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Abstract 

This thesis explores local structure variation in (1-x)(Na0.5, Bi0.5)TiO3-xPbTiO3 

(NBT-PT) and (Kx, Na1-x)0.5Bi0.5TiO3 (KNBT) around the morphotropic phase boundary 

(MPB). Local structure alignment or ordering in NBT-PT was achieved through the 

addition of PbTiO3 (PT), whilst in KNBT local ordering was induced by an applied 

electric field. Significant emphasis is placed on local structure analysis methods (up to 50 

Å length scale) via pair distribution function (PDF) analysis.  

In situ temperature X-ray diffraction was used to characterise the average 

structure of NBT-PT. A transition from a rhombohedral structure for x = 0.08 to tetragonal 

for x = 0.18 was observed (MPB x = 0.13). The ferroelectric-paraelectric transition 

temperature was corroborated by permittivity measurements which also showed a 

transition from relaxor to ferroelectric behaviour with increasing x. Whole profile PDF 

refinement revealed the presence of a monoclinic phase for x = 0.14 acting as a lower 

symmetry bridge between rhombohedral and tetragonal phases. Range dependent PDF 

analysis was used to measure the coherence length of nanoscaled regions which decreased 

in size from 40 to 20 Å with increasing x. These regions persisted at temperatures above 

the paraelectric transition, though reduced in size across all compositions. The 

measurements illustrate the order inducing properties of PbTiO3, which suppresses 

nanoregions and promotes long-range ferroelectric order.  

PDF analysis of unpoled KNBT at unit-cell length scale distances was used to 

measure the local Bi off-centre displacement direction. For x = 0.10, a rhombohedral 

distortion was observed. This transitioned to a monoclinic distortion for x = 0.15, further 

evolving into a complex mixture of various monoclinic distortions for x = 0.20 (MPB). A 

tetragonal distortion was observed beyond the MPB (x = 0.30). The improved 

piezoelectric properties at the MPB are attributed to the greater availability of 

displacement directions. Under an applied electric field, the suppression in diffuse 

scattering and sharpening of PDF peaks indicating field induced ordering. Changes in the 

peak area ratios corresponding to Bi-Ti distances indicate reorientation behaviour along 

the applied field vector. Local strain analysis was achieved by measuring the PDF peak 

shift. The onset of linear strain corresponding to piezoelectric response occurred at an 

electric field (E) ≈ 1000 - 1250 V/mm for x = 0.20 and at E ≈ 2000 – 3000 V/mm for x = 

0.15 and 0.18. Non-zero strain below the threshold field indicates the presence of 

localised strain assumed to be incipient to the macroscopic strain.  
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1 Introduction and Background  

1.1 Chapter layout 

This chapter serves to introduce the thesis topic and its associated scientific 

background, namely piezoelectric materials. In order to provide context to these materials 

a ‘bottom up’ approach is taken to this introduction beginning with the crystallographic 

basis for the origin of piezoelectric behaviour, followed by an examination of 

piezoelectric properties. Certain phenomena particularly pertinent to this study are 

discussed with a particular focus placed upon the atomic structure. The chapter is 

concluded with a review of the current literature and key example materials. 

 

1.2 Introduction 

Piezoelectric ceramics are a class of functional materials which have seen use in 

established technologies such as medical ultrasound, sonar and fuel injection [1]. Their 

function arises from their ability to act as transducers, exchanging between electrical and 

mechanical signals. An electrical charge is produced when the material is subject to stress 

and conversely by applying an electric field to the material a strain is induced [2]. In this 

way, they can be used as both sensors and actuators. 

Current technologies are mainly lead (Pb) based, in particular the solid solution 

between PbZrO3 and PbTiO3, Pb(Zrx Ti1-x)O3 (PZT) is widely used due to its greater 

piezoelectric properties over its lead-free counterparts, and the ease with which its 

properties can be tailored to specific applications [1], [3]. The human health and 

environmental concerns associated with the toxicity of lead have motivated research into 

lead-free alternatives with competing properties, and is further spurred on by European 

Union legislation on the use of lead in technology such as the directives on the Waste 

from Electrical and Electronic Equipment (WEEE) (2003) and Restriction of Hazardous 

Substances (RoHS) (2003). Currently due to the high dependence of piezoelectric devices 

on Pb they are exempt from these restrictions. There is not yet a single lead-free material 

which could replace lead-based materials and be as pervasive as PZT, however there are 

several emerging lead free replacements for specific applications such as high frequency 

transducers for medical ultrasound  [4]. 



  

 

 

2 

The properties of piezoelectric materials are determined by sub-angstrom atomic 

displacements and atomic response to external stimuli such as electric-field, mechanical 

stress and temperature. With the development and improvement of structural 

characterisation methods including high energy X-ray diffraction and neutron diffraction 

techniques it has become apparent that the atomic structure will appear different 

depending on the coherence length of the measurement tool i.e. an averaged description 

of the structure may differ at the nanoscale. The understanding of well-documented and 

‘simple’ materials such as BaTiO3 (BT) and PZT has benefited from these analyses, 

leading to a new insight of their behaviour [5], [6].  

 

1.3 Research Aims: 

1) To describe the local structure of (Na0.5Bi0.5)TiO3 based piezoelectric 

materials and the behaviour under electric-field, temperature and with the 

incorporation of lead titanate into the solid solution. 

2) To contribute to the understanding of the role played by the presence of Pb2+ 

ions in piezoelectric materials and the observed improvements to properties it 

imparts. 

 

1.4 Research objectives 

1) Characterise local structure by the pair distribution function (PDF) technique. 

2) Measure local structure (Na0.5Bi0.5)TiO3-PbTiO3 by pair distribution function 

(PDF) analysis as a function of PbTiO3 content and temperature. 

3) Measure local structure of (Na0.5Bi0.5)TiO3-(K0.5Bi0.5)TiO3 at the 

morphotropic phase boundary as a function of electric field magnitude and 

ramp rate. 
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1.5 Crystallography of materials 

Piezoelectric properties are observed in several materials including quartz, 

Rochelle salt, bone and various polymers [7]. Here specifically ceramic piezoelectric 

materials are considered. As with many materials the properties of piezoelectric materials 

are determined by their atomic chemistry and structure. This is particularly important in 

piezoelectric materials whose crystalline structure is a significant determining factor in 

their properties [8]. This section covers a broad description of important aspects of 

crystallography with the aim to introduce to the reader the crystallography of piezoelectric 

materials and the origin of their properties. This description of crystallography is well 

established and has been extensively covered in a plethora of text books [9]–[12]. 

 

Crystal structure 

A material is said to be crystalline when it is composed of atoms or molecules 

which are regularly arranged and form a lattice i.e. an array of points which periodically 

repeat in all three dimensions. A crystal structure provides a description of how atoms or 

molecules are arranged in the solid material. This periodicity can be represented by the 

unit cell, which contains all the atoms necessary to describe the repeating structure and 

serves as the simplest depiction of the entire structure. A two-dimensional array of lattice 

points is shown in Figure 1.1, showing how several unit cells can be constructed, 

including a square with lattice points on its corner positions (a), a parallelogram (b) and 

a square with a central point (c). There are a few rules which dictate which would be the 

preferred choice: The unit cell should be as small as possible, contain the least amount of 

lattice points, and generally be the simplest construction possible. In this example, the 

square (a) would be an adequate unit cell used to describe the whole structure.  

Figure 1.2 shows a three-dimensional unit cell, with points at the corners of a 

cube. The main variables used to describe the unit cell are the side lengths (a, b & c), and 

the angles between them (,  & ). Additionally, all the atoms in the unit cell are given 

coordinates (x, y & z) corresponding to their position with respect to the unit cell 

dimensions and therefore expressed as fractions of the unit vectors a, b and c. An example 

is shown in red in the figure. 
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Figure 1.1. 2-dimensional array of points showing the various unit cells that can be 

used. The square with points in its corner positions (a)is the simplest description of 

the repeating structure and therefore the most adequate. 

 

 
 

Figure 1.2. The unit cell provides a description of the crystal structure in the simplest 

manner possible. The main descriptor parameters are the side lengths (a, b & c) and 

angles between them (,  & ). The atomic positions in the unit cell are given by 

fractional coordinates (x, y & z) 
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Planes and directions 

It is necessary to define some of the naming conventions used to define 

crystallographic directions and planes. Crystallographic directions are labelled with 

square brackets as shown in Figure 1.3 (a). The directions [u, v, w] are simple vectors in 

the x, y, and z axes. Arrow brackets (⟨⟩) are used to denote a family of directions, in the 

example of a cubic structure [001], [010] and [100] (including the negative directions 

e.g. (001)) are identical and can be defined collectively as ⟨001⟩. Crystallographic planes 

(Figure 1.3 (b)) are labelled with curved brackets and a family of planes are labelled with 

curly ({}) brackets. In the cubic system (see Table 1-1), planes are labelled by the inverse 

of the perpendicular vector emerging from the plane. For example, the vector [½½1] 

produces the plane (221) shown in the Figure. This is not the case for structures which 

deviate from the cubic system. 

 

 

Figure 1.3 Examples of crystallographic directions (a) and planes (b). Crystal planes 

are denoted by the reciprocal of a vector perpendicular to said plane.  

 

Crystal classes 

There are several structures that arise from different unit cell side lengths and 

angles, which are classified into seven crystal systems. Combined with the available 

lattice centres they create the 14 Bravais lattices shown in Figure 1.4 whose properties 

are described in Table 1-1 [9] and are listed in order of decreasing symmetry. The cubic 

structure exhibits the highest symmetry where all side lengths are equals and all angles 

are at 90, and as such contains several rotation axes and mirror planes. Conversely the 
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triclinic structure has the lowest symmetry, and if the conditions are such that all its angles 

and side lengths are unequal then it would have no symmetry. The non-equality symbol 

(≠) is a requirement of the lower symmetry phases. However, in some circumstances 

equality can occur in a lower symmetry phase, for example a monoclinic phase where a 

= b, and can therefore be inscribed within an orthorhombic phase. 

 

 

Figure 1.4 The 14 Bravais lattices describing all possible arrangements of atoms in 

a solid. From [9].  
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Table 1-1 Crystal systems, Bravais lattices, and parameters required by symmetry 

constraints. 

System Axis lengths and 

angles 

Bravais lattice Lattice symbol 

Cubic a = b = c 

α = β = γ = 90° 

Simple 

Body-centred 

Face-centred 

P 

I 

F 

Tetragonal a = b ≠ c 

α = β = γ = 90°  

Simple 

Body-centred 

P 

I 

Orthorhombic a ≠ b ≠ c 

α = β = γ = 90°  

Simple 

Body-centred 

Face-centred 

Base-centred 

P 

I 

F 

C 

Rhombohedral a = b = c 

α = β = γ ≠ 90° 

Simple R 

Hexagonal a = b ≠ c 

α = β = 90°, γ = 120° 

Simple P 

Monoclinic a ≠ b ≠ c 

α = γ = 90° ≠ β 

Simple 

Base-centred 

P 

C 

Triclinic a ≠ b ≠ c 

α ≠ β ≠ γ ≠ 90° 

Simple P 

 

Polar structures and point groups 

Combining the crystal systems with the symmetry operations such as mirror 

planes, rotation axes and inversion centre, yields the 32 point groups. Out of these, 21 are 

non-centrosymmetric, of which 20 are piezoelectric and have no inversion centre. The 

lack of central symmetry and inversion centre indicate a distorted i.e. non-cubic structure 

required of piezoelectricity, shown in Figure 1.5. In simple terms in a structure with an 

inversion centre an atom at position (x, y, z) should have an equivalent atom at position 

(-x, -y, -z). 
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Figure 1.5 a) Centrosymmetric and b) non-centrosymmetric structures with centres 

of (or lack thereof) inversion highlighted by orange arrows.  

 

Within this subset there are 10 polar point groups which possess a spontaneous 

dipole moment due to the separation of charge. This polarisation can be changed by 

changes in temperature and therefore these are termed pyroelectric. Some materials 

possessing the point groups in this subset also experience polarisation reversal by the 

application of an external electric field. The dipole moment in these structures is 

fundamentally tied to the piezoelectric properties and materials (Sections 1.7 and 1.8). 

This hierarchy of structure and properties is depicted in Figure 1.6. 

 

 

Figure 1.6 Classification of crystallographic point groups and their resultant 

properties 
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Symmetry operations 

Before introducing space groups it is important to review the various symmetry 

operations that can be performed, shown in Table 1-2 and the relevant nomenclature. 

 

Table 1-2 Symmetry operations and their symbols used in nomenclature 

 

Space group nomenclature 

A space group is used to describe the symmetry operations in a three-dimensional 

material. There are 230 space groups which are formed by combining the 32 point groups 

wherein are contained rotation, mirror and inversion symmetry operation, combined with 

the 14 Bravais lattices and furthermore with screw axis and glide plane symmetry 

operations. Table 1-3 shows the rules as set by convention [13] for understanding the 

symmetry symbols when reading a space group. Shown in Figure 1.7 are examples of 

Symmetry operation Symbol 

Rotation 

360/R 

R = 2, 3, 4 and 6 

Mirror plane m 

Glide plane: Mirror (m) + ½ 

translation along direction 
a, b and c 

Screw axis: Mirror (m) + rotation 

RT = rotation (360/R) + translation T/R 

RT =  21, 43, 62… 

Inversion centre 2̅, 3̅, 4̅ 𝑎𝑛𝑑 6̅ 
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space groups with symmetry symbols described. Figure 1.8 illustrates the structural 

origin for some of the symmetry operations discussed here. For clarity purposes coloured 

planes are used to highlight the operations. 

 

Table 1-3 Convention rules of space group nomenclature. The rhombohedral crystal 

system is described in a hexagonal unit cell. 

Crystal System Order of viewing directions 

Cubic a [111] [110] 

Tetragonal c a [110] 

Orthorhombic a b c 

Rhombohedral / 

Hexagonal 
c a [210] 

Monoclinic b (c in some literature) 

Triclinic Only inversion centre exists (no viewing direction) 

 

 

Figure 1.7 Cubic and tetragonal space groups with symmetry symbol descriptions. 

R3c symmetry is in its hexagonal form as discussed in Section 0. 
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Figure 1.8 Examples of some of the symmetry operations present in different phases 

illustrated by planes. a) Inversion axis (𝟑̅) in the [111] direction of the cubic phase, 

b) mirror planes (mm) around the a axis and [110] direction in the tetragonal phase 

c) 3-fold rotation (3) and glide planes (c) in the rhombohedral phase. 

 

Rhombohedral within hexagonal 

The rhombohedral structure can be inscribed within a hexagonal unit cell as 

shown in Figure 1.9. In this example, the oxygen atoms have been removed for clarity. 

Figure 1.9 a) shows the view along the hexagonal c axis, and Figure 1.9 b) shows the 

view along the hexagonal a axis where atoms have been removed to show the two 

rhombohedral perovskite unit cells, which are stacked along their body diagonal 

correspond to the hexagonal c axis. 

 

 

Figure 1.9 Rhombohedral structure inscribed in a hexagonal unit cell.. a) View along 

hexagonal c axis. b) View along the hexagonal a axis. 
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1.6 The perovskite structure 

All the materials discussed here are characterised by a specific arrangement of 

atoms named the perovskite structure. The name perovskite stems from the mineral 

calcium titanate (CaTiO3). Shown in Figure 1.10 are three variations of the perovskite 

structure which are a) cubic, b) tetragonal and c) rhombohedral (or hexagonal). In these 

examples the perovskite atomic arrangement is maintained and denoted by the formula 

ABO3, where A (green spheres) represents a corner cation, B (blue spheres) represents 

interior cation, and O3 (red spheres) represents face oxygen anions. The tetragonal and 

rhombohedral structures can be considered as distortions of the cubic structure along one 

direction or the body diagonal respectively. It is these distortions that form the basis of 

piezoelectricity. There are of course many other structures which also exhibit 

piezoelectricity. For this work these are the most relevant. 

 

 

Figure 1.10. Perovskite unit cell for (a) cubic Pm-3m, (b) tetragonal P4mm and (c) 

rhombohedral R3c distortions with the ABO3 structure where A = green corner 

cations, B = blue central cation and O = red face oxygen anions. 

 

Octahedral tilt 

There is another important distortion that can take place in some perovskite based 

materials which is the tilting of the octahedra formed by the eight face oxygen atoms 

shown in Figure 1.11. These tilts can occur about any of the orthogonal axes a, b and c. 

Since the face oxygen atoms are shared by two neighbouring unit cells a tilt in one 

direction will cause an opposite tilt in the other direction. Considering Figure 1.11, a 

clockwise octahedral tilt would cause the unit cells above, below and to either side to tilt 
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in the anti-clockwise direction. The unit cells in front and behind it however would be 

unaffected. A notation developed by Glazer [14] is useful to define the tilts. The notation 

is as follows: a+b-c0, where a, b and c denote unique tilts about those axes, and the 

superscript indicates the tilt of subsequent layers, ‘+’ if the tilt is the same, ‘-’ if they are 

in the opposite direction and ‘0’ if there is no tilt.  

In Figure 1.12 examples of tilt variations are shown. The front set of unit cells 

can be considered a ‘layer’ of octahedra. If the tilt occurs about the c axis, then the tilt 

extends across the layer as discussed above. For a lack of tilt a) the notation is a0a0a0, if 

the subsequent layers along the c axis tilt in the same direction b) the notation is a0a0c+, 

i.e. there is a unique tilt about the c axis which is in-phase (+). If the tilt of the subsequent 

layers alternates c) the notation is a0a0c-, with the minus sign denotes the alternating or 

anti-phase tilt. These are examples of tilts around the single axis c, however there can be 

tilts about a and b, and combinations thereof, producing many more tilt variations outlined 

by Glazer [14]. 

 

 

Figure 1.11 Perovskite unit cell with the oxygen octahedra unit highlighted. 
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Figure 1.12 Examples of tilting variations along the c axis. a) No tilt, b) in-phase tilt, 

i.e. both layers tilt in the same direction, and c) anti-phase tilt, the layers tilt in 

opposing directions. 

 

Tolerance factor 

The Goldschmidt tolerance factor [15] can be used as an indication of the stability 

of a perovskite structure, and the phase it can adopt by its dependence on the ionic radii. 

The tolerance factor t is defined in Equation 1.1 where r0 is the oxygen radius, rB is the 

B-site atom radius and, rA is the A-site ionic radius. For   0.9 < t ≤ 1 the structure is the 

ideal cubic perovskite. Here the B-site is the right size to fit within the oxygen octahedra. 

If the A-site is bigger or B-site smaller relative to the oxygen size, the B-site atom will 

have more space to displace towards its oxygen nearest neighbour, where t > 1, and the 

structure adopts a tetragonal or hexagonal structure. If the A-site ion becomes smaller or 

the B-site ion bigger relative to oxygen, the B-site ion will physically not have enough 

space to reside in. To accommodate this the entire structure experiences either a 

rhombohedral or an orthorhombic distortion where 0.71 < t ≤ 0.9. In some cases 

octahedral tilting also aides the stabilisation of the phase. Below 0.71 lower symmetry 

phases are adopted. 

 

Equation 1.1 

𝑡 =  
(𝑟𝑂 + 𝑟𝐴)

√2(𝑟𝑂 + 𝑟𝐵)
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1.7 Dielectric materials 

A dielectric material is one which displays extremely high electrical resistance 

and whose structure can exhibit polarisation or can have polarisation induced by an 

applied voltage. This section covers the description of dielectric materials from the 

following references [16], [17]. 

Polarisation occurs due to the separation of charges in a structure, for example 

displacements of cations and anions. The separation forms a dipole, where the centres of 

the positive and negative charges are displaced away from each other. The result is the 

formation of surface charge. In this manner, dielectric materials can act as capacitors in 

circuits as they are able to accumulate and store charge. There are several polarisation 

mechanisms illustrated in Figure 1.13. Every mechanism has an upper frequency 

response ceiling illustrated by the real and imaginary components of the relative 

permittivity (discussed in Section 0). 

Space charge polarisation is associated with the movement of charge carriers 

which encounter barriers such as grain boundaries. As such this mechanism is a slow and 

low frequency process. The fastest mechanism is atomic polarisation, associated with the 

asymmetric distortion of electron clouds around atoms thereby producing a polarisation 

vector. The ionic and dipole polarisation mechanisms are the most pertinent to this work. 

As shown in Section 1.6 the ionic mechanism is associated with ionic displacements 

within the unit cell. In ferroelectric materials he dipole mechanism is associated with the 

formation of domains; regions or clusters in which the all the unit cells possess the same 

ionic polarisation vector. This is further elaborated in Section 1.8.3.  
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Figure 1.13 Polarisation mechanisms in dielectric materials, and the frequency 

dependence of the real and imaginary permittivity components. From [16]. 

 

Polarisation 

The dipole moment p is calculated as the product of two equal and opposite 

charges Q, separated by a distance δx, shown in Equation 1.2. 

 

Equation 1.2 

𝑝 = 𝑄 𝛿𝑥 

 

The polarisation P is calculated as the dipole magnitude per unit volume v of the 

material as described in Equation 1.3. For a linear dielectric, the polarisation is 

proportional to the inducing electric field E. It is related by the electric susceptibility χe, 

and the permittivity of free space ε0 = 8.85 × 10-12 F/m. These are proportionality 

constants which determine the extent at which an applied electric field induces a 

polarisation. 

 

Equation 1.3 

𝑃 =  
𝑝

𝑣
= 𝜒𝑒𝜀0𝐸 
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The polarisation only accounts for bound charges. The total charge density D or 

charge Q per unit area A contains both bound and unbound charges, shown in Equation 

1.4.  

 

Equation 1.4 

𝐷 = 𝜀0𝐸 + 𝜒𝑒𝜀0𝐸 =  (1 + 𝜒𝑒)𝜀0𝐸 

 

Permittivity 

The extent by which a dielectric material can store charge (and thereby be 

polarised) by a given voltage is called the relative permittivity. The value of permittivity 

dictates the capacitance of the dielectric as shown in Equation 1.5 where C is 

capacitance, Q is charge, V is voltage, 𝜀r is the relative permittivity which is the ratio of 

the material permittivity 𝜀 and the permittivity of free space 𝜀0, A is the area of the charged 

surface and d is the distance between the charged surfaces. The electric field E can also 

be expressed as volts V per metre (distance d). 

 

Equation 1.5 

𝐶 =  
𝑄

𝑉
=  𝜀0𝜀𝑟

𝐴

𝑑
 

Solving Equation 1.4 and Equation 1.5 for relative permittivity, its relationship 

with the susceptibility is shown in Equation 1.6. 

 

Equation 1.6 

𝜀𝑟 = (1 + 𝜒𝑒) 
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Dielectric loss 

For an ideal dielectric under an alternating field the current and the voltage are 

out of phase by 90°. As the voltage reaches its maximum value it charges the capacitor 

which becomes saturated and the current drops to zero. The voltage then returns to zero 

as the charge is released, observed as an increase in the current. This is illustrated in 

Figure 1.14.  

 

 

Figure 1.14 Voltage (black) and current (orange) traces for an ideal capacitor. 

 

In reality however, there are always losses associated with current leakage and 

frequency response of the various polarisation mechanisms. As with any oscillating 

measurements be it mechanical or electrical, there are complex quantities with real and 

imaginary components. In this case measuring the complex permittivity can provide 

information on the dielectric loss of a dielectric. This is expressed in Equation 1.7, where 

εr* is the complex permittivity and εr’ and εr’’ are the real and imaginary or capacitive 

and lossy components respectively. 
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Equation 1.7 

𝜀𝑟
∗ =  𝜀𝑟

′ −  𝑖𝜀𝑟
′′ 

The phase difference between the current and the voltage can be represented by a 

phasor diagram, shown in Figure 1.15. When the phase difference is less than 90° the 

current oscillations are split into two components, Icap capacitive component, and Iloss is 

the loss component. 

 

 

Figure 1.15 Phasor diagrams representing the current and voltage components in 

an a) ideal and b) non-ideal capacitor. The complex component emerges when the 

phase difference is less than 90°. 

 

From the phasor diagram, it is apparent that the components can be calculated as 

shown in in Equation 1.8. These are in turn proportional to the capacitive and lossy 

components of the permittivity [16]. The ratio of these components is known as the loss 

tangent or dissipation factor and can therefore be obtained from the trigonometric 

equivalence shown in Equation 1.9. As stated earlier an ideal lossless capacitor has a 90° 

phase difference for which the loss tangent is zero. As the phase difference approaches 

zero the loss tangent tends to infinity. At this point there is no phase difference between 

the voltage and current and the material can be thought of as a classic resistor. 
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Equation 1.8 

𝐼𝑐𝑎𝑝 = 𝐼 cos 𝛿  ∝  𝜀𝑟
′  

𝐼𝑙𝑜𝑠𝑠 = 𝐼 sin 𝛿 ∝  𝜀𝑟
′′ 

 

Equation 1.9 

𝐼 sin 𝛿

𝐼 cos 𝛿
=  
𝜀𝑟
′′

𝜀𝑟
′
=  𝑡𝑎𝑛 𝛿 

 

1.8 Ferroelectricity  

1.8.1 Introduction 

As briefly described in Section 0, a pyroelectric material is one which displays a 

spontaneous polarisation due to its non-centrosymmetric and polar structure. If this 

polarisation can also be switched via an external electric field the material is also classed 

as ferroelectric. The emergence of this property is highly dependent on temperature; a 

material ceases to exhibit ferroelectricity above a temperature called the Curie point (Tc). 

Above Tc the structure becomes centrosymmetric (non-polar), and therefore the criterion 

required of ferroelectricity i.e. a non-centrosymmetric and polar structure, disappears. At 

this point the material becomes paraelectric. This occurs due to the high thermal energy 

of the ions whose off-centre thermal fluctuations average out to a cubic structure. As the 

Curie point is crossed upon cooling, the thermal energy decreases enough for the ions to 

settle into stable positions, resulting in the spontaneous polarisation. A mechanical strain 

accompanies the polarisation because of the ionic displacement. 

In Figure 1.16 a transition from cubic to tetragonal is shown. As the temperature 

decreases from above Tc (a), the ions in a centrosymmetric position displace into more 

energetically favourable positions (b) producing spontaneous polarisation and strain. The 

lattice extension along the polarisation vector also requires a contraction of ionic positions 

perpendicular to the vector to compensate for the anisotropic strain.  
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Figure 1.16. The perovskite structure depicted in two dimensions. Above its Curie 

point (a) the structure is cubic and paraelectric i.e. no dipole moment or separation 

of charge. Below the Curie point (b) there is a transition to (in this example) the 

tetragonal ferroelectric phase.  

 

1.8.2 Curie-Weiss behaviour 

The transition from paraelectric to ferroelectric can be modelled via the Landau 

model and the Curie-Weiss law [16]. The Landau model for energy density in a material 

(G), effectively the free energy in the system, can be approximated by the series 

expansion shown in Equation 1.10 for the example of a tetragonal structure in which 

displacements are relatively simple. The coefficients 𝛼 and 𝛽 are temperature dependent. 

The coefficient 𝛼 is particularly important and is described in Equation 1.11 where a and 

b are experimentally determined constants. The simplified series expansion is shown in 

Figure 1.17 for temperatures transitioning through TC. Above TC there is only one 

polarisation state which is zero. Below TC two opposite polarisation states emerge, 

positive and negative.  

 

Equation 1.10  

𝐺 =  𝐺0 + 𝛼𝑃
2 +  𝛽𝑃4⋯ 
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Equation 1.11 

𝛼 = 𝑎(𝑇 − 𝑇𝑐) 

𝛽 = 𝑏 

 

 

Figure 1.17 Landau model for free energy as a function of polarisation. The red trace 

corresponds to T = Tc 

 

Differentiating the expansion and equating to zero can be used to determine the 

energy minima i.e. the polarisation state with respect to T, shown in Equation 1.12. This 

calculation is depicted in Figure 1.18 showing polarisation as a function of T relative to 

TC. The two polarisation states that emerge correspond to the ionic displacement in two 

different directions. As TC is approached the energy in the system increases, reducing the 

potential barrier between the two states, finally combining into one where the structure 

no longer exhibits polarisation.  
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Equation 1.12 

𝜕𝐺

𝜕𝑃
= 2𝑎𝑃 + 4𝛽𝑃3 = 0 

𝑃 =  ±√
𝑎(𝑇 − 𝑇𝑐)

2𝑏
  

 

 

Figure 1.18 Polarisation states emerging from the Landau model. 

 

Introducing an interaction energy in the form of an applied electric field into 

Equation 1.12 and solving for the susceptibility in Equation 1.3 produces the Curie-

Weiss law described in Equation 1.13. 

Equation 1.13 

𝜀𝑟 − 1 =  𝜒𝑒 = 
1

2𝑎𝜀0(𝑇 − 𝑇𝐶)
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1.8.3 Ferroelectric domains 

Ferroelectric domains are regions within a ferroelectric material which are 

polarised in the same direction [2]. They arise in order to minimise the potential energy 

associated with surface charges and strains. In polycrystalline materials, neighbouring 

grains experience strain which further induces the formation of domains. Figure 1.19 

shows the formation of domains for a tetragonal material. If all the unit cells’ spontaneous 

polarisation vectors are in one direction (a) an imbalance in the surface charges occurs. 

This creates an electric field gradient acting against the polarisation vector, and the high-

energy state is reduced by the formation of 180º domains (b) which result in a net 

polarisation of zero. The spontaneous polarisation is accompanied by an associated 

mechanical strain (c) due to the ionic displacements. Again, this strain is highly 

directional and therefore produces high stresses produced by the elastic constraints of the 

surrounding grains in polycrystalline ceramics. This unfavourable state is reduced by the 

formation of 90º domains (d). 

 

1.8.3.1 Domain behaviour 

As discussed in Section 1.8.3, the formation of ferroelectric domains is motivated 

by the reduction of anisotropic polarisation and strain. As such the domain state becomes 

isotropic and no net strain or polarisation is produced. In order to make this material 

useful it must be forcibly polarised by applying a sufficiently high electric field. In doing 

so many of the domains will be aligned with the electric field. In a polycrystalline 

material, there will exist grains with unfavourable crystallographic orientations with 

respect to the electric field with domains which do not reorient as much as others e.g. 

180º domains in grains aligned with the field vector. Additionally, domains oriented 

perpendicular to the field vector will require a greater magnitude of electric field to 

produce domain switching. Once this is achieved the material is polarised or ‘poled’ and 

will have a net polarisation. This polarisation is retained as a remnant polarisation after 

field removal.  Figure 1.20 shows a schematic of the domain behaviour in grains. Initially 

at zero-field (a) the domains are disordered. When a small field is applied (b) domains 

favourable orientated will grow at the expense of neighbouring domains. When a 

sufficiently large electric field is applied (c) the domains will be predominantly aligned 

with the field vector. At this point the material is considered ‘poled’. These changes are 
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accompanied by elongation of the structure along the poling vector and a corresponding 

contraction perpendicular to the field vector. Applying a compressive stress (d) will align 

domains perpendicular to the stress vector. 

 

 

Figure 1.19. Formation of 180 domains (a-b) occurs to reduce the high electrostatic 

potential energy and results in a net zero polarisation (b). 90 domains (c - d) form 

to reduce the highly directional strain and high mechanical potential energy 

associated with the polarisation.  
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Figure 1.20 Domains within grains initially randomly orientated (a). Under an 

electric field those domains already favourable aligned will grow at the expense of 

their neighbours (b). With a greater field, domains not aligned are eventually 

switched (c) and a net polarisation is produced. Applying a compressive force (d) 

the domains rearrange perpendicular to the stress vector. From [16]. 

 

1.8.3.2 Ferroelectric hysteresis 

When measuring polarisation as a function of electric field for ferroelectric 

materials, hysteretic behaviour emerges as shown in Figure 1.21. Initially the net 

polarisation is zero (O) requiring an electric field to align the domains in the positive 

direction. The rapid increase in polarisation is due to domain wall motion (growth of 

domains parallel to the field vector, and ionic polarisation. At high fields where the curve 

becomes linear the polarisation is said to be saturated i.e. there is no more domain wall 

motion. Here the polarisation mechanism is purely ionic and piezoelectric behaviour can 

be observed (see Section 1.10). This is represented in Figure 1.20 (a), (b) and (c). Now 

if the electric field is removed the polarisation arising from the piezoelectricity decreases 
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following a linear trend. Here the hysteretic behaviour emerges as there is no restoring 

force on the domain walls and therefore. The intercept of the linear polarisation at zero-

field is labelled the saturated polarisation Ps. In reality however some of the polarisation 

is lost due to domain walls relaxation. This polarisation value is called the remnant 

polarisation Pr. As the electric field is reversed the polarisation further decreases as the 

domains are being forcibly switched. ±Ec is the electric field required to switch the 

polarisation. Once the domains have been switched the process is repeated. 

 

 

Figure 1.21 Typical hysteresis loop of polarisation (P) as a function of electric field 

(E) for a ferroelectric material. At zero-field (O) there is no net polarisation. Once 

polarised the field is removed and a remnant polarisation (Pr) remains. Ps is the 

saturated polarisation, extrapolated by a linear regression of the high field linear 

behavior of the polarisation. There are however some losses associated with domain 

wall dynamics. ±Ec is the electric field required to reverse the polarisation. Modified 

from [2]. 

 

1.8.3.3 Polycrystalline and single crystal materials 

An essential feature of ceramic materials is whether they are a single crystal or 

polycrystalline Figure 1.22. A single crystal represents the ‘purest’ type of material as its 

structure is highly ordered and has translational order spanning the entirety of the 
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material. In many cases this produces anisotropic properties which are superior to a 

polycrystalline material [16].  

Single crystal manufacturing methods are however far more difficult to perfect 

and are significantly more expensive than for polycrystalline counterparts. Polycrystalline 

ceramics are composed of millions of small crystals (or crystallites) with sizes of the order 

of 1μm-10μm and are relatively easy to produce. The result is a material with a random 

distribution of crystals in different orientations. The compromise for simpler and cheaper 

manufacturing are the inferior properties such as lower polarisation and field response. 

Several factors are responsible for this: Domain size and therefore high coherence of 

polarisation is inherently limited by the grain size. The random grain orientation means 

that many domains are unfavourable orientated with respect to the field vector. In these 

grains full domain switching is limited. Additionally the stresses associated to 

neighbouring grains act as restoring force to domain wall motion, producing a greater 

discrepancy between the saturated and remnant polarisation. Grain boundaries are regions 

of disorder, which coupled with the presence of defects further reduces domain mobility. 

These effects can be clearly measured as a significant decrease in the remnant polarisation 

and a significant increase in the coercive field. This is exemplified in Figure 1.23 for 

barium titanate.  

 

 

Figure 1.22 A single crystal material (a) has long range crystalline order with a single 

orientation across the entire material. In contrast a polycrystalline material (b) is 

comprised of many small crystals, or grains all of which are randomly orientated. 

This creates regions called grain boundaries (red line) which display disorder. 
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Figure 1.23 Polarisation measurements for barium titanate single crystals (a) and 

polycrystalline samples. The horizontal electric field axes are not to scale. From [16]. 

 

1.9 Phase transitions 

1.9.1 Temperature dependent phase transitions 

There are several temperature dependent phase transitions that can arise in 

ferroelectric materials in addition to the paraelectric transition at Tc. Barium titanate 

(BaTiO3) is a widely studied ferroelectric material with many phase transitions as shown 

in Figure 1.24. The Curie point is at 130 °C below which it adopts a ferroelectric 

tetragonal structure with a polar distortion along the c direction. On further cooling to 0 

°C there is a transition to an orthorhombic phase, whose distortion can also be described 

as a monoclinic face distortion. Then at -90 °C a further transition to a rhombohedral 

phase is observed where the distortion is along the body diagonal.  

These phase transitions are apparent in permittivity measurements shown in 

Figure 1.25 where the sharp peaks in the relative permittivity coincide with the phase 

transitions. The high temperature peak corresponds to the paraelectric to ferroelectric 

(Curie point) transition upon cooling, referenced earlier. At the transition temperature, 
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the thermal energy of the lattice provides sufficient mobility to be easily polarised by a 

small voltage but not too much so that the thermal vibrations surpass the polarising field. 

At cooler temperatures, more permittivity peaks are encountered due to the lattice 

flexibility afforded by other phase transitions, tetragonal to orthorhombic and 

orthorhombic to rhombohedral respectively.  

 

 

Figure 1.24 Phase transitions of BaTiO3 as a function of temperature, from [2].  
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Figure 1.25 Relative permittivity of BaTiO3 single crystal as a function of 

temperature in the a and c directions. Sharp peaks are in the vicinity of phase 

transitions shown in Figure 1.24. From [16]. Note that the figure does not represent 

the permittivity in the rhombohedral phase of a single crystal accurately as it would 

require the same permittivity values for a and c. 

 

1.9.2 Composition dependent phase transitions 

Phase transitions can also occur when two or more perovskite materials with 

different crystal phases are combined in a solid solution. Barium titanate, tetragonal at 

room temperature, can form a solid solution with barium stannate (BaSnO3) which is 

cubic at room temperature. Shown in Figure 1.26 is the phase diagram of Ba(Ti1-x,Snx)O3 

At 0% tin (Sn) the phase transitions of pure BaTiO3 can be observed. With increasing Sn 

content the Curie temperature is significantly suppressed whilst the other phase 

transitions increase in temperature, resulting in a convergence of transitions into a single 

transition around x = 12.5. Above x = 0.15 the room temperature phase of the solid 

solution represents that of barium stannate i.e. cubic. As discussed in Section 0, variations 

in the relative size between A-site and B-site ions will induce distortions to the perovskite 

structure. An increase in Sn content increases the average B-site ionic size reducing the 

tolerance factor from t > 1 to t = 0.9-1. Above x = 0.25 the transition becomes diffuse due 

to dielectric dispersion. This behaviour is covered in Section 0. 
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Exemplified here is the ability to tailor material properties by atomic substitution. 

The addition of Sn can be used to reduce the Curie point to room temperature, thereby 

enabling the use of its high permittivity around Tc for capacitor applications, however at 

the cost of operating temperature for piezoelectric applications. 

 

 

Figure 1.26 Phase diagram of the Ba(Ti1-x,Snx)O3 solid solution showing the phase 

transitions occurring with varying tin (Sn) content. From [18]. 

 

1.10 Piezoelectricity 

Piezoelectricity is the effect by which the application of strain on a material 

produces a surface charge due to the strain induced polarisation of the atomic structure. 

Conversely an applied electric field produces a mechanical strain [2]. In this way, these 

materials can be used as sensors and actuators. A requirement of piezoelectricity is a non-

centrosymmetric structure. Ferroelectric materials have the added benefit that they 

possess switchable spontaneous polarisation meaning that they can retain a net 

polarisation. 
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Piezoelectric behaviour can be divided into two related effects: The direct and 

converse piezoelectric effect. The direct piezoelectric effect is characterised by the 

formation of a surface charge in response to a mechanical stress and the converse effect 

is the manifestation of mechanical strain in response to an electric field. 

There are several contributions defined in Equations 1-4 with their corresponding 

tensor notation (subscripts i, j, k, l, m, n, described in detail in the following section). The 

converse effect is defined in Equation 1.14 where x is the induced strain, s is the 

compliance, X is the stress, d is the piezoelectric stress coefficient, M is the electrostriction 

coefficient and E is the electric field.  

 

Equation 1.14 

𝑥𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙𝑋𝑘𝑙 + 𝑑𝑚𝑖𝑗𝐸𝑚 + 𝑀𝑚𝑛𝑖𝑗𝐸𝑚𝐸𝑛 

 

The first term is effectively Hooke’s law and is equal to zero in an unclamped 

material. The final term describes electrostriction. All dielectric materials experience 

electrostriction, the physical deformation of a material due to an applied electric field 

[16]. Dielectrics contain ions with different electron affinities and therefore their response 

to an electric field is different. Positive and negative ions will also displace in opposing 

direction thereby creating a strain [16]. This effect is generally small and only observed 

at very high fields. Therefore, the piezoelectric stress coefficient d becomes a significant 

constant in determining the field induced stress. Removing the other terms a suitable 

approximation is shown in Equation 1.15. Symmetry constraints allow for the use of 

reduced tensor notation.  

 

Equation 1.15 

𝑥𝑖 ≈ 𝑑𝑚𝑖𝐸𝑚 

 

The direct piezoelectric effect is described by Equation 1.16 where P is the 

polarisation and eX is the permittivity at constant stress. In this case d is the piezoelectric 

charge coefficient. Again, this can be simplified as shown in  
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Equation 1.17 where higher order terms can be ignored, such as the permittivity 

term which can be set to zero in a short-circuit. Symmetry constraints again allow reduced 

tensor notation.  

 

Equation 1.16 

𝑃𝑖 = 𝑑𝑖𝑗𝑘𝑋𝑗𝑘 + 𝑒𝑖𝑗
𝑋 𝐸𝑗 +⋯ 

 

Equation 1.17 

𝑃𝑖 ≈ 𝑑𝑖𝑗𝑋𝑗 

 

In both cases, it is the piezoelectric coefficient d which determines the strain and 

polarisation and can be expressed as pm/V or pC/N respectively. This coefficient is 

equivalent for both effects. 

 

1.10.1 Piezoelectric tensor notation 

As with many physical properties, piezoelectric coefficients can be complicated 

and are fully described using tensor notation. The values of the tensor notation 

subscription range from 1 to 6. Values 1 to 3 refer to one of the three orthogonal 

directions, whilst 4 to 6 describe a shear around said directions. By convention in the field 

of piezoelectricity, polarisation is denoted along the ‘3’ direction. These are shown in 

Figure 1.27 The d coefficient determines the piezoelectric activity, and can be measured 

in various geometries:  

A commonly used coefficient, d33 is the measure of strain or polarisation induced 

by an electric field or stress along the polarisation vector. 

Transverse behaviour is measured with d31 where the polarisation is measured 

along the polar direction under a perpendicular stress, or perpendicular strain is measured 

under an electric field aligned with the polar direction. 
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Shear behaviour is defined by d15 where the polarisation is measured 

perpendicular (1 direction) to the polar direction under a shear stress about the 2 direction, 

or the shear strain is measured about the 2 direction under an electric field perpendicular 

to the polar direction (1 direction).  

 

 

Figure 1.27 Depiction of piezoelectric tensor notation. Due to convention, the 

polarisation is defined to be along ‘3’ direction. 

 

1.11 Field-induced behaviour 

Two important aspects of piezoelectric materials have been covered so far i.e. 

ferroelectric domains and electric field response behaviour, described in Equation 1.15, 

additionally Figure 1.20 illustrates the ferroelectric domain behaviour under stimuli such 

as electric field or stress. In situ X-ray diffraction (XRD) methods have been used 

successfully to observe domain behaviour under stress and electric fields, particularly on 

Pb(Zr, Ti)O3 (PZT) and related compositions [19]–[22]. This method of analysis relies 

on the fact that X-ray peaks correspond to domains. In a randomly orientated 

polycrystalline sample it is possible to observe X-ray scattering along different directions 
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relative to an electric field and by the observed changes determine the domain behaviour 

(X-ray diffraction and relevant techniques will be discussed in Section 2.2). Figure 1.28 

illustrates a typical experimental set up. The scattering range for the desired peak is 

measured as a function of angle (Ѱ) relative to the applied electric field vector. It is 

important to note that 180° domain switching produces only a change in polarisation, not 

strain. This is evident from the depiction in Figure 1.19. Therefore measurements of 

domain reorientation via X-ray scattering are assumed to arise solely from non-180° 

domains. 

 

 

Figure 1.28 Typical in situ E-field experimental setup. With an applied electric field 

or a poled specimen, the scattering at a particular 2𝜃 corresponding to relevant 

peaks is measured as a function of azimuthal angle Ѱ. 

 

In a tetragonal material the integrated intensity ratio of (002) to (200) is expected 

to be approximately 1:2 due to the multiplicity of (200) (including (020) peak). Similarly, 

in a rhombohedral material the ratio of (111) to (1̅11) is approximately 1:3 as (1̅11) also 
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includes (11̅1) and (111̅). Due to the differences in the structure factor of different lattice 

planes however, the peak intensities do not fit these exact ratios. These peak ratios hold 

true when there is no anisotropy in the material and there is a randomised orientation of 

polycrystalline grains. When an electric field is applied, domain reorientation occurs. In 

the tetragonal example, a greater quantity of domains will become aligned to the electric 

field direction resulting in an increase in the contribution of (002) in turn decreasing (200) 

contribution parallel to the field, and vice versa perpendicular to the field. This is 

observed as a change in the peak ratios, illustrated in Figure 1.29 for PZT showing the 

exchange of peak intensity as a function of electric field (a) and directional dependence 

(b).  

 

 

Figure 1.29 PZT (002/200) peaks as function of a) electric field magnitude (parallel 

to the electric field direction), and b) angle to electric field direction (at maximum 

field). From [23], [24]. 

 

This behaviour can be quantified in order to determine the fraction of reoriented 

domains, shown in Equation 1.18 for tetragonal domains [25]. This is shown for PZT 

ceramic in Figure 1.30 [26]. The dotted line represents a R(002) value of 1/3 expected of 

an unpoled material. Throughout the literature this ratio is shown to follow a cos2 trend, 

and several studies modelling this behaviour have indeed shown this relationship [19], 

[20], [26], [27].  
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Equation 1.18  

𝑅(002) =  
𝐼(002)

𝐼(002) + 𝐼(200) + 𝐼(020)
 ∝ 𝑐𝑜𝑠2Ѱ  

 

 

Figure 1.30 R(002) of a poled PZT ceramic as a function of azimuthal angle Ѱ which 

follows a cosine2 trend. From [26]. The dashed line corresponds to R(002) = 1/3 

representing unpoled values (1:2 peak ratio). 

 

1.12 Morphotropic phase boundary 

The definition of a morphotropic phase boundary (MPB) has changed over time. 

Initially it was the name given to a solid solution where a compositional phase transition 

which is temperature independent is observed [28]. Typically, piezoelectric properties 

(e.g. the d coefficient) are significantly higher at compositions at or around the MPB [28]. 

This prompted extensive investigation into its properties and it is still one of the principal 

subjects of interest when developing novel solid solutions.  
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Later, the requirement for temperature independence was less of a definite 

requirement, as several materials displaying improved properties at phase transitions did 

not display it, for example (1-x)Ba(Ti0.8Zr0.2)O3 – x(Ba0.7Ca0.3)TiO3 where the MPB 

varied from x = 0.35 to 0.55 in the 0 – 50 °C temperature range [29]. Instead it was defined 

as a compositional transition between a rhombohedral and tetragonal structure as 

observed in PZT [30] where improved piezoelectric properties alone are observed. The 

term appears to have been generalised to a phase transition where improved properties 

are observed. 

The reasoning for the improved properties is as follows: Two or more end 

members in a solid solution have different phases e.g. rhombohedral (R) and tetragonal 

(T). At some composition (the MPB), a transition from one to the other will occur, and at 

this point there is a coexistence between R and T phases. This provides a greater number 

of polarisation directions than R (8) or T (6) alone, and therefore polarisation is achieved 

with greater ease, i.e. the same can be achieved with a lower field and therefore the d 

coefficient increases. 

More recently the most significant divergence from the standard definition of an 

MPB is in the changes in structure. Most significantly in many systems it has been shown 

that rather than a discrete boundary between two phases a gradual transition takes place, 

whose extent is greatly dependent on the material [31]. A more accurate term would be a 

morphotropic phase region (MPR). One of the more notable examples is lead zirconate 

titanate (PZT), whose MPB has previously been widely regarded to be a boundary 

between R and T [28]. The current established understanding however is that a 

monoclinic phase exists at the MPB acting as a lower symmetry parent structure to R and 

T [32] providing increased piezoelectric activity via the rotation of the polar axis in the 

monoclinic plane [33]. Further studies expand on this by suggesting the monoclinic 

structure is locally prevalent across the phase diagram becoming macroscopic at the MPB 

[34]. 
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1.13 Average and local structure 

At this point it is pertinent to introduce the importance of length-scale, both 

spatially and temporally, over which a structure is measured and described. The 

distinction and interaction between average and local structure is particularly crucial.  

These terms are not specifically defined as their respective length-scales are 

dependent on the material. Additionally, it is not possible to refer to one without the other. 

Local structure describes the length-scale at which deviations or distortions away from 

the average or macroscopic structure begin to emerge. For example, at the unit-cell length 

scale a ‘cubic’ material may display a distorted local structure due to the chemical 

disorder creating a varying bonding environment. At greater length scales, however these 

distortions are smeared or averaged out. The point at which this occurs is dependent on 

the degree of distortion and the correlation of the distortion. 

The structure of a hypothetical perfect crystal without any thermal atomic 

fluctuations can be exactly described by a few coordinates and some symmetry 

operations. Realistically however, all atoms have thermal energy, oscillating about a point 

(with a frequency around 1013 Hz and 10-11 m amplitude), which is to say at any given 

point in time an assemblage or a crystal of atoms would not be aligned in a perfect array 

but instead be slightly off the coordinate positions. Conventional structural 

characterisation techniques such as lab-based X-ray diffraction (XRD) measure over a 

period of minutes, lacking the temporal resolution to observe these effects. Therefore, the 

measurement would represent time-averaged structure. 

The same can be said for spatial ordering, or the coherence length i.e. the distance 

over which atoms are ordered, can be of the order of nanometres in some materials. If the 

measurement probe is too large (e.g. a millimetre sized X-ray beam) these local 

differences would be obscured and measured instead as the collective average. In this 

case, there would be a disparity between the local and average structure. The local 

deviations from the average structure produce a diffuse and weak intensity diffraction 

signal due to their small coherence length and general disorder. Conventional data 

analysis techniques may overlook the diffuse signal, instead focusing on the strong 

diffraction peaks arising from the long-range spatially-averaged structure. However, 

novel methods such as total scattering analysis enable the measurement and interpretation 

of the diffuse signal to produce a description of the local structure. 
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 A clear example of this disparity can be observed in the measurements of the Si-

O bond distance in silica as it undergoes a phase transition from 𝛼-quartz to 𝛽-quartz  

Figure 1.31 [35]. Distance measurements from Rietveld refinement of neutron powder 

diffraction (i.e. average structure measurements) show the bond distance initially at 1.612 

Å, decreasing with temperature and abruptly changing to 1.587 Å at 850 K during the 

phase transition. This is in stark contrast to measurements obtained by the total-scattering 

analysis of the same neutron diffraction data, which also considers the diffuse scattering 

arising from crystalline disorder. It shows a general increase in bond distance due to 

thermal expansion. The illustration in Figure 1.32 [35] demonstrates that the fluctuations 

of the Si-O bond  produces a distribution of positions which are averaged out to produce 

an apparent shorter bond. With increasing temperature, the fluctuations increase causing 

the average distance to decrease. 

The concept of average and local structure is a key theme in this work and will 

form an important part of the discussion of the current literature (Section 1.14). It is 

necessary to briefly introduce the concept of ‘pseudosymmetry’. This is used to describe 

the apparent crystal structure, particularly when measured with techniques which only 

describe the average structure. A more specific term used is ‘pseudocubic’ used to refer 

to the structure of a ferroelectric perovskite which displays an apparent cubic structure. 

This is necessarily incorrect as ferroelectricity by definition requires a non-cubic 

structure. This is envisaged as small locally correlated distortions which may be 

rhombohedral, for example a rhombohedral angle very close to 90°. 
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Figure 1.31 Measurements of the Si-O bond distance in silica as a function of 

temperature as measured by Rietveld refinement of neutron powder diffraction and 

neutron total-scattering (T(r)). A transition from 𝛼-quartz to 𝛽-quartz occurs 

around 850 K. From [35]. 

 

 

Figure 1.32 Illustration of the Si-O bond in silica whereby the local distortions of the 

bond produces a distribution of positions which average to an apparent bond length 

starkly different from the actual length. From [36]. 
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1.13.1 Relaxor-ferroelectrics 

Features such as structural disorder in many cases stem from chemical disorder 

arising in materials with multiple A or B-site species. These are not uniformly distributed 

across the entire material but instead form nano-scaled regions of chemical uniformity, 

which have been labelled as polar nano regions (PNRs). These features in ferroelectric 

materials has led to a classification of such disordered materials as relaxor-ferroelectrics 

[37]. 

As previously discussed (Section 1.9.1) the transition from paraelectric to 

ferroelectric produces a highly defined permittivity peak associated with a temperature at 

which the energy within the system is enough to allow facile polarizability i.e. high 

permittivity, yet not high enough to produce vibrations which overcome the polarisation 

inducing oscillating voltage. In this case the material can be said to exhibit ‘classical’ 

ferroelectric behaviour.  

In a relaxor however, this transition is significantly different. As well as 

possessing chemical and structural disorder several further characteristics are used to 

define a relaxor [38], which are: a) The permittivity peak becomes broad and prohibits 

accurate placement of the Curie temperature. Often the transition permittivity maxima Tm 

is used to denote the paraelectric transition rather than the conventional Curie point TC. 

b) The broad peak becomes frequency dependent in both its position in temperature and 

its maximum value, also termed frequency dispersion. A prototypical relaxor-

ferroelectric is lead magnesium niobate (PMN), shown in Figure 1.33 [39] for Pb(Mg1/3 

Nb2/3)O3 (Mg2+ and Nb5+ share the B-site) where the relaxor characteristics are readily 

apparent.  

 



  

 

 

44 

 

Figure 1.33 Temperature dependent permittivity components in relaxor-

ferroelectric Pb(Mg1/3 Nb2/3)O3 displaying characteristic behaviour in the 

paraelectric to ferroelectric transition namely a broad and frequency dispersive 

peak. From [39]. 

 

Several models have been proposed to explain this behaviour, all generally relying 

on the existence of polar nano regions (PNRs) or small volumes of structural and chemical 

coherence [40]. The Somlenskii model [41] suggests that the mixed B-site in PMN for 

example is not evenly distributed, producing small chemically ordered regions which are 

more polar than others. These regions will have different varying responses to an applied 

electric field depending on their composition and therefore the transition is spread out 

over a range of temperatures. Additionally, the variation in site species, and the PNR size 

will experience a variation in the frequency response and therefore produce the observed 

dispersion [42].  

The currently accepted consensus is that PNRs exist above the conventional Curie 

point in relaxor materials and act as nucleation points for the formation of ferroelectric 

order below TC. Figure 1.34 shows a simulated model  of PNR clusters of polar coherence 

existing within a largely disordered matrix [43]. These can persist below the Tm, to which 

the disordered nature of some materials is attributed. Studies have shown that long range 

ferroelectric order can be induced by prior poling by application of an electric field or 
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applied pressure [42], [44], [45]. Figure 1.35 [45] illustrates this behaviour by the 

transition from a gradual to a discontinuous change in the permittivity, characteristic of 

classical ferroelectric behaviour. 

 

 

Figure 1.34 Simulation of PNRs as clusters of coherence (blue arrows) within a 

disordered matrix (red arrows). From [43]. 

 

 

Figure 1.35 Permittivity of KNBT for unpoled and poled samples. Upon poling the 

relaxor like behaviour appears to more closely resemble classic ferroelectric 

behaviour from the discontinuity in the phase transition highlighted by the red 

ellipse. From [45]. 
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1.14 Materials literature 

The following section will examine specific piezoelectric materials for their 

historical and scientific significance, as well as discussing the materials studied in this 

work.  

 

1.14.1 BaTiO3 

Barium titanate has been labelled the ‘prototype ferroelectric’ [16][1] as it is the 

first ferroelectric material to be widely used, whose characteristic properties largely 

define this material class. For example, the Curie point transition exhibits classic 

ferroelectric behaviour in its permittivity (Section 0) strongly following the Curie-Weiss 

law (Section 1.8.2). It was first discovered in 1945, and shown to exhibit far superior 

ferroelectric and piezoelectric properties to materials such as Rochelle salt [46], [47]. It 

exhibits a d33 around 190 pC/N [48] but suffers a relatively low TC of 120 – 130 °C [49]. 

Though its piezoelectric properties were eventually superseded by materials containing 

PbTiO3 such as Pb(Zr, Ti)O3 (Section 1.14.3), it still one of the most used materials in 

capacitor applications due to its dielectric properties [4].  

Several temperature dependent phase transitions have been observed (shown in 

Section 1.8.3), however, the nature of these transitions have been debated over several 

decades. Conflicts have arisen between theories of displacive transitions [49], [50], and 

order-disorder transitions [51], [52], all primarily supported by diffraction and 

spectroscopy techniques. Displacive transitions are characterised by displacement of the 

Ti4+ ion relative to the oxygen octahedra cage along the relevant polarisation direction for 

the given structure, shown in Figure 1.24.  Order-disorder transitions are characterised 

by the interaction between local and average order. Local order regions which deviate 

from the average combine to produce the structures observed macroscopically. Neutron 

pair distribution function (PDF) studies (Figure 1.36) which examine structures at the 

nanoscale have shown that the local structure changes very little as a function of 

temperature, displaying a predominant rhombohedral distortion [53]. The PDF analysis 

technique is covered in depth in Section 2.3. 

 



  

 

 

47 

 

Figure 1.36 Neutron pair distribution function (PDF) data for a) rhombohedral and 

b) orthorhombic phases of BaTiO3 illustrating the negligible local structural 

differences. From [53]. 

 

More recent studies strongly support the order-disorder theory using a 

combination of PDF analysis and Monte Carlo modelling. They show local Ti 

displacements occur along the rhombohedral ⟨111⟩ across all phases [5]. Figure 1.37 (a) 

– (d) show how the polymorphic phase transitions emerge from a series of local 

transitions and disruptions of the long range rhombohedral order along various directions. 

A super cell contains a 5 × 5 × 5 unit cells with a ⟨111⟩ polarisation vector. The white and 

black arrows illustrate the respective polarisation vector component for a given 

orthogonal direction. Bellow each diagram is the representative calculated diffraction 

pattern which illustrates the formation of diffuse scattering streaks from the disruption of 

the ordered rhombohedral state along various axes. 

At low temperatures (a) the polarisation vectors are ordered in all axes, producing 

a macroscopic rhombohedral ⟨111⟩ polarisation. As the temperature increases (b) the 

disorder first increases along a single axis, producing a macroscopic orthorhombic phase 

with a lower average polarisation as some of the polarisation cancel out. With increasing 
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temperature (c) an additional polarisation axis becomes disordered, reducing the 

polarisation further and producing a macroscopic tetragonal phase. Finally (d), all axes 

become disordered resulting in a zero net polarisation and a cubic phase. Throughout 

these transitions the local ⟨111⟩ polarisation is maintained and can be observed as diffuse 

streaks in the diffraction patterns. These findings show that local scale phenomena can 

give rise to a rich variety of larger scale properties. 

 

 

Figure 1.37 Local rhombohedral distortions. The white and black arrows indicate 

the polarisation vector for a given row. The arrows inside the box point in the 

direction of the summation of the white and black arrow vectors (a) – (d). From [5].  

 

1.14.2 PbTiO3 

Lead titanate is structurally analogous to barium titanate with lead replacing 

barium on the A-site. At face value, it displays superior properties to BaTiO3 such as a 

far higher Curie point (≈ 490 °C vs ≈ 125 °C) and tripling in the single unit cell 

spontaneous polarisation (75 𝜇C/cm2 vs 25 𝜇C/cm2) [2]. These relatively extreme 

properties can be evidenced by the highly strained tetragonal structure with a spontaneous 

strain of 6%, shown in Figure 1.38, and are primarily produced by the displacement of 

the lead ion.  

Lead cations experience hybridisation of the 6s and 6p orbitals, producing a 

polarisation of the outer core-electrons which in turn gives the atom an ‘asymmetric’ 
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structure, i.e. its ionic radius is much smaller on one side [54]. This permits a greater 

hybridisation between Pb+2 and O-2, and Ti+4 and O-2  [55] producing stronger bonding 

with certain surrounding oxygen ions (depicted in Figure 1.39), producing a significant 

distortion and ferroelectric properties. 

 

 

Figure 1.38 X-ray diffraction of cell parameters in PbTiO3 as a function of 

temperature. Cooling through Tc at 490 °C produces an abrupt onset of tetragonal 

strain. From [56]. 
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Figure 1.39 AO12 cluster of Pb in PbTiO3 showing the significant asymmetry in Pb-

O distances producing a distortion. From [52]. 

 

Although it is apparent that lead imparts several ideal properties to the material, 

several practical problems are created. Namely, producing pure PbTiO3 is not trivial due 

to the large strains in the structure, resulting in grain fractures and material degradation 

during processing. 

 

1.14.3 Pb(Zr, Ti)O3 

Lead zirconate titanate (PZT) is a solid solution between tetragonal PbTiO3 and 

rhombohedral PbZrO3 giving Pb(Zrx, Ti1-x)O3, first created in 1953 by E. Sawaguchi [57]. 

It has since become the most widely used piezoelectric material, surpassing the previously 

used barium titanate due to its highly favourable properties, namely greater piezoelectric 

coefficient, higher Tc and therefore a higher operating temperature, and the variability of 

properties it offers by the addition of various dopants [1], [7]. This is owed primarily to 
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the existence of the morphotropic phase boundary (MPB) previously discussed in Section 

1.12 that has been a topic of great debate in this system. In PZT the MPB occurs around 

x = 0.48 [28] above which the structure transitions from rhombohedral (R) to tetragonal 

(T). Here Jaffe defines this transition as discrete, where both phases coexist, shown in 

Figure 1.40 [2]. However, this interpretation would eventually be superseded by novel 

discoveries. The improved properties were explained via the greater availability of 

polarisation directions. 

Noheda et al. drastically changed the understanding of the MPB in 1999 with the 

discovery of a monoclinic ferroelectric phase spanning x = 0.46 – 0.51 using high 

resolution synchrotron X-ray powder diffraction [32], later supported by neutron 

diffraction [58]. At ambient temperatures a mixed phase is reported where local 

monoclinic distortions exist, condensing into the macroscopic phase upon cooling [59], 

shown in the updated phase diagram in Figure 1.41 [60]. Further neutron diffraction 

studies show that the atomic displacement parameters obtained during structure 

refinement were unreasonably large in directions other than the polar R and T directions, 

thereby requiring a more complex displacement i.e. monoclinic, for a reasonable 

refinement [61]. 

These findings suggest the monoclinic phase acts as an intermediate phase 

between R and T and as an effective lower-symmetry ‘parent’ phase (Cm is a sub-group 

of both R3m and P4mm) thereby facilitating the transition. Thermodynamic modelling 

via free energy calculations has also shown this behaviour can occur by the coupling of 

the two end member polarisation vectors (R [111] and T [001]) [62], suggesting a far 

broader monoclinic phase region encroaching further into the neighbouring rhombohedral 

and tetragonal phase boundaries. X-ray absorption fine structure (XAFS) measurements 

further support this, showing that local Ti off-centre displacements rotate from [111] to 

[001] via the monoclinic (1̅10) plane [63].  In situ XRD measurements with applied 

electric field show the stabilisation of the monoclinic phase under an electric field rather 

than one of the polar rhombohedral or tetragonal directions. [59]. In this updated 

understanding of PZT, the improved properties at the MPB emerge from the monoclinic 

phase enabling polarisation rotation. 
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Figure 1.40 Phase diagram of PZT showing a discrete rhombohedral-tetragonal 

transition at 48% mol PbTiO3. From [2]. 

 

 

Figure 1.41 PZT phase diagram from Jaffe et al. updated to show the monoclinic 

structure discovered by Noheda et al. [32] in [60]. It is present at a MPB, that extends 

over a range, becoming mixed phase at higher temperatures.  
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The description of the structure of PZT would further change in 2004 when Glazer 

et al. used electron diffraction studies to suggest that the local monoclinic distortions of 

Pb persist throughout the entire phase diagram of PZT, and whose coherence length 

becomes macroscopic at the MPB [34]. This effectively forgoes the presence of any 

discrete transitions. Here the improved properties are suggested to arise from the long-

range monoclinic order at the MPB, rather than polarisation rotation alone, as the peaks 

observed in piezoelectric coefficients and relative permittivity would have to be 

considerably sharper for the latter.  Neutron diffraction studies suggest the behaviour is 

temporal rather than spatial i.e. fluctuations of Pb displacements are monoclinic at any 

given point which become ‘frozen’ at the MPB [61]. Theoretical approximations support 

the polarisation rotation theory of improved properties due to macroscopic monoclinic 

phase reducing the energy requirement for polar alignment [60]. Studies combining high 

resolution XRD and TEM [64] further support the rotation model suggesting that at the 

MPB domains become nanoscaled, are more flexible and have lower domain wall 

energies allowing the formation of long range order under an applied electric field. 

In more recent neutron PDF studies monoclinic phases (MA and MB) are identified 

on the rhombohedral side of the MPB with a transition from MB to MA as the MPB is 

approached [6], where MA offers greater deviation of Pb and therefore offers greater 

piezoelectric properties. Further TEM studies have even suggested that perhaps 

symmetries lower than monoclinic Cm may be present [31]. 

The understanding of the structure of PZT, namely at the MPB, has been 

continuously evolving over the past 60 years. As with BaTiO3 many of the properties 

which were first observed in the 1950s have been observed to be directly related to the 

local dynamics of the atomic structure, revealed only by the use of more sophisticated 

experimental and analytical techniques that focus more on local structure. 

 

1.14.4 (Na, Bi)TiO3 

Sodium bismuth titanate (Na0.5 Bi0.5)TiO3 (NBT) is a thoroughly studied material 

having formed the basis of many piezoelectric materials in the ongoing search for an 

alternative to Pb-based materials, both due to its elusive structure and ability to form 

several binary and ternary solid solutions with a variety of desirable properties  [4], [65], 

[66]. It also boasts a relatively high remnant polarisation of 38 𝜇C/cm2, though it suffers 
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a low depolarisation temperature of less than 200 °C, as it becomes antiferroelectric, and 

has a low d33 ≈ 70 pC/N  [67]–[69]. 

First reported as a rhombohedral ferroelectric perovskite in 1961 [70], it was 

characterised by its unusual electrical and structural properties such as broad and 

frequency dispersed permittivity peaks, and diffuse temperature dependent phase 

transitions [67], [71], [72]. These properties are characteristic of relaxor materials 

(Section 0) and are associated with the presence of structural ambiguity and nano-scaled 

ordering and/or domains [37], [73], [74].  

The greater sensitivity of neutron diffraction techniques over XRD to oxygen 

position prompted a Rietveld analysis study [75], exposing the complex phase transitions, 

primarily mediated by changes in octahedral tilting combined with A and B off-centre 

distortions. Shown in Figure 1.42 [75] are the broad temperature ranges across which 

phase coexistence occurs. The rhombohedral to tetragonal transition commences around 

250 °C and is particularly broad with a transition range exceeding 100 °C, whilst the 

tetragonal to cubic transition occurs around 500 °C, with a smaller 20 °C transition range. 

The depolarization temperature around 190 °C would conventionally be expected to 

coincide with a structural transition, however the rhombohedral-tetragonal phase 

transition begins around 250 °C. This discrepancy is thought to emerge from the decrease 

in the volume fraction of the monoclinic phase with increasing temperature. This in turn 

results in loss of long range ferroelectric order which subsequently gives rise to the 

antiferroelectric tetragonal structure [76]. 
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Figure 1.42 Phase volume obtained from neutron diffraction measurements by [75]. 

Regions highlighted in orange show the extended temperature range of the phase 

transitions. 

 

Dorcet and Trolliard carried out extensive TEM studies focusing on the octahedral 

tilting during phase transitions [77], [78]. In a pure rhombohedral state the tilting is 

ordered and of the rhombohedral class. Within the matrix however, there are small regions 

or ‘sheets’ of tetragonal tilting between the rhombohedral tilting. As temperatures 

approach the tetragonal phase transition the rhombohedral tilts become increasingly 

disordered, i.e. individually correlated rhombohedral tilting regions become smaller, and 

therefore the tetragonal boundary regions grow [79]. With an increase in temperature the 

tetragonal tilt regions gradually encompass the entire structure. During this process, an 

anti-polar arrangement is induced producing the observed antiferroelectric state [67], 

[77]. Upon further heating the octahedral tilting experiences more tetragonal transitions, 

finally adopting a non-polar paraelectric state [78]. 

In the same manner as BaTiO3 and PZT, the structure of NBT has been further 

investigated by more sophisticated experimental methods and subsequently redefined. 

High resolution X-ray synchrotron experiments on single crystal and polycrystalline NBT 

have defined the room temperature phase as monoclinic rather than rhombohedral; 

revealed by careful observation of subtle X-ray diffraction peaks, otherwise obscured in 

lower-resolution experiments [76], [80]. This was further supported by optical 
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birefringence studies [81]. Other studies suggest there is a room temperature monoclinic 

and rhombohedral ferroelectric phase coexistence, which can be forced into a single 

rhombohedral phase by external stimuli such as mechanical stress or an applied electric 

field [82].  

Studies focusing more closely on the local structure have shown further diversion 

from the established structure. TEM studies describe the structure of NBT by a continuous 

octahedral tilt model with local scale in-phase tilts which are coherent over a few 

perovskite unit cells within an anti-phase tilt average structure, producing a 

pseudorhombohedral structure [83]. These nano-domains can also result in the average 

monoclinic symmetry shown by XRD. Neutron pair distribution (PDF) investigations 

have further elucidated the highly complex structure. A-site chemical disorder is shown 

to affect the structure by introducing two independent Bi distortions along the monoclinic 

plane between two ⟨111⟩ displacements, owing to the energy similarity between the 

distortions and the difference in Na and Bi ionic charges, shown in Figure 1.43 [84]. 

Additionally there is a significant difference between the Na and Bi bonding 

environments, namely Bi is far more distorted than observed in the average structure [85]; 

suggested to arise from Bi attempting to achieve a bond valence sum (BVS) close to its 

oxidation state and accommodating its electron lone pairs.  

 

 

Figure 1.43 Stereographic projection of local Bi displacement directions in NBT as 

a function of temperature. As the temperature increases from 10 K the single Bi 

displacement in the rhombohedral direction bifurcates along the monoclinic plane 

(green line) resulting in coexisting discrete displacement directions. From. [84]. 



  

 

 

57 

1.14.5 (Na, Bi)TiO3 - (K, Bi)TiO3 

Potassium bismuth titanate (KBT) is a tetragonal material [86], able to form a 

solid solution with NBT forming (Kx, Na1-x)Bi0.5TiO3. A simpler nomenclature is 

KNBTx*, where x* = 100x. It has attracted interest as a potential lead-free piezoelectric 

material due to its promising properties at the MPB between rhombohedral (R3c) and 

tetragonal (P4mm) phases [87]. Shown in Figure 1.44 [88]  is the commonly accepted 

phase diagram of the average structure of KNBT. The transition to cubic is reported 

around 300 °C, however KNBT suffers a significantly lower depolarisation temperature 

around 130 °C which significantly impacts the maximum operating temperature. 

 The structure of KNBT has been reported as early as 1962 [89] though it is only 

in the last couple of decades that it has been thoroughly studied [45], [88], [90]–[92]. 

 

 

Figure 1.44 Phase diagram of KNBT from [93]. The depolarisation transition and 

ferroelectric-paraelectric transitions are shown in orange and blue respectively. 

 

1.14.5.1 The structure of KNBT 

To realise its piezoelectric potential, the compositional location of the MPB has 

to be precisely defined. This has not been trivial as the structurally disordered nature of 

the NBT end member is significant. Some studies suggest the MPB ranges from x = 0.16 
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– 0.20 [94], [95], whilst others indicate the range is  x = 0.17 – 0.25 [96]. More recent 

studies suggest the transition is entirely smooth and mediated by gradual octahedral tilt 

transitions. Below x = 0.20 rhombohedral anti-phase tilting exists in which short range in 

phase tilting associated with the tetragonal structure emerges, whilst coupling between 

cation displacement and tilting decreases [92]. These behaviours occur in regions of 

nanoscaled coherence giving rise to ‘pseudosymmetries’. In the same manner as NBT, 

KNBT displays a hierarchical structure, whereby the measured structure is entirely 

determined by the probing coherence length.  

The overarching consensus however is that the peak in piezoelectric properties 

occurs near or at x = 0.20, where the d33 significantly exceeds that of NBT by over two to 

three times (>200 pC/N  compared to ≈70 pC/N)  [45], [97]–[99]. Shown in Figure 1.45  

is the d33 and relative permittivity for KNBT reported in [96]. It is apparent that for x = 

0.20 properties desirable of a piezoelectric material are observed.  

 

 

Figure 1.45 d33 and relative permittivity for KNBT. From [96]. 
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1.14.5.2 Behaviour under fields 

In situ electric field synchrotron X-ray diffraction measurements have identified 

a field-induced phase transition in the MPB composition at x = 0.20 [99]. Analysis of the 

{002} family of peaks showed a transition from a single (002) peak produced by the 

pseudocubic structure, which under an electric field produced the (200/002) doublet 

indicating a transition to a tetragonal structure. This occurred predominantly at 2 kV/mm 

(Figure 1.47). Additionally, further experiments revealed the same transition was 

dependent on the rate of the applied field up to 5kV/mm. Figure 1.47 shows the same 

(200/002) peaks parallel (0) and perpendicular to the electric field. Above a rate of 0.25 

kV mm-1 s-1 the tetragonal transition is observed. 

More recent studies coupling in situ XRD with TEM analysis show that for the 

MPB composition at x = 0.20, compressive stresses induce the formation of rhombohedral 

domains whilst an applied electric field induces the formation of predominantly 

tetragonal domains [45], whose tilting arrangements coincide with previous TEM studies 

[92]. Additionally, the applied field induces ferroelectric order from the virgin relaxor-

like state (Section 0).  

 

 

Figure 1.46 Effect of electric field magnitude on the (200/002) peaks in KNBT, 

producing a transition to tetragonal above 2kV/mm. From [99]. 
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Figure 1.47 Rate dependent phase transition showing an induced tetragonal 

structure for rates above 0.5 kV mm-1 s-1. The (200/002) peaks are shown parallel 

and perpendicular to the electric field vector. From [100]. 

 

1.14.6  (Na, Bi)TiO3 - PbTiO3 

The addition of lead titanate to NBT to produce ((Na0.5, Bi0.5)1-x, Pbx)TiO3 (NBT-

PT) was envisaged to produce a viable low-lead content material, the presumption being 

that PT would induce long range piezoelectric order by its high polarisation and strain 

thereby improving its properties. However, this has not been realised due to poor 

piezoelectric properties d33 ≈ 100 pC/N [101] and subsequently it has not attracted much 

scientific interest in comparison to other systems. Nevertheless, it offers an opportunity 

to observe the effects of the addition of lead on properties and structure and therefore can 

provide insight into the mechanism by which lead containing materials are typically 

superior. An MPB exists around x = 0.13, and synchrotron studies indicate a mixed phase 

region extended over x = 0.10 – 0.15, transitioning to mixed tetragonal and cubic phases 

shown to be antiferroelectric, and finally the cubic paraelectric phase as shown in Figure 

1.48 [102], [103]. Further addition of PbTiO3 is shown to induce a high tetragonal strain 

[104] which appears to induce growth of nanoscaled domains originating from NBT and 

establish long range order [105]. 
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Figure 1.48 Phase diagram of NBT-PTx showing the mixed phase region x = 0.10 - 

0.15 where an MPB resides. From [103]. 

 

1.15 Conclusions 

This chapter has served to provide an introduction into the characteristics of 

piezoelectric materials and a review of some of the materials which have enjoyed 

significant interest from the research community. Focus was particularly placed on the 

structure of piezoelectric materials and the role of local and average structure behaviour. 

Increasingly it has become apparent that local and average structural behaviour must be 

considered in order to accurately attribute observed dielectric behaviour and is something 

present in many piezoelectric materials. Methods such as pair distribution function 

analysis have become increasingly prevalent in the literature and act as the local structure 

counterpart to average techniques such as high-resolution X-ray diffraction. 

In this work materials which appear to exhibit local scale structural coherence are 

studied namely (K, Na)0.5Bi0.5TiO3 (KNBT) and (Na, Bi)TiO3-PbTiO3 (NBT-PT). Both 

have exhibited behaviour which indicates local structure features strongly influence their 

properties and therefore the X-ray PDF technique is used with in situ variables such as 

electric field and temperature.  
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KNBT has been thoroughly studied using a wide range of techniques such as X-

ray diffraction and electron microscopy methods coupled with in situ temperature, electric 

field and pressure measurements. E-field measurements in particular show phase 

transitioning behaviour and relaxor to ferroelectric transitions. The PDF method has not 

yet been applied in situ and therefore here the effects an applied electric field have on the 

local structure are investigated. 

There is a scarce amount of literature on NBT-PT, especially in comparison to 

other NBT based materials. This is most likely due to its lacklustre piezoelectric 

properties. Studies do however show the effects of a high strain material such as PT on 

the disordered material NBT where relaxor-like to ferroelectric transition in behaviour is 

observed. Relaxor materials are characterised by the presence of local order and for this 

reason, the PDF analysis method has been used to further investigate the observed 

structural phenomena at room temperature and elevated temperatures. 
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2 Experimental techniques 

2.1 Introduction 

This chapter will detail the various methods used to describe the structure-

property relationships of piezoelectric materials. The primary focus will be on structural 

characterisation techniques utilising the phenomenon of X-ray diffraction which relies on 

scattering of X-rays by atoms and planes of atoms which then produce an image or pattern 

that describes the atomic structure. The piezoelectric properties are measured via a variety 

of electrical measurements primarily describing the magnitude of polarisation within a 

sample, the piezoelectric activity, and the temperature dependent capacitance. 

 

2.2 X-ray diffraction 

2.2.1 Introduction 

X-rays are a form of electromagnetic (EM) radiation with a wavelength in the 0.1 

– 1 Ångstrom range, comparable to the distances between atoms and crystallographic 

planes, thereby suitable for studying atomic structure. X-ray diffraction (XRD) or more 

precisely wide angle X-ray scattering (WAXS) is a technique which uses the phenomenon 

of X-ray scattering and interference to produce a diffraction pattern from which the crystal 

structure of a material can be described. As the name suggests scattered X-ray intensities 

are measured over a large range of angles. And it is the relationship between the scattering 

angle and the intensity that provides structural information. This technique has a few 

principal assumptions: The X-rays are monochromatic and coherent, i.e. one wavelength 

and in phase; the interaction between X-rays and matter (scattering) is elastic i.e. there is 

no change in energy. 

 

2.2.2 Interaction between X-rays and matter 

Prior to discussing how X-rays are used to characterise atomic structure, it is first 

important to address their interaction with matter and at various length scales including a 

single electron, a single atom and a unit cell. Again, only elastic scattering is considered 
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here. The following description is adapted from Bernard D. Cullity’s  Elements of X-ray 

Diffraction [9] and Marc De Graef  and Michael E. McHenry’s Structure of Materials: 

An Introduction to Crystallography, Diffraction and Symmetry [11], both of which offer 

a far more thorough and complete mathematical derivation. However, a brief overview is 

still necessary. 

 

2.2.2.1 X-rays and electrons 

X-rays are electromagnetic waves i.e. oscillating electric and magnetic fields. 

These fields interact with charged particles such as electrons and induce an oscillation of 

the same frequency and wavelength. In turn the oscillation or continuous acceleration and 

deceleration of the electron produces an X-ray and in this manner the X-ray has been 

‘scattered’. X-rays are scattered in all directions; however, their intensity is direction 

dependent and is governed by Thomson scattering shown in Equation 2.1. Where I is the 

measured intensity, I0 is the incident intensity, e is the electron charge, r is the distance at 

which I0 is measured, m mass of the scattering particle (in this case the electron), c is the 

speed of light and 2 is the angle between I0 and I. The equation shows that the intensity 

is greatest in the forward and backwards scattering direction, and weakest in the plane 

perpendicular to the incident beam. The clue to this behaviour can be quickly inferred by 

the cosine term and is depicted in Figure 2.1. 

 

Equation 2.1 

𝐼 =  𝐼0
𝑒4

𝑟2𝑚2𝑐4
(
1 +  𝑐𝑜𝑠2

2
) 
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Figure 2.1 Simple depiction of Thompson scattering. The scattered intensity is 

proportional to the cosine of the scattering angle  and therefore greatest for 

forward and backwards scattering, and lowest perpendicular to the incident vector. 

 

2.2.2.2 X-rays and atoms 

When scattering from an atom, only the scattering of X-rays from electrons 

require consideration, as the X-rays do not scatter from nuclei to any appreciable extent. 

This is evident from the inverse square relationship of the scattering particle mass and the 

scattered intensity in Equation 2.1. Since the mass of a single proton is a thousand times 

greater than an electron’s, its scattering intensity will be 106 times smaller. 

The scattering intensity is proportional to the number of electrons in an atom or 

the atomic number Z. This applies only in the forward scattering direction as all scattered 

X-rays remain in phase. Within an atom, electrons are in various positions, scattering at 

other angles will result in a loss of intensity from destructive interference due to the path 

difference travelled by the X-rays, shown in Figure 2.2 a). The atomic scattering factor f 

is a quantity which describes how effectively a given atom scatters X-rays, described in 

Equation 2.2. Figure 2.2 b) shows the atomic scattering factor for copper as a function 

of scattering angle. The angle is in the form sin/ to represent wavelength independent 

values and so f is shown to decrease with increasing angle. Note that at the zero-scattering 

angle, f is equal to the atomic number of copper (Z = 29).  
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Equation 2.2 

𝑓 =  
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑛 𝑋 − 𝑟𝑎𝑦 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑎𝑡𝑜𝑚

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑎𝑛 𝑋 − 𝑟𝑎𝑦 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎𝑛 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
 

 

 

Figure 2.2 a) X-rays scattering of electrons within an atom. When scattering at 

angles other than 2 = 0. b) Atomic scattering factor f for copper as a function of 

scattering angle in the form sin/. From [9]. 

 

2.2.2.3 X-rays and unit cells 

It is now possible to consider X-ray scattering from a unit cell or crystal. Whilst a 

lengthy derivation can be elaborated the result is simply described by the structure factor 

F in Equation 2.3, the scattering arising from the contributions from all the atoms in the 

unit cell. The structure factor is computed by the summation of the atomic scattering 

factor f for n atoms in the unit cell at a coordinate xyz and for a given crystallographic 

plane hkl.  

 

Equation 2.3  

𝐹ℎ𝑘𝑙 =∑𝑓𝑛

𝑁

1

𝑒2𝑖(ℎ𝑥𝑛𝑘𝑦𝑛𝑙𝑧𝑛) 
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2.2.3 Diffraction from crystallographic planes 

X-rays scatter off atoms in all directions as is described in Section 2.2.2.2. When 

arranged in a regular structure atomic planes are formed. This results in certain scattering 

directions constructively interfering whilst other destructively interfere and cancel out. 

Figure 2.3 shows the geometry of X-ray scattering. X-rays (green arrows) scatter off two 

atoms (A and B) on equivalent crystallographic planes separated by a distance d. One X-

ray will have to travel a longer path (red arrow 𝑢𝐵𝑣⃗⃗⃗⃗⃗⃗⃗⃗ ) creating a path difference between 

the X-rays. Incident X-rays are in phase and therefore at most incident angles the path 

difference will result in scattered X-rays being out of phase because one is ‘lagging’ 

behind. This would result in destructive interference. However, at a specific angle or 

direction, the path difference will be an integer multiple of the X-ray wavelength and 

therefore the phases will be the same (i.e. X-ray crests and troughs are aligned) and the 

rays will constructively interfere producing a strong X-ray signal. This is called a Bragg 

angle, where Bragg’s law is satisfied. When this condition is met the Bragg equation can 

be used to calculate the atomic plane spacing d (Equation 2.4) where n is an integer,  is 

the wavelength,  is the angle between the plane and the incident or reflected X-ray (2 

is the scattering angle). The success of this method to accurately define an atomic 

structure is wholly dependent on the long-range periodicity of crystallographic planes, 

each contributing to the X-ray intensity at a corresponding angle. 

Figure 2.4 shows several crystal planes present in a hypothetical 2D arrangement 

of atoms separated by the parameter ‘a’. It is apparent that in this case the {10} d-space 

value will be exactly the distance between adjacent atoms along the axes and the {11} d-

space will give information on the diagonal distance between atoms. In this way with a 

few measurements of atomic planes a picture of the structure can be identified. An 

important consideration which will be discussed later is that the smaller the d spacing the 

more planes there are per given distance i.e. the spatial periodicity is greater. It is 

important to note that for a given atomic plane to be observable it has to be orientated 

with respect to the incident X-ray beam in order to meet the Bragg condition. 
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Figure 2.3 Geometry of X-ray scattering. The Bragg condition is met when the path 

difference created by two set of planes at a given angle is an integer multiple of the 

X-ray wavelength thereby giving constructive interference. 

 

Equation 2.4 

𝑛𝜆 = 2𝑑 sin 𝜃 

 

 

Figure 2.4 Depiction of crystal planes in a hypothetical 2D structure of atoms with 

periodicity ‘a’ in both dimensions.  
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In Figure 2.5 a typical X-ray diffraction pattern is shown for a perovskite 

structure. The first five peaks of importance have been labelled a – e and are tabulated in 

Table 2-1, and indexed to the cubic Miller indices. Using Equation 2.4 the d-spacing 

corresponding to the crystallographic plane which produces each peak can be calculated. 

This first naïve analysis of the peak positions can reveal a great deal of structural 

information. The peak splitting observed in the {001}, {011} and {002} peak groups, as 

well as the lack of splitting in the (111) peak can be used to deduce that this particular 

perovskite structure is tetragonal. More advanced methods are required to fully determine 

the space group, which would include analysis of the peak intensities and shapes (Section 

2.5.1).  

 

 

Figure 2.5 X-ray diffraction pattern for a perovskite structure. Incident wavelength 

𝜆 = 1.5406 Å. 
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Table 2-1 XRD peaks in Figure 2.5 measured in 2𝜃, converted to d-spacing and 

indexed to the Miller indices of the cubic unit cell. 

Label (hkl) 2𝜃 d-space (Å) 

a) 001 22.3 3.98 

b) 100 22.8 3.9 

c) 101 32.1 2.79 

d) 110 32.6 2.74 

e) 111 39.8 2.26 

 

2.2.4 Scattering in Q-space 

Previously discussed is X-ray scattering in terms of scattering angle and d-space 

between planes. Scattering can also be interpreted in terms of a scattering vector by 

considering the initial and final X-ray wavevectors ki and kf respectively, where the 

scattering vector Q or scattering momentum transfer is the difference between the initial 

and final wavevectors as shown in Equation 2.5. The wavevector k is defined in 

Equation 2.6. Here only elastic X-ray scattering is considered therefore the magnitude 

of the initial and final wave vectors are the same. This allows the use of simple 

trigonometry (Figure 2.6) to determine the magnitude of the scattering vector Q as shown 

in Equation 2.7, and by substituting Equation 2.6 the ‘Q’ equation is obtained, shown 

in Equation 2.8. Q is wavelength independent and therefore advantageous when 

comparing different data sets.  
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Figure 2.6 Geometry of the scattering vector Q. |Q| is the magnitude of the difference 

between the initial and final X-ray wavevectors, and the vector describes the 

momentum required to scatter an X-ray in a different direction. 

 

Equation 2.5 

|𝑄|⃗⃗ ⃗⃗  ⃗ =  𝑘𝑖⃗⃗  ⃗ − 𝑘𝑓⃗⃗⃗⃗  

 

Equation 2.6 

𝑘 =  
2


 

 

Equation 2.7 

|𝑄|

2
= 𝑘 sin 𝜃 

 

Equation 2.8 

|𝑄| =   
4𝜋 sin 𝜃

𝜆
 

 



  

 

 

72 

2.2.5 Size, order and thermal effects 

So far when discussing X-ray scattering there are two important underlying 

assumptions: 1) all atoms are in fixed positions in space, and 2) a crystal structure extends 

in three dimensions to infinity. As expected, this is not true; atoms always possess some 

degree of thermal energy (even at 0 K) vibrating about their coordinate position, and are 

finite structures. 

Figure 2.7 shows an example adapted from De Graef et al. [11] who uses the 

analogy of a marching band. In a marching band its members are initially in precise 

locations, throughout the march a highly disciplined band will retain its formation (a), 

whilst those less experienced would end up diverging from their original positions (b) and 

(c). In the case of atoms in a crystal, the increase in thermal energy induces vibrations in 

the atoms which distributes their position over a greater volume. The green box illustrates 

the range of possible interatomic distances resulting from these displacements. 

 

 

Figure 2.7 Positions of atoms (or a ‘marching band’) in crystals with increasing 

thermal energy a) with little to no energy, b) with some degree of thermal vibration 

c) a highly energetic system with large vibrations. The green boxes represent the 

range of possible interatomic distances. Adapted from [11]. 

 

The second important consideration is the coherence length of the structure, or the 

distance across which the structure and periodicity remains the same. The X-ray signal 

intensity at a Bragg angle is in part determined by the extent of the coherence. A highly 
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crystalline material produces high intensity peaks, whereas a poorly ordered material will 

have a greater distribution of atomic spacings and therefore the contribution to a given 

diffraction peak will be smeared out. Figure 2.8 illustrates a crystalline material a) which 

produces a sharp intensity peak because the d-spacing is the same across the material. 

The peak is deliberately shown to have a small degree of broadness due to some of the 

thermal effects discussed earlier. An idealised perfect structure would be a Dirac delta 

function i.e. all the scattering signal is focused on a precise point d. Example b) shows a 

material with differing d-spacings which produce a broader less defined peak. It is 

important to note that the average of the d-spacings is still a peak at position d. 

In a polycrystalline material, whilst every grain is one single crystal, the overall 

structure exhibits more disorder than a single crystalline material. The coherence length 

is bound by the grain size, and randomised orientation of grains reduces their contribution 

to a specific scattering angle. Additionally, the intergranular structure acts as a bridge 

between randomly orientated grains and therefore will typically have a disordered 

structure. All these effects contribute to interruptions in the crystal lattice reducing the 

intensity for a given scattering vector. 

 

 

Figure 2.8 Effects of crystal ordering on the scattering signal. A highly-ordered 

structure (a). A structure which diverges from the ordered structure due to various 

factors e.g. local scale disorder (b).  
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2.3 The pair distribution function 

2.3.1 Introduction 

The technique so far could be described as ‘conventional’ X-ray diffraction as it 

employs methods which have been established across the global scientific community 

since its inception in 1913 [10]. There is no doubt that this technique has excelled, in part 

due to its wide-ranging applicability and multidisciplinary nature. As many as 29 Nobel 

prizes have been awarded to discoveries underpinned by crystallography, constituting 

more than 10% of prizes in the physics and chemistry categories [106]. As previously 

stated, the founding assumption of the technique is long range crystal periodicity. Indeed, 

the analysis methods currently used function primarily by determining scattering peak 

positions and intensities [10]. Structures such as glasses e.g. amorphous silica, do not 

display any long-range order producing diffuse peaks offering little structural information 

via this method.  

Materials such as sodium bismuth titanate (Section 1.14.4) can be described as 

‘crystallographically challenged’ due to an ambiguous structure and nanoscaled structural 

coherence. This is associated with its inherent chemical disorder associated with mixed 

A-site occupation (sodium and bismuth) which in turn creates local distortions which 

differ from the average structure. NBT’s elusive structure has endured several decades 

study to accurately describe its structure [72], [80], [83], [84], [107], [108]. 

True nanocrystalline materials such as the C60 molecule or buckminsterfullerene 

possess length-scale-dependent structural coherence. The molecule itself is highly 

ordered as the carbon atoms form an array of pentagonal and hexagonal arrangements. 

However, beyond the molecular sphere diameter of around 6.9 Å the structure becomes 

less defined. The carbon spheres do however have a macroscopic face centred cubic 

(FCC) arrangement. Figure 2.10 illustrates how the two types or ordering appear in pair 

distribution function (PDF) data. The sharp PDF peaks below 6.9 Å correspond to 

interatomic distances between carbon atoms in a single C60 molecule. As will be discussed 

later the peak width and amplitude describe the distribution of atom-pair distances. For 

carbon-carbon pairs within a single molecule these peaks therefore have a greater height 

and sharpness due to the high correlation of carbon-carbon pairs within the molecule. 

Above 7 Å the peaks are far less intense and a lot broader. These correspond to the 

distances between spheres, highlighted in the atomic models in the figure. The ordering 
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between atoms in adjacent molecules is much lower as the distances are not as well 

defined due to the molecules being able to rotate relative to each other.  

 

 

Figure 2.9 PDF of C60 molecules which pack in a face centred cubic structure as 

depicted. The highlighted peaks correspond to the distances between individual 

molecules. Modified from [109] in [52]. 
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Figure 2.10 Schematic illustration of FCC packed C60 molecules, whose inter-

molecular distances correspond to PDF peaks labelled in Figure 2.9. 

 

As early as the 1930s the pair distribution function (PDF) method of analysis was 

developed, and used to study the structure of liquids [110], [111]. The PDF is obtained 

by the Fourier transform (FT) of the total scattering structure factor, giving real space 

structural information on the separation of atom-pairs in a given structure at a wide range 

of length-scales [52]. The PDF considers all scattering information i.e. Bragg and diffuse 

scattering. Bragg scattering corresponds to the sharp X-ray peaks arising from the 

crystalline periodicity in a material. Diffuse scattering arises from small deviations from 

the crystalline order which produce far less intense X-ray peaks which can exist between 

or under the Bragg peaks and are therefore either obscured or ignored and considered part 

of the background in conventional diffraction analysis. Crucially much of the structural 

information associated with disorder in a material is contained within the diffuse 

scattering [112].  

In its early years, PDF analysis was limited by the lack of computer technology 

to carry out Fourier transform operations. The development of both computers and high 

resolution scattering instruments has enabled the technique to flourish, seeing use in the 

study of complex structures such as in nanocrystalline, amorphous, and disordered 

materials [113]–[117]. The following sections will cover fundamentals of the PDF 

Fourier transform and total scattering before delving into pair distribution function 

analysis. 
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2.3.2 Fourier transform background 

A Fourier transform (FT) is useful as it can be used to manipulate data and 

exchange the domain in which it is being represented aiding analysis. Scattering occurs 

as a function of angle or scattering vector in reciprocal space. A Fourier transform of the 

scattering would produce real space information. 

A common example of the use of FT is in the analysis of the frequency content of 

acoustic signals to determine the frequency response of a speaker or microphone for 

example. These signals are measured as intensity as a function of time and via the FT are 

converted to the frequency domain [118]. The simplest signal would be a single sine 

wave, which would translate to a single peak in frequency space. Realistically however, 

the measured signal would contain a broad range of frequencies and intensities. For 

example, musical instruments produce notes which contain the fundamental frequency 

e.g. the note A4 (A above middle C) at 440 Hz as well as a rich quantity of harmonics, 

sub-harmonics and non-harmonics which give the instrument its unique sound or timbre. 

Analysing its frequency content would therefore be non-trivial, but possible by the FT 

approach. 

Firstly, it is useful to recall Euler’s formula shown in Equation 2.9, relating 

trigonometric functions (oscillations) to exponentials. In this case, it aids displaying by 

notation eix rather than the long trigonometric function. The frequency domain function 

F̂(f) is computed by the Fourier transform of the time domain function F(f) shown in 

Equation 2.10, and the reverse transformation can be performed and is shown in  

Equation 2.11, called the inverse Fourier transform [118]. This is calculated by the 

summation of the cosine and sine contributions to a t or f function, from negative infinity 

to infinity. Note the similarity between the equations showing that they are effectively 

applying the same operation. A simple example is shown in Figure 2.11, in which a 

function in the time-domain is composed of three different sinusoidal signals (Equation 

2.12) of varying amplitude and frequencies, shown in Table 2-2.  

 

Equation 2.9  

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥 
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Equation 2.10  

𝐹̂(𝑓) =  ∫ 𝐹(𝑡)

𝑡= 

𝑡= −

𝑒2𝑖𝑡𝑓𝑑𝑡 

 

Equation 2.11  

𝐹(𝑡) =  ∫ 𝐹̂(𝑓)

𝑓= 

𝑓= −

𝑒−2𝑖𝑓𝑡𝑑𝑓 

 

Equation 2.12  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑎, 𝑏, 𝑐 … ) = 𝐼𝑎 ∗ sin(2 ∗ 𝑓𝑎 ∗ 𝑡) 

+ 𝐼𝑏 ∗ sin(2 ∗ 𝑓𝑏 ∗ 𝑡) 

+ 𝐼𝑐 ∗ sin(2 ∗ 𝑓𝑐 ∗ 𝑡) + ⋯ 

 

Table 2-2 Function parameters 

Function no. Intensity I Frequency f 

a 2 1 

b 4 2 

c 1 3 
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Figure 2.11 Signals (a), (b) and (c) of varying frequencies and intensities and their 

resultant sum. 

 

For demonstration and simplicity, a pseudo-FT is performed where it is applied 

to just a sine function i.e. the imaginary or phase components are not considered. For 

every point on x, a sinusoid is produced with frequency x and amplitude y. In this case, 

there is a boundary to the integral between 0 and 8 seconds. All these newly formed 

sinusoids are summed producing the FT shown in Figure 2.12. 

The intensity of the peaks show the frequency and amplitude of the contributing 

signals. Due to the simplicity of the method scaling factors were added to adjust the 

amplitude of the peaks, however it is apparent by the amplitude ratios of the peaks that 

they correspond to the original 3 signals. Applying this method to the results in Figure 

2.12 shows the reverse effect i.e. the inverse Fourier transform where the original signal 

is produced in Figure 2.13. 
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Figure 2.12 Fourier transform of the signal in Figure 2.11 showing the frequency 

content. 

 

 

Figure 2.13 Fourier transform of Figure 2.12 showing the original functions. As this 

is a crude method the amplitude of the signal is off by some factor. 
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It is easier to envisage these operations by considering the function of the inverse 

Fourier transform. In the frequency-domain every point on the x axis corresponds to a 

frequency and therefore a sinusoid with said frequency can be formed. It can be seen that 

when applying the FT the high amplitude peaks will produce sinusoids with intensity y 

and frequency x. 

It should now start to become apparent how this relates to crystallography. The 

Fourier function in this case transitions between real and reciprocal space. Every point 

from scattering data represents the periodicity or frequency of atomic planes. A high 

intensity peak for the (001) plane of a perovskite such as BaTiO3 would (in d-space) lie 

around 3.9 Å which means it has a periodicity of 3.9 Å. Therefore, it is suitable to 

represent any point in Q-space as a sinusoid representing the periodicity in real space and 

showing the actual interatomic distances. 

 

2.3.3 Total scattering  

The total scattering structure function contains all the scattering information 

arising from the measured structure including the atomic species, species concentration 

and atomic position [119]. It is the Fourier transform of the total scattering structure 

function that generates the pair distribution function.  

The atomic scattering amplitude (Equation 2.13) is calculated from the 

summation of the atomic scattering factor fn (Equation 2.2), for every atom species n and 

for every concentration cn. The arrow brackets indicate compositional average. 

 

Equation 2.13  

〈𝑓𝑛〉 =  ∑𝑐𝑛𝑓𝑛
𝑛

 

 

The sample scattering (Q) is similar to the structure factor (Equation 2.3), where 

Rn is the position of atom n. The square of its magnitude is the sample scattering intensity 

(Equation 2.14). The coherent scattering intensity, Icoh(Q) is the normalized scattering 
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with scattering originating from the background and experimental effects removed. It is 

added to the square of the mean minus the mean of the square of the atomic scattering 

factor, which is effectively the variance (standard deviation squared). The total scattering 

structure function is calculated as shown in Equation 2.15 [52]. 

 

Equation 2.14  

|(𝑄)|2 = |
1

〈𝑓𝑛〉
∑𝑓𝑛𝑒

𝑖𝑄𝑹𝑛

𝑛

|

2

= 𝐼𝑐𝑜ℎ(𝑄) + 〈𝑓𝑛〉
2 − 〈𝑓𝑛

2〉 

  

Equation 2.15  

𝑆(𝑄) =  
|(𝑄)|2

〈𝑓𝑛〉
2

 

 

2.3.4 Pair distribution function 

As stated earlier the PDF is obtained from the Fourier transform of the total 

scattering structure function S(Q) shown in Equation 2.16. G(r) is called the reduced pair 

distribution function, from which the pair distribution function g(r) can be calculated 

shown in Equation 2.17. The reduced pair distribution function is obtained directly from 

the Fourier transform and so is most widely used. Therefore, any use of ‘PDF’ here will 

refer to G(r) unless otherwise stated. The FT is technically a discrete Fourier transform 

since it is bounded by limits Qmax and Qmin rather than ±∞ (Equation 2.11). There are 

physical limits of Q imposed by the X-ray wavelength and angular coverage (Equation 

2.8) so that Qmin cannot have a value of zero or lower and Qmax cannot have an infinite 

value. 𝜌(r) is the atomic pair density function or microscopic density function (Equation 

2.18) and 𝜌0 is the atomic number density or average number density.  

In Equation 2.18 it becomes apparent that g(r) can be represented as the 

probability of encountering two atoms separated by a distance r due to the fractional 

relationship of the microscopic/atomic (or local) density and the average density. A 

further Fourier transform of G(r) produces S(Q) as expected (Equation 2.19). 
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Equation 2.16 

𝐺(𝑟) =  (
2

𝜋
) ∫ 𝑄(𝑆(𝑄) − 1) 𝑠𝑖𝑛(𝑄𝑟) 𝑑𝑄 

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛

 

 

Equation 2.17 

𝑔(𝑟) =  (𝐺(𝑟) 4𝜋𝑟𝜌0⁄ ) + 1                                  

 

Equation 2.18 

𝑔(𝑟) =  
𝜌(𝑟)

𝜌0
 

 

Equation 2.19 

𝑆(𝑄) = 1 + 
1

𝑄
∫ 𝐺(𝑟)𝑠𝑖𝑛(𝑄𝑟)𝑑𝑟

∞

0

 

 

The pair distribution function represents the probability of encountering an atom-

atom pair at a distance r. This can be envisaged in two dimensions as shown in Figure 

2.14. In this simple structure, the interatomic distances can be represented as concentric 

coordination rings centred on every atom. The PDF signal from a given ring is determined 

by the radius of the ring and the number of atoms it intersects.  
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Figure 2.14 Two dimensional representation of a PDF in real space. The interatomic 

spacing, or unit cell parameter a = 1 Å. 

 

To demonstrate this the square 2D structure in Figure 2.14 was used to model a 

pseudo-PDF (Figure 2.15) purely for demonstration purposes. It is termed ‘pseudo’ as it 

is not calculated via the Fourier transform method but as described in the following: It is 

constructed by calculating the number of atoms at every distance r, for which a Gaussian 

peak with position r and height of a multiple of the number of atoms at distance r is 

calculated. All the contributions for a chosen distance r, are then summed. This simple 

pseudo-PDF construction is shown in Equation 2.20 where r is the distance in angstroms, 

n is the atom at position pn with amplitude Nn (number of atoms at position pn), and w is 

the Gaussian peak width, set to show a realistic structure (rather than a Dirac delta 

function). In fact, the choice of a Gaussian peak here is appropriate as it closely 

approximates a realistic probability distribution of atomic positions about an equilibrium 

position. This is particularly relevant for the radial distribution function (RDF) discussed 

in Section 2.3.5.2. 
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Equation 2.20 

𝑃𝐷𝐹2𝐷 = ∑𝑁𝑛𝑒𝑥𝑝 (−
(𝑟 – 𝑝𝑛)

2

𝑤2
)

𝑛

 

 

 

Figure 2.15 Pseudo-PDF for the structure shown in Figure 2.14. The red tick marks 

show the first 6 interatomic distances marked in the real space diagram of Figure 

2.14. 

A notable aspect of this construction is the increasing overlap of interatomic 

distances at greater r as shown by the constant increase in the number of peaks shown in 

Figure 2.16 a), which follows an approximate square trend. This increases the difficulty 

of deciphering the structure at greater distances due to the contribution of multiple atom-

pair distances to a single peak. Figure 2.16 b) shows the effective atomic number density 

𝜌0, or more precisely the areal density, which as expected tends to the average density 

which is 1 atom per unit area. This pseudo-PDF in fact more closely resembles a radial 

distribution function (RDF) which is related to the PDF. Section 2.3.5 expands more 

thoroughly on this and the various important aspects of PDFs. 
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Figure 2.16 Peak number and atomic number density of Figure 2.15 as a function of 

distance r. 

 

2.3.5 Important aspects of PDF analysis 

In order to properly analyse PDF data there are several aspects which need to be 

explained, including the different forms of the PDF and the features of a PDF which can 

be used to extract useful information. A thorough review of these is published in Takeshi 

Egami and Simon Billinge’s Underneath the Bragg peaks: Structural Analysis of 

Complex Materials [52]. 

 

2.3.5.1 Importance of Q-range 

The Fourier transform operation is calculated over a set Q range (Qmin to Qmax) of 

S(Q) which acts as an interruption in an ideal FT whose bounds are ±∞. These 

interruptions produce so called termination ripples, errors which take a sinusoidal form. 

Therefore, it is important to use as great a Q range as possible. Achieving a suitably small 

Qmin is typically simple, however the maximum Qmax is determined by the radiation 

wavelength and extent of the scattering angle (Equation 2.8) and so is highly dependent 

on the experimental setup. The effects of Qmax are shown for a calculated PDF of lead in 

Figure 2.17 [120]. A marked dampening of the termination errors with increasing Qmax 

can be observed, negligible at 36 Å-1. At Qmax = 12 Å-1 the termination errors cannot be 

distinguished from the scattering data, most notably at r = 5 Å. Generally, if Qmax > 

3 √〈〈𝑢2〉〉⁄ , where √〈〈𝑢2〉〉 is the root mean square of the amplitude of lattice vibrations  
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the termination errors should become insignificant [112] i.e. Qmax should be sufficiently 

high to distinguish broadening errors from structural broadening. Extending the range of 

Q too far however, can present problems due to increased statistical noise [52] 

nonetheless this does not present as much of a problem. In the literature the general 

consensus is that Qmax = 33 Å-1 is ideal [121], though there are several studies which have 

used Qmax  24 Å-1 [116], [117], [122]. As shown in Figure 2.17 this range is still 

sufficient to distinguish the scattering data from the termination ripples. 

Examples of the potentially highest Qmax obtainable from different X-rays sources 

are shown in Table 2-3, and calculated using Equation 2.8. This includes lab based tube 

X-ray generators such as copper and silver, X-ray synchrotrons and neutron sources. 

Realistically however detector coverage is physically limited e.g. lab-based 

diffractometers typically have a maximum 2 of 150°, so the Qmax values would be 

somewhat lower. The resolution in r of G(r) is also shown and approximated by r ≈  / 

Qmax [52]. Clearly in the case of the Cu X-rays both the available Qmax and resolution are 

not sufficiently high so as to obtain meaningful structural information from a PDF. 
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Figure 2.17 Calculated PDF of lead (Pb) showing the effect of Qmax on the quality of 

the PDF. Adapted from [120]. 

 

Table 2-3 Effects of probing radiation on Qmax and r resolution 

Source 
wavelength 

(Å) 
Qmax (Å-1) 

resolution in r r 

(Å) 

Lab-based Cu X-ray 1.54 8 0.39 

Lab-based Ag X-ray 0.56 22 0.14 

Neutron 0.4 31 0.1 

X-ray Synchrotron 0.2 63 0.05 
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2.3.5.2 PDF forms 

Several correlation functions of the PDF have already been alluded to, namely the 

pair distribution function g(r), the reduced pair distribution function (PDF) G(r), the pair 

density function 𝜌(r), and the radial distribution function (RDF) R(r). All contain 

structural information and all have their own merits and drawbacks. There are many more 

‘(r)’ functions obtainable from total scattering. These originate from different formalisms 

used in the international community and various choices in the normalisation or 

multiplicative factors in the functions [123]. The limits of the various function as r 

approaches zero and infinity, are shown in Equation 2.21. 

 

Equation 2.21 

a)     lim
𝑟→∞

𝑔(𝑟) = 1 

b)     lim
𝑟→∞

𝜌(𝑟) = 𝜌0 

c)     lim
𝑟→∞

𝐺(𝑟) = 0 

d)     lim
𝑟→∞

𝑅(𝑟) = ∞ 

e)     lim
𝑟→0

{
 

 
𝑔(𝑟)

𝜌(𝑟)

𝐺(𝑟)

𝑅(𝑟)}
 

 
= 0  

 

Generally, g(r) is more intuitive to interpret than G(r), for example it fluctuates 

around and tends to 1 (Equation 2.21 a)), i.e. as infinity is approached the probability of 

encountering an atom-atom pair is 1. 𝜌(r) on the other hand tends towards the average 

density 𝜌0 (Equation 2.21 b)). These two functions also emphasise low-r distances, 

falling in amplitude in proportion 1/r. However as discussed in the following this is not 

advantageous. 

G(r) offers far more advantages. As stated earlier it is directly obtained from the 

FT of S(Q), whilst g(r) requires prior knowledge of the atomic number density 𝜌0, and 

therefore is considered ‘cleaner’ data which requires no further calculations. In fact, 𝜌0 is 
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already contained within G(r); the function generally follows a -4 𝜌0r slope at low-r. 

Both the PDF signal and statistical fluctuations or uncertainties in G(r) are constant across 

r whilst all information content in g(r) and 𝜌(r) falls in proportion to 1/r. Therefore, using 

g(r) and 𝜌(r) presents problems when assessing differences in PDFs caused by 

temperature for example, or comparing a PDF model to experimental data. The difference 

curves would be affected by the 1/r falloff making it non-trivial to determine if a structural 

model is more suited to low or high-r regions for example.  

Another advantage of G(r) is that the intensities of the peaks are related to the 

structural ordering or crystallinity of the material. It can therefore give an indication of 

structural coherence length by the decay of the G(r) signal. A perfect crystal for example 

would have atom pairs extending to infinity, whereas a nanoparticle size determines the 

maximum coherence length. These effects are illustrated in Figure 2.18 a) for bulk and 

nanoparticulate gold. The decay of the nanoparticulate G(r) occurs roughly at the particle 

size of 36 Å. Undoubtedly this offers a quick and simple way of assessing a material 

structure. However, instrument resolution is also an important factor as shown in Figure 

2.18 b) for neutron PDFs of nickel powder measured with instruments of different 

resolution. This further emphasises the need for high Qmax measurements to push the PDF 

decay to greater r and reveal potential structural coherence effects [124]. 

 

 

Figure 2.18 Effect of a) coherence length for bulk and nanoparticulate gold and b) 

instrument resolution on the decay of the PDF signal for Ni powder. Adapted from 

[124]. 

 

a) Effect of coherence length

Nanoparticulate gold

Bulk gold

b) Effect of instrument resolution

High resolution

Lower resolution
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2.3.5.3 Radial distribution function  

The radial distribution function (RDF) is perhaps the most intuitive to understand 

and calculated from G(r) or g(r) (Equation 2.22 a)). In a similar though more advanced 

manner to Equation 2.20 the RDF can be calculated as shown in Equation 2.22 b), where 

a and b are different atoms and rab is the magnitude of the distance between them, and fn 

is the atomic scattering factor (Equation 2.2). It is the three-dimensional equivalent of 

Figure 2.15. 

 

Equation 2.22 

a)   𝑅(𝑟) = [𝐺(𝑟)  + (4𝜋𝑟𝜌0)]𝑟 =  4𝜋𝑟𝜌0𝑔(𝑟)𝑟
2 

b)   𝑅(𝑟) =  ∑ ∑
𝑓𝑛𝑎𝑓𝑛𝑏

〈𝑓𝑛〉
2𝑏𝑎  (𝑟 − 𝑟𝑎𝑏)  

 

It is useful because R(r)dr gives the number of coordinating atoms in an annulus 

dr i.e. the area under a RDF peak will be proportional to the coordination number. Shown 

in Equation 2.23 , where NC is the coordination number and r1 and r2 denote the range 

in r, for example the width of a given RDF peak. Another useful property is that the atom-

atom pair peaks in R(r) have a Gaussian shape and are therefore easier to fit unlike other 

correlation functions which are not exactly Gaussian. However, this function is only 

suitable to analyse at low-r distances as the function is proportional to r2 meaning the 

signal rapidly increases in amplitude, which is not simple to plot. 

 

Equation 2.23 

𝑁𝐶 = ∫ 𝑅(𝑟)

𝑟2

𝑟1

𝑑𝑟 
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2.4 Diffraction instruments 

2.4.1 Laboratory based XRD 

2.4.1.1 Diffraction geometry 

Lab based diffractometers typically use the Bragg-Brentano geometry which 

consists of an X-ray source and detector which revolve in a circular manner around a 

sample, shown in Figure 2.19. In this case the sample remains stationary, whilst the X-

ray source and detector move in tandem in clockwise and anti-clockwise directions 

starting at the 0° line. This experimental set up is best suited to powdered samples which 

have a complete random orientation of crystallites thus enabling the measurement of all 

diffraction peaks. A single crystal in this case would only produce peaks related to its 

orientation relevant to the X-ray source and detector e.g. multiples of (00l): (001), (002) 

etc. In effect the X-ray pattern produced would be incomplete. 

 

 

Figure 2.19 Bragg-Brentano geometry typically used in laboratory based XRD 

measurements. 
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A resulting feature of the combination of the diffraction geometry and a powder 

sample is that families of peaks are produced from different crystallites. For example, in 

lead titanate the following peaks (100), (001), (110), (101) and (111) each belong to a 

crystallite orientated in a different direction as shown in the case of PbTiO3 (tetragonal) 

in Figure 2.20. The unit cell depictions are orientated in such a way that the scattering 

vector Q is vertical. This becomes important when subjecting a sample to anisotropic 

fields e.g. electric or strain, as the orientation of the grains will determine its response to 

the field. 

 

Figure 2.20 Powder XRD pattern for PbTiO3 showing the crystallite orientation 

corresponding to different peaks if the scattering vector Q were vertical. 

 

2.4.1.2 Production of X-rays 

The production of X-rays begins with electrons produced at a cathode filament 

via thermionic emission. The electrons are accelerated towards and strike an anode target, 

typically copper, and in doing so eject an inner shell electron which is promptly replaced 

by an outer shell electron. This transition is from a higher energy L level to a lower energy 

inner K level, and via the laws of the conservation of energy a photon of the same energy 

is produced. Every element has a characteristic L-K transition energy difference, and by 

equivalence between photon energy and photon wavelength this creates a characteristic 

X-ray wavelength [9]. In this way, the X-ray wavelength used during diffraction can be 
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tuned by using different targets as shown in Table 2-4. Figure 2.21 displays this in more 

detail, illustrating the various energy levels present in copper. As shown there are several 

X-ray wavelengths that can be emitted depending on the energy levels involved in the 

electron transitions. The K X-ray is preferred as it has the greatest intensity and therefore 

provides the best signal to noise ratio [9]. The other X-rays are also produced at lower 

intensities and can be removed using absorbing filters, collimators or by data processing. 

 

 

Figure 2.21 Electron energy levels present in copper. Various X-ray wavelengths can 

be generated, however Kα produces the greatest intensity and is therefore preferred. 

From [9]. 

 

Table 2-4 Target elements and the corresponding Kα wavelength. 

Target element Kα wavelength (Å) 

Cr 2.29 

Fe 1.94 

Co 1.79 

Cu 1.54 

Mo 0.71 

Ag 0.56 
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2.4.2 Synchrotron XRD 

2.4.2.1 Background 

A synchrotron is a class of cyclic particle accelerator which accelerates electrons 

in a circular path and produces high brilliance radiation. Brilliance is a term which 

describes the radiation via a combination of factors shown in Equation 2.24 [125]. A 

high brilliance source will therefore consist of a beam of light which has a well-defined 

wavelength, narrow size and high intensity. The principal advantages offered by such 

devices is that high energy (sub-Angstrom wavelength) X-rays enable far higher 

resolution measurements, and a high X-ray flux reduces the measurement time required 

significantly. 

 

Equation 2.24 

𝐵𝑟𝑖𝑙𝑙𝑖𝑎𝑛𝑐𝑒 =  
𝑛𝑜. 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 

𝑡𝑖𝑚𝑒 ×  𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 ×  𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ×  𝑏𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ
 

 

Using magnets and radio frequency (RF) electric fields, electrons are forced to 

travel in a circular path subjecting them to a constant acceleration and reaching relativistic 

velocities (99% speed of light). When an electron is subjected to these conditions it emits 

light (synchrotron radiation) in the direction of travel, which takes the form of a radiation 

cone. Shown in Figure 2.22 is the general structure of synchrotrons. These contain a 

source of electrons, typically obtained by thermionic emission, which are then accelerated 

into an initial storage ring where a controlled injection into the main ring can be carried 

out. The depicted production of X-rays represents the early generation technology using 

bending magnets. More modern generations utilise undulators and wigglers to obtain 

greater radiation brilliance. The differences between bending magnets, undulators and 

wigglers are illustrated in in Figure 2.23, including the impact on angular divergence of 

the beam and subsequent radiation spectrum.  
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Figure 2.22 General depiction of the production of X-rays in synchrotrons. Electrons 

accelerated in a circular path produce X-rays radiating tangential to the path.  

 

2.4.2.2 Production of X-rays 

2.4.2.2.1 Bending magnets 

The radiation wavelength produced by an electron in synchrotron conditions is 

shown by the proportionality in Equation 2.25, where B is the magnetic field, and 𝛾 is 

the Lorentz factor (Equation 2.26), v is the speed of the electron and c is the speed of 

light. The first synchrotrons utilized this phenomenon in a straightforward manner using 

bending magnets to continuously force a circular path on the electrons. The result is a 

broad radiation spectrum which includes hard X-rays (0.1 – 2 Å) for crystallographic 

analysis. The resulting radiation cone has a divergence inversely proportional to the 

electron speed. A schematic illustration of a bending magnet and subsequently discussed 

synchrotron sources is shown in Figure 2.23. 
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2.4.2.2.2 Undulators 

Undulators include periodic magnets around the circumference of the synchrotron 

applying weak magnetic fields (around 1 T) to induce oscillations which are smaller than 

the normal bending magnet divergence cone. This divergence cone is narrow and 

inversely proportional to the square root of the number of magnets per unit distance (N). 

The resulting oscillations are harmonics producing highly defined radiation wavelengths, 

proportional to the magnet periodicity.  

The expression of the  radiation wavelength produced by an undulator is shown 

in Equation 2.27 [126], where 𝜆u is the ‘wavelength’ or period of the magnets, and K is 

described in Equation 2.28, and is the product of several fundamental constants, the 

applied magnetic field and magnet period. Undulator radiation is produced when the value 

K   1. 

 

2.4.2.2.3 Wigglers 

Wigglers differ from undulators in that periodic magnets apply greater magnetic 

fields (of the order of 4 T) so that the oscillations are greater than the natural divergence 

cone. In this regime, K > 1. The result is an increase in the number of harmonics to the 

extent that a continuum in the spectrum is formed again, rather than the discrete 

harmonics formed by the undulator. However, the spectrum is significantly higher in 

intensity and shifted towards smaller radiation wavelengths [126].  

 

Equation 2.25 

 ∝ 𝐵2 

 

Equation 2.26 

 =  
1

√1 − 
𝑣2

𝑐2
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Equation 2.27 

 =  
𝑢

22
(1 + 

𝐾2

2
+ 2 (

1

 √𝑁
)

2

) 

 

Equation 2.28  

𝐾 =
𝑒 𝐵 𝑢
2𝜋𝑚𝑐

 

 

 

Figure 2.23 Various sources of synchrotron radiation at the corresponding beam’s 

angular divergence and wavelength spectrum. Adapted from [126]. 

 

Figure 2.24 shows schematics of first generation synchrotrons (a) using bending 

magnets, and modern synchrotrons (b) which use undulator and wigglers, requiring the 

use of several straight sections instead of a continuous circular path. 
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Figure 2.24 a) Early synchrotrons using bending magnets, and b) modern 

synchrotrons using wiggler or undulator magnets. Adapted from [126]. 

 

2.4.3 Flat plate diffraction geometry 

Flat plate geometry offers several advantages over a single point detector setup 

such as the Bragg-Brentano geometry because the scattering vector exists in a 360° plane 

parallel to the detector plate. For a polycrystalline material, it is particularly beneficial as 

it contains scattering information from many more grains and is therefore more 

representative of the entire material.  The 360° coverage also enables measurement of 

anisotropic behaviour such as an electric field or a stress field applied in a specific 

direction. Response to the field can be measured along or perpendicular to it. Figure 2.25 

shows an example of a diffraction pattern measured on a PerkinElmer flat plate detector. 

A possible experimental setup is shown in Figure 2.26, which enables the 

application of perturbing forces such as applied stress, electric field and temperature 

among many others. In the case of an anisotropic field such as an electric or stress field, 

different detector sectors will correspond to structural changes with respect to the field 

vector. For a polycrystalline tetragonal material, each sector will correspond to grains 

aligned in a specific direction as shown in Figure 2.27. In this example selecting the 0° 

sector will correspond to structural changes along or parallel the field vector and the 90° 

sector corresponds to changes across or perpendicular to the vector. For a piezoelectric 

material which experiences strain parallel to the electric field vector one might observe 
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positive strain parallel due to the structure being extended in proportion to the field 

(Section 1.10), and the opposite effect perpendicular to the field.   

 

 

Figure 2.25 Example of a polycrystalline diffraction pattern on a PerkinElmer flat 

panel detector. The dark shadow is caused by the direct beam-stop which protects 

the centre pixels from the direct non-scattered X-rays. 

 

 

Figure 2.26 Experimental setup for transmission geometry (Debye-Scherrer), with 

examples of in situ parameters which could be used such as an applied electric field 

or temperature change.  
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Figure 2.27 For a tetragonal material each flat-plate detector sector corresponds to 

a differently orientated grain. With the application of an anisotropic field the 

different sector signals can be isolated to measure directional differences on the 

diffraction pattern. 

 

2.4.4 In situ measurements 

An obvious advantage of the synchrotron combined with the 2D plate diffraction 

geometry is that it enables the coupling of in situ measurements (Figure 2.26). For 

example: under applied electric field, pressure and/or temperature measurements. Figure 

2.28 is a cross section diagram of an electric field stage which enables the application of 

an electric field on a sample where the X-ray beam passes into (X) or out of (O) the page. 
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Figure 2.28 Schematic of a transmission diffraction stage enabling the application 

of an in situ electric field. The ‘X’ and ‘O’ symbols denote the path (into or out of 

the page respectively) that an X-ray beam takes through the sample.  

 

2.5 Data analysis methods 

2.5.1 Rietveld refinement 

Rietveld refinement is a technique used for the analysis and structural 

determination of X-ray and neutron diffraction data. It was first developed by Hugo 

Rietveld [127] and is now a staple tool used to analyse powder diffraction data. The 

refinement method uses a least squares method (described in Section 2.5.1.1) to obtain 

the best fit between a theoretical or modeled diffraction profile and the measured 

scattering data. The theoretical scattering profile is composed of various peak shape 

functions and backgrounds, whose parameters such as position width and position are 

altered to fit the scattering data by reducing the residual. The residual between the model 

and data can be considered by an agreement index or R value [128]. The weighted profile 

Rwp calculation is shown in Equation 2.29 where yi(obs) is the measured diffraction 

profile and yi(calc) is the calculated or modeled profile at step i, and w is the weight. The 

statistically expected value Rexp is shown in Equation 2.30, where N is the number of 

observations or data points, and P is the number of parameters. The ratio of the two R 

values is 𝜒2 or ‘goodness of fit’ and is shown in Equation 2.31. In the literature Rwp and 

𝜒2 are typically quoted [128].  
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Equation 2.29 

𝑅𝑤𝑝 = √
∑ 𝑤𝑖𝑖 [𝑦𝑖(𝑜𝑏𝑠) − 𝑦𝑖(𝑐𝑎𝑙𝑐)]

2

∑ 𝑤𝑖𝑖 [𝑦𝑖(𝑜𝑏𝑠)]
2

 

Equation 2.30 

𝑅𝑒𝑥𝑝 = √(𝑁 − 𝑃) ∑𝑤𝑖𝑦𝑖(𝑜𝑏𝑠)
2

𝑁

𝑖

⁄  

Equation 2.31 

𝜒2 = 
𝑅𝑤𝑝
𝑅𝑒𝑥𝑝

 

 

2.5.1.1 Least squares method 

The least squares regression method is used to fit a function to a data set in order 

to extract useful information. In this demonstrative example, the method is used to 

determine the parameters or coefficients which determine the linear trend of a set of data 

points which follow an approximate linear response i.e. line slope and y intercept (Figure 

2.29). The calculations are detailed in Equation 2.32. Where x and y are the data points, 

𝑥̅ and 𝑦̅ their mean values, 𝑦̂  is the calculated linear regression model a), a and b the 

coefficients or slope and y-intercept respectively. These are calculated in b) and c). R2 is 

the residual between the data and the fit d), and σ the standard error or deviation of the 

data e).  
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Equation 2.32 

a)    𝑦̂  =  𝑎𝑥 +  𝑏 

b)    𝑎 =  
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

∑(𝑥−𝑥̅)2
 

c)    𝑏 =  𝑦̅ − (𝑥̅  
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

∑(𝑥−𝑥̅)2
) 

d)    𝑅2 = 
∑(𝑦̂−𝑦̅)2

∑(𝑦−𝑦̅)2
 

e)    𝜎 =  √
∑(𝑦̂−𝑦)2

𝑛−2
 

 

 

Figure 2.29 Plot showing data with a linear trend and the linear fit obtained by the 

least squares method. 
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2.6 Electrical characterisation 

One of the fundamental goals of materials science is to improve the understanding 

of materials via the development of structure-property relationships. So far, the structural 

measurement techniques have been covered. Here the methods of understanding the 

electrical properties of piezoelectric ceramics are covered. 

 

2.6.1 Permittivity-Temperature 

The permittivity-temperature measurement enables the observation of 

temperature dependent phase transitions which are useful to determine the operating 

range of a piezoelectric material, or determine if a material is suitable for capacitor 

applications. It can also provide insight into other behaviours, for example whether the 

material is a classical ferroelectric or a relaxor material. The equations defining 

permittivity and the loss tangent have been covered previously (Section 0). A small 

oscillating voltage is applied to the ceramic sample at a broad range of frequencies. The 

induced current through the sample is then measured as a function of frequency and 

temperature. The permittivity is calculated from these parameters and the sample 

dimensions and is outputted as a function of temperature. A simple schematic of the 

circuitry used is shown in Figure 2.30. 
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Figure 2.30 Simplified circuit diagram of permittivity-temperature measurements. 

 

2.6.2  Strain-field 

Strain is typically measured as a function of an applied electric field. A setup 

consisting of two optical fibers, one transmitting light and one receiving light is used as 

shown in Figure 2.31. The illumination and receiving cones (A and B respectively) 

overlap (C) depending on the sample to fiber optic distance. When a high voltage is 

applied the sample will become strained and extend so it is closer to the receiver and the 

overlapping area decreases. Two competing effects emerge. The light intensity is 

proportional to the overlapping area but inversely proportional to the distance, illustrated 

in Figure 2.32. As the distance increases the cone overlap increases and therefore so does 

the light intensity. However, light intensity decreases with distance and this effect 

becomes dominant at a critical distance. The initial regime is preferred as the 

measurement is more sensitive to small changes in distance. 
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Figure 2.31 Schematic of fiber-optic displacement sensor displacement. a) 

Piezoelectric sample at zero-field, and b) under an applied electric field. Modified 

from [44]. 

 

 

Figure 2.32 Measured light intensity as a function of sample to fiber distance. The 

two regimes previously explained are highlighted. 
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Figure 2.33 shows a strain-field or ‘butterfly’ loop showing characteristic 

piezoelectric behaviour. From an initial state of zero-net strain (a) an electric field with 

sufficient magnitude is applied to induce domain reorientation and ionic displacement (b) 

until the contribution from domain wall motion saturates (c) and the strain adopts a linear 

behavior described by the converse piezoelectric effect (Equation 1.15). At this point the 

high-field d33 can be measured by the strain-field gradient. When the field is removed the 

strain decreases to a remnant value (d) where the domain orientation is maintained. Some 

domain relaxation occurs at lower fields, shown as a deviation from the linear 

piezoelectric trend. At this point the high strain-field gradient at low fields enables 

exploitation of both ionic displacement and domain wall motion to achieve a higher d33. 

Reversing the electric field (e) results in a reduction of the strain as the prior domain 

reorientation is reversed. At a critical field (f) the domains are fully switched and aligned 

domain growth commences with a resultant strain. 

 

 

Figure 2.33 A typical strain-field loop for a piezoelectric material. Various key 

points around the loop are labeled and described in the text. 
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3 Local and average structure of   

(1-x)(Na0.5, Bi0.5)TiO3-xPbTiO3 

3.1 Introduction 

The solid solution (1-x)(Na0.5, Bi0.5)TiO3-xPbTiO3 (NBT-PT) has been previously 

discussed in Section 1.14.6. NBT-PT has an extended morphotropic phase boundary 

(MPB) around x = 0.13 – 0.15 which exhibits a mixed phase of R3c and P4mm 

corresponding to its two endmembers [102], [103]. Due to the endmembers (Na0.5, 

Bi0.5)TiO3 and PbTiO3, properties which reflect both relaxor behaviour (such as frequency 

dispersion of the permittivity), and, depending on the composition, classical ferroelectric 

behaviour can be observed [101]. The presence of nano-scaled domains or regions of 

structural coherence have been reported, which disappear with greater PbTiO3 content 

giving rise to macroscale domains [102], [105]. This is inferred from permittivity 

measurements of relaxor-like behaviour which suggests nano regions, however no direct 

measurements of the domains have been demonstrated. It is apparent that this is a material 

rich in structural and property diversity, reflecting the interaction between a disordered 

material such as NBT and the influence of PT.  For that reason, understanding the origin 

of these properties can give an insight into the role of lead (Pb) and its ability to typically 

afford improved piezoelectric properties. 

 In this chapter the structural properties of NBT-PT are studied for 

compositions at and around the MPB, namely x = 0.08, 0.14 and 0.18 at ambient 

temperatures and temperatures up to and beyond their Curie point Tc, which ranges from 

200 to 350 °C depending on composition. Principally, a comparison between the average 

and local structure is drawn using synchrotron X-ray diffraction (XRD) and total 

scattering X-ray pair distribution function (PDF) analysis.  

Permittivity as a function of temperature measurements are also included as they 

can give an indication of any temperature dependent phase transitions taking place and 

can therefore corroborate structural transitions observed by XRD [2], [16]. These 

measurements can also give an indication as to the ferroelectric nature of the material e.g. 

does it follow classical Curie-Weiss ferroelectric or is there frequency dispersive 

behaviour, which is typically associated with relaxor ferroelectrics and attributed to the 

existence of regions of localised polar order [38]. 
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3.2 Material synthesis 

Solid solutions of (1-x)(Na0.5, Bi0.5)TiO3 – xPbTiO3 (x = 0.08, 0.14 and 0.18) were 

fabricated via a mixed oxide route. The reagent powders used were: Bismuth (III) oxide 

(Bi2O3), titanium dioxide (TiO2), sodium carbonate (Na2CO3) and lead (II) oxide (PbO) 

(99.9% purity, Sigma-Aldrich). The reagents were dried at 150 °C to remove any 

moisture, then weighed and mixed in their stoichiometric ratios for x = 0.08 – 0.18. The 

mixture was ball milled (Capco Test Equipment) in acetone (CH3)2CO for 6 hours to 

ensure the breakup of agglomerates and uniform distribution of reagents. The slurry was 

dried under continuous agitation to prevent denser reagents, such as PbO, settling. The 

dried powder was then sieved through a 100 𝜇m mesh. Phase formation was achieved via 

calcination of the powders at 700 °C for 6 hours in closed alumina crucibles. The calcined 

powder was ball milled again in acetone for 6 hours during which 1 wt% binder (Glascol 

HA-40) was added to aid the pellet forming process. 

Powder samples were uniaxially pressed (Apex) into 10 mm by 1mm thickness 

pellets at 1 MPa and then further isostatically (Stansted) pressed at 200 MPa. The pellets 

were placed on a powder bed of the same powder composition and sintered at 1100 °C 

for 3 hours. An initial slow ramp rate of 50 °C/hour up to 600 °C was used to burn off the 

binder after which the rate was increased to 300 °C/hour up to the sintering temperature. 

For the permittivity measurements the pellets were ground and polished and silver 

electrodes (Gwent) were deposited onto opposing faces and fired on at 550 °C. 

 

3.3 Experimental methods 

Sintered ceramic pellets for compositions x = 0.08, 0.14 and 0.18 were crushed 

into powders and annealed at 500 °C to reduce any stresses induced during crushing. The 

powders were placed in 1 mm diameter Kapton capillaries. Data were collected for 5 

minutes at a range of temperatures. At room temperature (25 °C), then from 100 – 400 

°C in 25 °C steps. Resistive heating coils were used to heat the sample environment shown 

in Figure 3.1 [129]. 
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Figure 3.1 Heating stage at 11-ID-B. Heating is achieved via resistive heating of coils 

near the capillary. 

 

X-ray scattering data were collected at 11-ID-B at the Advanced Photon Source 

(APS) at Argonne National Laboratories in Illinois, USA. An incident wavelength of 

0.143 Å (86.5 keV) was used with sample to detector distances set in two positions: 1) 

long distance (950 mm) for conventional X-ray diffraction measurement which provides 

an insight into the average structure of a material, and 2) a short distance (250 mm) which 

coupled to the wavelength produced a usable Qmax of 23.4 Å-1 which is suitable for pair 

distribution function (PDF) analysis obtained from the Fourier transform (FT) of the total 

scattering structure function. This has been previously covered in detail in Section 2.3. 

Shown in Figure 3.2 the effect of sample-detector distance is illustrated. Qmax, a 

parameter typically desired to be high for PDF analysis, is inversely proportional to the 

distance. For long sample-detector distances however, there is the benefit of improved 

resolution i.e. detector pixels per unit of Q space or scattering angle θ. 
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Figure 3.2 Schematic representation of sample-detector distance and its effects on 

Qmax and resolution. 

 

Fit2D software was used to process the 2D diffraction data by integrating full 360° 

sector of the detector [130]. In the long detector distance regime diffraction data was 

analysed by peak fitting software and full profile refinement using the Le Bail method 

(HighScore Plus). Pair distribution function was converted from diffraction data in the 

short detector distance regime with the PDFgetX3 software [131]. To obtain the total 

scattering structure function S(Q) the empty capillary was used for background 

subtraction and subsequent PDF extraction. 

PDF profile refinements were carried out with PDFgui software [132] for full 

profile and range dependent refinements. This approach is very similar to Rietveld 

refinement which involves a least squares regression fit, previously covered in Section 

2.5.1. Refined parameters include: Scale factors, lattice parameters, atomic fractional 

positions, anisotropic thermal parameters and peak broadening parameters. 

Permittivity temperature data were measured on sintered pellet samples with a HP 

4192A LF (Agilent, USA) impedance analyser for temperatures ranging from 20 - 500 °C 

at a broad range of frequencies (10 Hz – 10MHz). For clarity only 10 kHz, 100 kHz and 

1000 kHz (1 MHz) will be shown. The heating and cooling rates were 3 °C per minute. 

The measurements were taken upon heating and cooling from the maximum temperature 
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(500 °C). The temperature was measured with a K-type (-200 to 1100 °C) thermocouple 

in a tube furnace alongside the mounted sample. Temperature and permittivity data were 

collected with LabVIEW software via a GPIB (IEEE) interface. 

 

3.3.1 Note on error and standard deviation of results 

As with any result it is important to know its statistical significance, which is 

typically represented by error bars. These error bars by convention signify the standard 

deviation of said result. This is no different for structural analysis results, for example 

lattice parameters, be they obtained by structural refinement methods or individual peak 

fitting methods. If any calculations are performed on results it is important to propagate 

the errors associated with those results, for example in a tetragonal structure the unit cell 

parameters a and c will have values and associated errors. When plotting the commonly 

quoted measure of tetragonal strain c/a it is important to also ascribe an error to that result. 

In this case the quadrature method of error calculation can be used as the calculation is 

simple division. However, in other cases this is non-trivial. A key example is the 

calculation of the rhombohedral angle from the hexagonal unit cell a and c lattice 

parameters. The calculation is not simple and contains several trigonometric functions. 

For this reason, in the work presented here the error of parameters derived from 

calculations will represent their upper and lower bounds instead of a true standard 

deviation. This is to say that in the example of the rhombohedral angle, the errors in a and 

c will be used to calculate the range of possible values of the rhombohedral angle and use 

this range to represent the error in the measurement. In plot figures this is represented by 

a shaded area around the data points.  

 

3.4 Results 

3.4.1 Permittivity temperature measurements 

Permittivity temperature measurements were used to observe ferroelectric to 

paraelectric transitions characterised by a peak in the relative permittivity and loss 

tangent. The relative permittivity maxima (Tmax) associated with the ferroelectric-

paraelectric transition observed in classical ferroelectric material following Curie-Weiss 

behaviour occurs at the transition temperature. Frequency dispersive behaviour i.e. a 
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change in the Tmax and maximum relative permittivity (εmax) as a function of frequency, 

and a broad or diffuse εmax peak is typically associated with relaxor-ferroelectric 

behaviour.  

Data for x = 0.08 are shown in Figure 3.3. A sharp increase in relative permittivity 

is observed around 240 °C upon heating, and around 220 °C upon cooling. Tmax occurs 

around 280 °C and 270 °C upon heating and cooling respectively, though the maxima 

peak is quite broad. Tmax increases with frequency, whilst εmax decreases with frequency. 

The combination of the sharp transitions and frequency dependent behaviours indicate 

that the two regimes of classical and relaxor ferroelectric behaviour, as discussed 

previously, are present in this composition. Tan 𝛿 measurements follow similar trends. 

The negative values observed at 1000 kHz occur due to induction in the measurement 

leads and improper compensation. However, the general trend observed reflects real 

results. 
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Figure 3.3 Relative permittivity and loss tangent measurements for x = 0.08. Inset 

shows a close-up of the transition temperature and Tmax for the relative permittivity. 

 

For x = 0.14 (Figure 3.4) the sharp transition is observed at higher temperatures 

of approximately 305 °C and 295 °C upon heating and cooling respectively. Around 375 

°C a small knee is observed in the permittivity, more observable in Tan . Relaxor 

ferroelectric behaviour is still apparent from the frequency dispersive behaviour, however 

Tmax occurs far closer to the sharp transition with a difference of approximately 10 °C, 

instead of 40 – 50 °C observed for x = 0.08.  Additionally, the difference between the 

heating and cooling of Tmax, or hysteresis in the permittivity is approximately 10 °C 

instead of 20 °C for x = 0.08. This shows that increasing PbTiO3 (PT) content in NBT-

PT is inducing a decrease in relaxor behaviour. Again, there appears to have been poor 

compensation of the sample stage. 
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Figure 3.4 Relative permittivity and loss tangent measurements for x = 0.14. Inset 

shows a close-up of the transition temperature of the relative permittivity. 

 

Measurements for x = 0.18 are shown in Figure 3.5. The hysteretic behavior 

reduces to approximately 5 °C and the frequency dispersive behaviour is less apparent 

with smaller changes in Tmax, though changes in εmax can still be seen. In this case Tmax 

could be considered the Curie temperature TC. The transition occurs around 330 °C 
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Figure 3.5 Relative permittivity and loss tangent measurements for x = 0.18. Inset 

shows a close-up of the transition temperature of the relative permittivity. 

 

Permittivity measurements at 100 kHz for x = 0.08, 0.14 and 0.18 are shown 

together in Figure 3.6 to highlight the compositional differences and trends. The 

transition from relaxor-like to classical ferroelectric is clear. Lead titanate is a highly 

strained and ordered material. It is suggested that with greater PT content a greater degree 

of ferroelectric order is induced which disrupts the presence of localized ferroelectric 

order or polar nanoregions found in NBT related materials. 
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Figure 3.6 Permittivity and loss tangent measurements for all compositions at 100 

kHz. 

 

The ferroelectric or relaxor character can be further interpreted by plotting the 

inverse permittivity. As previously discussed in Section 1.8.2 a ferroelectric material 

follows the Curie-Weiss law for which above the transition temperature the permittivity 

is inversely proportional to the temperature. In this case the inverse permittivity would 

therefore follow a straight line. Figure 3.7 shows the inverse permittivity for all the 

compositions. A linear regression fit was taken from the 450 – 500 °C range. The point 

at which the linear fit intercepts the x-axis i.e. infinite permittivity is the theoretical 

temperature at which the transition from paraelectric to ferroelectric would occur. The 
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difference between this point and the measured transition decreases with increasing PT 

content. This further illustrates the decreasing ferroelectric character with increased 

PbTiO3 content. Interestingly however, the inverse permittivity appears to diverge from 

the linear fit at around 430 °C for all compositions, which suggests that nanoregion 

formation temperatures is not determined by composition. 

 

 

Figure 3.7 Inverse permittivity as a function of temperature for all compositions. 

The linear fit and difference plots are also shown. 

 

3.4.2 Synchrotron X-ray Diffraction 

X-ray diffraction data were collected as a function of temperature from ambient 

temperature (25 °C) and then from 100 - 400 °C in 25 °C steps. Figure 3.8 shows ambient 

temperature data for all compositions, showing peak positions and intensities 

characteristic of a perovskite structure. All peaks in this figure are indexed in the 

pseudocubic form. For x = 0.18 clear splitting of the {100}, {200}, {210}, {220} and 
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{300} peaks indicate a tetragonal structure. The {110} peak also exhibits splitting but this 

is not clear in the figure. The same peak families exhibit peak doublets for x = 0.14. The 

lowest PbTiO3 content composition x = 0.08 has peak splits corresponding to the 

rhombohedral structure, e.g. {111}. However, in the figure only {220} is clear. Peak 

analysis of the {222} splitting associated with a rhombohedral distortion is shown more 

clearly in Figure 3.13.  

 

 

Figure 3.8 Synchrotron X-ray diffraction patterns for x = 0.08, 0.14 and 0.18 at 25 

°C. 

 

X-ray diffraction data is shown for the highest temperature (400 °C) in Figure 3.9 

where all compositions should exhibit a cubic structure. Peaks are indexed in the 

pseudocubic setting. The lack of peak doublet presence for any of the peaks confirms this. 

Permittivity measurements for x = 0.14 and 0.18 indicate that 400 °C is above TC, where 

a paraelectric cubic structure would be expected.  
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Figure 3.9 Synchrotron X-ray diffraction patterns for x = 0.08, 0.14 and 0.18 at 400 

°C. The lack of any observable peak splitting indicate that all phases have adopted 

and average cubic structure. 

 

3.4.2.1 Room temperature refinements 

Structure analysis was performed with the Le Bail whole profile refinement 

method. This method is somewhat simpler than the Rietveld refinement method, focusing 

primarily on peak positions which it derives from the selected space group phase model. 

Unlike the Rietveld method peak intensities are not refined. For the purposes of this work 

i.e. obtain an average structural benchmark from which to compare local structure data, 

this is a suitable approach. The parameters refined were the background, scale factors, 

lattice parameters and peak shape parameters. The fit results are shown in Error! R

eference source not found.. These errors represent statistical standard deviations, not 

experimental errors which would be larger. 

Figure 3.10 shows the X-ray pattern for x = 0.08 with an R3c fit. The relatively 

small difference curve shows good agreement. Vertical black tick marks indicate peak 

positions of the R3c space group. The refinement was done using a hexagonal unit cell. 
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For clarity the peaks are labelled (a) – (n) and are indexed in the hexagonal and 

pseudocubic forms in Table 3-1 for references when comparing to the tetragonal unit 

cells used in the refinements of x = 0.14 and x = 0.18. 

Peaks labelled (a), (d) and (i) correspond to superlattice reflections caused by unit-

cell doubling created by octahedral tilting (Section 0). As it is the oxygen atoms which 

form the octahedra, these reflections appear to be very weak when using X-ray scattering 

due to the relatively small atomic number of oxygen, in particular in the presence of 

bismuth and lead. For this reason, neutron diffraction is preferentially suited to observing 

octahedral tilts. Nevertheless, though very weak, the peak labelled (d) is visible and 

corresponds to the superlattice peak of reflection {311}pc i.e. {3/2 1/2 1/2}pc. The 

behaviour of this peak with temperature is explored later (Figure 3.18). Le Bail 

refinements fits for x = 0.14 and 0.18 are shown in Figure 3.11 and Figure 3.12. Both 

display good fitting with the P4mm tetragonal space group. The peaks are indexed in the 

conventional manner for a tetragonal unit cell. 

 

 

Figure 3.10 X-ray diffraction pattern for x = 0.08 with an R3c fit. All reflections 

shown are labeled (a) – (n) in Table 3-1. 
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Table 3-1 Indexed peaks for R3c refinement of x = 0.08 for hexagonal and 

pseudocubic settings  

Peal label Hexagonal peak index Pseudocubic peak index 

(a) (003) Superlattice reflection 

(b) (012) {001} 

(c) (110) {110} 

(d) (021) 
{311}/2 Superlattice 

reflection 

(e) (202)/(006) {111} 

(f) (024) {200} 

(g) (116) {210} 

(h) (003) {211} 

(i) (009) Superlattice reflection 

(j) (220) {220} 

(k) (312) {300} 

(l) (134) {310} 

(m) (226) {311} 

(n) (404)/(00 12) {222} 
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Figure 3.11 X-ray diffraction pattern for x = 0.14 with a P4mm fit. 

 

 

Figure 3.12 X-ray diffraction pattern for x = 0.18 with a P4mm fit. 
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Table 3-2 Room temperature Le-Bail fit results. 

x 0.08 0.14 0.18 

Space group R3c P4mm P4mm 

Rwp 4.628 4.071 3.955 

a (Å) 
5.49421 (19) 3.884982 (99) 3.882839 (93) 

b (Å) 

c (Å) 13.57221 (98) 3.96141 (19) 3.97738 (17) 

𝛼 (°) 
90 

90 90 𝛽 (°) 

𝛾 (°) 120 

 

3.4.2.2 Evolution of peak profiles 

To better understand these temperature dependent transitions, the behaviour of 

peaks characteristic to rhombohedral and tetragonal structures, namely {100} and {111}, 

can give an indication of the changing structure. Typically, the {200} peaks are chosen 

over {100} as they are at higher Q-space and therefore the differences in their positions 

Q-space or scattering angle 2𝜃 are greater i.e. they are easier to identify. In many 

rhombohedral materials the {111} peaks are used for similar analysis, however in the case 

of x = 0.08 the {111}pc peaks lack definition so, for the same reason as stated before, the 

focus was laid on the {222}pc peaks. The {222}pc peaks for x = 0.08 and the {200} peaks 

for x = 0.14 and 0.18 are shown in Figure 3.13 as a function of temperature. A clear 

transition from two peaks to one peak can be observed in all cases.  
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Figure 3.13 Peak behavior in x = 0.08, 0.14 and 0.18 as a function of temperature. 

 

Peak analysis was carried out by peak fitting using Gaussian functions and are 

shown in Figure 3.14, Figure 3.15 and Figure 3.16 for x = 0.08, 0.14 and 0.18 

respectively.  

For clarity only fits of certain temperatures are shown which highlight key 

changes along the temperature range. In all cases two peaks were used in the fits at all 

temperatures. For x = 0.08 the rhombohedral angle (R) gives an indication of the extent 

of the rhombohedral distortion. It is calculated from the {222} peak positions ((404) and 

(00 12)). Shown in Equation 3.1 is the entire calculation. This calculation is obtained 

from Appendix 2 in B. D. Cullity and S. R. Stock’s Elements of X-ray Diffraction [9]. 
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The hexagonal cell parameters aH and cH are first calculated from (404) and (00 12) peak 

positions respectively. For clarity the equation is broken down in to two parts where the 

constant ɸ is then calculated.  This is in turn used to calculate the rhombohedral angle R 

when considering the pseudocubic unit cell. 

 

Equation 3.1  

𝑎𝐻  =  (404)𝐻 ∗ 6√
2

3
 

𝑐𝐻 = (00 12)𝐻 ∗ 6√
2

3
 

 = cos−1(1 − 
9

6 + 2 ( 
𝑐𝐻
𝑎𝐻
 )
2) 

 𝑅 =  cos
−1 ( 

1 − 2 cos 

2 cos − 3
 ) 

 

The rhombohedral angle as a function of temperature is shown in Figure 3.17. 

Angle calculations from both the Le Bail fit and {222} peak fits are shown, and both 

follow a similar trend. From 25 - 225 °C there is a gradual increase in the angle from 

around 89.7° to 89.825°. From 225 – 250 °C there is a sharp increase in the angle up to 

89.957°, after which it increases steadily. This coincides with the sharp transition 

observed in the relative permittivity measurements. In both calculations the angle 

approaches 90°. Both methods show that the angle has a lower limit of 89.975° but not 

quite 90° expected of the cubic structure. There are a few factors to which this is 

attributed: 1) the peak fitting method requires the use of two peaks and therefore if the 

peaks are not exactly in the same position would result in a non-90° angle result. 2) 

inhomogeneities in the sample would result in volumes of higher PbTiO3 which possess 

a higher transition temperature (490 °C) thereby resulting in peak asymmetry. 
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Figure 3.14 Gaussian fit of the {222}pc peaks for x = 0.08.  
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Figure 3.15 Gaussian fit of the {200} peaks for x = 0.14.  
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Figure 3.16 Gaussian fit of the {200} peaks for x = 0.18.  
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Figure 3.17 Rhombohedral angle calculated from {222}pc peaks for x = 0.08. Shaded 

area represents upper and lower fit results. 

 

Previously discussed are the superlattice reflections in x = 0.08, of which only one 

is observable due to the inherent weak scattering intensity associated with the oxygen 

octahedron. Figure 3.18 shows the superlattice peak corresponding to the {311} 

reflection i.e. {3/2 1/2 1/2}. This peak corresponds to the a- a- a- octahedral tilt system in 

the R3c space group [14]. A clear extinction of the peak with increasing temperature can 

be observed, disappearing abruptly at 250 °C, indicating a transition from a tilted to an 

un-tilted structure.  
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Figure 3.18 Superlattice {3/2 1/2 1/2} peak in x = 0.08 as a function of temperature. 

 

For x = 0.14 and 0.18 the degree of tetragonal distortion can be simply calculated 

as a ratio of the unit cell parameters c and a, in turn calculated from the (002) and (200) 

peak positions, shown in Figure 3.19. For x = 0.14 a room temperature c/a of 1.019 is 

observed which steadily decreases with temperatures up to 275 °C above which a sharp 

decrease in c/a can be seen. Above 300 °C c/a = 1 indicating a lack of tetragonal distortion 

and therefore a cubic structure. For x = 0.18 a greater room temperature c/a of 1.024 can 

be seen. This is expected of a higher PT content composition. This also pushes the sharp 

decrease in c/a up to 325 °C, after which c/a = 1 can be observed from 375 °C. For both 

x = 0.14 and 0.18 the sudden decrease in c/a coincides with the permittivity measurement 

discussed, however the cubic structure indicated by c/a = 1 is not observable until higher 

temperatures are reached. This is again attributed to effects observed for x = 0.08. 
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Figure 3.19 c/a ratio calculated from (002/200) peaks for x = 0.14 and 0.18. Shaded 

area represents upper and lower fit results. 

 

3.4.3 Pair distribution function 

X-ray diffraction results have described the average structure and the temperature 

dependent behaviour of compositions x = 0.08, 0.14 and 0.18 which is also observed in 

permittivity measurements (Section 3.4.1). However, NBT based materials have 

structural features which require further analysis [85]. This is already evidenced by the 

permittivity results for x = 0.08 which exhibit relaxor-ferroelectric features associated 

with structural disorder (Figure 3.3). Here the pair distribution function technique is used 

to characterise the local structure and draw a comparison with the average structure 

measurements.  

 

3.4.3.1 Whole profile fits 

In the first instance the G(r) data obtained for x = 0.08, 0.14 and 0.18 at room 

temperature was refined. This is a full profile refinement which uses almost the entire 

PDF range of 5 – 60 Å. The refined parameters were: scale factors, lattice parameters, 
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atomic positions, atomic displacement parameters and broadening factors which are 

associated with finite instrument resolution effects at high-r. Figure 3.20 shows Rwp 

values for PDF fits for space groups R3c (rhombohedral), Cc (monoclinic) and P4mm 

(tetragonal). An optimal R3c fit can be seen for x = 0.08. The parameters are expressed 

in the hexagonal form. Composition x = 0.18 exhibits a preferential P4mm. For x = 0.14 

the Cc and P4mm phases have near identical Rwp values different by less than 2%. 

Currently this suggests structural behaviour similar to other MPB materials where a 

monoclinic structure exists as a lower symmetry parent phase to rhombohedral and 

tetragonal phases, acting as a ‘bridge’ between them. A mixed phase refinement is not 

possible with the current software.  

Figure 3.21, Figure 3.22 and Figure 3.23 show G(r) data with the optimal fits 

G(calc) associated with the Rwp values shown in Figure 3.20 and difference plot G(diff). 

For Figure 3.22 only the Cc fit is shown. The difference curve in all cases shows that at 

low-r the fit is worse. This may be due to very short length scale disorder exhibiting a 

lower symmetry. Fit results are summarised in Table 3-3. The errors shown in brackets 

represent statistical errors in the standard deviation of the refined parameters, not 

experimental errors. There are some differences in the whole PDF profile fit results and 

the Le Bail refinement results. These do not exceed 0.2% and are as low as 0.01%. 

 

 

Figure 3.20 Whole profile Rwp PDF fit values for x = 0.08, 0.14 and 0.18 
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Figure 3.21 R3c refinement of G(r) for x = 0.08 

 

 

Figure 3.22 Cc refinements of G(r) for x = 0.14 
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Figure 3.23 P4mm refinement of G(r) for x = 0.18 

 

Table 3-3 Full G(r) profile (5 – 60 Å) PDF refinement results 

x 0.08 0.14 0.18 

Space 

group 
R3c Cc P4mm P4mm 

Rwp 0.0757 0.1123 0.1141 0.0925 

a (Å) 
5.4918 (13) 

9.521 (13) 
3.884982 (99) 3.882839 (93) 

b (Å) 5.5301 (41) 

c (Å) 13.5898 (57) 5.5832 (54) 3.96141 (19) 3.97738 (17) 

𝛼 (°) 
90 

89.871 (83) 

90 90 𝛽 (°) 125.54 (10) 

𝛾 (°) 120 89.871 (83) 

 

3.4.3.2 Range dependent fits 

A PDF contains real space structural data, and therefore offers the useful feature 

of selecting a specific PDF range to analyse. Results obtained from a given PDF range 

will therefore reflect structural features occurring at those length scales. A schematic 

illustration of this analysis method is shown in Figure 3.24. Similar analysis methods 

have been previously shown to be suitable to determine length scale dependent structural 

behaviour [133] 
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Here the PDFs obtained were analysed using the ‘box-car’, method whereby only 

a 10 Å region is selected and analysed and this is then shifted up by 5 Å where the same 

analysis is repeated. The box start is at 2 Å, therefore the first box is 2 – 12 Å, the next 

one is at 7 – 17 Å and so on up to 47 Å. Results obtained from refinements of the box 

regions will be plotted as data points centred on the midpoint of each box. For example, 

in the 2 – 12 Å box the result is plotted at data point 7 Å. Range dependent refinements 

of the same three space groups R3c, Cc and P4mm are performed in the 2 – 47 Å range. 

Figure 3.25 shows Rwp values for all compositions as a function of box centres. In some 

cases, smaller box shifts are used to obtain refinement values between two points. 

 

 

Figure 3.24 ‘Box-car’ PDF refinement method illustrated in real space 2D lattice. 

Different PDF ranges are analysed separately. 
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For x = 0.08 both the monoclinic and rhombohedral phases appear to be equally 

suitable across all r values with a slightly more preferential rhombohedral phase at high-

r. The G(r) fit is shown in Figure 3.26. The difference plot reflects the relatively high 

Rwp at low-r. This is likely due to intrinsic lower resolution of low-r which is dependent 

on the experimentally determined Qmax. For x = 0.14 at low-r all phases appear to be 

almost equally suitable. Above 12 Å a tetragonal and monoclinic fit is almost identical 

up to 27 Å, above which only the tetragonal phase is suited (Figure 3.27). Similar 

behaviour is apparent for x = 0.18, however the region over which tetragonal and 

monoclinic phases have a similar fit is far smaller, where the divergence occurs between 

12 Å and 17 Å, after which only the tetragonal phase is suitable (Figure 3.28). For clarity 

the figures only contain one structural model for every range section. In ranges where two 

models have equivalent fits the monoclinic fit data is used. 

Several features merit discussion here: Generally, the low-r regions experience 

good fits with all space groups. This indicates that the local structure length scale of up 

to three unit-cells has a low symmetry structure. For x = 0.08 the structure still seems 

rather ambiguous at greater length scales as the R3c and Cc fits are very similar. This can 

be expected of the lowest PT content composition which exhibits the most NBT-like 

behaviour. For x = 0.14 and 0.18 the tetragonal structure emerges as the best fit at greater 

length scales, though for x = 0.18 this occurs at a lower r value than for x = 0.14. This 

indicates that the local structural coherence length of the monoclinic phase is larger for x 

= 0.14. It is only beyond 27 Å that the best fit phase represents the average structure as 

observed with XRD. For x = 0.18 the coherence length of the local scale structure is much 

shorter. As a lower symmetry phase Cc represents a deviation from the average structure. 

With an increase in PT content, the lower symmetry monoclinic phase becomes 

increasingly supressed and diminished in size to give rise to higher symmetry phases. 

Here the order inducing properties of the highly strained PbTiO3 can be observed. 
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Figure 3.25 Rwp values for x = 0.08, 0.14 and 0.18 as a function of PDF range fits for 

the space groups R3c, Cc and P4mm. 
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Figure 3.26 PDF for x = 0.08 composed of combined ‘box-car’ refinements (vertical 

black lines). Region of Cc and R3c fit extend to approximately 35Å. 

 

 

Figure 3.27 PDF for x = 0.14 composed of combined ‘box-car’ refinements (vertical 

black lines). Region of Cc and P4mm fit extend to approximately 30Å. 
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Figure 3.28 PDF for x = 0.18 composed of combined ‘box-car’ refinements (vertical 

black lines). Region of Cc and P4mm fit extend to approximately 20Å. 

 

3.4.3.3 Range dependent fit parameters 

Fit parameters from the box-car refinements were used to calculate useful 

structural features such as the rhombohedral angle and c/a ratio as a function of PDF 

range. For  x = 0.08 (Figure 3.29) the rhombohedral angle is shown as a function of PDF 

range at 25 °C (black) and 400 °C (red) measurements. Measurements of rhombohedral 

angle from the average structure calculations at 25 °C and 400 °C are shown as horizontal 

blue (25 °C) and pink (400 °C) lines respectively. Vertical black and red lines indicate 

the range at which the parameters obtain from PDF analysis and XRD analysis become 

equivalent (within the error margin as shown by the shaded regions, see Section 3.3.1). 

The rhombohedral angle was calculated (Equation 3.1) using the hexagonal cell 

parameters aH and cH from the R3c space group.  

Room temperature angle calculations show significant range dependence. At low-

r the rhombohedral distortion is more extreme. At greater ranges it gradually decreases 

and only becomes equal to the average rhombohedral distortion at 27 – 32 Å, indicating 

the presence of a more distorted local volume of approximately 30 Å in size. The high 
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temperature measurements also show a highly distorted low-r structure. Above 22 Å the 

rhombohedral angle uncertainty is within the 90° line expected from average structure 

measurements. This suggests that for x = 0.08 there are relatively large localised regions, 

more distorted than the average structure. These persist at temperatures where the average 

structure is considered cubic i.e. non-distorted, albeit their coherence length is smaller. 

The vertical dotted lines indicate the range at which the rhombohedral angle matches that 

of the average structure and therefore the size of the nanoscaled region.  

 

 

Figure 3.29 Rhombohedral angle as a function of PDF range for x = 0.08 at 25 (red) 

and 400 °C (black). Horizontal lines indicate rhombohedral angle measurements 

from average structure calculations. Vertical lines indicate suggested nanoregion 

size (coloured the same as PDF measurements) 

 

For x = 0.14 and 0.18 the c and a parameters of the P4mm PDF refinement were 

used to calculate the c/a ratio as a function of range. These are shown in Figure 3.30 and 

Figure 3.31 for x = 0.14 and x = 0.18 respectively. The elements in the figures follow the 

same format as in Figure 3.29. Similar range dependent behaviour can be observed. Low-

r regions have a higher c/a and are therefore significantly more distorted than the average 
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structure. Above 20 Å the c/a ratio resembles the average value for each composition. 

High temperature measurements show a non-cubic tetragonal distortion persists where 

average measurements show the structure to be cubic. These high temperature distortions 

have a coherence length of approximately 17 Å. The vertical dotted lines are used to 

represent the range at which the c/a values match those of the average structure and 

therefore the size of the nanoscaled region. 

 

 

Figure 3.30 c/a ratio as a function of PDF range for x = 0.14 at 25 (red) and 400 °C 

(black). Horizontal lines indicate c/a ratio measurements from average structure 

calculations. Vertical dotted lines indicate nano region size.  
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Figure 3.31 c/a ratio as a function of PDF range for x = 0.18 at 25 (red) and 400 °C 

(black). Horizontal lines indicate c/a ratio measurements from average structure 

calculations. Vertical dotted lines indicate nano region size.  

 

3.5 Conclusions 

A combination of average and local structural characterisation techniques have 

been used to study (1-x)(Na0.5, Bi0.5)TiO3-xPbTiO3 (NBT-PT) for x = 0.08, 0.14 and 0.18; 

compositions which inhabit the rhombohedral, MPB and tetragonal regions respectively. 

Permittivity-temperature measurements were used in conjunction to verify any phase 

transitions observed and investigate ferroelectric behaviour.  

Average structure X-ray diffraction measurements coincide with studies in the 

literature where x = 0.08 exhibits a rhombohedral R3c phase and x = 0.14 and 0.18 exhibit 

tetragonal P4mm phases. Temperature dependent measurements show a transition to a 

cubic phase by the merging of peak doublets associated with rhombohedral and tetragonal 

phases. Additionally, x = 0.08 exhibits an extinction the {3/2 1/2 1/2} octahedral tilt peak 

indicative of an un-tilted structure. Permittivity temperature measurements show abrupt 

transitions correlating with XRD measurements. Additionally, the measurements 
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illustrate the relaxor-like characteristics of x = 0.08 which decrease and evolve into a 

more classical ferroelectric-like behaviour with increasing PbTiO3 content.  

Local structure analysis via pair distribution function shows the presence of a 

monoclinic Cc phase in the MPB composition x = 0.14. For x = 0.08 and 0.18 R3c and 

P4mm phases were observed respectively. For further insight range dependent analysis 

was performed which revealed a more complex and range dependent structure. At room 

temperature and at low-r length scales all compositions show good fit agreement with the 

monoclinic phase. With increasing x, the length scale over which the monoclinic phase 

showed good agreement decreased systematically. This suggests that the monoclinic 

phase has only a short-range existence which is suppressed with increased PbTiO3 

content.  

Furthermore, measurement of the refinement parameters shows local structure 

volumes of greater distortion with respect to the average structure. It is only at greater 

length scales that the rhombohedral or tetragonal distortions are the same as those 

measured via XRD. The size of these volumes decreases with increasing PbTiO3 content. 

At high temperature these distortions persist at low-r and resemble the average structure 

at greater length scales, however the size of these regions is smaller than at room 

temperature. Nevertheless, the effects of PbTiO3 are still apparent. 

PbTiO3 has been shown to have strong order-inducing properties by the decrease 

or suppression of nanoscale coherence length. In doing so NBT-PT transforms from a 

relaxor-like material to a material more closely resembling a classical ferroelectric. This 

presents a novel understanding of NBT-PT and the influence of order inducing materials 

on poorly crystalline materials. 
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4 Field-dependent local structure of      

(Kx Na1-x)0.5 Bi0.5 TiO3 

4.1 Introduction 

As previously discussed there has been extensive research into the (Kx Na1-x)0.5 

Bi0.5 TiO3 (KNBT) system (Section 1.14.5), revealing the structural complexities 

associated with its NBT end member [83], [92] and its promising MPB properties [45], 

[96] making this system a potentially viable option for the lead-free piezoelectric industry.  

To help realise the piezoelectric potential of KNBT several in situ electric field, 

XRD studies have been conducted which show phase transformation behaviour beneficial 

to improved piezoelectric properties. Specifically, a transition to a tetragonal phase from 

a rhombohedral or mixed phase structure at the MPB [99]. The structurally ambiguous 

nature of KBT-NBT due to the NBT end member, necessitates the use of analysis 

techniques which are able to differentiate local from average structural behaviour, namely 

pair distribution function (PDF) analysis [52]. 

In this section, an in situ electric-field PDF experiment on KBT-NBT 

compositions near the MPB is described and the results discussed. This work has been 

published [117]. This work primarily investigates the contribution of compositional 

differences to the observed PDF data and the field induced structural changes over short 

and long PDF ranges. 

 

4.2 Material synthesis  

Solid solutions of (Kx Na1-x)0.5 Bi0.5 TiO3 (x = 0.15, 0.18 and 0.2) were fabricated 

via the conventional mixed oxide route first detailed in Royles et al. [99].  

The reagent powders used were: bismuth (III) oxide (Bi2O3), titanium dioxide 

(TiO2), potassium carbonate (K2CO3) and sodium carbonate (Na2CO3) (99.9% purity, 

Sigma-Aldrich). The potassium and sodium reagents were required to be in carbonate 

form as they are oxides are reactive with water. The reagents were dried at 150 °C to 

remove any moisture, then weighed and mixed in stoichiometric ratios for x = 0.10 – 0.30. 
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The mixture was ball milled in isopropyl alcohol (C3H8O) or IPA for 24 hours to ensure 

the breakup of agglomerates and uniform distribution of reagents. The slurry was dried 

under continuous agitation to prevent denser reagents settling thereby losing the uniform 

distribution. The dried powder was then sieved through a 100 𝜇m mesh. Phase formation 

was achieved via calcination of the powders at 850 °C for 4 hours in closed alumina 

crucibles, which were then attrition milled (Dyno-mill 70 KDL type-A) to further reduce 

particle size. The drying process was repeated during which 1-2 %wt binder (Glascol HA-

40) was added to aid during the pellet forming process. 

Large pellets measuring 20 mm in diameter by 3 mm thickness were uniaxially 

pressed at 50 MPa, then further pressed by isostatic press at 300 MPa to aid the 

densification process during sintering. The pellets were placed in a closed crucible on 

powder bed of the same composition to aid in reducing the loss of volatile species such 

as bismuth oxide. Figure 4.1 shows the sintering profile used. An initial slow ramp of 50 

°C/h up to 500 °C was used to burn off the binding agent, after which a ramp rate of 300 

°C /h up to the sintering temperature 1150 °C which was maintained for 2 hours. The 

pellets cooled at 150 °C /h in order to relieve any stresses produced during sintering. 

 

 

Figure 4.1 Sintering profile for (Kx Na1-x)0.5 Bi0.5 TiO3. Binder burnout (magenta) 

and sintering (cyan) regions are highlighted. 
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The sintered pellets were ground and polished using silicon carbide into discs. 

Once a thickness of 1 mm was achieved silver electrodes were applied to the opposing 

large faces of the discs and fired at 550 °C. A diamond saw was used to cut the disc into 

multiple 1 × 1 × 5 mm ceramic bars (Figure 4.2), which were annealed at 300 °C for 2 

hours to minimise any internal stresses induced by the cutting.  

 

 

Figure 4.2 Ceramic processing route for in situ electric field synchrotron 

experiment.  

 

4.3 Experimental methods 

X-ray total scattering data were collected at ambient temperature using beamline 

11-ID-B at the Advanced Photon Source (APS), Argonne National Laboratory, which is 

dedicated to PDF measurements [134]. An incident beam of wavelength 0.2114 Å (58.66 

keV) was used with the sample to detector distance set to produce a usable Qmax of 23.6 

Å-1. Figure 4.3 shows the experimental arrangement and the electric field vector. The 

sample was immersed in a Fluorinert (3M, USA) bath (electrically insulating liquid) in a 

Kapton (DuPont, USA) container. Total scattering data were collected simultaneous to 

the application of a static electric field. Samples were unpoled at the beginning of the 

experiment. The field was increased from 0 to 4000 V/mm in steps of 250 V/mm steps 

and held for 5 minutes at each field amplitude. The non-sample background scattering, 

including that from the Kapton container and Fluorinert liquid was measured separately 

and subtracted from the total signal. 

The scattered photons were collected with a Perkin Elmer flat-panel amorphous-

silicon 2D detector [134]. Fit2D software  was used to process the diffraction data [135]. 
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Total-scattering patterns incorporating contributions from crystallites having Qhkl vectors 

parallel and perpendicular to the electric field were obtained by integrating ±10° sectors 

of the detector centred on the vertical and horizontal directions, respectively. As 

demonstrated previously [116], a conventional formalism involving the sine Fourier 

transform, as implemented in the PDFgetX3 software [131], is adequate for converting 

directional scattering functions, S(Q) into their corresponding directional PDFs. 

Piezoelectric charge coefficient d33 were measured after the experiment with a 

Berlincourt meter (Piezo Systems). 

There are important considerations to be had when applying an anisotropic field 

to a randomly orientated polycrystalline sample. Firstly, as previously stated, directional 

scattering arises from contribution from crystal grains with the appropriate Qhkl vectors. 

Therefore it is important to remember that the measured structural changes occur in grains 

which experience elastic stresses from neighbouring grains. Secondly, the entire Q range 

cannot by definition correspond to Q vectors aligned or parallel to the electric field i.e. 

there will be some contribution to the structural data from structural responses not aligned 

to the vector. However, the majority of the Q range is within ±10° of the electric field 

vector. 

 

 

Figure 4.3 Schematic of experimental setup for X-ray total scattering, showing the 

applied field vector E and detector sectors of interest Q|| and Q⊥. 
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4.4 Total scattering 

Details of obtaining total scattering data are discussed previously (Section 2.3) 

however the principle requirements are knowledge of the material composition and 

measurement of any source scattering from non-sample sources e.g. insulating fluid and 

sample stage. Zero-field unpoled S(Q) data parallel and perpendicular to the electric field 

is shown in Figure 4.4. Intensity differences are observable. These correspond to angular 

differences in the pixel sensitivity. 

Total scattering with an applied field parallel and perpendicular to the electric 

field vector (S||(Q) and S⊥(Q) respectively) is shown in Figure 4.6 and Figure 4.7. 

Various features are apparent in the inset, namely suppression of the diffuse scattering 

between the diffraction peaks and shift in peak position. Parallel to the field, peaks shift 

to lower Q indicating an extension of the unit cell parameters indicating field-induced 

strain. Perpendicular to the field there is a contraction in the lattice spacing. This 

behaviour is typical of piezoelectric lattice strain where perpendicular contraction is 

required by the structure in response to the anisotropic applied field, following Poissons 

ratio. For both directions there is a clear suppression in the diffuse scattering thereby 

producing sharper peaks. This is characteristic of a crystal structure becoming more 

ordered. The scattering arising from periodic atomic planes (Bragg scattering) becomes 

more pronounced at the expense of scattering arising from the local deviations from the 

average scattering (diffuse scattering). At the local scale atoms diverge slightly from their 

average positions, however under an electric field they are constrained to more specific 

arrangements, and the distribution of atomic positions narrows. Composition x = 0.20 

(MPB) shows a greater degree of diffuse scattering suppression and peak shift than the 

other two compositions, consistent with the conventional understanding of MPB 

materials which display a greater strain and possess greater lattice flexibility than 

neighbouring compositions.  

Ferroelectric domain switching is not evident in these measurements as the 

experimental setup required of PDF analysis results in a reduction of scattering resolution 

in exchange for a greater Qmax. Prior in situ electric-field synchrotron X-ray diffraction 

experiments and polarisation measurements demonstrate domain switching under fields 

[44]. 
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Figure 4.4 Zero-field (unpoled) S(Q) for x = 0.15, 0.18 and 0.20, parallel and 

perpendicular to the electric field vector. 
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Figure 4.5 Polarisation-field hysteresis loop for x = 0.20 showing ferroelectric 

behavior, from [44]. 
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Figure 4.6 S||(Q) for x = 0.15, 0.18 and 0.20. 
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Figure 4.7 S⊥(Q) for x = 0.15, 0.18 and 0.20. 
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4.5 Pair distribution function 

The reduced pair distribution function G(r) is calculated as shown in Equation 

4.1 and discussed in greater detail in (Section 2.3.5.3). Here the directional PDFs are 

calculated from the parallel and perpendicular total scattering data and are denoted G||(r) 

and G⊥(r) respectively. This enables measurement of the behaviour of interatomic 

distances parallel and perpendicular to the electric field vector.  

Figure 4.8 and Figure 4.9 show G||(r) and G⊥(r) respectively for zero-field 

(black), 4000 V/mm (red) and difference (blue) data sets, with insets that show magnified 

sections of the PDFs to highlight subtle changes. Sharpening in the PDF peaks highlighted 

in the inset correlates to the decrease in diffuse scattering, indicating an increase in the 

spatial atomic order. The difference plot shows the overall structural changes are 

significant across all compositions and directions and are greatest for x = 0.20 suggesting 

the MPB has the greatest response to the electric field.  

 

Equation 4.1 

𝐺(𝑟) =  (
2

𝜋
)∫ 𝑄(𝑆(𝑄) − 1) sin(𝑄𝑟) 𝑑𝑄 

𝑄𝑚𝑎𝑥

𝑄𝑚𝑖𝑛
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Figure 4.8 G||(r) for all compositions showing 0 V/mm (black) and 4000 V/mm (red), 

and difference (blue). Insets more clearly show the peak sharpening effects. 
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Figure 4.9 G⊥(r) for all compositions showing 0 V/mm (black) and 4000 V/mm (red), 

and difference (blue). In the same manner as G||(r) sharpening effects are shown in 

the inset, though less pronounced.  
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To better understand the current data, it is more useful to look closely at certain 

ranges of r. In Figure 4.10 low and high-r sections of the PDFs are shown for all 

compositions, parallel and perpendicular to the electric field. The low-r section ranges 

from 3 – 4.2 Å. This region contains the ABO3 perovskite unit cell with A-B site distances 

in the 3.2 – 3.8 Å regions and the A-A/B-B site distances around 3.9 – 4 Å, typically 

called the cell parameter distance. The approximate position of peaks observable in this 

low-r range are highlighted by vertical black tick marks. The high-r range of the PDF 

shows distances at greater length-scales (41 - 47 Å), probing longer range order. 

There are several observable changes exhibiting two distinct phenomena. High-r 

structural changes reflect expected electric-field induced piezoelectric lattice strain at 

higher fields, by the shift of peaks to greater r parallel to the field (G||(r) in Figure 4.10). 

The lattice strain produces an extension of the lattice and thereby extension of the atomic 

distances. Perpendicular to the field high-r distances contract, again expected due to the 

lattice accommodating the anisotropic field (G⊥(r) in Figure 4.10). Conversely however, 

at low-r the opposite shift is observable with shifts to lower r parallel to the field and 

shifts to higher r perpendicular to the field. This is initially unexpected, requiring further 

analysis of the low-r range data.  

The following two sections show the more in-depth analysis conducted on the 

low-r and high-r sections separately.  
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Figure 4.10 G||(r) and G⊥(r) for low and high r sections. Vertical black tick marks 

indicate low-r peak centres. Arrows indicate the general displacement of peak 

positions with applied field, showing a range dependent behaviour of interatomic 

spacings. 

 

4.5.1 Low-r peak analysis 

To analyse the low-r behaviour, peak fitting in the 3 – 4 Å range was performed. 

The shortest atom-pair distance corresponds to the Ti-O distance at 1.9 Å [136], however 

it is obscured by spurious oscillations induced by the relatively limited Qmax used in the 

Fourier transform. There are more atom-pairs corresponding to distances within the 

perovskite unit cell up to 7 Å e.g. the face diagonal around 5.4 Å, and the body diagonal 

around 6.9 Å. However, above 4 Å multiple atom-pairs contribute to a single peak and 

this peak overlap is non-trivial to analyse. Therefore the 3 – 4 Å range is deemed suitable 

for analysis, corresponding to the A-B, A-A and B-B site distances. The perovskite 

ferroelectric structures studied here are characterised by off-centred displacements e.g. 

rhombohedral ‹111› or tetragonal ‹001› off-centring. This structural distortion results in 

the splitting of A-B site distances from the unified centrosymmetric cubic distance. For 
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KNBT this corresponds to Bi off-centering with respect to Ti giving a shortest distance 

of around 3.2 Å in good agreement with EXAFS measurements [136]. There is some 

contribution from the longest Bi-O distances that emerge for a rhombohedral distortion, 

however the effect is small and is spread across all Bi-Ti split distances. 

Fixing the peak fitting areas in specific ratios enables structural determination as 

each distortion away from the centrosymmetric cubic structure has a corresponding set of 

peak area ratios. However, prior knowledge of these area ratios is required. To determine 

the ratios corresponding to different off-centre displacements a simple displacement 

model was constructed. 

 

4.5.1.1 Displacement model 

A simple displacement model was constructed as a foundation for some of the 

assumptions of the radial distribution function (RDF) fits. As discussed in Section 2.3.5.3, 

the RDF is perhaps the most intuitive atomic distribution function as the peak area 

corresponds to the coordination number. With this model, the coordination number ratios 

for various displacements can be inferred. The model consists of a unit cell with atoms in 

its eight corner positions representing Ti ions, and a central atom representing a Bi ion. It 

is justified to consider Bi as the displaced ion within the Ti ion frame as the disorder in 

NBT and related materials emerges from the localised Bi off-centre ordering [84].  

Figure 4.11 shows a visual representation of this simple model, showing all atoms 

in the system, their 3D coordinates and the various displacement directions tested. This 

current model is still quite limited as the Ti ion frame is static i.e. it does not distort along 

with the Bi ion displacement and is therefore not realistic. For simple determination of 

the peak area ratios it is still useful however. 

The Bi ion starting position is at the centre of the Ti frame (0.5, 0.5, 0.5) as shown 

in Figure 4.11. Here the distances to the corner Ti ions are evidently equivalent. The 

distance from Bi to each Ti can be calculated regardless of the position of Bi within the 

Ti frame. The Bi position is then modified depending on the displacement vector chosen, 

and is displaced along the vector in small incremental steps. At each step along a vector 

the Bi-Ti distances are then calculated. The distances were calculated on a Microsoft 

Excel spreadsheet.  
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The displacement directions tested were ‹001›, ‹111›, ‹110› and ‹112›, shown in 

Figure 4.12. The distances from the central Bi to the corner Ti are calculated as a function 

of Bi displacement. The Bi atom is displaced in small steps in a given direction. 

In order to more realistically reflect these distances a deviation bounded at ±0.05 

Å from the calculated positions was artificially added. The error follows a Gaussian 

distribution to reflect the physically realistic divergence of atomic positions. This also 

served to justify the requirement of the grouping of some distances into a larger set as the 

peaks in the raw data would be close enough to be represented by one. For example the 

rhombohedral ‹111› displacement requires a grouping of two groups of overlapping 

curves containing 3 atom-pair distances each; the peaks are broad and therefore contribute 

to a single peak with an area ratio of 6, out of a total area ratio of 8. This also reduces the 

number of peaks required for fitting facilitating the analysis, which in the small r range 

available would be non-trivial to differentiate. 

The ‹001› and ‹111› displacements were chosen as they correspond to tetragonal 

and rhombohedral distortions which have been widely reported in KNBT [96]. ‹110› 

corresponds to a monoclinic displacement, reported in the NBT end member [108]. The 

‹112› displacement was initially trialed as it reflects an averaging of tetragonal and 

rhombohedral displacements (that could emerge from locally coexisting tetragonal and 

rhombohedral domains). However it is also apparent that it could consist of an averaging 

of multiple monoclinic displacements e.g. ‹101› and ‹011› (emerging from monoclinic or 

orthorhombic domains). A final consideration of the ‹112› displacement is as an intrinsic 

displacement direction that would correspond to a lower symmetry distortion. 
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Figure 4.11 Simple cubic model with distances from central atom (red Bi) to corner 

atoms (black Ti) is measured as Bi is shifted along different directions (green 

arrows). 
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Figure 4.12 Distance of central Bi atom to 8 corner Ti atoms labeled by coordinates 

as a function of Bi displacement along various directions. Illustrated here are the 

various distances that emerge with different directions.  
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Table 4-1 summarises the displacement model results with clustering into the 

chosen groupings (Figure 4.12). Figure 4.13 illustrates the splitting of the A-B site where 

the distances have been labelled short, intermediate and long, or R1, R2 and R3 

respectively. Displacement directions such as ‹001› are relatively easy to visualise. A 

tetragonal distortion has 4 short A-B site distances and 4 long ones. Other displacements 

are more complex and have benefitted from the displacement model in order to determine 

their behaviour.  

 

Table 4-1 Summary of atom pair distances arising from various displacement 

directions. 

Displacement 

direction 

Short: R1 Intermediate: R2 Long: R3 

‹001› 4 - 4 

‹111› 1 6 1 

‹110› 2 4 2 

‹112› 3 2 3 

 

 

Figure 4.13 Schematics illustrating the structures related to different displacements 

and the subsequent interatomic distance R1 (short), R2 (intermediate) and R3 (long). 

 

4.5.1.2 RDF fits 

As previously discussed the radial distribution function (RDF) is more appropriate 

for low-r analysis with the added benefit that the peaks follow a Gaussian distribution. 

Furthermore, the RDF peak areas are proportional to the coordination number for a given 
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atom-pair. These features offer significant advantages to study a local structure which is 

distorted from the cubic structure and features A-B site distance splitting. 

The RDF is calculated from the PDF as shown in Equation 4.2, and henceforth 

labelled by the symbol G*(r). The number density 0, is obtained from the total scattering 

data. For each set of peaks, the areas were fixed in the ratios shown in Table 4-1. The 

peaks were then fit to the data by a least-squares method.  

To validate this method, compositions away from the MPB, x = 0.10 and x = 0.30, 

were first fit with simpler rhombohedral and tetragonal models respectively, structures 

which are established and reported for these compositions. The reasoning here is that 

away from the MPB the atomic structure is less complex and therefore simpler models 

are suitable. Shown in Figure 4.14 are the RDF fits for x = 0.10 and x = 0.30, showing 

peaks R1, R2, R3 and the Bi-Bi/Ti-Ti peak. These do indeed display the peak area ratios 

corresponding to rhombohedral ‹111› (R1 = 1, R2 = 6, R3 = 1) and tetragonal ‹001› (R1 

= 4, R3 = 4) structures respectively.  

 

Equation 4.2 

𝐺∗(𝑟) =  (𝐺(𝑟) + (4𝜋𝑟𝜌0))𝑟 

 

 

Figure 4.14 Displacement fits to RDF data for x = 0.10 (rhombohedral) and x = 0.30 

(tetragonal) compositions. 
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The fits were performed on the compositions of interest: x = 0.15, x = 0.18 and x 

= 0.20, shown in Figure 4.15 for the zero-field data sets. For x = 0.15 the ‹110› (R1 = 2, 

R2 = 4, R3 = 2) displacement was found to be best whilst x = 0.20 displayed a prefered 

‹112› (R1 = 3, R2 = 2, R3 = 3) displacement fit. For x = 0.18 both displacement models 

appeared to show equally good fits. As shown in Table 4-2 the goodness of fit (χ2) 

confirms this behaviour. The difference in the fit for x = 0.18 is not sufficiently large to 

distinguish between the preferential suitability of the two displacement models. 

Additionally the fit value of ‹112› on x = 0.18 is significantly lower than for x = 0.15. 

What is apparent is a gradual transition from the ‹110› to the ‹112› displacement with 

increasing x.  

 

 

Figure 4.15 Displacement model fits to RDF data x = 0.15, 0.18 and 0.20. With 

increasing x a gradaual transition from the 2:4:2 ‹110› model to the 3:2:2 ‹112› 

model occurs. 
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Table 4-2 Goodness of fit for models shown in Figure 4.15 showing prefered ‹110› 

displacement for x = 0.15, a mixed fit for x = 0.18 and a ‹112› fit for x = 0.20 

Goodness of fit: reduced χ2  

Composition x = <110> <112> Difference 

0.15 0.008 0.385 0.377 

0.18 0.008 0.025 0.017 

0.20 0.119 0.023 0.096 

 

The directional RDFs are shown in Figure 4.16 at 4000 V/mm parallel and 

perpendicular to the electric field. To observe how the peaks behave as a function of 

electric field, the previously applied constraints were removed. Parallel to the field vector 

all compositions display a general increase in the intensity of R1 and R3 with a 

suppression of R2. Perpendicular to the vector the opposite effect can be observed 

showing a significant increase in the intensity of R2 and a suppression of R1 and R3, with 

a near extinction of R3. 

These results suggest that the Bi3+ cation displacements are changing from a 

randomised arrangement, reorienting parallel to the electric field vector relative to the 

surrounding Ti4+ cations. Now more of the long and short (R1, R3) Bi-Ti distances are 

present along the field vector whereas the intermediate (R2) distances are more 

pronounced perpendicular to the field. This reorientation behaviour can be inferred 

because of the proportionality between peak area and coordination number. Figure 4.17 

is a schematic representation of a complete field induced Bi-Ti bond redistribution.  

The displacement direction of data collected at 4000 V/mm cannot be readily 

determined. However the results can aid in narrowing down the possibilities. In the 

perpendicular direction R2 shifts to lower r which suggests the displacement is 

approaching monoclinic. Parallel to the field there is still a strong presence of R2 which 

excludes rhombohedral and tetragonal transitions which would be characterised by a lack 

of R2 altogether. These higher symmetry phases may be induced at greater fields. 

Additionally, the previously observed low-r opposing shifts i.e. negative shifts 

parallel to the field and positive shifts perpendicular to the field can be explained as the 

exchange of peak intensities which give the appearance of a shift.  
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Figure 4.16 RDF parallel and perpendicular to the electric field vector at 4000 

V/mm. 

 

 

Figure 4.17 Schematic illustrating the field induced rearrangement of short, 

intermediate and long Bi-Ti resulting from the reorientation of the central Bi ion. 
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4.5.2 Piezoelectric strain analysis 

To determine the high-r behaviour an approach previously described to calculate 

the effects of the electric-field on the PDF peak positions and changes to peak shape is 

employed here [137]. The following sections will show the features of this calculation 

and its application to the PDF data. 

 

4.5.2.1 Peak shift calculation 

The peak shift calculation functions by comparing the same small range in r () 

between zero-field PDF E = 0, and a PDF at field E = 𝛼, where 𝛼 is a non-zero field. The 

small section of E = x is shifted in steps (𝛿r) backwards in r whilst calculating the residual 

𝓡* is calculated at every step. When a minima in 𝓡* is encountered this indicates that 

the peaks in the ranges are most similar and have shifted r relative to E = 0. The value 

r therefore indicates the amount of peak shift that has occurred for an electric field x. 

The minimum value R gives an indication of how much the peak shape has changed with 

the electric field.  

This calculation is described in Equation 4.3, where G(r)E=0 is the zero-field PDF, 

G(r)E=𝛼 is the PDF at electric field 𝛼. 𝓡* is the residual calculated between the two data 

sets in a fixed range  and r is the shift in , and N is the number of steps in the 

calculation. R* is given by the magnitude of the summed differences between G(r)E=0 and 

G(r)E=𝛼 over a range , divided by the magnitude of the sum of G(r)E=0 over that same 

range. There are several important considerations required when using this method, 

particularly setting a reasonable  value. Generally, the range should be at least the 

breadth of one peak to accurately track the shifts. Additionally, the method is most 

reliable with well-defined peaks. At very high-r values the PDF signal decays 

significantly and this may produce unreasonable results.  

 

Equation 4.3 

ℛ∗ = 
∑ |𝐺(𝑟)𝐸=0 − 𝐺(𝑟 ± 𝛿𝑟)𝐸=𝛼|
𝑟+𝛥
𝑟

∑ |𝐺(𝑟)𝐸=0|
𝑟+𝛥
𝑟 /𝑁
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To demonstrate this method in a simple manner the calculation was applied to two 

Gaussian peaks offset by 4𝛼 units as shown in Figure 4.18 a). The peak representing E = 

0 is in position 10 and the peak representing E = 𝛼 represents a field induced peak shift 

of 4 units. Peak E = 𝛼 is shifted back towards peak E = 0 and beyond its position. The 

residual values as a function of peak offset are shown in Figure 4.18 b) and the minimum 

value of 𝓡* is at -4 indicating that the shift between the peaks is 4 units. In this modelled 

example the 𝓡* value is exactly 0 as the chosen peaks are identical. Here is where peak 

shape change would be measured as a non-zero 𝓡* value at the minima. The greater the 

value of 𝓡* is at the minima the greater the peak shape has changed. In a real example 

this could correspond to peak broadening or sharpening. 

 

 

Figure 4.18 a) The peak from E = 𝛼 is shifted back past the peak at E = 0 whilst 

calculating the residual. b) The residual is at its lowest at -4 indicating that at this 

point the peaks are in equal positions. Therefore this shows that the peak at E = 𝛼 

has shifted forward by 4 units. 

 

4.5.2.2 Peak shift data 

The calculated peak shift (r) in the parallel and perpendicular directions for x = 

0.15, 0.18 and 0.20, is shown in Figure 4.19. Here the calculation box or bandwidth  

was set to 5 Å, sufficient to contain at least one peak and at most two. This allows for 

measurement of peaks that are very broad but not so large that displacement information 
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for any individual peak is lost, and ensures that there is always at least one peak within 

the box. The step size N was set to 0.5 Å. 

The piezoelectric lattice strain effects can be clearly seen with an approximate 

linear increase in the peak shift with r observed at high fields. Parallel to the field the 

lattice extension increases the interatomic distances i.e. positive r. Perpendicular to the 

field the extension strain is accommodated by a perpendicular contraction in the lattice 

i.e. negative r. The overall magnitude of the shifts perpendicular to the field are also 

around half of those parallel. At low electric fields in the parallel direction the shift 

response to field is approximately constant across r and does not follow the linear 

piezoelectric behaviour as this is sub-coercive field. However, the shift is non-zero across 

r which suggests that the the initial low-field responses are not correlated and localised, 

only becoming macroscopic at greater fields. The greatest changes are observed for x = 

0.20, reflecting the greater peak shifts apparent in Figure 4.10. Below 7 Å (atom-pair 

distances within the unit cell) the peak shifts oppose the general trend i.e. negative in the 

parallel direction and positive in the perpendicular direction.  Here, unexpected low-r 

shifts previously shown in Figure 4.10 are revealed. Above 40 Å artefacts in the 

calculation become more prominent due to the relatively small G(r) signal at high-r 

values. 
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Figure 4.19 Peaks shifts (r) parallel (||) and perpendicular (⊥) to the electric field as 

a function of r and electric fields ranging from 0 – 4000 V/mm. Arrows indicate the 

general electric field trend.  
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The residuals 𝓡* are shown in Figure 4.20. For x = 0.15 and 0.18 the peak shape 

changes are slightly greater at high r than at low r. For x = 0.20 the changes are greater 

above 10 Å. This can be explained as field induced peak sharpening or ordering which 

becomes more apparent at greater ranges. The data does appear ‘noisy’, in particular for 

x = 0.20, again likely due to calculation artefacts related to small G(r) signals at high r 

and the chosen parameters such as the calculation range , and the step size N. 

 

 

Figure 4.20 Residuals from the 𝓡* calculation as a function of eleictric field across 

all ranges of r. 

 

4.5.2.3 Calculated strain 

Field-induced strain was calculated from the gradient of r(r) with a linear 

regression fit over the 10 – 40 Å range, shown in Figure 4.21. This range was chosen to 

avoid the low-r effects previously discussed and the artefacts emerging above 40 Å. For 

x = 0.20 several features are prominent: 1) a region of little or no strain response from 0 

– 1000 V/mm, 2) a rapid increase in strain from 1000 – 1500 V/mm and 3) a linear 

increase for the remainder of the applied fields. The rapid change observed correlates 

with phase transitions from pseudocubic to tetragonal previously reported [99], described 

as growth of tetragonal domains. The remaining significant contribution of R2 parallel to 

the PDF shown in Figure 4.16, suggests that a tetragonal phase transition is not observed 



  

 

 

174 

at short length scales. The linear increase in strain is however consistent with piezoelectric 

lattice strain, this is evidenced by a linear regression fit over this region, shown by the 

dotted blue line. 

 For x = 0.15 and 0.18 these features are far less prominent, showing a gradual 

increase in strain beginning around 2000 V/mm which plateaus around 3000 – 3500 

V/mm. The perpendicular strain response is not as significant for all compositions, 

showing around half r gradient compared to the parallel response. In the presence of an 

anisotropic stimulus this behaviour is expected and can be defined by Poisson’s ratio. 

 

 

Figure 4.21 Gradient of peak shift r or effectively piezoelectric strain as a function 

of electric field in the parallel and perpendicular directions relative to the electric-

field vector. A linear regression fit on x = 0.20 (parallel) is shown to exhibit 

piezoelectric behavior. 

 

4.5.2.3.1 d33 measurements 

After the experiment was conducted, the piezoelectric charge coefficient d33 was 

measured using the Berlincourt method. The measurements are shown in Table 4-3 and 

represents the average of three consecutive measurements. As the measurements were 
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taken from bars poled on their long faces the measurements are not representative of true 

d33 values. As per the IEEE measurement standard these would require disk samples with 

a diameter to thickness ratio greater than 10:1. In this case however the differences 

between the measurements still illustrate an increase in d33 as the MPB composition is 

approached.  

 

Table 4-3 d33 measurements post-experiment 

Composition (x) d33 (pC/N) 

0.15 119 

0.18 130 

0.20 161 

 

4.6 Conclusions 

The local Bi off-centre displacements relative to their nearest neighbour Ti atoms 

in (Kx Na1-x)0.5 Bi0.5 TiO3 solid solutions near the MPB were measured using atomic pair 

distribution function (PDF) analysis derived from X-ray total scattering. The 

compositions measured were x = 0.15, 0.18 and 0.20. The analysis was divided between 

low-r and high-r ranges of the PDF.  

In the low-r range the nearest three Bi-Ti distances were observed: short (R1), 

intermediate (R2) and long (R3). Parallel to the electric field vector R1 and R3 increase 

in amplitude with electric field at the expense of a decreasing R2. Perpendicular to the 

field vector R2 is more significant with a great decrease in R1 contribution and near 

extinction of R3. This suggests a Bi-Ti bond redistribution as a result of Bi displacing 

along the field vector with respect to Ti. This behaviour appears to be incipient to 

macroscopic piezoelectric lattice strain observed at high-r.  

The high-r range was used to calculate field-induced strain. At the MPB (x = 0.20) 

there is an abrupt onset of Bi-Ti redistribution and lattice strain. For x < 0.20 the boundary 

between bond redistribution and piezoelectric lattice strain is less clear.  
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Generally, at low fields there is a constant non-zero strain. As this is a sub-

coercive field regime there is no linear strain expected of piezoelectric behaviour. At 

greater fields (> 3000 V/mm) the behaviour becomes piezoelectric. This suggests an 

initial locally correlated strain which becomes macroscopic at high fields. The previously 

reported field induced transition to a tetragonal strain for x = 0.20 could therefore be 

explained as a macroscopic phenomenon initially mediated by local Bi-Ti reorientation 

[44]. The PDF technique is a low resolution scattering method due to the short sample-

detector distance, and therefore the tetragonal transformation was not observed in the total 

scattering structure factor. 

At zero-field the changes to the low-r behaviour were analysed as a function of 

composition. The Bi displacements undergo a transition from ‹110› to ‹112› with x 

increasing from 0.15 to 0.20. The ‹112› displacement can be interpreted in several ways: 

as an averaging of ‹001› and ‹111› or ‹101› and ‹011›, or an intrinsic ‹112› displacement. 

The averaging of two monoclinic/orthorhombic displacements ‹101› and ‹011› is 

favoured here because of the pseudosymmetric nature of NBT-KBT system where the 

rhombohedral and tetragonal phases have been reported to display local lower symmetry 

phases [138]. The increased number of displacement directions at the MPB appears to 

promote Bi-Ti redistribution under an electric field which is manifested as greater strain 

and improved piezoelectric properties. Figure 4.22 summarises the Bi displacement 

directions at zero-field including results from x = 0.10 – 0.30, highlighting the monoclinic 

phase transition region at the MPB x = 0.20. 

 

 

Figure 4.22 Proposed diagram of zero-field Bi displacement directions. Where ‹111› 

is indicated in red, ‹101› in orange, ‹112› in yellow and ‹001› in green.  
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5 Conclusions 

The work presented here is a local structure analysis of two key materials in the 

(Na, Bi)TiO3 (NBT) family of piezoelectric materials, namely x(K, Bi)TiO3-(1-x)(Na, 

Bi)TiO3 (KNBT) and (1-x)(Na, Bi)TiO3-xPbTiO3 (NBT-PT). The interest in these 

material is borne from two key motivators in this scientific field: 1) Observing the 

behaviour of potential lead-free candidates and their local structure origin for field-

dependent behaviour, and 2) understanding the role and behaviour of lead (Pb) in these 

materials and the mechanisms by which it affords improved piezoelectric properties. 

NBT-based materials possess chemical disorder, which manifests as significant 

local structural deviations from the average structure. The pair distribution function 

(PDF) method is particularly suited to the analysis of the local structure. Whilst the 

technique has been used for several decades it has only recently become readily available 

due to increased computing power and improved experimental methods. Here both 

conventional PDF analysis, such as structural refinement, and non-conventional 

approaches have been used, particularly to study in situ behaviour. 

 

Fundamentally, this thesis explores two crystal structure ordering mechanisms in 

NBT-based materials: 

1. Order induced by the application of an electric field. 

2. Order induced by the addition of lead titanate. 

 

1. Field-dependent local structure of KNBT 

The local structure of KNBT was studied for compositions near the MPB. In situ 

electric field measurements show the suppression of diffuse scattering, indicating an 

overall crystallographic ordering behaviour is taking place. This was analysed via PDF 

analysis where two range dependent regimes are observed. Analysis of the higher-r data 

in the 10 – 40 Å range reveals behaviour resembling previous average field dependent 

studies. Using a PDF peak shift analysis technique the changes in interatomic distances 

as a function of PDF range and electric field can be observed. Across all compositions 

low-field response is flat across r, only adapting a linear trend at higher fields. For x = 
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0.20 this occurs around 1 – 1.5 kV/mm where the material becomes poled and 

piezoelectric behaviour is observed.  This effect is begins around 2 kV/mm for x = 0.15 

and 0.18 but the linear piezoelectric behaviour does not emerge until 3 kV/mm. The non-

zero sub-coercive field peak shifts observed also suggest that the emergence of 

piezoelectric behaviour begins at the local scale becomes macroscopic at greater fields. 

Below 4 Å atomic distances appeared to behave in a contrary manner to what is 

expected of field induced behaviour. Parallel to the electric field atomic distances 

appeared to contract whilst the opposite behaviour was observed perpendicular to the 

field. Analysis of the low-r data revealed a field-induced redistribution of Bi-Ti 

interatomic distances. This was ascertained by measurement of the contributions of the 

various Bi-Ti distances present within the pseudocubic unit cell. A simple displacement 

model of the Bi-Ti environment also revealed zero-field local distortion direction which 

transitioned from a rhombohedral ‹111› displacement for x = 0.10, to a monoclinic ‹110› 

displacement for x = 0.15. This gradually transitioned to a ‹112› displacement for x = 0.20 

which is suggested to emerge as a combination of multiple monoclinic distortions at the 

MPB. These complex displacement directions finally collapse to a tetragonal ‹001› 

dispalcement for x = 0.30. The complex character of the displacement directions present 

at the MPB are suggested enable greater response to the electric field and therefore 

produce the observed improved piezoelectric properties. 

 

2. Local and average structure study of NBT-PT 

The local structure of NBT-PT was studied for compositions near and around the 

MPB as a function of temperature. Supplementary to PDF analysis were average structure 

X-ray diffraction (XRD) and permittivity temperature measurements. Permittivity 

temperature results showed the transition from relaxor like to classical ferroelectric with 

increasing PbTiO3 content from x = 0.08 to 0.18. This is evidenced by the decrease in the 

frequency dispersion broad permittivity maxima and permittivity hysteresis. These 

properties can be attributed to the presence of nanoregions, whose presence or influence 

decreases with increasing x. XRD measurements corroborate the observed temperature 

dependent transitions which increase in temperature with increasing PbTiO3 content. 

Comparisons of full profile PDF refinement to average structure measurements 

showed a local monoclinic phase for x = 0.14 whilst x = 0.08 and 0.18 displayed similar 
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local structures to the average. However, significant structural differences emerged when 

range dependent analyses were performed. Refinement values show the presence of a 

monoclinic Cc phase across all ranges of x = 0.08 with similar fits to R3c which displayed 

a slightly improved fit at ranges above 37 Å. The region of structural ambiguity decreased 

with increasing x. For x = 0.14 Cc and P4mm display equal fitting values up to 27 Å, 

above which only the tetragonal phase shows optimal fitting. This becomes more 

constricted for x = 0.18 where P4mm becomes optimal above 17 Å. Calculated structure 

parameters also revealed a significant deviation from the average structure at low r ranges 

where the structure is more distorted, be it tetragonality c/a ratio or rhombohedral angle. 

The length scales at which the structure represented the average increased from around 

27 Å for x = 0.08 to 15 Å for x = 0.18. This has been interpreted as the presence of 

nanoregions of greater distortion than the average, as well as displaying lower symmetry 

structural characteristics. This effect persisted at high temperatures, however the effective 

size of the nanoregions decreased to 22 Å and 12 Å for x = 0.08 and x = 0.18 respectively. 

The measurements for NBT-PT all clearly illustrate the effects of increased 

PbTiO3 content. This can be generalised as a transition from a material with the presence 

of nanoregions, exhibiting relaxor-like properties, to a material more characteristic of a 

ferroelectric which retains some relaxor characteristics which are far more subdued. This 

is particularly evidenced by the decrease in the nanoregion size. PbTiO3 is a highly 

strained and ordered material and its presence in the solid solution induces long range 

crystallographic order and suppresses the formation of nanoregions. 
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6 Further work 

Following the presented studies a clear scope for further work and development 

of experimental and analysis approaches is apparent. The relative infancy of the PDF 

analysis method, particularly when applied to ferroelectric materials has benefited from 

a variety of analysis approaches, some of which are presented in this thesis: 

 The current PDF analysis on (Kx, Na1-x)0.5Bi0.5TiO3 would benefit from 

analysis on scattering directions between the 0º and 90° directions relative 

to the electric field vector already presented. For the low-r analysis of the 

Bi-Ti peas the exchange in R1, R2 and R3 intensities as a function of angle 

to the electric field would provide further insight in to the Bi-Ti 

reorientation mechanisms. Similarly analysis of the strain calculated from 

the PDF peak is useful in characterising the nano domain reorientation 

behaviour. This analysis method is comparable to stain analysis by 

calculation of the {200} peak intensity ratios applied to average structure 

in situ measurements. 

 The current study on (1-x)(Na0.5, Bi0.5)TiO3-xPbTiO3  provided an insight 

in to the behaviour of lead (Pb) in an effort to understand the improved 

properties typically observed on lead based piezoelectric materials.  It 

would be highly useful to measure the nanoregion size in the same manner 

presented here on other materials in which Pb is added, for example 

bismuth ferrite lead titanate (BFPT). The presence of nanoregions has 

been observed in bismuth ferrite potassium bismuth titanate (BF-KBT), in 

a pseudocubic compositional region. Average structure studies show the 

suppression of the nanoregions with the addition of PbTiO3. Measurement 

of their size via could therefore be achieved via the range dependent PDF 

method. 

 The inherent chemical disorder in KNBT and other NBT based materials 

is fundamentally linked to the observed structural disorder. Analysis 

techniques such as X-ray absorption fine structure (XAFS) would 

therefore be highly useful as it provides greater resolution at very short 

length scales i.e. first coordination shell or nearest neighbour atom-pairs, 

and chemical information such as oxidation state. Coupled with a 

technique such as electron energy loss spectroscopy (EELS) which 
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provides elemental information, the chemical order could be suitably 

described. 

 Novel computational methods have recently permitted advanced PDF 

analysis via the Reverse Monte Carlo (RMC) method using RMCprofile 

[139], which has been used successfully in a number of complex 

perovskite systems [5], [84], [85], [140]. RMCprofile is a large box 

modelling technique which consists of a supercell which can contain up to 

10000 atoms, in contrast to the single cell or ‘small-box’ method used by 

PDFgui [132]. The supercell can be initialised with a specified position 

for all atoms. Within a window of constraints the atoms are allowed to 

displace from their original positions. A PDF is calculated for the supercell 

and the atomic positions are refined to PDF data. The large box enables 

the extraction of useful information such as distribution of atomic 

positions or bond angles of specific atomic species. The RMC approach is 

envisaged to be highly useful for the NBT-PT system. In the first instance 

distinguishing between the local Bi and Pb bonding environments for 

different compositions is expected to aid in describing the ordering effects 

afforded by Pb in contrast to Bi as discussed in Chapter 3. 

 

6.1 Field rate-dependence of the local structure in   

(Kx Na1-x)0.5 Bi0.5 TiO3 

In conjunction to the in situ electric field synchrotron experiment, measurements 

were taken as a function of electric field ramp rate to a maximum electric field of 4 

kV/mm. The motivation for this was the observation of rate dependent phase transitions, 

where above 0.25 kV mm-1 s-1 resulted in a transition to a tetragonal phase (Royles .et al 

2011). However when strain-field measurements were conducted, no significant 

difference in the high-field d33 was observable, suggesting other effects are taking place. 

This prompted an investigation into the local structure behaviour.  

A range of ramp rates (0.01 to 100 kV mm-1 s-1) were applied to KNBT samples 

though only results for x = 0.20 (MPB composition) are shown. The electric field was 

ramped to a maximum at 4 kV/mm, after which it was maintained for 5 minutes. During 
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this time the scattering data were collected. The obtained PDF is shown in Figure 6.1 for 

scattering parallel to the electric field vector. The higher r PDF range appears to show a 

general increase in peak positions with increase ramp rate. This initial observation 

contrasts with the aforementioned observations reported by Royles et al. This behaviour 

is also accompanied by an increase in PDF peak sharpening, indicative of induced 

crystallographic ordering. The peak shift calculation previously detailed Section 4.5.2.1 

was applied to the PDF ramp data and is shown in Figure 6.2. The overall linear trend in 

all the curves indicates piezoelectric lattice strain behaviour. Though an overall increase 

in the extent of the peak shift with increasing ramp rate is apparent it is clear that a 

consistent trend does not exist. This is clearly shown in Figure 6.3, which shows the peak 

shift slope as a function of electric field ramp rate. This also corresponds to strain. A 

linear regression fit indicates overall increase in the strain with the ramp rate following a 

logarithmic trend; however there are significant outliers to the trend, particularly in the 

0.1 – 0.3 kV mm-1 s-1 range. 

These results are initially unexpected. Given the time dependent nature of the 

experiment, it is expected that the slowest ramps would produce the greatest strain. The 

greater amount of time available would allow a greater degree of domain reorientation to 

occur. The opposite effect can be observed. This suggests other strain mechanisms are 

taking place. A preliminary suggestion is the behaviour of oxygen vacancies acting as 

domain wall pinning regions. As temporal response of vacancies is slower than intrinsic 

strain it is suggested that slower rates allow pinning regions to migrate and inhibit the 

strain. At fast rates the vacancies are not able to respond the field and therefore their 

inhibiting effect does not take place. 

Here, clear time dependent strain response behaviour is illustrated. A greater 

understanding of this behaviour would be obtained by repeating these measurements at 

higher temperatures where lattice flexibility is greater. Further analysis of the low-r 

behaviour would more clearly elucidate the effect of rate on Bi-Ti orientation. 

Additionally polarisation-field and strain-field measurements via conventional means 

would offer further insight into the behaviour. 
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Figure 6.1 PDF as a function of electric field ramp rate for x = 0.20, parallel to the 

electric field vector. Low-r and high-r regions are shown. 

 

 

Figure 6.2 PDF Peak shift measurements for x = 0.20 as a function of electric field 

ramp rate. 
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Figure 6.3 Peak shift (δr) slope or effective strain as a function of electric field ramp 

rate. A linear regression fit is shown in red.  
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8 Appendices 

8.1 Appendix A – Notes on low-r RDF fits on KNBT 

8.1.1 Poor fits 

Figure 8.1 shows examples of fits determined to be ‘poor’. The ‹111› fit for x = 

0.15 and 0.18 can be seen to offer very good fits with low χ2
 values. Nevertheless they 

are determined to not be suitable due to the significant overlap of peak R2 which is so 

broad that it fully engulfs R1. This suggests that the intermediate interatomic distance has 

a huge distribution of positions which can be significanly shorter than R1 and therefore 

is not considered not to be physically realistic or meaningful. 

 

 

Figure 8.1 Examples of poor model fits. ‹111› on x = 0.15 and 0.18 produces a good 

fit but there is a significant overlap of R2 over R1 which is not physically 

meaningfull. ‹112› for x = 0.15 did not produce a suitable fit for the data. 
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8.1.2 Bi-O contribution 

The reason for choosing the Bi-Ti contribution for this analysis has been 

previously justified. Although oxygen has a lower X-ray scattering length it is more 

abundant in the perovskite unit cell (O3) and so it is important to determine what its 

contribution to the peak areas is. A partial PDF was obtained to show only the Bi-O 

contribution. Figure 8.2 shows the contribution to be around 15% relative to the total area 

of the peak around 3.3 Å. Although not insignificant its contribution is several times 

smaller than Bi-Ti, and the peak is quite broad so its effect is shared across multiple peaks 

(R1, R2 and R3). This may also explain why the reorientation behaviour is more apparent 

perpendicular to the field than parallel to the field. 

 

 

Figure 8.2 Percentage contribution to the RDF peak at 3.3 Å of the Bi-O and Bi-Ti 

atom-pairs. Values represent percentage of integrated intensity relative to the total 

peak.  

  



  

 

 

201 

8.2 Appendix B – Conference attendance  

 

1. 2013 Joint IEEE – International Symposium on the Applications of Ferroelectrics, 

(ISAF/PFM/IUS/IFCS/EFTF). 

July 2013, Prague, Czech Republic. 

 

2. 2014 Joint IEEE – International Symposium on the Applications of Ferroelectrics, 

(ISAF/IWATMD/PFM). 

Oral presentation – Investigating local order in Potassium Sodium Bismuth 

Titanate 

May 2014, State College, Pennsylvania, United States of America. 

 

3. 2015 Joint IEEE – International Symposium on the Applications of Ferroelectrics, 

(ISAF/ISIF/PFM).  

Oral presentation – Investigating local order in (Kx, Na1-x)0.5 Bi0.5 TiO3 

May 2015, Singapore. 

 

4. Sustainable Functional Materials 2016 

Poster – Pair distribution function analysis of lead free piezoelectric materials 

April 2016, Scarborough, United Kingdom. 

 

5. 2016 Joint IEEE – International Symposium on the Applications of Ferroelectrics, 

(ISAF/ECAPD/PFM). 

Oral presentation – Nanoscale ordering and bond redistribution in (Kx, Na1-x)0.5 

Bi0.5 TiO3 

August 2016, Darmstadt, Germany. 

 

6. School of Chemical and Process Engineering Research Event 

Oral presentation, 1st place in presentation competition – The structure of 

piezoelectric materials. 

December 2017, Leeds, United Kingdom. 

 

 



  

 

 

202 

7. 1-DRAC Meeting 

Oral presentation – Local structure of Na0.5Bi0.5TiO3-based materials 

April 2018, Manchester, United Kingdom. 

 

8. 2018 Joint IEEE – International Symposium on the Applications of Ferroelectrics, 

(ISAF/FMA/AMF/AMEC/PFM). 

Oral presentation – Local and average structure study of (1-x)(Na0.5, Bi0.5)TiO3-

xPbTiO3 

May 2018, Hiroshima, Japan. 


