
Efficient Domain Partitioning

for

Stencil-based Parallel Operators

Gaurav Saxena

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Computing

August 2018

The candidate confirms that the work submitted is his/her own, except where work which

has formed part of a jointly authored publication has been included. The contribution of the

candidate and the other authors to this work has been explicitly indicated below. The candidate

confirms that appropriate credit has been given within the thesis where reference has been made

to the work of others.

Some parts of the work presented in Chapters 1, 4, 5 and 6 have been published in the following

articles:

Saxena, G., Jimack, P.K. and Walkley, M.A., 2016, July. A Cache-aware Approach to Domain

Decomposition for Stencil-based Codes. In High Performance Computing & Simulation

(HPCS), 2016 International Conference on (pp. 875-885). IEEE.

Saxena, G., Jimack, P.K. and Walkley, M.A., 2017, December. A Cache-aware Approach to

Adaptive Mesh Refinement in Parallel Stencil-based Solvers. In High Performance Com-

puting and Communications; IEEE 15th International Conference on Smart City; IEEE

3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS),

2017 IEEE 19th International Conference on (pp. 364-371). IEEE.

Saxena, G., Jimack, P.K. and Walkley, M.A., 2018. A Quasi-cache-aware Model for Optimal

Domain Partitioning in Parallel Geometric Multigrid. Concurrency and Computation:

Practice and Experience, 30(9), p.e4328.

The above publications are primarily the work of the candidate.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis maybe published without proper acknowledgement.

©2018 The University of Leeds and Gaurav Saxena

Acknowledgements

It has always been my dream to become a good researcher and I could not have chosen a better

path than to pursue this PhD as the first step to achieving this goal. In this long, tough and

fruitful journey, it has been an absolute honour and pleasure to have worked under the super-

vision of Professor Peter K. Jimack and Dr. Mark A. Walkley. Together, they form a perfect

team. Besides being brilliant researchers, they are amazing human beings who make every effort

to understand the needs and problems of the student. Though one’s imagination is unlimited,

it is not possible for me to imagine better supervisors than them. From the bottom of my heart,

I profusely thank them for their guidance, care and encouragement. Thank you for letting me

pursue my dream and I really hope this journey blossoms into a life-long academic collaboration.

My heartfelt thanks to Dr. Karim Djemame for taking out the time for my yearly progress

meetings and supplying some extremely interesting ideas. His constructive feedback has helped

me to expand the scope of the future work outlined in this thesis. My thanks to Dr. Brandon

Bennett for very timely approving the travel grants for conferences. From the day I walked in,

Judi Drew has constantly helped me to adjust to the life of the department. The number of

times she has helped me book tickets, register for conferences and forwarded changes in flight

schedules, qualifies for a world-record. Thank you to Dr. Peter Bollada for all the interest-

ing conversations from across the table. His pleasant personality, jovial nature and helping

attitude is certainly contagious. Despite the deficiency of grey cells in my right brain, I have

been able to enjoy many conversations with Dr. Thomas Ranner. Beyond doubt, he is an

excellent academician and person. Many thanks to Mark Dixon for the constant support he

offered regarding the hardware and software on ARC2/ARC3. His knowledge of hardware is

unparalleled. Thanks to Martin Callaghan for making all the training sessions extremely inter-

esting. I am very grateful to Ann S. Almgren for taking out the time to meet me in the SIAM

conference in Atlanta, US, to solve my doubts regarding BoxLib. Thanks to Weiqun Zhang for

helping me understand some specific subroutines in BoxLib. Meng-Huo Chen (Alan) happily

shared his PhD experience and wisdom with me whenever we had the time to look away from

the screen. I really enjoyed these breaks. My thanks to all the anonymous reviewers for their

time and suggestions which helped us to improve the work in this thesis. Many thanks to my

teachers at the University of Edinburgh who sparked my monotonically increasing interest in

High Performance Computing. A big thanks to Dr. Sanjeev Singh and Dr. M. K. Das for

helping and having faith in me in the worst of times. I am very grateful to Sanjay Batra sir,

Dr. Harmeet Kaur, Dr. Baljeet Kaur, Negi sir, Anita maam, Dr. Manoj Aggarwal, Sanjay sir,

Ajit ji, Amit ji, Bharat ji and Shakti ji for accepting me as a member of the HRC family. My

stay at HansRaj college was one of the happiest times I ever had and it was because of you all.

Thanks is a very small word for my wonderful friend Sabby who, beyond doubt, is the finest

human being I ever came across. My amazing friend Sachin taught me the value of hard work

and set an example on how to survive despite extreme adversities. Thanks to my good friend

Anshu whose amazing sense of humour and spiritual knowledge is beyond this realm. Swap-

nil Laxman Gaikwad has constantly shared, advised, helped and encouraged me in this tough

journey and forever will I remain indebted to him. I profusely thank my super-amazing friends

Rahul Arora, Divya Jain, Rashmi Shakya and Pranav Kumar Singh who have a golden heart

and a hand that is always ready to help. I must thank Swapnil Sahu for his timely help and all

the good times we shared. A super big thanks to Kanika Malik for being a wonderful friend and

making time to meet me every time I was about to start a new session at work. Thanks to Jyoti

Balwani for reminding me again and again that I am a good person. My wonderful childhood

friend Vasuda Arora, who has been a constant source of support, deserves a big chunk of the

thank-you cookie.

Little did I know that my grandfather’s predictions about my education would turn out to

be true. A big thanks to him for gifting my brother and me with a never-ending supply of

books. I thank my supremely talented uncle who has always been an amazing friend to me.

Love and thanks to my nephews for loving me even when I have not been able to do anything

for them. A huge thanks to my sister-in-law for completing our family and making me feel at

home during my visit. A big thanks to my brother for his intermittent yet excellent streams

of advice and for easing my financial burdens. My grandmother forged my character and I am

thankful to the universe that I was loved by the most noble soul ever to walk on earth. Thanks

is a small word for my father who stood like a rock in front of me when I needed him the most.

Last and the most, I take this opportunity to thank my mother who was with me every step of

this journey. If I have achieved anything in this life, it is because of her. I have not met anyone

as learned and educated as her. Although she is too humble to accept but she has an honorary

doctorate in a very rare subject called . . . Life.

Abstract

Partial Differential Equations (PDEs) are used ubiquitously in modelling natural phenomena.

It is generally not possible to obtain an analytical solution and hence they are commonly dis-

cretized using schemes such as the Finite Difference Method (FDM) and the Finite Element

Method (FEM), converting the continuous PDE to a discrete system of sparse algebraic equa-

tions. The solution of this system can be approximated using iterative methods, which are

better suited to many sparse systems than direct methods.

In this thesis we use the FDM to discretize linear, second order, Elliptic PDEs and consider

parallel implementations of standard iterative solvers. The dominant paradigm in this field

is distributed memory parallelism which requires the FDM grid to be partitioned across the

available computational cores. The orthodox approach to domain partitioning aims to minimize

only the communication volume and achieve perfect load-balance on each core. In this work,

we re-examine and challenge this traditional method of domain partitioning and show that

for well load-balanced problems, minimizing only the communication volume is insufficient for

obtaining optimal domain partitions. To this effect we create a high-level, quasi-cache-aware

mathematical model that quantifies cache-misses at the sub-domain level and minimizes them

to obtain families of high performing domain decompositions. To our knowledge this is the first

work that optimizes domain partitioning by analyzing cache misses, establishing a relationship

between cache-misses and domain partitioning.

To place our model in its true context, we identify and qualitatively examine multiple other

factors such as the Least Recently Used policy, Cache Line Utilization and Vectorization, that

influence the choice of optimal sub-domain dimensions. Since the convergence rate of point

iterative methods, such as Jacobi, for uniform meshes is not acceptable at a high mesh res-

olution, we extend the model to Parallel Geometric Multigrid (GMG). GMG is a multilevel,

iterative, optimal algorithm for numerically solving Elliptic PDEs. Adaptive Mesh Refinement

(AMR) is another multilevel technique that allows local refinement of a global mesh based on

parameters such as error estimates or geometric importance. We study a massively parallel,

multiphysics, multi-resolution AMR framework called BoxLib, and implement and discuss our

model on single level and adaptively refined meshes, respectively.

We conclude that “close to 2-D” partitions are optimal for stencil-based codes on structured

3-D domains and that it is necessary to optimize for both minimizing cache-misses and com-

munication. We advise that in light of the evolving hardware-software ecosystem, there is an

imperative need to re-examine conventional domain partitioning strategies.

Contents

1 Introduction 1

1.1 Our Focus . 2

1.2 Thesis Contribution . 5

1.3 Thesis Outline . 6

2 Background and Related work 7

2.1 Partial Differential Equations . 8

2.2 Discretization . 10

2.2.1 Finite Difference Method . 11

2.2.2 Finite Element Method . 12

2.2.3 Other Schemes . 14

2.2.4 Stencils and Sparse Matrices . 15

2.3 Solution of Sparse Linear Systems . 17

2.3.1 Direct methods . 18

2.3.2 Iterative methods . 18

2.3.2.1 Jacobi . 19

2.3.2.2 Gauss-Seidel . 20

2.3.2.3 Other Iterative Methods . 22

2.3.2.4 Multilevel Iterative Methods . 22

2.4 Parallel Computing . 23

2.4.1 Models for representing Parallel Computation 24

2.4.2 Parallel Performance . 25

2.4.3 MPI . 26

2.4.4 Hybrid Programming using MPI and OpenMP 26

2.4.5 Domain Decomposition/Domain Partitioning 27

2.4.6 Sub-domains . 32

2.4.7 Overlapping Communication with Computation 32

2.5 Multigrid . 33

2.5.1 Type of Multigrid methods . 34

i

ii CONTENTS

2.5.2 Parallelization and Coarser Grids . 34

2.6 Adaptive Mesh Refinement (AMR) . 36

2.6.1 Structured and Unstructured AMR . 36

2.6.2 Software Packages for SAMR . 37

2.6.3 BoxLib . 37

2.6.4 Error Estimation . 38

2.7 Cache Memory . 39

2.8 Stencil Codes: Metrics and Optimization . 42

2.9 Summary . 45

3 Test Platform: Hardware and Software 47

3.1 Architecture . 47

3.1.1 ARC2 . 49

3.1.1.1 Theoretical FLOPS . 51

3.1.1.2 Theoretical Memory Bandwidth of ARC2 node 51

3.1.2 ARC3 . 51

3.1.2.1 Theoretical Memory Bandwidth of ARC3 node 53

3.2 Software . 54

3.2.1 ARC2 Compilers and MPI Implementations 54

3.2.2 ARC3 Compilers and MPI Implementations 54

3.2.3 Other Tools . 55

4 Cache-aware Domain Partitioning 57

4.1 Introduction . 57

4.2 Motivation and Contribution . 59

4.3 The Problem . 60

4.3.1 Notation and Reference Figure . 63

4.4 Creating a Model for Prediction . 68

4.4.1 Parallel Numerical Solution of a Discretized PDE 69

4.4.2 Reiterating Assumptions . 70

4.4.3 Dependent Planes . 71

4.4.3.1 Z-Plane . 71

4.4.3.2 X-Plane . 74

4.4.3.3 Y-Plane . 75

4.4.4 Independent Computation . 77

4.4.5 Packing, Unpacking and Updating . 78

4.4.6 Minimization of Cache-Misses . 78

4.4.7 Interpreting the Model . 80

4.5 Test Problem . 81

4.6 Experimental Results . 82

CONTENTS iii

4.6.1 Performance Metric . 83

4.6.2 Single Node . 83

4.6.2.1 Compiler Optimization . 85

4.6.2.2 Cache-Misses . 88

4.6.3 Multiple Nodes . 90

4.6.3.1 Weak Scaling . 90

4.6.3.2 Strong Scaling . 93

4.6.3.3 Communication Times of Planes 97

4.6.3.4 Planes Update Cache-Misses . 100

4.6.3.5 Increasing Bandwidth-per-core 100

4.6.3.6 19-pt Stencil . 103

4.7 Generality - Revisiting Assumptions . 105

4.7.1 PDE class . 105

4.7.1.1 Parabolic PDEs . 105

4.7.1.2 Non-linear PDEs . 108

4.7.2 Boundaries . 108

4.7.3 Structured Meshes and Decomposition . 109

4.7.4 Discretization . 110

4.7.5 Iterative Methods . 111

4.7.6 Stencil . 112

4.7.7 Data Layout . 113

4.7.8 Data Type . 113

4.7.9 Sub-domains and MPI processes . 114

4.7.10 Overlapping Communication with Computation 114

4.8 Summary . 115

5 Adaptive Mesh Refinement 117

5.1 Introduction . 117

5.2 Motivation and Contribution . 119

5.3 AMR . 119

5.4 Introduction to BoxLib . 123

5.5 Box Distribution . 125

5.5.1 Fab Numbering and Process Numbering 126

5.5.2 Implementing an MPI Cartesian Topology 126

5.5.3 Multiple boxes on a single core . 128

5.5.4 Varying shape of box within sub-domain 130

5.6 AMR in BoxLib . 131

5.6.1 Note on various control parameters . 131

5.7 Test Problems . 132

5.8 AMR Implementation . 133

iv CONTENTS

5.8.1 Set-up . 133

5.8.2 Solve . 135

5.8.2.1 Solution update . 136

5.8.2.2 Interpolation . 136

5.8.2.3 Restriction . 136

5.8.2.4 Plotting the solution . 137

5.8.3 Changes to the library . 137

5.9 Experimental Results . 138

5.9.1 Single grid timings . 139

5.9.2 Single grid cache-misses . 141

5.9.3 AMR timings . 146

5.9.4 AMR cache-misses . 149

5.9.4.1 Macroscopic view . 149

5.9.4.2 Microscopic view . 149

5.10 Difficulties in validating the hypothesis . 150

5.11 Summary . 152

6 Multigrid 153

6.1 Introduction . 153

6.2 Motivation and Contribution . 154

6.3 Multigrid . 156

6.3.1 Notation used and Multigrid Steps . 157

6.3.2 2-grid Algorithm . 157

6.4 Inter-grid Transfer Operators . 158

6.4.1 Restriction . 158

6.4.2 Interpolation or Prolongation . 159

6.4.3 Multigrid Algorithm . 161

6.5 Terminology and Problem Description . 162

6.5.1 Notation Recap . 162

6.5.2 Brief Description of the Problem . 162

6.5.3 Test Problem . 163

6.6 Cache-Misses Minimization Model . 165

6.6.1 Extending the Model . 166

6.6.2 Data Streams and Inter-grid Operators 169

6.6.2.1 Restriction . 169

6.6.2.2 Interpolation . 170

6.6.3 Pruning the Topology Search Space . 170

6.6.4 Factors affecting sub-domain dimensions 170

6.7 Dynamic Cache Tiling Heuristics . 175

6.7.1 H1: based on WSS . 175

CONTENTS v

6.7.2 H2: based on number of working planes 175

6.7.3 H3: based on Data Streams . 176

6.8 Experimental Results . 176

6.8.1 Single Node . 177

6.8.1.1 Weak Scaling the IC . 177

6.8.1.2 Compiler Switches and Heuristic Tiling (H1) 182

6.8.1.3 Working Planes Set Size (WPSS) 183

6.8.1.4 Communication times of Dependent Planes 184

6.8.1.5 Combining IC and DP timings 187

6.8.1.6 Multigrid . 188

6.8.2 Multiple Nodes . 191

6.8.3 19-pt Stencil . 200

6.9 Model Accuracy . 204

6.10 Summary . 208

7 Conclusions and Future Work 209

7.1 Conclusions . 209

7.2 Future Work . 211

Appendices 215

A Eager and Rendezvous Protocols 217

B BoxLib - Configuration and Profiling 219

B.1 Deallocating variables for program re-run . 219

B.2 Compiling on ARC3 . 220

B.3 Profiling BoxLib using Scalasca on ARC3 . 220

B.4 MPI libraries for OpenMPI and IntelMPI . 221

B.5 Compiling with Intel compiler . 221

vi CONTENTS

List of Figures

1.1 Serial Control Parameters (SCPs) Vs Parallel Control Parameters (PCPs): Our

focus is on Cache-misses and Domain Partitioning 3

1.2 Macroscopic view of our research, grey boxes and red arrows show area of focus,

FDM (Finite Difference Methods), FVM (Finite Volume Methods) and FEM

(Finite Element Methods) are discretizations schemes, PARAMESH [1], Chombo

[2], Uintah [3] and BoxLib [4] are parallel Adaptive Mesh Refinement (AMR)

frameworks . 4

2.1 Finite Element unstructured mesh covering a square 2-D domain 13

2.2 Common stencils in 2-D . 16

2.3 Common Stencils in 3-D . 16

2.4 Default MPI DIMS CREATE() algorithm used by OpenMPI 30

2.5 Typical memory hierarchy with size and access times in a server system (repro-

duced from [5]) . 40

3.1 Symmetric Multiprocessor (SMP) or Uniform Memory Access (UMA) multipro-

cessor, each processor or core has uniform latency to main memory and a shared

cache. 48

3.2 Distributed Shared Memory (DSM) or Non-Uniform Memory Access (NUMA)

architecture where the SMP’s can access the distributed shared memory through

an interconnection network, non-local memory access is non-uniform 49

3.3 Memory hierarchy of an E5-2670 CPU processor and Quick Path Interconnect

(QPI) . 50

4.1 A Vertex Centered (VC) problem of size Nx ×Ny = 5× 5, having 4× 4 internal

mesh points is partitioned among 4 cores. The result is a (Px + 2)× (Py + 2) =

(2 + 2)× (2 + 2) sub-domain with 4 original ’C’ cells and added ghost layer cells

’G’. 61

4.2 Domain decompositions corresponding to three virtual process topologies 62

4.3 Traditional optimization (solid arrows), our approach (dashed + solid arrows) . . 62

vii

viii LIST OF FIGURES

4.4 A 3-D sub-domain having an Independent Compute (IC) layer, Dependent Planes

(DP) layer and Ghost/Halo layer, indexes of the sub-domain dimensions includ-

ing the ghost layer are shown . 64

4.5 7-pt Stencil for updating the central red point . 65

4.6 A 7-point stencil in 3-D. The central point is updated according to prescribed

weights associated with, and values of the neighbouring points. 65

4.7 Process Grid Decomposition and Coordinate Axes (a) Shows process ranks in X

decomposition with MPI process coordinates (b) Only Y direction is decomposed

(c) Only Z direction is decomposed (d) General decomposition in all 3 directions 66

4.8 Row-major and Column-major data layout . 67

4.9 High level iterative parallel PDE solver, e.g. Jacobi 69

4.10 Unweighted Jacobi iteration kernel, alpha=constant, new and old are 3-D data

arrays . 70

4.11 Dependent Z TOWARDS U (blue shaded vertical rectangle), adjacent points

distance (thick solid red line ≈ Pz) and boundary (unshaded circular points). . . 73

4.12 X-plane update: Data elements are contiguous (solid thick red line) except at

boundary (dashed thick red line) . 76

4.13 Dependent Y LEFT plane (blue vertical shaded rectangle) and distance between

two adjacent points (solid red thick line). 77

4.14 Test problem illustration, Vertex centered, domain Nx × Ny × Nz = 3 × 3 × 3,

blue balls show Dirichlet boundaries and red balls show the unknowns 81

4.15 Time/iteration Vs Topology for 16 processes (single SMP node of ARC2) on

problem size=2573, ≈ 1048576 cells/process . 84

4.16 Time/iteration Vs Topology for 16 processes (single SMP node of ARC2) and

varying problem sizes . 86

4.17 Weak Scaling for 8, 64, 216, 512 cores, Cells/core ≈ 106, Iterations=10000, LCE

(Least Communication Elements), best topologies (4×2×1, 16×4×1, 6×12×3

and 8× 32× 2) Vs (2× 2× 2, 4× 4× 4, 6× 6× 6 and 8× 8× 8), respectively. . 90

4.18 Weak Scaling for 16, 128, 432, 1024 cores, Cells/core=1048576, Iterations=10000,

LCE (Least Communication Elements), best topologies (4 × 4 × 1, 16 × 8 × 1,

12× 12× 3, and 16× 32× 2) Vs (4× 2× 2, 8× 4× 4, 12× 6× 6, and 16× 8× 8),

respectively. 92

4.19 Topology Timings for two runs of Problem Size=10253, P=1024 94

4.20 Non-equivalence of tiled sub-domain and multiple sub-domains 96

4.21 Cores in socket 0: blue balls, Cores in socket 1: red balls, Z-planes: very thick,

red lines, Y-planes: thick, black, dashed lines, X-planes: thin, blue, dotted lines,

Decomposition: 2 × 2 × 2, QPI present on lines that connect different sockets,

Mapping: --bind-to-core --bysocket . 98

LIST OF FIGURES ix

4.22 Average time taken to send X, Y and Z planes of same size with cores=8

(topology=2× 2× 2) . 99

4.23 Average time taken to send X, Y and Z planes of same size with cores=64

(topology=4× 4× 4) . 101

4.24 Cache-Misses for updating solution of Z/X/Y planes of equal sizes with Cores

P = 64, planes of size 64× 64× 4 bytes . 102

4.25 Cache-Misses for updating solution of Z/X/Y planes of equal sizes with Cores

P = 64, planes of size 128× 128× 4 bytes . 102

4.26 Topology Timings for 64 cores, Problem Size=401×401×401, Iterations=10000,

Cells/core≈ 106 for varying Memory Bandwidth per core 103

4.27 19-pt stencil used in unweighted Jacobi, new and old are 3-D data arrays 104

4.28 Time per iteration (seconds) of topologies using a 19-pt stencil when P = 16 with

varying data sizes on a single node of ARC2, Intel compiler 17.0.1, Optimization

level: -O2, OpenMPI 1.6.5 . 106

4.29 Time per iteration of various topologies using a 19-pt stencil with P = 64 and

N = 401× 401× 401, Intel compiler 17.0.1, OpenMPI 1.6.5 107

4.30 Example of an Irregular cut on a square domain that divides the domain into

two sub-domains s1 and s2 which do not have identical shape 109

4.31 Weighted Jacobi (ω-Jacobi) iteration kernel, alpha=constant, new and old are

3-D data arrays . 111

4.32 Gauss-Seidel iteration kernel, alpha=constant, new is a 3-D data array 112

5.1 Plots for y = tanh(k(x− 0.5)) on a domain [0,1] with k = 5, 10, 20 and 30 120

5.2 Domain [0,1] × [0,1] divided into 4 blocks having 16× 16 cells each, grid spacing

h = 1
32 . 121

5.3 Refinement levels (Rfl) for obtaining increased precision for the PDE ∇2u = f

having solution u = tanh(k(x− 0.5)) by refining in the region 0.45 < x < 0.55 . . 122

5.4 Refinement levels (Rfl) for a mesh when the region 0.8 < x2 + y2 < 0.9 is refined

using blocks of size 8× 8 . 123

5.5 Relationship between a Box, Fab, BoxArray, layout and MultiFab. The labels 1

and N are the cardinality of the relationship named “Contains”. 124

5.6 Cell centered and nodal data in BoxLib . 125

5.7 Fabs and MPI Cartesian Topology Rank numbering in 2-D 126

5.8 16 Fabs (or boxes) spread on 4 processes arranged as 2× 2. Each color shows a

single MPI process and numbers inside circles show the Fab number 128

5.9 Varying box sizes with Domain = 16× 16, 4 processes (arranged as 2× 2), and

4 boxes per sub-domain . 130

5.10 Sub-domain shapes/sizes resulting from two of several MPI Cartesian Topologies

on a 243 domain possible using Listing 5.3 . 139

x LIST OF FIGURES

5.11 2-D slices of a 3-D domain having 243 cells at x = 0.5, y = 0.5 and z = 0.5 show-

ing evolution of the numerical solution for ∇2u = 0 with Dirichlet boundaries

set to 1 at iteration count 0 and 800 . 140

5.12 Number of topologies outperforming the default mpi dims create() and Rev.

mpi dims create() topology at various domain sizes and number of cores 141

5.13 Percentage gain of the best topology over MDC and Rev. MDC for varying

domain sizes and cores . 143

5.14 L1d and L2d cache-misses for domain=483 for the Compute kernel (C), Commu-

nication (Comm) and Boundary update (Bndry) 144

5.15 L1d and L2d cache-misses for domain=963 for the Compute kernel (C), Commu-

nication (Comm) and Boundary update (Bndry) 144

5.16 L1d and L2d cache-misses for domain=3843 for the Compute kernel (C), Com-

munication (Comm) and Boundary update (Bndry) 145

5.17 Initial guess of zero to the final solution for 2 levels of a 163 domain for our AMR

test problem . 146

5.18 Strong Scaling (time/iteration) two AMR levels problem with boxes of vary-

ing shapes but equal volume using Intel compilers 17.0.1 and OpenMPI 2.0.2,

Optimization flags: -O3 -xHost -ip -align array64byte 147

5.19 Strong Scaling (time/iteration) three AMR levels problem with coarsest grid

being 5123 and boxes of varying shapes but equal volume using Intel compil-

ers 17.0.1, Intel MPI 2017.1.132, OpenMPI 2.0.2 and Optimization flags: -O3

-xHost -ip -align array64byte . 148

6.1 Decreasing mesh resolution with decreasing level in 2-D Geometric Multigrid . . 156

6.2 Full 27-point restriction weights in 3-D for the central point (red) 159

6.3 V-cycle in Multigrid . 161

6.4 Multigrid Algorithm vh ←MG(vh, fh) . 161

6.5 Dirichlet-Neumann mixed Boundary Value Problem 164

6.6 Front 2-D view of nine data-streams indicated by a ‘D’ in a 27-pt stencil in 3-D,

dotted lines and arrows show direction in which data is contiguous 169

6.7 Factors affecting selection of sub-domain dimensions 174

6.8 Weak Scaling Independent Compute (IC) for P=1,2,4,8 and 16 processes with
643

16 , 1283

16 , 2563

16 and 5123

16 cells per core (with no communication) to measure

impact of shared Last Level Cache per-socket contention on execution times on

ARC2 . 178

6.9 Baseline/naive implementation, Compiler optimized run-times with -O3 -xHOST

-ip -ansi-alias -fno-alias, Heuristic square tile for X/Y dimensions (based

on Rivera and Tseng [6] square tiles), Exhaustive Tiling for domain of size 5123

and 16 processes on ARC2, default MPI Dims create() = 4× 2× 2 182

LIST OF FIGURES xi

6.10 Maximum average time (maximum time over processes and average of runs) to

send and receive X/Y/Z planes separately within a 16-core node for topologies

(--bind-to-core -bysocket) using Intel 16.0.2 and OpenMPI 1.6.5 on ARC2,

default MPI Dims create() = 4× 2× 2 . 185

6.11 Maximum average time (maximum time over processes and average of runs) to

send and receive X/Y/Z planes separately within a 16-core node for topologies

((--bind-to-core -bycore)) . 186

6.12 Relative plane communication and Independent computation times for N = 64

and N = 128 with P = 16 ((--bind-to-core -bysocket)) using Intel 16.0.2 and

OpenMPI 1.6.5 on ARC2, plane update execution times are not shown, default

MPI Dims create() = 4× 2× 2 . 187

6.13 Intranode execution times of Parallel Geometric Multigrid using Baseline (Base),

aggressive Compiler Optimization (CO) and Heuristically Tiled (HT) versions on

ARC2 and ARC3 . 189

6.14 16 processes in a single node of ARC2 arranged by --bind-to-core -bysocket,

Blue squares represent socket 1, Red balls represent socket 2, thick black lines

are Z-planes, thick blue lines are X-planes, thick red lines are Y-planes. 190

6.15 Topology Run-times for P = 24, N = 576, Levels = 5, Coarsest iterations = 400,

5 V(3,3) cycles and the minimum run times for various combinations of compilers

and MPI implementations on ARC3, default MPI Dims create() = 4× 3× 2 . . 192

6.16 Execution times of Geometric Multigrid for P = 64, Fine Grid = 5123, Levels

= 6, Global Coarsest Grid = 163, ν1 = ν2 = 3, Fixed Coarsest iterations = 100,

Vcycles = 5, Intel 16.0.2, OpenMPI 1.6.5, ARC2, default MPI Dims create() =

4× 4× 4 . 194

6.17 P = 64, Fine Grid = 5123, Levels = 6, Global Coarsest Grid = 163, ν1 = ν2 =

3, Fixed Coarsest iterations = 100, Vcycles = 5, Intel 16.0.2, OpenMPI 1.6.5,

ARC2, default MPI Dims create() = 4× 4× 4 195

6.18 Total run-time and Fine Grid smooth-times for P = 512, Fine Grid = 10243,

Levels = 6, Global Coarsest Grid = 323, ν1 = ν2 = 3, Fixed Coarsest iterations =

800, Vcycles = 5, Intel 16.0.2, OpenMPI 1.6.5, ARC2, default MPI Dims create()

= 8× 8× 8 . 197

6.19 Baseline (Base), Compiler Optimized (CO), Heuristically Tiled (HT) and HT

+ Explicit Vectorization (Vec) total run-time of topologies with Intel 17.0.1,

OpenMPI 2.0.2 on ARC3 . 199

6.20 Topology Run-times for P = 24, N = 576, Levels = 5, Coarsest iterations = 400,

5 V(3,3) cycles for various combinations of compilers and MPI implementations

on ARC3 using a 19-pt stencil in the smoother, default MPI Dims create() =

4× 3× 2 . 203

xii LIST OF FIGURES

6.21 19-pt Smoother in Multigrid, Cores=96, N=768, Levels=5, Coarsest iterations=800,

5 V(3,3) cycles, Intel Compiler 17.0.1, OpenMPI 2.0.2 205

6.22 Prediction classes for representative cases of model accuracy on ARC3, where

the entry with no symbol is the default MDC (MPI Dims create()) partition . . 207

List of Tables

3.1 ARC2 Features: Core, Processor and Node characteristics [7] 52

3.2 ARC3 Features: Core, Processor and Node characteristics (standard nodes only) 53

4.1 Model Assumptions: Logically classified assumptions in deriving the model . . . 70

4.2 Z-Plane: Relevant parameters for Z-plane showing total size, distance between

two adjacent elements, cache-misses in packing (reading)/unpacking (writing)

and updating an element amongst others. 75

4.3 X-Plane: Relevant parameters for the X-plane showing total size, the maximum

gap between two adjacent elements, read/write cache-misses in packing/unpack-

ing and update . 75

4.4 Y-Plane: Relevant parameters for the Y-plane including its size, maximum gap

between two adjacent elements, read/write misses in packing/update. 76

4.5 Independent Compute (IC): Relevant parameters including the size, maximum

gap between two elements, and read/write cache-misses in update. 78

4.6 Plane Cache-Misses: read/write cache-misses in packing/unpacking/updating X,

Y and Z-planes . 79

4.7 Optimizations: Time per iteration with different compiler options for problem

size=161× 161× 161 and cores=16 . 87

4.8 Compiler Options: Brief explanation of various compiler options for the Intel

C/C++ compiler . 87

4.9 Predicted and Actual cache-misses: Predicted Cache-Misses (PCM) and Actual

cache-misses for Problem Size=161 × 161 × 161, Cores=16, Iterations=19353,

Independent Compute Elements (ICE)=199712, PCM for ICE=62410 88

4.10 Strong Scaling I: Strong Scaling for problem size=5133, Iterations=500, tBest is

the minimum execution time, tMDC is the execution time of default MDC 93

4.11 Strong Scaling II: Strong scaling for problem size=10253, Iterations=500, tBest

is the minimum execution time, tMDC is the execution time of default MDC . . . 93

4.12 Non-overlapped cache-misses: Cache read/write misses for the X, Y and Z planes

when computation is not overlapped with communication 115

xiii

xiv LIST OF TABLES

5.1 Set-up Variables: Declared variables during Set-up phase 134

5.2 Uniform Grid: mpi dims create() (MDC) topology execution times per iteration

as compared to best topology times and reverse MDC. #MDC and #Rev. MDC

gives the number of topologies performing better than MDC and Rev. MDC,

respectively. No Loop blocking/Tiling was used, Intel compiler 17.0.1, OpenMPI

2.0.2 . 142

5.3 AMR: Gain percentage for the best performing topology over MDC for various

core counts, MDC=Solve time/iteration in seconds, Best=Best solve time/iteration147

5.4 Macroscopic view: Total L1, L2 and L3 cache-misses in the AMR application

with 2 levels, domain=5123 with box-sizes 128× 128× 128 and 256× 128× 64 . 149

5.5 Cache-Misses Subroutines: Major sources of cache-misses for a 2 level AMR with

domain=5123, block-sizes=128× 128× 128 and 256× 128× 64 150

6.1 Interpolation: operator in 2-D . 159

6.2 Trilinear Interpolation: operator in 3-D . 160

6.3 Predicted Cache-Misses: Cache read/write/update misses for the dependent X,

Y and Z-plane . 167

6.4 Trade-off: Theoretical Communication Volume Vs Predicted Z-plane Cache-Misses174

6.5 h-independence: of Parallel Geometric Multigrid, Coarsest Grid tolerance =

10−8, Finest Grid tolerance = 10−5 . 188

6.6 Plane Types: Categories of planes based on network elements that they pass

through, namely, node/shelf/rack . 196

6.7 Plane Frequency: Number of X/Y/Z Intranode/Intra-shelf/Intra-rack planes for

1-D topologies on ARC2 . 196

6.8 Extreme topologies: Run-times for N = 5123, P = 64, GCG = 643, Coarsest

iterations = 100, Vcycles = 5, ν1 = ν2 = 3, ω = 1, FG (Fine Grid), CG (Coarsest

Grid), Intel 16.0.2, OpenMPI 1.6.5, ARC2 . 196

6.9 Weak Scaling Design Experiment: Fixed 2 V(3,3) cycles, 717 coarsest grid iter-

ations for first V-cycle and 712 coarsest grid iterations for second V-cycle 198

6.10 Weak Scaling on ARC2: Highest performing Vs standard topology percentage

performance gain, Intel 16.0.2, OpenMPI 1.6.5 200

6.11 Weak Scaling on ARC3: Highest performing Vs standard topology percentage

performance gain, TR (Total Run-time), FG (Fine Grid), Base (Baseline), CO

(Compiler Optimized), HT (Heuristically Tiled), Vec (explicit Vectorization),

Intel 17.0.1, OpenMPI 2.0.2, Coarsest iterations = 200, ≈ 18 million cells/core,

Global Coarsest Grid = 483 . 201

6.12 Strong Scaling on ARC2: % performance gain of Cache Minimizing Topology

over Standard Topology for Baseline, Compiler Optimized and Heuristically Tiled

versions, N=512, 20 V(3,3) cycles, Coarsest iterations = 100, Levels = 6, Intel

16.0.2, OpenMPI 1.6.5 . 201

LIST OF TABLES xv

6.13 Strong Scaling on ARC3: % performance gain of Cache Minimizing Topology

over Standard Topology for Baseline, Compiler Optimized and Heuristically Tiled

with Explicit Vectorization versions, N=768, 5 V(3,3) cycles, Coarsest iterations

= 400, Levels = 6, Intel 17.0.1, OpenMPI 2.0.2 201

6.14 Best Topologies and Percentage Gains: Best topologies for Base (Baseline), CO

(Compiler Optimized), HT (Heuristically Tiled) versions and percentage gain

over the default MDC on a single node of ARC3 for N=576, 5 V(3,3), Levels =

5, Coarsest iterations = 400, 19-pt Parallel Geometric Multigrid 204

6.15 Model Accuracy: P = number of cores, N = Domain size, np = Number of

predicted topologies, ñp = Predicted topologies for which tp < tMDC , MDC =

MPI Dims create() topology, Accuracy (True +) =
ñp

np
× 100 206

B.1 MPI Fortran libraries: for Open MPI 2.0.2 and Intel MPI 2017.1.32 221

xvi LIST OF TABLES

Chapter 1

Introduction

With the stagnation of processor speeds [5], the delivery of continued computational perfor-

mance improvements over the coming years will be through the exploitation of multicore proces-

sors. In the post-Moore [5] era, where researchers are exhaustively hunting for performance in

the hardware-software ecosystem, sequential is no longer tolerable. Hence, to quench the thirst

for performance, the world is going parallel. The wide heterogeneity in multicore architectures,

for example Manycore, Graphics Processing Units (GPUs) and the Field-Programmable Gate

Arrays (FPGAs) to name a few, has already created a requirement for performance porta-

bility. Irrespective of the multitude of architectures, the fundamental way in which problems

are decomposed and distributed onto these parallel machines has not changed. Functional de-

composition perceives work to be made up of a set of functions that need to be mapped onto

multicores whereas Domain decomposition or Domain partitioning divides the largest shareable

data-structures among cooperating processes with the universal aim to minimize the commu-

nicated volume of data between them.

Scientific Computing employs mathematical techniques to model, simulate and understand

physical phenomena on modern computer systems. Undeniably, one of the most important

mathematical tools to model phenomena occurring in nature is that of Partial Differential

Equations (PDEs). In order to approximate such models on computers, it is necessary to

map from a continuous domain to a domain represented by a finite set of points or elements

spanning the original domain. Such discretizations are subsequently utilized by numerical al-

gorithms to produce an approximated solution to the actual/analytical solution. Parallelism,

being pervasive, has heavily influenced the field of Scientific Computing as well, leading to a

well documented increase of performance over the years. There is thus an imperative need to

continue this quest for computational speed by integrating state of the art techniques of Parallel

Computing into Scientific Computing.

1

2 CHAPTER 1. INTRODUCTION

PDEs are generally classified as Elliptic, Parabolic or Hyperbolic and their solution can be

numerically approximated after a suitable discretization has been chosen. A well known method

for discretization is the Finite Difference Method (FDM) that approximates the derivatives in

the PDE using finite differences. Using the FDM on regular domains (e.g. rectangular or

hexahedral) leads to the creation of a mesh or grid, where the solution at a particular point is

expressed in terms of the weighted average of the solution at some fixed number of neighbouring

points. Thus, emerges a fixed geometrical pattern called a Stencil which, when coupled with a

numerical iterative method, systematically updates the solution at each mesh point. These pat-

terns when implemented on modern computer systems using standard data structures such as

arrays, access non-contiguous as well as contiguous memory locations. It is this access pattern

of stencil-codes that necessitates an optimal utilization of the cache-memory hierarchy as their

performance is bounded by the memory bandwidth and latency. Further, it is this very access

pattern that motivates us to re-examine the fundamental approach of domain partitioning in

parallel settings. Our research thus investigates a novel approach of domain partitioning for

stencil-based parallel operators and in the process, challenges the orthodox approach of simply

minimizing communication volume during domain partitioning.

Traditionally and universally, for load-balanced applications, domain partitioning has been

a function of communication volume only. Thus, the aim of this approach has been to obtain

equal-sized partitions that minimize the communication volume exchanged between the sub-

domains. To the best of our knowledge, there is no literature on investigating the effect of

cache-misses on domain partitioning. This is the very topic of this thesis, where we take the

first step in connecting a pure Serial Control Parameter (i.e. cache-misses) to a pure Parallel

Control Parameter (i.e. Domain Partitioning). To this effect we build a high level mathemat-

ical model to quantify/minimize cache-misses and obtain families of high performance domain

partitions. For the remainder of this Chapter we aim to provide an overview of the focus of our

research, while leaving the details to the chapters that follow.

1.1 Our Focus

Overheads in the form of communication, load-imbalance, limited memory-bandwidth, im-

balance between processor and memory speeds, network and memory latencies, and complex

memory hierarchies necessitate careful optimization of memory-bandwidth-limited stencil-based

codes [8–15]. These overheads can be broadly classified as serial overheads or parallel overheads.

Serial overheads, i.e. overheads which would still be present in the absence of multicore architec-

tures, can be differentiated from parallel overheads (overheads which come into existence only

because of the utilization of multicores). For example, cache-misses, TLB (Translation Looka-

side Buffer) misses and memory latencies are examples of serial overheads which, along with

1.1. OUR FOCUS 3

Figure 1.1: Serial Control Parameters (SCPs) Vs Parallel Control Parameters (PCPs): Our
focus is on Cache-misses and Domain Partitioning

serial optimizations such as Vectorization, memory alignment etc., we shall collectively refer

to as Serial Control Parameters (SCPs). Core-to-core latencies, network bandwidth/latencies,

non-optimal process placement, non-optimal domain partitions and cache coherence conflicts in

shared caches are examples of parallel overheads - a category which, along with the techniques

to optimize them, we shall refer to as Parallel Control Parameters (PCPs). Figure 1.1 shows

some SCPs and PCPs. Our focus is shown with the help of red arrows and grey boxes in Figure

1.1.

More research has explored SCPs as compared to PCPs, whilst there is a complex interac-

tion of SCPs and PCPs which has little literature. Our research focus is to investigate this very

interaction but due to the large interaction space between SCPs and PCPs, we restrict ourselves

to the most important SCP which we practically (and from the literature [12–14,16–18]) iden-

tify to be Cache-misses and Domain Partitioning - the first fundamental step in distributing

data on multicores. We thus take the first step in connecting Cache-misses to Domain Parti-

tioning for single level and multilevel numerical algorithms on structured 3-D domains resulting

from finite difference discretizations of Elliptic PDEs. Though applied only to finite difference

discretizations of Elliptic PDEs, we argue that our conclusions can be extended to other prob-

lems, such as implicit solution of Parabolic PDEs, finite element discretizations using trilinear

elements on structured 3-D grids, or any other application that utilizes the same data access

and communication pattern as that for the stencil-based codes under study. While construct-

ing a mathematical model to establish this relation, we inherently assume that communication

is overlapped with computation but argue that, with appropriate quantitative differences, the

model can be applied to scenarios where there is no overlapping.

Since single level codes are frequently less than optimal when employed in isolation to nu-

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Macroscopic view of our research, grey boxes and red arrows show area of focus,
FDM (Finite Difference Methods), FVM (Finite Volume Methods) and FEM (Finite Element
Methods) are discretizations schemes, PARAMESH [1], Chombo [2], Uintah [3] and BoxLib [4]
are parallel Adaptive Mesh Refinement (AMR) frameworks

merically solve PDEs, we also test our hypothesis in adaptively refined meshes implemented in

a library called BoxLib [19]. Adaptive Mesh Refinement (AMR) is a technique that allows a

mesh to be refined locally depending on regions of estimated high error, geometric importance

or some other parameter. It is an invaluable technique used in Scientific Computing and a key

application targeted for Exascale Computing [20]. BoxLib is a parallel framework that supports

massive, multiscale, multiphysics problems and is written in a combination of C++/Fortran90.

We discuss the challenges and the partial success of our model when evaluated in the environ-

ment offered by BoxLib. After evaluating our model on adaptive meshes, we then extend the

model developed to parallel Geometric Multigrid (GMG) - an optimal O(N) solution algorithm

that is based on a hierarchy of grids of decreasing resolution. GMG is one of the most im-

portant components of scalable numerical algorithms for solving Elliptic PDEs and is again an

extremely important candidate for Exascale systems.

Figure 1.2 shows a macroscopic view of our research, with the area of focus being shown

with the help of grey boxes and red arrows. We discretize Elliptic PDEs using Finite Difference

Methods (FDMs) (as opposed to Finite Element (FEM) or Finite Volume (FVM) methods)

and then use iterative methods (as opposed to direct methods) to solve the PDE on structured

regular and adaptively refined meshes. Further, we use Geometric Multigrid for solving the

discretized Elliptic PDE. In all the aforementioned scenarios, our aim is to compare the per-

formance of sub-domains derived from our model against traditional communication volume

minimizing partitions in parallel settings.

Further, we seek to present our model in the context of all the factors that might influence

the choice of sub-domain shape and size. Thus, we qualitatively and quantitatively consider

factors such as cache-misses, prefetching, cache-eviction policy, Vectorization etc. (see Figure

1.1), and explore their effect on determining optimal sub-domain dimensions. Though these

1.2. THESIS CONTRIBUTION 5

factors have been separately well explored in the literature, the focus of our work is on estab-

lishing a connection between them and domain partitioning.

1.2 Thesis Contribution

In this section we summarize the main contributions that we claim for this thesis. We itemize

these as follows.

– We take the first step in connecting the most important SCP of cache-misses to the

fundamental PCP of Domain Partitioning for stencil-based codes. To the best of our

knowledge, this relation/dependence has not been explored in the literature. We achieve

this by building a high level, abstract, quasi-cache aware mathematical model to mini-

mize the cache-misses and obtain families of high performing domain partitions. In this

process, we question and challenge the orthodox approach of domain partitioning (for

load-balanced codes) based on communication volume only and design experiments to

evaluate the same.

– We take a step further to qualitatively establish the effect of other SCPs such as cache-

eviction policy, Vectorization etc., on optimal sub-domain dimensions.

– As the model above is constructed using single level meshes, we extend it to multiple

levels and evaluate its efficacy on parallel Geometric Multigrid.

– We show that the cache-miss equations for a 7-pt, 19-pt and 27-pt stencil in 3-D have the

same form but with appropriate quantitative differences.

– We demonstrate hardware-software independence of our model since the only factor in-

fluencing it is the data-layout in memory which is dependent on the language being used

to implement the application.

– By implementing a Cartesian Topology for single level uniform meshes in BoxLib - an

Adaptive Mesh Refinement framework supporting massively parallel, multiscale and mul-

tiphysics problems - we are able to show experimentally the efficacy of our model even

when communication is not overlapped with computation.

– We propose three dynamic, super-lightweight cache-tiling heuristics and evaluate the ef-

ficacy of the simplest one of them in our experiments.

– We observe a partial success of our hypothesis when evaluating on adaptively refined

meshes. This partial success is important as it shows the communication volume mini-

mizing sub-domain shapes are not always the optimal even in load-imbalanced scenarios.

6 CHAPTER 1. INTRODUCTION

– Finally, we provide recommendations to application developers and (hopefully) the MPI

Forum to re-examine and investigate the MPI Cartesian topology returned by the default

MPI DIMS CREATE() function in the context of C (row-major layout) and Fortran (column-

major layout) from a performance perspective.

1.3 Thesis Outline

Chapter 2 presents the necessary background along with a literature survey of the associated

work. The ideology followed in this Chapter is to explore in depth the concepts which have

been utilized in our work but also to span the breadth by broadly discussing associated research.

Chapter 3 describes the hardware test platforms that we use for carrying out experiments,

as well as broadly describing the software that we use for implementations and performance

measurement. There are two major platforms that we use: ARC2 and ARC3 - both resident

at and managed by the University of Leeds.

Chapter 4 is dedicated to the development of our abstract, high level, mathematical model to

obtain cache-minimizing domain partitions using single level, structured 3-D grids. We model

the cache-misses by using the Jacobi iterative method used in approximating the solution of

an Elliptic PDE discretized using the Finite Difference Method. Here, we specifically list our

assumptions in creating this model and discuss their generalization to expand the model’s ap-

plicability.

Chapter 5 evaluates the hypothesis formulated in the previous Chapter on uniform and

adaptively refined meshes implemented using BoxLib. We further describe the challenges in

adapting BoxLib while evaluating our model.

Chapter 6 is devoted to extending and evaluating the technique developed for single level

meshes to parallel Geometric Multigrid, an acceleration convergence scheme that utilizes a hi-

erarchy of grids of decreasing resolution. In addition to cache-misses, we qualitatively discuss

how other SCPs affect optimal sub-domain dimensions.

Chapter 7 concludes the research presented in this thesis, discusses its successes and its

limitations and presents ideas to open further research avenues.

Chapter 2

Background and Related work

This chapter provides the necessary background and an overview of the work related to the

thesis. We start with a discussion of Partial Differential Equations (PDEs) since in the cur-

rent work we focus on linear, second order, Elliptic PDEs and their numerical solution using

Iterative methods [21, 22]. PDEs are routinely used to model phenomena in Elasticity, Fluid

Dynamics, Quantum Mechanics, Brownian Motion, Diffusion, Heat Transfer and Electrostatics,

among many others [21, 23]. It would not be wrong to say that their numerical solution forms

the backbone of Scientific Computing. PDE model problems involve continuous dependent

variables defined on continuous domains but when their solution is approximated on computer

systems, some form of discretization scheme is needed to describe the domain and the unknowns

in terms of a finite number of values of a finite number of points or elements. There are many

schemes for discretization such as Finite Difference Methods (FDM), Finite Element methods

(FEM), Finite Volume Methods (FVM) and Spectral schemes, etc. We use the FDM in the

current work and describe it in some detail. FEM is one of the most widely used schemes and

is more flexible than FDM. After furnishing sufficient details, we very briefly touch upon some

other discretization schemes. Finite difference discretization of Elliptic PDEs generally give rise

to Sparse matrices, i.e. matrices which have very few non-zero entries as compared to entries

which are zero. An associated concept is that of a Stencil - a fixed geometrical pattern used

to update the solution on individual points of the domain using weighted contributions of the

neighbouring points. We use the 7-pt, 19-pt and 27-pt stencils in 3-D in this work. The Sparse

linear systems arising from FDM discretization of Elliptic PDEs can be solved using either Di-

rect methods or Iterative methods. We describe the Gaussian elimination direct method then

move onto describing the iterative methods of Jacobi and Gauss-Seidel in detail. Jacobi and

weighted Jacobi iterative methods have been used in the current work to illustrate our research

but the same can be extended to the Gauss-Seidel method and its variants.

Since we concentrate on Domain Partitioning in parallel settings, we describe various mod-

7

8 CHAPTER 2. BACKGROUND AND RELATED WORK

els of carrying out parallel computing with an emphasis on the Message Passing Interface

(MPI) [24]. The traditional method of domain partitioning universally revolves around mini-

mizing the communication volume and we describe how the same is associated with the default

MPI Cartesian Topology for structured domains. After describing the nature of sub-domains

obtained after domain partitioning of structured 3-D domains, we discuss the opportunity that

MPI provides for overlapping communication with computation for enhancing application per-

formance. Performance metrics such as Speed-up, Efficiency, Strong Scaling and Weak Scaling

are discussed and used at appropriate points in experiments conducted for validating the con-

cepts developed in the thesis.

Multigrid is a hierarchical, optimal, iterative solver for Elliptic PDEs which accelerates

the convergence to the solution. Iterative solvers can thus be used on single grids or form

a part of Multigrid [25] in the smoothing/solve phase. Our focus is on Geometric Multigrid

(GMG) in parallel settings in the thesis and hence we also survey the bottlenecks in the parallel

implementation of GMG. Since numerical models of physical phenomena can exhibit high errors

in localized regions, we next describe the technique of Adaptive Mesh Refinement (AMR) that

provides the ability to refine localized regions of a mesh depending on various parameters such as

a high gradient, high estimated error or the geometric importance of the solution. Both AMR

and Multigrid form an integral part of the problems identified for Exascale computing [20].

Our background then moves onto describing the basics of cache memory and stresses the fact

that a memory bound application must optimally exploit the cache memory for enhancing

performance. Stencil codes are memory bound and we next describe the role of caches in

optimizing them.

2.1 Partial Differential Equations

A Partial Differential Equation (PDE) [21] is a differential equation which has more than one

independent variable i.e. there is some dependent variable u which is an unknown function

of at least two independent variables. We can thus write u = u(x, y, ...), where x, y, ... are

independent variables. The PDE then is an identity which relates the independent variables,

the dependent variables, and the partial derivatives of the dependent variable. The partial

derivative of u with respect to x is commonly denoted as ∂u
∂x or, using a shorter form, ux. It

is to be noted that uxy = uyx = ∂
∂x (∂u∂y) = ∂

∂y (∂u∂x). The highest derivative that appears in the

PDE defines the order of the PDE. A first order PDE in two independent variables x, y and

one dependent variable u can be expressed in the general form as:

F (x, y, u, ux, uy) = 0. (2.1)

2.1. PARTIAL DIFFERENTIAL EQUATIONS 9

A second order PDE in two variables in the general form is expressed as:

F (x, y, u, ux, uy, uxx, uyy, uxy) = 0. (2.2)

A solution of a PDE is a function u(x, y, ...) such that it satisfies the equality in at least some

region (or completely in a specified domain) of the independent variables.

A PDE is said to be linear if it can be written as

L(u) = g, (2.3)

where L is a differential operator, u is the dependent variable, g is some arbitrary function and

the following two conditions hold

1. L(u+ v) = Lu+ Lv,

2. L(cu) = cL(u),

for dependent variables u, v and an arbitrary constant c. A PDE which is not linear is non-

linear. A PDE in which terms of the highest order derivatives are linear is called a quasilinear

PDE [26]. The principle of Superposition for linear, homogeneous PDEs states that if u1 and

u2 are solutions of a PDE, then their linear combination is also a solution. This principle of

Superposition does not hold for non-linear PDEs though it is sometimes possible to transform

non-linear PDEs to linear PDEs and exploit the principle of Superposition [23].

A linear, second order PDE where u = u(x, y) can be represented in the general form as

A(x, y)
∂2u

∂x2
+B(x, y)

∂2u

∂x∂y
+C(x, y)

∂2u

∂y2
+D(x, y)

∂u

∂x
+E(x, y)

∂u

∂y
+F (x, y)u = G(x, y). (2.4)

Linear, second order PDEs are classified as Elliptic, Parabolic or Hyperbolic depending on the

relation between the coefficients of the higher order derivatives. Thus, at some point (x0, y0),

if B2(x0, y0)− 4A(x0, y0)C(x0, y0) is

1. < 0, then the equation is Elliptic at (x0, y0) ;

2. = 0, then the equation is Parabolic at (x0, y0) ;

3. > 0, then the equation is Hyperbolic at (x0, y0).

It is important to note that the Equation (2.4) maybe Elliptic at a point (x0, y0) and Parabolic

or Hyperbolic at some other point (x1, y1). As an example, the linear, second order Tricomi

equation [23]:
∂2u

∂x2
+ x

∂2u

∂y2
= 0, (2.5)

10 CHAPTER 2. BACKGROUND AND RELATED WORK

is Hyperbolic in x < 0, Elliptic in x > 0 and Parabolic at x = 0. A second order, linear PDE

is Elliptic (or Parabolic or Hyperbolic) in a region Ω if and only if it is Elliptic (or Parabolic

or Hyperbolic) at every point in Ω. If the coefficients in Equation (2.4) are independent of x, y

then the equation is said to be a constant coefficient PDE. A PDE that we use in the current

work is the Laplace equation - a linear, second order, Elliptic PDE, which in three independent

variables x, y and z, is expressed as

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0. (2.6)

The operator L in the Laplace equation above equals ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and is conveniently

represented as ∇2 or ∆. ∇2u or ∆u is interpreted as the Divergence of the Gradient of u i.e.

∇2u = ∇.(∇u). In the 3-D standard Cartesian coordinate system, ∇ = ∂
∂x î+

∂
∂x ĵ+ ∂

∂x k̂, where

î, ĵ and k̂ represent the unit vectors along the three Cartesian axes. Thus, in a compact form

the Laplace equation shown in Equation (2.6) is represented as

∇2u = 0. (2.7)

A linear PDE in which the function G(x, y) = 0 is known as a homogeneous PDE. In other

words, a linear PDE in which every term either contains the dependent variable or its derivatives

is said to be homogeneous. If the function G(x, y) 6= 0, then the linear PDE is an inhomogeneous

or non-homogeneous PDE. The Laplace equation can now be more accurately classified as a

second order, linear, homogeneous, Elliptic PDE. A solution of the Laplace equation is called

a Harmonic function [21]. The inhomogeneous version of the Laplace equation gives rise to

Poisson’s equation and the latter is represented as:

∆u = f, (2.8)

where f 6= 0 is a given function of the independent variables only.

2.2 Discretization

PDEs are defined on continuous regions when modelling physical phenomena. For example,

the steady state heat distribution on a plate as a function of spatial coordinates is defined

at all points on the 2-D plate. While formulating the numerical approximation of a PDE on

paper or a computer, the number of parameters with which the solution is estimated must

be finite. Discretization is the process in which a continuous domain is approximated by a

finite set of points or elements. In general the greater the number of points (or elements), the

higher the accuracy of the computed numerical solution. Three of the most common methods

of discretization are Finite Difference, Finite Element and Finite Volume methods. However,

there are other schemes such as Spectral methods which are also used for discretization. The

2.2. DISCRETIZATION 11

work in this thesis uses only Finite Difference Methods (FDM) which we describe in detail while

very broadly covering the others mentioned above.

2.2.1 Finite Difference Method

The Finite Difference Method (FDM) approximates the derivatives at a point by finite differ-

ences over a small interval [22]. Thus, if U(x) is a function dependent on the independent

variable x, and its derivatives with respect to x are continuous, then we can expand U about

the point x0 using Taylor’s theorem as shown below

U(x0 + h) = U(x0) + hUx(x0) +
h2Uxx(x0)

2
+
h3Uxxx(x0)

6
+ ..., (2.9)

where h > 0 is the step size and Ux denotes the first derivative of U , Uxx denotes the second

derivative of U and so on. A Taylor series is an infinite series and its finite truncation may be

used to approximate the value of a function at a point in terms of the value of the function and

its derivatives at a neighbouring point. Stated simply, it provides a method to approximate a

smooth function as a polynomial [27]. Similarly,

U(x0 − h) = U(x0)− hUx(x0) +
h2Uxx(x0)

2
− h3Uxxx(x0)

6
+ ... (2.10)

Adding Equation (2.9) and (2.10) produces

U(x0 + h) + U(x0 − h) = 2U(x0) + 2
h2Uxx(x0)

2
+O(h4). (2.11)

The term O(h4) in Equation (2.11) denotes fourth order terms and above in terms of the Big-Oh

notation (upper bound). If we assume that the contribution of O(h4) terms is negligible, then

by rearranging Equation (2.11), we can show that the second derivative of U(x) at x0 can be

approximated by

Uxx(x0) ≈ U(x0 + h)− 2U(x0)− U(x0 − h)

h2
. (2.12)

The error in Equation (2.12) is O(h2). An error of O(h2) means that if the step size is halved,

truncation error is reduced by one fourth. If we subtract equation (2.10) from Equation (2.9),

we obtain

U(x0 + h)− U(x0 − h) = 2hUx(x0) +O(h3). (2.13)

Ignoring the terms of O(h3) and above in Equation (2.13), we can obtain a finite difference

approximation of Ux at x0 of O(h2) given below

Ux(x0) ≈ U(x0 + h)− U(x0 − h)

2h
. (2.14)

12 CHAPTER 2. BACKGROUND AND RELATED WORK

Equation (2.14) is called the central difference approximation of Ux. Similarly O(h) forward

and backward difference approximations of Ux can be obtained by ignoring the O(h2) terms

in U(x0 + h) (see Equation (2.9)) and U(x0 − h) (see Equation (2.10)), respectively. Thus the

forward difference approximation i.e. Ux(x0) ≈ U(x0+h)−U(x0)
h and backward difference approx-

imation i.e. Ux(x0) ≈ U(x0)−U(x0−h)
h are both first order approximations in space.

Consider a uniform 2-D mesh (or grid) which has equidistant mesh points on each axis.

Thus, the ith mesh point on the X-axis is located at a distance of ih from the origin where

h denotes the mesh spacing on the X-axis. Similarly for a point j on the Y-axis, its distance

from the origin is jk, with k representing the mesh spacing in the Y direction. In general a

point Pi,j has coordinates (ih, jk) for i, j = 0, 1, 2, 3, If we denote the value of U = U(x, y)

(the unknown variable) at point Pi,j by U(ih, jk) = Ui,j , we can represent the central finite

difference approximation of Uxx = ∂2U
∂x2 by

Uxx(ih, jk) ≈ U((i+ 1)h, jk)− 2U(ih, jk) + U((i− 1)j, jk)

h2
=
Ui+1,j − 2Ui,j + Ui−1,j

h2
.

(2.15)

A similar expression for Uyy can be written based on Equation (2.15). We can extend the above

discussion to three dimensions and derive the central difference approximation for the Laplace

equation (see Equation (2.6) and (2.7)) in 3-D as:

∇2u ≈ ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1 − 6ui,j,k
h2

= 0. (2.16)

It is assumed that the grid spacing in all three directions in Equation (2.16) is equal to h. Our

focus remains on finite difference discretizations of linear, second order Elliptic PDEs in this

thesis.

2.2.2 Finite Element Method

The Finite Element Method is a very powerful method for discretization and can be used

for extremely complicated geometries [28, 29]. The first step in the method is to divide the

domain into finite elements. Most commonly, these elements can be lines in 1-D, triangles or

quadrilaterals in 2-D and tetrahedral or hexahedral elements in 3-D. The entire domain must be

completely covered with elements i.e. there should be no empty space and, further the elements

should not overlap. If we denote the domain by Ω and the ith finite element with Ei, then

Ω ≈
M⋃
i=1

Ei, (2.17)

where M is the total number of finite elements. If we denote by Ẽi the interior region of an

element consisting of all the points inside the element but not on the surface (in 2-D and 3-D),

2.2. DISCRETIZATION 13

Figure 2.1: Finite Element unstructured mesh covering a square 2-D domain

then

Ẽi ∩ Ẽj = φ, ∀i 6= j. (2.18)

This division of the domain using finite elements results in a finite element mesh with grid

points or nodes. The nodes are generally at the vertices of the elements but can be located

anywhere on the surface or the interior of the element. Each node has a unique global index

but can have multiple local indices (corresponding to each element that shares it). Figure 2.1

shows an unstructured triangular 2-D finite element mesh covering a square 2-D domain.

To construct the global solution, the nodal values of the unknown variable are interpolated

using nodal basis functions Nk:

u =

N∑
k=1

ukNk(x, y, z), (2.19)

where uk is the value of the unknown variable at node ~pk, N is the total number of nodes and

Nk has the property that at each node, ~pj ,

Nk(−→pj)

= 1,∀k = j

= 0,∀k 6= j
. (2.20)

Further,
N∑
k=1

Nk = 1. (2.21)

To approximate a solution, the values of uk for k = 1, N must be determined. In this thesis

we consider only structured grids in 3-D and although we use the FDM for approximating the

14 CHAPTER 2. BACKGROUND AND RELATED WORK

solution on the mesh, a FEM discretization using hexahedral elements could also be considered.

Thus, we believe that the concepts that we derive in this thesis are equally applicable when

using FEM discretization using regular, eight node (i.e. trilinear), hexahedral elements. For a

hexahedral element with eight nodes, the value of the dependent variable u in the element e

may be approximated by

ue(x, y, z) =

8∑
i=1

Ne
i ui, (2.22)

where the Ne
i ’s are the 8 shape functions satisfying both Equations (2.20) and (2.21) that are

non-zero on element e. It should be noted that these shape or basis functions decay linearly along

the edges. The approximation of ue(x, y, z) in 3-D using 8 node hexahedral elements can also

be done in terms of global coordinates x, y, z using a symmetric but incomplete polynomial [29]

as shown in Equation (2.23) below

ue(x, y, z) = ae0 + ae1x+ ae2y + ae3z + ae4xy + ae5yz + ae6xz + ae7xyz. (2.23)

The form given in Equation (2.22) is preferred because it uses the FEM basis functions, which

allows the efficient assembly into a global system that may be solved for each of the unknowns in

(2.19). As a result of application of the finite element assembly, for a linear PDE, the resulting

element equations will be in the form of a set of linear equations and can be expressed in the

form:

[K]{u} = {F}, (2.24)

where [K] denotes the Stiffness matrix, {u} is a column vector of unknowns at the nodes and

{F} is a column vector denoting any external influence. Equation (2.24) denotes a system of

sparse linear algebraic equations which can be solved by using appropriate Direct or Iterative

methods. A detailed description of every step of this method is beyond the scope of the thesis.

The interested reader can refer to [28] for more details.

2.2.3 Other Schemes

We provide a very high level overview of some other discretization schemes. The Finite Volume

Method is another scheme for discretization which is used frequently in fluid mechanics [30].

FVM starts by dividing the domain under consideration into a set of control volumes (sub-

domains) with nodes. The nodes are defined at the center of or at the vertices of the control

volume and each volume generates one equation to find the unknown variable at the nodes. In

3-D, hexahedral and tetrahedral sub-domains are commonly used. After the control volumes

are created, balance equations in an integral form are formulated for each volume by integrating

the PDE over a control volume. The integrals are evaluated using numerical integration (e.g.

Trapezoidal rule or Simpsons rule [27]) followed by an approximation of the unknown variables

and its derivatives by interpolating the nodal values. The final step involves solving discrete

2.2. DISCRETIZATION 15

algebraic equations [30].

Spectral methods [31] are global methods that represent the solution as a truncated series of

the independent variable. As an example, the Fourier sine series solution to the heat equation

can be truncated after N terms to represent the solution. Spectral methods are global in the

sense that the basis functions used to build the solution are each generally non-zero over the

whole domain. They can be viewed as belonging to a class of methods to solve PDEs called the

Method of Weighted Residuals (MWR) that uses trial (or expansion or approximating functions)

and test (or weight) functions. The trial functions chosen in Spectral methods are infinitely

differentiable global functions as opposed to local element functions in FEM, thus serving as a

major distinguishing factor between these two. The type of test functions result in the Galerkin,

Collocation or Tau Spectral methods. The trial functions are the same as test functions in the

Galerkin Spectral method. The trial functions in the Collocation methods are the Dirac Delta

functions while the Tau method is very similar to the Galerkin method except for the difference

that test functions do not need to satisfy the boundary conditions. For a detailed discussion of

these methods, the reader is referred to [31,32].

2.2.4 Stencils and Sparse Matrices

When PDEs are discretized using FDMs (or FEM on a structured grid), the weighted contri-

butions of the values of the neighbours of a point in geometrical space are used to update the

numerical solution at a point. In 2-D it is very common to consider a 5-pt stencil or a 9-pt

stencil. A 7-pt, 19-pt or a 27-pt stencil is often used in discretized problems in a 3-dimensional

space [6, 12, 13]. As an example, if we consider Equation (2.16) in the previous section that

shows the finite difference approximation of the Laplacian in 3-D space, the mesh points make

a 7-pt stencil. Thus, in a 7-pt stencil, two of the data neighbours in each direction of the mesh

point being updated are considered. To visualize, the points in a 7-pt stencil lie at the center

of the six faces of a cube. If we add the points in the center of the 12 edges to the 7-pt stencil,

we obtain a 19-pt stencil. Further, if we add the eight points at the corners or vertices of the

cube to the 19-pt stencil, we obtain a 27-pt stencil. In this thesis we consider the 7-pt, 19-pt

and 27-pt stencils in our experiments. Figures 2.2 and 2.3 show these common stencils in 2-D

and 3-D, respectively.

The finite difference discretization of linear, second order Elliptic PDEs gives rise to a system

of linear equations which must be solved in order to obtain the approximation of the value of

the dependent variable at various mesh points. We illustrate this with the help of an example

in 1-D, using the FDM. Consider the PDE

∂2u

∂x2
= f(x) for 0 < x < 1, u(0) = α, u(1) = β. (2.25)

16 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) 5-pt stencil (b) 9-pt stencil

Figure 2.2: Common stencils in 2-D

(a) 7-pt stencil (b) 19-pt stencil (c) 27-pt stencil

Figure 2.3: Common Stencils in 3-D

The conditions at x = 0 and x = 1 in Equation (2.25) specify the Dirichlet boundary conditions

i.e. they specify the value of the dependent variable itself at the endpoints. Another type of

boundary condition called the Neumann boundary condition specifies the value at the endpoints

in terms of the derivative of u. We assume that the domain is discretized using m+ 2 equally

spaced points i.e. the mesh spacing or width h = 1
m+1 . Let uj ≈ u(xj) be the approximation

of the solution at x = jh. It is given that u0 = α and um+1 = β are the boundary conditions.

Thus, we have m unknowns, namely, u1, u2, ...um, whose value is to be determined. We can

approximate the LHS in Equation (2.25) using a central finite difference scheme to obtain

ui+1 − 2ui + ui−1

h2
= f(xi) = fi for i = 1, 2, 3, ...,m. (2.26)

Equation (2.26) specifies a linear system of m equations in m unknowns. For clarity, we can

write the equations separately as implied by Equation (2.27) below.

2.3. SOLUTION OF SPARSE LINEAR SYSTEMS 17

1

h2
(u0 − 2u1 + u2) = f1,

1

h2
(u1 − 2u2 + u3) = f2,

1

h2
(u2 − 2u3 + u4) = f3,

...,

...,

1

h2
(um−1 − 2um + um+1) = fm.

(2.27)

We can write the m linear equations in m unknowns in Equation (2.27) in the matrix form

AU = F, (2.28)

where A is the m×m coefficient matrix given by

1

h2



−2 1 0 0 . . . 0 0 0

1 −2 1 0 . . . 0 0 0

0 1 −2 1 . . . 0 0 0

.

0 0 0 0 . . . 1 −2 1

0 0 0 0 . . . 0 1 −2


m×m

. (2.29)

U is the column vector of unknowns i.e.

U = [u1 u2 . . . um]T , (2.30)

and F is the column vector specifying the RHS of every equation i.e.

F = [f1 −
α

h2
f2 f3 . . . fm −

β

h2
]T . (2.31)

It can be seen that the coefficient matrix give by Equation (2.29) contains many more zero

values as compared to non-zero values. To be precise, it contains 3(m− 2) + 4 = 3m− 2 non-

zero values out of a total of m2 values. Typically if the number of non-zeros is proportional to

m rather than m2, we consider the system sparse.

2.3 Solution of Sparse Linear Systems

A systems of linear equations can be solved in multiple ways. Standard methods which handle a

small number of equations are the elimination of unknowns and Cramers’s rule. Methods which

18 CHAPTER 2. BACKGROUND AND RELATED WORK

are capable of handling a larger system of equations are Gaussian elimination, Gauss-Jordan,

Jacobi, and Gauss-Seidel etc. In general the methods can be separated into two classes: Direct

methods and Iterative methods. The current work concentrates on iterative methods and hence

after briefly covering direct methods, we describe some iterative methods in detail [27, 33,34].

2.3.1 Direct methods

Gaussian elimination [27,35] is one of the oldest and most useful methods falling into the cate-

gory of direct methods to solve a linear system of equations. It consist of two steps. The Forward

elimination step reduces the system of equations to an upper triangular system. This is done by

choosing a pivot equation and pivot element and eliminating the variable associated with the

pivot element from all other equations. This process involves division by the pivot coefficient,

which clearly cannot be zero. After the upper triangular system is obtained, the last equation

can be solved directly and the result substituted in the second last equation. This process can

continue recursively till the first equation and hence this step is known as Back substitution.

The total floating point operations (divisions, multiplications and subtractions) in Gaussian

elimination is O(n3), where n represents the number of unknowns. Gaussian elimination can

suffer from many drawbacks such as division by zero (easily overcome for a non-singular system

by a “pivoting” strategy), propagation of round-off errors and large errors for ill-conditioned

systems due to round-off errors. Partial pivoting allows one to interchange rows to make the

highest coefficient variable as the pivoting element. Thus, before normalization, all columns

below the pivot element are scanned for the highest coefficient in order to interchange the rows.

Partial pivoting often alleviates the effects of round-off errors and is essential for ill conditioned

systems.

The Gauss-Jordan method is a small variation of the Gauss elimination method in the sense

that the variable associated with the pivot element is eliminated from all the equations as

opposed to its elimination only from subsequent equations (i.e. rows below the row containing

the pivot element). Thus, the elimination step in Gauss-Jordan results in an Identity matrix

and no back substitution is required for the final solution. Since the focus of this thesis remains

on solving linear systems of equations arising from finite difference discretizations of Elliptic

PDEs which are sparse, we emphasize that it is imperative to take advantage of the sparsity

in terms of storage and the solution algorithm. An excellent survey of sparse direct methods,

storage of sparse matrices and associated software packages can be found in [36].

2.3.2 Iterative methods

Iterative methods use an initial approximation of the solution to calculate the next approxima-

tion. An iterative method is said to converge when the difference between the actual solution

and current approximation tends to zero on increasing the iterations [22]. These methods are

2.3. SOLUTION OF SPARSE LINEAR SYSTEMS 19

useful for large sparse systems of linear equations when the memory and computational time

requirements of the direct methods become overwhelmingly high. We now describe the two

simplest iterative methods for solving sparse systems of linear equations.

2.3.2.1 Jacobi

The Jacobi method one of the simplest iterative methods. Consider a linear system of three

unknown variables having the form Au = f as shown in Equation (2.32).

a11u1 + a12u2 + a13u3 = f1

a21u1 + a22u2 + a23u3 = f2

a31u1 + a32u2 + a33u3 = f3

(2.32)

The ith equation in Equation(s) (2.32) can be used to express ui in terms of the RHS and the

remaining unknowns. This is shown below.

u1 =
1

a11
(f1 − a12u2 − a13u3)

u2 =
1

a22
(f2 − a21u1 − a23u3)

u3 =
1

a33
(f3 − a31u1 − a32u2)

(2.33)

Thus, in general, the unknown ui, i = 1, 2, 3, ..., n can be expressed as

ui =
1

aii
(fi −

i−1∑
j=1

aijuj −
n∑

j=i+1

aijuj). (2.34)

When the solution at the kth iteration is used to compute the approximate solution at the

(k + 1)th iteration, we can re-write Equation (2.34) as Equation (2.35) below:

uk+1
i =

1

aii
(fi −

i−1∑
j=1

aiju
k
j −

n∑
j=i+1

aiju
k
j). (2.35)

The number of computations on the RHS can reduce drastically if the coefficient matrix is sparse

i.e. most of aij ’s are zero. Jacobi iterations can also be written in a matrix form by splitting

the coefficient matrix (A) into diagonal (D), strictly lower (L) and strictly upper triangular (U)

matrices. The coefficient matrix is thus expressed as A = D − L− U . Substituting this in the

matrix form of linear equations (see Equation (2.28)), we get

Au = f ⇒ (D − L− U)u = f ⇒ u = D−1(L+ U)u+D−1f. (2.36)

20 CHAPTER 2. BACKGROUND AND RELATED WORK

The notation of Equation (2.36) allows us to write Jacobi iteration (2.35) in matrix form as

uk+1 = D−1(L+ U)uk +D−1f. (2.37)

The matrix D−1(L + U) above is called the point Jacobi iteration matrix. The word “point”

stems from the fact that the iterative step computes the value of the solution at a single point

in terms of the solution at other points [22]. A variation of the Jacobi iteration method is the

weighted Jacobi (ω-Jacobi) iterative method where the solution at point uki also contributes to

the approximate solution uk+1
i . For some ω > 0, the weighted Jacobi iteration can be written

as:

uk+1
i = (1− ω)uki + ω(

1

aii
(fi −

i−1∑
j=1

aiju
k
j −

n∑
j=i+1

aiju
k
j)). (2.38)

2.3.2.2 Gauss-Seidel

The Gauss-Seidel iterative method is a variation of the Jacobi iterative method in the sense that

it utilizes the most recently computed approximation of the unknowns to update the solution.

The following equation expresses this idea:

uk+1
i =

1

aii
(fi −

i−1∑
j=1

aiju
k+1
j −

n∑
j=i+1

aiju
k
j). (2.39)

Equation (2.39) suggests that to update any uk+1
i , the most recently computed values of

uk+1
0 , uk+1

1 , ..., uk+1
i−1 and the old values of uki+1, u

k
i+2, ..., u

k
n are used. Using Equation (2.39), we

can directly write the matrix form in terms of the diagonal (D), strictly lower triangular (L)

and strictly upper triangular matrices (U) as

uk+1 = D−1(f − (−Luk+1 − Uuk)). (2.40)

Pre-multiplying Equation (2.40) by D and re-arranging the terms for uk+1 on the LHS, we get

(D − L)uk+1 = Uuk + f. (2.41)

Pre-multiplying Equation (2.41) by (D − L)−1, we obtain

uk+1 = (D − L)−1Uuk + (D − L)−1f, (2.42)

which gives us the point Gauss-Seidel iteration matrix as (D − L)−1U . Although the Gauss-

Seidel method generally converges faster than the Jacobi method, it has its drawbacks in the

sense that uk+1
i cannot be computed unless uk+1

0 , uk+1
1 , ..., uk+1

i−1 have been computed. Thus,

this necessitates an ordering on updating the solution - a limitation which is not present in

Jacobi’s method as it uses the approximate solution at the kth iteration to compute the value

2.3. SOLUTION OF SPARSE LINEAR SYSTEMS 21

at the (k+1)th iteration. This property of the Jacobi method makes it very suitable for applica-

tions in parallel computing although a variant of the Gauss-Seidel method called the Red-Black

Gauss-Seidel (RBGS) [37] method can be applied when computing the numerical solutions in

parallel environments.

To discuss the RBGS method in a parallel environment, consider a mesh in two dimensions.

A mesh point having indices (i, j) is given the color Red if i + j is even and the color Black

if i + j is odd. This coloring scheme can also be reversed in the sense that a mesh point can

be colored Black if i + j is odd, and Red when i + j is even. The algorithm for updating the

solution consists of two phases. In the first phase, the red points are updated using only the

value of the solution at the neighbouring black points. For example, using a 5-pt stencil in 2-D

and the unweighted Jacobi iterative method, the solution at a red point is updated according to

the weighted average of the solution at the four neighbouring black points. The updated values

of the solution at the red points next to the sub-domain boundary are then communicated to

the neighbouring processes. In the second phase, the solution at the black points is updated

using the latest value of the solution at the red points. It is important to note that the update

of red points (or black points) can be done in any order but the neighbouring processes must

synchronize and communicate the updated values of the solution at the red points (or black

points) before starting the solution update at the black points (or red points). Although the

Red-Black ordering described above works correctly with a 5-pt stencil, it fails with a 9-pt

stencil in 2-D. The reason is that the corner points needed for the update of a red point (or

black point) are also red (or black). This problem can be overcome by using two additional

colors as described in [38]. The technique of multi-color ordering can be extended to more than

two dimensions [37,38].

A further variation of the Gauss-Seidel iteration method is the Successive Over-relaxation

(SOR) method where the (k + 1)th approximation is the sum of the kth approximation and a

correction in a single Gauss-Seidel iteration [22]. Adding and subtracting uki from the RHS of

Equation (2.39), we obtain:

uk+1
i = uki +

1

aii
(fi −

i−1∑
j=1

aiju
k+1
j −

n∑
j=i

aiju
k
j). (2.43)

The term in parenthesis on the RHS of Equation (2.43) can be seen as a change (or correction

or displacement) made to uki by one Gauss-Seidel iteration. If the successive corrections are

one-signed, the convergence can be accelerated by using a larger correction term. This is the

idea behind successive over-relaxation and is expressed in the general form as shown in Equation

(2.44) below:

uk+1
i = uki +

ω

aii
(fi −

i−1∑
j=1

aiju
k+1
j −

n∑
j=i

aiju
k
j). (2.44)

22 CHAPTER 2. BACKGROUND AND RELATED WORK

The factor ω in Equation (2.44) is called the acceleration or relaxation parameter and generally

1 < ω < 2. For ω = 1, the SOR method reduces to the Gauss-Seidel method [22]. To obtain

the iteration matrix of the SOR method, we first subtract uk from both sides of the Equation

(2.40) and multiply the RHS by ω to obtain:

uk+1 − uk = ωD−1(f + Luk+1 + Uuk −Duk). (2.45)

Re-arranging the terms for uk+1 and uk in Equation (2.45), we obtain the point SOR iteration

matrix H(ω) as:

H(ω) = (I − ωD−1L)−1((1− ω)I + ωD−1U). (2.46)

2.3.2.3 Other Iterative Methods

Several other iterative methods exist. A sophisticated and efficient class of non-stationary iter-

ative methods called the Krylov subspace methods do not have constant iteration matrices such

as Jacobi, Gauss-Seidel and SOR. The idea behind Krylov subspace methods is to generate

systematic approximate solutions uk ∈ u0 + κn(A, r0) of the solution to Au = f , where uk is

the kth iterate of the approximate solution, u0 is the initial approximation, r0 = f − Au0 is

the initial residual and κn(A, r0) is the nth Krylov subspace generated by A from r0. Formally,

κn(A, r0) = span(r0, Ar0, A2r0, ..., An−1r0) [39].

The problem of solving the linear system of equations of the form Au = f can be visualized

as a problem of minimizing ||f −Au|| for u ∈ Rm, where ||.|| denotes some norm (generally the

L2 norm) and Rm is the set of all real vectors. The Krylov subspace κn ⊆ Rm and κm = Rm.

For n = 1, u1 = αr0 and we need to choose an α which minimizes ||f − Au1||2. Similarly for

n = 2, u2 = αr0 +βAr0 and we need to choose both α and β such that ||f−Au2||2 is minimized.

Krylov methods can generate uk from uk−1 efficiently and they are successful because we can

find an n << m such that ||f − Aun||2 < ε, where ε is sufficiently small. Well known methods

such as Conjugate Gradient (CG), Arnoldi, Lanczos, Generalized Minimum Residual (GMRES),

Biconjugate Gradient Stabilized (BiCGSTAB) etc., all belong to the Krylov family [33, 40, 41].

Out of these the CG method is the most efficient but only applicable to symmetric positive

definite matrices. GMRES is the most general method applicable to all matrix types but is

less efficient as compared to the CG method. Another method called the MinRES method is

applicable to symmetric matrices which need not be positive definite. A detailed description of

these methods falls out of the scope of the thesis, but the interested reader can refer to [33].

2.3.2.4 Multilevel Iterative Methods

Iterative methods such as the Geometric Multigrid (GMG) and Algebraic Multigrid (AMG) are

specializations of the general class of multilevel iterative methods. Multilevel iterative methods

use a hierarchy of approximations of decreasing resolution. Although iterative methods such as

2.4. PARALLEL COMPUTING 23

ω−Jacobi and RBGS can effectively remove the high frequency error components on a fine grid,

they fail to effectively eliminate the low frequency error components. The idea behind using

these coarser approximations in multilevel iterative methods is to accelerate the reduction of

the lower frequency components of the error (as high frequency error components of a coarser

representation) and thus improve the overall convergence. Multilevel methods can be classified

as Additive or Multiplicative. The main difference between these is that in Multiplicative

methods, the update of the solution using iterative methods is carried out sequentially i.e.

one level after the other, whereas in the Additive Multilevel schemes, these operations can be

performed in parallel for various levels. In both the methods, the inter-grid transfer operations

are carried out sequentially [25, 42, 43]. Multiplicative methods are generally used as stand-

alone solvers and can be applied to asymmetrical problems, while Additive methods are used

as preconditioners to accelerate other iterative methods such as the Conjugate Gradient (CG).

The standard or classical Multigrid is an example of a Multiplicative Multilevel method [25].

We expand on the Multigrid methods briefly, later in this chapter, and describe the Geometric

Multigrid method in detail in Chapter 6. For a detailed discussion of Multiplicative and Additive

methods, the interested reader can refer to [42].

2.4 Parallel Computing

Parallel computing involves the division of an algorithm into multiple tasks and their concur-

rent, coordinated solution on multiple Processing Elements (PEs). The aim of parallelism is

to reduce the time to solution and to achieve scalability. Parallelism is ubiquitously found in

pipe-lining of instruction execution, manipulation of multiple data units in vector registers,

threads or processes running on multicore processors, GPUs (Graphics Processing Units) and

many-core processors, etc [5]. Some form of synchronization or communication is usually needed

by parallel programs and it is because of this overhead that the practically achievable time to

solution may not coincide with the theoretical projection of the solution time.

The results of parallel execution can differ from the results of sequential execution for ap-

plications involving floating point arithmetic operations. This is because the result for such

applications becomes dependent on the order in which operations are done and due to the

approximate representation of floating point data. Floating point arithmetic as defined in the

IEEE-754 standard [44] is commutative but not associative [45, 46]. IEEE standard is the

de-facto industry standard for representing floating point numbers and is ubiquitous across

implementations. The finite precision of the mantissa and exponent necessitates rounding of-

f/truncation during long accumulations/reductions [45]. For example, the result of adding n

numbers on a single core can differ from the result of the same addition when the computa-

tions are divided among multiple processes/threads as the order of addition and intermediate

rounding-off/truncation may propagate non-deterministic numerical errors. If the specific order

24 CHAPTER 2. BACKGROUND AND RELATED WORK

of addition as dictated by the source code is imposed in a parallel environment to ensure re-

producibility, a performance penalty must be paid for imposing the particular sequence. Thus,

small variations between results obtained from the sequential and parallel execution of ap-

plications involving floating point arithmetic are an acceptable trade-off to permit optimized

hardware implementations of floating point operations.

2.4.1 Models for representing Parallel Computation

A Task/Channel model [47] is the fundamental model of representing parallel computation

where a Task represents a sequential program and local memory. Tasks execute concurrently

and are capable of sending messages, receiving messages, creating new tasks and terminating.

Tasks are interfaced to the environment via outports/inports and Channels represent message

queues for connecting outport/inport pairs. These message queues can be created/destroyed

dynamically. Messages can carry Channel identifiers to identify the outport/inport pair.

A Message Passing model is a variation of the Task/Channel model in the sense that

messages are passed or received from named tasks and not using Channel identifiers [47]. The

Message Passing Interface (MPI) [48] standard is a formalization of the Message Passing model.

Although there is no restriction on the creation and destruction of Tasks in the Message Passing

model, in practice the implementations of the MPI standard rarely use these features. Gener-

ally, a fixed number of identical tasks are created at start-up and this Single Program Multiple

Data (SPMD) paradigm executes the same program on different data. Though rare, a Multiple

Program Multiple Data (MPMD) design is also feasible. The current MPI standard 3.1 specifies

the bindings only for C/Fortran and the bindings for C++ stand deprecated. MPI, beyond

doubt, has become the de-facto standard for distributed computing.

Data Parallelism is another model of parallel programming where the granularity of data

computation is small. The difference from Message Passing is that here the compiler automat-

ically generates a SPMD model and hides the communication from the user. The user in turn

specifies how data is to be divided, for example, in a round-robin manner or using static parti-

tioning. As an example, High Performance Fortran is an extension to the Fortran programming

language that implements data parallelism [47].

The Shared Memory model allows the Tasks to share a common memory, the access to

which can be controlled by using locks and semaphores [49–51]. As an example, OpenMP [50]

uses threads which communicate by reading or writing to the common shared memory. It is

easier to parallelize a problem using OpenMP as compared to MPI but it is more difficult to

write a deterministic program and debug the race conditions among threads [47,51].

2.4. PARALLEL COMPUTING 25

2.4.2 Parallel Performance

The parallel performance of a program can be measured in several ways and we now describe

the most common methods of quantifying this performance. Speedup is defined as the ratio

between the sequential execution time and the parallel execution time. Thus, Speedup = Ts

Tp
,

where Ts is the execution time of the best sequential implementation on a serial system and

Tp is the execution time using p processing elements. More precisely, if ψ(n, p) represents the

Speedup of a problem of size n being parallelized by p processors1, σ(n) is the cost of the purely

sequential part, φ(n) is the cost for the purely parallel part and κ(n, p) is the synchronization

cost/parallel overhead, then

ψ(n, p) ≤ σ(n) + φ(n)

σ(n) + φ(n)
p + κ(n, p)

. (2.47)

A realistic assumption is that the part φ(n) is not perfectly parallel and hence this explains the

presence of the inequality sign in the expression for ψ(n, p) [52]. Further, as we increase the

number of processors, the cost φ(n)
p decreases (in theory at least) but the cost of inter-processor

communication increases (κ(n, p)).

The above definition of Speedup assumes that the size of the problem is kept constant

and not varied when new processors (or cores) are added. In literature this is known as Strong

Scaling, as opposed to Weak Scaling where the size of the problem per processor is kept constant.

Thus, Speedup is only a key performance indicator for the problem of Strong Scaling and not

Weak Scaling. In general, when the only constraint is that the time taken to execute the

problem of a given size should be minimized, Strong Scaling is used. If a problem size is to be

scaled up to multiple processors, possibly because of high memory requirements, Weak Scaling

is utilized [53]. Further, for a (theoretical) perfectly parallel program κ(n, p) = 0, σ(n) = 0 and

we obtain ψ(n, p) = p for p processors. For a completely serial program φ(n) = 0, κ(n, p) = 0

and thus, ψ(n, p) = 1. Hence,

1 ≤ ψ(n, p) ≤ p.

Amdahl’s law states that the maximum Speedup achievable by a parallel program is limited by

the serial fraction of the program [52,54], as illustrated by Equation (2.47).

Efficiency is defined as the Speed-up per processor and is a measure of processor utiliza-

tion [52]. Thus, denoting ε(n, p) as the Efficiency of parallelizing a problem of size n with p

processors,

ε(n, p) ≤ σ(n) + φ(n)

p(σ(n) + φ(n)
p + κ(n, p))

.

With arguments similar to that in case of parallel Speedup, we get the bounds for ε(n, p) (using

1We assume the word processors is synonymous with cores while discussing parallel performance.

26 CHAPTER 2. BACKGROUND AND RELATED WORK

the theoretical argument for a perfectly serial and perfectly parallel program) as:

0 ≤ ε(n, p) ≤ 1.

There are other metrics such as the Karp-Flat metric that defines the experimentally determined

serial fraction to take into account the contribution of the κ(n, p) term. This metric helps to

point out other reasons for parallel in-efficiency - load-imbalance being an example. It is defined

as

e =

1
ψ(n,p) −

1
p

1− 1
p

,

where p > 1 is the number of processors and ψ(n, p) is the parallel Speedup [52]. A detailed

description of other metrics is beyond the scope of the thesis.

2.4.3 MPI

MPI (Message-Passing Interface) [48] is a specification of the interface for a message passing

library. It is largely based on the Message Passing model and extends it in some cases. It

is important to note that it is a specification and not an implementation. The main focus of

MPI is to address the movement of data from the address space of one process to the address

space of another process. All MPI operations are expressed in terms of functions (or methods

or subroutines) and the C and Fortran language bindings for these operations are part of the

MPI standard. The latest version of the MPI standard as of date is version 3.1 [24].

The most basic operations in MPI fall into the class of Point-to-Point operations, a class

which specifies the functions with which messages can be sent from one process to another

process. In this class of operations there is only one sender and only one receiver. The MPI

processes are identified by means of ranks in a communicator, the latter referring to a collection

of processes which can communicate with each other. The class of Collective operations specify

methods by which all processes in a communicator can participate in a communication. For

both these categories, MPI provides blocking as well as non-blocking versions of functions. The

non-blocking versions become extremely useful when communication is to be overlapped with

computation. In addition to these classes, MPI provides several other classes of functions which

address communicator management, dynamic process creation (and management), parallel I/O,

One-sided communications and others. A detailed description of these can be found in the MPI

standard [24].

2.4.4 Hybrid Programming using MPI and OpenMP

A Hybrid programming model uses a combination of distributed memory and shared memory

programming. This model maps much more closely to the overall architecture of shared memory

nodes interconnected by high speed networks used in current High Performance clusters today

2.4. PARALLEL COMPUTING 27

as compared to only a message passing or a shared memory model. The most popular choice for

implementing this model is a combination of MPI for distributed memory access and OpenMP

for shared memory programming. The Hybrid model lies between a pure MPI implementation

and a pure OpenMP implementation in the sense that a single MPI process (or rank) usually

contains more than one thread. In general each thread runs on a separate core. The Hybrid

programming model can be a superior solution because of the reduced number of MPI pro-

cesses and messages, reduced memory footprint and improved load balance. Researchers stress

that determining an optimal Hybrid model i.e. the optimal combination of MPI processes and

threads per process for an application is not a trivial task [55]. They further recommend that

a benchmarking process is a must [55, 56]. For a single SMP, an efficient MPI implementa-

tions must prevent messages from going through the MPI software layers and utilize the shared

caches to emulate communication. Most MPI implementations optimize intra-node message

passing and thus make the Message Passing model a suitable choice for naive application de-

velopment [57]. The cost of spawning/waking up threads, frequent synchronization, first touch

policy on ccNUMA (cache coherent Non-Uniform Memory Access), access of non-local mem-

ory by the communicating thread are some problems associated with OpenMP. Nonetheless,

OpenMP’s incremental approach to parallelization due to the ease of use of compiler directives,

library routines and run-time variables makes it an ideal candidate for hybrid applications.

2.4.5 Domain Decomposition/Domain Partitioning

The first step in a parallel implementation of a problem is the division of computational work

or data among processes/cores. Domain Decomposition [47, 52] or Domain Partitioning2 is

the process of dividing and assigning the largest data-structures associated with the problem

domain to multiple cores of a multiprocessor [52, 58]. Another approach is that of functional

decomposition where the computation is decomposed first and then data is associated with it.

Some authors stress that Domain Decomposition be differentiated from Domain Partitioning

in the sense that the former is a special technique where individual sub-domains independently

solve the global problem without any communication and further, converge to the global so-

lution by adapting to the local solutions of neighbouring processes [59]. Data Decomposition

within the field of PDEs can either refer to the separation of domains which can be modelled

with different equations or division of large linear systems into smaller problems while precon-

ditioning [42]. In the current work, we parallelize the finite difference discretizations of Elliptic

PDEs resulting in sub-domains on individual cores that require communication for solving the

PDE.

The domain which is discretized using FDM, FEM or FVM can either result in an unstruc-

2We use the terms Domain Decomposition and Domain Partitioning interchangeably in this thesis to refer
to the same concept.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

tured or structured grid/mesh. The discussion in this thesis remains limited to the Domain

Partitioning of structured grids only. Naturally occurring data tends to be 3-dimensional and

thus the problem domain can be divided into 1-D, 2-D or 3-D partitions depending on the

problem. A 1-D partition on structured grids permits partitions along a single Cartesian direc-

tion only. Similarly, a 2-D partition and a 3-D partition allow partitions in 2 and 3 Cartesian

directions, respectively. In general a higher dimensional partition gives us the opportunity to

use a larger number of Processing Elements (PEs) for the problem [52]. Theoretically, a d -

dimensional partition for d -dimensions containing a total of nd elements can allow us to use

nd PEs. However practically, the cost of communication among nd PEs can be so high that

parallelization may not yield any benefits in terms of application speed-up.

MPI offers a convenient way of specifying Domain Partitioning by allowing one to specify a

virtual geometrical arrangement of MPI processes known as an MPI Cartesian Topology [48].

This arrangement is virtual as it need not follow any specific process-to-core mapping. Two

functions play a major role in the creation of a Cartesian Topology, namely, MPI DIMS CREATE()

and MPI CART CREATE(). The C language bindings for the MPI DIMS CREATE() function is

shown in Listing 2.1. This function takes as input the number of MPI processes (nnodes) for

which a topology is to be created, the dimension (ndims) of the topology and also the indi-

vidual number of processes in each dimension as entries into an array (dims) of size ndims.

If dims[i]=0 for all i = 1, ndims, then the function returns into the dims[] array positive

values, in decreasing order, that are set as close to each other using an appropriate divisibil-

ity algorithm which the standard does not describe. In this thesis, we call this the default

MDC (MPI DIMS CREATE()). As an example for nnodes=64, ndims=3, the default MDC re-

turns dims[0]=4,dims[1]=4,dims[2]=4. Thus, in 3 dimensions the default MDC is the clos-

est to a cubic topology. As another example for nnodes=24, ndims=3, the default MDC re-

turns dims[0]=4,dims[1]=3,dims[2]=2. If the user provides a non-zero, non-negative value

of dims[i], it is not altered by the function MPI Dims create() but in all the cases

nnodes−1∏
0

dims[i] = nnodes

must hold else an error is returned.

1 int MPI Dims create(int nnodes, int ndims, int dims[])

Listing 2.1: MPI Dims create() function

For a structured domain, it is easy to see that for a given nnodes and ndims, the de-

fault MDC minimizes the surface area of a sub-domain. In three dimensions, thus, the sub-

domains are as close to a cube as possible when the topology is the default MDC. It is inter-

2.4. PARALLEL COMPUTING 29

esting to note that any permutation of the individual sizes in the dims[] array returned by

the default MDC minimizes this surface area. Thus, for a default MDC for nnodes=24 i.e.

dims[0]=4,dims[1]=3,dims[2]=2, a combination such as dims[0]=3,dims[1]=4,dims[2]=2

also minimizes the surface area of the sub-domain. If in 3-D we denote the product of three

dimensions as Dx×Dy×Dz = dims[0] × dims[1] × dims[2], then all 6 combinations, namely,

4×3×2, 4×2×3, 3×4×2, 3×2×4, 2×4×3 and 2×3×4 minimize the surface area. Regardless

of the data layout supported by a language, the function MPI DIMS CREATE() return the same

value. Thus, the default MDC using the Fortran version of the function mpi dims create()

also returns a topology of 4 × 3 × 2 with nnodes=24. It is important to note that the default

MDC only minimizes the surface area of cubic domains and may or may not minimize the

surface area of non-cubic domains.

Different MPI implementations use different heuristic algorithms to implement the default

MPI DIMS CREATE() function. The aim of all these heuristics is to produce a balanced partition

but the interpretation of a balanced partition is debatable and researchers have found that

implementations such as MPICH, MVAPICH2 and OpenMPI can produce weak and strong

violations of the MPI specification [60].

We now outline and illustrate the working of the heuristic algorithm used by OpenMPI for

implementing the default MPI DIMS CREATE() convenience function. The algorithm is outlined

in Figure 2.4. The algorithm takes as input a given number of processes (say nnodes) and

dimensions (say ndims), and after determining the prime factors of nnodes, it then distributes

these factors using a greedy heuristic into ndims bins. As a final step, the bins are sorted in

a descending order to obtain the default decomposition (as output in the dims[1...ndims]

array).

We illustrate the algorithm with the help of two examples. The first example is for nnodes=24

and ndims=3 for which the default MPI DIMS CREATE() returns 4 × 3 × 2. Using Figure 2.4,

the value of sqnnodes=5, space allocated for the array factors=5 and the space allocated

for the array bins=3. The prime factors of nnodes=24 are 2 × 2 × 2 × 3 and thus the array

factors contains 2, 2, 2, and 3, with an empty trailing array element. Since there are a total

of 4 factors, nfactors=4. The number of elements in array bins is 3 as ndims=3 and they are

all initialized to one. Since the minimum value in the bins array is one initially, the element

at position one in the bins array i.e. bins[1]=bins[1]*factors[nfactors]=1*3=3. We now

decrement nfactors by one and again find the minimum of bins[1...ndims]. This minimum

is now found at position two in the bins array and hence bins[2]=1*2=2. In the third assign-

ment step, bins[3]=1*2=2. Now the bins array contains 3, 2, and 2 at positions 1, 2 and 3,

respectively. Clearly, the next minimum value in the bins array is at position 2 and 3. We

can choose any of these values but we choose the lowest possible index to break the tie. Thus,

30 CHAPTER 2. BACKGROUND AND RELATED WORK

Require: nnodes: number of processes, ndims: number of dimensions, dims[1...ndims]:
output array containing processes in each dimension

1: sqnnodes ← d
√
nnodese

2: factors ← malloc(dlg2(nnodes)e × sizeof(int))
3: bins ← malloc(ndims× sizeof(int))
4: i← 1
5: while nnodes%2 = 0 do
6: factors[i+ +]← 2
7: nnodes← nnodes

2
8: end while
9: j ← 3

10: while j <sqnnodes do
11: while nnodes%j = 0 do
12: factors[i+ +]← j
13: end while
14: j ← j + 2
15: end while
16: if nnodes 6= 1 then
17: factors[i+ +]← nnodes
18: end if
19: nfactors ← i− 1
20: Initialize bins[1...ndims]← 1
21: while nfactors > 0 do
22: Find minimum i such that bins[i] is minimum
23: bins[i] ← factors[nfactors]× bins[i]
24: nfactors← nfactors− 1
25: end while
26: dims← SORT(bins)

Figure 2.4: Default MPI DIMS CREATE() algorithm used by OpenMPI

2.4. PARALLEL COMPUTING 31

after assigning the fourth remaining factor in the array factors, the value at bins[2] becomes

bins[2]=2*2. We now sort the bins in the descending order and assign it to the dims array to

obtain the decomposition 4× 3× 2 as the final decomposition. It is to be noted that this is a

balanced decomposition. The second example below shows how this greedy heuristic approach

fails to obtain a balanced decomposition when nnodes=72 and ndims=2.

For nnodes=72 and ndims=2, the factors array is allocated space for dlg2(nnodes)e = 7

elements. The number of elements in the bins array is now two as ndims=2. The prime factor-

ization of 72 yields 2× 2× 2× 3× 3. Since the number of prime factors is 5, hence nfactors=5.

Since both bins[1] and bins[2] initially contain a one, we choose bins[1] as the minimum el-

ement and assign factors[nfactors]=factors[5] (i.e. bins[1]=bins[1]*factors[5]=1*3)

to it. Thus, bins[1]=3. Now, the minimum element is bins[2] which also becomes 3 after car-

rying out bins[2]=bins[2]*factors[4]=1*3=3. For assigning factors[3], we again choose

bins[1] as the minimum and hence bins[1] becomes bins[1]=3*2=6. Carrying out the same

procedure again, bins[2]=3*2=6. Now we are left with only one factor i.e. factors[1]=2 and

both bins[1]=bins[2]=6. Thus, we choose bins[1] as the minimum and it is multiplied with

factors[1] to obtain bins[1]=6*2=12. After sorting the bins array (and copying it to the

dims array) the final output in the dims array becomes 12 × 6. This is where the optimality

of the balance is violated as another decomposition 9 × 8 exists where the difference between

the first and the last dimension is smaller than in the decomposition 12 × 6. Thus, it is not

necessary that the algorithm employed by OpenMPI (or any other implementation) will always

yield the most balanced decomposition.

The function MPI DIMS CREATE() only helps to specify the number of processes in each di-

mension but does not actually create the Cartesian Topology. The function MPI CART CREATE()

is used to create the Cartesian Topology. The C syntax of this function is shown in Listing

2.2. This takes as input the old MPI communicator comm old (for example MPI COMM WORLD),

dimension of the topology ndims, processes in each dimension through the array dims[], peri-

odicity in each dimension through the array periods[], a boolean value reorder to permit or

not permit reordering of ranks and outputs the new Cartesian communicator comm cart. If the

topology is periodic in a certain dimension, then the last process is followed by the first process

in that dimension. If reordering of ranks is allowed in the new Cartesian Topology then the

ranks of the processes in the new communicator maybe changed from the ranks of processes in

the old communicator.

1 int MPI Cart create(MPI Comm comm old, int ndims, const int dims[],

2 const int periods [], int reorder, MPI Comm ∗comm cart)

Listing 2.2: MPI Cart create() function

32 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.6 Sub-domains

Domain Partitioning results in the creation of multiple sub-domains, each of which can be

assigned to a particular MPI process. In a distributed architecture where each sub-domain

resides with a separate process, ghost cells/halo data/guard cells must be introduced to exchange

the data in the address space of a neighbouring process for stencil computations [37, 52, 61].

Generally these ghost cells form a part of the sub-domain but they can be separate buffers

as well. For structured stencil problems, e.g., solving a PDE on a unit cube with MPI using

a Cartesian topology, each process has a maximum of 6 neighbours if a 1-element deep ghost

zone and a 7-pt stencil is used. The depth of the ghost zone can be increased to carry out

multiple iterations of updates before the next round of communication begins. With a 4 element

deep ghost zone, 4 iterations can be performed at the cost of some redundant computations

but the neighbouring data has to be exchanged with a (maximum of) 26 neighbours (faces,

edges and vertices of a cube/cuboid) [62]. An estimated 100% memory increase for 323 sub-

domains and 50% increase in 643 sub-domain for a 4-element deep ghost zone has been reported

in the literature [62]. Further, it is not necessary that each process will contain an equal

number of sub-domain mesh points, especially sub-domains resulting from dividing domains

which have dimensions of the form (2l + 1)× (2m + 1)× (2n + 1) (in 3-D) [59,63]. This creates

a certain amount of load-imbalance between processes. Another type of load imbalance arises

in domains where the work done per-grid point is variable. An example of the latter category

is a Dirichlet-Neumann [25] boundary value problem where a boundary point adjacent to the

Dirichlet boundary has to perform less compute work as compared to a boundary point which is

immediately adjacent to the Neumann boundary. We discuss the structure of the sub-domains

and the terminology associated with them thoroughly in Chapter 4.

2.4.7 Overlapping Communication with Computation

To hide the communication latency in a multicore cluster, the communication can be overlapped

with computation after analyzing the dependency of computation elements on communication

elements [64]. The MPI standard provides APIs to several non-blocking versions of point-

to-point and collective operations which return the control immediately to the application

and progress the communication engine in the background [24]. The non-blocking calls are

completed by calling MPI Wait() or MPI Waitall(). Generally applications consist of two kinds

of work: independent work that does not generate data for communication and dependent work,

the computation of which depends on the communicated elements. Potential for communication

overlap in large scale scientific applications has been explored in [64] with the conclusion that

fine-grained overlap is not necessary as the main opportunity for overlap is provided by the

independent work. In general, communication is carried out asynchronously using the network

adapter [65]. A multithreaded model for overlapping has been proposed in [65] as opposed to

the non-blocking operations in MPI and the Operating System bypass mechanism employed by

2.5. MULTIGRID 33

Infiniband [66]. Some implementations make progress without further calls to the MPI library

whereas others progress only when the MPI library is re-entered (by calling MPI Wait() or

MPI Test()) [67]. The multithreaded approach mentioned above was implemented in FiTMPI

and its design was based on creation of a worker thread when MPI Init() is executed. The

worker thread continuously polls for a network event and sends/receives any pending data. It

is important to note that it is generally the low-level data transfers on the network that can be

overlapped with computation and not the process of packing or unpacking of data. In principle

though, the MPI implementation should be able to overlap the packing/transfer/unpacking of

data with the support of the underlying communication mechanism [68–71].

2.5 Multigrid

Multigrid [25, 37, 63, 72] methods are hierarchical algorithms used to optimally solve certain

sparse linear systems of equations having N unknowns in O(N) time. They are based on the

idea of using grids of decreasing mesh resolution [63, 72, 73]. Iterative schemes [25, 37, 63, 72]

such as Gauss-Seidel, weighted Jacobi (ω-Jacobi) etc., can remove high frequency error compo-

nents very effectively, known as smoothing, but decrease the low frequency error spectrum very

slowly, thus producing an unacceptable convergence rate for large numbers of unknowns. These

low frequency error components can be represented as relatively high frequency components on

coarser grids [25,59,63]. Standard coarsening reduces the number of points by one-eighth in 3-D

from the immediate finer grid level, i.e. coarsening is done in all dimensions [37, 59, 63]. When

these iterative schemes are applied on the coarser grid, they filter out these high frequency

errors and speed up the overall convergence. In general, the smooth or low frequency error

modes are associated with large Eigenvalues and the high frequency error components are as-

sociated with small Eigenvalues of the iteration matrix. These smoothing properties of certain

iterative methods and the equivalent system of equations at various levels, i.e. coarser grids,

form the basis of Multigrid [59]. A vast repository about Multigrid can be found on-line [74]

along with a huge list of references in a file named mgnet.bib. Multigrid finds a particular

use in Computational Fluid Dynamics (CFD) where it has been used to solve problems such as

viscous flow around the aircraft and fluid flows in industrial machines [75].

Multigrid can be viewed as a recursive algorithm and is best expressed in the form a 2-

grid algorithm/coarse grid correction algorithm [25, 37, 59, 63, 72]. A 2-grid algorithm works

by applying a few iterations of the smoother (ω-Jacobi or Gauss-Seidel), on the finest grid,

calculation of a residual, restricting these residuals to the coarse grid, solving an equivalent

linear system of error equations exactly on the coarse grid to approximate the error, interpolat-

ing the error solution to obtain a better approximate of the solution at the fine grid level and

repeating the same procedure until a desired convergence is achieved at the fine level [25,59,63].

This scheme is explained in detail in Chapter 6. This 2-grid scheme when repeated recursively

34 CHAPTER 2. BACKGROUND AND RELATED WORK

on coarse levels gives rise to the Multigrid algorithm. Typically the pre-smoothing (ν1) and

post-smoothing (ν2) iterations of the smoother vary between one and three for most practical

problems [59]. Depending on the order of the traversal between grids, two common types of

cycles are categorized as V-cycles and W-cycles [25, 63]. The shape is dictated by a parame-

ter called the cycle index (γ), which determines the number of times the recursive Multigrid

algorithm is called at a particular coarse grid level. Thus, γ = 1 produces a V-cycle and γ = 2

produces a W-cycle (where each coarse grid level is solved twice in an approximate manner) [59].

A method called the Full Approximation Scheme (FAS) may be used when the discretization

operator is non-linear. This is called so because a full approximation of the solution at the

coarsest grid is solved instead of solving only for the error [63, 76]. Another method called

Newton-Multigrid is also used in non-linear settings and a comparison of these two methods

appears in [77]. When the coarse grid is used recursively to approximate the initial guess on the

fine grid, it gives rise to the concept of nested iteration [63]. Nested iteration when combined

with the recursive Multigrid technique gives rise to Full Multigrid methods (FMG). FMG usually

starts on the coarsest grid, solves it accurately, interpolates the solution to the finer grid and

then applies a Coarse Grid Correction (CGC) scheme or Full Approximation Scheme (FAS)

cycle before further interpolating to the next finer level [59, 63].

2.5.1 Type of Multigrid methods

Multigrid methods are broadly classified as Geometric or Algebraic Multigrid methods [63,75].

Algebraic Multigrid uses no geometric information regarding the grid on which the PDE or any

other problem is solved and thus they can be better called Algebraic Multilevel methods rather

than Algebraic Multigrid [75]. Though the flexibility of Algebraic Multigrid is unparalleled, the

higher throughput of Geometric Multigrid in terms of unknowns solved per second makes it

extremely attractive [78]. A discussion of Algebraic Multigrid is beyond the scope of the thesis

but a gentle introduction can be located in [63]. The classical Multigrid method refers to the

Geometric version and we discuss it exhaustively in Chapter 6 of the thesis.

2.5.2 Parallelization and Coarser Grids

Parallelization introduces a bottleneck when coarser grids in Multigrid are visited due to the

low ratio of computation to communication. This problem of inefficient solution on coarse grids

does not exist in serial Multigrid codes [11]. Communication aggregation and vertical traffic

avoidance do not offer substantial benefits at coarser levels [62]. Further, for very large core

counts, it is the coarsest grid which contributes to the maximum percentage of run-time [79] as

the time spent in MPI Waitall() increases. Researchers have explored the possibility of vertical

and horizontal communication avoidance at coarser levels and found them to be ineffective [80].

2.5. MULTIGRID 35

When a large number of processors (or cores) are present, the coarsest grid can be solved

in two standard ways. The first method is to agglomerate the coarse grid points from every

processor onto a single processor and then solve the problem. Two constraints exist for a single

processor solve. The complete coarse grid problem should be able to fit into the memory of

a processor and the solve time should be optimal. The second method is a generalization of

the first method where the coarse grid points from all processors are collected on a subset of

processors and the problem is again solved in parallel. The first approach incurs zero commu-

nication cost (excluding the cost of agglomeration and transfer of the solution after solving)

whereas the second one has lesser communication cost as compared to solving the coarsest grid

problem on all the processes [11, 81]. Tasks from processes can be aggregated onto a subset

of processes (agglomeration) or the combined task copies can be solved on different subsets of

processes (redundant approach) [82]. The redundant approach also embeds in itself a resilient

approach i.e. in case of a failure of a node in a subset, the result does not need to be re-computed.

Scalability of the coarsest level solvers is an extremely important issue [62]. The coarsest

level solver maybe a direct solver [11] such as MUMPS (Multifrontal Massively Parallel sparse

direct Solver [83]) or SuperLU (SupernodalLU) [84] in both Geometric and Algebraic Multi-

grid. Coarsest level iterative solvers can vary depending on the problem being solved, i.e. from

a constant number of relaxations at the coarsest level to implementing an Algebraic Multigrid

solver. As an example, in a comparison based study, the truncated V-cycle was terminated

when the coarse level contained a 43 domain and twenty-four iterations of the Red-Black Gauss

Seidel method were performed at the coarsest level [62]. Researchers have preferred the direct

solvers as compared to an aggregation of the coarse grid problem on Blue Gene/P systems

which has a number of cores of the order of 3× 105 [85]. These direct solvers are very difficult

to implement as a stable pivot choice is needed [86] and have sub-optimal efficiency. An appre-

ciable number of unknowns can be kept at the coarsest level and a highly parallel solver such

as Chebyshev semi-iterative solver or unpreconditioned Conjugate Gradient method can also be

used [11]. Researchers have made attempts to make a rough estimate of the coarsest grid solve

using Conjugate Gradient method with a heuristic
d√
N

2l−1 , where d is the number of dimensions,

N is the number of unknowns and l is the level of the coarsest grid. The obtained coarsest grid

was then solved using this CG approximation [79,85].

In our experiments with parallel Geometric Multigrid, we also fix the number of Jacobi

iterations at the coarsest level such that the number of V-cycles does not increase. To fix the

iterations, we first solve the coarsest grid problem to a high degree of accuracy and note the

number of V-cycles. We then remove the global communication calls (MPI Allreduce()) at

the coarsest grid level and fix the coarsest grid iterations to the smallest number such that the

number of V-cycles does not increase. To find this least value, the coarsest grid iterations are

systematically decreased, until a point is reached where the V-cycles start increasing.

36 CHAPTER 2. BACKGROUND AND RELATED WORK

2.6 Adaptive Mesh Refinement (AMR)

The accuracy of the approximate numerical solution of a PDE can be increased by increasing the

resolution of the mesh, i.e. decreasing the grid spacing. Since the error in the solution may be

undesirably higher in only certain regions, increasing the grid resolution locally in such regions is

a more efficient strategy rather than a global increase in the resolution. Thus, the mesh obtained

after discretization can be refined locally depending on the error, geometric “interestingness”

of the solution or any other relevant parameter. This technique is known as Adaptive Mesh

Refinement (AMR) [87, 88]. The main goal of AMR thus, is to obtain a desired accuracy of

solution with the least possible mesh points. This also implies an optimal use of computational

resources. AMR automatically adds mesh points to regions where a greater resolution is desired

and removes points from regions where a low resolution solution will suffice [89]. Although AMR

is complex to implement, it is extremely useful for applications involving a large gradient change,

phase change, discontinuities, and shocks. Further physical examples include high Reynolds

number flows interacting with solid objects, chemically reacting flows, cosmology simulations

(resolution is twelve orders of magnitude) and combustion problems [90].

2.6.1 Structured and Unstructured AMR

AMR can be used for both structured (SAMR) and unstructured meshes (UAMR). UAMR

are often based on Finite Element discretizations of unstructured meshes but due to indirect

memory references, its implementations on cache-based architectures remain inefficient. SAMR

uses logical rectangular grids refined spatially and temporally - categorized either as patch-based

or tree-based. The main advantage of SAMR is the ease with which the neighbours of a mesh

point can be decoded, in general, simply through array indices. Since the identification of a

neighbouring mesh point is straightforward, the efficiency of the method is expected to be high

and thus SAMR is used in applications with strict time constraints [89]. In tree-based schemes,

grid elements are stored using k-way trees with at least a pointer to the parent and an array

of pointers to its children. Additionally, some metadata such as the element type (if multiple

geometries are allowed), refinement level, a boolean value to distinguish between a boundary

element/non-boundary element etc., is also stored. Further, the leaves of the tree are the active

elements and elements are generated upon refinement [91]. The tree-structure demands higher

storage space and thus it is non-trivial to decide the splitting of this hierarchical data structure

which forces additional interprocessor communication [90] to exchange splitting information.

Each node of a tree can contain a single cell or a contiguous block of elements (represented

using arrays). The latter gives rise to block-structured AMR where even if a single cell within

a block is refined, the entire block is refined. Block-structured AMR can be implemented for

both patch-based and tree-based schemes. In the orthogonal approach of refining a single cell

the advantage is a much more flexible refinement but the disadvantage is the indirect memory

references [1]. Small grids in complex applications such as AMR are not recommended because

2.6. ADAPTIVE MESH REFINEMENT (AMR) 37

of the increased metadata, increased ghost cells and associated computations and copying of

data between different levels.

2.6.2 Software Packages for SAMR

Some notable software packages for parallel Structured AMR (SAMR) are: Chombo [2], BoxLib

[92] (both from Lawrence Berkeley National Laboratory), PARAMESH [1] (NASA) and SAM-

RAI [93] (Lawrence Livermore National Laboratory). A detailed survey of block-structured

AMR can be found in [94]. PARAMESH uses a tree-based approach while the other three use

a patch-based approach. Since load balancing is a critical issue, several algorithmic approaches

such as Space-Filling Curves (SFCs), greedy algorithms, sensitivity analysis and Knapsack

problems have been explored [90]. As an example, PARAMESH uses the Peano-Hilbert SFC [1]

for load-balancing and BoxLib can either use a Knapsack strategy or SFC.

In a study conducted on scaling Chombo to thousands of cores [95], researchers found the

influence of OS to be the performance bottleneck rather than the hardware or application code.

The migration from Catamount micro-kernel to Compute Node Linux caused a decrease of

10% performance in an AMR benchmark due to complex interactions between Linux libc heap

management and the memory hierarchy. Since it is difficult to interpret weak scaling in AMR,

replication scaling was used to take a hierarchy of grids and data points for a fixed number

of cores and replicated for higher concurrencies [95]. The affinity of data and threads (called

geographical locality) has been stressed for a good performance of AMR as data and work need

to be re-partitioned dynamically.

2.6.3 BoxLib

BoxLib [4, 19] is a parallel, multiscale, multiphysics, patch-based AMR framework for struc-

tured grids written in C++ and Fortran90. We use and describe BoxLib in detail in Chapter

5. BoxLib uses a properly nested hierarchy of grids but not based on a tree structure i.e. there

is no unique parent-child relationship between grids at two adjacent levels. The smallest unit

of abstraction is a Box and boxes at each level are distributed independently of the boxes at

the next level. BoxLib is the basis of several massive codes such as MAESTRO [96] and CAS-

TRO [97]. Unfortunately, the BoxLib library is now deprecated but a new framework called

AMReX [98] targeted at Exascale and similar to BoxLib has been released.

The major computational intensity in BoxLib lies in two types of computations: (i) Point-

wise evaluation i.e. expressions of the form φ̄i,j,k = φi,j,k + k(fxi,j,k + fyi,j,k + fzi,j,k) and (ii)

Stencil evaluations i.e. expressions of the form φ̄i,j,k = kφi,j,k +m(φi±a,j,k +φi,j±a,k +φi,j,k±a)

where a is some scalar offset [19]. In a comparative study of Hybrid parallelism using a combi-

nation of OpenMP and MPI, the division of the entire index range of the set of boxes owned by

38 CHAPTER 2. BACKGROUND AND RELATED WORK

a process to the set of threads (Tiling) outperformed the strategy of dividing each box among

the set of threads (Striping) [19] by a factor of 5.6x. Each tile can only belong to a unique

box and thus the tile index space is a subset of the box index space. The strategy of assigning

one box to one thread has the disadvantage of leaving some threads idle if the number of boxes

per MPI process are less than the number of threads. It is to be noted that tiled code has a

significant effect on stencil computations but little/no effect on point-wise computations [19].

Application of loop tiling along with improved loop vectorization resulting from simplification

of loops using loop fission in Nyx - a hybrid application for cosmological simulations - improved

the performance by an order of magnitude on the Intel Xeon Phi Knights Landing processor [19].

Tiling in the context of BoxLib exposes more parallelism and reduces the working set size of

threads [99]. There is no language support for tiling but manually tiling loops and element

loops are introduced to loop over tiles and individual elements, respectively [99]. Determining

the size of the tile for BoxLib kernels also remains an important research question. Shifting

the burden of tiling from the application programmer to compilers has always been an aim of

researchers [6, 100–102].

Regional tiling is a hierarchical scheme in which a grid represents a rectangular index space,

a contiguous division of the grid represents a region and a logical division of the index space of a

region represents a logical tile. Thus, a grid can be made up of multiple contiguous regions and

logical tiles are just index space divisions of the regions which can be varied on a loop-by-loop

basis. A special case is Logical tiling in which each grid consists of a single contiguous region.

While creating tiles, the length of the tile in the contiguous dimension is left uncut [6, 12, 99].

BoxLib uses OpenMP for threading and tiling allows it to use coarse-grained threading instead

of fine grained loop-level threading. Specifically, the OpenMP parallel do loops are placed

around tiles and not individual loops [99].

2.6.4 Error Estimation

There are multiple ways in which errors can be measured. In general when solving a PDE using

numerical methods, the actual solution is not known and thus the accuracy of the solution needs

to be estimated without full knowledge of the actual solution. For a system of linear equations

of the form Au = f , we can define the residual r as r = f − Auk, where uk is the kth iterate

of the approximated (computed) solution. Clearly, when the approximated solution uk = u∗,

where u∗ is the true solution, then r = f − Auk = f − Au∗ = 0. Further, since the residual

is a vector ∈ Rm, we use some norm to check if sufficient accuracy has been attained to stop

the simulation. A norm is a mapping from a vectors u ∈ Rm to the set of non-negative real

numbers [34]. The two most common norms are described below.

1. Infinity or Max -norm: The infinity norm is denoted by ||.||∞ and is defined as the maxi-

mum absolute value of the components of the vector i.e. ||e||∞ = max
1≤i≤m

|ei|. A bound on

2.7. CACHE MEMORY 39

the infinity norm implies that no component in the vector is more than the max-norm.

2. 2-norm: The 2-norm of a vector e having m components is defined as

||e||2 =

√√√√ m∑
i=1

e2
i .

In the current work we use the test problems to investigate the performance of various

domain partitions and since their solutions are known to us, we may choose to use the norm

of the error vector calculated from the actual solutions to stop the simulation when sufficient

accuracy has been obtained. We use this methodology to terminate our simulations in AMR and

use the residual 2-norm in Multigrid as the stopping criterion. In some cases, we choose to fix the

number of iterations for performance comparisons. However, the accuracy measurement remains

a valuable asset to verify the correctness of our implementations. Errors can be estimated a

priori or a posteriori. In the context of AMR, the a priori error estimates based on fundamental

error analysis of discretization methods and geometry are insufficient in the presence of sharp

changes in the solution or singularities [103]. These are insufficient in the sense that they provide

information only on the asymptotic error behaviour and assume that the solution is regular.

Thus, a posteriori error estimates based on the computed solution are needed to select the

regions for further refinement [104]. It is to be noted that we do not use AMR in the traditional

way i.e. we fix the refinements at the beginning of the simulation and keep them fixed. This

treatment is sufficient to serve our performance studies. Traditionally, AMR starts on a coarse

mesh and after an a posteriori error estimation selects regions for further refinement. The

coarsening and refinement of regions continue till sufficient accuracy is obtained. A detailed

discussion of error estimation is beyond the scope of the current work.

2.7 Cache Memory

The memory unit of modern computer systems consists of memories of different speeds and

sizes. The most common memory hierarchy in order of decreasing sizes, increasing speeds,

increasing cost per byte and decreasing distance from the processor consists of the hard disk,

the main memory (RAM), the cache memories (L3, L2 and L1) and the register memory [5].

Figure 2.5 shows the typical memory hierarchy of a server system along with the typical size and

access times. We shall collectively refer to the L1, L2 and L3 caches as the cache hierarchy. The

typical number of processor cycles to access the L1, L2 and L3 caches are approximately 1 - 2,

5 - 10, and 10 - 20, respectively [105] (though these numbers may vary depending on the system).

Although the historical increase in processor clock frequencies has stalled in recent years

due to power constraints, the mismatch in the rates at which the processor computes and the

main memory delivers data necessitates the introduction of the cache hierarchy. Caches exploit

40 CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.5: Typical memory hierarchy with size and access times in a server system (reproduced
from [5])

the principles of spatial locality, i.e. data in the vicinity of the data being used is most likely to

be accessed, and temporal locality, i.e. data which was accessed will be accessed again [5, 105].

Generally the L3 cache contains a copy of the data contained in the L1 and L2 cache and this

is termed as the principle of inclusion. This principle is also followed by the main memory and

the disk storage. There are generally two types of L1 cache: Instruction cache (L1i) and the

data cache (L1d) but the L2 cache is Unified (stores both instruction and data). The L3 cache

is also Unified, Inclusive and shared among several cores in a multi-core system.

A cache-miss results when the data requested by the processor is not found in a cache and

thus, data is fetched from the lower levels of the cache hierarchy or the main memory. As

can be seen from Figure 2.5, the lower the memory level, the higher the access time and thus

the aim is to minimize the cache-miss rate (or maximize the cache-hit rate). For reasons of

efficiency and spatial locality, a cache miss results in fetching multiple words and not just a

single word from the lower levels. This group of words is called a cache-block or cache-line.

For example, instead of fetching a single double word of 8 bytes on a cache miss, 8 double

words are fetched from the main memory. Thus, a typical cache-line size is 64 bytes (i.e. 8

double elements or 16 float elements). A contiguous collection of blocks in the cache memory

is called a set and the fetched cache-line from the memory can be placed anywhere in this

set. The cache memory can contain many such sets. Such a cache is said to be of n-way Set

Associative type. In the extreme case where a single set spans the full cache memory, the cache

is said to be Fully Set Associative as the cache-line can be placed anywhere in the cache. On

the other hand if this set consists of only a single cache-line, i.e. n = 1, the cache is said to be

Directly Mapped as there is only one location where the incoming cache-line can be loaded. In

other words, a Directly mapped cache has a single block per set and a Fully Associative cache

only has a single set. Fully Associative caches are generally used as special purpose caches

such as Translation Look-aside Buffers (TLBs) [105]. Further, the data in the cache and main

memory must be kept consistent. If the data is just being read then the memory is consistent

with the cache. The problem occurs when data is written and two policies are used for memory

consistency. A Write Through policy updates the cache and also the main memory. A Write

2.7. CACHE MEMORY 41

Back policy only updates the cache but delays writing to the memory for some later point in

time. When writing data to the memory, the data can be copied from the cache to a buffer

and then written to the memory. A large wait time can result if any incoming cache-line has to

wait for some cache-line in the cache to be written directly to the memory. Thus, introducing a

buffered scheme prevents full latency times and is used by both Write Through and Write Back.

As mentioned above, it is desired that cache-misses be minimized. The cache-miss rate is

defined as the fraction of cache accesses which result in a cache-miss. Similarly the cache-hit

rate is defined as the fraction of accesses which result in a hit. Three types of cache-misses have

been identified by the 3C’s model [5]:

1. Compulsory miss: A compulsory miss results every time a cache block is requested for

the first time and is not in the cache memory.

2. Capacity miss: When the working set is so large that it just cannot be contained in the

cache memory, a capacity miss occurs. Thus, two things must hold true for a capacity

miss. First, the cache must be full and, second, the processor must request data that is

not in the cache. A cache-block or line must be evicted from the cache memory and hence

the cache-miss due to the requested block is categorized as a capacity miss.

3. Conflict miss: For a non-fully associative cache, two blocks can map to the same address

and hence the first cache block must be evicted from the cache. This results in a conflict

miss. A conflict miss can occur even when the cache is not full i.e. the incoming data can

theoretically fit into the cache but due to the constraint of mapping to a particular set,

it evicts another block.

We can infer from the 3C’s model above that for a fully associative cache, only Compulsory and

Capacity cache-misses can occur. In a cache-miss rate study where the cache size was varied

from 8 KB - 512 KB and the set associativity varied from 1 to 8, the range of Compulsory,

Capacity and Conflict cache-misses as a percentage of the total cache-misses was found to be ≈
0.1 - 1.1%, 66 - 100%, and 0 - 35%, respectively [5]. Multicore processors add a fourth type of

cache-miss called a Coherency cache-miss that are caused by eviction of cache blocks in order

to maintain cache coherency across multiple cores.

When a cache-block is evicted from a set in the cache, there are policies to choose the

evicted block. Various policies such as the Random policy, the Least Recently Used (LRU),

Least Frequently Used (LFU) and First In First Out (FIFO) are used [5,105]. The LRU policy

chooses the block which was not accessed for the longest period of time. The logic behind

using it is that a block which has not been accessed till now will have the lowest probability

of being accessed again in the future. In practical implementations, a pseudo LRU algorithm

approximates the behaviour of the LRU algorithm by associating one bit with each block in

a set. Thus, if a cache is 4-way set associative then each set has 4 bits associated with it.

42 CHAPTER 2. BACKGROUND AND RELATED WORK

Whenever a block is accessed in a set, the corresponding bit is turned on. When all the bits in

a set are in the on state, they are all turned off except for the bit corresponding to the block

which was most recently accessed [5]. Thus, when a block is to be evicted, the replacement

algorithm can choose from any block for which the bit is in the off state (hence multiple blocks

may be available for replacement out of which one can be chosen randomly).

Cache optimization techniques can be broadly grouped into two categories: Hardware based

and Software based. An optimization technique such as Prefetching can fall into both the

categories. The technique of Prefetching involves fetching data or instructions based on patterns

of access into the cache in order to speculatively reduce future cache-misses. Prefetching can be

implemented in both hardware as well as software. Special hardware prefetch units can detect

strided accesses and keep tables for detecting such patterns. Software prefetching is generally

implemented by the compiler by inserting software prefetch instructions after analyzing the

access pattern. Prefetching is not a silver bullet and can lead to performance deterioration as

well by fetching data which may not be needed, by interfering with cache block replacement

policies and by increasing capacity cache-misses etc [106].

2.8 Stencil Codes: Metrics and Optimization

Stencil computations are classified as memory-bound as compared to compute-bound because

the memory bandwidth limits their performance rather than computations. To quantify the

memory-boundedness of stencil codes, we describe two performance metrics. The first of these

is Arithmetic Intensity (AI) or FLOPS/byte, which is the ratio of Floating Point Operations

(FLOPS) to the bytes fetched from the main memory/caches [107]. A lower value of AI indicates

memory-bandwidth limited kernels, such as the ones found in Sparse Linear Algebra applications

[54]. As an example, consider the weighted Jacobi iteration or smoother:

vi,j,k = ω×ui,j,k+ω̄×(ui,j,k+1+ui,jk−1+ui,j+1,k+ui,j−1,k+ui+1,j,k+u1−1,j,k+H×fi,j,k). (2.48)

Equation (2.48) has 3 multiplication and 7 addition FLOPS. Assuming the data-type is double,

the memory in bytes that is accessed in Equation (2.48) above is 9 × 8 = 72 bytes. It is only

the array accesses (such as vi,j,k or ui+1,j,k) that are counted as the constant values including

ω,H and ω̄, can be stored in processor registers. The theoretical AI of the code above can be

calculated as the number of FLOPS divided by the number of bytes that are accessed. Thus, AI

= 10
72 = 0.14. Typically, the maximum AI for stencil codes is 1 FLOP/byte [108]. Operational

Intensity (OI) is a term related to AI which signifies the data movement between caches and

the main memory rather than between caches and the processor [54]. It is usually expressed as

FLOPS/DRAM byte, with the word DRAM differentiating it from AI. Unfortunately, in prac-

tice, because of various NUMA effects and behaviour of modern cache systems, computation of

2.8. STENCIL CODES: METRICS AND OPTIMIZATION 43

AI or OI is not a straightforward process [108].

The Roofline model is a visual model which provides insight to programmers and designers

to better optimize floating point computations [54]. The roofline gets its name from two lines:

a horizontal line which illustrates the peak Floating Point performance (a hardware limit) and

a diagonal line which denotes the maximum memory bandwidth (in GBytes/sec) for a varying

operational intensity. The diagonal line is plotted using the STREAM [109] benchmark and at a

varying operational intensity, i.e. STREAM is run at various values of operational intensity and

the value is plotted. The angle that the diagonal line makes with the horizontal axis depends

on the scales chosen to plot the graph. Further, the advantage of the Roofline model is that

it needs to be calculated only once for a multicore system and not once per a computational

kernel. On drawing a straight vertical line from the operational intensity axis, if it hits the

roof (horizontal line) it means the performance is computation bound and if it intersects the

diagonal line - the application is memory traffic bound. Further, the X-coordinate of the ridge

point (intersection of diagonal with roofline) gives the minimum operational intensity at which

peak floating point performance can be obtained. Thus, it is preferable to have the ridge point

as far to the left as possible so that even kernels with a very small operational intensity can also

achieve the theoretical maximal FLOPS. Further, additional rooflines such as ILP (Instruction

Level Parallelism), software prefetching and SIMD (Single Instruction Multiple Data) can be

added to the Roofline model. The maximal limits for these can be obtained by running appro-

priate benchmarks [54].

General cache optimization techniques can be applied to Stencil codes. There have been

several efforts to optimize and exploit spatial and temporal principles of the cache memory

hierarchy to bridge the gap between the fast processor speed and the comparatively slower

memory access times [5, 12–16]. Researchers advocate fetching a higher fraction of data from

the higher levels of memory such as registers and L1 cache while reducing the fraction of data

fetched from lower levels such as L3 cache and main memory [15]. The major source of cache-

misses are nested loops which access the same data repetitively. Data access optimizations

are transformations that change the pattern in which data is accessed in the loops to exploit

temporal locality [105]. Transformations such as loop skewing, loop peeling, loop unroll, loop

interchange, loop fusion (or jamming), loop fission, and loop blocking (or tiling) help to make

better use of caches and expose available parallelism [105,110]. Cache tiling/blocking techniques

have been heavily researched and they aim at bringing a sub-domain of data into the cache

instead of traversing the entire domain in a single iteration [5,15,16]. The effectiveness of these

cache tiling/blocking techniques in modern microprocessors has decreased due to advances in

compiler technology and increasing size of on-chip caches [80].

Fusion techniques have been researched in Red-Black Gauss-Seidel (in 2-D, 5-pt stencil)

44 CHAPTER 2. BACKGROUND AND RELATED WORK

methods, a variant of Gauss-Seidel, to combine the update of red and black points in a single

sweep by updating red points in row i followed by black points in row i− 1. In the same con-

text, a blocking technique allows multiple updates of a red/black point i.e. re-using cache across

multiple time-steps by multiply updating red points in rows i and i−2 and black points in rows

i − 1 and i − 3 [15]. A 2-D blocking technique using a parallelogram shape sweeping through

the grid has been proposed as an improvement to the simple blocking technique [15]. Further,

the red and black points for unknowns and the corresponding right-hand side values can be

stored in different arrays to reduce the traffic between various cache hierarchies, although the

total traffic to the main memory remains the same [111].

Initial ground-breaking work proposed the use of partial 3-D blocking for 3-D loops which

maximizes the size of the dimension which has continuous data [6]. Analytical cost models for

cache tiling fail to address the difference between load and store operations [16]. Further, cache

conflict misses occur when the data is read from and written to different grids represented by

multi-dimensional arrays in the memory as in the case of Jacobi updates [17]. These cache

optimization techniques also interfere with automatic optimization techniques implemented in

the hardware and software in the modern microprocessors. These automatic techniques can

be called streaming techniques and SIMD (Single Instruction Multiple Data) instructions (also

called vectorization) and prefetching fall under it. Researchers have explored specific hardware

optimizations along with software optimizations to enhance performance for specific platforms

such as the IA64 (Itanium Architecture) [111]. In order to maximally reap the benefits of

parallelism on specific CPUs, explicit SIMDization has to be implemented [80].

Microbenchmarks including the Stanza Triad (STriad) and Stencil Probe have been cre-

ated that attempt to act as a proxy for modelling the prefetch behaviour of the actual pro-

gram [13, 16]. These benchmarks do not account for the packing or unpacking times and the

changing latency in the context of using derived datatypes in the MPI implementations [48,61].

Researchers have used hardware performance counters such as cache-misses, Translation Look-

Aside Buffers (TLB) misses, mispredicted branches, hardware prefetches, and regression anal-

ysis to predict the performance of stencil codes [18]. Cache oblivious/transcendental [112]

algorithms have been proposed which ignore the hardware characteristics of caches as opposed

to Cache aware algorithms which use the cache specifications to minimize cache-misses. The

idea behind every memory optimization is to minimize the data accesses between every ac-

cess to the same memory location [15]. The ExaStencils project encourages a Domain Specific

Language (DSL) for generation of stencil codes which range from an abstract mathematical

description to highly optimized code for a particular platform [113]. Further, it stresses the fact

that there are a variety of stencils and switching from one form of the stencil to another form

is non-trivial in terms of the coding effort. Several domain specific stencil initiatives exist that

have different goals such as autotuning, applying cache obliviousness and adding abstractions

2.9. SUMMARY 45

to a high level language [113].

2.9 Summary

Partial Differential Equations (PDEs) are widely used to model natural phenomena. It is very

difficult to solve them analytically and hence they are discretized by popular methods such as

the Finite Difference (FDM), Finite Element (FEM), Finite Volume (FVM) among others and

then solved numerically using direct or iterative methods. The FEM is a very powerful and

flexible discretization scheme that can be applied to complex domains but in this thesis we

concentrate only on the finite difference discretization of linear, second order Elliptic PDEs on

regular, structured domains. The finite difference discretization of such equations gives rise to a

Sparse system of linear equations which may be solved using point iterative methods such as Ja-

cobi, ω−Jacobi and the Red-Black Gauss Seidel (RBGS). The application of Jacobi/ω−Jacobi

(or RBGS) to update the solution at a mesh point after discretization results in a fixed geomet-

rical pattern called a Stencil. A Stencil uses a weighted average of data neighbours to update

the solution at a mesh point and a 7-pt, 19-pt or a 27-pt stencil is frequently used in 3-D space.

With the aim to speed-up the numerical solution of a PDE, multicore processors are used.

Parallel computing involves the division of a problem into sub-problems and mapping them

onto multiple execution units which then simultaneously solve the sub-problem, communicat-

ing/synchronizing as and when needed. Domain partitioning or domain decomposition, the

first step in parallel computing, is the process of dividing the largest shareable data-structures

among cooperating processes. For a load-balanced problem, the orthodox approach to domain

partitioning aims to minimize only the total communication volume. For domain level dis-

tributed parallelism involving structured domains, this is accomplished by using the default

MPI DIMS CREATE() function of the Message Passing Interface (MPI). MPI is the de-facto stan-

dard for programming distributed memory systems, although it can be used to program shared

memory systems as well. This aforementioned approach to domain decomposition is followed

when Elliptic PDEs are solved numerically on structured meshes.

Stencil-based codes are limited in performance by the memory bandwidth, thus necessitat-

ing an optimal use of the cache memory hierarchy for optimal performance. The overlap of

communication with computation in a parallel numerical solution of PDEs incurs additional

cache-misses as the sub-domain is divided and updated separately as two regions: the inner

computational kernel that does not require any data from other sub-domains and the planes at

the surface that require data from other processes.

Due to the unacceptably slow convergence rate of these iterative methods when the number

of mesh points is large, a multilevel algorithm such as Multigrid may be used. Geometric Multi-

46 CHAPTER 2. BACKGROUND AND RELATED WORK

grid is an optimal O(N), multilevel, multiplicative, iterative method used for solving Elliptic

PDEs. Multigrid uses a hierarchy of grids of decreasing sizes and carries out various on-grid

and inter-grid operations, such as smoothing, restriction, interpolation and error correction,

to accelerate the convergence to the solution. It is challenging to optimize parallel Geometric

Multigrid due to the low computation to communication ratio at coarser levels.

Adaptive Mesh Refinement (AMR) is another multilevel technique which allows increasing

the mesh resolution in a local region of the global mesh based on error estimates or geomet-

ric importance. Multiple parallel frameworks exist that implement AMR and abstract away

the communication/synchronization among multicores. BoxLib is a massively parallel, multi-

physics, multiscale AMR framework written in C++ and Fortran90 that we use in this thesis.

The importance of AMR and Geometric Multigrid in Scientific Computing is indicated by the

presence of a large literature base detailing their use in a multitude of application areas and

amplified by that fact that they are indispensable candidate algorithms for Exascale. The cur-

rent thesis focuses on optimizing domain partitioning for stencil-based single and multilevel

methods in parallel settings.

Chapter 3

Test Platform: Hardware and

Software

This chapter describes in detail the test platform that we use for our experiments. There are

two test platforms used - ARC2 and ARC3 facilities at the University of Leeds. Although

in the broad sense they have similar architecture and software ecosystems, at the finer levels

they differ in some aspects. We first describe the terms related to parallel architecture that we

use frequently in this chapter and then describe the hardware of each of these facilities. The

description of software is divided into two parts. The primary category is that of the compilers

and MPI implementations. This category is described separately for each of the facilities but

the secondary category consisting of performance profilers and visualization tools does not carry

such distinction.

3.1 Architecture

The most common multiprocessor architecture in use today is the Symmetric Multiprocessor

(SMP). An SMP consists of multiple processing units called cores which access the same shared

memory. It is called symmetric because all cores have access to the same centralized memory,

even if the memory is distributed into multiple modules. Since the cores have the same uniform

latency to the memory in an SMP, it is also known as a Uniform Memory Access (UMA) mul-

tiprocessor [5]. Figure 3.1 shows the schematic diagram of an SMP or UMA multiprocessor.

If the number of cores sharing the centralized memory is increased beyond a certain number,

the memory system will not be able to keep up with the bandwidth demands and the increased

latency. Thus, an alternative design physically distributes the memory and is known as a

Distributed Shared Memory (DSM) architecture. A DSM architecture is shown in Figure 3.2

where an interconnection network allows the SMP’s to access the physically distributed memory.

47

48 CHAPTER 3. TEST PLATFORM: HARDWARE AND SOFTWARE

Figure 3.1: Symmetric Multiprocessor (SMP) or Uniform Memory Access (UMA) multiproces-
sor, each processor or core has uniform latency to main memory and a shared cache.

Since accessing the local memory and non-local memory have different latencies, the DSM

architecture is also known as a Non-Uniform Memory Access (NUMA) architecture. In both

SMP and DSM architectures, threads communicate using a shared address space and thus even

if the memory is physically distributed, any thread can access any memory location in any mod-

ule. Currently, multiple multiprocessors are combined to create a compute node. The memory

in this node is distributed shared memory, i.e. each multiprocessor can access the physical mem-

ory attached to the other multiprocessor using a shared address space. Since the local memory

has lower latency as compared to the memory attached to the other processors, the node is

sometimes called a NUMA node. Each of the processors in a node is housed in a socket or a

processor chip. Thus, a multiprocessor chip consists of multiple cores, each multiprocessor is

housed in a chip or socket, and there are generally multiple sockets in a node. These nodes can

be connected together with a high speed network such as Infiniband [66] to create a cluster. Two

cores in two different nodes in such a cluster cannot access the physically distributed memory

directly without using some form of software protocols. Generally Message Passing protocols

are used for communication in such clusters.

Programming models are experiencing a paradigm shift to efficiently utilize the underly-

ing shared-distributed High Performance Computing infrastructure. For maximal benefit the

programming models and their implementations must fully exploit the underlying machine

topology and minimize the memory footprint. The most common hybrid parallel programming

3.1. ARCHITECTURE 49

Figure 3.2: Distributed Shared Memory (DSM) or Non-Uniform Memory Access (NUMA) archi-
tecture where the SMP’s can access the distributed shared memory through an interconnection
network, non-local memory access is non-uniform

model which matches the underlying hierarchical hardware is a combination of MPI [48] and

OpenMP [50] - MPI being the de-facto standard for distributed memory programming and the

latter being the same for shared memory programming [56]. Thus, between a pure message

passing approach and a pure virtual shared memory approach for clusters of shared memory

nodes interconnected by high speed networks, the hybrid approach i.e. using pure MPI for

inter-node and OpenMP within a node promises a better mapping to the cluster architecture.

3.1.1 ARC2

The ARC2 (Advanced Research Computing 2) [114] cluster is a CentOS 6 based HPC (High

Performance Computing) facility. Servers and storage are HP based, with each HP BL460 blade

consisting of a single compute node. Each compute node consists of 2 Xeon E5-2670 Sandy

Bridge processors, each with 8 compute cores (base clock frequency 2.6 GHz, Turbo 3.3 GHz),

16 GB shared memory per processor, thus, making it a total of 32 GB per compute node. The

memory is a DDR@1600MHz and achieves a peak memory bandwidth of 102.4 GB/sec per

node. Each processor is housed in a socket and has two QPI (Quick Path Interconnect) [7]

links, with each link running at 16 GB/sec in each direction simultaneously [7]. Each socket

or chip forms a NUMA region as the time taken to access the non-local memory is different

from that of the local memory. The cluster has a total of 190 blades consisting of 190 nodes

or 380 processors - a total of 190 × 2 × 8 = 3040 compute cores. The hierarchy of elements is

as follows. Each a blade contains a single node, there are multiple blades in a shelf and there

are multiple shelves in a rack. The network that connects the computes nodes is a QDR (Quad

Data Rate) Connect-X, delivering 40 Gbit/sec to the compute blades and storage.

The L1d and L1i cache are 32 KB each, L2 cache is 256 KB (Unified) and 8 cores in a socket

share the Last Level Cache (LLC) or L3 of 20 MB. L1d and L2 have a cache-line size of 64

bytes and associativity of 8, while L3 has the same cache-line size but an associativity of 20.

50 CHAPTER 3. TEST PLATFORM: HARDWARE AND SOFTWARE

!
!
!
!
!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

20!MB!Last!Level!Cache!(LLC)!or!L3!Cache!

Ring!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

core!

L(0)!
1.5Kb!
μops!

L1i!
32Kb!
L1d!
32Kb!

L2!
256Kb!

20!MB!Last!Level!Cache!(LLC)!or!L3!Cache!

Ring!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

DDR3!

QP
I!

QP
I!

SANDY!BRIDGE!CPU!

SANDY!BRIDGE!CPU!

Figure 3.3: Memory hierarchy of an E5-2670 CPU processor and Quick Path Interconnect (QPI)

3.1. ARCHITECTURE 51

A schematic diagram depicting the memory hierarchy of a node is shown in Figure 3.3. I/O,

PCIe buses, etc., have been omitted in this high level diagram. Table 3.1 shows a summary of

important features of this experimental test-bed at the level of a core, processor and node [7].

3.1.1.1 Theoretical FLOPS

The Intel Sandy Bridge architecture in ARC2 implements a 256-bit AVX (Advanced V ector

eX tensions) instruction set. Thus, the vector registers are of length 256 bits, i.e. capable of

containing either 256
sizeof(float)×8 = 256

4×8 = 8 single precision (SP) floating point values or 4

double precision (DP) floating point values. We use FLOPS as an acronym for Floating Point

Operations and not Floating Point Operations per second. Whenever we want to refer to the

latter in this thesis, we refer to it as FLOPS/sec. In one clock cycle, the Sandy Bridge can

achieve 1 floating point Multiplication and 1 floating point addition for AVX-FP High (256 bits).

Thus, considering DP floating points, a total of 4 (Mul) + 4 (Add) = 8 FLOPS can be achieved

in a single cycle. Similarly for SP floating point, a total of 8 (Mul) + 8 (Add) = 16 FLOPS can

be achieved. The base frequency at which a core runs on ARC2 is 2.6 GHz. Since Hz means

cycles per second (unit of frequency), this translates to 8FLOPS×2.6×109 cycles
sec = 20.8 double

precision GFLOPS/sec per core. For single precision FLOPS, we can double 20.8 to get 41.6

single precision GFLOPS/sec per core. Since there are 8 cores per node, we obtain a theoretical

FLOPS rate of 20.8×8 = 166.4 DP FLOPS/sec or 332.8 SP FLOPS/sec per processor (or socket

or CPU). As a single node consists of 16 cores i.e. two sockets or multiprocessors or chips, we

need to double the FLOP rate obtained previously to obtain 332.8 DP FLOPS/sec or 665.6 SP

FLOPS/sec (per node).

3.1.1.2 Theoretical Memory Bandwidth of ARC2 node

The memory is DDR3@1600MHz and there are 4 channels per socket. The total memory

bandwidth per processor then is equal to: B = 8 bytes × 1600 MHz × 4 channels = 47.68

GB/sec. But Intel specifies a bandwidth of 51.2 GB/sec for the same. The reason is that to

convert the B above into Giga Bytes, 1 KB is approximately taken as 1000 bytes and not 1024

bytes and 1 MB is taken as 1000 KB and not 1024 KB. Similarly, 1 GB is taken as 1000 MB

and not 1024 MB. Hence, calculating the B in such a way produces a value of 51.2 GB/sec - a

value specified by Intel [115]. Clearly, for two sockets or a single node this is multiplied by two

to get a memory bandwidth of 102.4 GB/sec.

3.1.2 ARC3

The ARC3 (Advanced Research Computing 3) facility is a CentOS 7 based HPC (High Perfor-

mance Computing) facility at the University of Leeds. ARC3 has 252 nodes of 24 cores each

(standard nodes). A node is made up of two Intel Xeon Broadwell E5-2650v4 processors (12

cores per CPU or socket or processor). Thus, the total number of cores is 6048. The clock rate

52 CHAPTER 3. TEST PLATFORM: HARDWARE AND SOFTWARE

Table 3.1: ARC2 Features: Core, Processor and Node characteristics [7]

ARC2 Core Features

Base Frequency 2.60 GHz
Turbo Frequency 3.3 GHz
SP FLOPS/cycle 16 (8 Mul + 8 Add)
DP FLOPS/cycle 8 (4 Mul + 4 Add)

SP FLOPS/sec 41.6 GFLOPS/sec
DP FLOPS/sec 20.8 GFLOPS/sec

L0 microperations cache 1.5K micro-ops
L1 cache size 32 KB (L1i) + 32 KB (L1d)
L2 cache size 256 KB (Unified)

HyperThreads/core 2

ARC2 Processor Features

Processor Code Name Intel Sandy Bridge-EP (Xeon E5-2670)
No. of cores 8

SP Peak FLOPS/sec 166.4 GFLOPS/sec
DP Peak FLOPS/sec 332.8 GFLOPS/sec

L3 cache size 20 MB (Shared and Inclusive)
L3 cache network Ring

Memory type 4 channels DDR3 - 2 DIMMS per channel
Memory speed 1600 MHz
I/O controller On-chip

PCI Lanes 40 Integrated PCIe 3.0
PCIe 3.0 Speed 8 GT/sec

ARC2 Node Features

Number of Processors (Sockets) 2
Main memory 16 + 16 = 32 GB

Total HyperThreads 16 + 16 = 32
Inter-Socket QPI Links 2

QPI Frequency 8.0 GT/sec
SP FLOPS/sec 665.6 GFLOPS/sec
DP FLOPS/sec 332.8 GFLOPS/sec

3.1. ARCHITECTURE 53

Table 3.2: ARC3 Features: Core, Processor and Node characteristics (standard nodes only)

ARC3 Core Features

Base Frequency 2.20 GHz
Turbo Frequency 2.90 GHz

L1 cache size 32 KB (L1i) + 32 KB (L1d)
L2 cache size 256 KB (Unified)

HyperThreads/core 2

ARC3 Processor Features

Processor Code Name Intel Broadwell EP (Xeon E5-2650 v4)
No. of cores 12

L3 cache size 30 MB (Shared and Inclusive)
L3 cache network Ring

Memory type 4 channels DDR4 - 2 DIMMS per channel
Memory speed 2400 MHz
I/O controller On-chip

PCI Lanes 40 Integrated PCIe 3.0
PCIe 3.0 Speed 8 GT/sec

ARC3 Node Features

Number of Processors (Sockets) 2
Main memory 64 + 64 = 128 GB

Total HyperThreads 24 + 24 = 48
Inter-Socket QPI Links 2

QPI Frequency 9.6 GT/sec

for non-AVX instructions is 2.2 GHz and that for the AVX instructions is 1.8 GHz. The total

memory per node is 128 GB and is arranged as 8 modules of 16 GB each (≈ 5.3 GB per core).

The Last Level Cache (LLC) memory is 30 MB per processor and is shared between 12 cores.

The L1i/L1d cache is 32 KB and L2 cache is 256 KB (Unified) for a core. The cache-line size is

64 bytes for all the caches. The set associativity is 8 for L1/L2 and 20 for the shared, inclusive

L3 cache. There is additional hardware on ARC3 which we do not utilize in our experiments

and hence is not described.

3.1.2.1 Theoretical Memory Bandwidth of ARC3 node

The memory is DDR4@2400MHz and there are 4 channels per socket. The total memory

bandwidth per node then is equal to: B = 8 bytes × 2400 MHz × 4 channels × 2 sockets = 150

GB/sec. This gives a value of 75 GB/sec per socket which is 1.8 GB/sec less than what Intel

states [116]. If we take a kilo to be 1000 instead of 1024, then B = 153.6 GB/sec per node or

76.8 GB/sec per processor and matches the the bandwidth that Intel specifies [116].

54 CHAPTER 3. TEST PLATFORM: HARDWARE AND SOFTWARE

3.2 Software

We group the software into two categories. The first category consists of the language compilers

and MPI implementations. This is a primary category which we describe separately for ARC2

and ARC3 clusters. The second category consists of performance profiling and visualization

tools which we do not describe separately for ARC2 and ARC3.

3.2.1 ARC2 Compilers and MPI Implementations

ARC2 uses the CentOS release version 6.9 ($lsb release -a) and the kernel version 2.6.32-

696.18.7.el6.x86 64 ($uname -a). Since we develop our programs in the C language, we use the

Intel C/C++ compiler for compilation. There are multiple versions of the Intel icc compiler

present on ARC2, managed using the module environment. Various module numbers for the

Intel compiler are: intel/13.1.3.192 (default), intel/15.0.0, intel/16.0.2, intel/17.0.1 and the very

recently installed intel/18.0.2. In our experiments, we use intel/16/0.2 and intel/17.0.1 but not

intel/18.0.2 due to the unavailability of the latter during the course of the project. The corre-

sponding icc compiler versions are ($icc --version): icc (ICC) 13.1.3, icc (ICC) 15.0.0, icc

(ICC) 16.0.2, icc (ICC) 17.0.1, and icc (ICC) 18.0.2. The same output is obtained using $mpicc

--version as well, as the MPI implementation internally uses the underlying C/C++ compiler.

There are multiple MPI implementations installed on the ARC2 cluster, namely, OpenMPI

1.6.5, multiple versions of Intel MPI and Mvapich2/1.9. Out of these we only use the OpenMPI

1.6.5 implementation. Our reasons for choosing this implementation are multiple. First, this

seems to be the most popular choice in published literature. Second, it was designed with the

goal of supporting Infiniband [66]. Third, just like Mvapich2 - a derivative of MPICH2 [117],

it is publicly available. According to [118], all OpenMPI versions up till 1.8 have been either

declared as retired or ancient. We use an updated version of OpenMPI (version 2.0.2) when

using the latest ARC3 cluster and its details are described in the next section. As of writing

this thesis, the current stable version seems to be OpenMPI v3.0 [118].

3.2.2 ARC3 Compilers and MPI Implementations

ARC3 uses the CentOS release version 7.4 ($lsb release -a) and the kernel version 3.10.0-

693.11.6.el7.x86 64 ($uname -a). There are various Intel C/C++ compilers, each activated

by choosing the respective module, namely, intel/16.0.2, intel/17.0.1 and intel/18.0.2. The

names of the respective icc compilers can be derived using $icc --version after loading the

appropriate module and is the same as the name of the modules mentioned above. There are

multiple GNU modules on ARC3, namely, gnu/6.3.0 and gnu/7.2.0. We use the C compiler

gcc 6.3.0 on ARC3 to show the compiler independence of our model. Out of the multiple

OpenMPI implementations on ARC3, we use OpenMPI 2.0.2 as the other implementation,

namely, OpenMPI 2.1.3, was not available throughout the course of the project. In the Intel

3.2. SOFTWARE 55

MPI flavour we make use of Intel MPI 2017.1.132. Further, we conduct some experiments with

Mvapich2/2.2 to further test the independence of our model from MPI implementations.

3.2.3 Other Tools

We use performance profiling tools to capture the cache-misses and other relevant performance

metrics. TAU [119] (Tuning and Analysis Utilities) is a tool that can be used for profiling,

tracing and sampling an application. It can be used with serial codes as well as parallel codes

utilizing MPI, OpenMP and pthreads. The general steps consist of preparing the application

for instrumentation, generating a profile and then examining the profile using a command line

or a graphical tool. The graphical tool called Paraprof produces a visualization of the metrics

captured and helps to identify the bottlenecks in the application. By default a single metric

is collected, i.e. the time spent in different phases of execution but additional metrics such as

cache-misses/hits, Floating Point operations, etc., can be configured using the TAU METRICS en-

vironment variable. One file per process is generated and if multiple metrics are specified, each

one is written to a different directory starting with the identifier MULTI . The TAU MAKEFILE

environment variable specifies what kind of a parallel program is to be profiled. We only make

use of pure MPI programs but the options can include hybrid programs using MPI and OpenMP

as well. TAU can be used without recompiling the program though it is recommended that the

program should be recompiled using a script file provided by TAU, namely, tau cc.sh for C

programs and tau f90.sh for Fortran programs. Without recompilation, the executable pro-

vided by TAU can be placed directly with the command used to execute the parallel program.

As an example $mpirun tau exec <prog> is a completely valid instrumentation for an MPI

program. TAU internally uses the PAPI (Performance API) [120] interface for recording various

metrics. The commands $papi avail lists the various possible hardware counters supported

by environment or architecture and $papi choose event checks whether the counters specified

are compatible with each other.

Scalasca [121] is another performance analysis tool that works by instrumenting, analyzing

and then examining the profile/trace. The scalasca module uses another measurement infras-

tructure called Score-P [122]. Score-P can be used with other profiling tools as well, such as

TAU [119]. Scalasca supports profiling of MPI, OpenMP, and Hybrid MPI+OpenMP programs

as well as programs written in CUDA (Compute Unified Device Architecture). The profiling

results can be visualized using the Cube tool. An advantage of Scalasca over TAU is that

the former shows the load-imbalance, late-sender and late-receiver scenarios explicitly, thus, it

helps identify performance bottlenecks directly. We use Scalasca with BoxLib to capture the

cache-misses of various sub-domain shapes as BoxLib does not interface seamlessly with TAU.

VisIt [123] is a visualization tool that we use to plot the results from BoxLib. It is a dis-

tributed, open-source, visualization tool that can run on Desktop computers to HPC clusters

56 CHAPTER 3. TEST PLATFORM: HARDWARE AND SOFTWARE

having 105 cores. VisIt offers a GUI with a wide variety of operators and mathematical ma-

nipulations that can be applied to visualizations. As an example, levels in adaptively refined

meshes can be coloured or the local refinement in 3-D meshes can be plotted with a wire-mesh.

It offers features such as slicing, rotating, and creating a video, among many others.

Chapter 4

Cache-aware Domain

Partitioning

With the ubiquitous appearance of multicore processors, a natural step is to parallelize the

simulations to minimize the time to produce meaningful results (or increase the accuracy of

the results obtained in a given execution time). It is challenging to optimize the process

of parallelization due to overheads such as data movement, mismatch in the speeds of the

processor and memory, data dependency constraints, algorithmic inefficiencies, loose coupling

of software with hardware etc., among many others. As mentioned in Chapter 1, our research

broadly lies at the intersection of Parallel Computing and numerical methods for the solution

of PDEs. We attempt to optimize their solution on multicore systems by creating a novel

technique for Domain Decomposition/Domain Partitioning - the first step in parallel computing

which consists of distributing data to individual cores of a multiprocessor system. We provide

an insight into why the orthodox approach of domain partitioning based on minimizing the

communication volume is not generally the optimal solution. We create and experimentally

validate a new model for domain partitioning based on the minimization of cache-misses. Cache-

misses are the major performance bottleneck in serial computing and our research focuses on

connecting them to domain partitioning in parallel computing. To the best of our knowledge,

such a relationship stands unexplored in the literature. With this macroscopic view of our

research, we now delve into the details.

4.1 Introduction

Partial Differential Equations (PDEs) [21,124] lie at the heart of numerous scientific simulations

depicting physical phenomena. It is very difficult, if not impossible, to solve them analytically

and thus, they are discretized and solved numerically [22]. Discretization of the problem can

be achieved by using, amongst others, the Finite Difference (FDM), Finite Element (FEM) or

57

58 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

the Finite Volume (FVM) methods [125]. A detailed description of FDM and a brief overview

of FEM, FVM and other discretization schemes was provided in Chapter 2. To recollect, Finite

Difference Methods are a numerical approximation method to estimate derivatives of any order

and can be obtained using Taylor’s theorem [22]. We only use the Finite Difference method

in the current and subsequent chapters but we expect the results to hold for other local forms

of discretization as well. Iterative methods such as the Jacobi, weighted Jacobi (ω-Jacobi),

Gauss-Seidel, Red-Black Gauss-Seidel (RBGS) etc., can be used to update the solution at vari-

ous mesh points after discretization (see Chapter 2). A fixed geometrical shape called a Stencil,

is used to define the approximate solution at each mesh point using a weighted average of the

solution at some fixed neighbouring mesh points. As illustrated in Chapter 2, a 7-pt, 19-pt

and 27-pt stencils are the most commonly used stencils in 3-D. As the number of mesh points

become larger, the time to solution increases. Parallel computing is used to decompose/divide

the domains (grid) into sub-domains (sub-grids) and reduce the time to solution by letting

the processor cores work independently on sub-problems, exchanging data when needed. In

this chapter we consider only structured 3-D domains and decompose them with divisions/cuts

parallel to the Cartesian Axes.

The parallelization of such simulations introduces additional performance penalties in the

form of local and global synchronization among cooperating processes. Domain decomposition,

the first step in parallel computing, partitions the largest shareable data structures into sub-

domains and attempts to achieve perfect load balance with minimal need for communication.

This chapter aims to introduce, develop and validate an alternate strategy to achieve optimal

domain decomposition/partitioning for structured 3-D stencil-based PDE discretizations. This

new strategy uses the minimization of cache-misses at the sub-domain level as the basis for ob-

taining optimal domain partitions/decompositions. We further, logically divide the sub-domain

into three parts, namely, the Independent Compute (IC) - a part which does not require data

from other processes for computation of a full iterative update, the Dependent Planes (DP) - a

part which requires data from other processes for updating the solution, and the Ghost Layer

(or Halo Layer) which acts as a buffer for the incoming data from neighbouring processes. Up

to now research efforts to optimize spatial and temporal cache reuse for stencil-based PDE dis-

cretizations have considered sub-domain operations after the domain decomposition has been

determined [6,12–14,126]. We derive a heuristic that minimizes cache-misses at the sub-domain

level through a cache-directed analysis to predict families of high performance domain decom-

positions of structured 3-D grids. Our approach and strategy thus connects a true single core

parameter (i.e. cache-misses) to a true multicore parameter (i.e. domain decomposition) - an

aspect which to the best of our knowledge has no associated literature. The analysis is followed

by appropriate experiments to demonstrate the efficacy of our high level model. The chapter

concludes by emphasizing the need to re-examine the orthodox approach of domain decompo-

sition for stencil-based PDE discretizations due to the tightly-coupled, evolving software and

4.2. MOTIVATION AND CONTRIBUTION 59

hardware ecosystem of multicore processors.

4.2 Motivation and Contribution

Traditionally and universally domain decomposition or domain partitioning has been a func-

tion of minimizing communication volume only. Thus, the aim has only been to reduce the

number of elements which are exchanged by multiple cores when subdividing a problem into

sub-problems. This is achieved by using the default MPI Dims create() function in the C lan-

guage or mpi dims create() in the Fortran language, as outlined in the MPI specification [48].

When considering structured 3-D domains, this approach results in cubic or nearly-cubic sub-

domain shapes so as to minimize the surface area of the sub-domain. Thus, the approach

minimizes the volume of communication elements which are needed by neighbouring MPI pro-

cesses for updating the solution at the mesh points. Due to the increase in network capacity,

reduction in transmission times, growth of Vectorization units requiring contiguous streams

of data, and the very slow improvement in latency, the software and hardware ecosystem has

changed since the original development of MPI. Packing and unpacking of data can contribute

a high percentage of the total cost of transmitting data and thus needs to be examined in terms

of cache-misses as the latter are the major factor in contributing to the overall computation

time. We thus base our approach on quantifying cache-misses for various domain decomposi-

tions and selecting those that minimize the cache-misses. Our model, described later in this

chapter, attempts to quantify this concept. The results of our experiments further strengthen

our motivation and our efforts to continue looking beyond the orthodox approach of solely

minimizing the communication volume. We make the following contributions in this chapter.

- An in-depth analysis and worst-case prediction of read/write cache-misses due to the local

computations in the Independent Compute (IC) kernel and the Dependent Planes (DP),

along with packing/unpacking cache-misses involved in the communication of data.

- Build a high level mathematical model using the cache-line length and the contiguity of

data to quantify the cache-misses.

- Show that the inferences derived from the mathematical model are oblivious of the cache-

line length and are based on the data layout only.

- Prediction of high performance families of virtual process topologies.

- To emphasize that a hand-coded optimization at sub-domain level can interfere with

compiler optimizations.

- Predict and demonstrate that, given the same amount of data in an X/Y/Z-plane (De-

pendent Planes), communication of Z-planes is the most expensive.

60 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

- Examine the relationship, and build a bridge between, the most important Serial Control

Parameter (SCP), i.e. cache-misses, and the first Parallel Control Parameter (PCP),

Domain Decomposition.

4.3 The Problem

The introduction of parallel program design standards for implementation of Application Pro-

gramming Interfaces (API), combined with advancements in the hardware of shared and dis-

tributed memory machines, has instigated researchers to make a variety of efforts to redesign,

reimplement and optimize existing algorithms. Designing a parallel program consists of several

steps. To take advantage of the several CPU cores available in a parallel computer, an existing

problem must be partitioned and assigned to these cores, which then simultaneously execute

instructions on the part of the problem assigned to them. While partitioning/decomposing, the

focus can either remain on computations/functions or data [52]. Processes may communicate

with a proper subset of processes (local communication) or with all other processes (global

communication) for exchanging relevant data needed for the purpose of solving their sub-part

of the complete problem [10]. Figure 4.1 shows the division of a vertex-centered Nx×Ny = 5×5

problem with Dirichlet boundaries (see Chapter 2) being represented by red balls. The number

of internal mesh points at which the solution is to be computed is then 4×4. The entire domain

is decomposed into four sub-domains, each having a local size of 4×4 including ghost/halo cells

(2 × 2 excluding these). The ghost cells either represent the boundaries, if the process has no

neighbouring process in a particular direction, or these ghost cells can act as buffers to store

the incoming data coming from neighbouring processes. These sub-domains or sub-grids can

be assigned to the cores that are available for computation in different ways. For example, if

there are four available cores then a single sub-domain is assigned to each core and if there are

only two cores then each core is assigned two sub-domains. In this work we follow the former

strategy, i.e. we only assign a single sub-domain to each core. It can be seen from Figure 4.1

that the structure of the sub-domains is different from that of the domain. We elaborate and

logically classify the different parts in the sub-domain at appropriate points as we proceed.

It is to be borne in mind that processors are unaware of the logical structure of the global

problem and thus, the programmer’s view of the problem can be totally different from the pro-

cessor’s view of it. For example, while a programmer thinks in terms of a problem as 1-D, 2-D

or 3-D arrays, the physical layout of the data of an array in the memory of a processor is always

linear. It is the programmer’s responsibility to wisely choose an appropriate decomposition

which maximizes the overall performance of the application.

As described in Chapter 3 two types of standard hardware architectures exist today to solve

such partitioned problems in parallel. A shared memory machine (SMP) lets each process run-

4.3. THE PROBLEM 61

Px + 2

Py + 2

C

C

C

C

G G

G G

G G

G G

G

G

G

G

1

2

3

4

5

1 2 3 4 5

Figure 4.1: A Vertex Centered (VC) problem of size Nx × Ny = 5 × 5, having 4 × 4 internal
mesh points is partitioned among 4 cores. The result is a (Px + 2)× (Py + 2) = (2 + 2)× (2 + 2)
sub-domain with 4 original ’C’ cells and added ghost layer cells ’G’.

ning on any core access the complete memory in the system by using a global address space [61].

Processes in such machines communicate by writing to/reading from the shared memory. Or-

thogonally, a distributed architecture does not share memory between processors, and processes

communicate by passing messages to each other. MPI (Message Passing Interface) [48] is the

de-facto standard for programming distributed memory machines. Though MPI uses a mes-

sage passing mechanism, it can also be used on shared memory machines i.e. the programming

model need not match the underlying physical hardware. Hybrid architectures consisting of

several shared memory nodes interconnected by a high speed network such as Infiniband [66]

have become a norm.

The volume of an object in the physical world naturally maps to a 3-D data structure.

When this 3-D data structure is divided into 3-D sub-domains and mapped to different pro-

cessor cores, it imposes a geometrical arrangement of the processes as well. This geometrical

arrangement of processes is termed a Virtual Process Topology [48] and the MPI standard

specifies various Cartesian Topology functions for realizing such a topology. Functions such

as MPI Dims create(), MPI Cart create() and MPI Cart coords() etc., help in specifying

and creating an n-dimensional virtual process topology. The MPI Dims create() and the

MPI Cart create() functions were explained in detail in Chapter 2. It is not necessary to

use these functions for the programmer to visualize the topology and an n-dimensional topol-

ogy of processes can be implemented by hand, but the use of such functions is recommended

as they have been optimized by popular implementations of MPI such as OpenMPI [127] or

MPICH [117].

For a given processor count, a spatial domain can be divided in several ways. Given 64 cores,

a total of 28 virtual process topologies exist and the default MPI process topology returned by

MPI Dims create() is 4× 4× 4. Figure 4.2 shows 3 possible 3-D decompositions out of the 28

62 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

(a) 4× 4× 4 (b) 4× 16× 1 (c) 8× 4× 2

Figure 4.2: Domain decompositions corresponding to three virtual process topologies

Domain Decomposition

Optimization

Communication based Cache based

Cache aware Cache oblivious

Spatial & Temporal

Optimization

Figure 4.3: Traditional optimization (solid arrows), our approach (dashed + solid arrows)

possible topologies (decompositions) for 64 cores. Each 3-D sub-domain can be mapped to a

unique CPU core and thus each process running on a CPU core has well-defined neighbours (i.e.

those responsible for neighbouring sub-domains) whose MPI ranks can be uniquely determined.

The traditional criteria for deciding the domain decomposition consists of balancing the

load on homogeneous processors and minimizing the volume of communicated data among

them. Three levels, namely, local computations not requiring any communication, compu-

tations requiring data from neighbouring sub-domains (i.e. local communication) and global

computations (i.e. requiring data from all processes) have been identified. Global communica-

tion generally has the largest effect on the performance of the parallel algorithm [10] and is to

be avoided wherever possible.

There has been a stupendous increase in the computing power of processors/cores and capa-

bilities of high-capacity interconnects. Performance optimizations can be done at several levels

- beginning with domain decomposition at the macro-level and then optimizing the particular

decomposition at the micro-level. With optimizations in the stacks of distributed programming

paradigms, along with the advances in hardware, several optimizations in high performance

parallel methods for implementing stencil codes have been explored. This idea is illustrated

in Figure 4.3. These optimizations are majorly aimed at reducing the cache-misses [5] after a

4.3. THE PROBLEM 63

domain decomposition has been carried out [6,12,14,16,18]. The process decomposition is gen-

erally aimed at reducing the total communication between processes. Thus, most applications

choose this topology as the default for process decomposition. The work under investigation

here attempts to predict the best family of topologies which automatically reduce the number

of cache-misses in each sub-domain. Referring to Figure 4.3, our final objective is to optimize a

sub-domain naturally using an efficient domain decomposition and further, encourage the use

of sub-domain level optimizations.

4.3.1 Notation and Reference Figure

While simulating Finite Difference Methods [22] in 3-D, we represent the size of the input prob-

lem as NxNyNz, where (Ni+1) is the number of mesh points in direction i and i = x, y, z. The

number of internal points (i.e. unknowns in the terminology of Finite Difference Methods) is

then Ni − 1. In the case of pure Dirichlet boundary conditions the outermost points in a 3-D

domain form the boundary in our problem and have a prescribed value. Hence, for Dirichlet

problems, we have a system of linear equations in (Nx−1)(Ny−1)(Nz−1) unknowns which may

be solved using an iterative scheme such as unweighted Jacobi, weighted Jacobi, Gauss-Seidel

etc. Stated concisely, the above discussion formulates a Boundary Value Problem (BVP) [22,37]

in a structured 3-D domain which is solved using a 7-pt stencil (say) in FDM to simulate a

linear Elliptic PDE.

For parallel processing, these points (vertex unknowns) in each direction must be divided

into sub-domains and mapped to individual processes running on independent cores (see Figure

4.1). Without any loss of generality, and to make the inferences and discussion simpler, we

assume Nx = Ny = Nz = N . The number of processes or cores = P and any regular Cartesian

domain decomposition must satisfy DxDyDz = P , where Di is the number of cuts/divisions in

the ith dimension for i = x, y, z. The number of mesh points (i.e. unknowns) assigned to each

process is then PxPyPz, where Pi = Ni−1
Di

and i = x, y, z. Since the domain has been parti-

tioned, sub-domains will require data from neighbouring sub-domains for stencil calculations.

To store data from adjoining sub-domains, extra space is allocated to each sub-domain on each

core. This data is typically called ghost data/ghost points/halo data [61]. Thus, the actual 3-D

domain size allocated to each process = (Px + 2)(Py + 2)(Pz + 2) due to ghost data/halo data,

and we say that the ghost layer depth is one. We note that there will be processes which will

have no neighbour in a particular direction. Such neighbours are called NULL processes and

MPI has a constant named MPI PROC NULL1 that may be used for representing them [48].

A process will need to pass between 0 to 6 planes of data, depending on the number of

neighbour processes it has. Each sub-domain can be seen as being composed of three layers.

The outermost layer stores the ghost data/ halo data and is not a part of the actual data that

1The value of this constant used by MPICH [117] is -1 whereas OpenMPI 1.6.5 [127] defines it as -2.

64 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING!

0!

Ghost!layer!
Dependent!layer!

Independent!layers!

Px+1!

Pz+1!

Py+1!

Figure 4.4: A 3-D sub-domain having an Independent Compute (IC) layer, Dependent Planes
(DP) layer and Ghost/Halo layer, indexes of the sub-domain dimensions including the ghost
layer are shown

the process contains but is necessary to store the data communicated by neighbouring processes.

Hence, each process uniformly has 6 ghost layers to store data received from a maximum of

6 possible adjoining neighbours. There is no need for a ghost layer in a direction in which

the neighbour is a NULL process i.e. no process. In such cases the ghost layer can act as a

boundary layer and can be used to specify the boundary value (as in a Dirichlet Boundary

Value Problem). The second layer is the Dependent layer - a layer which needs data from

neighbouring processes to carry out stencil calculations. This has been appropriately named

as a Dependent layer as it is dependent on neighbouring processes for stencil computations.

We address the third layer as the Independent layer, and as the name suggests, it needs no

data from neighbouring processes for computation of each iteration of the solution update al-

gorithm. This layer also forms the computational kernel as it generally contains many more

mesh points than the dependent layers. The various dimensions (indexes) can be seen in Figure

4.4 which also shows the three basic layers for a 3-D sub-domain: Independent layers which

form the core computational kernel, Dependent layers which require data from other processes

for updating elements in them and finally ghost layers to hold data from neighbouring processes.

A 7-point stencil in 3-D is illustrated in Figure 4.5. The central point is updated by the

weighted average of six of its neighbours (two neighbours in each direction). These iterative

solution algorithms then move to the next point, where the solution is updated using the same

stencil, continuing until the whole domain under consideration is covered. The stencil in Figure

4.6 shows the same stencil along with directions and with the assumption that the central point

has an index of (i, j, k). When considering the Row-major order (described later in this sec-

tion), the data points at indexes (i, j, k− 1), (i, j, k) and (i, j, k+ 1) are contiguous in memory.

Similarly when considering a Column-major order (described later in this section), the data

points at indexes (i− 1, j, k), (i, j, k) and (i+ 1, j, k) are contiguous in memory.

4.3. THE PROBLEM 65

Figure 4.5: 7-pt Stencil for updating the central red point

(i,j+1,k)(i,j-1,k)

(i+1,j,k)

(i-1,j,k)

(i,j,k-1)

(i,j,k+1)

Figure 4.6: A 7-point stencil in 3-D. The central point is updated according to prescribed
weights associated with, and values of the neighbouring points.

The total independent calculations done by each process at each solution iteration, i.e. the

number of elements which do not depend on data from other processes, is: (Px − 2)(Py −
2)(Pz − 2). The maximum total data contained in planes communicated by processes is

2PyPz, 2PxPz or 2PxPy for the X, Y and Z planes, respectively. Please note that this is

an upper bound on the data as there exist decompositions where data less than this upper

bound can be sent depending on the number of neighbours which maybe NULL. The value

2[(Dx− 1)(Ny − 1)(Nz − 1) + (Dy − 1)(Nx− 1)(Nz − 1) + (Dz − 1)(Nx− 1)(Ny − 1)] represents

an upper bound on the total data elements communicated by all processes.

Figure 4.7 shows an example domain and the Reference axes with selected decompositions.

The upper YZ plane is called X UP and the lower YZ plane is called X DOWN. The left XZ

plane is called Y LEFT and the right is called Y RIGHT. The XY plane closer to the reader is

called Z TOWARDS U and the plane farther away from the reader is called Z AWAY U. The

66 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

Rank 0 (0,0,0)

Rank 1 (1,0,0)

Rank 2 (2,0,0)

X

Y
Z

(a) X decomposition: 3× 1× 1

X

Y
Z

(b) Y decomposition: 1× 3× 1

X

Y
Z

(c) Z decomposition: 1× 1× 3

X

Y
Z

(d) Decomposition: 2× 2× 2

Figure 4.7: Process Grid Decomposition and Coordinate Axes (a) Shows process ranks in X
decomposition with MPI process coordinates (b) Only Y direction is decomposed (c) Only Z
direction is decomposed (d) General decomposition in all 3 directions

4.3. THE PROBLEM 67

ZX

Y

(a) 3-D data layout: Z direction - contiguous
data

Z
X

Y

(b) Data layout where data is contiguous in
the X-direction (Column-major order)

Figure 4.8: Row-major and Column-major data layout

coordinate axes shown in Figure 4.7 are in the direction of the coordinate axes assumed by the

MPI function MPI Cart coords(). This function returns the process coordinates of processes

in an n-dimensional space. Thus, for a topology of 2 × 2 × 2 when P = 8, the ranks have the

following process coordinates: Rank 0 (0,0,0), Rank 1 (0,0,1), Rank 2 (0,1,0), Rank 3 (0,1,1),

Rank 4 (1,0,0), Rank 5 (1,0,1) Rank 6 (1,1,0), and Rank 7 (1,1,1). The fastest changing index is

Z and the slowest changing index is X when looping through a 3-D MPI process decomposition

- this also matches the Row-major data storage in C language when looping through a 3-D array.

Figure 4.8a shows the layout of data in a 3-D array. The data points are contiguous along

the Z-axis and this is what constitutes a Row-major order layout. A language which supports

such an order is the C language and we use the C language for all our implementations in this

chapter. The contiguity of data points (drawn as circles) is shown by means of continuous black

lines in Figure 4.8a. Figure 4.8b shows the Column-major order in which the fastest changing

index is the X-index and this data layout is supported by a language such as Fortran. Although

we illustrate both the data layouts here for completeness, we use the Row-major order in this

chapter to quantify the cache-misses in the sub-domain. It can be noted that the final inferences

derived from the model remain independent of the data-layout. The independence comes from

the fact that the Z-direction in the Row-major order is analogous to the X-direction in the

Column-major order and the X-direction in the former is equivalent to the Z-direction of the

latter.

68 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

4.4 Creating a Model for Prediction

We focus on establishing a relation between minimizing cache-misses and domain decomposi-

tion by considering the internal layout of data of a sub-domain and the cache-line size. Our

high level analysis allows us to ignore contention of shared resources, processor architecture,

cache-line replacement policies - factors that contribute to cache-misses but are extremely dif-

ficult to quantify because of the multitude of interactions between contending processes on a

multicore node. We always decompose along Cartesian Axes directions, i.e. perpendicular cuts

along X, Y and Z dimensions (block partitions) and start the analysis by considering the planes

consisting of near-to-boundary values (Dependent Planes - see Figure 4.4).

As discussed in Chapter 2, data from the main memory to the cache memory is transferred

in terms of cache lines. A cache-line consist of multiple words. Multiple words from the main

memory or low levels of cache are transferred for reasons of efficiency [5]. Thus, a cache-line

or a cache block is the smallest unit of data that can be transferred from the main memory.

For the purpose of the discussion that follows, we assume that the length of the cache-line in

bytes is denoted by L or cache line size, the size of the data type is denoted by D (4 bytes

for float or 8 bytes for double) and the number of words per cache-line is denoted by W i.e.
L
D = W. Our test platforms ARC2 and ARC3 (described in detail in Chapter 3), both have a

cache-line length (L) of 64 bytes. Thus, when considering a single precision (FP) float data

type of D = 4 bytes, W = L
D = 16 floats can be transferred from the main memory to the

cache memory in a single cache-line. When considering a double precision floating point data,

8 doubles can be contained in a cache-line. Although we include the cache-line length in our

model (thus making it cache-aware), our inferences remain independent of the cache-line length

(thus, cache-oblivious). This combination of cache-awareness and cache-obliviousness leads us

to classify our model more precisely as a Quasi-cache-aware model.

Considering a Row-major order (see Figure 4.8a) and a 7-pt stencil, the minimum number

of cache lines which can contain 3 contiguous data elements in the Z-direction, 2 non-contiguous

data elements in the X-direction and 2 non-contiguous data elements in the Y-direction is 5.

This is because, a single cache-line can contain 3 contiguous elements in the Z-direction, two

cache lines are needed for the non-contiguous Y data neighbours and similarly two cache lines

are needed for the X data neighbours. We will assume that the sub-domain is sufficiently large

so that a single cache-line is unable to store all the data elements contained between two directly

opposite ghost data points. At any point in time, while updating, we deal with 3 planes and

assume at least 5 dedicated cache lines.

4.4. CREATING A MODEL FOR PREDICTION 69

Require: Sub-domains with set Dirichlet boundary
while Not converged do
MPI Irecv (ghost data)
MPI Isend (next-to-boundary data)
Update (see Figure 4.10) interior independent values using 7-pt stencil
MPI Wait ()
Update next-to-boundary values using 7-pt stencil
MPI Allreduce (convergence test)

end while

Figure 4.9: High level iterative parallel PDE solver, e.g. Jacobi

4.4.1 Parallel Numerical Solution of a Discretized PDE

The problem that we solve is abstractly illustrated in Figure 4.9. After dividing the data struc-

tures using domain decomposition, the approximate numerical solution at various mesh points

is updated using an iterative method. As mentioned before, the sub-domain consists of an

interior region which does not require data from other processes (Independent Compute - IC),

a region called Dependent Planes (DP) that requires data from other processes and a ghost

region, which is simply a buffer region to store incoming data. Since the IC can be updated

independently of the data from other processes, computation can be overlapped with communi-

cation using the non-blocking point-to-point functions (MPI Isend() and MPI Irecv() shown

in Figure 4.9) specified in MPI. After the data has been received (after MPI Wait() in Figure

4.9) from other processes, the Dependent Planes are updated. It is important to note that sep-

arating the update of the Dependent Planes and Independent Compute introduces additional

cache-misses as the data points in the DP are not accessed in continuity with the data points

in the IC. At the same time, not overlapping the communication with computation generally

incurs a performance penalty. With an increase in the number of cores in a node and size of the

network, overlapping communication with computation has become the norm. After updating

the IC and DP, the overall convergence is tested (e.g. through a global norm, requiring a global

reduction operation). For the purpose of scaling studies we can fix the number of iterations

and remove the convergence test (and associated global communication). It is to be noted that

uniform single level meshes are generally not used to solve a PDE but they form the basis

of multilevel methods such as Adaptive Mesh Refinement (see Chapter 5) and Multigrid (see

Chapter 6).

For updating the solution at a mesh point we use the unweighted Jacobi point iterative

algorithm as shown in Figure 4.10 (where alpha= 1
6). The array elements in this code can

directly be mapped to the 7-pt stencil. Figure 4.10 shows that two 3-D arrays are required for

the Jacobi algorithm and the update of the solution at the data point (i, j, k) in the array new

is done with the old values of the solution stored in the 3-D array old.

70 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

new[i][j][k]=alpha *

(old[i-1][j][k]+old[i+1][j][k]+

old[i][j-1][k]+old[i][j+1][k]+

old[i][j][k-1]+old[i][j][k+1]);

Figure 4.10: Unweighted Jacobi iteration kernel, alpha=constant, new and old are 3-D data
arrays

Table 4.1: Model Assumptions: Logically classified assumptions in deriving the model

Logical Class Assumption in Derivation

PDE Elliptic, second order and linear
Boundaries Dirichlet

Domain Cubic
Mesh 3-D structured mesh, Nx = Ny = Nz

Decompositions Parallel to Axes

Discretization Finite Difference
Stencil 7-pt

Iterative Method Unweighted Jacobi

Data Layout Row-major
Data Type Single Precision Floating Point (FP)

Sub-domain one-per-core, one element deep ghost layer
MPI process one-per-core, no threads

Computation and Communication Overlapped

Cache-Size Problem size � any level of cache
Cache Hierarchy All levels merged into a single cache

Prefetching Ignore
Temporal Locality No

Spatial Locality Yes

4.4.2 Reiterating Assumptions

Before we proceed to deriving the high level mathematical model quantifying the cache-misses

for the sub-domains and extracting inferences from it, we consolidate the assumptions and

categorize them logically as shown in Table 4.1. We again revisit these assumptions towards

the end of the current chapter to expand upon the generality of the model. These assumptions

help the model to remain high level and abstract but at the same time provide sufficient insight

to appreciate the complex relationship between cache-misses and domain decomposition.

4.4. CREATING A MODEL FOR PREDICTION 71

4.4.3 Dependent Planes

In this section we model the approximate cache-misses using the unweighted Jacobi algorithm

and the 7-pt stencil for the Dependent Planes (DP). As mentioned earlier, there are three pairs

of planes, namely, the X-planes (X UP and X DOWN), the Y-planes (Y LEFT and Y RIGHT)

and the Z-planes (Z AWAY U and Z TOWARDS U). Since the two types of X, Y and Z planes

are symmetrical, we do not separately calculate the cache-misses for each of them but rather

treat them as a single X, Y or Z-plane. As we assume a Row-major order, the Z-plane is

perpendicular to the direction of data contiguity while the other two planes are parallel to this

direction. Thus, qualitatively we expect the number of cache-misses in the Z-plane to be higher

as the data points comprising it are not contiguous in the memory. Again, qualitatively we

expect the X-plane and the Y-plane cache-misses to bear a symmetrical expression as both

the planes have contiguous data along the Z-direction. Equipped with our assumptions and a

qualitative idea, the sections below describe in detail the derivation of the cache-misses for the

Dependent Planes.

4.4.3.1 Z-Plane

As mentioned above, the Z-plane is the plane which is perpendicular to the direction in which

data is contiguous. This plane has the greatest effect on the running time as no dimension has

contiguous data here. In a 3-D domain decomposition and using a 7-pt stencil, 2-D layers of

data must be passed to the neighbouring processes. There are three costs associated with the

planes.

1. Packing cost : The data from the Dependent Planes is packed in the sending process

explicitly by the user or implicitly by the MPI implementation. When using an explicit

one dimensional application level buffer, the data from the specific Dependent Plane in

the 3-D array must be read and copied to the 1-D buffer array. This leads to read cache-

misses while reading the 3-D data structure and write cache-misses when writing into the

one dimensional application buffer. The other method is to define an MPI Datatype, such

as MPI Type subarray(), and let the MPI implementation do the packing implicitly. This

again incurs cache-misses when the data is transferred from the 3-D application array to

the MPI buffer. We choose to ignore the cost of writing into the MPI buffer or the user

defined one dimensional array and concentrate only on the cache-misses while reading the

3-D user array. Ignoring the cost of cache-misses while copying the application buffer into

the MPI buffer can be justified by highlighting that when using the Rendezvous protocol

(see Appendix A), the application buffer can be directly manipulated for communication

purposes by the MPI implementation.

2. Unpacking cost : At the receiving end, the neighbouring process explicitly unpacks the data

from the MPI buffer to the 3-D application buffer or the MPI implementation implicitly

unpacks it at the address of the specified location. This writing of data into the 3-D user

72 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

array is accompanied by cache-misses. There may also cache-misses when data is read

from the MPI buffer but we choose to ignore these cache-misses and concentrate only on

the former (see Appendix A).

3. Update cost : Finally, we must update the value of the unknowns in the Dependent Planes,

which in turn depends on the data stored in the ghost layers as received from the neigh-

bouring processes. This cost is expected to be much more than the cost of packing and

unpacking as not only the mesh point but also its neighbours are accessed.

As mentioned above, we choose to ignore the write cache-misses when non-contiguous data

in the planes is being written to a contiguous network buffer by the MPI implementation at the

sender side. Similarly, we do not incorporate the read cache-misses when a contiguous network

buffer is being read by the MPI implementation to unpack its contents into the non-contiguous

application buffer at the receiver side. We extend this discussion with the aim to support our

choice of not taking into account these cache-misses and enumerate our reasons as follows:

1. Our model is a high level model and we avoid low level implementation details.

2. The contiguous network buffer offers high spatial locality, both when writing into (sender

side) or reading from (receiver side) it. Thus, the contiguous access, in practice, is the

ideal scenario for minimizing cache-misses. Since we expect negligible cache-misses due

to a linear access, we do not incorporate these cache-misses into our model.

3. In principle, an MPI implementation can transfer the non-contiguous data to the receiver

without copying it to an intermediate contiguous buffer [68]. Thus, there exists a pos-

sibility that the non-contiguous data present in the Dependent Planes can be directly

communicated to the receiver by the MPI implementation if the underlying communica-

tion mechanism supports it [69].

4. The direct transfer of non-contiguous data performs well when there are dense blocks of

contiguous data [70]. The sending of data in the X and Y plane perfectly aligns with this

case as they contain Pz contiguous data-points (discussed in sections that follow). The

problem lies in the Z-plane where the contiguous blocks consist of only a single data point

(hence, extremely sparse). Thus, for the Z-plane, it make sense to accumulate the data

into a contiguous buffer before sending it to the destination.

5. The vader BTL (Byte Transport Layer) in OpenMPI (versions 1.7 and later) supports

direct loads/stores in the address space of the process from/to other processes on the same

node. Thus, instead of a copy-in/copy-out mechanism, it follows a zero-copy mechanism.

A zero-copy mechanism still involves a single copy and should be interpreted to mean

that there are no intermediate copies involved. The vader BTL can be configured with

xpmem, cma or knem kernel modules to achieve this zero-copy mechanism. xpmem is a

Linux kernel module that allows processes to export memory regions and other on-node

4.4. CREATING A MODEL FOR PREDICTION 73

1

1

1

1

1

ZX

Y

Figure 4.11: Dependent Z TOWARDS U (blue shaded vertical rectangle), adjacent points dis-
tance (thick solid red line ≈ Pz) and boundary (unshaded circular points).

processes to attach to this memory region to perform direct loads/stores. cma stands

for Cross-Memory Attach and is a Linux kernel such as knem that requires calls into the

kernel to transfer data between intra-node processes [71].

In light of the discussion above, we choose to ignore the costs associated with the writing

and reading of the contiguous network buffer managed by the MPI implementation. We, how-

ever, acknowledge the need for modelling such costs when moving towards a low level model

incorporating architectural parameters and implementation details. We further believe that

incorporating these costs in our high level model will not alter the formulation methodology or

the inferences from the model.

Using a 1-element deep ghost layer, 2-D data from the Z-plane is packed implicitly (using

MPI Type subarray() in our implementation) in the sending process and sent to the receiver. It

may be noted that, as opposed to the data being packed explicitly by the user, implicit packing

by MPI exposes greater parallelism. This parallelism becomes available in the application as

now the computations can be overlapped with packing/unpacking as well, in addition to the

transmission of data on the network. As mentioned above, while packing, read-misses (reading

from user array) become significant and while unpacking, write-misses (writing to the user array)

become significant. Both read cache-misses (while reading the old 3-D array, see Figure 4.10)

and write cache-misses (while writing into the new 3-D array, see Figure 4.10) are significant

when updating an element using its neighbouring elements.

Figure 4.11 shows the update of a Z-plane. The near-to-boundary points (in blue) have a

minimum distance of Pz between them and hence do not represent contiguous data. When a

74 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

data point is updated, the cache logic tries to exploit spatial locality. With reference to updat-

ing the mesh points on the Z-plane, the greater the value of Pz, and smaller the length of the

cache-line, the lesser the probability that the next needed element will be found in the cache.

Assuming Pz + 2 > cache line size(64)
sizeof(FP) for large problem sizes and only a single line is fetched

upon a cache-miss, there is a cache miss for a write or read on every element of the Z-plane.

Hence, the probability of a write-miss/read-miss is
PxPy

PxPy
= 1. Although our model does not

take into account the prefetch (see Table 4.1), as long as the number of prefetched elements

remain less than Pz + 2, there is a cache-miss on every read and write of a mesh point on the

Z-plane.

For lending completeness to the discussion, we present an example to illustrate what is meant

by a small scale problem but discard its presence in future discussions. As an example suppose

the input problem size is NxNyNz = 161×161×161 and the total number of cores is P = 16. If

we assume an MPI Cartesian topology of DxDyDz = 1×1×16, then Pz = Nz−1
Dz

= 161−1
16 = 10.

Clearly, Pz + 2 = 12 < 16 and hence there is a probability that more than one data element in

the Z-plane will be contained in a single cache-line as the length of the cache-line is 16 single

precision floating point elements. Thus, the probability of a cache-miss even without prefetch is

less than one when accessing adjacent data points in the Z-plane. We, however avoid such cases

and for all practical purposes assume a large sub-domain size i.e. Pz + 2 > cache line size
sizeof(FP) . Table

4.2 shows various relevant parameters for Z-planes. The maximum as well as the minimum

distance between two adjacent points on the Z-plane is ≈ Pz (we can ignore the two ghost

points at the two boundaries of the sub-domain if Pz >> 2). As explained previously, the total

read-misses/write-misses in packing/unpacking the Z-plane is PxPy for a large Pz. Assuming

a sufficiently large Pz again, there are 2 read-misses in accessing each of X and Y direction

mesh points and 1 read-miss in the Z direction while updating a single mesh point of the Z-

plane. Hence, there is a total of 5 cache read-misses in updating one element, making it a

total of 5PxPy misses for the entire Z-plane (see Table 4.2). It is to be noted that the value of

parameter W (words per cache-line) in Table 4.2 is LD = 64
sizeof(FP) = 64

4 = 16 as we consider

only single precision floating point data in the current chapter.

4.4.3.2 X-Plane

The X-plane is the plane which lies at the top and bottom of the sub-domain. Both X UP and

X DOWN have contiguous data in the Z direction (blue points in Figure 4.12). Irrespective

of the value of Pz, the gap between the last element updated in the Z direction and the first

next element on the X-plane is always two (two ghost data points). The various parameters

for X-planes are shown in Table 4.3. It can be noted that while writing only one value is being

accessed (see LHS of Figure 4.10) and hence the X-plane is being accessed in a linear manner.

The same does not hold while reading as the 7-pt stencil accesses immediate data neighbours

in all three directions.

4.4. CREATING A MODEL FOR PREDICTION 75

Table 4.2: Z-Plane: Relevant parameters for Z-plane showing total size, distance between
two adjacent elements, cache-misses in packing (reading)/unpacking (writing) and updating an
element amongst others.

Description Value

Total elements PxPy
2 element gap Pz + 2 ≈ Pz, if Pz >> 2
Probability cache write-miss 1, if Pz + 2 >W
Total cache write-misses (update/unpack) ≈ PxPy, if Pz + 2 >W
Probability cache read-miss 1, if Pz + 2 >W
Total update cache read-misses 5PxPy if Pz + 2 >W

Table 4.3: X-Plane: Relevant parameters for the X-plane showing total size, the maximum gap
between two adjacent elements, read/write cache-misses in packing/unpacking and update

Description Value

Total elements PyPz
Max. 2 element gap 2
Probability of cache write-miss 1/W
Total cache write-misses (unpack/update) PyPz/W
Probability of a cache read-miss 1/W
Total update cache read-misses 5

WPyPz

All updates proceed in the Z direction where data is contiguous and hence after a cache-

write miss, data would be fetched into the cache according to the cache-line size. Thus, there

is a cache write-miss after every W elements (=LD) as we ignore the Prefetch. Further, there

are 5 cache read-misses every Wth element, making a total of 5
WPyPz cache read-misses for the

entire plane in the worst case (see Table 4.3). For our model/implementation in the current

chapter, W = 16 for L = 64 bytes and single precision floating point data (sizeof(FP) = 4

bytes).

4.4.3.3 Y-Plane

The planes Y LEFT and Y RIGHT have contiguous data in the Z direction but not in the X

direction. The gap between the last updated element in a row (last element in the ith line

in the Z-direction) and the first element in the next row (first element in (i + 1)th) line) is

(Pz + 2)(Py + 1) + 2. This quantity represents the maximal gap between any two adjacent

elements in the Y-plane. Table 4.4 shows relevant parameters for the Y-plane. Data here

is contiguous in the Z-direction and hence there is a cache write-miss every W elements (=
cache line size
sizeof(FP) in the worst case), making the probability of a cache write-miss 1

W . The total

cache write-misses are then 1
WPxPz. But unlike the constant maximum distance of 2 elements

in updating the X-plane, the distance here is variable and depends on the Z and Y direction.

76 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

1

ZX

Y

Figure 4.12: X-plane update: Data elements are contiguous (solid thick red line) except at
boundary (dashed thick red line)

Table 4.4: Y-Plane: Relevant parameters for the Y-plane including its size, maximum gap
between two adjacent elements, read/write misses in packing/update.

Description Value

Total elements PxPz

Max. 2 element gap (Pz + 2)(Py + 1) + 2.

Probability cache write-miss 1
W

Total cache write-misses (unpack/update) (1/W)PxPz

Probability cache read-miss 1
W

Total update cache read-misses 5
WPxPz

4.4. CREATING A MODEL FOR PREDICTION 77

1

1

ZX

Y

Figure 4.13: Dependent Y LEFT plane (blue vertical shaded rectangle) and distance between
two adjacent points (solid red thick line).

The higher the value of (Pz +2)(Py +1)+2, the lower the probability that the fetched data will

be available in cache while updating a Y-plane. Aside from the maximal gap between adjacent

elements, the Y-plane is very similar to the X-plane as indicated by the similarity of Tables 4.3

and 4.4.

Figure 4.13 shows the Y LEFT plane and a contiguous stream in the Z direction. We move

along the contiguous Z direction to update the Y plane and hence the data for the next element

is available if the gap between the current and next element is less than the size of the cache-

line. Hence, the total cache read-misses is 5
WPxPz (2 for X neighbours, 2 for Y neighbours and

1 for Z neighbours). If there is Prefetching involved then the packing of the same sized X-plane

should perform better than a same sized Y-plane as there is a maximum constant gap of 2

between any two updated elements and there is higher probability that Prefetching will cover

that gap of 2 for the X-plane instead of a gap of (Pz + 2)(Py + 1) + 2 for the Y-plane. However,

as mentioned in the previous sections, we do not incorporate Prefetching in our model.

4.4.4 Independent Computation

Irrespective of the dimensions, the Independent Compute kernel (IC) has a maximum gap of

4 elements between the last updated element and the next element to be updated. This gap

of 4 elements is made up of 2 data elements of the Dependent Planes and 2 data elements of

the ghost layer (assuming a 1-element deep ghost layer - see Table 4.1). As Pz decreases and

Px and Py increase, the total gap/unwanted elements will increase. A write-miss in the IC is

expected only after approximately W elements (assuming no prefetch). Hence, the probability

of a write-miss is approximately 1
W , which generates a total of 1

W (Px−2)(Py−2)(Pz−2) cache

78 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

Table 4.5: Independent Compute (IC): Relevant parameters including the size, maximum gap
between two elements, and read/write cache-misses in update.

Description Value

Computational elements (Px − 2)(Py − 2)(Pz − 2)
Max. 2 element gap 4
Probability cache write-miss 1/W
Total cache write-misses 1

W (Px − 2)(Py − 2)(Pz − 2)
Probability cache read-miss 1/W
Total update cache read-misses 5

W (Px − 2)(Py − 2)(Pz − 2)

write misses. Since this is the same for all topologies, a uniform cache-miss rate is expected

irrespective of the size of the cubic sub-domain but the total number of cache-misses is clearly

a function of the size of the sub-domain. The case for cache read-misses is similar.

Table 4.5 shows relevant parameters for the IC kernel. Note that the IC kernel is the part

of the sub-domain where computation can be overlapped with communication (see Figure 4.9)

using the non-blocking communication routines in MPI. When the data is being packed by the

communication progress engine, the cache is being used for two purposes: to bring in data for

independent computations, and to bring in data from the dependent planes which are being

packed if the neighbour 6= MPI PROC NULL. Since the cache is now being used for both the

purposes mentioned above, the cache miss rate is likely to go up because of cache pollution2.

Similar is the case of unpacking of data if the MPI implementation decides to unpack it before

MPI Wait() is executed. If the data is unpacked at the point of executing the wait call, we can

be sure that the IC core has already been updated. To discuss the communication progress

engine of MPI [48] is beyond the scope of the current work and further, the progress engine is

dependent on the MPI implementation itself.

4.4.5 Packing, Unpacking and Updating

In general, the number of cache write-misses for unpacking will be the same as cache read-misses

while packing data. While updating data, the number of cache write-misses will be different

from cache read-misses because of the pattern of data accesses in the 7-point stencil. Table 4.6

shows the total number of cache-misses in the worst case in terms of sub-domain dimensions

Px, Py and Pz as predicted by our model when a plane is packed, unpacked and updated.

4.4.6 Minimization of Cache-Misses

We proceed to minimize the cache-misses that we derived in the previous sections. The total

cache-misses for the three Dependent Planes using Table 4.6 and substituting W = 16 (=

2Prefetched cache lines of the Dependent Planes may evict the cache lines from the Independent Compute
in a real execution of the program.

4.4. CREATING A MODEL FOR PREDICTION 79

Table 4.6: Plane Cache-Misses: read/write cache-misses in packing/unpacking/updating X, Y
and Z-planes

Plane Pack
read-
misses

Unpack
write-
misses

Update
read-
misses

Update
write-
misses

Total

Z-plane PxPy PxPy 5PxPy PxPy 8PxPy

X-plane
PyPz
W

PyPz
W

5PyPz
W

PyPz
W

8PyPz
W

Y-plane
PxPz
W

PxPz
W

5PxPz
W

PxPz
W

8PxPz
W

L
sizeof(FP) = 64

4) can be written as:

S = 8PxPy +
1

2
PxPz +

1

2
PyPz = αPxPy + βPz(Px + Py), (4.1)

where α and β are dependent on the length of the architecture-specific cache-line (here α = 8,

β = 1
2). Our goal is to minimize this expression to obtain the least value of S. By equating

∂S
∂Px

= 0 and ∂S
∂Py

= 0, we obtain Px = Py but this does not yield any relation to Pz. Since N is

constant, the values of Px, Py and Pz are dependent on the values of Dx, Dy and Dz such that

DxDyDz = P , where P is the number of processes or cores. Clearly, we can find all possible

combinations of Dx, Dy and Dz and hence in turn find all possible values of Px, Py and Pz by

noting that Pi = N−1
Di

for i = x, y, z. Thus, we can substitute these values of Px, Py and Pz into

S to find all possible values of αPxPy + βPz(Px + Py). We observe that the minimum value

of S is obtained when Px = Py and Pz = N − 1. Since Px = N−1
Dx

= Py = N−1
Dy

, we obtain

Dx = Dy. The second condition Pz = N − 1 implies that Dz = 1 as Pz = N−1
Dz

. Thus, our

solution implies that for S to be minimum, we need Dx = Dy and Dz = 1.

In the worst case when all six planes are sent, the volume of data is given by:

V = 2(PxPy + PyPz + PzPx). (4.2)

Minimizing V in Equation (4.2) by manipulating ∂V
∂Px

, ∂V∂Py
and ∂V

∂Pz
, we obtain Px = Py = Pz.

The intersection of conditions for minimization of the sum of communicated elements and min-

imization of cache-misses leads to a common condition Px = Py. This implies that Dx = Dy

when Nx = Ny = Nz = N . In the more general case where Nx 6= Ny 6= Nz, the ratio
(Nx−1)
Dx

=
(Ny−1)
Dy

must be maintained.

As the problem size increases, the inner IC kernel increases faster than the surface area of the

planes. For example, when the problem size increases 8 times, the independent computational

80 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

domain increases 8 times as compared to a 4 times increase in the surface area. Our derivation

in the current Section is based on the assumption that the cache-misses due to the IC kernel

should not be much larger than the sum total of cache-misses incurred by the planes. If this

case is violated i.e. S̃ = (5+1)
16 (Px − 2)(Py − 2)(Pz − 2) >> S, then the optimal topology

moves towards the topology given by the default MPI Dims create(). This does not mean

that the topology determining optimal domain decomposition is always the one returned by

MPI Dims create() but rather that the optimal topology will be found at a higher Dz ≤ Dsz,

where Dsz is the Z-dimension returned by the default MPI Dims create(). Since minimizing

S̃ yields Dx = Dy = Dz and minimizing S gives Dx = Dy, Dz = 1, thus 1 ≤ Dz optimal ≤ Dsz.

In other words, MPI Dims create() returns the upper limit of the search space of the highest

performing topologies. Thus, in summary, whereas the orthodox approach of optimizing the

domain decomposition by minimizing the communication volume suggests cubic sub-domains,

our approach of minimizing the sub-domain level cache-misses suggests partitions which are

close to 2-D partitions.

4.4.7 Interpreting the Model

Our model first quantifies the cache-misses for the Dependent Planes (DP) by taking into ac-

count only the cache-line size and ignoring Prefetching. This quantification (see Table 4.6)

implies that for planes of equal sizes, the Z-plane incurs the maximum cache-misses. Thus,

in the orthodox method of minimizing the communication volume, since the sub-domain is

cubic (or close to cubic), the Z-plane incurs a much higher cost (cache-misses) while packing,

unpacking and in updating of the solution as compared to the X/Y-planes. Our model which

points to the topologies that minimize cache-misses at the sub-domain level suggests that the

size of the Z-plane should be reduced. As a natural consequence of reducing the size of the

Z-plane, the packing/unpacking and update times of the Z-plane reduces. This also means that

the size of the X-plane and Y-plane increases but since there exists a contiguous data stream in

the Z-direction for both these planes, the packing/unpacking efficiency is expected to be much

higher than a similar sized Z-plane.

Laying emphasis on the cache-misses during sending and receiving of data logically divides

the communication into two parts: a latency governed packing/unpacking of data and a band-

width governed network transmission. Since the network bandwidth is improving at a much

faster rate than the latency, our model also serves as an aid to identify the bottleneck in the

transmission of data [128]. Latency is defined as the time that elapses between the issuance of

a request for a memory value by the processor and the time that the first byte is transferred

to it. Bandwidth is the speed at which the second byte and all the remaining bytes of data

are transferred [129]. The processor cycles to access a lower level of memory level are always

more than a memory that is closer to the processor. The more the cache-misses, the greater

the probability that a higher number of memory accesses are generated (assuming lower levels

4.5. TEST PROBLEM 81

Figure 4.14: Test problem illustration, Vertex centered, domain Nx×Ny×Nz = 3×3×3, blue
balls show Dirichlet boundaries and red balls show the unknowns

of cache also generate a miss). Thus, at a finer level it would not be incorrect to say that the

packing/unpacking/update in the Z-plane is latency-bound whereas it is bandwidth-bound in

case of X/Y planes. However, it must be noted that both latency and memory bandwidth play

an important role in governing the transmission costs of the Dependent Planes. Specifically for

the Z-plane, each data element fetched into the cache is part of a different cache-line and thus

results in filling the cache with elements which are not used in packing/unpacking/updating.

This can result in an increase in capacity misses and unnecessary eviction of useful data.

4.5 Test Problem

We implement a finite difference approximation to the Laplace equation ∇2u = 0 in 3-D where

u = u(x, y, z). This equation as described in Chapter 2 is an Elliptic, linear, homogeneous

PDE of order two, and we solve using Dirichlet boundary conditions for boundary ∂Ω (u = 1).

Implicit equations in (Nx − 1)(Ny − 1)(Nz − 1) unknowns are created using a finite difference

7-point stencil on a unit cube Ω = (0, 1)3. Without loss of generality, and for simplicity, the

simulation assumes that (Ni − 1)%Di = 0 for i = x, y, z. When (Ni − 1)%Di 6= 0, it produces

a load imbalance and complicates an unbiased study of the effect of domain decompositions.

Further, we always use an unweighted Jacobi computational kernel (see Figure 4.10) in 3-D for

evaluation and discussions.

Figure 4.14 shows a vertex-centered Nx×Ny×Nz = 3× 3× 3 domain. There are two types

of vertices: the vertices at the boundary (blue balls in Figure 4.14) represent the Dirichlet

boundaries and the internal vertices (red balls in Figure 4.14) represent the unknown variables

82 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

where the solution is to be found. The total number of unknowns or degrees of freedom (dof)

in this case are (Nx − 1)× (Ny − 1)× (Nz − 1) = 2× 2× 2 = 8. It is to be noted that in this

particular illustration if the problem is solved on a single core then the Independent Compute

(IC) zone is empty i.e., there are only Dependent Planes (DP). The reason for this is that

since the sub-domain is the same as the domain here because of a single core, the sub-domain

dimensions Px, Py and Pz are equal to Nx−1, Ny−1 and Nz−1, respectively. Since the IC has

a volume equal to (Px − 2)(Py − 2)(Pz − 2) = 0, the IC is completely empty. We consistently

follow this convention everywhere but our main interest lies in much larger problems where the

sub-domain dimensions are such that both the IC and DP are non-empty. It is to be noted

that after every application of the iterative algorithm to update the solution, the Dirichlet

boundaries are not updated in the vertex centered scheme as the physical boundaries coincide

with the position of the grid boundaries. This is different from a cell-centered scheme which

requires the Dirichlet boundaries to be updated after every iteration as they do not coincide

with the physical boundaries.

4.6 Experimental Results

We carry out various experiments to test the validity and efficacy of our model derived in the

previous sections. We only make use of pure MPI and assign a single sub-domain to a single

core. When using a node, unless otherwise stated, all the cores in the node actively participate

in the simulation. To make sure that all topologies or decompositions run on the same set of

cores, we test all the topologies within the same execution of the program and thus once the

batch job is assigned resources, all topologies are executed in the same run of the program. It is

difficult to predict and quantify the effect of process placement as we have no control over the

resources granted by the SGE (Son of Grid Engine) scheduler. Unless specifically mentioned,

by default all our experiments in this chapter are carried out using the ARC2 (Advanced Re-

search Computing 2) facility described in detail in Chapter 3.

The metric that we use to compare the relative performance of topologies is the time for

execution and we explain its use in the next section. We logically proceed by testing our

hypothesis on a single (16 core) node and then advancing to multiple nodes. In practice, stencil

codes are heavily optimized using spatial and temporal methods for reducing cache-misses.

Our aim in the current work is not to research tiling optimizations. We abstain from any

discussion on temporal optimizations but devote appropriate space to spatial optimizations as

the latter category is more commonly utilized in stencil-based codes. Our experiments then

proceed to study Strong Scaling and testing the communication efficiency with Weak Scaling.

At appropriate milestones, we quantify the cache-misses to test the inferences from our model.

Towards the end of the experimental section, we deviate from utilizing all the cores of a node

and weigh the increasing communication costs against the increasing computation performance

4.6. EXPERIMENTAL RESULTS 83

due to reduced contention of the shared cache memory. We then present a few representative

results with a 19-pt stencil to test the applicability of our model but abstain from using a 27-pt

stencil that is presented in Chapter 6.

4.6.1 Performance Metric

Throughout the thesis our performance metric remains the time for execution. Since we compare

the performance of various topologies, it is appropriate to say that the time to execution is

relative. Thus, for two topologies/decompositions/sub-domain shapes T1 and T2, if the time

taken to execute T1 i.e. t(T1) is less than that to execute T2 i.e., t(T2) on a given experimental

test-bed E , then we say T1 outperforms T2. We do not directly compare the performance of

some topology T on two different test-beds E and Ẽ . For all experiments that we conduct,

we can divide the time into two distinct parts: Set-up and Solve. For most experiments, it

is the latter which is significant and our timing measurements thus focus on the Solve phase.

Two extremely significant performance measurement methods for parallel computing are Weak

Scaling and Strong Scaling. Weak Scaling measures the performance when both the problem

size and number of cores increase but the problem size per-core remains constant. The main

purpose of Weak Scaling is to measure the efficiency of communication and its effect on the

performance of the program. In Strong Scaling the number of cores are increased keeping

the problem size constant. Thus, the aim of Strong Scaling is to study if an ideal theoretical

speed-up can be obtained.

4.6.2 Single Node

A single node of the ARC2 facility consists of 16 cores, with 8 cores in each socket. For 16 MPI

processes or cores decomposed in 3-D, the cache equations yield an optimal decomposition of

4×4×1 instead of the 4×2×2 topology given by the default MPI Dims create() function. The

performance of various topologies for 16 processes for a problem of size 257×257×257 is shown

in Figure 4.15. At this problem size each process or sub-domain consists of≈ 16777216
16 = 1048576

single precision data points (without ghost points) per 3-D array. This approximately equates

to a storage of 4 MB per array and since the working set of the unweighted Jacobi algorithm

consist of 2 arrays, a total of ≈ 8 MB memory is accessed. This size clearly exceeds the shared

L3 cache-per-core which is ≈ 2.5 MB/core. This problem therefore fits our criterion for a large

problem as the working set is not fully contained in the cache-hierarchy.

In a SMP (Symmetric Multiprocessor) node, communication takes place through shared

memory (intra-socket) and hence the Infiniband [66] network is not used. OpenMPI 1.6.5 [127]

uses the SM (Shared Memory) component which operates on a copy-in/copy-out strategy as

opposed to a zero-copy scheme used by the KNEM3 library [130, 131]. In our simulation, even

3KNEM is a high performance intra-node communication library which performs a direct copy of large

84 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

1 1.2 1.4 1.6 1.8

·10−2

4x4x1

8x2x1

2x8x1

16x1x1

4x2x2

2x4x2

1x16x1

8x1x2

1x8x2

4x1x4

2x2x4

1x4x4

1x1x16

2x1x8

1x2x8

Time/iteration (seconds)

T
op

o
lo

g
y

Topology run-time

Figure 4.15: Time/iteration Vs Topology for 16 processes (single SMP node of ARC2) on
problem size=2573, ≈ 1048576 cells/process

when the neighbouring process of a process does not exist (i.e. is MPI PROC NULL according to

MPI), we choose to send data to it. The MPI standard states that the operation of sending

data to a MPI PROC NULL process completes and returns immediately [48]. Practically, this is

where a Cartesian Topology is extremely useful as it gives a symmetric structure to the code

by not differentiating between calls made to MPI PROC NULL processes and processes with valid

ranks.

Points in Figure 4.15 can be visually grouped as families of topologies and hence at least

three families can be observed. The performance gain for the best topology (4× 4× 1) over the

topology minimizing communication (4 × 2 × 2) is approximately 4%, while compared to the

worst topology (1× 2× 8) it is approximately 48%. It can be noticed that even topologies such

as 8× 2× 1, 2× 8× 1 outperform the default MPI Dims create() (MDC or standard) topology

which yields close-to-cubic sub-domains. For all the topologies which perform better than the

communication volume minimizing topology the common factor is that their Dz < Dsz, where

Dsz is the number of processes in the Z-direction in the standard topology. For all topologies

having performance lower than the default MDC, the value of Dz ≥ Dsz (there is negligible

difference between the performance of 1× 16× 1 and 4× 2× 2 and hence it is not counted as

messages (several kilobytes) between processes within the Linux kernel. KNEM is generic and offers asynchronous
completion modes [130].

4.6. EXPERIMENTAL RESULTS 85

an exception). This observation is in good agreement with our model.

Using our model we search for the solution of DxDy = P = 16 and find that Dx = 4, Dy = 4

satisfies it such that Px = Py. It may be noted that it is not always possible to find Dx = Dy.

When Dx 6= Dy, we find the closest Dx, Dy such that DxDy = P holds while keeping Dz = 1.

When Dx, Dy are found, we systematically consider the next best topologies to have the X and

Y components as 2Dx and 1
2Dy or 1

2Dx and 2Dy while keeping Dz = 1. Applying this rule to

Figure 4.15 we predict the next highest performing topologies to be 8 × 2 × 1 and 2 × 8 × 1,

which coincides with the experimental values.

Figures 4.16a, 4.16b and 4.16c show the execution times of problems of sizes 1293, 3213 and

5133 on 16 cores of a single node of ARC2, respectively. The Working Set Size (WSS) of two

arrays using the unweighted Jacobi method for these problems ranges from 1 MB to 64 MB.

The following can be noted about Figures 4.16a, 4.16b and 4.16c:

- In no case is the default MPI Dims create() (MDC) topology of 4× 2× 2 the optimal.

- As discussed above, the three predicted topologies, namely, 8×2×1, 2×8×1 and 4×4×1

consistently outperform the MDC and other topologies.

- With an increase in the problem size, additional topologies, for e.g., 1×16×1 and 16×1×1

also outperform the MDC.

- Even though the problem of size 1293 completely fits in the shared L3 cache, the MDC is

still not the optimal.

- The percentage difference between the highest performing topology and the MDC is at

least 6% for all the cases.

It is very difficult to optimize communication as compared to computation. For the com-

putation example optimizations include loop unrolling, loop interchange, loop fission/fusion

and tiling, etc. Optimizing communication can involve placement of neighbours of a process at

close-by nodes, using specialized libraries such as KNEM [130] for reducing intra-node latencies,

or techniques to reduce data copy time or combining small messages to be sent as a single mes-

sage. The latter category, where communication mechanisms are optimized, are much harder

to implement. Further, the gap between computation and communication suggests that this is

a computationally intensive (and memory bandwidth limited) problem. Hence, it is likely to

benefit more by choosing a decomposition that reduces cache-misses naturally than choosing a

decomposition that reduces communication.

4.6.2.1 Compiler Optimization

Modern compilers, the Intel compilers (16.0.2 and 17.0.1) in our case, do an excellent job at

optimizing programs however it is often useful to hand-optimize codes unless this conflicts with

86 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

·10−3

8x2x1

4x4x1

2x8x1

4x2x2

8x1x2

2x4x2

1x8x2

1x16x1

16x1x1

2x2x4

1x4x4

4x1x4

1x2x8

2x1x8

1x1x16

Time/iteration (seconds)

T
o
p

ol
og

y

Topology run-time

(a) N = 129, ≈ 131072 cells/process

1.5 2 2.5 3

·10−2

8x2x1

4x4x1

2x8x1

16x1x1

1x16x1

4x2x2

8x1x2

1x8x2

2x4x2

4x1x4

2x2x4

1x4x4

1x1x16

2x1x8

1x2x8

Time/iteration (seconds)

T
op

ol
og

y

Topology run-time

(b) N = 321, ≈ 2048000 cells/process

0.6 0.8 1 1.2

·10−1

2x8x1

4x4x1

8x2x1

1x16x1

16x1x1

8x1x2

1x8x2

4x2x2

2x4x2

2x2x4

1x4x4

4x1x4

1x2x8

2x1x8

1x1x16

Time/iteration (seconds)

T
op

o
lo

gy

Topology run-time

(c) N = 513, ≈ 8388608 cells/process

Figure 4.16: Time/iteration Vs Topology for 16 processes (single SMP node of ARC2) and
varying problem sizes

4.6. EXPERIMENTAL RESULTS 87

Table 4.7: Optimizations: Time per iteration with different compiler options for problem
size=161× 161× 161 and cores=16

Compiler Optimization Time/iteration
(10−5 secs)

-O2 373
-O3 372
-O3 -xhost 384
-O3 -fp-model fast=1 361
-O3 -fimf-precision:low 370
-O3 -unroll4 374
-O3 -opt-prefetch=4 368
-O3, Tile Size=50, 2-D tiling, Rivera and Tseng [6] 394
-O2, Tile Size=50, 2-D tiling, Rivera and Tseng [6] 363

Table 4.8: Compiler Options: Brief explanation of various compiler options for the Intel C/C++
compiler

Compiler Option Description

-O2 default optimization level, levels vary from -O0 to -O3, maximizes
speed, includes automatic vectorization

-O3 includes -O2, additional loop and memory access optimizations,
loop unrolling, loop blocking, scalar replacement

-xhost uses most advanced instruction set on the host (such as AVX-256
or AVX-512)

-fp-model fast=1 sacrifices slight accuracy for speed, fast=2 also possible
-fp-model precise stops optimizations which affect accuracy of floating point opera-

tions but allows FMA (Fused Multiply-Add)
-fimf-precision:low sets low precision for math library functions to gain speed
-O3 -unroll4 sets the maximum number of times to unroll loops
-opt-prefetch=4 controls software pre-fetching, default is off

the standard compiler optimizations. Various compiler optimizations were tried in order to

bring down the timing of the worst (theoretical) decomposition of 1× 1× 16 with a problem of

size 161× 161× 161. We list the results in Table 4.7.

It can be noted from Table 4.7 that even with the -O2 flag, the compiler generates almost

optimal code. Further, the purpose of this experiment is not to search for the optimal tile at this

problem size but to show that hand optimization may interfere with compiler optimization (-O3

with Rivera and Tseng [6] 2-D tiling). A very brief explanation of the various compiler options

is shown in Table 4.8. In this chapter, apart from the the -O2 and -O3 optimization levels, we

do not use any of the additional options listed in Table 4.8. A detailed explanation is out of

scope of the current work but can be found in the Intel C++ compiler documentation [132].

88 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

Table 4.9: Predicted and Actual cache-misses: Predicted Cache-Misses (PCM) and Actual
cache-misses for Problem Size=161 × 161 × 161, Cores=16, Iterations=19353, Independent
Compute Elements (ICE)=199712, PCM for ICE=62410

Topology PCM-planes Total PCM Observed Misses
Z X Y L1 L2

16× 1× 1 0 12800 0 1.45E+9 1.8E+9 4.0E+8
1× 1× 16 204800 0 0 5.16E+9 5.0E+9 1.4E+9
1× 16× 1 0 0 12800 1.45E+9 1.4E+9 5.3E+8

4.6.2.2 Cache-Misses

We try to predict the number of cache-misses using the estimates for cache-misses derived while

creating the prediction model in Section 6.6. Table 4.9 shows the predicted cache-misses and

the actual cache-misses. It can be seen that even when we don’t incorporate Prefetching in our

model, the predictions are fairly accurate. We combine the cache-misses of only the functions

which have a significant contribution towards the total cache-misses. The profiler TAU (Tuning

and Analysis Utilities) [119] was used to instrument the code and obtain the PAPI [120] (Per-

formance Application Programming Interface) events such as PAPI L1 DCM and PAPI L2 DCM.

The Total Predicted Cache-Misses (Total PCM) in Table 4.9 is the sum total of the pre-

dicted cache-misses for the Dependent Planes (DP) and the Independent Compute (IC) kernel.

The predicted cache-misses for the IC Elements (ICE) for all the topologies shown in Table 4.9

is equal i.e. 62410. The Total PCM can then be obtained by adding the PCM for ICE with the

PCM-planes and multiplying by the total number of iterations (19353). In summary, the Total

PCM = no. of Iterations × (PCM-planes + PCM-ICE). Table 4.9 shows that the Z decom-

position is the worst, with maximum predicted cache-misses, whilst X and Y decompositions

are exactly the same in our predictions. This serves as both verification and motivation for

considering topologies such as (2Dx)(
Dy

2)Dz and (Dx

2)(2Dy)Dz. A subtle difference between X

and Y decomposition is highlighted in Table 4.3 and Table 4.4 which relates to the maximum

gap between the two elements. The observed L1 cache-misses for Y decomposition is less than

the X decomposition although our predictions show that they should be equal. It is difficult

to accurately predict the cache-misses due to Operating System fluctuations, interactions of

various hardware components, hardware and software Prefetching policies and various other

factors. But it can be seen from Table 4.9 that both X and Y decompositions perform sig-

nificantly better than the Z decomposition. Further, the order of magnitude of the predicted

and observed (actual) cache-misses is both 109 - instilling a good degree of confidence in our

prediction scheme.

The predicted values in Table 4.9 are based on the estimated cache-misses in Table 4.5 (IC

cache-misses) and Table 4.6 (DP cache-misses). The cache-misses in Table 4.5 are the estimated

4.6. EXPERIMENTAL RESULTS 89

cache-misses only for the IC of the old solution array (see RHS in Figure 4.10) in the unweighted

Jacobi iterative method. Thus, when we add the IC cache-misses of the new solution array (see

LHS in Figure 4.10), the total IC cache-misses become (5+1)
16 (Px − 2)(Py − 2)(Pz − 2) = 74892

for the problem of size 161 × 161 × 161 (see Table 4.9). These IC cache-misses are the same

for all three decompositions, namely, 16× 1× 1, 1× 16× 1 and 1× 1× 16. The estimated DP

cache-misses in Table 4.6 and the predicted DP cache-misses in Table 4.9 are for a single plane

only. It can be noted that the end processes (rank 0 and rank 15 processes) in the topologies

16× 1× 1, 1× 16× 1 and 1× 1× 16 communicate only a single plane. Hence, on an average,

the DP cache-misses per process for 16× 1× 1 is

1

16
×
(

14× 2× PyPz
2

+ 2×
(

6PyPz
16

+
PyPz

2

))
=

63PyPz
64

≈ 0.98PyPz.

The expression above gives the average DP cache-misses per process for the X-decomposition as

25200. The total predicted cache-misses for 16×1×1 is then (25200+74892)×19353 = 1.93×109.

The Y-decomposition i.e. 1×16×1 can be meted out the same treatment and hence the predicted

cache-misses for this topology is also 1.93 × 109. For the Z-decomposition of 1 × 1 × 16, the

predicted IC cache-misses remain the same as that for the X/Y-decompositions i.e. 74892. The

average DP cache-misses per process for the Z-decomposition can be calculated as

1

16
× (14× 2× 8PxPy + 2× (6PxPy + 8PxPy)) =

252PxPy
16

≈ 15.75PxPy.

The expression above gives the average DP cache-misses per process for the Z-decomposition

as 403200. The total predicted cache-misses for 1× 1× 16 is then (403200 + 74892)× 19353 =

9.25× 109. This is much larger than the actual L1 cache-misses for the Z-decomposition which

is 5 × 109. For the topology 1 × 1 × 16 at a problem size of 1613, the value of Pz = 10 and

thus accessing a data point (i, j, 1) on Z TOWARDS U brings the data element (i, j, Pz) on

Z AWAY U into the cache. Hence, as an estimate we take into account the cache-misses only

due to a single Z-plane and the predicted cache-misses for the Z-decomposition can be approx-

imated as 9.25×109

2 = 4.63× 109 - a value which is very close to the actual cache-misses for the

Z-decomposition (see Table 4.9).

It should be noted that in practice both the Z-planes are sent/received and updated immedi-

ately after one another. Since the depth of the ghost layer is one in the derivation of our model

and experiments, a cache-line which contains a point on the Z-plane will also contain the next

immediate point that is at a distance of two on the other Z-plane (as data is contiguous in the

Z-direction). Thus, if the point (i, j, Pz) on Z AWAY U is contained in a cache-line, there is an

extremely high probability that the point (i, j+1, 1) on Z TOWARDS U will also be contained

in that cache-line. Bringing a Z-plane into the cache increases the probability of bringing the

other Z-plane into the cache. It is important to note that accessing a single X or Y-plane does

not increase the probability of bringing the other X/Y-plane into the cache since the distance

90 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

0 100 200 300 400 500

6 · 10−3

8 · 10−3

1 · 10−2

1.2 · 10−2

Cores

T
im

e/
it

er
a
ti

o
n

(s
ec

)

Best Experimental Topologies

LCE Topologies

Figure 4.17: Weak Scaling for 8, 64, 216, 512 cores, Cells/core ≈ 106, Iterations=10000, LCE
(Least Communication Elements), best topologies (4×2×1, 16×4×1, 6×12×3 and 8×32×2)
Vs (2× 2× 2, 4× 4× 4, 6× 6× 6 and 8× 8× 8), respectively.

between the two planes of each type is much larger as compared to the Z-planes. Interestingly,

as a consequence of this behaviour that is specific to the Z-plane, the sequence of update of

the Z-planes may reduce the total cache-misses incurred by the two Z-planes. Stated precisely,

the Z AWAY U plane should be updated before Z TOWARDS U. In summary, although our

predictions for cache-misses are fairly accurate, deviations are expected because our high level

model does not take into account the low level architectural details of the cache-hierarchy.

4.6.3 Multiple Nodes

Inter-node communications take place via the Infiniband interface - leading to an increase in

communication time due to an added message latency (hops) and increased data in-flight time.

We further note that because of the difference in the number of communication elements be-

tween a topology which minimizes local cache-misses and a topology that minimizes communi-

cation elements specifically, the time gap between the execution of topologies for our experiment

is expected to reduce when the communication time increases due to inter-node communication.

4.6.3.1 Weak Scaling

Figure 4.17 shows the results of a Weak Scaling test for 8, 64, 216 and 512 cores with ≈ 106

cells/core. We refer to the communication minimizing topology as LCE (Least Communication

Elements) and the cache-minimizing topologies as LCM (Least Cache-Misses). The solution

time per iteration of the best topology for each core count and problem size is plotted against

4.6. EXPERIMENTAL RESULTS 91

that for the default MPI Dims create() (MDC) topology i.e. the LCE topology (or the standard

topology). It can be seen that the cache-minimizing topologies outperform the communication

minimizing topologies consistently and the gap in performance even tends to increase with an

increasing number of cores. It can be noted that it was not possible to obtain all possible per-

mutations of decompositions for 216 cores as our implementation assumes that (Ni−1)%Di = 0

where i = x, y, z (further explained in the discussion below). The execution run-times of vari-

ous permutations of decompositions is needed to experimentally verify that the LCM topologies

outperform the other topologies. It can be noted that the best experimental topologies can be

predicted from our model but may not be the topologies which minimize cache-misses (theoret-

ically). The problem sizes that we consider for Weak Scaling with 8, 64, 216 and 512 processes

are 2013, 4013, 6013 and 8013, respectively.

With P = 8 cores, keeping Dz = 1, we obtain the closest (Dx, Dy)=(4,2) or (2,4). Our ob-

servation matches with this prediction that the topology Dx×Dy×Dz = 4×2×1 outperforms

the default MDC (or LCE) of 2× 2× 2. We can go a level deeper to obtain the next topology

i.e. 4 × 2 × 1 → 8 × 1 × 1 or 2 × 4 × 1 → 1 × 8 × 1 but the imbalance between the process

dimensions Dx and Dy becomes higher (8 times) and this indicates a strong deviation from

the cache-minimizing conditions that state that Dx = Dy (theoretically). With P = 64 cores,

we obtain an LCM of 8× 8× 1 but going a level deeper i.e. considering (2× 8)× (8
2)× 1 and

(8
2)× (2×8)×1, we obtain a topology which is the highest performing topology (i.e. 16×4×1).

With 216 cores, when we consider a decomposition of 18× 12× 1 or 12× 18× 1, the condition

that (N − 1)%Di = 0 does not hold. Specifically at a problem size of 6013 (as mentioned

above), (601 − 1)%18 6= 0. Considering Dz = 2, we obtain a topology of 12 × 9 × 2 but again

(601 − 1)%9 6= 0 and hence we can only consider Dz = 3. The highest performing topology

for P = 216 is also 6× 12× 3. The other predicted LCM topology could have been 12× 6× 3

but it is outperformed by the former. We discuss the choice between choosing 12 × 6 × 3 and

6× 12× 3 in Chapter 6 where we introduce the concept of Working Plane Set Size (WPSS). It

can be noted that not being able to obtain decompositions such as 12× 18× 1 or 12× 9× 2 is

a limitation of our implementation which is not designed to take into account a load-imbalance

while partitioning the 3-D structured grid. When the number of cores is 512, the first topology

that we consider is 16× 32× 1 (and 32× 16× 1). It is important to notice that the due to the

increasing problem size and keeping Dz = 1, increases the communication volume generated by

the X and Y plane. This is one disadvantage of our high level model as it does not take into

account the problem size but only the number of cores. Considering topologies such as 64×8×1

and 8×64×1 does not solve this problem as the imbalance between Dx and Dy again increases.

Thus, the idea is to increase the value of Dz ← 2×Dz and to try to find values of Dx and Dy

such that |Dx −Dy| is minimized. Thus, we consider Dz = 2 and Dx = Dy = 16. Considering

the variation of this topology as in other cases i.e. (16
2)× (2×16)×2 and (2×16)× (16

2)×2, we

obtain the highest performing topology that can be experimentally verified. It is to be noted

92 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

0 200 400 600 800 1,000

8 · 10−3

1 · 10−2

1.2 · 10−2

Cores

T
im

e/
it

er
at

io
n

(s
ec

)

Best Experimental Topologies

LCE Topologies

Figure 4.18: Weak Scaling for 16, 128, 432, 1024 cores, Cells/core=1048576, Iterations=10000,
LCE (Least Communication Elements), best topologies (4× 4× 1, 16× 8× 1, 12× 12× 3, and
16× 32× 2) Vs (4× 2× 2, 8× 4× 4, 12× 6× 6, and 16× 8× 8), respectively.

that the default MDC (or LCE) gives 8×8×8 as the topology for P = 512 cores. With Dz = 2,

a value at which we obtain the optimal topology, is still four times less than Dsz = 8 (Dsz is

the Dz for the default MDC or the LCE or the standard topology). Thus, it is not sufficient

to minimize only the communication volume but to optimize the balance between minimizing

cache-misses and minimizing communication.

Figure 4.18 shows the Weak Scaling between the two types of topologies for 16, 128, 432

and 1024 processors for a total of 1048576 (≈ 106) unknowns per core. The difference between

this case and the previous case is that the number of cores is not a perfect cube and hence the

default MPI Dims create() may return/returns Dx 6= Dy 6= Dz. A smaller gap between the

two categories of topologies in the latter case is possibly because Dz is not the cube-root of

the core count and hence generally less than Dx and Dy in the Least Communication Elements

(LCE) case. If the processor count is a perfect cube then Dz (= Dx = Dy) grows exactly as

P
1
3 for the LCE decomposition. This means that for a core count that is a perfect cube, the

value of Dz returned by the default MPI Dims create() function is the highest. This in turn

results in a much larger Z-plane than when Dz has a smaller value. As mentioned and verified

previously, this leads to a deterioration in performance.

Since the process placement also plays a very important role when we venture out of the

SMP, we show in Figure 4.19 the difference between two runs of the same problem size with

identical number of cores but with random node allocation. The topology which minimizes

communication i.e. 16× 8× 8 has a variation of approximately 17% from the average execution

4.6. EXPERIMENTAL RESULTS 93

Table 4.10: Strong Scaling I: Strong Scaling for problem size=5133, Iterations=500, tBest is the
minimum execution time, tMDC is the execution time of default MDC

Cores tBest (sec) tMDC (sec) Best MDC WSS(MB)

2 198.26 199.58 1× 2× 1 2× 1× 1 128
4 100.89 100.89 2× 2× 1 2× 2× 1 64
8 52.13 54.99 2× 4× 1 2× 2× 2 32
16 28.11 30.58 4× 4× 1 4× 2× 2 16
32 14.33 15.03 8× 4× 1 4× 4× 2 8
64 7.49 8.40 8× 8× 1 4× 4× 4 4
128 4.06 4.38 8× 8× 2 8× 4× 4 2
256 2.25 2.31 8× 16× 2 8× 8× 4 1
512 1.31 1.67 8× 16× 4 8× 8× 8 0.5

Table 4.11: Strong Scaling II: Strong scaling for problem size=10253, Iterations=500, tBest is
the minimum execution time, tMDC is the execution time of default MDC

.

Cores tBest (sec) tMDC (sec) Best MDC WSS(MB)

16 228.99 235.62 1× 8× 2 4× 2× 2 512
32 115.64 116.12 2× 8× 2 4× 4× 2 256
64 58.59 63.57 4× 8× 2 4× 4× 4 128
128 29.78 31.94 4× 16× 2 8× 4× 4 64
256 15.39 16.39 8× 16× 2 8× 8× 4 32
512 8.19 9.57 8× 32× 2 8× 8× 8 16

time. This shows that obtaining an optimal process placement is also important. A detailed

discussion of topology mapping/process placement is outside the scope of this paper. The

highest performing topology in both the runs (see Figure 4.19) is 16 × 32 × 2 which is much

closer to a 2-D domain partition than is 16× 8× 8.

4.6.3.2 Strong Scaling

In Strong Scaling the problem size remains constant as the number of cores is increased. The

computational time and the communication volume decreases as the problem size per core

decreases but the communication time may increase due to the increasing distance between the

cores. Table 4.10 and 4.11 show our Strong Scaling results for problems of sizes 5133 and 10253

up-to 512 cores. The following observations can be made when strongly scaling a problem of

size 5133.

1. The execution on 2, 4 and 8 cores does not fully utilize the 16-core node of ARC2. Further,

these 2, 4 and 8 processes are distributed in a round-robin manner by the scheduler i.e.

mapped by socket so as to maximize the memory bandwidth per socket.

2. At no core count, except for P = 4 cores, is the default MPI Dims create() (or LCE or

94 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

16x32x2
16x16x4
8x64x2

32x16x2
8x32x4
16x8x8

32x32x1
16x64x1
32x8x4
4x64x4
32x4x8
8x16x8
64x8x2
64x4x4
4x32x8

4x128x2
128x8x1
128x2x4
8x128x1
64x2x8

64x16x1
2x64x8

128x4x2
128x1x8
2x128x4
256x4x1
256x1x4
256x2x2
1x128x8
2x256x2
4x256x1
512x2x1
512x1x2
8x8x16

16x4x16
4x16x16
32x2x16
2x32x16
1x512x2
1x256x4
64x1x16
2x512x1
1x64x16
4x8x32
8x4x32

16x2x32
32x1x32
2x16x32
4x4x64
8x2x64
2x8x64

16x1x64
1x16x64
1x32x32
8x1x128
4x2x128
2x4x128
1x8x128

1024x1x1
1x1024x1
2x2x256
4x1x256
1x4x256
1x2x512
2x1x512

1x1x1024

Time/iteration (sec)

T
op

ol
og

y

Execution 1
Execution 2

Figure 4.19: Topology Timings for two runs of Problem Size=10253, P=1024

4.6. EXPERIMENTAL RESULTS 95

standard topology), the optimal topology.

3. With two 3-D arrays in the unweighted Jacobi update, the Working Set Size (WSS) is 128

MB/core for P = 2 cores and decreases to 0.5 MB/core for P = 512 cores. The transition

point occurs at P = 128 cores, where the WSS becomes 2 MB/core and starts fitting in

the shared L3 cache per core (which is 2.5 MB/core).

4. At P = 128 and a WSS of 2 MB/core, since the data starts fitting into the shared L3 cache,

the number of communication elements become a significant factor in determining the

optimal partition and hence a topology such as 16×8×1 or 8×16×1 which communicates a

maximum of 98304 (= 2×(64×512+512×32)) elements is outperformed by a topology such

as 8×8×2 which communicates a maximum of 69632 (= 64×64+2×(64×256+256×64))

elements. It is to be noted that even when the default MDC at this core count i.e. 8×4×4

communicates a maximum of 65536 (= 2× (64× 128 + 128× 128 + 128× 64)) elements,

it still does not exhibit optimal performance. This can again be attributed to the better

cache-efficiency of 8× 8× 2. The topology of 8× 8× 2 can be obtained from our model

by setting Dz = 2 and keeping Dx = Dy = 8.

5. Even with P = 512 and WSS = 0.5 MB/core, the topology 8×16×4 that communicates

a maximum of 28672 (= 2× (32× 128 + 64× 128 + 64× 32)) elements, outperforms the

default MDC of 8× 8× 8 which communicates a maximum of 24576 (= 2× 3× 64× 64)

elements.

6. We conclude that when the WSS does not fit into the cache hierarchy, cache-misses are a

much more significant factor in determining the optimal partition than the communication

volume. As the problem size decreases and starts fitting into the cache hierarchy, the

contribution of communication elements in determining the optimal domain partition

increases but the cache-misses still influence the optimality. We again return to the

discussion of WSS in Chapter 6 when we consider a hierarchy of grids of decreasing mesh

spacing in parallel Geometric Multigrid.

Table 4.11 shows Strong Scaling on a problem of size 10253 with core counts ranging from

16 (16-core node) to 512 cores (32 nodes). This problem is 8 times larger than the previous

problem of size 5133. The following observations can be made for Table 4.11.

1. The WSS is approximately 512 MB per core at P = 16 cores and decreases to 16 MB at

a core count of P = 512. The WSS thus, never fits completely into the cache-hierarchy.

2. The default MDC is not optimal for any core count at this problem size.

3. The optimal topology at P = 16 shifts to 1 × 8 × 2 and outperforms the default MDC

(4× 2× 2) by 2.81% even when the former communicates 33.34% more elements than the

latter.

96 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

Pz

2

Pz

2

(a) Single sub-domain, two tiles of depth Pz
2

Pz

2

Pz

2

(b) Two sub-domains of depth Pz
2

Figure 4.20: Non-equivalence of tiled sub-domain and multiple sub-domains

4. At P = 512 and WSS of 16 MB/core the default MDC is outperformed by the topology

8× 32× 2 by 14.42% even when the latter communicates 41.46% more elements than the

standard topology of 8×8×8. Thus, minimizing communication alone cannot be the sole

criterion for obtaining the optimal domain partition.

5. For all the Best (topologies exhibiting minimum execution time) performing topologies,

Dy > Dx. A plausible reason is that it decreases the Working Plane Set Size (WPSS) - a

concept that we return to and discuss in Chapter 6.

6. The value of Dz for all the highest performing topologies increases to two at this problem

size and we attribute it to the LRU (Least Recently Used) cache-eviction policy that

purges data points before they can be reused. We discuss the effects of LRU in detail in

Chapter 6, where we identify various factors affecting optimal sub-domain dimensions.

The experiments of Strong Scaling were performed without any cache tiling but it can be noted

that a tile size of N
2Dz
≈ Pz

2 in the Z-direction with Pz points is not the same as having no tiling

with N
2Dz

= Pz

2 data points. For example, a tile size of 512 in the Z-direction with Pz = 1024

is not equivalent to having no tiling with Pz = 512. Figure 4.20a and 4.20b illustrate this

concept. The reason is that when the solution is updated at a depth of Pz

2 in the Z-dimension,

the cache-logic in the tiled sub-domain prefetches data from the next tile and not the current

tile. This situation cannot occur when the sub-domains are separate as the sub-domains are on

separate processes.

Further, when we increase Dz, we trade-off an increase in the Z-plane update with a decrease

in update in the independent computational kernel due to enhanced caching. An increase

in Dz leads to a decrease in the value of Pz as Pz = N−1
Dz

. This leads to an increase in

the value of PxPy and hence the size of the Z-plane increases - leading to an increase in the

packing/unpacking/update time. As the size of Pz decreases, there is a greater probability that

4.6. EXPERIMENTAL RESULTS 97

the grid points in the cache are re-used again as generally caches typically implement a pseudo

LRU (Least Recently Used) cache eviction policy. However, as the depth of the sub-domain

(value of Pz) decreases, and the Z-plane size (PxPy) increases, there are an increased number

of ghost points fetched while updating the Independent Compute (IC) kernel. This decreases

the Cache-Line Utilization (CLU) as the ghost points are not used while updating the solution

in the IC kernel. We discuss the LRU policy, CLU and other factors (and their effects on

optimal sub-domain dimensions) in detail in Chapter 6. At this point, it would be correct

to say that domain partitioning is dependent upon a multitude of Serial and Parallel Control

Parameters (SCPs and PCPs) as mentioned in Chapter 1 and is not just a simple function of

the communication volume (assuming a balanced load).

4.6.3.3 Communication Times of Planes

The data contained in the Dependent Planes must be sent to the neighbouring MPI processes.

Within a single SMP (Symmetric Multiprocessor) node data can either be sent to a core within

a socket (intra-socket) or across sockets (inter-socket). When multiple nodes are present, data

can travel across nodes (inter-node) using the connecting network such as Infiniband. The des-

tination node may be present in the same shelf as the source node (intra-shelf communication)

or a different shelf (inter-shelf communication). The shelf itself may be present in the same

rack (intra-rack communication) or a different rack (inter-rack communication). Thus, data

can travel across a number of physical elements of the hierarchical network infrastructure. For

simplicity and to limit the scope of the work we, at this point in time, discuss only intra-socket,

inter-socket and inter-node communication, without considering shelves and racks. We revisit

and elaborate this discussion in Chapter 6.

ARC2 uses a default --bind-to-core --bysocket intra-node process placement policy that

assigns the first MPI process to the first core of the first socket, the second MPI process to the

first core of the second socket, the third MPI process to the second core of the first socket and

this pattern repeats until all MPI processes are assigned a core. For eight processes this is shown

in Figure 4.21 where the MPI Cartesian Topology or decomposition is 2× 2× 2. A line joining

two different sockets i.e., the line joining blue balls and red balls in Figure 4.21, represents

an inter-socket communication. An inter-socket communication does not take place through

shared memory but through a high speed bus on Intel multiprocessor systems. In Figure 4.21

the red lines represent the Z-planes. Z-planes are thus communicated across sockets using the

dedicated Quick Path Interconnect (QPI) [133] as opposed to a shared memory communication

for intra-socket X and Y planes. The QPI is a multiple, point-to-point, low latency and high

bandwidth bus connecting processors or other I/O/controller devices. It supports data speeds

upto 25.6 GB/sec. It is used to access the remote memory in a multiprocessor system and also

for cache-coherency across processors.

98 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

Figure 4.21: Cores in socket 0: blue balls, Cores in socket 1: red balls, Z-planes: very thick, red
lines, Y-planes: thick, black, dashed lines, X-planes: thin, blue, dotted lines, Decomposition:
2 × 2 × 2, QPI present on lines that connect different sockets, Mapping: --bind-to-core

--bysocket

With 8 processes the default communication minimizing MPI dims create() function re-

turns a decomposition of Dx ×Dy ×Dz = 2× 2× 2. With such a decomposition, a problem of

size 129× 129× 129 yields a sub-domain volume of (129−1)(129−1)(129−1)
2×2×2 = 64× 64× 64 without

the ghost cells. Thus, the size of each plane that is passed is 64×64×4 bytes as we use a single

precision float data type (sizeof(float)=4) here.

Figure 4.22 (Log scale on Y-axis) shows the average time taken by a single process to send

an equal amount of data in the X, Y and Z planes. Even when considering larger problem

sizes, the X/Y planes of similar dimensions always outperform the communication times of the

Z-plane as shown in Figure 4.22. If we assume that the latency and bandwidth of the QPI is

comparable to that for the shared memory then since the total amount of data remains the

same for all three planes, the difference in timing must come (majorly) from the difference in

packing times and not the transmission times. A comparison of latencies and effective band-

width at different message sizes for a dual socket Intel Xeon 5160 can be found in [55]. The

packing times are different as the data pattern to access individual data elements is different

for the different plane types. This data access pattern is what gives rise to cache-misses when

the data is non-contiguous. The topology chosen for this experiment was 2× 2× 2 for 8 cores

as it ensures an equal number of X, Y and Z neighbours for each process. As predicted in Table

4.6, the X/Y planes have an equal number of cache-misses but a higher packing efficiency is

expected in the case of the X-plane as the maximum gap between data elements is only two

(see Table 4.3). This does not hold true for the Y-plane as can be seen from Table 4.4. Thus,

when sending equal sized, intra-socket X and Y planes to neighbouring processes, the X-plane is

4.6. EXPERIMENTAL RESULTS 99

0 20 40 60 80 100

−5

−4.5

−4

−3.5

−3

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(a) Plane sizes of 64× 64× 4 bytes

0 20 40 60 80 100

−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

−2.8

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(b) Plane sizes of 128× 128× 4 bytes

0 20 40 60 80 100
−4

−3.5

−3

−2.5

−2

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(c) Plane sizes of 256× 256× 4 bytes

0 20 40 60 80 100
−3.5

−3

−2.5

−2

−1.5

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(d) Plane sizes of 512× 512× 4 bytes

Figure 4.22: Average time taken to send X, Y and Z planes of same size with cores=8
(topology=2× 2× 2)

100 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

expected to take less time as compared to the Y-plane. This behaviour can be verified from Fig-

ure 4.22 which shows that the X-plane takes less time than the Y-plane for increasing data-sizes.

Figure 4.23 illustrates the same experiment for the communication times of equal sized

X/Y/Z planes with 4 nodes (64 cores). The topology of 4 × 4 × 4 here ensures that processes

that are not at the boundary, have an equal number of X/Y/Z neighbour processes. Further,

the total number of planes of each type is 3 × 4 × 4 × 2 = 96. The Y/Z-planes are sent to

neighbour processes on the same node (intra-node) but X-planes travel across SMP’s (inter-

node using Infiniband). The Y-planes thus, take less time than X-planes on an average. The

Z-planes still take more time than the X-planes, although the former uses QPI for communi-

cation. The major contributing component in the average timings of Z-planes is then due to

the cache-misses incurring during its packing. Thus, for large but equal data sizes, inter-socket

transmission of the Z-plane generally costs more than the inter-node transmission of the X-plane.

The MPI process-to-core mapping can be changed using process bindings in OpenMPI but

we prefer to keep the default mapping and not venture into the field of process placement as it

lies outside the scope of the current work. However, we do discuss another type of intra-node

process placement --bind-to-core --bycore in Chapter 6 and show that our inferences hold

for the latter process placement policy as well.

4.6.3.4 Planes Update Cache-Misses

When the Dependent Planes are updated after data is received from neighbour processes, both

read and write cache-misses incur. These update cache-misses are shown in Table 4.6. Figures

4.24 and 4.25 show the cache-misses for two planes of sizes 64 × 64 × 4 and 128 × 128 × 4

bytes. As is predicted in Table 4.6, the cache-misses for the Z-plane are much higher than the

cache-misses for the X/Y planes. Further, the X and Y plane update cache-misses are close

to each other but the latter incurs higher cache-misses for all the plane sizes. This is due to a

maximum gap of two ghost data points between the data elements of the X-plane (see Table

4.3). For the Y-plane this gap is much larger (see Table 4.4). Thus, in practice it is much

easier for the cache-logic to prefetch the data for the X-plane as compared to the Y-plane. As

mentioned, we do not take into account the factor of prefetch in our derivation of the model.

4.6.3.5 Increasing Bandwidth-per-core

When a node is completely utilized, the memory bandwidth per core is minimal as all the 8

cores of a socket on ARC2 share the same Last Level Cache (LLC) and the main memory mod-

ule. Since simulation of a PDE using stencil based methods is a memory-bandwidth intensive

procedure [12], we experiment with partial utilization of nodes. Though an under-utilization

of resources, this can find a potential application in solving the coarsest grid (s) on a subset of

processes in parallel multilevel methods such as Geometric Multigrid [59,63]. Our experiments

4.6. EXPERIMENTAL RESULTS 101

0 20 40 60 80 100

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(a) Plane sizes of 64× 64× 4 bytes

0 20 40 60 80 100

−3.5

−3

−2.5

−2

−1.5

Number of observations

lo
g 1

0
(A

v
g
.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(b) Plane sizes of 128× 128× 4 bytes

0 20 40 60 80 100
−3.5

−3

−2.5

−2

−1.5

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(c) Plane sizes of 256× 256× 4 bytes

0 20 40 60 80 100

−3

−2.5

−2

−1.5

−1

Number of observations

lo
g 1

0
(A

v
g.

R
u

n
-t

im
e)

(s
ec

on
d

s)

X-plane
Y-plane
Z-plane

(d) Plane sizes of 512× 512× 4 bytes

Figure 4.23: Average time taken to send X, Y and Z planes of same size with cores=64
(topology=4× 4× 4)

102 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

L1 L2 L3

0

1

2

3
·106

Cache-Misses type

C
ac

h
e-

M
is

se
s

Z-plane

X-plane

Y-plane

Figure 4.24: Cache-Misses for updating solution of Z/X/Y planes of equal sizes with Cores
P = 64, planes of size 64× 64× 4 bytes

L1 L2 L3

0

0.5

1

1.5
·107

Cache-Misses type

C
ac

h
e-

M
is

se
s

Z-plane

X-plane

Y-plane

Figure 4.25: Cache-Misses for updating solution of Z/X/Y planes of equal sizes with Cores
P = 64, planes of size 128× 128× 4 bytes

4.6. EXPERIMENTAL RESULTS 103

16
x4

x1

8x
8x

1

4x
16

x1

8x
4x

2

4x
8x

2

16
x2

x2

2x
16

x2

8x
2x

4

16
x1

x4

4x
4x

4

1x
16

x4

2x
8x

4

4x
1x

16

2x
2x

16

2x
4x

8

1x
4x

16

4x
2x

8

8x
1x

8

1x
8x

8
0

50

100

150

200

Topology

R
u

n
-t

im
e

(s
ec

on
d

s)

nodes=4 ppn=16
nodes=8 ppn=8
nodes=16 ppn=4

Figure 4.26: Topology Timings for 64 cores, Problem Size=401× 401× 401, Iterations=10000,
Cells/core≈ 106 for varying Memory Bandwidth per core

with P = 64 cores and a problem of size 4013 is shown in Figure 4.26. As the processes-per-node

(ppn) decrease, the application performance increases. The reason for this is the reduced con-

tention for the LLC and the main memory modules. Theoretically, there should come a point

where the benefits of increasing memory bandwidth per core will be balanced by the increasing

global and local synchronization time. This experiment strengthens the observation that stencil

codes are memory bandwidth intensive. Interestingly, there are many topologies that outper-

form the traditional communication minimization topology of 4× 4× 4 for varying number of

processes per node. For all such topologies the values of Dz ≤ 4 - an observation that lends sup-

port to our model. As the number of nodes increase and the processes-per-node decrease (while

maintaining the total process count to 64), the performance gap between topologies decreases.

This again reaffirms the fact that the efficiency of stencil-computations can be enhanced by

increasing the available shared L3 cache-per-core and decreasing the contention for this shared

memory. In a shared cluster of nodes in a multi-user environment, this under-utilization of

nodes is not advisable.

4.6.3.6 19-pt Stencil

The 7-pt stencil considered in the tests discussed up to this point consists of six neighbour

mesh points, corresponding to the six faces of a cube. Instead of using a 7-pt stencil, a 19-pt

stencil [134] which includes the neighbour points on the twelve edges of a cube in addition

to the points on the six faces can also be used to update the solution. The Jacobi iteration

corresponding to a 19-pt stencil is illustrated in Figure 4.27. The sum of the weights of the

104 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

new[i][j][k] = (1/4.0)*

(

(1/6.0)*

(

old[i][j-1][k-1] + old[i][j-1][k+1] +

old[i][j+1][k-1] + old[i][j+1][k+1] +

old[i+1][j-1][k] + old[i+1][j+1][k] +

old[i+1][j][k-1] + old[i+1][j][k+1] +

old[i-1][j-1][k] + old[i-1][j+1][k] +

old[i-1][j][k-1] + old[i-1][j][k+1]

)

+

(1/3.0)*

(

old[i][j-1][k] + old[i][j+1][k] +

old[i][j][k-1] + old[i][j][k+1] +

old[i+1][j][k] + old[i-1][j][k]

)

) ;

Figure 4.27: 19-pt stencil used in unweighted Jacobi, new and old are 3-D data arrays

points on the edges and the points on the faces equates to one. That is, if wf , we are the

weights of the face and edge neighbours respectively and nf , ne denote the number of mesh

points on faces and edges in the 19-pt stencil, then

wfnf + wene =
1

24
× 12 +

1

12
× 6 = 1. (4.3)

The 19-pt stencil adds a layer of complexity to the communication pattern since the corner

points are also required from neighbouring processes. Thus, in addition to neighbour processes

which share the faces with the process under consideration, twelve more neighbours which share

the edges must also communicate with the current process. The term sharing faces or edges

means that the next-to-boundary data of one process appears as the ghost data of another

process. There are two methods [135] in which these edges and corner points can be exchanged

with neighbouring processes. The first method is to send them directly to neighbouring pro-

cesses. This requires explicitly calculating the MPI ranks of the neighbouring processes which

share edges and the corner points in the 19-pt stencil. The second method is to use wider

halos/ghost zones and sending them in two steps to the neighbouring processes. We use the

latter method in our implementation by first sending the halos to neighbouring processes in the

Y-direction, followed by a send in the Z-direction and then finally in the X-direction. It can

be noted that communication in a specific direction must complete before communication can

begin in the next direction. With three directions, namely, X, Y and Z, a total of six different

permutations are possible and any order out of these can be used for communicating the edges

and corner points.

4.7. GENERALITY - REVISITING ASSUMPTIONS 105

Figure 4.28 shows the execution times of various topologies on a single node of ARC2

(i.e. 16 cores) using a 19-pt stencil. Interestingly, when the problem size is 65 × 65 × 65, i.e.

≈ 16384 mesh points per core, the communication volume minimizing topology outperforms

the remaining topologies. With 16384 single precision floating point values, each Jacobi array

has a size of approximately 64 KB. Since the Working Set Size (WSS) contains two such arrays,

the total data which is accessed is approximately 128 KB - a size small enough to fit into even

the unified L2 level cache of 256 KB. Thus, at this size we do not expect a significant number

of cache-misses and the number of communicated elements becomes a very significant factor.

As the size of the domain is increased to 129 × 129 × 129, the cache-minimizing topologies

outperform the communication minimizing topology. The same pattern can be seen when the

domain size is further increased to 257 × 257 × 257 and 513 × 513 × 513. With P = 64 and

a problem of size 401 × 401 × 401, the best performing topology is again 8 × 8 × 1 and not

4× 4× 4. The former outperforms the latter by 33.17% (see Figure 4.29).

4.7 Generality - Revisiting Assumptions

Any model must provide an insight into a process. Our model makes this attempt by viewing

parallel domain partitioning for stencil-based codes in a different light as compared to the

orthodox approach of minimizing the communication volume. The purpose of this section

is to broadly discuss its generality, keeping in mind the assumptions used in its derivation.

The assumptions that cannot be relaxed represent limitations of our model whereas other

assumptions can be relaxed, making the applicability of our approach broader than Table 4.1

might initially suggest. The need for this discussion stems from Table 4.1 which divides the

assumptions into several logical classes.

4.7.1 PDE class

As discussed in Chapter 2, PDEs can be classified as Elliptic, Parabolic or Hyperbolic. Although

the work in this thesis concerns only Elliptic PDEs, our model can be extended to other types

of PDEs as well. This section discusses its extension to Parabolic and non-linear PDEs.

4.7.1.1 Parabolic PDEs

Our model is not specific to second order Elliptic PDEs and can be extended to second order

Parabolic PDEs when they are solved implicitly at each time step. As an example of the latter,

we consider the Parabolic equation of heat conduction shown in Equation (4.4)

∂u

∂t
= κ

∂2u

∂x2
, (4.4)

106 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

2 3 4 5

·10−4

4x2x2

2x4x2

8x2x1

8x1x2

4x4x1

2x8x1

1x8x2

16x1x1

1x16x1

2x2x4

4x1x4

1x4x4

2x1x8

1x2x8

1x1x16

Time/iteration (sec)

T
op

ol
og

y

N=65

(a) N = 65× 65× 65

1 1.5 2 2.5

·10−3

4x4x1

8x2x1

4x2x2

2x4x2

2x8x1

8x1x2

1x8x2

16x1x1

1x16x1

2x2x4

4x1x4

1x4x4

2x1x8

1x2x8

1x1x16

Time/iteration (sec)

T
op

ol
og

y

N=129

(b) N = 129× 129× 129

0.6 0.8 1 1.2 1.4 1.6 1.8

·10−2

4x4x1

8x2x1

2x8x1

2x4x2

8x1x2

4x2x2

1x8x2

16x1x1

1x16x1

2x2x4

4x1x4

1x4x4

2x1x8

1x2x8

1x1x16

Time/iteration (sec)

T
op

ol
og

y

N=257

(c) N = 257× 257× 257

0.04 0.06 0.08 0.1 0.12 0.14 0.16

4x4x1

2x8x1

8x2x1

1x16x1

16x1x1

2x4x2

4x2x2

1x8x2

8x1x2

2x2x4

4x1x4

1x4x4

1x2x8

2x1x8

1x1x16

Time/iteration (sec)

T
op

ol
og

y

N=513

(d) N = 513× 513× 513

Figure 4.28: Time per iteration (seconds) of topologies using a 19-pt stencil when P = 16 with
varying data sizes on a single node of ARC2, Intel compiler 17.0.1, Optimization level: -O2,
OpenMPI 1.6.5

4.7. GENERALITY - REVISITING ASSUMPTIONS 107

0.6 0.8 1 1.2 1.4 1.6 1.8

·10−2

8x8x1

8x4x2

4x8x2

16x4x1

4x16x1

16x2x2

2x16x2

8x2x4

16x1x4

4x4x4

2x8x4

1x16x4

2x2x16

4x1x16

1x4x16

4x2x8

2x4x8

8x1x8

1x8x8

Time/iteration (sec)

T
op

ol
og

y

N=401

Figure 4.29: Time per iteration of various topologies using a 19-pt stencil with P = 64 and
N = 401× 401× 401, Intel compiler 17.0.1, OpenMPI 1.6.5

where u gives the temperature in a thermally insulated rod at distance x from the origin after t

seconds and κ is a constant. It is assumed that the boundary conditions and initial conditions

are both known. Using FDM we can use a backward difference formula for approximating the

LHS and a central difference formula for the RHS (for the dimensionless form of Equation (4.4),

i.e. κ = 1 [22]). This is shown in Equation (4.5).

ut+1
i − uti

∆t
=
ut+1
i+1 − 2ut+1

i + ut+1
i−1

h2
(4.5)

In a single spatial dimension, ut+1
i is the unknown temperature at distance ih (i is the index

of a point and i = 0, 1, 2, ..., N , h is mesh spacing) at time t+ 1 which is determined explicitly

in terms of the temperatures at time t. If the dimensionless form of Equation (4.4) is assumed

to be satisfied at the midpoint of time t and t + 1 then we can approximate its RHS by the

arithmetic mean of the FDM approximation at time t and t+ 1 (Crank-Nicolson method) [22].

This gives rise to Equation (4.6):

ut+1
i − uti

∆t
=

1

2
(
uti+1 − 2uti + uti−1

h2
+
ut+1
i+1 − 2ut+1

i + ut+1
i−1

h2
). (4.6)

In both cases, the terms ut+1
i create a system of N simultaneous equations for N unknowns.

These can be solved using the same method as employed for a second order Elliptic PDE. Thus,

although for the purpose of simplicity of discussion and limiting the scope of the current work

we make use of Elliptic PDEs, the method is equally applicable to a standard implicit time

discretization of a second order Parabolic PDE.

108 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

4.7.1.2 Non-linear PDEs

In Chapter 2 we differentiated between linear and non-linear PDEs. The discretization chosen

for non-linear PDEs may result in a system of linear or non-linear algebraic equations [136]. A

system of non-linear algebraic equations can be solved using methods such as Picard iteration or

the well known Newton’s method. To briefly describe Newton’s method, consider a non-linear

scalar equation F (u) = 0. Expanding F (u) using Taylor’s series about an approximation v, we

obtain:

F (v + s) = F (v) + sF ′(v) +
s2

2
F ′′(v). (4.7)

Assuming u = v + s is a solution and neglecting the higher order terms in Equation (4.7), we

obtain 0 = F (v) + sF ′(v) and thus, s = − F (v)
F ′(v) . Thus, v can now be updated as v ← v− F (v)

F ′(v) ,

where the ← denotes an assignment. This method can be extended to a system of non-linear

equations denoted by F (u) = 0, where the parenthesis around the vector of unknowns u denotes

that the operator F is non-linear. Thus, in the vector form:

F (u) ≡


f1(u1, u2, . . . , un)

f2(u1, u2, . . . , un)

.

fn(u1, u2, . . . , un)

 =


0

0

0

0

 . (4.8)

Expanding around v yields F (v + s) = F (v) + J(v)s, where J(v) is the Jacobian matrix [63].

Assuming v + s is a solution then F (v + s) = 0 = F (v) + J(v)s and hence s = −[J(v)]−1F (v).

This can be written as a linear system J(v)s = F (v) for known v and unknown vector s.

Applying an iterative method to this system will again involve a stencil computation that can

be considered with our methodology. Thus, v can be updated as v ← v + s.

4.7.2 Boundaries

Our derivation and test problem assumed Dirichlet boundary conditions. These conditions

specify a given value of the unknown variable u at the boundary. Instead of directly specifying

the value of the unknown variable, its normal derivative in the direction of the outward normal

can be specified. Such boundary conditions are called Neumann boundary conditions [25]. In

Chapter 6 we experiment with and discuss the applicability of the model to a mixed Dirichlet-

Neumann boundary problem. For the Neumann boundary, the mesh vertices themselves are

treated as unknown values. A fictitious boundary is then introduced which is updated according

to a finite difference approximation of the derivative of u at the physical boundary. As an effect,

in addition to the update of planes, the Neumann boundary must also be updated. This can

introduce additional cache-misses. It should be noted that although a Neumann boundary is

updated, it is never communicated to any other process as it is a boundary. Since the data at

the Neumann boundary is not communicated, the packing/unpacking cache-misses cost is zero.

4.7. GENERALITY - REVISITING ASSUMPTIONS 109

s1

s2

Figure 4.30: Example of an Irregular cut on a square domain that divides the domain into two
sub-domains s1 and s2 which do not have identical shape

Thus, one can argue that the reduced cost of cache-misses eliminated due to unpacking/packing

of data is offset by the cost of updating a Neumann boundary. Thus, although the test problem

in this chapter assumes Dirichlet boundary conditions, the model in general is applicable to

other boundary conditions such as Neumann or Robin, the latter being a more general boundary

condition.

4.7.3 Structured Meshes and Decomposition

The limitation of requiring a structured mesh cannot be relaxed as there is no spatial local-

ity present in unstructured meshes (as far as storage of data elements are concerned in the

memory). The vertices of a regular structured mesh have a natural ordering. Our model is

based on the data access pattern that is inherent for contiguous data. Since data is contiguous,

the cache-line is able to fetch useful data from the memory as it is in the vicinity of the data

elements being updated/packed/unpacked. Even with structured meshes, we take into account

only cuts parallel to the Cartesian axes and not irregular cuts. In case of irregular cuts the

Cartesian topology cannot determine the sub-domain shape. Thus, the Cartesian topology in

a way is decoupled from the shape of the sub-domain when partitioning the domain using ir-

regular cuts. Figure 4.30 shows an example of a square domain partitioned using an irregular

cut. It can be seen that the cut is both parallel to the X and Y Cartesian axes. Thus, we do

not allow cuts or process decompositions which are parallel to more than one axis or are not

parallel to any axis. A structured square domain can be partitioned irregularly in several ways

and assigned to MPI processes. It is difficult to determine the neighbours of each process and

they need to be stored separately on each process. It is again difficult to define MPI data-types

for passing such irregular boundary data. Thus, the work in this thesis remains restricted to

structured 3-D domains and with straight cuts parallel to a single Cartesian axis. An alternate

way of expressing this is that we require the sub-domain shapes to be identical when applying

process decompositions parallel to the Cartesian axes.

Another assumption that we make in Table 4.1 is that the domain be cubic. This assump-

110 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

tion can be relaxed to a cuboid shaped domain without any modifications in the model. Since a

cuboid can be specified using a problem of size Nx×Ny ×Nz where Nx 6= Ny 6= Nz in general,

our cache-minimizing condition Px = Py implies that Nx−1
Dx

=
Ny−1
Dy

and further Pz = Nz − 1.

For reasons of simplicity and without loss of generality, we choose cubic domains to validate

our hypothesis.

To elaborate and justify the simplification to global domains that have all three dimen-

sions the same, we note that when Nx = Ny = Nz, the MPI DIMS CREATE() topology creates

sub-domain shapes which are cubic or as close to cubic as possible. Due to such sub-domain

shapes/sizes, the total communication volume exchanged between processes is minimized. This

produces the best partitioning case for the standard topology and serves as an optimal reference

point as our aim is to show that minimizing communication volume is not the sole criterion for

optimal domain partitioning. Thus, considering domains such that Nx = Ny = Nz guarantees

that we compare cache-minimizing topologies against the communication volume minimizing

partition created by the MDC topology. This is not true when Nx 6= Ny 6= Nz as the default

MDC may or may not produce sub-domain shapes that minimize the total communication

volume. The reason is that the MPI DIMS CREATE() function does not take into account the

various mesh dimensions. Thus, such non-cubic global domains may or may not produce the

best case (i.e. communication volume minimizing) for comparison. In such a case, to choose

an optimal reference topology, we would need to exhaustively generate the topology space and

select the topology that produces the closest possible Px, Py and Pz such that the total com-

munication volume exchanges is minimal. Thus, choosing Nx = Ny = Nz does not affect the

generality, simplifies the discussion, saves exhaustive generation of topology space and allows

the existing implementations of the function MPI DIMS CREATE() to return optimal volume min-

imizing domain partitions that serve as an optimal reference point for performance comparison

purposes.

4.7.4 Discretization

We used the Finite Difference Method (FDM) to discretize the domain but the logic can be

extended to the Finite Element Method (FEM) on structured grids. Like the FDM, FEM is

also a technique to obtain the approximate solution of a Boundary Value Problem (BVP) but

offers more flexibility as it is applicable to both unstructured and structured grids. The domain

is first divided into a set of finite elements. Examples of finite elements in 2-D are a triangle

and a quadrilateral. In 3-D they can be extended to tetrahedral and hexahedral elements. A

node is a point on the finite element at which the value of the dependent variable is determined.

The nodes that lie at the boundary of the element are called exterior nodes and can be used

to connect the finite element to other elements. The nodes in the interior of the finite element

cannot be used to connect it to other elements. The value of the dependent variable at the non-

nodal points is approximated by interpolation of the nodal values. Assuming that a rectangular

4.7. GENERALITY - REVISITING ASSUMPTIONS 111

new[i][j][k]=(1-alpha) * old[i][j][k] +

alpha *

(old[i-1][j][k]+old[i+1][j][k]+

old[i][j-1][k]+old[i][j+1][k]+

old[i][j][k-1]+old[i][j][k+1]);

Figure 4.31: Weighted Jacobi (ω-Jacobi) iteration kernel, alpha=constant, new and old are
3-D data arrays

finite element has only its four exterior nodes at the vertices and no internal nodes, the value

at non-nodal points can be approximated as in Equation (4.9):

u(x, y) = N1(x, y)u1 +N2(x, y)u2 +N3(x, y)u3 +N4(x, y)u4. (4.9)

In Equation (4.9), u1, u2, u3 and u4 represent the value of the dependent variable (field variable)

at the nodal points (four vertices on a rectangular finite element) and N1, N2, N3 and N4

represent the Interpolation/Shape/Blending functions [28]. The shape functions are generally

polynomials of independent variables and are predetermined. They must also satisfy certain

conditions at the nodal points. In 2-D, using bilinear elements on a structured grid would

result in a 9-pt stencil. This can be extended to a 3-D scheme where using a trilinear element

results in a 27-pt stencil. We use a 27-pt stencil in Chapter 6 and show that the results are

consistent with our predictions. Thus, we believe that our results can be extended to trilinear

Finite Element discretizations on structured grids.

4.7.5 Iterative Methods

We used the unweighted Jacobi method for our discussion and derivation of the model for min-

imizing cache-misses. Nevertheless, our model is not restricted only to the unweighted method

and can be applied to weighted Jacobi (ω-Jacobi), Gauss-Seidel (GS), Red-Black Gauss Seidel

(RBGS) method, or the Successive Over-relaxation (SOR) [22]. The extension to the weighted

Jacobi method is straightforward as the only extra term present in the weighted Jacobi iteration

when compared to the unweighted Jacobi iteration is the weighted mesh point itself (i.e. the

point at which the solution is being updated).

Figure 4.31 shows the ω-Jacobi update and contains an extra term (1-alpha)*old[i][j][k]

as compared to Figure 4.10. Since the mesh vertex represented by old[i][j][k] is contained

in the same cache-line as old[i][j][k-1] and old[i][j][k+1], the number of data streams

or the cache lines needed to contain the mesh vertices remain the same as in unweighted Jacobi

updates. In Chapter 6, we use the ω-Jacobi updates for all our experiments and show that the

results are in line with our inferences. The same can be applied to the Gauss-Seidel method

which uses the latest values of the solution for updating the solution at a mesh point. Figure

112 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

new[i][j][k]=

alpha *

(new[i-1][j][k]+new[i+1][j][k]+

new[i][j-1][k]+new[i][j+1][k]+

new[i][j][k-1]+new[i][j][k+1]);

Figure 4.32: Gauss-Seidel iteration kernel, alpha=constant, new is a 3-D data array

4.32 shows the Gauss-Seidel iteration. The Gauss-Seidel algorithm differs from the unweighted

Jacobi method in the sense that it uses a single array that contains the most recent values

of the approximate solution. Thus, updating the solution at a mesh point (i, j, k) requires

three updated solution values for points which are lexicographically before the point (i, j, k)

and three old values of the points which fall lexicographically after the current mesh point. The

big advantage of the Gauss-Seidel method is that it reduces the Working Set Size (WSS) and

hence the memory traffic. Using the same argument, since the points are exactly the same as

in unweighted Jacobi, the cache-miss equations remain the same.

The problem with the Gauss-Seidel method shown in Figure 4.32 is that the algorithm

cannot be parallelized efficiently in the sense that simultaneous update of mesh points cannot

be carried out by individual processes. This is because of the dependency on the updated values

of the solution in the current iteration. Thus, the RBGS method is used, which divides the

sub-domain into red and black points. The red points are dependent on the black points for

their update and vice versa. Thus, each sub-domain is swept twice, once for the update of the

red points and once for the update of black points. The communication/computation steps

consist of first sending the red (or black) cells, updating the black cells (or red cells), and then

sending the updated values of the black cells (or red cells) to update the red (or black) cells.

Though the packing and unpacking cache-misses in this case increase, the model still yields

the same equation structure as in Equation (4.1). Thus, the model can be extended to various

iterative methods. The SOR method is a variation of the GS method and the model can be

extended to it as well.

4.7.6 Stencil

We considered a 7-pt stencil for the derivation of our model but the same methodology can be

applied to 19-pt or a 27-pt stencil in 3-D as well. In addition to the points considered by the

7-pt stencil, the 19-pt stencil also considers the neighbours corresponding to the middle points

on the edges of the planes above and below the plane containing the point (i, j, k). Further, it

also incorporates the diagonal mesh points in the plane containing the point (i, j, k). It should

be noted that the addition of these points does not create a need for additional cache lines as

these points are already contained in the cache lines being used for the 7-pt stencil. A similar

4.7. GENERALITY - REVISITING ASSUMPTIONS 113

treatment can be applied to the 27-pt stencil which adds the corner points to the 19-pt stencil.

We use the 27-pt stencil in the Restriction and Interpolation operator used in the Multigrid

method [25] in Chapter 6 and further extend this discussion. The results in Chapter 6 again

show that the 27-pt stencil exhibits the same behaviour as predicted by our model. These three

stencils, namely, the 7-pt, 19-pt and the 27-pt stencil are the most commonly used stencils in

3-D structured stencil-based applications and our results may be applied to each of these.

4.7.7 Data Layout

Row-major (see Figure 4.8a) and Column-major (see Figure 4.8b) are the two types of data

layout which are used for multidimensional arrays by common programming languages. We

used the Row-major order to show the order of access in the Dependent Planes (DP) and the

Independent Compute (IC) to model the cache-misses. The same can be applied to the Column-

major order as well, with appropriate changes in the cache-miss equations. Thus, whereas in the

Row-major order we had assumed the Z-direction to be contiguous, the X-direction is assumed

to be contiguous in the Column-major order. This yields an equation similar to Equation

(4.1) except that the Column-major equation is symmetric with respect to Py and Pz but not

with respect to Px. Interchanging Px and Pz will yield the total cache-misses equation for the

Column-major form as shown in Equation (4.10):

S = 8PyPz +
1

2
PxPz +

1

2
PxPy = αPyPz + βPx(Py + Pz). (4.10)

We use the Column-major form when we use an Adaptive Mesh Refinement library called

BoxLib [19], written in Fortran90 and C++ in Chapter 5 to show and verify that the infer-

ences from the model still hold. We use only the Fortran90 version of the library and since

Fortran90 supports a Column-major ordering, our results and discussions regarding Adaptive

Mesh Refinement are Column-major oriented.

4.7.8 Data Type

The data type which we used throughout the current chapter is a Single Precision (SP) float

data type. To extend the derivation of the model to a Double Precision (DP) data type, it

is only the coefficients of the terms that need to change in Tables 4.3, 4.4, 4.2 and 4.6 that

show the parameters for the X-plane, Y-plane, Z-plane and the total cache-misses, respectively.

The sizeof(float) is 4 bytes whereas the sizeof(double) yields 8 bytes. Thus, 16 SP

float values or 8 double values can be contained in a single cache-line. The only change to

the parameters for Dependent Planes and the Independent Compute is that the denominator

changes to 8 instead of 16 when using a double data type to model cache-miss equations. We

use the double data type throughout Chapter 6 to show that the inferences from our model

remain the same.

114 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

4.7.9 Sub-domains and MPI processes

In the derivation of the model we assumed that the sub-domain shape is completely determined

by the domain size Nx × Ny × Nz and the Cartesian Topology Dx × Dy × Dz. This implies

that there is a single sub-domain per MPI process and that all sub-domains are homogeneous.

This also implies a perfect load-balance as all the sub-domains have the same shape. These

conditions help us to focus on the relative quality of the domain partitions without getting

into the complexities of load imbalance. We do not attempt to generalize/extend the model

to load-unbalanced scenarios although we do evaluate the quality of sub-domain shapes using

the BoxLib library in Chapter 5 while letting the in-built algorithms in BoxLib balance the

load. Having multiple sub-domains per MPI process complicates the communication pattern

and does not make sense unless there is a restriction on the size of the sub-domain. We do not

use any threads at the sub-domain levels as that gives rise to partitions at two levels: Domain

Partitions dictated by MPI and a sub-domain level partition using some library of threads.

Thus, for the purposes of simplicity and to limit the scope of the thesis, we do not attempt

to extend the model for multiple sub-domains per MPI process, load-unbalanced scenarios or

for a Hybrid program utilizing threads. A challenging natural extension to the work presented

here will be to extend the model when using some from of Hybrid programming, e.g. MPI and

OpenMP.

4.7.10 Overlapping Communication with Computation

One of our assumptions was that the computation is overlapped with communication. This

is a standard practice in MPI and the non-blocking calls help to achieve it. It is because of

overlapping that we separately update the Dependent Planes and the Independent Compute.

When we remove the overlap, we do not separately update the DP and IC but update the whole

sub-domain as a single update. Thus, the cache-misses which occur as part of the update of

Dependent Planes become zero but the cache-misses for the update of the sub-domain increase

to 5
16PxPyPz. The cache-misses for the packing and unpacking of planes remain the same and

hence Table 4.6 can be reworked to yield Table 4.12.

Using Table 4.12, the total cache-misses attributed to the Dependent Planes can be written

as Equation (4.11) below:

S = 2PxPy +
1

8
PxPz +

1

8
PyPz = αPxPx + βPz(Px + Py). (4.11)

Thus, although the magnitude of coefficients decrease, the form of the expression remains

equivalent to Equation (4.1). It is thus expected that one observes the same behaviour as

the case of an overlap. We experiment with such a case using BoxLib in Chapter 5. By

default BoxLib does not overlap communication with computation. Our results with single

level uniform grids in BoxLib (see Chapter 5) show consistency with the results in this chapter,

4.8. SUMMARY 115

Table 4.12: Non-overlapped cache-misses: Cache read/write misses for the X, Y and Z planes
when computation is not overlapped with communication

Plane Pack
read-
misses

Unpack
write-
misses

Update
read-
misses

Update
write-
misses

Total

Z-plane PxPy PxPy 0 0 2PxPy

X-plane
PyPz

16

PyPz
16

0 0
PyPz

8

Y-plane
PxPz

16

PxPz
16

0 0
PxPz

8

when communication is overlapped with computation.

4.8 Summary

The solution of a Partial Differential Equations (PDEs) can be numerically approximated after

discretizing the domain with a scheme such as the Finite Difference Method (FDM), Finite Ele-

ment Method (FEM) or the Finite Volume Method (FVM). After discretization, the numerical

solution is obtained either by using an iterative method or a direct method. Parallel computing

is frequently used to reduce the time to solution of the discretized PDE but introduces addi-

tional overheads in the form of local and global synchronization of processes. The first step

in parallel computing is Domain Partitioning or domain decomposition - a fundamental step

that divides the problem into sub-problems and maps the sub-problems to individual processes.

The way domain partitioning is done can have a significant impact on the performance of the

application. If the load is balanced, the orthodox approach to domain partitioning aims to

minimize only the communication volume.

In this chapter, we challenge this orthodox approach of domain partitioning by creating

a high level mathematical model that approximates cache-misses at the sub-domain level and

identifies optimal domain partitions. To create this model we use the finite difference discretiza-

tion of a linear, second order, constant coefficient Elliptic PDE and use the unweighted Jacobi

iterative method to update the solution at a mesh point. The application of the unweighted Ja-

cobi algorithm is similar to defining a Stencil - a fixed geometrical pattern that uses a weighted

average of the solution at neighbouring mesh points to update the solution at a mesh point. It

should be noted that a stencil accesses both contiguous and non-contiguous memory locations

while updating the solution. Our model is cache-aware in the sense that it takes into account

the cache-line size but the high level results are independent of the cache-line length, i.e. cache-

oblivious. The simultaneous presence of cache-awareness and cache-obliviousness motivates us

116 CHAPTER 4. CACHE-AWARE DOMAIN PARTITIONING

to coin the term “quasi-cache-aware” to describe the model which at its core is solely based on

the data-access pattern of stencil-codes.

The current chapter considers only scenarios where communication is overlapped with com-

putation and hence the sub-domain is logically divided into two parts: the Independent Com-

pute (IC) kernel that does not require data from other processes for updating the solution and

the Dependent Planes (DP) that require data from other processes to buffer data into the ghost

layers before the solution can be updated. More specifically, the model estimates the cache-

misses incurred in the packing/unpacking/update of the DP and the update of the IC kernel.

The cache-miss minimization condition from our model implies that the unit-stride dimension

having contiguous data should be kept uncut and the sub-domain dimensions in the other two

directions should be made equal for optimality. It is important to note that our model being

high level does not take into account the problem size and architectural details to decide the

domain partition and hence keeping the unit-stride dimension uncut does not always yield the

optimal solution. As a contrast, the orthodox approach to domain partitioning i.e. minimizing

the communication volume implies equalizing all sub-domain dimensions. Another limitation

of the model is that it is applicable only on structured grids with cuts parallel to the Cartesian

Axes. We also discuss the extension of the model to other PDE classes, Neumann boundaries,

FEM discretization on structured meshes, Red-Black Gauss Seidel method, a Column major

layout, data types and non-overlapping of communication with computation amongst others.

We substantiate our claims by comparing the performance of topologies obtained using our

model and the partitions obtained using the default MPI DIMS CREATE() function of MPI that

minimizes the communication volume. Our experiments demonstrate the efficacy of our model

by solving the Laplace equation on a structured 3-D cubic domain using a finite difference

discretization scheme employing a 7-pt stencil and the unweighted Jacobi iterative method. We

also show that for the same sized X/Y/Z DP, the Z-plane which is orthogonal to the unit-

stride dimension is the costliest plane to communicate in terms of cache-misses and time. The

Weak Scaling results show that optimizing cache-misses are a much more significant factor

than optimizing communication when the Working Set Size (WSS) does not fit into the cache-

hierarchy. The results for Strong Scaling indicate that as the WSS reduces in size with increasing

cores and starts fitting in the cache-hierarchy, cache-misses still play an important role in

determining the optimal topology. The prime inference that emerges from our model and the

experiments in this chapter is that the optimal partitions are “close to 2-D” rather than being

cubic or near-to-cubic for stencil-based codes in 3-D.

Chapter 5

Adaptive Mesh Refinement

Discretized forms of Partial Differential Equations (PDEs) on uniform, structured 3-D mesh-

es/grids, as mentioned previously, do not converge sufficiently fast enough for high resolution or

large problem domains. Nonetheless, they form an integral part of multilevel stencil codes such

as Adaptive Mesh Refinement (AMR) on structured grids, which is the subject of the current

chapter. Adaptive Mesh Refinement locally refines a grid in an area of interest and thus creates

a hierarchy of grid levels. We apply the cache-misses minimizing model that we developed in

the previous chapter for solving an Elliptic PDE to a 3-D block-structured AMR code developed

in a framework called BoxLib [4, 19]. This framework supports massively parallel multiphysics

problems using a Fortran90 and C++ code-base. Initially we attempt to replicate our results

for uniform single level meshes in BoxLib and then subsequently move onto the more complex

multilevel AMR grid hierarchy where the load is typically not well balanced between cores.

5.1 Introduction

When PDEs are discretized and solved using iterative methods on a mesh, the accuracy of the

solution is determined by the resolution of the mesh (i.e. mesh spacing). Specifically, to increase

the accuracy of the approximated solution, the mesh spacing must be reduced. This leads to

an increase in the number of degrees of freedom which naturally translates to an increase in

the compute time. Further, it may be the case that, for a particular mesh, the error is not

evenly distributed across the entire domain. Often, a few particular regions have a larger error

than others. AMR [87–89] is a technique where the compute resources are directed towards

obtaining an increased precision of the solution in particular regions of interest where the error

is high. The regions of interest are dependent on the application and can, for example, be a

spatial-region where the solution transitions rapidly. Thus, instead of approximating the solu-

tion on a globally refined grid, the solution can be obtained with less overall compute work by

refining in local critical regions.

117

118 CHAPTER 5. ADAPTIVE MESH REFINEMENT

BoxLib [92] is a software library which may be used for developing parallel block structured

AMR applications in two or three dimensions. BoxLib has been written with a combination

of C++ and Fortran90. In addition, a pure Fortran90 version also exists. For simplicity and

clarity, we only refer to the pure Fortran90 version of BoxLib in this thesis. However, alter-

native parallel AMR libraries do exist, p4est [137] and PARAMESH [1], for example. BoxLib

abstracts away the complexity of communication/synchronization among processes, permit-

ting the application developer to concentrate on complex multiscale multiphysics. Behind the

scenes, BoxLib manages the parallel communication routines and the creation/destruction of

grids. The basic abstraction BoxLib offers is the box - contiguous data representing the mesh

points on a discretized domain. The choice of the box-size and shape impacts the application

performance. Further, communication is not overlapped with computation in BoxLib. It offers

support for solving Elliptic, Parabolic and Hyperbolic equations with cell centered, face-centered

or vertex centered data.

In this chapter, we explore the impact of varying the box-sizes and shapes on application

performance - ranging from a single level grid to a complex hierarchy of grids in AMR. We simu-

late and evaluate an MPI Cartesian topology for single grids and test our hypothesis, developed

in the previous chapter, that minimization of communication is not the only governing factor

necessary for optimal decomposition of stencil-based codes. That is, cache-misses for commu-

nication and compute must be taken into account for obtaining optimal domain partitions. We

develop single grid and AMR codes in BoxLib using Fortran90 and demonstrate that, contrary

to the universally accepted strategy of minimizing communication volume to obtain optimal

performance, non-cubic boxes can outperform the former for almost all processor counts and

domain sizes on single grids. We further show that with a complex multilevel hierarchy in

BoxLib, the non-cubic blocks can outperform the cubic block performance at only a certain

core count and domain sizes. In the context of AMR codes, we discuss reasons for the partial

effectiveness of our hypothesis. The load imbalance criterion, non-overlap of communication

with computation, automatic distribution of boxes and metadata overhead emerge as the lead-

ing causes for the difficulties faced in verifying the hypothesis and establishing a consistent

conclusion in case of AMR. Further, the effort spent in adapting the code to support non-cubic

blocks for AMR in BoxLib is relatively high for the low performance gain obtained in specific

cases.

The chapter begins by introducing the main concepts, key terms and describes the aim of

the current work. After listing the contributions of the current work and motivation, we delve

deeper into the description of AMR, the BoxLib library, our implementation of a MPI Cartesian

topology, the AMR implementation specific to BoxLib and discuss results for both uniform and

AMR test problems, before concluding the chapter with a high level summary.

5.2. MOTIVATION AND CONTRIBUTION 119

5.2 Motivation and Contribution

Adaptive Mesh Refinement is an integral technique of computational science and is also one of

the key applications targeted for Exascale [20]. Researchers continuously search and explore

optimization avenues for AMR frameworks, such as BoxLib, to enhance application scalabil-

ity with the increasing complexity of problems and emergence of heterogeneous architectures.

BoxLib has been shown to be effective on tens of thousands of cores however, though BoxLib

is the basis of many mature applications, the literature [19, 99] assessing the performance of

BoxLib codes is extremely scarce. This creates the motivation to explore selected performance

aspects in BoxLib and test the expandability/applicability of our model from simple single grid

applications to algorithmically and computationally complex AMR-based applications using

BoxLib. With the plethora of AMR frameworks contributed by the scientific community, re-

inventing the wheel for such complex frameworks is inadvisable and hence the choice of using

BoxLib for evaluating our ideas. The following are the contributions of this chapter:

– Implementation of a new layout simulating the MPI Cartesian Process Topology in BoxLib

and its performance evaluation.

– Evaluate the hypothesis formulated in the previous chapter and [138], specifically for single

grid codes in BoxLib in the absence of non-overlap of communication and computation.

– Investigate the performance impact of utilizing non-cubic boxes in Adaptive Mesh Re-

finement techniques and demonstrating that a communication minimization scheme does

not always yield the optimal execution time.

– Implement, document and explain the changes to the library routines for seamlessly sup-

porting use of non-cubic boxes.

– Explore and highlight the sources of inefficiency in BoxLib to formulate possible recom-

mendations for its improvement. Though BoxLib stands deprecated now, its successor

AMReX [98] is based on the same design principles as BoxLib. Our suggestions thus,

hold for the latter framework as well.

– The current work can serve as a supplementary document to provide further insight into

the working of BoxLib codes in addition to the BoxLib User guide [92].

5.3 AMR

Partial Differential Equations are numerically approximated by first discretizing over a domain

and then solving them using direct or iterative methods on computer systems. The discretized

120 CHAPTER 5. ADAPTIVE MESH REFINEMENT

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

f
(x

)
tanh(5(x− 0.5))

(a) k = 5

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

f
(x

)

tanh(10(x− 0.5))

(b) k = 10

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

f
(x

)

tanh(20(x− 0.5))

(c) k = 20

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

x

f
(x

)

tanh(30(x− 0.5))

(d) k = 30

Figure 5.1: Plots for y = tanh(k(x− 0.5)) on a domain [0,1] with k = 5, 10, 20 and 30

domain is first represented using a single grid/mesh. For obtaining an increased accuracy in

particular regions, instead of refining the entire grid again, the region of interest is further re-

fined according to some criteria. This criterion could be based upon an estimate of the accuracy

of the approximated solution at specific points, the geometry of the domain or any other which

makes the solution “interesting” in that particular region. Thus, in Adaptive Mesh Refine-

ment [87–89], resources such as the compute power and memory are directed towards obtaining

an increased precision of the solution in particular regions.

As an example, consider Figure 5.1 which plots the graph y = tanh(k(x− 0.5)) for various

values of k on a domain x ∈ [0, 1]. It can be seen that as the value of k increases, the transition

of the solution between the extreme values of -1 and +1 occurs more rapidly. Thus, the region

of interest in this case could be defined as the value of y for some x = a < 1
2 and x = b > 1

2 .

To obtain a higher precision to the approximated solution outside this interval (a, b) would be

an inefficient use of compute resources and will also lead to an increase in the time to solution.

Thus, we can selectively choose to refine the grid only in this region.

We can, for example, choose to refine the geometric region between a = 0.2 < x < b = 0.8

5.3. AMR 121

Figure 5.2: Domain [0,1] × [0,1] divided into 4 blocks having 16 × 16 cells each, grid spacing
h = 1

32

in Figure 5.1a and a = 0.3 < x < b = 0.7 in Figure 5.1b. The common characteristic be-

tween these is that the solution transitions more sharply as compared to the remaining domain

in these regions and hence the need to obtain an increased precision. Instead of refining in

a region where the gradient is high, we can choose to refine in a region where the curvature

is high. For example, in Figure 5.1c, we can choose to refine in regions 0.38 < x < 0.42 and

0.57 < x < 0.63. Refining a subset of a grid also results in fewer degrees of freedom as compared

to when refining the entire grid. Figure 5.2 shows a domain [0,1] × [0,1] represented as a mesh

having 4 blocks with 16× 16 cells each. This can typically be represented as a Quadtree in 2-D

where each of the 4 blocks is represented as a child of the root and the root itself represents

the entire domain. Since we consider only block-structured AMR, the refinement of even a

single cell inside a block would result in the whole block being refined. Thus, it is possible that

the whole mesh is refined even with block-structured AMR. This situation is shown in Figure

5.3a, which illustrates level 1 of refinement (the unrefined mesh being at level 0). When the

refinement is applied again to the level 1 mesh, it produces the mesh shown in Figure 5.3b. It

can be noted that now the entire mesh is not refined but only the region of highest error is

refined. Subsequent refinements in the same geometrical area produce meshes shown in Figure

5.3c and Figure 5.3d. The cases in Figure 5.3b and 5.3c also form our test problems for AMR

when we simulate the Elliptic PDE ∇2u = f , and u = tanh(k(x−0.5)) represents its analytical

solution.

In this thesis we use the convention that grid level zero (l = 0) represents the coarsest mesh

i.e., the base mesh. The next refined level is represented by level one (l = 1) and so on. We

only consider properly nested regions i.e. refined grids at level l+1 are completely nested inside

grids at refinement level l. This condition must hold true except for at the domain boundaries.

BoxLib also requires this condition to be true. An example of this is also shown in Figure 5.4,

where the adaptively refined meshes result from refining a base mesh having 8× 8 cells in each

122 CHAPTER 5. ADAPTIVE MESH REFINEMENT

1

(a) Rfl = 1

1

(b) Rfl = 2

1

(c) Rfl = 3

1

(d) Rfl = 4

Figure 5.3: Refinement levels (Rfl) for obtaining increased precision for the PDE ∇2u = f
having solution u = tanh(k(x− 0.5)) by refining in the region 0.45 < x < 0.55

5.4. INTRODUCTION TO BOXLIB 123

1

(a) Rfl = 1

1

(b) Rfl = 2

1

(c) Rfl = 3

1

(d) Rfl = 4

1

(e) Rfl = 5

1

(f) Rfl = 6

Figure 5.4: Refinement levels (Rfl) for a mesh when the region 0.8 < x2 + y2 < 0.9 is refined
using blocks of size 8× 8

block around the region 0.8 < x2 + y2 < 0.9 (each block is refined if any of it overlaps this

region). This can be visualized as the space region between two concentric circles in a quadrant

of a unit square. As can be seen from Figure 5.4, grids Gl+1 at level l+ 1 are contained within

grids Gl at level l, where 0 ≤ l ≤ 5. The aforementioned condition can be mathematically

expressed as Gl+1 ⊂ Gl. The combination of the coarse mesh representing the domain and the

multiple levels of refinement may be referred to as a composite grid but the grids generally

exist separately and the grid at level l+ 1 can be visualized as lying on top of the grid at level

l. BoxLib, that we describe next, implements multiple levels of refinement in this way though

it does not follow a Quadtree/Octree approach i.e. there is no direct parent-child relationship

between grids at various levels.

5.4 Introduction to BoxLib

The most basic constituent element/abstraction in BoxLib is the Fab (FArray Box) which repre-

sents a set of contiguous data on a Box. A Box is a data structure for representing a rectangular

domain on an index space and does not contain any data. Internally, the data associated with

a Box is allocated using the new operator of C++ and can be mapped to, say, a 3-D shape

by using the specification in the Fab object. Thus, a grid (a rectangular region in an index

space) at any level is equivalent to a single Fab object [99]. The collection of all the Fab objects

(defined as a struct) at a particular level is referred to as the MultiFab. The grids at any level

are non-intersecting but the Fab objects may be defined on a Box larger than the grid if ghost

124 CHAPTER 5. ADAPTIVE MESH REFINEMENT

Figure 5.5: Relationship between a Box, Fab, BoxArray, layout and MultiFab. The labels 1
and N are the cardinality of the relationship named “Contains”.

points are included. It is the Fab objects that are distributed among cores and are acted upon

independently by the cores. In AMR, when the number of levels is greater than or equal to

three, BoxLib requires and ensures proper nesting i.e. level l+1 grids must be fully contained in

level l grids (except at the physical boundaries) [92]. This is because BoxLib has been written

in such a way that it requires a balance ratio of 2:1 i.e. the difference in the level of any two

adjacent cells cannot be more than one. The position of a grid or cell is with respect to a global

mesh index which covers the entire domain at that level. Thus, if a 32 × 32 grid covers the

entire domain at level 0, the index space range is (0, 0)− (31, 31). If this grid is refined using a

refinement ratio of 2 i.e. 64× 64 cells cover the entire domain at level 1, the index space range

is (0, 0) − (63, 63) at level 1. A BoxArray is an array of boxes, implying that it is an ordered

collection and not just a set. A layout is an enhanced BoxArray, which among many other

fields, contains the information as to which box is assigned to which core or MPI rank (using

the 1-D prc(:) array defined by BoxLib). A MultiFab contains all the Fabs at a particular

region of refinement. The relationship between a Box, Fab, BoxArray, layout and MultiFab is

depicted in the Entity Relationship diagram in Figure 5.5 where the relationship cardinality of

1:1 or 1:N is shown as the labels on the connecting edges.

BoxLib supports cell-centered and nodal data in single/multiple directions (see Figure 5.6).

5.5. BOX DISTRIBUTION 125

(a) Cell centered (b) Nodal X-dir (c) Nodal Y-dir

Figure 5.6: Cell centered and nodal data in BoxLib

Assuming that the X-axis runs from left to right and the Y-axis runs from bottom to top,

Figure 5.6b shows data that is nodal in the X-direction whereas Figure 5.6c depicts data that

is nodal in the Y-direction. Both these configurations can be obtained from cell-centered data

shown in Figure 5.6a by shifting the central circle representing data in the -ve X or Y direction,

respectively. Data in 2-D which is nodal both in the X and Y direction creates vertex centered

data. A similar analogy can be derived for 3-D data. We only use cell-centered data in our

experiments, however.

Initially a Box is created to represent the entire domain. This Box can be split up into

multiple small boxes to be given to various cores according to a data distribution algorithm.

The boxes are generally all squares in 2-D and cubes in 3-D. Two data distribution schemes,

namely the Knapsack, to equalize load distribution, and Morton Space Filling Curve (SFC), to

optimize communication, are provided as part of the software. A dynamic decision, depending

on the number and volume of grids is taken on whether to select the Knapsack or Morton Space

Filling Curve data distribution. Each process contains enough metadata to locate the index

space region of each box on every level so that it knows which processor core or MPI rank

contains which box. The disadvantage is that as the number of boxes grow, this metadata also

grows in size. Hybrid MPI i.e. a combination of MPI and (typically) OpenMP [50] is used to

obtain larger grids which naturally reduces the total metadata. BoxLib is the basis of several

mature applications such as MAESTRO [96] (low Mach number code), CASTRO [97] (com-

pressible Astrophysics) and LMC [139] (Combustion code) which scale well but are limited by

the high communication-intensive linear solves. The library can be downloaded for development

at [4].

5.5 Box Distribution

The default algorithm for distributing boxes in BoxLib is the Knapsack algorithm. This comes

into effect by setting def mapping = LA KNAPSACK in the source file layout.f90. The same

126 CHAPTER 5. ADAPTIVE MESH REFINEMENT

can also be achieved by invoking the layout set mapping() subroutine in the user created

main.f90 with call layout set mapping(LA KNAPSACK) as the first statement after initializ-

ing BoxLib. When the number of boxes is equal to the number of cores, the boxes are given

sequentially to ranks in the increasing order. If the number of boxes is less than the number

of cores, the boxes are again given to ranks in increasing order. The remaining cores in the

latter scenario do not perform any compute work but it may be pointed out that this leads to

an inefficient use of compute resources.

5.5.1 Fab Numbering and Process Numbering

As mentioned in Section 5.4, it is the Fab data structure which represents boxes and is dis-

tributed among processes. Assume that a 2-D domain is composed of Fabs as shown in Figure

5.7a, then the numbers given to the Fabs are shown inside circles. This scheme of numbering

is analogous to the column-major order for data layout in Fortran. If these six Fabs are to be

given to each process assuming a Cartesian MPI topology then the ranks of the processes to

which these boxes are given are shown in Figure 5.7b. The ranks given to processes follows the

row-major data layout such as in the C language.

1

2

3

4

5

6

(a) Fab numbering in 2-D

3

0

4

1

5

2

(b) MPI rank numbering in 2-D

Figure 5.7: Fabs and MPI Cartesian Topology Rank numbering in 2-D

The same concept applies in 3-D where Fabs (or boxes) are numbered from bottom to top,

then left to right and then again in the same order but starting from the next Z-plane (front

to back). It can be visualized as a series of 2-D plates arranged next to each other. The

process numbering in a 3-D MPI Cartesian Topology first spans the Z-dimension, then follows

a left to right direction and finally the downward direction. BoxLib internally maintains a one

dimensional integer array called the prc array which is a mapping from the box numbers to

the MPI process ranks. As an example, if there are 16 boxes, the prc array will have a length

of 16 and if prc(7) = 10 then the 7th box or Fab is given to process having the MPI rank 10.

Further, each process maintains a copy of this array, and there exists a separate prc array for

each level of AMR. In short, we can write prc(box number) = MPI Rank.

5.5.2 Implementing an MPI Cartesian Topology

The original definition of the subroutine layout set mapping() defined in layout.f90 contains

only an integer constant representing the box distribution scheme. To implement an MPI

5.5. BOX DISTRIBUTION 127

Cartesian Topology, we extend the parameter list in this subroutine to contain the X, Y, and

Z integer process dimensions, namely xdim, ydim and zdim, respectively, in 3-D and thus, its

new signature is shown in Listing 5.1.

1 subroutine layout set mapping(mapping,xdim,ydim,zdim)

Listing 5.1: Changed signature of the layout subroutine in layout.f90

1 call layout set mapping(LA DD,xdim,ydim,zdim)

Listing 5.2: Invoking layout subroutine with our integer constant LA DD representing MPI

Cartesian Domain Decomposition

Immediately after initializing BoxLib in the application, this subroutine can be called as

shown in Listing 5.2, where LA DD is the named constant representing our MPI Cartesian Topol-

ogy Domain Decomposition. The arguments xdim, ydim and zdim are passed to variables

named D x, D y, and D z (visible to all subroutines) in the file layout.f90. Further, we allo-

cate a rank array named rank array that defines which Box (or Fab) is given to which core.

We use this rank array to fill the BoxLib defined 1-D array prc which performs the mapping

of boxes to cores.

The subroutine for our domain decomposition is shown below (defined in the file layout.f90)

in Listing 5.3. This subroutine only handles situations in which the number of boxes (or Fabs)

is equal to the number of processes. First, an integer array rank array(D x,D y,D z) is allo-

cated which contains the MPI ranks of processes corresponding to boxes. The ranks are filled

in the same order as the coordinates used in MPI process decomposition. Next, the pre-defined

prc(1:nboxes) 1-D array is filled with the MPI rank for each box. Since boxes are numbered

in Fortran order, the order of loops is important.

1 subroutine layout dd(prc)

2 integer , intent(out), dimension(:) :: prc

3 integer :: i , j ,k,ctr

4

5 allocate (rank array(D x,D y,D z))

6 ctr=0

7 do i=1,D x

8 do j=1,D y

9 do k=1,D z

10 rank array(i , j ,k)=ctr

11 ctr=ctr + 1

12 end do

13 end do

14 end do

15

16 ! Fill prc (:) − start bottom left−> up−>next column −> next 2−D slab in Z−dimension

128 CHAPTER 5. ADAPTIVE MESH REFINEMENT

17 ! ctr is index into prc (:)

18

19 ctr=1

20 do k=1,D z

21 do j=1,D y

22 do i=D x,1,−1

23 prc(ctr)=rank array(i,j ,k)

24 ctr=ctr + 1

25 end do

26 end do

27 end do

28 deallocate(rank array)

29 end subroutine layout dd

Listing 5.3: 3-D MPI Cartesian Topology

As an example, if the Cartesian Topology is 2 × 3 × 4 for 24 processes and 24 boxes, then

box 1 is allocated to rank 12, box 2 is given to rank 0, box 3 is given to rank 16 and so on.

5.5.3 Multiple boxes on a single core

It is possible to have multiple boxes per-core i.e. each sub-domain per core consists of multiple

boxes. Assume a 2-D domain with n cells = 16 (a 16× 16 domain), 4 processes decomposed

as Dx ×Dy = 2× 2, and a box size of 4× 4. Thus, there are 16
4 ×

16
4 boxes in all (boxes in the

X, Y direction are denoted by Nx = 4 and Ny = 4, respectively). The number of boxes for each

process is given by Sx×Sy = Nx

Dx
× Ny

Dy
i.e. 4

2×
4
2 = 2×2 = 4. This is shown in Figure 5.8. Then

according to Fab or Box numbering in BoxLib, boxes 3, 4, 7, 8 are assigned to rank 0, boxes

11, 12, 15, 16 are assigned to rank 1, boxes 1, 2, 5, 6 are assigned to rank 2 and boxes 9, 10, 13,

14 are assigned to rank 3. This is in accordance with the MPI process numbering in 2-D (or

3-D when appropriate). Listing 5.4 shows how an MPI Cartesian topology can be implemented

when multiple boxes per sub-domain are allowed. The code is similar to Listing 5.3 except

for now the inner loops can account for multiple boxes being allocated to the same rank. We

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Figure 5.8: 16 Fabs (or boxes) spread on 4 processes arranged as 2 × 2. Each color shows a
single MPI process and numbers inside circles show the Fab number

5.5. BOX DISTRIBUTION 129

denote this scheme of decomposition by a constant LA DD MB (LAyout Domain Decomposition

M ultiple Boxes) in the file layout.f90. In Listing 5.4, N x, N y, N z denote the total boxes

and S x, S y, S z denote the boxes per core in the X, Y and Z direction, respectively. First,

the 3-D array Bx3d is filled with MPI ranks with each MPI rank being repeated multiple times

corresponding to the multiple boxes which are to be given to a particular MPI rank. This is

accomplished by the first loop-nest consisting of six do loops. The next step is to fill up the

prc array by traversing in the Fab numbering order and use ranks in the Bx3d array to assign

an MPI rank to each box.

1 subroutine layout dd mb(prc)

2

3 integer , intent(out), dimension(:) :: prc

4 integer :: i , j ,k,ctr ,S x,S y,S z

5 integer :: ii , jj ,kk

6

7 S x = N x/D x

8 S y = N y/D y

9 S z = N z/D z

10 allocate (Bx3d(N x,N y,N z))

11

12 ctr = 0 ! Denotes MPI rank right now, multiple boxes can have same MPI rank now

13

14 do i = 1, N x, S x

15 do j = 1, N y, S y

16 do k = 1, N z, S z

17 do ii = i, i + S x − 1

18 do jj = j, j + S y − 1

19 do kk = k, k + S z − 1

20 Bx3d(ii, jj ,kk) = ctr

21 end do

22 end do

23 end do

24 ctr = ctr + 1

25 end do

26 end do

27 end do

28

29 ctr = 1 ! Now this denotes the box or Fab number

30

31 do k = 1, N z

32 do j = 1, N y

33 do i = N x, 1, −1

34 prc(ctr) = Bx3d(i,j,k)

35 ctr = ctr + 1

36 end do

37 end do

38 end do

39

130 CHAPTER 5. ADAPTIVE MESH REFINEMENT

40 deallocate(Bx3d)

41

42 end subroutine layout dd mb

43

Listing 5.4: MPI Cartesian topology when multiple boxes are assigned to a core

5.5.4 Varying shape of box within sub-domain

When there is a single box per core, then the sub-domain is the same as that box. Here the

shape of the box (or sub-domain) is completely defined by the domain decomposition. When

there are multiple boxes per core, the domain decomposition only determines the sub-domain

shape (which in turn consists of multiple boxes). In the example in the previous subsection, the

sub-domains had boxes of size 4×4. But we could alternatively have boxes of size 2×8 or 8×2.

In BoxLib it is not possible to first divide the domain into a sub-domain and then divide the

sub-domain into boxes. We have to start by specifying the box-size initially. Thus, the process

can be thought of as specifying the box-size first, then specifying the domain decomposition

to create sub-domains of a specific box size, i.e. we need to follow a bottom-up approach as

opposed to a top-down approach. Figure 5.9a shows a 16 × 16 domain divided among 4 cores

arranged as 2× 2 and each sub-domain having 4 boxes each of size 4× 4. Figure 5.9b shows a

16× 16 domain divided among 4 cores arranged as 2× 2 and each sub-domain having 4 boxes

each but with a size of 2× 8.

Y

X

(a) Box size = 4× 4

Y

X

(b) Box size = 2× 8

Figure 5.9: Varying box sizes with Domain = 16 × 16, 4 processes (arranged as 2 × 2), and 4
boxes per sub-domain

5.6. AMR IN BOXLIB 131

5.6 AMR in BoxLib

BoxLib creates a MultiFab for each level as part of the AMR hierarchy. The boxes at each

level are distributed independently of the other levels while using the Knapsack/Morton order

algorithm. Further, the grid portions which are refined are not destroyed i.e. if a particular

part of level l grid is refined resulting in a grid at level l + 1, then this portion of grid at level

l is not destroyed. It provides routines to fill the ghost cells at the same level, to carry out

interpolation and restriction between levels, and several other functionalities. The interpolation

routine transfers data from the coarse grid to the fine grid whereas the restriction subroutine

transfers it in the opposite direction. BoxLib ensures proper nesting when the number of levels is

greater than or equal to three because two levels are always properly nested. When the number

of levels is 3, there exists a possibility that a level 3 cell might be an immediate neighbour of a

cell at level 1 and this violates the proper nesting condition. Thus, such a condition necessitates

further refinement of the grid which is at level 1. This (necessary) condition is sometimes also

called the 2:1 balance. We use the terminology active box to represent a box which has not

been refined. An inactive box is a box at level l which has been refined to create a grid at level

l+ 1. The composite grid then can then be visualized to be made of the union of all the active

boxes at all levels of refinement.

5.6.1 Note on various control parameters

There are several parameters in BoxLib that control the box-size and the refinement criteria.

The max grid size, which represents the box-size, must be ≥ 1, i.e. the minimum box-size

must be 2 × 2 in 2-D or 2 × 2 × 2 in 3-D. Further, it is not necessary that if we fix the box-

size, BoxLib will maintain the box-size while refining, as it is controlled by the factors that we

describe below. There are four factors which affect the refinement procedure. We describe their

role in a 2-D setting but the explanation can be extended to a 3-D domain.

1. amr buf width: Cells for refinement are tagged according to the tagging criteria in

tag boxes.f90 but additional cells can also be tagged according to this factor. This

factor sets the radius of the cells which are tagged in all directions i.e. in addition to the

cells marked for refinement, all directions N, E, W, S, NE, NW, SE, and SW will have

amr buf width additional cells, where N stands for North, S for South, E for East and W

for West.

2. cluster minwidth: Any newly created grid should at least have these number of cells

in each direction i.e. cluster minwidth × cluster minwidth cells in 2-D and a corre-

sponding number in 3-D in each direction. This may or may not hold true in the case of

non-cubic blocks but always holds true for cubic blocks. In BoxLib, this factor is defined

as a scalar and poses problems when dealing with non-cubic blocks. Ideally, this should

be defined as a vector to implement the possibility of having different numbers of cells in

132 CHAPTER 5. ADAPTIVE MESH REFINEMENT

each dimension/direction.

3. cluster blocking factor: The number of cells in each direction of a newly created grid

must be divisible by this factor.

4. cluster min eff: This is a number in the range [0, 1] and denotes the minimum fraction

of tagged cells needed in a block at which the entire block is refined. When the value

of this factor is one, only the cells marked for refinement according to the user-defined

criterion are refined. When cluster min eff = 0, even tagging one cell should/will tag

the entire block. As an example, if cluster min eff=0.25, then only one user-defined

tagged cell is needed to refine the entire block if the block size is 2× 2 in 2-D (since 25%

of 4 cells is a single cell). In 3-D, for a 2 × 2 × 2 block and cluster min eff=0.25, at

least two user-defined tagged cells would be needed to refine the entire block.

5.7 Test Problems

We now describe the 3-D test problems that we use for evaluating and testing the extension of

our model developed in the context of uniform single grids. Since there is no overlap of commu-

nication with computation in BoxLib, the cache-miss model due to separation of data into an

Independent Compute zone and the Dependent Planes zone is not directly applicable for codes

written in the BoxLib library. Thus, the major contributors of cache-misses is the contiguous

compute zone and the packing/unpacking of planes of data. In the following discussion we

therefore, do not use the terms Independent Compute or Dependent Planes.

To evaluate the efficacy of our model on single grids in BoxLib, we implement a cell-centered,

Finite Difference scheme to solve the Laplace equation ∇2u = 0 on a unit cube with Dirichlet

boundaries. The unweighted Jacobi method is used to update the solution at mesh points.

In the case of adaptively refined meshes, we solve an Elliptic PDE,

−∇2u = 2k tanh(k(x− 0.5))(k − k tanh(k(x− 0.5)) tanh(k(x− 0.5))),

having the solution u = tanh(k(x − 0.5)), using a cell-centered, Finite Difference scheme on a

unit cube with Dirichlet boundaries. The unweighted Jacobi iterative method is used to update

the solution. The parameter k is chosen as 10 for the test problem.

Since the Dirichlet boundaries in a cell-centered scheme do not coincide with the actual

boundaries, they are updated by equating the average of the ghost cell (ug) representing the

boundary and the next-to-boundary (u0) internal cell values to the actual boundary condition

(ua) at the domain boundary after each iteration. Thus,
ug+u0

2 = ua, implying ug = 2×ua−u0.

The refinement criterion for the first level is that the y-coordinate distance should lie between

5.8. AMR IMPLEMENTATION 133

0.35 and 0.65 i.e. 0.35 < y < 0.65. Whenever any cell is tagged for refinement in a block, the

entire block is refined (pure block-structured AMR). The refinement criterion for the second

level changes the values of the y-coordinate to 0.455 < y < 0.545.

5.8 AMR Implementation

The program can be divided into two logical parts: Set-up and Solve. Though the Set-up phase

appears to be more complex than the Solve phase, the latter is responsible for a very high

fraction of the total execution time and thus in experiments we concentrate on the execution

time of only the Solve phase. The discussion which follows considers only a 3-D implementation.

5.8.1 Set-up

After initializing BoxLib with boxlib initialize(), we need to specify the domain size

(n cell), the maximum number of AMR levels allowed (max levs) and the dimension of the

problem (dim). We impose that an entire box is refined even if there is a single tagged cell

in it (i.e. true block structured AMR behaviour). Further, there is no safe layer i.e. if a

block is refined, no cells outside the block are tagged for refinement. Thus, amr buf width

is set to 0. For a cubic block, the max grid size variable can be set such that the box has

equal cells in all directions and n cell is generally perfectly divisible by max grid size. If

the box-shape is non-cubic, then the sizes are specified in a 1-D array having three elements

namely, chunk dims(1:3). Thus, for a cubic block, chunk dims(1:3)=max grid size. The

cluster min eff indicates the minimum fraction of cells which must be refined so that the en-

tire block is refined. Thus, since the total cells in a box are chunk dims(1) * chunk dims(2)

* chunk dims(3), the cluster min eff is set to

1.0

chunk dims(1) ∗ chunk dims(2) ∗ chunk dims(3)
.

Setting the value of cluster min eff in such a way should have the same effect as tagging

all the cells in a block in the file tag boxes.f90. We stress that it is important to experi-

ment with both these factors and verify the result after plotting and visualizing the domain

with a visualization package such as VisIt [140]. The BoxLib user manual [92] defines the

cluster minwidth as the minimum number of cells in each direction of the newly formed grid.

This is defined as a scalar variable in BoxLib. Thus, the implementation and the User Guide

assumes that the user generally uses cubic-blocks to minimize communication and hence the

cluster minwidth remains the same in all directions. This is not the case with non-cubic

blocks and hence ideally the cluster minwidth should be a dim-dimensional vector depend-

ing on the dimensionality (dim) of the problem. Our correspondence with the developers of

BoxLib made it clear that they might make the cluster minwidth a vector in the future

implementations but it was not a priority as most users used cubic-block sizes. Thus, for

134 CHAPTER 5. ADAPTIVE MESH REFINEMENT

Table 5.1: Set-up Variables: Declared variables during Set-up phase

Variable Meaning

lo(3), hi(3) Low, High end of box
is periodic(3) Periodicity in each direction

prob lo(3), prob hi(3) Physical domain of problem
phys bc(dim,2) Physical boundary types
dx(max levs) Mesh spacing at each level

phi(max levs), oldphi(max levs) Jacobi update MultiFabs
rhs(max levs) RHS array

la array(max levs) Layout array at each level
error(max levs) Error MultiFab at each level

our experiments when chunk dims(1) 6= chunk dims(2) 6= chunk dims(3) and the value of

chunk dims(2) lies between chunk dims(1) and chunk dims(3), we set the cluster minwidth

to 2 * chunk dims(2). The result was always verified by observing the resulting box-shapes

with VisIt and the chosen non-cubic block shape was consistently observed at all levels of

refinement. The cluster blocking factor gives a value such that all newly formed grid di-

mensions in each direction are divisible by cluster blocking factor. This was set equal

to the cluster minwidth after experimentation. To summarize, it requires experimentation

and visualization to determine the appropriate values of the factors cluster min width and

cluster blocking factor to ensure that the non-cubic block size is maintained at all levels of

refinement.

The boundaries in our experiments are all Dirichlet boundaries and their values can be

set in the file bc.f90. Further, the Dirichlet boundary is represented by the integer 15 by

BoxLib. 3-D arrays (or MultiFabs) are allocated to represent various conditions such as the

low (minimum indices of coordinates) and high end (maximum index of coordinates) of a box,

its physical dimensions etc., as shown in Table 5.1. The physical domain of our test problem

(prob lo(3), prob hi(3)) ranges from 0 to 1 in each direction (unit cube). The mesh spacing

for the coarsest grid is calculated as prob hi(1)−prob lo(1)
n cell . Since we use a unit cube domain, the

direction we use to calculate the mesh spacing does not matter.

Built-in subroutines are called to set the cluster minwidth, cluster blocking factor

and the cluster min eff. The refinement ratio between levels is set to two by using the

amr ref ratio init(max levs,dim,2) subroutine call. Since AMR has multiple levels, in-

stead of building a single BoxArray object, a multilevel BoxArray object is built using the

subroutine call ml boxarray build n(mba,max levs,dim), where mba is of type ml boxarray

i.e. a Multilevel BoxArray. The refinement ratio must be passed to the mba variable using

ml boxarray set ref ratio(mba) and this uses the ratio set by the amr ref ratio init call

above. The default ratio used by BoxLib is two, i.e. the resolution/mesh-spacing of the grid at

5.8. AMR IMPLEMENTATION 135

level 2 is half that of the mesh at level 1. In general, the mesh spacing at level l+1 is half that of

at level l. The subroutine bc tower init() allocates the array defined in define bc tower.f90

but does not initialize it. In general, the bc tower datatype defines the boundary conditions

at each level. Thus, we must pass the max levs, dim and phys bc to the initializing subroutine.

The Multilevel BoxArray object mba has a field named pd which must point to the Box at a

particular level. Thus, we set mba%pd(1)=bx, where the variable bx represents the box spanning

the initial given domain. This is followed by setting the mba%pd(level) to appropriate boxes

that are obtained by refining the box at level 1. Another field in the mba object gives the size of

the boxes at a particular level and is given by mba%bas(level). Since initially the whole domain

is represented as a single box at level 1, we execute boxarray build bx(mba%bas(1),bx) to

internally set mba%bas(1)%bxs(1)=bx. The call boxarray maxsize(mba%bas(1),chunk dims)

breaks the box at level one into boxes having sizes chunk dims(1:3).

The first level layout can now be built using the layout build() subroutine by passing

the multilevel box array pointer, the problem domain and the periodicity of the problem. The

boundary conditions tower can be built next using the call to bc tower level build() and

passing into it the layout array which was built in the previous step. Next all the MultiFabs are

allocated memory and the initial solution/guess is initialized to zero. MultiFabs can be passed

into user-defined low level subroutines which are accessed as either 2-D or 3-D arrays, element

by element in the column major order.

When statically refining the grid, as in our test problem, the refinement criteria is tested to

see if the base level grids/ coarsest grids need to be refined. If this is the case then they are re-

fined and the new grids are built by invoking the make new grids() subroutine. This is carried

out along with allocating new MultiFabs for the newly created levels and addition of the bound-

ary conditions to that level using the bc tower level build() subroutine. The MultiFabs are

rebuilt again if the proper nesting conditions are violated and this nesting is forced using the

enforce proper nesting() subroutine. Since the number of levels now may be less than the

max levs specified earlier, the restricted layout is built using ml layout restricted build().

The Set-up phase is not trivial, especially when the proper nesting condition is violated which

results in re-building of data structures. This leads us to the next phase where the solution is

approximated at each iteration i.e. the Solve phase.

5.8.2 Solve

The convergence criterion of our test problem is based on the norm of the actual error i.e. l2

norm of the difference between the actual and the approximate solution for the mesh points

constituting all the active boxes. Initially, a separate MultiFab called the error MultiFab, i.e.

error(i) for level i, is initialized. It is done such that the active boxes on any level are initial-

136 CHAPTER 5. ADAPTIVE MESH REFINEMENT

ized with the value of the solution but the inactive boxes at any level are initialized to a value

of zero. An inactive box at any level is initialized as zero because this box has further been

refined and will not be updated at this level. It can be noted that changing the convergence

criterion to l2 norm of the residual should not change the performance results in any way. At

the beginning of the solve phase, the solution MultiFab (phi(i) and oldphi(i)) are initialized

to zero and the error at each process is calculated i.e. the square of the difference between

the actual and the approximate solution (error(i)-phi(i))2. The local sums are then added

using parallel reduce at the root processes, followed by taking the square root of this sum.

This gives us our initial l2 norm of the error (r0 global). After every update of the composite

grid, the norm of the error is calculated using the same procedure which constitutes the error

norm at the kth update (i.e. rk global). The update of the grid is carried out while the ratio

of the norm of the error at the kth step to the initial norm remains more than a specified user

tolerance i.e. rk global
r0 global > TOL.

5.8.2.1 Solution update

Each level is composed of a MultiFab, which in turn is composed of several Fabs (or boxes).

First, the coarsest grid is updated by updating one Fab at a time. If the Fab has been refined

further, it is an inactive Fab and is not updated. For updating, as mentioned, we use the

unweighted Jacobi iterative method with a 7-pt stencil. Thus, a new value of the solution

MultiFab (phi) is calculated using the old solution MultiFab (oldphi) and the RHS array

(rhs). Since the scheme is cell-centered, we update the Dirichlet boundaries as explained in

the beginning of this section i.e. the average of the fictitious ghost layer point representing the

boundary and the next-to-boundary point is equated with the value of the point at the actual

boundary. This procedure is carried out using the subroutine multifab physbc().

5.8.2.2 Interpolation

The fine grid cells at the next level need the values of the coarse grid cells at the coarse-fine grid

boundaries and thus, the updated values at the coarse grid points are interpolated using the

multifab fill ghost() subroutine - a built-in subroutine that abstracts away the details of

implementation from the user. This subroutine does not affect the physical boundaries at any

level but only the internal coarse-fine interface cells. This procedure is carried out for all levels

except for the finest grid. The interpolation represents a flow of data between two adjacent grid

levels i.e. from level l to level l + 1.

5.8.2.3 Restriction

Since the solution is more precise at the finer levels, the values are then restricted back to the

coarse grid cells for all levels using the routine ml cc restriction(). This is done after the

5.8. AMR IMPLEMENTATION 137

new norm of the error has been calculated. The restricted values being transferred from level

l + 1 to level l will map to the inactive box at level l but will be used by cells at level l which

have a common boundary with such cells in the inactive box. This procedure carries on till the

combined error norm ratio of the entire composite grid becomes less than the specified tolerance

as explained above. It is important to note that the individual convergence at each level is not

tested but only the convergence of the composite grid as a whole is tested.

5.8.2.4 Plotting the solution

The BoxLib library has a built-in routine write plotfile() for plotting any MultiFab. Thus,

we can plot the solution MultiFab by passing the multilevel layout array mla, the solution

MultiFab phi, the array containing the mesh spacing for all levels dx and the physical dimensions

of the problem (prob lo and prob hi) to this routine. The output data which is generated can

be read using the visualization software VisIt [140].

5.8.3 Changes to the library

Some subroutines in the BoxLib library do not work with non-cubic boxes and hence require a

change in the signature and bodies. We list below the changes we made to the library routines

for them to work seamlessly with non-cubic blocks. To give precedence to these subroutines

over the default routines, we make changes to them and copy the appropriate source files to the

current project working directory to make sure our versions of the routines are invoked. We

first give the file name to which the subroutine belongs and then describe the necessary change.

In addition to these changes, we discuss some precautions, compilation options and the method

to profiling BoxLib based applications using Scalasca [121] (see Chapter 3) in Appendix B.

– make new grids.f90: One of the parameters passed to the subroutine make new grids()

subroutine is the scalar max grid size that is used to specify a cubic block shape.

This must be changed to a vector i.e. max grid size(:) (in Fortran90). When the

boxarray maxsize() subroutine is called inside the body of this routine, the vector is di-

vided by the refinement ratio to give the correct box-size at the finer resolution. Similarly

vectors max grid size 2(:) and max grid size 3(:) must be passed to the subroutine

enforce proper nesting() instead of scalars. The original subroutine declares a local

integer variable by the name of max grid size 3 which must be changed to an allocatable

vector (dynamic array) using allocate(max grid size 3(mba%dim)), where mba denotes

the variable of type Multilevel BoxArray and dim represents the dimension field in this

structure.

– multifab physbc.f90: This file contains the boundary conditions for periodic, aperiodic

or exterior boundaries etc. The way most codes are written in BoxLib does not require the

updates of the physical boundaries using multifab physbc(). Since we use a cell-centered

138 CHAPTER 5. ADAPTIVE MESH REFINEMENT

scheme, we must update the Dirichlet boundary conditions and hence we incorporate the

condition
u0+ug

2 = ua for all the boundaries of a 3-D unit cube. Here u0, ug and ua are

the near-to-boundary data, ghost data lying outside the actual boundary and the actual

boundary condition, respectively, as explained in the introduction of Section 5.7. This

subroutine is called from several other subroutines and hence it becomes necessary to

change that subroutine call to point to our version of this subroutine. Further, since we

use the mesh resolution in setting the boundary conditions, an array containing equal

elements in 2-D or 3-D must be passed to this subroutine. This is necessary in the

discretized version of the problem because the loop indices by themselves do not translate

to the actual distance on the physical domain. Since our implementation is cell-centered,

we add a value of half to the loop index and then multiply it with the mesh resolution to

get the actual distance on the physical domain.

– fillpatch.f90: This file contains several subroutines which call the multifab physbc()

subroutine. Since we modify the latter routine for non-cubic blocks and carry out Dirichlet

boundary updates for cell-centered implementation, we need to change the invocations

of this subroutine in this particular file. The first change comes in the signature of

the subroutine fillpatch() which must now also contain the mesh spacing for the fine

(dx fine) and coarse (dx coarse) grid and also the lower (prob lo in) coordinates of

the problem domain. The fine and coarse mesh spacings are passed as a scalar and the

lower coordinates of the problem domain is passed as a vector having three components

(as we implement 3-D problems). The scalars must be copied to vectors having three

components (which are equal), as the call to our version of multifab physbc() requires

vectors. Depending on the call to the fine or coarse grid, the appropriate vectors are

passed into the multifab physbc() subroutine.

– multifab fill ghost cells.f90: The routine multifab fill ghost cells() contained

in this file calls the subroutine fillpatch() in fillpatch.f90. Thus, we need to change

the signature of multifab fill ghost cells() to address this change. We again pass the

fine grid mesh spacing, coarse grid mesh spacing and the lower coordinates of the problem

domain to multifab fill ghost cells(), which are then passed to the fillpatch()

subroutine and also utilized in calls to multifab physbc() subroutine. As mentioned

above we rename the subroutines by adding an appropriate prefix, rename the files and

copy them to the working directory.

5.9 Experimental Results

We now discuss the experimental results for the test problems that we described for single

uniform grids and AMR. It should be noted that for comparison of various topologies the

application was executed on the same set of cores to eliminate process placement issues. Along

5.9. EXPERIMENTAL RESULTS 139

(a) Topology 1× 4× 6, cells = 24× 6× 4 (b) Topology 4× 3× 2, cells = 6× 8× 12

Figure 5.10: Sub-domain shapes/sizes resulting from two of several MPI Cartesian Topologies
on a 243 domain possible using Listing 5.3

with comparing the execution timings, we extract and compare the cache-misses for both single

grids and AMR. Since for AMR there are many sub-routines that are called by BoxLib, we only

present the aggregate sum of cache-misses in the top-level subroutine. The test platform for all

the tests is the ARC3 facility described previously (see Chapter 3).

5.9.1 Single grid timings

For the single grid problem, we set the Dirichlet boundary conditions to one and update the

ghost cells representing the boundaries after every iteration. Since we use a single sub-domain

per MPI rank, the domain decomposition completely determines the shape of the sub-domain.

As an example, if a 243 domain is decomposed as a 1× 4× 6 topology, it results in 24 cells in

the X-direction, 6 cells in the Y-direction and 4 cells in the Z-direction, respectively. This is

achieved by using the layout scheme shown in Listing 5.3. As an example Figure 5.10a shows

the box-shapes resulting from a Dx × Dy × Dz = 1 × 4 × 6 domain decomposition on a 243

domain and 24 cores (single node). This results in Px × Py × Pz = 24 × 6 × 4 cells per sub-

domain. The mpi dims create() topology of 4× 3× 2 for 24 cores produces a sub-domain of

shape 6× 8× 12 on a 243 domain as shown in Figure 5.10b. The evolution of the solution for a

3-D domain is shown in Figure 5.11 for iteration counts 0 (initial guess in Figure 5.11a) and 800

(Figure 5.11b) for a uniform mesh having 243 cells. The numerical solution advances from an

initial guess of zero towards the exact solution i.e. approaches unity everywhere on the domain

(as the Dirichlet boundary conditions are set to one).

Table 5.2 compares the execution times per iteration of the topology returned by the default

mpi dims create() (henceforth referred to as MDC) subroutine of MPI and the best topology

for 24 to 1536 MPI processes. It is also appropriate to compare the best timings with the

140 CHAPTER 5. ADAPTIVE MESH REFINEMENT

(a) Iterations=0 (b) Iterations=800

Figure 5.11: 2-D slices of a 3-D domain having 243 cells at x = 0.5, y = 0.5 and z = 0.5 showing
evolution of the numerical solution for ∇2u = 0 with Dirichlet boundaries set to 1 at iteration
count 0 and 800

reverse of mpi dims create() (referred to as Rev. MDC) as the code was written in Fortran

where the first dimension is the contiguous dimension. For 24 cores (single node), it can be seen

that the Rev. MDC outperforms the MDC for all the domain sizes except for 7683. Further,

in no case is MDC the best topology. The number of topologies performing better than the

MDC or Rev. MDC is significant for most of the domain sizes and core counts. In BoxLib, by

default, communication is not overlapped with computation, yet the communication minimiz-

ing topology is outperformed by several topologies. For example, for 96 cores and 3.62 billion

degrees of freedom, there are 28 topologies which outperform the MDC topology, the corre-

sponding figure being 23 topologies for 48 cores. Although the best topology (Dx ×Dy ×Dz)

is 6×16×1 for 96 cores, the value of Dy = 16 is much higher than the Dy for MDC (which is 4).

Let Dbx, Dby, Dbz denote the MPI Cartesian topology process dimensions of the best topolo-

gies and Dsx, Dsy, Dsz that of the mpi dims create() topology. It can be seen from Table

5.2 that DbxDby ≥ DsxDsy holds with only two exceptions (Cores=24, Domain=3843 and

Cores=48, Domain=3843). This implies that the three planes of the compute kernel to be

brought into the cache for updating a single plane of data for the best topologies are smaller in

size than the ones which are brought into the cache with the communication minimizing topol-

ogy (MDC). For all the best performing topologies, Dby ≥ Dbz - a criterion that is in agreement

with our discussion on optimal sub-domain dimensions in Chapter 4 and [141,142]. We also ex-

pand on these relations in Chapter 6. Further, for non-cubic sub-domains DsxDsy > DrxDry,

where Drx and Dry denote the Cartesian topology dimensions of the reverse of MDC (or

5.9. EXPERIMENTAL RESULTS 141

483 963 1923 3843 7683 15363 30723
0

10

20

30

40

Domain Size

F
re

q
u
en

cy

24 cores 48 cores

96 cores 192 cores

384 cores 768 cores

1536 cores

(a) default mpi dims create()

483 963 1923 3843 7683 15363 30723
0

10

20

30

40

Domain Size

F
re

q
u
en

cy

24 cores 48 cores

96 cores 192 cores

384 cores 768 cores

1536 cores

(b) Rev. mpi dims create()

Figure 5.12: Number of topologies outperforming the default mpi dims create() and Rev.
mpi dims create() topology at various domain sizes and number of cores

Rev. MDC). For example, if MDC = 4 × 3 × 2 then Rev. MDC = 2 × 3 × 4 and thus

DsxDsy = 4× 3 > DrxDry = 2× 3.

At all processor cores and domain sizes, we were able to find topologies which performed

better than the mpi dims create() and the Rev. MDC topology. Figures 5.12a and 5.12b show

the number of topologies which outperformed the MDC and Rev. MDC topology at various

domain sizes and cores. Interestingly, even at a domain size of 30723 or 28 billion degrees of

freedom, there existed 21 topologies which outperformed the MDC and 43 topologies which per-

formed better than the Rev. MDC. The percentage gains of the best topologies over the MDC

and Rev. MDC are shown in Figures 5.13a, 5.13b, 5.13c and 5.13d for 24, 48, 96 and 192 cores,

respectively. The percentage gain of the best topology over MDC ranged from approximately

1− 70% and 1− 66% for Rev. MDC at these core counts, respectively. The percentage gain of

the best topology over the MDC for 384 cores at a domain of size 7683 was 19.8% and 9.67% at a

domain size of 15363. For 768 cores the gain was 11.30% while being 11.11% for a core count of

1536. This showed that the gains need not decrease with an increasing domain size or core count.

5.9.2 Single grid cache-misses

We use Scalasca to extract the Performance API (PAPI) metrics, PAPI L1 DCM and PAPI L2 DCM

i.e. the L1 data cache-misses and total L2 cache misses for various topologies on a single node

(24 cores) which is shown in Listing 5.5 and forms part of the submission shell script to the

Son of Grid Engine (SGE). The cache-misses are independent of the number of cores and only

depend on the sub-domain size per core. It can be noted that while communicating, there are

142 CHAPTER 5. ADAPTIVE MESH REFINEMENT

Table 5.2: Uniform Grid: mpi dims create() (MDC) topology execution times per iteration
as compared to best topology times and reverse MDC. #MDC and #Rev. MDC gives the
number of topologies performing better than MDC and Rev. MDC, respectively. No Loop
blocking/Tiling was used, Intel compiler 17.0.1, OpenMPI 2.0.2

Domain Best MDC (sec) Best (sec) Rev. MDC (sec) #MDC #Rev. MDC

Cores=24 MDC=4x3x2 Rev. MDC=2x3x4

483 1x12x2 3.98E-5 2.63E-5 3.25E-5 18 7
963 1x12x2 1.50E-4 9.14E-5 1.08E-4 17 6
1923 2x6x2 1.95E-3 1.78E-3 1.80E-3 11 1
3843 1x6x4 1.54E-2 1.38E-2 1.39E-2 14 2
7683 3x8x1 1.18E-1 1.08E-1 1.45E-1 8 17

Cores=48 MDC=4x4x3 Rev. MDC=3x4x4

963 1x24x2 1.70E-4 8.77E-5 2.09E-4 13 26
1923 2x12x2 7.07E-4 6.99E-4 8.46E-4 1 12
3843 1x8x6 7.69E-3 7.22E-3 7.85E-3 7 11
7683 2x12x2 5.73E-2 5.41E-2 6.00E-2 6 13
15363 3x16x1 6.25E-1 4.51E-1 6.25E-1 23 23

Cores=96 MDC=6x4x4 Rev. MDC=4x4x6

1923 2x24x2 9.10E-4 2.80E-4 8.10E-4 42 28
3843 4x6x4 4.98E-3 4.05E-3 4.86E-3 22 18
7683 2x12x4 3.20E-2 2.78E-2 3.19E-2 18 17
15363 6x16x1 3.06E-1 2.23E-1 3.25E-1 28 43

Cores=192 MDC=8x6x4 Rev. MDC=4x6x8

3843 4x12x4 2.96E-3 2.42E-3 2.68E-3 12 8
7683 4x12x4 1.77E-2 1.49E-2 1.59E-2 23 2
15363 4x16x3 1.34E-1 1.14E-1 1.47E-1 25 34

Cores=384 MDC=8x8x6 Rev. MDC=6x8x8

7683 4x24x4 1.01E-2 8.1E-3 1.01E-2 15 15
15363 4x24x4 6.20E-2 5.60E-2 6.31E-2 12 12

Cores=768 MDC=12x8x8 Rev. MDC=8x8x12

15363 4x48x4 3.45E-2 3.06E-2 3.51E-2 17 17

Cores=1536 MDC=16x12x8 Rev. MDC=8x12x16

30723 8x32x6 1.35E-1 1.20E-1 1.61E-1 21 43

5.9. EXPERIMENTAL RESULTS 143

483 963 1923 3843 7683

0

10

20

30

40

Domain Size

P
er

ce
n
ta

ge
G

ai
n

(%
)

MDC
Rev. MDC

(a) 24 cores

963 1923 3843 7683 15363

0

20

40

60

Domain Size

P
er

ce
n
ta

ge
G

a
in

(%
)

MDC
Rev. MDC

(b) 48 cores

1923 3843 7683 15363

20

40

60

Domain Size

P
er

ce
n
ta

ge
G

ai
n

(%
)

MDC
Rev. MDC

(c) 96 cores

3843 7683 15363
5

10

15

20

Domain Size

P
er

ce
n
ta

ge
G

ai
n

(%
)

MDC
Rev. MDC

(d) 192 cores

Figure 5.13: Percentage gain of the best topology over MDC and Rev. MDC for varying domain
sizes and cores

144 CHAPTER 5. ADAPTIVE MESH REFINEMENT

0 1 2 3

·108

4x3x2

2x3x4

1x8x3

1x6x4

1x4x6

1x3x8

1x2x12

1x12x2

Cache Misses

T
o
p

o
lo

g
y

C-L1

Comm-L1

Bndry-L1

(a) L1 cache-misses

0 2 4 6 8

·107

4x3x2

2x3x4

1x8x3

1x6x4

1x4x6

1x3x8

1x2x12

1x12x2

Cache Misses

T
o
p

o
lo

gy

C-L2

Comm-L2

Bndry-L2

(b) L2 cache-misses

Figure 5.14: L1d and L2d cache-misses for domain=483 for the Compute kernel (C), Commu-
nication (Comm) and Boundary update (Bndry)

0 2 4 6

·108

4x3x2

2x3x4

1x8x3

1x6x4

1x4x6

1x3x8

1x2x12

1x12x2

Cache Misses

T
op

ol
og

y

C-L1

Comm-L1

Bndry-L1

(a) L1 cache-misses

0 1 2 3

·108

4x3x2

2x3x4

1x8x3

1x6x4

1x4x6

1x3x8

1x2x12

1x12x2

Cache Misses

T
op

ol
o
gy

C-L2

Comm-L2

Bndry-L2

(b) L2 cache-misses

Figure 5.15: L1d and L2d cache-misses for domain=963 for the Compute kernel (C), Commu-
nication (Comm) and Boundary update (Bndry)

no cache misses while the data is actually being communicated but only when the data is being

packed/unpacked or being copied to the MPI buffers from the application buffers. Though the

L2 cache is a Unified cache, there are separate counters available for the data and instruction

cache-misses. Such separate options are not available for the L3 cache which is Unified, Inclu-

sive and shared among multiple cores of the socket. All these options can be checked using

papi avail at the command line.

1 export SCOREP METRIC PAPI=PAPI L1 DCM,PAPI L2 DCM

Listing 5.5: PAPI metrics for Cache Misses using Scalasca

Figures 5.14a, 5.14b show the L1 and L2 cache-misses for a domain of size 483. At such a

domain size, the number of sub-domain cells per core is Px × Py × Pz = 483

24 = 4608, excluding

5.9. EXPERIMENTAL RESULTS 145

0 0.5 1 1.5 2 2.5 3

·1010

4x3x2

2x3x4

1x6x4

1x8x3

1x4x6

1x3x8

1x12x2

1x2x12

Cache Misses

T
op

ol
o
gy

C-L1 Comm-L1 Bndry-L1

(a) L1 cache-misses

0 1 2 3 4

·1010

4x3x2

2x3x4

1x6x4

1x8x3

1x4x6

1x3x8

1x12x2

1x2x12

Cache Misses

T
o
p

ol
og

y

C-L2 Comm-L2 Bndry-L2

(b) L2 cache-misses

Figure 5.16: L1d and L2d cache-misses for domain=3843 for the Compute kernel (C), Commu-
nication (Comm) and Boundary update (Bndry)

the ghost cells. This equates to a single array of size 4608×8
1024 = 36 KB: a size which slightly

exceeds the L1d cache of 32 KB but is less than the combined size of L1d and L2 cache. Even

with 2 arrays (as is the case with unweighted Jacobi for solving Laplace Equation), the size of

72 KB (without ghost cells) is small enough to fit in the L1d and L2 cache. But even at this

“in-cache” data-size, the cache-misses for communication in the 4 × 3 × 2 topology are higher

than that of a topology such as 1 × 4 × 6 or 1 × 6 × 4. This is because the X-plane, i.e. the

plane which is perpendicular to the unit-stride dimension (as the language of implementation is

Fortran), is 4 times larger in 4×3×2 as compared to 1×4×6. Thus, it is the packing/unpack-

ing cache-misses which contribute to a significant fraction of the total execution time. Further,

at this domain size the communication L1 cache-misses are approximately 3 times that of the

compute misses for topologies other than the MDC (4×3×2), the factor being 7 for the latter.

For the L2 cache-misses, this ratio is in the range of 3 to 4.1. As the compute domain begins

to increase in size, the compute cache-misses start exceeding the communication cache-misses

as shown in Figure 5.15a and Figure 5.15b. Interestingly, the communication cache-misses for

the MDC for a domain of 963 still exceed the compute cache-misses due to the large X-planes,

whose packing/unpacking contribute maximally to the total execution time. The ratio of com-

municate to compute cache-misses, i.e. CommC , for the topology 4×3×2 in a domain of size 963

is approximately 2.75 for L1 and 1.42 for L2, whereas it is less than one for the other topologies

(except the case of L1 for 1× 12× 2).

As the size of the domain increases to 3843, the compute cache-misses become significantly

greater than the communication cache-misses, as shown in Figure 5.16a and 5.16b. Both these

figures show that the compute cache-misses for most topologies are almost equal, as is expected,

because of the continuous compute sub-domain per core (i.e. the computation is not divided into

the Independent Compute and Dependent Planes). Although the communication cache-misses

decrease in magnitude as compared to the compute misses, the relative difference between

146 CHAPTER 5. ADAPTIVE MESH REFINEMENT

(a) Initial solution (b) Converged solution

Figure 5.17: Initial guess of zero to the final solution for 2 levels of a 163 domain for our AMR
test problem

communication cache-misses almost remains the same, i.e. they are higher for the MDC as

compared to other topologies which are shown in Figures 5.16a and 5.16b. This shows that our

abstract model for determining the optimal topology based on cache-misses still holds due to the

packing/unpacking cost of cache-misses in communication despite no overlap of computation

with communication.

5.9.3 AMR timings

We first evaluate the behaviour of non-cubic blocks on domains of sizes 5123 and 2563 for one

level of Adaptive Mesh Refinement i.e. the coarsest grid is refined only once. For each of these

cases, the total number of boxes at level 1 is 64, out of which 32 are refined (active at level 2)

and 32 are not refined (active at level 1). At level 2, there are a total of 256 boxes (as each of the

32 inactive blocks have been divided into 8 boxes and 32×8 = 256). Thus, a total of 288 active

boxes are updated for the solution. Considering a three level problem (i.e. two levels of AMR),

128 boxes out of a total of 256 boxes at level 2 are refined again to give 128× 8 = 1024 active

boxes at level three. Thus, in a three level problem, we have a total of 32 + 128 + 1024 = 1184

active boxes in all which must be updated at each iteration of the solver. While varying the

box shape, the volume of each box is kept constant. Figure 5.17 shows the initial guess of

zero (Figure 5.17a) and the final solution (Figure 5.17b) for our AMR test problem having two

levels, with the base grid/coarsest level having 16× 16× 16 cells.

Figure 5.18a shows the performance of various box-shapes for a domain of size 5123 and a

two level problem. It can be seen that a non-cubic box shape of 256× 128× 64 outperforms or

matches the performance of the cubic block of 128× 128× 128 from 24 to 192 cores. Since in

5.9. EXPERIMENTAL RESULTS 147

Table 5.3: AMR: Gain percentage for the best performing topology over MDC for various core
counts, MDC=Solve time/iteration in seconds, Best=Best solve time/iteration

Domain=2563, 2-levs, OpenMPI 2.0.2

Cores 24 48 96 192 288 320

MDC (sec) 1.10E-01 7.83E-02 5.29E-02 3.86E-02 3.60E-02 3.43E-02
Best (sec) 1.06E-01 7.41E-02 4.44E-02 3.51E-02 3.51E-02 3.43E-02
Gain (%) 3.10 5.36 16.07 9.07 2.50 0.00

Domain=5123, 2-levs, OpenMPI 2.0.2

MDC (sec) 7.80E-01 5.10E-01 3.30E-01 2.20E-01 1.90E-01 2.00E-01
Best (sec) 7.50E-01 5.10E-01 2.90E-01 1.90E-01 1.90E-01 2.00E-01
Gain (%) 3.85 0.00 12.12 13.63 0.00 0.00

Domain=5123, 3-levs, OpenMPI 2.0.2

Cores 48 96 192 384 768 1176

MDC (sec) 1.73E+00 9.99E-01 7.38E-01 5.53E-01 4.28E-01 4.72E-01
Best (sec) 1.70E+00 9.99E-01 6.73E-01 5.28E-01 4.25E-01 4.36E-01
Gain (%) 1.99 0.00 8.75 4.61 0.58 7.53

Domain=5123, 3-levs, Intel MPI 17.1.132

MDC (sec) 1.73E+00 9.76E-01 5.90E-01 5.24E-01 3.40E-01 3.91E-01
Best (sec) 1.71E+00 9.76E-01 5.90E-01 4.70E-01 3.34E-01 3.91E-01
Gain (%) 1.19 0.00 0.00 10.31 1.76 0.00

0 0.2 0.4 0.6 0.8 1 1.2 1.4

128x128x128

256x128x64

64x128x256

512x128x32

32x128x512

Run-time (seconds)

B
ox

-S
iz

e

24 cores

48 cores

96 cores

192 cores

288 cores

320 cores

(a) Domain 5123

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3

16x64x256

256x64x16

32x64x128

128x64x32

64x64x64

Run-time (seconds)

B
ox

-S
iz

e

24 cores

48 cores

96 cores

192 cores

288 cores

320 cores

(b) Domain 2563

Figure 5.18: Strong Scaling (time/iteration) two AMR levels problem with boxes of varying
shapes but equal volume using Intel compilers 17.0.1 and OpenMPI 2.0.2, Optimization flags:
-O3 -xHost -ip -align array64byte

148 CHAPTER 5. ADAPTIVE MESH REFINEMENT

0 0.5 1 1.5 2 2.5 3

128x128x128

256x128x64

64x128x256

512x128x32

32x128x512

Run-time (seconds)

B
ox

-S
iz

e

48 cores

96 cores

192 cores

384 cores

768 cores

1176 cores

(a) Domain 5123 with Intel MPI

0 0.5 1 1.5 2 2.5 3

128x128x128

256x128x64

64x128x256

512x128x32

32x128x512

Run-time (seconds)

B
ox

-S
iz

e

48 cores

96 cores

192 cores

384 cores

768 cores

1176 cores

1344 cores

(b) Domain 5123 with OpenMPI

Figure 5.19: Strong Scaling (time/iteration) three AMR levels problem with coarsest grid being
5123 and boxes of varying shapes but equal volume using Intel compilers 17.0.1, Intel MPI
2017.1.132, OpenMPI 2.0.2 and Optimization flags: -O3 -xHost -ip -align array64byte

Fortran the first dimension is the contiguous data dimension, a box of shape 256×128×64 has

twice the data points in the contiguous dimension as a box of shape 128× 128× 128. Another

topology that ouperforms the cubic block is that with a box-shape of 512× 128× 32 at 96 and

192 cores - a box-shape which again has a large contiguous data dimension. The number of

communication elements grows with an increasing size of a particular dimension in a non-cubic

block and thus, there is always a trade-off between the gain in packing/unpacking and the loss

in communicating large volumes of data. The complexity of this trade-off explains why we do

not see a consistent performance ranking across all process counts. Figure 5.18b also shows the

same conclusion for a 2563 domain in the sense that the cubic box-shape is not the optimal

choice at all core counts. Conversely with a process count of 320 when each box resides on a

different core, the cubic topology outperforms the best performing non-cubic topology by 1.85%

at a domain size of 5123 and by 5.50% at a domain size of 2563.

Figures 5.19a and 5.19b show the performance of various block shapes for the AMR test

problem when the number of levels is three. It can be seen from Figure 5.19a that the cubic block

size is again not optimal for 48, 384 and 768 cores and the performance difference between it and

the optimal non-cubic block ranges between 1.18 − 10.30%. For Figure 5.19b with OpenMPI,

the range of performance difference is 1.9 − 8.74%. The maximum and minimum ratio of the

execution time per solve iteration when using OpenMPI to when IntelMPI is used is 1.27 and

0.99, respectively, for a domain of size 5123 (see Figure 5.19a and Figure 5.19b). The ratio

increases as the number of processes increase from 48 to 1176. It is not correct to say that one

MPI implementation is faster than the other as the allocation of nodes changes between using

the two MPI implementations. With 1344 cores, i.e. when every box is placed on a separate

core, the results are inconclusive in the sense that the box-shape of 64 × 128 × 256 performs

better than the box-shape 128 × 128 × 128 in some runs and worse than the latter in others

5.9. EXPERIMENTAL RESULTS 149

Table 5.4: Macroscopic view: Total L1, L2 and L3 cache-misses in the AMR application with
2 levels, domain=5123 with box-sizes 128× 128× 128 and 256× 128× 64

Box-size Total L1 Total L2 Total L3

128x128x128 1.77E+11 1.36E+11 7.08E+10
256x128x64 1.68E+11 1.34E+11 6.73E+10

(the average execution time was the same for both).

5.9.4 AMR cache-misses

We profiled two cases of the single level AMR with block-sizes 128×128×128 and 256×128×64

covering the domain of 5123 to compare the cache-misses. The cache-comparison in AMR is

significantly more complex than for the single uniform grid case due to a substantial increase in

complexity of the library’s functions and the algorithm itself. Our major focus is on the compute

cache-misses in the solve phase and the cache-misses while performing packing/unpacking for

all types of communication: exchange of next-to-boundary-layers at the same level ; restriction

from the finer grid to the immediate coarser grid and interpolation from the coarser to the finer

grid.

5.9.4.1 Macroscopic view

Table 5.4 shows the total cache-misses for the complete AMR application with two different

box-sizes and a domain of 5123 with two levels. From Table 5.3 it can be seen that the non-

cubic blocks outperform the cubic-blocks by 3.85% using a single node of ARC3 (i.e. 24 cores,

OpenMPI 2.0.2, 2-levs problem) for a domain of size 5123. The difference between the L1 and

L2 cache-misses is 5.08% and 1.47% respectively, with the cache-misses being higher for the

cubic-blocks. The percentage difference in the L3 category is 4.94% with the non-cubic blocks

again performing better than the cubic blocks.

5.9.4.2 Microscopic view

Table 5.5 shows the major sources of cache-misses for a domain of size 5123 and the two block

sizes 128 × 128 × 128 and 256 × 128 × 64. The user-defined subroutine update phi 3d(),

which is the main computational kernel, accounts for the majority of cache-misses and the

percentage difference between the two block sizes for L1, L2 and L3 misses is 6.77, 4.18 and

1.35%, respectively. As a relative percentage of the total cache-misses, this subroutine makes

up 26.41− 29.9%, 37.11− 39.16% and 41.08− 43.85% of the total L1, L2 and L3 cache-misses,

respectively. The difference in the cache-misses could possibly be because of the size of the

three planes which are needed to update a single plane. Thus, a single plane of 128× 128× 128

has 128 × 128 = 16384 elements as opposed to a single plane of 256 × 128 × 64 which has

150 CHAPTER 5. ADAPTIVE MESH REFINEMENT

Table 5.5: Cache-Misses Subroutines: Major sources of cache-misses for a 2 level AMR with
domain=5123, block-sizes=128× 128× 128 and 256× 128× 64

Subroutine 128x128x128 256x128x64 Description

L1 L2 L3 L1 L2 L3

init phi 3d 3.15E8 3.18E8 1.70E7 3.15E8 3.19E8 1.86E7 Initialize solution
init rhs 3d 7.78E7 7.80E7 2.33E7 7.79E7 7.79E7 2.44E7 Initialize RHS

update phi 3d 4.68E10 5.04E10 2.91E10 5.02E10 5.26E10 2.95E10 Update Solution
fill boundary 7.20E9 3.04E9 2.49E9 4.33E9 2.29E9 1.52E9 Boundary exchange

fill ghost cells 4.97E10 8.38E9 5.90E9 4.61E10 6.85E9 4.08E9 Interpolation
cc restriction 2.54E10 3.31E10 1.49E10 2.37E10 3.15E10 1.48E10 Restriction

256 × 128 = 32768 elements. However, we expect the latter to have fewer cache-misses while

performing the packing/unpacking in communication because of the smaller size of the X-plane,

i.e. the plane which is orthogonal to the unit-stride dimension. This plane (X-plane) has a size

of 128 × 128 for the block of size 128 × 128 × 128 and a size of 128 × 64 for the block of size

256× 128× 64.

The fill boundary() subroutine, which exchanges boundaries between sub-domains at the

same level, shows this behaviour. Here the non-cubic blocks perform better than the cubic-

blocks and the percentage difference between these are 39.86% for L1, 24.67% for L2 and

38.95% for L3 cache-misses. But it should be noted that as a percentage of the total cache-

misses these form only 4.06 − 2.58% for L1, 2.24 − 1.71% for L2 and 3.51 − 2.25% for L3

for the blocks of size 128 × 128 × 128 and 256 × 128 × 64, respectively. The interpolation

subroutine forms a significant fraction of the total cache-misses, being 28 − 27.48% for L1,

8.38 − 5.09% for L2 and 8.33 − 6.05% for L3 for the cubic and non-cubic blocks, respectively.

For the BoxLib implemented restriction operator, the corresponding values are 14.3 − 14.1%

for L1, 24.35 − 23.45% for L2 and 21.1 − 21.98% for L3 for the cubic and non-cubic blocks,

respectively. It can be seen that the cache-misses in the communication routines, i.e. exchanging

ghost data, interpolation and restriction for the non-cubic block, are consistently less than the

cubic blocks although the latter communicates a smaller data volume. This supports our model

which conveys that using a non-cubic block with a smaller X-plane (Z-plane for the C language)

reduces the packing/unpacking/plane-update cache-misses.

5.10 Difficulties in validating the hypothesis

In the previous chapter, we formulated a strategy for minimizing the cache-misses of a sub-

domain and showed the superiority of such partitions by experimenting on single grids. Our

comparison showed that our cache-minimizing topologies performed better than the communi-

cation minimizing topology for almost all combinations of grid sizes and process counts. Overlap

of communication with computation formed a significant part of our analytical derivation for

cache-minimizing topologies. The reason is that when communication is overlapped with com-

5.10. DIFFICULTIES IN VALIDATING THE HYPOTHESIS 151

putation, both while packing/unpacking and communicating data, the next-to-halo layers are

accessed separately after the halo data arrives. This has the advantage of MPI advancing its

communication progress engine while the serial computing thread updates the Independent

Compute kernel but at the same time suffers from a disadvantage that the next-to-halo layers

now cannot be updated along with the Independent computational kernel, resulting in extra

cache-misses. There are several reasons why we emphasize overlapping communication with

computation and we list these below:

1. Non-blocking communication in MPI : The reason why these non-blocking routines exist

is that we are expected to overlap communication with computation. MPI 3.1 also has

versions for non-blocking collective operations.

2. Increasing distance: As the nodes grow fatter and the number of nodes in a cluster

continues to increase, the distance between cores is increasing. Thus, it would/has become

imperative to overlap communication with computation in future/current architectures.

The hypothesis that we formulated in the previous chapter holds only partially when eval-

uating Adaptive Mesh Refinement in BoxLib. For single grids, the communication minimizing

topology (MDC) never outperforms the cache-minimizing topologies for any data size and core

counts in our experiments. Since the codes are in Fortran, we also took into account the reverse

communication minimizing topology (Rev. MDC) but there existed topologies which outper-

formed both MDC and Rev. MDC for all the cases. This demonstrates that the communication

minimizing topology is not the optimal choice for single grids as shown previously. For AMR

codes, there existed cases where the MDC was outperformed by specific non-cubic sub-domains,

thus establishing that the MDC is not always the optimal choice at all data sizes or processor

counts. However, the superiority of the cache-minimizing topologies was not at all clear cut

in these cases. The following plausible reasons explain why our hypothesis partially fails when

considering AMR using BoxLib, and also the difficulties in analyzing BoxLib codes.

1. Communication and Computation: In BoxLib, communication of the halo zones is not

overlapped with computation and, further, the packing and unpacking of data from the

boxes does not use MPI derived data types. Thus, there is no overlapping while pack-

ing/unpacking or communicating data. The sub-domain is updated when the data arrives

from neighbouring processes and it is treated as a contiguous sub-domain without any

need for updating the planes separately. This completely eliminates the cache-misses that

we calculated separately for the Dependent Planes in our abstract high level mathematical

model for minimizing cache-misses.

2. Internal data structures: It is difficult to estimate the size of the metadata and the

consequent effect on the application performance that BoxLib maintains for both single

grids and AMR. Clearly, the metadata for the latter is more complicated and much larger

in size.

152 CHAPTER 5. ADAPTIVE MESH REFINEMENT

3. No Control over distribution of boxes: The user does not have any control over distribu-

tion of boxes in AMR with BoxLib. This is completely controlled by BoxLib using the

Knapsack or Morton ordering with a dynamic switching scheme implemented to choose

the appropriate algorithm. Since boxes are distributed per-level, BoxLib does not distin-

guish between inactive or active boxes. An inactive box is a box where the solution is not

updated: thus there is a large probability that the active boxes may not be load-balanced.

4. Load-balancing over shape: The load-balancing, i.e. the number of boxes per core, changes

when the shape of the box is changed even though the volume remains constant. Thus,

the load-balancing algorithm used by BoxLib takes into account the sub-domain points

in each direction.

5.11 Summary

Adaptive Mesh Refinement (AMR) is a computational technique where local regions on a mesh

are refined to obtain an increased accuracy in those regions. It helps to direct the compute

resources towards regions of interest (or higher error) rather than devoting them to a globally

refined mesh. Though theoretically this is an ideal strategy, software packages such as BoxLib

which are used for building complex multiscale multiphysics structured AMR applications, in-

cur additional overheads in the form of maintaining metadata and synchronization in a parallel

settings.

The parallelization in BoxLib is abstracted away from the user and thus the user is free to

focus on the problem, but at the cost of losing some of the control of the execution. Using

BoxLib, we have tested the applicability and extension of our previously formulated hypothesis

that there exist cache-miss minimizing topologies which outperform the communication mini-

mization topology in solving PDEs using point iterative methods such as Jacobi iteration on

structured 3-D uniform grids. We further extended this evaluation to AMR codes with up to

3 levels (2 refined, 1 unrefined). All the codes for the uniform grid and AMR were developed

using Fortran90 in BoxLib and tested with no overlap of communication and computation. In

this process, we implemented an MPI Cartesian topology of MPI processes that can be used in

BoxLib for single and multiple boxes per core for uniform meshes. Further, we compared the

execution timings of uniform as well as AMR codes, while profiling the cache-misses for both

cases to experimentally investigate the validity of our aforementioned hypothesis.

Chapter 6

Multigrid

In the previous chapter we evaluated the use of non-cubic sub-domains on single grids and with

Adaptive Mesh Refinement (AMR) using a library called BoxLib. We demonstrated that our

hypothesis, that there exist cache-miss minimizing domain partitions (or Boxes) that outper-

form cubic sub-domains, holds true for uniform meshes even with blocking communication (as

in BoxLib). When using a structured, nested, AMR hierarchy, the hypothesis is only partially

true due to a multitude of issues. These issues are strongly linked to the BoxLib implementa-

tion and include the load imbalance and the non-overlap of communication with computation.

In this chapter, we continue to evaluate our hypothesis, but now using a multiple grid, hierar-

chical convergence acceleration technique called Geometric Multigrid. Our results will validate

our hypothesis for this important class of iterative method, but will also uncover additional

subtle factors in determining optimal sub-domain dimensions. The key focus in this chapter

again remains on investigating, quantifying, measuring and improving the parallel efficiency by

predicting high performing domain partitions.

6.1 Introduction

After a domain has been discretized to numerically approximate a linear PDE, iterative meth-

ods such as Jacobi, weighted Jacobi (ω-Jacobi), Gauss-Seidel (GS), Red-Black Gauss-Seidel

(RBGS), Conjugate Gradient (CG) and others can be used to compute the solution of this

discrete system [33, 37, 52]. Due to the slow rate of convergence of these iterative methods,

and the time taken to solve large systems on uniform structured grids, multilevel algorithms

have been created that accelerate the rate of convergence to the solution. The Multigrid [25,63]

method is an optimal hierarchical method which can be used for solving sparse systems of linear

equations that arise from a local discretization of Elliptic PDEs in O(N) time, where N is the

number of unknowns or degrees of freedom (dof) in the system. The hierarchy in Multigrid

consists of several linear systems corresponding to discretizations on several levels of grids of

153

154 CHAPTER 6. MULTIGRID

decreasing resolution, where the finest level grid represents the actual problem to be simulated.

It accelerates the convergence of the solution by quickly and systematically eliminating low

frequency error components on the series of coarse grids. To further decrease the solve time of

Multigrid methods, they are parallelized on distributed, shared memory or hybrid architectures

to allow simulation of extremely large scale problems [86, 143, 144], where the number of un-

known variables can be of the order of billions or trillions. It is the parallelization of Multigrid

that is challenging and requires a careful design and implementation to achieve near perfect

Weak Scaling and thus preserve its theoretical optimality.

When Multigrid is parallelized over distributed-shared memory architectures, traditionally,

the domain partitioning creates cubic partitions of the mesh to minimize overall communica-

tion. We extend and apply our high level analytical model in the scenario of multiple grid

levels of Multigrid to investigate its effectiveness on this optimal algorithm. To this effect, we

first extend the model to Geometric Multigrid (GMG) and again show that “close to 2-D”

partitions for GMG can give higher performance than the partitions returned by the default

MPI Dims create() function which minimizes the communication volume by default. Further,

our model seeks to put this in the context of all the factors that might influence the choice

of sub-domain shape and size. Thus, we qualitatively and quantitatively consider factors such

as cache-misses, prefetching, cache-eviction policy, Vectorization etc., and explore their effect

on determining optimal sub-domain dimensions. Though these factors have been separately

well explored in the literature, the focus of our work is on establishing a connection between

them and domain partitioning. We present the results of our investigations and discuss their

limitations to open further research avenues. It may be noted that we use the term Multigrid

to refer to GMG and not Algebraic Multigrid (AMG), the latter being beyond the scope of the

current work.

The chapter begins by giving a general introduction to GMG and our aim in the current

work. Following it is a detailed description of GMG and an explanation of the terms associated

with it. We then describe the extension of our model to Multigrid along with underlying

assumptions. An attempt to identify, explain and connect various serial parameters to decide

optimal sub-domain dimensions evolves as the next logical step. This step can be considered

as a part of the single uniform grid and is equally applicable there but its conception lies in the

multiple grids scenario. Next we describe the mixed-boundary value test problem followed by

our experimental results. Our results lead us into conclusions and a discussion of our work.

6.2 Motivation and Contribution

Multigrid adds a significant layer of complexity over single level uniform grid solvers due to a

multiple level grid hierarchy, a decreasing computation to communication ratio at coarser grid

6.2. MOTIVATION AND CONTRIBUTION 155

levels and the appearance of inter-grid transfer operators which are based upon higher order

stencils themselves. In the pure sense AMR is a grid resolution technique whereas Multigrid

is a convergence acceleration method. Both these computational techniques are extremely

important in Scientific Computing and belong to the set of candidates for Exascale computing.

Though fundamentally different, their structured versions have a common feature in the form

of using uniform structured grids of varying resolution. This common factor, the optimality of

Multigrid for Elliptic problems, and its vast applications in real world problems become our

motivation for extending/applying our high level mathematical model to Parallel GMG. The

following are the contributions of the current chapter:

– Extension of our quasi-cache-aware model for minimizing cache-misses to Parallel GMG.

– Demonstration that the fine grid execution time dominates the total solve time and hence

even when a topology is sub-optimal at coarser levels, this cannot offset the effect of the

optimal topology at the finest level.

– Realization that the Smoothing, Restriction and Interpolation operators have equivalent

characteristic expressions for cache-misses, even when the Smoothing operator is a 7-pt

stencil and the latter operators are represented by a 27-pt stencil.

– Identification and connection of other Serial Control Parameters (SCP) such as Vectoriza-

tion, Prefetching, Least Recently Used (LRU) policy, and Cache Line Utilization (CLU)

to optimal sub-domain dimensions.

– Experimentally verify that our model is independent of the hardware (using test platforms

ARC2 and ARC3 at the University of Leeds) and software by using a combination of

compilers (Intel and GNU) and MPI implementations (OpenMPI and Mvapich2) to obtain

the same relative behaviour of topologies, along with the observation that the execution

timing curve is a characteristic of the compiler that is used.

– Developing a lightweight, dynamic cache space tiling/loop-blocking heuristic, dependent

on the shared L3 cache and the number of arrays in the Working Set Size (WSS).

– Demonstrate the effect of domain decomposition by passing an equal number of X, Y and

Z planes through a hierarchy of network elements and measuring the execution time.

– Measuring the positive/negative accuracy of our model to demonstrate that the accuracy

need not decrease with an increasing number of cores.

– An overall demonstration through theory and experimentation that the problem of domain

decomposition for GMG is much more complex than just minimizing the communication

volume.

156 CHAPTER 6. MULTIGRID

Level : L

Level : L-1

Level : L-2

Figure 6.1: Decreasing mesh resolution with decreasing level in 2-D Geometric Multigrid

6.3 Multigrid

Local Iterative schemes [25,37,63,72] such as weighted Jacobi, Gauss-Seidel, Red-Black Gauss-

Seidel, can remove high frequency error components quickly (known as smoothing) but decrease

the low-frequency error spectrum very slowly. Thus, the overall convergence is slow. These low-

frequency components can be represented as relatively high frequency components on coarser

grids [25, 59, 63] and thus effectively smoothed on that grid. These smoothing properties of

certain iterative methods, and the equivalent system of equations at various levels, form the

basis of Multigrid [59].

Multigrid [25,37,63,72] is a multilevel convergence acceleration concept that involves using

coarser forms [63,72,73] of the given fine grid discretization to remove the low-frequency errors

and more efficiently provide an estimate of the approximated solution. Figure 6.1 shows a grid

hierarchy of decreasing grid resolution where the coarser grids can be used to remove the low

frequency errors. Clearly, the number of unknowns on the coarse grid are fewer and this leads to

reduced computation on those grids. Further, the convergence factor of a single grid smoother

is approximately 1−O(h2), where h is the grid spacing (assumed as uniform in all directions)

and for each successive coarse grid, the grid resolution decreases [63]. As mentioned in Chapter

2, depending on the pattern of the traversal between grids, two common types of cycles are

categorized as V-cycles and W-cycles [25, 63]. The following section introduces notations to

explain the concept of Multigrid in detail, focusing on the V-cycle.

6.3. MULTIGRID 157

6.3.1 Notation used and Multigrid Steps

Let Ahuh = fh denote a linear system of equations arising from a local discretization of a linear

Elliptic PDE, where the superscript h denotes the grid spacing. Successive grid levels (finest

to coarsest) are represented as: Ωh → Ω2h → Ω4h... → Ω2ih. We use standard coarsening in

our implementations which reduces the total degrees of freedom by approximately one-eighth

on the immediate coarser grid in 3-D (one quarter in 2-D). After ν1 pre-smoothing iterations on

Ωh, an approximation to uh is obtained (denoted by vh) and the residual is then calculated as

rh = fh−Ahvh. A restriction (I2h
h) operator transfers this residual (rh) to the next immediate

coarser grid (Ω2h). In the 2-grid method (detailed in the next section), the error e2h is obtained

after solving A2he2h = r2h (error equation) exactly on the coarser grid. This error is then

transferred back to the finer grid using the interpolation/prolongation operator (Ih2h) to obtain

a better approximation to the solution on the finer grid, followed by ν2 post-smoothing iterations.

For Multigrid, the error equation is not solved exactly, instead it is replaced by a recursive use

of the 2-grid method to update the estimated error. Only at the coarsest level is an exact solve

used. The recursive algorithm halts when the ratio of the current norm of the residual (||rhk ||)
on the finest level to its initial norm ((||rh0 ||)) becomes less than a specified tolerance. Typically

the pre-smoothing (ν1) and post-smoothing (ν2) iterations of the smoother vary between one

and three for most practical problems [59].

6.3.2 2-grid Algorithm

The basis of Multigrid is the 2-grid correction scheme which forms the heart of the Multigrid

concept. The following sequence of steps explains this method in detail:

1. Choose a starting estimate for uh.

2. Approximate uh satisfying Ahuh = fh using ν1 iterations of an iterative (smoothing)

scheme, starting with the latest estimate, to obtain uhapprox = vh.

3. Calculate residual rh = fh −Ahvh for Ωh.

4. Transfer (Restriction) rh to Ω2h: let it be denoted by r2h.

5. Solve A2he2h = r2h exactly to obtain e2h.

6. Transfer (Interpolation/Prolongation) e2h to Ωh: let it be denoted by eh.

7. Obtain better approximate for uh i.e. uhapprox = vh + eh.

8. Improve uhapprox using ν2 further iterations of the smoother.

9. Repeat procedure from step 2 until convergence for the finest grid Ωh.

158 CHAPTER 6. MULTIGRID

The two vital steps of Restriction and Interpolation for transferring the residual and the

error respectively, are explained in the next section. In general, we refer to them as Transfer

operators or Inter-grid Transfer operators as they determine the flow of information between

the fine and coarse grids.

6.4 Inter-grid Transfer Operators

The current section explains in detail how to exchange information between the fine and coarse

grids. The discussion assumes standard coarsening i.e. the degrees of freedom in each direction

decrease by a factor of two from the immediate fine grid. Both the inter-grid transfer operators

can be treated as stencils and, in this particular case, they are treated as 27-pt stencils in 3-D.

6.4.1 Restriction

A Restriction operator transfers the residual from the fine grid to the immediate coarse grid.

The operator acts on the fine grid (Ωh) residual vectors (rh) to produce a coarse grid vector

(r2h) i.e. I2h
h rh = r2h. The simplest restriction operator is injection, which equates the value of

the residual at a point on the finer grid to the corresponding point on the coarser grid. In 1-D,

injection implies rh2j = r2h
j when standard coarsening is used and where j is varied over all the

coarse grid points. Thus, injection is simply an identity function for the alternate fine grid points

which correspond to the coarse grid points. The full weighting restriction operator considers

the average of the neighbouring points and is expressed as r2h
j = 1

4 (rh2j−1 + rh2j+1 + 2rh2j)

(in 1-D), where j varies over all the points of the coarse grid. Let αi be the weight of the

ith neighbouring point, then
∑n
i=1 αi = 1, where the summation is over all the n immediate

neighbouring points and the point itself. Generally, n = 3, 9 and 27 for 1-D, 2-D and 3-D in

the standard cases, respectively. Stencil notation can also be used to specify the weights of the

immediate neighbours. The advantage of this notation is that it maps directly to the geometrical

arrangement of points in 1-D and 2-D. A full restriction and half restriction operator in 2-D is

shown below [59]:

– Full Restriction in 2-D: The central point has a weight of 1
4 , the horizontal and vertical

directions have a weight of 1
8 and the corner points are scaled by a factor of 1

16 :

1

16

1 2 1

2 4 2

1 2 1


2h

h

.

– Half-restriction in 2-D: The corner points are not taken into consideration and the weight

of the central point is 1
2 , whereas the points in the horizontal and vertical direction

contribute 1
8 their value:

6.4. INTER-GRID TRANSFER OPERATORS 159

1

8

0 1 0

1 4 1

0 1 0


2h

h

.

Figure 6.2 illustrates a 27-point full restriction stencil in 3-D where the weights of each of

the points considered are shown (equal weights are color coded). It can be seen that the points

at the faces have a weight of 1
16 . These are the same points which make the 7-pt stencil. The

edges of the upper and lower planes have a weight of 1
32 - the same as the corners of the middle

plane, i.e. the plane containing the central point. The upper and lower plane corner points

contribute 1
64 of their value. A 19-pt stencil in 3-D can be constructed by not considering the

corner points on the upper and lower planes (and adjusting the weights accordingly).

1
64

1
64

1
64

1
64

1
64

1
64

1
64

1
64

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
32

1
16

1
16

1
16

1
16

1
16

1
16

1
8

Figure 6.2: Full 27-point restriction weights in 3-D for the central point (red)

6.4.2 Interpolation or Prolongation

Table 6.1: Interpolation: operator in 2-D

Ωh Ω2h

vh2i,2j v2h
i,j

vh2i,2j+1
1
2 (v2h

i,j + v2h
i,j+1)

vh2i+1,2j
1
2 (v2h

i,j + v2h
i+1,j)

vh2i+1,2j+1
1
4 (v2h

i,j + v2h
i+1,j + v2h

i,j+1 + v2h
i+1,j+1)

160 CHAPTER 6. MULTIGRID

The error e2h approximated on Ω2h after solving A2he2h = r2h (error equation) must be

transferred back to grid Ωh. Clearly, since the number of mesh points on Ωh and Ω2h are

different, e2h cannot simply be mapped to Ωh. An interpolation/prolongation operator (Ih2h) is

used for this purpose. Ih2h acts on coarse grid error vectors (e2h) to produce a fine grid vector

(eh) i.e. Ih2he
2h = eh. In two dimensions, when considering a point ehi,j on Ωh, the operator

Ih2h takes into account different weights for different points on Ω2h. A standard interpolation

scheme for 2-D is shown in Table 6.1.

In stencil notation the linear interpolation operator in 2-D is shown below:

– Linear interpolation:

1

4

 1 2 1

2 4 2

1 2 1


h

2h

.

A table similar to Table 6.1 can be drawn for the 3-D case of interpolation. The 3-D Trilinear

Interpolation operator is shown in Table 6.2. When full Restriction and Linear Interpolation

are used, it can be stated that Ih2h = c(I2h
h)T , where c ∈ R. That is, the interpolation operator

is the transpose of the restriction operator up-to a certain constant c, which depends on the

spatial dimension. This is known as the variational property [63].

Table 6.2: Trilinear Interpolation: operator in 3-D

Ωh Ω2h

vh2i,2j,2k v2h
i,j,k

vh2i+1,2j,2k
1
2 (v2h

i,j,k + v2h
i+1,j,k)

vh2i,2j+1,2k
1
2 (v2h

i,j,k + v2h
i,j+1,k)

vh2i,2j,2k+1
1
2 (v2h

i,j,k + v2h
i,j,k+1)

vh2i+1,2j+1,2k
1
4 (v2h

i,j,k + v2h
i+1,j,k + v2h

i,j+1,k + v2h
i+1,j+1,k)

vh2i+1,2j,2k+1
1
4 (v2h

i,j,k + v2h
i+1,j,k + v2h

i,j,k+1 + v2h
i+1,j,k+1)

vh2i,2j+1,2k+1
1
4 (v2h

i,j,k + v2h
i,j+1,k + v2h

i,j,k+1 + v2h
i,j+1,k+1)

vh2i+1,2j+1,2k+1
1
8 (v2h

i,j,k + v2h
i+1,j,k + v2h

i,j+1,k + v2h
i,j,k+1 + v2h

i+1,j+1,k + v2h
i+1,j,k+1 + v2h

i,j+1,k+1 + v2h
i+1,j+1,k+1)

6.4. INTER-GRID TRANSFER OPERATORS 161

Pre-smooth Ωh

Pre-smooth Ω2h

Pre-smooth Ω4h

Ω8h

Ω4h Post-smooth

Ω2h Post-smooth

Ωh Post-smooth

restrict

restrict

restrict interpolate

interpolate

interpolate

solve

Figure 6.3: V-cycle in Multigrid

Require: Initial solution approximation: vh, RHS: fh on fine grid: Ωh

1: while not converged or completed fixed iterations do
2: i← 1
3: while Ωih 6= Coarsest grid do
4: Pre-smooth ν1 times on Aihvih = f ih to obtain new vih

5: f2ih ← I2ih
ih (f ih −Aihvih)

6: v2ih ← 0
7: i← i× 2
8: end while
9: Solve Aihvih = f ih exactly to obtain new vih

10: i← i
2

11: vih ← Iih2ihv
2ih + vih

12: while Ωih 6= Finest grid do
13: Post-smooth ν2 times on Aihvih = f ih to obtain new vih

14: i← i
2

15: vih ← Iih2ihv
2ih + vih

16: end while
17: Post-smooth ν2 times on Aihvih = f ih to obtain new vih

18: end while

Figure 6.4: Multigrid Algorithm vh ←MG(vh, fh)

6.4.3 Multigrid Algorithm

The Multigrid algorithm can be broken down into its constituent parts, namely: Smoothing,

Residual calculation, Restriction, Interpolation and Error correction. A V-cycle consisting of

all these steps is illustrated in Figure 6.3. As explained in Section 6.3.1 above, the V-cycle can

be used to obtain the solution of the discretized PDE. We next describe the Multigrid algorithm

formally as illustrated in Figure 6.4.

The Multigrid procedure begins by using the initial guess vh and the right hand side term

fh at the finest grid as the input to the procedure MG(vh, fh). Then according to the V-cycle

(see Figure 6.3), ν1 smoothing operations of an iterative method are carried out to obtain a

new approximation of vh using Ahvh = fh. In our implementations we use the weighted Jacobi

162 CHAPTER 6. MULTIGRID

method as the smoother on a mixed boundary value problem. The Restriction operator I2h
h is

used next on the residual fh − Ahvh to obtain the RHS for the next immediate coarser grid

Ω2h. This process is carried out till we reach the coarsest grid. The coarsest grid error equation

is then solved exactly and the error is interpolated back to the immediate finer grid. After

using the error on the coarser grid to obtain a better approximation on the immediate finer

grid, ν2 post-smoothing operations are carried out to again obtain a better approximation. The

solution is again interpolated to the next immediate finer grid and the process continues till we

reach the finest grid. ν2 post-smoothing operations are carried out at the finest grid level after

which the solution is tested for convergence or if a fixed number of cycles have been completed.

6.5 Terminology and Problem Description

This section introduces the notation and assumptions on which our model is based, and gives a

brief low-level description of the problem under consideration. This is followed by a description

of the test problem that we use for our experiments.

6.5.1 Notation Recap

A structured 3-D grid having dimensions NxNyNz can be divided among P parallel processes

running on individual cores in several ways. In general, Di represents the number of processes

along direction i where i = x, y, z. Thus, P can be decomposed as any valid permutation of

Dx, Dy and Dz such that P = DxDyDz, and for simplicity, we assume that Ni%Di = 0 for

i = x, y, z. In the following we consider cuts/partitions parallel to the Cartesian axes and the

model assumes a 7-pt iteration stencil with a 1-element deep ghost zone. Each sub-domain

with a single element deep ghost/halo zone has dimension (Px + 2)(Py + 2)(Pz + 2). The 3-D

sub-domain on each core can be viewed as 3 parts: the inner Independent Computational (IC)

kernel which needs no data from neighbouring processes (zone 1), the next-to-boundary layer

(Dependent Planes) which requires data from neighbouring processes for its update (zone 2)

and the buffer/ghost/halo region (zone 3) [138]. Thus, in the worst case, a sub-domain will need

to pass six planes to its nearest neighbour processes. Without loss of generality we assume that

the unit stride dimension is in the Z-direction (depth) and the data is in row-major order as in

the C language. It can be noted that four of the six nearest data neighbours in the 7-pt stencil

are not contiguous in memory. We collectively refer to the two YZ planes as X-planes, the two

XY planes as Z-planes, and the two XZ planes as Y-planes.

6.5.2 Brief Description of the Problem

This division of P as DxDyDz can have a large effect on the packing/unpacking times of data

which is to be sent to/received from the neighbouring sub-domains, the update of Depen-

dent planes, and the compute times of the Independent Compute kernel. There are generally

6.5. TERMINOLOGY AND PROBLEM DESCRIPTION 163

several permutations of Dx, Dy and Dz which satisfy P = DxDyDz. We refer to a valid per-

mutation as a Topology or a Process Topology (MPI Cartesian Process Topology [48]). For

example, a total of 28 Process Topologies exist for P = 64, three of which (for example) are,

Dx×Dy×Dz = 4×4×4, Dx×Dy×Dz = 4×16×1 and Dx×Dy×Dz = 8×4×2. These process

topologies decide the sub-domain data dimensions of the hierarchy of grids. Typically and tra-

ditionally, the topology which minimizes the communication volume to be sent, created by the

default MPI Dims create(), is chosen as the preferred topology for domain partitioning/mesh

partitioning. We investigate the optimality of partitions returned by MPI Dims create() and

whether only minimizing communication is sufficient to obtain optimal sub-domain dimensions

for parallel GMG. Our work in Chapter 4 demonstrated the dependence of domain partitioning

for single grids on cache-misses in computation and communication. Since parallel GMG is

significantly more complex than a single grid and incorporates further stencil operators, the

current chapter examines the efficacy of extending the model to parallel GMG.

6.5.3 Test Problem

Parallel GMG was implemented for a 3-D mixed Dirichlet-Neumann boundary value problem on

a unit cube to solve−∇2u = − 3π2

4 sin πx
2 sin πy

2 sin πz
2 , which is a linear, second order, inhomoge-

neous PDE with constant coefficients, having a smooth solution u(x, y, z) = sin πx
2 sin πy

2 sin πz
2 .

We use a vertex-centered finite-difference scheme in our implementation. Dirichlet boundary

conditions (u = 0) are applied to the X=0, Y=0 and Z=0 faces of the cube whereas Neumann

boundary conditions (∂u∂n = 0) are applied at the X=1, Y=1 and Z=1 faces. A halo layer (or the

Neumann boundary ghost layer) is added to the Neumann boundaries as the boundary values

are also considered as unknowns [22]. These halo layers need to be updated at each iteration

according to the neighbouring point inside the physical sub-domain using a central difference

approximation. Figure 6.5a shows the Dirichlet-Neumann boundaries on the boundary of the

domain ∂Ω specified on a unit cube, Ω. Figure 6.5b shows a 2-D plane of Figure 6.5a when the

unit cube is cut at Z = 1
2 . For a 2 × 2 × 2 problem size, the number of unknowns in the X,Y

and Z direction are two each, making it a total of 8 unknowns. Four unknowns out of these

eight illustrated as cross-points i.e. ‘x’ can be seen in Figure 6.5b. The Dirichlet boundaries on

the left plane and bottom plane are denoted by ‘D’, while the fictitious Neumann ghost points

are denoted by ‘N’. Clearly, ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = φ.

If we consider a mesh point ub,j,k on the upper Neumann boundary, we can denote the

corresponding ghost boundary/fictitious Neumann ghost point (outside the domain) as ub+1,j,k

and the downward vertical neighbour point as ub−1,j,k. Since the derivative of the outward

normal ∂u∂n = 0 at the Neumann boundary, we can approximate ub+1,j,k using a central difference

scheme (second order approximation) by equating

∂u

∂n
=
∂u

∂x
=
ub+1,j,k − ub−1,j,k

2h
= 0

164 CHAPTER 6. MULTIGRID

∂u
∂n = 0

∂u
∂n = 0

∂u
∂n = 0

(a) Dirichlet (Left, Bottom, Front - in
red) and Neumann (Top, Back, Right -
in blue) boundaries with outward normals
on a unit cube

X

Y
(0,0,1/2)

X

X

X

X

D

D

D D

N N

N

N

(b) A plane at Z=1/2 depicting Dirichlet
(D), Neumann (N) boundary, unknowns
(X), given problem (solid lines), halo layer
for Neumann boundary (dotted lines).

Figure 6.5: Dirichlet-Neumann mixed Boundary Value Problem

where h is the mesh spacing. Thus, for our problem ub+1,j,k = ub−1,j,k. Similar approximations

can be carried out in the Y and Z directions as well. It is important to update the Neumann

boundary conditions before updating the solution in the interior and also before calculating the

residual.

A full 27-pt Restriction scheme was implemented to transfer data to the coarser grid. This

needs more than one communication step to make the corner points available to a process. If we

visualize eight processes arranged as an MPI Cartesian Topology of 2× 2× 2, then the process

on the lower left front corner would require data from all the other processes. In a general case

where the process is surrounded by other processes and does not touch any domain boundary,

it would require data from all 26 of its neighbours. Therefore, the communication pattern for

a 27-pt stencil in the Restriction and Interpolation operator is different from that of the 7-pt

stencil used in the smoother. The case of Trilinear Interpolation onto the finer grid is similar.

Care should be taken to modify the stencil while carrying out restriction at the intersection of

Neumann-Neumann boundaries [25]. An unmodified stencil results in an error in the smoother

which leads to a severe deterioration of the Multigrid convergence rate. The reason is that

the residual at the Neumann boundary ghost points is zero to begin with and since the 27-pt

restriction takes into account the residual at these points, we do not obtain correct scaling at

the coarse grid level. Thus, in our scheme instead of modifying the stencil at these points,

we copy the residual of the point that is used to determine the value of the ghost Neumann

boundary point to the corresponding point on the fictitious Neumann boundary. This allows us

to use the same stencil at the Neumann-Neumann boundaries as now the fictitious Neumann

boundary point contributes equally as the corresponding point inside the physical domain.

6.6. CACHE-MISSES MINIMIZATION MODEL 165

At the finest grid level, the l2 norm of the residual can be calculated after each V-cycle

and the execution stops when the ratio of the current norm to the initial norm becomes less

than a specified tolerance i.e. ||rk||||r0|| < TOLN . However, for performance analysis purposes, it

is sufficient to fix the number of V-cycles. The levels are numbered from the highest to the

lowest - starting at the finest grid (level L) to level zero corresponding to the coarsest grid.

The coarsest grid problem can be solved till convergence (or a fixed number of iterations can

be performed depending on the experiment). The iterative scheme used is ω-Jacobi, with the

option to change the weighting factor (ω) for both smoothing (fine and coarser grids) and solve

(coarsest grid) operations. The general optimum values of ω for 1-D, 2-D, 3-D are 2
3 , 4

5 and 6
7 ,

respectively (for pure Dirichlet boundaries) [25] but for our mixed Dirichlet-Neumann test case

we found ω = 1 to be optimal.

Although the number of unknowns per process is equal, the problem is slightly load-

imbalanced because the processes containing the Neumann boundary have to perform more

work than processes containing the Dirichlet boundaries. This is because in addition to the

points to be updated, the former category of processes must also adjust the Neumann bound-

ary before the values of the boundary points can be updated. However, such processes do not

send/receive planes to/from other processes at the Neumann boundary. Thus, we expect that

the increase in the computational work at such processes is evenly balanced out by the zero com-

munication overhead and such processes do not govern the overall computational complexity.

The number of smoothing operations in the downward phase of the V-cycle is ν1 (pre-correction

smoothing) and ν2 on the up-cycle (post-correction smoothing). The complete V-cycle is then

written as V (ν1, ν2) where typically we use ν1 = ν2 = 3.

6.6 Cache-Misses Minimization Model

Our work in Chapter 4 (and [138]) exhaustively identified and quantified cache-misses as the

single most important factor influencing domain partitioning of structured single level grids and

thus, while extending the model in this section, our focus remains on the cache-misses in the

update/packing/unpacking of the Dependent Planes and the update of the Independent Com-

pute kernel. We further elaborate on the super-set of factors influencing cache-misses directly

or indirectly to shed light on the complexity of attaining truly optimal sub-domain dimensions

for high performing partitions in Parallel GMG. It is to be noted that our high level model

is different from the analytical models used to model Multigrid cycle times and performance.

Classical analytical models have attempted to model the execution timing and analyze the over-

all Weak Scaling using only the relaxation phase of semi-coarsening Multigrid with 1-D, 2-D

and 3-D processor topologies/partitions [145, 146]. A baseline model with penalties in parallel

settings has been formulated for modelling the cycle of Algebraic Multigrid in [146, 147]. An

analytical/empirical comparison for the execution times of an iteration of Newton-Multigrid

and FAS (Full Approximation Scheme) has been carried out in [77]. Performance prediction of

166 CHAPTER 6. MULTIGRID

Multigrid codes on large numbers of cores by benchmarking the code on a very small number

of processes presents another alternative [148]. Most of these models take into account only

the algorithmic characteristics and not the hardware parameters. Our model is different from

these in the sense that we take into account the cache-line characteristics but obtain a cache-

oblivious result, thus leading us to a quasi-cache-aware model [141]. Further, our model does

not predict the execution timings but predicts the topologies which outperform the standard

MPI Dims create() topology.

The following section extends the cache-misses minimizing model that was created in Chap-

ter 4 to GMG. Similar to the approach used in Chapter 4, we begin by considering a Poisson

equation discretized using the Finite Difference Method that uses a 7-pt stencil for updating

the solution at the mesh points. First we quantify the cache-misses for the Dependent Planes

and then deal with the Independent Compute. This quantification is more general in the sense

that as opposed to Chapter 4,

1. a source term f on the RHS is present,

2. a double precision data type double is used,

3. instead of the unweighted Jacobi, we use the ω-Jacobi iterative method,

4. both Dirichlet as well as Neumann Boundaries are present.

6.6.1 Extending the Model

We consider an Elliptic, linear PDE: ∇2U = F . The discretized form is Au = f , with A being

the discretization matrix and u representing the vector of unknowns. The key component of

the smoothing phase of Multigrid consists of an iterative method such as the “out-of-place”

weighted Jacobi (ω−Jacobi) shown in Equation (6.1) below:

vi,j,k = (1− ω)ui,j,k + ω(ui±1,j,k + ui,j±1,k + ui,j,k±1 + h2fi,j,k) (6.1)

The Red Black Gauss-Seidel (RBGS) updates “in-place”, however, the observations that we

make will still hold in principle (though with appropriate quantitative differences). The ad-

vantage of RBGS is that the local working set consists of only two arrays which reduces the

memory traffic and the cache conflict misses. The disadvantage of RBGS is that the red and

black points are communicated separately and hence it requires twice the message exchanges as

ω-Jacobi, resulting in twice the latency of messages as a penalty. The worst case for Neumann

updates occurs at the top back right boundary process which has three Neumann boundaries.

For this process, the cache misses for updating the three boundaries in the X, Y and Z-direction

are
PyPz

W , PxPz

W and PxPy (here W = 8), respectively. It is to be noted that while updating the

Neumann boundaries, both the read and write arrays are the same. However, the planes which

6.6. CACHE-MISSES MINIMIZATION MODEL 167

Table 6.3: Predicted Cache-Misses: Cache read/write/update misses for the dependent X, Y
and Z-plane

Plane Read Misses Write Misses Total

Pack Update RHS Unpack Update

Z-plane PxPy 5PxPy PxPy PxPy PxPy 9PxPy

X-plane
PyPz

W
5PyPz

W
PyPz

W
PyPz

W
PyPz

W
9PyPz

W

Y-plane
PxPz

W
5PxPz

W
PxPz

W
PxPz

W
PxPz

W
9PxPz

W

undergo Neumann updates are not communicated to any other process and nor do processes

containing the Neumann boundary receive data from other processes (at this boundary). Thus,

the packing/unpacking cost of such planes is zero. Since the sum of cache-misses for packing

and unpacking planes is more than that of Neumann updates for the plane, we can safely con-

sider processes which send and receive data from other processes to derive the upper bound for

cache misses. Such a process does not touch any boundary and sends/receives all six planes

to/from neighbouring processes.

Assuming that the cache-line length is L bytes and the width of a double element is D,

the number of elements fetched from the memory to the cache are W = L
D . For example, for

the systems used here L = 64 bytes and D = 8 bytes and thus W = L
D = 8. Assuming a

minimal number of cache-lines for accommodating the six different read streams (and one write

stream) in Equation (6.1) and disregarding the loop invariant terms, namely, ω and h2 (square

of mesh spacing), the cache-misses for update/packing/unpacking of Dependent Planes (SP)

can be summarized in Table 6.3. Table 6.3 is similar to the total cache-misses table in Chapter

4 but differs in the fact that a double data type is used here. The procedure for calculating

the cache-misses is exactly the same as in Section 4.4.3. The cache-misses for the Independent

Compute are calculated in the same way as in Section 4.4.4. As mentioned previously in the

case of uniform single grids, the double data type does not affect the derivation or the inferences

from our model. The derivation and the result here further confirm this fact.

The total cache-misses of the Independent Computation (SI) kernel can be calculated as:

SI = (Px − 2)(Py − 2)(Pz − 2)(
5

W
+

1

W
+

1

W
)

= (Px − 2)(Py − 2)(Pz − 2)(
5

8
+

1

8
+

1

8
),

(6.2)

where the 5
8 , 1

8 and 1
8 terms give the read misses in the update, write misses in the update and

right hand side term read misses, respectively. The total cache misses (S = SI + SP) for the

168 CHAPTER 6. MULTIGRID

Independent Computation and Dependent Planes are:

S = γ(Px − 2)(Py − 2)(Pz − 2) + αPxPy + βPz(Px + Py), (6.3)

where γ = 7
8 , α = 9 and β = 9

8 (see Table 6.3 and W = 8) and are dependent on the computa-

tional kernel and the length of the cache-line.

We now consider a Multigrid V-cycle with L + 1 levels, where the level k = 0 denotes the

coarsest grid and k = L the finest grid. We assume the following:

1. The costliest operation is Smoothing.

2. The cost of applying a single grid transfer operator is proportional to a single Smoothing

operation.

3. The cost of a solve on the coarsest level may be neglected compared to the fine grid

smoothing cost.

Let the cache-misses at level k be denoted by Sk where Sk = S at level k = L as in Equation

(6.3). The sum of cache-misses at all levels (ST) is bounded above by S∞, where

ST =

L∑
k=0

Sk < S∞ =

∞∑
k=0

Sk. (6.4)

Summing two separate infinite geometric series with common ratios 1
8 and 1

4 yields the expres-

sion for S∞ as shown in Equation (6.5) below:

S∞ =
8γ

7
(Px − 2)(Py − 2)(Pz − 2) +

4

3
(αPxPy + βPz(Px + Py)). (6.5)

By considering ∂S∞
∂Px

= ∂S∞
∂Py

= 0 to minimize the total cache-misses with respect to sub-

domain dimensions, we obtain Px = Py for optimality (condition one) but this does not yield

any information regarding Pz. Since we can generate all Dx, Dy, Dz subject to P = DxDyDz

and because Px, Py and Pz are only dependent on N and Dx, Dy, Dz, we can exhaustively find

that Dz = 1 minimizes S∞ by substituting these values of Px, Py, Pz in the equation for S∞.

Thus, cache misses are minimized by maintaining a balance between the X/Y dimensions of

the sub-domain and maintaining an unaltered unit stride dimension (theoretically). Further,

the communication minimizing condition to minimize the surface area of planes implies Px =

Py = Pz (condition two). Taking the intersection of the cache-misses and communication

volume minimization conditions yields a strong (common) condition: Px = Py. Further, when

SI >> SP in Equation (6.3), S is minimized with Px = Py = Pz = N

P
1
3

. These two limits i.e.

cache-miss dominated and communication volume dominated imply that 1 ≤ Dzoptimal
≤ P

1
3

(assuming P is a perfect cube).

6.6. CACHE-MISSES MINIMIZATION MODEL 169

D

D

D

D

D

D

D

D

D

Figure 6.6: Front 2-D view of nine data-streams indicated by a ‘D’ in a 27-pt stencil in 3-D,
dotted lines and arrows show direction in which data is contiguous

6.6.2 Data Streams and Inter-grid Operators

A contiguous set of mesh data points forms a data-stream. As an example, if we consider

the 7-pt stencil then there are five separate data-streams in the read array u for ω-Jacobi (see

Equation (6.1)). We can also interpret the data-stream as a set of points which belong to the

same cache-line when they are fetched. Thus, when considering the mesh points ui,j,k and

ui,j,k±1, all three form part of the same data-stream (if index k is in the unit-stride direction).

Figure 6.6 shows nine data streams in the read array for a 27-pt stencil in 3-D. Thus, although

there are 27 mesh points to be considered, they can be grouped into nine groups, each having 3

contiguous data points. Whenever any data point in any data-stream is brought into the cache-

memory, the other points associated with the same data-stream also form part of the cache-line

fetched into the cache memory. There is a possibility that the total number of elements used

in higher order stencils is larger than the length of a cache line. In such a case our definition

of a data stream does not hold. Discussion of such higher order stencils is beyond the scope of

the current work.

6.6.2.1 Restriction

After the residual is calculated i.e. rh = fh − Ahvh, the residual is restricted using a 27-pt

stencil. We can approximate the number of cache-misses for every point on the coarse grid.

Since for each point in the coarse-grid, we need to consider 27 points on the fine grid, we do span

the entire fine grid sub-domain as data-points cannot be selectively brought into the cache if

they are part of the same cache-line. Assuming enough cache-lines for nine data-streams, there

is approximately a single cache-miss for each data-stream after every 8 double elements. Thus,

we can approximate the number of cache-misses to R =
9(Px+2)(Py+2)(Pz+2)

8 ≈ 9PxPyPz

8 . This

quantity has the same form as the expression for Independent Compute kernel cache-misses

i.e. R = kSI for some constant k. This validates our assumption above where we state that

the cost of grid transfer operators is proportional to the smoothing operator. It is to be noted

that the smoothing operator is applied ν1 + ν2 times whereas the Restriction operator is only

applied once per level per V-cycle.

170 CHAPTER 6. MULTIGRID

6.6.2.2 Interpolation

After solving the error equation on the coarsest grid, the error is interpolated to the immediate

finer grid and this process continues through to the finest grid. The number of mesh points

utilized by the Interpolation operator is different from that of the Restriction operator. Table 6.2

shows that depending on whether the mesh point coordinates are odd or even, a different number

of coarse grid points are used while interpolating. In the worst case, Trilinear Interpolation can

use up to 8 points of the coarse grid (see last row of Table 6.2). These eight points form eight

vertices of a cube and hence are equivalent to 4 data streams. We can then create an upper

bound on the number of cache-misses by assuming that each point on the fine grid uses 8 points

on the coarse grid for interpolation. Since the number of double elements in a single cache

line is eight, each of the 4 data streams fetches up to 8 double elements of their respective data

stream. Each of the 4 data streams on the coarse grid causes a cache-miss after every 8 elements

are interpolated on the fine grid. Thus, there are 4 cache-misses for every 8 elements of the fine

grid and this gives rise to approximately I ≈ 4
8PxPyPz = 1

2PxPyPz cache-misses. Clearly it can

be seen that I = KSI for some constant K. Thus, this shows that the cache-misses associated

with Restriction i.e. R and Interpolation i.e. I are proportional to the Independent Compute

cache-misses (SI).

6.6.3 Pruning the Topology Search Space

Out of all the topologies which are possible, a small set can be examined keeping in mind the

balance between the X and Y sub-domain i.e. Px and Py dimensions and the minimization of

Dz. Thus, if P is a perfect square then Dz = 1 and Dx = Dy =
√
P else we find min(|Dx−Dy|)

such that DxDy = P . To alleviate the effect of process placement we introduce a factor ρ that

represents the deviation from the balanced pair of (Dx, Dy) i.e. assuming P = 64 and ρ = 1,

we start with Dx = 8, Dy = 8 and Dz = 1 and then consider (8×21)× (8
21)×1 = 16×4×1 and

(8
21)×(8×21)×1 = 4×16×1. For ρ = 2, we would also consider (8×22)×(8

22)×1 = 32×2×1

and (8
22)× (8× 22)× 1 = 2× 32× 1. In practice our experiments show that ρ = 1 is sufficient

for obtaining optimal topologies.

6.6.4 Factors affecting sub-domain dimensions

To place the above model in its true context, we now discuss all of the factors influencing selec-

tion of sub-domain dimensions (assuming the data streams at no point are too large to fit into

the cache). We discuss their impact in isolation and with respect to other factors. The discus-

sion primarily brings out the need for a fine balance between multiple factors for optimizing

the domain partitions and sheds light on their interplay. That is, that the problem of domain

partitioning is much more subtle than just minimizing the communication.

Independent Compute (IC): This represents the sub-domain zone that does not need data

6.6. CACHE-MISSES MINIMIZATION MODEL 171

from other processes for updating the mesh points. To update the solution at all mesh points

contained in a plane, three planes i.e. the plane under consideration and the two planes immedi-

ately above and below it are needed for a 7-pt stencil. The smaller the total size of these 3 planes,

the more is the probability that they would fit into the Last Level Cache (LLC)/Cache-hierarchy.

We define the quantity Working Plane Set Size (WPSS) as 3× (Py + 2)× (Pz + 2) ≈ 3PyPz ele-

ments. The Independent Compute (IC) tries to minimize the WPSS by minimizing Py but not

Pz as the latter adversely affects the Vectorization and prefetch efficiency. Thus, it is preferable

to decrease Py rather than reducing Pz to decrease the overall WPSS. But when Py is decreased

(or Dy is increased as Py = N
Dy

) to some value << Px, it violates the cache-minimizing condi-

tion (Px = Py) which in turn leads to much higher communication and update times for the

Y-plane that contains PxPz elements. Ideally, the MPI implementation should hide the entire

communication cost behind the cost of executing the IC kernel. Practically, this is never the

case as the computation and packing/unpacking of planes is carried out by the same thread

or process (assuming no separate core for communication exists) that may result in switching

between the two tasks: computation and packing/unpacking. This switching may also lead to

an increased cache-contention and conflict misses as different data streams from computation

and packing/unpacking are brought into the cache. In summary, decreasing Py optimizes the

execution time for the Independent Compute (IC) but increases the transmission times of the

Y-plane. Further, when Py << Px, both the communication volume and cache-minimization

conditions are violated.

Communication Volume (V): Minimizing communication implies Px = Py = Pz. For sim-

plicity of discussion we assume the number of processes P is a perfect cube and thus for a

domain of size N3 this implies that the Cartesian process dimensions Dx = Dy = Dz = P
1
3 and

Px = Py = Pz = N

P
1
3

. Since the default MPI Dims create() returns Dsx ≥ Dsy ≥ Dsz, consid-

ering the equality condition, the worst case growth rate of the Z-plane size becomes P
1
3 , leading

to an increase in its communication and update time. This can be seen by assuming P to be

a perfect square (in addition to being a perfect cube) and noticing that our cache-minimizing

model yields Dx = Dy = P
1
2 with Dz = 1. Thus, the size s1 of the Z-plane according to our

model becomes s1 = PxPy = N

P
1
2
× N

P
1
2

= N2

P and the corresponding value considering the

default MDC s2 = N

P
1
3
× N

P
1
3

= N2

P
2
3

. The Z-plane then grows as s2
s1

= P
1
3 . Thus, the maximum

performance difference (theoretically) between the cache-minimizing topology and the standard

MDC occurs when the number of processes is both a perfect cube and a perfect square. Our

model shows that 1 ≤ Dzoptimal ≤ Dsz and hence minimizing only the communication volume

is insufficient.

Prefetch: For any topology, updating the Independent Computation (IC) kernel involves

multiple contiguous data streams and thus prefetch hides the latency. Since prefetch usually

exploits spatial locality and assumes streaming fetches, maximizing Pz should increase the

172 CHAPTER 6. MULTIGRID

utilization of the prefetched cache lines. The L1d cache has two hardware prefetchers in the

Intel Sandy Bridge architecture present on ARC2. The first one, the Data Cache Unit (DCU)

prefetcher, prefetches data in an ascending order from the address which has most recently

been loaded. Thus, assuming an address A has been loaded (and each address can contain

a double value) i.e. a cache-line is populated by double elements from A to A+7, the DCU

prefetches the data from A+8 to A+15 in another cache line. The second prefetcher, the In-

struction Pointer (IP)-based stride prefetcher, detects the stride in different load instructions

and prefetches a cache line from the current address which is the sum of the current address and

the stride. A stride of up to 2KB can be detected (or equivalently 256 double elements) [149].

The two prefetchers that bring data into the L3 cache are called the Streamer and the Spatial

Prefetcher. The data may not always be brought into the L2 cache due to pending read/write

misses. The Spatial Prefetcher fetches an additional 64 bytes into the unified L2 cache when a

cache-line is brought into L2. The Streamer monitors cache misses from L1d, hardware prefetch

requests from L1d and L1i Instruction cache requests, and can maintain up to 32 streams of

ascending/descending data [149]. Thus, most prefetchers depend on contiguous data streams

and hence it is important that Pz is maximized to minimize the presence of ghost data elements.

This is inherently connected to Cache Line Utilization (CLU) which is explained later in this

section. More specifically, the update of the Independent Compute and the packing/unpack-

ing/update of the X/Y Dependent Planes can benefit from maximizing Pz. It is important to

notice that the packing/unpacking/update of the Z-plane does not benefit from maximizing Pz.

In summary, efficient prefetching demands maximizing the value of Pz. However, this condition

violates the volume minimizing condition and increases the WPSS (Working Plane Set Size).

With an increase in the WPSS, there is a danger that the three planes required for the update

of a single plane may not fit into the LLC (Last Level Cache)/Cache-hierarchy.

Least Recently Used (LRU) Eviction: This cache eviction policy replaces the cache-lines

which have not been used recently. The distance between the mesh point ui,j,k and ui,j+1,k (see

Equation (6.1)) is Pz + 2 and typically for a large enough Pz, these mesh points will belong to

a different cache-line. Thus, the larger the value of Pz, the greater the clock cycles elapsed be-

tween re-accessing/re-using the mesh point ui,j+1,k to update vi,j+1,k. This translates to having

a higher probability for the eviction of this cache-line before it is re-used when Pz increases.

This factor is different from all the other factors in the sense that it requires minimization of

Pz to achieve maximum efficiency.

Planes Cache Misses: To minimize the cache-misses in packing/unpacking/updating planes

our model indicates that Px = Py and 1 ≤ Dzoptimal ≤ Dsz. This indicates a partition which is

close to a 2-D partition. As discussed above, when Pz is large, the Least Recently Used (LRU)

policy used to evict cache-lines negatively affects the re-use of a cache-line. Further, increas-

ing Pz increases the product 3PyPz (WPSS), possibly causing the combined size of 3 planes

6.6. CACHE-MISSES MINIMIZATION MODEL 173

required to update a plane to become larger than the cache capacity. It is to be noted that the

Effective WPSS (EWPSS) evaluates to 5PyPz as it involves 3 planes of the array u and one

plane each from the arrays v and f (see Equation (6.1), Section 6.6.1). Further, when Pz ≥ 256

double elements, the IP-based stride prefetcher of the L1d cache is rendered ineffective. Thus,

when packing/unpacking/updating a Z-plane for a sub-domain that has Pz ≥ 256, neither the

DCU nor the IP-based stream prefetcher are effective - resulting in increased cache-misses.

Cache Line Utilization (CLU): We define this to mean the fraction of data elements used

in a cache line which has been fetched. Thus, 0 ≤ Cache Line Utilization (CLU) ≤ 1. As an

example consider the packing of an X-plane which has contiguous data (except for the near-

to-boundary data points next to ghost/halo/boundary region). Consider a cache-line which

fetches data elements far-away from the ghost regions. All the elements in this cache line will

be used and hence the CLU = 1. But for a cache-line which has been prefetched/loaded con-

taining the two ghost points (one following the back sub-domain Dependent Layer and one

before the front Dependent Layer), the CLU = 6
8 = 0.75. Thus, theoretically if Pz −→ ∞,

almost all cache-lines will have a CLU = 1 while packing the X-plane. The same is the case

with the Independent Compute and packing/unpacking the Y-planes. The worst CLU is seen

with the Z-plane. Assuming Pz > 8 = L, where L denotes the cache-line length, the min-

imum CLU = 0 (for a cache-line that is prefetched after the cache-line containing the data

element on the Z-plane) and the maximum CLU = 1
8 = 0.125 for packing the Z-plane. Thus,

whereas increasing Pz increases the CLU for the IC and X/Y planes, it decreases it for the Z-

plane. Even when the data completely fits into the cache hierarchy, accessing elements from a

different cache-line incurs a penalty as compared to accessing the data from the same cache-line.

Vectorization: is a combination of loop unrolling and packed SIMD instructions - 256 bit

AVX instructions in case of Intel Sandy Bridge architecture. These work on streaming data

and thus, maximizing Pz is a step in this direction. With Independent Compute (IC), the ghost

data acts as bubbles in the data stream, i.e. the ghost points are fetched as part of a cache

line but are not used in the IC. The smaller the value of Pz and the larger the value of Py, the

greater will be the number of such junctions where ghost data forms a part of the cache line

fetched. Thus, Vectorization demands a maximal Pz which again is in direct contradiction with

the LRU policy discussed above and also deviates from the condition required for minimizing

the communication volume.

The essence of our discussion on the multiple factors influencing sub-domain dimensions is

summarized in Figure 6.7. The cache-misses minimization condition, particularly maximizing

Pz, as derived in our model in Section 6.6.1 is re-enforced by many factors, namely, Independent

Compute, Vectorization, Prefetch, Cache Line Utilization, Plane Cache Misses but is opposed

by the LRU Eviction policy and the Communication Volume minimization condition. The

174 CHAPTER 6. MULTIGRID

PyPx Pz

Independent
Compute

(No Tiling)
Vectorization Prefetch

Planes
cache misses

Comm. volume

LRU Eviction

Cache Line
Utilization

min max
max max

equ equ maxequ equ equ

min

max

Figure 6.7: Factors affecting selection of sub-domain dimensions

Table 6.4: Trade-off: Theoretical Communication Volume Vs Predicted Z-plane Cache-Misses

Sub-domain Dims. Z-Plane Communication

Px Py Pz Size Cache-misses n = 64 Volume n = 64

n n n n2 9n2 36864 6n2 24576

n√
2

n√
2

2n
n2

2

9n2

2
18432 6.65n2 27266

n√
4

n√
4

4n
n2

4

9n2

4
9216 8.5n2 34816

n√
8

n√
8

8n
n2

8

9n2

8
4608 11.56n2 47364

Independent Compute opposes the equalization condition imposed on Py by the Communication

Volume and the Plane Cache Misses condition but minimizing Py i.e. maximizing Dy may

increase the communication costs as |Dx − Dy| increases. The least constrained sub-domain

dimension is the X-dimension i.e. Px which needs to satisfy the condition Px = Py as dictated by

the Communication Volume and Plane Cache Misses conditions. We further emphasize that the

major benefit in deviating from a cubic sub-domain shape can be attributed to the decreasing

Z-plane packing/unpacking/updating cache-miss costs. At the same time, the increasing cost of

the communication volume cannot be neglected when the unit-stride dimension (i.e. Pz) grows

- even though the performance can increase due to the Vectorization, Prefetch and Cache Line

Utilization (CLU). Table 6.4 shows the trade-off between increasing communication volume

and decreasing cache-misses of the Z-plane. As the unit-stride dimension increases, the Z-plane

cache-misses decrease at the expense of increasing communication volume. Thus, the decrease

in cost due to the Z-plane cache-misses (most significant), improved Vectorization, Prefetch,

and Cache Line Utilization must outweigh the cost of increased communication volume along

with the extra cache-misses due to the LRU cache-eviction policy.

6.7. DYNAMIC CACHE TILING HEURISTICS 175

6.7 Dynamic Cache Tiling Heuristics

Cache tiling is one of the most important optimization techniques on modern microprocessor

systems. The aim of cache tiling is to utilize the data maximally which already resides in the

cache memory. Thus, if the computational sub-domain per process does not fit into the cache

memory, small chunks of it are processed such that they fit into the memory. It is difficult to

determine the tile shape and size even though cache-tiling is one of the most researched upon

problems, with a vast amount of literature and research groups focussing on it [6,12,16,17]. For

a 3-D sub-domain space, we focus on 2-D square tiles as outlined in [6] and leave the unit-stride

dimension uncut. Our aim is to take away the burden of finding the optimal tile size from the

application programmer and find a method for creating a light-weight, dynamic cache-tile size

which can be calculated at run-time. We thus outline three heuristics designed to serve this

purpose. It is to be noted that although we mention and use the L3 cache-per-core, they can

be used for any cache i.e. L1, L2 or L3.

6.7.1 H1: based on WSS

The first heuristic H1 is based on the Working Set Size (WSS). We also evaluate this heuristic

in the section describing the experimental results. To construct this we assume a square tile in

the X and Y direction i.e. least unit-stride dimensions and leave the Z dimension (unit-stride

dimension) uncut. As seen in Equation (6.1) the weighted Jacobi update uses three arrays.

Thus, we assume that the L3 cache per core is equally divided between these three arrays.

Since the tiling is done only for the read array, we equate the tile size to one-third of the L3

cache size. Stated more precisely, the total number of elements in the tile should be equal to

the number of elements that can be held in one third of the L3 cache. Since the L3 cache is 2.5

MB per core for ARC2, the total elements of type double that can be contained in a third of it

is 2.5×1024×1024
3×8 . Thus, if the tile size is assumed to be k in the X and Y dimension but uncut

in the unit-stride dimension, these number of elements can be equated to k2 × (Pz + 2). This

is further elaborated in the experimental section where we evaluate the performance of this

heuristic against the optimal tile size, obtaining the latter being an extremely computational

intensive and time consuming process.

6.7.2 H2: based on number of working planes

The problem with H1 is that we assume that we can divide the L3 cache equally between the

three arrays used in Jacobi updates. This is not so as more elements of the read array are

brought into the cache as compared to the write and RHS array (see Equation (6.1)). In this

heuristic, we divide the L3 cache depending on the number of planes that are needed to update

a single plane of the solution array. Thus, for a 7-pt stencil, 3 planes of the read array are

needed, whereas only a single plane of each of the write and RHS array are needed. Thus, we

can be more precise in the sense that we can allocate 3
5 of the L3 cache to the read array for

176 CHAPTER 6. MULTIGRID

which tiling is performed and allocate the remaining to the other two arrays. Thus, using H2,

we equate the tile size to 3×2.5×1024×1024
5×8 elements.

6.7.3 H3: based on Data Streams

A drawback of H2 becomes visible when we consider and compare a 7-pt stencil and a 27-pt

stencil. They both require three planes of the read array to update the write array. Thus using

H2 we do not get a different tile size for the 7-pt and 27-pt stencil although we expect that

the fraction of the cache occupied by the read array will be larger in case of the 27-pt stencil.

Thus, H3 divides the L3 cache depending on the number of data-streams. For a 7-pt stencil,

we have five different data streams in the read array and one data stream each for the write

and RHS array. Thus, the fraction of cache occupied by the read array is 5
7 of the total size.

The number of data-streams for the 27-pt stencil is nine in the read array and (again) one each

for both the write and RHS array. This logically allocates 9
11 of the L3 cache to the read array

and the tile size is equated to the number of elements contained in this fraction.

Another heuristic based on the number of elements used for each array can be constructed

but since elements are fetched in groups, i.e. in terms of cache-lines, this heuristic is not appro-

priate for structured stencil codes (but might possibly find use in unstructured domains). We

do not experiment and evaluate the heuristics H2 and H3 as exploring tiling is not the focus of

the current work (but we add this investigation as a candidate in our future work).

6.8 Experimental Results

We first carry out a set of performance evaluations using various topologies on a single node,

followed by multiple nodes. Our sequence of experiments is as follows:

- Evaluate and analyze the Independent Compute (IC) for increasing grid sizes and process

numbers for characterizing the shared L3 cache behaviour on ARC2

- Optimize the IC using established techniques

- Evaluate and analyze plane communication times for increasing grid sizes with two dif-

ferent intra-node process placement policies on ARC2

- Validate the inferences from our model by combining the IC and plane communication

times on ARC2

- Evaluate a light-weight, dynamic, tiling heuristic against exhaustive tiling and compiler

switches for on-node Parallel Geometric Multigrid on ARC2 and ARC3

- Present performance results for multiple nodes on ARC2 and ARC3

6.8. EXPERIMENTAL RESULTS 177

- Observe the relationship between the frequency and size of Z-planes passing through a

hierarchy of networking elements and optimal partitions on ARC2

- Present Weak Scaling and Strong Scaling results for ARC2 and ARC3

6.8.1 Single Node

With the growing number of cores in a single node, it becomes important to characterize

the intra-node behaviour of applications. Further, in a shared cluster, the traffic generated

by multiple user applications does not affect the on-node communication latencies. A single

node of our cluster ARC2 consists of 8 cores per-socket with a total of 2 sockets. The default

scheduling policy is --bind-to-core --bysocket which maximizes the bandwidth per core

(the first process is assigned to core 0 in socket 0, the second process is allocated to core 0 in

socket 1, the third process is allocated core 1 in socket 0 and so on). With OpenMPI 1.6.5,

mpiexec --report-bindings displays the default binding in the standard error file. As the

number of processes increase, the contention for the LLC (20 MB/socket) and main memory

(16 GB/socket) per socket increases. To study this behaviour, we weakly scale a problem of

given size per core but with no communication. Thus, the problem size per process remains

constant as we increase the number of processes. The average execution time of n processes

should ideally remain constant as each core executes a same-sized but completely independent

problem. In particular, each core updates the Independent Computation (IC) zone of a sub-

domain using a 7-pt stencil. This is equivalent to performing smoothing operations on the IC

at the finest grid level only.

6.8.1.1 Weak Scaling the IC

Figure 6.8 shows the maximum execution times of the Independent Compute kernel on any

process, with each core (or process) having a sub-domain of size 643

16 (Figure 6.8a), 1283

16 (Figure

6.8b), 2563

16 (Figure 6.8c) and 5123

16 (Figure 6.8d), respectively. If we run a single process on

a 643 domain within a 16-core node, then that process handles a sub-domain of size 643

16 . If

we run 8 processes on the 16-core node, then each process handles a sub-domain of the same

size i.e. 643

16 . Similar cases are used for other domains i.e. 1283, 2563 and 5123. Further, the

shape of the sub-domain varies with the different topologies obtainable with P = 16. For

example, with a topology of 16 × 1 × 1 (and domain 643), a sub-domain having dimensions

Px × Py × Pz = 4× 64× 64 is produced, whereas the topology 4× 4× 1 produces sub-domains

each having shape 16× 16× 64. Since there is no communication between processes and each

core operates independently on given equal sized sub-domains, the time for the Independent

Compute should ideally be equal for all processes, irrespective of the number of cores (or pro-

cesses) we utilize. However, in practice, this is not true as increasing the process count leads

to an increase in the contention for shared resources such as the Last Level Cache and main

memory per-socket. The following discussion elaborates how, with an increasing process count,

178 CHAPTER 6. MULTIGRID

16
x1

x1

8x
2x

1

8x
1x

2

4x
4x

1

4x
2x

2

4x
1x

4

2x
8x

1

2x
4x

2

2x
2x

4

2x
1x

8

1x
16

x1

1x
8x

2

1x
4x

4

1x
2x

8

1x
1x

16
0

0.01

0.02

0.03

0.04

0.05

Topology

R
u

n
-t

im
e

(s
ec

on
d

s)

1-Process

2-Processes

4-Processes

8-Processes

16-Processes

(a) IC run-times for 16384 cells per core
and 384 KB working set per process

16
x1

x1

8x
2x

1

8x
1x

2

4x
4x

1

4x
2x

2

4x
1x

4

2x
8x

1

2x
4x

2

2x
2x

4

2x
1x

8

1x
16

x1

1x
8x

2

1x
4x

4

1x
2x

8

1x
1x

16
0

0.2

0.4

0.6

0.8

1

1.2

Topology

R
u

n
-t

im
e

(s
ec

on
d

s)

1-Process

2-Processes

4-Processes

8-Processes

16-Processes

(b) IC run-times for 131072 cells per core
and 3 MB working set per process

16
x1

x1

8x
2x

1

8x
1x

2

4x
4x

1

4x
2x

2

4x
1x

4

2x
8x

1

2x
4x

2

2x
2x

4

2x
1x

8

1x
16

x1

1x
8x

2

1x
4x

4

1x
2x

8

1x
1x

16
2

3

4

5

6

7

8

Topology

R
u

n
-t

im
e

(s
ec

on
d

s)

1-Process

2-Processes

4-Processes

8-Processes

16-Processes

(c) IC run-times for 1048576 cells per core
and 24 MB working set per process

16
x1

x1

8x
2x

1

8x
1x

2

4x
4x

1

4x
2x

2

4x
1x

4

2x
8x

1

2x
4x

2

2x
2x

4

2x
1x

8

1x
16

x1

1x
8x

2

1x
4x

4

1x
2x

8

1x
1x

16

20

30

40

50

60

70

80

Topology

R
u

n
-t

im
e

(s
ec

on
d

s)

1-Process

2-Processes

4-Processes

8-Processes

16-Processes

(d) IC run-times for 8388608 cells per core
and 192 MB working set per process

Figure 6.8: Weak Scaling Independent Compute (IC) for P=1,2,4,8 and 16 processes with 643

16 ,
1283

16 , 2563

16 and 5123

16 cells per core (with no communication) to measure impact of shared Last
Level Cache per-socket contention on execution times on ARC2

6.8. EXPERIMENTAL RESULTS 179

the contention for the above-mentioned shared resources leads to a deterioration of performance

within a node, even when the processes operate on independent sub-domains.

With a Working Set Size (WSS) of approximately 384 KB, i.e. 3 arrays of type double

with 16384 elements (= 643

16) each, the total WSS remains less than the shared Last Level Cache

(LLC) per core i.e. 2.5 MB/core. It can be seen from Figure 6.8a that the characteristics of

the curve indicate the unchanging behaviour of the topologies as the process count is increased

from one to sixteen. Further, the heavy overlapping indicates that the execution times are

approximately equal even when the LLC and shared memory contention increases with an in-

creasing process count. This is expected as the size(WSS-per-process) < size(LLC-per-core).

An anomaly is that the execution time of a single process is more than that of two and four

processes. A plausible reason could be that CentOS and OpenMPI 1.6.5 do not pin the single

process [150] to a single core. But since we never run a single process per-node in the actual

application, we do not investigate this any further. Figure 6.8b shows the same experiment but

with a domain size of 1283 per core and 131072 cells/core creating a WSS of ≈ 3MB per core.

With a per socket shared LLC of 20 MB and with 8 processes per node (i.e. 4 per socket due

to the binding --bind-to-core --bysocket configuration), the combined WSS of 4 processes

is small enough to fit into the per socket LLC. Thus, Figure 6.8b shows no sudden jumps in

the execution times up to 8 processes. But with 16 processes, the cumulative WSS of 48 MB

exceeds the LLC and the penalty of accessing the main memory can be clearly seen in the

baseline implementation running 16 processes. Figures 6.8c and 6.8d show the Weak Scaling

of the Independent Computation kernel with no communication for domains of sizes 2563 and

5123, respectively. In both the cases the WSS per process exceeds the shared LLC per core.

The change in the shape of the curve from eight to sixteen processes in Figure 6.8c shows that

the execution timings need not necessarily remain fixed with respect to each other (i.e. the

execution pattern of topologies in going from a smaller process count to a higher process count

may not follow similar curves). A similar change can be seen in Figure 6.8d for the plot of 4,

8 and 16 processes. It is to be noted that even with the baseline implementation, there are

many topologies at each domain size which outperform the sub-domain created by the standard

topology, i.e. the topology returned by MPI Dims create() (henceforth referred to as MDC or

the standard topology). From the results it can be seen that process topologies which have

a higher value of Dy outperform other topologies in executing the Independent Computation

kernel (IC) with growing data size as predicted in Section 6.6.4 (see Independent Compute

(IC)). The only exception to this is the execution times of a 1283

16 sub-domain with 16 processes

(see Figure 6.8b). In this case, the topologies having Dx > Dy outperform other topologies.

We further elaborate the discussion to include the effects of memory bandwidth on Weak

Scaling the Independent Compute without communication. For the purposes of this discussion,

we reproduce the memory bandwidths of various cache levels of the Intel Sandy Bridge E5-2670

180 CHAPTER 6. MULTIGRID

processor from [7]. The various approximate per-core bandwidths are:

1. L1 read: 16 GB/sec,

2. L2 read: 15.9 GB/sec,

3. L3 read: 15 GB/sec,

4. Main memory read: 10 GB/sec.

5. Stream benchmark: 14 GB/sec (only 1 core active), 3.8 GB/sec (all 16 cores active)

Thus, from the above, we can infer that the aggregate Stream bandwidth in fully subscribed

mode is 16× 3.8 = 60.8 GB/sec. The aggregate bandwidth of 60.8 GB/sec for a single node is

approximately 59% of the peak (theoretical) memory bandwidth of 102.4 GB/sec.

The topologies in Figure 6.8a scale i.e. the time taken for P=1, 2, 4, 8 and 16 processes is

approximately the same. Having a WSS of 384 KB per process means that with P=16 the L1d

cache (32KB) and unified L2 cache (256 KB) are filled to capacity and approximately 384KB -

32 KB - 256 KB = 96 KB of data resides in the shared L3 cache for each core. This clearly means

that most requests (read or write) are fulfilled from the L2 cache (because it contains 256
384 = 66%

of data of each process). The least time of execution for P=16 processes is t = 2.47× 10−2 sec

in Figure 6.8a. Hence, the bandwidth B = WSS
t = 384×1024

2.47×10−2 bytes/sec = 15.91 MB/sec. The

execution timings shown in Figures 6.8a, 6.8b, 6.8c and 6.8d are for 1000 iterations and hence

the actual bandwidth becomes 15.91 MB/sec ×1000 = 15.91 GB/sec. This value is in almost

perfect agreement with the maximum L2 read bandwidth of 15.9 GB/sec (see enumerated list

above). It is to be noted that we only consider the read bandwidth here as the write bandwidth

is only 11% of the total bandwidth. This is so because in the weighted Jacobi algorithm having

a RHS term, the total write bandwidth is = 1
(1+1+6+1) = 1

9 = 11% of the total read-write traffic.

Figure 6.8b exhibits a jump in the execution timings when going from P=8 to P=16 pro-

cesses. With P=8, there are 4 processes in each socket because of the default process placement

policy of ARC2. Hence, with a WSS = 3 MB/process, we get the aggregate WSS as 4× 3 =12

MB/socket, which is less than the hardware capacity of 20 MB LLC/socket. With 16 processes,

each socket contains 8 processes and thus a combined WSS of 8× 3 = 24 MB becomes greater

than the hardware capacity of 20 MB LLC/socket. This clearly indicates that the jump in exe-

cution times is because of the penalty of accessing the main memory. Further, the total WSS at

P=16 is now 24 MB + 24 MB = 48 MB. Since approximately 40
48 = 83% of the requests are ful-

filled by the L3 cache, we expect that the main memory bandwidth does not saturate even with

P=16. From Figure 6.8b we note that the least time taken by P=16 processes is t = 3.46×10−1

sec. Hence, B = WSS
t = 9 MB/sec. Since the execution times are for 1000 iterations, the actual

bandwidth becomes 9× 1000 = 9 GB/sec. This is much below the max 15 GB/sec read band-

width of the L3 cache per-core but very close to the 10 GB/sec of main memory read-bandwidth

6.8. EXPERIMENTAL RESULTS 181

per process. The aggregate bandwidth for P=16 is then 16 × 9 = 144 GB/sec - a value which

is greater than the bandwidth of 60.8 GB/sec for 16 processes obtained using the Stream triad

benchmark. This illustrates that the main memory bandwidth is not saturated and hence the

jump in execution times from P=8 to P=16 is purely because we exceed the total LLC capacity.

Figure 6.8c shows the same experiment with a WSS per process of 24 MB. Hence, even with

P=2 processes, the total LLC capacity (40 MB) is exceeded. It can be seen from Figure 6.8c

that the execution times scale almost up-to P=8 processes but with P=16 the times show a large

increase. With P=8, the least execution time is t = 3.32 seconds for 1000 iterations. Hence,

for P=8, B = WSS
t = (24×1024×1024×1000)

(3.32) = 7.58 GB/sec per process. For P=8 processes, the

aggregate bandwidth then becomes 7.58 × 8 = 60.6 GB/sec. This value almost coincides with

the Stream bandwidth of 60.8 GB/sec for the main memory. Further, with P=8, the total WSS

is 8× 24 = 192 MB and hence only 40
192 ≈ 20% i.e. read requests are fulfilled from the LLC as a

rough approximation. Thus, the main memory provides the remaining 80% of the requests and

the aggregate main memory bandwidth calculated as 60.6 GB/sec indicates the saturation of

bandwidth. With P=16, since we have already saturated the bandwidth, the execution times

as seen in Figure 6.8c do not scale. For P=16, the lowest execution time is t = 6.54 sec and

hence B = WSS×1000
t = (24×1024×1024×1000)

6.54 = 3.84 GB/sec. Thus, the aggregate bandwidth

of 16 processes is 3.84 × 16 = 61.5 GB/sec (which again is extremely close to 60.8 GB/sec

derived from the Stream benchmark). Clearly, this jump in execution times from P=8 to P=16

is because of the main memory bandwidth saturation.

Figure 6.8d shows the execution times of P = 1, 2, 4, 8 and 16 processes for a WSS-

per-process = 192 MB. Thus, even a single process exceeds the total LLC of 40 MB. The

execution times scale up-to P=8 processes approximately. The least execution time for P=8

processes is t = 28.1 sec for 1000 iterations. Hence, the bandwidth per process is B = WSS
t =

192×1024×1024×1000
28.1 = 7.16 GB/sec. For 8 processes the aggregate bandwidth is then 7.16× 8 =

57.31 GB/sec. This value indicates that we have almost reached the limit indicated by the

Stream benchmark i.e. 60.8 GB/sec and P=16 should not scale. With P=16, the least t = 53.1

sec for 1000 iterations and hence B = WSS
t = (192×1024×1024×1000)

53.1 = 3.79 GB/sec. The

aggregate bandwidth is then 3.79×16 = 60.6 GB/sec, which coincides with the maximum main

memory bandwidth obtained using the Stream benchmark. In summary, the sudden increase in

execution times in going from P=8 to P=16 processes is because of exceeding the LLC capacity

when considering Figure 6.8b. Further, the sudden increase in execution times between P=8 to

P=16 is because of the saturation of main memory bandwidth when considering Figures 6.8c

and 6.8d.

182 CHAPTER 6. MULTIGRID

16
x1

x1

8x
2x

1

8x
1x

2

4x
4x

1

4x
2x

2

4x
1x

4

2x
8x

1

2x
4x

2

2x
2x

4

2x
1x

8

1x
16

x1

1x
8x

2

1x
4x

4

1x
2x

8

1x
1x

16
50

55

60

65

70

75

80

85

Topology

R
u
n
-t

im
e

(s
ec

o
n
d
s)

Baseline

Compiler Optimized

Heuristic Tiling

Exhaustive Tiling

(a) Execution times

Topology WPSS

16x1x1 786432
8x2x1 393216
8x1x2 393216
4x4x1 196608
4x2x2 196608
4x1x4 196608
2x8x1 98304
2x4x2 98304
2x2x4 98304
2x1x8 98304
1x16x1 49152
1x8x2 49152
1x4x4 49152
1x2x8 49152
1x1x16 49152

(b) WPSS for Topologies

Figure 6.9: Baseline/naive implementation, Compiler optimized run-times with -O3 -xHOST

-ip -ansi-alias -fno-alias, Heuristic square tile for X/Y dimensions (based on Rivera and
Tseng [6] square tiles), Exhaustive Tiling for domain of size 5123 and 16 processes on ARC2,
default MPI Dims create() = 4× 2× 2

6.8.1.2 Compiler Switches and Heuristic Tiling (H1)

The performance of the topologies can be enhanced by using techniques such as optimal compiler

switches, cache tiling, vectorization with appropriate alignment and exclusive SIMD directives.

We compare the execution times of various topologies with a domain size of 5123 with these

optimizations. The objective is to optimize the bulk of the computation, i.e. the Independent

Computation kernel of the sub-domain. The results are presented in Figure 6.9 where the tiled

code generally performs better than the code exploiting optimal compiler switches. We create a

light-weight, run-time, space tiling heuristic H1 (see section 6.7.1) based on the size of the LLC

per core and a working set (WSS) of three equal sized arrays. Following the work of Rivera and

Tseng [6], we assume that square tiles should be used in the X and Y direction i.e. CX = CY .

Thus, for a single 3-D array having CX = CY = k and an un-cut unit-stride dimension Pz + 2,

the number of elements should equate to:

k2 × (Pz + 2) =
2.5

3
× 1024× 1024

8
,

yielding

k =

⌈√
104857.6

(Pz + 2)

⌉
.

Although with exhaustive tiling we are able to find tile sizes CX and CY (with CX 6= CY for

6.8. EXPERIMENTAL RESULTS 183

the majority of the topologies) which outperform the heuristic that we create, the tile iteration

space becomes huge and thus finding the optimum becomes a time consuming process. The task

of optimizing stencils depends heavily upon the hardware parameters such as cache sizes, cache-

line size, prefetch policies, stencil order, data size, and the algorithm employed, etc. [151]. The

range of relative error between the execution times found using the heuristic and the optimal tile

size is ≈ 4− 10%. An observation is that most process topologies outperform the MDC topology

in the cases of exhaustive and heuristic tiling. Specifically, the compiler optimized version of

1×16×1 outperforms the Independent Computational kernel created by the standard topology

by ≈ 25.2% (see Figure 6.9a).

6.8.1.3 Working Planes Set Size (WPSS)

To understand the difference in the run-times of the baseline version of the different sub-

domains, we group the various process topologies on the basis of the Working Planes Set Size

(WPSS). The WPSS for a 7-pt stencil is the number of elements in the three planes which are

required to update a single plane. Thus, the total elements (double type) contained in three

planes are 3 × (Py + 2) × (Pz + 2) ≈ 3 × Py × Pz. We cluster the topologies having the same

WPSS into a single group (see Figure 6.9b). To compare the execution times of the IC kernel

of two topologies T1 and T2, their WPSS is computed. The WPSS of both T1 and T2 may or

may not fit into the LLC−per−core
3 , where the denominator indicates that the LLC is assumed

to be equally divided between three arrays namely, the write array (v), the read array (u) and

the array representing the source (or RHS) term (f) (see Equation (6.1) in Section 6.6). We

can distinguish between at least three cases:

1. WPSS(T1) 6= WPSS(T2) and both > LLC−per−core
3 : In this case, more weight is given

to the WPSS as compared to the Vectorization factor (i.e. the length of Pz - the larger

the better).

2. WPSS(T1) = WPSS(T2) and WPSS > LLC−per−core
3 : The topology with a higher value

of Pz outperforms the other.

3. WPSS < LLC−per−core
3 : Here the demarcation between the performance of topologies

becomes blurred and needs more investigation.

The topology 16 × 1 × 1 in Figure 6.9a deviates from the first rule above and outperforms

topologies 8× 2× 1 and 8× 1× 2 despite having a larger WPSS. Empirically, it is very difficult

to exactly determine the working set brought into the different cache levels but still the rules

formulated above provide a substantially accurate insight into the relative baseline performance

of various topologies.

184 CHAPTER 6. MULTIGRID

6.8.1.4 Communication times of Dependent Planes

Figures 6.10a, 6.10b, 6.10c and 6.10d show the individual maximum time for sending and

receiving X/Y/Z planes to/from neighbouring processes within an SMP (Symmetric Multipro-

cessor) of ARC2 for P = 16 and increasing plane sizes. The communication times of topologies

16× 1× 1, 1× 16× 1 and 1× 1× 16 form the basis of the following observations:

1. For the same sized X, Y and Z planes, the Z-plane takes the maximum amount of time

(as indicated in Table 6.3). For example, topologies 16× 1× 1, 1× 16× 1 and 1× 1× 16

all pass equal-sized inter-socket X, Y and Z planes. At N = 64, 128, same sized Z-planes

take about 3x the time as compared to the X/Y planes. At N = 256 and 512, they take

9x and 12x the time, respectively. Our predictions in Table 6.3 show that the Z-plane

communication is 8x more expensive than its siblings.

2. At N = 64 and 128, the same sized X-planes on an average take a factor of 1.2 more

time than the Y-planes but at N = 256 and 512 the Y-planes take a factor of 1.03 more

time than the X-planes. Our predictions show that same sized X and Y-planes should

take the same amount of time (see Table 6.3 in Section 6.6).

3. When the surface area of planes is quadrupled, the communication times of inter-socket

X planes increases by factors of 3.3-4.5, the inter-socket Y-planes by 4-4.68 whereas

the factor is between 3.73-15 for the inter-socket Z-planes. These ranges of times for the

X/Y planes are as expected, but the 15x jump in timings from N = 128 to N = 256 for

the Z-plane is much greater than the expected, theoretical, 4 times increase.

We consider the topology 1 × 1 × 16 to understand the abnormal increase in the commu-

nication timings of the Z-plane. The topology 1 × 1 × 16 produces Pz = 8 for N = 128 and

Pz = 16 for N = 256. The distance between any two adjacent mesh points in the Z-plane

(Zadj = Pz + 2) then becomes 10 and 18, respectively. The L1 streaming hardware prefetcher

(DCU - Data Cache Unit) fetches only one extra cache-line with ascending addresses. Thus,

effectively two cache lines or 64+64
8 = 16 double elements are fetched. For the discussion that

follows, we assume that the cache is initially empty and we are accessing the elements of the

Z-plane. With Zadj = 10, after an initial cache-miss, there is no cache-miss to access the second

element as the prefetch mechanism is able to fetch an extra 8 double elements which include

the next element on the Z-plane. However, with Zadj = 18, a cache-miss occurs when accessing

both the elements i.e. a cold cache-miss followed by a cache-miss when the second element of

the Z-plane is accessed. As discussed in Section 6.6.4, this illustrates how prefetching affects

the communication times for a particular choice of sub-domain dimensions.

In summary, the majority of timings for various topologies can be explained and compared

on the basis of the following: (i) Size of the plane being passed (ii) Number of planes being

6.8. EXPERIMENTAL RESULTS 185

0 0.5 1 1.5 2

·10−4

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(a) Planes timings for N = 64

0 1 2 3 4 5 6 7

·10−4

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(b) Planes timings for N = 128

0 0.2 0.4 0.6 0.8 1

·10−2

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(c) Planes timings for N = 256

0 1 2 3 4 5 6 7

·10−2

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

0 1 2 3 4 5 6 7

·10−2

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(d) Planes timings for N = 512

Figure 6.10: Maximum average time (maximum time over processes and average of runs) to send
and receive X/Y/Z planes separately within a 16-core node for topologies (--bind-to-core
-bysocket) using Intel 16.0.2 and OpenMPI 1.6.5 on ARC2, default MPI Dims create() =
4× 2× 2

186 CHAPTER 6. MULTIGRID

0 0.5 1 1.5 2

·10−4

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(a) Planes timings for N = 64

0 2 4 6 8

·10−4

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(b) Planes timings for N = 128

0 0.2 0.4 0.6 0.8 1

·10−2

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(c) Planes timings for N = 256

0 1 2 3 4 5 6 7

·10−2

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

0 1 2 3 4 5 6 7

·10−2

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

(d) Planes timings for N = 512

Figure 6.11: Maximum average time (maximum time over processes and average of runs) to send
and receive X/Y/Z planes separately within a 16-core node for topologies ((--bind-to-core
-bycore))

exchanged (iii) Region of movement of plane i.e. intra-socket or inter-socket and (iv) Cache-

misses during packing/unpacking of plane (depends on whether it is an X/Y/Z plane). The

timings in Figures 6.10a, 6.10b, 6.10c and 6.10d do not exactly reflect the actual timings in

the real scenario since the X/Y/Z planes in these simulations are being passed and received

separately i.e. a single type of plane (either X or Y or Z) is being handled separately. In a real

application, all types of planes are passed simultaneously depending on the implementation.

Thus, the latter should produce an increased number of simultaneous send/receive requests per

process and hence deteriorate the total communication timings further.

6.8. EXPERIMENTAL RESULTS 187

0 0.5 1 1.5 2

·10−4

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

IC

(a) Combined IC and plane timings, N = 64

0 0.5 1 1.5 2

·10−3

16x1x1

8x2x1

8x1x2

4x4x1

4x2x2

4x1x4

2x8x1

2x4x2

2x2x4

2x1x8

1x16x1

1x8x2

1x4x4

1x2x8

1x1x16

Time (sec)

T
op

ol
og

ie
s

X-Planes

Y-Planes

Z-Planes

IC

(b) Combined IC and plane timings, N = 128

Figure 6.12: Relative plane communication and Independent computation times for N = 64
and N = 128 with P = 16 ((--bind-to-core -bysocket)) using Intel 16.0.2 and OpenMPI
1.6.5 on ARC2, plane update execution times are not shown, default MPI Dims create() =
4× 2× 2

Another intra-node process binding scheme, namely --bind-to-core --bycore, fills up a

single socket with increasing ranks instead of a round-robin policy of utilizing sockets. The

key idea is to reduce the cost of communication by increasing the possibility of neighbouring

ranks residing on the same socket. Figures 6.11a, 6.11b, 6.11c and 6.11d show the timings for

sending X/Y/Z planes within an SMP with the core bindings being --bind-to-core -bycore.

For the topologies 16 × 1 × 1, 1 × 16 × 1 and 1 × 1 × 16, and with increasing plane sizes, the

communication time of X planes increases by a factor 4-6, for Y planes by 3.5-5 and Z planes

by 3.5-12 (compared to a 3.73-15x increase in --bind-to-core -bysocket). The abnormal

jump by a factor of 12 for Z-planes occurs when the planes size increases from 128 × 128 to

256 × 256 elements. Thus, with Zadj changing from 10 to 18, the L1 Streaming hardware

prefetcher (Data Cache Unit) is unable to prefetch the cache-line which contains the next mesh

point, resulting in a miss for every mesh point when Zadj = 18. For equal sized X/Y/Z planes,

the communication of the Z plane is a factor 6-15 more expensive than X/Y planes when the

binding policy is --bind-to-core --bycore (compared to a 3-12x increase in --bind-to-core

-bysocket).

6.8.1.5 Combining IC and DP timings

Figures 6.12a and 6.12b show the relative/combined times for the Independent Compute (IC)

and communication of planes. At N = 64 and P = 16 (16-core node), the communication

cost in almost every topology exceeds the IC cost, clearly indicating that the communication

188 CHAPTER 6. MULTIGRID

Table 6.5: h-independence: of Parallel Geometric Multigrid, Coarsest Grid tolerance = 10−8,
Finest Grid tolerance = 10−5

Fine Grid Levels Coarsest Grid V-cycles V(3,3)

32× 32× 32 2 16× 16× 16 2
64× 64× 64 3 16× 16× 16 2

128× 128× 128 4 16× 16× 16 2
256× 256× 256 5 16× 16× 16 2
512× 512× 512 6 16× 16× 16 2

1024× 1024× 1024 7 16× 16× 16 2
2048× 2048× 2048 8 16× 16× 16 2

cannot be completely hidden within computation at coarser levels of a multigrid solver. We

would expect the communication to remain completely hidden within computation at finer grid

levels as shown by the larger computation times in Figure 6.12b but this overlap is completely

governed by the OpenMPI implementation and the underlying hardware. These two figures

further show that a topology which has the least IC computation time may not yield the

optimal partition as it may have a higher communication time as compared to other topologies.

For example the topology 1 × 16 × 1 has the least IC execution time at N = 64, P = 16, as

can be seen in Figure 6.12a, but its total execution time (disregarding overlap) is more than a

topology such as 4 × 4 × 1 or 4 × 2 × 2. This observation lends support to our model, as the

latter topologies have a much more balanced Dx and Dy.

6.8.1.6 Multigrid

Before we describe the experimental results of Parallel Geometric Multigrid, we demonstrate

below the correctness of our Multigrid implementation by demonstrating the property of h-

independence of the convergence rate of Geometric Multigrid. The h-independence condition

means that the number of V-cycles in Geometric Multigrid should approximately remain con-

stant, and independent of the fine grid size, if we fix the coarsest grid size. Table 6.5 shows

the number of V-cycles with three pre and post smoothing steps, i.e. V(3,3), which attains this

property. As can be seen from the table, when the problem size increases from 32 × 32 × 32

to 2048 × 2048 × 2048 i.e. an increase of 218 times, the number of V-cycles remain constant

for a tolerance of 10−8 for the coarsest grid solve and 10−5 for the finest grid. The tolerance

is the ratio of the initial l2 norm of the residual to the current norm. As described in [25],

the restriction stencil operator must be modified near the Neumann boundaries to prevent the

convergence rate of Multigrid from deteriorating.

Figure 6.13a shows the Baseline (Base) (-O2), aggressively Compiler Optimized (CO) (-O3

-xHOST -ip -ansi-alias -fno-alias) and Heuristically Tiled (HT) versions of Parallel Ge-

ometric Multigrid for the largest problem that we could fit into a 16-core node of ARC2 i.e.

6.8. EXPERIMENTAL RESULTS 189

4 6 8 10

4x4x1

8x2x1

2x8x1

4x2x2

8x1x2

16x1x1

1x16x1

1x8x2

2x4x2

4x1x4

2x2x4

1x4x4

2x1x8

1x2x8

1x1x16

Run-time (seconds)

T
op

ol
og

y

Base

CO

HT

(a) Topology Run-times for P = 16, N = 512, Levels = 6, Coarsest iterations = 100, 5 V(3,3)
cycles, Intel 16.0.2, OpenMPI 1.6.5, ARC2, default MPI Dims create() = 4× 2× 2

3 4 5 6 7 8

4x6x1
6x4x1

12x2x1
2x12x1
4x3x2
6x2x2
3x4x2
2x6x2

12x1x2
1x12x2
4x2x3
2x4x3
3x2x4
2x3x4
6x1x4
1x6x4
4x1x6
2x2x6
1x4x6

2x1x12
1x2x12

Run-time (seconds)

T
op

ol
og

y

Base

CO

HT

(b) Topology Run-times for P = 24, N = 576, Levels = 5, Coarsest iterations = 400, 5 V(3,3)
cycles, Intel 17.0.1, OpenMPI 2.0.2, ARC3, default MPI Dims create() = 4× 3× 2

Figure 6.13: Intranode execution times of Parallel Geometric Multigrid using Baseline (Base),
aggressive Compiler Optimization (CO) and Heuristically Tiled (HT) versions on ARC2 and
ARC3

190 CHAPTER 6. MULTIGRID

(a) Topology 4× 4× 1 (b) Topology 4× 2× 2

Figure 6.14: 16 processes in a single node of ARC2 arranged by --bind-to-core -bysocket,
Blue squares represent socket 1, Red balls represent socket 2, thick black lines are Z-planes,
thick blue lines are X-planes, thick red lines are Y-planes.

approximately 8 million cells/core (or 0.13 billion dof). We use the H1 heuristic for the HT

version (see Section 6.7.1). It can be noted that a topology such as 4× 4× 1 outperforms the

standard topology 4 × 2 × 2 in all three versions even though the former sends (or receives) a

maximum of two inter-socket Y-planes per process that are two times larger than the Y-planes

of the latter topology, which sends (or receives) only intra-socket Y-planes. The situation is

shown in Figure 6.14a and 6.14b where the different cores of a particular socket are shown by

means of squares and circles, respectively. Each of the X/Y and Z planes are shown by means of

a different coloured line in these figures. The performance gap between topologies stems from

the fact that the topology 4× 2× 2 send and receives inter-socket Z-planes which are absent in

4 × 4 × 1. Thus, the cost of packing/unpacking the Z-plane for 4 × 4 × 1 is zero whereas the

standard topology has to pack/unpack/communicate the high cost Z-plane (see the magnified

section of Figure 6.10d).

Figure 6.13b shows the execution time of Parallel Geometric Multigrid on a single node of

the ARC3 cluster using the Intel 17.0.1 compiler and OpenMPI 2.0.2 with approximately 8

million cells/core (or 0.19 billion dof). A significant difference between the OpenMPI 1.6.5 and

OpenMPI 2.0.2 implementations is the change of the shared memory module (-sm module) to

the -vader module, the latter offering performance benefits over the former. With 24 cores,

the Heuristically Tiled version of 6 × 4 × 1 and 4 × 6 × 1 outperform the MPI Dims create()

topology of 4 × 3 × 2. The WPSS of 4 × 6 × 1 is less than that of 6 × 4 × 1 and thus is the

major factor in contributing to the improved performance of the former within a single node

(as process placement effects within a single node can be ruled out). It may be noted that

although having a large Pz offers an enhanced opportunity for Vectorization, it decreases the

6.8. EXPERIMENTAL RESULTS 191

probability of the data remaining in the cache before that data is accessed again because of the

Least Recently Used (LRU) eviction policy (see Figure 6.7). The intranode execution trends

of topologies on ARC2 and ARC3 show that our predictions, and the behaviour of topologies,

are consistent across different hardware.

Figures 6.13b, 6.15a, 6.15b and 6.15c show the effect of different combinations of compil-

ers and MPI implementations using a combination of Intel 17.0.1 + OpenMPI 2.0.2 (hence-

forth called I17O2), GNU 6.3.0 + OpenMPI 2.0.2 (henceforth called G6O2), Intel 17.0.1 +

Mvapich2/2.2 (henceforth called I17M2) and GNU 6.3.0 + Mvapich2/2.2 (henceforth called

G6M2), respectively, on a domain of size 5763 on a single node of ARC3. For each of these,

three variations in the form of Base version for Intel 17.0.1 (-O2) and GNU 6.3.0 (-O2), ag-

gressive CO for Intel 17.0.1 (-O3 -xHOST -ip -ansi-alias -fno-alias) and GNU 6.3.0 (-O3

-march=native) and HT were tested. Since Heuristic Tiling alone provided negligible benefits

without aggressive compiler based optimization with GNU 6.3.0, it was coupled with the latter

(i.e. HT+CO - see Figure 6.15a and 6.15c). The curves in I17O2, I17M2, G6O2, and G6M2 are

a characteristic of the compiler which is used. The experiments with the Intel 17.0.1 compiler,

irrespective of the MPI implementation version, showed negligible difference between the Base

version and the CO version while showing the best timings with HT alone. The optimal timings

were obtained with a combination of HT+CO with GNU 6.3.0. Overall, the optimal execution

timings were obtained with topologies Dx×Dy×Dz = 4×6×1 and Dx×Dy×Dz = 6×4×1 - the

topologies which are predicted with our model. For every version (Base, CO, HT, HT+CO) of

I17O2, I17M2, G6O2, and G6M2, one of the predicted topologies i.e. either 4×6×1 or 6×4×1,

outperformed the default MPI Dims Create() (MDC) topology of 4× 3× 2. The performance

gains for the versions using Mvapich2/2.2 (i.e. I17M2 (1.70%) and G6M2 (1.71%)) were smaller

as compared to versions using OpenMPI 2.0.2 (i.e. I17O2 (3.79%) and G6O2 (6.53%)) - possibly

suggesting a performance sensitivity of topologies on the efficiency of communication routines in

the MPI implementations. Interestingly, the optimal run-time of the OpenMPI versions (I17O2

and G6O2) had a performance gain of approximately 4.36% over the best execution timing of

the Mvapich2/2.2 versions (I17M2 and G6M2). Figure 6.15d shows the minimum timings for

I17O2, I17M2, G6O2 and G6M2. The curves for I17O2 and G6O2 almost overlap i.e. have

negligible differences and hence are shown as a single curve. The similarity in the shape of

curves in Figure 6.15d shows the software independence of our model. This behaviour is ideally

expected as our high level abstract model is derived using only the data layout, as elaborated

in Section 6.6, and is independent of any particular software or hardware characteristics.

6.8.2 Multiple Nodes

Figure 6.16a shows the total run-time of parallel geometric multigrid for various topologies

which are feasible when the global fine grid size is 512 × 512 × 512 (0.13 billion dof) and the

global coarsest grid is 16 × 16 × 16 (i.e. 6 levels) for P = 64 on ARC2. As predicted by our

192 CHAPTER 6. MULTIGRID

3 4 5 6 7 8

4x6x1

6x4x1

12x2x1

2x12x1

3x4x2

6x2x2

2x6x2

4x3x2

12x1x2

1x12x2

4x2x3

2x4x3

6x1x4

3x2x4

2x3x4

1x6x4

2x2x6

4x1x6

1x4x6

2x1x12

1x2x12

Run-time (seconds)

T
o
p

ol
og

y

Base

CO

HT+CO

(a) GNU 6.3.0 and OpenMPI 2.0.2

3 3.5 4 4.5 5 5.5 6

6x4x1

12x2x1

4x6x1

4x3x2

3x4x2

6x2x2

2x6x2

12x1x2

4x2x3

2x4x3

1x12x2

2x12x1

3x2x4

2x3x4

6x1x4

1x6x4

2x2x6

4x1x6

1x4x6

2x1x12

1x2x12

Run-time (seconds)

T
o
p

ol
og

y

Base

CO

HT

(b) Intel compiler 17.0.1 and Mvapich2/2.2

3 3.5 4 4.5 5 5.5 6 6.5

6x4x1

12x2x1

4x6x1

4x3x2

3x4x2

6x2x2

2x6x2

12x1x2

4x2x3

2x12x1

1x12x2

2x4x3

3x2x4

2x3x4

6x1x4

1x6x4

2x2x6

4x1x6

1x4x6

2x1x12

1x2x12

Run-time (seconds)

T
op

ol
og

y

Base

CO

HT+CO

(c) GNU 6.3.0 and Mvapich2/2.2

3 4 5 6 7 8

2x12x1

2x6x2

1x12x2

4x6x1

3x4x2

4x3x2

2x4x3

6x4x1

4x2x3

2x3x4

6x2x2

12x2x1

1x6x4

3x2x4

12x1x2

6x1x4

1x4x6

2x2x6

4x1x6

1x2x12

2x1x12

Run-time (seconds)

T
o
p

ol
og

y

Intel/GNU+OpenMPI
Intel+Mvapich2
GNU+Mvapich2

(d) Minimum execution times

Figure 6.15: Topology Run-times for P = 24, N = 576, Levels = 5, Coarsest iterations = 400,
5 V(3,3) cycles and the minimum run times for various combinations of compilers and MPI
implementations on ARC3, default MPI Dims create() = 4× 3× 2

6.8. EXPERIMENTAL RESULTS 193

model, there are cache-minimizing topologies which outperform the standard topology 4×4×4

returned by MPI Dims create() with P = 64. Figure 6.16b and Figure 6.16c show the cor-

responding fine grid smooth times and coarsest grid run-times, respectively. The performance

improvement of the best performing topology 8 × 8 × 1 over 4 × 4 × 4 in the total run-time

is 8.5% whereas in the fine grid smooth time it is 9.7%. As the fine grid smoothing time is

the major contributor to the total running time, Figure 6.16a and Figure 6.16b bear a strik-

ing resemblance. The coarsest grid run-times are very small in comparison and appear to be

irregular at this level. The cache misses at the coarsest level will have a lesser effect on the

running time as compared to the communication time due to process placement and message

latency as the local work-set of the three arrays used in Jacobi updates is 5.1 KB (including

the halo cells) for 4× 4× 4 and 6.75 KB for 8× 8× 1, which can easily fit into the L1d cache.

The latter topology passes a maximum of four planes as opposed to a maximum of six by the

former. Assuming perfect cache hits (as the local-work set fits into L1d cache), it is the message

latency which becomes the primary factor in the 8× 8× 1’s superior performance over 4× 4× 4

at the coarsest level. Our implementation uses persistent point-to-point communication at the

coarsest level as the number of halo exchanges at the coarsest level >> (ν1 + ν2) and thus we

can expect to see a benefit in not destroying the MPI send and receive handles every time data

is communicated.

Figure 6.17a shows the number of intra-node Z-planes being passed for each topology for

P = 64 on ARC2 at the fine grid level when the topologies are arranged in the ascending order

of their total run-times. The number of intra-node/inter-node X/Y/Z planes at all levels for

a particular topology are equal except for at the coarsest grid. The communication volume

decreases by one-fourth in going from a finer level to the next coarser level. Further, we only

count the total number of Z-planes which are sent, as it includes the number of Z-planes which

will be received. It can be seen from Figure 6.17a that as the number of Z-planes increase, so

does the size of the communicated Z-plane. The number of planes however should not be related

directly to the time being taken by a topology as these planes are exchanged simultaneously.

The majority of the best performing topologies in this case again are the ones which pass a

smaller sized Z-plane or do not pass a Z-plane at all.

For P = 64, the maximum time taken by any process to communicate X/Y/Z planes was

measured on ARC2. In Figure 6.17b, whenever the time taken by X-planes is greater than the

time taken by Y-planes, the X plane was larger than the Y plane or the X plane was passed

between racks and thus the switch hop latency contributed to the total time. Further, when-

ever equal sized X/Y and Z planes were passed, irrespective of whether it was an intra-node

or inter-node plane, the Z-plane communication time exceeded its siblings. The exceptional

case was with the topology of 4× 4× 4, where an equal sized Y-plane (intra-node) took more

time than the X-plane (inter-node). More research is needed to determine the reason for this

194 CHAPTER 6. MULTIGRID

0 1 2 3 4 5 6 7

8x8x1

8x4x2

16x4x1

4x8x2

16x2x2

4x16x1

2x16x2

8x2x4

4x4x4

16x1x4

2x8x4

1x16x4

4x2x8

8x1x8

2x4x8

1x8x8

4x1x16

2x2x16

1x4x16

Run-time (seconds)

T
op

ol
og

y

Total Run-time

(a) Total run-time

0 0.2 0.4 0.6 0.8 1

8x8x1

8x4x2

16x4x1

4x8x2

16x2x2

4x16x1

2x16x2

8x2x4

4x4x4

16x1x4

2x8x4

1x16x4

4x2x8

8x1x8

2x4x8

1x8x8

4x1x16

2x2x16

1x4x16

Fine Grid Smooth-time (seconds)

T
op

ol
og

y

FG Smooth-time

(b) Fine Grid (FG) smooth time

8x
8x

1

8x
4x

2

16
x4

x1

4x
8x

2

16
x2

x2

4x
16

x1

2x
16

x2

8x
2x

4

4x
4x

4

16
x1

x4

2x
8x

4

1x
16

x4

4x
2x

8

8x
1x

8

2x
4x

8

1x
8x

8

4x
1x

16

2x
2x

16

1x
4x

16
0

0.5

1

1.5

2
·10−3

Topology

C
oa

rs
e

G
ri

d
ru

n
-t

im
e

(s
ec

on
d
s) Coarse Grid Run-time

(c) Coarsest Grid run-time

Figure 6.16: Execution times of Geometric Multigrid for P = 64, Fine Grid = 5123, Levels = 6,
Global Coarsest Grid = 163, ν1 = ν2 = 3, Fixed Coarsest iterations = 100, Vcycles = 5, Intel
16.0.2, OpenMPI 1.6.5, ARC2, default MPI Dims create() = 4× 4× 4

6.8. EXPERIMENTAL RESULTS 195

0 20 40 60 80 100 120 140 160

8x8x1

8x4x2

16x4x1

4x8x2

16x2x2

4x16x1

2x16x2

8x2x4

4x4x4

16x1x4

2x8x4

1x16x4

4x2x8

8x1x8

2x4x8

1x8x8

4x1x16

2x2x16

1x4x16

4

4

4

4

8

8

8

8

8

16

16

16

16

32

32

32

64

64

64

64

96

96

96

96

96

112

112

112

112

120

120

120

Z-planes and elements

T
op

ol
og

y

Intranode Z-planes

Z-elements × 2048

(a) Intra-node Z-planes and elements for
topologies with Dz > 1

0 0.5 1 1.5 2

·10−2

8x8x1

16x4x1

16x2x2

8x4x2

4x16x1

2x16x2

4x8x2

16x1x4

4x4x4

2x8x4

8x2x4

1x16x4

2x4x8

4x2x8

1x8x8

8x1x8

2x2x16

4x1x16

1x4x16

Plane transmission (sec)

T
o
p

ol
o
gy

x-plane
y-plane
z-plane

(b) Communication times for individual
X/Y/Z Planes

Figure 6.17: P = 64, Fine Grid = 5123, Levels = 6, Global Coarsest Grid = 163, ν1 = ν2 = 3,
Fixed Coarsest iterations = 100, Vcycles = 5, Intel 16.0.2, OpenMPI 1.6.5, ARC2, default
MPI Dims create() = 4× 4× 4

deviation from the normal.

We can differentiate between various plane categories depending on the hierarchy of network

they interact through. Table 6.6 divides the X/Y/Z planes into 4 categories each depending on

their region of movement. The cheapest communication is intra-node communication and the

costliest communication is inter-rack communication. Considering the case of extreme topolo-

gies with P = 64 processes or cores i.e. 1× 1× 64, 1× 64× 1 and 64× 1× 1, we recorded the

exchange of planes on ARC2 as listed in Table 6.7. It can be seen from Table 6.7 that exactly

the same number and size of planes are passed in a particular category. The corresponding

running times at the fine grid level and coarsest grid level (Global Coarsest Grid (GCG) = 643)

is shown in Table 6.8 where it can be seen that the time taken by the X and Y partition is

almost equal but the Z partition is outperformed by a factor of ≈ 3 and 3.5 at the fine grid

level and coarsest levels, respectively. This shows that in addition to process placement (which

is the same for all partitions in this case), cache-misses play a very important factor in the

packing/unpacking/update times of these planes. The Cache Line Utilization (CLU) factor for

the Z-plane is 0.125 at the fine grid level where Pz = 8 for 1× 1× 64, whereas it is one for the

X/Y planes. Thus, even when the DCU and IP-based stride prefetcher in the L1d cache are

able to hide the latency by prefetching the needed lines, a penalty must be paid as the Z-plane

elements reside in different cache lines.

196 CHAPTER 6. MULTIGRID

Table 6.6: Plane Types: Categories of planes based on network elements that they pass through,
namely, node/shelf/rack

Category Description

C0 Intra-node X-plane
C1 Inter-node Intra-shelf Intra-rack X-plane
C2 Inter-node Inter-shelf Intra-rack X-plane
C3 Inter-rack X-plane

C4 Intra-node Y-plane
C5 Inter-node Intra-shelf Intra-rack Y-plane
C6 Inter-node Inter-shelf Intra-rack Y-plane
C7 Inter-rack Y-plane

C8 Intra-node Z-plane
C9 Inter-node Intra-shelf Intra-rack Z-plane
C10 Inter-node Inter-shelf Intra-rack Z-plane
C11 Inter-rack Z-plane

Table 6.7: Plane Frequency: Number of X/Y/Z Intranode/Intra-shelf/Intra-rack planes for 1-D
topologies on ARC2

Topology C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

1x1x64 0 0 0 0 0 0 0 0 120 0 4 2
1x64x1 0 0 0 0 120 0 4 2 0 0 0 0
64x1x1 120 0 4 2 0 0 0 0 0 0 0 0

Table 6.8: Extreme topologies: Run-times for N = 5123, P = 64, GCG = 643, Coarsest
iterations = 100, Vcycles = 5, ν1 = ν2 = 3, ω = 1, FG (Fine Grid), CG (Coarsest Grid), Intel
16.0.2, OpenMPI 1.6.5, ARC2

Topology Level FG Smooth-time CG run-time

1x1x64 4 1.08 sec 0.028 sec
1x64x1 4 0.39 sec 0.010 sec
64x1x1 4 0.36 sec 0.008 sec

6.8. EXPERIMENTAL RESULTS 197

0 1 2 3 4 5 6 7

8x16x4
8x32x2

16x16x2
16x8x4
4x32x4
32x8x2

16x32x1
32x16x1
16x4x8
8x8x8

4x16x8
32x2x8
2x32x8
32x4x4

2x16x16
4x8x16

32x1x16
16x2x16
1x32x16
8x4x16
8x2x32

16x1x32
4x4x32

1x16x32
2x8x32

Run-time (seconds)

T
o
p

ol
og

y

Total Run-time

(a) Total run-times

0 0.05 0.1 0.15 0.2 0.25 0.3

8x16x4
8x32x2

16x16x2
16x8x4
4x32x4
32x8x2

16x32x1
32x16x1
16x4x8
8x8x8

4x16x8
32x2x8
2x32x8
32x4x4

2x16x16
4x8x16

32x1x16
16x2x16
1x32x16
8x4x16
8x2x32

16x1x32
4x4x32

1x16x32
2x8x32

Fine Grid Smooth-time (seconds)

T
op

o
lo

g
y

FG Smooth-time

(b) Fine Grid smooth-times

Figure 6.18: Total run-time and Fine Grid smooth-times for P = 512, Fine Grid = 10243,
Levels = 6, Global Coarsest Grid = 323, ν1 = ν2 = 3, Fixed Coarsest iterations = 800, Vcycles
= 5, Intel 16.0.2, OpenMPI 1.6.5, ARC2, default MPI Dims create() = 8× 8× 8

Figure 6.18a shows the total run-times for topologies with P = 512 and a fine grid of size

10243, i.e. ≈ 1 billion degrees of freedom. The standard topology of 8×8×8 is outperformed by

several topologies which have Dz ≤ 8. The best performing topology outperforms the standard

by 8%, whereas in Figure 6.18b, which shows the fine grid smoothing times only, it outperforms

the standard by 41%. Further investigation is needed to ascertain the exact cause of this dif-

ference. Although all the topologies were examined on the same set of cores, a possibility of

increased congestion in the network due to other user jobs cannot be ruled out as the allocated

partition by the job scheduler on our test machine ARC2 is not independent. Thus, our repro-

ducible single node experiments are crucial to testing the validity of our model.

To elaborate on the trend of topology execution times, Figure 6.19a and Figure 6.19b show

the multiple node scenario with P = 96 and P = 576 on ARC3. The Baseline (Base) versions of

the predicted topologies 12× 8× 1 and 8× 12× 1 in Figure 6.19a are both outperformed by the

MPI Dims create() topology (MDC) of 6× 6× 4 by 23.93% but the aggressive CO version of

8× 12× 1 outperforms the MDC by 6.89%. The Baseline version suggests that as Pz increases

to large values (768 in this case), the LRU policy (see Figure 6.7) results in the eviction of data

in the cache when Dz = 1, as a much larger number of cache lines are accessed before the data

is utilized again. For example, with N = 768 and Dz = 1, Pz = 768 so approximately 768
8 = 96

cache lines must be accessed before the data point at ui,j+1,k is accessed again after utilizing

it to update vi,j,k. With Heuristic Tiling and explicit Vectorization (HT+Vec), the compiler is

forced to vectorize as opposed to issuing only a request for Vectorization at optimization levels

198 CHAPTER 6. MULTIGRID

Table 6.9: Weak Scaling Design Experiment: Fixed 2 V(3,3) cycles, 717 coarsest grid iterations
for first V-cycle and 712 coarsest grid iterations for second V-cycle

Global Fine Grid Cores Levels Global Coarsest Grid

128× 128× 128 1 4 16× 16× 16
256× 256× 256 8 4 32× 32× 32
512× 512× 512 64 4 64× 64× 64

1024× 1024× 1024 512 4 128× 128× 128

-O2 and -O3: the effect of which is evident with the best execution timings being obtained

under a combination of Heuristic Tiling and Vectorization. For explicit Vectorization we use

the #pragma ivdep option before the innermost loop and this forces the compiler to ignore

vector dependencies. The Vectorization report must be checked to ensure that the loop has

been vectorized. With P = 576, the optimal value of Dz shifts to a value of two and again

shows that for extremely large domain sizes, an upward shift in the minimal base value of Dz

might be needed to avoid mispredictions.

We now describe the experiment designed for the purpose of Weak Scaling Parallel Geomet-

ric Multigrid. In Weak Scaling, the problem size per process should remain constant. Given an

initial problem size, we increase it by a factor of 8. The number of cores is also increased by a

factor of 8. The only exception to this scheme is when our test machine does not have enough

cores (as shown in Table 6.10). We further fix the number of levels of the problem, the number

of V-cycles and iterations of the coarsest grid in each V-cycle. One method of fixing is to allow

the initial problem to converge and to record the number of V-cycles and the coarsest grid

iterations in each V-cycle. Next the same experiment is repeated on the same grid after fixing

the V-cycles and the number of coarsest grid iterations at each V-cycle but removing the call

to MPI Allreduce(). Now the problem size and the number of cores is increased by a factor

of eight but the number of levels remain the same. The number of V-cycle and coarsest grid

iterations in each V-cycle is kept the same as in the initial problem. This process is repeated

for increasing problem sizes and core counts. Table 6.9 illustrates this concept by increasing

the problem and processes by a factor of eight, keeping the coarsest grid level the same, fixing

the number of V-cycles and also the number of coarsest grid iterations for each V-cycle. It is

important to notice that the number of mesh points on each process remain constant and are

equal to = 1283 + 643 + 323 + 163 = 2396160. Further, for all configurations, the number of

iterations on the first three levels is = 2×V (3, 3) = 2× (3+3) = 12 and the number of coarsest

grid iterations is = 717 + 712 = 1429.

Table 6.10 summarizes the Weak Scaling results by comparing the average performance

gain of best performing topologies with respect to the MDC on up to 1024 cores. Our exper-

iment shows that we are always able to find a topology with a Dz < Dsz, where Dsz is the

6.8. EXPERIMENTAL RESULTS 199

2 2.2 2.4 2.6 2.8 3 3.2

16x6x1

8x6x2

6x16x1

12x4x2

6x8x2

16x3x2

3x16x2

24x4x1

4x12x2

4x24x1

24x2x2

8x12x1

2x24x2

8x4x3

16x2x3

4x8x3

2x16x3

2x48x1

12x8x1

48x2x1

4x6x4

6x4x4

Run-time (seconds)

T
op

ol
og

y

Base
CO
HT

HT+Vec

(a) P = 96, N = 768, 5 levels, Coarsest iterations = 800, 5 V(3,3) cycles, default
MPI Dims create() = 6× 4× 4

3.1 3.3 3.5 3.7 3.9 4.1 4.3

12x24x2

12x12x4

8x24x3

6x24x4

24x12x2

12x8x6

24x6x4

8x12x6

24x24x1

24x8x3

4x24x6

24x4x6

Run-time (seconds)

T
op

ol
og

y

Base
CO
HT

HT+vec

(b) P = 576, N = 1536, 7 levels, Coarsest iterations = 400, 5 V(3,3) cycles, default
MPI Dims create() = 12× 8× 6

Figure 6.19: Baseline (Base), Compiler Optimized (CO), Heuristically Tiled (HT) and HT +
Explicit Vectorization (Vec) total run-time of topologies with Intel 17.0.1, OpenMPI 2.0.2 on
ARC3

200 CHAPTER 6. MULTIGRID

Table 6.10: Weak Scaling on ARC2: Highest performing Vs standard topology percentage
performance gain, Intel 16.0.2, OpenMPI 1.6.5

Cores (Cells/core) Total Run-time Fine Grid Smooth

64 (≈2 million) 11.1% 14.4%
512 (≈2 million) 17.3% 36.4 %

1024 (≈1 million) 9.6% 8.8%

Z-dimension returned by MDC, that outperforms the standard topology. With P = 1024 and

P = 512, the Z-planes in the MDC topology are still communicated within a node and the

cache-minimizing topologies send/receive larger X/Y planes to/from different racks. Despite

inter-rack latencies and larger X/Y planes with cache-minimizing topologies, the cost of sending

large-sized Z-planes contributes to the higher execution times of the standard topology. As our

test facility does not have 4096 cores, we only weak scale up to 1024 cores (with ≈ 1 million

cells/core). As opposed to the smaller problem size chosen on ARC2, where tiling and Vector-

ization yield negligible benefits, we choose a larger problem on ARC3 for Weak Scaling, i.e. 18

million cells/core (≈ 29 billion dof for our largest case). We separately report the Weak Scaling

results for the Base, CO, HT and HT+Vec versions as Heuristic Tiling has a significant effect

at this problem size (see Table 6.11). Our HT+Vec scheme decreases the overall run-time of

the standard topology by 18.45% but also decreases the gain that cache-minimizing topologies

have over the standard topology to approximately 4%. Nonetheless, it is important to note the

large gain of approximately 19% in the CO versions.

Table 6.12 shows that Strong Scaling cache minimizing topologies in Parallel Geometric

Multigrid on ARC2 still lead to performance gains up to P = 256. The maximum value of

EPWSS (Effective Plane Working Set Size) = WPSS + PyPz + PyPz (for arrays u, v and f

in Equation (6.1), Section 6.6, respectively) is ≈ 2.5 MB at P = 128 but reduces to ≈ 1.25

MB at P = 256. Since the actual inclusive L3 cache/core is 2.22 MB, similar behaviour of the

cache minimizing and standard topology is expected due to the EPWSS completely fitting in

the shared Last Level Cache (L3). The Strong Scaling results for ARC3, as shown in Table 6.13,

again show that even with a shrinking problem size per core, the cache-minimizing topologies

generally outperform the communication volume minimizing topology and thus are also suitable

for Strong Scaling until the cores reach a number at which the EPWSS completely fits in the

LLC.

6.8.3 19-pt Stencil

The experiments in Parallel Geometric Multigrid till now were based on using a 7-pt stencil for

the Smoothing phase and a 27-pt stencil for the inter-grid transfer operators. In this section

we use a 19-pt stencil in 3-D in the Smoothing phase and a 27-pt stencil for the inter-grid

transfer operators. Figures 6.20a, 6.20b, 6.20c and 6.20d show execution timings of topolo-

6.8. EXPERIMENTAL RESULTS 201

Table 6.11: Weak Scaling on ARC3: Highest performing Vs standard topology percentage
performance gain, TR (Total Run-time), FG (Fine Grid), Base (Baseline), CO (Compiler Op-
timized), HT (Heuristically Tiled), Vec (explicit Vectorization), Intel 17.0.1, OpenMPI 2.0.2,
Coarsest iterations = 200, ≈ 18 million cells/core, Global Coarsest Grid = 483

Base (%) CO (%) HT (%) HT+Vec (%)

Cores TR FG TR FG TR FG TR FG

24 18.56 25.24 18.94 25.81 5.06 2.81 4.10 4.43
192 19.03 25.81 19.51 27.79 4.49 3.81 3.74 3.96

1536 16.71 20.79 18.86 19.75 4.49 1.49 3.76 0.68

Table 6.12: Strong Scaling on ARC2: % performance gain of Cache Minimizing Topology over
Standard Topology for Baseline, Compiler Optimized and Heuristically Tiled versions, N=512,
20 V(3,3) cycles, Coarsest iterations = 100, Levels = 6, Intel 16.0.2, OpenMPI 1.6.5

Cores Baseline Compiler Opt. Heuristic Tile

16 15.00% 16.14% 6.16%
32 3.88% 4.04% 8.96%
64 12.69% 12.24% 13.30%
128 7.98% 7.29% 7.85%
256 0.82% -0.82% 5.50%

Table 6.13: Strong Scaling on ARC3: % performance gain of Cache Minimizing Topology over
Standard Topology for Baseline, Compiler Optimized and Heuristically Tiled with Explicit
Vectorization versions, N=768, 5 V(3,3) cycles, Coarsest iterations = 400, Levels = 6, Intel
17.0.1, OpenMPI 2.0.2

Cores Baseline Compiler Opt. Heuristic Tile + Vectorization

48 9.75% 10.10% 8.58%
96 9.05% 9.48% 8.44%
192 14.06% 13.17% 7.62%
384 7.46% 9.09% 6.25%

202 CHAPTER 6. MULTIGRID

gies using a combination of Intel 17.0.1 + OpenMPI 2.0.2 (henceforth called 19I17O2), GNU

6.3.0 + OpenMPI 2.0.2 (henceforth called 19G6O2), Intel 17.0.1 + Mvapich2/2.2 (henceforth

called 19I17M2) and GNU 6.3.0 + Mvapich2/2.2 (henceforth called 19G6M2), respectively, on

a domain of size 5763 using a single node of ARC3. For each of these, three variations in the

form of Base version for Intel 17.0.1 (-O2) and GNU 6.3.0 (-O2), aggressive CO for Intel 17.0.1

(-O3 -xHOST -ip -ansi-alias -fno-alias) and GNU 6.3.0 (-O3 -march=native) and HT

(Heuristic Tiling H1) were tested. As was the case with a 7-pt stencil, Heuristic Tiling alone

provided negligible benefits without aggressive compiler optimization with GNU 6.3.0 and hence

it was coupled with the latter (i.e. HT+CO (see Figure 6.20b and 6.20d)).

The experiments with the Intel 17.0.1 compiler (19I17O2 and 19I17M2) showed significant

difference between the Base version and the CO version. Such a difference was not present in

the case of a 7-pt stencil. A plausible reason is the presence of nine data streams in the 19-pt

stencil as compared to the five data streams present in the 7-pt stencil. These additional data

streams increase the bandwidth pressure on the memory system and hence the optimization

level -O3 is able to generate more efficient code. To study the assembly code obtained after

compiling is beyond the scope of the current thesis. In the 19I17O2 version (see Figure 6.20a),

the predicted topology of 4 × 6 × 1 outperforms the default MDC of 4 × 3 × 2 by 5.4%, 5.5%

and 6.9% in the Base, CO and HT versions, respectively. In the same experiment the topology

6×4×1 outperforms the default MDC for the Base and HT version and equals its performance

in the CO version. As discussed in the section on optimal sub-domain dimensions (see Section

6.6.4), a larger value of Dy as compared to Dx, when Dx = Dy cannot be found, is beneficial

as it reduces the WSS (Working Set Size). This can be seen in in all four combinations of

compilers and MPI implementations for the Base and CO cases by comparing the 4 × 6 × 1

and 6 × 4 × 1 topology run-times. Interestingly, for 19I17M2, the topology 12 × 2 × 1 surges

ahead of the topology 4 × 6 × 1 in the HT version but loses to the latter in the Base and CO

versions. Table 6.14 consolidates the results on a single node of ARC3 for various compiler and

MPI implementations in terms of the best topologies and performance gains over default MDC

for the Base, CO, HT (+CO) versions.

The following observations can be made from Table 6.14:

1. The default MDC topology 4× 3× 2 is not the optimal for any compiler and MPI imple-

mentation (Base, CO, HT or HT+CO versions).

2. For the Base versions, our predicted topology 4× 6× 1 is the optimal topology.

3. For the CO versions of 19I17O2 and 19G6O2, we can predict the topology of 2× 12× 1

by considering 4
2 × (6× 2)× 1.

4. For the CO versions of 19I17M2 and 19G6M2, the optimal topology of 2 × 6 × 2 has a

higher Dy = 6 than the Dy = 3 of 4× 3× 2 (the former creating a smaller WSS).

6.8. EXPERIMENTAL RESULTS 203

4 6 8 10 12

6x4x1

12x2x1

4x6x1

2x12x1

2x6x2

4x3x2

6x2x2

3x4x2

1x12x2

12x1x2

4x2x3

2x4x3

2x3x4

3x2x4

6x1x4

1x6x4

2x2x6

4x1x6

1x4x6

2x1x12

1x2x12

Run-time (seconds)

T
o
p

o
lo

g
y

Base

CO

HT

(a) Intel Compiler 17.0.1 and OpenMPI 2.0.2

4 6 8 10 12

6x4x1

12x2x1

4x6x1

2x12x1

3x4x2

4x3x2

2x6x2

6x2x2

12x1x2

1x12x2

2x4x3

4x2x3

2x3x4

6x1x4

3x2x4

1x6x4

2x2x6

4x1x6

1x4x6

2x1x12

1x2x12

Run-time (seconds)

T
o
p

ol
og

y

Base

CO

HT+CO

(b) GNU 6.3.0 and OpenMPI 2.0.2

4 5 6 7 8

12x2x1

4x6x1

4x3x2

6x4x1

6x2x2

3x4x2

2x6x2

12x1x2

4x2x3

1x12x2

2x4x3

2x12x1

3x2x4

6x1x4

2x3x4

1x6x4

4x1x6

2x2x6

1x4x6

2x1x12

1x2x12

Run-time (seconds)

T
op

ol
og

y

Base

CO

HT

(c) Intel Compiler 17.0.1 and Mvapich2/2.2

4 5 6 7 8

12x2x1

6x4x1

4x6x1

6x2x2

4x3x2

12x1x2

2x6x2

3x4x2

4x2x3

1x12x2

2x12x1

2x4x3

3x2x4

6x1x4

2x3x4

1x6x4

4x1x6

2x2x6

1x4x6

1x2x12

2x1x12

Run-time (seconds)

T
op

ol
o
gy

Base
CO

HT+CO

(d) GNU 6.3.0 and Mvapich2/2.2

Figure 6.20: Topology Run-times for P = 24, N = 576, Levels = 5, Coarsest iterations = 400,
5 V(3,3) cycles for various combinations of compilers and MPI implementations on ARC3 using
a 19-pt stencil in the smoother, default MPI Dims create() = 4× 3× 2

204 CHAPTER 6. MULTIGRID

Table 6.14: Best Topologies and Percentage Gains: Best topologies for Base (Baseline), CO
(Compiler Optimized), HT (Heuristically Tiled) versions and percentage gain over the default
MDC on a single node of ARC3 for N=576, 5 V(3,3), Levels = 5, Coarsest iterations = 400,
19-pt Parallel Geometric Multigrid

Combination Best Base (% Gain) Best CO (% Gain) Best HT(+CO) (% Gain)

19I17O2 4× 6× 1 (5.4) 2× 12× 1 (7.5) 6× 4× 1 (8.5)
19G6O2 4× 6× 1 (7.6) 2× 12× 1 (7.7) 6× 4× 1 (9.0)
19I17M2 4× 6× 1 (1.4) 2× 6× 2 (5.4) 12× 2× 1 (2.70)
19G6M2 4× 6× 1 (5.30) 2× 6× 2 (5.2) 12× 2× 1(3.20)

5. The MPI implementation does affect the communication timings, in turn affecting the

overall performance gains.

Figure 6.21 shows the performance of various topologies for Parallel Geometric Multigrid

using P = 96 cores when the number of unknowns is 768 × 768 × 768. The figure only shows

a subset of topologies for which execution times were obtained but as can be seen, there are

many topologies which outperform the default MDC of 6 × 4 × 4 in the Base, CO and HT

versions. Although the MDC outperforms the topologies T1 = 12× 8× 1 and T2 = 8× 12× 1 in

the Base version, it is outperformed by the latter topologies in the CO and HT versions. The

T1 and T2 topologies suffer from a large Pz and hence the LRU policy can adversely affect the

performance. The -O3 option is able to optimize these topologies to a significant extent and

hence these outperform the MDC topology by 7.9% (T1) and 11.9% (T2) in the CO version. The

highest performing topology of 16× 6× 1 in the HT version can be obtained from 8× 12× 1 by

considering (8×2)× 12
2 ×1 and outperforms the default MDC by 17.7%. In summary, the results

obtained by using a 19-pt stencil in the Smoothing phase of Parallel Geometric Multigrid yields

results similar to those obtained by using the 7-pt stencil except for appropriate quantitative

differences due to increased data streams and the changing communication pattern.

6.9 Model Accuracy

We define the accuracy of our model as the fraction of those topologies predicted to outperform

the default topology that do outperform it in practice. Formally, let np be the total number

of predicted topologies for P cores and let tp be the execution time of the predicted topology

and tMDC that of the MDC topology. If ñp is the number of predicted topologies for which

tp < tMDC , then the accuracy of the model is
ñp

np
× 100 with P processor cores. A topology is

predicted to be better than the default MDC if the predicted cache-misses is fewer in comparison

to the MDC. The best predicted topology is the one with the fewest cache-misses, irrespective

of the communication volume.

For calculating the accuracy of the model, we categorize the topologies into four classes.

6.9. MODEL ACCURACY 205

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

16x6x1
8x6x2

24x4x1
6x8x2

16x3x2
12x4x2
4x12x2
6x16x1
3x16x2
2x24x2
12x8x1
8x12x1
24x2x2
48x2x1
48x1x2
16x2x3
8x4x3

4x24x1
4x8x3

2x16x3
1x48x2
6x4x4

Run-time (seconds)

T
op

o
lo

gy

Base
CO
HT

Figure 6.21: 19-pt Smoother in Multigrid, Cores=96, N=768, Levels=5, Coarsest itera-
tions=800, 5 V(3,3) cycles, Intel Compiler 17.0.1, OpenMPI 2.0.2

The four classes are True Positive (True + or TP), True Negative (True - or TN), False Positive

(False + or FP) and False Negative (False - or FN). The meaning of these classes is explained

below.

1. True Positive: A topology which is predicted to outperform the default MDC topology

and also experimentally outperforms it.

2. True Negative: A topology which is predicted to outperform the default MDC topology

but does not experimentally outperform it.

3. False Positive: A topology which is predicted not to outperform the default MDC topology

and also experimentally does not outperform it.

4. False Negative: A topology which is predicted not to outperform the default MDC topol-

ogy but experimentally outperforms it.

Table 6.15 shows the accuracy of the model with respect to the hardware clusters ARC2 and

ARC3 for various core counts, domain sizes, compilers and MPI implementations. It should be

noted that not all the predicted topologies are able to reach a pre-defined Multigrid level with a

particular domain size and thus such predicted topologies are not counted towards calculating

the accuracy. For example, with P = 768 only two predicted topologies were experimentally

valid (see Table 6.15). Further, it is the predicted topologies with a large |Dx −Dy| that are

outperformed by the MDC topology and constitute the False Positives (FP). For example, the

206 CHAPTER 6. MULTIGRID

Table 6.15: Model Accuracy: P = number of cores, N = Domain size, np = Number of predicted
topologies, ñp = Predicted topologies for which tp < tMDC , MDC = MPI Dims create()

topology, Accuracy (True +) =
ñp

np
× 100

ARC2

Accuracy

P N np ñp MDC Compiler MPI True + True -

16 5123 3 3 4× 2× 2 Intel 16.0.2 OpenMPI 1.6.5 100% 77.78%
64 5123 7 7 4× 4× 4 Intel 16.0.2 OpenMPI 1.6.5 100% 90.90%
512 10243 9 8 8× 8× 8 Intel 16.0.2 OpenMPI 1.6.5 88.89% 93.34%

ARC3

24 5763 4 4 4× 3× 2 Intel 17.0.1 OpenMPI 2.0.2 100% 100%
24 5763 4 4 4× 3× 2 GNU 6.3.0 OpenMPI 2.0.2 100% 100%
24 5763 4 3 4× 3× 2 Intel 17.0.1 Mvapich2/2.2 75% 100%
24 5763 4 3 4× 3× 2 GNU 6.3.0 Mvapich2/2.2 75% 100%
48 7683 10 10 4× 4× 3 Intel 17.0.1 OpenMPI 2.0.2 100% 76%
96 7683 12 12 6× 4× 4 Intel 17.0.1 OpenMPI 2.0.2 100% 88.89%
96 7683 12 10 6× 4× 4 GNU 6.3.0 Mvapich2/2.2 83.34% 97.14%
192 7683 6 6 8× 6× 4 Intel 17.0.1 OpenMPI 2.0.2 100% 82.60%
384 7683 6 5 8× 8× 6 Intel 17.0.1 OpenMPI 2.0.2 83.34% 100%
576 15363 6 4 12× 8× 6 Intel 17.0.1 OpenMPI 2.0.2 66.67% 100%
768 15363 2 2 12× 8× 8 Intel 17.0.1 OpenMPI 2.0.2 100% 100%
1536 30723 6 4 16× 12× 8 Intel 17.0.1 OpenMPI 2.0.2 66.67% 100%

predicted topology of 24× 6× 4 with P = 576, N = 15363 (see Table 6.15) is outperformed by

the default MDC 12×8×6 by a thin margin of 0.30% due to a very high |Dx−Dy| = 18. We do

not count the False Negatives (FN) towards calculating the accuracy. In addition to predicting

high performing cache-minimizing topologies, we are also able to successfully prune out ineffi-

cient topologies with a high degree of accuracy (True Negative accuracy shown in Table 6.15).

Further, the False Negative topologies i.e. topologies whose performance our model predicts to

be worse than the MDC performance but which experimentally outperform the MDC, are the

ones which are closer in performance to that of the default MPI Dims create() topology. As an

example, for P = 96, N = 7683, using GNU 6.3.0 and Mvapich2 on ARC3, the False Negative

topology of 24× 2× 2 outperforms the MDC by 0.88% only.

As representative cases of the model accuracy, we classify the topologies into these four

classes for P = 96 and P = 576 on ARC3 as shown in Figures 6.22a and 6.22b, respectively.

As is desirable, the representative cases show a very small fraction of False Positives and False

Negatives. It can be seen from the classification of topologies that the power of the model also

lies in correctly predicting and eliminating the true negatives.

6.9. MODEL ACCURACY 207

8x6x2

12x4x2

6x8x2

16x3x2

12x8x1

16x6x1

4x12x2

24x4x1

8x4x3

3x16x2

8x12x1

24x2x2

4x8x3

6x4x4

8x3x4

6x16x1

4x6x4

12x2x4

3x8x4

16x2x3

2x24x2

2x12x4

24x1x4

48x2x1

2x16x3

4x4x6

4x24x1

8x2x6

48x1x2

2x8x6

16x1x6

1x24x4

4x3x8

6x2x8

3x4x8

2x6x8

1x48x2

1x16x6

12x1x8

1x12x8

2x48x1

4x2x12

2x4x12

8x1x12

1x8x12

2x3x16

3x2x16

6x1x16

1x6x16

2x2x24

4x1x24

1x4x24

2x1x48

1x2x48
T

o
p

ol
og

y

True Positive

False Positve

True Negative

False Negative

(a) P=96, N=768, GNU 6.3.0, Mvapich2

12x24x2

12x12x4

8x24x3

6x24x4

24x12x2

12x8x6

24x6x4

8x12x6

24x24x1

24x8x3

4x24x6

24x4x6

6x12x8

12x6x8

3x24x8

24x3x8

8x6x12

4x12x12

6x8x12

12x4x12

24x2x12

2x24x12

3x8x24

2x12x24

6x4x24

4x6x24

24x1x24

8x3x24

1x24x24

12x2x24

T
op

ol
og

y

True Positive

False Positive

True Negative

False Negative

(b) P=576, N=1536, Intel 17.0.1, OpenMPI 2.0.2

Figure 6.22: Prediction classes for representative cases of model accuracy on ARC3, where the
entry with no symbol is the default MDC (MPI Dims create()) partition

208 CHAPTER 6. MULTIGRID

6.10 Summary

Traditionally, domain partitioning has been considered as a function of only load-balance and

communication volume. Thus, the orthodox approach aims to achieve maximal load balance

and minimize communication volume. We challenge this approach and introduce a third di-

mension to the problem of domain partitioning: Cache-misses at the sub-domain level. Thus,

instead of only optimizing cache-misses through spatial and temporal methods after the domain

partitioning, we analyze the cache-misses at the sub-domain level before performing domain

partitioning and use this to predict optimal domain partitions in parallel Geometric Multigrid

(GMG). To this effect, we extend the high level quasi-cache-aware model developed in Chap-

ter 4 with the assumption that the interpolation/restriction is proportional to the smoothing

time but dominated by the latter. The model estimates the cache-misses for the update of the

Independent Compute and the update/packing/unpacking of the Dependent Planes. Though

we develop our model using a 7-pt stencil, the methodology can be applied to a 19-pt or 27-pt

stencil. Our numerical tests show the same qualitative results with appropriate quantitative dif-

ferences. Upon subsequent minimization with respect to sub-domain dimensions, the two most

important factors needed to obtain optimal domain partitions that emerge out of the model

are (see Chapter 4): (i) The balance between the X and Y sub-domain dimensions and ; (ii)

Maintaining a Cartesian process-dimension 1 ≤ Dzoptimal ≤ Dsz, where Dsz is the Z-dimension

returned by the default MPI Dims create() function.

We emphasize and elaborate the factors affecting optimal sub-domain dimensions namely,

Independent Compute, Plane cache-misses, Prefetch, Vectorization, Communication Volume,

and the LRU eviction policy. The two most significant factors out of these factors are: Plane

cache-misses and the Communication Volume. We place stress on maintaining a balance be-

tween the cost of growing communication volume when maximizing the unit-stride dimension

and the growing cost of packing/unpacking/updating the Z-plane when the communication vol-

ume is minimized. Our experiments on single and multiple nodes expand on the three most

important factors: Independent Compute, Dependent Plane and Communication Volume. The

single node experiments further show that, even without communication, weakly scaling a prob-

lem on a SMP does not keep the time constant due to the rising contention for the shared Last

Level Cache. Topologies efficiently executing the Independent Compute are not optimal when

communication is added and thus optimality requires a balance between compute cache-misses

and the overhead of communication. Further, we develop a light-weight run-time heuristic for

tiling, functioning at all but the coarsest level of GMG, which is close to optimal for high per-

forming topologies, given that exhaustive tiling leads to a combinatorial explosion of the tiling

space. The experiments for process placement within a node i.e. --bind-to-core --bysocket

and --bind-to-core --bycore yield similar results for plane communication costs. We further

calculate the accuracy of the model by considering different compilers and MPI implementa-

tions.

Chapter 7

Conclusions and Future Work

The work in this thesis has focused on domain partitioning for single and multilevel stencil-based

codes. We created a high level mathematical model to establish a relation between cache-misses

and domain partitioning. In addition, we qualitatively explored factors such as Cache-Line

Utilization (CLU), Least Recently Used (LRU) cache eviction policy, Vectorization and their

role in determining optimal sub-domain dimensions. Our approach differs from the traditional

method of domain partitioning in the sense that the traditional method only aims to minimize

the communication volume (assuming a load-balanced problem). Our discussion emphasizes

the idea that the problem of domain partitioning is dependent on multiple factors as opposed

to communication volume only. Although we used the finite difference discretization of Elliptic

PDEs and the Jacobi point iterative method to build our quasi-cache-aware model, we discuss

its applicability and generality in a multitude of scenarios, ranging from non-linear PDEs to

a non-overlap of communication with computation. Furthermore, we extended and tested our

model on Adaptive Mesh Refinement (AMR) and parallel Geometric Multigrid (GMG) - both

being indispensable tools in Scientific Computing. Their importance is further reflected by the

fact that they are candidate algorithms for Exascale. The current Chapter discusses some more

detailed conclusions, followed by suggestions for related future research directions.

7.1 Conclusions

At a high level, we can concisely state the conclusion of our work as follows: “It is not sufficient

to minimize only the communication volume for obtaining optimal domain partitions for single

or multilevel stencil-codes, rather it is necessary to optimize the balance between minimizing

cache-misses and the communication volume.”

In fact our model indicates that the optimal domain partitions are “close to 2-D” rather

209

210 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

than cubic (or almost cubic) as suggested by the orthodox method of domain partitioning. Our

Weak and Strong Scaling results on single, uniform grids showed that although topologies which

are closer to 2-D communicate more elements than the default MPI DIMS CREATE() topology

of MPI, they offer better performance due to fewer cache-misses in packing/unpacking/update

of the Dependent Planes (DP). Further, cache-misses are a much more significant factor to

optimize than the communication volume, when the Working Set Size (WSS) does not fit into

the cache-hierarchy. As the WSS starts fitting in the cache-hierarchy, cache-minimizing domain

partitions still show a performance gain over communication volume minimizing partitions.

Our experiments are in agreement with the theory we formulate in the current research, that

a Z-plane which is perpendicular to the direction in which data is contiguous in memory is the

costliest plane to communicate and update as compared to similar sized X/Y planes. This is

a weakness of the traditional method of domain partitioning i.e. it does not take into account

the different costs of the various plane types in communication and updating the solution. A

weakness of our model is that it is only applicable to structured 3-D grids with cuts parallel

to the Cartesian Axes and cannot be extended to unstructured grids. As our model does not

take into account the architectural details except for the cache-line size, it is not dependent

on a specific architecture. This is also verified by experiments conducted throughout the work

on two different High Performance Computing clusters. Thus, the model is independent of the

software-hardware ecosystem and the optimal partitions only depend on the data layout of the

language used to implement the stencil-based application.

The cache-misses minimizing topologies outperform the default communication minimiza-

tion topology returned by the mpi dims create() subroutine of the MPI specification in all the

cases that we tested for single uniform grids using BoxLib - the parallel AMR framework. To

this effect we implemented and simulated an MPI Cartesian topology of processes and replaced

the default box distribution policy of BoxLib with our topology. Using non-cubic blocks/boxes

is the optimal choice for single level, uniform meshes in BoxLib. Thus, even in the absence of

overlap of communication with computation, our hypothesis remains true. When the use of

non-cubic boxes is extended to load-imbalanced AMR, the performance gain decreases, with no

gain in some cases. This can be attributed to the change in communication pattern, non-overlap

of communication with computation, the load-balancing criterion, the increase in metadata and

the automatic box-distribution strategy in BoxLib. Further, the coding effort needed to adapt

BoxLib to use non-cubic blocks is significant. We conclude that for maximum performance gains

it is best to used non-cubic partitions in single grids but that the performance gains are not

significant, as compared to the coding effort spent in adapting BoxLib to non-cubic blocks for

AMR. Nevertheless, it may still be stated that the communication minimizing topology/cubic-

partitions are not generally optimal for AMR codes.

Parallel Geometric Multigrid (GMG) shows the same behaviour as uniform meshes in the

7.2. FUTURE WORK 211

sense that our model holds completely for GMG. Thus, the optimality of the domain partition

at the finest grid level governs the overall performance. This is in-line with the theory of Multi-

grid, in that it is at the finest grid that maximum work in Multigrid is performed. In other

words, the diminishing gap between the communication volume minimizing topologies and the

cache-minimizing topologies at coarser levels does not have a significant impact on the perfor-

mance gain. Further, all the stencil operators, i.e. the 7-pt or the 19-pt stencil in smoothing

and the 27-pt stencil in Restriction, have similar expressions for cache-miss equations that differ

only quantitatively.

In addition to cache-misses, we identified and qualitatively investigated some other Serial

Control Parameters (SCPs), namely, Vectorization, Cache Line Utilization (CLU) and the Least

Recently Used (LRU) cache eviction policy that affect optimal sub-domain dimensions. The

LRU policy tries to minimize the unit-stride dimension for optimality. The reason for this

is because if the unit-stride sub-domain dimension is small, there is higher probability that

the recently used data points will still be in the cache when they are needed again. Both

Vectorization and the CLU need the maximal value of the unit-stride dimension for optimal

performance because it ensures an uninterrupted stream of data points that do not contain the

ghost points. While updating the Independent Compute (IC) kernel, the ghost points can act as

“bubbles” in the data stream, thereby lowering the performance. While updating the solution

at mesh points, the Jacobi iterative algorithm utilizing the 7-pt (or 19-pt or the 27-pt) stencil

requires data elements from three adjacent planes. We defined a quantity called the Working

Plane Set Size (WPSS) to indicate the total size of these three planes. If two topologies result in

the same sub-domain volume, then the topology which has a smaller WPSS generally results in

higher performance. In summary, domain partitioning is a complex function of multiple SCPs

and not just a simple function of the communication volume. We emphasize and conclude that

in the light of an evolving tightly-coupled software-hardware ecosystem, domain partitioning

must be re-investigated for performance.

7.2 Future Work

While creating the model for minimizing cache-misses, we take into account only the cache-line

size and ignore the other architectural details. The final inferences from our model are also

oblivious of the cache-line size and depend only on the core count. The model can be improved

by taking into account the problem size and architectural details. For example, the cache-sizes

and the cache-hierarchy can be incorporated to make the model more specific to an architecture.

The overall aim here therefore, is to move from a high level model to a low level model.

We create our model without taking into account any form of cache-tiling. Cache-tiling

helps to reduce cache-misses by keeping the Working Set Size (WSS) in the cache memory for

212 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

re-usability and to reduce main memory accesses. There is a vast literature body investigating

the techniques for tiling and the associated frameworks. It would be interesting to see the

model adapted to the common practice of tiling. The selection of both shape and size of the

tile is an important research problem and hence while evaluating our model we felt that there is

a need to create super light-weight and dynamic cache-tiling heuristics for auto-tuning the tile

size. The reason is that an exhaustive approach of searching for the optimal tile size and shape

involves a large number of combinations of tile sizes and may actually take much more time

to execute than the actual application which utilizes this tile. Although our model does not

incorporate tiling as mentioned above, for some experiments we implemented and evaluated the

2-D tile shape proposed in [6]. Further, we proposed and implemented a simple, light-weight,

tiling heuristic based on the number of arrays in the WSS and the shared L3 cache. Our ex-

periments with this heuristic showed that the high performing topologies benefited from the

automated tile size selection but at the same time the performance of the low performance

topologies degraded. This may be taken as a theoretical but not a practical drawback because

in practice, real codes will avoid non-optimal low performing topologies. A thorough evaluation

of the proposed (and other) tiling heuristics for various stencil sizes, iterative methods and

hardware architectures can form an interesting area of research.

We performed our research based on a single ghost layer and thus the model can be ex-

tended to model the cache-misses for multiple ghost layers, as might be required for higher

order differential operators. We do not devise any separate theory of cache-misses for multi-

ple sub-domains per MPI process. Such cases are extensively observed with AMR frameworks

where the challenge is to optimize communication/load-balance and thus, this forms a research

direction. A natural extension to the model is to use it for Hybrid programming which may

use MPI for domain level parallelism and OpenMP for thread-level parallelism. This creates

a two-level problem in the sense that first an MPI process level sub-domain is created which

is again partitioned among threads. Thus, the partition space for optimal combinations of

processes and threads needs to be explored using a possible extension of our model. Hybrid

programming is being seen as a key programming model at the Exascale level and maximizing

performance demands an optimal domain/thread level decomposition. The problem of optimal

domain partitioning can also be extended to Graphics Processing Units (GPUs). GPUs use a

grid of thread-blocks to simultaneously compute solutions at multiple grid points. These grid

of thread blocks can be utilized as 1-D, 2-D or 3-D thread blocks, and thus, the communication

pattern is governed by the decomposition. It would be interesting to investigate the challenges

associated with domain partitioning on such heterogeneous platforms consisting of multicores

and GPUs.

As shown in the current work, a complete support for non-cubic boxes in BoxLib can be

advantageous for certain applications and thus there is a need to modify BoxLib routines such

7.2. FUTURE WORK 213

that they support them seamlessly. Specifically, as discussed with the developers, the fu-

ture implementations of BoxLib can make cluster minwidth a vector. To simulate a block-

structured behaviour with BoxLib, one needs to tag all the cells and manually adjust the value of

cluster min eff. Instead of tagging all the cells in a block for pure block-structured behaviour,

BoxLib can provide a single boolean variable to switch this behaviour on or off. Though it is

easy to modify a structure in BoxLib, as the source code is openly available, it is still difficult

to follow the chain of interaction that such a change will propagate. Further, the behaviour

of cluster min eff should be much more clearly defined and realized. As for refinement, a

refinement flag can be associated with each Fab object to detect whether it has been refined or

not. In the current version of BoxLib, the only way to examine refinement is to check the tagged

box array associated with a Fab object, or if performing a geometry based refinement, to check

the range of coordinates. Finally, a significant improvement to BoxLib’s parallel performance

would be to decouple the non-blocking point-to-point MPI operations from the wait calls to

enable overlapping of communication with computation.

In parallel Geometric Multigrid, a point that we did not focus on is the solve time for the

coarsest grid which can have a significant effect on the overall execution timings. A future

direction would be to apply our model on the coarsest grid solve on a subset of processes. It

can be noted that choosing both the number of processes and the particular ranks to solve the

coarsest grid problem is non-trivial. To the best of our knowledge no literature exists on how

to choose this optimal subset of processes. There lies a further opportunity in examining the

benefits of separating the communicating and computing threads (while using Hybrid program-

ming) when solving the coarsest grid problem on a subset of processes.

214 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Appendices

215

Appendix A

Eager and Rendezvous Protocols

In Chapter 4 (see Section 4.4.3.1), we discussed how a Dependent Plane (DP) is packed at the

sending MPI process. Explicit packing involves copying the data from the 3-D solution array

to a temporary 1-D user defined array. Implicit packing involves copying the data from the 3-D

solution array to an MPI buffer. We ignore the cost of cache-misses when copying the data to

this 1-D user array or the MPI buffer as the data from the 3-D solution array can be sent di-

rectly to the receiving MPI process, depending on the protocol used by the MPI implementation.

We discuss here the two most common protocols used for transferring data from the sender

to the receiver MPI process: the Eager protocol and the Rendezvous protocol. It is to be noted

that these protocols are not part of the MPI standard [152]. The Eager protocol is used for

sending short messages and it allows the message to be sent immediately, without checking

for a posted receive by the destination. Such messages are then buffered at the destination

and copied to the application buffer when a corresponding receive is posted. The Rendezvous

protocol is typically used for long messages and is based on a Request-to-Send (RTS) and Clear-

to-Send (CTS) technique. This technique involves the source sending a matching MPI data to

the destination, which then responds with a CTS message when it is ready to receive the data.

Thus, a Rendezvous protocol involves a round-trip of RTS and CTS messages. This round-trip

is avoided by the Eager protocol by directly sending the data to the destination. Thus, the

Eager protocol optimizes the latency whereas the Rendezvous protocol optimizes the resource

consumption [152]. There are other protocols that are used in OpenMPI [127] other than the

two mentioned above. OpenMPI uses a variant of the protocols described in [153] and details

can be found on the OpenMPI FAQ page [150].

217

218 APPENDIX A. EAGER AND RENDEZVOUS PROTOCOLS

Appendix B

BoxLib - Configuration and

Profiling

In Chapter 5, we discussed the set-up and solve phases of our implementation of adaptively

refined meshes using BoxLib. We further discussed the major modifications needed to adapt

the library to seamlessly support non-cubic boxes. This section discusses some precautions,

compilation adjustments and profiling of BoxLib applications using Scalasca.

B.1 Deallocating variables for program re-run

To record and compare the execution times of different box-sizes, the same program is run on

the same set of cores using different box-sizes. When the program is run again, some variables

need to be deallocated. These should ideally be the ones allocated by the user but a variable

named amr ref ratio in ml boxarray.h needs to be deallocated as well (though it is part of

the BoxLib library). This variable is part of the ml boxarray module declared as shown in

Listing B.1.

1 integer , allocatable , private , save :: amr ref ratio (:,:)

Listing B.1: Declaration of amr ref ratio

Consequently, a subroutine to deallocate it was written and is shown in Listing B.2.

1 subroutine amr ref ratio deallocate ()

2 deallocate(amr ref ratio)

3 end subroutine amr ref ratio deallocate

Listing B.2: Deallocation subroutine for amr ref ratio

219

220 APPENDIX B. BOXLIB - CONFIGURATION AND PROFILING

B.2 Compiling on ARC3

The BoxLib program does not converge when GNU/6.3.0 compilers are chosen on ARC3 with

OpenMPI/2.0.2. The exact reason cannot be determined but is possibly due to an incompat-

ible Fortran90 datatype declared in the mpi.h file. Thus, gnu/native was chosen along with

OpenMPI/2.0.2. Further, the Fortran library files in OpenMPI/2.0.2 have changed names to

-lmpi mpifh instead of -lmpi f90 and -lmpi f77. This can be seen by executing $ mpif90

-show on ARC2 or ARC3. Thus, the last few lines in the file Software/BoxLib/Tools/F mk

must be changed as shown in Listing B.3 before compiling on ARC3:

1 ifdef MPI HOME

2 mpi include dir = $(MPI HOME)/include

3 mpi lib dir = $(MPI HOME)/lib

4 mpi libraries += −lmpi −lmpi mpifh # this replaces −lmpi f90 and −lmpi f77

5 CC = mpicc

6 CXX = mpic++

7 FC = mpif90

8 endif

Listing B.3: OpenMPI 2.0.2 Fortran library files -lmpi mpifh

B.3 Profiling BoxLib using Scalasca on ARC3

An application implemented using BoxLib can be profiled using the Scalasca [121] profiling

tool (see Chapter 3). In Chapter 5, we used Scalasca interfaced with the PAPI [120] library

to capture cache-misses for various sub-routines. This section describes how to use Scalasca to

profile an application using BoxLib.

First the module Scalsaca and Score-P must be loaded using the module load command.

Two files in the BoxLib library need to be modified, namely,

1. BoxLib/Tools/F mk/comps/gfortran.mak

2. BoxLib/Tools/F mk/GmakeMPI.mak.

For the first file the following lines near the beginning of the file need to be changed to use the

scalasca -instrument command along with the --compile option. The --compile option

forces the instrumentation of user functions (by default, scalasca -instrument only captures

the MPI functions). This change is shown in Listing B.4.

1 FCOMP VERSION := $(shell $(COMP) −v 2>&1 | grep ’version’)

2 FC := scalasca −instrument −−compile $(COMP)

3 F90 := scalasca −instrument −−compile $(COMP)

Listing B.4: Compiling with Scalasca

B.4. MPI LIBRARIES FOR OPENMPI AND INTELMPI 221

Table B.1: MPI Fortran libraries: for Open MPI 2.0.2 and Intel MPI 2017.1.32

OpenMPI 2.0.2 IntelMPI 2017.1.32
-lmpi -lmpi mpifh -lmpi -lmpifort

The second step is to insert the command scalasca -analyze in the submitted script file.

An example of the script file is shown below in Listing B.5.

1 # !/bin/bash

2 #$ −l h rt=00:30:00

3 #$ −l nodes=1,ppn=24,tpp=1

4 #$ −cwd −V

5 #$ −m be

6 scalasca −analyze mpirun ./main.Linux.gfortran.mpi.exe

Listing B.5: Shell script modification with Scalasca

After the program runs successfully, it produces a directory having the prefix scorep. A

directory for this name must not exist before the program is executed otherwise it interferes

with the creation of a new directory. As the third step, the scalasca -examine command

must be run on this directory. This command produces a filename with the extension cubex.

These cubex files can then be examined using the graphic analyzer software called the CUBE.

An example of running this command is shown below in Listing B.6.

1 scalasca −examine scorep main O sum/

Listing B.6: scalasca -examine

If only a textual output is needed, the user can execute scalasca -examine -s at the

command line.

B.4 MPI libraries for OpenMPI and IntelMPI

In Chapter 5, our experiments use both OpenMPI 2.0.2 and Intel MPI 2017.1.132 and the

appropriate library for each is needed by BoxLib. On ARC3 the libraries for OpenMPI 2.0.2

and Intel MPI 2017.1.132 are different and the file GMakeMPI.mak must be changed to reflect

this. We can find the correct libraries for the specific MPI by loading the correct module and

then executing $ mpif90 - show. This command shows the correct libraries which must be

linked. These libraries are shown in Table B.1.

B.5 Compiling with Intel compiler

An application in BoxLib can be compiled using different compilers. For example, to use

the Intel compiler, the compiler being pointed to in the GNUMakefile should be changed to

222 APPENDIX B. BOXLIB - CONFIGURATION AND PROFILING

comp:=Intel. Further, as there was no entry for the Intel 17 compiler in the Linux intel.mak

file, a manual entry having the same options as the Intel 16 compiler was created. The various

compiler flags can be specified in this file as well but there is an option to specify the flags at

the linking stage as well (specified in the GNUMakefile).

Bibliography

[1] P. MacNeice, K. M. Olson, C. Mobarry, R. De Fainchtein, and C. Packer, “Paramesh: A

parallel adaptive mesh refinement community toolkit,” Computer Physics Communica-

tions, vol. 126, no. 3, pp. 330–354, 2000.

[2] P. Colella, D. Graves, T. Ligocki, D. Martin, D. Modiano, D. Serafini, and B. Van Straalen,

“Chombo software package for AMR applications design document,” Available at the

Chombo website: http://seesar. lbl. gov/ANAG/chombo/(September 2008), 2009.

[3] J. D. d. S. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson, “Uintah: A

massively parallel problem solving environment,” in High-Performance Distributed Com-

puting, 2000. Proceedings. The Ninth International Symposium on, pp. 33–41, IEEE,

2000.

[4] “GitHub - BoxLib-Codes/BoxLib: Block-Structured AMR Framework.” https://

github.com/BoxLib-Codes/BoxLib. Accessed: 2017-04-22.

[5] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach.

Elsevier, 2012.

[6] G. Rivera and C.-W. Tseng, “Tiling optimizations for 3d scientific computations,” in Pro-

ceedings of the 2000 ACM/IEEE conference on Supercomputing, p. 32, IEEE Computer

Society, 2000.

[7] S. Saini, J. Chang, and H. Jin, “Performance Evaluation of the Intel Sandy Bridge Based

NASA Pleiades Using Scientific and Engineering Applications,” in High Performance

Computing Systems. Performance Modeling, Benchmarking and Simulation, pp. 25–51,

Springer, 2014.

[8] A. H. Baker, T. Gamblin, M. Schulz, and U. M. Yang, “Challenges of scaling algebraic

multigrid across modern multicore architectures,” in Parallel & Distributed Processing

Symposium (IPDPS), 2011 IEEE International, pp. 275–286, IEEE, 2011.

[9] A. H. Baker, R. D. Falgout, T. V. Kolev, and U. M. Yang, “Scaling Hypre’s Multi-

grid Solvers to 100,000 Cores,” in High-Performance Scientific Computing, pp. 261–279,

Springer, 2012.

223

224 BIBLIOGRAPHY

[10] W. D. Gropp, “Parallel computing and domain decomposition,” in Fifth Interna-

tional Symposium on Domain Decomposition Methods for Partial Differential Equations,

Philadelphia, PA, pp. 349–361, Publ by Soc for Industrial & Applied Mathematics Publ,

1992.

[11] Y. Notay and A. Napov, “A massively parallel solver for discrete Poisson-like problems,”

Journal of Computational Physics, vol. 281, pp. 237–250, 2015.

[12] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf,

and K. Yelick, “Stencil computation optimization and auto-tuning on state-of-the-art

multicore architectures,” in Proceedings of the 2008 ACM/IEEE conference on Super-

computing, p. 4, IEEE Press, 2008.

[13] K. Datta, Auto-tuning stencil codes for cache-based multicore platforms. PhD thesis,

University of California, Berkeley, 2009.

[14] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. Yelick, “Optimization and

performance modeling of stencil computations on modern microprocessors,” SIAM review,

vol. 51, no. 1, pp. 129–159, 2009.

[15] C. Weiß, W. Karl, M. Kowarschik, and U. Rüde, “Memory characteristics of iterative

methods,” in Proceedings of the 1999 ACM/IEEE conference on Supercomputing, p. 31,

ACM, 1999.

[16] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelick, “Impact of modern memory

subsystems on cache optimizations for stencil computations,” in Proceedings of the 2005

Workshop on Memory System Performance, pp. 36–43, ACM, 2005.

[17] S. Sellappa and S. Chatterjee, “Cache-efficient multigrid algorithms,” International Jour-

nal of High Performance Computing Applications, vol. 18, no. 1, pp. 115–133, 2004.

[18] S. M. F. Rahman, Q. Yi, and A. Qasem, “Understanding stencil code performance on

multicore architectures,” in Proceedings of the 8th ACM International Conference on

Computing Frontiers, p. 30, ACM, 2011.

[19] “BoxLib/AMReX Case Study.” http://www.nersc.gov/users/computational-

systems/cori/application-porting-and-performance/application-case-

studies/boxlib-case-study/. Accessed: 2018-05-26.

[20] “Home Page - Exascale Computing Project.” https://www.exascaleproject.org/. Ac-

cessed: 2017-11-15.

[21] W. A. Strauss, Partial Differential Equations: An Introduction. Wiley, 2008.

[22] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference

Methods. Oxford University Press, 1985.

BIBLIOGRAPHY 225

[23] W. F. Ames, Nonlinear partial differential equations in engineering, vol. 18. Academic

press, 1965.

[24] “MPI: A Message-Passing Interface Standard.” http://mpi-forum.org/docs/mpi-3.1/

mpi31-report.pdf. Accessed: 2018-03-04.

[25] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid. Academic press, 2000.

[26] E. Kreyszig, Advanced engineering mathematics. John Wiley & Sons, 2010.

[27] S. C. Chapra and R. P. Canale, Numerical methods for engineers, vol. 2. McGraw-Hill

New York, 1998.

[28] D. Hutton, Fundamentals of finite element analysis. McGraw-Hill, 2004.

[29] T. J. Hughes, The finite element method: linear static and dynamic finite element analysis.

Courier Corporation, 2012.

[30] M. Schäfer, Computational engineering: Introduction to numerical methods. Springer,

2006.

[31] D. Gottlieb and S. A. Orszag, Numerical analysis of spectral methods: theory and appli-

cations, vol. 26. Siam, 1977.

[32] C. Canuto, M. Y. Hussaini, A. Quarteroni, A. Thomas Jr, et al., Spectral methods in fluid

dynamics. Springer Science & Business Media, 2012.

[33] Y. Saad, Iterative methods for sparse linear systems, vol. 82. siam, 2003.

[34] R. J. LeVeque, Finite difference methods for ordinary and partial differential equations:

steady-state and time-dependent problems, vol. 98. Siam, 2007.

[35] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU Press, 2012.

[36] T. A. Davis, S. Rajamanickam, and W. M. Sid-Lakhdar, “A survey of direct methods for

sparse linear systems,” Acta Numerica, vol. 25, pp. 383–566, 2016.

[37] G. H. Golub and J. M. Ortega, Scientific computing: an introduction with parallel com-

puting. Elsevier, 2014.

[38] L. Adams, “A Multi-Color-SOR Method for Parallel Computation,” in 1982 International

Conference on Parallel Processing, pp. 53–56, 1982.

[39] M. H. Gutknecht, “A brief introduction to krylov space methods for solving linear sys-

tems,” in Frontiers of Computational Science, pp. 53–62, Springer, 2007.

[40] H. A. Van der Vorst, Iterative Krylov methods for large linear systems, vol. 13. Cambridge

University Press, 2003.

226 BIBLIOGRAPHY

[41] V. Simoncini and D. B. Szyld, “Recent computational developments in Krylov subspace

methods for linear systems,” Numerical Linear Algebra with Applications, vol. 14, no. 1,

pp. 1–59, 2007.

[42] B. Smith, P. Bjorstad, and W. Gropp, Domain decomposition: parallel multilevel methods

for elliptic partial differential equations. Cambridge university press, 2004.

[43] P. Bastian, G. Wittum, and W. Hackbusch, “Additive and multiplicative multi-grid - A

comparison,” Computing, vol. 60, no. 4, pp. 345–364, 1998.

[44] I. S. Association et al., “Standard for floating-point arithmetic,” IEEE 754-2008, 2008.

[45] O. Villa, D. Chavarria-Miranda, V. Gurumoorthi, A. Márquez, and S. Krishnamoorthy,

“Effects of floating-point non-associativity on numerical computations on massively mul-

tithreaded systems,” Cray User Group, Atlanta, GA, USA, 2009.

[46] E. Kadric, P. Gurniak, and A. DeHon, “Accurate parallel floating-point accumulation,”

IEEE Transactions on Computers, vol. 65, no. 11, pp. 3224–3238, 2016.

[47] I. Foster, Designing and building parallel programs, vol. 78. Addison Wesley Publishing

Company, 1995.

[48] “MPI: A Message-Passing Interface Standard.” https://www.mpi-forum.org/docs/mpi-

3.0/mpi30-report.pdf. Accessed: 2015-02-21.

[49] P. B. Hansen, The origin of concurrent programming: from semaphores to remote proce-

dure calls. Springer Science & Business Media, 2013.

[50] “Home - OpenMP.” http://www.openmp.org/. Accessed: 2015-03-12.

[51] R. Chandra, L. Dagum, D. Kohr, D. Maydan, R. Menon, and J. McDonald, Parallel

programming in OpenMP. Morgan Kaufmann, 2001.

[52] M. J. Quinn, Parallel Programming, vol. 526. TMH CSE, 2003.

[53] G. Hager and G. Wellein, Introduction to high performance computing for scientists and

engineers. CRC Press, 2010.

[54] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual performance

model for multicore architectures,” Communications of the ACM, vol. 52, no. 4, pp. 65–76,

2009.

[55] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel programming on

clusters of multi-core smp nodes,” in Parallel, Distributed and Network-based Processing,

2009 17th Euromicro International Conference on, pp. 427–436, IEEE, 2009.

BIBLIOGRAPHY 227

[56] L. Smith and M. Bull, “Development of mixed mode mpi/openmp applications,” Scientific

Programming, vol. 9, no. 2-3, pp. 83–98, 2001.

[57] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman, “High per-

formance computing using mpi and openmp on multi-core parallel systems,” Parallel

Computing, vol. 37, no. 9, pp. 562–575, 2011.

[58] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to parallel computing:

design and analysis of algorithms, vol. 400. Benjamin/Cummings Publishing Company

Redwood City, CA, 1994.

[59] F. Hülsemann, M. Kowarschik, M. Mohr, and U. Rüde, “Parallel geometric multigrid,” in

Numerical Solution of Partial Differential Equations on Parallel Computers, pp. 165–208,

Springer, 2006.

[60] J. L. Träff and F. D. Lübbe, “Specification guideline violations by mpi dims create,” in

Proceedings of the 22nd European MPI Users’ Group Meeting, p. 19, ACM, 2015.

[61] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel programming with the

message-passing interface, vol. 1. MIT press, 1999.

[62] S. Williams, D. D. Kalamkar, A. Singh, A. M. Deshpande, B. Van Straalen, M. Smelyan-

skiy, A. Almgren, P. Dubey, J. Shalf, and L. Oliker, “Optimization of geometric multigrid

for emerging multi- and manycore processors,” in Proceedings of the International Con-

ference on High Performance Computing, Networking, Storage and Analysis, p. 96, IEEE

Computer Society Press, 2012.

[63] W. L. Briggs, S. F. McCormick, et al., A multigrid tutorial, vol. 72. Siam, 2000.

[64] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis, “Quantifying the potential ben-

efit of overlapping communication and computation in large-scale scientific applications,”

in SC 2006 Conference, Proceedings of the ACM/IEEE, pp. 17–17, IEEE, 2006.

[65] M. Jiayin, S. Bo, W. Yongwei, and Y. Guangwen, “Overlapping communication and

computation in MPI by multithreading,” in Proc. of International Conference on Parallel

and Distributed Processing Techniques and Applications, 2006.

[66] “Infiniband® Trade Association: Home.” http://www.infinibandta.org. Accessed:

2015-05-30.

[67] R. Brightwell and K. D. Underwood, “An analysis of the impact of MPI overlap and

independent progress,” in Proceedings of the 18th Annual International Conference on

Supercomputing, pp. 298–305, ACM, 2004.

[68] W. Gropp, E. Lusk, and D. Swider, “Improving the performance of mpi derived

datatypes,” in Third MPI Developers and Users Conf (MPIDC99), pp. 25–30, 1999.

228 BIBLIOGRAPHY

[69] X.-H. Sun et al., “Improving the performance of mpi derived datatypes by optimizing

memory-access cost,” in Cluster Computing, 2003. Proceedings. 2003 IEEE International

Conference on, pp. 412–419, IEEE, 2003.

[70] P. Balaji, D. Buntinas, S. Balay, B. Smith, R. Thakur, and W. Gropp, “Nonuniformly

communicating noncontiguous data: A case study with petsc and mpi,” in Parallel and

Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International, pp. 1–10,

IEEE, 2007.

[71] “The “vader” shared memory transport in Open MPI: Now featuring 3 flavors of zero copy

!.” https://blogs.cisco.com/performance/the-vader-shared-memory-transport-

in-open-mpi-now-featuring-3-flavors-of-zero-copy. Accessed: 2018-07-23.

[72] I. Yavneh, “Why multigrid methods are so efficient,” Computing in Science & Engineer-

ing, vol. 8, no. 6, pp. 12–22, 2006.

[73] P. Wesseling, “Introduction To Multigrid Methods.,” tech. rep., DTIC Document, 1995.

[74] “MGNet Home Page.” http://www.mgnet.org. Accessed: 2015-09-21.

[75] P. Wesseling and C. W. Oosterlee, “Geometric multigrid with applications to compu-

tational fluid dynamics,” Journal of Computational and Applied Mathematics, vol. 128,

no. 1, pp. 311–334, 2001.

[76] K. J. Brabazon, Multigrid methods for nonlinear second order partial differential opera-

tors. PhD thesis, University of Leeds, 2014.

[77] K. J. Brabazon, M. E. Hubbard, and P. K. Jimack, “Nonlinear multigrid methods for

second order differential operators with nonlinear diffusion coefficient,” Computers &

Mathematics with Applications, vol. 68, no. 12, pp. 1619–1634, 2014.

[78] T. Gradl, C. Freundl, H. Köstler, and U. Rüde, “Scalable multigrid,” in High Performance

Computing in Science and Engineering, Garching/Munich 2007, pp. 475–483, Springer,

2009.

[79] B. Gmeiner, H. Köstler, M. Stürmer, and U. Rüde, “Parallel multigrid on hierarchical

hybrid grids: a performance study on current high performance computing clusters,”

Concurrency and Computation: Practice and Experience, vol. 26, no. 1, pp. 217–240,

2014.

[80] S. Williams, D. Kalamkar, A. Singh, A. M. Deshpande, B. V. Straalen, M. Smelyanskiy,

A. Almgren, P. Dubey, J. Shalf, and L. Oliker, “Implementation and Optimization of

miniGMG - a Compact Geometric Multigrid Benchmark,” tech. rep., Ernest Orlando

Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2012.

BIBLIOGRAPHY 229

[81] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang, “A survey of paral-

lelization techniques for multigrid solvers,” Parallel Processing for Scientific Computing,

vol. 20, pp. 179–201, 2006.

[82] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang, “Systematic reduction

of data movement in algebraic multigrid solvers,” in Parallel and Distributed Process-

ing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International,

pp. 1675–1682, IEEE, 2013.

[83] “MUMPS: a parallel sparse direct solver .” http://mumps.enseeiht.fr. Accessed: 2015-

10-10.

[84] “SuperLU: Home Page .” http://crd-legacy.lbl.gov/~xiaoye/SuperLU/. Accessed:

2015-10-10.

[85] B. Gmeiner, T. Gradl, H. Köstler, and U. Rüde, “Highly parallel geometric multigrid

algorithm for hierarchical hybrid grids,” in NIC Symposium, vol. 45, pp. 323–330, 2012.

[86] P. K. Jimack, M. A. Walkley, and J. Zhang, “Scalable Parallel Multigrid Preconditioning

for High Fidelity Finite Element and Finite Difference Simulations,” Proceedings of the

Fourth International Conference on Parallel, Distributed, Grid and Cloud Computing for

Engineering, 2015.

[87] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential

equations,” Journal of Computational Physics, vol. 53, no. 3, pp. 484–512, 1984.

[88] M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock hydrodynamics,”

Journal of Computational Physics, vol. 82, no. 1, pp. 64–84, 1989.

[89] J. Rantakokko and M. Thuné, “Parallel structured adaptive mesh refinement,” in Parallel

Computing, pp. 147–173, Springer, 2009.

[90] L. F. Diachin, R. Hornung, P. Plassmann, and A. Wissink, “Parallel adaptive mesh re-

finement,” Parallel Processing for Scientific Computing, vol. 20, pp. 143–162, 2006.

[91] N. Hannoun and V. Alexiades, “Issues in adaptive mesh refinement implementation,”

Electronic Journal of Differential Equations, vol. 15, pp. 141–151, 2007.

[92] J. Bell, A. Almgren, V. Beckner, M. Day, M. Lijewski, A. Nonaka, and

W. Zhang, BoxLib/Docs/UsersGuide at master BoxLib-Codes/BoxLib GitHub, 2012.

https://github.com/BoxLib-Codes/BoxLib/tree/master/Docs/UsersGuide.

[93] A. M. Wissink, R. D. Hornung, S. R. Kohn, S. S. Smith, and N. Elliott, “Large scale

parallel structured AMR calculations using the SAMRAI framework,” in Supercomputing,

ACM/IEEE 2001 Conference, pp. 22–22, IEEE, 2001.

230 BIBLIOGRAPHY

[94] A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves,

M. Lijewski, F. Löffler, et al., “A survey of high level frameworks in block-structured adap-

tive mesh refinement packages,” Journal of Parallel and Distributed Computing, vol. 74,

no. 12, pp. 3217–3227, 2014.

[95] B. Van Straalen, J. Shalf, T. Ligocki, N. Keen, and W.-S. Yang, “Scalability challenges for

massively parallel AMR applications,” in Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on, pp. 1–12, IEEE, 2009.

[96] “MAESTRO.” https://ccse.lbl.gov/Research/MAESTRO/. Accessed: 2017-04-16.

[97] “CASTRO.” https://ccse.lbl.gov/Research/CASTRO/. Accessed: 2017-04-10.

[98] “AMReX-Codes: Block-Structured AMR Software Framework and Applications.” https:

//ccse.lbl.gov/AMReX/index.html. Accessed: 2017-10-15.

[99] W. Zhang, A. Almgren, M. Day, T. Nguyen, J. Shalf, and D. Unat, “Boxlib with tiling: An

adaptive mesh refinement software framework,” SIAM Journal on Scientific Computing,

vol. 38, no. 5, pp. S156–S172, 2016.

[100] M. Wolfe, “More iteration space tiling,” in Proceedings of the 1989 ACM/IEEE Confer-

ence on Supercomputing, pp. 655–664, ACM, 1989.

[101] Y. Song and Z. Li, “New tiling techniques to improve cache temporal locality,” ACM

SIGPLAN Notices, vol. 34, no. 5, pp. 215–228, 1999.

[102] G. Bikshandi, J. Guo, D. Hoeflinger, G. Almasi, B. B. Fraguela, M. J. Garzarán, D. Padua,

and C. Von Praun, “Programming for parallelism and locality with hierarchically tiled

arrays,” in Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pp. 48–57, ACM, 2006.

[103] R. Verfürth, “A posteriori error estimation and adaptive mesh-refinement techniques,”

Journal of Computational and Applied Mathematics, vol. 50, no. 1-3, pp. 67–83, 1994.

[104] M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis,

vol. 37. John Wiley & Sons, 2011.

[105] M. Kowarschik and C. Weiß, “An overview of cache optimization techniques and cache-

aware numerical algorithms,” in Algorithms for Memory Hierarchies, pp. 213–232,

Springer, 2003.

[106] S. Mittal, “A survey of recent prefetching techniques for processor caches,” ACM Com-

puting Surveys (CSUR), vol. 49, no. 2, p. 35, 2016.

[107] P. Ghysels and W. Vanroose, “Modeling the Performance of Geometric Multigrid Stencils

on Multicore Computer Architectures,” SIAM Journal on Scientific Computing, vol. 37,

no. 2, pp. C194–C216, 2015.

BIBLIOGRAPHY 231

[108] “Roofline Performance Model.” https://crd.lbl.gov/departments/computer-

science/PAR/research/roofline/. Accessed: 2018-03-15.

[109] J. D. McCalpin, “Memory bandwidth and machine balance in current high performance

computers,” IEEE Technical Committee on Computer Architecture (TCCA) Newsletter,

Dec 1995.

[110] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations for high-

performance computing,” ACM Computing Surveys (CSUR), vol. 26, no. 4, pp. 345–420,

1994.

[111] M. Sturmer, J. Treibig, and U. Rude, “Optimising a 3D multigrid algorithm for the IA-64

architecture,” International Journal of Computational Science and Engineering, vol. 4,

no. 1, pp. 29–35, 2008.

[112] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, “Cache-oblivious algo-

rithms,” in Foundations of Computer Science, 1999. 40th Annual Symposium on, pp. 285–

297, IEEE, 1999.

[113] C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F. Hannig, H. Köstler, U. Rüde, J. Teich,

A. Grebhahn, S. Kronawitter, et al., “ExaStencils: Advanced stencil-code engineering,”

in Euro-Par 2014: Parallel Processing Workshops, pp. 553–564, Springer, 2014.

[114] “ARC2 - Advanced Research Computing.” http://arc.leeds.ac.uk/systems/arc2/.

Accessed: 2018-03-27.

[115] “Intel® Xeon® E5-2670.” https://ark.intel.com/products/91767/Intel-Xeon-

Processor-E5-2650-v4-30M-Cache-2_20-GHz. Accessed: 2018-03-27.

[116] “Intel® Xeon® Processor E5-2650 v4.” https://ark.intel.com/products/91767/. Ac-

cessed: 2017-05-15.

[117] “MPICH |High-Performance Portable MPI.” https://www.mpich.org. Accessed: 2015-

05-31.

[118] “Open MPI: Version 3.0.” https://www.open-mpi.org/software/ompi/v3.0/. Ac-

cessed: 2018-03-28.

[119] “TAU - Tuning and Analysis Utilities.” https://www.cs.uoregon.edu/research/tau/

home.php. Accessed: 2015-05-18.

[120] “PAPI.” http://icl.cs.utk.edu/papi/. Accessed: 2015-05-18.

[121] “Scalasca.” http://www.scalasca.org/. Accessed: 2017-08-10.

[122] “VI-HPS:: Projects:: Score-P.” http://www.vi-hps.org/projects/score-p/. Ac-

cessed: 2018-03-30.

232 BIBLIOGRAPHY

[123] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas,

M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth,

E. W. Bethel, D. Camp, O. Rübel, M. Durant, J. M. Favre, and P. Navrátil, “VisIt: An

End-User Tool For Visualizing and Analyzing Very Large Data,” in High Performance

Visualization–Enabling Extreme-Scale Scientific Insight, pp. 357–372, Oct 2012.

[124] S. J. Farlow, Partial differential equations for scientists and engineers. Courier Corpora-

tion, 2012.

[125] J. Peiró and S. Sherwin, “Finite difference, finite element and finite volume methods

for partial differential equations,” in Handbook of materials modeling, pp. 2415–2446,

Springer, 2005.

[126] S. Williams, K. Datta, L. Oliker, J. Carter, J. Shalf, and K. Yelick, “Auto-tuning memory-

intensive kernels for multicore,” Performance Tuning of Scientific Applications. CRC,

USA, 2010.

[127] “Open MPI: Open Source High Performance Computing.” http://www.open-mpi.org.

Accessed: 2015-05-31.

[128] D. A. Patterson, “Latency lags bandwith,” Communications of the ACM, vol. 47, no. 10,

pp. 71–75, 2004.

[129] R. Murphy, “On the effects of memory latency and bandwidth on supercomputer ap-

plication performance,” in Workload Characterization, 2007. IISWC 2007. IEEE 10th

International Symposium on, pp. 35–43, IEEE, 2007.

[130] “KNEM: High-Performance Intra-node MPI Communication.” http://knem.gforge.

inria.fr. Accessed: 2015-06-05.

[131] S. Pellegrini, T. Hoefler, and T. Fahringer, “On the effects of cpu caches on mpi point-

to-point communications,” in Cluster Computing (CLUSTER), 2012 IEEE International

Conference on, pp. 495–503, IEEE, 2012.

[132] “Documentation for Intel® C and C++ Compilers |Intel® Software.” https://

software.intel.com/en-us/c-compilers/ipsxe-support/documentation. Accessed:

2018-02-07.

[133] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel® quickpath interconnect

architectural features supporting scalable system architectures,” in High Performance

Interconnects (HOTI), 2010 IEEE 18th Annual Symposium on, pp. 1–6, IEEE, 2010.

[134] R. C. OReilly and J. M. Beck, “A family of large-stencil discrete Laplacian approximations

in three dimensions,” International Journal for Numerical Methods in Engineering, pp. 1–

16, 2006.

BIBLIOGRAPHY 233

[135] A. Bourached, “Blocking versus non-blocking halo exchange,” arXiv preprint

arXiv:1709.06175, 2017.

[136] H. P. Langtangen, “Solving nonlinear ODE and PDE problems,” 2015. unpublished.

[137] C. Burstedde, L. C. Wilcox, and O. Ghattas, “p4est: Scalable algorithms for parallel

adaptive mesh refinement on forests of octrees,” SIAM Journal on Scientific Computing,

vol. 33, no. 3, pp. 1103–1133, 2011.

[138] G. Saxena, P. K. Jimack, and M. A. Walkley, “A Cache-aware Approach to Domain De-

composition for Stencil-based Codes,” in International Conference on High Performance

Computing and Simulation (HPCS 2016), pp. 875–885, 2016.

[139] “CCSE Research: Low Mach Number Combustion.” https://ccse.lbl.gov/Research/

Combustion/. Accessed: 2017-04-11.

[140] “VisIt.” https://wci.llnl.gov/simulation/computer-codes/visit. Accessed: 2016-

05-15.

[141] G. Saxena, P. K. Jimack, and M. A. Walkley, “A quasi-cache-aware model for optimal do-

main partitioning in parallel geometric multigrid,” Concurrency and Computation: Prac-

tice and Experience, vol. 30, no. 9, p. e4328, 2018.

[142] G. Saxena, P. K. Jimack, and M. A. Walkley, “A Cache-Aware Approach to Adaptive

Mesh Refinement in Parallel Stencil-Based Solvers,” in High Performance Computing

and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd

International Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2017

IEEE 19th International Conference, pp. 364–371, December 2017.

[143] P. Bollada, C. E. Goodyer, P. K. Jimack, A. M. Mullis, and F. Yang, “Three dimensional

thermal-solute phase field simulation of binary alloy solidification,” Journal of Computa-

tional Physics, vol. 287, pp. 130–150, 2015.

[144] F. Hülsemann, B. Bergen, and U. Rüde, “Hierarchical hybrid grids as basis for parallel

numerical solution of PDE,” in Euro-Par 2003 Parallel Processing, pp. 840–843, Springer,

2003.

[145] P. N. Brown, R. D. Falgout, and J. E. Jones, “Semicoarsening multigrid on distributed

memory machines,” SIAM Journal on Scientific Computing, vol. 21, no. 5, pp. 1823–1834,

2000.

[146] C. Kaltenecker, “Comparison of analytical and empirical performance models: A case

study on multigrid systems,” Master’s thesis, University of Passau, 2016. Master’s Thesis.

234 BIBLIOGRAPHY

[147] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and U. M. Yang, “Modeling the Per-

formance of an Algebraic Multigrid Cycle Using Hybrid MPI/OpenMP,” in Parallel Pro-

cessing (ICPP), 2012 41st International Conference on, pp. 128–137, IEEE, 2012.

[148] G. Romanazzi and P. K. Jimack, “Parallel performance prediction for multigrid codes

on distributed memory architectures,” in International Conference on High Performance

Computing and Communications, pp. 647–658, Springer, 2007.

[149] “Intel® 64 and IA-32 Architectures Optimization Reference Manual.” https://www.

intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-

manual.pdf. Accessed: 2016-12-17.

[150] “FAQ: General run-time tuning.” https://www.open-mpi.org/faq/. Accessed: 2016-

11-24.

[151] R. de la Cruz and M. Araya-Polo, “Towards a multi-level cache performance model for

3D stencil computation,” Procedia Computer Science, vol. 4, pp. 2146–2155, 2011.

[152] “What is an MPI “eager limit” ?.” https://blogs.cisco.com/performance/what-is-

an-mpi-eager-limit. Accessed: 2018-04-11.

[153] T. S. Woodall, G. M. Shipman, G. Bosilca, R. L. Graham, and A. B. Maccabe, “High

performance RDMA protocols in HPC,” in European Parallel Virtual Machine/Message

Passing Interface Users Group Meeting, pp. 76–85, Springer, 2006.

