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Abstract

This thesis focuses on the option pricing and hedging based on a regret optim-
isation problem in a discrete-time financial market model with proportional
transaction costs. In such model, the no-arbitrage price interval can be very
large. Such large interval makes it difficult for an investor to choose the “right”
prices, which is a long standing difficulty in the field. We introduce an indiffer-
ence pricing method based on minimising regret/disutility, and show that the
spread between the buyer’s and seller’s prices can be much narrower than the
no-arbitrage price interval. The regret optimisation problem allows possible
fund injection/withdrawal at each time step, and in doing so it extends the
classic utility maximisation problems in financial models. Moreover, by allow-
ing the investor’s preference towards risk to be different at different time step,
it also extends the optimal investment and consumption problem in financial
market models with a finite horizon. In addition, the investor’s endowment
that is considered in our setting is modelled by a portfolio flow which ex-
tends the notion of initial wealth. We prove that there exists a solution to the
regret optimisation problem, and indifference prices are always within the no-
arbitrage price interval. Under an exponential type regret function, we find
a dynamic programming algorithm to construct a solution to a Lagrangian
dual problem. By solving the dual problem, we can not only solve the regret
optimisation problem but also calculate the option indifference prices. In bin-
ary models, we calculate the optimal injection/withdrawal strategy for various
different values of given parameters, and also compute the indifference prices
of various European options. The numerical results show that the bid-ask
indifference price interval can be much narrower than the no-arbitrage price
interval, and such smaller price interval can be used to guide the investor to

choose the “right” prices.
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Chapter 1

Introduction

Pricing and hedging of derivative securities in financial market models are two
of the main topics in modern mathematical finance research. In friction-free
complete market models, European options can be replicated by self-financing
trading strategies. The fair price of a European option is the initial value of
the replication strategy. This replicating and pricing method was pioneered
by Black & Scholes (1973) and Merton (1973) who considered pricing and
hedging of European call options in a continuous time market model. They
provide a closed form formula for the fair prices of European call options in
this model. For an overview of pricing and hedging in friction-free market
models, see textbooks Bingham & Kiesel (2004) and Follmer & Schied (2011,

Chapter 1.5) (especially in discrete time models) and the literature within it.

In market models with transaction costs, the first main hedging method
that is widely used is superhedging. This hedging method is generally more
preferable than the replicating method, because it is generally less expensive;
for example Bensaid, Lesne, Pages & Scheinkman (1992), Cutland & Roux
(2012, Example 8.29). Similar to replicating, superhedging is independent of
an investor’s preference. For the option seller, the objective of superhedging is
to construct a strategy, with initial value as small as possible, that will enable
him to meet his obligation in the option contract at expiry time. Similarly, the
option buyer’s superhedging objective is to find a strategy which generates the
highest amount of bond/cash at the initial time, and at the same time allows
him to remain solvent after receiving the payoff of the option. Superhedging
provides a method which allows the seller and buyer to hedge without any
risk. Works in superhedging include Bensaid, Lesne, Pages & Scheinkman
(1992), Edirisinghe, Naik & Uppal (1993), Jouini & Kallal (1995), Perrakis
& Lefoll (1997), Kabanov & Stricker (2001), Delbaen, Kabanov & Valkeila
(2002), Dempster, Evstigneev & Taksar (2006), Roux (2006), Roux, Tokarz &
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1. Introduction

Zastawniak (2008), Lohne & Rudloff (2014), Roux & Zastawniak (2016).

Drawbacks of superhedging include that the bid-ask interval can be very
wide; see numerical examples in Roux (2006, Chapter 3.6). This is not very
helpful in guiding an investor on choosing “right” prices. In addition, this
method does not allow an investor to take any risk. For these reasons, research-
ers have studied other hedging methods which allow an investor to take risks by
taking into account his preference. The objectives of such methods include the
maximisation of expected utility of terminal wealth, maximisation of expec-
ted utility of consumption during trading, minimisation of expected shortfall
risk and other risk minimisation. Relating to existing literature, regarding
maximisation of expected utility from terminal wealth, the relevant studies
include Hodges & Neuberger (1989), Dumas & Luciano (1991), Cvitani¢ &
Karatzas (1992, 1996), Davis, Panas & Zariphopoulou (1993), Gennotte &
Jung (1994), Clewlow & Hodges (1997), Monoyios (2003, 2004), Sass (2005),
Zakamouline (2005, 2006), Atkinson & Quek (2012), Kallsen & Muhle-Karbe
(2015). Related works in maximisation of expected utility of consumption
during trading are Davis & Norman (1990), Cvitani¢ & Karatzas (1992), Con-
stantinides & Zariphopoulou (1999), @ksendal & Sulem (2002), Liu (2004),
Muthuraman & Kumar (2006), Muthuraman (2007), Kallsen & Muhle-Karbe
(2010), Hobson & Zhu (2016). Minimisation of expected shortfall risk is stud-
ied by Guasoni (2002), and minimisation of local risk is discussed by Mercurio
& Vorst (1997), Lamberton, Pham & Schweizer (1998). In the preference
based hedging approaches mentioned above, an investor with a given financial
endowment controls a trading strategy in order to achieve a hedging objective
which depends on his preference. Thus, these methods do consider investors’
preferences towards risks. Regarding the pricing of options, a number of util-
ity based optimisation problems are closely related to indifference pricing. In
general, the indifference price of an option contract is defined as the price
such that the investor would have the same expected utility by entering this
contract as by not doing so. Compared to superhedging, the indifference pri-
cing could possibly produce a smaller bid-ask spreads of European options; see
Pennanen (2014, Theorem 6) for example. The pricing method considered in
this thesis is similar to the indifference pricing based on utility maximisation

problems.

The option prices considered in this thesis relies on an optimisation prob-
lem. The background of this optimisation problem is related to (1) convex
stochastic dynamic programming; and (2) convex-valued random dynamical
systems. The study of these two areas became prominent in the context of

mathematical economics in the 1960s and the 1970s. Some of the important
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1. Introduction

ideas in these two areas can be traced back as early as von Neumann’s work
in the 1930s on economic dynamics (see von Neumann (1937)), as well as
Kantorovich and Koopmans’s studies during the late 1930s to the 1950s on
optimal resource allocation and linear programming (see Kantorovich (1960)
and Koopmans (1951)).

Regarding convex stochastic dynamic programming, its economic applica-
tions are mainly in the area of utility maximisation over a family of admiss-
ible investment strategies. For example, Dynkin (1972) (see also Dynkin &
Yushkevich (1979, Chapter 9)) made a seminal contribution in this field. Then
Arkin & Evstigneev (1987) presented a systematic and comprehensive study
of the corresponding theory from deterministic case to stochastic case. The
optimisation problem studied in this thesis follows the tradition of utility max-
imisation. The utility maximisation problem in economics appears in a very
general setting and involves modelling of various economic activities, whereas
this thesis focuses on a specific financial model. However, these problems share
a common objective, namely, achieving the investor’s goal by controlling his

trading strategies.

Regarding convex-valued random dynamical systems, von Neumann (1937)
and Gale (1956) produced pioneering work on its applications in models of
economic growth. Then option pricing and hedging under proportional trans-
action costs have been studied by Dempster, Evstigneev & Taksar (2006), who
developed a general framework including trading constraints, and Evstigneev
& Zhitlukhin (2013), who studied risk-acceptable hedging in interconnected

financial models.

This thesis focuses on the option indifference pricing based on a regret op-
timisation problem in a two-asset market model with proportional transaction
costs. In this regret optimisation problem, an investor faces the liability of de-
livering a sequence of portfolios. Additionally, at each time step, he needs to
manage his financial position in the underlying assets (cash and stock). In this
problem, the investor’s trading strategy is not required to be self-financing, in
other words, he is allowed to inject extra cash beyond the given initial endow-
ment. In each trade, the investor will use a regret function (which needs to be
nondecreasing and convex) to evaluate his regret upon the cash injection for
updating the portfolio. The investor’s objective is to minimise his expected
total regret. Regarding the regret functions, they are closely related to util-
ity functions used in utility maximisation problems in the above-mentioned
studies. Similar to the definition of indifference prices based on utility optim-
isation problems, the regret indifference price of an option contract is defined

as the price that allows the investor to enter the contract without increasing
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1. Introduction

his expected total regret.

The regret optimisation problem in this work extends the utility max-
imisation problem in discrete-time financial market models by allowing the
investor’s preference to be different at different time steps. The most similar
problem to the regret optimisation problem in this thesis is the asset-liability
management problem which is studied by Pennanen (2014). He proves the
existence of solution of his asset-liability management problem, and he also
shows that the indifference prices of cash flows are within the no-arbitrage price
interval. In this thesis we establish these two results in a different setting. In
comparison with our study, although the optimisation problem in Pennanen
(2014) allows convex transaction costs, the investor’s liabilities are restricted
to cash flows instead of portfolio flows. Additionally, numerical approaches for
solving his optimisation problem and for computing the option prices have not
been developed. In our work, we provide a numerical method to compute the
investor’s minimal regret and calculate option indifference prices. Moreover,
we also provide substantial numerical results for the optimal cash injection
strategy, and for the regret indifference prices of various European options in

the models with large number of steps.

In this thesis we show that there exists a solution to our regret optimisation
problem under the assumption of robust no-arbitrage. Moreover, we prove
that the indifference prices of portfolio flows are within the no-arbitrage price
interval. However, the calculation of indifference prices are challenging due to
the difficulty of solving the regret optimisation problem. The main difficulty
is that the cost function (which is used to compute the costs of creating a
portfolio) is not differentiable at the origin when the transaction costs are non-
zero. In order to calculate the indifference prices, we introduce a Lagrangian
dual optimisation problem. It turns out that the solutions of this dual problem
are very helpful for computing the indifference prices and solving the regret
optimisation problem. Finally, under a sequence of exponential type regret
functions, we find an algorithm to numerically compute the regret indifference
prices. The numerical results show that the price interval based on regret
indifference pricing can be much narrower than the price interval derived from
superhedging. For the investors, such smaller price interval can be helpful for

them to choose the “right” option prices.
This thesis is organised as follows.

In Chapter 2, we firstly introduce the discrete financial market model with
proportional transaction costs. Then we provide a number of concepts such
as solvency cones with their dual spaces, self-financing trading strategies, and

no-arbitrage. In Theorem 2.6, we present the robust no-arbitrage condition
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1. Introduction

introduced in Schachermayer (2004, Definition 1.9), and this condition is as-
sumed to hold true throughout this thesis. Subsequently, we define the notion
of a flow option (a sequence of European options with possibly different ma-
turity dates) which extend the notion of a European option, and then define
the superhedging prices of a flow option. In (2.26)-(2.27), we provide a link
between the superhedging prices of flow options and that of European options.

The main contribution of this work is in Chapters 3-5. At the start of
Chapter 3 we introduce the notion of a regret function and then introduce
the regret minimisation problem (3.8). The problem (3.8) covers discrete-
time versions of optimal investment and consumption problems and utility
maximisation problems; see Examples 3.12 and 3.13. We show that the value
function of the regret minimisation problem is lower semicontinuous, and that
there exists a solution to the problem; see Theorem 3.15 and Corollary 3.16.
After that, we reformulate the regret minimisation problem as a constrained
optimisation problem in (3.19). Then a Lagrangian dual problem of (3.19)
is defined in (3.35). The strong duality of the problems (3.19) and (3.35) is
established in Theorem 3.31. Subsequently, we define the indifference prices
of flow options. Moreover, Theorem 3.39 shows that the indifference prices are
within the no-arbitrage price interval.

Chapter 4 provides a number of technical results used for the study in the
next chapter. The results in this chapter does not rely on any financial market
model or any result from previous chapters. Firstly, we introduce a minimisa-
tion problem for which the value function is formulated as an extended convex
hull of a collection of convex functions. Then, in Theorem 4.3, we show that
the value function is convex. Moreover, in Theorem 4.13, we establish the ex-
istence of a solution and the continuity of the value function. Subsequently, we
present an example of the minimisation problem. In this example, we present
a method to explicitly calculate the solutions to this problem by considering
all different cases of the values of given parameters.

Chapter 5 concerns the dual optimisation problem (3.35) under a sequence
of exponential regret functions. We first show that the solutions to this dual
problem can be used to solve the problem (3.19); see Theorems 5.5 and 5.6.
Moreover, based on the solutions to the dual problem, Theorem 5.7 provides
formulae for computing the indifference prices of any flow option. By devel-
oping a dynamic programming algorithm, we can construct a solution to the
dual problem (3.35); see Theorem 5.20. However, computing this solution is
difficult. Thus, we propose a method to solve (3.35) numerically. Finally, in a
binary market model, we produce a number of examples to compute the solu-

tion to (3.19) and the indifference prices of flow options with various payoffs.
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Chapter 2

The model

2.1 The market model with proportional transac-

tion costs

Consider a financial market model with discrete trading datest =0,...,T and
a finite probability space (€2, F,P) that is equipped with a filtration (ft)tTZO.
Assume without loss of generality that Fy = {Q,0}, Fr = F = 29 and
P(w) >0 forall we Q. Forallt =0,...,T, we denote by §; the collection
of atoms of F;. Moreover, the elements of {); are called nodes of the model at

time t¢.

Forall t = 0,...,7 and d € N, let Ef be the space of Ré%valued F;-
measurable random variables, and define £, = £;. Moreover, let £J, be the
family of nonnegative random variables in £¢. For any x € L{, we have for
all v €  that x(w) = z(w') for all w,w’ € v, and sometimes we use z (v)
to represent this common value. Let N be the space of adapted R%-valued
processes, and define A" = A1,

The financial market model consists of two assets. Trading in the risky
asset, stock, is subject to proportional transaction costs. At any time step
t=0,...,T, a share can be bought for the given ask price Si* and sold for the
given bid price S¢, where S > SP > 0. We assume that S¢ = (ST, € N
and S = (SP)L, € N respectively.

The risk-free asset, cash, is taken to be a risk-free bond with zero interest
rate. Its price is constant and equal to 1 for all t = 0,...,7. Equivalently,

asset prices in our market model can be considered as discounted prices.

For all x € R, let
x4 = max {z,0}, x_ := —min{z,0}.

21



2.1. The market model with proportional transaction costs

Fix any t = 0,...,T. The cost of setting up a portfolio 2 = (2, 2°) at time ¢
is

¢ (x) := 2’ + x S§ — xs_Sf

and the liquidation value of the portfolio x at time ¢ is
ab — 25 S+ 158} = —¢y (—x).

Observe that S¢, S? € £; and hence the function ¢; based on S¢ and S? is an
Fi-measurable random function. See Definition A.16 and comments following
it for the definition of measurable random function and relevant properties
and notation used in this work. The function ¢; is convex because S¢ > S?.

In addition, we have
by (x) > 2¥ + 258 > —¢y (—x) for all S such that S? < S <S¢ (2.1)
For every w € 2, let

Ky = {x € RQ‘ —¢f (—x) > O}
={(a",2%) € R¥a® — 22 8¢ (w) + 23S} (w) > 0}
={(ah2") € RQ‘ ¥+ 28} () > 0, 2P + 25§ (w) > 0}, (2.2)

which is the collection of portfolios with nonnegative liquidation value at time ¢
and scenario w. We shall refer K¢ as the solvency cone at time ¢ and scenario w.
Observe that KC; is determined by S¢ and S? and hence it is an F;-measurable
set-valued function. See Definition A.12 and the comments following it for
the definition of measurable set-valued function and relevant properties and
notation used in this work. Note that, for each w € Q, the set K¢ C R? is a

polyhedral cone and hence closed.

Remark 2.1. Fix any w € €. The graph of K¢ is presented in Figure 2.1 for the
case when S?(w) < S¢(w). In the case when S¢ (w) = S? (w), the polyhedral
cone K¢ is a half space, and the vectors (S¢ (w),—1) and (—S? (w),1) are
on the same line. Thus, apart from (S¢ (w),—1), and (—=S? (w),1), at least
one additional vector is needed to generate Ky. The choice of additional
vectors is not unique, and here we chose the vectors (1,0) and (0,1). From
the graph, the polyhedral cone K¢ is generated by (1,0), (0,1), (Sf (w),—1),
and (—S? (w), 1), in other words,

Y ={a(1,0)+ 8(0,1) + 7(Sf (), 1) + 6(=S57 () ;1) | @, ,7,6 € [0,00) }.
(2.3)

22



2.1. The market model with proportional transaction costs

(S5 (@), —1)

Figure 2.1: The solvency cone K¢ at time ¢ and scenario w

For all w € , the family —K{ can be presented as

—K¢ = {z e R? | —¢¢ (2) > 0}
= {zeR?|¢f (x) <0} (2.4)

which is the collection of portfolios that can be created from zero cash at time

t and scenario w.

A trading strategy is a sequence (y;)7_, € N? of portfolios coupled with an
initial endowment y_; € R?. The collection of trading strategies is denoted by
N?. Fort=0,...,T — 1, the portfolio y; is held during the interval (¢t + 1]

and yr is the terminal portfolio.

Definition 2.2. We call a trading strategy y = (y;)__; self-financing if
Ay =y —yp1 € —Ky forallt=0,...,T.
We denote the collection of self-financing strategies by ®.

A trading strategy is self-financing if there is no injection of funds beyond
the initial endowment, in other words, the change in the portfolio holdings

Ay, at each time step t can be created without additional investment.

Remark 2.3. The definition of the self-financing property above allows for the
withdrawal of funds. For example, define y € N as

Y-1:= (1’1)
Yr = yi-1 — g (1,1) forall £ =0,...,T.
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2.2. Arbitrage and dual spaces

Then Ay = —T%H(l, 1) € =K for all t and hence y € ®. By the construction

of y, the portfolio T%rl(l, 1) is withdrawn at each time ¢.

2.2 Arbitrage and dual spaces

In this section, we consider two different notions of absence of arbitrage. The
first, mo-arbitrage, is important in the arbitrage pricing theory which will
be discussed in the next section. The second, robust no-arbitrage, will turn
out to be a sufficient condition for the existence of a solution to the regret

minimisation problem in the next chapter. Define

P = {(Q7 S)|Q < P, S a Q-martingale, S? < S; < Sf}, (2.5)
P = {(Q, $)|Q ~ P, S a Q-martingale, S? < S; < Sg} , (2.6)

where “Q < P” in (2.5) means that Q is a probability measure that is absolute
continuous with respect to P, and “Q ~ P” in (2.6) means that Q and P are
equivalent. We shall refer the elements of P (P) as (equivalent) martingale
pairs. Notice that P C P.

Remark 2.4. If there are no transaction costs, then S® = S% and for any
(Q, S) € P the probability measure Q is an equivalent martingale measure in
the friction-free model with stock price S = S? = §°.

We denote the collection of terminal portfolios associated with self-financing

trading strategies with zero initial endowment by

A = {yT ‘(yt);‘r:_l €Pandy_1 = O}.

The following result is due to Kabanov & Stricker (2001, Theorem 1) (see also
Schachermayer (2004, Theorem 1.7 and pp. 24-25)). We follow Schachermayer
(2004) in referring to the condition in the following result as the no-arbitrage
condition. Although formulated differently, this is equivalent to the notion of
weak no-arbitrage introduced by Kabanov & Stricker (2001).

Theorem 2.5. The market model satisfies the no-arbitrage condition
Ar N L7, = {0}

if and only if P # 0.

In the present setting, the robust no-arbitrage condition introduced in
Schachermayer (2004, Definition 1.9) is satisfied if there exists (S, S*) € N2

such that the following two conditions are satisfied:
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2.2. Arbitrage and dual spaces

1. For every t = 0,...,T, we have S? < S§¢ and [S?, §¢] is contained in the

relative interior of [S?, S¢], in other words,

Sp=5p = S{=5=5=5

SP< 88 — SP<Sh<Sr<se

2. The market model with stock prices modelled by (5%, 5%) (instead of
(S, 5%)) satisfies the no-arbitrage condition.

From Schachermayer (2004, Theorem 1.7 and pp. 24-25), we have following

equivalent presentation of the robust no-arbitrage condition.

Theorem 2.6. The market model satisfies the robust no-arbitrage condition
if and only if there exists (Q,S) € P such that Sy is in the relative interior of
[SP,S¢] for allt =0,...,T.

Observe that the robust no-arbitrage condition implies that P # @ and
hence implies that the no-arbitrage condition holds. In the remainder of our
work, we will always assume that the robust no-arbitrage condition holds true.

Define
\Il::{yeN2"y_1:yT:O}. (2.7)

Then

(I)ﬂ\If:{yeN'Q"y_lzyTzo, Ay, € =K forall t = 0,..., T}
:{yGNQ'

yo1=yr =0, 6u(Ay) <0 forallt =0,..., T} (28)

is the collection of self-financing trading strategies with both initial endowment
and final value equal to zero. It turns out that the linearity of ® NV is crucial
for the existence of a solution to the optimisation problem that will be studied
in the next chapter. Note that, while robust no-arbitrage is assumed, the

weaker no-arbitrage condition is sufficient for the following result to hold true.
Proposition 2.7. If y € ®N Y, then ¢(Ay) =0 forallt =0,...,T.

Proof. Let y € ® N ¥, and suppose by contradiction that there exists some
t* =0,...,T such that
P(¢p (Aye-) < 0) > 0.

This means that there exists v € Q= such that € := ¢ (Ay(v)) < 0, with

¢ € R by the adaptedness of y and stock price processes; see the comments
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2.2. Arbitrage and dual spaces

following Definition A.16 for ¢%. Define z = (2,)l._, € N% as

{yt— (6,0) onwvift >t
Zt =

Yt otherwise.

Then z_1 = 0 and

Ay, — (6,0) € =K on v if t = t¥,
Azt =
Ay € =K otherwise,

which implies that z € ® and hence zp € Ap. However yr = 0 gives that

yr — (6,0) = —(¢,0) on v,
T =
yr =0 on Q\v,

in other words, we have 2r € £2 4 with zp # 0. Therefore, the no-arbitrage

condition is violated and hence the result follows. O

The following result follows from Proposition 2.7, and it shows that robust
no-arbitrage is sufficient for ® NV to be a linear space; for the definition of a

linear space see Roman (2008, pp. 35-36).
Proposition 2.8. The set ® NV is a linear space.

Proof. Our main objective is to prove that for every y € ® N ¥ we have
Ay; =0on {S? < S forallt=0,...,T. (2.9)

This is shown below. Taking (2.9) as given, fixany y € ®N¥ and ¢t =0,...,T.
Then (2.9) implies that

d(—Ays) = di(—(Ay7,0)) = = ((Ayf,0)) = =y (Ays) on {SP < 57}

Combining this with ¢; being a linear function on {S? = S¢}, it follows that

dr(—Ay) = —d(Ayy) =0

by Proposition 2.7. Thus —y € ® N W. Since ® N V¥ is also a convex cone, it
has to be a linear space.

Now, we are going to show that (2.9) holds true for all y € ® N ¥. First
of all, fix any (Q,S) € P satisfying the conditions in Theorem 2.6. For any
y € NV, from yr = (y4,y5) = 0 and (2.1) together with Proposition 2.7, it
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2.2. Arbitrage and dual spaces
follows that
Yoy Y1 St = —Agh — AyiSr > —or(Ayr) =0. (2.10)

Since (yf_l + yf_lSt)tho is a Q-supermartingale (Roux, Tokarz & Zastawniak
2008, Lemma 7.1), we have

3/?—1 + 915t > Eqg {?Jf'—l + Yy 1S

Rl forallo<t<¢ <T.  (211)
Combining (2.11) and (2.10), we have
w4y 1S > Eg [y%,l + y%,lsT‘ ft} >0forallt=0,...,7. (2.12)

Suppose by contradiction that there exists some t* = 0,...,T such that
vi={Ay #0}N{Sh < S&L} # 0.

Since (Q, S) satisfies the conditions in Theorem 2.6, we can present v as
v={Ay}. #0}N{Sh < Sp < SL}.

Combining this and Proposition 2.7 together with y € ® N W, it follows that
Ayp. 4+ Ayi. S < ¢y (Ayp) = 0 on v,

in other words,

Yo 4 yh_ 1 Sp >yl + 95 S on v (2.13)

Consider the following two cases. In the case when t* = T, we have from
(2.13) and yr = 0 that

99_1 +y7_1S7 >0 on v.

In the case when t* < T, it follows from (2.13) and the fact that S is a
Q-martingale that

Y1 + Y150 > Y- +y5Eg [Sea| Fir] = Eg [yf + yf*St*H’ ft*} on v.
Combining this with g + y5.Si-+1 > 0 by (2.12), it follows that
yzl;*_1 + Y« 1S+ > 0 on v.

Thus, we always have y%_; + y5._1 S+ > 0 on v. Combining this with (2.11),
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2.2. Arbitrage and dual spaces
we have
0 <Eq g1+ 15| < vy +y7150:

This contradicts y®; + y° S0 = 0 because y_1 = 0. This establishes (2.9) and

hence completes the proof. ]

Let - denote the scalar product in R%. For any cone C' C R?, we write the
polar CT of —C as

C+:{yeRd‘y-xZOforaH:ceC}. (2.14)
For all t =0,...,T, we define the set-valued function ;" as
K = K¢t for all w € Q. (2.15)

Notice that ;" is determined by S¢ and S which means it is F;-measurable.

Moreover, the following result provides an expression for ;.

Lemma 2.9. For allt=0,...,T and w € 2, we have
K = {(,2%) € 0,00)?| 2 Sp(w) < 2* < 2S(w) -

Proof. Notice that, for any (2%, 2°) € R?, we have

>0 (2%, 2% (1,0) >0,

25 >0 <= (2*,2°)-(0,1) >0,
PG (w) > 2° == (2°,2°) - (Sf(w), —1) = 0,
25> 280 (w) = (2, 2%) - (=SP(w), 1) > 0.

This means

{(zb,zs) € [0, 00)2‘ 28b(w) < 25 < zbe(w)}

={2eR?|z y>0forally=(1,0),(0,1), (S¢(w), ~1), (~SF(), 1)}
From (2.3), we have

{ZERQ‘z-xZOforallxele}
C{zeR?z-y>0forally=(1,0),(0,1),(Sfw), ~1), (~SF(w), 1)}

The opposite set inclusion also holds. Indeed, fix any
ze{zeRz y>0forally = (1,0),(0,1), (), 1), (=St(w), 1)}
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2.2. Arbitrage and dual spaces

Then we have for all «, 8,7,d € [0,00) that

2 [a(1,0)+ 8(0,1) +7(SF(w), —1) + 5(=S¢ (), 1)]
=az-(1,0)+ Bz-(0,1) + 7z - (S4w), —1) 4 6z - (—SP(w), 1) > 0,

and hence z - x > 0 for all x € K¢ by (2.3). Thus, we can conclude that

{26R2‘z-m20forallm€le}

= {(z,2%) €0,00)?| ' S}(w) < 2* < PSP (w) .
Combining this with (2.14) and (2.15), the result follows. O

Remark 2.10. Let t = 0,...,7 and z € K. Combining Lemma 2.9 and
0 < S <S¢, we have for all w € € that either z(w) =0 or z(w) € (0,00)2.

Define

C:= {(zt)f:() € ./\/'2‘ z a martingale, 2, € K, \{0} for all t = 0, ..., T} )
C:= {(Zt)?:o € /\/'2‘ z a martingale, z; € K; for all t = 0,... ,T} . (2.16)

The elements of C are called consistent pricing processes which are introduced
by Kabanov & Stricker (2001, p. 191) and Schachermayer (2004, Definition 1.5).
The difference between C and C is that the processes in C are allowed to be

zero at some time steps.

Remark 2.11. Observe that if (z;)_, € C, then the martingale property of
(2¢)f_, implies that

Elzx | Ft) =2 =0o0n {z =0} forall 0 <t < k <T,
Combining this with z; € IC/,JCr and Remark 2.10, it follows that
zp=0on {z =0} foral 0 <t <k <T.

The relationship between C and P is one-to-one up to a nonnegative factor;
see Schachermayer (2004, pp. 24-25). In addition, Lemma 2.13 below implies
that the relationship between P and C is also one-to-one up to a nonnegative
factor.

For convenience, for every probability measure Q on F satisfying Q < P,
we write

A2 ::E{Zg‘ft] forallt=0,...,T, (2.17)
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2.2. Arbitrage and dual spaces

where % is the Radon-Nikodym density of Q with respect to P. For any
t=0,...,T and v € 4, the value Ai@(u) can be presented as

Q|7 1 0w _ oW
AP =B [ 5|7] ) = 5y TRIBCS = By

wev

In particular, we have Aé]Q =1, and hence

E[AfIn A =E[1n1] =0. (2.18)

Remark 2.12. Notice that the process (AZ)Z_, is a P-martingale. Then for any
t=0,...,T and = € L;, the expectation Eq [z] can be written as

Egle] = E[Afz] =E[E[A}| 7] 2] = E [ATa].
Define an indicator function

1 ifzeA
1a(z):= { (2.19)

0 otherwise

for any set A.

Lemma 2.13. The family C defined in (2.16) can be presented as
_ o\ _
C= { (A (1,8 Af )t_o‘ A>0,(Q,8) € P}.

Proof. Firstly, fix any A > 0 and (Q, S) € P. Define
2= ()0 = (2, %)= € N
as
2= M1, S)AZ for all t =0,...,T. (2.20)
Fix any t = 0,...,T. From (2.20), we have on {z # 0} that z¥ > 0 and
i§ =54, and hence
2

S

b _ *t
Sy <
Zt

< S0,

Moreover, we have on {z; = 0} that 2? = 27 = 0. Then z; € K; by Lemma 2.9.
In addition, for each ¢t =0,...,T — 1, the definition of 2,4 gives

E[z41 | Fi) = XE[(1, Sp)AS, | 7]
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2.2. Arbitrage and dual spaces
Then it follows from Bayes’ formula (Shreve 2004, Lemma 5.2.2) that

E (241 | Fi) = AEq [(1, Spy1)| Fi] AP
= (]., St) A;Q = Zt-

Thus, the process z is a martingale, and therefore z € C.

Now, fix any z = (2°,2%) € C. If 2o = 0, then it follows from Remark 2.11
that
2 =0=0(1,S)AL forall t =0,...,T

for any choice of (Q,S) € P. Suppose zy # 0; then 2§ > 0 by Remark 2.10.
Define A := zg and a measure QQ by means of its Radon-Nikodym density

dQ _ #p
P b
b
Then Q () = E(ZZ,,T ) 1 because z¥ is a martingale, and hence Q is a probab-
0
ility measure. Moreover, we have
28 2°
AP =E| LRl ="Lforallt=0,...,T. (2.21)
20 20

Let us now define S = (S;)7_, € N. For every t =0,...,T, let

b
Vy 1= {Zt = 0}
and
z;
on Q\uy
St = Zf \
Sy on .

Combining Remark 2.10 and (2.21), we have on v; that z = 0 = A(1, S;)AZ.

Moreover, we have on Q\v; that 2! > 0 and

25\ 2P
z = (zf,zf) = 28 (1, Z) —2 =A(1,5) AP,

again by (2.21). It remains to show that (Q,S) € P. Observe first that, for
all t =0,...,T — 1, the probability Q(v441) is

Q (VH-I) = EQ [1Vt+1} =E {A9+11Vt+1] =0
by Remark 2.12 and (2.21). In addition, it follows from Remark 2.11 that
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2.3. Superhedging

Vi1 2 1, and hence we have on Q\vy41 that

s b
P
t Zb Zb Zb
t t <0
1 z
At L )

[ s b
_ 1 | | 2L et
~— 3 Q b b
Ay [+ 2o

g

= —(E :St+1A9+1‘ ft]

= Eq [St41 | Fi]

(Shreve 2004, Lemma 5.2.2). Thus, the process S is a Q-martingale. Moreover,
the definition of S together with Lemma 2.9 implies that

St < S <Stforallt=0,...,T,

which establishes (Q, S) € P. O

2.3 Superhedging

A European option with payoff ¢ = (c?,¢%) € LQT and physical delivery at
maturity date T' is a contract whereby the seller delivers the portfolio ¢ at
time T to the buyer. We call y = (yr)i__; € N? a superhedging strategy for
the seller of the option c if y € ® and yr = ¢. The lowest initial cash holding
y? | such that the seller is able to superhedge ¢ with y starting from the initial

endowment (ygl, 0) defines the seller’s superhedging price of ¢, namely
() == inf { g1 |y € ®, vy = 0, yr = ¢}

Theorem 2.14 below shows that the above infimum is attained. The quant-
ity mf (c) is the smallest amount of cash that enables the seller to meet his
obligation of delivering ¢ to the buyer without risk.

The buyer’s superhedging price of the option c is defined in a similar man-
ner. We call y = (y;)I__, a superhedging strategy for the buyer if y € ® and

yr = —c. The buyer’s superhedging price of ¢ is defined as

71'% (c) := —inf{ylil‘y €ed, y’, =0,yr = —c}.

Notice that
78 (¢) = —7& (—c¢). (2.22)

32
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Again Theorem 2.14 below shows that the above infimum is attained. The
quantity W% (c) is the largest amount of cash that can be raised at time 0 by
the buyer with the guarantee ¢ at time 7. Note that there is a symmetry
between the seller’s and buyer’s position. The buyer, as the option holder,
will receive ¢ at time 7T'. Equivalently, the buyer has to deliver —c at time T'.
To fully cover this risk, the buyer has to receive at least —7% (c) in cash from

the seller, namely, pay at most 75 (c) to the seller.

Theorem 2.14. (Roux & Zastawniak 2016, Theorems 4.4, 4.10). Suppose
that ¢ = (c,¢®) € L2 is the payoff of a European option with maturity date

T. Then the seller’s and buyer’s superhedging prices can be represented as

a _ b s| b S
() = (@r%a;}ecﬁ Eg {c + Src } = (QS;})I;P Eg {c + Stc }

and

b . b s . b s
e (c) = min Eg |’ + Spc’| = inf Eg|c” + Spc’|.
B () (@,9)eP o[¢"+5r] (@3)eP o[ +5re]

Moreover, if x > 7f (c), then there exists a superhedging strategy with initial
endowment (x,0) for the seller of ¢, and if x < 7% (c), then there exists a

superhedging strategy with initial endowment (—x,0) for the buyer of c.
The following result follows from Theorem 2.14.

Corollary 2.15. Given a European option with payoff ¢ = (c*,c®) € L2 at

maturity date T, we have
Eq {cb + STCS} <0 forall (Q,S)€P

if and only if there exists a superhedging strategy with zero initial endowment
for the seller of c.

Proof. Note that Eg [cb + STCS} <0 for all (Q,S) € P if and only if

0> max_Eg [cb + STCS} =g (¢) (2.23)
(@,5)eP
(Theorem 2.14). Since 0 > wfk (¢) if and only if there exists a superhedging

strategy with zero initial endowment for the seller of ¢, the result follows. [

A flow option with payoff ¢ = (¢;)L_, € N2 is a contract whereby the seller
delivers the portfolio ¢; at time ¢ to the buyer for every ¢ = 0,...,7. This
option can be seen as a portfolio of T'4+1 European options with maturity dates

0,...,T and payoffs cg,...,cy. We call y = (y1)ie_; € N? a superhedging
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strategy for the seller of the flow option c if
Ayi+c € Ky forallt =0,...,T and yr = 0.

Note that the superhedging strategy defined above does not have to be self-
financing. Suppose y = (y;)7_; is a superhedging strategy for the seller of the
flow option (Ct)tho‘ Then, at each time step t = 0,...,T, the seller can create
the portfolio Ay; + ¢; from zero cash to meet his obligation by delivering ¢,
and manage his trading strategy by adding Ay to his current portfolio y;_1.
Thus the superhedging strategy y enables the seller to meet his obligation of
delivering ¢ to the buyer without risk. The lowest initial cash holding 3° ; such
that the seller is able to superhedge ¢ with y starting from initial endowment

(y*1,0) defines the seller’s superhedging price of ¢, namely
7p (¢) := inf { ylill y € N superhedges c for the seller, y®, = 0} . (2.24)

The buyer’s superhedging price of the option c¢ is defined in a similar manner.

We call y € N? a superhedging strategy for the buyer of ¢ if
Ayt —c € =K forallt =0,...,T and yr = 0.

The buyer’s superhedging price of ¢ is defined as
7% (¢) := — inf { ylil‘ y € N'? superhedges c for the buyer,y*, = O}
= —inf { yb,ll y € N superhedges —c for the seller, Yy, = 0}
=—7p(—c). (2.25)

The following result gives a link between a superhedging strategy for the
seller of the flow option ¢ and a superhedging strategy for the seller of the
European option with payoff Z;:O ¢; at maturity date 7.

Lemma 2.16. Let c = (¢;)L_, € N? be a flow option.

1. If (y)l= | € N? is a superhedging strategy for the seller of c, then
(z4)__, € N¥ defined by

To1:i=Y-1, =Y+ Zi;:ock: forallt=0,...,T

s a superhedging strategy for the seller of the Furopean option with pay-
off EtT:o ¢t at maturity date T.

2. If (ye)l__1 € N? is a superhedging strategy for the seller of the European
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option with payoff .1 yc: at maturity date T, then (z,)l._, € N?¥
defined by

To1i=yY 1, Tpi=Y— Sow_oCk forallt=0,...,T

s a superhedging strategy for the seller of c.

Proof. In the first claim, it follows from y; = 0 that xp = ZtT:o ¢;. Moreover,

we have
Ary =Ays+ ¢ € =K forallt =0,...,T,

which implies that (z;)__; € ®. Thus, the first claim holds true.
In the second claim, we have

Axi+co=Ayp € =Ky forallt =0,...,T,

and moreover 7 = 0 by yp = ZtT:o ¢¢. Thus, the second claim holds true. [

Let 2 € R? and let ¢ = (¢;)]_, € N be a flow option. Lemma 2.16 implies

that the following two statements are equivalent:

1. There exists a superhedging strategy (y;)i__; with initial endowment

y_1 = z for the seller of the flow option c;

2. There exists a superhedging strategy (y;)7__; with initial endowment
y_1 = z for the seller of the European option with payoff Ztho ¢t at
maturity date T'.

This implies that
m(e) = i (gt (2.26)

(cf. Corollary 3.32 of Tien (2011)). Moreover, we have

mh(e) = —mp(—0) = —7f (-Tioer) = 7 (Tihoer)  (227)

by (2.22).

Corollary 2.17. Given a flow option ¢ = (ci)i_y = (¢}, ¢f)Ey € N2, we have

Eq [ZtT:ch + STZtTZOCf} <0 for all (Q,S) € P (2.28)

if and only if there exists a superhedging strategy with zero initial endowment
for the seller of c.
Proof. Corollary 2.15 implies that (2.28) holds true if and only if there ex-

ists a superhedging strategy with zero initial endowment for the seller of the
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European option with payoff Z?:O ¢ at maturity date 7. Then the result

follows from the comments preceding (2.26). O
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Chapter 3
Regret optimisation

In this chapter, we will study an optimisation problem in the market model
presented in Chapter 2 with the robust no-arbitrage condition being assumed.
In this problem, we consider an investor who faces the liability of delivering a
sequence of portfolios. At each time step, he also manages his financial position
in the underlying assets. Moreover, his trading strategy is not required to be
self-financing, in other words, he is allowed to inject extra cash beyond the
initial endowment. The investor’s regret upon cash injection for updating the
portfolio in each trade is measured by a regret function, and his objective
is to minimise his expected total regret. Section 3.1 introduces the notion
of a regret function. Then Section 3.2 formulates the regret optimisation
problem, and Section 3.2.1 studies the existence of a solution of this problem.
In Section 3.2.2, the regret optimisation problem in Section 3.2 is reformulated
to reduce the dimensionality of the control variable. Then, the Lagrangian
dual problem of this reformulated optimisation problem is introduced in the
Section 3.3. This dual problem will be used in Chapter 5 to study the algorithm
of solving the regret optimisation problem numerically. Finally, based on the
regret optimisation problem, Section 3.5 introduces a pricing method: regret
indifferent pricing. The option prices derived from this pricing method will

depend on the risk preference of the investor.

3.1 Regret function

This section introduces the notion of a regret function. Recall from the above
introduction that the investor’s trading strategy is not required to be self-
financing and his regret/disutility of cash injection for updating the portfolio
in each trade is measured by a regret function. If this injection is negative,

then it is a consumption. First of all, the regret functions is an RU{oo}-valued
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3.1. Regret function

function on R. Moreover, it is natural to assume that the investor’s regret of
zero injection is zero. The investor prefers to inject less rather than more, so
the regret function is required to be nondecreasing. In addition, the investor
is assumed to be risk averse in the sense that the regret function is convex;

the definition of convex function can be found in Appendix A.1.

Remark 3.1. The convexity of the regret function allows the investor to choose
an injection strategy with lower “risks”. For example, let C € R and X € Lp
such that C' = E[X]. Consider the situation when the investor has to choose
between injecting the constant amount of cash C' and injecting the amount
of cash X with possibly different outcomes. Suppose that the investor use a
regret function v to compute his regret, and that he will choose the injection
strategy (C' or X) with lower expected regret. Then the right decision for
the investor is to inject C because v(C) = v(E[X]) < E[v(X)] (Jensen’s
inequality).

Define an indicator function

6 () = 0 ifzed (3.1)

oo otherwise

for any set A; this function is different from the indicator function defined in
(2.19).

Definition 3.2. We call v: R — RU {oo} a regret function if
1. v is nondecreasing and convex on R, and v (0) = 0;

2. v is lower semicontinuous, bounded from below and its recession function

i V% = 0(_ o0 0]-

The definitions of lower semicontinuity and recession function can be found
in Appendix A.1. The properties listed under the second item are technical.
We shall use them to prove that there exists a solution to the regret optimisa-
tion problem (3.8) in the next section. We denote the collection of all regret

functions by V.

Remark 3.3. Regret functions are closely related to utility functions. For
example, if v is a regret function that is continuous, strictly increasing and
strictly convex, then U (z) = —v(—=z) is a utility function in the sense of
Definition 2.35 of Follmer & Schied (2011).

Example 3.4. We have the following examples of regret functions.
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1. The exponential regret function:
v(z)=e* —1forall z € R,

where o > (0. The exponential regret function can be used when it
is allowed to inject/withdraw arbitrarily large amount of cash. The
parameter « describes the investor’s risk aversion. The higher the value

of a, the greater the risk aversion of the investor.
2. The power regret function:
Y Lp— )" ifz<b,
vx)y=¢"7 " ( )
o0 if x > b,

where b > 0 and 1 < 0. The investor’s cash injection is not allowed to

be equal to or greater than b.
3. The regret function
V(7) = 0(—00,0) (7) for all z € R

is useful for the investor who does not wish to inject, but his regret is

indifferent with respect to the size of withdrawals.

Fix any v € V for the remainder of this section. We define
v*(z) :==sup{zy —v(y)|y € R} for all z € R. (3.2)

Observe that v* is the conjugate function (Rockafellar 1974, (3.10)) of v, and
v* will be used in the study of the dual optimisation problem in Section 3.3.

We have v*(z) = oo for any z < 0 because v is nondecreasing and v(0) = 0.

Remark 3.5. Fix any > 0. Observe from (3.2) that
v*(x) > zy —v(y) for all y € R.
In particular, we have
v*(z) >xx0—v(0)=0 (3.3)

because v(0) = 0.

The following result implies that v*(z) < oo for all x > 0. Combining this
with (3.3), we have
v*(z) € [0,00) for all z > 0. (3.4)
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This result also shows that the supremum in (3.2) is attained for all > 0.

Proposition 3.6. For all x > 0, we have v*(z) < oo. Moreover, in the

situation when x > 0, there exists § € R such that
zf) —v(§) = v*(z).

Proof. Fix any = > 0. Firstly, we are going to show that v*(z) < oo by

considering the following two cases. In the case when x = 0, we have

v*(0) = sup [~u(y)] = — inf v(y) < o0
yeR ye

since v is bounded from below.

In the case when x > 0, for convenience, we write

fz(y) :==v(y) — xy for all y € R. (3.5)

Observe that the function f, is R U {oco}-valued, proper, closed, and convex.

In addition, we have

— Inf fo(y) = — inf [u(y) — o) = sup [y —v(y)] =v*(z).  (3.6)

Since v*° = §(_o 0] and the recession function of the linear function y — —zy

is equal to itself (see Example A.4.1), the recession function f° of f; is

F2(Y) = (o001 (y) — zy

(Rockafellar 1997, Theorem 9.3). Notice that f2°(1) = oo > 1 which means

(1,1) ¢ epi f;°.

Moreover, it follows from f2°(—1) = 2 > § that

(=1,3) & epi f°.

Thus, Lemma A.5 implies that f, attains its infimum, in other words, there
exists §j € R such that

fe(9) = inf fo(y)- (3.7)

y€R

Therefore, it follows that

U*(x) = _;Ié&fx(y) = _f:c(g) < 00,
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and this establishes that v*(z) < oo for all z > 0. Combining (3.5), (3.7) and
(3.6), it follows that

v —v(f) = —fo(9) = — inf fuly) = v"(2).
ye

This completes the proof. ]

The following example presents the conjugate function of each regret func-
tion introduced in Example 3.4. In particular, Example 3.4.3 implies that the
condition > 0 in Proposition 3.6 that guarantees the existence of § € R such

that g — v(g) = v*(x) is sufficient but not necessary.

Example 3.7. This example provides the values of v* for each regret function
v defined in Example 3.4. Notice from the comments following (3.2) that we
always have v* = 0o on (—00,0). Thus, it is enough to compute the values of

v* on [0, 00).

1. Let v(y) :=e* — 1 for all y € R where a > 0. Notice that

v*(0) = sup[~v(y)] = 1 > —v(y/) for all ¢ € R.
y€ER

For all z > 0, we have

d

— [zy —v(y)] = x — ae® for all y € R.

dy
Then y — xy — v(y) is continuous, and it is increasing on (—oo, L In Z]
and decreasing on [é In £, 00). This implies that § := é In £ is the unique

value in R that maximise zy — v(y) over all y € R, and hence

zf) —v(g) = sup [zy — v(y)] = v*(2).
yeR

11n 2 into 2§ —v(p), it yields v*(z) = LIn £ —L 41,

By substituting g =

Combining this with v*(0) = 1, we can conclude that
v (z) = I - Z 41 for all x > 0;
a a o

we always assume that 01ln0 = 0 in this thesis.

2. Let b>0and n < 0. For any y € R, let

B_Lp—y)" ify<b,
vy)=q" " ,
00 if y > 0.
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Then y
v*(0) = sup [~v(y)] = —— > —v(y’) for all ¢/ € R.
yeR n

Fix any x > 0. We have for any y < b that

b1 1

y—v(y)=xy— —+—(b—y)"
() p 77( )

and
1

a [y —v (] =2—-(0—-y)""
Then y — xy — v(y) is continuous on (—o0,b), and it is increasing on
(—o0,b — a:n%l} and decreasing on [b — xﬁ,b). Combining this with
xy —v(y) = —oo for all y > b, it follows that § := b — x"%l is the unique

value in R that maximise zy — v(y) over y € R. This implies

yeR

1
Then v*(x) = bx — "%lx% — % by substituting § = b — 71 into
9 — v(g). Combining this with v*(0) = —%, it follows that

n—1 1

"
v*(x) = bx — xn-1 — — for all x > 0.
n n

. Let v(y) = 6(—o0,0)(y) for all y € R. Observe that d(_0(y) = oo for
y > 0. Then

v*(0) = $up [~8(_s0.0)(y)| = 0 = ~8(_sc.01(9) for all § € (~o0,0],
yeR

For all z > 0, we have

—o0 ify >0,

TY — O(—o00,0](y) = {

zy ify <0.

Then § = 0 is the unique value in R that maximise zy — 0(_ ] (y) over
all y € R, and hence

0= 2 — 6(—so0(§) = SUP |7 — (0w ()] = v"(2).
yeR
Therefore, the conclusion is that

v*(z) =0 for all z > 0.
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3.2. Regret minimisation
3.2 Regret minimisation

Consider an investor with zero initial wealth who faces the liability of meeting
a payment u; = (ul,uj) € L? at each time step t = 0,...,7. Moreover, he
maintains a trading strategy y = (y;)__; in the underlying assets, and he
liquidates this trading strategy at time 7. The investor manages his assets
and liabilities by injecting ¢(Ay; + u¢) in cash at each time ¢t = 0,...,7.
His trading strategy is not required to be self-financing and the collection of
available trading strategies for the investor is ¥; see (2.7) for the definition of
v,

Remark 3.8. The assumption of zero initial wealth is made without loss of
generality. Indeed, if the investor has an initial wealth w € R in cash, then
the situation is equivalent to that the investor with zero initial wealth facing
the liability of meeting a payment uy— (w, 0) at time 0 and meeting a payment

u; at each time stept=1,...,T.

For any t =0,...,T, let v; be a random function such that vy € V for all
w € Q and that the function w +— vy is constant on each node in €2, in other
words,

v =¥ for all w,w’ € v and v € Q.

Observe that vy is Fy-measurable; see Definition A.16 for the notion of a meas-
urable random function. The investor measures his regret by the quantity
v (P (Ayr +uy)) at time step t. His objective is to minimise his expected total

regret, in other words, solve the following optimisation problem:

T
minimise ZE [0 (¢t (Ays + uz))] over y € . (3.8)
=0
The value function V : N2 — R U {oo} of the optimisation problem (3.8) is

defined as
T

V () = inf SB[ (61 (Aps + )] (39
t=0

We call ¢ a solution to (3.8) if § € ¥ and

T
D Efve (60 (Age + w))] = V(w).
t=0
Pennanen (2014) considered a similar regret minimisation problem in the
market with convex transaction costs. He established the existence of solution
for his problem. However, he did not provide computational techniques for

solving this problem. In his work, the investor faces the liability of meeting
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3.2. Regret minimisation

a sequence of cash flows rather than a sequence of portfolios. By letting
u = (¢, 0) in (3.8) for some ¢; € Ly for each t = 0,...,T, the problem (3.8)

can be written as
T
minimise ZE [vr (¢ (Aye) + ¢)] over y € W,
t=0

which is a special example of the regret minimisation problem in Pennanen

(2014).
Remark 3.9. By Definition 3.2, regret functions are bounded from below, there
exists a € R such that

v(z) >aforallz e R, t=0,...,7 and w € Q.

This implies that
T
> Elve(z)] = > Ela] = a(T + 1) for all (z){_y € N. (3.10)
t=0 t=0
Therefore, we have V(u) > a(T + 1) > —oc.

Remark 3.10. If V(u) = oo, then
T
ZIE [vt (¢ (Ayr +up))] =00 forall y € U
t=0

and hence every element from V¥ is a solution to (3.8). In Corollary 3.16, we

will show that there exists a solution to (3.8) in the case when V' (u) < oo.
The following example shows that it is possible that V(u) = oo for some

u e N2.

Example 3.11. Suppose vy = §(_qo ) for all  =0,...,T. By (3.9), we have
for any u = (u¢)]_, € N'? that

V<u>=ylgng[ oo 0] (01 (Aye + ur))|
_{0 if Jyev: ¢ (Ay +uy) <O0VE=0,...,T,

oo otherwise.

Clearly, when u; = 0 for each t = 0,. , we have V(u) = 0. Now, we take
ug = 1 forallt =0,...,T. Suppose by contradiction that V(u) = 0. Then
there exists y € ¥ such that ¢, (Ay; +u;) < 0 for all ¢ = 0,...,T. Define
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3.2. Regret minimisation
y/ e N by

Y1 =y-1=0,
t
yi=ye+ Y ugforallt=0,...,7T.
k=0

It follows that
o (AY)) = ¢ (Aye +uy) <O forallt =0,...,T,

and hence y' € ® and y/}. € Ap. However, since yr = 0, we have y, = T + 1.

So the no-arbitrage condition is violated and hence V' (u) = oc.

The example below gives a connection between the problem (3.8) and op-

timal investment and consumption problems considered in the financial market

models.
Example 3.12. Foreacht =1,...,T, we set vy = vy, and hence the function
w — v is constant on (). Moreover, the functions vy, ..., vy are the same. By

letting U(z) = —vo(—x) for all z € R, we have
v(x) = =U(—x) forallt =0,...,7T and = € R.

The process (u;)i_q is defined as ug = (—w, 0) for some w € R, and u; = 0 for
all t =1,...,T. This means that the investor will receive w amount of cash

at time 0, and he has no future liabilities. Then (3.8) can be written as

yig\prtT:OE [0t (Pt (Ayr + ut))]

= inf E {—ZtT:OU(—th(AZ/t + Ut))]

yew
= —supE | ToU (—dr(Aye + o))
yew
= =S |U(=go(Ago — (w,0)) + T U(=du(Ap)],  (311)
ye

where —¢o(Ayg — (w,0)) = —¢o(yo — (w,0)) represents the consumption in
cash at time 0 and —¢;(Ay;) represents the consumption in cash at time ¢ for
all t =1,...,T. The maximisation problem in (3.11) is the so-called optimal
optimal investment and consumption problem studied e.g. in Abrams & Kar-
markar (1980), Cai (2009), Cai, Judd & Xu (2013). In the continuous-time
version, there are many papers about optimal investment and consumption
with transaction costs; see Davis & Norman (1990), Shreve & Soner (1994),
(Oksendal & Sulem (2002), Liu (2004), Janecek & Shreve (2004), Hobson &
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3.2. Regret minimisation
Zhu (2016).

There is a link between the problem (3.8) and utility maximisation prob-

lems considered in the financial market models.

Example 3.13. Let vt = §(_ ) for all ¢ = 0,...,T — 1. This means that
the investor is not allowed to inject any positive amount of cash before the
terminal time step 7. Then we write U (x) := —vp (—x) for all x € L, where
the function w +— v% is assumed to be constant on 2. Moreover, we define
(ug)_y as ug = (—w,0) for some w € R, ur = (c,0) for some ¢ € Ly, and
up = 0 for all £t = 1,...,T — 1. This implies that the investor has an initial
wealth w € R in cash at time 0, and that his liability is to deliver ¢ € L7 in

cash at time 7". Then (3.8) can be written as
T

ylg\% t:oE [Vt (Pe (Ayr + ur))]

:yuel\fp {E [vr(or(Ayr) + o)) ¢o(Ayo) < w, de(Ayy) <OV0 <t < T}

= inf {—E [U(=¢r(Ayr) — o)]| do(Ayo) < w, ¢(Ay;) <OV0 <t < T}

yew
=~ sup {E[U(=¢r(Ayr) — )]l do(Ayo) < w, de(Ay) <OVO <t < T}
ye
where —¢7r(Ayr) —c = —pp(—yr—1) — ¢ is the investor’s terminal wealth after

liquidation, and E[U(—¢7(Ayr) —¢)] represents the investor’s expected utility
of the terminal wealth. We can set ¢ = 0 if the investor has no liabilities
at the terminal time 7. The maximisation problem above is the so-called
utility maximisation problem studied e.g. in Gennotte & Jung (1994), Boyle
& Lin (1997), Sass (2005), Cetin & Rogers (2007), Brown & Smith (2011),
Atkinson & Quek (2012). In particular, Cetin & Rogers (2007) considered
convex transaction costs, and Sass (2005) considered piecewise proportional,
fixed and constant costs. There are also many papers studied the utility
maximisation problem with transaction costs in continuous-time settings; see
Davis, Panas & Zariphopoulou (1993), Cvitani¢ & Karatzas (1996), Deelstra,
Pham & Touzi (2001), Dai & Yi (2009), Bichuch (2012), Czichowsky, Peyre,
Schachermayer & Yang (2018).

3.2.1 Existence of solution

In this section, we are going to prove that there exists a solution to the prob-
lem (3.8). To achieve this, we first have to rewrite our problem as an uncon-

strained optimisation problem.
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3.2. Regret minimisation

Define f: Q x RTH x R2T+2) 5 R2THD) 5 R U {oo} as
T
fw (:z:,y,u) = va ('Cct) + dpw (IL’,y,U) (312)

t=0
where © = (z9,...,27), y = (Y—1,...,y7), u = (ug,...,ur) and
BY = {(m,y,u) e RT+ x RAT+2) ]R2(T+1)’ y_1=yr =0,
Ay — (24,0) + up € =K for alltzO,...,T}.

Note that B is a set-valued function, and both f and dp are random func-
tions; see Appendix A.3 for definitions of a set-valued function and a random
function. Moreover, the set-valued function B is Fp-measurable since IC; is
Fi-measurable for all ¢; see Definition A.12. We have for all w € € that

epidpe = {(z,y) | 0pv (z) <y, y € R}
={(z,y) |z € B, y > 0}
= B¥ x [0, 00). (3.13)

Thus the set-valued function w +— epidpe is Fp-measurable and hence the

random function dp is Fp-measurable; see Definition A.16.

Proposition 3.14. For any w € Q, the set B* is a closed convex cone con-

taining 0.

Proof. Fix any (x,y,u), (¢/,y',u') € B¥ and a,b > 0. Then
ay—1 + by | = ayr + by =0

and

Alay: + by;) — (axy + bxy, 0) + aug + buy
= alAy; — a(zy,0) + aug + bAy; — b(xy,0) + buy € —KY

forallt =0,...,T since —K¢ is a convex cone containing 0. This means that
a(z,y,u) +b(a',y u') € B¥

and hence BYis a convex cone that contains 0. It remains to show that B¥ is

closed. Suppose (:x(k), y(k),u(k))keN is a sequence in B“ that converges to
(IL', y7u) e RT+1 % R2(T+2) % R?(T-ﬁ-l).
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Then we have acgk) — Xy, ugk) — uy for all £ = 0,...,7T and y,gk) — 1y for

all ¢t = —1,...,T. This implies y_1 = yr = 0. For any t = 0,...,7T, we
have Ayt(k) - (xgk),()) + ugk) € —K¢ for all £ € N. Since K¢ is closed and
Ayt(k) — (xgk), 0) —|—u1(tk) € —K¥ for all k € N, we have Ay; — (x4,0) +u; € —K¥.
Thus (x,y,u) € B¥ and hence B¥ is closed. O

Fix any w € Q. From (3.13) and the fact that B“ is a closed convex cone,
the set epidpw is also a closed convex cone. Combining this with 0 € epidpgw

by (3.13), we have (epidpw )™ = epidpe (Lemma A.3), and hence
6%09.) - 5BUJ;

see Section A.l for the definition of recession cone and recession function.
Notice that dgv is a convex function because its epigraph epidpgw is convex.
Then (x,y,u) — f“(x,y,u) is convex and bounded from below because it is
the sum of convex functions that are bounded from below.

As regret functions are nondecreasing, it follows from (3.9) that

T
V (u) = inf { ZE [vg ()]

t=0

xGN,ye\Il,qSt(Ayt—i-ut)Sxt,Vt:O,...,T}.

(3.14)
Observe that ¢i(Ay; + uy) < x4 is equivalent to ¢ (Ay; — (z4,0) + u¢) < 0 and
hence equivalent to Ay, — (x4,0) + uy € —K; by (2.4). Then (3.12) gives

V (u) = inf {E [f (z,y,w)]| (z,y) € N % NQ'} for all u € N2, (3.15)

This completes the formulation of the unconstrained optimisation problem.
Since ) is finite, expectation is a convex combination, and hence the map-

ping (z,y,u) — E[f (z,y,u)] is convex. Thus the function V is also convex

(Rockafellar 1974, Theorem 1). Since f (0,0,0) = 0, it follows that

V (0) = inf {E[f (2,5,0)] | (z,9) € N x N*'}
< £(0,0,0) =0.
Moreover, we have V (u) > —oo for all u € N? because f is bounded from
below. Therefore the function V is proper.

The following result shows that there always exists a solution to the prob-

lem (3.15). We refer to Section A.1 for the notion of lower semicontinuity.

Theorem 3.15. Under the assumption that the robust no-arbitrage condition

holds true, the function V is lower semicontinuous on N and the infimum in
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(3.15) is attained for every u € N? such that V(u) < oco.

Proof. The function f is a convex normal integrand (Rockafellar & Wets 2009,
Definition 14.27, Proposition 14.44(c)). The desired result follows from Pen-
nanen & Perkki6 (2012, Theorem 2), provided that the set

L:= {(w,y) €N x N¥| f°(z(w), y(w),0) <0 for all w € Q}

is a linear space; see Roman (2008, pp. 35-36) for the definition of a linear
space. Thus, it suffices to show that L is a linear space.
Fix any (z,y,u) € N x N? x N? and w € Q. For convenience, we shall
suppress w in the remainder of the proof. We have
T
£ (@ y,u) = D00 (20) + 0F (2,9, u)

t=0

(Rockafellar 1997, Theorem 9.3), in other words,

M=

[~ (.’B, Y, u) = 6(—00,0] (:Ut) +dp (l‘, Y, u)

if
=)

if (r,y,u) € B,x; <0forallt=0,...,T

otherwise.

I
——
8 o

Thus

L:{(:E,y)eNxN2'|(x,y,())EB,xthforalltzo,...,T}
{(z,y) e N x ¥ | 24 <0,Ay; — (24,0) € =Ky forall t =0,...,T}.

The final step is to show that
L={0,y) e N x¥ | Ay, € =K forallt =0,..., T} =0x (¥ NP), (3.16)

from which it follows that L is a linear space (Proposition 2.8). To this end,
fix any (z,y) € L. Suppose by contradiction that P(zy < 0) > 0 for some t*.
Define z = (2){__, € N? by

2 ::yt—Z(xS,O) forallt=0,...,T.
s=0

Then
Az = Ay — (24,0) € =Ky for all t =0,...,T.
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This means z € ® and hence zr € Ar. However, it follows from y7 = 0 that
T
zr =Y (24,0),

t=0

and hence zp € E?p 4 and 27 # 0. This violates the no-arbitrage condition and
hence
ry=0forallt=0,...,T.

Then (3.16) follows. This completes the proof. O

The lower semicontinuity of V' will be used to study the dual problem of
(3.8) in Section 3.3. The following corollary implies that Theorem 3.15 can be

used to show that there exists a solution to the problem (3.8).

Corollary 3.16. If V (u) < co for some u € N2, then there exists & € N and
i € N such that
V(u) =E[f(2,9,u)]. (3.17)

Moreover, the trading strategy 1 is a solution to the problem (3.8).

Proof. The first claim follows directly from Theorem 3.15. It is sufficient to
show that ¢ is a solution to (3.8). Since V(u) = E[f (2,7, u)] is finite, by
(3.12) and the comments preceding (3.15) we have § € ¥ and

¢t(A@t + ut) é i’t for all t = 0, e ,T. (318)

From (3.9) and § € ¥, we have

T
V(u) <D Efve (¢ (Ade +ue))] -

~+
Il
(en)

The opposite inequality also holds. Indeed, combining (3.17), (3.12) and (3.18)

together with the fact that regret functions are nondecreasing, it follows that

T T
V(w) =E[f(2g,uw)] =D Elve(@)] = D E[ve (6 (A +ue))].

t=0

T
o

The result follows. O

3.2.2 Alternative formulation

It is possible to rewrite the problem (3.8) directly in terms of cash injection
at each time step. This will reduce the dimensionality of the control variable,

from a two dimensional process to a one dimensional process, and aid in the
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study of the dual problem. Let u = (u¢){_, € N? for the remainder of this

section. Consider the following optimisation problem:

T
minimise ZE [vi(z¢)] over z € A, (3.19)
=0

where

Ay = {20 € N |Bg [(1,57) - ST o — (,0))] <0V(Q,8) € P}
(3.20)
Note from Corollary 2.17 that A, is the collection of cash flows (v;)i, € N/
such that there exists a superhedging strategy with zero initial endowment for
the seller of the flow option (u; — (7,0))7_,. We call & a solution to (3.19) if

e A, and
T T

Z E [’Ut (.’f?t)] = mf ]E [’Ut (Ilft)] .

=0 redu T

The relationship between the problems (3.8) and (3.19) can be summarised
in the following result. This result shows that the optimal values of the prob-
lems (3.8) and (3.19) are the same. Moreover, a solution to (3.8) (resp. (3.19))

can be constructed from a solution to (3.19) (resp. (3.8)).
Proposition 3.17. We have

T

V(u) = xienj E [ve (x4)] . (3.21)
“t=0

If (21)L € Ay is a solution to (3.19), then there exists a superhedging strategy
(20)E |, € N? with zero initial endowment for the seller of the European
option Y1y (us — (#,0)) and moreover the trading strategy (9:)__, € N?
defined by

t
Jo1:=21=0and § =2 — Y _(u — (&,0)) for allt =0,...,T,
k=0
is a solution to (3.8). Conversely, if (§:)}-_, € N? is a solution to (3.8), then
(#4)i—g defined by
Ty = qbt(Ag]t—i—ut) forallt=0,....T

is a solution to the problem (3.19).

Proof. We first establish (3.21). Fix any (z;)L_, € A,. There exists a super-

hedging strategy z = (z;).__; with zero initial endowment for the seller of the
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European option Y.L (us — (z4,0)); see Corollary 2.15. Define ()L, € N

as

¢
y—1:=z2_1="0and y := 2z — Y _(ug — (24,0)) forall t =0,...,T
k=0

We have zp = S°F_ o (us— (2, 0)) which implies that yp = 0. Thus (y;)__, € ;
see (2.7). Moreover, for any t = 0,...,T, we have Ay, = Az — uy + (2,0)

and hence

e(Aye +ur) = pe(Aze + (74,0)) = de(Az) + 20 < 24

by z € ®. Since regret functions are nondecreasing, we have

T
ZE['Ut

zT: E [ve (¢ (Aye + ue))] - (3.22)
t=0 t=
This means that
T T
Jnf S v (2] 2 fnf S E [ (9 (ge + ). (3.23)

The opposite inequality also holds true. To this end, fix any (y;,)I._, € V.
Define z € N as

xp = ¢y (Ayp +uy) forallt =0,...,T.

Note that . .
S E v (z)] =Y E v (¢ (Aye + ur))] - (3.24)

t=0 t=0
For each t = 0,...,T, we have ¢¢(Ays + us — (x,0)) = 0 which implies that
Ays + up — (2,0) € —K; by (2.4). Define z = (%), e N as

t
z1:=y_1=0and z; ;= y; + Z(uk — (x1,0)) forall t =0,...,T

k=0
Then
Az = Ayp +up — (2,0) € =Ky for all t =0,...,T
and
T T
2T =yYr + Z(Ut — (24,0) Z (7,0
t=0 t=0

because yr = 0. Thus z is a superhedging strategy with zero initial endowment
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for the seller of the European option Z?:O (ug — (x4,0)), and this implies that
x € Ay; see Corollary 2.15. Combining this with (3.24), we have

T

T
xienju t:OE[Ut (z¢)] < ;g& ;E[vt (e (Ayy +uyp))] (3.25)

Therefore, the equality (3.21) follows from (3.23), (3.25) and (3.9).

Suppose that (&)L, € A, is a solution to (3.19). Similar to the first
part of the proof, there exists a superhedging strategy (2;)7__; for the seller
of the European option Z?:O(Ut — (24,0)). Moreover, the trading strategy
(90)1._, € N? defined by

t
Jo1:=2_1=0and § =% — Y _(up — (&,0)) forall t =0,...,T,
k=0

satisfies (;)__; € ¥. Combining (3.21) together with the assumption that
(2¢)]_, is a solution to (3.19) and (3.22), it follows that
T T
Vi(u) =Y Ev (&) > Y E[vg (¢ (A 4 ur))] -
t=0

t=0

However, we have from (3.9) that

M=

Vi(u) < E [vg (¢ (A +ue))]

-+
Il
o

and hence

M=

Vi(u) =) Ev (¢ (Adi + ur))] -

-+
Il
o

Thus the trading strategy (¢;)7__; is a solution to (3.8). Conversely, suppose
that (9¢)__, € ¥ is a solution to (3.8), in other words,

T
D Efve (¢t (Agr +w))] = V(u).
t=0
Define (&)1, € N by @ := ¢y (Af; + ;) for all t = 0,...,T. Then we have
T T T
S E v (2)] = Y E [vg (¢ (A + wp))] = V(u) = inf E [vg (x4)]
TC€Ay
t=0 t=0 t=0
by (3.21). Similar to the first part of the proof, we have (#;)l_, € A, and
hence (£;)7_, is a solution to the problem (3.19). O
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From Remark 3.10 and Corollary 3.16, there always exists a solution to

the problem (3.8). Therefore, the result below follows from Proposition 3.17.
Corollary 3.18. There exists a solution to the problem (3.19).

The property of V' in the lemma below will be used in the proof of The-

orem 3.39.

Lemma 3.19. For any u' € N? such that 0 € A/, we have
V(ut+ud) <V (u).

Proof. Fix any z = ()L, € A,. For all (Q,S) € P, we have

o [(1,57) - SLp(u + ) — (2,0))]
= Eq [(1, 57) - Xio(ue — (w1,0))] +Eg [(1,57) - “ous] <0

because z € A, and 0 € A,,. This means x € A, ,. Thus A, 2 A, which
implies that

inf ZIE ve(zy)] < mf ZE vy ()]

$€Au+u TE€EAL

Then the result follows from (3.21). O

3.3 The dual problem

In this section, we will introduce a Lagrangian dual problem of (3.19). Some-
times the solutions to the dual problem are easier to find and these solutions
can be used to construct solutions to the primal problem. First, we define the
Lagrangian and present the connection between the Lagrangian function and
the problem (3.19). After that, the dual problem of (3.19) is defined by means
of the Lagrangian. In Section 3.4, the relationship between the dual problem
and the problem (3.19) will be studied in detail.

Fix any u = (uz)}_, € N? for the remainder of this section. We define the
Lagrangian L, : N x [0,00) x P — R U {oc} as

T

T
Ly(z, = Ev(xs)] + MEq | (1,57) - Y (ur — (2,0)) |, (3.26)
t=0 t=0

where 2 = (24)_g +— i oE[vs(x)] is the objective function of the prob-
lem (3.19), the value Eq[(1, S7) - 31— (us — (24,0))] is used in the constraints

of (3.19), and X is a nonnegative number. The formulation of L, in (3.26) is
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3.3. The dual problem

motivated by (74) of Schachermayer (2002). He studied the Lagrangian dual
problem of an utility maximisation problem in an incomplete friction-free mar-

ket model.
Remark 3.20. Observe from Remark 2.12 that L, in (3.26) can be written as
T T
Ly(z, A\ (Q,S)) = ZE {vt(xt) - AA;th} + AEq l(l, Sr) - Zut] ;o (3.27)
t=0 t=0

see (2.17) for the definition of (A?)tT:O. This formulation of L,, will be used in
the study of the dual problem. Moreover, for any A > 0 and (Q, S) € P, we

have
inf Lu(z, ), (,5))
= inf ST 0E [vu(@1) = MFai| + ABq [(1, 57) - T g
= —sup 3/ E [)\A;@act - vt(xt)} + AEq [(1, St) - ZtT:()Ut}
xeN

=— ZtT:o sug E [AAgxt - vt(xt)} + AEq [(1, St) - ZtT:oUt} . (3.28)
Sy

As infimum is taken, the value inf, cpn Ly (z, A, (Q,S)) in (3.28) only depends
on A and (Q,S). The function (A, (Q,S)) — infyen Ly(x, A, (Q,5)) will be

used as the objective function of the dual problem.
Remark 3.21. Fix any o = (24)]_y € N, A € [0,00) and (Q, S) € P. Since

is finite, we have

AEq [(1,57) - X o(ur — (21,0))]| < oc.

Moreover, regret functions are bounded from below and hence

Then we have from (3.26) that L,(x, A, (Q,S)) > —oco. However, sometimes
the value of L, can be oo. For example, in the case when vy = d(_q ) for
some t* =0,...,T, by taking z; = 1 for all t = 0,...,T, we have v (x4) = 00
and hence L, (z, A, (Q, S)) = oc.

First of all, we consider the following minimisation problem with the ob-

jective function x SUP > (Q,5)eP Lu(z, )\ (Q,S)) and the feasible set N:

minimise sup  Ly(z, )\, (Q,S)) over z € N. (3.29)
A>0,(Q,9)eP
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3.3. The dual problem

We say that # is a solution to the problem (3.29) if & € A and

sup Lu(SAU,)\, (Qa S)) = inf sup Lu($,)\, (@7 S))
2>0,(Q,9)eP €N \>0,(Q,9)eP

Remark 3.22. Fix any = = (24)1_, € N. We are going to present the value
SUP)>0,(Q,$)eP Ly(x, A, (Q,S)) by considering the following two cases.

1. Let = ¢ Ay; see (3.20) for the definition of A,. Then there exists some
(Q,S) € P such that

Eq [(LS7) - X io(u — (@1,0)] > 0.

The value AEg [(1, St) - S o (ug — (x4, 0))} can be made arbitrarily large
by taking A arbitrarily large. Thus from (3.26) we have

sup  Ly(z, A, (Q,S)) = co.
A>0,(Q,9)eP

2. If x € Ay, then
Eqg [(1,57) - Xf(ue — (,0))] <0 for all (Q,8) € P.

Combining this with (3.26), we have
T

sup  Ly(z, A, (Q,9) =Y Efvy(ay)]. (3.30)

A>0,(Q,S)eP t=0

The problem (3.29) and the problem (3.19) are equivalent in the following

sense.

Proposition 3.23. The optimal values of the problems (3.29) and (3.19) co-

incide, in other words,
T
inf sup  Ly(z, A, (Q,S)) = inf ZE[vt(xt)] =V (u). (3.31)
IEN}\ZO,(Q,S)Eﬁ IeAu t=0

If & is a solution to (3.19), then it is also a solution to (3.29). Moreover, if &

is a solution to (3.29) and V(u) < oo, then & is a solution to (3.19).

Proof. First, we are going to show that (3.31) holds true. From Remark 3.22.1,

we have

inf sup  Ly(z, A, (Q,S)) = inf sup  Ly(z, A, (Q,S)). (3.32)
2N 3>0,(Q,5)eP 2€Au \>0,(Q,5)eP
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3.3. The dual problem

Moreover, by taking the infimum over z € A, on both sides of (3.30), we have

inf sup L (x, A, (Q,9)) = 1nf Evt (x4)]. (3.33)
Then (3.31) follows from (3.32), (3.33) and (3.21).
Suppose that Z is a solution to the problem (3.19). This implies that
& € Ay. From (3.30) and the fact that & is a solution to the problem (3.19),
it follows that

sup Ly (2, A, ZE v ()] = inf Elve(zy)].
2>0,(Q,5)€P i=0 eedu iz

Combining this with (3.31), we have

sup  Lu(#, A (Q.8) = inf,  sup  Lu(a, A (Q,9)).
2A>0,(Q,9)eP 2N \>0,(Q,5)eP

This means that # is a solution to (3.29).

Suppose that Z is a solution to (3.29) and that V(u) < co. Since £ is a

solution to (3.29), we have

sup Ly (2,A,(Q,5)) = inf . sup  Ly(z, ), (Q,9)). (3.34)
A>0,(Q,5)eP 2€N \>0,(Q,5)eP

Combining this with (3.31), we have

sup  Lu(#, A, (Q,9)) = V(u) < oo,

2>0,(Q,5)eP

and hence & € A, by Remark 3.22.1. Moreover, combining (3.30) and (3.34)
together with (3.31), it follows that

T T
ZE ve(Z¢)] sup  Ly(#, )\, (Q,S)) = inf E [vg (z1)] -
t=0 /\20,(@,5)675 eeduisg
Thus & is a solution to the problem (3.19). This completes the proof. O

Now, we are going to introduce the dual optimisation problem of (3.19)
based on the Lagrangian L,. For the dual problem, the objective function is
(M (Q,9)) — infyen Lu(z, A, (Q, S)), and the feasible set is [0,00) x P. We
call the following problem the dual problem of (3.19):

maximise iél.{/Lu(x,)\, (Q,9)) over (X, (Q,S9)) € [0,00) x P. (3.35)
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3.3. The dual problem

We call (), (Q, ) a solution to the dual problem (3.35) if A > 0, (Q,5) € P
and

inf Ly(z,\, (Q,8) = sup  inf Ly(z, ) (Q,9)).
zeN A>0,(Q,5)eP *€

For any t =0,...,T, we define the random function v; as
v;¥(y) :==sup {yx — v (z)|xz € R} forallw € Q and y € R.

Observe that vf“ is the conjugate function (Rockafellar 1974, (3.10)) of vy
for each w € Q. Thus the function w — v;“ is constant on each node in {2
and hence v} is F;-measurable; see the comments following Definition A.16.
Combining (3.28) with Lemma 3.24 below, the objective function of the dual

problem (3.35) can be written as
T T
inf Ly(z,, (Q,9) = = Y E [o](AM)| + AEq [(1 Sr) - Zut] (3.36)
2N t=0 t=0
for all (A, (Q,S)) € [0,00) x P. The following result will also be used for estab-

lishing the connection between problems (3.29) and (3.35) in Theorem 3.31.

Lemma 3.24. For anyt=0,...,T and y € Ly, we have
E [v; (y)] = sup {E [yz — v (2)]| = € L}

Proof. Fix any t =0,...,T and y € L;. For any = € L;, we have

Elyr — v ()] = ) P (v) = v (x(v))) (3.37)

Ve

because = and y are Fi-measurable and the function w — vy is constant on
each node in ;; see the comments following Definition A.16 for v;. Taking

supremum over x € £; on both sides of (3.37), it yields

sup E [yz — vi(2)] = sup Y P(v) (y(v)z(v) — v (z(v))) (3.38)
€Ly xeLy veQ;

The number of nodes in €, is finite, and we denote it by |€2;|. The optimisation

problem

sup »_ P(v (v) = v/ (z(v)))

€Ly veQy

in (3.38) splits into || independent optimisation problems over R:

sup (y(v)z — v{(z)), where v € (.
z€R
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3.3. The dual problem

Thus
sup E [yz — vi(2)] = Y P(v)sup (y(v)z — v/ (2))
z€Ly veQ z€R
=Y P (y(v) = E[vi (y)]
veQ,
which completes the proof. O

Remark 3.25. Fix any (), (Q, S)) € [0,00) x P. The value
Inf Lu(z, A (Q,5))

in (3.36) is finite. Indeed, for any ¢ = 0,...,T, we have for each w € Q that
AE(w) > 0. Then it follows from (3.4) that v} (AAZ(w)) € [0,00). Since Q
is finite, both

—X TR [v; AAP)] and ABg [(1, 81) - S gue]

are finite. Thus infen Ly (2, A, (Q, S)) is finite by (3.36).

In Example 3.26 below, we will derive an explicit formula for v} for each
t=0,...,T. Then by using (3.36), we will provide an explicit formula for the

objective function

()" (Q7 S)) — inf Lu(xa A (Qa S))
zeN
of the dual problem.

Example 3.26. From the formulation of the problem (3.8), the value v (z)
represents the investor’s regret after injecting x in cash at each time step

t=0,...,T. Firstly, we are going to specify (v;){_,. Let
Z:={t1,...,tn, T} C{0,..., T}

be a collection of time steps. Moreover, for allt € 0,...,7T, w € Q and x € R,

we define

v (x) ==

et — 1 ifteT,
(3.39)

(5(_0070} (:L‘) if t §é T.

From Examples 3.7.1 and 3.7.3, we have forany t =0,..., T, w € Qand z > 0
that

oy [EmE L e,
0 ift¢7;
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3.4. The strong duality

we always assume that 0ln0 = 0 in this thesis. Combining this with (3.36),
for every (), (Q, S)) € [0,00) x P, we have

xigj{/Lu(:E, A (Q,9))

T
= AEq [(I,ST) : Zut] - E

t=0 tel

+1

A2 . ME AP
(67 (673 (67

This gives an explicit presentation of (A, (Q,5)) — infien Lu(z, A, (Q, S)).

3.4 The strong duality

In this section, we will study the relationship between the problem (3.19) and
and its dual problem (3.35).

Suppose that (X, (Q,5)) € [0,00) x P is a solution to the problem (3.35).
Observe that /A\A;Q >0forallt=0,...,T. We are interested in whether there
exists & = (#¢)]_, € N such that

ALz, — vy(2) = v} OAD) for all t = 0,..., T. (3.40)

If such & exists, then it is possible that 2 is a solution to the problem (3.19);

see Propositions 3.33 and 3.34 below.

Remark 3.27. In the situation when 5\A9(w’) = 0 and v;’i, is an exponential
regret function for some ¢ = 0,...,7T and w’ € €, there exists no (#;){_, € N
such that (3.40) holds true. This is because that there is no x € R such that
0x z— v (r) = v} (0); see Example 3.7.1.

The following proposition implies that there exists (#;)7_, € A such that
(3.40) holds true as long as (X, (Q,5)) € (0,00) x P (i.e. XA;Q > 0 for every
t=0,...,7)

Proposition 3.28. Let A > 0 and (Q,S) € P. There exists (v4)—q € N such
that
AMEz, — vy () = vF(AAD) for allt =0,...,T. (3.41)

Proof. Since A > 0 and (Q,S) € P, we have )\AifQ >0forallt=0,..,T.
We can construct a process (z;)7_, € N that satisfies (3.41) as follows. Fix
any t =0,...,7T. Observe that A9 is Fi-measurable random variable, and the
functions w — v¥ and w — v;¥ are constant on each node in ;. For any
v € 4, we have )\A;@(y) > 0. Moreover, it follows from Proposition 3.6 that
there exists d;(v) € R such that

ME@)3(v) = v (5:(v)) = v (AL ()

60



3.4. The strong duality
Then we define
zi(w) := 6 (v) for all w € v.

Notice that, for each t = 0,...,T, the value z4(w) is defined for all w € Q.
Moreover, the values of x; remain unchanged on every node in €2;, which means
x; € L4. We can conclude that

AME(W) (V) — 0 (z4(v)) = v A2 (V) for all t = 0,...,T and v € Q

in other words, the condition (3.41) is satisfied. O

Remark 3.29. Let (), (Q,S)) € [0,00) x P. Tt is possible that (3.41) holds
true for some ()L, € N even if (A, (Q,S)) ¢ (0,00) x P. For example, let
Vp = O(—ooy) for all £ = 0,...,T. Then we define (z¢)l_y € N as xy = 0 for all
t=0,...,7. From Example 3.7.3, for all w € Q and t = 0,...,T, we always

have
M @)z (w) = v (2e(w)) = v} MF (W)

This means that the process (z;)L_, satisfies (3.41) even if AA?(W’ ) = 0 for
some t' =0,...,T and W' € Q (i.e. (A, (Q,S5)) ¢ (0,00) x P).

The following auxiliary result will be used in the proofs of Propositions 3.33
and 3.34.

Proposition 3.30. Fiz any A > 0, (Q,S) € P and & = (i4)/_y € N. Then
we have

M2z, — vy (8) = vF MDY forallt =0,...,T (3.42)

if and only if
L,(%,\(Q,5)) = igj{[Lu(az,)\, (Q,9)). (3.43)

Proof. Suppose that (3.42) holds true. It follows from (3.27) and (3.42) that

T T
Lu(2,2,(Q,8)) = 3_E un(@r) — M| + Mg [(1, sr)- % ut]
t=0 =0

T T
=-) E [U?(AA?)} + AEg [(1, Sr) - Zut] .
t=0 t=0
Then (3.36) gives
Lu(2,%,(Q, 5)) = inf Lu(x,A,(Q,5)).

Thus (3.43) holds true.
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3.4. The strong duality

Conversely, suppose that (3.43) holds true. Then (3.43) and (3.27) imply

I
M=

E [0n(21) — MP2:] + AEg [(1, S7) - SFgu] -

-
Il
o

Combining this with the formulation of inf,cn Ly(x, A, (Q,S)) in (3.36), it
follows that

T

SOE [ui(@) — M+ v; (AAP)] =0,

t=0
Forallt=0,...,T and w € Q, it follows from Remark 3.5 that

O OAF (@) 2 MP(@)30(w) — v (20(w)),
in other words,
vf (#1(w)) = AP (@) (W) + 7 (MF (W) > 0.
Thus
0 () — M22, +0F (M) =0 forall t = 0,..., T,

and hence (3.42) follows. O

Regarding the optimisation problems (3.29) and (3.35), the following weak
duality relation (cf. Bertsekas (2015, p. 3))

inf sup Ly(x, )\, (Q,S)) > sup inf L,(x, ), (Q,5))
zeN 2>0,(Q,9)eP A>0,(Q,5)eP *€

always holds true. The next result shows that this inequality holds true with
equality, in other words, the strong duality (cf. Bertsekas (2015, p. 3)) also

holds true. This result will be used to construct a solution to the prob-

lem (3.19) from a solution to problem (3.35).

Theorem 3.31. Under the assumption that the robust no-arbitrage condition

holds true, we have

V (u) = inf sup  Ly(z, A\, (Q,5)) = sup inf L,(z,\, (Q,S9)).
2€N 3>0,(Q,9)eP A>0,(Q,9)eP *€
The proof of Theorem 3.31 above is provided at the end of this section.
Moreover, this theorem does not rely on any result in the remainder of this

section. Combining (3.21) and Theorem 3.31, the optimal values of the prob-
lems (3.19) and (3.35) are the same.
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3.4. The strong duality

The corollary below follows from Theorem 3.31. Moreover, this corollary
will be used to establish Propositions 3.33 and 3.34 below.

Corollary 3.32. Suppose that & is a solution to the problem (3.19) and that
(A, (Q, 9)) is a solution to the problem (3.35). Then

~

sup  Lu(2,1,(Q,8)) = Ly(2, A, (Q, 9)) = inf Ly,(x, A\, (Q,5)).
A>0,(Q,5)eP zeN

Proof. Since % is a solution to (3.19), Proposition 3.23 implies that & is also a
solution to the problem (3.29). Thus

inf sup  Ly(z,),(Q,5)) = sup  Ly(Z,A,(Q,9))
€N 3>0,(Q,9)eP 220,(Q,9)eP

2 Lu(g?75\7(A,S'))

> i A (0,8

> xlgj{[Lu(x,)\, (Q,95))

= sup inf L,(z,\ (Q,S9))
A>0,(Q,5)eP €

because (X, (Q, §)) is a solution to the problem (3.35). The result follows from
Theorem 3.31. O

Propositions 3.33 and 3.34 below use the strong duality to show that it is

possible to derive a solution to (3.19) from a solution to (3.35).

Proposition 3.33. Assume that (X, (Q, S)) is a solution to the problem (3.35),
and let @ = (2;)_y € N. Then 2 is a solution to the problem (3.19) if and
only if & € A, and & satisfies

S\A;Qi:t — () = vf(j\A;Q) forallt=0,...,T (3.44)
and
. . T
AEg |(1,57) - z(:)(ut — (&,0) = 0. (3.45)
t=

Proof. Suppose that Z solves (3.19). Then & € A,. From Corollary 3.32, we

have
Lu(2,A,(Q,8) = inf Ly(z,\, (Q,5).
zeN
Then Proposition 3.30 implies (3.44). Since & solves (3.19), we have
T T

E [vi(Z)] = inf E [vi(z¢)] = inf sup L,(z, )\, (Q,S))
; rEAy e $€N}\207(Q7S)€:ﬁ
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by (3.31). Moreover, from Proposition 3.23, the process Z is also a solution to
the problem (3.29), in other words,

sup  L,(2, X, (Q,S)) = inf sup  Ly(z, A, (Q,S9)).

A>0,(Q,5)eP 2N 3>0,(Q,9)eP

Thus, it follows that
STE[w(@)] = sup  Lu(#A(Q95)) = Lu(&, X, (Q,9)
t=0 A>0,(Q,5)eP

by Corollary 3.32. Combining this with (3.26), the condition (3.45) holds true.
Suppose that & € 4, and (3.44) and (3.45) hold true. Then it follows from
(3.26) and Proposition 3.30, that

T
>_Efun(#)] = Lu(#,A,(Q, 9)) = inf Lu(w, ), (Q,9)).
Since (X, (Q, 9)) is a solution to the problem (3.35), it follows that

T
ZE ve(Z4)] sup inf L,(z,\, (Q,59)).
=0 Azo,(@,S)eﬁ e

Thus, combining Theorem 3.31 and (3.31), we have

T T
ZE[Ut(i*t)] = xiél/€f>> sup  Ly(z, )\, (Q,S)) = xlenfuZE ve(xy)].
t=0 >0,(Q,S)eP
This means that & is a solution to the problem (3.19). O

If a solution to the problem (3.35) can be found and the conditions in the
following result are satisfied, then we can use this solution to construct the

unique solution to the problem (3.19).

~

Proposition 3.34. Suppose that (), (Q, S)) is a solution to the problem (3.35)
and that there exists a unique & = (#;)}_y € N such that

XA;Q@ — o (#) = U:(XA;Q) forallt=0,...,T. (3.46)

Then T is the unique solution to the problem (3.19).

Proof. From Corollary 3.18, there exists a solution to the problem (3.19).
Observe that for every solution z = (7;){_, € N to the problem (3.19) we

have

~

Lu(7,A,(Q 5)) = inf Lu(z,,(Q.5))
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3.4. The strong duality
(Corollary 3.32), and this implies that
M2z, — u(3) = v QA for all t = 0,...,T

(Proposition 3.30). However, the solution to (3.46) is unique. This means
that we must have & = T and moreover % is the unique solution to the prob-
lem (3.19). O

In the case when (X, (Q,S)) € (0,00) x P is a solution to (3.35), under
the regret functions (v;);_, defined in Example 3.26, the following example
presents the solution to the problem (3.19) in terms of X and (@ by applying
Proposition 3.34.

Example 3.35. Consider the regret function (v;);_, defined in Example 3.26.
Suppose that (X, (Q,5)) € (0,00) x P is a solution to the optimisation prob-
lem (3.35); we will discuss the existence of such (X, (Q, §)) in Sections 5.1-5.2.
Since A > 0 and (), $) € P, we have A2 > 0 for all t = 0,...,T. Define
(24)_o € N as

5AQ
R LA e,
Tt = o o
0 ift €{0,...,T}\Z,

where 7 is defined in Example 3.26. Then Examples 3.7.1 and 3.7.3 implies
that (£4)]_, is the unique process in N such that

ALz, — v(#) = ;A for all t = 0,..., T.

Then Proposition 3.34 implies that (#;)Z_, is the unique solution to the prob-
lem (3.19).

This section ends with the proof of Theorem 3.31 below.

Proof of Theorem 3.31. Firstly, we define the conjugate function (Rockafellar
1974, (3.10)) of V as

V*(z) :== sup {ZE 2t - ug] — V(u)} for all z = (z)_, € N2
ueEN?

From (3.14) and the comments following it, we have for all z = (2°, 2%) € N
that

Il (z,y) e N x ¥,

T T
V*(z) = sup {ZE 2t - U 1nf{ZE ve(xy)]
t=0

ueN?2 t

65



3.4. The strong duality

Ayt—(l‘t,O)‘f‘Ut S —ICt\V/tZO,...,T}}.

After rearrangement, it yields

T
V*(z) = sup{ZE[zt cuy — ve(@)]| (g, u) €N X U x N2,

t=0

Ayt—($t,0)+l&t S —ICtVt:O,...,T}.

For all ¢t = 0,...,T, making change of variable wy = Ay, — (24,0) + wy, it
follows that

Zp - up — ve(we) = 2 - (wp — Ay + (24,0)) — ve()

b
= Z¢t Wt — 2t Ayt + 2y Tt — ’Ut(SCt).

Then

T T T
_Sup{ZIE ZIE zt - Ayg] + ZE{Z?xt_'Ut(xt)}‘

t=0 t=0 t=0

(z,y,w) €N x ¥ € N? w; € —ICtVt—O,...,T}.

This optimisation problem can be decoupled into three optimisation problems

over w, y and x, respectively.

Firstly, since P(w) > 0 for all w € 2, we have for all t = 0,...,T that

sup E [zt - wy] =
w€—ICt

{O ithE’Cj,

oo otherwise;
see (2.15) together with (2.14) for the definition of K;"; This means

0 if z € IV,
w e N2,wt € —ICtVt} = { ! t (3.47)

oo otherwise.

T
sup { ZE [2¢ - wy]

t=0

Secondly, for all y = (y;)L__; € ¥, observe from y_1 = yr = 0 that

T T T-1
*Zzt'Ayt :Zzt'ytfl - Zzt'yt
t=0 t=1 t=0
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3.4. The strong duality

~
L

T-1
241 Yt — Zzt'yt
t=0

ST
|
)

Azii1 -y

~

[e=]

Moreover, forallt = 0,...,T—1, the tower property of conditional expectation
gives

sup E[Azii1-y) = sup E[E[Az | Fi] -y
yt'Eﬁ% yt€L?

{0 if E[Azyy | Fi] =0,

oo otherwise.

This implies

T e :
0 if z is a martingale,
sup ZE [~z - Ay = (3.48)
yev 1 oo otherwise.
Thirdly, notice that
T T
sup ZIE [zfa:t - vt(a:t)} = Z sup E [zfxt - vt(a:t)}
zeN t=0 t=0 Tr€ELY
T
= > B [v; ()] (3.49)
t=0
by Lemma 3.24.
Therefore, combining (3.47)-(3.49), it follows that
T *( b : g
_oE |vi(z if zeC,
Ve = | Zimo B i) 5.50)
o0 otherwise;

see (2.16) for the definition of C.

From Theorem 3.15 and the comments following (3.15), the function V'
is lower semicontinuous and convex on N2. Then Theorem 5 of Rockafellar

(1974) states that V' is equal to its biconjugate function (Rockafellar 1974,
(3.12)), in other words,

2EN? t=0

T
V(u) = sup {ZE [ug - 2z¢] — V*(z)} for all u = (us)i_y € N2
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Fix any u = (u;){_q € N2. It follows from (3.50) and Lemma 2.13 that

T
V(u) = SUQZE {ut czp — vf(zf)]
zeC t=0
T
= sup Y E [ut . ()\(1, St)A;Q) — vf(/\A(t@)}
A>0,(Q,9)eP t=0

T T
—  sup {—ZE[U:(AA;@)]+AZEQ[ut.(1,st)]}.
A>0,(Q,S)eP t=0 t=0

For any (Q, S) € P, the martingale property of S = (S;)L, gives

T T
> Eglu- (1,5)] =Y EqEg[u - (1, S7)| Fi)
t=0 t=0
T
=Eg [Zut : (1,ST)1 :
t=0

Thus, we have

T T
V(U) = sup {— ZE {U:()\A;Q)} + )\]EQ [Z Uy - (1, ST)] }

A>0,(Q,5)eP t=0
2>0,(Q,8)eP L€

by (3.36). Combining this with Proposition 3.23, the result follows. O

3.5 Indifference pricing

Consider an investor who is entitled to receive a portfolio ¢ € L£? at each
time step t = 0,...,T. We refer to this sequence of portfolios ¢ = (&)L, as
the endowment of the investor. Here negative endowment is interpreted as
liability. The process ¢ is always considered as a given data. For example, in
the situation when the investor’s endowment consists of a number of different
flow options at time 0, the value ¢; is the total portfolio that will be received
at time t. If the investor is not going to deliver or receive additional portfolios,
then V(—c) is used to represent his minimal regret. We are going to introduce
the concepts of seller’s and buyer’s regret indifference prices of a flow option
c=(c)lLy € N2

Consider the situation when the investor is selling the flow option c¢. He
receives 0 € R in cash at time 0, and delivers the portfolio ¢; at each time step

t=0,...,T. By selling ¢, the investor’s minimal regret becomes V' (¢ — §1 — ¢)
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3.5. Indifference pricing

where 1 = (1), € N? is defined as

t =

(1,0) ift=0,
0 ift=1,...,T.

The seller’s regret indifference price of the flow option c is defined as the lowest
price § that allows the investor to sell ¢ without increasing his minimal regret,

namely

78 (c;e) :==inf{§ €ER |V (c— 01 —¢) <V (—¢)}. (3.51)

Similarly, in the situation when the investor is buying the flow option ¢,
the investor receives the portfolio ¢; at each time step t = 0,...,7T. Moreover,
in return for receiving these portfolios, he delivers é € R in cash at time step
0. By buying ¢, the investor’s minimal regret becomes V (—c+ 01 — ¢). The
buyer’s regret indifference price of ¢ is defined as the highest price ¢ that allows
the investor to buy the flow option ¢ without increasing his minimal regret,
namely

7 (c;é) :==sup{d €eR |V (—c+ 01 —¢) <V (-¢)}. (3.52)

Notice that

2 (c;6) = —inf {§ €R |V (—c— 01 —¢) <V (=&)}
= —nli (—¢; 7). (3.53)

Moreover, in the special case when V (—¢) = oo, we have

78 (¢;€) = inf R = —o0, (3.54)
7% (c;€) = supR = oo. (3.55)
Remark 3.36. The regret indifference prices 7 (c;¢) and 7 (c; ) of ¢ depend
on the investor’s endowment ¢. In addition, the regret indifference prices
depend on V, the value function of the optimisation problem (3.8). Clearly,

the regret indifference prices depend on the choice of regret functions (vt)tho-

The regret indifference prices defined in (3.51)-(3.52) above are similar
to the indifference swap rates defined in Pennanen (2014). Pennanen (2014)
concerns the value of cash flows instead of flow options. However, in the case
when ¢ and ¢ are cash flows (i.e. ¢; = (c?,0) and & = (&?,0) forallt = 0,...,T),
regret indifference prices are special examples of indifference swap rates.

Indifference prices based on utility maximisation has been studied widely;
see Davis, Panas & Zariphopoulou (1993), Rouge & El Karoui (2000), Mu-
siela & Zariphopoulou (2004), Hugonnier, Kramkov & Schachermayer (2005),
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Mania & Schweizer (2005), Cetin & Rogers (2007), Carmona (2009), Benth,
Groth & Lindberg (2010), Quek (2012). Regret indifference prices are similar
to but more general than the utility indifference prices. This is mainly be-
cause the investor’s preference towards risks is allowed to different at different
time steps. Moreover, regret indifference prices depend on investor’s endow-
ment which extends initial wealth used in utility maximisation problems. In
addition, regret indifference pricing can be used to evaluate the value of flow
options which extends cash flows and European options.

The example below shows that superhedging pricing defined in (2.24) and

(2.25) is a special case of regret indifference pricing.

Example 3.37. For every t = 0,...,T, let ¢; = 0 and vt = §(_0). From
Example 3.11, we have for all u € N2 that

0 ifIyeV: ¢(Ay+u) <0OVE=0,...,T,
Vi(u) =

oo otherwise.

Observe that V(0) = 0.

Fix any ¢ = (¢;)i_y € N? and § € R. Observe that for every (y)L__; € ¥
and (y})_, € N? if y*; = (§,0) and y; = y, for all t = 0,...,T, then
y—1 = 0 gives

Pt (Ayo + co — 61o) = do(yo + co — (6,0)) = do(Ayg + o)

and
Oe(Ayr + ¢ — 01y) = p(Ays + ) = pue(Ay; +¢¢) forall t =1,...,T.
This implies that there exists (y;)Z__; € ¥ such that
de(Ays + ¢ —01;) <Oforallt=0,...,T

if and only if there exists (y;)L_; € N? such that

Yt =1(0,0), y7 =0, p:(Ay; +¢) <Oforallt=0,...,T.
Thus

78 (c;0) =inf {0 e R| V (c— 1) < V(0)}
—inf{§ €R |V (c—d1) <0}
=inf {0 €R| (){_y € U, ¢u(Aye + ¢, —01,) <OV =0,...,T}
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— inf {5 eER|(WHE L e N,y =(5,0),y5 =0,

di(Ayr +¢) <0VE=0,... ,T},
and hence 7 (c;0) = 7 (c) by (2.24). In addition, we have
T (50) =~ (~6:0) =~ (=) = nb ().

Under other types of regret functions, it is possible that % (c;0) < m&(c) and
7% (c;0) > 7 (c); see Table 5.1 in Example 5.10.

The lemma below will be useful for establishing Theorem 3.39.
Lemma 3.38. The following two claims hold true.

1. For every § <0, we have 0 € Agy.

2. For every u € N2, we have 0 € Ay g (u)1-
Proof. For all 6 <0, we have

Eq [(1, Sr) - zfzoant} = Eq[(1,S7) - (6,0)] =6 < 0 for all (Q,S) € P,

and hence 0 € Asy by (3.20). Thus the first claim holds true. Fix any u € N2
Notice from (2.26) and Theorem 2.14 that

&y) = max Eg |(1,S7) - S Lous| = sup Eg |(1,S7) S quel .
T (u) (Q%)éﬁ Q[( T) Zt,out} (Q;‘l)iﬁ Q{( T) thout}

For any (Q,S) € P, we have

Eg [(1,97) - S (u = 78 (u) )| = Eq [(1,57) - (X oue — (w#(u), 0))]
=Eq[(1,57) - Slym] — nfi(u) < 0.

Thus 0 € Au,ﬂg(u)ﬂ by (3.20) again, which establishes the second claim. [

The theorem below says that the indifference price for the seller is not
going to be higher than seller’s arbitrage price, and that the indifference price
for the buyer is not going to be lower than buyer’s arbitrage price. Moreover,
if the indifference price for the seller of the flow option 0 € N2 is zero (it does
not always hold true, see Example 3.43 below), then the seller’s indifference

price will not be lower than buyer’s indifference price.
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Theorem 3.39. Under the assumption that the robust no-arbitrage condition

holds true, for every ¢,c € N2, we always have

i (;0) < (e), T (;¢) = g () -

Additionally, if % (0;¢) = 0, then ¢ — 7% (';¢) is real-valued and convez on

N2, and moreover

m (¢) < 7 (c;8) < mf (c;8) < (c) -

Proof. Notice that 0 € Ac_ra (e (Lemma 3.38.2). Then Lemma 3.19 gives
Vie—np(c)l —¢) <V (-c).

Thus, the definition of 7% (c;¢) in (3.51) implies 7% (c;¢) < 7% (c). Since c is
arbitrary, we have & (¢’;¢) < 7& (¢/) for every ¢’ € N2. This implies that

T (¢ e) < mh (—0),

and hence
o (€:0) =~ (i) 2 —nf (=) = 7 (0)

which completes the proof of the first claim.

Suppose that 7 (0;¢) = 0 for the remainder of the proof. Firstly, we are
going to show that ¢/ — 7% (¢’;¢) is real-valued on A'2. Observe from (2.26)
and Theorem 2.14 that |7% (¢)| < oco. This means 7% (¢;¢) < 78 (c) < oo.
To prove |1 (c;¢)| < oo, it is sufficient to show that 7@ (c;¢) > —oo. From
7 (0;¢) = 0 and (3.51), we have

inf{0 e R|V (=61l —¢) <V (-¢)}=0.
This implies that
V(=§1—¢) >V (—¢c) forall & <O0.
Let ¢’ <0, and let 6* := ¢’ — mft(—c). Notice that
c—0"1—c+[—c+(0*=0)1]=-81-c
Moreover, Lemma 3.38.2 implies 0 € A—c—w;(—c)ﬂ = A_.4(5—s)1- Combining
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this with Lemma 3.19, it follows that
Vie=061-¢) >V (-d1l-¢) >V (-c).

For all § < 6%, it follows from 0 € A(5_s+); (see Lemma 3.38.1) and Lemma 3.19
that
V(ic—01l—-¢)>2V(e—=61—-¢)>V(-0).

Therefore, we have
T8 (c;e) =inf {0 ER |V (c— 01 —¢c) <V (=€)} > §* > —o0.

We can conclude that |7 (c;¢)| < oo. Notice that c is arbitrary, and this

implies that the function ¢ — 7% (’;¢) is real-valued.

We are going to prove the convexity of ¢/ — 7@ (c;¢) as follows. Firstly,
we define

C::{:EENQ‘V(x—E)SV(—E)}.

Using the convexity of V' (see the comments following (3.15)), we have for any
z,y € C and v € (0,1) that

Vive+(1—=y)y—¢) < yV(z—-2c)+(1-79)V(y—¢)
<AV (=) + (1 -7) V(-0

—V(-d).

This implies that y2+(1—7)y € C. Thus C is convex. Now, fix any ¢!, c? € A/
and p € (0,1). Then it follows from (3.51) that

58+ (- p)rf ()
= pinf {§'] ¢! = 6'1 € C} + (1 - p)int { 8% — 9?1 € C

= inf { pd' + (1 - w)o*| ' = 6'1 € C, * ~$*1 € C}.

pft (c

Observe that, for any ', 62 € R such that ¢! —6'1 € C and ¢? — 621 € C, by
taking 0 = pud' + (1 — p)d?, it follows that

ucl—l—(l—u)cQ—é]l:u(cl—él]l) +(1—p) (02—(5211) eC
by the convexity of C. This implies
prf (e e) + (1= p)rf ()
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Zinf{ééR‘u01+(1—u)C2—5]lEC'}
=inf {6 € R|V (e + (1 - p)e? =1 —¢) <V (-0) }
= i (pe! + (1= p)e;@).

This proves the convexity of ¢ + 7% (¢/; ¢). Thus ¢/ — 7% (c;¢) is real-valued

and convex on N2.

Since 7% (0;¢) = 0 and ¢’ — 7% (¢’;¢) is convex on N2, we have
0=nf(3c+ 5 (—c);0) < 37F (¢;¢) + 37F (—c;0) .
Thus
i (60 2 i (-0 = (0
which completes the proof. O

The result below provides a sufficient condition to ensure 7 (0;¢) = 0.
This sufficient condition requires V(—¢) < oo. Clearly, when V(—¢) = oo,
we have ﬂ%i (0;¢) = —oo. Moreover, it also requires that there exists some
t* =0,...,7 and v € = such that v{i is increasing on its effective domain

dom vf., in other words,
v (x) < vf(2') for all x, 2" € dom v} such that x < 2.

There are many increasing regret functions. For example, exponential regret
functions and power regret functions are always increasing on their effective

domains; see Examples 3.4.1-3.4.2.

Proposition 3.40. Suppose that ¢ € N? such that V (—¢) < oo, and that
there exists some t* =0,...,T and v € Q= such that x — vi.(x) is increasing
on domvY.. Then, for any c € N? and 6 € R such that

Vic—61-¢) =V (-0), (3.56)

we have ™ (c;¢) = §. In particular, we have 7% (0;¢) =0 .

Proof. Tt is sufficient to show that, for any € > 0 and v € AN? such that
V(u) < oo, we have
V(u+el) > V(u). (3.57)

Then, for any ¢ € N2 and 6 € R such that (3.56) holds true, we have for every
§ € (—o0,d) that

V(e—=61-¢+(6-06)1) >V (c—4dl—¢)=V(-e)),
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in other words,

V(e=¥6§1-¢)>V(-0).

Combining this with the definition of 7% (c; ¢) in (3.51), we have & (¢;¢) > 6.
Moreover, it follows from (3.51) and (3.56) that 7@ (c;¢) < §. Therefore, we
must have 7% (c;¢) = 0. In particular, the condition (3.56) is satisfied for
c¢=0and § = 0, and this means 7% (0;¢) = 0.

Suppose now that z +— v}.(x) is increasing for some t* = 0,...,T and
v € Q. Fix any € > 0 and u = (uy)_y € N? such that V(u) < co. We
are going to show that (3.57) holds true. Consider the following two cases. If
V(u+ €l) = oo, then V(u) < oo gives (3.57). Suppose that V(u + €l) < oo
for the remainder of this proof. From Corollary 3.18 and (3.21), there exists
& = (&), € N such that # € A, and
T

T
ZE v (Z)] inf ZE [ve ()] = V(u+ €l);
t=0

ajeAu«ke]l =0

see (3.20) for the definition of A, for all v’ € N2. Define y = ()., € N as

Ty —e onvift=t*
Y = (3.58)
Tt otherwise.
Fix any ¢t = 0,...,7. Notice that v;(Z;) > —oo because regret functions are

always bounded from below. In addition, it follows from V(u + el) < oo
that v:(Z:) < oo. Thus v(2¢) is a finite value. We are going to present
E[vi(#:) — v¢(y¢)] by considering the following two situations. In the situation
when ¢ # t*, the definition of y; in (3.58) gives

E [ve(2¢) — ve(ye)] = E [ve(2¢) — ve(24)] = 0.

Moreover, in the situation when ¢ = t*, it follows that

E [vpe (24+) — ve= (9]
=E [(ve= (£+) — v (1)) 1] + E [(Ut* (Tp+) — ve () 19\1/}
=P(v) [vi 24+ (V) — v (B (V) — €)] > 0

because P(v) > 0 and v} is increasing. Thus

T T T
u+el) =Y Eloy)] =Y Efvi(d)] — Y E[vi(ye)] > 0. (3.59)
t=0 t=0 t=0
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Fix any (Q, S) € P. Notice that

e =Eg[(1,51) - (¢,0)] = Eq (1, 97) - ={_oels]
and hence
Eq |(1,Sr) - S iou] =Eq |(1,57) - Silous| + ¢~ e
=Eg [(1,7) - Si(u + €ly)] -

Moreover, observe from (3.58) that

Eg [(1,87) - Loy, 0)] = Eg [(1,57) - SLo(#:,0)] - Qw)e.

Therefore, we have

o [(1.57) - X (ue = (9, 0))]
= Eq [(1,S1) - Xl o(ue + €ls = (,0))] = (1= Q(v))e <0

because & € Ayt and —(1—Q(v))e < 0. This means y € A,. Then it follows
from (3.21) that

This implies
T
V(u+el)—V(u) >V(u+el) ZEvtyt
t=0

Observe from (3.59) that (3.57) holds true. This completes the proof. O

The following example shows that sometimes 7% (0;0) = 0 even if there
exists no t* = 0,...,T and v € (4 such that v{. is increasing on its effective

domain dom vf.

Example 3.41. Let vy = §(_ ) for all ¢ = 0,...,T. Then there does not
exist t* = 0,...,7T and v € Q= such that the function v} is increasing on

domvf.. Thus the assumption in Proposition 3.40 is not satisfied. However,
by Example 3.37 and Theorem 2.14, we have 7& (0;0) = 7% (0) = 0.

The following example shows that, under the regret functions (v;)7’_, defined
in Example 3.26, we have 7&(0;¢) = 0 for all ¢ € N2
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Example 3.42. Consider (v;)]_, defined in Example 3.26, and fix any ¢ € N2
Firstly, we have for each v € Qp that

vp(z) = €T — 1 for all z € R

where a > 0 is independent of v, and moreover the regret function v7. is

increasing. Observe that vp(x) < oo for all z € L.
Secondly, define (z;)/_, € N as 2, := 0 for t =0,...,7 — 1 and

= E 1,57) - T (—¢ :
Tr = max a1, 8r) - Tho(-a)]

from Theorem 2.14 the maximum exists. Then we have for all (Q, S) € P that
Eq |(1,87) - S o(~@ — (21,0)| = Eq [(1,57) - S o(~&)] — 27 <0

and hence (x;)7_, € A_z. Moreover, we have v;(z;) = v4(0) = 0 for every
t=0,...,7 — 1, which implies

T

> Elvi(ar)] = E[vp(zr)] < oo.
=0

Thus, it follows from (3.21) that V(—¢) < co. Then 7&(0;¢) = 0 by Proposi-
tion 3.40.

The example below shows that, sometimes, whether 7% (0;¢) is 0 or not
depends on the choice of ¢. Moreover, when ﬂ%i (0;¢) # 0, it is possible that

the buyer’s indifference is greater than the seller’s indifference price.

Example 3.43. Suppose that vy = §_ g forallt =0,...,7 — 1 and

1+ ifzr<l,
UT($): 11—z
) if x> 1.

Observe that v7: is a power regret function for every v € {dr; see Example 3.4.2.
We are going to show that 7% (0;¢) depends on the choice of endowment ¢ by

considering the following two situations.

Suppose that the investor’s endowment ¢ = (¢;)1_, € N2 is

Ct —

) ift=0,...,7—1,
—(1,0) ift="T.
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Then (3.9) gives

V(-c) = yllelfp S OE [ve(¢e(Aye — )]
= inf { ST [ou(o(Bu))] + E [or (6r(Aye + (1,0)]}

= inf {I5E [on(01(8u))] + E [or(ér(Ay) + 1)}
By the construction of (v;)]_, the value V(—¢) < oo if and only if
{y € U] or(Ayr) <0, pr(Ay) <Oforallt=0,..., 7 —1} (3.60)

is not empty. Suppose by contradiction that there exists y* that belongs to
the set (3.60). Then (2.8) gives y* € ® N V. However, Proposition 2.7 implies
that under the no-arbitrage condition we have ¢7(Ay}) = 0 which violates
the condition ¢7(Ay}) < 0 in (3.60). Therefore, the set (3.60) is empty and
hence V(—¢) = co. Fix any ¢ € N2, Then 7% (c;¢) = —c0 and 7¥i(c;¢) = oo
by (3.54) and (3.55) respectively. Thus 7%(c;¢) > n&(c; €). In particular, the
indifference price for the seller 7&(0;¢) = —oo is not zero. Therefore, it is
possible that the buyer’s indifference is greater than the seller’s indifference
price when 7 (0;¢) # 0.

Suppose now that the investor’s endowment ¢ = (&), € N? is given
by ¢ = 0 forallt = 0,...,T. Define y = (y,)]__, € ¥ by y, := 0 for all
t=—1,...,T. Observe from (3.9) that

N

T
V(0) = 1nf ZE vi(de(Ay))] < ) E [vn(de(Ayp))] = Y Efve(64(0
=0

t=0

and hence V(—¢) = V(0) < 0. Moreover, the function v% is increasing on its
effective domain domv¥%. for every v € Qr. Then 7%(0;¢) = 0 by Proposi-
tion 3.40.
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Chapter 4
Extending the convex hull

In this chapter, we will present a number of technical results that will be ap-
plied in Chapter 5 for studying the dual problem (3.35) under the exponential
regret functions introduced in Example 3.26. All the results established in
this chapter are technical rather than connected with any particular finan-
cial model. Moreover, these results do not rely on any result from previous
chapters. In Section 4.1, we will introduce a minimisation problem for which
the value function is formulated as an extended convex hull of a collection of
convex functions. In Theorem 4.3, we will show that the value function is con-
vex. The focus in Section 4.2 will be on the proof of the existence of a solution
to this minimisation problem. With the help of a number of technical results
in Rockafellar (1997), we will establish the main result in Theorem 4.13 which
proves the existence of a solution and the continuity of the value function.
An example of the minimisation problem with an entropy type function will
be presented in Section 4.3. In this example, we will provide a method to
construct the solutions to this problem by considering all different cases of the

values of given parameters.

4.1 Problem formulation

In this section, we will first introduce an optimisation problem. The value
function of this problem can be regarded as an extended convex hull of a
collection of convex functions; see Remark 4.1. Then Theorem 4.3 shows that
the value function is convex, and its effective domain is provided in (4.5).
Let m > 2 be an integer. For every i = 1,...,m, let f; be an R U {o0}-
valued proper convex function on R that is bounded from below. Notice
that the epigraph epi f; # ) is a convex set because f; is proper and convex.

Moreover, we assume that epi f; is closed, and that the recession cone of epi f;
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satisfies
(epi f;)™ = {(0,b)| b > 0}. (4.1)

For example, if the effective domain dom f; is bounded, then (4.1) holds true.
The definitions of epigraph, recession cone and effective domain can be found
in Appendix A.1.

For each i = 1,...,m, let both g! and g7 be R U {oo}-valued convex

functions on R that are bounded from below. We assume that
[0,1] € dom gl-1

and that
c {A\z |\ €0,1],x € dom f; } C dom g7,

where cl A is the closure of a given set A. Moreover, the functions gil and g? are

assumed to be continuous on dom g} and dom g? respectively, and moreover

g; (0) = g7(0) = 0. (4.2)

Notice that the epigraphs epi gil and epi giz are closed and convex.
For all x € R, let
m
f(l‘) ;= inf {Z (/\Zfz(xz) + gl-l ()\Z) + gf()\za:z))’

i=1

m m
A € [0, 1],.’L‘i S domf,-Vi = 1,...,m,Z)\i = 1,2)\@(& = x} . (43)

=1 =1
The value f(x) is defined as the optimal value of a minimisation problem with
parameter z. In this problem, the control variables Aq,..., )\, € [0,1] are
weights, and the control variables 1, ..., z,, take their values in the intervals
dom fi,...,dom f,,. The infimum in (4.3) is attained if and only if there exists

a solution to this problem (i.e. there exists (A1, 21,..., Am, Ty, ) such that the
constraints in (4.3) are satisfied and Y"1 | (A fi (z:) + 93 (N) + 92 (Niwi)) = f(x)).

Remark 4.1. In the case when g} = g2 = 0 for all i = 1, ..., m, we have for all
x € R that

f(z) = inf {i Aifi@;)
i=1

m m
Ai € [O,l],a:i € dom f; Vi = 1,...,m,2)\i = 172)\i33i :.ZC} .
i=1 i=1
Then f is reduced to the convex hull of fi,..., f,,. This is the greatest con-
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vex function such that f < f; for all ¢ = 1,...,m (Rockafellar 1997, The-
orem 5.6). This means that f defined in (4.3) is an extension of the convex
hull of fi,..., fim.

Remark 4.2. The minimisation problem in (4.3) is slightly more general than
the later problems in (5.42), (5.60), and (5.76) considered in Chapter 5. These
three problems will correspond to special examples of the problem in (4.3) for
== g =0,

The functions f1,9i,9%, ..., fm, 95, g2, are bounded from below. Then it
follows from the definition of f in (4.3) that

f > —ooonR. (4.4)

Thus, the function f is of the form R — R U {oco}. The theorem below
shows that f is convex; the convexity of f only relies on the convexity of
the functions f1,91,93,..., fm, 9, g% In addition, this theorem also shows
that the effective domain of f is given by co (Uj2,dom f;), where co (A) is the

convex hull of any given set A.

Theorem 4.3. The function f defined in (4.3) is RU{oo}-valued and convex

on R. Moreover, its effective domain is

dom f = co (G dom fz> . (4.5)

=1

Proof. Firstly, the function f is RU {oco}-valued; see (4.4). Secondly, we shall
establish the convexity of f. Fix any z,y € R and a € (0,1). To show that f

is convex, we are going to prove

flaz+(1—a)y) <af(z)+(1—a)f(y). (4.6)

Observe from (4.4) that f(x) > —oco and f(y) > —oo. We can prove (4.6) by
considering the following two cases.

In the case when f(z) = 0o or f(y) = oo, we have

flax+(1—a)y) <co=af(z)+(1-a)f(y),

which means (4.6) holds true.

In the second case, we assume that both f(z) and f(y) are finite. Then
(4.3) implies that there exist (u1, 1, ..., fhm, Tm) and (01,y1, ..., Om, Ym) such
that

i, 0; € [0,1], x;,y; € dom f; foralli =1,...,m
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4.1. Problem formulation

and
m m
Zmzl, ZMSU@':CE,
i=1 i=1
m m
> 6i=1, > by =vy.
=1 =1

Fix any ¢ = 1,...,m. Define

vi = ap; + (1 —a)b; € [0,1].

Observe that v; = 0 if and only if u; = 6; = 0. Moreover, let

T; if v, =0
Zy =
iy + 7(1;?)91 yi if v € (0,1],
i 1— 61
where %, ( vj) € [0,1] and

Vi Yi Vi i

aui+(1—a)91 api + (1 —a)bi

Notice that z; € dom f; because dom f; is convex. Moreover, by straightfor-

ward calculation, it follows that
m m
dow=1, > wzk=azr+(1—a)y.
k=1 k=1
Thus (71, 21, - - -, Ym, 2m) satisfies the constraints of (4.3), and therefore

m

flaz+ (1—a) Z [kak ) + gp () + gk('Yk:Zk)} (4.7)

Observe from the convexity of gi that

9i (vi) = gi (api + (1 — a) 0;) < ag; () + (1 — a) g (6;).

We consider the following two cases for ;. In the case when ; = 0, we have
from p; = 0 and 6; = 0 that

Yifi(zi) = 0 = ap; fi(z:) + (1 — a) 0; fi(vi),
9; (vizi) = g (0) = agi (pixi) + (1 — a) g (0iyi).-
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4.2. Existence of solution

In the case when 7; € (0, 1], the convexity of f; and g? implies

Vifi(zi) = vifi (a;h z; + (1_%%) < apifi(wi) + (1 = a) ; fi(yi),

K3 3

92 (vizi) = g2 (apw; + (1 — a) O3y:) < agl(piws) + (1 — a) g7 (0:y:).

Therefore, we can conclude that

> [wfuCer) + gk n) + g2 )| < @D [ ful@n) + ghu) + g () |
k=1 k=1

(1= a) > [0 (or) + 92 (0k) + g (Oxn)]

k=1
Combining this with (4.7), we have
flar+(1-a) Z [#kfk xk) + gn (k) +gk(ukxk)]
+ (1= a) D [Oufi (we) + 9 (0) + g (Okun) ]

k=1

Taking infimum on both sides, it follows that

flaz+ (1 —a)y) <af(z)+(1—a)f(y),

which completes the proof of (4.6). Thus f is convex.

Finally, we are going to prove (4.5). For any z € R, the value f(x) in
is finite if and only if there exists (A1, z1,..., Am, Ty,) that satisfies the con-
straints in (4.3). Moreover, the constraints in (4.3) are satisfied for some
(A1, 21, .., A, @) if and only if 2 € co(Uj=1,.mdom f;). Therefore (4.5)
holds true. O

4.2 Existence of solution

This section is devoted to showing that the infimum in (4.3) is attained for
all x € dom f, in other words, there exists a solution to the minimisation
problem in (4.3) for every z € dom f. Moreover, we will also show that f is
continuous on dom f. Firstly, we will introduce an auxiliary set Ey C R? in
(4.8). After that, a number of technical results will be provided for establishing
the closedness of Ey; see Theorem 4.11. Then we will show that E; = epi f
in Theorem 4.12. Finally, we will present the main result of this section in
Theorem 4.13.
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4.2. Existence of solution

Define £y C R? as

Ef = { (Z N a:ll, i ()\Zx? + gil()\i) + 912(/\13%1))) ‘

=1

N € 10,1], (z7,27) € epi f; Vi = 1,. m,ZAizl}. (4.8)
The following result says that (0,b) € E% for all b > 0, and this property will
be used in the proof of Theorem 4.12.
Proposition 4.4. We have {(0,b) € R* | b >0} C EY.

Proof. Let b > 0, and fix any € > 0 and (z1,2?) € E;. Since (2!,2%) € Ey,
there exists A\1,...,A\m € R and (x1,23),..., (zL,,22,) € R? such that

Z)\i:]_’ \i € [01](1, Z)eeplflforallz—l ..,m

and

= (St 35 (vt a0+ 20 ).
=1

i=1
Since A1,...,Am € [0,1] and >, A\; = 1, there exists i* € {1,...,m} such
that \;= > 0. Define (yi,4%),..., (yk,92,) as

o (xg,xg) if i {1,...,mM\{i*}.

Notice that (yi,y?) € epif; for alli=1,...,m, and

m m m m
DA = N, S oONyP =) Niai + eb.
=1 =1 i=1 i=1

By straightforward calculation, it follows that

(21, 2%) + €(0, ) (Z /\zyl,Z( W7 + 91 (M) +93(Aiy}))> € Ey,

=1

and the result follows. O

We are going to introduce a collection of sets K1, ..., K,, C R? which will
be helpful for establishing the closedness of £y in Theorem 4.11 below. For
any i = 1,...,m, we define K; C R? as

K;:= { ()\, Azt aa? + gl (V) + gg()\wl)) ‘ A e [0,1], (zh, 2?%) € epi fl} . (4.9)
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4.2. Existence of solution

Observe that 0 € K; because gi (0) = g2(0) = 0 by (4.2). Moreover, it follows
directly from (4.9) that

0,212 e K; = 21 = 0,22 = 0. (4.10)

Then, for any b > 0, we have (0,0,b) ¢ K ° because 0+ (0,0,b) ¢ K.
Lemmas 4.5-4.7 below will provide a number of properties of K.

The following technical result will be used in Propositions 4.8 and 4.10.

Lemma 4.5. Leti=1,...,m, b>0. If (\, 21, 2%) € K; and X\ > 0, then
(A, 24, 22) +(0,0,b) € K.

Proof. Suppose that (A, 2!, 2?) € K; and A > 0. Observe from the definition
of K; in (4.9) that there exists (x!,2?) € epi f; such that

(A, 21, 2%) = ()\, Azt A + gt (V) + gl?(/\:vl)) .
This implies that
(A, 21,22 +(0,0,6) = (A, Aah, A (22 + %) + gf (V) + g2 (Aa)) € K,

because (z!, 22 + %) € epi f;. This completes the proof. O

The next result shows that K1, ..., K, are convex sets, which implies that
>ivq K is also convex (Rockafellar 1997, Theorem 3.1). Moreover, this result
only relies on the convexity of the functions f1, g1, 9%, ..., fm, g%, 92, and the
condition (4.2).

Lemma 4.6. For everyt=1,...,m, the set K; is convez.

Proof. Fix any i = 1,...,m, and fix any a € (0,1) and 2/,y' € K;. From the
definition of K; in (4.9), there exist u,y € [0,1], * = (z!,2%) € epif; and
y = (y',y?) € epi f; such that

2 = (', pa? + g} (1) + g7 (ua))
y = (v + gl () + gih).

Define
c:=ap+ (1—a)ye|0,1]. (4.11)

Observe that ¢ = 0 if and only if p =y = 0. We are going to show that
ar’ + (1 —a)y' € K; (4.12)
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4.2. Existence of solution

by considering the following two cases for c¢. In the case when ¢ = 0, we must
have 1 = v = 0. Combining this with g}(0) = ¢g?(0) = 0 by (4.2), it follows
that 2’ = ¢/ = 0. This means

ar' + (1 —a)y =0 € K;,
and hence (4.12) holds true. In the case when ¢ € (0, 1], let

1_
+( a)’}’y17
C

c:=a(gh(n) +g2(ua")) + (1= a) (9 () + g2 (")) — gk (e) — gB (e,
2._ap o (1-a)y o

a
1. jxl

€
i -
C Cc

Notice that

ezt = apx' + (1 —a)yy'. (4.13)

Moreover, it follows from the constructions of z2 and e above that

¢z + g} (¢) + g2(c2") = a (ua? + g} (1) + g (pa"))
+(1—a) (v + 9l () + g (vh)) . (4.14)

Then the presentations of the values ¢, cz!, and cz?+ g} (¢) +g¢2(cz!) in (4.11),
(4.13), and (4.14) lead to

ar’ + (1 —a)y' = (c, ezt ezt 4 gl (o) + g?(czl)) .

Then, in order to prove (4.12), it is enough to show that (z!,22) € epi f;.

Observe from the definitions of 2! and 22 that

1—
(21’22) — (lcltx+(cfl)’yy+ <O7€>’

where &, @ € 10,1] and

%Jr(l—a)v_auﬂl—a)v_g_l
c c N c e

Then the convexity of epi f; together with =,y € epi f; gives
a 1-a .
—Mx + (C)’yy € epi f;.

By the definition of € together with the presentations of ¢ and cz' in (4.11)
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4.2. Existence of solution
and (4.13), we have
e=a (gl + g2 (ua")) + (1= a) (g1 (7) + gF (")
—gi(ap+ (1= a)y) - g (apa’ + (1 - a) yy").

Thus € > 0 because g; and g7 are convex. This implies that £ > 0 which means
(2%, 2%) € epi f;. Therefore (4.12) holds true, and hence K; is convex. O

The next result gives an explicit expression for cl K; for all i = 1,...,m,

where cl A is the closure of a given set A.

Lemma 4.7. For alli=1,...,m, we have
A K; = K;U{(0,0,b) € Ri’"b >0}
Proof. Fix any i = 1,...,m. Define the following auxiliary set
K! = {()\, Azt \e?) € R?" A>0, (2!, 2?) € epi fl} (4.15)
(cf. (4.9)). Observe from the definition of K| that
(0,2%,2%) € Kl = (0,2, 2%) = 0.

Moreover, from Corollary 2.6.3 of Rockafellar (1997) and the comments fol-

lowing it, the family K] is the convex cone generated by
{(l,xl,x2)} (z1, 2?) € epi fi} ,
where (epi ;) = {(0,b)| b > 0} by (4.1). Then the closure of K] is given by
o ki = K{U{(0,0,b) € B*|b >0} (4.16)

(Rockafellar 1997, Theorem 8.2).

Firstly, we are going to show that
ol K; € K;U{(0,0,b) € R|b >0}, (4.17)

Fix any (A, z1,2%) € cl K;. Then there exists a sequence (A, 23, 22 )ken in K;
converging to (A, z%, 22). It follows from )y, € [0, 1] for all k¥ € N that

A= lim A € [0,1]. (4.18)
k—o0
From the definition of K; in (4.9), there exists a sequence (., 23 )ren in epi f;
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4.2. Existence of solution
such that
1.2\ _ 1 2 1 2 1
()\k, Zs Zk) = (Ak, ATy ATk + 9 (k) + g5 (Akxk))

for all K € N. The continuity of g} and g2 gives g}(\) = limy_ .o g} (\x) and
g7(2") = limg—00 g7(2}). Combining this with 2% = limy_, 27, it follows that

2= gl = g2(2Y) = lim (2F — gf () = g} (=4))
k—o0
= lim (27 - g/ (M) — g2 (M)
k—o00

= lim A\pz3.
k—o0

Then (Ag, \eh, M2 )ken converges to (A, 21, 22 — gl(\) — g2(21)). Observe
that (Mg, \eh, \e@2)ken is a sequence in K because (., 27 )ken is a sequence

in epi f;. Thus
(n 2122 =gl = g2(2h) € d K = KjU{(0,0,6) € R¥b> 0} (4.19)
by (4.16). We are going to show that
(A, 24, 22) € K; U {(0, 0,b) € RS‘ b > o} (4.20)

by considering the following two cases.

1. In the case when
(A2, 2 = gl ) = g7(=1) € { (0,0,6) € B|b > 0},
we must have A = z! = 0, which implies
g () — (=) = —g}(0) — g3(0) = 0
by (4.2). Thus
(/\7 21,22) = ()\, 2 22— gl - g?(zl)) € {(0,0,b) € R?” b> 0},

and hence (4.20) holds true.

2. In the case when (), 2%, 22 — g} () — g2(2!)) € K!, the definition of K/
in (4.15) implies that there exists (z!,2%) € epi f; such that

(/\, 21,22 — gil()\) - gf(zl)) = ()\, Azt )\:U2> ,
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4.2. Existence of solution
in other words,
()\, 21, 22) = ()\, Azt Az? 4+ gl (\) + g%(AxH) .

Combining this with A € [0,1] by (4.18), we have (), 2!,2?) € K; and
hence (4.20) holds true.

This completes the proof of (4.17). It remains to show the opposite inclusion
of (4.17). Fix any

(A, 2, 2%) eK,;U{(0,0,b)eR?"bZO}.

Clearly, when (), 21, 22) € K;, the vector (), 2!, 2%) € cl K;. In the case when
(A, 21, 2%) = (0,0,b) for some b > 0, we have from (4.16) that

(A, 2h, 2% € K.

This implies that there exists a sequence (g, z,i, Z]%)keN in K/ converging to
(A, 21, 2%). The definition of K/ in (4.15) implies that, for any k € N, there
exists (z},,73) € epi f; such that

1 1 2 2
2 = )\kxk, 2 = )\kl’k

Moreover, since (Ag)ken is a sequence in [0, 00) and limg_,oo Ay = A = 0, there
exists k* € N such that \; € [0,1] for all £ > k*. Thus

1 2 1 2.1
(Yk) pery = ()\k*Jrk? Zir ks Zhr ik T 95 Akeik) + 95 (zk*—i-k))keN

is a sequence in K;. The continuity of g} and g7 gives

lim gi (Apeir) = gi (A) = g; (0) =0,

k—o0

Tim g2(:} ) = g7() = g2(0) = 0.
—00

Then (yx)ren converges to (A, z!,22). Therefore (), z!,22) € clK; which
means that the opposite inclusion of (4.17) holds true. O

In Propositions 4.8-4.10 below, we are going to provide a number of prop-
erties of operations among Ki,...,K,,. Moreover, these properties will be
used in Theorem 4.11 which establishes the closedness of E; defined in (4.8).

The proposition below shows that the cl > /" K; can be written as the
sum of cl K1,...,cl K,,.
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4.2. Existence of solution

Proposition 4.8. We have
m m
cl ZK’ = ZClKi-
i=1 i=1
Proof. The main objective is to show that

(1K) = {(0,0,b) € B*[b> 0} forall i =1,...,m. (4.21)

Taking (4.21) as given, we can prove the result as follows. Suppose that there
exist 21, ..., 2y, € R? such that 31", 2; = 0 and

zi € (clK;)>* foralli=1,...,m.
Then z; = --- = z;, = 0, and this implies that
zi € {0} = (—(cl K;)®) N (cl K;)> for all i =1,...,m,

where K1, ..., K,, are convex by Lemma 4.6. The result follows from Corol-
lary 9.1.1 of Rockafellar (1997) and the comments following Corollary 8.4.1 of
Rockafellar (1997).

Now, we are going to prove that (4.21) holds true. Fix any i = 1,...,m.

Firstly, we shall prove that

(1K) € {(0,0,6) € B*|b > 0} (4.22)
Fix any z; = (2}, 22,23) € (c1K;)*™. Since (cl K;)*> is the recession cone of

cl K; and 0 € cl K;, we have for all § > 0 that
02 =0+ 0z €l K; = K;U{(0,0,b) € B[ b > 0} (4.23)

(Lemma 4.7). Combining the definition of K; in (4.9) and the fact that (4.23)
holds true for all § > 0, the first component of z; must be z} = 0. Then (4.10)
implies that z; = 0 as long as z; € K;. Thus

5 € {(o,o,b)eRi’"bzo},

which means that (4.22) holds true.

It remains to prove the opposite inclusion of (4.22). Fix any b >0, 6 > 0
and z; = (2},22,23) € cl K;. Then Lemma 4.7 gives

2 € K;U{(0,0,b) ER:”‘sz}:(Ki\{O})U{(0,0,b) eR?”bzo}.
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4.2. Existence of solution
Consider the following two cases. If z; € K;\{0}, then 2} > 0 and
zi+60(0,0,b) = z; + (0,0,0b) € K
(Lemma 4.5). If z; € {(0,0,b) € R | b > 0}, then
zi +6(0,0,b) € {(0,0,b)|b > 0}.
Thus, we always have
zi +6(0,0,b) € K;U{(0,0,b)|b> 0} =cl K;

(Lemma 4.7). This means (0,0, b) € (cl K;)°°, and hence the opposite inclusion
of (4.22) holds true. Therefore (4.21) holds true, and the result follows. [

Define the hyperplane

M = { (1,x1,x2>’ (z',2?) € Rz} (4.24)

in R3. Observe from (4.9) and (4.8) that

(im)ﬂM:{(LiA,x i(m +g( )+g?(mg))>‘

=1 =1
m
A€ 0,1], (] a?) € epi fivi = 1,. m,zAizl}
i=1
={1} x Ey. (4.25)
The result below will be used in Theorem 4.11 which shows that E is closed.

Proposition 4.9. We have

<c1 §K> (M =d ((é}() ﬂM).

Proof. Observe from Lemma 4.6 that Y i, K; is convex. The objective is to
show that M contains an element of ri(>./%; K;), where ri(A) is the relative
interior of a given set A. Then the result follows from Corollary 6.5.1 of
Rockafellar (1997).

It follows from 0 € K; for all i = 1,...,m that 0 € >, K; which means
> K # 0. Then Theorem 6.2 of Rockafellar (1997) gives

ri (i KZ> # 0
i=1
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4.2. Existence of solution

Fix any z = (2!,22,23) € ri(3_/", K;). Then z € 31", K; which means that

there exist A1, ..., Ay, € [0,1] and (z},23) € epi fi,. .., (x),, 22,) € epi f, such
that
m m
2= (z 22,z ) (Z i, Z Nzt Z ()\za:f + gt () + gf(Aw%))) )
=1

Observe that 2! > 0, and we are going to consider the following two cases

based on the value of 2. In the case when z! > 1, we have = € M and

z 1 1
P Zz+<1—>><0€r1<ZK>

=1

(Rockafellar 1997, Theorem 6.1). In the case when 2! € [0, 1), let

= l(2 — 2 e (0,1]

m
and
m m m
7= ("2 2% = (Zuvzuﬂci,Z(uw +gi (1) + g7 (pa; )))
i=1 1—1m z—il
= (2—z1,uzx372(um +gi (u +g?(uw%))>~
=1 i=1

Observe from the definition of 2’ that
m m
z'EZKigcl (ZKZ>
i=1 ;
Define
. m
2F = (z*l,z*Q,z*5) = %z + %z’ eri (Z KZ>

i=1

(Rockafellar 1997, Theorem 6.1). Observe that

HM=ld4 =1t l2-) =1

which means z* € M. Thus M contains an element of ri(>_/"; K;), and the

result follows. ]

The next result connects Y 7" (cl K;) and Ey.

Proposition 4.10. We have

(idm) (M = {1} x Ey.

=1
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4.2. Existence of solution

Proof. Observe from (4.25) that
{1} x By C <Z cl K) (M. (4.26)

i=1

It is therefore sufficient to show that the opposite inclusion of (4.26) holds
true. Fix any z = (21,22, 2%) € (20" cl K;) N M. Then Lemma 4.7 together
with the definition of M in (4.24) implies that there exist

2] = (z%,z%,z%),...,zm = (z}n,zfn,zi) cR3

such that

Y=z A=l 2 € K U{(0,0,0) €RP|b >0} Wi=1,...,m.

Since ", 2t =1and z} > 0foralli=1,...,m, there exists i* € {1,...,m}

such that zL > 0. Define two subsets of {1,...,m} as

Ap = {ie{l,...,m} z}zO},
Ay ={1,....m}\(Ag U {i"}).

Notice that {i*}, Ag, A1 are pairwise disjoint and {i*} UAgUA; = {1,...,m}.

Moreover, for any i € Ay U {i*}, we have z} > 0 which means z; € K;. In

addition, it follows from (4.10) that z; € {(0,0,b) € R3 | b > 0} for all i € Ay,
which implies
Skeaok € {(0,0,b) € ]R{?" b>0}.

Combining this with Lemma 4.5, it follows that zy + > ;- 4,2k € K+. Now,
we define y1,...,ym € R3 as

Zix + EkEAozk ifi= i*,
Yi =140 if i € Ay,
Zi if i € Ay.

Observe that

m m
Z:ZZi:Zi*“‘ Z 2k + Z Zkzzyh
i=1 i=1

keAo k€A
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4.2. Existence of solution

where y; € K; for all ¢ = 1,...,m. Combining this with z € M, we have

m
z€ (ZK) (M = {1} x Ey
i=1
by (4.25). Thus, the opposite inclusion of (4.26) holds true. O
The result below establishes the closedness of Ey.

Theorem 4.11. The set Ey is closed.

Proof. Observe that
{1} xclEy =cl ({1} x Ef) = cl ((Z K) ﬂM)
i=1
by (4.25). Then Proposition 4.9 gives

{1} x 1 By = <c1 é[() M = <§:C1Ki> (M

=1

(Proposition 4.8). Combining this with Proposition 4.10, it follows that
{1} x cl By = {1} x Ej.
Thus cl Ey = Ey, in other words, the set E is closed. ]
The result below shows that E; is the epigraph of f.

Theorem 4.12. We have E; = epi f.

Proof. Firstly, we shall prove that
E; Cepif. (4.27)

Suppose that (z,y) € Ef. Then the definition of F¢ in (4.8) implies that there
exist \; € [0,1] and x; = (x},2?) € epi f; for every i = 1,...,m such that

=1 Y al=z > (Aix? +gi (\i) + 93(/\1'%1)) =
=1 i=1 =1

For any i = 1,...,m, it follows from (z},z?) € epif; that 22 > fi(x}) .

1771

Combining this with the definition of f(x) in (4.3), it follows that
23 (Nfilal) + 9l 0) + G ) = f (@),
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4.2. Existence of solution

which implies (z,y) € epi f. Thus (4.27) holds true.

It remains to show that the opposite inclusion of (4.27) holds true. Suppose
that (x,y) € epif. Then f(z) <y < co. By (4.4), the value f(x) is finite.
Moreover, the definition of f(x) in (4.3) implies that there exists a sequence
(Ne ko NE 2k ) cn in R?™ such that

Mo €0,1), 2% e dom fy, ..., 2k € dom f,, for all k € N,

m m
SN =1 Maf=aforallkeN
and limy_,o ¥* = f(x) where

=3 (M £ + gl ) + g7 (Mfah)) e R for all k € N. (4.28)
=1

For any k € N, we have (zF, fi(z¥)) € epi f; for all i = 1,...,m, which implies

(Z)\l ¥y ) € Ey

Combining this with

k—o00

i (0 atatst) = i (o) = o160,

it follows that (z, f(z)) € clEf. Then (z, f(z)) € Ef because Ey is closed
(Theorem 4.11). Thus

(z,y) = (z, f(z) + (y = f(2))) = (, f(2)) + 0,y — f(x)) € Ey

by y — f(x) > 0 and Proposition 4.4. Therefore, the opposite inclusion of
(4.27) holds true. O

Finally, the following result shows that the infimum in (4.3) is attained for
every z € dom f (i.e. there exists a solution to the minimisation problem in
(4.3) for all x € dom f). This result also establishes the continuity of f.

Theorem 4.13. The infimum in (4.3) is attained for all x € dom f. In

addition, the function f is continuous on dom f.

Proof. Firstly, we shall prove that the infimum in (4.3) is attained for every
x € dom f. Let € dom f. Then f (z) is finite, which means

(z, f(x)) € epi f = Ey
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(Theorem 4.12). Then it follows from the definition of E; in (4.8) that there
exists A1,..., A\ € [0,1] and (x1,y1) € epi fi1,..., (Tm,Ym) € epi fm, such that
oA =1and

m m

(z, f () = <Z Aiti, » (/\iyz‘ +g; (M) + 95(&%‘))) -
i=1 i=1

Notice that (A1, z1, ..., Am, Tm) satisfies the constraints of the problem (4.3).

For every i = 1,...,m, we have y; > f;(x;) because (z;,y;) € epi f;. Then

m

F@) 2 Y (Nifila) + gl () + g2 (o))

=1

Moreover, the definition of f(z) in (4.3) gives

f(z) < i (Nefilwi) + gl ) + g7 i) ) -

i=1

Therefore

m

fla) =Y (Nifilwi) + gi (V) + g7 (Niza)),

i=1
and hence the infimum in (4.3) is attained.
By Theorems 4.3, 4.11 and 4.12, the function f is proper and convex, and
epi f is closed (i.e. f is lower semicontinuous). Then f must be continuous on
dom f (Lemma A.2). O

4.3 An example with an entropy function

In this section, we will consider two special examples of the minimisation
problem in (4.3) for m = 2. Throughout this section, the functions g and g3

are defined as

yln£ ify >0, ylnL ify >0,
gi(y) = pl 93 (y) = P2 (4.29)
o0 otherwise, o0 otherwise,

where py,po > 0 are a given parameters. Moreover, the functions ¢? and g3
are set to be g7 = g3 = 0. In Section 4.3.1, we will consider the situation
when functions f; and fs in (4.3) are affine on their effective domains. By
considering all different cases of the given parameters, we will explicitly present
the solutions to (4.3) with x € dom f, so that these solutions can be easily
calculated by a programming tool. In Section 4.3.2, the functions f; and fo

are allowed to be piecewise linear on their effective domains. By using the

96



4.3. An example with an entropy function

result established in Section 4.3.1, we will provide a method to construct a
solution to (4.3) with « € dom f.

4.3.1 Affine case

In this section, the functions f; and fs in (4.3) are defined as follows. For each

i=1,2,let oy, 5; € R, and let [b;, a;] € R for some b; < a;. Moreover, let

fiy) = {aiy + Bi %f y € [bi, ail, (4.30)
00 if y € R\ [b;, ai].

Then f; is an affine function with slope «; on dom f; = [b;, a;]. For any = € R,
it follows from (4.3) and g% = g3 = 0 that

f(z) = inf { > ()\z‘fi(xz‘) + gil()‘z'))‘

i=1,2

Ai € [0, 1],:62' € [bi,ai] Vi=1,2, Z A=1, Z Nix; = .CI}} . (4.31)
i=1,2 i=1,2

From (4.5), the effective domain of f can be written as
dom f = co ([b1, a1] U [ba, as]) = [b1 A ba, a1 V as],

where ¢1 A ca = min{cy, co} and ¢; V ¢a = max{ci, co} for any ¢q,c2 € R. For

the remainder of this section, we assume that x € dom f which means
T € [bl ANby,ai V az] . (4.32)

Then f(x) must be finite. Moreover, from Theorem 4.13, there exists a solution
to the minimisation problem in (4.31) with parameter . In the remainder of
this section, our objective is to construct a solution to this problem.

In (4.31), taking into account the constraints, the value

> ()‘ifi(xi) + gil()‘i))

i=1,2

is determined by the control variables A\; and x;. This means that we can
reduce the dimensionality of (4.31), from four to two. In (4.37) below, we will

provide a feasible set of (A1, 21) in the problem (4.31). Firstly, we define

Qm = {)\1 € [0, ]_] |E|I‘1 S [bl,al] ,T9 € [bg,ag] ATy + (1 — )\1)562 = .T}
(4.33)
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as the feasible set of the control variable A\; in (4.31). Observe from x € dom f
that Q, # (). Moreover, we have

1€ Q, <= ¢ [b,a], (4.34)
0€ Qp <= x € [by,a]. (4.35)

It turns out that Q, is a closed subinterval of [0,1]; see Lemma 4.14 below.

For any A\, € Qx, we define
Z)\l,gc = {acl ’5131 S [bl,al] , Lo € [bg, GQ] , Az + (1 — )\1) To = .ZL'} (4.36)

as the collection of z; that satisfies the constraints of (4.31) with \; fixed. We
have Zy, , # 0 as long as A\; € Q,. If 1 € Q,, then Z1 4 = {z}. Moreover, if
0 € Q,, then 202 = [b1,a1]. Observe that

{()\17561) ‘)\1 € Qu 11 € Z,\l,x} (4.37)

is the set of all possible (A1, z1) that satisfies the constraits of (4.31). In
Lemma 4.14 below, we provide a method to compute Q, explicitly. By con-
sidering three possible cases of the relationship between = and [be, as], the

quantity ¢™" € [0, 1] is defined as

—b .
Iisz 1fb1§l‘<b2,

=140 if by < 2 < as, (4.38)

r—az

= if ao < <aj.

Similarly, by considering three possible situations of the relationship between

x and [b1,a1], we define ¢*** € [0, 1] as

z=ba if py <z < by,

b1—bs
=1 ifh <z<a, (4.39)
% if a1 < x <as.

Lemma 4.14. We have 0 < ¢™® < ¢3¢ < 1. Moreover, the family Q, is
given by
Q, = [, g™,

which means that Q, is a closed subinterval of [0, 1].

The proof of Lemma 4.14 above will be provided at the end of this section.
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Now, we define a subset of Q, as
Q. =0, N(0,1) = [¢"™, ¢™] N (0,1). (4.40)

which is the collection of A; € (0,1) that satisfies the constraints of (4.31).
Observe that 9, = Qm\{(),l}, and hence Q, = Q. if and only if 0 ¢ 9,
and 1 ¢ Q.. It is possible that Q, = 0. For example, in the case when

az < by < x = ay, the definitions of ¢™" and ¢ in (4.38)-(4.39) gives
@*n = ¢gmaX — 1 which implies Q, = (. The family Q, is a subinterval of

(0,1) as long as Q, is not empty. For any v € (0,1) and z € R, we define

x—yz

Py 2(2) = = (4.41)
urbe) = TS (4.42)

where 2z — w;;,(z) is the inverse function of z — 1), »(z). As long as Q, # 0,
we can compute Z, , for any v € Q, by using the formula provided in the

following result.

Proposition 4.15. If v € Q,, then Z,, # 0 and
Zy e ={z|z € [b1,a1],9y2(2) € [b2,0a2] } = [51 Vs (ag), a1 A 1%_,;(52)}
which is a closed subinterval of [by,a1].

Proof. Suppose that v € Q,. Then v € Q,. It follows from the comments
following (4.36) that Z, , # (. Moreover, by (4.36), the family Z, , can be

written as
Zyx=Azlz € [bi,a1],22 € [b2,a2],y2+ (1 —7)za=2x}.

Since v € Q, C (0, 1), it follows that

Zy e = {z ‘z € [b1,a1], 22 € [by, a2 , w0 = T = 1/}7,1’(2)}

= {z]z € [b1,a1] ¥, 2(2) € [b2,a2] }.
Observe that

¢%x(z) S [b2,a2] < %’LZ S [bQ,CLQ]

<— —yz € [1—=7)bs—x,(1 —v)ag — z]

<z € |:$_(1;'Y)(l2’ x—(l;v)bﬂ _ [wii(@)ﬂ,ﬁ;}g(bz)} .
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Thus

Zyz = [b1,a1] N [ﬂ’{i(%), ¢«Zi(b2)} = [bl Vs (ag), a1 A %ﬁ(b?)} )
which completes the proof. O

We shall first reduce the dimensionality of the problem (4.31) and then
work on the simplified problem. In (4.37), we provided the feasible set of
(A1, 1) in the problem (4.31). Taking into account the constraints of (4.31),

we are going to express the value

D> (Nifilm) + g (M)

i=1,2

in (4.31) in terms of (A1, x1) by considering the following three different cases
for (A, z1):
1.If A\ =1€ Q, and 21 = x, then Ay =0, and z € [b1,a1] by (4.34). It
follows from g3(\2) = g3(0) = 0 that

> ()‘ifi(xi) +gi1()‘i)> = fi(z) + g1 (1).

i=1,2
The value f1(z) + gi(1) is finite because z € [by,a;1] = dom f.
2.If \y =0 € Q, and x1 € [b,a1], then Ay = 1 and 22 = z, where

x € [b2, az] by (4.35). We have gi(\1) = g{(0) = 0, and hence

> (Aifi(xi) + gz‘l()‘i)) = fa(z) + g5(1).

i=1,2
The value fo(z) + g4(1) is finite because = € [bg, az] = dom fo.

3. If \y € Q; and 1 € Z), ,, from the constraints, we can write Ay and 2

in terms of A1 and z; respectively as

A2 =1-— Ay,
l‘*)\ll‘l
L2 = 1_7)\1 = ¥, z(21)-

Then
S (i) + gHA) = ha, al)

i=1,2

where

hya(2) = 7f1(2) + 91(7) + (1 = ) fo(y,2(2)) + g3(1 — ) (4.43)
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for all v € (0,1) and z € R. Notice that the function (X, z) — hy (z) on
(0,1) x R is bounded from below.

Therefore, we can conclude that

(@) =min {fi(0) + 9} (1), o(0) + H(1),__int | houe)}. (L49)
YEQ4,2€E2~ &

In (4.44), the value fi(z) is finite if and only if 1 € Q, by (4.34). Similarly,

by (4.35), the value fy(z) is finite if and only if 0 € Q,. Moreover, the value

inf 4.4
ot Mal(z) (4.45)
is finite if and only if Q, # (). We will show that there exists a solution to the
minimisation problem in (4.45).
It is straightforward to compute fi(z)+ gi(1) and fao(z) + g3(1) in (4.44).

Moreover, the problem (4.45) can be written as

inf inf h,.(2). 4.46

R v (2) (4.46)
Thus, our main minimisation problem (4.31) is reduced to the two-stage min-
imisation problem (4.46). Observe that in each of the single-stage minim-
isation problems, there is only one control variable. Moreover, if Q, = 0,
then

inf  inf hs,(2) =infd = .
’YGQQJ Zez’y,z 773:( )

For the remainder of this section, we will always assume that
Q. # 0. (4.47)

Then Q, is a subinterval of (0,1).

In the remainder of this section, we will focus on finding a solution to the
two-stage minimisation problem (4.46). Firstly, we will show that, for every
v € Qg, the function z — hy . (2) is affine on the closed interval Z, ,; see
(4.52) and Proposition 4.16 below. Then we will provide a technical result
in Lemma 4.17 for the convenience of later calculations. In order to find a
solution to (4.46) under the assumption (4.47), we will first consider the case
when a; = ap. In this case, for every v € Q,, the values of z — h,; (2)
will remain unchanged on Z, ;; see Theorem 4.18.1 below. Thus, the control
variables in (4.46) are reduced from two to one. The method for calculating
the solutions to this problem is provided in Theorem 4.18.2. Secondly, we

will consider the case when a3 # ao. In this case, it turns out that there
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exists a unique solution to (4.46). Moreover, although the problem becomes
more complicated compared to the case when a; = ag, we can still explicitly
find the solution by considering all different cases of the given parameters.
The method for deriving the unique solution to the first stage minimisation

problem
inf hy gz (2)

ZEZW,I

for all v € Q, is presented in Theorem 4.19. Moreover, in Theorem 4.27,
we will provide a method to compute the unique solution to the second stage
minimisation problem.

For convenience, for every v € (0,1) and z € R, we define

Fra(2) = 7£1(2) + (1 =) fa(ty.2(2)), (4.48)
9(7) = g1 (7) + ga(1 = ). (4.49)

From the definitions of g{ and g3 in (4.29), the derivatives ¢’ and " on (0,1)

are
i) =In—— —m 2L 4.50
(7) 1=~ P, (4.50)
7" (v) 1+ L ~o (4.51)
g =-+-—>0 :
v l-y

Thus g is continuous and convex on (0, 1). Notice that h, ,(z) defined in (4.43)

can be written as
h'y,r(z) = .f%ft?(z) + §(7> (4'52>

For every v € Q,, the proposition below shows that z — f%x (z) is affine on
Z. »- Moreover, from (4.52), the function z — h ; (2) is also affine on Z, .

Proposition 4.16. For all v € Q, and z € Z, ;, we have
Fra(2) = (a1 — a2)yz + a2z +7p1 + (1 — ) Ba,
Proof. For all v € Q, and 2z € Z,,, it follows from Proposition 4.15 that

z € [bl,al] = dOHlfl,
hy 2 (2) € [b2, az] = dom fa.

This means

fi(2) = arz + B,
f2(w%x(2)) = 0427%,90(2) + 2 = a2 xfjf + fo.
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Then f%z(z) defined in (4.48) can be written as

Fre (2) =7 (a2 + B1) + (1= ) (2 + )
=yoz+yB1+ oz (x—vz)+(1—7) B
= (a1 — ag)yz + asz + 7681 + (1 — ) Ba.

This completes the proof. O

For the convenience of later calculations, we will provide a technical result
in Lemma 4.17 below. Firstly, let I C Qx be a closed interval such that

In(0,1) 0. (4.53)

Observe from Q, C [0,1] (see (4.33)) that I C [0,1]. Then I = IN(0,1) if and
only if I does not contain 0 and 1. We must have min I < 1 and max/{ > 0,
otherwise I N (0,1) = @. For all v € (0,1), we denote the point in I that is
closest to v by
0% ifyel,
[(y;1) :={minl ify < minl, (4.54)

max ] if v > max /.

Observe from the possible values of T'(y;I) in (4.54) that T'(y;I) € I N (0,1).

Lemma 4.17. Let I C Q, be a closed interval that satisfies (4.53), and let
F:(0,1) = R be a continuous and differentiable function. Suppose that there
exists yp € (0,1) such that

F'(7) < 0 for all € (0,7), (4.55)
F'(y) > 0 for all v € (y0,1). (4.56)

Then T'(vo; I) is the unique value in I N (0,1) such that

F(T (03 1)) = e F (7)- (4.57)
Proof. We are going to prove this result by considering the following three
cases based on the value of ~q.

Firstly, consider the case when 7y € I. From (4.55), the continuous func-
tion F' is decreasing on (0,7p] and hence decreasing on I N (0,70], where
~o = max(IN(0,7]). Similarly, by (4.56), the continuous function F is increas-
ing on [, 1) and therefore increasing on IN[yp, 1), where o = min(I N[y, 1)).
Thus I'(70; 1) = 7o is the unique value in 7N (0, 1) such that (4.57) holds true.
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Secondly, in the case when 79 < min I, we have 1 N (0,1) C (79, 1). Since
F is increasing on (79, 1) (by (4.56)), it is also increasing on I N (0,1). Notice
that min (1 N (0,1)) = min I because 0 < vy < min . Thus I'(y9;]) = min [
is the unique value in 7 N (0,1) such that (4.57) holds true.

Thirdly, in the case when vy > max I, we have I N (0,1) C (0,7). From
(4.55), the function F' is decreasing on (0,7) and therefore decreasing on
In(0,1). Observe from max ] < 79 < 1 that max (/N (0,1)) = max . Thus
['(y0; I) = max I is the unique value in I N (0, 1) such that (4.57) holds true.
This completes the proof. ]

Now, we are going find a method to solve the two-stage minimisation

problem (4.46). For convenience, we define x : {b1,b2,a1,a2} — (0,1) as

—B1—a1y
pie € (0,1), (4.58)

y) = ple*ﬁ’l*aly —{—p2e*62*a2y

where «; and f; are the parameters of f; defined in (4.30) for each i = 1,2.

Moreover, let

—pB1
pie
= €(0,1). 4.59
0T ple P 1 pae P ©.1) (4.59)

In the case when a; = a2, the slopes of the functions f; and fo on their

effective domain have the same value. In such situation, we have

k(y1) = Kk(y2) = ko for all y1,y2 € {b1,b2,a1,a2}.

In addition, the result below says that the values of z — h,, (z) remain
unchanged on Z, ;, for any v € Q, and it provides a method to calculate all
the solutions to the problem (4.46).

Theorem 4.18. If a1 = aw, then the following two claims hold true.
1. For every vy € Qg, the values of z +— h. 4 (2) remain constant on Z ;.

2. All solutions (¥, 2) to the two-stage minimisation problem (4.46) are of
the form
=T (Ho; Qx) , 2 € 244,

where 7 is unique but Z may not.

Proof. For the convenience of the proof, we define a continuous and differen-
tiable function F': (0,1) — R as

F(v) ==z + 761+ (1 —7)B2+ §(7).
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Combining (4.52) and Proposition 4.16 together with ar; = ag, we have
hyz(2) = F(y) for all y € Q, and z € Z, . (4.60)

This means that, for every v € Q,, the values of z = h, ,(z) remain unchanged

on Z, .. This completes the proof of the first claim.

For all v € Q,, by letting z,, € Z,, (e.g. 2y, = min Z, ;), it follows that

h’va(Z’va) = Zeigf,z h'}’vx(z)
Then z, , is a solution to the first stage minimisation problem in (4.46). The
second stage minimisation problem in (4.46) can be solved as follows. For
every 7 € (0,1), observe from (4.50)-(4.51) that

F'(y) =B =B+ 5 (1) == o+t —ln 2,
-7 D2
1 1
F”’Y :g//’)/ :7+7>0
(7) (7) P R

This means that F’ is increasing on (0,1). Moreover, the definition of k¢ in

(4.59) gives

Koy pre M

1 — ko pae= 2 -
and hence F’(kg) = 0. Thus

In

mZ 8+ B,
D2

F'(v) < 0 for all v € (0, ko),
F'(v) > 0 for all vy € (kog, 1),

By letting 4 := I'(ko; Qz), it follows from Lemma 4.17 that 4 is the unique
value in Q, N (0,1) = Q, such that

F@E) = inf F(). (4.61)

Then (4.60) implies

hyw(25,2) = vieanx hya(2y,0) = wiengfm zelgfx hy 2 (2)-

For any 2 € Z; ., it follows from hs 5 (2) = hy 5(244) that

hiel®) = f Jof ho(2).

Thus (9, 2) solves the two-stage minimisation problem (4.46). Suppose by

105



4.3. An example with an entropy function
contradiction that there exist 4’ € Q, and 2’ € Z4/ , such that 4’ # 4 and

her (2) = inf inf h .
vo(2) = inf b fye(2)

It follows from F'(%') = hs »(2) that

F(¥')= inf inf h = inf inf F(y)= inf F
(’y ) 'Ylean Zelg’y,z 'Y@(Z) 'YIGDQ:E Zelg'y,m (7) ’YlenQa: (7)’
which contradicts the fact that 4 is the unique value in Q, such that (4.61)

holds true. This completes the proof of the second claim. O
For the remainder of this section, we will assume that

a1 75 a9.

This means that the slope aj of fi on [b1, a1] and the slope ag of fo on [be, as]
are not the same. In this case, the minimisation problem (4.46) will be more
complicated, but we can still present its solution explicitly.

For any v € 9, let

min Z if a1 > ao,
-={ e TE T (4.62)

max Z, . if a1 < ao.

Observe that z,, is the left (resp. right) endpoint of the closed interval Z, .
in the situation when a; > ag (resp. a1 < ag). The following result implies
that, for any v € Q,, the quantity z,, defined in (4.62) is the unique solution
to the first stage problem in (4.46).

Theorem 4.19. For any v € Q,, the quantity z,, defined in (4.62) is the
unique value in Z, , such that
heyo(2ye) = inf hy g (2). (4.63)
2€Zy 4
Proof. Fix any v € Q,. Combining (4.52) and Proposition 4.16, the function
z+ hy 4 (2) is affine on Z, ;. Consider the following two cases of a; and as.
In the case when aq > ag, the function z — h, ; (2) is increasing on Z, ;.
Thus, the quantity z,, = min Z, , is the unique value in Z, ;, such that (4.63)
holds true.
Similarly, in the case when oy < ao, the function z +— h. ; (2) is decreasing

on Z, .. Thus, the quantity z,, = max Z, , is the unique value in Z, ; such
that (4.63) holds true. Therefore, the result follows. O
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Our next objective is to find a solution to the second stage problem in
(4.46). For any v € Q, let

ha(7) = hya(2y.2)- (4.64)

Observe from (4.52) that hy 4 (2y.2) = fr.e(2y.2) + §(7) which means

ha(Y) = fra(zva) + (7). (4.65)

It follows from Theorem 4.19 and (4.64) that

inf inf Ay, (2) = inf hy.(z = inf A .
'YEQ;U ZeZ’y,m o ( ) 'YeQa: 77&2( ’Y,Z‘) ’YEQac v (’Y)
This means that the two-stage minimisation problem (4.46) is reduced to the

single-stage minimisation problem:
minimise h, () over v € Q. (4.66)

In Theorem 4.27, we will show that there exists a unique solution to the

problem (4.66), and we will provide a method to calculate this solution.

In order to concisely present the solution to (4.66) for all different cases,

we shall introduce a number of shorthand notations as follows.

Firstly, under the assumption that «; # a9, we have either a; < ag or
a1 > ao. There are also different possibilities for the values b1, a1, bo, and ao
used for defining the effective domains of f; and fo; see (4.30). We name the

following six cases:

Cl’l Toy < og,a1 < bg; C2’1 Lo > Oég,bl < a9;
Cl’z roy < og,a1 > bQ; C272 Qo > Oég,bl > a9;
C1’3 roy < og,a1 = bg; 02’3 o > Oég,bl = an.

Notice that, in the cases C'', C12 and C'3, the slope of fi on [b1,a;] and
the slope of fo on [be, as] always satisfy a; < ag. Moreover, these three cases
correspond respectively to the following three different situations of a1 and bo:
a1 < by, a1 > by, and a; = by. Similarly, in the cases C?!, C*2 and C%3, we
always have a; > ao. In addition, these three cases correspond respectively
to the following three different situations of b1 and as: by < ag, by > ao, and
b1 = as.

Secondly, in the cases Cbt, Ch2, C%1 and C?2, we shall define two subsets

of 9., and these subsets will be helpful for presenting the solution to the first
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stage problem in (4.46). Moreover, we shall define two subsets of Q,, and
these subsets will be used in later calculations.
Consider the cases Cb! and C'2. We have a; # by. Let

1 Tr — b2
= . 4.67
qCIZ 0/1 _ b2 ( )
It is possible that ¢l ¢ Q,. However, if ¢} € Q, then
vl (by) = = (1 —gz)b> _ (a1 —ba)z — (a1 — b2) (1 — gz)b2
o a0z (a1 — b2)qy
_ (a1 — b))z — (a1 — )b _ - a1bs S

T — by )

By a1 < ag and Proposition 4.15, the quantity 2, , defined in (4.62) can be
written as

1
Zgle = MaX Zy1 4 =Y (b2) = ax.

1
qz,T

The quantity qi, is used to subdivide the intervals Q, and Q, as follows.

o In CHL et
Qp) = (—o00,q| N Q. Q31 = |ak,00) N Qs
Qti P= (—007(1;} N Qu, Q;i = [q}m oo) N Q,.
o In CH2 let
Q2 = [qi,OO) N Qa, Q,2 = (—Oo,qgﬂ N Qq,
Qii P= [Q:zlmoo) N Oy, Qéi = (—oo,qﬂ N Q,.

The following result gives a presentation of v+ z, , on Q.

Lemma 4.20. In the case CJ where j = 1,2, for any v € Q, the value 2,
defined in (4.62) can be presented as

Yoh(be) ify € O,

2y = MaX Zy ;= ' y
ay if v € Qyy-

In the situation when Q}:; # 0 and Q%i # 0, we have Q%Z; N Q%ji ={q;} and
MOTEOVET Zn 7 = ?,/1;}5(52) =ay fory=ql.

The proof of Lemma 4.20 above will be provided at the end of this section.
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4.3. An example with an entropy function

Consider the cases C?! and C%2. We have b; # ag. Let

2 r — ag
= . 4.
L —— (4.69)
It is possible that ¢2 ¢ Q,. However, if ¢2 € Q, then
v (ag) = &= (1 —gaz _ (b1 —az)z — (b — az)(1 — ¢3)as
@ ¢ (b1 — a2)q2
_ (bl — QQ).% — (bl — .’B)CLQ _ blx — blag _ bl. (4'70)

xr — az r — ag

By a1 > as and Proposition 4.15, the quantity 2.2 , defined in (4.62) can be
written as

. -1
Zg2 e =minZp = wq%@(ag) =by.

The quantity ¢2 is used to subdivide the intervals Q, and Q, as follows.

e In C?!, let
oty = [t ) N Q. Q31 = (—o0,¢2| N Q.
oty = [¢t.0) N Q,, Q3 = (00,2 N Q..
e In C?2 let
Q12 = (~o0, 2 N Q. Q3% = [42.00) N Qu
Q%?y = (—oo,qﬂ N Qazv Q%i = [qi, OO) N Qw

The lemma below gives a presentation of vy > 2z, , on Q.

Lemma 4.21. In the case C*J where j = 1,2, for any v € Q, the value z- 4
defined in (4.62) can be presented as

_ . 2.9
Pop(az) if v € Qv

Zy g =Min 2. ., =
YT YT . 2.9
{b1 ify e Q37

In the situation when Qii # 0 and Q;i # (), we have Q%gj N ngi = {¢?} and

MOTEOVET Zy 7 = 1,/1,;;(@2) =by for vy =q>.

The proof of Lemma 4.21 above will be provided at the end of this section.
Notice that, in the case C*J where i, j = 1,2, the intervals Q, and Q, can be

written as
_ b i3
Q, =0\ UQkl,
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0, = QU QY

It follows from (4.47) that () # Q, C Q, which implies that at least one of Qzljx
and ngx is not empty, and that at least one of Qzljgc and Q;]m is not empty.

Moreover, we have

de Qs Qi n ol = {¢).
¢ € Qp <= Q1. N Oy, —{ }

In addition, for each k = 1,2, the definitions of QZ’{E and QZJI together with
Q. = 9, N (0,1) (see (4.40)) imply

Ql = Q) N (0,1). (4.71)

Remark 4.22. If by = a1 > by = a9, then we must have by < = < by to
ensure Q, # () and moreover ¢i = ¢2 = ¢™" = ¢™**, In this special case,
we can view the probability (¢l,1 — ¢l) as the risk-neutral probability in a
one-step friction-free model when z is the current stock price and by, by are

the discounted future stock prices.

We will provide a presentation of vy + 2y, on Q, for all cases in Proposi-
tion 4.23 below. For each i,j,k = 1,2, let

by if (i,7,k) = (1,1,1),(1,2,1),
. ap if (i, ], 1,1,2),(1,2,2),
i R = (112),02.2) .
a2 if (ia]a ) ( ’ a1)7(27271)a
bl f(Z,], ) ( 3 a2)a(27272)'
Observe that, for any i,j = 1,2, it follows from (4.68) and (4.70) that
dy € Qo = v (ur’) = uy”. (4.73)

Proposition 4.23. For any v € Q,, we can present the value zy , defined in
(4.62) as follows.

1. In the case C% where i,7 = 1,2, the quantity Zy,z can be written as

P o {wym(uf]) Zf’YE lea
’Y’:E - .
qu] Zf,y E QQ:x

In the situation when Q 40 and Q 0, we have Q ZZJI = {q¢i}
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4.3. An example with an entropy function
ij i

and moreover 2, ; = 1/)7_7;(% ) = Ug’j for v = qi'

2. In the case CY3, we have

at if x > a.

{1/17_,915((11) if v < as,
By =

3. In the case C>3, we have

as if x < ag,
By =

w;’i(@) if £ > as.

Clearly, the function v+ 2y is continuous on Q for all cases.

Proof. Claim 1 follows directly from Lemmas 4.20-4.21 and the definition of
(u;;’j)i7j7k:172 in (4.72). Fix any v € Q.. In the case C!3, we have o < az and
a1 = by. Then (4.62) and Proposition 4.15 imply

Zye =MaAX Zy p = ay N\ ¢';,31c(b2) =ap A\ 1#;318((11)

If x < ay, then vya; + (1 — y)a; = a1 > z, in other words,

z— (1 —7)ay _
o> T2EEN ).
This means z,, = w;;(al). Similarly, if x > a; then a; < ¢;i(a1) and
2y = a1. Thus, Claim 2 holds true. In the case C?3, we have a1 > as and
by = ay. It follows from (4.62) and Proposition 4.15 that

2y = min Z’y,x =b1V 1@,;(@2) =azV @b;’i(ag)

If x < ag, then yaz + (1 — y)az = ag > z, in other words,

z— (1 —")ay _
ay > z=(1-7)az _ > L (as).
Y
This implies 2, = ag. Similarly, if 2 > ag then ag < ¢, ! (ag) which means
Zyw = V5 L(ag). Thus, Claim 3 holds true. Notice from the presentation of

¥+ 2y in Claims 1-3 that v — 2, ; is continuous on Q, for all cases. ]

In Propositions 4.24 and 4.25 below, we will provide two auxiliary results
for finding the value that minimises 711(7) over all v € Q,. First of all, let
c € {by,as} and I C Q, be a closed interval such that I N (0,1) # (. Then
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we have I N (0,1) C Q,. Taking into account the presentation of v — 2z, in

Proposition 4.23 and specifying ¢ and I respectively, we have
292 =154 (c) for all y € 1N (0,1) (4.74)
in the following situations:

1. In the case C*/ where 4, j = 1,2, if Q’ljx # (), by taking ¢ = uzlj € {ba,as}
and I = Q7 | we have z,, = ;L (u}’) = w;i(c) for all v € Q}7,, where

1,2 v,z

QY = QY N (0,1) =1n(0,1);

2. In the case C13 with = < a1, let ¢ = by and I = Q,, where by = a; in
C!2. It follows that 2y, = 17 ;.(a1) = ¢ 1(c) for all vy € Q, = I'N(0,1);

3. In the case C*? with = > a2, we take ¢ = ap and I = Q,, which gives
Zye = Y5 3 (a2) = 7 (c) forall y € Q. = IN(0,1).

As long as (4.74) holds true, for any v € I N (0, 1), the value vz, , is

x—(1=7)c

=zr—(1—v)c=ryc+z—c
Y

VZvye = 'Wy_,;:(c) =7
Then it follows from Proposition 4.16 that

Fre(zy2) = (1 — @2)y2y 2 + oz +vB1 + (1 — 7) Ba
= (a1 —)(yve+x —c)+ (1 — P2)y + apx + P
=1 — az)e+ B1 — Ba] + a1 (x — ¢) + agc + Bo; (4.75)

see (4.48) for the definition of z — f%x(z). Combining this with (4.65), the

function kg on 1N (0,1) can be written as

he (7) = vl(a1 — az)c+ B1 — Bo] + a1 (x — ¢) + aze + B2 + g(7v).

Moreover, the following result shows that I'(k(c); ) is the unique quantity
that minimises h(y) over all 4 € 1N (0,1); see (4.58) for the definition of x(c)
and (4.54) for the definition of I'(k(c); I).

Proposition 4.24. Let ¢ € {by,as} and I C Q, be a closed interval such
that I N (0,1) # 0. If (4.74) holds true, then I'(k(c); I) is the unique value in
IN(0,1) such that

Fo (C(k(e)iD) = _inf  Fa (7). (4.76)
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Proof. For convenience, we define F': (0,1) — R as
F(y) =7[(a1 —az)e+ B1 = Bo] + a1 (z — ¢) + aze + B2 + G(7).

Notice that F' is continuous and differentiable on (0,1). Moreover, we have
F =hy on 1N (0,1). For every € (0,1), it follows from (4.50)-(4.51) that

F'(y) = (o1 —az)e+ 81— B2+ 7' (7)

= (a1 —ag)c+ f1— P2+ 1n o lnﬂ, (4.77)
=~y D2

1 1
F'(v)=§"(v) ==+ —>0.
0= =1+
The definition of k(c) in (4.58) gives

K (c) pre~fimare 1
| =1 — P _ B '
" 11—« (C) . p2€_52—o¢20 n D9 /31 + /62 (OQ Ckg)c

Then (4.77) implies that F’(k(c)) = 0. Combining this with the fact that F”

is increasing on (0, 1), it follows that

F'(y) < 0 for all v € (0, x(c)),
F'() > 0 for all v € (k(c), 1).

Then Lemma 4.17 implies that I'(k(c); I) is the unique value in 7N (0, 1) such
that
F(T ;1) = inf  F(y).
(D(a(e); 1) = _inf | F(7)
Since F' = h, on 1IN (0,1), the quantity I'(x(c); I) is also the unique value in
In(0,1) such that (4.76) holds true. This completes the proof. O

Proposition 4.25 below is similar to Proposition 4.24 but with a different
assumption. These two propositions will be used to prove Theorem 4.27 which
will provide a method to compute the unique solution of the minimisation
problem (4.66). Let ¢ € {b1,a1} and I C Q, be a closed interval such that
IN(0,1) # 0, where I N (0,1) C Q,. Taking into account the presentation of

¥+ 2y, in Proposition 4.23 and specifying ¢ and I respectively, we have
2y = cforall vy € IN(0,1). (4.78)

in the following situations:
1. In the case C* where i, j = 1,2, if Q;]w # ‘(D, by taking ¢ = uZQJ € {bi,a1}

and [ = Q’zjx, it follows that z,, = uy’ = ¢ for all v € Q;’i, where
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4.3. An example with an entropy function
Q5 = Q5% N (0,1) = IN (0, 1);

2. In the case C*3 with = > ai, let ¢ = a1 and I = Qm, which gives
Z2yg=a1 =cforallye Q, =1N(0,1);

3. In the case C2? with = < ag, we take ¢ = by and I = Q,, where b; = as
in C%3. Tt follows that Zygy =ag =cforallye Q,=1nN(0,1).

As long as (4.78) holds true, for any v € I N (0,1), it follows from Proposi-
tion 4.16 that

f'y,z(z'y,:r:) = (al - 042)727,:1: + aox + 751 + (1 - 7) B2
ag)yc+ agr + 81 + (1 —7) B2

(a1 —
V(1 — ag)e+ Pr — Bo] + agz + Pa. (4.79)

Combining this with (4.65), it follows that

ha(v) = Y[(1 — a2)e + 1 — B2] + azz + B2 + §(v)-

Moreover, the following result shows that I'(k(c); ) is the unique quantity

that minimises hg () over all v € 1N (0,1).

Proposition 4.25. Let ¢ € {b1,a1} and I C Q, be a closed interval such
that 1N (0,1) # 0. If (4.78) holds true, then I'(k(c); I) is the unique value in
IN(0,1) such that

ho (D(s(e): 1) = _jnf s (3). (4.80)

Proof. For convenience, we define F': (0,1) — R as

F(v) =9l(a1 — ag)ec+ 1 — f2] + asz + B2 + g(7).

Clearly, the function F' is continuous and differentiable on (0, 1), and moreover
F = hy on I N(0,1). For any v € (0,1), it follows from & (y) and §"(v)
calculated in (4.50)-(4.51) that

F'(y) = (a1 —a2)c+ 81— B2+ G (7)

= (a1 —ag)c+ 1 — B2+ 1n T ln&, (4.81)
L=~ P2
1

1
=4+ —>0.
v 1—v

F'(v)=4"(v)
This means that F” is increasing on I N (0,1). The definition of x(c) in (4.58)
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gives

—B1—aic
K (c) — I pie

1 =
"1k (c) poe—P2—azc

=2 — p1+ B2 — (a1 — az)c.
b2

Then (4.81) implies that F’(k(c)) = 0. Combining this with the fact that F”

is increasing on (0, 1), it follows that

F'(y) <0 for all v € (0,x(c)),
F'(y) > 0 for all v € (k(c), 1).

Then Lemma 4.17 implies that I'(k(c); ) is the unique value in 1N (0, 1) such
that
F (T ;)= inf F(y).
(I'(k(c); 1)) et ()
Combining this with F' = h, on I N (0,1), the quantity I'(k(c); I) is also the
unique value in I N (0,1) such that (4.80) holds true. This completes the
proof. O

The proposition below gives the continuity and convexity of ?L;D This
result will be used in Theorem 4.27 to prove the uniqueness of solution to the

minimisation problem (4.66).
Proposition 4.26. The function Em is continuous and convex on Q.

Proof. From (4.65) and the continuity and the convexity of g, the function ha
is continuous and convex on Q. as long as vy — f%x(z%x) is continuous and
convex on Q.. From Proposition 4.16, the function v — f%x(z%x) on Q, can

be presented as

fv,x(zv,x) = (o1 — a2)72'y,x + aox +yB1 + (1 =) Ba.

By Proposition 4.23, the function v + 2, ; is continuous on Q.. Thus, the
function v +— f%m(z%x) is continuous on Q.. We are going to show that
" f%x(z%x) is always convex on Q, by considering the case C*/ for each
t1=1,2and j=1,2,3.

Firstly, we consider the case C*J where i, j = 1,2. Notice that at least one
of Qlljz and ngx is not empty because Qzljx U Q;]m = Q, # (. In the situation
when Q77 # (), the condition (4.74) holds true for ¢ = u;’ and I = QY7; see

]

Item 1 in the list following (4.74). For any v € leiﬁ — INn(0,1), we have from
(4.75) that
Fralna) = pry + an(o = u?) + azat? +
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where
p1:= (a1 — a)uy? + B1 — o

This means that v — f%x(z%x) is affine on Qzljx
the situation when Qéjx # (), the condition (4.78) holds true for ¢ = u5’ and

I = QZQJ ; see Item 1 in the list following (4.78). For any ~ € Q;Jx =1n(0,1),

327

it follows from (4.79) that

with slope p;. Similarly, in

f'y,x(z'y,z) = p2Y + T + 52

where
p2 = (oq — Oéz)u;’] + 1 — Ba.

This means that v fmx(z%x) is affine on szjx with slope ps. Notice that,
if either sz,Jx =0 or Qé’fx = (), then v — f%x(z%x) is affine and hence convex
on Q.. Suppose now that Q) # 0 and Qy), # 0. Then v fro(2y2)
is continuous and piecewise linear on Q, with two segments. The difference

between p; and py is

p1—p2 = (1 — az) (Uzlj - Uzzj) :

where the values of the given parameters oy, ag, u]’, uy’ satisfy:

(4,7)=(1,1): a1 —ax <0, u%’l—ué’lzbg—a1>0;

(4,7) =(1,2): a1 —ax <0, u%’z—ué’zzbg—a1<0;

(4,7) =(2,1): a1 —az >0, u?’l—ug’lzag—b1>0;

7)) =(2,2): a1 —aa>0, up?—ud?=ay—b <O0.
1 2

If (i,7) = (1,1),(2,2), then p; — p2 < 0. Combining this with

the function v fv’%z(z%x) convex on Q.. Similarly, if (i,7) = (1,2),(2,1),
then p; — p2 > 0. It follows from

Q1 = [¢i,00) N Qs Q3. = (—o0,¢t| N Q.
that v f%z(z%w) is convex on Q.

Secondly, we consider the cases C1? and C?3. In both cases, we are going
to show that v +— f.w(z%x) is an affine function on Q,. Fix any v € Q,.
In the case C1? with x < ay, the condition (4.74) holds true for ¢ = by and
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I = Q,; see Item 2 in the list following (4.74). Then v € Q, = I'N(0,1), and
(4.75) implies that

Fra(2ym) = V(1 — a2)ba + B1 — o] + ar(z — by) + agbs + fo.

Similarly, when x > a1, the condition (4.78) holds true for ¢ = a; and I = Q,;
see Item 2 in the list following (4.78). Then v € Q, = I N (0,1), and (4.79)
implies that

Frw(zy2) = V(@1 — a2)ar + B1 — o] + aszx + fo.

In the case C*3 with z < ag, the condition (4.78) holds true for ¢ = b; and
I = Q,; see Item 3 in the list following (4.78). Then v € Q, = I'N(0,1), and
(4.79) implies that

fow(zy2) = v(1 — a2)by + B1 — Ba] + g + fo.

Similarly, when o > as, the condition (4.74) holds true for ¢ = az and I = Q,;
see Item 3 in the list following (4.74). Then v € Q, = I N (0,1), and (4.75)
implies that

fv,x(zw,x) =v[(a1 — ag)ag + B1 — B2] + a1(x — a2) + agas + Ha.

Thus, the function v — f, .(2y) is affine and hence convex on Q, for the
cases Ch3 and €23,
The conclusion is that v — fy »(zy,2) is always continuous and convex on

Q.. This completes the proof. O

The following theorem shows that there exists a unique solution to the
minimisation problem (4.66), and it provides a method to calculate this solu-

tion.
Theorem 4.27. There exists a unique value 5, € Q. such that

he(Fe) = yiengf, he(7), (4.82)

and A, s given as follows.

1. In the case C% where i,j = 1,2, the value 4, can be presented as
Ay = arg min {Ew () "y =T (/ﬁl (uzj) ; Q;jx) , szx # 0,k = 1,2} :
2. In the case C*3 where i = 1,2, we have 4, =T (H (a;); Qw)
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Proof. In the case C* where 4,j = 1,2, from Proposition 4.23.1 and (4.71),

for any v € Q, the value z, , can be presented as

et (W) ifye =9 n(0,1),
= i - i _ i
Usy if v € Q3 = 95, N (0,1).

If Qzljx N(0,1) # 0, then (4.74) holds true for ¢ = u%? and I = Qlljx, see Item 1
in the list following (4.74). Then Proposition 4.24 implies that T'(s(u}); Qll’fx)

is the unique value in Qzljm such that
ho (T (r (u7) :01%) ) = it {ha(7) |7 € Q1 }-

Similarly, if Q;’fx N(0,1) # 0, then (4.78) holds true for ¢ = u%’ and I = Q;’fx,

see Item 1 in the list following (4.78). Then Proposition 4.25 implies that

L(k(ub?); Q;’Jx) is the unique value in Qé’iz such that
}~zx (F (H (u;j) ; ngjx)) = inf {Ex('y) "y € QZQJ:E } .

Since Qzljm U Q;Jx = Q,, the quantity 4, presented in Theorem 4.27.1 satisfies
(4.82). We are going to prove the uniqueness of 4,. Suppose by contradiction
that 4, is not unique. Then Qlljx # () and Q;JI # ), and moreover

r (s (u1'):082) #7 (= (') s 022)
e (0 (m (w17) 1 012)) = B (0 (= (7)1 052))

Combining this with the fact that F(n(uﬁc’j ); QZJI), where k = 1, 2, is the unique
value 111 QZ’fmAthat minimisgs e (7) over all v € QZJE, there exists 7' between
U(k(uy?); Qy7%) and T'(k(uy”); Q37,) such that

and

) > o (1 (s (1) @3%)) = o (1 (s (0") %))
However, this contradicts the convexity of hy, (established in Proposition 4.26).

This completes the proof of the uniqueness of 4.

Consider the case Cb3. If 2 < a1, then (4.74) holds true for ¢ = by = ay
and I = Q,; see Item 2 in the list following (4.74). Then Proposition 4.24
implies that 4, = I'(k(a1); Q) is the unique value in Q, such that (4.82) holds
true. If z > ay, then (4.78) holds true for ¢ = a; and I = Q,; see Item 2 in the
list following (4.78). Then Proposition 4.25 implies that 4, = I'(k(a1); Q) is
the unique value in Q, such that (4.82) holds true.
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Consider the case C*3. If > ag, then (4.74) holds true for ¢ = az and
I = Q,; see Item 3 in the list following (4.74). Then Proposition 4.24 implies
that 4, = I'(k(az2); Qz) is the unique value in Q, such that (4.82) holds true.
If z < ag, then (4.78) holds true for ¢ = by = ag and I = Q. see Item 3 in the
list following (4.78). Then 4, = I'(x(az2); Q,) is the unique value in Q, such
that (4.82) holds true (Proposition 4.25). This completes the proof. O

This section ends with the proofs of Lemmas 4.14, 4.20, and 4.21.
Proof of Lemma 4.14. From (4.33) and the comments following it, we have

Q. ={v€0,1] 321 € [b1,a1],22 € [ba,a2) 1 yz1 + (1 —y)z2 =2} (4.83)
# 0.
Observe from Lemma A.7 that Q, is convex. Thus Q,, is a subinterval of [0, 1].
For the convenience of later calculations, we define

— T

o (1, 22) i= for all 21, z9 € R such that 21 # x4,

T1 — T
For any x5 € R, the derivative aimpx(:vl, x9) is

0 To — T
(@, me) = —27 % forall 21 € R\{z»).
8:1:1'u (z1,22) (@1 = a)? or all 1 € R\{z2}

Similarly, for any z; € R, the derivative %uw(a}l, x9) is

0 T — 1
o(@1,12) = —— 2L for all 2y € R\{x1}.
8352” (1, x2) (@1 = 2)? or all zg € R\{z1}

We are going to show that
max

min Q, = ¢™" < ¢ = max Q, (4.84)

always holds true by considering the following three cases of the relationship
between = and [ba, as]: = < b, as < x, and by < z < as.
Firstly, we consider the case when x < be. To ensure (4.32), we must have

b1 <z, and hence b; < x < by. Then, for any x1 > z, it follows that
yx1 4+ (1 — ) xe > x for all v € [0,1], 29 € [be, as].
Combining this with (4.83), the family Q, can be written as
Q. ={v€[0,1]3z1 € [b1,a1 A x), 22 € [b2,as) : yr1 + (1 — )22 = 7}
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= {’)/E [0,1] ’31’1 € [bl,al/\a:],mg S [bg,ag]:’y: R },
Tl — T2

where (a1 Az) < by which means that there is no overlap between the intervals
[b1,a1 A x] and [ba, az]. Observe that

Xr — I9

pa (21, 22) = € (0,1] for all z1 € [by,a1 A z], z2 € [be, ag).

1 — 22

Then Qx can be presented as
Qu = {pz(z1,22) |71 € [b1,a1 A 7], 29 € [bo,02] }

For any x9 € [be, ag], it follows from zy — x > x9 — by > 0 that

0 To — T

= pg(@1, w0) = for all by, .
&El,u (1, x2) (xl—x2)2>0 or all x1 € [b1,a1 A 7]

This implies that the function x1 — py(z1, z2) is increasing on [by, a; Az]. For

any x1 € [b1, a1 A z], we have from x — x1 > x — (a1 A x) > 0 that

0 T — T
Il ag) = —— TS 0 for all by, as).
&Ezu (x1,2) 1 =) 0 for all zo € [be, as)

This means that zo — (21, x2) is nondecreasing on [be, as]. The conclusion
is that

@™ = pia(br, be) = #(%1,72) = min Q,

min u
x1€[b1,a1A\z],22€[b2,a2]

N _
0 = pz(ar Az, a2) = max fa (21, 22) = max Q.
z1€[b1,a1Ax],x2€[b2,02]

Clearly, we have ¢t < g%, Therefore (4.84) holds true.

Secondly, we consider the case when as < x. To ensure (4.32), we must

have x < a1, which means as < x < a;. Then we have for any x1 < x that
yr1+ (1 —7)xe < x for all y € [0,1], 22 € [ba, aa].
Combining this with the formulation of Q, in (4.83), it follows that
Q. ={y€0,1]|3x1 € b1 Va,a1], 29 € [bo,as] iy + (1 =) z2 =2}

_{76[071]’31'16 [blvx7a1],x2€ [bQ,GQ]:"y: X — T2 }’
1 — T2

where ay < (b1 V) which means that there is no overlap between the intervals
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[b1 V x,a1] and [b2, as]. Notice that

Xr — X9

po (21, 9) = € (0,1] for all z1 € [by V z,a1], 2 € [b2, ag)

T — X2

Then Qx can be written as
Qu = {pa(w1,22) |21 € [b1 V 2, 01], 72 € [b2, 2] } .

For any x9 € [be, as], we have from x93 — z < x9 — as < 0 that

0 To — X

%ux(ml,xg) = ( < 0 for all z; € [by V x,a1].

ry — -7;2)2

This implies that x; +— py(z1,z2) is decreasing on [b; V x,aq]. Similarly, for
any x1 € [by V x,a1], it follows from = — 21 < x — (by V &) < 0 that

0 T — 21
Il we) = —— T <0 for all by, as).
(9:1:2” (1, x2) @ =)’ < 0 for all z9 € [ba, as]

Thus x9 — px (21, 22) is nonincreasing on [by, ag]. We can conclude that

q;«nin = pg(ar,a2) = min pe (21, T2) = min Qu,
z1€[b1VE,a1],22€[b2,a2]
B = (b Vb)) = max o jig(a,ws) = max Q.

T1€E [bl \/:E,a1],:1:2 (S [b2 ,ag}

Observe that ¢ < @8, Thus (4.84) holds true.
Thirdly, we consider the case when by < x < ay. From (4.35), we have
0e Qm and hence

min

¢ = 0 = min Q,.
Then ¢* < ¢ because ¢ = 0 and ¢ € [0,1]. We will show that

max 2
gy = max 9

by considering the following three situations of the relationship between x and
[bl, al] .

1. If by < = < ay, then (4.34) gives 1 € Q,. This means

¢ = 1 = max Q,.

2. If x < by, then for any xo > z, we have
yr1+ (1 —7)xe > x for all y € [0,1], 21 € [b1,aq].
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4.3. An example with an entropy function
Combining this with the formulation of Q, in (4.83), it follows that

Q, = {v€[0,1]|3x1 € [b1,a1],z2 € [ba,ao ANx] : yz1 4+ (1 — )22 = '}

= {’y € [0,1]

a1 € [br,a1], 20 € [bo,ag Ax] 1y = T — Ty }’

1 — 22

where (ag A x) < by which means that there is no overlap between the

intervals [b1, a1] and [ba, a2 A x]. Then it follows from

Xr — I9

(21, 20) = € [0,1) for all z1 € [b1,a1],x2 € [ba,as A x]

1 — 22

that
Qu = {paz(21,22) |z1 € [b1,01], 72 € [b2,a2 A 2]} .

For any x2 € [be,as A z], we have from x5 — x < x9 — (a2 A z) < 0 that

0 To9 — T
o1, m9) = —2— L <0 for all 2 € [by, a).
8:51'u (x1,22) @1 = 20)? 0 for all x; € [b1,aq]

This implies that x1 — p (21, z2) is nonincreasing on [b1, a;]. Similarly,

for any 1 € [b1,a1], it follows from = — z; < by — 21 < 0 that

0 r—x
(@, w0) = —— 1 < 0 for all 35 € [by, ay A .
83:2” (21, x2) 1 = 2)? < 0 for all z9 € [be, az A x|

Thus zg9 — . (x1,22) is decreasing on [be,as A z]. Therefore, we can

conclude that

G = pz (b1, b2) = max pa (21, 2) = max Q.
z1€[b1,a1],x2€[b2,a2Ax]

. If x > aq, then for any xo < z, we have
yr1+ (1 —7)xe < x for all y € [0,1], 21 € [b1,aq].
Combining this with the formulation of Q, in (4.83), it follows that

9, = {y€10,1]|3z1 € [b1,a1],x2 € [ba V z,a2] :yz1+ (1 —y) 22 =2}

= {’y € [0,1]

dxq € [bl,al],.IQE [bg\/a},ag] Ty = R },
T1 — T9

where a1 < (b2 V x) which means that there is no overlap between the

intervals [b1, a1] and [by V x, az]. Then it follows from

Xr — I9

p (21, 22) = € [0,1) for all z1 € [b1,a1],x2 € [b2 V x, ag)

r1 — T2
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that

Qp = {pa(x1,22) |21 € [b1,a1],22 € [b2 V x,a2] }.
For any x9 € [be V x, as], we have from x9 —x > x9 — (be V ) > 0 that

0 To — T

Tm,ux(:cl,xg) = ( > 0 for all x1 € [by,a1].

Ty — 12)?
This implies that 21 — p, (21, x2) is nondecreasing on [by, a1]. Similarly,
for any 1 € [b1,a1], it follows from = — ;1 > a; — x1 > 0 that

0 r—x

a—m,ux(xl,xg) = ( > 0 for all z9 € [by V x, ag].

x1 — x2)?
Thus z9 +— pg(x1,x2) is increasing on [by V ., ag]. Then we can conclude
that

max

G = pz(ar, az) = max pe (21, x2) = max Q.
x1€[b1,a1],x2€ [b2VE,a2]

Therefore (4.84) holds true. Combining (4.84) and ¢, ¢ € [0, 1], we have

x

0 < gin < ghax < 1 and Q, = [¢™", ¢™*¥], which completes the proof. O

Proof of Lemma 4.20. Consider the cases C1! and C'2. Fix any v € Q,. By
a1 < ap and Proposition 4.15, the value 2, , defined in (4.62) can be written
as

Zyp =Max Zyp = a1 A "L/J,;’i(bg).

In the case CL1 it follows from a; < by that

—b
_:v 2 = v(ay — b)) > x — be
al — b2
—b —(1—=7)b
— alzaj 2+b2:x(77)2:¢{i(52)

Observe from (4.67) that (fl__bbé = ¢, and hence

v < qp = a1 > 05 (b). (4.85)
Similarly, by straightforward calculation, we also have

v 2 qp = a1 <Y, (b). (4.86)

Consider the following two cases. If v € Qti, then v < gL which is equivalent
to a; > 1/}%%(()2) by (4.85), and hence z,, = 'Qb,;i(bQ). Ifvy e Q;i, then v > ¢!
which is equivalent to a; < 77 (b2) by (4.86), which means z,, = a;. The
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4.3. An example with an entropy function

conclusion is that

Y L(b) ify € QL

2y = Max Z, . = . 1
ax if v € Qy,.

In the case C12, we have a; > by instead of a; < by in the case Cb!. In such

situation, it follows from straightforward calculation that

Y < gl < U hb) (4.87)
v>ql = a > wii(bg) (4.88)

(cf. (4.85)-(4.86)). Consider the following two cases. If v € Qifx, then v > ¢l
which is equivalent to a; > 1/17_,;(62) by (4.88), and hence z,, = 1#;,;(1)2). If
v E Q%:i, then v < g which is equivalent to a; < 97} (ba) by (4.87), which

means 2y, = ai. The conclusion is that

Y h(be) if v € Q12

Zyp = MaX Zy ;= _ 12
ax if v € 9y

For each j = 1,2, in the situation when Q%; # () and Q;jm # (), we have

thc N Qéd = {ql} and moreover

Zy g = ¢W_7:1B(b2) =ay for v = q;
(see (4.68)). This completes the proof. O

Proof of Lemma 4.21. Consider the cases C*>! and C?2. Fix any v € Q.. By
a1 > ag and Proposition 4.15, the value z,, defined in (4.62) can be written
as

Zyg =min 2y, = by V w,;,i(ag).

In the case C%!, it follows from b; < ag that

o= S NI (b1 —az) < x —a
b1 — a9
r—a z—(1—7)a
— b1§ 2+a2_(77)2_w;;(a2)
Observe from (4.69) that
Tr — ag )
b1 — ag s
and hence
V> @ = by <L (ag). (4.89)
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Similarly, by straightforward calculation, we also have
V< @ = b > Y] (ag). (4.90)

Consider the following two cases. If v € Q%Zi, then v > ¢2 which is equivalent
to by < 971 (az) by (4.89), and hence zy , = ¥} (az). If v € Qg:;, then v < ¢2
which is equivalent to b; > w,;glﬁ(ag) by (4.90), which means 2z, = b;. The

conclusion is that

_ . 2.1
V(ﬁ'y,%c(a?) if v e Ql,x’

2y = min 2., =
771: 771: . 2 1
{bl if v e QQZI

In the case C*2, we have b; > a9 instead of b; < ag in the case C*!. In such

situation, it follows from straightforward calculation that

V> @ = b > (ag) (4.91)
v < @ = b <YL (ag) (4.92)

(cf. (4.89)-(4.90)). Consider the following two cases. If v € Q%ﬁ, then v < ¢2
which is equivalent to by < ¥} (az) by (4.92), and hence z,, = w;}v(ag). If
v € Q%:i, then v > ¢2 which is equivalent to by > w;i(ag) by (4.91), which

means 2, = b;. The conclusion is that

_ . 2,2
. 1/1%%(@2) if v e QlZzu
2y =minZ, ; = . 59
b1 if v € Q5%

For each j = 1,2, in the situation when Q%; # () and Q%; # ), we have

Q%; N Q57 = {42} and moreover

T
_ =1 _ _ 2
Zya = V5 z(a2) = by for v = q;.

(see (4.70)). This completes the proof. O

4.3.2 Piecewise linear case

Section 4.3.1 above provides a method to construct a solution to the prob-
lem (4.31) with z € dom f, where f; and fo in (4.31) are affine on their
effective domains. In this section, we still focus on the problem (4.31), but f;
and fo are allowed to be piecewise linear on their effective domains.

For each i = 1,2, let f; : R — R U {oco} be a convex function that is

continuous and piecewise linear on dom f;, where dom f; is assumed to be a
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closed interval. Moreover, the function f; is affine on each of the following

n; > 1 closed intervals

D} = |ylw?] D} = [y 0] - D = [y, yi ] € dom i,

where
min(dom f;) =y <y? <+ <y = max(dom f;).

Notice that o
|J D = dom f;.
k=1

For all z € R, let

f(z) = inf { > ()\z’fi(mi) + 91'10\2'))

i=1,2

Ai € [0, 1],.%1' € dom f;Vi=1,2, Z A =1, Z \Nix; = .CL‘} . (4.93)
i=1,2 i=1,2

It follows from Theorem 4.3 that f is an R U {oo}-valued convex function on
R, and moreover
dom f = co (dom f1 U dom f3).

This implies that f(z) = oo for all ¢ co (dom f1Udom f2). For the remainder
of this section, let
z* € co(dom f1 Udom fa);

the quantity x* is fixed throughout this section. Then f(z*) € R. From The-
orem 4.13, there exists a solution to the minimisation problem in (4.93) with
x = z*, in other words, there exists (A1, 21, A2, z2) such that the constraints

in (4.93) are satisfied for x = z* and

> (/\ifi(ﬂfi) + gil()‘i)) = f(z7).

i=1,2
In this remainder of section, we will provide a method to find a solution to
the problem in (4.93) with z = z*.

Forallky =1,...,ny and ky = 1,...,n9, we define f{“, 52 :R — RU{o0}
as

b J S on DY, v _ | f2 onDi,
1= 2 =
co on R\DM, co on R\DA2.

Observe that ffl = f1 is an affine function on dom f{“ = lel, and fé“z = fa
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is an affine function on dom f4* = D52, Moreover, we define

frek(a®) = inf{ > (/\z’fiki(xi) +93(/\z‘)>‘

i=1,2

N€[0,1], 2, € DFVIi=1,2, 3 N =1, Na;=a"p; (4.94)

i=1,2 i=1,2
cf. (4.93). Clearly, we have f¥1*2(2*) € RU{oo}, and moreover f*1:52(z*) € R
if and only if 2* € co (D' U D?). In the situation when f**2(z*) € R,
we can use the method in Section 4.3.1 to find (A, x1, A2, x2) such that the

constraints in (4.94) are satisfied and

S (@) + gl Ow)) = Forte ()

i=1,2

see (4.44) and Theorems 4.18, 4.19, and 4.27 for the main results in Sec-
tion 4.3.1. We call such (A1, 21, A2, 22) a solution to the problem in (4.94).

In the remainder of this section, let ¥} = {1,...,n1} and k) € {1,...,no}
be the integers such that

fk:’l,ké (.le*) — min { fk1,k2 (l'*)

]ﬁ:l,...,nl,k2:1,...,n2};

the integers k] and k4 may depend on the choice of z*. Such k] and k4 always
exist (but may not be unique) because n; and ng are finite. The following

result shows that the values of f(z*) and f¥1%2(2*) are the same.

Theorem 4.28. We have
fa*) = froke(e).

Proof. Fix any k1 =1,...,n; and ke = 1,...,ny. For any (A1, x1, A9, 22) such
that the constraints in (4.94) are satisfied, it follows from xz; € Df" C dom f;
for each i = 1,2 that the constraints in (4.93) with x = z* are also satisfied.
Then the definition of f(z*) implies

@) < 3 (Nfila) +gH0w) -

i=1,2

Combining this with f;(z;) = fik1 (z;) for each i = 1,2, it follows that

Fa) < 3 (Nt + gk Ow).-

i=1,2
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Taking infimum on both sides over all (A1, 21, A2, z2) that satisfies the con-
straints in (4.94), it follows that f(z*) < fk¥*2(z). In particular, by letting
k1 = k| and ko = ki, we have

fa*) < fAke(a”).

We are going to show that the opposite inequality also holds true. By The-
orem 4.13, there exists a solution (A1, 1, A2, 2) to the problem (4.93) with

x = x*, which means

fa) =32 (Nfilw) + gt N)) -

i=1,2
Notice that

ni n2

xledomﬁ:UD’f, xgedomf2:UD§.

k=1 k=1
Then z1 € lel and xo € Dgz for some k1 =1,...,n1 and ks = 1,...,n9, and
hence

filzr) = f (@), falwa) = f32(z2).

Therefore

F@) =30 (Naffi(s) + gl () > forke(at) > Rk (e),
i=1,2
where the first inequality follows from the definition of f¥1-52(z*) in (4.94) and
the fact that (A1, 21, A2, x2) satisfies the constraints in (4.94). Therefore, the

result follows. O

By Theorem 4.28 and f(z*) € R, we must have f*1/52(z*) € R. This means
that there exists a solution to the problem in (4.94) with (k1,k2) = (K}, k5);
see the comments following (4.94). The following result shows the problem
in (4.93) with x = z* can be solved by solving the problem in (4.94) with
(K1, k2) = ( i?ké)

Theorem 4.29. A solution to the problem in (4.94) with (k1,ke) = (K|, kb)

is also a solution to the problem in (4.93) with x = x*.

Proof. Firstly, let (A1, x1, A2, x2) be a solution to the problem in (4.94) with
(k1,k2) = (K|, k5). Then (A1, 1, A2, 22) satisfies the constraints in (4.94) with
(k1,k2) = (K}, k5). Combining this with the fact that z; € Dfi C dom f; for

each i = 1,2, it follows that (A1, z1, A2, x2) also satisfies the constraints in
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/

(4.93) with z = z*. Since fi(z;) = fiki (x;) for each i = 1,2, we have

S (Nfile) +9l00) = 30 (i @) + g ) = ) = (o)

i=1,2 i=1,2

(Theorem 4.28). Therefore (A1, z1, A2, 2) is a solution to the problem in (4.93)

with ©z = z*. O
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Chapter 5

Optimisation with

exponential regret

In Example 3.26, we specified a sequence of regret functions to measure the in-
vestor’s regret upon cash injection. Moreover, we provide an explicit formula
for the objective function of the dual optimisation problem (3.35). In this
chapter, based on the market model introduced in Chapter 2 with the robust
no-arbitrage condition being assumed, we will study the problem (3.35) in de-
tail with the regret functions used in Example 3.26. This chapter is organised
as follows.

Section 5.1 will first briefly review the dual optimisation problem (3.35).
Then the problem will be written as two nested optimisation problems. The
first one, which is problem (5.7), will be studied in Section 5.2 in detail, and
the other one can be solved explicitly; see Proposition 5.4. Then Theorem 5.5
provides a formula to compute the minimal regret of the investor with any
given liabilities. In addition, Theorem 5.6 provides a method to construct
an optimal injection strategy for the problem (3.19) via a solution to the
problem (3.35). After that, we will provide a formula in Theorem 5.7 to
compute the regret indifference prices introduced in (3.51) and (3.52). In
Example 5.10, we will consider a one-step toy model, and we will solve the
problem (5.7) explicitly. Moreover, the formulae from Theorem 5.7 will be
applied to compute the indifference prices of a European call option.

In Section 5.2, we will first make an assumption that the bid-ask stock
prices satisfy (5.26). Then Section 5.2.1 introduces the notion of transition
probabilities and provides a number of technical results that will be used in
later sections. In Section 5.2.2, we will provide Algorithm 5.17 to construct
a sequence of random functions (J;)Z_,. Based on (J;)7_,, a pair (Q,S) can
be constructed from Algorithm 5.19. Theorem 5.20 will show that (Q, S )eP
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and it is a solution to the problem (5.7).

Since (J;)L, constructed in Algorithm 5.17 is difficult to calculate, Sec-
tion 5.3 will introduce a piecewise linear approximation (jt);fzo to approximate
(Jt)fzo. For each t = 0,...,T, we always have J; < jt, and hence jt is an
upper bound of J;. At the end of this section, Theorem 5.25 will provide the
relevant convergent result.

In Section 5.4, we will provide a method to compute the approximation
error of approximating (J;)7_, by using (J;)Z_,. To achieve this, we will
construct a sequence of random functions (Jvt)fzo such that J; < J; for all
t =0,...,7. Then jt — J; is an upper bound of the approximation error
J; — Jy. We can calculate this upper bound by using the results established in
Section 4.3.

Finally, we will introduce a binary market model in Section 5.5. In this
model, Section 5.5.1 will provide numerical examples to compute the error of
approximating (J;)_, by (jt)tT:O. Then Section 5.5.2 will numerically compute
the solution to the problem (3.19). Moreover, in Section 5.5.3, we will provide

numerical examples to compute the indifference prices.

5.1 Minimal regret, hedging and pricing

In this section, we will consider the dual problem (3.35) under the exponential
regret functions introduced in Example 3.26. Firstly, we will write (3.35)
as two nested optimisation problems. The first problem appears in (5.7),
and we will discuss how to solve this problem in Section 5.2. The second
problem appears in (5.10), and it can be solved explicitly with the optimal
value of the first problem; see Proposition 5.4. After the study of (3.35),
by applying the strong duality established in Theorem 3.31, we will derive a
formula for computing the minimal regret defined in (3.9); see Theorem 5.5.
Then Theorem 5.6 shows that an optimal injection to the problem (3.19) can
be constructed via a solution to (3.35). At the end of this section, we will
provide formulae in Theorem 5.7 to calculate the indifference prices defined in
(3.51)-(3.52). By applying these formulae in Example 5.10, we will compute
the indifference prices of a European call option in a one-step toy model.

We shall specify the regret functions (vt)g;o used in optimisation prob-
lem (3.8) as follows; the construction of (v;)L, follows from Example 3.26.
First of all, let

T :={t1,...,tp, T} C{0,..., T}

be a collection of time steps. Moreover, let (a;)iez be a sequence of positive

numbers (i.e. oy € (0,00) for all ¢ € Z). Notice that t — oy is deterministic.

132



5.1. Minimal regret, hedging and pricing
Then, for all t € {0,...,T} and w € 2, we define

et —1 ifteZ,
v () = (5.1)
5(,0070} (l’) if ¢ Qé 7.

At every time step t € Z, the investor’s regret upon injecting x units of
cash is always measured by the real number e“* — 1. At each time step
t € {0,...,T}\Z, the investor’s regret upon any positive injection is infinity,
but his regret is zero with any withdrawals (i.e. negative injections). This com-
pletes the construction of (v;)L_,. Consider the following two special examples

of T:

"= {0,...,T}, (5.2)
TV .= {T}. (5.3)

Observe that when Z = Z% the investor is allowed to inject arbitrary amount
of cash at every time step t = 0,...,7T. However, when Z = ZU, the investor
is only allowed to have positive injections at time 7. Combining this with
Example 3.13, under (v;){_, specified in (5.1), the optimisation problem (3.8)
is closely connected to utility maximisation problems. Both Z® and ZV will

be used frequently in Section 5.5.

Remark 5.1. The construction of ()7 depends on one’s modelling purpose.
At time t € Z, the value a; is used to model the investor’s risk aversion on
cash injection. For example, one can take t — a3 to be constant in order
to model constant risk aversion over time. Similarly, one can also model
increasing (resp. decreasing) risk aversion over time by setting ¢t — o to be
increasing (resp. decreasing). In Examples 5.44 and 5.47, we will provide
numerical examples of optimal injections to the problem (3.19) for various

different (cv)iez.

Fix any u = (u)_y, € N2. The function

(A (Q,9)) — xigj{[Lu(x,)\, (Q,S)) on [0,00) € P

is the objective function of the problem (3.35). The following result provides

a representation for this function, and this result will be used to tackle (3.35).

Let
|Z| := Z 1

tel

be the number of time steps in Z.
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Proposition 5.2. For any (A, (Q,S)) € [0,00) € P, we have

Z(l —(jt) —|Z]. (5.4)

€T

T
inf Ly(z,\ (Q,S)) = A (EQ lu, Sr) - Zut] -y 1k [A? 1nA;QD
weN =0 tex At
t

Proof. We have from Example 3.26 that

inf Lu(z, 1, (Q.9)) = AEq (1, 8r) - S gui]

Q Q Q
_ZEl)\A A} _AAtl_m'

teT R Qt

Fix any t € Z . Observe that

. [AA? . M AA?] [AAPI AL
Qi Qg

Ott Oét

Moreover, since oy is deterministic and E[A?] = Eg[1] = 1, it follows that

ay o7 ay

M8 M8 M) Aa i)y Ae mag] - Ae ]
at

Qi (677 Qg e73
A i+A1E[A@1 A7) - A
o o o ay
Then (5.4) follows. O

Our next objective is to show that the problem (3.35) can be viewed as
two nested optimisation problems.

Firstly, fix any A € [0, 00), and consider the following optimisation problem
maximise inj{fLu(az,)\, (Q,9)) over (Q,S) € P. (5.5)
Te

Fix any X € £%. For convenience, for any (Q, S) € P, let

H7 ((Q,5);X):=>" O%E (AP In AP + Eq [(1, Sr) - X]. (5.6)
teT “t
Moreover, we define
Kz (X) = inf { Hz ((Q, $); X) \(@, S)eP}. (5.7)

Notice that K7 (X) is finite because the values of z +— xInz are finite and
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5.1. Minimal regret, hedging and pricing

bounded from below on [0, 00). In Section 5.2, under the condition (5.26), we
will provide a method to construct (Q,S) € P such that

H ((Q,9); X) = Kz (X);
see Theorem 5.20. Observe that
K7 (X +(4,0)) = Kz (X) 4+ ¢ for all § € R. (5.8)

Moreover, combining Proposition 5.2 and (5.6)-(5.7), the optimal value of the

problem (5.5) can be written as

sup inf L,(x, A, (Q,5)) = —AKz (—ZtT:oUt)
(Q,8)eP *&

A

—Z<1 _>_yz\. (5.9)

teT &t
Thus, in order to solve the problem (5.5), we only need to solve the min-
imisation problem (5.7) for X = — Y7 qu;. The lemma below shows that
(Q, 8) € P as long as (Q, 5) is a solution to (5.7). This result will be used in
the proof of Theorem 5.20. The proof of this lemma will be provided at the

end of this section.

Lemma 5.3. If (Q, S’) P solves (5.7), then Q(w) > 0 for allw € Q, in other
words, we have (Q,9) €

Secondly, consider the following optimisation problem

maximise sup inf L,(x,\ (Q,S5)) over A € [0, 00). (5.10)
@8)ep =N
The proposition below shows that this optimisation problem can be solved

explicitly, and moreover the optimal solution is unique and non-zero. For all
w = (w)L_, € N2, we define

A (w) = exp [211 (Z mae g, ( Zwt>>] (0,00).  (5.11)
teT o

tel

Observe that A (w) depends only on S F o wy, in other words, we have for
any w' = (w))l_, € N? such that YL w} = 2L jw; that A (w') = X (w).

Moreover, by straight forward calculation, it follows that

( )Z Zlnat - Kz (—éw) (5.12)

tGI tel
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This will be used in the proofs of Proposition 5.4 and Theorem 5.5 below.

Proposition 5.4. The quantity X (u) is the unique value in [0,00) such that

sup inf L, (x, A(u), (Q, S)) = Sup{ sup inf L, (z, A, (Q, S))} .

(Q,8)eP TEN 220 | (Q,9)ep *EN

This means that X (u) is the unique solution to the problem (5.10).

Proof. For convenience, let

f(A):== sup inf L,(z, A, (Q,S)) for all A € [0,00).
(@,5)eP ™€

From (5.9), the function f is continuous on [0, c0). Moreover, for any A > 0, by

straightforward calculation, the derivatives f’(\) and f”(\) can be presented

as

T

1 |
f'(N) = —Kz (—Zut) — ()Y Y =

=0 tez Yt jez M

and ) )
F=-53— <o
ter M

Thus f’ is decreasing on (0, 00). It follows from (5.12) that

T T
N Ina Ina
f’(A(u))z—Kz(—Zut>—Z t+Kz<—Zut>+Z )
t=0 tex M t=0 tex
Combining this with the fact that f’ is decreasing on (0, 00), we have f' > 0
on (0, (u)) and f/ < 0 on (X (u),00). This implies that f is increasing on
[0, A (u)] and decreasing on [A (1), 00). Thus, the result follows. O

From the strong duality established in Theorem 3.31, the minimal regret
V(u) defined in (3.9) is equal to the optimal value of the dual optimisation
problem (3.35). This enable us to present V' (u) as follows.

Theorem 5.5. Under the assumption that the robust no-arbitrage condition

holds true, the minimal regret V(u) can be written as
N 1
Vu) =A(w)d ——|I].

tex Yt

Proof. Combining Theorem 3.31, Proposition 5.4 and (5.9), we have

T ~ A A
V(u) = —A(u) Kz <— Zm) -3 (A(i“) In A(i“) - Ag”) — 7|, (5.13)
t=0 t t t

tel
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5.1. Minimal regret, hedging and pricing
Observe that

X(u)IHX(u) A A <11n5\(u) _1)

Qi Qi Qi

at t t
= ;\(u) (ln(j\(u)) oz — h;jt — ;)
Then
> (A(S:) In AO(;” - Ai“) — A () (m (A(w) t;; > o ;;) |

Moreover, it follows from (5.12) that

5 (A0 A0 20) s (e (-5u) -2 L),

tez =0 ter At

Combining this with (5.13), the result follows. O]

Suppose that (@,g) € P solves (5.7). Then the theorem below gives a
method for computing the solution to (3.19). In Theorem 5.20 below, we will
provide an algorithm to construct such (Q, $) under the condition (5.26).

Theorem 5.6. Under the assumption that the robust no-arbitrage condition
holds true, if (Q,5) € P solves (5.7) with X = =" juy, then the unique
solution (£4)}_, € N to the problem (3.19) with the regret functions defined in

(5.1) can be constructed as follows:
5 Q
Im2Wh e,
0 ifte{0,...,TI\T;

here X(u)AifQ >0 for all t € T because Q ~ P.

Proof. Combining Proposition 5.2 and (5.6), it follows that

A

8)-xL out)

inf Lu(e,A (), (©,8)) = A (w) Hz ((@.9)
Z( )\(u)>—|I|.
7

TE

o7
Since (Q, S) € P solves (5.7) with X = —=>°F ju;, we have
Hz ((@7 S); —Z%F:out) =Kz (—ZtT:Out) )
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This means

inf Lu(x,A(w),(Q.8)) = A (u) Kz (- X o)
S ()\CS:) AW A(io) .

tel

Then it follows from (5.9) and Proposition 5.4 that

inf Ly(z,\(u),(Q,5)) = sup inf Ly(z,A(u),(Q,9))
]}EN (Q,S)Elﬁ TE
= sup inf L, (z,\ (Q,9)).
A>0,(Q,5)eP TN

This means that (A (u), (Q, 5)) is a solution to (3.35) with the regret functions
defined in (5.1). Then the result follows from Example 3.35. O

In Theorem 5.5, we provided a presentation of the minimal regret. This
presentation will be used to derive the formulae in Theorem 5.7 below for the
regret indifference prices defined in (3.51)-(3.52).

Theorem 5.7. Under the assumption that the robust no-arbitrage condition
holds true. Then we have for any c,¢ € N that

T (¢;6) = K1 (Z?:oat) - Kz (Zfzo(@: - Ct))
W%i (¢;c) =Kz (ZtT:O(Et + Ct)) - K7 (ZtTZOEt) .

Proof. Let
§:= Kz (zfzoa) — K7 (zfzo(@ - ct)) . (5.14)

Observe from (5.11) that

T
;\(6—51 —E) = exp [ij <Z In oy Ky ((5’0) _Z(Ct_ct)>>] .

ter Mt =0

Moreover, combining (5.8) and (5.14), it follows that

Kz ((5,0) = Slo(er — @) = Kz (=S Lole —@)) +6
= Kz (XFoc) -

Thus, we have

N _ 1 In oy T _ N
/\(c—é]l—c)—explztzl<z —KI<th>>1—)\(—c)

tex M t=0
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by (5.11). This means
“ _ 1 N 1
AMe=61-0)) ——|T| :A(—C)Za—|z|,

tez Yt tez

in other words,

Vic—61-2) =V (-0

(Theorem 5.5). Notice that V' (—¢) is finite. Therefore, by Proposition 3.40,

we have
T (6¢) =0 =Kz (ZtT:oét) — Kz (ZtT:O(Et - Ct)) :
Combining this with (3.53), it follows that
bi( .= aif .= T (= _ T -
i (¢;0) =~ (—c;0) = Kz (SLo(@ + ) — Kz (S10) -
This completes the proof. O
Remark 5.8. Notice that, from Theorem 5.7, we always have
7 (0;¢) = 0 for all ¢ € N2,

and this agrees with Example 3.42.

The following result shows that sometimes the indifference prices are the

same for two different endowments.
Corollary 5.9. Let ¢, ¢, ¢ € N?. We have
i (c;¢) = 7 (e @), T (¢;¢) = 7 (&5 ¢) (5.15)
if one of the following condition is satisfied.
1. The processes ¢,c satisfy Zfzo ¢ = ZtT:O ¢+ (9,0) for some 6 € R.

2. The bid-ask prices at time 0 satisfy Sg = S§, and the processes ¢,c
satisfy ZtT:O Ct = Z?:O ¢, +d for some d € R2.

Proof. Suppose that the the condition under the first item is satisfied. It
follows from (5.8) that

(xtoct) +56.

(S0 — ) +9,
Kz (ZtT:o(Et + Ct)) =Kz (ZtT:o(EQ + Ct)) + 0.

g
/N
(]

~+
L
o
|
L
~—
N——
I
g3
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Then Theorem 5.7 implies that (5.15) holds true.
Suppose that the condition under the second item holds true. Notice that,
for all (Q, S) € P, the martingale property of S = (S;)L_, gives

Bol(1, S7) - d) = (1, 8) - d = (1,58) - d.
Combining this with (5.6) and (5.7), it follows that
Kz (X 4d) =Kz (X)+ (1,85 -d.
By taking X = >7 ¢, S5 o(¢ — ¢), 31— (G, + ¢¢) respectively, we have
Kz (ZtT:oét) = Kz (Z?:ods) +(1,5) - d,

Kz (Sio(@ — ) = Kz (SEo(@ — ) + (1,55) - d,
Kz (Sio(@ +er) = Kz (S0 + ) + (1,5) - d.

Thus (5.15) follows from Theorem 5.7. O

In the following one-step toy model, we can solve the problem (5.7) ex-
plicitly. Moreover, we will compute the indifference prices of a European call

option by using the formulae from Theorem 5.7.

Example 5.10. Let T'=1 and ©y = {u, d}. Consider the following one-step

model with transaction cost parameter k € [0,1).

} S =115(1 + k)

S =115(1 — k)
Sg = 100
S =100

1p  S¢=90(1+k)

> Sbd — 90(1 — k)

bd —
Observe that Sg = 5§ which means that there is no transaction costs at

time 0. We assume S§ > 5S¢4 and S¢ < St*. This implies that there is no
overlap among the three intervals [S§, S§] = {S8}, [S%4, S¢4], and [SP¥, S¢4).
Clearly, the robust no-arbitrage condition is satisfied. Moreover, the market
probability is given by P(u) = p and P(d) = 1 — p, where p € (0,1). Define
the friction-free stock prices (Sp, S1) as Sp = 100, S = 115, and S§ = 90, in

other words,

Q. Qq 1 a 1 a
(0.51) = (86 7 5t) = (58 751)-
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5.1. Minimal regret, hedging and pricing
Moreover, we define ¢ = (¢;)}_y as ¢co = 0 and ¢; = (D, 0), where

15 on u,

D = max (51—100,0) - {0 )
on a.

Observe that ¢y + ¢ = (D,0) can be regarded as the payoff of a European
call option based on the friction-free prices (5‘0, 5‘1) and delivered by cash with
strike price 100. The investor’s endowment ¢ = (Et)%:() isset tobecy =¢; =0.
Moreover, let Z = {0,1} and oy = a1 = « for some a > 0.

For the convenience of later calculations, let

0:={ow @9 eP}
={Q() |$1 € £1, S < 51 < SF, Q)SY + (1 - Q(w)) 57 = Sb }
= {q € [0,1] ‘xl € [S'f“, Sf”] , T € {Si’d, Sfd} yqr1 + (1 — q)xe = Sg} )

Observe from Lemma A.7 that Q is convex. Then Q is a subinterval of [0, 1].

Since there is no overlap between [S?*, S¢%] and [S?%¢, S¢9], we can write Q as

T € [s{’",s;l"} g € [s’fd,Sfd] g = 56— w2 } (5.16)

Ty — T2

QZ{QE[O,l]

b_
By straightforward calculation, the value i‘;_ij

in (5.16) is decreasing in z

(resp. x2) when xy (resp. x1) is fixed. Thus, by letting

i e Sb_sad Sb—de
4 ,qa]:zlo ad a | S (0.1),

au ad’ Qbu bd
Sl _Sl Sl _Sl

it follows that Q = [¢™", ¢™aX].

From Theorem 5.7, the indifference prices of ¢ can be written as

78 (¢;0) = K7(0) — Kz(—co — ¢1) = K7(0) — Kz(—(D,0)), (5.17)
7% (c;0) = Kz(co 4+ 1) — K7(0) = K7((D,0)) — K7(0). (5.18)

In order to compute 7&(c;0) and 7% (c;0), we are going to find the following

three values:

Kz(0) = inf Hz((Q,5);0),

(Q,9)eP
Kz((D,0)) = inf Hz((Q,S);(D,0)),
(Q,5)eP
Kz((—=D,0)) = inf Hz((Q,S);(—D,0)).
(Q,5)cP
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For any (Q,S) € P and x € L1, we have

H (@) (#,0) = ~E[ASmAS] + & [AT I AF] + Eq 2]

= é (E {A(l@ In A(l@} + aEq [x]) (5.19)

because LE[AF In Ag] = 0 (see (2.18)). By letting

1—
]qg +a (qx“ +(1—9q) xd) for all ¢ € (0,1),

f*(q) rqun%+(1—Q)ln .

the value E[AY In AY] + aEq [z] in (5.19) can be written as

E A InA?| + aEq [a]

— Q(u)In %((Z)) +(1—Qu)In b%(%) +a (QMu)a* + (1 - Q(u)) 2?)
= f(Q (u)). (5.20)
Then (5.19) and (5.20) imply
inf _Hz ((Q,8); (z,0)) = L e _fH(Q(u)
(Q,S)eP @ (Q,5)eP
a0 (5.21)

0% qe[qminquax}

For any ¢ € (0, 1), the derivatives f*(q) and f*(q) are

l—q q P
x/ =1 g*l u _ .d =1 —1 u _ .d
% (q) np nl_p+0z(x x) nl—q nl_era(:z: m),
1 1
f:l?//q :7+7>0
@) =241,

Thus f* is continuous and convex. Let

ax

q° = e
pe—aac“ + (1 _ p)e—az

- € (0,1).

Observe that ¢° = p. Moreover, we have

—az®

pe p d
=1 =1 — u_
T—¢ ' (I-pe 1-p a(x x>

and hence f*'(¢*) = 0. Since f* is increasing on (0,1), we have f* < 0 on
(0,¢%) and f* > 0 on (¢*,1). Thus the continuous function f* is decreasing

on (0,¢"] and increasing on [¢%,1). We can conclude that the function f* on
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k= 0.5% kE=1%
« buyer seller buyer seller

regret indifference prices
p=20.3

0.1 | 5.70149 6.12470 5.40594 6.25197

0.01 | 5.70149 5.70149 5.40594 5.40594

p=20.5

0.1 | 5.86361 6.30151 5.72975 6.60606

0.01 | 6.30151 6.30151 6.60606 6.60606
superhedging prices

5.70149 6.30151 5.40594 6.60606

Table 5.1: Option prices of a call option in a one-step model

[q™™, ¢™2%] reaches its minimum at

qa: if qmin § qx S qmax’
q* = qmin if qx < qmin,

qmax if qa: > qmax.
Thus

Kel(z,0) = inf _Hz (©.8):(2,0) = L f* (@)

by (5.21). By taking x = 0,(D,0), (—D, 0) respectively, we have
K2(0) = -1 ().
1
Kz((D,0)) = (ffD (a°),
Kz(~(D,0)) = ~ 7" (¢7").
Thus, we are able to compute the prices in (5.17)-(5.18).

From (2.26), (2.27), and Theorem 2.14, the seller’s and buyer’s super-
hedging prices 7&(c) and 74 (c) are given by

Tr(c) = (D, 0)) = max_Eg[D],
(Q,5)eP

i (c) = m((D,0)) = min_Eq[D].
(Q,9)eP
Combining this with the fact that
Eg[D] = Q(u)D" + (1 — Q(u))D? for all (Q, S) € P,
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it follows that

mp(c) =  max (qD“ +(1- q)Dd) = ¢"* x 15,
qe[qm1n7qmax]

h(c)= min (gD +(1-gq)D?) = g™ x 15,
qe[qmm7qmax]

Therefore, the superhedging prices 7&(c) and 7(c) can be easily calculated.
In Table 5.1, the regret indifference prices for p = 0.3,0.5, k = 0.5%, 1%,
and a = 0.1,0.01 are provided. Moreover, the superhedging prices are also
given in this table for & = 0.5%,1%. It shows that the gap between seller’s
and buyer’s indifference prices is smaller than the gap between seller’s and
buyer’s superhedging prices. For the buyer (resp. seller), the indifference price
is equal to the superhedging price when p = 0.3 (resp. p = 0.5). In the case

when a = 0.01, the seller’s and buyer’s indifference prices are the same.

This section ends with the proof of Lemma 5.3.

Proof of Lemma 5.3. We assume that (@, S) € P solves (5.7). Suppose by
contradiction that Q(w’) = 0 for some w’ € Q. From the comments following
Theorem 2.6, we have P # . Let (Q,5) € P. Then Q ~ P which means
Q(w) > 0 for all w € €. For every € € (0,1), we are going to define a pair
(Q€, 5¢) € P based on (Q,5) and (Q,S). Let

A

Q(A) :==eQ(A) + (1 —€)Q(A) for all A € F.

Then Q€ is a probability measure with Q¢(w) > 0 for all w € Q, and hence
Q¢ ~ P. Moreover, for any t = 0,...,T and v € 4, the value A?E(V) can be
written as

Q) _ Q) + (1 - 90()

o) = 0 =A%) + (1 — )A2(v) > 0;

A (v)

see (2.17) for the definition of A2, Define §¢ = (S5)L, € A as

AQ 1— )AL .
S;::leestJr( g) L8 forallt=0,...,T.
Ay Ay

eA% + (176)6/\?
A7 A

must have S? < Sf < S¢. For any k = 1,...,T, Bayes’ formula (Shreve 2004,

Lemma 5.2.2) gives

Q _AQ
Since j\%@ and & AgeAt take their values in [0, 1] and
t t

=1, we

AY Ege [Sf| Fia] = B [AF 85| Fi]
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= B [ARSH| Fioa] + (1 - OF [A@?Sk\ Fii
= A2 |Eq[Sk| Fiot] + (1 - AL By (S| Fea] -
Since (S;)L, is a Q-martingale and (S;)7_, is a Q-martingale, we have
Bor ({1 Fimt) = g (AR Skt + (1= 9AL Sima) = Si.
k—1

This implies that S€ is a Q°-martingale, and hence (Q¢, S¢) € P.

Our next objective is to show that
Hr ((le,Sg) ;X) — Hy ((Q,S‘) ;X) < 0 for some €' € (0,1), (5.22)

which contradicts the assumption that (Q,S) € P solves (5.7). For conveni-
ence, let g(x) := zlnz for all > 0, where 0In0 = 0. Notice from Q(w') = 0
that

i o (A% ) - (13))] = tim > [o (B ) ~9(0)

el0 €

In ——c.  (5.23)
Fix any € € (0,1). For each t =0, ..., T, the convexity of g gives
g (AY) <eg (A) +(1- g (A7)
By subtracting g(A2) on both sides, we have
s(09) s () el (D) -0 ()] o

Notice that

Eq: [(1,87) - X] =E [AF (1,57) - X],

Ey [(1.57) x| =E[A%(1,57) - x].

Combining this with (5.6), it follows that

(0, 59:3) ~ 1 (©.5).) A
“a HA@E) o (aF)] + & [(AF (.57 - Af1.8) -]

- (z Lo (a%) - g (a2)] + B [(F (1,55 - A2(1,51) .X})

ter €t
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— (m+ B 1y (9 (AF) -9 (42))]). (5.25)

e

where
m = %E (A% (1.55) - A(1, 57)) - X]

- tEZZ\%T} ;tlE [g (AQQG) -9 (AQQ)] - wlzTE [19\{w,} (g (A%e) —g (Agm _

We are going to show that m* is dominated by some M € R that is independent
of €. Define M, M? ,M? € R as

MY = E[(Af - A2, A8y — ARSr) - ],
e 3 Lala(af) o ()
M= [l (9 (49) — 0 (49))]
The quantities M, M2, M? are independent of e. Now, observe that
AY (1,55) = (A% + (1 - AT, eASp + (1 — ALSr)
= ¢ (Af - A2 A%ST — AR8r) + AR (1.57) .
This implies
%E (A% (1, 85) - AR(1,87)) - x| = %E [ (A% - A2, ARSr — ARSr) - X]
= M".

Moreover, it follows from (5.24) that

S Bl (0F)-a(af)] < ¥ Cmlo(af) o (a8)] <o

€EQt

teZ\{T} teI\{T}
and
L i (o (09) 0 (49)] = . Bl (0(49) 0 (49)]

= M3,

Thus, by letting M = M + M? + M3, it follows that m¢ < M. From (5.23),
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there exists € € (0, 1) such that

a1 (0 (4F) ~ (49))

Then (5.25) implies

< =M.

i (@57) %) - (@.9):) -
(o b () -1 (9)
< (M—i— 10, (g (A?) —g(A%)ﬂ) < 0.

This completes the proof of (5.22). Therefore Q(w) > 0 for all w € Q, in other
words, we have (Q,S) € P. O

E

€ ar

5.2 Existence of a solution to the dual problem

In this section, we are going to study the minimisation problem (5.7). The
main objective of this section is to construct a solution to (5.7). Firstly, we
will assume that the bid-ask prices S® and S¢ satisfy (5.26) for the remainder
of this chapter. Then Section 5.2.1 will introduce the notion of transition
probabilities and provides a number of technical results that will be used in
Section 5.2.2. After that, a dynamic programming algorithm will be provided
in Section 5.2.2 to construct a solution to the minimisation problem (5.7).

For each t =0,...,T — 1 and v € §, the collection of successor nodes of
v is defined as

vt i={xe WA Cv}.

Fix any t = 0,...,T and v € ;. For any k£ = 0,...,t, we define v as the
unique node in  such that v C v;. Moreover, in the case when k < t, we
call v, the predecessor node of v at time step k. Notice that the node at time
t that contains w € €2 can be written as {w};.

For the remainder of this chapter, we shall always assume that the bid-ask

prices S? and S® satisfy
/{Ielzlg Sh < St < S < max @) forallt=0,...,7 —1,v € Q. (5.26)

This assumption means that the bid price at time ¢ and node v is higher than
the minimal bid price at time ¢ + 1 among every node A\ € v™. Similarly, the
ask price at time ¢ and node v is lower than the maximal ask price at time

t + 1 among every node A € v". All numerical examples in this chapter will
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5.2. Existence of a solution to the dual problem

satisfy (5.26).

It turns out that the condition (5.26) implies that the robust no-arbitrage
condition introduced in Theorem 2.6 holds true; see Theorem 5.13. In the
following example, we will provide an one-step model such that the robust

no-arbitrage condition is satisfied but (5.26) is not satisfied.

Example 5.11. Consider a market model with 7" =1 and Q; = {u,d}. The

stock prices (S?, S¢)1_, are given by
Sp =50 =90, S =S¢ = 120.

Clearly, the condition (5.26) above is not satisfied. Now, we define a process
S = (S, EN as
Sy =100, S¥ =105, S¢ = 95.

Observe that S is in the relative interior of [S?, S¢] for each t = 0,1. Then
we define a probability Q as

Clearly, the process S is a Q-martingale, which means (Q,S) € P. Thus, the

robust no-arbitrage condition is satisfied.

5.2.1 Transition probability

In this section, we will first introduce the notion of transition probabilities.
Then Theorem 5.13 shows that (5.26) implies the robust no-arbitrage condi-
tion. After that, we will provide a number of technical results in Lemmas 5.14-
5.16 for the study in the next section.

Let Q be a probability measure. For each t =0,...,T, let

Qf (Q) = {v e %|Q(v) > 0}

be the collection of nodes at time ¢ with positive probability under Q. Fix any
t=0,...T — 1. For every v € Q(Q) and \ € v, we denote the transition
probability of v to A by

- Q)
Q)
For any Y € L1, we can present Eq[Y | 7](v) for each v € Q) (Q) as
L QMY
Eq[Y | F](v) = 2o QYT D7D (5.27)
@(V) Aevt
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5.2. Existence of a solution to the dual problem

Remark 5.12. The expectation Eg[Y] can be presented as

EolY]= Y Q) > ¢, Y™ (5.28)

VE(#(@) Aevt

Indeed, we have

Eq[Y] = Eq [EqlY | 7]
=Y Q)EqlY | Fl(v)

vEQ:

= Y. QW)EqlY | A](v)

veQ (Q)

because Q(v) = 0 for any v € 2\Q; (Q). Combining this with (5.27), the
presentation of Eg[Y] in (5.28) holds true. The formulation of expectation in

(5.28) will be used in later calculations.

The following result says that (5.26) implies the robust no-arbitrage con-

dition introduced in Theorem 2.6.

Theorem 5.13. Under the assumption that (5.26) holds true, the robust no-

arbitrage condition holds true.

Proof. Firstly, we are going to construct a process S = (S;)L, € V. Let
L : b
So =3 (85+5) € relint [SF, 53],

where relint A is the relative interior of a set A. For any ¢t =0,...,7 — 1 and
v € Q, we define \ and )" as the nodes in v+ such that

/
SoN = mm 5o
1 = T i
1"
SaX = max S&.
t+1 = X Op 4
Moreover, we define St)‘+1 for each A € v as

St—‘rl (Sf_;'/\_l + St—f—l) fOI' all )\ S I/+\ {)\,, )\”} 5
1 Y . b Y
St1 = 2 (St+l + min (StV7 Sit )) ,
Si1 = (St+1 + max (S;W7 Sfil)) )
where SP] < S and S&| > S¢¥ by (5.26). Then

5’{\+1 € relint {Stﬂ, St+1} for all A € vt
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5.2. Existence of a solution to the dual problem
and moreover
min 7, < SN < S < 8 < SN < max SN . (5.29)
Aevt - - T evt

This completes the construction of S.

For any t =0,...,7 — 1 and v € (), the construction of S} gives
S < §Y < S,
Combining this with (5.29), it follows that
min Sp; < SY < max Sp;.
Aevt Aevt

Thus, there exists a collection of positive quantities (w7, 1)ye,+ in (0,1) such
that

Z wt)\+1 = 17

Aevt

A A QU
Z Wit 1St = 5y -

Aevt

Let Q ~ P be the probability measure such that
Gy =wiq forallt=0,..., T —1Lve QA ev’.
Observe that, for each t =0,...,7 — 1 and v € €, we have v € O (Q) and
Eq [St+1 | ] (v) = Z Qt)\+1St)\+1 = Z wt)\+1S{\+1 =5/
Aevt Aevt

Thus S is a Q-martingale. Combining this with the fact that S; is in the rel-
ative interior of [S?, S¢] for every t = 0,...,T, we have (Q, S) € P. Moreover,
the robust no-arbitrage condition introduced in Theorem 2.6 holds true. This

completes the proof. ]

The results in Lemmas 5.14-5.16 below will be helpful in the next section.
For any probability Q and Q-martingale (Mt)?zo, the result below gives a link
between Eg[M;41 In A9+1] and Eg[M;In Ag] forany t =0,...,7 — 1.

Lemma 5.14. Let Q be a probability measure and (Mt)tho be a Q-martingale.
Then, for eacht =0,...,T — 1, we have

A

q
Eq My AL, | = Eg [MnAZ] + Y Q) Y Mgl -5t
veQ (Q) Aevt P41
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5.2. Existence of a solution to the dual problem

Proof. Let t =0,...,T — 1. Observe from Remark 5.12 that

Q(v)qp
Eq [Mt+11nA9+1} = > QW) Y @My, lnpif\+1
ve} (@ Aevt WP

= Z Qv ITthH +1+ Z Qv ZMthtHant“

veQf (Q) Aevt veQ (Q) Aevt t+1

The martingale property of (M;)L_, gives

Z Qv 1%2%4—1 t/\+1 Z Q(v Q((:))

Ve (Q) )\6 + vef (Q)

= Eg [M;In A

Then the result follows. O

Forany t =0,...,T, let

Py = {(Q, (Skﬁ:o) ‘ Q a probability measure, Sy, € L, Vk =0, ...,t,
3(Q (Si)izo) €P: Q' =Qon Fi, (Spimo = (Se)ico} - (5.30)

Observe that Pr = P.

Lemma 5.15. Lett =0,...,T. Moreover, let Q be a probability measure and
Sk € Ly for all k=0,...,t. Then (Q,(Sk)t_o) € Pt if and only if

S?’<S-<S@forallz':0...t (5.31)

S vt @Sty = SY for all i =0,. - 1,v e Q(Q). (5.32)

Proof. Suppose that (Q, (Sg)i_,) € Pr. Then there exists (Q*, (S;)i_,) € P
such that Q* = Q on F; and (Sf)%_y = (Sk)i_o- Since (S§)i_o = (Sk)%_, and

S < Sr<Stforalli=0,...,t,

the condition (5.31) holds true. For any i = 0,. —1and v € Q7 (Q), we
have v € 7 (Q*), and the martingale property of (S E_, gives

Z q z—i—l S*V

devt

Thus
Z Q'L+1Sz+1 Z QZ+1 z+1 S:V = S;/

Aevt Aevt
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5.2. Existence of a solution to the dual problem

Therefore (5.32) holds true.

Suppose that (5.31) and (5.32) hold true. We are going to prove

(Q, (Sk)i—0) € Pu (5.33)

by considering the following the following two cases of ¢.

In the case when ¢t = T, we have

E[Se1| Fil (v) = D Gri1Sps1 =Sy forallk=0,...,T — 1,v € Q; (Q).

Aevt

This means that (Sg)f_, is a Q-martingale. Combining this and the fact that
(5.31) holds true for t = T, it follows that

(Qv (Sk)ZZO) € 75 = 73Ta

which proves (5.33).

In the second case, we assume that ¢ < T. For each k =1¢,...,T — 1, we
are going to define Sy, 1 € L1 as follows. For every v € Q, let N, \" € v+t
such that

Then we define (Sp ;)re,+ as
S if A=\,
Si1 =4 S if A=\,
L(SPy+8p) e AV,

Notice that
Sli\—s—l € [S,‘;il, ng‘_l} for all A € v,

and
min Sy, = Spyy <SP <SP < SN, = max Spoy. (5.34)

Aevt
This completes the definition of Sj;y1. Notice that (Sk);‘g:o € N and
S,l; <Sp < Spforal k=0,...,T.

For any k =t,...,T — 1, and v € Q, combining S < S¥ < S with (5.34),

152



5.2. Existence of a solution to the dual problem

it follows that

. A v A
min S < SY < maxS7,.q.
Aevt k+1 k Aevt k+1

Then there exists a collection of positive numbers (wp, {)xe,+ in (0,1) such
that

Z wl)f\—l-l =1,

Aevt

A A _ QU
Z W y15%+1 = Sk-

Aevt
Let Q* < P be the probability measure such that Q* = Q on F; and

Gh =wpy forallk=t,..., T —1,v € Qf(Q"), evT. (5.35)

Such Q* can be constructed by specifying its transition probabilities with the
values of (wk“)gz_tl via (5.35). Moreover, since the values of (wk+1)g:_t1 are

always positive, the family Q (Q*) in (5.35) can be written as
@) ={v € % |m € 0f (@) }
:{y €0 ‘Vt c Qj(@)}.

Let
(52)5:0 = (Sk);‘cpzo'

Then
S < SF<Stforall k=0,...,T.

In addition, by straightforward calculation, it follows that

E[Sia|Fe] )= > ¢S =S forall k=0,..., T —1,v € Qf (Q).

Aevt

Thus (S;)I_, is a Q*-martingale, and hence
(Q*, (St)k=o) € P.
Therefore (5.33) holds true. This completes the proof. O
Forall 0 <t <t < T and (Q,S) € P;, we define

PH(Q,9) = { (@, (Sh)iz) € Pr

@ =Qon F, (Si)io = S} € Pr. (5.36)
Fix any t = 0,...,7 — 1 and (Q,S) = (Q,(Sk)}_,) € P:. Let Fri1 be an
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5.2. Existence of a solution to the dual problem

R U {oo}-valued F;,1-measurable random function on Q x R? such that the
function w ~ F}; is constant on each node in €. Moreover, for every
A € Qu41, we assume that F}), is bounded from below and F}\ (g, s) € R for
all ¢ € [0,1] and s € [SP}, S ]. Let

Vi(Q, ) := inf Yo QW) Y (‘Jt+1a ﬁ\rl)

@It | ety i

(5.37)
In the problem (5.37), for each v € Q(Q’), we have Q'(v) = Q(v) because
Q' = Q on F;. Moreover, the control variables (qgil) Aew+ are transition prob-
abilities which means that ¢;3; € [0,1] for all A € v+ and Y yc,+ ¢} = L.
In addition, the control variables (S} ;)\e,+ satisfies S}, € [SPYy, S&] for
all A € v and Yy ¢35 = Si¥ = SV by Lemma 5.15 and S; = S;.
The result below says that the problem (5.37) above can be decoupled into

multiple minimisation problems.

Lemma 5.16. For everyt=0,...,T—1 and (Q,S) = (Q, (Sk)i_o) € Py, we

have

1Ué+1 € U)vlL

Vi(Q,5) = Z Q(v mf{z t+1 (wt+1752\+1)

veQ (Q) Aevt

A A + A
St41 € [St—i-lasg—kl} VievT, Z wity =1, Z wt+13t+1 SV}

Aevt Aevt

Proof. It follows from (5.37) and the comments following it that

V(Q,8) > > Q) inf{ Y FA (w?+173?+1)

vef (@ Aev+

sh1 € [SELSEN ] WA e vt S wd =1, > wish = S”}. (5.38)
Aevt Aevt
We are going to show that the opposite inequality of (5.38) also holds
true. Suppose that (w} 1, s, 1)acy+ IS a collection of quantities that satisfies
the constraints in (5.38) for every v € ;7 (Q). Then, for any v € Q] (Q), we
have wy,; € [0,1] and s, € [SP}y, S¢] for all A € v+, and moreover

Z th+1 =1,

Aevt

A A Qv
Z Wi 18741 = S

Aevt
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5.2. Existence of a solution to the dual problem
Let Q" < P be a probability measure such that Q' = Q on F; and that
g1 = w, for all X € v and v € QF (Q).

In addition, we define (S},)tF as

(Sk)k=0 =(Sk)k=0 = S,

!
Sip1 =St41-

Then (Q, (Sk)tJrl ) € Py41 by Lemma 5.15. Combining this with Q' = Q on F;
and (S,)%_, =S, it follows that

(Q (Sk)tﬂ) € P(1(Q, 9).

Moreover, we have

Z Qv Z Ft):kl <Qt+175t+1) = Z Qv Z Ft+1 (wi\ﬂasi‘ﬂ)

veQf (@) Aevt veQ; (Q) Aevt

Thus, the definition of V,(Q, S) in (5.37) gives

Vi(Q, 8) < Z Qv Z Ft)-\&-l (wf\+1>32\+1)

vef (Q) Aevt

By taking infimum on both sides, the opposite inequality of (5.38) holds true,

and hence the result follows. O

5.2.2 Construction of a solution to the dual problem

In this section, Algorithm 5.17 first constructs a sequence of random functions
(J¢)_y. Then Proposition 5.18 provides a number of properties of (J;)L_,, and
it shows that every optimisation problem in Algorithm 5.17 admits a solution.
Based on (J;)L,, we will construct a pair (Q,S) in Algorithm 5.19. Then
Theorem 5.20 shows that ((@, S) € P solves the problem (5.7), and that the
optimal value of (5.7) is closely related to Jy. In order to prove Theorem 5.20,
we will provides a number of technical results in Propositions 5.21-5.22. The

proof of Theorem 5.20 will be provided at the end of the section.

For convenience, for every t =1,..., T, let
=) ai (5.39)
keT k>t K

be the accumulated value of the quantities ( ) ke k>t the quantity ag is not
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5.2. Existence of a solution to the dual problem

used in defining [;. Observe that I = % because T' € Z. Moreover, for any

sequence nq,...,nr € R, we have

Z izt:nk: Z <1n1+"-+;tnt)

e\ {0} Y k=1 tez\ {0y Nt
1 1

= > —mAt-+ Y, —onr

ke k>1 Yk ke k>T Yk
=lini+---+lrnr

T

= >l (5.40)

k=1

The following algorithm constructs a sequence of random functions (.J;)7_.
For each t = 0,...,T, the random function J; will be F;-measurable. It
turns out that the minimal value of Jp is equal to K7(X); see Algorithm 5.19
and Theorem 5.20. Moreover, the random functions (J;)7_, will be used in
Algorithm 5.19 to construct a pair (Q, ).

Algorithm 5.17. Construct a sequence of random functions (J;)i_,.
We are going to define random function J, recursively for eacht =T, ...,0.
For every v € Qp and s € R, let

17 _XV:XbV+ X sV . c SbV’SaV ’
JH(s) ::{( ? X if s S 5¢] (5.41)

00 otherwise.

Lett=T—-1,...,0 and v € Q. Define J; : R — RU{oo} as follows. For all
s € [Spr, Sav], let

Qt)\+1 € [07 1]7

A A ()
= J,
JY () :=li inf { S (ln Qz;\—O—l t+1(3t+1)>

A oA
(qt+l’st+1))\eu+ Aevt P ltJFl

st41 € [Sﬁhsﬁ\} vAevt, Z a1 =1, Z AREARE 3} - (5.42)

Aevt Aevt

Moreover, let

J; =00 on R\ {S’f”,Sf”} .
This completes the construction of (J¢)1_,.

It turns out that there always exists a solution to the problem (5.42); see
Proposition 5.18.2. This means that the infimum in (5.42) is always attained.
In Section 5.3, we will discuss the approximation of (J;)7_,.

In addition to the existence of solution of the problem (5.42), the pro-
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5.2. Existence of a solution to the dual problem

position below also provides a number of properties of (J;)I_,. Some results
established in Sections 4.1 and 4.2 will be used in the proof of the following

result.
Proposition 5.18. The following claims hold true.

1. Lett =0,...,T. For any v € (4, the function J} is real-valued, convex

and continuous on dom J/ = [SP Sa].
2. There always exists a solution to the minimisation problem in (5.42).

3. Lett =0,...,T. For any v € Q, the function s — J}(s) is Lipschitz

continuous on dom Jy , in other words, there exists A} € [0,00) such that

|JY (s1) — J/ (s2)] < Af |s1 — sa| for all s1,s2 € [Sf”,Sf”} )

Proof. Firstly, we are going to prove by backward induction that the first claim
holds true. For any v € Qg, the function J¥ is affine on dom J% = [S5, S].
Thus, the conditions on J; in the first claim holds true for ¢ = T. Fix any
1 =20,...,7 — 1. Suppose that the conditions on J; in the first claim holds
true for ¢t = ¢ + 1. This implies that, for any v € §;, the function Ji’\Jrl is
real-valued, convex and continuous on dom J2; = [SPY,, S¢ ] for all A € vT.

Moreover, the condition (5.26) gives

{Szl'nj? quy} € co U {Sf—i/}b Sza-i/-\l} =co U dom Ji)\—i-l )
Aevt Aevt
where co (A) is the convex hull of a set A. From Theorems 4.3 and 4.13, the

function JY is real-valued, convex and continuous on [S?”, S?]. The construc-

tion of J; in Algorithm 5.17 gives
JV = oo on R\[SY, S,

and hence dom JY = [SP,S%]. Therefore, the conditions on .J; in the first
claim holds true for ¢ = 4. This completes the induction step, and hence the
first claim holds true.

The second claim follows from Theorem 4.13.

It remains to prove the third claim. Fix any v € Q7. The function J7
is affine on [SY, S%] with slope X*”. Then, by letting A% := |X**| > 0, it
follows that

|J7(s1) — J7(s2)| = AT |s1 — s2| for all s1,s90 € [S:I}”,S%”} .
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5.2. Existence of a solution to the dual problem

Fix any t = 0,...,7 — 1 and v € ;. We are going to define a function
s — J;¥(s) that satisfies

JV = J{ on [Sf”,Sf”} = dom J;.

For any s € R, let

A A (X
i JN (s
JiV(8) = g1 inf { E : thH (ln Qt)\-i-l i1 t+1)>‘

A A
(@151 1) aen+ Nevt Piiq bt

A A bA by A XA
Qi1 € 10, 1], 8749 € [S3, SEt] VA € vt Z G =1, Z Gi+15t+1 = S ¢ -
Aevt Aevt

Theorem 4.3 implies that J;* is R U {oco}-valued, convex, and

dom J¥ = co [Sb’\ S“)‘} = | min S, max S%
t U t+1 Pt I S, JAK D14

Aevt

Moreover, it follows from Theorem 4.13 that J;” is continuous on dom J;*.
From (5.26), we have

. b bv av al
min S;7, < SYY < S < max S .
Nert t+1 t =Mt Aevt t+1
This means
int (dom J;*) D {Sf”, Sf”} = dom J/,

where int B is the interior of any set B. Then there exists A} € [0, 00) such
that

|J} (s1) — J{ (s2)| = | (s1) — J; ¥ (s2)| < AY |s1 — so| for all s1,s2 € dom J

(Rockafellar 1997, Theorem 24.7). This completes the proof. O

The algorithm below will introduce a pair (@, S ) that relies on the sequence
of random functions (.J;){_, constructed in Algorithm 5.17 above. It turns out
that (@, S ) € P and this pair is a solution to the minimisation problem (5.7);
see Theorem 5.20.

Algorithm 5.19. Construct a pair (Q,5) = (Q, (S))L,).
Firstly, we shall construct g, 5¢ € Ly recursively for eacht =0,...,T. Let
Go =1, and let 59 € [S§, S8 such that

Jo(S0) = e[is%fsa} Jo(s).
$&190:°0
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5.2. Existence of a solution to the dual problem

For eacht=0,...,T — 1 and v € Q, let (G4, 57 1)acv+ be a solution to the
problem in (5.42) with s = 5. This completes the construction of (G, 5t)i—o-
Secondly, we define (@, S*) as

T
Q) := Y [[a* forat A€ F,

weAt=0
S, =5 forallt=0,...,T;

the value of an empty summation is assumed to be 0 (which means Q(0) =0).

This completes the construction.

From Proposition 5.18.1, the function s+ Jy(s) is continuous on [SY, S§].
This means that sg introduced in Algorithm 5.19 exists. Moreover, from Pro-
position 5.18.2; there always exists a solution to the problem in (5.42). This
implies that the sequence of random variables (g;,5;);_; constructed in Al-
gorithm 5.19 also exist.

Theorem 5.20 below is the main result of this section. It shows that the pair
(Q, S) constructed in Algorithm 5.19 above is a solution to the problem (5.7).
Moreover, it shows that (Q,5) € P which means Q ~ P (i.e. Q(w) > 0 for
every w € ). In addition, this theorem also shows that K7(X) (which is the
optimal value of the minimisation problem in (5.7)) is closely related to the

function Jy constructed in Algorithm 5.17.

Theorem 5.20. Under the assumption that (5.26) holds true, the pair (@, S) =
(Q, (S)L) constructed in Algorithm 5.19 satisfies (Q,S) € P and

Hz (@, 8):X) = Jo(50) = Kz (X). (5.43)

Thus (Q, S) solves (5.7).

The main task of the remainder of this section is to prepare the results
that will be used to prove Theorem 5.20. The proof will be provided at the
end of this section.

For allt =0,...,T and (Q, S) € P, let

Vi(Q,5) := inf Hz ((Q*,5%); X); (5.44)
(Q*.5")ePL(@Q.S)

see (5.30) for the definition of P; and see (5.36) for the definition of P! (Q, S)
for all t <t < T. In particular, when ¢t = T, we have

Vr(Q,5) = inf Hz ((Q%,8%);X)=Hz((Q S);X)  (5.45)
(@",5)EPE (@)
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5.2. Existence of a solution to the dual problem

because PL(Q, S) = {(Q,S)}. Observe that

inf _ V5(Q, S) 1nf{HI ((Q*, 8%); )\(@,S) e Po, (Q*, %) 675%(@,5)}
(Q,5)€Po
= inf { Hz (@ ‘(Q S)eP}
= K7 (X) (5.46)

by the definition of K7 (X) in (5.7).
The following proposition provides a connection between V; and V;41 for
each t =0,...,T — 1. This result is technical, and it will be used in the proof

of Proposition 5.22 below.
Proposition 5.21. Lett =0,...,T —1 and (Q,S) € P;. Then

Vi(Q,5) = inf Vi1 (@, 5).

(Q,8)€PE,,(Q.5)

Proof. Lett=0,...,T—1and (Q,S) € P;. Notice from (5.36) that the family
735"(@, S) can be presented as

PLQ, 8) = {(@", (S1)io) € Pr|Q" = Qon F, ()i = S}
={@.9|@.9) € PL1(@.9), (@57 e PF(@Q. )}

Combining this with (5.44), we have

Vi (Q,S) = ) inf L Hz ((Q*,5%); X)
(Q,8")eP;,1(Q,9), (Q*,5*)ePrH(Q,s")
= inf inf Hz ((Q*,5%); X)

(Q,8€PE, 1 (Q,5) (Q*,5%)ePL (@,s")
= inf Vir (@', 8").
(@,8")eP;,(Q,9)

This completes the proof. O

The following result gives a link between V; and J; where t = 0,...,T.
This result will be used in the proof of Theorem 5.20.

Proposition 5.22. For all (Q, Sy) € Po, we have
Vo(Q, So) = Jo(S0)- (5.47)

Moreover, for allt =1,...,T and (Q, (Sk)t_,) € Py, we have

Vi(Q, (Sk)ieo) = Eg [Ji(S))] + zt: L (EQ [m A%} —Eg [1n AS_ID . (5.48)
k=1
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5.2. Existence of a solution to the dual problem

Proof. Firstly, we are going to prove by backward induction that (5.48) holds
true for any (Q, (Sk)i_,) € P for each t =T, ..., 1.

For any (Q,S) = (Q, (S¢).,) € P = Pr, it follows from the construction
of Jp in Algorithm 5.17 that

Eq[(1,57) - X] = Eq [Jr(S5T)]

Then (5.6) gives

Hz (Q8): X) = Bq [r(5)] + Y & [ATIn Af]
teT 't

—EqlJr(Sn)] + ¥ - Bo [lnAf].
tez =t

Notice that
Eq [InAf| = E [AfImAF| =0
by (2.18). This means that, for each t = 1,..., T, the expectation Eqg|[In A?]
can be written as
Eg {ln A?} =Eq {ln A;Q} —Eq [ln Ag}

zé@mwy%p@@.

Combining this with O%OIEQ[IH Aé]Q] =0, we have

t
> Lo naf] = ¥ L5 (o [maf] - Eo[mag,))
tez teT\{0} " k=1

=31y (B [ AY] - Bq [mA2 )

by (5.40). Therefore, it follows from (5.45) that
Vr(Q,5) = Hz ((Q, 5); X)

T
= Eq [Jr(S0)] + Y I (Eg [InAF] — Bq [lnA ,]).
k=1

Thus (5.48) holds true for t = T.

Let i = 1,...,T — 1. Suppose that, for any (Q, (Sk)}:fo) € Pii1, the
equality (5.48) holds true for ¢t = i + 1. Fix any (Q,S) = (Q, (Sk)i_,) € Pi.
Then we are going to show that (5.48) holds true for ¢ = i. Notice that, for
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5.2. Existence of a solution to the dual problem

any (Q/, (S’k)wl) z+1(@ S), we have

Vit1 (@ (Sk)zﬂ) =Eq [Ji+1(Si11)] + % lk (EQ’ [ln Agl} — Ey [ln Agl—l})

=Eg [Jit1(S41)] + lip (Bg [InA, | - Bg [nAZ])

£ 300 (Bg [mAY] — g [nag ).
k=1

where the second equality follows from the fact that Q' = Q on F;. Moreover,

from Remark 5.12, we have

EQ’ [Ji+1(52{+1)} = Z @ Z C]z+1 1+1 z+1)

vef (Q) Aevt

In addition, Lemma 5.14 gives

Egy [lnAgl} — Eg [lnA;-Q,} = Z Q'(v) Z Z\rl Z%\il

vef (Q) AEvt i+1

Thus, the value Vi 1(Q', (S,)4EL) can be written as

A
Vis1 (Q (Sk)“rl) SRR DY q2+1< qz;l n Jz+1(51+1)>

. l
veQf (@) Aevt Py i

+0e (Bg [nAg] - Eg [lnag.,]).
k=1

By the connection between V; and V;i; established in Proposition 5.21, we
can present V;(Q, S) as

Vi(Q,S) = inf Vigr (Q, (Sp)etS
(@.(5)0)€PL1 (@) +( ‘ )

Combining this with Lemma 5.16, we have
Vi(Q,5)
JA

w A ()
=lis1 Y, QU 1nf{ > w ( ZH + H1(Sl+l)>|ujf‘+1 € [0,1],

l.
veQ! (Q) revt P i+l

si41 € [SH-I’SH-I} VAT, Y wiy =1, Y wisiy = SV}

Aevt devt
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5.2. Existence of a solution to the dual problem
i
+ U (Bg [ AF] —Eq [n A ]) .
k=1
Then it follows from the construction of J; in Algorithm 5.17 that

S QIS + Yol (Bg [nAg] ~ Bg [mA2 )
k=1

veQf (Q)

=Eqg [JZ(SZ)] + zl: Iy, (EQ [ln A(]?} —Eg [ln Ag—l}) .
k=1

This implies that (5.48) holds true for ¢ = 7. This completes the induction
step. Therefore, we can conclude that (5.48) holds true for every t =1,...,T
and (Q, (Sk)i—o) € Pr.

Fix any (Q,Sy) € Po. We are going to show that (5.47) holds true. For
any (Q', (S1)i—o) € PY(Q, Sp), it follows from (5.48) that

Vi (@, (Siko) = Eg [11(S1)] + U (B [nAY | — Bq [mAF]),
where Eq [ln ABQ,} =E [ABQ/ In Ag} =0 by (2.18). Then

Vi (le (Sllc)llczo) =Eq [/1(S)] + hEy [ln AQI}

e
ZquS Zq ?

AEQ A€
I\ J S//\
:llzqix\ nq%\+ P (87 _
A P b
St

Combining Proposition 5.21 and Lemma 5.16, we have

V Q75 - mf B V (@/7 S/ 1:
: 0 (@,(54)L_y)EPY(Q,S0) 1( (Sk)k 0)

A Al oA
:llinf{ Z w) (hlwi + ‘]11(81)>‘wi\ € [0,1],
P1 1

A€

1 e [P, SfA VA e v, Z wy = 1, Z wysy = So} .

Aevt Aevt

Then the construction of Jy in Algorithm 5.17 implies
Vo(Q, So0) = Jo(S0),
and hence (5.47) holds true. This completes the proof. O
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5.2. Existence of a solution to the dual problem

This section ends with the proof of Theorem 5.20.

Proof of Theorem 5.20. We will first prove that (@, S) € P, where (@, S’) is
constructed in Algorithm 5.19. Then we will focus on the proof of (5.43). At
the end of this proof, we will show that (@, 5’) ep.

Firstly, we have Q() = 0 by the definition of Q. Let (A})$; be a sequence

of pairwise disjoint sets in F. Then

o(54)- 5 fie

weuzczlAk t=0

This means that Q is countably additive. We are going to prove by induction
that

t
Q) =[] @ for all v € O (5.49)
k=0

for each t = 0,...,T. Observe that

T T
Q) = S (jt{w}t =[] @ for all v € Q.
wev t=0 t=0
This means that (5.49) holds true for t = T. Fixany i =0,...,T—1. Suppose
that (5.49) holds true for t = i+ 1. For any v € €, it follows from v = Uy¢,+ A
that

Qw) = > QW)

Aevt
where Q(\) = | e cj,i"“ because (5.49) holds true for ¢ = i + 1. Thus Q(v)
can be written as
i+1

Qw) =Y I a¢

Aevt k=0

7
= Z H‘jl/c\kgz')\ﬂ

Aevt k=0

1
= Z HQZW?H

Aevt k=0

(A
= H EIZ’“ Z q_{\ﬂ
k=0

Aevt

164



5.2. Existence of a solution to the dual problem

-l

Therefore (5.49) holds true for ¢ = . This completes the induction step, and
hence (5.49) holds true for each ¢t = 0,...,T. Notice that € Qp and (5.49)
gives Q(Q) = o = 1. The conclusion is that Q < P is a probability measure.
From (5.49), the transition probabilities of Q satisfy

A 1 X i Uk A
Py = Q1) H?o 0" _ Ilh= 00" T =\
T A —] — T
Q) Mo @t ITh—0 "

foralli=0,...,T—1,v € Qj(@) and A € v*. Moreover, from Algorithm 5.19,
we have S = ($)L, = (5))L,. Then it follows from the construction of
(i, 5:)1— that

St <8< St foralli=0,...,T,
St @SN, =SV foralli=0,...,T — 1,v € Qf (Q).

Then Lemma 5.15 implies (@, S) €Pr="P.

Secondly, we are going to show that (5.43) holds true. It follows from the
definition of Pg in (5.30) and (Q,S) = (Q, (5;)L,) € P that (Q,Sy) € Po.
Then (5.47) gives

Vo (Q7 5’0) =Jo (5’0) (5.50)

= inf  Jp(So)
So€[SE,58]

— i Jo(So)
(Q,S0)€Po

— imf W(Q ) (5.51)
(Q,S0)€Po

the last equality follows from (5.47) as well. Fix any ¢t = 0,...,7 — 1. The

expectation EQ[Jt(S't)] can be presented as

Eq [1(S)] = Y Qw)Jr(Sy),

veQ (Q)

where

A A\ J>‘ ,SA')‘
J;/(Sé/) = lt—l—l Z (ii\+1 <1D qi\-l—l + t+}( t+1)>
Aevt Pt t+1

by the definition of .J¥ (S?) and the fact that (@1, 5001 et = (@41, Sf‘ﬂ))\e,ﬁ
is a solution to the problem in (5.42) with s = 5V = S¥. Then E@[Jt(é't)] can
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5.2. Existence of a solution to the dual problem

be written as

A (ar
[Jt(Stﬂ =L Y. Q) Y @ ( qt+1 n Jt+1(St+1)>.

L1
V€Q+(Q) \evt t+1 i+

Observe from Remark 5.12 that

Z Qv Z qt+1Jt+1 1) = Eg {Jt+1(s’t+1)} .

ve (Q) Aevt

Moreover, it follows from Lemma 5.14 that

A

b Y 0 Y gl q?i:zm( A%, - Ey [mAP]).

veaf (@) et Per
Thus
Eg [/1(80)] = Eg [Ji1(Ss0)] + 1l (B AR, —Eg [mAR]). (5.52)
By adding S, i (Eg [mAR] —Eg (AR, ]) on both sides of (5.52), we

have

Eg [J(50)] + Et: i (Eg [InA2] — Eg [na? )

=Eg [Ji1(5i1)] + til I (Eg (A7) —Eq [mAR ).
k=1

Combining this with the fact that (Q, (Sg)i_,) € P; and (Q, (S L) € Prga,
it follows from Proposition 5.22 that

Vi (Q (Si)ikzo) = Verr (Qus (S0 -

Therefore, we can conclude that

VT ((@7 (gk)£:0> = ‘/0 (Qa g()) - inf _ %(Q? SO) (553)
(Q,S0)€Po

by (5.51). From (5.45), (5.50) and (5.46), we can present the common value
n (5.53) above as follows:
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5.3. Piecewise linear approximation

inf _ Vp(Q, S) = Kz (X).
(Q,50)€Po

Thus (5.43) holds true. It follows from
Hz ((Q,9);: X) = Kz (X)

that (Q, S) solves the problem (5.7). Finally, Lemma 5.3 implies (Q, S) €
This completes the proof. O

5.3 Piecewise linear approximation

In this section, based on the assumption that (5.26) holds true, we will intro-
duce a sequence of random functions (J;)7, for approximating (.J;)L_, con-
structed in Algorithm 5.17. For any t =0,...,7 and v € (), we will set Jt to
be convex and piecewise linear on [S?, S#], and satisfy J¥ > J. Moreover,
as the number of segments of jt” increases, it will converge to .Jy uniformly;
this convergence is established in Theorem 5.25. Such piecewise linear approx-
imation allows us to compute (Jt) —o in a binary model by using the results
from Section 4.3. In Section 5.5, we will discuss how to use (J;)L, as an ap-
proximation of (Jt)t:O to compute the optimal injections, the minimal regret,
and the regret indifference prices in a binary model.

Let n > 2 be an integer. For every ¢t =0,...,T—1 and v € €, the bid-ask

interval [SP, S¢] is divided into n — 1 subintervals
[stv, s2], [s27, s3], ..., [sp 1, 8] (5.54)

with equal length by taking

n

si = S =L (g - sp) foralli=1,...,n, (5.55)

Observe that
[st,st¥] = [S¢", ¢

Consider the following two cases. In the case when S < S# we have
V< s << s (5.56)

In the case when S = S (i.e. the transaction costs are zero at time t on

the node v), the interval [s}, s?”] is a singleton set, and this leads to

v _ 2v __ _nv
sV =8 = =8;".



5.3. Piecewise linear approximation

We will set J¥ to be affine on each of the intervals in (5.54). Then J¥ will be
piecewise linear with n — 1 segments on [s}¥, s?”].

The maximum distance between s and siH’” among allt =0,...,T —1,

veQandi=1,...,n—11is defined as

d(n) :==max { sithy _ g

_ 1 av bv
=n_1 maX{St — St

t:Q“wT—LuemJ:L”wn—q (5.57)

t:Q“wT—LVGQ*.

If there are no transaction costs at each time t =0,...,7 — 1, then §(n) = 0.
Notice that
lim §(n) = 0. (5.58)

n—oo

Remark 5.23. We provide a concrete construction for the intervals (5.54).
However, the main results (Proposition 5.24 and Theorem 5.25) established in
this section does not rely on the fact that the intervals are of the same width.
As long as the end points of these intervals satisfy (5.56) when S? < S# for
allt=0,...,7 —1 and v € €, the main results still hold true.

To approximate (J;)L_,, we are going to define F;-measurable random
functions J; and J~t* recursively for each t = T',...,0; the function jt* is an

auxiliary function used to construct J;. For any v € {r and s € R, we define

<, - , (1,8)- XV if s € | S, S%|,
JT(S) = JT (3) = JT(S) = |: :| (559)
o0 otherwise.
Let t=T—1,...,0 and v € ;. For any s € R, we define
A T A
= . Qi1 | Jipa (i) A
JIV(8) =l inf @ <ln + qrq €10, 1],
! (@ 1571 ) aent )\%,:Jr ik p?—i—l lit1 i

devt Aevt

5?+1 € [5%175?4\1} VA € U+7 Z q)f)\+1 =1, Z Q?+15?+1 = 5} . (5.60)

Observe from (5.42) that if Jp; < J; for all A € v+, then JY < J* on
[SPv, S¢]. Moreover, we have j}_l = Jr_1. It turns out that J is real-
valued, convex, and continuous on [S?, S#¥]; see Proposition 5.24.1. We shall
define jt” by considering the following two cases. In the case when s;¥ = s7,

the function J is defined as

s | on [l = (8PS = (1)
' o on R\ {s}}.
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5.3. Piecewise linear approximation

In the case when s” < s, the sequence (si)?_; satisfies (5.56). By connect-

ing (s, J7¥ (si¥)) and (si™", J# (siT")) for each i = 1,...,n — 1, we shall

set J/ to be continuous and piecewise linear on [s;”, s?¥]; an example of J}

on [s1¥, s™] with J given is provided in Figure 5.1. Let

JV(s) := JiV(s) for all s = sV, ..., st (5.61)
Moreover, for any i =1,...,n— 1, let
JV(s) == mivs + JV* (s?’) — s for all s € (s, s771) (5.62)
where o _
* 1+1Lv * )
i (s ) = T (sY)
T s s

As long as J;¥ is real-valued, continuous, and convex on [s;”, s7*], the function

J{ is real-valued, continuous, piecewise linear, convex, and it satisfies J; > J;”

on [s}¥, s7"]; see Lemma A.10. Finally, let

JV := oo on R\ {s,}”, s;”’} . (5.63)

This completes the definitions of (J})Z, and (J;)L,. Notice that for any
t=0,...,T —1 and v € €, the function J¥ relies on J;*(s}¥),..., J:*(sP")
only. It turns out that (J;)Z, can be used to approximate (J;)7_, as long as

0(n) is close to 0. The relevant convergence result is provided in Theorem 5.25.

R :*1/(3)

- Ji(s)

sY 8,?” sg’” sf}” sY
Figure 5.1: Picture of jt” with jt*” given, where t <T, v € Qy and n =5

Proposition 5.24 below provides a number of properties of J* and J¥ on
[SPv, S¢¥] for each t = 0,...,T and v € ;. Moreover, it shows that the

minimisation problem in (5.60) with s € [S?, S#*] admits a solution. Some
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5.3. Piecewise linear approximation

results from Sections 4.1-4.2 will be used in the proof of the following result.
Proposition 5.24. Lett =0,...,T. The following two claims hold true.
1. For any v € Q, on [SY,S™], the functions s — J;¥(s) and s — J¥(s)
satisfy the following properties.

e The function jt*” 1s real-valued, continuous, and convex.

e The function jt” s real-valued, continuous, piecewise linear, and
conver. If t < T — 1, then it is affine on [s}¥ ,s;:rl "' for each
i=1,...,n—1.

o We have Jf < jt*” < jt”.

2. For anyv € Q, ift <T — 1, then there exists a solution to the minim-
isation problem in (5.60) for all s € [SPY, S¢V].

Proof. Firstly, we are going to show that the first claim holds true for each
t =T,...,0 by backward induction. For any v € Qp, it follows from (5.59)
that J% = J3¥ = J¥ is affine on [S%, S%]. Thus, the first claim holds true for
t=T. Let k=0,...,T — 1, and suppose now that the first claim holds true
for t = k4 1. Fix any v € . Since the first claim holds true for ¢t = k 4+ 1,
for any A € v, the function j,;\ .1 is real-valued, continuous and convex on

[SP21, 582 1]. Moreover, it satisfies
Ty < Ry on [Sk—&-lvsk-i-l} (5.64)
From (5.63), we have
Jk+1 oo on R\ {5k+1v 5k+1} R\ [Sk+1a Sk+1]
Combining this with the fact that .J; 1 on [SPA ), 5¢2] is real-valued, we have

dom Jpy, = [Sk+1a Sk+1} (5.65)

Now, we are going to prove that first claim hold true for ¢ = k. For any
s € [SP, 53], the condition (5.26) gives

= CO ( U [5k+175k+1}) )

Aevt

s € | min S?A maxS
et k+17A k+1

where co (A) is the convex hull of a given set A. Combining this with (5.65),
it follows that

Aevt

5 €co ( U domj,i‘ﬂ) .
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5.3. Piecewise linear approximation

Then the value J;¥ (s) is finite by (4.5). Thus .J;" is real-valued on [SY”, S¢¥].
Moreover, from Theorems 4.3 and 4.13, the function j,’:” is convex and con-
tinuous on [S¥, S¢¥]. Since (5.64) holds true for all A € v+, it follows from the
definitions of J¥ and J;¥ (see (5.42) and (5.60)) that J¥ < Ji* on [SP, S¢¥].
From (5.61)-(5.62), the construction of J¥ is based on J;*. Since J;¥ is real-
valued, continuous, and convex on [SZ”,S,?”], the function j,’; is real-valued,
continuous, piecewise linear, convex, and it satisfies J~,‘€’ > j,;‘” on [Sb”,Sg”];
see Lemma A.10. Clearly, the function J¥ is affine on [s% ,SZH’V] for each
1=1,...,n—1. We can conclude that all conditions in the first claim hold true
for t = k. This completes the induction step, and hence the first claim holds

true for all t = 0,...,T. The second claim follows from Theorem 4.13. [

The theorem below shows that (J;)Z_, can be used to approximate (.J;)~,
when 6(n) defined in (5.57) is close to 0. More precisely, it shows that, for
any t =0,...,T and v € Q, the piecewise linear function J~t” converges to Jy

uniformly as n — oo.

Theorem 5.25. Under the assumption that (5.26) holds true, for any t =
0,...,T, there exists By € Ly4, which is independent of n, such that

JV(s) — Jt”(s)‘ < B{d(n) forallv € Q,s € {Sf”, Sf”} : (5.66)

Proof. We are going to prove this theorem by backward induction. At time
t = T, let By := 0 which is independent of n. Since Jy = Jr by (5.59),
the condition (5.66) holds true for t = T. Let k =0,...,T7 — 1. Suppose that
there exists Byy1 € (Lg+1)+, which is independent of n, such that (5.66) holds
true for t = k + 1. From Proposition 5.18.3, there exists Ay € Li, which is
independent of n, such that

|JE (1) — JE (z2)] < Af |x1 — x2| for all v € Qp, z1, 22 € [Sg”,Sg”} . (5.67)
Then we define By, € Ly as

By =Y By +A;>0forallve.
Aevt

Notice that By, is independent of n. We are going to prove (5.66) holds true
for t = k. Fix any v € Q, and s € [SP¥, S#] = [s}V, s7]. Notice that

s € {5{;’,5?1”’} for some j=1,...,n— 1.

By Proposition 5.24.1, the function .J¥ is affine on [3‘]7;/, s{jl’y] . Then by letting
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5.3. Piecewise linear approximation
s e {sf;/, siﬂ’y} such that
Ty (') = max { T (1), L (51}
we have
Ji(s) < JE(s) -
Moreover, by subtracting J/(s) on both sides, it follows that
I (s) = JK(s) < JE (s') = JK(s)-

Observe from Proposition 5.24.1 that j,’g’(s) — J{(s) > 0. Then

i () = JE(s)

Tt (s) = Ji(s)] <

< |T(S) = TE ()| + LT (8) = T ()] (5.68)

Since J¥ (s') = J;¥ (s'), the value ’j}; () = Jy (8)

in (5.68) can be written as

TES) = T ()| = |8 () = T ()

In addition, from Lemma A.6 together with the definitions of j,;”‘ (s') and
Jy (s'), it follows that

TE(s) = JE (')

< sup
A oA
(e 115%+ 1) aeut

A bA A + A _ A A _
Sk+1€ |:Sk+175;€1—0—lj| V)\EV s Z qk+1—1, Z qk+18k+1_8}‘

q2+1 e[oalL

Z ql/c\ﬂ (j12\+1 <Sﬁ+1> - Jé\ﬂ (32+1))

Aevt

Aevt Aevt

- { S b [T (s21) — e (sh)] | b € 0.1

A A
(@154 1)revt Aevt

A bA A A A
Sk+1 € [Sk+1751?+1} VA€ V+7 Z Qi1 = L, Z Ai4+15k+1 = s’ (5.69)
Aevt Aevt

In (5.69), we have ¢, € [0,1] and

‘jl;\+1 (Szﬂ) — I (Sl)c\+1)‘ >0
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This implies that
A TA A A A TA A A A
Qo1 ’Jkﬂ <5k+1) = kw1 (Sk—i-l)‘ < ‘Jk—&-l (5k+1> = kw1 <5k+1>"

Thus

Tk (s") = JE ()
= e {Z et (k1) = T ()|

A
(@hy15841)revt W Aevt

q2+1 e[ovlL

A A
3k+1 € {Sk—f—lask-i-l} VAevt, Z Qo1 = 1L, Z Qg+15k+1 = 5’}

Aevt devt

gsup{ > ‘jk/:\ﬂ (5£+1) —Jin <S£+1>’

devt

sh1 € [Sk+1,5k+1] VA € ,,+} .

Combining this with the fact that (5.66) holds true for t = k + 1, we have

T (s')

< Y Bpd(n (5.70)

devt

Moreover, by (5.67), the quantity |J} (s') — J/(s)| in (5.68) satisfies
I () = JH(s)] < AL ]S — 5| < ALo(n). (5:71)

Therefore, we can conclude from (5.68), (5.70) and (5.71) that

Ji(s) = JE(s)| < 3 Bliad(n) + AL3(n) = Bya(n)
Aevt
which means that (5.66) holds true for ¢ = k. This completes the induction

step, and hence the result follows. ]

5.4 Approximation error

In Section 5.3, a sequence of random functions (jt)tT:O was defined to approx-
imate (J;)7_, constructed in Algorithm 5.17. Forany ¢ = 0,..., T, the function
J; is dominated by J:; see Proposition 5.24.1. The objective of this section is
to find an upper bound of the approximation error for approximating (J;)7,
by using (J;)7_,. To achieve this, under (5.26), we will construct a sequence of
random functions (1&)?:0 such that J; < J; for all t = 0,...,7T. Then jt —J, is
an upper bound for the approximation error J, — J;. Moreover, for any v € €y,

the function jt” will be convex and piecewise linear on its effective domain. By
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5.4. Approximation error

using the result from Section 4.3, we can compute (jt)tT:o in binary models,
and numerical examples will be provided in Section 5.5.1.

Let n > 2 be an integer. For any t =0,...,7 — 1 and v € {4, by using the
same method in Section 5.3, we first divide the bid-ask interval [S?”, S3] into

n — 1 intervals

_17
[s¥,s7], [s2%, s3], ..., [sp™ ", 50" (5.72)
with equal length; see (5.55) for the concrete definitions of s;, ..., s . Then
we define
0 +Lv| . bA A
{St”,s? V} = Lr\relrlzr}r St“’){%?,)f St - (5.73)

1 1
Observe that [s;”,sp*] C [s9,s77""] because s/” > % and s < sp 0

see (5.26). If S = S@ which means there are no transaction costs at time ¢

on the node v, then [s}V, si] = [SP, S¢¥] is a singleton set and the sequence
ivyn+l :
(sp)y satisfies
1
S?l/<stll/:831/: -.-:S?V <S;L+ 7’/.

However, if S < S¢¥, then sequence of numbers (s{*)} is increasing, in
other words,

sV sl < << s < T (5.74)

Remark 5.26. The main result of this section is Proposition 5.33. This result
will not rely on the fact that the intervals in (5.72) are of the same width.
It only requires that (5.74) holds true in the case when S < S for every
t=0,....,7T—1and v € .

We will define F;-measurable random functions jt, jt* recursively for each
t=T,...,0; the function jt* is an auxiliary function used to construct J;. For

any v € Qr and s € R, let

(1,s)-X¥ ifse [S%V,S%V},

Ji(s) = I3 (s) = Jf(s) = (5.75)
o0 otherwise.
Lett=T—1,...,0 and v € 4. For all s € R, we define
A A (A
. ) q JN (s
JiY(s) i=lip1 o S g (m Ly ”ll( ”1)) g € [0,1],
(qt+175t+1)Aeu+ Aevt Pii1 t+1

st41 € [Sfihstaﬁl} vxevt, Z G =1, Z G150 = (5.76)

Aevt Aevt

(cf. (5.42)). Lemma 5.27 below shows that if J7,; is convex and continuous on
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its effective domain dom Jt+1 = [SP2, 5] for all A € vt then J#¥ defined

n (5.76) is also convex and continuous on its effective domain. Moreover, if
j{\+1 is dominated by Jt)\+1 for all A € v then jt* Y is dominated by J{ on the
interval [S?, S#]. Observe from (5.75) that at time t = T'— 1, all assumptions

on (j{\H))\E,ﬁ in Lemma 5.27 are satisfied.

Lemma 5.27. Suppose that jt)\-i-l :R — RU{o0} is a convex function that
is continuous on dom JPy; = [Py, S¢N] for all X € vt. Then J¥ defined
in (5.76) is an R U {oo}-valued convex function on R that is continuous on
dom J;¥ = [s%,sTHY). In addition, if J), < JXy for all X € v, then
J < JV on [SP, S0,

The proof of Lemma 5.27 above will be provided at the end of this sec-
tion. Some results established in Sections 4.1-4.2 will be used in the proof of
this lemma. Suppose now that jt* Y is real-valued, continuous, and convex on
[s%, s7t1¥]; this holds true at t = T'— 1 by Lemma 5.27 and the definition
of Jp in (5.75). Based on such J;, we will define J : R — R U {co} to be a
convex function that is continuous, piecewise linear and dominated by jt*”
dom J¥ = [SP, S¢¥]. Consider the following two cases for [s}”, s].

In the case when s/* = s let

v Jiv on [siV,sp¥] = {Sf”, Sf”} = {Sf”} : (5.77)
oo on R\ {St” } .

Notice that all desired properties for jt" mentioned in the comments preceding

(5.77) are satisfied.

In the case when s/” < sV, the definition of .J¥ is similar to but more com-
plicated than jt” defined in Section 5.3. We will define jt” in three steps; Fig-
ure 5.2 provides an example to demonstrate the procedure of defining j;’ . The
first step is to construct a convex and piecewise linear function hy with n + 1
segments on [s9”, s 7] by connecting (s}, J#¥ (s; ")) and (s, J (s1¥))
for each i = 1,...,n + 1; see Figure 5.2(a). The second step is to select a
sequence of intersections (3%, zﬁ)”ﬂ by extending the segments of hy’; see Fig-
ure 5.2(b). The third step is to define J¥ by connecting these intersections;
see Figure 5.2(c). In the following detailed construction of J” (pp. 175-180),
we shall always suppress v for simplicity.

For any i = 1,...,n + 1, we define h! as the affine function such that

hy (s71) = Ji (si7) (5.78)
hi (st) = Ji (st) (5.79)
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Ji (s)
—o— hy(s)

‘ s
sp 5 57 5} st CH
(a) Step 1: Define h; based on J;.

jt*<3>
——  Iu(s)
e intersections
0 xlfly ¥2 2 <3 3 wd 4 5 ¥6(.5 6
si  Si(st) 8 St St St St St 5 8(s7) s

(b) Step 2: Define a sequence of intersections by extending the segments of hy; here

1 1 56 _ 5
3y = s; and §) = s7.

— Ji(s)
—o— hy(s)

—— J,(s)

5 6

0 xlfly ¥2 2 <3 3 v 4 5 6
si 5 (sp) 8 St St St St St 5 8P(st) s

(¢) Step 3: Define J; by connecting the intersections in Step 2.

Figure 5.2: The procedure of defining jt” based on jt*” , where t < T, v €
and n =5 (v is suppressed in this figure)
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in other words,
hi(s) = mis+bi for all s € R

where

Tk (o Tk i—1
i_Jt(S)*Jt< ) b= 7 (1) pigic!
my = . 1 ) t = Jt | St mysy -
St — St

The affine function hi corresponds to the straightline connecting the two points

(si71, Jx(si71)) and (si, J¥(s)). Notice that
h (s%) =J; (si) = pitt (3%) for every i =1,...,n. (5.80)

By connecting (s0 1, JF(si7Y)) and (s, J7(si)) for each s = 1,...,n + 1, the

real-valued continuous piecewise linear function h; on [s9, s771] is defined as

hy = hi on {sffl, si) forallti=1,...,n, (5.81)
he := h™! on {st,sﬁﬂ} ; (5.82)

see Figure 5.2(a). Then h; satisfies

hi = hi on [sifl,sﬂ foralli=1,...,n+ 1. (5.83)
From Lemma A.10, the slopes of the affine functions h}, ..., h?“ satisfy
mp <o <mpt (5.84)

and h; is convex and satisfies hy > J; on [s), s7T1].
Remark 5.28. For any i = 1,...,n, if mi = m{™! then b} = b7 which means
hi = hitt. Indeed, we have

i id o gigai i
bt mtst + bt — mys; = hy(s;) — mys;.

Combining this with hi(s}) = hit1(si) (see (5.80)) and mi = miT!, it follows
that

bzzt — hi—i—l(s ) ?H i bH_l.

Our next objective is to select a sequence of intersections (si,gﬁ)"“ by
extending the segments of the convex and piecewise linear function h;; see

Figure 5.2(b). Firstly, let

(th,gjtl) = (s%,h% (s%)) = (sg,h? (s%)) , (5.85)
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which is an intersection of the straight lines correspond to h; and h?. Similarly,
let

(30" ) = (s bt (s7)) = (s2, 0 (s7)) (5.86)

which is an intersection of the straight lines correspond to A and h?™!. Notice
that

vl v b
[S%MS?JFI] = [5%33?] = [St,Sf]. (5.87)
Secondly, for any i = 2,...,n, we define (8, ¢!) as
_% i mi—! < mitl
Se=q e o (5.88)
3 (31_1 + s%) if mi~t =mith
gi = byt (5). (5.89)

Observe that if mi~' = mi™ then mi™! = mi = mi™! by (5.84). Then it
follows from Remark 5.28 that hi™' = hi = hi™' and the value 7 defined in

(5.89) can be written as
gi=hit(5) = hi (51) = Bt (51) (5.90)
Lemma 5.29 below shows that (5!, 9¢) is an intersection of the straight lines
correspond to hi~! and Al and that it is a point in
[t~ i) % (=00, JE(E)]-

Then the sequence (51)7%! is nondecreasing, in other words,

1 wn+1 —1

because §f = sf < 87 <---<sP=3§""and & € [s} !, s} foralli=2,...,n.

Lemma 5.29. Suppose that jt* is real-valued, continuous, and convex on
89, s7T). Then for any i = 2,...,n, the pair (5., 3}) defined in (5.88)-(5.89)

solves
Rl () = mi—lg 4 pi-l — i 591
t o (St)=my S +0 =Y, (5.91)
hitt(51) = mitts ot =g, (5.92)
and it satisfies 5 € [s071, 51 and §i < JF(3L).

The proof of Lemma 5.29 above will be provided at the end of this section.
Remark 5.30. By letting ¢ = 2 in (5.91) and @ = n in (5.92), it follows that
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hi(57) = 97 and hPTH(5P) = 9. Moreover, we have from (5.85) and (5.86)
that hi(5)) = g} and RPT (30T = g2, Then

v b4 1 A b-4 1 A ].

S?:S?-i_ —— (‘St?yt): ( n+ ,y;H_ )
In addition, the function h; corresponds to the straight line crossing (3}, 9} )
and (37,9?). Similarly, the function h?™! corresponds to the straight line

crossing (57, 9) and (3271, grt).

Remark 5.31. Suppose that 5f = sf“ for some £ = 2,...,n — 1. Then this

common value must be s¥ because §F < s¥ < ! (Lemma 5.29). Moreover,
by taking i = k in (5.92) and i = k + 1 in (5.91), it yields h¥*1(sF) = g and
hE(sF) = gFT! respectively. It follows from (5.80) that

U = th (St) = hy (St) = gf“-

Observe that (55, gF) = (351, yF™), and moreover
i (3) = ot mE(s11) = (5.93)

because sf = 5 = Vf“.

The last step is to set J; to be a continuous and piecewise linear function
on the interval [5}, 577!] by connecting the points (3%, ¢}) and (571, gi) for

each i = 1,...,n; see Figure 5.2(c).
Firstly, for every i = 1,...,n, we are going to define m, lv)ft € R such that

the affine function fvlff : R — R of the form

v

hi(s) =mis+ b
satisfies
ki (51) = i, R (50°1) = g1t (5.94)

As long as (5.94) holds true, when (3%, ¢) # (571 71, the function Al

corresponds to the unique straight line connecting (5%, ) and (371, gith).

Moreover, if (5.94) holds true for all i = 1,...,n, then
hi(s7) = hi (53), B3 (53) = h3 (80) . o Bt ) = B (57

By letting
mi=m}, bl = b}, (5.95)
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and
my = mptt, bp = bptt (5.96)

we have h} = A}l and AP = hP*'. Then Remark 5.30 implies that (5.94) is
satisfied for each i = 1,n. For any i = 2,...,n — 1, we will define m! and lv)i

by considering the following two cases. In the case when & < 5?1, we define

vi+1 v

vi Y Yy Vi i « ivi
My = S t =Yg — My Se-
St T S¢

Then the condition (5.94) is satisfied by straightforward calculation. In the

case when & = 5! we take

i = ms, b} = bi. (5.97)

This implies Al = hi, and (5.94) follows from (5.93). This completes the
constructions of ivzg, o ,}vl? Notice that the condition (5.94) holds true for
every t =1,...,n.

Now, we define J; : R — R U {oo} as

v

Ji(s) := hi(s) for any s € [éi,éiﬂ) foreachi=1,...,n—1,

v

Ji(s) := hit(s) for any s € [57,57+1]

v

Jt(S) .

oo for any s € R\ {éi, .§?+1] . (5.98)

Notice that J; is real-valued, continuous and piecewise linear on [51, 571], and
it satisfies
J; = hi on [5@, éiﬂ} foralli=1,...,n. (5.99)

The following result summarise a number of properties of jt, and its proof

will be provided at the end of this section.

Lemma 5.32. Suppose that jt* is real-valued, continuous, and convex on

(80, s7T). Then J; is R U {oc}-valued and convex on R. Moreover, it is con-

tinuous, piecewise linear, and satisfies J; < J; on dom J; = [s}, s7] = [S?, S¢].

Notice that the construction of .J; is complete. Thus, we have completed
the definition of (J7)L, and (J;)L,. Proposition 5.33 below provides a number
of properties of (J;)L, and (J;)]_,; Theorem 4.13 established in Sections 4.2
will be used to prove Proposition 5.33.3. In particular, this proposition shows
that J; is dominated by J; for all t =0,...,T, and this property will be used

to compute the approximation error of (J;),.

Proposition 5.33. Lett =0,...,T. The following claims hold true.
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1. For any v € Q, if t =T, then Jv%” is affine on dom j}” = [Shv, Sa].
Moreover, if t < T — 1, then J* is R U {oc}-valued and conver on R,

L . ¥ 1
and it is continuous on dom JF¥ = [s%, spT"].

2. For any v € Q, the function jtl’ is RU{oo}-valued and convex on R, and
it is continuous and piecewise linear on dom J¥ = [s}, sp¥] = [SP, S9¥].

Moreover, we have Jf < J¥ < J¢ on dom J{.

8. For any v € 4, in the situation when t < T — 1, there exists a solution

to the minimisation problem in (5.76) for all s € dom J;*.

Proof. Firstly, we are going to prove Claims 1-2 by backward induction. For
any v € Qr, the function JV% = j}” = J% is affine on the common effective
domain [S%, S%] by (5.75). This means that Claims 1-2 hold true for t = 7.
Let £k = 0,...,7 — 1, and suppose that Claims 1-2 hold true for t = k + 1.
Fix any v € Q. Since Claim 2 holds true for t = k + 1, for any A\ € v+
the function jl?+1 is R U {oo}-valued and convex on R, and it is continuous
on dom jl?+1 = [SP31,5¢2,]. Moreover, we have jl;\+1 < J,; on dom j,i‘H.
Observe from Proposition 5.18.1 that

A A cah 2\
dom Jiyy = [SkJrlv Sk+1] = dom Ji', 4,

and this means that J ,;\ ' < ,i‘ 1 always holds true. Then Lemma 5.27 implies
that Claim 1 holds true for ¢t = k, and

Jir < Jp on S S (5.100)

Notice that J;* is real-valued, continuous, and convex on [s ,SZ+1’V]. This
enable us to prove Claim 2 with ¢t = k by considering the following two cases.
In the case when s;” = s7¥, combining (5.77) with (5.100), Claim 2 holds true
for t = k. In the case when s;” < s@, it follows from Lemma 5.32 and (5.100)
that Claim 2 holds true for ¢ = k. This completes the induction step, and
hence Claims 1-2 hold true for all t = 0,...,7. Finally, Claim 3 follows from
Theorem 4.13. ]

This section ends with the proofs of Lemmas 5.27, 5.29, and 5.32.

Proof of Lemma 5.27. Since dom jt/\+1 = [Sfil, S?fr\ﬂ for all A € v+, we have

Aevt Aevt

co ( U domjt)‘H) =co ( U {Sfi‘l,Sfjr\l})

_ oy n+luv
= {St ) St }

= {min ShA, max S,
Aevt devt
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by (5.73), where co (A) is the convex hull of any set A. From Theorem 4.3, it

follows that J” defined in (5.76) is an R U {co}-valued convex function with
dom J;¥ = [s%, 571",

Moreover, the function J;* is continuous on dom .J;* by Theorem 4.13. In
addition, if
jt)‘+1 < Jt>‘+1 for all A € v,

then it follows from (5.76) and (5.42) that J* < JY on [S?,S%]. This
completes the proof. O

Proof of Lemma 5.29. Fix any i = 2,...,n. Firstly, we are going to show that
(5%, 9%) defined in (5.88)-(5.89) solves (5.91)-(5.92) by considering the following
two cases. In the case when mi~' < mit! by straightforward calculation, the
pair (5,9%) solves (5.91)-(5.92). In the case when m! ' = mit! it follows

from (5.90) that
m (1) = i
e () =t
Thus (3¢, %) always solves (5.91)-(5.92).
Secondly, we are going to prove that

spelsi s (5.101)

Notice from (5.84) that

mil < mi < mitl,

Consider the following two situations for mi ' and m;™'. In the situation
when m} ! = mit, we have from (5.88) that

s Ll 1

5 = 5 (sf5 —1—5,15) € (si ,si) ,
and hence (5.101) holds true. In the second situation, we assume m{ ' < mi™!,
in other words,

mitt —mi™t > 0.
Observe from (5.80) that
1 () =1 (5.

R} (si_l) =hit (sf‘:_l) :
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Then the slope mi of the affine function hi can be written as

b o) = (57

i_
Sp— S¢
thrl ( ) hz 1 ( i— 1)
- i—1
3t — St
H—l 7, bz—i—l i—1 z 1 i—1
—-m — b;
= —* : (5.102)
i1
Sp — St
From m! ' < m} and (5.102), we have
z+1 7, i+1 1—1 z 1 i—1
i-1 o My Si T+ by —my — b
i—1 ’
Sp — St
which implies
b'i—‘rl bz 1 )
5 2 i1 = = S
mt -y

by (5.88). Similarly, combining m{™ > m? and (5.102), it follows that

z+lz_|_bz+1 mzlzl_bzl

mitt > —
St — S
which means
bl+1 _ blfl
S’L—l < _ t t X
> -1 = St
mi—i—l _ m}z: 1

by (5.88) again. Thus (5.101) always holds true.
Finally, we are going to show that 7/ < J;(3}). Observe from (5.78)-(5.79)
that

Moreover, we have si~' < % by (5.101). Then it follows from (5.91) and
Lemma A.8 that

v

g = b (3) < Jf ().

This completes the proof. O

Proof of Lemma 5.32. Observe from the comments preceding (5.99) that Jy is

real-valued, continuous and piecewise linear on [3}, 3771]; the interval [3}, 377
can be written as [5], 57| = [s}, s7] = [S?, S¢] by (5.87). Moreover, it follows

from (5.98) that J; = co on R\[5}, 577!], and therefore it is enough to show
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that J; < J; on [3},5/!] and J; is convex.

The relationship between .J; and ;L%, RN B? in (5.99) implies that J; < jt*

on [5, 571 if and only if

Ry < Jion [3),51] (5.103)

forall i =1,...,n. Observe from (5.78)-(5.79) that, for any k =1,...,n+ 1,

the affine function hf satisfies
hE(s) = J7(s) for each s = sF1 sF,
where hf is affine and jt* is convex. Then Lemma A.8 gives
hF < J¥ on {s?, S?H] \ (sf‘l,sf) . (5.104)

Firstly, we are going to prove that (5.103) holds true for each k = 1,n re-
spectively. By taking k = 1 in (5.104), it follows from s¥ = s} = &} < #?
that h} < J* on [3},%?]. Similarly, by taking k = n 4+ 1 in (5.104), we have
AL < Jf on [37, 301 because 57 < 3Tl = s = sF71. Observe from the
comments following (5.96) that Al = h} and A = h?T'. Thus (5.103) holds

true for each i = 1, n.

To complete the proof of J; < Ji on [5}, 5771], we are going to show that

(5.103) holds true for every i = 2,...,n—1. Foreachi = 2,...,n—1, we define

a continuous piecewise linear function F* : [5}, 57!] — R with two segments
as

A Ritl(s) if s e [8 4],

F,(s):{t (5) 33, 51]

hi(s) if s € [si, éiﬂ} ,
where 5 < st < 57! by Lemma 5.29, and hi™!(si) = hi(si) by (5.80). Notice
that —F" is convex because the slopes of the affine functions —hi™' and —h}
satisfies —mitt < —m! (see (5.84)). Moreover, it follows from (5.104) that
hitt < J¥ on [5,s1] and hi < J; on [si, 57, and hence
Fi<Jfon [5,5"].
Observe that hit(5%) = g by (5.92), and hi(57) = it by (5.91). Combin-
ing this with (5.94), it follows that
hitt (51) = ki (31) (5.105)
ni (5171) = i (51). (5.106)
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This leads to F'(3}) = hi(3}) and F*(3T1) = hi(51+1). Consider the following

two cases of the interval [}, 57!]. In the case when 5 = 5T (ie. [3,57]
is a singleton set), we have F* = h! on [3},5.7!]. In the case when 3 < 51,
from Lemma A.8, we have —h} > —F* on [}, 5i71]. Thus

hi < F' < J;on [5,574].

This completes the proof of (5.103) for all i« = 1,...,n. Therefore, we can
conclude that .J; < J; on [5}, 5011
Finally, we are going to prove that J is convex. By the connection between
Jyand Al,... AP in (5.99), the function J; is convex if the slopes of A}, ... A
satisfy
i < - < al (5.107)

(Lemma A.9.2). To prove (5.107), by (5.84), it is enough to show that
iy € [mi, mi "] (5.108)

for all i = 1,...,n. Notice that th} = m} and m} = ml™! by (5.95)-(5.96).
Thus (5.108) holds true for each i = 1,n. Fix any ¢ = 2,...,n — 1. By
571 We are going to prove (5.108) by
iJrl]‘

Lemma 5.29, we have § < si <

considering the following two situations for the interval [5,

1. In the situation when 5 = 5/ we have from (5.97) that m} = m}, and
hence (5.108) holds true.

2. In the situation when 5 < 5i™! we are going to prove (5.108) by showing
mi < i and mitt > 1nl respectively. The slopes of the affine functions
hl, ...,k satisfy (5.84), and these functions relate to h; by (5.83),
where h; defined in (5.81)-(5.82) is continuous and piecewise linear on
[s9, 5271, We have from (5.83) that hy = R} on [si !, si] which contains
! (Lemma 5.29). Then Lemma A.9.1 gives

hi (51) = hitt (s1) -

1+1

Rt on [si, st which contains 57! (Lemma 5.29).

Similarly, we have hy =

By Lemma A.9.1 again, it follows that
Bt (5E) = mi (5.
Then (5.105) and (5.106) implies respectively that
hi (51) = by (51) (5.109)
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Bt (s7h) > By (501 - (5.110)
Observe from (5.106) and (5.109) that

i [ i+l i (i Vi [ xi+l Vi (%
. N (St ) — hy (5}) < hi (St ) —hi () ;
m, = , . = 1h}.
t vit1 «i — vi+1 vi t
St T St St T St

Moreover, it follows from (5.110) and (5.105) that

i+1 [ gitl i+l (i Pi (g1 _ i (g
hy (St ) —hi" (5) S hi (St ) —hi(5) p
Vi vi - i o == mt.
st - s -3

mit! =
Thus (5.108) holds true.

Therefore (5.107) holds true and .J; is convex. This completes the proof. [

5.5 Numerical examples in a binomial model

Consider the friction-free Cox-Ross-Rubinstein (CRR) binomial model with

parameters u, r and d such that

14u=eVr, (5.111)

1

l+r=(147)T, (5.112)

14d=e°VT, (5.113)
where o = 0.2 is used to model the volatility of the return on stock per
annum, and r. > —1 is the annually compounded interest rate. We are using
this discrete-time model with number of steps T' to approximate a continuous-
time model with horizon 1. For every t =0,...,7 — 1 and v € €);, the node v

has two successor nodes vu and vd, in other words,
vt = {vu,vd}. (5.114)

The transition probabilities from v to vu and from v to vd are given respect-

ively by
vu _ P(vu)
pt+1 = ]P)(I/) =D, (5115)
v P(vd)
Pl = B 1—p, (5.116)



5.5. Numerical examples in a binomial model
where p € (0,1). Moreover, the friction-free stock price satisfies

Syt =(1+wsy
Syt =(1+d)sy

with Sy = 100 given. The pricing results established in this thesis are based
on discounted asset prices, and we are going to construct (Sf,Sf)%’;O based
on the discounted asset prices in this CRR model. We denote the discounted
stock price by

St:it forallt=0,...,T.

(1+1)
Notice that Sy = Sy and Sp = lii because (1 + r)T =1+r. Given a
transaction cost parameter k € [0,1), at time t = 1,...,7T, we define the bid

and ask prices of the stock as

Sg = (1 + k)gta

Moreover, for convenience, we assume S§ = 5’8 = Sy, in other words, there
are no transaction costs at time 0. Observe that the market model (S7, )L
depends on 7. and k. In most examples, the parameter r, will be zero, except
in Example 5.48, we provide the indifference prices for different values of r,.
The theorem below shows that, as long as d < r < u, the condition (5.26) holds
true, which means that the robust no-arbitrage condition also holds true; see
Theorem 5.13. In all numerical examples, the condition d < r < u will be
satisfied.

Theorem 5.34. Ifd < r < u, the market model (S}, SM)L, satisfies (5.26).

Proof. Suppose that d <r <u. Forany t =0,...,7 — 1 and v € {), we have

bvd _ wa _ (L=K)Sy  (1+d)1-k)SY  1+d 4w
S =1 —k)S{h = A+0t (o 1+r5t <5

_ (L+k)Sry,  (1+w(1l+k)SY 1+u
aru — 1 ru — — — av av
w1 = L+ RS (14 1)tt? (141)t+l 1+r Si7 > 50

Combining this with S?*¢ = minyc,+ SP3; and SPY = maxyc,+ S8, the
condition (5.26) is satisfied. O

With the exponential regret functions defined in (5.1), the value of Kz
defined in (5.7) is important for computing the regret indifference prices defined
in (3.51)-(3.52); see Theorem 5.7. Moreover, the value of K7 is used to com-

pute the value of A defined in (5.11), and ) is essential for the calculation of
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the optimal value and the solution to the problem (3.19); see Theorems 5.5
and 5.6. Let X € £%, and we are going to introduce a method to approximate
K7(X). Tt follows from Theorem 5.20 together with S§ = S§ = Sy that K7(X)
can be written as
Kz(X)= inf Jo(s) = Jo(5), (5.117)
s€[58,5]
where (J;)]_, is a sequence of random functions constructed in Algorithm 5.17

from the terminal value

1,s)- X if St < s <S4,
JT(S)_{< ) b<s <8t

00 otherwise.

In order to approximate K7(X), we shall always use the piecewise linear ap-
proximation (jt)tT:O introduced in Section 5.3 to approximate (Jt)tT:o- At time
T, we have Jp = Jp by (5.59). At time t =0,...,7 — 1 and node v € , the
function jt” is a piecewise linear approximation of J; with N:=n-1 seg-
ments, where n — 1 is the number of intervals in (5.54). Moreover, it follows
from (5.58) and Theorem 5.25 that J? converges uniformly to J¥ as N — co.
By (5.117), we have K7(X) = Jo(So), and this motivates us to approximate
Kz(X) by

K7 (X) == Jo(So). (5.118)

Since J~O(S’0) depends on N, the quantity Kz (X) also depends on N, and

lim Kz (X) = lim Jy(So) = Jo(So) = K7 (X). (5.119)

N—oo N—o0

Observe from Jo(S0) > Jo(So) (Proposition 5.24.1) that
K7 (X) > K1 (X) (5.120)

Thus K7 (X) converges to K7 (X) from above. We will discuss the perform-

ance of this approximation in the next section.

We are now going to introduce the approximation of indifference prices
based on Kz. For any ¢ = (¢,)T_q,¢ = (¢&)T_, € N2, let

70i(c;e) = Ky (zfzoat) ~K; (Zfzo(@ - ct)) (5.121)
and
#(e;0) = Kz (Xo(e +e)) - Kz (S (5.122)

cf. Theorem 5.7). We will use 7% (¢; &) and 7% (c; €) to approximate the indif-
( F F
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5.5. Numerical examples in a binomial model

ference prices 7% (c; ¢) and 7% (c; ¢) respectively. By Theorem 5.7 together with
(5.119), the quantities 7& (c;¢) and & (c; ) converge respectively to 7 (c; ¢)
and 7% (c; €) as N — co. In Section 5.5.3, we will provide numerical examples
to compute 7% (c; ¢) and 7% (c; €). Notice that 7% (c; €) and 7% (c; ¢) only relies
on Y F ocr and 7 (¢ Thus, to calculate 7% (c;¢) and 7% (c;¢), as long as
Efzoct and Z;ZO ¢ are given, it is not required to know every random variables

COy -+ CT,CQy -, CT

5.5.1 Approximation error

In this section, we will compute the values of (J;)L_, and (J;)L, introduced
in Sections 5.3 and 5.4 respectively. Firstly, we will provide examples to plot
J;” and jtV at some time ¢t = 0,...,7 —1 and node v € ;. Secondly, by taking
K7 (X) := Jo(So), we will compute the value K7 (X) — Kz(X) in numerical
examples, where K7 (X) — K7(X) is an upper bound of the approximation
error K7 (X) — Kz(X). Based on the values of K7 — K7, we will present an
upper bound for |7 —7&| and an upper bound for |7% — 7% in Theorem 5.36.

In Sections 5.3 and 5.4, the sequences of random functions (jt)g;o and
(jt)tho are constructed respectively by backward induction with a common

terminal value

Jr(s) = Jr(s) = Jr(s) = {(1’ XS <8< S
o0 otherwise.
Notice from the comments preceding (5.118) that (J;)Z_, depends on the in-
teger N which is the number of segments used in the piecewise linear approx-
imation. Similarly, the sequence of random functions (jt)tT:o depends on the
integer N := n — 1 which is the number of intervals in (5.72). Moreover, for
any t =0,...,7—1 and v € €y, the function jt” is a piecewise linear function
with N + 1 segments, and it is dominated by J¥ (Proposition 5.33.2).
Let

Callf(4) = (= Al(g,5ay, 1{sy>a3) forall A >0, (5.123)

where Call¥.(A) is the payoff of a call option delivered by portfolio with strike
price A, and “P” in the superscript stands for portfolio delivery. In the follow-
ing example, we will plot jt” and Jvf at some time t = 0,...,7 — 1 and node
Ve Qt.

Example 5.35. Let T'= 52, r. = 0%, p=0.5,Z ={0,...,T}, and ay = 1 for
all t € Z. Moreover, we set N =120 and N = 200. In addition, let v € Qg
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5.5. Numerical examples in a binomial model
be the node such that
Sty = S = Soe®V Te 137V = 82 35384,
In Figure 5.3, we plot jfg and J¥, on their common effective domain
[st5,518] = (1 = k)St, (1 + k) St

for & = 0.5% and various X. In Figures 5.3(a)-5.3(c), we set X to be 0,
Call?'(100), and —Call}(100) respectively. It shows that J%, and .J%, are con-
vex, and they are not necessarily monotonic; see Figure 5.3(b). Moreover, the
values of =71V9 and jl”g are extremely close. This shows the accuracy of using
jfg to approximate J¥, because their values satisfies Jty < Jfy < jfg. For
comparison, we provide jl”g and j1”9 in Figure 5.4 for the increased transac-
tion costs value k = 3%. Figures 5.4(a)-5.4(b) show that there is an obvious
gap between jfg and jfg. Moreover, comparing to Figure 5.3, the curves in
Figure 5.4 tend to be more flat at the bottom.

Figure 5.5 contains plots of ji’g, ~§’6‘, and ,72”51 on their effective domains
for k = 0.5%, where {vu,vd} are the collection of successor nodes of v (see
(5.114)). The function J%, is constructed from J¥ and Jy¢. Moreover, on
dom J¥, = [S¥8,5%8], the function J% can be regarded as a “twisted convex
hull” of J&¢ and J&¢. Observe that there is no overlap between the effective do-
mains when k£ = 0.5%. The functions jfg, jé’éﬁ and jé’(‘)i for the increased value
k = 3% are provided in Figure 5.6. Due to the larger size of transaction costs,
there are overlaps between their effective domains. All curves in Figure 5.6
tend to be more flat at the bottom when compared to their counterparts in

Figure 5.5.

Now, we define
K1 (X) = Jo(So) (5.124)

which is a lower bound for Kz (X) because Jy(Sp) < Jo(So) = Kz (X) by
Proposition 5.33.2 and (5.117). Combining (5.120) with K7 (X) < Kz (X),

we can conclude that

N

0< Kz (X)—Kz(X)<Kz(X)-Kz(X). (5.125)

This means that K7 (X) — K7 (X) is an upper bound of the approximation
error K7 (X) — K7(X). The following result gives an error bound of the
approximations 7% and 7% (defined in (5.121) and (5.122)) of 7& and 7%.
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—_— TV ... TV
J19 J19

0.05 - |

0.04 - |

0.03 - i

0.02 |- |

0.01 |- |

0.66 - |

0.655 - a

0.65 - i

0.645 - |

—-0.8 | -

—0.85 |- |

—09} 2

—0.95 |- i

| | | | | | | | |

|
82 82.2 82.4 82.6 82.8

(¢) X = —Call}(100)

Figure 5.3: The values of J%, and J¥, on {S%, S‘fg”} with £ = 0.5%
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TV n. TV
J19 J19

0.05 -
0.04 |-
0.03 -
0.02 |-

0.01 |-

0.41 |-

0.4

0.39 -

0.38 |-

0.37 -

(b) X = Call}(100)
—0.8 — T

—1.2 |

—1.4F -

~16} .

—1.8}| -

(¢) X = —Call}(100)

Figure 5.4: The values of J%, and J% on [S%, 5% | with k = 3%
19 19 195219
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—_ T . Jru — 0 Tud
J19 J20 J20

0.05 i |
0.04 |- |
0.03 - |
0.02 |- |

0.01 |- |

0.9 -
0.8 |
0.7} |
0.6 |

0.5 |

041 S—— |

—04 T T T [ I ]

sl N\ ;
\ i

_14 | | | | | |
80 81 82 83 84 85

(c) X = —Call:(100)

Figure 5.5: The values of jfg, Jgg and jQV(‘)i on their effective domains with
k=0.5%
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—_— T o Jru — 0 Tud
J19 J20 J20

0.05 - il

0.04 |- il

0.03 - il

0.02 |- il

0.01 |- il

0.6 - / 4
L o |

0.5 il

0.4} \ / .

0.3 il

0.2 [ [ [ [ [ 1

T T T T T T
—0.5 i

_25 L I I I I I I I I I I il

(c) X = —Call:(100)

Figure 5.6: The values of jfg, jé’é‘ and jQV(‘)i on their effective domains with
k= 3%
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5.5. Numerical examples in a binomial model

Theorem 5.36. Let ¢ = (¢;)}_y,¢ = (¢)}_y € N?, and let

X =,
Xai = Z?:O(Et - ct)’
XU =g + ).

Then

N

78 (c;) — mi (e; )| < max {Kr(X) - Kz(X), Kz(X*) - Kr(X*)}

and
’%%i(c; &) — (e E)‘ < max {fff()_{) — K7(X), Kz(X") — IV(I(X“)} '

Proof. Fix any Y, Z € £3. Observe from (5.125) that

~

0< Kz (Y)—Kz(Y)< Kz (Y)—Kz(Y)

and

~

0<K7(Z)—Kz7(Z)<K7(Z)— Kz (Z).
Then

(K2 (V) = Kz(2)) = (Kz (v

~—

- K1(2))|

K1 (Y)~ Kz (Y)) ~ (K1 (2) - Kz(2)

Il
~—~

=)

?

)
< max {K7 (V) - Kz (Y), K1 (Z) - Kz(2)}
< max {E (Y) - K7 (Y),K7(Z) — K1 (Z)}

the first inequality follows from K7 (Y)—Kz (Y) > 0 and K7 (Z)— K71 (Z) > 0.
By letting Y = X and Z = X% it yields

|(Kz(X) = Kr(X*)) — (Kz(X) - Kz(X))]
< max { Kz(X) - Kz(X), Kz(X") - Kz(X*)} .
Similarly, by taking Y = X% and Z = X, it follows that
|(Kz(X") - Kz(X)) — (Kz(X") ~ Kz(X)))|
< max {R}(Xbl) — IV{I(XM), R:I(X) — KI(X)} .
Therefore, the result follows from (5.121)-(5.122) and Theorem 5.7. O
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5.5. Numerical examples in a binomial model

We are going to compute K7 (X) — Kz (X) in Examples 5.37-5.41 below.
For convenience, in addition to Cally defined in (5.123), we define Call$, Put$,

and Put? as

Call$(A) := (max(St — 4,0),0) (5.126)
Put$(A) := (max(A — Sr,0),0) (5.127)
Put;(A) = (A]-{ST<A}7 _1{ST<A}) (5.128)

for all A > 0. The random variable Call$(A) (resp. Put$(A)) represents the
payoff of a European call (resp. put) option delivered by cash with strike price
A; here “C” in the superscript stands for cash delivery. Similarly, the random
variable Putg(A) is the payoff of a European put option delivered by portfolio
with strike price A.

In Examples 5.37-5.39 below, we will compute the value K7(X) — K7(X)
for different values of X in the models with 1" = 52. Then, in Examples 5.40-
5.41, we will present K7(X) — K7(X) in the models with larger number of
steps T

Example 5.37. Let T =52, 7. = 0%, p = 0.5, k = 0.5%, Z = 7% and oy = 1
for all t € Z, where Z® = {0,...,T} by (5.2). We calculate both K7(X)
and KI(X ) for different values of X, N, and N, in Table 5.2. The values
K7(X) and K7(X) appear to converge to the same value (up to 3 decimal
places) as N and N increase. However, the speed of convergence of K7(X)
is faster than K7(X). In the case when N = 20 and N = 300, we have
K7(X) — K7(X) < 0.00302, and this means that the error of approximating
K7(X) by K7(X) with N = 20 will not exceed 0.00302 by (5.125). The values
of K7(X) and K7(X) in the case when X = Call}’(100) are equal to that in
the case when X = Puth(100). Similarly, the values of Kz(X) and K7(X) in
the situation when X = —Call%(100) are equal to that in the situation when
X = —Putf(100). This is because of the symmetry between Call?(100) and
Put}(100), and the symmetry of the stock price movement. Similar pattern
can be observed in Examples 5.38-5.41 as well, and we shall not mention it

repeatedly.

Example 5.38. In this example, the values of T, 7, p, Z, and (a;)}_, are
set to be the corresponding values used in Example 5.37 above. Then we
compute K7(X) — Kz(X) for k = 1%,2%, 3% which is higher than k = 0.5%
in Example 5.37; see Table 5.3. The lower bound IV(I(X ) is calculated using
N = 300. To achieve K7(X) — Kz(X) < 0.01, the integer N = 30 is already
enough when k = 1%. However, when k = 2% (resp. k = 3%), we need N
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5.5. Numerical examples in a binomial model

N=N
20 30 60 120 200 300
X=0
Kz(X) | 0.05749 0.05693 0.05662 0.05651 0.05647  0.05647
Kz(X) | 0.03120 0.04060 0.04854 0.05448 0.05612  0.05643
€ 0.02628  0.01633  0.00808  0.00203  0.00035  0.00004
X = Call$(100)
) | 7.35275 7.35109 7.35014  7.34991  7.34986  7.34985
) | 7.31948 7.33652 7.34630  7.34909  7.34966  7.34974
€ 0.03328  0.01457  0.00385  0.00083  0.00020  0.00011
X = —Call$(100)

X) | -8.48622 -8.48739 -8.48818 -8.48835 -8.48839 -8.48841
K7(X) | -8.51621 -8.50276 -8.49202 -8.48890 -8.48852 -8.48845
€ 0.02999  0.01536  0.00384  0.00054 0.00013  0.00005
X = Put$(100)

X) | 7.37622 7.37454 7.37359 7.37336 7.37331  7.37329
Kz(X) | 7.33926 7.35772 7.36928 7.37247 7.37314  7.37323
€ 0.03696  0.01682  0.00431  0.00089  0.00016  0.00007
X = —Put%(100)

Kz(X) | -8.43004 -8.43123 -8.43202 -8.43220 -8.43224 -8.43225

X) | -8.45978 -8.44443 -8.43576 -8.43274 -8.43243 -8.43235
€ 0.02974  0.01320  0.00374  0.00054  0.00019  0.00010
X = Call¥’(100)

) | 7.56499  7.56333  7.56238 7.56215 7.56210  7.56208
) | 7.52811 7.54753  7.55786 7.56116 7.56184  7.56198
€ 0.03688  0.01581  0.00452  0.00099  0.00025  0.00010
X = —Call%(100)

) | -8.24621 -8.24738 -8.24817 -8.24834 -8.24838 -8.24839
) | -8.27724 -8.26181 -8.25248 -8.24903 -8.24858 -8.24848
€ 0.03103  0.01443  0.00432  0.00069  0.00021  0.00009
X = Put$(100)

) | 7.56499  7.56333  7.56238 7.56215 7.56210  7.56208
) | 7.52811 7.54753  7.55786 7.56116 7.56184  7.56198
€ 0.03688  0.01581  0.00452  0.00099  0.00025  0.00010
X = —Put?(100)

Kz(X) | -8.24621 -8.24738 -8.24817 -8.24834 -8.24838 -8.24839
K7(X) | -8.27724 -8.26181 -8.25248 -8.24903 -8.24858 -8.24848
€ 0.03103  0.01443 0.00432 0.00069 0.00021  0.00009

Table 5.2: The values of Kz(X), Kz(X), and € := K7(X) — K7(X), where
T=521.=0% p=0.5k=05% Z=TI%=1{0,...,T}, and oy = 1 for all
tel
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5.5. Numerical examples in a binomial model

k| Kz(X) N
30 60 120 200 300
X=0
1% | 0.01958 | 0.00205 0.00096 0.00056 0.00048 0.00045
2% | -0.00008 | 0.00167 0.00047 0.00011 0.00009 0.00008
3% | -0.00165 | 0.00174 0.00166 0.00165 0.00165 0.00165
X = Call$(100)
1% | 6.81311 | 0.00437 0.00138 0.00064 0.00048 0.00043
2% | 5.93487 | 0.01602 0.00557 0.00298 0.00243 0.00226
3% | 5.23887 | 0.03264 0.01206 0.00670 0.00550 0.00513
X = —Call$(100)
1% | -9.04626 | 0.00296 0.00086 0.00036 0.00024 0.00021
2% | -10.03788 | 0.00890 0.00308 0.00169 0.00138 0.00129
3% | -10.94115 | 0.01510 0.00538 0.00292 0.00240 0.00224
X = Put$(100)
1% | 6.84863 | 0.00434 0.00127 0.00052 0.00036 0.00031
2% | 5.97302 | 0.01558 0.00488 0.00220 0.00163 0.00145
3% | 5.25068 | 0.03025 0.01007 0.00444 0.00321 0.00284
X = —Put%(100)
1% | -8.92060 | 0.00320 0.00104 0.00052 0.00040 0.00036
2% | -9.72728 | 0.01007 0.00386 0.00236 0.00204 0.00194
3% | -10.37110 | 0.01821 0.00740 0.00465 0.00410 0.00392
X = Call¥’(100)
1% | 7.18669 | 0.00457 0.00152 0.00075 0.00059 0.00054
2% | 6.51795 | 0.01882 0.00671 0.00383 0.00320 0.00300
3% | 5.90147 | 0.04380 0.01771 0.00951 0.00808 0.00764
X = —Call¥(100)
1% | -8.58377 | 0.00320 0.00108 0.00057 0.00045 0.00041
2% | -9.18987 | 0.00992 0.00400 0.00257 0.00225 0.00216
3% | -9.76007 | 0.01795 0.00778 0.00514 0.00461 0.00444
X = Put?(100)
1% | 7.18669 | 0.00457 0.00152 0.00075 0.00059 0.00054
2% | 6.51795 | 0.01882 0.00671 0.00383 0.00320 0.00300
3% | 5.90146 | 0.04380 0.01771 0.00952 0.00808 0.00764
X = —Putk(100)
1% | -8.58377 | 0.00320 0.00108 0.00057 0.00045 0.00041
2% | -9.18987 | 0.00992 0.00400 0.00257 0.00225 0.00215
3% | -9.76007 | 0.01796 0.00778 0.00514 0.00461 0.00444

Table 5.3: The value Kz(X) — Kz(X) (Kz(X) is calculated using N = 300)
for various k, where T' = 52, r. = 0%, p = 0.5, T = Z%® = {0,...,T}, and
ar=1forallt el
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p Kz(X) N
30 60 120 200 300
X=0

0.35 | 56.64396 | 0.00104 0.00044 0.00015 0.00010 0.00008
0.55 |  8.04955 | 0.00077 0.00025 0.00012 0.00008 0.00007
0.75 | 203.80438 | 0.00199 0.00047 0.00019 0.00012 0.00010
X = Call$(100)

0.35 | 64.30597 | 0.00090 0.00030 0.00009 0.00007 0.00006
0.55 | 15.58841 | 0.00184 0.00055 0.00022 0.00014 0.00012
0.75 | 211.51973 | 0.00183 0.00068 0.00028 0.00017 0.00014
X = —Cali$(100)

0.35 | 48.42610 | 0.00191 0.00071 0.00026 0.00017 0.00014
0.55 | -0.20737 | 0.00133 0.00042 0.00015 0.00010 0.00008
0.75 | 195.62750 | 0.00047 0.00017 0.00008 0.00006 0.00005
X = Put$(100)

0.35 | 64.43553 | 0.00092 0.00030 0.00009 0.00007 0.00006
0.55 | 15.58125 | 0.00183 0.00054 0.00021 0.00014 0.00012
0.75 | 211.43369 | 0.00183 0.00069 0.00028 0.00017 0.00014
X = —Put%(100)

0.35 | 48.38915 | 0.00193 0.00071 0.00026 0.00017 0.00014
0.55 | -0.11396 | 0.00134 0.00043 0.00016 0.00010 0.00008
0.75 | 195.81535 | 0.00048 0.00016 0.00008 0.00006 0.00005
X = Call¥:(100)

0.35 | 64.53716 | 0.00091 0.00030 0.00009 0.00007 0.00006
0.55 | 15.78152 | 0.00182 0.00054 0.00021 0.00014 0.00011
0.75 | 211.64781 | 0.00183 0.00068 0.00028 0.00017 0.00014
X = —Callf:(100)

0.35 | 48.60124 | 0.00194 0.00071 0.00026 0.00017 0.00014
0.55 |  0.04034 | 0.00134 0.00042 0.00015 0.00010 0.00008
0.75 | 195.87862 | 0.00048 0.00017 0.00008 0.00006 0.00005
X = Put¥(100)

0.35 | 64.53716 | 0.00091 0.00030 0.00009 0.00007 0.00006
0.55 | 15.78152 | 0.00182 0.00054 0.00021 0.00014 0.00011
0.75 | 211.64781 | 0.00183 0.00068 0.00028 0.00017 0.00014
X = —Putk(100)

0.35 | 48.60124 | 0.00194 0.00071 0.00026 0.00017 0.00014
0.55 |  0.04034 | 0.00134 0.00042 0.00015 0.00010 0.00008
0.75 | 195.87862 | 0.00048 0.00017 0.00008 0.00006 0.00005

~

Table 5.4: The value Kz(X) — Kz(X) (Kz(X) is calculated using N = 300)
for various p, where T = 52, r, = 0%, k = 0.5%, T = It = {0,...,T}, and
ar=1forallt el
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X T | T [ Kz(X) N
60 120 250
Loo | Z7 | 0.10673 | 0.00088 0.00055 0.00046
0 7V | 0.00275 | 0.00003 0.00001 0.00001
o5 | 2| 0.26401 | 0.00476 0.00250 0.00180
7V | 0.00271 | 0.00009 0.00006 0.00005
Loo | Z7 | 752083 [ 0.00130 0.00055 0.00036
CallS(100) 7V | 6.74211 | 0.00038 0.00028 0.00026
T o5 | I | 7.86522 | 0.00547 0.00214  0.00109
7V | 6.74144 | 0.00123 0.00090 0.00081
Loo | Z7 | 834602 | 0.00094 0.00032  0.00016
_ Callg(100) 7V | -9.17638 | 0.00009 0.00004 0.00002
T o5g | I | -8.04841 | 0.00470 0.00202 0.00117
7U | -9.22013 | 0.00036 0.00016 0.00010
Loo | Z7 | 753824 [ 0.00122 0.00046 0.00027
Put§(100) 7V | 6.77057 | 0.00018 0.00008 0.00005
T o5 | L | 7.86010 | 0.00550 0.00213 0.00108
7V | 6.77037 | 0.00070 0.00036 0.00027
Loo | Z7 | 828506 | 0.00113  0.00050 ~0.00033
_PutS(100) 7U | -9.12307 | 0.00027 0.00022 0.00020
T o5 | I | -7.95383 | 0.00466 0.00203 0.00120
7V | -9.16653 | 0.00083 0.00063 0.00058
Loo | Z7 | 772968 | 0.00138 0.00062 0.00043
CallB(100) 7V | 6.96042 | 0.00039 0.00029 0.00027
T o5 | 27| 805636 | 0.00562 0.00229 0.00124
7V | 6.96242 | 0.00125 0.00092 0.00083
Lo0 | Z7 | 810703 [ 0.00113  0.00051 0.00035
_ Call2(100) 7U | -8.92587 | 0.00025 0.00020 0.00019
T o5 | I | -7.80529 | 0.00491 0.00226 0.00143
7U | -8.96912 | 0.00080 0.00061 0.00056
Loo | Z7 | 772968 | 0.00138 0.00062 0.00043
Put(100) 7V | 6.96042 | 0.00039 0.00029 0.00027
T o5 | 2| 805636 | 0.00562 0.00229 0.00124
7V | 6.96242 | 0.00125 0.00092 0.00083
Loo | Z7 [ 810703 [ 0.00113  0.00051 0.00035
_PutB(100) 7U | -8.92587 | 0.00025 0.00020 0.00019
T o5 | I | -7.80529 | 0.00491 0.00227 0.00143
7U | -8.96912 | 0.00080 0.00061 0.00056

Table 5.5: The value Kz(X) — Kz(X) (Kz(X) is calculated using N = 300)
for various T' and Z, where r. = 0%, p = 0.5, k = 0.5%, and oy = 1 for all
tel
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X K7(X) N
10 20 40 60 120
0 0.00254 | 0.00044 0.00037 0.00032 0.00030 0.00025

Call%(lOO) 6.73981 | 0.09711 0.02791 0.01122 0.00816 0.00632
—Call%(lOO) -9.24228 | 0.07325 0.01396 0.00469 0.00274 0.00152
Put%(lOO) 6.76864 | 0.09762 0.02779 0.01095 0.00786 0.00598
—Put%(lOO) -9.18969 | 0.07471 0.01575 0.00648 0.00453 0.00331
Call?(lOO) 6.96235 | 0.09830 0.02853 0.01180 0.00870 0.00682
—Call%(100) | -8.99257 | 0.07385 0.01536 0.00637 0.00448 0.00330
Put}(100) 6.96234 | 0.09832 0.02854 0.01181 0.00871 0.00684
—Put?(100) | -8.99260 | 0.07387 0.01539 0.00639 0.00450 0.00332

N

Table 5.6: The value K7(X) — Kz(X) (Kz(X) is calculated using N = 120)
for T = 1000, where 7. = 0%, p = 0.5, k = 0.5%, T = ZV = {T}, and oy = 1
forallteZ

to be at least 60 (resp. 120). As expected, in order to keep the same level
of accuracy for approximating K7(X), we should choose a higher value of N

when £ increases.

Example 5.39. Weset T = 52, r, = 0%, k = 0.5%, Z = I, and a; = 1 for all
t € Z. By considering different values of p which is the parameter forming the
market probability, we present the value K7(X) — K7(X) in Table 5.4; again
K7(X) is calculated using N = 300. As N increases, the value K7(X)—Kz(X)
decreases and appear to converge to 0. Moreover, this difference is less than
0.002 when N = 30 for all different values of p. In the case when p = 0.55,
the value IV(I(X) is significantly less than that when p = 0.35,0.75.

Example 5.40. Let 7. = 0%, p = 0.5, k = 0.5%, and oy = 1 for all t € .
We compute the difference between K7(X) and Kz(X), for T = 100,250,
7 =718 1Y, N = 300, and various values of N and X, in Table 5.5; here
TV = {T} by (5.3). It shows that K7(X) — K7(X) < 0.00562 when N > 60
in all cases. However, in the case when Z = ZV| the value K7(X) — K7(X)
is remarkably less than that when Z = Z®. Similarly, in the situation when
T = 100, the value K7(X) — K7(X) is less than that when T = 250. As
expected, approximation error increases as the trading dates T increases. In
order to maintain a certain level of accuracy for approximating K7(X), we

should set N to be a greater number when 7T increases.

Example 5.41. We take r, = 0%, p = 0.5, k = 0.5%, Z = ZY, and oy = 1
for all t € Z. Our final example is to compute K7(X) — K7(X) for T = 1000,
N = 120, various values of N and X ,and Z = ZY, in Table 5.6. It suggests
that the upper bound of the approximation error K7(X) — Kz(X) will not
exceed 0.00871 when N > 60.
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5.5. Numerical examples in a binomial model
5.5.2 Optimal injections and minimal regret

In this section, we will present the numerical solution to the problem (3.19)
with the sequence of regret functions defined in (5.1) in a number of examples.

Let X = —Zfzout, where u = (u;)}_, € N? is given and u represents the
investor’s liability. We are going to introduce a method to approximate the

minimal regret V (u); see Theorem 5.5 for a formula of V(u). Let

A (u) == exp [Zt; T (Z o _ E(X))]

(cf. (5.11) and Theorem 5.5). Observe that A (u) depends on K7(X), and
hence it depends on N; see (5.119) and the comments preceding it. Combining
(5.119) and (5.11), we have

where A (u) defined in (5.11) is the unique solution to the problem (5.10); see

Proposition 5.4. This means

lim V()= A@w) Y~ — |7) = V (w)

N—o0 teT Qi

(Theorem 5.5). We will use A (u) and V(u) to approximate A(u) and V()

respectively. This completes the construction of the approximation of V(u).

Based on (J;)L,, a pair (Q,5) is constructed in Algorithm 5.19, where
(@, S) € P is a solution to the problem (5.7); see Theorem 5.20. By ap-
proximating (J;)", by (J;)L, in this algorithm (i.e. using (J;)7_, instead
of (J))L,), we can construct a pair (Q,S) based on (J;)I_, to approximate
(@, S ). One can show that (@, S ) € P by using a similar method in proving
(Q, 8) € P in the beginning of the proof of Theorem 5.20 (see p. 164). In the
situation when (Q, S) € P (i.e. Q(w) > 0 for all w € Q), we define (7)1, € N

as

1 AAY
o= HEET (5.129)
0 it te{0,...,TI\Z

(cf. Theorem 5.6). In all numerical examples presented in this section, we
always have (Q,S) € P. We will use (#;)Z, to appproximate (&)L, con-

structed in Theorem 5.6; the process (aﬁt)tho represents the optimal injection
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5.5. Numerical examples in a binomial model

Injection z;* Increment AZ}*
Node Time step Time step
velly| t=0 t=1 t=2 t=1 t=2
kE=0% k=0%

U 2.35061  2.27740  2.20419 | -0.07321 -0.07321
ud 2.35061  2.27740  2.34561 | -0.07321  0.06821
du 2.35061 241882  2.34561 | 0.06821 -0.07321
dd 2.35061  2.41882  2.48703 | 0.06821  0.06821
k= 0.5% k=0.5%

U 2.52366  2.44787  2.44810 | -0.07580  0.00024
ud 2.52366  2.44787  2.44763 | -0.07580 -0.00024
du 2.52366  2.59412  2.52091 | 0.07045 -0.07321
dd 2.52366  2.59412  2.66233 | 0.07045  0.06821
k= 3% k=3%

U 3.39788  3.31135  3.62275 | -0.08653  0.31140
ud 3.39788  3.31135  2.85669 | -0.08653 -0.45466
du 3.39788  3.47751  3.40431 | 0.07964 -0.07321
dd 3.39788  3.47751  3.54573 | 0.07964  0.06821

Table 5.7: Optimal injection (Z;)7—, and injection increment (AZ;)7, for
various values of k, where N = 90, 37 ju; = Call§' (100), 7. = 0%, p = 0.5,
Z={0,1,2},and oy =1 forallt € Z

at each time step and it solves the problem (3.19) with the sequence of regret
functions defined in (5.1).

Notice that, as long as 3"7_guy is given (without knowing (u;)L,), we can
compute X = =37 u; and then compute X(u), V(u), and (Z;)]_y. Thus,
in the examples below, we will directly specify ZtT:()Ut instead of defining
(ug)_y. In Examples 5.42-5.45, we will present the optimal injection (Z;)?_,
in a model with 7" = 2 by varying parameters k, p, (a¢)iez, and Z respectively
and keeping other parameter values fixed; the integer N will set to be 90.
In particular, the injection increment (AZ;)?_; = (Z; — Ty_1)7; will also be
provided in Examples 5.42-5.44.

Example 5.42. Let r. = 0%, p = 0.5, Z = {0,1,2}, and oy = 1 for all
t € Z. Then we compute (Z;)7, and (AZ;)7, with S22, u; = Call$(100) in
the models with k& = 0%, 0.5%, 3% respectively in Table 5.7. Notice that the
process (Z;)?_, is recombinant only when k& = 0%. In addition, the size of
cash injection (Z;)?_, tends to be larger when k is higher. By straightforward
calculation, we have CallS'(100) = 0 on d = {dd,du}, and the increment of
cash injection AZs on d is the same for all different k. The minimal regret
V(u) in this example is given by 28.47585, 34.42259, 86.70179 respectively for
k = 0%,0.5%, 3%.
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5.5. Numerical examples in a binomial model

Injection z;* Increment AZ}*
Node Time step Time step
vefa | t=0 t=1 t=2 t=1 t=2
p=20.2 p=0.2
Uy 2.30467 3.14516 4.02171 | 0.84050 0.87654
ud 2.30467 3.14516 2.71339 | 0.84050 -0.43178
du 2.30467 1.90512 2.66975 | -0.39955 0.76463
dd 2.30467 1.90512 1.56677 | -0.39955 -0.33835
p=20.5 p=0.5
Uy 2.47380 2.39800 2.35825 | -0.07580 -0.03975
ud 2.47380 2.39800 2.43623 | -0.07580 0.03823
du 2.47380 2.54425 2.47104 | 0.07045 -0.07321
dd 2.47380 2.54425 2.61246 | 0.07045 0.06821
p=20.8 p=0.8
uY 2.20680 1.66100 1.19123 | -0.54580 -0.46977
ud 2.20680 1.66100 2.57705 | -0.54580 0.91605
du 2.20680 3.19354 2.65033 | 0.98674 -0.54321
dd 2.20680 3.19354 4.17805 | 0.98674 0.98450

Table 5.8: Optimal injection (Z;)7—, and injection increment (AZ;)7, for
various values of p, where N = 90, Y2_, u; = Call}' (100), 7. = 0%, k = 0.5%,
Z={0,1,2},and oy =1 forallt € Z

Example 5.43. In Table 5.8, we present the processes (7;)7_, and (AZ;)7_,
with 3°2_ou; = Call5(100) for p = 0.2,0.5,0.8, where r. = 0%, k = 0.5%,
Z =1{0,1,2}, and ay = 1 for all ¢ € Z. The higher value of p leads to higher
values of AZ¢, AzY?, and AZ$?, but leads to lower values of AZY, ATYY,
AZ$". When p = 0.2,0.8, the size of increments |AZ;| and |AZy| have higher
values compared to that when p = 0.5. In the situation when p = 0.2,0.5,0.8,
the minimal regret V' (u) is 27.06257, 32.60221, 24.25975 respectively.

and

Example 5.44. The quantity a; characterises the investor’s risk preference at
time ¢ € Z. Higher value of oy represents higher level of risk aversion. Table 5.9
computes the optimal injection and the injection increment by considering
four different (oy)ier. We set ro = 0%, p = 0.5, k = 0.5%, Z = {0, 1,2}, and
S22 ,us = —Put$(100) in this example. In the case when (oy)ier = (3.4.9),
the size of increment of injections |AZ;| and |AZs| are higher than that when

(au)ter = (1,1,1). This is because the investor is less risk averse in the situ-

111 311
202072 2052
ing risk aversion, and it suggests that the cash amount of withdrawal —z; is
143
2052
aversion. In such case, the optimal withdraw —Z; is decreasing in ¢. Last but

not the least, while (ay)iez = (%, %, %), (1,1,1), (%, 1, %), (%, 1, %), the minimal

ation when (o )ier = ( ). The process (ay)iez = ( ) models decreas-

increasing in t. Similarly, the process (ay)iez = ( ) models increasing risk
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5.5. Numerical examples in a binomial model

Injection Z}* Increment AZ}*
Node Time step Time step

Ve t=0 t=1 t=2 t=1 t=2
(O‘t)?:(] = (%7%?%) (O‘t)%:o = (%7%7%)
uu -2.19599 -2.33686 -2.48328 | -0.14088 -0.14642
ud -2.19599 -2.33686 -2.20044 | -0.14088 0.13643
du -2.19599 -2.06439 -2.06392 | 0.13160 0.00047
dd -2.19599 -2.06439 -2.06486 | 0.13160 -0.00047
(Oét)%zo =(1,1,1) (Qt)?:o =(1,1,1)
uu -2.19406 -2.26450 -2.33771 | -0.07044 -0.07321
ud -2.19406 -2.26450 -2.19628 | -0.07044 0.06821
du -2.19406 -2.12826 -2.12802 | 0.06580 0.00024
dd -2.19406 -2.12826 -2.12850 | 0.06580 -0.00024
(O‘t)%:oz (%alvé) (at)?:o = (%717%)
UU -1.67061 -2.17088 -3.10189 | -0.50028 -0.93101
ud -1.67061 -2.17088 -2.81905 | -0.50028 -0.64816
du -1.67061 -2.03465 -2.68253 | -0.36404 -0.64788
dd -1.67061 -2.03465 -2.68347 | -0.36404 -0.64883
(O‘t)%:o = (§a1a%) (at)tQ:O = (57153)
UU -2.81207 -2.16962 -1.76553 | 0.64245 0.40409
ud -2.81207 -2.16962 -1.67125 | 0.64245 0.49837
du -2.81207 -2.03338 -1.62574 | 0.77869 0.40764
dd -2.81207 -2.03338 -1.62606 | 0.77869 0.40733

Table 5.9: Optimal injection (Z;)7_, and injection increment (AZ;)7, for
various (oy)iez, where N = 90, Z?:o U = —Putg(100), re = 0%, p = 0.5,

k=0.5%, and T = {0,1,2}

205




5.5. Numerical examples in a binomial model

Injection z}* Total injection Y 2, 27"
Node Time step
vely | t=0 t=1 t=2
7 ={0,1,2} 7 ={0,1,2}

uu -2.22952  -2.37039  -2.51681 -7.11672
ud -2.22952  -2.37039  -2.23397 -6.83388
du -2.22952  -2.09792  -2.09744 -6.42488
dd -2.22952  -2.09792  -2.09839 -6.42583

7Z=1{1,2} 7={12}
uu 0 -3.48515  -3.63157 -7.11672
ud 0 -3.48515  -3.34873 -6.83388
du 0 -3.21268  -3.21220 -6.42488
dd 0 -3.21268  -3.21315 -6.42583

7 ={0,2} 7 ={0,2}
uu -3.34196 0 -3.62926 -6.97122
ud -3.34196 0 -3.34641 -6.68838
du -3.34196 0 -3.20989 -6.55185
dd -3.34196 0 -3.21084 -6.55280

7 ={2} T ={2}

uu 0 0 -6.97122 -6.97122
ud 0 0 -6.68838 -6.68838
du 0 0 -6.55185 -6.55185
dd 0 0 -6.55280 -6.55280

Table 5.10: Optlmal 1nJect10n (Z1)7_o and its sum Y2, #; for various Z, where
N =90, Y2 o us = —Put$(100), r. = 0%, p = 0.5, k = 0.5%, and oy = 1 for
allte T

regret V' (u) is given by —1.99938, —2.66561, —2.55119, —2.55063 respectively.

Example 5.45. In this example, we set r. = 0%, p = 0.5, k = 0.5%, oy = 1

for all t € Z, and ,

> " uy = —Put§ (100).

t=0
In Table 5.10, we provide the optimal injection and total injection by consid-
ering four different Z: {0,1,2}, {1,2}, {0,2}, and {2}. It shows that z; = 0
whenever ¢t ¢ Z. Moreover, the total injection is the same for Z = {0, 1,2} and
Z = {1,2}. Similarly, the total injection is also the same for Z = {0,2} and
7 = {2}. The minimal regret V' (u) is given by —2.55063, —1.62431, —1.62388,
—0.96463 respectively for Z = {0, 1,2},{1,2},{0,2},{2}.

In Examples 5.46-5.47 below, we will compute the optimal injections in
the market model with T" = 52; the integer N is set to be 60. In these
two examples, we will set 7. = 0% and k = 0.5%, which ensures (@, §) e P.
Indeed, by straightforward calculation, it follows that 14+u = 1.02812, 1+r =1,
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5.5. Numerical examples in a binomial model

and 1+d = 0.97265. Moreover, for each t =0,...,T7 — 1 and v € §;, we have

from the values of u, r, d, and & that
Sed <SS < s,
which means that there is no overlap among the intervals
(st sed], [strose], st sen]
Then it follows from S? < § < §% (because (Q, S) € P) that
gff1 <S8 < gffr

Combining this with the fact that S is a @—martingale, the transition prob-
abilities of Q must take their values in (0,1). This means that Q(w) > 0 for
all w € Q and hence (Q,S) € P. Therefore, the optimal injection (Z;)32, in
(5.129) is well defined in Examples 5.46-5.47 below.

Example 5.46. Firstly, we set T = 52, r, = 0%, p = 0.5, k = 0.5%,
T =1%=1{0,....,T}, 4 = 1 for all t € 7, and ZtT:OUt = Call$(100).
On the path presented in Figure 5.7(a), we compute (Z:)72, and (AZ)P2,
in Figures 5.7(b) and 5.7(c) respectively. Moreover, we provide (g;)72; and
S = (5;)22, along this path in Figures 5.7(d) and 5.7(e) respectively, where
(G,)72, is the transition probabilities of Q; see the comments preceding (5.129)
for the definition of (@, §) Observe from (5.129) together with oy = 1 and
p = p = 0.5 that for all t = 1,...,52 the increment of injections AZ; can be

written as

AZ; = In A(u)A? —In X(u)A?_l S P A
Pt 0.5

This gives a link between (AZ;)?2, and (;)?2,; see Figures 5.7(c) and 5.7(d).
In Figure 5.7(f), the following {—1,0,1}-valued F;-measurable random vari-
able

1 on {Sf <8 =85t}
Dy = T e LA {s,? ~ 5, = Sg}u{sfg <8, < Sg}
-1 on {Sf =8 <8¢}

is used to indicate the position of S; in [S?, S¢] at each time step ¢ on the given
path. It shows that S; can be at the boundary of [S?, 5¢], and it can also be
in the interior of [S?, S¢].
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Figure 5.7: Optimal injection (7;)]_, and the pair (@, 5), where N = 60,
ST uy = Call$(100), T = 52, 7o = 0%, p = 0.5, k = 0.5%, T = Z%, and
ap=1foralltel
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Figure 5.8: Optimal injection on two different paths for various (at):ez, where
ST yuy = Call$(100), N = 60, T = 52, r. = 0%, p = 0.5, k = 0.5%, and
I=1%
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Example 5.47. In this example, we set T' = 52, 7. = 0%, p = 0.5, k = 0.5%,
T=1F=1{0,...,T}, and Y}y u; = Call$(100). In Figure 5.8, we consider
the optimal injection on two paths for three different (ay)iez. In the case
when t — «y is decreasing, there is a general upward trend in the optimal
cash injection with small fluctuation over time; see Figures 5.8(c) and 5.8(d).
Similarly, in the case when ¢t — a4 is increasing, the optimal cash injection
declines gradually in general and has a few minor fluctuation during some
time periods; see Figures 5.8(g) and 5.8(h). While «; is constant in ¢, there
is no upward or downward trend in the cash injection process over time; see
Figures 5.8(e) and 5.8(f).

5.5.3 Regret indifference prices

In this section, we will present numerical results for regret indifference prices.
Firstly, in Examples 5.48-5.53, we will present the indifference prices in models
with 52 time steps. These examples are used to study the influence of different
parameter values on prices. Then Example 5.54 will provide the indifference
prices of various options in both 250-step and 1000-step models.

We define the payoffs of a strangle and a butterfly, which depend on two

parameters A' < A2, as follows:

Str3(Al, A?) .= Put$(A) + Call§(A4?),
But$(Al, A%) := Callf(A') + Callf(A?) — 2CalG(A$42);

the integer T is the number of time steps in the market model, and “C” in the
superscript stands for cash delivery. Notice that the payoff of a strangle can

be written as
Al — S if Sp < Al
Strf(Al, A%) =<0 if Al < Sp < A2
St — A% if A% < St.

Similarly, the payoff of a butterfly can be written as

Sp— Al if Al < §p < AA%

But@(A', A%) = { 42 — 57 if A4 < g1 < A2,

0 otherwise.

Let ¢ = (¢1)l,¢ = (a), € N?. In Examples 5.48-5.54 below, we shall
always use 7% (c; €) and 7% (c; ¢) defined in (5.121)-(5.122) to approximate the
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seller’s and buyer’s indifference prices 7% (c; ¢) and 7% (c; ¢) respectively. From
the comments following (5.122), the values 7% (c;¢) and 79 (c;é) only relies
on Y7 ¢ and Y21 &. Thus, to compute 7 (c; €) and 7% (c; €), it is enough
to know Y/ ¢; and Y7o . In the calculation of 7 (c; ) and 7%(c; é), the
integer N will set to be 60; Theorem 5.36 together with Examples 5.37-5.41
suggests that the approximation error of indifference prices should be less than
0.01 under N = 60 in most situations. We will compute the indifference prices
for both Z = 7% and Z = ZV in each examples, where Z7 and ZV are defined
n (5.2)-(5.3). In the numerical results, the buyer’s indifference price 7% (c; ¢)
will always be dominated by the seller’s indifference price 7&(c;¢).

In Examples 5.48-5.53 below, we are going to present indifference prices
by varying r., p, ¢, option strike prices, k, and (at)tho respectively and keep

other parameters fixed. In these examples, we set T' = 52.

Example 5.48. Firstly, let p = 0.5, &k = 0.5%, a; = 1 for all t € Z, and

¢t =0forallt=0,...,T. We consider the indifference prices of ¢ for various
values of r, which is the annually compounded interest rate. In Figure 5.9(a),
we set Nl_gc¢ = ﬁCall%(lOO) to be the discounted payoff of a call op-

tion. It shows that as r. increases, the price of ¢ in the friction-free model
(i.e. k = 0%) increases, and all indifference prices increase as well. Similarly,
in Figure 5.9(b), we set YL ¢; = ﬁPut%(lOO) which is the discounted
payoff of a put option. It shows that an increase in r. leads to a decrease in
all prices. In Figure 5.9(c), we set Y.L ¢, = TlreStr%(%, 105) which is the
discounted payoff of a strangle. In the case when r. < 0%, all prices decrease
as 1. increases. However, in the case when r. > 0, all prices increase as 7.

increases.

Example 5.49. We know from Theorem 2.14 and (2.26)-(2.27) that the su-
perhedging prices are independent of market probabilities. However, the indif-
ference prices may depend on it. In Figure 5.10, we present 7% (c; 0), 74 (c; 0),
and 7 (c;0) — 7%(c; 0) for various p, where r. = 0%, k = 0.5%, a; = 1 for
allt € Z,and & = 0 for all t = 0,...,7. We set 7_,¢; to be Call$(100),
Put$(100), But$ (90, 110) respectively in Figures 5.10(a)-5.10(c). It shows that
indifference prices can be affected by p. Moreover, in all three subfigures, the
difference between seller’s and buyer’s indifference prices 7% (c;0) — 7% (c;0)
is increasing in p when p < 0.5, and it is decreasing in p when p > 0.5, so it

reaches its maximum at p = 0.5.

Example 5.50. In our setting, we have S§ = S§. By Corollary 5.9, the
indifference prices satisfies (5.15) (i.e. remain unchanged for two endowments

(&) and (&)]y) if 7o & — I, @ is a constant. This example shows that
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Figure 5.9: Indifference prices 7% (c;0) and 7&(c;0) for various values of re,
where T =52, p=0.5, k =0.5%, and oy = 1 for all t € 7
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Figure 5.10: Indifference prices 7% (c;0) and 7% (c;0) for various values of p,
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(5.15) may not hold true if 37 & — Y.t is not a constant. Let p = 0.5,
re = 0%, k = 0.5%, and ay = % for all t € Z. In Figure 5.11, we consider the
indifference prices of ¢ = (¢;)L, such that 32, ¢; = Call$(100) for various
different ¢ = (¢;)L,. Firstly, in Figures 5.11(a)-5.11(c), the endowment ¢ is

set to satisfy

& = pCall$(100)

M=

-+
Il
o

pStr$(90,110)

Ct

¢, = pBut$ (80, 120)

M~ I

if
o

respectively, where —3 < p < 3 is a scalar. It shows that, in both Fig-
ures 5.11(a) and 5.11(b), the indifference prices decrease as p increases. How-
ever, in Figure 5.11(c), as p increases, the indifference prices increase. In all
three subfigure, as p increases from 0 to 3 or decreases from 0 to —3, the dif-
ference between seller’s and buyer’s indifference prices becomes smaller. The
conclusion is that investor’s endowment ¢ can affect the indifference prices
78 (c; ¢) and 7%(c; ¢), but more endowment may not produce a lower /higher

indifference price.

Example 5.51. Let p = 0.5, r. = 0%, k = 0.5%, and oy = 1 for all t € Z, and
¢g=0forallt=0,...,T. We are going to compute the indifference prices of
¢ for various values of strike prices. Firstly, we consider Y.~ ¢; = Call$(A) in
Figure 5.12(a) for various values of strike price A. It shows that all indifference
prices decrease as A increases. As expected, a higher value of option payoff
leads to a higher price. Similar pattern can be observed when Z?:o ¢ is the

payoff of a strangle or a butterfly; see Figures 5.12(b) and 5.12(c).

Example 5.52. In this example, we set p = 0.5, r. = 0%, ay = 1 for all t € Z,
and ¢; = 0 for all £ = 0,...,T. In Figure 5.13, we present the indifference
prices of ¢ for various values of k which is the transaction costs parameter.
First of all, in Figure 5.13(a), we take Ztho ¢ as the payoff of a call option
delivered by portfolio. Moreover, we set EtT:o ¢t as the payoff of a strangle
and a butterfly respectively in Figures 5.13(b) and 5.13(c). It suggests that,
when the value of k increases, the gap between seller’s and buyer’s indifference
prices becomes bigger. In the case when k& = 0% (i.e. there is no transaction

costs), all indifference prices are the same.

Example 5.53. First of all, let p = 0.5, r. = 0%, k = 0.5%, and ¢; = 0

for all ¢t = 0,...,T. Moreover, the process (at)?zo is set to be ay = « for
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Figure 5.12: Indifference prices 7% (c; 0) and & (c; 0) for various strike prices,
where T =52, p=0.5,7. = 0%, k=05%,and oy =1 forallt € T

216



5.5. Numerical examples in a binomial model

I =11 — 7 (c;0) - o 7E(c;0)
I =1Y = 7 (c;0) -m- 7&(c;0)

11 F T T T T T T T T T =
L o _-m |
_—‘—.——

10 |- m- -
2 I =" o |
S 90 IS Saam _e----- L S G .
a L B R S o----®" i

P
= 81 < )
S B 2
a2 7t )
o L |
6| i
Sp | | | | | | | | | |
0% 0.25% 0.5% 0.75%% 1% 1.25% 1.5% 1.75% 2%

k
(a) S, e = Call}(100)

2 F T T T T T T T T T 5
L '——__. |

181 o m ]

16 |- = .
i 14 SOr _Sa - -
o, - ‘._,_—._____.- _
o 12 - I e -
9 5 .
], 10 -
o I |

8- i

L | | | | | | | | | |
0% 0.25% 0.5% 0.7%% 1% 1.25% 1.5% 1.7%%% 2%
k
(b) S/, e = Str$(95,105)

T T T T T T T T T

4'5f __.--n i

4 Y --u i

= ‘l" 1

% 3-5? "l,—’ —‘_._—‘__. i
2 3 - . .
[ _-- —— -

= 25| e ]
.E 9| ‘/,:1” o i
D_‘ - -
o 1'5f :
1f i
0'5f 8

[ [ [ [ | i i | 1
0% 0.25% 0.5% 0.75% 1% 1.25% 15% 1.75% 2%
k
(¢) 27 v = But$(95,115)

Figure 5.13: Indifference prices 7% (c;0) and 7% (c;0) for various values of k,
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5.5. Numerical examples in a binomial model

all t € Z, so « is the risk aversion coefficient at each time step ¢ € Z. In
Figure 5.14, we consider the indifference prices of ¢ for 9 different values of
« ranging from 0.01 to 2. The value Z?:o ¢t is set to be the payoff of a
call, a strangle, and a butterfly respectively in Figures 5.14(a)-5.14(c). In all
cases, as « increases, the buyer’s indifference price decreases, and the seller’s
indifference price increases. This suggests that if the seller and the buyer are
willing to take more risks which corresponds to a lower value of «, then the

gap between seller’s and buyer’s indifference prices will be smaller.

This section ends with the following example which presents the indiffer-
ence prices and superhedging prices in the market models with larger number
of steps T'. It shows that the bid-ask indifference price interval can be much

narrower than the no-arbitrage price interval.

Example 5.54. In our final example, let p = 0.5, r. = 0%, and ¢; = 0 for
all t = 0,...,7. Similar to Example 5.53, we take o = o for all t € Z. In
Figures 5.15-5.18, we present the indifference prices of a call, a put, a strangle,
and a butterfly respectively in the market models with T = 250,1000 and
k = 0.25%,0.5%. In addition, in every figure, the prices are computed for 9
different values of a ranging from 0.01 to 2. The superhedging prices for these
four options are presented in Table 5.11, and all the prices in this table are
provided by Dr. Alet Roux by using the method from Roux & Zastawniak
(2016). The difference between seller’s and buyer’s indifference prices appears
to be much smaller than the difference between seller’s and buyer’s super-

hedging prices. This is especially the case when k& = 0.5% and T' = 1000.
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Figure 5.15: Indifference prices 7%(c;0) and 7% (c;0) for various «, where
S e = Call$(100), p= 0.5, 7o = 0%, and ay = o for all t € T
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Figure 5.16: Indifference prices 7% (c;0) and 7% (c;0) for various o, where
S L et = Put$(100), p = 0.5, r. = 0%, and oy = o for all t € 7
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Figure 5.17: Indifference prices 7% (c;0) and 7% (c;0) for various «, where
ST e = Str$(95,105), p= 0.5, 7. = 0%, and a; = o for all t € T
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Figure 5.18: Indifference prices 7%(c;0) and 7% (c;0) for various «, where
ST e = But$(95,115), p= 0.5, ro = 0% and ay = o for all t € T
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k=0.25% k=0.5%

T buyer seller buyer seller
S L, ¢ = Call$(100)

250 | 6.06057  9.53113 3.39402 10.91410
1000 | 3.52132 10.78134 0.00000 13.04456
ST, ¢ = Put$(100)

250 | 6.07543  9.50702 3.40983 10.85840
1000 | 3.52983 10.75411 0.00000 12.97824
ST e = Str$(95,105)

250 | 7.84118 14.41934 3.08667 17.07163
1000 | 3.22336  16.86926 0.00000 21.26935
ST e = But$(95, 115)

250 | 0.88800  3.06615 0.23926  5.29936
1000 | 0.25824  5.14877 0.00002  8.51486

Table 5.11: Buyer’s superhedging price 74 (c) = W%(ZtT:o ¢) and seller’s su-
perhedging price n(c) = m& (X7 ¢;) for various Y- oct, k, and T, where
re = 0%
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Appendix A

Mathematical background

A.1 Mathematical preliminaries

Let X be a vector space and f be an RU {oo}-valued function on a convex set
S C X. We call f a convex function if for any x,y € S and X\ € (0,1) we have

fAz+ 1 =Ny) <Af(@)+ 0 =X)f(y).
Moreover, a function f is called proper if dom f # () where
dom f = {x € § | f(z) < o0}
is the effective domain of f. The epigraph of f is defined as
epif:={(z,y)|zeS,yeR, y>f(z)} C X xR.

Notice that f is a convex function if and only if epi f is convex.

The function f is called lower semicontinuous (Rockafellar 1974, p. 14) if
the set epi f is closed in X xR. The notion of lower semicontinuity depends on
X xR being a topological space, and this thesis only considers the cases when
X =R and X = N2, The following remark discusses the notion of closedness
in N2 x R used in this thesis.

Remark A.1. Recall that Q is finite. Let || be the number of elements in €.

For any x € L%, the value of z can be represented by the vector R (z) as
R(z) = (2" (1), 2%(@1), ., 7' (w)), 2% (wpay) ) € R,
Similarly, for any (z,y) = ((z)ig,y) € N? x R we have z; € £? C L2 for all
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A.1. Mathematical preliminaries
t=0,...,T, and the value of (x,y) can be represented by
P((z,y)) := (R(x0),...,R(ar),y) € RAATHDFL

We call a set A in £ closed if the set {R(z) | z € A} is closed in RZ%. In

addition, we call a set A in N2 x R closed if the set {P (x) | x € A} is closed
in R2AQUT++1

An RU{=+o0}-valued function on B C R is said to be continuous on B’ C B

if the restriction of this function to B’ is a continuous function.

Lemma A.2. If f: R — RU{oo} is proper, convex, and lower semicontinu-

ous, then f is continuous on dom f.

Proof. From Theorem 10.1 of Rockafellar (1997), the function f is continuous
on ridom f, where ri A is the relative interior of a given set A. Moreover, the
function f is continuous on any closed subinterval of dom f (Rockafellar 1997,
Theorems 10.2 and 20.5). Notice that dom f is non-empty and convex because
f is proper and convex. Then dom f is an interval, in other words, it is the

union of ridom f and zero, one or two endpoints. For convenience, we define

a := inf dom f,

b := supdom f.

We are going to show that f is continuous on dom f by considering the fol-

lowing three situations for dom f.

1. If dom f = (a,b) (i.e. dom f contains no endpoint), then f is continuous

on dom f because dom f = ridom f.

2. If dom f = [a,b] (i.e. dom f contains both endpoints), then dom f is a

closed subinterval of dom f. This means that f is continuous on dom f.

3. In the case when dom f = [a,b) or dom f = (a,b] (i.e. dom f contains
exactly one endpoint), the function f is continuous on (a,b) because
ridom f = (a,b). Let

€:= min{b;a, 1} € (0,1].

If dom f = [a, b), the function f is continuous on [a, a+¢€] because [a, a+€]

is a closed subinterval of dom f. Since the intersection
[a,a + €] N (a,b) = (a,a+¢€)
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contains infinitely many points, the function f is continuous on
[a,a + €] U (a,b) = dom f.

Similarly, if dom f = (a,b], then f is continuous on [b — €,b] because

[b —€,b] is a closed subinterval of dom f. Since the intersection
(a,b)N[b—e€,b] = (b—¢€,b)
contains infinitely many points, the function f is continuous on

(a,b) U[b—€,b] =dom f.

This completes the proof. ]

The recession cone of a nonempty set C' C X is defined as
C*¥={yeX|z+IyeCforallz € Cand A > 0}.

Observe that 0 is contained in any recession cone. The following result says

that if a convex cone contains 0, then it is equal to its recession cone.
Lemma A.3. Let C C X be a convex cone such that 0 € C. Then C = C*°.

Proof. Suppose that y € C. For all x € C and A > 0, we have Ay € C because
C is a cone that contains 0. Then
+ A —2(1 +1/\ ) eC
T Yy = 233 5 Yy
because C is convex cone. Thus y € C*°, and hence C C C*°. The opposite
inclusion also holds true. Suppose that y € C*. Let A > 0. It follows from

0 € C and the definition of C*° that A\y = 0+ Ay € C. Then y € C because
C'is a cone. Thus C° C C'. The result follows. O

The recession function of a proper convex function f is defined as the

function f°° such that
epi [ = (epi f)*°.

Example A.4. In this example, we will compute the recession functions of a

number of R U {oo}-valued convex functions on R.

1. Let a € R, and let f be a linear function of the form f(z) = az for all
x € R. Then

epi f = {(z,y) |y = ax}
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is a half space and hence a convex cone containing 0. It follows from
Lemma A.3 that

epi f = (epi f)™.
Thus f>* = f.

2. Let @ > 0 and v (z) = e* — 1 for all z € R. Then v is an exponential
regret function defined in Example 3.4.1. Fix any (z,y) € R?, and
consider the following three situations. If y < 0, then (z,y) ¢ (epiv)™>
because v is bounded from below. Moreover, if z > 0 and y > 0, then
(x,y) ¢ (epiv)™ because v and v' are always increasing. However, if
x <0and y >0, then (z,y) € (epiv)*™. Thus

(epiv)™ = {(z,y)|z < 0,y = 0} = (—00,0] x [0, 00).
To ensure epiv™ = (epiv)*>, we must have v>° = §(_ o], where 6(_
is the indicator function defined in (3.1).

3. Let f: R — RU{oo} be a proper convex function with a bounded

effective domain. Then

(epi f)* ={(0,y)|y > 0},

which implies that f* = ;).
This section ends with three technical results in Lemmas A.5-A.7.

Lemma A.5. Let f be a closed proper convex function on R. Suppose that
(x,y) ¢ epi [ for some x < 0 and y > 0 and that (2',y') ¢ epi f° for some
' >0 and y' > 0. Then the function f attains its infimum.

Proof. 1t is sufficient to show that f is neither a nondecreasing function nor
a nonincreasing function. Then f attains its infimum; see Theorem 27.2 and
the comments following Corollary 27.2.2 of Rockafellar (1997).

Fix any (2%, y%) € {(z,y),(«",y")}. Then (2%, y*) ¢ epif> = (epif)>
which implies that there exists (2!, 2%) € epi f and A > 0 such that

(z1,2%) + A", y") ¢ epif,

in other words,
FM 4 a2%) > 22 4 My,

where Ay* > 0. This implies that
flzt + x*) > 22> f(2h)
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since (21, 22) € epi f. By taking (z*,y*) = (z,v), it yields f(z! +z) > f(z!),
where z! + Az < z!'. Thus f is not nondecreasing. Similarly, by taking
(z*,y*) = (2/,9), we have f(z! + \2/) > f(z') with 2! + A2’ > 2! and hence

f is not nonincreasing. O

The following lemma provides a technical result that is used in the proof
of Theorem 5.25.

Lemma A.6. Suppose that f and g are R U {oco}-valued functions on a non-

empty set A such that

inf f(z)| < oo, inf g(=)] < oo,
Then
. s < _ . .
inf f(z) - inf g(x) _ilelglf(fv) g9(z)| (A1)

Proof. Observe that
inf f(z) = — sup[—f(z)]

TEA €A
and

Inf 9(@) = = sup[—g(x)].

We are going prove (A.l) by considering the following two situations for

infrea f(z) — infrea g(x).
In the situation when inf,c4 f(x) — infyea g(z) > 0, we have

inf f(z) - inf g(z)

= Inf, f(x) = jnf g(x) = sup | inf (y) ~ 9(2)] .

zeA LyeA

Then it follows from infyc4 f(y) < f(z) for any z € A that

inf f(x)— inf g(x)

seA inf g(z)| < sup[f(x) — g(x)] < sup|f(z) — g(=)],

€A TEA

and hence (A.1) holds true.

In the situation when inf,c4 f(z) — infyeq g(z) < 0, we have

I - 1)

Since infyca g(y) < g(x) for any x € A, it follows that

I~ [ o)

< sup[g(z) = f(z)] < sup|f(z) - g(=)]

This completes the proof of (A.1). O
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The lemma below is used in proof of Lemma 4.14, and it is also used in
Example 5.10.

Lemma A.7. Let x € R. Moreover, let [b1,a1] and [ba, as] be two subintervals
of R, where by < a1 and by < as. Then

C={y€l0,1]|3z1 € [b1,a1],22 € [bo,a2] :yx1 + (1 — )22 =2} (A.2)
is a convez set in [0, 1].

Proof. Suppose that y',4? € C and pu € (0,1). Then it follows from (A.2)
that there exist z1, 2% € [b1, a1] and z3, 23 € [ba, ag] such that

,.le% + (1 - fyl)w% =7,
Vi + (1 —7%)a3 = .
Let
7=yt 4 (1= p)n? € [0,1]
Notice that, if v* = 1, then v' = 4? = 1 which means z1 = 2? = x. Moreover,

if v* = 0, then v! = 42 = 0 which means x3 = 22 = 2. To prove C is convex,

it is enough to show that v* € C. Let

mlpl 4 G222 if v e (0,1),

,y* ,-Y*
Ty = by if v* =0,
x if v* =1,
where “—11, M > 0 and
v il
LA el 1) Y o € e ) N Y

In addition, let

1—~1 1—p)(1—~2 e
T3 = qx if v* =0,

as ify* =1,

where #0=11) (1=m(1—2) 0 and
1_.\/* b 1_,-}/* -

p(l=7" QA=) —=9%) 1=y =0 —pn* 19"
_l’_ e =
1 —* 1 —~* 1—~* 1—~*
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Observe that =} € [b1,a1] and 25 € [ba, az]. We are going to show that
Vil (1= ey = a
by considering the following three cases of v*. If v* € (0,1), then

Yo+ (1 —9%)2s = py'z) + (1 — p)y?al + pl —yHzy + (1 — p)(1 — )3
= p(y'ar + (1= Nzy) + (1 — p)(Vai + (1 —%)3)
=px + (1 - pz

= .
If v* =1, then

Y+ (1 =)z =1x2x4+0xay = x.
Similarly, if v* = 0, then

Yo+ (1 =725 =0xb+1xz=u1.

We can conclude that v* € €, and hence C is convex. O

A.2 Piecewise linear convex function

This section provides a number of basic facts about piecewise linear convex
functions. These results are helpful in the study of Sections 5.3 and 5.4.

The following technical result will used in Lemma A.10; it is also used in
Lemmas 5.29 and 5.32.

Lemma A.8. Let f be an R U {oo}-valued convexr function on a convex set
C C R such that f < oo on [z1,22] C C for some x1 < x3. Moreover, let h be
the R-valued affine function on R such that h(x1) = f(x1) and h(za) = f(z2),

in other words,

h(z) = ax + 8,
_ f@2) = f(z1)
N Tro9 — T1 ’
p = f(r1) — ax;.

Then f < h on [x1,x2], and f > h on C\(z1,x2).
Proof. For any x € [x1, x2], there exists 6 € [0, 1] such that x = 0x1 4 (1—0)xa.
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Then the convexity of f gives
f(z) < O0f(x1) + (1= 0)f(22) = Oh(x1) + (1 — O)h(z2) = h(z).

Thus f < h on [z, z9].
Fix any z € C\(x1,x2). Consider the following two situations. If z < zq,
then the quantity 6 € (0, 1] such that x1 = 0x + (1 — 0)zo satisfies

fl1) <O0f(x) + (1 —0)f(z2).
Then combining this with h(z;) = 0h(x) + (1 — 0)h(x2), it follows that

flz1) = (A= 0)f(z2) _ h(x1) — (1= 0)h(x2)

f(2) > - - - — h(a).

Similarly, if z > x9 then the quantity 6 € [0,1) such that xe = z1 + (1 — 0)x
satisfies

fla2) <O0f(x1) + (1 —0)f ().

This implies

fxa) = O0f (1) _ h(wz) = Oh(z1) _
21_9 1) _ 21_9 1 — h(x)

fla) 2
because h(x2) = Oh(z1) + (1 — §)h(x). Thus f > h on C\(z1, z2). O

The following result shows that a continuous piecewise linear function with

nondecreasing slopes is convex.

Lemma A.9. Let zq,...,x, € R such that x1 < --- < xz,, and let
hi(xz) = a;x + B

with a;, B; ER forallzr e Randi=1,....n—1. Ifag <--- < an_1 and h

is a continuous piecewise linear function on [x1,xy] such that
h(z) = hi(z) for all x € [z, xix1],i=1,...,n — 1,
then the following two claims hold true.

1. Foranyi=1,...,n—1 and x € [x;,x,11], we have

h(z) = hi(z) = max{hi(x),..., hn_1(x)}.

2. The function h is convez.
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Proof. Firstly, we are going to prove the first claim. Fix any i =1,...,n—1

and = € [z, x;+1]. Clearly, we have h(x) = h;(x), and it is enough to show
hi(x) = max{hi(z),..., hn—1(2)}. (A.3)

For any 1 < k < n — 2, we have h = hy on [rg,2g+1] and h = hg4q on

[Tk11, Tp12], which implies

h(zre1) = M(@py1) = hir (Try1)- (A.4)

Consider the following two cases. If x = zy1, then hy(x) = hgt1(z) by (A.4).
In the case when = # xy1, we have
hi (k1) — hyg() P41 (@11) — iy ()

= O < Q41 = 5
T4l — X Th41 — T

and (A.4) implies

o (h1) = Pa(2) _ e (h41) — hyya (2)
Th+1 — T a Tpy1 — .

Thus
T < Tyl — hk(x) > hk—f—l(l')

and
x> i1 = hp(z) < hgpa(x).

We can conclude that
hi(x) > -+ > hp—1(x)

and
hi(z) <--- < hi(x).

Therefore (A.3) holds true. This completes the proof of the first claim.
The first claim implies that

h(z) = max{hy(z),..., hp—1(x)} for all z € [z1,x,).

Then h is convex by Theorem 5.5 of Rockafellar (1997). This completes the

proof of the second claim. O

Let z1,...,z, € R such that z; < -+- < x,, and let f : R - RU {0}
be a continuous convex function such that f < oo on [z1,z,]. By connecting
(x4, f(x;)) and (241, f(xi41)) for each i = 1,...,n — 1, we are going to con-

struct a continuous piecewise linear function h on [z, x,] such that h = f on
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{z1,...,2,} as follows. Firstly, define

h(z) := f(z) for all x = x1,..., 2. (A.5)
Then for any i =1,...,n — 1 and = € (x;, zi+1), let
h(z) := hi(z) = iz + B (A.6)

where h; is an affine function on R with

o = f(wiv1) — f(fb“i)7
Tip1 — T

Bi = f(x;) — oy

This completes the definition of h on [z1,x,]. Notice that h is real-valued,

continuous, piecewise linear, and satisfies
h(z) = hi(z) for all x € [x;, zi41],i=1,...,n— 1. (A.7)

The following result provides a number of properties of h1,...,h,—1 and h.

Lemma A.10. The slopes of affine functions hq, ..., hp—1 satisfy

(65} < ... S Qp—1- (AS)

Moreover, the function h defined in (A.5)-(A.6) is real-valued, continuous,

piecewise linear, convez, and satisfies h > f on [x1, ).

Proof. We are going to prove (A.8) first. For any ¢ = 1,...,n — 2, there exists
0 € (0,1) such that z;41 = 0z; + (1 — 0)x;12, and the convexity of f gives

f(@iy1) <O0f(zi) + (1 —0)f(zit2)

This implies

f@ipr) = f (i) < (O=1)f(2:)+(1=0)f(2ir2) = (1=0)(f(zit2) = f(2:)) (A.9)

and

f(@ive) = f(@ip1) 2 0f (wig2) — 0F (i) = 0(f (it2) — f(x1)). (A.10)
From (A.9) and zj4+1 — x; = (1 — 0)(ziy2 — x;), we have

(1 =0)(f(wiv2) — f(@i) _ flmite) — f(23)

< = .
Tig1—x; (1= 0) (2442 — ;) Tiyo — T;

~ f(wigr) — f()

i =
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Similarly, combining (A.10) and x4+ — ;41 = (42 — x;), it follows that

qons = A @ir2) = f(@iv1) o O(f(wive) = f(2i) _ fl@ive) = flzi)
T e~z O(mie—m)  Tiao—m

Thus «; < a;41. This completes the proof of (A.8).

Clearly, the function h is real-valued, continuous and piecewise linear.
Moreover, combining Lemma A.9 together with (A.8) and (A.7), the func-
tion h is convex. For any ¢ = 1,...,n — 1, we have h;(z;) = f(x;) and
hi(xziy1) = f(zi+1), and it follows from Lemma A.8 that h; > f on [z;, zi4+1].
Then h > f on [z1,z,] by (A.7). d

A.3 Set-valued function and random function

This section will start by introducing the notion of a set-valued function and
the measurability of such type of function. After that, the section will intro-
duce the notion of a random function and the measurability of this type of
function.

In the remainder of this section, let d € N. We denote the power set of
R? by 2R? " For any set X, a function of the form f : X — 2R is called a
set-valued function.

We will keep t = 0,...,T fixed in the remainder of this section. The

following example considers a set-valued function on L.

Example A.11. Define
f(x):= (E[:cl], . ,E[de +R% for all z = (21,...,2%) € LY.

Then f is a set-valued function from L to R,

In our setting, the concept of a measurable set-valued function from Defin-
ition 14.1 of Rockafellar & Wets (2009) can be presented as follows.

Definition A.12. A set-valued function f: Q — 2R is called F;-measurable
if
{weQl| f“N0 +#0} e F for all open O C R%. (A.11)
For any set-valued function f : Q — QRd, it is easy to see that if the
function w — f“ is constant on each node in €2, in other words,

=1 forall w,w’ € v and v € Q, (A.12)

then this function is Fi-measurable. In the situation when (A.12) holds true,

it will sometimes be convenient to denote the common value of f on v €
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by f¥. Moreover, for any random variable z € £, we write z € f if z(v) € f¥
for all v € €.

The next example considers a measurable set-valued function on €.

Example A.13. Let z € £{. Define the set-valued function
f¢ = x(w) +RL for all w € Q.

Then f is F;-measurable because x € L.

The example below shows that it is possible that f : Q@ — 2R g Fi-
measurable, but it does not satisfy (A.12).

Example A.14. Letd = 1,¢t = 0, and Q = {w1,wa}. Then Fy = {{w1,w2},0}.
Define f“' = R and f“2 = R\{0}. Clearly, we have f“1 N O # () for all non-
empty open O C R. Moreover, if there exists a non-empty O C R such that
f“2N 0O =0, then O must be {0} which is not open. This means f“2NO # ()
for all non-empty open O C R. Thus

{weQ| f“N0O #0} € Fy for all open O C R.
in other words, the function f is Fy-measurable. However, it follows from

fr # f2 that (A.12) is not satisfied for t = 0 and d = 1.

Now, we are going to introduce the notion of a random function and the
measurability of such a function. A function f : Q x R — R U {oo} is called

a random function.
Example A.15. Given y € £¢, the function f (z) = x -y for x € LI corres-
ponds to the random function with value

fY(r(w)) = z(w) - y(w) for all w € Q.
For any w € Q, the function f* has domain R¢ and range RU{occ}. Moreover,
since y € L, we have for all v € (; that f¥ = 1+ for all w,w’ € v.

Observe that if f is a random function, then for any w € 2 the function
f¢ is of the form f*:R% — R U {oc}.

Definition A.16. A random function f is called F;-measurable if the set-

valued function w +— epi f“ is Fy-measurable.

Notice that, for any random function f, if the function w — f“ is constant

on each node in €, in other words,
f¢ = f< forall w,w' € v and v € Q, (A.13)
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then it is Fi-measurable. In the case when (A.13) holds true, we will sometimes
use f” to represent the common value of f on v € ;. Observe that the random

function in Example A.15 is Fi-measurable.
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