading pathogens, macrophages mediate pro- and anti-inflammatory 

cytokine signalling, depending on the macrophage subset. There are two distinct 
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programmes of macrophage behaviour, known as class M1 and M2 to reflect Th1 and 

Th2 T-helper cell subsets, which are pro- and anti-inflammatory respectively. M1 

macrophages are specialised towards phagocytosing and destroying pathogens, 

producing the pro-inflammatory cytokines TNF-α and IL-1β and initiating production of 

ROS. M2 macrophages respond to parasites, regulate the surrounding immune 

environment, clear apoptotic and dead cells and encourage tissue remodelling 

(Martinez and Gordon, 2014). Macrophages are also important for stimulating the 

adaptive immune system by acting as antigen-presenting cells. As discussed previously, 

during pathogen degradation antigens are retained and presented to T-cells in the 

context of class II MHC, stimulating T-cell development and activation (Weiss and 

Schaible, 2015). 

Neutrophils are the most abundant leukocyte in the human body, and freely circulate in 

the blood prior to recruitment to sites of infection. They are a subset of granulocytes, 

so-named for their large number of cytoplasmic ‘granules’ that contain toxic 

compounds. Neutrophils differentiate alongside two other subsets of granulocytes, 

eosinophils and basophils, which are named for their staining profiles with eosin and 

basic dyes respectively; neutrophils stain neutrally with these dyes. Neutrophils are 

small (8-10µm), short-lived cells with multi-lobed nuclei, allowing them to rapidly 

infiltrate tissues that would be limited by a circular nucleus (Kondo et al., 2003). The 

intracellular granules of neutrophils are full of proteolytic and oxidative enzymes, 

making neutrophils highly microbicidal. Arrival at a site of infection is usually followed 

by phagocytosis of pathogens, or a process known as degranulation whereby the 

intracellular contents of neutrophils are secreted, killing the pathogen extracellularly.  

Circulating neutrophils are quiescent, and are only activated after migrating to the site 

of infection/inflammation and encountering inflammatory cytokines. Neutrophils co-

ordinate chemotaxis and recognise pathogens using a number of PRRs, including 

complement receptors, chemokine receptors, Toll-like receptors, and receptors for 

protein and lipid signalling molecules (reviewed in Mayadas et al., 2014). After 

activation, neutrophils initiate a respiratory burst that produces high levels of ROS, in 

addition to becoming highly phagocytic and releasing their granule contents into the 

surrounding environment. 
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Degradation of pathogens after phagocytosis in neutrophils is similar to macrophages, 

but involves a much higher level of ROS generation. Neutrophils produce ROS by 

activating a highly potent respiratory burst, which begins with the reduction of 

molecular oxygen (O2) into superoxide (O2
-) by the phagosomal enzyme NADPH oxidase. 

Neutrophils potentiate the respiratory burst using a unique enzyme known as 

myeloperoxidase (MPO), which converts hydrogen peroxide (H2O2) into hypochlorous 

acid (HOCl), a highly potent microbicidal compound. As many ROS are highly reactive 

and short-lived, MPO also adds to the antimicrobial defence by binding to the pathogen 

surface, localising the generation of ROS to the pathogen (Schürmann et al., 2017). In 

addition to MPO, granules also contain antimicrobial proteins such as α-defensins, 

degradative enzymes like lysozyme and collagenase, and compounds that limit the 

bioavailability of certain nutrients to restrict microbial metabolism, such as iron by 

lactoferrin.  

Neutrophils also undergo a specialised form of cell death known as NETosis. NETs are 

‘neutrophil extracellular traps’, which are formed when neutrophils die and form large 

‘net’ like structures composed of chromatin coated with histones, proteases and 

granular enzymes. NETosis allows neutrophils to contain pathogens over a wide area 

while minimising damage to the host, and is important to antimicrobial defence, as 

evidenced by NET-deficient mice becoming susceptible to an array of infections 

(Belaaouaj et al., 1998). Neutrophils also have anti-inflammatory and 

immunomodulatory roles, promoting inflammation resolution, wound healing, 

angiogenesis and activation/differentiation of macrophages and B-cells (Puga et al., 

2011; Selders et al., 2017). 

Despite the many important functions of neutrophils, many autoimmune conditions are 

characterised by aberrant neutrophil activity, typically as a result of the unregulated 

release of granular contents and enzymes at host tissues. Neutrophils are a major source 

of autoantigens, and are implicated in the development of a number of autoimmune 

conditions. In rheumatoid arthritis, 80-90% of the infiltrating cells at the site of 

inflammation are neutrophils, with up to 109 neutrophils isolated per day from joint 

effusions (Ohtsu et al., 2000; Wipke and Allen, 2001). NETs are also a major source of 

pathology, with 84% of NET components being directly associated with autoimmune 

conditions, including systemic lupus erythematosus, rheumatoid arthritis and vasculitis 
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(Darrah and Andrade, 2012). Additionally, neutrophils are implicated in atherosclerosis, 

Alzheimer’s disease and other chronic inflammatory conditions (Brunner et al., 2006; 

Soehnlein, 2012; Zenaro et al., 2015).  

Macrophages and neutrophils are critical effector cells of the immune system, with a 

number important and context-dependent roles and functions. These cells are essential 

for mounting the immune response during the first stages of infection. 

 

1.1.7 Myeloperoxidase 
 

As mentioned, myeloperoxidase (MPO) is a central enzyme mediating the microbicidal 

potential of neutrophils. MPO was first isolated in the 1940s from pus taken from 

patients with tuberculosis, initially named verdoperoxidase due to its green colour. After 

determining its almost exclusive production by neutrophils, it was renamed 

myeloperoxidase (Hansson et al., 2006). Of the three granule types found in neutrophils, 

MPO is located within the primary (or azurophilic) granules of neutrophils, where it is 

the primary constituent (Borregaard and Cowland, 1997). After phagocytosis, MPO is 

released into the phagolysosome, where it converts hydrogen peroxide (H2O2) and a 

chloride ion to hypochlorous acid (HOCl). HOCl is potently microbicidal, and accounts for 

much of the antimicrobial activity of neutrophils (Klebanoff et al., 2012). 

Like many other glycoproteins, MPO undergoes a complex process of proteolytic 

processing before the enzyme is produced in its active form. It is encoded by a single 

14kb gene located on chromosome 17, and expressed as two alternatively spliced mRNA 

transcripts of 3.6 and 2.9kb (Hashinaka et al., 1988). After translation, immature MPO 

(80kDa in size) undergoes several processing steps within the endoplasmic reticulum 

and trans-golgi network. During myeloid lineage development, promyelocytes and 

promyelomonocytes produce MPO, however a key maturation step as monocytes 

become macrophages is the downregulation of MPO production. MPO synthesis 

terminates as myeloid progenitors enter the myelocyte stage of differentiation, as 

demonstrated in vitro using differentiating agents (Hansson et al., 2006). PCR 

amplification of MPO transcripts has been shown in neutrophils (Yang et al., 2004), 

monocytes and macrophages (Sugiyama et al., 2001), however there is no published 
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evidence of MPO protein being actively synthesised by any cell other than malignant 

cells and myeloid precursors (Hansson et al., 2006). 

Processing and maturation of MPO into the active form is a precisely regulated sequence 

of events (reviewed in Hansson et al., 2006). The initial translation product, known as 

preproMPO, is produced as a single 80kDa peptide containing a signal peptide, 

propeptide, small β-subunit and large α-subunit, which is processed in the endoplasmic 

reticulum (ER) after co-translational cleavage of the signal peptide. PreproMPO then 

incorporates high-mannose oligosaccharide side chains that allow it to interact with the 

molecular chaperones calnexin and calreticulin, and autocatalytically acquire the haem 

group, covalently linking the β and α-subunits (Colas and De Montellano, 2004); at this 

point the product is known as proMPO. After progressing through the trans-golgi 

network, the pro-peptide of proMPO is cleaved, and proMPO is targeted to the primary 

granules. Here, proMPO dimerises with other monomeric subunits by forming 

disulphide bonds between α-subunits, producing the fully mature 150kDa active MPO 

dimer. Interestingly, if the propeptide remains uncleaved, proMPO is constitutively 

secreted out of the cell; the mechanisms and purpose of this remain unclear, but is likely 

to be significant, as human plasma contains both dimeric MPO and uncleaved proMPO 

(Olsen et al., 1986). 

The importance of MPO in clearing bacterial infections has been challenged by 

observations from MPO-deficient patients. MPO-deficiency is relatively common, 

affecting 1 in every 2,000-4,000 people across Europe and North America (Nauseef, 

1988). Despite its role in bacterial killing, MPO-deficient patients are not susceptible to 

infection, with the exception of fungal infections from Candida albicans (Lehrer and 

Cline, 1969). This observation is stark when such patients are compared against 

individuals with chronic granulomatous disease (CGD), who are deficient in the 

phagosomal enzyme NADPH oxidase that initiates the respiratory burst by converting 

molecular oxygen (O2) into superoxide (O2
-). Consequently, people with CGD experience 

recurrent life-threatening infections from an array of different fungal and bacterial 

pathogens (Assari, 2006). The difference between MPO-deficient and CGD neutrophils 

is frequently attributed to the fact that all ROS remain intact with the exception of HOCl 

in MPO-deficient neutrophils, suggesting that HOCl is inherently redundant for bacterial 

killing in normal neutrophils. Indeed, modelling of MPO-deficient neutrophils suggests 
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that the absence of MPO leads to extreme levels of H2O2, which are no longer balanced 

by MPO consumption, and leak into the surrounding tissues causing inflammatory injury 

(Schürmann et al., 2017). Without MPO, H2O2 reaches levels sufficient for bacterial 

killing, illustrating how bacterial killing can proceed in the absence of MPO (Schürmann 

et al., 2017; Seaver and Imlay, 2001). 

Despite the lack of a clinical phenotype resembling CGD, MPO-deficient neutrophils 

exhibit broadly impaired phagosomal killing. In vitro studies suggest that MPO-deficient 

neutrophils kill S. aureus 60-70% slower than wild-type neutrophils, and are 300-fold 

slower in killing C. albicans (Decleva et al., 2006; Lehrer and Cline, 1969). in vivo studies 

comparing C. albicans infections between MPO-/- and CGD mice have demonstrated that 

at low fungal burdens, MPO-deficient neutrophils are able to clear infections, while at 

high burdens they become overwhelmed (Aratani et al., 2002); MPO-/- mice also become 

susceptible to bacterial infection from Klebsiella pneumoniae (Hirche et al., 2005). In 

light of these observations, it is important to bear in mind that the mouse model does 

not accurately represent human neutrophils. Murine neutrophils do not produce 

defensins, and contain 10-fold less MPO than human neutrophils (Eisenhauer and 

Lehrer, 1992; Rausch and Moore, 1975). Additionally, other oxidative enzymes are 

upregulated in MPO-deficient murine neutrophils, which are likely to compensate for its 

absence (Brovkovych et al., 2008). These observations should be considered when using 

the murine model to investigate phagosomal enzymes. Taken together, these studies 

illustrate that while MPO is not essential for bacterial killing, it contributes greatly by 

potentiating the production of ROS and enhancing microbicidal activity. 

MPO is also associated with a variety of diseases, and is implicated in inflammatory 

conditions such as cardiovascular disease (Kutter et al., 2000) and glomerulonephritis 

(Yang et al., 2004), as well as malignant conditions such as acute promyelocytic 

leukaemia (Reynolds et al., 1997). Universally, this is due to the capacity of MPO to 

enhance production of oxidative compounds, potentially leading to tissue damage and 

exacerbation of disease. While MPO expression is associated with disease, there are also 

inflammatory conditions that are associated with MPO-deficiency, including 

atherosclerosis (Brennan et al., 2001) and pulmonary fibrosis (Shvedova et al., 2012). 

These conditions highlight the role of MPO not only in potentiating ROS generation, but 

also as an immunomodulator. For example, MPO has numerous anti-inflammatory roles; 
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HOCl inactivates several chemokines, encouraging inflammation resolution (Clark and 

Klebanoff, 1979); MPO directly regulates H2O2, which acts as one of the first 

chemoattractant signals generated at sites of injury, and additionally prevents H2O2-

mediated tissue damage (Pase et al., 2012; Schürmann et al., 2017). With important 

roles to play during both infection and inflammation, MPO is an essential enzyme 

mediating the functions of neutrophils. 

 

1.2 Staphylococcus aureus 
 

Staphylococcus aureus is a facultative anaerobic, catalase-positive, gram-positive 

bacterium of the phylum Firmicutes. It is a normal part of the human microbiota, 

colonising the skin and mucous membranes of roughly 30% of the US population, and 

20% of the world population (Gorwitz et al., 2008; Kluytmans et al., 1997). The 

staphylococci are so-named due to their characteristic shape, forming spherical, ‘grape-

like’ clusters during growth, and S. aureus is named after the golden pigment that it 

produces known as staphyloxanthin, which acts to protect S. aureus from ROS (Pelz et 

al., 2005). Each cell is slightly larger than 1µm in diameter, with the ‘grape-like’ clusters 

forming as the result of incomplete fission of the cells during division (Koyama et al., 

1977). As S. aureus is a commensal organism, carriers of S. aureus do not regularly 

experience disease, despite this, S. aureus is a major pathogen worldwide, causing a 

significant disease burden. 

 

1.2.1 Disease Burden of S. aureus 
 

Despite being part of the human microbiota, S. aureus is an increasing risk to public 

health. Although carriage of S. aureus is generally asymptomatic, it is associated with an 

increased risk of infection from the carried strain, placing a large percentage of the 

population at risk (von Eiff et al., 2001). S. aureus generally resides on the skin and in 

the respiratory tract, causing infection when the skin or mucosal barriers are broken. It 

is capable of a broad range of infections depending on the site, ranging in severity from 

abscesses to necrotising pneumonia. S. aureus is predominantly an opportunistic, 

nosocomial pathogen, highlighted by the correlation between access to health care 



34 
 

services and incidence of S. aureus bacteraemia (Frimodt-Møller et al., 1997). S. aureus 

is generally unable to establish infections on its own, and typically arise from pre-existing 

foci that include indwelling devices and infections of skin, soft tissue, osteoarticular and 

pleuropulmonary regions (Tong et al., 2015). 

A major obstacle for treating S. aureus infections is the organism’s capacity for antibiotic 

resistance. The most prominent examples are the methicillin-resistant strains of S. 

aureus (MRSA), which appeared as little as 2 years after methicillin was introduced into 

hospital settings (Jevons, 1961). During the late 1980s, MRSA infections expanded in 

frequency, increasing from 8% to 22% of staphylococcal infections in the US (Wenzel et 

al., 1991). This trend continued for the next decade until as many as 50% of S. aureus 

clinical isolates were MRSA strains (Moran et al., 2006). Prompt investigation 

determined that MRSA infections were caused by a handful of epidemic clones, 

encouraging more focused study of MRSA infections (Oliveira et al., 2002). Accordingly, 

healthcare institutions responded to tackle MRSA, and successfully reduced the 

incidence of MRSA infections by as much as 50% in some regions (Stone et al., 2012). 

Despite this, strains that are resistant to last-resort antibiotics such as vancomycin have 

emerged, highlighting the capacity of S. aureus to continually adapt to current treatment 

regimens (Centers for Disease Control and Prevention (CDC), 2002). 

A second epidemic of MRSA infections occurred during the late 1990s, characterised by 

highly virulent infections in healthy individuals (Centers for Disease Control and 

Prevention (CDC), 1999). The primary symptoms suffered by those infected with 

community-acquired MRSA (CA-MRSA) strains were purulent skin infections and 

necrotising pneumonia, enabled by the production of cytolytic toxins including Panton-

Valentine Leukocidin (PVL) and phenol-soluble modulins (PSMs) (Björnsdottir et al., 

2017; Gillet et al., 2002; Stryjewski and Chambers, 2008). Despite the enhanced 

virulence of CA-MRSA strains, they are not associated with a worse clinical outcome, as 

it was observed that patients PVL-positive infections are equally or more likely to be 

cured than those with non-PVL-positive infections (Lalani et al., 2008; Peyrani et al., 

2011). While the clinical implications of these observations are unknown, they clearly 

indicate that PVL is not the primary determinant of the enhanced virulence observed in 

CA-MRSA infections, despite its association with highly virulent infections.  



35 
 

The most common infections caused by S. aureus are skin and soft tissue infections 

(SSTIs), which account for a disease burden of 48 cases per 1,000 people per year (Hersh 

et al., 2008); it is also a leading cause of bacteraemia and infective endocarditis (27.7 

and 16.6 cases per 100,000 per year respectively (Federspiel et al., 2012; Kallen, 2010)). 

In the pre-antibiotic era, bloodstream infections of S. aureus had a mortality rate of 

~80%, while more contemporary studies estimate that the current mortality rate is ~30% 

(Stryjewski and Corey, 2014; Wyllie et al., 2006). Despite significant advances, in 2011 

there were 95,000 invasive infections, and 19,000 deaths every year in the US from S. 

aureus, representing a combined mortality greater than human immunodeficiency virus 

(HIV), viral hepatitis, tuberculosis and influenza combined (Hoyert and Xu, 2012; Klevens 

et al., 2007). 

 

1.2.2 Immune Evasion by S. aureus 
 

A major reason for the success of S. aureus as a pathogen is its expression of a broad 

range of virulence factors, many of which target major components of the innate 

immune system. Using these factors, S. aureus can target antimicrobial proteins, the 

complement system, chemotaxis, phagocytic cells and the oxidative defence to evade 

destruction by the immune system and establish an infection. 

 

1.2.3 Evading Antimicrobial Proteins 
 

S. aureus employs several virulence factors that target antimicrobial proteins (AMPs) 

encountered at the skin and mucosal barriers. A major AMP is α-defensin, a small 

cationic peptide with a hydrophobic region that permits insertion into phospholipid 

bilayers, disrupting cell membranes. They are produced abundantly by neutrophils, 

accounting for 50% of neutrophil granule proteins, and are secreted into the 

surroundings or fuse with maturing phagosomes to mediate bacterial killing (Rice et al., 

1987). Staphylokinase (SAK) is an exoprotein produced by S. aureus that activates 

plasminogen, in addition to directly binding and inactivating α-defensin (Jin et al., 2004). 

SAK activity represents a major aspect of staphylococcal resistance to defensins, and 

was also shown to confer resistance to killing by defensins in vivo (Jin et al., 2004).  
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Another major group of AMPs are the cathelicidins. These small AMPs possess a 

conserved N-terminal cathelin domain and a variable C-terminal AMP domain, and 

display potent anti-staphylococcal activity. Like α-defensin, they localise with neutrophil 

granules, and are also inducibly expressed and produced by keratinocytes (Frohm et al., 

1997; Sørensen et al., 1997). The cathelicidin LL-37 is targeted by S. aureus via the 

production of aureolysin, which cleaves LL-37 at three distinct residues, rendering it 

inactive (Sieprawska-Lupa et al., 2004). This is an important step in how S. aureus is able 

to establish skin infections, as suggested by the downregulation of LL-37 levels during 

atopic dermatitis, predisposing people to S. aureus infections (Ong et al., 2002). 

An essential bactericidal enzyme produced by the human body is lysozyme, a 

muramidase that is found in the mucous secretions including tears, saliva, sweat and 

serum (Alberts et al., 2002). Lysozyme kills bacteria by attacking cell wall peptidoglycan, 

cleaving between the glycosidic β-1,4-linked residues of N-acetylmuramic acid and N-

acetylglucosamine. S. aureus is completely resistant to lysozyme, and is a major aspect 

of their ability to colonise the skin and mucous membranes. S. aureus resists lysozyme 

using an o-acetyltransferase enzyme encoded by the gene oatA, which o-acetylates 

muramic acid residues present in cell wall peptidoglycan (Bera et al., 2005). This 

modification blocks lysozyme activity by creating a steric hindrance between the cell 

wall and the active site of the enzyme. In addition to oatA, modification of the cell wall 

is a major evasion mechanism utilised by S. aureus, as exemplified by DltA and MprF. 

These enzymes modify negatively-charged cell wall teichoic acid residues into positively-

charged residues, allowing S. aureus to repel cationic AMPs including α-defensin and 

cathelicidins, greatly enhancing virulence (Kristian et al., 2003). 

 

1.2.4 Evading the Complement System 
 

After overcoming the AMPs found at the epithelial barriers, S. aureus must then contend 

with the complement system. Due to its central role in enhancing the immune response, 

evasion of complement is a priority of many pathogenic bacteria (Jarva et al., 2003; Ram 

et al., 1999). S. aureus contains a wide arsenal of virulence factors that act to disrupt 

complement, effectively impairing opsonisation, inflammatory signalling, chemokine 

production, phagocyte recruitment and bacterial killing. 
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One of the most prominent staphylococcal virulence factors is Protein A (SpA), which 

associates with the cell membrane as well as being secreted into the surrounding 

environment. The 42kDa protein contains five highly homologous regions that are 

capable of binding antibody fragments, both at the Fcγ-effector portion and the Fab 

antigen recognition region. In addition to directly preventing antibody-mediated 

effector functions, binding of the Fcγ region by SpA blocks activation of the classical 

pathway by preventing C1q binding to antibody-antigen complexes at the cell surface 

(Graille et al., 2000). Furthermore, SpA is also implicated in the progression of 

staphylococcal pneumonia by directly binding the TNF-α receptor TNFR1, which is 

present at high levels in the airway epithelia (Gómez et al., 2004). Another factor 

targeting immunoglobulins is staphylococcal superantigen-like 7 (SSL-7), a protein that 

is related to the superantigen class of toxins. SSL-7 binds to IgA1 and IgA2, disrupting IgA 

interactions with cell-surface FcαRI, and preventing FcαRI-mediated phagocytosis 

(Langley et al., 2005). SSL-7 also binds C5 from a range of species, inhibiting production 

of the C5a chemoattractant and formation of the membrane attack complex (MAC). 

As mentioned, staphylokinase (SAK) targets α-defensins by directly binding and 

inactivating them, and is also able to cleave plasminogen. Plasminogen is an inactive 

zymogen found in the blood, and is activated by cleavage into the active serine protease 

plasmin. In S. aureus, plasminogen is acquired using cell-surface receptors (Herman-

Bausier et al., 2017), which is then cleaved by SAK into plasmin; this produces a bacterial 

membrane-associated serine protease. S. aureus is then able to utilise plasmin to 

degrade IgG and C3b, conferring broad anti-opsonic activity and effectively disrupting 

all complement pathways (Rooijakkers et al., 2005). 

S. aureus is at the greatest risk of encountering the complement system while in the 

blood. Here, S. aureus manipulates its environment by modulating the activities of 

clotting factors including fibrinogen and platelets. S. aureus expresses several virulence 

factors that bind fibrinogen, however the extracellular fibrinogen-binding protein (Efb) 

also interferes with complement. Efb binds to a region of C3 known as C3d, blocking all 

complement pathways by preventing C3 cleavage, C3b deposition and C3 convertase 

formation (Lee et al., 2004). Additionally, Efb binding of C3d disrupts the adaptive 

immune response by preventing recognition of C3d fragments by B-cells, targeting both 

arms of the immune system with a single molecule (Ricklin et al., 2008). 
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A critical aspect of the alternative complement pathway is the distinction of self from 

non-self, in order to prevent the attack of host cells by complement. A key regulator of 

this mechanism is complement factor H (FH), which prevents the alternative pathway 

from proceeding on host cells. It does this by accelerating the decay of the alternative 

C3 convertase (C3bBb), cleaving surface-associated and fluid-phase C3b into an inactive 

iC3b form by acting as a cofactor for factor I, and preventing formation of the C3 

convertase by competing with factor B in binding to C3b (Wu et al., 2009). S. aureus 

exploits this mechanism by producing the extracellular complement binding protein 

(Ecb), which can bind C3b. Additionally, Ecb forms a tripartite complex with FH and C3b 

at the cell surface, utilising the regulatory activity of FH to inactivate and remove C3b, 

thereby disrupting complement (Amdahl et al., 2013). Ecb also interferes with 

recognition of C3b by neutrophils via complement receptor 1 (CR1), impairing 

phagocytosis (Amdahl et al., 2017). 

During bacterial infection, two of the earliest chemoattractants produced are C5a and 

the N-formylated tripeptide N-formylmethionyl-leucyl-phenylalanine, or ‘fMLP’. To 

prevent recognition of these molecules by innate immunity, S. aureus produces the 

chemotaxis inhibitory protein of staphylococcus (CHIPS), which is produced by 62% of S. 

aureus strains and inhibits the cognate receptors of C5a and fMLP – the C5a receptor 

(C5aR) and formyl peptide receptor (FPR) (de Haas et al., 2004). The 14.1kDa secreted 

protein acts by binding the N-terminal ligand binding regions of the C5aR and FPR using 

distinct regions of the protein, targeting both receptors simultaneously (Haas et al., 

2004; Postma et al., 2005). The most potent staphylococcal virulence factor that targets 

the complement system is the staphylococcal complement inhibitor (SCIN). Expressed 

by 90% of S. aureus strains, SCIN inhibits complement by directly binding and stabilising 

the classical and alternative C3 convertases (C4b2a and C3bBb), preventing the 

activation of all complement pathways (Rooijakkers et al., 2005b). S. aureus 

comprehensively targets the complement system to evade immune recognition by 

attacking central components such as C3b and the C3 convertases, in addition to the 

anaphylatoxins and their receptors. 
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1.2.5 Evading Phagocytes 
 

After recognition by the innate immune system, professional phagocytic cells including 

macrophages and neutrophils are recruited to sites of infection, and are required for 

effective clearance of S. aureus (Spaan et al., 2013a). As S. aureus robustly targets host 

AMPs and the complement system, phagocytic cells are among its greatest obstacles 

towards establishing an infection. Phagocytes become activated after recognising 

PAMPs or inflammatory signals, stimulating amplification of the inflammatory response, 

activation of the respiratory burst, and adherence of phagocytes to endothelial cells to 

facilitate recruitment to the infection site. Accordingly, S. aureus targets and disrupts 

each of these processes simultaneously in addition to directly targeting phagocytic cells, 

drastically impairing their ability to combat the infection. Although S. aureus produces 

virulence factors that target both macrophages and neutrophils, we will focus on those 

targeting neutrophils for simplicity.  

During S. aureus infection, some of the most potent chemoattractants produced are 

CXCL1, CXCL2, CXCL7 and CXCL8 (also known as IL-8) (Guerra et al., 2017). A major 

chemotactic receptor expressed on the neutrophil surface is CXCR2, which recognises 

all four of these cytokines. Accordingly, S. aureus secretes the cysteine protease 

Staphopain A (ScpA), which destroys CXCR2 as a functioning receptor. ScpA cleaves the 

N-terminus of CXCR2, rendering the receptor unable to function, as demonstrated by 

the absence of receptor signalling in response to CXCL1 or CXCL7, which are CXCR2-

specific (Laarman et al., 2012). However, ScpA is unable to abolish IL-8 signalling, as 

CXCR1 remains able to bind CXCL8. 

Alongside CXCR2, neutrophils express several other chemotactic receptors including the 

C5a receptor (C5aR) and formyl peptide receptor (FPR). A close relative of FPR is the 

formyl peptide receptor-like-1 (FPRL1), which binds a wide range of ligands including 

regions of the HIV-1 envelope protein gp41, the AMP LL-37 and fragments of prion 

peptides (Le et al., 2001; Su et al., 1999; De Yang et al., 2000). The FPRL1 inhibitory 

protein (FLIPr) inhibits FPRL1 with high-affinity; it is also able to inhibit FPR, albeit to a 

much lesser degree (Prat et al., 2006). S. aureus also produces a similar protein with 73% 

homology with FLIPr, known as FLIPr-like. FLIPr-like is also able to inhibit both FPRL1 and 

FPR, but has a 100-fold greater affinity for FPR over FPRL1 (Prat et al., 2009). Incubation 
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of neutrophils with FLIPr and FLIPr-like caused a complete loss of chemotactic activity 

from FPR agonists fMLP and MMK-1, but not C5a, as the C5aR remained functional (Prat 

et al., 2009). Additionally, FLIPr and FLIPr-like disrupt antibody-mediated opsonisation 

and the classical pathway by inhibiting class I, II and III IgG receptors (FcγR) (Stemerding 

et al., 2013). 

A major PRR enabling the recognition of S. aureus by phagocytes is TLR2, which binds 

peptidoglycan-associated lipoproteins; TLR2 can also recognise di- and triacylated 

lipoproteins through homotypic interactions with TLR1 and TLR6 respectively (Takeuchi 

et al., 2002a). TLR2 plays an important role in anti-staphylococcal immunity in vivo, as 

TLR2-/- mice become more susceptible to staphylococcal sepsis and nasal colonisation 

when compared with wild-type mice (Gonzalez-Zorn et al., 2005; Takeuchi et al., 2000). 

S. aureus targets TLR2 using staphylococcal superantigen-like 3 (SSL3), a superantigen 

that directly binds TLR2, preventing TLR2-mediated neutrophil functions (Bardoel et al., 

2012). Consequently, SSL3 disrupts numerous neutrophil functions including neutrophil 

adhesion, ROS generation, production of IL-8 and expression of chemokine receptors, 

which are all mediated by TLR2 (Bardoel et al., 2012; Sabroe et al., 2003). 

To migrate to sites of infection, neutrophils must be recruited from the bloodstream 

into the tissues. This process is called transmigration, and relies on a series of cell-

surface carbohydrate-binding proteins known as selectins which mediate a number of 

transient cell-cell adhesion interactions. Once expressed, neutrophils begin to adhere to 

the cell surface in a process known as rolling adhesion, before passing into the tissues 

by extravasation. There are three groups of selectins: L-selectin which is expressed by 

leukocytes and lymphocytes, E-selectin which is present on endothelial cells, and P-

selectin which is found on platelets, and can be induced in endothelial cells in response 

to inflammatory signals (Alberts et al., 2002). During transmigration, neutrophils express 

P-selectin glycoprotein ligand-1 (PSGL-1), allowing them to bind all groups of selectins 

and begin rolling adhesion (Guerra et al., 2017). By secreting the staphylococcal 

enterotoxin-like toxin X (SELX), S. aureus is able to disrupt transmigration by binding to 

glycosylated PSGL-1, preventing selectin recognition and rolling adhesion (Fevre et al., 

2014). Another virulence factor, staphylococcal superantigen-like 5 (SSL5), targets PSGL-

1 in an identical manner, binding directly to PSGL-1 and interfering with neutrophil 

recruitment (Bestebroer et al., 2007). Additionally, SSL5 is able to bind to the N-terminus 
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of several important chemotactic receptors, preventing C3a, C5a, CXCL1 and IL-8-

mediated neutrophil activation (Bestebroer et al., 2009). 

Several virulence factors that target AMPs and the complement system also display 

direct activity against phagocytic cells. SAK, CHIPS and SCIN inactivate C3 convertases, 

block immunoglobulin binding and inhibit chemotactic receptor signalling, broadly 

interfering with phagocyte recruitment and activation. Interestingly, these virulence 

factors are clustered together in a single pathogenicity island, and are distributed by 

bacteriophages (van Wamel et al., 2006). Additionally, this cluster contains 

staphylococcal enterotoxin A (SEA), which disrupts innate immune responses by 

inhibiting the chemotactic receptors CCR1 and CCR2 (Rahimpour et al., 1999). 

S. aureus also produces a number of bi-component pore-forming toxins that display lytic 

activity against cells including leukocytes and erythrocytes. To target leukocytes, these 

toxins recognise cell-surface chemokine receptors such as CXCR2 and C5aR; one 

component binds to the receptor, followed by recruitment of the second component 

which leads to the formation of a pore in the cell membrane, causing cell lysis. These 

toxins cause cell lysis at high concentrations, however at sublytic concentrations they 

also act to inhibit receptor signalling by competing with the receptor ligand. Receptor 

inhibition by pore-forming toxins has been demonstrated with Panton-Valentine 

Leukocidin (PVL), γ-Haemolysin AB and CB (HlgAB, HlgCB) and leukocidin ED (LukED), 

together inhibiting C5aR1, C5aR2, CXCR1, CXCR2, and CCR5 signalling (Alonzo III et al., 

2012; Reyes-Robles et al., 2013; Spaan et al., 2013b, 2014). Due to the range of inhibitory 

activity displayed by these toxins, their role in impairing leukocyte function at sublytic 

concentrations cannot be ignored. 

 

1.2.6 The Staphylococcal Bi-Component Leukocidins 
 

For over 100 years, we have known that S. aureus secretes factors capable of haemolytic 

and leukocidal activity (Panton and Valentine, 1932). S. aureus produces a large number 

of toxins, including α-toxin, β-toxin and phenol-soluble modulins (PSMs), however a 

particularly broad and important group of toxins are the bi-component pore-forming 

leukocidins; these toxins are secreted as two soluble monomers that combine to form a 

β-barrel pore in the cell membrane. Of this group, five are associated with human 
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infections: Panton-Valentine Leukocidin (PVL), γ-Haemolysin AB and CB (HlgAB, HlgCB), 

leukocidin ED (LukED) and leukocidin AB (LukAB). These toxins target a range of 

leukocyte receptors to cause cell lysis and exert broad leukocidal activity (Table 1.1). 

 

Table 1.1 Staphylococcal bi-component leukocidins and their targets. 

C5aR1/2, CXCR1/2 and CCR2 are chemokine receptors; CD11b* is an integrin adhesion 

molecule; DARCᶧ is an erythrocyte receptor known as the Duffy antigen/receptor for 

chemokines. 

 

The mechanism of pore-formation and cell lysis by these toxins is summarised in Figure 

1.2. All bi-component leukocidins are composed of two distinct subunits, including a 

receptor-targeting S-component (for slow migration through chromatography columns) 

and a polymerisation F-component (fast migration) (Alonzo and Torres, 2014). Both 

subunits are produced as two distinct monomers that later polymerise to induce pore 

formation, with the exception of LukAB, which is produced as a single heterodimeric 

molecule (DuMont et al., 2013). The S-component recognises and binds the target 

receptor, which permits recruitment of the F-component (Colin et al., 1994). Alternating 

insertion of the two subunits then proceeds to form an octameric pore roughly 1-2nm 

in diameter in the cell membrane (Yamashita et al., 2011). 

As shown in Table 1.1, almost all bi-component leukocidins target chemokine receptors 

that are highly expressed on the surface of phagocytes. Most of these receptors (with 

the exception of CD11b and DARC) are from the class-A rhodopsin-like family of G-

protein coupled receptors (GPCRs). This family of structurally and functionally related 

seven-transmembrane loop receptors are important for transducing extracellular 

signals through interactions with cytosolic G-proteins (Venkatakrishnan et al., 2013). 

LukAB is an exception as it does not target a GPCR for leukocidal activity, instead 

Toxin Leukocyte target Non-leukocyte 
target 

Reference 

PVL C5aR1, C5aR2  (Spaan et al., 2013b) 

LukED CCR5, CXCR1, CXCR2 DARCᶧ (Alonzo III et al., 2012; Reyes-
Robles et al., 2013; Spaan et al., 
2015) 

HlgAB CCR2, CXCR1, CXCR2 DARCᶧ (Spaan et al., 2014, 2015) 

HlgCB C5aR1, C5aR2  (Spaan et al., 2014) 

LukAB CD11b*  (DuMont et al., 2013) 
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targeting CD11b (also known as Mac-1 integrin or complement receptor 3 (CR3)), an 

important C3b-binding receptor that is expressed on the surface of monocytes, 

macrophages and neutrophils, and governs phagocytosis, bacterial killing and 

chemotaxis (DuMont et al., 2013; Hynes, 2002; Ross, 1980). Interestingly, the S-

components of HlgAB and LukED (HlgA, LukE) can also target the Duffy antigen/receptor 

for chemokines (DARC) on erythrocytes, an atypical chemokine receptor that is not 

coupled to a G-protein (Tournamille et al., 2003). S. aureus targets the DARC using HlgAB 

and LukED to liberate essential iron from haemoglobin after lysing erythrocytes, as free 

iron is scarce during infection due to restriction by the host as a form of ‘nutritional 

immunity’ (Spaan et al., 2015). 

Despite the abundance of data concerning how the bi-component leukocidins target 

host cells, it is unclear how pore formation results in cell lysis. The process of pore-

formation and cell lysis as it is currently understood is summarised in Figure 1.2. It is 

currently thought that lysis is enhanced by activation of the NOD-, LRR- and pyrin 

domain-containing 3 (NLRP3) inflammasome after pore formation, triggered by the 

leakage of divalent cations (e.g. Ca2+ and K+) which stimulates NFκB production, caspase 

1 cleavage and IL-1β release, and results in a controlled form of cell death known as 

pyroptosis (Rühl and Broz, 2015; Spaan et al., 2017). Activation of NLRP3 is also observed 

in monocytes and macrophages after exposure to PVL, HlgAB, HlgCB and LukAB, 

suggesting that it is likely to be the next step in cell lysis (Holzinger et al., 2012; Melehani 

et al., 2015; Muñoz-Planillo et al., 2009). Despite these observations, the precise 

mechanisms underlying lysis remain unclear, however, they are likely to be executed by 

the host protein gasdermin D. Briefly, NLRP3 activation results in the cleavage of 

gasdermin D, releasing an N-terminal membrane targeting domain that forms pores in 

the host cell membrane; this leads to DNA cleavage, accelerated ion leakage and cell 

swelling, resulting in lysis (Liu et al., 2016). 
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Figure 1.2 Pore formation and cell lysis by the staphylococcal bi-component 
leukocidins. 
The bi-component leukocidins are composed of two distinct subunits. The S-subunit 

initiates pore-formation by recognising and binding the receptor target, followed by 

recruitment of the F-subunit. These subunits then dimerise and insert into the cell 

membrane, eventually forming a heptamer by alternating insertion of more S and F 

subunits. Once fully formed, the heptamer undergoes a conformational change and 

extends, perforating the cell membrane and causing leakage of divalent cations, 

disrupting cell homeostasis. This causes NFκB production, caspase 1 cleavage and IL-1β 

release, activating the NLRP3 inflammasome and accelerating pore-formation by 

assembly of host Gasdermin D by the pyroptotic cell death pathway. The cell then swells 

with H2O and lyses. 

 

Leukocidins are an important part of S. aureus infection. They are expressed during 

infection in vivo, and are a prominent aspect of pathogenesis, as infected individuals 

develop antibodies against them (Adhikari et al., 2015; Dumont et al., 2011). Mutant 

strains lacking PVL, HlgAB, HlgCB or LukAB exhibit a reduced cytolytic activity in vitro 

(Melehani et al., 2015; Spaan et al., 2013b, 2014), and LukED mutant strains become 

attenuated in vivo (Reyes-Robles et al., 2013). Despite their evident significance during 

infection, the overall purpose of leukocidin production has been difficult to determine 
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due to a disconnect between animal models and the functional specificity of many of 

these toxins. Notably, in vitro studies using murine leukocytes demonstrate a resistance 

to PVL-mediated cytolytic activity (Spaan et al., 2013b; Szmigielski et al., 1999), and in 

vivo models of skin and soft-tissue infections, sepsis and pneumonia report no effect of 

PVL beyond minor and strain-dependent observations (Bubeck Wardenburg et al., 2007; 

Diep et al., 2010; Voyich et al., 2006). These negative findings were due to differential 

expression of other virulence factors in these strains, in addition to the fact that PVL is 

adapted to the human variant of the C5aR, accounting for the resistance of non-human 

models to PVL activity (Bubeck Wardenburg et al., 2007; Spaan et al., 2013b). Moreover, 

HlgCB and LukAB are also human-adapted, a factor that is a major obstacle towards 

investigating their roles and functions during infection in vivo (DuMont et al., 2013; 

Melehani et al., 2015; Spaan et al., 2014). 

 

1.2.7 Evading the Oxidative Defence 
 

After phagocytosis, S. aureus must contend with a range of bactericidal oxidative 

compounds that are generated by the respiratory burst, including superoxide (O2
-), 

hydrogen peroxide (H2O2), and hypochlorous acid (HOCl). To survive the phagosome, S. 

aureus produces a number of proteins and enzymes that mitigate the level of 

bactericidal compounds, and directly inhibit central enzymes in the respiratory burst 

(summarised in Figure 1.3).  

During the respiratory burst, the first toxic compound produced is superoxide (O2
-). O2

- 

is generated by phagosomal NADPH oxidase, which transfers electrons from the cell to 

molecular oxygen, creating the O2
- free radical. Despite having a high reduction 

potential, O2
- is considered an ineffective oxidant that causes little damage or cell death, 

partly as it is easily dismutated by cellular enzymes such as superoxide dismutase 

(Winterbourn, 2008). The toxicity of O2
- is context-dependent, as extracellular O2

- is 

innocuous while intracellular O2
- is bactericidal (Gardner and Fridovich, 1991). To tackle 

O2
- in the phagosome, S. aureus produces two superoxide dismutases, SodA and SodM, 

which convert O2
- into H2O2 using manganese as a cofactor. These enzymes are 

upregulated after phagocytosis, and are evidently important in resisting oxidative killing 

in the phagosome, as illustrated by an increased susceptibility to oxidative killing in SodA 
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mutant strains (Clements et al., 1999; Hampton et al., 1996). Additionally, recent studies 

found that high levels of dietary manganese are associated with an increased 

susceptibility of staphylococcal endocarditis, as a result of the enhanced potential of S. 

aureus to detoxify O2
- using SodA and SodM (Juttukonda et al., 2017). Furthermore, 

SodM is expressed at significantly higher levels in S. aureus strains isolated from late-

stage cystic fibrosis (CF) patients, suggesting that SodM is important for adapting to 

long-term persistence environments (Treffon et al., 2018).  

After the production of O2
-, hydrogen peroxide (H2O2) is generated by both host and 

bacterial superoxide dismutases. H2O2 is generally not the primary oxidant responsible 

for bacterial killing in the phagosome, as a milllimolar range of H2O2 is thought to be 

required for bactericidal activity in vitro, and H2O2 levels in the phagosome generally do 

not rise above the micromolar range (Winterbourn et al., 2006). In contrast, H2O2-

mediated bactericidal activity has been demonstrated at the micromolar range in vitro 

after controlling for the catalytic effect of iron in resisting oxidative damage, suggesting 

that phagocytes rely on H2O2 to enhance bacterial killing (Park et al., 2005; Seaver and 

Imlay, 2001). S. aureus resists H2O2 using its catalase KatA, which converts two H2O2 

molecules to two H2O molecules and O2 using a haem cofactor. Catalase is an important 

determinant of pathogenicity, as KatA is upregulated after phagocytosis, and catalase 

production is correlated with virulence (Das and Bishayi, 2009; Kanafani and Martin, 

1985). Despite this, katA mutant strains are only attenuated in nasal colonisation models 

that require S. aureus to compete with other bacteria, suggesting that catalase is also 

important for resisting H2O2 produced by bacterial competitors (Park et al., 2008). 

S. aureus also expresses two alkyl hydroperoxide reductases, AhpF and AhpC. These are 

reactive towards alkyl peroxides (which are peroxides that form with organic molecules) 

and H2O2. Alkyl peroxides are broken down into the corresponding alcohol and water, 

or water and molecular oxygen in the case of H2O2. Little is known about these enzymes, 

although they appear to be important for pathogenesis, as an ahpC mutant exhibited 

reduced survival in a nasal colonisation model (Cosgrove et al., 2007). 

Perhaps the most potent oxidative product that is produced in the phagosome is 

hypochlorous acid (HOCl). HOCl is produced as the result of enzymatic conversion by 

myeloperoxidase (MPO), generating HOCl from H2O2 and a chloride ion. HOCl is the 

active compound in bleach, and displays a high level of bactericidal activity across many 
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species of bacteria (Hirche et al., 2005; Lehrer and Cline, 1969; Müller et al., 2014). 

Rather than targeting HOCl, S. aureus produces a virulence factor that directly inhibits 

MPO, blocking production of HOCl. The staphylococcal peroxidase inhibitor (SPIN) is 

expressed by >90% of S. aureus strains, and inhibits MPO by occluding the active site 

and acting as a ‘molecular plug’ (de Jong et al., 2017). The SPIN gene (spn) is upregulated 

within 20 minutes post phagocytosis, and SPIN mutants (spn) exhibit an increased 

susceptibility to oxidative killing, suggesting that SPIN is an important component of 

surviving the oxidative defence, and that MPO is a key enzyme potentiating the 

antibacterial activity of neutrophils (de Jong et al., 2017). 

 

 

Figure 1.3 Staphylococcal evasion of the oxidative defence. 
Staphylococcal virulence factors produced in the phagosome to escape oxidative killing 

by neutrophils. Major products of the respiratory burst are shown numbered in black; 

oxidative host enzymes are shown in green; staphylococcal virulence factors and their 

targets are shown in orange. 
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1.2.8 Host-adaptation of S. aureus 
 

S. aureus is a highly versatile pathogen, colonising a wide array of different hosts. For 

over 30 years, S. aureus has been considered as an organism that colonises and co-

evolves with specific hosts (Kloos, 1980). This characteristic is demonstrated by the 

distinct infection scenarios presented by healthcare-associated MRSA (HA-MRSA) and 

community-associated MRSA (CA-MRSA), with each occurring in distinct environments. 

The ability of S. aureus to adapt and diversify is also exemplified by the large number of 

divergent strains, which currently numbers over 3,100 (http://saureus.mlst.net/, 

accessed August 2018). While S. aureus is a commensal organism in humans, it has also 

been isolated from a wide variety of different vertebrate species, highlighting its 

capacity to survive in different host environments (Kloos, 1980). S. aureus causes disease 

in a wide variety of economically important animal species, including cows, sheep, goats, 

poultry and rabbits, representing a major economic problem across several countries 

(Fitzgerald, 2012). Importantly, strains derived from animal infections are genotypically 

and phenotypically different from human strains, implying that S. aureus is host-

specialised, and engages in limited transmission between humans and animals (Jamrozy 

et al., 2012). 

S. aureus is responsible for a considerable disease burden among economically 

important animals. Intramammary infections in dairy cows cause mastitis, representing 

a major economic burden (Bradley, 2002); mastitis in smaller ruminants is also an issue 

in countries that rely on sheep and goat cheese (Menzies and Ramanoon, 2001). In 

poultry, S. aureus is capable of skeletal infections such as osteomyelitis, and in 

continental Europe, S. aureus causes skin abscesses, mastitis and septicaemia in rabbit 

farms (McNamee and Smyth, 2000; Vancraeynest et al., 2006). 

Despite the unique host-specificity of S. aureus, it is also capable of transmission 

between species. Generally, transmission of S. aureus from animals to humans is 

uncommon, however carriage of porcine strains in individuals who work closely with 

pigs is increasing (although infection is rare) (van den Broek et al., 2009; van Cleef et al., 

2011). Consequently, pigs may represent a reservoir for zoonotic infections of S. aureus, 

and may not be alone in this regard. Population studies comparing bovine, galline and 

equine strains of S. aureus with human strains note a disproportionately high number 

http://saureus.mlst.net/
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of strains that are identical or similar to human strains, suggesting that jumps between 

humans and these animals are common (García-Álvarez et al., 2011; Lowder et al., 2009; 

Walther et al., 2009). Furthermore, there is strong evidence of equine strains that were 

originally transmitted from humans, and consequently adapted to colonise horses as a 

host. This is evidenced by genotypic similarities between certain equine and human 

strains, in addition to their expression of equine-specific pathogenicity islands (Viana et 

al., 2010; Walther et al., 2009). 

Host-adaptation of S. aureus is highly complex, involving changes to major surface 

proteins and virulence factors. S. aureus alters its cell surface by dispensing with genes 

encoding surface proteins such as protein A (SpA) or clumping factor A (ClfA), 

presumably as they are unnecessary for colonisation in both ruminant and avian hosts 

(Devriese, 1984; Herron-Olson et al., 2007). Another major mechanism of host 

adaptation in S. aureus is through changes to the core genome or the accessory genome, 

the latter consisting largely of mobile genetic elements (MGEs). MGEs can encode large 

regions containing many host-specific virulence factors, allowing it to colonise a given 

host. A common feature of animal strains is the secretion of a host-specific von-

Willebrand factor binding protein (vWfbp) that binds the serum glycoprotein von-

Willebrand factor (vWf) which is involved in the clotting cascade; unique vWfbp’s are 

observed in bovine, ovine and equine strains of S. aureus (Guinane et al., 2010; Viana et 

al., 2010). Bovine strains often carry a unique leukocidin pair known as LukMF’, which 

binds to the CCR1 chemokine receptor which is expressed on bovine neutrophils and not 

human neutrophils (Vrieling et al., 2015). Interestingly, leukocidins may be a major 

aspect of host-adaptation, as another novel leukocidin named LukPQ has been identified 

in equine strains, which target equine CXCRA and CXCR2 (Koop et al., 2017). Other 

notable host-adapted virulence factors include two distinct SCIN’s, one bovine and one 

equine-specific, and a galline cysteine protease similar to staphopain A, demonstrating 

that complement, antimicrobial proteins and phagocytes are also important targets for 

infection in animal hosts (Takeuchi et al., 2002; Guinane et al., 2010; de Jong et al., 

2018).  

In contrast to the notion that S. aureus relies heavily on MGEs for host tropism, analysis 

of the co-evolution of rabbit and human-adapted strains has revealed that human 

strains require only a single mutation in a cell wall enzyme encoded in the core genome 
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(DltB) to confer infectivity in rabbits (Viana et al., 2015). Notably, these rabbit strains 

harbour none of the accessory genes disseminated on MGEs that are characteristic of 

human-derived strains, suggesting that many of them are primary determinants of 

human tropism.  

 

1.2.9 Human-adaptation of S. aureus 
 

S. aureus has colonised humans for at least 10,000 years, according to evolutionary 

evidence of a human to cattle host jump shortly after their domestication (Weinert et 

al., 2012). As a result of this longstanding relationship, S. aureus has become highly 

specialised to the environment of the human body. The result is the existence of a wide 

range of virulence factors that are only functional against the human variant of their 

target, almost all of which are directed against central components of the innate 

immune system (Table 1.2). 
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Virulence Factor Functions Targets References 

Staphylokinase 

(SAK) 

Inhibits α-defensins, 

opsonophagocytosis, 

complement and 

chemotaxis by 

degrading C3b and IgG 

Plasminogen, α-

defensin, C3b, 

IgG 

(Gladysheva et al., 2003; 

Jin et al., 2004; 

Rooijakkers et al., 

2005a) 

Staphylococcal 

Complement 

Inhibitor (SCIN) 

Complement 
disruption by stabilising 
C3 convertases 

C3b, Factor B (Rooijakkers et al., 

2005b) 

Chemotaxis 

inhibitory protein of 

Staphylococci 

(CHIPS) 

Inhibits chemotaxis by 
blocking receptor 
ligand binding domains 

C5aR1, C5aR2, 

FPR1 

(de Haas et al., 2004) 

Staphylococcal 

Enterotoxin A (SEA) 

Activates T-cells by 
crosslinking, inhibits 
chemotaxis 

MHC and T-cell 

receptors, CCR1, 

CCR2 

(Dohlsten et al., 1993) 

Panton-Valentine 

Leukocidin (PVL) 

Kills leukocytes, inhibits 
chemotaxis at sublytic 
concentrations 

C5aR1, C5aR2 (Spaan et al., 2013b) 

Haemolysin 

(HlgCB) 

Kills leukocytes, inhibits 
chemotaxis at sublytic 
concentrations 

C5aR1, C5aR2 (Spaan et al., 2014) 

Leukocidin AB 

(LukAB) 

Kills leukocytes CD11b (DuMont et al., 2013) 

Staphylococcal 

Peroxidase Inhibitor 

(SPIN) 

Mitigates ROS 
production by blocking 
the active site of MPO 

Myeloperoxidase 

(MPO) 

(de Jong et al., 2017) 

Staphopain A (ScpA) Inhibits chemotaxis and 
phagocyte activation by 
cleaving the IL-8 
receptor 

CXCR2 (Laarman et al., 2012) 

 

Table 1.2 Human-specific virulence factors produced by S. aureus. 
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As shown in Table 1.2, S. aureus produces many human-specific virulence factors that 

target major components of the innate immune system. There is minimal variation in 

the expression of virulence factors that are associated with human infection, which is 

surprising given the high level of variation in the core and accessory genomes of 

individual strains (Koymans et al., 2017). MGEs are a major determinant of human-

specificity, and are disseminated by bacterial viruses named bacteriophages, which 

insert their viral DNA into the genome of the host. An important class of bacteriophages 

governing human-adaption of S. aureus are the β-haemolysin converting bacteriophages 

(βC-φS), which disrupt expression of the β-haemolysin toxin when integrating their DNA 

into the S. aureus genome (Coleman et al., 1986). 

The most significant MGE that allows S. aureus to colonise and infect humans is the 

immune evasion complex (IEC), which is disseminated by a βC-φS. The IEC is expressed 

by roughly 90% of human isolates, and is almost entirely absent from livestock-derived 

strains (Price et al., 2012; van Wamel et al., 2006). The IEC carries the virulence factors 

staphylokinase (SAK), staphylococcal complement inhibitor (SCIN), chemotaxis 

inhibitory protein of staphylococcus (CHIPS), and staphylococcal enterotoxin A (SEA), 

which broadly target chemotaxis, complement and antimicrobial proteins to impair the 

innate immune response. Although the IEC is found in roughly 90% of S. aureus strains, 

there are 7 distinct variants that express different virulence factors. The percentage of 

isolates that express each virulence factor is: SAK (76.6%), CHIPS (56.6%) and SEA 

(27.8%) while interestingly, 100% of isolates express SCIN, suggesting that subversion of 

the complement system is a priority for human-adaptation (van Wamel et al., 2006). 

Each factor is partially or completely inactive in studies using murine cells, and are only 

functional against the human variant of their target (Dohlsten et al., 1993; Gladysheva 

et al., 2003; de Haas et al., 2004; Rooijakkers et al., 2005b). 

Other human-specific factors expressed by the majority of S. aureus strains are 

Staphopain A (ScpA), the staphylococcal peroxidase inhibitor (SPIN), γ-haemolysin CB 

(HlgCB) and leukocidin AB (LukAB), all of which are found in the core genome of over 

99% of S. aureus strains (Golonka et al., 2004; de Jong et al., 2017; Spaan et al., 2017). 

ScpA is unable to cleave murine CXCR2, however a single amino acid substitution was 

able to confer cleavage at high concentrations (Laarman et al., 2012). SPIN is transcribed 

near the α genomic island known as νSaα, near a cluster of immune evasion factors that 
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includes the staphylococcal superantigen-like toxins (de Jong et al., 2017). SPIN is unable 

to inhibit murine, bovine, equine and rabbit myeloperoxidase, and is only active against 

human MPO (de Jong et al., 2017). The two bi-component leukocidins, HlgCB and LukAB 

are also transcribed in the core genome and expressed by roughly 99.5% of human 

isolates; both demonstrate an inability to kill murine leukocytes, and are highly cytotoxic 

to human and primate leukocytes (DuMont et al., 2013; Spaan et al., 2014). 

While these factors are expressed in almost all S. aureus strains, Panton-Valentine 

Leukocidin (PVL) is a notable exception. PVL is disseminated on the temperate 

bacteriophage φSa2, and is expressed in only 1.2% of S. aureus strains (von Eiff et al., 

2004). Although PVL is found in only a small minority of strains, it is important to note 

that PVL is expressed in almost all CA-MRSA isolates and acts as an epidemiological 

marker of these infections (Naimi et al., 2003). Immortalised monocyte-like U937 cells 

transfected with either the human, primate, mouse or rabbit C5a receptor and treated 

with PVL demonstrate that PVL is unable to lyse primate or mouse neutrophils in vitro, 

and is specifically active against the human C5a receptor (Spaan et al., 2013b). 

Unexpectedly, PVL was also able to lyse cells transfected with the rabbit C5a receptor, 

which may be explained by a greater similarity between the rabbit and human receptors 

compared with other mammals. Rabbit leukocytes are susceptible to PVL lysis in vivo, 

and a single amino acid mutation in a human-adapted strain is sufficient to confer 

infectivity in rabbits, implying that rabbits are a more representative model of S. aureus 

infection than mice (Diep et al., 2010; Viana et al., 2015). 

 

1.3 The Zebrafish (Danio rerio) 
 

Zebrafish (Danio rerio) are small, freshwater fish native to India, Burma and Pakistan. 

For over 30 years, the zebrafish has been an important model for studying 

developmental processes as an alternative to mammalian models. Subsequently, a wide 

range of tools have been developed that allow researchers to dissect aspects of biology 

from a range of perspectives.  
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1.3.1 The Zebrafish as a Model of Disease 
 

The zebrafish is a useful model for the study of human diseases. They share 70% 

homology with the human genome, are genetically tractable and are amenable to high-

throughput techniques, making the zebrafish a valuable model for studying disease from 

numerous angles (Howe et al., 2013). Since the 1980s, a wealth of tools for working with 

zebrafish has been created, including cloning (Streisinger et al., 1981), mutagenesis 

(Walker and Streisinger, 1983), transgenesis (Stuart et al., 1988) and gene mapping 

(Streisinger et al., 1986) techniques. These tools have led to established models of 

heritable diseases such as Duchenne Muscular Dystrophy and Polycystic Kidney Disease 

(Bassett et al., 2003; Sun et al., 2004) in addition to acquired diseases including 

melanoma (Haldi et al., 2006), leukaemia (Langenau et al., 2003) and neurodegenerative 

conditions (Paquet et al., 2009), that have yielded valuable insights into translational 

medicine.  

One of the most important fields of study aided by the zebrafish is the study of 

inflammatory diseases. Particularly, a transgenic zebrafish with labelled neutrophils can 

be used as a model of sterile neutrophilic inflammation; these fish recapitulate 

neutrophil recruitment and resolution over a timeframe that resembles mammalian 

inflammation (Renshaw et al., 2006a). Additionally, novel signalling pathways regulating 

inflammation have been discovered using the zebrafish. Using a ratiometric H2O2 

reporter line it was discovered that epithelial cells initiate a tissue-scale gradient of H2O2, 

which acts as the first chemoattractant produced at wound sites, which is then sensed 

by a peroxidase-sensitive kinase (Niethammer et al., 2009; Yoo et al., 2011). 

Furthermore, it was also shown that MPO is delivered to the wound site by neutrophils, 

regulating H2O2 levels and mitigating the inflammatory response, highlighting a major 

role for MPO in reducing inflammation (Pase et al., 2012). 

Zebrafish are also a useful translational model for screening and testing novel 

therapeutic agents. One such agent is Tanshinone IIA (TIIA), which was found to enhance 

inflammation resolution by initiating migration of neutrophils away from the wound 

site, known as ‘reverse migration’; this also occurs in mammalian models, and aids 

revascularisation and wound healing (Robertson et al., 2014; Wang et al., 2017). TIIA 

was discovered as the result of a compound screen which measured the effects of 
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known modulators of neutrophil function and lifespan in the zebrafish model of 

inflammation (Loynes et al., 2010; Renshaw et al., 2006b). Outwith its potential in 

discovering novel anti-inflammatory drugs, zebrafish are also a valuable screening 

platform for almost every novel compound with therapeutic applications (MacRae and 

Peterson, 2015). 

The zebrafish larva is also an insightful model for investigating the establishment and 

metastasis of tumour cells. The enhanced metastasis of tumour cells under hypoxic 

conditions has been effectively recapitulated using a larval xenograft model (Lee et al., 

2009), and mirrors the therapeutic effects observed by inhibiting the endothelial growth 

factor VEGF (Kim et al., 1993). More recently, the xenograft model has been applied 

towards identifying key determinants of specific cancer subtypes, including triple-

negative breast cancer, and has led to the identification of the chemokine receptor 

CXCR4 as a major regulator of metastasis in these cancers (Tulotta et al., 2016). 

 

1.3.2 Genetic Manipulation of Zebrafish 
 

One of the most useful features of the zebrafish model is that it is genetically tractable, 

a trait that is readily exploitable with an abundance of established tools. A variety of 

approaches are available for genetic manipulation of zebrafish, including transient and 

inducible gene expression, mutagenesis and transgenesis. The majority of these tools 

involve direct injection of DNA, RNA or enzymes into newly fertilised embryos, however 

there are also chemically-mediated methods of genetic manipulation, all of which will 

be discussed. 

Transient knockdown of gene expression is possible using morpholinos (MOs), which are 

short ~25bp stretches of small interfering RNA (siRNA) that can bind RNA in a site-

specific manner, blocking protein translation (Summerton and Weller, 1997). Two 

notable MOs that are useful for studying innate immunity are irf8, which skews myeloid 

lineage development in zebrafish embryos by suppressing the irf8 macrophage 

transcription factor (Li et al., 2011) and pu.1, which abrogates phagocyte development 

(Rhodes et al., 2005). Inducible gene expression can be accomplished using the Gal4-

UAS system, which is a bicistronic genetic element from Saccharomyces cerevisiae that 

can direct cell-specific expression of effector proteins. The Gal4 transcriptional activator 
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uses the upstream activation sequence known as UAS as a binding site. By fusing a cell-

specific promoter upstream of Gal4 and an effector protein downstream of UAS, the 

effector protein will be expressed in the specific cell type when both elements are 

present (Asakawa and Kawakami, 2008). For example, if the kdrl vascular cell promoter 

(Bertrand et al., 2010) were fused to Gal4, and the green fluorescent protein (GFP) were 

fused to UAS, vascular cells would express GFP when both elements are present. 

Mutagenesis is also readily performed using the zebrafish model with engineered 

nucleases or mutagenic chemical treatments. Two established mutagenesis 

technologies utilised in the zebrafish are zinc-finger nucleases and TALENs. Zinc-finger 

nucleases (ZFNs) are artificial proteins consisting of a site-specific zinc-finger array fused 

to a non-specific nuclease domain; the engineered protein can then be used to perform 

site-specific mutagenesis (Foley et al., 2009). Mutagenesis occurs by creating double-

strand breaks at the desired site, which can result in a frameshift mutation through non-

homologous end joining. A similar approach is to use transcription activator-like effector 

nucleases (TALENs), which contain basepair-specific domains that can be assembled to 

create site-specific nuclease activity (Moore et al., 2012).  

A more recent technique for site-specific mutagenesis in the zebrafish is to use the 

CRISPR/Cas system. CRISPR/Cas (clustered regularly interspaced short palindromic 

repeats - CRISPR-associated) is derived from a primitive bacterial immune system that 

mediates acquired resistance against viruses and plasmids (Horvath and Barrangou, 

2010). CRISPR consists of a number of DNA fragments acquired by bacteria after 

infection, and is paired with the endonuclease Cas9 to mediate site-specific nuclease 

activity. Unlike ZFNs and TALENs, CRISPR/Cas uses short stretches of RNA known as 

guide RNAs to target specific DNA sites, which are then cleaved by the Cas9 nuclease 

(Hwang et al., 2013). A related approach known as CRISPRi causes site-specific 

knockdown of gene expression, comprised of an inactivated Cas9 which blocks gene 

transcription rather than causing double-strand breaks (Qi et al., 2013). Non-specific 

methods of mutagenesis are also possible with the zebrafish, and are useful for 

performing forward genetics studies. ENU mutagenesis involves routinely treating adult 

zebrafish with the mutagen N-ethyl-N-nitrosourea, which causes chromosomal 

mutations at an average rate of one every 1x105 basepairs (de Bruijn et al., 2009). 

Treated fish are then crossed and their larvae screened for novel phenotypes, which can 
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be identified genetically. For example, ENU mutagenesis was used to create a 

myeloperoxidase-deficient zebrafish called durif (Pase et al., 2012). 

The insertion of foreign DNA elements into the zebrafish genome is also possible using 

transgenesis techniques. The most efficient approach commonly used in zebrafish is 

Tol2 transgenesis, which utilises transposon-derived sequences to deliver genetic 

elements into the genome by transposase-mediated insertion (Kwan et al., 2007). By 

placing these sites at positions flanking a DNA sequence, the Tol2 transposase enzyme 

is then able to insert the sequence randomly and in one efficient step into the target 

genome.  

While Tol2 is currently the most efficient means of delivering construct DNA into the 

zebrafish genome, there are numerous ways to create genetic constructs prior to 

transgenesis. An efficient means of generating constructs of roughly 10-20kb in size is 

using a multisite recombination technology known as Gateway® cloning, which allows 

genetic constructs to be assembled in a modular fashion, facilitating future 

experimentation (Kwan et al., 2007). Gateway® cloning is based on the att site-specific 

recombination system from lambda phage, which allows up to three individual genetic 

elements known as ‘entry clones’ to be assembled to form one large genetic construct 

(Hartley et al., 2000). Entry clones typically contain promoters, effector proteins or 

fluorescent markers, and are created by adding att sites to either end of a genetic 

element using PCR; these att sites allow the element to carry out site-specific 

recombination events with a specific donor vector to insert the element into the vector 

(Figure 1.4A). The att sites depend on whether the entry clone will be placed at a 5’, 

middle or 3’ position in the full-length construct. For example, for a middle-entry clone 

the genetic element will have an attB1 and an attB2 site, allowing it to recombine with 

a donor vector containing an attP1 and attP2 site. Site-specific recombination between 

a genetic element and a donor vector is carried out in a reaction known as a ‘BP 

reaction’, which utilises a BP clonase to catalyse recombination events between attB 

and attP sites, inserting the genetic element into the donor vector (Kwan et al., 2007). 

The final construct is assembled in an ‘LR reaction’, which uses attL and attR sites to fuse 

all entry clones together in order before inserting the assembled sequence into a 

destination vector (Figure 1.4B). 
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Figure 1.4 Gateway® cloning of genetic constructs for transgenesis into the 
zebrafish. 
A) Creation of entry clones via a BP reaction. B) Assembly of a full-length construct from 

three entry clones via an LR reaction. Adapted from Kwan et al., 2007.  

 

One drawback of Tol2-mediated insertion of Gateway® constructs is that these 

constructs are limited by size, as Tol2 integration rates begin to drop for sequences over 

10kb (Suster et al., 2011). This often means that genes cannot be inserted in their 

entirety (i.e. with regulatory elements and introns intact), and therefore may not be 

expressed in an identical pattern to the endogenous gene. Another method of delivering 

genetic elements into the zebrafish genome is to use a bacterial artificial chromosome 

(BAC)-targeting method, which can insert constructs as large as 300kb into the genome, 
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and may be enhanced using Tol2 (Suster et al., 2011). Although BAC targeting is very 

useful for inserting complete genes into the zebrafish genome, they are limited by being 

more cumbersome than Gateway constructs from a practical standpoint. 

 

1.3.3 The Zebrafish Immune System 
 

As the zebrafish genome shares 70% homology with the human genome, the zebrafish 

immune system is highly analogous to humans, with many examples of orthologous 

immune components (Howe et al., 2013). Zebrafish have an innate and adaptive 

immune system, which develop separately. The innate system is active from fertilisation, 

while the adaptive system is not present until ~3 weeks post-fertilisation (Herbomel et 

al., 1999; Wang et al., 2009). This has implications for studying infection in the zebrafish, 

as embryos possess only an innate immune response. While this is useful for studying 

the innate immune system in isolation, it can also be an obstacle for studying 

interactions between the innate and adaptive systems. 

Zebrafish have a number of innate immune cells, including macrophages, neutrophils, 

dendritic cells and natural killer cells. Dendritic cells and natural killer cells have been 

identified in the zebrafish, but are unlikely to be present in the embryo before 5 days 

post-fertilisation (dpf), before larval transparency is reduced (Lugo-Villarino et al., 2010; 

Yoder et al., 2010). Subsequently, the major immune effector cells of the developing 

larva are the macrophages and neutrophils, which are capable of phagocytosing and 

degrading a range of human pathogens. Macrophages are present in embryos from 25 

hours post fertilisation (hpf), and primarily phagocytose pathogens in the fluid-phase 

such as the circulation (Colucci-Guyon et al., 2011; Herbomel et al., 1999). Neutrophils 

are observed shortly afterwards from 33hpf, and become the dominant phagocyte in 

the larva by 48hpf (Ellett et al., 2011). Contrasting with macrophages, zebrafish 

neutrophils predominantly phagocytose surface-associated microbes, for example in 

the somite tail muscle or otic vesicle (Colucci-Guyon et al., 2011). Macrophages and 

neutrophils can be imaged during infection in vivo with a variety of transgenic lines, 

illustrating the potential of the zebrafish in studying the roles of phagocytes (Ellett et al., 

2011; Gray et al., 2011; Hall et al., 2007; Renshaw et al., 2006a). 
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The adaptive immune system can also be studied using the zebrafish model. As 

mentioned, zebrafish have an adaptive immune system by roughly 3 weeks post 

fertilisation; at this point zebrafish are able to mount a humoral immune response, and 

utilise two conserved immunoglobulin classes (IgM and IgD) and two novel classes (IgT 

and IgZ) (Hu et al., 2010; Zhang et al., 2010). The humoral response in zebrafish is 

mediated by B-cells, which are observable using the transgenic IgM1:eGFP line by 20dpf 

(Page et al., 2013). Zebrafish also possess T-cells, with T-lymphocyte progenitors being 

observable in the thymus with the transgenic p56lck:eGFP line from 68hpf (Langenau et 

al., 2004). Furthermore, while it is unclear whether zebrafish possess all T-cell subsets 

found in humans, they do have T-helper CD4+ cells, cytotoxic CD8+ T-cells and 

unconventional γδ T-cells (Wan et al., 2016). While zebrafish can be used to study the 

adaptive immune system, imaging studies are hampered by the loss of transparency that 

occurs when zebrafish melanise by 6-8dpf (van der Sar et al., 2004). To this end, non-

melanising zebrafish lines have been generated, namely the nacre (Lister et al., 1999) 

and casper lines (White et al., 2008a). 

Zebrafish also possess a number of orthologous pattern recognition receptors (PRRs) 

that permit cells to recognise invading pathogens and danger signals and mount an 

appropriate immune response; among these are the Toll-like receptors (TLRs) (Jault et 

al., 2004), RIG-I-like receptors (RLRs) (Zou et al., 2015) and NOD-like receptors (NLRs) 

(Oehlers et al., 2011). Orthologous genes for all human TLRs are found in fish (except 

TLR6, which is TLR1); they also possess several novel TLRs, as well as some duplicated 

versions of existing TLRs (Kawai and Akira, 2010). In addition to TLRs 1-10 which are 

found in humans, zebrafish possess TLR18, TLR19, TLR20a, TLR20f, TLR21 and TLR22, 

most of which are believed to be ohnologues, non-functional pseudogenes that arose 

from a genomic duplication event that occurred during evolution (Meijer et al., 2004; 

Van de Peer et al., 2003; Taylor et al., 2001); this is also believed to be the reason that 

zebrafish have two copies of TLR4, TLR5 and TLR8 (Meijer et al., 2004). Despite the 

differences between human and zebrafish TLRs, zebrafish remain able to respond to a 

complete repertoire of PAMPs from viruses and bacteria (Meijer et al., 2004; Phelan et 

al., 2005). 

Zebrafish neutrophils possess their own orthologue of myeloperoxidase (Mpx), which 

they use to aid resolution of inflammation and infection (Pase et al., 2012). The mpx 
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gene is expressed from 19hpf, and is detectable with peroxidase-sensitive staining by 

33hpf (Lieschke et al., 2001). The catalytic domain of Mpx has 51% and 52% amino acid 

identity with human and murine MPO respectively, suggesting that Mpx functionally 

represents human MPO as well as the mouse model (Lieschke et al., 2001). While the 

importance of Mpx in orchestrating the innate immune response is unclear, the 

zebrafish may offer several advantages over the murine model, as mice possess 10-fold 

less MPO than human neutrophils, and lack several transcription factor binding domains 

present in human MPO (Nauseef, 2001; Rausch and Moore, 1975). Mice are also highly 

resistant to S. aureus in terms of dose (bacteraemia: ~4x107cfu), while zebrafish 

succumb to infections at doses several-fold lower (1,500cfu) (Connolly et al., 2017). 

Orthologous genes of many major components of the complement system have been 

identified in zebrafish, which is expected, as complement is observed in virtually all 

vertebrates (Sunyer et al., 1997). However, several important components have not 

been genetically identified, including complement receptor 1 (CR1), complement 

receptor 2 (CR2), and crucially, C3b and iC3b (Zhang and Cui, 2014). Additionally, the 

functionality of a number of key components is almost entirely unexplored. Despite this, 

several complement-dependent functions during infection have been identified in the 

zebrafish. The lectin pathway is active in zebrafish embryos, and potentiates the 

phagocytic response to Escherichia coli and S. aureus infection (Yang et al., 2014). Also, 

zebrafish C3 is essential for bacteriolytic activity against E. coli, which is active from 

fertilisation and mediated by the membrane attack complex (MAC) utilising components 

C5b-C9 (Wang et al., 2009). While these processes are functional in the embryo, the 

extent to which the zebrafish relies on complement for opsonophagocytosis (C3b 

deposition) or chemotaxis (C3a and C5a) is unknown. Furthermore, the importance of 

chemotactic complement receptors utilised by professional phagocytes and immune 

cells is unclear; although encouragingly, the C5a receptor (C5aR1) appears to play a role 

in cardiac regeneration, suggesting that complement also plays a role in regenerative 

responses in the zebrafish; this is also observed in humans (Mastellos et al., 2013; 

Natarajan et al., 2018). 
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1.3.4 The Zebrafish as an Infection Model 
 

Two common limitations of existing infection models include a lack of amenability to in 

vivo imaging and high-throughput data collection; the zebrafish larva corrects these 

issues with near-transparency and a high fecundity that permits infection of large 

numbers of fish in a single experiment. The zebrafish has been used to study a wide 

array of infections including fungal (Bojarczuk et al., 2016), viral (Passoni et al., 2017) 

and parasitic pathogens (Akle et al., 2017). These studies focus on interactions between 

pathogens and the host, and can be manipulated with a wide variety of tools. For 

example, host immune cells such as neutrophils or macrophages can be labelled by 

transgenic expression of fluorescent proteins downstream of cell-specific promoters 

(Brannon et al., 2009; Elks et al., 2013; Renshaw et al., 2006a), and combined with 

fluorescently-labelled pathogens that constitutively express or are stained with 

fluorescent markers (Harvie et al., 2013; van der Sar et al., 2003). These techniques allow 

host-pathogen interactions to be visualised with ease and at high resolution. 

Zebrafish are a valuable model for the study of bacterial infection, offering insights into 

how both gram-positive (Elks et al., 2013; Harvie et al., 2013; Torraca et al., 2017) and 

gram-negative (Brannon et al., 2009; Mazon-Moya et al., 2017; van der Sar et al., 2003) 

bacteria interact with the host to cause infection. Zebrafish embryos can be injected at 

a number of sites depending on the pathogen, and includes systemic infections via the 

caudal vein (Elks et al., 2013), trunk (Torraca et al., 2017) or circulation valley (Prajsnar 

et al., 2008, 2012), and acute infections in compartmentalised tissues such as the otic 

vesicle (Colucci-Guyon et al., 2011; Deng et al., 2012), somite tail muscle (Colucci-Guyon 

et al., 2011), and hindbrain ventricle (Mazon-Moya et al., 2017; Willis et al., 2016). These 

studies utilise the zebrafish model to its full potential, and dissect host-pathogen 

interactions by genetic manipulation of host and pathogen (Harvie et al., 2013; Prajsnar 

et al., 2008; van der Sar et al., 2003), measuring changes in inflammatory cytokine 

expression using in vivo reporter lines (Mazon-Moya et al., 2017), and dissecting 

virulence determinants using survival models (Brannon et al., 2009; Harvie et al., 2013; 

Prajsnar et al., 2008). 

A number of novel host-pathogen interactions have been elucidated in the zebrafish 

larva, incorporating a variety of bacterial infection models. An important link between 
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metabolism and the immune system during Salmonella enterica serovar Typhimurium 

infection was uncovered when the Immunoresponsive gene 1 (irg1) was demonstrated 

to affect production of mitochondrial ROS by regulating fatty acid metabolism, which in 

turn fuels oxidative phosphorylation (Hall et al., 2013). A key function of the 

inflammasome in regulating bacterial clearance was also shown using a Salmonella 

infection model (Tyrkalska et al., 2016), and is also implicated in the immune response 

to an engineered strain of Listeria monocytogenes that expresses monomeric flagellin 

from Legionella pneumophila (Sauer et al., 2011). Interestingly, a novel therapeutic 

approach to antibiotic-resistant infections has been demonstrated in vivo using the 

predatory bacterium Bdellovibrio bacteriovorus, which invades and consumes gram-

negative bacteria (Willis et al., 2016). In a hindbrain ventricle model of acute multidrug-

resistant Shigella flexneri infection, it was observed that B. bacteriovorus acts in concert 

with phagocytic cells to clear an otherwise untreatable bacterial infection. This 

highlights the therapeutic potential of B. bacteriovorus, effectively acting as a ‘living 

antibiotic’. 

It is important to note that the zebrafish model has some limitations with regards to 

studying infection. Due to ethical considerations, infection studies generally do not 

exceed 5dpf, as after this point zebrafish larvae have developed higher 

neurophysiological sensitivity. At this point, zebrafish larvae have a functional innate 

immune system, although adaptive immunity is not present until roughly 3 weeks post 

fertilisation (Herbomel et al., 1999; Wang et al., 2009). Consequently, studies using the 

zebrafish larva focus on the innate immune system in isolation from the adaptive 

system. Another limitation is that zebrafish are kept at 28°C, whereas human pathogens 

grow optimally at 37°C. This may result in differences in gene expression in the pathogen 

and should be carefully considered when using this model. 

As discussed, bacterial pathogens can display high levels of host-specificity, 

necessitating the use of human cells and humanised models to fully represent human 

infection. Currently, there are no studies in which expression of human proteins is 

induced in the zebrafish model, beyond transient expression of human RUNX1 – a 

transcriptional regulator of haematopoiesis – in one study (Kalev-Zylinska et al., 2002). 

Accordingly, studies involving the expression of human proteins in the zebrafish in order 
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to determine the impact on infection and the immune system would be entirely novel 

in this regard. 

 

1.3.5 The Zebrafish as a Model of S. aureus Infection 
 

Over the last decade, the zebrafish has served as an insightful model of staphylococcal 

interactions with the host during infection. The embryo can be infected as early as 

30hpf, at which point it is able to mount an innate immune response governed by 

phagocytes including macrophages and neutrophils (Prajsnar et al., 2008). The most 

commonly used injection route is to induce systemic infection by injecting the embryo 

in the circulation valley (a major blood vessel located near the heart), resulting in 

reproducible survival data at a mid-range dose of S. aureus (1,200-1,700 colony forming 

units - cfu). Other injection sites have been tested, but proved to be either too toxic at 

mid-range doses (yolk sac) (Li and Hu, 2012; Prajsnar et al., 2008) or required doses as 

high as 6,500cfu to induce significant mortality (eye, pericardial cavity) (Li and Hu, 2012). 

However, other sites remain useful for studying infection at distinct locations, for 

example, infection in the somite tail muscle produces a localised, neutrophil-driven 

immune response that is amenable to imaging the phagocyte response to infection 

(Ellett et al., 2015). 

Control and clearance of systemic staphylococcal infection in zebrafish embryos was 

demonstrated to be dependent on the presence of phagocytes (Prajsnar et al., 2008). 

Embryos injected with the pu.1 morpholino have a depleted phagocyte population and 

exhibit reduced survival against infection. Additionally, the embryo recapitulated 

attenuated virulence phenotypes observed in other studies, underlining its usefulness 

as a model to screen for novel virulence determinants. Moreover, embryos with 

overwhelming bacteraemia that later succumb to infection were shown to have a 

reduced number of neutrophils compared with embryos that survived. This mirrors the 

finding that leukopenia is highly correlated with mortality in individuals with 

community-acquired pneumonia and bacteraemia (Fine et al., 1996), suggesting that the 

embryo accurately models clinical staphylococcal infection. 
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S. aureus is primarily considered an extracellular pathogen that does not need to reside 

within host cells to establish and maintain infection. However, there is a considerable 

amount of evidence that S. aureus invades and persists within numerous cell types 

including endothelial cells, epithelial cells, fibroblasts, osteoblasts, keratinocytes, 

macrophages and neutrophils (Alexander and Hudson, 2001; Garzoni and Kelley, 2009). 

Persistence within host cells offers two main advantages to the bacteria; intracellular 

bacteria are less exposed to antimicrobial compounds such as antibiotics, allowing them 

to survive, and, residing in host cells provides a means of dissemination to other sites, 

promoting the spread of infection. Evaluation of the activity of β-lactam and 

glycopeptide antibiotics against extracellular S. aureus and S. aureus residing within 

THP-1 macrophages shows a reduced capacity to kill intracellular bacteria, highlighting 

the benefit of residing intracellularly during infection (Barcia-Macay et al., 2006; Lemaire 

et al., 2009). 

As mentioned, invasion of host cells permits S. aureus to disseminate throughout the 

host, primarily via motile cells such as macrophages and neutrophils. These phagocytic 

cells are critical to the immune defense against S. aureus, and are required for 

containment and clearance of infection by the host (Foster, 2005; Spaan et al., 2013a). 

However, they may also act as intracellular niches in which S. aureus can persist and 

disseminate. In vitro, staphylococci are known to replicate within leukocytes, persisting 

for several days without affecting the viability of the infected cells, and even upregulate 

anti-apoptotic pathways to prolong the lifespan of the inhabited cell (Koziel et al., 2009; 

Kubica et al., 2008; Melly et al., 1960). In vivo studies have also demonstrated the 

proficiency of S. aureus as an intracellular pathogen. In a mouse model of chronic 

mastitis, neutrophils, macrophages and mammary epithelial cells were observed to 

contain live S. aureus that perpetuated the chronic infection state (Craven and 

Anderson, 1979). Furthermore, using a murine model of infectious peritonitis, 

fluorescent microscopy revealed a high proportion of neutrophils containing S. aureus, 

suggesting that invasion into phagocytes is a major step during infection in this model 

(McLoughlin et al., 2006). 

Once S. aureus arrives in the bloodstream, metastatic infection occurs before treatment 

in 30% of patients, which if left unchecked can lead to bacteraemia (Fowler et al., 2003; 

Thwaites and Gant, 2011). The ability of S. aureus to metastasise is directly associated 
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with neutrophil levels, and the expression of virulence factors that facilitate phagosomal 

survival. Patients with neutropenia show reduced metastasis, and are less likely to 

develop bacteraemia (Velasco et al., 2006). Mutant strains of global virulence regulators 

agr and SarA are defective in several virulence factors that facilitate phagosomal survival 

or escape, including α-haemolysin (Hla), Staphylokinase (SAK), staphopain A (ScpA) and 

aureolysin (Pragman and Schlievert, 2004; Shompole et al., 2003), and accordingly 

exhibit an impaired ability to disseminate and cause bacteraemia in a neonatal mouse 

model of pneumonia (Heyer et al., 2002). Furthermore, strains lacking the 

staphylococcal peroxidase inhibitor (SPIN), which mitigates ROS production by inhibiting 

neutrophil myeloperoxidase (MPO), are less able to survive within neutrophils (de Jong 

et al., 2017). These findings suggest that the ability to reside within host cells, 

particularly macrophages and neutrophils, is an important aspect of staphylococcal 

infection. 

The intracellular lifestyle of S. aureus is also well-represented by the zebrafish embryo. 

By coinfecting embryos with two fluorescent, but otherwise isogenic strains, it was 

observed that late stages of infection are typically dominated by a single strain, 

suggesting the existence of a population bottleneck that skews infection towards one 

strain (Prajsnar et al., 2012). After depleting phagocytes using the pu.1 morpholino, this 

population bottleneck was no longer observed, suggesting that phagocytic cells 

represent an intracellular niche for S. aureus that results in a clonal population of 

bacteria at late stages of infection. Outwith the zebrafish model, this bottleneck 

phenomenon was also observed in a murine model of systemic staphylococcal infection 

in two separate studies, suggesting that the zebrafish accurately reflects the murine 

model of systemic infection (McVicker et al., 2014; Prajsnar et al., 2012). 

The systemic infection model has also been used to determine whether well-known S. 

aureus mutant strains are attenuated, and has revealed novel determinants of 

staphylococcal infection. Three existing mutants which are attenuated in the murine 

model include PheP (a phenylalanine transport gene), PerR (a peroxide regulon 

repressor) and SaeR (a regulator of accessory virulence factors), all of which are 

significantly attenuated when compared with a wild-type strain in the zebrafish infection 

model (Prajsnar et al., 2008). Virulence factors required for growth in human blood were 

also investigated using the zebrafish model. These three genes include two genes 
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involved in purine biosynthesis (purA, purB) and pabA, which is important for folate 

biosynthesis. Mutant strains of these genes are all attenuated in the zebrafish model, 

revealing that nucleotide metabolism is an important aspect of staphylococcal infection 

(Connolly et al., 2017). 

Overall, the zebrafish embryo is a useful model of staphylococcal infection. As early as 

30hpf, embryos possess macrophages and neutrophils that are rapidly recruited to the 

site of infection, and effectively phagocytose and destroy S. aureus by acidifying and/or 

producing ROS (Ellett et al., 2015; Prajsnar et al., 2008). These phagocytes are essential 

to controlling and clearing infection in zebrafish embryos, emphasising their importance 

during staphylococcal infection (McVicker et al., 2014; Prajsnar et al., 2008, 2012). 

Importantly, these embryos also possess a complement system (i.e. the lectin pathway) 

which is important during the early response to S. aureus in the zebrafish, and enhances 

opsonophagocytosis in the zebrafish larva (Yang et al., 2014). The doses required for 

infection in the embryo are more representative of human infection when compared 

with the mouse model, and is illustrated by a study in which a dose of 1,500cfu of S. 

aureus was sufficient for systemic infection in the embryo, while a dose of 4x107cfu was 

required to cause an equivalent infection in mice (Connolly et al., 2017). Aspects of 

clinical bacteraemia observed in human patients are also mirrored in the zebrafish, 

specifically leukopenia during late stages of infection, suggesting that the systemic 

infection model reflects the physiology of patients with fatal bacteraemia (Fine et al., 

1996; Prajsnar et al., 2008). Lastly, the embryo is useful for studying the intracellular life 

cycle of S. aureus, which has proven difficult to study, and has value towards 

characterising novel virulence determinants that are important for establishing and 

maintaining staphylococcal infection. 
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1.4  Thesis Aims 

 
The aims of this thesis are: 

• To create transgenic zebrafish lines expressing human proteins in zebrafish 

neutrophils that are targeted by S. aureus during infection. 

• To assess how expression of these proteins affects neutrophil development and 

function. 

• To determine whether expression of these proteins results in enhanced targeting 

by specific virulence factors, and whether this results in an enhanced 

susceptibility to staphylococcal infection. 
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Chapter 2: Materials and Methods 

 

2.1 General Materials 
 

2.1.1 Zebrafish Lines 
 

Zebrafish Line Description Origin 

AB Wild-type N/A 

London-Wild Type (LWT) Wild-type (survival assays) N/A 

Nacre Non-pigmented mutant of AB (Lister et al., 1999) 

Tg(lyz:MPO.mEmerald)sh496 Drives myeloid expression of 
human myeloperoxidase with a 
C-terminal fusion of the 
fluorescent protein mEmerald 

This study 

Tg(lyz:hC5aR.Clover)sh505 Drives myeloid expression of 
the human C5a receptor with a 
C-terminal fusion of the 
fluorescent protein clover 

This study 

Tg(lyz:nfsB.mCherry)sh260 Drives myeloid expression of 
mCherry in the cell cytoplasm 

Renshaw lab 

mpx -/- NL144 AB/TL (Tupfel Long-Fin) wild-
type with a premature stop 
codon in the first exon of the 
mpx gene; does not fully 
translate myeloperoxidase 

(Elks et al., 2014) 

 

Table 2.1 Zebrafish lines used in this study 

 

2.1.2 Bacterial Strains 
 

All bacterial strains used in this study are shown below in Table 2.2. S. aureus strains 

were inoculated from -80°C MicrobankTM (Pro-lab Diagnostics) stocks onto BHI agar 

plates containing the appropriate selection where necessary. For short term storage 

plate cultures were kept at 4°C; for long term storage eight colonies were picked, 

inoculated into MicrobankTM stocks and kept at -80°C. E. coli stocks containing DNA 

constructs were inoculated from -80°C stocks containing 50% liquid culture and 50% 

glycerol (Calbiochem), then maintained on BHI agar with appropriate selection. For short 
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term storage plate cultures were kept at 4°C; cryotubes containing 500l overnight 

liquid culture and 500l glycerol were used for long term storage at -80°C. 

Strain Genotype Reference 

Staphylococcus aureus 

USA300 CA-MRSA typical strain 

USA300 wild-type 

(Tenover and Goering, 

2009) 

USA300 SPIN USA300 SPIN (transposon 

knockout) 

A kind gift from Nienke 

de Jong, Utrecht 

Medical Center 

USA300 CHIPS USA300CHIPS 

(transposon knockout) 

A kind gift from Michiel 

van Gent, Utrecht 

Medical Center 

CHIPS HlgC USA300HlgC (transposon 

knockout) 

A kind gift from Michiel 

van Gent, Utrecht 

Medical Center 

pSPIN-GFP USA300 USA300 with GFP fused to 

the SPIN promoter on the 

νSaα pathogenicity island. 

CmR 

(de Jong et al., 2017) 

USA300-GFP USA300 containing GFP 

plasmid. Constitutively 

expressed. CmR 

A kind gift from Nienke 

de Jong, Utrecht 

Medical Center 

Escherichia coli 

OneshotTM Top10 

chemically competent 

(DH10B) 

F- mcrA Δ( mrr-hsdRMS-

mcrBC) Φ80lacZΔM15 Δ 

lacX74 recA1 araD139 Δ( 

araleu)7697 galU galK rpsL 

(StrR) endA1 nupG 

ThermoFisher Scientific 

 

Table 2.2 Bacterial strains used in this study.  

CmR, chloramphenicol resistant. 
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2.1.3 Antibiotics 
 

All antibiotics used in this study are listed in Table 2.3 below. Stock solutions were 

dissolved in the appropriate solvent, filter-sterilised (0.22m pore size) and stored at -

20°C. Solution concentrations were added to agar plates once they had cooled to below 

55°C to avoid antibiotic degradation; for liquid cultures, antibiotics were added just 

before use. 

Antibiotic Stock 
Concentration 

Dissolved in: Solution 
Concentration 

Carbenicillin (Carb) 50mg/ml dH2O 50g/ml 

Kanamycin (Kan) 50mg/ml dH2O 50g/ml 

Tetracycline (Tet) 5mg/ml 100% Ethanol 5g/ml 

Chloramphenicol (Cm) 10mg/ml dH2O 10µg/ml 

 

Table 2.3 Antibiotics used in this study.  

Carbenicillin was used as an alternative to Ampicillin due to its improved stability. 
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2.1.4 Primers 
 

Primer 
Name 

Sequence (5’-3’) Description 

hC5aR 
MEC F 

ggg gac aag ttt gta caa aaa agc agg ctC 
CAT GAA CTC CTT CAA TTA TAC CAC 

Forward primer used to amplify 
the hC5aR gene, contains an 
attB1 site. 

hC5aR 
Correct 
MEC R 
NOSTOP 

ggg gac cac ttt gta caa gaa agc tgg gtG 
CAC TGC CTG GGT CTT CTG G 

Reverse primer used to amplify 
the hC5aR gene with no stop 
codon, contains an attB2 site. 

hC5aR 
Correct 
MEC R 
STOP 

ggg gac cac ttt gta caa gaa agc tgg gtG 
CTA CAC TGC CTG GGT CTT CTG G 

Reverse primer used to amplify 
the hC5aR gene with a stop 
codon, contains an attB2 site. 

hC5aR 
MEC 1/2 

TCA GCA AAC ACT GGA GCA AC Forward primer annealing ~50bp 
upstream of the attB1 site of 
pDestTol2CG2 lyz:hC5aR.Clover. 
Used to sequence the final 
construct. 

hC5aR 
MEC 2/2 

CTC AAC ATG TAC GCC AGC AT Forward primer annealing 
midway through the hC5aR gene 
in pDestTol2CG2 
lyz:hC5aR.Clover. Used to 
sequence the final construct. 

MPO-N 
Linker 

GAC AAC ACA GGC ATC ACC AC Forward primer annealing at the 
linker between MPO and 
mEmerald in pDestTol2CG2 
lyz:MPO.mEmerald. Used to 
sequence the final construct. 

MPO-C 
Linker 

AGC ACC CAG TCC AAG CTG Forward primer annealing at the 
linker between mEmerald and 
MPO in pDestTol2CG2 
lyz:mEmerald.MPO. Used to 
sequence the final construct. 

MPO 
attB1 For 

TCA GCA AAC ACT GGA GCA AC Forward primer annealing at the 
attB1 site at the beginning of 
both MPO.mEmerald and 
mEmerald.MPO consructs. Used 
to sequence final constructs. 

mpx 
Spotless 
For 1 

CTA GCA AAG GAA CTG CGG GA Forward primer used to amplify 
the mpx gene during genotyping. 

mpx 
Spotless 
Rev 1 

AAT CAC GTG CTC CTC TCG AT Reverse primer used to amplify 
the mpx gene during genotyping. 

*Lower case denotes att sites; upper case denotes complementary regions. 

Table 2.4 Primers used in this study 
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2.1.5 Plasmids 
 

Plasmid Description Reference 

mEmerald-MPO-C-18  Contains mEmerald with a C’ terminal fusion of 

human MPO. KanR  

Addgene Plasmid #54186 

(Dr. Michael Davidson’s Lab) 

mEmerald-MPO-N-18 Contains mEmerald with an N’ terminal fusion of 

human MPO. KanR  

Addgene Plasmid #54187 

(Dr. Michael Davidson’s Lab) 

pME MCS Empty middle entry vector with a multiple cloning 

site, contains attP1 and attP2 sites. KanR 

N/A 

pDestTol2CG2 LR construct backbone vector, contains cmlc2:GFP 

green heart marker. AmpR 

(Kwan et al., 2007),(Huang 

et al., 2003) 

pIRES-hC5aR (No 

FLAG) 

Plasmid containing IRES site and hC5aR gene. 

AmpR 

A kind gift from Michiel van 

Gent – Utrecht Medical 

Center 

lyz 5’EC 5’ entry vector containing neutrophil specific 

promoter lyz, contains attL4 and attR1 sites. KanR 

(Hall et al., 2007) 

PolyA 3’EC 3’ entry vector containing polyadenylation tail, 

contains attR2 and attL3 sites. KanR 

(Kwan et al., 2007) 

pDONR221 middle donor vector; attP1-P2 flanking insert 

chlor/ccdB cassette. KanR 

N/A 

pDestTol2CG2 pDestTol2CG2 with ~2 kb extraneous sequence 

removed. Contains cmlc2:GFP, green heart 

marker. AmpR 

N/A 

pDestTol2CG2 

lyz:hC5aR.Clover 

Full-length plasmid containing the neutrophil-

specific promoter lyz driving expression of a C-

terminally labelled hC5aR. Contains cmlc2-GFP, 

green heart marker. AmpR 

This study 

pDestTol2CG2 

lyz:MPO.mEmerald 

Full-length plasmid containing the neutrophil-

specific promoter lyz driving expression of MPO 

with a C-terminal fusion of mEmerald. Contains a 

cmlc2:GFP green heart marker. AmpR 

This study 
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pDestTol2CG2 

lyz:mEmerald.MPO 

Full-length plasmid containing the neutrophil-

specific promoter lyz driving expression mEmerald 

with a C-terminal fusion of MPO. Contains a 

cmlc2:GFP green heart marker. AmpR 

This study 

 

Table 2.5 Plasmids used in this study 

AmpR, Ampicillin resistance gene; KanR, Kanamycin resistance gene. Carbenicillin was 

used as an alternative to Ampicillin due to its improved stability. 
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2.1.6 Proteins 
 

Protein Concentration  Resuspended in Reference 

Panton-Valentine 

Leukocidin S-subunit 

(LukS-PV)  

300µg/ml Toxin buffer (2.3.3) A kind gift from Angelino 

Tromp – Utrecht Medical 

Center 

Panton-Valentine 

Leukocidin F-subunit 

(LukF-PV) 

1,089µg/ml Toxin buffer (2.3.3) A kind gift from Angelino 

Tromp – Utrecht Medical 

Center 

γ-Haemolysin C-

subunit (HlgC) 

299µg/ml Toxin buffer (2.3.3) A kind gift from Angelino 

Tromp – Utrecht Medical 

Center 

γ-Haemolysin B-

subunit (HlgB) 

1,430µg/ml Toxin buffer (2.3.3) A kind gift from Angelino 

Tromp – Utrecht Medical 

Center 

Human C5a (hC5a) 112µg/ml PBS (2.3.1) A kind gift from Michiel 

van Gent – Utrecht 

Medical Center 

Zebrafish C5a (drC5a) 1,000µg/ml PBS (2.3.1) A kind gift from Michiel 

van Gent – Utrecht 

Medical Center 

 

Table 2.6 Protein stocks and concentrations used in this study. 
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2.2 Bacterial Media 
 

All bacterial media was prepared using distilled water (dH2O) and sterilised by 

autoclaving for 20 minutes at 121°C and 15 psi. 

 

2.2.1 Brain Heart Infusion (BHI) Broth 
 

Brain Heart Infusion (Oxoid) 37g/l 

Oxoid Agar Bacteriological (Agar No. 1 (1.5% weight per volume w/v)) was added for BHI 

agar. 

 

2.2.2 Luria-Bertani (LB) Broth 
 

LB broth (Lennox) microbial growth medium tablets (Sigma) were used, adding every 

1.1g tablet to 48.3millilitres (ml) dH2O. 

Tryptone 10g/l 

Yeast Extract 5g/l 

NaCl 5g/l 

Inert Binding Agents 2.2g/l 
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2.2.3 Luria-Bertani (LB) Broth with Agar 
 

LB broth with agar (Lennox) microbial growth medium tablets (Sigma) were used, adding 

every 1.68g tablet to 48.3mls dH2O. 

 

Agar 13.72g/l 

Tryptone 9.14g/l 

Yeast Extract 4.57g/l 

NaCl 4.57g/l 

Inert Binding Agents 1.6g/l 

 

 

2.3 Buffers and Solutions 
 

All buffers and solutions were made using distilled H2O (dH2O) and autoclaved where 

necessary. All were then kept at room temperature. 
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2.3.1 Phosphate Buffered Saline (PBS) 
 

NaCl 8g/l 

Na2HPO4 1.4g/l 

KCl 0.2g/l 

KH2PO4 0.2g/l 

 

Solutions were then pH adjusted using 1M HCl or 3 M NaOAc (Affymetrix) to a normal 

working pH of 7.4. 

 

2.3.2 TAE (50x) 
 

Tris base 242g/l 

Glacial acetic acid 0.57% (v/v) 

EDTA 0.05 M 

Before use the 50x stock was diluted 1 in 50 to create a normal working 1x solution of 

TAE. 

 

2.3.3 Toxin Buffer 
 

Panton-Valentine Leukocidin (PVL) is resuspended in toxin buffer: 

Tris base (50mM) 6.057g/l 

NaCl (300mM) 17.53g/l 

Add dH2O to 1L and adjust to pH 7, then autoclave. As an added measure, filter-sterilise 

into 50ml FalconTM tubes prior to use. 
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2.4 Zebrafish Reagents 
 

2.4.1 E3 Medium (x10) 
 

E3 medium was used to maintain developing zebrafish embryos. 

NaCl 50 mM 

KCl 1.7 mM 

CaCl2 3.3 mM 

MgSO4 3.3 mM 

10x stock was diluted to 1x using dH2O. To prevent fungal contamination E3 can be 

supplemented with 3 drops of methylene blue per litre; this was not done in this study, 

to maintain embryo transparency. 

 

2.4.2 Methylcellulose 
 

Methylcellulose was prepared in non-methylene blue supplemented E3 at a 

concentration of 3% (w/v). To facilitate solubilisation the mixture was partially frozen, 

mixed and defrosted several times. This solution was then aliquoted into 10ml syringes 

and kept frozen for long-term storage. For use in survival assays and short-term storage 

the aliquots were kept at 28.5°C. 

 

2.4.3 Zebrafish Anaesthesia 
 

Stock solution of 0.4% (w/v) 3-amino benzoic acid ester (also known as Tricaine or 

MS322, Sigma) was made using 20mM Tris-HCl, adjusted to pH 7 and stored at -20°C. 

For short-term storage, Tricaine was kept at 4°C in the dark due to photosensitivity. 

Zebrafish embryos were anaesthetised in a final concentration of 0.02% (w/v) Tricaine 

prior to experiments. 
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2.5 Cloning, DNA and Transgenesis methods 
 

2.5.1 Visualisation of DNA 
 

Visualisation of plasmids and constructs was carried out by agarose gel electrophoresis 

using 1% agarose dissolved in 1x TAE buffer and then microwaved at full power until 

clear. One drop of Ethidium Bromide (Dutscher Scientific) was added to the gel for every 

50ml of agarose. DNA was loaded using 5x loading buffer (Bioline) and run at 100V for 

45 minutes on average, alongside 5l HyperLadderTM 1kb plus (Bioline). 

 

2.5.2 Gel Extraction and Purification 
 

DNA bands to be recovered from agarose gels for cloning purposes were first visualised 

under a low-level UV lamp to prevent DNA damage. Bands of DNA were then excised 

from the gel using a scalpel blade and the remaining gel visualised using a 

transilluminator. Gel extractions were carried out using a MinElute® Gel Extraction kit 

according to manufacturers instructions. DNA was eluted in a final volume of 10l buffer 

EB. 

 

2.5.3 DNA Quantification 
 

DNA concentration was initially quantified using a NanodropTM spectrophotometer. For 

more accurate estimates of DNA concentration, samples were visualised by agarose gel 

electrophoresis alongside 12l, 6l, 3l and 1.5l of HyperLadderTM 1kb plus (Bioline). 

The concentrations were then calculated using a marker ladder reference. 

 

2.5.4 Small-Scale Purification of Plasmid DNA 
 

For the initial screening of transformed colonies, DNA was precipitated using the 

following method: 
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Buffers P1, P2 and P3 were provided in the QIAGEN® QIAprepTM Spin column kit. 

• Inoculate 6mls of LB (including relevant selection if necessary) with a single 

colony and incubate at 37°C overnight with shaking at 200rpm 

• Pellet a total of 3ml of cells by spinning at 8000g for 3 minutes each 

• Resuspend in 250l cold P1 Buffer 

• Add 250l P2 Buffer, incubate for 2 minutes 

• Add 250l cold P3 Buffer 

• Centrifuge at max speed for 10 minutes 

• Discard pellet and add 750l Isopropanol to supernatant 

• Centrifuge at max speed for 10 minutes at 4°C 

• Remove supernatant and add 500l 70% Ethanol 

• Centrifuge at max speed for 10 minutes 

• Remove supernatant 

• Air dry in heat block at 37°C for roughly 10 minutes 

• Resuspend in 30l dH2O (MilliQ) 

 

2.5.5 Large-Scale Purification of Plasmid DNA 
 

For sequencing and for creating stocks of plasmid DNA the QIAGEN® Plasmid Midi Kit 

was used according to manufacturer’s instructions. 

 

2.5.6 Bacterial Transformations 
 

DNA products were transformed into E. coli competent cells DH10B C3019 (New England 

Biolabs) for middle entry clone construction and One Shot Top10® (Life Technologies) 

for fully assembled expression clones using the following method: 

• Defrost cells kept at -80°C on ice 

• Add DNA to cells at no more than 1:10 volume (DNA:cells) 

• Mix by flicking 

• Incubate on ice for 30 minutes 

• Pre-warm agar plates while incubating by placing in 37°C incubator  

• Heat shock in water at 42°C for 45 seconds 

• Leave on ice for 10 minutes 

• Take plates out of incubator 

• Add 250l room temperature SOC medium 
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2.5.7 Restriction Digests 
 

Each digest required different conditions, however each reaction was incubated for 3 

hours at 37°C, and was made up in the following proportions: 

Relevant Digestion Buffer 2μl 

Restriction Enzyme (each) 0.5μl 

DNA 1μg (5μl for screening 

transformants) 

MilliQ H2O To 20μl 

Digest buffers used for the following enzyme digests are shown in Table 2.7 below: 

  

Plasmid Buffer (New England 

Biolabs) 

mEmerald-MPO-N-18 (NheI-NotI) 2.1 

mEmerald-MPO-C-18 (NheI-SacII) 2.1 

pME MCS MPO-N-18 (XbaI-NotI) 3.1 

pME MCS MPO-C-18 (XbaI-SacII) CutSmart® 

pDONR221 hC5aR.Clover (HincII) CutSmart® 

hC5aR complete construct diagnostic (SacII) CutSmart® 

MPO complete construct diagnostic (XbaI) CutSmart® 

MPO complete construct diagnostic (SnaBI-NheI) CutSmart® 

Genotyping the mpx-/- NL144 allele (BtsCI) CutSmart® 

 

Table 2.7 Buffers used for restriction digests in this study 

 

• Incubate horizontally at 37°C with shaking for 1 hour 

• Plate onto selection 

• Incubate overnight at 37°C 
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2.5.8 Ligations 
 

Ligations of cut MPO plasmids into pME MCS were carried out using the following 

reaction (µl = microlitre): 

10x Ligase Buffer 2l 

T4 DNA Ligase 1l 

Molar Ratio of Insert:Vector 3:1 

dH2O To 20l 

Reactions were then incubated overnight at 16°C. 

 

2.5.9 PCR Amplification of the hC5aR Gene from pIRES hC5aR 
 

Each 20µl reaction contained: 

Reagent Quantity (µl) 

5x Q5 buffer 5 

dNTPs 0.5 

Forward primer 1.25 

Reverse primer 1.25 

Plasmid DNA 1 

Q5 polymerase 0.25 

GC enhancer 5 

dH2O 10.75 

 

After reactions were made up, they were mixed by flicking and centrifuged for ~5 

seconds to ensure thorough mixing. They were then cycled as follows: 
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1. 98°C, 30 seconds 

2. 98°C, 10 seconds 

3. 55°C, 30 seconds 

4. 72°C, 60 seconds 

5. Go to step 2, x30 cycles 

6. 72°C, 120 seconds 

7. 12°C, ∞ seconds 

To verify and quantify, PCR products were then visualised by running 1µl on a 1% 

agarose gel until resolved.  

 

2.5.10 BP Reactions 
 

Creation of entry clones for use in MultiSite Gateway® recombination reactions were 

produced via BP reaction. This involved recombining PCR products containing the 

relevant recombination sites (5’: attB4/attB1r, Middle: attB1/attB2, 3’: attB2r/attB3) 

with the pDONR vector containing the corresponding recombination sites (5’: 

attP4/attP1r, Middle: attP1/attP2, 3’: attR2/attL3). This produces entry clones 

containing the recombination sites required for the final LR reaction (5’: attL4/attR1, 

Middle: attL1/attL2, 3’: attR2/attL3) and is summarised in Figure 1.4. 

This protocol is from the Invitrogen MultiSite Gateway® Three-Fragment Vector 

Construction Kit manual. The first step involves mixing the appropriate PCR product with 

the corresponding pDONR vector in a 1.5ml eppendorf in the following proportions: 

 
 
attB PCR product (20-50fmoles) 1-7l 

pDONRTM vector (150ng/l) ~1l 

TE Buffer, pH 8.0 To 8l 
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Mix the reaction by flicking lightly, then: 
 

• Thaw the BP ClonaseTM II enzyme mix on ice for roughly 2 minutes. 

• Briefly vortex the enzyme mix twice (2 seconds each time). 

• Add 2l of the enzyme mix to the PCR product and pDONR mixture, and mix by 

vortexing twice briefly (2 seconds each time). 

• Incubate at 25°C for 1 hour (incubate overnight - ~18 hours - for 5-10 times more 

colonies, or if the PCR product is larger than 5kb). 

• Add 1l Proteinase K (2g/l) to the mix and incubate at 37°C for 10 minutes. 

 

When transforming, add 1l of the reaction to a volume of no more than 1:10 DNA:cells 

(TOP10 competent cells), and spread both 20l and 100l onto LB plates supplemented 

with kanamycin. 

 

2.5.11 LR Reactions 
 

Creation of the complete construct was performed using the MultiSite Gateway® Three-

Fragment Vector Construction Kit (detailed in Figure 1.4B) (Invitrogen). The LR reaction 

contains three DNA fragments that form the construct and a vector backbone, along 

with buffer and an LR Clonase that performs the final multi-site recombination reaction. 

Reactions were carried out in the following proportions: 

attL4/attR1 Entry Clone (5’ EC) 10 fmoles 

attL1/attL2 Entry Clone (Middle EC) 10 fmoles 

attR2/attL3 Entry Clone (3’ EC) 10 fmoles 

Destination vector (pDest) 20 fmoles 

pH8 TE Buffer To 5l total 

LR Clonase II Plus 1l 

The reaction was then incubated at 25°C overnight. Next, the mixture was treated with 

1l Proteinase K (2g/l) and incubated at 37°C for 10 minutes. When transforming, 2l 

of the reaction was added to a volume of no more than 1:10 DNA:cells (TOP10 

competent cells), and spread both at 50l and 100l onto LB plates supplemented with 

carbenicillin. 
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2.5.12 Preparation of Tol2 Transposase RNA 
 

To prepare Tol2 transposase RNA for injection into zebrafish embryos, the following 

protocol from the mMESSAGE mMACHINETM SP6 transcription kit was used. 

• Linearise 20µg of prepped DNA containing Tol2 (pCS-TP Tol2) with 1µl restriction 

enzyme (2µl, NotI/NotI-HF), for 2 hours at 37°C, 50-200µl total reaction (this 

should cut to completion most of the time). Add buffer at 1/10 the total volume. 

• PCR purify into a standard column, elute in 30µl. 

• Run 0.5µl on 1% gel to quantitate, add 5µl water and 2 µl loading dye to sample 

for loading. 

• Use 1µg for mMESSAGE mMACHINETM transcription reaction (kit) (SP6 

polymerase); increasing template amount in 20µl won’t increase yield therefore 

do multiple 20µl if more is required. 

• Follow the Phenol:chloroform extraction protocol according to mMessage 

manual – step 4 and precipitate using isopropanol OR phenol:chloroform extract 

and put through a column to concentrate. 

Extracted Tol2 RNA is then ready for injection into single-cell stage zebrafish embryos. 

 

2.6 Genotyping of mpx-/- NL144 Zebrafish 
 

To determine the genotype of mpx-/- NL144 fish, genomic DNA was first extracted from the 

tailfins of adult zebrafish. 

 

2.6.1 Zebrafish Fin Clipping 
 

Tailfins from adult zebrafish were clipped by first anaesthetising fish in Tricaine (4.2ml 

in 100ml), and cutting no more than 1/3 of the caudal fin with a pair of scissors. Place 

fins in PCR tubes containing 100µl NaOH (50mM). Clipped adults were kept separate to 

permit later identification. 

 

2.6.2 Extraction of Genomic DNA from Tailfins 
 

To extract genomic DNA from tailfins, perform the following protocol on the PCR tubes 

containing the tailfins: 
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• Boil sample at 98oC for 10 mins 

• Cool tubes on ice for 10 mins 

• Add 10l (1/10 volume of NaOH) 1M Tris pH 8 

• Vortex well  

• Spin down for 10 minutes full speed (4,200rpm) 
 

2.6.3 PCR Amplification of the mpx Gene 
 

Use the following protocol to amplify the mpx gene from the extracted genomic DNA. 

In a total reaction volume of 10µl, mix the following in a PCR tube: 

Reagent Quantity (µl) 

Forward primer (mpx Spotless For 1) 0.5 

Reverse primer (mpx Spotless Rev 1) 0.5 

DNA 1 

Firepol mix 2 

dH2O 6 

After reactions were made up, they were mixed by flicking, and centrifuged for ~5 

seconds to ensure thorough mixing. They were then cycled as follows: 

1. 95°C, 120 seconds 

2. 95°C, 30 seconds 

3. 60°C, 30 seconds 

4. 72°C, 60 seconds 

5. Go to step 2, x34 cycles 

6. 72°C, 10 minutes 

7. 12°C, ∞ seconds 

To verify and quantify, then visualised PCR products by running 1µl on a 1% agarose gel 

until resolved.  
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2.6.4 BtsCI Digest of the Amplified mpx Gene 
 

To determine the mpx allele of the clipped fish, the amplified PCR product can be 

digested with BtsCI using the following protocol. 

Mix the following in a 1.5ml Eppendorf: 

Reagent Quantity (µl) 

BtsCI 1 

Cutsmart® buffer 2 

DNA 5 

dH2O 12 

Mix thoroughly and incubate for 1 hour at 50°C. Visualise on a 2% agarose gel alongside 

a HyperLadderTM 50bp DNA ladder. 

 

2.7 Zebrafish Materials and Methods 
 

2.7.1 Zebrafish Husbandry 
 

Adult zebrafish were kept at 28°C in a continuous re-circulating closed aquarium system 

with a light-dark cycle of 14/10 hours respectively. Zebrafish embryos were kept in a 1x 

solution of E3 supplemented with methylene blue. Tg(lyz:MPO.mEmerald)sh496, 

Tg(lyz:hC5aR.Clover)sh505, Tg(lyz:nfsB.mCherry)sh260 zebrafish were maintained 

under a project licence awarded by the UK home office to the University of Sheffield. 

Experiments performed on larvae were all carried out before 5dpf, as at this age they 

are not protected under the Animals (Scientific Procedures) Act (1986). 

 

2.7.2 Zebrafish Line Maintenance  
 

Adult zebrafish lines were maintained by out-crossing to AB wild-types (or nacre wild-

type if appropriate) to ensure zebrafish lines were not inbred. This would occur when 

adults were 1-2 years old to ensure the zebrafish line was continued and a supply of 

healthy young adults was available. Where required, fin-clipping of adult zebrafish was 
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completed and subsequent genotyping/screening enabled grouping of adult fish by 

genotype/transgenic reporter, important for experimental procedures. 

 

2.7.3 Preparation of Needles for Injection 
 

Kwik-FilTM borosilicate glass capillaries (WPI) were pulled in two using a model P-1000 

Flaming/Brown micropipette puller (Sutter Instrument Company), resulting in two finely 

pointed needles that were used for injection into the zebrafish by insertion into a 

micromanipulator (WPI) connected to a pneumatic micropump (WPI). The end of the 

needle was then broken and the dose precisely calibrated using a graticule (Pfizer). 

 

2.7.4 Injection of DNA into Zebrafish Embryos 
 

To induce transgenesis, a mixture of construct DNA and Tol2 RNA was injected into 

single-cell stage zebrafish embryos; the mixture also contained phenol red, which makes 

identifying successful injection of the mixture easier. Adult paired zebrafish were 

separated by a plastic divider, which was removed 30-40 minutes prior to the beginning 

of injection. Newly laid embryos were collected and injected by mounting onto the long 

edge of a glass microscope slide placed in a Petri dish. Proportions of DNA and Tol2 RNA 

varied during optimisation, however the volumes present in the injected mixture were 

most often as follows: 

Reagent Quantity (µl) 

Construct DNA 1.25 

Phenol Red 0.5 

Tol2 RNA 2 

dH2O 1.25 
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2.7.5 Sudan Black B Staining 
 

To stain zebrafish neutrophils, the myeloperoxidase-dependent stain Sudan Black B was 

used. The following reagents were required for Sudan Black B staining: 

• Sudan Black B Staining Solution (Sigma) 

• 4% Paraformaldehyde (PFA) (defrost for 1-2 hours before use) 

• Phosphate Buffered Saline (PBS) 

• 70% Ethanol 

• PBS-Tween (0.1% Tween) (PBST) 

• 30% Glycerol (0.1% Tween):  

• For 50ml = 15ml Glycerol, 50µl Tween, to 50ml dH2O 

• 80% Glycerol (0.1% Tween):  

• For 50ml = 40ml Glycerol, 50µl Tween, to 50ml dH2O 

• Bleaching Solution (make without H2O2 then add H2O2 last): 

• 0.5x SSC, 5% Formamide, 10% H2O2 (of 30% H2O2 max stock) 

 

Staining of zebrafish larvae with Sudan Black B was performed using the following 

protocol, originally from the Lieschke lab (Peter MacCallum Cancer Centre): 

• Grow embryos for 3 days or more: (optional) add ptu to the media (E3) to remove 

pigmentation, alternatively bleach larvae using the protocol at the end. 

• After anaesthetising embryos using 1/20 Tricaine (roughly 1ml to a Petri dish), place 

a maximum of 20 embryos in a 1.5ml Eppendorf tube and wait until embryos have 

sunk to the bottom. 

• Draw off as much media as possible without disturbing embryos, and then add 1ml 

of room-temperature PFA. 

• Leave the Eppendorf on its side and allow the embryos to fix for at least an hour at 

room temperature (longer fixation is fine, can go over the weekend in fix for 

example; leave triton or tween out of the fix solution). 

• Rinse 3x 5min in PBS by drawing off PFA, adding 1ml of PBS and leaving on its side 

for 5 minutes each time. 

• Draw off PBS and add 500ul Sudan Black Staining solution for 20 minutes. 

• Carefully draw off staining solution as embryos will not be visible through the 

opaque solution; it’s not important that all the solution is drawn off, as embryos will 

be visible from the first wash. Dispose of all Sudan Black waste in a 50ml FalconTM 

throughout the staining procedure. 

• De-stain using 70% Ethanol. 4x fast rinses adding 1ml of Ethanol and drawing off. On 

fourth wash (or as long as it takes for clarity to return), leave on its side for 1 hour 

to soak. 
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• Re-hydrate embryos by adding PBST. Leave roughly 300ul of 70% Ethanol and add 

300ul PBST to the Ethanol, leave for 5 minutes, draw off and wash again by adding 

1ml PBST for five minutes. 

• Pigmentation can be removed by adding bleaching solution to the embryos and 

incubating for an hour at room temperature. Then wash away H2O2 4x 5mins in 

PBST. If storing long-term, keep in glycerol, for short-term storage (no more than a 

week) PFA will suffice. 

• For added clarity you can clear the embryos in glycerol series: add 30% Glycerol 0.1% 

Tween, then draw off and add 80% Glycerol 0.1% Tween. Then place in 24-well plate.  

 

2.8 Staphylococcus aureus 
 

2.8.1 Culture of S. aureus for Injection 
 

To prepare a liquid overnight culture of S. aureus, 5ml of BHI media (containing relevant 

selection) was inoculated with a colony of S. aureus, and incubated at 37°C overnight 

with shaking. To prepare S. aureus for injection, 50ml of BHI media (containing relevant 

selection) was inoculated with 500l of overnight culture, and incubated for roughly 2 

hours at 37°C with shaking. After ~2 hours, the culture should reach an OD600 of roughly 

1. The OD600 of each culture was measured and 40ml of the remaining culture harvested 

by centrifugation at 4,500g for 15 minutes at 4°C. The pellet was then resuspended in a 

volume of PBS appropriate to the bacterial dose required. Once the pellets were 

resuspended they were then kept on ice until required. 

 

2.8.2 S. aureus Concentration Calculation 
 

To concentrate S. aureus to the required dose for injection into zebrafish larvae, we 

must first determine the volume of PBS required to resuspend S. aureus after 

centrifugation. For this the following calculation was used, based on the measurement 

of 2x108 colony forming units (cfu) per ml of S. aureus in a culture at OD600=1. In this 

example, the culture is concentrated to 1,500cfu/nanolitre (nl): 
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In short, for a dose of 1,500cfu/nl, 40ml of culture at OD600=1 would be resuspended in 

5.3ml of PBS. To save time performing the lengthy calculation again, ‘V2’ (or, the 

‘adjustment value’) was determined for a variety of doses: 

Desired Concentration (cfu/nl) Adjustment Value (V2) 

100 80 

500 16 

1,000 8 

1,500 5.3 

2,000 4 

2,500 3.2 

3,000 2.6 

4,000 2 

 

Using these values, a shorter version of this calculation can be performed. For example, 

if a culture has an OD600 of 1.56, and we require a concentration of 3,000cfu/nl for 

injection into zebrafish larvae, the following short calculation would be performed to 

determine the volume of PBS required to resuspend the culture: 

1.56 (OD600) x 2.6 (Adjustment value) = 4.056ml of PBS 
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2.8.3 Determination of Bacterial Cell Density 
 

To determine the cell density of a bacterial culture, spectrophotometric measurements 

at 600nm (OD600) were recorded using a Beckman DU®520 spectrophotometer. Cultures 

were diluted 1 in 10 with BHI prior to measurement to avoid using excess culture. 

 

2.8.4 Direct Cell Counts 
 

To determine injected dose after infection experiments, samples of bacteria were taken 

during injection by directly injecting 4 doses into a 1.5ml Eppendorf containing 1ml of 

PBS before and after injecting a group. The bacterial concentration was determined 

using the Miles and Misra method for determining bacterial cell quantity via diluted 

surface cultured colonies (Miles et al., 1938). Samples containing 4 doses in 1ml of PBS 

were spotted in 10l volumes onto dried BHI agar plates and placed near a flame to dry. 

After overnight incubation at 37°C the number of cfu/nl was determined. 
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2.8.5 Staining of Bacteria with AlexaFluor-647 
 

The AlexaFluor-647 FarRed dye was supplied by Life TechnologiesTM, and was used to 

stain bacteria using the following protocol: 

 

• After centrifugation of bacteria and calculation of the appropriate volume of PBS 

to resuspend the bacteria in, pour off the supernatant, leaving the pellet and 

resuspend this in the required volume of PBS pH 9 

• Then, after defrosting the dye add 5l (10mg/ml) to the bottom of a foil-covered 

1.5ml eppendorf, and add 200l of bacteria to this, mixing together by prompt 

pipetting and vortexing, avoiding clumping of bacterial cells 

• Incubate the mixture at 37°C for 30 minutes, with shaking 

• To wash, add 1ml of PBS pH 8 and vortex, then centrifuge at 13,300rpm for 3 

minutes 

• Gently remove the supernatant, add 1ml of Tris pH 8.5 and vortex, then 

centrifuge as before 

• Gently remove the supernatant, add 1ml of PBS pH 8 and vortex, then centrifuge 

as before 

• Gently remove the supernatant and resuspend bacterial cells in 200l of PBS pH 

7.4 

• Keep bacteria in the 1.5ml foil-covered eppendorf on ice before use 

 

2.8.6 Fluorometry of pSPIN-GFP 
 

To investigate SPIN expression during culture growth, the pSPIN-GFP strain was grown 

alongside an isogenic non-fluorescent control strain (USA300). Cultures were grown in 

50ml of BHI (with added chloramphenicol for pSPIN-GFP) with shaking at 37°C. 1ml 

samples of each culture were taken every 30 minutes, and kept in 1.5ml Eppendorf’s on 

ice until the last time point at 12 hours. 4 replicate samples of 100µl then added to wells 

in a 96-well plate, and measured using a VICTORTM X3 multilabel plate reader (Perkin 

Ellmer®). The fluorometer then recorded the growth (OD600) and GFP expression 

(488nm) of each sample. Autofluorescence of S. aureus was controlled by subtracting 

the fluorescence recorded from the non-fluorescent USA300 strain from pSPIN-GFP at 

each timepoint. 
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2.9 Injection Techniques 
 

2.9.1 Injection into the Circulation Valley 
 

For survival assays, embryos were injected with S. aureus into the circulation valley, the 

space around the heart and above the yolk sac. Embryos at 30 hours post fertilisation 

(hpf) were mechanically dechorionated with forceps followed by immersion in 0.02% 

(w/v) Tricaine. Embryos were arranged into rows onto a microscope slide covered in a 

layer of 3% (w/v) methylcellulose for injection. Once injected (1nl), embryos were placed 

into 96 well-plates and kept in E3 at 28°C over the course of the experiment. 

 

2.9.2 Injection into the Otic Vesicle 
 

For experiments examining neutrophil migration, substances including proteins and S. 

aureus were injected into the otic vesicle, a transitory epithelial sac that later becomes 

the zebrafish ear. For injection, mounting dishes were cast using 1% agarose 

supplemented with E3, using a mould containing 3 horizontal rows composed of 3 large 

triangular indentations. Larvae anaesthetised by immersion in 0.02% (w/v) Tricaine prior 

to transfer to the mounting dish. Larvae were then arranged in rows facing right and 

with the yolk sac facing the deepest part of the indentation; all excess media was then 

drawn off to minimise free movement during injection. Larvae were then injected from 

the dorsal side of the otic vesicle. 4 hours after injection, larvae were fixed for 1 hour in 

room temperature PFA, and later stained with Sudan Black B to indicate neutrophils.  

 

2.9.3 C5a and Leukocidin Injections 
 

Zebrafish C5a (drC5a), human C5a (hC5a), PVL and HlgCB were prepared as follows prior 

to injection into the otic vesicle. Both drC5a and hC5a were injected at the maximum 

concentrations available (89µM and 10µM respectively) in 1nl to induce neutrophil 

migration. PVL and HlgCB were also injected at the maximum concentrations possible in 

1nl after mixing both subunits (PVL 30.3µM, HlgCB 16.7µM). 
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For injection of leukocidins, the toxin buffer was used as a negative vehicle control; 

bacteria from the USA300 only group was resuspended in toxin buffer rather than PBS. 

In the USA300 + PVL group, both LukS-PV and LukF-PV components were mixed in 

equimolar amounts (300µg/ml and 1,089µg/ml - 4µl and 1µl respectively) and used to 

resuspend USA300 after centrifugation. In the USA300 + HlgCB group, both HlgC and 

HlgB components were mixed in equimolar amounts (299µg/ml and 1,430µg/ml - 4µl 

and 1µl respectively) and used to resuspend USA300 after centrifugation. In the USA300 

+ HlgC group, the mixture was prepared as for the USA300 + HlgCB group, substituting 

HlgB for 1µl of toxin buffer. 

 

2.9.4 Injection into the Somite Tail Muscle 
 

For experiments involving detailed measurement of neutrophil migration to sites of 

infection, the somite tail muscle was used as an infection site. Prior to injection, Petri 

dishes containing ~25ml of solidified 1% agarose supplemented with E3 were used to 

mount larvae. Using a P10 Gilson pipette tip, regular circular indentations were made in 

the surface, which are large enough for the larvae’s head to fit, securing them for 

injection. Larvae were then anaesthetised by immersion in 0.06% (w/v) Tricaine; which 

is 3x the normal dose of Tricaine – this is necessary to prevent movement during somite 

injection. Larvae were then transferred to the mounting dish, and arranged by placing 

the heads of the larvae in the indentations. Typically, larvae were oriented facing right, 

and imaged facing left to minimise distance between the site of injection and the 

objective during microscopy. Once mounted, the larvae were injected into the somite 

adjacent to the end of the yolk extension. This was facilitated by orienting the needle in 

line with the somite to maximise the area of injection. 

 

2.9.5 Imaging of Somite Infection in vivo 
 

S. aureus was injected into the tail muscle to stimulate localised neutrophil recruitment 

to the site of infection. Once injected, larvae were washed off the plate with E3 and kept 

in a Petri dish containing 0.02% (w/v) Tricaine prior to mounting. Larvae were then 
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placed in 0.8% low melting point agarose (Sigma) supplemented with 0.02% (w/v) 

Tricaine (kept in a liquid state by maintaining at 42°C). Larvae were then mounted onto 

a circular dish with a Menzel-Gläser #0 cover slip fastened to the bottom using vacuum 

grease, and oriented facing left. 

2.9.6 Analysis of Neutrophil Migration to the Site of Infection 
 

Migration of neutrophils from Tg(lyz:nfsB.mCherry)sh260 and double transgenic 

Tg(lyz:hC5aR.Clover)sh505; Tg(lyz:nfsB.mCherry)sh260 larvae to a somite infection was 

analysed using Volocity®. Across 4 experiments, 10 neutrophils from each group were 

tracked as they migrated to the wound site using the following protocol: 

• Crop timepoints to begin at the initiation of chemotaxis, and end once all 

injected S. aureus have been phagocytosed 

• Draw a rectangular region of interest (ROI) around the injected S. aureus 

• Open a new analysis protocol and add the following to track neutrophils 

o Automatically identify neutrophils by using ‘Find using % intensity’ in the 

appropriate channel (lower = 3, upper = 100) 

o Clip to ROI 

o Exclude objects: <30µm3 

o Object size guide: 150µm3 

o Remove noise from objects: Medium filter 

o Track using the shortest path model; ignore static objects and 

automatically join broken tracks 

o Apply to all timepoints and create a new measurement item 

• Filter the measurements by tracks longer than 5 timepoints (to exclude 

neutrophils that are not captured sufficiently) 

The measurement item will contain numerous track parameters, including the average 

velocity, migration distance, displacement and meandering index. 

 

2.10 Software 
 

1. Visualisation of plasmid maps and planning of restriction digests was carried out 

using the ApE plasmid editor (v2.0.45) open source software available at: 

http://biologylabs.utah.edu/jorgensen/wayned/ape/ accessed April 2018. 

2. Image stitching individual fields of view of transgenic larvae was performed using 

the stitching plugin of FiJi® open source software available at: 

http://biologylabs.utah.edu/jorgensen/wayned/ape/
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https://fiji.sc/ accessed April 2018. 

3. For graphical representations of data and statistical analyses, Prism (v. 7.02) was 

used. Graphpad Software® 2018. 

4. Images of whole zebrafish larvae, and larvae stained with Sudan Black were 

processed using Nikon’s® NIS Elements software package (Nikon widefield 

microscope, Nikon Extended Focus). 

5. Migration of Tg(lyz:hC5aR.Clover)sh505 neutrophils to somite infections was 

analysed using Volocity (Perkin ElmerTM spinning disc confocal microscope). 

6. The Zeiss® Zen black software package was used to process images of labelled 

neutrophil granules in the Tg(lyz:MPO.mEmerald)sh496 line (Airyscanner 

confocal microscope). 

 

2.11 Microscopes 
 

1. Spinning disc confocal microscope: UltraVIEW VoX spinning disk confocal 

microscope (Perkin ElmerTM, Cambridge, UK). 405nm, 445nm, 488nm, 514nm, 

561nm and 640nm lasers were available for excitation. A 40x oil lense 

(UplanSApo 40x oil (NA 1.3)) was used for cellular level imaging. GFP, TxRed 

emission filters were used and bright field images were acquired using a 

Hamamatsu C9100-50 EM-CCD camera. Volocity software was used.  

2. A Nikon® custom-build wide-field microscope: Nikon Ti-E with a CFI Plan 

Apochromat λ 10X, N.A.0.45 objective lens, a custom built 500 μm Piezo Z-stage 

(Mad City Labs, Madison, WI, USA) and using Intensilight fluorescent illumination 

with ET/sputtered series fluorescent filters 49002 and 49008 (Chroma, Bellow 

Falls, VT, USA). 

3. A Zeiss® Airyscanner confocal: A Zeiss Axiovert LSM 880 Airyscan confocal 

microscope with a 63x Plan Apochromat oil objective (NA 1.4). Cells were 

illuminated with a 488 nm argon laser and/or a 561 nm diode laser. Images were 

processed using the Zeiss microscope software and analysed using Zen Black. 

4. A Nikon® Extended focus: Nikon SMZ1500 stereomicroscope with a Prior Z-drive 

and transmitted and reflected illumination. Equipped with a DS-Fi1 Nikon colour 

camera and the Nikon Elements software. 1x objective. 

https://fiji.sc/
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2.12 Statistical Analyses 
 

All statistical analyses were performed using GraphPad® Prism software (v. 7.02). 

In experiments where the means of one variable was compared between two groups, 

an unpaired t-test was used. A two-tailed t-test was used to test for relationships in both 

directions. 

In experiments where the means of two variables were compared between 3 or more 

different groups, an ordinary two-way ANOVA was used. These experiments routinely 

involved multiple comparisons, and so were adjusted for multiple comparisons using 

Bonferroni’s multiple comparisons test. 

For survival experiments, a Mantel-Cox Log-rank test was used. 
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Chapter 3: Generation of a transgenic zebrafish 

expressing the human C5a receptor 
 

3.1 Chapter Introduction 
 

The complement pathway is a fundamental component of the vertebrate immune 

system. It is a cascade of over 30 proteins that broadly perform three functions during 

bacterial infection: opsonisation of bacteria to increase the efficiency of phagocytosis 

(C3b), generation of inflammatory signals to recruit phagocytes (C3a and C5a) and the 

destruction of bacteria by formation of the membrane attack complex (C5b-C9). A 

critical complement protein is C5a, a highly potent chemoattractant that is produced as 

part of one of the earliest immune recognition events during bacterial infection 

(Woodruff et al., 2011). C5a’s cognate receptor is the C5a receptor (C5aR), a seven-

transmembrane loop G-protein coupled receptor (GPCR) that is expressed ubiquitously 

and enriched on the surface of phagocytic cells (Laumonnier et al., 2017). Together, C5a 

and its receptor govern efficient phagocyte recruitment to sites of infection, as well as 

enhancing bacterial killing by stimulating the release of reactive oxygen species (ROS) 

and granule enzymes, highlighting their significance as a central part of the immune 

system (Gerard and Gerard, 1991). Furthermore, they are also critical components 

regulating inflammation, as C5aR expression is associated with an increased 

susceptibility to chronic inflammatory conditions (Neumann et al., 2002). 

A common characteristic of the staphylococci is the secretion of species-specific 

immune modulators, which are major determinants of host tropism. This paradigm 

involves a range of animals including cattle, horses, rabbits, pigs and dogs (Fitzgerald, 

2012). S. aureus has colonised humans for at least 10,000 years (Weinert et al., 2012), 

and accordingly produces virulence factors that are highly adapted to human infection, 

many of which target the innate immune system to evade phagocytosis and bacterial 

killing. Of these factors, three target the human C5a receptor (hC5aR), disrupting 

chemotaxis and destroying phagocytes outright by forming pores in the cell membrane. 

A major leukocidal effector is the bicomponent leukocidin Panton-Valentine Leukocidin 

(PVL), which is expressed by highly virulent strains such as the community-acquired 
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methicillin resistant S. aureus (CA-MRSA) strain USA300 (Diep et al., 2010). Human-

adapted factors like PVL have been implicated in complex pathologies that have proven 

difficult to investigate, underlining a gap in knowledge and highlighting an urgent need 

to fully understand the roles of these factors during infection. 

Unfortunately, human-adapted virulence factors represent a significant challenge 

towards understanding staphylococcal infection in vivo, as established models exhibit a 

lack of targetable components. While ‘humanised’ mouse models that display increased 

susceptibility to staphylococcal infection exist, this approach is costly and technically 

difficult (Tseng et al., 2015). As an alternative, I propose to use the zebrafish as a model 

to investigate the roles of these virulence factors during infection. The zebrafish is a 

promising infection model, it is genetically tractable, suited to in vivo microscopy, and 

has a high fecundity. As an established model for investigating bacterial infection and 

inflammation, the zebrafish has delivered unique insights into the innate immune 

system (Elks et al., 2013; Mazon-Moya et al., 2017; Renshaw et al., 2006a). In addition, 

as a model of staphylococcal infection, zebrafish have revealed a complex relationship 

between neutrophils and S. aureus (Prajsnar et al., 2008, 2012). Lastly, the zebrafish 

innate immune system closely resembles humans, with homologous pattern recognition 

receptors, chemokines, phagocytes and a complement system that is functional from 

fertilisation (Wang et al., 2009). I aimed to create a transgenic zebrafish model that 

expresses a fluorescently-tagged human C5a receptor (hC5aR) on the surface of 

zebrafish neutrophils, as a tool towards investigating the interactions of human-adapted 

virulence factors with the innate immunity during staphylococcal infection. 
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3.2 Chapter Aims 
 

My hypothesis for this chapter was: 

 

Expression of the human C5a receptor in zebrafish neutrophils will enhance 

susceptibility to staphylococcal infection as a result of targeting by human-specific 

virulence factors. 

 

The aims of this chapter were to: 

 

• Establish whether human-adapted virulence factors participate in staphylococcal 

infection in wild-type zebrafish. 

• Generate transgenic zebrafish expressing a fluorescently-tagged hC5aR in 

neutrophils, determine the impact of transgene expression, and assess whether 

the hC5aR acts as a functional receptor in zebrafish neutrophils. 

• Determine if neutrophils expressing the hC5aR become susceptible to lysis by 

bicomponent pore-forming leukocidins. 

• Investigate whether zebrafish expressing the hC5aR become more susceptible to 

staphylococcal infection. 
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3.3 Results 
 

3.3.1 hC5aR-targeting virulence factors are dispensable during systemic 

staphylococcal infection in zebrafish 
 

Before creating a zebrafish line that expresses the human C5a receptor in neutrophils, 

it was important to address whether human-adapted virulence factors are able to inhibit 

the zebrafish C5a receptor. I hypothesised that if C5a receptor-targeting virulence 

factors such as γ-Haemolysin CB (HlgCB) and the chemotaxis inhibitory protein of 

staphylococcus (CHIPS) were important during zebrafish infection, then isogenic 

knockout strains should have an attenuated infection phenotype. 

Using a model of systemic staphylococcal infection (Prajsnar et al., 2008), wild-type 

zebrafish larvae (LWT) were intravenously infected with ~1,800 colony forming units 

(cfu) of wild-type USA300 or isogenic knockout strains of HlgCB (ΔHlgCB) and CHIPS 

(ΔCHIPS) at 30 hours post fertilisation (hpf). There was no significant attenuation of 

virulence in the knockout strains (Figure 3.1), suggesting that CHIPS and HlgCB do not 

significantly contribute to S. aureus infection in this model. 
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Figure 3.1 Knockout strains of human-adapted virulence factors are not 
attenuated in a zebrafish model of systemic staphylococcal infection. 
London wild-type (LWT) zebrafish were systemically infected with ~1,800cfu S. aureus 

USA300 wild-type, ΔHlgCB or ΔCHIPS at 30 hours post fertilisation (hpf); survival was 

then monitored over the next four days post infection. Values (n=70 over three 

independent experiments) were analysed using a Log-rank Mantel-Cox test; ns, p=0.189. 

 

3.3.2 Cloning strategy  
 

After establishing that human-adapted virulence factors do not significantly contribute 

to infection in the systemic model, I sought to create a transgenic zebrafish expressing 

a fluorescently-labelled human C5a receptor (hC5aR). To create the genetic construct 

that will be expressed in transgenic zebrafish, I used Gateway® cloning, a technology 

based on the att site-specific recombination system from lambda phage (Hartley et al., 

2000). To use Gateway® cloning, individual genetic elements are constructed as 

plasmids known as entry clones, which can be assembled into a single large construct in 

a modular fashion; for example (5’) promoter, (middle) gene, (3’) fluorescent protein. 

Entry clones are created by adding att sites to either end of a genetic element using the 

polymerase chain reaction (PCR); these att sites allow the element to carry out site-

specific recombination events with a specific donor vector to insert the element into the 

vector. The specific att sites used depend on whether the entry clone will be placed at a 

5’, middle or 3’ position in the full-length construct. For example, for a middle-entry 

clone the genetic element will have an attB1 and an attB2 site, allowing it to recombine 
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with a donor vector containing an attP1 and attP2 site. Site-specific recombination 

between a genetic element and a donor vector is carried out in a step known as a ‘BP 

reaction’, which utilises a BP clonase to catalyse recombination events between attB 

and attP sites, inserting the genetic element into the donor vector (Figure 3.2) (Kwan et 

al., 2007). 

 

 

 

Figure 3.2 Creation of entry clones using a BP reaction. 
Using Gateway® cloning, plasmids containing genetic elements known as ‘entry clones’ 

can be created; shown is the construction of a middle entry clone. By adding attB sites 

to either end of a genetic element by PCR (shown here as middle element), the element 

can carry out site-specific recombination into a donor vector containing attP1 and attP2 

sites using a BP clonase. This produces a functional middle entry clone. Adapted from 

Kwan et al., 2007. 

 

Once the required entry clones are created, a final reaction that assembles the full-

length construct is performed. This is named an ‘LR reaction’, as it utilises an LR clonase 

that catalyses recombination events between attL and attR sites. This inserts the middle 

entry clone between the 5’ and 3’ entry clones, before inserting the full-length fragment 

into a destination vector (Figure 3.3). In my construct, the 5’ element is the promoter 

lyz, a neutrophil-specific promoter (Yang et al., 2012); the middle element is the hC5aR 

and the 3’ entry clone is clover, a modified Green Fluorescent Protein (GFP) with 
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enhanced photostability and brightness (Lam et al., 2012). Once created, all three 

elements are assembled within the destination vector, which was ‘pDestTol2CG2’ in this 

study. This vector contains a green heart marker (cmlc2:eGFP) that provides feedback 

concerning the efficiency of transgenesis, and two ‘Tol2 arms’ which permit insertion of 

the construct into the zebrafish genome with the aid of the Tol2 transposase (Huang et 

al., 2003; Kawakami, 2007).  
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Figure 3.3 Assembly of a full-length construct using an LR reaction. 
Entry clones can be assembled in the order 5’ entry clone, middle entry clone, 3’ entry 

clone to create a single large construct. This is performed in an ‘LR reaction’, which uses 

an LR clonase to catalyse site-specific recombination events between attL and attR sites; 

this inserts the middle entry clone between the 5’ and 3’ entry clones before inserting 

the entire construct into a destination vector. Adapted from Kwan et al., 2007. 

 

3.3.3 Amplification of the hC5aR gene from the pIRES-hC5aR vector 
 

As entry clones containing the lyz promoter and clover protein had already been 

created, only the hC5aR middle entry clone had to be constructed. To create the middle 

entry clone, PCR primers were designed to amplify the hC5aR gene from the plasmid 

vector ‘pIRES-hC5aR (no FLAG)’ (a kind gift from Michiel van Gent, Utrecht Medical 

Centre), adding an attB1 and attB2 site to either side of the gene (Figure 3.4). 
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Figure 3.4 Plasmid containing the hC5aR gene. 
Construct map of pIRES-hC5aR (no FLAG); the location of the hC5aR gene is indicated by 

the red box, 993 – 2,044bp. Created by Michiel van Gent, Utrecht Medical Centre. 

 

To amplify the hC5aR gene from pIRES-hC5aR (no FLAG), primers ‘hC5aR MEC F’, ‘hC5aR 

Correct MEC R NOSTOP’ and ‘hC5aR Correct R STOP’ were designed (2.1.4 Primers), 

which amplify the hC5aR gene and add two att sites (attB1 and attB2) to either end of 

the product. The ‘hC5aR Correct R STOP’ primer leaves the stop codon of the hC5aR 

gene unchanged, while the ‘hC5aR Correct MEC R NOSTOP’ primer amplifies the hC5aR 

gene without the C-terminal stop codon, so that the hC5aR could be produced as a 

fusion protein. With the attB sites the PCR products can perform site-specific 

recombination with the attP sites of the donor vector pDONR221 using a BP reaction, 

producing the assembled middle-entry clone. 

The hC5aR gene was amplified with and without its C-terminal stop codon, creating one 

middle entry clone that contains the hC5aR gene and clover as separate elements, and 

another that contains the hC5aR as a fusion protein with clover as a C-terminal 

fluorescent tag (Figure 3.5). The C-terminal fluorescent tag permits fluorescence-based 

screening of transgenic larvae as well as identification of the intracellular location of the 
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receptor; since the tag could interfere with neutrophil function or hC5aR signalling, both 

approaches were considered.  

 

 

Figure 3.5 PCR amplification of the hC5aR gene. 
PCR products of the hC5aR gene with and without a C’ terminal stop codon, and with 

attB1 and attB2 sites added to either end of the gene. The hC5aR gene corresponds to 

a band of ~1,050bp. Dilutions of Hyperladder 1kb were used to assess PCR product 

concentrations. 

 

3.3.4 Insertion of the hC5aR gene into the pDONR221 destination vector 
 

After PCR amplification of the hC5aR gene, the products were inserted into the 

destination vector pDONR221 by site-specific recombination between the attB1 and 

attB2 sites of the PCR products and the attP1 and attP2 sites of pDONR221 (BP reaction). 

The map for pDONR221 hC5aR MEC NOSTOP is shown (Figure 3.6A); pDONR221 hC5aR 

MEC STOP is identical, but with an additional three base pairs encoding a stop codon at 

the C-terminus of the hC5aR gene. Afterwards the product of the BP reaction was 

transformed, and the DNA was extracted and verified by diagnostic digest with HincII 

(Fig 3.6B), producing the middle entry clone that was used to create the final full-length 

construct.  
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Figure 3.6 Generation of a middle entry clone containing the hC5aR gene. 
A) Map of the pDONR221 destination vector containing the hC5aR gene without a C-

terminal stop codon after BP recombination; blue boxes highlight HincII restriction sites. 

B) HincII diagnostic digest of the BP reaction product. Empty pDONR221 vector band 

sizes are: 2,513bp, 1,053bp, 845bp, 303bp and 48bp; correct band sizes are: 2,460bp 

and 1,137bp. Hyperladder 1kb. 
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3.3.5 Assembly of the lyz:hC5aR.Clover construct 
 

With the middle entry clone created, the final step was to assemble the elements of the 

construct in order within the destination vector pDestTol2CG2 using an LR reaction 

(Figure 3.7A). As it was important to know if the construct was correctly composed, I 

focused on expressing the hC5aR as a fluorescently-tagged fusion protein, as expression 

of clover in zebrafish neutrophils would confirm that the construct had been assembled 

correctly. Additionally, a fusion protein would indicate how the receptor localises within 

neutrophils, and so only the middle entry clone without a stop codon was generated. 

After the LR reaction, the product was transformed into competent cells and the DNA 

extracted. The success of the reaction was then verified by diagnostic digest with SacII 

(Fig 3.7B). 
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Figure 3.7 Construct map and diagnostic digest of pDestTol2CG2 
lyz:hC5aR.Clover. 
A) Plasmid map of pDestTol2CG2 lyz:hC5aR.Clover, with no stop codon between hC5aR 

and clover. The 5’ lyz promoter is between attB4 and attB1, then the hC5aR to attB2, 

then the 3’ clover to attB3; blue boxes indicate SacII restriction sites. B) SacII diagnostic 

digest of LR reaction colonies. Vector backbone (pDestTol2CG2): 7,796bp; correct band 

sizes are: 8,149bp, 6,478bp, 3,330bp and 1,237bp. Hyperladder 1kb. 
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3.3.6 Sequencing of the pDestTol2CG2 lyz:hC5aR.Clover construct. 
 

The DNA extracted from colony four shown in Figure 3.7B resolved to the correct band 

sizes, indicating a successfully assembled pDestTol2CG2 lyz:hC5aR.Clover construct. To 

acquire high concentrations of construct DNA sufficient for sequencing and further 

experiments, glycerol stocks of this colony were taken and streaked out, from which a 

single colony was grown up and the DNA extracted from a larger culture volume. This 

DNA was then sequenced using the primers ‘hC5aR MEC 1/2’ and ‘hC5aR MEC 2/2’ (2.1.4 

Primers), which anneal before the middle entry clone attB1 site and midway through 

the hC5aR gene respectively (Figure 3.8). Sequencing verified the successful assembly of 

the pDestTol2CG2 lyz:hC5aR.Clover construct, with the hC5aR remaining in-frame from 

the overlap with the 5’ lyz promoter and from the end of the hC5aR gene into the 3’ 

clover tag. 
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Figure 3.8 Construct map of pDestTol2CG2 lyz:hC5aR.Clover verified by DNA 
sequencing. 
pDestTol2CG2 lyz:hC5aR.Clover construct map showing regions that were verified with 

sequencing; the annealing sites and read lengths of primers ‘hC5aR MEC 1/2’ and ‘hC5aR 

MEC 2/2’ are indicated. 

  



115 
 

3.3.7 Generation of hC5aR.Clover transgenic zebrafish 
 

After the successful generation of the hC5aR construct, I began optimising conditions 

for transgenesis into zebrafish embryos. To facilitate the optimisation of transgenesis, 

the construct also contains a genetic element that expresses GFP in cardiac cells using 

the cmlc2 promoter (Huang et al. 2003), referred to as a green heart marker (Figure 

3.9A). In the absence of any observable expression of the construct in injected larvae, 

expression of the green heart marker indicates successful transgenesis that is useful in 

optimising injection conditions. To induce transgenesis, construct DNA is injected in 

combination with Tol2 transposase mRNA, which is translated into the functional 

protein in the embryo. Tol2 is an autonomous transposase isolated from the genome of 

the medaka fish (Oryzias latipes) that catalyses transposition of DNA between two Tol2 

sequences (Kawakami, 2007). By placing these sequences at either end of a construct, 

Tol2 can then transpose the construct into a target genome. 

A range of dilutions of DNA and transposase mRNA was tested and the rates of 

development, green heart expression and positive construct expression were recorded 

to assess transgenesis in each condition. Higher DNA and mRNA concentrations resulted 

in fewer developed larvae, and all conditions yielded a high proportion of larvae that 

expressed the green heart marker (Figure 3.9B). However, the majority of conditions 

resulted in no visible expression of the hC5aR construct, with only construct dilutions of 

1/75 (~24ng/µl) and 1/100 (~18ng/µl) in combination with 10ng/µl of transposase mRNA 

producing larvae with a labelled cell population in the caudal haematopoietic tissue 

(CHT) (Figure 3.9B). The CHT is the site of haematopoiesis in zebrafish until ~2 weeks 

post fertilisation (E. Murayama et al 2006), suggesting that the labelled cell population 

is likely to be neutrophils. Despite low overall construct expression rates (2-4% of 

developed embryos) sufficient larvae were obtained for future experiments and 

screening of a stably integrated transgenic founder. 
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Figure 3.9 Tol2 transgenesis of the lyz:hC5aR.Clover construct into the 
zebrafish genome. 
A) Schematic of the lyz:hC5aR.Clover construct, indicating expression of a fluorescently 

tagged hC5aR under the neutrophil-specific promoter lyz. B) Transgenesis data testing a 

range of DNA and Tol2 transposase mRNA concentrations injected into single-cell stage 

zebrafish embryos and screened for fluorescence at 3 days post fertilisation (dpf). All 

conditions performed as single experiments except the group marked with (*), which 

represents the mean of three independent experiments. 

 

3.3.8 Transient expression of the hC5aR transgene in zebrafish larvae 
 

The presence of a fluorescently-labelled population of cells in the CHT suggests there 

has been successful expression of the transgene in haematopoietic cells of the larval 

zebrafish. To investigate the identity of this labelled population, transient expression 

was induced by injection of the construct into the red fluorescent neutrophil reporter 

background Tg(lyz:nfsB.mCherry)sh260 and the larvae were screened at 3dpf for 

expression of both constructs. Figure 3.10 shows that a heterogeneous population of 

fluorescent cells is identifiable within the CHT of double-transgenic larvae, with a 

minority labelled with clover and the rest with mCherry. Despite both transgenes 
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distinctly labelling different cells in the CHT, both populations resemble one another 

morphologically, suggesting that the differential labelling of these cells is due to the 

mosaic nature of transient expression, and not dysfunctional expression of the construct 

in this background. Additionally, the subcellular localisation of the clover protein within 

these cells is distinct from that of mCherry, with clear differences in signal intensity 

across the cell that are not seen in lyz:nfsB.mCherry-only cells. 

 

 

 

Figure 3.10 Transient expression of the lyz:hC5aR.Clover transgene in cells 
within the CHT. 
The caudal haematopoietic tissue (CHT) (inset) of a double-transgenic Transient 

lyz:hC5aR.Clover; Tg(lyz:nfsB.mCherry)sh260 larva containing a heterogeneous 

population of clover-positive and mCherry-positive cells. 

 

3.3.9 Identification of a stable transgenic zebrafish founder 
 

To secure a number of adult zebrafish that stably express hC5aR.Clover, fluorescent 

larvae were raised and screened for germline integration of the lyz:hC5aR.Clover 

transgene by outcrossing to determine if the transgene was inherited by their offspring. 

Adults with stable integrations will produce progeny that inherit the transgene, and will 

be identifiable under fluorescent light. This second generation of transgenic larvae were 

then raised, resulting in a number of stably transgenic adult zebrafish with the 

designation Tg(lyz:hC5aR.Clover)sh505. 
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Detailed investigation of transgene expression is possible with stably transgenic larvae. 

As it was still unclear whether the hC5aR transgene fully labels zebrafish neutrophils, 

Tg(lyz:hC5aR.Clover)sh505 fish were crossed to the neutrophil reporter line 

Tg(lyz:nfsB.mCherry)sh260 and at 3dpf, double-transgenic larvae were selected and 

imaged. Figure 3.11 shows co-expression of both transgenes in a large population of 

cells spanning the length of the CHT, indicating that hC5aR.Clover is stably expressed in 

zebrafish neutrophils. 

 

Figure 3.11 Stable expression of the lyz:hC5aR.Clover transgene in zebrafish 
neutrophils.  
A double transgenic Tg(lyz:hC5aR.Clover)sh505; Tg(lyz:nfsB.mCherry)sh260 larva at 

3dpf. White arrow indicates enlarged region shown in inset. 

 

3.3.10 hC5aR.Clover is localised on the surface of zebrafish neutrophils 
 

The hC5aR is a G-Protein Coupled Receptor (GPCR) that is expressed on the surface of 

myeloid cells where they detect C5a in the surrounding environment, allowing them to 

respond and direct chemotaxis. In order for the hC5aR.Clover transgene to recapitulate 
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expression of the hC5aR, the receptor should localise to the surface of zebrafish 

neutrophils. I sought to test whether the fusion of clover to the C-terminus of the hC5aR 

produces a properly folded and expressed receptor. In vitro experiments directing 

expression of a hC5aR fusion protein with a C-terminal GFP tag in the immortalised 

myeloid cell line PLB-985 show that the receptor translocates to the cell surface, 

allowing the receptor-mediated chemotactic response to C5a to be observed (Servant G 

1999). This suggests that the hC5aR should retain the ability to localise to the cell surface 

based on these in vitro observations. 

To verify if the hC5aR is localised on the surface of zebrafish neutrophils, 

Tg(lyz:hC5aR.Clover)sh505 fish were crossed to Tg(lyz:nfsB.mCherry)sh260 and double-

transgenic larvae were imaged at high-magnification using spinning-disc confocal 

microscopy. Double-transgenic neutrophils show the distinct localisation of both 

transgenes within a single cell (Figure 3.12B). The lyz:nfsB.mCherry transgene occupies 

the cytoplasmic area of the cell, while lyz:hC5aR.Clover encircles the cell, suggesting that 

it localises to the cell membrane. Additionally, both signals were quantified using a line 

intensity profile comparing the expression patterns of both transgenes (Figure 3.12C), 

demonstrating that lyz:nfsB.mCherry has a single peak at the centre of the cell, while 

lyz:hC5aR.Clover has two peaks that occur at the cell perimeter. 
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Figure 3.12 Localisation of the Tg(lyz:hC5aR.Clover)sh505 transgene in 
zebrafish neutrophils.  
A) A zebrafish larva at 3dpf, the CHT region is outlined by a red box. B) An image of a 

double-transgenic Tg(lyz:hC5aR.Clover)sh505; Tg(lyz:nfsB.mCherry)sh260 neutrophil in 

the CHT. C) Line intensity profile of the fluorescent signal of both transgenes across the 

yellow arrow shown in B). 

 

3.3.11 Expression of the hC5aR transgene does not impact neutrophil 

haematopoiesis 
 

As the hC5aR appeared to localise with the neutrophil surface, it became relevant to ask 

whether receptor expression affects haematopoiesis. By crossing 

Tg(lyz:hC5aR.Clover)sh505 to Tg(lyz:nfsB.mCherry)sh260 then sorting at 2-3dpf based 

on transgene expression, it is possible to separate larvae into “non-humanised” 

(lyz:nfsB.mCherry only) and “humanised” (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups. 

For the remainder of the chapter, I use the terms “non-humanised” to refer to larvae 

expressing only lyz:nfsB.mCherry, and “humanised” to refer to double-transgenic 

siblings expressing lyz:hC5aR.Clover; lyz:nfsB.mCherry. Grouping larvae in this way 
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permits investigation into how hC5aR transgene expression affects neutrophil 

development and function.  

To assess how the hC5aR transgene affects haematopoiesis, non-humanised and 

humanised larvae were stained with the neutrophil stain Sudan Black B, allowing the 

total number of neutrophils within these larvae to be enumerated. Figure 3.13 shows 

that despite expression of the receptor on the neutrophil surface, there is no significant 

difference between the number of neutrophils in non-humanised and humanised larvae. 

This suggests that expression of the hC5aR transgene does not interfere quantitatively 

with neutrophil development. 
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Figure 3.13 Expression of the hC5aR.Clover transgene does not impact the 
total number of neutrophils in zebrafish larvae. 
A) 4dpf larvae from a Tg(lyz:hC5aR.Clover)sh505 x Tg(lyz:nfsB.mCherry)sh260 cross, 

separated into non-humanised (lyz:nfsB.mCherry only) and humanised 

(lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups and stained with Sudan Black to detect 

neutrophils. B) Total body neutrophil counts from both groups. Values shown are mean 

± SEM (n=50 over two independent experiments); groups were analysed using an 

unpaired t-test (two-tailed). ns, p=0.1046. 
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3.3.12 Zebrafish larvae expressing the hC5aR.Clover transgene have a 

reduced neutrophil number in the area between the yolk sac and CHT 
 

As zebrafish larvae expressing the lyz:hC5aR.Clover transgene showed no significant 

reduction in their total number of neutrophils, it was concluded that the transgene does 

not interfere quantitatively with haematopoiesis. However, as humanised larvae did 

exhibit a slight reduction in neutrophil numbers compared with non-humanised larvae, 

the data was re-analysed to determine if this was due to a reduced neutrophil 

population in a specific region of the larvae. 

The total neutrophil numbers enumerated in Figure 3.13 were recorded by counting the 

neutrophils present within three regions of the 4dpf larvae, those being the head (head 

to mid-yolk sac), mid (mid-yolk sac to CHT) and tail (CHT to tail end) (Figure 3.14A); 

Figure 3.13B shows the aggregated counts from these regions of the larvae. By re-

analysing the counts from these regions, the number of neutrophils in each region can 

be compared with one another. I observed a significantly reduced number of neutrophils 

between non-humanised and humanised larvae in the region between mid-yolk sac and 

the CHT. This is likely to be due to a decrease in neutrophil motility as a result of 

overexpression of the hC5aR, leading to increased retention of neutrophils at 

haematopoietic sites. 
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Figure 3.14 Humanised larvae have fewer neutrophils between the mid-yolk 
sac and CHT. 
A) A zebrafish larva separated into three regions in which the number of neutrophils was 

enumerated after Sudan Black B staining; the head (head to mid-yolk sac), mid (mid-yolk 

sac to CHT) and tail (CHT to tail end) regions are indicated. B) The number of neutrophils 

present in the head, mid and tail regions of non-humanised (lyz:nfsB.mCherry only) and 

humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) larvae. Values shown are mean ± SEM 

(n=50 over two independent experiments); groups were analysed using an ordinary two-

way ANOVA and adjusted using Bonferroni’s multiple comparisons test. ***, p=0.0003. 
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3.3.13 The hC5aR.Clover transgene interferes with the neutrophil-mediated 

inflammatory response 
 

The above data (Figure 3.14) suggest that hC5aR.Clover transgene expression could 

affect the migration of neutrophils during development, therefore, transgenic larvae 

were assessed for their ability to recruit to inflammatory and infectious stimuli. To assess 

the recruitment of Tg(lyz:hC5aR.Clover)sh505 neutrophils to sites of injury, I used a 

tailfin-transection model that induces neutrophil recruitment to a vertically transected 

tailfin injury (Renshaw et al., 2006a). Non-humanised and humanised larvae were tailfin-

transected at 3dpf, and the resulting recruitment of neutrophils to the site of injury was 

recorded at 3 and 6 hours post injury (hpi) (Figure 3.15). By 3hpi, there were fewer 

humanised neutrophils recruited to the wound site, suggesting that humanised 

neutrophils are impaired in their ability to respond to inflammatory stimuli. 

  



126 
 

 

Figure 3.15 Zebrafish expressing the hC5aR.Clover transgene fail to mount 
an efficient neutrophil-mediated inflammatory response.  
A) Tailfin-transections of zebrafish larvae separated into non-humanised 

(lyz:nfsB.mCherry only) and humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups at 

3dpf; dashed outline represents the area in which neutrophils were counted. B) 

Neutrophil counts at the site of injury at 3 and 6 hours post injury (hpi); blue points 

denote the representative images in A). Error bars shown are mean ± SEM (n=45 over 

three independent experiments); groups were analysed using an ordinary two-way 

ANOVA and adjusted using Bonferroni’s multiple comparisons test. **, p=0.0073; ****, 

p<0.0001. 
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3.3.14 Zebrafish expressing the hC5aR.Clover transgene do not mount an 

effective response to infection in the otic vesicle 
 

As the signalling pathways governing inflammation in the zebrafish are distinct from 

those mediating infection (Deng et al., 2012), the ability of neutrophils to migrate to 

sites of infection was also investigated. To address whether the neutrophil response to 

infection is affected by transgene expression, an infection recruitment model using the 

otic vesicle of the zebrafish as an injection site was used (Benard et al., 2012). 

Tg(lyz:hC5aR.Clover)sh505 zebrafish were crossed to Tg(lyz:nfsB.mCherry)sh260 and the 

larvae separated into non-humanised and humanised groups at 2dpf. S. aureus USA300 

was then injected into the otic vesicle, and after 4 hours injected larvae were fixed and 

stained with Sudan Black to detect neutrophils. 2dpf larvae were initially used to assess 

infection recruitment, as injection of larvae at 3dpf proved difficult.  

Zebrafish injected with USA300 mount a robust immune response to USA300 in the otic 

vesicle (Figure 3.16), and respond minimally to the vehicle control PBS. Similar to my 

findings concerning the inflammatory response, humanised neutrophils are recruited to 

the otic vesicle in fewer numbers in comparison to the control. This suggests that 

expression of the hC5aR.Clover transgene broadly disrupts neutrophil chemotaxis. 
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Figure 3.16 2dpf larvae expressing the hC5aR.Clover transgene fail to mount 
an efficient neutrophil response to infection. 
A) Zebrafish larvae at 2dpf were separated into non-humanised (lyz:nfsB.mCherry only) 

and humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups, and injected with the 

vehicle control PBS or 1,600cfu S. aureus USA300 in the otic vesicle. They were then 

fixed at 4 hours post infection (hpi) and stained with Sudan Black B to detect neutrophils; 

white outline indicates the otic vesicle. B) Non-humanised and humanised neutrophils 

present at the otic vesicle at 4hpi, blue points denote the representative images in A). 

Error bars shown are mean ± SEM (n=25 over two independent experiments); groups 

were analysed using an ordinary two-way ANOVA and adjusted using Bonferroni’s 

multiple comparisons test. **, p=0.0016; ***, p=0.0002; ****, p<0.0001. 

 

Since the infection recruitment data from 2dpf larvae suggested that neutrophils 

expressing the hC5aR.Clover transgene do not efficiently recruit to sites of infection 

(Figure 3.16), it was important to consider whether the same would be true with more 

developed larvae at 3dpf, as previous studies using the otic vesicle as an infection site 
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used 3dpf larvae (Deng et al., 2012). In Figure 3.17, infection recruitment to the otic 

vesicle at 4hpi was assessed using the same model as Figure 3.16 but with larvae at 3dpf. 

Again, in both groups neutrophils are recruited to the otic vesicle in large numbers when 

infected with USA300, and do not mount a major response to the vehicle control PBS 

(Figure 3.17). When comparing recruitment between non-humanised and humanised 

neutrophils, it was observed that much like the 2dpf model, transgenic neutrophils in 

3dpf larvae are recruited in fewer numbers to the otic vesicle, again suggesting a defect 

in neutrophil chemotaxis. 
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Figure 3.17 3dpf larvae expressing the hC5aR.Clover transgene fail to mount 
an efficient neutrophil response to infection. 
A) Zebrafish larvae at 3dpf separated into non-humanised (lyz:nfsB.mCherry only) and 

humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups, and injected with the vehicle 

control PBS or 1,900cfu S. aureus USA300, into the otic vesicle. They were then fixed at 

4 hours post infection (hpi) and stained with Sudan Black B to detect neutrophils; white 

outline indicates the otic vesicle. B) Neutrophil recruitment to the otic vesicle at 4hpi, 

blue points denote the representative images in A). Error bars shown are mean ± SEM 

(n=25 over two independent experiments); groups were analysed using an ordinary two-

way ANOVA and adjusted using Bonferroni’s multiple comparisons test. ***, p=0.0004; 

****, p<0.0001. 
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3.3.15 Neutrophils expressing the hC5aR.Clover transgene display defects 

in chemotaxis 
 

Previous experiments show that neutrophils expressing hC5aR.Clover display a defect in 

chemotaxis, resulting in reduced neutrophil numbers at non-haematopoietic sites 

(Figure 3.14), as well as sites of injury (Figure 3.15) and infection (Figures 3.16-17). 

However, it is still unclear how expression of hC5aR.Clover affects individual neutrophil 

recruitment. To assess the impact of transgene expression on neutrophil behaviour, a 

somite tail muscle infection model was utilised to image the migration of neutrophils to 

the infection site (Benard et al., 2012). S. aureus USA300 stained with the FarRed 

fluorescent dye Alexafluor-647 was injected at a dose of ~1,000cfu into the somite tail 

muscles of non-humanised and humanised larvae at 3dpf, which were then imaged 

using spinning disc confocal microscopy. Humanised neutrophils were recruited to the 

infection site, phagocytosing all injected USA300 in under 2 hours (Figure 3.18), 

confirming that humanised neutrophils retain the ability to recruit to sites of infection 

and phagocytose S. aureus. 
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Figure 3.18 Neutrophils expressing the hC5aR.Clover transgene retain the 
ability to migrate to sites of infection and phagocytose bacteria. 
A) Image of a 3dpf zebrafish larva; a somite tail muscle is outlined in red. B) Timelapse 

of a somite tail muscle injection of S. aureus ~1,000cfu USA300 stained with Alexafluor-

647 into a humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) larva at 3dpf. USA300 is 

shown in magenta, neutrophils are shown in both red and green. C) An enlarged view of 

the area indicated in B) by the dashed white box, denoting the site in which neutrophil 

recruitment was tracked. White arrowheads indicate initial phagocytic events. Images 

shown at 15 minute intervals; scale bars B) 54µm and C) 27µm. 
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As shown in Figure 3.18, neutrophils expressing hC5aR.Clover retain the ability to recruit 

to sites of infection and phagocytose bacteria, however, it remained unclear whether 

this recruitment was significantly disrupted when compared with non-humanised 

neutrophils. To gain quantitative information regarding neutrophil migration to the site 

of infection, non-humanised and humanised neutrophils were analysed during 

recruitment to a somite tail muscle infection using tracking software (Volocity®). 

Compared with non-humanised neutrophils, humanised neutrophils showed a 

significant reduction in their migration velocity (Figure 3.19A), migration distance 

(Figure 3.19C) and displacement (Figure 3.19D). Additionally, humanised neutrophils 

showed no reduction in meandering index (Figure 3.19B), potentially as a result of their 

reduced migration distance. The data confirm that neutrophils expressing the 

hC5aR.Clover transgene have a defect in chemotaxis to sites of infection. 

 

Figure 3.19 hC5aR.Clover neutrophils have a defect in chemotaxis to sites 
of infection. 
Comparisons between non-humanised (lyz:nfsB.mCherry only) and humanised 

(lyz:hC5aR.Clover; lyz:nfsB.mCherry) neutrophils migrating to a site of somite tail muscle 

infection. A) Velocity (µm/second), B) Meandering index, C) Distance migrated (µm) and 

D) Displacement (µm). Values shown are mean ± SEM (n=15 over four independent 

experiments); groups were analysed using an unpaired t-test (two-tailed). **, p>0.009; 

***, p=0.0002; ns, p=0.0933. 
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3.3.16 Panton-Valentine Leukocidin reduces the number of humanised 

neutrophils present at a site of otic infection 
 

A key question regarding neutrophils that express the hC5aR.Clover transgene is 

whether expression of the receptor confers susceptibility to bicomponent pore-forming 

leukocidins, resulting in neutrophil lysis and cell death. As the hC5aR localises to the cell 

surface in zebrafish neutrophils (Figure 3.12), they should be susceptible to lysis from 

Panton-Valentine Leukocidin (PVL) and γ-Haemolysin CB (HlgCB) (Spaan et al., 2013b, 

2014).  

To investigate if neutrophils expressing the hC5aR.Clover transgene become susceptible 

to lysis from PVL, an otic infection with ~4,000cfu of USA300 was performed on non-

humanised and humanised larvae at 3dpf, with and without 30.3µM of PVL in the 

suspension buffer. The half-maximal concentration for PVL-induced lysis in human 

neutrophils is 0.9nM (Spaan et al., 2013b), and the PVL stock used here was used in 

unpublished in vitro work with monocyte-like U937 cells expressing the hC5aR, reporting 

a lytic concentration of 303.03nM (Michiel van Gent, unpublished). For injection into the 

otic vesicle, 30.3µM of PVL per nl was used, which should be sufficient to induce lysis in 

vivo. 

As demonstrated previously, USA300 elicits a major immune response, recruiting many 

neutrophils to the otic vesicle, while a vehicle control produces only a minimal response 

(Figures 3.16-17). Injection of USA300 with PVL also produces an immune response in 

both groups, however, humanised larvae injected with USA300 and PVL demonstrated 

a reduced neutrophil number at the otic vesicle that was not observed in non-

humanised larvae (Figure 3.20). This suggests that humanised neutrophils are 

susceptible to PVL induced lysis or inhibition of chemotaxis, leading to a reduction in the 

number of neutrophils present at the site of infection. 
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Figure 3.20 Neutrophils expressing the hC5aR.Clover transgene are 
susceptible to targeting by Panton-Valentine Leukocidin. 
A) Zebrafish larvae at 3dpf were separated into non-humanised (lyz:nfsB.mCherry only) 

and humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups and injected into the otic 

vesicle with a vehicle control, ~4,000cfu of S. aureus USA300, or ~4,000cfu USA300 

suspended in 30.3µM of PVL. After injection, larvae were fixed in paraformaldehyde 

(PFA) at 4 hours post infection (hpi) and stained with Sudan Black B to detect 

neutrophils; white outline indicates the otic vesicle. B) Neutrophils present at the otic 

vesicle at 4hpi, blue points denote the representative images in A). Error bars shown are 

mean ± SEM (n=22-26 over two independent experiments); groups were analysed using 

an ordinary two-way ANOVA and adjusted using Bonferroni’s multiple comparisons test. 

*, p=0.0471; **, p=0.0015; ****, p<0.0001; ns, p>0.9999. 
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3.3.17 γ-Haemolysin CB reduces the number of humanised neutrophils 

present at a site of otic infection 
 

While PVL appears to reduce the number of humanised neutrophils present at the otic 

vesicle, I cannot exclude that fewer neutrophils may be recruited to the injection site 

due to competitive inhibition of the hC5aR by LukS-PV, the receptor-targeting subunit 

of PVL. To investigate this, I tested a second human-specific pore-forming leukocidin, 

HlgCB, which also targets the hC5aR. Using the same approach described in 3.3.16, I 

injected non-humanised and humanised larvae with a vehicle control, USA300, USA300 

suspended in HlgC or USA300 suspended in HlgCB. The inclusion of a group suspended 

in HlgC will determine whether a reduction in the number of humanised neutrophils at 

the injection site is due to inhibition of the hC5aR, or pore-formation of humanised 

neutrophils. 

Recapitulating previous experiments, injection of USA300 into the otic vesicle results in 

robust recruitment of neutrophils to the site of injection in both non-humanised and 

humanised larvae. All groups injected into non-humanised larvae produced a similar 

level of neutrophil recruitment to the otic vesicle; however in humanised larvae, the 

USA300 and USA300 + HlgC groups showed a similar level of neutrophil recruitment, 

while the USA300 + HlgCB group exhibited a significant reduction in the number of 

neutrophils present at the injection site (Figure 3.21). This suggests that the reduction 

in humanised neutrophils at the wound site observed in Figure 3.20 and 3.21 are the 

result of lysis by pore-forming leukocidins PVL and HlgCB, and not due to competitive 

inhibition by the receptor targeting subunits of these toxins. 
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Figure 3.21 Neutrophils expressing the hC5aR.Clover transgene are 
susceptible to targeting by HlgCB, and not HlgC. 
A) Zebrafish larvae at 3dpf were separated into non-humanised (lyz:nfsB.mCherry only) 

and humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups and injected into the otic 

vesicle with a vehicle control, ~3,000cfu of S. aureus USA300, ~3,000cfu USA300 

suspended in 16.7µM of HlgC, or ~3,000cfu of S. aureus USA300 suspended in 16.7µM 

of HlgCB. After injection, larvae were fixed in paraformaldehyde (PFA) at 4 hours post 

infection (hpi) and stained with Sudan Black B to detect neutrophils; white outline 

indicates the otic vesicle. B) Neutrophils present at the otic vesicle at 4hpi, blue points 

denote the representative images in A), scale 100µm. Error bars shown are mean ± SEM 

(n=32-41 over three independent experiments); groups were analysed using an ordinary 

two-way ANOVA and adjusted using Bonferroni’s multiple comparisons test. ns, 

p>0.9999; *, p=0.0304; **, p=0.0023; ****, p<0.0001. 
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3.3.18 Neutrophils expressing the lyz:hC5aR.Clover transgene migrate to 

injected human C5a 
 

Another question regarding neutrophils expressing the hC5aR.Clover transgene is 

whether they are capable of responding to human C5a (hC5a). Several experiments 

show that neutrophils expressing the transgene retain the ability to recruit to sites of 

infection and inflammation despite impairment (Figures 3.15-20), and are therefore 

capable of responding to chemotactic signals within the larva. As hC5aR.Clover localises 

to the neutrophil surface (Figure 3.12), humanised neutrophils should be able to bind 

and respond to a gradient of hC5a. 

To investigate whether neutrophils expressing the hC5aR are able to respond to hC5a, I 

used an otic injection model to measure neutrophil recruitment. Larvae were separated 

into non-humanised and humanised groups and injected with a PBS vehicle control, 

zebrafish C5a (drC5a) or human C5a (hC5a) into the otic vesicle at 3dpf. As a readout of 

C5a binding to the C5a receptor, studies use the calcium mobilisation step that occurs 

when GPCRs bind their ligand to infer the activation of the receptor that precedes 

chemotaxis. Reported values for C5a-induced calcium mobilisation are between 1nM for 

hC5a in human neutrophils (Spaan et al., 2013b) and 1µM for drC5a in U937 cells 

transfected with the zebrafish C5a receptor (Michiel van Gent, unpublished). For 

injection into the otic vesicle, 1nl of 10µM hC5a and 89µM drC5a was used, which is in 

excess of the optimal values, and so should be sufficient to induce chemotaxis in vivo. 

As shown in Figure 3.22, humanised neutrophils are recruited to an injection of hC5a, 

and are recruited less to drC5a, suggesting that hC5aR.Clover actively responds to hC5a 

and mediates chemotaxis, taking precedence over the endogenous drC5a receptor in 

doing so. Conversely, non-humanised neutrophils do not respond to hC5a, and are 

recruited normally to an injection of drC5a. The data confirm that hC5aR.Clover acts as 

a functional C5a receptor on the surface of neutrophils, and is capable of mediating 

chemotaxis in response to hC5a. 
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Figure 3.22 Neutrophils expressing the hC5aR.Clover transgene are 
recruited to an injection of purified human C5a. 
A) Zebrafish larvae at 3dpf were separated into non-humanised (lyz:nfsB.mCherry only) 

and humanised (lyz:hC5aR.Clover; lyz:nfsB.mCherry) groups and injected with a PBS 

vehicle control, 89µM of zebrafish C5a (drC5a) or 10µM human C5a (hC5a) into the otic 

vesicle. After injection, larvae were fixed in PFA at 4 hours post infection (hpi) and 

stained with Sudan Black B to detect neutrophils. B) Neutrophils present at the otic 

vesicle at 4hpi, blue points denote the representative images in A). Error bars shown are 

mean ± SEM (n=22-26 over two independent experiments); groups were analysed using 

an ordinary two-way ANOVA and adjusted using Bonferroni’s multiple comparisons test. 

****, p<0.0001; ns, p=0.0513.  
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3.3.19 Expression of hC5aR.Clover does not increase susceptibility to 

staphylococcal infection 
 

A final consideration is whether Tg(lyz:hC5aR.Clover)sh505 fish are more susceptible to 

staphylococcal infection as a result of expression of the hC5aR. To investigate this, 

Tg(lyz:hC5aR.Clover)sh505 fish were crossed to the non-pigmented nacre background 

(White et al., 2008b) and the embryos screened for expression of the lyz:hC5aR.Clover 

transgene at 30hpf. Transgenic embryos can be identified early in development by 

expression of the cmlc2:eGFP green heart marker that is present in the lyz:hC5aR.Clover 

construct for transgenesis optimisation (Huang et al., 2003). After separating non-

humanised (wild-type – no green heart) and humanised (hC5aR.Clover-positive – green 

heart) larvae, both groups were infected with ~1,800cfu of USA300, and their survival 

monitored over four days. The systemic model of staphylococcal infection was used 

here, as it is highly dependent on phagocytes for control and clearance of infection 

(Prajsnar et al., 2008, 2012). Additionally, the systemic model allows a high number of 

embryos to be assessed simultaneously, at a relatively mid-range dose of S. aureus. 

Figure 3.23 shows that both groups are equally susceptible to staphylococcal infection, 

and that humanisation does not confer susceptibility to S. aureus USA300 in this model.  
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Figure 3.23 Expression of the hC5aR.Clover transgene does not affect 
survival in a model of systemic staphylococcal infection. 
Tg(lyz:hC5aR.Clover)sh505 zebrafish were crossed to the non-pigmented nacre 

background and their embryos screened for expression of the hC5aR.Clover transgene 

at 30hpf. Non-humanised (wild-type) and humanised (lyz:hC5aR.Clover positive) 

embryos were injected into the circulation valley with ~1,800cfu USA300; survival was 

then monitored over the next four days. Values (n=80 over three independent 

experiments) were analysed using a Log-rank Mantel-Cox test; ns, p=0.7032. 
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3.4 Discussion 
 

An essential aspect of S. aureus infection is the adaptation of virulence factors to its 

host. The versatility of S. aureus in infecting different species is considerable, with 

species-specific virulence factors identified across the vast majority of S. aureus strains. 

This species-specific activity has impaired the investigation of many virulence factors, 

including those targeting the human C5a receptor. To address the gap in understanding 

surrounding the role of virulence factors targeting the hC5aR in vivo, a zebrafish model 

expressing the hC5aR on zebrafish neutrophils was created. The zebrafish offers a 

unique way of approaching this issue, and could offer several benefits over the 

conventional mouse model. Several in vitro studies have demonstrated the specific 

interaction of virulence factors with the hC5aR (Spaan et al., 2013b, 2014), but there are 

few that have been able to determine their importance in vivo. 

 

3.4.1 Virulence factors targeting the human C5a receptor (hC5aR) do not 

participate in systemic staphylococcal infection in the zebrafish 
 

As S. aureus produces at least three virulence factors that target the hC5aR, it is clearly 

a significant target during infection. These factors target chemotaxis (chemotaxis 

inhibitory protein of staphylococcus – CHIPS) and cause neutrophil lysis (Panton-

Valentine Leukocidin (PVL) and γ-Haemolysin CB (HlgCB)) to impair the innate immune 

system and establish infection. An increasing number of these factors are known to be 

highly adapted to infection in humans, creating a gap in understanding between them 

and in vivo studies of staphylococcal infection. As there is currently no established and 

reliable model for investigating the activity of human-adapted virulence factors during 

infection, a new model is required. I aimed to create a transgenic zebrafish model that 

expresses a fluorescently-tagged hC5aR on the surface of zebrafish neutrophils. 

The zebrafish is a powerful model for investigating staphylococcal infection. A systemic 

infection model has revealed that neutrophils play a central role in the persistence and 

dissemination of S. aureus, suggesting a complex relationship between them (Prajsnar 

et al., 2012). Before creating the Tg(lyz:hC5aR.Clover)sh505 line, I sought to clarify 

whether targeting by human-adapted virulence factors is an important aspect of 



143 
 

infection in this model. I systemically infected wild-type zebrafish larvae at 30 hours post 

fertilisation (hpf) with the CA-MRSA strain USA300, and compared this against infection 

with isogenic knockout strains of CHIPS and HlgCB.  

Although I observed that knockout strains did not become attenuated in this model, this 

does not directly show that they are unable to target the zebrafish C5a receptor 

(drC5aR) during infection. The importance of the drC5aR during zebrafish infection is 

unknown due to a lack of studies concerning the receptor, therefore, it is unclear 

whether targeting of the receptor would result in a survival advantage during S. aureus 

infection. Additionally, the systemic model could be unsuitable for investigating 

functional targeting by CHIPS and HlgCB, which primarily target neutrophils, as the 

systemic model chiefly depends on macrophages for bacterial clearance (Colucci-Guyon 

et al., 2011). Moreover, due to the absence of a ΔPVL strain, it is unfortunate that I was 

unable to assess whether PVL contributes to infection in this model. 

It is unclear whether virulence factors such as CHIPS and HlgCB are expressed in the 

zebrafish model, as the optimum temperature used in zebrafish studies is 28°C, while 

most in vivo work concerning S. aureus is at 37°C. This could be investigated at the 

transcriptional level using quantitative PCR (qPCR), with S. aureus cultured at different 

temperatures; this would address whether there is a reduction in expression of these 

genes in the zebrafish model. This can be followed up with experiments determining 

whether these changes in gene expression lead to changes in the production of these 

virulence factors.  

 

3.4.2 Construction of a zebrafish line expressing the human C5a receptor 
 

To create a transgenic zebrafish expressing the hC5aR in neutrophils, I used Gateway® 

cloning in combination with Tol2-mediated transgenesis. To provide information 

concerning the intracellular localisation of the receptor, as well as enable fluorescence-

based screening of transgenic larvae, I fused the fluorescent protein clover to the C-

terminus of the hC5aR and expressed it in neutrophils using the neutrophil-specific 

promoter lyz (Yang et al., 2012). Clover was fused to the C-terminus, as an N-terminal 

fusion could disrupt C5a binding or interfere with the activity of virulence factors such 
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as HlgCB and PVL, which require an intact N-terminus to induce optimal pore-formation 

(Spaan et al., 2013b, 2014).  

A C-terminally tagged hC5aR should be capable of activation and signalling, as in vitro 

studies demonstrate that fusion of a fluorescent tag to the C-terminus of the hC5aR does 

not interfere with the receptor function or the ability of neutrophils to respond to C5a 

(Servant et al., 1999). Additionally, as I aimed to visualise localisation of the receptor 

within neutrophils, I expressed hC5aR.Clover as a fusion protein by removing the 

terminal stop codon of hC5aR before creating the final construct. Another construct with 

an intact stop codon was generated, however it was not used for transgenesis, as I 

wished to visualise the intracellular location of the receptor in zebrafish neutrophils. 

Once the three entry clones were created, they were fused together in the pDestTolCG2 

destination vector in the order 5’ lyz – Middle hC5aR – 3’ Clover, creating the full-length 

construct. 

Once the pDestTol2CG2 lyz:hC5aR.Clover construct was successfully created, the 

transgene was inserted into the zebrafish genome using Tol2 transposase-mediated 

transgenesis. Higher concentrations of DNA injected into zebrafish embryos resulted in 

a lower rate of development and survival, matching published observations (Stuart et 

al., 1988). Additionally, transgenesis into embryos resulted in transient expression rates 

of 2-4%, which is lower than expected. Despite this, adult fish had a germline integration 

rate of roughly 15%, which is in line with Tol2-mediated integration rates for constructs 

over 10kb (Suster et al., 2011); the reduced levels of transient expression could be in 

part due to the size of the construct (Tol2 arm – Tol2 arm 15.9kb), and not due to 

inefficient insertion. 

Inducing transient expression of lyz:hC5aR.Clover in Tg(lyz:nfsB.mCherry)sh260 embryos 

resulted in larvae with a heterogeneous population of neutrophils expressing either the 

lyz:nfsB.mCherry or lyz:hC5aR.Clover transgene within the same larva. This 

heterogeneous expression pattern was initially viewed as advantageous for 

investigating the susceptibility of hC5aR.Clover-positive neutrophils to PVL/HlgCB, as 

non-transgenic neutrophils within the same fish would provide an internal control for 

cell lysis. However, after numerous attempts, it was apparent that the transient 

expression rate of 2-4% was too low to be technically feasible for experimental use. 
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Once a stable transgenic founder was identified, it was observed that the hC5aR.Clover 

transgene was stably expressed in neutrophils at the cell surface. I show that the 

lyz:hC5aR.Clover transgene is enriched at the neutrophil membrane, suggesting that the 

receptor is successfully translated and localises to the neutrophil cell surface, 

recapitulating expression of the receptor in human neutrophils. This also suggests that 

the receptor should be capable of binding hC5a as a ligand to mediate chemotaxis. 

Additionally, lyz:hC5aR.Clover neutrophils were often observed with intracellular 

puncta, which could indicate internalisation and recycling of the receptor after 

activation, a phenomenon that is also observed in vitro (Servant et al., 1999). This 

suggests that in future experiments, this model could also be used to investigate how 

the hC5aR localises within the cell under different conditions. 

 

3.4.3 Expression of hC5aR.Clover results in a defect in neutrophil 

chemotaxis 
 

I determined the impact of the hC5aR.Clover transgene on neutrophil function by 

crossing Tg(lyz:hC5aR.Clover)sh505 fish to Tg(lyz:nfsB.mCherry)sh260 fish, and sorting 

into non-humanised (lyz:nfsB.mCherry only) and humanised (lyz:hC5aR.Clover; 

lyz:nfsB.mCherry) groups at 2-3 days post fertilisation (dpf). These groups were 

compared with one another for two reasons: Tg(lyz:nfsB.mCherry)sh260 fish were kept 

as a mixture of heterozygous and homozygous, meaning that a group expressing only 

the lyz:hC5aR.Clover transgene was not consistently available; also, by comparing 

lyz:nfsB.mCherry-only with double-transgenic lyz:hC5aR.Clover; lyz:nfsB.mCherry fish, 

only expression of hC5aR.Clover separated the two groups. 

After generating the Tg(lyz:hC5aR.Clover)sh505 line, I assessed how expression of the 

transgene affects neutrophil haematopoiesis and function. While I found that the total 

neutrophil number of lyz:hC5aR.Clover-positive fish is unaffected by transgene 

expression, the unpaired t-test used to compare total neutrophil numbers from non-

humanised and humanised larvae gave a P-value approaching significance (p=0.1046) 

which suggested that the data should be re-analysed. By comparing the number of 

neutrophils in separate regions of non-humanised and humanised larvae, I observed a 

reduced number of neutrophils between the mid-yolk sac and caudal-haematopoietic 
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tissue (CHT) in 4dpf larvae. This is likely to be a consequence of the impaired neutrophil 

migration observed elsewhere, as at this stage of development there are defined 

migrations of haematopoietic cells from the tail towards the thymus that could be 

disrupted in lyz:hC5aR.Clover-positive larvae (Murayama et al., 2006). Also, the 

retention of neutrophils at haematopoietic sites within the larva could have made the 

precise enumeration of neutrophils at these sites more difficult. 

In addition to the observed changes in the neutrophil population throughout the larva, 

I investigated if expression of the hC5aR.Clover transgene resulted in any defects in the 

neutrophil response to inflammation and infection. Using a model of neutrophilic 

inflammation, I demonstrated that neutrophils expressing the hC5aR.Clover transgene 

were recruited to sites of injury in reduced numbers, implying an impaired response to 

chemotactic signals. These points were measured at 3 and 6 hours post injury, 

corresponding to peak recruitment and early resolution stages respectively, providing a 

more complete picture of neutrophil function (Renshaw et al., 2006a). However, it is 

unclear whether inflammation resolution is influenced by hC5aR.Clover expression; this 

could be determined by assessing the number of neutrophils present at the site of injury 

from 6-12 hours post injury. 

As the chemotactic signals governing recruitment to sites of infection are distinct from 

those governing inflammation in the zebrafish model (Deng et al., 2013), I investigated 

the recruitment of hC5aR.Clover neutrophils to sites of infection using an otic vesicle 

infection model in addition to a somite muscle infection model. Tissue injection models 

precede an efficient neutrophil-driven immune response to the site of infection, as 

neutrophils are predominantly recruited to surface-associated microbes (Colucci-Guyon 

et al., 2011). The otic vesicle and somite infection models yielded similar results to the 

tailfin injury inflammation recruitment data, with hC5aR.Clover neutrophils recruiting 

ineffectively to sites of infection. The somite infection model also showed that 

hC5aR.Clover neutrophils exhibit a defect in chemotaxis, resulting in reduced migration 

velocity and distance. Interestingly, the meandering index was shown to be increased in 

lyz:hC5aR.Clover; lyz:nfsB.mCherry neutrophils, which is likely to be a product of the 

reduced migration distance observed in these cells. 

It is currently unclear whether this defect is the result of constitutive receptor signalling, 

or ‘dilution’ of the endogenous chemotactic receptors. To determine this, another 
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hC5aR transgene could be constructed with a truncated Gα signalling domain, resulting 

in receptor expression without functional activation (Oldham and Hamm, 2008). As the 

N-terminal portion of the receptor would remain intact, it could still be used to 

investigate functional interactions with virulence factors, and should not interfere with 

neutrophil chemotaxis. Unpublished data suggest that the hC5aR is unable to bind 

zebrafish C5a (drC5a) at levels below 1µM (Michiel van Gent), however the average 

concentrations of drC5a produced by zebrafish are unknown due to a lack of published 

studies surrounding the complement cascade in zebrafish. Assuming that zebrafish 

produce a similar level of C5a to humans (maximum plasma concentration 100nM 

during sepsis), I can suggest that zebrafish should not produce enough C5a to 

constitutively activate the hC5aR (Ward and Gao, 2009). Compounding this is the 

increased expression level of the hC5aR in Tg(lyz:hC5aR.Clover)sh505 fish compared 

with human neutrophils, and as a result they could be more sensitive to C5a 

concentrations. This is likely to be the case, as hC5aR expression is correlated with 

susceptibility to PVL activity (Spaan et al., 2013b), and could also be true regarding hC5a 

sensitivity. 

This defect in chemotaxis could also impair antimicrobial capacity by interfering with 

essential pattern recognition receptors such as TLRs or chemotactic receptors located 

at the cell surface. Activation of the hC5aR is typically accompanied by a burst of reactive 

oxygen species, which could contribute to microbial killing, however this is unlikely to 

be properly coordinated in these neutrophils (Guo et al., 2003). Bacterial killing and ROS 

generation could be assessed using fluorescence microscopy, with the aid of ROS-

sensitive dyes, or by simply recovering the bacteria from infected humanised larvae and 

comparing with non-humanised larvae (Elks et al., 2014; Mugoni et al., 2014; Prajsnar et 

al., 2012). The ability of these cells to efficiently phagocytose bacteria could also be 

examined using these approaches. 

In several characterisation experiments, fixed larvae were stained with Sudan Black B in 

place of a fluorescent microscopy approach. The fixed larvae approach permitted a 

greater number of larvae to be assessed in a single experiment, allowing assessment of 

a higher number of groups. A drawback of this approach is that it provides no 

information concerning transgene expression in these neutrophils. Sudan Black is 

myeloperoxidase-dependent, therefore, this approach measures only the number of 
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myeloperoxidase-positive neutrophils at the otic vesicle at 4 hours post infection (hpi) 

(Pase et al., 2012). It is therefore feasible to conclude that the reduced number of 

neutrophils recruited to sites of injury and infection could represent only those 

expressing lyz:hC5aR.Clover at a lower level than lyz:nfsB.mCherry, potentially 

overcoming the chemotactic defects that are associated with lyz:hC5aR.Clover 

expression. However, in stable larvae, every double-transgenic lyz:hC5aR.Clover; 

lyz:nfsB.mCherry neutrophil examined in these experiments expressed both transgenes 

to a more or less equal degree across all experiments. This suggests that the likelihood 

of a ‘less-humanised’ neutrophil that expresses lyz:hC5aR.Clover at a reduced level and 

therefore is recruited more efficiently to the wound/infection site is extremely low, and 

therefore it is unlikely that Sudan Black staining excludes certain transgenic neutrophil 

populations in humanised larvae. 

 

3.4.4 Humanised neutrophils are targeted by pore-forming leukocidins and 

are recruited to hC5a 
 

Despite hC5aR.Clover neutrophils displaying a defect in chemotaxis, it remained 

important to test functionality of the hC5aR in this model. An important aspect of 

creating the hC5aR.Clover transgene was to investigate if expression of the hC5aR at the 

neutrophil surface confers susceptibility to bi-component leukocidins including Panton-

Valentine Leukocidin (PVL) and γ-Haemolysin CB (HlgCB). To test this, I used the otic 

vesicle infection model to compare neutrophil recruitment between non-humanised 

and humanised larvae by injecting USA300 alone or USA300 in a suspension containing 

30.3µM of PVL, and in a second experiment, also USA300 and 16.7µM HlgC or USA300 

and 16.7µM HlgCB. The concentrations of these toxins should be sufficient, as they are 

many times greater than the minimum concentration required for cell lysis (PVL 0.9nM, 

HlgCB 63nM) (Spaan et al., 2013b, 2014).  

I demonstrated that there are fewer humanised neutrophils present at the otic vesicle 

when injected with PVL or HlgCB compared with USA300 alone. As this was not observed 

in the non-humanised groups, or in the USA300 + HlgC group, it suggests that humanised 

neutrophils become susceptible to pore-formation by these leukocidins, and are not 
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reduced in number at the otic vesicle due to competitive inhibition by the receptor-

targeting subunits LukS-PV and HlgC. 

Direct evidence of neutrophil lysis is not shown in these experiments, however the 

concentration of PVL injected and the length of time required for lysis should be 

sufficient. In vitro, lysis is shown to occur before 3 hours post exposure, while here I fix 

injected larvae at 4hpi (Spaan et al., 2013b). An additional experiment that could be 

performed is to investigate whether the otic vesicle contains a greater proportion of lytic 

products after 4hpi, as I have not conclusively demonstrated that neutrophil lysis occurs. 

As DNA is released from neutrophils upon membrane permeabilisation and cell lysis, the 

fluorescent intercalating agent propidium iodide could be used to assess leukocidin-

mediated pore-formation in humanised neutrophils (Halverson et al., 2015). 

Additionally, leukocidins are known to bind and activate the C5a receptor at sub lytic 

concentrations (~0.25nM), triggering receptor activation and intracellular calcium 

release (Tawk et al., 2015). As mentioned, lyz:hC5aR.Clover neutrophils have been 

observed to undergo receptor internalisation and recycling, indicating an interaction 

between hC5aR ligands and the receptor. Using the receptor-binding subunits of PVL 

and HlgCB (LukS-PV, HlgC), it should be feasible to demonstrate receptor activation in 

response to LukS-PV binding, in a similar manner to hC5a.  

To test the hC5aR as a functional receptor in zebrafish neutrophils, recruitment to 

zebrafish (drC5a) and human (hC5a) was also tested; as the hC5aR is expressed at the 

cell surface, it should be able to bind and respond to hC5a. It was shown that humanised 

neutrophils are recruited to a site of hC5a injection in the otic vesicle, and respond 

partially to an injection of drC5a (ns, p=0.513), as they still possess the endogenous 

drC5a receptor. Non-humanised neutrophils do not recruit to hC5a, and retain the ability 

to respond to drC5a, suggesting that expression of the hC5aR desensitises neutrophils 

to endogenous drC5a.  

The injected concentrations of both drC5a and hC5a are in excess of those required for 

receptor activation and initiation of chemotaxis, with a higher concentration used for 

injection with drC5a (89µM) than with hC5a (10µM). Unpublished data suggest that cells 

transfected with the drC5a receptor require a 1,000-fold greater concentration of drC5a 

to achieve a comparable response to hC5aR-expressing cells binding hC5a (Michiel van 
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Gent). This suggests that the difference in C5a concentration used for each group is 

unlikely to result in a disproportionate response beyond those discussed. Additionally, 

as the hC5aR is overexpressed on the surface of zebrafish neutrophils, it could require a 

much lower concentration for functional activation. 

Activation of the hC5aR could be investigated by examining whether a rapid and 

transient spike of intracellular calcium (Ca2+) occurs after treatment with hC5a, a 

hallmark of G-protein coupled receptor (GPCR) activation (Bockaert, 1999). By isolating 

hC5aR.Clover-positive neutrophils and treating them with a Ca2+ sensitive dye, the Ca2+ 

level of the cells could be measured after treatment with hC5a, allowing receptor 

function to be determined (Spaan et al., 2013b). This approach also has potential 

applications in studying signalling of the drC5a receptor in response to drC5a, which is 

currently unknown. 

 

3.4.5 Zebrafish expressing hC5aR.Clover do not become susceptible to 

systemic staphylococcal infection 
 

To investigate the impact of hC5aR.Clover on survival against systemic staphylococcal 

infection, I outcrossed the Tg(lyz:hC5aR.Clover)sh505 line to the nacre background; this 

enabled us to screen embryos as early as 30hpf for expression of the hC5aR.Clover 

transgene using the green heart marker. Using this approach, I observed no difference 

in survival following systemic infection between non-transgenic and transgenic larvae, 

suggesting that expression of the hC5aR transgene does not confer susceptibility to 

staphylococcal infection in this model. Heterozygous Tg(lyz:hC5aR.Clover)sh505 fish 

were crossed to nacre rather than heterozygous Tg(lyz:nfsB.mCherry)sh260 fish, 

producing two genotypes instead of instead of four and reducing the number of larvae 

required for screening prior to the experiment. Additionally, hC5aR.Clover-expressing 

embryos were identified at 30hpf by their expression of a green heart marker, which is 

not present in the Tg(lyz:nfsB.mCherry)sh260 line. Therefore, if the standard 

Tg(lyz:hC5aR.Clover)sh505 x Tg(lyz:nfsB.mCherry)sh260 cross were used, double-

transgenic embryos would be indistinguishable from single-transgenic embryos, 

creating variation between the tested groups. As double-transgenic lyz:hC5aR.Clover; 

lyz:nfsB.mCherry larvae could be in effect ‘less humanised’ than single-transgenic 
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lyz:hC5aR.Clover larvae, they could exhibit a reduced susceptibility to S. aureus 

infection. Therefore, this cross may produce a mix of larvae with varying susceptibility 

to infection due to their transgene expression, and was avoided. 

Numerous experiments can be performed to determine if Tg(lyz:hC5aR.Clover)sh505 

fish are susceptible to staphylococcal infection, using survival models that are governed 

by a neutrophil-driven immune response, as the systemic model is largely driven by 

macrophages (Colucci-Guyon et al., 2011). One approach would be to suppress the 

macrophage transcription factor irf8, preventing macrophage development and 

enlarging the neutrophil population by skewing myeloid lineage development, 

producing larvae with a neutrophil-only phagocyte response (Li et al., 2011). 

Investigating the susceptibility of larvae to staphylococcal infection using neutrophil-

driven infection routes was also considered, but involved extremely high bacterial 

inocula to induce mortality. The otic vesicle is an unsuitable model for examining survival 

against infection, with doses of up to 63,000cfu of P. aeruginosa being required to 

produce a 50% survival rate (Deng et al., 2012). 
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3.5 Future Directions 
 

I demonstrated using a systemic model of staphylococcal infection that knockout strains 

of the virulence factors chemotaxis inhibitory protein of staphylococcus (CHIPS) and γ-

Haemolysin CB (HlgCB) did not result in an attenuation of virulence, suggesting that they 

are dispensible during infection in this model. Future studies should determine whether 

this is also the case in neutrophil-driven infection models such as larvae with a 

phagocyte population of predominantly neutrophils, induced using the irf8 morpholino 

(Li et al., 2011). Panton-Valentine Leukocidin (PVL) also targets the human C5a receptor 

(hC5aR), however I was unable to assess if a PVL knockout strain was also attenuated in 

this model. Further experiments using the systemic infection model should be carried 

out to assess whether this is the case. 

As there is a major temperature difference between human cells (37°C) and the 

zebrafish model (28°C), there are concerns surrounding the expression of hC5aR-

targeting virulence factors in the zebrafish. Differences in expression could be assessed 

using quantitative PCR (qPCR), which would permit comparison between virulence 

factor transcript levels at these two temperatures (Duquenne et al., 2010). Accordingly, 

any changes in gene expression should be validated by determining whether this 

correlates with changes in protein levels. 

Although not shown clearly in these results, neutrophils in the 

Tg(lyz:hC5aR.Clover)sh505 line exhibited intracellular clover puncta, suggesting that the 

hC5aR is internalised and recycled in these neutrophils. This is a hallmark of G-protein 

coupled receptor (GPCR) activation after ligand binding, and suggests that the hC5aR 

could be functionally recycled after activation in these neutrophils (Barak et al., 1997; 

Servant et al., 1999). A similar observation has been made in vitro using PLB-985 cells 

expressing the hC5aR with a C-terminal GFP tag, where the receptor is shown to be 

internalised and recycled after agonist treatment, in addition to localising with the 

lagging edge of the cell during chemotaxis (Servant et al., 1999). GPCRs are also known 

to undergo constitutive endocytosis and internalisation in the absence of agonist 

(Scarselli and Donaldson, 2009), although the functional implications of this are 

unknown. Internalisation of hC5aR.Clover as a consequence of functional activation of 

the receptor could be investigated using a number of C5aR antagonists (Woodruff et al., 
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2011), or by generating a second transgenic line with a truncated signalling domain, and 

observing whether internalisation still occurs. Additionally, receptor dynamics during 

chemotaxis in hC5aR.Clover neutrophils could be investigated to determine whether 

they recapitulate in vitro observations regarding agonist-mediated receptor 

internalisation. 

Unfortunately, Tg(lyz:hC5aR.Clover)sh505 zebrafish exhibit a defect in neutrophil 

migration to sites of infection and inflammation. This is likely due to disruption of 

endogenous chemotactic signalling as a result of overexpression of the hC5aR at the cell 

surface. It also could be a consequence of constitutive signalling by the hC5aR, 

accounting for the reduced migration velocity and distance observed in these 

neutrophils (Figure 3.19). To correct this, a second hC5aR line could be made with a 

truncated C-terminal signalling domain, preventing the constitutive signalling of the 

receptor that disrupts chemotaxis, but retaining targeting by hC5aR-binding factors, 

which act using the N-terminus of the receptor (de Haas et al., 2004; Spaan et al., 2013b, 

2014). It was not investigated whether overexpression of the hC5aR in these neutrophils 

produced any change in bactericidal activity. In human neutrophils, activation of 

chemotactic receptors such as the C5aR is generally accompanied by the initiation of the 

respiratory burst, which could be amplified in these fish and produce an enhanced 

antimicrobial capacity (Hato and Dagher, 2015). Equally, the constitutive activation of 

these neutrophils may be detrimental to the antimicrobial response, as the production 

of ROS is induced specifically to destroy pathogens. The antimicrobial capacity of 

humanised neutrophils could be addressed by imaging neutrophils infected with S. 

aureus and probing with ROS and pH-sensitive dyes (Mugoni et al., 2014; Page et al., 

2013), or by recovering the bacteria from ‘humanised’ larvae after infection and 

comparing against ‘non-humanised’ larvae.  

I demonstrated that neutrophils from Tg(lyz:hC5aR.Clover)sh505 larvae can migrate to 

purified hC5a, and are only partially able to migrate to drC5a. This suggests that the 

receptor functions as a chemotactic receptor in these cells, however I did not directly 

demonstrate functional receptor signalling. Receptor signalling could be investigated by 

isolating hC5aR.Clover-positive neutrophils and assessing whether a release of 

intracellular calcium ions (Ca2+) occurs after ligand binding, which is a hallmark of GPCR 

activation (Tawk et al., 2015). This approach would be possible with a Ca2+ sensitive 
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probe, and could also be used to determine whether virulence factors that inhibit hC5aR 

activation are functional against these neutrophils, such as CHIPS or sublytic 

concentrations of PVL/HlgCB (Tawk et al., 2015). 

Zebrafish have orthologous genes for most components of the complement system, and 

are able to form a membrane attack complex (MAC) to lyse gram-negative bacteria from 

fertilisation (Wang and Zhang, 2010; Wang et al., 2009; Zhang and Cui, 2014). Despite 

these studies, there is a shortage of data concerning the functional importance of the 

complement system in zebrafish larvae, and several important complement 

components have yet to be genetically identified, including complement receptor 1 

(CR1), CR2, inactivated C3b (iC3b) and C3b (Zhang and Cui, 2014). Experiments could be 

carried out to address a wide variety of questions, including where these factors are 

expressed, how they contribute to opsonophagocytosis and their roles in the 

inflammatory response in zebrafish. To assess expression of complement components 

and receptors in zebrafish larvae, whole-mount in situ hybridisation (WISH) experiments 

can be performed, as the importance of central components such as C3a, C5a and their 

cognate receptors C3aR and C5aR are currently largely unknown. Additionally, in vivo 

reporter lines of endogenous complement components can be generated using bacterial 

artificial chromosome (BAC) technology (Suster et al., 2011), and could be paired with 

microscopy techniques, genetic manipulation techniques for transient gene knockdown, 

and approaches examining Ca2+ release to determine the impact of C3 on phagocytosis, 

as well as the concentrations of C3a or C5a required for recognition by their cognate 

receptors. 

I showed that Tg(lyz:hC5aR.Clover)sh505 neutrophils were present in reduced numbers 

at the otic vesicle when injected with USA300 resuspended in PVL; this suggests that PVL 

is able to target and lyse these neutrophils. Although I did not directly demonstrate PVL-

induced lysis of humanised neutrophils, further experiments to confirm this could be 

carried out. This could be accomplished by assessing whether there is a level of products 

released after lysis present at the injection site, potentially using a fluorescent probe 

that stains DNA, such as propidium iodide or DAPI (Sandell et al., 2012). The same 

approaches can be used to investigate the related pore-forming leukocidin HlgCB, which 

also forms pores in the cell membrane by binding to the hC5aR. 
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Although I demonstrate using a systemic model of staphylococcal infection that 

Tg(lyz:hC5aR.Clover)sh505 fish do not become more susceptible to infection, further 

experiments should be performed to confirm this. It has been noted that zebrafish 

neutrophils only effectively phagocytose pathogens that are associated with tissue, 

while macrophages are the prevalent phagocyte during systemic infections (Colucci-

Guyon et al., 2011). Future experiments should focus on using neutrophil-driven 

infection approaches, either by using infection routes that produce a neutrophil-driven 

immune response such as the otic vesicle or somite tail muscle, or by skewing myeloid 

lineage development using an irf8 morpholino, producing larvae with no macrophages 

and an expanded neutrophil population (Colucci-Guyon et al., 2011; Li et al., 2011). 
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3.6 Conclusions 
 

In this chapter, I created a transgenic zebrafish that expresses a fluorescently-labelled 

human C5a receptor (hC5aR) on the surface of zebrafish neutrophils, in order to 

investigate interactions of human-adapted virulence factors with the immune system. 

Neutrophils from Tg(lyz:hC5aR.Clover)sh505 fish exhibited a defect in neutrophil 

recruitment to sites of infection and injury, implicating the disruption of endogenous 

chemotactic receptor signalling. As staphylococcal leukocidins such as Panton-Valentine 

Leukocidin and γ-haemolysin CB (PVL, HlgCB) require only the N-terminal region of the 

hC5aR to bind and cause neutrophil lysis, I investigated this using the 

Tg(lyz:hC5aR.Clover)sh505 line. The data suggest that the hC5aR imparts a susceptibility 

to lysis from these toxins, matching in vitro studies using human neutrophils. 

Additionally, I demonstrated that the hC5aR is functional in these neutrophils, as 

evidenced by their ability to migrate to hC5a, and not zebrafish C5a. 

I also demonstrate that S. aureus strains lacking the human-adapted virulence factors 

CHIPS and HlgCB (chemotaxis inhibitory protein of staphylococcus and γ-Haemolysin CB) 

are not attenuated in a model of systemic staphylococcal infection, suggesting that they 

are unable to target the zebrafish C5a receptor to confer a survival advantage. Lastly, 

Tg(lyz:hC5aR.Clover)sh505 zebrafish are not more susceptible to systemic 

staphylococcal infection, however further investigation into virulence factor expression 

and neutrophil-driven infection models could demonstrate a heightened susceptibility 

to infection in these fish.
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Chapter 4: Creation of a transgenic zebrafish 

expressing human myeloperoxidase 
 

4.1 Chapter Introduction 
 

A key feature of neutrophils is their ability to generate a respiratory burst, where large 

amounts of reactive oxygen species (ROS) are released to mediate microbial killing. A 

major enzyme involved in this process is myeloperoxidase (MPO), which potentiates the 

respiratory burst by catalysing the conversion of hydrogen peroxide (H2O2) into 

hypochlorous acid (HOCl), a highly reactive oxidative product that enhances the 

destruction of microbes. Despite MPO’s central role in generating ROS, patients with 

MPO deficiency are not uncommon (1 in 2,000 – 4,000 people) and exhibit no major 

susceptibilities to infection with the exception of fungal infections from C. albicans 

(Nauseef, 1988). In contrast, patients with chronic granulomatous disease (CGD) – who 

lack the phagocyte NADPH oxidase – are susceptible to a variety of bacterial and fungal 

infections, and have a high risk of childhood mortality (Assari, 2006). This comparison 

raises doubts surrounding the importance of MPO in oxidative defence, suggesting that 

it could play a dispensable role in microbial killing. 

In addition to potentiating the respiratory burst, MPO is a key regulator of the 

inflammatory response. MPO deficiency is associated with a higher risk and severity of 

chronic inflammatory conditions such as atherosclerosis and cardiovascular disease 

(Brennan et al., 2001; Kutter et al., 2000). MPO regulates inflammation by inactivating 

pro-inflammatory mediators and stimulating the release of enzymes that limit tissue 

destruction at the site of injury (Clark and Klebanoff, 1979; Weiss et al., 1985). 

Additionally, MPO is a major regulator of H2O2, as observed in MPO-deficient 

neutrophils that produce uncontrolled levels of H2O2, escaping from neutrophils and 

damage surrounding tissues (Schürmann et al., 2017). Limiting H2O2 production is also 

one of the earliest anti-inflammatory events, as H2O2 acts as a chemoattractant that is 

sensed by neutrophils through a redox-sensitive kinase (Pase et al., 2012; Yoo et al., 

2011). Despite the lack of a correlation between MPO deficiency and susceptibility to 
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infection, MPO and its products play important roles during both infection and 

inflammation, highlighting its significance in mediating the functions of neutrophils. 

Staphylococcus aureus is an increasing threat to public health, utilising a wide variety of 

virulence factors to establish infection. After phagocytosis, S. aureus employs several 

factors that allow it to resist phagosomal killing by targeting oxidative agents including 

H2O2 and superoxide (O2
-). Recently, a virulence factor was discovered that targets MPO 

by acting as a ‘molecular plug’ that occludes the active site, preventing MPO from 

functioning (de Jong et al., 2017). Produced by almost all strains of S. aureus, the 

staphylococcal peroxidase inhibitor (SPIN) contributes towards evasion of the oxidative 

defence, highlighting MPO’s importance during infection. Importantly, SPIN can only 

inhibit human MPO, joining a growing list of virulence factors that are highly adapted to 

infection within the context of a human host. 

Human-adapted virulence factors like SPIN highlight a major obstacle towards 

elucidating their importance during infection, as there is currently no established 

humanised model for investigating infection in vivo. Studies using the mouse model have 

determined that it is unsuitable towards investigating MPO, as there are many 

differences between the human and murine enzymes. Human neutrophils contain 5 to 

10-fold more MPO, and major differences exist in the promoter, enhancer and inducer 

regions of the two enzymes (Rausch and Moore, 1975; Zhao et al., 1997). To address 

these problems, a novel model that enables the investigation of human-adapted 

virulence factors during infection is required. 

The zebrafish is a promising infection model; it is genetically tractable, suited to in vivo 

microscopy, and has high fecundity. As an established model for investigating bacterial 

infection and inflammation, the zebrafish has delivered unique insights into the roles of 

the innate immune system (Elks et al., 2013; Mazon-Moya et al., 2017; Renshaw et al., 

2006a). Additionally, as a model of staphylococcal infection it has revealed complex 

interactions between neutrophils and S. aureus (Prajsnar et al., 2008, 2012). Using the 

zebrafish model, I aimed to create a transgenic line that expresses a fluorescently-

tagged human MPO in zebrafish neutrophils, permitting investigation into the role of 

SPIN during staphylococcal infection. Additionally, by expressing MPO as a fusion 

protein with a fluorescent tag, the line could be used to visualise MPO-containing 
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primary granules in vivo, creating a valuable tool towards understanding granule 

dynamics during infection.  

We aimed to express MPO in zebrafish neutrophils for several reasons. Its importance 

as an enzyme outwith potentiating the oxidative burst is not fully understood, and 

extends to mediating inflammatory signals and pathways; therefore, a transgenic MPO 

line could provide useful insights into the functions of MPO in vivo. Although MPO plays 

several roles, it is not essential for survival, and therefore overexpression is unlikely to 

disrupt normal development and homeostasis of the zebrafish; additionally, transgenic 

lines can be generated relatively quickly without much difficulty. There is currently no in 

vivo reporter of granule dynamics, and a transgenic line expressing fluorescent MPO in 

neutrophil granules would represent a useful tool with which this could be studied. 

Lastly, at the beginning of this project, SPIN was only recently discovered, and my work 

here would complement this data well if similar experiments could be performed using 

the zebrafish model. 
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4.2 Chapter Aims 
 

My hypothesis for this chapter was: 

 

Expressing myeloperoxidase in zebrafish neutrophils will enhance susceptibility to 

staphylococcal infection due to targeting by the human-specific staphylococcal 

peroxidase inhibitor. 

 

The aims of this chapter were to: 

 

• Determine the dynamics of SPIN expression during infection in the zebrafish 

model, and assess whether SPIN is important during infection in wild-type 

zebrafish. 

• Generate transgenic zebrafish expressing fluorescently-tagged MPO in 

neutrophils, and assess the impact of transgene expression, as well as whether 

MPO is functional in zebrafish neutrophils. 

• Create a transgenic zebrafish that produces MPO in the absence of Mpx, to 

enable the investigation of interactions between SPIN and MPO. 

• Determine if zebrafish expressing MPO become more susceptible to 

staphylococcal infection, and whether Mpx plays an important role during 

infection. 
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4.3 Results 
 

4.3.1 The staphylococcal peroxidase inhibitor (SPIN) is dispensable during 

systemic staphylococcal infection in the zebrafish 
 

To determine whether the zebrafish is a suitable model for investigating the impact of 

SPIN expression during infection, I first had to know whether SPIN is able to inhibit 

endogenous zebrafish myeloperoxidase (Mpx). As SPIN inhibits only human 

myeloperoxidase (MPO) (de Jong et al., 2017), it should be unable to inhibit Mpx, and 

so infection using a ΔSPIN strain should not differ from a wild-type S. aureus infection.  

To investigate whether SPIN can inhibit Mpx in vivo, I used a systemic model of 

staphylococcal infection (Prajsnar et al., 2008) in which a dose of S. aureus is injected 

into the circulation of larvae at 30 hours post fertilisation (hpf); survival is then 

monitored over the next four days. Survival of wild-type zebrafish (London Wild-Type - 

LWT) injected with the CA-MRSA strain USA300 was compared against survival of wild-

type zebrafish infected with an isogenic SPIN knockout strain (ΔSPIN). If SPIN is able to 

inhibit Mpx, the severity of infection should be attenuated, resulting in greater survival. 

Infection with ΔSPIN did not result in any significant attenuation (Figure 4.1) suggesting 

that SPIN does not inhibit Mpx during systemic infection. 
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Figure 4.1 SPIN is dispensable during systemic infection in wild-type 
zebrafish.  
Wild-type (LWT) zebrafish were systemically infected with ~1,800cfu S. aureus USA300 

or an isogenic ΔSPIN strain at 30 hours post-fertilisation (hpf) and monitored over the 

next four days post infection. Groups (n=66 over three independent experiments) were 

analysed using a Mantel-Cox Log-rank test; ns, p=0.0756. 

 

4.3.2 Investigation of SPIN expression in vitro 
 

As infection with a ΔSPIN strain results in no significant attenuation of virulence during 

systemic staphylococcal infection, I asked whether this was the result of an inability to 

inhibit Mpx, or a lack of SPIN expression during infection. Using the pSPIN-GFP reporter 

strain, it was possible to visualise the dynamics of SPIN expression during infection. 

pSPIN-GFP contains GFP fused to the SPIN promoter, resulting in GFP production in 

conditions where SPIN is expressed. In human neutrophils, SPIN is upregulated as early 

as 40 minutes post phagocytosis (de Jong et al., 2017). To test whether this was 

replicated in the zebrafish model, pSPIN-GFP was injected into the somite tail muscle of 

transgenic red neutrophil reporter Tg(lyz:nfsB.mCherry)sh260 zebrafish, permitting 

timelapse microscopy of neutrophil recruitment to the site of infection. Initial attempts 

to investigate SPIN expression after phagocytosis in zebrafish neutrophils revealed that 

expression of pSPIN-GFP was extremely low after normal S. aureus preparation, 

resulting in a low level of GFP that made microscopy difficult. Therefore, before 
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microscopy was possible it was necessary to investigate how pSPIN-GFP is expressed 

during culture growth.  

Expression of pSPIN-GFP during culture growth was measured using fluorometry, with 

samples taken from a 50ml culture inoculated with 500µl of overnight culture. The 

culture was shaken at 37°C, and samples were taken once every 30 minutes for 12 hours 

with one final timepoint at 24 hours. At these timepoints, the samples were measured 

for growth (absorbance OD600) and fluorescence (488nm). There was no increase in GFP 

levels until mid-exponential phase at around 4 hours 30 minutes (OD600=0.7), where it 

then continues to increase over 24 hours (Figure 4.2). This explained the problems 

encountered while attempting to image pSPIN-GFP, as normal preparation of S. aureus 

for injection into zebrafish involves culturing bacteria for a maximum of 3 hours 

(OD600=0.05), where the GFP level is far lower. 

 

 

 

Figure 4.2 Expression of pSPIN-GFP in shaking culture. 
The absorbance (OD600) and fluorescence (488nm) of pSPIN-GFP during 50ml shaking 

culture growth at 37°C over a 24-hour period. A control strain of the same S. aureus 

background (USA300) was grown simultaneously and subtracted from pSPIN-GFP to 

correct for background autofluorescence. Data shown are mean ± SEM. 
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4.3.3 pSPIN-GFP expression does not increase within 90 minutes after 

phagocytosis by zebrafish neutrophils 
 

As pSPIN-GFP is expressed at higher levels after a longer duration of culture prior to 

preparation (Figure 4.2), pSPIN-GFP was cultured for 5 hours and injected into the 

somite tail muscles of red neutrophil reporter Tg(lyz:nfsB.mCherry)sh260 larvae at 3 

days post fertilisation (dpf). Recruitment of neutrophils to the site of infection was 

imaged using timelapse microscopy, and compared against infection with the USA300 

GFP strain, which produces GFP constitutively. Both strains were clearly visible within 

the zebrafish somite (Figure 4.3B), and were rapidly phagocytosed by neutrophils, 

confirming that experiments investigating the impact of SPIN during infection could 

require a longer culture time prior to infection in the zebrafish. 
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Figure 4.3 pSPIN-GFP is visible within zebrafish somites after an extended 
culture length. 
A) A 3dpf zebrafish larva with a somite tail muscle outlined with a dashed red box. B) 

USA300 GFP and pSPIN-GFP injected into the somite tail muscle of red neutrophil 

reporter Tg(lyz:nfsB.mCherry)sh260 larvae at 3dpf and imaged as neutrophils are 

recruited to the site of infection. Neutrophils are shown in magenta, and S. aureus in 

green. Shown at intervals of 30 minutes; dashed white box indicates the enlarged region 

below each panel. Scale bar = 18µm. 
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As I had identified conditions that would allow me to investigate pSPIN-GFP expression 

in zebrafish neutrophils, the GFP level of pSPIN-GFP after phagocytosis was analysed by 

comparing the levels of GFP within neutrophils containing pSPIN-GFP with the levels of 

those containing USA300 GFP. I could not demonstrate any increase in GFP signal in 

either USA300 GFP or pSPIN-GFP before 90 minutes post phagocytosis (Figure 4.4), 

suggesting a difference in regulation of the SPIN gene by S. aureus within zebrafish and 

human neutrophils. Despite the absence of an upregulation of SPIN after phagocytosis, 

these experiments confirmed that SPIN is expressed by S. aureus during infection in the 

zebrafish model, suggesting that it can be used to investigate interactions between SPIN 

and MPO in vivo. 

 



167 
 

 

Figure 4.4 pSPIN-GFP expression does not increase within 90 minutes of 
phagocytosis. 
Fold change (%) in GFP signal of USA300 GFP and pSPIN-GFP strains at A) 30, B) 60 and 

C) 90 minutes post phagocytosis (mpp). Error bars shown are mean ± SEM (n=30 

neutrophils over two independent experiments); groups were analysed using an 

unpaired t-test (two-tailed); ns, p=0.2818. 
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4.3.4 Cloning strategy  
 

After establishing that S. aureus can produce SPIN during zebrafish infection, and that 

SPIN does not significantly contribute to infection in the systemic model, I sought to 

create a transgenic zebrafish expressing a fluorescently-labelled human MPO. To create 

the genetic construct that will be expressed in transgenic zebrafish, I used Gateway® 

cloning, a technology based on the att site-specific recombination system from lambda 

phage (Hartley et al., 2000). To use Gateway® cloning, individual genetic elements are 

constructed as plasmids known as entry clones, which can be assembled into a single 

large construct in a modular fashion; for example (5’) promoter, (middle) gene, (3’) 

fluorescent protein. As I used an identical cloning strategy to produce the 

lyz:hC5aR.Clover line in chapter 3, refer to this chapter for details concerning the 

Gateway® cloning strategy for generating transgenic zebrafish lines (Section 3.3.2). 

Briefly, I first required an entry clone containing the MPO gene, which can then be used 

to generate a complete construct containing a neutrophil promoter and a fluorescent 

tag via an LR reaction. In my MPO construct, the 5’ element is the promoter lyz, a 

neutrophil-specific promoter (Yang et al., 2012); the middle element is fluorescently-

tagged MPO and the 3’ entry clone is a polyA tail, which confers stability to messenger 

RNA (mRNA). Once created, all three elements are assembled within the destination 

vector, which was ‘pDestTol2CG2’ in this study. This vector contains a green heart 

marker (cmlc2:eGFP) that provides feedback concerning the efficiency of transgenesis, 

and two ‘Tol2 arms’ which permit insertion of the construct into the zebrafish genome 

with the aid of the Tol2 transposase (Huang et al., 2003; Kawakami, 2007). 

 

4.3.5 Creation of a middle entry clone containing the MPO gene 
 

As entry clones containing the lyz promoter and a polyadenylation sequence had been 

constructed previously, only the middle entry clone containing a fluorescently-tagged 

MPO gene was required. The fluorescent tag is an important feature of the construct, 

permitting fluorescence-based screening of transgenic larvae as well as indicating the 

intracellular localisation of the fusion protein. In human neutrophils, MPO undergoes 

extensive post-translational modification, including a step that involves cleavage of an 
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N-terminal pro-peptide region during protein maturation (Hansson et al., 2006). Due to 

this cleavage step, two fluorescent fusion protein strategies were implemented, one 

being MPO with a C-terminal tag and the other with an N-terminal tag, increasing the 

likelihood of an approach that produces fluorescently-tagged MPO that successfully 

localises to neutrophil granules. 

Two vectors (Figure 4.5BC) containing MPO with a C-terminal (pmEmerald-MPO-N-18) 

and N-terminal (pmEmerald-MPO-C-18) fusion of the fluorescent protein mEmerald, a 

5-fold brighter derivative of eGFP (Cubitt et al., 1999), were ordered from addgeneTM 

and used to create the middle entry clone by ligation into the empty middle entry clone 

vector pME MCS (Figure 4.5A). 
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Figure 4.5 Plasmid maps of pME MCS and plasmids containing a 
fluorescently-tagged MPO gene.  
A) pME MCS, a donor vector containing attL1 and attL2 sites required to act as a middle 

entry clone. Restriction sites used to ligate the MPO gene into the plasmid are shown in 

red (XbaI), blue (NotI) and green (SacII) boxes. B and C) Plasmid vectors containing the 

MPO gene with C-terminal and N-terminal fusions of the fluorescent protein mEmerald 

respectively. Restriction sites that were used to cut and ligate the MPO gene from these 

plasmids into the pME MCS vector are shown in red (NheI), blue (NotI) and green (SacII) 

boxes.  
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Both MPO.mEmerald (pmEmerald-MPO-N-18) and mEmerald.MPO (pmEmeraldMPO-C-

18) sequences were separately ligated into the empty middle entry clone vector pME 

MCS, which contains the attL1 and attL2 sites required for creation of the full-length 

construct. Due to differences between the two MPO vectors, two different pairs of 

restriction enzymes were used to extract the tagged MPO gene from the plasmids; for 

pmEmerald MPO-N-18, NotI and NheI were used, and for pmEmerald MPO-C-18, SacII 

and NheI were used. For pME MCS, XbaI was used in place of NheI, and was suitable for 

ligation due to the compatible DNA overhang that is generated by XbaI and NheI (5’ 

GATC 3’). After digesting the plasmids with the indicated restriction enzymes, the 

digestion products were visualised by agarose gel electrophoresis, and bands of the 

expected sizes were cut and gel extracted (Figure 4.6). 
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Figure 4.6 Extraction of the tagged MPO gene from pmEmerald MPO-N-18 
and pmEmerald MPO-C-18. 
Restriction digests of the middle entry vector pME MCS, alongside A) pmEmerald MPO-

N-18 and B) pmEmerald MPO-C-18. In A) pME MCS is cut with XbaI and NotI (2,759bp) 

and pmEmerald MPO-N-18 is cut with NheI and NotI (3,052bp). In B) pME MCS is cut 

with XbaI and SacII (2,749bp) and pmEmerald MPO-C-18 is cut with NheI and SacII 

(3,055bp). The digested products were cut from the gels in the positions indicated by 

the red boxes. Hyperladder 1kb plus. 
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Once the digested DNA was gel extracted, the tagged MPO gene was ligated into the 

pME MCS middle entry vector. This created two middle entry vectors, pME MCS 

mEmerald-MPO-N-18 (MPO.mEmerald) and pME MCS mEmerald-MPO-C-18 

(mEmerald.MPO) (Figure 4.7), which could then be used to assemble the full-length 

construct. 
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Figure 4.7 Maps of tagged MPO middle entry clones pME MCS mEmerald-
MPO-N-18 and pME MCS mEmerald-MPO-C-18.  
Plasmid maps containing the tagged MPO gene with a A) C-terminal (MPO.mEmerald) 

and B) N-terminal (mEmerald.MPO) fusion of the fluorescent protein mEmerald. 

Restriction sites used for diagnostic digests are shown in A) red (XbaI) and blue (NotI) 

boxes and B) red (XbaI) and green (SacII) boxes. 
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After ligation, the reaction products were transformed into competent cells and the 

ligated DNA was extracted. To confirm the successful construction of the middle entry 

clones, diagnostic digests using XbaI and NotI (pME MCS mEmerald-MPO-N-18) or XbaI 

and SacII (pME MCS mEmerald-MPO-C-18) were carried out. After digestion and 

visualisation by agarose gel electrophoresis, both digests produced fragments 

corresponding to the correct sizes (Figure 4.8), indicating that both MPO fragments had 

been successfully ligated into pME MCS. 

 

 

Figure 4.8 Diagnostic digest of middle entry clones containing fluorescently-
tagged MPO. 
Diagnostic digest of pME MCS mEmerald-MPO-N-18 and pME MCS mEmerald-MPO-C-

18. Correct band sizes for pME MCS mEmerald-MPO-N-18 are 3,167bp and 2,644bp; for 

pME MCS mEmerald-MPO-C-18, 3,904bp and 1,900bp. Hyperladder 1kb plus. 
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4.3.6 Assembly of the lyz:MPO.mEmerald and lyz:mEmerald.MPO 

constructs 
 

With the successful construction of the middle entry clones, the final step was to carry 

out a Gateway® recombination reaction known as an ‘LR reaction’, which fuses a 5’ and 

a 3’ element to either side of a middle entry clone element within a destination vector. 

The lyz promoter (5’), fluorescently-tagged MPO (MPO.mEmerald, mEmerald.MPO; 

middle) and polyadenylation tail (3’) were fused together in the destination vector 

‘pDestTol2CG2’, producing the plasmids pDestTol2CG2 lyz:MPO.mEmerald (Figure 4.9A) 

and pDestTol2CG2 lyz:mEmerald.MPO (Figure 4.9B). 

 

 

 

Figure 4.9 Plasmid maps of pDestTol2CG2 lyz:MPO.mEmerald and 
pDestTol2CG2 lyz:mEmerald.MPO. 
Plasmid maps of A) pDestTol2CG2 lyz:MPO.mEmerald and B) pDestTol2CG2 

lyz:mEmerald.MPO. Sites used for diagnostic digests are shown in red boxes for XbaI and 

in blue boxes for SnaBI and NheI. 
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To confirm the successful generation of the assembled MPO constructs, the LR reaction 

products were transformed into competent cells and the DNA extracted from colonies 

of each construct; the extracted DNA was then tested via diagnostic digest. Both 

constructs were digested with XbaI (Figure 4.10A) and to ensure the accuracy of the 

result from the initial digest, both were digested again using both SnaBI and NheI (Figure 

4.10B). Both digests produced DNA bands indicating the successful assembly of the 

constructs (Figure 4.10), confirming that MPO plasmids which can be used for 

transgenesis into zebrafish embryos had been created. 
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Figure 4.10 Diagnostic digests of pDestTol2CG2 lyz:MPO.mEmerald and 
pDestTol2CG2 lyz:mEmerald.MPO.  
A) XbaI digests of pDestTol2CG2 lyz:MPO.mEmerald and pDestTol2CG2 

lyz:mEmerald.MPO colonies: correct bands for MPO.mEmerald are 14,627bp, 3,422bp, 

2,210bp and 625bp; for mEmerald.MPO 14,627bp, 2,668bp, 2,210bp and 1,372bp. B) 

Second digest of colonies (SnaBI-NheI): correct bands for MPO.mEmerald are 9,980bp, 

6,356bp and 4,458bp; for mEmerald.MPO 9,980bp, 6,356bp and 4,541bp. Hyperladder 

1kb plus. 
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To verify the successful construction of pDestTol2CG2 lyz:MPO.mEmerald and 

pDestTol2CG2 lyz:mEmerald.MPO, high concentrations of construct DNA were acquired 

by extracting DNA from bacterial stocks at an increased culture volume. The DNA from 

both constructs was then sequenced using the primers ‘MPO attB1 For’ (both), ‘MPO-N 

Linker’ (lyz:MPO.mEmerald) and ‘MPO-C Linker’ (lyz:mEmerald.MPO) (2.1.4 Primers) 

which anneal at the attB1 site before the start of the middle entry clone, and at the 

linker region between MPO and mEmerald in both constructs (Figure 4.11). Sequencing 

confirmed the successful assembly of pDestTol2CG2 lyz:MPO.mEmerald and 

pDestTol2CG2 lyz:mEmerald.MPO, with MPO and mEmerald remaining in-frame from 

the overlap at the end of the 5’ lyz promoter and the overlap between MPO and 

mEmerald in both cases. 

 

 

 

Figure 4.11 Sequencing of pDestTol2CG2 lyz:MPO.mEmerald and 
pDestTol2CG2 lyz:mEmerald.MPO. 
Maps of A) pDestTol2CG2 lyz:MPO.mEmerald and B) pDestTol2CG2 lyz:mEmerald.MPO, 

showing regions that were verified by sequencing; the annealing sites and read lengths 

of primers ‘MPO attB1 For’, ‘MPO-N Linker’ and ‘MPO-C Linker’ are also indicated. 
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4.3.7 Generation of lyz:MPO.mEmerald transgenic zebrafish 
 

Once the MPO constructs had been created, conditions for effective transgenesis were 

optimised by testing a range of concentrations of construct DNA and Tol2 transposase 

mRNA. Tol2 is an autonomous transposase isolated from the genome of the medaka fish 

(Oryzias latipes) that catalyses transposition of DNA between two Tol2 sequences, 

integrating the construct into the zebrafish genome (Kawakami, 2007). In addition to 

the 5’, middle and 3’ elements, the construct also contains a green heart marker (Huang 

et al., 2003) (Figure 4.12A), which provides feedback concerning the efficiency of 

transgenesis in the form of eGFP expression over the heart. At 3 days post fertilisation 

(dpf), the number of developed larvae, the number of larvae expressing the green heart 

marker and the number of larvae expressing the transgene was recorded (Figure 4.12B). 

During protein maturation, MPO undergoes several post-translational modifications, 

including a step involving the cleavage of an N-terminal pro-peptide region (Hansson et 

al., 2006). With this in mind, I predicted that the C-terminal fusion of mEmerald to MPO 

should remain intact once MPO has been processed and localises to neutrophil granules, 

and so only the lyz:MPO.mEmerald construct was injected into zebrafish embryos. 

Higher concentrations of DNA and Tol2 mRNA resulted in reduced development (Figure 

4.12B), and at a construct DNA dilution of 1/75 (13ng/µl) and 10ng/µl Tol2 mRNA, ~2-

4% of larvae had a fluorescently labelled cell population in the CHT. At 50ng/µl of Tol2 

mRNA, DNA dilutions of 1/100 and 1/50 (~10-20ng/µl) also yielded a small percentage 

of fluorescent larvae (Figure 4.12B), and showed an increase in transgenesis from 4-7% 

across both groups. As the CHT is the primary site of haematopoiesis until ~2 weeks post 

fertilisation (Murayama et al., 2006), this suggested that the transgene is likely to be 

expressed in zebrafish neutrophils. Once these conditions had been confirmed to induce 

transgenesis in zebrafish larvae, sufficient larvae were raised for screening of a stably 

integrated transgenic founder. 
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Figure 4.12 Tol2 transgenesis of the lyz:MPO.mEmerald construct into the 
zebrafish genome.  
A) Schematic of the lyz:MPO.mEmerald construct, which includes the neutrophil-specific 

promoter (lyz), the MPO gene with a C-terminal fluorescent tag (MPO.mEmerald) and a 

green heart marker to aid optimisation of transgenesis (cmlc2:eGFP). B) Transgenesis 

data testing a range of DNA and Tol2 transposase mRNA concentrations injected into 

zebrafish embryos at the single-cell stage and screened for construct expression at 3dpf. 

All performed as single experiments excluding groups marked with * and +, which 

represent the means of five and three independent experiments respectively. 

 

4.3.8 Transient expression of the MPO transgene 
 

Expression of the MPO.mEmerald transgene within the CHT suggests that the transgene 

is expressed by haematopoietic cells of the zebrafish. To investigate the identity of these 

cells further, transient construct expression was induced in the red fluorescent 

neutrophil reporter line Tg(lyz:nfsB.mCherry)sh260, which labels neutrophils with the 

red fluorescent protein mCherry. At 3dpf, larvae were screened for co-expression of 

both transgenes. 
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Double-transgenic Transient lyz:MPO.mEmerald; Tg(lyz:nfsB.mCherry)sh260 larvae 

express both transgenes within neutrophils in the CHT (Figure 4.13B), confirming that 

the lyz:MPO.mEmerald transgene is expressed in zebrafish neutrophils. Interestingly, 

although mEmerald and mCherry are expressed in the same cells, they display distinct 

expression patterns (Figure 4.13B inset), with regions of the cell containing mCherry 

where there is no mEmerald signal. This suggests that lyz:MPO.mEmerald and 

lyz:nfsB.mCherry localise to distinct intracellular compartments, and could indicate 

localisation of MPO.mEmerald to neutrophil granules.  

 

 
Figure 4.13 Transient expression of the lyz:MPO.mEmerald transgene in 
zebrafish neutrophils.  
A) A 3dpf zebrafish larva, the CHT region is indicated by the red box. B) The CHT of a 

double-transgenic Transient lyz:MPO.mEmerald; Tg(lyz:nfsB.mCherry)sh260 larva with a 

population of neutrophils expressing both mEmerald and mCherry. Arrowhead indicates 

neutrophil shown in inset; scale bar = 20µm. 

 

4.3.9 Identification of a stable transgenic zebrafish founder 
 

To secure a number of adult zebrafish with stable germline integrations of the 

lyz:MPO.mEmerald transgene, larvae that transiently express the transgene were raised 

and outcrossed to determine whether the transgene was inherited by their offspring. 

An adult that produced larvae with a cell population labelled with mEmerald was 

identified and its progeny raised to provide a tank of stable fish expressing the MPO 

transgene, with the designation Tg(lyz:MPO.mEmerald)sh496. To confirm whether the 

lyz:MPO.mEmerald transgene is expressed in zebrafish neutrophils in stably transgenic 
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fish, they were crossed to the red neutrophil reporter line Tg(lyz:nfsB.mCherry)sh260, 

and screened for any co-expression of fluorescent proteins. Both transgenes were 

expressed in neutrophils throughout the CHT (Figure 4.14), demonstrating that 

lyz:MPO.mEmerald is expressed in zebrafish neutrophils in stably transgenic larvae. 

 

 

 

Figure 4.14 Stable expression of the lyz:MPO.mEmerald transgene in 
zebrafish neutrophils. 
A double-transgenic Tg(lyz:MPO.mEmerald)sh496; Tg(lyz:nfsB.mCherry)sh260 zebrafish 

larva (3dpf). White arrow indicates the enlarged region shown in inset. 

 

4.3.10 Tg(lyz:MPO.mEmerald)sh496 transgenic zebrafish produce 

mEmerald signal that localises with a granular subcellular destination 
 

MPO is located in the primary granules of neutrophils where it can be delivered to the 

phagosome, resulting in ROS generation and antimicrobial activity (Klebanoff et al., 
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2012). In order for the lyz:MPO.mEmerald transgene to recapitulate MPO expression in 

human neutrophils, mEmerald should localise to the granules of zebrafish neutrophils 

and be delivered to sites of infection and injury (Pase et al., 2012).  

To investigate the intracellular localisation of the MPO transgene, 

Tg(lyz:MPO.mEmerald)sh496 fish were outcrossed to Tg(lyz:nfsB.mCherry)sh260, and at 

3dpf the larvae were imaged in high detail using an Airyscanner confocal microscope. 

Both transgenes are expressed in the same cells (Figure 4.15BC), with MPO.mEmerald 

localising with a granular subcellular destination (Figure 4.15C), suggesting that the 

MPO.mEmerald fusion protein is trafficked to and packaged within zebrafish neutrophil 

granules. Additionally, as observed in Figure 4.13B, there is a region of the neutrophil 

that contains mCherry, but no mEmerald (Figure 4.15B), suggesting that the subcellular 

location of mCherry and mEmerald differs. 

 

 

Figure 4.15 MPO.mEmerald localises with granular structures in zebrafish 
neutrophils. 
A) A 3dpf larva, the CHT is outlined by the red box. B and C) Airyscanner confocal images 

of neutrophils within the CHT of a double-transgenic Tg(lyz:MPO.mEmerald)sh496; 

Tg(lyz:nfsB.mCherry)sh260 larva at 3dpf. C) An enlarged image of the neutrophil 

highlighted by the dashed white box in B). Scale bars B) 20µm and C) 5µm. 
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4.3.11 Expression of the MPO transgene does not impact neutrophil 

haematopoiesis 
 

As the MPO.mEmerald fusion protein appears to localise with neutrophil granules, I 

began to investigate how expression of the transgene affects neutrophil haematopoiesis 

and the response to inflammation and infection. To investigate these questions, 

Tg(lyz:MPO.mEmerald)sh496 was crossed to Tg(lyz:nfsB.mCherry)sh260 and their larvae 

sorted at 2-3dpf based on transgene expression into “non-humanised” 

(lyz:nfsB.mCherry only) and “humanised” (lyz:MPO.mEmerald; lyz:nfsB.mCherry) 

groups. For the remainder of the chapter, I use the terms “non-humanised” to refer to 

larvae expressing only lyz:nfsB.mCherry, and “humanised” to refer to double-transgenic 

siblings expressing lyz:hC5aR.Clover; lyz:nfsB.mCherry. Using this method of grouping 

larvae, the impact of transgene expression on a number of neutrophil functions could 

be assessed. 

To investigate how the lyz:MPO.mEmerald transgene affects haematopoiesis, non-

humanised and humanised larvae were fixed with paraformaldehyde (PFA) at 4dpf and 

stained with Sudan Black B to detect neutrophils; the total neutrophil number found 

throughout the larvae was then counted. Non-humanised and humanised larvae had 

comparable neutrophil numbers (Figure 4.16), suggesting that lyz:MPO.mEmerald 

expression does not interfere with neutrophil haematopoiesis. Additionally, neutrophils 

were found throughout the whole body of humanised fish (Figure 4.16A), suggesting 

that transgenic neutrophils are able to leave the CHT. 
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Figure 4.16 Expression of the MPO transgene does not affect 
haematopoiesis.  
A) 4dpf larvae from a Tg(lyz:MPO.mEmerald)sh496 x Tg(lyz:nfsB.mCherry)sh260 cross, 

sorted into non-humanised (lyz:nfsB.mCherry only) and humanised (lyz:MPO.mEmerald; 

lyz:nfsB.mCherry) groups, fixed with PFA, and then stained with Sudan Black B to detect 

neutrophils. B) Total body neutrophil counts from non-humanised and humanised 

groups. Values shown are mean ± SEM (n=60 over two independent experiments) and 

were analysed using an unpaired t-test (two-tailed); ns, p=0.9089. 
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4.3.12 Expression of lyz:MPO.mEmerald does not interfere with the 

neutrophil-mediated inflammatory response 
 

To assess the impact of humanisation on the neutrophil-mediated inflammatory 

response, I used a tailfin-transection model that initiates neutrophil recruitment to a 

vertically transected tailfin injury in zebrafish larvae (Renshaw et al., 2006a). Non-

humanised and humanised 3dpf larvae were injured and the recruitment of neutrophils 

to the site of injury was imaged at 3 and 6 hours post injury (hpi) (Figure 4.17A). Both 

groups demonstrated comparable migration of neutrophils to the site of injury at 3 and 

6hpi (Figure 4.17B), suggesting that lyz:MPO.mEmerald does not interfere with 

neutrophil recruitment to sites of injury. 
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Figure 4.17 Neutrophil recruitment to sites of injury is unaffected by 
expression of lyz:MPO.mEmerald. 
A) Non-humanised (lyz:nfsB.mCherry only) and humanised (lyz:MPO.mEmerald; 

lyz:nfsB.mCherry) 3dpf larvae with tailfins transected to induce neutrophil recruitment; 

dashed outline represents the area in which neutrophils were counted. Scale bar = 

250µm. B) Neutrophil numbers at the site of injury at 3 and 6 hours post injury (hpi); 

blue points denote the representative images in A). Error bars shown are mean ± SEM 

(n=45 over three independent experiments); groups were analysed using an ordinary 

two-way ANOVA and adjusted using Bonferroni’s multiple comparisons test; ns, 

p>0.9999. 
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4.3.13 lyz:MPO.mEmerald expression does not impact neutrophil 

recruitment to sites of infection 
 

To address whether the neutrophil response to infection is affected by expression of 

lyz:MPO.mEmerald, I used an otic vesicle infection model to investigate neutrophil 

recruitment (Benard et al., 2012; Deng et al., 2013). After separating larvae into non-

humanised and humanised groups, they were injected with either a PBS vehicle control 

or S. aureus USA300 into the otic vesicle at 3dpf. The larvae were then fixed in 

paraformaldehyde (PFA) at 4 hours post infection (hpi) and stained with Sudan Black B 

to detect neutrophils. Injection of USA300 induces robust recruitment of neutrophils to 

the otic vesicle, with comparable numbers recruited between non-humanised and 

humanised larvae (Figure 4.18). This confirms that expression of the lyz:MPO.mEmerald 

transgene does not interfere with neutrophil recruitment to sites of infection. 
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Figure 4.18 Neutrophil recruitment to sites of infection is unaffected by 
expression of lyz:MPO.mEmerald.  
A) Non-humanised (lyz:nfsB.mCherry only) and humanised (lyz:MPO.mEmerald; 

lyz:nfsB.mCherry) zebrafish larvae injected with either a PBS vehicle control or 1,400cfu 

S. aureus USA300 into the otic vesicle at 3dpf, then fixed in paraformaldehyde (PFA) at 

4 hours post infection (hpi) and stained with Sudan Black B to detect neutrophils; dashed 

white outline indicates the otic vesicle. B) Neutrophils present at the otic vesicle at 4hpi, 

blue points denote the representative images in A). Error bars shown are mean ± SEM 

(n=25 over two independent experiments); groups were analysed using an ordinary two-

way ANOVA and adjusted using Bonferroni’s multiple comparisons test. ****, p<0.0001; 

ns, p>0.9999. 
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4.3.14 Breeding and genotyping of Spotless (mpxNL144) fish, which do not 

produce an endogenous myeloperoxidase 
 

As I aimed to investigate the role of SPIN during infection, I required a model that would 

permit inhibition of myeloperoxidase by SPIN. As SPIN is a human-adapted virulence 

factor (de Jong et al., 2017), I required fish that do not produce endogenous zebrafish 

myeloperoxidase (Mpx), as this could interfere with SPIN activity. I acquired zebrafish (A 

kind gift from Annemarie Meijer, Leiden University) with a mutated myeloperoxidase 

gene known as Spotless (mpxNL144). Spotless have a premature stop mutation in the first 

exon of the myeloperoxidase gene that prevents translation of the enzyme (Elks et al., 

2014). As I wished to characterise the role of Mpx in detail, I also required sibling controls 

that produce Mpx. Accordingly, I bred a new generation of Spotless fish with a 

heterogeneous mix of wild-type and mutant alleles. 

To create a new generation with a mixture of Mpx-positive and Mpx-null fish, Spotless 

(mpxNL144) fish were outcrossed to a wild-type background (mpxwt) (AB) (Figure 4.19). 

These heterozygous (mpxwt/NL144) fish were then incrossed, producing zebrafish that are 

either heterozygous (mpxwt/NL144) or homozygous (mpxwt, mpxNL144), in the ratio 1mpxwt: 

2mpxwt/NL144: 1mpxNL144 (Figure 4.19); this mixed clutch of fish was then raised. 
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Figure 4.19 Genetic crosses producing a clutch of fish that heterogeneously 
express mpx. 
Spotless (mpxNL144) fish were outcrossed to the AB background (mpxNL144), producing a 

clutch of heterozygous (mpxwt/NL144) fish. These were then incrossed to produce fish with 

an allelic ratio of 1mpxwt: 2mpxwt/NL144: 1mpxNL144 which were then raised. 

 

4.3.15 The mpxNL144 allele can be genotyped by restriction digest 
 

As the heterogeneous mpxNL144 fish could not be identified by eye, it was necessary to 

design a method of identifying fish based on their expression of the mpxNL144 allele. Fish 

with this mutation can be identified by PCR amplification of the mutated gene from 

genomic DNA and carrying out a restriction digest on the PCR product. The restriction 

enzyme BtsCI recognises 5’ GG ATG NN 3’ sites in DNA, one of which is present within 
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the mpxNL144 mutation (GGA TGA) but not the wild-type mpxwt gene (GGA CGA) (Figure 

4.20A). This means that BtsCI is able to discriminate the mpxNL144 allele when used to 

digest a PCR product of the mpx gene. 

Primers ‘mpx Spotless For 1’ and ‘mpx Spotless Rev 1’ (2.1.4 Primers) were designed to 

amplify the region of the mpx gene mutated in Spotless fish and tested using genomic 

DNA from mpxwt, mpxwt/NL144 and mpxNL144 fish. The primers were successful in 

amplifying the mutated region in the mpx gene from all groups (Figure 4.20B), and once 

digested with BtsCI produced different DNA fragments depending on the mpxNL144 allele 

of the fish (Figure 4.20C), confirming BtsCI digestion as an efficient means of genotyping 

the mpxNL144 allele. The accuracy of the restriction digest was confirmed further by 

sequencing the PCR products, confirming that the fish identified by restriction digest 

each have the specific basepair in the expected position (Figure 4.20D). 
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Figure 4.20 The Spotless mutation can be genotyped by restriction digest.  
A) Diagram of a WT (mpxwt) and mutated (mpxNL144) gene, showing the restriction site of 

BtsCI cutting only the mutated mpxNL144 gene. B) PCR amplification of the mpx gene from 

the genomic DNA of mpxwt, mpxwt/NL144 and mpxNL144 fish – fragment 312bp; control DNA 

is a positive control from a separate genotyping experiment. Hyperladder 1kb. C) 

Diagnostic digest of the PCR product from mpxwt, mpxwt/NL144 and mpxNL144 fish. Band 

sizes: mpxwt- 312bp, mpxNL144- 230bp, mpxwt/NL144- 312bp and 230bp. Hyperladder 100bp 

plus. D) DNA sequencing of the PCR products to confirm the accuracy of the BtsCI digest. 
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4.3.16 Sudan Black B staining is dependent on functional mpx expression 
 

To confirm whether this method of genotyping is functionally accurate, I used Sudan 

Black B to detect neutrophils producing myeloperoxidase. As discussed previously, 

Sudan Black is an established stain for detecting neutrophils, and is dependent on the 

activity of myeloperoxidase (Pase et al., 2012). Three groups of genotyped larvae (mpxwt, 

mpxwt/NL144 and mpxNL144) were fixed at 4dpf and stained with Sudan Black to confirm the 

accuracy of genotyping. The mpxwt and mpxwt/NL144 groups stained with Sudan Black 

(Figure 4.21), confirming the genotyping results and indicating that only a single copy of 

mpx is required for staining with Sudan Black B. The mpxNL144group did not stain with 

Sudan Black (Figure 4.21), again confirming their genotype and demonstrating the 

myeloperoxidase-dependent staining of Sudan Black. The results confirm that the 

genotyping described in Figure 4.20 can identify fish with the non-functional Spotless 

mpxNL144 mutation. 
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Figure 4.21 Sudan Black B stains neutrophils that produce zebrafish 
myeloperoxidase.  
mpxwt, mpxwt/NL144 and mpxNL144 larvae fixed at 4dpf and stained with Sudan Black B. 

Larvae with at least one functional mpx allele stained (57/58 mpxwt, 20/20 mpxwt/NL144) 

and larvae that do not produce Mpx did not stain (32/32 mpxNL144). Inset shows an 

enlarged view of the region indicated by the dashed white box. Scale bar = 200µm. 

 

4.3.17 Endogenous zebrafish Mpx is dispensable during systemic 

staphylococcal infection 
 

It is well known that myeloperoxidase is an important element of antimicrobial activity 

in human neutrophils, and also acts to regulate the inflammatory response (Clark and 

Klebanoff, 1979; Pase et al., 2012). However, it is currently unclear how essential 

myeloperoxidase is for antimicrobial activity in the zebrafish neutrophil. Clinical and 

experimental data have suggested that myeloperoxidase is dispensable for microbial 
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killing, as the levels of reactive oxygen species generated in the absence of 

myeloperoxidase are sufficient to kill a number of pathogens (Klebanoff et al., 2012; 

Schürmann et al., 2017). 

To investigate the importance of Mpx during staphylococcal infection, London Wild-

Type (LWT) and Spotless (mpxNL144) embryos were systemically infected with S. aureus 

USA300 at 30hpf, and the survival of the two backgrounds was compared. By 90 hours 

post infection, only 30% of infected Spotless embryos survived, contrasting with the 50% 

survival of LWT embryos observed at this timepoint (Figure 4.22). No mortality was 

observed in groups injected with the vehicle control PBS, suggesting that mortality was 

not caused by physical damage incurred during injection. This indicates that embryos 

without a functional myeloperoxidase are more susceptible to staphylococcal infection.  

  

 

Figure 4.22 Endogenous zebrafish myeloperoxidase is important during 
systemic staphylococcal infection.  
Wild-type London Wild Type (LWT) and Spotless (mpxNL144) zebrafish were injected with 

a vehicle control (PBS) or infected with ~1,000cfu S. aureus USA300 at 30hpf and 

monitored for four days after infection. Values (n=78 over three independent 

experiments) were analysed using a Mantel-Cox logrank test; ****, p<0.0001. 

 

While LWT embryos are less susceptible to staphylococcal infection than Spotless 

embryos, I was concerned that the observed difference in susceptibility was due to 

genetic susceptibility rather than an absence of myeloperoxidase. Therefore, I decided 
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to compare survival between mpxwt and mpxNL144 siblings that I had generated previously 

(Figure 4.20). Sibling mpxwt and mpxNL144 fish were systemically infected with USA300 at 

30hpf and monitored over the next four days (Prajsnar et al., 2008). There was no 

difference between mpxwt and mpxNL144 fish in their ability to resist systemic infection 

(Figure 4.23), suggesting that Mpx is dispensable for survival during systemic infection, 

and that the observations in Figure 4.22 can be attributed to a difference in genetic 

susceptibility to infection. 

 

 

Figure 4.23 Endogenous zebrafish myeloperoxidase is dispensable during 
systemic staphylococcal infection.  
Sibling mpxwt and mpxNL144 zebrafish were infected with ~1,000cfu S. aureus USA300 at 

30hpf and monitored for four days after infection. Values (n=110 over four independent 

experiments) were analysed using a Mantel-Cox logrank test; ns, p=0.7431. 

 

4.3.18 Generation of Tg(lyz:MPO.mEmerald)sh496 fish that do not produce 

endogenous Mpx 
 

With a new generation of Spotless (mpxNL144) fish, it was possible to create fish 

expressing the human MPO transgene in the absence of endogenous zebrafish Mpx. This 

was achieved by a number of genetic crosses (Figure 4.24). First, stably transgenic 

Tg(lyz:MPO.mEmerald)sh496 fish were outcrossed to mpxNL144, producing a clutch of fish 

that heterozygously express the mpxNL144 allele; these were then outcrossed to Spotless 

again produce a mixture of fish with an allelic ratio of 1mpxwt/NL144 :1mpxNL144. 
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To determine whether the MPO transgene produces functional MPO using Sudan Black, 

I required Tg(lyz:MPO.mEmerald)sh496; mpxNL144 fish, in addition to sibling controls that 

do not express the MPO transgene and fish that are heterozygous for functional Mpx 

(mpxwt/NL144). Four different genotypes of fish were raised: 

Tg(lyz:MPO.mEmerald)sh496; mpxNL144, Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144, 

mpxNL144 and mpxwt/NL144 (Figure 4.24). 

 

 

Figure 4.24 Creation of a lyz:MPO.mEmerald-positive mpxNL144 zebrafish 
line. 
Transgenic Tg(lyz:MPO.mEmerald)sh496 fish were outcrossed to Spotless (mpxNL144), 

producing transgenic fish that heterozygously express the (mpxNL144) allele. This was 

repeated, producing fish with an allelic ratio of 1mpxwt/NL144: 1mpxNL144. Of these fish 

transgenic and non-transgenic fish were raised, resulting in four genotypes: 

Tg(lyz:MPO.mEmerald)sh496; mpxNL144, Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144, 

mpxNL144 and mpxwt/NL144. 
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4.3.19 The MPO transgene is successfully expressed in mpxNL144 fish 
 

To ensure that larvae successfully express the MPO transgene in the absence of 

endogenous Mpx, expression of the transgene in Tg(lyz:MPO.mEmerald)sh496; mpxNL144 

fish was compared with non-transgenic siblings. At 3dpf, Tg(lyz:MPO.mEmerald)sh496; 

mpxNL144 and Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144 larvae have a labelled neutrophil 

population in the CHT (Figure 4.25C) compared with the lack of any labelled neutrophils 

in non-transgenic siblings (Figure 4.25B). This confirms that the MPO transgene is 

successfully expressed in mpxNL144 larvae. 

 

 

Figure 4.25 Expression of lyz:MPO.mEmerald in mpxNL144 larvae. 
A) The caudal haematopoietic tissue (CHT) of a 3dpf larva indicated by the red box. B) 

Representative image of the CHT of a non-transgenic sibling of the larva shown in C). C) 

Representative image of the CHT of a Tg(lyz:MPO.mEmerald)sh496 mpxNL144/mpxwt/NL144 

larva. Scale bar = 100µm. 
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4.3.20 The MPO transgene does not produce functional human 

myeloperoxidase 
 

An important consideration concerning the Tg(lyz:MPO.mEmerald)sh496 line is whether 

the MPO.mEmerald fusion protein is produced as a functional enzyme. This could be 

assessed using Sudan Black B staining in Tg(lyz:MPO.mEmerald)sh496; mpxNL144 larvae, 

due to staining being dependent on myeloperoxidase activity (Pase et al., 2012). If 

Tg(lyz:MPO.mEmerald)sh496; mpxNL144 larvae stain with Sudan Black, I could assume 

that MPO.mEmerald is enzymatically active in transgenic fish. To investigate whether 

MPO.mEmerald is functional, Sudan Black was used to detect neutrophils in 

Tg(lyz:MPO.mEmerald)sh496; mpxNL144 fish; staining was also compared against 

Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144, mpxNL144 and mpxwt/NL144 fish as controls.  

Tg(lyz:MPO.mEmerald)sh496; mpxNL144 larvae did not stain with Sudan Black (22/22), 

while positive and negative controls mpxwt/NL144 and mpxNL144 stained as expected, with 

18/18 positive and 20/20 negative respectively (Figure 4.26). 

Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144 larvae also stained (16/16) (Figure 4.26) 

indicating that a single copy of mpx is the only condition tested that confers staining. 

This demonstrates that expression of the lyz:MPO.mEmerald transgene fails to confer 

staining with Sudan Black, suggesting that the MPO.mEmerald fusion protein is not 

functional within zebrafish neutrophils. 
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Figure 4.26 Expression of the lyz:MPO.mEmerald transgene does not confer 
staining with Sudan Black B. 
Four groups of larvae were fixed at 4dpf and stained with Sudan Black B: mpxwt/NL144, 

Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144, mpxNL144 and Tg(lyz:MPO.mEmerald)sh496; 

mpxNL144. mpxwt/NL144 and Tg(lyz:MPO.mEmerald)sh496; mpxwt/NL144 stained (18/18, 

16/16 respectively); mpxNL144 and Tg(lyz:MPO.mEmerald)sh496; mpxNL144 did not stain 

(20/20, 22/22 respectively). Dashed outline indicates the enlarged region shown 

adjacent. Scale bar = 200µm. 
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4.4 Discussion 
 

4.4.1 The ΔSPIN strain is not attenuated in a zebrafish model of systemic 

infection 
 

SPIN confers a resistance to phagosomal killing, allowing S. aureus to persist within 

phagocytes by inhibiting MPO and mitigating the production of reactive oxygen species 

(ROS) (de Jong et al., 2017). Experiments in the zebrafish model suggest that neutrophils 

represent a privileged intraphagocyte niche for S. aureus, relying on virulence factors 

such as SPIN to do so (Prajsnar et al., 2012). Accordingly, before creating the 

Tg(lyz:MPO.mEmerald)sh496 line, I established whether SPIN was an important 

virulence factor during staphylococcal infection in the zebrafish model. Using a systemic 

infection model (Prajsnar et al., 2008), I examined survival of wild-type larvae against 

the CA-MRSA strain USA300 - which was used in all infection experiments - and 

compared this with an isogenic SPIN knockout strain (ΔSPIN). I hypothesised that SPIN 

is inactive during systemic infection in the zebrafish larva, as SPIN is human-adapted and 

should be unable to inhibit zebrafish myeloperoxidase (Mpx). I found that infection with 

the ΔSPIN strain resulted in no attenuation of virulence, suggesting that SPIN is unable 

to inhibit Mpx to a sufficient degree to confer a survival advantage. 

SPIN could still participate in systemic infection in the zebrafish, as later experiments 

revealed that SPIN is not produced at high levels in culture before mid-exponential 

phase, when most S. aureus cultures are prepared for injection into the zebrafish. 

Additionally, the lack of a virulent phenotype does not directly indicate a lack of 

inhibition, as SPIN confers a survival advantage towards phagosomal killing, and does 

not directly contribute to virulence (de Jong et al., 2017). To identify whether SPIN is 

able to inhibit zebrafish Mpx, it would be useful to compare bacterial killing between 

USA300 and ΔSPIN by assessing bacterial burden over time in infected larvae; this would 

give insight into whether the ΔSPIN strain is more susceptible to phagosomal killing. 

Additionally this could be tested by investigating whether SPIN is able to remove 

myeloperoxidase-dependent Sudan Black staining from zebrafish neutrophils (Pase et 

al., 2012). 
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4.4.2 SPIN is expressed by S. aureus, but is not upregulated after 

phagocytosis by zebrafish neutrophils 
 

Using a fluorescent reporter strain consisting of GFP fused to the SPIN promoter (pSPIN-

GFP), it was shown that SPIN is significantly upregulated as early as 40 minutes after 

phagocytosis in human neutrophils, suggesting that SPIN is produced in situ to combat 

MPO (de Jong et al., 2017). To investigate if SPIN upregulation also occurs in the 

zebrafish model, I established conditions under which pSPIN-GFP produced detectable 

levels of GFP using fluorometry, and measured pSPIN-GFP signal after phagocytosis in 

zebrafish neutrophils. Using the somite tail muscle infection model to produce a 

neutrophil-driven immune response (Benard et al., 2012; Colucci-Guyon et al., 2011), 

the GFP signal of a constitutively active USA300 GFP strain was compared with pSPIN-

GFP. I could not demonstrate an increase in SPIN expression within the first 90 minutes 

after phagocytosis, suggesting that a discrepancy exists between published observations 

using human neutrophils and the zebrafish model. Despite this observation, I cannot 

exclude that SPIN is not upregulated in zebrafish neutrophils, as staphylococci can 

survive within individual leukocytes for far longer than 90 minutes (Kapral and 

Shayegani, 1959; Prajsnar et al., 2012). 

A potential source of variation between experiments may be the external temperature, 

as phagocytosis-dependent upregulation of SPIN was observed using an ex vivo 

approach with human neutrophils at 37°C (de Jong et al., 2017), while confocal 

experiments in zebrafish larvae are performed at roughly room temperature. As 

virulence factors such as enterotoxins are produced at reduced levels below 37°C, there 

could also be reduced SPIN production at these temperatures (Schmitt et al., 1990). 

Experiments examining virulence factor expression at the zebrafish optimal 

temperature of 28°C and below are required for definitive conclusions to be drawn. 

 

4.4.3 Creation of a zebrafish expressing fluorescently-tagged human 

myeloperoxidase 
 

The lyz:MPO.mEmerald construct was created using Gateway® cloning, combining the 

neutrophil-specific lyz promoter, MPO with a C-terminal fluorescent tag and a 
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polyadenylation sequence together in a single reaction. I fused a fluorescent protein to 

MPO to permit fluorescence-based screening of transgenic larvae, in addition to 

providing information regarding the intracellular localisation of the fusion protein. 

When creating the construct, my initial approach involved amplifying the MPO gene 

from neutrophil complementary DNA (cDNA) followed by fusion of a fluorescent protein 

sequence to either the N or C-terminus. PCR amplification from cDNA was unsuccessful, 

and was initially thought to be due to the reduced level of MPO transcripts in mature 

neutrophils (Hansson et al., 2006; Lieschke et al., 2001). Despite this, studies have shown 

that MPO can be amplified from mature neutrophils (Yang et al., 2004), leaving the 

difficulties encountered with this approach uncertain.  

Consequently, a second approach with preconstructed plasmids containing MPO fused 

to the fluorescent protein mEmerald was used to create the middle entry clone. 

Ultimately, only MPO with a C-terminal fusion of mEmerald was used to establish the 

Tg(lyz:MPO.mEmerald)sh496 line, as an important post-translational step during MPO 

maturation is the cleavage of an N-terminal propeptide (Hansson et al., 2006). As an 

additional aim, I felt that the Tg(lyz:MPO.mEmerald)sh496 line could allow in vivo 

visualisation of neutrophil granule dynamics, and as this N-terminal cleavage step could 

result in differential localisation of MPO and mEmerald, I opted to focus on MPO with a 

C-terminal mEmerald fusion. 

Once the pDestTol2CG2 lyz:MPO.mEmerald construct was made, it was introduced into 

the genomes of nacre zebrafish embryos using Tol2-mediated transgenesis. As 

mentioned previously, the construct contains a cmlc2:eGFP element that labels cardiac 

cells with eGFP (Huang et al., 2003); this provides feedback concerning the efficiency of 

transgenesis, facilitating optimisation. Transient expression rates for lyz:MPO.mEmerald 

were lower than expected, with 2-4% of developed larvae expressing the construct. 

Despite this, they displayed an adequate germline insertion rate of roughly 15%, in line 

with Tol2-mediated integration of constructs over 10kb (Suster et al., 2011). 

A notable trait of the Tg(lyz:MPO.mEmerald)sh496 line is the presence of an 

exceptionally bright heart marker, that was often expressed in the absence of transgene 

expression. This resulted in numerous difficulties while screening stably integrated 

Tg(lyz:MPO.mEmerald)sh496 fish, as outcrossed larvae often had a high proportion of 

green heart marker positive larvae that did not express lyz:MPO.mEmerald. As the 
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cmlc2:eGFP green heart marker is comparatively small (1.6kb), it could insert 

independently into the genome and at a higher frequency relative to the full-length 

construct (Tol2 arm – Tol2 arm 17.6kb) (Suster et al., 2011); multiple insertions would 

also explain the increased brightness of the heart marker. Once the presence of 

Tg(lyz:MPO.mEmerald)sh496 fish that did not express the transgene was discovered, an 

F2 generation was raised consisting only of larvae that stringently expressed the 

transgene.  

 

4.4.4 The MPO.mEmerald transgene localises with an intracellular 

destination 
 

I utilised high-resolution microscopy to investigate how MPO.mEmerald localises within 

neutrophils of double-transgenic lyz:MPO.mEmerald; lyz:nfsB.mCherry larvae. 

MPO.mEmerald was successfully produced, and exhibited subcellular localisation within 

neutrophils while mCherry labelled the cytoplasm. This subcellular localisation consisted 

of a large number of highly dynamic intracellular puncta, believed to be neutrophil 

primary granules (although further experiments are required to confirm this). Another 

observation is that double-transgenic lyz:MPO.mEmerald; lyz:nfsB.mCherry neutrophils 

often contained a region that remains unlabelled by mEmerald, but is labelled with 

mCherry. As this distinct compartment appears to be excluded from the cytoplasm, it is 

likely to represent the nucleus; this could be confirmed by staining double-transgenic 

neutrophils with the nuclear marker DAPI (Sandell et al., 2012). 

Double-transgenic lyz:MPO.mEmerald; lyz:nfsB.mCherry neutrophils showed a 

heterogeneous expression pattern, with some neutrophils displaying mEmerald-

labelled intracellular puncta and others exhibiting an mEmerald pattern resembling the 

cytoplasmic labelling of lyz:nfsB.mCherry (Figures 4.13, 4.15). This could indicate an age-

dependent phenotype, as neutrophils with visible granules should be more mature, and 

therefore contain a greater number of primary granules. As mentioned previously, 

mature neutrophils contain reduced levels of MPO transcripts (Hansson et al., 2006). At 

72hpf, larvae should have a population of mature neutrophils as well as a number of 

immature neutrophils, evidenced by a reduced but present mpx transcript level at this 

stage (Lieschke et al., 2001). This supports the observation of a heterogeneous 



207 
 

population of granule-packed mature neutrophils in addition to a number of 

cytoplasmically-labelled, immature neutrophils. In future, to confirm whether granule 

labelling is dependent on the age of larvae, expression of the transgene could be 

compared between larvae at different days post fertilisation. 

The heterogeneous expression of lyz:MPO.mEmerald could also be due to the lyz 

promoter, which is a general myeloid lineage promoter that is expressed in both 

macrophages and neutrophils (Hall et al., 2007). This would explain why some cells do 

not contain labelled puncta, as macrophages do not possess primary granules and do 

not typically express myeloperoxidase (Hansson et al., 2006). To correct this, a second 

transgenic line expressing MPO.mEmerald under the neutrophil-specific mpx promoter 

could be made (Renshaw et al., 2006a). 

It is also possible that non-granular labelling could be the product of altered MPO 

processing by zebrafish neutrophils. MPO undergoes extensive post-translational 

modifications prior to localisation with primary granules, including a penultimate step 

that involves cleavage of an N-terminal pro-peptide, allowing MPO to be packaged 

within primary granules (Hansson et al., 2006). If the N-terminal pro-peptide remains 

uncleaved, localisation to the primary granules does not occur, and instead MPO is 

exported to the neutrophil cytoplasm, where it is targeted for recycling. The 

MPO.mEmerald protein could retain its N-terminal pro-peptide due to changes in these 

post-translational modifications; this could produce the cytoplasmic mEmerald signal 

observed in some neutrophils. Processing of MPO.mEmerald could be assessed by 

determining the size of the protein within these neutrophils. A normally processed MPO 

monomer consists of two subunits 13.5kDa and 59kDa in size (13.5kDa and 85kDa with 

mEmerald), while unprocessed forms are a single protein 74-90kDa in size (100-116kDa 

with mEmerald) (Hansson et al., 2006). While much is known about the complex 

proteolytic steps required to produce mature MPO, the precise enzymes and 

chaperones involved at each step are almost entirely unknown, suggesting a potential 

use for the Tg(lyz:MPO.mEmerald)sh496 line as a tool for investigating post-

translational processing of MPO. 

Additionally, it is unclear whether the labelling observed in Tg(lyz:MPO.mEmerald)sh496 

neutrophils is specific to primary granules, as MPO.mEmerald could localise with other 

granule types or intracellular bodies. If MPO.mEmerald does label neutrophil granules, 
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they should fuse with maturing phagosomes to induce bacterial killing. This process 

could be observed by performing somite infection experiments using the 

Tg(lyz:MPO.mEmerald)sh496 line, and investigating whether the granules traffic to and 

fuse with phagosomes. To determine whether primary granules are specifically labelled, 

mEmerald expression can be compared with a peroxidase-sensitive stain (e.g. TSA or o-

dianisidine), distinguishing primary granules from other granule subsets (Gilbert et al., 

1993; Lieschke et al., 2001; Robertson et al., 2014). 

 

4.4.5 Characterisation of MPO.mEmerald-positive neutrophils 
 

To identify if MPO.mEmerald expression has an impact on neutrophil behaviour and 

function, Tg(lyz:MPO.mEmerald)sh496 fish were outcrossed to 

Tg(lyz:nfsB.mCherry)sh260, and separated into non-humanised (lyz:nfsB.mCherry only) 

and humanised (lyz:MPO.mEmerald; lyz:nfsB.mCherry) groups at 2-3dpf. These groups 

were compared with one another for two reasons: Tg(lyz:nfsB.mCherry)sh260 fish were 

kept as a mixture of heterozygous and homozygous, meaning that a group expressing 

only the lyz:MPO.mEmerald transgene was not consistently available; also, by 

comparing lyz:nfsB.mCherry-only with double-transgenic lyz:hC5aR.Clover; 

lyz:nfsB.mCherry fish, only expression of MPO.mEmerald separates the two groups. 

To establish whether haematopoiesis was affected, non-humanised and humanised 

larvae were fixed at 4dpf and stained with Sudan Black to detect neutrophils; the total 

number of neutrophils in each fish was enumerated and both groups were compared. 

No difference was found in neutrophil number between the two groups, suggesting that 

expression of the MPO.mEmerald transgene does not affect haematopoiesis. In contrast 

with Tg(lyz:hC5aR.Clover)sh505, I found no difference in the number of neutrophils 

found in each region of the larvae, suggesting that Tg(lyz:MPO.mEmerald)sh496 

neutrophils are able to exit the haematopoietic tissues and circulate normally. While this 

provides quantitative data suggesting that the transgene does not disrupt total 

neutrophil numbers, I did not investigate whether haematopoiesis is qualitatively 

disrupted. This could be determined by assessing whether major haematopoietic genes 

are affected by transgene expression, using whole-mount in situ hybridisation (WISH). 
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Using the tailfin-transection model, no difference was observed between non-

humanised and humanised larvae in their capacity to recruit to sites of injury, suggesting 

that MPO.mEmerald does not interfere with the inflammatory response. Whether early 

recruitment is affected by the MPO.mEmerald transgene is unknown, but would be 

simple to examine using fluorescent microscopy. It is also unclear whether inflammation 

resolution is affected by MPO.mEmerald; this could be tested by assessing neutrophils 

present at the wound site from 6-12 hours post injury (Renshaw et al., 2006a). 

With the otic vesicle infection model, I investigated the capacity of 

Tg(lyz:MPO.mEmerald)sh496 neutrophils to recruit to sites of infection. As with 

haematopoiesis and the inflammatory response, I found no difference between non-

humanised and humanised neutrophils in their ability to migrate to sites of infection. 

This confirms that MPO.mEmerald does not impair neutrophil development or 

chemotaxis. This contrasts with the Tg(lyz:hC5aR.Clover)sh505 line, which displays a 

defect in chemotaxis to injury and infection (Figures 3.15-19). This could be due to the 

intracellular localisation of MPO.mEmerald, which does not interfere with chemotactic 

receptors present at the neutrophil surface. 

While MPO.mEmerald has no effect on neutrophil haematopoiesis or chemotaxis, it is 

unclear whether MPO.mEmerald influences bacterial killing. A wide variety of 

fluorescent probes exist that would give insight into the phagosomal conditions created 

in Tg(lyz:MPO.mEmerald)sh496 neutrophils, including those sensitive to ROS and pH 

(Mugoni et al., 2014; Page et al., 2013). In combination with examining bacterial killing 

in these neutrophils, approaches using fluorescent microscopy techniques would reveal 

much about whether antimicrobial capacity is affected by transgene expression. 

 

4.4.6 Creating an Mpx-null, MPO-positive zebrafish line 
 

As I aimed to investigate how SPIN interacts with MPO in vivo, I required a line that 

expresses MPO in the absence of the endogenous zebrafish myeloperoxidase Mpx, in 

order to rule out any contribution of the endogenous enzyme during infection. Using a 

novel method of genotyping and Sudan Black B staining, a mixed population of fish 

heterogeneously expressing the mpxNL144 allele were created and verified; these fish do 

not produce Mpx due to a stop codon in the first exon of the gene (Elks et al., 2014). 
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Once established, mpxNL144 fish were crossed with the Tg(lyz:MPO.mEmerald)sh496 line, 

generating Tg(lyz:MPO.mEmerald)sh496; mpxNL144 fish that produce MPO but not Mpx.  

Tg(lyz:MPO.mEmerald)sh496; mpxNL144 fish were then used to identify whether 

MPO.mEmerald acts as a functional enzyme using Sudan Black staining. As this stain is 

dependent on myeloperoxidase activity (Pase et al., 2012), successful staining of the 

Tg(lyz:MPO.mEmerald)sh496; mpxNL144 line would indicate a functional MPO enzyme. 

This was not the case, as Tg(lyz:MPO.mEmerald)sh496; mpxNL144 larvae did not stain with 

Sudan Black despite successful expression of the transgene and positive staining in the 

control (mpxwt) groups. This suggests that the Tg(lyz:MPO.mEmerald)sh496 line does 

not produce a functional MPO enzyme, making investigation of the interactions 

between SPIN and MPO using this line difficult to demonstrate.  

The C-terminal mEmerald tag could sterically interfere with the dimerisation of MPO by 

preventing the formation of disulphide bonds between two monomers, however this 

should not affect the catalytic activity of the enzyme. Recombinant monomeric MPO 

and a cleaved, monomeric version of the mature dimer both produce active monomeric 

enzymes that are catalytically identical to the dimeric form (Andrews and Krinsky, 1981; 

Moguilevsky et al., 1991). During processing, MPO remains non-functional prior to 

incorporation of haem, which is also essential for localisation to primary granules 

(Nauseef et al., 1992). Subsequently, it is unclear why MPO.mEmerald produces a non-

functional enzyme, as targeting of MPO to the primary granules universally correlates 

with normal MPO activity (Hansson et al., 2006). Across all MPO-deficiencies, MPO fails 

to be processed to a mature form that is targeted to the primary granules, and is 

generally retained in the endoplasmic reticulum before being degraded (DeLeo et al., 

1998; Nauseef, 2004; Nauseef et al., 1996, 2000). This suggests that either my conclusion 

that MPO.mEmerald is non-functional is false, or the assertion that MPO.mEmerald 

localises with the primary granules is false. Further experiments should be carried out 

to determine the accuracy of these observations. 

The lack of observable myeloperoxidase activity could depend on the specificity of 

Sudan Black staining, which stains intracellular lipids located in primary granules and 

does not directly represent peroxidase activity (Colucci-Guyon et al., 2011). Accordingly, 

myeloperoxidase activity of MPO.mEmerald should also be investigated using 

peroxidase-sensitive techniques. O-dianisidine and TSA staining are two techniques 
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used to examine neutrophils in terms of their peroxidase activity, and would confirm 

whether MPO.mEmerald is an inactive enzyme (Colucci-Guyon et al., 2011; Lieschke et 

al., 2001; Robertson et al., 2014). Additionally, by crossing the 

Tg(lyz:MPO.mEmerald)sh496; mpxNL144 line to the ratiometric H2O2 reporter line HyPer, 

it is possible to visualise H2O2 levels in these neutrophils (Niethammer et al., 2009). This 

would provide insight into whether MPO.mEmerald is a functional enzyme, as MPO 

regulates H2O2 levels at the wound site during inflammation (Pase et al., 2012). 

The localisation of MPO.mEmerald to the primary granules could be confirmed by 

comparing localisation of Mpx with MPO.mEmerald using either specific antibodies or 

peroxidase-sensitive stains. The bactericidal activity of Tg(lyz:MPO.mEmerald)sh496; 

mpxNL144 neutrophils during infection could also be assessed; however the importance 

of Mpx during bacterial infection should be established first, as it could be redundant 

for phagosomal killing (Schürmann et al., 2017). Lastly, further experiments investigating 

how MPO.mEmerald is processed in zebrafish neutrophils could be performed. With an 

antibody for MPO.mEmerald it would be possible to determine if it undergoes any post-

translational modifications (~106kDa), if it is processed into a monomeric form (13.5kDa 

and ~85kDa) or if it successfully dimerises into the mature enzyme (~197kDa).  

 

4.4.7 Mpx is dispensable during systemic staphylococcal infection in the 

zebrafish 
 

As it was still unknown whether zebrafish Mpx is important for survival against 

staphylococcal infection, I investigated whether mpxNL144 larvae become susceptible to 

infection. Using the systemic infection model, I compared the survival of London wild-

type (LWT) larvae with mpxNL144 larvae injected with USA300 at 30hpf. This revealed a 

pronounced susceptibility to S. aureus infection in the mpxNL144 larvae, suggesting that 

Mpx is important for survival against systemic staphylococcal infection. However, I was 

concerned that the comparison of nacre zebrafish against the unrelated mpxNL144 line 

could have produced misleading results, as one background could be innately more 

susceptible to infection. Therefore, in another experiment I compared survival of larvae 

during systemic infection between siblings mpxwt and mpxNL144, and found that both 
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were equally susceptible to systemic infection with S. aureus, suggesting that mpx is 

dispensable for survival against systemic infection. 

Despite these results it is important to note that the systemic model cannot fully 

represent the role of neutrophils during infection, as macrophages typically engulf 

microbes present in the blood and fluid-filled cavities, while neutrophils respond to 

tissue-resident stimuli (Colucci-Guyon et al., 2011). Accordingly, experiments in 

neutrophil-driven infection models could be performed. One approach would be to 

suppress the macrophage transcription factor irf8, preventing macrophage 

development and enlarging the neutrophil population by skewing myeloid lineage 

development, producing larvae with a neutrophil-only phagocyte response (Li et al., 

2011). 

There are also neutrophil-driven infection routes in the zebrafish, namely the otic vesicle 

and somite tail muscle; these injection routes typically require extremely high inocula of 

bacteria to induce mortality. In one study a dose of 63,000cfu of P. aeruginosa into the 

otic vesicle was required to produce 50% survival in larvae (Deng et al., 2012). 

 

4.5 Future Directions 

 

I have demonstrated that the ΔSPIN strain is not attenuated in a zebrafish model of 

systemic staphylococcal infection and that wild-type and mpx-null (mpxNL144) larvae are 

equally susceptible to infection. However, these experiments should be performed in a 

model where neutrophil actions more directly determine the outcome of infection, as 

the systemic model is highly dependent on the activity of macrophages for bacterial 

clearance (Colucci-Guyon et al., 2011). While injection routes that produce neutrophil-

driven immune responses exist, these require supraphysiological concentrations of 

bacteria to induce mortality, and so are an unattractive approach (Deng et al., 2012). By 

genetically manipulating zebrafish larvae using the irf8 morpholino, macrophage 

development is suppressed, producing larvae with a phagocyte population chiefly 

composed of neutrophils (Li et al., 2011; Prajsnar et al., 2008). irf8 morphants represent 

a suitable infection model that may be used to answer these questions. While it is still 

possible for neutrophils to kill bacteria normally in the absence of MPO (Schürmann et 



213 
 

al., 2017), its importance for phagosomal killing in zebrafish neutrophils is still unclear, 

and may be elucidated using this approach. 

As discussed previously, there is a major temperature difference between the internal 

temperature of humans (37°C) and the optimum temperature of the zebrafish model 

(28°C), and is a source of concern regarding the expression of virulence factors such as 

SPIN. Differences in expression could be assessed using quantitative PCR (qPCR), which 

would permit comparison between virulence factor transcript levels at these two 

temperatures (Duquenne et al., 2010). Accordingly, any changes in gene expression 

should be validated by determining whether this correlates with changes in protein 

levels. 

I also demonstrated using the S. aureus USA300 pSPIN-GFP reporter strain that SPIN is 

produced during infection under specific culture conditions. In contrast with the 

literature (de Jong et al., 2017), I did not observe upregulation of SPIN expression within 

90 minutes of phagocytosis. As S. aureus is known to persist within neutrophils over 

much longer periods of time (Prajsnar et al., 2012), it would be appropriate to determine 

whether SPIN is upregulated during infection over a greater length of time. This is 

possible using microscopy techniques that involve low phototoxicity, such as light-sheet 

fluorescence microscopy (LSFM). Using this technique, a transgenic neutrophil reporter 

line such as Tg(lyz:nfsB.mCherry)sh260 could be infected with pSPIN-GFP and imaged 

over a greater period of time.  

Using Gateway® cloning and Tol2-mediated transgenesis, I generated a transgenic line 

that expresses the MPO gene with a C-terminal fusion of the fluorescent protein 

mEmerald in zebrafish neutrophils. Imaging experiments indicated that the transgene 

localises with intracellular neutrophil granules, recapitulating MPO localisation in 

human neutrophils. To confirm that the intracellular puncta observed in 

Tg(lyz:MPO.mEmerald)sh496 larvae are neutrophil granules, several experiments could 

be performed. By combining high-magnification imaging with immunohistochemistry, 

labelled granules in Tg(lyz:MPO.mEmerald)sh496 neutrophils could be investigated for 

colocalisation with granule proteins, such as proteinase-3, cathepsin G and elastase, 

which are found in teleost neutrophils (Wernersson et al., 2006). Additionally, one 

region of MPO.mEmerald neutrophils remains unlabelled by mEmerald, and is likely to 
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be the nucleus; this should be verified using a nuclear stain such as DAPI (Sandell et al., 

2012), as the granules should occupy a compartment that is distinct from the nucleus. 

The MPO.mEmerald transgene is expressed heterogeneously in zebrafish larvae at 3dpf, 

with some neutrophils exhibiting labelled granules and others displaying apparently 

cytoplasmic labelling. This could be an age-dependent neutrophil phenotype, as by 3dpf 

larvae should possess mature and immature neutrophils, which may resemble the 

heterogeneous neutrophil population observed in Figures 4.13 and 4.15. To determine 

whether this is the case, the presence of labelled granules should be assessed at several 

timepoints between 3dpf and 5dpf, to determine whether the number of neutrophils 

without labelled granules diminishes as neutrophils become mature. 

By crossing Tg(lyz:MPO.mEmerald)sh496 fish into the mpxNL144 background, I generated 

larvae expressing only human MPO. These larvae did not stain with the 

myeloperoxidase-dependent stain Sudan Black B, indicating that the transgene does not 

produce a functional MPO enzyme. As Sudan Black is not a direct means of verifying 

peroxidase activity, other peroxidase-sensitive techniques such as TSA staining could be 

used to confirm whether MPO.mEmerald is non-functional. 

The observation that MPO.mEmerald is not a functional enzyme is contradicted by its 

localisation with intracellular granules, as across all MPO-deficiencies, the enzyme is 

non-functional and universally fails to be targeted to the granules (DeLeo et al., 1998; 

Nauseef, 2004; Nauseef et al., 1996, 2000). This suggests key differences between the 

post-translational modifications identified in human neutrophils and the steps that 

occur in zebrafish neutrophils. Although the zebrafish genome shares 70% homology 

with the human genome (Howe et al., 2013), it is possible that important post-

translational mechanisms, such as glycosylation, are altered in the zebrafish. 

Additionally, the linker region between MPO and mEmerald is relatively short (18 amino 

acids), and may interfere with processing in neutrophils. With an MPO-specific antibody, 

the protein form of MPO.mEmerald could be investigated, as there are defined protein 

sizes for numerous steps of MPO maturation. As discussed, this approach would 

determine whether MPO.mEmerald undergoes any post-translational modifications 

(~106kDa), if it is processed into a monomeric form (13.5kDa and ~85kDa) or if it 

successfully dimerises into the mature enzyme (~197kDa). 
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In vitro assays of neutrophil degranulation have been described for numerous fish, 

including fathead minnows (Palić et al., 2005), and zebrafish (Palić et al., 2007). 

Assuming that the granules of Tg(lyz:MPO.mEmerald)sh496 larvae are successfully 

labelled, this line would be the first example of an in vivo reporter line of neutrophil 

granules; its potential in this regard should be assessed in detail. Imaging experiments 

to determine whether these granules fuse with the phagosome to induce bacterial 

killing should be relatively simple to perform, and could be combined with pH and ROS-

sensitive dyes to visualise phagosomal killing (Mugoni et al., 2014; Page et al., 2013). 
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4.6 Conclusions 
 

In this chapter, I created a transgenic zebrafish line that expresses a fluorescently-tagged 

human myeloperoxidase in their neutrophils. I observed that neutrophils of the 

Tg(lyz:MPO.mEmerald)sh496 transgenic line exhibit what is likely to be labelled primary 

granules, recapitulating localisation in human neutrophils and highlighting a potential 

use as a tool for investigating granule dynamics in vivo. The lyz:MPO.mEmerald 

transgene did not interfere with neutrophil migration to sites of infection and 

inflammation, however any impact on antimicrobial capacity was not investigated. To 

investigate interactions between SPIN and MPO without interference from endogenous 

zebrafish Mpx, an MPO-positive, Mpx-null line was generated (lyz:MPO.mEmerald; 

mpxNL144), revealing that MPO was enzymatically inactive in these fish. Consequently, 

interactions between SPIN and MPO were not investigated. 

SPIN was found to be dispensable during systemic infection in wild-type zebrafish, and 

is potentially unable to inhibit Mpx due to human-specificity. Using confocal microscopy 

and the pSPIN-GFP reporter strain, I demonstrated that in contrast with published 

experiments using human neutrophils, SPIN is not upregulated after phagocytosis in 

zebrafish neutrophils, highlighting a discrepancy between the zebrafish model and 

human neutrophils. Lastly, the role of Mpx during systemic staphylococcal infection was 

clarified, and was revealed to be non-essential in this model. To confirm this finding, 

experiments using infection models that are dependent on a neutrophil-driven immune 

response should be performed.
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Chapter 5: Overall Discussion 
 

In this study, I describe the creation of two transgenic zebrafish lines: one expressing 

the human C5a receptor (hC5aR), - Tg(lyz:hC5aR.Clover)sh505, and another expressing 

human myeloperoxidase (MPO), Tg(lyz:MPO.mEmerald)sh496. Both are expressed as 

fusion proteins, with the green fluorescent proteins clover (hC5aR) and mEmerald 

(MPO) fused to the C-terminus of both proteins. These fusion proteins are expressed in 

zebrafish neutrophils via the myeloid-specific promoter lyz (Hall et al., 2007), producing 

transgenic zebrafish neutrophils that express human proteins. Matching human 

neutrophils, the hC5aR is expressed at the cell surface and MPO localises to the 

neutrophil granules, demonstrating that these lines effectively recapitulate expression 

in human neutrophils. 

These lines represent a novel in vivo approach to investigating the impact of human-

adapted virulence factors during infection. Humanised mouse models exist, and display 

increased susceptibility to staphylococcal infection (Tseng et al., 2015), however this 

approach is technically difficult to implement, as each mouse has to be kept specific 

pathogen-free and immunosuppressed before engraftment with human 

haematopoietic stem cells. Transgenic mice expressing MPO have also been created, but 

have not been used to study MPO beyond its association with atherosclerosis (Castellani 

et al., 2006). By contrast, once a transgenic zebrafish line has been established, large 

quantities of larvae can be acquired quickly and consistently, and are amenable to in 

vivo microscopy due to their transparency prior to 6-8 days post fertilisation (van der 

Sar et al., 2004). Most bacterial pathogens display some degree of virulence factor-

dependent host restriction, and accordingly, the techniques described in this study 

could be applied equally to other bacteria with host-specific virulence factors. In 

addition to other human-specific targets of S. aureus (which apart from MPO and the 

hC5aR include the formyl peptide receptors, CXCR2 and CCR receptors), this approach 

could be used to study other important human pathogens, including enteropathogenic 

Escherichia coli, Salmonella typhi, and Streptococcus pyogenes (Spano and Galan, 2012; 

Svensson et al., 2000; Tobe and Sasakawa, 2002). 
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In this study, hC5aR.Clover and MPO.mEmerald are overexpressed in zebrafish 

neutrophils using the lyz promoter. A drawback of this approach is that the hC5aR and 

MPO genes are not expressed endogenously, as hC5aR.Clover is not driven by the 

zebrafish C5a receptor promoter, and MPO.mEmerald is not driven by the mpx 

promoter. Additionally, the full lyz promoter, including enhancer and intron regions, was 

not used due to its large size. As this approach causes overexpression of these human 

proteins it could produce unrepresentative results, particularly with regards to the 

hC5aR.Clover transgene, as C5aR receptor expression is correlated with susceptibility to 

leukocidins (Spaan et al., 2013b). Future studies could implement a BAC-targeting 

approach, driving these proteins under the appropriate endogenous promoter in its 

entirety (Suster et al., 2011); however, endogenous expression of these proteins is not 

a major concern regarding studies investigating interactions between a virulence factor 

and its target, as was the case in this study with Panton-Valentine Leukocidin/γ-

Haemolysin CB and the hC5aR. 

In this study, the genetic constructs for both transgenes were created using Gateway® 

cloning and introduced into the zebrafish genome by Tol2-mediated transgenesis. Both 

constructs reported transient expression rates that fell short of published expectations 

(Suster et al., 2011), potentially as a consequence of the size of the constructs exceeding 

10kb. These constructs also contained a genetic element that expresses GFP driven by 

the cardiac cell promoter cmlc2, known as a green heart marker (Huang et al., 2003). In 

Tg(lyz:hC5aR.Clover)sh505 larvae, transgene expression was always accompanied by 

expression of the heart marker, suggesting a single clean insertion of the construct into 

the zebrafish genome. Conversely, the Tg(lyz:MPO.mEmerald)sh496 line often produced 

larvae that expressed the heart marker but not the MPO.mEmerald transgene, which 

suggests the presence of multiple independent insertions, possibly facilitated by the 

heart marker’s small size (1.6kb); this would also explain the unusual brightness of the 

Tg(lyz:MPO.mEmerald)sh496 line’s heart marker. This made future genetic crosses 

difficult, as MPO.mEmerald-negative larvae were often raised in error. The observations 

noted here, as well as the hazards encountered involving the green heart marker, should 

be considered when designing and executing future studies. 

In addition to the efficiency of insertion into the zebrafish genome, functionality of the 

expressed proteins also differed between the two lines. MPO.mEmerald was 
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demonstrated to be non-functional by Sudan Black B staining, however this should be 

verified using peroxidase-sensitive probes such as TSA or o-dianisidine (Gilbert et al., 

1993; Lieschke et al., 2001; Robertson et al., 2014). The reason that MPO.mEmerald is 

non-functional is unclear, however proper maturation of MPO is a highly co-ordinated 

and complex process, requiring numerous post-translational modifications for 

functional MPO expression in human neutrophils.  

Some aspects of the MPO.mEmerald fusion protein may disrupt MPO maturation. The 

18 amino acid linker protein between MPO and mEmerald, in addition to mEmerald itself 

could interfere with important protein folding steps after translation, such as the 

formation of disulphide bonds between the α- and β- subunits or between MPO 

monomers during dimerisation. Additionally, there could be major differences between 

human and zebrafish neutrophils, as highly controlled glycosylation, proteolytic 

modification, and pH regulation is necessary for successful protein folding and 

maturation of MPO (Hansson et al., 2006). As zebrafish possess their own homologues 

of the essential molecular chaperones calreticulin and calnexin (Hung et al., 2013), 

glycosylation and transport through the endoplasmic reticulum are unlikely to be 

significantly different in the zebrafish, however it is difficult to surmise which proteolytic 

modification steps may differ in the zebrafish, as the enzymes responsible for terminal 

MPO maturation are largely unknown. 

That MPO.mEmerald appears to localise with the primary granules suggests that many 

early steps in protein folding, proteolytic modification and targeting to the granules is 

unaltered in zebrafish neutrophils. Across all known genotypes of MPO-deficiency, MPO 

is non-functional and fails to be targeted to the primary granules (DeLeo et al., 1998; 

Nauseef, 2004; Nauseef et al., 1996, 2000), suggesting that this study contains entirely 

novel observations concerning MPO maturation in neutrophils. During MPO maturation, 

the N-terminal propeptide is important for targeting to acidic compartments after 

exiting the endoplasmic reticulum and prior to/during packaging into primary granules 

(Gullberg et al., 1999). Cleavage of the propeptide occurs at acidic pH, before a final 

cleavage step occurs at neutral pH, producing mature MPO (Akin and Kinkade, 1986). A 

simple explanation could be that targeting and cleavage of the propeptide proceeds 

normally in zebrafish neutrophils, however the final cleavage step does not, preventing 

MPO.mEmerald from being processed into a functional enzyme. Determining the 
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protein form of MPO.mEmerald would be very insightful, and could be carried out with 

an MPO-specific antibody. This approach would also provide useful information 

concerning the maturation of myeloperoxidase in neutrophils. 

In contrast to MPO.mEmerald, hC5aR.Clover is an active chemotactic receptor in 

zebrafish neutrophils, responding to hC5a and conferring susceptibility to targeting by 

leukocidins. Compared with MPO, the hC5aR is a relatively simple protein requiring no 

complex post-translational modifications across the whole receptor for functional 

activity. A previous study demonstrated successful expression of a C5aR-GFP fusion 

protein in PLB-985 cells without impairing functional activity (Servant et al., 1999), 

suggesting that the C-terminal clover tag in hC5aR.Clover neutrophils is unlikely to 

interfere with protein folding or processing. Expression of simpler proteins such as the 

G-protein coupled receptors is easily achieved using the zebrafish model, and should be 

considered in future studies involving transgenic expression of proteins in the zebrafish. 

Despite being a functional receptor in Tg(lyz:hC5aR.Clover)sh505 neutrophils, transgene 

expression disrupted neutrophil migration to sites of injury and infection. This was not 

observed in Tg(lyz:MPO.mEmerald)sh496 larvae, most likely because MPO.mEmerald is 

non-functional and is not a major mediator of neutrophil chemotaxis. The most likely 

explanation of this would be constitutive activation and internalisation of the receptor, 

however whether this occurs in the Tg(lyz:hC5aR.Clover)sh505 line was not investigated 

in any detail. It is unclear why the receptor should be activated and internalised, as the 

hC5aR is not activated by drC5a at likely physiological concentrations <1µM 

(unpublished, Michiel van Gent). This suggests that either drC5a is produced at much 

higher concentrations in situ than reported, or that hC5aR.Clover is activated by 

alternative means. 

The C5aR is known to heterodimerise with other C5a receptors on the cell surface prior 

to activation (Croker et al., 2013), consequently, it is possible that the hC5aR is able to 

form dimers with the endogenous drC5aR. This dimer could be activated by drC5a, and 

may account for the visible internalisation of hC5aR.Clover in unstimulated neutrophils. 

It is also possible that the unstimulated receptor is constitutively recycled by the cell, 

although this phenomenon has no known functional consequence (Scarselli and 

Donaldson, 2009). Whether the receptor is internalised as a result of activation, or is 

simply due to constitutive recycling could be investigated assessing intracellular Ca2+ 
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release. As G-protein coupled receptors rapidly release Ca2+ after activation (Tawk et al., 

2015), crossing Tg(lyz:hC5aR.Clover)sh505 to a transgenic Ca2+ flux reporter line would 

permit the investigation of whether a rapid release of intracellular Ca2+ precedes 

internalisation (Beerman et al., 2015), and is therefore a result of receptor activation. 

Targeting of zebrafish Mpx and the drC5aR by human-adapted virulence factors during 

systemic infection was also investigated using isogenic knockout strains of CHIPS, HlgCB 

and SPIN. I observed no attenuation in these knockout strains during infection, however 

there are numerous questions regarding these experiments that could be addressed. 

Firstly, the extent to which these virulence factors are expressed at 28°C - the optimum 

temperature for zebrafish - is unknown, raising concerns over the expression of these 

virulence factors under these conditions. This question could be addressed by 

investigating the expression of virulence factors at different temperatures using 

quantitative PCR (qPCR). 

Secondly, as the systemic infection model used for these experiments is largely 

dependent on macrophages for bacterial clearance (Colucci-Guyon et al., 2011), it may 

not fully represent targeting by these virulence factors during infection, as they are more 

likely to target neutrophils. While injection routes that produce neutrophil-driven 

immune responses exist, these typically require high bacterial inocula to induce 

mortality (Deng et al., 2012), potentially making any findings unrepresentative of a 

human infection. Using the irf8 morpholino, macrophage development can be 

suppressed to produce embryos with a phagocyte population consisting almost entirely 

of neutrophils (Li et al., 2011). This would produce a systemic model of infection that 

could be performed at normal doses at S. aureus and would include only the neutrophil 

response to staphylococcal infection. If this approach proves to be more representative 

of these virulence factors, all survival experiments described in this study should be 

repeated using this approach, as it could more effectively represent the interactions of 

these factors during infection. 

Unfortunately, the length of time that was required to produce the 

Tg(lyz:MPO.mEmerald)sh496 transgenic line described in this study was significant, and 

limited further and more extensive characterisation of both lines; this happened for 

numerous reasons. The rate of transgenesis into zebrafish embryos was extremely low 

(roughly 2% of all injected embryos), which made generating a sufficient number of 
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stably transgenic founders difficult. There was also a higher than expected level of green 

heart expression, which interfered with my perception of how efficiently transgenesis 

was occurring; moreover, the construct was very dim, making identification of 

construct-positive larvae difficult. I spent a considerable amount of time optimising 

injection conditions without gaining any improvement over the 2% level mentioned, and 

accounted for a large time delay. Many factors that may have limited the efficiency of 

transgenesis were tested: the successful construction of the MPO construct was verified 

by sequencing data; several batches of Tol2 RNA were prepared and tested without any 

improvement in transgenesis, making degradation of the stock Tol2 RNA as the reason 

for inefficient construct insertion unlikely; potential introduction of RNAses into the 

capillary needle used to inject the construct DNA and Tol2 RNA during loading by pipette 

was ruled out by using needles that load by capillary action, and do not require 

specialised pipette tips. One factor that was not tested was to change the construct DNA 

used for in vitro transcription and preparation of Tol2 RNA for injection, which may have 

limited the quality of Tol2 that I prepared for injection. 

Ultimately, MPO was an ambitious choice of target to express in zebrafish, as it is a 

complex enzyme that requires several controlled post-translational modifications. MPO 

was chosen as it was believed to be a relatively simple target to express in zebrafish, it 

was novel, and could be used to investigate the activity of a newly discovered 

staphylococcal virulence factor. Other host factors that are targeted by human-specific 

virulence factors are likely to have been more successful, for example CXCR2, which is 

targeted by several factors including HlgAB. 

In summary, I produced two novel models of human-adapted staphylococcal infection 

using the zebrafish. Tg(lyz:MPO.mEmerald)sh496 fish successfully expressed human 

MPO that was targeted to a subcellular destination within zebrafish neutrophils, and 

may be a useful tool towards investigating MPO maturation and granule dynamics in 

neutrophils; however, the MPO.mEmerald fusion protein was found to be non-

functional using Sudan Black B staining. The Tg(lyz:hC5aR.Clover)sh505 line expressed 

the hC5aR at the neutrophil surface, and conferred the ability to migrate to human C5a, 

as well as susceptibility to targeting by the staphylococcal bicomponent leukocidins 

Panton-Valentine Leukocidin and γ-haemolysin CB; however, expression on the 

neutrophil surface interfered with endogenous neutrophil chemotaxis, impairing 
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neutrophil recruitment to sites of infection and inflammation. In future, functional 

characterisation of these transgenes would be facilitated by the ability to thoroughly 

test them in transient, non-stable larvae prior to creating a stably transgenic zebrafish 

line. This initial step would permit rapid screening and iteration of the transgene, leading 

to improved construction that would minimise deleterious and unwanted off-target 

effects prior to establishing the stable transgenic line. 
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