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Abstract

In this thesis we study a number of systems with varying degrees of hyperbolicity,

including uniform and non-uniform hyperbolicity, and discuss the calculation of

Lyapunov exponents in these cases. We derive and construct explicit, elementary

bounds on the Lyapunov exponents of a collection of systems, which are collectively

formed via the composition of shear mappings, upon the 2-torus. These bounds

utilise the existence of invariant cones in tangent space to restrict the range of

vectors considered in the calculations.

The bounds, with appropriate modifications, are (primarily) used to bound the

Lyapunov exponents of two types of system in which their explicit calculation is not

possible: a random dynamical system formed by choosing at random a hyperbolic

toral automorphism, formed via shear composition, at each iterate, and the linked

twist map, a deterministic system which has been used to model various physical

phenomena in fluid mixing.

Following the derivation of the bounds, we discuss ways in which their accuracy

can be improved. These improvements largely focus on finding a way to narrow

the invariant cones used in the bounds, by considering possible preceding matrices

within the orbit. We also investigate the practicality of the bounds, and how they

compare to other bounds and methods of estimation for Lyapunov exponents.
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1 Introduction

This thesis concerns the study of the Lyapunov exponents of a dynamical system,

quantities which describe the rate of separation between infinitesimally close tra-

jectories. These exponents categorise the tangent space of a system into regions

within which vectors will expand (or contract) exponentially quickly, allowing many

of the dynamical characteristics of a system to be studied in a tractable way. The

presence of trajectories which separate from each other upon iteration is a necessary

condition for chaotic behaviour, known as sensitive dependence on initial conditions,

and as such the study of Lyapunov exponents typically concerns systems of a chaotic

nature.

The first instance of the use of Lyapunov exponents is found in the doctoral thesis

of their namesake, Aleksandr Mikhailovich Lyapunov [33], concerning the stability

of motion. Specifically, given a function x(t) with x(t)eλt unbounded for λ > λ0 and

x(t)eλt → 0 as t→∞ for λ < λ0, then the critical value λ0 is called the characteristic

number of x(t). These characteristic numbers are in fact the negative of the largest

(or maximal) Lyapunov exponent as is typically defined in the literature. Positive

characteristic numbers indicate that the function x(t) diminishes at an exponential

rate, while negative numbers indicate exponential growth; this intuition is reversed

in the case of Lyapunov exponents, but the concept is identical. If, for example,

the function x(t) yielded the length of a vector v in tangent space after time t, then

a negative (positive) characteristic number would tell us that v is being stretched

(contracted) as t increases; the notions of stretching and contracting of tangent

vectors will be key throughout this thesis. Following Lyapunov, further work into

the theory of Lyapunov exponents can be attributed to Perron [38] in the context

of linear differential equations, and Bylov et al. [13] regarding problems of stability.

It should be noted that Lyapunov exponents are not a priori guaranteed to exist,

as they require the convergence of an infinite limit. Conditions for the existence of
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Lyapunov exponents are given by Oseledec’s Multiplicative Ergodic Theorem [35]

(see Theorem 2.1), which guarantees the existence of a collection of Lyapunov ex-

ponents (known as the Lyapunov spectrum) in the presence of an invariant measure

for the system. The theorem also guarantees that the number of distinct Lyapunov

exponents cannot exceed the dimension of the system. In other words, the char-

acterisation of the system described above into expanding, contracting and neutral

regions will not return an infinite partitioning of tangent space, but rather a concise

summary of the aggregate behaviour (at least in terms of growth rates) of vectors

oriented in certain directions.

Another key concept we will discuss in this thesis is that of hyperbolicity. A wide

variety of systems are encompassed by the term hyperbolic, from simple expanding

and contracting maps, which are not chaotic, to more complex constructions, such

as the linked twist map which we study in Chapters 3 and 5, which can display

more interesting behaviours. In this thesis we will encounter different forms of

hyperbolicity, with varying degrees of strictness.

The first, and most strict, form of hyperbolicity is known as uniform hyperbol-

icity; systems with this property are often referred to as Anosov diffeomorphisms,

owing to the work of Anosov [3]. The archetypal example of such a system is the

Arnold’s Cat Map [6]. These systems fulfil a rigorous set of conditions (see Defin-

ition 2.7), including uniform bounds on minimum expansion/contraction rates and

the existence of invariant subspaces in tangent space, and their behaviour has been

well studied and understood; however, proving whether a system is uniformly hy-

perbolic can be tricky, and examples of such systems in practical applications are

rare. In particular, Anosov diffeomorphisms have only been shown to exist on cer-

tain types of manifolds, and the question of which manifolds can admit them is still

an open one; for example, it has been shown that no Anosov diffeomorphisms can

exist upon a sphere [48].
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By loosening the restrictions on the expansion and contraction rates for uniform

hyperbolicity, one arrives at a more general property: non-uniform hyperbolicity.

Due to the relaxation of these stringent conditions, non-uniform hyperbolicity en-

compasses a wider variety of systems, and subsequently a wider diversity of beha-

viours. The conditions for non-uniform hyperbolicity, at first glance, appear to be

just as complex (and nearly as restrictive) as those of an Anosov diffeomorphism

(see Section 3.2); in particular, one is still required to find invariant expanding and

contracting subspaces within tangent space, and show that the expansion and con-

traction rates within those subspaces are non-zero. However, due to work by Pesin

[39], referred to as Pesin theory, it is possible to prove that a system is non-uniformly

hyperbolic by means of its Lyapunov exponents; specifically, one shows that the

Lyapunov exponents of the system are non-vanishing. Non-uniformly hyperbolic

systems can exist on a wider variety of manifolds than Anosov diffeomorphisms,

and so their applications are more wide-ranging in practice; the key example of a

non-uniformly hyperbolic system we will study in this thesis is the toral linked twist

map (see Section 3.2); this map is a generalization of systems such as Arnold’s Cat

Map, allowing for regions with linear growth rates.

The requirement of finding systems with non-zero Lyapunov exponents seems

simple in principle; however, Lyapunov exponents are notoriously difficult quantities

to calculate in practice. Explicit calculation is only possible in rare cases, examples of

which include Anosov diffeomorphisms such as Arnold’s Cat Map (see Section 2.4).

Typically an approximation is made instead, often involving finite-time Lyapunov

exponents; finite truncations of the infinite limit one uses to calculate the Lyapunov

exponents. Such approximations can vary in reliability and accuracy from system to

system, as Oseledec’s theorem does not say anything about the rate of convergence

of finite-time Lyapunov exponents; we demonstrate this distinction for two systems

in Chapter 5, and characteristic distributions of finite-time Lyapunov exponents
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have been studied in a more general context [43].

An alternative approach to approximating the Lyapunov exponents is to instead

find a way to bound them. If one can find a quantity which bounds the Lyapunov

exponent, and this bound is non-zero (in the relevant direction), then it follows

that the Lyapunov exponent itself is non-vanishing, and thus the results of Pesin

theory apply. This thesis describes a method, building on the method proposed

by Sturman and Thiffeault [54] for random products of shear matrices, which can

provide both an upper and lower bound on systems formed via the composition of

shears; such systems include the aforementioned linked twist map. Note that the

Lyapunov exponents of the linked twist map have been shown to be non-vanishing

(see [12]), however the bounds we obtain narrow the range of values much further

than this.

Calculation (or estimation) of the (maximal) Lyapunov exponent of a system

is important in many fields, as it is a solid indicator of the existence of chaotic

behaviour and gives an idea of the time-scale upon which such behaviour takes place.

In order to model real-world systems a random element is often utilised to modify

otherwise deterministic systems, possibly through the addition of stochastic noise,

or random choices of initial conditions. Similarly, one may study a system which is

itself random, and indeed bounds on the Lyapunov exponents have been investigated

substantially in the case of random products of matrices; see, for example, [42], [30].

Applications for the Lyapunov exponent of random products of matrices exist in

areas such as physics (e.g. Schrödinger operators [11]), biology and ecology (e.g.

population invasion models [24]), among many others; for further examples, see

[15]. On the deterministic side, systems such as Arnold’s Cat Map are viewed as

simple, analytically-extractable, models of fluid mixing; in particular where two

flows, or streamlines, of fluid cross one another. An example of such an application

is given by the linked twist map, a generalization of such systems, which has been
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used to model the Aref blinking vortex flow [4]. We discuss a method for bounding

the Lyapunov exponents of random products of hyperbolic matrices in Chapter 4,

and the linked twist map (and other similar deterministic systems) in Chapter 5.

In addition to establishing a close link between Lyapunov exponents and hyper-

bolicity in measure-preserving systems, Pesin theory also bridges the gap between

hyperbolicity and measure theoretic properties such as ergodicity and mixing; this

theory has been extended to the case of systems with singularities by Katok and

Strelcyn [29]. The systems we study in this thesis are all Lebesgue measure-preserving,

thus providing the link between the work of Pesin and the theorem of Oseledec in

these cases.

Ergodicity is the notion of indecomposability of a dynamical system; the entire

domain is involved in the dynamics, leaving no (non-trivial) invariant islands which

fail to interact with other areas. Mixing encapsulates the idea of a deterministic

system becoming independent of its initial state over time. Central to both of these

concepts is the notion of recurrence, a phenomenon that exists within measure-

preserving systems with a finite domain. Specifically, the Poincaré recurrence the-

orem [40] states that in such systems almost every orbit must return arbitrarily

close to its initial condition (or indeed any other point on the orbit) infinitely many

times; one way to think of this is to divide phase space into finitely-many regions of

non-zero measure. Once you have visited each distinct region, you must return to a

region you have previously visited.

The existence of ergodicity and mixing in the systems we study is important, as

it tells us that the choice of initial condition does not matter in the evaluation of the

Lyapunov exponent; by this we mean that a randomly chosen initial condition will

return the same Lyapunov exponent as another with probability one. Additionally,

the notion of recurrence is incorporated into the bounds we obtain for deterministic

systems (i.e. the linked twist map), via the calculation of a return time distribution
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- a construction which tells us the frequency with which points return to a particular

reference region along their orbits.

Theory tells us that the Lyapunov exponents of an ergodic system are independ-

ent of the choice of initial condition. Seeing this from experimental/simulated data

is not always easy however, as this independence can occur on long time scales;

this can be particularly evident when the growth rate of vectors varies significantly

from iterate to iterate, such as in the linked twist map. A quantity which gives

an estimate of the time required to observe chaotic behaviour in a system is the

Lyapunov time, given by the inverse of the maximal Lyapunov exponent; however,

the Lyapunov exponent is a global property of the system, and so the Lyapunov

time is better seen as an average time for which chaotic behaviour can occur for a

typical orbit.

Alternatively, one may wish to measure this transition to independence via the

time it takes for a system to achieve a certain level of homogeneity of observable

functions (e.g. temperature, pressure); this is given by the rate of decay of cor-

relations, which can be thought of as the rate of mixing of a system (see Section

2.9). This decay rate has been studied, using similar techniques and concepts to

those we use in Chapters 4 and 5, by Ayyer and Stenlund [7], who found an upper

bound on the decay rate depending upon a lower bound on the maximal Lyapunov

exponent; note that the lower bounds we will obtain are an improvement upon the

lower bound used by Ayyer and Stenlund. It should also be noted that while the

Lyapunov exponent(s) and the rate of decay of correlations are seemingly related

quantities, they are not intrinsically tied to each other; specifically, the choice of ob-

servable function can cause arbitrarily small correlation decay, despite the existence

of a positive maximal Lyapunov exponent [50].

The format of the thesis is as follows: we begin in Chapter 2 by giving the

background and definitions we will require for the methods later in the thesis. This
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includes the (explicit) introduction of the concepts of uniform hyperbolicity, Lya-

punov exponents, and invariant cones. In Chapter 3 we study a select few systems

of interest, and define the notions of non-uniform hyperbolicity, with the motivating

example of the linked twist map, and pseudo-Anosov maps, an alternative generaliz-

ation of uniform hyperbolicity. In Chapter 4, we study and describe the formulation

of bounds for random products of the composition of shear matrices, resulting in four

of the main results of this thesis, Theorems 4.2 - 4.5. In Chapter 5, we apply this

method to linked twist maps, with minor alterations, as well as an alternative map

introduced in Chapter 3; this chapter contains the remaining three novel theorems

of this thesis, Theorems 5.1 - 5.3, which concern bounds on Lyapunov exponents in

linked twist maps. Finally, in Chapter 6, we summarise our findings and consider

possible extensions to the theory.
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2 Fundamental Properties of Measure-Preserving

Dynamical Systems

The aim of this thesis is to study the quantities known as the Lyapunov exponents

of a dynamical system - the growth rate of the separation between infinitesimally

close trajectories - and to find methods to bound them in certain systems where

explicit calculation is difficult or impossible. The Lyapunov exponents of a system

are indicators of chaotic behaviour; positive Lyapunov exponents indicate expanding

directions in tangent space, while negative Lyapunov exponents indicate contracting

directions. We begin by giving definitions of the various mathematical objects we

will require throughout the thesis in order to clarify the notations we will use.

2.1 Basic definitions

We will be concerning ourselves exclusively with systems which are measure-preserving

for a measure µ which is defined on a (Borel) σ-algebra over a metric space M .

Definition 2.1. A σ-algebra, σ, is a collection of subsets of M such that:

(i) M ∈ σ,

(ii) M\A ∈ σ for A ∈ σ,

(iii)
⋃
n≥0An ∈ σ for all An ∈ σ forming a finite or infinite sequence An of subsets

of M .

We call σ the Borel σ-algebra if it is the smallest σ-algebra containing all open

subsets of M (i.e. if σ is generated by the collection of all open subsets of M).

Note that we refer to a set in the Borel σ-algebra as a Borel set.
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Definition 2.2. A map H : M → M is said to be µ-preserving (or µ is an H

invariant measure) if, for all A ∈ σ,

µ(H−1(A)) = µ(A). (1)

If µ(M) = 1, then µ is a (Borel) probability measure. If in addition (1) holds,

then µ is an invariant (Borel) probability measure. In the case of the maps we will

study, the preserved measure µ is the Lebesgue measure. Note that µ is assumed to

be the Lebesgue measure unless otherwise specified; in all cases, the measure used

will be an invariant Borel probability measure.

Most of the systems we study will be invertible (with the exception of random

dynamical systems, see Chapter 3); in these cases, we can rewrite (1) as

µ(H(A)) = µ(A).

We now clarify the notation we will use for a measure-preserving dynamical system.

Definition 2.3. A dynamical system is a quadruple (M,σ,H, µ) where M is a

metric space, σ is a Borel σ-algebra over M , H : M → M is a transformation (or

map), and µ is an H-invariant measure.

As mentioned earlier, Lyapunov exponents are a quantity with close ties to chaos.

Various definitions of chaotic behaviour in dynamical systems exist, and so we specify

the definition of chaos as it will be understood in this thesis - that is, the definition

given by Devaney.

Definition 2.4 ([20]). A continuous map H : M →M is said to be chaotic if:

(i) H displays sensitive dependence on initial conditions.

(ii) H is topologically transitive.

(iii) the periodic points of H are dense in M .
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In particular, positivity of the Lyapunov exponents of a system is indicative of

the first of these conditions, and as such is a necessary, but not sufficient, component

for chaos.

2.2 Maps formed from shear composition

The systems we study over the course of this thesis will all exhibit chaotic behaviour,

and the mechanism we will use to give rise to this behaviour is the composition of

shear maps on the 2-torus1, given by

T2 = [0, 1)× [0, 1) mod 1.

Note that from this point forward if a map is defined upon T2 it will be considered

to be mod 1, and the notation for this will be dropped. In general, let F : T2 → T2

be given by

F

x
y

 =

1 αi

0 1

x
y

 if (x, y) ∈ Pi, (2)

where i ∈ [1, ..., n] and Pi = [0, 1)× [pi−1, pi) are horizontal annuli with p0 = 0 and

pn = 1, and let G : T2 → T2 be given by

G

x
y

 =

 1 0

βj 1

x
y

 if (x, y) ∈ Qj, (3)

where j ∈ [1, ...,m] and Qj = [qj−1, qj) × [0, 1) are vertical annuli with q0 = 0 and

qm = 1, and the αi and βj are constants in R. To ensure continuity, we require that

αi(pi − pi−1), βj(qj − qj−1) ∈ Z. (4)

We will study the dynamical system (T2, σ,H, µ), where H = G◦F : T2 → T2 and µ

is either the Lebesgue measure or a probability measure derived from the Lebesgue

1In some cases we also consider subsets of the 2-torus.
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measure. By convention we will always apply the horizontal shear first, however the

behaviour and properties of the system are qualitatively identical with the order of

application switched. We refer to the Jacobian matrix of the map H at the point

x ∈ T2 as DHx - when the Jacobian is identical for any choice of x, we will instead

use DH. We now prove that H is measure-preserving.

Lemma 2.1. F , G and H are Lebesgue measure-preserving.

Proof. By the Kolmogorov Extension Theorem [31], we need only check that F and

G preserve the Lebesgue measure of A = (x1, x2) × (y1, y2) ⊂ T2, since the set of

all possible A generates σ; that is, we can form any open set A′ ∈ σ via a possibly

infinite number of unions/intersections/relative complements of sets of the form A.

We have that

µ(A) = (x2 − x1) · (y2 − y1).

F−1(A) is a collection of parallelograms, continuously stacked upon each other,

with the bottom corners at (x1 − αay1, y1) and (x2 − αay1, y1), and top corners

at (x1 − αby2, y2) and (x2 − αby2, y2), where a, b ∈ [1, ...,m], and without loss of

generality a ≤ b. Then

µ(F−1(A)) = (x2 − αay1 − (x1 − αay1)) · (y2 − y1) = µ(A).

Hence F is Lebesgue measure-preserving. The proof for G is identical, with x and

y reversed. Hence

µ(H−1(A)) = µ(F−1(G−1(A))) = µ(G−1(A)) = µ(A),

and thus H is Lebesgue measure-preserving.

The fact that the systems we study are measure-preserving means that their

Lyapunov exponents will sum to zero - if a vector is expanded by some factor in one



17

direction, it must be contracted by this factor in another direction in order for meas-

ures to be preserved. Furthermore, many important results for measure-preserving

dynamical systems are useful in the calculation and bounding of Lyapunov expo-

nents. We will cover these results in detail over the next few sections.

2.3 Arnold’s Cat Map

The archetypal example of a system formed by shear composition is Arnold’s Cat

Map [6]. Note that Arnold demonstrated some of the properties of this system (e.g.

Poincaré recurrence) by iterating the polygons of a picture of a cat forwards, leading

to the system obtaining its oft-used moniker. Let F : T2 → T2 and G : T2 → T2 be

shears given by

F

x
y

 =

1 1

0 1

x
y

 , (5)

and

G

x
y

 =

1 0

1 1

x
y

 , (6)

then Arnold’s Cat Map, H = G ◦ F , is given by

H

x
y

 =

1 1

1 2

x
y

 . (7)

We will use the Cat Map to demonstrate the fundamental properties of measure-

preserving dynamical systems. The action of the Cat Map on the unit square is

shown in Figure 1. Note that the Cat Map is similarly defined by the composition

of (2) and (3), with i = j = α1 = β1 = 1.

2.4 Lyapunov exponents

We now discuss the Lyapunov exponents, which for x, v ∈ Rn are given by

λ±(x, v) = lim
n→±∞

1

n
log ||DHn

x v||, (8)
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P H(P )

0 1

1

H

0 1 2

1

2

3

mod 1

0 1

1

Figure 1: The action of Arnold’s Cat Map on the unit square. The partition P is mapped

to H(P ). H(P ) is shown on R2 before being reduced modulo 1.

provided the limit exists. Note that, in general, this formula yields a number of

distinct Lyapunov exponents, known as the Lyapunov spectrum, corresponding to

different choices of x, v ∈ Rn. In the two dimensional measure-preserving case, there

are two distinct Lyapunov exponents, λ1,2, where λ1 = −λ2.

In two dimensions, the matrix DHx is the Jacobian of the map H at the point

x ∈ R2, however in the case of the Cat Map DHx = DH for all x, and so the

Lyapunov exponents do not depend on x. In general this may not be true, however

under certain conditions (see Theorem 2.1) λ± can be equal for µ-almost all x. Note

that the Lyapunov exponents are independent of the choice of norm ||.||; we will

show this explicitly for the Cat Map.

The Lyapunov exponents quantify the rate at which infinitesimally close traject-

ories separate under application of the map H. In other words, Lyapunov exponents

are the average rate at which the space (or vector) between two points expands or

contracts as we iterate them forwards in the case of λ1 or backwards in the case of
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λ2. A positive Lyapunov exponent in the direction v tells us that two trajectories,

initially separated by the vector v, will separate exponentially quickly as we iterate

H. On the other hand, a negative Lyapunov exponent tells us that the two traject-

ories will begin to converge upon one another at an exponential rate as we iterate H.

Finally, Lyapunov exponents equal to zero indicate regions of tangent space where

less than exponential (or no) growth of vectors occur.

A necessary (though not sufficient) condition for chaotic behaviour is sensitive

dependence on initial conditions; no matter how close two trajectories are, given

enough iterates, they will be separated by some minimum distance. A system which

possesses only negative Lyapunov exponents cannot exhibit chaotic behaviour, since

in such a system all trajectories will ultimately converge upon one another. On

the other hand, a system with only positive Lyapunov exponents - known as an

expansive system - will exhibit sensitive dependence on initial conditions; all orbits

will separate from each other under iteration by H. Note that expansive systems

can fail other conditions necessary for chaos, such as the existence of dense orbits

(topological transitivity).

Let us consider the Lyapunov exponents λ1,2 of the Cat Map H. In order to cal-

culate λ1,2 we require DHn, which we obtain by diagonalising DH. The eigenvalues

of DH are

λu,s =
3±
√

5

2
, (9)

with corresponding eigenvectors

vu,s =

 2

1±
√

5

 . (10)

Let

P = (vu, vs) =

 2 2

1 +
√

5 1−
√

5

 ,
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then

DH = PΛP−1 =
−1

4
√

5

 2 2

1 +
√

5 1−
√

5

 ·
λu 0

0 λs

 ·
 1−

√
5 −2

−1−
√

5 1

 ,

and

DHn = PΛnP−1.

We can now rewrite (8) with v = (x, y) as

λ±(v) = lim
n→±∞

1

n
log ||PΛnP−1v||,

= lim
n→±∞

1

n
log

∥∥∥∥∥
 (2(1−

√
5)λnu − 2(1 +

√
5)λns )x+ (−4λnu + 4λns )y

(−4λnu + 4λns )x+ (−2(1 +
√

5)λnu + 2(1−
√

5)λns )y

∥∥∥∥∥,
= lim

n→±∞

1

n
log

∥∥∥∥∥
 (2(1−

√
5)x− 4y)λnu − (2(1 +

√
5)x+ 4y)λns

−(4x+ 2(1 +
√

5)y)λnu + (4x+ 2(1−
√

5)y)λns

∥∥∥∥∥.
Let n→ +∞, then λns → 0 as n→ +∞, and for v 6= vs we have

λ+ = log λu + lim
n→∞

1

n
log

∥∥∥∥∥
 2(1−

√
5)x− 4y − (2(1 +

√
5)x+ 4y)

(
λs
λu

)n
−(4x+ 2(1 +

√
5)y) + (4x+ 2(1−

√
5)y)

(
λs
λu

)n
∥∥∥∥∥,

= log λu ≈ 0.962,

(11)

and for v = vs we have

λ+ = log λs + lim
n→∞

1

n
log

∥∥∥∥∥
 −8

√
5

20− 4
√

5

∥∥∥∥∥,
= log λs ≈ −0.962,

(12)

Similar calculations for n → −∞ yield λ− = log λs for v 6= vs and λ− = log λu for

v = vs. We have found a total of two Lyapunov exponents for the Cat Map, with the

exponent we obtain depending on the choice of initial vector v, but not the choice of

x. This indicates that this map possesses both expanding and contracting directions,
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although we could have noted this from the eigenvector equations DHvu,s = λu,svu,s

- clearly vu is an expanding direction and vs is a contracting direction.

We now know that Lyapunov exponents exist in the case of the Cat Map; how-

ever, for an arbitrary choice of dynamical system there is no guarantee a priori that

λ± will converge at all, nor that λ+ = λ− for any x. The following theorem by Osele-

dec [35] guarantees that these limits exist for almost all x, provided there exists an

invariant measure.

Theorem 2.1 (Oseledec Multiplicative Ergodic Theorem [35]). Let M be a

compact manifold of dimension m, σ be the Borel σ-algebra on M , and H : M →M

be a C2 diffeomorphism, and letM(H) be the set of all invariant probability measures

for H. Then there exists an invariant set σH ∈ σ of full measure for every µ ∈M(H)

such that the Lyapunov exponents exist for all points x ∈ σH . Specifically, the

following properties are true.

(a) The set σH is invariant, H(σH) = σH , and of full measure, µ(σH) = 1 for all

µ ∈M(H).

(b) For each x ∈ σH , the tangent space at x can be written as an increasing set of

subspaces

{0} = V 0
x ⊂ V 1

x ⊂ . . . ⊂ V s(x)
x = TxM

such that for v ∈ V j
x \V j−1

x the limit defining λ(x, v) exists and λj(x) = λ(x, v)

is the same value for all such v, and the bundle of subspaces

{V j
x : x ∈ σH and s(x) ≥ j}

are invariant in the sense that DHxV
j
x = V j

H(x) for all 1 ≤ j ≤ s(x).

(c) The function s : σH → {1, . . . ,m} is a measurable function and invariant,

s ◦H = s.



22

(d) If x ∈ σH , the Lyapunov exponents satisfy

−∞ ≤ λ1(x) < λ2(x) < . . . < λs(x)(x).

For 1 ≤ j ≤ m, the function λj(.) is defined and measurable on the set

{x ∈ σH : s(x) ≥ j},

and is invariant, i.e. λj ◦H = λj.

This theorem guarantees that for an m-dimensional dynamical system there are

at most m distinct Lyapunov exponents. In the case of the two-dimensional Cat

Map, the Lebesgue measure is invariant, and we found two distinct Lyapunov expo-

nents, λ1 = log λu and λ2 = log λs, thus adhering to the theorem.

Calculation of Lyapunov exponents is, in general, not as simple as was the case

for the Cat Map, where we obtained explicit expressions for λ±; in fact, for systems

where the Jacobian matrix is spatially dependent, obtaining an explicit expression

may be impossible, outside of certain special cases (see Section 3.3). When explicit

calculation is not possible, Lyapunov exponents are estimated numerically; however,

problems arise when trying to evaluate these quantities by using (8) directly.

One such problem with a ‘brute force’ calculation is that the matrices DHn
x can

become ill-conditioned. When n is large2, the columns of the matrix DHn
x will tend

to align themselves with the unstable eigenvector. This can lead to a small relative

error in the calculation of the largest eigenvalue of DHn
x having a large affect on the

calculation of the smaller eigenvalues.

A widely used method for estimating the entire spectrum of Lyapunov exponents

involves periodic Gram-Schmidt orthonormalization of vectors [36]; essentially, after

each iterate, the algorithm ‘resets’ the orientation and length (norm) of the vectors,

which removes the issue of the matrices becoming ill-conditioned.

2The number of iterates which constitutes large may vary from system to system.
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The algorithm for this method in 2-dimensions is as follows (in this case, we

orthonormalize after each iterate):

(i) Begin with the matrix U = I2 = (u1, u2), a vector v ∈ TxM , and Σ = 0, where

I2 is the 2× 2 identity matrix, and u1 and u2 are column vectors.

(ii) Obtain DH · U and set v = DHv.

(iii) Let V = DH · U = (v1, v2), where v1 and v2 are column vectors.

(iv) Set v2 = v2 − (v2 · u1)u1.

(v) Set U = ( v1

||v1|| ,
v2

||v2||).

(vi) Set Σ = Σ + log ||v1||+ log ||v2||.

(vii) Repeat steps (ii) through (vi) n times, where n is your desired number of

iterates of H you wish to take for your estimate.

(viii) The Lyapunov exponent estimate is λ = Σ/n. Note that this step can be

performed after each repetition of (ii) through (vi) to obtain a plot of the

estimate for increasing n.

Typically the approximation improves in accuracy as n increases, with the trade-

off being increased computing time. In essence this method calculates finite-time

Lyapunov exponents, which for x ∈M and v in the ith Lyapunov space are given by

λi,n(x, v) =
1

n
log ||DxH

nv||. (13)

Finite-time Lyapunov exponents (FTLEs) are local properties of a system, whereas

the Lyapunov exponents are global properties - that is, the FTLE’s can depend on

the choice of initial condition x. Clearly λi,n tends to the true Lyapunov exponent

λi as n → ∞, however the rate at which this convergence occurs can vary from
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system to system. In spatially dependent systems, different initial conditions can

lead to varied FTLEs, even if the true Lyapunov exponents of the trajectories are

in fact equal. These varying convergence rates are, in part, the motivation for

finding bounds for the Lyapunov exponents of linked twist maps, which we discuss

in Chapter 5.

Non-zero Lyapunov exponents are indicators of expanding or contracting regions

in tangent space. As such, they are closely related to the idea of hyperbolicity and

the study of hyperbolic dynamics. Hyperbolic measure-preserving systems exhibit

both expanding and contracting behaviour, and are one of the most well understood

ways of obtaining chaotic dynamics. In particular, due to the work of Pesin, non-

zero Lyapunov exponents can imply various types of hyperbolicity under certain

conditions. The strongest type of hyperbolicity, uniform hyperbolicity, is a property

possessed by the Cat Map, and is the subject of the next section.

2.5 Uniform Hyperbolicity

We begin by defining what it means for a point x to be a hyperbolic point.

Definition 2.5. A point x ∈M is a hyperbolic point of H : M →M if none of

the eigenvalues of DHx lie on the unit circle.

This leads to the definition of what it means for a linear map to be hyperbolic.

Definition 2.6. A linear map H : M →M is hyperbolic if none of the eigenvalues

of DH lie on the unit circle.

That is, a linear map is hyperbolic if every point in its domain is hyperbolic.

Clearly the Cat Map is a hyperbolic map - its Jacobian DH has eigenvalues λ± =

3±
√

5
2

for any x ∈ T2, neither of which lie on the unit circle. The Cat Map exhibits

expanding and contracting behaviour - the phase portrait of each point in the domain
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v

ux

Figure 2: The phase portrait of a hyperbolic point x. The term hyperbolic arises due to

the paths of nearby trajectories being hyperbolas relative to the orbit of x.

looks like that of a saddle point - however this is not necessarily indicative of a

hyperbolic map; a hyperbolic map which is not measure-preserving may only exhibit

one of these behaviours. For example, consider the expansive map H : R2 → R2

given by

H

x
y

 =

2 0

0 2

x
y

 . (14)

DH has repeated eigenvalues, λ = 2, and since neither of these is on the unit

circle, H is by definition hyperbolic. However, we see no contracting behaviour

whatsoever in this map; instead, all orbits diverge from each other as we iterate.

In a measure-preserving system, such as the Cat Map, if expansion occurs in one

direction, contraction must occur in another to compensate. In particular, we see

this behaviour at all points in the domain, not just at fixed/periodic points. Figure

2 shows an example of a local phase portrait of a point in a hyperbolic system such

as the Cat Map.

In a map which possesses both expanding and contracting behaviour, one might

wish to describe the expanding and contracting directions in a rigorous way. For
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simplicity, let us consider a linear map F : Rn → Rn (not necessarily hyperbolic),

with eigenvalues λi for i = 1, . . . , n, each with a corresponding eigenvector vi (or

generalised eigenvector in the case of repeated eigenvalues). There are 3 options for

each i: |λi| > 1, |λi| = 1 or |λi| < 1.

We define a subspace Es of Rn (since the map is linear, we can drop the x

dependence of the tangent space) given by the span of all eigenvectors vi with a

corresponding eigenvalue |λi| < 1. Es is known as the contracting or stable subspace;

it contains all vectors which contract under the action of F . We define the expanding

(unstable) subspace Eu in a similar way, except it contains all vectors which expand

under F , and is given by the span of all eigenvectors with corresponding eigenvalue

|λi| > 1. The remaining vectors are grouped into E0; this neutral subspace contains

all of the vectors which undergo expansion or contraction at a rate which is less than

exponential and is given by the span of the eigenvectors corresponding to |λi| = 1.

The three subspaces Es, Eu and E0 contain all possible vectors, that is

Es ⊕ Eu ⊕ E0 = Rn,

and are known as a splitting of tangent space. If F is a hyperbolic map, then E0 = ∅

and all vectors undergo either exponential expansion or contraction upon iteration.

In the case of the Cat Map, Es = span(v−) and Eu = span(v+), and v+ and v− form

a basis for Rn; hence Es ⊕ Eu = Rn as desired. The Cat Map is hyperbolic, and so

we do not obtain a neutral subspace E0.

The above construction was for a linear map, which allowed for the splitting of

tangent space to be defined globally (i.e. independently of the point x ∈ Rn). In

general this is not possible; if the Jacobian matrix DFx of our map does depend

on x, we instead need to find a splitting of tangent space at each point x. This

idea leads to the definition of uniform hyperbolicity, which is the strongest form

of hyperbolicity; uniformly hyperbolic systems are also commonly referred to as

Anosov diffeomorphisms.
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Definition 2.7 ([27]). Let λ < µ. A sequence of invertible linear maps Hm :

Rn → Rn, m ∈ Z, is said to admit a (λ, µ)-splitting if there exist decompositions

Rn = E+
m ⊕ E−m such that HmE

±
m = E±m+1 and

||Hm|
E−m
|| ≤ λ, ||H−1

m |
E+
m+1

|| ≤ µ−1.

We say that {Hm}m∈Z admits an exponential splitting if it admits a (λ, µ)-

splitting for some λ, µ and λ < 1, dim E−m ≥ 1 or µ > 1, dim E+
m ≥ 1. We call

{Hm}m∈Z uniformly hyperbolic if it admits a (λ, µ)-splitting for some λ < 1 < µ.

In other words, a map is uniformly hyperbolic if its Jacobian at each point admits

a splitting of tangent space, upon which the growth and contraction rates of vectors

are uniformly bound away from 1. The sequence of linear maps in the definition

can be thought of as the linearisation at each point x on a trajectory of a possibly

non-linear map H. In the case where H is linear, the Hm’s are equal for all m. We

now define what it means for a set of points (typically thought of as a trajectory)

to be hyperbolic.

Definition 2.8 ([27]). Let M be a smooth manifold, U ⊂ M an open subset,

H : U → M a C1 diffeomorphism, and Λ ⊂ U a compact H-invariant set. Λ is a

hyperbolic set for H if there exists a Riemannian metric, known as a Lyapunov

metric, in an open neighbourhood U of Λ and λ < 1 < µ such that for any point

x ∈ Λ the sequence of differentials

(DH)Hn(x) : THn(x)M → THn+1(x)M,

n ∈ Z, admits a (λ, µ)-splitting.

In other words, a set of points is hyperbolic if it is a trajectory of our map H,

and the Jacobian at each point on the trajectory admits a splitting of tangent space

upon which expansion and contraction rates are bound away from one.
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Definition 2.9 ([27]). A transitive, C1 diffeomorphism H : M →M of a compact

manifold M is called an Anosov diffeomorphism if M is a hyperbolic set for H.

Hence a dynamical system (or map) is uniformly hyperbolic (or Anosov) if we

can obtain a splitting of tangent space at every point x in the domain upon which

expansion and contraction rates are bound away from one, and we can find constants

which uniformly bound these rates away from one for all x. The conditions for a

system to be uniformly hyperbolic are very strict - in practical applications one

may find some hyperbolic sets in a system, but rarely is the entire domain so nicely

behaved. As such, other less stringent forms of hyperbolicity exist, such as non-

uniform hyperbolicity and pseudo-Anosov systems, where one or more of the strict

conditions required for the system to be Anosov is relaxed. We will discuss these

properties, and some examples of systems which possess them, in Chapter 3. Note

that the transitivity of H, while not always included in the definition of an Anosov

diffeomorphism, is required in order to construct Markov partitions, which we discuss

in Section 2.8.

The Cat Map is an Anosov diffeomorphism - we already know we can obtain

a splitting of tangent space for each x, and the constants λ and µ are simply the

eigenvalues λu and λs respectively. It is a special example of a family of Anosov

diffeomorphisms, which can be defined as follows: let F : T2 → T2 and G : T2 → T2

be shears given by

F

x
y

 =

1 α

0 1

x
y

 , (15)

and

G

x
y

 =

1 0

β 1

x
y

 , (16)
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then our family of maps, H = G ◦ F , is given by

H

x
y

 =

1 α

β 1 + αβ

x
y

 , (17)

where α, β ∈ Z such that αβ > 0 or αβ < −4. We require these conditions on α

and β in order to ensure hyperbolicity of the map and the ability to construct a

suitable splitting of tangent space. To see this, consider the eigenvalues of H, which

are given by

λu,s =
2 + αβ ±

√
αβ(4 + αβ)

2
. (18)

If−4 < αβ < 0, then αβ(4+αβ) < 0 and we therefore have complex eigenvalues, and

no real eigenvectors. For example, if we let α = 1 and β = −1 then we find thatH6 =

I2; all points are periodic with period 6, hence no chaotic behaviour is observed. Note

that λu and λs denote the unstable and stable eigenvalues respectively, and the sign

in front of the square root can switch in certain cases.

Provided that α and β adhere to the aforementioned conditions, the behaviour of

these maps is qualitatively identical to that of the Cat Map; we find expanding and

contracting subspaces which correspond to the eigenvectors vu and vs, and we can

find constants which uniformly bound the expansion and contraction rates away from

one (again these are the eigenvalues λu,s). We also find that the Lyapunov exponents

of H are λ1,2 = log λu,s via a similar calculation to the Lyapunov exponents of the

Cat Map.

When considering expanding and contracting directions, one may wish to know

which points approach or move away from each other (i.e. the vectors between them

contract or expand) for all iterates. This gives rise to the idea of local and global

stable and unstable manifolds. We first define what we mean by a local stable (or

unstable) manifold of a fixed point x∗. Note that in the following definition the use

of the inverse H−1 is justified since the map H is assumed to be a diffeomorphism.
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Definition 2.10. The local stable manifold of a fixed point x∗ of a diffeomorph-

ism H : M →M in a neighbourhood B(x∗, r) of x∗ is given by

γs(x∗) = {x ∈ B(x∗, r) : d(Hn(x), x∗)→ 0 as n→∞},

and its local unstable manifold by

γu(x∗) = {x ∈ B(x∗, r) : d(H−n(x), x∗)→ 0 as n→∞},

where B(x∗, r) is the open ball of radius r about x∗.

The following theorem guarantees the existence of such manifolds provided that

x∗ is a hyperbolic fixed point.

Theorem 2.2 ([27]). Let x∗ be a hyperbolic fixed point of a local Cr diffeomorphism

H : U → M , r ≥ 1, for some Borel subset U of M . Then there exist Cr embedded

discs γux∗ , γ
s
x∗ ⊂ U such that:

(i) Tx∗γ
u
x∗ = Eu(DHx∗) and Tx∗γ

s
x∗ = Es(DHx∗) (the unstable and stable sub-

spaces under the respective Jacobian),

(ii) H−1(γux∗) ⊂ γux∗ and H(γsx∗) ⊂ γsx∗.

Also, there exists C(δ) such that for any y ∈ γsx∗, z ∈ γ
u
x∗, m ≥ 0,

(iii) d(Hm(y), x∗) < C(δ)(λ(DHx∗) + δ)md(y, x∗),

(iv) d(H−m(z), x∗) < C(δ)(µ−1(DHx∗) + δ)md(z, x∗),

Furthermore, there exists δ0 > 0 such that

(a) if d(Hm(y), x∗) ≤ δ0 for m ≥ 0, then y ∈ γsx∗,

(b) if d(Hm(z), x∗) ≤ δ0 for m ≤ 0, then z ∈ γux∗.
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The discs γsx∗ and γux∗ are local stable and unstable manifolds of the fixed point,

and may not be unique. Note that, by definition, H−1(γsx∗) and H(γux∗) are also

local stable and unstable manifolds. We use this fact to define the global stable and

unstable manifolds of a hyperbolic fixed point x∗.

Definition 2.11. The manifolds

Γsx∗ =
⋃
m≤0

Hm(γsx∗)

and

Γux∗ =
⋃
m≥0

Hm(γux∗)

are the global stable and unstable manifolds of H at the point x∗ respectively.

Equivalently, the global stable (unstable) manifold contains all points which tend

to x∗ for all forward (backward) iterates of H, that is

Γsx∗ = {x ∈ U : d(Hm(x), x∗)→ 0 as m→∞}, (19)

and

Γux∗ = {x ∈ U : d(H−m(x), x∗)→ 0 as m→∞}. (20)

In the case of the fixed point (0, 0) of the Cat Map (and indeed any map given

by (17)), the global stable and unstable manifolds are simply the eigenvectors v−

and v+ stretched to an infinite length; subsequently, the global stable and unstable

manifolds are dense in T2 in these cases, each consisting of a vector wrapping around

T2 an infinite number of times. In general, however, Γsx∗ and Γux∗ are much more

complicated, often forming structures called homoclinic tangles in non-linear maps

([41], see also [27]).

We noted earlier that the Cat Map possesses stable and unstable subspaces

not only at its fixed point(s), but at every point in its domain. As such, we may

consider whether stable and unstable manifolds exist for any point in the domain.
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The extension of these ideas to non-fixed points is justified by the Hadamard-Perron

theorem, which gives us the local stable and unstable manifolds for hyperbolic maps,

as well as more general Cr diffeomorphisms under the specified conditions.

Theorem 2.3 (Hadamard-Perron Theorem [27]). Let λ < µ, r ≥ 1 and for

each m ∈ Z let Hm : Rn → Rn be a (surjective) Cr diffeomorphism such that for

(x, y) ∈ Rk
⊕

Rn−k

Hm(x, y) = (Am(x) + αm(x, y), Bm(y) + βm(x, y))

for some linear maps Am : Rk → Rk and Bm : Rn−k → Rn−k with ||A−1
m || ≤ µ−1,

||Bm|| ≤ λ, αm(0) = 0 and βm(0) = 0.

Then for 0 < ω < min(1,
√
µ/λ− 1) and

0 < δ < min
( µ− λ
ω + 2 + 1/ω

,
µ− (1 + ω)2λ

(1 + ω)(ω2 + 2ω + 2)

)
we have: If ||αm||C1 < δ and ||βm||C1 < δ for all m ∈ Z then there is

(a) a unique family {γum}m∈Z of k-dimensional C1 manifolds

γum = {(x, φum(x)) : x ∈ Rk},

and

(b) a unique family {γsm}m∈Z of (n− k)-dimensional C1 manifolds

γsm = {(x, φsm(x)) : x ∈ Rn−k},

where φum : Rk → Rk, φsm : Rn−k → Rn−k, supm∈Z ||Dφu,sm || < ω, and the following

properties hold:

(i) Hm(γsm) = γsm+1 and Hm(γum) = γum+1.

(ii) ||Hm(z)|| < λ′||z|| for z ∈ γsm, and ||H−1
m−1(z)|| < (µ′)−1||z|| for z ∈ γum, where

λ′ := (1 + ω)(λ+ δ(1 + ω)) <
µ

1 + ω
− δ := µ′.
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(iii) Let λ′ < ν < µ′. If ||Hm+L−1 ◦ . . . ◦Hm(z)|| < CνL||z|| for all L ≥ 0 and some

C > 0 then z ∈ γsm.

Similarly, if ||H−1
m−L ◦ . . . ◦ H

−1
m−1(z)|| ≤ Cν−L||z|| for all L ≥ 0 and some

C > 0 then z ∈ γum.

This theorem is analogous to Theorem 2.2, except we have to take care that the

points which we aim to analyse are no longer fixed, and so we need to calculate their

motion relative to each other. In the case of hyperbolic maps, we have λ < 1 < µ,

and the families of manifolds instead consist of Cr manifolds - in other words, they

are at least as smooth as the map itself. The proof of the theorem (see [27]) involves

the construction of families of invariant cones - these are an important concept in

hyperbolic dynamics, and we will ultimately use invariant cones in the construction

of rigorous bounds upon the Lyapunov exponent of specific families of maps in

Chapters 4 and 5. Furthermore, due to results by Alekseev [2], the existence of

invariant cones under certain conditions can imply the (uniform) hyperbolicity of a

given map.

2.6 Invariant Cones

Determining whether a given map is (uniformly) hyperbolic can be difficult. In the

case of the Cat Map and similar systems, the stable and unstable subspaces are

relatively easy to obtain; however, in the case of non-linear maps, these subspaces

can be much more difficult to find. A way of sidestepping this problem is provided

by the Alekseev Cone Criterion, which states that the subspaces are given by the

intersection of a family of invariant cones - if we can find these cones, we can

subsequently calculate the subspaces. First, we define what it means for a bundle

of tangent vectors to be called a cone.
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u

v

Figure 3: An example of a horizontal (blue) and vertical (red) cone.

Definition 2.12 ([27]). The standard horizontal ω-cone at x ∈ Rn is defined by

αωx = {(u, v) ∈ Rn : ||v|| < ω||u||}.

The standard vertical ω-cone at x ∈ Rn is defined by

βωx = {(u, v) ∈ Rn : ||v|| < ω||u||}.

In general, a cone C ∈ Rn is the image of one of these standard cones under an

invertible linear map.

All of the cones we study in this thesis will be two-dimensional, and hence will

look similar to those depicted in Figure 3. We define a cone field to be a map that

associates each x ∈ Rn with a cone Cx ⊂ Rn, and a cone family to be a sequence

of cone fields K. A sequence of diffeomorphisms H = {Hm}m∈Z can act on a cone

family by

(H(K))x,m = (DHm−1)H−1
m−1(x)(KH−1

m−1(x),m−1).

Definition 2.13. A cone family K is called (strictly) invariant if

(H(K))x,m ⊂ Int(Kx,m) ∪ {0}.
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In other words, a cone is invariant if it is mapped within itself by the map H.

We say that a cone C is a minimal invariant cone for the map H if

H(C) = Int(C) ∪ {0}. (21)

That is, a minimal invariant cone is the smallest cone which is left invariant by H.

Note that this cone can be obtained by intersecting all other invariant cones for H.

With these definitions, we are now ready to state the Alekseev Cone Criterion [2].

We state the specific version given in [27].

Proposition 2.1 (Alekseev Cone Criterion [27]). Let λ′ < µ′ and ωm, ω
′
m > 0

for m ∈ Z. Let Lm : Rk ×Rn−k → Rk ×Rn−k be a sequence of invertible maps such

that

(i) Lmα
ωm ⊂ Int(αωm+1);

(ii) L−1
m βω

′
m+1 ⊂ Int(βω

′
m);

(iii) ||Lm(u, v)|| > µ′||(u, v)|| for (u, v) ∈ αωm;

(iv) ||Lm(u, v)|| < λ′||(u, v)|| for (u, v) ∈ L−1
m βω

′
m+1.

Then

Eu
m :=

∞⋂
i=0

Lm−1 ◦ Lm−2 ◦ . . . ◦ Lm−iαωm−i

is a k-dimensional (unstable) subspace inside αωm and

Es
m :=

∞⋂
i=0

L−1
m ◦ L−1

m+1 ◦ . . . ◦ L−1
m+iβ

ω′m+i+1

is an (n−k)-dimensional (stable) subspace inside βω
′
m. Furthermore, if λ′ < 1 < µ′,

then {Lm} is a hyperbolic family of linear maps which admits a (λ′µ′)-splitting.

In other words, the cone criterion tells us that if we can find invariant cones for a

map H and H−1 (conditions (i) and (ii)), one containing vectors which contract by
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a factor of at least λ′ (the contracting cone) and the other containing vectors which

expand by a factor of at least µ′ (the expanding cone) (conditions (iii) and (iv)),

then the stable and unstable subspaces can be found by simply finding the images of

these cones under repeated applications of the map H upon the expanding cone for

the unstable subspace, and H−1 upon the contracting cone for the stable subspace.

In the case of the Cat Map (or any map of the form (17)), repeated applications

of DH to a vector v 6= v− will begin to align the vector with v+. Hence an invariant

cone Cu for H is given by any cone which contains v+ but does not contain v−.

Similarly, repeated applications of DH−1 align the vector v 6= v+ with v−, and so any

cone Cs which contains v− but not v+ is an invariant cone for H−1. The intersection

of all such possible cones (of each particular case) yields the minimal invariant cones,

which are the subspaces given by Eu = span(v+) and Es = span(v−). Note that

Eu
⊕

Es = R2, as required. In fact, an invariant cone (and by the intersection of all

such cones, the minimal invariant cone) for any 2 × 2 diagonalizable matrix (with

positive, distinct eigenvalues) is given by the following theorem by Rodman et al.

Theorem 2.4 ([46]). Let a 2 × 2 matrix A be diagonalizable, with eigenvalues

λ1 > λ2 ≥ 0. Then a proper cone C ⊂ R2 is A-invariant if and only if it contains an

eigenvector of A corresponding to λ1 and its interior does not intersect the eigenline

of A corresponding to λ2.

Thus the eigenvectors v+ and v− are the minimal invariant expansion and con-

traction cones respectively for any map H given by (17). We will discuss the invari-

ant cones for the map given by the composition of (2) and (3) in Chapter 4.

We will use invariant cones to aid us in bounding the Lyapunov exponents of

maps which, while not Anosov themselves, possess orbits that can be split up into

chains of Jacobian matrices which yield Anosov maps, and therefore possess invariant

cones. The difficulty in these calculations comes first in finding the invariant cone

itself, and second in finding the frequency with which certain chains of matrices
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occur. We will look at two specific cases for these bounds: Anosov maps of the form

(17) chosen at random on each iterate in Chapter 4, and linked twist maps under

specific parameter values in Chapter 5.

In the case of the linked twist map, the issue of calculating the frequency of cer-

tain orbits requires the partitioning of the domain in a special way in order to guar-

antee uniformly hyperbolic chains of matrices - a return time partition/distribution.

This idea is made possible due to important results for general measure-preserving

systems, as well as the fact that the linked twist map possesses a quality called

ergodicity. Essentially, in an ergodic system, almost every orbit must visit every set

of positive measure within the domain, and must do so an infinite number of times.

In particular, a result called the Poincaré recurrence theorem [40] guarantees that,

in a measure-preserving system, almost every point must return to a neighbourhood

of itself, however small it may be, infinitely often; this guarantees that, in the case

of the linked twist map, an (appropriately chosen) orbit will return to a reference

set in the domain in a finite number of iterates, which allows for the construction of

a return time partition. We discuss the topics of recurrence in measure-preserving

systems and ergodicity in the next section.

2.7 Recurrence and ergodicity

An important notion in the context of measure-preserving systems is that of re-

currence: the idea that a typical point will return arbitrarily close to where it

started under iteration. An important result that tells us this fact is the Poin-

caré recurrence theorem, which states that not only must (almost every) point in a

measure-preserving system return within a neighbourhood of itself in a finite num-

ber of iterates, but it must do so infinitely many times on its orbit. A proof of this

theorem is given in [27].
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Theorem 2.5 (Poincaré recurrence theorem [40]). Let H be a measure-preserving

transformation of a probability space (M,µ) and let A ⊂ M be a measurable set

(µ(A) > 0). Then for any N ∈ N

µ({x ∈ A : {Hn(x)}n≥N ⊂ X\A}) = 0.

Another important result for measure-preserving systems is the Birkhoff ergodic

theorem [10]. In applications, one may be interested in measuring a quantity - known

as an observable - at each particular point on an orbit; examples of observables in-

clude temperature, pressure, concentration or a characteristic function of a subset

of the domain. From a theoretical standpoint, these quantities are space-dependent

functions φ(x), which may be measurable, integrable, differentiable and/or continu-

ous. The Birkhoff ergodic theorem tells us that in a measure-preserving system, for

a typical (µ-almost every) initial condition, we can obtain a time average, φ+(x),

and the spatial average of this time average is equal to the spatial average of φ.

Theorem 2.6 (Birkhoff ergodic theorem [10]). Let H : (M,µ) → (M,µ) be

a measure-preserving transformation of a probability space and φ ∈ L1(M,µ) be an

observable function. Then for µ-almost every x ∈ M the following time average

exists:

φ+(x) := lim
n→∞

1

n

n−1∑
i=0

φ(H i(x)). (22)

Moreover, ∫
M

φ+(x)dµ =

∫
M

φ(x)dµ.

The theorem can be restated to find that the backward time average

φ−(x) := lim
n→∞

1

n

n−1∑
i=0

φ(H−i(x)) (23)

also exists for µ-almost every x ∈M , and∫
M

φ−(x)dµ =

∫
M

φ(x)dµ.
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An immediate corollary of Theorem 2.6 is that forward time averages equal backward

time averages for µ-almost every x ∈M , since∫
M

φ+(x)dµ =

∫
M

φ(x)dµ =

∫
M

φ−(x)dµ,

via two applications of Theorem 2.6, or equivalently by finding that the measure of

the set A = {x ∈ M : φ+(x) > φ−(x)} is zero. Note that this theorem does not

say that spatial averages equal time averages - in other words, that the average of

φ over a single orbit is the same as the average over the entire domain - for this, we

require ergodicity.

Definition 2.14. A measure-preserving transformation H : M →M of a probability

space (M,σ, µ) is ergodic if for any A ∈ σ,

H−1(A) = A =⇒ µ(A) = 0 or µ(A) = 1. (24)

Equivalently, one may also say that µ is an ergodic measure for H. The

definition tells us that the only invariant sets under the action of an ergodic map

are of measure zero or one; any set A with 0 < µ(A) < 1 is not invariant under

an ergodic map. The following are alternative, equivalent definitions of ergodicity,

which demonstrate various properties ergodic systems must possess.

Proposition 2.2 ([21]). Under the conditions of Definition 2.14, the following

statements are equivalent:

(i) H is ergodic.

(ii) For any A ∈ σ, µ(H−1(A)∆A) = 0 implies that µ(A) = 0 or µ(A) = 1.3

(iii) For A ∈ σ, µ(A) > 0 implies that µ(
⋃∞
n=1H

−n(A)) = 1.

3A∆B = (A\B) ∪ (B\A) denotes the symmetric difference of the sets A and B.
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(iv) For A,B ∈ σ, µ(A)µ(B) > 0 implies that there exists n ≥ 1 with µ(H−n(A)∩

B) > 0.

(v) For measurable f : M → C, f ◦ H = f almost everywhere implies that f is

equal to a constant almost everywhere.

For a proof of the above proposition, see [21]. Statement (iii) highlights the idea

of indecomposability of ergodic systems; it states that, if we look back far enough,

the pre-image of A will intersect any set of positive measure in M . In other words,

eventually the orbit of almost every point in the system will enter A, so we cannot

split the domain into two or more sub-domains which are self-invariant. If a system

is not ergodic, it may possess what is know as an ergodic decomposition - that is, a

partitioning of the domain into subregions Mi, where the restriction of the map H

to each Mi is an ergodic map.

Example 2.1. Theorem 2.5 tells us that in a measure-preserving system (of finite

measure), an orbit must return to near where it started. It does not, however, tell us

that an orbit must visit any set of positive measure - ergodicity. To illustrate this,

consider the dynamical system (M,σ,H, µ) where M = M1 ∪M2, M1 and M2 are

separate, distinct copies of the 2-torus, and the restriction of H to Mi, i = 1, 2, is

the Cat Map; clearly, H is measure-preserving. The orbit of a point x ∈ M1 can

never enter M2, and as such cannot visit any region of positive measure in M2.

In addition to sensitive dependence on initial conditions, another required con-

dition for chaotic behaviour is topological transitivity.

Definition 2.15. A dynamical system H : M → M is topologically transitive

if for every pair of non-empty, open sets A,B ⊂ M , there exists an integer n such

that Hn(A) ∩B 6= ∅.

In the case of homeomorphisms on a compact metric space (which encompasses

all systems we study in this thesis), this property is equivalent to the existence of a
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dense orbit (this is the Birkhoff Transitivity Theorem, see [45]). Ergodicity implies

topological transitivity, provided µ(A) > 0 for all non-empty, open A ⊂ M . If, in

addition, such ergodic systems have positive Lyapunov exponents, then they possess

(at least) two of the three conditions required for chaotic behaviour. We now show

that the Cat Map (and its generalization (17)) are ergodic systems.

Lemma 2.2. Let H : T2 → T2 be given by (17). Then H is ergodic w.r.t. Lebesgue

measure.

Proof. (See, for example, [27]) We use Condition (v) of Proposition 2.2, and show

that all H-invariant functions f are constant almost everywhere. Let us consider a

function f ∈ L2 with f ◦H = H, i.e. H is invariant under f . Since f ∈ L2, it has a

Fourier series given by

f(x, y) =
∑
m,n∈Z

cm,ne
2πimxe2πiny,

where cm,n ∈ C. We have that

H

 x

y

 =

 x+ αy

βx+ (1 + αβ)y

 ,

hence

f ◦H(x, y) =
∑
m,n∈Z

cm,ne
2πi(m+βn)xe2πi(αm+(1+αβ)n)y.

By assumption we must have that f ◦H and f are equal, hence∑
m,n∈Z

cm,ne
2πimxe2πiny =

∑
m,n∈Z

cm,ne
2πi(m+βn)xe2πi(αm+(1+αβ)n)y,

which can only happen for all (x, y) ∈ T2 if

cm,n = cm+βn,αm+(1+αβ)n,

for all m,n ∈ Z, or in other words if

cv = cHv
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for all v ∈ Z2. By subsequent iteration, we therefore also have cv = cHnv for n ∈ Z.

H is hyperbolic, so we know that for v 6= v− (the stable eigenvector of DH) and

v 6= 0, we have limn→∞ ||Hnv|| → ∞. We know further that v− 6= v ∈ Z2 since v−

has an irrational slope. We thus have either v = 0 or limn→∞ ||Hnv|| → ∞.

For f ∈ L2, cv → 0 as ||v|| → ∞ by the Riemann-Lebesgue lemma, and so we

have

cv = cHnv → 0.

Hence cv is only non-zero when v = 0, and the Fourier series of f is given by

f(x, y) = c0.

Hence f is a constant function almost everywhere, and therefore H is ergodic.

Example 2.2. Consider again the system described in Example 2.1. We now know

that the Cat Map is ergodic, and so the restriction of H to each Mi is ergodic. Hence,

the ergodic decomposition of this map is given by {M1,M2}.

The following corollary states that in ergodic systems, time averages and spatial

averages of observable functions are equal.

Corollary 2.1. Let H : M → M be an ergodic µ-preserving transformation with

µ(M) = 1, and let φ ∈ L1(M,µ). Then for every x outside of a set of measure zero,

φH(x) = lim
n→∞

1

n

n−1∑
i=0

φ(H i(x)) =

∫
M

φ dµ.

Proof. H is ergodic and φH is H-invariant, hence, by Proposition 2.2(v), φH is

constant almost everywhere. By Birkhoff’s Ergodic Theorem, that constant must

be
∫
M
φ dµ.

We now know that the Cat map and its generalization are ergodic; a typical orbit

in these systems will visit any region of positive measure in the domain. A useful
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tool for studying orbits in dynamical systems is symbolic dynamics, which involves

partitioning the domain into various (finitely-many) regions (partition elements),

assigning to each region a number, and then encoding orbits as a sequence of num-

bers corresponding to the regions that they visit. However, the choice of partition

elements is important - a ‘poor’ choice of partition can lead to a single point being

coded in multiple ways, or many points being coded by the same sequence. In an

ergodic system, we would expect typical orbits to visit each of these regions in their

own unique way, and as such we would want our coding to reflect that.

In the case of Anosov diffeomorphisms, such as the Cat Map, a partitioning of

the domain exists which allows us to encode µ-almost all points uniquely - a Markov

partition [49]. Furthermore, this partitioning of phase space possesses the Markov

property; the future coding of a particular orbit depends only upon the region it finds

itself in currently, and not what has come before. Note that Markov partitions can

exist for non-Anosov systems, although finding them can be difficult. We discuss

Markov partitions in the next section.

2.8 Markov partitions

In this section we will define what we mean by a Markov partition, and find a Markov

partition for the Cat Map. We begin by describing the structure of the partition

elements.

Definition 2.16 ([45], [1]). Let H : M →M be a diffeomorphism which possesses

a hyperbolic invariant set Λ with a local product structure (in the case of an Anosov

diffeomorphism, Λ = M). A non-empty set R ⊂ Λ is a (proper) rectangle if

(i) R = Cl(Int(R)), and

(ii) x, y ∈ R implies that (γsx ∩ γuy ) ∩R is exactly one point.
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In other words, a set R is a rectangle if it is closed, and the stable manifold for

any point in R intersects exactly once, within R, with the unstable manifold of any

other point in R (in the case of non-Anosov systems, these may instead be stable

and unstable foliations, see Section 3.3). We say a point x ∈ R is a boundary point of

R if there exists y ∈ B(x, r) such that y /∈ R for any r > 0. We label the boundary

of R, the set of all boundary points x ∈ R, as ∂R. Note that Int(R) = R\∂R. We

now define what it means for a collection of rectangles to be a Markov partition.

Definition 2.17 ([45]). Let H : M → M be a diffeomorphism which possesses

a hyperbolic invariant set Λ with a local product structure. A Markov partition

for H is a finite collection of rectangles, R = {Ri}mi=1, that satisfies the following

conditions.

(i) R covers Λ, that is, Λ =
⋃m
i=1Ri.

(ii) If i 6= j, then Int(Ri) ∩ Int(Rj) = ∅.

(iii) If x ∈ Int(Ri) and H(x) ∈ Int(Rj), then

H(γux ∩Ri) ⊃ γuH(x) ∩Rj, and

H(γsx ∩Ri) ⊂ γsH(x) ∩Rj.

(iv) (Optional) If x ∈ Int(Ri) ∩H−1(Int(Rj)), then

Int(Rj) ∩H(γux ∩ Int(Ri)) = γuH(x) ∩ Int(Rj), and

Int(Ri) ∩H−1(γsH(x) ∩ Int(Rj)) = γsx ∩ Int(Ri).
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Condition (iii) ensures that if the image of a rectangle Ri intersects the interior of

another rectangle Rj, then it must stretch all the way across Rj in the unstable dir-

ection and be a subset in the stable direction. In other words, applying H stretches

the partition elements in the unstable direction, mapping unstable boundaries onto

unstable boundaries, and contracts the partition elements in the stable direction.

Conversely, applying H−1 flips the roles of the unstable and stable directions, caus-

ing the images to stretch across fully in the stable direction, and be a subset in the

unstable direction.

Condition (iv) ensures that the transition matrix (see Definition 2.19 below) is

well defined, by preventing the images of rectangles from stretching over the same

rectangle more than once - that is, to prevent two points which may undergo the

same sequence of rectangles to be indistinguishable from each other. We can still

obtain a Markov partition without this condition - however, we must instead consider

an adjacency matrix which takes into account the number of times various partition

elements wrap around each other upon iteration.

Note that Markov partitions may not be unique; in fact, different Markov par-

titions for a particular system may contain different numbers of elements. We refer

to a partition with the minimum possible number of elements as a minimal Markov

partition. The symbolic dynamics upon the Markov partition are that of a subshift

of finite type.

Definition 2.18. For each natural number N ≥ 2, let

ΩN = {ω = (. . . , ω−1, ω0, ω1, . . . ) : ωi ∈ {0, 1, . . . , N − 1} for i ∈ Z}

be the space of two-sided sequences of N symbols, and let σN : ΩN → ΩN be the left

shift in ΩN , that is

σN(ω) = ω′ = (. . . , ω′0, ω
′
1, . . . ),

where ω′n = ωn+1.
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Let A = (aij)
N−1
i,j=0 be an N ×N matrix, where aij ∈ {0, 1} for all i, j, and let

ΩA = {ω ∈ ΩN : aωnωn+1 = 1 for n ∈ Z}.

Then the restriction

σN |ΩA =: σA

is called a subshift of finite type.

In other words, the matrix A tells us all admissible transitions between the

symbols 0, 1, . . . , N − 1, and the subshift of finite type is the shift transformation

resulting from these transitions. In the case of a Markov partition, the N symbols

each represent a partition element, and the matrix A is a transition matrix which

tells which elements the image of any particular element intersects under iteration

of the map H.

Definition 2.19. Let R = {Ri}mi=1 be a Markov partition of the map H, then its

transition matrix A = (aij) is given by

aij =

1 if Int(H(Ri)) ∩ Int(Rj) 6= ∅,

0 if Int(H(Ri)) ∩ Int(Rj) = ∅.

A is an adjacency matrix if (aij) instead takes the value of the number of times

H(Ri) wraps around (stretches fully across) Rj in the unstable direction.

If none of the eigenvalues of the transition (or adjacency) matrix are one, then

the Markov partition is minimal. If not, then it may be possible to merge two

or more of the partition elements or find an entirely new Markov partition which

contains fewer elements.

We will now discuss how to construct a Markov partition for the Cat Map (or, in

principle, any Anosov diffeomorphism on T2). We begin at a fixed point of H, (0, 0)

say, and from here we extend vu until it intersects with vs extended from (1, 1), which
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Figure 4: (a) Extending the eigenvectors of the Cat Map, vu (red) and vs (blue), to find

appropriate Markov partition elements. (b) A two-element Markov partition for the Cat

Map. The partition element P1 is yellow, and P2 is green.

we extend until it intersects with vu extending from (0, 1). We then extend vs from

both (0, 1) and (1, 0) until they intersect with vu extended from (0, 0), and vs from

(0, 0) and (0, 1) until they intersect with vu extended from (−1, 0). These give us all

the intersections of vu and vs we need to form a two-element Markov partition for

the Cat map. The intersections are shown in Figure 4(a), and the Markov partition

is shown on T2 in Figure 4(b). We will refer to the Markov partition as P , and

the partition elements as P1 and P2. Note that the boundaries of these partition

elements, ∂P1 and ∂P2, are composed of two stable and two unstable manifolds each.

Now that we have found a Markov partition for H, we can find the adjacency

matrix of this partition. To do this we need to calculate the images P1 and P2, and

see how these intersect with P1 and P2. We can see the images of these partition

elements in Figure 5(a). For this particular partition, the adjacency matrix is

Padj =

2 1

1 1

 ,
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1

0 1

(a) 1

0 1
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Figure 5: (a) The image of the Markov partition P of the Cat Map, where HP1 (yellow)

is the image of P1 and HP2 (green) is the image of P2. (b) A Markov partition of the Cat

Map with three partition elements.

since both images intersect P1 and P2, and HP1 wraps around P1 twice. Since

Padj = DHT
x , its eigenvalues are λu,s. Neither of these are equal to one, which tells

us that this Markov partition is minimal. An example of a Markov partition for the

Cat Map with three elements is shown in Figure 5(b). We will discuss the Markov

partition found by Mackay [34] for a particular system, originally studied by Cerbelli

and Giona [14], which belongs to the class of maps known as pseudo-Anosov in the

next chapter.

In the previous section, we discussed ergodicity, which encapsulates the idea of

indecomposability of a dynamical system - that is, no non-trivial ‘islands’ (invariant

sets of positive measure) exist in the domain which remain self-contained. A stronger

notion than this is mixing; in a mixing system, the long term (i.e. infinite limit)

state of the system is independent of its initial state. We discuss mixing in the next

section.
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2.9 Mixing and Decay of Correlations

To motivate the notion of mixing, we consider stirring milk into a cup of coffee.

Ideally, as we stir, we would like the milk and coffee to distribute themselves evenly

throughout the cup. This would ensure that any sip we were to take would contain

the same proportions of milk and coffee as any other, no matter where we took the

sip from - for example, we would obtain the same ‘sip’ whether we sipped the coffee

from the top of the cup, or used a straw to sip from the bottom. Furthermore, we

would want this distribution to depend only upon the proportions of milk and coffee

found within the cup, and not on the original distribution before (or during) the

stirring process; that is, no matter where we pour the milk into the cup of coffee,

the stirring process should lead us to a state where the liquids in the cup are evenly

distributed.

The notion of the limiting distribution being independent of the initial state of

the system is clearly linked to the idea of ergodicity; if any pockets of liquid within

the cup remain self-contained under the stirring process, then the sips taken from

these pockets may differ from other regions. Consider our cup before we pour in the

milk, and a stirring process which leaves a region within the cup invariant. If we do

not pour any milk into this region, then due to invariance, none will ever enter it,

and any sip we were to take from this region would contain only coffee and no milk.

Let us try to define these ideas in the context of a dynamical system (M,σ,H, µ).

M is the region within the cup collectively encompassed by both the milk and the

coffee, and H is the stirring process. Let the milk in the cup be given by the set

A, then the proportion of milk in the cup is given by µ(A)/µ(M). The amount of

milk contained in a region B, the ‘sip’, after n applications of the stirring process is

given by

µ(Hn(A) ∩B),
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and the proportion of milk in B is given by

µ(Hn(A) ∩B)

µ(B)
.

Given enough applications of the stirring process, we would like for each sip to

contain the same proportion of milk: the proportion of milk that is contained within

the cup. Hence, we would like

lim
n→∞

µ(Hn(A) ∩B)

µ(B)
− µ(A)

µ(M)
= 0.

If we assume that µ is a probability measure (µ(M) = 1), this leads us to the

definition of what it means for a measure-preserving dynamical system to be mixing.

Definition 2.20. A measure-preserving dynamical system is called mixing if for

any two measurable sets A, B

lim
n→∞

µ(H−n(A) ∩B) = µ(A)µ(B).

If H is invertible, then we can replace H−1 with H in the definition. Mixing

implies ergodicity; let H(A) = A and replace B with M\A, then

µ(H−n(A) ∩ (M\A)) = 0

for every n, hence Definition 2.20 implies

µ(A)µ(M\A) = 0.

Thus we have either µ(A) = 0, or µ(M\A) = 0 (and thus µ(A) = 1), and hence all

H-invariant sets are measure zero or one — H is ergodic.

A map H of the form (17) is mixing. In fact, maps of this form possess an

even stronger property, known as the Bernoulli property; specifically, this means

they are isomorphic to a Bernoulli shift on the set of all sequences of symbols (in

our case, the symbols could refer to the different elements of the Markov partition
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of H). In practice, a system which possesses the Bernoulli property is statistically

indistinguishable from a sequence of random coin or dice tosses.

Heuristically, any measurable A ⊂ M gets stretched in the direction of the

unstable subspace Eu and contracted in the direction of the stable subspace Es

under iteration by H. Repeated iteration yields the images Hn(A), which on R2 are

increasingly longer and thinner strips, with any original details of the set A (e.g.

the structure of its boundary set ∂A) becoming less and less significant with each

iterate. On T2, we see these strips wrapping around the domain in bands, with the

number of wrappings increasing and the width of the bands decreasing as we iterate.

Formally, one must appeal to Pesin theory [39] to find a link between the stretch-

ing and contracting of the manifolds of H with ergodicity, and subsequently mixing.

Loosely, Pesin theory tells us that the set of points with non-zero Lyapunov expo-

nents form a finite or countable partitioning of ergodic components — regions upon

which the map H, when restricted to a single component, is ergodic. We refer to

a particular theorem to demonstrate the Bernoulli property (and therefore mixing)

in H, but first we define what it means for a map H to be topologically mixing - a

form of mixing which does not require the definition of a measure.

Definition 2.21. An invertible, continuous map H : M →M is said to be topolo-

gically mixing if, given any pair of non-empty, open sets A,B ⊂ M , there exists

an integer N , such that, for all n > N ,

Hn(A) ∩B 6= ∅.

Note that mixing and topological mixing are separate properties, and do not

imply one another. We can see that H is topologically mixing by simply considering

a line, from one side of A to another, in the direction of the unstable eigenvector.

As H is iterated, this line will be stretched without altering its direction. Since the

slope of the eigenvector is irrational, its images Hn(A) will wrap around the torus
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more and more with each iterate, never overlapping, and slowly filling the entire

torus. Given enough iterates, Hn(A) will eventually intersect B. We now refer to

the following theorem to demonstrate the presence of the Bernoulli property for H.

Theorem 2.7 ([3]). Let H : M →M be a measure-preserving Anosov diffeomorph-

ism on a connected compact Riemannian manifold, and let H be topologically mixing.

Then H has the Bernoulli property.

After determining that a system is mixing, one may wish to quantify the rate at

which mixing occurs. A typical way of quantifying the rate of mixing is by studying

the rate of decay of correlations of a scalar field; this is done via the study of the

correlation function Cn(φ, ψ), where φ and ψ are observable functions. We motivate

this correlation function by first rewriting Definition 2.20 (assuming an invertible

H) as

lim
n→∞

∫
χHn(A)∩Bdµ =

∫
χAdµ ·

∫
χBdµ, (25)

where χX is the characteristic function of the set X ⊆M . A point x is in Hn(A)∩B

if it is in both Hn(A) and B, hence

χHn(A)∩B = χB · χHn(A).

Furthermore, since χHn(A) consists of all points which map to A under H−n, we have

χHn(A) = χA ◦H−n.

We can now rewrite (25) as

lim
n→∞

∫
χB(χA ◦H−n)dµ =

∫
χAdµ ·

∫
χBdµ. (26)

In general, we can replace the characteristic functions with observable functions for

the system, which yields the following definition.
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Definition 2.22. For observable functions φ, ψ ∈ L2
M , the correlation function

is given by

Cn(ψ, φ) =
∣∣∣ ∫ φ(ψ ◦H−n)dµ−

∫
φdµ ·

∫
ψdµ

∣∣∣.
In applications one will often study Cn(φ, φ), i.e. φ = ψ, in order to study the

rate of decay of correlations of a particular observable (scalar field) of interest - for

example, temperature or pressure. If H is mixing, Cn(φ, φ)→ 0 as n→∞, and the

rate of decay of Cn as n increases gives us an idea of how quickly the observable is

being mixed. Specifically, one studies the exponential decay rate

αφ,ψ = sup{a : lim
n→∞

sup |eanCn(φ, ψ)| <∞}. (27)

The link between Lyapunov exponents and (exponential) decay of correlations

has been studied for decades. Crawford and Cary [16] found that the decay rate αφ,ψ

depends on the choice of observables for the Cat Map; for various observables, they

found algebraic, exponential and faster than exponential decay rates. Slipantschuk

et al. [50] showed that arbitrarily slow decay rates can be obtained by choosing non-

regular observables. Ayyer and Stenlund [7] found explicit upper bounds upon the

rate of decay of correlations in random products of hyperbolic toral automorphisms,

which depend upon the maximal Lyapunov exponent. We will discuss a method for

finding upper and lower bounds of such matrix products, and subsequently provide

bounds on the maximal Lyapunov exponent which improve upon those given by

Ayyer and Stenlund, in Chapter 4.

2.10 Summary

In this chapter, we have given the basic definitions we will need throughout this

thesis, including that of the Lyapunov exponent of a dynamical system. We have

discussed some fundamental properties of measure-preserving systems, including
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uniform hyperbolicity, the existence of invariant cones and Markov partitions, er-

godicity, and mixing. We have demonstrated that the Cat Map (and maps of the

form (17)) possess these properties, and have shown a method for constructing

Markov partitions for these maps. Furthermore, we have discussed a theorem which

yields the invariant cones for diagonalizable matrices with positive eigenvalues, which

we will use to find the invariant cones needed for our bounds upon the Lyapunov

exponents of random products of matrices of this form.
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3 Examples of non-uniform and non-Anosov sys-

tems

In this chapter we discuss several examples of non-uniform, non-Anosov systems

upon the torus, with the intent of demonstrating why each system fails the conditions

needed to be Anosov and/or uniformly hyperbolic. In addition to this, we will

describe some examples of the different forms of hyperbolicity which arise when

the strict conditions required for uniform hyperbolicity are loosened. We will also

discuss random dynamical systems, focusing on those formed via compositions of

shears, and the differences which arise between random and deterministic systems.

In the previous chapter we discussed and defined the notion of uniform hy-

perbolicity, with examples given by Arnold’s Cat Map and more general Anosov

diffeomorphisms upon the torus. These systems all have the property of being uni-

form upon the torus; that is, their Jacobian matrix DH has no spatial dependence.

The deterministic systems we study in this chapter are all non-uniform, and so the

Jacobian varies across the torus; furthermore, the systems will not be smooth, and

thus their Jacobian matrix is not continuous across the entire domain.

Note that, to avoid confusion, the words uniform and non-uniform, when stated

alone, are used to indicate the spatial dependence of the Jacobian matrix, while

statements meant to regard the hyperbolicity of a system will always specify as

such. For example, in Section 3.1, we will study a family of maps which are non-

uniform, but uniformly hyperbolic; the systems themselves are not smooth (and

hence are non-Anosov), but they do fulfil the requirements for Definition 2.7.

In Section 3.1, we study a generalisation of the Anosov diffeomorphisms studied

in the previous chapter, and show that, in general, these maps are uniformly hyper-

bolic, but non-Anosov. In Section 3.2, we discuss the idea of non-uniform hyperbol-

icity, a looser form of hyperbolicity than uniform hyperbolicity, and a paradigmatic
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example of such a system, the linked twist map. In Section 3.3, we discuss a gen-

eralization of Anosov diffeomorphisms, known as pseudo-Anosov maps, as well as

discussing an interesting example of a (non-Anosov) pseudo-Anosov map, originally

studied by Cerbelli and Giona [14]. Finally, in Section 3.6, we discuss random dy-

namical systems, and explain how (explicit) calculation of the Lyapunov exponent

is complicated by randomness; in particular, we provide an example in the form of

random products of toral Anosov diffeomorphisms, as studied in Chapter 2.

3.1 Non-uniform compositions of shears

In Sections 2.3 and 2.5 we discussed Arnold’s Cat map and the family of Anosov

systems to which it belongs. These maps are uniform upon T2; that is, the Jacobian

matrix DxH of each map is identical for all choices of x ∈ T2. We now consider a

generalisation of these systems, where uniformity across T2 is lost.

Let us first consider a simple example of such a system. Consider the system

(T2, σ,H, µ) where σ is the Borel σ-algebra for T2, µ is Lebesgue measure, and

H : T2 → T2, given by H = G ◦ F , where F : T2 → T2 is given by

F

x
y

 =



1 2

0 1


x
y

 = F1

x
y

 , for y ≤ 1
2
,

1 4

0 1


x
y

 = F2

x
y

 , for y > 1
2
,

and G : T2 → T2 is given by

G

x
y

 =

1 0

1 1

x
y

 .
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Figure 6: The shear maps F and G, which are composed to form the map H in (28).

Hence,

H

x
y

 =



1 2

1 3


x
y

 = H1

x
y

 , for y ≤ 1
2
,

1 4

1 5


x
y

 = H2

x
y

 , for y > 1
2
.

(28)

The maps F and G are shown in Figure 6, and the action of H is shown in Figure

7. Note that this system is continuous, as F1 = F2 mod 1 along y = 1
2
; specifically,

the slopes of F1 and F2 are a multiple of 1
y

= 2.

The Jacobian matrix DxH of H is dependent on the choice of x ∈ T2, and

therefore so are the eigenvalues and eigenvectors of DxH. When y ≤ 1
2
, we have

λH1± = 2±
√

3 and vH1± =

 2

1±
√

3

 ,

and when y > 1
2
, we have

λH2± = 3± 2
√

2 and vH2± =

 1

1±
√

2

 .

We wish to determine whether or not H is uniformly hyperbolic. Intuitively,

uniform hyperbolicity seems like a natural consequence of the systems H1 and H2
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Figure 7: The action of the map H in (28). The region acted on by H1 and its image are

in red, while the region affected by H2 and its image are in blue.

each being Anosov diffeomorphisms when extended to the entirety of T2; in particu-

lar, given this knowledge, it would seem (and in this case is true) that we could find

uniform constants to bound the expansion and contractions rates away from one,

perhaps by taking the minimum rates of expansion/contraction found in either maps

unstable/stable subspace. However, the issue here is not these rates, but instead

the subspaces themselves.

In order to determine if H is uniformly hyperbolic, we first need to find appro-

priate subspaces Es
x and Eu

x such that

DxHE
s
x = Es

H(x),

and

DxHE
u
x = Eu

H(x),

for any choice of x ∈ T2. It is worth noting that H is not a diffeomorphism, as clearly

it is not differentiable on the lines y = 0 and y = 1
2
. However, this set of points



59

has measure 0, and so has little effect on the overall dynamics of the system [29].

As such, though H is not an Anosov diffeomorphism, we are considering whether

it possesses all the qualities of such a system (i.e. uniform hyperbolicity), with the

exception of differentiability for all x ∈ T2.

Consider the subspace E1
u
x, the unstable subspace for the map H1 : T2 → T2,

given by the span of the unstable eigenvector vH1+ of DxH1. By the of definition an

eigenvector we have that

DxH1 · E1
u
x = E1

u
H1(x).

Now instead consider H. In this case, we instead require

DxH1 · E1
u
x = E1

u
H(x),

for any choice of x ∈ T2. In particular, this means that if H1(x) lies in the region

y > 1
2
, then we require

DxH1 · E1
u
x = E1

u
H2(x),

since H = H2 for y > 1
2
. This is only possible if H1 = H2, and the problem is reduced

to an Anosov diffeomorphism of the form studied in Section 2.5. However, if H1 6=

H2, we can find neither an unstable subspace nor, through a similar argument, a

stable subspace of this form, which will satisfy the definition of uniform hyperbolicity

for H. A sketch of this argument is shown in Figure 8.

A further result of the above argument is that constructing a Markov partition for

H is not possible, since it is not possible to map boundaries of partition elements

onto boundaries of other partition elements. This can make the calculation of a

return-time distribution much trickier for maps of this form; we will see this in

Chapter 5, where the calculation of such a distribution will be needed to evaluate

upper and lower bounds for the Lyapunov exponents of H.

However, despite the above, it is possible to find subspaces which do produce

a (λ, µ) splitting of R2 for H (for some λ, µ). To do this, we use invariant cones,
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x

E1
u
x

0 1

1

H(x)

E1
u
H(x)

E2
u
H(x)

0 1

1

Figure 8: This sketch shows how we cannot use eigenvectors alone to satisfy the definition

of uniform hyperbolicity for a map such as H in (28). The green lines represent E1
u
x and

the yellow lines represent E2
u
x for other choices of x in the respective regions.

which we discussed in Section 2.6; specifically, we find two cones, an expansion and

a contraction cone, which are mutually invariant under H1 and H2. We study such

cones in detail in Chapter 4, where we discuss their form and for which systems they

exist.

For H, an expansion cone, corresponding to the unstable subspace Eu
x , is given

by

CE = {(x, y) ∈ R2 :
1

1 +
√

2
≤ x

y
≤ 2

1 +
√

3
},

and a contraction cone, corresponding to the stable subspace Es
x, is given by

CC = {(x, y) ∈ R2 :
2

1−
√

3
≤ x

y
≤ 1

1−
√

2
}.

Note that the cone CE has boundaries given by the unstable eigenvectors of H1 and

H2, whilst the boundaries of CC are given by their stable eigenvectors. Furthermore,

for almost every orbit, all vectors v ∈ R2 satisfy

HNv ∈ CE for all N > n for some n ∈ N, (29)
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since the stable eigenvectors vH1− and vH2− are not invariant under H. The remain-

ing orbits consist of fixed and periodic points; in particular, the Jacobian of H is

undefined at the fixed points, and so (29) cannot apply in these cases.

In order to verify uniform hyperbolicity of H we require a (λ, µ)-splitting, for

which we need to find constants λ and µ such that

||H|CC || ≤ λ < 1, ||H−1
|CE || ≤ µ−1 < 1.

In this case, using the spectral norm [52] given by

‖H‖ =
‖Hv‖2

‖v‖2

,

suitable constants λ and µ are given by

λ = max
v∈CC

{‖H1v‖2

‖v‖2

,
‖H2v‖2

‖v‖2

}
= 0.8931,

µ = min
v∈CE

{‖H1v‖2

‖v‖2

,
‖H2v‖2

‖v‖2

}
= 3.6655.

We therefore have that λ < 1 < µ, and so H is uniformly hyperbolic. Note that

when calculating µ we are able to consider forward iterates of the map as opposed

to pre-images as H is invertible.

We can generalise systems such as these to allow for multiple shears in both the

horizontal and vertical directions. Consider partitioning the interval [0, 1) into the

intervals Pi = [yi−1, yi) for i = 1, . . . , n, where y0 = 0 and yn = 1. The length - or

height for reasons that will soon become clear - of the interval Pi is therefore given

by

hi = yi − yi−1.

We assign to each Pi a wrapping number αi, which determines the number of times

our shear map on Pi will wrap around T2. We require that αi
hi
∈ Z so that our

Jacobian matrices contain only integer values, and to ensure continuity. One can

define continuous systems similar to these in which the Jacobian matrices do not
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contain integer values; in this case, the torus is partitioned into annuli, and the

maps F and G take the form of Dehn twists ([18], see also [32]) on these annuli (an

explicit example of this is studied in Section 5.6).

We define Fi : [0, 1)× Pi → [0, 1)× Pi by

Fi

x
y

 =

1 αi
hi

0 1

x
y

 , (30)

and F : T2 → T2 as the collection of all of the Fi. In other words, F = Fi when

F is restricted to [0, 1) × Pi. We define G : T2 → T2 in a similar way, instead

partitioning the interval (0, 1] into the intervals Qj = [xj−1, xj), for j = 1, . . . ,m,

where x0 = 0 and xm = 1. Each Qj has length (or width)

wj = xj − xj−1,

and is assigned a wrapping number βj, where
βj
wj
∈ Z. We define Gj : Qj × [0, 1)→

Qj × [0, 1) as

Gj

x
y

 =

 1 0

βj
wj

1

x
y

 . (31)

G : T2 → T2 is then defined as the collection of all the Gj, so G = Gj where G

is restricted to Qj × [0, 1). Essentially, F is a collection of n horizontal shears of

varying slopes, laid on top of each other in such a way that they are continuous. G

is similar, however we instead have m vertical shears placed side by side. Figure 9

shows a sketch of the maps F and G.

We consider the system (T2, σ,H, µ), where H = G◦F . In other words, we have

Hi,j

x
y

 =

 1 αi
hi

βj
wj

1 +
αiβj
hiwj

x
y

 for y ∈ Pi and x+
αi
hi
y ∈ Qj. (32)

Note that there are now m + n lines upon which H is not differentiable; however,

these still amount to a set of measure zero, and so again do not affect the dynamics

of the system as a whole.
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yn−2
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1
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1
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Figure 9: An example of the maps F and G from equations (30) and (31) respectively,

with positive wrapping numbers αi and βj for all i and j. Pi is the region between y = yi−1

and y = yi, and Qj is the region between x = xj−1 and x = xj .

We will consider the cases where all the αi are of the same sign, and all the βj

are of the same sign. When this is not the case, the analysis is much harder. A

particular example where much progress has been made is the case where n = 2,

m = 1, α1 = 2, α2 = −2 and β1 = 1, which was studied by Cerbelli and Giona [14],

and later Mackay [34]; we will discuss this example in detail in Section 3.3.

Assuming all αi share the same sign and all βj share the same sign, we have two

main cases to consider:

1. αi, βj > 0 for all i, j.

2. αi < 0, βj > 0, and αiβj < −4 for all i, j.

Note that the cases where we have αi, βj < 0 and αi > 0, βj < 0 are equivalent to

the above cases up to rotation. The requirement of αiβj < −4 ensures hyperbolicity

(though not necessarily uniform hyperbolicity) of H in the second case.

As earlier, we require both stable and unstable subspaces, with uniform bounds
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upon the expansion and contraction rates of vectors therein, in order to infer uniform

hyperbolicity of H. We again turn to mutually invariant cones in an attempt to yield

such subspaces, and we construct these cones in the same way as we did before, by

using the eigenvectors of the various Jacobian matrices of H as boundaries for the

cones. We require such a cone to be invariant for any Jacobian we may choose, and

so to obtain an invariant cone for H, we pick the widest possible cone that can be

obtained from these eigenvectors.

However, an issue arises for general systems of the form given by (32), in that

mutually invariant cones need not always exist; we will study this problem in more

detail in Chapter 4, where we provide an explicit example of a random dynamical

system for which invariant cones cannot be constructed (see Figure 22b). The cases

for which invariant cones do exist are those in which none of the stable eigenvectors

of Hij lie amongst the unstable eigenvectors of Hij, for all i, j. In essence, we require

a ‘neat’ partitioning of tangent space, where all the stable eigenvectors are located

in one region, all of the unstable eigenvectors are located in another region, and

there is no overlap between the two.

With the above in mind, we find that the cases where αi, βj > 0 for all i, j (and

similarly, αi, βj < 0 for all i, j) do possess invariant cones, as all unstable (stable)

eigenvectors are located in the region {(x, y) ∈ R2 : x
y
> 0}, and all stable (unstable)

eigenvectors are located in the region {(x, y) ∈ R2 : x
y
< 0}.

The cases where αiβj < −4 are not as simple, and typically need to be studied

on a case by case basis to determine whether invariant cones exist, and thus if the

system is uniformly hyperbolic. An example of such a system where invariant cones

do exist occurs when αi = α < 0 for all i, with βj such that αβj < −4 for all

j. This results in a partitioning of the quadrant {(x, y) ∈ R2 : x
y
> 0}, with all

unstable eigenvectors located between the vectors (0, 1) and (−α, 2), and all stable

eigenvectors located between (−α, 2) and (1, 0).
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It is fairly simply to establish numerically whether invariant cones exist for a

particular choice of matrices. This particular scheme only checks whether an invari-

ant cone exists for a pair of matrices, but could be easily expanded upon to allow for

more matrices. Once invariant cones have been obtained, it is a matter of checking

the constants λ and µ to determine if the system is uniformly hyperbolic. Again

labelling the cones which yield our stable and unstable subspaces as CC and CE

respectively, and noting that H is invertible, we check if

λ = max
v∈CC

{‖H1,1v‖2

‖v‖2

, . . . ,
‖Hn,mv‖2

‖v‖2

}
< 1,

and if

λ = min
v∈CE

{‖H1,1v‖2

‖v‖2

, . . . ,
‖Hn,mv‖2

‖v‖2

}
> 1.

If these conditions hold, then H is uniformly hyperbolic. If not, H may possess

a less strict form of hyperbolicity, known as non-uniform hyperbolicity, which we

discuss in the next section.

3.2 Linked Twist Maps and non-uniform hyperbolicity

We now discuss toral linked twist maps (LTMs), which are a realization of the idea

of intersecting flows in various models of fluid dynamics; in particular, linked twist

maps are connected to the notion of streamlines crossing, examples of which include

the Aref blinking vortex flow [4], which has been used to model tidal advection along

a headland (see [55] and references therein). We will see that these systems differ

from those studied in the previous section, as their Jacobian matrix is not hyperbolic

in certain regions of the domain, and orbits can become trapped in non-hyperbolic

regions for long periods of time. As in the previous section, we begin by studying a

specific, simple example of a LTM, before moving on to the general case.

Consider the map H : P ∪ Q → P ∪ Q given by H = G ◦ F , where F : P → P
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is given by

F

x
y

 =

1 2

0 1

x
y

 , (33)

and G : Q→ Q is given by

G

x
y

 =

1 0

2 1

x
y

 , (34)

where P = {(x, y) ∈ T2 : y ≤ 1
2
} and Q = {(x, y) ∈ T2 : x ≤ 1

2
} are annuli. Let

A =
{

(x, y) ∈ T2 : y ≤ 1

2
, x+ 2y ≤ 1

2

}
,

B =
{

(x, y) ∈ T2 : y ≤ 1

2
, x+ 2y ≥ 1

2

}
,

C =
{

(x, y) ∈ T2 : y ≥ 1

2
, x ≤ 1

2

}
,

then we can write H as

H

x
y

 =



1 2

2 5


x
y

 for (x, y) ∈ A,

1 2

0 1


x
y

 for (x, y) ∈ B,

1 0

2 1


x
y

 for (x, y) ∈ C.

(35)

In other words, we first apply a horizontal shear with a slope of 2 onto the annulus

P , and then a vertical shear with a slope of 2 onto the annulus Q. The map H

is a linked twist map. Note that while we discuss this map, instead of the usual

Lebesgue measure µL, we will instead consider a normalized measure over the annuli

P and Q, given by

µH(Z) =
4

3

∫
y∈Z

∫
x∈Z

H(x, y)dxdy =
4

3
µL(Z). (36)
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Figure 10: The regions A, B and C and their images under H: A′, B′ and C ′ respectively.

Note that B′ intersects B, and C ′ intersects both B and C. This tells us that it is possible

to have multiple iterates in a row without landing in the hyperbolic region A.

From the definition of H, we can immediately see that its Jacobian matrix DxH

is not hyperbolic when (x, y) ∈ B or C, as in both cases H is a shear map. However,

DxH is hyperbolic for (x, y) ∈ A, and the iterates for which this is the case are the

iterates when vectors in tangent space will undergo exponential expansion. In other

words, the positivity of the Lyapunov exponent of this map will derive entirely from

the points on the orbit which lie in A.

A, B, and C, as well as their images under H, are shown in Figure 10. We can

see from the figure that B′ intersects B and C ′ intersects both B and C. This means

it is possible for orbits to spend consecutive iterates in the non-hyperbolic region of

the map; when this happens, vectors in tangent space will undergo sub-exponential

expansion for two consecutive iterates. In fact, if we sketch Hn(B) and Hn(C) for a

given n, we find that they both intersect the non-hyperbolic region of the map, and

the intersection has positive measure.

In order to find the set of points which remain in the shear regions for at least 2

iterates, we need to find
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1. H−1(H(B) ∩B).

2. H−1(H(B) ∩ C).

3. H−1(H(C) ∩B).

4. H−1(H(C) ∩ C).

The union of all of these sets is the set of points which do not undergo exponential

expansion for at least two iterates. In this case, we know that µH(H−1(H(B)∩C)) =

0 since µH(H(B) ∩ C) = 0, and H is measure-preserving. If we find H(H(B) ∩B),

H(H(B) ∩ C), H(H(C) ∩ B) and H(H(C) ∩ C) and see how they intersect B and

C, then by calculating the 2nd pre-image H−2 of these intersections we can find the

set of points which do not enter the hyperbolic region A for at least three iterates of

H. Repeating this process for n steps requires calculating the nth pre-image of 2n+1

sets. The measure of the union of the pre-images of these sets is the proportion of

points which do not enter the hyperbolic region A for at least n iterates. The sets

we find are defined inductively by

Bn = H(Bn−1) ∩ Γn, (37)

for n ∈ N, Γi = B or C, and B0 = {B}, and

Cn = H(Cn−1) ∩ Γn, (38)

for n ∈ N, Γi = B or C, and C0 = {C}. Note that both (37) and (38) describe 2n

different sets. Let

Wn = H−n(Bn) ∪H−n(Cn). (39)

Then µH(Wn) is the proportion of points which do not enter A for at least n iterates.

We can find a Wn of positive measure for any n ∈ N, though µH(Wn) will decrease

as n increases. Figure 11 shows the sets W1 and W2.
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Figure 11: (a) W1 and (b) W2, the sets of points which spend at least 1 and 2 consecutive

iterates in non-hyperbolic regions respectively, for the map H given by (32). The red

region is H−i(Bi) and the yellow region is H−i(Ci), for i = 1, 2.

The fact that Wn has positive measure for any n affects the calculation of Lya-

punov exponents of this map; specifically, finite-time Lyapunov exponents (FTLEs)

can vary significantly depending on the choice of initial condition. If, by chance,

we chose a point in W105 , then the iterates would remain entirely in non-hyperbolic

regions4 for 105 iterates; a FTLE calculated over 105 iterates of H would be zero, as

tangent vectors would have undergone sub-exponential expansion on each iterate.

Similarly, choosing a point which begins or whose orbit intersects a Wm, where m is

a significant fraction of the 105 iterates, will also affect the FTLE. In contrast, if we

performed a similar calculation for Arnold’s Cat Map, we would find that our choice

of initial condition x0 ∈ T2 does not affect our estimate at all, since the Jacobian

matrix is uniform on T2.

The spatial dependence of FTLEs in LTMs is a problem, since seemingly sim-

4This assumes our computer can calculate to a sufficient degree of accuracy such that any error

in calculation does not cause the orbit to intersect a hyperbolic region.
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ilar, nearby, randomly chosen initial conditions can return significantly different

estimations for λ, with possible estimates of zero in rare cases; however, due to the

arguments put forth by Burton and Easton [12], we know that LTMs are ergodic and

have non-zero Lyapunov exponents almost everywhere, precluding the usefulness of

such an estimate.

From the above argument we can conclude that H fails the conditions required

for uniform hyperbolicity; we cannot find constants λ < 1 and µ < 1 for which H is

uniformly hyperbolic by Definition 2.7. Instead, suitable bounds upon the expansion

and contraction rates will depend upon x; in the case of a LTM, for the iterates spent

in the shear regions, λ = µ = 1, whereas for those spent in the hyperbolic regions,

λ < 1 < µ, as in the uniformly hyperbolic case. Systems with this property, which

is a relaxation of the conditions required for uniform hyperbolicity, are called non-

uniformly hyperbolic.

Definition 3.1 ([8]). Let H : M → M be a diffeomorphism of a compact smooth

Riemannian manifold M . An H-invariant Borel subset R ⊂ M is said to be non-

uniformly hyperbolic if there exist:

(a) numbers λ and µ such that 0 < λ < 1 < µ;

(b) a number ε and Borel functions C, K : R → (0,∞);

(c) subspaces Es(x) and Eu(x) for each x ∈ R,

which satisfy the following conditions:

1. the subspaces Es(x) and Eu(x) depend measurably on x and form an invariant

splitting of the tangent space, i.e.,

TxM = Es(x)⊕ Eu(x),

DxHE
s(x) = Es(H(x)), DxHE

u(x) = Eu(H(x));
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2. for v ∈ Es(x) and n > 0,

‖DxH
nv‖ ≤ C(x)λneεn‖v‖;

3. for v ∈ Eu(x) and n < 0,

‖DxH
nv‖ ≤ C(x)µneε|n|‖v‖;

4. ∠(Es(x), Eu(x)) ≥ K(x);

5. for n ∈ Z,

C(Hn(x)) ≤ C(x)eε|n|, K(Hn(x)) ≥ K(x)e−ε|n|.

Non-uniformly hyperbolic systems differ from uniformly hyperbolic systems (and

Anosov diffeomorphisms) due to the inability to guarantee exponential expansion

(or contraction) of vectors within a subspace of tangent space. In the case of the

linked twist map H given by (35), almost every orbit will eventually fall into the

shear regions B and C of the map, and during these iterates exponential expansion

will not occur. This is due to the fact that H is ergodic, and so a typical orbit will

visit every region (of positive measure) within the domain; furthermore, all LTMs

of the general form we discuss next are also ergodic (see [12], [44]). In fact, LTMs

possess even stronger properties than this, such as mixing and the K-property (see

[59]).

Note that we can still obtain invariant expanding and contracting subspaces

for H, again by finding invariant cones, although we cannot guarantee exponential

expansion or contraction of vectors within those subspaces on all iterates. The

subspaces are required to be invariant under the shear maps F and G, since it is

possible for H to take either as its Jacobian on a single iterate. We study the cones

which are invariant for LTMs such as H in Chapter 5; note that these cones are

also used by Sturman and Thiffeault [54] when finding bounds upon the Lyapunov

exponents for random products of shear matrices.
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In order to define a LTM in general, we first define annuli Pi and Qj, where

i ∈ {1, . . . , n}, and j ∈ {1, . . . ,m}, given by

Pi = {(x, y) ∈ T2 : y2(i−1) ≤ y ≤ y2i−1},

Qj = {(x, y) ∈ T2 : x2(j−1) ≤ x ≤ x2j−1},

where 0 ≤ x0 < . . . < x2m−1 ≤ 1, and 0 ≤ y0 < . . . < y2n−1 ≤ 1. In other words,

the sets Pi are mutually disjoint horizontal annuli, ordered so that P1 is below P2,

which is below P3, and so on. Similarly, the sets Qj are mutually disjoint vertical

annuli, ordered so that Q1 is the furthest to the left, and Qm the furthest to the

right, of T2.

On each Pi we define a horizontal shear with wrapping number αi and, similarly,

on each Qj we define a vertical shear with wrapping number βj. Specifically, letting

hi = y2i−1 − y2(i−1) be the height of Pi and wj = x2i−1 − x2(i−1) be the width of Qj,

we define horizontal shears Fi : Pi → Pi as

Fi

x
y

 =

1 αi
hi

0 1

x
y

+

 0

y2(i−1)

 ,

and vertical shears Gj : Qj → Qj as

Gj

x
y

 =

 1 0

βj
wj

1

x
y

+

x2(j−1)

0

 .

We define the maps F : T2 → T2 and G : T2 → T2 as follows:

F

x
y

 =



Fi

x
y

 for (x, y) ∈ Pi,

I2

x
y

 otherwise,

(40)



73

G

x
y

 =



Gj

x
y

 for (x, y) ∈ Qj,

I2

x
y

 otherwise,

(41)

where I2 is the 2 × 2 identity matrix. The maps F and G are shown in Figure 12.

The restriction of the map H : T2 → T2 to (
⋃
i Pi)∪ (

⋃
j Qj), given by H = G◦F , is

a linked twist map; the example we studied earlier, given by (35), is the case where

n = m = 1, x0 = y0 = 0, x1 = y1 = 1
2

and α1 = β1 = 1. We can write H as

H

x
y

 =



Hi,j

x
y

 for (x, y) ∈ Pi, (x+ αi
hi
y, y + y2(i−1)) ∈ Qj,

Fi

x
y

 for (x, y) ∈ Pi, (x+ αi
hi
y, y + y2(i−1)) /∈ Qj,

Gj

x
y

 for (x, y) /∈ Pi, (x, y) ∈ Qj,

I2

x
y

 otherwise,

(42)

where

Hi,j

x
y

 =

 1 αi
hi

βj
wj

1 +
αiβj
hiwj

x
y

+

x2(j−1)

y2(i−1)

 .

Note that in order to guarantee hyperbolicity in the regions analogous to the region

A for the map given by (35), we require αiβj > 0 or αiβj < −4 for all i, j.

The family of maps described by (42) shares many of the same properties as the

earlier example, such as ergodicity and non-uniform hyperbolicity. Similarly to the

system given by (32), obtaining an invariant cone for H involves taking the widest

cone for all possible combinations of αi, βj; note that in the case where αi, βj > 0 for
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Figure 12: Sketches of the shear maps F and G from (40) and (41), which are composed

to form the general LTM H. The grey shaded areas are the regions upon which F and G

are the identity.

all i, j, the region {(x, y) ∈ R2 : x/y ≥ 0} is an invariant cone for H. In Chapter 5 we

consider alternative cones to this which, while not invariant under H, are invariant

under the return map to the region where the annuli overlap. Doing so allows us to

find elementary bounds on the Lyapunov exponents of a sub-family of the systems

given by (42); specifically, we study the systems obtained by taking x0 = y0 = 0,

x1 = y2 = α1 = α2 = β1 = 1, and y1 = p for some p ∈ [0, 1]. The method we

describe is also applicable (in principle) to (42) as well.

3.3 Cerbelli and Giona’s ‘archetype for non-uniform chaos’

and pseudo-Anosov maps

In this section we discuss a class of maps known as pseudo-Anosov [57], and focus on

a specific example, formed via shear composition, which has been extensively stud-

ied by Cerbelli and Giona [14] and later Mackay [34]. The system is referred to by

the authors as an ‘archetype for non-uniform chaos’ - specifically, it captures aspects

of the dynamics of two important classes of map: hyperbolic toral automorphisms

such as the Cat Map, which are represented by expanding and contracting direc-
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tions in tangent space, and generalized baker transformations, represented by the

discontinuity within the system, which can be used to model deformations caused

by non-linear dynamics.

Pseudo-Anosov maps loosen the strict conditions required for a system H to be

uniformly hyperbolic by replacing the need for smooth contracting and expanding

subspaces in tangent space, Es
x and Eu

x , with stable and unstable foliations upon the

domain, F s and F u, which are differentiable everywhere except for a finite number

of singularities. These singularities typically occur at critical points in the domain

where foliation leaves of varying slopes meet. In addition, we require that vectors

upon these foliations are stretched (on F u) or contracted (on F s) by some ‘stretch

factor’.

In order to define a pseudo-Anosov map explicitly, we first define what we mean

by a measured foliation upon M .

Definition 3.2 ([57], see also [22]). A measured foliation F on a closed surface M

is a geometric structure on M which consists of a singular foliation and a measure

in the transverse direction. In some neighbourhood U of a regular point of F , there

is a ‘flow box’ φ : U → R2 which sends the leaves of F to the horizontal lines in R2.

If two such neighbourhoods Ui and Uj overlap then there is a transition function φij

defined on φj(Uj), with the standard property

φij ◦ φj = φi

which must have the form

φ(x, y) = (H(x, y), c± y)

for some constant c. A finite number of singularities of F of the type of a ‘p-pronged

saddle’, p ≥ 3, are allowed (see Figure 15).
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In other words, the foliation leaves stretch across the entire domain, but need

not be smooth at all points; singularities will arise where boundaries of ‘non-

differentiability’ meet. In the system we will study, these boundaries are the lines

along which the foliations undergo a sudden change in gradient. If two of the neigh-

bourhoods described above overlap, there must be a one to one mapping between the

foliation leaves which lie in both neighbourhoods; that is, leaves do not ‘disappear’

or end in regions away from singularities.

We now define what it means for a map to be pseudo-Anosov.

Definition 3.3 ([37],[57]). A mapping class H on a surface M of negative Euler

characteristic is said to be pseudo-Anosov if there is a pair F s and F u of transverse

arational (i.e. no closed leaves) measured foliations on M and a representative H of

H so that H(F u) = λF u and H(F s) = 1
λ
F s with λ > 1. λ is called the dilatation

(or stretch factor) of H.

From the definition, it is fairly simple to see that the Cat Map is pseudo-Anosov;

taking the eigenvectors for the foliations, we see that the dilatation factor corres-

ponds to the largest eigenvalue. In fact, pseudo-Anosov maps are a generalization of

Anosov diffeomorphisms, and as such any Anosov (or uniformly hyperbolic) system

is also pseudo-Anosov. Note that Anosov diffeomorphisms possess Markov parti-

tions, and this is also possible (though not necessary) for pseudo-Anosov maps. We

now study a specific example of a pseudo-Anosov map, formed via shear composi-

tion, which has been shown to possess a Markov partition.

Consider the map H : T2 → T2 given by

H

x
y

 =

 x+ f(y)

x+ f(y) + y

 , (43)

where

f(y) =

2y when y ≤ 1/2,

2− 2y when y ≥ 1/2.
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Figure 13: The shears which when composed form H. F is the tent map turned on its

side, while G is a shear of slope one.

Figure 13 shows the shears F and G which when composed form H. This map was

studied extensively by Cerbelli and Giona in [14], and has been shown to have some

interesting properties. It is not uniformly hyperbolic, but Mackay showed in [34]

that it does possess a Markov partition and is pseudo-Anosov.

The Jacobian matrix DH of H is given by

DH =



1 2

1 3

 if y ≤ 1/2,

1 −2

1 −1

 if y ≥ 1/2.

When y ≤ 1
2
, DH is a hyperbolic matrix and vectors in tangent space undergo

uniform expansion and contraction. This is the ‘hyperbolic part’ of the map, where

all of the expansion takes place. However, when y ≥ 1
2
, DH is not a hyperbolic

matrix. In fact,

DH2 =

−1 0

0 −1

 = −I2,

and thus no expansion occurs when y ≥ 1
2
. However, after 2 iterates spent in the
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Figure 14: A splitting of the torus into various subsets which are the building blocks for

the subsets A, B and C.

region y ≥ 1
2
, the next iterate must enter the region y ≤ 1

2
, since DH2 = −I2. This

means that µ-a.e. orbit of the system spends at least one third of its iterates in the

hyperbolic part of the map.

In [14], Cerbelli and Giona split the torus up into 3 disjoint subsets A, B and

C, whose ‘building blocks’ are shown in Figure 14, in order to discuss point set

dynamics. They are given by

A = D1 ∪ a ∪ c,

B = D2 ∪ b ∪ d,

C = D3 ∪ e ∪ f,

and satisfy the relations

H(A) ⊂ A ∪B,

H(B) = C,

H(C) ⊂ A.

These relations tell us that points in A either remain there or are mapped into B

after 1 iterate. Once mapped into B, they are then mapped into C on the next
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iteration, and back into A on the subsequent iteration. This structure helps us to

define the stable and unstable foliations, and hence to find a Markov partition for

this map. Let:

DH1 =

1 2

1 3

 and DH2 =

1 −2

1 −1

 .

Their eigenvalues are λ1± = 2±
√

3 and λ2
2 = −1 respectively. The eigenvectors of

DH1 corresponding to λ1+ and λ1− respectively are:

u1 =

 2

1 +
√

3

 and s1 =

 2

1−
√

3

 .

These eigenvectors form the expanding and contracting directions for x ∈ A.

Consider the expanding and contracting directions for x ∈ B. For two iterates

these manifolds will undergo no expansion/contraction as DH2 is a non-hyperbolic

matrix. However, on the following iterate they will again be ‘hit’ by DH1 as the

orbit returns to A. Hence the expanding and contracting directions will be the

same as those for x ∈ A, but with two applications of DH2. This means that the

expanding and contracting directions for x ∈ B will be:

DH2
2u1 =

−1 0

0 −1

u1 = u1,

DH2
2s1 =

−1 0

0 −1

 s1 = s1,

and are thus the same as those for x ∈ A. Using a similar argument, the expanding

and contracting directions for x ∈ C are:

u2 = DH2u1 =

 2
√

3
√

3− 1

 ,

s2 = DH2s1 =

 2
√

3
√

3 + 1

 .
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Using these facts, Cerbelli and Giona defined two fields of direction, εu and εs, as

the expanding and contracting fibre bundles respectively, in the following way:

εu = (Eu
x)x∈T2 , (44a)

εs = (Es
x)x∈T2 , (44b)

where:

Eu
x =

span(u1), for x ∈ A ∪B,

span(u2), for x ∈ C,
, (45a)

Es
x =

span(s1), for x ∈ A ∪B,

span(s2), for x ∈ C.
(45b)

In [14] Cerbelli and Giona proved that these fibres are dense in T2 and that vectors

parallel to unstable fibres undergo exponential growth while vectors parallel to stable

fibres undergo exponential decay when iterated forwards.

We will now use these fibre bundles to construct a Markov partition for H.

Mackay [34] first constructed a 6-element Markov partition for this map and noticed

that it should be possible to construct a 4-element partition, due to the appearance

of 2 unitary eigenvalues associated with his adjacency matrix. Demers and Wo-

jtkowski [19] then described a general method to construct finite Markov partitions

for a family of pseudo-Anosov maps, of which H is a member. They also explicitly

constructed a 4-element Markov partition for a case very similar to H, although

in a different coordinate system to that of Cerbelli and Giona’s map. We will use

Wojtkowski and Demers method to construct a 4-element Markov partition for H

in the coordinate system used by Cerbelli and Giona.

The first part of the method involves defining two invariant piecewise linear

foliations, one stable and one unstable, for our map H. In our case, these foliations

will be the expanding and contracting fibre bundles εs and εu defined in (44). We

must then identify the singularity points of H and how many prongs they have.
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Figure 15: (a) A 1-prong singularity. (b) A 3-prong singularity. See also [56].

Definition 3.4 ([19]). A singularity p of H is called an n-prong singularity (n ∈

N, n 6= 2) if the local stable and unstable leaves are homeomorphic to the curves

Re(zn/2) = constant and Im(zn/2) = constant respectively near to z = 0 in C.

The singularities of H are the fixed points (0, 0) and (0, 1/2), which are 1-prong

singularities, and the period 2 points (1/2, 0) and (1/2, 1/2), which are 3-prong

singularities. In order to be considered a 1- or 3-prong singularity, the structure of

the local stable and unstable leaves of our foliations around the singularity must be

qualitatively the same as that shown in Figure 15. With these facts in hand, we are

able to start constructing the Markov partition.

Let the elements of our Markov partition be denoted by P1, P2, P3 and P4. We

extend the stable leaves of (1/2, 0) and (1/2, 1/2) outside of D3 until they intersect

with the unstable leaves of (0, 0) and (0, 1/2). We then define P3 to be the parallelo-

gram bounded by these intersections (see Figure 16). We then define the remaining

partition elements as follows:

P2 = H−1(P3), P4 = H(P3), P1 = T 2/(P2 ∪ P3 ∪ P4).

Each of these elements has boundaries that are composed of a finite union of stable

and unstable leaves. The stable leaves emanate from one of the 3-prong singularities,
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P3

P3
���

Figure 16: The partition element P3. The dotted area is D3.

whereas the unstable leaves emanate from one of the 1-prong singularities. The

Markov partition for H is shown in Figure 17.

Now that we have a Markov partition for H, we can calculate its image, and

use this to write down a connectivity matrix for the Markov partition [1]. The

calculation of the image is somewhat simplified by noting that H(P2) = P3 and

H(P3) = P4. With this in mind, we obtain the matrix

M =


2 3 0 0

0 0 1 0

0 0 0 1

1 2 0 0

 , (46)

where the i, jth entry corresponds to the number of different connected components

of the image of Pi that cross over Pj.

Note that the matrix M is an adjacency (or connectivity) matrix as opposed to

a transition matrix, since the Markov partition we have found is not generating i.e.

there is a set of points of positive measure which share the same orbit (are coded

in the same way) from the perspective of the symbolic dynamics of our Markov

partition. An adjacency matrix is similar to a transition matrix, except its entries

may be in N rather than just being equal to one or zero, with these numbers cor-
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Figure 17: The Markov partition of H. The number n, n = 1, ..., 4, corresponds to the

partition element Pn.

responding to the number of different connected components which cross over the

specified region; in other words, to find M , we determine how many times the image

of each partition element crosses over each other element.

The characteristic equation for M is

λ4 − 2λ3 − 2λ+ 1 = 0,

which factorises to

(λ2 − (1 +
√

3)λ+ 1)(λ2 − (1−
√

3)λ+ 1) = 0;

the eigenvalues of M are then given by

λ1,2 =
1 +
√

3±
√

2
√

3

2
and λ3,4 =

1−
√

3± i
√

2
√

3

2
.

The largest of the real eigenvalues, λ1, is the dilatation factor of H. This is the factor

by which the measure of the unstable fibre bundles is stretched (and the measure of

the stable fibre bundles is contracted) on iteration by H.
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The characteristic equation and eigenvalues found here agree with those found

by Mackay in [34], minus the two eigenvalues equal to 1, indicating that this is the

4-element partition he suggested should exist. It is worth noting that the element

P2 in this partition is identical to element number 4 in Mackay’s partition. This

element seems to be somewhat key to building a Markov partition, since it covers

most of D3, the area where the fibre bundles point in the direction of u2 and s2.

This map has some important properties which allow the construction of a

Markov partition, such as the relationships between the sets A, B, and C and

having DH2
2 = −I. These properties prevent the orbits from being trapped in non-

hyperbolic areas for extended periods, and thus allow expansion to occur sooner

than, for example, in toral linked twist maps, where orbits can become trapped in

non-hyperbolic regions for a large number of iterates. As such, this map is a rather

special case within the context of compositions of shears; in particular, no Markov

partition exists for the systems we studied in Sections 3.1 and 3.2. Note that it has

been shown that pseudo-Anosov diffeomorphisms can often be obtained from Dehn

twists [23].

3.4 Random dynamical systems

In this section we discuss random dynamical systems. There are multiple ways in

which to introduce randomness to a system including, for example, incorporating

noise and/or choosing an initial condition at random; we will implement random-

ness via choosing a Jacobian matrix from a predetermined selection, at random,

on each iterate. In particular, we will study the systems formed by selecting two

Anosov diffeomorphisms of the form given by (17), and choosing each with a certain

probability on every iterate.

In order to define a random dynamical system, we first specify what we mean

by a cocycle over a dynamical system.
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Definition 3.5 ([28]). Let H : M → M be an invertible measure-preserving trans-

formation of a Lebesgue space (M,σ, µ) (with µ(M) = 1) and let GL(n,R) denote

the group of invertible linear transformations of Rn. Then for any measurable func-

tion A : M → GL(n,R) and x ∈M , if we set

A(x, i) = A(H i−1(x)) · · · A(x) for i > 0,

A(x, i) = A(H−i(x))−1 · · · A(H−1(x))−1 for i < 0,
(47)

and

A(x, 0) = idM ,

then it follows that

A(x, i+ k) = A(Hk(x), i)A(x, k). (48)

We call any measurable function A : M ×Z→ GL(n,R) satisfying (48) a measur-

able linear cocycle over H (or simply a cocycle).

In other words, A assigns to each point x on M the function A(x); similarly, for

an orbit x,H(x), . . . , H i(x), A assigns the functions A(x), A(H(x)), . . . , A(H i(x)).

The cocycle A(x, i) forms an ordered product of the functions assigned to each point

on the orbit.

We now define what we mean by a random dynamical system. Note that for the

systems we study in this section (and Chapter 4), and for any (invertible) discrete

time system, we have time T = Z.

Definition 3.6 ([5]). A measurable random dynamical system on the meas-

urable space (M,σ) over a metric dynamical system (Ω, H,P, (θ(t))t∈T ) with time T

is a mapping

φ : T × Ω×M →M, (t, ω, x) 7→ φ(t, ω, x),

with the following properties:

1. φ is σ(T )⊗H ⊗ σ, σ - measurable.
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2. The mappings φ(t, ω) := φ(t, ω, ·) : M →M form a cocycle over θ(·), i.e. they

satisfy

φ(0, ω) = idM for all ω ∈ Ω (if 0 ∈ T ), (49)

φ(t+ s, ω) = φ(t, θ(s)ω) ◦ φ(s, ω) for all s, t ∈ T, ω ∈ Ω. (50)

Note that, in this definition, Ω gives us the possible choices of Jacobian matrix we

can take at each iterate. P is a probability distribution, which assigns a probability

to each Jacobian matrix in Ω. We then apply at each iterate one of the elements of

Ω, at a rate given by the corresponding probability.

We now discuss a specific example of a random dynamical system; this is a

specific case of a family of random dynamical systems for which we find bounds

on the Lyapunov exponents in Chapter 4. Consider the system (T2, σ, A, µ), where

A : T2 → T2 is given by

A

x
y

 =

1 1

1 2

x
y

 , (51)

is an Anosov diffeomorphism. Similarly, consider the system (T2, σ, B, µ), where

B : T2 → T2 is given by

B

x
y

 =

1 2

1 3

x
y

 . (52)

We will study the random dynamical system on the measurable space (T2,R2) over

the metric dynamical system ({A,B},T2, {1
2
, 1

2
}, (t)t∈Z) given by H : Z× {A,B} ×

T2 → T2; that is, a map H : T2 → T2 which at each iterate chooses A with

probability 1
2
, and B with probability 1

2
.

Given our earlier discussion of the systems in Section 3.1, we can infer that the

cones

CE = {(x, y) ∈ R2 :
2

1 +
√

3
≤ x

y
≤ 2

1 +
√

5
},

and

CC = {(x, y) ∈ R2 :
2

1−
√

5
≤ x

y
≤ 2

1−
√

3
},
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are invariant under H, as they are mutually invariant under A and B; consequently,

they form the expanding subspace Eu
x and contracting subspace Es

x respectively.

In the infinite limit, all possible orbits except for those consisting entirely of As

and Bs (which occur with probability zero) will fall into CE upon forward iteration

of H for all vectors v ∈ R2; furthermore, in the case of the aforementioned orbits,

only the stable eigenvectors vsA and vsB respectively do not enter CE upon iteration.

We can find lower bounds upon the spectral norms of ‖Av‖‖v‖ and ‖Bv‖
‖v‖ for v ∈ CE,

which yield the minimum growth rates (w.r.t. the l2 norm) within the cone. We

obtain

min
v∈CE

{‖Av‖2

‖v‖2

}
= 2.6102, and min

v∈CE

{‖Bv‖2

‖v‖2

}
= 3.7321,

the former of which is the minimum possible growth rate within CE for H. This tells

us that the (maximal) Lyapunov exponent λ can be (almost everywhere) uniformly

bound from below by log(2.6102) = 0.9594.

Both this system and similar systems we will study in Chapter 4 possess many

similarities to the uniformly hyperbolic deterministic systems discussed in Section

3.1. The differences between the random and deterministic cases stem mainly from

the frequency with which specific orbits occur. Each orbit (of equal length) occurs

with equal probability in the random case (or, for a more general probability distri-

bution P, with an implicitly specified probability), whereas the measures of the sets

of points undergoing certain orbits need not be equal in the deterministic case. This

is important, since calculations of the Lyapunov exponent (and similarly bounds on

the Lyapunov exponent) need to take all possible orbits into account.

We can introduce randomness into the deterministic cases by choosing an initial

condition at random; this can have a large effect on FTLEs in the case of an inter-

mittently hyperbolic map such as the linked twist map, but in the case of the maps

in Section 3.1, the influence of the choice of initial condition diminishes quickly with

the number of iterates. In the random case, the choice of initial condition has no
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effect on the dynamics; variation in the FTLE also diminishes as the number of

iterates increases, however, it is always possible to have an unusually large number

of either As or Bs at any point on the orbit, which can yield a FTLE significantly

lower or higher than expected.

3.5 Summary

In this chapter we have studied various non-uniform systems formed via the com-

position of shear maps, as well as random dynamical systems. We have seen that

constructing maps in this way can lead to various properties and systems emerging,

including uniform and non-uniform hyperbolicity, and pseudo-Anosov maps.

We studied a generalization of the uniform Anosov diffeomorphisms defined in

Chapter 2, and found that they satisfied the conditions required for uniform hyper-

bolicity, but are not Anosov. We formed the subspaces required for uniform hyper-

bolicity from invariant cones for the map, as opposed to the eigenvectors which were

used in the uniform case. We find bounds upon the Lyapunov exponent of a specific

example of this type of system in Section 5.6.

We then discussed non-uniform hyperbolicity, which loosens the requirement

for uniform bounds upon the expansion and contraction rates. The example we

discussed was the linked twist map; we studied the sets of points which repeatedly

stay in the shear regions, and showed that orbits exist which remain in the shear

regions for any finite number of iterates. This result meant that we could not bound

the expansion rate of vectors in tangent space from below. Chapter 5 discusses a

method for bounding Lyapunov exponents for linked twist maps.

In Section 3.3 we discussed an example of a system studied extensively by Cerbelli

and Giona [14], and Mackay [34]. The map was found to be pseudo-Anosov, which is

a generalization of Anosov diffeomorphisms. We also constructed a Markov partition

for this map, using the method outlined by Demers and Wojtkowski [19].
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Finally, we defined random dynamical systems, and discussed how they differ

from deterministic systems. We gave a specific example of a system which chooses

an Anosov diffeomorphism at random on each iterate, and saw that its expansion

rate can be uniformly bound from below. We discuss a method for finding rigorous

elementary bounds upon the Lyapunov exponent for similar maps in Chapter 4.
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4 Bounding Lyapunov exponents of random

products of shear compositions

This chapter will discuss a method for obtaining an upper and a lower bound on

the largest Lyapunov exponent, λ, for random products of hyperbolic matrices;

in particular, those formed by the composition of shear matrices. The method

for calculating bounds on λ is a continuation of the work done by Sturman and

Thiffeault [54], who obtained explicit and elementary bounds for random products

of shear matrices.

The method utilises cones which are invariant under both of the randomly chosen

matrices (mutually invariant cones), the existence of which allow us to restrict our

search for the maximum and minimum possible growth rates for vectors (upon it-

eration) to just the vectors within these cones. We will also perform the relevant

calculations for three different norms in order to improve the bounds further.

To obtain these bounds, we will split the sequence of iterates up into subsequences

of smaller matrices, Ma,b, as in [54], in order to allow for diagonalisation of the matrix

products. Following this, we will improve upon the bounds further via a method

also discussed in [54], which involves considering the possible preceding matrices

within the larger product. This will allow us to narrow the invariant cones we use,

and thus narrow the range of vectors we consider within each cone.

In Section 4.1 we define the systems we will be studying in this chapter. In

Section 4.2 we discuss the Lyapunov exponents of these systems and ways in which

we might try to bound them. In Section 4.3 we find cones which are invariant under

both matrices in our system and determine when they exist. In Section 4.4 we

calculate the simplest version of the bounds using these cones, which consider only

one iterate of the system at a time. In Section 4.5 we improve upon these bounds

by considering multiple iterates of the system at once. In Section 4.6, we attempt
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to improve further upon the bounds in the previous section, particularly in cases

where the mutually invariant cone is wide, by finding a way to narrow the cone in

specific situations. Finally, in Section 4.7 we summarise what we find.

4.1 Systems formed by random products of shear composi-

tions

In this section we define the family of random dynamical systems for which we

will obtain rigorous bounds upon the Lyapunov exponent(s). Consider the system

(T2, σ, A, µ) where σ is the Borel σ-algebra for T2, µ is Lebesgue measure, and

A : T2 → T2, given by

A

x
y

 =

1 α

β 1 + αβ

x
y

 , (53)

is the composition of a horizontal shear of slope α and a vertical shear of slope β,

where α, β ∈ R. Similarly, consider the system (T2, σ, B, µ), where B : T2 → T2 is

given by

B

x
y

 =

1 γ

δ 1 + γδ

x
y

 . (54)

We will study the random dynamical system on the measurable space (T2,T2) over

the metric dynamical system ({A,B},T2, {1
2
, 1

2
}, (θ(t))t∈Z) given by H : Z×{A,B}×

T2 → T2; that is, a map H : T2 → T2 which at each iterate behaves as A with

probability 1
2
, and as B with probability 1

2
. In order to simplify notation we will

refer to both the systems and the maps described above as A and B respectively,

where no confusion arises.

The eigenvalues of the Jacobian matrix of A, DA (which we shall, again for

notational convenience, refer to as A where no confusion arises), are given by

λA± =
2 + αβ ±

√
αβ(4 + αβ)

2
, (55)
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and the respective eigenvectors by

vA± =

 2α

αβ ±
√
αβ(4 + αβ)

 . (56)

Note that λB± and vB± are obtained by swapping γ for α and δ for β in (55) and (56).

The systems A and B are both hyperbolic automorphisms provided the constants

α, β adhere to either

(i) αβ > 0, or

(ii) αβ < −4,

and similarly for γ, δ. The method we discuss will make use of invariant cones shared

by the matrices A and B, and as such we require these matrices to be hyperbolic in

order for invariant cones to exist for each matrix individually.

We will frequently refer to the ratio of the x and y components of vectors in

tangent space throughout this chapter for the purpose of comparison; in particular,

the ratios corresponding to the eigenvectors vA± and vB± are given by

rA± =
2α

αβ ±
√
αβ(4 + αβ)

, (57)

and

rB± =
2γ

γδ ±
√
γδ(4 + γδ)

(58)

respectively.

Note that λA+ is the unstable eigenvalue when αβ > 0 and the stable eigenvalue

when αβ < −4, and vice versa for λA−; the same properties hold for λB±, for the

corresponding γ and δ. We will label the stable and unstable eigenvectors of A as vsA

and vuA respectively, to avoid confusion in cases such as αβ > 0 and γδ < −4, where

vA+ and vB− are the unstable eigenvectors of each matrix. Similarly, we will refer to

the corresponding eigenvalues and ratios of components of the eigenvectors as λs,uA
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and rs,uA respectively. The possible orientations of vsA and vuA for the different cases

we will consider are shown in Figure 18. Knowing the positions of these vectors is

useful as, later in this chapter, we will use them to form the boundaries of invariant

cones for the map H.

4.2 Lyapunov exponents

Recall the Lyapunov exponents λ1,2 of a deterministic system G:

λ1,2(x, v) = lim
n→±∞

1

n
log ||DGn

xv||.

In the case of the random system H, the Jacobian matrix depends on our choice of

A or B at each iterate, but not on x. Furthermore, since our system is probabilistic,

we require the expected value of this quantity. The Lyapunov exponents of H are

therefore given by

λ1,2(v) = lim
n→±∞

1

n
E(log ||Hnv||). (59)

Note that this quantity was shown to converge almost everywhere by Furstenberg

and Kesten [25]. In this chapter we will study bounds upon the largest Lyapunov

exponent of H, λ1 = λ; note that since both A and B are measure-preserving, the

method will also obtain bounds upon the smallest Lyapunov exponent, λ2 = −λ.

The simplest rigorous upper bound for λ is obtained by assuming H picks the

matrix with the largest unstable eigenvalue (in modulus) at each iterate. In this

case we obtain

λ ≤ max{λA1 , λB1},

where λA1,B1 are the maximal Lyapunov exponents for A and B respectively. Any

upper bound we calculate must therefore be less than the maximum of λA1 and λB1

to be of any use. We cannot obtain a lower bound in a similar way (i.e. by taking the

lesser of λA1 and λB1). To see this, consider the case where α, β = 1 and γ, δ = −1.

The eigenvalues of A and B are given by λA± = λB± = 3±
√

5
2

, and so taking the lower
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(c) αβ < −4, α > 0, β < 0, for fixed α.
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(d) αβ < −4, α < 0, β > 0, for fixed α.

Figure 18: The regions which the stable and unstable eigenvectors vsA and vuA can inhabit

for various choices of α and β. In cases (c) and (d), the vectors vuA and vsA are found

on either side of the vector with slope −α2 , with their exact orientation depending on the

choice of β; varying β while keeping α fixed allows the eigenvectors to attain the ranges

shown in the figures.
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bound to be the maximal Lyapunov exponent of the system corresponding to the

smaller of these would yield λ = log |3+
√

5
2
| u 0.962. However, numerical calculation

of λ using Gram-Schmidt orthonormalization yields λ u 0.663, and thus our lower

bound must be invalid. The reason for this is that the vectors we consider when

calculating λ are constantly being shifted around, and so do not converge to vA+ or

vB+ for an infinite number of iterates, as is the case when calculating the Lyapunov

exponent of A or B individually. We therefore regularly observe expansion rates less

than the smaller of the two Lyapunov exponents of A and B in this case.

A common upper bound for λ is given by submultiplicativity of matrix norms

[30]. Let M2k be the set of matrices formed from all possible sequences of A and B

of length 2k. For example,

M20 = {A,B},

M21 = {AA,AB,BA,BB},

M22 = {AAAA,AAAB, . . . , BBBA,BBBB}.

An upper bound is then given by

Ek = 2−kE{log ||M2k ||}, (60)

where 2−k arises due to each matrix product in the set M2k corresponding to 2k

iterates of H. Note that, by submultiplicativity of matrix norms,

log ||Hn|| = log ||AABBABAA. . . AABAAA||,

≤
(
c1 log ||A. . . A||+ c2 log ||AA. . . B||+ . . . + c2k log ||B. . . B||

)
,

where ci is the number of times the ith matrix of the set M2k appears in the sequence

Hn. Thus

lim
n→∞

E{log ||Hn||} ≤ 2−2k
(

log ||A. . . A||+ . . . + log ||B. . . B||
)

= E{log ||M2k ||},

since ci
n
→ 2−2k as n→∞.
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The Ek’s will decrease monotonically to λ as k → ∞, for any choice of matrix

norm || · || and for any two matrices A and B that we choose. This is due to the fact

that as we increase k, the bound accounts for more of the underlying distribution.

For example, the sequences

AABBAABBAABB. . . and ABABABABABAB. . .

return the same frequencies for matrices inM20 , but different frequencies for matrices

in M21 . A and B need not be hyperbolic, nor formed by composition of shears,

for this bound to hold. However, in the case we are interested in, A and B are

hyperbolic, and we can use this fact to obtain a more practical upper bound than

Ek, and to also obtain a lower bound.

Let us consider Hnv0, i.e. applying the map H n times to a vector v0 in the

tangent space R2, where x0 is our initial condition. We obtain a random sequence

of A’s and B’s applied to our vector v0:

Hnv0 = AABABB . . . BBABv0.

Now consider ||Hnv0||. Let Hk = A if on the kth iterate we apply an A, and Hk = B

if on the kth iterate we apply a B. We have

||Hnv0|| = ||vn|| = ||Hnvn−1|| =
||Hnvn−1||
||vn−1||

· ||vn−1||,

where vn−1 = Hn−1v0. Continuing this process we obtain

||Hnv0|| =
||Hnvn−1||
||vn−1||

· . . . · ||H1v0||
||v0||

· ||v0||. (61)

Thus, to obtain an upper and lower bound on λ, we need to find a way to bound

||Hivi−1||
||vi−1||

(62)

for each i ∈ {1, ..., n}. To do this, we utilise the existence of a mutually invariant cone

for A and B; such a cone will be invariant under all applications of H. Since vectors
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are trapped within the cone for all iterates, finding the maximum and minimum

values of (62) for vectors within this cone will yield upper and lower bounds upon

this quantity for all iterates of H. To obtain bounds upon λ, we need to obtain

bounds for ||Hnv|| for any vector v in such a cone.

Explicitly evaluating ||Hnv|| (and subsequently λ) when the Jacobian matrix H

is subject to change can be difficult or impossible, since the growth of the norm is

dependent on the orientation of v; however in some special cases, such as Cerbelli and

Giona’s archetype for non-uniform chaos, the Lyapunov exponent can be formulated

explicitly. In the case where H is constant for all x, such as the Cat Map, we find that

repeated application of H aligns almost all vectors v with the unstable eigenvector

(see Lemma 4.1); when matrices are chosen at random it is possible to be pulled

away from this eigenvector by application of a different Jacobian, altering the rate

of expansion for subsequent iterates. Thus, in order to evaluate ||Hnv||, we need to

know how the orientation of v will change under application by A or B. To do this,

we will first define what we mean by alignment of vectors in 2 dimensions.

Definition 4.1. Let u = (u1, u2) and v = (v1, v2) be vectors in R2. We assign to

each of these vectors an angle θ ∈ [0, π] between themselves and the vector (−1, 0),

that is

θ(v) =
π

2
+ arctan

v1

v2

,

taking the appropriate limits for the ratios ±∞. Then the smallest angle between

the vectors is given by

θu,v = min
{
|θ(v)− θ(u)|, |π − θ(v) + θ(u)|

}
.

We say a vector u is more aligned with v than with w if

θu,v < θu,w.

Figure 19 shows the angle θu,v. The following lemma describes the alignment of

a vector after application by A.
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Figure 19: θu,v.

Lemma 4.1. Let v be a vector in the tangent space R2 of a point x ∈ T2, and let

A =

1 α

β 1 + αβ

 .

Let λuA and λsA be the unstable and stable eigenvalues of A, and vuA and vsA be their

corresponding eigenvectors. Then

1. if v /∈ {vuA, vsA}, we have θAv,vuA < θv,vuA .

2. if v ∈ {vuA, vsA}, Av = λv, for λ ∈ {λuA, λsA} respectively.

Proof. Part 2 is simply the equation for the eigenvectors of A, which v satisfies by

definition in this case. For Part 1, let v ∈ R2, then

v = c1v
u
A + c2v

s
A,

for some c1, c2 ∈ R. We have that

Av = c1Av
u
A + c2Av

s
A = c1λ

u
Av

u
A + c2λ

s
Av

s
A,

θv,vuA = min
{ ∣∣∣∣arctan

vuA1

vuA2

− arctan
c1v

u
A1 + c2v

s
A1

c1vuA2 + c2vsA2

∣∣∣∣ ,∣∣∣∣π − arctan
vuA1

vuA2

+ arctan
c1v

u
A1 + c2v

s
A1

c1vuA2 + c2vsA2

∣∣∣∣ },
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and

θAv,vuA = min
{ ∣∣∣∣arctan

vuA1

vuA2

− arctan
c1λ

u
Av

u
A1 + c2λ

s
Av

s
A1

c1λuAv
u
A2 + c2λsAv

s
A2

∣∣∣∣ ,∣∣∣∣π − arctan
vuA1

vuA2

+ arctan
c1λ

u
Av

u
A1 + c2λ

s
Av

s
A1

c1λuAv
u
A2 + c2λsAv

s
A2

∣∣∣∣ }.
Noting that 0 < |λsA| < 1 < |λuA|, we have either∣∣∣∣vuA1

vuA2

∣∣∣∣ < ∣∣∣∣c1λ
u
Av

u
A1 + c2λ

s
Av

s
A1

c1λuAv
u
A2 + c2λsAv

s
A2

∣∣∣∣ < ∣∣∣∣c1v
u
A1 + c2v

s
A1

c1vuA2 + c2vsA2

∣∣∣∣ ,
or ∣∣∣∣c1v

u
A1 + c2v

s
A1

c1vuA2 + c2vsA2

∣∣∣∣ < ∣∣∣∣c1λ
u
Av

u
A1 + c2λ

s
Av

s
A1

c1λuAv
u
A2 + c2λsAv

s
A2

∣∣∣∣ < ∣∣∣∣vuA1

vuA2

∣∣∣∣ .
Using this, we can conclude that∣∣∣∣arctan

vuA1

vuA2

− arctan
c1λ

u
Av

u
A1 + c2λ

s
Av

s
A1

c1λuAv
u
A2 + c2λsAv

s
A2

∣∣∣∣ < ∣∣∣∣arctan
vuA1

vuA2

− arctan
c1v

u
A1 + c2v

s
A1

c1vuA2 + c2vsA2

∣∣∣∣ ,
and hence

θAv,vuA < θv,vuA ,

as desired.

Lemma 4.1 tells us that applications of A or B will align our tangent vectors

with their respective unstable eigenvectors. If, for example, we always chose A’s for

our Jacobian, then Anv would begin to align with the unstable eigenvector of A, vuA,

as n → ∞ 5. Bounding the norm is then a matter of observing the growth rate of

the vector vuA, as for all v 6= vsA, we have

lim
n→∞

1

n
log ||Anv|| = lim

n→∞

1

n
log ||AnvuA||.

However, H chooses between 2 different matrices for its Jacobian, so this orientation

can vary significantly. For example, if we imagine H choosing a long string of A’s,

then Hnv will begin to align with vuA. If H then chooses a B, our vector will begin

5Provided v 6= vsA, the stable eigenvector of A, in which case its orientation will not change.
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to align with vuB instead, and this will have an impact on the growth rate of the

vector. We will use this information to help us in the construction of an invariant

cone for H.

Furthermore, Lemma 4.1 does not tell us how we approach the unstable eigen-

vectors, merely that the angle between the image of our vector and the unstable

eigenvector shrinks after each iterate. This is important, since the manner of this

convergence will determine our choice of an invariant cone. If a vector approaches

the eigenvector from one side only, then we need only consider the vectors on one

side of the eigenvector to obtain an invariant cone. If the vector instead approaches

by flipping from one side of the eigenvector to the other with each iterate, then our

cone will need to contain vectors on both sides of the eigenvector in order to account

for this. We discuss the construction of these invariant cones in the next section.

4.3 Mutually invariant cones

In order to obtain bounds upon the quantity given by (62), we will restrict the range

of vectors we consider from the entire tangent space to a smaller bundle of tangent

vectors: an invariant cone. In order for a cone to be invariant under applications of

H, it must be invariant under both A and B. Recall Theorem 2.4, which states that

an invariant cone for a 2× 2 diagonalizable matrix A with non-negative eigenvalues

is given by any cone which contains vuA and whose interior does not contain vsA.

Hence we can find an invariant cone of this form for the matrix A in the cases when

αβ > 0.

When αβ < −4, Lemma 4.1 tells us that applications of A to a vector v 6= vsA

will cause v to become more aligned with vuA than vuA is with vsA, and repeated

applications of A will cause the ratio of the x and y components of v, rv, to tend

to ruA. Thus the same cone given by Theorem 2.4 will work in this case as well;

the difference is that the orientation of the vector will flip after each iterate in the



101

cases where the eigenvalues are negative. In other words, a vector pointing into

the positive quadrant, x, y ≥ 0, will flip its orientation into the negative quadrant,

x, y ≤ 0, on the following application of A, and vice versa. The invariant cone for

any matrix A of the form (53) is given by the following Lemma.

Lemma 4.2. Let A be given by (53) and let CA be the cone with boundaries given

by the vectors u = (u1, u2) and v = (v1, v2), with the following conditions:

1. Any of the following hold:

(a) rsA ≤ ruA, and ru = u1

u2
∈ [rsA, r

u
A],

(b) rsA ≥ ruA, and ru ∈ [ruA, r
s
A],

(c) 0 < rsA <∞, −∞ < ruA < 0 and ru ∈ [rsA,∞] ∪ [−∞, ruA],6

(d) 0 < ruA <∞, −∞ < rsA < 0 and ru ∈ [ruA,∞] ∪ [−∞, rsA],

2. θu,vuA ≤ θvsA,vuA ,

3. θv,vuA ≤ π − θvsA,vuA .

Then CA is an invariant cone for A.

A sketch of CA is shown in Figure 20.

Proof. From Lemma 4.1, we know that both Au and Av are more aligned with vuA

than u and v respectively. Therefore, by continuity of A, all vectors w between u

and vuA must have that Aw is more aligned with vuA than Au, and similarly for all

vectors w between v and vuA. We therefore have ACA ⊂ CA, and thus CA is invariant

under A.

6The closed boundaries on ±∞ here are to indicate the inclusion of the vectors (1, 0) and (−1, 0)

as possibilities for the vector u, and similarly in part 1d.
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0

y

x

vuA

vsA

u v

CA

Figure 20: An example of a possible cone CA in tangent space, for the case where α, β > 0.

The boundaries of CA are given by the vectors u and v (green lines). Note that CA is

invariant under A for u up to and including vsA.

The most important factor in the construction of mutually invariant cones for A

and B is the invariance of the eigenvectors under their respective maps. The idea

will be to create a cone which traps the tangent vector between two eigenvectors

- one boundary of the cone is impassable under applications by A, and the other

boundary by B. By Lemma 4.2, this will only be possible if:

1. both of vuA and vuB are contained within the cone, and

2. neither of vsA nor vsB are contained in the interior of the cone.

The following theorem tells us the conditions required for such a cone to exist.

Theorem 4.1. Let A and B be given by (53) and (54) respectively and, without loss

of generality, assume that

ruA ≤ ruB.

Then a cone which is invariant under applications of both A and B exists if and

only if either
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(i) rsA ≤ ruA and rsB ≥ ruB, or

(ii) rsA ≥ ruB and rsB ≤ ruA, or

(iii) rsA, r
s
B ≥ ruA, and rsA, r

s
B ≤ ruB.

Furthermore, the minimal such cone for cases (i) and (ii), is given by

CAB =
{

(x, y) ∈ TxT2 : ruA ≤
x

y
≤ ruB

}
,

and for case (iii) by

ĈAB = CAB
C ∪ {vuA, vuB}.

Proof. By Lemma 4.2, a cone is invariant under A or B if it contains the respective

unstable eigenvector and its interior does not contain the respective stable eigen-

vector. Hence, in order for a single cone to be invariant under both A and B, we

must meet all four of these conditions at once. In other words, we must be able to

find an invariant cone for A which contains vuB but whose interior does not contain

vsB. This can only occur if either

rsA ≤ ruA and rsB ≥ ruB,

or

rsA ≥ ruB and rsB ≤ ruA,

or

rsA, r
s
B ≥ ruA, and rsA, r

s
B ≤ ruB,

and thus this proves the first statement.

To prove the second statement, we note that any cone which contains both vuA

and vuB is by definition a (possibly non-strict) superset of either CAB or ĈAB, and

so by taking the intersection of all such invariant cones under A and B we obtain

the minimal cone, CAB, in cases (i) and (ii), or ĈAB in case (iii).
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0 x

y

x/y = 1

vuBvuA

CAB

Figure 21: The cone CAB in tangent space, for the case where α, β, γ, and δ are positive

integers.

Note that the cones CAB and ĈAB given by Theorem 4.1 belong to the set of

expansion cones discussed by Ayyer and Stenlund in [7] and are the minimal choice

for such cones. The cones CAB are analogous to the cones C+ and C− studied by

Sturman and Thiffeault in the case of random products of shear matrices; CAB has

the capacity to be both narrower and wider than these cones, depending on the

choice of α, β, γ, δ.

An example of CAB for the case when α, β, γ, and δ are positive integers is shown

in Figure 21. Note that the unstable eigenvectors partition tangent space into two

distinct cones, CAB and CAB
C . Theorem 4.1 tells us that in order to discover if a

particular pair of matrices (of the appropriate form) possess a mutually invariant

cone, we must calculate their eigenvectors, and then determine whether the stable

eigenvectors are contained within the same partition element (see Figure 22). If

they are, then a mutually invariant cone for A and B exists, and if not, then no

such cone exists. From this point forward, we will refer to the minimal, mutually
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x

y

vuAvuB

vsA vsB

0

(a) α = 1, β = 1, γ = −1, δ = −1.

0 x

y

vuA

vuB

vsA

vsB

(b) α = 1, β = 100, γ = 5, δ = −1.

Figure 22: Examples of cases where a mutually invariant cone for the matrices A and B

either (a) can or (b) cannot exist.

invariant cone for the matrices A and B as CAB, regardless of the case of Theorem

4.1 we are studying, in order to simplify notation. Note that CAB is an invariant

cone for any product of A and B, and is therefore also an invariant cone for the

system H.

Note that not all A and B containing only integer entries satisfy Theorem 4.1.

An example of a case which does not is α = 1, β = 100, γ = 5, δ = −1. In this case

(and others like it) the stable eigenvectors are located on either side of vuB, and so

the cone CAB is not invariant (see Figure 22b).

4.4 Calculating the bounds

Now that we have found an invariant cone for H, we can find the maximum and

minimum values of ||Hivi−1||
||vi−1|| for a vector in the cone for a given norm. For a vector
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v = (x, y) ∈ R2, we will consider the l2 norm, given by

||v||2 =
√
x2 + y2, (63)

the l1 norm, given by

||v||1 = |x|+ |y|, (64)

and the l∞ norm, given by

||v||∞ = max
{
|x|, |y|

}
. (65)

For each of these, we will calculate a strict upper and lower bound upon the value

of both ||Av||
||v|| and ||Bv||

||v|| for v ∈ CAB. Our upper and lower bounds on λ, which we

label Φ0 and Ψ0 respectively, are given by inputting the bounds on ||Av||
||v|| and ||Bv||

||v||

into (59); this is summarised by the following theorem.

Theorem 4.2. Let H be the random dynamical system on the measurable space

(T2,T2) over the metric dynamical system ({A,B},T2, {1
2
, 1

2
}, (θ(t))t∈Z) given by

H : Z× {A,B} ×T2 → T2, where A and B are given by (53) and (54) respectively.

Then an upper bound for the maximal Lyapunov exponent λ is

Φ0(A,B) = lim
n→∞

1

n
log
(

max
v∈CAB

{ ||Av||
||v||

})a
·
(

max
v∈CAB

{ ||Bv||
||v||

})b
,

=
1

2
log
(

max
v∈CAB

{ ||Av||
||v||

})
+

1

2
log
(

max
v∈CAB

{ ||Bv||
||v||

})
,

(66)

where a and b are the number of occurrences of A and B respectively; note that a
n

and b
n
→ 1

2
as n→∞. Similarly, we obtain the lower bound

Ψ0(A,B) =
1

2
log
(

min
v∈CAB

{ ||Av||
||v||

})
+

1

2
log
(

min
v∈CAB

{ ||Bv||
||v||

})
. (67)

It is worth noting that both Φ0 and Ψ0 reduce to (8) when A = B. In this

case the invariant cone can be taken to be the line vuA, the maximum and minimum

growth rates are equal, and we obtain the Lyapunov exponent of A.
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In the case of the l2 norm, the quantity ||Av||2||v||2 is the spectral norm of the matrix

A, usually denoted ||A|| (see, for example, [52]). We have that

max
v 6=0

||Av||22
||v||22

= max
v 6=0

vTATAv

||v||22
= λuATA,

and similarly

min
v 6=0

||Av||22
||v||22

= min
v 6=0

vTATAv

||v||22
= λsATA,

where λu,s
ATA

are the unstable and stable eigenvalues of ATA respectively. Note that

λu,s
ATA

are always positive. These give us the maximum and minimum growth rates

respectively:

max
v 6=0
||A|| =

√
λu
ATA

and min
v 6=0
||A|| =

√
λs
ATA

.

These growth rates are obtained at the corresponding eigenvectors of ATA, and

the spectral norm is monotonic between these eigenvectors. This raises an issue,

as it is possible for these vectors to be within the interior of CAB, and thus our

maximum/minimum is not always obtained on the boundaries of the cone. In other

words, if we were to write

||A|| = f(z),

where z = x/y, we would find that this function is not always monotonic over CAB.

The following lemma takes into account the cases where vuATA or vuBTB are either in

the interior or exterior CAB. In the lemma and proof, vu,s
ATA

are the unstable and

stable eigenvectors of ATA respectively.

Lemma 4.3. Let A and B of the form given by (53) and (54). Then we obtain the

following upper bounds for ||Av||2||v||2 for v ∈ CAB:

1. If vuATA ∈ CAB then,
||Av||2
||v||2

≤
√
λu
ATA

,

2. If vuATA /∈ CAB then,

||Av||2
||v||2

≤ max
{ ||AvuA||2
||vuA||2

,
||AvuB||2
||vuB||2

}
.
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We also obtain the following lower bounds for ||Av||2||v||2 for v ∈ CAB:

1. If vsATA ∈ CAB then,
||Av||2
||v||2

≥
√
λs
ATA

,

2. If vsATA /∈ CAB then,

||Av||2
||v||2

≥ min
{ ||AvuA||2
||vuA||2

,
||AvuB||2
||vuB||2

}
.

Note that we can restate this lemma and proof to give us the upper and lower

bounds of ||Bv||||v|| for v ∈ CAB, by substituting vu,s
BTB

for vu,s
ATA

and λu,s
BTB

for λu,s
ATA

in

the formulas.

Proof. First, let us consider the upper bounds. If vuATA ∈ CAB, then we attain our

upper bound for ||A|| when v = vuATA ∈ CAB, giving us max{ ||Av||||v|| } =
√
λu
ATA

.

Otherwise, vuATA /∈ CAB, and hence the spectral norm is monotonic on CAB; we

therefore attain our upper bound when v is a vector on the boundary of CAB, which

will be either vuA or vuB, depending on our choices of α, β, γ, δ.

Now, let us consider the lower bounds. If vsATA ∈ CAB, then we attain our lower

bound for ||A|| when v = vsATA ∈ CAB, giving us min{ ||Av||||v|| } =
√
λs
ATA

. Otherwise,

vsATA /∈ CAB, and the spectral norm is monotonic over CAB; we therefore attain our

lower bound when v is a vector on the boundary of CAB, which will be either vuA or

vuB, depending on our choices of α, β, γ, δ.

We now consider an explicit example of calculating Φ0 and Ψ0 using only the l2

norm.

Example 4.1. Consider the case where we choose

A

x
y

 =

1 1

1 2

x
y


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and

B

x
y

 =

1 1

2 3

x
y

 ,

each with probability 1
2
, at each iterate of our system H. The eigenvectors of A and

B are

vu,sA =

 2

1±
√

5

 , vu,sB =

 2

2± 2
√

3

 ,

respectively, yielding the minimal, mutually invariant cone

CAB =
{

(x, y) ∈ R2 :
2

2 + 2
√

3
≤ x

y
≤ 2

1 +
√

5

}
,

which is shown in Figure 23a. The eigenvectors of the matrices ATA and BTB are

vu,s
ATA

=

 2

1±
√

5

 = vu,sA ,

since A is symmetric, and

vu,s
BTB

=

 14

5±
√

221


respectively. Hence we obtain the following upper bounds:

max
v∈CAB

{ ||Av||2
||v||2

}
=
√
λu
ATA
≈ 2.618,

since vuATA ∈ CAB, and

max
v∈CAB

{ ||Bv||2
||v||2

}
= max

{ ||BvuB||2
||vuB||2

,
||BvuA||2
||vuA||2

}
=
||BvuA||2
||vuA||2

≈ 3.857.

Similarly, we also obtain the following lower bounds:

min
v∈CAB

{ ||Av||2
||v||2

}
=
||AvuB||2
||vuB||2

≈ 2.566,

min
v∈CAB

{ ||Bv||2
||v||2

}
=
||BvuB||2
||vuB||2

= λuB = 2 +
√

3 ≈ 3.732.
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0 x

y

(a) Example 4.1.

0 x

y

(b) Example 4.2.

Figure 23: The cones CAB from Examples 4.1 and 4.2. In Example 4.2 the cone is much

wider, and this leads to the gap between the bounds Ψ0 and Φ0 being significantly larger

than in Example 4.1.

Substituting these values into (66) and (67) yields

Ψ0 = 1.130 ≤ λ ≤ 1.156 = Φ0 (to 3.d.p.).

Using Gram-Schmidt orthonormalization to calculate λ over 500000 iterates of H

yields

λ ≈ 1.144.

The gap between the bounds in Example 4.1 is fairly small since the cone CAB is

fairly narrow. Specifically, using the estimate of λ as a baseline, we see a percentage

error of −1.22% for Ψ0 and +1.05% for Φ0. The simplest upper bound is given by

max{λA, λB} = log(2 +
√

3) = 1.317, which is a percentage error of +15.12%; we

therefore see a significant improvement between Φ0 and the simplest bound, by a

factor of 14.4. Example 4.2 considers a case where the cone is wider.



111

Example 4.2. Consider instead the case where we choose

A

x
y

 =

1 1

1 2

x
y


and

B

x
y

 =

 1 −1

−1 2

x
y

 .

In Example 4.1 we calculated vu,sA and vu,s
ATA

. Since B is also symmetric, we obtain

vu,sB = vu,s
BTB

=

 −2

1±
√

5

 .

The minimal, mutually invariant cone is

CAB =
{

(x, y) ∈ R2 :
−2

1 +
√

5
≤ x

y
≤ 2

1 +
√

5

}
,

which in this case contains both vuATA and vuBTB (see Figure 23b). Note further that

this cone is much wider (i.e. contains a wider range of ratios of vectors) than the

cone in Example 4.1. We obtain the upper bounds

max
v∈CAB

{ ||Av||2
||v||2

}
=
||AvuA||2
||vuA||2

= λuA =
3 +
√

5

2
≈ 2.618,

max
v∈CAB

{ ||Bv||2
||v||2

}
=
||BvuB||2
||vuB||2

= λuB =
3 +
√

5

2
≈ 2.618,

and the lower bounds

min
v∈CAB

{ ||Av||2
||v||2

}
=
||AvuB||2
||vuB||2

≈ 1.220,

min
v∈CAB

{ ||Bv||2
||v||2

}
=
||BvuA||2
||vuA||2

≈ 1.220.

We therefore obtain the following bounds on λ:

Ψ0 = 0.199 ≤ λ ≤ 0.962 = Φ0 (to 3.d.p.).
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Using Gram-Schmidt orthonormalization to calculate λ over 500000 iterates of H

yields

λ ≈ 0.662.

The percentage errors in this case, again using the estimate for λ as a baseline, are

−69.94% for Ψ0 and +45.32% for Φ0, which are drastically larger than the errors we

saw for Example 4.1; furthermore, there is no improvement over the simplest upper

bound, given by max{λA, λB}, in this particular case (this is due to the matrices A

and B sharing the same eigenvalues).

These examples demonstrate that the accuracy of the bounds Ψ0 and Φ0 depends

on our choices of the matrices A and B, and in particular on the width of their

mutually invariant cone.7 The narrower the cone, the closer the bounds will be to

the true Lyapunov exponent. The accuracy of the bounds does also depend on the

number of iterates of H we consider at once - so far we have only considered finding

bounds upon one iterate of H at a time, however we will later improve upon this

by considering matrices of the form Ma,b = AaBb, which will yield more accurate

bounds. However, we will still find that these improved bounds are limited by the

cone CAB, and we will discuss ways to try to improve upon this.

Let us now consider the l∞ norm. We have

||Av||∞
||v||∞

=
max

{
|x+ αy|, |βx+ (1 + αβ)y|

}
max

{
|x|, |y|

} . (68)

Graphs of ||Av||∞||v||∞ against x
y

for particular choices of α and β are shown in Figure

24. The l∞ norm is monotonic between its maximum and minimum values for all

v ∈ R2, so in order to determine the maximum and minimum values within CAB,

we need to know whether the vectors which yield these values are in CAB.

7So far we have only demonstrated this in the case of the l2 norm, however this problem arises

with the l1 and l∞ norms as well, and also if we pick the best bounds from any of these norms.
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(a) α = β = 1. (b) α = β = −1.

Figure 24: Plots of the quantity ||Av||∞||v||∞ for vectors of the form (x/y, 1).

Consider the unit ball centred at (0, 0) for the l∞ norm, Bl∞ (see Figure 25a).

This ball contains all vectors v for which ||v||∞ = 1. In order to find the vectors

which maximise and minimise ||Av||∞||v||∞ , we need to find the vectors v ∈ Bl∞ for which

||Av||∞ is maximised or minimised, since ||v||∞ = 1. The quantity ||Av||∞
||v||∞ is then

maximised or minimised along any scalar multiple of these vectors.

The image of Bl∞ has corners as follows:

A

1

1

 =

1 α

β 1 + αβ

1

1

 =

 1 + α

β + 1 + αβ

 ,

A

−1

1

 =

 α− 1

1 + αβ − β

 ,

A

−1

−1

 =

 −1− α

−β − 1− αβ

 ,

A

 1

−1

 =

 1− α

β − 1− αβ

 .

The following lemma uses the above to tell us the vectors v for which ||Av||∞
||v||∞ is

maximised and minimised for all permitted choices of α and β.
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0
x

y

1

1

−1

−1

(a) The l∞ norm unit ball, Bl∞ .

x

y

(b) Extending Bl∞ when α = β = 1.

Figure 25: In order to find the vector which minimises ||Av||∞, we extend Bl∞ from the

origin until it intersects ABl∞ .

Lemma 4.4. Let A be given by (53). Let vmax, vmin ∈ R2 be the vectors for which

the quantity ||Av||∞||v||∞ is maximised and minimised for all v ∈ R2 respectively. Then:

(i) if α, β > 0,

vmax = (1, 1), vmin = (−αβ − α− 1, β + 1).

(ii) if α, β < 0,

vmax = (−1, 1), vmin = (αβ + α + 1, β + 1).

(iii) if α < 0, β > 0 and αβ < −4,

vmax = (−1, 1), vmin = (−αβ − α− 1, β + 1).

(iv) if α > 0, β < 0 and αβ < −4,

vmax = (1, 1), vmin = (αβ + α + 1, β + 1).

Proof. In all cases, the maximum x and y coordinates (in modulus) of ABl∞ are

attained at its corners, or in other words, at the image of one of the corners of
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Bl∞ . This means our maximum value for ||Av||∞ for v ∈ Bl∞ is always attained by

either the vector (1, 1) (and (−1,−1)), or (−1, 1) (and (1,−1)). In the cases where

α > 0, we have that the largest x coordinate in modulus is 1 + α, and the largest y

coordinate in modulus is (β + 1 + αβ), yielding vmax = (1, 1) (or (−1,−1)). When

α < 0, we instead have that the largest x coordinate in modulus is 1 − α, and the

largest y coordinate in modulus is (1 +αβ−β), yielding vmax = (−1, 1) (or (1,−1)).

The minimum in each of these cases is attained by expanding an l∞ ball from

the origin until it meets with the image of ABl∞ (see Figure 25b). The point at

which the two meet yields the vector v whose pre-image is A−1v = vmin. The first

point of the expanding ball to intersect with ABl∞ will be a corner8, and so will

be the pre-image of either (1, 1) or (−1, 1). In the cases where β > 0, we find

vmin = A−1(−1, 1)T , and in the cases where β < 0, we find vmin = A−1(1, 1)T .

In order to determine what the maximum and minimum values for ||Av||∞||v||∞ are

for v ∈ CAB, we first check if either (or both) of vmax or vmin is contained in CAB.

If so, then the respective maximum or minimum will occur at that vector. We can

then take our other bound (if needed) to be the minimum or maximum respectively

of the boundary vectors to CAB, since the l∞ norm is monotonic between vmax and

vmin. This idea is summarised in the following lemma.

Lemma 4.5. Let A and B be given by (53) and (54) respectively, and let vmax

and vmin, given by Lemma 4.4, be the vectors which maximise and minimise ||Av||∞||v||∞

respectively for all v ∈ R2. Then we obtain the following upper bounds on ||Av||∞
||v||∞ for

v ∈ CAB:

U1. If vmax ∈ CAB, then
||Av||∞
||v||∞

≤ ||Avmax||∞
||vmax||∞

.

8Unless the slope of the edges between subsequent corners of ABl∞ is either 0 or ∞, neither of

which are possible given our restrictions on α and β.
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U2. If vmax /∈ CAB, then

||Av||∞
||v||∞

≤ max
{ ||AvuA||∞
||vuA||∞

,
||AvuB||∞
||vuB||∞

}
.

We also obtain the following lower bounds on ||Av||∞
||v||∞ for v ∈ CAB:

L1. If vmin ∈ CAB, then

||Av||∞
||v||∞

≥ ||Avmin||∞
||vmin||∞

.

L2. If vmin /∈ CAB, then

||Av||∞
||v||∞

≥ min
{ ||AvuA||∞
||vuA||∞

,
||AvuB||∞
||vuB||∞

}
.

Proof. Clearly if the condition for U1. is met then, by Lemma 4.4, ||Av||∞||v||∞ is maxim-

ised at vmax, and similarly if the condition for L1. is met, then ||Av||∞
||v||∞ is minimised

at vmin. The l∞ norm is monotonic between these vectors, and so if one (or both)

of these vectors is not located within CAB, we find the maximum (or minimum) for

v ∈ CAB by taking the maximum (or minimum) of the value of ||Av||∞||v||∞ for v on the

boundaries of CAB, or in other words for v ∈ {vuA, vuB}.

We now undergo a similar process to obtain upper and lower bounds on ||Av||1
||v||1 ,

that is, using the l1 norm instead of the l∞ norm. We have

||Av||1
||v||1

=
|x+ αy|+ |βx+ (1 + αβ)y|

|x|+ |y|
. (69)
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(a) The l1 norm unit ball, Bl1 .

x

y

(b) Extending Bl1 when α = β = 1.

Figure 26: In order to find the vector which minimises ||Av||1, we extend Bl1 from the

origin until it intersects ABl1 .

We again consider the unit ball centred around (0, 0), now for the l1 norm, which

we label Bl1 (see Figure 26a). The corners of the image, ABl1 , are as follows:

A

1

0

 =

1

β

 ,

A

0

1

 =

 α

1 + αβ

 ,

A

−1

0

 =

−1

−β

 ,

A

 0

−1

 =

 −α

−1− αβ

 .

The following lemma uses the above to tell us the vectors v for which ||Av||1
||v||1 is

maximised and minimised for all permitted choices of α and β.

Lemma 4.6. Let A be given by (53). Let vmax, vmin ∈ R2 be the vectors upon which

the quantity ||Av||1||v||1 is maximised and minimised for all v ∈ R2 respectively. Then:
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(i) if αβ > 0 and |α| ≥ |β|
|β|+1

,

vmax = (0, 1), vmin = (αβ + 1,−β).

(ii) if αβ > 0 and |α| ≤ |β|
|β|+1

,

vmax = (1, 0), vmin = (αβ + 1,−β).

(iii) if αβ < −4 and |α| ≥ |β|+2
|β|+1

,

vmax = (0, 1), vmin = (αβ + 1,−β).

(iv) if αβ < −4 and |α| ≤ |β|+2
|β|+1

,

vmax = (1, 0), vmin = (αβ + 1,−β).

Proof. When calculating where we obtain vmax for the various cases, we note that

this maximum must be attained at one of the corners of ABl1 . In the case where the

slope of the edge between subsequent corners (for example, the corners (α, 1 + αβ)

and (1, β) when α, β > 0) is equal to one, we would still attain a maximum at these

corners, but also at any point on the edge connecting them - however this case is

not possible given our restrictions on α and β.

When αβ > 0, we have that

1 + |β| ≥ |α|+ |1 + αβ|,

provided

|α| ≤ |β|
|β|+ 1

.

Thus the maximum is attained at the pre-image of (1, β) - (1, 0) - in this case.

Otherwise, we obtain our maximum at the pre-image of (α, 1+αβ) - (0, 1). Similarly,

when αβ < −4, we have that

1 + |β| ≥ | − α|+ | − 1− αβ|,
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provided

|α| ≤ |β|+ 2

|β|+ 1
,

and the maximum is attained at (1, 0) in this case, and (0, 1) otherwise.

To obtain the minimums, we note that the slopes of the edges of ABl1 which

cross the y-axis are always greater than one in modulus, and thus the first vector

of an l1 ball to intersect them will be (1, 0). Hence, in all cases, vmin = A−1(1, 0) =

(αβ + 1,−β).

We now state the analogous result to Lemma 4.5 for the l1 norm.

Lemma 4.7. Let A and B be given by (53) and (54) respectively, and let vmax

and vmin, given by Lemma 4.6, be the vectors which maximise and minimise ||Av||1||v||1

respectively for all v ∈ R2. Then we obtain the following upper bounds on ||Av||1
||v||1 for

v ∈ CAB:

U1 If vmax ∈ CAB, then
||Av||1
||v||1

≤ ||Avmax||1
||vmax||1

.

U2 If vmax /∈ CAB, then

||Av||1
||v||1

≤ max
{ ||AvuA||1
||vuA||1

,
||AvuB||1
||vuB||1

}
.

We also obtain the following lower bounds on ||Av||1
||v||1 for v ∈ CAB:

L1 If vmin ∈ CAB, then
||Av||1
||v||1

≥ ||Avmin||1
||vmin||1

.
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L2 If vmin /∈ CAB, then

||Av||1
||v||1

≥ min
{ ||AvuA||1
||vuA||1

,
||AvuB||1
||vuB||1

}
.

Proof. Noting that the l1 norm, like the l∞ norm, is monotonic between its maximum

and minimum, the proof of this lemma is identical to that of Lemma 4.5.

We can calculate the bounds Φ0 and Ψ0 for any of these norms and obtain

rigorous upper and lower bounds upon λ. Thus, by choosing the smallest Φ0 and

largest Ψ0, we obtain the best bounds upon λ using these three norms. In the

following example we return to the systems we considered in Examples 4.1 and 4.2,

calculate Φ0 and Ψ0 for the l∞ and l1 norms using the above lemmas, and compare

these to what we obtained when using the l2 norm to see if any improvement is

made. Note that we use the notation Φ
(k)
0 and Ψ

(k)
0 for k ∈ {1, 2,∞} to indicate Φ0

and Ψ0 evaluated using the lk norm.

Example 4.3. First, consider the system studied in Example 4.1. We have α, β > 0,

thus for A, vAmax∞ = (1, 1) and vAmin∞ = (−3, 2). Furthermore, we have

|α| = 1 ≥ |β|
|β|+ 1

=
1

2
,

so vAmax1 = (0, 1) and vAmin1 = (2,−1). These conditions also hold for B, and we

obtain vBmax∞ = (1, 1), vBmin∞ = (−4, 3), vBmax1 = (0, 1), and vBmin1 = (3,−2).

We note that none of these vectors are contained within the cone CAB, so our max-

imum and minimum are attained upon the boundaries of the cone for both ||Av||||v|| and

||Bv||
||v|| using both norms. Taking into account whether the norms are increasing or

decreasing between vuB and vuA, the l∞ norm yields the upper bound

Φ
(∞)
0 =

1

2
log
||AvuA||∞
||vuA||∞

+
1

2
log
||BvuA||∞
||vuA||∞

=
1

2
log(

3 +
√

5

2
) +

1

2
log(2 +

√
5) u 1.203,
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and the lower bound

Ψ
(∞)
0 =

1

2
log
||AvuB||∞
||vuB||∞

+
1

2
log
||BvuB||∞
||vuB||∞

=
1

2
log(

3 +
√

3

2
) +

1

2
log(2 +

√
3) u 1.089,

while the l1 norm yields the upper bound

Φ
(1)
0 =

1

2
log
||AvuB||1
||vuB||1

+
1

2
log
||BvuB||1
||vuB||1

=
1

2
log(1 +

√
3) +

1

2
log(2 +

√
3) u 1.161,

and the lower bound

Ψ
(1)
0 =

1

2
log
||AvuA||1
||vuA||1

+
1

2
log
||BvuA||1
||vuA||1

=
1

2
log(

3 +
√

5

2
) +

1

2
log(

5 +
√

5

2
) u 1.124.

Thus, in this case, the bounds obtained via the l1 and l∞ norms are worse than those

obtained via the l2 norm.

Now consider the system studied in Example 4.2. We now have that γ, δ < 0, so

vBmax∞ = (−1, 1) and vBmin∞ = (1, 0). We still have

|γ| = 1 ≥ |δ|
|δ|+ 1

=
1

2
,

so vBmax1 = (0, 1) and vBmin1 = (2, 1). Note that both of vAmax1 and vBmax1 are

contained within CAB in this case. The l∞ norm yields the upper bound

Φ
(∞)
0 =

1

2
log
||AvuA||∞
||vuA||∞

+
1

2
log
||BvuB||∞
||vuB||∞

= log(
3 +
√

5

2
) u 0.962,

and the lower bound

Ψ
(∞)
0 =

1

2
log
||AvuB||∞
||vuB||∞

+
1

2
log
||BvuA||∞
||vuA||∞

= log(
5−
√

5

2
) u 0.324,
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(a) α = β ∈ {1, . . . , 10}. (b) α = β ∈ {−10, . . . ,−1}.

Figure 27: Φ
(k)
0 and Ψ

(k)
0 , k ∈ {1, 2,∞}, for γ = 1, δ = 2, for various α = β.

while the l1 norm yields the upper bound

Φ
(1)
0 =

1

2
log
||AvAmax1||1
||vAmax1||1

+
1

2
log
||BvBmax1||1
||vBmax1||1

= log(3) u 1.099,

and the lower bound

Ψ
(1)
0 =

1

2
log
||AvuB||1
||vuB||1

+
1

2
log
||BvuB||1
||vuB||1

=
1

2
log(
−9 + 5

√
5

2
) +

1

2
log(

3 +
√

5

2
) u 0.524.

Thus we obtain no improvement upon Φ0, however the l1 norm provides the best Ψ0

in this case.

Figure 27 shows Φ0 and Ψ0 for each of the l2, l1 and l∞ norms, fixing γ = 1,

δ = 2, for a range of values of α = β. The cones CAB are much wider for the cases

shown in Figure 27b, and we see that the gap between the bounds is much wider as

a result.

In the upcoming sections we will improve upon the bounds Φ0 and Ψ0 using

two methods. In Section 4.5 we will consider looking at longer chains of matrices,

of the form Ma,b = AaBb, in order to take into account the differing growths rates
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that may occur under these longer chains. Furthermore, this method will allow us

to capture more of the qualities of the underlying distribution than simply looking

at one iterate at a time, as we did with Φ0 and Ψ0. In Section 4.6 we will try to

eliminate the large gap that we observe between the bounds as the width of the cone

CAB widens. To do this, we will discuss a way to look at narrower cones - subsets

of CAB - for each of the terms in our bounds, by considering the matrices which

precede each Ma,b.

4.5 Improving the bounds

In this section we will improve upon the accuracy of the bounds Φ0 and Ψ0 by

considering multiple iterates of our infinite sequence of A’s and B’s at once. To do

this, we will split up the sequence of matrices in a particular way, as suggested in

[54]. Recall equation (61). If, instead of splitting Hnv0 into n individual iterates,

we split it into all sequences of the form

Ma,b = AaBb (70)

we obtain

Hnv0 = AABABB. . . AABBABv0,

= (AAB) · (ABB) · . . . · (AABB) · (AB)v0,

= MaN ,bNMaN−1,bN−1
. . .Ma1,b1v0.

(71)

and thus

||Hnv0|| =
||MaN ,bNvn−1||
||vn−1||

· . . . · ||Ma1,b1v0||
||v0||

· ||v0||, (72)

where vi = Mai,bivi−1 for i ∈ {0, . . . , n}. Thus in order to obtain bounds upon

||Hnv0||, we need to bound
||Mai,bi

vi−1||
||vi−1|| for each i. We are trying to obtain bounds

upon the Lyapunov exponent, and thus are concerned with what happens as n→∞.

In the infinite limit the sequence Hn will contain every possible sequence Ma,b for
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a, b ≥ 1, each with an associated frequency of occurrence. We therefore need to

obtain bounds upon
||Ma,bv||
||v|| for each a and b, for v ∈ CAB, and find the frequency

with which each of the sequence occurs within the infinite sequence. Note that in

[54], matrices of the form Ma,b were required in order to ensure hyperbolicity; in our

case, we do this to ensure that the diagonalisation of the matrices can be written in

a general form.

It is worth noting that, in (72), N 6= n. To find a relationship between n and

N , we look at the average length of the matrices Ma,b. In this case, length means

the number of matrices multiplied together to create Ma,b, and is equal to a+ b. We

consider a sequence m of A’s and B’s which starts with a B. b is the number of

B’s we obtain before we get an A, and at each step we obtain either A or B with

probability 1/2, hence

P(b = 1) = P(m = . . . AB|m = . . . B) = 1/2,

P(b = 2) = P(m = . . . ABB|m = . . . B) = 1/4,

P(b = 3) = P(m = . . . ABBB|m = . . . B) = 1/8,

...

P(b = N) = P(m = . . . ABN |m = . . . B) = 1/2N .

Thus,

E(b) =
∞∑
i=1

P(b = i) · i =
1

2
+

2

4
+

3

8
+ . . . =

∞∑
i=1

i

2i
= 2.

Via a similar calculation, this time starting m with an A instead of a B, we obtain

E(a) = 2, and hence

E(Length of Ma,b) = E(a+ b) = 4.

From this we deduce that, as n→∞,

N =
n

4
,
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and thus

λ = lim
n→∞

1

n
E(log ||Hnv0||) = lim

N→∞

1

4N
E
(

log
( N∏
i=1

||Mai,bivi−1||
||vi−1||

))
. (73)

We choose A or B at each iterate by means of a simple Bernoulli distribution,

and so the expected frequency with which each Ma,b occurs is trivial to calculate:

2−a−b. Using this we can simplify (73) to obtain our bounds on λ; this is summarised

by the following theorem.

Theorem 4.3. Let H be the random dynamical system on the measurable space

(T2,T2) over the metric dynamical system ({A,B},T2, {1
2
, 1

2
}, (θ(t))t∈Z) given by

H : Z× {A,B} ×T2 → T2, where A and B are given by (53) and (54) respectively.

Let Ma,b = AaBb. For v ∈ R2 the maximal Lyapunov exponent λ is given by

λ =
1

4

∞∑
a,b=1

2−a−b log
( ||Ma,bv||
||v||

)
. (74)

Let CAB be the minimal mutually invariant cone for A and B, given by Theorem

4.1. Then an upper bound on λ is given by

Φ1 =
1

4

∞∑
a,b=1

2−a−b log
(

max
v∈CAB

{ ||Ma,bv||
||v||

})
, (75)

and a lower bound on λ is given by

Ψ1 =
1

4

∞∑
a,b=1

2−a−b log
(

min
v∈CAB

{ ||Ma,bv||
||v||

})
. (76)

In the above theorem, (75) and (76) are obtained by observing that in systems of

this form, all vectors are eventually orientated within CAB; this includes the stable

eigenvectors of DA and DB, as neither are invariant under H. We can therefore

restrict the range of vectors considered in the calculation of λ from the entirety of

R2 to just CAB, as the time taken for a particular vector to enter CAB will be finite,

and thus will not contribute to λ; we then obtain bounds by taking the maximum

and minimum growth rates within this cone.
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It is worth noting that, when computing these bounds, we truncate the infinite

sum, and so the numerical result we would obtain for Φ1 is not a rigorous upper

bound on λ, but more of an estimate of the infinite sum. Specifically, the truncation

Φ1n =
1

4

n∑
a,b=1

2−a−b

log

(
max
v∈CAB

{ ||Ma,bv||
||v||

})
converges to Φ1 exponentially quickly as n→∞. On the other hand, the truncation

of Ψ1 is a rigorous lower bound. For ‘large’ a and b, the contribution from individual

terms becomes smaller - we see exponential growth rates in the term
||Ma,bv||
||v|| as we

increase a and b, however, due to taking the log of this term, 2−a−b is the dominating

term for large a and b. Thus, if we calculate all terms in the sum to ‘large enough’

a and b, then the error between the truncation and Φ1 will be small. We will then

replace the remaining terms in the sequence with a ‘remainder’ term, which we

discuss later (see (77)). This remainder term will ensure that the numerical result

we obtain for Φ1 is a rigorous upper bound.

In order to find bounds upon
||Ma,bv||
||v|| , we need to calculate Ma,b for each a and

b. To do this, we need to find both Aa and Bb. These are obtained by diagonalizing

A and B so that

A = PΛAP
−1 and B = QΛBQ

−1,

where

P =

 2α 2α

αβ +
√
αβ(4 + αβ) αβ −

√
αβ(4 + αβ)

 ,

is a matrix consisting of the eigenvectors of A, and

ΛA =

λA+ 0

0 λA−

 .

The definitions for Q and ΛB are similar; we simply substitute B for A, γ for α and
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δ for β in the formulas. Raising these matrices to the appropriate powers gives us

Aa =
1

α(λA− − λA+)

 α α

λA+ − 1 λA− − 1

λaA+ 0

0 λaA−

λA− − 1 −α

1− λA+ α

 ,

and

Bb =
1

γ(λB− − λB+)

 γ γ

λB+ − 1 λB− − 1

λbB+ 0

0 λbB−

λB− − 1 −γ

1− λB+ γ

 .

Multiplying Aa and Bb together yields Ma,b. Due to the length of the expressions

for each entry of this matrix, we list it entry by entry:

Λ ·Ma,b(1,1) =
(
λaA+(λA− − 1) + λaA−(1− λA+)

)
·
(
λbB+(λB− − 1) + λbB−(1− λB+)

)
+ αδ(λaA− − λaA+)(λbB− − λbB+),

Λ ·Ma,b(1,2) = γ(λbB− − λbB+)
(
λaA+(λA− − 1) + λaA−(1− λA+)

)
+ α(λaA− − λaA+)

(
λbB−(λB− − 1) + λbB+(1− λB+)

)
,

Λ ·Ma,b(2,1) = δ(λbB− − λbB+)
(
λaA−(λA− − 1) + λaA+(1− λA+)

)
+ β(λaA− − λaA+)

(
λbB+(λB− − 1) + λbB−(1− λB+)

)
,

Λ ·Ma,b(2,2) =
(
λaA−(λA− − 1) + λaA+(1− λA+)

)
·
(
λbB−(λB− − 1) + λbB+(1− λB+)

)
+ βγ(λaA− − λaA+)(λbB− − λbB+),

where Λ = (λA− − λA+)(λB− − λB+). Note that Ma,b(1,1) has the smallest modulus

of these quantities, while Ma,b(2,2) has the largest modulus (for large a and b). These

formulas apply to all cases of α, β, γ, δ we consider; however, note that the stabilities

of the eigenvalues differ for different cases.

We already know an invariant cone for Ma,b, or indeed any product of A and B:

CAB. However, it is possible to narrow this cone further in the case of the matrices

Ma,b. This will help to narrow the gap we observed between the upper and lower

bounds somewhat, by narrowing all cones CAB slightly; however, a gap will still
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remain, albeit smaller. In Section 4.6, we will consider a method which causes this

gap to tend to zero as we take more terms in our bounds.

Lemma 4.8. Fix a ∈ N. The cone bounded by vuA and AavuB is an invariant cone

for Ma,b for all b ∈ N, and is the minimal cone which is mutually invariant for all

choices of b. In particular, the cone bounded by vuA and AvuB, C̃AB, is the global,

minimal, invariant cone for all matrices Ma,b; that is, for all a, b ∈ N.

The cone C̃AB is shown (qualitatively) in Figure 28 for the case when α, β, γ, δ

are integers greater than zero.

Proof. Consider Ma,bv = AaBbv for a vector v ∈ CAB. Lemma 4.1 tells us that

applications of B to a vector v will cause it to align with vuB. If we let b→∞, then

Bbv can be as close to vuB as we like. In order to apply Ma,b, we then need to apply

Aa, and thus our vector will begin to align with vuA. The furthest away our vector

can be from vuA after a applications of A is AavuB. Thus the minimal cone we can

take is the cone whose boundaries are vuA and AavuB, which we shall label as Ca. We

have that

vuA ∈ . . . . ⊂ C4 ⊂ C3 ⊂ C2 ⊂ C1 = C̃AB,

so if we wish our cone to be invariant for any choice of a, we must choose C̃AB,

which by definition is bounded by the vectors vuA and AvuB.

We now consider the upper and lower bounds upon
||Ma,bv||
||v|| for the l2, l1 and

l∞ norms, within the cone C̃AB. Note that Sturman and Thiffeault [54] provided

similar results to these in the case of random products of shear matrices. First, we

consider the l2 norm. In the following lemma, λMT
a,bM

u,s
a,b

and vMT
a,bM

u,s
a,b

refer to the

unstable and stable eigenvalues and eigenvectors of MT
a,bMa,b respectively.

Lemma 4.9. Let A and B be matrices of the form given by (53) and (54), and let

C̃AB be the cone given by Lemma 4.8. Then we obtain the following upper bounds

for
||Ma,bv||2
||v||2 for v ∈ C̃AB:
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0 x

y

x/y = 1

vuBvuA AvuB

Figure 28: The cones CAB and C̃AB in tangent space, for the case when α, β, γ, δ are

integers greater than zero; CAB is the region between vuA and vuB, and C̃AB is the region

between vuA and AvuB.

1. If vMT
a,bM

u
a,b
∈ C̃AB then,

||Ma,bv||2
||v||2

≤
√
λu
MT
a,bMa,b

.

2. If vMT
a,bM

u
a,b

/∈ C̃AB then,

||Ma,bv||2
||v||2

≤ max
{ ||Ma,bv

u
A||2

||vuA||2
,
||Ma,bAv

u
B||2

||AvB+||2

}
.

We also obtain the following lower bounds for ||Av||2||v||2 for v ∈ C̃AB:

1. If vMT
a,bM

s
a,b
∈ C̃AB then,

||Ma,bv||2
||v||2

≥
√
λs
MT
a,bMa,b

.

2. If vMT
a,bM

s
a,b

/∈ C̃AB then,

||Ma,bv||2
||v||2

≥ min
{ ||Ma,bv

u
A||2

||vuA||2
,
||Ma,bAv

u
B||2

||AvB+||2

}
.
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Proof. The proof of this lemma is entirely analogous to that of Lemma 4.3; we

simply substitute C̃AB for CAB and Ma,b for A.

We now consider the l∞ norm. The images of the corners of the l∞ unit ball

under Ma,b are

Ma,b

1

1

 =

Ma,b(1,1) +Ma,b(1,2)

Ma,b(2,1) +Ma,b(2,2)

 ,

Ma,b

−1

1

 =

−Ma,b(1,1) +Ma,b(1,2)

−Ma,b(2,1) +Ma,b(2,2)

 ,

Ma,b

−1

−1

 =

−Ma,b(1,1) −Ma,b(1,2)

−Ma,b(2,1) −Ma,b(2,2)

 ,

Ma,b

 1

−1

 =

Ma,b(1,1) −Ma,b(1,2)

Ma,b(2,1) −Ma,b(2,2)

 .

Lemma 4.10. Let A and B be matrices of the form given by (53) and (54), and

let vmax and vmin be the vectors for which the quantity
||Ma,bv||∞
||v||∞ is maximised and

minimised respectively for v ∈ TxT2. Then:

(i) if
∥∥∥Ma,b

1

1

∥∥∥
∞
≥
∥∥∥Ma,b

−1

1

∥∥∥
∞

, vmax =

1

1

.

(ii) if
∥∥∥Ma,b

1

1

∥∥∥
∞
<
∥∥∥Ma,b

−1

1

∥∥∥
∞

, vmax =

−1

1

.

(iii) if
∥∥∥M−1

a,b

1

1

∥∥∥
∞
≥
∥∥∥M−1

a,b

−1

1

∥∥∥
∞

, vmin =

−Ma,b(2,2) −Ma,b(1,2)

Ma,b(2,1) +Ma,b(1,1)

.

(iv) if
∥∥∥M−1

a,b

1

1

∥∥∥
∞
<
∥∥∥M−1

a,b

−1

1

∥∥∥
∞

, vmin =

 Ma,b(2,2) −Ma,b(1,2)

−Ma,b(2,1) +Ma,b(1,1)

.
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Proof. The largest x and y coordinates, and thus largest values for ||Ma,bv||∞ for

v ∈ Bl∞ , will be attained at the corner points of Ma,bBl∞ . Thus vmax must be a

vector corresponding to a corner point of Bl∞ ; either (1, 1) or (−1, 1).

We find vmin by extending an l∞ ball out from the origin until its first intersection

with Ma,bBl∞ , which will occur at a corner point of the ball. vmin is then the pre-

image of the vector corresponding to this point of intersection - either M−1
a,b (1, 1) or

M−1
a,b (−1, 1).

Lemma 4.11. Let A and B be matrices of the form given by (53) and (54), let

C̃AB be the cone given by Lemma 4.8 and let vmax and vmin be given by Lemma 4.10.

Then we obtain the following upper bounds for
||Ma,bv||∞
||v||∞ for v ∈ C̃AB:

U1 If vmax ∈ C̃AB, then
||Ma,bv||∞
||v||∞

≤ ||Ma,bvmax||∞
||vmax||∞

.

U2 If vmax /∈ C̃AB, then

||Ma,bv||∞
||v||∞

≤ max
{ ||Ma,bv

u
A||∞

||vuA||∞
,
||Ma,bAv

u
B||∞

||AvuB||∞

}
.

We also obtain the following lower bounds upon
||Ma,bv||∞
||v||∞ for v ∈ C̃AB:

L1 If vmin ∈ C̃AB, then
||Ma,bv||∞
||v||∞

≥ ||Ma,bvmin||∞
||vmin||∞

.

L2 If vmin /∈ C̃AB, then

||Ma,bv||∞
||v||∞

≥ min
{ ||Ma,bv

u
A||∞

||vuA||∞
,
||Ma,bAv

u
B||∞

||AvuB||∞

}
.
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Proof. This lemma follows from Lemma 4.10 and monotonicity of the l∞ norm

between its maximum and minimum.

We now undergo the same process for the l1 norm. The images of the corners of

the l1 unit ball under Ma,b are

Ma,b

1

0

 =

Ma,b(1,1)

Ma,b(2,1)

 ,

Ma,b

0

1

 =

Ma,b(1,2)

Ma,b(2,2)

 ,

Ma,b

−1

0

 =

−Ma,b(1,1)

−Ma,b(2,1)

 ,

Ma,b

 0

−1

 =

−Ma,b(1,2)

−Ma,b(2,2)

 .

Lemma 4.12. Let A and B be matrices of the form given by (53) and (54), and

let vmax and vmin be the vectors for which the quantity
||Ma,bv||1
||v||1 is maximised and

minimised respectively for v ∈ TxT2. Then:

(i) if
∥∥∥Ma,b

1

0

∥∥∥
1
≥
∥∥∥Ma,b

0

1

∥∥∥
1
, vmax =

1

0

.

(ii) if
∥∥∥Ma,b

1

0

∥∥∥
1
<
∥∥∥Ma,b

0

1

∥∥∥
1
, vmax =

0

1

.

(iii) if
∥∥∥M−1

a,b

1

0

∥∥∥
1
≥
∥∥∥M−1

a,b

0

1

∥∥∥
1
, vmin =

−Ma,b(2,1)

Ma,b(1,1)

.

(iv) if
∥∥∥M−1

a,b

1

0

∥∥∥
1
<
∥∥∥M−1

a,b

0

1

∥∥∥
1
, vmin =

 Ma,b(2,2)

−Ma,b(1,2)

.
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Proof. The greatest value of |x| + |y| for v = (x, y) ∈ Ma,bBl1 must be attained at

the image of a corner point, and thus vmax must correspond to one of these corner

points; either (1, 0) or (0, 1).

The vector vmin is found by extending an l1 ball out from the origin until its

first intersection with Ma,bBl1 , which will occur at a corner point of the ball. vmin is

then the pre-image of the vector corresponding to this point of intersection - either

M−1
a,b (1, 0) or M−1

a,b (0, 1).

Lemma 4.13. Let A and B be matrices of the form given by (53) and (54), let

C̃AB be the cone given by Lemma 4.8 and let vmax and vmin be given by Lemma 4.12.

Then we obtain the following upper bounds for
||Ma,bv||1
||v||1 for v ∈ C̃AB:

U1 If vmax ∈ C̃AB, then
||Ma,bv||1
||v||1

≤ ||Ma,bvmax||1
||vmax||1

.

U2 If vmax /∈ C̃AB, then

||Ma,bv||1
||v||1

≤ max
{ ||Ma,bv

u
A||1

||vuA||1
,
||Ma,bAv

u
B||1

||AvuB||1

}
.

We also obtain the following lower bounds upon
||Ma,bv||1
||v||1 for v ∈ C̃AB:

L1 If vmin ∈ C̃AB, then
||Ma,bv||1
||v||1

≥ ||Ma,bvmin||1
||vmin||1

.

L2 If vmin /∈ C̃AB, then

||Ma,bv||1
||v||1

≥ min
{ ||Ma,bv

u
A||1

||vuA||1
,
||Ma,bAv

u
B||1

||AvuB||1

}
.
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Proof. This lemma follows from Lemma 4.12 and monotonicity of the l1 norm

between its maximum and minimum.

An additional improvement we can make to the bounds comes from noticing

that our choice of splitting up the sequence Hn into the matrices Ma,b = AaBb is

arbitrary. The Lyapunov exponents are a property of the system H as a whole, and

as such any splitting of the sequence into smaller chunks should yield the same value

for λ. Specifically, consider a sequence

Hn = . . . Aa2Bb2Aa1Bb1 = . . .Ma2,b2Ma1,b1 .

Let Nb,a = BbAa, then we can rewrite the above as

Hn = . . . Nb3,a2Nb2,a1B
b1 .

Since b1 is finite, the contribution that Bb1 makes to the Lyapunov exponent is

zero. We can therefore also obtain bounds on λ by calculating the maximum and

minimum values of
||Nb,av||
||v|| for all a, b ≥ 1 and v in the cone C̃BA, which has boundary

vectors of vuB and BvuA. This will tend to yield an improvement upon one of Φ1 or Ψ1

(depending on the choices of A and B), but not both. Note that in some cases doing

this does not yield an improvement; an example of this is the case where α, β = −1

and γ, δ = 1. Note that the bounds shown by the figures in this section and section

4.6 take the information in this paragraph into account; that is, to produce the

figures we have calculated upper and lower bounds when splitting the sequence Hn

into subsequences of both Ma,b and Nb,a, then plotted the smaller of the two upper

bounds and the larger of the two lower bounds.

Taking a truncation of the infinite sum up to any finite a, b in Theorem 4.3 will

yield a rigorous lower bound; however, the upper bound is not rigorous until the

entire sum is completed. In order to ensure that the upcoming numerical results re-

turn a rigorous upper bound as well, we have added a ‘remainder’ term. Specifically,
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we calculate

Φ1 =
1

4

(
i∑

a,b=1

2−a−b log
(

max
v∈C̃AB

{ ||Ma,bv||
||v||

})
+
(
1−

i∑
a,b=1

2−a−b
)(

max
v∈C̃AB

{ ||Av||
||v||

,
||Bv||
||v||

}))
.

(77)

The expression on the second line assumes that the terms cut off by the truncation

are ‘as expansive as possible’ - that is, they consist entirely of A’s or B’s, and always

yield the largest possible growth for vectors within the cone. By doing this, the

remainder term is overestimating the terms in the infinite sum we did not consider,

and thus Φ1 is a rigorous upper bound.

Applying the results from Lemmas 4.9 - 4.13 to Theorem 4.3 yields rigorous,

explicit bounds on λ for any of the norms we have studied. We now show the nu-

merical results obtained when calculating these bounds in Figures 29 and 30, and

compare them to an estimate for λ, λ̃, obtained using Gram Schmidt orthonormal-

ization. Figure 31 shows the range of values which the bounds encompass in the

cases studied in the previous figures (i.e. the width of the gap between the bounds).

Figure 30 shows the bounds Ψ1 and Φ1, as well as λ̃, for γ = 1, δ = 2, and

varying α and β. As mentioned earlier, to obtain these graphs (and the table in

Figure 29), we calculated the truncation of the infinite sums, in this case up to and

including the terms where a = b = 40. On the given scale, we see little difference

between λ̃ and either of Ψ1 or Φ1 for all cases except Figure 30b, where α = β < 0.

The wider gap between the bounds in this case is explained by noting that when

α = β < 0, the width of the cone is at its widest of all those studied in Figure 30.

Figure 31 shows that Ψ1 and Φ1 are useful for obtaining λ between 2 s.f., for

small α, β in modulus for case (b), to 6+ s.f., for large α, β in modulus for case (d).

In general, we see that increasing the modulus of α and β tends to narrow the gap

between the bounds. This is due to the fact that a matrix (in this case A) with
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U , Ψ1, Φ1, λ̃, and σλ̃ when γ = 1, δ = 2.

α, β U Ψ1 Φ1 λ̃ σλ̃

1,1 1.31696 1.142968 1.143659 1.143119 0.001902

5,5 3.29446 2.287968 2.287986 2.293997 0.010411

10,10 4.64488 2.936932 2.936934 2.941293 0.011061

-1,-1 1.31696 0.845339 0.918686 0.852869 0.002807

-5,-5 3.29446 2.186900 2.212729 2.184764 0.006954

-10,-10 4.64488 2.885053 2.896129 2.884233 0.017851

3,-3 1.92485 1.553993 1.555999 1.555323 0.002917

7,-7 3.84969 2.517056 2.517991 2.514943 0.009602

12,-12 4.95578 3.073275 3.073727 3.074438 0.016346

-3,3 1.92485 1.624771 1.624787 1.623924 0.002715

-7,7 3.84969 2.542714 2.542723 2.545598 0.013857

-12,12 4.95578 3.087957 3.087958 3.088964 0.014868

Figure 29: Table showing the values of the naive upper bound U = max{λA, λB}, Φ1, Ψ1,

an estimate of λ, λ̃, and the standard deviation relating to this estimate, σλ̃, for various

choices of α and β, with γ = 1, δ = 2. The best lower and upper bound have been selected

from Ψ
(k)
1 and Φ

(k)
1 , k ∈ {1, 2,∞}, and λ̃ is obtained by taking the average of 20 ‘trials’ of

104 iterates of Gram-Schmidt orthonormalization; σλ̃ is the standard deviation related to

this random sample. Note that it takes approximately 2 seconds to calculate both Ψ1 and

Φ1, and approximately 8.8 seconds to calculate λ̃; however, the code required to obtain λ̃

is significantly shorter.
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(a) α = β from 1 to 10. (b) α = β from -10 to -1.

(c) α = −β from 3 to 12. (d) α = −β from -12 to -3.

Figure 30: Φ1 and Ψ1 under varying choices of α and β, with γ = 1, δ = 2, and

an estimate of λ, λ̃, obtained by taking the average of 10 ‘trials’ of 104 iterates of Gram-

Schmidt orthonormalization. Note that, on this scale, noticeable gaps between the bounds

occur in case (b) only - this is the case (of those studied here) where the eigenvector vuA

is located the furthest away from vuB. Note that it takes approximately 1.91 seconds to

calculate both Ψ1 and Φ1.
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(a) α = β from 1 to 10. (b) α = β from -10 to -1.

(c) α = −β from 3 to 12. (d) α = −β from -12 to -3.

Figure 31: The range of values the bounds encompass (i.e. Φ1−Ψ1) under varying choices

of α and β, with γ = 1, δ = 2.

larger eigenvalues will exert a larger ‘pull’ on vectors within the cone, aligning them

with vuA more quickly than a matrix with smaller eigenvalues. This is of particular

relevance for the cone C̃AB; its boundary vector AvuB will be more aligned with its

other boundary vector vuA for larger eigenvalues, and thus the cone itself will be

narrower in these cases. This is a similar result to that of Sturman and Thiffeault,

who found that increasing the slope of the shears in the random product would

cause their bounds to become more accurate.

It is more likely for the vectors vmax and vmin for some Ma,b and any of the l1,
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l2 or l∞ norms to be contained within a wider cone. Ideally we would like to avoid

calculating upper and lower bounds using these vectors wherever possible, as they

represent the extreme cases of growth rates of vectors within the cone. Section

4.6 discusses a way to remove some of these extreme cases in order to improve the

accuracy of the bounds, via restriction of the calculations to narrower cones.

4.6 Improving the cones

In this section we discuss a way in which we can narrow the cone C̃AB to a collection

of smaller subcones, with the intention of narrowing the gap which remains between

the bounds Φ1 and Ψ1. This is achieved by considering the matrices which precede

the matrices Ma,b we used to calculate the bounds. The collection of narrower

subcones of C̃AB will contain some cones which do not include the maximum and

minimum growth rates we find within the cone C̃AB. In particular, if C̃AB contains

the vectors vmax or vmin for any of the l2, l1 or l∞ norms, then considering ‘large

enough’ preceding matrices will yield subcones which do not contain these vectors,

and thus allow us to improve the contribution to the bounds we obtain from these

cones. This idea was also studied in [54] in the case of random products of shears

matrices, where a significant improvement was found over the bounds involving

wider cones.

Theorem 4.3 gave us the formulae for Φ1 and Ψ1. To calculate these bounds, we

find the maximum and minimum possible contributions to the growth rate we can

obtain for each Ma,b and for vectors in the cone C̃AB. This was justified by noting

that we could split the infinite sequence of matrices we obtain by iterating H into

the matrices Ma,b. Consider now the matrices which precedes each of these Ma,b,

Mm,n say. The frequency with which each Mm,n precedes the matrix Ma,b is identical

to the frequency with which each matrix appears: 2−m−n. Thus the frequency with
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which we find a particular matrix Ma,b preceded by another matrix Mm,n is

P(Ma,bMm,n) = 2−a−b−m−n. (78)

Consider now the location of a vector v ∈ C̃AB following application by Mm,n; the

vector must be contained within the cone Mm,nC̃AB, with boundary vectors given

by Mm,nv
u
A and Mm,nAv

u
B. Thus, with frequency 2−m−n, we can choose vectors

v ∈ Mm,nC̃AB instead of C̃AB when calculating
||Ma,bv||
||v|| . We can therefore rewrite

the Ma,b term (for this particular a and b) in Theorem 4.3 as

2−a−b−m−n log
(

max
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
+ (1− 2−m−n) · 2−a−b log

(
max
v∈C̃AB

{ ||Ma,bv||
||v||

})
(79)

and

2−a−b−m−n log
(

min
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
+ (1− 2−m−n) · 2−a−b log

(
min
v∈C̃AB

{ ||Ma,bv||
||v||

})
(80)

respectively. The second term in each expression essentially says that for all Mm,n

for which we do not explicitly calculate the cone Mm,nC̃AB, we instead take the cone

C̃AB, which we know is invariant under any Mm,n by Lemma 4.8.

We can of course consider more than just one preceding matrix Mm,n. If we

proceed with the process outlined above, adding in additional terms with the ap-

propriate frequencies for each preceding Mm,n, we instead obtain, for each Ma,b, the

upper bound

Ua,b = 2−a−b ·
∞∑

m,n=1

2−m−n log
(

max
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
(81)

and the lower bound

La,b = 2−a−b ·
∞∑

m,n=1

2−m−n log
(

min
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
(82)

The term 2−m−n becomes very small as m and n increase, and so in a similar fashion

to Φ1 and Ψ1, taking ‘large enough’ m and n is sufficient to obtain the terms Ua,b
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and La,b to reasonable degree of accuracy; note that in the upcoming figures we take

a = b = 40 and m = n = 10. Summing over all a, b, we obtain the upper bound

λ ≤ Φ2 =
1

4

∞∑
a,b=1

Ua,b, (83)

and the lower bound

λ ≥ Ψ2 =
1

4

∞∑
a,b=1

La,b. (84)

We label these bounds as Φ2 and Ψ2, where the 2 indicates that we are considering

a total of 2 matrices (Ma,b and Mm,n) in each term. This idea is summarised in the

following theorem.

Theorem 4.4. Under the same conditions as Theorem 4.3, let

Um,n,a,b = 2−m−n−a−b log
(

max
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
(85)

and

Lm,n,a,b = 2−m−n−a−b log
(

min
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
. (86)

Then the maximal Lyapunov exponent λ has the following upper and lower bounds:

λ ≤ Φ2 =
1

4

∞∑
a,b=1

∞∑
m,n=1

Um,n,a,b, (87)

λ ≥ Ψ2 =
1

4

∞∑
a,b=1

∞∑
m,n=1

Lm,n,a,b. (88)

Note that we can continue this process indefinitely, looking at more and more

preceding matrices to obtain much narrower cones. Let us relabel our first matrix

as Ma1,b1 , the first preceding matrix as Ma2,b2 , the matrix which precedes this as

Ma3,b3 , and so on. The following theorem defines bounds Φk and Ψk which take into

account all of the matrices Maκ,bκ where κ ≤ k.
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Theorem 4.5. Under the same conditions as Theorem 4.3, with a = a1 and b = b1,

let

ĈAB(ak, bk, . . . , a2, b2) = Mak,bk · . . . ·Ma2,b2C̃AB, (89)

Uak,bk,. . . ,a1,b1 = 2−ak−bk−. . .−a1−b1 log
(

max
v∈ĈAB(ak,bk,. . . ,a2,b2)

{ ||Ma1,b1v||
||v||

})
(90)

and

Lak,bk,. . . ,a1,b1 = 2−ak−bk−. . .−a1−b1 log
(

min
v∈ĈAB(ak,bk,. . . ,a2,b2)

{ ||Ma1,b1v||
||v||

})
. (91)

Then the maximal Lyapunov exponent λ has the following upper and lower bounds:

λ ≤ Φk =
1

4

∞∑
a1=1,b1=1

. . .

∞∑
ak=1,bk=1

Uak,bk,. . . ,a1,b1 , (92)

λ ≥ Ψk =
1

4

∞∑
a1=1,b1=1

. . .
∞∑

ak=1,bk=1

Lak,bk,. . . ,a1,b1 . (93)

Figures 32 and 33 show the numerical results for Ψ2 and Φ2 for the same cases

we studied in Figures 29 - 31 in Section 4.5. Note that we again calculate Φ2 using

a remainder term as in (77), but in addition to this, we also require a remainder

term for the preceding matrices for which we do not calculate the cone Mm,nC̃AB

(i.e. those outside of the finite truncation). Specifically, we calculate

Φ2 =
1

4

(
i∑

a,b=1

( j∑
m,n=1

2−m−n−a−b log
(

max
v∈Mm,nC̃AB

{ ||Ma,bv||
||v||

})
+ 2−a−b(1−

j∑
m,n=1

2−m−n) log
(

max
v∈C̃AB

{ ||Ma,bv||
||v||

}))
+
(
1−

i∑
a,b=1

2−a−b
)(

max
v∈C̃AB

{ ||Av||
||v||

,
||Bv||
||v||

}))
.

(94)

The term on the second line says that for the preceding matrices outside of the finite

truncation, we simply take C̃AB as the invariant cone. We thus make no improvement

over Φ1 for these particular cases; however, this does ensure that Φ2 ≤ Φ1. If we
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U , Ψ2, Φ2, λ̃ and σλ̃ when γ = 1, δ = 2.

α, β U Ψ2 Φ2 λ̃ σλ̃

1,1 1.31696 1.1433078679 1.1433131537 1.1432098 0.0005483

5,5 3.29446 2.2879800912 2.2879801286 2.2871329 0.0029977

10,10 4.62488 2.9369335256 2.9369335306 2.9355497 0.0041252

-1,-1 1.31696 0.8526194278 0.8556089639 0.8526771 0.0008515

-5,-5 3.29446 2.1869793464 2.1872709486 2.1867099 0.0033443

-10,-10 4.62488 2.8850566596 2.8851807964 2.8853677 0.0059216

3,-3 1.92485 1.5554080772 1.5554137897 1.5554526 0.0008910

7,-7 3.84969 2.5170765398 2.5170784508 2.5173760 0.0032072

12,-12 4.95578 3.0732764275 3.0732773469 3.0724321 0.0083176

-3,3 1.92485 1.6247782255 1.6247782978 1.6245508 0.0009367

-7,7 3.84969 2.5427198562 2.5427198747 2.5431770 0.0030175

-12,12 4.95578 3.0879578906 3.0879578935 3.0862290 0.0067713

Figure 32: Table showing the values of the naive upper bound U = max{λA, λB}, Φ2, Ψ2,

an estimate of λ, λ̃, and the standard deviation relating to this estimate, σλ̃, for various

choices of α and β, with γ = 1, δ = 2. The best lower and upper bound have been selected

from Ψ
(k)
2 and Φ

(k)
2 , k ∈ {1, 2,∞}, and λ̃ is obtained by taking the average of 20 ‘trials’

of 105 iterates of Gram-Schmidt orthonormalization; σλ̃ is the standard deviation related

to this random sample. The calculation time for the bounds is approximately 90 seconds

(to obtain both), and for λ̃ is approximately 85 seconds. The bounds Ψ
(k)
2 and Φ

(k)
2 take

approximately 50 seconds to obtain individually for each k.
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(a) α = β from 1 to 10. (b) α = β from -10 to -1.

(c) α = −β from 3 to 12. (d) α = −β from -12 to -3.

Figure 33: The range of values the bounds encompass (i.e. Φ2−Ψ2) under varying choices

of α and β, with γ = 1, δ = 2 (includes the data from Figure 32).
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wished to calculate numerically a rigorous upper bound Φk for some k, we would

have to undergo a similar process to this for each set of preceding matrices.

Figure 32 shows the value of a naive upper bound U = max{λA, λB}, Ψ2, and Φ2

for various choices of α and β, with γ = 1, δ = 2. We see that, with the exception

of the case α = β < 0, Ψ2 and Φ2 agree to 6-8 s.f.. The improvements in accuracy

are 2-3 s.f. (a factor of 100-1000) for all cases over Ψ1 and Φ1, while the calculation

time has increased by a factor of roughly 45.

We also compare these values to the average of a sample of 20 finite time Lya-

punov exponents of 105 iterates, λ̃, as well as the standard deviation, σλ̃, of the

sample. Note that this sample size was chosen to provide a similar computation

time to the bounds, so as to compare the results one may achieve using the two

methods for a similar time period. Note that in each case except α, β = −1, we

have that the interval [Ψ2,Φ2] ⊂ [λ̃− σλ̃, λ̃− σλ̃], indicating that Ψ2 and Φ2 provide

a tighter range of values for λ than λ̃. In addition to this, we see that as we increase

α and β in modulus the tightness of Ψ2 and Φ2 improves, whereas σλ̃ increases, in-

dicating that the reliability of λ̃ decreases. It is worth noting that the code required

to obtain λ̃ is significantly shorter and widely known, however.

Figure 33 shows the range of values the bounds Ψ2 and Φ2 encompass for various

choices of α and β, with γ = 1, δ = 2. We also see that, similar to what we found

for Ψ1 and Φ1, the gap between the bounds tends to decrease as α and β increase

in modulus for all cases.

It should be noted that it is possible to ‘pick and choose’ which matrices Mm,n

we consider in our truncation, as we can simply add those we do not consider into

the remainder term in (94). It therefore may be possible to only choose the matrices

which provide the biggest improvement in accuracy in order to reduce the computing

time.
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4.7 Summary

We have studied bounds on maps H consisting of random products of matrices

formed via the composition of shear matrices on the 2-torus, which utilise the exist-

ence of mutually invariant cones to bound the term ||Hnv|| in the definition of the

Lyapunov exponent λ. We have the considered ways in which we can improve these

bounds, by finding ways to narrow the cones we consider in the calculations.

This work has been an extension to that of Sturman and Thiffeault [54], who

studied random products of shear matrices; in particular, the method of considering

a sequence of preceding matrices to narrow the cones we consider in the bounds

is novel, and in principle, could be applied to the bounds in [54] as well, with

appropriate modifications to the cones being considered. Similarly, the work on

generalised Lyapunov exponents they discuss could be applied to systems of this

form as well, using the cones discussed in this chapter.

A possible application of the lower bound Ψi, i ∈ N, is found in Ayyer and

Stenlund [7], who obtain an upper bound upon the correlation decay of the systems

we have studied in this chapter. The upper bound depends upon their lower bound

upon the maximal Lyapunov exponent, which is given by

λ ≥ log max{λ−1
C , λε},

where λC is the minimum contraction rate of vectors within a contraction cone C

(whose image remains within C), and λε is the minimum expansion rate of vectors

in an expansion cone E. Note that, in the context of this chapter, CAB ⊆ E is the

minimal such expansion cone, and the cones we consider in subsequent iterations of

the bounds (Mm,nC̃AB) are significantly narrower than any E; specifically, the cones

narrow exponentially with m. The lower bound λ given above is simply the smallest

possible growth rate of a vector within the cone E, and is therefore significantly

improved upon by the bounds defined in this chapter, as these are the vectors we
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try to avoid by narrowing our cones.

Pollicott studies the systems in this chapter where A and B have only positive

entries in [42], where he derives an efficient method for calculating λ in these cases.

This method involves the uses of complex ‘determinant’ functions; these are used to

express the Lyapunov exponent explicitly via a series involving their partial deriv-

atives. The coefficients of this series can then be calculated in turn to yield more

accurate estimations of λ, labelled λi, i ∈ N. He gives an explicit calculation for

the case equivalent to α, β = 1, γ = 1, and δ = 2, the 9th step of which yields the

approximation

λ9 = 1.1433110351029492458432518536555882994025. . .

which appears accurate to 32 d.p., and subsequent steps converge super exponen-

tially. For the purposes of accurate computation in these cases, this method clearly

is superior to the bounds Ψi and Φi, which increase exponentially in computing time

(assuming ai = c for i, c ∈ N). However, the code for the bounds Ψi and Φi are

relatively simple, and they are not restricted to positive entries.
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5 Bounds on Lyapunov exponents in Linked Twist

Maps

The Lyapunov exponents of a dynamical system describe the average rate of separa-

tion of infinitesimally close trajectories in phase space, or in other words, the rate of

stretching of the vectors between these trajectories. In measure-preserving systems

these exponents converge (almost-everywhere) to a limit independent of the choice

of initial condition [35]. However, this convergence need not be quick; in practical

applications, one must study finite-time Lyapunov exponents (FTLEs), which are

spatially dependent. Some regions of the phase space may undergo little to no ex-

pansion for large numbers of iterates, resulting in abnormally small FTLEs for some

initial conditions.

A good example of a family of maps which encapsulates this behaviour is (lin-

ear) toral linked twist maps, which we studied in Chapter 3. Recall that these

consist of regions which behave similarly to an Anosov diffeomorphism, with expo-

nential expansion and contraction rates, while other regions behave like shears, with

sub-exponential expansion rates. Orbits in such maps can become trapped in the

shear regions for any finite number of iterates, and thus contribute nothing to their

Lyapunov exponent for arbitrarily large numbers of iterates along their orbits; in

particular, this can occur when an orbit lands very close to a boundary [53].

In this chapter we discuss a method, similar to that of the previous chapter, for

finding explicit upper and lower bounds for the Lyapunov exponents of a paramet-

rised family of linked twist maps; however, in principle, this method would work for

any LTM, or indeed any map for which we can obtain invariant cones upon orbits

returning to a particular region - an example of such a map is given in Section 5.6.

We again consider invariant cones for the maps to obtain one part of the bound,

and the distributions of points undergoing particular orbits for the other. The main
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difference between the bounds in the previous chapter (and those in Sturman and

Thiffeault [54]) is that the systems discussed therein consisted of randomly chosen

matrices, and so the realisation of points undergoing iteration by certain sequences

of matrices was trivial. Linked twist maps are deterministic and so the analogous

construction, known as the return time distribution, needs to be considered more

carefully.

In Section 5.1, we define the family of linked twist maps we will be studying

and briefly revisit some of the theory discussed in Chapter 4, as well as stating

the theorem central to this chapter, which gives explicit elementary bounds on the

Lyapunov exponents of these systems. In Section 5.2 we study the return time dis-

tribution of points beginning in a particular region of the domain. More specifically,

we study the frequency with which points experience particular orbits in order to

determine that the distribution can be written inductively. In Section 5.3 we study

the invariant cones of the family of linked twist maps, and calculate upper and lower

bounds for various choices of norms under specific sequences of shears. In Section

5.4 we combine the results from the previous two sections to obtain our upper and

lower bounds for the Lyapunov exponent, and thus complete the proof of the the-

orem stated in Section 5.1. In Section 5.5 we discuss a way to narrow the cones

used in the calculation of these bounds in order to improve their accuracy, as well

as discussing the general practicality of the bounds and ways in which it may be

improved upon. Finally, in Section 5.6 we discuss other examples of deterministic

maps for which these bounds can be obtained.

5.1 The parametrised family of linked twist maps

In this section we describe the specific parametrised family of linked twist maps we

will study in this chapter, outline the concepts used in the calculation of bounds

upon the Lyapunov exponents of these maps, and state a theorem which yields
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rigorous upper and lower bounds for their Lyapunov exponents, λ1, λ2. Note that

since these maps are measure-preserving, they satisfy λ1+λ2 = 0, thus any bound on

the maximal Lyapunov exponent λ1 will also give a bound on the minimal Lyapunov

exponent λ2; we henceforth refer to the Lyapunov exponent as λ.

The maps we study act (non-trivially) upon two annuli, P and Q, which are

parametrised by p ∈ (0, 1). We will initially focus on the range of parameters

0.682 < p < 1 for simplicity; we will see that this is the range of parameter values

for which the return time distribution is at its simplest (see Section 5.2). However,

note that return time distributions of such maps can be studied for any parameter

0 < p < 1 (see, for example, the similar constructions in [51]), and, in principle, for

non-linear systems too.

We define two maps: F : T2 → T2 given by

F

x
y

 =



F1

x
y

 =

1 1
p

0 1


x
y

 if (x, y) ∈ P,

F2

x
y

 =

1 0

0 1


x
y

 otherwise,

(95)

and G : T2 → T2, given by

G

x
y

 =



G1

x
y

 =

1 0

1
p

1


x
y

 if (x, y) ∈ Q,

G2

x
y

 =

1 0

0 1


x
y

 otherwise,

(96)

with annuli P and Q defined by

P = {(x, y) ∈ T2 : 0 ≤ y ≤ p},

Q = {(x, y) ∈ T2 : 0 ≤ x ≤ p}.
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Figure 34: The regions of the linked twist map H = F ◦G defined on the annuli P = S∪A

and Q = S ∪B. We will study the return time distribution of the points in S.

We define the map H = G ◦ F : P ∪ Q → P ∪ Q as the linked twist map given

by the composition of the restrictions of F and G to P ∪ Q, and we define the

regions S = {(x, y) ∈ T2 : x, y ≤ p}, A = {(x, y) ∈ T2 : y ≤ p, x > p} and

B = {(x, y) ∈ T2 : x ≤ p, y > p}, which are shown in Figure 34.

We note here that, in addition to the cases stated earlier, we see no theoretical

barrier to the calculation of such bounds in the case where

P = {(x, y) ∈ T2 : 0 ≤ y ≤ p},

Q = {(x, y) ∈ T2 : 0 ≤ x ≤ q},

for p 6= q, that is, where the annuli P and Q have independent widths, nor in the

case where we have multiple disjoint horizontal and/or vertical annuli, P1, . . . , Pn and

Q1, . . . , Qm respectively. In practice, however, the calculation of the corresponding

return time distributions is not a simple task.

Each iterate of H is composed of an application of F followed by an application

of G; however, since F2 and G2 are both the identity map, this can be simplified

further to just applications of F1 and G1. In a similar method to Chapter 4, and for
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reasons justified in Section 5.2, we will split this sequence up in the following way:

HNv0 = GFGF · . . . ·GFGFv0,

= G1F2G1F1 · . . . ·G1F2G2F1v0,

= G1G1F1 · . . . ·G1F1v0,

= Gbn
1 F

an
1 · . . . ·Gb1

1 F
a1
1 v0,

= Man,bn · . . . ·Ma1,b1v0,

where

Mai,bi = Gbi
1 F

ai
1 =

1 ai
p

bi
p

1 + aibi
p2

 , (97)

so that, assuming ||v0|| = 1,

||HNv0|| =
n∏
i=1

||Mai,bivi−1||
||vi−1||

, (98)

where vi = Mai,bivi−1.

To obtain an upper (lower) bound on ||HNv||, and consequently λ, we need to

find an upper (lower) bound for
||Ma,bv||
||v|| for each possible combination of a and b.

This is different to the random cases we have studied before - it is possible that not

all sequences of these matrices are achievable under these maps. We discuss how to

bound these quantities in Section 5.3.

Let us assume we have found an upper bound φ(a, b) and a lower bound ψ(a, b)

for each possible choice of a and b. We will also need to know the distribution of

these sequences - the frequency with which they occur along an orbit - in order to

calculate their overall contribution to the Lyapunov exponent. Note that ergodicity

of the LTM on P ∪Q ([12], [44]) ensures that these frequencies are equal for µ a.a.

orbits, where µ is the renormalised Lebesgue measure. We will discuss this return

time distribution in detail in Section 5.2, but for now let R(a, b) be the measure of

points which return to our reference region S under application of the matrix Ma,b,
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and let nS be the average return time, in terms of the number of iterates of H, of

all points in this region. Then we have

λ ≤ 1

nS

∞∑
a,b=1

R(a, b) log φ(a, b) = ΦH , (99)

and

λ ≥ 1

nS

∞∑
a,b=1

R(a, b) logψ(a, b) = ΨH . (100)

Note that the R(a, b) (taken over all a,b) yields the return time distribution; this is

analogous to the realisation of the matrices in the random case, which was simply

2−a−b for each Ma,b. Similarly, the average return time nS is analogous to the

expected length of the matrices Ma,b in the random case.

In order for these bounds to converge, the frequency with which the Ma,b’s occur

as a and b increase must decrease at a faster rate than the bounds φ(a, b) and ψ(a, b)

increase; in other words, longer matrices Ma,b must be sparser within an orbit than

shorter ones. Note that, since the bounds φ(a, b) and ψ(a, b) will increase at most

exponentially, any polynomial R(a, b) is sufficient to meet this condition, and we

will find that this is indeed the case for the family of maps H. Furthermore, we will

see that only a select few of these Ma,b are possible, and the frequency with which

they occur within an orbit can be written inductively for ‘large’ a or b. The results

are summarised in the following theorem.

Theorem 5.1. Let H : P ∪ Q → P ∪ Q be the linked twist map defined by the

restriction of the composition of (95) and (96) to P ∪ Q. Let p∗ be the real root of

p3 + p− 1 = 0 (p∗ ≈ 0.682), and let p∗ ≤ p ≤ 1. Then the Lyapunov exponents λ1,2

satisfy

ΨHk =
∞∑

a,b=1

R(a, b) logψk(a, b) ≤ nS|λ1,2| ≤
∞∑

a,b=1

R(a, b) log φk(a, b) = ΦHk , (101)

for k ∈ {1, 2,∞}, where all non-zero R(i, j) are given by Lemmas 5.2 - 5.5, ψk(a, b)

and φk(a, b) are given by Lemma 5.7, and nS = 2
p
− 1. We therefore have ΨH ≤
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|λ1,2| ≤ ΦH , where

ΨH =
p

2− p
· sup
i=1,2,∞

{ΨHi} and ΦH =
p

2− p
· inf
i=1,2,∞

{ΦHi}. (102)

As noted earlier, the statement given by (101), with appropriate adjustments to

the terms R(a, b), ψk(a, b), φk(a, b), and nS, could be obtained in the case where

P = {(x, y) ∈ T2 : y ≤ p}, Q = {(x, y) ∈ T2 : x ≤ q}, and p 6= q. In fact, bounds

such as these can be obtained in principle for any map whose domain possesses

a region to which the return map is hyperbolic, and the possible variants of the

Jacobian matrices of the return map share an invariant cone. We discuss examples

of such maps in Section 5.6.

5.2 Finding the return time distribution

We will now find a return time distribution for points in a specific region of our

domain (the region S), which will serve as the distribution element of our bounds.

Note that return (or recurrence) times have been studied in detail by Young [61] for

systems with similar properties to linked twist maps - systems which are hyperbolic

on large parts of their domain, though not necessarily its entirety. The tail of the

return time distribution was of particular interest in this case, as a sufficiently fast

decay rate (polynomial or greater) implied the existence of a Central Limit Theorem

for all observables φ with
∫
φdµ = 0, in addition to an equivalently fast mixing rate

(decay of correlations). In our case, the observable we are interested in is the first

return time; the number of iterates it takes for a point in S to return to S for the

first time.

Throughout this section we will use F and G to refer to the non-identity parts

of the maps, F1 and G1. For example, if we say a point x returns to S after

experiencing GGFF , we really mean that it returned following application of the

sequence G1F2G1F1G2F1. We will also use the following probability measure for the
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points in S, derived from the Lebesgue measure µL:

µS(A) =
µL(A)

p2
. (103)

We require a matrix to be hyperbolic in order to obtain its invariant cone. In the

case of the map H, an orbit experiences a hyperbolic matrix provided it undergoes

application of both F and G, or in other words, provided the orbit is not just a

sequence of either F s or Gs. The following lemma guarantees that orbits beginning

in S must experience a hyperbolic matrix before returning to S, or equivalently, the

return map to S is itself hyperbolic.

Lemma 5.1. Let X = (x, y) ∈ S. The return map to S of X under H, RX , is of

the form

RX

x
y

 =

 1 k
p

n−k+1
p

1 + k(n−k+1)
p2

x
y

 , (104)

where n is the number of iterates of H required for X to return to S, and 1 ≤ k ≤ n.

RX is hyperbolic. The only possible sequences through which X can return to S under

H are those of the form Gn−k+1F k.

Proof. We have two possibilities for H(X) after one iterate: F or GF . If H = F ,

then after one iterate of H we find ourselves in A. We then must undergo application

by only F s until we re-enter S, at which point we undergo application by at least

one G, since we apply G after F for a full iterate of H. If this application of G

moves us into B, then we undergo application by only Gs until we next re-enter S,

at which point we have returned. Hence the sequences Gn−k+1F k are possible for

k ≥ 2, where n is the number of iterates of H. If H = GF , then we either return

immediately, or find ourselves in B. While in B we can only undergo application by

Gs until we return to S, hence the sequences GnF are possible. In other words, the

only possible sequences for points in S is a string of F s followed by a string of Gs,

of the form Gn−k+1F k for k ≥ 1.
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(a) The set S is shown shaded yellow. (b) The yellow set shows G−1(S).

Figure 35: The sets S and G−1(S). We apply F−1 to G−1(S) to find H−1(S).

Finally,

F k =

1 k
p

0 1

 ,

Gn−k+1 =

 1 0

n−k+1
p

1

 ,

and the composition of these gives us the required result for RX , which has eigen-

values

λ± =
1 + k(n−k+1)

p2 ±
√

(1 + k(n−k+1)
p2 )2 − 4

2
.

Since n ≥ k ≥ 1, we have that λ+ > 1 and 0 < λ− < 1, and hence RX is hyperbolic.

To find the return time distribution, we calculate the pre-images of the set S

under H, and see where the pre-images intersect with the original set S. To do this,

we first calculate G−1(S), which is shown in Figure 35(b). We then find which parts

of G−1(S) are in P , and calculate the image of these under F−1 to obtain H−1(S),

which is shown in Figure 36.
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p

p

U1α

U1β

U1γ

T1
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Figure 36: H−1(S). The four bright yellow triangles form the set H−1(S) ∩ S = R1 =

RFG. The three pale yellow quadrilaterals form the set U1 = H−1(S)\S.

H−1(S) consists of four triangles which intersect with S, and three quadrilaterals

which are outside of S. The quadrilateral in B is a parallelogram, while the two

in A are not. The three quadrilaterals are the sets we will continue to iterate

backwards in order to find points which return on iterates later than the first. The

four triangles consist of all the points which return after the first iterate of H, under

the sequence GF . From this point onwards, we will refer to these four triangles as

RGF - the points which have returned under the sequence GF - and follow a similar

naming convention for points which return after experiencing other sequences. We

will also refer to the points which have not returned by the first iterate (the three

quadrilaterals) as U1, with the parallelogram referred to as U1α, and the remaining

quadrilaterals as U1β and U1γ respectively (see Figure 36).

Lemma 5.2. The measure of the set RGF is given by µS(RGF ) = 2p3

1+p2 .

Proof. We need to calculate the measure of each of the four triangles which intersect
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with S, and sum these in order to find µS(RGF ). Let us label the triangles from

bottom (corner at (0, 0)) to top (corner at (p, p)) as T1 through T4. First we note

that T1 and T4 are identical triangles, as are T2 and T3, so we need only calculate

µS(T1) and µS(T2).

T1 has corners at (0, 0), (p2, 0) and (0, p3

1+p2 ). Hence

µL(T1) =
p5

2(1 + p2)
.

Similarly, T2 has corners (p, 0), (0, p2

1+p2 ) and (0, p2). Hence

µL(T2) =
p5

2(1 + p2)
.

Hence µL(RGF ) = 2p5

1+p2 , and therefore µS(RGF ) = 2p3

1+p2 .

Lemma 5.2 tells us that the measure of the points yet to return after the first

iterate (U1) is

µS(U1) = 1− 2p3

1 + p2
.

From now on we will only iterate the points in U1 and see how these intersect with

S. Let us begin by considering U1α. We first find its image under G−1. The corners

of U1α are mapped under G−1 as follows:

G−1

0

1

 =

 1 0

−1
p

1

0

1

 =

0

1

 ,

G−1

p(1− p)
p

 =

p(1− p)
2p− 1

 ,

G−1

p
p

 =

 p

p− 1

 ,

G−1

p2

1

 =

 p2

1− p

 .



159

G−1(U1α) is shown in Figure 37(a). We must now apply F−1 to the dark red

region, which we shall label ∆, in order to find H−1(U1α). The corners of ∆ are:(
p(1− p)

2
, p

)
,
(
p(1−p), p

)
,
(
p2, 1−p

)
,

(
p(p+ 1)

2
, 0

)
,
(
p2, 0

)
,
(
p(1−p), 2p−1

)
,

which are mapped under F−1 as follows:

F−1

p(1−p)
2

p

 =

1 −1
p

0 1

p(1−p)
2

p

 =

p(1−p)
2
− 1

p

 ,

F−1

p(1− p)
p

 =

1 −1
p

0 1

p(1− p)
p

 =

p(1− p)− 1

p

 ,

F−1

 p2

1− p

 =

1 −1
p

0 1

 p2

1− p

 =

p3+p−1
p

1− p

 ,

F−1

p(p+1)
2

0

 =

1 −1
p

0 1

p(p+1)
2

0

 =

p(p+1)
2

0

 ,

F−1

p2

0

 =

1 −1
p

0 1

p2

0

 =

p2

0

 ,

F−1

p(1− p)
2p− 1

 =

1 −1
p

0 1

p(1− p)
2p− 1

 =

−p3+p2−2p+1
p

2p− 1

 .

H−1(U1α) is shown in Figure 37(b). Note that in order for this picture to be

accurate, we require the following condition to be met:

p3 + p− 1 ≥ 0 (or p ≥ 0.682...). (105)

If we do not meet this condition, then the change in gradient which occurs at the

points (p
3+p−1
p

, 1− p) and (−p
3+p2−2p+1

p
, 2p− 1) will instead be contained within the

unreturned regions, and will continue into later iterates, making the return time
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distribution more complicated than in the following construction. From this point

forward, we will assume that condition (105) is met.

In order to calculate the measure of RGGF , we first calculate the measure of the

two triangles in B and the parallelogram in A. The triangles have corners at (0, 1),

(p(1−p)
2

, p), (p(1−p), p) and (p2, 1), (p(1+p)
2

, 1), (p, p) respectively, and so are identical

to each other. Let us refer to these triangles as τ2a and τ2b. Note that the 2 refers to

the number of iterates of H−1 we have taken to obtain these triangles, and we will

follow this labelling convention for the future unreturned parts of the pre-images of

these triangles. They both have Lebesgue measure given by

µL(τ2a) =
p(1− p)2

4
,

and thus we have

µS(τ2a ∪ τ2b) =
(1− p)2

2p
. (106)

The parallelogram, which we label ρ, has corners at (p, p
1+p2 ), (p, p−p

2+p3

1+p2 ), (1, p2

1+p2 )

and (1, p3

1+p2 ), and thus has Lebesgue measure

µL(ρ) =
p2(1− p)2

1 + p2
,

and thus

µS(ρ) =
(1− p)2

1 + p2
. (107)

We now consider U1β and U1γ, neither of which undergo application by G−1. The

corners of U1β are mapped under F−1 as follows:

F−1

p
p

 =

1 −1
p

0 1

p
p

 =

p− 1

p

 ,

F−1

 1

p2

 =

1 −1
p

0 1

 1

p2

 =

1− p

p2

 ,
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∆

τ2a τ2b

ρ

Figure 37: The pre-image of U1α under G, and then under H.

p
1+p2

p−p2+p3

1+p2

p(1− p)

p2

p2

1+p2

p2

p3

1+p2

p

p

τ2a τ2b

ρ

τ2d

τ2c

Figure 38: H−1(U1) is shown in red, with dark red indicating the regions which have

returned after two applications of H−1 and light red the regions yet to return (U2).



162

F−1

 1

p2

1+p2

 =

1 −1
p

0 1

 1

p2

1+p2

 =

1− p
1+p2

p2

1+p2

 ,

F−1

 p

p
1+p2

 =

1 −1
p

0 1

 p

p
1+p2

 =

p3+p−1
1+p2

p
1+p2

 .

Similarly, for the corners of U1γ:

F−1

1

0

 =

1 −1
p

0 1

1

0

 =

1

0

 ,

F−1

 p

p(1− p)

 =

1 −1
p

0 1

 p

p(1− p)

 =

 2p− 1

p(1− p)

 ,

F−1

 p

p3−p2+p
1+p2

 =

1 −1
p

0 1

 p

p3−p2+p
1+p2

 =

p3−p2+2p−1
1+p2

p3−p2+p
1+p2

 ,

F−1

 1

p3

1+p2

 =

1 −1
p

0 1

 1

p3

1+p2

 =

 1
1+p2

p3

1+p2

 .

We end up with two quadrilaterals which stretch into S from A, each with a

triangle remaining in A (see Figure 38). The two triangles, which we label τ2c

and τ2d from top to bottom, have corners at (p, p), (1, p2), (1, p(p+1)
2

) and (1, 0),

(p, p(1 − p)) and (p, p(1−p)
2

) respectively, and thus have identical dimensions to τ2a

and τ2b. We therefore have that

µS(τ2c ∪ τ2d) =
(1− p)2

2p
. (108)

We now use this information to calculate the measure of the set of points which

return under each of the possible sequences of matrices we can have in two iterates

of H. These sets are RGGF , which consists of the points belonging to U1α which

return on the 2nd iterate of H, and RGFF , which consists of the points returning

from U1β and U1γ.
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Lemma 5.3. The measures of the sets of points which return to S after undergoing

application by the sequence GGF , RGGF , and the sequence GFF , RGFF , respectively

are

µS(RGGF ) = µS(RGFF ) =
−3p4 + 2p3 + 2p− 1

2p(1 + p2)
.

Proof. First, consider the points which return from U1α. We have that

µL(U1α) = p2(1− p),

and thus

µS(U1α) = (1− p).

Thus, using (106) and (107), we have that

µS(RGGF ) = µS(U1α)− µS(τ2a ∪ τ2b)− µS(ρ),

= (1− p)− (1− p)2

2p
− (1− p)2

1 + p2
,

=
−3p4 + 2p3 + 2p− 1

2p(1 + p2)
.

Now consider U1β and U1γ. We can calculate µS(U1β) by considering three triangles:

T4, the triangle with corners at (p, p), (1, p) and (1, p2), δ1 say, and the triangle with

corners at (p− p2, p), (1, p) and (1, p2

1+p2 ), σ1 say. We have that

µS(σ1) =
(p2 − p+ 1)2

2p(1 + p2)
,

µS(δ1) =
(1− p)2

2p
,

µS(T4) =
p3

2(1 + p2)
,

and so

µS(U1β) = µS(σ1)− µS(δ1)− µS(T4),

=
p(1− p2)

2(1 + p2)
.
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Similarly, we find that

µS(U1γ) =
p(1− p2)

2(1 + p2)
.

Hence, using (108), we have

µS(RGFF ) = µS(U1β ∪ U1γ)− µS(τ2c ∪ τ2d),

=
p(1− p2)

(1 + p2)
− (1− p)2

2p
,

=
−3p4 + 2p3 + 2p− 1

2p(1 + p2)
.

We now need to iterate U2 backwards. Let us begin with the parallelogram ρ,

which only undergoes application by F−1. We know from previous calculations where

the bottom edge of U1β and the top edge of U1γ are mapped to, and by continuity

ρ must be mapped in between them. Thus, provided that condition (105) is met,

ρ will entirely return on the 3rd iterate, filling the region between the F−1(U1β),

F−1(U1γ), T2 and T3 (see Figure 39).

Now consider τ2c, which also only undergoes application by F−1. Its corners are

mapped as follows:

F−1

p
p

 =

1 −1
p

0 1

p
p

 =

p− 1

p

 ,

F−1

 1

p2

 =

1 −1
p

0 1

 1

p2

 =

1− p

p2

 ,

F−1

 1

p(1+p)
2

 =

1 −1
p

0 1

 1

p(1+p)
2

 =

 1−p
2

p(1+p)
2

 .

Thus F−1(τ2c) is a triangle which stretches into the region between F−1(U1β) and

T3, meeting with the corner of U1β at (1− p, p2), as shown in Figure 39.
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p
1+p2

p−p2+p3

1+p2

p(1− p)

p2

p2

1+p2

p2

p3

1+p2

p

p

(1− p, p2)

τ3a τ3b

H−1(ρ)

τ3d

τ3c

Figure 39: H−1(U2) is shown in green, with bright green indicating the regions which

have returned after three applications of H−1 and pale green the regions yet to return

(U3).

We now consider what will happen to this triangle on future iterates. We define

τ3c to be the points in τ2c which did not return on the 3rd iterate, and note that τ3c

has corners at (p, p), (1, p(1+p)
2

), (1, p(2+p)
3

). Hence the bottom edge of τ3c is the top

edge of τ2c. We therefore find that F−1(τ3c) will lie on top of F−1(τ2c), filling in more

of the region between F−1(U1β) and T3. We can repeat this process indefinitely to

find the corners of the triangle τnc for any n ≥ 2:p
p

 ,

 1

p(n−2+p)
n−1

 ,

 1

p(n−1+p)
n

 . (109)

From this, we can see that the images of each triangle τ(n−1)c will consist of τnc and a

quadrilateral in S which lies on top of the quadrilateral in S belonging to the image

of τ(n−2)c. The measure of τnc tells us the measure of points which do not return on

iterate n, corresponding to this sequence of triangles. In order to find the measure

of all unreturned points, we also have to consider the other three triangles: τna, τnb,
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and τnd.

F−1(τ2d) behaves in a similar way to F−1(τ2c), however it instead stretches into

the region between F−1(U1γ) and T2. The corners of τ3d are (1, 0), (p, p(1−p)
2

),

(p, p(1−p)
3

). In general, the corners for τnd are1

0

 ,

 p

p(1−p)
n−1

 ,

 p

p(1−p)
n

 . (110)

Both τna and τnb first undergo application by G−1, then any regions in S undergo

application by F−1. The triangles τna and τnb are identical to τnd and τnc respectively,

for any n ≥ 2, except that their x and y coordinates have been swapped around.

For the corners of τna, we have0

1

 ,

p(1−p)
n−1

p

 ,

p(1−p)
n

p

 , (111)

and for τnb, we have p
p

 ,

p(n−2+p)
n−1

1

 ,

p(n−1+p)
n

1

 . (112)

The remainders of the triangles τ(n−1)a and τ(n−1)b are mapped into the regions

between H−1(U1α) and T3, and H−1(U1α) and T2 respectively (see Figure 39). For

all of these triangles, we can calculate the measure of the set of returning points

by subtracting the measure of τni from that of τ(n−1)i for i ∈ {a, b, c, d}. Since ρ

fully returns on the third iterate, these four triangles comprise all of the unreturned

points from the fourth iterate onwards. The following lemma tells us the measures

of the sets of returning points on the third iterate.

Lemma 5.4. The measures of the sets of points which return to S after undergo-

ing application by the sequence GGGF , RGGGF , and the sequence GFF , RGFFF ,

respectively are

µS(RGGGF ) = µS(RGFFF ) =
(1− p)2

3p
.
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The measure of the set of points which return to S after undergoing application by

the sequence GGFF , RGGFF , is

µS(RGGFF ) =
(1− p)2

1 + p2
.

Proof. First consider RGGFF . The only points which experience the sequence GGFF

are those originally belonging to U1α, which then reside in A after the second iterate.

The only points which fulfil this condition are those in ρ, which entirely returns on

the third iterate, and so, using (107), we have

µS(RGGFF ) = µS(ρ) =
(1− p)2

1 + p2
.

Now consider RGGGF . The points which experience the sequence GGGF are

those which return from τ2a and τ2b on the third iterate. We therefore have

µS(RGGGF ) = µS(τ2a − τ3a) + µS(τ2b − τ3b),

= 2 · 1

2
· ((1− p)2

2p
− (1− p)2

6p
),

=
(1− p)2

3p
,

since τna and τnb have the same measure for n ≥ 2. The calculation for µS(RGFFF )

is identical, since the measures of τna and τnb are identical to those of τnd and τnc

respectively.

From the fourth iterate onwards, the returning points on the nth iterate feed in

from the triangles τ(n−1) exclusively. We can therefore calculate the measures of the

sets of returning points for all remaining iterates, since we know the coordinates for

the corners of each τn.

Lemma 5.5. Let n ≥ 4. The measures of the sets of points which return to S after

experiencing the sequence GnF , RGnF , and the sequence GF n, RGFn, respectively

are

µS(RGnF ) = µS(RGFn) =
2(1− p)2

np(n− 1)(n− 2)
.
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Proof. As in the proof for Lemma 5.4, we simply need to calculate the difference

between the (n− 1)th and nth triangles. We have

µS(RGnF ) = µS(τ(n−1)a − τna) + µS(τ(n−1)b − τnb),

= 2 · 1

2
·
( (1− p)2

p(n− 2)(n− 1)
− (1− p)2

np(n− 1)

)
,

=
2(1− p)2

np(n− 1)(n− 2)
,

The calculation for µS(RGFn) is identical for the same reason as in the proof of

Lemma 5.4.

In Section 5.4 we combine the results from Lemmas 5.2 - 5.5, which give an

explicit formula for the frequency with which each possible Ma,b occurs, with those

of Lemma 5.7 in Section 5.3, which gives bounds upon the norms of each possible

sequence of matrices, to obtain the bounds ΨH and ΦH . A quick check to show the

validity of this distribution is given by Kac’s lemma [26], which states that in an

ergodic, measure-preserving transformation, the expected first return time to a set

S is 1/µ(S), where µ is the normalized measure on the domain. In other words, if

D is the domain, and A ⊂ D, then

µ(A) =
µL(A)

µL(D)
.

In order to find the normalized measure in this case, we need to find the measure

of S with respect to our entire domain, which in this case is A ∪B ∪ S. We have

µL(S) = p2 and µL(A ∪B ∪ S) = p(2− p),

so we have

µ(S) =
µL(S)

µL(A ∪B ∪ S)
=

p

2− p
.

Kac’s Lemma then tells us that, since H is ergodic on P ∪Q w.r.t. the normalized

Lebesgue measure, the average first return time to S is

nS =
1

µ(S)
=

2

p
− 1. (113)
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We can now check whether our distribution agrees with Kac’s Lemma by finding

the expected return time to S. We obtain the following:

nS = R(1, 1) + 2 · (R(1, 2) +R(2, 1))

+ 3 · (R(1, 3) +R(2, 2) +R(3, 1)) +
∞∑
n=4

n · (R(1, n) +R(n, 1)),

=
−4p4 + 7p3 − 6p2 + 7p− 2

p(1 + p2)
+

2(1− p)2

p

(
1 + 2

∞∑
r=2

1

r(r + 1)

)
,

=
−4p4 + 7p3 − 6p2 + 7p− 2

p(1 + p2)
+

4(1− p)2

p
,
(
since

∞∑
r=2

1

r(r + 1)
=

1

2

)
=

2

p
− 1.

Hence our distribution gives the same result as Kac’s Lemma. We will now use this

distribution, in combination with the upper and lower bounds for the l∞, l1 and l2

norms within a globally invariant cone calculated by Sturman and Thiffeault [54] in

the case of random products of shear matrices, to calculate explicit upper and lower

bounds for the Lyapunov exponents of this family of linked twist maps.

5.3 Invariant cones and bounds on norms

In this section we will explicitly calculate upper and lower bounds for the quantity

||Ma,bv||
||v|| in a particular invariant cone, where the matrix Ma,b is defined below. First

we discuss the cones we will use to obtain these bounds.

Consider the matrices

Mab = BbAa (114)

where

A =

1 1
p

0 1

 ,

B =

1 0

1
p

1

 ,
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and so

Mab =

1 a
p

b
p

1 + ab
p2

 .

These matrices and their invariant cones were studied by Sturman and Thiffeault

[54], in the context of bounding the Lyapunov exponents of random products of

shear matrices by splitting up random sequences of As and Bs into blocks of the

form Mab. Linked twist maps can be treated in much the same way as random

products of shear matrices - if we imagine iterating our map H discussed in Section

5.2, and taking the norm after N iterations, in a similar way to (61), we obtain (for

some v0 ∈ R2, n ∈ N)

||HNv0|| = ||GFFGGF...FFGv0||,

=
||Man,bnvn−1||
||vn−1||

· ... · ||Ma1,b1v0||
||v0||

· ||v0||,

where the maps F and G have taken the place of the matrices A and B men-

tioned above. Hence, in order to calculate ||HNv0||, we need to bound each of these
||Mai,bi

vi−1||
||vi−1|| , and find out how n relates to N . Fortunately, due to Kac’s Lemma, the

latter of these problems is relatively simple. We know that the average return time

to S is given by nS = 2
p
− 1, and that each Mai,bi represents ai + bi − 1 iterates of

H. Thus, since each Mai,bi corresponds to a return to S, we have

E(ai + bi − 1) =
2

p
− 1,

and subsequently

n =
N

E(ai + bi − 1)
=

N
2
p
− 1

. (115)

We will now consider invariant cones for the matrices Mab. Let us assume that

both α and β are positive, which guarantees that Mab is a hyperbolic matrix. Note

that the sequences of matrices we studied when finding the return time distribution

for S in Section 5.2 were all of the form Mab.
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Recall Lemma 4.2, which gives us an invariant cone for any hyperbolic mat-

rix formed by shear composition - we need a cone which contains the unstable

eigenvector of Mab, but not the stable eigenvector. It is possible for the unstable

eigenvector of Mab to be anywhere within the cone

C =
{

(x, y) ∈ R2 : 0 < x/y < 1
}
, (116)

for any a,b, since α, β > 1. So, in order for a cone to be invariant for any Mab,

it must at least contain C. Furthermore, all possible stable eigenvectors of Mab lie

outside of C, which makes C itself an invariant cone for Mab by Lemma 4.2.

We now calculate upper and lower bounds for
||Ma,bv||
||v|| for the l∞, l1 and l2 norms

for v ∈ C. To do this we make use of the existence of invariant cones [2] for the

matrices Ma,b. Note that Ma,b is diagonalizable with positive eigenvalues for any

a, b, and thus any invariant cone for Ma,b must contain the unstable eigenvector,

and its interior must not contain the stable eigenvector [46]. We need to find a cone

which is invariant under all possible Ma,b; we will refer to this cone as Cglobal(p).

The eigenvectors of Ma,b are given by

v± =

 2

b
p
±
√

4b
a

+ b2

p2

 .

A simple calculation then yields that the unstable eigenvector v+ is always contained

within the cone

Cglobal(p) =
{

(x, y) ∈ R2 : 0 <
x

y
< p
}
, (117)

for any choice of a, b, and furthermore the stable eigenvector v− lies outside this

cone. Hence Cglobal is an invariant cone for every Ma,b. Note that Cglobal is not an

invariant cone for H, as its Jacobian matrix DxH is not always hyperbolic.

In order to bound ||HNv||, we find upper and lower bounds for the quantity

||Ma,bv||
||v|| , for v ∈ Cglobal and each possible a, b, using the l∞, l1 and l2 norms. We first
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consider which vectors in tangent space maximise and minimise the growth rates of

these norms following iteration by Ma,b.

Lemma 5.6. Let v
(i)
max, v

(i)
min ∈ R2 be the vectors for which the quantity

||Ma,bv||i
||v||i is

maximised and minimised for all v ∈ R2 and i ∈ {1, 2,∞}, and let vu,s
MT
a,bMa,b

be the

unstable and stable eigenvectors of MT
a,bMa,b respectively. Then:

(i) v
(2)
max = vu

MT
a,bMa,b

and v
(2)
min = vs

MT
a,bMa,b

.

(ii) v
(∞)
max = (1, 1) and v

(∞)
min = (−ab

p2 − a
p
− 1, b

p
+ 1).

(iii) If a
p
≥ b

b+p
then v

(1)
max = (0, 1). Otherwise v

(1)
max = (1, 0).

(iv) v
(1)
min = (ab

p2 + 1,− b
p
).

Proof. First we consider the l2 norm. The quantity
||Ma,bv||2
||v||2 is the spectral matrix

norm which, since Ma,b is non-singular, is by definition maximised or minimised

when v is the unstable or stable eigenvector of the matrix MT
a,bMa,b [52].

We now consider the l∞ norm. We extend the unit l∞ ball under Ma,b, as shown

in Figure 25 in Chapter 4. We have that 1
p
, a, b > 1, hence by Lemma 4.4

vmax = (1, 1), vmin = (−ab
p2
− a

p
− 1,

b

p
+ 1),

where we have substituted α = a
p

and β = b
p
.

Similarly, consider the l1 norm. The unit l1 ball is shown in Figure 26 in Chapter

4. We have that ab
p2 > 0, and whether we have a

p
> b

b+p
depends on the choice of a

and b. Specifically, if the sequence Ma,b we consider has large a (> 2), then b = 1.

Similarly, if we have large b, a = 1. Hence, by Lemma 4.6, we have that if a
p
≥ b

b+p
,

v(1)
max = (0, 1)

and otherwise

v(1)
max = (1, 0).

In both cases, v
(1)
min = (ab

p2 + 1,− b
p
).
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Finding where
||Ma,bv||
||v|| is maximised or minimised within Cglobal for the li norm

involves checking if v
(i)
max and v

(i)
min are contained within the cone. If not, then the

maximum and minimum are attained on the boundaries of the cone, as these norms

are monotonic between their maximum and minimum. Lemma 5.7 gives us the

bounds φ(a, b) and ψ(a, b) for each a, b and for three different norms.

Lemma 5.7. Let v
(i)
max, v

(i)
min be given by Lemma 5.6 for i ∈ {1, 2,∞}, and let

λu,s
MT
a,bMa,b

be the unstable and stable eigenvalues of MT
a,bMa,b respectively. We ob-

tain the following upper bounds upon
||Ma,bv||i
||v||i for v ∈ Cglobal.

1. l2 norm:
||Ma,bv||2
||v||2

≤
√
λu
MT
a,bMa,b

.

2. l1 norm:
||Ma,bv||1
||v||1

≤ 1 +
a

p
+
ab

p2
.

3. l∞ norm:
||Ma,bv||∞
||v||∞

≤ 1 + b+
ab

p2
.

We also obtain the following lower bounds upon
||Ma,bv||i
||v||i for v ∈ Cglobal.

1. l2 norm:

||Ma,bv||2
||v||2

≥ min
{√(p+ a

p
)2 + (1 + b+ ab

p2 )2

1 + p2
,

√
(
a

p
)2 + (1 +

ab

p2
)2
}
.

2. l1 norm:
||Ma,bv||1
||v||1

≥ 1 +
ab+ pa+ p2b

p2(1 + p)
.

3. l∞ norm:
||Ma,bv||∞
||v||∞

≥ 1 +
ab

p2
.
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Proof. First we consider the l2 norm. The quantity
||Ma,bv||2
||v||2 is the spectral matrix

norm which, since Ma,b is non-singular, is by definition maximised or minimised

when v is the unstable or stable eigenvector of the matrix MT
a,bMa,b. Its value varies

monotonically between the maximum and minimum, thus we need to determine

where these eigenvectors lie (i.e. in or out of Cglobal) in order to find where our

maximum and minimum are obtained for v ∈ Cglobal. We have

MT
a,bMa,b =

 1 + b2

p2
a
p

+ b
p
(1 + ab

p2 )

a
p

+ b
p
(1 + ab

p2 ) a2

p2 + (1 + ab
p2 )2

 ,

which is a symmetric matrix, and thus its eigenvectors v+ and v− are orthogonal.

Let

Γa,b =
b2

p2
+
a2

p2
+

2ab

p2
+ (

ab

p2
)2,

then the eigenvalues of MT
a,bMa,b are given by

λ± =
2 + Γa,b ±

√
Γa,b(4 + Γa,b)

2
,

and the corresponding eigenvectors are

v± =

 2(a
p

+ b
p
(1 + ab

p2 ))

Γa,b − 2b2

p2 ±
√

Γa,b(4 + Γa,b)

 =

 r

s±

 .

We have that r > 0 since 1
p
> 0 and s+ > 0 since Γa,b >

2b2

p2 . We can also infer that

s− < 0 due to orthogonality of eigenvectors. We therefore have that v+ lies in the

quadrant {(x, y) ∈ R2 : x, y ≥ 0}, the same quadrant as Cglobal. In order for v+ to

lie in Cglobal, we require r
s+
< p. We have

s+ > 2Γa,b −
2b2

p2
=

4ab

p2
+

2a2

p2
+ 2(

ab

p2
)2 >

2b

p2
+

2a

p2
+

2ab2

p4
=
r

p
,

and thus s+ > r
p
. Hence v+ ∈ Cglobal, and therefore we attain our maximum at

v+. Since s− < 0, v− /∈ Cglobal and thus our minimum is attained at one of the
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boundaries of the cone - either v = (0, 1) or v = (p, 1). We have, for v = (u, v),

||Ma,bv||22
||v||22

=
(u+ a

p
v)2 + ( b

p
u+ (1 + ab

p2 )v)2

u2 + v2
,

so for our minimum, we choose the smaller of

||Ma,b(0, 1)||22
||(0, 1)||22

=
(p+ a

p
)2 + (1 + b+ ab

p2 )2

1 + p2
,

or
||Ma,b(1, 1)||22
||(1, 1)||22

= (
a

p
)2 + (1 +

ab

p2
)2.

Our maximum is given by the square root of the eigenvalue corresponding to the

unstable eigenvector of MT
a,bMa,b, λ

u
MT
a,bMa,b

. Specifically,

||Ma,b(r, s+)||22
||(r, s+)||22

=
(r + a

p
s+)2 + ( b

p
r + (1 + ab

p2 )s+)2

r2 + s2
+

.

Now consider the l∞ norm. For a vector v = (x, y) ∈ Cglobal, we have

||v||∞ = |y|,

and since Cglobal is an invariant cone for Mab, we have that

||Ma,bv||∞
||v||∞

=
| b
p
x+ (1 + ab

p2 )y|
|y|

=
bx

py
+ 1 +

ab

p2
.

Relabelling x
y

= z, let

f(z) = 1 +
b

p
(z +

a

p
).

Then

f ′(z) =
b

p
> 0

provided b > 0, and so f is a monotonically increasing function, and is maximised

when z is at its largest. Hence we take the largest value of z possible for v ∈ Cglobal

as our upper bound, and the smallest for our lower bound; p and 0 respectively.
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Finally we consider the l1 norm. For a, b, 1
p
> 0, we have that

||Ma,bv||1
||v||1

=
|x+ a

p
y|+ | b

p
x+ (1 + ab

p2 )y|
|x|+ |y|

=
(1 + b

p
)x
y

+ 1 + a
p

+ ab
p2

x
y

+ 1
.

Relabelling x
y

= z, let

f(z) =
(1 + b

p
)z + 1 + a

p
+ ab

p2

z + 1
.

Then

f ′(z) =

b
p
− a

p
(1 + b

p
)

(z + 1)2
,

which is a monotonically decreasing function in z for α, β > 1. Since α, β = 1
p

in

our linked twist maps, this is true for the cases we are interested in. Hence f(z) is

maximised when z is at its smallest, and minimised when z is at its largest; 0 and

p respectively.

Note that the lemmas in this and the previous section, taken collectively, prove

Theorem 5.1.

5.4 Calculation of the bounds

We now present the results given by Theorem 5.1, and compare these to the Lya-

punov exponent calculated using a standard algorithm involving Gram Schmidt or-

thonormalization (see [9, 47]). Figure 40 shows ΦHi , ΨHi , ΦH , and ΨH , for p ∈ [0.7, 1]

and i ∈ {1, 2,∞}.

The bounds ΦH and ΨH require an infinite number of calculations, so a slight

modification is needed in order to use them practically. Let us choose an integer

k ≥ 4. This is the maximum number of iterates of H for which we will calculate the

truncation of the bounds on
||Ma,bv||
||v|| . We note that since each of the terms in the lower

bound ΨH is positive, we need only calculate up to i = k in the final summation to

obtain a strict lower bound - any lower bound we obtain for larger k will be greater.
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(a) ΨHi and ΦHi . (b) ΨH and ΦH .

Figure 40: The bounds given by the l1, l2, and l∞ norms for p ∈ [0.7, 1] are shown in

Figure 40a, where Ψ
(k)
H is given by the dashed and Φ

(k)
H by the solid line, for k ∈ {1, 2,∞}.

Figure 40b shows ΨH and ΦH , which in this case are given by ΨH1 and ΦH2 respectively.

The black line is a finite-time Lyapunov exponent, calculated using a standard algorithm

involving Gram Schmidt orthonormalization ( [9],[47]).

For the upper bound ΦH , we cannot obtain a strict upper bound in a finite number

of iterates in this way; however, the difference between the upper bound for the kth

and k+1th iterates decreases as k increases, and is quickly insignificant compared to

the difference between the upper and lower bounds; for example, when p = 0.9, the

difference between the upper bounds obtained when calculating up to the 4th and

5th iterates respectively is 1.49% of the gap between the upper and lower bounds

obtained on the 5th iterate, and this proportion decreases (at a sub-exponential rate)

with each subsequent iterate.

We see that the best choices in these cases are the l1 and l2 norms for the lower

and upper bounds respectively. Both bounds approximate λ to within a few decimal

places; specifically, over a square lattice of initial conditions within S, the average

error between the finite time Lyapunov exponent calculated using 104 iterates of a

standard Gram Schmidt algorithm and ΨH is 3.95%, and with ΦH is 0.97%. Note
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that at p = 1, λ = ΦH2 ; this is because the vector v2
max given by Lemma 5.6 is equal

to the eigenvector of H when p = 1, and this vector lies within Cglobal. The l1 and

l∞ norms also coincide when p = 1; the formulas given in Lemma 5.7 are equal in

this case.

These bounds, in their current state, are not especially useful in determining

λ; the bounds are near instantaneous to calculate, and can provide an indication

as to whether a given calculation of a FTLE has begun to converge, although only

to within a few decimal places. Despite this, we can see from Figure 40 that the

fluctuations observed in the calculated FTLEs do occasionally exceed the upper

bound and approach the lower bound. The explicit calculation of the return time

distribution does give us some insight into how the results of Young ([60], [61]) would

tie into our system; we see that the proportion of points whose first return time is

on iterate n (for n ≥ 4) decays polynomially, as O(n−3), suggesting that the rate of

mixing is at least polynomial.

The main limiting factor upon the accuracy of these bounds is the width of

the cone Cglobal; the cone encompasses a ‘wide’ range of vectors, and in particular

contains some of the vmax and vmin vectors given in Lemma 5.6. The bounds are

calculated for either the vectors which undergo the largest or smallest expansion

rates, or are taken at the boundaries of the cone. In reality however, over the course

of an orbit, an initial vector v will orientate itself in various directions between the

boundaries of the cone. If we can find a way to narrow the cones we consider for the

terms ψ(a, b) and φ(a, b) in Theorem 5.1, then we can obtain better bounds than

ΨH and ΦH . This is the topic of the next section.

5.5 Improving the Cone

In this section we discuss the circumstances under which we can consider narrower

cones than Cglobal, in order to improve upon the bounds ΦH and ΨH in Theorem
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5.1. These modifications were simple in the case of bounding random products of

matrices, in both [54] and Chapter 4, as the frequency with which the matrix Ma2,b2

preceded the matrix Ma1,b1 in an orbit was independent of the choice of a1 and b1.

In the deterministic case, however, this independence does not hold.

We consider the sequences of matrices which can precede each Ma,b. We know

that Ma,bv ∈ Cglobal for v ∈ Cglobal and any a, b ≥ 1. In particular, Ma,bv ∈

Ma,bCglobal. Thus, if we know that a particular sequence Ma1,b1 is preceded by

Ma2,b2 , then we can restrict the calculations of φ(a1, b1) and ψ(a1, b1) to the cone

Ma2,b2Cglobal. This will happen with a certain frequency, which can be calculated by

finding the Lebesgue measure of the intersection of RGb1Fa1 and Ma2,b2RGb2Fa2 ; in

other words, we find the points which land in RGb1Fa1 following an application of

Ma2,b2 . We then divide this quantity by the Lebesgue measure of RGb1Fa1 , and label

the resulting frequency P (a2, b2, a1, b1). Figure 41 shows this intersection in the case

where ai = bi = 1 for i = 1, 2. This idea is summarised by the following theorem.

Theorem 5.2. With the same conditions as Theorem 5.1, let

P (a2, b2, a1, b1) =
µL(Ma2,b2RGb2Fa2 ∩RGb1Fa1 )

µL(RGb1Fa1 )
· µS(RGb1Fa1 ),

ψk(a2, b2, a1, b1) = min
v∈Ma2,b2

Cglobal

{ ||Ma1,b1v||k
||v||k

}
,

and

φk(a2, b2, a1, b1) = max
v∈Ma2,b2

Cglobal

{ ||Ma1,b1v||k
||v||k

}
.

Then the Lyapunov exponents λ1,2 satisfy

|λ1,2| ≥ Ψ1
Hk

=
1

nS

∞∑
a1,b1=1

∞∑
a2,b2=1

P (a2, b2, a1, b1) logψk(a2, b2, a1, b1),

and

|λ1,2| ≤ Φ1
Hk

=
1

nS

∞∑
a1,b1=1

∞∑
a2,b2=1

P (a2, b2, a1, b1) log φk(a2, b2, a1, b1).
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p
1+p2

p(1− p)

p2

p2

1+p2

p2

p3

1+p2

Figure 41: The regions corresponding to the frequency P (1, 1, 1, 1) are shaded in blue.

The yellow regions are the remainder of the set RGF , which has measure given by the sum

of P (1, 1, i, j) for all i, j where i, j 6= 1.

The distribution of preceding sequences of matrices is at its simplest when all

Ma,b with a ≥ 3 or b ≥ 3 always precede the matrix M1,1 - that is, when any extended

period spent in the shear regions is followed immediately by at least one hyperbolic

iterate (i.e. an immediate return to S). This occurs when

p5 + 3p3 − 3p2 + p− 1 > 0

i.e. p ≥ 0.8562. This behaviour (i.e. remaining in S for a number of iterates

following iterates spent in the shear region) is typical when the number of iterates

spent within the shear region is large, even for p below this value; this was shown

by Sturman and Springham [53].

A smaller improvement over the previous bounds can be obtained by simply

finding the intersection shown in Figure 41, which is valid for any p ∈ (0.682, 1).

The distribution is simplified somewhat by noting that

P (a1, b1, a2, b2) =
µL(RGb1Fa1 )

µL(RGb2Fa2 )
P (a2, b2, a1, b1).
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(a) Ψ1
Hk

and Φ1
Hk

. (b) Ψ1
H and Φ1

H .

Figure 42: (a) Ψ1
Hk

and Φ1
Hk

for the l1, l2, and l∞ norms, with the black line showing

FTLEs calculated using 105 iterates of the Gram-Schmidt algorithm. (b) The best of these

yield Ψ1
H and Φ1

H - in this case both are given by the l2 norm. For comparison purposes

we include ΨH and ΦH in orange.

This is because the Lebesgue measure of the relevant intersections is the same in

both cases due to the symmetry between the image and pre-image.

Figure 42 shows Ψ1
H and Φ1

H when p ≥ 0.86 - the cases where the distribution

of preceding sequences is at its simplest. Comparing this to Figure 40, we see there

is a significant improvement, particularly on the accuracy of the lower bound. Note

that the black line is the calculated FTLE for a particular initial condition (varying

with p) within S. We also see that the l2 norm yields the best upper and lower

bounds, whereas before the best lower bound was given by the l1 norm. We find

that the average error between the bounds and the FTLE calculated for 105 iterates

over a square lattice of initial conditions in S is 0.71% for Ψ1
H and 0.82% for Φ1

H .

In the lower bound, this marks an improvement in the error by a factor of 5.56 on

average.

Figure 43 shows the distributions of FTLEs for n iterates of the map when

p = 0.9, and compares these to the bounds. We find that for n = 104, 84.2% of
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(a) n = 10000. (b) n = 100000.

Figure 43: Histograms showing the distribution of FTLEs, λn(x), for a square lattice of

104 points, p = 0.9, and n iterates of the map taken at each point. The dot-dash lines are

ΨH and ΦH , and the dotted lines are Ψ1
H and Φ1

H .

the points upon the lattice yield exponents between ΨH and ΦH , while 40.3% yield

exponents between Ψ1
H and Φ1

H . For n = 105, 99.9% of the points yield exponents

between ΨH and ΦH , while 81.3% yield exponents between Ψ1
H and Φ1

H .

Note that Theorem 5.2 is the first step in a long sequence of improvements

one can make to the bounds; specifically, it describes looking at the first preceding

sequence of the form Ma2,b2 . We could consider the sequences Ma3,b3 which precede

these Ma2,b2 , and calculate the corresponding frequencies with which these occur;

in principle, we could carry this process on indefinitely by finding the frequencies

P (ai, bi, . . . a1, b1) for increasing i. The calculation of these frequencies is an intricate

task in practice, however.

For the following theorem, we let RP (ai,bi,. . . ,a1,b1) be the set of points correspond-

ing to the frequency P (ai, bi, . . . , a1, b1).

Theorem 5.3. With the same conditions and definitions as Theorem 5.2, we define
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inductively

P (ai, bi, . . . , a1, b1) =
µL(Mai,biRGbiFai ∩RP (ai−1,bi−1,. . . ,a1,b1))

µL(RP (ai−1,bi−1,. . . ,a1,b1)

·µS(RP (ai−1,bi−1,. . . ,a1,b1)).

Also, let

ψk(ai, bi, . . . , a1, b1) = min
v∈Mai,bi

·. . . ·Ma2,b2
Cglobal

{ ||Ma1,b1v||k
||v||k

}
,

and

φk(ai, bi, . . . , a1, b1) = max
v∈Mai,bi

·. . . ·Ma2,b2
Cglobal

{ ||Ma1,b1v||k
||v||k

}
.

Then the Lyapunov exponents λ1,2 satisfy

|λ1,2| ≥ Ψi
Hk

=
1

nS

∞∑
ai,bi=1

. . .

∞∑
a1,b1=1

P (ai, bi, . . . , a1, b1) logψk(ai, bi, . . . , a1, b1),

and

|λ1,2| ≤ Φi
Hk

=
1

nS

∞∑
ai,bi=1

. . .
∞∑

a1,b1=1

P (ai, bi, . . . , a1, b1) log φk(ai, bi, . . . , a1, b1).

Considering an infinite number of preceding sequences of matrices would allow

our bounds to converge upon the true Lyapunov exponent. In particular, when

p = 1 (i.e. the Cat map), we can reduce the bounds Ψ∞Hk and Φ∞Hk to the explicitly

calculable Lyapunov exponent. In this case the only distribution elements which

contribute to the sum are those where ai = bi = 1 for all i, and each occurs with

frequency one. Let λu and vu be the unstable eigenvalue and eigenvector of the Cat

map respectively, then we obtain

Ψ∞Hk =
1

nS
P (1, 1, . . . , 1, 1) logψk(1, 1, . . . , 1, 1),

= log max
v∈GF. . . GFCglobal

{ ||GFv||k
||v||k

}
,

= log
||GFvu||k
||vu||k

= log λu,

(118)

and similarly for Φ∞Hk . Alternatively, we obtain the same result by replacing Cglobal

with vu, which is the minimal invariant cone for the Cat map.
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The distributions of FTLEs in LTMs do not appear Gaussian; they exhibit long

(stretched-exponential) tails on the left hand side, corresponding to points which

spend large portions of their orbits in the shear regions, similar to the distributions

discussed in [43]. For a given set of points, these tails will begin to shrink as n→∞,

as more of the points trapped in the shear regions escape into the hyperbolic regions,

and the distribution appears to converge upon a Gaussian distribution; this is due

to LTMs obeying a central limit theorem as described in [61]. Figure 43 shows that,

even after 105 iterates, the probability of a randomly chosen initial condition having

a FTLE outside of Ψ1
H and Φ1

H is still very significant.

The issue of poorly converging FLTEs could be sidestepped if the initial condi-

tions which yielded them were concentrated in particular regions within the domain.

If this were the case, one could simply pick an initial condition outside of these re-

gions and be confident that the calculated FTLE would converge to a reasonable

degree. However, linked twist maps are ergodic, and so the points for which we ob-

tain slower convergence are representative of a portion of every orbit; at some (and

indeed, infinitely many) iterates upon every orbit, we will land within a shear region

for any finite number of iterates, corresponding to initial conditions with FTLEs

below the lower bounds, or, alternatively, return to the hyperbolic regions unusually

often within a subsequence of iterates, corresponding to the initial conditions above

the upper bounds.

Figure 44 shows in blue the location of initial conditions whose FLTEs lie outside

of the bounds after n iterates of H, when p = 0.9. Note that the dataset and

lattice used to create these figures is the same as those used in Figure 43. The

figures show that there is no clear pattern to the location of initial conditions with

slowly converging FTLEs; we find such initial conditions are spread fairly evenly

throughout the domain, favouring neither the shear nor hyperbolic regions. This

indicates that the choice of initial condition to obtain a ‘sufficiently’ converged FTLE
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(a) ΨH and ΦH , n = 10000 iterates. (b) Ψ1
H and Φ1

H , n = 10000 iterates.

(c) ΨH and ΦH , n = 100000 iterates. (d) Ψ1
H and Φ1

H , n = 100000 iterates.

Figure 44: The points in blue are the initial conditions in a lattice of 104 points (as used

in Figure 43) whose FTLEs are outside of the respective bounds after n iterates. The

points in white are those with FTLEs within the bounds after n iterates. There is no

obviously discernible pattern to the location of initial conditions with slowly converging

FTLEs.
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is not obvious. Also, following choosing an initial condition, the number of iterates

needed to obtain sufficient convergence is not clear without further experimentation.

Since the Lyapunov exponent is itself not explicitly calculable, these bounds provide

a benchmark for the notion of sufficient convergence.

5.6 Alternative maps

The bounds we have discussed in this chapter were conceived with the trickiness of

calculating Lyapunov exponents in linked twist maps in mind; however, the concepts

used in their derivation are not limited to linked twist maps exclusively. In this

section we discuss and construct similar bounds to ΦH and ΨH for another map

formed from shear compositions. Note that this is done primarily for demonstrative

purposes, since we will see that the FTLEs we obtain for such a map are typically

more reliable than was the case for the LTM; unlike in the LTM, orbits in this map

do not undergo arbitrarily long sequences of sub-exponential (linear) growth.

For p ∈ (0, 1), let HΩ : T2 → T2 be given by

HΩ

x
y

 =



HΩ2

x
y

 =

1 1
p

1 p+1
p


x
y

 if y ≤ p,

HΩ1

x
y

 =

1 1
1−p

1 2−p
1−p


x
y

+

 −p
1−p

−p
1−p

 if y ≥ p.

(119)

This map applies a horizontal shear which wraps once around either the annulus

P = {(x, y) : y ≤ p} or Q = {(x, y) : y ≥ p}, followed by a vertical shear which

wraps once around T2 (see Figure 45). In fact, HΩ is an example of the family of

systems discussed in Section 3.1, where n = 2, m = 1, and α1,2 = β1 = 1; note that

HΩ1 is shifted in order to maintain continuity of the map. At p = 1/2 and p = 1,

HΩ reduces to an Anosov diffeomorphism, with an explicitly calculable Lyapunov
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0

1

1 0

1

1

p

Figure 45: The shears which are composed to obtain the map HΩ in (119).

exponent. The cases where p ∈ (0, 1
2
] are qualitatively identical to those where

p ∈ [1
2
, 1), and so we only focus on the former.

We again set out to obtain a return time distribution to a particular region, in

this case the annulus Q. For A ⊆ Q, we concern ourselves with the conditional

measure

µQ(A) =
µL(A)

1− p
. (120)

A point which begins in Q will undergo application by HΩ1 for one iterate, returning

immediately or undergoing application by only HΩ2 for all iterates until its return

to Q. Thus all sequences Ma,b that we concern ourselves with will be of the form

M1,b = Hb
Ω2
◦HΩ1 ,

= DHb
Ω2
DHΩ1 +DHb

Ω2
c,

(121)

where

c =

 −p
1−p
−p
1−p

 ,

and, for i = 1, 2, DHΩi is the respective Jacobian matrix of H at each iterate. Note

that these matrices share an invariant cone by Theorem 2.4, with boundaries given

by their unstable eigenvectors. We label this cone CHΩ
.
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In a similar fashion to Section 5.2, we will refer to the set of points which first

return to Q after application by the sequence M1,b as Rb, where b ∈ N0, and their

corresponding frequencies in the return time distribution as R(b). Unlike in the

case of the linked twist map, we can allow b = 0 since both DHΩ1 and DHΩ2 are

hyperbolic. We will also refer to the set of points yet to return on the ith iterate of H

as Ui. Note that the calculations we do throughout this section are for the images of

these points rather than the sets themselves; since this map is measure-preserving,

this does not affect the distribution.

We obtain the following for the measure of the set of points whose first return

to Q is after one and two iterates of H (see the yellow and red regions in Figure 46

respectively):

R(0) = µQ(R0) = 1− p,

and

R(1) = µQ(R1) =
p(1− 2p2)

(2p+ 1)(1− p)
.

We note that U2 consists of two triangles and a parallelogram. On the following

iterate, the triangles are stretched between their fixed points at (0, 0) and (1, p)

respectively into Q, wrapping around the entire torus once in the process. The

result of this is that the triangles in U2 admit a quadrilateral each in U3, with the

same slopes as the triangles in U3. This process will repeat at each iterate, with these

triangles admitting two more quadrilaterals; note that the quadrilaterals admitted

by the triangles are not parallelograms. Similarly, the parallelogram in U2 is wrapped

once around the torus stretching into Q, and admits another parallelogram in U3;

this also repeats for later iterates. Finally, any existing quadrilaterals from earlier

triangles are also stretched in a similar way, and so admit a new quadrilateral each

on subsequent iterates.

Let Ti, Pi and Qi be the number of triangles, parallelograms and other quadri-
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0 1

1

p

(1− p, 1)

(p, p)
T2 = 2

P2 = 1

(a) The sets RHΩ1
(yellow), RHΩ2

HΩ1
(red) and UHΩ2

(green).

0 1

1

p

T3 = 2

P3 = 2

Q3 = 2

(b) The sets RHΩ1
(yellow), RHΩ2

HΩ1
(red), RH2

Ω2
HΩ1

(green) and UHΩ3
(blue).

Figure 46: The points returning and yet to return after the second and third iterates of

H. Note that the sets Rb and Ui are pre-images, and the above pictures show the images

of the points returning on the respective iterate; for example, RHΩ1
shows the image of

the points which remain in A for at least one iterate, that is, H(R0). For the purposes of

calculating the return time distribution this distinction does not matter, as the measures

of the corresponding sets are identical (e.g. µ(R0) = µ(RHΩ1
)).
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laterals which comprise Ui, then, for i ≥ 3,

Ti = 2, Pi = 2i−2, Qi = 2 + 2Qi−1, (122)

where Q2 = 0. Noting that the total number of elements of Ui doubles at each

iterate, starting with 3 elements when i = 2, we have

Qi = 3 · 2i−2 − Pi − Ti = 2(2i−2 − 1).

The triangles have the same measure as each other for each i, as do all the parallel-

ograms, however the other quadrilaterals do not. We need to find the width of the

bases of each of these shapes in order to obtain their areas, and subsequently the

return time distribution.

Let δj be the slope of the vector obtained by applying DHΩ2 j times to the vector

(1, 1). Then, the width of the bases of the triangles, wTi , is given by

wTi = p

(
1

δi−3

− 1

δi−2

)
,

For the parallelograms, the width wPi+1
for i ≥ 4 is given inductively by

wPi+1
=

p · wPi
1 + p+ pδi−3

,

where wP3 = p(1−p)
2p+1

. The widths of the horizontal sides of the quadrilaterals admitted

by the triangles, w1,2
Qi

(ε), are given by

w1
Qi

(ε) = ε

(
1

δi−3

− 1

δi−2

)
,

w2
Qi

(ε) = (ε+ p)

(
1

δi−3

− 1

δi−2

)
,

where ε ∈ N represents the region {(x, y) ∈ R2 : ε ≤ y ≤ ε+p} which that particular

quadrilateral is located in, w1
Qi

(ε) is the width at y = ε, and w2
Qi

(ε) is the width at

y = ε + p. In this case we only concern ourselves with the quadrilaterals admitted

by the triangle with a corner at (0, 0), since those admitted by the other triangle
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possess the same areas. Note that since each of the quadrilaterals for a given i is

located in a different region {(x, y) ∈ R2 : ε ≤ y ≤ ε + p} to the others, their areas

will vary depending on ε. See Figure 47 for a sketch of this process.

The Lebesgue measures of these shapes are as follows:

µL(Ti) =
p · wTi

2
,

µL(Pi) = p · wPi ,

µL(Qi(ε)) =
p · (w1

Qi
(ε) + w2

Qi
(ε))

2
.

Thus we have

µQ(Ui) =
1

(1− p)
(2 · µL(Ti) + 2i−2 · µL(Pi) +

∑
ε

2n(ε) · µL(Qi(ε))),

where n(ε) is the number of quadrilaterals in the region {(x, y) ∈ R2 : ε ≤ y ≤ ε+p}

- this is either 0 or 1. We then have, for i ≥ 3,

R(i− 1) = µQ(Ri−1) = µQ(Ui−1)− µQ(Ui).

To obtain n(ε) for a given Ui, we perform the following algorithm:

1. If i ≤ 3, there are no quadrilaterals in Ui.

2. Start with the (list of) coordinates (x, y) = (1, 1). Let j = 4.

3. If j < i, replace each entry (x, y) in the list with (x+ y, x+ 2y) and (x+ y +

1, x+ 2y + 1).

4. Add (1, 1) to the list, and let j = j + 1.

5. Repeat steps 3 and 4 until j = i.

6. The list of ε for which n(ε) = 1 is given by the y coordinate of each entry in

the list.
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εi

εi + p

(a) A quadrilateral in Ui.

εi

εi + p

(b) Applying a horizontal shear.

εi+1

εi+1 + p

εi+1 + 1

εi+1 + p+ 1

(c) Applying a vertical shear yields two quadrilaterals in Ui+1.

Figure 47: A sketch of the process undertaken by each quadrilateral in Ui to yield two

quadrilaterals in Ui+1 (highlighted by the red circles). Note that, for the purpose of clarity,

none of these figures are to scale, as the images become narrow very quickly; this can be

seen in Figure 46. Also note that εi and εi+1 indicate the y-coordinate in the case of Ui

and Ui+1 respectively.
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For k ∈ {1, 2,∞}, let

ψkHΩ
(b) = min

v∈CHΩ

{
||MHb

Ω2
,HΩ1

v||k
||v||k

},

and

φkHΩ
(b) = max

v∈CHΩ

{
||MHb

Ω2
,HΩ1

v||k
||v||k

},

then our bounds upon the Lyapunov exponent λ, ΨHΩ
and ΦHΩ

, are given by

λ ≥ Ψk
HΩ

= (1− p)
∞∑
b=0

R(b) logψkHΩ
(b), (123)

and

λ ≤ Φk
HΩ

= (1− p)
∞∑
b=0

R(b) log φkHΩ
(b), (124)

where the average return time to Q is 1
1−p by Kac’s lemma [26]. We again take the

best lower and upper bounds from the three norms to obtain ΨHΩ
and ΦHΩ

.

The above is all exact and can be written down explicitly, similar to the bounds

we obtained for the LTM, however an issue in practicality arises when trying to

calculate the total area of the quadrilaterals,
∑

ε µL(Qi(ε)). Specifically, the number

of area calculations required to obtained an exact value increases exponentially with

i after i = 4. In order to prevent this, we can instead consider bounds upon these

areas for i ≥ 5; the lower bound is given by taking ε = 1 for all quadrilaterals in Ui,

whereas the upper bound is given by taking the largest value of ε - in this case, by

applying the map

(x, y)→ (x+ y + 1, x+ 2y + 1)

i− 4 times to the coordinates (1, 1), and taking the final y coordinate as our value

for ε.

Figure 48a shows the bounds ΨHΩ
and ΦHΩ

for p ∈ [0, 0.5] - note that the bounds

in this figure were calculated using the upper and lower bounds upon the areas of

the quadrilaterals, as mentioned in the previous paragraph. We see that for small
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(a) ΨHΩ
and ΦHΩ

. (b) Comparing with a ‘naive’ upper bound.

Figure 48: ΨHΩ
and ΦHΩ

for p ∈ [0, 0.5]. The FTLE calculated over 100000 iterates for

the initial condition ( 1
π , 2 −

√
2) is shown in black. In (b), the bounds are compared to

the naive upper bound given by the larger Lyapunov exponent of the matrices DHΩ1 and

DHΩ2 .

values of p the bounds are much closer, and the gap between them increases with

p. The FTLE remains comparatively close to ΦHΩ
for all p, whereas the accuracy

of ΨHΩ
appears to diminish as p increases.

In Figure 48b, the bounds are compared to a naive upper bound given by the

larger Lyapunov exponent of the matrices DHΩ1 and DHΩ2 - in this case, DHΩ2 .

We see that the improvement over this bound is quite large until p gets close to 0.5;

note that at p = 0.5, the system is an Anosov diffeomorphism. The sudden rise in

the naive bound from p = 0 to p = 0.02 is due to the horizontal shear in the map

changing from a slope of 1 (HΩ is the Cat map when p = 0) to two horizontal shears

of slopes 0.02 and 0.98 respectively - the matrix corresponding to the shear with

slope 0.02 provides the upper bound in this case, leading to the sudden jump.

Figure 49a shows a histogram of FTLEs of HΩ after 105 iterates for a square

lattice of 104 initial conditions when p = 0.2. The distribution of the FTLEs in

this case is much narrower than in the case of the linked twist map, with the vast
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(a) A histogram of the FTLEs compared to

ΨHΩ
and ΦHΩ

.

(b) The initial conditions which yield FTLEs

outside of ΨHΩ
and ΦHΩ

.

Figure 49: The FTLEs in the above were obtained using a lattice of 104 initial conditions

upon T2, each iterated under HΩ 105 times. In this case, all of the FTLEs outside of the

bounds are larger than ΦHΩ
.

majority of FTLEs concentrated close to ΦHΩ
. In particular, the distribution itself

appears to be at least approximately Gaussian - specifically, the green fitted curve

is given by

N(x) =
c · e

−(x−λ)2

2σ2

2πσ2
,

where λ is the Lyapunov exponent, σ2 the variance of the distributions of FTLEs

after 105 iterates, and c a scaling factor depending on the number of initial conditions

and size of bins chosen; in the case of Figure 49a, σ2 = 1.1541×10−6 and c = 0.91966.

In this case, these quantities have been calculated directly from the dataset. We

see that there is no stretched tail to this distribution, as there was in the case of

the LTM; the FTLE obtained from a randomly chosen initial condition for HΩ is

typically a more reliable estimate than for the LTM.

Figure 49b shows the initial conditions within the lattice which yield FTLEs

outside of the bounds; we see that very few do, although the number is comparable

to that of the FTLEs we found outside of ΨH and ΦH in the case of the linked twist
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map in Figure 44c. The difference in this case, however, is that all of the initial

conditions outside of the bounds yield FTLEs above the upper bound ΦHΩ
, and are

closer to the mean FTLE than was the case for the LTM.

The reason for ΦHΩ
being the closer of the two bounds to the FTLEs is due to

the choice of reference region Q. The largest proportion of points return to Q after

one iterate of HΩ, and so only the matrix DH1 is considered when bounding their

norms; this matrix possesses the smaller Lyapunov exponent of the two Jacobians

in the system, and on average stretches tangent vectors less than DH2 does. If the

reference region were P instead, or equivalently, if we considered the case where

p ∈ [0.5, 1], then DH1 would possess the larger Lyapunov exponent, and so both

ΨHΩ
and ΦHΩ

would be increased.

The Lyapunov exponents for the cases where p ∈ [0, 0.5] are identical to those

where p ∈ [0.5, 1], where we equate the case p with 1−p; the systems are dynamically

identical and simply differ by a shift in coordinates. Thus, a way to improve upon

these bounds (in particular, ΨHΩ
) would be to undergo the same process for the

cases where p ∈ [0.5, 1], then take the upper bound from the case p and the lower

bound from the case 1−p. Following this, one could, in principle, perform the same

process we saw in the case of the LTM, considering preceding sequences of matrices

in order to the narrow the cones used. However, the calculation of a preceding

distribution would not be a simple task.

5.7 Summary

We have studied a method for obtaining bounds upon the Lyapunov exponents of

a parametrized family of linked twist maps. The method involved the use of the

existence of invariant cones for orbits returning to a reference region - in this case,

the region where the two annuli overlap - as well as the ability to fully express a

return time distribution for the points in this region for a range of parameter values.
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We improved upon the bounds we obtained by considering the sequences of

matrices which could precede these orbits, and explicitly calculating the preceding

distribution for a smaller range of parameter values. Although the best bounds using

this method are obtained by finding the entire distribution, a smaller improvement

is possible by simply finding any preceding distribution element, and applying it

in the proper way within the expression for the bounds. Furthermore, we stated a

theorem which repeats this process, to obtain a sequence of bounds which should

narrow upon the Lyapunov exponent.

We showed further that these bounds are applicable to systems other than LTMs

by explicitly calculating them for the case of another system formed via shear com-

position. In this case the return time distribution was explicitly calculable, however

we instead elected to bound the distribution for practicality reasons.
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6 Summary and Outlook

In this final section, we summarise our findings throughout this thesis and discuss

some possible extensions to the theory.

6.1 Summary

In this thesis we have studied the Lyapunov exponents of various systems in which

their explicit calculation is not possible. These systems are characterised by the

existence of some form of hyperbolicity within their dynamics. The strictest form of

hyperbolicity, uniform hyperbolicity, requires uniform bounds on the expansion and

contraction rates upon invariant regions of tangent space; the most typical systems

which possess this quality, such as Arnold’s Cat Map, have explicitly calculable

Lyapunov exponents, however adding some form of non-uniformity to the system

- for example by adding randomness as in Chapter 4, or by introducing spatial

dependence of the Jacobian as in Chapter 5 - can remove explicit calculation as a

possibility.

Where explicit calculation is not possible, one must resort to estimation, often

via the numerical calculation of finite-time Lyapunov exponents, or to obtaining

rigorous bounds on the Lyapunov exponents. This thesis has provided a method

which yields the latter of these two options, by utilising the existence of hyperbolicity

in the systems to find invariant cones in tangent space; these cones are used to reduce

the range of vectors one must consider when calculating the maximum and minimum

growth rates in tangent space.

We have derived and studied these bounds (primarily) for two families of maps.

The first was in the case of random products of hyperbolic toral automorphisms

formed via the composition of shear matrices, a method which built upon that of

Sturman and Thiffeault [54] in the case of random products of shear matrices. The
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second case concerned deterministic systems, with particular focus on the linked

twist map, where one could explicitly obtain (or at least bound) a return time

distribution to a reference region. Despite the linked twist map possessing regions

upon which the Jacobian is not hyperbolic, these bounds could still be obtained due

to the return map to the reference region being hyperbolic.

In the case of the family of random dynamical systems studied in Chapter 4, we

obtained explicit, elementary bounds on the Lyapunov exponents, labelled Ψ1 and

Φ1. We noted that the bounds provided reasonable estimates (up to 6 s.f.) for the

Lyapunov exponents in some cases where the cone was particularly narrow due to

the matrices chosen having eigenvectors which were more closely aligned, however

in other cases (i.e. wider cones) the bounds were not as tight.

With the results of calculating Ψ1 and Φ1 in mind, we endeavoured to improve

upon these bounds via narrowing the cones; this was made possible by considering

the matrices which could precede other matrices within a realisation of the infinite

orbit. This led to an improved version of the bounds, Ψ2 and Φ2, which improved

accuracy over the previous bounds by a factor of between 100-1000 (2-3 s.f.) on a case

by case basis. Furthermore, the process of narrowing the cones could in principle be

repeated indefinitely, leading to a sequence of bounds Ψk and Φk, with the bounds

increasing in tightness with each k. While this process would be relatively simple to

code, the calculation time would increase exponentially with k, since every possible

combination of matrix and preceding matrix must be considered.

Following the results of Chapter 4, we applied a similar method to obtain bounds

on the Lyapunov exponent of a family of linked twist maps. In order to guarantee

that the orbits we considered were hyperbolic, we calculated a return-time distribu-

tion to the overlap region of the two annuli on which the shears were defined. The

theory involving the invariant cones in this case is similar to that of Sturman and

Thiffeault [54], and so bounds upon growth rates of vectors in tangent space were



200

explicitly obtainable.

The return-time distribution for the linked twist map was explicitly obtainable,

although for the purpose of clarity we focused on a range of parameter values in

which the distribution was at its simplest. The distribution was obtained using

elementary geometry and as such is somewhat general in its application in principle;

to demonstrate this, we also calculated a return-time distribution (and subsequently

bounds) for another map formed via shear composition which possessed similar

properties in Section 5.7.

The first iteration of the bounds for the linked twist map provided an indication

of the value of the Lyapunov exponent to within a few decimal places. The cal-

culation time for this version was very quick, since the number of matrix products

we considered was reduced significantly from the random case, where every product

was possible. In order to improve the tightness of the bounds, we again considered

narrowing the cones in the same way as in Section 4.6, by considering the matrices

which can precede each matrix in an orbit. The calculation of this ‘preceding dis-

tribution’, while again involving only simple geometry, is intricate in practice but

seems widely applicable in such systems due to its simplicity.

Following the above calculations, we obtained an improved version of the bounds

upon the Lyapunov exponent of the linked twist map, particularly in the tightness

of the lower bound. For the purposes of accurate estimation, these bounds did not

initially appear as useful as those obtained for the random family of maps, however

investigation into the distribution of finite-time Lyapunov exponents of the linked

twist map appeared to indicate that, even after 105 iterates of a typical estimation

process involving Gram-Schmidt orthonormalization, a significant fraction (18.7%)

of the estimates lay outside of the improved bounds. We also noted that, in a similar

fashion to the random case, we could in principle extend this process of considering

the preceding matrices indefinitely; however, this process would be much more time
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consuming that in the random case, due to the requirement of calculating more and

more intricate preceding distributions.

6.2 Random bounds: three or more hyperbolic matrices

The bounds Ψk and Φk from Theorem 4.5 are stated specifically for the case where

we choose the matrices A and B with probability 1
2

at each iterate. The choice

to present this theorem (as well as others in the chapter) for this simple case was

made to attempt to emphasise the more interesting side of the bounds - the use

of the mutually invariant cones for these matrices. The generalization of these

theorems to cases where the chosen probability distributions are non-uniform is

immediate and obvious, as the theory regarding the cones does not change at all; in

fact, the only things that change are the frequency with which particular matrices

Ma,b occur, and the expected length of each Ma,b, as discussed in Section 4.5. For

example, in Theorem 4.5, if we were to instead choose the matrix A with probability

2
3

and B with probability 1
3
, then we would simply replace the term 2−a−b−m−n with

2a+m · 3−a−b−m−n. We then find, via ratio tests, that the expected length of each

Ma,b is given by E(a + b) = 11
4

, so we replace the term 1
4

with 4
11

and proceed as

before. In general, these bounds can be obtained provided one can acquire a joint

probability distribution for the matrices and those that precede them, and are not

limited to solely geometric distributions.

Extending the theory to the case where we consider three or matrices at once

is not as obvious. Let us consider a system where we choose from the matrices

A1, A2, . . . AΩ at random on each iterate, with respective probabilities p1, p2, . . . pΩ

(where
∑Ω

i=1 pi = 1). The first issue is the existence of a global, mutually invariant

cone for the matrices, as such a cone would need to be invariant under any product

A
aj
j A

ai
i for ai, aj ∈ N. Fortunately, determining whether such a cone exists is no

more difficult than was the case for two matrices: one simply checks each possible
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x

y
vuA1 vuA2

vuA3

vuA4

0

Figure 50: A sketch of the globally invariant cone in the case of a system which chooses

from four matrices at random. The solid lines indicate the cones boundaries, in this case

given by the unstable eigenvectors of the matrices A1 and A4, which yield the widest

possible cone with boundaries given by unstable eigenvectors.

pair Ai and Aj to determine whether a mutually invariant cone exists for them. If

such a cone exists for every pair of matrices, then a globally invariant cone is given

by choosing the largest (widest) of these cones, as it will by definition encompass all

of the other pairwise invariant cones (see Figure 50). The condition for such a cone

existing remains similar: no stable eigenvectors for any of the matrices Ai can be

located between the unstable eigenvectors for any pair Aj, Ak for i, j, k ∈ {1, . . . ,Ω}.

Another problem arises in the choice of matrix product to consider; that is, the

analogue to the matrices Ma,b = BbAa which we used to rewrite the term ‖Hnv‖ in

the definition of the Lyapunov exponent. The most obvious choice appears to be

the matrix

Ma1,a2,. . . ,aΩ
= AaΩ

Ω · . . . · A
a2
2 A

a1
1 ,

however, in order to account for sequences which skip one or more matrices in this

sequence (e.g. A4
5A

7
3) or which occur in a different order (e.g. A8

2A7A
3
4) we must
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allow for the numbers ai to be zero. In principle this does not add any complications

to the theory, as the resulting products could still be written down in general via

diagonalization as in Chapter 4; in the bounds, the summations would begin from

0 instead of 1, and we would need to carefully consider the expected length of the

matrices Ma1,. . . ,aΩ
.

In principle, it would appear that such bounds could be obtained for three or

more matrices; they would be explicit and elementary as desired, and would require

little modification to the theory already discussed. One concern may be that since

the global cone is, in some sense, the ‘worst-case scenario’ out of the pairwise mutu-

ally invariant cones, the resulting bounds Ψk and Φk may not be especially accurate

for low k. The cones should narrow significantly as k increases however, so it is

possible this problem would not persist to high k values. The computing time for

these bounds would increase significantly with k (at least exponentially), and so

their practicality could also be called into question.

6.3 Random bounds: generalized Lyapunov exponents

Positivity of the maximal Lyapunov exponent of a system tells us that vectors will

grow at exponential rates following sufficient iteration. While this is in itself useful to

know due to reasons discussed previously, such as the indication of chaotic behaviour,

one may wish to obtain further information about the convergence of the Lyapunov

exponent. One method for achieving this is to observe the distribution obtained

when calculating finite-time Lyapunov exponents, similar to those we saw in Chapter

5, and see how this evolves when taking increasing numbers of iterates. This can be

a very lengthy procedure however, as one must calculate many finite-time Lyapunov

exponents to obtain a sufficient sample size.

An alternative method is to study the generalized Lyapunov exponents [17], `(q)
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for q ∈ N, which are given by

`(q) = lim
n→∞

logE‖Hnv0‖q, (125)

for v0 ∈ R2. Each `(q) gives the growth rate of the qth moment of the norm of

the matrix product Hn. In a similar way to how Lyapunov exponents characterise

the expansion rates in tangent space, generalized Lyapunov exponents quantify the

fluctuations of these growth rates. For a more detailed discussion of generalized

Lyapunov exponents and their uses, as well as a method for estimating generalized

Lyapunov exponents, see Vanneste [58] and the references therein.

In our case, and in a similar fashion to Sturman and Thiffeault [54], we note that

E‖Hnv0‖q = E
(
‖MaN ,bNvN−1‖
‖vN−1‖

· . . . · ‖Ma1,b1v0‖
‖v0‖

)q
,

= E
(
‖MaN ,bNvN−1‖
‖vN−1‖

)q
· . . . · E

(
‖Ma1,b1v0‖
‖v0‖

)q
,

since ‖vi‖ are independent of each other. Finally, since we choose the matrices at

random, the ai and bi are independent and identically distributed random variables,

and so we obtain the lower bound

Ψ
(q)
1 =

1

4

∞∑
a,b=1

2−a−b log

(
min
v∈CAB

{‖Ma,bv‖
‖v‖

})q
≤ `(q), (126)

and the upper bound

Φ
(q)
1 =

1

4

∞∑
a,b=1

2−a−b log

(
max
v∈CAB

{‖Ma,bv‖
‖v‖

})q
≥ `(q). (127)

6.4 Deterministic bounds: general application

In Chapter 5 we derived and studied bounds for the Lyapunov exponents of a family

of linked twist maps, as well as an additional map formed via shear composition

which we introduced in Chapter 3. We note here that these bounds are, in principle,

applicable to a wider range of systems than those presented in this thesis.
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The most important condition in the acquisition of bounds of this form is the

existence of invariant subspaces (cones) in tangent space. Due to this, the method

naturally lends itself to finding bounds on Lyapunov exponents in systems with

some form of hyperbolicity, as the existence of invariant subspaces is a necessity in

such systems. An example of another system discussed in this thesis to which the

method could be applied is the map originally studied by Cerbelli and Giona [14],

which we discussed in Section 3.3, although it should be noted that the Lyapunov

exponents of this map can be evaluated explicitly. In fact, the invariant cones one

obtains for this map are simply the eigenvectors of the Jacobian corresponding to

the hyperbolic region, and so our bounds reduce to the exact Lyapunov exponent;

similarly, this happens in the case of systems such as Arnold’s Cat Map, where the

invariant subspaces also consist of a single vector.

The main limiting factor in the calculation of the bounds (assuming the pre-

requisites, such as the existence of invariant cones, are met) in deterministic systems

is the calculation of the return-time distribution, and subsequently the distributions

characterising the matrices which can precede other matrices in an orbit. It should

be noted that an exact expression of the distribution is not necessary to obtain

bounds, as we showed in Section 5.6 where we found bounds upon certain elements

of the distribution. If one could obtain an expression which could (non-trivially)

bound the distribution elements at each subsequent iteration of the bounds, then in

principle higher iterations of the bounds could become attainable. Note also that

while the above statement will hold true in theory, the existence of a system where

one could obtain useful bounds upon these distribution elements is not known to

the author, and a way to bound the distribution elements of subsequent preceding

distributions in the systems we have studied also appears unlikely.
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