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Abstract

This thesis focuses on the option pricing and hedging based on a regret optim-
isation problem in a discrete-time financial market model with proportional
transaction costs. In such model, the no-arbitrage price interval can be very
large. Such large interval makes it difficult for an investor to choose the “right”
prices, which is a long standing difficulty in the field. We introduce an indiffer-
ence pricing method based on minimising regret/disutility, and show that the
spread between the buyer’s and seller’s prices can be much narrower than the
no-arbitrage price interval. The regret optimisation problem allows possible
fund injection/withdrawal at each time step, and in doing so it extends the
classic utility maximisation problems in financial models. Moreover, by allow-
ing the investor’s preference towards risk to be different at different time step,
it also extends the optimal investment and consumption problem in financial
market models with a finite horizon. In addition, the investor’s endowment
that is considered in our setting is modelled by a portfolio flow which ex-
tends the notion of initial wealth. We prove that there exists a solution to the
regret optimisation problem, and indifference prices are always within the no-
arbitrage price interval. Under an exponential type regret function, we find
a dynamic programming algorithm to construct a solution to a Lagrangian
dual problem. By solving the dual problem, we can not only solve the regret
optimisation problem but also calculate the option indifference prices. In bin-
ary models, we calculate the optimal injection/withdrawal strategy for various
different values of given parameters, and also compute the indifference prices
of various European options. The numerical results show that the bid-ask
indifference price interval can be much narrower than the no-arbitrage price
interval, and such smaller price interval can be used to guide the investor to
choose the “right” prices.
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Chapter 1

Introduction

Pricing and hedging of derivative securities in financial market models are two
of the main topics in modern mathematical finance research. In friction-free
complete market models, European options can be replicated by self-financing
trading strategies. The fair price of a European option is the initial value of
the replication strategy. This replicating and pricing method was pioneered
by Black & Scholes (1973) and Merton (1973) who considered pricing and
hedging of European call options in a continuous time market model. They
provide a closed form formula for the fair prices of European call options in
this model. For an overview of pricing and hedging in friction-free market
models, see textbooks Bingham & Kiesel (2004) and Föllmer & Schied (2011,
Chapter 1.5) (especially in discrete time models) and the literature within it.

In market models with transaction costs, the first main hedging method
that is widely used is superhedging. This hedging method is generally more
preferable than the replicating method, because it is generally less expensive;
for example Bensaid, Lesne, Pagès & Scheinkman (1992), Cutland & Roux
(2012, Example 8.29). Similar to replicating, superhedging is independent of
an investor’s preference. For the option seller, the objective of superhedging is
to construct a strategy, with initial value as small as possible, that will enable
him to meet his obligation in the option contract at expiry time. Similarly, the
option buyer’s superhedging objective is to find a strategy which generates the
highest amount of bond/cash at the initial time, and at the same time allows
him to remain solvent after receiving the payoff of the option. Superhedging
provides a method which allows the seller and buyer to hedge without any
risk. Works in superhedging include Bensaid, Lesne, Pagès & Scheinkman
(1992), Edirisinghe, Naik & Uppal (1993), Jouini & Kallal (1995), Perrakis
& Lefoll (1997), Kabanov & Stricker (2001), Delbaen, Kabanov & Valkeila
(2002), Dempster, Evstigneev & Taksar (2006), Roux (2006), Roux, Tokarz &
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1. Introduction

Zastawniak (2008), Löhne & Rudloff (2014), Roux & Zastawniak (2016).

Drawbacks of superhedging include that the bid-ask interval can be very
wide; see numerical examples in Roux (2006, Chapter 3.6). This is not very
helpful in guiding an investor on choosing “right” prices. In addition, this
method does not allow an investor to take any risk. For these reasons, research-
ers have studied other hedging methods which allow an investor to take risks by
taking into account his preference. The objectives of such methods include the
maximisation of expected utility of terminal wealth, maximisation of expec-
ted utility of consumption during trading, minimisation of expected shortfall
risk and other risk minimisation. Relating to existing literature, regarding
maximisation of expected utility from terminal wealth, the relevant studies
include Hodges & Neuberger (1989), Dumas & Luciano (1991), Cvitanić &
Karatzas (1992, 1996), Davis, Panas & Zariphopoulou (1993), Gennotte &
Jung (1994), Clewlow & Hodges (1997), Monoyios (2003, 2004), Sass (2005),
Zakamouline (2005, 2006), Atkinson & Quek (2012), Kallsen & Muhle-Karbe
(2015). Related works in maximisation of expected utility of consumption
during trading are Davis & Norman (1990), Cvitanić & Karatzas (1992), Con-
stantinides & Zariphopoulou (1999), Øksendal & Sulem (2002), Liu (2004),
Muthuraman & Kumar (2006), Muthuraman (2007), Kallsen & Muhle-Karbe
(2010), Hobson & Zhu (2016). Minimisation of expected shortfall risk is stud-
ied by Guasoni (2002), and minimisation of local risk is discussed by Mercurio
& Vorst (1997), Lamberton, Pham & Schweizer (1998). In the preference
based hedging approaches mentioned above, an investor with a given financial
endowment controls a trading strategy in order to achieve a hedging objective
which depends on his preference. Thus, these methods do consider investors’
preferences towards risks. Regarding the pricing of options, a number of util-
ity based optimisation problems are closely related to indifference pricing. In
general, the indifference price of an option contract is defined as the price
such that the investor would have the same expected utility by entering this
contract as by not doing so. Compared to superhedging, the indifference pri-
cing could possibly produce a smaller bid-ask spreads of European options; see
Pennanen (2014, Theorem 6) for example. The pricing method considered in
this thesis is similar to the indifference pricing based on utility maximisation
problems.

The option prices considered in this thesis relies on an optimisation prob-
lem. The background of this optimisation problem is related to (1) convex
stochastic dynamic programming; and (2) convex-valued random dynamical
systems. The study of these two areas became prominent in the context of
mathematical economics in the 1960s and the 1970s. Some of the important
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1. Introduction

ideas in these two areas can be traced back as early as von Neumann’s work
in the 1930s on economic dynamics (see von Neumann (1937)), as well as
Kantorovich and Koopmans’s studies during the late 1930s to the 1950s on
optimal resource allocation and linear programming (see Kantorovich (1960)
and Koopmans (1951)).

Regarding convex stochastic dynamic programming, its economic applica-
tions are mainly in the area of utility maximisation over a family of admiss-
ible investment strategies. For example, Dynkin (1972) (see also Dynkin &
Yushkevich (1979, Chapter 9)) made a seminal contribution in this field. Then
Arkin & Evstigneev (1987) presented a systematic and comprehensive study
of the corresponding theory from deterministic case to stochastic case. The
optimisation problem studied in this thesis follows the tradition of utility max-
imisation. The utility maximisation problem in economics appears in a very
general setting and involves modelling of various economic activities, whereas
this thesis focuses on a specific financial model. However, these problems share
a common objective, namely, achieving the investor’s goal by controlling his
trading strategies.

Regarding convex-valued random dynamical systems, von Neumann (1937)
and Gale (1956) produced pioneering work on its applications in models of
economic growth. Then option pricing and hedging under proportional trans-
action costs have been studied by Dempster, Evstigneev & Taksar (2006), who
developed a general framework including trading constraints, and Evstigneev
& Zhitlukhin (2013), who studied risk-acceptable hedging in interconnected
financial models.

This thesis focuses on the option indifference pricing based on a regret op-
timisation problem in a two-asset market model with proportional transaction
costs. In this regret optimisation problem, an investor faces the liability of de-
livering a sequence of portfolios. Additionally, at each time step, he needs to
manage his financial position in the underlying assets (cash and stock). In this
problem, the investor’s trading strategy is not required to be self-financing, in
other words, he is allowed to inject extra cash beyond the given initial endow-
ment. In each trade, the investor will use a regret function (which needs to be
nondecreasing and convex) to evaluate his regret upon the cash injection for
updating the portfolio. The investor’s objective is to minimise his expected
total regret. Regarding the regret functions, they are closely related to util-
ity functions used in utility maximisation problems in the above-mentioned
studies. Similar to the definition of indifference prices based on utility optim-
isation problems, the regret indifference price of an option contract is defined
as the price that allows the investor to enter the contract without increasing
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1. Introduction

his expected total regret.
The regret optimisation problem in this work extends the utility max-

imisation problem in discrete-time financial market models by allowing the
investor’s preference to be different at different time steps. The most similar
problem to the regret optimisation problem in this thesis is the asset-liability
management problem which is studied by Pennanen (2014). He proves the
existence of solution of his asset-liability management problem, and he also
shows that the indifference prices of cash flows are within the no-arbitrage price
interval. In this thesis we establish these two results in a different setting. In
comparison with our study, although the optimisation problem in Pennanen
(2014) allows convex transaction costs, the investor’s liabilities are restricted
to cash flows instead of portfolio flows. Additionally, numerical approaches for
solving his optimisation problem and for computing the option prices have not
been developed. In our work, we provide a numerical method to compute the
investor’s minimal regret and calculate option indifference prices. Moreover,
we also provide substantial numerical results for the optimal cash injection
strategy, and for the regret indifference prices of various European options in
the models with large number of steps.

In this thesis we show that there exists a solution to our regret optimisation
problem under the assumption of robust no-arbitrage. Moreover, we prove
that the indifference prices of portfolio flows are within the no-arbitrage price
interval. However, the calculation of indifference prices are challenging due to
the difficulty of solving the regret optimisation problem. The main difficulty
is that the cost function (which is used to compute the costs of creating a
portfolio) is not differentiable at the origin when the transaction costs are non-
zero. In order to calculate the indifference prices, we introduce a Lagrangian
dual optimisation problem. It turns out that the solutions of this dual problem
are very helpful for computing the indifference prices and solving the regret
optimisation problem. Finally, under a sequence of exponential type regret
functions, we find an algorithm to numerically compute the regret indifference
prices. The numerical results show that the price interval based on regret
indifference pricing can be much narrower than the price interval derived from
superhedging. For the investors, such smaller price interval can be helpful for
them to choose the “right” option prices.

This thesis is organised as follows.
In Chapter 2, we firstly introduce the discrete financial market model with

proportional transaction costs. Then we provide a number of concepts such
as solvency cones with their dual spaces, self-financing trading strategies, and
no-arbitrage. In Theorem 2.6, we present the robust no-arbitrage condition
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introduced in Schachermayer (2004, Definition 1.9), and this condition is as-
sumed to hold true throughout this thesis. Subsequently, we define the notion
of a flow option (a sequence of European options with possibly different ma-
turity dates) which extend the notion of a European option, and then define
the superhedging prices of a flow option. In (2.26)-(2.27), we provide a link
between the superhedging prices of flow options and that of European options.

The main contribution of this work is in Chapters 3-5. At the start of
Chapter 3 we introduce the notion of a regret function and then introduce
the regret minimisation problem (3.8). The problem (3.8) covers discrete-
time versions of optimal investment and consumption problems and utility
maximisation problems; see Examples 3.12 and 3.13. We show that the value
function of the regret minimisation problem is lower semicontinuous, and that
there exists a solution to the problem; see Theorem 3.15 and Corollary 3.16.
After that, we reformulate the regret minimisation problem as a constrained
optimisation problem in (3.19). Then a Lagrangian dual problem of (3.19)
is defined in (3.35). The strong duality of the problems (3.19) and (3.35) is
established in Theorem 3.31. Subsequently, we define the indifference prices
of flow options. Moreover, Theorem 3.39 shows that the indifference prices are
within the no-arbitrage price interval.

Chapter 4 provides a number of technical results used for the study in the
next chapter. The results in this chapter does not rely on any financial market
model or any result from previous chapters. Firstly, we introduce a minimisa-
tion problem for which the value function is formulated as an extended convex
hull of a collection of convex functions. Then, in Theorem 4.3, we show that
the value function is convex. Moreover, in Theorem 4.13, we establish the ex-
istence of a solution and the continuity of the value function. Subsequently, we
present an example of the minimisation problem. In this example, we present
a method to explicitly calculate the solutions to this problem by considering
all different cases of the values of given parameters.

Chapter 5 concerns the dual optimisation problem (3.35) under a sequence
of exponential regret functions. We first show that the solutions to this dual
problem can be used to solve the problem (3.19); see Theorems 5.5 and 5.6.
Moreover, based on the solutions to the dual problem, Theorem 5.7 provides
formulae for computing the indifference prices of any flow option. By devel-
oping a dynamic programming algorithm, we can construct a solution to the
dual problem (3.35); see Theorem 5.20. However, computing this solution is
difficult. Thus, we propose a method to solve (3.35) numerically. Finally, in a
binary market model, we produce a number of examples to compute the solu-
tion to (3.19) and the indifference prices of flow options with various payoffs.
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Chapter 2

The model

2.1 The market model with proportional transac-
tion costs

Consider a financial market model with discrete trading dates t = 0, . . . , T and
a finite probability space (Ω,F ,P) that is equipped with a filtration (Ft)Tt=0.
Assume without loss of generality that F0 = {Ω, ∅}, FT = F = 2Ω and
P (ω) > 0 for all ω ∈ Ω. For all t = 0, . . . , T , we denote by Ωt the collection
of atoms of Ft. Moreover, the elements of Ωt are called nodes of the model at
time t.

For all t = 0, . . . , T and d ∈ N, let Ldt be the space of Rd-valued Ft-
measurable random variables, and define Lt = L1

t . Moreover, let Ldt+ be the
family of nonnegative random variables in Ldt . For any x ∈ Ldt , we have for
all ν ∈ Ωt that x(ω) = x(ω′) for all ω, ω′ ∈ ν, and sometimes we use x (ν)
to represent this common value. Let N d be the space of adapted Rd-valued
processes, and define N = N 1.

The financial market model consists of two assets. Trading in the risky
asset, stock, is subject to proportional transaction costs. At any time step
t = 0, . . . , T , a share can be bought for the given ask price Sat and sold for the
given bid price Sbt , where Sat ≥ Sbt > 0. We assume that Sa = (Sat )Tt=0 ∈ N
and Sb = (Sbt )Tt=0 ∈ N respectively.

The risk-free asset, cash, is taken to be a risk-free bond with zero interest
rate. Its price is constant and equal to 1 for all t = 0, . . . , T . Equivalently,
asset prices in our market model can be considered as discounted prices.

For all x ∈ R, let

x+ := max {x, 0} , x− := −min {x, 0} .
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2.1. The market model with proportional transaction costs

Fix any t = 0, . . . , T . The cost of setting up a portfolio x = (xb, xs) at time t
is

φt (x) := xb + xs+S
a
t − xs−Sbt

and the liquidation value of the portfolio x at time t is

xb − xs−Sat + xs+S
b
t = −φt (−x) .

Observe that Sat , Sbt ∈ Lt and hence the function φt based on Sat and Sbt is an
Ft-measurable random function. See Definition A.16 and comments following
it for the definition of measurable random function and relevant properties
and notation used in this work. The function φt is convex because Sat ≥ Sbt .
In addition, we have

φt (x) ≥ xb + xsS ≥ −φt (−x) for all S such that Sbt ≤ S ≤ Sat . (2.1)

For every ω ∈ Ω, let

Kωt :=
{
x ∈ R2

∣∣∣− φωt (−x) ≥ 0
}

=
{

(xb, xs) ∈ R2
∣∣∣xb − xs−Sat (ω) + xs+S

b
t (ω) ≥ 0

}
=
{

(xb, xs) ∈ R2
∣∣∣xb + xsSbt (ω) ≥ 0, xb + xsSat (ω) ≥ 0

}
, (2.2)

which is the collection of portfolios with nonnegative liquidation value at time t
and scenario ω. We shall refer Kωt as the solvency cone at time t and scenario ω.
Observe that Kt is determined by Sat and Sbt and hence it is an Ft-measurable
set-valued function. See Definition A.12 and the comments following it for
the definition of measurable set-valued function and relevant properties and
notation used in this work. Note that, for each ω ∈ Ω, the set Kωt ⊆ R2 is a
polyhedral cone and hence closed.

Remark 2.1. Fix any ω ∈ Ω. The graph of Kωt is presented in Figure 2.1 for the
case when Sbt (ω) < Sat (ω). In the case when Sat (ω) = Sbt (ω), the polyhedral
cone Kωt is a half space, and the vectors (Sat (ω) ,−1) and (−Sbt (ω) , 1) are
on the same line. Thus, apart from (Sat (ω) ,−1), and (−Sbt (ω) , 1), at least
one additional vector is needed to generate Kωt . The choice of additional
vectors is not unique, and here we chose the vectors (1, 0) and (0, 1). From
the graph, the polyhedral cone Kωt is generated by (1, 0), (0, 1), (Sat (ω) ,−1),
and (−Sbt (ω) , 1), in other words,

Kωt =
{
α (1, 0) + β (0, 1) + γ(Sat (ω) ,−1) + δ(−Sbt (ω) , 1) | α, β, γ, δ ∈ [0,∞)

}
.

(2.3)
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2.1. The market model with proportional transaction costs

(−Sbt (ω), 1)

(Sat (ω),−1)

Kωt

xb

xs

Figure 2.1: The solvency cone Kωt at time t and scenario ω

For all ω ∈ Ω, the family −Kωt can be presented as

−Kωt =
{
x ∈ R2 | −φωt (x) ≥ 0

}
=
{
x ∈ R2 | φωt (x) ≤ 0

}
(2.4)

which is the collection of portfolios that can be created from zero cash at time
t and scenario ω.

A trading strategy is a sequence (yt)Tt=0 ∈ N 2 of portfolios coupled with an
initial endowment y−1 ∈ R2. The collection of trading strategies is denoted by
N 2′. For t = 0, . . . , T − 1, the portfolio yt is held during the interval (t, t+ 1]
and yT is the terminal portfolio.

Definition 2.2. We call a trading strategy y = (yt)Tt=−1 self-financing if

∆yt := yt − yt−1 ∈ −Kt for all t = 0, . . . , T.

We denote the collection of self-financing strategies by Φ.

A trading strategy is self-financing if there is no injection of funds beyond
the initial endowment, in other words, the change in the portfolio holdings
∆yt at each time step t can be created without additional investment.

Remark 2.3. The definition of the self-financing property above allows for the
withdrawal of funds. For example, define y ∈ N 2′ as

y−1 := (1, 1)

yt := yt−1 − 1
T+1(1, 1) for all t = 0, . . . , T.
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2.2. Arbitrage and dual spaces

Then ∆yt = − 1
T+1(1, 1) ∈ −Kt for all t and hence y ∈ Φ. By the construction

of y, the portfolio 1
T+1(1, 1) is withdrawn at each time t.

2.2 Arbitrage and dual spaces

In this section, we consider two different notions of absence of arbitrage. The
first, no-arbitrage, is important in the arbitrage pricing theory which will
be discussed in the next section. The second, robust no-arbitrage, will turn
out to be a sufficient condition for the existence of a solution to the regret
minimisation problem in the next chapter. Define

P̄ :=
{

(Q, S)|Q� P, S a Q-martingale, Sbt ≤ St ≤ Sat
}
, (2.5)

P :=
{

(Q, S)|Q ∼ P, S a Q-martingale, Sbt ≤ St ≤ Sat
}
, (2.6)

where “Q� P” in (2.5) means that Q is a probability measure that is absolute
continuous with respect to P, and “Q ∼ P” in (2.6) means that Q and P are
equivalent. We shall refer the elements of P̄ (P) as (equivalent) martingale
pairs. Notice that P ⊆ P̄.

Remark 2.4. If there are no transaction costs, then Sb = Sa and for any
(Q, S) ∈ P the probability measure Q is an equivalent martingale measure in
the friction-free model with stock price S = Sb = Sa.

We denote the collection of terminal portfolios associated with self-financing
trading strategies with zero initial endowment by

AT :=
{
yT
∣∣∣(yt)Tt=−1 ∈ Φ and y−1 = 0

}
.

The following result is due to Kabanov & Stricker (2001, Theorem 1) (see also
Schachermayer (2004, Theorem 1.7 and pp. 24-25)). We follow Schachermayer
(2004) in referring to the condition in the following result as the no-arbitrage
condition. Although formulated differently, this is equivalent to the notion of
weak no-arbitrage introduced by Kabanov & Stricker (2001).

Theorem 2.5. The market model satisfies the no-arbitrage condition

AT ∩ L2
T+ = {0}

if and only if P 6= ∅.

In the present setting, the robust no-arbitrage condition introduced in
Schachermayer (2004, Definition 1.9) is satisfied if there exists (S̃b, S̃a) ∈ N 2

such that the following two conditions are satisfied:
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2.2. Arbitrage and dual spaces

1. For every t = 0, . . . , T , we have S̃bt ≤ S̃at and [S̃bt , S̃at ] is contained in the
relative interior of [Sbt , Sat ], in other words,

Sbt = Sat =⇒ Sbt = S̃bt = S̃at = Sat ,

Sbt < Sat =⇒ Sbt < S̃bt ≤ S̃at < Sat .

2. The market model with stock prices modelled by (S̃b, S̃a) (instead of
(Sb, Sa)) satisfies the no-arbitrage condition.

From Schachermayer (2004, Theorem 1.7 and pp. 24-25), we have following
equivalent presentation of the robust no-arbitrage condition.

Theorem 2.6. The market model satisfies the robust no-arbitrage condition
if and only if there exists (Q, S) ∈ P such that St is in the relative interior of
[Sbt , Sat ] for all t = 0, . . . , T .

Observe that the robust no-arbitrage condition implies that P 66= ∅ and
hence implies that the no-arbitrage condition holds. In the remainder of our
work, we will always assume that the robust no-arbitrage condition holds true.

Define
Ψ :=

{
y ∈ N 2′

∣∣∣ y−1 = yT = 0
}
. (2.7)

Then

Φ ∩Ψ =
{
y ∈ N 2′

∣∣∣ y−1 = yT = 0, ∆yt ∈ −Kt for all t = 0, . . . , T
}

=
{
y ∈ N 2′

∣∣∣ y−1 = yT = 0, φt(∆yt) ≤ 0 for all t = 0, . . . , T
}

(2.8)

is the collection of self-financing trading strategies with both initial endowment
and final value equal to zero. It turns out that the linearity of Φ∩Ψ is crucial
for the existence of a solution to the optimisation problem that will be studied
in the next chapter. Note that, while robust no-arbitrage is assumed, the
weaker no-arbitrage condition is sufficient for the following result to hold true.

Proposition 2.7. If y ∈ Φ ∩Ψ, then φt(∆yt) = 0 for all t = 0, . . . , T .

Proof. Let y ∈ Φ ∩ Ψ, and suppose by contradiction that there exists some
t∗ = 0, . . . , T such that

P(φt∗(∆yt∗) < 0) > 0.

This means that there exists ν ∈ Ωt∗ such that ε := φνt∗(∆yt∗(ν)) < 0, with
ε ∈ R by the adaptedness of y and stock price processes; see the comments
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2.2. Arbitrage and dual spaces

following Definition A.16 for φνt∗ . Define z = (zt)Tt=−1 ∈ N 2′ as

zt =

yt − (ε, 0) on ν if t ≥ t∗,

yt otherwise.

Then z−1 = 0 and

∆zt =

∆yt − (ε, 0) ∈ −Kt on ν if t = t∗,

∆yt ∈ −Kt otherwise,

which implies that z ∈ Φ and hence zT ∈ AT . However yT = 0 gives that

zT =

yT − (ε, 0) = −(ε, 0) on ν,

yT = 0 on Ω\ν,

in other words, we have zT ∈ L2
T+ with zT 6= 0. Therefore, the no-arbitrage

condition is violated and hence the result follows.

The following result follows from Proposition 2.7, and it shows that robust
no-arbitrage is sufficient for Φ ∩Ψ to be a linear space; for the definition of a
linear space see Roman (2008, pp. 35-36).

Proposition 2.8. The set Φ ∩Ψ is a linear space.

Proof. Our main objective is to prove that for every y ∈ Φ ∩Ψ we have

∆yst = 0 on {Sbt < Sat } for all t = 0, . . . , T. (2.9)

This is shown below. Taking (2.9) as given, fix any y ∈ Φ∩Ψ and t = 0, . . . , T .
Then (2.9) implies that

φt(−∆yt) = φt(−(∆ybt , 0)) = −φt((∆ybt , 0)) = −φt(∆yt) on {Sbt < Sat }.

Combining this with φt being a linear function on {Sbt = Sat }, it follows that

φt(−∆yt) = −φt(∆yt) = 0

by Proposition 2.7. Thus −y ∈ Φ ∩ Ψ. Since Φ ∩ Ψ is also a convex cone, it
has to be a linear space.

Now, we are going to show that (2.9) holds true for all y ∈ Φ ∩ Ψ. First
of all, fix any (Q, S) ∈ P satisfying the conditions in Theorem 2.6. For any
y ∈ Φ ∩Ψ, from yT = (ybT , ysT ) = 0 and (2.1) together with Proposition 2.7, it
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2.2. Arbitrage and dual spaces

follows that

ybT−1 + ysT−1ST = −∆ybT −∆ysTST ≥ −φT (∆yT ) = 0. (2.10)

Since
(
ybt−1 + yst−1St

)T
t=0 is a Q-supermartingale (Roux, Tokarz & Zastawniak

2008, Lemma 7.1), we have

ybt−1 + yst−1St ≥ EQ
[
ybt′−1 + yst′−1St′

∣∣∣Ft] for all 0 ≤ t ≤ t′ ≤ T. (2.11)

Combining (2.11) and (2.10), we have

ybt−1 + yst−1St ≥ EQ
[
ybT−1 + ysT−1ST

∣∣∣Ft] ≥ 0 for all t = 0, . . . , T. (2.12)

Suppose by contradiction that there exists some t∗ = 0, . . . , T such that

ν := {∆yst∗ 6= 0} ∩ {Sbt∗ < Sat∗} 6= ∅.

Since (Q, S) satisfies the conditions in Theorem 2.6, we can present ν as

ν = {∆yst∗ 6= 0} ∩ {Sbt∗ < St∗ < Sat∗}.

Combining this and Proposition 2.7 together with y ∈ Φ ∩Ψ, it follows that

∆ybt∗ + ∆yst∗St∗ < φt∗(∆yt∗) = 0 on ν,

in other words,
ybt∗−1 + yst∗−1St∗ > ybt∗ + yst∗St∗ on ν. (2.13)

Consider the following two cases. In the case when t∗ = T , we have from
(2.13) and yT = 0 that

ybT−1 + ysT−1ST > 0 on ν.

In the case when t∗ < T , it follows from (2.13) and the fact that S is a
Q-martingale that

ybt∗−1 + yst∗−1St∗ > ybt∗ + yst∗EQ [St∗+1| Ft∗ ] = EQ
[
ybt∗ + yst∗St∗+1

∣∣∣Ft∗] on ν.

Combining this with ybt∗ + yst∗St∗+1 ≥ 0 by (2.12), it follows that

ybt∗−1 + yst∗−1St∗ > 0 on ν.

Thus, we always have ybt∗−1 + yst∗−1St∗ > 0 on ν. Combining this with (2.11),
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2.2. Arbitrage and dual spaces

we have
0 < EQ

[
ybt∗−1 + yst∗−1St∗

]
≤ yb−1 + ys−1S0.

This contradicts yb−1 + ys−1S0 = 0 because y−1 = 0. This establishes (2.9) and
hence completes the proof.

Let · denote the scalar product in Rd. For any cone C ⊆ Rd, we write the
polar C+ of −C as

C+ =
{
y ∈ Rd

∣∣∣ y · x ≥ 0 for all x ∈ C
}
. (2.14)

For all t = 0, . . . , T , we define the set-valued function K+
t as

K+ω
t := Kω+

t for all ω ∈ Ω. (2.15)

Notice that K+
t is determined by Sat and Sbt which means it is Ft-measurable.

Moreover, the following result provides an expression for K+
t .

Lemma 2.9. For all t = 0, . . . , T and ω ∈ Ω, we have

K+ω
t =

{
(zb, zs) ∈ [0,∞)2

∣∣∣ zbSbt (ω) ≤ zs ≤ zbSat (ω)
}
.

Proof. Notice that, for any (zb, zs) ∈ R2, we have

zb ≥ 0⇐⇒ (zb, zs) · (1, 0) ≥ 0,

zs ≥ 0⇐⇒ (zb, zs) · (0, 1) ≥ 0,

zbSat (ω) ≥ zs ⇐⇒ (zb, zs) · (Sat (ω),−1) ≥ 0,

zs ≥ zbSbt (ω)⇐⇒ (zb, zs) · (−Sbt (ω), 1) ≥ 0.

This means

{
(zb, zs) ∈ [0,∞)2

∣∣∣ zbSbt (ω) ≤ zs ≤ zbSat (ω)
}

=
{
z ∈ R2

∣∣∣ z · y ≥ 0 for all y = (1, 0) , (0, 1) , (Sat (ω),−1), (−Sbt (ω), 1)
}
.

From (2.3), we have

{
z ∈ R2

∣∣∣ z · x ≥ 0 for all x ∈ Kωt
}

⊆
{
z ∈ R2

∣∣∣ z · y ≥ 0 for all y = (1, 0) , (0, 1) , (Sat (ω),−1), (−Sbt (ω), 1)
}
.

The opposite set inclusion also holds. Indeed, fix any

z ∈
{
z ∈ R2

∣∣∣ z · y ≥ 0 for all y = (1, 0) , (0, 1) , (Sat (ω),−1), (−Sbt (ω), 1)
}
.
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Then we have for all α, β, γ, δ ∈ [0,∞) that

z ·
[
α (1, 0) + β (0, 1) + γ(Sat (ω),−1) + δ(−Sbt (ω), 1)

]
= αz · (1, 0) + βz · (0, 1) + γz · (Sat (ω),−1) + δz · (−Sbt (ω), 1) ≥ 0,

and hence z · x ≥ 0 for all x ∈ Kωt by (2.3). Thus, we can conclude that

{
z ∈ R2

∣∣∣ z · x ≥ 0 for all x ∈ Kωt
}

=
{

(zb, zs) ∈ [0,∞)2
∣∣∣ zbSbt (ω) ≤ zs ≤ zbSat (ω)

}
.

Combining this with (2.14) and (2.15), the result follows.

Remark 2.10. Let t = 0, . . . , T and z ∈ K+
t . Combining Lemma 2.9 and

0 < Sbt ≤ Sat , we have for all ω ∈ Ω that either z(ω) = 0 or z(ω) ∈ (0,∞)2.

Define

C :=
{

(zt)Tt=0 ∈ N 2
∣∣∣ z a martingale, zt ∈ K+

t \{0} for all t = 0, . . . , T
}
,

C̄ :=
{

(zt)Tt=0 ∈ N 2
∣∣∣ z a martingale, zt ∈ K+

t for all t = 0, . . . , T
}
. (2.16)

The elements of C are called consistent pricing processes which are introduced
by Kabanov & Stricker (2001, p. 191) and Schachermayer (2004, Definition 1.5).
The difference between C and C̄ is that the processes in C̄ are allowed to be
zero at some time steps.

Remark 2.11. Observe that if (zt)Tt=0 ∈ C̄, then the martingale property of
(zt)Tt=0 implies that

E [zk | Ft] = zt = 0 on {zt = 0} for all 0 ≤ t ≤ k ≤ T,

Combining this with zk ∈ K+
k and Remark 2.10, it follows that

zk = 0 on {zt = 0} for all 0 ≤ t ≤ k ≤ T.

The relationship between C and P is one-to-one up to a nonnegative factor;
see Schachermayer (2004, pp. 24-25). In addition, Lemma 2.13 below implies
that the relationship between P̄ and C̄ is also one-to-one up to a nonnegative
factor.

For convenience, for every probability measure Q on F satisfying Q� P,
we write

ΛQ
t := E

[
dQ
dP

∣∣∣∣Ft] for all t = 0, . . . , T, (2.17)

29



2.2. Arbitrage and dual spaces

where dQ
dP is the Radon-Nikodym density of Q with respect to P. For any

t = 0, . . . , T and ν ∈ Ωt, the value ΛQ
t (ν) can be presented as

ΛQ
t (ν) = E

[
dQ
dP

∣∣∣∣Ft] (ν) = 1
P(ν)

∑
ω∈ν

P(ω)Q(ω)
P(ω) = Q(ν)

P(ν) .

In particular, we have ΛQ
0 = 1, and hence

E
[
ΛQ

0 ln ΛQ
0

]
= E [1 ln 1] = 0. (2.18)

Remark 2.12. Notice that the process (ΛQ
t )Tt=0 is a P-martingale. Then for any

t = 0, . . . , T and x ∈ Lt, the expectation EQ [x] can be written as

EQ [x] = E
[
ΛQ
Tx
]

= E
[
E
[
ΛQ
T

∣∣∣Ft]x] = E
[
ΛQ
t x
]
.

Define an indicator function

1A (x) :=

1 if x ∈ A

0 otherwise
(2.19)

for any set A.

Lemma 2.13. The family C̄ defined in (2.16) can be presented as

C̄ =
{(

λ (1, St) ΛQ
t

)T
t=0

∣∣∣∣λ ≥ 0, (Q, S) ∈ P̄
}
.

Proof. Firstly, fix any λ ≥ 0 and (Q, S) ∈ P̄. Define

z = (zt)Tt=0 = (zbt , zst )Tt=0 ∈ N 2

as
zt := λ(1, St)ΛQ

t for all t = 0, . . . , T. (2.20)

Fix any t = 0, . . . , T . From (2.20), we have on {zt 6= 0} that zbt > 0 and
zst
zbt

= St, and hence

Sbt ≤
zst
zbt
≤ Sat .

Moreover, we have on {zt = 0} that zbt = zst = 0. Then zt ∈ K+
t by Lemma 2.9.

In addition, for each t = 0, . . . , T − 1, the definition of zt+1 gives

E [zt+1 | Ft] = λE
[
(1, St+1)ΛQ

t+1

∣∣∣Ft] .
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Then it follows from Bayes’ formula (Shreve 2004, Lemma 5.2.2) that

E [zt+1 | Ft] = λEQ [ (1, St+1)| Ft] ΛQ
t

= λ (1, St) ΛQ
t = zt.

Thus, the process z is a martingale, and therefore z ∈ C̄.

Now, fix any z = (zb, zs) ∈ C̄. If z0 = 0, then it follows from Remark 2.11
that

zt = 0 = 0(1, St)ΛQ
t for all t = 0, . . . , T

for any choice of (Q, S) ∈ P̄. Suppose z0 6= 0; then zb0 > 0 by Remark 2.10.
Define λ := zb0 and a measure Q by means of its Radon-Nikodym density

dQ
dP

:= zbT
zb0
.

Then Q (Ω) = E(zbT )
zb0

= 1 because zb is a martingale, and hence Q is a probab-
ility measure. Moreover, we have

ΛQ
t = E

[
zbT
zb0

∣∣∣∣∣Ft
]

= zbt
zb0

for all t = 0, . . . , T. (2.21)

Let us now define S = (St)Tt=0 ∈ N . For every t = 0, . . . , T , let

νt := {zbt = 0}

and

St :=


zst
zbt

on Ω\νt

Sbt on νt.

Combining Remark 2.10 and (2.21), we have on νt that zt = 0 = λ(1, St)ΛQ
t .

Moreover, we have on Ω\νt that zbt > 0 and

zt =
(
zbt , z

s
t

)
= zb0

(
1, z

s
t

zbt

)
zbt
zb0

= λ (1, St) ΛQ
t ,

again by (2.21). It remains to show that (Q, S) ∈ P̄. Observe first that, for
all t = 0, . . . , T − 1, the probability Q(νt+1) is

Q (νt+1) = EQ
[
1νt+1

]
= E

[
ΛQ
t+11νt+1

]
= 0

by Remark 2.12 and (2.21). In addition, it follows from Remark 2.11 that
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νt+1 ⊇ νt, and hence we have on Ω\νt+1 that

St = zst
zbt

= zb0
zbt

zst
zb0

= 1
ΛQ
t

E
[
zst+1
zb0

∣∣∣∣∣Ft
]

= 1
ΛQ
t

E
[
zst+1
zbt+1

zbt+1
zb0

∣∣∣∣∣Ft
]

= 1
ΛQ
t

E
[
St+1ΛQ

t+1

∣∣∣Ft]
= EQ [St+1 | Ft]

(Shreve 2004, Lemma 5.2.2). Thus, the process S is a Q-martingale. Moreover,
the definition of S together with Lemma 2.9 implies that

Sbt ≤ St ≤ Sat for all t = 0, . . . , T,

which establishes (Q, S) ∈ P̄.

2.3 Superhedging

A European option with payoff c = (cb, cs) ∈ L2
T and physical delivery at

maturity date T is a contract whereby the seller delivers the portfolio c at
time T to the buyer. We call y = (yT )Tt=−1 ∈ N 2′ a superhedging strategy for
the seller of the option c if y ∈ Φ and yT = c. The lowest initial cash holding
yb−1 such that the seller is able to superhedge c with y starting from the initial
endowment (yb−1, 0) defines the seller’s superhedging price of c, namely

πaE (c) := inf
{
yb−1

∣∣∣ y ∈ Φ, ys−1 = 0, yT = c
}
.

Theorem 2.14 below shows that the above infimum is attained. The quant-
ity πaE (c) is the smallest amount of cash that enables the seller to meet his
obligation of delivering c to the buyer without risk.

The buyer’s superhedging price of the option c is defined in a similar man-
ner. We call y = (yt)Tt=−1 a superhedging strategy for the buyer if y ∈ Φ and
yT = −c. The buyer’s superhedging price of c is defined as

πbE (c) := − inf
{
yb−1

∣∣∣ y ∈ Φ, ys−1 = 0, yT = −c
}
.

Notice that
πbE (c) = −πaE (−c) . (2.22)
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Again Theorem 2.14 below shows that the above infimum is attained. The
quantity πbE (c) is the largest amount of cash that can be raised at time 0 by
the buyer with the guarantee c at time T . Note that there is a symmetry
between the seller’s and buyer’s position. The buyer, as the option holder,
will receive c at time T . Equivalently, the buyer has to deliver −c at time T .
To fully cover this risk, the buyer has to receive at least −πbE (c) in cash from
the seller, namely, pay at most πbE (c) to the seller.

Theorem 2.14. (Roux & Zastawniak 2016, Theorems 4.4, 4.10). Suppose
that c = (cb, cs) ∈ L2

T is the payoff of a European option with maturity date
T . Then the seller’s and buyer’s superhedging prices can be represented as

πaE (c) = max
(Q,S)∈P̄

EQ
[
cb + ST c

s
]

= sup
(Q,S)∈P

EQ
[
cb + ST c

s
]

and
πbE (c) = min

(Q,S)∈P̄
EQ

[
cb + ST c

s
]

= inf
(Q,S)∈P

EQ
[
cb + ST c

s
]
.

Moreover, if x ≥ πaE (c), then there exists a superhedging strategy with initial
endowment (x, 0) for the seller of c, and if x ≤ πbE (c), then there exists a
superhedging strategy with initial endowment (−x, 0) for the buyer of c.

The following result follows from Theorem 2.14.

Corollary 2.15. Given a European option with payoff c = (cb, cs) ∈ L2
T at

maturity date T , we have

EQ
[
cb + ST c

s
]
≤ 0 for all (Q, S) ∈ P̄

if and only if there exists a superhedging strategy with zero initial endowment
for the seller of c.

Proof. Note that EQ
[
cb + ST c

s
]
≤ 0 for all (Q, S) ∈ P̄ if and only if

0 ≥ max
(Q,S)∈P̄

EQ
[
cb + ST c

s
]

= πaE (c) (2.23)

(Theorem 2.14). Since 0 ≥ πaE (c) if and only if there exists a superhedging
strategy with zero initial endowment for the seller of c, the result follows.

A flow option with payoff c = (ct)Tt=0 ∈ N 2 is a contract whereby the seller
delivers the portfolio ct at time t to the buyer for every t = 0, . . . , T . This
option can be seen as a portfolio of T+1 European options with maturity dates
0, . . . , T and payoffs c0, . . . , cT . We call y = (yt)Tt=−1 ∈ N 2′ a superhedging
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strategy for the seller of the flow option c if

∆yt + ct ∈ −Kt for all t = 0, . . . , T and yT = 0.

Note that the superhedging strategy defined above does not have to be self-
financing. Suppose y = (yt)Tt=−1 is a superhedging strategy for the seller of the
flow option (ct)Tt=0. Then, at each time step t = 0, . . . , T , the seller can create
the portfolio ∆yt + ct from zero cash to meet his obligation by delivering ct
and manage his trading strategy by adding ∆yt to his current portfolio yt−1.
Thus the superhedging strategy y enables the seller to meet his obligation of
delivering c to the buyer without risk. The lowest initial cash holding yb−1 such
that the seller is able to superhedge c with y starting from initial endowment
(yb−1, 0) defines the seller’s superhedging price of c, namely

πaF (c) := inf
{
yb−1

∣∣∣ y ∈ N 2′ superhedges c for the seller, ys−1 = 0
}
. (2.24)

The buyer’s superhedging price of the option c is defined in a similar manner.
We call y ∈ N 2′ a superhedging strategy for the buyer of c if

∆yt − ct ∈ −Kt for all t = 0, . . . , T and yT = 0.

The buyer’s superhedging price of c is defined as

πbF (c) :=− inf
{
yb−1

∣∣∣ y ∈ N 2′ superhedges c for the buyer, ys−1 = 0
}

=− inf
{
yb−1

∣∣∣ y ∈ N 2′ superhedges −c for the seller, ys−1 = 0
}

=− πaF (−c) . (2.25)

The following result gives a link between a superhedging strategy for the
seller of the flow option c and a superhedging strategy for the seller of the
European option with payoff

∑T
t=0 ct at maturity date T .

Lemma 2.16. Let c = (ct)Tt=0 ∈ N 2 be a flow option.

1. If (yt)Tt=−1 ∈ N 2′ is a superhedging strategy for the seller of c, then
(xt)Tt=−1 ∈ N 2′ defined by

x−1 := y−1, xt := yt +
∑t
k=0ck for all t = 0, . . . , T

is a superhedging strategy for the seller of the European option with pay-
off

∑T
t=0 ct at maturity date T .

2. If (yt)Tt=−1 ∈ N 2′ is a superhedging strategy for the seller of the European
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option with payoff
∑T
t=0 ct at maturity date T , then (xt)Tt=−1 ∈ N 2′

defined by

x−1 := y−1, xt := yt −
∑t
k=0ck for all t = 0, . . . , T

is a superhedging strategy for the seller of c.

Proof. In the first claim, it follows from yT = 0 that xT =
∑T
t=0 ct. Moreover,

we have
∆xt = ∆yt + ct ∈ −Kt for all t = 0, . . . , T,

which implies that (xt)Tt=−1 ∈ Φ. Thus, the first claim holds true.
In the second claim, we have

∆xt + ct = ∆yt ∈ −Kt for all t = 0, . . . , T,

and moreover xT = 0 by yT =
∑T
t=0 ct. Thus, the second claim holds true.

Let z ∈ R2 and let c = (ct)Tt=0 ∈ N 2 be a flow option. Lemma 2.16 implies
that the following two statements are equivalent:

1. There exists a superhedging strategy (yt)Tt=−1 with initial endowment
y−1 = z for the seller of the flow option c;

2. There exists a superhedging strategy (yt)Tt=−1 with initial endowment
y−1 = z for the seller of the European option with payoff

∑T
t=0 ct at

maturity date T .

This implies that
πaF(c) = πaE

(∑T
t=0ct

)
(2.26)

(cf. Corollary 3.32 of Tien (2011)). Moreover, we have

πbF(c) = −πaF(−c) = −πaE
(
−
∑T
t=0ct

)
= πbE

(∑T
t=0ct

)
(2.27)

by (2.22).

Corollary 2.17. Given a flow option c = (ct)Tt=0 = (cbt , cst )Tt=0 ∈ N 2, we have

EQ
[∑T

t=0c
b
t + ST

∑T
t=0c

s
t

]
≤ 0 for all (Q, S) ∈ P̄ (2.28)

if and only if there exists a superhedging strategy with zero initial endowment
for the seller of c.

Proof. Corollary 2.15 implies that (2.28) holds true if and only if there ex-
ists a superhedging strategy with zero initial endowment for the seller of the
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European option with payoff
∑T
t=0 ct at maturity date T . Then the result

follows from the comments preceding (2.26).
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Chapter 3

Regret optimisation

In this chapter, we will study an optimisation problem in the market model
presented in Chapter 2 with the robust no-arbitrage condition being assumed.
In this problem, we consider an investor who faces the liability of delivering a
sequence of portfolios. At each time step, he also manages his financial position
in the underlying assets. Moreover, his trading strategy is not required to be
self-financing, in other words, he is allowed to inject extra cash beyond the
initial endowment. The investor’s regret upon cash injection for updating the
portfolio in each trade is measured by a regret function, and his objective
is to minimise his expected total regret. Section 3.1 introduces the notion
of a regret function. Then Section 3.2 formulates the regret optimisation
problem, and Section 3.2.1 studies the existence of a solution of this problem.
In Section 3.2.2, the regret optimisation problem in Section 3.2 is reformulated
to reduce the dimensionality of the control variable. Then, the Lagrangian
dual problem of this reformulated optimisation problem is introduced in the
Section 3.3. This dual problem will be used in Chapter 5 to study the algorithm
of solving the regret optimisation problem numerically. Finally, based on the
regret optimisation problem, Section 3.5 introduces a pricing method: regret
indifferent pricing. The option prices derived from this pricing method will
depend on the risk preference of the investor.

3.1 Regret function

This section introduces the notion of a regret function. Recall from the above
introduction that the investor’s trading strategy is not required to be self-
financing and his regret/disutility of cash injection for updating the portfolio
in each trade is measured by a regret function. If this injection is negative,
then it is a consumption. First of all, the regret functions is an R∪{∞}-valued
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3.1. Regret function

function on R. Moreover, it is natural to assume that the investor’s regret of
zero injection is zero. The investor prefers to inject less rather than more, so
the regret function is required to be nondecreasing. In addition, the investor
is assumed to be risk averse in the sense that the regret function is convex;
the definition of convex function can be found in Appendix A.1.

Remark 3.1. The convexity of the regret function allows the investor to choose
an injection strategy with lower “risks”. For example, let C ∈ R and X ∈ LT
such that C = E [X]. Consider the situation when the investor has to choose
between injecting the constant amount of cash C and injecting the amount
of cash X with possibly different outcomes. Suppose that the investor use a
regret function v to compute his regret, and that he will choose the injection
strategy (C or X) with lower expected regret. Then the right decision for
the investor is to inject C because v(C) = v(E [X]) ≤ E [v(X)] (Jensen’s
inequality).

Define an indicator function

δA (x) :=

0 if x ∈ A

∞ otherwise
(3.1)

for any set A; this function is different from the indicator function defined in
(2.19).

Definition 3.2. We call v : R→ R ∪ {∞} a regret function if

1. v is nondecreasing and convex on R, and v (0) = 0;

2. v is lower semicontinuous, bounded from below and its recession function
is v∞ = δ(−∞,0].

The definitions of lower semicontinuity and recession function can be found
in Appendix A.1. The properties listed under the second item are technical.
We shall use them to prove that there exists a solution to the regret optimisa-
tion problem (3.8) in the next section. We denote the collection of all regret
functions by V.

Remark 3.3. Regret functions are closely related to utility functions. For
example, if v is a regret function that is continuous, strictly increasing and
strictly convex, then U (x) = −v (−x) is a utility function in the sense of
Definition 2.35 of Föllmer & Schied (2011).

Example 3.4. We have the following examples of regret functions.
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3.1. Regret function

1. The exponential regret function:

v (x) = eαx − 1 for all x ∈ R,

where α > 0. The exponential regret function can be used when it
is allowed to inject/withdraw arbitrarily large amount of cash. The
parameter α describes the investor’s risk aversion. The higher the value
of α, the greater the risk aversion of the investor.

2. The power regret function:

v (x) =


bη

η −
1
η (b− x)η if x < b,

∞ if x ≥ b,

where b > 0 and η < 0. The investor’s cash injection is not allowed to
be equal to or greater than b.

3. The regret function

v (x) = δ(−∞,0] (x) for all x ∈ R

is useful for the investor who does not wish to inject, but his regret is
indifferent with respect to the size of withdrawals.

Fix any v ∈ V for the remainder of this section. We define

v∗(x) := sup {xy − v(y)| y ∈ R} for all x ∈ R. (3.2)

Observe that v∗ is the conjugate function (Rockafellar 1974, (3.10)) of v, and
v∗ will be used in the study of the dual optimisation problem in Section 3.3.
We have v∗(x) =∞ for any x < 0 because v is nondecreasing and v(0) = 0.

Remark 3.5. Fix any x ≥ 0. Observe from (3.2) that

v∗(x) ≥ xy − v(y) for all y ∈ R.

In particular, we have

v∗(x) ≥ x× 0− v(0) = 0 (3.3)

because v(0) = 0.

The following result implies that v∗(x) <∞ for all x ≥ 0. Combining this
with (3.3), we have

v∗(x) ∈ [0,∞) for all x ≥ 0. (3.4)
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This result also shows that the supremum in (3.2) is attained for all x > 0.

Proposition 3.6. For all x ≥ 0, we have v∗(x) < ∞. Moreover, in the
situation when x > 0, there exists ŷ ∈ R such that

xŷ − v(ŷ) = v∗(x).

Proof. Fix any x ≥ 0. Firstly, we are going to show that v∗(x) < ∞ by
considering the following two cases. In the case when x = 0, we have

v∗(0) = sup
y∈R

[−v(y)] = − inf
y∈R

v(y) <∞

since v is bounded from below.
In the case when x > 0, for convenience, we write

fx(y) := v(y)− xy for all y ∈ R. (3.5)

Observe that the function fx is R ∪ {∞}-valued, proper, closed, and convex.
In addition, we have

− inf
y∈R

fx(y) = − inf
y∈R

[v(y)− xy] = sup
y∈R

[xy − v(y)] = v∗(x). (3.6)

Since v∞ = δ(−∞,0] and the recession function of the linear function y 7→ −xy
is equal to itself (see Example A.4.1), the recession function f∞x of fx is

f∞x (y) = δ(−∞,0](y)− xy

(Rockafellar 1997, Theorem 9.3). Notice that f∞x (1) =∞ > 1 which means

(1, 1) /∈ epi f∞x .

Moreover, it follows from f∞x (−1) = x > x
2 that

(
−1, x2

)
/∈ epi f∞x .

Thus, Lemma A.5 implies that fx attains its infimum, in other words, there
exists ŷ ∈ R such that

fx(ŷ) = inf
y∈R

fx(y). (3.7)

Therefore, it follows that

v∗(x) = − inf
y∈R

fx(y) = −fx(ŷ) <∞,
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3.1. Regret function

and this establishes that v∗(x) <∞ for all x ≥ 0. Combining (3.5), (3.7) and
(3.6), it follows that

xŷ − v(ŷ) = −fx(ŷ) = − inf
y∈R

fx(y) = v∗(x).

This completes the proof.

The following example presents the conjugate function of each regret func-
tion introduced in Example 3.4. In particular, Example 3.4.3 implies that the
condition x > 0 in Proposition 3.6 that guarantees the existence of ŷ ∈ R such
that xŷ − v(ŷ) = v∗(x) is sufficient but not necessary.

Example 3.7. This example provides the values of v∗ for each regret function
v defined in Example 3.4. Notice from the comments following (3.2) that we
always have v∗ =∞ on (−∞, 0). Thus, it is enough to compute the values of
v∗ on [0,∞).

1. Let v (y) := eαy − 1 for all y ∈ R where α > 0. Notice that

v∗(0) = sup
y∈R

[−v(y)] = 1 > −v(y′) for all y′ ∈ R.

For all x > 0, we have

d

dy
[xy − v(y)] = x− αeαy for all y ∈ R.

Then y 7→ xy − v(y) is continuous, and it is increasing on (−∞, 1
α ln x

α ]
and decreasing on [ 1

α ln x
α ,∞). This implies that ŷ := 1

α ln x
α is the unique

value in R that maximise xy − v(y) over all y ∈ R, and hence

xŷ − v(ŷ) = sup
y∈R

[xy − v(y)] = v∗(x).

By substituting ŷ = 1
α ln x

α into xŷ−v(ŷ), it yields v∗(x) = x
α ln x

α−
x
α+1.

Combining this with v∗(0) = 1, we can conclude that

v∗(x) = x

α
ln x
α
− x

α
+ 1 for all x ≥ 0;

we always assume that 0 ln 0 = 0 in this thesis.

2. Let b > 0 and η < 0. For any y ∈ R, let

v (y) :=


bη

η −
1
η (b− y)η if y < b,

∞ if y ≥ b.
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Then
v∗(0) = sup

y∈R
[−v(y)] = −b

η

η
> −v(y′) for all y′ ∈ R.

Fix any x > 0. We have for any y < b that

xy − v (y) = xy − bη

η
+ 1
η

(b− y)η

and
d

dy
[xy − v (y)] = x− (b− y)η−1.

Then y 7→ xy − v(y) is continuous on (−∞, b), and it is increasing on
(−∞, b − x

1
η−1 ] and decreasing on [b − x

1
η−1 , b). Combining this with

xy− v(y) = −∞ for all y ≥ b, it follows that ŷ := b− x
1

η−1 is the unique
value in R that maximise xy − v(y) over y ∈ R. This implies

xŷ − v(ŷ) = sup
y∈R

[xy − v(y)] = v∗(x).

Then v∗(x) = bx − η−1
η x

η
η−1 − bη

η by substituting ŷ = b − x
1

η−1 into
xŷ − v(ŷ). Combining this with v∗(0) = − bη

η , it follows that

v∗(x) = bx− η − 1
η

x
η
η−1 − bη

η
for all x ≥ 0.

3. Let v(y) = δ(−∞,0](y) for all y ∈ R. Observe that δ(−∞,0](y) = ∞ for
y > 0. Then

v∗(0) = sup
y∈R

[
−δ(−∞,0](y)

]
= 0 = −δ(−∞,0](ŷ) for all ŷ ∈ (−∞, 0].

For all x > 0, we have

xy − δ(−∞,0](y) =

−∞ if y > 0,

xy if y ≤ 0.

Then ŷ = 0 is the unique value in R that maximise xy− δ(−∞,0] (y) over
all y ∈ R, and hence

0 = xŷ − δ(−∞,0](ŷ) = sup
y∈R

[
xy − δ(−∞,0](y)

]
= v∗(x).

Therefore, the conclusion is that

v∗(x) = 0 for all x ≥ 0.
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3.2. Regret minimisation

3.2 Regret minimisation

Consider an investor with zero initial wealth who faces the liability of meeting
a payment ut = (ubt , ust ) ∈ L2

t at each time step t = 0, . . . , T . Moreover, he
maintains a trading strategy y = (yt)Tt=−1 in the underlying assets, and he
liquidates this trading strategy at time T . The investor manages his assets
and liabilities by injecting φt(∆yt + ut) in cash at each time t = 0, . . . , T .
His trading strategy is not required to be self-financing and the collection of
available trading strategies for the investor is Ψ; see (2.7) for the definition of
Ψ.

Remark 3.8. The assumption of zero initial wealth is made without loss of
generality. Indeed, if the investor has an initial wealth w ∈ R in cash, then
the situation is equivalent to that the investor with zero initial wealth facing
the liability of meeting a payment u0−(w, 0) at time 0 and meeting a payment
ut at each time step t = 1, . . . , T .

For any t = 0, . . . , T , let vt be a random function such that vωt ∈ V for all
ω ∈ Ω and that the function ω 7→ vωt is constant on each node in Ωt, in other
words,

vωt = vω
′

t for all ω, ω′ ∈ ν and ν ∈ Ωt.

Observe that vt is Ft-measurable; see Definition A.16 for the notion of a meas-
urable random function. The investor measures his regret by the quantity
vt(φt(∆yt +ut)) at time step t. His objective is to minimise his expected total
regret, in other words, solve the following optimisation problem:

minimise
T∑
t=0

E [vt (φt (∆yt + ut))] over y ∈ Ψ. (3.8)

The value function V : N 2 → R ∪ {∞} of the optimisation problem (3.8) is
defined as

V (u) = inf
y∈Ψ

T∑
t=0

E [vt (φt (∆yt + ut))] . (3.9)

We call ŷ a solution to (3.8) if ŷ ∈ Ψ and

T∑
t=0

E [vt (φt (∆ŷt + ut))] = V (u).

Pennanen (2014) considered a similar regret minimisation problem in the
market with convex transaction costs. He established the existence of solution
for his problem. However, he did not provide computational techniques for
solving this problem. In his work, the investor faces the liability of meeting
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3.2. Regret minimisation

a sequence of cash flows rather than a sequence of portfolios. By letting
ut = (ct, 0) in (3.8) for some ct ∈ Lt for each t = 0, . . . , T , the problem (3.8)
can be written as

minimise
T∑
t=0

E [vt (φt (∆yt) + ct)] over y ∈ Ψ,

which is a special example of the regret minimisation problem in Pennanen
(2014).

Remark 3.9. By Definition 3.2, regret functions are bounded from below, there
exists a ∈ R such that

vωt (x) ≥ a for all x ∈ R, t = 0, . . . , T and ω ∈ Ω.

This implies that

T∑
t=0

E[vt(xt)] ≥
T∑
t=0

E[a] = a(T + 1) for all (xt)Tt=0 ∈ N . (3.10)

Therefore, we have V (u) ≥ a(T + 1) > −∞.

Remark 3.10. If V (u) =∞, then

T∑
t=0

E [vt (φt (∆yt + ut))] =∞ for all y ∈ Ψ

and hence every element from Ψ is a solution to (3.8). In Corollary 3.16, we
will show that there exists a solution to (3.8) in the case when V (u) <∞.

The following example shows that it is possible that V (u) = ∞ for some
u ∈ N 2.

Example 3.11. Suppose vt = δ(−∞,0] for all t = 0, . . . , T . By (3.9), we have
for any u = (ut)Tt=0 ∈ N 2 that

V (u) = inf
y∈Ψ

T∑
t=0

E
[
δ(−∞,0] (φt (∆yt + ut))

]

=

0 if ∃y ∈ Ψ : φt (∆yt + ut) ≤ 0 ∀t = 0, . . . , T,

∞ otherwise.

Clearly, when ut = 0 for each t = 0, . . . , T , we have V (u) = 0. Now, we take
ut = 1 for all t = 0, . . . , T . Suppose by contradiction that V (u) = 0. Then
there exists y ∈ Ψ such that φt (∆yt + ut) ≤ 0 for all t = 0, . . . , T . Define
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y′ ∈ N 2′ by

y′−1 = y−1 = 0,

y′t = yt +
t∑

k=0
uk for all t = 0, . . . , T.

It follows that

φt
(
∆y′t

)
= φt (∆yt + ut) ≤ 0 for all t = 0, . . . , T,

and hence y′ ∈ Φ and y′T ∈ AT . However, since yT = 0, we have y′T = T + 1.
So the no-arbitrage condition is violated and hence V (u) =∞.

The example below gives a connection between the problem (3.8) and op-
timal investment and consumption problems considered in the financial market
models.

Example 3.12. For each t = 1, . . . , T , we set vt = v0, and hence the function
ω 7→ vωt is constant on Ω. Moreover, the functions v0, . . . , vT are the same. By
letting U(x) = −v0(−x) for all x ∈ R, we have

vt(x) = −U(−x) for all t = 0, . . . , T and x ∈ R.

The process (ut)Tt=0 is defined as u0 = (−w, 0) for some w ∈ R, and ut = 0 for
all t = 1, . . . , T . This means that the investor will receive w amount of cash
at time 0, and he has no future liabilities. Then (3.8) can be written as

inf
y∈Ψ

∑T
t=0E [vt(φt(∆yt + ut))]

= inf
y∈Ψ

E
[
−
∑T
t=0U(−φt(∆yt + ut))

]
= − sup

y∈Ψ
E
[∑T

t=0U(−φt(∆yt + ut))
]

= − sup
y∈Ψ

E
[
U(−φ0(∆y0 − (w, 0))) +

∑T
t=1U(−φt(∆yt))

]
, (3.11)

where −φ0(∆y0 − (w, 0)) = −φ0(y0 − (w, 0)) represents the consumption in
cash at time 0 and −φt(∆yt) represents the consumption in cash at time t for
all t = 1, . . . , T . The maximisation problem in (3.11) is the so-called optimal
optimal investment and consumption problem studied e.g. in Abrams & Kar-
markar (1980), Cai (2009), Cai, Judd & Xu (2013). In the continuous-time
version, there are many papers about optimal investment and consumption
with transaction costs; see Davis & Norman (1990), Shreve & Soner (1994),
Øksendal & Sulem (2002), Liu (2004), Janeček & Shreve (2004), Hobson &
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Zhu (2016).

There is a link between the problem (3.8) and utility maximisation prob-
lems considered in the financial market models.

Example 3.13. Let vt = δ(−∞,0] for all t = 0, . . . , T − 1. This means that
the investor is not allowed to inject any positive amount of cash before the
terminal time step T . Then we write U (x) := −vT (−x) for all x ∈ LT , where
the function ω 7→ vωT is assumed to be constant on Ω. Moreover, we define
(ut)Tt=0 as u0 = (−w, 0) for some w ∈ R, uT = (c, 0) for some c ∈ LT , and
ut = 0 for all t = 1, . . . , T − 1. This implies that the investor has an initial
wealth w ∈ R in cash at time 0, and that his liability is to deliver c ∈ LT in
cash at time T . Then (3.8) can be written as

inf
y∈Ψ

T∑
t=0

E [vt(φt(∆yt + ut))]

= inf
y∈Ψ
{E [vT (φT (∆yT ) + c)]|φ0(∆y0) ≤ w, φt(∆yt) ≤ 0 ∀0 < t < T}

= inf
y∈Ψ
{−E [U(−φT (∆yT )− c)]|φ0(∆y0) ≤ w, φt(∆yt) ≤ 0 ∀0 < t < T}

=− sup
y∈Ψ
{E [U(−φT (∆yT )− c)]|φ0(∆y0) ≤ w, φt(∆yt) ≤ 0∀0 < t < T}

where −φT (∆yT )−c = −φT (−yT−1)−c is the investor’s terminal wealth after
liquidation, and E[U(−φT (∆yT )−c)] represents the investor’s expected utility
of the terminal wealth. We can set c = 0 if the investor has no liabilities
at the terminal time T . The maximisation problem above is the so-called
utility maximisation problem studied e.g. in Gennotte & Jung (1994), Boyle
& Lin (1997), Sass (2005), Cetin & Rogers (2007), Brown & Smith (2011),
Atkinson & Quek (2012). In particular, Cetin & Rogers (2007) considered
convex transaction costs, and Sass (2005) considered piecewise proportional,
fixed and constant costs. There are also many papers studied the utility
maximisation problem with transaction costs in continuous-time settings; see
Davis, Panas & Zariphopoulou (1993), Cvitanić & Karatzas (1996), Deelstra,
Pham & Touzi (2001), Dai & Yi (2009), Bichuch (2012), Czichowsky, Peyre,
Schachermayer & Yang (2018).

3.2.1 Existence of solution

In this section, we are going to prove that there exists a solution to the prob-
lem (3.8). To achieve this, we first have to rewrite our problem as an uncon-
strained optimisation problem.
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Define f : Ω× RT+1 × R2(T+2) × R2(T+1) → R ∪ {∞} as

fω (x, y, u) :=
T∑
t=0

vωt (xt) + δBω (x, y, u) (3.12)

where x = (x0, . . . , xT ), y = (y−1, . . . , yT ), u = (u0, . . . , uT ) and

Bω :=
{

(x, y, u) ∈ RT+1 × R2(T+2) × R2(T+1)
∣∣∣ y−1 = yT = 0,

∆yt − (xt, 0) + ut ∈ −Kωt for all t = 0, . . . , T
}
.

Note that B is a set-valued function, and both f and δB are random func-
tions; see Appendix A.3 for definitions of a set-valued function and a random
function. Moreover, the set-valued function B is FT -measurable since Kt is
Ft-measurable for all t; see Definition A.12. We have for all ω ∈ Ω that

epi δBω = {(x, y) | δBω (x) ≤ y, y ∈ R}

= {(x, y) | x ∈ Bω, y ≥ 0}

= Bω × [0,∞). (3.13)

Thus the set-valued function ω 7→ epi δBω is FT -measurable and hence the
random function δB is FT -measurable; see Definition A.16.

Proposition 3.14. For any ω ∈ Ω, the set Bω is a closed convex cone con-
taining 0.

Proof. Fix any (x, y, u), (x′, y′, u′) ∈ Bω and a, b ≥ 0. Then

ay−1 + by′−1 = ayT + by′T = 0

and

∆(ayt + by′t)− (axt + bx′t, 0) + aut + bu′t

= a∆yt − a(xt, 0) + aut + b∆y′t − b(x′t, 0) + bu′t ∈ −Kωt

for all t = 0, . . . , T since −Kωt is a convex cone containing 0. This means that

a (x, y, u) + b(x′, y′, u′) ∈ Bω

and hence Bωis a convex cone that contains 0. It remains to show that Bω is
closed. Suppose (x(k), y(k), u(k))k∈N is a sequence in Bω that converges to

(x, y, u) ∈ RT+1 × R2(T+2) × R2(T+1).
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Then we have x(k)
t → xt, u(k)

t → ut for all t = 0, . . . , T and y
(k)
t → yt for

all t = −1, . . . , T . This implies y−1 = yT = 0. For any t = 0, . . . , T , we
have ∆y(k)

t − (x(k)
t , 0) + u

(k)
t ∈ −Kωt for all k ∈ N. Since Kωt is closed and

∆y(k)
t − (x(k)

t , 0) +u
(k)
t ∈ −Kωt for all k ∈ N, we have ∆yt− (xt, 0) +ut ∈ −Kωt .

Thus (x, y, u) ∈ Bω and hence Bω is closed.

Fix any ω ∈ Ω. From (3.13) and the fact that Bω is a closed convex cone,
the set epi δBω is also a closed convex cone. Combining this with 0 ∈ epi δBω
by (3.13), we have (epi δBω)∞ = epi δBω (Lemma A.3), and hence

δ∞Bω = δBω ;

see Section A.1 for the definition of recession cone and recession function.
Notice that δBω is a convex function because its epigraph epi δBω is convex.
Then (x, y, u) 7→ fω (x, y, u) is convex and bounded from below because it is
the sum of convex functions that are bounded from below.

As regret functions are nondecreasing, it follows from (3.9) that

V (u) = inf
{

T∑
t=0

E [vt (xt)]
∣∣∣∣∣x ∈ N , y ∈ Ψ, φt(∆yt + ut) ≤ xt, ∀t = 0, . . . , T

}
.

(3.14)
Observe that φt(∆yt + ut) ≤ xt is equivalent to φt(∆yt− (xt, 0) + ut) ≤ 0 and
hence equivalent to ∆yt − (xt, 0) + ut ∈ −Kt by (2.4). Then (3.12) gives

V (u) = inf
{
E [f (x, y, u)]

∣∣ (x, y) ∈ N ×N 2′
}

for all u ∈ N 2. (3.15)

This completes the formulation of the unconstrained optimisation problem.
Since Ω is finite, expectation is a convex combination, and hence the map-

ping (x, y, u) 7→ E [f (x, y, u)] is convex. Thus the function V is also convex
(Rockafellar 1974, Theorem 1). Since f (0, 0, 0) = 0, it follows that

V (0) = inf
{
E [f (x, y, 0)]

∣∣ (x, y) ∈ N ×N 2′
}

≤ f (0, 0, 0) = 0.

Moreover, we have V (u) > −∞ for all u ∈ N 2 because f is bounded from
below. Therefore the function V is proper.

The following result shows that there always exists a solution to the prob-
lem (3.15). We refer to Section A.1 for the notion of lower semicontinuity.

Theorem 3.15. Under the assumption that the robust no-arbitrage condition
holds true, the function V is lower semicontinuous on N 2 and the infimum in
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(3.15) is attained for every u ∈ N 2 such that V (u) <∞.

Proof. The function f is a convex normal integrand (Rockafellar & Wets 2009,
Definition 14.27, Proposition 14.44(c)). The desired result follows from Pen-
nanen & Perkkiö (2012, Theorem 2), provided that the set

L :=
{

(x, y) ∈ N ×N 2′
∣∣∣ fω∞(x(ω), y(ω), 0) ≤ 0 for all ω ∈ Ω

}
is a linear space; see Roman (2008, pp. 35-36) for the definition of a linear
space. Thus, it suffices to show that L is a linear space.

Fix any (x, y, u) ∈ N × N 2′ × N 2 and ω ∈ Ω. For convenience, we shall
suppress ω in the remainder of the proof. We have

f∞ (x, y, u) =
T∑
t=0

v∞t (xt) + δ∞B (x, y, u)

(Rockafellar 1997, Theorem 9.3), in other words,

f∞ (x, y, u) =
T∑
t=0

δ(−∞,0](xt) + δB (x, y, u)

=

0 if (x, y, u) ∈ B, xt ≤ 0 for all t = 0, . . . , T

∞ otherwise.

Thus

L =
{

(x, y) ∈ N ×N 2′ | (x, y, 0) ∈ B, xt ≤ 0 for all t = 0, . . . , T
}

= {(x, y) ∈ N ×Ψ | xt ≤ 0,∆yt − (xt, 0) ∈ −Kt for all t = 0, . . . , T} .

The final step is to show that

L = {(0, y) ∈ N ×Ψ | ∆yt ∈ −Kt for all t = 0, . . . , T} = 0× (Ψ ∩ Φ), (3.16)

from which it follows that L is a linear space (Proposition 2.8). To this end,
fix any (x, y) ∈ L. Suppose by contradiction that P(xt∗ < 0) > 0 for some t∗.
Define z = (zt)Tt=−1 ∈ N 2′ by

z−1 := 0,

zt := yt −
t∑

s=0
(xs, 0) for all t = 0, . . . , T.

Then
∆zt = ∆yt − (xt, 0) ∈ −Kt for all t = 0, . . . , T.
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This means z ∈ Φ and hence zT ∈ AT . However, it follows from yT = 0 that

zT =
T∑
t=0

(xt, 0),

and hence zT ∈ L2
T+ and zT 6= 0. This violates the no-arbitrage condition and

hence
xt = 0 for all t = 0, . . . , T.

Then (3.16) follows. This completes the proof.

The lower semicontinuity of V will be used to study the dual problem of
(3.8) in Section 3.3. The following corollary implies that Theorem 3.15 can be
used to show that there exists a solution to the problem (3.8).

Corollary 3.16. If V (u) <∞ for some u ∈ N 2, then there exists x̂ ∈ N and
ŷ ∈ N 2′ such that

V (u) = E [f (x̂, ŷ, u)] . (3.17)

Moreover, the trading strategy ŷ is a solution to the problem (3.8).

Proof. The first claim follows directly from Theorem 3.15. It is sufficient to
show that ŷ is a solution to (3.8). Since V (u) = E [f (x̂, ŷ, u)] is finite, by
(3.12) and the comments preceding (3.15) we have ŷ ∈ Ψ and

φt(∆ŷt + ut) ≤ x̂t for all t = 0, . . . , T. (3.18)

From (3.9) and ŷ ∈ Ψ, we have

V (u) ≤
T∑
t=0

E [vt (φt (∆ŷt + ut))] .

The opposite inequality also holds. Indeed, combining (3.17), (3.12) and (3.18)
together with the fact that regret functions are nondecreasing, it follows that

V (u) = E [f (x̂, ŷ, u)] =
T∑
t=0

E [vt (x̂t)] ≥
T∑
t=0

E [vt (φt (∆ŷt + ut))] .

The result follows.

3.2.2 Alternative formulation

It is possible to rewrite the problem (3.8) directly in terms of cash injection
at each time step. This will reduce the dimensionality of the control variable,
from a two dimensional process to a one dimensional process, and aid in the

50



3.2. Regret minimisation

study of the dual problem. Let u = (ut)Tt=0 ∈ N 2 for the remainder of this
section. Consider the following optimisation problem:

minimise
T∑
t=0

E [vt(xt)] over x ∈ Au (3.19)

where

Au =
{

(xt)Tt=0 ∈ N
∣∣∣EQ

[
(1, ST ) ·

∑T
t=0(ut − (xt, 0))

]
≤ 0 ∀ (Q, S) ∈ P̄

}
.

(3.20)
Note from Corollary 2.17 that Au is the collection of cash flows (xt)Tt=0 ∈ N
such that there exists a superhedging strategy with zero initial endowment for
the seller of the flow option (ut − (xt, 0))Tt=0. We call x̂ a solution to (3.19) if
x̂ ∈ Au and

T∑
t=0

E [vt (x̂t)] = inf
x∈Au

T∑
t=0

E [vt (xt)] .

The relationship between the problems (3.8) and (3.19) can be summarised
in the following result. This result shows that the optimal values of the prob-
lems (3.8) and (3.19) are the same. Moreover, a solution to (3.8) (resp. (3.19))
can be constructed from a solution to (3.19) (resp. (3.8)).

Proposition 3.17. We have

V (u) = inf
x∈Au

T∑
t=0

E [vt (xt)] . (3.21)

If (x̂t)Tt=0 ∈ Au is a solution to (3.19), then there exists a superhedging strategy
(ẑt)Tt=−1 ∈ N 2′ with zero initial endowment for the seller of the European
option

∑T
t=0(ut − (x̂t, 0)) and moreover the trading strategy (ŷt)Tt=−1 ∈ N 2′

defined by

ŷ−1 := ẑ−1 = 0 and ŷt := ẑt −
t∑

k=0
(uk − (x̂k, 0)) for all t = 0, . . . , T,

is a solution to (3.8). Conversely, if (ŷt)Tt=−1 ∈ N 2′ is a solution to (3.8), then
(x̂t)Tt=0 defined by

x̂t := φt (∆ŷt + ut) for all t = 0, . . . , T

is a solution to the problem (3.19).

Proof. We first establish (3.21). Fix any (xt)Tt=0 ∈ Au. There exists a super-
hedging strategy z = (zt)Tt=−1 with zero initial endowment for the seller of the
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European option
∑T
t=0(ut− (xt, 0)); see Corollary 2.15. Define (yt)Tt=−1 ∈ N 2′

as

y−1 := z−1 = 0 and yt := zt −
t∑

k=0
(uk − (xk, 0)) for all t = 0, . . . , T.

We have zT =
∑T
t=0(ut−(xt, 0)) which implies that yT = 0. Thus (yt)Tt=−1 ∈ Ψ;

see (2.7). Moreover, for any t = 0, . . . , T , we have ∆yt = ∆zt − ut + (xt, 0)
and hence

φt(∆yt + ut) = φt(∆zt + (xt, 0)) = φt(∆zt) + xt ≤ xt

by z ∈ Φ. Since regret functions are nondecreasing, we have

T∑
t=0

E [vt (xt)] ≥
T∑
t=0

E [vt (φt (∆yt + ut))] . (3.22)

This means that

inf
x∈Au

T∑
t=0

E [vt (xt)] ≥ inf
y∈Ψ

T∑
t=0

E [vt (φt (∆yt + ut))] . (3.23)

The opposite inequality also holds true. To this end, fix any (yt)Tt=−1 ∈ Ψ.
Define x ∈ N as

xt := φt (∆yt + ut) for all t = 0, . . . , T.

Note that
T∑
t=0

E [vt (xt)] =
T∑
t=0

E [vt (φt (∆yt + ut))] . (3.24)

For each t = 0, . . . , T , we have φt(∆yt + ut − (xt, 0)) = 0 which implies that
∆yt + ut − (xt, 0) ∈ −Kt by (2.4). Define z = (zt)Tt=−1 ∈ N 2′ as

z−1 := y−1 = 0 and zt := yt +
t∑

k=0
(uk − (xk, 0)) for all t = 0, . . . , T.

Then
∆zt = ∆yt + ut − (xt, 0) ∈ −Kt for all t = 0, . . . , T

and

zT = yT +
T∑
t=0

(ut − (xt, 0)) =
T∑
t=0

(ut − (xt, 0))

because yT = 0. Thus z is a superhedging strategy with zero initial endowment
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for the seller of the European option
∑T
t=0(ut − (xt, 0)), and this implies that

x ∈ Au; see Corollary 2.15. Combining this with (3.24), we have

inf
x∈Au

T∑
t=0

E [vt (xt)] ≤ inf
y∈Ψ

T∑
t=0

E [vt (φt (∆yt + ut))] . (3.25)

Therefore, the equality (3.21) follows from (3.23), (3.25) and (3.9).

Suppose that (x̂t)Tt=0 ∈ Au is a solution to (3.19). Similar to the first
part of the proof, there exists a superhedging strategy (ẑt)Tt=−1 for the seller
of the European option

∑T
t=0(ut − (x̂t, 0)). Moreover, the trading strategy

(ŷt)Tt=−1 ∈ N 2′ defined by

ŷ−1 := ẑ−1 = 0 and ŷt := ẑt −
t∑

k=0
(uk − (x̂k, 0)) for all t = 0, . . . , T,

satisfies (ŷt)Tt=−1 ∈ Ψ. Combining (3.21) together with the assumption that
(x̂t)Tt=0 is a solution to (3.19) and (3.22), it follows that

V (u) =
T∑
t=0

E [vt (x̂t)] ≥
T∑
t=0

E [vt (φt (∆ŷt + ut))] .

However, we have from (3.9) that

V (u) ≤
T∑
t=0

E [vt (φt (∆ŷt + ut))] ,

and hence

V (u) =
T∑
t=0

E [vt (φt (∆ŷt + ut))] .

Thus the trading strategy (ŷt)Tt=−1 is a solution to (3.8). Conversely, suppose
that (ŷt)Tt=−1 ∈ Ψ is a solution to (3.8), in other words,

T∑
t=0

E [vt (φt (∆ŷt + ut))] = V (u).

Define (x̂t)Tt=0 ∈ N by x̂t := φt (∆ŷt + ut) for all t = 0, . . . , T . Then we have

T∑
t=0

E [vt (x̂t)] =
T∑
t=0

E [vt (φt (∆ŷt + ut))] = V (u) = inf
x∈Au

T∑
t=0

E [vt (xt)]

by (3.21). Similar to the first part of the proof, we have (x̂t)Tt=0 ∈ Au and
hence (x̂t)Tt=0 is a solution to the problem (3.19).
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From Remark 3.10 and Corollary 3.16, there always exists a solution to
the problem (3.8). Therefore, the result below follows from Proposition 3.17.

Corollary 3.18. There exists a solution to the problem (3.19).

The property of V in the lemma below will be used in the proof of The-
orem 3.39.

Lemma 3.19. For any u′ ∈ N 2 such that 0 ∈ Au′, we have

V
(
u+ u′

)
≤ V (u) .

Proof. Fix any x = (xt)Tt=0 ∈ Au. For all (Q, S) ∈ P̄, we have

EQ
[
(1, ST ) ·

∑T
t=0(ut + u′t − (xt, 0))

]
= EQ

[
(1, ST ) ·

∑T
t=0(ut − (xt, 0))

]
+ EQ

[
(1, ST ) ·

∑T
t=0u

′
t

]
≤ 0

because x ∈ Au and 0 ∈ Au′ . This means x ∈ Au+u′ . Thus Au+u′ ⊇ Au which
implies that

inf
x∈Au+u′

T∑
t=0

E [vt(xt)] ≤ inf
x∈Au

T∑
t=0

E [vt(xt)] .

Then the result follows from (3.21).

3.3 The dual problem

In this section, we will introduce a Lagrangian dual problem of (3.19). Some-
times the solutions to the dual problem are easier to find and these solutions
can be used to construct solutions to the primal problem. First, we define the
Lagrangian and present the connection between the Lagrangian function and
the problem (3.19). After that, the dual problem of (3.19) is defined by means
of the Lagrangian. In Section 3.4, the relationship between the dual problem
and the problem (3.19) will be studied in detail.

Fix any u = (ut)Tt=0 ∈ N 2 for the remainder of this section. We define the
Lagrangian Lu : N × [0,∞)× P̄ → R ∪ {∞} as

Lu(x, λ, (Q, S)) =
T∑
t=0

E[vt(xt)] + λEQ

[
(1, ST ) ·

T∑
t=0

(ut − (xt, 0))
]
, (3.26)

where x = (xt)Tt=0 7→
∑T
t=0 E[vt(xt)] is the objective function of the prob-

lem (3.19), the value EQ[(1, ST ) ·
∑T
t=0(ut − (xt, 0))] is used in the constraints

of (3.19), and λ is a nonnegative number. The formulation of Lu in (3.26) is
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motivated by (74) of Schachermayer (2002). He studied the Lagrangian dual
problem of an utility maximisation problem in an incomplete friction-free mar-
ket model.

Remark 3.20. Observe from Remark 2.12 that Lu in (3.26) can be written as

Lu(x, λ, (Q, S)) =
T∑
t=0

E
[
vt(xt)− λΛQ

t xt
]

+ λEQ

[
(1, ST ) ·

T∑
t=0

ut

]
; (3.27)

see (2.17) for the definition of (ΛQ
t )Tt=0. This formulation of Lu will be used in

the study of the dual problem. Moreover, for any λ ≥ 0 and (Q, S) ∈ P̄, we
have

inf
x∈N

Lu(x, λ, (Q, S))

= inf
x∈N

∑T
t=0E

[
vt(xt)− λΛQ

t xt
]

+ λEQ
[
(1, ST ) ·

∑T
t=0ut

]
=− sup

x∈N

∑T
t=0E

[
λΛQ

t xt − vt(xt)
]

+ λEQ
[
(1, ST ) ·

∑T
t=0ut

]
=−

∑T
t=0 sup

xt∈Lt
E
[
λΛQ

t xt − vt(xt)
]

+ λEQ
[
(1, ST ) ·

∑T
t=0ut

]
. (3.28)

As infimum is taken, the value infx∈N Lu(x, λ, (Q, S)) in (3.28) only depends
on λ and (Q, S). The function (λ, (Q, S)) 7→ infx∈N Lu(x, λ, (Q, S)) will be
used as the objective function of the dual problem.

Remark 3.21. Fix any x = (xt)Tt=0 ∈ N , λ ∈ [0,∞) and (Q, S) ∈ P̄. Since Ω
is finite, we have ∣∣∣λEQ

[
(1, ST ) ·

∑T
t=0(ut − (xt, 0))

]∣∣∣ <∞.
Moreover, regret functions are bounded from below and hence

T∑
t=0

E[vt(xt)] > −∞.

Then we have from (3.26) that Lu(x, λ, (Q, S)) > −∞. However, sometimes
the value of Lu can be ∞. For example, in the case when vt∗ = δ(−∞,0] for
some t∗ = 0, . . . , T , by taking xt = 1 for all t = 0, . . . , T , we have vt∗(xt∗) =∞
and hence Lu(x, λ, (Q, S)) =∞.

First of all, we consider the following minimisation problem with the ob-
jective function x 7→ supλ≥0,(Q,S)∈P̄ Lu(x, λ, (Q, S)) and the feasible set N :

minimise sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) over x ∈ N . (3.29)
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We say that x̂ is a solution to the problem (3.29) if x̂ ∈ N and

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)).

Remark 3.22. Fix any x = (xt)Tt=0 ∈ N . We are going to present the value
supλ≥0,(Q,S)∈P̄ Lu(x, λ, (Q, S)) by considering the following two cases.

1. Let x /∈ Au; see (3.20) for the definition of Au. Then there exists some
(Q, S) ∈ P̄ such that

EQ
[
(1, ST ) ·

∑T
t=0(ut − (xt, 0))

]
> 0.

The value λEQ
[
(1, ST ) ·

∑T
t=0(ut − (xt, 0))

]
can be made arbitrarily large

by taking λ arbitrarily large. Thus from (3.26) we have

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) =∞.

2. If x ∈ Au, then

EQ
[
(1, ST ) ·

∑T
t=0(ut − (xt, 0))

]
≤ 0 for all (Q, S) ∈ P̄.

Combining this with (3.26), we have

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) =
T∑
t=0

E[vt(xt)]. (3.30)

The problem (3.29) and the problem (3.19) are equivalent in the following
sense.

Proposition 3.23. The optimal values of the problems (3.29) and (3.19) co-
incide, in other words,

inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) = inf
x∈Au

T∑
t=0

E[vt(xt)] = V (u). (3.31)

If x̂ is a solution to (3.19), then it is also a solution to (3.29). Moreover, if x̂
is a solution to (3.29) and V (u) <∞, then x̂ is a solution to (3.19).

Proof. First, we are going to show that (3.31) holds true. From Remark 3.22.1,
we have

inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) = inf
x∈Au

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)). (3.32)
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Moreover, by taking the infimum over x ∈ Au on both sides of (3.30), we have

inf
x∈Au

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) = inf
x∈Au

T∑
t=0

E[vt(xt)]. (3.33)

Then (3.31) follows from (3.32), (3.33) and (3.21).
Suppose that x̂ is a solution to the problem (3.19). This implies that

x̂ ∈ Au. From (3.30) and the fact that x̂ is a solution to the problem (3.19),
it follows that

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) =
T∑
t=0

E[vt(x̂t)] = inf
x∈Au

T∑
t=0

E[vt(xt)].

Combining this with (3.31), we have

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)).

This means that x̂ is a solution to (3.29).
Suppose that x̂ is a solution to (3.29) and that V (u) < ∞. Since x̂ is a

solution to (3.29), we have

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)). (3.34)

Combining this with (3.31), we have

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = V (u) <∞,

and hence x̂ ∈ Au by Remark 3.22.1. Moreover, combining (3.30) and (3.34)
together with (3.31), it follows that

T∑
t=0

E[vt(x̂t)] = sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = inf
x∈Au

T∑
t=0

E [vt (xt)] .

Thus x̂ is a solution to the problem (3.19). This completes the proof.

Now, we are going to introduce the dual optimisation problem of (3.19)
based on the Lagrangian Lu. For the dual problem, the objective function is
(λ, (Q, S)) 7→ infx∈N Lu(x, λ, (Q, S)), and the feasible set is [0,∞) × P̄. We
call the following problem the dual problem of (3.19):

maximise inf
x∈N

Lu(x, λ, (Q, S)) over (λ, (Q, S)) ∈ [0,∞)× P̄. (3.35)
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We call (λ̂, (Q̂, Ŝ)) a solution to the dual problem (3.35) if λ̂ ≥ 0, (Q̂, Ŝ) ∈ P̄
and

inf
x∈N

Lu(x, λ̂, (Q̂, Ŝ)) = sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S)).

For any t = 0, . . . , T , we define the random function v∗t as

v∗ωt (y) := sup {yx− vωt (x)|x ∈ R} for all ω ∈ Ω and y ∈ R.

Observe that v∗ωt is the conjugate function (Rockafellar 1974, (3.10)) of vωt
for each ω ∈ Ω. Thus the function ω 7→ v∗ωt is constant on each node in Ωt

and hence v∗t is Ft-measurable; see the comments following Definition A.16.
Combining (3.28) with Lemma 3.24 below, the objective function of the dual
problem (3.35) can be written as

inf
x∈N

Lu(x, λ, (Q, S)) = −
T∑
t=0

E
[
v∗t (λΛQ

t )
]

+ λEQ

[
(1, ST ) ·

T∑
t=0

ut

]
(3.36)

for all (λ, (Q, S)) ∈ [0,∞)×P̄. The following result will also be used for estab-
lishing the connection between problems (3.29) and (3.35) in Theorem 3.31.

Lemma 3.24. For any t = 0, . . . , T and y ∈ Lt, we have

E [v∗t (y)] = sup {E [yx− vt(x)]|x ∈ Lt} .

Proof. Fix any t = 0, . . . , T and y ∈ Lt. For any x ∈ Lt, we have

E [yx− vt(x)] =
∑
ν∈Ωt

P(ν) (y(ν)x(ν)− vνt (x(ν))) (3.37)

because x and y are Ft-measurable and the function ω 7→ vωt is constant on
each node in Ωt; see the comments following Definition A.16 for vνt . Taking
supremum over x ∈ Lt on both sides of (3.37), it yields

sup
x∈Lt

E [yx− vt(x)] = sup
x∈Lt

∑
ν∈Ωt

P(ν) (y(ν)x(ν)− vνt (x(ν))) (3.38)

The number of nodes in Ωt is finite, and we denote it by |Ωt|. The optimisation
problem

sup
x∈Lt

∑
ν∈Ωt

P(ν) (y(ν)x(ν)− vνt (x(ν)))

in (3.38) splits into |Ωt| independent optimisation problems over R:

sup
z∈R

(y(ν)z − vνt (z)) , where ν ∈ Ωt.
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Thus

sup
x∈Lt

E [yx− vt(x)] =
∑
ν∈Ωt

P(ν) sup
z∈R

(y(ν)z − vνt (z))

=
∑
ν∈Ωt

P(ν)v∗νt (y(ν)) = E [v∗t (y)]

which completes the proof.

Remark 3.25. Fix any (λ, (Q, S)) ∈ [0,∞)× P̄. The value

inf
x∈N

Lu(x, λ, (Q, S))

in (3.36) is finite. Indeed, for any t = 0, . . . , T , we have for each ω ∈ Ω that
λΛQ

t (ω) ≥ 0. Then it follows from (3.4) that v∗ωt (λΛQ
t (ω)) ∈ [0,∞). Since Ω

is finite, both

−
∑T
t=0E

[
v∗t (λΛQ

t )
]
and λEQ

[
(1, ST ) ·

∑T
t=0ut

]
are finite. Thus infx∈N Lu(x, λ, (Q, S)) is finite by (3.36).

In Example 3.26 below, we will derive an explicit formula for v∗t for each
t = 0, . . . , T . Then by using (3.36), we will provide an explicit formula for the
objective function

(λ, (Q, S)) 7→ inf
x∈N

Lu(x, λ, (Q, S))

of the dual problem.

Example 3.26. From the formulation of the problem (3.8), the value vt(x)
represents the investor’s regret after injecting x in cash at each time step
t = 0, . . . , T . Firstly, we are going to specify (vt)Tt=0. Let

I := {t1, . . . , tn, T} ⊆ {0, . . . , T}

be a collection of time steps. Moreover, for all t ∈ 0, . . . , T , ω ∈ Ω and x ∈ R,
we define

vωt (x) :=

e
αtx − 1 if t ∈ I,

δ(−∞,0] (x) if t /∈ I.
(3.39)

From Examples 3.7.1 and 3.7.3, we have for any t = 0, . . . , T , ω ∈ Ω and x ≥ 0
that

v∗ωt (x) =


x
αt

ln x
αt
− x

αt
+ 1 if t ∈ I,

0 if t /∈ I;
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3.4. The strong duality

we always assume that 0 ln 0 = 0 in this thesis. Combining this with (3.36),
for every (λ, (Q, S)) ∈ [0,∞)× P̄, we have

inf
x∈N

Lu(x, λ, (Q, S))

= λEQ

[
(1, ST ) ·

T∑
t=0

ut

]
−
∑
t∈I

E
[
λΛQ

t

αt
ln λΛQ

t

αt
− λΛQ

t

αt
+ 1

]
.

This gives an explicit presentation of (λ, (Q, S)) 7→ infx∈N Lu(x, λ, (Q, S)).

3.4 The strong duality

In this section, we will study the relationship between the problem (3.19) and
and its dual problem (3.35).

Suppose that (λ̂, (Q̂, Ŝ)) ∈ [0,∞)× P̄ is a solution to the problem (3.35).
Observe that λ̂ΛQ̂

t ≥ 0 for all t = 0, . . . , T . We are interested in whether there
exists x̂ = (x̂t)Tt=0 ∈ N such that

λ̂ΛQ̂
t x̂t − vt(x̂t) = v∗t (λ̂ΛQ̂

t ) for all t = 0, . . . , T. (3.40)

If such x̂ exists, then it is possible that x̂ is a solution to the problem (3.19);
see Propositions 3.33 and 3.34 below.

Remark 3.27. In the situation when λ̂ΛQ̂
t′ (ω′) = 0 and vω

′
t′ is an exponential

regret function for some t′ = 0, . . . , T and ω′ ∈ Ω, there exists no (x̂t)Tt=0 ∈ N
such that (3.40) holds true. This is because that there is no x ∈ R such that
0× x− vω′t′ (x) = v∗ω

′
t′ (0); see Example 3.7.1.

The following proposition implies that there exists (x̂t)Tt=0 ∈ N such that
(3.40) holds true as long as (λ̂, (Q̂, Ŝ)) ∈ (0,∞) × P (i.e. λ̂ΛQ̂

t > 0 for every
t = 0, . . . , T )

Proposition 3.28. Let λ > 0 and (Q, S) ∈ P. There exists (xt)Tt=0 ∈ N such
that

λΛQ
t xt − vt(xt) = v∗t (λΛQ

t ) for all t = 0, . . . , T. (3.41)

Proof. Since λ > 0 and (Q, S) ∈ P, we have λΛQ
t > 0 for all t = 0, . . . , T .

We can construct a process (xt)Tt=0 ∈ N that satisfies (3.41) as follows. Fix
any t = 0, . . . , T . Observe that ΛQ

t is Ft-measurable random variable, and the
functions ω 7→ vωt and ω 7→ v∗ωt are constant on each node in Ωt. For any
ν ∈ Ωt, we have λΛQ

t (ν) > 0. Moreover, it follows from Proposition 3.6 that
there exists δt(ν) ∈ R such that

λΛQ
t (ν)δt(ν)− vνt (δt(ν)) = v∗νt (λΛQ

t (ν))
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3.4. The strong duality

Then we define
xt(ω) := δt(ν) for all ω ∈ ν.

Notice that, for each t = 0, . . . , T , the value xt(ω) is defined for all ω ∈ Ω.
Moreover, the values of xt remain unchanged on every node in Ωt, which means
xt ∈ Lt. We can conclude that

λΛQ
t (ν)xt(ν)− vνt (xt(ν)) = v∗νt (λΛQ

t (ν)) for all t = 0, . . . , T and ν ∈ Ωt

in other words, the condition (3.41) is satisfied.

Remark 3.29. Let (λ, (Q, S)) ∈ [0,∞) × P̄. It is possible that (3.41) holds
true for some (xt)Tt=0 ∈ N even if (λ, (Q, S)) /∈ (0,∞) × P. For example, let
vt = δ(−∞,0] for all t = 0, . . . , T . Then we define (xt)Tt=0 ∈ N as xt = 0 for all
t = 0, . . . , T . From Example 3.7.3, for all ω ∈ Ω and t = 0, . . . , T , we always
have

λΛQ
t (ω)xt(ω)− vωt (xt(ω)) = v∗ωt (λΛQ

t (ω)).

This means that the process (xt)Tt=0 satisfies (3.41) even if λΛQ
t′ (ω′) = 0 for

some t′ = 0, . . . , T and ω′ ∈ Ω (i.e. (λ, (Q, S)) /∈ (0,∞)× P).

The following auxiliary result will be used in the proofs of Propositions 3.33
and 3.34.

Proposition 3.30. Fix any λ ≥ 0, (Q, S) ∈ P̄ and x̂ = (x̂t)Tt=0 ∈ N . Then
we have

λΛQ
t x̂t − vt(x̂t) = v∗t (λΛQ

t ) for all t = 0, . . . , T (3.42)

if and only if
Lu(x̂, λ, (Q, S)) = inf

x∈N
Lu(x, λ, (Q, S)). (3.43)

Proof. Suppose that (3.42) holds true. It follows from (3.27) and (3.42) that

Lu(x̂, λ, (Q, S)) =
T∑
t=0

E
[
vt(x̂t)− λΛQ

t x̂t
]

+ λEQ

[
(1, ST ) ·

T∑
t=0

ut

]

= −
T∑
t=0

E
[
v∗t (λΛQ

t )
]

+ λEQ

[
(1, ST ) ·

T∑
t=0

ut

]
.

Then (3.36) gives

Lu(x̂, λ, (Q, S)) = inf
x∈N

Lu(x, λ, (Q, S)).

Thus (3.43) holds true.
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3.4. The strong duality

Conversely, suppose that (3.43) holds true. Then (3.43) and (3.27) imply

inf
x∈N

Lu(x, λ, (Q, S)) = Lu(x̂, λ, (Q, S))

=
T∑
t=0

E
[
vt(x̂t)− λΛQ

t x̂t
]

+ λEQ
[
(1, ST ) ·

∑T
t=0ut

]
.

Combining this with the formulation of infx∈N Lu(x, λ, (Q, S)) in (3.36), it
follows that

T∑
t=0

E
[
vt(x̂t)− λΛQ

t x̂t + v∗t (λΛQ
t )
]

= 0.

For all t = 0, . . . , T and ω ∈ Ω, it follows from Remark 3.5 that

v∗ωt (λΛQ
t (ω)) ≥ λΛQ

t (ω)x̂t(ω)− vωt (x̂t(ω)),

in other words,

vωt (x̂t(ω))− λΛQ
t (ω)x̂t(ω) + v∗ωt (λΛQ

t (ω)) ≥ 0.

Thus
vt(x̂t)− λΛQ

t x̂t + v∗t (λΛQ
t ) = 0 for all t = 0, . . . , T,

and hence (3.42) follows.

Regarding the optimisation problems (3.29) and (3.35), the following weak
duality relation (cf. Bertsekas (2015, p. 3))

inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) ≥ sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S))

always holds true. The next result shows that this inequality holds true with
equality, in other words, the strong duality (cf. Bertsekas (2015, p. 3)) also
holds true. This result will be used to construct a solution to the prob-
lem (3.19) from a solution to problem (3.35).

Theorem 3.31. Under the assumption that the robust no-arbitrage condition
holds true, we have

V (u) = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) = sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S)).

The proof of Theorem 3.31 above is provided at the end of this section.
Moreover, this theorem does not rely on any result in the remainder of this
section. Combining (3.21) and Theorem 3.31, the optimal values of the prob-
lems (3.19) and (3.35) are the same.
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3.4. The strong duality

The corollary below follows from Theorem 3.31. Moreover, this corollary
will be used to establish Propositions 3.33 and 3.34 below.

Corollary 3.32. Suppose that x̂ is a solution to the problem (3.19) and that
(λ̂, (Q̂, Ŝ)) is a solution to the problem (3.35). Then

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = Lu(x̂, λ̂, (Q̂, Ŝ)) = inf
x∈N

Lu(x, λ̂, (Q̂, Ŝ)).

Proof. Since x̂ is a solution to (3.19), Proposition 3.23 implies that x̂ is also a
solution to the problem (3.29). Thus

inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) = sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S))

≥ Lu(x̂, λ̂, (Q̂, Ŝ))

≥ inf
x∈N

Lu(x, λ̂, (Q̂, Ŝ))

= sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S))

because (λ̂, (Q̂, Ŝ)) is a solution to the problem (3.35). The result follows from
Theorem 3.31.

Propositions 3.33 and 3.34 below use the strong duality to show that it is
possible to derive a solution to (3.19) from a solution to (3.35).

Proposition 3.33. Assume that (λ̂, (Q̂, Ŝ)) is a solution to the problem (3.35),
and let x̂ = (x̂t)Tt=0 ∈ N . Then x̂ is a solution to the problem (3.19) if and
only if x̂ ∈ Au and x̂ satisfies

λ̂ΛQ̂
t x̂t − vt(x̂t) = v∗t (λ̂ΛQ̂

t ) for all t = 0, . . . , T (3.44)

and

λ̂EQ̂

[
(1, ŜT ) ·

T∑
t=0

(ut − (x̂t, 0)
]

= 0. (3.45)

Proof. Suppose that x̂ solves (3.19). Then x̂ ∈ Au. From Corollary 3.32, we
have

Lu(x̂, λ̂, (Q̂, Ŝ) = inf
x∈N

Lu(x, λ̂, (Q̂, Ŝ).

Then Proposition 3.30 implies (3.44). Since x̂ solves (3.19), we have

T∑
t=0

E [vt(x̂t)] = inf
x∈Au

T∑
t=0

E [vt(xt)] = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S))

63



3.4. The strong duality

by (3.31). Moreover, from Proposition 3.23, the process x̂ is also a solution to
the problem (3.29), in other words,

sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)).

Thus, it follows that

T∑
t=0

E [vt(x̂t)] = sup
λ≥0,(Q,S)∈P̄

Lu(x̂, λ, (Q, S)) = Lu(x̂, λ̂, (Q̂, Ŝ)

by Corollary 3.32. Combining this with (3.26), the condition (3.45) holds true.
Suppose that x̂ ∈ Au and (3.44) and (3.45) hold true. Then it follows from

(3.26) and Proposition 3.30, that

T∑
t=0

E [vt(x̂t)] = Lu(x̂, λ̂, (Q̂, Ŝ)) = inf
x∈N

Lu(x, λ̂, (Q̂, Ŝ)).

Since (λ̂, (Q̂, Ŝ)) is a solution to the problem (3.35), it follows that

T∑
t=0

E [vt(x̂t)] = sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S)).

Thus, combining Theorem 3.31 and (3.31), we have

T∑
t=0

E [vt(x̂t)] = inf
x∈N

sup
λ≥0,(Q,S)∈P̄

Lu(x, λ, (Q, S)) = inf
x∈Au

T∑
t=0

E[vt(xt)].

This means that x̂ is a solution to the problem (3.19).

If a solution to the problem (3.35) can be found and the conditions in the
following result are satisfied, then we can use this solution to construct the
unique solution to the problem (3.19).

Proposition 3.34. Suppose that (λ̂, (Q̂, Ŝ)) is a solution to the problem (3.35)
and that there exists a unique x̂ = (x̂t)Tt=0 ∈ N such that

λ̂ΛQ̂
t x̂t − vt(x̂t) = v∗t (λ̂ΛQ̂

t ) for all t = 0, . . . , T. (3.46)

Then x̂ is the unique solution to the problem (3.19).

Proof. From Corollary 3.18, there exists a solution to the problem (3.19).
Observe that for every solution x̄ = (x̄t)Tt=0 ∈ N to the problem (3.19) we
have

Lu(x̄, λ̂, (Q̂, Ŝ)) = inf
x∈N

Lu(x, λ̂, (Q̂, Ŝ))
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(Corollary 3.32), and this implies that

λ̂ΛQ̂
t x̄t − vt(x̄t) = v∗t (λ̂ΛQ̂

t ) for all t = 0, . . . , T

(Proposition 3.30). However, the solution to (3.46) is unique. This means
that we must have x̂ = x̄ and moreover x̂ is the unique solution to the prob-
lem (3.19).

In the case when (λ̂, (Q̂, Ŝ)) ∈ (0,∞) × P is a solution to (3.35), under
the regret functions (vt)Tt=0 defined in Example 3.26, the following example
presents the solution to the problem (3.19) in terms of λ̂ and Q̂ by applying
Proposition 3.34.

Example 3.35. Consider the regret function (vt)Tt=0 defined in Example 3.26.
Suppose that (λ̂, (Q̂, Ŝ)) ∈ (0,∞) × P is a solution to the optimisation prob-
lem (3.35); we will discuss the existence of such (λ̂, (Q̂, Ŝ)) in Sections 5.1-5.2.
Since λ̂ > 0 and (Q̂, Ŝ) ∈ P, we have λ̂ΛQ̂

t > 0 for all t = 0, . . . , T . Define
(x̂t)Tt=0 ∈ N as

x̂t :=


1
αt

ln λ̂ΛQ̂
t

αt
if t ∈ I,

0 if t ∈ {0, . . . , T} \I,

where I is defined in Example 3.26. Then Examples 3.7.1 and 3.7.3 implies
that (x̂t)Tt=0 is the unique process in N such that

λ̂ΛQ̂
t x̂t − vt(x̂t) = v∗t (λ̂ΛQ̂

t ) for all t = 0, . . . , T.

Then Proposition 3.34 implies that (x̂t)Tt=0 is the unique solution to the prob-
lem (3.19).

This section ends with the proof of Theorem 3.31 below.

Proof of Theorem 3.31. Firstly, we define the conjugate function (Rockafellar
1974, (3.10)) of V as

V ∗(z) := sup
u∈N 2

{
T∑
t=0

E [zt · ut]− V (u)
}

for all z = (zt)Tt=0 ∈ N 2.

From (3.14) and the comments following it, we have for all z = (zb, zs) ∈ N 2

that

V ∗(z) = sup
u∈N 2

{
T∑
t=0

E [zt · ut]− inf
{

T∑
t=0

E [vt(xt)]
∣∣∣∣∣ (x, y) ∈ N ×Ψ,
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3.4. The strong duality

∆yt − (xt, 0) + ut ∈ −Kt ∀t = 0, . . . , T
}}

.

After rearrangement, it yields

V ∗(z) = sup
{

T∑
t=0

E [zt · ut − vt(xt)]
∣∣∣∣∣ (x, y, u) ∈ N ×Ψ×N 2,

∆yt − (xt, 0) + ut ∈ −Kt ∀t = 0, . . . , T
}
.

For all t = 0, . . . , T , making change of variable wt = ∆yt − (xt, 0) + ut, it
follows that

zt · ut − vt(xt) = zt · (wt −∆yt + (xt, 0))− vt(xt)

= zt · wt − zt ·∆yt + zbtxt − vt(xt).

Then

V ∗(z) = sup
{

T∑
t=0

E [zt · wt]−
T∑
t=0

E [zt ·∆yt] +
T∑
t=0

E
[
zbtxt − vt(xt)

]∣∣∣∣∣
(x, y, w) ∈ N ×Ψ ∈ N 2, wt ∈ −Kt ∀t = 0, . . . , T

}
.

This optimisation problem can be decoupled into three optimisation problems
over w, y and x, respectively.

Firstly, since P(ω) > 0 for all ω ∈ Ω, we have for all t = 0, . . . , T that

sup
wt∈−Kt

E [zt · wt] =

0 if zt ∈ K+
t ,

∞ otherwise;

see (2.15) together with (2.14) for the definition of K+
t ; This means

sup
{

T∑
t=0

E [zt · wt]
∣∣∣∣∣w ∈ N 2, wt ∈ −Kt ∀t

}
=

0 if zt ∈ K+
t ∀t,

∞ otherwise.
(3.47)

Secondly, for all y = (yt)Tt=−1 ∈ Ψ, observe from y−1 = yT = 0 that

−
T∑
t=0

zt ·∆yt =
T∑
t=1

zt · yt−1 −
T−1∑
t=0

zt · yt
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3.4. The strong duality

=
T−1∑
t=0

zt+1 · yt −
T−1∑
t=0

zt · yt

=
T−1∑
t=0

∆zt+1 · yt.

Moreover, for all t = 0, . . . , T−1, the tower property of conditional expectation
gives

sup
yt∈L2

t

E [∆zt+1 · yt] = sup
yt∈L2

t

E [E [∆zt+1 | Ft] · yt]

=

0 if E [∆zt+1 | Ft] = 0,

∞ otherwise.

This implies

sup
y∈Ψ

T∑
t=0

E [−zt ·∆yt] =

0 if z is a martingale,

∞ otherwise.
(3.48)

Thirdly, notice that

sup
x∈N

T∑
t=0

E
[
zbtxt − vt(xt)

]
=

T∑
t=0

sup
xt∈Lt

E
[
zbtxt − vt(xt)

]

=
T∑
t=0

E
[
v∗t (zbt )

]
(3.49)

by Lemma 3.24.

Therefore, combining (3.47)-(3.49), it follows that

V ∗(z) =


∑T
t=0 E

[
v∗t (zbt )

]
if z ∈ C̄,

∞ otherwise;
(3.50)

see (2.16) for the definition of C̄.

From Theorem 3.15 and the comments following (3.15), the function V

is lower semicontinuous and convex on N 2. Then Theorem 5 of Rockafellar
(1974) states that V is equal to its biconjugate function (Rockafellar 1974,
(3.12)), in other words,

V (u) = sup
z∈N 2

{
T∑
t=0

E [ut · zt]− V ∗(z)
}

for all u = (ut)Tt=0 ∈ N 2.
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Fix any u = (ut)Tt=0 ∈ N 2. It follows from (3.50) and Lemma 2.13 that

V (u) = sup
z∈C̄

T∑
t=0

E
[
ut · zt − v∗t (zbt )

]

= sup
λ≥0,(Q,S)∈P̄

T∑
t=0

E
[
ut ·

(
λ(1, St)ΛQ

t

)
− v∗t (λΛQ

t )
]

= sup
λ≥0,(Q,S)∈P̄

{
−

T∑
t=0

E
[
v∗t (λΛQ

t )
]

+ λ
T∑
t=0

EQ [ut · (1, St)]
}
.

For any (Q, S) ∈ P̄ , the martingale property of S = (St)Tt=0 gives

T∑
t=0

EQ [ut · (1, St)] =
T∑
t=0

EQ [EQ [ut · (1, ST )| Ft]]

= EQ

[
T∑
t=0

ut · (1, ST )
]
.

Thus, we have

V (u) = sup
λ≥0,(Q,S)∈P̄

{
−

T∑
t=0

E
[
v∗t (λΛQ

t )
]

+ λEQ

[
T∑
t=0

ut · (1, ST )
]}

= sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S))

by (3.36). Combining this with Proposition 3.23, the result follows.

3.5 Indifference pricing

Consider an investor who is entitled to receive a portfolio c̄t ∈ L2
t at each

time step t = 0, . . . , T . We refer to this sequence of portfolios c̄ = (c̄t)Tt=0 as
the endowment of the investor. Here negative endowment is interpreted as
liability. The process c̄ is always considered as a given data. For example, in
the situation when the investor’s endowment consists of a number of different
flow options at time 0, the value c̄t is the total portfolio that will be received
at time t. If the investor is not going to deliver or receive additional portfolios,
then V (−c̄) is used to represent his minimal regret. We are going to introduce
the concepts of seller’s and buyer’s regret indifference prices of a flow option
c = (ct)Tt=0 ∈ N 2.

Consider the situation when the investor is selling the flow option c. He
receives δ ∈ R in cash at time 0, and delivers the portfolio ct at each time step
t = 0, . . . , T . By selling c, the investor’s minimal regret becomes V (c− δ1− c̄)
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3.5. Indifference pricing

where 1 = (1t)Tt=0 ∈ N 2 is defined as

1t =

(1, 0) if t = 0,

0 if t = 1, . . . , T.

The seller’s regret indifference price of the flow option c is defined as the lowest
price δ that allows the investor to sell c without increasing his minimal regret,
namely

πaiF (c; c̄) := inf {δ ∈ R | V (c− δ1− c̄) ≤ V (−c̄)} . (3.51)

Similarly, in the situation when the investor is buying the flow option c,
the investor receives the portfolio ct at each time step t = 0, . . . , T . Moreover,
in return for receiving these portfolios, he delivers δ ∈ R in cash at time step
0. By buying c, the investor’s minimal regret becomes V (−c+ δ1− c̄). The
buyer’s regret indifference price of c is defined as the highest price δ that allows
the investor to buy the flow option c without increasing his minimal regret,
namely

πbiF (c; c̄) := sup {δ ∈ R | V (−c+ δ1− c̄) ≤ V (−c̄)} . (3.52)

Notice that

πbiF (c; c̄) = − inf {δ ∈ R | V (−c− δ1− c̄) ≤ V (−c̄)}

= −πaiF (−c; c̄) . (3.53)

Moreover, in the special case when V (−c̄) =∞, we have

πaiF (c; c̄) = inf R = −∞, (3.54)

πbiF (c; c̄) = supR =∞. (3.55)

Remark 3.36. The regret indifference prices πaiF (c; c̄) and πbiF (c; c̄) of c depend
on the investor’s endowment c̄. In addition, the regret indifference prices
depend on V , the value function of the optimisation problem (3.8). Clearly,
the regret indifference prices depend on the choice of regret functions (vt)Tt=0.

The regret indifference prices defined in (3.51)-(3.52) above are similar
to the indifference swap rates defined in Pennanen (2014). Pennanen (2014)
concerns the value of cash flows instead of flow options. However, in the case
when c and c̄ are cash flows (i.e. ct = (cbt , 0) and c̄t = (c̄bt , 0) for all t = 0, . . . , T ),
regret indifference prices are special examples of indifference swap rates.

Indifference prices based on utility maximisation has been studied widely;
see Davis, Panas & Zariphopoulou (1993), Rouge & El Karoui (2000), Mu-
siela & Zariphopoulou (2004), Hugonnier, Kramkov & Schachermayer (2005),
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Mania & Schweizer (2005), Cetin & Rogers (2007), Carmona (2009), Benth,
Groth & Lindberg (2010), Quek (2012). Regret indifference prices are similar
to but more general than the utility indifference prices. This is mainly be-
cause the investor’s preference towards risks is allowed to different at different
time steps. Moreover, regret indifference prices depend on investor’s endow-
ment which extends initial wealth used in utility maximisation problems. In
addition, regret indifference pricing can be used to evaluate the value of flow
options which extends cash flows and European options.

The example below shows that superhedging pricing defined in (2.24) and
(2.25) is a special case of regret indifference pricing.

Example 3.37. For every t = 0, . . . , T , let c̄t = 0 and vt = δ(−∞,0]. From
Example 3.11, we have for all u ∈ N 2 that

V (u) =

0 if ∃y ∈ Ψ : φt (∆yt + ut) ≤ 0 ∀t = 0, . . . , T,

∞ otherwise.

Observe that V (0) = 0.
Fix any c = (ct)Tt=0 ∈ N 2 and δ ∈ R. Observe that for every (yt)Tt=−1 ∈ Ψ

and (y∗t )Tt=−1 ∈ N 2′, if y∗−1 = (δ, 0) and y∗t = yt for all t = 0, . . . , T , then
y−1 = 0 gives

φt(∆y0 + c0 − δ10) = φ0(y0 + c0 − (δ, 0)) = φ0(∆y∗0 + c0)

and

φt(∆yt + ct − δ1t) = φt(∆yt + ct) = φt(∆y∗t + ct) for all t = 1, . . . , T.

This implies that there exists (yt)Tt=−1 ∈ Ψ such that

φt(∆yt + ct − δ1t) ≤ 0 for all t = 0, . . . , T

if and only if there exists (y∗t )Tt=−1 ∈ N 2′ such that

y∗−1 = (δ, 0), y∗T = 0, φt(∆y∗t + ct) ≤ 0 for all t = 0, . . . , T.

Thus

πaiF (c; 0) = inf {δ ∈ R | V (c− δ1) ≤ V (0)}

= inf {δ ∈ R | V (c− δ1) ≤ 0}

= inf
{
δ ∈ R | (yt)Tt=−1 ∈ Ψ, φt(∆yt + ct − δ1t) ≤ 0 ∀t = 0, . . . , T

}
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= inf
{
δ ∈ R | (y∗t )Tt=−1 ∈ N 2′, y∗−1 = (δ, 0), y∗T = 0,

φt(∆y∗t + ct) ≤ 0 ∀t = 0, . . . , T
}
,

and hence πaiF (c; 0) = πaF (c) by (2.24). In addition, we have

πbiF (c; 0) = −πaiF (−c; 0) = −πaF (−c) = πbF (c) .

Under other types of regret functions, it is possible that πaiF (c; 0) < πaF(c) and
πbiF (c; 0) > πbF(c); see Table 5.1 in Example 5.10.

The lemma below will be useful for establishing Theorem 3.39.

Lemma 3.38. The following two claims hold true.

1. For every δ ≤ 0, we have 0 ∈ Aδ1.

2. For every u ∈ N 2, we have 0 ∈ Au−πaF(u)1.

Proof. For all δ ≤ 0, we have

EQ
[
(1, ST ) ·

∑T
t=0δ1t

]
= EQ [(1, ST ) · (δ, 0)] = δ ≤ 0 for all (Q, S) ∈ P̄,

and hence 0 ∈ Aδ1 by (3.20). Thus the first claim holds true. Fix any u ∈ N 2.
Notice from (2.26) and Theorem 2.14 that

πaF(u) = max
(Q,S)∈P̄

EQ
[
(1, ST ) ·

∑T
t=0ut

]
= sup

(Q,S)∈P̄
EQ

[
(1, ST ) ·

∑T
t=0ut

]
.

For any (Q, S) ∈ P̄, we have

EQ
[
(1, ST ) ·

∑T
t=0 (ut − πaF(u)1t)

]
= EQ

[
(1, ST ) ·

(∑T
t=0ut − (πaF(u), 0)

)]
= EQ

[
(1, ST ) ·

∑T
t=0ut

]
− πaF(u) ≤ 0.

Thus 0 ∈ Au−πaF(u)1 by (3.20) again, which establishes the second claim.

The theorem below says that the indifference price for the seller is not
going to be higher than seller’s arbitrage price, and that the indifference price
for the buyer is not going to be lower than buyer’s arbitrage price. Moreover,
if the indifference price for the seller of the flow option 0 ∈ N 2 is zero (it does
not always hold true, see Example 3.43 below), then the seller’s indifference
price will not be lower than buyer’s indifference price.
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Theorem 3.39. Under the assumption that the robust no-arbitrage condition
holds true, for every c̄, c ∈ N 2, we always have

πaiF (c; c̄) ≤ πaF (c) , πbiF (c; c̄) ≥ πbF (c) .

Additionally, if πaiF (0; c̄) = 0, then c′ 7→ πaiF (c′; c̄) is real-valued and convex on
N 2, and moreover

πbF (c) ≤ πbiF (c; c̄) ≤ πaiF (c; c̄) ≤ πaF (c) .

Proof. Notice that 0 ∈ Ac−πaF(c)1 (Lemma 3.38.2). Then Lemma 3.19 gives

V (c− πaF (c)1− c̄) ≤ V (−c̄) .

Thus, the definition of πaiF (c; c̄) in (3.51) implies πaiF (c; c̄) ≤ πaF (c). Since c is
arbitrary, we have πaiF (c′; c̄) ≤ πaF (c′) for every c′ ∈ N 2. This implies that

πaiF (−c; c̄) ≤ πaF (−c) ,

and hence
πbiF (c; c̄) = −πaiF (−c; c̄) ≥ −πaF (−c) = πbF (c)

which completes the proof of the first claim.

Suppose that πaiF (0; c̄) = 0 for the remainder of the proof. Firstly, we are
going to show that c′ 7→ πaiF (c′; c̄) is real-valued on N 2. Observe from (2.26)
and Theorem 2.14 that |πaF (c)| < ∞. This means πaiF (c; c̄) ≤ πaF (c) < ∞.
To prove

∣∣πaiF (c; c̄)
∣∣ < ∞, it is sufficient to show that πaiF (c; c̄) > −∞. From

πaiF (0; c̄) = 0 and (3.51), we have

inf {δ ∈ R | V (−δ1− c̄) ≤ V (−c̄)} = 0.

This implies that

V
(
−δ′1− c̄

)
> V (−c̄) for all δ′ < 0.

Let δ′ < 0, and let δ∗ := δ′ − πaF(−c). Notice that

c− δ∗1− c̄+
[
−c+

(
δ∗ − δ′

)
1
]

= −δ′1− c̄.

Moreover, Lemma 3.38.2 implies 0 ∈ A−c−πaF(−c)1 = A−c+(δ∗−δ′)1. Combining
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this with Lemma 3.19, it follows that

V (c− δ∗1− c̄) ≥ V
(
−δ′1− c̄

)
> V (−c̄) .

For all δ < δ∗, it follows from 0 ∈ A(δ−δ∗)1 (see Lemma 3.38.1) and Lemma 3.19
that

V (c− δ1− c̄) ≥ V (c− δ∗1− c̄) > V (−c̄) .

Therefore, we have

πaiF (c; c̄) = inf {δ ∈ R | V (c− δ1− c̄) ≤ V (−c̄)} ≥ δ∗ > −∞.

We can conclude that
∣∣πaiF (c; c̄)

∣∣ < ∞. Notice that c is arbitrary, and this
implies that the function c′ 7→ πaiF (c′; c̄) is real-valued.

We are going to prove the convexity of c′ 7→ πaiF (c′; c̄) as follows. Firstly,
we define

C :=
{
x ∈ N 2

∣∣∣V (x− c̄) ≤ V (−c̄)
}
.

Using the convexity of V (see the comments following (3.15)), we have for any
x, y ∈ C and γ ∈ (0, 1) that

V (γx+ (1− γ)y − c̄) ≤ γV (x− c̄) + (1− γ)V (y − c̄)

≤ γV (−c̄) + (1− γ)V (−c̄)

= V (−c̄) .

This implies that γx+(1−γ)y ∈ C. Thus C is convex. Now, fix any c1, c2 ∈ N 2

and µ ∈ (0, 1). Then it follows from (3.51) that

µπaiF (c1; c̄) + (1− µ)πaiF (c2; c̄)

= µ inf
{
δ1
∣∣∣ c1 − δ1

1 ∈ C
}

+ (1− µ) inf
{
δ2
∣∣∣ c2 − δ2

1 ∈ C
}

= inf
{
µδ1 + (1− µ)δ2

∣∣∣ c1 − δ1
1 ∈ C, c2 − δ2

1 ∈ C
}
.

Observe that, for any δ1, δ2 ∈ R such that c1 − δ1
1 ∈ C and c2 − δ2

1 ∈ C, by
taking δ = µδ1 + (1− µ)δ2, it follows that

µc1 + (1− µ)c2 − δ1 = µ
(
c1 − δ1

1

)
+ (1− µ)

(
c2 − δ2

1

)
∈ C

by the convexity of C. This implies

µπaiF (c1; c̄) + (1− µ)πaiF (c2; c̄)
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≥ inf
{
δ ∈ R

∣∣∣µc1 + (1− µ)c2 − δ1 ∈ C
}

= inf
{
δ ∈ R

∣∣∣V (µc1 + (1− µ)c2 − δ1− c̄
)
≤ V (−c̄)

}
= πaiF (µc1 + (1− µ)c2; c̄).

This proves the convexity of c′ 7→ πaiF (c′; c̄). Thus c′ 7→ πaiF (c′; c̄) is real-valued
and convex on N 2.

Since πaiF (0; c̄) = 0 and c′ 7→ πaiF (c′; c̄) is convex on N 2, we have

0 = πaiF (1
2c+ 1

2 (−c) ; c̄) ≤ 1
2π

ai
F (c; c̄) + 1

2π
ai
F (−c; c̄) .

Thus
πaiF (c; c̄) ≥ −πaiF (−c; c̄) = πbiF (c; c̄)

which completes the proof.

The result below provides a sufficient condition to ensure πaiF (0; c̄) = 0.
This sufficient condition requires V (−c̄) < ∞. Clearly, when V (−c̄) = ∞,
we have πaiF (0; c̄) = −∞. Moreover, it also requires that there exists some
t∗ = 0, . . . , T and ν ∈ Ωt∗ such that vνt∗ is increasing on its effective domain
dom vνt∗ , in other words,

vνt∗(x) < vνt∗(x′) for all x, x′ ∈ dom vνt∗ such that x < x′.

There are many increasing regret functions. For example, exponential regret
functions and power regret functions are always increasing on their effective
domains; see Examples 3.4.1-3.4.2.

Proposition 3.40. Suppose that c̄ ∈ N 2 such that V (−c̄) < ∞, and that
there exists some t∗ = 0, . . . , T and ν ∈ Ωt∗ such that x 7→ vνt∗(x) is increasing
on dom vνt∗. Then, for any c ∈ N 2 and δ ∈ R such that

V (c− δ1− c̄) = V (−c̄) , (3.56)

we have πaiF (c; c̄) = δ. In particular, we have πaiF (0; c̄) = 0 .

Proof. It is sufficient to show that, for any ε > 0 and u ∈ N 2 such that
V (u) <∞, we have

V (u+ ε1) > V (u). (3.57)

Then, for any c ∈ N 2 and δ ∈ R such that (3.56) holds true, we have for every
δ′ ∈ (−∞, δ) that

V
(
c− δ1− c̄+ (δ − δ′)1

)
> V (c− δ1− c̄) = V (−c̄) ,

74



3.5. Indifference pricing

in other words,
V
(
c− δ′1− c̄

)
> V (−c̄) .

Combining this with the definition of πaiF (c; c̄) in (3.51), we have πaiF (c; c̄) ≥ δ.
Moreover, it follows from (3.51) and (3.56) that πaiF (c; c̄) ≤ δ. Therefore, we
must have πaiF (c; c̄) = δ. In particular, the condition (3.56) is satisfied for
c = 0 and δ = 0, and this means πaiF (0; c̄) = 0.

Suppose now that x 7→ vνt∗(x) is increasing for some t∗ = 0, . . . , T and
ν ∈ Ωt∗ . Fix any ε > 0 and u = (ut)Tt=0 ∈ N 2 such that V (u) < ∞. We
are going to show that (3.57) holds true. Consider the following two cases. If
V (u + ε1) = ∞, then V (u) < ∞ gives (3.57). Suppose that V (u + ε1) < ∞
for the remainder of this proof. From Corollary 3.18 and (3.21), there exists
x̂ = (x̂t)Tt=0 ∈ N such that x̂ ∈ Au+ε1 and

T∑
t=0

E [vt(x̂t)] = inf
x∈Au+ε1

T∑
t=0

E [vt (xt)] = V (u+ ε1);

see (3.20) for the definition of Au′ for all u′ ∈ N 2. Define y = (yt)Tt=0 ∈ N as

yt =

x̂t∗ − ε on ν if t = t∗

x̂t otherwise.
(3.58)

Fix any t = 0, . . . , T . Notice that vt(x̂t) > −∞ because regret functions are
always bounded from below. In addition, it follows from V (u + ε1) < ∞
that vt(x̂t) < ∞. Thus vt(x̂t) is a finite value. We are going to present
E[vt(x̂t)− vt(yt)] by considering the following two situations. In the situation
when t 6= t∗, the definition of yt in (3.58) gives

E [vt(x̂t)− vt(yt)] = E [vt(x̂t)− vt(x̂t)] = 0.

Moreover, in the situation when t = t∗, it follows that

E [vt∗(x̂t∗)− vt∗(yt∗)]

=E [(vt∗(x̂t∗)− vt∗(yt∗)) 1ν ] + E
[
(vt∗(x̂t∗)− vt∗(yt∗)) 1Ω\ν

]
=P(ν) [vνt∗(x̂t∗(ν))− vνt∗(x̂t∗(ν)− ε)] > 0

because P(ν) > 0 and vνt∗ is increasing. Thus

V (u+ ε1)−
T∑
t=0

E [vt(yt)] =
T∑
t=0

E [vt(x̂t)]−
T∑
t=0

E [vt(yt)] > 0. (3.59)
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Fix any (Q, S) ∈ P̄. Notice that

ε = EQ [(1, ST ) · (ε, 0)] = EQ
[
(1, ST ) ·

∑T
t=0ε1t

]
and hence

EQ
[
(1, ST ) ·

∑T
t=0ut

]
=EQ

[
(1, ST ) ·

∑T
t=0ut

]
+ ε− ε

=EQ
[
(1, ST ) ·

∑T
t=0(ut + ε1t)

]
− ε.

Moreover, observe from (3.58) that

EQ
[
(1, ST ) ·

∑T
t=0(yt, 0)

]
= EQ

[
(1, ST ) ·

∑T
t=0(x̂t, 0)

]
−Q(ν)ε.

Therefore, we have

EQ
[
(1, ST ) ·

∑T
t=0(ut − (yt, 0))

]
= EQ

[
(1, ST ) ·

∑T
t=0(ut + ε1t − (x̂t, 0))

]
− (1−Q(ν))ε ≤ 0

because x̂ ∈ Au+ε1 and −(1−Q(ν))ε ≤ 0. This means y ∈ Au. Then it follows
from (3.21) that

V (u) = inf
x∈Au

T∑
t=0

E [vt(xt)] ≤
T∑
t=0

E [vt(yt)] .

This implies

V (u+ ε1)− V (u) ≥ V (u+ ε1)−
T∑
t=0

E [vt(yt)] .

Observe from (3.59) that (3.57) holds true. This completes the proof.

The following example shows that sometimes πaiF (0; 0) = 0 even if there
exists no t∗ = 0, . . . , T and ν ∈ Ωt∗ such that vνt∗ is increasing on its effective
domain dom vνt∗

Example 3.41. Let vt = δ(−∞,0] for all t = 0, . . . , T . Then there does not
exist t∗ = 0, . . . , T and ν ∈ Ωt∗ such that the function vνt∗ is increasing on
dom vνt∗ . Thus the assumption in Proposition 3.40 is not satisfied. However,
by Example 3.37 and Theorem 2.14, we have πaiF (0; 0) = πaF (0) = 0.

The following example shows that, under the regret functions (vt)Tt=0 defined
in Example 3.26, we have πaiF (0; c̄) = 0 for all c̄ ∈ N 2.
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Example 3.42. Consider (vt)Tt=0 defined in Example 3.26, and fix any c̄ ∈ N 2.

Firstly, we have for each ν ∈ ΩT that

vνT (x) = eαT x − 1 for all x ∈ R

where αT > 0 is independent of ν, and moreover the regret function vνT is
increasing. Observe that vT (x) <∞ for all x ∈ LT .

Secondly, define (xt)Tt=0 ∈ N as xt := 0 for t = 0, . . . , T − 1 and

xT := max
(Q,S)∈P̄

EQ
[
(1, ST ) ·

∑T
t=0(−c̄t)

]
;

from Theorem 2.14 the maximum exists. Then we have for all (Q, S) ∈ P̄ that

EQ
[
(1, ST ) ·

∑T
t=0(−c̄t − (xt, 0))

]
= EQ

[
(1, ST ) ·

∑T
t=0(−c̄t)

]
− xT ≤ 0

and hence (xt)Tt=0 ∈ A−c̄. Moreover, we have vt(xt) = vt(0) = 0 for every
t = 0, . . . , T − 1, which implies

T∑
t=0

E [vt(xt)] = E [vT (xT )] <∞.

Thus, it follows from (3.21) that V (−c̄) <∞. Then πaiF (0; c̄) = 0 by Proposi-
tion 3.40.

The example below shows that, sometimes, whether πaiF (0; c̄) is 0 or not
depends on the choice of c̄. Moreover, when πaiF (0; c̄) 6= 0, it is possible that
the buyer’s indifference is greater than the seller’s indifference price.

Example 3.43. Suppose that vt = δ(−∞,0] for all t = 0, . . . , T − 1 and

vT (x) =

−1 + 1
1−x if x < 1,

∞ if x ≥ 1.

Observe that vνT is a power regret function for every ν ∈ ΩT ; see Example 3.4.2.
We are going to show that πaiF (0; c̄) depends on the choice of endowment c̄ by
considering the following two situations.

Suppose that the investor’s endowment c̄ = (c̄t)Tt=0 ∈ N 2 is

c̄t =

0 if t = 0, . . . , T − 1,

−(1, 0) if t = T.
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Then (3.9) gives

V (−c̄) = inf
y∈Ψ

∑T
t=0E [vt(φt(∆yt − c̄t))]

= inf
y∈Ψ

{∑T−1
t=0 E [vt(φt(∆yt))] + E [vT (φT (∆yt + (1, 0)))]

}
= inf

y∈Ψ

{∑T−1
t=0 E [vt(φt(∆yt))] + E [vT (φT (∆yt) + 1)]

}
.

By the construction of (vt)Tt=0, the value V (−c̄) <∞ if and only if

{y ∈ Ψ|φT (∆yT ) < 0, φt(∆yt) ≤ 0 for all t = 0, . . . , T − 1} (3.60)

is not empty. Suppose by contradiction that there exists y∗ that belongs to
the set (3.60). Then (2.8) gives y∗ ∈ Φ ∩Ψ. However, Proposition 2.7 implies
that under the no-arbitrage condition we have φT (∆y∗T ) = 0 which violates
the condition φT (∆y∗T ) < 0 in (3.60). Therefore, the set (3.60) is empty and
hence V (−c̄) = ∞. Fix any c ∈ N 2. Then πaiF (c; c̄) = −∞ and πbiF (c; c̄) = ∞
by (3.54) and (3.55) respectively. Thus πbiF (c; c̄) > πaiF (c; c̄). In particular, the
indifference price for the seller πaiF (0; c̄) = −∞ is not zero. Therefore, it is
possible that the buyer’s indifference is greater than the seller’s indifference
price when πaiF (0; c̄) 6= 0.

Suppose now that the investor’s endowment c̄ = (c̄t)Tt=0 ∈ N 2 is given
by c̄t = 0 for all t = 0, . . . , T . Define y′ = (y′t)Tt=−1 ∈ Ψ by y′t := 0 for all
t = −1, . . . , T . Observe from (3.9) that

V (0) = inf
y∈Ψ

T∑
t=0

E [vt(φt(∆yt))] ≤
T∑
t=0

E
[
vt(φt(∆y′t))

]
=

T∑
t=0

E [vt(φt(0))] = 0,

and hence V (−c̄) = V (0) ≤ 0. Moreover, the function vνT is increasing on its
effective domain dom vνT for every ν ∈ ΩT . Then πaiF (0; c̄) = 0 by Proposi-
tion 3.40.
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Chapter 4

Extending the convex hull

In this chapter, we will present a number of technical results that will be ap-
plied in Chapter 5 for studying the dual problem (3.35) under the exponential
regret functions introduced in Example 3.26. All the results established in
this chapter are technical rather than connected with any particular finan-
cial model. Moreover, these results do not rely on any result from previous
chapters. In Section 4.1, we will introduce a minimisation problem for which
the value function is formulated as an extended convex hull of a collection of
convex functions. In Theorem 4.3, we will show that the value function is con-
vex. The focus in Section 4.2 will be on the proof of the existence of a solution
to this minimisation problem. With the help of a number of technical results
in Rockafellar (1997), we will establish the main result in Theorem 4.13 which
proves the existence of a solution and the continuity of the value function.
An example of the minimisation problem with an entropy type function will
be presented in Section 4.3. In this example, we will provide a method to
construct the solutions to this problem by considering all different cases of the
values of given parameters.

4.1 Problem formulation

In this section, we will first introduce an optimisation problem. The value
function of this problem can be regarded as an extended convex hull of a
collection of convex functions; see Remark 4.1. Then Theorem 4.3 shows that
the value function is convex, and its effective domain is provided in (4.5).

Let m ≥ 2 be an integer. For every i = 1, . . . ,m, let fi be an R ∪ {∞}-
valued proper convex function on R that is bounded from below. Notice
that the epigraph epi fi 6= ∅ is a convex set because fi is proper and convex.
Moreover, we assume that epi fi is closed, and that the recession cone of epi fi
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satisfies
(epi fi)∞ = {(0, b)| b ≥ 0}. (4.1)

For example, if the effective domain dom fi is bounded, then (4.1) holds true.
The definitions of epigraph, recession cone and effective domain can be found
in Appendix A.1.

For each i = 1, . . . ,m, let both g1
i and g2

i be R ∪ {∞}-valued convex
functions on R that are bounded from below. We assume that

[0, 1] ⊆ dom g1
i

and that
cl {λx |λ ∈ [0, 1], x ∈ dom fi } ⊆ dom g2

i ,

where clA is the closure of a given set A. Moreover, the functions g1
i and g2

i are
assumed to be continuous on dom g1

i and dom g2
i respectively, and moreover

g1
i (0) = g2

i (0) = 0. (4.2)

Notice that the epigraphs epi g1
i and epi g2

i are closed and convex.
For all x ∈ R, let

f(x) := inf
{

m∑
i=1

(
λifi(xi) + g1

i (λi) + g2
i (λixi)

)∣∣∣∣∣
λi ∈ [0, 1], xi ∈ dom fi ∀i = 1, . . . ,m,

m∑
i=1

λi = 1,
m∑
i=1

λixi = x

}
. (4.3)

The value f(x) is defined as the optimal value of a minimisation problem with
parameter x. In this problem, the control variables λ1, . . . , λm ∈ [0, 1] are
weights, and the control variables x1, . . . , xm take their values in the intervals
dom f1, . . . ,dom fm. The infimum in (4.3) is attained if and only if there exists
a solution to this problem (i.e. there exists (λ1, x1, . . . , λm, xm) such that the
constraints in (4.3) are satisfied and

∑m
i=1(λifi(xi)+g1

i (λi)+g2
i (λixi)) = f(x)).

Remark 4.1. In the case when g1
i = g2

i = 0 for all i = 1, . . . ,m, we have for all
x ∈ R that

f(x) = inf
{

m∑
i=1

λifi(xi)
∣∣∣∣∣

λi ∈ [0, 1], xi ∈ dom fi ∀i = 1, . . . ,m,
m∑
i=1

λi = 1,
m∑
i=1

λixi = x

}
.

Then f is reduced to the convex hull of f1, . . . , fm. This is the greatest con-
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vex function such that f ≤ fi for all i = 1, . . . ,m (Rockafellar 1997, The-
orem 5.6). This means that f defined in (4.3) is an extension of the convex
hull of f1, . . . , fm.

Remark 4.2. The minimisation problem in (4.3) is slightly more general than
the later problems in (5.42), (5.60), and (5.76) considered in Chapter 5. These
three problems will correspond to special examples of the problem in (4.3) for
g2

1 = · · · = g2
m = 0.

The functions f1, g
1
1, g

2
1, . . . , fm, g

1
m, g

2
m are bounded from below. Then it

follows from the definition of f in (4.3) that

f > −∞ on R. (4.4)

Thus, the function f is of the form R → R ∪ {∞}. The theorem below
shows that f is convex; the convexity of f only relies on the convexity of
the functions f1, g

1
1, g

2
1, . . . , fm, g

1
m, g

2
m. In addition, this theorem also shows

that the effective domain of f is given by co (∪mi=1dom fi), where co (A) is the
convex hull of any given set A.

Theorem 4.3. The function f defined in (4.3) is R∪{∞}-valued and convex
on R. Moreover, its effective domain is

dom f = co
(
m⋃
i=1

dom fi

)
. (4.5)

Proof. Firstly, the function f is R∪ {∞}-valued; see (4.4). Secondly, we shall
establish the convexity of f . Fix any x, y ∈ R and a ∈ (0, 1). To show that f
is convex, we are going to prove

f (ax+ (1− a) y) ≤ af (x) + (1− a) f (y) . (4.6)

Observe from (4.4) that f(x) > −∞ and f(y) > −∞. We can prove (4.6) by
considering the following two cases.

In the case when f(x) =∞ or f(y) =∞, we have

f (ax+ (1− a) y) ≤ ∞ = af (x) + (1− a) f (y) ,

which means (4.6) holds true.
In the second case, we assume that both f(x) and f(y) are finite. Then

(4.3) implies that there exist (µ1, x1, . . . , µm, xm) and (θ1, y1, . . . , θm, ym) such
that

µi, θi ∈ [0, 1], xi, yi ∈ dom fi for all i = 1, . . . ,m
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4.1. Problem formulation

and
m∑
i=1

µi = 1,
m∑
i=1

µixi = x,

m∑
i=1

θi = 1,
m∑
i=1

θiyi = y.

Fix any i = 1, . . . ,m. Define

γi := aµi + (1− a) θi ∈ [0, 1].

Observe that γi = 0 if and only if µi = θi = 0. Moreover, let

zi :=

xi if γi = 0,
aµi
γi
xi + (1−a)θi

γi
yi if γi ∈ (0, 1],

where aµi
γi
, (1−a)θi

γi
∈ [0, 1] and

aµi
γi

+ (1− a) θi
γi

= aµi + (1− a) θi
γi

= γi
γi

= 1.

Notice that zi ∈ dom fi because dom fi is convex. Moreover, by straightfor-
ward calculation, it follows that

m∑
k=1

γk = 1,
m∑
k=1

γkzk = ax+ (1− a) y.

Thus (γ1, z1, . . . , γm, zm) satisfies the constraints of (4.3), and therefore

f (ax+ (1− a) y) ≤
m∑
k=1

[
γkfk(zk) + g1

k(γk) + g2
k(γkzk)

]
. (4.7)

Observe from the convexity of g1
i that

g1
i (γi) = g1

i (aµi + (1− a) θi) ≤ ag1
i (µi) + (1− a) g1

i (θi).

We consider the following two cases for γi. In the case when γi = 0, we have
from µi = 0 and θi = 0 that

γifi(zi) = 0 = aµifi(xi) + (1− a) θifi(yi),

g2
i (γizi) = g2

i (0) = ag2
i (µixi) + (1− a) g2

i (θiyi).
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4.2. Existence of solution

In the case when γi ∈ (0, 1], the convexity of fi and g2
i implies

γifi(zi) = γifi

(
aµi
γi
xi + (1− a) θi

γi
yi

)
≤ aµifi(xi) + (1− a) θifi(yi),

g2
i (γizi) = g2

i (aµixi + (1− a) θiyi) ≤ ag2
i (µixi) + (1− a) g2

i (θiyi).

Therefore, we can conclude that

m∑
k=1

[
γkfk(zk) + g1

k(γk) + g2
k(γkzk)

]
≤ a

m∑
k=1

[
µkfk(xk) + g1

k(µk) + g2
k(µkxk)

]
+ (1− a)

m∑
k=1

[
θkfk (yk) + g1

i (θk) + g2
k(θkyk)

]
.

Combining this with (4.7), we have

f (ax+ (1− a) y) ≤ a
m∑
k=1

[
µkfk(xk) + g1

k(µk) + g2
k(µkxk)

]
+ (1− a)

m∑
k=1

[
θkfk (yk) + g1

i (θk) + g2
k(θkyk)

]
.

Taking infimum on both sides, it follows that

f (ax+ (1− a) y) ≤ af (x) + (1− a) f (y) ,

which completes the proof of (4.6). Thus f is convex.
Finally, we are going to prove (4.5). For any x ∈ R, the value f(x) in

is finite if and only if there exists (λ1, x1, . . . , λm, xm) that satisfies the con-
straints in (4.3). Moreover, the constraints in (4.3) are satisfied for some
(λ1, x1, . . . , λm, xm) if and only if x ∈ co (∪i=1,...,mdom fi). Therefore (4.5)
holds true.

4.2 Existence of solution

This section is devoted to showing that the infimum in (4.3) is attained for
all x ∈ dom f , in other words, there exists a solution to the minimisation
problem in (4.3) for every x ∈ dom f . Moreover, we will also show that f is
continuous on dom f . Firstly, we will introduce an auxiliary set Ef ⊆ R2 in
(4.8). After that, a number of technical results will be provided for establishing
the closedness of Ef ; see Theorem 4.11. Then we will show that Ef = epi f
in Theorem 4.12. Finally, we will present the main result of this section in
Theorem 4.13.
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4.2. Existence of solution

Define Ef ⊆ R2 as

Ef :=
{(

m∑
i=1

λix
1
i ,

m∑
i=1

(
λix

2
i + g1

i (λi) + g2
i (λix1

i )
))∣∣∣∣∣

λi ∈ [0, 1], (x1
i , x

2
i ) ∈ epi fi ∀i = 1, . . . ,m,

m∑
i=1

λi = 1
}
. (4.8)

The following result says that (0, b) ∈ E∞f for all b ≥ 0, and this property will
be used in the proof of Theorem 4.12.

Proposition 4.4. We have {(0, b) ∈ R2 | b ≥ 0} ⊆ E∞f .

Proof. Let b ≥ 0, and fix any ε ≥ 0 and (z1, z2) ∈ Ef . Since (z1, z2) ∈ Ef ,
there exists λ1, . . . , λm ∈ R and (x1

1, x
2
1), . . . , (x1

m, x
2
m) ∈ R2 such that

m∑
i=1

λi = 1, λi ∈ [0, 1], (x1
i , x

2
i ) ∈ epi fi for all i = 1, . . . ,m

and
(z1, z2) =

(
m∑
i=1

λix
1
i ,

m∑
i=1

(
λix

2
i + g1

i (λi) + g2
i (λix1

i )
))

.

Since λ1, . . . , λm ∈ [0, 1] and
∑m
i=1 λi = 1, there exists i∗ ∈ {1, . . . ,m} such

that λi∗ > 0. Define (y1
1, y

2
1), . . . , (y1

m, y
2
m) as

(y1
i , y

2
i ) =

(x1
i , x

2
i + εb

λi∗
) if i = i∗

(x1
i , x

2
i ) if i ∈ {1, . . . ,m}\{i∗}.

Notice that (y1
i , y

2
i ) ∈ epi fi for all i = 1, . . . ,m, and

m∑
i=1

λiy
1
i =

m∑
i=1

λix
1
i ,

m∑
i=1

λiy
2
i =

m∑
i=1

λix
2
i + εb.

By straightforward calculation, it follows that

(z1, z2) + ε(0, b) =
(

m∑
i=1

λiy
1
i ,

m∑
i=1

(
λiy

2
i + g1

i (λi) + g2
i (λiy1

i )
))
∈ Ef ,

and the result follows.

We are going to introduce a collection of sets K1, . . . ,Km ⊆ R3 which will
be helpful for establishing the closedness of Ef in Theorem 4.11 below. For
any i = 1, . . . ,m, we define Ki ⊆ R3 as

Ki :=
{(
λ, λx1, λx2 + g1

i (λ) + g2
i (λx1)

)∣∣∣λ ∈ [0, 1] , (x1, x2) ∈ epi fi
}
. (4.9)
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4.2. Existence of solution

Observe that 0 ∈ Ki because g1
i (0) = g2

i (0) = 0 by (4.2). Moreover, it follows
directly from (4.9) that

(0, z1, z2) ∈ Ki =⇒ z1 = 0, z2 = 0. (4.10)

Then, for any b > 0, we have (0, 0, b) /∈ K∞i because 0 + (0, 0, b) /∈ Ki.
Lemmas 4.5-4.7 below will provide a number of properties of Ki.

The following technical result will be used in Propositions 4.8 and 4.10.

Lemma 4.5. Let i = 1, . . . ,m, b ≥ 0. If (λ, z1, z2) ∈ Ki and λ > 0, then

(λ, z1, z2) + (0, 0, b) ∈ Ki.

Proof. Suppose that (λ, z1, z2) ∈ Ki and λ > 0. Observe from the definition
of Ki in (4.9) that there exists (x1, x2) ∈ epi fi such that

(λ, z1, z2) =
(
λ, λx1, λx2 + g1

i (λ) + g2
i (λx1)

)
.

This implies that

(λ, z1, z2) + (0, 0, b) =
(
λ, λx1, λ

(
x2 + b

λ

)
+ g1

i (λ) + g2
i (λx1)

)
∈ Ki

because (x1, x2 + b
λ) ∈ epi fi. This completes the proof.

The next result shows that K1, . . . ,Km are convex sets, which implies that∑m
i=1Ki is also convex (Rockafellar 1997, Theorem 3.1). Moreover, this result

only relies on the convexity of the functions f1, g
1
1, g

2
1, . . . , fm, g

1
m, g

2
m and the

condition (4.2).

Lemma 4.6. For every i = 1, . . . ,m, the set Ki is convex.

Proof. Fix any i = 1, . . . ,m, and fix any a ∈ (0, 1) and x′, y′ ∈ Ki. From the
definition of Ki in (4.9), there exist µ, γ ∈ [0, 1], x = (x1, x2) ∈ epi fi and
y = (y1, y2) ∈ epi fi such that

x′ =
(
µ, µx1, µx2 + g1

i (µ) + g2
i (µx1)

)
,

y′ =
(
γ, γy1, γy2 + g1

i (γ) + g2
i (γy1)

)
.

Define
c := aµ+ (1− a)γ ∈ [0, 1]. (4.11)

Observe that c = 0 if and only if µ = γ = 0. We are going to show that

ax′ + (1− a) y′ ∈ Ki (4.12)
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4.2. Existence of solution

by considering the following two cases for c. In the case when c = 0, we must
have µ = γ = 0. Combining this with g1

i (0) = g2
i (0) = 0 by (4.2), it follows

that x′ = y′ = 0. This means

ax′ + (1− a)y′ = 0 ∈ Ki,

and hence (4.12) holds true. In the case when c ∈ (0, 1], let

z1 := aµ

c
x1 + (1− a)γ

c
y1,

ε := a
(
g1
i (µ) + g2

i (µx1)
)

+ (1− a)
(
g1
i (γ) + g2

i (γy1)
)
− g1

i (c)− g2
i (cz1),

z2 := aµ

c
x2 + (1− a)γ

c
y2 + ε

c
.

Notice that
cz1 = aµx1 + (1− a) γy1. (4.13)

Moreover, it follows from the constructions of z2 and ε above that

cz2 + g1
i (c) + g2

i (cz1) = a
(
µx2 + g1

i (µ) + g2
i (µx1)

)
+ (1− a)

(
γy2 + g1

i (γ) + g2
i (γy1)

)
. (4.14)

Then the presentations of the values c, cz1, and cz2 +g1
i (c)+g2

i (cz1) in (4.11),
(4.13), and (4.14) lead to

ax′ + (1− a) y′ =
(
c, cz1, cz2 + g1

i (c) + g2
i (cz1)

)
.

Then, in order to prove (4.12), it is enough to show that (z1, z2) ∈ epi fi.
Observe from the definitions of z1 and z2 that

(z1, z2) = aµ

c
x+ (1− a) γ

c
y +

(
0, ε
c

)
,

where aµ
c ,

(1−a)γ
c ∈ [0, 1] and

aµ

c
+ (1− a)γ

c
= aµ+ (1− a)γ

c
= c

c
= 1.

Then the convexity of epi fi together with x, y ∈ epi fi gives

aµ

c
x+ (1− a) γ

c
y ∈ epi fi.

By the definition of ε together with the presentations of c and cz1 in (4.11)
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and (4.13), we have

ε = a
(
g1
i (µ) + g2

i (µx1)
)

+ (1− a)
(
g1
i (γ) + g2

i (γy1)
)

− g1
i (aµ+ (1− a)γ)− g2

i (aµx1 + (1− a) γy1).

Thus ε ≥ 0 because g1
i and g2

i are convex. This implies that ε
c ≥ 0 which means

(z1, z2) ∈ epi fi. Therefore (4.12) holds true, and hence Ki is convex.

The next result gives an explicit expression for clKi for all i = 1, . . . ,m,
where clA is the closure of a given set A.

Lemma 4.7. For all i = 1, . . . ,m, we have

clKi = Ki ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
.

Proof. Fix any i = 1, . . . ,m. Define the following auxiliary set

K ′i :=
{

(λ, λx1, λx2) ∈ R3
∣∣∣λ ≥ 0, (x1, x2) ∈ epi fi

}
(4.15)

(cf. (4.9)). Observe from the definition of K ′i that

(0, z1, z2) ∈ K ′i =⇒ (0, z1, z2) = 0.

Moreover, from Corollary 2.6.3 of Rockafellar (1997) and the comments fol-
lowing it, the family K ′i is the convex cone generated by{

(1, x1, x2)
∣∣∣ (x1, x2) ∈ epi fi

}
,

where (epi fi)∞ = {(0, b)| b ≥ 0} by (4.1). Then the closure of K ′i is given by

clK ′i = K ′i ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
(4.16)

(Rockafellar 1997, Theorem 8.2).
Firstly, we are going to show that

clKi ⊆ Ki ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
. (4.17)

Fix any (λ, z1, z2) ∈ clKi. Then there exists a sequence (λk, z1
k, z

2
k)k∈N in Ki

converging to (λ, z1, z2). It follows from λk ∈ [0, 1] for all k ∈ N that

λ = lim
k→∞

λk ∈ [0, 1]. (4.18)

From the definition of Ki in (4.9), there exists a sequence (x1
k, x

2
k)k∈N in epi fi
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such that (
λk, z

1
k, z

2
k

)
=
(
λk, λkx

1
k, λkx

2
k + g1

i (λk) + g2
i (λkx1

k)
)

for all k ∈ N. The continuity of g1
i and g2

i gives g1
i (λ) = limk→∞ g

1
i (λk) and

g2
i (z1) = limk→∞ g

2
i (z1

k). Combining this with z2 = limk→∞ z
2
k, it follows that

z2 − g1
i (λ)− g2

i (z1) = lim
k→∞

(
z2
k − g1

i (λk)− g2
i (z1

k)
)

= lim
k→∞

(
z2
k − g1

i (λk)− g2
i (λkx1

k)
)

= lim
k→∞

λkx
2
k.

Then (λk, λkx1
k, λkx

2
k)k∈N converges to (λ, z1, z2 − g1

i (λ) − g2
i (z1)). Observe

that (λk, λkx1
k, λkx

2
k)k∈N is a sequence in K ′i because (x1

k, x
2
k)k∈N is a sequence

in epi fi. Thus(
λ, z1, z2 − g1

i (λ)− g2
i (z1)

)
∈ clK ′i = K ′i ∪

{
(0, 0, b) ∈ R3

∣∣∣ b ≥ 0
}

(4.19)

by (4.16). We are going to show that

(λ, z1, z2) ∈ Ki ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
(4.20)

by considering the following two cases.

1. In the case when

(λ, z1, z2 − g1
i (λ)− g2

i (z1)) ∈
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
,

we must have λ = z1 = 0, which implies

−g1
i (λ)− g2

i (z1) = −g1
i (0)− g2

i (0) = 0

by (4.2). Thus(
λ, z1, z2

)
=
(
λ, z1, z2 − g1

i (λ)− g2
i (z1)

)
∈
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
,

and hence (4.20) holds true.

2. In the case when (λ, z1, z2 − g1
i (λ) − g2

i (z1)) ∈ K ′i, the definition of K ′i
in (4.15) implies that there exists (x1, x2) ∈ epi fi such that(

λ, z1, z2 − g1
i (λ)− g2

i (z1)
)

=
(
λ, λx1, λx2

)
,
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in other words,(
λ, z1, z2

)
=
(
λ, λx1, λx2 + g1

i (λ) + g2
i (λx1)

)
.

Combining this with λ ∈ [0, 1] by (4.18), we have (λ, z1, z2) ∈ Ki and
hence (4.20) holds true.

This completes the proof of (4.17). It remains to show the opposite inclusion
of (4.17). Fix any

(λ, z1, z2) ∈ Ki ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
.

Clearly, when (λ, z1, z2) ∈ Ki, the vector (λ, z1, z2) ∈ clKi. In the case when
(λ, z1, z2) = (0, 0, b) for some b ≥ 0, we have from (4.16) that

(λ, z1, z2) ∈ clK ′i.

This implies that there exists a sequence (λk, z1
k, z

2
k)k∈N in K ′i converging to

(λ, z1, z2). The definition of K ′i in (4.15) implies that, for any k ∈ N, there
exists (x1

k, x
2
k) ∈ epi fi such that

z1
k = λkx

1
k, z2

k = λkx
2
k.

Moreover, since (λk)k∈N is a sequence in [0,∞) and limk→∞ λk = λ = 0, there
exists k∗ ∈ N such that λk ∈ [0, 1] for all k ≥ k∗. Thus

(yk)k∈N :=
(
λk∗+k, z

1
k∗+k, z

2
k∗+k + g1

i (λk∗+k) + g2
i (z1

k∗+k)
)
k∈N

is a sequence in Ki. The continuity of g1
i and g2

i gives

lim
k→∞

g1
i (λk∗+k) = g1

i (λ) = g1
i (0) = 0,

lim
k→∞

g2
i (z1

k∗+k) = g2
i (z1) = g2

i (0) = 0.

Then (yk)k∈N converges to (λ, z1, z2). Therefore (λ, z1, z2) ∈ clKi which
means that the opposite inclusion of (4.17) holds true.

In Propositions 4.8-4.10 below, we are going to provide a number of prop-
erties of operations among K1, . . . ,Km. Moreover, these properties will be
used in Theorem 4.11 which establishes the closedness of Ef defined in (4.8).

The proposition below shows that the cl
∑m
i=1Ki can be written as the

sum of clK1, . . . , clKm.
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Proposition 4.8. We have

cl
m∑
i=1

Ki =
m∑
i=1

clKi.

Proof. The main objective is to show that

(clKi)∞ =
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
for all i = 1, . . . ,m. (4.21)

Taking (4.21) as given, we can prove the result as follows. Suppose that there
exist z1, . . . , zm ∈ R3 such that

∑m
i=1 zi = 0 and

zi ∈ (clKi)∞ for all i = 1, . . . ,m.

Then z1 = · · · = zm = 0, and this implies that

zi ∈ {0} = (−(clKi)∞) ∩ (clKi)∞ for all i = 1, . . . ,m,

where K1, . . . ,Km are convex by Lemma 4.6. The result follows from Corol-
lary 9.1.1 of Rockafellar (1997) and the comments following Corollary 8.4.1 of
Rockafellar (1997).

Now, we are going to prove that (4.21) holds true. Fix any i = 1, . . . ,m.
Firstly, we shall prove that

(clKi)∞ ⊆
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
. (4.22)

Fix any zi = (z1
i , z

2
i , z

3
i ) ∈ (clKi)∞. Since (clKi)∞ is the recession cone of

clKi and 0 ∈ clKi, we have for all δ ≥ 0 that

δzi = 0 + δzi ∈ clKi = Ki ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
(4.23)

(Lemma 4.7). Combining the definition of Ki in (4.9) and the fact that (4.23)
holds true for all δ ≥ 0, the first component of zi must be z1

i = 0. Then (4.10)
implies that zi = 0 as long as zi ∈ Ki. Thus

zi ∈
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
,

which means that (4.22) holds true.

It remains to prove the opposite inclusion of (4.22). Fix any b ≥ 0, δ ≥ 0
and zi = (z1

i , z
2
i , z

3
i ) ∈ clKi. Then Lemma 4.7 gives

zi ∈ Ki ∪
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
= (Ki\{0}) ∪

{
(0, 0, b) ∈ R3

∣∣∣ b ≥ 0
}
.
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Consider the following two cases. If zi ∈ Ki\{0}, then z1
i > 0 and

zi + δ(0, 0, b) = zi + (0, 0, δb) ∈ Ki

(Lemma 4.5). If zi ∈ {(0, 0, b) ∈ R3 | b ≥ 0}, then

zi + δ(0, 0, b) ∈ {(0, 0, b)| b ≥ 0} .

Thus, we always have

zi + δ(0, 0, b) ∈ Ki ∪ {(0, 0, b)| b ≥ 0} = clKi

(Lemma 4.7). This means (0, 0, b) ∈ (clKi)∞, and hence the opposite inclusion
of (4.22) holds true. Therefore (4.21) holds true, and the result follows.

Define the hyperplane

M :=
{(

1, x1, x2
)∣∣∣ (x1, x2) ∈ R2

}
(4.24)

in R3. Observe from (4.9) and (4.8) that(
m∑
i=1

Ki

)⋂
M =

{(
1,

m∑
i=1

λix
1
i ,

m∑
i=1

(
λix

2
i + g1

i (λi) + g2
i (λix1

i )
))∣∣∣∣∣

λi ∈ [0, 1], (x1
i , x

2
i ) ∈ epi fi ∀i = 1, . . . ,m,

m∑
i=1

λi = 1
}

={1} × Ef . (4.25)

The result below will be used in Theorem 4.11 which shows that Ef is closed.

Proposition 4.9. We have(
cl

m∑
i=1

Ki

)⋂
M = cl

((
m∑
i=1

Ki

)⋂
M

)
.

Proof. Observe from Lemma 4.6 that
∑m
i=1Ki is convex. The objective is to

show that M contains an element of ri(
∑m
i=1Ki), where ri(A) is the relative

interior of a given set A. Then the result follows from Corollary 6.5.1 of
Rockafellar (1997).

It follows from 0 ∈ Ki for all i = 1, . . . ,m that 0 ∈
∑m
i=1Ki which means∑m

i=1Ki 6= ∅. Then Theorem 6.2 of Rockafellar (1997) gives

ri
(

m∑
i=1

Ki

)
6= ∅.
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Fix any z = (z1, z2, z3) ∈ ri(
∑m
i=1Ki). Then z ∈

∑m
i=1Ki which means that

there exist λ1, . . . , λm ∈ [0, 1] and (x1
1, x

2
1) ∈ epi f1, . . . , (x1

m, x
2
m) ∈ epi fm such

that

z =
(
z1, z2, z3

)
=
(

m∑
i=1

λi,
m∑
i=1

λix
1
i ,

m∑
i=1

(
λix

2
i + g1

i (λi) + g2
i (λix1

i )
))

.

Observe that z1 ≥ 0, and we are going to consider the following two cases
based on the value of z1. In the case when z1 ≥ 1, we have z

z1 ∈M and

z

z1 = 1
z1 z +

(
1− 1

z1

)
× 0 ∈ ri

(
m∑
i=1

Ki

)

(Rockafellar 1997, Theorem 6.1). In the case when z1 ∈ [0, 1), let

µ := 1
m

(2− z1) ∈ (0, 1]

and

z′ = (z′1, z′2, z′3) :=
(

m∑
i=1

µ,
m∑
i=1

µx1
i ,

m∑
i=1

(
µx2

i + g1
i (µ) + g2

i (µx1
i )
))

=
(

2− z1, µ
m∑
i=1

x1
i ,

m∑
i=1

(
µx2

i + g1
i (µ) + g2

i (µx1
i )
))

.

Observe from the definition of z′ that

z′ ∈
m∑
i=1

Ki ⊆ cl
(

m∑
i=1

Ki

)
.

Define
z∗ = (z∗1, z∗2, z∗3) := 1

2z + 1
2z
′ ∈ ri

(
m∑
i=1

Ki

)

(Rockafellar 1997, Theorem 6.1). Observe that

z∗1 = 1
2z

1 + 1
2z
′1 = 1

2z
1 + 1

2(2− z1) = 1

which means z∗ ∈ M . Thus M contains an element of ri(
∑m
i=1Ki), and the

result follows.

The next result connects
∑m
i=1(clKi) and Ef .

Proposition 4.10. We have(
m∑
i=1

clKi

)⋂
M = {1} × Ef .
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Proof. Observe from (4.25) that

{1} × Ef ⊆
(

m∑
i=1

clKi

)⋂
M. (4.26)

It is therefore sufficient to show that the opposite inclusion of (4.26) holds
true. Fix any z = (z1, z2, z3) ∈ (

∑m
i=1clKi) ∩M . Then Lemma 4.7 together

with the definition of M in (4.24) implies that there exist

z1 = (z1
1 , z

2
1 , z

3
1), . . . , zm = (z1

m, z
2
m, z

3
m) ∈ R3

such that
m∑
i=1

zi = z,
m∑
i=1

z1
i = 1, zi ∈ Ki ∪

{
(0, 0, b) ∈ R3

∣∣∣ b ≥ 0
}
∀i = 1, . . . ,m.

Since
∑m
i=1 z

1
i = 1 and z1

i ≥ 0 for all i = 1, . . . ,m, there exists i∗ ∈ {1, . . . ,m}
such that z1

i∗ > 0. Define two subsets of {1, . . . ,m} as

A0 :=
{
i ∈ {1, . . . ,m}

∣∣∣z1
i = 0

}
,

A1 := {1, . . . ,m}\(A0 ∪ {i∗}).

Notice that {i∗}, A0, A1 are pairwise disjoint and {i∗}∪A0∪A1 = {1, . . . ,m}.
Moreover, for any i ∈ A1 ∪ {i∗}, we have z1

i > 0 which means zi ∈ Ki. In
addition, it follows from (4.10) that zi ∈ {(0, 0, b) ∈ R3 | b ≥ 0} for all i ∈ A0,
which implies ∑

k∈A0zk ∈
{

(0, 0, b) ∈ R3
∣∣∣ b ≥ 0

}
.

Combining this with Lemma 4.5, it follows that zi∗ +
∑
k∈A0zk ∈ Ki∗ . Now,

we define y1, . . . , ym ∈ R3 as

yi :=


zi∗ +

∑
k∈A0zk if i = i∗,

0 if i ∈ A0,

zi if i ∈ A1.

Observe that

z =
m∑
i=1

zi = zi∗ +
∑
k∈A0

zk +
∑
k∈A1

zk =
m∑
i=1

yi,
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4.2. Existence of solution

where yi ∈ Ki for all i = 1, . . . ,m. Combining this with z ∈M , we have

z ∈
(

m∑
i=1

Ki

)⋂
M = {1} × Ef

by (4.25). Thus, the opposite inclusion of (4.26) holds true.

The result below establishes the closedness of Ef .

Theorem 4.11. The set Ef is closed.

Proof. Observe that

{1} × clEf = cl ({1} × Ef ) = cl
((

m∑
i=1

Ki

)⋂
M

)

by (4.25). Then Proposition 4.9 gives

{1} × clEf =
(

cl
m∑
i=1

Ki

)⋂
M =

(
m∑
i=1

clKi

)⋂
M

(Proposition 4.8). Combining this with Proposition 4.10, it follows that

{1} × clEf = {1} × Ef .

Thus clEf = Ef , in other words, the set Ef is closed.

The result below shows that Ef is the epigraph of f .

Theorem 4.12. We have Ef = epi f .

Proof. Firstly, we shall prove that

Ef ⊆ epi f. (4.27)

Suppose that (x, y) ∈ Ef . Then the definition of Ef in (4.8) implies that there
exist λi ∈ [0, 1] and xi = (x1

i , x
2
i ) ∈ epi fi for every i = 1, . . . ,m such that

m∑
i=1

λi = 1,
m∑
i=1

λix
1
i = x,

m∑
i=1

(
λix

2
i + g1

i (λi) + g2
i (λix1

i )
)

= y.

For any i = 1, . . . ,m, it follows from (x1
i , x

2
i ) ∈ epi fi that x2

i ≥ fi(x1
i ) .

Combining this with the definition of f(x) in (4.3), it follows that

y ≥
m∑
i=1

(
λifi(x1

i ) + g1
i (λi) + g2

i (λix1
i )
)
≥ f (x) ,
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4.2. Existence of solution

which implies (x, y) ∈ epi f . Thus (4.27) holds true.
It remains to show that the opposite inclusion of (4.27) holds true. Suppose

that (x, y) ∈ epi f . Then f(x) ≤ y < ∞. By (4.4), the value f(x) is finite.
Moreover, the definition of f(x) in (4.3) implies that there exists a sequence
(λk1, xk1, . . . , λkm, xkm)k∈N in R2m such that

λk1, . . . , λ
k
m ∈ [0, 1], xk1 ∈ dom f1, . . . , x

k
m ∈ dom fm for all k ∈ N,

m∑
i=1

λki = 1,
m∑
i=1

λki x
k
i = x for all k ∈ N

and limk→∞ y
k = f(x) where

yk :=
m∑
i=1

(
λki fi(xki ) + g1

i (λki ) + g2
i (λki xki )

)
∈ R for all k ∈ N. (4.28)

For any k ∈ N, we have (xki , fi(xki )) ∈ epi fi for all i = 1, . . . ,m, which implies(
m∑
i=1

λki x
k
i , y

k

)
∈ Ef

Combining this with

lim
k→∞

(
m∑
i=1

λki x
k
i , y

k

)
= lim

k→∞

(
x, yk

)
= (x, f(x)),

it follows that (x, f(x)) ∈ clEf . Then (x, f(x)) ∈ Ef because Ef is closed
(Theorem 4.11). Thus

(x, y) = (x, f(x) + (y − f(x))) = (x, f(x)) + (0, y − f(x)) ∈ Ef

by y − f(x) ≥ 0 and Proposition 4.4. Therefore, the opposite inclusion of
(4.27) holds true.

Finally, the following result shows that the infimum in (4.3) is attained for
every x ∈ dom f (i.e. there exists a solution to the minimisation problem in
(4.3) for all x ∈ dom f). This result also establishes the continuity of f .

Theorem 4.13. The infimum in (4.3) is attained for all x ∈ dom f . In
addition, the function f is continuous on dom f .

Proof. Firstly, we shall prove that the infimum in (4.3) is attained for every
x ∈ dom f . Let x ∈ dom f . Then f (x) is finite, which means

(x, f(x)) ∈ epi f = Ef
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(Theorem 4.12). Then it follows from the definition of Ef in (4.8) that there
exists λ1, . . . , λm ∈ [0, 1] and (x1, y1) ∈ epi f1, . . . , (xm, ym) ∈ epi fm such that∑m
i=1 λi = 1 and

(x, f (x)) =
(

m∑
i=1

λixi,
m∑
i=1

(
λiyi + g1

i (λi) + g2
i (λixi)

))
.

Notice that (λ1, x1, . . . , λm, xm) satisfies the constraints of the problem (4.3).
For every i = 1, . . . ,m, we have yi ≥ fi(xi) because (xi, yi) ∈ epi fi. Then

f (x) ≥
m∑
i=1

(
λifi(xi) + g1

i (λi) + g2
i (λixi)

)
.

Moreover, the definition of f(x) in (4.3) gives

f (x) ≤
m∑
i=1

(
λifi(xi) + g1

i (λi) + g2
i (λixi)

)
.

Therefore
f(x) =

m∑
i=1

(λifi(xi) + g1
i (λi) + g2

i (λixi)),

and hence the infimum in (4.3) is attained.
By Theorems 4.3, 4.11 and 4.12, the function f is proper and convex, and

epi f is closed (i.e. f is lower semicontinuous). Then f must be continuous on
dom f (Lemma A.2).

4.3 An example with an entropy function

In this section, we will consider two special examples of the minimisation
problem in (4.3) for m = 2. Throughout this section, the functions g1

1 and g1
2

are defined as

g1
1(y) =

y ln y
p1

if y ≥ 0,

∞ otherwise,
g1

2(y) =

y ln y
p2

if y ≥ 0,

∞ otherwise,
(4.29)

where p1, p2 > 0 are a given parameters. Moreover, the functions g2
1 and g2

2
are set to be g2

1 = g2
2 = 0. In Section 4.3.1, we will consider the situation

when functions f1 and f2 in (4.3) are affine on their effective domains. By
considering all different cases of the given parameters, we will explicitly present
the solutions to (4.3) with x ∈ dom f , so that these solutions can be easily
calculated by a programming tool. In Section 4.3.2, the functions f1 and f2

are allowed to be piecewise linear on their effective domains. By using the
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4.3. An example with an entropy function

result established in Section 4.3.1, we will provide a method to construct a
solution to (4.3) with x ∈ dom f .

4.3.1 Affine case

In this section, the functions f1 and f2 in (4.3) are defined as follows. For each
i = 1, 2, let αi, βi ∈ R, and let [bi, ai] ⊆ R for some bi ≤ ai. Moreover, let

fi(y) =

αiy + βi if y ∈ [bi, ai],

∞ if y ∈ R\[bi, ai].
(4.30)

Then fi is an affine function with slope αi on dom fi = [bi, ai]. For any x ∈ R,
it follows from (4.3) and g2

1 = g2
2 = 0 that

f(x) = inf

 ∑
i=1,2

(
λifi(xi) + g1

i (λi)
)∣∣∣∣∣∣

λi ∈ [0, 1], xi ∈ [bi, ai]∀i = 1, 2,
∑
i=1,2

λi = 1,
∑
i=1,2

λixi = x

 . (4.31)

From (4.5), the effective domain of f can be written as

dom f = co ([b1, a1] ∪ [b2, a2]) = [b1 ∧ b2, a1 ∨ a2] ,

where c1 ∧ c2 = min{c1, c2} and c1 ∨ c2 = max{c1, c2} for any c1, c2 ∈ R. For
the remainder of this section, we assume that x ∈ dom f which means

x ∈ [b1 ∧ b2, a1 ∨ a2] . (4.32)

Then f(x) must be finite. Moreover, from Theorem 4.13, there exists a solution
to the minimisation problem in (4.31) with parameter x. In the remainder of
this section, our objective is to construct a solution to this problem.

In (4.31), taking into account the constraints, the value

∑
i=1,2

(
λifi(xi) + g1

i (λi)
)

is determined by the control variables λ1 and x1. This means that we can
reduce the dimensionality of (4.31), from four to two. In (4.37) below, we will
provide a feasible set of (λ1, x1) in the problem (4.31). Firstly, we define

Q̄x := {λ1 ∈ [0, 1] |∃x1 ∈ [b1, a1] , x2 ∈ [b2, a2] : λ1x1 + (1− λ1)x2 = x}
(4.33)
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as the feasible set of the control variable λ1 in (4.31). Observe from x ∈ dom f

that Q̄x 6= ∅. Moreover, we have

1 ∈ Q̄x ⇐⇒ x ∈ [b1, a1], (4.34)

0 ∈ Q̄x ⇐⇒ x ∈ [b2, a2]. (4.35)

It turns out that Q̄x is a closed subinterval of [0, 1]; see Lemma 4.14 below.
For any λ1 ∈ Q̄x, we define

Zλ1,x := {x1 |x1 ∈ [b1, a1] , x2 ∈ [b2, a2] , λ1x1 + (1− λ1)x2 = x} (4.36)

as the collection of x1 that satisfies the constraints of (4.31) with λ1 fixed. We
have Zλ1,x 6= ∅ as long as λ1 ∈ Q̄x. If 1 ∈ Q̄x, then Z1,x = {x}. Moreover, if
0 ∈ Q̄x, then Z0,x = [b1, a1]. Observe that{

(λ1, x1)
∣∣∣λ1 ∈ Q̄x, x1 ∈ Zλ1,x

}
(4.37)

is the set of all possible (λ1, x1) that satisfies the constraits of (4.31). In
Lemma 4.14 below, we provide a method to compute Q̄x explicitly. By con-
sidering three possible cases of the relationship between x and [b2, a2], the
quantity qmin

x ∈ [0, 1] is defined as

qmin
x :=


x−b2
b1−b2

if b1 ≤ x < b2,

0 if b2 ≤ x ≤ a2,

x−a2
a1−a2

if a2 < x ≤ a1.

(4.38)

Similarly, by considering three possible situations of the relationship between
x and [b1, a1], we define qmax

x ∈ [0, 1] as

qmax
x :=


x−b2
b1−b2

if b2 ≤ x < b1,

1 if b1 ≤ x ≤ a1,

x−a2
a1−a2

if a1 < x ≤ a2.

(4.39)

Lemma 4.14. We have 0 ≤ qmin
x ≤ qmax

x ≤ 1. Moreover, the family Q̄x is
given by

Q̄x =
[
qmin
x , qmax

x

]
,

which means that Q̄x is a closed subinterval of [0, 1].

The proof of Lemma 4.14 above will be provided at the end of this section.
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Now, we define a subset of Q̄x as

Qx := Q̄x ∩ (0, 1) =
[
qmin
x , qmax

x

]
∩ (0, 1). (4.40)

which is the collection of λ1 ∈ (0, 1) that satisfies the constraints of (4.31).
Observe that Qx = Q̄x\{0, 1}, and hence Qx = Q̄x if and only if 0 /∈ Q̄x
and 1 /∈ Q̄x. It is possible that Qx = ∅. For example, in the case when
a2 < b1 ≤ x = a1, the definitions of qmin

x and qmax
x in (4.38)-(4.39) gives

qmin
x = qmax

x = 1 which implies Qx = ∅. The family Qx is a subinterval of
(0, 1) as long as Qx is not empty. For any γ ∈ (0, 1) and z ∈ R, we define

ψγ,x(z) := x− γz
1− γ , (4.41)

ψ−1
γ,x(z) := x− (1− γ)z

γ
, (4.42)

where z 7→ ψ−1
γ,x(z) is the inverse function of z 7→ ψγ,x(z). As long as Qx 6= ∅,

we can compute Zγ,x for any γ ∈ Qx by using the formula provided in the
following result.

Proposition 4.15. If γ ∈ Qx, then Zγ,x 6= ∅ and

Zγ,x = {z |z ∈ [b1, a1] , ψγ,x(z) ∈ [b2, a2]} =
[
b1 ∨ ψ−1

γ,x(a2), a1 ∧ ψ−1
γ,x(b2)

]
which is a closed subinterval of [b1, a1].

Proof. Suppose that γ ∈ Qx. Then γ ∈ Q̄x. It follows from the comments
following (4.36) that Zγ,x 6= ∅. Moreover, by (4.36), the family Zγ,x can be
written as

Zγ,x = {z |z ∈ [b1, a1] , x2 ∈ [b2, a2] , γz + (1− γ)x2 = x} .

Since γ ∈ Qx ⊆ (0, 1), it follows that

Zγ,x =
{
z
∣∣∣z ∈ [b1, a1] , x2 ∈ [b2, a2] , x2 = x−γz

1−γ = ψγ,x(z)
}

= {z |z ∈ [b1, a1] , ψγ,x(z) ∈ [b2, a2]} .

Observe that

ψγ,x(z) ∈ [b2, a2]⇐⇒ x−γz
1−γ ∈ [b2, a2]

⇐⇒ −γz ∈ [(1− γ)b2 − x, (1− γ)a2 − x]

⇐⇒ z ∈
[
x−(1−γ)a2

γ , x−(1−γ)b2
γ

]
=
[
ψ−1
γ,x(a2), ψ−1

γ,x(b2)
]
.
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Thus

Zγ,x = [b1, a1] ∩
[
ψ−1
γ,x(a2), ψ−1

γ,x(b2)
]

=
[
b1 ∨ ψ−1

γ,x(a2), a1 ∧ ψ−1
γ,x(b2)

]
,

which completes the proof.

We shall first reduce the dimensionality of the problem (4.31) and then
work on the simplified problem. In (4.37), we provided the feasible set of
(λ1, x1) in the problem (4.31). Taking into account the constraints of (4.31),
we are going to express the value

∑
i=1,2

(λifi(xi) + g1
i (λi))

in (4.31) in terms of (λ1, x1) by considering the following three different cases
for (λ1, x1):

1. If λ1 = 1 ∈ Q̄x and x1 = x, then λ2 = 0, and x ∈ [b1, a1] by (4.34). It
follows from g1

2(λ2) = g1
2(0) = 0 that

∑
i=1,2

(
λifi(xi) + g1

i (λi)
)

= f1(x) + g1
1(1).

The value f1(x) + g1
1(1) is finite because x ∈ [b1, a1] = dom f1.

2. If λ1 = 0 ∈ Q̄x and x1 ∈ [b1, a1], then λ2 = 1 and x2 = x, where
x ∈ [b2, a2] by (4.35). We have g1

1(λ1) = g1
1(0) = 0, and hence

∑
i=1,2

(
λifi(xi) + g1

i (λi)
)

= f2(x) + g1
2(1).

The value f2(x) + g1
2(1) is finite because x ∈ [b2, a2] = dom f2.

3. If λ1 ∈ Qx and x1 ∈ Zλ1,x, from the constraints, we can write λ2 and x2

in terms of λ1 and x1 respectively as

λ2 = 1− λ1,

x2 = x− λ1x1
1− λ1

= ψλ1,x(x1).

Then ∑
i=1,2

(
λifi(xi) + g1

i (λi)
)

= hλ1,x(x1)

where

hγ,x(z) := γf1(z) + g1
1(γ) + (1− γ)f2(ψγ,x(z)) + g1

2(1− γ) (4.43)
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for all γ ∈ (0, 1) and z ∈ R. Notice that the function (λ, z) 7→ hγ,x(z) on
(0, 1)× R is bounded from below.

Therefore, we can conclude that

f (x) = min
{
f1(x) + g1

1(1), f2(x) + g1
2(1), inf

γ∈Qx,z∈Zγ,x
hγ,x(z)

}
. (4.44)

In (4.44), the value f1(x) is finite if and only if 1 ∈ Q̄x by (4.34). Similarly,
by (4.35), the value f2(x) is finite if and only if 0 ∈ Q̄x. Moreover, the value

inf
γ∈Qx,z∈Zγ,x

hγ,x(z) (4.45)

is finite if and only if Qx 6= ∅. We will show that there exists a solution to the
minimisation problem in (4.45).

It is straightforward to compute f1(x) + g1
1(1) and f2(x) + g1

2(1) in (4.44).
Moreover, the problem (4.45) can be written as

inf
γ∈Qx

inf
z∈Zγ,x

hγ,x(z). (4.46)

Thus, our main minimisation problem (4.31) is reduced to the two-stage min-
imisation problem (4.46). Observe that in each of the single-stage minim-
isation problems, there is only one control variable. Moreover, if Qx = ∅,
then

inf
γ∈Qx

inf
z∈Zγ,x

hγ,x(z) = inf ∅ =∞.

For the remainder of this section, we will always assume that

Qx 6= ∅. (4.47)

Then Qx is a subinterval of (0, 1).
In the remainder of this section, we will focus on finding a solution to the

two-stage minimisation problem (4.46). Firstly, we will show that, for every
γ ∈ Qx, the function z 7→ hγ,x (z) is affine on the closed interval Zγ,x; see
(4.52) and Proposition 4.16 below. Then we will provide a technical result
in Lemma 4.17 for the convenience of later calculations. In order to find a
solution to (4.46) under the assumption (4.47), we will first consider the case
when α1 = α2. In this case, for every γ ∈ Qx, the values of z 7→ hγ,x (z)
will remain unchanged on Zγ,x; see Theorem 4.18.1 below. Thus, the control
variables in (4.46) are reduced from two to one. The method for calculating
the solutions to this problem is provided in Theorem 4.18.2. Secondly, we
will consider the case when α1 6= α2. In this case, it turns out that there
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exists a unique solution to (4.46). Moreover, although the problem becomes
more complicated compared to the case when α1 = α2, we can still explicitly
find the solution by considering all different cases of the given parameters.
The method for deriving the unique solution to the first stage minimisation
problem

inf
z∈Zγ,x

hγ,x (z)

for all γ ∈ Qx is presented in Theorem 4.19. Moreover, in Theorem 4.27,
we will provide a method to compute the unique solution to the second stage
minimisation problem.

For convenience, for every γ ∈ (0, 1) and z ∈ R, we define

f̆γ,x(z) := γf1(z) + (1− γ)f2(ψγ,x(z)), (4.48)

ğ(γ) := g1
1(γ) + g1

2(1− γ). (4.49)

From the definitions of g1
1 and g1

2 in (4.29), the derivatives ğ′ and ğ′′ on (0, 1)
are

ğ′(γ) = ln γ

1− γ − ln p1
p2
, (4.50)

ğ′′(γ) = 1
γ

+ 1
1− γ > 0. (4.51)

Thus ğ is continuous and convex on (0, 1). Notice that hγ,x(z) defined in (4.43)
can be written as

hγ,x(z) = f̆γ,x(z) + ğ(γ). (4.52)

For every γ ∈ Qx, the proposition below shows that z 7→ f̆γ,x (z) is affine on
Zγ,x. Moreover, from (4.52), the function z 7→ hγ,x (z) is also affine on Zγ,x.

Proposition 4.16. For all γ ∈ Qx and z ∈ Zγ,x, we have

f̆γ,x(z) = (α1 − α2)γz + α2x+ γβ1 + (1− γ)β2,

Proof. For all γ ∈ Qx and z ∈ Zγ,x, it follows from Proposition 4.15 that

z ∈ [b1, a1] = dom f1,

ψγ,x(z) ∈ [b2, a2] = dom f2.

This means

f1(z) = α1z + β1,

f2(ψγ,x(z)) = α2ψγ,x(z) + β2 = α2
x−γz
1−γ + β2.
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Then f̆γ,x(z) defined in (4.48) can be written as

f̆γ,x (z) = γ (α1z + β1) + (1− γ)
(
α2

x−γz
1−γ + β2

)
= γα1z + γβ1 + α2 (x− γz) + (1− γ)β2

= (α1 − α2)γz + α2x+ γβ1 + (1− γ)β2.

This completes the proof.

For the convenience of later calculations, we will provide a technical result
in Lemma 4.17 below. Firstly, let I ⊆ Q̄x be a closed interval such that

I ∩ (0, 1) 6= ∅. (4.53)

Observe from Q̄x ⊆ [0, 1] (see (4.33)) that I ⊆ [0, 1]. Then I = I ∩ (0, 1) if and
only if I does not contain 0 and 1. We must have min I < 1 and max I > 0,
otherwise I ∩ (0, 1) = ∅. For all γ ∈ (0, 1), we denote the point in I that is
closest to γ by

Γ(γ; I) :=


γ if γ ∈ I,

min I if γ < min I,

max I if γ > max I.

(4.54)

Observe from the possible values of Γ(γ; I) in (4.54) that Γ(γ; I) ∈ I ∩ (0, 1).

Lemma 4.17. Let I ⊆ Q̄x be a closed interval that satisfies (4.53), and let
F : (0, 1)→ R be a continuous and differentiable function. Suppose that there
exists γ0 ∈ (0, 1) such that

F ′(γ) < 0 for all γ ∈ (0, γ0), (4.55)

F ′(γ) > 0 for all γ ∈ (γ0, 1). (4.56)

Then Γ(γ0; I) is the unique value in I ∩ (0, 1) such that

F (Γ(γ0; I)) = inf
γ∈I∩(0,1)

F (γ). (4.57)

Proof. We are going to prove this result by considering the following three
cases based on the value of γ0.

Firstly, consider the case when γ0 ∈ I. From (4.55), the continuous func-
tion F is decreasing on (0, γ0] and hence decreasing on I ∩ (0, γ0], where
γ0 = max(I∩(0, γ0]). Similarly, by (4.56), the continuous function F is increas-
ing on [γ0, 1) and therefore increasing on I∩[γ0, 1), where γ0 = min(I∩[γ0, 1)).
Thus Γ(γ0; I) = γ0 is the unique value in I ∩ (0, 1) such that (4.57) holds true.

103



4.3. An example with an entropy function

Secondly, in the case when γ0 < min I, we have I ∩ (0, 1) ⊆ (γ0, 1). Since
F is increasing on (γ0, 1) (by (4.56)), it is also increasing on I ∩ (0, 1). Notice
that min (I ∩ (0, 1)) = min I because 0 < γ0 < min I. Thus Γ(γ0; I) = min I
is the unique value in I ∩ (0, 1) such that (4.57) holds true.

Thirdly, in the case when γ0 > max I, we have I ∩ (0, 1) ⊆ (0, γ0). From
(4.55), the function F is decreasing on (0, γ0) and therefore decreasing on
I ∩ (0, 1). Observe from max I < γ0 < 1 that max (I ∩ (0, 1)) = max I. Thus
Γ(γ0; I) = max I is the unique value in I ∩ (0, 1) such that (4.57) holds true.
This completes the proof.

Now, we are going find a method to solve the two-stage minimisation
problem (4.46). For convenience, we define κ : {b1, b2, a1, a2} → (0, 1) as

κ (y) = p1e
−β1−α1y

p1e−β1−α1y + p2e−β2−α2y
∈ (0, 1) , (4.58)

where αi and βi are the parameters of fi defined in (4.30) for each i = 1, 2.
Moreover, let

κ0 = p1e
−β1

p1e−β1 + p2e−β2
∈ (0, 1) . (4.59)

In the case when α1 = α2, the slopes of the functions f1 and f2 on their
effective domain have the same value. In such situation, we have

κ(y1) = κ(y2) = κ0 for all y1, y2 ∈ {b1, b2, a1, a2}.

In addition, the result below says that the values of z 7→ hγ,x (z) remain
unchanged on Zγ,x for any γ ∈ Qx, and it provides a method to calculate all
the solutions to the problem (4.46).

Theorem 4.18. If α1 = α2, then the following two claims hold true.

1. For every γ ∈ Qx, the values of z 7→ hγ,x (z) remain constant on Zγ,x.

2. All solutions (γ̂, ẑ) to the two-stage minimisation problem (4.46) are of
the form

γ̂ = Γ
(
κ0; Q̄x

)
, ẑ ∈ Zγ̂,x,

where γ̂ is unique but ẑ may not.

Proof. For the convenience of the proof, we define a continuous and differen-
tiable function F : (0, 1)→ R as

F (γ) := α2x+ γβ1 + (1− γ)β2 + ğ(γ).
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Combining (4.52) and Proposition 4.16 together with α1 = α2, we have

hγ,x (z) = F (γ) for all γ ∈ Qx and z ∈ Zγ,x. (4.60)

This means that, for every γ ∈ Qx, the values of z 7→ hγ,x(z) remain unchanged
on Zγ,x. This completes the proof of the first claim.

For all γ ∈ Qx, by letting zγ,x ∈ Zγ,x (e.g. zγ,x = minZγ,x), it follows that

hγ,x(zγ,x) = inf
z∈Zγ,x

hγ,x(z).

Then zγ,x is a solution to the first stage minimisation problem in (4.46). The
second stage minimisation problem in (4.46) can be solved as follows. For
every γ ∈ (0, 1), observe from (4.50)-(4.51) that

F ′(γ) = β1 − β2 + ğ′(γ) = β1 − β2 + ln γ

1− γ − ln p1
p2
,

F ′′(γ) = ğ′′(γ) = 1
γ

+ 1
1− γ > 0.

This means that F ′ is increasing on (0, 1). Moreover, the definition of κ0 in
(4.59) gives

ln κ0
1− κ0

= ln p1e
−β1

p2e−β2
= ln p1

p2
− β1 + β2,

and hence F ′(κ0) = 0. Thus

F ′(γ) < 0 for all γ ∈ (0, κ0),

F ′(γ) > 0 for all γ ∈ (κ0, 1),

By letting γ̂ := Γ(κ0; Q̄x), it follows from Lemma 4.17 that γ̂ is the unique
value in Q̄x ∩ (0, 1) = Qx such that

F (γ̂) = inf
γ∈Qx

F (γ). (4.61)

Then (4.60) implies

hγ̂,x(zγ̂,x) = inf
γ∈Qx

hγ,x(zγ,x) = inf
γ∈Qx

inf
z∈Zγ,x

hγ,x(z).

For any ẑ ∈ Zγ̂,x, it follows from hγ̂,x(ẑ) = hγ̂,x(zγ̂,x) that

hγ̂,x(ẑ) = inf
γ∈Qx

inf
z∈Zγ,x

hγ,x(z).

Thus (γ̂, ẑ) solves the two-stage minimisation problem (4.46). Suppose by
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contradiction that there exist γ̂′ ∈ Qx and ẑ′ ∈ Zγ̂′,x such that γ̂′ 6= γ̂ and

hγ̂′,x(ẑ′) = inf
γ∈Qx

inf
z∈Zγ,x

hγ,x(z).

It follows from F (γ̂′) = hγ̂′,x(ẑ′) that

F (γ̂′) = inf
γ∈Qx

inf
z∈Zγ,x

hγ,x(z) = inf
γ∈Qx

inf
z∈Zγ,x

F (γ) = inf
γ∈Qx

F (γ),

which contradicts the fact that γ̂ is the unique value in Qx such that (4.61)
holds true. This completes the proof of the second claim.

For the remainder of this section, we will assume that

α1 6= α2.

This means that the slope α1 of f1 on [b1, a1] and the slope α2 of f2 on [b2, a2]
are not the same. In this case, the minimisation problem (4.46) will be more
complicated, but we can still present its solution explicitly.

For any γ ∈ Qx, let

zγ,x :=

minZγ,x if α1 > α2,

maxZγ,x if α1 < α2.
(4.62)

Observe that zγ,x is the left (resp. right) endpoint of the closed interval Zγ,x
in the situation when α1 > α2 (resp. α1 < α2). The following result implies
that, for any γ ∈ Qx, the quantity zγ,x defined in (4.62) is the unique solution
to the first stage problem in (4.46).

Theorem 4.19. For any γ ∈ Qx, the quantity zγ,x defined in (4.62) is the
unique value in Zγ,x such that

hγ,x(zγ,x) = inf
z∈Zγ,x

hγ,x (z) . (4.63)

Proof. Fix any γ ∈ Qx. Combining (4.52) and Proposition 4.16, the function
z 7→ hγ,x (z) is affine on Zγ,x. Consider the following two cases of α1 and α2.

In the case when α1 > α2, the function z 7→ hγ,x (z) is increasing on Zγ,x.
Thus, the quantity zγ,x = minZγ,x is the unique value in Zγ,x such that (4.63)
holds true.

Similarly, in the case when α1 < α2, the function z 7→ hγ,x (z) is decreasing
on Zγ,x. Thus, the quantity zγ,x = maxZγ,x is the unique value in Zγ,x such
that (4.63) holds true. Therefore, the result follows.
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Our next objective is to find a solution to the second stage problem in
(4.46). For any γ ∈ Qx, let

h̃x(γ) := hγ,x(zγ,x). (4.64)

Observe from (4.52) that hγ,x(zγ,x) = f̆γ,x(zγ,x) + ğ(γ) which means

h̃x(γ) = f̆γ,x(zγ,x) + ğ(γ). (4.65)

It follows from Theorem 4.19 and (4.64) that

inf
γ∈Qx

inf
z∈Zγ,x

hγ,x (z) = inf
γ∈Qx

hγ,x(zγ,x) = inf
γ∈Qx

h̃x (γ) .

This means that the two-stage minimisation problem (4.46) is reduced to the
single-stage minimisation problem:

minimise h̃x (γ) over γ ∈ Qx. (4.66)

In Theorem 4.27, we will show that there exists a unique solution to the
problem (4.66), and we will provide a method to calculate this solution.

In order to concisely present the solution to (4.66) for all different cases,
we shall introduce a number of shorthand notations as follows.

Firstly, under the assumption that α1 6= α2, we have either α1 < α2 or
α1 > α2. There are also different possibilities for the values b1, a1, b2, and a2

used for defining the effective domains of f1 and f2; see (4.30). We name the
following six cases:

C1,1 : α1 < α2, a1 < b2; C2,1 : α1 > α2, b1 < a2;

C1,2 : α1 < α2, a1 > b2; C2,2 : α1 > α2, b1 > a2;

C1,3 : α1 < α2, a1 = b2; C2,3 : α1 > α2, b1 = a2.

Notice that, in the cases C1,1, C1,2 and C1,3, the slope of f1 on [b1, a1] and
the slope of f2 on [b2, a2] always satisfy α1 < α2. Moreover, these three cases
correspond respectively to the following three different situations of a1 and b2:
a1 < b2, a1 > b2, and a1 = b2. Similarly, in the cases C2,1, C2,2 and C2,3, we
always have α1 > α2. In addition, these three cases correspond respectively
to the following three different situations of b1 and a2: b1 < a2, b1 > a2, and
b1 = a2.

Secondly, in the cases C1,1, C1,2, C2,1 and C2,2, we shall define two subsets
of Qx, and these subsets will be helpful for presenting the solution to the first
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stage problem in (4.46). Moreover, we shall define two subsets of Q̄x, and
these subsets will be used in later calculations.

Consider the cases C1,1 and C1,2. We have a1 6= b2. Let

q1
x := x− b2

a1 − b2
. (4.67)

It is possible that q1
x /∈ Qx. However, if q1

x ∈ Qx then

ψ−1
q1
x,x

(b2) = x− (1− q1
x)b2

q1
x

= (a1 − b2)x− (a1 − b2)(1− q1
x)b2

(a1 − b2)q1
x

= (a1 − b2)x− (a1 − x)b2
x− b2

= a1x− a1b2
x− b2

= a1. (4.68)

By α1 < α2 and Proposition 4.15, the quantity zq1
x,x

defined in (4.62) can be
written as

zq1
x,x

= maxZq1
x,x

= ψ−1
q1
x,x

(b2) = a1.

The quantity q1
x is used to subdivide the intervals Qx and Q̄x as follows.

• In C1,1, let

Q1,1
1,x : =

(
−∞, q1

x

]
∩Qx, Q1,1

2,x :=
[
q1
x,∞

)
∩Qx,

Q̄1,1
1,x : =

(
−∞, q1

x

]
∩ Q̄x, Q̄1,1

2,x :=
[
q1
x,∞

)
∩ Q̄x.

• In C1,2, let

Q1,2
1,x : =

[
q1
x,∞

)
∩Qx, Q1,2

2,x :=
(
−∞, q1

x

]
∩Qx,

Q̄1,2
1,x : =

[
q1
x,∞

)
∩ Q̄x, Q̄1,2

2,x :=
(
−∞, q1

x

]
∩ Q̄x.

The following result gives a presentation of γ 7→ zγ,x on Qx.

Lemma 4.20. In the case C1,j where j = 1, 2, for any γ ∈ Qx, the value zγ,x
defined in (4.62) can be presented as

zγ,x = maxZγ,x =

ψ
−1
γ,x(b2) if γ ∈ Q1,j

1,x,

a1 if γ ∈ Q1,j
2,x.

In the situation when Q1,j
1,x 6= ∅ and Q

1,j
2,x 6= ∅, we have Q1,j

1,x ∩Q
1,j
2,x = {q1

x} and
moreover zγ,x = ψ−1

γ,x(b2) = a1 for γ = q1
x.

The proof of Lemma 4.20 above will be provided at the end of this section.
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Consider the cases C2,1 and C2,2. We have b1 6= a2. Let

q2
x := x− a2

b1 − a2
. (4.69)

It is possible that q2
x /∈ Qx. However, if q2

x ∈ Qx then

ψ−1
q2
x,x

(a2) = x− (1− q2
x)a2

q2
x

= (b1 − a2)x− (b1 − a2)(1− q2
x)a2

(b1 − a2)q2
x

= (b1 − a2)x− (b1 − x)a2
x− a2

= b1x− b1a2
x− a2

= b1. (4.70)

By α1 > α2 and Proposition 4.15, the quantity zq2
x,x

defined in (4.62) can be
written as

zq2
x,x

= minZq2
x,x

= ψ−1
q2
x,x

(a2) = b1.

The quantity q2
x is used to subdivide the intervals Qx and Q̄x as follows.

• In C2,1, let

Q2,1
1,x =

[
q2
x,∞

)
∩Qx, Q2,1

2,x =
(
−∞, q2

x

]
∩Qx,

Q̄2,1
1,x =

[
q2
x,∞

)
∩ Q̄x, Q̄2,1

2,x =
(
−∞, q2

x

]
∩ Q̄x.

• In C2,2, let

Q2,2
1,x =

(
−∞, q2

x

]
∩Qx, Q2,2

2,x =
[
q2
x,∞

)
∩Qx,

Q̄2,2
1,x =

(
−∞, q2

x

]
∩ Q̄x, Q̄2,2

2,x =
[
q2
x,∞

)
∩ Q̄x.

The lemma below gives a presentation of γ 7→ zγ,x on Qx.

Lemma 4.21. In the case C2,j where j = 1, 2, for any γ ∈ Qx, the value zγ,x
defined in (4.62) can be presented as

zγ,x = minZγ,x =

ψ
−1
γ,x(a2) if γ ∈ Q2,j

1,x,

b1 if γ ∈ Q2,j
2,x.

In the situation when Q2,j
1,x 6= ∅ and Q

2,j
2,x 6= ∅, we have Q2,j

1,x ∩Q
2,j
2,x = {q2

x} and
moreover zγ,x = ψ−1

γ,x(a2) = b1 for γ = q2
x.

The proof of Lemma 4.21 above will be provided at the end of this section.
Notice that, in the case Ci,j where i, j = 1, 2, the intervals Qx and Q̄x can be
written as

Qx = Qi,j1,x ∪Q
i,j
2,x,
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Q̄x = Q̄i,j1,x ∪ Q̄
i,j
2,x.

It follows from (4.47) that ∅ 6= Qx ⊆ Q̄x which implies that at least one of Qi,j1,x
and Qi,j2,x is not empty, and that at least one of Q̄i,j1,x and Q̄i,j2,x is not empty.
Moreover, we have

qix ∈ Qx ⇐⇒ Q
i,j
1,x ∩Q

i,j
2,x =

{
qix

}
,

qix ∈ Q̄x ⇐⇒ Q̄
i,j
1,x ∩ Q̄

i,j
2,x =

{
qix

}
.

In addition, for each k = 1, 2, the definitions of Qi,jk,x and Q̄i,jk,x together with
Qx = Q̄x ∩ (0, 1) (see (4.40)) imply

Qi,jk,x = Q̄i,jk,x ∩ (0, 1). (4.71)

Remark 4.22. If b1 = a1 > b2 = a2, then we must have b1 < x < b2 to
ensure Qx 6= ∅ and moreover q1

x = q2
x = qmin

x = qmax
x . In this special case,

we can view the probability (q1
x, 1 − q1

x) as the risk-neutral probability in a
one-step friction-free model when x is the current stock price and b1, b2 are
the discounted future stock prices.

We will provide a presentation of γ 7→ zγ,x on Qx for all cases in Proposi-
tion 4.23 below. For each i, j, k = 1, 2, let

ui,jk :=



b2 if (i, j, k) = (1, 1, 1), (1, 2, 1),

a1 if (i, j, k) = (1, 1, 2), (1, 2, 2),

a2 if (i, j, k) = (2, 1, 1), (2, 2, 1),

b1 if (i, j, k) = (2, 1, 2), (2, 2, 2).

(4.72)

Observe that, for any i, j = 1, 2, it follows from (4.68) and (4.70) that

qix ∈ Qx =⇒ ψ−1
qix,x

(ui,j1 ) = ui,j2 . (4.73)

Proposition 4.23. For any γ ∈ Qx, we can present the value zγ,x defined in
(4.62) as follows.

1. In the case Ci,j where i, j = 1, 2, the quantity zγ,x can be written as

zγ,x =

ψ
−1
γ,x

(
ui,j1

)
if γ ∈ Qi,j1,x,

ui,j2 if γ ∈ Qi,j2,x.

In the situation when Qi,j1,x 6= ∅ and Q
i,j
2,x 6= ∅, we have Q

i,j
1,x∩Q

i,j
2,x = {qix}

110



4.3. An example with an entropy function

and moreover zγ,x = ψ−1
γ,x(ui,j1 ) = ui,j2 for γ = qix.

2. In the case C1,3, we have

zγ,x =

ψ
−1
γ,x(a1) if x < a1,

a1 if x ≥ a1.

3. In the case C2,3, we have

zγ,x =

a2 if x ≤ a2,

ψ−1
γ,x(a2) if x > a2.

Clearly, the function γ 7→ zγ,x is continuous on Qx for all cases.

Proof. Claim 1 follows directly from Lemmas 4.20-4.21 and the definition of
(ui,jk )i,j,k=1,2 in (4.72). Fix any γ ∈ Qx. In the case C1,3, we have α1 < α2 and
a1 = b2. Then (4.62) and Proposition 4.15 imply

zγ,x = maxZγ,x = a1 ∧ ψ−1
γ,x(b2) = a1 ∧ ψ−1

γ,x(a1).

If x < a1, then γa1 + (1− γ)a1 = a1 > x, in other words,

a1 >
x− (1− γ)a1

γ
= ψ−1

γ,x(a1).

This means zγ,x = ψ−1
γ,x(a1). Similarly, if x ≥ a1 then a1 ≤ ψ−1

γ,x(a1) and
zγ,x = a1. Thus, Claim 2 holds true. In the case C2,3, we have α1 > α2 and
b1 = a2. It follows from (4.62) and Proposition 4.15 that

zγ,x = minZγ,x = b1 ∨ ψ−1
γ,x(a2) = a2 ∨ ψ−1

γ,x(a2).

If x ≤ a2, then γa2 + (1− γ)a2 = a2 ≥ x, in other words,

a2 ≥
x− (1− γ)a2

γ
= ψ−1

γ,x(a2).

This implies zγ,x = a2. Similarly, if x > a2 then a2 < ψ−1
γ,x(a2) which means

zγ,x = ψ−1
γ,x(a2). Thus, Claim 3 holds true. Notice from the presentation of

γ 7→ zγ,x in Claims 1-3 that γ 7→ zγ,x is continuous on Qx for all cases.

In Propositions 4.24 and 4.25 below, we will provide two auxiliary results
for finding the value that minimises h̃x(γ) over all γ ∈ Qx. First of all, let
c ∈ {b2, a2} and I ⊆ Q̄x be a closed interval such that I ∩ (0, 1) 6= ∅. Then
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we have I ∩ (0, 1) ⊆ Qx. Taking into account the presentation of γ 7→ zγ,x in
Proposition 4.23 and specifying c and I respectively, we have

zγ,x = ψ−1
γ,x(c) for all γ ∈ I ∩ (0, 1) (4.74)

in the following situations:

1. In the case Ci,j where i, j = 1, 2, if Qi,j1,x 6= ∅, by taking c = ui,j1 ∈ {b2, a2}
and I = Q̄i,j1,x, we have zγ,x = ψ−1

γ,x(ui,j1 ) = ψ−1
γ,x(c) for all γ ∈ Qi,j1,x, where

Qi,j1,x = Q̄i,j1,x ∩ (0, 1) = I ∩ (0, 1);

2. In the case C1,3 with x < a1, let c = b2 and I = Q̄x, where b2 = a1 in
C1,3. It follows that zγ,x = ψ−1

γ,x(a1) = ψ−1
γ,x(c) for all γ ∈ Qx = I ∩ (0, 1);

3. In the case C2,3 with x > a2, we take c = a2 and I = Q̄x, which gives
zγ,x = ψ−1

γ,x(a2) = ψ−1
γ,x(c) for all γ ∈ Qx = I ∩ (0, 1).

As long as (4.74) holds true, for any γ ∈ I ∩ (0, 1), the value γzγ,x is

γzγ,x = γψ−1
γ,x(c) = γ

x− (1− γ)c
γ

= x− (1− γ)c = γc+ x− c.

Then it follows from Proposition 4.16 that

f̆γ,x(zγ,x) = (α1 − α2)γzγ,x + α2x+ γβ1 + (1− γ)β2

= (α1 − α2)(γc+ x− c) + (β1 − β2)γ + α2x+ β2

= γ[(α1 − α2)c+ β1 − β2] + α1(x− c) + α2c+ β2; (4.75)

see (4.48) for the definition of z 7→ f̆γ,x(z). Combining this with (4.65), the
function h̃x on I ∩ (0, 1) can be written as

h̃x (γ) = γ[(α1 − α2)c+ β1 − β2] + α1 (x− c) + α2c+ β2 + ğ(γ).

Moreover, the following result shows that Γ(κ(c); I) is the unique quantity
that minimises h̃x(γ) over all γ ∈ I ∩ (0, 1); see (4.58) for the definition of κ(c)
and (4.54) for the definition of Γ(κ(c); I).

Proposition 4.24. Let c ∈ {b2, a2} and I ⊆ Q̄x be a closed interval such
that I ∩ (0, 1) 6= ∅. If (4.74) holds true, then Γ(κ(c); I) is the unique value in
I ∩ (0, 1) such that

h̃x (Γ(κ(c); I)) = inf
γ∈I∩(0,1)

h̃x (γ) . (4.76)
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Proof. For convenience, we define F : (0, 1)→ R as

F (γ) = γ[(α1 − α2)c+ β1 − β2] + α1 (x− c) + α2c+ β2 + ğ(γ).

Notice that F is continuous and differentiable on (0, 1). Moreover, we have
F = h̃x on I ∩ (0, 1). For every γ ∈ (0, 1), it follows from (4.50)-(4.51) that

F ′(γ) = (α1 − α2)c+ β1 − β2 + ğ′(γ)

= (α1 − α2)c+ β1 − β2 + ln γ

1− γ − ln p1
p2
, (4.77)

F ′′(γ) = ğ′′(γ) = 1
γ

+ 1
1− γ > 0.

The definition of κ(c) in (4.58) gives

ln κ (c)
1− κ (c) = ln p1e

−β1−α1c

p2e−β2−α2c
= ln p1

p2
− β1 + β2 − (α1 − α2)c.

Then (4.77) implies that F ′(κ(c)) = 0. Combining this with the fact that F ′

is increasing on (0, 1), it follows that

F ′(γ) < 0 for all γ ∈ (0, κ(c)),

F ′(γ) > 0 for all γ ∈ (κ(c), 1).

Then Lemma 4.17 implies that Γ(κ(c); I) is the unique value in I ∩ (0, 1) such
that

F (Γ(κ(c); I)) = inf
γ∈I∩(0,1)

F (γ) .

Since F = h̃x on I ∩ (0, 1), the quantity Γ(κ(c); I) is also the unique value in
I ∩ (0, 1) such that (4.76) holds true. This completes the proof.

Proposition 4.25 below is similar to Proposition 4.24 but with a different
assumption. These two propositions will be used to prove Theorem 4.27 which
will provide a method to compute the unique solution of the minimisation
problem (4.66). Let c ∈ {b1, a1} and I ⊆ Q̄x be a closed interval such that
I ∩ (0, 1) 6= ∅, where I ∩ (0, 1) ⊆ Qx. Taking into account the presentation of
γ 7→ zγ,x in Proposition 4.23 and specifying c and I respectively, we have

zγ,x = c for all γ ∈ I ∩ (0, 1). (4.78)

in the following situations:

1. In the case Ci,j where i, j = 1, 2, if Qi,j2,x 6= ∅, by taking c = ui,j2 ∈ {b1, a1}
and I = Q̄i,j2,x, it follows that zγ,x = ui,j2 = c for all γ ∈ Qi,j2,x, where
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Qi,j2,x = Q̄i,j2,x ∩ (0, 1) = I ∩ (0, 1);

2. In the case C1,3 with x ≥ a1, let c = a1 and I = Q̄x, which gives
zγ,x = a1 = c for all γ ∈ Qx = I ∩ (0, 1);

3. In the case C2,3 with x ≤ a2, we take c = b1 and I = Q̄x, where b1 = a2

in C2,3. It follows that zγ,x = a2 = c for all γ ∈ Qx = I ∩ (0, 1).

As long as (4.78) holds true, for any γ ∈ I ∩ (0, 1), it follows from Proposi-
tion 4.16 that

f̆γ,x(zγ,x) = (α1 − α2)γzγ,x + α2x+ γβ1 + (1− γ)β2

= (α1 − α2)γc+ α2x+ γβ1 + (1− γ)β2

= γ[(α1 − α2)c+ β1 − β2] + α2x+ β2. (4.79)

Combining this with (4.65), it follows that

h̃x(γ) = γ[(α1 − α2)c+ β1 − β2] + α2x+ β2 + ğ(γ).

Moreover, the following result shows that Γ(κ(c); I) is the unique quantity
that minimises h̃x(γ) over all γ ∈ I ∩ (0, 1).

Proposition 4.25. Let c ∈ {b1, a1} and I ⊆ Q̄x be a closed interval such
that I ∩ (0, 1) 6= ∅. If (4.78) holds true, then Γ(κ(c); I) is the unique value in
I ∩ (0, 1) such that

h̃x (Γ(κ(c); I)) = inf
γ∈I∩(0,1)

h̃x (γ) . (4.80)

Proof. For convenience, we define F : (0, 1)→ R as

F (γ) = γ[(α1 − α2)c+ β1 − β2] + α2x+ β2 + ğ(γ).

Clearly, the function F is continuous and differentiable on (0, 1), and moreover
F = h̃x on I ∩ (0, 1). For any γ ∈ (0, 1), it follows from ğ′(γ) and ğ′′(γ)
calculated in (4.50)-(4.51) that

F ′(γ) = (α1 − α2)c+ β1 − β2 + ğ′(γ)

= (α1 − α2)c+ β1 − β2 + ln γ

1− γ − ln p1
p2
, (4.81)

F ′′(γ) = ğ′′(γ) = 1
γ

+ 1
1− γ > 0.

This means that F ′ is increasing on I ∩ (0, 1). The definition of κ(c) in (4.58)
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gives

ln κ (c)
1− κ (c) = ln p1e

−β1−α1c

p2e−β2−α2c
= ln p1

p2
− β1 + β2 − (α1 − α2)c.

Then (4.81) implies that F ′(κ(c)) = 0. Combining this with the fact that F ′

is increasing on (0, 1), it follows that

F ′(γ) < 0 for all γ ∈ (0, κ(c)),

F ′(γ) > 0 for all γ ∈ (κ(c), 1).

Then Lemma 4.17 implies that Γ(κ(c); I) is the unique value in I ∩ (0, 1) such
that

F (Γ(κ(c); I)) = inf
γ∈I∩(0,1)

F (γ) .

Combining this with F = h̃x on I ∩ (0, 1), the quantity Γ(κ(c); I) is also the
unique value in I ∩ (0, 1) such that (4.80) holds true. This completes the
proof.

The proposition below gives the continuity and convexity of h̃x. This
result will be used in Theorem 4.27 to prove the uniqueness of solution to the
minimisation problem (4.66).

Proposition 4.26. The function h̃x is continuous and convex on Qx.

Proof. From (4.65) and the continuity and the convexity of ğ, the function h̃x
is continuous and convex on Qx as long as γ 7→ f̆γ,x(zγ,x) is continuous and
convex on Qx. From Proposition 4.16, the function γ 7→ f̆γ,x(zγ,x) on Qx can
be presented as

f̆γ,x(zγ,x) = (α1 − α2)γzγ,x + α2x+ γβ1 + (1− γ)β2.

By Proposition 4.23, the function γ 7→ zγ,x is continuous on Qx. Thus, the
function γ 7→ f̆γ,x(zγ,x) is continuous on Qx. We are going to show that
γ 7→ f̆γ,x(zγ,x) is always convex on Qx by considering the case Ci,j for each
i = 1, 2 and j = 1, 2, 3.

Firstly, we consider the case Ci,j where i, j = 1, 2. Notice that at least one
of Qi,j1,x and Qi,j2,x is not empty because Qi,j1,x ∪Q

i,j
2,x = Qx 6= ∅. In the situation

when Qi,j1,x 6= ∅, the condition (4.74) holds true for c = ui,j1 and I = Q̄i,j1,x; see
Item 1 in the list following (4.74). For any γ ∈ Qi,j1,x = I ∩ (0, 1), we have from
(4.75) that

f̆γ,x(zγ,x) = ρ1γ + α1(x− ui,j1 ) + α2u
i,j
1 + β2
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where
ρ1 := (α1 − α2)ui,j1 + β1 − β2.

This means that γ 7→ f̆γ,x(zγ,x) is affine on Qi,j1,x with slope ρ1. Similarly, in
the situation when Qi,j2,x 6= ∅, the condition (4.78) holds true for c = ui,j2 and
I = Q̄i,j2,x; see Item 1 in the list following (4.78). For any γ ∈ Qi,j2,x = I ∩ (0, 1),
it follows from (4.79) that

f̆γ,x(zγ,x) = ρ2γ + α2x+ β2

where
ρ2 := (α1 − α2)ui,j2 + β1 − β2.

This means that γ 7→ f̆γ,x(zγ,x) is affine on Qi,j2,x with slope ρ2. Notice that,
if either Qi,j1,x = ∅ or Qi,j2,x = ∅, then γ 7→ f̆γ,x(zγ,x) is affine and hence convex
on Qx. Suppose now that Qi,j1,x 6= ∅ and Qi,j2,x 6= ∅. Then γ 7→ f̆γ,x(zγ,x)
is continuous and piecewise linear on Qx with two segments. The difference
between ρ1 and ρ2 is

ρ1 − ρ2 = (α1 − α2)
(
ui,j1 − u

i,j
2

)
,

where the values of the given parameters α1, α2, u
i,j
1 , ui,j2 satisfy:

(i, j) = (1, 1) : α1 − α2 < 0, u1,1
1 − u

1,1
2 = b2 − a1 > 0;

(i, j) = (1, 2) : α1 − α2 < 0, u1,2
1 − u

1,2
2 = b2 − a1 < 0;

(i, j) = (2, 1) : α1 − α2 > 0, u2,1
1 − u

2,1
2 = a2 − b1 > 0;

(i, j) = (2, 2) : α1 − α2 > 0, u2,2
1 − u

2,2
2 = a2 − b1 < 0.

If (i, j) = (1, 1), (2, 2), then ρ1 − ρ2 < 0. Combining this with

Qi,j1,x =
(
−∞, qix

]
∩Qx, Qi,j2,x =

[
qix,∞

)
∩Qx,

the function γ 7→ f̆γ,x(zγ,x) convex on Qx. Similarly, if (i, j) = (1, 2), (2, 1),
then ρ1 − ρ2 > 0. It follows from

Qi,j1,x =
[
qix,∞

)
∩Qx, Qi,j2,x =

(
−∞, qix

]
∩Qx

that γ 7→ f̆γ,x(zγ,x) is convex on Qx.

Secondly, we consider the cases C1,3 and C2,3. In both cases, we are going
to show that γ 7→ f̆γ,x(zγ,x) is an affine function on Qx. Fix any γ ∈ Qx.
In the case C1,3 with x < a1, the condition (4.74) holds true for c = b2 and
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I = Q̄x; see Item 2 in the list following (4.74). Then γ ∈ Qx = I ∩ (0, 1), and
(4.75) implies that

f̆γ,x(zγ,x) = γ[(α1 − α2)b2 + β1 − β2] + α1(x− b2) + α2b2 + β2.

Similarly, when x ≥ a1, the condition (4.78) holds true for c = a1 and I = Q̄x;
see Item 2 in the list following (4.78). Then γ ∈ Qx = I ∩ (0, 1), and (4.79)
implies that

f̆γ,x(zγ,x) = γ[(α1 − α2)a1 + β1 − β2] + α2x+ β2.

In the case C2,3 with x ≤ a2, the condition (4.78) holds true for c = b1 and
I = Q̄x; see Item 3 in the list following (4.78). Then γ ∈ Qx = I ∩ (0, 1), and
(4.79) implies that

f̆γ,x(zγ,x) = γ[(α1 − α2)b1 + β1 − β2] + α2x+ β2.

Similarly, when x > a2, the condition (4.74) holds true for c = a2 and I = Q̄x;
see Item 3 in the list following (4.74). Then γ ∈ Qx = I ∩ (0, 1), and (4.75)
implies that

f̆γ,x(zγ,x) = γ[(α1 − α2)a2 + β1 − β2] + α1(x− a2) + α2a2 + β2.

Thus, the function γ 7→ f̆γ,x(zγ,x) is affine and hence convex on Qx for the
cases C1,3 and C2,3.

The conclusion is that γ 7→ f̆γ,x(zγ,x) is always continuous and convex on
Qx. This completes the proof.

The following theorem shows that there exists a unique solution to the
minimisation problem (4.66), and it provides a method to calculate this solu-
tion.

Theorem 4.27. There exists a unique value γ̂x ∈ Qx such that

h̃x(γ̂x) = inf
γ∈Qx

h̃x(γ), (4.82)

and γ̂x is given as follows.

1. In the case Ci,j where i, j = 1, 2, the value γ̂x can be presented as

γ̂x = arg min
{
h̃x (γ)

∣∣∣γ = Γ
(
κ
(
ui,jk

)
; Q̄i,jk,x

)
,Qi,jk,x 6= ∅, k = 1, 2

}
.

2. In the case Ci,3 where i = 1, 2, we have γ̂x = Γ
(
κ (ai) ; Q̄x

)
.

117



4.3. An example with an entropy function

Proof. In the case Ci,j where i, j = 1, 2, from Proposition 4.23.1 and (4.71),
for any γ ∈ Qx, the value zγ,x can be presented as

zγ,x =

ψ
−1
γ,x

(
ui,j1

)
if γ ∈ Qi,j1,x = Q̄i,j1,x ∩ (0, 1),

ui,j2 if γ ∈ Qi,j2,x = Q̄i,j2,x ∩ (0, 1).

If Q̄i,j1,x∩ (0, 1) 6= ∅, then (4.74) holds true for c = ui,j1 and I = Q̄i,j1,x; see Item 1
in the list following (4.74). Then Proposition 4.24 implies that Γ(κ(ui,j1 ); Q̄i,j1,x)
is the unique value in Qi,j1,x such that

h̃x
(
Γ
(
κ
(
ui,j1

)
; Q̄i,j1,x

))
= inf

{
h̃x(γ)

∣∣∣γ ∈ Qi,j1,x

}
.

Similarly, if Q̄i,j2,x ∩ (0, 1) 6= ∅, then (4.78) holds true for c = ui,j2 and I = Q̄i,j2,x;
see Item 1 in the list following (4.78). Then Proposition 4.25 implies that
Γ(κ(ui,j2 ); Q̄i,j2,x) is the unique value in Qi,j2,x such that

h̃x
(
Γ
(
κ
(
ui,j2

)
; Q̄i,j2,x

))
= inf

{
h̃x(γ)

∣∣∣γ ∈ Qi,j2,x

}
.

Since Qi,j1,x ∪Q
i,j
2,x = Qx, the quantity γ̂x presented in Theorem 4.27.1 satisfies

(4.82). We are going to prove the uniqueness of γ̂x. Suppose by contradiction
that γ̂x is not unique. Then Qi,j1,x 6= ∅ and Q

i,j
2,x 6= ∅, and moreover

Γ
(
κ
(
ui,j1

)
; Q̄i,j1,x

)
6= Γ

(
κ
(
ui,j2

)
; Q̄i,j2,x

)
and

h̃x
(
Γ
(
κ
(
ui,j1

)
; Q̄i,j1,x

))
= h̃x

(
Γ
(
κ
(
ui,j2

)
; Q̄i,j2,x

))
.

Combining this with the fact that Γ(κ(ui,jk ); Q̄i,jk,x), where k = 1, 2, is the unique
value in Qi,jk,x that minimises h̃x(γ) over all γ ∈ Qi,jk,x, there exists γ′ between
Γ(κ(ui,j1 ); Q̄i,j1,x) and Γ(κ(ui,j2 ); Q̄i,j2,x) such that

h̃x(γ′) > h̃x
(
Γ
(
κ
(
ui,j1

)
; Q̄i,j1,x

))
= h̃x

(
Γ
(
κ
(
ui,j2

)
; Q̄i,j2,x

))
.

However, this contradicts the convexity of h̃x (established in Proposition 4.26).
This completes the proof of the uniqueness of γ̂x.

Consider the case C1,3. If x < a1, then (4.74) holds true for c = b2 = a1

and I = Q̄x; see Item 2 in the list following (4.74). Then Proposition 4.24
implies that γ̂x = Γ(κ(a1); Q̄x) is the unique value in Qx such that (4.82) holds
true. If x ≥ a1, then (4.78) holds true for c = a1 and I = Q̄x; see Item 2 in the
list following (4.78). Then Proposition 4.25 implies that γ̂x = Γ(κ(a1); Q̄x) is
the unique value in Qx such that (4.82) holds true.
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Consider the case C2,3. If x > a2, then (4.74) holds true for c = a2 and
I = Q̄x; see Item 3 in the list following (4.74). Then Proposition 4.24 implies
that γ̂x = Γ(κ(a2); Q̄x) is the unique value in Qx such that (4.82) holds true.
If x ≤ a2, then (4.78) holds true for c = b1 = a2 and I = Q̄x; see Item 3 in the
list following (4.78). Then γ̂x = Γ(κ(a2); Q̄x) is the unique value in Qx such
that (4.82) holds true (Proposition 4.25). This completes the proof.

This section ends with the proofs of Lemmas 4.14, 4.20, and 4.21.

Proof of Lemma 4.14. From (4.33) and the comments following it, we have

Q̄x = {γ ∈ [0, 1] |∃x1 ∈ [b1, a1], x2 ∈ [b2, a2] : γx1 + (1− γ)x2 = x} (4.83)

6= ∅.

Observe from Lemma A.7 that Q̄x is convex. Thus Q̄x is a subinterval of [0, 1].
For the convenience of later calculations, we define

µx(x1, x2) := x− x2
x1 − x2

for all x1, x2 ∈ R such that x1 6= x2,

For any x2 ∈ R, the derivative ∂
∂x1

µx(x1, x2) is

∂

∂x1
µx(x1, x2) = x2 − x

(x1 − x2)2 for all x1 ∈ R\{x2}.

Similarly, for any x1 ∈ R, the derivative ∂
∂x2

µx(x1, x2) is

∂

∂x2
µx(x1, x2) = x− x1

(x1 − x2)2 for all x2 ∈ R\{x1}.

We are going to show that

min Q̄x = qmin
x ≤ qmax

x = max Q̄x (4.84)

always holds true by considering the following three cases of the relationship
between x and [b2, a2]: x < b2, a2 < x, and b2 ≤ x ≤ a2.

Firstly, we consider the case when x < b2. To ensure (4.32), we must have
b1 ≤ x, and hence b1 ≤ x < b2. Then, for any x1 > x, it follows that

γx1 + (1− γ)x2 > x for all γ ∈ [0, 1], x2 ∈ [b2, a2].

Combining this with (4.83), the family Q̄x can be written as

Q̄x = {γ ∈ [0, 1] |∃x1 ∈ [b1, a1 ∧ x], x2 ∈ [b2, a2] : γx1 + (1− γ)x2 = x}
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=
{
γ ∈ [0, 1]

∣∣∣∣∃x1 ∈ [b1, a1 ∧ x], x2 ∈ [b2, a2] : γ = x− x2
x1 − x2

}
,

where (a1∧x) < b2 which means that there is no overlap between the intervals
[b1, a1 ∧ x] and [b2, a2]. Observe that

µx(x1, x2) = x− x2
x1 − x2

∈ (0, 1] for all x1 ∈ [b1, a1 ∧ x], x2 ∈ [b2, a2].

Then Q̄x can be presented as

Q̄x = {µx(x1, x2) |x1 ∈ [b1, a1 ∧ x], x2 ∈ [b2, a2]} .

For any x2 ∈ [b2, a2], it follows from x2 − x > x2 − b2 ≥ 0 that

∂

∂x1
µx(x1, x2) = x2 − x

(x1 − x2)2 > 0 for all x1 ∈ [b1, a1 ∧ x].

This implies that the function x1 7→ µx(x1, x2) is increasing on [b1, a1∧x]. For
any x1 ∈ [b1, a1 ∧ x], we have from x− x1 ≥ x− (a1 ∧ x) ≥ 0 that

∂

∂x2
µx(x1, x2) = x− x1

(x1 − x2)2 ≥ 0 for all x2 ∈ [b2, a2].

This means that x2 7→ µx(x1, x2) is nondecreasing on [b2, a2]. The conclusion
is that

qmin
x = µx(b1, b2) = min

x1∈[b1,a1∧x],x2∈[b2,a2]
µx(x1, x2) = min Q̄x,

qmax
x = µx(a1 ∧ x, a2) = max

x1∈[b1,a1∧x],x2∈[b2,a2]
µx(x1, x2) = max Q̄x.

Clearly, we have qmin
x ≤ qmax

x . Therefore (4.84) holds true.

Secondly, we consider the case when a2 < x. To ensure (4.32), we must
have x ≤ a1, which means a2 < x ≤ a1. Then we have for any x1 < x that

γx1 + (1− γ)x2 < x for all γ ∈ [0, 1], x2 ∈ [b2, a2].

Combining this with the formulation of Q̄x in (4.83), it follows that

Q̄x = {γ ∈ [0, 1] |∃x1 ∈ [b1 ∨ x, a1], x2 ∈ [b2, a2] : γx1 + (1− γ)x2 = x}

=
{
γ ∈ [0, 1]

∣∣∣∣∃x1 ∈ [b1 ∨ x, a1], x2 ∈ [b2, a2] : γ = x− x2
x1 − x2

}
,

where a2 < (b1∨x) which means that there is no overlap between the intervals
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[b1 ∨ x, a1] and [b2, a2]. Notice that

µx(x1, x2) = x− x2
x1 − x2

∈ (0, 1] for all x1 ∈ [b1 ∨ x, a1], x2 ∈ [b2, a2]

Then Q̄x can be written as

Q̄x = {µx(x1, x2) |x1 ∈ [b1 ∨ x, a1], x2 ∈ [b2, a2]} .

For any x2 ∈ [b2, a2], we have from x2 − x < x2 − a2 ≤ 0 that

∂

∂x1
µx(x1, x2) = x2 − x

(x1 − x2)2 < 0 for all x1 ∈ [b1 ∨ x, a1].

This implies that x1 7→ µx(x1, x2) is decreasing on [b1 ∨ x, a1]. Similarly, for
any x1 ∈ [b1 ∨ x, a1], it follows from x− x1 ≤ x− (b1 ∨ x) ≤ 0 that

∂

∂x2
µx(x1, x2) = x− x1

(x1 − x2)2 ≤ 0 for all x2 ∈ [b2, a2].

Thus x2 7→ µx(x1, x2) is nonincreasing on [b2, a2]. We can conclude that

qmin
x = µx(a1, a2) = min

x1∈[b1∨x,a1],x2∈[b2,a2]
µx(x1, x2) = min Q̄x,

qmax
x = µx(b1 ∨ x, b2) = max

x1∈[b1∨x,a1],x2∈[b2,a2]
µx(x1, x2) = max Q̄x.

Observe that qmin
x ≤ qmax

x . Thus (4.84) holds true.
Thirdly, we consider the case when b2 ≤ x ≤ a2. From (4.35), we have

0 ∈ Q̄x and hence
qmin
x = 0 = min Q̄x.

Then qmin
x ≤ qmax

x because qmin
x = 0 and qmax

x ∈ [0, 1]. We will show that

qmax
x = max Q̄x

by considering the following three situations of the relationship between x and
[b1, a1].

1. If b1 ≤ x ≤ a1, then (4.34) gives 1 ∈ Q̄x. This means

qmax
x = 1 = max Q̄x.

2. If x < b1, then for any x2 > x, we have

γx1 + (1− γ)x2 > x for all γ ∈ [0, 1], x1 ∈ [b1, a1].
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Combining this with the formulation of Q̄x in (4.83), it follows that

Q̄x = {γ ∈ [0, 1] |∃x1 ∈ [b1, a1], x2 ∈ [b2, a2 ∧ x] : γx1 + (1− γ)x2 = x}

=
{
γ ∈ [0, 1]

∣∣∣∣∃x1 ∈ [b1, a1], x2 ∈ [b2, a2 ∧ x] : γ = x− x2
x1 − x2

}
,

where (a2 ∧ x) < b1 which means that there is no overlap between the
intervals [b1, a1] and [b2, a2 ∧ x]. Then it follows from

µx(x1, x2) = x− x2
x1 − x2

∈ [0, 1) for all x1 ∈ [b1, a1], x2 ∈ [b2, a2 ∧ x]

that
Q̄x = {µx(x1, x2) |x1 ∈ [b1, a1], x2 ∈ [b2, a2 ∧ x]} .

For any x2 ∈ [b2, a2 ∧ x], we have from x2 − x ≤ x2 − (a2 ∧ x) ≤ 0 that

∂

∂x1
µx(x1, x2) = x2 − x

(x1 − x2)2 ≤ 0 for all x1 ∈ [b1, a1].

This implies that x1 7→ µx(x1, x2) is nonincreasing on [b1, a1]. Similarly,
for any x1 ∈ [b1, a1], it follows from x− x1 < b1 − x1 ≤ 0 that

∂

∂x2
µx(x1, x2) = x− x1

(x1 − x2)2 < 0 for all x2 ∈ [b2, a2 ∧ x].

Thus x2 7→ µx(x1, x2) is decreasing on [b2, a2 ∧ x]. Therefore, we can
conclude that

qmax
x = µx(b1, b2) = max

x1∈[b1,a1],x2∈[b2,a2∧x]
µx(x1, x2) = max Q̄x.

3. If x > a1, then for any x2 < x, we have

γx1 + (1− γ)x2 < x for all γ ∈ [0, 1], x1 ∈ [b1, a1].

Combining this with the formulation of Q̄x in (4.83), it follows that

Q̄x = {γ ∈ [0, 1] |∃x1 ∈ [b1, a1], x2 ∈ [b2 ∨ x, a2] : γx1 + (1− γ)x2 = x}

=
{
γ ∈ [0, 1]

∣∣∣∣∃x1 ∈ [b1, a1], x2 ∈ [b2 ∨ x, a2] : γ = x− x2
x1 − x2

}
,

where a1 < (b2 ∨ x) which means that there is no overlap between the
intervals [b1, a1] and [b2 ∨ x, a2]. Then it follows from

µx(x1, x2) = x− x2
x1 − x2

∈ [0, 1) for all x1 ∈ [b1, a1], x2 ∈ [b2 ∨ x, a2]
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that
Q̄x = {µx(x1, x2) |x1 ∈ [b1, a1], x2 ∈ [b2 ∨ x, a2]} .

For any x2 ∈ [b2 ∨ x, a2], we have from x2 − x ≥ x2 − (b2 ∨ x) ≥ 0 that

∂

∂x1
µx(x1, x2) = x2 − x

(x1 − x2)2 ≥ 0 for all x1 ∈ [b1, a1].

This implies that x1 7→ µx(x1, x2) is nondecreasing on [b1, a1]. Similarly,
for any x1 ∈ [b1, a1], it follows from x− x1 > a1 − x1 ≥ 0 that

∂

∂x2
µx(x1, x2) = x− x1

(x1 − x2)2 > 0 for all x2 ∈ [b2 ∨ x, a2].

Thus x2 7→ µx(x1, x2) is increasing on [b2∨x, a2]. Then we can conclude
that

qmax
x = µx(a1, a2) = max

x1∈[b1,a1],x2∈[b2∨x,a2]
µx(x1, x2) = max Q̄x.

Therefore (4.84) holds true. Combining (4.84) and qmin
x , qmax

x ∈ [0, 1], we have
0 ≤ qmin

x ≤ qmax
x ≤ 1 and Q̄x =

[
qmin
x , qmax

x

]
, which completes the proof.

Proof of Lemma 4.20. Consider the cases C1,1 and C1,2. Fix any γ ∈ Qx. By
α1 < α2 and Proposition 4.15, the value zγ,x defined in (4.62) can be written
as

zγ,x = maxZγ,x = a1 ∧ ψ−1
γ,x(b2).

In the case C1,1, it follows from a1 < b2 that

γ ≤ x− b2
a1 − b2

⇐⇒ γ(a1 − b2) ≥ x− b2

⇐⇒ a1 ≥
x− b2
γ

+ b2 = x− (1− γ)b2
γ

= ψ−1
γ,x(b2)

Observe from (4.67) that x−b2
a1−b2

= q1
x, and hence

γ ≤ q1
x ⇐⇒ a1 ≥ ψ−1

γ,x(b2). (4.85)

Similarly, by straightforward calculation, we also have

γ ≥ q1
x ⇐⇒ a1 ≤ ψ−1

γ,x(b2). (4.86)

Consider the following two cases. If γ ∈ Q1,1
1,x, then γ ≤ q1

x which is equivalent
to a1 ≥ ψ−1

γ,x(b2) by (4.85), and hence zγ,x = ψ−1
γ,x(b2). If γ ∈ Q1,1

2,x, then γ ≥ q1
x

which is equivalent to a1 ≤ ψ−1
γ,x(b2) by (4.86), which means zγ,x = a1. The
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conclusion is that

zγ,x = maxZγ,x =

ψ
−1
γ,x(b2) if γ ∈ Q1,1

1,x,

a1 if γ ∈ Q1,1
2,x.

In the case C1,2, we have a1 > b2 instead of a1 < b2 in the case C1,1. In such
situation, it follows from straightforward calculation that

γ ≤ q1
x ⇐⇒ a1 ≤ ψ−1

γ,x(b2) (4.87)

γ ≥ q1
x ⇐⇒ a1 ≥ ψ−1

γ,x(b2) (4.88)

(cf. (4.85)-(4.86)). Consider the following two cases. If γ ∈ Q1,2
1,x, then γ ≥ q1

x

which is equivalent to a1 ≥ ψ−1
γ,x(b2) by (4.88), and hence zγ,x = ψ−1

γ,x(b2). If
γ ∈ Q1,2

2,x, then γ ≤ q1
x which is equivalent to a1 ≤ ψ−1

γ,x(b2) by (4.87), which
means zγ,x = a1. The conclusion is that

zγ,x = maxZγ,x =

ψ
−1
γ,x(b2) if γ ∈ Q1,2

1,x,

a1 if γ ∈ Q1,2
2,x.

For each j = 1, 2, in the situation when Q1,j
1,x 6= ∅ and Q1,j

2,x 6= ∅, we have
Q1,j

1,x ∩Q
1,j
2,x = {q1

x} and moreover

zγ,x = ψ−1
γ,x(b2) = a1 for γ = q1

x

(see (4.68)). This completes the proof.

Proof of Lemma 4.21. Consider the cases C2,1 and C2,2. Fix any γ ∈ Qx. By
α1 > α2 and Proposition 4.15, the value zγ,x defined in (4.62) can be written
as

zγ,x = minZγ,x = b1 ∨ ψ−1
γ,x(a2).

In the case C2,1, it follows from b1 < a2 that

γ ≥ x− a2
b1 − a2

⇐⇒ γ(b1 − a2) ≤ x− a2

⇐⇒ b1 ≤
x− a2
γ

+ a2 = x− (1− γ)a2
γ

= ψ−1
γ,x(a2)

Observe from (4.69) that
x− a2
b1 − a2

= q2
x,

and hence
γ ≥ q2

x ⇐⇒ b1 ≤ ψ−1
γ,x(a2). (4.89)
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Similarly, by straightforward calculation, we also have

γ ≤ q2
x ⇐⇒ b1 ≥ ψ−1

γ,x(a2). (4.90)

Consider the following two cases. If γ ∈ Q2,1
1,x, then γ ≥ q2

x which is equivalent
to b1 ≤ ψ−1

γ,x(a2) by (4.89), and hence zγ,x = ψ−1
γ,x(a2). If γ ∈ Q2,1

2,x, then γ ≤ q2
x

which is equivalent to b1 ≥ ψ−1
γ,x(a2) by (4.90), which means zγ,x = b1. The

conclusion is that

zγ,x = minZγ,x =

ψ
−1
γ,x(a2) if γ ∈ Q2,1

1,x,

b1 if γ ∈ Q2,1
2,x.

In the case C2,2, we have b1 > a2 instead of b1 < a2 in the case C2,1. In such
situation, it follows from straightforward calculation that

γ ≥ q2
x ⇐⇒ b1 ≥ ψ−1

γ,x(a2) (4.91)

γ ≤ q2
x ⇐⇒ b1 ≤ ψ−1

γ,x(a2) (4.92)

(cf. (4.89)-(4.90)). Consider the following two cases. If γ ∈ Q2,2
1,x, then γ ≤ q2

x

which is equivalent to b1 ≤ ψ−1
γ,x(a2) by (4.92), and hence zγ,x = ψ−1

γ,x(a2). If
γ ∈ Q2,2

2,x, then γ ≥ q2
x which is equivalent to b1 ≥ ψ−1

γ,x(a2) by (4.91), which
means zγ,x = b1. The conclusion is that

zγ,x = minZγ,x =

ψ
−1
γ,x(a2) if γ ∈ Q2,2

1,x,

b1 if γ ∈ Q2,2
2,x.

For each j = 1, 2, in the situation when Q2,j
1,x 6= ∅ and Q2,j

2,x 6= ∅, we have
Q2,j

1,x ∩Q
2,j
2,x = {q2

x} and moreover

zγ,x = ψ−1
γ,x(a2) = b1 for γ = q2

x.

(see (4.70)). This completes the proof.

4.3.2 Piecewise linear case

Section 4.3.1 above provides a method to construct a solution to the prob-
lem (4.31) with x ∈ dom f , where f1 and f2 in (4.31) are affine on their
effective domains. In this section, we still focus on the problem (4.31), but f1

and f2 are allowed to be piecewise linear on their effective domains.
For each i = 1, 2, let fi : R → R ∪ {∞} be a convex function that is

continuous and piecewise linear on dom fi, where dom fi is assumed to be a
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closed interval. Moreover, the function fi is affine on each of the following
ni ≥ 1 closed intervals

D1
i =

[
y1
i , y

2
i

]
, D2

i =
[
y2
i , y

3
i

]
, . . . , Dni

i =
[
ynii , y

ni+1
i

]
⊆ dom fi,

where
min(dom fi) = y1

i ≤ y2
i ≤ · · · ≤ y

ni+1
i = max(dom fi).

Notice that
ni⋃
k=1

Dk
i = dom fi.

For all x ∈ R, let

f(x) = inf

 ∑
i=1,2

(
λifi(xi) + g1

i (λi)
)∣∣∣∣∣∣

λi ∈ [0, 1], xi ∈ dom fi ∀i = 1, 2,
∑
i=1,2

λi = 1,
∑
i=1,2

λixi = x

 . (4.93)

It follows from Theorem 4.3 that f is an R ∪ {∞}-valued convex function on
R, and moreover

dom f = co (dom f1 ∪ dom f2).

This implies that f(x) =∞ for all x /∈ co (dom f1∪dom f2). For the remainder
of this section, let

x∗ ∈ co (dom f1 ∪ dom f2);

the quantity x∗ is fixed throughout this section. Then f(x∗) ∈ R. From The-
orem 4.13, there exists a solution to the minimisation problem in (4.93) with
x = x∗, in other words, there exists (λ1, x1, λ2, x2) such that the constraints
in (4.93) are satisfied for x = x∗ and

∑
i=1,2

(
λifi(xi) + g1

i (λi)
)

= f(x∗).

In this remainder of section, we will provide a method to find a solution to
the problem in (4.93) with x = x∗.

For all k1 = 1, . . . , n1 and k2 = 1, . . . , n2, we define fk1
1 , fk2

2 : R→ R∪{∞}
as

fk1
1 =

f1 on Dk1
1 ,

∞ on R\Dk1
1 ,

fk2
2 =

f2 on Dk2
2 ,

∞ on R\Dk2
2 .

Observe that fk1
1 = f1 is an affine function on dom fk1

1 = Dk1
1 , and fk2

2 = f2

126



4.3. An example with an entropy function

is an affine function on dom fk2
2 = Dk2

2 . Moreover, we define

fk1,k2(x∗) := inf

 ∑
i=1,2

(
λif

ki
i (xi) + g1

i (λi)
)∣∣∣∣∣∣

λi ∈ [0, 1], xi ∈ Dki
i ∀i = 1, 2,

∑
i=1,2

λi = 1,
∑
i=1,2

λixi = x∗

 ; (4.94)

cf. (4.93). Clearly, we have fk1,k2(x∗) ∈ R∪{∞}, and moreover fk1,k2(x∗) ∈ R
if and only if x∗ ∈ co

(
Dk1

1 ∪ D
k2
2
)
. In the situation when fk1,k2(x∗) ∈ R,

we can use the method in Section 4.3.1 to find (λ1, x1, λ2, x2) such that the
constraints in (4.94) are satisfied and

∑
i=1,2

(
λif

ki
i (xi) + g1

i (λi)
)

= fk1,k2(x∗);

see (4.44) and Theorems 4.18, 4.19, and 4.27 for the main results in Sec-
tion 4.3.1. We call such (λ1, x1, λ2, x2) a solution to the problem in (4.94).

In the remainder of this section, let k′1 = {1, . . . , n1} and k′2 ∈ {1, . . . , n2}
be the integers such that

fk
′
1,k
′
2(x∗) = min

{
fk1,k2(x∗)

∣∣∣ k1 = 1, . . . , n1, k2 = 1, . . . , n2
}

;

the integers k′1 and k′2 may depend on the choice of x∗. Such k′1 and k′2 always
exist (but may not be unique) because n1 and n2 are finite. The following
result shows that the values of f(x∗) and fk′1,k′2(x∗) are the same.

Theorem 4.28. We have

f(x∗) = fk
′
1,k
′
2(x∗).

Proof. Fix any k1 = 1, . . . , n1 and k2 = 1, . . . , n2. For any (λ1, x1, λ2, x2) such
that the constraints in (4.94) are satisfied, it follows from xi ∈ Dki

i ⊆ dom fi

for each i = 1, 2 that the constraints in (4.93) with x = x∗ are also satisfied.
Then the definition of f(x∗) implies

f(x∗) ≤
∑
i=1,2

(
λifi(xi) + g1

i (λi)
)
.

Combining this with fi(xi) = fk1
i (xi) for each i = 1, 2, it follows that

f(x∗) ≤
∑
i=1,2

(
λif

ki
i (xi) + g1

i (λi)
)
.
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Taking infimum on both sides over all (λ1, x1, λ2, x2) that satisfies the con-
straints in (4.94), it follows that f(x∗) ≤ fk1,k2(x). In particular, by letting
k1 = k′1 and k2 = k′2, we have

f(x∗) ≤ fk′1,k′2(x∗).

We are going to show that the opposite inequality also holds true. By The-
orem 4.13, there exists a solution (λ1, x1, λ2, x2) to the problem (4.93) with
x = x∗, which means

f(x∗) =
∑
i=1,2

(
λifi(xi) + g1

i (λi)
)
.

Notice that

x1 ∈ dom f1 =
n1⋃
k=1

Dk
1 , x2 ∈ dom f2 =

n2⋃
k=1

Dk
2 .

Then x1 ∈ Dk1
1 and x2 ∈ Dk2

2 for some k1 = 1, . . . , n1 and k2 = 1, . . . , n2, and
hence

f1(x1) = fk1
1 (x1), f2(x2) = fk2

2 (x2).

Therefore

f(x∗) =
∑
i=1,2

(
λif

ki
i (xi) + g1

i (λi)
)
≥ fk1,k2(x∗) ≥ fk′1,k′2(x∗),

where the first inequality follows from the definition of fk1,k2(x∗) in (4.94) and
the fact that (λ1, x1, λ2, x2) satisfies the constraints in (4.94). Therefore, the
result follows.

By Theorem 4.28 and f(x∗) ∈ R, we must have fk′1,k′2(x∗) ∈ R. This means
that there exists a solution to the problem in (4.94) with (k1, k2) = (k′1, k′2);
see the comments following (4.94). The following result shows the problem
in (4.93) with x = x∗ can be solved by solving the problem in (4.94) with
(k1, k2) = (k′1, k′2).

Theorem 4.29. A solution to the problem in (4.94) with (k1, k2) = (k′1, k′2)
is also a solution to the problem in (4.93) with x = x∗.

Proof. Firstly, let (λ1, x1, λ2, x2) be a solution to the problem in (4.94) with
(k1, k2) = (k′1, k′2). Then (λ1, x1, λ2, x2) satisfies the constraints in (4.94) with
(k1, k2) = (k′1, k′2). Combining this with the fact that xi ∈ D

k′i
i ⊆ dom fi for

each i = 1, 2, it follows that (λ1, x1, λ2, x2) also satisfies the constraints in
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(4.93) with x = x∗. Since fi(xi) = f
k′i
i (xi) for each i = 1, 2, we have

∑
i=1,2

(
λifi(xi) + g1

i (λi)
)

=
∑
i=1,2

(
λif

k′i
i (xi) + g1

i (λi)
)

= fk
′
1,k
′
2(x∗) = f(x∗)

(Theorem 4.28). Therefore (λ1, x1, λ2, x2) is a solution to the problem in (4.93)
with x = x∗.
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Chapter 5

Optimisation with
exponential regret

In Example 3.26, we specified a sequence of regret functions to measure the in-
vestor’s regret upon cash injection. Moreover, we provide an explicit formula
for the objective function of the dual optimisation problem (3.35). In this
chapter, based on the market model introduced in Chapter 2 with the robust
no-arbitrage condition being assumed, we will study the problem (3.35) in de-
tail with the regret functions used in Example 3.26. This chapter is organised
as follows.

Section 5.1 will first briefly review the dual optimisation problem (3.35).
Then the problem will be written as two nested optimisation problems. The
first one, which is problem (5.7), will be studied in Section 5.2 in detail, and
the other one can be solved explicitly; see Proposition 5.4. Then Theorem 5.5
provides a formula to compute the minimal regret of the investor with any
given liabilities. In addition, Theorem 5.6 provides a method to construct
an optimal injection strategy for the problem (3.19) via a solution to the
problem (3.35). After that, we will provide a formula in Theorem 5.7 to
compute the regret indifference prices introduced in (3.51) and (3.52). In
Example 5.10, we will consider a one-step toy model, and we will solve the
problem (5.7) explicitly. Moreover, the formulae from Theorem 5.7 will be
applied to compute the indifference prices of a European call option.

In Section 5.2, we will first make an assumption that the bid-ask stock
prices satisfy (5.26). Then Section 5.2.1 introduces the notion of transition
probabilities and provides a number of technical results that will be used in
later sections. In Section 5.2.2, we will provide Algorithm 5.17 to construct
a sequence of random functions (Jt)Tt=0. Based on (Jt)Tt=0, a pair (Q̂, Ŝ) can
be constructed from Algorithm 5.19. Theorem 5.20 will show that (Q̂, Ŝ) ∈ P
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and it is a solution to the problem (5.7).
Since (Jt)Tt=0 constructed in Algorithm 5.17 is difficult to calculate, Sec-

tion 5.3 will introduce a piecewise linear approximation (J̃t)Tt=0 to approximate
(Jt)Tt=0. For each t = 0, . . . , T , we always have Jt ≤ J̃t, and hence J̃t is an
upper bound of Jt. At the end of this section, Theorem 5.25 will provide the
relevant convergent result.

In Section 5.4, we will provide a method to compute the approximation
error of approximating (Jt)Tt=0 by using (J̃t)Tt=0. To achieve this, we will
construct a sequence of random functions (J̌t)Tt=0 such that J̌t ≤ Jt for all
t = 0, . . . , T . Then J̃t − J̌t is an upper bound of the approximation error
J̃t− Jt. We can calculate this upper bound by using the results established in
Section 4.3.

Finally, we will introduce a binary market model in Section 5.5. In this
model, Section 5.5.1 will provide numerical examples to compute the error of
approximating (Jt)Tt=0 by (J̃t)Tt=0. Then Section 5.5.2 will numerically compute
the solution to the problem (3.19). Moreover, in Section 5.5.3, we will provide
numerical examples to compute the indifference prices.

5.1 Minimal regret, hedging and pricing

In this section, we will consider the dual problem (3.35) under the exponential
regret functions introduced in Example 3.26. Firstly, we will write (3.35)
as two nested optimisation problems. The first problem appears in (5.7),
and we will discuss how to solve this problem in Section 5.2. The second
problem appears in (5.10), and it can be solved explicitly with the optimal
value of the first problem; see Proposition 5.4. After the study of (3.35),
by applying the strong duality established in Theorem 3.31, we will derive a
formula for computing the minimal regret defined in (3.9); see Theorem 5.5.
Then Theorem 5.6 shows that an optimal injection to the problem (3.19) can
be constructed via a solution to (3.35). At the end of this section, we will
provide formulae in Theorem 5.7 to calculate the indifference prices defined in
(3.51)-(3.52). By applying these formulae in Example 5.10, we will compute
the indifference prices of a European call option in a one-step toy model.

We shall specify the regret functions (vt)Tt=0 used in optimisation prob-
lem (3.8) as follows; the construction of (vt)Tt=0 follows from Example 3.26.
First of all, let

I := {t1, . . . , tn, T} ⊆ {0, . . . , T}

be a collection of time steps. Moreover, let (αt)t∈I be a sequence of positive
numbers (i.e. αt ∈ (0,∞) for all t ∈ I). Notice that t 7→ αt is deterministic.
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Then, for all t ∈ {0, . . . , T} and ω ∈ Ω, we define

vωt (x) :=

e
αtx − 1 if t ∈ I,

δ(−∞,0] (x) if t /∈ I.
(5.1)

At every time step t ∈ I, the investor’s regret upon injecting x units of
cash is always measured by the real number eαtx − 1. At each time step
t ∈ {0, . . . , T}\I, the investor’s regret upon any positive injection is infinity,
but his regret is zero with any withdrawals (i.e. negative injections). This com-
pletes the construction of (vt)Tt=0. Consider the following two special examples
of I:

IR := {0, . . . , T}, (5.2)

IU := {T}. (5.3)

Observe that when I = IR the investor is allowed to inject arbitrary amount
of cash at every time step t = 0, . . . , T . However, when I = IU , the investor
is only allowed to have positive injections at time T . Combining this with
Example 3.13, under (vt)Tt=0 specified in (5.1), the optimisation problem (3.8)
is closely connected to utility maximisation problems. Both IR and IU will
be used frequently in Section 5.5.

Remark 5.1. The construction of (αt)t∈I depends on one’s modelling purpose.
At time t ∈ I, the value αt is used to model the investor’s risk aversion on
cash injection. For example, one can take t 7→ αt to be constant in order
to model constant risk aversion over time. Similarly, one can also model
increasing (resp. decreasing) risk aversion over time by setting t 7→ αt to be
increasing (resp. decreasing). In Examples 5.44 and 5.47, we will provide
numerical examples of optimal injections to the problem (3.19) for various
different (αt)t∈I .

Fix any u = (ut)Tt=0 ∈ N 2. The function

(λ, (Q, S)) 7→ inf
x∈N

Lu(x, λ, (Q, S)) on [0,∞) ∈ P̄

is the objective function of the problem (3.35). The following result provides
a representation for this function, and this result will be used to tackle (3.35).
Let

|I| :=
∑
t∈I

1

be the number of time steps in I.
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Proposition 5.2. For any (λ, (Q, S)) ∈ [0,∞) ∈ P̄, we have

inf
x∈N

Lu(x, λ, (Q, S)) = λ

(
EQ

[
(1, ST ) ·

T∑
t=0

ut

]
−
∑
t∈I

1
αt

E
[
ΛQ
t ln ΛQ

t

])

−
∑
t∈I

(
λ

αt
ln λ

αt
− λ

αt

)
− |I| . (5.4)

Proof. We have from Example 3.26 that

inf
x∈N

Lu(x, λ, (Q, S)) = λEQ
[
(1, ST ) ·

∑T
t=0ut

]
−
∑
t∈I

E
[
λΛQ

t

αt
ln λΛQ

t

αt
− λΛQ

t

αt

]
− |I| .

Fix any t ∈ I . Observe that

E
[
λΛQ

t

αt
ln λΛQ

t

αt
− λΛQ

t

αt

]
= E

[
λΛQ

t

αt
ln λ

αt

]
+ E

[
λΛQ

t

αt
ln ΛQ

t

]
− E

[
λΛQ

t

αt

]
.

Moreover, since αt is deterministic and E[ΛQ
t ] = EQ[1] = 1, it follows that

E
[
λΛQ

t

αt
ln λΛQ

t

αt
− λΛQ

t

αt

]
= λ

αt
ln λ

αt
E
[
ΛQ
t

]
+ λ

αt
E
[
ΛQ
t ln ΛQ

t

]
− λ

αt
E
[
ΛQ
t

]
= λ

αt
ln λ

αt
+ λ

αt
E
[
ΛQ
t ln ΛQ

t

]
− λ

αt
.

Then (5.4) follows.

Our next objective is to show that the problem (3.35) can be viewed as
two nested optimisation problems.

Firstly, fix any λ ∈ [0,∞), and consider the following optimisation problem

maximise inf
x∈N

Lu(x, λ, (Q, S)) over (Q, S) ∈ P̄. (5.5)

Fix any X ∈ L2
T . For convenience, for any (Q, S) ∈ P̄, let

HI ((Q, S);X) :=
∑
t∈I

1
αt

E
[
ΛQ
t ln ΛQ

t

]
+ EQ [(1, ST ) ·X] . (5.6)

Moreover, we define

KI (X) := inf
{
HI ((Q, S);X)

∣∣∣(Q, S) ∈ P̄
}
. (5.7)

Notice that KI (X) is finite because the values of x 7→ x ln x are finite and
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bounded from below on [0,∞). In Section 5.2, under the condition (5.26), we
will provide a method to construct (Q̂, Ŝ) ∈ P such that

HI
(
(Q̂, Ŝ);X

)
= KI (X) ;

see Theorem 5.20. Observe that

KI (X + (δ, 0)) = KI (X) + δ for all δ ∈ R. (5.8)

Moreover, combining Proposition 5.2 and (5.6)-(5.7), the optimal value of the
problem (5.5) can be written as

sup
(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S)) = −λKI
(
−
∑T
t=0ut

)
−
∑
t∈I

(
λ

αt
ln λ

αt
− λ

αt

)
− |I| . (5.9)

Thus, in order to solve the problem (5.5), we only need to solve the min-
imisation problem (5.7) for X = −

∑T
t=0 ut. The lemma below shows that

(Q̂, Ŝ) ∈ P as long as (Q̂, Ŝ) is a solution to (5.7). This result will be used in
the proof of Theorem 5.20. The proof of this lemma will be provided at the
end of this section.

Lemma 5.3. If (Q̂, Ŝ) ∈ P̄ solves (5.7), then Q̂(ω) > 0 for all ω ∈ Ω, in other
words, we have (Q̂, Ŝ) ∈ P.

Secondly, consider the following optimisation problem

maximise sup
(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S)) over λ ∈ [0,∞). (5.10)

The proposition below shows that this optimisation problem can be solved
explicitly, and moreover the optimal solution is unique and non-zero. For all
w = (wt)Tt=0 ∈ N 2, we define

λ̂ (w) := exp
[

1∑
t∈I

1
αt

(∑
t∈I

lnαt
αt
−KI

(
−

T∑
t=0

wt

))]
∈ (0,∞). (5.11)

Observe that λ̂ (w) depends only on
∑T
t=0wt, in other words, we have for

any w′ = (w′t)Tt=0 ∈ N 2 such that
∑T
t=0w

′
t =

∑T
t=0wt that λ̂ (w′) = λ̂ (w).

Moreover, by straight forward calculation, it follows that

ln
(
λ̂ (u)

)∑
t∈I

1
αt

=
∑
t∈I

lnαt
αt
−KI

(
−

T∑
t=0

ut

)
. (5.12)
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This will be used in the proofs of Proposition 5.4 and Theorem 5.5 below.

Proposition 5.4. The quantity λ̂ (u) is the unique value in [0,∞) such that

sup
(Q,S)∈P̄

inf
x∈N

Lu
(
x, λ̂ (u) , (Q, S)

)
= sup

λ≥0

{
sup

(Q,S)∈P̄
inf
x∈N

Lu (x, λ, (Q, S))
}
.

This means that λ̂ (u) is the unique solution to the problem (5.10).

Proof. For convenience, let

f(λ) := sup
(Q,S)∈P̄

inf
x∈N

Lu(x, λ, (Q, S)) for all λ ∈ [0,∞).

From (5.9), the function f is continuous on [0,∞). Moreover, for any λ > 0, by
straightforward calculation, the derivatives f ′(λ) and f ′′(λ) can be presented
as

f ′(λ) = −KI

(
−

T∑
t=0

ut

)
− ln (λ)

∑
t∈I

1
αt

+
∑
t∈I

lnαt
αt

and
f ′′(λ) = − 1

λ

∑
t∈I

1
αt

< 0.

Thus f ′ is decreasing on (0,∞). It follows from (5.12) that

f ′
(
λ̂ (u)

)
= −KI

(
−

T∑
t=0

ut

)
−
∑
t∈I

lnαt
αt

+KI

(
−

T∑
t=0

ut

)
+
∑
t∈I

lnαt
αt

= 0.

Combining this with the fact that f ′ is decreasing on (0,∞), we have f ′ > 0
on (0, λ̂ (u)) and f ′ < 0 on (λ̂ (u) ,∞). This implies that f is increasing on
[0, λ̂ (u)] and decreasing on [λ̂ (u) ,∞). Thus, the result follows.

From the strong duality established in Theorem 3.31, the minimal regret
V (u) defined in (3.9) is equal to the optimal value of the dual optimisation
problem (3.35). This enable us to present V (u) as follows.

Theorem 5.5. Under the assumption that the robust no-arbitrage condition
holds true, the minimal regret V (u) can be written as

V (u) = λ̂ (u)
∑
t∈I

1
αt
− |I| .

Proof. Combining Theorem 3.31, Proposition 5.4 and (5.9), we have

V (u) = −λ̂ (u)KI

(
−

T∑
t=0

ut

)
−
∑
t∈I

(
λ̂ (u)
αt

ln λ̂ (u)
αt
− λ̂ (u)

αt

)
− |I| . (5.13)
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Observe that

λ̂ (u)
αt

ln λ̂ (u)
αt
− λ̂ (u)

αt
= λ̂ (u)

(
1
αt

ln λ̂ (u)
αt
− 1
αt

)

= λ̂ (u)
( 1
αt

ln λ̂ (u)− 1
αt

lnαt −
1
αt

)
= λ̂ (u)

(
ln
(
λ̂ (u)

) 1
αt
− lnαt

αt
− 1
αt

)
.

Then

∑
t∈I

(
λ̂ (u)
αt

ln λ̂ (u)
αt
− λ̂ (u)

αt

)
= λ̂ (u)

(
ln
(
λ̂ (u)

)∑
t∈I

1
αt
−
∑
t∈I

lnαt
αt
−
∑
t∈I

1
αt

)
.

Moreover, it follows from (5.12) that

∑
t∈I

(
λ̂ (u)
αt

ln λ̂ (u)
αt
− λ̂ (u)

αt

)
= λ̂ (u)

(
−KI

(
−

T∑
t=0

ut

)
−
∑
t∈I

1
αt

)
.

Combining this with (5.13), the result follows.

Suppose that (Q̂, Ŝ) ∈ P solves (5.7). Then the theorem below gives a
method for computing the solution to (3.19). In Theorem 5.20 below, we will
provide an algorithm to construct such (Q̂, Ŝ) under the condition (5.26).

Theorem 5.6. Under the assumption that the robust no-arbitrage condition
holds true, if (Q̂, Ŝ) ∈ P solves (5.7) with X = −

∑T
t=0ut, then the unique

solution (x̂t)Tt=0 ∈ N to the problem (3.19) with the regret functions defined in
(5.1) can be constructed as follows:

x̂t :=


1
αt

ln λ̂(u)ΛQ̂
t

αt
if t ∈ I,

0 if t ∈ {0, . . . , T} \I;

here λ̂(u)ΛQ̂
t > 0 for all t ∈ I because Q̂ ∼ P.

Proof. Combining Proposition 5.2 and (5.6), it follows that

inf
x∈N

Lu(x, λ̂ (u) , (Q̂, Ŝ)) = −λ̂ (u)HI
(
(Q̂, Ŝ);−

∑T
t=0ut

)
−
∑
t∈I

(
λ̂ (u)
αt

ln λ̂ (u)
αt
− λ̂ (u)

αt

)
− |I| .

Since (Q̂, Ŝ) ∈ P solves (5.7) with X = −
∑T
t=0ut, we have

HI
(
(Q̂, Ŝ);−

∑T
t=0ut

)
= KI

(
−
∑T
t=0ut

)
.
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This means

inf
x∈N

Lu(x, λ̂ (u) , (Q̂, Ŝ)) = −λ̂ (u)KI
(
−
∑T
t=0ut

)
−
∑
t∈I

(
λ̂ (u)
αt

ln λ̂ (u)
αt
− λ̂ (u)

αt

)
− |I| .

Then it follows from (5.9) and Proposition 5.4 that

inf
x∈N

Lu(x, λ̂ (u) , (Q̂, Ŝ)) = sup
(Q,S)∈P̄

inf
x∈N

Lu(x, λ̂ (u) , (Q, S))

= sup
λ≥0,(Q,S)∈P̄

inf
x∈N

Lu (x, λ, (Q, S)) .

This means that (λ̂ (u) , (Q̂, Ŝ)) is a solution to (3.35) with the regret functions
defined in (5.1). Then the result follows from Example 3.35.

In Theorem 5.5, we provided a presentation of the minimal regret. This
presentation will be used to derive the formulae in Theorem 5.7 below for the
regret indifference prices defined in (3.51)-(3.52).

Theorem 5.7. Under the assumption that the robust no-arbitrage condition
holds true. Then we have for any c, c̄ ∈ N 2 that

πaiF (c; c̄) = KI
(∑T

t=0c̄t
)
−KI

(∑T
t=0(c̄t − ct)

)
πbiF (c; c̄) = KI

(∑T
t=0(c̄t + ct)

)
−KI

(∑T
t=0c̄t

)
.

Proof. Let
δ := KI

(∑T
t=0c̄t

)
−KI

(∑T
t=0(c̄t − ct)

)
. (5.14)

Observe from (5.11) that

λ̂ (c− δ1− c̄) = exp
[

1∑
t∈I

1
αt

(∑
t∈I

lnαt
αt
−KI

(
(δ, 0)−

T∑
t=0

(ct − c̄t)
))]

.

Moreover, combining (5.8) and (5.14), it follows that

KI
(
(δ, 0)−

∑T
t=0(ct − c̄t)

)
= KI

(
−
∑T
t=0(ct − c̄t)

)
+ δ

= KI
(∑T

t=0c̄t
)
.

Thus, we have

λ̂ (c− δ1− c̄) = exp
[

1∑
t∈I

1
αt

(∑
t∈I

lnαt
αt
−KI

(
T∑
t=0

c̄t

))]
= λ̂ (−c̄)
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by (5.11). This means

λ̂ (c− δ1− c̄)
∑
t∈I

1
αt
− |I| = λ̂ (−c̄)

∑
t∈I

1
αt
− |I| ,

in other words,
V (c− δ1− c̄) = V (−c̄)

(Theorem 5.5). Notice that V (−c̄) is finite. Therefore, by Proposition 3.40,
we have

πaiF (c; c̄) = δ = KI
(∑T

t=0c̄t
)
−KI

(∑T
t=0(c̄t − ct)

)
.

Combining this with (3.53), it follows that

πbiF (c; c̄) = −πaiF (−c; c̄) = KI
(∑T

t=0(c̄t + ct)
)
−KI

(∑T
t=0c̄t

)
.

This completes the proof.

Remark 5.8. Notice that, from Theorem 5.7, we always have

πaiF (0; c̄) = 0 for all c̄ ∈ N 2,

and this agrees with Example 3.42.

The following result shows that sometimes the indifference prices are the
same for two different endowments.

Corollary 5.9. Let c, c̄, c̄′ ∈ N 2. We have

πaiF (c; c̄) = πaiF (c; c̄′), πbiF (c; c̄) = πbiF (c; c̄′) (5.15)

if one of the following condition is satisfied.

1. The processes c̄, c̄′ satisfy
∑T
t=0 c̄t =

∑T
t=0 c̄

′
t + (δ, 0) for some δ ∈ R.

2. The bid-ask prices at time 0 satisfy Sb0 = Sa0 , and the processes c̄, c̄′

satisfy
∑T
t=0 c̄t =

∑T
t=0 c̄

′
t + d for some d ∈ R2.

Proof. Suppose that the the condition under the first item is satisfied. It
follows from (5.8) that

KI
(∑T

t=0c̄t
)

= KI
(∑T

t=0c̄
′
t

)
+ δ,

KI
(∑T

t=0(c̄t − ct)
)

= KI
(∑T

t=0(c̄′t − ct)
)

+ δ,

KI
(∑T

t=0(c̄t + ct)
)

= KI
(∑T

t=0(c̄′t + ct)
)

+ δ.
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Then Theorem 5.7 implies that (5.15) holds true.
Suppose that the condition under the second item holds true. Notice that,

for all (Q, S) ∈ P̄, the martingale property of S = (St)Tt=0 gives

EQ[(1, ST ) · d] = (1, S0) · d = (1, Sb0) · d.

Combining this with (5.6) and (5.7), it follows that

KI (X + d) = KI (X) + (1, Sb0) · d.

By taking X =
∑T
t=0c̄

′
t,
∑T
t=0(c̄′t − ct),

∑T
t=0(c̄′t + ct) respectively, we have

KI
(∑T

t=0c̄t
)

= KI
(∑T

t=0c̄
′
t

)
+ (1, Sb0) · d,

KI
(∑T

t=0(c̄t − ct)
)

= KI
(∑T

t=0(c̄′t − ct)
)

+ (1, Sb0) · d,

KI
(∑T

t=0(c̄t + ct)
)

= KI
(∑T

t=0(c̄′t + ct)
)

+ (1, Sb0) · d.

Thus (5.15) follows from Theorem 5.7.

In the following one-step toy model, we can solve the problem (5.7) ex-
plicitly. Moreover, we will compute the indifference prices of a European call
option by using the formulae from Theorem 5.7.

Example 5.10. Let T = 1 and Ω1 = {u, d}. Consider the following one-step
model with transaction cost parameter k ∈ [0, 1).

p

↗
Sau1 = 115(1 + k)

Sbu1 = 115(1− k)
Sa0 = 100

Sb0 = 100
1−p
↘

Sad1 = 90(1 + k)

Sbd1 = 90(1− k)

Observe that Sb0 = Sa0 which means that there is no transaction costs at
time 0. We assume Sb0 > Sad1 and Sa0 < Sbu1 . This implies that there is no
overlap among the three intervals [Sb0, Sa0 ] = {Sb0}, [Sbd1 , Sad1 ], and [Sbu1 , Sau1 ].
Clearly, the robust no-arbitrage condition is satisfied. Moreover, the market
probability is given by P(u) = p and P(d) = 1 − p, where p ∈ (0, 1). Define
the friction-free stock prices (S̄0, S̄1) as S̄0 = 100, S̄u1 = 115, and S̄d1 = 90, in
other words,

(
S̄0, S̄1

)
=
(
Sb0,

1
1− kS

b
1

)
=
(
Sa0 ,

1
1 + k

Sa1

)
.
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Moreover, we define c = (ct)1
t=0 as c0 = 0 and c1 = (D, 0), where

D = max
(
S̄1 − 100, 0

)
=

15 on u,

0 on d.

Observe that c0 + c1 = (D, 0) can be regarded as the payoff of a European
call option based on the friction-free prices (S̄0, S̄1) and delivered by cash with
strike price 100. The investor’s endowment c̄ = (c̄t)1

t=0 is set to be c̄0 = c̄1 = 0.
Moreover, let I = {0, 1} and α0 = α1 = α for some α > 0.

For the convenience of later calculations, let

Q :=
{
Q(u)

∣∣∣(Q, S) ∈ P̄
}

=
{
Q(u)

∣∣∣S1 ∈ L1, S
b
1 ≤ S1 ≤ Sa1 , Q(u)Su1 + (1−Q(u))Sd1 = Sb0

}
=
{
q ∈ [0, 1]

∣∣∣x1 ∈
[
Sbu1 , Sau1

]
, x2 ∈

[
Sbd1 , S

ad
1

]
, qx1 + (1− q)x2 = Sb0

}
.

Observe from Lemma A.7 that Q is convex. Then Q is a subinterval of [0, 1].
Since there is no overlap between [Sbu1 , Sau1 ] and [Sbd1 , Sad1 ], we can write Q as

Q =
{
q ∈ [0, 1]

∣∣∣∣∣x1 ∈
[
Sbu1 , Sau1

]
, x2 ∈

[
Sbd1 , S

ad
1

]
, q = Sb0 − x2

x1 − x2

}
. (5.16)

By straightforward calculation, the value Sb0−x2
x1−x2

in (5.16) is decreasing in x1

(resp. x2) when x2 (resp. x1) is fixed. Thus, by letting

[
qmin, qmax

]
:=
[
Sb0 − Sad1
Sau1 − Sad1

,
Sb0 − Sbd1
Sbu1 − Sbd1

]
⊆ (0, 1) ,

it follows that Q = [qmin, qmax].
From Theorem 5.7, the indifference prices of c can be written as

πaiF (c; 0) = KI(0)−KI(−c0 − c1) = KI(0)−KI(−(D, 0)), (5.17)

πbiF (c; 0) = KI(c0 + c1)−KI(0) = KI((D, 0))−KI(0). (5.18)

In order to compute πaiF (c; 0) and πbiF (c; 0), we are going to find the following
three values:

KI(0) = inf
(Q,S)∈P̄

HI ((Q, S); 0) ,

KI((D, 0)) = inf
(Q,S)∈P̄

HI ((Q, S); (D, 0)) ,

KI((−D, 0)) = inf
(Q,S)∈P̄

HI ((Q, S); (−D, 0)) .
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For any (Q, S) ∈ P̄ and x ∈ L1, we have

HI ((Q, S); (x, 0)) = 1
α
E
[
ΛQ

0 ln ΛQ
0

]
+ 1
α
E
[
ΛQ

1 ln ΛQ
1

]
+ EQ [x]

= 1
α

(
E
[
ΛQ

1 ln ΛQ
1

]
+ αEQ [x]

)
(5.19)

because 1
αE
[
ΛQ

0 ln ΛQ
0
]

= 0 (see (2.18)). By letting

fx(q) := q ln q
p

+ (1− q) ln 1− q
1− p + α

(
qxu + (1− q)xd

)
for all q ∈ (0, 1),

the value E
[
ΛQ

1 ln ΛQ
1
]

+ αEQ [x] in (5.19) can be written as

E
[
ΛQ

1 ln ΛQ
1

]
+ αEQ [x]

= Q(u) ln Q(u)
P(u) + (1−Q(u)) ln 1−Q(u)

1− P(u) + α
(
Q(u)xu + (1−Q(u))xd

)
= fx(Q (u)). (5.20)

Then (5.19) and (5.20) imply

inf
(Q,S)∈P̄

HI ((Q, S); (x, 0)) = 1
α

inf
(Q,S)∈P̄

fx(Q(u))

= 1
α

inf
q∈[qmin,qmax]

fx(q). (5.21)

For any q ∈ (0, 1), the derivatives fx′(q) and fx′′(q) are

fx′(q) = ln q
p
− ln 1− q

1− p + α
(
xu − xd

)
= ln q

1− q − ln p

1− p + α
(
xu − xd

)
,

fx′′(q) = 1
q

+ 1
1− q > 0.

Thus fx is continuous and convex. Let

qx = pe−αx
u

pe−αxu + (1− p)e−αxd
∈ (0, 1).

Observe that q0 = p. Moreover, we have

ln qx

1− qx = ln pe−αx
u

(1− p)e−αxd
= ln p

1− p − α
(
xu − xd

)
,

and hence fx′(qx) = 0. Since fx′ is increasing on (0, 1), we have fx′ < 0 on
(0, qx) and fx′ > 0 on (qx, 1). Thus the continuous function fx is decreasing
on (0, qx] and increasing on [qx, 1). We can conclude that the function fx on
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k = 0.5% k = 1%
α buyer seller buyer seller

regret indifference prices
p = 0.3

0.1 5.70149 6.12470 5.40594 6.25197
0.01 5.70149 5.70149 5.40594 5.40594

p = 0.5
0.1 5.86361 6.30151 5.72975 6.60606
0.01 6.30151 6.30151 6.60606 6.60606

superhedging prices
5.70149 6.30151 5.40594 6.60606

Table 5.1: Option prices of a call option in a one-step model

[qmin, qmax] reaches its minimum at

q̂x :=


qx if qmin ≤ qx ≤ qmax,

qmin if qx < qmin,

qmax if qx > qmax.

Thus
KI((x, 0)) = inf

(Q,S)∈P̄
HI ((Q, S); (x, 0)) = 1

α
fx (q̂x)

by (5.21). By taking x = 0, (D, 0), (−D, 0) respectively, we have

KI(0) = 1
α
f0
(
q̂0
)
,

KI((D, 0)) = 1
α
fD

(
q̂D
)
,

KI(−(D, 0)) = 1
α
f−D

(
q̂−D

)
.

Thus, we are able to compute the prices in (5.17)-(5.18).

From (2.26), (2.27), and Theorem 2.14, the seller’s and buyer’s super-
hedging prices πaF(c) and πbF(c) are given by

πaF(c) = πaE((D, 0)) = max
(Q,S)∈P̄

EQ[D],

πbF(c) = πbE((D, 0)) = min
(Q,S)∈P̄

EQ[D].

Combining this with the fact that

EQ[D] = Q(u)Du + (1−Q(u))Dd for all (Q, S) ∈ P̄,
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it follows that

πaF(c) = max
q∈[qmin,qmax]

(
qDu + (1− q)Dd

)
= qmax × 15,

πbF(c) = min
q∈[qmin,qmax]

(
qDu + (1− q)Dd

)
= qmin × 15,

Therefore, the superhedging prices πaF(c) and πbF(c) can be easily calculated.
In Table 5.1, the regret indifference prices for p = 0.3, 0.5, k = 0.5%, 1%,

and α = 0.1, 0.01 are provided. Moreover, the superhedging prices are also
given in this table for k = 0.5%, 1%. It shows that the gap between seller’s
and buyer’s indifference prices is smaller than the gap between seller’s and
buyer’s superhedging prices. For the buyer (resp. seller), the indifference price
is equal to the superhedging price when p = 0.3 (resp. p = 0.5). In the case
when α = 0.01, the seller’s and buyer’s indifference prices are the same.

This section ends with the proof of Lemma 5.3.

Proof of Lemma 5.3. We assume that (Q̂, Ŝ) ∈ P̄ solves (5.7). Suppose by
contradiction that Q̂(ω′) = 0 for some ω′ ∈ Ω. From the comments following
Theorem 2.6, we have P 6= ∅. Let (Q, S) ∈ P. Then Q ∼ P which means
Q(ω) > 0 for all ω ∈ Ω. For every ε ∈ (0, 1), we are going to define a pair
(Qε, Sε) ∈ P based on (Q, S) and (Q̂, Ŝ). Let

Qε(A) := εQ(A) + (1− ε)Q̂(A) for all A ∈ F .

Then Qε is a probability measure with Qε(ω) > 0 for all ω ∈ Ω, and hence
Qε ∼ P. Moreover, for any t = 0, . . . , T and ν ∈ Ωt, the value ΛQε

t (ν) can be
written as

ΛQε
t (ν) = Qε(ν)

P(ν) = εQ(ν) + (1− ε)Q̂(ν)
P(ν) = εΛQ

t (ν) + (1− ε)ΛQ̂
t (ν) > 0;

see (2.17) for the definition of ΛQε
t . Define Sε = (Sεt )Tt=0 ∈ N as

Sεt := εΛQ
t

ΛQε
t

St + (1− ε)ΛQ̂
t

ΛQε
t

Ŝt for all t = 0, . . . , T.

Since εΛQ
t

ΛQε
t

and (1−ε)ΛQ̂
t

ΛQε
t

take their values in [0, 1] and εΛQ
t

ΛQε
t

+ (1−ε)ΛQ̂
t

ΛQε
t

= 1, we

must have Sbt ≤ Sεt ≤ Sat . For any k = 1, . . . , T , Bayes’ formula (Shreve 2004,
Lemma 5.2.2) gives

ΛQε
k−1EQε [Sεk| Fk−1] = E

[
ΛQε
k Sεk

∣∣∣Fk−1
]
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= εE
[
ΛQ
k Sk

∣∣∣Fk−1
]

+ (1− ε)E
[
ΛQ̂
k Ŝk

∣∣∣Fk−1
]

= εΛQ
k−1EQ [Sk| Fk−1] + (1− ε)ΛQ̂

k−1EQ̂

[
Ŝk
∣∣∣Fk−1

]
.

Since (St)Tt=0 is a Q-martingale and (Ŝt)Tt=0 is a Q̂-martingale, we have

EQε [Sεk| Fk−1] = 1
ΛQε
k−1

(
εΛQ

k−1Sk−1 + (1− ε)ΛQ̂
k−1Ŝk−1

)
= Sεk−1.

This implies that Sε is a Qε-martingale, and hence (Qε, Sε) ∈ P.

Our next objective is to show that

HI
((

Qε′ , Sε
′) ;X

)
−HI

((
Q̂, Ŝ

)
;X
)
< 0 for some ε′ ∈ (0, 1), (5.22)

which contradicts the assumption that (Q̂, Ŝ) ∈ P̄ solves (5.7). For conveni-
ence, let g(x) := x ln x for all x ≥ 0, where 0 ln 0 ≡ 0. Notice from Q̂(ω′) = 0
that

lim
ε↓0

1
ε

[
g
(
ΛQε
T (ω′)

)
− g

(
ΛQ̂
T (ω′)

)]
= lim

ε↓0

1
ε

[
g

(
εQ(ω′)
P(ω′)

)
− g (0)

]
= lim

ε↓0

Q(ω′)
P(ω′) ln εQ(ω′)

P(ω′) = −∞. (5.23)

Fix any ε ∈ (0, 1). For each t = 0, . . . , T , the convexity of g gives

g
(
ΛQε
t

)
≤ εg

(
ΛQ
t

)
+ (1− ε)g

(
ΛQ̂
t

)
.

By subtracting g
(
ΛQ̂
t

)
on both sides, we have

g
(
ΛQε
t

)
− g

(
ΛQ̂
t

)
≤ ε

[
g
(
ΛQ
t

)
− g

(
ΛQ̂
t

)]
. (5.24)

Notice that

EQε [(1, SεT ) ·X] = E
[
ΛQε
T (1, SεT ) ·X

]
,

EQ̂

[(
1, ŜT

)
·X
]

= E
[
ΛQ̂
T

(
1, ŜT

)
·X
]
.

Combining this with (5.6), it follows that

HI ((Qε, Sε) ;X)−HI
((

Q̂, Ŝ
)

;X
)

=
∑
t∈I

1
αt

E
[
g
(
ΛQε
t

)
− g

(
ΛQ̂
t

)]
+ E

[(
ΛQε
T (1, SεT )− ΛQ̂

T (1, ŜT )
)
·X
]

=ε
(∑
t∈I

1
εαt

E
[
g
(
ΛQε
t

)
− g

(
ΛQ̂
t

)]
+ 1
ε
E
[(

ΛQε
T (1, SεT )− ΛQ̂

T (1, ŜT )
)
·X
])
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=ε
(
mε + 1

εαT
E
[
1{ω′}

(
g
(
ΛQε
T

)
− g

(
ΛQ̂
T

))])
, (5.25)

where

mε := 1
ε
E
[(

ΛQε
T (1, SεT )− ΛQ̂

T (1, ŜT )
)
·X
]

+
∑

t∈I\{T}

1
εαt

E
[
g
(
ΛQε
t

)
− g

(
ΛQ̂
t

)]
+ 1
εαT

E
[
1Ω\{ω′}

(
g
(
ΛQε
T

)
− g

(
ΛQ̂
T

))]
.

We are going to show thatmε is dominated by someM ∈ R that is independent
of ε. Define M1,M2,M3 ∈ R as

M1 := E
[(

ΛQ
T − ΛQ̂

T ,Λ
Q
TST − ΛQ̂

T ŜT
)
·X
]
,

M2 :=
∑

t∈I\{T}

1
αt

E
[
g
(
ΛQ
t

)
− g

(
ΛQ̂
t

)]
,

M3 := 1
αT

E
[
1Ω\{ω′}

(
g
(
ΛQ
T

)
− g

(
ΛQ̂
T

))]
.

The quantities M1,M2,M3 are independent of ε. Now, observe that

ΛQε
T (1, SεT ) =

(
εΛQ

T + (1− ε)ΛQ̂
T , εΛ

Q
TST + (1− ε)ΛQ̂

T ŜT
)

= ε
(
ΛQ
T − ΛQ̂

T ,Λ
Q
TST − ΛQ̂

T ŜT
)

+ ΛQ̂
T

(
1, ŜT

)
.

This implies

1
ε
E
[(

ΛQε
T (1, SεT )− ΛQ̂

T (1, ŜT )
)
·X
]

= 1
ε
E
[
ε
(
ΛQ
T − ΛQ̂

T ,Λ
Q
TST − ΛQ̂

T ŜT
)
·X
]

= M1.

Moreover, it follows from (5.24) that

∑
t∈I\{T}

1
εαt

E
[
g
(
ΛQε
t

)
− g

(
ΛQ̂
t

)]
≤

∑
t∈I\{T}

ε

εαt
E
[
g
(
ΛQ
t

)
− g

(
ΛQ̂
t

)]
= M2

and

1
εαT

E
[
1Ω\{ω′}

(
g
(
ΛQε
T

)
− g

(
ΛQ̂
T

))]
≤ ε

εαT
E
[
1Ω\{ω′}

(
g
(
ΛQ
T

)
− g

(
ΛQ̂
T

))]
= M3.

Thus, by letting M = M1 +M2 +M3, it follows that mε ≤M . From (5.23),
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there exists ε′ ∈ (0, 1) such that

1
ε′αT

E
[
1{ω′}

(
g

(
ΛQε′

T

)
− g

(
ΛQ̂
T

))]
< −M.

Then (5.25) implies

HI
((

Qε′ , Sε
′) ;X

)
−HI

((
Q̂, Ŝ

)
;X
)

= ε′
(
mε′ + 1

ε′αT
E
[
1{ω′}

(
g

(
ΛQε′

T

)
− g

(
ΛQ̂
T

))])
≤ ε′

(
M + 1

ε′αT
E
[
1{ω′}

(
g

(
ΛQε′

T

)
− g

(
ΛQ̂
T

))])
< 0.

This completes the proof of (5.22). Therefore Q̂(ω) > 0 for all ω ∈ Ω, in other
words, we have (Q̂, Ŝ) ∈ P.

5.2 Existence of a solution to the dual problem

In this section, we are going to study the minimisation problem (5.7). The
main objective of this section is to construct a solution to (5.7). Firstly, we
will assume that the bid-ask prices Sb and Sa satisfy (5.26) for the remainder
of this chapter. Then Section 5.2.1 will introduce the notion of transition
probabilities and provides a number of technical results that will be used in
Section 5.2.2. After that, a dynamic programming algorithm will be provided
in Section 5.2.2 to construct a solution to the minimisation problem (5.7).

For each t = 0, . . . , T − 1 and ν ∈ Ωt, the collection of successor nodes of
ν is defined as

ν+ := {λ ∈ Ωt+1|λ ⊆ ν} .

Fix any t = 0, . . . , T and ν ∈ Ωt. For any k = 0, . . . , t, we define νk as the
unique node in Ωk such that ν ⊆ νk. Moreover, in the case when k < t, we
call νk the predecessor node of ν at time step k. Notice that the node at time
t that contains ω ∈ Ω can be written as {ω}t.

For the remainder of this chapter, we shall always assume that the bid-ask
prices Sb and Sa satisfy

min
λ∈ν+

Sbλt+1 < Sbνt ≤ Saνt < max
λ∈ν+

Saλt+1 for all t = 0, . . . , T − 1, ν ∈ Ωt. (5.26)

This assumption means that the bid price at time t and node ν is higher than
the minimal bid price at time t+ 1 among every node λ ∈ ν+. Similarly, the
ask price at time t and node ν is lower than the maximal ask price at time
t + 1 among every node λ ∈ ν+. All numerical examples in this chapter will
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satisfy (5.26).
It turns out that the condition (5.26) implies that the robust no-arbitrage

condition introduced in Theorem 2.6 holds true; see Theorem 5.13. In the
following example, we will provide an one-step model such that the robust
no-arbitrage condition is satisfied but (5.26) is not satisfied.

Example 5.11. Consider a market model with T = 1 and Ω1 = {u, d}. The
stock prices (Sbt , Sat )1

t=0 are given by

Sb0 = Sb1 = 90, Sa0 = Sa1 = 120.

Clearly, the condition (5.26) above is not satisfied. Now, we define a process
S = (St)1

t=0 ∈ N as
S0 = 100, Su1 = 105, Sd1 = 95.

Observe that St is in the relative interior of [Sbt , Sat ] for each t = 0, 1. Then
we define a probability Q as

Q(u) = Q(d) = 1
2 .

Clearly, the process S is a Q-martingale, which means (Q, S) ∈ P. Thus, the
robust no-arbitrage condition is satisfied.

5.2.1 Transition probability

In this section, we will first introduce the notion of transition probabilities.
Then Theorem 5.13 shows that (5.26) implies the robust no-arbitrage condi-
tion. After that, we will provide a number of technical results in Lemmas 5.14-
5.16 for the study in the next section.

Let Q be a probability measure. For each t = 0, . . . , T , let

Ω+
t (Q) := {ν ∈ Ωt|Q(ν) > 0}

be the collection of nodes at time t with positive probability under Q. Fix any
t = 0, . . . T − 1. For every ν ∈ Ω+

t (Q) and λ ∈ ν+, we denote the transition
probability of ν to λ by

qλt+1 := Q(λ)
Q(ν) .

For any Y ∈ Lt+1, we can present EQ[Y | Ft](ν) for each ν ∈ Ω+
t (Q) as

EQ[Y | Ft](ν) =
∑
λ∈ν+ Q(λ)Y λ

Q(ν) =
∑
λ∈ν+

qλt+1Y
λ. (5.27)
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Remark 5.12. The expectation EQ[Y ] can be presented as

EQ[Y ] =
∑

ν∈Ω+
t (Q)

Q(ν)
∑
λ∈ν+

qλt+1Y
λ. (5.28)

Indeed, we have

EQ[Y ] = EQ [EQ[Y | Ft]]

=
∑
ν∈Ωt

Q(ν)EQ[Y | Ft](ν)

=
∑

ν∈Ω+
t (Q)

Q(ν)EQ[Y | Ft](ν)

because Q(ν) = 0 for any ν ∈ Ωt\Ω+
t (Q). Combining this with (5.27), the

presentation of EQ[Y ] in (5.28) holds true. The formulation of expectation in
(5.28) will be used in later calculations.

The following result says that (5.26) implies the robust no-arbitrage con-
dition introduced in Theorem 2.6.

Theorem 5.13. Under the assumption that (5.26) holds true, the robust no-
arbitrage condition holds true.

Proof. Firstly, we are going to construct a process S = (St)Tt=0 ∈ N . Let

S0 := 1
2
(
Sb0 + Sa0

)
∈ relint

[
Sb0, S

a
0

]
,

where relintA is the relative interior of a set A. For any t = 0, . . . , T − 1 and
ν ∈ Ωt, we define λ′ and λ′′ as the nodes in ν+ such that

Sbλ
′

t+1 = min
λ∈ν+

Sbλt+1,

Saλ
′′

t+1 = max
λ∈ν+

Saλt+1.

Moreover, we define Sλt+1 for each λ ∈ ν+ as

Sλt+1 = 1
2
(
Sbλt+1 + Saλt+1

)
for all λ ∈ ν+\

{
λ′, λ′′

}
,

Sλ
′

t+1 = 1
2
(
Sbλ

′
t+1 + min

(
Sbνt , S

aλ′
t+1

))
,

Sλ
′′

t+1 = 1
2
(
Saλ

′′
t+1 + max

(
Saνt , Sbλ

′′
t+1

))
,

where Sbλ′t+1 < Sbνt and Saλ′′t+1 > Saνt by (5.26). Then

Sλt+1 ∈ relint
[
Sbλt+1, S

aλ
t+1

]
for all λ ∈ ν+
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and moreover

min
λ∈ν+

Sλt+1 ≤ Sλ
′

t+1 < Sbνt ≤ Saνt < Sλ
′′

t+1 ≤ max
λ∈ν+

Sλt+1. (5.29)

This completes the construction of S.
For any t = 0, . . . , T − 1 and ν ∈ Ωt, the construction of Sνt gives

Sbνt ≤ Sνt ≤ Saνt .

Combining this with (5.29), it follows that

min
λ∈ν+

Sλt+1 < Sνt < max
λ∈ν+

Sλt+1.

Thus, there exists a collection of positive quantities (wλt+1)λ∈ν+ in (0, 1) such
that

∑
λ∈ν+

wλt+1 = 1,

∑
λ∈ν+

wλt+1S
λ
t+1 = Sνt .

Let Q ∼ P be the probability measure such that

qλt+1 = wλt+1 for all t = 0, . . . , T − 1, ν ∈ Ωt, λ ∈ ν+.

Observe that, for each t = 0, . . . , T − 1 and ν ∈ Ωt, we have ν ∈ Ω+
t (Q) and

EQ [St+1 | Ft] (ν) =
∑
λ∈ν+

qλt+1S
λ
t+1 =

∑
λ∈ν+

wλt+1S
λ
t+1 = Sνt .

Thus S is a Q-martingale. Combining this with the fact that St is in the rel-
ative interior of [Sbt , Sat ] for every t = 0, . . . , T , we have (Q, S) ∈ P. Moreover,
the robust no-arbitrage condition introduced in Theorem 2.6 holds true. This
completes the proof.

The results in Lemmas 5.14-5.16 below will be helpful in the next section.
For any probability Q and Q-martingale (Mt)Tt=0, the result below gives a link
between EQ[Mt+1 ln ΛQ

t+1] and EQ[Mt ln ΛQ
t ] for any t = 0, . . . , T − 1.

Lemma 5.14. Let Q be a probability measure and (Mt)Tt=0 be a Q-martingale.
Then, for each t = 0, . . . , T − 1, we have

EQ
[
Mt+1 ln ΛQ

t+1

]
= EQ

[
Mt ln ΛQ

t

]
+

∑
ν∈Ω+

t (Q)

Q(ν)
∑
λ∈ν+

Mλ
t+1q

λ
t+1 ln

qλt+1
pλt+1

.
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Proof. Let t = 0, . . . , T − 1. Observe from Remark 5.12 that

EQ
[
Mt+1 ln ΛQ

t+1

]
=

∑
ν∈Ω+

t (Q)

Q(ν)
∑
λ∈ν+

qλt+1M
λ
t+1 ln

Q(ν)qλt+1
P(ν)pλt+1

=
∑

ν∈Ω+
t (Q)

Q(ν) ln Q(ν)
P(ν)

∑
λ∈ν+

qλt+1M
λ
t+1+

∑
ν∈Ω+

t (Q)

Q(ν)
∑
λ∈ν+

Mλ
t+1q

λ
t+1 ln

qλt+1
pλt+1

.

The martingale property of (Mt)Tt=0 gives

∑
ν∈Ω+

t (Q)

Q(ν) ln Q(ν)
P(ν)

∑
λ∈ν+

qλt+1M
λ
t+1 =

∑
ν∈Ω+

t (Q)

Q(ν)Mν
t ln Q(ν)

P(ν)

= EQ
[
Mt ln ΛQ

t

]
.

Then the result follows.

For any t = 0, . . . , T , let

P̄t :=
{(

Q, (Sk)tk=0

)∣∣∣Q a probability measure, Sk ∈ Lk ∀k = 0, . . . , t,

∃
(
Q∗, (S∗k)Tk=0

)
∈ P̄ : Q∗ = Q on Ft, (S∗k)tk=0 = (Sk)tk=0

}
. (5.30)

Observe that P̄T = P̄.

Lemma 5.15. Let t = 0, . . . , T . Moreover, let Q be a probability measure and
Sk ∈ Lk for all k = 0, . . . , t. Then (Q, (Sk)tk=0) ∈ P̄t if and only if

Sbi ≤ Si ≤ Sai for all i = 0, . . . , t, (5.31)∑
λ∈ν+qλi+1S

λ
i+1 = Sνi for all i = 0, . . . , t− 1, ν ∈ Ω+

i (Q). (5.32)

Proof. Suppose that (Q, (Sk)tk=0) ∈ P̄t. Then there exists (Q∗, (S∗k)Tk=0) ∈ P̄
such that Q∗ = Q on Ft and (S∗k)tk=0 = (Sk)tk=0. Since (S∗k)tk=0 = (Sk)tk=0 and

Sbi ≤ S∗i ≤ Sai for all i = 0, . . . , t,

the condition (5.31) holds true. For any i = 0, . . . , t − 1 and ν ∈ Ω+
i (Q), we

have ν ∈ Ω+
i (Q∗), and the martingale property of (S∗k)Tk=0 gives

∑
λ∈ν+

q∗λi+1S
∗λ
i+1 = S∗νi .

Thus ∑
λ∈ν+

qλi+1S
λ
i+1 =

∑
λ∈ν+

q∗λi+1S
∗λ
i+1 = S∗νi = Sνi .
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Therefore (5.32) holds true.

Suppose that (5.31) and (5.32) hold true. We are going to prove

(Q, (Sk)tk=0) ∈ P̄t (5.33)

by considering the following the following two cases of t.

In the case when t = T , we have

E [Sk+1| Fk] (ν) =
∑
λ∈ν+

qλk+1S
λ
k+1 = Sνk for all k = 0, . . . , T − 1, ν ∈ Ω+

k (Q).

This means that (Sk)Tk=0 is a Q-martingale. Combining this and the fact that
(5.31) holds true for t = T , it follows that

(Q, (Sk)Tk=0) ∈ P̄ = P̄T ,

which proves (5.33).

In the second case, we assume that t < T . For each k = t, . . . , T − 1, we
are going to define Sk+1 ∈ Lk+1 as follows. For every ν ∈ Ωk, let λ′, λ′′ ∈ ν+

such that

Sbλ
′

k+1 = min
λ∈ν+

Sbλk+1,

Saλ
′′

k+1 = max
λ∈ν+

Saλk+1.

Then we define (Sλk+1)λ∈ν+ as

Sλk+1 :=


Sbλ

′
k+1 if λ = λ′,

Saλ
′′

k+1 if λ = λ′′,

1
2

(
Sbλk+1 + Saλk+1

)
if λ ∈ ν\{λ′, λ′′}.

Notice that
Sλk+1 ∈

[
Sbλk+1, S

aλ
k+1

]
for all λ ∈ ν+,

and
min
λ∈ν+

Sλk+1 = Sλ
′

k+1 < Sbνk ≤ Saνk < Sλ
′′

k+1 = max
λ∈ν+

Sλk+1. (5.34)

This completes the definition of Sk+1. Notice that (Sk)Tk=0 ∈ N and

Sbk ≤ Sk ≤ Sak for all k = 0, . . . , T.

For any k = t, . . . , T − 1, and ν ∈ Ωk, combining Sbνk ≤ Sνk ≤ Saνk with (5.34),
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5.2. Existence of a solution to the dual problem

it follows that
min
λ∈ν+

Sλk+1 < Sνk < max
λ∈ν+

Sλk+1.

Then there exists a collection of positive numbers (wλk+1)λ∈ν+ in (0, 1) such
that

∑
λ∈ν+

wλk+1 = 1,

∑
λ∈ν+

wλk+1S
λ
k+1 = Sνk .

Let Q∗ � P be the probability measure such that Q∗ = Q on Ft and

q∗λk+1 = wλk+1 for all k = t, . . . , T − 1, ν ∈ Ω+
k (Q∗), λ ∈ ν+. (5.35)

Such Q∗ can be constructed by specifying its transition probabilities with the
values of (wk+1)T−1

k=t via (5.35). Moreover, since the values of (wk+1)T−1
k=t are

always positive, the family Ω+
k (Q∗) in (5.35) can be written as

Ω+
k (Q∗) =

{
ν ∈ Ωk

∣∣∣νt ∈ Ω+
t (Q∗)

}
=
{
ν ∈ Ωk

∣∣∣νt ∈ Ω+
t (Q)

}
.

Let
(S∗k)Tk=0 := (Sk)Tk=0.

Then
Sbk ≤ S∗k ≤ Sak for all k = 0, . . . , T.

In addition, by straightforward calculation, it follows that

E
[
S∗k+1

∣∣Fk] (ν) =
∑
λ∈ν+

q∗λk+1S
∗λ
k+1 = S∗νk for all k = 0, . . . , T − 1, ν ∈ Ω+

k (Q).

Thus (S∗k)Tk=0 is a Q∗-martingale, and hence

(Q∗, (S∗k)Tk=0) ∈ P̄.

Therefore (5.33) holds true. This completes the proof.

For all 0 ≤ t ≤ t′ ≤ T and (Q, S) ∈ P̄t, we define

P̄tt′(Q, S) :=
{

(Q′, (S′k)t
′
k=0) ∈ P̄t′

∣∣∣Q′ = Q on Ft, (S′k)tk=0 = S
}
⊆ P̄t′ . (5.36)

Fix any t = 0, . . . , T − 1 and (Q, S) = (Q, (Sk)tk=0) ∈ P̄t. Let Ft+1 be an
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5.2. Existence of a solution to the dual problem

R ∪ {∞}-valued Ft+1-measurable random function on Ω × R2 such that the
function ω 7→ Fωt+1 is constant on each node in Ωt+1. Moreover, for every
λ ∈ Ωt+1, we assume that F λt+1 is bounded from below and F λt+1(q, s) ∈ R for
all q ∈ [0, 1] and s ∈ [Sbλt+1, S

aλ
t+1]. Let

Vt(Q, S) := inf
(Q′,(S′k)t+1

k=0)∈P̄tt+1(Q,S)


∑

ν∈Ω+
t (Q′)

Q′(ν)
∑
λ∈ν+

F λt+1

(
q′λt+1, S

′λ
t+1

) .
(5.37)

In the problem (5.37), for each ν ∈ Ω+
t (Q′), we have Q′(ν) = Q(ν) because

Q′ = Q on Ft. Moreover, the control variables (q′λt+1)λ∈ν+ are transition prob-
abilities which means that q′λt+1 ∈ [0, 1] for all λ ∈ ν+ and

∑
λ∈ν+ q′λt+1 = 1.

In addition, the control variables (S′λt+1)λ∈ν+ satisfies S′λt+1 ∈ [Sbλt+1, S
aλ
t+1] for

all λ ∈ ν+ and
∑
λ∈ν+ q′λt+1S

′λ
t+1 = S′νt = Sνt by Lemma 5.15 and S′t = St.

The result below says that the problem (5.37) above can be decoupled into
multiple minimisation problems.

Lemma 5.16. For every t = 0, . . . , T − 1 and (Q, S) = (Q, (Sk)tk=0) ∈ P̄t, we
have

Vt(Q, S) =
∑

ν∈Ω+
t (Q)

Q(ν) inf

∑
λ∈ν+

F λt+1

(
wλt+1, s

λ
t+1

)∣∣∣∣∣∣wλt+1 ∈ [0, 1],

sλt+1 ∈
[
Sbλt+1, S

aλ
t+1

]
∀λ ∈ ν+,

∑
λ∈ν+

wλt+1 = 1,
∑
λ∈ν+

wλt+1s
λ
t+1 = Sνt

 .
Proof. It follows from (5.37) and the comments following it that

Vt(Q, S) ≥
∑

ν∈Ω+
t (Q)

Q(ν) inf

∑
λ∈ν+

F λt+1

(
wλt+1, s

λ
t+1

)∣∣∣∣∣∣wλt+1 ∈ [0, 1],

sλt+1 ∈
[
Sbλt+1, S

aλ
t+1

]
∀λ ∈ ν+,

∑
λ∈ν+

wλt+1 = 1,
∑
λ∈ν+

wλt+1s
λ
t+1 = Sνt

 . (5.38)

We are going to show that the opposite inequality of (5.38) also holds
true. Suppose that (wλt+1, s

λ
t+1)λ∈ν+ is a collection of quantities that satisfies

the constraints in (5.38) for every ν ∈ Ω+
t (Q). Then, for any ν ∈ Ω+

t (Q), we
have wλt+1 ∈ [0, 1] and sλt+1 ∈ [Sbλt+1, S

aλ
t+1] for all λ ∈ ν+, and moreover

∑
λ∈ν+

wλt+1 = 1,

∑
λ∈ν+

wλt+1s
λ
t+1 = Sνt .
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Let Q′ � P be a probability measure such that Q′ = Q on Ft and that

q′λt+1 = wλt+1 for all λ ∈ ν+ and ν ∈ Ω+
t (Q).

In addition, we define (S′k)
t+1
k=0 as

(S′k)tk=0 =(Sk)tk=0 = S,

S′t+1 =st+1.

Then (Q′, (S′k)
t+1
k=0) ∈ P̄t+1 by Lemma 5.15. Combining this with Q′ = Q on Ft

and (S′k)tk=0 = S, it follows that(
Q′, (S′k)t+1

k=0

)
∈ P̄tt+1(Q, S).

Moreover, we have

∑
ν∈Ω+

t (Q′)

Q′(ν)
∑
λ∈ν+

F λt+1

(
q′λt+1, S

′λ
t+1

)
=

∑
ν∈Ω+

t (Q)

Q(ν)
∑
λ∈ν+

F λt+1

(
wλt+1, s

λ
t+1

)
.

Thus, the definition of Vt(Q, S) in (5.37) gives

Vt(Q, S) ≤
∑

ν∈Ω+
t (Q)

Q(ν)
∑
λ∈ν+

F λt+1

(
wλt+1, s

λ
t+1

)
.

By taking infimum on both sides, the opposite inequality of (5.38) holds true,
and hence the result follows.

5.2.2 Construction of a solution to the dual problem

In this section, Algorithm 5.17 first constructs a sequence of random functions
(Jt)Tt=0. Then Proposition 5.18 provides a number of properties of (Jt)Tt=0, and
it shows that every optimisation problem in Algorithm 5.17 admits a solution.
Based on (Jt)Tt=0, we will construct a pair (Q̂, Ŝ) in Algorithm 5.19. Then
Theorem 5.20 shows that (Q̂, Ŝ) ∈ P solves the problem (5.7), and that the
optimal value of (5.7) is closely related to J0. In order to prove Theorem 5.20,
we will provides a number of technical results in Propositions 5.21-5.22. The
proof of Theorem 5.20 will be provided at the end of the section.

For convenience, for every t = 1, . . . , T , let

lt :=
∑

k∈I,k≥t

1
αk

(5.39)

be the accumulated value of the quantities ( 1
αk

)k∈I,k≥t; the quantity α0 is not

155



5.2. Existence of a solution to the dual problem

used in defining lt. Observe that lT = 1
αT

because T ∈ I. Moreover, for any
sequence n1, . . . , nT ∈ R, we have

∑
t∈I\{0}

1
αt

t∑
k=1

nk =
∑

t∈I\{0}

( 1
αt
n1 + · · ·+ 1

αt
nt

)

=
∑

k∈I,k≥1

1
αk
n1 + · · ·+

∑
k∈I,k≥T

1
αk
nT

= l1n1 + · · ·+ lTnT

=
T∑
k=1

lknk. (5.40)

The following algorithm constructs a sequence of random functions (Jt)Tt=0.
For each t = 0, . . . , T , the random function Jt will be Ft-measurable. It
turns out that the minimal value of J0 is equal to KI(X); see Algorithm 5.19
and Theorem 5.20. Moreover, the random functions (Jt)Tt=0 will be used in
Algorithm 5.19 to construct a pair (Q̂, Ŝ).

Algorithm 5.17. Construct a sequence of random functions (Jt)Tt=0.
We are going to define random function Jt recursively for each t = T, . . . , 0.

For every ν ∈ ΩT and s ∈ R, let

JνT (s) :=

(1, s) ·Xν = Xbν + sXsν if s ∈
[
SbνT , S

aν
T

]
,

∞ otherwise.
(5.41)

Let t = T − 1, . . . , 0 and ν ∈ Ωt. Define Jνt : R 7→ R∪ {∞} as follows. For all
s ∈ [Sbνt , Saνt ], let

Jνt (s) := lt+1 inf
(qλt+1,s

λ
t+1)λ∈ν+

∑
λ∈ν+

qλt+1

(
ln
qλt+1
pλt+1

+
Jλt+1(sλt+1)

lt+1

)∣∣∣∣∣∣ qλt+1 ∈ [0, 1],

sλt+1 ∈
[
Sbλt+1, S

aλ
t+1

]
∀λ ∈ ν+,

∑
λ∈ν+

qλt+1 = 1,
∑
λ∈ν+

qλt+1s
λ
t+1 = s

 . (5.42)

Moreover, let
Jνt =∞ on R\

[
Sbνt , S

aν
t

]
.

This completes the construction of (Jt)Tt=0.

It turns out that there always exists a solution to the problem (5.42); see
Proposition 5.18.2. This means that the infimum in (5.42) is always attained.
In Section 5.3, we will discuss the approximation of (Jt)Tt=0.

In addition to the existence of solution of the problem (5.42), the pro-
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position below also provides a number of properties of (Jt)Tt=0. Some results
established in Sections 4.1 and 4.2 will be used in the proof of the following
result.

Proposition 5.18. The following claims hold true.

1. Let t = 0, . . . , T . For any ν ∈ Ωt, the function Jνt is real-valued, convex
and continuous on dom Jνt = [Sbνt , Saνt ].

2. There always exists a solution to the minimisation problem in (5.42).

3. Let t = 0, . . . , T . For any ν ∈ Ωt, the function s 7→ Jνt (s) is Lipschitz
continuous on dom Jνt , in other words, there exists Aνt ∈ [0,∞) such that

|Jνt (s1)− Jνt (s2)| ≤ Aνt |s1 − s2| for all s1, s2 ∈
[
Sbνt , S

aν
t

]
.

Proof. Firstly, we are going to prove by backward induction that the first claim
holds true. For any ν ∈ ΩT , the function JνT is affine on dom JνT = [SbνT , SaνT ].
Thus, the conditions on Jt in the first claim holds true for t = T . Fix any
i = 0, . . . , T − 1. Suppose that the conditions on Jt in the first claim holds
true for t = i + 1. This implies that, for any ν ∈ Ωi, the function Jλi+1 is
real-valued, convex and continuous on dom Jλi+1 = [Sbλi+1, S

aλ
i+1] for all λ ∈ ν+.

Moreover, the condition (5.26) gives

[
Sbνi , S

aν
i

]
⊆ co

 ⋃
λ∈ν+

[
Sbλi+1, S

aλ
i+1

] = co

 ⋃
λ∈ν+

dom Jλi+1

 ,
where co (A) is the convex hull of a set A. From Theorems 4.3 and 4.13, the
function Jνi is real-valued, convex and continuous on [Sbνi , Saνi ]. The construc-
tion of Jνi in Algorithm 5.17 gives

Jνi =∞ on R\[Sbνi , Saνi ],

and hence dom Jνi = [Sbνi , Saνi ]. Therefore, the conditions on Jt in the first
claim holds true for t = i. This completes the induction step, and hence the
first claim holds true.

The second claim follows from Theorem 4.13.
It remains to prove the third claim. Fix any ν ∈ ΩT . The function JνT

is affine on [SbνT , SaνT ] with slope Xsν . Then, by letting AνT := |Xsν | ≥ 0, it
follows that

|JνT (s1)− JνT (s2)| = AνT |s1 − s2| for all s1, s2 ∈
[
SbνT , S

aν
T

]
.

157



5.2. Existence of a solution to the dual problem

Fix any t = 0, . . . , T − 1 and ν ∈ Ωt. We are going to define a function
s 7→ J∗νt (s) that satisfies

J∗νt = Jνt on
[
Sbνt , S

aν
t

]
= dom Jνt .

For any s ∈ R, let

J∗νt (s) := lt+1 inf
(qλt+1,s

λ
t+1)λ∈ν+

∑
λ∈ν+

qλt+1

(
ln
qλt+1
pλt+1

+
Jλt+1(sλt+1)

lt+1

)∣∣∣∣∣∣
qλt+1 ∈ [0, 1], sλt+1 ∈ [Sbλt+1, S

aλ
t+1] ∀λ ∈ ν+,

∑
λ∈ν+

qλt+1 = 1,
∑
λ∈ν+

qλt+1s
λ
t+1 = s

 .
Theorem 4.3 implies that J∗νt is R ∪ {∞}-valued, convex, and

dom J∗νt = co

 ⋃
λ∈ν+

[
Sbλt+1, S

aλ
t+1

] =
[

min
λ∈ν+

Sbλt+1,max
λ∈ν+

Saλt+1

]
.

Moreover, it follows from Theorem 4.13 that J∗νt is continuous on dom J∗νt .
From (5.26), we have

min
λ∈ν+

Sbλt+1 < Sbνt ≤ Saνt < max
λ∈ν+

Saλt+1.

This means
int (dom J∗νt ) ⊇

[
Sbνt , S

aν
t

]
= dom Jνt ,

where intB is the interior of any set B. Then there exists Aνt ∈ [0,∞) such
that

|Jνt (s1)− Jνt (s2)| = |J∗νt (s1)− J∗νt (s2)| ≤ Aνt |s1 − s2| for all s1, s2 ∈ dom Jνt

(Rockafellar 1997, Theorem 24.7). This completes the proof.

The algorithm below will introduce a pair (Q̂, Ŝ) that relies on the sequence
of random functions (Jt)Tt=0 constructed in Algorithm 5.17 above. It turns out
that (Q̂, Ŝ) ∈ P and this pair is a solution to the minimisation problem (5.7);
see Theorem 5.20.

Algorithm 5.19. Construct a pair (Q̂, Ŝ) = (Q̂, (Ŝt)Tt=0).
Firstly, we shall construct q̄t, s̄t ∈ Lt recursively for each t = 0, . . . , T . Let

q̄0 = 1, and let s̄0 ∈ [Sb0, Sa0 ] such that

J0(s̄0) = inf
s∈[Sb0,Sa0 ]

J0(s).
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For each t = 0, . . . , T − 1 and ν ∈ Ωt, let (q̄λt+1, s̄
λ
t+1)λ∈ν+ be a solution to the

problem in (5.42) with s = s̄νt . This completes the construction of (q̄t, s̄t)Tt=0.
Secondly, we define (Q̂, Ŝ) as

Q̂(A) :=
∑
ω∈A

T∏
t=0

q̄
{ω}t
t for all A ∈ F ,

Ŝt := s̄t for all t = 0, . . . , T ;

the value of an empty summation is assumed to be 0 (which means Q̂(∅) = 0).
This completes the construction.

From Proposition 5.18.1, the function s 7→ J0(s) is continuous on [Sb0, Sa0 ].
This means that s̄0 introduced in Algorithm 5.19 exists. Moreover, from Pro-
position 5.18.2, there always exists a solution to the problem in (5.42). This
implies that the sequence of random variables (q̄t, s̄t)Tt=1 constructed in Al-
gorithm 5.19 also exist.

Theorem 5.20 below is the main result of this section. It shows that the pair
(Q̂, Ŝ) constructed in Algorithm 5.19 above is a solution to the problem (5.7).
Moreover, it shows that (Q̂, Ŝ) ∈ P which means Q̂ ∼ P (i.e. Q̂(ω) > 0 for
every ω ∈ Ω). In addition, this theorem also shows that KI(X) (which is the
optimal value of the minimisation problem in (5.7)) is closely related to the
function J0 constructed in Algorithm 5.17.

Theorem 5.20. Under the assumption that (5.26) holds true, the pair (Q̂, Ŝ) =
(Q̂, (Ŝt)Tt=0) constructed in Algorithm 5.19 satisfies (Q̂, Ŝ) ∈ P and

HI
(
(Q̂, Ŝ);X

)
= J0(Ŝ0) = KI (X) . (5.43)

Thus (Q̂, Ŝ) solves (5.7).

The main task of the remainder of this section is to prepare the results
that will be used to prove Theorem 5.20. The proof will be provided at the
end of this section.

For all t = 0, . . . , T and (Q, S) ∈ P̄t, let

Vt(Q, S) := inf
(Q∗,S∗)∈P̄tT (Q,S)

HI ((Q∗, S∗);X) ; (5.44)

see (5.30) for the definition of P̄t and see (5.36) for the definition of P̄tt′(Q, S)
for all t ≤ t′ ≤ T . In particular, when t = T , we have

VT (Q, S) = inf
(Q∗,S∗)∈P̄TT (Q,S)

HI ((Q∗, S∗);X) = HI ((Q, S) ;X) (5.45)
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because P̄TT (Q, S) = {(Q, S)}. Observe that

inf
(Q,S)∈P̄0

V0(Q, S) = inf
{
HI ((Q∗, S∗);X)

∣∣∣(Q, S) ∈ P̄0, (Q∗, S∗) ∈ P̄0
T (Q, S)

}
= inf

{
HI ((Q, S);X)

∣∣∣(Q, S) ∈ P̄
}

= KI (X) (5.46)

by the definition of KI (X) in (5.7).
The following proposition provides a connection between Vt and Vt+1 for

each t = 0, . . . , T − 1. This result is technical, and it will be used in the proof
of Proposition 5.22 below.

Proposition 5.21. Let t = 0, . . . , T − 1 and (Q, S) ∈ P̄t. Then

Vt(Q, S) = inf
(Q′,S′)∈P̄tt+1(Q,S)

Vt+1(Q′, S′).

Proof. Let t = 0, . . . , T−1 and (Q, S) ∈ P̄t. Notice from (5.36) that the family
P̄tT (Q, S) can be presented as

P̄tT (Q, S) =
{

(Q∗, (S∗k)Tk=0) ∈ P̄T
∣∣∣Q∗ = Q on Ft, (S∗k)tk=0 = S

}
=
{

(Q∗, S∗)
∣∣∣(Q′, S′) ∈ P̄tt+1(Q, S), (Q∗, S∗) ∈ P̄t+1

T (Q′, S′)
}
.

Combining this with (5.44), we have

Vt(Q, S) = inf
(Q′,S′)∈P̄tt+1(Q,S), (Q∗,S∗)∈P̄t+1

T (Q′,S′)
HI ((Q∗, S∗);X)

= inf
(Q′,S′)∈P̄tt+1(Q,S)

inf
(Q∗,S∗)∈P̄t+1

T (Q′,S′)
HI ((Q∗, S∗);X)

= inf
(Q′,S′)∈P̄tt+1(Q,S)

Vt+1(Q′, S′).

This completes the proof.

The following result gives a link between Vt and Jt where t = 0, . . . , T .
This result will be used in the proof of Theorem 5.20.

Proposition 5.22. For all (Q, S0) ∈ P̄0, we have

V0(Q, S0) = J0(S0). (5.47)

Moreover, for all t = 1, . . . , T and (Q, (Sk)tk=0) ∈ P̄t, we have

Vt(Q, (Sk)tk=0) = EQ [Jt(St)] +
t∑

k=1
lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
. (5.48)
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Proof. Firstly, we are going to prove by backward induction that (5.48) holds
true for any (Q, (Sk)tk=0) ∈ P̄t for each t = T, . . . , 1.

For any (Q, S) = (Q, (St)Tt=0) ∈ P̄ = P̄T , it follows from the construction
of JT in Algorithm 5.17 that

EQ [(1, ST ) ·X] = EQ [JT (ST )]

Then (5.6) gives

HI ((Q, S);X) = EQ [JT (ST )] +
∑
t∈I

1
αt

E
[
ΛQ
t ln ΛQ

t

]
= EQ [JT (ST )] +

∑
t∈I

1
αt

EQ
[
ln ΛQ

t

]
.

Notice that
EQ

[
ln ΛQ

0

]
= E

[
ΛQ

0 ln ΛQ
0

]
= 0

by (2.18). This means that, for each t = 1, . . . , T , the expectation EQ
[
ln ΛQ

t

]
can be written as

EQ
[
ln ΛQ

t

]
= EQ

[
ln ΛQ

t

]
− EQ

[
ln ΛQ

0

]
=

t∑
k=1

(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
.

Combining this with 1
α0
EQ
[
ln ΛQ

0
]

= 0, we have

∑
t∈I

1
αt

EQ
[
ln ΛQ

t

]
=

∑
t∈I\{0}

1
αt

t∑
k=1

(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])

=
T∑
k=1

lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])

by (5.40). Therefore, it follows from (5.45) that

VT (Q, S) = HI ((Q, S);X)

= EQ [JT (ST )] +
T∑
k=1

lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
.

Thus (5.48) holds true for t = T .

Let i = 1, . . . , T − 1. Suppose that, for any (Q, (Sk)i+1
k=0) ∈ P̄i+1, the

equality (5.48) holds true for t = i + 1. Fix any (Q, S) = (Q, (Sk)ik=0) ∈ P̄i.
Then we are going to show that (5.48) holds true for t = i. Notice that, for
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any (Q′, (S′k)
i+1
k=0) ∈ P̄ ii+1(Q, S), we have

Vi+1
(
Q′, (S′k)i+1

k=0

)
=EQ′

[
Ji+1(S′i+1)

]
+

i+1∑
k=1

lk
(
EQ′

[
ln ΛQ′

k

]
− EQ′

[
ln ΛQ′

k−1

])
=EQ′

[
Ji+1(S′i+1)

]
+ li+1

(
EQ′

[
ln ΛQ′

i+1

]
− EQ′

[
ln ΛQ′

i

])
+

i∑
k=1

lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
,

where the second equality follows from the fact that Q′ = Q on Fi. Moreover,
from Remark 5.12, we have

EQ′
[
Ji+1(S′i+1)

]
=

∑
ν∈Ω+

i (Q′)

Q′(ν)
∑
λ∈ν+

q′λi+1J
λ
i+1(S′λi+1).

In addition, Lemma 5.14 gives

EQ′
[
ln ΛQ′

i+1

]
− EQ′

[
ln ΛQ′

i

]
=

∑
ν∈Ω+

i (Q′)

Q′(ν)
∑
λ∈ν+

q′λi+1 ln
q′λi+1
pλi+1

.

Thus, the value Vi+1(Q′, (S′k)
i+1
k=0) can be written as

Vi+1
(
Q′, (S′k)i+1

k=0

)
= li+1

∑
ν∈Ω+

i (Q′)

Q′(ν)
∑
λ∈ν+

q′λi+1

(
ln
q′λi+1
pλi+1

+
Jλi+1(S′λi+1)

li+1

)

+
i∑

k=1
lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
.

By the connection between Vi and Vi+1 established in Proposition 5.21, we
can present Vi(Q, S) as

Vi(Q, S) = inf
(Q′,(S′k)i+1

k=0)∈P̄ii+1(Q,S)
Vi+1

(
Q′, (S′k)i+1

k=0

)
.

Combining this with Lemma 5.16, we have

Vi(Q, S)

=li+1
∑

ν∈Ω+
i (Q)

Q(ν) inf

∑
λ∈ν+

wλi+1

(
ln
wλi+1
pλi+1

+
Jλi+1(sλi+1)

li+1

)∣∣∣∣∣∣wλi+1 ∈ [0, 1],

sλi+1 ∈
[
Sbλi+1, S

aλ
i+1

]
∀λ ∈ ν+,

∑
λ∈ν+

wλi+1 = 1,
∑
λ∈ν+

wλi+1s
λ
i+1 = Sνi


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+
i∑

k=1
lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
.

Then it follows from the construction of Ji in Algorithm 5.17 that

Vi(Q, S) =
∑

ν∈Ω+
i (Q)

Q(ν)Jνi (Sνi ) +
i∑

k=1
lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])

=EQ [Ji(Si)] +
i∑

k=1
lk
(
EQ

[
ln ΛQ

k

]
− EQ

[
ln ΛQ

k−1

])
.

This implies that (5.48) holds true for t = i. This completes the induction
step. Therefore, we can conclude that (5.48) holds true for every t = 1, . . . , T
and (Q, (Sk)tk=0) ∈ P̄t.

Fix any (Q, S0) ∈ P̄0. We are going to show that (5.47) holds true. For
any (Q′, (S′k)1

k=0) ∈ P̄0
1 (Q, S0), it follows from (5.48) that

V1
(
Q′, (S′k)1

k=0

)
= EQ′

[
J1(S′1)

]
+ l1

(
EQ′

[
ln ΛQ′

1

]
− EQ′

[
ln ΛQ′

0

])
,

where EQ′
[
ln ΛQ′

0

]
= E

[
ΛQ′

0 ln ΛQ′
0

]
= 0 by (2.18). Then

V1
(
Q′, (S′k)1

k=0

)
= EQ′

[
J1(S′1)

]
+ l1EQ′

[
ln ΛQ′

1

]
=
∑
λ∈Ω1

q′λ1 J
λ
1 (S′λ1 ) + l1

∑
λ∈Ω1

q′λ1 ln q
′λ
1
pλ1

= l1
∑
λ∈Ω1

q′λ1

(
ln q

′λ
1
pλ1

+ Jλ1 (S′λ1 )
l1

)
.

Combining Proposition 5.21 and Lemma 5.16, we have

V0(Q, S0) = inf
(Q′,(S′

k
)1
k=0)∈P̄0

1 (Q,S0)
V1
(
Q′, (S′k)1

k=0

)

=l1 inf

∑
λ∈Ω1

wλ1

(
ln w

λ
1
pλ1

+ Jλ1 (sλ1)
l1

)∣∣∣∣∣∣wλ1 ∈ [0, 1],

sλ1 ∈ [Sbλ1 , Saλ1 ] ∀λ ∈ ν+,
∑
λ∈ν+

wλ1 = 1,
∑
λ∈ν+

wλ1s
λ
1 = S0

 .
Then the construction of J0 in Algorithm 5.17 implies

V0(Q, S0) = J0(S0),

and hence (5.47) holds true. This completes the proof.
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This section ends with the proof of Theorem 5.20.

Proof of Theorem 5.20. We will first prove that (Q̂, Ŝ) ∈ P̄, where (Q̂, Ŝ) is
constructed in Algorithm 5.19. Then we will focus on the proof of (5.43). At
the end of this proof, we will show that (Q̂, Ŝ) ∈ P.

Firstly, we have Q̂(∅) = 0 by the definition of Q̂. Let (Ak)∞k=1 be a sequence
of pairwise disjoint sets in F . Then

Q̂
( ∞⋃
k=1

Ak

)
=

∑
ω∈∪∞

k=1Ak

T∏
t=0

q̄
{ω}t
t

=
∞∑
k=1

∑
ω∈Ak

T∏
t=0

q̄
{ω}t
t

=
∞∑
k=1

Q̂ (Ak) .

This means that Q̂ is countably additive. We are going to prove by induction
that

Q̂(ν) =
t∏

k=0
q̄νkk for all ν ∈ Ωt (5.49)

for each t = 0, . . . , T . Observe that

Q̂(ν) =
∑
ω∈ν

T∏
t=0

q̄
{ω}t
t =

T∏
t=0

q̄νtt for all ν ∈ ΩT .

This means that (5.49) holds true for t = T . Fix any i = 0, . . . , T −1. Suppose
that (5.49) holds true for t = i+1. For any ν ∈ Ωi, it follows from ν = ∪λ∈ν+λ

that
Q̂(ν) =

∑
λ∈ν+

Q̂(λ),

where Q̂(λ) =
∏i+1
k=0 q̄

λk
k because (5.49) holds true for t = i + 1. Thus Q̂(ν)

can be written as

Q̂(ν) =
∑
λ∈ν+

i+1∏
k=0

q̄λkk

=
∑
λ∈ν+

i∏
k=0

q̄λkk q̄λi+1

=
∑
λ∈ν+

i∏
k=0

q̄νkk q̄
λ
i+1

=
i∏

k=0
q̄νkk

∑
λ∈ν+

q̄λi+1

164



5.2. Existence of a solution to the dual problem

=
i∏

k=0
q̄νkk .

Therefore (5.49) holds true for t = i. This completes the induction step, and
hence (5.49) holds true for each t = 0, . . . , T . Notice that Ω ∈ Ω0 and (5.49)
gives Q̂(Ω) = q̄0 = 1. The conclusion is that Q̂� P is a probability measure.
From (5.49), the transition probabilities of Q̂ satisfy

q̂λi+1 = Q̂(λ)
Q̂(ν)

=
∏i+1
k=0 q̄

λk
k∏i

k=0 q̄
νk
k

=
∏i
k=0 q̄

νk
k q̄

λ
i+1∏i

k=0 q̄
νk
k

= q̄λi+1

for all i = 0, . . . , T−1, ν ∈ Ω+
i (Q̂) and λ ∈ ν+. Moreover, from Algorithm 5.19,

we have Ŝ = (Ŝi)Ti=0 = (s̄i)Ti=0. Then it follows from the construction of
(q̄i, s̄i)Ti=0 that

Sbi ≤ Ŝi ≤ Sai for all i = 0, . . . , T,∑
λ∈ν+ q̂λi+1Ŝ

λ
i+1 = Ŝνi for all i = 0, . . . , T − 1, ν ∈ Ω+

i (Q̂).

Then Lemma 5.15 implies (Q̂, Ŝ) ∈ P̄T = P̄.

Secondly, we are going to show that (5.43) holds true. It follows from the
definition of P̄0 in (5.30) and (Q̂, Ŝ) = (Q̂, (Ŝt)Tt=0) ∈ P̄ that (Q̂, Ŝ0) ∈ P̄0.
Then (5.47) gives

V0
(
Q̂, Ŝ0

)
= J0

(
Ŝ0
)

(5.50)

= inf
S0∈[Sb0,Sa0 ]

J0(S0)

= inf
(Q,S0)∈P̄0

J0(S0)

= inf
(Q,S0)∈P̄0

V0(Q, S0); (5.51)

the last equality follows from (5.47) as well. Fix any t = 0, . . . , T − 1. The
expectation EQ̂[Jt(Ŝt)] can be presented as

EQ̂

[
Jt(Ŝt)

]
=

∑
ν∈Ω+

t (Q̂)

Q̂(ν)Jνt (Ŝνt ),

where

Jνt (Ŝνt ) = lt+1
∑
λ∈ν+

q̂λt+1

(
ln
q̂λt+1
pλt+1

+
Jλt+1(Ŝλt+1)

lt+1

)

by the definition of Jνt (Ŝνt ) and the fact that (q̄λt+1, s̄
λ
t+1)λ∈ν+ = (q̂λt+1, Ŝ

λ
t+1)λ∈ν+

is a solution to the problem in (5.42) with s = s̄νt = Ŝνt . Then EQ̂[Jt(Ŝt)] can
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be written as

EQ̂

[
Jt(Ŝt)

]
= lt+1

∑
ν∈Ω+

t (Q̂)

Q̂(ν)
∑
λ∈ν+

q̂λt+1

(
ln
q̂λt+1
pλt+1

+
Jλt+1(Ŝλt+1)

lt+1

)
.

Observe from Remark 5.12 that

∑
ν∈Ω+

t (Q̂)

Q̂(ν)
∑
λ∈ν+

q̂λt+1J
λ
t+1(Ŝλt+1) = EQ̂

[
Jt+1(Ŝt+1)

]
.

Moreover, it follows from Lemma 5.14 that

lt+1
∑

ν∈Ω+
t (Q̂)

Q̂(ν)
∑
λ∈ν+

q̂λt+1 ln
q̂λt+1
pλt+1

= lt+1
(
EQ̂

[
ln ΛQ̂

t+1

]
− EQ̂

[
ln ΛQ̂

t

])
.

Thus

EQ̂

[
Jt(Ŝt)

]
= EQ̂

[
Jt+1(Ŝt+1)

]
+ lt+1

(
EQ̂

[
ln ΛQ̂

t+1

]
− EQ̂

[
ln ΛQ̂

t

])
. (5.52)

By adding
∑t
k=1 lk

(
EQ̂

[
ln ΛQ̂

k

]
− EQ̂

[
ln ΛQ̂

k−1

])
on both sides of (5.52), we

have

EQ
[
Jt(Ŝt)

]
+

t∑
k=1

lk
(
EQ̂

[
ln ΛQ̂

k

]
− EQ̂

[
ln ΛQ̂

k−1

])

= EQ̂

[
Jt+1(Ŝt+1)

]
+

t+1∑
k=1

lk
(
EQ̂

[
ln ΛQ̂

k

]
− EQ̂

[
ln ΛQ̂

k−1

])
.

Combining this with the fact that (Q̂, (Ŝk)tk=0) ∈ P̄t and (Q̂, (Ŝk)t+1
k=0) ∈ P̄t+1,

it follows from Proposition 5.22 that

Vt
(
Q̂, (Ŝk)tk=0

)
= Vt+1

(
Q̂t, (Ŝk)t+1

k=0

)
.

Therefore, we can conclude that

VT
(
Q̂, (Ŝk)Tk=0

)
= V0

(
Q̂, Ŝ0

)
= inf

(Q,S0)∈P̄0
V0(Q, S0) (5.53)

by (5.51). From (5.45), (5.50) and (5.46), we can present the common value
in (5.53) above as follows:

VT
(
Q̂, (Ŝk)Tk=0

)
= HI

(
(Q̂, Ŝ);X

)
,

V0
(
Q̂, Ŝ0

)
= J0

(
Ŝ0
)
,

166



5.3. Piecewise linear approximation

inf
(Q,S0)∈P̄0

V0(Q, S0) = KI (X) .

Thus (5.43) holds true. It follows from

HI
(
(Q̂, Ŝ);X

)
= KI (X)

that (Q̂, Ŝ) solves the problem (5.7). Finally, Lemma 5.3 implies (Q̂, Ŝ) ∈ P.
This completes the proof.

5.3 Piecewise linear approximation

In this section, based on the assumption that (5.26) holds true, we will intro-
duce a sequence of random functions (J̃t)Tt=0 for approximating (Jt)Tt=0 con-
structed in Algorithm 5.17. For any t = 0, . . . , T and ν ∈ Ωt, we will set J̃νt to
be convex and piecewise linear on [Sbνt , Saνt ], and satisfy J̃νt ≥ Jνt . Moreover,
as the number of segments of J̃νt increases, it will converge to Jνt uniformly;
this convergence is established in Theorem 5.25. Such piecewise linear approx-
imation allows us to compute (J̃t)Tt=0 in a binary model by using the results
from Section 4.3. In Section 5.5, we will discuss how to use (J̃t)Tt=0 as an ap-
proximation of (Jt)Tt=0 to compute the optimal injections, the minimal regret,
and the regret indifference prices in a binary model.

Let n ≥ 2 be an integer. For every t = 0, . . . , T −1 and ν ∈ Ωt, the bid-ask
interval [Sbνt , Saνt ] is divided into n− 1 subintervals

[
s1ν
t , s

2ν
t

]
,
[
s2ν
t , s

3ν
t

]
, . . . ,

[
sn−1,ν
t , snνt

]
(5.54)

with equal length by taking

siνt := Sbνt + i−1
n−1

(
Saνt − Sbνt

)
for all i = 1, . . . , n. (5.55)

Observe that [
s1ν
t , s

nν
t

]
=
[
Sbνt , S

aν
t

]
.

Consider the following two cases. In the case when Sbνt < Saνt , we have

s1ν
t < s2ν

t < · · · < snνt . (5.56)

In the case when Sbνt = Saνt (i.e. the transaction costs are zero at time t on
the node ν), the interval

[
s1ν
t , s

nν
t

]
is a singleton set, and this leads to

s1ν
t = s2ν

t = · · · = snνt .
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We will set J̃νt to be affine on each of the intervals in (5.54). Then J̃νt will be
piecewise linear with n− 1 segments on [s1ν

t , s
nν
t ].

The maximum distance between siνt and si+1,ν
t among all t = 0, . . . , T − 1,

ν ∈ Ωt and i = 1, . . . , n− 1 is defined as

δ(n) := max
{
si+1,ν
t − siνt

∣∣∣ t = 0, . . . , T − 1, ν ∈ Ωt, i = 1, . . . , n− 1
}

(5.57)

= 1
n−1 max

{
Saνt − Sbνt

∣∣∣ t = 0, . . . , T − 1, ν ∈ Ωt

}
.

If there are no transaction costs at each time t = 0, . . . , T − 1, then δ(n) = 0.
Notice that

lim
n→∞

δ(n) = 0. (5.58)

Remark 5.23. We provide a concrete construction for the intervals (5.54).
However, the main results (Proposition 5.24 and Theorem 5.25) established in
this section does not rely on the fact that the intervals are of the same width.
As long as the end points of these intervals satisfy (5.56) when Sbνt < Saνt for
all t = 0, . . . , T − 1 and ν ∈ Ωt, the main results still hold true.

To approximate (Jt)Tt=0, we are going to define Ft-measurable random
functions J̃t and J̃∗t recursively for each t = T, . . . , 0; the function J̃∗t is an
auxiliary function used to construct J̃t. For any ν ∈ ΩT and s ∈ R, we define

J̃νT (s) ≡ J̃∗νT (s) := JνT (s) =

(1, s) ·Xν if s ∈
[
SbνT , S

aν
T

]
,

∞ otherwise.
(5.59)

Let t = T − 1, . . . , 0 and ν ∈ Ωt. For any s ∈ R, we define

J̃∗νt (s) := lt+1 inf
(qλt+1,s

λ
t+1)λ∈ν+

∑
λ∈ν+

qλt+1

(
ln
qλt+1
pλt+1

+
J̃λt+1(sλt+1)

lt+1

)∣∣∣∣∣∣ qλt+1 ∈ [0, 1],

sλt+1 ∈
[
Sbλt+1, S

aλ
t+1

]
∀λ ∈ ν+,

∑
λ∈ν+

qλt+1 = 1,
∑
λ∈ν+

qλt+1s
λ
t+1 = s

 . (5.60)

Observe from (5.42) that if Jλt+1 ≤ J̃λt+1 for all λ ∈ ν+, then Jνt ≤ J̃∗νt on
[Sbνt , Saνt ]. Moreover, we have J̃∗T−1 = JT−1. It turns out that J̃∗νt is real-
valued, convex, and continuous on [Sbνt , Saνt ]; see Proposition 5.24.1. We shall
define J̃νt by considering the following two cases. In the case when s1ν

t = snνt ,
the function J̃νt is defined as

J̃νt :=

J̃
∗ν
t on

[
s1ν
t , s

nν
t

]
= [Sbνt , Saνt ] =

{
s1ν
t

}
,

∞ on R\
{
s1ν
t

}
.
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5.3. Piecewise linear approximation

In the case when s1ν
t < snνt , the sequence (siνt )ni=1 satisfies (5.56). By connect-

ing
(
siνt , J̃

∗ν
t

(
siνt
))

and
(
si+1,ν
t , J̃∗νt

(
si+1,ν
t

))
for each i = 1, . . . , n − 1, we shall

set J̃νt to be continuous and piecewise linear on [s1ν
t , s

nν
t ]; an example of J̃νt

on [s1ν
t , s

nν
t ] with J̃∗νt given is provided in Figure 5.1. Let

J̃νt (s) := J̃∗νt (s) for all s = siνt , . . . , s
nν
t . (5.61)

Moreover, for any i = 1, . . . , n− 1, let

J̃νt (s) := m̃iν
t s+ J̃ν∗t

(
siνt

)
− m̃iν

t s
iν
t for all s ∈

(
siνt , s

i+1,ν
t

)
(5.62)

where

m̃iν
t :=

J̃∗νt
(
si+1,ν
t

)
− J̃∗νt

(
siνt
)

si+1,ν
t − siνt

.

As long as J̃∗νt is real-valued, continuous, and convex on [s1ν
t , s

nν
t ], the function

J̃νt is real-valued, continuous, piecewise linear, convex, and it satisfies J̃νt ≥ J̃∗νt
on [s1ν

t , s
nν
t ]; see Lemma A.10. Finally, let

J̃νt :=∞ on R\
[
s1ν
t , s

nν
t

]
. (5.63)

This completes the definitions of (J̃∗t )Tt=0 and (J̃t)Tt=0. Notice that for any
t = 0, . . . , T − 1 and ν ∈ Ωt, the function J̃νt relies on J̃∗νt (s1ν

t ), . . . , J̃∗νt (snνt )
only. It turns out that (J̃t)Tt=0 can be used to approximate (Jt)Tt=0 as long as
δ(n) is close to 0. The relevant convergence result is provided in Theorem 5.25.

s1ν
t s2ν

t s3ν
t s4ν

t s5ν
t

s

J̃∗νt (s)
J̃νt (s)

Figure 5.1: Picture of J̃νt with J̃∗νt given, where t < T , ν ∈ Ωt and n = 5

Proposition 5.24 below provides a number of properties of J̃∗νt and J̃νt on
[Sbνt , Saνt ] for each t = 0, . . . , T and ν ∈ Ωt. Moreover, it shows that the
minimisation problem in (5.60) with s ∈ [Sbνt , Saνt ] admits a solution. Some
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5.3. Piecewise linear approximation

results from Sections 4.1-4.2 will be used in the proof of the following result.

Proposition 5.24. Let t = 0, . . . , T . The following two claims hold true.

1. For any ν ∈ Ωt, on [Sbνt , Saνt ], the functions s 7→ J̃∗νt (s) and s 7→ J̃νt (s)
satisfy the following properties.

• The function J̃∗νt is real-valued, continuous, and convex.

• The function J̃νt is real-valued, continuous, piecewise linear, and
convex. If t ≤ T − 1, then it is affine on

[
siνk , s

i+1,ν
k

]
for each

i = 1, . . . , n− 1.

• We have Jνt ≤ J̃∗νt ≤ J̃νt .

2. For any ν ∈ Ωt, if t ≤ T − 1, then there exists a solution to the minim-
isation problem in (5.60) for all s ∈ [Sbνt , Saνt ].

Proof. Firstly, we are going to show that the first claim holds true for each
t = T, . . . , 0 by backward induction. For any ν ∈ ΩT , it follows from (5.59)
that J̃νT = J̃∗νT = JνT is affine on [SbνT , SaνT ]. Thus, the first claim holds true for
t = T . Let k = 0, . . . , T − 1, and suppose now that the first claim holds true
for t = k + 1. Fix any ν ∈ Ωk. Since the first claim holds true for t = k + 1,
for any λ ∈ ν+, the function J̃λk+1 is real-valued, continuous and convex on
[Sbλk+1, S

aλ
k+1]. Moreover, it satisfies

Jλk+1 ≤ J̃λk+1 on
[
Sbλk+1, S

aλ
k+1

]
(5.64)

From (5.63), we have

J̃λk+1 =∞ on R\
[
s1λ
k+1, s

nλ
k+1

]
= R\

[
Sbλk+1, S

aλ
k+1

]
.

Combining this with the fact that J̃λk+1 on [Sbλk+1, S
aλ
k+1] is real-valued, we have

dom J̃λk+1 =
[
Sbλk+1, S

aλ
k+1

]
. (5.65)

Now, we are going to prove that first claim hold true for t = k. For any
s ∈ [Sbνk , Saνk ], the condition (5.26) gives

s ∈
[

min
λ∈ν+

Sbλk+1,max
λ∈ν+

Saλk+1

]
= co

 ⋃
λ∈ν+

[
Sbλk+1, S

aλ
k+1

] ,
where co (A) is the convex hull of a given set A. Combining this with (5.65),
it follows that

s ∈ co

 ⋃
λ∈ν+

dom J̃λk+1

 .
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5.3. Piecewise linear approximation

Then the value J̃∗νk (s) is finite by (4.5). Thus J̃∗νk is real-valued on [Sbνk , Saνk ].
Moreover, from Theorems 4.3 and 4.13, the function J̃∗νk is convex and con-
tinuous on [Sbνk , Saνk ]. Since (5.64) holds true for all λ ∈ ν+, it follows from the
definitions of Jνk and J̃∗νk (see (5.42) and (5.60)) that Jνk ≤ J̃∗νk on [Sbνk , Saνk ].
From (5.61)-(5.62), the construction of J̃νk is based on J̃∗νk . Since J̃∗νk is real-
valued, continuous, and convex on [Sbνk , Saνk ], the function J̃νk is real-valued,
continuous, piecewise linear, convex, and it satisfies J̃νk ≥ J̃∗νk on [Sbνk , Saνk ];
see Lemma A.10. Clearly, the function J̃νk is affine on

[
siνk , s

i+1,ν
k

]
for each

i = 1, . . . , n−1. We can conclude that all conditions in the first claim hold true
for t = k. This completes the induction step, and hence the first claim holds
true for all t = 0, . . . , T . The second claim follows from Theorem 4.13.

The theorem below shows that (J̃t)Tt=0 can be used to approximate (Jt)Tt=0
when δ(n) defined in (5.57) is close to 0. More precisely, it shows that, for
any t = 0, . . . , T and ν ∈ Ωt, the piecewise linear function J̃νt converges to Jνt
uniformly as n→∞.

Theorem 5.25. Under the assumption that (5.26) holds true, for any t =
0, . . . , T , there exists Bt ∈ Lt+, which is independent of n, such that∣∣∣J̃νt (s)− Jνt (s)

∣∣∣ ≤ Bν
t δ(n) for all ν ∈ Ωt, s ∈

[
Sbνt , S

aν
t

]
. (5.66)

Proof. We are going to prove this theorem by backward induction. At time
t = T , let BT := 0 which is independent of n. Since J̃T = JT by (5.59),
the condition (5.66) holds true for t = T . Let k = 0, . . . , T − 1. Suppose that
there exists Bk+1 ∈ (Lk+1)+, which is independent of n, such that (5.66) holds
true for t = k + 1. From Proposition 5.18.3, there exists Ak ∈ Lk+, which is
independent of n, such that

|Jνk (x1)− Jνk (x2)| ≤ Aνk |x1 − x2| for all ν ∈ Ωk, x1, x2 ∈
[
Sbνk , S

aν
k

]
. (5.67)

Then we define Bk ∈ Lk+ as

Bν
k :=

∑
λ∈ν+

Bλ
k+1 +Aνk ≥ 0 for all ν ∈ Ωk.

Notice that Bk is independent of n. We are going to prove (5.66) holds true
for t = k. Fix any ν ∈ Ωk and s ∈ [Sbνk , Saνk ] = [s1ν

k , s
nν
k ]. Notice that

s ∈
[
sjνk , s

j+1,ν
k

]
for some j = 1, . . . , n− 1.

By Proposition 5.24.1, the function J̃νk is affine on
[
sjνk , s

j+1,ν
k

]
. Then by letting
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5.3. Piecewise linear approximation

s′ ∈
{
sjνk , s

j+1,ν
k

}
such that

J̃νk
(
s′
)

= max
{
J̃νk
(
sjνk
)
, J̃νk

(
sj+1,ν
k

)}
,

we have
J̃νk (s) ≤ J̃νk

(
s′
)
.

Moreover, by subtracting Jνk (s) on both sides, it follows that

J̃νk (s)− Jνk (s) ≤ J̃νk
(
s′
)
− Jνk (s).

Observe from Proposition 5.24.1 that J̃νk (s)− Jνk (s) ≥ 0. Then∣∣∣J̃νk (s)− Jνk (s)
∣∣∣ ≤ ∣∣∣J̃νk (s′)− Jνk (s)

∣∣∣
≤
∣∣∣J̃νk (s′)− Jνk (s′)∣∣∣+ ∣∣Jνk (s′)− Jνk (s)

∣∣ . (5.68)

Since J̃νk (s′) = J̃∗νk (s′), the value
∣∣∣J̃νk (s′)− Jνk (s′)

∣∣∣ in (5.68) can be written as

∣∣∣J̃νk (s′)− Jνk (s′)∣∣∣ =
∣∣∣J̃∗νk (

s′
)
− Jνk

(
s′
)∣∣∣ .

In addition, from Lemma A.6 together with the definitions of J̃∗νk (s′) and
Jνk (s′), it follows that∣∣∣J̃νk (s′)− Jνk (s′)∣∣∣
≤ sup

(qλ
k+1,s

λ
k+1)λ∈ν+


∣∣∣∣∣∣
∑
λ∈ν+

qλk+1

(
J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

))∣∣∣∣∣∣
∣∣∣∣∣∣ qλk+1 ∈ [0, 1],

sλk+1 ∈
[
Sbλk+1, S

aλ
k+1

]
∀λ ∈ ν+,

∑
λ∈ν+

qλk+1 = 1,
∑
λ∈ν+

qλk+1s
λ
k+1 = s′

 .
≤ sup

(qλ
k+1,s

λ
k+1)λ∈ν+

∑
λ∈ν+

qλk+1

∣∣∣J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

)∣∣∣
∣∣∣∣∣∣ qλk+1 ∈ [0, 1],

sλk+1 ∈
[
Sbλk+1, S

aλ
k+1

]
∀λ ∈ ν+,

∑
λ∈ν+

qλk+1 = 1,
∑
λ∈ν+

qλk+1s
λ
k+1 = s′

 . (5.69)

In (5.69), we have qλk+1 ∈ [0, 1] and∣∣∣J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

)∣∣∣ ≥ 0
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5.4. Approximation error

This implies that

qλk+1

∣∣∣J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

)∣∣∣ ≤ ∣∣∣J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

)∣∣∣ .
Thus

∣∣∣J̃νk (s′)− Jνk (s′)∣∣∣
≤ sup

(qλ
k+1,s

λ
k+1)λ∈ν+

∑
λ∈ν+

∣∣∣J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

)∣∣∣
∣∣∣∣∣∣ qλk+1 ∈ [0, 1],

sλk+1 ∈
[
Sbλk+1, S

aλ
k+1

]
∀λ ∈ ν+,

∑
λ∈ν+

qλk+1 = 1,
∑
λ∈ν+

qλk+1s
λ
k+1 = s′


≤ sup

 ∑
λ∈ν+

∣∣∣J̃λk+1

(
sλk+1

)
− Jλk+1

(
sλk+1

)∣∣∣
∣∣∣∣∣∣ sλk+1 ∈

[
Sbλk+1, S

aλ
k+1

]
∀λ ∈ ν+

 .
Combining this with the fact that (5.66) holds true for t = k + 1, we have∣∣∣J̃νk (s′)− Jνk (s′)

∣∣∣ ≤ ∑
λ∈ν+

Bλ
k+1δ(n). (5.70)

Moreover, by (5.67), the quantity |Jνk (s′)− Jνk (s)| in (5.68) satisfies

∣∣Jνk (s′)− Jνk (s)
∣∣ ≤ Aνk ∣∣s′ − s∣∣ ≤ Aνkδ(n). (5.71)

Therefore, we can conclude from (5.68), (5.70) and (5.71) that∣∣∣J̃νk (s)− Jνk (s)
∣∣∣ ≤ ∑

λ∈ν+

Bλ
k+1δ(n) +Aνkδ(n) = Bν

kδ(n)

which means that (5.66) holds true for t = k. This completes the induction
step, and hence the result follows.

5.4 Approximation error

In Section 5.3, a sequence of random functions (J̃t)Tt=0 was defined to approx-
imate (Jt)Tt=0 constructed in Algorithm 5.17. For any t = 0, . . . , T , the function
Jt is dominated by J̃t; see Proposition 5.24.1. The objective of this section is
to find an upper bound of the approximation error for approximating (Jt)Tt=0
by using (J̃t)Tt=0. To achieve this, under (5.26), we will construct a sequence of
random functions (J̌t)Tt=0 such that J̌t ≤ Jt for all t = 0, . . . , T . Then J̃t− J̌t is
an upper bound for the approximation error J̃t−Jt. Moreover, for any ν ∈ Ωt,
the function J̌νt will be convex and piecewise linear on its effective domain. By
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5.4. Approximation error

using the result from Section 4.3, we can compute (J̌t)Tt=0 in binary models,
and numerical examples will be provided in Section 5.5.1.

Let n ≥ 2 be an integer. For any t = 0, . . . , T − 1 and ν ∈ Ωt, by using the
same method in Section 5.3, we first divide the bid-ask interval [Sbνt , Saνt ] into
n− 1 intervals [

s1ν
t , s

2ν
t

]
,
[
s2ν
t , s

3ν
t

]
, . . . ,

[
sn−1,ν
t , snνt

]
(5.72)

with equal length; see (5.55) for the concrete definitions of s1ν
t , . . . , s

nν
t . Then

we define [
s0ν
t , s

n+1,ν
t

]
:=
[

min
λ∈ν+

Sbλt+1,max
λ∈ν+

Saλt+1

]
. (5.73)

Observe that
[
s1ν
t , s

nν
t

]
⊂
[
s0ν
t , s

n+1,ν
t

]
because s1ν

t > s0ν
t and snνt < sn+1,ν

t ;
see (5.26). If Sbνt = Saνt which means there are no transaction costs at time t
on the node ν, then [s1ν

t , s
nν
t ] = [Sbνt , Saνt ] is a singleton set and the sequence

(siνt )n+1
i=0 satisfies

s0ν
t < s1ν

t = s2ν
t = · · · = snνt < sn+1,ν

t .

However, if Sbνt < Saνt , then sequence of numbers (siνt )n+1
i=0 is increasing, in

other words,
s0ν
t < s1ν

t < s2ν
t < · · · < snνt < sn+1,ν

t . (5.74)

Remark 5.26. The main result of this section is Proposition 5.33. This result
will not rely on the fact that the intervals in (5.72) are of the same width.
It only requires that (5.74) holds true in the case when Sbνt < Saνt for every
t = 0, . . . , T − 1 and ν ∈ Ωt.

We will define Ft-measurable random functions J̌t, J̌∗t recursively for each
t = T, . . . , 0; the function J̌∗t is an auxiliary function used to construct J̌t. For
any ν ∈ ΩT and s ∈ R, let

J̌νT (s) ≡ J̌∗νT (s) := JνT (s) =

(1, s) ·Xν if s ∈
[
SbνT , S

aν
T

]
,

∞ otherwise.
(5.75)

Let t = T − 1, . . . , 0 and ν ∈ Ωt. For all s ∈ R, we define

J̌∗νt (s) := lt+1 inf
(qλt+1,s

λ
t+1)λ∈ν+

∑
λ∈ν+

qλt+1

(
ln
qλt+1
pλt+1

+
J̌λt+1(sλt+1)

lt+1

)∣∣∣∣∣∣ qλt+1 ∈ [0, 1],

sλt+1 ∈
[
Sbλt+1, S

aλ
t+1

]
∀λ ∈ ν+,

∑
λ∈ν+

qλt+1 = 1,
∑
λ∈ν+

qλt+1s
λ
t+1 = s

 (5.76)

(cf. (5.42)). Lemma 5.27 below shows that if J̌λt+1 is convex and continuous on
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its effective domain dom J̌λt+1 = [Sbλt+1, S
aλ
t+1] for all λ ∈ ν+, then J̌∗νt defined

in (5.76) is also convex and continuous on its effective domain. Moreover, if
J̌λt+1 is dominated by Jλt+1 for all λ ∈ ν+ then J̌∗νt is dominated by Jνt on the
interval [Sbνt , Saνt ]. Observe from (5.75) that at time t = T−1, all assumptions
on (J̌λt+1)λ∈ν+ in Lemma 5.27 are satisfied.

Lemma 5.27. Suppose that J̌λt+1 : R → R ∪ {∞} is a convex function that
is continuous on dom J̌λt+1 = [Sbλt+1, S

aλ
t+1] for all λ ∈ ν+. Then J̌∗νt defined

in (5.76) is an R ∪ {∞}-valued convex function on R that is continuous on
dom J̌∗νt =

[
s0ν
t , s

n+1,ν
t

]
. In addition, if J̌λt+1 ≤ Jλt+1 for all λ ∈ ν+, then

J̌∗νt ≤ Jνt on [Sbνt , Saνt ].

The proof of Lemma 5.27 above will be provided at the end of this sec-
tion. Some results established in Sections 4.1-4.2 will be used in the proof of
this lemma. Suppose now that J̌∗νt is real-valued, continuous, and convex on[
s0ν
t , s

n+1,ν
t

]
; this holds true at t = T − 1 by Lemma 5.27 and the definition

of J̌T in (5.75). Based on such J̌∗νt , we will define J̌νt : R→ R ∪ {∞} to be a
convex function that is continuous, piecewise linear and dominated by J̌∗νt on
dom J̌νt = [Sbνt , Saνt ]. Consider the following two cases for [s1ν

t , s
nν
t ].

In the case when s1ν
t = snνt , let

J̌νt :=

J̌
∗ν
t on

[
s1ν
t , s

nν
t

]
=
[
Sbνt , S

aν
t

]
=
{
Sbνt

}
,

∞ on R\
{
Sbνt

}
.

(5.77)

Notice that all desired properties for J̌νt mentioned in the comments preceding
(5.77) are satisfied.

In the case when s1ν
t < snνt , the definition of J̌νt is similar to but more com-

plicated than J̃νt defined in Section 5.3. We will define J̌νt in three steps; Fig-
ure 5.2 provides an example to demonstrate the procedure of defining J̌νt . The
first step is to construct a convex and piecewise linear function hνt with n+ 1
segments on

[
s0ν
t , s

n+1,ν
t

]
by connecting

(
si−1,ν
t , J̌∗νt

(
si−1,ν
t

))
and

(
siνt , J̌

∗ν
t

(
siνt
))

for each i = 1, . . . , n + 1; see Figure 5.2(a). The second step is to select a
sequence of intersections (šit, y̌it)n+1

i=1 by extending the segments of hνt ; see Fig-
ure 5.2(b). The third step is to define J̌νt by connecting these intersections;
see Figure 5.2(c). In the following detailed construction of J̌νt (pp. 175-180),
we shall always suppress ν for simplicity.

For any i = 1, . . . , n+ 1, we define hit as the affine function such that

hit

(
si−1
t

)
= J̌∗t

(
si−1
t

)
, (5.78)

hit

(
sit

)
= J̌∗t

(
sit

)
, (5.79)
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s0
t s1

t s2
t s3

t s4
t s5

t s6
t

s

J̌∗t (s)
ht(s)

(a) Step 1: Define ht based on J̌∗
t .

s0
t š1

t (s1
t ) š2

t s2
t š3

t s3
t š4

t s4
t š5

t š
6
t (s5

t ) s6
t

s

J̌∗t (s)
ht(s)

intersections

(b) Step 2: Define a sequence of intersections by extending the segments of ht; here
š1
t = s1

t and š6
t = s5

t .

s0
t š1

t (s1
t ) š2

t s2
t š3

t s3
t š4

t s4
t š5

t š
6
t (s5

t ) s6
t

s

J̌∗t (s)
ht(s)
J̌t(s)

(c) Step 3: Define J̌t by connecting the intersections in Step 2.

Figure 5.2: The procedure of defining J̌νt based on J̌∗νt , where t < T , ν ∈ Ωt

and n = 5 (ν is suppressed in this figure)
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in other words,
hit(s) = mi

ts+ bit for all s ∈ R

where

mi
t =

J̌∗t
(
sit
)
− J̌∗t

(
si−1
t

)
sit − si−1

t

, bit = J̌∗t

(
si−1
t

)
−mi

ts
i−1
t .

The affine function hit corresponds to the straightline connecting the two points
(si−1
t , J̌∗t (si−1

t )) and (sit, J̌∗t (sit)). Notice that

hit

(
sit

)
= J̌∗t

(
sit

)
= hi+1

t

(
sit

)
for every i = 1, . . . , n. (5.80)

By connecting (si−1
t , J̌∗t (si−1

t )) and (sit, J̌∗t (sit)) for each i = 1, . . . , n + 1, the
real-valued continuous piecewise linear function ht on [s0

t , s
n+1
t ] is defined as

ht := hit on
[
si−1
t , sit

)
for all i = 1, . . . , n, (5.81)

ht := hn+1
t on

[
snt , s

n+1
t

]
; (5.82)

see Figure 5.2(a). Then ht satisfies

ht = hit on
[
si−1
t , sit

]
for all i = 1, . . . , n+ 1. (5.83)

From Lemma A.10, the slopes of the affine functions h1
t , . . . , h

n+1
t satisfy

m1
t ≤ · · · ≤ mn+1

t , (5.84)

and ht is convex and satisfies ht ≥ J̌∗t on [s0
t , s

n+1
t ].

Remark 5.28. For any i = 1, . . . , n, if mi
t = mi+1

t then bit = bi+1
t which means

hit = hi+1
t . Indeed, we have

bit = mi
ts
i
t + bit −mi

ts
i
t = hit(sit)−mi

ts
i
t.

Combining this with hit(sit) = hi+1
t (sit) (see (5.80)) and mi

t = mi+1
t , it follows

that
bit = hi+1

t (sit)−mi+1
t sit = bi+1

t .

Our next objective is to select a sequence of intersections (šit, y̌it)n+1
i=1 by

extending the segments of the convex and piecewise linear function ht; see
Figure 5.2(b). Firstly, let(

š1
t , y̌

1
t

)
:=
(
s1
t , h

1
t

(
s1
t

))
=
(
s1
t , h

2
t

(
s1
t

))
, (5.85)
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which is an intersection of the straight lines correspond to h1
t and h2

t . Similarly,
let (

šn+1
t , y̌n+1

t

)
:= (snt , hnt (snt )) =

(
snt , h

n+1
t (snt )

)
, (5.86)

which is an intersection of the straight lines correspond to hnt and hn+1
t . Notice

that [
š1
t , š

n+1
t

]
=
[
s1
t , s

n
t

]
=
[
Sbt , S

a
t

]
. (5.87)

Secondly, for any i = 2, . . . , n, we define (šit, y̌it) as

šit :=


− bi+1

t −bi−1
t

mi+1
t −mi−1

t

if mi−1
t < mi+1

t ,

1
2

(
si−1
t + sit

)
if mi−1

t = mi+1
t ,

(5.88)

y̌it := hi−1
t

(
šit

)
. (5.89)

Observe that if mi−1
t = mi+1

t , then mi−1
t = mi

t = mi+1
t by (5.84). Then it

follows from Remark 5.28 that hi−1
t = hit = hi+1

t , and the value y̌it defined in
(5.89) can be written as

y̌it = hi−1
t

(
šit

)
= hit

(
šit

)
= hi+1

t

(
šit

)
. (5.90)

Lemma 5.29 below shows that (šit, y̌it) is an intersection of the straight lines
correspond to hi−1

t and hi+1
t , and that it is a point in

[
si−1
t , sit

]
×
(
−∞, J̌∗t (šit)

]
.

Then the sequence (šit)n+1
i=1 is nondecreasing, in other words,

š1
t ≤ š2

t ≤ · · · ≤ šn+1
t

because š1
t = s1

t < s2
t < · · · < snt = šn+1

t and šit ∈ [si−1
t , sit] for all i = 2, . . . , n.

Lemma 5.29. Suppose that J̌∗t is real-valued, continuous, and convex on
[s0
t , s

n+1
t ]. Then for any i = 2, . . . , n, the pair (šit, y̌it) defined in (5.88)-(5.89)

solves

hi−1
t

(
šit

)
= mi−1

t šit + bi−1
t = y̌it, (5.91)

hi+1
t

(
šit

)
= mi+1

t šit + bi+1
t = y̌it, (5.92)

and it satisfies šit ∈ [si−1
t , sit] and y̌it ≤ J̌∗t (šit).

The proof of Lemma 5.29 above will be provided at the end of this section.

Remark 5.30. By letting i = 2 in (5.91) and i = n in (5.92), it follows that
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h1
t (š2

t ) = y̌2
t and hn+1

t (šnt ) = y̌nt . Moreover, we have from (5.85) and (5.86)
that h1

t (š1
t ) = y̌1

t and hn+1
t (šn+1

t ) = y̌n+1
t . Then

š1
t = š2

t =⇒
(
š1
t , y̌

1
t

)
=
(
š2
t , y̌

2
t

)
,

šnt = šn+1
t =⇒ (šnt , y̌nt ) =

(
šn+1
t , y̌n+1

t

)
.

In addition, the function h1
t corresponds to the straight line crossing (š1

t , y̌
1
t )

and (š2
t , y̌

2
t ). Similarly, the function hn+1

t corresponds to the straight line
crossing (šnt , y̌nt ) and (šn+1

t , y̌n+1
t ).

Remark 5.31. Suppose that škt = šk+1
t for some k = 2, . . . , n − 1. Then this

common value must be skt because škt ≤ skt ≤ šk+1
t (Lemma 5.29). Moreover,

by taking i = k in (5.92) and i = k + 1 in (5.91), it yields hk+1
t (skt ) = y̌kt and

hkt (skt ) = y̌k+1
t respectively. It follows from (5.80) that

y̌kt = hk+1
t

(
skt

)
= hkt

(
skt

)
= y̌k+1

t .

Observe that
(
škt , y̌

k
t

)
=
(
šk+1
t , y̌k+1

t

)
, and moreover

hkt

(
škt

)
= y̌kt , hkt

(
šk+1
t

)
= y̌k+1

t (5.93)

because skt = škt = šk+1
t .

The last step is to set J̌t to be a continuous and piecewise linear function
on the interval [š1

t , š
n+1
t ] by connecting the points (šit, y̌it) and (ši+1

t , y̌i+1
t ) for

each i = 1, . . . , n; see Figure 5.2(c).

Firstly, for every i = 1, . . . , n, we are going to define m̌i
t, b̌

i
t ∈ R such that

the affine function ȟit : R→ R of the form

ȟit(s) = m̌i
ts+ b̌it

satisfies
ȟit

(
šit

)
= y̌it, ȟit

(
ši+1
t

)
= y̌i+1

t . (5.94)

As long as (5.94) holds true, when (šit, y̌it) 6= (ši+1
t , y̌i+1

t ), the function ȟit

corresponds to the unique straight line connecting (šit, y̌it) and (ši+1
t , y̌i+1

t ).
Moreover, if (5.94) holds true for all i = 1, . . . , n, then

ȟ1
t

(
š2
t

)
= ȟ2

t

(
š2
t

)
, ȟ2

t

(
š3
t

)
= ȟ3

t

(
š3
t

)
, . . . , ȟn−1

t (šnt ) = ȟnt (šnt ) .

By letting
m̌1
t := m1

t , b̌1t := b1t , (5.95)
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and
m̌n
t := mn+1

t , b̌nt := bn+1
t , (5.96)

we have ȟ1
t = h1

t and ȟnt = hn+1
t . Then Remark 5.30 implies that (5.94) is

satisfied for each i = 1, n. For any i = 2, . . . , n − 1, we will define m̌i
t and b̌it

by considering the following two cases. In the case when šit < ši+1
t , we define

m̌i
t := y̌i+1

t − y̌it
ši+1
t − šit

, b̌it := y̌it − m̌i
tš
i
t.

Then the condition (5.94) is satisfied by straightforward calculation. In the
case when šit = ši+1

t , we take

m̌i
t := mi

t, b̌it := bit. (5.97)

This implies ȟit = hit, and (5.94) follows from (5.93). This completes the
constructions of ȟ1

t , . . . , ȟ
n
t . Notice that the condition (5.94) holds true for

every i = 1, . . . , n.
Now, we define J̌t : R→ R ∪ {∞} as

J̌t(s) := ȟit(s) for any s ∈
[
šit, š

i+1
t

)
for each i = 1, . . . , n− 1,

J̌t(s) := ȟnt (s) for any s ∈
[
šnt , š

n+1
t

]
,

J̌t(s) :=∞ for any s ∈ R\
[
š1
t , š

n+1
t

]
. (5.98)

Notice that J̌t is real-valued, continuous and piecewise linear on [š1
t , š

n+1
t ], and

it satisfies
J̌t = ȟit on

[
šit, š

i+1
t

]
for all i = 1, . . . , n. (5.99)

The following result summarise a number of properties of J̌t, and its proof
will be provided at the end of this section.

Lemma 5.32. Suppose that J̌∗t is real-valued, continuous, and convex on
[s0
t , s

n+1
t ]. Then J̌t is R ∪ {∞}-valued and convex on R. Moreover, it is con-

tinuous, piecewise linear, and satisfies J̌t ≤ J̌∗t on dom J̌t = [s1
t , s

n
t ] = [Sbt , Sat ].

Notice that the construction of J̌t is complete. Thus, we have completed
the definition of (J̌∗t )Tt=0 and (J̌t)Tt=0. Proposition 5.33 below provides a number
of properties of (J̌∗t )Tt=0 and (J̌t)Tt=0; Theorem 4.13 established in Sections 4.2
will be used to prove Proposition 5.33.3. In particular, this proposition shows
that J̌t is dominated by Jt for all t = 0, . . . , T , and this property will be used
to compute the approximation error of (Jt)Tt=0.

Proposition 5.33. Let t = 0, . . . , T . The following claims hold true.
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1. For any ν ∈ Ωt, if t = T , then J̌∗νT is affine on dom J̌∗νT = [SbνT , SaνT ].
Moreover, if t ≤ T − 1, then J̌∗νt is R ∪ {∞}-valued and convex on R,
and it is continuous on dom J̌∗νt =

[
s0ν
t , s

n+1,ν
t

]
.

2. For any ν ∈ Ωt, the function J̌νt is R∪{∞}-valued and convex on R, and
it is continuous and piecewise linear on dom J̌νt = [s1ν

t , s
nν
t ] = [Sbνt , Saνt ].

Moreover, we have J̌νt ≤ J̌∗νt ≤ Jνt on dom J̌νt .

3. For any ν ∈ Ωt, in the situation when t ≤ T − 1, there exists a solution
to the minimisation problem in (5.76) for all s ∈ dom J̌∗νt .

Proof. Firstly, we are going to prove Claims 1-2 by backward induction. For
any ν ∈ ΩT , the function J̌νT = J̌∗νT = JνT is affine on the common effective
domain [SbνT , SaνT ] by (5.75). This means that Claims 1-2 hold true for t = T .
Let k = 0, . . . , T − 1, and suppose that Claims 1-2 hold true for t = k + 1.
Fix any ν ∈ Ωk. Since Claim 2 holds true for t = k + 1, for any λ ∈ ν+

the function J̌λk+1 is R ∪ {∞}-valued and convex on R, and it is continuous
on dom J̌λk+1 = [Sbλk+1, S

aλ
k+1]. Moreover, we have J̌λk+1 ≤ Jλk+1 on dom J̌λk+1.

Observe from Proposition 5.18.1 that

dom Jλk+1 =
[
Sbλk+1, S

aλ
k+1

]
= dom J̌λk+1,

and this means that J̌λk+1 ≤ Jλk+1 always holds true. Then Lemma 5.27 implies
that Claim 1 holds true for t = k, and

J̌∗νk ≤ Jνk on
[
Sbνk , S

aν
k

]
. (5.100)

Notice that J̌∗νk is real-valued, continuous, and convex on
[
s0ν
k , s

n+1,ν
k

]
. This

enable us to prove Claim 2 with t = k by considering the following two cases.
In the case when s1ν

t = snνt , combining (5.77) with (5.100), Claim 2 holds true
for t = k. In the case when s1ν

t < snνt , it follows from Lemma 5.32 and (5.100)
that Claim 2 holds true for t = k. This completes the induction step, and
hence Claims 1-2 hold true for all t = 0, . . . , T . Finally, Claim 3 follows from
Theorem 4.13.

This section ends with the proofs of Lemmas 5.27, 5.29, and 5.32.

Proof of Lemma 5.27. Since dom J̌λt+1 = [Sbλt+1, S
aλ
t+1] for all λ ∈ ν+, we have

co

 ⋃
λ∈ν+

dom J̌λt+1

 = co

 ⋃
λ∈ν+

[
Sbλt+1, S

aλ
t+1

]
=
[

min
λ∈ν+

Sbλt+1,max
λ∈ν+

Saλt+1

]
=
[
s0ν
t , s

n+1,ν
t

]
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by (5.73), where co (A) is the convex hull of any set A. From Theorem 4.3, it
follows that J̌∗νt defined in (5.76) is an R ∪ {∞}-valued convex function with

dom J̌∗νt =
[
s0ν
t , s

n+1,ν
t

]
.

Moreover, the function J̌∗νt is continuous on dom J̌∗νt by Theorem 4.13. In
addition, if

J̌λt+1 ≤ Jλt+1 for all λ ∈ ν+,

then it follows from (5.76) and (5.42) that J̌∗νt ≤ Jνt on [Sbνt , Saνt ]. This
completes the proof.

Proof of Lemma 5.29. Fix any i = 2, . . . , n. Firstly, we are going to show that
(šit, y̌it) defined in (5.88)-(5.89) solves (5.91)-(5.92) by considering the following
two cases. In the case when mi−1

t < mi+1
t , by straightforward calculation, the

pair (šit, y̌it) solves (5.91)-(5.92). In the case when mi−1
t = mi+1

t , it follows
from (5.90) that

hi−1
t

(
šit

)
= y̌it,

hi+1
t

(
šit

)
= y̌it.

Thus (šit, y̌it) always solves (5.91)-(5.92).
Secondly, we are going to prove that

šit ∈
[
si−1
t , sit

]
. (5.101)

Notice from (5.84) that
mi−1
t ≤ mi

t ≤ mi+1.

Consider the following two situations for mi−1
t and mi+1

t . In the situation
when mi−1

t = mi+1
t , we have from (5.88) that

šit = 1
2
(
si−1
t + sit

)
∈
(
si−1
t , sit

)
,

and hence (5.101) holds true. In the second situation, we assumemi−1
t < mi+1

t ,
in other words,

mi+1
t −mi−1

t > 0.

Observe from (5.80) that

hit

(
sit

)
= hi+1

t

(
sit

)
,

hit

(
si−1
t

)
= hi−1

t

(
si−1
t

)
.
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Then the slope mi
t of the affine function hit can be written as

mi
t =

hit
(
sit
)
− hit

(
si−1
t

)
sit − si−1

t

=
hi+1
t

(
sit
)
− hi−1

t

(
si−1
t

)
sit − si−1

t

= mi+1
t sit + bi+1

t −mi−1
t si−1

t − bi−1
t

sit − si−1
t

. (5.102)

From mi−1
t ≤ mi

t and (5.102), we have

mi−1
t ≤ mi+1

t sit + bi+1
t −mi−1

t si−1
t − bi−1

t

sit − si−1
t

,

which implies

sit ≥ −
bi+1
t − bi−1

t

mi+1
t −mi−1

t

= šit

by (5.88). Similarly, combining mi+1
t ≥ mi

t and (5.102), it follows that

mi+1
t ≥ mi+1

t sit + bi+1
t −mi−1

t si−1
t − bi−1

t

sit − si−1
t

which means
si−1
t ≤ − bi+1

t − bi−1
t

mi+1
t −mi−1

t

= šit

by (5.88) again. Thus (5.101) always holds true.
Finally, we are going to show that y̌it ≤ J̌∗t (šit). Observe from (5.78)-(5.79)

that

hi−1
t

(
si−2
t

)
= J̌∗t

(
si−2
t

)
,

hi−1
t

(
si−1
t

)
= J̌∗t

(
si−1
t

)
.

Moreover, we have si−1
t ≤ šit by (5.101). Then it follows from (5.91) and

Lemma A.8 that
y̌it = hi−1

t (šit) ≤ J̌∗t (šit).

This completes the proof.

Proof of Lemma 5.32. Observe from the comments preceding (5.99) that J̌t is
real-valued, continuous and piecewise linear on [š1

t , š
n+1
t ]; the interval [š1

t , š
n+1
t ]

can be written as [š1
t , š

n+1
t ] = [s1

t , s
n
t ] = [Sbt , Sat ] by (5.87). Moreover, it follows

from (5.98) that J̌t = ∞ on R\[š1
t , š

n+1
t ], and therefore it is enough to show
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that J̌t ≤ J̌∗t on [š1
t , š

n+1
t ] and J̌t is convex.

The relationship between J̌t and ȟ1
t , . . . , ȟ

n
t in (5.99) implies that J̌t ≤ J̌∗t

on
[
š1
t , š

n+1
t

]
if and only if

ȟit ≤ J̌∗t on
[
šit, š

i+1
t

]
(5.103)

for all i = 1, . . . , n. Observe from (5.78)-(5.79) that, for any k = 1, . . . , n+ 1,
the affine function hkt satisfies

hkt (s) = J̌∗t (s) for each s = sk−1
t , skt ,

where hkt is affine and J̌∗t is convex. Then Lemma A.8 gives

hkt ≤ J̌∗t on
[
s0
t , s

n+1
t

]
\
(
sk−1
t , skt

)
. (5.104)

Firstly, we are going to prove that (5.103) holds true for each k = 1, n re-
spectively. By taking k = 1 in (5.104), it follows from skt = s1

t = š1
t ≤ š2

t

that h1
t ≤ J̌∗t on [š1

t , š
2
t ]. Similarly, by taking k = n + 1 in (5.104), we have

hn+1
t ≤ J̌∗t on [šnt , šn+1

t ] because šnt ≤ šn+1
t = snt = sk−1

t . Observe from the
comments following (5.96) that ȟ1

t = h1
t and ȟnt = hn+1

t . Thus (5.103) holds
true for each i = 1, n.

To complete the proof of J̌t ≤ J̌∗t on [š1
t , š

n+1
t ], we are going to show that

(5.103) holds true for every i = 2, . . . , n−1. For each i = 2, . . . , n−1, we define
a continuous piecewise linear function F i : [šit, ši+1

t ] → R with two segments
as

F i(s) =

h
i+1
t (s) if s ∈

[
šit, s

i
t

]
,

hit(s) if s ∈
[
sit, š

i+1
t

]
,

where šit ≤ sit ≤ ši+1
t by Lemma 5.29, and hi+1

t (sit) = hit(sit) by (5.80). Notice
that −F i is convex because the slopes of the affine functions −hi+1

t and −hit
satisfies −mi+1

t ≤ −mi
t (see (5.84)). Moreover, it follows from (5.104) that

hi+1
t ≤ J̌∗t on [šit, sit] and hit ≤ J̌∗t on [sit, ši+1

t ], and hence

F i ≤ J̌∗t on
[
šit, š

i+1
t

]
.

Observe that hi+1
t (šit) = y̌it by (5.92), and hit(ši+1

t ) = y̌i+1
t by (5.91). Combin-

ing this with (5.94), it follows that

hi+1
t

(
šit

)
= ȟit

(
šit

)
, (5.105)

hit

(
ši+1
t

)
= ȟit

(
ši+1
t

)
. (5.106)
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This leads to F i(šit) = ȟit(šit) and F i(ši+1
t ) = ȟit(ši+1

t ). Consider the following
two cases of the interval [šit, ši+1

t ]. In the case when šit = ši+1
t (i.e. [šit, ši+1

t ]
is a singleton set), we have F i = ȟit on [šit, ši+1

t ]. In the case when šit < ši+1
t ,

from Lemma A.8, we have −ȟit ≥ −F i on [šit, ši+1
t ]. Thus

ȟit ≤ F i ≤ J̌∗t on
[
šit, š

i+1
t

]
.

This completes the proof of (5.103) for all i = 1, . . . , n. Therefore, we can
conclude that J̌t ≤ J̌∗t on [š1

t , š
n+1
t ].

Finally, we are going to prove that J̌t is convex. By the connection between
J̌t and ȟ1

t , . . . , ȟ
n
t in (5.99), the function J̌t is convex if the slopes of ȟ1

t , . . . , ȟ
n
t

satisfy
m̌1
t ≤ · · · ≤ m̌n

t (5.107)

(Lemma A.9.2). To prove (5.107), by (5.84), it is enough to show that

m̌i
t ∈

[
mi
t,m

i+1
t

]
(5.108)

for all i = 1, . . . , n. Notice that m̌1
t = m1

t and m̌n
t = mn+1

t by (5.95)-(5.96).
Thus (5.108) holds true for each i = 1, n. Fix any i = 2, . . . , n − 1. By
Lemma 5.29, we have šit ≤ sit ≤ ši+1

t . We are going to prove (5.108) by
considering the following two situations for the interval [šit, ši+1

t ].

1. In the situation when šit = ši+1
t , we have from (5.97) that m̌i

t = mi
t, and

hence (5.108) holds true.

2. In the situation when šit < ši+1
t , we are going to prove (5.108) by showing

mi
t ≤ m̌i

t and mi+1
t ≥ m̌i

t respectively. The slopes of the affine functions
h1
t , . . . , h

n+1
t satisfy (5.84), and these functions relate to ht by (5.83),

where ht defined in (5.81)-(5.82) is continuous and piecewise linear on
[s0
t , s

n+1
t ]. We have from (5.83) that ht = hit on [si−1

t , sit] which contains
šit (Lemma 5.29). Then Lemma A.9.1 gives

hit

(
šit

)
≥ hi+1

t

(
šit

)
.

Similarly, we have ht = hi+1
t on [sit, si+1

t ] which contains ši+1
t (Lemma 5.29).

By Lemma A.9.1 again, it follows that

hi+1
t

(
ši+1
t

)
≥ hit

(
ši+1
t

)
.

Then (5.105) and (5.106) implies respectively that

hit

(
šit

)
≥ ȟit

(
šit

)
, (5.109)
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hi+1
t

(
ši+1
t

)
≥ ȟit

(
ši+1
t

)
. (5.110)

Observe from (5.106) and (5.109) that

mi
t =

hit

(
ši+1
t

)
− hit

(
šit
)

ši+1
t − šit

≤
ȟit

(
ši+1
t

)
− ȟit

(
šit
)

ši+1
t − šit

= m̌i
t.

Moreover, it follows from (5.110) and (5.105) that

mi+1
t =

hi+1
t

(
ši+1
t

)
− hi+1

t

(
šit
)

ši+1
t − šit

≥
ȟit

(
ši+1
t

)
− ȟit

(
šit
)

ši+1
t − šit

= m̌i
t.

Thus (5.108) holds true.

Therefore (5.107) holds true and J̌t is convex. This completes the proof.

5.5 Numerical examples in a binomial model

Consider the friction-free Cox-Ross-Rubinstein (CRR) binomial model with
parameters u, r and d such that

1 + u = eσ
√

1
T , (5.111)

1 + r = (1 + re)
1
T , (5.112)

1 + d = e−σ
√

1
T , (5.113)

where σ = 0.2 is used to model the volatility of the return on stock per
annum, and re > −1 is the annually compounded interest rate. We are using
this discrete-time model with number of steps T to approximate a continuous-
time model with horizon 1. For every t = 0, . . . , T − 1 and ν ∈ Ωt, the node ν
has two successor nodes νu and νd, in other words,

ν+ = {νu, νd}. (5.114)

The transition probabilities from ν to νu and from ν to νd are given respect-
ively by

pνut+1 = P(νu)
P(ν) = p, (5.115)

pνdt+1 = P(νd)
P(ν) = 1− p, (5.116)
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where p ∈ (0, 1). Moreover, the friction-free stock price satisfies

Sνut+1 = (1 + u)Sνt
Sνdt+1 = (1 + d)Sνt

with S0 = 100 given. The pricing results established in this thesis are based
on discounted asset prices, and we are going to construct (Sbt , Sat )Tt=0 based
on the discounted asset prices in this CRR model. We denote the discounted
stock price by

S̄t = St
(1 + r)t for all t = 0, . . . , T.

Notice that S̄0 = S0 and S̄T = ST
1+re because (1 + r)T = 1 + re. Given a

transaction cost parameter k ∈ [0, 1), at time t = 1, . . . , T , we define the bid
and ask prices of the stock as

Sat = (1 + k)S̄t,

Sbt = (1− k)S̄t.

Moreover, for convenience, we assume Sa0 = Sb0 = S̄0, in other words, there
are no transaction costs at time 0. Observe that the market model (Sbt , Sat )Tt=0
depends on re and k. In most examples, the parameter re will be zero, except
in Example 5.48, we provide the indifference prices for different values of re.
The theorem below shows that, as long as d < r < u, the condition (5.26) holds
true, which means that the robust no-arbitrage condition also holds true; see
Theorem 5.13. In all numerical examples, the condition d < r < u will be
satisfied.

Theorem 5.34. If d < r < u, the market model (Sbt , Sat )Tt=0 satisfies (5.26).

Proof. Suppose that d < r < u. For any t = 0, . . . , T − 1 and ν ∈ Ωt, we have

Sbνdt+1 = (1− k)S̄νdt+1 =
(1− k)Sνdt+1
(1 + r)t+1 = (1 + d)(1− k)Sνt

(1 + r)t+1 = 1 + d
1 + r S

bν
t < Sbνt .

Saνut+1 = (1 + k)S̄νut+1 =
(1 + k)Sνut+1
(1 + r)t+1 = (1 + u)(1 + k)Sνt

(1 + r)t+1 = 1 + u
1 + r S

aν
t > Saνt ,

Combining this with Sbνdt+1 = minλ∈ν+ Sbλt+1 and Saνut+1 = maxλ∈ν+ Saλt+1, the
condition (5.26) is satisfied.

With the exponential regret functions defined in (5.1), the value of KI
defined in (5.7) is important for computing the regret indifference prices defined
in (3.51)-(3.52); see Theorem 5.7. Moreover, the value of KI is used to com-
pute the value of λ̂ defined in (5.11), and λ̂ is essential for the calculation of
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the optimal value and the solution to the problem (3.19); see Theorems 5.5
and 5.6. Let X ∈ L2

T , and we are going to introduce a method to approximate
KI(X). It follows from Theorem 5.20 together with Sa0 = Sb0 = S0 thatKI(X)
can be written as

KI(X) = inf
s∈[Sb0,Sa0 ]

J0(s) = J0(S0), (5.117)

where (Jt)Tt=0 is a sequence of random functions constructed in Algorithm 5.17
from the terminal value

JT (s) =

(1, s) ·X if SbT ≤ s ≤ SaT ,

∞ otherwise.

In order to approximate KI(X), we shall always use the piecewise linear ap-
proximation (J̃t)Tt=0 introduced in Section 5.3 to approximate (Jt)Tt=0. At time
T , we have J̃T = JT by (5.59). At time t = 0, . . . , T − 1 and node ν ∈ Ωt, the
function J̃νt is a piecewise linear approximation of Jνt with Ñ := n − 1 seg-
ments, where n − 1 is the number of intervals in (5.54). Moreover, it follows
from (5.58) and Theorem 5.25 that J̃νt converges uniformly to Jνt as Ñ →∞.
By (5.117), we have KI(X) = J0(S0), and this motivates us to approximate
KI(X) by

K̃I (X) := J̃0(S0). (5.118)

Since J̃0(S0) depends on Ñ , the quantity K̃I (X) also depends on Ñ , and

lim
Ñ→∞

K̃I (X) = lim
Ñ→∞

J̃0(S0) = J0(S0) = KI (X) . (5.119)

Observe from J̃0(S0) ≥ J0(S0) (Proposition 5.24.1) that

K̃I (X) ≥ KI (X) (5.120)

Thus K̃I (X) converges to KI (X) from above. We will discuss the perform-
ance of this approximation in the next section.

We are now going to introduce the approximation of indifference prices
based on K̃I . For any c = (ct)Tt=0, c̄ = (c̄t)Tt=0 ∈ N 2, let

π̃aiF (c; c̄) := K̃I
(∑T

t=0c̄t
)
− K̃I

(∑T
t=0(c̄t − ct)

)
(5.121)

and
π̃biF (c; c̄) := K̃I

(∑T
t=0(c̄t + ct)

)
− K̃I

(∑T
t=0c̄t

)
(5.122)

(cf. Theorem 5.7). We will use π̃aiF (c; c̄) and π̃biF (c; c̄) to approximate the indif-
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ference prices πaiF (c; c̄) and πbiF (c; c̄) respectively. By Theorem 5.7 together with
(5.119), the quantities π̃aiF (c; c̄) and π̃biF (c; c̄) converge respectively to πaiF (c; c̄)
and πbiF (c; c̄) as Ñ →∞. In Section 5.5.3, we will provide numerical examples
to compute π̃aiF (c; c̄) and π̃biF (c; c̄). Notice that π̃aiF (c; c̄) and π̃biF (c; c̄) only relies
on

∑T
t=0ct and

∑T
t=0c̄t. Thus, to calculate π̃aiF (c; c̄) and π̃biF (c; c̄), as long as∑T

t=0ct and
∑T
t=0c̄t are given, it is not required to know every random variables

c0, . . . , cT , c̄0, . . . , c̄T .

5.5.1 Approximation error

In this section, we will compute the values of (J̃t)Tt=0 and (J̌t)Tt=0 introduced
in Sections 5.3 and 5.4 respectively. Firstly, we will provide examples to plot
J̃νt and J̌νt at some time t = 0, . . . , T −1 and node ν ∈ Ωt. Secondly, by taking
ǨI (X) := J̌0(S0), we will compute the value K̃I (X) − ǨI(X) in numerical
examples, where K̃I (X) − ǨI(X) is an upper bound of the approximation
error K̃I (X) −KI(X). Based on the values of K̃I − ǨI , we will present an
upper bound for |π̃aiF −πaiF | and an upper bound for |π̃biF −πbiF | in Theorem 5.36.

In Sections 5.3 and 5.4, the sequences of random functions (J̃t)Tt=0 and
(J̌t)Tt=0 are constructed respectively by backward induction with a common
terminal value

J̃T (s) = J̌T (s) = JT (s) =

(1, s) ·X if SbT ≤ s ≤ SaT ,

∞ otherwise.

Notice from the comments preceding (5.118) that (J̃t)Tt=0 depends on the in-
teger Ñ which is the number of segments used in the piecewise linear approx-
imation. Similarly, the sequence of random functions (J̌t)Tt=0 depends on the
integer Ň := n − 1 which is the number of intervals in (5.72). Moreover, for
any t = 0, . . . , T − 1 and ν ∈ Ωt, the function J̌νt is a piecewise linear function
with Ň + 1 segments, and it is dominated by Jνt (Proposition 5.33.2).

Let

CallPT (A) :=
(
−A1{ST>A},1{ST>A}

)
for all A ≥ 0, (5.123)

where CallPT (A) is the payoff of a call option delivered by portfolio with strike
price A, and “P” in the superscript stands for portfolio delivery. In the follow-
ing example, we will plot J̃νt and J̌νt at some time t = 0, . . . , T − 1 and node
ν ∈ Ωt.

Example 5.35. Let T = 52, re = 0%, p = 0.5, I = {0, . . . , T}, and αt = 1 for
all t ∈ I. Moreover, we set Ñ = 120 and Ň = 200. In addition, let ν ∈ Ω19
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be the node such that

S̄ν19 = Sν19 = S0e
6σ
√

1
T e−13σ

√
1
T = 82.35384.

In Figure 5.3, we plot J̃ν19 and J̌ν19 on their common effective domain[
Sbν19 , S

aν
19

]
=
[
(1− k)S̄ν19, (1 + k)S̄ν19

]
for k = 0.5% and various X. In Figures 5.3(a)-5.3(c), we set X to be 0,
CallPT (100), and −CallPT (100) respectively. It shows that J̃ν19 and J̌ν19 are con-
vex, and they are not necessarily monotonic; see Figure 5.3(b). Moreover, the
values of J̃ν19 and J̌ν19 are extremely close. This shows the accuracy of using
J̃ν19 to approximate Jν19 because their values satisfies J̌ν19 ≤ Jν19 ≤ J̃ν19. For
comparison, we provide J̃ν19 and J̌ν19 in Figure 5.4 for the increased transac-
tion costs value k = 3%. Figures 5.4(a)-5.4(b) show that there is an obvious
gap between J̃ν19 and J̌ν19. Moreover, comparing to Figure 5.3, the curves in
Figure 5.4 tend to be more flat at the bottom.

Figure 5.5 contains plots of J̃ν19, J̃νu20 , and J̃νd20 on their effective domains
for k = 0.5%, where {νu, νd} are the collection of successor nodes of ν (see
(5.114)). The function J̃ν19 is constructed from J̃νu20 and J̃νd20 . Moreover, on
dom J̃ν19 = [Sνb19 , S

νa
19 ], the function J̃ν19 can be regarded as a “twisted convex

hull” of J̃νu20 and J̃νd20 . Observe that there is no overlap between the effective do-
mains when k = 0.5%. The functions J̃ν19, J̃νu20 , and J̃νd20 for the increased value
k = 3% are provided in Figure 5.6. Due to the larger size of transaction costs,
there are overlaps between their effective domains. All curves in Figure 5.6
tend to be more flat at the bottom when compared to their counterparts in
Figure 5.5.

Now, we define
ǨI (X) := J̌0(S0) (5.124)

which is a lower bound for KI (X) because J̌0(S0) ≤ J0(S0) = KI (X) by
Proposition 5.33.2 and (5.117). Combining (5.120) with ǨI (X) ≤ KI (X),
we can conclude that

0 ≤ K̃I (X)−KI (X) ≤ K̃I (X)− ǨI (X) . (5.125)

This means that K̃I (X) − ǨI (X) is an upper bound of the approximation
error K̃I (X) − KI (X). The following result gives an error bound of the
approximations π̃aiF and π̃biF (defined in (5.121) and (5.122)) of πaiF and πbiF .
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Figure 5.3: The values of J̃ν19 and J̌ν19 on
[
Sbν19 , S

aν
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]
with k = 0.5%
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192



5.5. Numerical examples in a binomial model

80 81 82 83 84 85
0

0.01

0.02

0.03

0.04

0.05

80 81 82 83 84 85

0.4

0.5

0.6

0.7

0.8

0.9

80 81 82 83 84 85
−1.4

−1.2

−1

−0.8

−0.6

−0.4

(a) X = 0

(b) X = CallPT (100)

(c) X = −CallPT (100)

J̃ν19 J̃νu20 J̃νd20

Figure 5.5: The values of J̃ν19, J̃νu20 and J̃νd20 on their effective domains with
k = 0.5%
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Figure 5.6: The values of J̃ν19, J̃νu20 and J̃νd20 on their effective domains with
k = 3%
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Theorem 5.36. Let c = (ct)Tt=0, c̄ = (c̄t)Tt=0 ∈ N 2, and let

X̄ :=
∑T
t=0c̄t,

Xai :=
∑T
t=0(c̄t − ct),

Xbi :=
∑T
t=0(c̄t + ct).

Then∣∣∣π̃aiF (c; c̄)− πaiF (c; c̄)
∣∣∣ ≤ max

{
K̃I(X̄)− ǨI(X̄), K̃I(Xai)− ǨI(Xai)

}
and ∣∣∣π̃biF (c; c̄)− πbiF (c; c̄)

∣∣∣ ≤ max
{
K̃I(X̄)− ǨI(X̄), K̃I(Xbi)− ǨI(Xbi)

}
.

Proof. Fix any Y, Z ∈ L2
T . Observe from (5.125) that

0 ≤ K̃I (Y )−KI (Y ) ≤ K̃I (Y )− ǨI (Y )

and
0 ≤ K̃I (Z)−KI (Z) ≤ K̃I (Z)− ǨI (Z) .

Then

∣∣∣(K̃I (Y )− K̃I (Z)
)
− (KI (Y )−KI (Z))

∣∣∣
=
∣∣∣(K̃I (Y )−KI (Y )

)
−
(
K̃I (Z)−KI (Z)

)∣∣∣
≤ max

{
K̃I (Y )−KI (Y ) , K̃I (Z)−KI (Z)

}
≤ max

{
K̃I (Y )− ǨI (Y ) , K̃I (Z)− ǨI (Z)

}
;

the first inequality follows from K̃I (Y )−KI (Y ) ≥ 0 and K̃I (Z)−KI (Z) ≥ 0.
By letting Y = X̄ and Z = Xai, it yields

∣∣∣(K̃I(X̄)− K̃I(Xai)
)
−
(
KI(X̄)−KI(Xai)

)∣∣∣
≤ max

{
K̃I(X̄)− ǨI(X̄), K̃I(Xai)− ǨI(Xai)

}
.

Similarly, by taking Y = Xbi and Z = X̄, it follows that

∣∣∣(K̃I(Xbi)− K̃I(X̄)
)
−
(
KI(Xbi)−KI(X̄)

)∣∣∣
≤ max

{
K̃I(Xbi)− ǨI(Xbi), K̃I(X̄)− ǨI(X̄)

}
.

Therefore, the result follows from (5.121)-(5.122) and Theorem 5.7.
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We are going to compute K̃I (X) − ǨI (X) in Examples 5.37-5.41 below.
For convenience, in addition to CallPT defined in (5.123), we define CallCT , PutC

T ,
and PutP

T as

CallCT (A) := (max(ST −A, 0), 0) (5.126)

PutC
T (A) := (max(A− ST , 0), 0) (5.127)

PutP
T (A) := (A1{ST<A},−1{ST<A}) (5.128)

for all A ≥ 0. The random variable CallCT (A) (resp. PutC
T (A)) represents the

payoff of a European call (resp. put) option delivered by cash with strike price
A; here “C” in the superscript stands for cash delivery. Similarly, the random
variable PutP

T (A) is the payoff of a European put option delivered by portfolio
with strike price A.

In Examples 5.37-5.39 below, we will compute the value K̃I(X)− ǨI(X)
for different values of X in the models with T = 52. Then, in Examples 5.40-
5.41, we will present K̃I(X) − ǨI(X) in the models with larger number of
steps T .

Example 5.37. Let T = 52, re = 0%, p = 0.5, k = 0.5%, I = IR, and αt = 1
for all t ∈ I, where IR = {0, . . . , T} by (5.2). We calculate both K̃I(X)
and ǨI(X) for different values of X, Ñ , and Ň , in Table 5.2. The values
K̃I(X) and ǨI(X) appear to converge to the same value (up to 3 decimal
places) as Ñ and Ň increase. However, the speed of convergence of K̃I(X)
is faster than ǨI(X). In the case when Ñ = 20 and Ň = 300, we have
K̃I(X) − ǨI(X) ≤ 0.00302, and this means that the error of approximating
KI(X) by K̃I(X) with Ñ = 20 will not exceed 0.00302 by (5.125). The values
of K̃I(X) and ǨI(X) in the case when X = CallPT (100) are equal to that in
the case when X = PutP

T (100). Similarly, the values of K̃I(X) and ǨI(X) in
the situation when X = −CallPT (100) are equal to that in the situation when
X = −PutP

T (100). This is because of the symmetry between CallPT (100) and
PutP

T (100), and the symmetry of the stock price movement. Similar pattern
can be observed in Examples 5.38-5.41 as well, and we shall not mention it
repeatedly.

Example 5.38. In this example, the values of T , re, p, I, and (αt)Tt=0 are
set to be the corresponding values used in Example 5.37 above. Then we
compute K̃I(X)− ǨI(X) for k = 1%, 2%, 3% which is higher than k = 0.5%
in Example 5.37; see Table 5.3. The lower bound ǨI(X) is calculated using
Ň = 300. To achieve K̃I(X) − ǨI(X) ≤ 0.01, the integer Ñ = 30 is already
enough when k = 1%. However, when k = 2% (resp. k = 3%), we need Ñ
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Ñ = Ň
20 30 60 120 200 300

X = 0
K̃I(X) 0.05749 0.05693 0.05662 0.05651 0.05647 0.05647
ǨI(X) 0.03120 0.04060 0.04854 0.05448 0.05612 0.05643

ε 0.02628 0.01633 0.00808 0.00203 0.00035 0.00004
X = CallCT (100)

K̃I(X) 7.35275 7.35109 7.35014 7.34991 7.34986 7.34985
ǨI(X) 7.31948 7.33652 7.34630 7.34909 7.34966 7.34974

ε 0.03328 0.01457 0.00385 0.00083 0.00020 0.00011
X = −CallCT (100)

K̃I(X) -8.48622 -8.48739 -8.48818 -8.48835 -8.48839 -8.48841
ǨI(X) -8.51621 -8.50276 -8.49202 -8.48890 -8.48852 -8.48845

ε 0.02999 0.01536 0.00384 0.00054 0.00013 0.00005
X = PutC

T (100)
K̃I(X) 7.37622 7.37454 7.37359 7.37336 7.37331 7.37329
ǨI(X) 7.33926 7.35772 7.36928 7.37247 7.37314 7.37323

ε 0.03696 0.01682 0.00431 0.00089 0.00016 0.00007
X = −PutC

T (100)
K̃I(X) -8.43004 -8.43123 -8.43202 -8.43220 -8.43224 -8.43225
ǨI(X) -8.45978 -8.44443 -8.43576 -8.43274 -8.43243 -8.43235

ε 0.02974 0.01320 0.00374 0.00054 0.00019 0.00010
X = CallPT (100)

K̃I(X) 7.56499 7.56333 7.56238 7.56215 7.56210 7.56208
ǨI(X) 7.52811 7.54753 7.55786 7.56116 7.56184 7.56198

ε 0.03688 0.01581 0.00452 0.00099 0.00025 0.00010
X = −CallPT (100)

K̃I(X) -8.24621 -8.24738 -8.24817 -8.24834 -8.24838 -8.24839
ǨI(X) -8.27724 -8.26181 -8.25248 -8.24903 -8.24858 -8.24848

ε 0.03103 0.01443 0.00432 0.00069 0.00021 0.00009
X = PutP

T (100)
K̃I(X) 7.56499 7.56333 7.56238 7.56215 7.56210 7.56208
ǨI(X) 7.52811 7.54753 7.55786 7.56116 7.56184 7.56198

ε 0.03688 0.01581 0.00452 0.00099 0.00025 0.00010
X = −PutP

T (100)
K̃I(X) -8.24621 -8.24738 -8.24817 -8.24834 -8.24838 -8.24839
ǨI(X) -8.27724 -8.26181 -8.25248 -8.24903 -8.24858 -8.24848

ε 0.03103 0.01443 0.00432 0.00069 0.00021 0.00009

Table 5.2: The values of K̃I(X), ǨI(X), and ε := K̃I(X) − ǨI(X), where
T = 52, re = 0%, p = 0.5, k = 0.5%, I = IR = {0, . . . , T}, and αt = 1 for all
t ∈ I
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5.5. Numerical examples in a binomial model

k ǨI(X) Ñ
30 60 120 200 300

X = 0
1% 0.01958 0.00205 0.00096 0.00056 0.00048 0.00045
2% -0.00008 0.00167 0.00047 0.00011 0.00009 0.00008
3% -0.00165 0.00174 0.00166 0.00165 0.00165 0.00165

X = CallCT (100)
1% 6.81311 0.00437 0.00138 0.00064 0.00048 0.00043
2% 5.93487 0.01602 0.00557 0.00298 0.00243 0.00226
3% 5.23887 0.03264 0.01206 0.00670 0.00550 0.00513

X = −CallCT (100)
1% -9.04626 0.00296 0.00086 0.00036 0.00024 0.00021
2% -10.03788 0.00890 0.00308 0.00169 0.00138 0.00129
3% -10.94115 0.01510 0.00538 0.00292 0.00240 0.00224

X = PutC
T (100)

1% 6.84863 0.00434 0.00127 0.00052 0.00036 0.00031
2% 5.97302 0.01558 0.00488 0.00220 0.00163 0.00145
3% 5.25068 0.03025 0.01007 0.00444 0.00321 0.00284

X = −PutC
T (100)

1% -8.92060 0.00320 0.00104 0.00052 0.00040 0.00036
2% -9.72728 0.01007 0.00386 0.00236 0.00204 0.00194
3% -10.37110 0.01821 0.00740 0.00465 0.00410 0.00392

X = CallPT (100)
1% 7.18669 0.00457 0.00152 0.00075 0.00059 0.00054
2% 6.51795 0.01882 0.00671 0.00383 0.00320 0.00300
3% 5.90147 0.04380 0.01771 0.00951 0.00808 0.00764

X = −CallPT (100)
1% -8.58377 0.00320 0.00108 0.00057 0.00045 0.00041
2% -9.18987 0.00992 0.00400 0.00257 0.00225 0.00216
3% -9.76007 0.01795 0.00778 0.00514 0.00461 0.00444

X = PutP
T (100)

1% 7.18669 0.00457 0.00152 0.00075 0.00059 0.00054
2% 6.51795 0.01882 0.00671 0.00383 0.00320 0.00300
3% 5.90146 0.04380 0.01771 0.00952 0.00808 0.00764

X = −PutP
T (100)

1% -8.58377 0.00320 0.00108 0.00057 0.00045 0.00041
2% -9.18987 0.00992 0.00400 0.00257 0.00225 0.00215
3% -9.76007 0.01796 0.00778 0.00514 0.00461 0.00444

Table 5.3: The value K̃I(X) − ǨI(X) (ǨI(X) is calculated using Ň = 300)
for various k, where T = 52, re = 0%, p = 0.5, I = IR = {0, . . . , T}, and
αt = 1 for all t ∈ I
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p ǨI(X) Ñ
30 60 120 200 300

X = 0
0.35 56.64396 0.00104 0.00044 0.00015 0.00010 0.00008
0.55 8.04955 0.00077 0.00025 0.00012 0.00008 0.00007
0.75 203.80438 0.00199 0.00047 0.00019 0.00012 0.00010

X = CallCT (100)
0.35 64.30597 0.00090 0.00030 0.00009 0.00007 0.00006
0.55 15.58841 0.00184 0.00055 0.00022 0.00014 0.00012
0.75 211.51973 0.00183 0.00068 0.00028 0.00017 0.00014

X = −CallCT (100)
0.35 48.42610 0.00191 0.00071 0.00026 0.00017 0.00014
0.55 -0.20737 0.00133 0.00042 0.00015 0.00010 0.00008
0.75 195.62750 0.00047 0.00017 0.00008 0.00006 0.00005

X = PutC
T (100)

0.35 64.43553 0.00092 0.00030 0.00009 0.00007 0.00006
0.55 15.58125 0.00183 0.00054 0.00021 0.00014 0.00012
0.75 211.43369 0.00183 0.00069 0.00028 0.00017 0.00014

X = −PutC
T (100)

0.35 48.38915 0.00193 0.00071 0.00026 0.00017 0.00014
0.55 -0.11396 0.00134 0.00043 0.00016 0.00010 0.00008
0.75 195.81535 0.00048 0.00016 0.00008 0.00006 0.00005

X = CallPT (100)
0.35 64.53716 0.00091 0.00030 0.00009 0.00007 0.00006
0.55 15.78152 0.00182 0.00054 0.00021 0.00014 0.00011
0.75 211.64781 0.00183 0.00068 0.00028 0.00017 0.00014

X = −CallPT (100)
0.35 48.60124 0.00194 0.00071 0.00026 0.00017 0.00014
0.55 0.04034 0.00134 0.00042 0.00015 0.00010 0.00008
0.75 195.87862 0.00048 0.00017 0.00008 0.00006 0.00005

X = PutP
T (100)

0.35 64.53716 0.00091 0.00030 0.00009 0.00007 0.00006
0.55 15.78152 0.00182 0.00054 0.00021 0.00014 0.00011
0.75 211.64781 0.00183 0.00068 0.00028 0.00017 0.00014

X = −PutP
T (100)

0.35 48.60124 0.00194 0.00071 0.00026 0.00017 0.00014
0.55 0.04034 0.00134 0.00042 0.00015 0.00010 0.00008
0.75 195.87862 0.00048 0.00017 0.00008 0.00006 0.00005

Table 5.4: The value K̃I(X) − ǨI(X) (ǨI(X) is calculated using Ň = 300)
for various p, where T = 52, re = 0%, k = 0.5%, I = IR = {0, . . . , T}, and
αt = 1 for all t ∈ I
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5.5. Numerical examples in a binomial model

X T I ǨI(X) Ñ
60 120 250

0
100 IR 0.10673 0.00088 0.00055 0.00046

IU 0.00275 0.00003 0.00001 0.00001

250 IR 0.26401 0.00476 0.00250 0.00180
IU 0.00271 0.00009 0.00006 0.00005

CallCT (100)
100 IR 7.52083 0.00130 0.00055 0.00036

IU 6.74211 0.00038 0.00028 0.00026

250 IR 7.86522 0.00547 0.00214 0.00109
IU 6.74144 0.00123 0.00090 0.00081

−CallCT (100)
100 IR -8.34692 0.00094 0.00032 0.00016

IU -9.17638 0.00009 0.00004 0.00002

250 IR -8.04841 0.00470 0.00202 0.00117
IU -9.22013 0.00036 0.00016 0.00010

PutC
T (100)

100 IR 7.53824 0.00122 0.00046 0.00027
IU 6.77057 0.00018 0.00008 0.00005

250 IR 7.86010 0.00550 0.00213 0.00108
IU 6.77037 0.00070 0.00036 0.00027

−PutC
T (100)

100 IR -8.28506 0.00113 0.00050 0.00033
IU -9.12307 0.00027 0.00022 0.00020

250 IR -7.95383 0.00466 0.00203 0.00120
IU -9.16653 0.00083 0.00063 0.00058

CallPT (100)
100 IR 7.72968 0.00138 0.00062 0.00043

IU 6.96042 0.00039 0.00029 0.00027

250 IR 8.05636 0.00562 0.00229 0.00124
IU 6.96242 0.00125 0.00092 0.00083

−CallPT (100)
100 IR -8.10703 0.00113 0.00051 0.00035

IU -8.92587 0.00025 0.00020 0.00019

250 IR -7.80529 0.00491 0.00226 0.00143
IU -8.96912 0.00080 0.00061 0.00056

PutP
T (100)

100 IR 7.72968 0.00138 0.00062 0.00043
IU 6.96042 0.00039 0.00029 0.00027

250 IR 8.05636 0.00562 0.00229 0.00124
IU 6.96242 0.00125 0.00092 0.00083

−PutP
T (100)

100 IR -8.10703 0.00113 0.00051 0.00035
IU -8.92587 0.00025 0.00020 0.00019

250 IR -7.80529 0.00491 0.00227 0.00143
IU -8.96912 0.00080 0.00061 0.00056

Table 5.5: The value K̃I(X) − ǨI(X) (ǨI(X) is calculated using Ň = 300)
for various T and I, where re = 0%, p = 0.5, k = 0.5%, and αt = 1 for all
t ∈ I
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5.5. Numerical examples in a binomial model

X ǨI(X) Ñ
10 20 40 60 120

0 0.00254 0.00044 0.00037 0.00032 0.00030 0.00025
CallCT (100) 6.73981 0.09711 0.02791 0.01122 0.00816 0.00632
−CallCT (100) -9.24228 0.07325 0.01396 0.00469 0.00274 0.00152
PutC

T (100) 6.76864 0.09762 0.02779 0.01095 0.00786 0.00598
−PutC

T (100) -9.18969 0.07471 0.01575 0.00648 0.00453 0.00331
CallPT (100) 6.96235 0.09830 0.02853 0.01180 0.00870 0.00682
−CallPT (100) -8.99257 0.07385 0.01536 0.00637 0.00448 0.00330
PutP

T (100) 6.96234 0.09832 0.02854 0.01181 0.00871 0.00684
−PutP

T (100) -8.99260 0.07387 0.01539 0.00639 0.00450 0.00332

Table 5.6: The value K̃I(X) − ǨI(X) (ǨI(X) is calculated using Ň = 120)
for T = 1000, where re = 0%, p = 0.5, k = 0.5%, I = IU = {T}, and αt = 1
for all t ∈ I

to be at least 60 (resp. 120). As expected, in order to keep the same level
of accuracy for approximating KI(X), we should choose a higher value of Ñ
when k increases.

Example 5.39. We set T = 52, re = 0%, k = 0.5%, I = IR, and αt = 1 for all
t ∈ I. By considering different values of p which is the parameter forming the
market probability, we present the value K̃I(X)− ǨI(X) in Table 5.4; again
ǨI(X) is calculated using Ň = 300. As Ñ increases, the value K̃I(X)−ǨI(X)
decreases and appear to converge to 0. Moreover, this difference is less than
0.002 when Ñ = 30 for all different values of p. In the case when p = 0.55,
the value ǨI(X) is significantly less than that when p = 0.35, 0.75.

Example 5.40. Let re = 0%, p = 0.5, k = 0.5%, and αt = 1 for all t ∈ I.
We compute the difference between K̃I(X) and ǨI(X), for T = 100, 250,
I = IR, IU , Ň = 300, and various values of Ñ and X, in Table 5.5; here
IU = {T} by (5.3). It shows that K̃I(X) − ǨI(X) ≤ 0.00562 when Ñ ≥ 60
in all cases. However, in the case when I = IU , the value K̃I(X) − ǨI(X)
is remarkably less than that when I = IR. Similarly, in the situation when
T = 100, the value K̃I(X) − ǨI(X) is less than that when T = 250. As
expected, approximation error increases as the trading dates T increases. In
order to maintain a certain level of accuracy for approximating KI(X), we
should set Ñ to be a greater number when T increases.

Example 5.41. We take re = 0%, p = 0.5, k = 0.5%, I = IU , and αt = 1
for all t ∈ I. Our final example is to compute K̃I(X)− ǨI(X) for T = 1000,
Ň = 120, various values of Ñ and X, and I = IU , in Table 5.6. It suggests
that the upper bound of the approximation error K̃I(X) − ǨI(X) will not
exceed 0.00871 when Ñ ≥ 60.
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5.5. Numerical examples in a binomial model

5.5.2 Optimal injections and minimal regret

In this section, we will present the numerical solution to the problem (3.19)
with the sequence of regret functions defined in (5.1) in a number of examples.

Let X = −
∑T
t=0ut, where u = (ut)Tt=0 ∈ N 2 is given and u represents the

investor’s liability. We are going to introduce a method to approximate the
minimal regret V (u); see Theorem 5.5 for a formula of V (u). Let

λ̃ (u) := exp
[

1∑
t∈I

1
αt

(∑
t∈I

lnαt
αt
− K̃I(X)

)]

Ṽ (u) := λ̃ (u)
∑
t∈I

1
αt
− |I|

(cf. (5.11) and Theorem 5.5). Observe that λ̃ (u) depends on K̃I(X), and
hence it depends on Ñ ; see (5.119) and the comments preceding it. Combining
(5.119) and (5.11), we have

lim
Ñ→∞

λ̃ (u) = λ̂ (u) ,

where λ̂ (u) defined in (5.11) is the unique solution to the problem (5.10); see
Proposition 5.4. This means

lim
Ñ→∞

Ṽ (u) = λ̂ (u)
∑
t∈I

1
αt
− |I| = V (u)

(Theorem 5.5). We will use λ̃ (u) and Ṽ (u) to approximate λ̂(u) and V (u)
respectively. This completes the construction of the approximation of V (u).

Based on (Jt)Tt=0, a pair (Q̂, Ŝ) is constructed in Algorithm 5.19, where
(Q̂, Ŝ) ∈ P is a solution to the problem (5.7); see Theorem 5.20. By ap-
proximating (Jt)Tt=0 by (J̃t)Tt=0 in this algorithm (i.e. using (J̃t)Tt=0 instead
of (Jt)Tt=0), we can construct a pair (Q̃, S̃) based on (J̃t)Tt=0 to approximate
(Q̂, Ŝ). One can show that (Q̃, S̃) ∈ P̄ by using a similar method in proving
(Q̂, Ŝ) ∈ P̄ in the beginning of the proof of Theorem 5.20 (see p. 164). In the
situation when (Q̃, S̃) ∈ P (i.e. Q̃(ω) > 0 for all ω ∈ Ω), we define (x̃t)Tt=0 ∈ N
as

x̃t :=


1
αt

ln λ̃(u)ΛQ̃
t

αt
if t ∈ I

0 if t ∈ {0, . . . , T} \I
(5.129)

(cf. Theorem 5.6). In all numerical examples presented in this section, we
always have (Q̃, S̃) ∈ P. We will use (x̃t)Tt=0 to appproximate (x̂t)Tt=0 con-
structed in Theorem 5.6; the process (x̂t)Tt=0 represents the optimal injection
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Injection x̃νtt Increment ∆x̃νtt
Node Time step Time step
ν ∈ Ω2 t = 0 t = 1 t = 2 t = 1 t = 2

k = 0% k = 0%
uu 2.35061 2.27740 2.20419 -0.07321 -0.07321
ud 2.35061 2.27740 2.34561 -0.07321 0.06821
du 2.35061 2.41882 2.34561 0.06821 -0.07321
dd 2.35061 2.41882 2.48703 0.06821 0.06821

k = 0.5% k = 0.5%
uu 2.52366 2.44787 2.44810 -0.07580 0.00024
ud 2.52366 2.44787 2.44763 -0.07580 -0.00024
du 2.52366 2.59412 2.52091 0.07045 -0.07321
dd 2.52366 2.59412 2.66233 0.07045 0.06821

k = 3% k = 3%
uu 3.39788 3.31135 3.62275 -0.08653 0.31140
ud 3.39788 3.31135 2.85669 -0.08653 -0.45466
du 3.39788 3.47751 3.40431 0.07964 -0.07321
dd 3.39788 3.47751 3.54573 0.07964 0.06821

Table 5.7: Optimal injection (x̃t)2
t=0 and injection increment (∆x̃t)2

t=1 for
various values of k, where Ñ = 90,

∑2
t=0 ut = CallC2 (100), re = 0%, p = 0.5,

I = {0, 1, 2}, and αt = 1 for all t ∈ I

at each time step and it solves the problem (3.19) with the sequence of regret
functions defined in (5.1).

Notice that, as long as
∑T
t=0ut is given (without knowing (ut)Tt=0), we can

compute X = −
∑T
t=0ut and then compute λ̃(u), Ṽ (u), and (x̃t)Tt=0. Thus,

in the examples below, we will directly specify
∑T
t=0ut instead of defining

(ut)Tt=0. In Examples 5.42-5.45, we will present the optimal injection (x̃t)2
t=0

in a model with T = 2 by varying parameters k, p, (αt)t∈I , and I respectively
and keeping other parameter values fixed; the integer Ñ will set to be 90.
In particular, the injection increment (∆x̃t)2

t=1 = (x̃t − x̃t−1)2
t=1 will also be

provided in Examples 5.42-5.44.

Example 5.42. Let re = 0%, p = 0.5, I = {0, 1, 2}, and αt = 1 for all
t ∈ I. Then we compute (x̃t)2

t=0 and (∆x̃t)2
t=1 with

∑2
t=0 ut = CallC2 (100) in

the models with k = 0%, 0.5%, 3% respectively in Table 5.7. Notice that the
process (x̃t)2

t=0 is recombinant only when k = 0%. In addition, the size of
cash injection (x̃t)2

t=0 tends to be larger when k is higher. By straightforward
calculation, we have CallC2 (100) = 0 on d = {dd, du}, and the increment of
cash injection ∆x̃2 on d is the same for all different k. The minimal regret
V (u) in this example is given by 28.47585, 34.42259, 86.70179 respectively for
k = 0%, 0.5%, 3%.
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Injection x̃νtt Increment ∆x̃νtt
Node Time step Time step
ν ∈ Ω2 t = 0 t = 1 t = 2 t = 1 t = 2

p = 0.2 p = 0.2
uu 2.30467 3.14516 4.02171 0.84050 0.87654
ud 2.30467 3.14516 2.71339 0.84050 -0.43178
du 2.30467 1.90512 2.66975 -0.39955 0.76463
dd 2.30467 1.90512 1.56677 -0.39955 -0.33835

p = 0.5 p = 0.5
uu 2.47380 2.39800 2.35825 -0.07580 -0.03975
ud 2.47380 2.39800 2.43623 -0.07580 0.03823
du 2.47380 2.54425 2.47104 0.07045 -0.07321
dd 2.47380 2.54425 2.61246 0.07045 0.06821

p = 0.8 p = 0.8
uu 2.20680 1.66100 1.19123 -0.54580 -0.46977
ud 2.20680 1.66100 2.57705 -0.54580 0.91605
du 2.20680 3.19354 2.65033 0.98674 -0.54321
dd 2.20680 3.19354 4.17805 0.98674 0.98450

Table 5.8: Optimal injection (x̃t)2
t=0 and injection increment (∆x̃t)2

t=1 for
various values of p, where Ñ = 90,

∑2
t=0 ut = CallP2 (100), re = 0%, k = 0.5%,

I = {0, 1, 2}, and αt = 1 for all t ∈ I

Example 5.43. In Table 5.8, we present the processes (x̃t)2
t=0 and (∆x̃t)2

t=1
with

∑2
t=0 ut = CallP2 (100) for p = 0.2, 0.5, 0.8, where re = 0%, k = 0.5%,

I = {0, 1, 2}, and αt = 1 for all t ∈ I. The higher value of p leads to higher
values of ∆x̃d1, ∆x̃ud2 , and ∆x̃dd2 , but leads to lower values of ∆x̃u1 , ∆x̃uu2 , and
∆x̃du2 . When p = 0.2, 0.8, the size of increments |∆x̃1| and |∆x̃2| have higher
values compared to that when p = 0.5. In the situation when p = 0.2, 0.5, 0.8,
the minimal regret V (u) is 27.06257, 32.60221, 24.25975 respectively.

Example 5.44. The quantity αt characterises the investor’s risk preference at
time t ∈ I. Higher value of αt represents higher level of risk aversion. Table 5.9
computes the optimal injection and the injection increment by considering
four different (αt)t∈I . We set re = 0%, p = 0.5, k = 0.5%, I = {0, 1, 2}, and∑2
t=0 ut = −PutC

2 (100) in this example. In the case when (αt)t∈I = (1
2 ,

1
2 ,

1
2),

the size of increment of injections |∆x̃1| and |∆x̃2| are higher than that when
(αt)t∈I = (1, 1, 1). This is because the investor is less risk averse in the situ-
ation when (αt)t∈I = (1

2 ,
1
2 ,

1
2). The process (αt)t∈I = (3

2 , 1,
1
2) models decreas-

ing risk aversion, and it suggests that the cash amount of withdrawal −x̃t is
increasing in t. Similarly, the process (αt)t∈I = (1

2 , 1,
3
2) models increasing risk

aversion. In such case, the optimal withdraw −x̃t is decreasing in t. Last but
not the least, while (αt)t∈I = (1

2 ,
1
2 ,

1
2), (1, 1, 1), (3

2 , 1,
1
2), (1

2 , 1,
3
2), the minimal
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Injection x̃νtt Increment ∆x̃νtt
Node Time step Time step
ν ∈ Ω2 t = 0 t = 1 t = 2 t = 1 t = 2

(αt)2
t=0 = (1

2 ,
1
2 ,

1
2) (αt)2

t=0 = (1
2 ,

1
2 ,

1
2)

uu -2.19599 -2.33686 -2.48328 -0.14088 -0.14642
ud -2.19599 -2.33686 -2.20044 -0.14088 0.13643
du -2.19599 -2.06439 -2.06392 0.13160 0.00047
dd -2.19599 -2.06439 -2.06486 0.13160 -0.00047

(αt)2
t=0 = (1, 1, 1) (αt)2

t=0 = (1, 1, 1)
uu -2.19406 -2.26450 -2.33771 -0.07044 -0.07321
ud -2.19406 -2.26450 -2.19628 -0.07044 0.06821
du -2.19406 -2.12826 -2.12802 0.06580 0.00024
dd -2.19406 -2.12826 -2.12850 0.06580 -0.00024

(αt)2
t=0 = (3

2 , 1,
1
2) (αt)2

t=0 = (3
2 , 1,

1
2)

uu -1.67061 -2.17088 -3.10189 -0.50028 -0.93101
ud -1.67061 -2.17088 -2.81905 -0.50028 -0.64816
du -1.67061 -2.03465 -2.68253 -0.36404 -0.64788
dd -1.67061 -2.03465 -2.68347 -0.36404 -0.64883

(αt)2
t=0 = (1

2 , 1,
3
2) (αt)2

t=0 = (1
2 , 1,

3
2)

uu -2.81207 -2.16962 -1.76553 0.64245 0.40409
ud -2.81207 -2.16962 -1.67125 0.64245 0.49837
du -2.81207 -2.03338 -1.62574 0.77869 0.40764
dd -2.81207 -2.03338 -1.62606 0.77869 0.40733

Table 5.9: Optimal injection (x̃t)2
t=0 and injection increment (∆x̃t)2

t=1 for
various (αt)t∈I , where Ñ = 90,

∑2
t=0 ut = −PutC

2 (100), re = 0%, p = 0.5,
k = 0.5%, and I = {0, 1, 2}
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Injection x̃νtt Total injection
∑2
t=0 x̃

νt
t

Node Time step
ν ∈ Ω2 t = 0 t = 1 t = 2

I = {0, 1, 2} I = {0, 1, 2}
uu -2.22952 -2.37039 -2.51681 -7.11672
ud -2.22952 -2.37039 -2.23397 -6.83388
du -2.22952 -2.09792 -2.09744 -6.42488
dd -2.22952 -2.09792 -2.09839 -6.42583

I = {1, 2} I = {1, 2}
uu 0 -3.48515 -3.63157 -7.11672
ud 0 -3.48515 -3.34873 -6.83388
du 0 -3.21268 -3.21220 -6.42488
dd 0 -3.21268 -3.21315 -6.42583

I = {0, 2} I = {0, 2}
uu -3.34196 0 -3.62926 -6.97122
ud -3.34196 0 -3.34641 -6.68838
du -3.34196 0 -3.20989 -6.55185
dd -3.34196 0 -3.21084 -6.55280

I = {2} I = {2}
uu 0 0 -6.97122 -6.97122
ud 0 0 -6.68838 -6.68838
du 0 0 -6.55185 -6.55185
dd 0 0 -6.55280 -6.55280

Table 5.10: Optimal injection (x̃t)2
t=0 and its sum

∑2
t=0 x̃t for various I, where

Ñ = 90,
∑2
t=0 ut = −PutC

2 (100), re = 0%, p = 0.5, k = 0.5%, and αt = 1 for
all t ∈ I

regret V (u) is given by −1.99938, −2.66561, −2.55119, −2.55063 respectively.

Example 5.45. In this example, we set re = 0%, p = 0.5, k = 0.5%, αt = 1
for all t ∈ I, and

2∑
t=0

ut = −PutC
2 (100).

In Table 5.10, we provide the optimal injection and total injection by consid-
ering four different I: {0, 1, 2}, {1, 2}, {0, 2}, and {2}. It shows that x̃t = 0
whenever t /∈ I. Moreover, the total injection is the same for I = {0, 1, 2} and
I = {1, 2}. Similarly, the total injection is also the same for I = {0, 2} and
I = {2}. The minimal regret V (u) is given by −2.55063, −1.62431, −1.62388,
−0.96463 respectively for I = {0, 1, 2} , {1, 2} , {0, 2} , {2}.

In Examples 5.46-5.47 below, we will compute the optimal injections in
the market model with T = 52; the integer Ñ is set to be 60. In these
two examples, we will set re = 0% and k = 0.5%, which ensures (Q̃, S̃) ∈ P.
Indeed, by straightforward calculation, it follows that 1+u = 1.02812, 1+r = 1,
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5.5. Numerical examples in a binomial model

and 1 + d = 0.97265. Moreover, for each t = 0, . . . , T − 1 and ν ∈ Ωt, we have
from the values of u, r, d, and k that

Saνdt+1 < Sbνt , Saνt < Sbνut+1,

which means that there is no overlap among the intervals[
Sbνdt+1, S

aνd
t+1

]
,
[
Sbνt , S

aν
t

]
,
[
Sbνut+1, S

aνu
t+1

]
.

Then it follows from Sb ≤ S̃ ≤ Sa (because (Q̃, S̃) ∈ P̄) that

S̃νdt+1 < S̃νt < S̃νut+1.

Combining this with the fact that S̃ is a Q̃-martingale, the transition prob-
abilities of Q̃ must take their values in (0, 1). This means that Q̃(ω) > 0 for
all ω ∈ Ω and hence (Q̃, S̃) ∈ P. Therefore, the optimal injection (x̃t)52

t=0 in
(5.129) is well defined in Examples 5.46-5.47 below.

Example 5.46. Firstly, we set T = 52, re = 0%, p = 0.5, k = 0.5%,
I = IR = {0, . . . , T}, αt = 1 for all t ∈ I, and

∑T
t=0 ut = CallCT (100).

On the path presented in Figure 5.7(a), we compute (x̃t)52
t=0 and (∆x̃t)52

t=1
in Figures 5.7(b) and 5.7(c) respectively. Moreover, we provide (q̃t)52

t=1 and
S̃ = (S̃t)52

t=0 along this path in Figures 5.7(d) and 5.7(e) respectively, where
(q̃t)52

t=1 is the transition probabilities of Q̃; see the comments preceding (5.129)
for the definition of (Q̃, S̃). Observe from (5.129) together with αt = 1 and
pt = p = 0.5 that for all t = 1, . . . , 52 the increment of injections ∆x̃t can be
written as

∆x̃t = ln λ̃(u)ΛQ̃
t − ln λ̃(u)ΛQ̃

t−1 = ln q̃t
pt

= ln q̃t
0.5 .

This gives a link between (∆x̃t)52
t=1 and (q̃t)52

t=1; see Figures 5.7(c) and 5.7(d).
In Figure 5.7(f), the following {−1, 0, 1}-valued Ft-measurable random vari-
able

ψ̃t := 1{
S̃t=Sat

} − 1{
S̃t=Sbt

} =


1 on

{
Sbt < S̃t = Sat

}
0 on

{
Sbt = S̃t = Sat

}⋃{
Sbt < S̃t < Sat

}
−1 on

{
Sbt = S̃t < Sat

}
is used to indicate the position of S̃t in [Sbt , Sat ] at each time step t on the given
path. It shows that S̃t can be at the boundary of [Sbt , Sat ], and it can also be
in the interior of [Sbt , Sat ].
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Figure 5.7: Optimal injection (x̃t)Tt=0 and the pair (Q̃, S̃), where Ñ = 60,∑T
t=0 ut = CallCT (100), T = 52, re = 0%, p = 0.5, k = 0.5%, I = IR, and

αt = 1 for all t ∈ I
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Figure 5.8: Optimal injection on two different paths for various (αt)t∈I , where∑T
t=0 ut = CallCT (100), Ñ = 60, T = 52, re = 0%, p = 0.5, k = 0.5%, and
I = IR
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Example 5.47. In this example, we set T = 52, re = 0%, p = 0.5, k = 0.5%,
I = IR = {0, . . . , T}, and

∑T
t=0 ut = CallCT (100). In Figure 5.8, we consider

the optimal injection on two paths for three different (αt)t∈I . In the case
when t 7→ αt is decreasing, there is a general upward trend in the optimal
cash injection with small fluctuation over time; see Figures 5.8(c) and 5.8(d).
Similarly, in the case when t 7→ αt is increasing, the optimal cash injection
declines gradually in general and has a few minor fluctuation during some
time periods; see Figures 5.8(g) and 5.8(h). While αt is constant in t, there
is no upward or downward trend in the cash injection process over time; see
Figures 5.8(e) and 5.8(f).

5.5.3 Regret indifference prices

In this section, we will present numerical results for regret indifference prices.
Firstly, in Examples 5.48-5.53, we will present the indifference prices in models
with 52 time steps. These examples are used to study the influence of different
parameter values on prices. Then Example 5.54 will provide the indifference
prices of various options in both 250-step and 1000-step models.

We define the payoffs of a strangle and a butterfly, which depend on two
parameters A1 ≤ A2, as follows:

StrC
T (A1, A2) := PutC

T (A1) + CallCT (A2),

ButC
T (A1, A2) := CallCT (A1) + CallCT (A2)− 2CallCT (A1+A2

2 );

the integer T is the number of time steps in the market model, and “C” in the
superscript stands for cash delivery. Notice that the payoff of a strangle can
be written as

StrC
T (A1, A2) =


A1 − ST if ST ≤ A1,

0 if A1 < ST ≤ A2,

ST −A2 if A2 < ST .

Similarly, the payoff of a butterfly can be written as

ButC
T (A1, A2) =


ST −A1 if A1 < ST ≤ A1+A2

2 ,

A2 − ST if A1+A2

2 < ST ≤ A2,

0 otherwise.

Let c = (ct)Tt=0, c̄ = (c̄t)Tt=0 ∈ N 2. In Examples 5.48-5.54 below, we shall
always use π̃aiF (c; c̄) and π̃biF (c; c̄) defined in (5.121)-(5.122) to approximate the
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5.5. Numerical examples in a binomial model

seller’s and buyer’s indifference prices πaiF (c; c̄) and πbiF (c; c̄) respectively. From
the comments following (5.122), the values π̃aiF (c; c̄) and π̃biF (c; c̄) only relies
on
∑T
t=0 ct and

∑T
t=0 c̄t. Thus, to compute π̃aiF (c; c̄) and π̃biF (c; c̄), it is enough

to know
∑T
t=0 ct and

∑T
t=0 c̄t. In the calculation of π̃aiF (c; c̄) and π̃biF (c; c̄), the

integer Ñ will set to be 60; Theorem 5.36 together with Examples 5.37-5.41
suggests that the approximation error of indifference prices should be less than
0.01 under Ñ = 60 in most situations. We will compute the indifference prices
for both I = IR and I = IU in each examples, where IR and IU are defined
in (5.2)-(5.3). In the numerical results, the buyer’s indifference price π̃biF (c; c̄)
will always be dominated by the seller’s indifference price π̃aiF (c; c̄).

In Examples 5.48-5.53 below, we are going to present indifference prices
by varying re, p, c̄, option strike prices, k, and (αt)Tt=0 respectively and keep
other parameters fixed. In these examples, we set T = 52.

Example 5.48. Firstly, let p = 0.5, k = 0.5%, αt = 1 for all t ∈ I, and
c̄t = 0 for all t = 0, . . . , T . We consider the indifference prices of c for various
values of re which is the annually compounded interest rate. In Figure 5.9(a),
we set

∑T
t=0 ct = 1

1+reCallCT (100) to be the discounted payoff of a call op-
tion. It shows that as re increases, the price of c in the friction-free model
(i.e. k = 0%) increases, and all indifference prices increase as well. Similarly,
in Figure 5.9(b), we set

∑T
t=0 ct = 1

1+rePutC
T (100) which is the discounted

payoff of a put option. It shows that an increase in re leads to a decrease in
all prices. In Figure 5.9(c), we set

∑T
t=0 ct = 1

1+reStrC
T (95, 105) which is the

discounted payoff of a strangle. In the case when re ≤ 0%, all prices decrease
as re increases. However, in the case when re ≥ 0, all prices increase as re
increases.

Example 5.49. We know from Theorem 2.14 and (2.26)-(2.27) that the su-
perhedging prices are independent of market probabilities. However, the indif-
ference prices may depend on it. In Figure 5.10, we present π̃aiF (c; 0), π̃biF (c; 0),
and π̃aiF (c; 0) − π̃biF (c; 0) for various p, where re = 0%, k = 0.5%, αt = 1 for
all t ∈ I, and c̄t = 0 for all t = 0, . . . , T . We set

∑T
t=0 ct to be CallCT (100),

PutC
T (100), ButC

T (90, 110) respectively in Figures 5.10(a)-5.10(c). It shows that
indifference prices can be affected by p. Moreover, in all three subfigures, the
difference between seller’s and buyer’s indifference prices π̃aiF (c; 0) − π̃biF (c; 0)
is increasing in p when p ≤ 0.5, and it is decreasing in p when p ≥ 0.5, so it
reaches its maximum at p = 0.5.

Example 5.50. In our setting, we have Sb0 = Sa0 . By Corollary 5.9, the
indifference prices satisfies (5.15) (i.e. remain unchanged for two endowments
(c̄t)Tt=0 and (c̄′t)Tt=0) if

∑T
t=0 c̄t−

∑T
t=0 c̄

′
t is a constant. This example shows that
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Figure 5.9: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various values of re,
where T = 52, p = 0.5, k = 0.5%, and αt = 1 for all t ∈ I

212



5.5. Numerical examples in a binomial model

0.05 0.2 0.35 0.5 0.65 0.8 0.95

7

7.5

8

8.5

9

p
0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.5

1

1.5

2

2.5

p

0.05 0.2 0.35 0.5 0.65 0.8 0.95
6.5

7

7.5

8

8.5

9

p
0.05 0.2 0.35 0.5 0.65 0.8 0.95

0

0.5

1

1.5

2

p

0.05 0.2 0.35 0.5 0.65 0.8 0.95

1.5

2

2.5

3

p
0.05 0.2 0.35 0.5 0.65 0.8 0.95

0.5

1

1.5

p

(a)
∑T
t=0 ct = CallCT (100)

(b)
∑T
t=0 ct = PutC

T (100)

(c)
∑T
t=0 ct = ButC

T (90, 110)

I = IR π̃biF (c; 0) π̃aiF (c; 0) π̃aiF (c; 0)− π̃biF (c; 0)
I = IU π̃biF (c; 0) π̃aiF (c; 0) π̃aiF (c; 0)− π̃biF (c; 0)

Figure 5.10: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various values of p,
where T = 52, re = 0%, k = 0.5%, and αt = 1 for all t ∈ I
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Figure 5.11: Indifference prices π̃biF (c; c̄) and π̃aiF (c; c̄) for various endowment c̄,
where

∑T
t=0 ct = CallCT (100), T = 52, p = 0.5, re = 0%, k = 0.5%, and αt = 1

2
for all t ∈ I
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(5.15) may not hold true if
∑T
t=0 c̄t −

∑T
t=0 c̄

′
t is not a constant. Let p = 0.5,

re = 0%, k = 0.5%, and αt = 1
2 for all t ∈ I. In Figure 5.11, we consider the

indifference prices of c = (ct)Tt=0 such that
∑T
t=0 ct = CallCT (100) for various

different c̄ = (c̄t)Tt=0. Firstly, in Figures 5.11(a)-5.11(c), the endowment c̄ is
set to satisfy

T∑
t=0

c̄t = ρCallCT (100)

T∑
t=0

c̄t = ρStrC
T (90, 110)

T∑
t=0

c̄t = ρButC
T (80, 120)

respectively, where −3 ≤ ρ ≤ 3 is a scalar. It shows that, in both Fig-
ures 5.11(a) and 5.11(b), the indifference prices decrease as ρ increases. How-
ever, in Figure 5.11(c), as ρ increases, the indifference prices increase. In all
three subfigure, as ρ increases from 0 to 3 or decreases from 0 to −3, the dif-
ference between seller’s and buyer’s indifference prices becomes smaller. The
conclusion is that investor’s endowment c̄ can affect the indifference prices
π̃aiF (c; c̄) and π̃biF (c; c̄), but more endowment may not produce a lower/higher
indifference price.

Example 5.51. Let p = 0.5, re = 0%, k = 0.5%, and αt = 1 for all t ∈ I, and
c̄t = 0 for all t = 0, . . . , T . We are going to compute the indifference prices of
c for various values of strike prices. Firstly, we consider

∑T
t=0 ct = CallCT (A) in

Figure 5.12(a) for various values of strike price A. It shows that all indifference
prices decrease as A increases. As expected, a higher value of option payoff
leads to a higher price. Similar pattern can be observed when

∑T
t=0 ct is the

payoff of a strangle or a butterfly; see Figures 5.12(b) and 5.12(c).

Example 5.52. In this example, we set p = 0.5, re = 0%, αt = 1 for all t ∈ I,
and c̄t = 0 for all t = 0, . . . , T . In Figure 5.13, we present the indifference
prices of c for various values of k which is the transaction costs parameter.
First of all, in Figure 5.13(a), we take

∑T
t=0 ct as the payoff of a call option

delivered by portfolio. Moreover, we set
∑T
t=0 ct as the payoff of a strangle

and a butterfly respectively in Figures 5.13(b) and 5.13(c). It suggests that,
when the value of k increases, the gap between seller’s and buyer’s indifference
prices becomes bigger. In the case when k = 0% (i.e. there is no transaction
costs), all indifference prices are the same.

Example 5.53. First of all, let p = 0.5, re = 0%, k = 0.5%, and c̄t = 0
for all t = 0, . . . , T . Moreover, the process (αt)Tt=0 is set to be αt = α for
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Figure 5.12: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various strike prices,
where T = 52, p = 0.5, re = 0%, k = 0.5%, and αt = 1 for all t ∈ I
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(a)
∑T
t=0 ct = CallPT (100)

(b)
∑T
t=0 ct = StrC

T (95, 105)

(c)
∑T
t=0 ct = ButC

T (95, 115)

I = IR π̃biF (c; 0) π̃aiF (c; 0)
I = IU π̃biF (c; 0) π̃aiF (c; 0)

Figure 5.13: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various values of k,
where T = 52, p = 0.5, re = 0%, and αt = 1 for all t ∈ I
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Figure 5.14: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various α, where
T = 52, p = 0.5, re = 0%, k = 0.5%, αt = α for all t ∈ I

218



5.5. Numerical examples in a binomial model

all t ∈ I, so α is the risk aversion coefficient at each time step t ∈ I. In
Figure 5.14, we consider the indifference prices of c for 9 different values of
α ranging from 0.01 to 2. The value

∑T
t=0 ct is set to be the payoff of a

call, a strangle, and a butterfly respectively in Figures 5.14(a)-5.14(c). In all
cases, as α increases, the buyer’s indifference price decreases, and the seller’s
indifference price increases. This suggests that if the seller and the buyer are
willing to take more risks which corresponds to a lower value of α, then the
gap between seller’s and buyer’s indifference prices will be smaller.

This section ends with the following example which presents the indiffer-
ence prices and superhedging prices in the market models with larger number
of steps T . It shows that the bid-ask indifference price interval can be much
narrower than the no-arbitrage price interval.

Example 5.54. In our final example, let p = 0.5, re = 0%, and c̄t = 0 for
all t = 0, . . . , T . Similar to Example 5.53, we take αt = α for all t ∈ I. In
Figures 5.15-5.18, we present the indifference prices of a call, a put, a strangle,
and a butterfly respectively in the market models with T = 250, 1000 and
k = 0.25%, 0.5%. In addition, in every figure, the prices are computed for 9
different values of α ranging from 0.01 to 2. The superhedging prices for these
four options are presented in Table 5.11, and all the prices in this table are
provided by Dr. Alet Roux by using the method from Roux & Zastawniak
(2016). The difference between seller’s and buyer’s indifference prices appears
to be much smaller than the difference between seller’s and buyer’s super-
hedging prices. This is especially the case when k = 0.5% and T = 1000.
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(a) T = 250, k = 0.25% (b) T = 250, k = 0.5%

(c) T = 1000, k = 0.25% (d) T = 1000, k = 0.5%

I = IR π̃biF (c; 0) π̃aiF (c; 0)
I = IU π̃biF (c; 0) π̃aiF (c; 0)

Figure 5.15: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various α, where∑T
t=0 ct = CallCT (100), p = 0.5, re = 0%, and αt = α for all t ∈ I
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Figure 5.16: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various α, where∑T
t=0 ct = PutC

T (100), p = 0.5, re = 0%, and αt = α for all t ∈ I
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Figure 5.17: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various α, where∑T
t=0 ct = StrC

T (95, 105), p = 0.5, re = 0%, and αt = α for all t ∈ I
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Figure 5.18: Indifference prices π̃biF (c; 0) and π̃aiF (c; 0) for various α, where∑T
t=0 ct = ButC

T (95, 115), p = 0.5, re = 0% and αt = α for all t ∈ I
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k = 0.25% k = 0.5%
T buyer seller buyer seller∑T

t=0 ct = CallCT (100)
250 6.06057 9.53113 3.39402 10.91410
1000 3.52132 10.78134 0.00000 13.04456∑T

t=0 ct = PutC
T (100)

250 6.07543 9.50702 3.40983 10.85840
1000 3.52983 10.75411 0.00000 12.97824∑T

t=0 ct = StrC
T (95, 105)

250 7.84118 14.41934 3.08667 17.07163
1000 3.22336 16.86926 0.00000 21.26935∑T

t=0 ct = ButC
T (95, 115)

250 0.88800 3.06615 0.23926 5.29936
1000 0.25824 5.14877 0.00002 8.51486

Table 5.11: Buyer’s superhedging price πbF(c) = πbE(
∑T
t=0 ct) and seller’s su-

perhedging price πaF(c) = πaE(
∑T
t=0 ct) for various

∑T
t=0 ct, k, and T , where

re = 0%
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Appendix A

Mathematical background

A.1 Mathematical preliminaries

Let X be a vector space and f be an R∪{∞}-valued function on a convex set
S ⊆ X. We call f a convex function if for any x, y ∈ S and λ ∈ (0, 1) we have

f (λx+ (1− λ) y) ≤ λf (x) + (1− λ) f (y) .

Moreover, a function f is called proper if dom f 6= ∅ where

dom f := {x ∈ S | f(x) <∞}

is the effective domain of f . The epigraph of f is defined as

epi f := {(x, y) | x ∈ S, y ∈ R, y ≥ f (x)} ⊆ X × R.

Notice that f is a convex function if and only if epi f is convex.

The function f is called lower semicontinuous (Rockafellar 1974, p. 14) if
the set epi f is closed in X×R. The notion of lower semicontinuity depends on
X×R being a topological space, and this thesis only considers the cases when
X = R and X = N 2. The following remark discusses the notion of closedness
in N 2 × R used in this thesis.

Remark A.1. Recall that Ω is finite. Let |Ω| be the number of elements in Ω.
For any x ∈ L2

T , the value of x can be represented by the vector R (x) as

R (x) :=
(
x1(ω1), x2(ω1), . . . , x1(ω|Ω|), x2(ω|Ω|)

)
∈ R2|Ω|.

Similarly, for any (x, y) = ((xt)Tt=0, y) ∈ N 2 × R we have xt ∈ L2
t ⊆ L2

T for all
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A.1. Mathematical preliminaries

t = 0, . . . , T , and the value of (x, y) can be represented by

P ((x, y)) := (R (x0) , . . . , R (xT ) , y) ∈ R2|Ω|(T+1)+1.

We call a set A in L2
T closed if the set {R (x) | x ∈ A} is closed in R2|Ω|. In

addition, we call a set A in N 2 × R closed if the set {P (x) | x ∈ A} is closed
in R2|Ω|(T+1)+1.

An R∪{±∞}-valued function on B ⊆ R is said to be continuous on B′ ⊆ B
if the restriction of this function to B′ is a continuous function.

Lemma A.2. If f : R→ R ∪ {∞} is proper, convex, and lower semicontinu-
ous, then f is continuous on dom f .

Proof. From Theorem 10.1 of Rockafellar (1997), the function f is continuous
on ri dom f , where riA is the relative interior of a given set A. Moreover, the
function f is continuous on any closed subinterval of dom f (Rockafellar 1997,
Theorems 10.2 and 20.5). Notice that dom f is non-empty and convex because
f is proper and convex. Then dom f is an interval, in other words, it is the
union of ri dom f and zero, one or two endpoints. For convenience, we define

a := inf dom f,

b := sup dom f.

We are going to show that f is continuous on dom f by considering the fol-
lowing three situations for dom f .

1. If dom f = (a, b) (i.e. dom f contains no endpoint), then f is continuous
on dom f because dom f = ri dom f .

2. If dom f = [a, b] (i.e. dom f contains both endpoints), then dom f is a
closed subinterval of dom f . This means that f is continuous on dom f .

3. In the case when dom f = [a, b) or dom f = (a, b] (i.e. dom f contains
exactly one endpoint), the function f is continuous on (a, b) because
ri dom f = (a, b). Let

ε := min
{
b− a

2 , 1
}
∈ (0, 1].

If dom f = [a, b), the function f is continuous on [a, a+ε] because [a, a+ε]
is a closed subinterval of dom f . Since the intersection

[a, a+ ε] ∩ (a, b) = (a, a+ ε)
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contains infinitely many points, the function f is continuous on

[a, a+ ε] ∪ (a, b) = dom f.

Similarly, if dom f = (a, b], then f is continuous on [b − ε, b] because
[b− ε, b] is a closed subinterval of dom f . Since the intersection

(a, b) ∩ [b− ε, b] = (b− ε, b)

contains infinitely many points, the function f is continuous on

(a, b) ∪ [b− ε, b] = dom f.

This completes the proof.

The recession cone of a nonempty set C ⊆ X is defined as

C∞ := {y ∈ X | x+ λy ∈ C for all x ∈ C and λ ≥ 0} .

Observe that 0 is contained in any recession cone. The following result says
that if a convex cone contains 0, then it is equal to its recession cone.

Lemma A.3. Let C ⊆ X be a convex cone such that 0 ∈ C. Then C = C∞.

Proof. Suppose that y ∈ C. For all x ∈ C and λ ≥ 0, we have λy ∈ C because
C is a cone that contains 0. Then

x+ λy = 2
(1

2x+ 1
2λy

)
∈ C

because C is convex cone. Thus y ∈ C∞, and hence C ⊆ C∞. The opposite
inclusion also holds true. Suppose that y ∈ C∞. Let λ > 0. It follows from
0 ∈ C and the definition of C∞ that λy = 0 + λy ∈ C. Then y ∈ C because
C is a cone. Thus C∞ ⊆ C. The result follows.

The recession function of a proper convex function f is defined as the
function f∞ such that

epi f∞ = (epi f)∞.

Example A.4. In this example, we will compute the recession functions of a
number of R ∪ {∞}-valued convex functions on R.

1. Let a ∈ R, and let f be a linear function of the form f(x) = ax for all
x ∈ R. Then

epi f = {(x, y) | y ≥ ax}
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is a half space and hence a convex cone containing 0. It follows from
Lemma A.3 that

epi f = (epi f)∞.

Thus f∞ = f .

2. Let α > 0 and v (x) = eαx − 1 for all x ∈ R. Then v is an exponential
regret function defined in Example 3.4.1. Fix any (x, y) ∈ R2, and
consider the following three situations. If y < 0, then (x, y) /∈ (epi v)∞

because v is bounded from below. Moreover, if x > 0 and y ≥ 0, then
(x, y) /∈ (epi v)∞ because v and v′ are always increasing. However, if
x ≤ 0 and y ≥ 0, then (x, y) ∈ (epi v)∞. Thus

(epi v)∞ = {(x, y)|x ≤ 0, y ≥ 0} = (−∞, 0]× [0,∞).

To ensure epi v∞ = (epi v)∞, we must have v∞ = δ(−∞,0], where δ(−∞,0]

is the indicator function defined in (3.1).

3. Let f : R → R ∪ {∞} be a proper convex function with a bounded
effective domain. Then

(epi f)∞ = {(0, y)| y ≥ 0},

which implies that f∞ = δ{0}.

This section ends with three technical results in Lemmas A.5-A.7.

Lemma A.5. Let f be a closed proper convex function on R. Suppose that
(x, y) /∈ epi f∞ for some x < 0 and y > 0 and that (x′, y′) /∈ epi f∞ for some
x′ > 0 and y′ > 0. Then the function f attains its infimum.

Proof. It is sufficient to show that f is neither a nondecreasing function nor
a nonincreasing function. Then f attains its infimum; see Theorem 27.2 and
the comments following Corollary 27.2.2 of Rockafellar (1997).

Fix any (x∗, y∗) ∈ {(x, y), (x′, y′)}. Then (x∗, y∗) /∈ epi f∞ = (epi f)∞

which implies that there exists (z1, z2) ∈ epi f and λ > 0 such that

(z1, z2) + λ(x∗, y∗) /∈ epi f,

in other words,
f(z1 + λx∗) > z2 + λy∗,

where λy∗ > 0. This implies that

f(z1 + λx∗) > z2 ≥ f(z1)
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since (z1, z2) ∈ epi f . By taking (x∗, y∗) = (x, y), it yields f(z1 +λx) > f(z1),
where z1 + λx < z1. Thus f is not nondecreasing. Similarly, by taking
(x∗, y∗) = (x′, y′), we have f(z1 + λx′) > f(z1) with z1 + λx′ > z1 and hence
f is not nonincreasing.

The following lemma provides a technical result that is used in the proof
of Theorem 5.25.

Lemma A.6. Suppose that f and g are R ∪ {∞}-valued functions on a non-
empty set A such that∣∣∣∣ inf

x∈A
f(x)

∣∣∣∣ <∞, ∣∣∣∣ inf
y∈A

g(x)
∣∣∣∣ <∞.

Then ∣∣∣∣ inf
x∈A

f(x)− inf
x∈A

g(x)
∣∣∣∣ ≤ sup

x∈A
|f(x)− g(x)| . (A.1)

Proof. Observe that
inf
x∈A

f(x) = − sup
x∈A

[−f(x)]

and
inf
x∈A

g(x) = − sup
x∈A

[−g(x)].

We are going prove (A.1) by considering the following two situations for
infx∈A f(x)− infx∈A g(x).

In the situation when infx∈A f(x)− infx∈A g(x) ≥ 0, we have∣∣∣∣ inf
x∈A

f(x)− inf
x∈A

g(x)
∣∣∣∣ = inf

x∈A
f(x)− inf

x∈A
g(x) = sup

x∈A

[
inf
y∈A

f(y)− g(x)
]
.

Then it follows from infy∈A f(y) ≤ f(x) for any x ∈ A that∣∣∣∣ inf
x∈A

f(x)− inf
x∈A

g(x)
∣∣∣∣ ≤ sup

x∈A
[f(x)− g(x)] ≤ sup

x∈A
|f(x)− g(x)| ,

and hence (A.1) holds true.
In the situation when infx∈A f(x)− infx∈A g(x) < 0, we have∣∣∣∣ inf
x∈A

f(x)− inf
x∈A

g(x)
∣∣∣∣ = inf

x∈A
g(x)− inf

x∈A
f(x) = sup

x∈A

[
inf
y∈A

g(y)− f(x)
]
.

Since infy∈A g(y) ≤ g(x) for any x ∈ A, it follows that∣∣∣∣ inf
x∈A

f(x)− inf
x∈A

g(x)
∣∣∣∣ ≤ sup

x∈A
[g(x)− f(x)] ≤ sup

x∈A
|f(x)− g(x)| .

This completes the proof of (A.1).
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The lemma below is used in proof of Lemma 4.14, and it is also used in
Example 5.10.

Lemma A.7. Let x ∈ R. Moreover, let [b1, a1] and [b2, a2] be two subintervals
of R, where b1 ≤ a1 and b2 ≤ a2. Then

C = {γ ∈ [0, 1] |∃x1 ∈ [b1, a1], x2 ∈ [b2, a2] : γx1 + (1− γ)x2 = x} (A.2)

is a convex set in [0, 1].

Proof. Suppose that γ1, γ2 ∈ C and µ ∈ (0, 1). Then it follows from (A.2)
that there exist x1

1, x
2
1 ∈ [b1, a1] and x1

2, x
2
2 ∈ [b2, a2] such that

γ1x1
1 + (1− γ1)x1

2 = x,

γ2x2
1 + (1− γ2)x2

2 = x.

Let
γ∗ := µγ1 + (1− µ)γ2 ∈ [0, 1].

Notice that, if γ∗ = 1, then γ1 = γ2 = 1 which means x1
1 = x2

1 = x. Moreover,
if γ∗ = 0, then γ1 = γ2 = 0 which means x1

2 = x2
2 = x. To prove C is convex,

it is enough to show that γ∗ ∈ C. Let

x∗1 :=


µγ1

γ∗ x
1
1 + (1−µ)γ2

γ∗ x2
1 if γ∗ ∈ (0, 1),

b1 if γ∗ = 0,

x if γ∗ = 1,

where µγ1

γ∗ ,
(1−µ)γ2

γ∗ ≥ 0 and

µγ1

γ∗
+ (1− µ)γ2

γ∗
= µγ1 + (1− µ)γ2

γ∗
= γ∗

γ∗
= 1.

In addition, let

x∗2 :=


µ(1−γ1)

1−γ∗ x1
2 + (1−µ)(1−γ2)

1−γ∗ x2
2 if γ∗ ∈ (0, 1),

x if γ∗ = 0,

a2 if γ∗ = 1,

where µ(1−γ1)
1−γ∗ , (1−µ)(1−γ2)

1−γ∗ ≥ 0 and

µ(1− γ1)
1− γ∗ + (1− µ)(1− γ2)

1− γ∗ = 1− µγ1 − (1− µ)γ2

1− γ∗ = 1− γ∗

1− γ∗ = 1.
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Observe that x∗1 ∈ [b1, a1] and x∗2 ∈ [b2, a2]. We are going to show that

γ∗x∗1 + (1− γ∗)x∗2 = x

by considering the following three cases of γ∗. If γ∗ ∈ (0, 1), then

γ∗x∗1 + (1− γ∗)x∗2 = µγ1x1
1 + (1− µ)γ2x2

1 + µ(1− γ1)x1
2 + (1− µ)(1− γ2)x2

2

= µ(γ1x1
1 + (1− γ1)x1

2) + (1− µ)(γ2x2
1 + (1− γ2)x2

2)

= µx+ (1− µ)x

= x.

If γ∗ = 1, then

γ∗x∗1 + (1− γ∗)x∗2 = 1× x+ 0× a2 = x.

Similarly, if γ∗ = 0, then

γ∗x∗1 + (1− γ∗)x∗2 = 0× b1 + 1× x = x.

We can conclude that γ∗ ∈ C, and hence C is convex.

A.2 Piecewise linear convex function

This section provides a number of basic facts about piecewise linear convex
functions. These results are helpful in the study of Sections 5.3 and 5.4.

The following technical result will used in Lemma A.10; it is also used in
Lemmas 5.29 and 5.32.

Lemma A.8. Let f be an R ∪ {∞}-valued convex function on a convex set
C ⊆ R such that f <∞ on [x1, x2] ⊆ C for some x1 < x2. Moreover, let h be
the R-valued affine function on R such that h(x1) = f(x1) and h(x2) = f(x2),
in other words,

h(x) = αx+ β,

α = f(x2)− f(x1)
x2 − x1

,

β = f(x1)− αx1.

Then f ≤ h on [x1, x2], and f ≥ h on C\(x1, x2).

Proof. For any x ∈ [x1, x2], there exists θ ∈ [0, 1] such that x = θx1+(1−θ)x2.
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A.2. Piecewise linear convex function

Then the convexity of f gives

f(x) ≤ θf(x1) + (1− θ)f(x2) = θh(x1) + (1− θ)h(x2) = h(x).

Thus f ≤ h on [x1, x2].
Fix any x ∈ C\(x1, x2). Consider the following two situations. If x ≤ x1,

then the quantity θ ∈ (0, 1] such that x1 = θx+ (1− θ)x2 satisfies

f(x1) ≤ θf(x) + (1− θ)f(x2).

Then combining this with h(x1) = θh(x) + (1− θ)h(x2), it follows that

f(x) ≥ f(x1)− (1− θ)f(x2)
θ

= h(x1)− (1− θ)h(x2)
θ

= h(x).

Similarly, if x ≥ x2 then the quantity θ ∈ [0, 1) such that x2 = θx1 + (1− θ)x
satisfies

f(x2) ≤ θf(x1) + (1− θ)f(x).

This implies

f(x) ≥ f(x2)− θf(x1)
1− θ = h(x2)− θh(x1)

1− θ = h(x)

because h(x2) = θh(x1) + (1− θ)h(x). Thus f ≥ h on C\(x1, x2).

The following result shows that a continuous piecewise linear function with
nondecreasing slopes is convex.

Lemma A.9. Let x1, . . . , xn ∈ R such that x1 ≤ · · · ≤ xn, and let

hi(x) = αix+ βi

with αi, βi ∈ R for all x ∈ R and i = 1, . . . , n − 1. If α1 ≤ · · · ≤ αn−1 and h
is a continuous piecewise linear function on [x1, xn] such that

h(x) = hi(x) for all x ∈ [xi, xi+1], i = 1, . . . , n− 1,

then the following two claims hold true.

1. For any i = 1, . . . , n− 1 and x ∈ [xi, xi+1], we have

h(x) = hi(x) = max{h1(x), . . . , hn−1(x)}.

2. The function h is convex.

232



A.2. Piecewise linear convex function

Proof. Firstly, we are going to prove the first claim. Fix any i = 1, . . . , n− 1
and x ∈ [xi, xi+1]. Clearly, we have h(x) = hi(x), and it is enough to show

hi(x) = max{h1(x), . . . , hn−1(x)}. (A.3)

For any 1 ≤ k ≤ n − 2, we have h = hk on [xk, xk+1] and h = hk+1 on
[xk+1, xk+2], which implies

hk(xk+1) = h(xk+1) = hk+1(xk+1). (A.4)

Consider the following two cases. If x = xk+1, then hk(x) = hk+1(x) by (A.4).
In the case when x 6= xk+1, we have

hk(xk+1)− hk(x)
xk+1 − x

= αk ≤ αk+1 = hk+1(xk+1)− hk+1(x)
xk+1 − x

,

and (A.4) implies

hk(xk+1)− hk(x)
xk+1 − x

≤ hk(xk+1)− hk+1(x)
xk+1 − x

.

Thus
x < xk+1 =⇒ hk(x) ≥ hk+1(x)

and
x > xk+1 =⇒ hk(x) ≤ hk+1(x).

We can conclude that
hi(x) ≥ · · · ≥ hn−1(x)

and
h1(x) ≤ · · · ≤ hi(x).

Therefore (A.3) holds true. This completes the proof of the first claim.
The first claim implies that

h(x) = max{h1(x), . . . , hn−1(x)} for all x ∈ [x1, xn].

Then h is convex by Theorem 5.5 of Rockafellar (1997). This completes the
proof of the second claim.

Let x1, . . . , xn ∈ R such that x1 < · · · < xn, and let f : R → R ∪ {∞}
be a continuous convex function such that f < ∞ on [x1, xn]. By connecting
(xi, f(xi)) and (xi+1, f(xi+1)) for each i = 1, . . . , n − 1, we are going to con-
struct a continuous piecewise linear function h on [x1, xn] such that h = f on
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{x1, . . . , xn} as follows. Firstly, define

h(x) := f(x) for all x = x1, . . . , xn. (A.5)

Then for any i = 1, . . . , n− 1 and x ∈ (xi, xi+1), let

h(x) := hi(x) = αix+ βi (A.6)

where hi is an affine function on R with

αi = f(xi+1)− f(xi)
xi+1 − xi

,

βi = f(xi)− αixi.

This completes the definition of h on [x1, xn]. Notice that h is real-valued,
continuous, piecewise linear, and satisfies

h(x) = hi(x) for all x ∈ [xi, xi+1], i = 1, . . . , n− 1. (A.7)

The following result provides a number of properties of h1, . . . , hn−1 and h.

Lemma A.10. The slopes of affine functions h1, . . . , hn−1 satisfy

α1 ≤ · · · ≤ αn−1. (A.8)

Moreover, the function h defined in (A.5)-(A.6) is real-valued, continuous,
piecewise linear, convex, and satisfies h ≥ f on [x1, xn].

Proof. We are going to prove (A.8) first. For any i = 1, . . . , n− 2, there exists
θ ∈ (0, 1) such that xi+1 = θxi + (1− θ)xi+2, and the convexity of f gives

f(xi+1) ≤ θf(xi) + (1− θ)f(xi+2).

This implies

f(xi+1)−f(xi) ≤ (θ−1)f(xi)+(1−θ)f(xi+2) = (1−θ)(f(xi+2)−f(xi)) (A.9)

and

f(xi+2)− f(xi+1) ≥ θf(xi+2)− θf(xi) = θ(f(xi+2)− f(xi)). (A.10)

From (A.9) and xi+1 − xi = (1− θ)(xi+2 − xi), we have

αi = f(xi+1)− f(xi)
xi+1 − xi

≤ (1− θ)(f(xi+2)− f(xi))
(1− θ)(xi+2 − xi)

= f(xi+2)− f(xi)
xi+2 − xi

.
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Similarly, combining (A.10) and xi+2 − xi+1 = θ(xi+2 − xi), it follows that

αi+1 = f(xi+2)− f(xi+1)
xi+2 − xi+1

≥ θ(f(xi+2)− f(xi))
θ(xi+2 − xi)

= f(xi+2)− f(xi)
xi+2 − xi

.

Thus αi ≤ αi+1. This completes the proof of (A.8).
Clearly, the function h is real-valued, continuous and piecewise linear.

Moreover, combining Lemma A.9 together with (A.8) and (A.7), the func-
tion h is convex. For any i = 1, . . . , n − 1, we have hi(xi) = f(xi) and
hi(xi+1) = f(xi+1), and it follows from Lemma A.8 that hi ≥ f on [xi, xi+1].
Then h ≥ f on [x1, xn] by (A.7).

A.3 Set-valued function and random function

This section will start by introducing the notion of a set-valued function and
the measurability of such type of function. After that, the section will intro-
duce the notion of a random function and the measurability of this type of
function.

In the remainder of this section, let d ∈ N. We denote the power set of
Rd by 2Rd . For any set X, a function of the form f : X → 2Rd is called a
set-valued function.

We will keep t = 0, . . . , T fixed in the remainder of this section. The
following example considers a set-valued function on Ldt .

Example A.11. Define

f (x) :=
(
E[x1], . . . ,E[xd]

)
+ Rd+ for all x = (x1, . . . , xd) ∈ Ldt .

Then f is a set-valued function from Ldt to 2Rd .

In our setting, the concept of a measurable set-valued function from Defin-
ition 14.1 of Rockafellar & Wets (2009) can be presented as follows.

Definition A.12. A set-valued function f : Ω→ 2Rd is called Ft-measurable
if

{ω ∈ Ω | fω ∩O 6= ∅} ∈ Ft for all open O ⊆ Rd. (A.11)

For any set-valued function f : Ω → 2Rd , it is easy to see that if the
function ω 7→ fω is constant on each node in Ωt, in other words,

fω = fω
′ for all ω, ω′ ∈ ν and ν ∈ Ωt, (A.12)

then this function is Ft-measurable. In the situation when (A.12) holds true,
it will sometimes be convenient to denote the common value of f on ν ∈ Ωt
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by fν . Moreover, for any random variable z ∈ Lt, we write z ∈ f if z(ν) ∈ fν

for all ν ∈ Ωt.
The next example considers a measurable set-valued function on Ω.

Example A.13. Let x ∈ Ldt . Define the set-valued function

fω := x(ω) + Rd+ for all ω ∈ Ω.

Then f is Ft-measurable because x ∈ Ldt .

The example below shows that it is possible that f : Ω → 2Rd is Ft-
measurable, but it does not satisfy (A.12).

Example A.14. Let d = 1, t = 0, and Ω = {ω1, ω2}. Then F0 = {{ω1, ω2}, ∅}.
Define fω1 = R and fω2 = R\{0}. Clearly, we have fω1 ∩ O 6= ∅ for all non-
empty open O ⊆ R. Moreover, if there exists a non-empty O ⊆ R such that
fω2 ∩O = ∅, then O must be {0} which is not open. This means fω2 ∩O 6= ∅
for all non-empty open O ⊆ R. Thus

{ω ∈ Ω | fω ∩O 6= ∅} ∈ F0 for all open O ⊆ R.

in other words, the function f is F0-measurable. However, it follows from
fω1 6= fω2 that (A.12) is not satisfied for t = 0 and d = 1.

Now, we are going to introduce the notion of a random function and the
measurability of such a function. A function f : Ω× Rd → R ∪ {∞} is called
a random function.

Example A.15. Given y ∈ Ldt , the function f (x) = x · y for x ∈ Ldt corres-
ponds to the random function with value

fω(x(ω)) = x(ω) · y(ω) for all ω ∈ Ω.

For any ω ∈ Ω, the function fω has domain Rd and range R∪{∞}. Moreover,
since y ∈ Ldt , we have for all ν ∈ Ωt that fω = fω

′ for all ω, ω′ ∈ ν.

Observe that if f is a random function, then for any ω ∈ Ω the function
fω is of the form fω : Rd → R ∪ {∞}.

Definition A.16. A random function f is called Ft-measurable if the set-
valued function ω 7→ epi fω is Ft-measurable.

Notice that, for any random function f , if the function ω 7→ fω is constant
on each node in Ωt, in other words,

fω = fω
′ for all ω, ω′ ∈ ν and ν ∈ Ωt, (A.13)
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then it is Ft-measurable. In the case when (A.13) holds true, we will sometimes
use fν to represent the common value of f on ν ∈ Ωt. Observe that the random
function in Example A.15 is Ft-measurable.
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