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ABSTRACT 
Approximately a third of the world population relies on rice every day; however, 

increases rice yields are not increasing to match the predicted increase in world population. 

Engineering the C4 photosynthetic carbon dioxide concentrating mechanism in rice may 

reduce inefficiencies in rice and increase yield. C4 photosynthesis uses the enzyme 

phosphoenolpyruvate carboxylase (PEPC) to fix atmospheric carbon dioxide in a four-

carbon acid which is shuttled to a separate compartment where the carbon dioxide is 

released and concentrated around the key enzyme of the Calvin-Benson cycle. Plants that 

have evolved the C4 cycle co-opted PEPC from a background role. The expression patterns 

and kinetic properties of PEPC are adapted to the demands of carbon fixation. The changes 

in gene expression have been studied previously through high-throughput sequencing 

techniques but the biochemical changes remain largely unexplored. Understanding how 

PEPC adapted is a key part of engineering C4 photosynthesis. In this thesis I looked at the 

kinetic changes in C4 PEPC from one of the youngest C4 species in the genus Flaveria which 

showed that the C4 PEPC has a higher specificity for bicarbonate, a lower specificity for 

phosphoenolpyruvate, and a decreased sensitivity to inhibitors when compared to the non-C4 

Flaveria PEPC. I then compared the kinetic properties of PEPCs from species in the genus 

Panicum, an early and successful C4 origin. Comparison showed a convergence in kinetic 

properties of C4 PEPCs in Panicum and Flaveria. However, the changes seen in C4 Panicum 

PEPC are quantitively greater showing further adaptation. C4 specific changes resulting from 

specific amino acids changes were investigated. It was shown that the same C4 specific 

mutation was responsible for similar reduction in magnitude of PEP specificity in both 

Flaveria and Panicum C4 PEPC. Other investigated C4 specific amino acids were shown not 

to contribute to major kinetic properties. This surprising result suggested other selection 

forces act in the evolution of C4 PEPC. The evolution of C4 PEPC involved adaption 

increase in the specificity for bicarbonate. It was shown the that bicarbonate plays a part in 

the evolution of PEPC but adaptations towards inhibitor and PEP specificity are selected 

preferentially.   
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General Introduction 
One hectare of rice can feed 27 people, however by 2050 this same amount of land 

will need to feed 43 to cope with the increasing human population (Hibberd, Sheehy and 

Langdale, 2008). Through plant breeding and inorganic fertiliser, the latter half of the 20th 

century experienced a ‘green revolution’, in which crop yields dramatically increased 

(Evenson and Gollin, 2003). However, in recent years rice yield growth has stagnated and 

may decrease with climate change (Dawe, 2007). Rice is a C3 species that is hampered by 

inefficiencies in carbon dioxide capture. The C4 pathway is an adaptation that increases the 

productivity of plants in warm and tropical environments, and its introduction into rice is 

predicted to increase its yield (Edwards, 1999; Hibberd, Sheehy and Langdale, 2008; Sage, 

Sage and Kocacinar, 2012; Leegood, 2013). C4 species have a much higher solar, water and 

nitrogen efficiency, and C4 crops have higher yield (Sage, 2004).   

  In C3 plants, which represent the ancestral state, atmospheric CO2 is fixed into 

organic compounds directly by ribulose-1,5-bisphosphate carboxylase/oxygenase 

(RuBisCO) and other enzymes, in the first step of the Calvin-Benson cycle. By contrast, C4 

plants fix atmospheric carbon dioxide via the coupled action of the enzymes carbonic 

anhydrase (CA) and phosphoenolpyruvate carboxylase (PEPC), which produce a four-

carbon acid. This acid is shuttled to a separate compartment, where the Calvin-Benson cycle 

is segregated. Carbon dioxide is released therein, increasing the concentration of carbon 

dioxide around RuBisCO (von Caemmerer and Furbank, 2003). An efficient C4 

concentrating mechanism requires the coordinated action of numerous anatomical and 

biochemical components (Hatch, 1987). Despite this complexity, the C4 process has evolved 

many times in flowering plants, across both monocots and eudicots, and ranks amongst the 

most convergent complex traits (Sage, Christin and Edwards, 2011; Christin et al., 2013). 

The differences between C3 and C4 plants have been addressed over the past 50 years using 

comparative anatomy and physiology, and more recently comparative transcriptomics and 

genomics (Bräutigam et al., 2011, 2014; Dunning et al., 2017; Lauterbach et al., 2017; 

Moreno-Villena et al., 2018). While the C4 trait consists primarily in the synchronized action 
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of multiple enzymes, comparisons of enzymatic properties between C3 and C4 plants remain 

relatively sparse. There is therefore a need to evaluate the enzymatic changes involved in the 

transition to a C4 type to understand the evolutionary mechanisms underlying the repeated 

origins of the C4 trait. 

Calvin-Benson Cycle  
During the light-independent phase of photosynthesis, the Calvin-Benson cycle or 

reductive pentose phosphate cycle, uses the energy fixed during the light-dependent phase to 

fix of carbon dioxide to produce triose sugars, the pre-requisite for carbohydrates in plant. 

The key enzyme in the cycle is ribulose-1,5-bisphosphate carboxylase/ oxygenase 

(RuBisCO). The fixation of carbon dioxide by this enzyme produces phosphoglycerate 

(3PG), the prerequisite for triose sugars (Calvin, 1962). The abridged cycle catalysed by 

RuBisCO and other enzymes, is shown in Figure 1. The process requires ATP and NADH 

which are generated by the light reactions of photosynthesis (Mathis and Paillotin, 1981). 

The cycle is essential for all higher life on earth and RuBisCO makes up about 50% of 

soluble leaf protein (Ellis, 1979).  

In C3 species, atmospheric carbon dioxide reaching the photosynthetic cells by 

diffusion is fixed directly by RuBisCO. Exchange between the cells and the atmosphere is 

controlled by stomata, leaf pores that can be opened or closed depending on the conditions 

(Cowan and Troughton, 1971).  RuBisCO most likely evolved 2.7-2.9 billion years ago in 

bacteria, when atmospheric concentrations of oxygen were effectively zero and CO2 

concentrations were several magnitudes higher than today (Nisbet et al., 2007; Nisbet and 

Nisbet, 2008; Christin and Osborne, 2013). Probably by chance, RuBisCO evolved with a 

tendency to confuse the O2 and CO2 substrates. Both molecules are featureless, the dioxygen 

molecule and carbon dioxide molecule are very similar in size and shape; these gaseous 

molecules share a point group D∞h, as well having electron distribution, focused at the two 

terminal areas. While this did not represent a problem under the high-CO2 environment in 

which it evolved, the dual affinity of RuBisCO created a challenge for plants following the 

oxygenation of Earth's atmosphere and the continued decreases of CO2 concentrations. In 
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O2-rich atmospheres that have prevailed prior to the 30 million years, RuBisCO fixes 

atmospheric oxygen at a rate that can compete with carbon dioxide fixation in warm, arid 

and saline environments typically found across the tropics and sub-tropics (Ehleringer and 

Björkman, 1977; Skillman, 2007). The binding of oxygen generates compounds that have 

few metabolic uses and become toxic in high concentrations. These compounds are broken 

down and reincorporated into metabolic cycles using a process called photorespiration 

(Heber and Krause, 1980).  

 

Figure 1: The abridged Calvin cycle indicating the three important steps. The carboxylation of RuBP, the 
reduction of 3PG and the regeneration of RuBP from 5 molecules of glyceraldehyde-3-phosphate (GAP). For 
every six molecules of GAP produced from 3 molecules of RuBP, only one molecule is used for biosynthesis and 
energy storage. The process has a net use of 3 H2O, 3 CO2, 3 ATP and 6 NADPH molecules (Calvin, 1962; 
Mathis and Paillotin, 1981). 
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Photorespiration 
The RuBisCO oxygenase activity net product is one molecule of 3PG and one 

molecule of 2-phosphoglycerate (2PG) from one molecule of RuBP, as opposed to the 

RuBisCO carboxylase activity which results in two molecules of 3PG (Heber and Krause, 

1980; Ogren, 1984; Wingler et al., 2000). The molecule 2PG cannot be used in the Calvin 

Benson cycle, so oxygenase activity reaction represents a net loss in carbon for the plant. 

Further, 2PG has no known metabolic use and may inhibits some photosynthetic enzymes 

(Anderson, 1971; Kelly and Latzko, 1976). Plant species utilise photorespiration to convert 

2GP to 3PG (Ogren, 1984).  3PG is converted into glycolate, and transamination then 

converts it into glycine. A hydroxyl group is added to form serine, which is then deaminated 

to form hydroxypyruvate. It is then reduced to glycerate, which is then phosphorylated to 

regenerate 3-phosphoglycerate (Siedow and Day, 2000). The full cycle is displayed in 

Figure 2. Some species segregated glycine formation and the release of carbon dioxide in 

different cells to create a weak carbon dioxide concentrating mechanism, with glycine as the 

carbon shuttle (Monson and Rawsthorne, 2000). These species, originally called Type I C3-

C4 intermediate or 'C2' plants, are often seen as a possible intermediate step for the evolution 

of C4 photosynthesis (Rumpho et al., 1984; Moore et al., 1988; Monson et al., 2008; Sage, 

Sage and Kocacinar, 2012).  

Photorespiration primarily results from RuBisCO’s inability to effectively 

distinguish between O2 and CO2  (Ehleringer et al., 1991). As mentioned before, the ability 

to discriminate O2 and CO2 was not important in the CO2-rich environment where RuBisCO 

evolved, and evolution later evolved versions of the enzyme with increased specificity for 

CO2. However, increases of specificity come at the expense of the turnover rate of the 

enzyme, so that more specific RuBisCO are slower (Tcherkez, Farquhar and Andrews, 

2006). Due to the essential role RuBisCO plays in the metabolism of plants, any reduction in 

enzyme velocity would have a catastrophic effect on the plant. RuBisCO evolved at the 

during the Archean period, when atmospheric carbon dioxide was considerably higher, and 

oxygen much lower (Nisbet and Nisbet, 2008; Christin and Osborne, 2013).  
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While the relative CO2:O2 concentration depends on the atmosphere composition, 

the ratio of these gases within the plant depend on further factors. Firstly, temperature 

affects the CO2 available to RuBisCO. At equilibrium at 25°C there is 500-fold more oxygen 

than carbon dioxide dissolved in water (Griffiths, 2006), and CO2 solubility decreases faster 

than O2 solubility with an increase in temperature (Ku and Edwards, 1977). Combined with 

decreases of RuBisCO specificity at higher temperatures, the balance between the competing 

pathways shifts more towards the oxygenase activity in warm conditions (Ehleringer and 

Björkman, 1977). The relationship between substrate availability and specificity is described 

in Equation 1.  Hence C3 plants in warm environments suffer from oxygenation of RuBP. In 

addition, the internal CO2:O2 ratio depends on the rate of exchange with the atmosphere, and 

therefore on the level of stomata aperture. Stomatal closure, which can be forced by aridity 

or salinity, leads to CO2 depletion within the leaf, so that photorespiration is exacerbated by 

aridity/salinity. Counterintuitively, CO2 is also depleted in warm aquatic environments. In all 

these environments, increases of RuBisCO specificity were not sufficient to avoid high 

levels of photorespiration, and some lineages evolved elaborate mechanisms to increase the 

relative concentration of CO2 before its fixation by RuBisCO. Of these mechanisms, C4 

photosynthesis is present in many terrestrial and aquatic flowering plants (Salvucci and 

Bowes, 1981, 1983; Sage, 2004; Sage, Christin and Edwards, 2011).  

Equation 1: Ratio of carboxylase activity to oxygenase activity. Vc and Vo are the maximum velocities (Vmax) 
for the respective reactions and Kc and Ko are the Michaelis-Menten constants. (Ogren, 1984) .  

𝑣
𝑣

= ൬
𝑉
𝐾
൰ × ൬

𝐾
𝑉
൰ × ቆ

[𝐶𝑂ଶ]

[𝑂ଶ]
ቇ 
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Figure 2: The full photorespiration cycle, responsible for converting 2-phosphoglycoate into 3PG. 
Displayed is the organelle compartmentalisation of full cycle, green indicated chloroplasts, brown peroxisomes; 
and pink mitochondria. Indicated in blue are the key enzymes for photorespiration (Ogren, 1984). 

 



General Introduction 
 

7 
 

C4 Photosynthesis 
C4 photosynthesis requires a complex reorganisation of leaf anatomy, metabolism, 

gene expression and change in enzyme kinetics that together create a carbon concentration 

mechanism. By increasing the relative CO2:O2 ratio around RuBisCO, C4 photosynthesis 

almost completely suppresses the enzyme oxygenase activity and therefore photorespiration 

(Hatch, 1987; Sage, Sage and Kocacinar, 2012). It provides an advantage in all conditions 

that promote photorespiration, and C4 plants are especially abundant in warm habitats, but 

also arid, saline and aquatic environments. Phylogenetic analyses indicate that the C4 

physiology evolved more than 60 times independently in flowering plants (Sage, Christin 

and Edwards, 2011). All these origins are clustered in the last 30 million years, which 

coincides with low CO2 levels in the atmosphere that likely made photorespiration 

significant in some of Earth environment, thereby providing the selective impetus for C4 

evolution. 

As in C3 plants, CO2 reaches the cells of C4 plants via diffusion through the stomata. 

In C4 plants however, RuBisCO is absent in the cells with direct contact to the atmosphere, 

and the atmospheric carbon is fixed as bicarbonate into oxaloacetic acid (OAA) by PEPC. 

OAA is rapidly converted into a four-carbon acid, usually malate or aspartate (Bräutigam et 

al., 2014), and moves to another compartment where RuBisCO is segregated, generally the 

bundle sheath cells (Figure 3). This transfer occurs via plasmodesmata – active-transport 

channels that traverse the cell walls (Weiner et al., 1988). The C4 acid is then decarboxylated 

in the second compartment, releasing carbon dioxide around the RuBisCO enzyme. This 

process creates a concentration of CO2 ten times higher than in the atmosphere, which 

increases the efficiency of the Calvin-Benson cycle (von Caemmerer and Furbank, 2003).  

To facilitate the carbon concentrating mechanism, in its classical version, the 

anatomy of the leaf changes to a wreath like structure, often termed Kranz anatomy (Brown, 

1975; Hatch, 1987; Sage, 2004; Sage, Sage and Kocacinar, 2012). In C3 species, the majority 

of chloroplasts are located in the mesophyll cell. The bundle sheath cells surround leaf veins 
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and facilitate the transport of metabolites to the plant (Leegood, 2007).  In C4 plants, the 

chloroplasts move from the mesophyll to the bundle sheath cell which are enlarged to 

accommodate them. The intervein distance decreases to accommodate more bundle sheath 

cells (McKown and Dengler, 2010).  

While the segregation of carbon fixation by PEPC and its reduction by the Calvin-

Benson cycle usually occurs among distinct cells, mono-cellular C4 carbon concentrating 

mechanisms have been observed in aquatic and terrestrial plants (Freitag and Stichler, 2000; 

Voznesenskaya, Franceschi and Kiirats, 2001; von Caemmerer et al., 2014). In the desert 

species Bienertia sinusperisci, plant cells have two types of chloroplast that function 

analogous to mesophyll and bundle sheath cells (Offermann, Okita and Edwards, 2011).  In 

the aquatic single cell C4 species Hydrilla verticillate, PEPC and RuBisCO are specially 

separated at the extremities of the cell, separated by the vacuole (Edwards, Franceschi and 

Voznesenskaya, 2004).  

 
 

Figure 3: Simplified C4 carbon concentrating mechanism. CA, carbonic anhydrase; PEPC, 
phosphoenolpyruvate carboxylase (Hatch, 1987; Sage, 2004). 

While some aspects of the CO2-concentrating mechanism are shared by all C4 plants, the 

exact components used to achieve them vary among C4 species. Firstly, C4 photosynthesis 

can be performed in leaves or in stems and using different cell types within the leaf 

(Lundgren, Osborne and Christin, 2014). Secondly, the details of the biochemical pathway 
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also vary. While it is now recognized that different C4 pathways represent a gradient of 

involvement of various enzymes (Furbank, 2011; Wang et al., 2014), three subtypes of C4 

photosynthesis have been classically defined according to the decarboxylating enzyme. In all 

subtypes, OAA is produced by the coupled action of CA and PEPC in the cytosol of the 

mesophyll cells. The typical C4 subtypes are described below, together with their energetic 

cost. For comparison, the cost of fixing one molecule of carbon dioxide is 3 ATP and 2 

NADH in C3 photosynthesis (Kanai and Edwards, 1999). 

NADP-ME Subtype 
In the NADP-ME subtype, OAA is converted to malate by NADP-malate 

dehydrogenase (NADP-MDH) in the mesophyll cytosol, and malate is then transported into 

the bundle sheath cell. Malate is then decarboxylated by NADP-malic enzyme (NADP-ME) 

in the chloroplast of the bundle sheath cell, which produces pyruvate in addition to CO2. The 

pyruvate is then transported back to the mesophyll cell where it is converted into 

phosphoenolpyruvate by pyruvate orthophosphate dikinase. Each carbon dioxide molecule 

fixed costs 5 ATP and 2 NADPH in the NADP-ME cycle (Hatch and Slack, 1966; Kanai et 

al., 1999; Malkin, R., 2000; Furbank, 2011; Ren et al., 2014; Figure 4A). 

NAD-ME Subtype 
In the NAD-ME subtype, OAA is reduced to aspartate by aspartate-transaminase in the 

cytosol of the mesophyll cell. The aspartate is then transported into the bundle sheath cell 

where it is converted back into OAA by aspartate-transaminase. OAA is then converted into 

malate by NADP-MDH in the chloroplast of the bundle sheath cell. The CO2 is released 

from malate by the NAD-malic enzyme (NAD-ME) in the mitochondria and pyruvate is 

produced. Alanine-transaminase then converts the pyruvate into alanine, which is 

transported back into the mesophyll cell. Alanine-transaminase then converts the alanine 

back into pyruvate which is then phosphorylated by pyruvate orthophosphate dikinase to 

regenerate PEP. Conversion to alanine and aspartate acts as a nitrogen shuttle. Each carbon 

dioxide molecule fixed costs 5 ATP and 2 NADPH in the NAD-ME cycle (Kanai et al., 

1999; Furbank, 2011; Wang et al., 2014).  
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PEPCK Subtype 
In the PEPCK cycle OAA is converted into aspartate by aspartate-transaminase in the 

cytosol of the mesophyll cell and then transported into the bundle sheath cells. It is then 

converted back into OAA by aspartate aminotransferase and decarboxylated by 

phosphoenolpyruvate carboxykinase (PEPCK). This also produces PEP which is either 

transported into the mesophyll cell or converted into alanine by alanine amino transferase. 

Alanine is transported and then converted back to PEP in the mesophyll cell by alanine 

amino transferase.  Each CO2 molecule fixed is estimated to cost a minimum of 3.5 ATP and 

2.25 NADPH per fixed carbon dioxide molecule (Kanai et al., 1999; Furbank, 2011; Wang 

et al., 2014). 

The distinctions between the cycles are not clear cut, and many C4 species combine 

multiple C4 sub-cycles. A pure PEPCK-type has not been observed, presumably due to the 

imbalance in amino groups in shuttling between the two cells (Weber and Bräutigam, 2013). 

Species are considered to have a mix of PEPCK and NADP-ME or a mix of PEPCK and 

NAD-ME (Furbank, 2011; Wang et al., 2014).   

All enzymes of the C4 pathway also exist in C3 plants, where they are responsible for 

different non-photosynthetic functions (Aubry, Brown and Hibberd, 2011; Christin et al., 

2013). The evolution of C4 photosynthesis requires their co-option for the C4 pathway, 

which often involved their upregulation. In some cases, the co-option of enzymes was 

followed by adaptation of their kinetics. The possibility to co-opt different enzymes means 

that the kinetic modifications are likely to vary among subtypes. The one step that is shared 

by all C4 plants is the primary carbon fixation enzyme PEPC, which defines the C4 trait 

(Hatch, 1987). Understanding the properties that are required for C4-specific PEPC is 

essential to predict how to engineer the biochemistry of C4 photosynthesis.  
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A. NADP-ME 

 
B. NAD-ME 

 
 

C. PEPCK 

 

Figure 4: Summary of the subtypes of C4 photosynthesis carbon concentrating mechanism. Metabolites 
indicated in black, enzymes indicated in orange, green boxes indicating mesophyll, blue boxes indicating 
mitochondria. CA, carbonic anhydrase; PEPC, phosphoenolpyruvate carboxylase; MDH, malate dehydrogenase; 
NADP-ME, NADP malic enzyme; PPDK, pyruvate phosphate dikinase; AspAT, aspartate amino transferase 
NADP-MDH, NADP malate dehydrogenase; AlaAT, alanine amino transferase; PEPCK phosphoenolpyruvate 
carboxykinase. OAA, oxaloacetate; PEP, phosphoenolpyruvate; Glu, glutamate; a-KG, α-ketoglutarate. Diagrams 
adapted from (Furbank, 2011; Wang et al., 2014).  
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Phosphoenolpyruvate Carboxylase Enzyme Overview 
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) catalyses the carboxylation 

of phosphoenolpyruvate (PEP) with the substrate bicarbonate. The reaction produces one 

molecule of oxaloacetic acid (OAA) and a phosphate ion, and is highly exergonic with a 

ΔG° of -30 kJmol-1, a full reaction mechanism is shown in Figure 5 (O’Leary, 1982; 

Chollet, Vidal and O’Leary, 1996; Kai, Matsumura and Izui, 2003; Izui et al., 2004). 

Essential for activity of the enzyme is a divalent metal ion, magnesium (Mg2+) in plants and 

manganese (Mn2+) in bacteria (Chollet, Vidal and O’Leary, 1996). PEPC is present in all 

photosynthetic organisms, including plants, cyanobacteria, algae, archaea as well as most 

bacteria, however is absent in animals and fungi, including yeast (Ettema et al., 2004; 

O’Leary, Park and Plaxton, 2011). 

 PEPC plays a housekeeping role in plants, bacteria and algae regenerating the 

oxaloacetate for key metabolic pathways, including the Krebs cycle (Day and Hanson, 1977; 

Edwards et al., 1998; O’Leary, Park and Plaxton, 2011). Other roles in plants include carbon 

storage, cell expansion, seed germination and development, energy supply, and stress 

acclimation (Sangwan, Singh and Plaxton, 1992; Delgado et al., 1993; Osuna et al., 1996; 

Dobrota, 2006) . The enzyme also plays a key role in carbon fixation in the C4 and CAM 

carbon concentrating mechanism. Plant PEPCs belong to a small multigene family encoding 

several ‘plant-type’ PEPCs and at least one distantly related ‘bacterial-type’ PEPC. The 

latter have more structural similarities to the E. coli PEPC (Sánchez and Cejudo, 2003; 

O’Leary et al., 2009; Gowik and Westhoff, 2011; O’Leary, Park and Plaxton, 2011).  
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Figure 5: Reaction catalysed by the enzyme PEPC. PEPC catalyses the carboxylation of one molecule of 
phosphoenolpyruvate to produce one molecule of oxaloacetic acid and a phosphate ion. The atmospheric carbon 
dioxide carbon highlighted in red (González and Andreo, 1989; Kai, Matsumura and Izui, 2003). 

Detailed studies have suggested that the reaction of PEPC proceeds through a three-

step mechanism (O’Leary, 1982; Chollet, Vidal and O’Leary, 1996). First, the 

carboxyphosphate and enolate of pyruvate are formed by a reversible reaction. The enolate 

isomerises and the carboxyphosphate cleaves into phosphate ion (Pi) and CO2. Finally, CO2 

makes an electrophilic attack on the enolate to form oxaloacetic acid. The full proposed 

reaction mechanism is presented in Figure 6 (Janc, O’Leary and Cleland, 1992; Kai, 

Matsumura and Izui, 2003; Izui et al., 2004). 

From crystal structures of the E. coli and Zea mays C4 PEPC it was shown the 

enzyme is tetrameric. Each monomer is composed of 42 α-helices arranged around an 8-

stranded β -barrel or ‘TIM’ like structure with no clear subdomains in the structure, 

Escherichia coli PEPC has an overall size of 130 × 120 × 70 Å (Kai et al., 1999; Kai, 

Matsumura and Izui, 2003). The tetramer is arranged in a dimer of dimers. In the Zea mays 

PEPC the dimer interface has a surface area 3000 Å2 and the dimer- dimer interface has a 

surface area of 450 Å2 (Kai, Matsumura and Izui, 2003). A representation of the tetrameric 

and monomeric structures of PEPC are shown in Figure 7.  

The E. coli form of PEPC has been crystallised in the presence of the inhibitor 

aspartate and the Zea mays PEPC was crystallised in the absence of inhibitor. When the 

monomers were superimposed, the surface of the Z. mays PEPC is rotated 10° clockwise 

with respect to the E. coli PEPC. This suggests a T/R conformation change, and allosteric 
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inhibition is mediated by large structural movement between states, the active state being 

associated with the R conformation. This T/R transition appears to result in the active site 

opening (Matsumura et al., 1999, 2002; Kai, Matsumura and Izui, 2003).  

 
 

Figure 6: Proposed reaction mechanism of the carboxylation of phosphoenolpyruvate by the enzyme 
PEPC. The active site magnesium ion is indicated in brown, the phosphate ion (Pi) in blue, the carbon 
component of the PEP molecule in green and the bicarbonate ion in red. In step one of the proposed mechanisms 
the magnesium – PEP complex is bound in the active site. In the second step the bicarbonate enters the active 
site, the ion is stabilized by the positive residues in the ‘hinged lid’ structure of the enzyme. The bicarbonate ion 
attacks the PEP molecule, forming an enolate complexed to the magnesium ion and a carboxy-phosphate 
intermediate. The intermediate is stabilized by the hydrophobic region of the active site, indicated in yellow. The 
catalytic histidine attacks the carboxy-phosphate intermediate and produces a phosphate ion and carbon dioxide. 
The enolate attacks the carbon dioxide, forming oxaloacetate. The oxaloacetate and Pi are released (Janc, 
O’Leary and Cleland, 1992; Kai, Matsumura and Izui, 2003).  
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A 

 

B 

 
Figure 7: Structures of the PEPC enzyme. A Cartoon of dimer structure of Zea mays PEPC, monomers 
coloured in green and blue, with sulfate moiety bound to each monomer indicated in pink (Matsumura et al., 
2002).  B Tetrameric structure of E. coli PEPC, each monomer is indicated by a different colour. (Matsumura et 
al., 2002).  

 
Figure 8: Monomer structure of PEPC. α-helices indicated in red, β-sheets indicated in yellow, and mobile 
loops indicated in green. The structure is orientated with the active site, at the top of the β barrel, is at the front 
(Matsumura et al., 1999).  
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All forms of the enzyme that have been explored have been inhibited by malic acid 

and aspartic acid (Izui et al., 1981; Matsumura et al., 1999; Paulus, Schlieper and Groth, 

2013). These four carbon acids are products of reactions with oxaloacetic acid in the C4 

cycle as well as other metabolic cycles and are thus feedback inhibitors. PEPC is also 

subject to activation. Bacterial and plant forms of the enzyme have been shown to be 

activated by sugar phosphates such as glucose-6-phosphate (Doncaster and Leegood, 1987; 

Wedding, Black and Meyer, 1989; Woo and Xu, 1996; Tovar-Méndez, Mújica-Jiménez and 

Muñoz-Clares, 2000), and monocot C4 PEPCs, such as Z. mays, have been shown to be 

further activated by neutral side chain amino acids such as glycine and alanine (Wong and 

Davies, 1973; González-Segura et al., 2018). The E. coli form is also activated by acetyl-

CoA, long-chain fatty acids and guanosine 3’5’-bisphosphate  (Izui et al., 1981).  

The activity of C4 and CAM carbon fixing PEPCs are modulated by 

phosphorylation. PEPC is phosphorylated in the day in C4 plants, and night in CAM plants 

which is when most of the carbon fixation occurs for the respective mechanism (Lepiniec et 

al., 1994; Nimmo, 2000, 2003). PEPC is phosphorylated by the specific kinase, 

phosphoenolpyruvate carboxylase kinase (PEPCK; Nimmo et al., 1987). The N terminal S15 

(Zea mays numbering, accession number NM_001161348.2) has been identified as the major 

phosphorylation point, however secondary phosphorylation positions have been identified 

(Chollet, Vidal and O’Leary, 1996; Nimmo, 2000). Phosphorylated PEPC shows increased 

specificity for PEP without changing kcat, decreased sensitivity to inhibitors and increased 

sensitivity to glucose-6-phosphate (Doncaster and Leegood, 1987; Nimmo et al., 1987; 

Echevarria et al., 1994; Duff et al., 1995; Chollet, Vidal and O’Leary, 1996; Nimmo, 2003). 

PEPC kinase expression is controlled by the circadian rhythm, being upregulated in C4 

plants in daylight (Hartwell et al., 1999; Leegood and Walker, 2003). PEPC is 

dephosphorylated by protein phosphatase 2A (Carter et al., 1990).  
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Functional residues of PEPC 
The active site of PEPC is located near the C terminal part of the protein, at the end of 

the β5 and β6 strand of the TIM barrel. The metal cofactor was present in this location in all 

resolved structures (Matsumura et al., 1999, 2002; Paulus, Schlieper and Groth, 2013; 

Schlieper et al., 2014; González-Segura et al., 2018). The metal is bound to the oxygen 

atoms of the carboxyl groups of the conserved E506 and D543 (Z. mays numbering). The 

configuration is like other PEP utilizing enzymes such as pyruvate kinase (Muirhead et al., 

1986). R773, R456, R759 and R647 form a positive pocket which is thought to stabilise the 

electron rich bicarbonate ion; R647 is essential for catalytic activity. This positive pocket is 

above the metal ion. H177 is an essential catalytic base (Terada and Izui, 1991), it plays a 

role in stabilising the carboxyphosphate intermediate by removing a proton from the 

carboxyl group (Kai, Matsumura and Izui, 2003; Izui et al., 2004).  

A loop of amino acids covers the face of the β-barrel with the sequence 

K762RRPGGG768 (Matsumura et al., 1999). Mutations at K762, R763 and R764 affected the 

enzyme’s ability to interact with bicarbonate. These mutations increase the side reactions of 

PEPC that result in pyruvate and orthophosphate (Terada and Izui, 1991). This suggests this 

loop acts as somewhat of a ‘hinged lid’ above the catalytic site that interacts with the 

bicarbonate ion. Hinged lid motifs have been observed in other proteins and act to prevent 

water interfering with catalysis (Sun and Sampson, 1999). A hydrophobic pocket has been 

identified in the active site composed of W248, L504 and M253 (Matsumura et al., 1999). A 

putative reaction mechanism illustrating the roles of the active site amino acids has been 

described and can be seen in Figure 6 (Kai, Matsumura and Izui, 2003; Izui et al., 2004).  

Crystal structures of PEPC bound to the inhibitor aspartic acid have determined the 

site of allosteric inhibition (Matsumura et al., 1999; Paulus, Schlieper and Groth, 2013). No 

structures with malic acid have been resolved as the molecule has been observed to inhibit 

PEPC crystallisation. The binding site for aspartic acid was located ca. 20 Å from the active 

site. Aspartate directly interacts with hydrogen bonding to the amino acids R647, K835, 
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R894, N968 and R878 (Matsumura et al., 1999; Paulus, Niehus and Groth, 2013). Mutations 

at K835 and R894 cause a marked desensitization to both inhibitors (Kai, Matsumura and 

Izui, 2003; Izui et al., 2004).  

The amino acid R647 is located in the aspartate inhibition site of PEPC but the 

guanidino group of the sidechain is also though to interact with PEP in the active site of the 

Z mays PEPC (Matsumura et al., 2002). This residue at position 647 is essential for activity 

(Yano et al., 1995). The loop on which the site occurs is thought to be mobile and held away 

from the active site on inhibitor binding as a component of the inhibition mechanism (Kai, 

Matsumura and Izui, 2003; Izui et al., 2004). 

The structure of Matsumura et al., 2002 Z. mays C4-PEPC is thought to be in the 

activated form due to the presence of ethylene glycol in the crystallisation of the enzyme. A 

sulfate group is bound 15 Å from the active site, in a hydrophobic pocket, a region that is 

large enough to accommodate a glucosyl moiety. The positively charged arginine residues in 

this region are highly conserved and replacement of these residues with glutamine results in 

desensitisation to glucose-6-phosphate (G6P) (Takahashi-Terada et al., 2005). However, 

these positions are on the dimerization interface and mutations here may have a great effect 

destabilising the enzyme. Structures have been resolved of the Flaveria trinervia PEPC 

bound to G6P in the active site, this structure also has a sulfate moiety bound ion the same 

location as the Z. mays PEPC suggesting this not an activation site (Schlieper et al., 2014). 

This indicates that G6P acts as a competitive activator and interacts with W283, R450, 

M592, D767 and R768 (Flaveria numbering). Ethylene glycol was also found to bind in the 

same location in the Flaveria trinervia PEPC structure (Schlieper et al., 2014).  
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Phosphorylation occurs at a conserved serine residue near the N-terminus, S15 (Z. 

mays numbering). The surrounding region is highly conserved. The N terminal region may 

change conformation on phosphorylation, however, the structure of this region has not been 

visualised in any crystal structure. Mutants insensitive to glucose-6-phosphate no longer 

respond to phosphorylation suggesting that the R residues involved in glucose-6-phosphate 

binding are also necessary for activation by phosphorylation (Kai, Matsumura and Izui, 

2003; Izui et al., 2004).   
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Evolution of C4 PEPC 
The gene encoding the C4 isoform of PEPC evolved from a non-photosynthetic 

PEPC gene. The role played by C4 PEPC is drastically different to that of its ancestor, as the 

C4 cycle is characterized by high concentrations of metabolites and high fluxes (Stitt and 

Zhu, 2014). Expression data has clearly shown that the expression level of PEPC has been 

massively increased during the evolution of C4 photosynthesis (Bräutigam et al., 2011, 2014; 

Lauterbach et al., 2017; Moreno-Villena et al., 2018). Changes to the enzymes are less well 

understood, but fundamental comparative work has revealed C4-specific PEPC properties 

within some taxonomic groups. 

Flaveria PEPC 
The genus Flaveria has been used as a model system to observe the adaptation of 

the kinetic properties of C4 PEPC (Svensson, Bläsing and Westhoff, 1997; Engelmann et al., 

2003). The genus contains closely related C4, intermediate and C3 species as well as several 

species that have been classed as intermediate photosynthetic types (Powell, 1978; 

McKown, Moncalvo and Dengler, 2005). The species Flaveria trinervia, which is C4, 

expresses a C4 PEPC (Ft PEPC) in the leaf tissue. The C3 congener Flaveria pringlei 

expresses an orthologous non-C4 PEPC (Fp PEPC), which is thought to be similar to the 

ancestor of the Flaveria trinervia C4 PEPC. The Ft and Fp PEPC display stark differences in 

kinetic properties (Figure 11). However, these two proteins display a 96% amino acid 

sequence similarity and have a broad similarity in 3D structures, Figure 10 (Paulus, 

Schlieper and Groth, 2013). 

Ft PEPC displays a Km
PEP an order of 10 larger than Fp PEPC, suggesting that the C4 

PEPC has 10 times decrease in specificity for PEP (Svensson, Bläsing and Westhoff, 1997). 

The reason for this decrease is unknown, but it has been suggested that might represent a 

sacrifice made to increase specificity for bicarbonate (Jacobs et al., 2008; Gowik and 

Westhoff, 2011). Analysis of chimeric Ft/Fp mutants determined that two regions of the C4 

protein, the first region from position 296 to 437 and the second from 645 to 966, confer a 

decrease in specificity for PEP (Blasing, Westhoff and Svensson, 2000). Within the second 
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region, position 774 (780 in Z. mays numbering) was determined to be the key C4 

determinant. Indeed, when the C4 site was substituted into the Fp enzyme, the Km (PEP) 

significantly increased. Position 774 is located above and very close (within 20 Å) to the 

active site in the crystal structures (Matsumura et al., 1999).  

The C4 Ft PEPC exhibits a decreased sensitivity to the inhibitor malic acid 

compared to Fp PEPC. The IC50 for malic acid of the C4 form is three times higher than Fp 

PEPC (Svensson, Bläsing and Westhoff, 1997). C4 PEPC is subject to much greater 

concentrations of feedback inhibitor than the non-orthologue as the C4 cycle generates high 

concentrations of its metabolites. The inhibition sensitivity is therefore likely to decrease in 

the C4-specific forms of PEPC to allow high activity despite the presence of high 

concentrations of inhibitors. Analyses of chimeric proteins identified three regions of 

importance for malate inhibition: the regions encompassing positions 1 to 296, positions 297 

to 437, and positions 646 to 966. The latter was the strongest determinant of inhibitor 

sensitivity (Jacobs et al., 2008). While two of these regions have been observed to be 

important in the specificity for PEP, investigation of position 774 mutants show no change 

in sensitivity, suggesting the decrease in specificity for PEP is unrelated to the decrease in 

sensitivity for malate (Jacobs et al., 2008). Crystal structures were determined for both Ft 

and Fp PEPC with a molecule of aspartate bound. It was shown that position 884 (890 Z. 

mays numbering), which is a glycine in the C4 Ft PEPC and an arginine in Fp PEPC, reduces 

the number of hydrogen bonding interactions with aspartate thus reducing the enzyme 

sensitivity to inhibitors (Paulus, Schlieper and Groth, 2013; Schlieper et al., 2014).  

With respect to activation, Ft PEPC also displays greater sensitivity to G6P 

compared to Fp PEPC (Svensson, Bläsing and Westhoff, 1997). The C4 enzyme shows a 5-

fold activation, where the non C4 enzyme shows a 1.5-fold activation (Blasing, Westhoff and 

Svensson, 2000). 
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Figure 9: Amino acid alignment of C4 and Non-C4 PEPCs showing key C4 amino acids positions. Amino 
acids that are involved in essential catalytic activity are coloured yellow. Amino acids key for tetramer formation 
are coloured red. Amino acids key for inhibition are coloured grey. The phosphorylation of site is coloured in 
pink. C4 specific sites are indicated in green. Adapted from (Kai, Matsumura and Izui, 2003; Jacobs et al., 2008).  

  

  

Fp (C3)  1    MANRNLEKLASIDAQLRLLVPGKVSEDDKLIEYDALLLDKFLDILQDLHGEDLKEAVQEC  60 
Ft (C4)       MANRNVEKLASIDAQLRLLVPGKVSEDDKLVEYDALLLDKFLDILQDLHGEDLKEAVQQC   
 
Fp (C3)  61   YELSAEYEGKHDPKKLEELGSVLTSLDPGDSIVIAKAFSHMLNLANLAEEVQIAYRRRIK  120 
Ft (C4)       YELSAEYEGKHDPKKLEELGSLLTSLDTGDSIVIAKAFSHMLNLANLAEELQIAYRRRIK   
 
Fp (C3)  121  LKRGDFADEANATTESDIEETFKKLVLKLNKSPEEVFDALKNQTVDLVLTAHPTQSVRRS  180 
Ft (C4)       LKSGDFADEANATTESDIEETFKRLVHKLNKSPEEVFDALKNQTVELVLTAHPTQSVRRS   
 
Fp (C3)  181  LLQKHGRIRNCLAQLYAKDITPDDKQELDEALHREIQAAFRTDEIRRTPPTPQDEMRAGM  240 
Ft (C4)       LLQKHGRIRNCLAQLYAKDITPDDKQELDEALHREIQAAFRTDEIRRTPPTPQDEMRAGM   
 
Fp (C3)  241  SYFHETIWKGVPKFLRRVDTALKNIGINERVPYNAPLIQFSSWMGGDRDGNPRVTPEVTR  300 
Ft (C4)  241  SYFHETIWKGVPKFLRRVDTALKNIGINERFPYNAPLIQFSSWMGGDRDGNPRVTPEVTR   
 
Fp (C3)  301  DVCLLARMMASNMYFSQIEDLMFEMSMWRCNSELRVRAEELYRTARRDVKHYIEFWKQVP  360 
Ft (C4)  301  DVCLLARMMTSNMYFSQIEDLMIEMSMWRCNSELRVRAEELYRTARKDVKHYIEFWKRIP   
 
Fp (C3)  361  PTEPYRVILGDVRDKLYNTRERSRHLLAHGISDIPEEAVYTNVEQFLEPLELCYRSLCDC  420 
Ft (C4)  361  PNQPYRVILGDVRDKLYNTRERSRHLLVDGKSDIPDEAVYTNVEQLLEPLELCYRSLCDC   
 
Fp (C3)  421  GDRVIADGSLLDFLRQVSTFGLSLVKLDIRQESDRHTDVLDAITQHLEIGSYREWSEEKR  480 
Ft (C4)  421  GDHVIADGSLLDFLRQVSTFGLSLVKLDIRQESDRHTEVLDAITQHLGIGSYREWSEEKR   
 
Fp (C3)  481  QEWLLAELSGKRPLFGSDLPKTEEVKDVLDTFNVLAELPSDCFGAYIISMATSPSDVLAV  540 
Ft (C4)  481  QEWLLAELSGKRPLIGPDLPKTEEVKDCLDTFKVLAELPSDCFGAYIISMATSTSDVLAV  540 
 
Fp (C3)  541  ELLQRECHVKHPLRVVPLFEKLADLEAAPAAMARLFSIDWYRNRIDGKQEVMIGYSDSGK  600 
Ft (C4)  541  ELLQREYHIKHPLRVVPLFEKLADLEAAPAAMTRLFSMDWYRNRIDGKQEVMIGYSDSGK  600 
 
Fp (C3)  601  DAGRFSAAWQLYKAQEEIIKVAKEFGVKLVIFHGRGGTVGRGGGPTHLAILSQPPDTIHG  660 
Ft (C4)  601  DAGRFSAAWQLYKTQEQIVKIAKEFGVKLVIFHGRGGTVGRGGGPTHLALLSQPPDTING  660 
 
Fp (C3)  661  SLRVTVQGEVIEQSFGEEHLCFRTLQRFCAATLEHGMNPPISPRPEWRELMDQMAVVATE  720 
Ft (C4)  661  SLRVTVQGEVIEQSFGEEHLCFRTLQRFCAATLEHGMNPPISPRPEWRELMDQMAVVATE  720 

 
Fp (C3)  721  EYRSIVFKEPRFVEYFRLATPELEYGRMNIGSRPSKRKPSGGIESLRAIPWIFAWTQTRF  780 
Ft (C4)  721  EYRSVVFKEPRFVEYFRLATPELEFGRMNIGSRPSKRKPSGGIESLRAIPWIFSWTQTRF  780 
 
Fp (C3)  781  HLPVWLGFGAAFKHAIKKDSKNLQMLQEMYKTWPFFRVTIDLVEMVFAKGDPGIAALNDK  840 
Ft (C4)  781  HLPVWLGFGAAFKHAIQKDSKNLQMLQEMYKTWPFFRVTIDLVEMVFAKGNPGIAALNDK  840 
 
Fp (C3)  841  LLVSEDLWPFGESLRANYEETKDYLLKIAGHRDLLEGDPYLKQRIRLRDSYITTLNVCQA  900 
Ft (C4)  841  LLVSEDLRPFGESLRANYEETKNYLLKIAGHKDLLEGDPYLKQGIRLRDPYITTLNVCQA  900 
 
Fp (C3)  901  YTLKRIRDPNYHVTLRPHISKEYAAEPSKPADELIHLNPTSEYAPGLEDTLILTMKGIAA  960 
Ft (C4)  901  YTLKRIRDPNYHVTLRPHISKEYAAEPSKPADELIHLNPTSEYAPGLEDTLILTMKGIAA  960 
 
Fp (C3)  961  GMQNTG  966 
Ft (C4)  961  GMQNTG  966 
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Grass PEPC 
 Flaveria is one of the most recent C4 origins. Fully C4 species in the group emerged 

1 to 2 million years ago (Christin et al., 2011). ). The genus Alternanthera represents an 

older C4 origin in a different group of eudicots (Christin et al., 2011). Interestingly, some of 

the same changes in Km
PEP were observed on the C4 PEPC of Flaveria and Alternanthera 

(Figure 11; Gowik et al., 2006). Comparisons of Flaveria and Alternanthera suggests that 

the biochemical evolution of C4 PEPC is a convergent process, but most of the C4 lineages 

have not been considered with the same amount of details. Most of the C4 species belong to 

monocots, including sedges and mainly grasses (Sage, Christin and Edwards, 2011). The 

grass family alone includes 60% of all C4 species, which are clustered in 22-24 independent 

C4 lineages (Grass Phylogeny Working Group II, 2012). Some of these C4 origins rank 

among the earliest, having occurred between 15 and 35 million years ago (Christin et al., 

2008).  C4 grasses dominate most open biomes in tropical and subtropical conditions 

(Cerling et al., 1997; Sage, 2004; Beerling and Osborne, 2006; Osborne and Freckleton, 

2009). They rank among the most productive plants, and include important crops, such as 

maize, sugarcane, and sorghum. 

Kinetic investigations of the adaptation of C4 PEPC in monocots have been limited. 

Work on the kinetics of Panicum PEPCs has shown trends broadly similar to the eudicots 

with respect to Km
PEP and malate sensitivity (Ting and Osmond, 1973; Ting and Osmond, 

1973; Holaday and Black, 1981), These early studies did however not account for 

proteolysis of the N terminal of PEPC during purification, which has been shown to affect 

the protein activity (Chollet, Vidal and O’Leary, 1996). Comparison between the root form 

of PEPC and the C4 form of PEPC in Zea mays has shown similar differences in kinetics as 

in the eudicots, the C4 form having a lower specificity for PEP and a higher sensitivity to 

activators (Dong et al., 1998). The enzyme in this study was expressed in E. coli and cleaved 

with enterokinase, which can also cleave the N terminal region of PEPC (Gasteiger et al., 

2005). Further, it is important to note that the compared enzymes are not encoded by 
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orthologous genes, but by paralogs that diverged long before the photosynthetic types 

emerged (Christin et al., 2007).  

Despite the low number of species analysed, the comparison of C4 monocot PEPCs has 

suggested specific properties when compared to C4 eudicots PEPCs. The C4 Z. mays PEPC is 

sensitive to activation by neutral amino acids such as glycine, a sensitivity not observed in 

Flaveria (Figure 11; Wong and Davies, 1973; González-Segura et al., 2018). Analysis of 

genes encoding C4 and non-C4 PEPCs in grasses and sedges have shown that adaptive amino 

acid transitions at 22 sites accompanied the evolution of C4 photosynthesis (Christin et al., 

2007; Besnard et al., 2009). Two of these positions are 780 and 884, which have been 

identified to play key roles in C4 specific properties (Blasing, Westhoff and Svensson, 2000; 

Paulus, Niehus and Groth, 2013). The serine 780 in particular was observed across most C4 

lineages in both monocots and eudicots (Christin et al., 2007; Besnard et al., 2009). 

However, the few exceptions clearly show that this residue is not necessary for the C4 

unction (Rao, Reiskind and Bowes, 2008; Rosnow, Edwards and Roalson, 2014). The 

function of the other amino acid substitutions remains unknown, and the lack of dedicated 

comparisons between the kinetics of C4 and non-C4 orthologs in monocots, means that the 

biochemical history of C4 evolution in the group remains largely unexplored. Filling in this 

gap is necessary to determine whether the observed convergent amino acid replacements are 

linked to convergent biochemical changes. Conversely, it has been observed that while 

amino acid changes were extremely convergent within each of the plant family with C4 

origins, different families tended to fix different amino acid substitutions (Besnard et al., 

2009). This might suggest that each family reaches a different biochemical solution to the C4 

challenge, or that the same solution is achieved via unique mutations. Testing these 

hypotheses requires establishing the direction and magnitude of C4-specific modifications in 

multiple groups. In addition, all kinetic parameters need to be considered. In particular, the 

bicarbonate specificity has been measured in a range of C4 and bacterial PEPC isoforms 
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(Bauwe, 1986; Janc, O’Leary and Cleland, 1992), but differences in bicarbonate specificity 

between closely-related C4 and non-C4 forms of PEPC remain undescribed. 

 
Figure 10: Superimposition of PEPC from Flaveria pringeli (C3) in grey and Flaveria trinervia (C4) in red. 
Structures are orientated with the active site towards the front. (Paulus, Schlieper and Groth, 2013). 

A 

 

B 

 
Figure 11: Summary of kinetic parameters of closely related C4 and C3 PEPCs. A Specificity for PEP for 
PEPCs.  B Inhibition values for PEPCs. Values for Alternanthera taken from (Gowik et al., 2006). Values for 
Zea mays taken from (Dong et al., 1998). Values of Flaveria taken from (Engelmann et al., 2003).  
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THESIS AIMS AND STRUCTURE 
This project aims to explore C4 phosphoenolpyruvate carboxylase (PEPC), and the 

kinetic properties acquired by the enzyme when it is co-opted for a role as a primary carbon 

fixing enzyme. This was done by exploring the kinetic properties of a carbon fixing PEPC 

from a C4 species and the PEPC encoded by the orthologous gene from a closely related 

species that has not evolved the C4 trait. These proteins were expressed in E. coli and 

purified, allowing analysis of the homogenous protein. Comparing between a recently 

diverged C4 PEPC and the non-C4 PEPC from one of the earliest origins can shed light on 

the important of kinetic properties and the flexibility in the adaption of the enzyme.  

In the genus Flaveria, the PEPCs from the C4 species Flaveria trinervia and C3 species 

Flaveria pringlei were used as a model for the evolution of C4 PEPC. These PEPCs were 

investigated to expand on work described in previous investigations, by looking at 

bicarbonate specificity, phosphoenolpyruvate (PEP) specificity and sensitivity to the 

feedback inhibitors aspartate and malate (Chapter 2).  The results show that an increase in 

specificity for bicarbonate was selected for in the evolution of Flaveria C4 PEPC.  When the 

two enzymes were compared, the C4 PEPC has a factor of ten lower specificity for PEP. 

Malate was shown to inhibit PEPC at limiting and saturating PEP; aspartate was shown to 

inhibit PEPC only at limiting PEP. The C4 PEPC was a factor of five times less sensitive to 

competitive inhibition by malate and a factor of ten less sensitive to aspartate. The C4 PEPC 

was also shown to be ten times less sensitive to non-competitive inhibition by malate. These 

PEPCs have a ca. 96% amino acid sequence similarity, however, the enzymes exhibit stark 

kinetic differences. 

The carbon fixing PEPCs from the C4 grass Panicum queenslandicum and the PEPC 

from C3 species Panicum pygmaeum were investigated (Chapter 3). Grasses have been 

established as one of the earliest lineages of C4 species. The C4 PEPC from P. 

queensladicum shown a similar change in kinetic properties to that seen in F. trinervia when 

compared to the non-C4 PEPC; the C4 PEPC has a higher specificity for bicarbonate, a lower 

specificity for bicarbonate, less sensitive to competitive inhibition by malate and aspartate, 
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and less sensitive to non-competitive inhibition by malate. This shows convergence in 

properties of C4 PEPCs from distantly related species. The changes observed however are 

quantitively greater in Panicum than in Flaveria. This suggests that longer evolutionary 

period in grasses resulted in greater adaptations exhibited by the C4 PEPC.  

 C4 specific amino acid sites were then explored using site directed mutagenesis. It has 

been established that at least 20 specific amino acids have been selected for in C4 grass and 

sedge PEPCs. Three of these C4 specific amino acids were investigated, two of which are 

convergent in Flaveria, the other site being C4 grass PEPC specific (Chapter 4). Mutant 

enzymes were generated by introducing the C4 specific site in the non-C4 enzyme and vice 

versa. Position 780 (Zea mays numbering) is serine in C4 PEPCs, and alanine in the non-C4 

PEPCs. Investigation of position 780 showed that this site is important for the C4 PEP 

specificity, having the same magnitude of effect when changed in grass and Flaveria; this 

position has no effect on inhibition sensitivity or bicarbonate specificity. Position 761 is 

serine in P. queenslandicum, and alanine in P. pygmaeum and Flaveria PEPC. Investigation 

of this position showed no effect on PEP specificity, bicarbonate specificity or inhibitor 

sensitivity. Bioinformatic analysis suggested that the mutation at position 761 might prevent 

erroneous post-translational modification. Position 665 is asparagine in C4 PEPCs and 

histidine in non-C4 PEPCs. It was shown this amino acid site does not affect the kinetic 

properties explored. However, this mutation might reduce the cost of expression.  

Overall this work shows that an increase specificity for bicarbonate is a property 

selected for in the evolution C4 PEPC. Investigation of the kinetic adaptations of C4 PEPC 

are convergent in Flaveria and Panicum, the changes observed in C4 grass PEPC are 

quantitatively greater, reflecting the relative time from divergence. Investigation of C4 

specific amino acids has indicated that efficiency of expression and post-translational 

modification may also play a driving force in the evolution of C4 PEPC. This project sheds 

light on the nature of enzyme evolution, and which biochemical properties are selected for in 

the evolution of an enzyme. 
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ABSTRACT 
C4 photosynthesis is a complex assemblage of anatomical and biochemical 

components that act together to concentrate CO2 within the leaf and boost productivity in 

tropical conditions. This complex trait evolved independently many times, resulting in 

various realizations of the phenotypes, but in all C4 plants the primary fixation of 

atmospheric carbon is catalysed by the enzyme phosphoenolpyruvate carboxylase (PEPC). 

This enzyme existed before the C4 path evolved, and its co-option for the C4 pathway was 

followed by massive upregulation. Previous comparisons of C4 and non-C4 PEPC from 

closely related species of Flaveria indicated that the enzyme was modified to meet the 

demands of the C4 metabolic cycle by a ten-fold decrease in specificity to 

phosphoenolpyruvate and a decrease in sensitivity to inhibitor the inhibitor malate. 

However, the enzyme specificity for one of its substrates, bicarbonate, has not been assessed 

in this model system. In this work, we assessed the kinetic properties of closely related C4 

and non-C4 of PEPC from Flaveria.  The kcat/Km for bicarbonate of the C4-specific enzyme is 

6.92 × 105 ± 4.17× 104 s-1 M-1, compared with the non-C4 isoform at 4.43 × 105 ± 2.17 × 104 

s-1 M-1, a one-third increase. We conclude that the adaptation of PEPC for the C4 context 

involved increases of the affinity for bicarbonate, potentially as a because bicarbonate 

becomes limiting in the high flux systems.

 

C4 photosynthesis is a complex trait that boosts productivity in tropical conditions 

(Atkinson et al., 2016). It relies on the spatial segregation of photosynthetic reactions among 

cell types to concentrate CO2 around ribulose-bisphosphate carboxylase oxygenase 

(RuBisCO), the enzyme responsible for the incorporation of CO2 into the Calvin-Benson 

cycle (Hatch, 1987; Sage, 2004; Sage, Sage and Kocacinar, 2012). RuBisCO evolved 

billions of years ago with a dual affinity for CO2 and O2 (Tcherkez, Farquhar and Andrews, 

2006; Nisbet et al., 2007). In conditions of CO2 depletion, including high temperature, 

salinity and aridity, increased O2 fixation reduces photosynthetic efficiency (Ehleringer and 

Björkman, 1977; Skillman, 2007). The C4 pathway solves this problem by fixing 
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atmospheric CO2 in the form of bicarbonate via the enzyme phosphoenolpyruvate 

carboxylase (PEPC), an enzyme without affinity for O2 (Hatch, 1987). PEPC produces the 

four carbon acid oxaloacetate, which is then converted into another more stable acid, usually 

malate or aspartate (Bräutigam et al., 2014). This acid is then shuttled into a leaf 

compartment isolated from the atmosphere, where RuBisCO is localized in C4 plants. The 

CO2 is released, increasing the CO2 concentration by up to 10 times relative to the 

atmosphere (von Caemmerer and Furbank, 2003). 

All enzymes of the C4 pathway existed in non-C4 ancestors, and C4 evolution therefore 

consists of the co-option of multiple genes followed by adaptation of the expression patterns 

and kinetic properties (Aubry, Brown and Hibberd, 2011; Christin et al., 2013). The changes 

in gene expression are being increasingly studied through high-throughput sequencing 

techniques (Bräutigam et al., 2014; Lauterbach et al., 2017; Moreno-Villena et al., 2018), 

but the biochemical changes remain largely unexplored. Previous efforts have focused on 

PEPC, which is known to be massively upregulated during the evolution of C4 

photosynthesis (Moreno-Villena et al., 2018). The kinetic changes linked to the evolution of 

C4-specific PEPC have been assessed using as a model system Flaveria (Engelmann et al., 

2003; Svensson, Bläsing and Westhoff, 2003; Westhoff, 2004), a genus of eudicots that 

contains closely-related C4 and non-C4 species (McKown, Moncalvo and Dengler, 2005). 

Previous efforts have shown C4-specific increases of the Km for phosphoenolpyruvate (PEP) 

(Svenssonz and Westhoff, 1997), with decreases of sensitivity to malate and increased 

sensitivity to the activator glucose-6-phosphate (Wedding, Black and Meyer, 1990; Jacobs et 

al., 2008; Paulus, Schlieper and Groth, 2013).  

The selective driver of increased Km
PEP of C4 PEPC remain however elusive. One 

possibility is that this change was directly selected to avoid depleting other biochemical 

cycles. Alternatively, this change might have happened as side-effect of other, undetected 

protein adaptations (Gowik and Westhoff, 2011a). The specificity for bicarbonate may also 

have changed during C4 evolution, either under direct selection or potentially as a 
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consequence of the amino acid changes required to produce an increase in Km
PEP. While the 

bicarbonate specificity has been measured in a range of C4 and bacterial PEPC isoforms 

(Bauwe, 1986; Janc, O’Leary and Cleland, 1992), any change in bicarbonate specificity that 

happened during C4 evolution remains undescribed. 

In this work, we use the well characterized Flaveria model system to test the 

hypothesis that the evolution of C4-specific PEPC produced a change in specificity for 

bicarbonate. In addition, we describe the different sensitivities to inhibitors, including the 

previously assessed malate, but also aspartate, another metabolite of the C4 cycle. Our data 

distinguishes between inhibition at limiting and saturating concentrations PEP, shedding 

new light on the role of metabolic conditions in feedback regulation of C4 photosynthesis. 

Overall, our work provides a detailed understanding of the complex differences in behaviour 

between a related C3 and C4 enzyme from species in a small genus that evolved the trait 

recently. 
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RESULTS 

DNA Cloning 
The ppcA genes for PEPC (ppc-1E2 in Christin et al., 2015) from Flaveria trinervia 

(C4) and Flaveria pringlei (C3) as described in (Svensson, Bläsing and Westhoff, 1997) were 

sub-cloned into the pET-1B plasmid encoding an N-terminal poly-histidine tag and a TEV 

cleavage site. Expressed protein was purified to > 95% purity by SDS PAGE with a single 

immobilised metal column (Supp. Figure 1). Assays at saturating bicarbonate and variable 

concentrations of PEP showed that both proteins behaved similarly to untagged proteins 

previously described (Svenssonz, and Westhoff, 1997; Bläsing, Westhoff and Svensson, 

2000; Jacobs et al., 2008). This indicates that the presence of an N-terminal polyhistidine tag 

does not adversely affect the activity of the protein.  

Controlled Bicarbonate Assay System 
The specificity for bicarbonate of both enzymes was determined using a gas-tight 

assay system. Background bicarbonate was reduced to ca. 50 µM by sparging with nitrogen 

gas. Assays were performed at five PEP concentrations, while varying the concentration of 

bicarbonate (Figure 1). Analysis of secondary plots allowed determination of the steady-

state kinetic parameters, kcat/Km
HCO3- and kcat/Km

PEP, and kcat. The specificity for bicarbonate 

of the C4 PEPC was determined as 6.92 × 105 ± 0.42 × 105 s-1 M-1, (Figure 1C) which is 

approximately one-third higher than that of the C3 PEPC which was determined at 4.43 × 105 

± 0.22 × 105 s-1 M-1 (Figure 1D). The kinetic parameters are summarised in Table 1.  

Inhibition of PEPC by C4 metabolites 
For both C3 and C4 enzymes, we investigated inhibition by the two feedback 

inhibitors, malate (Figure 2) and aspartate (Figure 3) at both limiting and saturating PEP. 

These two closely structurally related inhibitors show very different kinetic characteristics; 

inhibition by malate is much less sensitive to the concentration of PEP than inhibition by 

aspartate. Under all conditions, with both inhibitors, the C4 form of PEPC is less sensitive to 

inhibition. The non-competitive inhibition constant (Kiu) was determined by the secondary 
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plot of kcat
app against inhibitor concentration. The competitive inhibition constant (Kic) was 

determined by the secondary plot of kcat
app/Km

app against inhibitor concentration. 

The C4 Flaveria trinervia PEPC is inhibited by malate at both limiting and 

saturating concentrations of PEP, this mixed inhibition can be characterised at limiting PEP 

by Kic
Malate = 10.96 ± 1.55 mM (Figure 2A) and at saturating PEP by Kiu

Malate = 40.72 ± 4.59 

mM (Figure 2C). In contrast, aspartate is a competitive inhibitor characterised by      

Kic
Aspartate = 40.02 ± 6.49 mM (Figure 3A). No inhibition by aspartate at saturating PEP was 

observed (Figure 3C).  

Likewise, the C3 Flaveria pringlei PEPC is inhibited at both limiting and saturating 

concentrations of PEPC, this mixed inhibition can be characterised at limiting PEP by 

Kic
Malate = 2.14 ± 0.62 mM (Figure 2B) and at saturating PEP by Kiu

Malate = 4.56 ± 1.17 mM 

(Figure 2D). As with the C4 PEPC, aspartate is a competitive inhibitor characterised by 

Kic
Aspartate = 4.13 ± 0.60 mM (Figure 3B). No inhibition at saturating PEP was observed 

(Figure 3D). 

Comparing the two enzymes, the C4 isoform is five times less sensitive to inhibition 

by malate at limiting PEP and ten times less sensitive to malate at saturating PEP when 

compared to the C3 isoform. Flaveria trinervia PEPC is ten times less sensitive to 

competitive inhibition by aspartate than Flaveria pringeli PEPC (Table 2). 
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D 

 
Figure 1: Rate of oxaloacetic acid formation, catalysed by PEPC, varying the concentration of 
bicarbonate. Assays conditions were 50 mM Tricine.KOH, pH 8.0, 10 mM MgCl2, 0.2 mM NADH, 0.01 U μl-1 

malate dehydrogenase and 50 nM PEPC. A Markers represent individual data points from Flaveria trinervia 
PEPC. The lines are described by equation 1, the kinetic parameters are shown in Supp. Figure 3A and in panel 
C. B Markers represent individual data points from Flaveria trinervia PEPC. The lines are described by equation 
1, the kinetic parameters are shown in Supp. Figure 3B and in panel D. C Secondary plot of  kcat

app/Km
app HCO3- 

from Flaveria trinervia PEPC, the line is described by equation 1, characterised by the parameters kcat = 53.89 ± 

4.12 s-1, Km
HCO3- = 0.070 ± 0.005 mM, Km

PEP = 0.84 ± 0.02 mM and kcat/Km 
HCO3- = 6.92 × 105 ± 4.17× 104 s-1 M-1, 

error bars represent standard errors. D Secondary plot of kcat
app/Km

app HCO3- from Flaveria pringlei PEPC, the line 
is described by equation 1, characterised by the parameters kcat = 51.01 ± 0.01 s-1, Km

HCO3- = 0.99 ± 0.007 mM, 
Km

PEP = 0.0245 ±0.007 mM and kcat/Km HCO3- = 4.43 × 105 ± 2.17 × 104 s-1 M-1, error bars represent standard 
errors. 
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Figure 2: Plots of malate inhibition values for the PEPC enzymes. Assays conditions were 50 mM 
Tricine.KOH pH 8.0, 10 mM MgCl2, 0.2 mM NADH, 0.01 U μl-1 malate dehydrogenase, 10 mM KHCO3 and 10 
nM of Flaveria trinervia PEPC or 5 nM Flaveria pringlei PEPC. Markers are derived from Supp. Figure 4A for 
Flaveria trinervia PEPC and Supp. Figure 4B for Flaveria pringeli PEPC, error bars represent standard errors. 
Secondary plot lines are characterised by equation 2. A Secondary plot of kcat

app/Km
appPEP against malate 

concentration for the enzyme Flaveria trinervia PEPC characterised by Kic
Malate = 10.96 ± 1.55 mM. B Secondary 

plot of kcat
app/Km

appPEP against malate concentration for the enzyme Flaveria pringlei PEPC characterised by 
Kic

Malate = 2.14 ± 0.62 mM. C Secondary plot of kcat
app against malate concentration for the enzyme Flaveria 

trinervia PEPC characterised by Kiu
Malate = 40.72 ± 4.59 mM. D Secondary plot of kcat

app against malate 
concentration for the enzyme Flaveria pringlei PEPC characterised by Kiu

Malate = 4.56 ± 1.72 mM.  
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Figure 3: Plots of aspartate inhibition values for the PEPC enzymes. Assays conditions were 50 mM 
Tricine.KOH pH 8.0, 10 mM MgCl2, 0.2 mM NADH, 0.01 U μl-1 malate dehydrogenase, 10 mM KHCO3 and 10 
nM of Flaveria trinervia PEPC or 5 nM Flaveria pringlei PEPC. Markers are derived from Supp. Figure 5A for 
Flaveria trinervia PEPC and Supp. Figure 5B for Flaveria pringeli PEPC, error bars represent standard errors. 
Secondary plot lines are characterised by equation 2. A Secondary plot of kcat

app/Km
appPEP against aspartate 

concentration for the enzyme Flaveria trinervia PEPC characterised by Kic
Aspartate = 40.02 ± 6.49 mM. B 

Secondary plot of kcat
app/Km

appPEP against aspartate concentration for the enzyme Flaveria pringlei PEPC 
characterised by Kic

Aspartate = 4.31 ± 0.60 mM. C Secondary plot of kcat
app against aspartate concentration showing 

no aspartate competitive inhibition of Flaveria trinervia PEPC. D Secondary plot of kcat
app against aspartate 

concentration showing no aspartate competitive inhibition of Flaveria pringlei PEPC.  
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Table 1: Summary of kinetic parameters found in this study. Standard errors are given, based on fitted 
theoretical curves. 

Species kcat / s-1 

Km
PEP / 

mM 

kcat/Km
PEP /  

s-1 M-1 

Km
HCO3- / 

mM 

kcat/Km
HCO3- /  

s-1 sM-1 

Flaveria  

trinervia (C4) 

47.99 ± 

1.21 

0.60 ±  

0.05 

7.87 × 104 ±  

5.43 × 103 

0.065 ± 

0.007 

6.92 × 105 ±  

4.17 × 104 

Flaveria  

pringlei (C3) 

52.65 ± 

1.37 

0.056 ± 

0.001 

9.35 × 105 ±  

8.49 × 104 

0.099 ± 

0.007 

4.43 × 105 ± 

 2.17 × 104 

 

Table 2: Summary of inhibition parameters found in this study. Standard errors are given, based on fitted 
theoretical curves. 

Species Kic
Malate / mM Kiu

Malate / mM Kic
Aspartate / mM 

Flaveria 

trinervia (C4) 10.96 ± 1.55 40.72 ± 4.59 40.02 ± 6.49 

Flaveria  

pringlei (C3) 2.14 ± 0.62 4.56 ± 1.72 4.13 ± 0.60 

 

  



Chapter 2: Changes in bicarbonate specificity during the evolution of Flaveria C4 PEPC 
 

47 
 

DISCUSSION 

Adaptation of kinetics involved opposite changes in specificities of the two substrates 
The specificity for bicarbonate of the C4 PEPC is approximately one-third higher 

than that of the non-C4 PEPC (Figure 1). This difference in bicarbonate specificity suggests 

that the adaptation of Flaveria PEPC for the C4 context was in part driven by the availability 

of bicarbonate. The concentration of bicarbonate is determined by the equilibrium between 

dissolved carbon dioxide and bicarbonate in the cytosol. The enzyme carbonic anhydrase 

speeds up the interconversion of carbon dioxide and bicarbonate, and high levels are found 

in the cytosol of mesophyll cells in C4 leaves (Tetu et al., 2007). Carbonic anhydrase, of 

course, cannot influence the equilibrium position, only the speed at which it is reached. In 

the C4 pathway, the high activity of PEPC also requires a high carbonic anhydrase activity to 

prevent depletion of bicarbonate (Hatch and Burnell, 1990), although C4 plants can function 

without the carbonic anhydrase if CO2 concentrations are high enough (Studer et al., 2014). 

At higher temperatures or in saline environments, typical of C4 species, the availability of 

bicarbonate decreases, which suggests that an increase in specificity for bicarbonate of 

PEPC is necessary for high flux demands of the C4 cycle. Because of their involvement in 

different cycles, the non-C4 and C4 PEPC enzymes are likely to be differentially limited by 

the PEP and bicarbonate substrates.  

The observed different of bicarbonate specificity contrasts with the change in specificity 

for PEP of the C4 PEPC, which is ten times lower than that of the non-C4 PEPC (Figure 1). 

The primary function of the non-C4 PEPC is anaplerotic, replenishing oxaloacetate for key 

metabolic pathways such the citric acid cycles (O’Leary, Park and Plaxton, 2011). In this 

context, the enzyme deals with relatively low substrate concentrations, but the function is 

likely to require a fast response to small concentration changes. It is therefore likely that 

high specificity for PEP is strongly selected for in non-C4 PEPC. Because the overall activity 

of non-C4 PEPC is low, the background bicarbonate concentration is likely to be sufficient 

for anaplerotic reactions, potentially relaxing pressures on bicarbonate specificity. Following 

its co-option for the C4 cycle, selective pressures on PEPC are likely altered. Indeed, C4 
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PEPC plays a central role in the high-flux C4 cycle (Svensson, Bläsing and Westhoff, 2003; 

Stitt and Zhu, 2014). The activity of carbonic anhydrase is necessary for the C4 cycle at low-

CO2 concentrations (Osborn et al. 2017), demonstrating that bicarbonate is a limiting factor. 

We therefore suggest that the specificity of PEPC towards bicarbonate is increased during C4 

evolution to boost the rate of the pathway. 

In contrast to the observed change in bicarbonate affinity, the specificity of PEPC 

towards PEP is substantially lower in the C4 enzymes than the C3 forms (Svensson, Bläsing 

and Westhoff, 1997; Blasing, Westhoff and Svensson, 2000; Jacobs et al., 2008). This 

presents an interesting conundrum; why on adaption to a high flux pathway have the kinetic 

properties of PEPC moved in a direction expected to reduce the flux through the pathway? 

One potential explanation arises from the high intracellular concentration of PEPC. In the 

Zea mays leaf, the concentration of C4 PEPC is ca. 0.14 mM, and is therefore likely to be 

greater than this in the mesophyll (McNaughton et al., 1989; Jiao and Chollet, 1991). This 

enzyme concentration is comparable to the concentration of PEP in mesophyll cells, at ca. 

0.38 mM in the C4 species Zea mays (Arrivault et al., 2017). At these concentrations, a C3 

type Km
PEP (i.e. 0.06 mM, Table 1) would result in a substantial fraction of the intracellular 

PEP being bound to the enzyme, while the order-of-magnitude larger C4 type Km
PEP results in 

much more of the PEP pool being unbound and thus available to other enzymes and 

metabolic pathways (Gowik and Westhoff, 2011).  The magnitudes of changes in affinity for 

PEP and bicarbonate are very different, therefore we proposed that the two are decoupled, 

and results from distinct selective pressures on enzymes of the C4 pathway. 

The C4 form is tightly controlled by C4 metabolites 
It is well established that malate acts as an inhibitor of PEPC and comparative work in 

Flaveria has shown that the C4-specific form of the enzyme is less sensitive to malate than 

the C3 form (Svenssonz, and Westhoff, 1997; Paulus, Schlieper and Groth, 2013). Previous 

work has shown that malate acts as a mixed inhibitor towards the C4 Zea mays PEPC, 

inhibiting the enzyme at both saturating PEP and limiting PEP concentrations, and that the 
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form of the inhibition varies with the source and storage of the enzyme (Wedding, Black and 

Meyer, 1990). As a result, the both the type and the extent of inhibition may have changed 

on the transition between a C3-type and a C4-type form of PEPC. To investigate this 

possibility, we have determined the inhibition behaviour of two critical four-carbon 

inhibitors of PEPC, malate and aspartate, towards both C3 and C4 forms of the enzyme from 

the Flaveria model system. 

Our investigations have shown that malate exhibits mixed inhibition of both 

isoforms of PEPC, but inhibition differs quantitatively among the two enzymes (Figure 2). 

The C4 isoform is five times less sensitive to competitive inhibition and ten times less 

sensitive to non-competitive inhibition when compared to the C3 isoform. So, while the 

balance between the two forms of inhibition differs between the C3 and C4 isoforms, both 

retain the same general pattern that malate will inhibit to some extent at all PEP 

concentrations. In the case of aspartate, again the type of inhibition remains the same in both 

Flavaria enzymes; aspartate competitively inhibits both the C4 and C3 PEPC forms (Figure 

3). In general, C4 evolution seems to have driven a decrease of sensitivity towards both of 

these inhibitors.  

Sensitivity to both malate (Figure 2) and aspartate inhibition (Figure 3) is reduced in 

the C4 PEPC as compared to the non-C4 isoform. The high sensitivity of the non-C4 enzyme 

likely allows tight control by relatively low concentrations of feedback inhibitor. On the 

other hand, the C4-specific isoform functions in a context where metabolite concentrations 

can be high; the concentrations of malate and aspartate have been estimated at 11.18 mM 

and 1.17 mM respectively in Zea mays (Arrivault et al., 2017), requiring that PEPC has a 

reduced sensitivity to these inhibitors.  
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EXPERIMENTAL PROCEDURES 
Unless otherwise stated, reagents and components were from Sigma. For 

purification, unless otherwise stated the equipment used procured from GE Healthcare. 

unless otherwise stated enzymes and E. coli strains were from NEB. 

DNA Preparation 
Plasmids that encode the Flaveria trinervia PEPC gene and the Flaveria pringlei 

PEPC gene in the pTrc 99A plasmid were gifted by Peter Westhoff. The PEPC genes were 

sub cloned into the pET-1B His6 TEV LIC vector plasmid, gifted by Scott Gradia 

(University of California, Berkeley, Addgene plasmid # 29653). Genes were copied with 

PCR using the Q5 polymerase and the Flv1BFor and Flv1BRev primers (Primers 

synthesised by Sigma). Genes were sub cloned using the ligation independent cloning 

method with Q5 DNA polymerase and T4 DNA polymerase (NEB). Cloned plasmids were 

isolated using a Miniprep DNA kit (Qiagen). Plasmids were Sanger sequenced (GATC 

Biotech) using the T7 promotor, T7 terminator, Flav_1303_Seq_For and 

Flav_1832_Seq_Rev primers (Primers summarised in Table 3).  

Protein Expression 
For protein expression, BL21λ(DE3) strain E. coli (NEB) was used. Chemically 

competent E. coli cells were transformed with each of the plasmids. Eight litres of cultures 

were grown in LB medium at 37°C to OD600 0.8. Cultures were cooled to 4°C for one hour 

prior to recombinant protein induction with 0.5 mM IPTG (Fischer). Cultures were then 

incubated at 18°C for 18 hours. Cells were harvested by centrifugation at 5,422 × g for 25 

minutes and stored at -80°C. 

Protein Purification 
Cells were suspended with immobilized metal affinity column (IMAC) buffer (25 

mM Tris, 0.5 M NaCl, 0.3 M glycerol, 20 mM imidazole (Acros Scientific), 10 ml per 2 L of 

culture with 50 µl of 50mg ml-1 DNase I and 100 µl of 100 mg ml-1 Pefabloc. Cells were 

passed twice through a cell disruptor (Constant Systems) before centrifugation at 26,902 × g 

for 40 minutes. The supernatant was passed through a 0.45 µm pore filter (Elkay Labs.). 
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PEPC was separated from soluble protein with a prepacked 1 ml nickel affinity column 

using an ÄKTA™ Pure 25 L Chromatography System. The loaded column was washed with 

50 column volumes of IMAC buffer, then 50 column volumes of IMAC buffer containing 

150 mM imidazole.  Pure PEPC was eluted with 10 column volumes of IMAC buffer 

containing 400 mM imidazole.  

Protein eluted from IMAC purification was loaded onto a Sephadex G50 desalting 

column (Amersham Biosciences) and rebuffered in storage buffer (20 mM Tris, 5% v/v 

glycerol, 150 mM KCl, 1 mM DTT (AnaSpec. Inc). Protein was concentrated to ca. 12-15 

µM with a Vivaspin 20 MWCO 3000 (Sartorius), aliquoted and frozen at -80°C until use.  

Enzyme Quantification 
PEPC enzyme concentration was quantified by absorption at 280 nm. Enzyme 

extinction coefficient was calculated using the ExPASy protein parameter tool and corrected 

by determining the absorbance of the protein denatured in 6 M guanidine hydrochloride (Gill 

and von Hippel, 1989). The difference between the denatured and folded protein at 280 nm 

was used to adjust the extinction coefficient of the protein. The extinction coefficient for 

Flaveria trinervia PEPC was determined to be 120480 M-1 cm-1, the extinction coefficient for 

Flaveria pringlei PEPC was determined to be 117030 M-1 cm-1. A difference of -0.5% and -

6.7% between predicted absorbance coefficients for Flaveria trinervia and Flaveria pringlei 

PEPC were observed respectively. It is assumed that all enzyme used to initialise the assay 

was active. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE) Analysis   
Total protein concentration for purification efficiency was determined using the 

BCA Pierce quantification kit (Thermo Scientific). Concentration was determined using a 

standard curve performed with bovine serum albumin, over a concentration range 0 – 2.0 mg 

ml-1.  

Protein samples were analysed for purity using SDS PAGE analysis. Protein 

samples were quantified using the BCA Peirce method, 25 µg of cell lysis and 5 µg of pure 

protein elutions were denatured in 2 × SDS PAGE loading dye (200 mM Tris.HCl pH 6.8, 2 
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% SDS, 20 % Glycerol, 0.01% Bromophenol blue (BDH Laboratory Supplies) and 7 % β-

mercaptoethanol). Protein was loaded onto an 8% acrylamide SDS gel with 2 µl of Blue 

Prestained Protein Standard Broad Range (11-190 kDa) (NEB). Gels were run for 50 

minutes at 200 V with 1 × Tris/Glycine/SDS running buffer (Geneflow). Gels were stained 

with InstantBlue (Expedeon) and imaged with a ChemiDoc™ MP (BioRad).  

Enzyme Assays 
PEPC activity was measured spectroscopically at 340 nm by coupling to NADH-

malate dehydrogenase. Assays with a high fixed concentration of bicarbonate were observed 

using a FLUOstar plate reader (BMG Labtech) using the 340 nm ± 5 nm absorbance filter 

(BMG Labtech). Plate reader assays were conducted in a reaction volume of 150 µl at 25°C. 

Typical reaction mixture contained 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2 (Fluka), 5 

mM KHCO3. 0.2 mM NADH (Fischer) and 0.1 Uµl-1 malate dehydrogenase. Assays were 

initiated with the addition of PEPC enzyme.  Rates were calculated with a NADH calibration 

curve. 

Assays at a range of bicarbonate concentrations were observed with a Cary 300  Bio 

spectrophotometer (Agilent Technologies) in the same reaction buffer, in a total reaction 

volume of 600 µl. In bicarbonate assays, the water and tricine buffer were sparged with 

nitrogen for 18 hours prior to use in assays. Bicarbonate assays were constructed under a 

nitrogen flow. Assays were performed in a sealed cuvette. The reaction was initiated with 

the addition of 50 nM PEPC, delivered with a gastight syringe (Hamilton). Bicarbonate 

concentrations were controlled with the addition of freshly prepared potassium bicarbonate. 

Background bicarbonate was determined using an endpoint assay with no potassium 

bicarbonate, run for 30 minutes. Rates were calculated using the Cary analysis software.  
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Data Analysis 
Kinetic parameters were evaluated by non-linear regression analysis in Igor Pro 

(Version 7.0.8.1; Wavemetrics Inc., Lake Oswego Orgeon).  The following equations were 

used:  

(Equation 1) 

𝑣
[𝐸்]ൗ =  

𝑘௧ × [𝑆]

𝐾 + [𝑆]
 

Equation 1, where vi/[ET] is the steady state rate divided by the total enzyme 

concentration, kcat is the first order rate constant, Km is the Michaelis constant, and S is the 

substrate concentration.  

 (Equation 2) 

𝑘  =  
𝑘

1 +  
[𝑖]

𝐾
ൗ

 

Equation 2, where kapp is the apparent rate constant, k is the uninhibited constant, i is 

the inhibitor concentration, and Ki is the inhibition constant.   
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SUPPLEMENTARY DATA 

 

Figure S 1: 10% acrylamide SDS PAGE analysis of Flaveria trinervia PEPC and Flaveria pringlei PEPC. 
Lane one contains ca. 6 µg of Flaveria trinervia PEPC protein eluted from a nickel IMAC column. Lane two 
contains ca. 6 µg of Flaveria pringlei PEPC protein eluted from a nickel IMAC column. A ca. 120 kDa band is 
seen in each lane corresponding to PEPC, no other bands are detected.  
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Kinetic Assay Results 
A 

 

B 

 
Figure S 2: Rate of oxaloacetic acid formation, catalysed by PEPC, varying the concentration of 
phosphoenolpyruvate. Assays conditions were 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2, 10 mM KHCO3, 
0.15 mM NADH and 0.01 Uμl-1 malate dehydrogenase. Assays were repeated (n = 3) for each concentration of 
PEP. A Filled circles represent experimental data points for Flaveria trinervia. The line is described by equation 
1, with characterising parameters kcat = 47.99 ± 1.21 s-1, Km

PEP = 0.60 ± 0.05 mM, and kcat/Km
PEP = 78735 ± 5430 

s-1M-1. B Filled circles represent experimental data points for Flaveria pringlei. The line is described by equation 
1, with characterising parameters kcat = 52.65 ± 1.37 s-1, Km

PEP = 0.056 ± 0.0006 mM and kcat/Km
PEP = 934550 ± 

84900 s-1 M-1. 

A 

 

B 

 
Figure S 3: Secondary plot of the kcat

app parameter from bicarbonate assays in Figure 1. A Filled circles 
represent the kcat

app parameter from Figure 1A for the enzyme the Flaveria trinervia PEPC, error bars represent 
standard errors from fit of lines. The line described by equation 1, characterised by the parameters kcat = 53.89 ± 
4.12 s-1 and Km

PEP = 0.84 ± 0.02 mM. B Filled circles represent the kcat
app parameter from Figure 1C for the 

enzyme Flaveria pringlei PEPC, error bars represent standard errors from fit of lines, the line is described by 
equation 1, characterised by the parameters kcat = 51.01 ± 0.05 s-1 Km

PEP = 0.077 ± 0.007 mM. 
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A 

 

B 

 
Figure S 4: Primary plot of PEPC inhibited by malate. Assays conditions were 50 mM Tricine.KOH pH 8.0, 
10 mM MgCl2, 10 mM KHCO3 0.2 mM NADH and 0.01 Uμl-1 malate dehydrogenase. The lines are described by 
equation 1. A Points indicate experimental data run for Flaveria trinervia PEPC, filled circles indicates no 
inhibitor, open circles indicate the presence of 8 mM malate, filled squares indicate the presence of 16 mM 
malate, open squares indicate the presence of 32 mM malate, filled triangles indicate the presence of 60 mM 
malate and open triangles indicate the presence of 120 mM malate. B Points indicate experimental data runs, 
filled circles indicates no inhibitor, open circles indicate the presence of 4 mM malate, filled squares indicate the 
presence of 12 mM malate, open squares indicate the presence of 24 mM malate, filled triangles indicate the 
presence of 32 mM malate and open triangles indicate the presence of 60 mM malate.  

A 

 

B 

 
Figure S 5: Primary plot of PEPC inhibited by aspartate. Assays conditions were 50 mM Tricine.KOH pH 
8.0, 10 mM MgCl2, 10 mM KHCO3, 0.2 mM NADH and 0.01 Uμl-1 malate dehydrogenase. The lines are 
described by equation 1. A Points indicate experimental data run for Flaveria trinervia PEPC, filled circles 
indicates no inhibitor, open circles indicate the presence of 8 mM aspartate, filled squares indicate the presence 
of 16 mM aspartate, open squares indicate the presence of 32 mM aspartate, filled triangles indicate the presence 
of 60 mM aspartate and open triangles indicate the presence of 120 mM aspartate. B Points indicate experimental 
data run for Flaveria pringlei PEPC, open circles indicate the presence of 8 mM aspartate, filled squares 
indicates the presence of 16 mM aspartate, open squares indicate the presence of 32 mM aspartate, filled triangles 
indicate the presence of 60 mM aspartate and open triangles indicate the presence of 120 mM aspartate. 
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Primers 
 

Table 3: Summary of the primers used in this study for cloning and sequencing.  

Primer Sequence, 5’ to 3’ 

FlvFor1B TACTTCCAATCCAATGCAATGGCTAACCGGAAT 

FlvRev1B TTATCCACTTCCAATGTTATTACTAACCGGTGTTCTGC 

Flav_1303_Seq_For AGACAAGTGTCGACTT 

Flav_1832_Seq_Rev TTGTAGAGCTGCCATG 

T7 Promotor TAATACGACTCACTATAGGG 

T7 Terminator GCTAGTTATTGCTCAGCGG 
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Plasmid Sequences 
>pET-1B_Flaveria_trinervia_PEPC 
AACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGC
CCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGAT
GCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGC
TGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCC
CGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGA
GAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTT
CCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTG
TGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCG
GCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAG
CAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCAC
TTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGC
ATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCAT
GCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATT
AGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGG
CGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGG
CGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCC
GGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATT
GTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGTTCTTCTC
ACCATCACCATCACCATGAAAACCTGTACTTCCAATCCAATGCAATGGCTAACCGGAATGTGGAGAAATTAGCA
TCGATCGATGCTCAGTTGAGGCTTTTAGTCCCTGGGAAAGTTTCTGAGGATGATAAGCTTGTTGAGTATGATGCT
TTGCTTTTGGATAAGTTTCTGGATATTCTTCAGGATTTGCATGGGGAAGATCTCAAGGAAGCGGTTCAACAATGC
TATGAGCTATCTGCTGAATATGAAGGAAAACATGACCCGAAGAAGCTGGAGGAGCTTGGAAGTCTGTTGACAAG
TTTAGATACAGGGGATTCCATTGTCATTGCAAAAGCCTTTTCTCACATGCTTAACTTAGCCAATCTGGCTGAAGA
ACTTCAGATTGCTTACCGCCGAAGAATCAAACTGAAGAGTGGTGATTTTGCTGACGAGGCTAACGCAACAACTG
AATCAGATATTGAAGAAACTTTCAAGAGACTTGTGCATAAGCTTAACAAGTCCCCTGAAGAGGTTTTTGATGCAC
TGAAGAATCAAACTGTTGAGTTGGTCTTGACTGCTCATCCAACTCAATCCGTCCGTAGATCTTTGCTTCAAAAGC
ATGGAAGGATTCGTAATTGTCTGGCCCAGTTGTATGCCAAAGACATCACTCCTGATGATAAGCAGGAACTCGATG
AGGCTTTGCATAGAGAAATTCAAGCTGCATTCCGTACTGATGAAATCAGAAGGACTCCACCAACACCACAAGAT
GAAATGAGAGCAGGAATGAGTTACTTCCATGAAACAATCTGGAAGGGTGTTCCAAAATTCTTACGTCGTGTTGA
CACTGCCCTAAAGAATATTGGAATTAATGAACGTTTTCCCTATAATGCACCTCTAATTCAATTCTCTTCATGGATG
GGTGGTGACCGTGATGGCAATCCGAGGGTTACTCCTGAGGTAACAAGGGATGTTTGTTTGCTAGCCAGAATGAT
GACGTCAAACATGTACTTTTCTCAGATAGAGGATCTTATGATTGAGATGTCCATGTGGCGTTGTAATAGTGAATT
ACGTGTTCGAGCAGAAGAACTGTACAGAACAGCAAGAAAAGATGTGAAGCACTACATAGAGTTTTGGAAACGG
ATTCCTCCCAATCAACCTTATCGTGTAATTCTTGGTGATGTAAGGGACAAATTATATAATACACGTGAACGATCT
CGTCATTTATTGGTCGATGGGAAATCTGACATCCCAGACGAAGCTGTTTATACCAATGTTGAACAGCTCTTGGAA
CCACTGGAGCTATGCTACAGATCACTATGTGACTGTGGTGACCATGTGATTGCTGATGGAAGCCTTCTTGATTTTC
TAAGACAAGTGTCGACTTTTGGACTCTCACTTGTAAAACTTGATATAAGACAAGAATCTGACCGTCACACTGAAG
TCCTTGATGCAATCACTCAACATTTAGGAATTGGGTCCTATCGTGAGTGGTCTGAAGAAAAACGCCAAGAATGGC
TTCTAGCTGAACTCAGTGGAAAACGTCCTCTTATTGGTCCAGACCTTCCAAAAACTGAGGAAGTTAAGGATTGTT
TAGACACGTTTAAGGTTTTAGCAGAACTCCCGTCTGACTGTTTCGGTGCTTACATCATCTCAATGGCCACATCAAC
TTCTGATGTCCTTGCTGTTGAGCTTCTCCAGCGTGAATACCATATAAAACATCCGTTACGCGTGGTCCCCTTATTT
GAAAAACTTGCTGACCTGGAGGCGGCCCCTGCGGCCATGACCCGCCTTTTCTCAATGGATTGGTACAGAAACCG
AATTGATGGTAAACAAGAAGTCATGATTGGGTACTCTGATTCAGGAAAAGATGCAGGCCGGTTCTCTGCTGCAT
GGCAGCTCTACAAAACTCAAGAACAGATTGTTAAAATTGCAAAAGAGTTTGGAGTCAAACTTGTTATATTTCATG
GGCGTGGTGGAACTGTTGGTAGAGGTGGTGGGCCCACACATCTGGCTCTTCTCTCTCAACCACCGGACACCATTA
ACGGGTCTTTAAGAGTGACAGTTCAGGGTGAGGTCATAGAGCAGTCGTTTGGTGAGGAACATTTGTGCTTTAGAA
CACTTCAGAGATTTTGTGCAGCTACACTTGAGCATGGGATGAACCCACCAATCTCACCACGACCCGAGTGGCGTG
AACTTATGGACCAGATGGCTGTTGTTGCAACCGAGGAGTACCGTTCTGTTGTGTTCAAGGAACCACGTTTTGTGG
AGTATTTCCGGCTTGCAACACCTGAACTGGAGTTCGGGCGTATGAATATTGGAAGTCGCCCATCAAAAAGAAAA
CCGAGTGGTGGCATTGAATCACTCAGAGCCATTCCATGGATCTTTTCATGGACTCAGACCAGGTTCCATCTCCCA
GTTTGGCTTGGGTTTGGGGCGGCGTTCAAACACGCCATCCAAAAAGACAGCAAGAATCTCCAAATGCTTCAAGA
AATGTACAAAACATGGCCTTTCTTTCGGGTCACCATTGATTTAGTTGAAATGGTGTTTGCTAAAGGTAACCCAGG
CATTGCTGCCCTGAATGACAAGCTCCTTGTTTCTGAAGATCTAAGGCCCTTTGGAGAATCTTTGAGAGCAAACTA
TGAAGAAACCAAAAATTATCTTCTCAAGATTGCTGGACATAAGGACCTTCTAGAGGGTGATCCCTACTTGAAACA
AGGAATCAGGCTGCGTGATCCGTACATCACAACCTTGAATGTATGCCAAGCTTATACCCTAAAGAGGATCCGTG
ACCCGAACTATCATGTGACATTAAGGCCTCATATTTCTAAAGAATATGCCGCTGAGCCGAGCAAACCAGCTGATG
AGCTTATCCACCTGAACCCAACCAGCGAGTACGCACCCGGTTTGGAGGACACGCTCATCTTGACCATGAAAGGG
ATTGCTGCTGGAATGCAGAACACCGGTTAGTAATAACATTGGAAGTGGATAACGGATCCGAATTCGAGCGCCGT
CGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGG
AAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGG
GGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>pET-1B_Flaveria_pringlei_PEPC 
AACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGC
CCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGAT
GCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGC
TGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCC
CGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGA
GAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTT
CCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTG
TGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCG
GCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAG
CAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCAC
TTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGC
ATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCAT
GCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATT
AGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGG
CGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGG
CGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCC
GGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATT
GTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGTTCTTCTC
ACCATCACCATCACCATGAAAACCTGTACTTCCAATCCAATGCAATGGCTAACCGGAATTTGGAGAAATTAGCAT
CGATCGATGCTCAGTTGAGGCTTTTAGTCCCTGGGAAAGTTTCTGAGGATGATAAGCTTATTGAGTATGATGCTT
TGCTTTTGGATAAGTTTCTGGATATTCTTCAAGATTTGCATGGGGAAGATCTCAAGGAAGCGGTTCAAGAATGCT
ATGAGCTATCTGCTGAATATGAAGGAAAACATGACCCGAAGAAGCTGGAGGAGCTTGGAAGTGTGTTGACAAGT
TTAGATCCAGGGGATTCCATTGTCATTGCAAAAGCTTTTTCTCACATGCTTAACTTAGCCAATCTGGCTGAAGAA
GTTCAGATTGCTTACCGCCGAAGAATCAAACTGAAGAGAGGTGATTTTGCTGATGAGGCTAATGCAACAACTGA
ATCAGATATTGAAGAAACTTTCAAGAAACTTGTGCTTAAGCTTAACAAGTCCCCTGAAGAGGTTTTTGATGCACT
CAAGAATCAAACTGTTGACTTGGTCTTGACTGCTCATCCAACTCAATCCGTCCGCAGATCTTTGCTTCAAAAGCA
TGGAAGGATTCGCAACTGTCTGGCCCAGTTGTATGCCAAAGACATCACTCCTGATGATAAGCAGGAATTAGATG
AGGCTTTGCATAGAGAAATTCAAGCTGCATTTCGTACTGATGAAATCAGGAGGACCCCACCAACACCACAAGAT
GAAATGAGAGCAGGAATGAGTTACTTCCATGAAACAATCTGGAAGGGTGTTCCTAAATTCTTACGTCGTGTTGAC
ACCGCCCTAAAGAATATAGGGATTAATGAACGTGTTCCCTATAATGCACCTCTAATTCAATTCTCTTCATGGATG
GGTGGTGACCGTGATGGCAATCCGAGGGTAACTCCTGAGGTAACGAGGGATGTTTGTTTGCTAGCCAGAATGAT
GGCTTCAAACATGTACTTTTCTCAGATAGAGGATCTTATGTTTGAGATGTCCATGTGGCGTTGTAATAGTGAACT
ACGTGTTCGAGCAGAAGAACTATATAGAACAGCAAGAAGAGATGTGAAGCACTACATAGAGTTCTGGAAACAG
GTTCCTCCCACTGAACCTTATCGTGTAATTCTTGGTGATGTAAGGGACAAATTATATAATACACGTGAACGATCT
CGCCATTTATTAGCCCATGGGATATCTGACATCCCAGAAGAAGCTGTTTATACCAATGTTGAACAGTTCTTGGAA
CCACTGGAGCTATGCTACAGATCACTATGTGACTGTGGTGACCGTGTGATTGCTGATGGAAGCCTTCTTGATTTTC
TAAGACAAGTGTCGACTTTTGGACTCTCACTTGTAAAACTTGATATAAGACAAGAATCTGACCGTCACACTGACG
TCCTTGATGCAATCACTCAACATTTAGAAATTGGGTCCTACCGTGAGTGGTCTGAAGAAAAACGCCAAGAATGG
CTTCTAGCTGAACTCAGTGGAAAACGTCCTCTTTTCGGTTCAGACCTTCCAAAAACTGAGGAAGTTAAGGATGTT
TTAGACACGTTTAATGTTTTAGCAGAACTCCCATCTGACTGTTTCGGTGCTTACATCATCTCAATGGCCACATCAC
CTTCTGATGTCCTTGCTGTTGAGCTTCTCCAACGTGAATGCCATGTAAAACATCCGTTACGCGTGGTCCCCCTATT
TGAAAAACTTGCTGACCTAGAGGCGGCCCCTGCGGCCATGGCCCGCCTTTTCTCAATCGATTGGTACAGAAATCG
GATCGACGGTAAACAAGAAGTCATGATTGGGTACTCTGATTCAGGAAAAGATGCAGGCCGGTTTTCTGCTGCAT
GGCAGCTCTACAAAGCTCAAGAAGAGATTATTAAAGTTGCAAAAGAGTTTGGGGTCAAACTTGTTATATTTCATG
GGCGTGGGGGGACTGTTGGTAGAGGTGGCGGGCCCACACATTTAGCTATCCTCTCTCAACCACCAGACACCATTC
ACGGGTCGTTAAGAGTCACGGTTCAGGGTGAGGTCATAGAGCAGTCGTTTGGTGAGGAACATTTGTGTTTTAGAA
CACTTCAGAGATTTTGTGCAGCTACACTTGAGCATGGGATGAACCCACCAATTTCACCACGGCCTGAGTGGCGTG
AACTTATGGACCAGATGGCTGTTGTTGCAACCGAGGAGTACCGTTCTATTGTGTTTAAGGAACCACGTTTTGTGG
AGTATTTCCGCCTTGCAACACCTGAATTGGAGTACGGGCGTATGAATATTGGAAGTCGCCCATCAAAAAGAAAA
CCTAGTGGTGGCATTGAATCACTCAGAGCCATTCCATGGATCTTTGCATGGACTCAGACCAGGTTCCATCTCCCA
GTTTGGCTTGGGTTTGGAGCGGCATTCAAACATGCCATTAAAAAAGACAGCAAGAATCTTCAAATGCTTCAAGA
AATGTACAAAACATGGCCTTTCTTTCGGGTCACCATTGATTTAGTTGAAATGGTGTTTGCTAAAGGAGACCCAGG
CATTGCTGCCTTGAATGACAAACTCCTTGTTTCTGAAGATCTATGGCCTTTTGGAGAATCTTTGAGAGCAAACTAT
GAAGAAACCAAAGATTATCTTCTCAAGATTGCTGGACACAGGGACCTTCTAGAGGGTGATCCCTACTTAAAACA
AAGAATCAGGCTGCGTGATTCATACATCACAACCTTAAATGTATGTCAAGCTTATACCCTAAAGCGGATCCGCGA
CCCGAACTATCATGTGACATTAAGGCCTCATATTTCCAAAGAATACGCCGCCGAGCCGAGCAAACCAGCTGACG
AGCTTATCCACCTGAACCCAACCAGTGAATACGCACCCGGTTTGGAGGACACGCTCATCTTGACCATGAAAGGG
ATTGCTGCTGGAATGCAGAACACCGGTTAGTAATAACATTGGAAGTGGATAACGGATCCGAATTCGAGCGCCGT
CGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGG
AAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGG
GGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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Protein Amino Acid Sequence 
>pET-1B Flaveria trinervia PEPC amino acid sequence 

MGSSHHHHHHENLYFQSNAMANRNVEKLASIDAQLRLLVPGKVSEDDKLVEYDAL

LLDKFLDILQDLHGEDLKEAVQQCYELSAEYEGKHDPKKLEELGSLLTSLDTGDSIV

IAKAFSHMLNLANLAEELQIAYRRRIKLKSGDFADEANATTESDIEETFKRLVHKLN

KSPEEVFDALKNQTVELVLTAHPTQSVRRSLLQKHGRIRNCLAQLYAKDITPDDKQ

ELDEALHREIQAAFRTDEIRRTPPTPQDEMRAGMSYFHETIWKGVPKFLRRVDTALK

NIGINERFPYNAPLIQFSSWMGGDRDGNPRVTPEVTRDVCLLARMMTSNMYFSQIE

DLMIEMSMWRCNSELRVRAEELYRTARKDVKHYIEFWKRIPPNQPYRVILGDVRDK

LYNTRERSRHLLVDGKSDIPDEAVYTNVEQLLEPLELCYRSLCDCGDHVIADGSLLD

FLRQVSTFGLSLVKLDIRQESDRHTEVLDAITQHLGIGSYREWSEEKRQEWLLAELS

GKRPLIGPDLPKTEEVKDCLDTFKVLAELPSDCFGAYIISMATSTSDVLAVELLQREY

HIKHPLRVVPLFEKLADLEAAPAAMTRLFSMDWYRNRIDGKQEVMIGYSDSGKDA

GRFSAAWQLYKTQEQIVKIAKEFGVKLVIFHGRGGTVGRGGGPTHLALLSQPPDTIN

GSLRVTVQGEVIEQSFGEEHLCFRTLQRFCAATLEHGMNPPISPRPEWRELMDQMA

VVATEEYRSVVFKEPRFVEYFRLATPELEFGRMNIGSRPSKRKPSGGIESLRAIPWIFS

WTQTRFHLPVWLGFGAAFKHAIQKDSKNLQMLQEMYKTWPFFRVTIDLVEMVFA

KGNPGIAALNDKLLVSEDLRPFGESLRANYEETKNYLLKIAGHKDLLEGDPYLKQGI

RLRDPYITTLNVCQAYTLKRIRDPNYHVTLRPHISKEYAAEPSKPADELIHLNPTSEY

APGLEDTLILTMKGIAAGMQNTG* 
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>pET-1B Flaveria pringlei PEPC amino acid sequence 

MGSSHHHHHHENLYFQSNAMANRNLEKLASIDAQLRLLVPGKVSEDDKLIEYDAL

LLDKFLDILQDLHGEDLKEAVQECYELSAEYEGKHDPKKLEELGSVLTSLDPGDSIV

IAKAFSHMLNLANLAEEVQIAYRRRIKLKRGDFADEANATTESDIEETFKKLVLKLN

KSPEEVFDALKNQTVDLVLTAHPTQSVRRSLLQKHGRIRNCLAQLYAKDITPDDKQ

ELDEALHREIQAAFRTDEIRRTPPTPQDEMRAGMSYFHETIWKGVPKFLRRVDTALK

NIGINERVPYNAPLIQFSSWMGGDRDGNPRVTPEVTRDVCLLARMMASNMYFSQIE

DLMFEMSMWRCNSELRVRAEELYRTARRDVKHYIEFWKQVPPTEPYRVILGDVRD

KLYNTRERSRHLLAHGISDIPEEAVYTNVEQFLEPLELCYRSLCDCGDRVIADGSLLD

FLRQVSTFGLSLVKLDIRQESDRHTDVLDAITQHLEIGSYREWSEEKRQEWLLAELS

GKRPLFGSDLPKTEEVKDVLDTFNVLAELPSDCFGAYIISMATSPSDVLAVELLQRE

CHVKHPLRVVPLFEKLADLEAAPAAMARLFSIDWYRNRIDGKQEVMIGYSDSGKD

AGRFSAAWQLYKAQEEIIKVAKEFGVKLVIFHGRGGTVGRGGGPTHLAILSQPPDTI

HGSLRVTVQGEVIEQSFGEEHLCFRTLQRFCAATLEHGMNPPISPRPEWRELMDQM

AVVATEEYRSIVFKEPRFVEYFRLATPELEYGRMNIGSRPSKRKPSGGIESLRAIPWIF

AWTQTRFHLPVWLGFGAAFKHAIKKDSKNLQMLQEMYKTWPFFRVTIDLVEMVF

AKGDPGIAALNDKLLVSEDLWPFGESLRANYEETKDYLLKIAGHRDLLEGDPYLKQ

RIRLRDSYITTLNVCQAYTLKRIRDPNYHVTLRPHISKEYAAEPSKPADELIHLNPTSE

YAPGLEDTLILTMKGIAAGMQNTG*
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ABSTRACT 
C4 photosynthesis is a complex trait that evolved repeatedly to remove the inefficiencies 

of carbon fixation in C3 photosynthesis. In the C4 carbon fixation cycle, the initial carbon 

fixation is catalyzed by phosphoenolpyruvate carboxylase (PEPC). PEPC is encoded by a 

multigene family, with multiple isoforms present in all plants and bacteria. The C4-specific 

PEPC evolved from the co-option of an ancestral C3 form, which was massively upregulated 

to sustain the high fluxes of the C4 pathway. Previous work has suggested that its kinetic 

properties had been adapted to the demands of the metabolic cycle, but whether similar 

kinetic modifications occurred in all C4 lineages remains unknown. In this work, we assess 

the kinetic differences between PEPC of a C4 and a C3 grass and contrast them to those of 

the distantly related Flaveria. Despite their evolutionary distance, the kinetic behaviour was 

modified in the same direction in the two groups, although differences are markedly stronger 

in grasses. This is likely explained by the age of the C4 groups, which is about 16 million 

years ago for the grass as opposed to less than two in Flaveria. We suggest that the longer 

evolutionary period, potentially coupled with stronger selective pressure, lead to greater 

adaption of the grass PEPC to the demands of the C4 cycle, as suggested based on 

comparisons of amino acid sequences. We conclude that the outcome of convergent origins 

of biochemical pathways depend on the length of the subsequent period of adaptation of the 

trait.

 

C4 photosynthesis is a CO2-concentrating mechanism that boosts productivity in tropical 

conditions (Atkinson et al., 2016). The higher efficiency of C4 plants results from the 

increased concentration of CO2 around ribulose-bisphosphate carboxylase oxygenase 

(RuBisCO), the central enzyme of the Calvin-Benson cycle (Sage, Sage and Kocacinar, 

2012). RuBisCO has a tendency to confuse CO2 and O2, and the fixation of the latter 

produces toxic compounds that need to be processed in the energetically costly 

photorespiration pathway (Tcherkez, Farquhar and Andrews, 2006; Nisbet et al., 2007). In 

C3 plants, RuBisCO is in direct contact with atmospheric gases, and photorespiration can 
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become consequential in conditions that decrease the relative concentration of CO2, 

including high temperature, aridity and salinity (Ehleringer and Björkman, 1977; Skillman, 

2007). C4 plants tackle this problem by segregating primary carbon fixation from the enzyme 

RuBisCO into two cell types (Hatch, 1987; Sage, 2004; Sage, Sage and Kocacinar, 2012).  

In C4 plants, atmospheric CO2 is initially fixed by the enzyme phosphoenolpyruvate 

carboxylase (PEPC) in the form of bicarbonate, thus preventing oxygen binding (Hatch, 

1987). PEPC produces the four carbon acid oxaloacetate, which is rapidly converted into the 

more stable acids malate or aspartate (Bräutigam et al., 2014). The four carbon acids are 

shuttled to a cell isolated from the atmosphere in which RuBisCO is localised, and CO2 is 

released therein. The biochemical pumping of CO2 into cells containing RuBisCO leads to 

an increase of the relative concentration of CO2 by a factor of 10 when compared to a non-C4 

cell, and a consequence dramatically increase of photosynthetic efficiency at high 

temperature (von Caemmerer and Furbank, 2003).  

The C4 photosynthetic mechanism is a classic example of convergent evolution, which 

has evolved more than 60 times independently in various groups of flowering plants (Sage, 

Christin and Edwards, 2011). Because all known C4 enzymes exist in C3 plants, the 

evolution of C4 involved the co-option of genes and proteins essential for the cycle followed 

by adaption of their expression levels and, at least in some cases, their kinetic properties 

(Aubry, Brown and Hibberd, 2011; Christin et al., 2013). In particular, the transcription 

levels of PEPC are massive increased in all C4 lineages so far screened (Svensson, Bläsing 

and Westhoff, 2003; Marshall et al., 2007; Bräutigam et al., 2014; Christin et al., 2015; 

Moreno-Villena et al., 2018). By contrast, the kinetic behaviour of the enzymes has received 

less attention, and have been investigated mainly using the model genus Flaveria, in which 

there are closely related C4, non-C4 and intermediate species (Chapter 2; McKown, 

Moncalvo and Dengler, 2005). It has been shown that the Flaveria C4 PEPC has a ten-fold 

decrease in specificity for phosphoenolpyruvate (PEP), an increased sensitivity to activators 

such as glucose-6-phosphate, and a decreased sensitivity to feedback inhibition from malate 
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and aspartate (Chapter 2; Svensson, Bläsing and Westhoff, 1997, 2003; Engelmann et al., 

2003; Westhoff, 2004; Paulus, Schlieper and Groth, 2013). Comparison of PEPCs from 

intermediate species in the genus Flaveria further suggested that C4 properties of the enzyme 

were gradually acquired during the diversification of the genus (Engelmann et al., 2003). 

Similar comparative efforts have been conducted in Alternanthera, a distantly related genus 

of eudicots, which have shown that PEPC kinetics evolved convergently in the C4 

Alternanthera and Flaveria with respect to PEP (Svensson, Bläsing and Westhoff, 1997; 

Engelmann et al., 2003; Gowik et al., 2006). Both Alternanthera and Flaveria were 

investigated because they contain closely related C3, C4 and intermediate species. Whether 

the observed patterns extend to more ancient C4 groups consequently remains unknown. 

Based on molecular dating, the multiple origins of C4 photosynthesis are spread 

throughout the last 35 million years, a period when the atmospheric CO2 levels were 

constantly low (Christin et al., 2008, 2011).  Flaveria represents one of the most recent C4 

origins, its different photosynthetic types having diverged in the last 3 million years, with 

the emergence of fully C4 plants 1-2 million years ago (Christin et al., 2011). Alternanthera 

represents a slightly older C4 group (Christin et al., 2011), but some of the earliest origins of 

C4 are observed in grasses, from 15 to 35 million years ago (Christin et al., 2008). The C4 

monocots, including grasses but also sedges, are among the most productive plants and 

dominate most open biomes in tropical and subtropical regions (Cerling et al., 1997; Sage, 

2004; Osborne and Beerling, 2006; Osborne and Freckleton, 2009). From a genetic point of 

view, monocots and eudicots co-opted different genes for C4 evolution (Christin et al. 2015). 

Genes encoding C4-specific PEPC evolved under positive selection in several C4 groups, but 

the identity and quantity of fixed amino acid changes varies among families (Besnard et al., 

2009). In particular, more of these changes are observed in grasses than in Flaveria (Christin 

et al., 2007), which might result from the longest evolutionary time. Alternatively, the genes 

co-opted for C4 in grasses might have been less fit for the C4 function, requiring therefore 

more adaptive changes (Christin, Weinreich and Besnard, 2010). The lack of kinetic data, 
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and comparable protein preparations when data have been determined, hampers comparative 

analyses. Indeed, grass PEPC have previously been compared, but efforts focused on distinct 

isoforms with the same species (Dong et al. 1998), which diverged long before the 

photosynthetic types (Christin et al., 2007). There is therefore a need for comparisons of C4 

and non-C4 PEPC representing the divergence of photosynthetic carbon fixing mechanisms, 

which can be obtained by comparing species of the Panicoideae subfamily of grasses that 

represent different photosynthetic types (Moreno-Villena et al., 2018). 

In this work, we characterised orthologous genes encoding PEPC from the C4 grass 

Panicum queenslandicum and its C3 relative Panicum pygmaeum to test the hypotheses that 

(i) despite very different starting points, qualitatively similar changes happened in Flaveria 

and grass C4 PEPCs, and (ii) the kinetic changes differ more between C4 and non-C4 PEPC 

in grass than in Flaveria due to an expanded period of adaptive evolution. We describe the 

changes in specificity for both substrates (bicarbonate and PEP) as well as the nature of 

inhibition by aspartate and malate.  Overall, out work sheds new light on the impacts of 

evolutionary time and distance on the convergent evolution of enzyme kinetics.  
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RESULTS 
DNA Cloning and protein purification 

The ppc-1E2 gene for the C4 PEPC (Christin et al., 2015) from the species Panicum 

queenslandicum was isolated from cDNA generated from RNA extracted from leaf tissue. 

The isozyme from the non-C4 species Panicum pygmaeum was fully sequenced from 

amplification from cDNA, however, the yield was too low to clone. The P. pygmaeum PEPC 

gene was synthesised from the sequence. These genes were confirmed to be the orthologous 

genes encoding the C4 and non-C4 PEPC in each species by a maximum likelihood tree 

(Supp. Figure 1). These genes were cloned into plasmids for expression in E. coli. Expressed 

protein was purified to > 95% by SDS PAGE with a single immobilised metal column 

(Supp. Figure 3) as in Chapter 1, .  

Kinetic analysis of PEPC varying both Bicarbonate and PEP 
The specificity for bicarbonate of both enzymes was determined using a gas-tight 

assay system (Chapter 2). Assays were performed at five PEP concentrations, while varying 

the concentration of bicarbonate. Analysis of secondary plots allowed determination of kcat/ 

Km
HCO3-, kcat/ Km

PEP, and kcat. The specificity for bicarbonate of the C4 P. queenslandicum 

PEPC was determined as 1.09 × 106 ± 8.88 × 104 s-1 M-1 (Figure 1C). The specificity for 

bicarbonate for the C3 P. pygmaeum PEPC was determined as 5.99 × 105 ± 2.93 × 104 s-1 M-1 

(Figure 1D). The C4 PEPC has nearly two thirds higher specificity for bicarbonate. The 

specificity for PEP of the C4 P. queenslandicum PEPC was determined as 1.04 × 104 ± 1.08 

× 103 s-1 M-1 (Supp. Figure 4A).  The specificity for PEP of the C3 P. pygmaeum PEPC was 

determined as 5.01 × 105 ± 2.44 × 104 s-1 M-1 (Supp. Figure 4B). The C4 PEPC has 50 times 

lower specificity for PEP (Summarised in Table 1). 
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PEPC inhibition by malate and aspartate 
The nature of inhibition of grass PEPCs was also explored, looking at the two main 

feedback inhibitors, malate and aspartate. As in the genus Flaveria (Chapter 2), both 

isoforms of PEPC exhibit mixed inhibition in the presence of malate (Figure 2), and 

competitive inhibition in the presence of aspartate (Figure 3), at pH 8.0.  Under all 

conditions, with both inhibitors, the C4 form of PEPC is less sensitive to inhibition. The non-

competitive inhibition constant (Kiu) was determined by the secondary plot of the kcat
app 

against inhibitor concentration. The competitive inhibition constant (Kic) was determined by 

the secondary plot of the kcat
app/Km

app against inhibitor concentration. 

Panicum queenslandicum PEPC is inhibited by malate at both limiting and saturating 

concentrations of PEP, this mixed inhibition can be characterised at limiting PEP by Kic
Malate 

= 7.51 ± 1.17 mM (Figure 2A), and at saturating PEP by Kiu
Malate = 146.08 ± 20.40 mM 

(Figure 2C). Aspartate is a competitive inhibitor characterised by Kic
Aspartate = 49.44 ± 7.86 

mM (Figure 3A). No inhibition at saturating PEP was observed (Figure 3C). 

Panicum pygmaeum PEPC is inhibited by malate at both limiting and saturating 

concentrations of PEP, this mixed inhibition can be characterised at limiting PEP by Kic
Malate 

= 0.52 ± 0.22 mM (Figure 2B), and at saturating PEP by Kiu
Malate = 31.23 ± 0.65 mM (Figure 

2D). Aspartate is a competitive inhibitor characterised by Kic
Aspartate = 2.31 ± 0.63 mM 

(Figure 3A). No inhibition at saturating PEP was observed for aspartate (Figure 3D). 

Comparing the two enzymes, the C4 P. queenslandicum PEPC is 15 times less sensitive 

to malate at limiting PEP, and five times less sensitive to malate at saturating PEP when 

compared to the C3 P. pygmaeum PEPC. The C4 PEPC is 20 times less sensitive to 

competitive inhibition by aspartate than the C3 ortholog for aspartate (Summarised in Table 

2).   
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A 

 

B 

 

C 

 

D 

 

Figure 1: Rate of oxaloacetic acid formation, catalysed by PEPC, varying the concentration of 
bicarbonate. Assays conditions were 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2, 0.2 mM NADH, 0.01 U μl-1 
malate dehydrogenase and 50 nM PEPC. A Markers represent the experimental data points for Panicum 
queenslandicum PEPC. The lines equation 1, kinetic parameters are shown in Supp. Figure 5A and panel B.        
B Secondary plots kcat

app/Km
appHCO3- from P. queenslandicum PEPC, the line is described by equation 1, 

characterised by the parameters kcat = 46.96 ± 1.71 s-1, Km
HCO3- = 0.036 ± 0.02 mM, Km

PEP = 4.39 ± 1.10 mM and 
kcat/Km

HCO3- = 1.09 × 1.06 ± 8.88 × 104 s-1 M-1. C Markers represent the experimental data points for Panicum 
pygmaeum PEPC. The lines equation 1, kinetic parameters are shown in Supp. Figure 5B and panel D.                
D Secondary plots kcat

app/Km
appHCO3- from P. pygmaeum PEPC, the line is described by equation 1, characterised 

by the parameters kcat = 65.59 ± 1.74 s-1, Km
HCO3- = 0.122 ± 0.015 mM, Km

PEP = 0.17 ± 0.05 mM and kcat/Km
HCO3- 

= 5.99 × 105 ± 2.93 × 104 s-1 M-1. 
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A 

 

B 

 

C 

 

D 

 

Figure 2: Plots of malate inhibition values for the PEPC enzymes. Assays conditions were 50 mM 
Tricine.KOH pH 8.0, 10 mM MgCl2, 0.2 mM NADH, 0.01 Uμl-1 malate dehydrogenase, 10 mM KHCO3 and 10 
nM of Panicum queenslandicum PEPC or 5 nM Panicum pygmaeum PEPC. Markers are derived from Supp. 
Figure 6A for P. queenslandicum PEPC and Supp. Figure 6B for P. pygmaeum PEPC, error bars represent 
standard errors. Secondary plot lines are characterised by equation 2. A Secondary plot of kcat

app/Km
appPEP against 

malate concentration for the enzyme P. queenslandicum PEPC characterised by Kic
Malate = 7.51 ± 1.17 mM.        

B Secondary plot of kcat
app/Km

appPEP against malate concentration for the enzyme P. pygmaeum PEPC. 
characterised by Kic

Malate = 0.52 ± 0.22 mM. C Secondary plot of kcat
app against malate concentration for the 

enzyme P. queenslandicum characterised by Kiu
Malate = 146.08 ± 20.40 mM. D Secondary plot of kcat

app against 
malate concentration for the enzyme P. pygmaeum characterised by Kiu

Malate = 31.23 ± 0.65 mM. 
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A 

 

B 

 
C 

 

D 

 
Figure 3: Plots of aspartate inhibition values for the PEPC enzymes. Assay conditions were 50 mM 
Tricine.KOH pH 8.0, 10 mM MgCl2, 0.2 mM NADH, 0.01 U μl-1 malate dehydrogenase, 10 mM KHCO3 and 10 
nM of Panicum queenslandicum PEPC or 5 nM Panicum pygmaeum Markers are derived from Supp. Figure 7A 
for P. queenslandicum PEPC and Supp. Figure 7B for P. pygmaeum PEPC, error bars represent standard errors. 
Secondary plot lines are characterised by equation 2. A Secondary plot of kcat

app/Km
appPEP against aspartate 

concentration for the enzyme P. queenslandicum PEPC characterised by Kic
Aspartate = 49.44 ± 7.86 mM.      

B Secondary plot of kcat
app/Km

appPEP against aspartate concentration for the enzyme P. pygmaeum PEPC 
characterised by Kic

Aspartate = 2.27 ± 0.02 mM. C Secondary plot of kcat
app against aspartate concentration showing 

no aspartate competitive inhibition of P. queenslandicum PEPC. D Secondary plot of kcat
app against aspartate 

concentration showing no aspartate competitive inhibition of P. pygmaeum PEPC. 
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Table 1: Summary of kinetic parameters found in this study. Standard errors are given, based on fitted 
theoretical curves. 

PEPC Species 
kcat 

 / s-1 
Km

PEP  
/ mM 

kcat/Km
PEP  

/ s-1 M-1 
Km

HCO3-  
/ mM 

kcat/Km
HCO3-  

/ s-1 M-1 
Panicum 
queenslandicum 
(C4) 

46.96 ± 

1.71 

4.17 ± 

0.30 

1.04 × 104 ± 

1.08 × 103 

0.036 ± 

0.02 

1.09 × 106 ± 

8.88 × 104 

Panicum 
 pygmaeum (C3) 

65.59 ± 

1.74 

0.17 ± 

0.05 

5.01 × 105 ± 

2.44 × 104 

0.122 ± 

0.015 

5.99 × 105 ± 

2.93 × 104 

Flaveria 

trinervia (C4) 

47.99 ± 

1.21 

0.60 ± 

0.05 

7.87 × 104 ± 

5.43 × 103 

0.065 ± 

0.007 

6.92 × 105 ± 

4.17 × 104 

Flaveria 

pringlei (C3) 

52.65 ± 

1.37 

0.056 ± 

0.001 

9.35 × 105 ± 

8.49 × 104 

0.099 ± 

0.007 

4.43 × 105 ± 

2.17 × 104 

 

Table 2: Summary of inhibition parameters found in this study. Standard errors are given, based on fitted 
theoretical curves. IC50 calculated at saturating PEP (40 mM PEP for Pqu, 5 mM PEP for Ft, 1 mM PEP for Fp, 
and 2 mM PEP for Ppy). Mixed inhibition IC50 values were calculated with equation 3, competitive inhibition 
IC50 values were calculated with equation 4.  

PEPC Species 
Kic

Malate  

/ mM 
Kiu

Malate 

 / mM 
Kic

Aspartate  
/ mM 

IC50
Malate 

 / mM 
IC50

Aspartate 

 / mM 
Panicum 
queenslandicum 
(C4) 

7.51 ± 

1.17 

146.08 ± 

20.40 
49.44 ± 7.86 53.3 523.7 

Panicum 
pygmaeum (C3) 

0.52 ± 

0.22 
31.23 ± 0.65 2.27 ± 0.02 5.6 29.5 

Flaveria trinervia 

(C4) 

10.96 ± 

1.55 
40.72 ± 4.59 40.02 ± 6.49 31.6 380.1 

Flaveria pringlei 

(C3) 

2.14 ± 

0.62 
4.56 ± 1.72 4.13 ± 0.60 4.3 77.9 

 

Table 3: Summary of kinetic parameters found in the literature. Values denoted with (*) for Alternanthera 
are taken from (Gowik et al., 2006),  values denoted with (†) for Zea mays are taken from (Dong et al., 1998) kcat 
values converted from Units mg-1, values denoted with (‡) for Zea mays are taken from (Janc, O’Leary and 
Cleland, 1992) kcat values converted from Units mg-1. 

PEPC Species 
kcat  

/ s-1 
Km

PEP 

 / mM 
kcat/Km

PEP  
/ s-1M-1 

Km
HCO3- 

 / mM 
kcat/Km

HCO3-  
/ s-1M-1 

IC50
Malate 

/ mM 

Alternanthera pugens (C4)* 38 ± 0.5 0.157 ± 0.05 2.4 ± 0.06 × 105 - - - 

Alternanthera tenella (C3/C4)* 33 ± 0.7 0.042 ± 0.01 7.7 ± 0.38 × 105 - - - 

Alternanthera sessilis (C3)* 22 ± 0.6 0.036 ± 0.02 6.1 ± 0.20 × 105 - - - 

Zea mays C4 PEPC† 41.9 0.59 ± 0.06 1.29 × 105 0.10 ± 0.03 7.63 × 105 0.82 ± 0.08 

Zea mays Root PEPC† 54.1 0.04 ± 0.004 1.35 × 106 0.05 ± 0.013 1.08 × 106 0.24 ± 0.03 

Zea mays C4 PEPC‡ 36.4 3.6 ± 0.6 1.01 × 104 0.18 ± 0.04 2.02 × 105 - 
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Figure 4: Summary of kinetic and inhibition parameters found in this study. Errors quoted are standard 
errors from the fitted theoretical lines. Values for the C3 Flaveria pringlei PEPC are displayed in grey, for C4 
Flaveria trinervia PEPC in red, for C3 Panicum pygmaeum in yellow, and for C4 Panicum queenslandicum in 
purple. 
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DISCUSSION 
Convergent kinetic changes across C4 flowering plants 

Genes encoding the non-C4 PEPC of the C3 Panicum pygmaeum and Flaveria 

pringlei diverged about 150 million years, and each underwent multiple subsequent gene 

duplications (Christin et al., 2007, Christin et al., 2015). Each consequently accumulated 

numerous mutations since their divergence (Supp. Figure 1; Christin et al., 2007). While 

their exact functions are not known, they are expressed at similarly moderate levels 

(Moreno-Villena et al., 2018), but numerous amino acid differences are present. Our 

investigation however shows that the two non-C4 enzymes exhibit overall similar kinetic 

characteristics (Figure 4), including high sensitivity to competitive inhibition by malate and 

aspartate. The P. pygmaeum PEPC shows a slightly higher specificity for bicarbonate, a 

lower specificity for PEP, a lower sensitivity to non-competitive inhibition by malate, and a 

higher sensitivity to competitive inhibition by malate (Table 1 and Table 2). The variation 

among kinetic properties of PEPC between C3 Flaveria and C3 grasses is not known with 

confidence; assuming that the kinetics of the non-C4 PEPCs did not differ drastically from 

their last common ancestor with the respective C4, evolution of C4-specific PEPC started at 

similar kinetic points in grasses and Flaveria. While fewer parameters were measured, the 

PEPC of C3 Alternanthera seems moreover to have similar kinetics (Gowik et al., 2006), 

which might indicate limited kinetic diversification of PEPC before C4 evolution. This is 

moreover supported by the kinetic similarity of the distant root homolog of Zea mays (Dong 

et al., 1998). We therefore conclude that the evolution of PEPC adapted for the C4 pathway 

started at similar points in distant groups of angiosperms. 

Analyses of amino acid sequences show that most modifications happened in the C4-

specific PEPC, with relative conservation among non-C4 orthologs (Christin et al., 2007; 

Besnard et al., 2009), so that differences between closely-related C4 and non-C4 enzymes are 

likely the result of C4 evolution. In grasses, the PEPC of the C4 Panicum queenslandicum 

shows increased specificity for bicarbonate and decreased specificity for PEP when 

compared to the PEPC of the C3 P. pygmaeum (Table 1). The direction of the kinetic 
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changes was therefore similar in grasses and Flaveria (Table 1). The affinity for PEP 

moreover changed in the same direction in Alternanthera (Gowik et al., 2006) and in Zea 

(Dong et al., 1998), which represents an independent C4 origin within grasses. We therefore 

show that the evolution of C4 PEPC involves qualitatively convergent changes in kinetic 

properties, which explains the previously observed convergent amino acid sequence 

(Christin et al., 2007; Besnard et al., 2009). It also suggests that an increase in specificity for 

bicarbonate and a decrease in specificity for PEP are important for the C4 function of PEPC. 

The primary function of the non-C4 PEPC is replenishing oxaloacetate for key metabolic 

pathways and likely to require a fast response to small concentration changes, it is therefore 

likely that high specificity for PEP is strongly selected for in non-C4 PEPC. C4 PEPC plays a 

central role in the high-flux C4 cycle (Svensson, Bläsing and Westhoff, 2003; Stitt and Zhu, 

2014). In a high flux C4 system, bicarbonate is a limiting factor, therefore the specificity of 

PEPC towards bicarbonate is increased during C4 evolution to boost the rate of the pathway 

(Chapter 2). 

When compared to the C3 P. pygmaeum, the PEPC of the C4 P. queenslandicum PEPC 

shows markedly decreased sensitivity to both malate and aspartate (Table 2). The changes 

are qualitatively, similar to those observed in Flaveria (Chapter 2; Table 2). We therefore 

conclude that the same direction of changes happened independently in C4 eudicots and 

monocots, for sensitivity to inhibitors in addition to kinetic parameters. This supports the 

importance of decreasing the sensitivity to malate and aspartate in enzymes that act in the C4 

pathway where all metabolites are abundant (Arrivault et al., 2017). 

The differences in enzyme behaviour are quantitatively more important in grasses than in 
Flaveria. 

While the direction of changes is similar in monocots and eudicots, differences 

between C3 and C4 species are more marked in grasses than in Flaveria (Fig. 7), and in 

Alternanthera summarized in Table 3 (Gowik et al. 2006). 
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The PEPC of the C4 P. queenslandicum has a greater increase in bicarbonate 

specificity. This strong specificity for bicarbonate might make the C4 pathway of grasses less 

reliant on the activity of carbonic anhydrase, explaining why this enzyme is less important in 

grasses than in eudicots at ambient CO2 levels (Studer et al., 2014). The PEPC of P. 

queenslandicum shows the lowest specificity for PEP of the four enzymes compared (Table 

1). The disconnection between specificities for PEP and bicarbonate reinforces the 

conclusion that low specificity for PEP in C4 was independently selected and does not result 

from adaptation on another property of the enzyme (Chapter 2). While numbers are difficult 

to compare among studies under different conditions, the specificity for PEP measured in P. 

queenslandicum is comparable to that previously reported for Zea mays (Janc, O’Leary and 

Cleland, 1992), while the ones of the C4 Flaveria fall in between those of Alternanthera and 

the C4 grasses (Table 1; Dong et al. 1998; Gowik et al. 2006).  

When compared to Flaveria and Zea (Dong et al., 1998), the PEPC of the C4 grass 

also shows a greater reduction in sensitivity inhibition by malate at saturating PEP (Table 3) 

although the inhibition by malate and aspartate at limiting PEP are comparable in magnitude 

between P. queenslandicum and Flaveria trinervia PEPC (Table 2, Figure 4). 

The quantitative differences between Flaveria and grasses might be linked to the 

contrast between the length of time spent as C4 in each lineage, from more than 16 million 

years for P. queenslandicum to less than 3 for Flaveria (Christin et al., 2008, 2011). Indeed, 

the kinetic properties observed in the PEPC of extant taxa result from adaptive changes 

accumulated since the initial origin of C4 photosynthesis. According to the current model, an 

initial C4 pathway can evolve via enzyme upregulation and limited modifications of the 

proteins (Sage, Sage and Kocacinar, 2012; Heckmann et al., 2013), as observed in C3-C4 

intermediates (Svensson, Bläsing and Westhoff, 2003; Dunning et al., 2017). Once a C4 

pathway is in place, selection will act to improve its efficiency. The remarkable convergence 

of sensitivity to inhibitors in F. trinervia and P. queenslandicum might suggest that these 
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parameters are the first target of selection. This conclusion is further supported by previous 

reports that changes in sensitivity in Flaveria involved a key amino acid substitution 

(Paulus, Niehus and Groth, 2013; Paulus, Schlieper and Groth, 2013), which is observed in 

many C4 lineages (Besnard et al., 2009). Modifications of the specificities for PEP and 

bicarbonate might represent later evolutionary modifications, which continued within C4 

lineages leading to stronger differences in P. queenslandicum. The largest amount of 

adaptive amino acid substitutions is observed in grasses and sedges (Christin et al., 2007; 

Besnard et al., 2009) and would therefore indicate longest periods of sustained enzyme 

adaptation, or stronger selection in the monocots. This scenario leads us to predict that the 

properties that vary quantitatively between Flaveria and P. queenslandicum will also vary 

within C4 lineages of grasses, as the fingerprint of continuous adaptation. Additional species 

will need to be screened to test this hypothesis. 

Here, we present the first biochemical characterization of a PEPC from a C3 grass 

encoded by an orthologous gene to those recurrently co-opted for C4. Coupled with a 

detailed characterization of a C4 grass PEPC, we were able to show that the direction of 

changes was similar among distant C4 origins, indicating convergent biochemical adaptation 

for the C4 catalytic context. The magnitude of changes was, however, more marked for some 

parameters in the C4 grass, and we suggest that extended evolutionary periods, potentially 

coupled with stronger selective pressures, lead to enzymes that are better adapted for the C4 

pathway in some C4 plants. We conclude that gene co-option and initial enzyme adaptation, 

including decreased sensitivity to inhibitors, are necessary steps that are consequently shared 

by all C4 lineages, and the length of the subsequent period of adaptation of the trait has effect 

on the magnitude of these changes. Other, facultative enzyme adaptations are restricted to 

some C4 plants, leading to a variety of C4 biochemical phenotypes across flowering plants. 
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EXPERIMENTAL PROCEDURES 
Unless otherwise stated, reagents and components were from Sigma. For 

purification, unless otherwise stated the equipment used procured from GE Healthcare. 

unless otherwise stated enzymes and E. coli strains were from NEB. 

DNA Preparation 
Leaf samples from the species Panicum queenslandicum and Panicum pygmaeum 

were taken at midday in full daylight and were flash frozen in liquid nitrogen. Leaf samples 

were homogenised with a pestle and mortar in liquid nitrogen. RNA was extracted from 

ground leaves using the RNeasy Kit (Qiagen). Libraries of cDNA were generated with 

SuperScript II Reverse Transcriptase (Thermo Fisher Scientific). The PEPC for P. 

queenslandicum was amplified using the primers PquFor1B and PquRev1B, and Q5 

polymerase. The amplified gene was Sanger sequenced (GATC Biotech) with the PCR 

primers and with the primers Pqu_1323_Seq_For and Pqu_1752_Seq_Rev (Primers 

synthesised by Sigma, summarised in Table 4). The gene was the cloned into the pET-1B 

His6 TEV LIC vector plasmid, gifted by Scott Gradia (University of California, Berkeley, 

Addgene plasmid # 29653). 

The PEPC for P. pygmeaum was amplified using the primers PpyFor1B and 

PpyRev1B. The amplified gene was sequenced with the PCR primers and with the primers 

Ppy_1291_Seq_For and Ppy_1791_Seq_Rev. The gene was then synthesised by GenArt 

Gene Synthesis in the pTRCC Plasmid. The synthesised gene was sub-cloned into the pET-

1B His6 TEV LIC vector plasmid and sequenced with the PCR primers and with the primers 

Ppy_1291_Seq_For and Ppy_1791_Seq_Rev.  

 Genes were sub cloned using the ligation independent cloning method with Q5 DNA 

polymerase (NEB) and T4 DNA polymerase (NEB). Cloned plasmids were isolated using a 

Miniprep DNA kit (Qiagen). Plasmids were Sanger sequenced using the T7 promotor, T7 

terminator and respective primers.  
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Protein Expression 
For protein expression, BL21λ(DE3) strain of E. coli (NEB) was used. Chemically 

competent E. coli cells were transformed with each of the plasmids. Eight litres of cultures 

were grown in LB medium at 37°C to OD600 0.8. Cultures were cooled to 4°C for one hour 

prior to recombinant protein induction with 0.5 mM IPTG (Fischer). Cultures were then 

incubated at 18°C for 18 hours. Cells were harvested by centrifugation at 5,422 × g for 25 

minutes and stored at -80°C. 

Protein Purification 
Cells were suspended in IMAC buffer (25 mM Tris, 0.5 M NaCl, 0.3 M glycerol, 20 

mM imidazole (Acros Scientific)), 10 ml per 2 L of culture with 50 µl of 50mg ml-1 DNase I 

and 100 µl of 100 mg ml-1 Pefabloc. Cells were passed twice through a cell disruptor 

(Constant Systems) before centrifugation at 26,902 × g for 40 minutes. The supernatant was 

passed through a 0.45 µm pore filter (Elkay Labs.). PEPC was separated from soluble 

protein with a prepacked 1 ml nickel affinity column using an ÄKTA™ Pure 25 L 

Chromatography System. The loaded column was washed with 50 column volumes of 

IMAC buffer, then 50 column volumes of IMAC buffer containing 150 mM imidazole.  Pure 

PEPC was eluted with 10 column volumes of IMAC buffer containing 400 mM imidazole.  

Protein eluted from IMAC purification was loaded onto a Sephadex G50 desalting 

column (Amersham Biosciences) and rebuffered in storage buffer (20 mM Tris, 5% v/v 

glycerol, 150 mM KCl, 1 mM DTT (AnaSpec. Inc.)). Protein was aliquoted and frozen at     

-80°C until use.  

Enzyme Quantification 
PEPC enzyme concentration was quantified by absorption at 280 nm. Enzyme 

extinction coefficient was calculated using the ExPASy protein parameter tool and corrected 

by determining the absorbance of the protein denatured in 6 M guanidine hydrochloride (Gill 

and von Hippel, 1989). The difference between the denatured and folded protein at 280 nm 

was used to adjust the extinction coefficient of the protein. The extinction coefficient for 

Panicum queenslandicum PEPC was determined to be 105805 M-1 cm-1, the extinction 

coefficient for Panicum pygmaeum PEPC was determined to be 111514 M-1 cm-1. Difference 
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of 8.3 % and 4.6 % between predicted absorbance coefficients for P. queenslandicum and P. 

pygmaeum PEPC were observed respectively. It is assumed that all enzyme used in the assay 

was active. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE) Analysis   
Total protein concentration for purification efficiency was determined using the BCA 

Pierce quantification kit (Thermo Scientific). Concentration was determined using a standard 

curve performed with bovine serum albumin, over a concentration range 0 – 2.0 mg ml-1.  

Protein samples were analysed for purity using SDS PAGE analysis. Protein samples 

were quantified using the BCA Pierce method, 25 µg of cell lysate and 5 µg of pure protein 

were denatured in 2 × SDS PAGE loading dye (200 mM Tris.HCl pH 6.8, 2 % SDS, 20 % 

Glycerol, 0.01% Bromophenol blue (BDH Laboratory Supplies) and 7 % β-

mercaptoethanol). Protein was loaded onto an 8% acrylamide SDS gel with 2 µl of Blue 

Prestained Protein Standard Broad Range (11-190 kDa) (NEB). Gels were run for 50 

minutes at 200 V with 1 × Tris/Glycine/SDS running buffer (Geneflow). Gels were stained 

with InstantBlue (Expedeon) and imaged with a ChemiDoc™ MP (BioRad).  

Enzyme Assays 
PEPC activity was measured spectroscopically at 340 nm by coupling to NADH-

malate dehydrogenase. Assays with a high fixed concentration of bicarbonate were observed 

using a FLUOstar plate reader (BMG Labtech) using the 340 nm ± 5 nm absorbance filter 

(BMG Labtech). Plate reader assays were conducted in a reaction volume of 150 µl at 25°C. 

Typical reaction mixtures contained 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2 (Fluka), 5 

mM KHCO3. 0.2 mM NADH (Fisher) and 0.1 U µl-1 malate dehydrogenase. Assays were 

initiated with the addition of PEPC enzyme.  Rates were calculated with a NADH calibration 

curve. 

Assays at a range of bicarbonate concentrations were observed with a Cary Bio 300 

spectrophotometer (Agilent Technologies) in the same reaction buffer, in a total reaction 

volume of 600 µl. In bicarbonate assays, the water and tricine buffer were sparged with 

nitrogen for 18 hours prior to use in assays. Bicarbonate assays were constructed under a 
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nitrogen flow. Assays were performed in a sealed cuvette. The reaction was initiated with 

the addition of 50 nM PEPC, delivered with a gastight syringe (Hamilton). Bicarbonate 

concentrations were controlled with the addition of freshly prepared potassium bicarbonate. 

Background bicarbonate was determined using an endpoint assays with no potassium 

bicarbonate, run for 30 minutes. Rates were calculated using the Cary analysis software.  

Data Analysis 

Kinetic parameters were evaluated by non-linear regression analysis in Igor Pro 

(Version 7.0.8.1; Wavemetrics Inc., Lake Oswego Orgeon). Kinetic parameters were 

analysed with bar graphs in GraphPad Prism 7 for Windows (Version 7.04, GraphPad 

Software, Inc.). The following equations were used:  

(Equation 1) 

𝑣
[𝐸்]ൗ =  

𝑘௧ × [𝑆]

𝐾 + [𝑆]
 

Equation 1, where vi/[ET] is the steady state rate divided by the total enzyme concentration, 

kcat is the first order rate constant, Km is the Michaelis constant, and S is the substrate 

concentration.  

 (Equation 2) 

𝑘  =  
𝑘

1 +  
[𝑖]

𝐾
ൗ

 

Equation 2, where kapp is the apparent rate constant, k is the uninhibited constant, i is the 

inhibitor concentration, and Ki is the inhibition constant.   

(Equation 3) 

𝐼𝐶ହ
ெ௫ௗ  =  

𝐾 + 𝑎

𝐾
𝐾

+
𝑎

𝐾௨
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Equation 3, where ICMixed is the IC50 for mixed inhibition, Km is the uninhibited Michaelis 

constant, Kic is the competitive inhibition constant, Kiu is the uncompetitive inhibition 

constant and a is the substrate concentration 

(Equation 4) 

𝐼𝐶ହ
.

 =  𝐾 ൬1 +
𝑎

𝐾
൰ 

Equation 4, where ICComp.  is the IC50 for competitive inhibition, Km is the uninhibited 

Michaelis constant, Kic is the competitive inhibition constant, and a is the substrate 

concentration. 
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SUPPLEMENTARY FIGURES  

 

Figure S 1: Maximum likelihood of the PEPC genes in Monocots and Eudicots. In red are the ppc1P3 
isoforms. In blue are the ppc1E2 isoforms. Sequences for Zea mays C4 taken from (Dong et al., 1998). Sequences 
for Flaveria from Chapter 2. Tree taken with permission from (Moreno-Villena et al., 2018).  
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Figure S 2: Similarity and identity comparison between residues of the four PEPCs compared in this 
study. Similarly, and identity were determined as a percentage of the total number of amino acids.  
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Enzyme Purification  

 
Figure S 3: 8 % acrylamide SDS PAGE analysis of PEPC proteins compared in this study. Lane 1 contains 
5 µg of Flaveria trinervia PEPC, lane 2 contain 5 µg of Flaveria pringlei PEPC, lane 3 contain 5 µg of Panicum 
queenslandicum PEPC, lane 4 contains 5 µg Panicum pygmaeum PEPC. 
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Kinetic Assays Results 

A 

 

 
B 

 

Figure S 4: Rate of oxaloacetic acid formation, catalysed by PEPC, varying the concentration of 
phosphoenolpyruvate. Assays conditions were 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2, 10 mM KHCO3, 
0.15 mM NADH and 0.01 Uμl-1 malate dehydrogenase. Assays were repeated (n = 3) for each concentration of 
PEP. A Filled circles represent experimental data points for Panicum queenslandicum PEPC. The line is 
described by equation 1, with characterising parameters kcat = 46.96 ± 1.74 s-1, Km

PEP = 4.53 ± 0.59 mM and 
kcat/Km

PEP = 10367 ± 1080 s-1M-1. B Filled circles represent experimental data points for Panicum pygmaeum 
PEPC. The line is described by equation 1, with characterising parameters kcat = 65.59 ± 1.26 s-1, Km

PEP = 0.131 ± 
0.008 mM and kcat/Km

PEP = 500710 ± 24400 s-1M-1. 

A 

 

B 

 

Figure S 5: Secondary plot of the kcat
app parameter from bicarbonate assays in Figure 1: A Filled circles 

represent the kcat
app parameter from Figure 1A for the enzyme the Panicum queenslandicum PEPC, error bars 

represent standard errors from fit of lines described by equation 1. The line is theoretical described by equation 1, 
characterised by the parameters kcat = 52.25 ± 3.72 s-1 Km

PEP = 5.46 ± 1.12 mM. B Filled circles represent the 
kcat

app parameter from Figure 1C for the enzyme Panicum pygmaeum PEPC, error bars represent standard errors 
from fit of lines. The line is described by equation 1, characterised by the parameters kcat = 79.06 ± 6.64 s-1 and 
Km

PEP = 0.17 ± 0.04 mM. 
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A 

 

B 

 
Figure S 6: Primary plot of PEPC inhibited by malate. Assays conditions were 50 mM Tricine.KOH pH 8.0, 
10 mM MgCl2, 10 mM potassium bicarbonate, 0.2 mM NADH and 0.01 Uμl-1 malate dehydrogenase. The lines 
are described by equation 1. A Points indicated experimental data runs for Panicum queenslandicum PEPC, filled 
circles indicate no inhibitor, open circles indicate the presence of 8 mM malate, filled squares indicate the 
presence of 16 mM malate, open squares indicate the presence of 32 mM malate, filled triangles indicate the 
presence of 60 mM malate and open triangles indicate the presence of 120 mM malate. B Points indicated 
experimental data runs for Panicum pygmaeum, filled circles indicates no inhibitor, open circles indicate the 
presence of 4 mM malate, filled squares indicate the presence of 12 mM malate, open squares indicate the 
presence of 24 mM malate, filled triangles indicate the presence of 32 mM malate and open triangles indicate the 
presence of 60 mM malate. 

A 

 

B 

 
Figure S 7: Primary plot of PEPC inhibited by aspartate. Assays conditions were 50 mM Tricine.KOH pH 
8.0, 10 mM MgCl2, 10 mM potassium bicarbonate, 0.2 mM NADH and 0.01 Uμl-1 malate dehydrogenase. A 
Points indicated experimental data runs, filled circles indicates no inhibitor, open circles indicate the presence of 
8 mM aspartate, filled squares indicate the presence of 16 mM aspartate, open squares indicate the presence of 32 
mM aspartate, filled triangles indicate the presence of 60 mM aspartate and open triangles indicate the presence 
of 120 mM aspartate. The lines are theoretical described by equation 1. B Points indicate experimental data runs 
for Panicum pygmaeum PEPC, filled circles indicate no inhibitor, open circles indicate the presence of 8 mM 
aspartate, filled squares indicate the presence of 16 mM aspartate, open squares indicate the presence of 32 mM 
aspartate, filled triangles indicate the presence of 60 mM aspartate and open triangles indicate the presence of 
120 mM aspartate.  
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Primers 
Table 4: Summary of primers used in this study. 

Primer Sequence, 5’ to 3’ 

PquFor1B GACGACGACAAGATGGCGTCCTCCGAGCGCCACC 

PquRev1B GAGGAGAAGCCCGGTTAGCCCGTGTTCTGCATGCC 

PpyFor1B TACTTCCAATCCAATGCAATGGCAAGCAG 

PpyRev1B TTATCCACTTCCAATGTTATTATTAACCGGTATTC 

Pqu_1323_Seq_For CGTGAAGCTGGACAT 

Pqu_1752_Seq_Rev ATGACCTGCTGCTTG 

Ppy_1291_Seq_For GATGGTAGTCTGCTGG 

Ppy_1791_Seq_Rev GCTATCGCTATAACCA 

T7 Promotor TAATACGACTCACTATAGGG 

T7 Terminator GCTAGTTATTGCTCAGCGG 
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Plasmid Sequences 
>pET-1B Panicum queenslandicum PEPC 
AACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGC
CCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGAT
GCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGC
TGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCC
CGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGA
GAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTT
CCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTG
TGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCG
GCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAG
CAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCAC
TTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGC
ATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCAT
GCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATT
AGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGG
CGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGG
CGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCC
GGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATT
GTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGTTCTTCTC
ACCATCACCATCACCATGAAAACCTGTACTTCCAATCCAATGCAATGGCGTCCTCCGAGCGCCACCACTCCATCG
ACGCGCAGGTCCGGCTCCTGGCCCCCGGCAAGGTCTCCGAGGATGACAAGCTCGTCGAGTACGACGTCCTCCTC
ATGGACCGCTTCCTCGACATCCTCCAGGACCTCCACGGCCCCGGCATCCGCGAATTCGTCCAGGACTGCTACGAG
CTGTCGGCGGAGTACGAGGGCGACCGCAACTCCGCGCGCCTCAAAGACCTCGGGTCCAGGCTCGCAAGCCTGGC
CCCCGCCGACGCCATCCTCGTCGCGGGCTCCATCCAGCACATGCTCAACCTCGCCAACCTCGCCGAGGAGGTGCA
GATCGCGAACCGCCGCAGGAACAAGCTCAAGAGCGGGGACTTCGCCGACGAGGGCTCCGCCACCACCGAGTCC
AACATCGACGAGACGATCAAGCGCCTCGTCGACCTCGGAAAGTCCAAGGAGGAGGTGTTCGAGGCGCTCAAGA
ACCAGAGCGTCGACCTCGTCCTCACCGCGCACCCAACGCAGTCCGTCCGGAGGTCGCTCCTCCAGAAGCACTCCA
GGATCCGGAATTGCCTCACGCAGCTCAATGCAAAGGACATCACGGACGACGAAAAGCAGGAGCTCGACGAGGC
TCTTAGCAGGGAGATCCAAGCAGCCTTCAGAACAGATGAGATTCGGAGAGCACAACCGACCCCACAGGATGAG
ATGCGTTACGGGATGAGCTATATCCACGAAACCATATGGAAGGGCGTTCCAAAGTTTCTGCGTCGTCTGGATACA
GCTCTGAAGAACATCGGGATCGACGAGCGTCTCCCCTACAATGTTCCTCTCATCCAGTTTTGTTCTTGGATGGGTG
GCGACCGTGATGGAAATCCAAGAGTTACGCCGGAGGTGACAAGGGATGTATGCTTGCTGGCAAGAATGATGGCT
GCAAACTTGTACTTCTCTGGGCTAGAAGAACTCATGTTCGAGCTCTCTATGTGGCGCTGCAATGATGAACTCCGT
GCTCGAGCGCAAGAAATTCACAGTGCTCCAAAGAAAGCTGCCAAGCACTACATAGAATTCTGGAAGCAAATCCC
TCTAAGTGAGCCGTATCGCGTGGTGCTTGGTAACGTGAGGGACAAACTGTACAACACACGCGAGCGTGCGCGCC
AACTGCTGACCAATGAATTTTCTGACATTCCGGAGGAATTGGTCTTTAGCAATGTTCAAGAGTTCCTGGAGCCCC
TTGAGCTGTGCTACAAATCACTGTGCGAGTGCGGCGACAAGACCATCGCCGACGGGAGCCTGCTGGACTTCCTTC
GCCAGGTCTCCACGTTCGGGCTCTCCCTCGTGAAGCTGGACATCCGGCAGGAGTCGGAGCGGCACACCGACGTG
ATCGACGCCATCACCACGCACCTCGGCATCGGCTCGTACCGCTCTTGGCCCGAGGACAAGCGCCAGGAGTGGCT
GCTGTCCGAGCTGCGCGGCAAGCGCCCGCTGCTCGCCCCGGACATGCCCCAGACCGAGGAGATCGCCGACGTGC
TCGGGTGCTTCCGCGTCCTCGCCGAGCTGCCCCGCGACAGCTTCGGCCCCTACATCATCTCCATGGCCACGGCGC
CGTCGGACGTCCTCGCCGTCGAGCTCCTGCAGCGGGAGTGCCACGTGCGCGACCCGCTGCCCGTGGTGCCGCTGT
TCGAGAGGCTCGCCGATCTGCAGAACGCGCCCGCGTCCATGGAGCGCCTCTTCTCGGTGGACTGGTACCTGCAGC
GGATCAACGGCAAGCAGCAGGTCATGATCGGCTACTCCGACTCCGGCAAGGACGCCGGGCGCCTGTCCGCGGCG
TGGCAGCTGTACAGGGCGCAGGAGGAGCTCGCGCAGGTGGCCAAGCGCTACGGTGTGAAGCTGACCATGTTCCA
CGGGCGCGGCGGCACCGTCGGACGGGGGGGCGGCCCGTCGCACCTCGCCATCCTGTCGCAGCCGCCGGACACCA
TCAATGGGTCCATCCGCGTGACAATCCAGGGAGAGGTCATCGAGCACTCCTTCGGCGAGGAGCACCTCTGCTTCC
GGACGCTGGAGCGGTTCACGGCCGCCACGCTGGAGCACGGCATGCACCCGCCGGTCTCTCCCAAGCCCGAGTGG
CGCAAGCTCATGGACGAGATGGCCGTCGTGGCCACGGAGGAGTACCGGTCCATCGTCTTCAGAGAGCCGCGCTT
CGTCGAGTACTTCCGATCGGCTACGCCTGAGACGGAGTACGGCAGGATGAACATCGGCAGCCGGCCGGCGAAGA
GGAAGCCCAAGGGCGGCATCGAGTCGCTCCGCGCGATCCCCTGGATCTTCTCGTGGACGCAGACGAGGTTCCAC
CTCCCGGTGTGGCTCGGGGTCGGCGCCGCGTTCCAGTACGCCATTAAGAAGGACAGCAAGAACATCCAGAAGCT
CAAGGACATGTACAAGGAGTGGCCCTTCTTCAGGGTCACCATTGACCTGCTGGAGATGGTCTTCGCCAAGGGGG
ACCCCAGCATCGCCGGCTTGTACGACGAGCTGCTCGTCGCCGCCGACCTCAAGCCCTTCGGGGAGCAGCTGAGG
AACAAGTACCTGGAGACGCAGCAGTTTCTCCTGCAGATCGCTGGGCACAAGGAAATCCTCGAAGGCGATCCCTA
CCTGAAGCAGGGGTTGCGGCTGCGCAACCCCTACATCACGACGCTGAACGTGTTTCAGGCTTACACCCTGAAGCT
GATGAGGGACCCGAGCTTCCAGGTGAAGAAGCAGCCGCCTATGTCCAAGGAGTTCGCCGACGAGAAGAAGCCC
GCCGGGCTGGTGGAGCTGAACCCGGCGAGCGAGTACGCGCCGGGGCTGGAGGACACGCTCATCCTCACCATGAA
GGGTATCGCCGCCGGCATGCAGAACACGGGCTAGTAATAACATTGGAAGTGGATAACGGATCCGAATTCGAGCG
CCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGA
AAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTT
GAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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>pET-1B Panicum pygmaeum PEPC 
AACGGCGGGATATAACATGAGCTGTCTTCGGTATCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGC
CCGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATCGTTGGCAACCAGCATCGCAGTGGGAACGAT
GCCCTCATTCAGCATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGCCTTCCCGTTCCGCTATCGGC
TGAATTTGATTGCGAGTGAGATATTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTTAATGGGCC
CGCTAACAGCGCGATTTGCTGGTGACCCAATGCGACCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGA
GAAAATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAATAACGCCGGAACATTAGTGCAGGCAGCTT
CCACAGCAATGGCATCCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCGTTGCGCGAGAAGATTG
TGCACCGCCGCTTTACAGGCTTCGACGCCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTTGATCG
GCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGCGTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAG
CAACGACTGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAATTCAGCTCCGCCATCGCCGCTTCCAC
TTTTTCCCGCGTTTTCGCAGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGATAAGAGACACCGGC
ATACTCTGCGACATCGTATAACGTTACTGGTTTCACATTCACCACCCTGAATTGACTCTCTTCCGGGCGCTATCAT
GCCATACCGCGAAAGGTTTTGCGCCATTCGATGGTGTCCGGGATCTCGACGCTCTCCCTTATGCGACTCCTGCATT
AGGAAGCAGCCCAGTAGTAGGTTGAGGCCGTTGAGCACCGCCGCCGCAAGGAATGGTGCATGCAAGGAGATGG
CGCCCAACAGTCCCCCGGCCACGGGGCCTGCCACCATACCCACGCCGAAACAAGCGCTCATGAGCCCGAAGTGG
CGAGCCCGATCTTCCCCATCGGTGATGTCGGCGATATAGGCGCCAGCAACCGCACCTGTGGCGCCGGTGATGCC
GGCCACGATGCGTCCGGCGTAGAGGATCGAGATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGGAATT
GTGAGCGGATAACAATTCCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGGGTTCTTCTC
ACCATCACCATCACCATGAAAACCTGTACTTCCAATCCAATGCAATGGCAAGCAGCAAAGCACCGGGTCCTGTT
GAACGTCATCAGAGCATTGATGCACAGCTGCGTCTGCTGGCACCGGGTAAAGTTAGCGAAGATGATAAACTGGT
TGAATATGATGCACTGCTGGTTGATCGTTTTCTGGATATTCTGCAGGATCTGCATGGTCCGAGCCTGCGTGAATTT
GTTCAAGAATGTTATGAACTGAGCGCAGAATATGAAGGTGATCGTGATGCAGCACGTCTGGGTGAACTGGGTGA
TCGTCTGACCGGTCTGGCTCCGGCAGATGCTATAGTTGTTGCAAGCAGCTTTAGCCATATGCTGAATCTGGCAAA
TCTGGCCGAAGAAGTTCAGATTGCACATCGTCGTCGTAATAAACTGAAACGTGGTGATTTTGCAGATGAAGCAA
GCGCAACCACCGAAAGCGATATTGAAGAAACCCTGAAACGTCTGGTTAGCGAACTGGGTAAAAGCCGTGAAGA
GGTTTTTGATGCCCTGAAAAATCAGACCGTTGATCTGGTTTTTACCGCACATCCGACACAGAGCATTCGTCGTAG
CCTGCTGCAGAAACATGCACGTATTCGTAATTGTCTGACCCAGCTGTATGCAAAAGATATTACAGCAGATGACAA
ACAAGAACTGGATGAAGCACTGCAGCGTGAAATTCAGGCAGCATTTCGTACCGATGAAATTCGTCGCACCCAGC
CGACACCGCAGGATGAAATGCGTGCAGGTATGAGCTATTTTCACGAAACCATTTGGAAAGGCGTTCCGAAATTT
CTGCGTCGTGTTGATACCGCACTGAAAAACATTGGTATTGATGAACGTCTGCCGTATAATGCACCGCTGATTCAG
TTTAGCAGCTGGATGGGTGGTGACCGTGATGGTAATCCGCGTGTTACACCGGAAGTTACCCGTGATGTTTGTCTG
TTAGCACGTATGATGGCAGCCAATCTGTATTTTAGCCAGATTGAAGAACTGATGTTTGAGCTGAGCATGTGGCGT
TGTAATGATGAACTGCGTGTTCGTGCCGAAGAACTGCATCGTGCAAGCCGTAAAGCAGCCAAACATTATATTGA
ATTTTGGAAGCAGATCCCTCCGAATGAACCGTATCGTGTTATTCTGGGTTATGTTCGCGATAAACTGTATTACACC
CGTGAACGTAGTCGCCATCTGCTGACCACCGGTTTTAGCGAAATTCCGGAAGATAGCGCATTTACCAATGTGGAA
GAATTTCTGGAACCGCTGGAACTGTGTTATCGTAGTCTGTGTGCATGTGGTGATAAAACCATTGCAGATGGTAGT
CTGCTGGATTTTCTGCGCCAGGTTAGCACCTTTGGTCTGAGCCTGGTTAAACTGGATATCCGTCAAGAAAGCGAA
CGTCATACCGATGTTCTGGATGCAATTACCACACATTTAGGTATTGGTAGCTATCGTGAATGGCCTGAAGAAAAA
CGTCAAGAATGGCTGCTGAGCGAGCTGCGTGGTAAACGTCCGCTGCTGGGTCCTGATCTGCCGCAGACCGAAGA
GGTTGCAGATGTGCTGGGCACCTTTCGTGTTCTGGCAGAACTGCCTCCGGATAGCTTTGGTGCATATATCATTAG
CATGGCAACCGCACCGAGTGATGTTCTGACCGTTGAACTGCTGCAGCGCGAATGTCATGTTCGTCATCCGCTGCG
TGTTGTTCCGCTGTTTGAAAAACTGGCAGATCTGGAAGCAGCACCGGCAGCAGTTGCACGTCTGTTTAGTGTTGA
TTGGTATATGGATCGCATCAACGGTAAACAAGAAGTGATGATTGGTTATAGCGATAGCGGTAAAGATGCAGGTC
GTCTGAGTGCAGCATGGCAGCTGTATAAAGCACAAGAAGAACTGGTTCAGGTTGCCAAACGTTATGGTGTTAAA
CTGACCATGTTTCATGGTCGTGGTGGCACCGTTGGTCGCGGTGGTGGTCCGACACATCTGGCCATTCTGAGCCAG
CCACCGGATACCATTCATGGTTCTCTGCGTGTTACCGTTCAGGGTGAAGTTATTGAACATAGTTTTGGCGAAGAA
CATCTGTGTTTTCGTACCCTGCAGCGCTTTACCGCAGCAACCCTGGAACATGGTATGCATCCGCCTGTTAGCCCG
AAACCGGAATGGCGTGCACTGATGGATGAACTGGCAGTTGTTGCCACCGAAGAATATCGTAGCATTGTTTTTAAA
GAACCGCGTTTTGTGGAATATTTTCGTAGCGCAACACCGGAAACCGAATATGGTCGTATGAATATTGGTAGTCGT
CCGAGCAAACGTAAACCGAGCGGTGGTATTGAAAGTCTGCGTGCAATTCCGTGGATTTTTGCATGGACCCAGAC
ACGTTTTCATCTGCCTGTTTGGTTAGGTTTTGGTGCAGCATTTAAACACGCCATGAAAAAAGATATCCGCAACAT
TCAGACCCTGCGCGAAATGTATAATGAATGGCCGTTTTTTCGTGTTACCCTGGATCTGCTGGAAATGGTTTTTGCC
AAAGGTGATCCGGGTATTGCAGGTCTGTATGATGAGCTGGTTGTTGCCGATGATCTGAAACCGTTTGGTGAACAG
CTGCGCAATAACTATGTTGAAACCCAACAGCTGCTGCTGCAGGTTGCAGGTCATAAAGATATTCTGGAAGGCGA
TCCGTATCTGAAACAGCGTCTGCGCCTGCGCGATCCTTATATCACAACCCTGAATGTTTGTCAGGCATATACGCT
GAAACGTATTCGCGATCCGAGCTTTCAGGTGACCGCACAGCGTCCGCTGAGCAAAGAATTTGCGGATGAAAATC
AGCCTGCCGGTCTGGTTAAGCTGAATCCGGCATCAGAATATGCACCTGGTCTGGAAGATACCCTGATTCTGACAA
TGAAAGGTATTGCCGCAGGTATGCAGAATACCGGTTAATAATAACATTGGAAGTGGATAACGGATCCGAATTCG
AGCGCCGTCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGC
CCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGG
TCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGAT 
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Protein Amino Acid Sequence 

>pET-1B Panicum queensladicum PEPC amino acid sequence 

MGSSHHHHHHENLYFQSNAMASSERHHSIDAQVRLLAPGKVSEDDKLVEYDVLLM

DRFLDILQDLHGPGIREFVQDCYELSAEYEGDRNSARLKDLGSRLASLAPADAILVA

GSIQHMLNLANLAEEVQIANRRRNKLKSGDFADEGSATTESNIDETIKRLVDLGKSK

EEVFEALKNQSVDLVLTAHPTQSVRRSLLQKHSRIRNCLTQLNAKDITDDEKQELDE

ALSREIQAAFRTDEIRRAQPTPQDEMRYGMSYIHETIWKGVPKFLRRLDTALKNIGID

ERLPYNVPLIQFCSWMGGDRDGNPRVTPEVTRDVCLLARMMAANLYFSGLEELMF

ELSMWRCNDELRARAQEIHSAPKKAAKHYIEFWKQIPLSEPYRVVLGNVRDKLYNT

RERARQLLTNEFSDIPEELVFSNVQEFLEPLELCYKSLCECGDKTIADGSLLDFLRQV

STFGLSLVKLDIRQESERHTDVIDAITTHLGIGSYRSWPEDKRQEWLLSELRGKRPLL

APDMPQTEEIADVLGCFRVLAELPRDSFGPYIISMATAPSDVLAVELLQRECHVRDP

LPVVPLFERLADLQNAPASMERLFSVDWYLQRINGKQQVMIGYSDSGKDAGRLSA

AWQLYRAQEELAQVAKRYGVKLTMFHGRGGTVGRGGGPSHLAILSQPPDTINGSIR

VTIQGEVIEHSFGEEHLCFRTLERFTAATLEHGMHPPVSPKPEWRKLMDEMAVVAT

EEYRSIVFREPRFVEYFRSATPETEYGRMNIGSRPAKRKPKGGIESLRAIPWIFSWTQT

RFHLPVWLGVGAAFQYAIKKDSKNIQKLKDMYKEWPFFRVTIDLLEMVFAKGDPSI

AGLYDELLVAADLKPFGEQLRNKYLETQQFLLQIAGHKEILEGDPYLKQGLRLRNP

YITTLNVFQAYTLKLMRDPSFQVKKQPPMSKEFADEKKPAGLVELNPASEYAPGLE

DTLILTMKGIAAGMQNTG* 
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>pET-1B Panicum pygmaeum PEPC amino acid sequence 

MGSSHHHHHHENLYFQSNAMASSKAPGPVERHQSIDAQLRLLAPGKVSEDDKLVE

YDALLVDRFLDILQDLHGPSLREFVQECYELSAEYEGDRDAARLGELGDRLTGLAP

ADAIVVASSFSHMLNLANLAEEVQIAHRRRNKLKRGDFADEASATTESDIEETLKRL

VSELGKSREEVFDALKNQTVDLVFTAHPTQSIRRSLLQKHARIRNCLTQLYAKDITA

DDKQELDEALQREIQAAFRTDEIRRTQPTPQDEMRAGMSYFHETIWKGVPKFLRRV

DTALKNIGIDERLPYNAPLIQFSSWMGGDRDGNPRVTPEVTRDVCLLARMMAANL

YFSQIEELMFELSMWRCNDELRVRAEELHRASRKAAKHYIEFWKQIPPNEPYRVILG

YVRDKLYYTRERSRHLLTTGFSEIPEDSAFTNVEEFLEPLELCYRSLCACGDKTIADG

SLLDFLRQVSTFGLSLVKLDIRQESERHTDVLDAITTHLGIGSYREWPEEKRQEWLLS

ELRGKRPLLGPDLPQTEEVADVLGTFRVLAELPPDSFGAYIISMATAPSDVLTVELLQ

RECHVRHPLRVVPLFEKLADLEAAPAAVARLFSVDWYMDRINGKQEVMIGYSDSG

KDAGRLSAAWQLYKAQEELVQVAKRYGVKLTMFHGRGGTVGRGGGPTHLAILSQ

PPDTIHGSLRVTVQGEVIEHSFGEEHLCFRTLQRFTAATLEHGMHPPVSPKPEWRAL

MDELAVVATEEYRSIVFKEPRFVEYFRSATPETEYGRMNIGSRPSKRKPSGGIESLRA

IPWIFAWTQTRFHLPVWLGFGAAFKHAMKKDIRNIQTLREMYNEWPFFRVTLDLLE

MVFAKGDPGIAGLYDELVVADDLKPFGEQLRNNYVETQQLLLQVAGHKDILEGDP

YLKQRLRLRDPYITTLNVCQAYTLKRIRDPSFQVTAQRPLSKEFADENQPAGLVKLN

PASEYAPGLEDTLILTMKGIAAGMQNTG* 
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ABSTRACT 

The C4 photosynthetic cycle is an elaborate carbon-concentrating mechanism that 

improves the efficiency of carbon fixation in tropical conditions. In this cycle, the enzyme 

phosphoenolpyruvate carboxylase (PEPC) catalyses the initial carbon fixation and is always 

recruited for this role in the many independent origins of the trait. During the evolution of C4 

PEPC the enzyme has changed with respect to key kinetic properties, such as an increase in 

specificity for bicarbonate, a decrease in specificity for phosphoenolpyruvate (PEP) and a 

decrease in sensitivity to inhibitors, including malate and aspartate.  Previous work has 

identified multiple amino acid replacement in C4-specific PEPC driven by positive selection. 

Some of these replacements happened independently in distant C4 origins, but their 

functional significance remained unknown. Here, we use site-directed mutagenesis to 

investigate the effect of amino acid mutations associated with C4 PEPC. We show that the 

mutation A780S (Zea mays numbering) is responsible for part of the change in specificity 

for PEP in both Flaveria and grasses. However, this site does not affect malate inhibition or 

bicarbonate specificity, showing that these traits are independent. The two other C4 

mutations, H665N and S761A, do not affect any of the studied kinetic parameters, 

suggesting that these changes adapted non-kinetic aspects of C4 PEPC.  We conclude that 

the adaptation of PEPC for the C4 context involved efficiency of protein synthesis and 

posttranslational modification in addition to kinetic properties.

 

The carbon concentration mechanism C4 photosynthesis boosts productivity of plants in 

tropical conditions (Atkinson et al., 2016). This is achieved by fixing carbon dioxide with 

the enzyme phosphoenolpyruvate carboxylase (PEPC) in a cell segregated from the enzyme 

Ribulose-bisphosphate carboxylase/oxygenase (RuBisCO), the enzyme catalysing the entry 

of inorganic carbon into the Calvin-Benson cycle (Hatch, 1987; Sage, 2004; Sage, Sage and 

Kocacinar, 2012). In C3 plants, RuBisCO is in direct contact with atmospheric gases, leading 

to the oxygen fixation by the enzyme, resulting in toxic products that require an 
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energetically intensive process called photorespiration to breakdown. In conditions such as 

high temperatures, aridity or salinity, where the ratio of oxygen to carbon dioxide in the cell 

is increased, photorespiration can represent a high cost for the plant (Ehleringer and 

Björkman, 1977; Skillman, 2007). C4 photosynthesis uses PEPC to fix carbon dioxide in the 

form of bicarbonate to produce oxaloacetate which is rapidly converted to aspartate or 

malate (Bräutigam et al., 2014). This acid is shuttled to the RuBisCO containing cell, where 

atmospheric gas diffusion is limited, and its decarboxylation releases the carbon dioxide, 

increasing its concentration RuBisCO (von Caemmerer and Furbank, 2003). 

The C4 trait is highly convergent, with over 60 different origins in flowering plants 

(Sage, Christin and Edwards, 2011). The enzymes of the C4 cycle exist in C3 plants, as a 

result the evolution of the C4 trait involved the co-option of multiple genes, which were 

subsequently modified to alter their expression patterns and the kinetic properties of the 

encoded enzymes (Blasing, Westhoff and Svensson, 2000; Tausta et al., 2002; Aubry, 

Brown and Hibberd, 2011; Christin et al., 2013). The gene encoding PEPC that has been co-

opted for C4 was especially massively upregulated (Bräutigam et al., 2011; Lauterbach et al., 

2017; Moreno-Villena et al., 2018). Changes in PEPC kinetic properties have been 

investigated in the model genus Flaveria, which includes closely-related C4 and non-C4 

species (Chapter 2; Svensson, Bläsing and Westhoff, 1997, 2003; McKown, Moncalvo and 

Dengler, 2005), and more recently in grasses (Chapter 3). These efforts have shown a 

reduction of specificity for phosphoenolpyruvate (PEP), an increase of specificity for 

bicarbonate and a reduction of sensitivity to the inhibitors malate and aspartate during C4 

evolution (Chapter 3). The magnitude of these changes is higher in grasses than in Flaveria, 

which reflect the longer amount of time the former spent in a C4 state (Chapter 3). An 

increase in the sensitivity to the activator glucose-6-phosphate has also been observed in the 

C4 Flaveria (Westhoff et al., 1997; Engelmann et al., 2003; Gowik and Westhoff, 2011).  

The evolutionary drivers and molecular basis of the C4 specific properties are still not 

well understood. Analysis of the evolution of the amino acid sequence of C4 PEPC has 
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shown that at least 22 sites have been driven by positive selection in grasses and sedges. Of 

these sites, three are also observed in C4 Flaveria (Christin et al., 2007; Besnard et al., 

2009). Some of these mutations have been shown to be responsible for key C4 specific 

kinetic properties. Of these, a mutation for alanine to serine at position 780 (Zea mays 

numbering, accession number NM_001161348.2) has been identified as an important 

determinant of the low specificity for PEP of the C4 form of the enzyme (Bläsing, Westhoff 

and Svensson, 2000). Analyses of Flaveria mutants have further indicated that the region 

from position 296 to 437 (301 to 422 in Z. mays) is responsible for the rest of the change in 

specificity for PEP (Blasing, Westhoff and Svensson, 2000; Engelmann et al., 2002). These 

two regions were however not involved controlling in the IC50 for malate (Jacobs et al., 

2008). However, the effect of these mutants on bicarbonate specificity remains unknown. As 

the effect of these mutations on bicarbonate specificity has not been investigated, the link 

between bicarbonate specificity and PEP specificity is unclear. Of the other amino acid 

replacements evaluated experimentally, the mutation of position 890 (Z. mays numbering) 

from arginine to glycine reduced sensitivity to uncompetitive inhibition (Paulus, Schlieper 

and Groth, 2013). Additionally, monocot specific mutation of position 100 from asparagine 

to serine increased PEPC sensitivity to activation by neutral amino acids, such as glycine 

(González-Segura et al., 2018).  

In this work, we use site-directed mutagenesis to investigate the effects of three C4 

specific amino acid mutations in genes encoding C4 and non-C4 from the grass genus 

Panicum and the eudicot genus Flaveria. The first of these three mutations is the 

serine/alanine replacement at position 780, which was changed in most C4 lineages (Christin 

et al., 2007; Besnard et al., 2009) and shown to be a major determinant of PEP affinity in 

Flaveria (Blasing, Westhoff and Svensson, 2000). The second is a histidine/arginine 

mutation at position 665, which occurred in both C4 Flaveria and Panicum, but has yet to be  

experimentally investigated. The third is alanine/serine transition at position 761, a mutation 

that occurred in most grasses, but not Flaveria, and lies in the active site. For each of these 
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sites, the C4-specific amino acid residue is generated in the non-C4 gene, and vice versa. The 

mutants generated are then evaluated biochemically, using the approaches described 

previously (Chapters 2 and 3). Our work thereby evaluates the effect of each of these 

mutations in distantly-related non-C4 genes, and sheds new light onto the enzyme properties 

selected for the C4 context. 
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RESULTS 
Site directed mutagenesis and protein purification 

Site specific mutations were introduced into the PEPC genes from Flaveria trinervia 

and Flaveria pringlei (Chapter 2), and Panicum queenslandicum and Panicum pygmaeum 

(Chapter 3). For the investigation of C4 mutation H665N, the arginine amino acid was 

mutated to a histidine in F. trinervia and P. queenslandicum PEPC, and the histidine amino 

acid was mutated to an arginine in F. pringlei and P. pygmaeum PEPC. For the investigation 

of grass specific C4 mutation S761A, the alanine amino acid was mutated to serine in P. 

queenslandicum PEPC, and the serine amino acid was mutated to alanine in F. trinervia 

PEPC and P. pygmaeum PEPC. For the investigation of the C4 mutation A780S, the serine 

amino acid was mutated to alanine in F. trinervia PEPC and P. queenslandicum PEPC, and 

the alanine amino acid was mutated to serine in F. pringlei PEPC and P. pygmaeum PEPC. 

Mutants were expressed in E. coli as described previously (Chapter 2).  Expressed 

protein was purified to > 95% by SDS PAGE with a single immobilised metal column as 

described previously (Chapter 2; Supp. Figure S 1).  

Kinetic analysis of mutant PEPCs varying bicarbonate and PEP 
The specificity for bicarbonate of mutant enzymes was determined using a gas-tight 

assay system as described previously (Chapter 2) and compared with native PEPCs (Chapter 

2 and 3). Assays were performed at a saturating PEP concentration, while varying the 

concentration of bicarbonate (Supp Figure S 2). A change in bicarbonate specificity was not 

observed in mutants at position 665 (Figure 2A), position 761 (Figure 3A), or position 780 

(Figure 1A).  

The specificity for PEP of the mutant enzymes was determined at saturating 

bicarbonate. A change in PEP specificity was not observed in mutants at position 665 

(Figure 2B), or position 761 (Figure 3B). A decrease in PEP specificity was observed for the 

A780S mutants of P. pygmaeum and F. pringlei, and an increase in PEP specificity was 
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observed for the S780A mutants of P. queenslandicum and F. trinervia (Figure 1B). PEP 

and bicarbonate specificity constants are summarised in Supp. Table 1. 

PEPC inhibition by malate 
The effect of these mutations on the inhibition by malate was also assessed. All the 

mutants showed mixed inhibition in the presence of PEP at pH 8.0. No change in the 

inhibition parameters at limiting or saturating PEP were observed for mutants of positions 

665 (Figure 2C and D), 761 (Figure 3C and D), or 780 (Figure 1C and D). Malate inhibition 

constants are summarised in Supp. Table 1. 

Amino acid biosynthetic cost  
The energetic cost of producing PEPC for each species was estimated using amino 

acid expression cost in terms of high-energy phosphate bonds using values previously 

determined (Heizer, Raymer and Krane, 2011). This biosynthetic cost was taken as the 

number of high-energy phosphate bonds required to synthesise the amino acid in E. coli.  

The biosynthetic costs obtained show P. queenslandicum PEPC requires hydrolysis of 

0.08% fewer high-energy phosphates than the P. pygmaeum PEPC. Likewise, the F. 

trinervia PEPC also requires hydrolysis of 0.08% fewer high-energy phosphates than the F. 

pringlei PEPC (Supp. Table 2).  

Differential Scanning Fluorimetry  
The melting temperature of native PEPC and mutants was determined using 

differential scanning fluorimetry. Comparison of the melting temperature of native PEPCs 

showed that C3 PEPCs F. pringlei (Tm = 53.5 ± 2.1℃) and P. pygmaeum (Tm = 47.4 ± 0.1℃), 

were slightly more stable than the C4 PEPCs, F. trinervia (Tm = 40.0 ± 0.8℃, P = 0.003) and 

P. queenslandicum (Tm = 42.8 ± 0.4℃, P = 0.0007; Supp. Figure 7). Mutants at positions 665, 

761 and 780, showed no change in melting temperature compared to the native enzyme (Supp. 

Figure 8B, C, and D; P > 0.05). Protein stability does not appear to be affected by the 

investigated mutations. 
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A 

 

B 

 

C 

 

D 

 

Figure 1: Kinetic parameters determined from the investigation of the C4 mutation A780S. error bars 
represent standard errors based on fitted curves. Specificity constants for the native enzymes have been given 
previously (Chapter 2 and 3). A Summary of bicarbonate specificity parameter for 780 mutants, values derived 
from Supp. Figure 2. No effect of mutations detected (P > 0.05). B Summary of PEP specificity parameter for 
780 mutants, values derived from Supp. Figure 3. An increase is specificity for PEP is observed for the S780A 
mutants (P = 0.0001), and a decrease in specificity is observed in A780S (P = 0.0001). C Summary of Kic

Malate for 
780 mutants values derived from Supp. Figure 4. No effect of mutations detected (P > 0.05). D Summary of 
Kic

Malate for 780 mutants values derived from Supp. Figure 5. No effect of mutations detected (P > 0.05). 
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B 

 
C 

 

D 

 
Figure 2: Kinetic parameters determined from the investigation of the C4 mutation H665N. error bars 
represent standard errors based on fitted curves. Specificity constants for the native enzymes have been given 
previously (Chapter 2 and 3). A Summary of bicarbonate specificity parameter for 665 mutants, values derived 
from Supp. Figure 2. No effect of mutations detected (P > 0.05). B Summary of PEP specificity parameter for 
665 mutants, values derived from Supp. Figure 3. No effect of mutations detected (P > 0.05). C Summary of 
Kic

Malate for 665 mutants’ values derived from Supp. Figure 4. No effect of mutations detected (P > 0.05). D 
Summary of Kic

Malate for 665 mutants’ values derived from Supp. Figure 5. No effect of mutations detected (P > 
0.05). 
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D

 
Figure 3: Kinetic parameters determined from the investigation of the grass specific C4 mutation S761A. 
error bars represent standard errors based on fitted curves. Specificity constants for the native enzymes have been 
given previously (Chapter 2 and 3). A Summary of bicarbonate specificity parameter for 761 mutants, values 
derived from Supp. Figure 2. No effect of mutations detected (P > 0.05). B Summary of PEP specificity 
parameter for 761 mutants, values derived from Supp. Figure 3. No effect of mutations detected (P > 0.05). C 
Summary of Kic

Malate for 761 mutants’ values derived from Supp. Figure 4. No effect of mutations detected (P > 
0.05). D Summary of Kic

Malate for 761 mutants’ values derived from Supp. Figure 5. No effect of mutations 
detected (P > 0.05). 
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DISCUSSION 
C4 PEPC has evolved from an ancestor with a non-carbon fixing role and adapted to 

meet the demands of the carbon fixing role by increasing its expression level (Bräutigam et 

al., 2011; Moreno-Villena et al., 2018), and by changes in key kinetic properties such as 

specificity for PEP and bicarbonate, and sensitivity to inhibitors (Chapter 2). These C4 

specific properties have been shown to be convergent in nature, being present in distantly 

related C4 lineages (Chapter 3). The structural origin of these changes in kinetic properties 

has not been fully elucidated, even though C4 specific amino acids have been selected for 

convergently across C4 grasses, sedges and eudicots (Christin et al., 2007; Besnard et al., 

2009). As a result of limited experimental investigation, the functional effect of these 

convergent C4 amino acid changes, and therefore their selective advantages, are not fully 

understood. 

The alanine to serine mutation at position 780 reduces specificity for PEP without 
changing the bicarbonate specificity. 

Position 780 lies on an α-helix above the active site of PEPC in the Z. mays crystal 

structure (Matsumura et al., 2002). The mutation to serine at position 780 is selected for in 

the C4 Flaveria and grasses and has been shown to be an important determinant for C4 

activity (Hermans and Westhoff, 1992; Blasing, Westhoff and Svensson, 2000). When this 

site was mutated to serine in the C3 Flaveria enzyme, the mutant showed kinetic properties 

towards PEP similar to a C4 enzyme with a decrease in kcat/Km
PEP (Blasing, Westhoff and 

Svensson, 2000; Engelmann et al., 2002; Svensson, Bläsing and Westhoff, 2003). The 

structural basis of how this mutation changes the PEP specificity is not fully understood, the 

change to serine at this position may give rise to hydrogen bonding interactions with PEP or 

other parts of the enzymes (Blasing, Westhoff and Svensson, 2000). This change may also 

affect how the enzyme interacts with bicarbonate. Previous work has shown the alanine to 

serine mutation does not affect inhibition by malate at a single concentration of PEP (Jacobs 

et al., 2008).  
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Our investigation shows that when this residue is mutated from alanine to serine in 

the non-C4 enzymes from Panicum pygmaeum and Flaveria pringlei the resulting mutants 

have a comparable decrease in specificity towards PEP (Figure 3B). For the C4 enzymes 

from Panicum queensladicum and Flaveria trinervia, the S780A mutants show an increase 

in specificity for PEP. As reported earlier, these point mutations do not account for the full 

difference in behaviour between the C3 and C4 forms of the enzyme (Blasing, Westhoff and 

Svensson, 2000).  

None of these four mutants exhibited a change in bicarbonate specificity or malate 

inhibition (Figure 1). Our results conform to the previously described results in the Flaveria 

enzymes (Blasing, Westhoff and Svensson, 2000) and shows that similar behaviour is seen 

in the PEPC enzymes from the grasses, P. pygmaeum and P. queensladicum.  Notably, 

despite the significance of this residue for the productive interaction with PEP, mutations at 

this position do not appear to change the sensitivity of the enzyme to the other substrate, 

bicarbonate, or to the inhibitor, malate. This mutation is seen in the majority of C4 PEPCs 

(Christin et al., 2007; Besnard et al., 2009). A similar magnitude change in specificity for 

PEP is observed in both of these C4 enzymes when mutated, which is not combined with any 

significant change in inhibitor sensitivity or bicarbonate specificity. This indicates that this 

C4 specific mutation is responsible for the same change in C4 specific properties in PEPC 

evolutionary distance C4 species.  This further supports the hypothesis that low PEP 

specificity is not sacrificed to improve another enzyme property, but is an essential C4 

property as discussed previously (Chapter 2).  

The conserved C4 specific change at position 665 is functionally silent with respect to 
investigated properties. 

The H665N mutation is conserved in the C4 grass and the C4 Flaveria PEPC. In the 

Zea mays PEPC crystal structure (Kai, Matsumura and Izui, 2003), the Cα of residue 665 is 

approximately 22 Å away from the Cα of catalytically essential residue H177. The H665N 

mutation can be considered to be chemically conserved as the side-chain nitrogen in 
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asparagine can substitute for an imidazole nitrogen in the histidine side chain and retain 

similar electrostatic and hydrogen bonding interactions (Fersht, 2002). This mutation is 

shared among C4 grasses, Flaveria and sedges, and was assigned to C4-specific positive 

selection with a 0.995 posterior probability (Christin et al., 2007; Besnard et al., 2009).  

Our work shows a mutation from histidine to asparagine at position 665 does not 

change the bicarbonate specificity, PEP specificity or malate inhibition (Figure 2). This 

suggests that this mutation might has been selected for a different reason. When the cost of 

amino acid biosynthesis is considered, histidine costs 29.0 in number of high energy bonds 

while asparagine costs 18.5 (Heizer, Raymer and Krane, 2011). Combined with the massive 

upregulation of C4 PEPC, a single mutation away from an expensive amino acid may be 

important in reducing the overall cost of enzyme production. Comparison of the overall 

biosynthetic cost of PEPC production, however, suggests that there is no major difference in 

cost between the C3 and C4 forms of the enzyme. C4 specific mutations can require an 

increase in biosynthetic cost. For example position 573, which is glutamate in non-C4 

PEPCs, and is lysine or glutamine in C4 grasses, sedges and eudicots (Besnard et al., 2009). 

The nature of these adaptation is not fully understood; however, this change involves an 

inversion of electrostatic interactions and increase in cost from 9.5 to 37.0/10.5. Some of the 

selected changes in amino acid side chain may well be epistatic, selected to enable other 

directly functional changes. Epistasy has been shown to be an important driving force in the 

selection of amino acids (Kimura, 1985; Halabi et al., 2009; Tracewell and Arnold, 2009; 

Breen et al., 2012). 

The conserved change in the active site of PEPC at position 761 is also functionally silent. 
Position 761 lies in the active site between amino acids thought to be essential for 

substrate interactions i.e. R759PAKRR764. In this motif, R759 is essential for PEP binding and 

the KRR764 region is thought to be essential for bicarbonate binding in Z. mays PEPC 

(Matsumura et al., 1999; Izui et al., 2004). The mutation from serine to alanine has not been 
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observed in Flaveria but occurred in most C4 origins within grasses, where it was assigned 

to positive selection with a 0.999 posterior probability (Christin et al., 2007).  

Investigation of the S761A mutation has shown that the C4 specific change does not 

appear to contribute to bicarbonate specificity, PEP specificity or malate inhibition (Figure 

3). This position is predicted to be part of a casein kinase II phosphorylation site (Hulo, 

2006; Christin et al., 2007). Casein kinase II has important functions in regulation in higher 

plants (Kanekatsu et al., 1998; Ogiso et al., 2010). The much higher expression level and 

concentration of PEPC makes the protein more likely to be a target of non-specific 

phosphorylation. As this amino acid is part of a loop of the active site, any unnecessary 

modifications may affect protein activity, such as reducing the mobility of active site lid or 

the interactions substrates. This would be undesirable and create selection pressure for 

mutation. This mutation is observed in PEPCs from older C4 species such as P. 

queenslandicum, Z. mays and Alternanthera pugens. However, it is not observed in the 

PEPC from one of the most recent C4 origins, Flaveria (Christin et al., 2011). This would 

suggest that this is a later adaption as phosphorylation would be more likely with increases 

in expression level.  

The co-option of PEPC for  C4 carbon fixation involved the adaptation of the enzyme to 

meet the demands of a central metabolic role. As well as an increase in expression level, 

convergent amino acid changes have been observed across C4 PEPCs, some of which have 

been investigated and were shown to be important for key kinetic properties. The mutation 

K890G (Z. mays numbering) has been shown to decrease the malate sensitivity (Paulus, 

Schlieper and Groth, 2013), A780S is partially responsible for a decrease in PEP specificity 

(Blasing, Westhoff and Svensson, 2000), and K100S is responsible for monocot-specific 

sensitivity to activation by glycine (González-Segura et al., 2018). In this report, we have 

focused on three residues at positions 665, 761 and 780. The mutations at these positions are 

strongly selected in the C4 forms of PEPC. We have examined the effects of these mutations 
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in both C4 and C4 forms of PEPC in both Flaveria and Panicum. At position 780, the same 

change is observed on mutation in the C3 PEPC, in Panicum and Flaveria, but no change of 

bicarbonate or inhibition kinetics was observed. Remarkably, there is no change in the 

kinetic properties or stability of mutations at the other two of these sites; the core 

biochemical properties of substrate specificity and inhibitor sensitivity appear unconnected 

to these highly selected amino acids.  

This observation is particularly surprising in the case of the active-site residue 761. The 

mutation at this site from serine to alanine removes a putative casein kinase II 

phosphorylation site. If the serine is phosphorylated, this would become disadvantageous 

due to the location in the active site. With the increase in C4 expression level, the avoidance 

of incorrect phosphorylation could be a driving force for selection. Position 665 mutation is 

from histidine to arginine and results in a limited change in chemical functionality, 

suggesting this mutation could be driven by the biosynthetic cost optimisation. Selection for 

lower cost amino acids in highly expressed protein in prokaryotes has been observed  

(Akashi and Gojobori, 2002; Heizer et al., 2006).  

Position 780 has long been identified as an important determinant in C4 activity 

(Hermans and Westhoff, 1992). We have shown that mutations at this position confer the 

change in PEPC’s evolutionary distant origins of C4 photosynthesis. Positions 665 and 761 

have been shown to be functionally silent with respect to substrate specificity and inhibitor 

sensitivity. However, the changes in amino acid properties of these sites suggest that these 

positions are driven by enzyme epistasis and other factors with the cell not encountered at 

low expression levels.  
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EXPERIMENTAL PROCEDURES 
Unless otherwise stated, reagents and components were from Sigma. For purification, 

unless otherwise stated the equipment used procured from GE Healthcare. Unless otherwise 

stated enzymes and E. coli strains were from NEB. 

DNA Mutagenesis 
Mutations were introduced to PEPC genes of Flaveria trinervia and Flaveria 

pringlei (Chapter 2), Panicum queenslandicum and Panicum pygmaeum (Chapter 3) using 

the appropriate primers (Table 3) and Q5 DNA polymerase and the KLD enzyme kit. DNA 

product was verified with agarose gel. High competency DH5α cells were transformed with 

the DNA product. Resultant plasmids were Sanger sequenced (GATC Biotech) using the 

appropriate primers. 

Protein Expression 
For protein expression, BL21λ(DE3) strain of E. coli (NEB) was used. Chemically 

competent E. coli cells were transformed with each of the plasmids. Eight litres of cultures 

were grown in LB medium at 37°C to OD600 0.8. Cultures were cooled to 4°C for one hour 

prior to recombinant protein induction with 0.5 mM IPTG (Fischer). Cultures were then 

incubated at 18°C for 18 hours. Cells were harvested by centrifugation at 5,422 × g for 25 

minutes and stored at -80°C. 

Protein Purification 
Cells were suspended with IMAC buffer (25 mM Tris, 0.5 M NaCl, 0.3 M glycerol, 

20 mM imidazole (Acros Scientific)), 10 ml per 2 L of culture with 50 µl of 50mg ml-1 

DNase I and 100 µl of 100 mg ml-1 Pefabloc. Cells were passed twice through a cell 

disruptor (Constant Systems) before centrifugation at 26,902 × g for 40 minutes. The 

supernatant was passed through a 0.45 µm pore filter (Elkay Labs.). PEPC was separated 

from soluble protein with a prepacked 1 ml nickel affinity column using an ÄKTA™ Pure 

25 L Chromatography System. The loaded column was washed with 50 column volumes of 

IMAC buffer, then 50 column volumes of IMAC buffer containing 150 mM imidazole.  Pure 

PEPC was eluted with 10 column volumes of IMAC buffer containing 400 mM imidazole.  
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Protein eluted from IMAC purification was loaded onto a Sephadex G50 desalting 

column (Amersham Biosciences) and rebuffered in storage buffer (20 mM Tris, 5% v/v 

glycerol, 150 mM KCl, 1 mM DTT (AnaSpec. Inc.)). Protein was aliquoted and frozen at -

80°C until use. Mutant enzyme stability was verified with circular dichroism (Supp Figure 

6). 

Enzyme Quantification 
PEPC enzyme concentration was quantified by absorption at 280 nm, the native 

enzyme extinction coefficient was used (Chapters 2 and 3), assuming no change in 

extinction coefficient on mutation. The enzyme extinction coefficient was calculated using 

the ExPASy protein parameter tool and corrected by determining the absorbance of the 

protein denatured in 6 M guanidine hydrochloride (Gill and von Hippel, 1989). The 

difference between the denatured and folded protein at 280 nm was used to adjust the 

extinction coefficient of the protein. The extinction coefficient for Flaveria trinervia PEPC 

was determined to be 120480 M-1 cm-1, and the extinction coefficient for Flaveria pringlei 

PEPC was determined to be 117030 M-1 cm-1. The extinction coefficient for Panicum 

queenslandicum PEPC was determined to be 105805 M-1 cm-1, and the extinction coefficient 

for Panicum pygmaeum PEPC was determined to be 111514 M-1 cm-1. It is assumed that all 

enzyme used to start the assay was active. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE) Analysis   
Total protein concentration for purification efficiency was determined using the BCA 

Pierce quantification kit (Thermo Scientific). Concentration was determined using a standard 

curve performed with bovine serum albumin, over a concentration range 0 – 2.0 mgml-1.  

Protein samples were analysed for purity using SDS PAGE analysis. Protein samples 

were quantified using the BCA Pierce method, 25 µg of cell lysis and 5 µg of pure protein 

fractions were denatured in 2 × SDS PAGE loading dye (200 mM Tris.HCl pH 6.8, 2 % 

SDS, 20 % Glycerol, 0.01% Bromophenol blue (BDH Laboratory Supplies) and 7 % β-

mercaptoethanol). Protein was loaded onto an 8% acrylamide SDS gel (Expedeon) with 2 µl 

of Blue Prestained Protein Standard Broad Range (11-190 kDa) (NEB). Gels were run for 50 
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minutes at 200 V with 1 × Tris/Glycine/SDS running buffer (Geneflow). Gels were stained 

with InstantBlue (Expedeon) and imaged with a ChemiDoc™ MP (BioRad). 

Enzyme Assays 
PEPC activity was measured spectroscopically at 340 nm by coupling to NADH-

malate dehydrogenase. Assays with a high fixed concentration of bicarbonate were observed 

using a FLUOstar plate reader (BMG Labtech) using the 340 nm ± 5 nm absorbance filter 

(BMG Labtech). Plate reader assays were conducted in a reaction volume of 150 µl at 25°C. 

Typical reaction mixture contained 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2 (Fluka), 10 

mM KHCO3. 0.2 mM NADH (Fischer) and 0.1 Uµl-1 malate dehydrogenase. Assays were 

initiated with the addition of PEPC enzyme.  Rates were calculated with a NADH calibration 

curve. 

Assays at a range of bicarbonate concentrations were observed with a Cary Bio 300 

spectrophotometer (Agilent Technologies) in the same reaction buffer, in a total reaction 

volume of 600 µl. In bicarbonate assays, the water and tricine buffer were sparged with 

nitrogen for 18 hours prior to use in assays. Bicarbonate assays were constructed under a 

nitrogen flow. Assays were performed in a sealed cuvette. The reaction was initiated with 

the addition of 50 nM PEPC, delivered with a gastight syringe (Hamilton). Bicarbonate 

concentrations were controlled with the addition of freshly prepared potassium bicarbonate. 

Background bicarbonate was determined using an endpoint assay with no potassium 

bicarbonate, run for 30 minutes. Rates were calculated using the Cary analysis software.  

Circular Dichroism Analysis 
Protein samples were made to 2 µM in 200 µl of PEPC storage buffer. Samples was 

analysed in a J-810 Spectropolarimeter (Jasco). Reading were taken four times from 200 to 

280 nm, in a method described in (Greenfield, 2007).  

Differential Scanning Fluorimetry  
Protein at a concentration of 75 µgml-1 was suspended in 10 mM HEPES pH 7.5, 

150 mM sodium chloride, and 1 × SYPRO orange dye (Invitrogen). Samples were incubated 

in a RT-PCR machine. Samples were run on a temperature scan from 35 to 95℃ at, 1℃ 

min-1, in the method described in (Niesen, Berglund and Vedadi, 2007).   
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Data Analysis 
Kinetic parameters were evaluated by non-linear regression analysis in Igor Pro 

(Version 7.0.8.1; Wavemetrics Inc., Lake Oswego Orgeon). The statistical significance of 

changes in kinetic parameters were then analysed with GraphPad Prism 7 for Windows 

(Version 7.04, GraphPad Software, Inc.) using the analysis of variance function (ANOVA). 

The following equations were used:  

                                                (Equation 1) 

𝑣
[𝐸்]ൗ =  

𝑘௧ × [𝑆]

𝐾 + [𝑆]
 

Equation 1, where vi/[ET] is the steady state rate divided by the total enzyme 

concentration, kcat is the first order rate constant, Km is the Michaelis constant, and [S] is the 

substrate concentration.  

 (Equation 2) 

𝑘  =  
𝑘

1 +  
[𝑖]

𝐾
ൗ

 

Equation 2, where kapp is an apparent steady-state rate constant (i.e. apparent kcat/Km 

or kcat), k is the uninhibited constant, i is the inhibitor concentration, and Ki is the inhibition 

constant.   

 (Equation 3) 

𝑦 = 𝐿𝐿 +  
(𝑈𝐿 − 𝐿𝐿)

1 + exp (
𝑇 − 𝑥

𝑎
)
 

Equation 3, where y is fluorescence at a given wavelength, x is the temperature, LL 

is the maximum intensity of fluorescence, UL is the minimum intensity of fluorescence, a 

denotes the slope of the curve, and Tm is the melting temperature of the protein.  
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SUPPLEMENTARY FIGURES  
SDS PAGE Analysis 

A 

 
B 

   
C 

 
Figure S 1: 8 % acrylamide SDS PAGE analysis of mutants. ca. 6 µg of PEPC protein was loaded into each 
well. A Analysis of position 665 mutants. B Analysis of position 761 mutants. C Analysis of position 780 
mutants.  
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Kinetic Data 
Pqu N665H 

 

Ppy H665N 

 

Ft N665H 

 

Fp H665N 

 
Pqu A761S 

 

Ppy S761A 

 

Ft S761A 

 

 

Pqu S780A 

 

Ppy A761S 

 

Ft S780A 

 

Fp A780S 

 
Figure S 2: Rate of oxaloacetic acid formation, catalysed by PEPC mutants, varying the concentration of 
bicarbonate.  Assays conditions were 50 mM Tricine.KOH pH 8.0, 10 mM magnesium chloride, 0.2 mM 
NADH, 0.01 Uμl-1 malate dehydrogenase and 50 nM PEPC. Performed at saturating PEP, concentration 
dependent on the Km

PEP of the mutant (50 mM PEP for Pqu mutants, 10 mM PEP for Ft mutants, and 5 mM for 
Fp and Ppy mutants). Lines are described by equation 1, kcat/Km values from the fit of the line are summarised in 
Table 1.  
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Pqu N665H 

 

Ppy H665N 

 

Ft N665H 

 

Fp H665N 

 
Pqu A761S 

 

Ppy S761A 

 

Ft S761A 

 

 

Pqu S780A 

 

Ppy A780S 

 

Ft S780A 

 

Fp A780S 

 
Figure S 3: Primary plot of PEPC mutants inhibited by malate. Assays conditions were 50 mM Tricine.KOH 
pH 8.0, 10 mM MgCl2, 10 mM KHCO3, 0.2 mM NADH and 0.01 Uμl-1 malate dehydrogenase initiated with 5 or 
10 nM of mutant PEPC. The lines are described by equation 1. 
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Pqu N665H 

 

Ppy H665N 

 

Ft N665H 

 

Fp H665N 

 

Pqu A761S 

 

Ppy S761A 

 

Ft S761A 

 

 

Pqu S780A 

 

Ppy A780S 

 

Ft S780A 

 

Fp A780S 

 

Figure S 4: Plots of competitive inhibition behaviour by malate for mutants of the PEPC enzymes. 
Secondary plot of kcat

app/Km
appPEP against malate concentration, described by equation 2. Error bars represent 

standard errors based on fitted curves. 
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Pqu N665H 

 

Ppy H665N 

 

Ft N665H 

 

Fp H665N 

 
Pqu A761S 

 

Ppy S761A 

 

Ft S761A 

 

 

Pqu S780A 

 

Ppy A780S 

 

Ft S780A 

 

Fp A780S 

 

Figure S 5: Plots of uncompetitive inhibition behaviour by malate for mutants of the PEPC enzymes. 
Secondary plot of kcat

app against malate concentration, described by equation 2. Error bars represent standard 
errors based on fitted curves. 
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Circular Dichroism  
Pqu N665H 

 

Ppy H665N 

 

Ft N665H 

 

Fp H665N 

 
Pqu A761S 

 

Ppy S761A 

 

Ft S761A

 

 

Pqu S780A 

 

Ppy A761S 

 

Ft S780A 

 

Fp A780S 

 
Pqu 

 

Ppy 

 

Ft 

 

Fp 

 
Figure S 6: Plot of circular dichroism result against wavelength. Distinctive peaks at 210 nm and 230 nm 
indicated the protein is correctly folded. 
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Differential Scanning Fluorimetry  
Pqu N665H 

 

Ppy H665N 

 

Ft N665H 

 

Fp H665N 

 
Pqu A761S 

 

Ppy S761A 

 

Ft S761A 

 

 

Pqu S780A 

 

Ppy A780S 

 

Ft S780A 

 

Fp A780S 

 
Pqu 

 

Ppy 

 

Ft 

 

Fp 

 
Figure S 7: Plots of fluorescence at 492 nm against temperature of the melting temperature for PEPC. 
Assays run in 10 mM HEPES pH 7.5, 150 mM NaCl, and 1 × SYPRO orange dye. The lines are described by 
equation 3, values derived are the melting temperatures of the PEPC enzymes. Tm values are summarised in 
Supp. Figure 8.  
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A

 

B

 

C

 

D

 

Figure S 8: Summary of Melting Temperatures from Differential Scanning Fluorimetry. Values are derived 
from Supp. Figure 7, error bars represent standard errors based on fitted curves. A Comparison of melting 
temperatures of native PEPC. B Comparison of melting temperatures of position 665 mutants with native PEPCs, 
no effect of mutations detected (P > 0.05). C Comparison of melting temperatures of position 761 mutants with 
native PEPCs No effect of mutations detected (P > 0.05). D Comparison of melting temperatures of position 780 
mutants with native PEPCs No effect of mutations detected (P > 0.05). 
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Table 1: Summary of kinetic parameters found in this study. Standard errors are given, based on fitted 
theoretical curves. 

PEPC 
Mutant 

kcat/Km
HCO3- 

/ s-1M-1 
kcat/Km

PEP 

/ s-1M-1 
Kic

Malate 

/ mM 
Kiu

Malate 

/ mM 

Pqu N665H 1.15 × 106 ± 1.49 × 104 1.25 × 104 ± 2.01 × 103 7.02 ± 2.07 152.02 ± 30.90 

Ppy H665N 3.84 × 105 ± 3.24 × 104 5.01 × 105 ± 1.28 × 104 0.33 ± 0.06 26.38 ± 7.89 

Ft H665N 6.44 × 105 ± 6.66 × 104 7.67 × 104 ± 1.20 × 104 9.79 ± 3.14 44.31 ± 7.48 

Fp N665H 4.20 × 105 ± 3.97 × 104 9.79 × 105 ± 1.61 × 104 2.32 ± 1.67 13.24 ± 3.32 

Pqu A761S 1.16 × 106 ± 6.63 × 104
 1.27 × 104 ± 1.44 × 103 11.76 ± 6.73 134.61 ± 23.8 

Ft S761A 6.57 × 105 ± 4.95 × 104 7.56 × 104 ± 8.13 × 104 16.51 ± 3.55 53.37 ± 1.91 

Ppy A761S 5.70 × 105 ± 5.46× 104 5.21 × 105 ± 4.90 × 104 0.46 ± 0.10 29.56 ± 7.89 

Pqu S780A 9.52 × 105 ± 7.08 × 104 2.80 × 104 ± 3.13 × 103 7.90 ± 0.84 116.48 ± 22.30 

Ppy A780S 4.80 × 105 ± 3.05× 104 5.01 × 105 ± 1.28 × 104 1.40 ± 1.61 39.41 ± 11.90 

Ft S780A 6.41 × 105 ± 4.32 × 104 2.71 × 105 ± 1.35 × 104 11.47 ± 1.37 42.01 ± 4.00 

Fp A780S 5.38 × 105 ± 5.14 × 104 2.35 × 105 ± 3.22 × 104 1.89 ± 1.33 17.79 ± 4.77 

  

Table 2: Table summarising the calculated cost of biosynthesis of PEPC. Cost is the biosynthetic cost, in 
number of high-energy phosphate bonds, for each PEPC in E. coli.  

PEPC Species Cost 
Panicum queenslandicum (C4) 24530.5 

Panicum pygmaeum (C3) 24550.5 

Flaveria trinervia (C4) 25016.0 

Flaveria pringlei (C3) 25037.0 
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Primers 
Table 3:Summary of the primers used in this study for cloning and sequencing.  

Primer Sequence, 5’ to 3’ 

Ft S780A For TTTGCATGGACTCAGACC 

Flav 780 Rev GATCCATGGAATGGCTCT 

Fp A780S For TTTTCATGGACTCAGACC 

Ppy A780S For TTTTCGTGGACCCAGACA 

Ppy A780S Rev AATCCACGGAATTGCACG 

Pqu S780A For CTGGATCTTCGCATGGACGCAGACGAGG 

Pqu S780A Rev GGGATCGCGCGGAGCGAC 

Flav S761A For CCAGCGAAAAGAAAACCT 

Flav S761A Rev GCGACTTCCAATATTCAT 

Pqu A761S For CCGTCAAAGAGGAAGCCC 

Pqu A761S Rev CCGGCTGCCGATGTTCAT 

Ppy S761A For TAGTCGTCCGGCGAAACGTAAACCG 

Ppy S761A Rev CCAATATTCATACGACCATATTC 

Ft N665H For ATTCATGGGTCTTTAAGAGTGACAGTT 

Flav 665 Rev GGTGTCCGGTGGTTGAGA 

Fp H665N For ATTAACGGGTCGTTAAGA 

Pqu N665H For CCGGACACCATTCATGGGTCCATCC 

Pqu N665H Rev CGGCTGCGACAGGATGGC 

Ppy H665N For ATTAATGGTTCTCTGCGT 

Ppy H665N Rev GGTATCCGGTGGCTGGCT 

Ppy Mutant Seq For AGGTTGCCAAACGTTAT 

Ppy Mutant Seq Rev TGAATGTTGCGGATATC 

Flav Mutant Seq Rev AGATTCTTGCTGTCTT 

Flav Mutant Seq For TTGCAAAAGAGTTTGG 

Pqu Mutant Seq Rev GGATGTTCTTGCTGTC 

Pqu Mutant Seq For CGGTGTGAAGCTGA 

Pqu_1323_Seq_For CGTGAAGCTGGACAT 

Pqu_1752_Seq_Rev ATGACCTGCTGCTTG 

Ppy_1291_Seq_For GATGGTAGTCTGCTGG 

Ppy_1791_Seq_Rev GCTATCGCTATAACCA 

Flav_1303_Seq_For AGACAAGTGTCGACTT 

Flav_1832_Seq_Rev TTGTAGAGCTGCCATG 

T7 Promotor TAATACGACTCACTATAGGG 

T7 Terminator GCTAGTTATTGCTCAGCGG 
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General Discussion 

This thesis has explored the adaptations of the enzyme PEPC with a change in 

function from a general metabolic role to that of a core enzyme in carbon fixation. With the 

establishment of a C4 cycle in a plant species, the gene encoding the enzyme is massively 

upregulated (Bräutigam et al., 2011, 2014; Külahoglu et al., 2014; Lauterbach et al., 2017; 

Moreno-Villena et al., 2018). My work focused on the comparison of the kinetic changes 

between PEPC enzymes encoded by orthologous genes from closely-related C4 and non-C4 

species. PEPC is encoded by a small multigene family, with different gene lineages issued 

from recurrent gene duplications, some of which happened before the emergence of land 

plants (Christin et al., 2007; Gowik and Westhoff, 2011). During this long history, the 

expression patterns of the different genes diverged, as did their coding sequences  (Gehrig, 

Heute and Kluge, 1998, 2001; Monson, 2003; Christin et al., 2007; Moreno-Villena et al., 

2018). However, the rate of modification of both expression patterns and amino acid 

sequences was markedly higher during the transition from non-C4 to C4-specific genes 

(Christin et al., 2007, 2014; Moreno-Villena et al., 2018). The non-C4 enzymes of extant 

taxa have consequently been considered as a proxy for the pre-C4 ancestral sequences, an 

assumption that is corroborated by selection analyses that show most changes concentrated 

in C4 branches (Christin et al., 2007, 2014; Besnard et al., 2009), but should be validated in 

the future via the comparison of multiple non-C4 PEPC. In my work, the genes were 

expressed in E. coli and purified, which facilitated analysis of homogenous protein. 

Enzymes isolated directly from plant leaves represent a mixture of those encoded by 

different alleles, as well as paralogs. In addition, the post-translational modification state of 

PEPC enzymes extracted from leaves depend on the time of day the plant leaves are 

harvested, adding variation among species (Doncaster and Leegood, 1987; Nimmo et al., 

1987; McNaughton et al., 1989). Purified PEPC was assayed at controlled concentrations of 

phosphoenolpyruvate and bicarbonate. The PEPC enzymes were also assayed in the 

presence of the inhibitors malate and aspartate at limiting and saturating 

phosphoenolpyruvate. In addition, site-directed mutagenesis was used to introduce amino 
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acid residues usually associated with C4-specific PEPC into non-C4 PEPCs, and vice versa. 

The properties of these mutant proteins were then used to shed light on the nature of the 

adaptations PEPC underwent during C4 evolution. 

My investigations of the genus Flaveria involved comparison of PEPCs from the C4 

species Flaveria trinervia and the C3 Flaveria pringlei (Chapter 2), two species that 

diverged in the last 3 million years (Christin et al., 2011). It was shown the C4 Flaveria 

PEPC had a bicarbonate specificity one third higher than the non-C4 PEPC. Both PEPCs 

were shown to be inhibited by malate at limiting and saturating phosphoenolpyruvate, and 

aspartate only inhibited at limiting PEP. The C4 Flaveria PEPC was shown to be less 

sensitive to both inhibitors when compared to the non-C4 PEPC.  While the Flaveria genus 

represents a good system to study C4 evolution because of the diversity of photosynthetic 

types and close relatedness among the species (Engelmann et al., 2003; Westhoff, 2004; 

McKown, Moncalvo and Dengler, 2005), some of the most successful and earliest origins of 

C4 photosynthesis are found in the grass family (Giussani et al., 2001; Christin et al., 2011; 

Sage, Christin and Edwards, 2011).  I consequently decided to compare the C4 PEPC from 

the grass Panicum queensladicum and the non-C4 PEPC encoded by the orthologous gene 

from the C3 grass Panicum pygmaeum that belongs to the same tribe (Chapter 3). 

Comparison of the two sets of species indicates convergence in C4 PEPCs of Flaveria and 

Panicum with respect to inhibition, PEP specificity and bicarbonate despite their 

evolutionary distance. Further, the increased divergence time between the grasses compared 

to the Flaveria has resulted in quantitatively larger C4-specific kinetic properties in the 

carbon fixing PEPC of P. queenslandicum.  

Amino acid differences between C4 and non-C4 PEPC of grasses have been 

investigated in the past independently of the kinetic properties (Christin et al., 2007; Besnard 

et al., 2009). I consequently decided to investigate the biochemical significance of key C4-

specific amino acid changes on the kinetic properties of the encoded enzyme (Chapter 4). 

The C4 amino acid mutations H665N and A780S (Zea mays numbering), which are shared 
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by Flaveria and Panicum, and S761A, which is only observed in Panicum, were 

experimentally evaluated. Position 780 was shown to be an important contributing mutation 

to the C4-characteristic low specificity for PEP and did not contribute to inhibition 

sensitivity or bicarbonate specificity (Chapter 4). Surprisingly, investigation of position 665 

and 761 did not detect functional effects with respect to substrate specificity or inhibition. 

Further investigation of 665 indicated that this mutation is chemically conservative but less 

biosynthetically costly. This position will be under selection in all species, however this 

pressure increases with the massive increase in expression level. Analysis of position 761 

indicated that this position is in the active site and the serine in the non-C4 form of the 

enzyme and is predicted to contribute to a casein II kinase site. When mutated to alanine, 

this phosphorylation site is removed. The combination of high expression levels of PEPC 

and the presence of casein II kinase could result in incorrect phosphorylation; preventing this 

could act as a driving force for selection on non-synonymous mutations. 

Overall this work sheds light on the evolution of the C4 carbon fixing enzyme PEPC, 

and on the properties that are selected for the C4 role. It has shown the importance of specific 

kinetic and structural properties across the spectrum of C4 species, as well as the selective 

forces driving of the evolution of these properties. 

Insight into the Metabolic Changes of the C4 Cell 

 My investigations of C4 PEPC have shown that the enzyme has a higher Km
PEP and a 

lower specificity for PEP, when compared to non-C4 PEPC. While this conclusion was 

already reached with investigations in the eudicot genera Flaveria and Alternanthera 

(Chapter 2; Svensson, Bläsing and Westhoff, 1997; Gowik et al., 2006), I have shown that 

the same pattern is observed in the distantly-related C4 grasses (Chapter 3). Differences in 

Km
PEP have previously been associated with two regions of the PEPC amino acid sequence, 

including the position 780 (Z. mays numbering) and the region from 301 to 422. None of 

these regions affects sensitivity to inhibition (Chapter 4; Jacobs et al., 2008) and the 

mutation at position 780 does not change the bicarbonate specificity (Chapter 4). This 
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demonstrates that specificity for PEP and bicarbonate are not linked, so that the lower 

specificity for PEP in C4 PEPC cannot be seen as a side-effect of other protein adjustments 

but is a property that is directly selected for in the C4 context. The concentration of PEP has 

been estimated to be 0.38 mM in the mesophyll cells of Z. mays (Arrivault et al., 2017). The 

concentration of Z. mays PEPC can be estimated at 0.14 mM in the whole leaf (McNaughton 

et al., 1989; Jiao and Chollet, 1991) , but the enzyme concentration is almost certainly 

higher when considering solely the mesophyll cells. At these concentrations, a non-C4 type 

Km
PEP would result in a substantial fraction of the intracellular PEP being bound to the 

enzyme. The order-of-magnitude larger C4 Km
PEP results in much more of the PEP pool being 

unbound and thus available to other enzymes and metabolic pathways (Gowik and Westhoff, 

2011).   

 The major role of C4 PEPC is fixing atmospheric carbon dioxide in the form of 

bicarbonate. Investigation of C4 PEPCs in Flaveria and Panicum has shown an increase in 

specificity for bicarbonate compared to the C3 PEPCs (Chapters 2 and 3). C4 species 

typically grow in environments where carbon dioxide availability is reduced (Hatch, 1987), 

and in tropical and subtropical environments they are some of the most productive species 

(Cerling et al., 1997; Sage, 2004; Osborne and Beerling, 2006; Osborne and Freckleton, 

2009). Carbonic anhydrase (CA) converts carbon dioxide to bicarbonate and is necessary for 

the C4 cycle in low carbon dioxide conditions (Osborn et al., 2017). In hotter climates, 

carbon dioxide becomes limiting in plant cells due to the solubility of carbon dioxide 

decreasing with increasing temperature (Ku and Edwards, 1977). The increased bicarbonate 

affinity of C4-specific PEPC is likely necessary to ensure high fluxes when bicarbonate 

concentrations are limiting. Carbonic anhydrase is upregulated in the mesophyll of C4 

Flaveria (Ludwig, 2016), contributing to an increase in the pool of bicarbonate. However, 

carbonic anhydrase can only accelerate the approach to equilibrium, so in the presence of a 

high flux of bicarbonate into the C4 pathway, bicarbonate is likely to remain limiting in some 

conditions. Therefore, being able to maintain an adequate reaction rate in the presence of 
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low bicarbonate concentrations is likely to be crucial for C4-specific PEPC, explaining the 

observed changes. The differences between non-C4 and C4 PEPCs are markedly more 

important in grasses than in Flaveria (Chapter 3). The high affinity for bicarbonate in 

grasses might reduce their dependence on carbonic anhydrase, explaining that knock-downs 

of the enzyme are not fatal in C4 grasses (Studer et al., 2014).  

When compared to non-C4 forms, C4 PEPCs have lower sensitivity to both malate and 

aspartate (Chapters 2 and 3). This is likely to be a response to a higher concentration of these 

metabolites in the mesophyll cells of C4 plants compared to C3 plants. Zea mays mesophyll 

cell concentrations of aspartate and malate have been estimated to be 1.17 mM and 11.18 

mM, respectively (Arrivault et al., 2017). This represents an increase in inhibitor 

concentration compared to the concentrations that the non-C4 ancestral PEPC experienced. A 

high sensitivity to inhibition by the products is likely necessary to tightly control the activity 

of PEPC in its ancestral anaplerotic role. It however becomes highly handicapping for the 

C4-specific enzyme that is readily exposed to large pools of these metabolites (Stitt and Zhu, 

2014). A dramatic decrease in sensitivity to both inhibitors likely becomes strongly selected 

for once a rudimentary C4 cycle is established, as might be necessary to improve the 

efficiency of the C4 pathway.  

The changes in kinetic properties selected for in C4-specific PEPC shed light on the 

changes in the chemistry of the C4 cell. The decrease in specificity for PEP and sensitivity to 

aspartate and malate suggest a greater pool of metabolites within the cell, confirming other 

lines of evidence. The increase in specificity for bicarbonate reflects an increased demand 

for this substrate the C4 cells.  

Convergent Evolution of the C4 PEPC 

The exact role of specific non-C4 PEPCs are not known, although some forms have 

been connected to specific functions, such as generating C4 acid pools for the glyoxylate 

cycle in seed germination or a fulfilling a housekeeping role for various metabolic pathways 

(Sangwan, Singh and Plaxton, 1992; O’Leary, Park and Plaxton, 2011). The non-C4 PEPCs 
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investigated so far have a high specificity for PEP and a high sensitivity to inhibitors 

(Chapter 2 and 3), and it is likely that all non-C4 isoforms have similar properties. Indeed, 

the non-C4 PEPC from P. pygmaeum and F. pringlei, which diverged ca. 150 million years 

ago (Christin et al., 2011), have broadly similar kinetic properties and have a 91.2 % amino 

acid similarity (Chapter 3). The non-C4 enzymes are highly sensitive to inhibitors, indicating 

they are active when the downstream products are at low concentration and need 

regenerating to fulfil a role in the very different chemical environment of the C4 cell. A high 

specificity for PEP was also observed in other plant non-C4 PEPCs (Dong et al., 1998; 

Gowik et al., 2006), suggesting this is a general pattern. There is some variation in 

specificity to bicarbonate between P. pygmaeum and F. pringlei PEPCs, but their values 

remain lower than those of the C4-specific PEPC (Chapters 2 and 3). This variation suggests 

that bicarbonate specificity is not under strong stabilizing selection for the housekeeping 

role. 

The role of the C4 -specific PEPC is comparatively well understood. The C4 PEPCs 

from F. trinervia and P. queenslandicum have an 88.1 % amino acid similarity. These genes 

have a much higher similarity with their respective non-C4 counterparts (similarity > 90 %), 

as expected due to shared evolutionary history. However, the C4-specific PEPCs of F. 

trinervia and P. queenslandicum have much more in common in terms of kinetic behaviours. 

Both have a high specificity for bicarbonate, a low specificity for PEP and a low sensitivity 

for inhibitors, at both a limiting PEP and saturating PEP (Chapters 2 and 3). Comparison of 

sequences also indicate that both PEPCs share some C4-specific amino acids. It has been 

shown that glycine at position 884 (Flaveria numbering) is important for a decreased 

sensitivity toward inhibition at saturating PEP (Paulus, Niehus and Groth, 2013; Paulus, 

Schlieper and Groth, 2013), a position shared by both the C4 PEPCs from F. trinervia and P. 

queenslandicum. My investigation of the C4 specific mutation A780S has shown that this 

mutation results in the same decrease in PEP specificity in Flaveria and Panicum (Chapter 

4). This C4 mutation lies near the access point of the active site and may interact with PEP or 
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other enzyme substrates as they enter (Blasing, Westhoff and Svensson, 2000). However, it 

does not contribute to C4 bicarbonate specificity or competitive inhibition (Chapter 4).  

My work shows that the kinetic properties that are selected for in C4 PEPC, and by 

extension the driving forces of selection, are the same in the evolution of C4 PEPC in 

Flaveria and Panicum. This results in the same mutations being observed in distantly related 

enzymes. 

Greater adaptation of PEPC after full establishment of C4 

The differences between C4 and non-C4 PEPC are quantitatively greater in Panicum 

than in Flaveria (Chapter 3). While the starting points of evolution represented by their non-

C4 relatives are similar, the C4 PEPC of P. queenslandicum has a higher specificity for 

bicarbonate, a lower specificity for PEP and a lower sensitivity to inhibition at saturating 

PEP than its counterpart in Flaveria. These differences may be linked to the time spent as 

C4. Indeed, the C4 pathway of P. queenslandicum established ca. 16 million years ago 

compared to ca. 3 million in the case of F. trinervia (Christin et al., 2008, 2011). 

The C4 PEPCs have a similar inhibition sensitivity at limiting PEP (Chapter 2 and 3), 

which would suggest that this value is already optimised in Flaveria. P. queenslandicum 

PEPC has a lower sensitivity to inhibition at saturating PEP than the C4 Flaveria. Analysis 

of crystal structures of PEPC bound to aspartate has indicated that the binding site is 

composed of the amino acids R641, Q673, K829, R884 and R888 in F. pringlei (Matsumura 

et al., 2002; Paulus, Schlieper and Groth, 2013). Apart from the 884 mutation, position 673 

is the only amino acid site not shared with Panicum. In both P. pygmaeum and P. 

queenslandicum PEPC, this site is a histidine. Both Panicum enzymes have a lower 

sensitivity to inhibition at saturating PEP compared to their Flaveria counterparts (Chapter 

4). This suggests that the decreased sensitivity to malate might be related to the specific gene 

recruited for the C4 role. This site is a phenylalanine in Z. mays and does not interact with 

the aspartate inhibitor in the crystal structure, which suggests that the site plays no part in 

inhibition in grasses (Matsumura et al., 2002). The PEPC of the C4 Alternanthera presents 
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the same amino acids as that of the C3 Alternanthera at all positions that are involved in the 

allosteric inhibition site including the arginine at position 884 (Flaveria numbering). This 

suggests that C4 Alternanthera PEPC has a high sensitivity to inhibition by malate, although 

this prediction remains to be tested. 

Panicum queenslandicum PEPC has a 50 times lower specificity for PEP than the C3 

P. pygmaeum, compared to the 10 times decrease observed in Flaveria (Chapters 2 and 3). 

The PEP specificity of the C4 Panicum is similar to that observed in Z. mays (Janc, O’Leary 

and Cleland, 1992). This may reflect further optimisation of the C4 cycle after full 

establishment, which is dependent on the time spent as C4. After the establishment of an 

initial C4 cycle, the maintenance of large pools of metabolites such as PEP might have been 

further increased through secondary decreases of this enzyme specificity for this substrate. 

Bicarbonate specificity is quantitatively greater in the C4 PEPC of P. 

queenslandicum PEPC than in any of the other enzymes investigated in this work (Chapters 

2 and 3). This is likely to further reflect time-dependent optimisation of C4 PEPC. A C4 

PEPC with lower affinity for bicarbonate, as observed in Flaveria, might be sufficient to 

sustain a C4 cycle in conditions where CO2 availability is not excessively low given high 

enough activity of carbonic anhydrase. Subsequent increases of bicarbonate affinity might 

improve the efficiency of the C4 pathway and allow its maintenance even in conditions of 

extreme CO2 depletion. This hypothesis is supported by the greater photosynthetic rates 

achieved in C4 grasses compared to Flaveria (Ubierna et al., 2013), and implies that 

adaptation of bicarbonate affinity is not necessary for the development of a C4 cycle, but is 

involved in the follow-up period of adaptation of the existing trait.  

Analysis of one mutation often observed in C4-specific PEPC suggests that the 

enzyme undergoes selection for the C4 function that is not directly linked to its kinetic 

properties. Indeed, the investigation presented here of the mutation S761A (Z. mays 

numbering) showed the change was functionally silent with respect to substrate specificity 
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and inhibitor sensitivity (Chapter 4). This mutation is not shared with the C4 Flaveria but is 

observed in the C4 Alternanthera, Z. mays, and Panicum. Its lack of kinetic effect is 

particularly surprising as this site lies on an active site functional loop. When it is occupied 

by a serine, this site forms part of a casein kinase II site, and the S761A mutation removes 

the possibility of phosphorylation (Hulo, 2006). With the increase in expression of the gene 

in C4 Panicum (Moreno-Villena et al., 2018), the likelihood of this amino acid being 

erroneously phosphorylated is increased. The location of this residue in the active site makes 

this phosphorylation undesirable and the driving force for this amino acid replacement might 

have been the prevention of erroneous phosphorylation. Similarly, the decrease of 

bicarbonate affinity, this mutation is not present in Flaveria, showing that the change is not 

essential for the C4 function of PEPC. It can be associated to the period of adaptation that 

follows the initial emergence of a C4 pathway.  

Acquisition Rates of C4 Specific Properties in C4 PEPC 

Given the different amounts of time spent in a C4 state, Flaveria PEPC is likely to 

present mostly those changes that are extremely important for the C4 function and therefore 

selected for early after the emergence of a C4 physiology, while the older C4 PEPC from 

Panicum might present more changes linked to the adaptation of existing C4 enzymes. By 

comparing the properties of PEPC from Panicum and Flaveria, it is therefore possible to 

infer which of the properties are most important for the C4 function of PEPC. 

The change of sensitivity to inhibitors is similar in Panicum and Flaveria (Chapters 

2 and 3). The photorespiratory pump (C2 cycle) establishes important components of the C4 

cycle and might therefore represent an evolutionary intermediary state for C4 evolution 

(Heckmann et al., 2013; Williams et al., 2013; Mallmann et al., 2014). The C2 pathway 

shuttles carbon dioxide using glycine, and the resulting nitrogen imbalance is corrected with 

amino acids shuttles such as the malate/aspartate shuttle, which is facilitated by PEPC 

(Dal’Molin et al., 2010; Bräutigam and Gowik, 2016). When the C4 cycle first emerges, 

PEPC is not adapted for the C4 context (Dunning et al., 2017). PEPC has a high degree of 
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control over photosynthetic flux in C4 species at high light and ambient carbon dioxide, and 

the importance of PEPC increases when CO2 decreases (Bailey et al., 2000). The early 

versions of C4-specific PEPC not adapted for the C4 cycle likely represented a limiting step 

for the cycle due to their high sensitivity for inhibitors (Chapter 2 and 3), leading to the rapid 

selection for forms with decreased sensitivity to inhibitors as observed in both Flaveria and 

Panicum. The presence of an aspartate/malate shuttle in species that have not fully 

developed the C4 cycle suggests that early development of C4 PEPC involved presence of 

higher concentrations of inhibitors. The magnitude of increase in tolerance to malate and 

aspartate, and the comparable change between Flaveria and Panicum, suggests that this 

property is extremely important for the C4 context, and was one of the earliest changes 

during C4 PEPC evolution.  

The non-C4 PEPC of Flaveria and Panicum have a high specificity for PEP, which 

is decreased by a factor 10 in C4 Flaveria and 50 in C4 Panicum (Chapters 2 and 3). The 

expression levels of pyruvate phosphate dikinase (PPDK), the enzyme responsible for PEP 

regeneration, increase with the expression level of PEPC across C3-C4 intermediates, C4-like 

and C4 species in Flaveria as the species become more C4-like (Mallmann et al., 2014). 

PPDK has a degree of control over photosynthetic flux, although this remains less important 

than PEPC (Furbank et al., 1997; Matsuoka et al., 2001). The relative changes during C4 

evolution of PEP specificity compared to inhibitor sensitivity suggest that the adaptation of 

PEP specificity is less important for C4 PEPC evolution than inhibitor tolerance. PEP 

specificity adaptation might therefore happen slightly later during C4 evolution. The increase 

in PPDK expression levels observed early during C4 evolution might be required to provided 

high amounts of PEP to compensate for the high PEP specificity of the early versions of C4 

PEPC. 

Changes observed in bicarbonate specificity between non-C4 and C4 PEPCs are 

modest when compared with other changes investigated. The specificity for bicarbonate 

slightly increased in C4 PEPCs of both Flaveria and Panicum, and the change was larger in 
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Panicum (Chapters 2 and 3). Specificity for bicarbonate of non-C4 PEPC is already expected 

to be high to facilitate the enzyme role, potentially explaining that relatively fewer 

modifications are required for the C4 role. The low magnitude of change in bicarbonate 

specificity compared to other properties suggests that bicarbonate affinity was not a high 

priority target for C4 adaptation of PEPC when compared to PEP specificity and inhibitor 

sensitivity. 

Overall my work has shown that the adaptation of PEPC for the C4 context 

continues after the initial establishment of a C4 cycle, and concerns both kinetic and 

structural properties. This indicates that the development of a highly efficient C4 cycle 

requires long evolutionary times. The sequence of the changes might be dictated by their 

importance, with larger effect mutations most likely to be selected for earlier in the 

development of C4 PEPC. However, epistasy might also be involved, with some 

modifications providing an advantage only once others have been fixed. Differentiating 

these two scenarios would require establishing the adaptive landscape of C4-specific 

mutations. This could be performed by expanding the site-specific mutations conducted in 

Chapter 4 to cover multiple combinations, as has been done in other systems (e.g. Weinreich 

et al., 2006). 
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Conclusion   

C4 photosynthesis is a complex assemblage of genetic and biochemical changes in 

plants that provides a significant increase in photosynthetic efficiency. The C4 process 

evolved convergently in many species by co-opting enzymes from other biochemical 

pathways to create a carbon concentrating mechanism (Sage, Christin and Edwards, 2011). 

The identity of the co-opted enzymes varies among C4 species, however the enzyme 

phosphoenolpyruvate carboxylase (PEPC) is always utilised for primary carbon fixation. 

The enzyme is massively upregulated in C4 species (Moreno-Villena et al., 2018), however 

the full extent of adaptations undertaken by the enzyme were not fully understood before 

this dissertation. 

A comparison of PEPCs in the genus Flaveria, used as a model for probing the 

evolution of C4 cycle, was made (Chapter 2). It was shown that an increase in specificity for 

bicarbonate was selected for in C4 PEPC. This is likely a response to the metabolic demand 

of the bicarbonate substrate in C4 species. The C4 PEPC was also shown to have a lower 

specificity for the PEP, but the reason for this change had remained elusive before my work. 

Investigation of an amino acid change that is partially responsible for the change in PEP 

affinity, namely A780S (Z. mays numbering), suggests that this decrease in substrate 

specificity does not result from a sacrifice to increase bicarbonate specificity or decrease 

sensitivity to competitive inhibition by substrates (Chapter 3). These differences in chemical 

properties with respect to bicarbonate, PEP and inhibitors between the C4 and non-C4 PEPC 

shed light on a changing metabolite composition of the C4 cell. In the non-C4 role, the 

enzyme has a high specificity for substrates and is highly regulated by inhibition. However, 

it would seem both key properties are modified to sustain high flux metabolites in the C4 

context (Stitt and Zhu, 2014; Arrivault et al., 2017). 

The evolution of C4 PEPC was subsequently probed in the grass genus Panicum 

(Chapter 2). An increase in specificity for bicarbonate, a decrease in specificity for PEP, and 

a decrease in sensitivity to inhibition by aspartate and malate were observed in the C4 PEPC 
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compared to its non-C4 counterpart. The changes seen between non-C4 and C4 PEPC of 

Panicum are quantitatively greater than the changes seen in Flaveria. Some of the 

differences in inhibitor sensitivity between Panicum and Flaveria C4 PEPC predate the 

evolution of C4. However, some changes may reflect the time the species have respectively 

spent as C4.  This is evident with respect to the larger decrease in PEP specificity and 

increased specificity for bicarbonate in C4 Panicum compared to the C4 Flaveria. Some of 

the amino acid changes observed in the C4 enzymes were shown to be functionally silent 

with respect to bicarbonate PEP and inhibition (Chapter 4). This indicates that there are 

more driving forces acting on C4 PEPC than the kinetic behaviour of the system. 

My work indicates that a key adaptation of C4 PEPC is an increased specificity for 

bicarbonate, which is a response to the increased demand for this substrate in the C4 context. 

In addition, the evolution of C4 PEPC is accompanied by decreases in specificity to PEP and 

decreased sensitivity to inhibition, which reflect the need to maintain metabolite flux in the 

presence of high concentrations of feedback inhibitors, both through the C4 pathway and 

through other PEP requiring reactions. Further, secondary non-kinetic driving forces have 

been observed. The kinetic properties of several other C4 amino acid mutations have not 

been investigated. Some of these changes may not have kinetic functions, and selection at 

these positions may be driven by some yet to be identified selective pressures. 

Overall, my work indicates that the convergent origins of the C4 phenotype are 

caused by convergent enzymatic modifications, which suggests a limited number of possible 

responses to selective pressures created by metabolic innovations. The enzymatic properties 

found in the most efficient C4 plants constitute excellent targets for bioengineering attempts 

to improve both C3 and C4 crops. Indeed, while the engineering of C4 photosynthesis in 

crops lacking this trait would boost productivity, existing C4 crops might be improved by 

human-mediated incorporation of properties observed in some wild C4 species. This could 

represent a use of insights gained from comparative studies for agronomical purposes. 
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Appendix: PEPC Gene Cloning Design, PEPC E. coli Expression and 

Purification Optimisation, and Bicarbonate Assay Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix 
 

 

156 
 

Molecular Cloning of PEPC  
A high throughput method was desired for molecular cloning to expedite the cloning 

process for several genes, for which the technique Ligation Independent Cloning (LIC) was 

chosen. LIC uses the 3’-5’ exonuclease activity of T4 polymerase to create single stranded 

overhangs that are complementary between the vector and the insert (Aslanidis and de Jong, 

1990). Overhang generation is halted by the presence of a nucleotide in the reaction mixture, 

which is not present in the complementary DNA sequence of the desired overhang, but 

immediately after the sequence i.e. GTP is added to the T4 polymerase digestion mix where 

the complementary strand to overhang is composed of A, C and T, and in this instance, CTP 

is added to the complementary strand (Figure 1). When combined the vectors and inserts 

with overhangs anneal, and the strands form a single plasmid with nicks in the DNA either 

side of the insert. E. coli is transformed with the DNA and the nicks in the cloned plasmid 

are repaired by the replication mechanisms of the bacteria. It has been demonstrated that LIC 

is a high throughput technique suitable for the cloning of genes as well as multiple gene 

assembly (Stols et al., 2002; Berrow et al., 2006; Schmid-Burgk et al., 2013).  

 

Figure 1: Diagram of ligation independent cloning technique. Vector DNA represented in green, insert DNA 
represented in red. 

Traditional molecular cloning using restriction enzymes is disadvantageous in 

comparison as it requires specific restriction sites that may result in the introduction of non-

native amino acids into the expressed protein. Restriction enzyme choices can be limited by 

the sequence of the insert. LIC does not need T4 ligase to anneal the insert and vector 

fragment, removing a step which may cause non-specific ligation. LIC has the advantage 
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that it does not rely on sequence specific DNA cleavage and potentially may be used with 

any vector. However, LIC does require PCR with large primers that may be difficult to 

optimise.  

 The pET His6 TEV LIC cloning vector (pET-1B; Addgene Plasmid #29653) was 

chosen as a suitable vector for cloning PEPC which is optimised for LIC. The vector 

encodes an N terminal poly-histidine fusion tag and a tobacco etch virus protease cleavage 

site (TEV) to remove the tag, as TEV does not cleave PEPC. The pET-1B vector was gifted 

from the Scott Gardia lab.  
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Isolation of PEPC Gene from Leaf RNA 
Eight C3 and C4 grass species were selected for RNA extraction. Species that were 

selected were raised from seeds from a seed bank and all had partial or complete genome or 

transcriptome libraries (Atkinson et al., 2016), allowing the design of primer for PCR of the 

ppc-1P3 gene (Christin et al., 2015). Leaf samples were harvested at midday in full light and 

flash frozen in liquid nitrogen during peak photosynthetic period.  RNA was extracted from 

frozen tissue using RNA plant extraction kits. 

 RNA samples were treated with reverse transcriptase to produce cDNA libraries. 

Primers were designed from alignments of the  ppc-1P3 from transcriptome data and 

genome data of the species (Atkinson et al., 2016). Highly conserved regions were chosen to 

maximise the likelihood of PCR success. Primers were designed to screen cDNA libraries 

for the presence of ppc-1P3 gene. PCR with screening primers produced a ca. 2000 base pair 

fragment in the presence of the PEPC encoding gene (‘pcc_1072_for’ and ‘ppc_3037_rev’). 

A ca. 2000 base pair band was seen in the PCR product from the cDNA of Panicum 

queenslandicum and Panicum pygmaeum. The PCR product was then sequenced which 

confirmed this band corresponded to the ppc-1P3 gene fragment. Primers were designed to 

encapsulate ca. 200 base pairs either side of the start and the stop codon of the gene. The 

PCR products from reactions with these primers were sequenced and the start and stop 

codon regions were determined.  
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PEPC Gene Cloning 
Primers were designed for cloning, composed of a 15 base pair section 

complementary to the plasmid and a 10 base pair section specific to the terminal region of 

the PEPC gene. These primers were used with cDNA and a high-fidelity polymerase (Q5 

high fidelity polymerase). The full gene for P. queenslandicum PEPC was sequenced and 

then cloned into the 1B plasmid using LIC. The full gene for P. pygmaeum was sequenced, 

however the yield of DNA was too low to clone. The gene sequence was synthesised by 

GeneArt (Thermo Fischer Scientific) in the pMA-T vector, optimised for expression in E. 

coli. The gene was sub cloned into the 1B plasmid using the LIC technique. 

The ppcA genes for  PEPC (ppc-1E2 in Christin et al., 2015) from Flaveria trinervia 

(C4) and Flaveria pringlei (C3) as described in (Svensson, Bläsing and Westhoff, 1997), 

were gifted in the pTrc-99A vector. Primers were designed for LIC using the Genbank 

sequence. The genes were sub cloned into the 1B plasmid and the resulting clones were fully 

sequenced. 
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PEPC Expression Optimization  
The optimal conditions for expression in E. coli were determined. Several conditions 

were tested to determine maximal protein expression in E. coli. The Rosetta, and 

BL21λ(DE3) strains of E. coli were transformed with each PEPC expression plasmid. Test 

samples were grown to a density of OD600 = 0.6-0.8, in either LB or 2YT medium. Samples 

were induced with either 0.5 mM or 1 mM IPTG and cooled for an hour at 4°C. Cells were 

then incubated overnight at either 18°C or 16°C. Protein production was then analysed by 

SDS PAGE (Figure 2 and 3).  

A B 

 

C 

 

D 

 
Figure 2: SDS PAGE analysis of PEPC induction in Rosetta strain E.coli. A Panicum queenslandicum PEPC 
induction trial. B Panicum pygmaeum PEPC induction trial. C Flaveria trinervia PEPC induction trial. D 
Flaveria pringlei PEPC induction trial. 
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A 

 

B 

 

C 

 

D 

 
Figure 3: SDS PAGE analysis of PEPC induction in BL21λ(DE3) strain E. coli. A Panicum queenslandicum 
PEPC induction trial. B Panicum pygmaeum PEPC induction trial. C Flaveria trinervia PEPC induction trial. D 
Flaveria pringlei PEPC induction trial. 

From analysis of SDS PAGE (Figure 2 and 3), PEPC is induced in most conditions 

with both strains, however the most consistent condition for protein induction was in 

BL21λ(DE3) strain E. coli, grown in LB medium, induced with 0.5 mM IPTG at a density of 

OD600 ca. 0.6-0.8, then cooled for one hour at 4°C followed by incubation for 18 hours at 

18°C. 
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PEPC Purification Optimisation 
 The 1B plasmid facilitated the purification of PEPC using a metal ion affinity 

column with the poly histidine tag. If the tag adversely affected the protein, a TEV protease 

site was included so the tag could be cleaved to produce near native protein.  

 Eight litres of growth pellet were purified at a time to saturate the 1 ml nickel ion 

column and optimise yield of purification.  Pellets were resuspended in binding buffer 

containing 20 mM imidazole, to reduce binding of contaminating proteins to the column, 

and 0.4 mgml-1 Pefabloc protease inhibitor. The suspended bacteria solution was lysed with 

a cell disruptor and centrifuged. The soluble fraction of lysate was loaded onto the column 

and washed with 50 column volumes of binding buffer. It was found that by washing the 

column with 50 column volumes of buffer containing 150 mM imidazole, all contaminating 

protein was removed. PEPC was eluted with 400 mM imidazole buffer. The protein was 

then exchanged into a buffer suitable for assays with a G50 column. Analysis by SDS PAGE 

indicated that purified PEPC proteins were purified to > 95% purity (Figure 4). 

 
Figure 4: 8 % acrylamide SDS PAGE analysis of PEPC proteins. Lane 1 contains 5 µg of Flaveria trinervia 
PEPC, lane 2 contain 5 µg of Flaveria pringlei PEPC, lane 3 contain 5 µg of Panicum queenslandicum PEPC, 
lane 4 contains 5 µg Panicum pygmaeum PEPC. 
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PEPC Quantification  
PEPC enzyme concentration was quantified by absorption at 280 nm. The enzyme 

extinction coefficient was calculated using the ExPASy protein parameter tool and corrected 

by determining the absorbance of the protein denatured in 6 M guanidine hydrochloride (Gill 

and von Hippel, 1989). The difference between the denatured and folded protein at 280 nm 

was used to adjust the extinction coefficient of the protein. The extinction coefficient for F. 

trinervia PEPC was determined to be 120480 M-1 cm-1 (Table 4), the extinction coefficient for 

F. pringlei PEPC was determined to be 117030 M-1 cm-1 (Table 5). Differences of -0.5% and 

-6.7% between predicted absorbance coefficients for F. trinervia and F. pringlei PEPC were 

observed respectively. The extinction coefficient for P. queenslandicum PEPC was 

determined to be 105805 M-1 cm-1 (Table 6), the extinction coefficient for P. pygmaeum 

PEPC was determined to be 111514 M-1 cm-1 (Table 7). Differences of 8.3 % and 4.6% 

between predicted absorbance coefficients for P. queenslandicum and P. pygmaeum PEPC 

were observed respectively. It is assumed that all the enzyme used to initiate the assay was 

active. For assays on single point mutants, the native enzyme extinction coefficient was used 

as it was assumed there would be no change in extinction coefficient with mutation. 

  



Appendix 
 

 

164 
 

PEPC Assay Design 
PEPC has been assayed by coupling the enzyme to a second enzyme, malate 

dehydrogenase (MDH). PEPC produced oxaloacetate (OAA) from phosphoenolpyruvate 

(PEP) and bicarbonate, OAA was converted into malate by malate dehydrogenase (MDH) 

which also consumed NADH. The rate of NADH consumption was observed at 340nm.  It 

has been observed that PEPC is most active at pH 8.0 (Chollet, Vidal and O’Leary, 1996). 

Assays were initiated by the addition of PEPC.  

Assays performed with the presence of the inhibitors malate and aspartate were 

performed at limiting and saturating PEP, and were initiated by the addition of PEPC. 

Aspartate and malate are fast acting inhibitors and PEPC did not need to be pre-incubated 

prior to assay initiation (Wedding, Black and Meyer, 1990). 

Assays of F. trinervia PEPC and F. pringeli PEPC, purified from expression from 

the 1B plasmid behaved similarly to the native form of the enzyme (Chapter 1; Svensson, 

Bläsing and Westhoff, 1997). This suggested that the N terminal fusion tag did not adversely 

affect the activity of PEPC and does not need removing. 

 

Figure 5: Diagram of coupled assay system of PEPC. Enzymes of the reaction listed above the reaction arrow.  
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Bicarbonate Assay Design 
It has been shown that it is possible to control bicarbonate concentration in a PEPC 

assay in order to determine a Km
HCO3- (Bauwe, 1986; Janc, O’Leary and Cleland, 1992; Dong 

et al., 1998). Gas-tight cuvettes with tight-fitting septa were used to prevent atmospheric 

CO2 contamination in bicarbonate-controlled assays. To reduce the background bicarbonate 

concentration, assay components were sparged with nitrogen gas. The water and tricine 

assay components were sparged with nitrogen for ca. 18 hours. These components made up 

at least 75% by volume of the assay solution. Tricine was buffered to pH 8.0 with solid 

potassium hydroxide to prevent bicarbonate contamination from potassium hydroxide 

solution. Other components such as NADH and PEP stock solutions were stored frozen 

which reduced bicarbonate in these components due to the freeze thaw cycle. Assays were 

composed and sealed under a nitrogen flow to prevent atmospheric CO2 contamination 

during assay assembly. Assays were initiated by delivering the enzyme with a gastight 

syringe through the septa. 

End-point assays of PEPC were then used to determine the background 

concentration of bicarbonate of the sparged assay components. This was performed by 

composing the assays without adding bicarbonate. Assays were monitored for 30 minutes 

until a stable endpoint was reached. A high concentration (50 nM) of PEPC was used to 

ensure an endpoint was reached quickly. The difference in absorbance at 340 nm was used 

to calculate the bicarbonate concentration, due to the proportional relationship between the 

consumption of NADH and bicarbonate. Background bicarbonate was reduced to ca. 50 µM 

using this assay assembly system.  
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Experimental Procedure 

Unless otherwise stated, reagents and components were from Sigma. For 

purification, unless otherwise stated the protein purification equipment was from GE 

Healthcare. For DNA treatment, unless otherwise stated enzymes and E. coli strains were 

from NEB.  

RNA Extraction 
Fresh leaves of species were selected from live organisms. Leaves that were chosen 

for extraction were young full-grown leaves, non-senescing. Leaf samples were flash frozen 

in liquid nitrogen and kept in liquid nitrogen until extraction. 

For extraction, ca. 100 mg of leaf samples were then individually ground for ca. 30 

minutes with a pestle and mortar under liquid nitrogen until the sample resembled a fine 

green powder. Powdered leaf sample was then transferred to a sample tube. RNA was then 

extracted with the RNeasy® Plant Mini Kit (Qiagen). Samples were treated with DNase and 

RNase inhibitor (Qiagen). Samples were then stored at -80°C.  

cDNA synthesis 
Samples of cDNA were generated from SuperScriptTM II Reverse Transcriptase 

(Invitrogen). Synthesis was initiated with Oligo (dT) 12-18 primer (Invitrogen). 
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Polymerase Chain Reaction (PCR) 
Screening PCR 
PCR with G2Go Taq polymerase (Promega) in Go Taq green buffer with appropriate 

primers and ca. 100 ng of cDNA for cDNA screening and 5’ and 3’ PEPC gene sequence 

determination. A PCR reaction mix was assembled in the following concentrations: 

Reagent PCR Conc 
Primer 1 1.0 μM 
Primer 2 1.0 μM 
DMSO 5 % (v/v) 
dNTPs 0.2 μM 
MgCl2 3.0 mM 
GoTAQ Green Buffer 1 × 
DNA Polymerase 1 Unit 

 

The PCR mixture was incubated in a thermocycler on the routine, with primer appropriate 

annealing temperate:  

 Step Temperature /°C Time / H:MM:SS 
1 Initial Denaturation 94°C 0:00:30 
2 Denaturation 94°C 0:00:10 
3 Annealing * 0:00:30 
4 Extension 72°C 0:01:00 

Repeat 2-4 20 times 
36 Final Extension 72°C 0:10:00 
37 Hold 4°C 0:10:00 

 

Colony Screening 
For colony screening, a bacterial colony was sampled with a pipette tip and added to the 

PCR mix. A PCR reaction mix was assembled with the following concentrations: 

Reagent PCR Conc  
Primer 1 1.0 μM 
Primer 2 1.0 μM 
DMSO 5 % (v/v) 
dNTPs 0.2 mM 
GoTAQ Green Buffer 1 × 
DNA Polymerase 1 Unit 

 

 

 



Appendix 
 

 

168 
 

The PCR mixture was incubated in a thermocycler using the appropriate primers and the 

parameters shown: 

 Step Temperature /°C Time / H:MM:SS 
1 Initial Denaturation 94°C 0:00:30 
2 Denaturation 94°C 0:00:10 
3 Annealing * 0:00:30 
4 Extension 72°C 0:03:30 

Repeat 2-4 35 times 
36 Final Extension 72°C 0:10:00 
37 Hold 4°C 0:10:00 

 

Q5 High Fidelity PCR 
PCR generation of inserts was performed with Q5 High Fidelity polymerase with ca. 100 ng 

of cDNA or ca. 50 ng of plasmid. The PCR reaction mix was assembled as follows: 

Reagent PCR Conc 
Q5 Master Mix 1 × 
Primer 1 0.5 μM 
Primer 2 0.5 μM 

 

The PCR mixture was incubated in a thermocycler using the appropriate primers and the 

parameters shown: 

 

PCR products and plasmid were Sanger sequenced (GATC Biotech) using the 

appropriate primers. PCR products from cDNA screening were prepared using ExoSAP 

clean-up. PCR products from Q5 PCR were prepared using a PCR clean-up kit (Qiagen).   

 Step Temperature /°C Time / H:MM:SS 
1 Initial Denaturation 98°C 0:00:30 
2 Denaturation 98°C 0:00:10 
3 Annealing * 0:00:30 
4 Extension 72°C 0:01:30 

Repeat 2-4 25 times 
26 Final Extension 72°C 0:02:00 
27 Hold 4°C 0:10:00 
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Agarose Gel Analysis  
PCR products were analysed with 1 % TBE agarose gel, stained with SYBR™ Safe 

(Invitrogen). Gels were run at 110 V for 30 minutes and imaged with a ChemiDoc™ MP 

(BioRad). 

PCR Clean-up and Sanger Sequencing 
Samples for DNA screening, colony screening and terminal sequence determination 

were prepared for sequencing using ExoSAP (Invitrogen). 5 μl of sample was treated with 2 

μl of ExoSAP enzyme for 15 minutes at 37°C, then heat inactivated for 15 minutes at 80°C. 

Samples were then made up to 20 µl and then Sanger sequenced (GATC Biotech) with the 

appropriate primers.  

Plasmid Preparations 
Single colonies of DH5α strain E. coli were selected and used to inoculate LB 

culture with 30 µg ml-1 kanamycin.  Cultures were incubated in a shaker at 37°C for 18 

hours, 250 rpm. Plasmid DNA was then extracted from 5 ml (150 ml for midiprep) of 

overnight culture with a miniprep kit or midiprep kits (Qiagen). Plasmids were eluted with 

water, warmed to 65°C. 

LIC Preparation of Vector and Insert 
1B Vector Cloning Preparation 

The pET His6 TEV LIC cloning vector (1B) was a gift from Scott Gradia (Addgene 

plasmid # 29653). 1 µg of DNA was linearized with 10 units of SspI-HF restriction enzyme 

in CutSmart Buffer, incubated at 2 hours at 37°C, then 65°C for 20 minutes to heat 

inactivate the enzyme.  DNA was purified with agarose gel extraction. DNA was loaded 

onto a 0.8% TAE gel, stained with SYBR™ Safe. Gels were run at 90 V for 90 minutes. The 

appropriate band was excised with a scalpel and purified with a gel extraction kit (Qiagen) 

and a ChemiDoc™ MP (BioRad). DNA was eluted with water, warmed to 65°C. 

Insert Cloning Preparation 
Inserts were amplified with Q5 polymerase. PCR was optimised to produce one 

DNA band. PCR product was purified using a PCR clean-up kit (Qiagen). DNA was eluted 

with water, warmed to 65°C. 
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T4 Polymerase Treatment of Insert and Vector 
Vector and insert were treated for 30 minutes at 22°C with T4 polymerase to 

generate complementary overhangs. With the insert, 2.5 mM of dCTP was added; with the 

Vector, 2.5 mM dGTP was added. Samples were then incubated for 20 minutes at 75°C to 

inactivate the enzymes. Vector and insert were combined in a 1:3 ratio, with 1 mM EDTA. 

DNA was incubated for 30 minutes prior to transformation.  

Transformation of Competent Escherichia coli (E. coli)  
Table 1: Summary of E. coli used, with genotype listed.  

E. coli Strain Genotype 

DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 

recA1 relA1 endA1 thi-1 hsdR17 

BL21λ(DE3) fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 

λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 

∆nin5 

Rosetta™(DE3) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE (CamR) 

 

For cloning transformation, 50 μl of high competence DH5α  strain E. coli cells were 

combined with 1 µl of DNA mix and incubated for 30 minutes on ice. The mix was heat-

shocked at 42°C for 30 s.  in a water bath at 42°C. Cells were then rested on ice for 15 

minutes. 950 μl of SOC medium were added then incubated in a shaker for 1 hour at 37°C, 

250 rpm. 50 µl of the cells were then plated on LB agar, 30 µg ml-1 kanamycin. Plates were 

then incubated for 18 hours at 37°C. 

Transformations with BL21λ(DE3) and RosettaTM strain (Novagen) E. coli were 

transformed were done using a similar method to DH5α protocol, with the following 

differences: after DNA and cells were combined, the cells were incubated for 10 minutes, 

and 450 µl of SOC medium were added. RosettaTM cells transformation mixes were plated 

onto LB agar containing 30 µg ml-1 kanamycin and 50 µg ml-1 chloramphenicol. 
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Protein Expression 
For protein expression, the BL21λ(DE3) strain of E. coli was used. Eight litres of 

cultures were grown in LB medium at 37°C to OD600 = 0.6-0.8. Cultures were cooled to 4°C 

for one hour prior to recombinant protein induction with 0.5 mM IPTG (Thermo Fisher 

Scientific). Cultures were then incubated at 18°C for 18 hours. Cells were harvested by 

centrifugation at 5,422 × g for 25 minutes and stored at -80°C. 

Protein Purification 
Cells were suspended in IMAC buffer (25 mM Tris, 0.5 M NaCl, 0.3 M glycerol, 20 

mM imidazole (Acros Scientific)), 10 ml per 2 litres of culture with 50 µl of 50mg ml-1 

DNase I and 100 µl of 100 mg ml-1 Pefabloc. Cells were passed twice through a cell 

disruptor (Constant Systems) before centrifugation at 26,902 × g for 40 minutes. The 

supernatant was passed through a 0.45 µm filter (Elkay Labs.). PEPC was separated from 

soluble protein with a prepacked 1 ml nickel affinity column using an ÄKTA™ Pure 25 L 

Chromatography System. The loaded column was washed with 50 column volumes of 

IMAC buffer, then 50 column volumes of IMAC buffer containing 150 mM imidazole.  Pure 

PEPC was eluted with 10 column volumes of IMAC buffer containing 400 mM imidazole.  

Protein eluted from IMAC purification was loaded onto a Sephadex G50 desalting 

column (Amersham Biosciences) and rebuffered in a storage buffer (20 mM Tris, 5% v/v 

glycerol, 150 mM KCl, 1 mM DTT (AnaSpec. Inc.)). Protein was concentrated to ca. 12-15 

µM with a Vivaspin 20 MWCO 3000 (Sartorius), aliquoted and frozen at -80°C until use.  

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS PAGE) 
Analysis   

Total protein concentration was determined using the BCA Pierce quantification kit 

(Thermo Fischer Scientific). Concentration was determined using a standard curve of bovine 

serum albumin, over a concentration range 0 – 2.0 mg ml-1.  

Protein samples were analysed for purity using SDS PAGE analysis. Protein samples 

were quantified using the BCA Pierce method, 25 µg of cell lysate and 5 µg of pure protein 

elutions were denatured in 2 × SDS PAGE loading dye (200 mM Tris.HCl pH 6.8, 2 % SDS, 

20 % Glycerol, 0.01% Bromophenol blue (BDH Laboratory Supplies) and 7 % β-
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mercaptoethanol). Protein was loaded onto an 8% acrylamide SDS gel (6% stacking) with 2 

µl of Blue Prestained Protein Standard Broad Range (11-190 kDa) (NEB). Gels were run for 

50 minutes at 200 V with 1 × Tris/Glycine/SDS running buffer (Geneflow). Gels were 

stained with InstantBlue (Expedeon) and imaged with a ChemiDoc™ MP (BioRad).  

Enzyme Assays 
PEPC activity was measured spectroscopically at 340 nm by coupling to NADH-

malate dehydrogenase. Assays with a high fixed concentration of bicarbonate were observed 

using a FLUOstar plate reader (BMG Labtech) using the 340 nm ± 5 nm absorbance filter 

(BMG Labtech). Plate reader assays were conducted in a reaction volume of 150 µl at 25°C. 

A typical reaction mixture contained 50 mM Tricine.KOH pH 8.0, 10 mM MgCl2 (Fluka), 5 

mM KHCO3. 0.2 mM NADH (Thermo Fisher Scientific) and 0.1 U µl-1 malate 

dehydrogenase. Assays were initiated with the addition of PEPC enzyme.  Rates were 

calculated with a NADH calibration curve. 

Assays at a range of bicarbonate concentrations were observed with a Cary 

spectrophotometer (Agilent Technologies) in the same reaction buffer, in a total reaction 

volume of 600 µl. In bicarbonate assays, the water and tricine buffer were sparged with 

nitrogen for 18 hours prior to use in assays. Bicarbonate assays were constructed under a 

nitrogen flow. Assays were performed in a sealed cuvette. The reaction was initiated with 

the addition of 50 nM PEPC, delivered with a gastight syringe (Hamilton). Bicarbonate 

concentrations were controlled with the addition of freshly prepared potassium bicarbonate. 

Background bicarbonate was determined using endpoint assays with no potassium 

bicarbonate, run for 30 minutes. Rates were calculated using the Cary analysis software.  
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Primers 
Table 2: Summary of primers used for PCR. Annealing temperature of PCR protocol with primers also listed.  

Primer Sequence, 5’ to 3’ Annealing 
Temperature 
/ °C 

ppc_1072_for TGCTTGYTKGCNAGAATGATGGC 
54°C 

ppc_3037_rev TCATGGTSAGGATGAGSGTGTC 

Pqu_For 5’ GCGCCCCCCTCTCCAGCCACCTAGC 
54°C 

Pqu_Rev 5’ CCTGGAGGATGTCGAGGAAGCGCTC 

Pqu_For 3’ GAGCTTCAAGGTCGAGAAGCAGCCG 
54°C 

Pqu_Rev 3’ GCCGACACGTACATCAAGCGTG 

Ppy_Rev 3’ CAGTCCAAGCGTGAATACTG 
54°C 

Ppy_For 3’ AACAAGCCCGCCGGACTG 

Ppy_Rev 5’ GCGTCGTACTCGACGAGCTTGT 
54°C 

Ppy_For 5’ TTGAAGCCATCCGCGTCTCCCTCGC 

FlvFor1B TACTTCCAATCCAATGCAATGGCTAACCGGAAT 
72°C 

FlvRev1B TTATCCACTTCCAATGTTATTACTAACCGGTGTTCTGC 

PquFor1B GACGACGACAAGATGGCGTCCTCCGAGCGCCACC 
57°C 

PquRev1B GAGGAGAAGCCCGGTTAGCCCGTGTTCTGCATGCC 

PpyFor1B TACTTCCAATCCAATGCAATGGCAAGCAG 
67°C 

PpyRev1B TTATCCACTTCCAATGTTATTATTAACCGGTATTC 

T7 Promotor TAATACGACTCACTATAGGG 
58°C 

T7 Terminator GCTAGTTATTGCTCAGCGG 

 

Table 3: Summary of primers used for sequencing.  

Primer Sequence, 5’ to 3’ 

Pqu_1323_Seq_For CGTGAAGCTGGACAT 

Pqu_1752_Seq_Rev ATGACCTGCTGCTTG 

Ppy_1291_Seq_For GATGGTAGTCTGCTGG 

Ppy_1791_Seq_Rev GCTATCGCTATAACCA 

Flav_1303_Seq_For AGACAAGTGTCGACTT 

Flav_1832_Seq_Rev TTGTAGAGCTGCCATG 
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Protein Absorbance Coefficient Calculation  
Table 4: Absorbance Coefficient Calculation for Flaveria trinervia PEPC. Absorbance determined by 
nanodrop. εGdnHCl calculated by ExPASy protein parameter tool. εNatural calculated using the method described in 
Gill & von Hippel 1989. 

AbsNat AbsGdnHCl εGdnHCl / M-1 cm-1 εNatural / M-1 cm-1 % Difference 

0.354 0.353 119930 120480 0.46 
 

Table 5: Absorbance Coefficient Calculation for Flaveria pringlei PEPC. Absorbance determined by 
nanodrop. εGdnHCl calculated by ExPASy protein parameter tool. εNatural calculated using the method described in 
Gill & von Hippel 1989. 

AbsNat AbsGdnHCl εGdnHCl / M-1 cm-1 εNatural / M-1 cm-1 % Difference 

0.136 0.146 125430 117030 -6.70 
 

Table 6: Absorbance Coefficient Calculation for Panicum queenslandicum PEPC. Absorbance determined 
by nanodrop. εGdnHCl calculated by ExPASy protein parameter tool. εNatural calculated using the method described 
in Gill & von Hippel 1989. 

AbsNat AbsGdnHCl 
εGdnHCl / M-1 cm-

1 εNatural / M-1 cm-1 % Difference 
0.69 0.75 115335 105805 8.3 

 

Table 7: Absorbance Coefficient Calculation for Panicum pygmaeum PEPC. Absorbance determined by 
nanodrop. εGdnHCl calculated by ExPASy protein parameter tool. εNatural calculated using the method described in 
Gill & von Hippel 1989. 

AbsNat AbsGdnHCl εGdnHCl / M-1 cm-1 εNatural / M-1 cm-1 % Difference 

2.85 2.98 116825 111514 4.6 
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