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ABSTRACT

The triple tangent bundle T3M of a manifold M is a prime example of
a triple vector bundle. The definition of a general triple vector bundle
is a cube of vector bundles that commute in the strict categorical sense.
We investigate the intrinsic features of such cubical structures, introducing
systematic notation, and further studying linear double sections; a general-
ization of sections of vector bundles.

A set of three linear double sections on a triple vector bundle E yields a
total of six different routes from the base manifold M of E to the total
space F. The underlying commutativity of the vector bundle structures of
FE leads to the concepts of warp and ultrawarp, concepts that measure the
noncommutativity of the six routes. The main theorem shows that despite
this noncommutativity, there is a strong relation between the ultrawarps.
The methods developed to prove the theorem rely heavily on the analysis
of the core double vector bundles and of the ultracore vector bundle of E.

This theorem provides a conceptual proof of the Jacobi identity, and a new
interpretation of the curvature of a connection V on a vector bundle A. We
expect these methods to be capable of further development, and to apply
in a wider variety of situations.
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Glossary

grid on a double vector bundle D: a pair of linear sections, see
Definition 2.

warp of a grid on D: a section of the core vector bundle of D, see
Definition 22, It measures the lack of commutativity of the grid; see
diagram (ID).

struts over A: non-linear sections of D — A, defined by sections of
the core; see Definition II=3. These project to the zero section 07,
and were called core sections over A in [25, p. 347].

bolt of ¢: a linear section p* of D that projects to the zero section
07, defined by a vector bundle map ¢ : A — C over M, see Definition
7.



Introduction

0.1 Some history

Double vector bundles have been implicitly present in the literature of Mathematics
since at least Dieudonné’s treatment of connection theory in [5]. Pradines was the first
to give a systematic and general treatment of the subject in [33]. Since the early 1990s,
double vector bundles have been used in several areas. A few (but by no means a
complete list of) such areas are the following:

e Poisson geometry has used double structures extensively, since at least the early
1990s, for example, see [28], [29], [21], [37].

e Double vector bundles and their relation to Lie algebroid theory have been studied
in [20], [23], [26], [13], [17], and [3].

e Classical mechanics has also used double vector bundles in formulations and ap-
plications, for example, see [0}, [B5], [I1].

Besides applications, double vector bundles have their own rich theory. Their duality
was introduced and developed by Mackenzie [21], and has surprising properties. A
recent account with references can be found in [25, Chap. 9] and [I3].

Another important feature is the warp, introduced in [27]. Once linear sections on dou-
ble vector bundles are defined, warps emerge naturally. Various identities of differential
geometry can be then described as applications of this concept.

The concepts of warp and linear sections can be extended to triple vector bundles. The
first serious treatments of triple vector bundles were given in [24], [I3], and [38]. Our
primary objective in this thesis is the systematic treatment of these concepts.

A general double vector bundle is quite distinct from a (strict) 2-vector bundle; double
vector bundles are double structures in the sense of Ehresmann, []. We are also not
considering relations between double vector bundles and graded vector bundles.

So what is a double vector bundle? The definition of a double vector bundle consists of
three parts: (i) the algebraic compatibility conditions, (ii) the double source condition,
and (iii) the existence of sigma maps.

xi
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For part (i), the algebraic conditions are efficiently covered by the following definition
from [?H, Definition 9.1.1].

Definition 0.1.1. (Part (i)) A double vector bundle (D; A, B; M) is a system of four
vector bundle structures
D
qﬁ’h

A9,

—F B

a5
a5 (1)

qa

in which D has two vector bundle structures, on bases A and B, and both A and B are

vector bundles on M. In addition, each of the four structure maps of each vector bundle

structure on D, that is, the bundle projection, addition, scalar multiplication and the
zero section, is a morphism of vector bundles with respect to the other structure.

This is a well-established and widely used definition of a general double vector bundle
D, and in practice, the algebraic compatibility conditions are the ones we check when
establishing that a square of vector bundles is a double vector bundle. For the purpose
of this thesis though, Definition ICIT is not strong enough. We present parts (ii) and
(iii) in Section I, and further discuss their significance.

An equivalent and often more practical way of describing the algebraic compatibility
conditions on D are the interchange laws, presented in Section Il

Definition 0.1.2. Given an element d € D, let ¢%(d) = a, ¢§(d) = b, and ga(a) =
qp(b) = m. The first diagram in (2) comprised by these projections is called the outline
of d.

Given another element d’ as shown, the sum over A has the outline shown in the third
figure.

d— b d — ¥ d+d —— b+¥

A
[ | | A
ar+—m, ar———m, a —— m.

For elements d which project to zeros under both bundle projections, that is, elements
that are in the intersection Ker(¢Z) N Ker(¢), the two additions and the two scalar
multiplications coincide. Under these operations the set of such elements forms a vector
bundle over M, called the core of D [33], usually denoted by C. More details on C in
Section [T2A.

Now suppose that (d;a,b;m) and (d’;a’,b';m) have a = o/ and b = b'. Then there is a
unique ¢ € C such that

d=d +(c+0P) =d +(c+0P). 3
A(cB Z) B(cj‘- b) (3)
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In equations of this type, what is important is that the difference d — d’, calculated in
either structure, results to the same core element ¢ plus an appropriate zero. We will
indicate this by

d—d e, (4)

and we use this notation from subsection B2 onwards.

The following are two fundamental examples that arise from an arbitrary vector bundle
A; the tangent and the cotangent double vector bundle.

TA 9D M A g
pA p CA qx (5)
A—2 5 M, A—T M

The tangent bundle T'A of an arbitrary vector bundle A — M has two vector bundle

structures: the usual tangent bundle structure T'A PA, A, and the tangent prolongation

T
structure T A ﬂ) TM. The latter structure is obtained once we apply the tangent

functor to all the vector bundle operations of A — M. The tangent double vector
bundle T'A is described in detail in [2H, Section 3.4] and in [84, Ch.9]. Specifically
about the vector bundle structure of T'A over T'M, see [G, (16.15.7)].

As the following will be used again and again throughout calculations in most chapters,
we briefly state how we add two elements &1,& € T(q)"'(v) in the same fibre of
TA— TM. Since T(q)(&1) = T(q)(&2), we can write

d d

& = %al(t) o’ & = %aQ(t)‘tzo’

for a1(t) and as(t) two curves in A, with g(a1(t)) = q(az2(t)), for t near zero, see
Proposition ™22, Define:

6+ 6= S (ar(t) + ax(t)] )

=0
More specifically, for F' € C*°(T'A):

(6 + &)F) = 5P + o) . @

Dualizing T' A over A yields the cotangent double vector bundle T*A. This is described
in detail in [28] and [25, Section 9.4]. We briefly present the necessary formulas for our
work in Section A3,

Of course, as with all Mathematics, there is more than one way of working with double
and with triple vector bundles.
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e Focusing on the intrinsic structure of these geometric objects, as in [25, Chap-
ter 9], and in [24]. In this way of working, core vector bundles and core double
vector bundles are crucial. The main bulk of our work is done in this fashion, see
Chapters 2, B, .

e Using decompositions, as in [27]. We explain this in detail in Sections IT1 and
ez

e Using local coordinates. A few papers that apply this method of work are [B6],
[87], [85], and [3] for double vector bundles, and [B%] for triple vector bundles.

We present T?M, T A, a general double vector bundle D, a general triple vector
bundle E, and then T2A in local coordinates. Some of the key concepts are
described using local coordinates, see Sections [T, 273, T3, XT3, and P44

e Dual frames, as in [I5, p.5], and in [80]. This is another way of working locally;
once a decomposition and local coordinates on D are chosen, one can describe
sections of the vector bundle structures of D using dual frames.

0.2 Warps and grids in double vector bundles

The original motivating example for the concepts of grid and warp lies in [I, p.297],
where the authors give the following formula for the Lie bracket of vector fields X and
Y on a manifold M,

T(Y)(X (m)) = X (Y (m)) = ([X,Y]) (Y (m)). (8)

Here X denotes the complete lift of X to a vector field on T'M and the uparrow denotes
the vertical lift to TM of the vector [X,Y](m) to Y (m). The complete lift, or tangent
lift, X is Jas o T(X) where Jy; : T2M — T2M is the canonical involution which
interchanges the two bundle structures on 72M. The double vector bundle 72 M is the
tangent double vector bundle of T'M 2y M, called the double tangent bundle. Its core
vector bundle is yet a third copy of M. We elaborate on the double vector bundle
T?M, on the Jy; map, and on the vector fields )2, X" in Section T32. The left hand
side of (B) is encapsulated in (0).
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If we look at the elements T'(Y)(X (m)) and X (Y (m)), we see that they have the same
outlines

T(Y)(X(m)) ——— X(m)  X(Y(m)) ———— X(m)

(
Y(m) —m———— m, Y(m) —— m.

The two elements therefore determine a core element ¢ € T'M. Taking d = T'(Y)(X (m))
and d' = X(Y(m)) in (), we have

where the subtraction on the left is the usual subtraction of vectors which are tangent
to TM at Y (m), and the addition on the right is addition in T'(p) : T2M — TM. That
is, ¢ + 052(% is the vertical lift of ¢ to Y (m) and so, by (B), ¢ = [X,Y](m).

T(p)

A comment on the notation of the last equation. In the case of a general double vector
bundle D, the two additions + and + are clearly distinct. In the case of T2M however,
A B

both side bundles are copies of TM. To distinguish between the two additions, we use

the projection maps, for example, addition in 72M M TM will be denoted by + .

T(p)
We adopt this notation whenever necessary, especially in Sections B3 and 0.

Equation (B) can be proved either in local coordinates, as in [31, Section 8.14], or in
terms of the action of vector fields on linear and pullback functions, by applying directly
[25, Theorem 3.4.5] for D = Lx, the Lie derivative of the vector field X.

The use of (8) expresses the result in a compact conceptual way. To the best of our
knowledge, the first time equation (B) appeared in the literature of Mathematics is the
1988 edition of the book [0] by Abraham, Marsden and Ratiu.

We now generalize the picture () to any double vector bundle D. The following is [25,
Definition 10.3.1].

Definition 0.2.1. A pair of sections X € I'A and £ € I'gD form a linear section of D
if £ is a morphism of vector bundles over X.

A grid on D is a pair of linear sections (£, X) and (n,Y) as shown in (I0).

A section £ € I'yD of D — A is g-projectable if there exists a section X € I'B such
that g5 o & = X 0ga. A linear section (&, X) projects to its base section X € I'B. See
[T5, p.6] for more details.
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/\
—

3
B
h Y (10)
M.

—
~_

D
77 h
A
X
For each m € M, £(Y (m)) and n(X (m)) have the same outline. They therefore deter-
mine an element of the core C' and, as m varies, a section of C' which we denote w(&, 7).
More precisely,

E0 (m) (X (m)) = w(&m)(m) 4 0%,

(Y (m)) - n(X(m)) = w(&n)(m) + 0% (m)-

(11)

Definition 0.2.2. The warp of the grid consisting of (£, X) and (n,Y) is w(&,n) € T'C.

Equation (B) can now be expressed as saying that the warp of (@) is [X,Y].

Adopting the notation introduced in (@), we may write () succinctly as

EY (m)) —n(X(m)) >w(&,n)(m). (12)

The sign of the warp w(&,n) changes if £ and 7 are interchanged. Our convention gives
the positive sign to the counterclockwise composition £ o Y.

The question of signs — or orientations — is omnipresent throughout the thesis. In
the double vector bundle setting, certain rules follow from established conventions of
Differential geometry, as in (8). Later on, we will see that in many cases, arbitrary but
consistent choices must be made to determine which difference to take as the positive
warp (see Remark B1H).

0.3 Main results

The main theorem of the thesis is Theorem BT4. This result first appeared in [27] with
a proof that relied on the use of decompositions for triple vector bundles. In Section
B2 we give a different and genuinely geometric proof, based on a new technique using
exclusively the intrinsic structure of triple vector bundles, developed in Chapters B
and B.

As an application of Theorem B4, we derive Definition 51 in Chapter @. There are
a variety of formulations of the definition of curvature of a connection depending on
whether one is working with vector bundles, principal bundles or general fibre bundles.
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A guiding principle which holds in all these cases is that the curvature measures the
difference between the bracket of horizontal lifts and the horizontal lift of the bracket
of two vector fields. This is implicit in many treatments of connection theory; see, for
example [6]. In Chapter B, using the warp, bolts, and grids language, we give a new
explicit proof that this principle, which we formulate as Definition B=51, leads to one
of the standard formulas of curvature.

In a double vector bundle D, the C°°(B)-module of sections I'gD is generated by the
linear sections and the sections which arise from sections of the core; these latter were
called core sections of D in [26, Proposition 3.2]. In Definition I3 we introduce
the less confusing term ‘strut’ for them. These two kinds of sections of D have been
largely used in the literature, [26], [I5], etc. The linear sections that project to the zero
section in particular, called core-linear sections, were introduced in [I2] and [T7]. These
sections are central to Definition B2, and in Chapter B we call these the bolt sections.
Bolt sections arise naturally when taking the difference of the horizontal lift and the
complete lift of a vector field, see Section BE-=24. We also give the corresponding analog
of these sections in the triple vector bundle setting, which we call double bolt sections.

Some of the results of this thesis, notably, the proof of Theorem BT and Definition
A5 T appear in [R].

0.4 Outline of thesis

In Chapter O, the Background chapter, we present all the necessary theory concerning
double vector bundles on which we build in the following chapters. Most of the material
can be found in references given therein. Section I, where we prove the existence
of nontrivial grids in a double vector bundle, is presented there for the first time.

In Chapter B we give a systematic treatment of the intrinsic structure of triple vector
bundles, which does not rely on decompositions or local coordinates. We set up the
notation and the operations on triple vector bundles. This is a nontrivial extension of
double vector bundle theory.

In Chapter B, we formulate and prove Theorem BT, which we call the warp-grid
theorem. This is the heart of the thesis. The proof is a lengthy and intricate application
of the techniques developed in Chapter B. Despite the technical nature of the proof,
we believe Theorem BT is a natural result, and we explain the grounds for our belief
fully in Remark B2, A detailed outline of the proof is given in Section B2

In Chapter @, we present the bolt and the double bolt sections of a double vector
bundle and of a triple vector bundle respectively, and in Section B we present a class
of examples of grids on a triple vector bundle E invovling two double bolt sections.
Section B3 examines a grid on T2 A obtained from a connection V on the vector bundle
AL M , and the curvature of V. Section E-8 describes the first instance of the warp-grid
theorem, the Jacobi identity, which was introduced in [Z7, Section 3].
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0.5 Future developments

We have not considered here the question of grids and warps in 4-fold vector bundles
or the general case of n-fold vector bundles. We expect however that the cases of n
odd and n even will exhibit different behaviour.

The question of bracket structures on triple vector bundles will be treated in a separate
publication.

0.6 Notation and Conventions

All manifolds are smooth, real, finite dimensional, Hausdorff and second-countable.

All vector bundles are smooth, real, and of finite rank. We denote a vector bundle by
A% M. The dual vector bundle to A % M is denoted by A* <5 M.

In conclusion

In conclusion, I would like to express my best thanks to Yvette Kosmann-Schwarzbach,
Theodore Voronov, and Ping Xu for lengthy conversations at different stages of the
thesis.



Chapter 1

Background

1.1 Preliminaries in double vector bundles

As mentioned in the Introduction, the definition of a double vector bundle has three
parts. And the first part, which is that the operations of D — A be vector bundle
morphisms with respect to D — B (or equivalently, that the operations of D — B be
vector bundle morphisms with respect to D — A), is equivalent to interchange laws.

Indeed, let us draw our attention to the addition in D — A. That the addition in
D — A is a morphism of vector bundles with respect to the structure D — B:

where D x 4 D is a vector bundle over B X j; B, means that fibrewise

+:DxD ,
A A (b1,b2) b1+b2

(dy,d2) — dy 4A;d2,

, two elements in the same
(b1,b2)

is a linear map. Hence for (dy,ds), (ds,ds) € D x4 D

fibre over (b1,b2) € B X B, we have

JX (dl,dQ)BiB(dg,dZL) = (j(dl,d2)> 2; <§(d3’d4)> ,

M



which we rewrite as the following interchange law:

(d1+da)+(ds+dy) = (d1+d3) +(dg +dy). (1.1)
A B A B A B

Of course since (dy,d2) € D x4 D we have that ¢5 (di) = ¢%(d2) = a1, and similarly
for (ds,dy) € D x4 D, ¢ (ds3) = q7(ds) = as. In total, (d;;a;,b;;m), i =1,...,4, have
a1 = a9, ag = aq, by = by and by = by. The outlines of the four elements:

dl?—>b1 dg*—)bz dg*—)bl d4r—>b2

I A A A A A

a —— m, ap ——m, a3 —— m, ag ——— Mm.

Similar conditions involving scalar multiplications:

. . . b oD () — oD
o tA(d1 igdZ) tAd1 'EtAdQ’ for t € R, and with ¢5(d1) = ¢ (d2),

. . . b oD () — oD
otB(dl—A—dg) thll—thg,fortER,andw1thqA(d1) q’s (da),

ot -(u-d=u-(t-d),fort,uecR,deD.
A B B A

The zero section of A — M is denoted by 04, and the zero section of B — M is denoted
by 08. We denote the zero of D over a € A by 02, and the zero of D over b € B by

a

05) . Consequently, the following equations hold:
o OaD+a, = 05—505, for a,a’ € A,
o 0P = téof,
o 07, =0 1—05, for b,b’ € By,
00 =1t-0p.
® Y A b
We write ®F for the double zero of D, ®F | that is
oD .= 0(?% = o@%.

The notation d;d’ is short hand notation for d4(—1) Ad/ . A useful variation of the
A

interchange law (IT), starting with four elements d;, i = 1,2,3,4 as in (D), is the
following:

(di— da)—(ds—da) = (d— dy) —(do— da). (1.2)
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To see this, rewrite the left hand side of (I2) as

() () = (a4 (0 30) ) 40 (g (0 a0))

= (g (0;0) )4 (0 g 5 ((00) ) 0s)

where the outlines of the four elements are:

d—— b () de— =b (1) dy by (51) ((51) ) da) > —by

I ] 11 1] [ ]

ai > m, ay —— m, —as — m, —ag —— m.

We see that ¢ (d) = qﬁ)((—l)AdQ), qF (1) - d3) = ¢{((-1) é((_l)Ad4))’ and that

(
qp(di) = qg((-1) ]'gd3)a qE((—l)Adﬂ =qB((-1) ]'9((—1) Ad4)>' Apply the interchange
law () to (=3):

and this proves (IZ2).

We won’t include as much detail in future calculations.

1.1.1 Double source map and sigma maps

Let us return to Definition O, and discuss why we include parts (ii) and (iii) in the
definition of a double vector bundle.

The double source condition, part (ii) of the definition of a double vector bundle (part (i)

was Definition ), is that the double source map, the double vector bundle morphism

which we denote by §: D — A xy B, d— (¢5(d), ¢5(d)), be a surjective submersion”.

In [19], the authors prove in Lemma 2, Appendix A, that part (i) of the definition of a double
vector bundle follows from part (i) of the definition.



As we have already mentioned in the Introduction, the core C of a double vector bundle
D is the intersection of the kernels of the two projections of D. To ensure that C is
a well-defined closed embedded submanifold of D, we require that § be a surjective
submersion.

The last part of the definition of a double vector bundle, part (iii), is the existence
of the sigma maps ¥ : A xpy B — D, previously called the splitting maps, see [I3,
Definition 1.1, p.178]. A sigma map is a double vector bundle morphism which is a
right-inverse to § : D — A x B: §(X(a,b)) = (a,b). It follows that it preserves the
side bundles A and B. We use sigma maps to prove the existence of nontrivial grids
on D.

Some authors prove the existence of sigma maps from the first part of the definition
of double vector bundle, e.g. [I1]. Our policy is to take the existence of this sigma
map as part of the definition of a double vector bundle. And as all examples of double
vector bundles known so far satisfy this requirement, and the operations of tangent
and cotangent prolongation, and the dualization processes preserve the sigma maps, in
practice, it is enough to check part (i) of the definition of a double vector bundle D.
When using local coordinates on D, one implicitly assumes the existence of the sigma
map. Pradines [83] did so, building explicit charts for D, which he called double charts.

So far, we have described a double vector bundle as (i) interchange laws, (ii) the double
source condition, and (iii) the existence of sigma maps. Alternatively, one can equally
describe a double vector bundle by (i), (ii), and the decomposition map Q : D —
A xpr B xp C instead of the sigma map. We will show that there is a bijective
correspondence between the ¥ and 2 maps. And 2 is a double vector bundle morphism.
We denote the inverse of the decomposition map by U : A Xy B xp C — D.

Decompositions are very helpful, as they provide insight to the following. In the setting
of vector bundles, we only have one “level” of local triviality, the level of local charts.
In the setting of double vector bundles, we have two “levels” of local triviality: the
first level which is charts on the constituent bundles A, B, and C, and the second level
which is decompositions 2 : D — A Xy B xps C which play a role for double vector
bundles comparable to local charts for ordinary vector bundles. The second level is
separate from the first level.

Bijective correspondence between X and {2

Start with a sigma map ¥ : A xpr B — D. For (a,b) € A x s B, the outline of ¥(a,b)
is (X(a,b);a,b;m), and by ¥’s definition: f(3(a,b)) = (a,b). Take any d € D with
outline (d; a,b;m). Then:

d—(a,b) = ¢+ 02,
A B
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for a unique ¢ € C. Define

QO:D — AXMBXMC
d — (a,b,(de(a,b))EOfL)). (1.4)

The inverse of this map is

U:AXMBXMC — D

(a,b,c) — X(a,b) :I;(C—EO,?). (1.5)

Both © and U are smooth, as a combination of ¥ and operations, all of which are

smooth. And €2 and U are mutually inverse.

Q is a diffeomorphism, and if we regard A X B x s C as a double vector bundle,
then 2 is an isomorphism of double vector bundles, and is the identity map on the side
bundles A, B, and on the core C. Using terminology of [I3, Definition 2.2, p.181], Q is
a statomorphism.

Therefore, given a sigma double vector bundle map ¥, there exists a unique double
vector bundle map €2, defined by (), which is a decomposition of D.

Equivalently, starting with an ), we can define a ¥ using the inverse of €2:

S:Axy B— D, (a,b)— U(a,b,0%).

Therefore, there exists a bijective correspondence between the sigma double vector
bundle > and the decomposition €2 maps of D.

Parenthesis

The following is a result from [I3, p.181], and we will use it to prove the existence
of nontrivial grids on a triple vector bundle F, in Section BT. First, we need the
following [25, Definition 9.1.2].

Definition 1.1.1. A double vector bundle morphism
(wipa, 05 f)  (D; A, By M) — (D' A", B's M)

consists of maps ¢ : D — D', oa: A— A", op: B— B, f: M — M, such that each
of (p,p4), (¢, 0B), (va, f) and (pp, f) is a morphism of the relevant vector bundles.

Proposition 1.1.2. Take ¢ : D — D' a double vector bundle morphism (p; o4, ¢B; f),
and denote its core morphism, the restriction of ¢ to the core vector bundles, by oc :
C—C.IfD=AxyBxyC and D' =A" xyp B xp O, then we can write

Sp(av b, C) - (@A(a)a (pB(b)7 )‘(av b) + @C(C))v

where X\ : A X B — C' is a bilinear map.



Proof. Write ¢(a,b,c) = (pa(a), pB(b), f(a,b,c)), with f: Axy B xp C — C'. Then
0(0, 05, ¢) = (04, 0%, F(0, 05, ¢)), s0

m> U (m)7 V1 my> S Oms U
pc(e) = f(0p, 0, ).

For di = (a,b1,c1), do = (a,ba,c2) € D, since
di+ds) = p(d d
pldr 4 dz) = o 1);1&@( 2);

it follows that
f((l, bl + b27 C1 + 62) = f((l7 bla Cl) + f((l, b27 CQ)‘ (16)

Similarly, for d} = (a1,b,¢1), d5 = (az,b,c2) € D, by
! d/ — d/ d/
o 1t 2) = ¥ 1);‘,90( 2);
we obtain,

flar +a2,b,c1 4+ ¢2) = f(ai,b,c1) + f(az, b, c2). (1.7)

Note that subscripts for the additions in equations (IC8) and (IZ7) are not necessary as
both additions coincide in the core vector bundle C" — M.

In (CH), taking by = by = 02 and ¢; = ¢y = 05

f(a,02,09) = f(a,08,09) + f(a,02,09),

yYmo Ym »¥mo Ym rY¥mo Tm

hence
f(a’ OB OC) = Og(m)v

sVYms VYm

the zero of the fibre C’}(m). Similarly, we obtain

Hence, from (IC8), if we set by = b and by = 02 and ¢; = 05, and ¢z = c,
flab,0) = £(a,b,0%) + £(a,05,0) = £(a,b,05) + f(a,05,00) + F(075,08,¢)
= f(a,0,05) + £(05, 00, ©) = f(a,0,05) + (o),

since f(a,02,0¢) = O?(/m). The bilinear map in question is then X\ : Axy; B — (',

y¥Ymo Ym

(a,b) = Xa,b) = f(a,b,05). And this completes the proof. O

Take a sigma map ¥ : A X,y B — D, and a decomposition ' : D — A x; B x5 C,
not necessarily the one corresponding to the given sigma map. The core morphism of
3} is the zero map, because the core of A x; B is the zero vector bundle. The core
morphism of € is the identity map, therefore, the core morphism of the composition
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Q' o X is the zero map. According to Proposition I3, there exists a bilinear map
A A Xy B — C, such that:

Q,OZ:AXMB — AXMBXMC
(a,0) = (a,b,A(a,b)).

As the decomposition € corresponds to some sigma map ', we have,

Q/OZ:AXMB — AXMBXMC
(avb) = (a7b7 (E(aa b)jzl(c% b))EO(JLD)a
SO

Aa,b) = (2(a,b) E’(a,b))EOD (choaD)—oach.

A a B

We call this A(a,b) the core component of the element X(a,b) € D with respect to Q';
A(a, b) is not intrinsically defined.

In the case where € is the decomposition corresponding to the given ¥, then

Qog:AXMB — AXMBXMC
(G’?b) = (a7b7 (E<a7b)jz(aab))EOaD)a
and since X(a, b) ZZ(@, b) = 02, the core component of the element ¥(a,b) € D with
respect to 2 is A = 0.

Therefore, we see that even though the core morphism of the double vector bundle X
is zero, the core component of the element ¥(a,b) € D depends on the decomposition
chosen, and is not necessarily zero.

Nontrivial grids on D

The sigma map X : A X3y B — D guarantees the existence of nontrivial grids on D.
To see this, take a X € I'A and ¢ : B — C a vector bundle map over M. Then using
(3),

§(b) = B(X(m), b, (b)), (1.8)

is a linear section of D — B over X.
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Some calculations:

E(bl)+§(bz)
= O(X(m )bl,@b(bl))jU( (m), b2, (b2))

_ < + () +0X(m>> (Z(X(m) bo) + (UJ(bz)-gO)e(m)))
= <2( (m),b1) ) (( +OXm>> <(b2)]§0§(m)>>
— (X (m), b1 +bs) + (( (br) £ bz)) < +OXm>)>

= X(X(m),b1 +ba) :14; <¢(b1 + ba) —g OX(m)>

= U(X(m),b1 + b2, (b1 + b2))

= &(b1 + ba).
That (X (m), by) jl_ X(X(m),b2) = X(X(m), b1 + ba) follows since X is a double vector
bundle map. And ¢% (£(b)) = X (m), hence ¢ projects to X € T'A.
Now take a Y € I'B, and ¢ : A — C a vector bundle map over M. Then

n(a) = 0B(a, Y (m), p(a)),

is a linear section of D — A over Y. Therefore, (¢, X) and (n,Y) is a nontrivial grid
on D. The warp of this grid:

§(Y (m)) - -n(X(m)) =

ot
M
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hence w(&,n) = 1/J(Y(m))A/—Bg0(X(m)), as the two subtractions coincide in the core
vector bundle.

Since dj d = 0P and d;d = 0P, by linearity of 3 it follows that,

2(04,b) = %(a,b)— %(a,b) = 07,

B
for a,b € A x; B. Similarly £(a,08) = 0P, and finally, £(0::,02) = @D,

m’ ¥m

1.1.2 Core vector bundle

In this section we describe in detail everything concerning the core vector bundle of a
double vector bundle.

By definition, the core C of the double vector bundle D is the intersection of the kernels
of the two projections qﬁ) and qg of D, ie.,

C = Ker(¢}) NnKer(¢B).

The core C' is a closed embedded submanifold of D, as the preimage of the closed
submanifold Z = {(04,08) | m € M} C A x s B via the double source map f: D —

m’ ~m

A xpr B. The core C is a submanifold of D, but not a subvector bundle of D. It is
however a vector bundle over M. My best thanks to Madeleine Jotz Lean for explaining
the use of pullbacks to define the vector bundle structure of C over M.

The kernel of the vector bundle morphism (qg ,q4) is a subvector bundle of D over A:

Ker(f) = |J Ker (aB] ) = Ufd e D| | aB(d) =05},
acA acA

Now take the pullback of Ker(q5) — A across the zero section 04 € TA. This is now
a vector bundle over M,

04'Ker(¢B) —— Ker(qR)

S

M ﬁ A.
0
This pullback bundle OA!Ker(qg ) — M is the core vector bundle C' — M,

04" Ker(¢) = {(d,m) € Ker(qB) x M | qR(d) =02}
={deD | ¢{d) =02, ¢B(d) =08, meM}=C,
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and this is the vector bundle structure the core inherits from D. Indeed, if d €
|
04Ker(¢B), then ¢% (d) = 07, hence,

go(d) = m = qa(0)) = qa(q4 (d)).

Applying the same method the other way around, that is, starting with the kernel
Ker(qg) of (qE,qB), and taking its pullback across the zero section 07 € I'B, we
obtain the vector bundle

OB!Ker(qE) — Ker(qﬁ))

q’cl ‘/qg

M ——— B.
OB

For d' € OB!Ker(qﬁ)), then ¢B(d') = 05, and
ge(d) =m = qp(05) = ap(qp (d)).

As sets, the two manifolds OA!Ker(qg) and OB!Ker(qff) are both equal to the core C' of
D. Do the two pullback bundles define a unique vector bundle structure on C? For a

din C = OA!Ker(qg) = OB!Ker(qf), since g4 0 ¢ = qp o qf,

ge(d) = qa(g4 (d)) = ap(a5(d)) = 4o(d),

that is, ¢ = ¢,. Also, in the following diagram, both the inner and the outer square

| |
diagrams commute, hence the unique map F : OA'Ker(qg ) = 08'Ker(q})
map, and in fact, a vector bundle map over M.

is a smooth

We can similarly define a map G : OB!KGT(QE) — OA!Ker(qg), and we see that F' and G
are mutual inverses, hence F is a diffeomorphism. Finally, about the two additions and
scalar multiplications that both pullback vector bundles inherit from D coincide. To see
this, take dy,dy € C' = OA!Ker(qg) = OB!Ker(qg), with ga(¢5 (d1)) = qa(qf (d2)) = m.
Then, by the interchange law (ICT):

di+dy = (d +OL) +(OF + d2) = (d1 + OF) +(OF + dy) = dy + da.
B A B A B A B A
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And similarly for the scalar multiplication. Therefore, both pullback vector bundles
define the same vector bundle structure on the core.

From now on we denote a core element by ¢ € C. When working with examples, we can
usually identify the core vector bundle with a familiar vector bundle. For example, the
core vector bundle of T'A can be canonically identified with A — M, as described in the
following subsection, see also [25, 9.1.7]. However, it can be important to distinguish
between these two pictures: the elements in C' (i) as elements in D, and (ii) as elements
of the familiar bundle with which we identified C — M. To indicate that an element
c € C is viewed as in (i), we write ¢, a bar over ¢. For instance, in the case of T A, an
element of the core vector bundle can be viewed either as an element a € T'A, or as
an element a € A. This distinction is usually not necessary for general double vector
bundles and triple vector bundles, so in Section 223 of Chapter B and in Chapter B, we
do not write bars over core elements. The bar notation is used repeatedly in Section
22 and in Chapter @.

As mentioned in the Introduction, two elements d,d € D with the same outlines differ
by a unique core element ¢ € C, as in (B). Indeed, take (d;a,b;m) and (d';a,b,m).
Then qf(djd’) = a and qg(dj d') = 0B. Subtracting 02 over B yields the element

(dzd’)EOaD, and since qf((d;d’)g()(?) =07 and qé’((d;d’)EOaD) =02 this is

precisely an element ¢ € C. In other words,

Of course if we take their difference over B, we obtain the same core element ¢ € C.
To see this, start with

and apply the interchange law (ICT):

d +(0P = (d' +0P)+(0P = (d' +0P) +(0P =d +(0P +0).
jg(agc) (gb)jl-(a;gc) (j‘-a)ﬂg(bjl-c) g(bjc)

Therefore, we see that core elements naturally arise when combinations of operations
over different structures occur.

Struts

Given a section ¢ € T'C' of the core vector bundle we can define ¢*@ € T'4D and
cB € I'gD, called the core sections over A and over B respectively, corresponding to
¢, see 25, Section 9.1]. From now on, we call these sections struts.

Definition 1.1.3. For a section ¢ € I'C, define

ATAS D, ars c(qa(a)) JrOaD’
B
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and call ¢? the strut of ¢ over A, and similarly,

BB =D, beclgpbd)+0P,
A
the strut ¢? of ¢ over B.

Struts are g-projectable sections, and they project to the zero section.

The core of TA

We briefly recall the identification of the core of T A with the vector bundle A — M
itself, see [25, Sections 3.4 and 9.7.1].

The kernel of the vector bundle map T'(q) : TA — TM over q : A — M, consists of
vectors & € T, A with T(q)(§) = Og(% , that is, vectors with base point a, and fibre
component ()qT(% in TM. This means that £ is tangent along the fibre A, ie.,
¢ € T, A, Therefore, the kernel of T'(q) consists of the vertical tangent vectors of T A,

and is the usual vertical bundle T4 — A.

The kernel of the vector bundle morphism py : TA — A over p: TM — M is a vector
bundle over TM, and it consists of the vectors & € TA with ps(¢) = 04. And these
are the vectors that are based on the zeros 07 of A.

The core of T'A is the intersection of the two kernels, that is, it consists of the vertical
tangent vectors of TA based at the zeros 02 of A. Fibrewise, we canonically identify the
tangent space Tya Ap, with Ap,, hence the core vector bundle of T'A can be identified
with A — M.

Conversely, when a € A,,, is in the core of T'A, we view it as an element in T A,

a= ﬁ(m)‘

Toa A 1.
dt 06 04 41, (9)

where the curve ta is entirely in the fibre A,,. Therefore

o) |
= —m
t=0 dt lt=0 m

T(q)(a) = —q(ta
(0)(@) = a(ta)
In short, we view a as the velocity vector at the point O;;‘L, the zero of the fibre A,,, of
the curve ta.

For a section p € T'A of the core vector bundle of T'A, the strut u! of y over A is,

W (F) @) = S Fla+ tuta(a))] (1.10)

for F e C*°(A), a € A. Tt is a vector field on A.
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Finally, as we will use the following repeatedly, we write the two different zeros of
T A with respect to its two different vector bundle structures. For v € T,,M, with

v = %y(t) o where v : [ — M, t — ~(t) is a curve in M, then,
t=

d
T(0%)(v) = aoA(fy(zs))‘ _ €T A, (1.11)
If a € A, then
d
TA
= — T,A. 1.12
Oa dta’tzo < ( )

Something that will be needed later on is the following. Take a vector bundle map

(¢, f),

A2 N

|

MT>M’.

Then the morphism T'(¢) of the tangent bundles is in fact a double vector bundle
morphism (T'(0); 0, T(f); f):

TA —— TM

\Tﬁw) \T(f)

TA ——— TM'

A M

RN ™~

A M,

and its core morphism is the vector bundle map (¢, f). Indeed, for a € A a core element
of T A, write it as a = %ta’ . Then,
t=0

T(o)a) = S (ptia))| = Stlpla))|_ =@,

since ¢ L A — A/f(m) is linear.

1.1.3 Some local coordinates on D

It is customary in Differential Geometry to work in local coordinates. Double vec-
tor bundles are no exception to this custom, and indeed Pradines in [83] introduced
appropriate charts for double vector bundles, see also [38] and [86]. We now present
corresponding notation for this technique.
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Take a double vector bundle D. Denote by r4 the rank of A — M, by rp the rank
of B —+ M, by rp, the rank of D — A, and finally by rp, the rank of D — B. The
dimension of the base manifold M is dim M = n. The dimension of the total space
D is then n +7r4 +7p, = n+rp+rpy, that is, r4 +rp, = rg +rp,. Denote by
rC:i=Tpy —TA=T7"D, —TB-

Now denote a local coordinate system for D by,
1 n 1 T 1 T 1 T
(x,...,2"a,...,a"™ b L 0B 2 2T,

or in shorthand notation, (z,a,b,z). In particular, (a) are fibre coordinates for the
vector bundle A — M, and (b) are fibre coordinates for the vector bundle B — M.

From [B3], in the intersection of overlapping charts on D, the coordinates change as
follows. For m € M in the intersection of two charts on D, for the fibre coordinates of
A and of B we have, respectively,

at = PA(m)é-aj, and b° = Pg(m)Lb¥,

where j and k are summation indices, i,j = 1,...,ra, {,k = 1,...,75, Pa(m) €
GL(r4,R) and Pg(m) € GL(rp,R). We denote by PA(m)é the element in the i-th
row and j-th column of the matrix P4(m), and similarly for PB(m)i, the element in
the ¢-th row and k-th column of the matrix Pg(m). The transition laws for the fibre
coordinates (z),

= Po(m)lz" + P(m)a’b", (1.13)

where Pc(m) € GL(r¢,R), and P(m)ﬁk are the components of a bilinear map P(m) :

Ay X By — Cpn, (d?,0F) = P(m)?kajbk, and p,v = 1,...,7r¢c, j = 1,...,7r4, and
k=1,...,rg. To see this in matrix form, for the fibre coordinates of D — A,
[al] [a!]
PA(m)(rAXTA) ‘ O(TAch)
ara P(m)%kbk P(m)}%kbk a’A
2 : : Po(m)(rexre) 2!
: P(m) vk P(m);¢,b* :
zZre Z"c

_ bl - B bl
PB(m)(TBXTB) ‘ ‘ O(T'BXTc) :
e P(m)},d? P(m);,,a’ b
31 : : Pe(m) (e xre) z
: P(m)ifal ... P(m)j o :
ETC ZTC
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And of course we have

L= Pm)ha'th + ...+ P(m)! a"bk = P(m)}lajbl + ...+ P(m)} _alb"B.

TA JTB

Local coordinates for the core vector bundle are (z,z), where the fibre coordinates
(2) change as (2) do when additionally we set a/ and b* to zero for j = 1,...,74,
k=1,...,rp in (II3).

Let us describe struts in local coordinates. Any ¢ € I'C,
(..., 2" = (2, ... 2" 2 (x),. .., 270 (2)), (1.14)
hence the strut ¢4 € I'4D in local coordinates,
(:Ul,...,x",al,...,a“) > (xl,...,x”,al,...,aTA,Ol,...,OTB,zl(:U),...,zTC(J:)).
The zero of D over a € A in coordinates,
00 = (21, ... 2" el ... a™, 0L ..., 075,01, ...,07),

hence ¢ (a) = ¢(m) 4 0P. From this we see directly that ¢?(ay +as) # c(a1) + ¢ (as).
B B
This will come up again later on.

We present the warp of a grid on a general double vector bundle D using local coordi-
nates.

Example 1.1.4. Any section £ € I'gD is described in local coordinates as follows,

(b, .., 2™ bt BB e (a2

S
=
—~
8
~—

ca™A(x), b 0B 2 (2, D), ., 27 (2, D).

By Definition (I°2), a linear section £ € I'gD is a vector bundle morphism over
X € T'A. In local coordinates X € I'A is written,

(..., 2") = (z',..., 2" ' (2),...,a"(z)),
and & € I'gD has the following expression,
(2™ bt 0 e (22 Al (@), a A (), b LB 2 ()R L 2 ()R,

(1.16)
Now take a grid on D as in (00),

I

1_b

(1
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Then for the linear section nn € I'y D,

(... 2" b, ... d™) — (b, 2™ db, . dm A b (), . ,er(x),z}(w)aj, e ,Z;C(x)aj),
over Y € I'B,

(..., 2") = (2!, ..., 2" bl (),...,b"B (x))
Therefore,

EY(m)) = (z4, ..., 2" a(x),...,a"4(2),b (x),...,b"B(z), 2} (x)b"(2), . .. ,zzc(x)bk(x))

n(X(m)) = (z}, ..., 2" a'(z),...,a"(x),b (2),..., 0B (x), 2} (x)d’ (), ..., z;¢ (z)a? (2)).
Their difference £(Y (m)) Zn(X(m)) over A,

(... 2" a(z),...,a"(x),0',...,0"B, z,i(a:)bk(:z:)—zjl- (2)a (z),...,2.° (a?)bk(a:)—z;C (z)a’ (z)),
and this defines a section of the core C,
w(&n): M — C, (..., 2") — (z},..., 2", 2 (z),..., 2" (),

where 2#(z) = 2 (z)b*(z) — zf(x)aj(x), w=1,...,rc. This is exactly the warp of
(6, ) and of (5, V).

1.2 Double tangent bundle et al

In this section we focus on the double tangent bundle T?M for a manifold M, and we
describe everything concerning 72 M needed for the work that follows in later Chapters.
Main references for this subsection are [I8] and [6], and for a treatment of T2M in
synthetic terms, see [32, Section 4.1]. First, we set up the notation for local coordinates
on T?M. We then proceed with the canonical involution .Jys, and we describe some of
its most important properties. We then set up notation for local coordinates on T'A
(relevant sources are [B6, Section 3], [34, Section 9], and [3]), and we describe in detail a
technical result from [34, Chapter 9]. Finally, we include the connection theory needed
for the examples of grids on 72M and on T'A in Section EZ4.

1.2.1 Local coordinates for T?M

We introduce the notation we need in local coordinates for a smooth manifold M
with dimension dim M = n, for the tangent bundle T M 5 M , and for the double
tangent bundle T?>M = T(TM). To describe how local coordinates change from one
chart to another, when the charts overlap in the first place, we iterate the well-known
construction of building local coordinates for the tangent bundle TM — M from a
chart (U, ¢) on M.
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Step 1

Start with a chart (U, ¢) on M, with associated local coordinates (!, ..., 2™). Denote
a point m € U by (x!,...,2"), or by () in shorthand notation.

From the coordinates (z!,...,z"), we build the basis (% ), shorthand
m

m7 ceey 8?
notation (%‘m), for the tangent space T, M.
Take a chart (U, ¢) with local coordinates (z?, . ..,z") and another one (V, ) with local
coordinates (Z!,...,Z"), such that U NV # (). The transition map on the intersection
of these overlapping charts,

Yoy lipUNYV)

(z',... 2"

— Y(UNV),
s 1 ~n)

Y

(z
For points m € U NV, we have two bases (@‘ ) and ( ) of the tangent space
m

T.nM. The relation between these two bases, for 7z =1, ..

35}1

0 07/ 0
9 b~ 02 "™ 3 | (117)
where j is the summation index. Equivalently, in matrix form:
~1 =1
5t (m) bew (m)
i, AL, ]
oz ™ z "
m m m m
o™ oz™
aor (M) azm (M)
Step 2
From a chart (U, ¢) on M with associated local coordinates (z!,...,2"), we can build

a chart on TM as usual, (p~1(U), ), see [I8] for example. We denote by v € T, M a
single tangent vector to M at point m € M, and the corresponding chart on T'M,

¢:p HU) — oU)xR*CR*™", (1.18)
o) o)
161 +. +UW = (b2l o).

i i we Wri m - .. .
Hence, in local coordinates we write v € T}, M as (z!,..., 2", v!,...,o"), or as (z,v

Now take (U, ¢) and (V,4) two charts on M, with U NV # (), and with corresponding
local coordinates (x!,...,2"), and (Z',...,2"), respectively. The transition map on
the region of intersection p~*(U) Np~ (V) = p~1 (U NV) of the two charts (p~(U), @)
and (p~1(V), 1) of TM,

VoplipUNV)xR* — UNV)xR",
1

o
(... 2™ b o) = (@ et . (1.19)
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The transformation laws for the coordinates (¥',...,9") on the intersection of the two
charts '
. ozt :
"= —(m!, 1=1,...,n, 1.20
o) (1.20)

)

Sl

where (IC20) follows from (II4), the relation between the two bases (%‘ ) and (

of T,, M. Therefore, (I"20) in matrix form:

~ 1 ~1
ot gﬁl (m) ... ggn (m)] [v?
o™ ‘gﬁ (m) ... g%:(m) v

Now, the two local coordinate systems, for v € p~1(U N V), define two bases of T,TM,

0 d 0 &l
(me-vw )3T vaTnU>7 and
(@ o |0 2 )
ozl m’ ctt oxn ) Ol v’ ) Oom . .
The Jacobian matrix of the transition map (I-T9),
(5) [ 0w | em | (&) | 0w
7 ~—1\ _ oxI nxn — oxJ nXxn
e e ] e iw
OxJ oI OxJ dxk OxJ

describes the relation between the two bases of T,,TM, i.e.,

) ox  _ d 82 Y
Gl = M|+ g M) 5
0 _ 0¥ 0

Ovi v o 8[1)7’ 8’(7-7 v.

Step 3

We now build charts for the tangent bundle structure pras : T?M — TM. Given a chart
(U, $)? on TM, we can define a chart for the vector bundle structure T(TM) 255 TM:

& : prl (U) = @(U) x R¥" C R™,

and for an element v = (z,v) € U write an element of p:;]lw(ﬁ ) as a linear combination
of the basis vectors of T, T M:

0
R

4ot 2
v o 8’0” U'

0 0
-1 n_ 2 v
+...+x v 5’(}1

x [
ozl Im ox™

>We have written U for p~(U)
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Then ® maps it to

1 1 n .1 .n -1

n -
(... vr o a2 o, 0.

And this is how we denote a local coordinate system on 72M, and in shorthand nota-
tion: (z,v,,0).

For two charts (U, &) and (V,1) on TM, with UNV # 0, denote by (z, v, &, v) and by
(z,0,Z,v) the corresponding coordinates on T’ 2M , respectively. The transition map on
the region of intersection p}]lw(U )N p;]lw(V) of the two corresponding charts on 72M,

(z,v,2,0) = (&,0,1,0).

As in the case of (I=20), the transformation laws for the coordinates () and () on the
intersection of the two charts of T2M follow by (IZI):

~i 254 7t
- ng (m)i/, o' = o (m)i’v* + %(m)f)j' (1.22)
€T

OxI Dk OxI
And this completes Step 3.

i

As mentioned in Subsection I3, the coordinates of the core vector bundle change as
the coordinates (’D) change when we set @/ and v*, j,k = 1,...,n, to zero in the second
equation of (I”22). This is another way of describing the canonical identification of the
core vector bundle of T?2M with TM — M.

The two bundle projections, pyys and T'(p) in local coordinates (z,v, &, 0),
prm :T2M4)TM’ ("L',’L),().L‘,’l.))*—) (JJ,U),

and
T(p):T?°M — TM, (z,v,&,0)— (x,).

For the second projection, take the tangent of the bundle projection of the tangent
bundle p : TM — M, (z,v) — (z), for v € T,,M,

T,(p) : T,TM — T,,M,
which is described by the matrix:

dal gz | dx! dzl
oxl "~ Ozn ovl "t Oum
: Do | = oy | Oy |-
Oz oz | Oz Oz™
ozl ° Oxn ovl ° oun
For £ € T,(TM), written as £ = :'cla%l - + ...+ 1}"8% S we then have,
eE
‘In :'Cl 5 5
xr . .1 .
Tv(p)(g) = [ I(n><n) ‘ O(nxn) ] 2.}1 = : = @ + ... +l’n%,
. "
o
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hence
T(p): T*M — TM, (x,v,i,0)— (z,1).

The two additions in T2M, for (z,v,,7), (z,v,3,0') € T(; ,)TM:

(Ilf,U,ZI.,‘,I.}) + (xvvai'lﬂlj/) = (ZL',’U,i' +jj,ai] +i}/)7
pPT™M

and for (x,v,,7), (z,v',2,7") € T(p)~(z,2):

(r,v,8,9) + (z,v,3,9) = (z,v+0, 3,0+ 7).
T(p)

In the rest of the thesis, we denote a single tangent vector on M at point m € M either
by v = (z,v) = (2!,..., 2" v}, ... ,o") € T,,M, or by X,, € T;,,M. For X € X(M) a
vector field, we denote its value at point m € M by X (m).

1.2.2 The canonical involution J,, : T°M — T?°M

For any vector bundle (A, g, M), viewing A as a manifold, the corresponding canonical
involution Jy : T?A — T?A is of paramount importance to Section EZ3. Hence, a
preliminary exposition on the properties of Jys is necessary.

A detailed exposition in local coordinates can be found in [34, Section 10]. Other main
references are [, Exercises 3.3B and 6.4G], [31, Section 8.13 and Section 8.14], [23,
Section 9.6], and [2, Chapter 1].

Definition of Jy,

To begin with, Jy; : T?°M — T?M is a map from T?M to itself. There are two
definitions of Jj;. The first one is given via local coordinates, and the second one via
second derivatives. We briefly describe both.

First, the definition via local coordinates. This is the definition given in both [,
Exercise 3.3B] and [, Section 8.13]. Locally, the canonical involution Jy is described
by

Iu(z,v,%,0) = (z,&,v,0).

This definition is invariant under changes of charts, [31, p.107].

The second definition via second derivatives, as in [25, Section 9.6]. When & € T2 M,
g (0

we can write it as
= — | —ul(t 1.2
¢ ot <8s’u( '5) s[)> ‘tzo’ (1.23)

where p : D — M is a smooth square of elements of M, D C R x R an open subset of
R x R, with (0,0) € D.
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Then Jjs is the map that interchanges the order of differentiation, i.e.,

() = 5 (guce9)] )

The use of partial derivatives in this setting can be misleading; we explain in detail this
definition in the following subsection.

(1.24)

s:O‘

Of course, the most immediate consequence of this definition is that J]%J =Jyody=
idp2,y, i.e., Jys is an involution.

Ju interchanges the two bundle structures on 72M

Indeed, we will show that

T(p)oJu =prm, prmoJu =T(p),
using the definition of Jj; via second derivatives.

Take a p: D — M, (t,s) — p(t,s), a smooth square of elements of M. First fix t € I,
I C R an open interval of R such that for ¢ € I then (¢,s) € D, and of course 0 € I.
Then, for every t, we obtain a curve in M:

e I = M, s = (s) = p(t,s),

where I’ C R an open interval of R, such that, if s € I’ and ¢ € I, then (¢,s) € D, and
additionally, 0 € I’. Take the velocity vector Y; of each of these curves at the point

Mt(o) = H(t70)’ J

Y, = gut(s) oo © Tut0)M.
These Y;, t € I, form a smooth curve Y : [ — TM, t — Y; in TM , with p(Y;) =
pt(0) = p(t,0), i.e., its projection on M is the curve u(-,0) : I — M, t — u(t,0).

Take the velocity vector of the curve Y in T'M. This is exactly £ as in ([Z23):

d
:—Y’ Ty (TM).
5 dt t € Yo( )

The relevant projections:

d
prmu(§) = Yo = %”0(8)’320 € Ty0,0M,

T = T0) (F7],,) = G000 = G0 ) € Too . 125

Now we describe Jj/(€) in detail. All we have to do is switch the roles of s and ¢. Start
again with g : D — M, (t,8) — u(t,s). Fix s € I', I’ as before. Then again, for every
s € I' we get a curve in M:

ps: I — M, t— ps(t) = u(t,s),
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and again, the velocity vector of s at point ps(0) = u(0,s), denoted by Xs:

d
X = @,U,S(t) =0 < TH(075)M.

The X, s € I’, form a smooth curve X : I' = TM, s — X, in TM, with p(X;) =
1s(0) = p(0, s). The projection of X on M is the curve u(0,-) : I’ = M, s — u(0, s).

The velocity vector of the curve X at s =0 is exactly Jys(§) as in (IZ24),

d d (d
a5l T ds (dt”s“)\t:o) a0~ M)
Observe that
d =23
Pl (©) = Xo=zu(t.0)] 1)),
TE)M©) = T0) (£X| )= Sox| = Su0.5)]_ =Yo=prui(©)
P)\Jm = p ds 5| emo —dsp s s:o_ds’u ) S —0 0 = PrMm\s)-
The outlines of the two elements £ and Jys(§):
T T
¢ 2 x, I (§) “ vy
PTMJV/ Jv/ pTMl l
Yy — u(0,0), Xo — u(0,0).

Therefore, we see that .Jj; interchanges the two bundle structures on 72M:

prv oy =T(p), T(p)oJu = pru- (1.26)

In particular, this shows that as a vector bundle map Jy; : T?M — T?M induces the
identity map on the bases T'M:

TN D T2 TN D T2
T(p)l lPTM pT]MJ/ lT(p) (1.27)
T™ TM, T™ TM,

hence Jy; preserves the side bundles TM of T?M.

Focus now on the first diagram of (I"27). Fibrewise linearity for £, &' € T(p)~!(v), with
v € Ty,M:

Ju(E + &) =Ju€) + Ju(). (1.28)
T'(p)

prm

This follows immediately by Jjs’s definition in local coordinates. Since &,¢" € T(p)~!(v):

g: (.’L’,'U,II.,’,’[}), 6/: (:1}7'1)/7;&72')1)7
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therefore,

Iy + &) =Jdy(z,v+0 8,0 +0") = (z, 2,0+ 0,0+ 7)
T(p)
= (z,4,v,0) + (z,4,0,0) =Ju(&) + Ju().

pPT™M pPT™M

Of course the same is true the other way around. For &, & € T2M with pry(€) =
prym(§),

Iu(€ + &) =Tm(€) + Ju(&). (1.29)
pPTM T(p)

Core morphism of Jy,

What is the core morphism of Jy;? Take a tangent vector v € T,, M in the core of
T2M. How do we express v € T2M in terms of y : D — M (recall that we write v
when we view a core element in the double vector bundle T2M, and we simply write v
when we view it in T'M, the familiar vector bundle with which we have identified the
core of T?M)?

Since v € T,, M, we can write v = %’y(t)‘ o fory: I — M, t— ~(t) a curve in M
=
with v(0) = m, and v at least twice differentiable. Consider u: D — I, (t,s) — t + s,
du

and set u(t,s) = vy(u(t,s)). Then it follows that
o= 5 (el )
s=0) lt=0 Ot \ dulu(t,0)dsls=0/ li=0

o (0
:8t<8s'u(t’8)
i (B0l
u(t0) ) lt=0 Ot \ dt t=0  dt? li=0

<

o (0
s:0> ‘t:o T ot <837(u(t’8))
_ 0 (dv
~ Ot \du

If we now switch the order of the variables s and ¢, then pu(s,t) = (s +t) is the same
curve, therefore Jys(v) = 7, see [2, Section 1.20].

Another way of understanding why Jjs is the identity map on the core is the follow-
ing. The core of the double tangent bundle T?M we start with is the intersection
of the two kernels Ker(prys) N Ker(7'(p)). The map Jjs interchanges the two bundle
structures T(p) : T?M — TM and prar : T?M — TM. Therefore, Jy; maps one
kernel to the other, i.e., Jyr(Ker(pras)) = Ker(T'(p)), and Jy (Ker(T'(p))) = Ker(prar).
Consequently, Jy; leaves the intersection of the kernels unchanged. Hence, the core of
Jy(T?M) = T?M will be again the intersection Ker(T(p)) N Ker(pras), i-e. the same
intersection that defines the core vector bundle of the initial T2 M.

Combining the last two subsections, it follows that Jj; is a double vector bundle iso-
morphism Jy; : T2M — T?M that induces the identity map on the core vector bundles,
see Theorem [P35, 9.6.1].
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Local coordinates for X and T'(X)

The canonical involution Jj; when applied to sections of the vector bundle structure

T>M M T M, which are not vector fields on T'M , yields sections of the vector bundle

structure TQJ\{ PIM, TM, that is, it yields vector fields on T'M. Specifically, the
complete lift X (sometimes also called the “tangent lift”) of a vector field X € X(M),
is a vector field on T'M such that

X =JyoT(X), T(X)=JyoX. (1.30)

Take two vector fields X,Y € X(M):

0
py = (..., 2" YY),
x

X X“a XL XY, Y=Y

_ _ a1
= axi—(azj...
where for each i =1,...,n, X", Y* € C>®(M).

Take a chart (p~1(U),$) for TM as in (IIX). We consider X as a map from M to
TM, m — (m,X(m)). Then the tangent map T,, X : T,y M — Tx ()T M maps the
vector Y (m) € T,, M to,

O Yim) T
In><n Yl( )
0X1 0X1 m n
1, (v () = | 2w )
L N
%); (m) ... Z2(m) : )
Y (m) % (m)]
hence
T, X (¥ (m)) =
<x1(m), oo z(m), XY m),. .., X" (m), Y (m),...,Y"(m),Y"(m) 68); (m),...,Y"(m) 86); (m)) ,
(1.31)
and of course T;, X (Y (m)) € T'x(mm)T M. Similarly about 7;,,Y":
T,Y (X(m)) =
1 ) n
<x1<m>, P m), YA ), Y m), X m), X ), X)), ) B >) ,
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and T,,,Y (X (m)) € Ty(TM. Applying Jy to T, X(Y(m)) interchanges the two
vector bundle structures, therefore,

I (T X (Y (m))) =

1 n
(xl(m), o z(m), Yim),. .., Y (m), X (m),..., X" (m),Y"(m) a;; (m),...,Y(m) aa); (m)> ,

and now Jy(Tn X (Y (m))) € Ty (myTM. The complete lift X of X € X(M) is a vector
field on T'M:

X:TM — T?M, (1.34)
d oxXi 9

Yo = X(Ym) = Xim) 5|+ YHm) 5o (m) 55 ¥ (m)

S Ty(m)TM.

In local coordinates this is precisely (I=33), and of course

prv(X(Y(m))) =Y (m), T(p)(X(Y(m))) = X(m),

and
T(p)(TnX (Y (m)) =Y (m), pru(TnX(Y(m))) = X(m).

Flows of complete lift

In this subsection we answer the question “X s velocity vector of which curve?”, see
[, Exercise 6.4G(ii)] and [25, Proposition 9.6.6] for further reading.

Denote by ¢ : Q@ — M the (local) flow of the vector field X, Q being an appropriate
open subset of Rx M, (t,m) — ¢(t,m), and by {p;} the one-parameter group of (local)
diffeomorphisms of M defined by ¢. Then,

e for I C R an open subset of R, s.t. I x M C Q, o™ : I — M, t — ¢™(t), denotes
the unique integral curve of X, starting at m € M,

o foreacht €I, o : M — M, m— @i(m) = ¢(t,m) = ¢™(t), sends each m € M
to the point obtained by following for time ¢ the integral curve starting at m;

e and X (m) = %cpm(t)
@™ at the point m.

= %gp(t, m)| , denotes the tangent vector of the curve
t=0 t=0

The flow properties:

e For any t,s € R, s.t. (s,m), (t,ps(m)), and (t + s,m) € Q, we have p;s(m) =
(91 © ) (m), and
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o at t =0, po(m) =m, Ym € M, i.e., oo = idyy.
We will show that {T'(¢;)} is the one-parameter group of (local) diffeomorphisms of

TM, corresponding to the (local) flow of the complete lift X. To begin with, the
tangent functor preserves the properties of the flow:

e Since Qs = @ © s, it follows that
T(pt+s) = T(pt) o T(ps).

e Since o = idyy, it follows immediately that T'(ypg) = idray.

Now take any v € T,,M, and some curve v in M, v : (—¢,€) — M, u — ~y(u), with

7(0) = m, and with v = %’y(u) o Let 0 be an open subset of R? such that, for any

(t,u) € O, (t,7(u)) € Q. Consider the map (t,u) — @(t,7(u)) = 7 (t) = @;(v(u))
from & to M. Then,

(o)) = Tolir) (590

) = )

u=0 '

Denote by ¢ the velocity vector of the curve t — T,,,(¢¢)(v),

d d [ d d (d
e= g Tule))] = 5 (g0 )| o= 5 (Gmett] )| oy
(1.35)
By (=) it follows that
nil6) = 3o (et )|, = eX00)] _, =100)
and since J12\4 = id7as, we have that
(T o TX))(0) =€ = $Tnle0(0)] .

Therefore, the vector field for which {T'(¢¢)} is the one-parameter group of (local)
diffeomorphisms of T'M, is Jys o T(X), and from (I=30), this is exactly X.

Vertical lift X'

For completeness, we present here XT. To begin with, one can define the vertical lift
of a single tangent vector. It isn’t necessary to start with a vector field, contrary to
complete lifts.

As a picture, you start with a vector X,,, € T,, M. Choose a vector Y, € T,,M, and
we want to “lift” X,, to a vector on the fibre of T2M X4 T'M over Y,,. This we do
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by simply taking X,,, placing its tail at Y, (which we view as O}T,:LM , the zero vector of
the fibre over Y},), and asking it to be tangent along the fibre T,, M, as follows. Take
the velocity vector of the path Y,, +tX,, € T,,M:

d
X (V) = 2V +£X0)| .

Given X € X(M), the vertical lift of X is a vector field on T'M,

X'.TM — TTM
Yo = X'(Yp) €Ty, TM,

defined as follows. If X = X2 = (2!,... 2", X!,... . X"), and ¥ = V', 2. =
(ml,...,x",Yl,...,Yn), then
0

XT(v;,) :Xia - = (2!, 2" Y Y™0,..,0, XY LX) €Ty, TM,
v

or, in double vector bundle language:

Also T'(p)(XT(Y;,)) = 0LM and, of course, pry (XT(Y;,)) = Yin.

The core vector bundle of T?M is a copy of TM — M. A section of this vector bundle
is a vector field X on M. From Definition I3, the strut of X with respect to prys is:
XPTV  TM — T(TM), Yy — XPT(Y,,) =00 M + X(m),

T

m

and by (I=38), this is precisely the vertical lift of X (m) at point Y,: XPT(Y,,) =
XT(Y;,). In order to distinguish between the struts X4 and X in this case, since

A = B = TM, we again use the projections. So instead of X7 we write XPT™ and
XT®), And XPrv = XT.

Naturality of Jy,

The following Lemma regarding the naturality property of the canonical involution will
be needed later on, see [l, Exercise 3.3B(ii)], and [&1, Section 8.13(1)].

Lemma 1.2.1. Let M and N be smooth manifolds, and F' : M — N a smooth map.
Then T?(F) o Jyy = Jy o T?(F), where T?(F) = T(T(F)) is the tangent of the tangent
map T(F).
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Proof. Take a £ = % (%u(t, s)‘ 0)‘ o where u : D — M a smooth square of
S= t=
elements on M, where D C R x R an open subset of R x R with (0,0) € D. Write,

)

s=0

T*(F)oJu (§) = T*(F) (CZ (CZ““’S)LO)

d d
& () (Guces) )
d (d
& (Grues) )
and Fou: D — N asmooth square of elements on N, so
d (d d (d
£ (el )| = o (3 (hroen )
ds <dt (t, 5)) t:O) 5=0 In (dt (ds (ut, 9)) s:O) t:0>
d d
fhalty o/ 20NN
N (dt ( )<ds'u(t’8)‘s=0> ‘t:o)

i (o)) L)

d
_ 2
= JyoT*(F) (dt (ds,u(t,s)
and this completes the proof. O

)

s=0

= JInoT*(F)(&),

1.2.3 TA: Curves and Tulczyjew

Let A % M be a vector bundle of rank 7, and denote its fibre over m € M by A,,. Take
a local coordinate chart (U, ¢) on M with associated local coordinates (z*,...,z"), and
a smooth local frame (s1,...,s,) for A over U. Write an element a € A,,, m € U, as
atsy(m) +...+a"s.(m). Then (¢~ *(U),®), the associated local chart on A,

:q ' (U) = oU) xR,
alsy(m)+ ... +a"s,(m) — (z',...,2"d",... a").
Therefore, we write an element a € A,, in local coordinates as (x!,... 2" a',... a"),
or as (z,a).

Now take two local coordinate charts (U, ¢) and (V,9) on M, with U NV # (. In ad-
dition, take two smooth local frames for A, (s1,...,s,) over U, and (81,...,5,) over V,
and the associated local coordinate charts (¢~!(U), ®) and (¢~ *(V), ¥) on A, with cor-
responding local coordinates, (z!,...,2" a',...,a"), and (2',...,2"%,a',...,a"). The
transition map on the region of intersection:

Tod l:pUNV)xR — UNV)xR,

1 ~1

(..., 2" d",...,d") — (z',...,2%al,...,a"). (1.37)
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Denote by P : U NV — GL(r,R), the transition function defined by (I=37). Then for
acqg tU)NgHV):

a=(z',..., 8" at...,a") = (&, ...,2", Pt(m)d~, ..., Pl (m)d").
As in Section X, the last equation in matrix form,

at Pt(m) ... Plm)] [a

: T : : ’

d"" Pf(m) ... P'(m)| |a"

T

of course in P,f, £ denotes the row and k denotes the column of the matrix P. Therefore,
the transformation laws for the fibre coordinates (a):

at =Pl (=1,... . r (1.38)
As in the case of T?M, denote a local coordinate system for T'A by:

1 n 1 r 1 .n -1 T
.. coal,

and shorthand notation (z,a, 4, a). If we take two overlapping charts on T'A, with asso-
ciated local coordinates (z, a, &, a) and (Z, a, &, a), we use the Jacobian of the transition
map (Z32) to show how the coordinates change. In particular, the Jacobian of (IZ37),

r ozl ozt | ozl ozl 7
9zt 9 | dal ° dar
oin  oan | ean o 0i' \ | o
9l gn 9l g . oI (nxr)
dal oal oal dal - 9at 9at )
ozl "1 Oam dal 7" Oa” 9xI dak
oda” oa” oa” da"
- Ozl " Oam Oal " dar -
where i,7 =1,...,n,and ¢,k =1,...,r. From (I=38), it follows that
~0 74 ~0
8@ _ 8Ps as 3@ _ PZ
Ox  Oxd ' OadF ’
where s is a summation index, s = 1,...,r. Therefore,
o' Jorid
(%) \ O(nxr) <8x'7>(m) ‘ Otwxr)
da’ oa’ oP; s ¢ ’
<6xj) ‘ <6ak> <8Ij “ (rxmn) (Pk)(rxr)

hence, we have the following change of coordinates for (x,a, #,a) and (&, a, &, a),

at = Pf(m)d", (1.39)

.. Ot )

i .

= (m)x?, (1.40)
Z .

at = Plm)d* + a—Ps.(m)a'c]aS. (1.41)

oxd
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The coordinates for the core vector bundle here change as (@) change, when we set @7
and a®, j =1,...,n,s=1,...,r to zero in the last equation, hence again we see that
the core vector bundle can be canonically identified with A — M.

The two bundle projections p4 and T'(q) in local coordinates (x,a, &, a),
pa:TA— A, (x,a,%,4) — (z,a),
and
T(q): TA—TM, (x,a,2,a)— (z,),
where the tangent prolongation of ¢ : A — M follows similarly as T'(p) in Section "2

Now, for any curve v : I — M, I C R an open interval of R with 0 € I, what is
%v(t)‘ . in local coordinates of TM?
t=

First off, take a chart (U, ¢) in M, with ¢ : U — o(U) C R™, m — (zt(m),...,z"(m)).
Write v in local coordinates:

0= )0
7 (0) = dt (0)8:& ~(0)

S Tv(O)Ma

and in the corresponding local coordinates on T'M defined by (U, ¢):

dxt dz™

7' (0) = (2(0),...,2"(0), W(O)’ A W(O))

Now take a curve a : I — A in A, I C R an open interval of R, with 0 € I. Then

a'(0) = La(t) . € Ty0)A. Take a chart (U, ) on M, a local frame (s;) for A over U,
t—

and the associated local chart (¢~ *(U), ®) on A. The curve a(t) in local coordinates,

a(t) = (z*(t),...,2"(t),a' (t),...,a"(t)) = (z(t),a(t)),

iy 4 B dr’ 0 @ 0
a(0) = a(t)‘ N (0) 0x' 12(0) * dt (0) da' la(0)

t=0 dt
2! " al a”
_ <x1(0),...,x”(0),a1(0),...,aT(O),ddt(O),...,ddt(O),aiit(O),...,ddt(O)>.

The following is [34, Proposition 1, p.81]. It is a result we use repeatedly throughout
the following Chapters and we include its proof for completeness.
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Proposition 1.2.2. Take two vectors &1, € T A with T(q)(&1) = T(q)(&2). Then
there exist curves ay, as : I — A such that & = %al(t)‘ . and & = %ag(t) . with

t= t=
q(a1(t)) = q(az(t)) fort near zero.

Proof. Let m = p(T(q)(&1)) = p(T(q)(&2)) = (zt(m),...,2"(m)) be in the domain of
U of the chart (U, ), with coordinates (z!,...,2™). Write

& = (xl(m),...,x"(m),a%(m),...,a{(m),x}(m),...,i?(m),di(m),. ,ai(m))
b = (@m),e.., 2 (m),ad(m), .., ab(m), Eb(m), ..., i(m), db(m), . .., &(m)),

for some local coordinates on T'A as described above. The following curves ay,as : R —
A,

a1 (t) = (:Ul(m) + tdc%(m), oz (m) + tzt (m), a&(m) +ta;(m),...,aj(m) + tc'ﬂl“(m)) ,
as(t) = (ml(m) +tad(m), ..., z"(m) + tY(m), ai(m) + tal(m),. .., a5(m) + tan(m)) ,

for ¢ sufficiently close to 0, satisfy the requirements. Indeed, we immediately see that

d

d
@al(t) —ay(t) o &.

&1, 7

The condition T'(q)(&1) = T'(¢)(&2) implies additionally that

t=0

#(m) = dh(m), i=1,...,n,

hence from the formulas of a;(t) and ax(t) it follows that g(a1(t)) = q(a2(t)), for t near
Z€ero. O

Two types of functions on A

A small parenthesis on recalling a useful technique. Two types of functions defined
on A, linear and pullback functions, are of particular importance. A section ¢ € I'A*
defines a linear function ¢, on A:

lo: A — R,
a = Ly(a) = (p(q(a)),a).

For f € C°°(M), its pullback function foq e C*°(A) on A is constant on the fibres of
A.

To define either a vector field or a tangent vector on a vector bundle A 4 M, it is
enough to check how it “behaves” when applied to linear and pullback functions of A.
A proof of this is given in Appendix B—XTI.

For example, in the case of pry : T°M — TM, for w € T'(T*M) the corresponding
linear function on T'M is,

by :TM - R, X, — (w(m), Xm).
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From the definition (I=34) of the complete lift X of a vector field X € M, the action of
X on linear and pullback functions, for w € I'(T*M) and f € C*°(M) is,

X(fop)=X(flop, X(lw)="Lryw).

Also, for f € C®°(M), w € I'(T*M), it follows directly from the definition of XT, see
Section 232, that

XT(fop):O, XT(&J):<W7X>OP'

For a section u € T'A, a section of the core of T'A, the strut u! of ju over A is given by
(I1m). Applied to the two types of functions on A, the linear functions £, for ¢ € I'A*,
and the pullbacks f o g for f € C*°(M), it follows directly from (II0) that

1 (ly) = (p,uyoq, p'(fogq)=0. (1.42)

1.2.4 Connections in A and in TM

In this section we present all the basic concepts and formulas from Connection theory
needed in later sections.

Given a connection V in a vector bundle A % M , the dual connection V*) in the dual
vector bundle A* L5 M is defined by,

(V@) 1) = X ({0, 1)) — (o, V() (1.43)

where € T'A, p € T'A*, and X € X(M). Further reading in [25, Section 3.4], [I8,
p.320).

Given a vector field X € X(M), denote by X its horizontal lift on A with respect to
V. Then (X* X) is a linear vector field on A. The action of the horizontal lift X on
the linear and the pullback functions,

X (foq)=X(f)oq, XM(t,)=¢ (1.44)

v (o)

for f € C°°(M) and ¢ € TA*.
That a connection in a vector bundle A is equivalent to a double vector bundle mor-
phism
C:TM xy A—TA, (X, a) — (Xm)(a),
is described in detail in [5, p.324-8 and Problem 4, p.337]. Other references include [25,

Section 5.2], and for the particular case A = TM in [B1, Section 22.8], and in implicit
form in [@, p.334].
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TM\ M\ q

™ — 2 s M

The double vector bundle morphism C' is a smooth right-inverse to (7'(q),pa) : TA —
TM xpr A, and is linear in both arguments, i.e., for a1,a2 € A, and X € T,, M,

C(X, ai + az) = XH(CL1 + ag) = XH(al)T—(I-)XH((ZQ) = C(X,al)T—g—)C(X, (12),
q q

and for X1, Xo € T;, M two tangent vectors on M at point m € M, and a € A,,:

C’(X1+X2,a) = (X1—|—X2)H(a) = (XlH;XQH)(CL) = XlH(a);;XgH(a) = C’(Xl,a):; C(XQ,CL).

This formulation of a connection in A will show up once again towards the end of this
section.

Example 1.2.3. The following example is central to Section B5. It is a subcase of [25,
Theorem 3.4.5].

Consider the tangent double vector bundle T'A, and let V be a connection in A. Take
a vector field Z € X(M), and take its horizontal lift Z* with respect to V. Take also
any p € I'A and form the grid shown in (IZG). Then the warp of the grid is Vzu; that
is, for m € M,

T(u)(Z(m))— 2" (u(m)) = (Vz)" (u(m)), (1.45)

where the right hand side is the vertical lift of (Vzu)(m) € Am to T)m)A.

()

TA ——— TM
T(q)

zH PA 4 Z (1'46)

A—1 5 M.
\_/

m

It is enough to check that the right hand side and the left hand side of (IZH) are equal
when applied to the linear and the pullback functions of A. Starting from the right
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hand side of (I43), when applied to a linear function £, p € T'A*:

(T zm) 4 2 m) ) )

T(p)(Z(m))(by) — Z (u(m))(by) = Z(m)(ly 0 p) — (27 (£,)) (u(m))

FZUe ) m) — Lo () = (Z({e, 1)) () = (a(m), (T ) ()
=0 (p(m), (Vzm)(m) = (0. V2u)(m) = (0, V2 (a(u(m))) =V 20) (6,) (u(m))
= (V) (u(m))) (¢,),

and this is exactly the left hand side of (I”Z3) acting on £,. About pullback functions
fogq, feC®(M),it follows that

T(p)(Z(m))(foq) = (Z(m))(f oqonp)=(Z(m))(foidm) = (Z(f))(m),
and

ZH (u(m)) (foq) = (27 (foq)) (u(m)) =" (Z(F)oq) (1(m)) = Z(F)(a(u(m))) = (Z(f))(m),

and finally, by (IZ22), it follows that (IZ3) is true for pullback functions too. And this
completes the proof.

Connections in TM

Now let us consider the special case of T'M as a vector bundle over M. Take a connection
VinTM % M. Denote by Ff’j € C°°(M) the Christoffel symbolsof V, 4,5,k =1,...,n,

9 e 9
5700 Y oxk’
where we're summing over k. For XY € X(M) two vector fields on M with local

coordinate expressions X = X* aii and Y =Y/ %, X1 YJ € C®°(M). The covariant

derivative of Y with respect to X:

\Y

, - YR\ 0
Y = XThYy! 4+ X1—— ) —
vy = (Xm0 ) e
from where we deduce that VxY € T'M has coordinates

. . oYL
VxY = (agl,...,x”,X’F%jYJ + X'

7t

Y, ) e
,...,XT%YJ—kX’axi),

where we write X iI‘ijj to distinguish between the order of indices. Given a vector

field X € X(M) we can take its horizontal lift X with respect to V, a vector field on
TM:
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and in local coordinates, writing v = (z!,..., 2", v!,...,v"), we have,
xH xi 9 Xk i 0 1 n o1 n yl X7 _ XD o e
(1}) axz_ ak (1.7-.-7-%.71)7-.-71}7 geeey s ijv7"'7_ ’L]U)'

(1.47)

Conjugate connection on T'M

We consider T'M as a special case for the following reason as well. Given a connection
V on TM, we can define the conjugate connection V on T M:

VxY = VyX + [X,Y], (1.48)

see [I8, p.319] for further details. The conjugate connection is only defined for the
tangent bundle, and not for any arbitrary vector bundle A — M. From (I[ZX) it
follows immediately that, if Ffj are the Christoffel symbols of V, then for the Christoffel

symbols I‘ of V we have

~p O = 0 0 g 0 0 0
Y zk v 57 O V% ozt [8% 8.@1] 57 0zt T oxk
Therefore,
VxY = [ XTEYT 4+ X oYty 0 YITh X 4 X OVEN 0 (1.49)
X ozl ) ok ozt ) Oxk’ '

Denote by X H ¢ X(TM) the horizontal lift on T'M of a vector field X on M with
respect to the conjugate connection V. For v € T M,
0 0 - 0 0

erk i Y — X ij Xz
o ok~ o " o
Finally, using the double vector bundle formulation, if we denote by C : TM X 3, TM —
T?M the double vector bundle morphism that corresponds to the connection V in T'M,
then the conjugate connection V is described by C' = Jys o C o Jy, where Jys is the
canonical involution in 72M, and Jy : TM & TM — TM & TM interchanges the
arguments, see [22, p.7].

XA ) = X




Chapter 2

Triple vector bundles

Triple vector bundles were introduced in [24],[T3], and [27]. In this chapter we start
with the definition of a triple vector bundle, describe the basic operations and examples,
and set up the notation.

2.1 Definition of triple vector bundle

As the definition of a double vector bundle has three parts, so does the definition of a
triple vector bundle consist of (i) the algebraic compatibility conditions, (ii) the triple
source condition™, and (iii) the existence of sigma maps.

We start with part (i). We consider a cube of vector bundles as in (21). We refer to
the faces of F 23 by the names

Back, Front, Left, Right, Up, Down.

The Back, Left, and Up faces are called upper faces, and the Front, Right, and Down
faces are called lower faces. The total space of (1) should be denoted, for consistency
with the labelling scheme, by E7 23 but we will usually denote it by E.

Definition 2.1.1. (Part (i)). A triple vector bundle is a cube of vector bundle struc-
tures, as in (), such that each face is a double vector bundle, and such that the
vector bundle operations in £ — Ej 9 are morphisms of double vector bundles from the
Up face of FE to the Down face of F. Similarly for the other vector bundle structures
in F.

!With an argument analogous to the one in [I9], it is proved in [d] that part (ii) of the definition of
a triple vector bundle follows from part (i) of the definition.

36
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Ei23 ——— Ei3

N N

Eyg —— Ej3

2.1.1 Projection maps

The general rule of indices of a projection map ¢ is as follows: superscripts denote the
domain and subscripts denote the target. We omit superscripts when the domain is
the total space F, and omit the subscript when the target is M. For example, the
projection from the Left to the Right face of E,

q1,3
E———— Ei3

N | N

3
E2,3 —— Fj

1,2
q
1*> El

N N

By — L 5 M,

Ei9

and altogether, we denote this double vector bundle morphism by (g1 ,3; qi ’2, q§’3; 7).

2.1.2 Triple source condition

Before proceeding with part (ii) of the definition of a triple vector bundle, we need to
establish the following.

Proposition 2.1.2. Given a triple vector bundle E, write W for the set of all
(e1,2,€23,€1,3) € Ei1o X Eaz x E13
such that
07 (e12) = ¢5°(e23), 457 (eas) = 57 (ers), @17 (ers) = @ (er2). (2.2)

This is a submanifold of 12 x FEa3 x Ey 3.
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Proof. To see this, write W as the preimage of a submanifold under a surjective sub-
mersion.

Define F': El’g X E273 X E173 — E1 X E2 X E2 X E3 X E1 X E3 by
1,2 1,2 2,3 2,3 1,3 1,3
Flei12,e23,€13) = (q17(€1,2), @277 (€1,2), 45" (e2,3), 437 (€2,3), 41" (€1,3), 437 (e1,3))-

The domain of F' is simply the cartesian product of the three submanifolds F1 2, F1 3,
Es 3. The target of F' may be restricted to the following cartesian product:

(El XMEQ) X (E2 XMEg) X (El XMEg).

If the target of F' were simply the cartesian product of the six manifolds (twice each
copy of E;, i = 1,2,3), for example, for (e1,e2) € Ey X Ea, there is no guarantee that
there exists an ej 2 € 2 such that

0t(er2) =e1, @ (e12) = ea.
We can now view F' as the product of the three double source maps:
F= (12,023, 01,3) : B1,2 X Bz X Evg — (B X E2) x (B2 X E3) X (En X E3) .

By Definition P11, the lower faces of F satisfy the double source condition, hence each
double source map f12, 23, and f; 3 is a surjective submersion. It follows that F'is a
surjective submersion.

Hence, for any (e, e, fa, €3, f1, f3) € (E1 Xar E2) x (Eo X3 E3) X (Eq X E3), we see
that there exist e12 € E19, €23 € Ea3, €13 € F1 3, such that

F(e12,e23,€13) = (e1,e2, f2,€3, f1, f3).
Now choose e; = f1, e = fo, and e3 = f3. Then,
A = {(e1,e2,e2,e3,e1,€3) |ea € Eo,e3 € E3,e1 € E1}.

This A is a submanifold of the target of F and F is a surjective submersion, so F~(A)
is a submanifold of Eq 9 X Fa3 X F1 3.

To show that F~1(A) = W it is necessary to be sure that if (e12,e23,€13) € F7L1(A)
then ¢'(q%(e12)) = ¢2(¢3°(e23)) = ¢*(g5” (e1.3)) = m, all three elements project to
the same element of M.

Given (e12,e23,€1,3) € F~Y(A), write eq, ea, eg as above and write m = ¢'(e1). Then
1,3 1,3
¢*(e3) = ¢*(q57 (e13)) = ¢' (¢ (e1,3)) = ¢' (e1) = m.

Likewise ¢%(e2) = m. So (e19,e23,e13) € W.

This completes the proof. ]
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The manifold W is a triple vector bundle, with zero ultracore. We point out that
this proof also gives, for any three double vector bundles with matching side bundles,
a triple vector bundle with zero ultracore. To see the structure on W — Ej o, take
(e1,2,€23,€13) and (e12,¢€j3,¢€ 5) in W, and define

(e12,e23,e13) +(e12,¢h3,€13) = (e12,€23 4 €5 3,13 + €] 3).
1,2 E; Eq

The additions on the right hand side are defined, thanks to the definition of W. Scalar
multiplication is defined likewise.

We can now state the following natural condition we impose on a triple vector bundle
E.

Definition 2.1.3. (Part (ii)) A general triple vector bundle E satisfies the triple source
condition if the triple source map

FE—=W, e (q12(e),q23(e), q13(e)), (2.3)

is a surjective submersion.

2.1.3 Local coordinates on F

As with double vector bundles, one can also introduce and work with local coordinates
on a triple vector bundle. For completeness we present some notation, following [3R,
Example 6.3]. We will resort to this technique in Section 2274, to prove Lemma 4.

We denote a local coordinate system on E by

(z, V(1) V(2)> Y(3), V(12)> V(13)> V(23), 9(123))7

where (z) is shorthand notation for (z!,...,z"), local coordinates on the base manifold
M of E, and the subsequent (v(y)), ..., (v(123)) are fibre coordinates for the constituent
vector bundles of E. Denoting by ry, for example, the rank of £y — M, then (v(l)) =
(v(ll), o ,v(ll)), and so forth.

On the intersection of two overlapping charts, the transformation laws for the seven
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type fibre coordinates, are the following,

T = Pojvy

W = Pepvh)

i = P

Uiy = Paxjvly + Pua)l, fl> (2)7 (24)
Bis = Pl + P, v vy

Oay = Pesviy + P, v )

i) = Pazjmviisy + Pas s, s v

s 2>§11§3]2“ﬁ§>“f§> +

+P, 123 .vjl

1123 J12 .73
Plzs);5 5,0 02)Ve)

(1,273)]1 gz g3~ (1) (2) (3)

2.2 Basic apparatus on triple vector bundles

We now establish the notation and the basic operations in the triple vector bundle
setting. The outline of a single element e € E:

e —— 61’3

N RN

€23 ——— €3

el —|—— €

N .

eg —— M.

2.2.1 Addition and scalar multiplication

How do we add elements in triple vector bundles? Addition in each upper vector bundle
structure is a double vector bundle morphism, therefore, if e, f € E lie over the same
point of F 2, their sum has the outline:

€+f—>613+f13

f— N 1.2 B
13 ~ ‘ —~

e —— €13
N N pN |~
€23 €3 n fo3 —— f3 _ l 62,32: fog3 ———— e3 + f3
2
1,2

€12 lﬂ €1 l €1,2 JH éLl l
Nt AN 7 N N

eg —— M. 9 S m.

| \l

€9 m.
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Similarly, if e and f lie over the same element in Fy 3, the outline of their sum:

e+ f———e13

e — e13 f \‘—> €1,3 L3 \ ‘ \
l \62,3 T? 3 l f23 T\eg B 62’32{%f273 T e3
e1,2 \/‘JH e1 g J Y JH el l ers+ 12 L

ey —— m. > e —\>1m' By N \

e+ fo ——— m.
Finally, addition of e, f € F over the same point in Fs 3,

e+ f——m— 61,33]01,3
3

e — €13 f - f1,3 2.3
N Y N Y | >
€23 T es . €23 ———> €3 €23 l > €3
€19 —|— €1 1,2
: fig —|— f1 er2 + fig —|——e1+ fi
! N ~ W Es
€ ———m g —— M N \
€9 m.

Scalar multiplication follows in a similar way. If ¢ € R is a scalar, then scalar multipli-
cation over the three vector bundle structures of F is

t1-2€ _—> tE' 61,3 t1:3€ €13 t2-3€ e tE.‘ €1,3
s 1 ) 3
. N \ ‘ \ l o | ~

t - 6273 — €3

t . ea3 ———— tes B €23 T es
2 |
€1,2 l—> el l tE'161,2 — €1 t]éQ e12 —|— tey

———m
€2 ’ teg ——— m,

2.2.2 Interchange laws

In the double case, the interchange laws encompass the structure of the double vector
bundle (see [25, Section 9.1]). We write similar laws for a triple vector bundle E.

There are two types of interchange laws in a triple vector bundle, the “small” inter-
change laws, and the “big” interchange law. The small interchange laws are direct
generalizations of the double case; they invole only two out of the three vector bundle
structures of the total space E.
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Small interchange laws

We descibe in detail the interchange law in the Left face.

As in the double vector bundle case, we have the following vector bundle morphism

Jr

ExFE—2" F
FEy 2
E273 X E273 f} E273.
By o
For (e, f),(g,h) e E x E we have:
Ei12 l(e2,3,f2,3)

wh, +, @n]=(xen) s (Hon)

1,2 E2’3 X Egyg 1,2 2,3 1,2
2

and expanding both the right hand side and the left hand side we have the following
interchange law:

(6;59) frg(f;gh) = (efrzf);rﬁ(gf;h)a (2.5)

where g12(e) = q12(f), q1,2(9) = q1,2(h), and g23(e) = q2.3(g) and g23(f) = q2,3(h).
The outlines of e, f, g, h are,

e —— e13 f—— fis
l\ N l\ Y

€23 €3 fo3 —— f3

€12 LH €1 J €1,2 [H Bll ‘/
N N N N

€2 rm, e ———— m,

g — 913 h ——— his
J N BRY o IR
€23 ————~ €3
l cl
.9172 l/ﬂ g1 9172 l/*) a1 J
N N N N
ey —— M, eg — M.

How do e, f, g, and h project to the Right face? Use the double vector bundle morphism
(q1,3; q%’Q,qg’g; ¢?), the projection from the Left to the Right face of E. In particular,
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the vector bundle morphism (g 3, CI}Q),

q1,3
E ——— Fi3

Ero ———— Ei.
q7’

For e, f € E| |, by fibrewise linearity we have:
€1,2

=+ = e) + = e —+ . 2.6
q1,3(€172f) q1,3( )E1 qn,3(f) = e13 ey fi3 (2.6)
Similarly, the vector bundle morphism (¢ 3, q§’3),

q1,3
E—F—— FEi3

Ey3 ——— Es,
q3’

for e,g € E| , by fibrewise linearity again we have:
e2,3

e+ = e) + =e13+ . 2.7
q13( 2’39) Q1,3()E3ql,3(9) 1,3E391,3 (2.7)

Therefore, since both e + g and f + h project to the same e 2 4+ g12 € E1 2, from (28),
2,3 2,3 Es

a3 ((6;:39) ;L’Z(f;rgh)) = q1,3(6§39) ey Q1,3(f;:3h)
(=) _
="{a3(e) +q3(g) | + | qa3(f) +q3(h)) = (e13+ g13) +(fr,3 + h13).
E3 E E3 E3 Ey E3

1

Now e + f and g + h project to ez 3 + fa,3, hence from (277),
1,2 1,2 Es

h)) = h
13 <(€1—!‘2f)2—f‘3(91—f‘2 )) Q1,3(614-2f) g;(h,g(gl-g )

(z3)
= h == h .
<Q173(6) ) Q1,3(f)> ; <q1,3(9) ) Q1,3( )) (6173 ) J173) 3(9173 ) 1,3)

Applying ¢; 3 to (), we see that the interchange law in the Right face holds for e; 3,
f13, 91,3, and hy 3 € By 3.
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A small remark. When we look at elements in the Left face, we focus entirely on that
face, and then project to the Right face. We do not look at the four elements e, f, g, and
h as being over the same e1 3 € F3; we're looking at e, f,g, and h in F over ex € Fo,
and how they project in Fj 3.

Let us state an interchange law for scalar multiplication. For e € F, and t,u € R, we
have

t-(u-e)=u_-(t- e).

1,2° 1,3 1,3° 1,2
Some outlines,
t-(u-e »t - e u - (t - e » 1 - e
1,2( 1,3 ) T b3 1,3( 1,2 ) " P
™~ RN S~ RN
t-(u-e — te u - (t-e — te
E2( P 2.3) 3 E3( P 2.3) 3
U - e12 > €1 U - e12 > €1
El ’ \ \ E1 ) \ \
uey > m, ues > m,

in other words, as in the case of addition, the interchange law in the Back face for
scalar multiplication projects to the interchange law in the Front face.

Variations of interchange laws

In Chapter M we described in detail (I2), a variation of the interchange law for the
two additions in D. A similar identity holds in the triple vector bundle setting. Take
e, f, g, h with outlines as in (2Z5). Then

(e~g9) (f h)=(e—f) (g

2,3771,2" 23 1277237 1,2

h) (2.8)

is a variation of (Z3), of the interchange law for the two additions in the Left face of
E. Of course, taking the projection g 3 of the previous identity yields

—g1s)—(frs—his) = (15— frz)—(g1s—h
(61,3E391,3) El(f1,3E3 1.3) (61,3E1 f1.3) E3(91,3E1 1.3),

a variation of the interchange law for the additions in the Right face of E, an example

of (I2).
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Big interchange law

The big interchange law involves all three vector bundle structures of E. We need eight

elements, with the following outlines,

/ "
1] — €1.3 2 — 6173 33— 6173

4 — e

n
1,3

M | p | N Y pY |
€2,3 r €3 ehs —— €h €2,3 —M €3 6’273 —— eh
ol
€1,2 lﬂ el J €19 JH e1 J €12 JH el J ey JH ¢ J
N QY < ~ ~ N TN N
€2 ——— M, g —— M, €2 rm, €2 7 m,
5 —— e13 6 ——— ¢l T ——— ], 8§ ——— ef3
> | S, >, S, 1
6,2/’3 l €3 6/2/7/3 l eg 6/2/73 \L €3 el2/53 \L eg
tor|a | a]—a | dood | w]od |
~ N\ x e ~ N\ Y p
€y —— m, ey —— m, ey — m, ey — m.
Start with
1+2)+B+4) | +((B+6)+(7+8) ],
(( 1,2 )2,3( 1,2 )> 1,3 <( 1,2 )2,3( 1,2 )>
and in each parenthesis, apply the interchange law in the Left face of E:
1+3)+2+4) ) +((B+7)+(64+8)].
<( 2,3 )1,2( 2,3 )) 1,3 <( 2,3 )1,2( 2,3 ))

Now apply the interchange law in the Back face of E in the outer parentheses:

( )i )

and in each parenthesis apply the interchange law in the Up face,

(a595057) 5 ( )

Applying the interchange law in the Left face of E in the outer parentheses,

( B )

Finally, apply the interchange law in the Back face in each parenthesis,

(0521619) 1, )

Applying the interchange law in the Up face in the outer parentheses, takes us
original expression. Hence we have these six expressions that are equal.

143 547
L EORT

+

& (2+4)+(6+38)

23 13 23

+

)+(B+7) 5

2+ 6) +(4+8
RACHA (246) +(4 +8)

1,3 23 1,3

1+5)+(2+6
(L£5) £2+6)

+

o B+7)+(4+38)

1,3 "1,2° 1,3

+

)+ (5 + 6) 273

1,3 1,2

3+4)+(7+8
B TS

back to

In practice, we will be using small interchange laws and variations thereof in what

follows.



46

2.2.3 Zero sections of F

We have a lot of zero sections; the zero section of each invidual vector bundle structure,
but also, of each double vector bundle structure.

We denote the zero section of Ey by 061 : M — Ey, m + 021 and similarly for 5 and
Ejs.

The zero section of Fy o — FEjp is denoted by 042 : F; — Ei2, €1 — (N)if. The double
zero of Fjo is denoted by @}f, with similar notations for the other vector bundle
structures.

We denote the zero section of £ — Eq 2 by 0: Eio— E,e1p— 061’2. Note that the
subscripts of the element e 2 are enough to indicate that this is the zero section of

E over FEj 2, therefore, there is no need for superscripts on 0, see the first diagram of
We denote the special case 061,2 = 061,3 simply by Oel, as in the second diagram of (279).
ey ey
A ~1,3
0y —— O¢;
Ny
N QN

- 2,3 s 0Fs
05} ———— 0% o O (2.9)

e1,2 l% e l 6;’12 —|— €1
N N pY N\,

eg ———m, 0B:

~1,3
061,2 ? 061

hN

The triple zero of E is denoted by ©3,.

2.2.4 Useful operations with zeros — Part 1

The following operations appear all the time, and we describe them in detail in this
subsection. We write out explicit formulas for Ej 3. Similar formulas for the other
structures follow, and we include them for completion.

Take e;3,€] 3 € E13, with outlines (e13;e1,e3;m) and (€] 55 €], e5;m). We have the
following cases.

1. If ey 3, e’173 € F 3 are over the same e; € Eq, then:

061,3 ;—1 €3 061,3 1_!_206,173' (2'10)

To see this, note that we have two additions in the Right face, + and +. The
Eq Es3

zero section 0 € T B, 3 E is a double vector bundle morphism from the Right to the
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Left face. The two additions in the Left face are + and +. And e; 3 and €] 5 are
1,2 2,3 '

A A ~1,2
over the same e; € E;. Therefore, 0, , and 06/1 , are over the same O¢;” € Eq 9,
hence, we take their sum over Fj ».

=1 . =1 A A
If e’l 3= 0613, then since e 3 + 0613 =e13, and 061,3 = 0, , we have:
) El el
oL = Oey 5- (2.11)

Another way of describing (ZI0) is the following: 0., is the double zero of the
Back face over e; € Ej.

2. Similarly, if ey 3, 6’/173 € I 3 are over the same e3 € Fj3, then:

0 ;=0 + 0,
e1,3 + € - €1,3 ey 3”
Ey 1,3 2,3 13

51,3 . Al3 A A
In case €] 3 = Ocj, then since e 3 ]—EI— Ocy = e1,3, and Oééf = O¢,, we have:
3

0 0y =0 -
€1,3 2—!_3 €3 e1,3 ];j;) Oey’

= 0c, 5 (2.12)

Again, 063 is the double zero of the Up face over eg € Fj3.

— o
3. In case e1 3 = €] 3

661,3 1+3 061,3 = 661’37 (2.13&)

661,3 + 061,3 = 06173 +e13 — 62 - e1,3) (2.13b)
1,2 By By

06173 2‘5061’3 = 061’3 E+361’3 =0 2E.3 1,3 (213(3)

Oc, + 0, = Oc, (2.14a)

061 + Oel = 02 gl = 061’3 = Oel, (2.14b)
1,2 By €1

Oc, 5 0, = O2E_3 gL = Oogg =09, (2.14c)

<13
5. In case e1 3 = 6/173 = 0¢)

Ocs + 0c; = Ocy, (2.15a)
0@3 1—!-2063 = 0251 0;,33 = 66%:% = 0263, (2.15Db)
Ocs +0c, = 0, gua= ()62,33 = 0c,. (2.15¢)
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About (ET5a) and (ET5d): O, is the double zero of the Up face over ez € Ejs.
But since 0, is not a double zero in the Left or in the Back face, (ZI5H) follows.

Similar calculations for ey 2, €} 5 € E1 o, with outlines (e1,2; e1, e2;m), and (e] 5; €, e5;m).

1. If ey = €} € Ey, then:

0 = 0¢,, + 0,

! !
€12 + € .
2 2 1,3 L2

1

~1,2 ~1.2
If 6/172 = 0¢;”, then as ey o ;' 0e;” = e1,2, we have:
1

2. If eg = €l € Fy, then:

U 2+3 Ocy = Oe1,2 + 6;22 = Ocy
I E2
/.
3. In case e12 = €9
061,2 + 061,2 = 061,2 +e12 — 02 .
1,3 Eq Ey
061,2 1+2 061,2 = 061,27

= 0 =05 .
2913 61,2;261,2 By

<12 .
4. In case e; 9 = €} , = 02)°, we obtain (214).
) 1,2 10

1,2
5. In case e1 2 = €] 5 = 0 :

082 1—5_3 062 = 0 2e9
062 1_!'2 062 = 6627
0c, 2+3 0c, = O

Finally, for ez3, €5 5 € Fa 3 with outlines (e23; €2, e3;m) and (€} 3; €5, e3;m):

€1,2>

er,2°

(2.16)

(2.17)

(2.18)

(2.19)

(2.20a)
(2.20b)

(2.20c)

(2.21a)
(2.21b)

(2.21c)
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1. If eg = €}, € Ey, then:

062,3 ;3%—26’2’3 = 062,3 1‘!'2()@/273- (2.22)
If e 3 = 63537 then as ez 3 + 65’23 = ep 3, we have:
) E2
062 3 l—i_2062 = 062’3;- 62*23 = 06273~ (223)
’ 2
2. If e3 = €} € E3, then:
Ocy 5 1“J3r3 ehs = S 1‘; Oe/2 3 (2.24)
If € 3= 03;,3, then since eg 3 + ﬁg;,?’ = ep3, we have:
) E3
062,3 1—i_:))0€3 = 06273;- ()3’33 = 06273‘ (225)
’ 3
3. In case eg3 = €5 3:
062 3 + 052 3 062,3 + e23 — 02 - e2,3) (226&)
1,3 Eg Eq
062,3 + 062 3 = 662,3 + e23 — 02 - €239 (2.26b)
1,2 By o
062,3 + 062,3 = 062,3' (2.26C)

5 )
4. In case eg3 = €5 3 = 0%, we obtain (2221).

5 ‘
5. In case eg3 = €) 5 = 0oy, we obtain (EIH).

2.3 How to subtract elements in F

So far we have seen how to add elements in E. In this section we will investigate
the operation of subtraction. We will obtain formulas expressing the difference of two
elements of a triple vector bundle in terms of core, ultracore, and zero elements. These
formulas are a significant part of the technical work needed for the proof of the warp-
grid theorem.

First, we need to describe the cores and the ultracore of a triple vector bundle F.
2.3.1 Core double vector bundles and the ultracore

Since each face of E is a double vector bundle, each face has a core vector bundle. The
cores of the lower faces F; ; are denoted E;; with the comma removed. The core of the



50

upper face with base manifold Ej, is denoted Ej; ;. (This convention comes from [I4]
and from [I3]).

Focus on the core vector bundles of the Left and of the Right faces. The Left face
projects to the Right face via the double vector bundle morphism which consists of the
bundle projections F — FEy3, E12 — Ei, Fa3 — E3 and Ep — M. The restriction of
E — E) 3 to Ei32 goes into F3 and inherits the vector bundle structure of £ — F 3.
The total space E132 with the usual vector bundle structure over Ej (as the core of the
Left face of E), and with the vector bundle structure over Ej3, yields another double
vector bundle, which we call the (L-R) core double vector bundle.

We denote the core morphism of the projection double vector bundle morphsim
(q1,3; q%’Q, q§’3; ¢?) from the Left to the Right face by (qi3,¢?).

The (L-R) core double vector bundle is the following,

q13
Ei30 —— Ei3

q;g,zl Jqlg (2.27)

By ——— M.
q

The addition in F132 — Eq3 is the usual addition in £ — Ey3. If ki, ks € Ei32 are
over the same w3 € E13, then

k1 + ko, (2.28)
1,3
is their usual sum in £ — Ey 3. For ki, ky € E132 over the same ey € Ey, then

ki +ko=k1 + ko (2.29)
By 1,2/2,3

Here we write k&1 4+ ko to denote that k1 + ko = k1 + ko.
1,2/2,3 1,2 2,3

The algebraic compatibility conditions for the (L-R) core double vector bundle follow
easily using the apparatus set up earlier in the chapter. The core double vector bundle
satisfies part (ii) of the definition of a double vector bundle as well. For example, take
any (e, w13) € Eo xp E13. Then this is an element ((3;;2,()3’23,11)13) € W, and since
the triple source map § : E — W is a surjection, there exists an e € E such that
H(e) = (ﬁéf, 63;3, wiz). That e € Ej32 follows immediately from its outline. Hence the
double source map f§ : Ey32 — Eo x )y Eq3 of the (L-R) core double vector bundle is
surjective. That it is a submersion, follows again from E: E — W being a submersion.
Part (iii) of the definition of a double vector bundle for the (L-R) core double vector
bundle is explained towards the end of Section 2.

Of course this can also be done for the other two pairs of parallel faces. So there are
three core double vector bundles, shown in (2230).
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FEo31 —— Eo3  FEi32 —— Fi13 Eip3 —— Ei2

T T O O T

Ey —— M, Ey —— M, Ey — M.

Elements of the core of 123 project to zeros in the Down face. In the Up face they
project to zeros over the zero in E3. It follows that an element of the core of Eia3
projects to zero in every bundle structure. Equally the cores of the (B-F) and (L-R)
double vector bundles consist of the elements of E 2 3 which project to zeros in every
bundle structure. Thus each double vector bundle in (2230) has the same core. This is
denoted Fyo3 (without commas) and called the ultracore of E.

From the interchange laws it follows that the three additions on E, namely +, 4, and
1,21

+, coincide on the ultracore and give it the structure of a vector bundle over M.

)

The triple zero @f;z of F is the zero of the ultracore vector bundle Eq935 — M.

To see the core double vector bundles and ultracore vector bundle in local coordinates,
take a local coordinate system on E as described in Section EZT3. By setting (v(1)),
(v(2)), (v(13)), (v(23)) to zero in the equations (Z4), we obtain,

~i3 _ 3,73

Ua = P56

Uay = Pu)iivaa)

sy 123 ) 2 iz
Uy = Paw)invie T Pu2a);0 5, v02) V)

that is, local coordinates for the (U-D) core double vector bundle, (Ei23; E3, E12; M).
Setting additionally (v(3y) and (v(12)) to zero, we obtain a single vector bundle,

~i123 __ 1123 ,,J123
Y123y = P(123)j1230(123)’

and this is precisely the ultracore vector bundle Ei53 — M of E.

2.3.2 First case: two elements that have the same outline

Now we are ready to investigate subtraction. There are three cases to consider; two
elements of a triple vector bundle that can be subtracted, may admit exactly one, or

two, or all three, of the subtractions —, —, and —.
1,2 1,3 2,3
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We begin with the case where e and ¢’ have exactly the same outline

e ———————— €13 ¢ — €1,3
N N
€23 —\>‘63 €2.3 —\;63
€12 —|——¢€1 el — |—— €1
N N
\62 —_— m, \62 _ m.

Then all three differences e e, 61—36’ , 62—36’ are defined.

Step 1. Focus on the Back faces of e and €’

e, — e13

€12 ———— €1.
Then, from double vector bundle theory, we can write

/ A / A
e—e =k +0 e—e =k +0
192 13 €1,2» 13 12 €1,3»

) )

where k1 € Ea3 1, the core of the Back face, with outline

Ea31 3 ky V———— wo3 € Eo3

e ——— m.

Step 2. Show that wez = @727,13'

Use the morphism ¢z 3 : E — E3 3. We know that QQ’3(61736,) = ()if’ and

)

q2,3(k1 1—!-2061,3) = q23(k1) ;;i; 42,3(0¢; 3) = wo3 ];1-2 022,

Therefore

523 §523
wa3 + 0@3 = 063 R
Es
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and, since Oﬁf’—ﬁif’ = @3,;3, we have that woz = (N)(Q)g2 = @%,’13. So k1 has the outline
E2 m

2,3
ki ——— O

e ——— m.
Step 3. Applying double vector bundle theory again, we get
ki =1 + Oc,,
2,3

where w7 is an ultracore element.
Step 4. Apply the same procedure to Left and Up faces of e and ¢’.

Focus on the Left faces of e and €’

, R
e—e =ky+0 e
12 2% 1,2

)

, N
e =ko + 061’2,
2,3

)

where ko € E132, core of the Left face, with outline

1,3
ko — O

eg ——— m.

So, we can write
kZ =u2 + 0627
1,3

where wug is an ultracore element. Similarly for the Up faces, we have

! A / A
e—e =ks3+0 e—e =k3+0
13 3 23 e1,3s 3 13 €23

) )

where k3 € Eja 3, core of the Up face, with outline

1,2
ks —————— O

es ———— m,

so k3 = ug + 0@3 with u3 an ultracore element.
1,2
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Step 5. Show that u; = ugy = us.

We show that u; = ug. So far, we have two expressions for e . e/, namely:

)

kq 1+2 Oc, 5 = k3 2+3 Ocy4- (2.31)

Expand the left hand side of (2231), mimicking the double vector bundle case:

061,3 14_2(061 2_!}’“1) = (061,3 2"5063) 1'3_2(061 2‘5“’1)

)

= (061,3 1"5061> 2"!_3(063 1"3_2“1) = 061,3 2"!_3(063 1—!_2u1)

Therefore, we see that (2231) can be rewritten as:

061,3 2“_3(063 1—!-2u1) = 061,3 2";(063 1‘5“3)7

)

from where it follows that u; = ug. Similarly, we can show that us = us.
At this point write u1 = us = ug to be u.
Step 6. We obtain six formulas for the differences between e and €’.

Proposition 2.3.1. With the above notation, two elements e and €' which have the
same outline are related by

e 13 e = 0@1,3 1—!_2(061 2"5“) = 061,3 2’5(063 1';”)7
1.2 e = 061,2 1—5(061 2‘!‘3“) - 061,2 2"5(062 1_!_3u)’ (2'32)
e 23 e = Ocy 5 1"{7_3(063 1‘2”) = 062,3 1_!_2(062 —!_ ’LL)

What is important here is that the subtraction with respect to each structure results
in the same ultracore element w.

Special case: when ¢,¢’ are in a core double vector bundle

If e, e’ are in one of the core double vector bundles the preceding equations simplify.
For example if e, e’ € Ea3 1, with outline

~1,3
e,e/ ——— 0

AN N

E
w9y — 0m3

~1,2
02— | —— e

SN

E
08— 'm,
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then from (2232) we have

!/

e ) € :0w23 (0 0Fs +U)_0w2313(®3 1"5_2“):0111231"!_3“
and
I A _ 3 A
e 25 €' = Oy (0053 1—1—3u) O h 2(®m 1+3u) = Ouys 1—|—2u,

and therefore
Ouwos 1—|})u = Ouoy 1—i-2u (2.33)

) )

Also, the following will be needed in Subsection B2Z4. Again, using (E232) we see that

13 01 | 2(061 + u) = 0, +(061 2+ u)

= (0, + @2) +(0¢, + Oc; + 0cy) +(@2, +u) = 0y +u,
(e, 23 )12( e1 2737‘) (Oe, 12 61)273(®m 1,QU) e1 2’3u

or, equivalently,

0z} 23(0 rEn3 1+2u)_061 +(® +u)_0€1 +u

For the last difference, by (2=32):

(061 + u) = 061 +(061 + u)
61 1,3

(0., ;7}’@3 )13(061 + u) = (0, Ltsﬁel) 2—2(@5’,1 fgu) =" 0,, 2_t_3u7

and finally,

oL 23(0 ﬁggu)_oel +(@ 1—!—3u):0612—}—3u.

2.3.3 Second case: two elements that have two lower faces in common

What happens if e and ¢’ have only two of the lower faces in common? Then only two
of the three subtractions are defined. There are three cases to consider, each of which
arises later.

If ¢ and ¢ have the same Right and Down face

Since e and €’ project to the same e; 2 and e; 3, it follows that they project to the same
e1, eo and e3. However e and €’ will differ at e23 and 6/273, and these will differ by a
core element wog € Fay3 of the core of the Front face, that is

/ N2,3
€9 3762 3= = W23 + 062 5 62’3762,3 = W23 + 063 . (234)
FE> E3 E>
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It is useful to write out the outlines of these differences

/
/ ~1,3 e—e — e1
e—e —— > 0g] 1,3 3

1,2\ ‘\ N ‘\

/
/ E €23 €3 — 7 €3
€23 ehy —— 0L 3 l
Es
1,2
€1,2 > €1 Oel €1
R — 2
_— .
2 9 Om m

Since e and ¢’ have the same Back face, again by applying double vector bundle theory,
we can write
e—e =k 1—!‘30@,27 e—e =k 1—!‘20@,37 (2.35)

) )

where k € Ea3 1, the core of the Back face.

Also, using the morphism g2 3 : E — Es 3, we show that g2 3(k) = wa3. First,
52,3
qm@TfU:@sg%3:W%£%w

)

and
QQ,?)(k 1‘{‘3 061,2) = q273(k) jg_ ng’

3

hence g2 3(k) = wa3. Therefore, k has outline

E23,1 Sk — w3 € Fog

el ——— m.
Example 2.3.2. Special case: 66273 and 06/23.

Recall (2Z24) and (2722),
Ocy.s + O

1.3 62,3

and (—1) s 06273 = (A)fz3 where fo3 = 536273.

Suppose we have two elements ez3 and ej 4 of Ep3 that differ by a core element
weg € Fas, as in (E234). The differences we are interested in are

062,3 1772065’3 = 062,3 ]20;2 ehy 062,3]?26’273 = Owgg g— 6?’23 = Ouwpy 1+30627 (2'36)
b 3 3
and
062,3 7() = 08213 + 0 ! - () = 0 O’u)23 + 663. (237)
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If e and ¢ have the same Front and Down face

In this case, the elements e 3 and 6/173 differ by a core element w3 of Fy3

/ 71,3 ’ 51,3
61737613:'1013"'0 ’ 61737813:11)13—’_0 AR (238)
El ’ E3 e’ ES ’ E1 s
As before, we can write
/ A / A
e—e€ = k2+30,3m, e—e =k 14‘2032,3, (2.39)

with k£ an element of the core of the Left face with outline

E1372 Sk — w3 € B3

eg ——— M.

Example 2.3.3. Special case: 06173 and (A)e/1 .

Suppose two elements e 3 and 6/1’3 of F3 differ by a core element w3 € Fi3, as in
(2338). The differences we will need are the following;:

Ocy 5 177206/1’3 = 0ey 5 17; OE—l €z 061,3]?16’173 = Ow13 ‘%Oéf = Ouwys 2‘2061’ (2.40)
and
0@1,3 2773063 3 Oc, 3 22)’0;3 ey — Oe1 3E—Sel 3 me ;J,_l 6;33 = 0w13 1—!_2063 (2'41)

If ¢ and ¢ have the same Front and Right face

In this case, ej 2 and €] 5 will differ by an element wia € Ej2 of the core of the Down
face
/ 51,2 / 51,2
€12 €19 = W12 + 0. €12 €19 = W12 + 0.’ (2.42)
E, 7 E, e’ By 77 Eq e

and as before

e—e = k;—g(}em, e—e =k 14—’30623, (2.43)

) )

where k is an element of the core of the Up face with outline

E12,3 Sk —— w2 € B

ey ——— m.
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Example 2.3.4. Special case: 66172 and 06/1 .

Suppose two elements e 2 and 6/1,2 of F differ by a core element wis € Fi2, as in
(2222). The differences we need to work out are

Ocy 2 17,30611 , = 0cy s 1‘!‘30; ¢, = Oey ;163’2 = Owlg ;-Q()éf = Ouwyy 2‘!‘30@7 (2.44)
and
061,2 2.3 Oe’1 5 T Ocy 2_!;)0;2 Lo = Ocy E—e/L2 = me Erl 0Ly = Ouwyy ]j_3062‘ (2.45)

2.3.4 Third case: two elements that have one lower face in common

This case is directly relevant to Step 2 of Section B=Z3.

So far we have seen that two elements of E with the same outlines differ by a unique
ultracore element, and that two elements with two of the lower faces in common differ
by a unique element A which lies in the relevant core double vector bundle.

What happens in the case where e, f have only one lower face in common, for example,
if they have only the Front face in common? Then only the difference e 5 f is defined.

The elements e and f project to the same e € Fa, and e3 € F3 as éhey have the
same Front face. In the case we are interested in Step 2 of Section B=Z3, both e and f
project to the same e; € Ej. Then ¢ 2(e) = e12 and ¢12(f) = f1,2 will have the same
outlines and hence will differ by a unique core element wis € Ej9. Likewise for ¢; 3(e)
and ¢q1,3(f). The outlines of e and f:

e — €13 f——— fis
NN NN
€23 ———— €3 €23 ———— €3
| |
€12 A fi,2 — el
A N N N
ey ——— M, eg — M.
Their difference:
e

| (2.46)
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Since ey 3 and f1 3 differ by a core element w3 € E3:
51,3 51,3
er3—fi3=wiz3+ 0., e13— f1,3=wiz+ 0
Elf E3 er? ng E1 e’
and e 2 and fi o differ by a core element w2 € Fyo:
51,2 _ 51,2
e12— fi2 =wi2 + 0.7, e1o— fro=wi2 + 0.
El EQ E2 El

Working in the ordinary vector bundle £ — FE» 3, we have:

f=(e—9) tg—1) (2.47)

(&
2,3 237793723

for any g € E with outline:

g — 91,3

N

€23 T) es3
— €1

N .

eg ————— m.

g1,2

However, as we want to make the calculation (248) easier, it makes sense to either take
g € E with ¢13(9) = f1,3 and q1,2(g9) = e1,2, or to choose an h € E with g1 3(h) = e1 3
and ¢q12(h) = f1,2. In total, the outlines of g and h will be:

g ——— f13 h —— e13
N | N |
€23 —\; es €23 —\; €3
| |
€1,2 — e fi2 — el
AN N\ AN N
€y ————————— M, eg — M.

We see that g has two lower faces in common with e and two lower faces in common
with f. The same is true of h.

Let’s start with g. Then from (P=39) and from (223), we can rewrite (2271) as:

- = (ky + 0 ko + 0 2.4
2’3f (6 2’39) 2+’3(g 2.3 f) ( 1 $0€2,3)$( 2 177L3062,3)7 ( 8)

e

where k1 € Fi32, k2 € F123 with outlines:

Ei32 2 k1 —— wiz3 € B13 E123 2 ko —— w12 € o

| |

ey ——— m, e3 ——— m.
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Using h in (227), and again from (EZ39) and (E43):

2,3 f=e 2,3 h) 2—!—3(h 2,3

€ f) = ()‘1 1“_3662,3) + ()‘2 ;"2062,3)7 (2'49)

2,3

where now A\ € F123 and Ay € Ey32 with outlines:

Ei232 M —— wip € B1a Fi132 2 Ao — w13 € Ey3

| |

e3 ———— m, ey ——— m.

Both k; and A2 project to the same wiz € Ej3. This follows from (EZ39), since
q173(62 3g) = q1,3(h2—3f). Similarly for ke and A;.

)

Of course since (Z44) and (E2Y) are equal, there will be a relation between the k;’s
and the \;’s, 1 =1, 2.

We investigate this relation further towards the end of Chapter B.

2.3.5 Useful operations with zeros — Part 2

We include equations for the various zero elements, as they show up again and again.
Note that these equations follow directly from the algebraic compatibility conditions
of the triple vector bundle; at this point, we do not use the methods developed in the
previous sections of this chapter.

1. Since (—1) s 0c, = O,, we have

Ocy 5 0er = Oy £ (=1) - Oey = 0y £0e, =00,

In total,
0c, 1,3061 = 0., (2.50a)
0611—2061 = 0., (2.50b)
0c, 273061 = @3. (2.50c)

Similarly,
0@21—,3062 = @, (2.51a)
Oc, 172062 = ey, (2.51b)
0cy —0cy = O, (2.51c)
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And finally,
Ocs > 0c; = Ocs, (2.52a)
Ocy 0, = O, (2.52b)
&5y 3063 = Oy (2.52¢)
2. Since (1) - 0., , =0 (—1) - e100 We have
1,3 ’ Ep
~ ~ « ~ (cm) - ~
061,2 17730@1 2 = Yei o 1—3_3 (-1) 5, €12 = 0c };j‘l(—l)E'l er2 — Oe, -
Altogether,
081 273 081 2 = 0617 (2.53&)
061 2 1,2 061 2 = 661727 (253b)
061 2 ?3 061,2 = 662' (253(3)
About 051,3,
061 3 13 061 3 = 661 39 (2.54&)
051 3 17’2061,3 = 061) (254b)
081 3 ;3 Ae1,3 = Ues. (2.54c¢)
Finally, about 6@2,37
662 3 E 662,3 = 0637 (2.55&)
062 3 12 062,3 = 0627 (2.55b)
062,3% €23 062’3 (255C)
3. The following is also used extensively throughout calculations:
O61,3 23 063 = 061,3'
This follows because (—1) )3 Ocy = Ocs
. . . . A (2I3) 4
061,3 2.3 063 = O61,3 2—!_3(_1) 2;3 e3 — 061,3 2'506 = 081,3
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Similarly,
061 3 T061 = 061 39
and,
061217061:061% 0612;062:0612
And finally,

2.4 Examples of triple vector bundles

We now present the fundamental examples of triple vector bundles.

2.4.1 Decomposed triple vector bundles

First let us work on part (iii) of the definition of a triple vector bundle?, the existence
of the corresponding sigma maps. We will use these maps to establish the existence of
nontrivial grids on E.

In the triple vector bundle setting there are three steps to defining sigma and omega
maps.

Step 1. In the first step, we are decomposing E into W Xy Fo3.
Recall part (ii) of the definition of a triple vector bundle, Definition ZZ123.

Definition 2.4.1. (Part (iii)) Given a triple vector bundle E, a sigma triple vector
bundle map is a triple vector bundle map ¥ : W — F that is right inverse tolj : £ — W.

If (6172, €23, 6173) € W, the outline of 2(6172, €23, 6173),

Y(e12,€23,€13) — €13

)

\L el\l

eg — M.

|
€93 — €3

€1,2

For any e € E with ¢12(e) = e12, g2,3(¢) = e23 and ¢13(e) = e1,3, from Proposition
22310 we can write

~ ~

1,2 Serzs €23, €13) = Uer 1—!_3(061 2—1—3u),

e

2 As with double vector bundles, this part of the definition of a triple vector bundle may follow from
part (i) of the definition.
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for a unique u € Ei23. Using YW - E, define

QZE — WXE123,
M

e — <61,27 €2.3,€1,3, <(65 2(61,27 €1,3, 62,3)) 1_’3 661)2) 2_,3 061) . (256)

The inverse of )

U:WXE123 — F
M

(6172,62,3,6173,10 — 5(6172,6273,6173) 1—}-2 <0€172 1—i—3(061 2—}—3u)> . (257)

) )

Conversely, given §~2, define a unique (that is, so that the Q corresponding to Y is the
given one),

YW

(e1,2,€23,€1,3)

— F
~ 3
— U(e12,€2,3,€1.3,O)-

So we see that there is a bijective correspondence between 3 and SNI, as triple vector
bundle maps.

Step 2. In the second step, we are decomposing W. Denote by
E := E1 xp Ey X1 E3 X E1g X Eag xar Erg X Ehas,

the pullback manifold, the decomposed triple vector bundle. The various vector bundle
structures are pullbacks, as with decomposed double vector bundles. Denote by

E':= E1 X By x a1 B3 X Bz Xar Eaz X1 Ens.

This is a triple vector bundle with zero ultracore.

As starting with a triple vector bundle £ we do not assume decompositions of Fj o,
Es 3, and Fj 3, we need to choose decompositions of the three lower faces:

QLQ : ELQ — E1 X E2 X E12,
M M

9273 : E273 — E2 X E3 X E23,
M M

9173 : E173 — El X E3 X E13.
M M

Using these maps we can define the following €y triple vector bundle map from W to
the El,

QwiW — E1XE2><E3><E12XE23><E13,
M M M M M

(e1,2,€23,€13) + (e1,e2,€3, Wiz, w3, w13), (2.58)
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where
51,2
w2 = (61,2521,2(61,62));20@’17
523
woz = (62,3;222,3(62763));305’2,
wiy = (61,35321,3(61763));10253,

Y12 being the sigma map corresponding to €2 o, and same for 3 3, ¥ 3.

The inverse of this Qyy is Owy:

UW:E1XE2XE3XE12XE23XE13*>W
M M M M M

Step 3. In the final step, we decompose E. To define a map from E to the decomposed
triple vector bundle F, take the composition of the following,

f~2 QW X id o
E = W X Ejg3 ——— E. (2.59)
M

Denote the composition Q := (Qy x id) o Q. This is a decomposition map of E.
M

Denote the inverse of Q by U: E — E:
o Ow ]\>;[id 6
E——Wx E123 — F.
M
The X that corresponds to this €2, from FtoF ,
(1, €2, €3, w12, w23, w13) — U(ex, ea, €3, w12, w23, W13, ©3,). (2.60)

Remark 2.4.2. The following shows why choosing decompositions of the lower faces
is necessary.

Taking an e € E with the same outline as X(ej 2, €2,3, €1,3) only defines a u € Ejg3, and
no ngs € L;j, elements in the cores of the lower faces.

Question: What if we compare X(eq2,€23,e13) with an f € E that has the same ej 2
and eq 3, but different e 37

n2,3
Then €23 Eeé 3 = wWa3 + Og;”, where wa3 € Fo3, and
2 ’ E3

f1772 z:(61,27 62,37 61,3> =k 1—!—3081727
where k € Ep3; has outline (k;eq,wa3;m). The problem is that both k € Ea3; and
wa3 € Fo3 depend on f. How do we choose f? We would need a map to choose it in a
“canonical” way.

Therefore, we cannot define a wog from 3. So we see that we need decompositions of
the lower faces. A
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To sum up, we have the following maps associated with a triple vector bundle E:
Step 1.
° E: E — W, the triple source map,
YW FE, a right-inverse to E,
o O: E— W xy; Eig3, defined by (250),
@

: W x s Era3 — E, the inverse of , defined by (2251),
Step 2.

o Qu : W — E, defined by (253),

e Uy : EF - W, inverse of Qyy,
Step 3.
e O: E — E, defined by (Z59), Q := (Q x id) 0 Q, a decomposition of E.
M

e U:FE — E, inverse to , and finally,

e ¥:E — E, defined by (250).

A choice of decomposition map of E, namely Q : E — E, determines decompositions
of upper faces. To see this, starting with an (2 : F — FE rearrange E to

(Eo xn Ev X Er2) X gy (Eo Xar B3 X Ea3) X gy (Eo Xar Er3 X El23),

and this is precisely a decomposition of the Left face.

The choice of 2 also determines decompositions of the core double vector bundles. For
example, for Fi32, start with a decomposition 2 : £ — FE, and then restrict to Fs,
Fy3, and Fjo3, and set the other building vector bundles to zero. So we see that the
core double vector bundles satisfy all three parts of the definition of a double vector
bundle.

2.4.2 The tangent T'D of a double vector bundle D

Appplying the tangent functor to a vector bundle A — M, we obtain the tangent
double vector bundle T'A. Starting with a double vector bundle D, applying the tangent
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functor to each structure in D yields the triple vector bundle T'D as shown in (Z5).
T(qg)

\T(qf ﬁ]s)
TM
p

TD

TB
|
PD TAL)

. B (2.61)

D B P

ap
‘HN‘
A

> M.

qA

The Down face of (E61) is D itself, the Front face is the tangent double vector bundle
TA of A — M, and the Left, the Back and the Right faces are the tangent double
vector bundles of D — A, of D — B, and of B — M respectively. These faces are
known double vector bundles. We need to check that the Up face of (EZ61) is also a
double vector bundle.

Proposition 2.4.3. The Up face of (Z81) is a double vector bundle, with core vector
bundle TC — C.

Proof. The algebraic compatibility conditions for the Up face of (EZ61) are straightfor-
ward. And as the tangent functor preserves the double source map and the sigma map,
parts (ii) and (iii) of the definition of a double vector bundle follow immediately. What
we need to describe in detail is the core of this double vector bundle.

The core of the Up face of (Z81) is the tangent of the core of the Down face, that is,
TC — TM. To see this, first take any W € T.C. Denote by v : I — C, a path in C
whose velocity vector at ¢ =0 is W, with v(0) = ¢,

t=0

Since v(t) is a path in C, it is also a path in D. What is T(¢%)(W)? For any f € C*(A),
fogk € C®(D) and we have:

T(qR)(W)(f) = W(foqR) = %O‘ 2 ad) )| _ -

Since v(t) is a core element of D for t € I, ¢§(v(t)) = 04(m(t)), where m(t) =
(qaoq®)(v(t)) is a path in M. Denote by v = %m(t)) . Then continuing from where
we left off:

Tirod)wn| = 2(rootymmy|_ =),

t=0 t=0
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and this is true for every f € C®(A) so T(¢7)(W) = T(04)(v). And since

(a0 q) (1) = (g4 0 ¢X)(v(1)) = m(1),

similarly, T(¢B)(W) = T(0P)(v). Therefore, W is in the core of the Up face of (EB1).
The outline of W,

N
T(04)(v) ‘ \ v
! (2.62)
c » 08 h
o~ o~
(U > m.

Conversely, take a £ in the core of the Up face of (2361). We will show that & € T.C.

Take a £ € T.D. Then £ = igo(t)‘ , for some path ¢ : I — D in D, with ¢(0) =
t=

dt
c € D. By hypothesis T(¢})(¢) = O(OA)(U), and T(¢B)(&) = T(0P)(v), where v =
am(®)| € Ty M, with m(t) = qa(a5 (#(1)) = a8(a5 (1)), a curve in M.

Since T(q})(€) = T(04)(v),

d

4 _ 4
dt

(@R e®))|_, = Z04m)

t=0

With a similar argument as in the proof of Proposition 22, we can arrange for
q% (p(t)) = 04(m(t)) for t near zero. Likewise, we can additionally arrange for g5 (¢(t)) =
0B (m(t)) for t near zero. Hence, we can arrange for ¢(t) to be a path in C, and therefore
EeT.C. O

So far we have shown that each face of T'D is a double vector bundle. To ensure that
this is a triple vector bundle, we need to check parts (i), (ii), (iii) of the definition of a
triple vector bundle.

The algebraic compatibility conditions follow easily. What is interesting in this case of

TD is part (iii). The following is [I3, Proposition 3.4].

Proposition 2.4.4. If a double vector bundle D satisfies part (iii) of the definition
of a double vector bundle, then its tangent prolongation T'D satisfies part (iii) of the
definition of a triple vector bundle.

Proof. Since D satisfies part (iii) of the definition of a double vector bundle, there exist
decomposition 2 : D — A Xy B Xy C of D. The tangent of €2,

T(Q) :TD—TA XTM TB XTM TC,
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and if we choose decompositions of T'A, T B, and T'C, then we obtain a map from T'D
to
(A XMA XMTM) XTM (B XMB XMTM) XTM (C XMC XMTM)

we can rearrange this to
AXMAXMBXMBXMCXMCXMTMIW.

O
Having established that decompositions of T'D exist, we can show that the mapE :TD - W
is a surjective submersion.

Take any (d,&1,&) € W, where d € D, & € TA, & € TB, with matching projections
as in (Z2). Then (d,&1,&,05) € W xy C, where m = qa(q%(d)). Since there exist
decompositions 2 : T'D — T'D, we have

® = (Qu xarid)(d, &1,&,08) € TD.

Then G(®) € TD and §(5(®)) = (d, £1,&). Hence §: TD — W is surjective. Submer-

sion follows with a similar argument.

The three core double vector bundle of T'D in the usual order, and the ultracore:

H (Back-Front) ‘ (Left-Right) ‘ (Up-Down) H Ultracore H

D——A D—B TC —— C

oLyl L [

B— M A— M TM —— M

2.4.3 Special case: T?A

In the case where D = T'A for a vector bundle (4, q, M), the triple vector bundle T2 A
is as shown in (E63).

2
24— @ 2y

\T(Jm) Q)
pra T4 1@ ™
JPTM (2.63)

T(q) TM »

NN

1 M.

pPA

TA
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The core double vector bundles of T2A

The three core double vector bundles of (E63) are shown in (2864), in the usual order
(B-F), (L-R), and (U-D), and arranged as in (2230).

TA P4, A TA TM TA P4 4 A
T(q)J lq pAl JP T(q)JV Jq (2 64)
TM — M, A — M, TM — M

These core double vector bundles are the same as abstract double vector bundles but
are embedded differently in T2A, as we show in what follows.

Take a € € T(q)"'(v), v € T, M, in the core of the Back face. Denote by a = pa(&).
So its outline in the (B-F) core double vector bundle is

—

S qm
S+——i0o

—

Denote by &2 the corresponding element in T2 A defined by this € € T(q) ' (v).

The Back face is the tangent double vector bundle for the tangent prolongation bundle
T(q) : TA — TM. Follow the construction in Subsection II2. The corresponding
curve to which &7 is a tangent vector at point 7'(04)(v), is tTMﬁz

t - &E—ta
TM l
v ———— m,

and this is entirely in the fibre T'(q)~!(v). Therefore

d
B
§° = £(t Ty g)‘t:O € Troa)(w) (T'A) (2.65)
Furthermore,
_ d d (CT2) 72
9 By _ d ) _ e g T=M
T(q)E) = ST 8] =S Tl
and d d
o d ‘ _a = _
T(pa)E) = Spatt ;. ) =Tl Za
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and of course

pra(€®) = T(04)(v).

The outline of ¢8 in T2 A:

(2.66)

Now take a £ € T, A in the core of the Left face. The Left face is the double tangent
bundle of the manifold A. If we denote by &~ the corresponding element in T2 A that
¢ € T, A determines, we have

oL d .
g =20 . (2:67)

where the scalar multiplication is in the usual tangent bundle TA — A. The curve tAf
is in the fibre T, A entirely:
t-&— tv

|

> m.

Q4——

It follows that

_ d d
and
_ d d

and finally, the zero of the fibre T, A is OgA, therefore,

pra(€X) =04
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Therefore, the outline of £& in T2 A:

J (2.68)
OTA ‘ OTM
a

Finally, take a £ in the (U-D) core double vector bundle with outline

l

S
S¢+——i0o

—

Following the construction in Subsection 43, take a curve a(t) in the core A of the
Down face, with a(0) = a, g(a(t)) = m(t) a curve in M with v = %m(t) o Then
t=

§=Zalb)| _ eTua

is in the core T'A of the Up face. We view it as €Y in T?A as follows. Take the curve
a(t) in T A, where a(t) is the core element in T'A corresponding to a(t) for every ¢:

with outlines

Therefore,
o e TzTA. (2.69)

It follows that,
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and

T(pANE) = Spalai)|_ = S0Am)| _ =TOYEm(0)] ) =T0")w),

and of course pra(¢Y) = @, see Subsection 243, (262). And the triple outline of £V
in T2 A:

U N O10
\T(IJA)
pTAh T(0%)(v) ‘ \ v
|
a 0LM
N .
07, m.

2.4.4 The canonical involution on 7% A

The canonical involution Jy4 : T?A — T2 A for the manifold A is an isomorphism from
the double vector bundle T2A4 to its flip. In what follows we will need to use it as a
map of triple vector bundles.

Proposition 2.4.5. The map Ja is an isomorphism of the triple vector bundles shown

24 @ ey 24 @ ey
T(pA) \ \Ij‘TA XTT
pra TM T(pa) 74 L@ TM
lpT]M lT(p)
pA pPA
TA @ pag p TA OB LY, p
A 1 M, A e M.
(2.70)

In (2770) the Left faces are the double tangent bundles of the manifold A and J4 maps
the Left face of the domain to its flip. It interchanges the Up and Back faces. The Right
faces are the double tangent bundles of M, and as Jy4 induces Jy : T>°M — T?M to
the Right faces, it maps the Right face of the domain to its flip. The Front and Down
faces are interchanged.
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The proof of Proposition 243 relies on two lemmas. First, the naturality property of
the canonical involution, Lemma [270. Secondly, we need to show that (J4,Jys) is a
vector bundle map. That the diagram

T2A 74, 24

T2(q)l lTQ(q)

T°M —— T?M,
JIm

commutes follows from Lemma 21 for ¢ : A — M. It remains to show that Jy is
linear fibrewise. At this point we need to work in local coordinates on T2A.

In Section 23 we described a local coordinate system on T'A for a vector bundle
A — M of rank r. We denoted it by (z,a,Z,a), with transformation laws (I=39). We
now present a local coordinate system on T2A.

As it is important to distinguish between different copies of the same thing, instead
of using (z,a,z,a) on TA, we now write (z,a,v,w), where T = Z(z), a = a(x,a),
0 =0(z,v), w = w(x,a,v,w) on the intersection of two overlapping charts on T'A

(z,a,v,w) = (Z,a,0,0), (2.71)
and as in ([C39), we have
at = Pf(m)ah,
: o'
G »
ot = agjp(m)v ,
PK
it = Pi(m)uw" + gx; (m)vPa’.

A local coordinate system on T2A is now, in shorthand notation,
(x7 a” U? w? x? a? U? w)?

where (z) = (z%,...,2"), (a) = (a!,...,a"), (v) = (W},...,0"), (w) = (w!,...,w"),

and corresponding indices for the respective dots.

Following the usual rule of calculating the Jacobian matrix of 271, the following 4 x 4
block matrix,

((%ij;(mm) ((%Zj))(nxr) ((%if;(nxn) E%@))(nxr)
% (rxn) % (rxr) 37%) (rxn) 8?117) (rxr) , 2.79
(%{)(nxn) (%q)(nxr) (gili)(nxn) (guj)(nxr) ( )
(8195)(r><n) (Ba)(rxr) (71'5 (rxn) (8115)(r><7“)

on T2 A on overlapping charts change:
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First row of (E2732),

or o or_ or
Oxi’ Qa7 ovi 7 owk T
e Second row of (°72),
oat ort .  oa ,  oa oa*
927 0" ok T gw =0 ek
e Third row of (EZ12),
~i 2 ~i ~i ~i ~i ~i
ov oz, 871):0, 81):87@ o0v _o

Oz 0xidzr ' Oak ovi Oz’ Owk

Fourth row of (2-72),
ow' _opL ., 9P . ow' oPf 0w’ OP!
- = —w —5_yPq = v - = —2q
dxi  Oxd OxIOxP T ak Oz 7 Ovi Ozd 7 Qwk

In total, about the seven fibre coordinates of T? A, transformation laws are the following:

at = Pi(m)d",

. OF .
i j

- ax] (m)v )

~0 14 k 9 : j
wt = Py(m)w" + a7;(771)615113,

.. o7t .
s . j
3= (m)a?,
: Py . :
at = B (m)a*i’ + Pf(m)a,

g 0%t - oF ,
s _ i g
v 8a;j8xp(m)v ! + 9 (m)v?,
: opP; ., 0*P! . 0P p! ;
0 h h . s D8] k p-k s 87 PK -k
w i (m)w"i’ + 5 D (m)vPa’i? + T (m)vPa” + Di (m)a’v! + P (m)w".

The three projections of T2 A,

pra: (x,a,v,w,&,a,0,w) +— (z,a,v,w), Down Face,
T(pa): (z,a,v,w,&,a,0,w) + (x,a,%,a), FrontFace,

T2%(q) : (x,a,v,w,&,a,0,0) — (x,v,&0), Right Face.
The canonical involution Jy4 : T?A — T?A in local coordinates:
(z,a,v,w,%,a,0,w) — (x,a,T,a,v,w,0,W).

We need the following lemma in order to prove that Jy4 is a fibrewise linear map over
Jur-
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Lemma 2.4.6. If &1, 05 € T?A, with T?(q)(®1) = T?(q)(P2), then

Ja |1 + Do | =Ja(P1) + Ja(P2). (2.73)
T2(q) T3(q)

First we need the following “double version” of Proposition [2Z2.
Proposition 2.4.7. Take two vectors ®1, ®y € T?A, with T?(q)(®1) = T?(q)(P2).

Then there exist smooth squares v1, vy : (—€, €)X (—¢€,€) — A such that 1 = % (%Vl (t,s) . ) .
s= t=

and ®g = % (%ug(t,s)‘ 0) ’ . with q(v1(t, s)) = q(va(t, 8)), for t and s near zero.
S= t=
The proof is similar to the single case one, we present it here for reference.

Proof. Let m = p(T(p)(T?(q)(®1))) = p(T(p)(T?(q)(®2))) be in the domain U of the
chart (U, ¢) on M with coordinates (x!,...,z"), shorthand notation (z). Write:

¢ = (‘T(m)v al(m)v Ul(m)ﬂ wl(m)v il(m)ﬂ dl(m)v 01 (m)v wl(m))v

Py = (x(m),az(m),va(m), wa(m), ka(m), az(m), va(m), wa(m)),
for some local coordinates on T2 A. The following squares vy, v : (—¢,€) X (—¢,€) — A,

vi(t,s) = (x(m)+ti1(m) + svi(m) + tsv1(m), a1 (m) + tai(m) + swi(m) + tswi(m)),
a(t,s) = (x(m)+tia(m) + sva(m) + tsva(m), az(m) + tas(m) + swa(m) + tswa(m)).
dz(t, s)

= (x(t,O),a(t,O), s s:(])
= (x(m) + tz1(m), a1(m) + tai(m),vi(m) + to1(m), w1 (m) + twi(m)),

Denote vy (t, s) succinctly by (z(t, s),a(t,s)). Then,

da(t, s)

d
7V1(t7 S) s:O’ ds

ds

: (—e,€) — T'A. Tts velocity vector at t = 0,

.o d
and this is a curve J-v1(t,s) o

i i (t )
dt \as \"®

s:O) L:o = (z(m), a1(m),vi(m), wi(m), &1(m), a1(m), v1(m),w1(m)) = ;.

And a similar calculation shows that

d (d
dt <dsy2(t’s) s—0> ‘t:O =2

By hypothesis, T7?(q)(®1) = T?%(q)(®2), which implies that

vi(m) =wva(m), &1(m)=d2(m), V1(m)=v2(m),
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therefore,

q(vi(t,s)) = x(m) + ti1(m) + svi(m) + tsivg(m)
= x(m) + taa(m) + sva(m) + tsva(m) = q(1a(t, s)).

We include some outlines for reference. The triple outline of ®; in local coordinates,

P, @ (x,v1,21,01)
pra T(})()m,al,j:l,al) l \ (x,d1)
(x,a1,v1,wr) (x,v1)
> (z,a1) ™ (z),

and the triple outline of % (%Vl(t, s) 0) ‘ o where we denote by gor; = u, smooth
s= t=

square of elements of M:

d(d 72(q) d(d ‘
dt (dsyl(t’ s) 5:0) ’t:o dt (ds’u(t’ 2 s:0> t=0
on) | e
Pra %Vl(t, O)LZO J' ddt/i(t,o)‘ _

d d

4,00 0

dsyl( 78) s=0 \ dsu( 78) = \

11(0,0) 14(0,0),
And of course p
%V1(07 3) S0 - (.T, ai,vi, U)l).
Additionally,
vi(t,0) = (z + t&1,a1 + tay) = Vl(t,O)‘ = (z,a1,21,a1).

dt _

The outline of J(®1),

Ja(®1) (@, &1,v1,01)
o0 |
pTA (x,a1,v1,wy) l (x,v1)
(z,a1,&1,a1) (@, 1)

\‘<xa> \m)
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s:O) ’t:O) - % (%Vl (t7 S)‘t:O)

and the outline of J4 (% (%Vl(t, s)

5:07
(] ), — T 4 ],
ds \dt™227 =0/ ls=0 ds \dtF 0/ 1s=0
o0 | I
PTa 5v1(0,5) o l =u(0, s) o
dn(t,0)| Fnlt,0)|
v1(0,0) 1(0,0),
O

We now proceed with the proof of Lemma 2.

Proof. By Proposition 477, there exist v1,v5 : (—¢,€) X (—€¢,€) — A smooth squares

of elements of A, such that:
d (d
) Qo= — |+ t) ‘ )
50> ‘t:O T dt (dsyz( 2 50> t=0

d (d
(I>1 (Vl (t’ S)
with govy = qove = p: (—€,€) X (—e,€) = M, a smooth square of elements of M.

:E ds

Since g o v = q o 1, it follows that

d d d d
T(q) [ v (t = —q(n(t = —q(walt =T(q) [ —w(t .
@ (G| ) = faoaeo|_ = fawateo| =1 (Fmceo)] )
In other words, for the two curves Yi(t) = Ly, (¢, s)’ » and Ya(t) = Luy(t, s)‘ _in

T A, we have that T(q)(Y1(t)) = T(q)(Ya(t)), for t near zero. Therefore,

d d d
By + By = —Vi(t )| == (v + v
lszq) 2Tt 1(®) t:OTj(_q) dt 2(t) t=0 dt < 1 )T—(Z) 2( )> t=0
d (d d
= — | —v1(? —a(t .
dt <dsy1( '5) 5=0 T—(Z) dsVQ( '5) so> ‘t:o

Again, due to our hypothesis, that g o v; = q o 15, we have

= %(yl(t, s) +va(t, s))

so> ‘tzo’

d
+ 71/2(t7 8)

d
-t
vi(t, ) s=01T(q) ds

ds

s=0 s:O.

Altogether,
d
B g 0= g (Gl ()
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Applying J4 to the previous equation,

d [ d
JaA (q)lTSZ) @2) == <dt (1 (t, 5) + va(t, 5)) LZO)

About the right hand side of (2273), again from the fact that q(vi(¢,s)) = q(12(t, s)),
it follows that,

(2.74)

s=0 '

d (d
Ia(@®) g Ia(@) = 5 (Gt

T2(q) T s t=0/ ls=0
d (d d d (d
_ @ " — 2 (Lo '
= ds (dt n(t, )’ o @ S>‘t:0> w0~ s \ag B9 ol ’3”’ _0> 0’
and we see that this is equal to (2274). O

Also, as we will need it later on, note that J4 as the canonical involution of the double
tangent bundle T2 A, for the manifold A, interchanges the two additions, that is, recall
(C28) and (29). For &1, ®y € T?A with T(pa)(®1) = T(pa)(P2):

Ja(@1 + Pg) = Ja(P1) + Ja(P2),

T(pa) pra
and for (I’l, Py € T?A with pTA((I)I) = pTA(‘I)Q):

JA<(I)1 + (I)Q) = JA<(I)1) + JA(CI)Q).
pTA T(pa)

Now consider the maps which J4 induces on the cores.

Take an element ¢ € TA in the core of the Back face. Regarded as an element of T2 A
this is ¥, with outline shown on the left of (2273).

&v L o?M & % T(0TM)(v)
T(pa)
- pA I B ;n i) N )
l | (2.75)
OA v ‘ T
m Oﬁ \m

It follows from (E64) and (269) that

JA(EB) =€V and Ju(€Y) =£€P, (2.76)
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since Jf‘ is the identity.

Since the Left faces in (2220) are the double tangent bundle 724, the map on the cores
of the Left faces is the identity and so

Ja(gh) = ¢~ (2.77)

2.4.5 The cotangent 7*D

In this section we present in detail the cotangent T*D of the tangent triple vector
bundle T'D. The cotangent T* D is a triple vector bundle obtained through the process
of dualization. First, some background on the duality of double vector bundles.

Double vector bundles and Duality

When we dualize the double vector bundle D with respect to its vector bundle structure
over A, the resulting structure is denoted by D *A. That D * A is a double vector
bundle, this is described in detail in [25, Section 9.2].

A
D¥A ¢ o

Va

A—— M.

The core of this double vector bundle is B* — M.

As we will use it extensively in what follows, we write the formula for the unfamiliar
projection 'yé* : D¥A — C*. From equation (16) of [25, p.348], this is

(18- (@), c)or = (®,07 +c)a, (2.78)

where ¢ € Cy,, @ : (¢})7(a) — R, and a € A,,. The zero above x € C7, is denoted by
024 and is defined by
02,00 + ) = (s, ), (2.79)

where b € B, and ¢ € Cy,. The core element 1 corresponding to ¢ € By, is
(1,0 + ha = (¥, b) . (2.80)

The addition (—J— in DA — C* is defined by

(@ 4 @ dfd)a = (@,d)a+(@.d)a (2.81)
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where ® and @’ have outlines (®;a, k;m) and (®’;d’,k;m), and d and d’ have outlines
(d;a,b;m) and (d';a’,b;m), see [25, p.348] for more details. Similarly for D ¥ B.

The two duals D *A and D *¥B of D have a remarkable relation, namely, D A4 — C*
and DB — C* are dual vector bundles. There exists a nondegenerate pairing between

DA and D **B over C* [25, 9.2.2], denoted | , |, which is natural up to sign. Again,
for details see [25, Section 9.2].
(I]g yé* "/B
D —— B D*A — D¥XB 2., B
qgl JQB —yg‘l l »yg*J J (2.82)
Ao M, A—— M, C* —— M.

For ® € DA, and ¥ € DB, with outlines (®;a, x;m) and (¥; k, b; m) respectively,
and for any d € D with outline (d; a, b;m), define

|®, Ul = (®,d)s — (V,d)p. (2.83)

Note that the pairing (2=83) is independent of the choice of d € D. This pairing induces
two double vector bundle isomorphisms, namely,

Zy:DX¥A— DXB*XC*, (ZA(®), W) = O, U, (2.84)
and
Zp:D*B — D*AXC*, (Z(¥),®)c- =@, 0. (2.85)
The core of T*A
The cotangent double vector bundle T A:
T*A ——— A*
ca s
A—2 M,

is a prime example of a dual double vector bundle. Since T*A is the resulting double
vector bundle after dualizing T'A over A, its core vector bundle is T*M — M.

The unfamiliar projection r : 7% A — A* in this case, using (E78) we can write:

(r(®),a) = (®,00" A+ d)a, (2.86)

for ® € TFA, a € Ay, and for o’ € A, (where this copy of 4,, is the core of T'A).
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By (E=T), the addition in 7% A — A* is described by
(1 + D2,&1 + L2)a = (P1,&1)a + (P2, L), (2.87)
A T™

for ®; € T; A, & € T, A, with r(®1) = r(®2), and for & € Ty, A, & € Ty, A, with
T(q)(&1) = T(q)(&2)-

For a single covector wy, € Tox M, its image in T* A is described by (E280):
B.1(0N0) 4 3) = (0.0,
for v € T,,, M. A section w € I'(T* M) of the core of T*A, defines two sections of T™*A:

e ¢*(w) € Q(A), the strut of w over A, a section of the vector bundle T*A — A,
and

e , the strut of w over A* which is a section of T*A — A*.

More precisely,
F(w): A — TrA,
Apnsa — 074 +w(m),
A*

the pullback of w(m) € Ty M to A at the point a € A,,.
About @:
w:A*Y — TrA,
Al d5a — Og*Ajm,

and from (279) and (2280) it follows that

(O (), T(0Y) (v) 4-)
= (OF A7) (0) @)+ @), TOY)(0) +aha = (@a)a + (. v)rar

forve T, M, and a € A,,.

The triple vector bundle 7" D

We are now ready to further investigate T*D. This triple vector bundle was first
introduced in [24]. Dualizing T'D with respect to D, we obtain the following triple
vector bundle,

T"D —— D*B
N | >
J DfA —— 5 C* (2.88)
b
\ \

A— M.
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All faces of T*D except for the Up face are known double vector bundles. So focus on
the Up face,

T*D —2 s D*¥B

Tz{ ng*

D*A —— C.

Vc*

First we check that fyg* org = 'yé* ora. To begin with, let f € T); D, with triple outline:

N

d\iﬁi [

™

f———15(f)
|

Let us describe r4(f). The Left face of T'D is the tangent double vector bundle of
D — A. Tts dual with respect to D is the Left face of 7% D, see (Z88). And by (E°78),
for f € T} D:

(ra(f),d’) = (f, OthﬁA), (2.89)

where d’ is in the core of the Left face of TD and we denote by a7 its image in T'D.
An element of the (L-R) core double vector bundle, its triple outline is

where X € TB is in the core of the Right face.

Therefore, equation (Z89) shows how to pair an element f € T; D with 04 + a7t
TA

[ T o

l ra(f) T K l > oTA ‘ ™ oM

d J—> b l . J }i J
S Sa S —

a m.
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Denote by k := 74 o ra(f). The outline of 74(f) € D * A (the Front face of T*D),
K
m

</€7 C) = <TA(f)7 OaD "g C>' (2'90)

ra(f) ——

and again from (2278), for any ¢ € Cy,:

—_

Note the following. The element ¢ € C,, lies in the ultracore C' of T'D: since Kk =
Vé* or4(f) € C* is in the dual of the ultracore C' of T'D, we pair it with an element of
the ultracore C' of T'D. As there are more than one copy of the vector bundle C — M
in T'D, it is important to state explicitly in which copy the element ¢ belongs to.

Focus on the right hand side of (ZZ90): 74(f) € D * A, and 0P + ¢ is in the core of the
B

Left face of T'D (it plays the role of d’ € D| in the left hand side of (2289)). That
a
0D + ¢ is in the core of the Left face of T'D means that c is in the core of the (L-R)
B
core double vector bundle, ergo, in the ultracore.
The image of 02 + ¢ in T'D is from (IC9),
B
d

+ —t-c| =0, + "
t=ordt A li=0 7B

d
(0P +¢ - c)‘ SV

—A d
0D b
afe @B A= dt°

= _—¢t. - =
B dt A(O“ —ch) t=0 dt

where we have denoted by 4 the image of the ultracore element in 7'D. Note that

A =B

=—t-c =c,

- il ata
dt A lt=0 dt B lt=0

and their triple diagrams:

l b v
0P l*) 08 Op —|— 07
RV ~ R Y AN
aq — M Om—>m

(o0} = (ra(f), 08 +e) = (f,0a + (0o + o). (2:91)
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We do exactly the same for r5(f). In this case, we can write:
(re(f),d") = (f,04 ;;BWB% (2.92)

where d” is now a core element of the Back face of T'D. It belongs to the (B-F) core
double vector bundle of T'D, with outline:

d'"——Y

]

br—

)

where Y € A is a core element of the Front face of TD. The triple outlines of the
elements f € T;D and 04 + "
TB

< TB - ‘ N
K ? 4 OgA ; OZ;’LM

l i l
—i |
_ 5m, \ \ 4

Q ——

0 B TB
_—
r (f) Od + d" Ob

Denote now by ' := 75, o rp(f). Again by (ZZZ8), for any ¢’ € Cp,:
<H,a Cl) = <TB(f)v 0bD _f‘l_ Cl>7

and now as 07 ic’ plays the role of d” in (EZ92), it is an element of the (B-F) core

double vector bundle of T'D, and now ¢ in the core of the (B-F) core double vector
bundle, an ultracore element. Choose the same ¢ € C), as we had chosen in (ZZ90), in

——B
the case of r4. The image of ObD +d inTD is ObD +c¢ , and their triple diagrams:
A A

0p ——— 07 B —— oIB

m

AW | AW | ™
®TA OTM QZRA OTM
_|_

m \L m
0P ‘H b “ ob l% 0B
N N ~ AN
04— m 04— m.

Applying (ZZ02) for d” = 07 :K c:

(K0} = (ra(f), 00 +-¢) = (f,0a + (0 + ). (2.93)
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In order to show that k = &/, by (2Z010) and (2793), it is enough to show that
04 + (04 + %) = 04 + (0y + ),
TA TB TB TA

and this follows directly using interchange laws:

04 + (04 + %) = (04 + 0p) + (0a + &) = (04 + 0,)
TA TB TB TA TB TA

A _ =B

and as we mentioned earlier, ¢ c”.

Linearity of r4

The Left face of T* D is the dual double vector bundle of the Left face of T'D, therefore,
74 is a morphism of vector bundles from T*D — D to DA — A, i.e., for fi, fo € T;D:

ra(fi JDrfz) =ra(f1) j;?“A(ffZ)-

To check that r4 is a morphism of double vector bundles from the Back to the Front
face of T* D, we also need to check linearity over DB, that is, assuming that r s(f1) =
r5(f2) = ¢ € D ¥ B, does the following hold?

ra(fi Dj%B f2) = ra(f1) ér ra(f2). (2.94)
The outlines of f; and fa:
fi —— fo———9
> | N ™ |
ra(fi) —— ra(fe) ——

i — dy —— V'
l/ — J’;v CL, — J’/L,
we have
(ra(f1) & ra(f2),d1 —Ed2> = (ra(f1),d1) + (ra(fe), da). (2.95)

Note that v = g5 (d1) = ¢5(d2) is not related to the b = ¢5(pp(f1)) = a8 (pp(f2)).
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About the left hand side of (Z794), we will use (289), with d; +dsy in place of d’. So
B
looking at dy + ds in the core of the Left face of T'D, its image di + dgA is in the (L-R)
B B

core double vector bundle with outline

TR A —
TB

|

a+a —— m,

_ d d d —A A
:—t-dci‘ :—ﬁd‘ 444) R
t fd2 dt ( A( 1—5 2)> t=0 dt A lt:OIjJ_Bdt A 2li=o ! T—ij_a‘ ?

Applying now (ZX9) for f1 + fo € Tj, 4D and ra(fi + f2) € D A
DB B DB
hand side of (2Z94) can now be written,

, the left
a+a’

(ra(fi + fa),di+d2) =(fi + f270d45d’ +(d1—£d2)A>

pfB B DB TA
L — A —A A R —A
= 70 0/ d d - 70 d 0/ d .
<f1D+Bf2(d;;B d)T‘tl(l £ d2 ) <f1D+Bf2(th‘ 1 );,;B(th‘ 2 ))

We need to describe the addition -+ in 7D — D B, using (Z1). This comes by

DB
the Back face of T*D, the dual of the tangent double vector bundle of D — B:

D ——1TB "D —— D*B

l l dualize over D J J
_— N

D —— B, D —— B.

Therefore, the addition fi + f2 is defined by pairing with elements &1, {& € (T'D; D,TB; TM)
D

B
with outlines:
L——ax Sr——x
d — b, d — b,

therefore, we can write:

(i + f2& %&) = (f1,&1) + (f2, &2)-

DB
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For & = 04 + chA, and & = Og + @A, we can rewrite the left hand side of (2294,
TA TA

XY

(100 + T + (o + %) = ralf). ) + ra(fo) o),

and this is precisely (Z794), the right hand side of (2Z94). The proof of the following
can be found in [24, Proposition 5.4]. We present it here in detail.

=

Proposition 2.4.8. The core of the Up face of T*D is T*C — C*.

Proof. Consider an w € T;C. To define its image w in T D, we first need to describe
the elements £ € T.D. The outline of such an element & € T,.D is

§ T(0%) () + X

N, NN

po|  T(0%)(v)

. |
. N

v
P
04 m.

»+
~

C

To see this, since pp(§) = ¢, a core element of the Down face of T'D, it follows that

¢t (¢) = 05, and ¢ (c) = 0. Therefore, pa(T(q%)(€)) = Op, and T(qa)(T(q7)(€)) =

v € T, M. From usual double vector bundle theory T'(¢%)(¢) = T(04)(v) +Y, where
A

Y € A lies in the core of the Front face of TD, and Y is its image in T'A. Similarly for
T(q8)(&) = T(0P)(v) + X, where X € B is an element of the core of the Right face of
B

TD.
Consider the following cases, where ¢ = 0. + T(07)(Y). Then v = 0ZM and X = 02,
TB

and £ has outline:
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Similarly, when & = ﬁcﬂT(Og)(Y) then v = 0LM and Y = 07}

0. + TOR)(X) ——— X

TA \ \

S L
c \ =4

04 Xy

Denote by 2~ = (0, —IJ—BT(OQ)(?)) —g(f)c —ZT(O%)(Y)). Then for any ¢ € T.D, we see
T T
that & - 2 will have the following outline:

gg,% —— T(0B)(v)

™ N
™~

T(0%)(v) |

c 02

.

that is, & - Z is in the (U-D) core double vector bundle of T'D. Therefore, & - Z =
W, for some W € T.C.

Define w in T} D as follows. For any ¢ € T.D:

v
A
04 m,

<‘:}7£> = <w>W>v (2.96)

where W =¢— 2.
D

To show that w is in the core of the Up face of 7% D we need to show that r4 (@) = OKD*A,

and rp(w) = OED*B.

So far, the outline of w:
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Using (Z289) we have:
w 7d/ = N’ OC + EA )
(ral@), &) = @,0. + T
for d’ in the core of the Left face of T'D, with outline in the (L-R) core double vector

bundle:
d— X

-

04— m.
We can write d’ = 0% + ¢/, for ¢ in the core of the (L-R) core double vector bundle of
A
TD, ie., an ultracore element. And we have
R +c =g+
XA X 74
Therefore, by (2%9) for d' = 0§ + ¢
A
- A R —A oA R . _
T w,OD—i—c’:w,O—i—O——i—c’ = {(w, (0 + Os) +(0;, 4+ ¢ )).
(ra@),09 4 ¢) = 3,00 + (O + &) = (B 0 + 00 0+ @)

The corresponding W defined here, noting that O = T(05)(X), is

A - A —A A - A —A
W = ( (0c + T(0B)(X)) +(0c + &) ) —(0. + T(0R)(X)) = (0. + ),
(004, TOBICE) 50 1, 7)) 5 01 TORIED) = @ 1, 7*)
hence W = 07C + ¢/. Therefore, by (2298) for &, 2", and W as just described:
TM
~ A A . —A TC '
, (0 + O%) +(0, ")) = (w, 0, .
@ (0 + 0x) +(0c + 7)) = (@,07€ + ¢)
Now using (2778), the unfamiliar projection r : T*C — C*, we have
,OTC N 7 N , 2%
.01 1 ) = (r(w), ) = (r,€)
In total,
()

(ra@), 08 +¢) = (,¢) 02T, 08 + ),

and this is true for every ¢ € C in the ultracore of TD. Therefore, r4(@) = 07 A And
similarly for rp(w).

Conversely, take an element f € T7'D with outline:
f—— 0P
h OHD fa —>l \ K
‘% 0B
N

A
04— m

Cc

N
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We will show that f = w, for some w € T}C.
By (E=89) we have:
2" dy = (£,0. + @),
TA

for d’' in the core of the Left face of T'D with outline in the (L-R) core double vector
bundle,

d — X

L

0,‘,4” > m
therefore, as before we can write d’ = 0% +¢, for ¢ in the core of the (L-R) double
A

vector bundle, i.e., in the ultracore. Hence:

OP 08 +¢) = (1,0 + (07 £)") = (1.0 + (TOR(F) + 7).

A TA
(2.97)

Similarly for rz(f) = 02 *B, use (ZZ92). The outline of d” in (B-F) core double vector
bundle of T'D:

=

d"—Y

|

Oﬁ > m
and we can write d’ = 02 + ¢, where again, ¢ is an ultracore element (in the core of
B
(B-F) core double vector bundle). Therefore,

(i, ") 020 ) = (.00 + OF 1)) = (1,00 + (TOR)T) + 7)),

TB B
(2.98)

By (2Z97) and (ZU8), we see that f vanishes on elements of type .27, since no ultracore
elements appear in 2 . Therefore, for any ¢ € T, D:

(&) = (£ 2 W) = (£, 2)+ (£, W) = (£, W).

Now define w € T7C by
w(W) = (f, &),
where £ € T.D, with £ = 2"+ W. Now we need to check that w = f. For any &, with
D

&= Z + W, from the previous subsection, we extend w as
D

(@,8) = (w, W),

so it follows directly that w = f. O
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Again one needs to check that T*D satisfies parts (i), (ii), and (iii) of the definition
of a triple vector bundle. Part (i) follows routinely. To see part (iii), start with a
decomposition Q : TD — TD. Then the inverse of the following map

QXD :TD*D — T*D,

is a decomposition of 7% D. Finally, part (ii) follows as it did in the case of T'D.

The three core double vector bundle of 7* D in the usual order, and the ultracore vector
bundle:

H (Back-Front) ‘

(Left-Right)

|

(Up-Down)

H Ultracore H

"B —— B*

|

B— M

T*A — A*

I

A——M

T™C —— C

|

c* — M

"M — M




Chapter 3

The warp-grid theorem

In this chapter, we formulate the main theorem of the thesis in the first section, and
prove it in the second section using the techniques developed in Chapter B.

3.1 The warp-grid theorem

3.1.1 Grids in triple vector bundles

A grid in a double vector bundle constitutes two linear sections. In a triple vector
bundle the concept of grid requires what we call linear double sections. The following
definition was first stated in [27, p.360].

Definition 3.1.1. A down-up linear double section of E is a collection of sections
ZLQ : ELQ — E17273, Z1 : E1 — E173, Z2 : E2 — E273, Z M — 1937

which form a morphism of double vector bundles from the Down face to the Up face.

The core morphism of Z; o defines a vector bundle morphism from the core of the Down
face to the core of the Up face. We denote this by Zi2 : F1o2 — Fq23. It is a linear
section over Z : M — Ejs.

In a similar fashion we define right-left and front-back linear double sections of E. We
thus arrive to the following Definition, stated in [27].

Definition 3.1.2. A grid on F is a set of three linear double sections, one in each
direction, as shown in (B).

92
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Ei23 Eq3
X3
Xk ZJ \
Z1.2 E273 Y E3
3.1
B | (3.1)
ELQ Vi E1 Z
X
o N
Es v

Notation-wise, we write the linear double sections as:
(Xo3; X2, X3; X), (Y13;Y1,Y3;Y), (Z12; 21, Z2; Z).

By definition the linear double sections are double vector bundle morphisms, hence we
have the following equations.

For ez 3, 6/2’3 projecting to the same ey € Es,

Xo3(e23 ;265,3) = Xz3(€2,3) 2 Xa3(e33)- (3.2)
For ez 3, 6/2’3 over e3 € F3,

Xo3(e23 ;36'2,3) = Xo3(€23) 5 Xa3(e53)- (3.3)
For e 3, 6/1,3 over e1 € F1,

5’1,3(61,3;16/1,3) = Yi3(e1,3) 1’23/1,3(6/1,3)- (3.4)
For e 3, 6/173 over ez € F3,

3’173(6173;36/1,3) = Yi3(e1,3) 2735/1,3(6/1,3)‘ (3.5)
For ey 2, 6/172 over e1 € E,

Zl,z(el,zgeﬁg) = Z12(e1,2) 5 Z12(€)5)- (3.6)
For ey 2, 6/172 over eg € Fy,

21,2(61,2;26'1,2) = Z12(e1,2) 25 Z1(€)5)- (3.7)
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Nontrivial grids on E

We now establish the existence of nontrivial grids on F.

A right-left linear double section (Y7 3;Y7,Y3;Y) is a double vector bundle morphism
from the Right to the Left face of E. To define this map, we will use Proposition [T,
decompositions of E, and the corresponding result from the double case.

Start with Y a section of Eo — M. Then from the double case, using (IR), define the
linear section (Y7,Y")

Yi:El — ELQ
er + U12(Y(m), e1,p1(e1)),

where 1 : E1 — FEq2 is a vector bundle map over M, and U2 is a decomposition of
the Down face of E. Define the linear section (Y3,Y)

Y3:E3 — Eoj3
ey — UQ,3 (Y(m)7 €3, @3(63))7
where @3 : B3 — K33 is a vector bundle map over M, and Us 3 is a decomposition of
the Front face of E.

To define a linear double section (Y7 3;Y7,Y3;Y) on E, from Proposition T2, we can
write:

Y1’3 : E173 — F
er3 — O(Yi(er),Ys(es), e13, p(wis) ];i‘ A(er,e3)),
2

where U : W x E123 — E is a decomposition of E. Initially, ¢ : E13 — Ei32 is a vector
bundle map over Y : M — FEs, and A : By X E3 — Fi32, a bilinear map. However,

since Y7 3 is a section of LN E 3 it follows that ¢ : Ei3 — F123 is a vector bundle
map over M, and the bilinear map A\ : Fy Xy B3 — FE193. Hence,

Y173:E173 — F
e13 — O(Yi(er),Ya(es), e13, p(wiz) + Aer, e3)),

We have also chosen a ¥y 3 : 1 X E3 — Ey 3, to write

wiz = (€1,3 Y Y1 3(e1,e3)) Py 0z,
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~1,3
For e; 3, f1.3 over e; € Ej, denote by wis = (fl,gE—ZLg(el,fg))E—Oel .
1 3

Yis(e13) 1+2Y1,3(f1,3)

= O(Yi(e1), Ys(es), er3, p(wiz) + A1, e3)) 14'26(1’1(61), Ya(f3), f1,3, (wi3) + A(et, f3))
= O(Yi(er),Ys(es) + Y3(f3),e1,3 s f13,0(w13) + o(wis) + Mer, e3) + Aer, f3))

= U(Yi(e1),Ys(es + f3),e13 ];[- f13, (w13 + wiz) + Aler, e3 + f3))
1

= Yis(eis + f13),
Ey

That Ys(es + f3) = Ys(e3) + Y3(f3), follows directly from the linearity of Y.
E>

To see the core element in Fq3 of e 3 4 f1,3 with respect to ¥ 3,
Ey

-3 _nL3
<(61,3 }‘EFI f13) o 13(e1,e3 + f3)) o ()

_ - CRL3 . Al3
= <(e173)—31—1 f1.3) E1(21,3(€17€3) ;41_1 ZJ(61,f3))> ES(Oel ;‘ 0:°)

1

_ > — gL ¥ 05 ) = 13-
<(61’3 - 1.3(e1,e3)) 5 0c] > & ((f1,3 s 13(e1, f3)) 5, Vel wis F wig

For more details on grids on E using this technique, see [21].

3.1.2 Reformulation of the warp-grid theorem

In this subsection we first describe the original formulation of the warp-grid theorem,
as stated in [27]. Introducing then a more succint notation, we work towards equation
(8223), a prototype of the kind of equations we will use in the second subsection to
prove the warp-grid theorem.

Start with a grid on E as in (BII), and focus on the Up face of the triple vector bundle.
Then (Y3 3,Y3) and (X23,X3) define a grid on the Up face. Denote its warp by wyp;
this is a section of the core vector bundle of the Up face, wy, : 3 — Eq23. Likewise,
(Y1,Y) and (X3, X) define a grid on the Down face, and we denote its warp by Wqown,
a section of the core vector bundle of the Down face, Wyown : M — E1o. It follows that
(Wups Wdown ) 1s a linear section of the (U-D) core double vector bundle, see Proposition
BT3. In addition, the core morphism Zio of the linear double section Z;o defines
another linear section of the (U-D) core double vector bundle. Therefore, we have the
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following induced grid on Ej3 3:

Z12

Ei23 ——— Ei»
Wup Wdown

By —— M.
~_

Z

We call the warp of this grid the Up-Down ultrawarp and denote it by uyp. It is a
section of the ultracore Eja3.

Proposition 3.1.3. The sections wy, and Wqeu, as described earlier, form a linear
section of the (U-D) core double vector bundle.

Proof. That wyp and wqown are sections of the corresponding vector bundle structures
follows immediately from the definition of the warp. To show that (wyp, Wdown) is a
vector bundle morphism, we first check commutativity of the diagram:

Wup

Eip3 ——— E3

Eyy —— M,
\_/

Wdown

where (g12,¢®) is the core morphism of the projection map (qi 2; qi’ga q§’3; ¢>) from the
Up to the Down face of E, as in (2227).

Using (), for e3 € Ej3,

Yi1,3(X3(es))

. 3X2,3(Y3(63)) = Wyp(e€3) ;rgﬁxg(eg)- (3.8)

Applying g12 to both hand sides of the previous equation, writing (e3) = m, we
obtain,

V(X (m) - Xa(Y () = qua(wap(ea) + 057, (3.9)

due to the following relations of the linear double sections,

1,3 23 13 2.3
G120Yi3=Y10q", qiaoXez=X000y", q;°0X3=Xo0g’ gy oY =Y og’.

And (BM) is precisely the equation that describes wyown(m). From uniqueness of core
elements, it follows that g1 2(wyup(€3)) = Waown(m).
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To check fibrewise linearity, we need to show that for es, f3 € E3 over the same m € M:
Wup(€3 + f3) = Wup(ei’)) I“zwup(fiS)-

Rewrite (B3) as,

. o4dd ~

. . . )
X2,3(Y3(63))> EOX3(€3) = wyp(es) 2+3 (0X3(63)230X3(63)) = wup(es) 2+30e3-

1,3 , ,

<Y1,3(X3(€3))

Since 0@3 plays the role of the double zero of the Up face over es, it follows that
Wup(es) -+ Uey = Wup(es).

Hence, (B8) can now be stated as:

waplen) = (Vaa(Xa(en)) s Kaa(Vitea)) ) 1 O (3.10)

1,3

Equation (BM) for eg + f3 € E3, with e, f3 over the same m € M:

wup(€es + f3) = (Y1,3(X3(e3 + f3)) — Xo3(Ys(esz + fg))) ;30)(3(634_]%). (3.11)

1,3

Using the linearity of the various linear sections involved:

1. First, what is 0 Xy(ea+fs)! Since (X3, X) is the following linear section of the Right

face
X3

L~
E173 —_— E3

| ]

E — M,
~_ —
X
and we have X3(es + f3) = X3(e3) ]—EF X3(f3), by (210), we have that
1

~

0Xa(eatss) = Uxa(e) 4+ Xa(f) = Oxa(en) 1F Oxa(ra):
1 )

2. Secondly, since both X3(e3), and X3(f3) € Ej 3 are over the same X (m) € Ej,
and (Y1 3,Y7) is a linear section of the Back face:
Yi3

E < 5 Fis

||

Eio —— Fy,
Y
Y1
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it follows that

Y13(Xs(es + f3)) = Y1,3(X3(es) ey X3(f3)) = Y1,3(X3(e3)) 14—2Y1,3(X3(J%))-

3. Similarly, since Y3(e3), and Y3(f3) € Ea 3 are over the same Y (m) € Ey, it follows
that

Xo3(Ys(es + f3)) = Xa3(Y3(es) ;2 Y3(f3)) = X23(Y3(e3)) 1-1-2X2,3(Y3(f3)),

where we’ve used that (X2 3, X2) is a linear section of the Left face:

Y3 X233
o~ SN
E2,3 E— E3 EFE — E273
Ey — M, Ei o —— Eo,
— i ou
Y 2

So now we can rewrite (B) as follows:
Wup es + f3

Y1,3(X3(es + f3)) ;

3X2,3(Y3(€3 + f3))> £0X3(63+f3)

Y1.3(X3(e3)) + Y1,3(X3(f3))- — [Xz,?)(yé(@?))) 1‘!'2X2,3(Y3(f3))]> 23 [()Xg(e;;) ﬂ‘zng(fa)]

(s
{
{

Y1,3(Xs(e3)) o X2,3(Y3(€3))_ + [Y1,3(X3(f3)) !

3 X2,3(Y3(f3))]> ?3 |:0X3(€3) 1—!_2 OXS(fS):|

Yi3(Xs(es))

= Wup(e?») 1‘*‘2 Wup(f3);

)

S Xaatvatea))| 0 ) 1 ([Tratati | Xeatratm)]  omn

and this completes the proof. O

Of course we can build corresponding grids on the other two core double vector bundles.
Therefore, a grid on F induces the following three ultrawarps,

Xo3 Yi3 Z12

— — —

Eo31 —— Eb3 Ei32 — Ei3 Ei23 — FEqo
Whack (J/ D Weront Wieft (‘/ D Wright Wup (J/ D Wdown
2 W —E 12— Bs m—— M.

X Y Z

(3.12)
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Using the notation as in (I2),

Whack ©X — X23 0 Wiront > UBF,
Wief Y — Y13 0 Wyight > ULR, (3.13)
Wup o/ — Zlg O Wdown P> UUD-

Note that the orientation we take in (BI3) is opposite to the one we take in (I[2). We
explain this in Remark BT3.

We can now state the main theorem about grids in triple vector bundles.

Theorem 3.1.4 (Warp-Grid Theorem). Given a triple vector bundle E and a grid in
E as in (BI),
ugg +ur +uyp = 0. (3.14)

To give an intrinsic proof, we need to describe the ultrawarps in an alternative way.
Focus on the ultrawarp uyp. From the grid on the (U-D) core double vector bundle,
for m € M, by () we have that

(Wup OZ)(m) 2_3(212 © Wdown)(m) = OZ(m) 1‘!'2uUD(m)' (3'15)

)

How can we express (wyp 0Z)(m) and (Z12 © Wdown)(m) in a more useful way? We have
already written (B) for wyp, for any e3 € E3,

Y13(Xs(es)) [, Xo3(Ys(es)) = 04 (es) ;}Wup(esl (3.16)
Putting e3 = Z(m), we have
Y15(X3(2(m))) [, X23(Y3(Z2(m))) = 0, (2(m)) 2+3Wup(Z(m))- (3.17)

We introduce a more succint notation, for use in calculations.

ZYX = Z12(Y1(X(m))), YZX =Y13(Z1(X (m))), XZY = Xp3(Z2(Y (m))),

(3.18
ZXY = Z12(X2(Y(m))), YXZ =Y 3(X3(Z(m))), XYZ = X3 3(Y3(Z(m))) )
Now (BT4) becomes
YXZ—XYZ =0, + X3, (3.19)
1,3 1393

where €} 3 = X3(Z(m)) and A3 = wup(Z(m)).

In the proof of Proposition B3, we rewrote (B10) as equation (BT0). In a similar
fashion, we rewrite (B19) as

As = (YXZ - XYZ) (3.20)

27’3 06/173 .
About (Z1,2 © Waown)(m), first write Waown(m) out using (I) as

Yi(X (m)) - X2(Y (m)) = 0y

7 X (m) ;‘2 Wdown (11)-
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Apply Z; 2 to this, and using (BH) and (B72), it follows that

Z12(Y1(X(m)))

I Z12(X2(Y(m))) = 0z, (x(m)) + Z12(Waown(m))

Again, for reasons of economy of space, rewrite this as

ZYX

L3 XY =0y s,

where e1 3 = Z1(X(m)) and k3 = Z12(Wdown(m)). Alternatively, as we did for As,

ks = (Z\(x?3 ZXY) Ocy 4- (3.21)

)

Let us go back to (BIH). We can rewrite this as

)\3;31% = O, 1—!-211UD(m)7

and using (B720) and (B=21), we have that

((sz S XY2), 0 3> s <(zvx » zxv)moﬂs) =0y uup(m)  (3.22)

or, more elegantly, using interchange laws,

(YXZ 1 XYZ) L (ZYX - 2XY) = (O o Na) O )
= (06/173 ;3 O61,3) 2‘5()‘3 2.3 k3) = (06'1,3 ;3 061,3) 2_!_3(063 1‘!_2 uyp(m)). (3.23)

In calculations it is generally preferable to use equations of the form (BT9), and to
avoid equations of the form (B720).

Therefore, in order to describe ultrawarps such as uyp(m), we will use equations of the
form (B=23) and we will often use the abbreviated notation

(YXZ = XYZ) — (ZYX — ZXY) > uyp (m),

as introduced in (I2).

It is worth emphasizing that the above arguments rely on the fact that core and ultra-
core elements are uniquely determined by equations such as (I).

There are similar abbreviated equations for the other two ultrawarps. Altogether we
have

(ZYX = YZX) — (XZY — XYZ) > ugp(m), (3.24a)
(XZY — ZXY) = (YXZ — YZX) > u g (m), (3.24b)
(YXZ — XYZ) — (ZYX — ZXY) > uyp (m), (3.24¢)
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and from now on we will use a further shortening of the notation
upr(m) = u, ur(m) = ug, uyp(m) = us.

The main difficulty in proving (8Id) is that we cannot simply add and subtract the
expressions in (B=24), since the operations are over different vector bundle structures.
The apparatus of the next section overcomes this difficulty.

Remark 3.1.5. A further problem arises from the fact that the warp of a grid in a
double vector bundle is only defined up to sign. We now need to consider how to choose
these signs consistently for a grid in a triple vector bundle. This is a question of fixing
the orientations of the grids.

First, observe that the orientations of the grids on the upper faces determine the ori-
entations of the grids on the corresponding lower faces. For example, asssume that the
orientation of a grid on the Up face is as in (8I8). The triple outlines of the elements
Y13(X3(e3)) and Xz 3(Y3(e3)) are the following

Y13(X3(63)) e X3(63) X 3(Y3(63)) e X3(63)
l N J N
( —> €3 }/23(63 —> €3
Yl l ‘/ X2 — X ‘/
Y (m) % m, Y(m m,

(at this point we forget that we have three linear double sections on E, we are only
interested on the grids on the Up and on the Down faces). Then we see that

Yi3(Xs(es)) [, X23(¥s(es))
projects to

Vi(X(m)— Xa(Y (m)) € Fip.

3

For this reason, we orient the corresponding lower faces so that the positive term in
the warp defines the inward normal. We choose to orient each upper face so that the
positive term in the formula for the warp defines the outward normal by the right-hand
rule. In total, given a grid on E as in (B1), the orientation of the grid on each face is
the following:

e Back face: Z1p0Y) —Yi307Z;, Front face: ZpoY — Y307,
o Left face: Xo930 72y — Z120Xo, Right face: XzoZ — Z10 X,

e Up face: Y1 30X3 - Xo30Y3, Down face: Y10 X — Xp0Y.
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Thus we see that the orientation of the grid on the Up face determines the signs in the
first subtraction in (B=24d), and the orientation of the Down face determines the signs
in the second subtraction.

The “middle subtractions” in (8=24), that is, the orientations of the core double vector
bundles, is an independent choice, equivalent to the choice of signs in (B13). What
matters here is consistency: if we took all three ultrawarps with the opposite signs,
that would be fine.

We further explain the orientation of a grid and the meaning of the theorem at the end
of this Chapter, see Remark B=21l. A

3.2 Proof of the theorem

3.2.1 Notation

In this section we prove Theorem BT4. We will use the notation of (B18). We further
simplify the notation for elements of the lower faces and edges, as follows

X(m) := ey, Y(m) := eq, Z(m) := es,
Z1(X(m)) := e, X3(Z(m)) = €13, Zo(Y (m)) = ez,
Ya(Z(m)) = e, Yi(X(m)) = e12, Xa(Y (m)) = f 5
The outlines of the elements in (BIX) are now written as follows
IYX — e13 YZX — e13 XZY ——— €
Ny N Y N\ N Y
€23 —— €3 €hy —— €3 €23 — 7 €3
€1,2 l{ﬂ €1 J €1,2 LH el 6/12 —|— e
\ N ~ N N N
€2 —— > m, eg —— m, €9 —— M,
IXY — e1 YXZ —— ¢} 4 XYZ — €3
N Y N N\ N / N\
€23 — €3 hs l es €3 T> €3
€19 lﬂ €1 ‘/ e1,2 [H el l g —|— e
p N N N N N
ey ——— m, ey —— m, ey —— m.

We will need the following relations for the core elements of the lower faces in detailed
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form.
/ n2,3 / N2,3
e93—e€54 = 02° 4+ wag e93—e€54 = 027 4+ wag 3.25
~ B, 2,3 e2 Es ) ® By 2,3 es Es 9 ( )
/ n1,3 / nl,3
e13—ers =024+ wis e13—ers =04+ wis 3.26
1,3 El ) el E3 ’ 1,3 E3 ) €3 E]_ Y ( )
/ n1,2 / n1,2
e1o—e19 =074+ wio e1o—e1o9 =074+ wio 3.27
o 1,2 el Es ) “ B, 1,2 e2 £ ) ( )

where wo3 € Fo3, wis € F13 and wig € E1o.

For the zeros of these w elements, the diagrams are

0’(1}23 — ®71ﬁ3 011)13 - w13 Owlz — ®71’ﬁ3
N, ‘ pY pY ‘ N\ N ‘ N\
l was T 0Es l ®2:3 T> 0L o3 T 0L
@717%2 l‘) 051 @;’LQ l% 07%1 W12 l% Oﬁl
~ N \ N ~ Ny
02 ———'m, 02 ———'m, 0Bz ———'m.

3.2.2 Core and ultracore elements arising from the grid

We collect here for reference the definitions and outlines of the core and ultracore
elements arising from the grid.

e )\, k1 and u;. The elements ZYX and YZX have the same Right and Back faces,
and so their differences define an element A\ € E»3 1 with outline

Ay —— 053
l QN | >
w3 —— 0m3
6;12 l% el
> N

0P .

Using (2239) the defining equations are

YZX

ZYX Ocys + A1 (3.28)

1,2 1,3 2

)

YZX = O, , £AL o ZYX
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If we look at XZY and XYZ, we see that they also have two faces in common, and their
differences define a ki € E»3 1, with outline
ki —— 04}
w3 —— O7Er;3
62’12 ‘H el
\ \
0B
The two differences are, again using (2233),

XZY XYZ

XYZ =0y, b, X2Y O 1K (3.29)

1,2 1,3

We see that A\ and ki have the same outlines so they differ by an ultracore element
u; € Fy93. By Subsection (E2332), “Special case: when e and €’ are in a core double
vector bundle”, we have that:

Mgk = Oe g, (3.30a)
A1 P kh = 061 2—!—3U1, (3.30]3)
A1 7 ki = 0w23 1—17—31141 = 0’11123 1—!—2’LL1. (3.300)

There are four ways of describing the ultrawarp u;. The full calculations are presented
in detail in Appendix BAT3.

(ZYXEYZX) E(XZY o XYZ) = 0, o (0w 1734;2731“), (3.31a)
(ZYXEYZX) 2—3(XZY o XYZ) = (0yy, B Ouns) 5 (Oc, & uy), (3.31b)
(ZYX o YZX) 12()(2\/ > XYZ) = 0, 2+3 (0w 17%3%), (3.31c)
(ZYX o YZX) 273()(2\/ > XYZ) = (0_yy, 5 Ouns) 1+2 (0c, 1+2 uy). (3.31d)

® )9, ko and us. The same procedure can be applied to XZY and ZXY; they have the
same Front and Down faces, so their differences will define an element Ay € Eq32

/\2 — W13

pN ‘ N
Oz ——— 0%

m

0c;2 ‘—> 0E l
N N

eg — m.
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The corresponding equations, using (239), are

XZY

ZXY =04 . + Aoy, XZY —ZXY = 0¢, , + Ao (3.32)
1,293 )

1,2 2,3

If we look at YXZ and YZX, their differences define a ko € F132, with outline

ko — wq3
N . ‘ ¢
03723 T} 07%3
0er l% 0E l
“ “
eg — m,
and the differences defined are, due to (2239),

YXZ

YZX =00, , + ko,  YXZ—YZX =0, _ + ko. (3.33)
“23 2312

1,2 2,3

Since A2 and ko have the same outlines, they differ by an ultracore element us € F1o3,

A—ky = 0w13 +  uo, (3.34&)
1,3 1,2/2,3

A9 o ko = 062 + U2, (3.34b)

Ao 23 ko = 062 1—2 Ug. (3.34C)

)

Again there are four ways of describing the ultrawarp us, and relevant calculations are
in Appendix BAT4.

(XZY > ZXY) 2—3(YXZI—2YZX) = 0, 5 (0_w, 1737273 uz), (3.35a)
(XZY > ZXY) 1—3(YXZI—2YZX) = (Ouys o 0 wyy) o (Oc, 5 ug), (3.35b)
(XZY > ZXY) 172(\(xz vs YZX) = 0, 1+3 (O 17247173 uz), (3.35¢)
(XZY ’a ZXY) 173(\(xz vs YZX) = (Oupys 14-2 Owys) 1+2 (0c, 1+2 uz). (3.35d)

e )\3,k3 and u3. Likewise YXZ and XYZ define A\3 € F12 3 with outline

Ag —— 0ey
N

N

52,3
0cy —— e3

w12 ‘% O7Enl
\ N\

0B .
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The corresponding relations are, due to (243),

YXZI—3XYZ = 06/173 24—3 A3, YXZ2—3XYZ = 06/273 14?3 A3. (3.36)
Likewise ZYX and ZXY define a k3 € E12 3 with outline
ky —— 00
pN
s N
O0gy —— e3
w12 l*) Oﬁl
> N\
0B
The differences defined are, due to (243),
ZYX;SZXY::Oqﬁigk& zvxggzxvzzﬁwsigk& (3.37)
The ultracore element ug € F1o3 defined by A3 and ks satisfies
Aﬂﬁ@ = @ﬂzw’ (3.38a)
As—ks = 61012 +  us, (3.38]3)
1,2 1,3/2,3
)\3;3]?3 = (e 1—!-2U3. (3.380)
The four relations in this case are the following, where the details can be found in
Appendix ATH.
(YXZI—:)XYZ) 2,3(ZYXE ZXY) = Oc,q 1—!—2(01”13 1,2—}—273 us), (3.39a)
(YXZEXYZ) B(ZYX o ZXY) = (04 24’—3011,12) 2—5(061 2—!—3u3), (3.39D)
(YXZ 2s XYZ) 173(ZYX 2s ZXY) = Oc,4 1+72(O,w23 17217173 us), (3.39¢)
(YXZ 2s XYZ) 172(ZYX 23 ZXY) = (0_ g $0w12) 11;(0@2 1+3’LL3) (3.39d)
3.2.3 Proof of the warp-grid theorem
We will show that uq + us + ug = @?n by showing that uy = —us — us. There are five

steps.
Step 1. Rewrite (B=31H)

(ZYX

YZX)—(XZY
1,2 2,3 1,2

XYZ)
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as

(ZYX— XZY)

2,3 1,2

(YZX—XYZ),
, 2,3
using a variation of the double vector bundle interchange law in the Left face, as in
(28). We know from (B=3TH) that the ultracore element defined by the first expression
is u1, therefore, the ultracore element of the latter expression will also be u;. We will
show that the second expression has —uo — ug as its ultracore element, and this will

show that u1 = —ug — us.

Step 2. First, using (249), write ZYX2 3XZY as
INYX —XZY = (ZYX —ZXY) —(XZY — ZXY),
2,3 2,3 2,3 2,3
where we have from (8337) and from (8232),
ZYX 25 ZXY = 0Oc, , 1+3 ks, XZY 23 ZXY = Oc, 4 1+2 A2. (3.40)
Step 3. Similarly, write YZX2 3XYZ as
YZX—XYZ = (YXZ—XYZ)—(YXZ—YZX),
2,3 2,3 2,3 2,3
and we have
YXZ 23 XYZ = 06/2’3 l—g)\g, YXZ 23 YZX = 06/2’3 1—!—2 ka. (3.41)

Step 4. Since our convention is that A3 — k3 defines ug, it follows that k3 — A3 defines
—ug. These conventions need to be revered. Indeed,

(B3=0)

ks A= (1) 1;2(>\31—72/’<73) = (1) 1:2(01012 1ﬂ;lt?,) = (-1 1wz 147-3(—1) s
Note that us € Fi23, and the three multiplications Ly 1% and )3 coincide in the

ultracore of E. And note that (—1) - 0wy, = Owy,. Therefore, rewrite the previous

)

equation as:

A3 = Oy — us. (3.42)

k
312 1,3

Step 5. We are finally able to complete the proof of Theorem BT4. First, using
operations in &/ — Fj» 3, we have

(ZYX

XZY)—(YZX
2,3 1,2 2,3

[(ZYX— ZXY) —(XZY — ZXY)]—[(YXZ — XYZ) —(YXZ
2,3 2,3 2,3 1,2 2,3 2,3 2,3

XYZ) =

YZX)).
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Now, using (820) and (B821), this is equal to

[(062,3 1"!'3 k3) 2_3(062,3 1_‘_’2 )‘2)] 1_72[(665’3 )‘3) _(Oe )

Applying the interchange law in the Left face to the outer operations, this becomes

~

[(062,3 1"3_3 k3) 5(06’2)3 1+’3 A3)] ;3[(082,3 1"3_2 A2) 1772(06/273 19

Now apply (E=38) to the first term in each [ |. Then use (E222) and (B234H) This gives

[(O’wza 14; 062) 1‘{'3 <Ou'12 13 “3)] ;3[(0u23 f; OeQ) 1"{7'2 (062 1‘!5“2)]

Now apply the interchange law in the Back face to the second | ] :

A~ A~

[szs 1"!‘3(062 1'!‘301012 1773“3)] 273[< D l‘b uz) 1‘!‘3 (082 1+72 Offz)]-

Focus on the second [ ]. Using (E=33) in its first ( ), and (E22I0) in its second ( ), this
in turn is equal to

[011123 1"2(062 1_5611112 13 u3)] ;BK()“'ZS 17: UZ) 1'5_3662]'

Rewrite this as :

[szs 1‘!’3(062 1“_’3 me 17’3 ’LLg)] 27’3[011)23 1'{7'3(662 1"{7'3 UQ)];

note that the second [ | is in an ordinary vector bundle. Now use the interchange law
in the Up face :

[01023 oo szs] + [(662 611112 s U3)

23 1.3 13 1,3 273(062 1"’;3“2)]

and this is equal to

Ow23 1+,3[062 ;3 062] 17;[(011)12 1773 u3) 2.3

uz],

using the facts that the zeros Ou,, in the first [ ] are zeros over E53, and then the
interchange law in the Up face. Likewise, using the fact that the zeros O, are zeros
over Fjs 3, this is equal to

Ow23 1'5 062 1'!_3[(011)12 2773 u3) 2.3

’LLQ].
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Finally, using an equation of the form (2233), this becomes

(us + ug2),

)

011723 + 062 + [O'LU12 7(u3 + UQ)] = 01023 + 062 1_{'3011112

1,3 1,3 2,3 2,3 1,3 1,3

from which we obtain —(u3 + ug2) as the ultracore element.

Comparing this with (BZ3TH),

(ZYX— YZX)—(XZY

12 23 12 XYZ) = (Owlz 1"501023) 1"5(062 l_gul)v

we have u; = —(us + uz) as desired.

This completes the proof of the warp-grid theorem.

Remark 3.2.1. The strategy of this proof deserves some commentary.

What should the warp of a grid on a triple vector bundle be? Or, in other words, why
are we interested in the ultrawarps of a grid of a triple vector bundle?

The warp of a grid in the double case is a section of the core vector bundle, and measures
the non-commutativity of the two routes defined by the grid.

So far, we have seen that all operations on a triple vector bundle are iterations of
operations defined in double vector bundles. The ultracore, for example, is the core of
the core double vector bundles.

For these reasons, we would want the warp of a grid in the triple case to be a section of
the ultracore vector bundle, and to measure the non-commutativity of routes defined
by the grid.

Pick an upper face of F, for example the Up face. If we compare the two routes
defined by the grid in this face, then we obtain an element of the (U-D) core double
vector bundle, which we denoted by A3. Similarly for the other upper faces, the non-
commutativity of the corresponding routes defines A1 and Ao. The three A’s are elements
of different spaces; therefore, if we tried to compare them, or indeed perform any sort of
operation with them (such as adding them or subtracting them), we would see that such
an operation could be algebraically possible but would not be geometrically meaningful.

The same applies for the three k; defined by the comparison of the routes for the lower
faces.

The )\;’s and the corresponding k;’s however, are elements of the same spaces, there-
fore, comparing them is a possibility, and indeed the only sensible operation. And by
comparing them, we measure the non-commutativity of four routes, instead of two.

This can be done for the three pairs of A\; and k;, and so we obtain the three ultrawarps.
So what does the warp-grid theorem tell us?

Each ultrawarp measures the non-commutativity of four routes. In total, a grid on a
triple vector bundle provides six different routes from M to E. The sum of the three
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ultrawarps takes into account each route twice, once with a positive and once with
a negative sign, and this is the reason we orient the core double vector bundles the
way we do. The warp-grid theorem tells us that these add up to zero, a result that
seems reasonable. The different vector bundle structures over which the operations
take place however, are the main obstacle here — as soon as one realizes that simple
operations like addition and subtraction in the triple vector bundle setting are no longer
simple. A

3.2.4 Promised calculation

In the end of Section 234 we mentioned that the \;’s and the k;’s described in that
section are in fact related. Applying the method described in Step 5 of the previous
Section, we proceed with investigating the aforementioned relation.

First, recall the outlines of the A;’s and the k;’s.
E123 2 A ——— wi2 € F2 FE132 2 Ao ——— w13 € Ei3

| |

e3 ——— m, eg ———— m,

Ei323 ki —— wiz3 € E13 K233 ko ——— w12 € Epp

| |

ey ——— m, e ——— m.

Since k1 and Ao have the same outlines, they will differ by a unique ultracore element,
call it wy € F193. Similarly, ko and A; will differ by a unique ultracore element, denote
it by wy € Fo3. Is there a relation between wy and ws? The equations for ki — Aobwoy,

k1 13 Ay = Ow13 1’2—}-2’3 w1, (3.43&)
E1—Xy = O, + @1, (3.43Db)
k1 o3 Ay = 062 + 1. (3.43C)
and for ko — A\>wo,
ko 3 A1 = 063 1+,2W27 (3.44&)
ko A1 = 0w12 + o, (3.44]3)
1,2 1,3/2,3
ka—A = 0oy + wo. (3.44c)

2,3
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As in the double case d;d = 0P in the triple case, e —e = 06273, or in this case,

)

(e

f) (e f) = ([228)

2,3 23 23 2’3(219) = 062,3‘ (345)

Start with the left hand side:

s = ki + 0, ko + Oc, )| —
( ) _(11‘!'2 2,3)2‘;(21—!?3 2,3)_

(E3)

- (klzg)@) 1’5(062,3 ;3062,3) 2—5

= (kl 1"!_2 662,3) 2773()‘2 1"3_2 062,3) + [(k2 1+3 682,3) ;3(A1 1"’5 062,3):|

(cz=a),(6zm) [ - A A A
= _(062 ]Jrjwl) 1‘!‘20@2,3] 2—5 |:(063 WQ) 1_|?3062’3:| . (3.46)

Now rewrite the first bracket of (B48),

(062 l't%wl) i; 062,3 = (662 I{wl) 1—!_2(062,3 1_5663) = (062 + 062,3) + (wl 1_5063) = 062,3 + (wl 1'5063)'

—_
N
—_
w

Returning to (BZ8):

L ) 1,2 ; 1,3
= _(wl ;gwg) +2 033] 1+’36m. (3.47)
By (B43), X X )
(m) (m) = 062,3 = 062 3 T 0637

therefore, comparing (843) and (B27), it follows that

w1 -1—3@2 = @f’n,

)

and this applies over any structure, hence, w; = —ws.



Chapter 4

Warps, bolts and grids; Examples

We begin this chapter with an example of a grid and its warp on the cotangent double
vector bundle T*A. We proceed with further investigating properties of the warp and
of the ultrawarp. We then develop bolt sections, and introduce double bolt sections,
and give a class of examples of grids on E using them. We continue with examples of
grids on T?A and on T3M. Finally, we give an alternative formula for the warp of a
grid on D using the duality of D in Section B2

4.1 The reversal isomorphism R :T*A* — T*A

Recall the cotangent double vector bundle T* A, described in Section PZ43:

T*A ——— A*
CA qx

A—1 5 M

To build a grid on T*A we need to use the reversal isomorphism R : T*(A*) — T*A,
a double vector bundle isomorphism introduced by Mackenzie and Xu in [2R]. This
map is a canonical diffeomorphism, which reverses the standard symplectic structures;
see [28] and references given there. In (2288) we have defined the unfamiliar projection
r:T*A — A* using duality theory. Alternatively, one can use R~! to transport the
vector bundle structure of T*(A*) — A* to T*A — A*.

We need the following result concerning R from [28], or see [24, 9.5.1].

Proposition 4.1.1. For all £ € TA, Z € T(A*), § € T*(A*) such that & and X
have the same projection into TM, 2~ and § have the same projection into A*, and §
and & have the same projection into A,

<<°%7‘£>> = <R<S)a§>A + <Sv %—>A*' (4'1)

112
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To keep track of the various calculations, we present the outlines of the four elements
involved in (ET):

TASE—— veTM TA* > Z —— v TM
A>ayg — m, A* 3 g —— m,
T*A 3 R(§) —— o € A* T*A*>F ——aqp€ A

A3 aqy —— m, A* D pg —— m.

In fact, R as a double vector bundle isomorphism preserves the side bundles A and A*,
and induces the —id : T*"M — T*M on the cores (see Appendix B2 for proof). For
a description of R in local coordinates, see [3] and [37, Theorem 7.1].

The two pairings on the right hand side of (EX) are usual pairings between a vector
bundle and its dual. Specifically, for (R(F),&)4 we have the usual pairing between
TA— Aand T*A — A, and for (§, 27) 4~ we have the usual pairing between TA* — A*
and T*A* — A*.

The pairing (27, ¢)) on the left hand side of (1) is described in detail in [25, p.117-
18]. Briefly, given a vector bundle A — M, the canonical pairing between A — M and
A* — M:

()t A" A>}A =R, (myam) = (Qm, am) = am(am).

induces a pairing between T'A and T A* as vector bundles over T M, called the tan-
gent (prolongation) pairing as follows. Take 2~ € TA* and & € TA with T'(¢)(§) =
T(q«)(Z), and write

d d
=2 TAY, &= a(t) eTA
2 =plt)]  eTA, &=—alt) ~eT4
where ¢(t) is a curve in A*, a(t) is a curve in A, with g.(¢(t)) = q(a(t)) = m(t) € M,

a curve in M for ¢ near zero. Define the tangent pairing ((, )) by:
d
(2, 0rar = 5 (p(), al)|

Equation (B22) defines a non-degenerate pairing; one needs to check non-degeneracy, it
does not follow automatically.

Example 4.1.2. Now we can build a grid on T*A. Take u € I'A and ¢ € I'A*. These
define two linear sections as follows.

First, take the 1-form df, € Q'(A) defined by the linear map £, : A — R,
l,: A — R,
Ay 3 am — (p(m),am).

t=0

L (4.2)
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Then dl, is a section of T*A — A. To see that (df,, ¢) is a linear section,

AT A

1l

first, we check that for a € A, r(dl,(a)) = p(m).
By (2288), the definition of the r map, for any a’ € A,,:

(r{dlp(@),a') = (dlp(@), 074 & @) = (074 + a)(t,)

By (IIZ) we have that 014 = %a‘tzo, and by (IT9) @’ = Cita 1o’ therefore we can

write

d

= (a) (1))
d

= at@,(a’) _

(r{dtp(a)),a') = bo(at i)

This is true for any a’ € Ay, therefore, r(dl,(a)) = ¢(m).

Note that £y(a’) € R, so Ltly,(a’)

o {,(a’) and not £,(a’). Similarly, £,(a) € R so

%&P(a) o 0, and not O;;';‘%a).

Secondly, we check linearity. Take aj,as € Ay, and & € T, A, & € Ty, A with
T(q)(&1) = T(q)(&2). As usual, see (B), we can arrange for a;(t), az(t) two curves in A,
with g(a1(t)) = q(aa(t)) for t near zero, where & = %al(t)‘t_ , and & = dtag(t)‘t_

Of course a1(0) = a1 and ay(0) = az. Hence,

(@plar + a6+ &)= (61 & E)(L) = Hlolar(t) + ar(t)

= St )]+ Slela®)|_ =6+ &)

= (@) (€1) + (dho(02))(&2) = (o) + dlpla). &1 + &),

t=0

Hence (dfy, ¢) is a linear section of T*A.

For pu € T'A, the 1-form d¢, € Q'(A*) defined by the corresponding linear map £,

A* — R, is a section of T*A* — A*. Composing with the reversal isomorphism
R : T*A* — T*A it follows that R(d{,) is a section of T*A — A*. To check that
(R(dl,,), ) is a linear section, since R is an isomorphism of double vector bundles, one
only needs to check that (d/,, ;) is a linear section, and this follows in a similar way

as (dly. ).
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It was proved in [28] that
R(deu(p(m))) - dbp(u(m)) = —-q" (d{e, ) (p(m)). (4.3)

(or see [25, 9.5.3]). Therefore, the warp of the grid described on T*A,

Rodlt,,

R
TFA — A*
dly %)

A M,
\’\_/

m
is w(Rodl,,dl,) = —d{p, u).

Remark 4.1.3. This is a good place to make the following remark. So far, we have
seen struts, e.g in T* A in (243), and examples of warps of grids, e.g. in T'A, Example
3. It is important to distinguish between the two terms “struts” and “warps”. The
warp is a section of the core vector bundle, defined for any m € M by (I0):

E0(m)) - n(X (m)) = w(&m)(m) 4 0% .

Since the warp is a section of the core vector bundle, it will define two struts. Without
loss of generality, take w(&,n)4 € 4D, and from Definition I3, for a € A:

w(Em) (@) = w(En)m) + 07 (1.4
Setting a = X (m) at (£4),
w(Em) (X)) = w(,m)(m) + 08

Comparing the previous equation with (), one might write:

w(&, ) (X (m)) = £(Y (m)) —n(X (m)).

However, this is an equality about specific elements, not about sections; we cannot say
that the right hand side of (IT) is equal to the strut w(&,n)? of the warp w(¢,n).

By specifying a = X (m) in (B4), w(&,7)4(X (m)) is no longer a map from A to D (as
the strut w(&,n)4 is), but a map from M to D, just as f(Y(m))jn(X(m)) is not a

map from A to D and is not defined for any a € A.

To illustrate this point clearly, let us use the Example -T2 of the grid on T*A. We
have established that:
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e the warp of (Rodl,, ;) and of (dl,,p) is —d{(p,pu) € I'(T*M), a section of the
core vector bundle of 7% A, defined by (£=3).

e By Section EZZH, one of the two struts defined by —d{p, u) € QY(M)is ¢*(—d{p, u)) €
Q'(A), a section of the vector bundle T*A — A, where for a € A:

¢ (—d{p, ) (a) = OS*A;de)(m) (4.5)

By (B=3), we have that

R, e m) by lm) ="l () =~ (0852 + dlei(m)).
The latter is a statement about elements of T;(m)A, and it is misleading to state it as
an equation for sections. After all, —¢*(d{p, p)) o p is a map from M to T*A, and we
cannot compare it to (B23), which describes the strut ¢*(d(p, n)) of d{p, p).

In a similar note, take the very first example of warp, the Lie bracket of two vector
fields X,Y € X(M) being the warp of (T(Y),Y) and of (X, X), as described by (B).
The vertical lift [X,Y]" € X(T M) is the strut defined by the warp [X, Y] (see Section
[22), but the right hand side of (8), namely, [X,Y]T(Y (m)) is the value at m of a map
from M to T(TM). A

4.2 Warps and Bolts

4.2.1 Properties of warps and ultrawarps

So far, we have seen examples of grids on double vector bundles and their warps. Are
there any further operations one can perform with warps? We proceed with showing
that the warp has various linearity properties.

Proposition 4.2.1. Take (£, X), and (&, X;), i = 1,2 linear sections of the horizontal
structure of D, where £,& € U'pD, and X, X; € TA. And take (n,Y), and (n;,Y;), i =
1,2, linear sections of the vertical structure of D, where n,n; € U'aD, and Y,Y; € I'B.
Then,

1. (rk m +A R kY1 + AY2) is a linear section of the vertical structure of D, where
A
K, A ER,

2. W(&?Ul 1—772) - W(S?ﬁl) + W(&)TIQ)
3. For any k € R: W(f,/ﬁ‘/;‘n) =rw(&n).

4. For any M\, k € R: W(Aég,mAn) = Acw(&,n).
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5. For any A,k € R: W(E,HAm j)\}xm) =rw(&m) +Aw(E,n2).
6. For any p,v, \,k € R:

. . . -
W(MB&-BFVB&,HAmj A772)

= prw(&1,m) +vew(&e,m) + pAw(r, n2) + vAw(&a, m2).

Proof. 1. For ai,a0 € A,
(k- 1—1—)\ . 772)(a1 + az)

ko mlar+ az)) " A r(ar +az2))

( (
(ko az)
= (k; nl(a1)+/€ m(az
(ko (
(ko )

PR
3
=

4
>/
3

[\V]
=

)
S

2. The warps of the two grids w(&, 1) and w(§,n2) for m € M:

EYi(m) —m(X(m)) = w(&m)(m) + 08,
E(YVa(m) —m(X(m) = w(&m)(m) + 08,

What is w(&, m —5172)?

€rgo, W(&-a m :'4_ 772) — W(gv 771) —J4_ W(fv 772)
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3. Since £(kKY (m)) = I{AE(Y(TTL)), for the warp w(¢, KAH) we have:

§(RY (m)) -k - (X (m))

| 5L 6V M)k (X (m)

= # (6(Y (m)—n(X(m)))
= (W& m(m) +0% )
= w5 wEmm) tr 0%

_ D

hence W(éa ’QAT]) = HAW(€777)

4. The linear sections involved ()\]-35’, AX) and (KAU, KY).

(A 2 (Y () — (s AX(m) =

and this ends the proof.
O

Now start with a grid (£, X), (n,Y) on D as in (I0), that has warp w(§,n) € I'C as
in (). Applying the tangent functor to a double vector bundle D yields T'D, the
triple vector bundle we described in Section ZZ472. In the following proposition we show
that applying the tangent functor to a grid (£, X), (n,Y) on D yields another grid
(T(&),T(X)), (T(n), T(Y)) on TD. In fact,

Proposition 4.2.2. Let (¢, X) and (n,Y) be a grid on a double vector bundle D with
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warp w(&,m) € I'C. Then the warp of the following grid

()
™~ S TB

NMQ Dﬂm (4.6)

TA — TM,
~_
T(X)

is T(w(&,m) € Tru(TC).

Proof. From Proposition 223 we know that the Up face of T'D is a double vector
bundle with core TC — TM. That (T'(§),T(X)) and (T'(n),T(Y)) are linear sections
of T'D follows immediately.

The warp w(&,n) € I'C of (£, X), (n,Y) is given as usual by (). We calculate the
warp of the tangent grid. From the definition of a warp, for v € T,,, M,

(T@)MHYDWEQHWDMUX”@)=T®D0XX@5;W@@%TWN@)

Write v = %m(t)‘ o for m(t) a curve in M with tangent vector v at ¢ = 0. Then, for
t=
F e C>(D),

((T(&) o T(Y)) —(T(n)o T<X>>> (0)(F)

2 Lp (€or)me) o X1m))|

= 2 (R wEnm))|

d

= 20 (070 ) m) wienmm) |

t=0
t=0
t=0

@ (T(OD 0 X)(0) + T<w<s,n>><v>) (F). (47)

TB

By uniqueness of the core element, it follows from (EZ7) that

w(T(€), T(n)(v) = T(w(& n)(v).
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Proposition 4.2.3. Let F': D — D' be a double vector bundle morphism,

If (¢, X) and (n,Y) is a grid on D, and (&', X") and (n/,Y") is a grid on D', related by

Fot=¢ofs, Fon=nofs, feoY=Yof fioX=Xof.

Then
w(& n')(f(m)) = fe(w(& n)(m)), me M,

where fo = F o is the core morphism of F.

Proof. For m € M:

(fm)) ' (X' (f(m)) = &(fp(Y(m) ' (fa(X(m)))
= FEY(m) - Fn(X(m)))

And the result follows.

(4.8)

O]

An extension of the previous result to triple vector bundles is immediate. If F' is a
triple vector bundle map from E to E’, then we have six double vector bundle maps
from each face of E to the corresponding face of E/ — more details on the definition of
a triple vector bundle morphism can be found in [I3]. Assume that F' maps the grid of
E to a grid of E’. What happens to the induced grids on the three core double vector

bundles and the ultrawarps? Exactly what we expect.
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Proposition 4.2.4. Let F : E — E' be a morphism of triple vector bundles, that is,
a system of sixz double vector bundle morphisms between the corresponding upper and
lower faces of E and of E'. If a grid on E as in (@) projects via F to a grid on
E', and ugF, uir, uyp are the ultrawarps of the grid on E and ugg, ujg, uyp are the
ultrawarps of the grid on E’, then

uge(f(m)) =F| — ((ugr)(m)), m €M,

Ey23

where F : Ero3 — Ely3 is the ultracore morphism of F over f: M — M’, that is,

123
the restriction of F' to the ultacore vector bundles.

Proof. We sketch the proof for uyp. The triple vector bundle map F' induces a double
vector bundle morphism from the (U-D) core double vector bundle of E to the (U-D)
core double vector bundle of E’. Then the induced grid on the (U-D) core double vector
bundle of E is related to the one induced on the (U-D) core double vector bundle of E
as in (AR) in Proposition B273, via the induced core double vector bundle morphism
of F'. The result then follows immediately. O

Now a proposition about ultrawarps, an extension of Proposition B2, (B).

Proposition 4.2.5. Suppose the following two grids in (=9) have corresponding ultra-
warps Uz, Ujs, uffD and uge, ul%, u{/JVD,

Y;
E 1,3 12173 E Y13
X3 \
F;;;i;\\\ 2311\ K\\\\\\ Was W\ F\\\\\\
Z1,2 E2’3 Y3 E3 Z1,2 2’3 Y3
Z Za
Eqp v Ey z Eip 7
X
Es % M, Es M.
(4.9)
Then the following grid on E
Y13
FE ’ FE
2,3
.
Es 3 i Es

Z1,2 4.10
B (4.10)

B i By xaw

Xo +\ \

Ey
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where we have added the two front-back linear double sections Xo3 and Wa3, has ul-
trawarps

X4+W _ X w X4W _ X w X4W _ X W
Ugg = Uugptugg, UWpgr =URTUR, Uyp = Uyptuyp-

Proof. For the proof of this result, we abandon the succinct notation introduced in
(BIR) and in Section B=20. We use the original notation of the grids involved.

We will prove that u‘é(,f W — u)B(F + ugf:, and the other two ultrawarps will follow likewise.

First, about ugr, we will use a variation of the form (B22) of equation (BZ3Id) to
describe it:

A similar equation describes ugg(m).

Let us write the induced grid on the (B-F) core double vector bundle, for diagram
(&),

Ea31 ——— FEo3

Whack G/ D Wifront

I S—

X+W

Denote by (Xa23,X) the core morphism of the linear double section Xj3, and by

(Was, W) the core morphism of Wa 3. It follows immediately that the core morphism

of (X2732—{—3W2’3;X2;— WQ,ng— W3, X + W) is (X232—{—3W2’3,X + W) For wog € Fag3,
) 2 3 )

the core of the Down face, then

(X2 2-1-3W2,3)(wgs) = Xy 3(wo23) 2-1-3W2,3(w23) = Xo3(wo3) 2+3W23(w23).

)
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Therefore, the equation that describes u)B(; Wim), is

Wback((X + W) (m)) E(XQ?) 2"5 WQ?)) (Wfront (m))

= | (Z2A( + W) ) 1, VialZ X+ W00 ) B

s K(Xzs A Wa3)(Z2(Y (m))) T,z(XQ’?’ A W2,3)(Y3(Z(m)))> —0x, + Wz)(Y(m))]

= Ocxewom) e (m). (4.11)

Start from

(22203 + W) 00)) |, VialZa(CE 4 W) ) 1 Oy

o [(G 1 ez m) O g W) 05200 ) 5 B0xs s warcvom |

1,3 Eo

and using (B822) and (B3H) in the first bracket, rewrite the previous equation as

(21205 x) 3 2023 1 (Va2 (X)) o Vialz: (W)

T3 M) £ viwm)) ]
) o

o [((X2,3(22(Y(m))) o W2,3(Z2(Y(m)))> E(Xz,g(Yg(Z(m))) b W2,3(Y3(Z(m)))))

1—730)(2(Y(m))g2 Wa(Y (m)) ] :

Now i) use the interchange law in the Left face of E, in the first parentheses of each
bracket, and ii) use (ZI8) for the zeros,

(21205 (X) [ Vil (X)) 1 (2223 OV ) VialZs (07 )

13 (0Y1<X<m>> - 0Y1<W(m>>>

» [((X2,3(Z2(Y(m)))172X2,3(Y3(Z(m)))) 2—!-3(W2,3(Z2(Y<m))>TQWQ,3(YE’)(Z(m>))>

I—,\_/;l\_/
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Now, in each bracket, use the interchange law in the Up face of F

_<<ZLQ(Y1(X(m))) 1—721/1,;,,,(21()((771)) Oy )>
o <<Zl,2(Y1(W(m)))172Y1,3(21(W(m))) )ﬂ
3 _<<X2,3(ZQ(Y(m)))EXZ:J,(Y},(Z(m))) _ X2

5 (a0,

Finally, use once more the interchange law in the Up face of F,

Y1,3(Zl(X(m)) Yi (X (m))

o)
Waa¥5(Z0m) O )|
)

((zra0icxen)
5 (s

2X2,3<Y3<Z<m>>> el

(20w
(Weatzr ),

. Y1,3<Zl<w<m>>>) - oy1<w<m>>>

P W2,3(Y3(Z(m)))) 1’36 (Y(m)))] :

The first bracket now is exactly the equation that describes the ugg(m) and the second
bracket describes the u‘é‘fz (m), hence the last equation is equal to,

1,3

[OX(m) ;E))U)B(F(m)] 2‘*‘3

)

vt 1,985 m) | = Do 5 () 1 ube ),

) )

Comparing the last equation with (E-I), from the uniqueness of ultracore elements, it
follows that uge" (m) = ugr(m) + ule(m).

O]

4.2.2 Bolts

So far we have seen in Chapter [ that a section of the core C' of a double vector bundle
D defines the strut ¢ € T4 D over A, see Definition I"T-3,

A A= D, a— c(gP(a))+0P.
B
For aq,a9 € Ay,
cA(ar + ag) = ¢(m )+0a1+a2 = c¢(m) —E(OD —H)D)

# (em) £ c(m)) +(02, +08) = cH(ar) 4 ¢ (a)
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in other words, ¢? is not a linear section of D — A, as we have already seen in local
coordinates towards the end of Section ITI=3. Similarly for the strut ¢® € I'gD. Except
for the zero section, struts are not linear sections. This is how we arrive at the definition
of the bolt section. Bolt sections are defined via the core vector bundle, and in addition,
are linear.

Definition 4.2.6. Let ¢ : A — C be a vector bundle map over M. Define a section
©? €T'4D by

We call ¢* the bolt of . First, note that ¢? projects to the zero section:
a5 0 ¢*(a) = 45 (@) +07) = Op-
Secondly, (¢?,07) is a linear section. Take ay,as € A,

¢” (a1 + az) = p(a1 + as) ; 00 4a, = (¢(a1) -g p(az)) -g(ofl JBFOEQ)

= (plar) + 02) +pla2) + 02) = ¢*(a1) + ¢’ (az),

and similarly for the scalar multiplication.

In a local coordinate system (z,a,b,z) on D the vector bundle map ¢ : A — C over

M,

(zt,... 2" at, ..., a"™) — (xl,...,:n”,zl-(x)aj,...,z;C(x)aj),

hence ¢* € T4 D,
(..., 2" at,...,d"™) — (:L’l,...,x",al,...,a”‘,()l,...,OTB,ZJI»(x)aj,...,z;c(m)aj).
(4.12)

Comparing the last equation with (CI3) we see directly how struts and bolts differ.
Now rewrite the last equation as

1 n 1 r 1 r 1 T
(7, ...,2"a,...,a"™,0°,...,0"%,0%,...,0"%)

—g(xl,...,x”,Ol,...,0”‘,01,...,OTB,zjl-(x)aj,...,Z;C(:c)aj) = OE—EQO(CL).

Finally, we note that using decompositions, in particular using (IZ3), a bolt section
(¢?,08) can be described by

p*(a) = U(a, 0,¢(a)).

If we start with a vector bundle map ¢ : B — C over M, we can define in a similar
fashion a bolt section (¢%,04) of the vertical structure of D.

So far we have seen that given a vector bundle map ¢ : A — C over M, we can define
a linear section (¢*,0%) of D — A. The converse is also true.
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Lemma 4.2.7. Every linear section (n,07) is a bolt section for a unique p : A — C.
Proof. Suppose that (n,07) is a linear section. For a € A,, the outline of 7(a),

n(a) —— 05

|

> m.

Therefore, we can write n(a) = ¢+ 02, for a unique ¢ € Cy,, see Section T2 and (B).
B

Define ¢(a) = ¢. Then
(@) = p(a) + 0.

To show that ¢ is a vector bundle morphism, take ai,as € A,,. We will show that
plar +az) = p(a1) + p(az). (4.13)

Write
n(ai) = ¢(a1) JBrOfl, n(az) = ¢(az) JBFOL?W

and since 7 is linear over 05,

Again, since 7 is linear,
n(a1 +a2) = p(ar +az) + 02 40, (4.15)

therefore, comparing (A14) and (AT3), we obtain (-13). Following a similar calculation
for the scalar multiplication, we establish that ¢ is a vector bundle map. And finally,
we see directly that ©* = 7. O

The following property is an immediate consequence of the definition of bolt sections.
Corollary 4.2.8. If (¢?,07) is a bolt section, then

0" (0p) = Op,
where ®F is the double zero of D over m € M.

Proof. We have that
#"(0m) = ¢(03) + Og = (07),
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and since ¢ : A — C'is a vector bundle map over M, it will send the zero of A,, to the
zero of C,,, that is, ¢(02) = 0. Therefore,

©*(07) =05 = oF.

The next proposition will prove very useful.

Proposition 4.2.9. Take (n1,Y) and (n2,Y) two linear sections of D, where Y € I'B
and n1,m2 € T'aD. Their difference (m ;ng,OB) defines a bolt section corresponding

to a unique vector bundle map p: A — C.

Proof. We follow the same procedure as in the proof of Lemma B=274.

Looking at 71 (a) jng(a), we can write it as

m(@) mla) = c+07.

where ¢ € C is unique. Define a map ¢ : A — C by ¢(a) = ¢. With a similar
calculation as in the proof of Lemma B=271, it follows that ¢ is a vector bundle map.
Finally, ©%(a) = ¢(a) g 00 = ni(a) jng(a), hence m; k= ©°. O

Remark 4.2.10. In Remark T3 we described how struts and warps differ. At this
point we describe how bolts differ from warps. For example, if (£1, X) and (&2, X) are
two linear sections of the horizontal structure of D, &1,& € I'gD, X € T'A, then from
Proposition B=29 they define a bolt section 1% € I'gD:

§1(0) & (b) = ¥ (b) = 07 +¥(b).

If (§,X) and (n,Y) is the usual grid on D as in ([M), then the warp w(&,n) is described
by (1), B
(Y (m))— n(X (m)) = 0y ) £ w(&, n)(m).

Clearly, the blue arguments in the left hand side are different; the first term has ar-
gument Y (m) and the second term has argument X (m). Recall from Remark B1-3
that the right hand side of the last equation is not the strut defined by the warp
w(&,n) e TC. A

4.2.3 Bolts and warps

We now proceed with what we are really interested in, warps of pairs of linear sections.

Proposition 4.2.11. We have the following:
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1. The warp of a bolt section and of the zero section is the zero section.
2. The warp of a linear section and of the zero section is the zero section.
3. The warp of two bolt sections is the zero section.

4. The warp of a linear section (£, X), with { € 'pD, X € T'A, and of a bolt section
(¢%,0B), is the section

w(£, ") = —po X. (4.16)

Proof. For (W), take (1/%,04) a bolt section with ¢)* € TgD and the linear zero section
(0%,07):

D%

<” T>

A M

J

What is the difference between ?(02) and 08 o 0/, = ®2? From Corollary B2,
¥?(08) = ©F as well, therefore, their warp is the zero section of the core vector
bundle.

For (B), take (£, X) a linear section, with £ € I'gD, X € I'A, and the linear zero section
(02, 05):

3
DS 3 p
A— M.

~_

X

In this case, the outlines of the two elements £(05) and 05 (X (m)):

£(05) =08,y —— 05 07(X(m)) =05, — 03
X(m) —_ nl,, X(m) — TL,

hence the two elements £(05) and 05 (X (m)) are the same, therefore, their warp is the
zero section of the core vector bundle.



CHAPTER 4. WARPS, BOLTS AND GRIDS; EXAMPLES 129

For (), take (¢/%,04) and (¢% 0B) two bolt sections, with ¥* € TgD and ¢’ € T'4D.
The corresponding grid on D,

d)’:
L~

|

1_L

Again, by Corollary IZR, ¥?(08) = ©*(07) = ©F, therefore, their warp is the zero
section of the core vector bundle.

|

~_
OA

Finally, for (718), the grid on D defined by the two linear sections:

{1

M.
The unique core element ¢ € C' their two differences define:

E05) @ (X(m) = ¢+ 0%,

§07) 5 ¢ (X(m) = et 0 =c

I

|

_
X

Write ¢*(X(m)) = o(X(m)) —|—0§(m), where ¢ : A — C is the corresponding vector
B
bundle map over M. Then,

08, X)) = 0%, (X0 £0%,)

and of course the same is true for the other difference:

£(0) 5 0X0m) = 08y (X)) 0,

= (005 B ) 5 X 00) = OB (X)) = (X ()
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Hence w(¢, ) = —po X € I'C.

To see the last statement in local coordinates, in a local coordinate system (z,a,b, z)
on D, from (II8) we have,

€08 (m)) = (z*,...,2" a' (z),...,a"(x),0",...,0", 2} (x)0F, ..., 2, (2)0")
= (z',..., 2" a(x),...,a"(x),0',...,0m8 0L, ..., 07C),

and from (212),

O (X (m)) = (z',..., 2", a'(z),...,a"(x),0%, ... ,OTB,z}(ac)aj(x), 2" (x)d ().

The following special case of Proposition B2, (B), that “the warp of the sum is the
sum of the warp” is important to Section B73.

Proposition 4.2.12. Given two grids (¢,X), (1,Y), and (£, X), (¢*,08) on a double
vector bundle D,

J)
I

ik

M,

oo ]

M A

n@j

with warps w(&,n) and w(&,¢?), then

|
(1

&_/
X

w(g,n+ ©*) =w(&n) +w(& o).

4.2.4 Grids on T?M and TA

Using the canonical involution Jys : T?M — T?M and bolt sections, we further inves-
tigate grids on T2M.
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Jy and warps

Apply Jy to the double vector bundle 7?M and to the grid (d). We have:

T(Y)
/—\
T2 M TM

T(p)
X | |pT™m
PTM
T(X) U
T(p
M

\/‘

(4.17)

/ N

M — M
Y
Apply Jus to (B):

I (TaV)CEO) - R0 (m)) = (06725 4 (TG

= Iu(T)(X(m)) = Tu(X(Y (M) = T (07 h) + Jar((X,Y](m)

p) pPT™M

= Y(X(m)) g L XY (m)) = TO"M)(Y (m)) X Y](m), (4.18)

so we see that the new grid has the same warp as grid (8) because Jys is the identity
on the cores: Jy([X,Y](m)) = [X,Y](m).

Equivalently, by applying directly Proposition B=273, it follows that the warp of the
resulting grid of (B17) is [X,Y] € I'(T'M). Both (B) and (EI8) are mentioned in [,
p.297).

Warps and conjugate connections

Take a connection V in TM, and for X,Y € X(M) build the following grid on T2M as
in (C28),
T(Y)

RS
T°M ——— TM
T(p)

XH( |prm X (4.19)

™™™ —— M.
\_/

Y
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By (Z3), the warp of (B219) has warp w(T(Y), X)) = VxY.

Now take both grids: (E19), and () on page kid. Apply Proposition B2, (2). Then

the following grid,
()

S
°M ——— > TM
p

s
Xt X[ prar 0TM (4.20)
T™M —— 5 M,
~_
Y
has warp N
w(T(Y), X") = w(T(Y), X) = VxY — [X,Y],
which is exactly Vy X, see (IZR).
What is X# (Y (m)) — X (Y (m))? Both the horizontal lift (X, X) and the complete
prm

lift (X, X) of a vector field X € X(M) are linear vector fields on T'M that project to
X € X(M). By Proposition 29, X# (Y (m)) — X (Y (m)) is a bolt section,
pTM

XH(Y(m)) — X(¥(m) =05 + oV (m) = ¢*(¥(m)),
PTM T(p)
a vertical vector field on TM. The vector bundle map ¢ : TM — TM over M is
precisely the vector bundle map —VX : TM — TM, Y(m) — —(VX)(Y(m)) =
—§y(m)X , whose corresponding map on the sections of T'M is none other than the
total covariant derivative —V X : X(M)—=X(M),Y — ~Vy X.

We work this out in local coordinates. Write Y = YJ % and X = X* 82“ where
X' YJ e C®(M). Then from (IZ9),

o~ o X! N 9
YiTE Xk ) 2 = (VI 4 Xkt yd )
Lk ) oz’ ( Oz & > oz’

VyX = (Yj gX

zJ

Additionally, from (I22) and (I=33), and since (VyX)(m) = Vy (X = (VX)(Y (m)),
it follows that,

XY (m)) — X(Y(m))

prm

= (af,.2n Yo Y XL X XY XY )

) Xl OX™
— (xl,...,x",Yl,...,Y”,Xl,...,X”,YJa .,...,YJ8 )
PTM oxd oxd

. 9x! . 9X"

_ 1 n y1 n nl n _ vkl vi _ vyi _vkrn vi v
= (.. Y Yot 0 XY - Y AR XY —Y 50

)
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that is, p = ~-VX.

On the other hand, start directly with the conjugate connection V of Vin TM , and
build the following grid on T2M for X,Y € T?M as in (IZ8)

T(X)

S
T2M —o TM

(4.21)

yvH| |prMm Y

™™ — M.

\_/
X

From (I43), its warp is w(7'(X), yH ) = Vy X. Hence the two grids (B=20) and (2=21)

have the same warp.

Applying Jjs to the grid (B2I), we obtain the grid

Y
RS
T°M —5—— TM
JuoXE | |T(p) X

T™ —— M,
\_/

Y
and again, since Jys is the identity on the core vector bundle, the warp of (}7, Y) and
(Jar o XH, X) is also VxY € X(M).
Affine space of connections on A

Take now two connections V! and V? in a vector bundle A — M. For p € T'A and
X € X(M), we have the following two different grids on T'A,

T(p) T(p)
TAS S TM A< S TM
(q T(q)
XHi| |pa X xHz| |pa X
A——-— 3 M, A— M
v \\_/
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The warp of the first and of the second grid, using (IZH), are w(T (1), XH1) = Vi,
and w(T(u), X 2) = V% u repsectively. In particular,

T(u)(X (m)) - X" (u(m)) = Oy = (Viu)(m),

T(u)(X (m)) - X" (u(m)) = 0y TM(VXu)(m)-

Both horizontal lifts X1 and X2 are linear vector fields over X, and therefore, by
Proposition B229, their difference is a bolt section. To describe this bolt section, we
need to describe the difference (X " X12)(a), for any a € A,,. For any a € A,,, write

p(m) = a where 1 € T A. Therefore, we can equivalently describe (X1 ZXH2)(,u(m)):

XM ()~ XM (u(m) = 04y & (u(m).

where ¢ : A — A, a vector bundle map over M. Rewriting the previous two equations
as

XU ) = T ) (08 - (T )
X (um) = TG ) (08 = (T )
it now follows,
X (u(m)) Xuom)
= [rexem) (08 4 T )| [T ok, 1 (Trowm) )
= [Texem) e | (dih 4 Txm) - (o8 4 (Trom )

where in the last step we applied the following variation of interchange laws (in general
double vector bundle language),

07 (05 +¢) = (04 + ©) (05 +¢) = (0 —05) +(O—¢) =05

The difference of two connections is C'°°(M)-linear in both X and p. It defines a
vector bundle map TM & A — A. Therefore, the corresponding vector bundle map is
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o =—(Vk —V%): A— Aover M. Take the following grid on T A

T ()

By Proposition B2, (B), its warp is
w(T(p), XM ZXH2) = w(T(u), X)) = w(T(n), X"2) = Vin — Vip,
or, equivalently, from (A18),
w(T(p), X" - X12) = w(T (), %) = (= (Vx = VX)) o o = Vi = V.

4.3 Double Bolts

To define a single bolt section (?,07) in the double vector bundle setting, we used a
vector bundle map ¢ : A — C over M. To define a double bolt section, we use a double
vector bundle map from one of the lower faces of the triple vector bundle (Front, Right,
Down), to a “corresponding” core double vector bundle. The “corresponding” cases
are the following:

e Front — core double vector bundle,

)
e Front — ) core double vector bundle,
)

(L-

(U-D
Right — (B-F) core double vector bundle,

(U-D

Right — ) core double vector bundle,
e Down — (B-F) core double vector bundle,

e Down — (L-R) core double vector bundle.

Definition 4.3.1. A double vector bundle map (¢;idg,,v;idys) from the Front face
to the (L-R) core double vector bundle,

E273 e E3 »
o> ‘ N
Ei32 ——— Ei3

N
N N

Ey — M

Es
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defines the following front-back linear double section

E—— Ei3

i
~ |
® E273 e E3

El,g l*) El OEII/
AN ™

U8, FEy ——— M.

We call (go"’;O}E’S,w%;OEl) the double bolt section of the double vector bundle map
(¢5idp,, ¥;idar).

We proceed with describing the double vector bundle morphism (cpe;OlE’i,z/ﬁ;OEl) in
detail, that is, the vector bundle maps (1%, 0F1), (o, OIES) and (p*,1)%).

Start with (4%,0%1). The vector bundle map v : E3 — Ei3 over M defines the bolt
section (1”7, 0F1) of the Right face of E:

4
EgL)ELg
E3+>E13
\ / ;$
M
M ——— B
0E1

As we will need them later on, we write out explicit formulas. For every e3 € E3:
V* (e3) = (e 3) Oif’, (4.22)

and from (210),

~

Oy (eg) = 0¢(63); 0L = 0y (e3) 1+20€3- (4.23)
1 )

The linearity condition for es, e} € E3
¥ (es + ) = v (es) + V().
1
Continuing with (906,0113’22). The vector bundle map ¢ : Ez3 — Ej32 defines the bolt

section (¢, O}ES) of the Left face of E:

4
E2’3 L) E
Es3 —r Ei30

NS T

By ——5— E12

Eg
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and for every ez 3 € Fo 3:

A~

" (e28) = plea) + Ocas. (4.24)
The outline of ¢(eg3) in the (L-R) core double vector bundle,

E132 3 p(ea3) —— v(e3) € Ei3

|

ey > M.

Equation (E224) in outlines,

p(e23) —— (es3) Ocpy —— 00
Sy | T Ly
Oe; T 07%3 J €23 — 7 €3
1,2 _
0c;’ Jﬂ 0% J 0c’ Jﬂ 0! J
~ ~ > ~
g — > m eg ———m
. ~1,3
#le2s) 1 Oesg —— Wles) 00 @ (e28) —— ¥ (es)
~ RN
- J ~ o | > €3 _ l €23 —— 7 €3
= ’ 1 L
0L 072 " Jﬂ &
e m eg — M.

The linearity condition for (%, for es 3, eh3 € a3 that project to the same ey € Eo:
@ (e2 + ehs) = ¢’ (eag) 4 9*(ehz): (4.25)
2 )

The third vector bundle map we need to describe is (¢?,4%). This is defined by the
vector bundle map (¢, ),

s
Eys —— Fizo Eyy ——— E
qg,sl lqw = qul l‘hﬁ (4.26)
E3 T} E13 E3 T E1’3.

First, we need to show that g¢1 3(¢%(e23)) = wﬁ(qgﬁ(ez’g)). Writing q§’3(62,3) = e3, we
need to show that,
01,3(¢" (e2,3)) = ¥ (e3). (4.27)
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The left hand side of (E=27),

. (D) . .
q1,3(¢" (e2,3)) = q1,3((e2,3) i 0ens) =" qus(ples)) +a13(0e5) = qr3(le23)) + 0z’
i 1 1
What is ¢1 3(p(e2:3))? Since p(e23) € E13,2, by definition of the core morphism, Section
=3,
a1,3(p(e2,3)) = qs(p(e2,3))-

And by the vector bundle map (p,%), we have that ¢130¢p = ¢ o qg’g, hence the left
hand side of (A=Z7) can be written as,

a1(¢7(e23)) = ara((e23)) + 007 = wles) + 05 = ¥ (es) = (a5 (e2)),

and this establishes the commutativity of diagram (E=28). About fibrewise linearity of

©* over ¥*, take ea3 and fa3 € Fa3 projecting to the same e € E3. Since (p,1) is a

vector bundle map, p(e23 + fa,3) =) p(e23) + ¢(f2,3). Therefore,
E3 1,3

k24

4 A
e e 0., . ;
©’(e23 +3 f2,3) p(ea +3 f2,3) 1+’2 €23 +3 f2.3

'.Ll

(30(62,3) &@(f?,?,)) & <0e2,3 1‘!_30f2.,3)

)

(90(62,3) 1‘!'2062,3> 1"’3 <90(f2,3) 1_!'20f2,3)

)

= ¢’ (e23) 1+3<P6(f2,3),

and scalar multiplication follows similarly.

4.3.1 Zeros and core morphism of double bolts
By Corollary B=Z8, for (1%, 01) and (¢, 0]1522) we have respectively,
V(0p) = O, 9" (03) = Ocy.
About the vector bundle map (cpe, 1[}6), for C)Ef’ € B3, the zero in Es 3 over eg,

E2’3 > 65})3 E— @9(63:;3) cF

F33e3 —— ¢*(e3) € Ey 3,
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hence *(02,%) is the zero in E over ¢*(es3),
0 (027) = Ot () (4.28)

Or, using (E724) directly,

©*(023) = p(023) + 0523 = (0%3) + 0O,

1,2 Ve3

What is ¢(02°)? Going back to the vector bundle map (¢, 1):

E273 > 6253 —_— (p(()zég) € E1372

E3 263 —————— 7,/1(63) c E137

we see that ©(02%) is the zero of Eq32 over 1(e3). Its image in F,

(02") = Oup(es),

hence,

g

)

which is exactly (E28). Some outlines,

Op(es) — (e3) Oy —— Ocy
~ ‘ e ~ N
J on) ———— 0B N l 02 —>i es
o F 0 l 7ok } 05 l
RN N s N
0] ) 02 — vy

2(02,3\ _ A A — —0
90(063>—0w<e3)f§2063 = Yy(es) ;16(%’33_%“6?’)’

Oyses) —— ¥(es)

|

1,2
m

N

N

|

=93
O0cy, ——— e3

J{*) 0 ‘
N

E
— m.
0,2 m

Last but not least of our calculations, the core morphism of the linear double section

(0% 057, 1% 0F1).

To begin with, the core morphism of the double vector bundle morphism (¢;idg,, ©;id )

is the restriction of ¢ to the core vector bundles,

)
Eoz ———— FEi23
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Therefore, for weg € Eag, p(wa3) € Fia3 is an ultracore element. Now we denote the
restriction of ¢ on the cores by . Notation-wise, we will write P(wa3) € E193. This is

an ad-hoc notation; typically, we would write go‘ (weg) for the restriction of ¢ to the
cores, but this isn’t practical to use in the calculatlons that follow. Therefore, we use
[z

Eoy ———— i3

\/

This core morphism P defines a bolt section of the (B-F) core double vector bundle:

=%
%]
Eo3 ——— FEo31

_—
M ———— Ei,

and from (2224

?"(w23) = P(wa3) + Owyy = P(was) + Ouyy
Eq 1,2/1,3
We arrive at the final statement of this section, that the core morphism of a double bolt

is the bolt of the core morphism. This translates to the following proposition.

Proposition 4.3.2. The core morphism of (¢* O1 .2 , 0% 051 is the bolt section B° just
described.

Proof. To calculate the core morphism of (¢?; 0}5’3, Y?;051), take a wo3 € Fog, in the
core of Ey 3. By (B222),
¢ (w23) = @(wa3) 1-1'20w23-

Since wog € Eas, it follows that p(wa3) = P(wa3) € Ejo3, an ultracore element. And
Owsys € Eng 1 is the zero over 021 so we can write:

¢ (wa3) = P(ws3) iy Oy = P° (w23),
1

and this completes the proof. ]

A few outlines:

0¥ (wa3) ——— O Plwaz) —— Om’ Oz —— O
~ ‘ N 5 Ny 03 ‘ N . AW ‘ X .
waz —— 0,7 m T) 0,2 . w93 T) 0,2
1,2
o LH 0L l 2 [H 0L l e [H 0L l
N AV I N ™~ A
0B — ', 0B — v 0B — Sy
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We saw in Proposition 229 that two linear sections 71,72 € I'4D that project to the
same section Y € I'B differ by a bolt section. Analogously,

Proposition 4.3.3. Given two front- back linear double sections, (X23; X2, X3; X) and
(Wa3; Xo, W33 X), then (X23 W2 3;0 E2 , X3— W3;081) is a double bolt section.
3

Proof. Focusing on the Right face of E, it follows immediately from Proposition =29
that (Xg—Wg, 0%1) is a bolt section, and the vector bundle map 1 : E3 — FEj3 over

M that deﬁnes this bolt section is
(es) = (Xs(es) — Ws(es)) — 04
E4 Er

as follows from the proof of Proposition E=29.

Likewise for the Left face, it follows immediately that (

Wg 3,0 L ) is a bolt section

defined by a vector bundle map ¢ : Ep3 — E132 over EQ,

A~

p(e23) = (Xa3(€23) s Wa3(e23)) 20e2 5

) 7

It remains to show that the ¢ just described is a vector bundle map over 1,

)
Es3 ——— Ei32

q??l [113 (4'29)

E3 — Eh3,

and this follows from properties of the linear double sections. About the commutativity
of the diagram (£—29),

a13(p(e23)) = aqi3 ((X2,3(62,3)

= CI1,3((X2,3(€2,3)

3W23 €23)) 625)

W23( )))*fhs 0

= <Q1,3(X2,3(€2,3)) — Q1,3(W2,3(€2,3))> — 0.2
E3 El

= ¥(g5(e23))-
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About fibrewise linearity, for es 3, fo 3 over the same e3 € E3, we have
p(e23 + f23)
E3

= (Xo3(e23 + f2,3)
E3

W23(€23+f23)) 12 e23+f23

(63), ()

((X2,3(62,3) 1-1-3X2,3(f2,3)) (Wa3(e2,3) + Was(f, 3))) (U + Oys)

1,2

7

= (aaleas) ;g Waaea) 1 (Xaa(Fan) s WoalFaa)) ) 15 Ouss 1010
= <(X2,3(62,3) 2s Wa3(e23)) 2 0e2,3> & ((Xz 3(f2, 3) s W2s(f23)) S Of2,3>
= ¢(e2,3) 1—ﬁ-3<P(f2,3)7

and this completes the proof. O

4.4 Class of examples with bolt sections; two double bolts

This is a confirmation of the general result of the warp-grid theorem in a special case,
where special features of the following grid enable clear calculations.

Take the following grid on F,

7
E PR Ei3

RN N

Z1,2 Ess Ry
Z1
Zo oL:2
Eis ¢+ |—X  E
1,2 1 Z
r\ Wl
02
2
EFo «+——— M
2 0F2

where (Z1,2; Z1,Z2; Z) is a down- up linear double section, (p* O}Es ¥% 0F1) is a front-
back double bolt section, and (56 ,77$ 0F2) is a right-left double bolt section.

To calculate the three ultrawarps defined by this grid, we first calculate the core mor-
phism of each linear double section. The core morphism of the double bolt (¢?; 0]19’22, p?; 0F1),
as we calculated in Section B=3, is the bolt sectlon defined by @, a section of the (B-F)
core double vector bundle. Similarly for (56 By 776 0%2), the core morphism will be the
bolt section defined by &, a section of the (L-R) core double vector bundle. The core
morphism of the double vector bundle morphism (Z; 2; Z1, Z2; Z) is the vector bundle
morphism (Z12, Z), see Section BT2.
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The three core double vector bundles in the usual order, (B-F), (L-R), and (U-D):

[l 3 Z12

VRS
Es31 ——— FEog Ei32 — Ei3 Ei93 —— Eqo

L

El 7 M7 EQ ? M, E3 e M
0~1 02 Z

We also need some calculations about the right-left double bolt section. The double
vector bundle map (§;idg,,n;idas) from the Right face to the (B-F) core double vector
bundle,

E173 EE— Eg
g\,l ‘ N
l Ea31 —— Eb3

E; J*) M J
N N

Bl —— M,

defines the double bolt section (£%;77, O}Ef; 0%2). The vector bundle map 7, and the bolt
section it defines, along with the corresponding relations:

17
E3 17—) E23
E3 —> E23 ’

NS

072
For e3 € FEjs:
“(e3) = + 023 4.30
n’(es) = n(es) + 0z, (4.30)
Eo
and as we will need it later, from (E222),
0t (e3) = On(eg);_ 62 = On(e3) 1—1-20@3. (4.31)

For ez, e € E3
m

W(es + cf) = 1 (ea) + P (eh).
2
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The vector bundle map ¢ defines the bolt section &7 of the Back face of E,
5’7
: Ei3 —— FE
E13 ————— Ea3;1

N

E T) ELQ.

Ey
For €13 € E1,3:
E(e13) = Eler) + Doy (432)
For ey 3, 6/173 € I 3 that are over the same e; € Eq:
& lers +eig) =& (ers) £ € (ers). (4.33)
1 )

For ey 3, 6,1’3 € Fj 3 that are over the same e3 € E3, using the fact that (§,7) is a vector
bundle map:

& (e13 ;3 eh3) =& (e13) 247356(6'1,3)-
And the zeros defined:

56(6;13) = 0617 g‘/(ﬁéf) — 0776(63)- (434)

Finally, the core morphism of (£7; O}E’j,ne’; 0%2) will be the bolt section defined by the

core morphism of (¢;idg,,n;idys), which is &:
g%

: Ei3 ——— FEi32

Eiy3 ————— Eias

\ / =
M
M — F»,

0E2

such that, for every wiz € Fis:

& (w13) = E(wis) + 0wy = E(w1z) + Ouyy
By 1,2/2,3

4.4.1 'Warp of grid of each face of E and ultrawarps

The only warp we need to calculate thoroughly is the warp of the Up face. The Down
warp follows immediately that it is zero, and the remaining warps follow directly from
Proposition 22711, (@). In total, the six warps,
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i. Back face: Wpack = —£0 21 : E1 — Ea3 1,
ii. Front face: wgont = —nmo Z : M — FEog,
iii. Left face: Wiest = 0 Za 1 Fo — FEi32,

iv. Right face: wyjgnt =9 0 Z : M — Ey3,
v. Up face: wyp =Eo0t) —pon: B3 — Eia3,

vi. Down face: zero section Waown = 02 : M — Ejs.

Warp of Up face

We now have everything we need to calculate the warp of the Up face. For the two
elements £*(1)?(e3)) and ¢*(n?(e3)), we need to calculate,

£ (*(e3))
£ (¥ (e3))

First, focus on £7(*(e3)):

50,5 _ A
57 (n’(e3)) = Wup(GS);SOW(e?,),

P(0(es)) = Waplen) Oy (435)

2,3

(0¥ (es)) "= € (1 (es) 0L U= ¢4 (1 (eg)) + €7(0L2)

1,2
(=33 (=1

= <§(¢(€3)) {'—Q(A)tb(eg)) l"g()rﬁ(eg) - : <§(¢(63)) $0¢(€3)> _’_2 (071(63) + 083) :

And since 1)(e3) € E13, it follows that &(1(e3)) = £(zb(e3)), hence,
(e = (Etea)) 1 0utn ) o (O 2,00 )

Similarly for ¢*(n?(e3)),

o (1 (e2)) = ¢ nles) + 07) = o' (n(ea) + 7 (03)

2 1,
(), (12) <

R R @A) [_ . R R
P00(en)) ) 000 = (P00 B ) o (0 1,00 )

where we have used that n(e3) € Ea3, hence ¢(n(es)) = ®(n(es)). In order to keep
track of calculations, we add the outlines of the elements involved:

Ozb(eg) — ¢(€3) 07](63) — Q’}rf) 663 — 6533
> ‘ N N ‘ N N - ‘ AW
J O ——— 05 J n(es) —— 07 Oey” ——— e3

1
O l% 02 l os JH 02 l " lﬂ 02 l
S N ™ Y > [

0E2 — — 'm, 0Lz —— 'm, 0F2 ———"m,
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£((es)) —— Om’ B(n(es)) —— Om’
S | T B
Om T) 0Ls Om T) 0Ls
" lﬂ 0 l " JH 0 l
I A e N
02— 'm, 02— 'm.

The left hand side of (E=35) can now be written as,

& (e)) 5 ¢ (es)

= [(Ewtean 00t ) 1, (Owen 50 )] 5 [ (Pre0) 200 ) 2 (O 2,0 ).

Rearrange the second term of the previous equation,

[(5(1/}(63)) 175%(63)) o <0n(63) irzﬁeg)] 03 [(@(77( 3)) 01#(63)) A ( n(es) T 0e3>] :

Now apply the interchange law in the Left face,

[(aw(eg)) $0¢<63))%(¢<n<e3>> $0w<63>)]${(on(63>+063)23( e 0 )]

About the first bracket of (E=38), apply the interchange law in the Left face,

(80tea) i 0ute0 ) 55 (B0(e0) 1, 0u) = (E0ten) 2000 (B0t 5 00
== (sw(eg)) Plnlea))) 40,5, = Ewlea)

2,3

)

About the second bracket of (E=33),

~ ~ A A ~ ~ ~ A (),() ~ ~
<077(63) ;;063> 23 <On(63) 14-20%) = <0n(es> momeg)) + <0e3 2,3063> = Oney) 1 Oes

Therefore, we can rewrite (E=38) as

) )

€twtea platea)] 4 (0 1,00 ) = [€t0tea)  pl0ten)] By

Denote temporarily £(¢(e3)) 5

now,

3@(7)(63)) by u € E123. Therefore, the last expression is

)

u 17+207]$(63)‘
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Recall from (EZZ3) that (A)ne(eg)) = One(e3) 1+3063' In total, the left hand side of (E=33) can

now be rewritten, using the interchange law in the Back face,

€ (e3)) ¢ " (ea) =

3 A A . ~ A 3 . ~ R
<Ul‘g®m> 1"!_2 <077/7(63) 1—!_3063> - (Ul—goeg) 1"’;3 (077%(63) $®m> = <U 1—!_2063> 1—!_3077/7(63)'

Comparing the previous equation with the right hand side of (A233), we see that

i = (E0tea)  p(ea)) 0

Note that £ o) — P on is a vector bundle map. Indeed, both £ o1 and % o n are
compositions of vector bundle maps, and are both vector bundle maps F3 — Ej23 over
M. Hence &£ o) — @ on is a vector bundle map,

Es _ fovTon | Fia3

N S

and this defines a bolt section in the (U-D) core double vector bundle:

M ——— B,

So finally, the warp of the Up face is the bolt section defined by £ o) — @ on.

Final calculation

The three core double vector bundles in the usual order, (B-F), (L-R), and (U-D):

7 & Z12
o~
Eo31 ——— Eas Ei32 —— Ei3 Eirp3 ——— E19
—€0Z —noZ> oy YoZs  (Eopp—on)”?
E — M By — M By — M

01 0E2 Z
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In every core double vector bundle we have a bolt section and a linear section. There-
fore, applying Proposition B2, (@) we obtain:

(€0 Z1) 0 (07) =B’ o(-noZ) > BonoZ,
(poZ2)o(07) & o(oZ) b —fovoZ
(€o—Fon)’oZ~Z120(0%) > (§ov—Porn)oZ
Hence the three ultrawarps,
ugr =ponoZ, wr=-oyoZ, uyp=(oh—Pon)oZ,
and since £ 0 — p o7 is a vector bundle map, we can rewrite the last ultrawarp as:
uyp =€o0YoZ —PonoZ.

The sum of the three ultrawarps is zero.

4.4.2 Six elements method

We will calculate the three ultrawarps via the six elements method, calculating the A;
and k;, for e = 1,2, 3.

The six elements defined

The first element:

21502 05) ———— Z1(05) O —— O
~ - \ I \J s ~
vy J Z5(07,2) T Z(m) _ l 0Zm) T) Z(m)
o — | |||
T 0Lz ™ m > 0L —\> m,
YVQhSere we have used the fact that Z; » is a double vector bundle map, hence Z5(0£2) =
0% (m)-

The second element:

E(21(0)) ——— Zi(03!) O zm)) — 0%my
e 5 e e |
YZX = l m(Z(m) T Z(m) _ J n*(Z(m)) T Z(m)
e l obt — | |
\ ()E2 \ \) E \
m m 0m2 —_— m,
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where we have used (B234), £°(Z1(0E1)) = fe(ﬁgg’m)) = 0,5(2(m))-
The third element:

P (Z5(052)) ————— ¢*(Z(m)) 0y (zmy) —— ¥*(Z(m))
~ | > I
0z, (052) k 0! ~ l " J—> 051 l
\ OELQ m OTEHQ \ m7
where we have used (B28), *(Z2(022)) = we(éég(m)) = Owe(z(m)).
The fourth element:
Z12(032(051) ————— Z1(051) 0zm) — 05(my
~ . | ~ s | >
2 )
I3y Z5(0772) T Z(m) _ OZ(m) Z(m)
ogom || o ||
0,72 m 02 — S m.

The fifth element:

YXZ =

XYZ :=

E
0,2

up: the ultrawarp of induced grid on the (B-F) core dvb

We need to calculate \; and k;. From (B28) we have,

ZYX—YZX = 0., , A

1,2
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and since in this case ej 2 = 0]15’12(07%) = O, we have that (A)el’2 = 2, the triple zero
of E. Therefore,

ZYX1 2YZX = A1
The outline of the difference ZYX ; 2YZX,
- - CAl3 A3
02 (m) 1 Ot (zm)) » 02(m) 5, 0Z(m)
\5\2 3 >
l 0%y o (Z(m) l Z(m) - Z(m)
o k 05
\ OTE7;2 \ m,
and since
=23 4 (£30) ~9.3 =23
OZ(m) EQ n’(Z(m)) = Oz(m) E(n<Z<m)) ]";2 Oz(m)>
_E23 823y _
= (Oz(m) 2 Oz(m)) 2 n(Z(m)) = £ n(Z(m)),
and additionally,
. . (E=3T) A . .
0zm) 1, Vrzemy =" Ozm) 15 Onczomy) , Ozm))

~ N 2528
= (Oz(m) — 0z(m) — Oyzmy) = LOn(Z(m»’
1,2 1,2

it follows that

A . ~1,3
12 On(z(m)) > O
—n(Z(m)) —— O3
ZYX—YZX = Bz |
o k 0
N

To calculate k1, use (8729),

XZY

Y2 =04, 4

In this case, €] , = 025(0%) = @5 50 06/1 , = ®32, the triple zero of E. So,

XZY —XYZ = k;.

1,2

)
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The outline of the difference between the third and the sixth element,
Oyt (2 (m)) E¢e<ne(z(m))) » Y7 (Z(m)) EW(Z(m))
2,3
Z(m >
Z(m) By l

" J > 0F1
\ 0E: \

As for A, 05, (Z(m)) = —n(Z(m)), and of course, v*(Z(m)) —u*(Z(m)) =

@,l,f’. Also,

A (=0) A PR
Oz/ﬁ(Z(m))?QSO%(n%(Z(Wl))) = OW(Z(m))ESO%(U(Z(m))Zgo%n))

R <o, (@23) A
= Uysz0m) 1, <<P$(77(Z(m))) 1+72<P$ (022?,,”)» = Oyr(zem) 1 <90%(77(Z(m))) + Odﬁ(Z(m))>

= (st 3Btz ) 13 2 = 0l 2(m)

and we have that

: @) ; A
02N B (G020 Oty ) = 3PN - Oz
so in total,
o p(n(Z(m))) 5 Un(z(my) y Om
- ‘ .
—n(Z(m)) ——— 073
XZY —XYZ = By l

From (BZ30H), since e; = 051, 0., = ®3,,

)\11

k1 = 0¢p + u1 = uq,
2 2.3

)

therefore,

Mok = Otz 1 (1 PO Bz ) = P2 ()

)

therefore,
uy = p(n(Z(m))).
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ug: the ultrawarp of induced grid on the (L-R) core dvb

We now calculate Ay and ko. For Ag, from (BZ32),

XZY —ZXY =0y + Ay = Ao,
1223

1,2

. 1,2 1,2 : . . .
since €} 5 = 0z, (0E2) = ®;;°. The outline of the corresponding difference now is,

A A 4 AL,3
Oy (zm) 15 02m) 0 (Z(m))EOZ(m)
\62’3 — 0% | >\Z(m) — Z(m)
XZY — ZXY = Z(m) p, Z(m) l
W k > 0E1
\ 0"%2 \/ m.
Of course we have that ﬁé?m) o ()?g’m) = @%3, and
2
4 _ &13  (ED) S1L3 y AL3
W(2(m) 050 2 m) £ 058,) 055, = v(Z(m). (4.37)

The outline of Ao,

~
o% —>‘ 0Es
XZY — ZXY = I
1,2
" J% Oyt l
~ ~.

For ko, from (B=33),
YXZ

YZX =0, , + ko = ko,
1,2 “ 23
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since e12 = 03 (051) = ©7°. The outline of YXZ - YZX:
EHE)) 1 Onpcziony w2 052,
\éf 4 ‘ ™
YXZ —YZX = l n*(Z( ))EQU( (m)) l (m) (m)
®71T’LQ L 0fn

\ng \m

and as usual, 7°(Z(m)) E—ne(Z(m)) = ©5’, and from (E37),
2

Also,
€W (2m) 1 Oppczimy = € WZ) +05,) 1 Opszmy
S W@ 1 05,) 5 Oz = € CAZmMN) 40200 5 Oziomy)
e wzm) e zm) + 0uzom)
hence the outline of ks,
EW(Z(m))) & Oy(z(my) —— Y(Z(m))
| N
\ 2,3 ‘ OE3
YXZ : 2YZX = m | 7 Um

| m J 051 l
— : ~

From (B334H), we have

A ko = 0., + us = u
212 2 621’3 2 25

)

since in this case ez = 0£2. Therefore, as from (252H) we have Ow( Z(m)) B(A)zp( Z(m)) =

@3, it follows that,

Ao ko = Oy(z(m))

1,2 1,2

(f<w<z<m>>> ﬂééwm») _

that is,
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uz: the ultrawarp of induced grid on the (U-D) core dvb

To calculate A3 use (B=38),

YXZ

T XYZ = 0611’3 2—2)\3,

and €} 3 = ¥?(Z(m)), so

YXZ. XYZ = 0y f; Vs

The outline of the difference of the elements,

& (¥*(Z(m))) s " (n*(Z(m))) v (Z(m))
l \ns(Z(m))*nﬁ'(Z(m)) —\;Z(M)
YXZ s XYZ = Es l
12 [ o h
\ 05 ™ m
and since

it follows that:

EWHZm) e (*(Z(m)) ———— &*(Z(m)

l — S

YXZ—XYZ =

1,3
1,2

m\g Oﬁl\l
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The following calculation is a variation on the calculation (E=33):

€ (Zm)) - ¢ (Z(m)
(I=23), (A=) EW2Zm) +0,,) " o’ (n(Z(m)) S 0% om)
EU (i) 1 €05 ) (S 508,
(AL (fe’(w(Z (m))) lgﬁne(ﬂm))) i (%06(77(2 (m)) Owe(Z(m»)
(el (5(¢(Z (m)))  Ouzem) On%zm)))
> (so(n(Z (m))) j20n<z<m>> f;%%(zm)))
() (5(¢(Z (M) 1, Ouzm)) 1, Onczomy) 1, OZ<m>)
o <s0(77(Z (m))) 5 Onczm) 1 Ous(2(m) 4 OZ(m))
= [ﬁ(w( (m))) 5 P(Z(m) | & [%(Z(m)) 3 Aw(Z(m))]
A [On(Z(M)) s On(Z(m))} e [OZ(M 13 OZ<m>]
EREEVEE ewzm) go(n(Z(m»)} 110wz 1, O 1 02
B ez waZom)| 0y

So far, we have written:

YXZ

o @(U(Z(m)))) A Oyt (2(m))

XYZ = (aw(Z(m)))

1,3

Denote by u := £(¢(Z(m))) . ga(n(Z(m))) the ultracore element in the previous equa-

tion. Using interchange laws in the Left face of E , we can rewrite the right hand side
of the previous equation as follows,

0 = 3 0 0z(m
u it Ops(zmy) = (o Om) 4 Ops(zmy) f; 0z(m)

~ 3 A A A
= (1 0zm) (O 1+ Ops(zimy) = (v 1+ 0zm) 3+ Ops(z0m)),

in other words:
YXZ

5 XYZ = (u 1+72 02(m)) ;’Lgowzm))v
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from where it follows that
A3 =u 1—|-2 0 Z(m)-

To calculate k3, use (B231),

ZYX

T XY = 06173 2—!—3]63 = OZ(m) 2—5]{:3,

since e 3 = Z1(051) = 62(37”). We have that

A . (E=52d) A

) )

Comparing the last two equations, we have
02(m) 2+3 ks = 07(m)-

Since Oz(m) is the double zero of the Up face over Z(m), we have that ks + Gz(m) = ks.
2,3
Therefore, from the final equation we obtain ks = ﬁz(m). In total, we have that

A3 = ul—FZOZ(m) and k3 = OZ(m)'

For ug, from (B23=8d),
A3

13 k3 = us 1‘!'2063 = us 1_!'202(’”%)’

since e3 = Z(m). Finally,

A3

B R . _ A A 3
. ks = (ul_goz(m)) o 0z(m) = (ul—!-QOZ(m)) 173(0Z(m) 1—i_72®m)

_ 3y 4 (0 0 =u+0
= (u1 3®m) ﬂ(oz(m)goz(m)) = “1'!'202(7”)’

)

therefore, from uniqueness of core elements, we have

ug = u = E(Y(Z(m)))

B2 ().

We see that the ultrawarps we obtain with this method are the same as the ultrawarps
obtained with the method in the previous section.

4.5 Connections in A and grids on 7% A

In this section and the next we examine two typical instances of the warp-grid theorem.
In this section we consider grids which arise in 72A from connections in A. In the
following section we consider T3M, the triple tangent bundle of a manifold M.
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4.5.1 Grids on T?A

Consider a connection V in A. Recall that Example 223 gave a construction of a grid
in T A for which the warp is Vxu. We now extend this idea to define a grid in T2A.

Let X,Z € X(M), and p € T'A. Define the following three linear double sections:

e From Front to Back face: (T(X); X T(X); X).

e From Right to Left face: (T%(u); T(u), T(p); ).
—A ~

e From Down to Up face: (ZH ;7,721 7).

Here Z = Jy o T(Z) is the complete (or tangent) lift of Z to a vector field on TM.

—A
Likewise Z#  is the complete lift of Z € X(A) to a vector field on TA. The grid is
shown in (E38).

T2 ()

T?A T>M
Z
” (4.38)
TA W TM z
X
N N
A m M.

The front-back and right-left linear double sections are straightforward. For the down-

—A
up linear double section we need to show that (Z# | Z) is a vector bundle map:

—A
TA 22 724

T(q{ lmq) (4.39)

TM — T2M.

—A
First, commutativity of the diagram. Using that Z# = .J4 o T'(Z") we have,

T?(q) 0 ZH =T?*(q) o JaoT(Z"),

and from Lemma 21
T?(q) o Ja = Jayr 0 T?(q),
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SO

T%(q) o JaoT(Z7) = Ty 0 T%(q) o T(ZH) = Ty o T (T(q) 0 Z*).

Since (Z1,Z) is a vector bundle map we have that T(q) o ZH = Z o q. Hence
Ty oT (T(q) o Z2") = JyoT(Zoq) = JyoT(Z)0T(q) = ZoT(g),

and this establishes the commutativity of the diagram (B=39).

Secondly, we need to check fibrewise linearity. Take &1, € T A with T(q)(&1) =
T(q)(&) = v, v € TM. Then as usual:

= gm| . @=Ze|_

)
t=0

—A
near zero, and with v = %m(t)‘ . Now expand Z# ({1 + &
=0 T(q)
a4 _ H @) d _u
20 (& + &) = (aoT(z™) (& + &) s (52" (@® +am)|_ ).
T(q) T(q) dt t=0

Using that Z is a linear vector field over Z:

ZH
A———TA

l Jm)

M —— TM,
we have that ZH (a1 (t) + aa(t)) = ZH(a1(t)) —(i—)ZH(ag(t)). Therefore, (E240) can be
T(q
rewritten as:
d
14 (@ ) 1 2] ). (4.41)
T(q) t=0

We have that ZH (a1(t)) and Z" (as(t)) are curves in T A with
T(q)(2"(ar(1))) = Z(m(t)) = T(q)(Z2" (a2(1))),

for ¢ near zero. And since (Z,Z) is a linear vector field,

ZM(ay(t)) —— Z(m(t))  Z"(az(t)) —— Z(m(t))

N

ay(t) ——— m(t), as(t) ——— m(t),
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T(q)

and ZH (ay(t)) T—(Z) ZH (ay(t)) is the addition in TA —=% TM of the two curves, there-
fore:
d d d
& (71w 1 2@ | = 52" @), £ e
and note that
T (q) (52 @ 1)) = ST W)
= L 2mn)|_ =12 Gm)|_)=T@)),

where 4 ZH (ai(t)) € T(TA), i = 1,2, as the tangent double vector bundle of T'A 1@, TM,

the Back face of C63:

2
SO )

rT A‘/ ‘/pT M

Therefore, going back to (B=41), we can rewrite it as,

Ja (;isz(al(t))\ - jtszQ(t))L:O) , (4.43)

t=01T2(q)

and since .J4 preserves addition over 72(q), see Lemma 228, (B243) is equal to,

(gl ) gy on (G,

— T2 &) + JaT(ZT) &) = 20 (&) + 7 (&),
T2(q) T2(q)

and this completes the proof that (E=39) is a vector bundle map.

The core morphisms of the linear double sections will be needed later:
e For (T(XH); X# T(X);X) the core morphism is (X, X).
e For (T?(u); T(u), T(w); 1) the core morphism is (T'(p), ).

—A ~
e For (ZH ;Z,7";7) the core morphism is (29, 7).

The first two cases are instances of the general fact that given a morphism (¢, f) of
vector bundles, the core morphism of the double vector bundle map (T'(¢); ¢, T(f); f)
is (¢, f), see Section T2
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—A
To calculate the core morphism of (ZH ;Z, ZH: 7Z), focus on (E24). At this point we
investigate this linear double section further; it is a double vector bundle morphism
from the Down face to the Up face of T?A. Note that (E24) is not a triple vector
bundle.

T?(q)

T2A T2 M
T(pa) T(p)
7
Zih T4 1@ s TM
» (4.44)
74 L@ T™ z
p

N N

A M.

Take an element a € A. As an element of the core of the Down face of (A238), its image

in the Down face is a = %ta e TA.
t=0

Using the fact that (Z, Z) is a vector bundle map, we have that Z(0ZM) = T(07M)(Z(m)).
Similarly, using the fact that (Z¥, Z) is a vector bundle map, we have that Z#(04) =

T(04)(Z(m)). Finally,

Z1 (a)

=@ = (G2 ]_,) = (Gt ],) - 1 (77").

Note the following. The element ZH A(EL) is an element of the Up face of T?A. And
we can write it as Ja (T(Z")(a)). As Ja maps the Back face of 7?4 to the Up face
of T?A, it follows that T'(Z")(a) is an element of the Back face of T2A. Hence, in
T(Z")(a), a is an element of the Front face of T2A.

The maps (T(Z1); ZH,T(Z); Z) form a double vector bundle morphism from the
Front to the Back face of (E53), with core morphism (Z1,7) as usual. Therefore,

T(Z%)(a) = ZH(a)B is now in the core of the Back face. And by (EZ78), it follows that
T4 (ZH(a)B> — ZH(a)’.
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In total, the triple outline of a:

Z1(a)” T(OTM)(Z(m))
\ 4 \
i T(04)(Z(m)) Z(m)
ZU
a oL .
0 \ m.

—A ~
This completes the proof that the core morphism of (ZH# ; 7, ZH:7)is (Z", Z).

4.5.2 The warp of the Back face

The warp of the Back face is given by

T*(u)(Z(X (m))) — Z"(T(p)(X (m))).

pra

The outlines of the two elements are

T2(1)(Z(X (m))) Z(X (m))
T(1)(Z(m)) l Z(m)
T()(X (m)) X (m) h
T u(m) m,
ZH (T (1) (X (m))) Z(X (m))
ZH (u(m)) l Z(m)
T(1)(X (m)) X (m)
T u(m) m,

(compare with the general triple outlines of the elements YZX and ZYX, of subsection
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—A ~
Writing the complete lifts as ZH = J4 o T(Z") and Z = Jy; o T(Z), and using the
naturality of J-maps (Lemma I2T), we have that

T2 (u)(Z(X(m)) — 28 (T(n)(X (m))

), Ja(T (Z)(T (1) (X (m))))
) -

= T*(u) (Ju(T(Z)(X (m))

= Ja(T*(W)(T(2)(X(m)))) — JA( (Z™)(T () (X (m)))). (4.45)
Since J4 interchanges the structures pr4 and T(p A), we can rewrite the last expression
in (A1) as

Ja (T2(u)(T(Z)(X(m))) — T(ZH)(T(M)(X(m)))>-

T(pa)
Focus on T2(u)(T(Z)(X (m))) o, )T(ZH)(T(M)(X(m))). This now describes the warp
Pa
of the grid (T?(u), T (1)) and (T(Z™),T(Z)), a grid on the Up face of T?A. We can
rewrite this as

T(T(w) o 2)(X(m) | T(Z" o p)(X(m)). (4.46)

At this point, we use Proposition B2, that the warp of the tangent of a grid is the
tangent of the warp of the grid. We apply this to the grid (T'(x), i), (Z",Z) on the
Down face of T?A. From Example .23 the warp of this grid is V(i) (see(I43)). The
tangent of this grid is a grid on the Up face of T?A,

)
/\
T?°A ————— T°M
T4(q)
T(ZH)| |T(pa) T(p)| |T(2Z)

T(p)

and so its warp is given, for any v € T,, M, by Proposition =22,

(T%(u) 0 T(Z))(v) (pA)(T(ZH)OT( m)(v) =

T<vzu><v>UT%T(ﬁ“xwv)). (4.47)

Having denoted by 074 the zero section of TA 225 A, the zero section of T24 —2% Tpa) TA
is then T(074). For v = X (m), the left hand side of (@) is equal to (B28). Therefore,
(B228) is equal to

U

T(Vzp)(X(m)) i TO")(T(1)(X (m))). (4.48)
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We return now to our calculation of (B23). Applying J4 to (E28), we have that (23)
is

Ia (T2 (X)) )+ Ja (TOTH(T()(X (m))))
T2(q)

The addition over T2(q) does not change under J4, by Lemma E48. From (Z78) we
have

Ia (T X))+ Ja (TOT)(T () (X () =
T2(q)

B 2
T(Vp)(X + o5 A :
(Vzp)(X(m)) 7 VT ()

This completes the calculation of the warp of the Back face; taking into consideration
the orientation of the Back face, the warp is —T(Vzu) € T'pp T A.

4.5.3 The three ultrawarps

We now focus on the grids defined on the core double vector bundles of T2 A. We present
a table with the results here, and outline the calculations in the following subsections.

Back-Front

The Back face is the tangent double vector bundle of the prolonged bundle TA — T'M
and by the results of subsection 574 we obtain

T?(p) o Z — 78" T(p) > T(Vzup). (4.49)

Taking into account the orientation of the Back face, the warp is =T'(Vzu) € I'rp (T A).
For the Front face, with the appropriate orientation, the warp is —Vzu € I'A, by
Example I23. Therefore the ultrawarp for the Back-Front core double vector bundle
(first row of Table B) is, again using Example 23,

~T(Vzu)o X + X (Vzu) > —~VxVzpu.

Left-Right

The Left face is the double tangent vector bundle T2 A for the manifold A. We therefore
apply (8). Taking into account the orientation of the Left face, we have

—A
T(XTyoz® —zH o xH  [7H xH]

The Right face is T?M so the warp is [Z, X]| € X(M). So the warp of the core double
vector bundle in the second row of Table B is defined by

T(p) o[z, X]— 2", X" o p. (4.50)
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First, what is [Z%, X!]? In general, it is not equal to [Z, X]*. Using the warp-grid
theorem, we now show that [Z, X#] — [Z, X]", for a connection in a vector bundle

A, corresponds to the usual definition of Ry in terms of the covariant derivatives V x;
see (E52) below.

Both [Zf, XH] and [Z, X]" project to [Z, X] and therefore their difference is a lin-
ear and vertical vector field on A, see Proposition E229. We now state the following
definition.

Definition 4.5.1. With the above notation, Ry (Z, X) : A — A is the map such that

[z, X)7 — 7% XH] = Ry(Z, X)". (4.51)

In the rest of the section we show that this definition leads to the usual concept of
curvature. We can rewrite the grid on the (L-R) core double vector bundle as the sum
of the following two grids,

T (w) /T(_u)\
N TAS S TM
Z, X" [Z,X] and o Ry (Z,X)* o™
A M A———— M,
—— —
w

so (Eh0) is now, from Proposition BT,

(T(n) o [2,X] — (2, X]" o p) + (T(u) 0 0™ —(— Ry(Z,X)") OH) :

Here we could cancel the minus signs in the second parenthesis, but we retain them
both in order to make the application of (B18) clear. From Example 23,

T(1) 0 12, X] - (2, X)" o > Yz xpp,
and from (E18)
T(u) 0 0" — (- Ry(Z,X)") o pp > +Ry (2, X) ().
So in total, the warp of this core double vector bundle will be
Vizxp+ By (Z, X)(p)-

Taking into consideration the orientation of the core double vector bundle, take the
opposite sign
~Vizxt — Rv(Z, X)(1).
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Up-Down

The warp of the Down face is, again by Example 23, Vxu. For the warp of the Up
face, we use Proposition 232, and obtain T'(Vxpu) € I'ras(T'A). Therefore the warp
of the grid in the third row of Table B is

VzVxp.
This completes the exposition of Table B

The warp-grid theorem now gives us that
—vaz,u—v[zyx],u—Rv(Z,X)(,u)+V2VX/,L:0. (4.52)

This is the usual definition of the curvature of V via differential operators. Therefore,
we have shown that if we start with the concept of a connection V, and apply the warp-
grid theorem to the grid (E238) in T2 A, we obtain the usual formula for Ry (Z, X)(u).

4.6 The triple tangent bundle 7°M and the Jacobi identity

In this section we consider the triple tangent bundle 7% M of a manifold M and construct
a grid on it, for which the Jacobi identity emerges as a consequence of the warp-grid
theorem. A version of this approach was given by Mackenzie [Z7]. We present here a
clearer and more detailed calculation.

Take E to be T3M, the triple tangent bundle. This is a special case of T?A, for
A=TM:

T3 M T2M
\ X(pj
PTM
T
Pr2y (pTM) T2M T(p) TM
PTM™M J

T2\ W oy p
T™M P M.

The three lower faces are copies of T?M. The Left face is the double tangent bundle

of the manifold TM. The Back face is not a double tangent bundle; it is the tangent

double vector bundle of T2M M TM. The Up face is obtained by applying the

tangent functor to T2M.

Starting with three vector fields X, Y, and Z, each a section of one of the three copies
of TM, one can build a grid on T3M as follows; see (B553) below.
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e The front-back linear double section (T'(X); X, T(X); X). Take the complete lift
of X across the Down face, and apply the tangent functor to the linear section
(X, X).

e The right-left linear double section (T%(Y);T(Y),T(Y);Y). Apply the tangent
functor to Y and then to T'(Y).

e The down-up linear double section (Z ; A , A ; Z). Take the complete lift of Z across
the Front face, and the complete lift of this across the Left face. Likewise take
the complete lift of Z across the Right face.

As in T?2A, we need to check that (Z , Z ) is indeed a linear section of the Back face.
First, we need to check commutativity of

M —Z . T30

T(p)l lT 2(p)

TM — T2M.

Using Lemma 2T for T2(p) o Jrasr = Jas o T2(p), and that (Z,Z) is a linear vector

field of T2M, that is, T(p) o Z = Z o p, it follows:

T?(p) o E =T%(p) o Jpp 0 T(Z) = Jpr 0o T?(p) o T(Z) = Jpr 0 T(T(p) 0 Z)
= JyoT(Zop)=JoT(Z)oT(p)=ZoT(p).

To check fibrewise linearity, take &1,& € T?M, with T(p)(&1) = T(p)(&) = v, for
veTM. Write § = %al(t) o & = %ag(t) o for ai(t), az(t) curves in TM, with
t= t=

p(ai(t)) = p(az(t)) = m(t), a curve in M, for t near zero, with v = %m(t) o A
t=
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similar calculation as in Section Ehl,

765 6) = Uniot@) (a1 &)
T(p) T(p)

= JruoT(Z) <c;lt(‘”(t) - az(t))‘m)

— (ZZ(al(t) + az(t))‘t_0>

— Jru <06lit (Z(al(t));(;)z(a?(t)» ‘t=0>

= Jru (jtz(al(t))‘ n dZ(GQ(t”L:o)

1=072(p) di

and this completes the proof.

That Z(ai(t) +as(t)) = Z(ay(t)) + Z(as(t)) follows from (Z, Z) being a linear vector
T(p)

field.

That & <Z(a1(t)) + Z(@(t))) ‘t 0 %Z(al(t)) + %Z(ag(t)) o follows as in
T(p) = =

B9

The diagram in (E753) shows the entire grid.

2
T30\ ()

- Z
T(X)

2
Z T*M 7 TM
- (4.53)
Z
T2M M Z
T(Y)
X
VR \
TM - M.

We now calculate the three ultrawarps defined by this grid. To do this, we calculate
the core morphisms of the three linear double sections, and the warps of the six faces.
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First, the core morphisms. These follow in an analogous way as in the example of T2 A,

e The core morphism of (T(X); X, T(X); X) is (X, X).
e The core morphism of (T2(Y);T(Y),T(Y);Y) is (T(Y),Y).

e The core morphism of (Z, 2, Z; Z) is (Z, Z).

To calculate the warps of the six faces, we take into consideration the orientation of
the faces of a triple vector bundle. For the lower faces, by (B):

e For the Front face: Z(Y)—T(Y)(Z) > [Y, Z].
e For the Right face:  T(X)(Z)—Z(X) v [Z, X].

e For the Down face: TY)X)—X(Y)»> [X,Y]

We now calculate the warps of the upper faces.

4.6.1 Upper faces
Back face

The warp of the Back face, for v € TM, is given by

= ~

ZoT(Y)(v) — T*(Y)oZ(v) = Whaa(v) + Oz, (4.54)
T%(p) P2y
As we mentioned, the Back face is the tangent double vector bundle of T2 M 1(3)» TM.

Apply T(Jy) to it, the tangent of the canonical involution Jy; : T2M — T2M. The
resulting double vector bundle is now the double tangent bundle of TM. In fact,
T(Jy) is a triple vector bundle morphism, and maps the Back face of T3M to the
double tangent bundle of T'M as shown in (E53).

T2(p)

T3M » T2M
w&!) N
P2y T30\ T(pra) T2 M
FTM (4.55)
P2y
T(p)

T2 M s TM prM

Jmr k‘

T2 M P TM.
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As usual, from Section ICIT2, the core morphism of (E55) is (Jyz,1d). Hence, applying
T(Jy) to (E353),

T(Jar) (E oT(Y)(v) — T*Y)o Z@)) = Jar(Whack (v))

) + OZ(@)’ (4.56)

Pr2y
Note that T'(Jps) changes the vector bundle structure over which the subtraction of the
left hand side takes place, and o will become — ) Applying T'(Jpr) to the grid

T2(p) T(prm

of the Back face yields the following grid on the double tangent bundle of T'M.
T(Y)

T3M Q T2M
T(pr)

Z1 |Pr2um pT™M | | Z

T2M — P g

Y

Therefore, expanding the left hand side of (E=503),

T(Ja) (E T() o T(Y)o Z@))

= T()(ZoTY )W) — T(A)(TY) 0 Z)(v)). (457)

T(prnr)

At this point we need to show that
T(Jy)o Z = Zo Jy. (4.58)
This we do as follows. First, rewrite the left hand side of (E58) as,
T(Jar) o Z =T(Jar) o (Jpar o T(Z)) = T(Jar) o (Jpar o T(Jar 0 T(Z)))
=T(Jyr) o Jrar o T(Jar) o T*(2).

Rewrite the right hand side of (E53) as,

ZoJy = Jra o T(Jy) o TXZ) o Jy = Jra o T(Jar) o Jpy o T*(Z),

where in the last equality we have used that T?(Z) o Jyy = Jra o T?(Z) applying
Lemma X1, Therefore, it suffices to show that

T(Jm) o Jrm o T(Jnr) = Jrar o T(JImr) © Jrm-
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Take a ® € T3M, and write it as:

dd d

%%%m(tas)u)

u,s,tzO7

where m : (—¢,€) X (—€,€) x (—e,€) — M, a smooth cube of elements of M. Then,

d d d d d d
T(Ja)(®) = = £ ) - 22
(Ja1)(®) dt <JM(ds dum(t,s,u) u,s=0>> t=0 dtdu dsm(t,s,u) s,ut=0
and
d d d d d d
IO @) = Jrse (e Somes] )= 2t sl
so finally
T(ar) (Frar (T (@) = T(an) (2L L, s,u)
MASTM M N MI\ Qudids %Y s,t,u=0
d d d d d d
= = St === Tt 4.
du (JM(dt dsm( 5, ) s,t—0)> u=0 duds dtm( 5, ) t,5,u=0 (4.59)

Similarly,

(Jrar o T(JInr) o Jrm)(®) = (Jrar o T(Inr)) (Jraa (P))
= (a0 T(Jar)) <;i;tjum(t,s,u)

dd d

t,u,szO)

and we see that this is equal to (E229). Therefore, using (EH8), we can rewrite (E-57)
as,

u,t7s:0>
u,t,50> >

d d d
= JTM <dsdudtm(t,8,u)

_ iii (t )
T dudsdt Y

t,s,u=0

AN ] 7 j

(ZoV)0) — (T(V)o2)w)E—(Z,¥](v) + 0,

T(PTM) D2y Z(”) P2 Z('u)
Substituting this into (E=58),
Y, Z](v) + Og(v) = Ju (Wpaek(v)) + ﬁg(v),

Pr2 s Pr2 )
and using that JZQW = id, we obtain

Whack = T([K Z])
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Left face
The Left face is the double tangent bundle of T'M, so we simply apply (8) for the grid

(T(X),X), (Z,2),

—_~—

SO Wiegt = [Z, X].

Up face

For the Up face, using Proposition B222, it follows directly that wy, = T'([X,Y]).

The three ultrawarps
The three core double vector bundles are all copies of T?M, and their ultracore is
™™ — M.

The three core double vector bundles in the usual order (B-F), (L-R), and (U-D), with
the induced grids from the original grid on T3M,

X T(Y) 7
T2M ~—S TM T°M ~—STM T°M S TM
Whack G/ Dwfront Wieft G/ Dwright Wup G{ D Wdown
™ ——= M, ™ ——= M, ™ ——= M
X Y Z

Finally, by (B), the ultracore elements are

Whack 0X — X o wont = T([Y,Z]) o X = X o[V, Z] »[X,[Y,Z]],

Wieit Y — T(Y) 0 Wyignt = [Z, X] oY —=T(Y)o[Z,X] v[Y,[Z X]],
Wup0Z — Z o Waown = T(X,Y))oZ —Zo[X,Y] »[Z,[X,Y]].

We see that in this way we have formulated the three terms of the Jacobi identity. And
applying the warp-grid theorem, we obtain a diagrammatic proof of the Jacobi identity.

4.7 Warps and duality

In this subsection we present Theorem BEZ72, an alternative formula for the warp which
relies on the duality of double vector bundles. And in subsections B2 and B=733 we
verify Theorem B—72 directly for the grids in (9) and in (TZ8).
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4.7.1 Squarecap sections and their pairings
For a double vector bundle D, in Subsection 2273 we encountered its two duals D A
and D fB. We now examine linear sections of these structures. In particular, starting

with a grid (£, X) and (n,Y) on D, we will describe the following two linear sections
on the iterated duals D A *C* and D B *C* of D:

n@z

A linear section (n,Y") of D as in the first diagram of (E60) induces a linear map,

nl_l

DFATC" TS ¢* pABrCr s 4

A A A

M, B—— M, cr—— 5 M.
&_Y/

I

{1

l,:DTA — R
o = (2,n(74(®)))a,

where 74 : D ¥ A — A, see middle diagram of (2282). This map is automatically linear
with respect to D A — A, that is, for &1, Py € D FA with v4(®1) = v4(®2) = a:

(@14 ®2) = (@1 4+ B2, 174 (@1 + 82)))4 = (@14 D, n(a)).a

= (®1,1(a)) 4 + (P2, m(a)) 4 = £y(P1) + £y (D2).

In ([26, Proposition 3.1]), it is proved that ¢, is also linear with respect to the other
vector bundle structure, D ¥ A — C*. We include the proposition and its proof.

Proposition 4.7.1. If (n,Y) is a linear section, then £, : D A — R defined by

© = (@,7(v4(®)))

is linear with respect to C* as well as A, and the restriction of £, to the core of D *A
is by : B* — R.

Proof. If ®1, 09 € D * A with (®1;a1,s;m) and (®2; az, ;m), their sum over C* has
outline (®1 4+ ®9; a1 + ag, k;m), therefore,
C*

ly(@1 3 ®2) = (1 Po,m(a1 + az))a.

Now since (7, Y’) is a vector bundle morphism, for ai,as € Ay,: n(ar1+az) = n(ar) +n(az),
B

therefore
® + ®o,n(ar) +1(az)) a.
(2 4 ®2,m(a1) £1(a2))4
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Using (2X1)) the definition of +, we can write:
C*

0y (®1 & Dy) = (®1,7m(a1)) + (P2,n(az)) = £y(P1) + £, (P2).

Similarly for scalar multiplication. Now given 1 € B, recall by (2=80) the correspond-
ing core element 1) € D * A is given by

<w70bDjl_C> = <wvb>7
for any b € B,,, and any ¢ € C,,. Hence

Ly() = (¥, n(07)) = (1, Y (m)) = Ly (),

where fy : B* — R denotes the linear map ¢ — (o, Y (gp+(p))), for Y € I'B, of
(n,Y). O

Therefore, we can define a linear section of D A *C* — C*, which we denote by "
n':C* — D¥AXC*
k = n'(k) € DTAXC*| .

to be

K

Define n"'(k) € D *A*C*| by defining its pairing with any ® € D *A

((k), ®)cm = £y(@) = (D, 0(V4(®))) a- (4.61)

This 1" is again a linear section over Y € I'B. We use notations such as ‘ on double

vector bundles when the symbol for the base point makes clear which structure is meant.
The corresponding linear function defined by (1", Y) then is,
(rn:D¥A — R
= (3¢ (@), ®)c,
and due to (BZ61), of course £,n = /.

Therefore, we see that there exists a one-to-one correspondence between linear sections
(n,Y) of D — A and linear sections (n",Y) of D ¥ A*C* — C*.

Similarly, there exists a one-to-one correspondence between linear sections (£, X) of
D — B and linear sections (£, X) of D *B**C* — C*, given by

(1), W)cr 1= Le() = (T, E(VB ())) 5, (4.62)

where kK € C* and ¥ € D XB

K

We refer to £ and n"' collectively as ‘squarecap sections.’
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We now transform the pairing | , |into a pairing [, ] between the bundles D**B*C* —
C* and D *AXC* — C*. Given a grid in D, applying [, ] to the sections defined in
(E5T) and (EH2) will give an alternative formula for the warp.

Since D ¥ A ¥ C* and D ¥ A are dual vector bundles over C*, we have the usual
nondegenerate pairing between them. We will use this pairing and the map Z;l :
D*¥B*C* — D*A (see (Z&4)) to define a pairing between D *A*C* and D *B*C*
over C*1

Take elements A € D ¥ B fC* and ¥ € D f A XC* with outlines (A;x, X;m) and
(%;Y, k;m), and define
[A,2] = (Z, 27 () o (4.63)

Equivalently, we can define the pairing (E63) via the map Zgl :DX¥AXC* - DXB,
see (E283), as follows
[A, 3] = (A, Z5' (2)) e (4.64)

Both (E63) and (E64) define the same pairing. Indeed, rewrite the right hand side of
(AB3) using (283):
(2,251 (W)e =125 (0), Z5' (D))

And rewriting the right hand side of (E564) using (2234),
(A Zg! (D)er =125 (), Z5' (2))

so we see that they are equal.

The proof of the next result will take us to the end of the subsection.

Theorem 4.7.2. Let (§,X) and (n,Y) be linear sections forming a grid on a double
vector bundle D. Then

€707 = Ly

Proof. The following outlines may help us to keep track of the various calculations,
D*B 3 Z5' (" (k) —— Y (m)

| L

Note that the minus sign on —X (m) of Z;*(¢"(k)) comes from the fact that Z, induces
—idyg: A — A over M.

D*A> Z M (k) —

-X(m) ——— Kt

9

! Parenthesis: Suppose @ € V* and v € V. Take the usual pairing between V and V*: (p,v) € R.
Let F': W — V™ be an isomorphism of vector spaces. Then we can define a pairing between W and V'
as follows: (w,v) := (F(w),v), for w € W and v € V. This is what we do in this case.
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We can now begin calculations. Start with (E63),

[ (k). (&) = ((k), 25 (€7 (R))) e

=2 )
= —(Z3'(E(K)), n(X (m)))a.
Now using (283), with & = Z;1(¢"(x)), ¥ = Z5'(n"(k)), and d = (X (m)), we

have

1251 (€"(w)), Z5' (" (W)

and this implies that

—(Z3 1€ (R)), (X (m))) 4
=121 (w)), Zg (" () = (Z5" (0 (8)), n(X (m))) -
Returning to the previous calculations
[€7(R), (0] = (25" (€7 (), n(X (m))) A
= 121 W), Zg' " ()l = (Z5 (0 (1), n(X (m)))

(=)

(€18, Z5 () — (Z5 (07 (k) (X (M) (4.65)
25 0 (R), €Y () 5 — (Z5 (07 (), (X (m)) s
= (Z5M (), 6 (m) (X () 5
()

= (Zél(nﬂ(/i)%W(ﬁﬂ?)(m)joe(mﬂB-
Using (PZ7R), we can rewrite the last expression of (E6H) as
(Z5 (0 (K)), w(&,m) (m) joe(mﬁB = (k, W(&m)(m)) = e (),

since 8. (Z5' (" (k))) = k.

In total, we have shown that, for x € C*, [§",7"'](k) = Ly(¢,) (k). And this completes
the proof of Theorem BEZ7A. 0

Note that by comparing (A54) with (E63), we see that (Z5' (" (k)),n(X(m)))5 = 0.
This can be proved directly. To see this, let ® € D A, Wlth outline (®; X (m), k;m).
Then, via (22X3), rewrite <ZBl(n'_'(/<a)),n(X(m))>B as follows:

(Z5' 0 (). (X)) = (@, n(X(m)a— 1B, Z5" (1" (5)) -
= (@ (X (m)a — (), D)
EV (@, (X (m))a — (@, 0(X(m)))a
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4.7.2 Example with T2M

Consider the double vector bundle T2 M and the grid consisting of (X, X) and (T(Y),Y),
as in (d). What are the corresponding X' and T(Y)"? The two duals of T>M are

2m 29 e TP T T TM) s T M

J/pT M Jp JT . lp JCT M JCM (4 . 66)

™ —2— M, M — 5 M, T™ — P M

The double vector bundle T*T'M is the prolongation dual of T?M, in the notation of
[25, Section 9.3]. It is canonically isomorphic as a double vector bundle to T'(7%M)
under the map I:
I:T7(T"M) — T*(TM),
X - I(Z),
such that
(I(Z),mrm = (2 ,m), (4.67)

where 2" € T(T*M), n € T?M, and {{ , )) is the tangent prolongation of the pairing of
TM with T*M, as we saw in (E2). The map I induces the identity map on both side
bundles and on the core vector bundle.

Now, given (T(Y),Y'), we will calculate T'(Y)" using {7y,
KT(Y) : T.(TM) — R, TU.TM 5€&— <€, T(Y)(’U)>TM,
where v € T'M and TyT M is the fibre of T*(T'M) over v € T'M.

The function 7y is linear with respect to both T'M and T*M as noted in general in
subsection EZZ1. Since it is linear with respect to T*M, it defines a linear section of
the dual of the vector bundle T*(TM) — T*M, that is, of T*(TM) *T*M — T*M.
We use I to simplify this.

Take the function
KT(Y) ol : T(T*M) — R.

It follows directly that this is also linear with respect to T M.

Therefore, it will define a linear section ) of the dual of the vector bundle T'(T*M) —
T*M, that is, of the iterated cotangent T*(T*M) — T*M.

Consider Y(¢) € T*(T*M) for ¢ € T*M. Pair this with a £ € T(T*M) with outline
(& @, v;m), where v € TM. Using (EHG1),
D), E)renr = (bpyy 0 1)(€) = {1(§), T(Y)(v)) -

We now need the following result from [28]; see also [25, 3.4.6]. It is valid for an
arbitrary vector bundle A.
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Proposition 4.7.3. Given (§;u(m),v;m) € TA and (X;om,v;m) € T(A*), let p €
['(A) and ¢ € T'(A*) be any sections taking the values p(m) and @, at m. Then

(%, 6 = X(6u) + (L) — v((p, 1)- (4.68)
Using Proposition B-73 and (E67), it follows that
(I(&), T(Y)(v))rar = (dly (), ) (4.69)

This is true for any such £ € T(T*M) so it follows that

D(p) = (dby)(e),
and the linear section in question, (T'(Y)",Y), can be identified with (dfy,Y).
Next consider the linear section (X, X) and the third double vector bundle in (E5G).

As before, the function
b :T(TM) — R.

is linear with respect to both T'M and T*M . Using the linearity over T* M, we obtain a
section of the dual of the vector bundle T*(TM) — T*M; that is, of T*(TM)*T*M —
M.

Again, this is not easy to work with, and in this case we need to use the reversal
isomorphism R which we saw in Example BET2. It follows that

lgoR:T*(T*"M)— R
is also linear with respect to T*M, and defines a section X of the dual of the vector
bundle T*(T* M) — T*M; that is, of the tangent bundle T'(T*M) — T*M.
Then for ¢ € T*M, and any § € T*(T*M) with outline (§;v,;m), with v € TM,
using (AG1),
(X(9),8)r=mr = (g 0 R)(F) = L5 (R(T)) = (R(T), X (v))rn-

At this point, we use the commutative diagram (E=70), in which each map is an iso-
morphism of double vector bundles and (dv)? is the map associated to the canonical
symplectic structure dv on T*M; see [28] or [Z5, p. 442].

T*(T*M) —&— T*(TM)
(dl/)u‘/ 1:7* (470)
T(T*M) ——— T*(TM).

Using R = J* o I o (dv)*, we have
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As before, using (E59),

(I((dv)*(3)), T(X)(v))rar = (dv) () (Ex) = (dlx, (V) (F)) = —((dv)*(dlx), ),

so we see that X = —(dv)#(dlx); that is, it is the Hamiltonian vector field for the
function £x. Denote it by Hy, . Finally,

[T, X pens = (dby, Hy, ) = Ux y)-

4.7.3 Example with T A

In the case of Example ™23, what are the corresponding sections 7'(u)™ and (X )™ ?
Just as in the case of T?M, (T'(u)", i) can be identified with (d¢,,, u).

For (X, X) a more elaborate calculation is needed. Again, we use £ynoR : T*A* — R,
and its linearity with respect to A*. This will define a section of the dual of T*A* — A*,
that is, of TA* — A*. Denote this vector field by ®.

Given k € A*, pair ®(k) € TA* with any ¥ € T*A* which has outline (¥; k,a;m). By
Proposition B, for suitable 2" € T A*,
(®(K), O)ar = (€xn o R)(¥) = (R(W), X (a)) 4 = (27, X" () — (¥, 2)a-. (4.71)

The outlines for the elements involved are:

T*A>R(¥) ——acA TA>XH(a) —— X(m)eTM

| L

A* >k —— m, Ad>a—— m,

T*A* 5V ——ac A TA* S Z —— X(m)eTM

L] L]

A* S K —— m, A* 5 K — m.

Now use Proposition B=773 for the first term of (EZ71). Choose a ¢ € I'A* with p(m) = &,
and a p € I'A with u(m) = a. We can also make the following choice; linear vector
fields of a vector bundle A are in bijective correspondence with linear vector fields on
its dual bundle A* (see [25, 3.4.5]). Therefore, take 2~ to be X+ (,p(m)), where X
is the corresponding linear vector field to X*. Then we can write

(X (o(m)), X (a))) — (T, X (p(m))) a-

= XM (p(m))(6) + XM (u(m)) (4,
= X (m)((0, 1)) — (¥, X (p(m))) 4= (4.72)
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At this point, recall from ([Z44) that for ¢ € T'A*, and for u € T'A,

XH(t,) =1 e C™(A), XM (t,) =ty (u € C™(AY,

v ()
and of course equation (IZ3), the relation between V and v,
(VL (@), 1) = Xl ) = 0, Vx (),
and the latter equation can be rewritten as
oo ) o1 =X, 1) = by 0 ¥-
Returning to (E=72),
(X (p(m)), X (a)) — (W, X (p(m))) a-

= Ly (9(m)) + Lo (1(m)) = X (m) (2, 1)) = (@, X (ip(m)) -
= (0, X (p(m))) -

Finally, we have shown that the pairing between T'(11)"', which we have shown can be
identified with (d/,, ), and (XH)™ which can be identified with (X+, X) is,

(X dey) = XM (0,) = by ()-



180

Table 4.1: Warps and ultrawarps in T2 A.

Back Front | (B-F) core double vector bundle UBF
XH
TA K_—>\ A
~T(Vzu) | =Vzp T<vzm< l Vs (n) —VxVzu
™ — M
~_
X
Left Right | (L-R) core double vector bundle LR
( 1)
TA 4> TM
(ZH XU | (Z,X] | (g0 xm) l >[z x] | —Vizxp— Re(Z, X)(n)
A —> M
Up Down | (U-D) core double vector bundle uup
ZH
A T34
T(Vxp) | Vxp T(Vxn) <h h Vi VzVxu
™M M

|




Appendix A

Additional calculations

A.1 Calculations for Section

A.1.1 Proofs of the equations (B834a), (834H), and (B-34d)
From Paragraph B2, the outlines of Ay and ko are:

A2, kg ——— w13

S
52

E.
es (U

m

Al,2
0y —— | —— 0%

The calculations,

= Owu (0 B uz) = Oy 1g(@i’ngguz) = Ouys Hu
d )‘2_k2 w13 (O §n3 + u2) :0 13 Zt)(@i)’nl"i_zu?) = 0w13 2‘27‘27

o )\ —0(13221—}-3(0 512‘!_3112):OEQI;(@%QEUQ):OGQJ‘SUQ,
e And
- 0 ézQ 2_2(062 1—{—311,2) = O _5(062 1‘;“2)
(
= (e, &@ )27 (O B uz) = (O, 2g%) &(@% + ug) Ocy + u2,

181
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_O O :0 3 :6 )
3231+3( 53;;112) 621_!_3((97711_!_2“2) e H U2

e Finally,

- 0()5*23 1"5_2(062 1"!5“2) = 0Oe, 1“‘,2(062 ;!‘3”2)

A A A (z=z13)
= (0e, 1+3®3 ) + (0c, ) = (0c, 1 0cy) +(®§nl+2uz) =

1,2 1,3

A.1.2 Proofs of the equations (8-384), (33R8H), and (B-38d)

From Paragraph BZ=X7, the outlines of A3 and k3 are:

N\

~2.3
063 > €3

~1,3
A3, kg —— 0g;

N

— 0

S N

E.
02— 'm,

w12

And the relevant calculations,

(00E1 + U3) = Oy + us,
1,2° Om' 23 1,2

e And

A3 5 ks = 06;3 245(663 1—!—2u3) = (Ocs 1J’r2®f’n) 2—5(()83 1+’2u;:,)

(0y 5 00s) (@ - ws)'

o )3 | ks = Ouyy + (01 Q—SU;J,) =0 ;;u?,,
° —Ow12 (0E2+U3):0 QZ—EU&
e And

A3 v ks = 063,33 145(663 147—2u3) = (0, 1472@7?;1) 14’—3(663 1+72u3)

= (0, +,00) 4@ ) =

° (O E2+U3)—Oe3+u3

8312 m

O, + ua2.
1,3

063 + usz,
1,2
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A.1.3 Calculations for u;

ZYX—YZX and XZY

1,2 1,2

XYZ

Recall from Paragraph B2, that

IYX—YZX = Oel , + A1, XZY —XYZ = ()6, + k1.
1,2 1,3 1213

1,2

)

Using these, we can write:

(ZYX—YZX)—(XZY — XYZ) = (0cy » + A1)

/
1,2 1,3 1,2 2937 13 2 g

2.3 1,3
= (061 ;!?3061) 23 Owlz _t_ ul)

That 0., 14}’ uy = Oy, 2+3 uy follows similarly as (2=33). And this proves (B=314).

)

About (B331H):
(ZYX, YZX) | (XZY | XYZ) _ Oy 1 20) 40, 4 1)
= (()rwz 2-3()(/1 2) 1—!— ()\1 7]”)
(m),(B=m) - A A
— 0( > ()u 12 OLL
< _fr)) _)1+’3( 23 t“l)

= (0w12 '3 szs) 1‘2(062 'f_ ul)

ZYX—YZX and XZY —XYZ

1,3 1,3

Again, from Paragraph B2Z2, we have:

ZYX

YZX = O, , + YR XZY - XYZ = 0 s k1.

1,3 1,3
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Therefore, we see that

(ZYXI—BYZX) 172(XZY o XYZ) = (Oey 4 - A1) 1’2(()6/1 ath k1)
— (0“”2113)12%1—1{1)
(=G, - 0-uiy) A (e, J,rul)
= (0e, A Ocy ) ;5(0—1013 h uy)
= Oy 2—!—3@_1”13 1,24/_273 w1

and this proves (BZ314).

Note that we used: O, ,

= f)el + 0_w,5- This requires some explanation. Recall
2,3

0

!
; €1,3

that by hypothesis (B28):

/ n1,3 / n1,3
€13 €13= 02" + wqs €13 —€1,3= 07 + wqs.
3 Ey et Es3 ’ 3 E3 ©s Ey

As in (B22), taking the difference of €] 3 and e; 3 the other way around, the corre-
sponding core element is:

/ n1,3 / n1,3
el13—e;3=0"4(—1) - wys e13—e;3=0"4+(—1) - wis
~ B 1,3 el ES( >E3 ’ > By 1,3 es3 El( )E1 ’

and since wig € Fh3 is in the core of the Right face, the two scalar multiplications over

Es5 and over Ej coincide, hence we may denote by —wi3 := (—1) LW = (—1) 5w
1 3

Therefore, applying (2220):

081,3 17’206/1’3 = 061,3 E—le’l’3 = 0()2713 ;3(71) 5 wis O, 2"50(—1) 5y wiz O, 2—50—1013
Similarly, applying (2=41):
061,3 ;S 06/1,3 = Oe, 1"{7'2 0—wy3- (A'l)

Finally, note that

(_1) 2:3 w1z — O(fl)E-B w1z 0(71) 5 w1z (_1) 1;2 0w13 = O—wls'

Writing:

061,3 17’2 06/173 = 061 ;'73(_1) 2;3 0w13 = 061 - 0w13a

is not particularly useful in this case.
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About the last equation (BZ3Id) of this kind:

(ZYXYZX) X2 L XYZ) = (e 0 O k)
= (0(f|.s_)-30(/| §>—!_()‘127k1)
(@),(83m) - A -
= <0f’:; ;LZ U*U I:s) 1—5 (Ollz3 + Ul)

) ) )

Relevant diagrams

For completeness, we include the following diagrams.

ZYX - YZX » 053 XZY -~ XYZ Oc;’
6273E_€2 3 _— OFRS 6273 76/2,3 B 0ﬁ3
o
€1,2 \ l el €12 > e
€g —————— m, \ eg ——————— m,
ZYXYZX s e1s XZY - XYZ el s
623*6’23 — €3 623*6’23 — €3
Es 7 Es ™
ﬁéf > eq 6;’12 e

T N \m \

FE
02— ',

A.1.4 Calculations for wu,

XZY —ZXY and YXZ—YZX
1,2 1,2

From Paragraph B=22 we have:

>
>

XZY —ZXY =0y _ + Ao, YXZ

/ YZX = + ko.
1,2 12933 1,2 1,2

N
w
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Therefore,

(XZY — ZXY)—(YXZ

> Y ” YZX) = (O 24% A2) —(0c, , 2+3 k2)

2,3
= (0“/1;2 E()(;Lz) 2—2 (Ag;kg)

)

0_wyy + Ocy Oe.
( 12 l—‘: _)2—!_3( rzl—SUQ)

= (082 2‘!})062) _E(G*wm 2"!'3)“2)

17
(z=z12) " .
= 0 0— ,
“ 1+3( e 1,3*/—2,3 v2)
and this proves (B3354d).
About (B335H):
(XZY 2 ZXY) 173(YXZ o YZX) = (05’1,2 ;’—3)\2) 1—73(06172 2—1?5 k2)
- (()(G-QEU('“)Q_!—?)(/\QI;]{Q)
(),(B=13) A A
= (0—wys 2+ O, ) 2+3 (Owys 2—‘1-3UQ)
= (Owls 2‘!’3 O*wm) 2‘!’3(061 2‘!?3 u2)'
Equations 06/1‘22—7306172 = 0_wp, 1—1—3()82, and 063’21773061,2 = (A)_u,u?—l—gf)e1 follow as in

)

page X4, in the previous subsection.

XZY —ZXY and YXZ—YZX
2,3 2,3

) )

From Paragraph B2 we have:

XZY 23 XY = 0@2,3 1—!—2 A9, YXZ 2s YZX = ()6,2,3 e ko.
About (B3354):
(XZY 23 ZXY) 172(YXZ 23 YZX) = (062,3 1+,2 A2) 7’2(0612’3 e k‘2)
= (()(_) 3 2()6/ 3,)> ]?B(AQ 12 k?)
(=n),([E=1m) - A A
= Ow-- Oe, 0 ‘
( 23 l+$ ,_) 1+72( €2 1+JUQ)
= (062 1"!_2 662) 1"!_3(61023 1"!_2 UQ)
(=Z1m)
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Note: At this point, we make the following comment. Since XZY 03 ZXY and YXZ 03 YZX
have the same Right and Down faces, we can use equations (2=35), with e = XZY 3 ZXY
and ¢ = YXZ —YZX. From (Z=33); ’

, A
e—e =k+0¢,,
1,3

)

and in this case, g1 2(e) = q12(¢') = 0,2, so

e—e€ =k + 0,
1,3

)

and comparing this with (B235d), it follows that

k= 0’(1123 + ug € E23,1
1,2/1,3

The second difference of e and €', from (EZ35):

, A
e—e =k+ 0 ,,
1,2 -

)

we know that k = Oy, + u2, and in our case g1 3(e) = g1 3(¢') = €} 3 5 L3 therefore,
1,2 " E3

=0 + 0., SO
’1111312 €3

)

by (Z241) we have that (A)e/1 .

—e1,3
E3

~

€ 13 ¢ = (0w23 1—!_2 u2) 1"3_2(01013 1"3_2 Oes)a

and this just a rearrangement of (B=35d).

Alternatively, proving (B=35d) the usual way:

(XTY [ ZX) (K2 YD) = (O ) (O, R
- ()(3‘1%[)’/’»?‘)$(A217A2)
(=), (B=324d)
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Relevant diagrams

Again, we include the following diagrams.

XZY —ZXY ————— el3—e3
1,2 B
S
025 l 05
6/172 e1 h
\ : \ ke

XZY —ZXY —— €} s—e1 3
2.3 2 By

YXZ - YZX ——— ¢i5 —eig
1

RN N

A2

02 | > 0
€1,2 l > €1 JV

€9 > m,

€23 l > es3 6’2’3 l es3
Oc3” Op o 0% 05
€3 > m, \ () \ m.
A.1.5 Calculations for us
YXZ . XYZ and ZYX . ZXY
In Paragraph B2, we established that
YXZl_,?)XYZ = 06/1’3 2—1:9) A3, ZYX1—73 ZXY = (¢, 4 24?3 ks.
Write:
(YXZ i XYZ) 2—3(ZYX I ZXY) = (Oef1 s 2—1—3 A3) 2—3(061 3 2—1—3 ks3)
= (M_%HUM;);ryg()\zsz?h)
(), (B=3=3)
= (O, 1450(33) 2—5 (Oeq + us3)
- (063 ;_3663) 1+2 OUJ13 +3U3)
lm ~ N
= 0 0
es3 1’2( w13 1,2"}_2,3 U3),

and this proves (B339d).
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About (B39RH):

(YXZ - XYZ) - (ZYX  ZXY) = (O M) 0 - ks)
= (A)r/.sl_Q“m);g)(Adikd)
EDLZD (00 + O0y) o (O, o+ us)
= (O i Ouwss) A (Oc, 5 u3)
YXZ, XYZ and ZYX ZXY

Again, from Paragraph BZ22 we have:

YXZ 2s XYZ = 06/273 1—1—3 A3, ZYX 2s ZXY = Ocy 5 1—1—3 ks.
Write:
(YXZ 2a XYZ) 1’3(ZYX 2s ZXY) = (061273 5 A3) 1—73(06273 1+3 ks3)
= (0(’,.’_}_:5 17; ()(fz.:;) 1—!_ ()‘3 Td kd)
(m)i) N A ~ )
- (U*lt'z:a 1+_> ()rf:s) 1"!_3 (083 l+2 LL3)
= (063 _!_ 063) 1'!'2(6*1023 ‘EU?))
(zz=a) Ocy +(0_uy +  u3),
’ 1,2 3 1,2/1,3
and this proves (B=39d).
Finally, for (B239d),
(szl3 XYZ) 12(2\()( > ZXY) = (0cy, A Ag)E(OeQ,S 14}’ ks)
= ( )(/z 3 U(‘.ﬁ:&) 1—2 </\3 12 k3)
=m),
( ):( ) (07{1 23 + 0( )) l—i_3 <OUY12 + U3>
= (O*wzs + Ow12) + (062 + U3)
And again (3612’3 » (A)ez3 = 0y 1—!—2()63, and 66'2,317726'323 = 0y 14—3(),32 follow as in

)

page [X4.
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Relevant diagrams

Finally, the diagrams in this case are:

YXZI—SXYZ — €3 IYX —ZXY ——— e13
o ey
6172;16/172 —|—ea 61,2;16/1,2 — s
0 05 ———m,
<13 .
YXZ - XYZ ——— 0¢; ZYX - ZXY ——— 0cf]
61,2E_2€/172 —_— | OWE; 6172526/1,2 0y \

A.2 Functions on A and more on R

A.2.1 Classes of functions on A — M

As mentioned in Section I3, to define either a vector field or a tangent vector on a
vector bundle A % M , it is enough to check how it “behaves” when applied to linear
and pullback functions of A. It’s not quite true to say that these classes of functions
generate C*°(A). What is true is that one can write any 1-form ® € Q!(A) as a (not
unique) sum of d/, and of ¢*df, where p € ’'A* and f € C*°(M).

The following is Proposition 9.4.1, [24].

Proposition A.2.1. For (®; X, p(m);m) € T*A, a covector at X € Ay, and any
@ € TA* which takes the value p(m), there exists w € QY(M) such that

D = dly(X) 4(g"w)(X).

Proving that two tangent vectors (or two vector fields) &;,&, € T, A are equal, is
equivalent to checking that for every covector ® € TrA: (®,&) = (®,£). And by
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Proposition B2, it is enough to check that
<d€(,0a€1> = <d£<p7€2>a VSD € ]-_‘A*’ (A2)

and
(("w, &) = (¢"w, &), Yw e (T*M). (A.3)

We can directly reformulate (A=) to:

§1(ly) = &2(Ly), Vo e TA™

Locally any 1-form on M can be written as a linear combination of differentials of
functions f € C°°(M), so we can reformulate (BA=3) as

(q"(df), €1) = (a"(df), &2),

and since ¢*(df) = d(¢* f), rewrite the last equation as

§1(foq) =&(foq).

And this is why linear and pullback functions are of special importance.
A.2.2 Core morphism of R

Recall by Proposition (211),

(2,01 = (R(F),6)a+ (. 2) ax,

for elements

TASE—— v eTM TA* > X —— vpeTM
A>ayg — m, A* D pg — m,
T*A 5 R(3) —— g0 € A* T*A* 5§ — ag € A

A>ag — m, A*B@D}—>m.

If § is a core element of T*A*, i.e.,

F=wr—> 04

oA ——m

m
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which means that 2 will have outline:

X — v

L

A*
04— m,

therefore, we can write 2~ = T(047)(v) + 7, for 77 a core element of TA*. By (Z=0), it
A*

follows that,

(8, 27)a- = @,T(OA*)(U);@A* = (w,v).

The corresponding £ € T'A will have outline

|

07 ——

—

S e

I

hence we can write & = T(04)(v) +a, for @ a core element of TA. Then, since R is
A

a double vector bundle morphism, it will map core elements to core elements, hence
R(w) = R(w), and again from (2X0),

(R(3):€)a = (R(w),T(0")(v) ta)a = (RBw),v).

For 2" = T(04")(v) ;11— 7 and & = T(04)(v) —A—d, we can write:

d d
Z = Sm)ten)| &= Sm),ta)|
where %m(t) = Hence,
t=
_d _dp _
(2w = 2t nt-a)|_ = =t2ma)_ =0.

Substituting everything into (E):
0= (w,v) + (R(w),v) = (w+ R(w),v)

and this is true for all v € T, M, therefore, R(w) = —w.
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