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Abstract

Cosmic inflation, the idea that the very early universe underwent a dramatic accelerating expan-

sion of space, has found great success in explaining aspects of the universe that were previously

poorly understood. As a result, it has gained popularity and traction in the scientific main-

stream in recent decades. However, it is still unclear exactly how inflation could have occurred;

nothing in the established laws of physics can explain it. Now, in the modern era of precision

cosmology, experimental data capable of probing and testing the details of this epoch has be-

come available. With this, a deeper understanding of the physics of inflation may be possible,

and it may prove to be the key to unlocking some of the greatest unsolved mysteries in theo-

retical physics.

In this thesis, models of beyond-standard-model physics, with a particular focus on those in-

spired by modified theories of gravity (those that extend Einstein’s theory of General Rela-

tivity), are studied with the goal of understanding their inflationary consequences and hence

establish how feasible these exotic theories are as descriptions of the early universe from this

perspective. Additionally, some thought is given to present and future tests of inflation as well

as how new data, or improvements in the presently available data, will increase cosmologists’

ability to discriminate between different theories of inflation and hence move closer to answering

the question of what caused it once and for all.





Preface to the thesis

This is a thesis consisting of research on the general theme of models of cosmic inflation and

modifications of Einstein’s theory of gravitation, general relativity. In an effort to be largely

self-contained, this thesis is divided into two major parts. There will be a series of introductory

chapters reviewing the background and key equations/results that will be used and referred to

later in the subsequent series of chapters presenting my original research. To give an overview

of the chapters comprising the thesis, we have:

• Background Review

1. Introduction

2. Gravity

3. Cosmology

• Original Research

4. Disformally Coupled Inflation

5. Inflation and the Gauss-Bonnet term

6. Testing Inflation with the Running of the Running of the Spectral Index

This will be followed with some brief concluding remarks.

7. Conclusions

The content presented in this thesis is based on the original work of the author except in a few

specific cases where results produced by collaborators are used. In particular, it is noted that

the derivation of equation (5.3.17) was done by Charlotte Owen of Lancaster University, as was

the application of our results described in Chapter 5 to obtaining the data in Table 5.1.
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CHAPTER 1

INTRODUCTION

Cosmology is the study of the whole universe as a physical system. Humanity has

sought to answer fundamental questions about the universe, its beginning, and its

end, for thousands of years and creation mythologies are often a key part of many

cultures and religions. While, historically, cosmology firmly resided in the domains

of theology and philosophy, with time, people came to apply the scientific method

to the subject of the universe we inhabit, leading to the present day where physical

cosmology is a well-established scientific field. The modern scientific approach to

cosmology often involves working with the two main pillars of modern theoretical

physics: General Relativity (GR),1 which classically describes the nature of space,

time and gravity, and the Standard Model of particle physics which describes all

other known particles and forces within the framework of Quantum Field Theory.2–4

Particle physics tells us what kinds of matter exist in the universe, and General

Relativity tells us how that matter can cause spacetime to curve, expand, or contract.

For the past century, these two paradigms have become increasingly more empir-

ically supported by a growing body of experimental tests, culminating with the

recent discoveries of gravitational waves5,6 and the Higgs Boson.7,8 Parallel to this,

cosmologists have been applying ideas from these theories in order to understand the

billions of years of our universe’s history since its inception, and for the most part

1



1. Introduction

this has been a successful scientific endeavour, leading to the establishment of the

“Hot Big Bang” Cosmology.9–12 In this framework, the early universe is immensely

hot and dense, but cools as spacetime expands to approach the less extreme universe

we live in today. The expansion of the universe is initially quite fast, but decelerates

with time as it passes through the epochs of radiation domination and matter dom-

ination. It is under these initially hot, but expanding and hence cooling, conditions

that the key quantitative predictions of modern cosmology have been made and

subsequently had their veracity confirmed scientifically. This includes the theory

of primordial nucleosynthesis,13 which details the process of the initial formation of

the chemical elements once the universe had cooled sufficiently to allow nuclei to

stably exist, as well as the identification of Cosmic Microwave Background (CMB)

radiation14 with the newly free-streaming photons from the moment when the uni-

verse similarly became cool enough to allow neutral atoms to form. The consistency

of many such details and observations established the Hot Big Bang model as the

widely accepted scientific mainstream.

Despite the overwhelming success of the Hot Big Bang in explaining large parts

of our universe’s history, significant open problems remain. We find from obser-

vations of type Ia supernovae15–17 that the expansion of the universe is currently

accelerating due to the apparent presence of an unknown “dark energy”. Similarly,

the observed rotation profiles of galaxies suggest the presence of an invisible but

gravitating “dark matter”.18–23 Together, this so-called “dark sector”, which cannot

be accounted for by the present mainstream understanding of particle physics and

gravity, can be inferred to comprise some 95 %24 of the contents of the universe. It

is both astonishing and immensely interesting that even with theories as successful

as General Relativity and the Standard Model in describing the physics we experi-

ence on and around the planet Earth, we only fully understand a small fraction of

our wider universe. Nonetheless, by taking into account the empirical abundance of

“dark” quantities, the cosmological model was refined to include them, resulting in

the ΛCDM model of cosmology. While it posits the existence of dark matter and

dark energy as needed, it does not explain where they come from or how the stan-

dard model of particle physics and/or GR would need to be improved to account for

2



them. Furthermore, because of this inability to explain the observed present state

of the universe’s expansion, we cannot answer one of the biggest questions in all

cosmology that has drawn attention since ancient times: how will the universe come

to an end? Will it expand forever until an eventual “heat death”, or will it perhaps

recollapse in a “big crunch” scenario?25–28 Unless we come to understand more of

what dark energy is and not just how much of it there is right now, we will not be

able to make such future forecasts with certainty.

Equally as tantalising as our lack of an answer as to how the universe will end, is

our lack of an answer to how it began. As the quote in the preface of this thesis

wittily puts it, the Hot Big Bang has little more to say in response to this question

than “at first there was nothing, which then exploded”. It is, of course, not possible

to simply walk up to the very early universe and directly study it. However, relics

from the distant past of the universe that still exist today can provide us with

important hints. In particular, the CMB radiation is homogeneous on scales that

appear to violate causality. This is the so-called Horizon Problem29 which cannot be

resolved within the framework of the Hot Big Bang. Similarly, experiments suggest

that space itself is geometrically flat, or at least indistinguishably close to flatness,

despite the fact that the standard cosmology would require an immense fine tuning

of the initial curvature of spacetime to achieve this, also known as the Flatness

Problem.30 Additionally, the non-observation of magnetic monopoles synthesised in

the extremely hot early universe is known as the Monopole Problem,31 completing

the infamous trinity of problems with the Hot Big Bang. Inconsistencies such as

these with the standard Big Bang cosmology have led to the proposition that in

the distant past, during the first fraction of a second after the universe’s beginning,

it must have undergone an accelerating expansion. This early-universe accelerated

expansion is known as inflation.32–36 Note that while the expansion of the universe is

also accelerating today, in order to not ruin the aforementioned successes of the Hot

Big Bang model, the expansion of the universe would appear to need to tantalisingly

stop accelerating before the epoch of e.g. primordial nucleosynthesis, and then

resume acceleration at much later times.

While the hypothesis of an accelerating expansion at early times was first proposed

3



1. Introduction

to solve these problems of the Hot Big Bang cosmology, the greatest success of infla-

tionary cosmology is arguably its explanation of the initial formation of structures

in the universe. That is, such an early-time accelerated expansion typically leads to

the desirable property of a nearly (but not perfectly) scale-invariant power spectrum

of overdensities in the matter content of the early universe. These initial overdensi-

ties can then go on to become seeds for the stars and galaxies that the universe is

comprised of today to form via billions of years of gravitational collapse. The near-

scale invariance of these fluctuations is a necessary condition to allow this collapse

process to proceed in a way consistent with observations, a fact which has been re-

peatedly verified with ever-increasing precision by consecutive generations of CMB

observation experiments such as WMAP37,38 and Planck.39,40 While it is widely un-

derstood and accepted that the early universe requires such a period of accelerating

expansion (though alternative, albeit less popular, proposals such as Variable Speed

of Light models do exist), it is much harder to explain how this came about. As

with the dark energy problem, no form of conventional matter-energy (such as bary-

onic matter or radiation) can actually invoke such an expansion when described by

General Relativity. There are hence two major classes of approaches to resolving

this problem.

The first approach is to assume that General Relativity is not the ultimate theory of

gravity, and that some theory of modified gravity is needed to explain anomalies like

periods of accelerating expansion (inflation, dark energy) and dark matter. Despite

the fact that it has passed every experimental test carried out in the preceding

century,41 and despite the difficulty in finding modifications of General Relativity

which are free of pathologies, there are some hints that this may be the case; General

Relativity is famously incompatible with quantum mechanics, which forms the basis

of our understanding of all non-gravitational phenomena in nature.42 One may argue

that an ultimate goal of theoretical physics as a discipline is a “theory of everything”

which encompasses scientific understanding of all fundamental aspects of nature in

a single theory guided by a consistent set of physical principles, but it is hard to

imagine how such a theory may be constructed when such contradictions between

quantum theory and gravity remain unresolved. A reconciliation of quantum theory

4



and gravitation may lie in a modified theory of gravitation, and the implication that

such a theory could simultaneously provide the means for inflation may be a key hint

to its nature. A large class of modified gravity theories are so-called scalar-tensor

theories, and there exists a vast body of work on finding the most general acceptable

scalar-tensor theory43–45 as well as investigating and applying their phenomenology

to cosmological problems.46

The second approach is to assume we are describing gravity correctly (or at least cor-

rectly enough for present purposes), but that our comprehension of particle physics

is incomplete. In theories beyond the standard model, there may exist exotic matter

sources which can drive an accelerated expansion of spacetime even when described

with classical gravity. Often, these two approaches - the modification of gravity and

the extension of particle physics - are complementary or in some cases even math-

ematically equivalent (some theories of modified gravity may be mathematically

recast in the form of General Relativity coupled to non-standard matter sources,

and so on). Nevertheless, in this thesis, we are largely interested in the former

approach of modifying gravity.

Cosmic inflation deals with energy scales unimaginably larger than those achievable

with terrestrial experiments, and it is hence a highly useful probe of what kind of

unknown physics, whether it be gravitational or particle-theoretical, remains undis-

covered in this regime. Inflationary cosmologists hence construct and study models

of inflation motivated by modified gravity, string theories, supersymmetry, and all

other kinds of cutting edge ideas in fundamental physics. After decades of effort in

this direction, there are now a plethora of models of inflation,47,48 but many of them

make similar predictions for the precise form of the primordial power spectrum of

inhomogeneities, which is the main discriminator we have in comparing theories to

data. While a handful of them have since been ruled out by the ever-more-restrictive

constraints derived from CMB experiments, there are still numerous models which

conform to the data and cannot yet be easily discriminated between or ruled out. To

determine which, if any, of the scenarios realising an inflationary expansion actually

corresponds to the way the early universe inflated, it is important that these efforts

in model building are complemented with the development and implementation of

5



1. Introduction

experimental tests of inflationary models, and an increasing amount of research is

hence being focused in this direction. Such approaches involve looking at what in-

formation can be extracted from the CMB radiation, or other probes into the early

universe, and how it could be used to further constrain the details of the inflationary

period.

Aspects of both the ongoing endeavour to build and study interesting theoretical

models of inflation to make links to fundamental theory, as well as the goal of testing

and constraining those models to better scrutinise the resulting smorgasbord of mod-

els, are reflected in this thesis. Chapters 2 and 3 of this work will present a review of

important ideas in gravity and cosmology, as the majority of the results presented

here are derived and interpreted in the context of this knowledge. Chapter 4 then

contains discussion of my work on the string-theory-inspired model of Disformally

Coupled Inflation, comparing its predictions to established experimental measure-

ments of the primordial power spectrum, as well as looking at how such a model

affects the deviation from Gaussian statistics (the bispectrum), which will hope-

fully come to be precisely constrained by future experiments. Chapter 5 describes

my research into Gauss-Bonnet Coupled Inflation, studying the phenomenology of

this alternative theory of gravity, considering how it is constrained by the imprint

left on the power spectrum by the details of post-inflationary reheating, and giving

thought to the possibility of quintessential inflation, where the accelerating expan-

sions of both inflation and dark energy are realised in a single model. Finally, in

Chapter 6, contrary to the previous chapters where more emphasis was placed on

model-building, greater attention is paid to the goal of testing inflation. It is here

I detail the research conducted on a quantity known as the running of the running

of the inflationary spectral index, and how measurements of this higher-order de-

viation from scale invariance could place powerful constraints on the details of the

inflationary mechanism.

6



1.1. Conventions and Notation

1.1. Conventions and Notation

We will largely work in Planck units where ~ = c = 8πG = 1, such that the reduced

Planck mass,

M2
Pl =

~c
8πG

≈ (2.44× 1018 GeV)2 , (1.1.1)

is also equal to unity, though occasionally we may reinstate it explicitly in equations

when it may be helpful to do so.

Unless otherwise stated, Greek letters will be used to label indices in four-dimensional

spacetime. Similarly, lower-case Roman letters will denote purely spatial indices

(such as when referring to only the spatial coordinates in 4D, or when extra spa-

tial dimensions are present.) Upper case Roman letters will be used when denoting

spacetime in a total number of dimensions other than 4. Repeated indices in a sin-

gle term indicate summation according to the usual Einstein summation convention.

We will make use of the notation f,x to succinctly represent the partial derivative of

a function f with respect to the variable x. Similarly, the notation ∂µ will be used

to denote partial differentiation with respect to xµ.

We will use a “mostly positive” metric signature (−,+,+,+).

7



CHAPTER 2

GRAVITATION

On cosmological scales the dominant force of nature is gravitation. Unlike electro-

magnetism it has no opposite charges to cancel out over large scales, and unlike

the nuclear forces it has unlimited range. While it is negligibly weak on scales of

individual particles, unlike the other forces of nature, it is also universal - acting

on anything with mass or energy. So, when large amounts of matter-energy are

involved, such as in stars, galaxies and indeed, the universe as a whole, it often

plays a key role. Furthermore, the relativistic principle of describing gravity as a

manifestation of the geometry of spacetime itself is the very principle which allows

cosmologists to discuss the expansion of the universe, which is the core of modern

physical cosmology. The contents of this thesis will hence be heavily dependent on

the physics of gravitation. In this chapter we shall therefore review some of the

main ideas in both Einstein’s established theory of General Relativity1 as well as

various proposed modifications of and alternatives to it, which will play a key role

in the later chapters.

8



2.1. General Relativity

2.1. General Relativity

For hundreds of years, gravity was understood as an attractive force between all

massive bodies, described by Newton’s Universal Law of Gravitation, in which the

force of attraction is proportional to the masses of objects and inversely related to

the square of the distance between them. This can also be formulated as the Poisson

equation49

∂i∂
iΦ(xi) = 4πGρ(xi) , (2.1.1)

where Φ is the gravitational potential and ρ is the mass density present. G is

Newton’s constant, which encodes the strength of the gravitational force. Equation

(2.1.1) describes how the distribution of matter (on the right hand side) sources

the gravitational potential. The force derived from this potential, using Newton’s

second law of motion for cartesian spatial coordinates xi

ẍi + ∂iΦ = 0 , (2.1.2)

correspondingly determines the motion of that matter due to gravity. This largely

accounted for the orbital motion of Earth and the planets, validating the theory as

the leading description of gravity for hundreds of years, but the problematic nature

of some of its aspects have been known more-or-less since its inception. Newton

himself stated that50 no one “who has in philosophical matters any competent fac-

ulty of thinking” would believe in such an “absurdity” as an instantaneous force

acting through a vacuum across great distances, with no apparent entity mediating

the interaction. As well as such conceptual issues, experiments leading to more pre-

cise measurements of the orbit of Mercury were conducted and it was found that

the orbit precessed in a way not accounted for by Newton’s law.51 Similarly, the

observed bending of light rays by massive bodies like the Sun was inexplicable in

this description of gravity as an attraction between masses due to the masslessness

of light.

Einstein’s theory of General Relativity (GR) solved these problems, and thus became

accepted as the new paradigm. The idea of an unmediated force at a distance was

9



2. Gravitation

done away with, as gravity came to be understood as the curvature of spacetime. In

this geometric picture of gravitation, the bending of light rays by massive objects was

also now explicable as a consequence of light moving through this curved space, and

the anomalies in the orbit of Mercury were accounted for by relativistic corrections

to the dynamics. The success in explaining these phenomena, as well as many other

experimental tests since, established General Relativity as the mainstream theory

of gravity, where it has remained for more than a hundred years.29,52–55

General Relativity is a geometric theory in which the fundamental objects of in-

terest are mathematically modelled as tensor fields,1 as this allows the theory to

be formulated in a coordinate-invariant manner. The quantity encoding the grav-

itation in a system is no longer the scalar gravitational potential function of eq.

(2.1.1), but instead a four-dimensional symmetric metric tensor, gµν , defined on a

Lorentzian manifold that models spacetime. That is, the “proper distance” between

neighbouring points in spacetime is given by

ds2 = gµνdx
µdxν , (2.1.3)

where dxµ are tensors specifying the displacement in space and time between those

points, such that x0 is typically the time coordinate t and the remaining xi are

spatial coordinates. If one takes a diagonal metric with components (−1, 1, 1, 1)

- the Minkowski metric ηµν - then one recovers the special theory of relativity. In

general, however, the metric describes spacetime as possessing curved geometry, and

this manifests as objects feeling a “force” due to this as they move through spacetime.

Really, though, there is no force in the Newtonian sense; objects simply move along

geodesics2 of the spacetime described by the metric, just as a free particle in classical

1The usual abuse of terminology of referring to tensor fields as simply “tensors” will henceforth
be used.

2Geodesics may be timelike, spacelike or null, depending on the nature of the object in question.
Conventional objects all follow timelike geodesics (ds2 < 0) and hence obey the set of limitations
we call causality, while some massless objects such as photons follow null geodesics (ds2 = 0)
and travel at the speed of light.3 Spacelike geodesics (ds2 > 0) violate causality and are usually
not of interest.

3To make it more obvious how the speed of light comes into play in this discussion it is helpful
to choose units in which c 6= 1. With units reinstated, we have x0 = ct, and this makes it more
apparent that a null geodesic obeys dxidxi = c2dt2 - loosely that the space and time intervals
an object traverses are in fixed proportion or “speed” - while a timelike geodesic is limited to
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2.1. General Relativity

physics moves along geodesics of the geometry of its surroundings, which happen to

be typically flat. The main difference is that in GR, space itself is not geometrically

flat, and the geodesics involved are therefore not the familiar and intuitive straight

lines of the Newtonian world. The spacetime location of a test particle described by

coordinates xµ can be shown to obey the geodesic equation

ẍµ + Γµαβẋ
αẋβ = 0 , (2.1.4)

where the dot signifies differentiation with respect to an affine parameter λ, which

the spacetime coordinates xµ(λ) are taken to be function of so that it parametrises

the motion of the test particle from beginning to end. The Γ in this equation

represents the Christoffel symbols,52 which are, for a symmetric metric-compatible

(Levi-Civita) connection on the manifold, derived from the metric via the definition

Γµαβ =
1

2
gµδ (∂αgβδ + ∂βgαδ − ∂δgαβ) . (2.1.5)

Equation (2.1.4) can be interpreted as the relativistic analogue of Newton’s second

law in eq. (2.1.2), replacing the Newtonian concept of the gravitational potential

with a “force” derived from the rate of change and gradients of the metric (Γ). It is

also important to note that in this geometric theory, the usual flat-space concept of

partial differentiation is unsuitable as partial derivatives of quantities do not trans-

form as tensors and their result may be hence coordinate-dependent. The covariant

derivative56 is a generalisation of this to maintain the tensorial nature of objects

under differentation, such that if one is interested in the conservation of a tensor

quantity it is this derivative rather than the conventional partial derivative that one

is interested in. It is defined for tensors with contravariant indices (µ1 . . . µm) and

covariant indices (ν1 . . . νn) as

∇αT
µ1µ2...

ν1ν2...
= ∂αT

µ1µ2...
ν1ν2...

+ Γµ1αλT
λµ2...

ν1ν2...
+ Γµ2αλT

µ1λ...
ν1ν2...

+ . . .

− Γλαν1T
µ1µ2...

λν2...
− Γλαν2T

µ1µ2...
ν1λ...
− . . . , (2.1.6)

speeds less than this as ds2 < 0 instead implies dxidxi < c2dt2.

11



2. Gravitation

such that there will be m+ n+ 1 terms.

In addition to this description of how objects move in curved spacetime, GR’s other

component is the analogue of the Newtonian statement that the distribution of mass

sources the gravitational potential according to eq. (2.1.1). To begin to describe how

the contents of spacetime set-up its curvature, it is first useful to define quantities

which measure this curvature.29,52–54 Such quantities include the Riemann tensor

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ , (2.1.7)

the Ricci tensor

Rµν = Rλ
µλν , (2.1.8)

and the Ricci scalar

R = gµνRµν . (2.1.9)

The construction of this scalar measure of curvature is important as it allows one

to write an action functional52 depending on the spacetime metric, known as the

Einstein-Hilbert action

SEH [gµν ] = κ

∫
d4x
√−gR , (2.1.10)

where g is the determinant of the metric and κ is an arbitrary constant (for now).4

This is the simplest action one can construct from scalar geometric quantities de-

scribing curvature, and its variation with respect to the metric leads to Einstein’s

field equations in a vacuum:

Gµν = 0 , (2.1.11)

whereGµν = Rµν−1
2
Rgµν is called the Einstein tensor, and is a symmetric, divergence-

free, matrix of functions of the metric and its first and second derivatives, as can

4The factor of
√−g is included as d4x is not a tensor. As one must generalise the idea of

differentiation in curved spacetimes, similarly the measure of integration must be modified in
such a way to ensure covariance.
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2.1. General Relativity

be seen from the definitions of the Christoffel symbols and curvature tensors in eqs.

(2.1.5 – 2.1.9). While this system of ten independent partial differential equations

describes relativistic gravitation in a vacuum, we are also interested in how matter

plays a role and sources the curvature of spacetime in this picture. To understand

this, consider a total action comprised of the above Einstein-Hilbert term and a

minimally-coupled5 matter Lagrangian Lm which is a function of some matter fields

denoted ψ and the metric itself,

S = SEH[gµν ] + Sm[ψ] = κ

∫
d4x
√−gR +

∫
d4x
√−gLm(ψ, gµν) , (2.1.12)

whose variation leads to

Gµν =
1

2κ
Tµν , (2.1.13)

where Tµν is the energy-momentum tensor for the matter content of the theory.52 It

is derived from the Lagrangian Lm via the functional derivative

Tµν = − 2√−g
δ
√−gLm
δgµν

= gµνLm − 2
δLm
δgµν

, (2.1.14)

and is a covariantly conserved quantity (∇µT
µ
ν = 0), generalising the Newtonian idea

of conservation of energy. Eq. (2.1.13) quantifies how the amount and nature of the

energy-momentum the matter possesses, specified by its energy-momentum tensor,

determines the metric via second-order partial differential equations (recall that Gµν

contains second derivatives of the metric), analogously to how in Newtonian gravity

the amount and distribution of mass determines the gravitational potential via a

second-order partial differential equation in eq. (2.1.1).

The constant of proportionality in the Einstein equations, κ, is fixed by requiring

that in the limit of perturbatively weak gravity and velocities much less than the

speed of light, the Newtonian expression in eq. (2.1.1) is recovered. From this, it

is found29 (in units ~ = c = 1) that κ = (16πG)−1 and the Einstein field equations

5Here, minimal coupling means adding no explicit gravity-matter interactions, but instead simply
taking a flat-space Lagrangian for the matter, promoting the Minkowski metric to the general
metric gµν , introducing the invariant integration measure and replacing partial derivatives with
covariant ones to ensure compatibility with GR).
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2. Gravitation

become

Gµν = 8πGTµν =
1

M2
Pl

Tµν . (2.1.15)

In the last expression here, we have defined the (reduced) Planck mass M−2
Pl =

8πG ≈ (2.44×1018GeV)−2 for convenience as we will, for the majority of this thesis,

work in units such that many quantities are measured in units of (some power of)

MPl and/or set MPl = 1 for simplicity.

One can also add a so-called cosmological constant term to General Relativity,46,52,56

by taking instead the action (now with κ taking its true value)

S =
M2

Pl

2

∫
d4x
√−g (R− 2Λ) +

∫
d4x
√−gLm(ψ, gµν) , (2.1.16)

which leads to the field equations

Gµν + Λgµν = 8πGTµν . (2.1.17)

This extra term, Λ represents the vacuum energy of spacetime itself, which we have

no reason to assume is zero and, like all other energy sources, will gravitate according

to GR. This is important in cosmology as a possible source of dark energy as, unlike

classical matter, vacuum energy gravitates in such a way that it can result in an

accelerated expansion of spacetime. This approach, however, leads to the (in)famous

Cosmological Constant Problem - sometimes called the greatest embarrassment in

modern theoretical physics - where the value of Λ must be excessively fine-tuned

(by tens if not hundreds of orders of magnitude of precision) to meet observational

constraints.

The system of equations in eq. (2.1.15) or eq. (2.1.17) is highly non-linear in the

metric and its derivatives, and so general and exact solutions (given that T takes

some feasible form) are sparsely found.57 Much analytical work with GR is hence

based around either analysis of special cases, particularly those with considerable

amounts of symmetry to simplify the equations, or approximation techniques such

as perturbation theory.29 Both of these approaches will be relevant for cosmological

applications, as we will discuss in Chapter 3.
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2.1. General Relativity

General Relativity, as described above, has passed many experimental tests on scales

as small as a few microns and as large as the solar system58 with astonishing pre-

cision. However on the smallest scales, where quantum effects reign supreme, and

on the largest scales of galaxies and cosmology, unsolved problems remain. It is

often said that General Relativity even predicts its own downfall - this refers to it

permitting the existence of singularities, which are thought to be broadly unphys-

ical. Black holes, in GR, are understood as objects containing point-like instances

of infinite spacetime curvature, and if one extrapolates back to the beginning of the

universe and the moment of the Big Bang itself, one finds a similar prediction of a

singular point in spacetime. The undesirability of this alone is a strong motivation

to consider GR as incomplete. Gravity as described by GR is also not suitable to

be formulated as a quantum theory. Unlike the other known forces of nature, quan-

tising GR leads to a non-renormalisable theory (meaning its predictions are once

again divergent, in a way that cannot be handled by the techniques of quantum

field theory, beyond the scope of this thesis).59,60 It is thought and hoped that some

high energy phenomena not accounted for by GR may be able to dispense of these

incurable divergences and allow a unified description of all forces of nature in the

framework of quantum mechanics. Just as the anomalies and pathologies of Newto-

nian gravity motivated the foundation of GR, the unsolved problems of today may

be a sign that there is an even better theory of gravity waiting to be found. Realising

such a theory may also bring answers to problems on the largest scales such as the

nature of dark matter, the Cosmological Constant Problem, and the mechanism of

cosmic inflation.

Nevertheless, finding a satisfactory extension of GR which does not spoil its successes

in making highly precise predictions of phenomena on the scale of the solar system

is not trivial. Many different approaches have been attempted, but to date none

have transcended GR and gained wide acceptance as none have yet managed to

simultaneously alleviate the problems of GR in its extreme limits of application and

avoid the ruination of its successes in more familiar circumstances. Further tests of

gravity, especially those on cosmological scales61 where the greatest deviations from

GR may be expected, are of course needed to settle the issue in the long run, but
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2. Gravitation

in the mean time, much theoretical work has been done on finding and classifying

the most promising and interesting ways that GR could be extended or modified.

The following section will review some of these key theoretical ideas and models of

modified gravity that are of relevance to the later chapters of this thesis.

2.2. Modified Gravity

To arrive at GR, we constructed the simplest action using a scalar measure of curva-

ture, the Einstein-Hilbert action (from here we work in Planck units with MPl = 1)

S =
1

2

∫
d4x
√−gR + Sm[ψ, gµν ] , (2.2.1)

but this is not the only possible choice. We chose to construct an action in this

way appealing only to the principles of relativity and simplicity. Both of these

assumptions can be challenged.

Firstly, by relaxing the requirement for simplicity, one can also consider writing

down an action containing curvature scalars other than the most elementary and

minimalistic choice of R alone. These could be as simple as higher powers of the

Ricci scalar such as R2 or R3, or perhaps other scalar contractions of the Ricci

tensor such as RµνR
µν . One could also write down a less simple theory of gravity

by including additional degrees of freedom such as scalar fields, or terms with non-

minimal coupling of matter fields to curvature. Many different ideas along these

lines have been considered in the literature.46,62–65 In this way, one can construct

alternative geometric theories of gravity which retain the principle that the curvature

of the spacetime metric manifests as what we call gravity, but the details of the

dynamics and field equations of gravity, and the specific nature of the interactions

between matter and gravity, can be different to those of GR.

As well as such direct modifications of GR, one can also consider approaches where

a different idea guides the formulation of the theory from the beginning. Just as GR

itself superseded Newtonian gravity by changing the fundamental object of concern

from a potential sourced by mass to the metric of spacetime, it is possible that gravity

could be better described by a different paradigm entirely, which introduces new
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2.2. Modified Gravity

physics in regimes where GR appears insufficient. String Theory is such an approach,

based on the idea that the fundamental objects of nature are one-dimensional objects

called strings. This seemingly simple premise, surprisingly, gives rise to not only a

theory of modified gravity but perhaps all other forces and matter, too. It will be

discussed explicitly in Section 2.3 as some of the later chapters of this thesis use

ideas derived from it.

Another way of thinking of modifications of gravity, which is complementary to the

aforementioned strategies, is effective field theory.66–69 This involves both a “bottom-

up” approach in which physically-motivated additions to the low-energy theory (GR)

are studied phenomenologically and tested, and a “top-down” approach in which the

low-energy behaviour of a complete high-energy theory is considered to assess its

suitability.

Some of the types of modified gravity that have been widely studied and that have

relevance to the body of work in this thesis include:

2.2.1. f(R) theories

A simple generalisation of GR is f(R) theory,70–72 where the action is given by

S =

∫
d4x
√−gf(R) + Sm[ψ, gµν ] . (2.2.2)

The action can now depend on any function of the scalar curvature. The Einstein-

Hilbert action is clearly recovered when f(R) = R/2, linear in R. If one includes

a term that is zeroth order in R, one essentially introduces a cosmological constant

as in eq. (2.1.16). It is hence common for the functional form of f to include the

Einstein-Hilbert linear term plus higher powers of R. The simplest and perhaps

most well-studied example is Starobinsky Gravity, described by the action

S =

∫
d4x
√−g

(
R

2
+ αR2

)
+ Sm[ψ, gµν ] , (2.2.3)

which is interesting as it provides a simple and feasible realisation of cosmic infla-

tion,73 as well as being of interest to the problem of dark matter.74 The value of the

parameter α must be small enough to not introduce excessively large corrections to
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2. Gravitation

GR in familiar settings75 and can hence be constrained by experiment76 to have a

value no greater than about |α| . 10−9m2. Theories with other powers of R have

also been explicitly considered.77

2.2.2. Scalar-tensor theories

In addition to the spin-2 (tensor) degree of freedom in GR, one can consider theories

of gravity with additional spin-0 (scalar) degrees of freedom, leading to the class of

scalar-tensor theories of modified gravity.65,78–82 The simplest realisation of this is if

one minimally couples a canonical scalar field φ with potential V to GR, such that

S =

∫
d4x
√−g

(
R

2
+X − V (φ)

)
+ Sm[ψ, gµν ] , (2.2.4)

where X = −∂µφ∂µφ/2 is the kinetic term for the field. This has equation of motion

�φ+ V,φ = 0 , (2.2.5)

known as the Klein-Gordon equation.

In the minimal example of eq. (2.2.4) , the scalar field could easily be reinterpreted

as part of the Sm action, and treated like a normal minimally-coupled matter field,

such as the Higgs field83,84 or some other scalar in a fundamental theory. One

can also however consider non-minimal scalar-tensor theories. For example, a more

general theory would be of the form

S =

∫
d4x
√−g

(
F (φ)

R

2
+ ω(φ)X − V (φ)

)
+ Sm[ψ, gµν ] . (2.2.6)

Here the function F (φ) gives a non-minimal coupling to gravity, which means that

the effective strength of gravity varies as a function of the field φ. A successful

theory of this kind would need the behaviour of the field to be such that F (φ) ≈ 1

in the limits where GR works and is precisely correct. The term ω(φ)X is a non-

canonical kinetic term, which affects the dynamics of the scalar field, and hence how

it plays a role in gravitation. One particular scalar-tensor theory of this form that

has been widely studied is the case of F (φ) = φ, ω(φ) = ω0/φ and V = 0, known as
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Brans-Dicke theory.85 Again, experimental tests constrain the theory such that the

parameter ω0 must be at least O(104).86

Non-minimal couplings such as F (φ)R also naturally arise in the context of quantum

field theory in a curved spacetime background. When renormalising a scalar-tensor

theory, one finds counterterms of this form are necessary,87 such that they arise at

the quantum level even if the classical theory does not explicitly contain them. The

role of this non-minimal coupling is central to the idea of Higgs inflation,84 which

will be discussed in Section 5.1.

Equivalence with f(R) theories

It is interesting to note that the action

S =

∫
d4x
√−g

[
f(φ) + x(R− φ)

]
+ Sm[ψ, gµν ] , (2.2.7)

can be seen to be equivalent to the f(R) action of eq. (2.2.2) by using the equation

of motion for the auxiliary field x (R = φ). Similarly, the φ equation of motion

yields x = f ′(φ), which, upon reinsertion into eq. (2.2.7) yields

S =

∫
d4x
√−g (f ′(φ)R + f(φ)− φf ′(φ)) + Sm[ψ, gµν ] , (2.2.8)

which is a scalar-tensor theory of the form given by eq. (2.2.6). f(R) theories

are hence a subset of scalar-tensor theories with ω(φ) = 0, F (φ) = f ′(φ) and

V (φ) = f(φ)− φf ′(φ).88,89

2.2.3. Conformal and disformal transformations

If one considers two metrics related by a conformal rescaling, where the conformal

multiple depends on a scalar field φ, in general,

ĝµν = e2A(φ)gµν , (2.2.9)

then the Ricci Scalar for the two metrics are related via90
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√
−ĝR(ĝ) =

√−ge2A(φ) [R(g)− 6�A(φ)− 6∇µA(φ)∇µA(φ)] . (2.2.10)

This suggests that a scalar-tensor theory of the form (2.2.6), which contains a term

like F (φ)R, could be re-written in terms of such a different metric to instead contain

the term e2A(φ)F (φ)R, as well as several new scalar field terms. Consequently, under

a conformal transformation with e2A = F−1, the new action would have the usual

Einstein-Hilbert gravity term of R/2, but different structure in the scalar sector of

the action. The choice of metric for which this occurs is called the Einstein Frame

(EF). The total action of a scalar-tensor theory of the form (2.2.6) in the Einstein

Frame can be written,

SEF =

∫
d4x
√−g

(
R

2
+X − V (χ)

)
+ Sm[ψ, ĝµν ] , (2.2.11)

where we have performed a field redefinition χ = χ(φ) to canonically normalise83

the kinetic term X = −∂µχ∂µχ/2. This EF action is then largely equivalent to eq.

(2.2.4) - a scalar field minimally coupled to GR - albeit on different metrics related

by eq. (2.2.9). The physical difference is that the matter action is now minimally

coupled not to the gravitational metric gµν , but the conformally related ĝµν = e2Agµν .

The matter energy-momentum tensor is hence not covariantly conserved with respect

to the gravitational metric (∇µ(g)T µν (ĝ) 6= 0) in the Einstein Frame, or indeed any

conformally related frame except the original frame where the metric in the matter

action is the same as the metric of the gravity sector, known as the Jordan Frame

(JF).

Transformation to the Einstein Frame hence amounts to replacing a scalar field

that doesn’t interact directly with matter, but is non-minimally coupled to gravity,

with a scalar field that explicitly interacts with matter, but minimally couples to

gravity. One consequence of this interaction between the scalar field and matter

sector is that quantities such as particle masses become dependent on the scalar

field.6 Alternatively, this means that matter does not follow geodesics of the metric

6However, ratios of particle masses remain unchanged, unless multiple matter sectors are coupled
to different metrics. What one does have to be careful of, however, is time-varying particle
masses.
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g, but instead those of ĝ, which depends on φ. While there was once considerable

debate in the literature surrounding the issue of whether this means the two frames

represent physically distinct theories or not, it is now widely accepted, at least at the

classical level, that conformally related theories are simply different parametrisations

of the same physics.91–96

Given the interest and applicability of conformal transformations in understanding

scalar-tensor theories, the question of whether other useful transformations akin

to this may play an interesting role has of course been asked. It has been shown

that the most general metric transformation including a scalar field which maintains

physical requirements such as causality is the so-called disformal transformation,97

generalising conformal transformations to

ĝµν = C(φ,X)gµν +D(φ,X)φ,µφ,ν . (2.2.12)

Unlike conformal transformations which only rescale the metric by a spacetime-

dependent function, thus preserving the angle between objects, disformal transfor-

mations do not preserve angles and introduce non-minimal kinetic interactions via

the metric’s dependence on derivatives of the field. The inverse metric under a

disformal transformation is98

ĝµν =
1

C(φ,X)

(
gµν − γ2φ,µφ,ν

)
, (2.2.13)

where

γ =

(
1 + 2

D

C
X

)− 1
2

. (2.2.14)

This γ factor is ubiquitous in disformally transformed theories, appearing in the

equations of motion and with many physically relevant quantities depending on it,

and it should therefore generally be real, finite, and so on. Its form and function are

reminiscent of the Lorentz factor of Special Relativity in that it begins at unity for

X = 0 but then increases as the “speed” of the field increases (X → −∞), affecting

its evolution, until eventually diverging at a certain value of X. This essentially im-

poses a limit on the rate of change of φ, depending on the functions D and C,99 and
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also has interesting effects on the behaviour of disformally coupled matter fields.100

As with conformal transformations, the invariance of disformally transformed theo-

ries101–107 and their phenomenology44,108–112 has been widely studied.

2.2.4. Further Modifications of GR

In this section we will conclude our review of modifications of GR by touching on

some extensions of the basic ideas presented in Sections 2.2.1 and 2.2.2.

Beyond the scope of simple f(R) theories are those which also depend on contrac-

tions such as RµνR
µν , RρσµνR

ρσµν or even terms with derivatives of these curvature

tensors. In general, unlike the f(R) theories, however, these terms often induce ghost

degrees of freedom and higher than second derivatives in the equation of motion,

leading to pathological Ostrogradsky instabilities.113–118

The most general scalar-tensor theory with at most second order equations of motion

is Horndeski’s theory,43 which was rediscovered in recent years119–121 and has seen a

surge of interest in its application to cosmological problems.122–129 The full Horndeski

theory Lagrangian is

LH = G4(φ,X)R4 + P (φ,X)−G3(φ,X) (�φ) +G4,X

[
(�φ)2 − (∂α∂

βφ)(∂α∂βφ)
]

+G5(φ,X)Gαβ∂
α∂βφ− 1

6
G5,X

[
(�φ)3 − 3 (�φ) (∂α∂

βφ)(∂β∂
αφ)

+ 2(∂α∂
βφ)(∂β∂

γφ)(∂γ∂
αφ)
]
, (2.2.15)

where P and Gn are arbitrary functions of the scalar φ and its kinetic term, X.

More general “beyond Horndeski” scalar-tensor theories which are free of pathologies

of have since been found.44,130 Furthermore, higher-derivative and even infinite-

derivative theories of gravity have been considered, and possess properties useful for

the removal of singularities and achieving tameable quantum behaviour.116,117,131–134

One special case of particular interest to this thesis (see Chapter 5) is Einstein-

Gauss-Bonnet gravity,46,135–137 where the action is

22



2.2. Modified Gravity

S =

∫
d4x
√−g

[
R

2
+G

(
R2 − 4RµνR

µν +RρσµνR
ρσµν

)]
+ Sm[ψ, gµν ] , (2.2.16)

where G is a constant, and the combination of curvature scalars in round parenthesis

R2− 4RµνR
µν +RρσµνR

ρσµν is the Gauss-Bonnet (GB) term and will be denoted as

EGB. While the quadratic curvature scalars appearing in the GB term individually

contain the higher order derivatives of the metric associated with unstable extra

degrees of freedom, the GB term is special because all of these terms cancel out

for this specific combination of R2, RµνR
µν and RρσµνR

ρσµν , or indeed any constant

multiple, G, of it. In four dimensions, however, it is a total derivative due to the

generalised Gauss-Bonnet theorem, and hence does not contribute to the equations

of motion. If one promotes the constant G to a function of a field φ, however, the

combination G(φ)EGB is not a total derivative, and will contribute non-trivially to

the theory. We can hence write down a theory containing a scalar field which couples

to the Gauss-Bonnet combination in this way:

S =

∫
d4x
√−g

[
R

2
+X + V (φ) +G(φ)EGB

]
+ Sm[ψ, gµν ] . (2.2.17)

Actions of this form can be shown to be equivalent to a subset of Horndeski models,

thus ensuring their good behaviour.122

Horndeski’s theory also allows for arbitrary dependence on X. So called P (X)

theories,

S =

∫
d4x
√−g

[
R

2
+ P (X,φ)

]
+ Sm[ψ, ĝµν ] , (2.2.18)

also known as k-essence138,139 have been studied for their properties, particularly in

inducing a sub-luminal propagation speed in φ.140 Another particular type of kinetic

term that has received considerable interest is the Dirac-Born-Infeld (DBI) kinetic

term99,141

S =

∫
d4x
√−g

[
R

2
+

1

f(φ)

(
1−

√
1− 2f(φ)X

)]
+ Sm[ψ, gµν ] , (2.2.19)
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which has links to String Theory, to be discussed more in Section 2.3.

Finally, let us note that scalar-tensor theories need not have just one scalar field.142–145

Especially in scenarios motivated by high energy particle theory where many scalar

fields can typically exist, it is not unthinkable that more than one would play some

role in alleviating the problems with GR. This leads to an expanded range of in-

teractions to consider, such as mixed kinetic terms of the form ∂µφ∂
µχ. A very

general description of this is the action, generalising the single-field P (X) case of

eq. (2.2.18) is the P (φI , XIJ) class of theories,

S =

∫
d4x
√−g

[
R

2
+ P (φI , XIJ)

]
+ Sm[ψ, gµν ] , (2.2.20)

where field indices (I, J) run from 1 . . . N where N is the number of fields and XIJ =

−∂µφI∂µφJ/2 are the generalised kinetic terms. These are especially interesting as

each scalar field can, in principle, have a different propagation speed (as we will see

in Chapter 4), leading to enriched phenomenology.146–148

2.3. String Theory

In this section we take a brief excursion into one of the most prominent theories of

quantum gravity, String Theory, to touch on some themes that motivate and inspire

the original work in the later chapters of this thesis. This is not intended to be a

comprehensive review of String Theory, as the technical details are largely beyond

the scope and purpose of this thesis. Many results will therefore simply be quoted

without explanation beyond what is required to set the scene for the subsequent

research presented. The reader is directed to the books and lecture notes cited in

this section for a more rigorous induction into the field.

Much of physics is based on the concept of particles - zero-dimensional objects like

electrons and quarks. Classically, these objects move through spacetime to trace out

a world line xµ(σ) which describes where the particle is as a function of the affine

parameter σ. Relativistically, the world-line of a massive particle is determined via

extremisation of the proper-time dτ 2 = −ds2 = −gµνdxµdxν - essentially the length

of its world line. This is equivalent to the statement that objects follow geodesics
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according to eq. (2.1.4).

String theory149–154 is a fundamental theory of quantum gravity which begins in-

stead from the principle that the basic objects of nature are strings, which are

one-dimensional in extent, unlike the point-like particles of conventional physics. In

this picture, particles are understood as different vibrating excitations of the funda-

mental and extremely small strings, and interactions are related to the joining and

splitting of strings.

As a result of their one-dimensionality, a string moving through time traces out a

two-dimensional “world sheet” rather than a world line. Hence, the object which

must now be extremised to describe the dynamics of the string is not the length

of a world line, but the area of a world sheet. Let us define coordinates on the

world sheet σa = (τ, σ) where τ is timelike and σ is spacelike. The world sheet

is then parametrisable as a function xM(τ, σ), where we embed the world sheet as

a two-dimensional hypersurface in a D-dimensional target spacetime such that M

runs from 0 to D − 1. The induced metric on the worldsheet is then given by56

γab =
∂xM

∂σa
∂xN

∂σb
gMN , (2.3.1)

where g is the metric of the D-dimensional target spacetime. Let us assume for

simplicity that this is Minkowski spacetime with gMN = ηMN . The area of the

world sheet (strictly, something proportional to the area) is then given by the action

integral

S = −T
∫

d2σ
√−γ = −T

∫
d2σ
√

(ẋ · x′)2 − (ẋ)2(x′)2 , (2.3.2)

where γ is the determinant of the world sheet metric, ẋ = ∂τx, x′ = ∂σx, A · B =

ηMNA
MBN and A2 = A · A. This is known as the Nambu-Goto action, describing

the relativistic dynamics of a string. The constant of proportionality T represents

the tension of the string. Its variation with respect to x yields equations of motion.

These are very inconvenient to work with because of the square root in the action,

and so a related action called the Polyakov action and defined by155
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S = − 1

4πα′

∫
d2σ
√
−hhab∂axM∂bxNηMN , (2.3.3)

is instead used. This can be shown to have the same equations of motion as eq.

(2.3.2) by eliminating the extra field hab with its equation of motion.154 One finds

that hab = 2fηMN∂aX
M∂bX

n = 2fγab with f−1 = hab∂aX
M∂bX

NηMN . Substituting

this back in to eq. (2.3.3) recovers eq. (2.3.2), if (2πα′) = T−1.

The Polyakov action is invariant under local conformal transformations hab →
Ω(τ, σ)hab and general coordinate transformations, meaning one can always choose

a frame in which the world sheet metric is flat, hab = ηab, reducing eq. (2.3.3) to

S = − 1

4πα′

∫
d2σ∂ax

M∂AxM . (2.3.4)

This now looks like an action for D free scalar fields living on the two-dimensional

worldsheet metric, though we also keep in mind the original motivation of a world-

sheet of a string embedded in a D-dimensional target spacetime.

Upon quantisation of the theory in Minkowski space, one finds that preservation of

the conformal symmetry of the classical theory is dependent on the choice of D = 26

free fields on the world sheet, which has the startling alternative interpretation of a

26 dimensional target spacetime. That is, the theory described here requires space-

time to have 26 dimensions, rather than the 4 we are familiar with. Furthermore, the

ground state of the quantised theory has a negative mass-squared, leading to an un-

resolved tachyonic instability in the theory. The spectrum predicted by the Polyakov

action also fails to account for the existence of fermions. This is hence called Bosonic

String Theory. Why do we concern ourselves with a theory containing such patholo-

gies and oddities, then? This is because String Theory is surprisingly, despite all of

this, a quantum theory of gravitation unified with other forces. This is because the

quantised Polyakov action also leads to a massless, symmetric spin-2 field, GMN ,

whose equations of motion at lowest order in a series expansion of powers of α′ are

the Einstein Equations (2.1.11). That is, GR emerges from String Theory at the

lowest order of approximation, and higher orders introduce modifications of gravity.

That this is a consequence of the initial supposition that quantised one-dimensional
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strings are the fundamental objects in the universe is staggering, providing extensive

motivation to search for further refinements of the idea which better match reality

- perhaps having a smaller number of excess spacetime dimensions, or maybe even

some fermions.

Other fields such as the scalar dilaton, Φ, which dynamically controls the effective

coupling constants in the theory, and an antisymmetric tensor field BMN (a 2-form)

are also part of the quantised bosonic string spectrum. String theories give rise to,

and hence also give a top-down physical motivation for, corrections to GR such as

the Gauss-Bonnet term156–160 as described in eq. (2.2.16) and studied in Chapter 5.

2.3.1. Supersymmetry and Superstrings

The absence of fermions in String Theory can be alleviated by the introduction of

supersymmetry. Supersymmetry161,162 is a symmetry between bosons and fermions

that is of considerable interest even outside the context of String Theory as an inter-

esting extension of standard model particle physics. In supersymmetric scenarios,

all bosons have fermionic analogues (“superpartners”) and vice-versa, leading to a

whole spectrum of additional particles to alleviate or explain problems with the stan-

dard model such as dark matter. Mathematically, one arrives at supersymmetry by

extending the Poincaré symmetry group of Special Relativity to the Super-Poincaré

group which contains both commuting (bosonic) and anticommuting (fermionic)

generators, leading to the idea of “superspace” in which both conventional coordi-

nates xµ and fermionic coordinates θα , θ̄α̇ are present.163

The absence of fermions in the spectrum of the Polyakov action can be cured by

making a superstring theory - that is, a string theory like the Polyakov action but

with supersymmetry, such that the action is

S = − 1

4πα′

∫
d2σ

(
∂ax

M∂AxM − iψ̄Mρa∂aψM
)
, (2.3.5)

where ρa are Dirac matrices in two dimensions, and ψM is a spinor.

Superstring Theory not only contains both bosonic and fermionic states, allowing

one to potentially account for all the known matter in the standard model and grav-
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ity, but also cures the tachyonic instability of the Polyakov action. The requirement

of D = 26 is also reduced to D = 10.

There are multiple consistent ways of introducing fermions to construct a super-

string theory, which vary in the details of how one applies boundary conditions

to the fermions, for example. These choices each lead to different additional field

content upon quantisation, on top of those of Bosonic String Theory. The different

superstring theories are: Heterotic SO(32) and E8×E8 which take their names from

the symmetry group of the non-Abelian gauge field that arises in each theory, Type

IIa String theory which has a 1-form C1 and a 3-form C3 called Ramond-Ramond

fields, Type IIb String Theory which similarly has Ramond-Ramond fields consisting

of a scalar C, a 2-form C2 and a 4-form C4, and finally Type-I String Theory which is

equivalent to Heterotic SO(32) theory under the so-called S-duality transformation

in the string coupling constant gs → 1/gs.

In all of these theories, the supersymmetry imposes that the graviton has a fermionic

superpartner called the gravitino. In the low-energy limit, superstring theories hence

reduce to theories of supergravity. Just as General Relativity as a theory of gravity

is constructed by making the symmetries of Special Relativity local, supergravity is

the local-symmetry version of supersymmetric theory. In any case, in superstring

and supergravity theories, there exist many fields, including scalar fields, which can

be used to physically motivate and construct particular scalar-tensor theories.

To resolve the apparent incompatibility of the 10-dimensionality of superstring the-

ories and the four dimensions of spacetime we observe in reality, compactifications

of the 6 extra dimensions are invoked. That is, one looks for specific configurations

of the fields in the superstring theory of interest which solve the equations of motion

for geometries that only contain four macroscopic dimensions, with the rest much

smaller than any scale probed in experiments to date (but could be found and tested

by future microscopic tests of gravity or on cosmological scales where their influence

may be greater). Such compactifications have been widely studied and form the

basis of realistic applications of String Theory.
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2.3.2. Open strings, and D-branes

Strings can be classified as “closed” or “open”. Closed strings are periodic in their

spacelike world sheet coordinate σ such that xM(σ, τ) = xM(σ + 2π, τ), and hence

represent loops of string. Open strings on the other hand have two end points.

The behaviour of these end points, however, is constrained by the requirement that

a boundary term in the variation of the Polyakov action vanishes. Two types of

boundary conditions achieve this. First, Neumann boundary conditions in which

the end points of the string are free to move, and do so at the speed of light.

Secondly, Dirichlet boundary conditions, which fix the end points of the string to

particular points. An open string can have Neumann boundary conditions in some

directions (say, for M = 0 . . . p), and Dirichlet boundary conditions in others (M =

p + 1 . . . D − 1), such that in general, the endpoints of open strings are confined

to p-dimensional hypersurfaces. The hypersurface they are confined to is called a

Dp-brane or just D-brane.164

D-branes are not just constructions which conveniently describe the possible bound-

ary conditions of strings, however, as they are in their own right dynamical ob-

jects describing the collective end-points of strings; String Theory is hence not

just a theory of one-dimensional strings but also, in this fashion, naturally con-

tains higher-dimensional hypersurfaces which can dynamically fluctuate and move

through spacetime, sweeping out generalised world volumes. The endpoints of open

strings that reside on D-branes, upon quantisation, lead to the presence of various

matter fields on the brane, including effective scalar fields which parametrise the mo-

tion and fluctuation of the brane, and gauge fields. Hence, in addition to the large

field content of superstring theories, D-branes also give rise to a range of additional

fields which may play interesting roles in high energy theory. The action describing

a D-brane (excluding effects due to their interactions with the additional Cn fields

in superstring theories, which is dealt with by a so-called Chern-Simmons term) is a

Dirac-Born-Infeld type action, motivating scalar-tensor theories with kinetic terms

like eq. (2.2.19). In superstring theories, the stability of D-branes is related to the

presence of the Ramond-Ramond (R-R) fields, such that in Heterotic theories there

are no stable D-branes because there are no R-R fields, while in Types IIa and IIb
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superstring theories, there are Dp-branes with p even and odd, respectively.

So-called “braneworld” scenarios have been widely studied as high energy theories of

gravity in which one can investigate various cosmological phenomena.165 The pres-

ence of matter fields on a brane, which has its own induced metric different from the

metric of the target spacetime they exist in, also motivates bimetric scenarios where

additional fields are coupled to a metric that is conformally (2.2.9) or disformally

(2.2.12) related to the gravitational metric. Such a scenario will form the basis of the

original research presented in Chapter 4, where a D3-brane in Type IIb Superstring

Theory forms the basis of a non-trivial scalar-tensor model of inflation.
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CHAPTER 3

COSMOLOGY

In this chapter we review the present state of knowledge in cosmology, as the models

and techniques here form the foundations of the majority of ongoing research in the

field. We will describe the successes of the ΛCDM model and the Hot Big Bang,

but also their drawbacks. A main point of focus will be inflation, as this is a central

theme of the thesis which the original research chapters will be primarily based on.

3.1. The Expanding Universe

3.1.1. The Cosmological Principle

While early and mythical descriptions of the universe often placed Earth as the

centre of space, later and more scientific approaches tended more to the assumption

that our position in space is not particularly special. This is partly a philosophical

statement, but it is also supported by observation. Heliocentrism is a more sensible

model of the solar system than geocentrism, when one appeals to a rudimentary

understanding of gravitation and orbital mechanics. Further advances in astronomy

confirmed this way of thinking; our planet is just one of many bodies around a typical

star in a galaxy that is largely unremarkable when compared to others. Cosmology

today still starts from this axiom that, at least to first approximation, our position
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in the universe is not special or unique. In particular, we as humans are taken to

be typical observers in a universe that is homogeneous and isotropic. That is, from

any particular point in space one would see the universe the same way we do, on the

whole, and that on average the universe looks about the same no matter which way

you look from that point. Of course, a cosmologist in a different galaxy would have

a different local environment - they might count a few more stars in their galaxy

than in ours, or a handful more or less galaxies nearby - but beyond this we expect

that they would perceive the average properties of the whole universe - its density

or its temperature, say - to be about the same that we do.

3.1.2. Cosmology, Relativity and Gravitation

The axiom that the universe is homogeneous and isotropic is codified and formalised

in how one represents it in a General Relativistic framework. While solving the full

and untempered Einstein field equations is a monumental task, if one instead posits

some physical principles or symmetries that a system is to obey, the simplified

field equations are typically found to be more tractable. If the universe is to be

homogeneous, then its metric should not depend on spatial coordinates xi. Similarly,

isotropy implies that the spatial part of the metric should not behave differently in

different directions. Consequently, the simplest metric satisfying these assumptions

that one can imagine, is

ds2 = gµνdx
µdxν = −dt2 + a(t)2δijdx

idxj . (3.1.1)

This is often called the FLRW or FRW metric, after the initials of the authors

credited166–169 with the conception and proof of this. There is hence only one free

function, a(t) that specifies the metric entirely, and the Einstein field equations

reduce to a much simpler form which will be shown in due course. First, though, let

us consider the physical interpretation of the function a(t). Inspection of the above

line element indicates that it is a time-dependent scale factor multiplying the spatial

part of the metric. This has a clear interpretation for cosmology; it is the expansion

of space with time. While mathematically, one could simply set a = 1 and have a
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static spacetime, experimental evidence suggests that we may not wish to do this.

Since the early 20th century, observations of distant galaxies have revealed that they

appear to be moving away from us. More dramatically, further away galaxies appear

to be receding faster (as determined by e.g. doppler shifting of spectroscopic lines).

A concise explanation for this is that the galaxies are not coincidentally arranged

with such velocities by pure chance, but rather that the space between our Milky

Way and each of these galaxies is expanding in physical size. In this way, the inferred

“speed” of a galaxy at distance R(t) = a(t)r would be

v = Ṙ =
d

dt
(a(t)r) =

ȧ

a
R , (3.1.2)

where R(t) is the physical distance to the galaxy, and r is the “comoving” distance.

This latter comoving distance does not change due to the expansion of the universe,

but would change due to, say, the intrinsic motion of the galaxy itself, which we

neglect here. Equation (3.1.2), in any case, is known as Hubble’s Law, and explains

the apparent recession velocities of galaxies as due to expansion of space. The ratio

between the recession velocity and the physical distance is referred to as the Hubble

parameter, H(t), defined by

H(t) =
ȧ

a
. (3.1.3)

It is hence a convenient quantity that represents the rate of expansion of the universe.

By convention, a’s value today is denoted a0 and is taken to have a value of 1.

Similarly other quantities measured at the present time are subscripted with a 0,

such as H0, which is experimentally found24 to be around 70 km s−1 Mpc−1, meaning

that a galaxy around one megaparsec away from us will appear to recede at around

70 km/s. Due to the experimental uncertainty in its precise value, it is oftentimes

written as H0 = 100h km s−1 Mpc−1, such that the factor h ≈ 0.7 can appear in

many derived expressions and separate the uncertainty in H0 from any uncertainty

in the derived quantity itself.

As hinted above, Einstein’s equations simplify considerably if the FRLW metric of

eq. (3.1.1) is used as an ansatz. The Friedmann equations resulting from this allow

33



3. Cosmology

one to determine the details of the expansion rate a’s evolution in time for a given

energy-momentum tensor. Their explicit form is, in terms of the expansion rate H,

3H2 = −T 0
0 , (3.1.4)

−(2Ḣ + 3H2)δij = T ij . (3.1.5)

All other energy-momentum components must be zero (otherwise, the assumptions

of the FRW metric are violated). Such an energy-momentum tensor is usually

parametrised as a perfect fluid with energy density ρ, pressure p such that,

T µν = diag (−ρ(t), p(t), p(t), p(t)) . (3.1.6)

These quantities are also explicitly homogeneous and isotropic (depending only on

t), else they would gravitationally affect the spacetime around them and disturb

these symmetries. Explicitly, then the Friedmann equations are

3H2 = ρ , (3.1.7)

−(2Ḣ + 3H2) = p . (3.1.8)

Either one of these differential equations specifies a for a given matter content.

Similarly, covariant conservation of energy momentum (∇µT
µ
ν = 0) relates ρ and p

via the fluid equation

ρ̇+ 3H(ρ+ p) = 0 . (3.1.9)

This can also be derived by combining the two Friedmann equations. It is also

convenient to represent the pressure of a perfect fluid via the equation of state

p(t) = wρ(t), where w is a constant, such that the fluid equation would be

ρ̇+ 3(1 + w)Hρ = 0 . (3.1.10)
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We can solve this by rewriting eq. (3.1.10) in the form

ρ̇

ρ
= −3(1 + w)

ȧ

a
, (3.1.11)

which implies

ρ(t) = ρ0a
−3(1+w) . (3.1.12)

This can then be substituted back in to the first Friedmann equation (3.1.7) to

obtain a differential equation solely in a,

ȧ ∝ a−(1+3w)/2 , (3.1.13)

which has solution

a(t) = a0

(
t

t0

) 2
3(1+w)

. (3.1.14)

In general, we thus see that General Relativity predicts that a homogeneous universe

containing a perfect fluid of equation of state w, will expand as a power-law in time,

and the exponent is determined by that equation of state. The exception to this

result is the special case where w = −1, where the above procedure is invalid and

instead the correct solution takes the form

a(t) = a0e
H0t . (3.1.15)

Where H = H0 is now a constant as when w = −1, the fluid equation tells us that ρ

is constant and thus by the Friedmann equation H is too. Note that for the power

law solutions when w 6= −1, we instead have H ∝ 1/t.

Matter in the standard model of particle physics can be largely grouped into two

classes. In the cosmological context these are often call dust (or sometimes simply

matter) and radiation. Dust refers to massive particles which, at the given tempera-

ture, move significantly slower than the speed of light and behave non-relativistically.

A cosmologically dilute fluid of non-interacting dust will be pressureless, and hence

it has w = 0. Radiation refers to either massless particles like photons, or suffi-
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ciently low-mass particles that at the given temperature, they move at v ≈ c and

behave analogously. As a fluid of photons behave as a black body gas with radiation

pressure p = ρ/3, this has w = 1/3. These observations imply that a universe filled

with dust would obey a ∝ t2/3 and a radiation-filled universe would instead follow

a ∝ t1/2. In either case, the expansion of the universe slows down with time. It

is also interesting to explicitly note that from eq. (3.1.12), we can say that cosmic

dust will dilute as ρ ∝ a−3, which is as expected - essentially this states that the

energy density is inversely proportional to the volume. Radiation, however, goes as

ρ ∝ a−4, which can be thought of as dilution both with volume, and loss of energy

due to red-shifting of the photon’s wavelength (ρ ∝ E/V ∝ λ−1V ∝ a−1V ∝ a−4).

In any case, one implication of this that will become important later is that during

an expansion, radiation dilutes in energy density faster than non-relativistic matter.

3.1.3. Curvature and Density of the Universe

While we have thus far ignored this by using the Cartesian-like form of eq. (3.1.1),

the FRLW metric is also permitted to have global curvature. This does not break

homogeneity so long as the curvature is a constant throughout space. This is more

readily described if one transforms to spherical polar coordinates, in which the metric

can be written,

ds2 = gµνdx
µdxν = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
, (3.1.16)

where dΩ2 is the metric on a 2-sphere and k is the curvature, which can be k = 0

for flat geometry, or k = ±1 for spherical/hyperbolic geometry.1 When accounted

for in this way, the curvature appears in the Friedmann equations as

3H2 = ρ− 3k

a2
, , (3.1.17)

−(2Ḣ + 3H2) = p+
k

a2
. (3.1.18)

1An alternative normalisation where a is fixed and k varies can be used, but will not be described
here.
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Curvature can be eliminated in a combination of these equations, most often known

as the acceleration equation,

ä

a
= −1

6
(ρ+ 3p) , (3.1.19)

which is useful in making curvature-independent statements about the expansion of

the universe.

Equations (3.1.17 – 3.1.18), upon inspection, reveal that curvature contributes to

the expansion of the universe analogously to a fluid with ρ ∝ a−2 or equivalently

w = −1/3, albeit with a negative contribution to the effective energy density if k

is positive. Equation (3.1.17) implies one can define170 a critical density ρc = 3H2

for which k = 0, such that a condition for the universe being spatially flat is that

ρ = ρc exactly, while a closed (spherical) universe or an open (hyperbolic) universe

would respectively have larger and smaller densities. That is, one can determine

the curvature of the universe by measuring its density. With reinstated units, the

critical density takes the value today of,

ρc,0 = 3H2
0M

2
Pl ≈ 1.9h2 × 10−26 kg m−3. (3.1.20)

Alternatively, if one writes this in terms of solar masses, it takes the value

ρc,0 ≈ 2.8h2 × 1011M�Mpc−3 . (3.1.21)

As a rough Fermi estimation, astronomical observations suggest galaxies weigh some

1011 solar masses, and are separated from one another by about a megaparsec in

space, so we can see that the density of the universe is at least around the same

order of magnitude as the critical density. As we will later discuss, however, merely

counting galaxies in this way is insufficient to precisely determine the density of

the universe as dark matter and dark energy play a central role. More refined

observations and experiments accounting for such factors reveal that |ρ0−ρc,0| � ρc,0

suggesting the geometry of the universe is consistent with flatness, typically to sub-

percent precision171 (varying a little depending on the method).
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3.1.4. Realistic, Multi-Fluid Models

While a universe containing only matter or only radiation, for example, can be

easily understood via the above prescription, the real universe contains multiple

fluids (dust and radiation, as well as dark energy which we will later see does not fit

into either class) as well as possibly a small amount of curvature. It is hence useful

when studying models of the universe to decompose the density and pressure in the

Friedmann equations into non-interacting components for each fluid, for example

given some non-relativistic matter, radiation and curvature, the first Friedmann

equation could be understood as

3H2 = ρ = ρm + ρr + ρk , (3.1.22)

where ρk = −k/a2 is an effective curvature energy density, and the matter and

radiation densities obey the fluid equation for their respective equations of state

of 0 and 1/3. However, as we know from the solution of the fluid equation in eq.

(3.1.14), each non-interacting ρi has its own dependence on a. We can hence recast

the Friedmann equation as

3H2 = ρm,0a
−3 + ρr,0a

−4 + ρk,0a
−2 . (3.1.23)

This gives us a differential equation for a in terms of a multi-component universe,

and can be numerically (or in some special cases, analytically) solved. Qualitatively,

however, one can see that as a increases, eventually the radiation term will become

smaller than the matter term, which will in term become smaller than the curvature

term, no matter the hierarchy of their initial densities; some fluids/densities simply

dilute faster than others and this gives rise to a key observation. That is, in the

distant future it is the curvature of the universe which determines its fate.2 A flat

universe would, at late times, be matter-dominated and behave like a ∝ t2/3; it

would expand forever, but at an ever-decreasing rate. A hyperbolic universe with

k < 0 would at late times be dominated by the curvature term, and behave as a ∝ t,

expanding forever, but now at a constant rate. If k > 0 and the universe has closed,

2Or, it would be if not for dark energy, which will be introduced shortly.
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spherical, geometry, then eventually the matter and curvature terms would become

equal and H = 0 would occur, at which point the expansion would reverse in a

time-symmetric fashion (the Friedmann equation is invariant under t → −t) and

recollapse.

This can also be written in terms of density parameters, defined for each fluid as

Ωi = ρi/ρc, such that

H2 = H2
0

[
Ωm,0a

−3 + Ωr,0a
−4 + Ωk,0a

−2
]
. (3.1.24)

This is convenient as it often easier to work with the density parameters evaluated

today (correspondingly denoted with a 0 in the subscript), which are numbers be-

tween 0 and 1, and whose sum is equal to unity. Furthermore, the relationship

between scale factor and redshift, z,

a(z) =
1

1 + z
, (3.1.25)

which tells us what the scale factor of the universe was at the time from which we

are seeing an object at a redshift of z3, allows us to write this in the form

H(z)2 = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωk,0(1 + z)2

]
, (3.1.27)

which is useful for observational purposes. As z can be measured by astronomical

observation for a range of distant objects, and the value of H(z) can also be calcu-

lated using Hubble’s Law (3.1.2) on a galaxy at redshift z, one can use measurements

from many distant objects in this fashion to determine the parameters in the H-z

relationship of eq. (3.1.27). In this way, one reconstructs the history of H(z) and

hence gains a greater understanding of the composition of the universe both in the

past and today.172

3Note that redshift is defined such that (1+z) is the ratio of the wavelengths observed today (λ0)
and emitted by an object in the past (λem). The scale factor of the universe at the times of
observation and emission are in direct proportion to these wavelengths. Combining these facts
gives us

a(t0)

a(tem)
=

λ0
λem

= (1 + z) , (3.1.26)

which leads to the result (3.1.25) as a0 = 1 today
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A convenient way of observationally studying the H-z relationship above is via

measurement of the luminosity distance of standard candles such as type Ia super-

novae15,17 and using the data from this to fit the cosmological density parameters

in eq. (3.1.27). When this was done, the data was found to be consistent with an

accelerating expansion, one in which ä > 0. One can infer from the data that this

requires the presence of an extra fluid, which dominates the expansion profile of the

universe, consistent with an equation of state of (close to) −1.24 As exposed in eq.

(3.1.15), such a fluid induces an exponentially accelerating expansion of space. Ad-

ditionally, studying the acceleration equation (3.1.19), it is clear that the condition

for an accelerating expansion ä > 0 is p < −ρ/3, or w < −1/3, which is inconsistent

with a model containing just dust, radiation and curvature. This is shocking as it

implies the existence of a “dark energy” - a component of the universe’s contents

which corresponds to no substance formed from standard model particles.

3.1.5. Cosmological Constant and Dark Energy

Perhaps the simplest extension of the cosmology discussed thus far that would meet

some of the descriptors of dark energy is the cosmological constant introduced in

eq. (2.1.16). The cosmological constant, Λ, can be thought of as the vacuum energy

of spacetime itself. Deriving a modified set of Friedmann equations from the Λ-

containing Einstein field equations (2.1.17) reveals that

3H2 = ρm + ρr −
3k

a2
+ Λ, , (3.1.28)

−(2Ḣ + 3H2) = pm + pr +
k

a2
− Λ . (3.1.29)

Evidently from the form of the contribution of Λ in these two equations, it is like

a perfect fluid with w = −1. From eq. (3.1.12), we see this means that its energy

density scales as ρ ∝ a0 - hence the name “cosmological constant”. It is an energy

density component which remains constant despite the expansion of the universe.

Unlike matter or radiation or curvature, it does not dilute, and hence would be the

dominant component of the universe at late times when all other fluids are negligible,
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and in its presence, the fate of the universe would be one of eternal, accelerating

expansion. Including it in the picture described above, the H-z relation becomes

H(z)2 = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωk,0(1 + z)2 + ΩΛ,0

]
, (3.1.30)

where ΩΛ = Λ/3H2. Experiments suggest the present day values24 of the density

parameters in this model are

Ωm,0 ≈ 0.3 (3.1.31)

Ωr,0 � 1 , (3.1.32)

Ωk,0 ≈ 0 , (3.1.33)

ΩΛ,0 ≈ 0.7 . (3.1.34)

The average equation of state of the universe is then w ≈ −0.7, firmly in the range

needed for accelerating expansion. We can also give a value for the cosmological

constant by noting from the definition of ΩΛ that then Λ ≈ 0.7×3H2
0 . This paints a

picture of a flat universe whose radiation content has diluted to a fraction of a percent

of the energy contained in the universe as it dilutes faster than the other components.

Meanwhile, there is still a non-negligible component of non-relativistic matter, but

it will inevitably become less important as the universe continues to expand, leaving

only dark energy. This changes the discussion above in which we said that curvature

determines the ultimate fate of the universe; dark energy supersedes this for as long

as it continues to behave as it does today with w ≈ −1, and will cause the universe

to expand exponentially forever. If instead, dark energy does not remain this way

for all time and it later takes on a different behaviour, the fate of the universe will

correspondingly be determined by this, though we do not fully understand dark

energy well enough to confirm or deny this possibility at present.

Dark energy is not the only “dark” component of our universe of which we know

little. Of the non-relativistic matter contained in the universe (with Ωm ≈ 0.3), the

majority of this is found to be not the conventional atomic matter that makes up
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the intuitive and observable world of stars and planets, but instead a mysterious

“dark matter” which is optically invisible. Unlike atoms and conventional matter

that interact with light and hence can be seen in large enough quantities such as

galaxies, dark matter is completely invisible and we can only infer its presence via

its gravitational influence. In fact, one finds that some 85% or so of the matter

component of the universe is dark,24 leaving only a few percent of the universe’s

mass and energy behind to make up the atoms of conventional matter. In essence,

one of the most interesting results of modern cosmology is hence that the proportion

of the universe’s contents we know and understand well is tiny. The leading model

of cosmology, based on a universe containing cold4 dark matter and a cosmological

constant (as well as the small amount of normal dust/radiation), is known as the

ΛCDM model. And while this model describes the majority of phenomena in the

universe very well, we lack a fundamental explanation of what dark matter is made

of, and whether dark energy is a cosmological constant or something else entirely.

The Cosmological Constant’s Problem

The possibility that dark energy is something more complex than a mere cosmo-

logical constant remains open. First, this is because of conceptual problems in

interpreting the value of the cosmological constant. In the above discussion, we

neglected that, according to standard model particle physics and quantum field the-

ory, vacuum energy is also produced by quantum effects in matter fields. The actual

value of Λ gravitating and appearing in the Friedmann equations, is then comprised

of a bare cosmological constant Λcc from the gravitational action, and a contribu-

tion coming from quantum effects Λq. The problem with this is that quantum field

theory predicts that this latter contribution to the vacuum energy relative to the

inferred value of the vacuum energy today (Λ) is approximately Λq ≈ 10120Λ. This

would require us to choose the gravitational vacuum energy Λcc such that it cancels

out the quantum contribution to hundreds of digits of precision in order to achieve

the desired value of Λ.46 This degree of fine-tuning alone seems unnatural enough

4Cold dark matter differs from warm or hot dark matter in that it is assumed to be entirely
non-relativistic, and hence w ≡ 0.
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to be a concern, and is often said to be the “greatest embarrassment of theoreti-

cal physics”, but the problem runs deeper still than this. The value of Λq is also

highly sensitive to the details of new physics, and simply taking into account the

existence of new particles beyond the standard model, or even just computing it to

a higher degree of accuracy within the framework of perturbative QFT, changes the

value we expect it to take, and would hence require order-by-order re-tuning of the

cosmological constant. This is simply not acceptable from a theoretical standpoint.

While approaches such as the sequester173,174 have been proposed to alleviate this

immense fine-tuning issue, an entirely satisfactory framework in which to reconcile

quantum mechanics and gravity/cosmology in this way has not yet been proposed.

The future solution may depend on the details of beyond-standard-model physics or

those of the unification of gravity with the other forces (e.g. String Theory).

In the mean time, this motivates consideration of alternative explanations of the

accelerating expansion, beyond the simple (or evidently not so simple!) cosmological

constant.

Scalar Field Cosmology and Dark Energy

An alternative proposition for the nature of dark energy is an exotic scalar field, in

a scenario that is often known as quintessence - the introduction of a fifth force of

nature mediated by this scalar to solve the dark energy problem. A canonical scalar

field with arbitrary potential V has the Lagrangian

Lφ = −1

2
∂µφ∂

µφ− V (φ) , (3.1.35)

and its addition to the usual gravitational action forms the simplest scalar-tensor

theory of gravity as set out in eq. (2.2.4) of Section 2.2.2. Its variation yields the

energy-momentum tensor

Tµν = ∂µφ∂νφ+ gµνLφ , (3.1.36)

leading to the identification of a scalar field with a perfect fluid, via eq. (3.1.6), with

effective energy density and pressure
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ρφ =
1

2
φ̇2 + V , (3.1.37)

pφ =
1

2
φ̇2 − V . (3.1.38)

Unlike the fluids of dust and radiation considered previously, the equation of state

parameter w = p/ρ for the scalar field fluid is non-constant and dynamical. This

motivates the possibility that w could change in future and affect the ultimate fate

of the universe. In fact, w for a scalar field can take any instantaneous value in

[1,−1] depending on the ratio of kinetic and potential energy densities it carries. In

particular, in a potential-dominated regime, we find w ≈ −1 which makes it suitable

to imitate a cosmological constant and hence serve as a dark energy candidate. In

this approach, the scalar field typically evolves in time somewhat too, leading to

an equation of state that differs slightly from −1 (as allowed by the experimental

bounds on w), and possibly also changes with time. This could hence in principle be

distinguished from a cosmological constant with precise enough measurements. This

possible answer to the dark energy problem, however, leads to a host of its own ques-

tions. As a scalar-tensor theory, a quintessence model of dark energy may interfere

with the successes of General Relativity by modifying the behaviour of gravity. Much

work has gone into finding extended scalar-tensor theories to achieve quintessence

without causing overly large deviations in GR’s highly accurate predictions of usual

phenomena. One example of this is the idea of screening mechanisms,175–177 whereby

a coupling between the scalar field and matter mellows and suppresses the gravi-

tational effect of the scalar field in high-density, small-scale regions such as Earth

and the solar system where GR has been most precisely verified, while still allowing

it to produce more pronounced effects such as dark energy on global scales where

constraints are more liberal. This remains an active area of research, and one that

we will be largely uninterested in for the purposes of this thesis, but we will revisit

the applications of scalar-tensor theories later in this chapter when we come to look

at inflation.
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3.1.6. History of the Universe and Thermodynamics

Present knowledge suggests that the universe is approximately24 14 billion years old,

which can be roughly estimated as t ≈ H−1
0 ≈ 1010 years, and in the Hot Big Bang

model it begins at this time in a state of extreme temperature where the matter-

energy content is super-relativistic and hence behaving as radiation. With the tools

and theoretical framework described above, we can go on to understand many of

the details of how this evolved to the universe we see today and explain some of the

more striking results of the last 100 years of breakthroughs in cosmology.

We now have an idea that the universe contains dust, radiation and dark energy (and

possibly curvature), and that by GR the densities of these fluids evolve differently

as the universe expands, and in turn cause the universe’s expansion rate to change.

(“Spacetime tells matter how to move; matter tells spacetime how to curve.”178) One

consequence of this, as mentioned previously, is that the dominant component of the

universe changes with time. Radiation scales as ρ ∝ a−4 while dust scales as ρ ∝ a−3

so if one starts off with an excess of radiation as in the Hot Big Bang, but with a

small amount of dust nonetheless present, and lets the universe evolve for some time,

eventually there will be more dust than radiation. Alongside this change, however,

the universe also cools as it expands, which changes the microphysical behaviour

of these fluids - reactions and interactions and other physical processes occurring

between particles depend on the temperature they are carried out at. Of particular

relevance is that as the universe cools in this way, massive particles will gradually

become non-relativistic and behave not as radiation but as dust.

It is intuitive enough that the universe cools as it expands in this way, but how

much does it cool with time? This can be answered by considering the temperature

of the universe to be the temperature of a radiation bath with a thermal spectrum

that fills it, which has energy density ρ ∝ T 4 by the well known Stefan-Boltzmann

relation. Combining this with eq. (3.1.12) yields

T ∝ a−1 , (3.1.39)

or that the temperature of the universe scales in inverse proportionality with its
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size, whose evolution with time is given by (3.1.14). For a given cosmological his-

tory, this tells us T (t). This has several useful applications in more quantitatively

understanding the history of the universe. In what follows we will list some of the

key phases in the universe’s history and where they fit in to the thermal history

T (t).

Firstly, at very high temperatures, or in the very early universe, it is thought that

the microphysics of the universe is described not by the standard model of particle

physics, but instead by a so-called GUT (Grand Unified Theory) which unifies the

electromagnetic and nuclear forces in terms of a more fundamental description of

nature whose consequences are not apparent at the relatively pedestrian energy

scales our present experience and technology can access. In the standard ΛCDM

model, the time at which GUT physics control the universe can be estimated9,36 as

a tiny fraction of a second after the Big Bang when T ≈ 1028 K, when radiation still

dominates. Following this, the universe continues to cool and gradually approach

the standard model which we perceive today.

When the universe cools further over the first second or so of its existence to a

more “moderate” temperature of T ≈ 1010 K, a major milestone is reached. Typical

photons in the universe’s radiation bath cooled to an energy comparable to the

binding energy of atoms.11 That is, nucleon-photon collisions begin to be too weak

to break apart nuclei that form via the strong nuclear force. This time in the history

of the universe thus represents the birth of matter as we know it; from this moment,

nuclei of the lightest few elements of the periodic table were able to stably exist to

later go on to form stars and fuse into the substances that form planets and living

organisms. This is known as the epoch of Nucleosynthesis, and the precise rate

at which different elements and isotopes were produced in the radiation-dominated

cosmological background of the ΛCDM model is one of the key confirmations of

its success. Without this, there would not be a concise explanation for the initial

conditions for the abundances of primordial elements, and hence the prevalence of

them and their derivatives today. While nuclei were at this point able to form in

this way, they still could not form neutral atoms as the photon sea was still plenty

energetic enough to rapidly ionise atoms if any formed.
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Some time after this, estimated around a few thousand years into the universe’s

existence, with temperatures now in the realm of some tens of thousands of Kelvins,

the density of dust/matter finally outgrew the initially dominant radiation density

and the universe began its matter-dominated epoch in which the expansion rate

is now a ∝ t2/3. After this when the universe was 350,000 years old, the photons

finally cooled enough to allow neutral atoms to stably exist and the beginning of

atomic matter and the laws of chemistry naturally followed. The universe at this

time was some 3000 K in temperature, and it is in these conditions that one of

the most significant and interesting events in the history of the universe occurred:

decoupling.36,179 Prior to this, as the universe consisted of photons and a plethora

of charged particles (nuclei and electrons), those photons strongly interacted with

the charged matter in their presence, maintaining a thermal equilibrium. When

matter became neutral due to the expansive cooling of the universe in this way,

the interaction rate dropped off sharply and suddenly, leaving the atoms decoupled

from the photons, and the photons more-or-less freely streaming. The photons of the

epoch of decoupling are still around today some billions of years later, cooled and

stretched out even further, and can be detected as microwave-frequency radiation,

permeating space in every direction, known as the Cosmic Microwave Background

(CMB).

Some time after this period of matter domination, the expansion inevitably dilutes

the conventional fluids to a point where instead the constant-density dark energy

fluid comes to dominate. This brings us to the state of the universe today, where

we have observed and measured the CMB radiation with a temperature of just 2.73

K.14 The detection and explanation of this forms another cornerstone of the Hot Big

Bang cosmology’s success, but it is also an immensely useful probe of the state of

the early universe. As the pre-decoupling photons were in thermal equilibrium with

the matter distribution of the universe at that time, the slight anisotropies of the

CMB radiation in different parts of space reveal precisely how inhomogeneous the

universe was in the early matter-dominated epoch. That is, some regions of space

were denser and hence slightly hotter than their surroundings in the early universe,

producing CMB radiation of ever so slightly different temperature.
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These differences, while minute, are detectable and have a magnitude of ∆T ≈
10−5T . One interesting footnote of this is that it confirms to high accuracy the

validity of the FRLW metric as a metric for the universe, with inhomogeneities

small enough to be often neglected or, when necessary for more precise questions,

treated perturbatively. This is of ultimate relevance, however, as it is those slight

overdensities and inhomogeneities which, via gravitational collapse, later formed

stars and galaxies and the structure-rich universe we observe today. The CMB

radiation thus gives us otherwise inaccessible information about the state of the

universe in its early life, and provides us with data on the initial conditions of the

subsequent growth of structure via initially tiny gravitational instabilities. One can

of course ask the question though, what gave rise to that initial distribution of

inhomogeneity in the structure of the universe and why did it take the precise form

it did, a question which will be addressed in some detail in the next chapter.

3.2. Inflation

3.2.1. Problems with the Hot Big Bang

With time, it became apparent that despite the Hot Big Bang model’s success in

describing the history of the universe as a series of epochs of radiation, matter and

accelerating dark energy domination, there were some inconsistencies and issues that

could not be satisfactorily resolved without an extension of the physics discussed

above. These include:

The Horizon Problem

As mentioned previously, we can observe in any direction out in space a background

of microwave-frequency thermal radiation (the CMB) originating from the epoch of

decoupling when neutral atoms first formed. Furthermore, this radiation is highly

isotropic, exhibiting the same temperature across all space to within a few millionths

of a degree. This implies that radiation coming from two opposite sides of the

observable universe was, at the time of decoupling, in thermal equilibrium. However,
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an approximate calculation suggests that information propagating at the speed of

light (hence following a null geodesic where, in the radial direction in flat spacetime,

dr = ca−1dt) since the Big Bang will have travelled a distance

R(t) = a(t)

∫ t

0

c dt′

a(t′)
≈ ct ≈ cH−1 . (3.2.1)

In this, we have assumed that the scale factor is constant for simplicity, but this

is sufficient for a back-of-envelope, order of magnitude estimate. The maximum

distance a light-speed signal could have travelled since the Big Bang at the time of

decoupling would then be approximately (using H ∝ t−1 during the radiation and

matter-dominated epochs involved and the approximate values for the age of the

universe today and the time of decoupling)

Rdec ≈ cH−1
0

(
tdec

t0

)
≈ 10−1 Mpc . (3.2.2)

This is the maximum size a patch of space could be causally connected over, and

hence in thermal equilibrium across, at the time of decoupling. Since the time of

decoupling and until the present day, assuming matter domination (hence a ∝ t2/3),

this patch of space will have expanded in size to

Rdec
a0

adec

= 0.1 Mpc×
(
t0
tdec

) 2
3

≈ 102 Mpc , (3.2.3)

which, on cosmological scales, is very small indeed. The isotropy of CMB radiation

over more than a few degrees of the sky is hence apparently in violation of causality,

in the Hot Big Bang cosmology. This is known as the Horizon Problem.

The Flatness Problem

Observations171 suggesting that the curvature density parameter of the universe is

presently consistent with 0±10−2 or so present two possibilities. Firstly, the universe

could be perfectly flat with k = 0. Alternatively, if k 6= 0, then the curvature density

parameter is presently non-zero and will not be identically zero at any point in the

universe’s history. However, should this latter scenario be the case, this presents a
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problem. Noting that

Ωk = − k

a2H2
, (3.2.4)

we see that in a radiation-dominated background

a ∝ t
1
2 , H ∝ t−1 → Ωk ∝ t , (3.2.5)

while in a matter-dominated background

a ∝ t
2
3 , H ∝ t−1 → Ωk ∝ t2/3 . (3.2.6)

In either case, it grows. For |Ωk| = 10−2 today, it would have to have been much

smaller in the early universe. Putting some numbers in we find, more specifically,

that at some early time, such as nucleosynthesis (1 second after the Big Bang), this

would imply

Ωk(tnuc) = 10−2 ×
(
tnuc

teq

)
×
(
teq

t0

) 2
3

≈ 10−17 , (3.2.7)

where the first bracket accounts for the radiation-dominated phase between nucle-

osynthesis and equality, and the second bracket accounts for the matter-dominated

epoch between equality and today (we neglect the existence of dark energy for

simplicity). Essentially, this shows that for the universe to have a non-zero, but per-

missibly small curvature today, the primordial curvature must have been immensely

fine-tuned to be close to zero. The further back in time one looks, the more severely

fine-tuned the early-time curvature must be. This fine tuning problem is called the

Flatness Problem and is also not resolved within the standard Big Bang cosmology.

The Monopole Problem

In the first tiny fraction of a second after the Big Bang when the temperature is huge

(e.g. T ≈ 1028 K), the laws of physics are thought to be described by so-called Grand

Unified Theories instead of the usual Standard Model of particle physics. In these

theories, particles and objects with masses only a few orders of magnitude below the

50



3.2. Inflation

Planck mass may be produced. These “relics” include monopoles, supersymmetric

particles and topological defects and are a problem in the foundations of the Hot

Big Bang expansion. Their immense mass would cause them to quickly become

non-relativistic and resultingly dominate the universe, should they be sufficiently

long-lived (as non-relativistic particles scale in density as a−3 while the background

radiation scales as a−4). This would interfere with the success of the Hot Big Bang

model, which requires the radiation-dominated epoch to persist through until at least

the time of Nucleosynthesis in order to correctly replicate the primordial abundances

of the chemical elements. A mechanism which avoids this is likely necessary to allow

the correct cosmology to proceed in the context of a typical high energy theory of

particle physics.

Primordial Structure Formation

We mentioned previously how structures in the universe such as galaxies and so on

formed due to slight overdensities and inhomogeneities in the early universe which

grew through gravitational instability and subsequent collapse over billions of years.

This can be probed by looking at anisotropies in CMB radiation, with a magnitude

of around one part in 105. The question is: where did these inhomogeneities initially

come from (e.g. what kind of initial conditions are needed in order to lead to this at

the time of decoupling, and what mechanism generates them) and why did they have

the amplitude and statistical distribution they did. Addressing this question will be

of central importance later in this thesis, but it requires the tools of cosmological

perturbation theory which will be introduced in due course.

3.2.2. Inflationary Cosmology

3.2.3. Resolving the HBB Problems: Accelerating Expansion

A proposed solution to the inconsistencies and problems of the Hot Big Bang cos-

mology was developed in the early 1980s. What if, in the extremely early universe,

there was a period of accelerating expansion of space? That is, preceding the usual

radiation-dominated epoch, what if there were an epoch - which we now call infla-
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tion - in which the expansion of the universe underwent a rapid acceleration and

hence grew in size by a large factor. Let us see how this assumption relates179 to

the problems listed above:

The Horizon Problem Revisited

In the Hot Big Bang model, light could not have travelled far enough in the time

before decoupling for a patch of space that expanded into the size of our observable

universe today to be in thermal equilibrium, and so the apparent isotropy of CMB

radiation today is not possible. If, however, in the very early universe, a period

of substantial expansion occurred, then a much larger patch of space today could

have been in causal contact in the distant past due to this. The early universe

is re-envisaged such that a much smaller initial patch of space expanded into the

observable universe today, hence explaining how it could have ever been in causal

contact; the horizon beyond which patches of space were never in causal contact is

pushed out to beyond the size of the observable universe.

The Flatness Problem Revisited

In an accelerating expansion ä > 0, which, corresponds to w < −1/3 via eq. (3.1.19).

In combination with eq. (3.1.14), this implies that in such cases the density param-

eter of curvature (3.2.4) is decreasing with time, rather than increasing as in the

matter and radiation-dominated expansions. This means that, qualitatively, it is

possible to alleviate the fine-tuning issue of the Flatness Problem by having an ac-

celerating expansion of space in the early universe, as this would drive Ωk closer to

0, rather than away from it, making the very small value allowed today much more

natural. This also lets us simply estimate how much the universe would need to have

expanded in this fashion to counteract the growth of Ωk at later times. Extending

the calculation in eq. (3.2.7) back to an inflationary epoch taking place between

times t1 and t2, we would find that

Ωk(t0) = Ωk(t1)×
(
a1H1

a2H2

)2(
teq

tf

)
×
(
t0
teq

) 2
3

, (3.2.8)
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where the terms in brackets from left to right represent the inflationary period, the

radiation-dominated period from after inflation up until equality, and the matter-

dominated period from equality up to today (again, neglecting the present dark

energy epoch for simplicity). Let’s say we take the value of Ωk at the beginning of

inflation (t = t1) to be O(1) for argument’s sake, then, assuming that inflation is

driven by a cosmological constant-like fluid with equation of state w = −1 so that

H1 = H2, and taking a typically assumed time of inflation’s end of t2 ≈ 10−34 s, one

finds that eq. (3.2.8) implies that to achieve a suitably small Ωk(t0) one would need

a2

a1

≈ 1026 , (3.2.9)

that is, the universe would need to increase in size by a factor 1026 during the

inflationary expansion. This amount is usually written instead in terms of the

number of e-folds of expansion - the number of times the universe has multiplied in

size by a factor e, or

N = loge

(
a2

a1

)
≈ 60 . (3.2.10)

The Monopole Problem Revisited

Unwanted stable relics of the early universe’s particle theory would be diluted away

to essentially zero density by an inflationary expansion, thus preventing them from

coming to dominate. It is important, however, that following the inflationary epoch

these particles are not reproduced. This will be important later when we come to

discuss the particulars of inflation and specifically how (and at what temperature)

its end comes about.

Primordial Structure Formation Revisited

Inflation ameliorates the Horizon, Flatness and Monopole Problems essentially by

brute force; have enough expansion occur quickly enough and these issues go away.

How this relates to primordial inhomogeneities seeding subsequent growth of struc-

ture in the universe is considerably more subtle, but we will shockingly see in due
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course that inflation does indeed give rise to a possible solution of this issue too.179

3.2.4. How to Inflate a Universe

It is fine to state that a period of inflation is necessary, but we have no physical

mechanism to explain how it comes about. As discussed, no matter in the standard

model can drive an accelerating expansion of spacetime. We need a new field or

fluid, which we will call the inflaton, which can fulfil this role. Fortunately, how to

go about answering this has already been hinted at in Section 3.1.5 - the premise

of an accelerating expansion is exactly the same as the dark energy problem. We

can’t, however, just use a cosmological constant term as while this would most

definitely drive inflationary expansion of space, inflation would not be able to stop,

either. We previously saw that a cosmological constant behaves as its name suggests

and maintains a constant energy density while other fluids dilute via expansion of

spacetime - once it dominates, it dominates forever, which is not desirable.

It is therefore natural to consider that the inflationary fluid begins with an equation

of state close to−1 then later changes equation of state to something larger, stopping

the accelerating expansion of space and giving way to the usual and well-understood

radiation-dominated epoch of the Hot Big Bang. How we precisely go about this will

be discussed later in Section 3.2.5, but for now, we note that the ability to change

the equation of state is naturally possible in scalar fields, which we also mentioned

in the context of dark energy previously. As we have an equation of state, using eqs.

(3.1.37 – 3.1.38), of

w =
1
2
φ̇2 − V

1
2
φ̇2 + V

, (3.2.11)

we can see that if 2V � φ̇2 then w ≈ −1. If φ̇ ≡ 0 then this is identical to a

cosmological constant (cf. the Lagrangian in eq. (3.1.35) for example) but if φ̇

instead varies, then so does w. In fact, since the opposite limit of 2V � φ̇2 implies

w ≈ 1, we can see that any equation of state between±1 is possible in this model. We

hence have a reasonable starting point for our discussion of how to drive a sustained

but not unending period of inflation; scalar fields. Particularly, we want a scalar
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field which is initially close to static, but later begins to roll down its potential179

such that the equation of state departs from the accelerating regime and can allow

inflation to terminate. To understand this better, let us study the equation of motion

of the field φ. Using either the fluid equation (3.1.9) with the appropriate density

(3.1.37) and pressure (3.1.38) or by directly applying the variational principle to the

scalar-tensor action (3.1.35) and specialising to a cosmological background, we find

the Klein-Gordon equation in an expanding spacetime

φ̈+ 3Hφ̇+ V,φ = 0 . (3.2.12)

This, in addition to one of the Friedmann equations (as the other Friedmann equa-

tion can be derived from it and the fluid equation) specifies the evolution of the

universe. For simplicity we take the G00 equation:

3H2 =
1

2
φ̇2 + V . (3.2.13)

To solve the system of eqs. (3.2.12) and (3.2.13) exactly is not trivial. Note in

particular the term 3Hφ̇, which can be rewritten using the Friedmann equation as

φ̈+

√
3

2
φ̇2 + 3V φ̇+ V,φ = 0 ,

which is rather nonlinear and hence does not typically admit any obvious solutions

even for simple potentials. Numerically this poses no problem but this does not

facilitate a deeper understanding. An approximation scheme is hence in order to

make some analytical headway to this end.

As we already have the condition 2V � φ̇2 during inflation, we can apply this to

understanding the approximate behaviour of the system in this limit. This will be

very accurate in the early stages of inflation, but break down as it comes to an end.

Proceeding along this line of thought, the Friedmann equation is approximated by

3H2 ≈ V . (3.2.14)

This alone makes solving the system more tractable as it does away with the non-
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linearity in φ̇, but we can do a little bit better. This approximation so far has

not simplified the Klein-Gordon equation as φ̇2 does not appear as part of it. To

progress, we further note that, in addition to the requirement that 2V � φ̇2 to make

the expansion of spacetime inflationary, we also need inflation to be somewhat sus-

tained in order for there to be enough inflationary expansion (60 e-folds to achieve

3.2.9, typically) to solve the problems associated with the Hot Big Bang model.

This is significant because even if φ̇2 is small initially, a large φ̈ will quickly change

this and terminate inflation early. We hence also require the condition φ̈ � 3Hφ̇.

A good approximation of the Klein-Gordon equation during inflation, then is

3Hφ̇+ V,φ ≈ 0 (3.2.15)

This is often simpler to solve for a given potential than the full Klein-Gordon equa-

tion and so is widely used in understanding inflation. This type of approach is

known as the slow-roll approximation (SRA). We will now formalise the technology

of this slow-roll approximation.

Slow-Roll Inflation

Let us define a parameter

ε0 = − Ḣ

H2
. (3.2.16)

Using the Friedmann equations (for any background, not just the scalar field case)

it is possible to see more generally that

ε0 =
3

2
(1 + w) . (3.2.17)

That is, when w = −1, ε0 = 0 and when w = −1/3 (the end of inflation, as expansion

ceases to be accelerating), we instead have ε0 = 1. The parameter ε0 hence runs

from 0 to 1 from beginning to end of an inflationary expansion, and is useful to

parametrise the progress of inflation as a result. Values of this parameter exceeding

1 represent non-inflationary expansion. However, using the Friedmann equations in

the special case of the inflationary scalar field, we also see that
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ε0 =
3φ̇2

φ̇2 + 2V
≈ 3φ̇2

2V
. (3.2.18)

By inspection one finds from this that ε0’s smallness is also linked to the validity of

the slow-roll approximation; when SRA is fulfilled, ε0 ≈ 0. The slow-roll parameter

is hence also a useful tracker and order parameter in which to express the slow-roll

approximation. One could, for example, write the Friedmann equation in the form

3H2 = V (1 +O(ε0)) , (3.2.19)

specifically showing where the terms that are linear (or higher) order in the small

number ε0 arise.

As the slow-roll approximation also deals with ensuring that higher time derivatives

of φ are sufficiently small, we can extend this idea to parametrise this too. In fact,

we can use quantities related to derivatives of ε0 to formalise this. While many

competing definitions exist in books and literature on the subject, the author finds

some of the more common ones rather arbitrary and lacking systematic structure

and will hence define and use a less-common (related to approaches such as that

of180) but more structured variation of this.5 Additional slow-roll parameters are

hence defined to follow the recursion relation

ε0 = − Ḣ

H2
, εn =

ε̇n−1

Hεn−1

(n > 0) . (3.2.20)

Here, for example, ε1’s smallness implies φ̈� Hφ̇, and higher slow-roll parameters in

turn imply smallness of subsequent derivatives of the field. During early inflation,

then, εn � 1 to ensure a state of accelerating and sustainable expansion. When

expressing a term’s order in slow-roll parameters, we will collectively refer to them

as just ε with no subscript, such that e.g. O(ε) means that a term is linear in one

or more εn without specifying which.

5For example, ε0 is usually defined this way as the first slow-roll parameter, and is usually denoted
as just ε with no subscript. But, one definition for the second slow-roll parameter found in

textbooks is, for example, δ = ε − ε̇
2Hε , and the next one after that is called ξ = ε̇−δ̇

H . With
this it becomes increasingly hard to generalise to higher orders and succinctly refer to slow-roll
parameters, hence the preference here for the recursive definition presented.
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Duration and number of e-folds of inflation

It is useful to further note that eq. (3.2.18) can be rewritten using eq. (3.2.15) to

take the form

ε0 ≈
1

2

(
V ′

V

)2

. (3.2.21)

For a given potential, we can now compute ε0 approximately. One use of this is

determining when inflation ends (solving for ε0 = 1). Take, for example, an arbitrary

monomial potential

V (φ) = Aφn , (3.2.22)

for which

ε0 ≈
n2

2φ2
→ φend ≈

n√
2
. (3.2.23)

If we hence know approximately when inflation ends, we can also consider how large

φ must be at the beginning of inflation to produce around 60 e-folds of expansion

before reaching φend. We can write the e-fold number N by rewriting its definition

in terms of an integral as

N = ln

(
a2

a1

)
=

∫ t2

t1

H(t) dt , (3.2.24)

which, upon further manipulation, can be written

N(φ) =

∫ φ

φend

1√
2ε0

dφ′ =

∫ φ

φend

V (φ′)

V ′(φ′)
dφ′ . (3.2.25)

Taking again the monomial potential above, we find179

N(φ) =
φ2

2n
− n

4
, (3.2.26)

or that for a given N we require an initial field value of

φini ≈
√

2n
(
N +

n

4

)
, (3.2.27)
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which, for say n = 2 and N = 60, gives φini ≈ 16MPl.
6 In this way, for a given infla-

tionary model, we can determine the initial state necessary to produce the desired

amount of inflation within the slow-roll approximation. This has its limitations;

certain potentials or more complicated models involving more than just a minimal

scalar field may not be analytically tractable in this way. Such extended models may

also be able to violate the conditions of the slow-roll approximation yet still produce

viable inflation, too, and would need to be treated with a different set of assump-

tions. Nevertheless, this example using a simple model demonstrates how we can, in

principle, learn about the physics of inflation from some simple constraints. Let us

finish this discussion of slow-roll inflation by solving the approximate Klein-Gordon

and Friedmann equations (3.2.14) and (3.2.15) for the time evolution of the scalar

field and the scale factor in this model. By direct integration and some algebra, one

comes to

φ(t) = φini

(
1 +

n(n− 4)

2

√
A

3
φ
n−4
2

ini (t− tini)

) 2
4−n

, (3.2.28)

and

a(t) = aini exp

[
φ2

ini − φ(t)2

2n

]
, (3.2.29)

where the former expression is valid for all n 6= 4, which instead yields the special

case

φ(t) = φini exp

[
−4

√
A

3
(t− tini)

]
. (3.2.30)

As a visual aid, we plot the case of n = 2 in Figure 3.1, to demonstrate some of

these results and compare them to a numerical solution of the exact equations of

motion.

We can see that the slow-roll solutions are a remarkably accurate approximation of

the numerical solutions, and only begin to differ significantly in the last couple of

6In this prototypical example, this large initial condition raises questions of the stability of the
potential to UV completion above the Planck scale. This remains a problem in a subset of
inflationary models, but may just be a symptom of our incomplete understanding of high
energy physics.
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Figure 3.1.: Solutions of the slow-roll equations of motion (in blue) and their exact
numerical values (dashed red), as a function of e-fold number N . An
initial condition to produce 60 e-folds of inflation of φini =

√
242 was

chosen in accordance with (3.2.26). We can see in the top-left panel that
the approximate solution for φ matches the exact solution well until the
last few e-folds, as does H ≈

√
V (φ)/3 in the top-right panel. The

slow-roll solution (3.2.28) implies φ̇ is constant, and this is shown to be,
again, largely true until the last few e-folds in the bottom left panel.
Finally, the slow-roll parameter ε0 as given by (3.2.23) is shown in the
bottom-right panel, and shows that inflation terminates in reality at
N ≈ 61, again matching the slow-roll analytics to a very good accuracy.

e-folds of inflation where ε→ 1 and the O(ε) corrections to the equations of motion

become comparable in size to the leading order terms.

While we can hence calculate the background evolution of an inflaton field and its

resulting expansion history a(t), and we have seen how this would solve some of the

problems with the Hot Big Bang cosmology if it occurred in the very early universe,

it remains to be seen how the usual cosmological history can play out following such

a period of inflation. This will be addressed in a later section. Additionally, we

have little to say thus far with regards to experimental tests and measurements of

inflation via perturbation theory, which will be addressed in more detail later also.

First, though, we take a swift review of some of the prominent ideas in inflationary
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model building that go beyond the prototypical power law potential discussed thus

far.

Models of Inflation

The type of model we have considered above is a member of the class of “large field”

inflationary models. The field starts at some typically super-Planckian displacement

as in eq. (3.2.27) and rolls towards the minimum of the potential, occurring at a

smaller field value. To fulfil the slow-roll conditions and sustain a period of inflation-

ary expansion, the potential should not be excessively steep. It is worth mentioning

that while this is the most conventional realisation of inflation, other possibilities

do exist. Consider instead a potential like

V (φ) = V0(φ2 − ν2)2 , (3.2.31)

where the field could instead start at φ ≈ 0 and roll away from this unstable maxi-

mum towards one of the minima at φ = ±ν. Such “small field” inflationary models

also exist as a feasible class of model. Beyond simple differences in the shape and

general type of potential being used, though, inflationary models can vary in at

least as many ways as the general scalar-tensor theories described in Section 2.2.2.

Couplings to other gravitational terms in the action, the presence of more terms

containing derivatives of the scalar field, and so on will all change the behaviour of

the inflaton.181,182 Indeed, there also need not be just one scalar field in an inflation-

ary scenario. The interactions between two scalar fields can change the shape of the

effective potential each field experiences as a function of the other field’s value and

hence give rise to a much wider range of phenomenology (and we will see later that

the presence of multiple fields has unique implications at the perturbative level).

Some of these possibilities will motivate the work presented in the later chapters of

this thesis.

Inflation has been criticised, resultingly, for having so many possible variations that

it can essentially “predict anything”. Additionally, that the rapid expansion of

spacetime has been shown to lead to a so-called multiverse scenario where countless
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different outcomes occur simultaneously in unobservable patches of the universe

has yielded similar criticisms. Critics espousing such views typically argue that

these concerns push the idea of inflation into unscientific territory due to a lack of

falsifiability or testability.183,184 This has become a topic of some controversy and

contention in recent years and many scientists in the field have also published work

seeking to address these criticisms.185,186 The debate has even appeared in popular

scientific publications, suggesting a certain degree of public interest and engagement

with the topic.

3.2.5. How to Stop a Universe Inflating

We have already seen in the previous section that in slow-roll inflation, the parameter

ε0 measures the progress of inflation, and the expansion of spacetime only crosses

the acceleration-deceleration threshold once ε0 = 1. The point at which this occurs

hence marks the end of inflation, but it does not alone promise that the expansion

will remain non-inflationary in the future, nor that the subsequent cosmological

expansion will recover the successes of the Hot Big Bang model. On this first point,

note that an inflationary potential could have such a shape that ε0 increases to above

1 but then later would revert to a second period of inflation as it drops below 1 again.

On the second point, the later stages of the universe’s history are strongly consistent

with radiation and dust fluids, so we somehow need to recover this scenario after

inflation. This is difficult because after 60 e-folds of expansion any matter which

may have existed in the pre-inflationary universe is indiscriminately diluted and

cooled by tens, if not hundreds, of orders of magnitude by the extreme expansion

that occurred. If left unchanged from this low-temperature, low-density state, the

universe could never develop the rich structure we observe today and would remain

a cold and lifeless void. To make progress in addressing this, we first need to look

at what the inflaton is doing during and after the end of inflation.

Continuing with the example of the monomial potential and slow-roll inflation from

the previous section, we choose to first look at the case of n = 2. In such cases

of even values of n, the inflaton potential has a minimum at φ = 0 and one would

typically expect the solution of the Klein-Gordon equation to result in oscillations
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about this minimum. By contrast, odd power potentials would not have this feature

and the inflaton might be expected to instead to plummet towards φ = −∞ with

ever-lower energy as the potential is unbounded from below in such examples. This

is intuitively not a desirable late-time (post-inflationary) behaviour for the inflaton.

We hence stick with even powers, for which the n = 2 case is both the simplest

example to mathematically discuss as well as a physically-meaningful and useful

prototype for a wide range of inflationary potentials which have a more general

shape but possess a minimum at say φ = ν, around which the Taylor series of the

potential would look like

V (φ) ≈ V (ν) +
1

2
m2
φ(φ− ν)2 , (3.2.32)

where mφ is the effective mass of the field at that minimum. This is a typical post-

inflationary scenario, in which the inflaton violates slow-roll as it reaches an effective

minimum in the potential and the Klein-Gordon equation becomes

φ̈+ 3Hφ̇+m2
φφ = 0 , (3.2.33)

where, for simplicity, we have implicitly performed a field redefinition φ → φ + ν.

This is now the differential equation for a damped harmonic oscillator, where the

expansion of space encoded in H(t) is the source of damping. A general solution of

this will look like

φ(t) ∝ e
∫
k(t)dt , (3.2.34)

where the Klein-Gordon equation implies that the function k should have the ap-

proximate form

k(t) ≈
−3H(t)±

√
9H(t)2 − 4m2

φ

2
. (3.2.35)

We can see that the relative size of mφ and H determine whether the integrand is

real or complex, and hence set the severity of the damping. After inflation, however,

H � mφ is a good approximation, which one can see by considering eq. (3.2.21)
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and eq. (3.2.14) to reveal that around the end of inflation

ε0 ≈
m2
φ

3H2
≈ 1 → H ∼ mφ . (3.2.36)

As H strictly decreases with time during a decelerating expansion, it is clear that

post-inflation, mφ > H and so the behaviour of the inflaton in eq. (3.2.34) will be

dominated by this and hence be complex, yielding solutions of the form

φ(t) = Φ(t) sin (mφt) , (3.2.37)

where the prefactor function Φ, encoding the damping, behaves as

Φ(t) ∝ e−
1
2

∫
3H(t)dt . (3.2.38)

As the field oscillates, its equation of state parameter w will similarly oscillate.

However, over several oscillations, the time-averaged equation of state can be worked

out as

〈w〉 =
〈p〉
〈ρ〉 ≈

〈cos2 (mφt)〉 − 〈sin2 (mφt)〉
〈cos2 (mφt)〉+ 〈sin2 (mφt)〉

≈ 0 , (3.2.39)

where we have neglected terms proportional to Φ̇ as we assume the time evolution

due to the oscillatory factor is faster than that due to the damping of the amplitude

in Φ. This is justified, again, by noting that the oscillations occur with a frequency

of mφ while the damping occurs on a time-scale determined by H which we have

established is sub-dominant in the post-inflationary regime. What we have shown,

with this, is that the average equation of state of the oscillating scalar field is close

to zero, and hence the post-inflationary expansion of the universe will look like that

of a dust-dominated background on sufficiently long time-scales. That is, a ∝ t2/3

and H ≈ 2/3× t−1. Inserting this latter result into the form of the damping factor

in eq. (3.2.38) reveals that during this time, Φ ∝ t−1. We hence see by combining

this with the oscillatory term that post-inflation, φ ∼ sin (mφt) /t. Some of these

results are shown in Figure 3.2, in which we compare these analytical predictions

to a numerical integration of the exact equations of motion in the post-inflationary
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Figure 3.2.: Post-inflationary oscillations of the inflaton. This is the continuation
of the trajectory in Figure 3.1. The field (left panel) oscillates with
an amplitude decreasing in inverse proportion with time (measured in
units of 1/mφ) due to expansion of the universe, while the equation of
state w (right panel, blue line) also oscillates such that its effective value
averaged over several oscillations (red line) is zero, causing the inflaton
to behave as pressureless dust.

regime using the same trajectory as the inflationary solution shown in Figure 3.1.

As expected, Figure 3.2 shows that the envelope of the field’s oscillations scales

approximately as t−1, with this approximation improving as time goes on. Simi-

larly, the average equation of state, while of course fluctuating due to individual

oscillations, clearly converges towards 〈w〉 = 0.

To understand this more formally, we note that the instantaneous equation of state

is related to the slow-roll parameter ε0 via eq. (3.2.17), which implies that we can

calculate the average equation of state over a given number of e-folds (N2 − N1)

as187

〈w〉 =
1

N2 −N1

∫ N2

N1

w(N ′)dN ′ =
1

N2 −N1

∫ N2

N1

(
2

3
ε0(N ′)− 1

)
dN ′

= −2

3
× 1

N2 −N1

∫ N2

N1

H ′(N ′)

H(N ′)
dN ′ − 1

=
2

3
× ln(H2/H1)

ln(a1/a2)
− 1 , (3.2.40)
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where we have used dN/dt = H to rewrite ε0 in terms of a derivative with respect

to N , and then directly integrated the resulting expression. As a sanity check, for

an expansion dominated by a single perfect fluid of constant equation of state w, we

can use the result (3.1.14) and H ∝ t−1 to find that 〈w〉 ≡ w, as one would expect.

Conversely, when the energy-momentum content of the universe is described by a

varying equation of state the instantaneous and average equations of state are not

generally equal, and in the case of a rapidly oscillating instantaneous w, this average

is often a more suitable descriptor of the broad dynamics of the universe. Interest-

ingly, it can be shown to only depend on the scale factor and its first derivative

(within H) at the beginning and end of the period over which one would like to

calculate the average.

These results we have found are evidently not the desired behaviour of the universe,

however. The inflaton’s late time behaviour allows the universe to mimic a matter-

dominated epoch, but this does not explain where all the actual matter that exists at

the times of nucleosynthesis and decoupling comes from. It also fails to account for

the radiation-dominated epoch. It is clear that to end the domination of the inflaton

and allow the universe to transition into a Hot Big Bang-like period of expansion, a

further mechanism is needed.

Perturbative Reheating

We need a mechanism, in particular, that generates conventional radiation and/or

matter from an oscillatory scalar field. This is called reheating, as it takes the

supercooled post-inflationary universe and returns it to a Hot Big Bang-like state.

The idea behind it is to couple the inflaton to other fields and hence allow it to

decay into them. If the decay products are considerably less massive than the

inflaton then they will be relativistic, behaving as radiation and thus meeting the

first criteria needed to recover the desired post-inflationary behaviour. Furthermore,

it is important that the reheating temperature - the temperature of these decay

products at the end of the reheating procedure - is sufficiently small that GUT relics

cannot be re-produced (e.g. below the GUT scale) as we invoked inflation partly
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to avoid these in the first place (the Monopole Problem). Similarly, the resulting

temperature after reheating should be large enough to sustain the usual processes

of the Hot Big Bang, such as nucleosynthesis. Lastly, as we know that during an

inflationary expansion, any other forms of matter-energy are rapidly diluted away,

we can say that this mechanism must do its job after inflation has ended, during

the oscillatory phase described in the previous section.

We approach this problem using the techniques of Quantum Field Theory, where an

appropriate minimalistic interaction Lagrangian between the inflaton and its decay

products might look something like

Lint = −1

2
g2φ2χ2 − hφψ̄ψ , (3.2.41)

where χ is another scalar field (though higher spin bosons could, of course, also be

considered) and ψ is a fermionic spinor field, which each have their own Lagrangians

dealing with their kinetic and mass terms as usual (but will not need to be directly

considered here and are hence not shown). Under the kind of field redefinition

we applied to eq. (3.2.32) where the minimum of the inflationary potential occurs

at φ = ν, the quartic term in eq. (3.2.41) would additionally generate a cubic

interaction vertex of the form

Lint ⊃ −νg2φχ2 , (3.2.42)

as well as modifications to the mass terms of the decay products. With this series

of interaction terms in the Lagrangian, decays such as (φφ → χχ), (φ → χχ) and

(φ → ψψ̄) are possible. Considering the Feynman diagrams for these interactions

allows one to calculate perturbative loop corrections order-by-order to the effective

mass of φ due to quantum field theory effects. While the process of this calculation

is beyond the scope of this thesis, the well-established result188,189 is that one obtains

a modified Klein-Gordon equation

φ̈+ 3Hφ̇+ (m2
φ + Π(mφ))φ = 0 , (3.2.43)

where Π is known as the self-energy and is a complex quantity. Its real part describes
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corrections to the bare mass of the φ field, while the imaginary part encodes the

decay rate of φ particles into the products above. This decay rate is denoted Γ, and

is given to leading order by

Γ = Γ(φ→ χχ) + Γ(φ→ ψψ) (3.2.44)

where the (φφ → χχ) process is seen to not contribute at this level, and the decay

rates are given by188

Γ(φ→ χχ) =
ν2g4

8πmφ

, and Γ(φ→ ψψ) =
mφh

2

8π
. (3.2.45)

Seeking solutions to eq. (3.2.43) of the form (3.2.34)we find, in the limit where mφ

dominates over the real part of the self energy, that

φ(t) ∝ e−
1
2

∫
(3H(t)+Γ)dt sin(mφt) . (3.2.46)

Comparing to eq. (3.2.38) we see that the effect of φ’s decay is to increase the

amount of damping of the post-inflationary oscillations. Now, following the same

logic as before, the envelope function Φ can be seen to take the shape

Φ(t) ∝ e−Γt

t
, (3.2.47)

which indeed drops off more steeply than the Φ ∝ 1/t we found when decays were

absent. The decay rate Γ, phenomenologically, is equivalent to the replacement

3H → 3H + Γ, and the same physical behaviour would hence arise from the Klein-

Gordon equation

φ̈+ (3H + Γ)φ̇+m2
φφ = 0 . (3.2.48)

This additional damping term has a clear physical interpretation; the energy in φ is

being lost not only to the expansion of the universe, but also via decay pathways.

From this kind of behaviour, we can see that decay will become significant once

3H ≈ Γ. During inflation itself, 3H is approximately constant and may be larger

than Γ, but once it begins to decrease more significantly after inflation, this will
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inevitably come about once H decreases sufficiently. An inflaton coupled to matter

fields that oscillates about an effective minimum is thus generally expected to decay

in this fashion.

This is exactly the kind of thing we need to reheat the universe; the oscillating

inflaton’s energy is sequestered and is converted into radiation. Thus, the universe

ceases to be dominated by φ and a radiation-dominated epoch will follow once

sufficient amounts of decay occur, allowing the conventional Big Bang cosmology to

proceed as desired.

The universe now, hence, contains both a scalar field, φ, obeying the modified

Klein-Gordon equation (3.2.48), and a radiation fluid consisting of relativistic χ and

ψ particles. The Friedmann equation hence looks like

3H2 = ρ = ρφ + ρr , (3.2.49)

and we expect that the equation of state will, once radiation comes to dominate,

tend to the usual value of w = 1/3, though not before a period of oscillation while φ

remains a significant contributor to the energy content of the universe. To dynami-

cally study the behaviour of the radiation fluid here, the fluid equation (3.1.9) needs

modifying to account for the interaction with φ. We know that the total energy

density ρ should obey the normal fluid equation due to covariant conservation of

the energy-momentum tensor, so the individual fluid equations for the inflaton and

radiation should take the form

ρ̇φ + 3H(ρφ + pφ) = −Q , (3.2.50)

ρ̇γ + 4Hργ = Q , (3.2.51)

where Q is some non-conservation term. The sum of the non-conserved parts in

each fluid equation must be 0 to ensure total conservation, hence the equal and

opposite-sign values in each case. As the fluid equation for φ is equivalent to its

Klein-Gordon equation, we can by direct comparison identify the form of Q as
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Figure 3.3.: Post-inflationary oscillations of the inflaton as it decays into other parti-
cles with decay rate Γ given by eq. (3.2.44) with g = 10−3, h = 5×10−4,
mφ = 10−6 and ν = 1. The field (left panel) oscillates with an amplitude
decreasing according to (3.2.47) as predicted, while the equation of state
w (right panel) initially oscillates as in Figure 3.2 before settling down
at w = 1/3 as radiation domination begins due to the decay products
coming to dominate over the inflaton.

Q = Γφ̇2 = Γ(ρφ + pφ) ≈ Γρφ , (3.2.52)

which is of course equivalent again to the replacement 3H → 3H + Γ. In the

last approximate equality we note that the oscillating inflaton has pφ ≈ 0 because

〈wφ〉 ≈ 0 (regardless of the modified shape of the envelope function). We hence have

an equation of motion for the radiation

ρ̇γ + 4Hργ ≈ Γρφ . (3.2.53)

We can then numerically solve this along with the Klein-Gordon equation and the

Friedmann equation (3.2.49), and show exactly this in Figure 3.3, comparing again

to analytical predictions. We use the same set-up as in Figure 3.2 to directly contrast

the post-inflationary behaviour of the universe with and without inflaton decays.

Finally, we can calculate the reheat temperature from the energy density of radiation

produced by the time that the universe is radiation-dominated using
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ρr =
π2

30
g∗T

4
reh , (3.2.54)

where g∗ ≈ 103 is the number of relativistic degrees of freedom one might expect from

a typical high energy particle theory. Numerically we find the resulting temperature

in this simple example is Treh ≈ 1013 − 1014GeV. This is both low enough to avoid

pathological relic reproduction (m ≈ 1016GeV) and significantly higher than the

temperature at which nucleosynthesis must later occur, as desired.

As we will see, the details of reheating can influence the quantities that we measure

to test theories of inflation, making the reheating phase also possibly within the

realm of empirical testing.

Beyond Perturbative Reheating

Non-perturbative effects can also play a role in the reheating process. Here we

briefly review two of the main manifestations of this. Firstly, the phenomenon of

parametric resonance which is complementary to the oscillatory perturbative reheat-

ing described above, and secondly the mechanism of instant preheating, which can

occur even in non-oscillatory (NO) scenarios and provide an alternative route to a

reheated universe in such cases.

Parametric Resonance Consider the quartic coupling in eq. (3.2.41). Starting

from the equation of motion (2.2.5) for a canonical scalar field, it can be shown that

the Fourier modes of the scalar field χ will obey a wave equation188

χ̈k + 3Hχ̇k +

(
k2

a2
+m2

χ,eff

)
χk = 0 , (3.2.55)

where the effective mass-squared of the χ field, incorporating a bare mass term as

well as interactions with φ is given by,

m2
χ,eff = m2

χ,0 + g2φ2 . (3.2.56)

Inserting eq. (3.2.37) for the post-inflationary behaviour of φ, we can rewrite the

equation of motion as
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X ′′k + ω2
kXk = 0 , (3.2.57)

where

ω2
k = Ak − 2q cos (2z) + ∆ . (3.2.58)

In this, we are working with the redefined mode function Xk = a3/2χk. Priming

denotes differentiation with respect to a new time coordinate z = mφt. The param-

eters in the ωk are defined, in terms of model parameters and the inflaton envelope

function Φ, as

Ak =
k2

m2
φa

2
+ 2q , q =

g2Φ2

4m2
φ

, and ∆ =

(
mχ

mφ

)2

+
3

4
(2ε0 − 3)

(
H

mφ

)2

. (3.2.59)

In the limit of negligible ∆,7 this equation becomes the well-known Mathieu equa-

tion, which is notable for having highly unstable solutions of the form Xk ∝ ez for

certain values of the parameters defined above.

As the parameters Ak and q vary in time as a function of a and Φ, the modes Xk

will move in and out of the instability bands of the Mathieu equation, leading to

short periods of rapid growth. This is known as parametric resonance, and is a

non-perturbative effect that occurs in addition to the description of perturbative

reheating above.

We note that the occupation number of each k mode can be expressed188

nk =
1

ωk

[
1

2
|Ẋk|2 +

1

2
ω2
k|Xk|2

]
− 1

2
, (3.2.60)

and that the resulting energy density of produced χ particles, integrating over all k

values, is

7We expect ∆ to be small for three reasons. Firstly, mχ � mφ to suppress the first term, else
the inflation could decay into sufficiently heavy particles to once again cause the Monopole
Problem. Secondly, H � mφ, which as previously argued is typical of reheating, suppresses
the second term. Lastly, since w ≈ 0, we expect ε0 ≈ 3/2, further suppressing the second term.
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Figure 3.4.: Exponential growth of nk (3.2.60) for k = 4.0×10−6 (left) and k = 1.0×
10−4 (right) , showing varying degrees of parametric resonance. Time
here is shown in units of mφ/2π which roughly equates to the number
of oscillations the inflaton field has undergone. In the former case, we
find that nk ∼ e38 while in the latter case this value is many orders of
magnitude smaller. This illustrates the sensitivity of this process to the
momentum of the produced particles. This gives us some idea that the
total energy density (3.2.61) will be dominated by a small range of k
values . The theory parameters used are mφ = 100mχ = 5.0× 10−6 and
g = 5.0 × 10−4. The left panel is based on Figure 6 in188 as this was
shown to be a particularly interesting case.

ρχ =
mχ

2π2

∫ ∞
0

k2nkdk , (3.2.61)

One generally expects, then, that such a rapid increase of the χk modes would lead

to non-perturbative growth in the energy density of decay products. In Figure 3.4 we

show a numerical analysis of this for some specific k values, showing the exponential

growth of nk in each case. Particularly in the left panel of this figure, we can see

periods of exponential growth such as t ≈ 15 – 25 corresponding to an instability of

the Mathieu equation for the values of Ak and q at that time.

While the explosive particle production made possible by these non-perturbative

effects is rather striking, it turns out that, particularly for larger g values, the

backreaction this has on φ and the expansion of the universe somewhat curtails

its effect. In reality a more careful analysis of this, supported by results from

lattice simulations, shows that the majority of the energy density transferred to

decay products during reheating is in the perturbative mechanism.188,190 Parametric
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resonance primarily occurs in the early stages of reheating8 and is an important part

of understanding of exactly how decay products are created on a microscopic level,

but does not drastically change e.g. the reheating temperature predicted by the

perturbative analysis.

Instant Preheating So far, all of our discussion of reheating has depended upon

an oscillatory late-time inflaton, typically achieved by a local minimum in V (φ).

In more general situations, such as where the potential tails off after a period of

inflation and the field continues to roll, an alternative to perturbative and parametric

reheating is needed.191 For example, with an exponential potential V ∝ eφ, the field

would continue to roll towards φ → −∞ after inflation. While this non-oscillatory

(NO) type of behaviour is inappropriate for perturbative reheating or parametric

resonance, it can still be used to our advantage. During this period, φ̇2 � V as the

potential is now exponentially suppressed and the field is rolling quickly, meaning

that w ≈ 1 and its energy density scales as ρ ∝ a−6. This makes it very easy for even

a relatively small amount of decay products, should we find a way to make them, to

dominate the universe as both dust-like and radiation-like fluids do not dilute this

rapidly. Additionally, with a general quartic coupling between the inflaton and a χ

field, such as L ⊃ g2χ2(φ2 − ν2), the effective mass of decay products is

m2
χ,eff = m2

χ + g2(φ− ν)2 . (3.2.62)

Such interactions terms are further motivated by supergravity scenarios with super-

potentials of a compatible form such as W ∝ χ2(φ−ν)192,193 and enhanced symmetry

points in A-term inflation.194–197 We see from this expression that as |φ| → ∞ the

decay products will have a large mass and hence more energy, meaning we need to

produce fewer of them to end the domination of the inflaton. One consequence of

this, however, is that to stop excessively massive particles dominating the universe

(due to behaving like dust) and re-introducing the Monopole Problem, we must as-

sume the decay products χ further decay into smaller-mass and hence relativistic

particles very quickly and efficiently with an interaction like

8Hence the popularity of referring to parametric reheating by the portmanteau preheating.
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Lint ⊃ λχψ̄ψ . (3.2.63)

This also has the advantage of avoiding any complications to do with backreaction

of the produced χ particles on φ’s behaviour. To proceed, we assume g|φ| � mχ

such that mχ,eff ≈ g|φ|. Particle production occurs when the adiabaticity condition

|ṁχ,eff| � m2
χ,eff is violated. Using

ṁχ,eff ≈ g|φ̇| , (3.2.64)

we can see that particle production would hence occur for g|φ̇| > g2(φ2 − ν2). This

would be satisfied for a band of values centered around ν, e.g. when φ = ν ± φ∗,
where

φ∗ =

√
|φ̇|(φ=ν)

g
. (3.2.65)

Given this, the approximate time scale over which particle production would occur

would be ∆t ≈ φ∗/|φ̇|(φ=ν), which is a rather short time-scale compared to typical

reheating procedures, hence the name Instant Preheating for this process. One finds

that,188,191 in these conditions with momentum scale given hence by k∗ ∼ 1/∆t =√
g|φ̇|(φ=ν), the occupation number of each Fourier mode would sharply increase

over the time-scale ∆t around the point where φ = ν, such that

nk = exp

(
−
π(k2 +m2

χ,eff)

(k∗)2

)
= exp

(
−
π(k2 +m2

χ,eff)

g|φ̇|(φ=ν)

)
, (3.2.66)

which implies that when |ṁχ,eff| � m2
χ,eff in the middle of instant preheating, we

produce a total density of χ particles via eq. (3.2.61) of

ρχ ≈
g5/2|φ̇|3/2(φ=ν)|φ− ν|

8π3
. (3.2.67)

Thus, as φ rolls past ν, the decay products will grow in effective mass and hence total

energy density, allowing them to easily dominate over the inflaton (before quickly

decaying to radiation). For sufficiently large g (typically at least O(10−4) or so) this
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produced density is already significant for a relatively small (O(MPl) or less) field

displacement after inflation. We hence see that such non-perturbative considerations

can feasibly be used reheat the universe in the context of runaway potentials where

the previous oscillatory reheating mechanisms cannot be employed.

Finally we point out that in such NO scenarios, even in the absence of instant

preheating, it has been shown that gravitational particle production87,198 can reheat

the universe.199,200 That is, because in a general curved spacetime particle number is

not conserved, the indirect gravitational interaction between the inflaton and other

matter fields can lead to production of radiation. Because this does not require

any assumptions about the coupling of the inflaton to other fields, but only that

everything couples to gravity, its wide applicability and generality is noteworthy.

The indirectness of this makes it rather inefficient, however, so it is possible that

not all inflationary scenarios will be able to gravitationally reheat with a sufficiently

large temperature to recover a feasible Hot Big Bang scenario. This inefficiency

is also why, despite these effects technically being present alongside the discussed

mechanisms of reheating, they are comfortably negligible when just about any other

mechanism is feasible.

3.3. Cosmological Perturbations and Inflation

In the preceding discussion, we discussed a perfectly homogeneous universe and its

inflationary expansion driven by a scalar field φ. However, the real universe is not

perfectly homogeneous, and this is something to be thankful for in that it enables

galaxies, planets and eventually life to come into existence. We know, however, that

in the early universe homogeneity was a good approximation as, for example, the

spectrum of CMB photons reveals in its tiny fluctuations of one part in 105. Due to

this, our cosmological models can assume homogeneity and obtain valid and useful

results for the most part. However, we have measured these tiny fluctuations in the

CMB and this gives us a useful probe of the early universe. We can exploit this to

more deeply understand the physics that led to this state of affairs. In particular,

we can learn something of inflation in this way.179
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By applying perturbation theory to the homogeneous inflationary solution in a

model, we can find its predictions for the spectrum of inhomogeneities generated at

the end of inflation.201 Then, by modelling how these inhomogeneities evolve from

that point until the time of CMB formation, at which point they become measur-

able, we can test and constrain models of inflation. The key result of this approach is

that the primordial power spectrum of inhomogeneities - immediately after inflation

- must be nearly (but not exactly) scale-invariant in order to successfully evolve into

something compatible with the observed CMB fluctuations. As we will see soon,

this slight departure from scale invariance is typical of inflationary models, which

is the reason why we believe that inflation is a good theory of the early universe.

Furthermore, the exact degree to which an inflationary model predicts deviation

from scale-invariance is then a testable prediction of that model, and it is in this

way that the CMB anisotropies provide us a window into the physics of the early

universe. In what follows we shall formalise this idea and detail the mathematical

techniques and objects that will be of central importance in the majority of the later

chapters of this thesis.

3.3.1. Perturbation Theory

Fluctuations in the CMB occur due to density variations in the fluid of nuclei and

electrons that CMB photons were in equilibrium with before decoupling. These

density variations are assumed to come about due to fluctuations in the inflaton field

as inflation ends and produces conventional matter via reheating, thus transferring

its inhomogeneity to it. An object of interest, then, is the spatial variation in the

inflaton, φ. We can model this as a linear perturbation

φ = φ̄(t) + δφ(t, xi) , (3.3.1)

where φ̄ (and other barred quantities to follow) denote the homogeneous solution

detailed in the previous sections, and δφ, which depends on spatial coordinates xi is

the inhomogeneous correction to this. Motivated by the observed smallness of the

CMB anisotropies that we are ultimately interested in, we can comfortably treat
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this as a small perturbation obeying |δφ| � |φ̄|.
These fluctuations in the inflaton will lead to fluctuations in the energy momentum

tensor Tµν = T̄µν + δTµν , which then in turn source small perturbations in the

Einstein Tensor Gµν = Ḡµν+δGµν via the Einstein equations such that δGµν = δTµν .

It is therefore necessary that the metric also has perturbative corrections to generate

the terms on the left hand side of this. As the metric is symmetric, in four dimensions

it has ten degrees of freedom and we expect the perturbation δg to be the same in this

regard. To study this further, it is useful to first decompose the metric perturbation

into scalar, vector and tensor components such that

gµν = ḡµν + δgµν , (3.3.2)

where ḡµν is, again, the homogeneous metric (FRLW-type in our case), and the

symmetric perturbation of the metric can be written in the general form179

δgµν =

 −2A a(t)Bi

a(t)Bi a(t)2hij

 , (3.3.3)

where A is a scalar, Bi is a three-vector, and hij is a symmetric (0, 2) tensor with

9 − 3 = 6 independent components, summing to the ten expected free functions in

δg.

By writing the vector part of the perturbed metric Bi as the sum of a divergenceless

vector βi and the gradient of a scalar B (Bi = ∂iB+βi with ∂iβi = 0) and similarly

decomposing the tensor

hij = 2Cḡij + 2∂i∂jE + (∂iEj + ∂jEi) + Eij (3.3.4)

into a scalar C, a vector (which again has a scalar part, E, and a divergenceless

vector part Ei) and a transverse and traceless 2-tensor Eij (∂jEij = δijEij = 0), we

can decompose the 10 perturbations into into 4 scalars (4 × 1 d.o.f), 2 divergence-

free vectors (2 × 2 d.o.f) and one transverse and traceless tensor (2 d.o.f). The

significance of this is that the scalar, vector and tensor modes defined in this way

cannot interact with one another at leading order in perturbations. Consider, for
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example, an equation consisting of 0-tensors relating some of these perturbations.

The four scalars (A,B,C,E) could clearly be present, as could scalar derivatives of

them, but in order to make a vector mode contribute to this equation, one would

have to take its divergence to form a 0-tensor from it. However, we have constructed

these vectors (Bi, Ei) as divergence-free such that any such constructions would be

automatically zero. Similarly, the tensor mode Eij’s tracelessness forbids it from

sourcing a scalar perturbation, while its transverse constraint inhibits it from ap-

pearing in an equation of 1-tensors. Thus, we can decouple the scalar, vector and

tensor perturbations constructed in this way.

However, not all of these ten degrees of freedom are physical due to the gauge

symmetry associated with reparametrisation invariance in General Relativity. As

we are free to make an infinitesimal coordinate redefinition xµ → xµ + yµ, there are

four arbitrary functions yµ associated with this symmetry which leave the system

with only six physical degrees of freedom. For our purposes, we will choose to work in

Newtonian gauge,52 in which our four free functions are used to set B = E = 0 and

Bi = 0. In this gauge, the remaining two scalar potentials are often renamed such

that A = Φ and C = −Ψ due to their close relation to the Newtonian gravitational

potential in classical theory, hence the naming of this gauge choice. Our Newtonian

Gauge perturbed metric, then, has a scalar part

δg(S)
µν =

−2Φ 0

0 −2a(t)2Ψδij

 , (3.3.5)

and a tensor part

δg(T )
µν =

0 0

0 a(t)2Eij

 . (3.3.6)

Formally, a part containing the vector Ei also remains, but in the context of cos-

mology these vector modes are essentially vanquished by the expansion of spacetime

(one would eventually just find that their amplitude decreases as a−2 in a cosmo-

logical background), leaving them negligible for most purposes, and certainly all

purposes that will be addressed in this thesis. We will henceforth ignore them, and
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treat only the two scalar perturbations and the two degrees of freedom included in

the tensor mode in what follows.

3.3.2. Inflationary Perturbations and the Primordial Power

Spectrum

Having categorised the perturbations of the metric, we shall now consider the other

ingredient in the Einstein Equations - the matter content. In particular, in in-

flation we are interested in a perturbed scalar field. The Einstein equations will

then let us relate the scalar field perturbation δφ to the metric perturbations and

determine their state and evolution. For a perturbation of the form (3.3.1), the

energy-momentum tensor of a scalar field (3.1.36) transforms such that

δTµν = (∂µφ∂ν + ∂νφ∂µ)δφ−
(

1

2
∂µφ∂

µφ+ V

)
δgµν

−
(

1

2
∂ρφ∂σφ δg

ρσ + ∂σφ∂σδφ+
dV

dφ
δφ

)
ḡµν . (3.3.7)

The other necessary ingredient is the perturbed Einstein Tensor δGµν , which can

be computed from the above perturbed metric the usual way while neglecting terms

quadratic or higher order in perturbations. After a tedious but straightforward

calculation, we obtain equations of motion for the scalar modes and tensor modes

as follows:

Scalar Equations

From the off-diagonal spatial components (µ = i, ν = j 6= i) of the Einstein Equa-

tions we find first that as the spatial part of δTµν is diagonal

Ψ = Φ , (3.3.8)

so in what follows we will hence not distinguish between these two scalar potentials.

Using this, the other scalar equations we obtain are
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∂i∂
iΦ− 3HΦ̇ =

1

2
φ̇ ˙δφ+

1

2
V,φδφ+ V Φ , (3.3.9)

from the µ = ν = 0 equation. Then, from the integral over xi of the µ = 0, ν = i

equation we have

Φ̇ +HΦ =
1

2
φ̇δφ , (3.3.10)

and finally from the µ = ν = i equations one can show

Φ̈ + 4HΦ̇ + 2
(

2Ḣ + 3H2
)

Φ =
1

2
φ̇ ˙δφ− 1

2
V,φδφ+ V Φ− φ̇2Φ . (3.3.11)

The covariant conservation of the perturbed energy momentum tensor then yields

a further scalar perturbation equation

δ̈φ− ∂i∂iδφ+ 3H ˙δφ+ V,φφδφ = 2(φ̈+ 3Hφ̇)Φ + 4φ̇Φ̇ . (3.3.12)

These four (or five counting the Φ = Ψ constraint) equations are not all independent

as there are only two functions to solve for (the Newtonian gauge metric perturbation

Φ and the field perturbation δφ). We also note that the metric perturbations are

not independently dynamical (in this gauge) and are instead entirely specified by

the field perturbation and the background cosmology (evolution of a, φ, etc). It is

useful to define a gauge-invariant combination of the field and metric perturbations,

which is widely known as the Sasaki-Mukhanov202,203 variable

Q = δφ+
φ̇

H
Φ . (3.3.13)

A final scalar quantity of interest that we shall define here is the scalar Ricci Cur-

vature on the three-dimensional spatial part of the spacetime manifold, (3)R. More

specifically, we are interested in a gauge-invariant204 relative of it denoted R, and

known as the comoving curvature perturbation. As space is taken to be homo-

geneous at the background level, the Ricci curvature is of perturbative smallness

and this quantity will hence be expressable in terms of our scalar perturbations at

leading order. It is found,179 beginning from eq. (3.3.1) that after another lengthy
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computation one arrives at

R = −Ψ− H

φ̇
δφ = −H

φ̇
Q . (3.3.14)

It is these fluctuations in spatial curvature (and hence energy density) that we are

interested in for later generating CMB anisotropy.

A notable property of R is its conservation on large scales.9 That is, a Fourier mode

Rk with wavenumber k behaves approximately as a constant in the limit k � aH.

The lowest frequency modes, those with wavelengths sufficiently longer than the

horizon size, are all but frozen.

Tensor Equations

Meanwhile the tensor equation of motion is

Ëij + 3HĖij − ∂k∂kEij = 0 . (3.3.15)

This is a wave equation in an expanding spacetime and hence establishes the idea

of gravitational waves. We interpret the tensor metric fluctuations as propagating

waves in spacetime itself, analogous to spin-2 particles travelling on the background

metric. However, they do not directly affect field perturbations or vice versa - they

only indirectly associate via the gravitational waves’ dependence in the above equa-

tion on a and H. Again, we see the usefulness of the scalar-tensor decomposition

in that we have broken the perturbation equations up into a scalar part that deter-

mines how scalar curvature is sourced by field fluctuations, and a tensor part which

describes the freely-propagating gravitational waves.

The primary generation of CMB anisotropies later comes from direct density/curvature

fluctuations coming from the scalar modes in Section 3.3.2 and their nature is de-

termined by the solutions of the equations therein. However, the presence of grav-

itational waves does also influence the CMB (albeit weakly), so we can also study

them in this way. In what follows, we will go on to calculate the spectrum of infla-

9That is, when perturbations are purely adiabatic. As we will come to see when we generalise
things later, the non-conservation of R occurs, for example, when multiple inflationary fields
are considered.
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tionary scalar and tensor fluctuations according to conventions that are appropriate

for comparison to experimental constraints.

3.3.3. Quantisation

We need to account for the quantum nature of the microscopic fluctuations in the

inflaton field. This means identifying the canonically quantisable variable and pro-

moting it to a quantum operator. This can be simply achieved by finding the variable

for which the action for the perturbations looks like that of a canonical scalar field

which can then be quantised according to usual procedure. It turns out that if one

defines the variable

v = aQ , (3.3.16)

where Q is the Sasaki-Mukhanov variable (3.3.13) and works in conformal time, η,

defined by dt = adη, then the second order action for the perturbations takes the

form

S2 =
1

2

∫
dη d3x

[
(v′)2 − δij∂iv∂jv +

z′′

z
v2

]
. (3.3.17)

Here, primed variables represent derivatives with respect to conformal time (obeying

F ′ = aḞ ) and z = aφ̇/H. Note that by definition v = −zR also, relating it more

directly to the scalar curvature. In this form, the action for v is equivalent to a

scalar field in Minkowski space with a time dependent mass term. Really, this time

dependence arises from the effect of the spacetime evolution, but this repackaging

into a mass term is useful for mathematical manipulation. We perform a standard

quantisation process87 on v, expanding it in terms of creation and annihilation

operators obeying the usual commutation relations,

v̂ =

∫
d3k

[
vk(η)âk + v∗k(η)â†k

]
, (3.3.18)

where vk is a Fourier mode function whose time-dependence is determined by the

equation
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v′′k +

[
k2 − z′′

z

]
vk = 0 , (3.3.19)

which can also be written in the form179

v′′k +

[
k2 − 1

η2

(
ν2 − 1/4

)]
vk = 0 , ν2 =

1

4
+ η2 z

′′

z
. (3.3.20)

The solution of this can be written in terms of standard Hankel Functions of the

first and second kind, assuming (as will later be justified) that ν is constant, as

vk(η) =
√−η

[
AkH

(1)
ν (−kη) +BkH

(2)
ν (−kη)

]
, (3.3.21)

where Ak and Bk are arbitrary constants to be set by boundary conditions. In this

case, we obtain these by noting that in the limit of k →∞ the modes are high fre-

quency enough that the expansion of spacetime is approximately constant over many

oscillations of the wave, meaning that they behave essentially as in Minkowski space.

Our solution should hence look asymptotically like the evolution of a scalar field in

Minkowski space, which is well known,87 and allows us to impose the condition

lim
k→∞

vk →
1

2k
e−ikη , (3.3.22)

which, using the asymptotic behaviour of the Hankel functions in the general solu-

tion, lets us impose Bk = 0 and find Ak such that

vk(η) =

√−ηπ
2

ei(ν+1/2)π/2H(1)
ν (−kη) . (3.3.23)

3.3.4. Power Spectrum of Curvature Perturbations

We can now calculate from this canonical field, invoked for mathematical conve-

nience, more readily physically-interpretable quantities such as the curvature per-

turbation Rk = −vk/z as defined previously. From this, we can subsequently go on

to compute a power spectrum for such quantities. By power spectrum, we mean a

function of k which describes the variation in a field, let us call it f for now. It is

conventionally defined in terms of the statistical two-point correlation function of f
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as179

〈f(k1)f ∗(k2)〉 = δ(k1 − k2)Pf (k) , (3.3.24)

where, because of assumed isotropy, the power spectrum depends only on the mag-

nitude of the wavenumber vector and not its direction. It is conventional to further

define a rescaled power spectrum

Pf (k) =
k3

2π2
Pf (k) . (3.3.25)

Using our result from above for the canonical field, and its relationship with R, this

definition results in a power spectrum for the comoving curvature R of

PR =
k3

2π2
|R|2 =

k3

2π2

∣∣∣vk
z

∣∣∣2 . (3.3.26)

This is the quantity we wish to calculate for an inflationary model, in order to

test it experimentally. As we can for now treat R as a conserved quantity on

superhorizon scales, computing its value at the end of inflation can be reduced

to the problem of computing it, for each value of k, at the horizon-crossing point

k = aH. Similarly, going through an equivalent process for tensor perturbations

reveals that the spectrum of gravitational waves is

PT =
4k3

π2

∣∣∣uk
a

∣∣∣2 , (3.3.27)

where uk is a Fourier mode of another canonical variable, u, and it obeys the same

equation (3.3.19) as the scalar mode but with z → a (reflecting how gravitational

waves are affected only by the expansion of space and not the dynamics of the scalar

field perturbation). The additional numerical factor present in this expression arises

due to a sum over the polarisations of the gravitational waves.

Each inflationary model will predict different power spectra at the end of inflation

due to the different evolutions of a and z = aφ̇/H. Note that a and z appear not

only directly in the above expressions explicitly but also indirectly in v (and u)

via the Hankel function’s parameter ν in eqs. (3.3.23) and (3.3.20). We will shortly
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move on to the topic of calculating a and z and thus PR and PT for a sample model,

after a short detour to describe how we compare these spectra to experiment.

3.3.5. Testing Inflation with the Primordial Power Spectrum

The primordial power spectrum PR is typically parametrised in a log-log series

expansion of the form

log (PR) = log (As) + (ns − 1) log

(
k

k∗

)
+
αs
2

log2

(
k

k∗

)
+
βs
6

log3

(
k

k∗

)
+ . . . .

(3.3.28)

Here, As is the scalar amplitude which gives the value of the power spectrum at

k = k∗, the so-called pivot-scale (an arbitrary k value to expand around, chosen for

convenience typically171 as 0.05 Mpc−1). Further parameters in the expansion above

are called the spectral index or the tilt (ns), the running of the spectral index (αs),

the running of the running (βs) and so on, each encoding a higher-order deviation

from a constant, or scale-invariant, spectrum. CMB measurements typically indicate

(varying slightly depending on the method) that the power spectrum is very close to

scale-invariant, with values generally39 close to As ≈ 2.2×10−9 and ns ≈ 0.96±0.01.

Of course, ns = 1 and all higher order terms identically zero would represent a

perfect scale invariant spectrum, and while we are now fairly sure that ns is not

exactly 1, we are considerably less certain of the extent of scale dependence from

other terms. Precise values for the higher order terms (the runnings) are still a

matter of some debate, with large error bars and multiple inconsistent approaches

casting significant uncertainty on their negligibility or lack thereof. This will be the

topic of the research presented in Section 6.

Similarly, the tensor power spectrum is expanded in this way, though with a slightly

different historical convention to take note of

log (PT ) = log (At) + nt log

(
k

k∗

)
+ . . . , (3.3.29)

but as tensor perturbations have a comparatively less pronounced effect on the CMB
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than the scalars, this is less well constrained and we only have a reliable upper limit

on AT , which is usually expressed in terms of the tensor-to-scalar ratio r as

r =
PT
PR
. 0.1 , (3.3.30)

which is conventionally defined at a different pivot scale of k∗ = 0.002Mpc−1. In a

typical scenario, it is known that r(0.05 Mpc−1) ≈ 1.08 × r(0.002 Mpc−1), for the

sake of comparison.24

It is useful to note that for a given power spectrum, the expansion parameters (ns,

etc) can be obtained via either a numerical fit to this parametrisation, or analytically

via suitable derivatives of a known form of PR evaluated at k = k∗. That is, one

can define using eq. (3.3.28), for example,

ns = 1 +
d logPR
d log k

∣∣∣∣∣
k=k∗

, (3.3.31)

which can be easily extended to higher orders as needed.

3.3.6. Primordial Spectra in Slow-Roll Inflation

To give an example of how the power spectra arise in inflation, we will do so assuming

that the field is undergoing slow-roll. This is the most prototypical and fiducial

example of practical interest, and so we proceed to note that from the definition of

the slow-roll parameters (e.g. eq. (3.2.18) and other related forms) that179

z ≈
√

2ε0a+O(ε2) , (3.3.32)

and the conformal time (treating H as constant)

η =

∫
1

a
dt ≈ 1

H

∫
1

a2
da ≈ − 1

aH
+O(ε) , (3.3.33)

so that ν in eq. (3.3.20) is approximately (treating H and ε0 as constants)

ν2 =
1

4
+ η2 z

′′

z
≈=

1

4
+

2a2H2 +O(ε)

a2H2 +O(ε)
=

9

4
+O(ε) . (3.3.34)
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This justifies our previous assumption in solving (3.3.20) that ν is constant, as

O(ε) corrections are small. In these results, the assumptions made generate errors

that are encompassed in the O(ε) corrections. This is a strength of the slow-roll

approach in that one can systematically handle such error terms. In any case, our

main result of this is that the Hankel function parameter ν is approximately equal

to 3/2 during inflation, with the deviation from this being comparable in magnitude

to the slow-roll parameters.

Plugging the value ν = 3/2 into the solution for vk (3.3.23) and taking the asymptotic

behaviour of the Hankel function in the limit10 η → 0 to compute the behaviour of

the perturbation modes as inflation ends, we find

vk ≈
−i√
2k3η

≈ iaH√
2k3

, (3.3.35)

where we have again used eq. (3.3.33) in the second approximate equality. Then,

using eq. (3.3.26) and evaluating at k = aH (owing to the superhorizon conservation

of R) we obtain a power spectrum

PR ≈
H2

8π2ε0
. (3.3.36)

We can then calculate things like the spectral index as in eq. (3.3.31) as

ns ≈ 1− 2ε0 − ε1 +O(ε2) . (3.3.37)

Repeating a very similar process for the tensor spectrum then yields

PT =
2H2

π2
, (3.3.38)

which immediately implies a tensor-to-scalar ratio r = 16ε0.

While it is not directly constrained at present, we can also show that the tensor

spectral index nt = −2ε0 in this simple example. This is primarily of interest

because one can see from this that r = −8nt when a slowly rolling, minimal scalar

field drives inflation. This will not generally be true for other models, and is hence

10Note that during inflation, η begins large and negative (cf. the above slow-roll approximation
in eq. (3.3.33) of η) and approaches zero from below as inflation comes to an end.
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an example of a consistency relation which requires two or more parameters to be

related in a certain way if a particular explanation of inflation is taken to be correct,

which has obvious uses in testing and constraining inflationary models.

These expressions are correct to lowest order in the slow-roll expansion, but higher

order corrections can of course be computed by following the same calculation with

fewer assumptions (e.g. accounting for time dependence of H and ε0 when relevant).

3.3.7. Observable modes

Different wavenumbers k of the power spectrum, physically, represent fluctuations

on a typical length scale of size 1/k. Hence the maximum observable scale, set by the

size of the visible universe, and the minimum observable scale, set by experimental

precision of measuring devices used to probe CMB radiation, impose limits on the

range of k values for which we can measure the power spectrum. Additionally, the

expansion of the universe since inflation has stretched out each k mode so that

scales observable today are much larger in physical size than they were at the time

they were generated. Assuming a typical history of the post-inflationary universe

(e.g. reheating with effective/average equation of state 〈w〉 ≈ 0, then radiation- and

matter-dominated epochs as usual), a careful consideration of these factors allows us

to determine when, during inflation, the scales we can observe today were leaving the

horizon and hence setting up the initial conditions for the generation of observable

CMB anisotropies, resulting in the well-known relationship39

N∗ ≈ 67−ln

(
k∗
a0H0

)
+

1

4
ln

(
V 2
∗

ρend

)
+

1− 3〈w〉
12(1 + 〈w〉) ln

(
ρth

ρend

)
− 1

12
ln (gth) , (3.3.39)

where N∗ is the number of e-folds before the end of inflation at which the wavenum-

ber k∗ (measured today) leaves the horizon (when it is equal to the horizon scale

aH during inflation), and V∗ is the inflaton potential at this time. Parameters a0

and H0 are the scale factor (typically normalised as unity) and measured Hubble

parameter at present. It also depends on ρend and ρth - the energy density of the

universe immediately after inflation and reheating, respectively (in the latter case,

89



3. Cosmology

this is typically taken to be at some time when ρr � ρφ). Lastly, gth is the number

of relativistic degrees of freedom post-reheating which, for a typical temperature

and assuming a fiducial GUT of some kind, is maybe O(103) and is thus typically

taken to be so.

In normal circumstances, one finds that for k∗ ∈ [10−3, 101] Mpc−1 or so, representing

the cosmic and experimental bounds on k∗ values we can probe in CMB experiments,

this relation implies N∗ ≈ 50−60. That is, it is typically 50 or more e-folds before the

end of inflation that the observed k modes are generated, and then remain frozen

until the end of inflation due to the discussed conservation of R. At this time,

still many e-folds before the end of inflation, the slow-roll approximation is still

strongly held. That is, the observable modes are determined at a time when slow-

roll parameters are small such that O(ε) corrections are much less than unity. This

justifies the use of the slow-roll approximation up until this point, and also ensures

that the spectral index in eq. (3.3.37) obeys ns ≈ 1. This is exactly the prediction

of a nearly but not entirely scale-invariant spectrum of primordial fluctuations that

we promised at the beginning of this chapter as the final and most significant piece

of evidence for the feasibility of inflationary theory (as discussed in Section 3.3.5).

Similarly, we saw above that r ≈ 16ε0 which in this regime will also typically be

small, as required by more modern experimental results.

The exact amount of departure from scale invariance is also hence set by the size of

slow-roll parameters 50− 60 e-folds prior to the cessation of inflationary expansion,

and this will differ a bit from model to model. To further illustrate this we return

the example of a monomial potential with exponent n that we began to study in

Section 3.2.4. Following eqs. (3.2.26) and (3.2.23), we find after some calculation

that

ε0∗ =
n

4N∗
, ε1∗ =

1

N∗
. (3.3.40)

This implies that for the n = 2 model (omitting now the asterisks for brevity, though

being careful to recall that these quantities are evaluated at N ≈ 50− 60)
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ns ≈ 1− 2ε0 − ε1 = 1− n+ 2

2N
, (3.3.41)

and

r ≈ 16ε0 =
4n

N
. (3.3.42)

This means for, say, n = 2 and N = 60, we have ns ≈ 0.967 and r ≈ 0.13. The

former is nicely within the typical 1σ bounds for the experimentally measured value

for the spectral index39 discussed in Section 3.3.5, though the latter exceeds the

more recently discovered bound of r . 0.1. This model of inflation specifically, is

hence ruled out due to overproduction of gravitational waves, but it still serves as

a simplistic introduction to the key ideas at hand. Other models - perhaps with a

different potential or some extra terms in the action altering the dynamics - which

may predict a smaller value of r while still keeping a spectral index close to that

of this simple example are of present interest as feasible inflationary models. The

original research presented in the forthcoming chapters of this thesis will address

issues including this for some more complex but physically-motivated inflationary

models.

3.3.8. Extensions

As previously mentioned, many variations and extensions of the basic inflationary

model are possible. Here we will briefly detail some of the key model-building ideas

and further tests possible that are well established and not uncommon within the

literature, as they will come in handy later.

Power Spectra in Multi-field Scenarios

An important result in the single-field case was that the quantityR was conserved on

superhorizon scales. The presence of an additional field in inflation breaks this con-

servation law, however, as in addition to adiabatic curvature perturbations R there

are now entropy or isocurvature perturbations S.142,205–210 In general, an isocurva-

ture perturbation is one such that two quantities can be simultaneously perturbed
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while not affecting the overall curvature due to a cancellation between their individ-

ual effects on spacetime. In general, these occur whenever multiple distinct fluids

are present (e.g. radiation and matter) but this is of no concern in the single-field

inflationary scenario where the only non-negligible source of energy-momentum is

φ. If instead we had two fields, φ and χ, this would no longer be the case, though.

In fact, it is convenient in such scenarios to consider re-defined fields205 σ and s:

σ̇ = cos (θ) φ̇+ sin (θ) χ̇ , (3.3.43)

ṡ = cos (θ) χ̇− sin (θ) φ̇ , (3.3.44)

where

tan (θ) =
χ̇

φ̇
. (3.3.45)

This implies physically that σ moves parallel to the trajectory in (φ, χ) field space

while s is perpendicular to it. Perturbations of the σ and s fields (or rather the

Sasaki-Mukhanov variables derived from them; Qσ and Qs), then, it turns out,

respectively source the curvature and isocurvature perturbations in the model.211

That is,

R =
H

σ̇
Qσ , (3.3.46)

S =
H

σ̇
Qs . (3.3.47)

With these definitions in hand we can go on to talk about how R is no longer a

conserved quantity on superhorizon scales. Analysis of the equations of motion for

the perturbed fields reveals that on superhorizon scales212
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Ṙ ≈ AHS , (3.3.48)

Ṡ ≈ BHS , (3.3.49)

where A and B are model-dependent functions whose particular forms we are not

presently interested in. Of course, in the single-field case S ≡ 0 so Ṙ ≈ 0 as

expected. This system can be solved by introducing the transfer functions:

TSS(t) = exp

(∫ t

t∗
B(t′)H(t′)dt′

)
, (3.3.50)

and

TRS(t) =

∫ t

t∗
A(t′)H(t′)TSS(t′)dt′ . (3.3.51)

The solution then takes the form

R
S

 =

1 TRS
0 TSS

R∗
S∗

 . (3.3.52)

As these equations are valid on large scales, the first time t∗ from which we can use

them to determine the future state of the system is when k = aH. Prior to this, on

subhorizon scales, the general structure of the single-field calculation remains valid,

so we can say that the final power spectrum in a multi-field scenario is related to

the usual horizon-crossing power spectrum P∗R via

PR = P∗R × (1 + T 2
RS) , (3.3.53)

where TRS is computed between horizon-crossing and the end of inflation. This

represents an enhancement in power over the standard case, and is due to the su-

perhorizon transfer of power from isocurvature to curvature. Similar expressions

can be found to describe the isocurvature power spectrum but these are beyond the

scope of this thesis. We also note that this amplification of the scalar power spectrum

breaks the usual single-field consistency relation, such that now r = −8nt/(1+T 2
RS),
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such that an observed inequality of r and −8nt could be used to infer the presence

of additional fields. As this would require a precise measurement of nt, which is

difficult given the relative inertness of tensor perturbations on the CMB, we cannot

yet make this distinction.

Sound speeds

In the minimal single-field case above, we considered quantisation of the variable v

with action given by eq. (3.3.17). In a wide class of more general theories with non-

standard kinetic terms such as the DBI form (2.2.19) or equivalent results arising

from e.g. non-standard gravity, the action for v may instead take a form like213

S2 =
1

2

∫
dη d3x

[
(v′)2 − c2

sδ
ij∂iv∂jv + . . .

]
. (3.3.54)

Here, the presence of a coefficient in front of the action’s spatial gradient term implies

a ratio between the sizes of temporal and spatial changes in the field that is not unity;

a non-standard (and possibly variable) speed of propagation or “sound speed”. Our

minimal single-field case has cs = 1, such that disturbances in v propagate at the

speed of light, but more general actions such as the P (X) action in eq. (2.2.18)

instead have214

c2
s =

P,X
P,X + 2P,XXX

, (3.3.55)

such that when P,XX 6= 0 (i.e. there are terms at least of quadratic order in X in

the action), cs 6= 1.

A key implication of this is that quantisation is affected. The additional factor of

c2
s in the action manifests in a modification of the equation of motion (3.3.19) such

that

v′′k +

[
c2
sk

2 − z′′

z

]
vk = 0 . (3.3.56)

Now, when applying the boundary condition of asymptotic matching with the

Minkowski quantum scalar field, the correct limit for each mode of v is
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lim
k→∞

vk →
1

2csk
e−icskη . (3.3.57)

This in turn, following the same calculation route as previously presented but with

this difference, modifies the slow-roll scalar spectrum of perturbations to take the

form

PR ≈
H2

8π2ε0cs
, (3.3.58)

such that parameters like the spectral index now depend on the rate of change of cs,

and the tensor-to-scalar ratio is suppressed to r ≈ 16ε0cs. Once again, this modifies

the consistency relation so that we now would have r = −8csnt. Measurement of

the consistency relation could hence also constrain the propagation speed of the

perturbations.

Note that while here we have discussed a non-trivial scalar sound speed cs, it is also

possible for tensor perturbations to have a different propagation speed, ct. The same

mathematics as above applies, of course, such that one would have a tensor-to-scalar

ratio of 16ε0cs/ct if both were present.

Non-Gaussianity

The power spectrum encodes the two-point statistical correlation of the curvature

perturbation field. Higher order correlators can also, in principle, be measured. This

is however difficult, and only weak constraints on the bispectrum (which encodes the

three-point function) are available at present. The three-point function measures

how strongly the spectrum of perturbations deviates from a Gaussian profile, and

is as a result called the non-Gaussianity. Once again, observationally, we know that

CMB primordial anisotropies are very close to Gaussian, but as with the two point

statistics we could potentially use the size of this deviation to test and constrain

inflationary theories. To begin to formalise this, and analogously to eq. (3.3.24), we

define the bispectrum B as

〈R(k1)R(k2)R(k3)〉 = (2π)3δ(k1 + k2 + k3)B(k1, k2, k3) , (3.3.59)
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Convention dictates that we derive a value fNL from the bispectrum, e.g. via the

relation,212

〈R(k1)R(k2)R(k3)〉 = −(2π)7δ(k1 + k2 + k3)

∑
k3
i∏
k3
i

(
3

10
fNLP2

R

)
, (3.3.60)

and seek to compute this derived parameter. Since the bispectrum formally depends

on three momenta, its size can depend on the relative values of them, which is also

called the shape or configuration of non-Gaussianity. Some models may predict a

large fNL in some configurations while predicting a smaller one in others. This is

essentially a consequence of the fact that while there is only one way for a dis-

tribution to be Gaussian, it can deviate from Gaussianity in a multitude of ways

which are mutually distinct. A common shape of non-Gaussianity to test for is the

equilateral configuration for which the three momenta are equal.215 Also of interest

is the so-called squeezed limit of non-Gaussianity where one of the wavenumbers is

considerably smaller than the other two, though such considerations will be of little

importance for this thesis.

For single-field, minimal slow-roll inflation, it is found that fNL ∼ O(ε)216 which

is far smaller than present experimental constraints (at best, for the most well

constrained shape, the error bars are around ±5 and consistent with zero217 while

for equilateral shapes the constraint reads fNL = −4± 43), but introduction of e.g.

multiple fields218,219 or significantly sub-luminal propagation speeds can generate

large non-Gaussianity (typically proportional to c−2
s , it is found220) and come into

the realm of experimental falsifiability on these grounds. It is hoped that future

experiments will further narrow these constraints, of course. The theory discussed

in Chapter 4 contains several aspects that have the potential for producing notable

non-Gaussianity and so it is primarily to that end that we are interested in this

topic. Calculation of the bispectrum is significantly more involved than the two-

point power spectrum as it depends on second order curvature perturbations for

which the equations become unsurprisingly messy, but the modern In-In formalism

approach is typically used to make this more tractable. The key result is that, at
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leading order, one can take the third order action in perturbations, with Lagrangian

L3, and compute correlation functions via the integral221

〈F̂ (t)〉 = −i
∫ t

t0

〈[
F̂ (t′), Hint(t

′)
]〉

dt′ , (3.3.61)

where square brackets represent the commutator, the triangular brackets on the

right hand side now represent computation of the quantum expectation value of the

arbitrary operator inside (here denoted F̂ (t)), and Hint is the interaction picture

Hamiltonian, which at leading order can actually be replaced with −L3. The lower

integration limit t0 is taken to be some sufficiently early time that fluctuations are

deeply subhorizon. Then, following suitable application of Wick’s Theorem, this can

be evaluated with a (still rather involved) calculation that will be omitted here.
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CHAPTER 4

DISFORMALLY COUPLED

INFLATION

In this chapter original research by the author on the topic of disformally coupled

fields in cosmic inflation is presented. This work was carried out in collaboration with

Carsten van de Bruck and Tomi Koivisto. The results of this have been published in

the Journal of Cosmology and Astroparticle Physics in two papers.222,223 A further

publication in Physical Review D,148 based on research solely by the author, covers

particular mathematical procedures that were developed in order to complete this

work, and will be discussed below, but have more general applicability.

4.1. The model

Consider a theory of modified gravity with an Einstein-Hilbert term and two scalar

fields, φ and χ, with potentials U and V respectively. The field φ is minimally

coupled to the gravitational metric g, but χ is minimally coupled to a different

metric ĝ(g, φ), as described by the action functional (noting that units are such that

MPl = 1)
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4.1. The model

S =

∫
d4x
√−g R

2
−
∫

d4x
√−g

[
1

2
gµνφ,µφ,ν + U(φ)

]
−
∫

d4x
√
−ĝ
[

1

2
ĝµνχ,µχ,ν + V (χ)

]
. (4.1.1)

As the most general physically desirable form that the function ĝ(g, φ) is the disfor-

mal relation (2.2.12), we can rewrite the action (4.1.1) in terms of just the metric g

as

S =

∫
d4x
√−g

[
1

2
R +Xφφ − U +

C

γ
(Xχχ − CV ) + 2γD(Xφχ)2

]
, (4.1.2)

where γ is the disformal factor in eq. (2.2.14). We are now using the shorthand

notation XIJ = −gµν∂µφI∂µφJ/2 where I and J are field indices taking values from

(φ, χ). Note that the χ kinetic terms are now those with respect to the g metric, but

they appear non-canonically in the action to reflect the change in metric. We have

hence transformed a bimetric theory of minimally coupled scalars to a single-metric

theory with one minimal and one non-minimal field as well as non-trivial kinetic

interactions via terms like (Xχχ − CV )/γ and γ(Xφχ)2. Note that γ depends on

Xφφ. We shall subsequently refer to this theory as disformally coupled inflation.

It is entirely specified by the forms of four arbitrary functions; the two potentials

U and V as well as the coupling functions C and D. Our primary motivation for

studying this is that disformal couplings are highly general and it is interesting to

find out more about the range of phenomena this might give rise to when applied

to a two-field theory.

As well as the general motivation to study theories with two fields on disformally

related metrics, this kind of model is realised in the context of braneworlds, where in

a Type IIb String Theory scenario the second metric ĝ could be the induced metric

on a D3-brane in the compactified extra dimensions, and matter fields on this brane

such as χ are thought of as parametrising the motion of the end points of strings

attached to that brane.104,110,224–226 Meanwhile, the metric of our 3+1 macroscopic

dimensions is g, and the field φ is a parametrisation of the radial motion of the
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4. Disformally Coupled Inflation

D3-brane. With this motivation in mind, one would expect the kinetic term of φ

to instead take DBI form,227–229 as in eq. (2.2.19), which leads us to define another

action reflecting this

S =

∫
d4x
√−g

[
1

2
R +

C

D

(
1− 1

γ

)
− U

+
C

γ
(Xχχ − CV ) + 2γD(Xφχ)2

]
. (4.1.3)

The inflationary properties of a DBI term like this in isolation have been well studied

and it is known to have interesting effects.230–232 In this scenario, both the DBI

kinetic term and the disformally-coupled second field originate from the dynamics

of a brane and its strings. It is therefore interesting to think of this version of

the theory as a generalisation of DBI inflationary models, now accounting for the

possibility of this second field χ. The common origin of the disformal coupling and

the DBI kinetic term is reflected in how the DBI warp function in (2.2.19) is found

to be f = D/C. The theory hence still depends on just four free functions, due to

this relation. One could consider another scenario in which the DBI kinetic term’s

origin is different to that of the disformality, in which case f could be a fifth free

function, but we will not concern ourselves with this possibility in this work.

To distinguish between the two actions (4.1.2) and (4.1.3) we shall name the former

one as the canonical model of disformally coupled inflation, and the latter shall be

referred to as the DBI model. We are interested in both realisations with different

motivations, but the mathematics are similar enough in each case that we can largely

proceed in generality in what follows.

4.2. Inflationary Dynamics

When written in terms of one metric but non-minimal fields, both the canonical

(4.1.2) and DBI (4.1.3) models are special cases of the general P (XIJ , φK) action in

eq. (2.2.20), which has been well studied.148,212,233 To describe both canonical and

DBI models at once in the following calculations, we will write results first in terms
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4.2. Inflationary Dynamics

of the P (XIJ , φK) Lagrangian and its derivatives, only specialising to the particular

forms of P in (4.1.2) and (4.1.3) when it is instructive to do so.

While one could in principle take the modified gravity representation of the theory

in which the disformal metric ĝ is left in that form, and analyse the system in this

way, the transformation of the theory into P (XIJ , φK) form enables us to study

it using the usual Einstein equations (2.1.15), albeit with a highly non-standard

energy-momentum tensor derived from the φ and χ fields’ action. This is explicitly

given by

T µν = Pgµν + P<IJ>∂
µφI∂νφJ , (4.2.1)

where we have defined a symmetrised derivative with respect to kinetic combinations

P<JK> =
1

2

(
∂P

∂XJK
+

∂P

∂XKJ

)
, (4.2.2)

for convenience. Throughout this work we will be referring to and using this notation

extensively, including as second and even third order symmetrised derivatives of this

kind such as P<IJ><KL><MN> which are constructed by recursive application of the

above definition. Many of the possible combinations of indices in these derivatives

of P give rise to non-unique expressions due to factors such as the defined symmetri-

sation, the commutation of partial derivatives, and the coincidental symmetries of

the Lagrangian of this model, and so for easy reference we have catalogued them

appendix A.1.

4.2.1. Background cosmology

Specialising to a flat FRW background, the Einstein equations reduce to the usual

form

3H2 = ρ = 2P<IJ>X
IJ − P , (4.2.3)

2Ḣ = −(ρ+ p) = −2P<IJ>X
IJ . (4.2.4)
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4. Disformally Coupled Inflation

Note that the pressure p is equivalent to the Lagrangian P evaluated on the back-

ground. The energy density and pressure can also be thought of as a sum of terms

coming from the two fields. The field φ, being either a canonical scalar or a DBI

field, will have its usual (canonical or DBI) contribution to ρ and p. That is, for

canonical φ we just have eqs. (3.1.37 – 3.1.38), whereas for the DBI case we have

(following the definition above and some manipulation)

ρφ =
C

D
(γ − 1) + U , (4.2.5)

pφ =
C

D

(
1− 1

γ

)
− U . (4.2.6)

Meanwhile, the χ field with its non-minimal kinetic structure will have an unusual

energy density and pressure profile, also depending on φ and φ̇. It will be useful to

explicitly note the forms of these expressions, which are

ρχ = γC
(
γ2Xχχ + CV

)
, (4.2.7)

pχ =
C

γ

(
γ2Xχχ − CV

)
, (4.2.8)

where, in the FRW background, the γ parameter (2.2.14) takes the form

γ =
1√

1− 2D
C
Xφφ

=
1√

1− D
C
φ̇2

. (4.2.9)

The non-standard energy density and pressure of χ hence lead to an equation of

state for the χ field of

wχ =
1

γ2

γ2Xχχ − CV
γ2Xχχ + CV

, (4.2.10)

such that during potential domination (now defined by CV � γ2Xχχ) the equation

of state approaches not −1 as for a canonical scalar, but −1/γ2. That is, if γ is

large, the χ field begins to act like dust. Furthermore, even in the moderate case of

γ >
√

3 the χ field will not be able to individually drive an accelerating expansion
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4.2. Inflationary Dynamics

as its equation of state crosses the acceleration threshold of −1/3. It is therefore

generally expected that φ is the primary inflaton in these models except in the

limit of small γ (weak disformality and slow-roll), which is largely uninteresting as

disformal effects will yield little more than small corrections to fiducial two-field

inflation scenarios. We will typically consider φ to be the “inflaton” while χ is

a secondary field whose primary effect upon inflation is to dynamically alter φ’s

behaviour via their disformal interactions.

The generalised Klein-Gordon equations can be shown take the form:

KIJ φ̈
J + 3HP<IJ>φ̇

J + 2P<IJ>,KX
KJ − P,I = 0 , (4.2.11)

where the kinetic matrix KIJ is defined by,

KIJ = P<IJ> + 2P<MJ><IK>X
MK . (4.2.12)

For I = χ, in both canonical and DBI models, this reduces to

χ̈+ 3Hχ̇+ γ2D

C
φ̇χ̇φ̈− 1

2

[
(γ2 − 3)

C ′

C
− (γ2 − 1)

D′

D

]
φ̇χ̇+

C

γ2
V ′ = 0 , (4.2.13)

Here we see some key differences with minimal inflationary scenarios. First, the non-

standard kinetic terms in the action manifest via nonlinearities such as φ̇χ̇φ̈ that are

amplified as the disformality increases (∝ γ2). Also, a large value of γ suppresses

the role of the potential derivative term that would usually be the driving force for

inflation in a minimally-coupled setting, both curtailing its steepness and allowing

the modified kinetic terms to play a larger role. For I = φ, the equation of motion

derived is different in the canonical and DBI models. To express these differences

succinctly, we introduce the symbol γd, defined as

γd =

 1 in the canonical case (4.1.2)

γ in the DBI case (4.1.3)
(4.2.14)
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4. Disformally Coupled Inflation

with which the φ field’s equation of motion for both canonical and DBI cases can

be unified in one expression as

(
γ3
d + γ2D

C
ρχ

)
φ̈+ 3Hφ̇

(
γd − γ2D

C
pχ

)
+ U ′

+
1

2
(γ2 − 1)ρχ

D′

D
− 1

2

[
(γ2 − 2)ρχ + 3γ2pχ

] C ′
C

+
1

2

C

D

(
D′

D
− C ′

C

)
(γ − 1)2 (γ + 2) = 0 , (4.2.15)

such that for canonical models, the third line vanishes as this term arises purely due

to the DBI kinetic term. Furthermore, the prefactors of the kinetic terms on the

first line differ slightly between the two models, slightly altering the way in which

disformality manifests itself. Interestingly, the extra terms due to the disformal

interaction with χ on the first and second lines are neatly expressible in terms of

the energy density and pressures of χ defined in (4.2.7 – 4.2.8).

Another quantity defined on the background that is of importance in theories like

this is the sound speed. In a single-field theory, one finds this by looking at the second

order action of the perturbations of the fields and taking the ratio of the prefactors

of the gradient and kinetic terms, but in multi-field theories this is complicated by

the presence of terms proportional to derivatives of two different fields. For a general

P (XIJ , φK) theory, the second order action in terms of Sasaki-Mukhanov variables

(3.3.13) is

S(2) =
1

2

∫
dtd3xa3

[
KIJQ̇

IQ̇J − 1

a2
P<IJ>∂iQ

I∂iQJ

−NIJQ̇
IQJ −MIJQ

IQJ
]
. (4.2.16)

where KIJ is the kinetic matrix in eq. (4.2.12), and MIJ and NIJ are mass and inter-

action terms whose particular forms are well known in the literature140,212 but not

needed for the present discussion. The terms where I 6= J , if present, inhibit taking

simple ratios of the relevant terms to determine propagation speeds, so instead one
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4.2. Inflationary Dynamics

takes the matrix product (K−1)IKP<KJ>, whose eigenvalues are the sound speeds

of the fields. This, of course, allows for the possibility that each field will have a

different sound speed, and indeed, this happens to be the case in disformally coupled

inflation, as can be seen by directly evaluating the eigenvalues of the aforementioned

matrix for the particular form of P . One identifies sound speeds,

c(1)
s =

√
γdC − γ2Dpχ
γ3
dC + γ2Dρχ

,

c(2)
s =

1

γ
.

Note, however, that we have labelled these simply “1” and “2”, rather than assign-

ing them to the fields φ and χ. That is because, in cases such as this with two

different propagation speeds, more care than usual has to be taken when quantising

perturbations and this introduces some subtlety into precisely what we think of as

propagating with these speeds. We will now take a short detour in explaining why

this is before returning to analysis of the model.

4.2.2. A short detour: the kinetic structure of multi-field

theories

In multi-field theories, one has the freedom to rewrite the theory in terms of any

linear combination of the fields (or rather, their perturbations, which are more

pertinent to the discussion),

δφI = eII′δφ
I′ , (4.2.17)

where e is a change-of-basis matrix relating the initial fields (labelled with I ′) to the

new fields (labelled with I). However, there are particular field combinations which

lend themselves well to physical interpretation. A particularly common and useful

basis to work in is the adiabatic/entropy representation, discussed in Section 3.3.8,

φn, where n = (σ, s), in which fields that are
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4. Disformally Coupled Inflation

• Orthonormal to one another,

• Parallel and perpendicular (respectively) to the trajectory in field space,

are defined. The orthogonality constraint can be generally imposed at the level

of the second order action in Sasaki-Mukhanov (see eq. (3.3.13) for definition)

perturbations such that the gradient term in (4.2.16) becomes the identity matrix,

that is, the components of e satisfy the system of equations:

P<IJ>e
I
I′e

J
J ′ = δI′J ′ . (4.2.18)

However, due to the symmetry P<IJ> = P<JI>, this does not entirely specify the

basis transformation matrices. For example, in the two-field case there are four free

functions in e but only three are specified by the above system, leaving one degree

of freedom. This freedom is the ability to make a subsequent rotation with a new

basis transformation ēI
′
n without spoiling the orthonormality of the gradient terms.

This degree of freedom is used to meet the second condition in the definition of the

adiabatic/entropy basis; a rotation to orient the QI′ fields parallel and perpendicular

to the field space trajectory of the φI
′
s is made. In the two-field case, this amounts

to a rotation by angle tan θ = φ̇′/χ̇′. This is especially useful to do as it then

turns out that the curvature power spectrum depends only on the adiabatic σ field’s

perturbations, while the s field encodes the power in isocurvature perturbations.

Typically, it is hence useful to quantise the adiabatic/entropy fields. However,

consider what quantisation means in the context of cosmological perturbations; it

amounts to solving the perturbed equation of motion for each Fourier mode k of each

field φI , vIk (where vI is a convenient quantity defined as the scale factor a multiplied

by the relevant Sasaki-Mukhanov variable), then setting the boundary conditions

for this solution by imposing that it asymptotically looks like a free Minkowski space

field at large frequencies. That is, for a field with sound speed cIs, as in eq. (3.3.57)),

vIk →
1

2cIsk
e−ic

I
skη . (4.2.19)

However, when transforming between different basis representations of the field per-
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turbations, each newly defined field is a linear combination of the previous fields,

that is

vI
′

k = eI
′

I v
I
k , (4.2.20)

and this summation no longer takes the form of eq. (4.2.19) unless all the cIs values

are the same (that is, it does not have a linear dependence on cs). If all fields have

the same cs then all linear combinations of fields’ perturbations can be written in

this form and it is easy to quantise any linear combination of fields with the same

procedure, but if different fields have different cs values then a linear combination

of two such perturbations will no longer have this form and it is difficult to see

how to interpret this as not all combinations of fields can mathematically follow

the normal canonical quantisation procedure. Physically, what this means is that

if one cannot write the Fourier modes in this form then there is not a well-defined

propagation speed, suggesting that the field under consideration is a composite of

separate degrees of freedom with different speeds, and is hence not fundamental.

To solve this, one needs to identify a basis in which both the kinetic and gradient

matrices in (4.2.16) are diagonal, as the fields in this basis do have separate and well-

defined sound speeds. In general, none of the fields we have thus considered such as

the φI
′

fields, or the adiabatic and entropy fields will be identifiable as fundamental.

This is because the kinetic matrix in each case (e.g. KI′J ′ = eII′e
J
J ′KIJ) is not

guaranteed to be diagonal by the given transformation. We instead consider a new

field rotation φa = êI
′
a φ

I′ , where ê is a rotation matrix with angle Θ, which, to ensure

diagonality of the kinetic matrix Kab in this basis, must be defined in the two-field

case as148

tan 2Θ =
2Kφ′χ′

Kχ′χ′ −Kφ′φ′
. (4.2.21)

The adiabatic and entropy fields are hence only canonically quantisable when θ = Θ

(as this amounts to φa = φn), and the φI
′

fields are only canonically quantisable

when Θ = 0 (as this amounts to φa = φI
′
).
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4.2.3. Kinetic structure of disformally coupled inflation: sound

speeds

Based on this discussion, our fundamental degrees of freedom are not going to be

the ”physical” fields φ and χ, nor the adiabatic/entropy fields σ and s fields as in

many simpler models. It is instead found, that the angle (4.2.21) is Θ = 0 in our

case. That is, the fundamental degrees of freedom are the φI
′

fields that are found

via the basis transformation δφI = eII′δφ
I′ , where P<IJ>e

I
I′e

J
J ′ = δI′J ′ . Explicitly

computing the change of basis yields

eφφ′ = 1 ,

eφχ′ = 0 ,

eχφ′ = −γ2D

C
φ̇χ̇ ,

eχχ′ = 1 .

That is φ = φ′ and is hence a fundamental degree of freedom, while χ is not, but

instead the combination (which we will call θ instead of χ′ for less crowded notation)

δθ = δχ− γ2D

C
φ̇χ̇δφ , (4.2.22)

is. After some algebra, one can see that at the background level, these fields are

related by the differential equation θ̇ = γ2χ̇.

By writing the second order action in terms of this basis, we then identify the sound

speeds for φ,

c(φ)
s =

√
γdC − γ2Dpχ
γ3
dC + γ2Dρχ

, (4.2.23)

and θ,

c(θ)
s =

1

γ
. (4.2.24)

Note that we have rediscovered the same sound speeds we initially uncovered by
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finding the eigenvalues of the appropriate matrix in the second order action, but we

have now clearly identified which degrees of freedom actually possess these sound

speeds. These are therefore the most natural fields to quantise, and they hence obey

vφk →
1

2c
(φ)
s k

e−ic
(φ)
s kη , (4.2.25)

vθk →
1

2c
(θ)
s k

e−ic
(θ)
s kη . (4.2.26)

However, if one were to quantise and set initial conditions for χ, it would be using

the boundary condition

vχk →
1

2c
(θ)
s k

e−ic
(θ)
s kη − γ2D

C
φ̇χ̇

1

2c
(φ)
s k

e−ic
(φ)
s kη , (4.2.27)

and as discussed in the previous section, this is not immediately compatible with the

usual prescription for quantisation of field perturbations, indicating that the degree

of freedom we call χ is composite and does not propagate with a single sound speed.

In the limit of sufficiently weak disformal coupling,1 the two fundamental sound

speeds become approximately equal and close to 1 (as γ(D = 0) = 1). Similarly, in

the limit of very strong disformal coupling, the sound speed for φ obeys

c(φ)
s ≈

√
−wχ , (4.2.28)

such that the difference in sound-speeds can be written

(c(θ)
s )2 − (c(φ)

s )2 ≈ 1

γ2
+ wχ , (4.2.29)

and as noted above, wχ approaches −1/γ2 when χ is potential-dominated. In the

limit of very strong disformal effects and potential-dominated χ we would hence also

1The precise mathematical meaning of strong/weak disformal effects in these expressions differs
depending on whether a DBI kinetic term is present. For the canonical model, weak disformal
coupling here means when D � C/(γ2pχ) while in the DBI case it means D � C/(γpχ). In
different expressions, different inequalities will be relevant, of course, so to save the tedium of
repeatedly stating the precise definitions of “strong” and “weak” in all cases we will generally
take these phrases to mean “when the term containing D is much smaller/larger than the
competing term(s)”.
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expect to see approximately equal sound speeds for the two fields. In more typical

cases of intermediate disformal coupling strength and/or a more general equation of

state for χ, the two sound speeds would be expected to manifestly differ.

4.2.4. Results

Given the complex nonlinearity of the equations of motion, and the fact that dis-

formal contributions to these equations of motion are dependent on the value of φ̇,

the usual slow-roll approximation techniques will largely fail to account for the new

effects in this theory.222,223 When D is large, even slow-rolling solutions may differ

significantly compared to conventional two-field models. Therefore, to understand

the dynamics of this model in more detail, we perform a full numerical integration of

the system of equations (4.2.3 – 4.2.4) and (4.2.11). To focus on the interesting fea-

tures due to the disformal interaction, we make the simplest choice of potential for

both fields; just a mass term, albeit with the possibility that φ and χ have different

masses

U(φ) =
1

2
m2
φφ

2 , V (φ) =
1

2
m2
χχ

2 . (4.2.30)

We look however at two choices of coupling functions C and D. First, there are the

“stringy” couplings arising from the physically-motivated String Theory construc-

tion of the model104,110

C =
φ2

√
T3

, D =
1√
T3φ2

, (4.2.31)

where T3 is the tension of the D3-brane. We also have an alternative choice of

exponential couplings

C = C0e
cφ , D = D0e

dφ . (4.2.32)

While the stringy couplings represent an explicitly constructed model in Type IIb

String Theory, we also wish to understand the wider possibilities for phenomenol-

ogy in disformally coupled models, accounting for both the potential for different
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realisations within the framework of String Theory and any wider contexts in which

one might consider disformal couplings. The free parameters c and d allow us to

control the rate of change of the coupling with respect to changes in φ (including

the special case of constant couplings when these parameters are zero) which may

serve as a prototype for a wide range of types of coupling for the sake of our in-

vestigation. In the remainder of this section, we present numerical solutions of eqs.

(4.2.3 – 4.2.4) and (4.2.11) with the potentials and couplings specified above. While

many sets of parameters were investigated during the course of this research, here

we present seven examples to illustrate the overall qualitative trends and behaviours

we witnessed.

Case 1: Stringy Couplings

The main parameter which defines the deviation of the inflationary dynamics from

the standard case is γ in eq. (2.2.14). With the stringy couplings (4.2.31), γ takes

the form

γ =

(
1− φ̇2

φ4

)− 1
2

, (4.2.33)

which, for a slowly-rolling φ, obeys φ̇2 � φ4 and hence implies negligible devia-

tion from the case of γ ≈ 1 for any brane tension T3 and for either canonical or

DBI variants of the model. It is hence difficult to construct trajectories where the

field φ behaves as a conventional inflaton without rendering the disformal coupling

negligible, and therefore uninteresting. Numerical studies confirm that this means

that the result barely differs from conventional two-field inflation for a wide range

of parameter space. One way to avoid this fate would be to consider non-slow-roll

inflation where not the slow-rolling of the field, but kinetic or other effects drive

inflation, but we will not explore this possibility here.

Similarly, it is difficult to have χ behave as an inflaton in the presence of significant

disformality, because as noted in eq. (4.2.10), a large γ will make χ behave akin

to a dust-like fluid with wχ close to zero, not suitable for driving an accelerated

expansion of space. Furthermore, we numerically observe that even if we set up a
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situation with χ as the inflaton and γ <
√

3 but still above 1, the evolution of the

system quickly approaches the trivial γ = 1 case.

Given these problems with achieving inflation with the stringy couplings, we will

henceforth work only with the exponential couplings (4.2.32), which avoid the γ

suppression problem in the slow-roll limit by instead having γ take the form

γ =

(
1− D0

C0

e(d−c)φφ̇2

)− 1
2

, (4.2.34)

which for sufficiently large D0/C0 and not excessively negative (d− c) could feasibly

deviate from 1 even in a slow-rolling inflationary scenario. We can also see from

this that we should take positive D0 to impose γ ≥ 1, and hence ensure subluminal

propagation speeds (c.f. eqs. (4.2.23 – 4.2.24) and surrounding discussion) and

a non-phantom equation of state for χ (4.2.10). While these restrictions are not

strictly necessary, we can make further progress without appealing to these more

problematic scenarios, and it will later prove phenomenologically desirable as we

will show that ensuring γ > 1 is conducive to avoiding an excessive tensor-to-scalar

ratio.

Case 2: Canonical Kinetic Term and Exponential Couplings, Example A

We now proceed to study inflationary dynamics of the exponentially coupled system

in the canonical model. In our first example trajectory, shown in Figure 4.1, where

the parameters are specified, the evolution has two parts. First, there exists a period

of around 25 e-folds at the beginning where γ is increasing up to a maximum, before

a second phase in which γ decreases to 1 and remains there. The enhancement

of γ at early times is promising as, it is in this regime when the observable modes

leave the horizon. This kind of behaviour is somewhat generically found in numerical

simulations when a large positive value of (d−c) is the primary source of γ’s deviation

from unity. At first, as φ begins to roll down the potential, φ̇ increases quickly and

γ grows. However, as φ becomes smaller the steep exponential factor in γ sharply

decreases and the value of φ̇ begins to stabilise, leading to an overall decrease in γ.

112



4.2. Inflationary Dynamics

0 10 20 30 40 50 60
N

−2
0
2
4
6
8

10
12
14

φ

0 10 20 30 40 50 60
N

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

χ

0 10 20 30 40 50 60
N

0.9

1.0

1.1

1.2

1.3

1.4 γ

c
(φ)
s

c
(θ)
s

0 10 20 30 40 50 60
N

−1.0

−0.5

0.0

0.5

1.0
wφ
wχ

Figure 4.1.: Inflationary dynamics for the canonical model of disformally coupled
inflation (4.1.2) with the potentials (4.2.30) and couplings (4.2.32). Pa-
rameters and initial conditions used are: d = 2, c = 0, D0 = 13.5,
C0 = 1, mφ = mχ = 1.8 × 10−6, φ0 = 13, χ0 = 1.4, φ̇0 = −1.7 × 10−7,
χ̇0 = 0.

Case 3: Canonical Kinetic Term and Exponential Couplings, Example B

Contrary to the previous example, in our next trajectory, shown in Figure 4.2, the

major source of γ’s evolution away from 1 is the large value of D0/C0. In such

cases, numerical studies indicate that φ̇ remains fairly constant but the decrease in

φ causes γ to drop from its initial large value to 1 at late times. Similarly, χ is

held fairly constant due to the steepness of the conformal coupling, with a more

negative value of c further inhibiting the evolution of χ. This raises the possibility

of generating trajectories with sharp turns if the conformal coupling is large enough,

which could lead to interesting features in the power spectrum.234–237

Case 4: Canonical Kinetic Term and Constant Couplings, Example C

In this example, shown in Figure 4.3, we explore the constant limit of the exponential

couplings, c = d = 0. In the absence of an exponentially-enhanced deviation from

unity, γ is made large by choosing a sufficiently large D0. Also due to the lack of a

φ-dependent term in γ, the value it takes remains constant through most of inflation.

One can hence construct models where γ is incredibly large for an extended period

of time, resulting in vanishingly small sound speeds, and χ behaving like dust to a
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Figure 4.2.: Inflationary dynamics for the canonical model of disformally coupled
inflation (4.1.2) with the potentials (4.2.30) and couplings (4.2.32).
Parameters and initial conditions used are: d = 0.19, c = −0.19,
D0 = 8 × 109, C0 = 1, mχ = 1.39 × 10−6, mφ = 2.78 × 10−6 , φ0 = 12,
χ0 = 11.5, φ̇0 = −8.7× 10−7, χ̇0 = 0

good approximation.

Case 5: Canonical Kinetic Term and Exponential Couplings, Example D

Here, a similar choice of parameters to Example B is made. The key difference

is that c and d are somewhat larger, making the exponential disformal coupling

vary considerably more with time. The system begins with a greater disformal

influence, and wχ close to 0, and γ more than double that of Example B. This

also shortens inflation to have only 70 e-folds compared to B’s 110, but γ still

drops to 1, just with a steeper descent, as can be clearly seen in Figure 4.4. The

point of this is to illustrate that similar models with different couplings can produce

similar qualitative behaviour but with a faster or slower rate of change in γ. While

the significance of this is not particularly apparent at the background level, we will

see at the perturbative level when calculating primordial power spectra in the next

section why this is important.
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Figure 4.3.: Inflationary dynamics for the canonical model of disformally coupled in-
flation (4.1.2) with the potentials (4.2.30) and couplings (4.2.32).Param-
eters and initial conditions used are d = 0, c = 0, D0 = 5×1021, C0 = 1,
mφ = mχ = 1 × 10−8, φ0 = 0.7, χ0 = 0.0051, φ̇0 = −1.414125 × 10−11,
χ̇0 = 0.

0 10 20 30 40 50 60 70
N

−2

0

2

4

6

8

10

12

φ

0 10 20 30 40 50 60 70
N

−2

0

2

4

6

8

10

12

χ

0 10 20 30 40 50 60 70
N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
γ

c
(φ)
s

c
(θ)
s

0 10 20 30 40 50 60 70
N

−1.0

−0.5

0.0

0.5

1.0
wφ
wχ

Figure 4.4.: Inflationary dynamics for the canonical model of disformally coupled
inflation (4.1.2) with the potentials (4.2.30) and couplings (4.2.32).Pa-
rameters and initial conditions used are d = 0.3, c = −0.3, D0 = 5×109,
C0 = 1, mφ = mχ = 1×10−6, φ0 = 11.689, χ0 = 11.0, φ̇0 = −4.05×10−7,
χ̇0 = 0.
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Figure 4.5.: Inflationary dynamics for the DBI model of disformally coupled inflation
(4.1.3) with the potentials (4.2.30) and couplings (4.2.32). Parameters
and initial conditions used are mχ = 2.9mφ = 2.286×10−6, C0 = 1,D0 =
3.8× 1012, d = −c = 0.1 and initial conditions are φ0 = 6.9, χ0 = 15.0.

Case 6: DBI Kinetic Term and Exponential Couplings, Example A

While it is possible to generate a similar range of trajectories in the DBI model as in

the canonical model, the main regime in which they express a significant difference

is in trajectories similar to canonical Example A of the canonical model, in which

an initial increase and a subsequent decrease in γ occur. Unlike in the canonical

trajectories where this largely happens at early times, in the DBI version of this

trajectory, oftentimes the “bump” in γ is found to occur at the end of the inflationary

phase, preceded by a phase of near-negligible disformal influence. DBI Example A,

shown in Figure 4.5, realises this in such a way that during the observable window

of inflation (around 50 or 60 e-folds prior to its end), γ has not yet begun its period

of transient growth. The dynamics are therefore fairly conventional at early times,

behaving like two co-operating inflatons, but at late times the growth in γ causes χ

to behave like dust after horizon crossing.

Case 7: DBI Kinetic Term and Exponential Couplings, Example B

As in DBI Trajectory A, γ undergoes a transient growth, but this time it occurs

much more gradually over a wider range of e-fold numbers. Most significantly, γ
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Figure 4.6.: Inflationary dynamics for the DBI model of disformally coupled inflation
(4.1.3) with the potentials (4.2.30) and couplings (4.2.32). Parameters
and initial conditions used are mχ = 2.9mφ = 2.286×10−6, C0 = 1,D0 =
3.8× 1012, d = −c = 0.1 and initial conditions are φ0 = 6.9, χ0 = 15.0.

is now changing throughout the observable window, and the dynamics are more

affected by disformal effects even at early times. Unlike in Trajectory A where χ

has two distinct phases of evolution, the transition between the two is now smoother,

as seen in Figure 4.6.

4.3. Perturbations

The general expression in a P (φI , XJK) theory for the curvature perturbation R
is140

R =

(
H

2P<IJ>XIJ

)
P<KL>φ̇

KQL

=

(
H

ρ+ p

)[(
γd +

D

C
ρχ

)
φ̇Qφ + γCχ̇Qχ

]
=

(
H

ρ+ p

)[(
γd − γ2D

C
pχ

)
φ̇Qφ + γCχ̇Qθ

]
. (4.3.1)

To evaluate this and obtain a power spectrum, we hence numerically integrate the

perturbed equations of motion for the QI .238 The position of the observable window

during inflation is determined via eq. (3.3.39) assuming efficient reheating (ρth ≈
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ρend). The range of physical k values today taken to be observable for our purposes

is k ∈ [10−3, 101] Mpc−1. Similarly, we assume a pivot scale of k∗ = 0.05 Mpc−1 for

everything except the tensor-to-scalar ratio which is instead evaluated at k∗ = 0.002

Mpc−1 according to usual conventions. Initial conditions are set using the canonical

quantisation procedure discussed in Section 4.2.2, and by direct variation of the

second order action (4.2.16) one obtains (Fourier transformed) equations of motion

for the Sasaki-Mukhanov variables222

α1Q̈φ + α2Q̈χ − α3
k2

a2
Qφ − α4

k2

a2
Qχ + ᾱ6Q̇φ + ᾱ7Q̇χ + ᾱ9Qφ + ᾱ10Qχ = 0 , (4.3.2)

β1Q̈φ + β2Q̈χ − β3
k2

a2
Qφ − β4

k2

a2
Qχ + β̄6Q̇φ + β̄7Q̇χ + β̄9Qφ + β̄10Qχ = 0 . (4.3.3)

These are equivalent to what one would find if they began not from an action prin-

ciple, but from the perturbed equations of motion for δφI using direct perturbation

theory on the fields’ energy momentum tensor, that is,

α1δφ̈+ α2δχ̈+ α3∂i∂
iδφ+ α4∂i∂

iδχ+ α5Ψ̇

+ α6δφ̇+ α7δχ̇+ α8Ψ + α9δφ+ α10δχ = 0 , (4.3.4)

β1δφ̈+ β2δχ̈+ β3∂i∂
iδφ+ β4∂i∂

iδχ+ β5Ψ̇

+ β6δφ̇+ β7δχ̇+ β8Ψ + β9δφ+ β10δχ = 0 , (4.3.5)

which are coupled to the Newtonian Gauge metric perturbation Ψ = Φ (via the

off-diagonal spatial Einstein equations as in the standard case described in Section

3.3.2) and its derivative, which are determined by perturbed Einstein equations in

the form

2
(
∂i∂

iΨ− 3HΨ̇
)

= δρ = X1Ψ +X2δφ+X3
˙δφ+X4δχ+X5

˙δχ , (4.3.6)
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2
(

Ψ̇ +HΨ
)

= −δq = −Y1δφ+−Y2δχ , (4.3.7)

2
(

Ψ̈ + 4HΨ̇ + 4ḢΨ + 6H2Ψ
)

= δp

=Z1Ψ + Z2δφ+ Z3
˙δφ+ Z4δχ+ Z5

˙δχ . (4.3.8)

The form of the various coefficients in these perturbation equations and their inter-

relations are given in appendix A.2. Note in particular that in the Sasaki-Mukhanov

representation of the perturbed Klein-Gordon equations that barred coefficients such

as ᾱ6 are present and differ from unbarred coefficients in the δφI form of the equa-

tions. These differences arise due to the elimination of the gauge variable Ψ needed

to make the Sasaki-Mukhanov form of the equations explicitly Gauge-invariant.

4.3.1. Results

Here we present power spectra calculated numerically via the above procedure for

the six interesting cases (i.e. excluding the rejected stringy coupling case) studied at

the background level in Section 4.2.4. For each model, the spectra are calculated at

a series of k values in the observable range, then numerical fitting is used to calculate

the amplitude of scalar and tensor perturbations at the pivot scale (and hence the

tensor-to-scalar ratio), as well as the scalar spectral index and its runnings from

this data. Each of the trajectories discussed was chosen to reflect and represent a

different type of behaviour observed in numerical studies of the model, but we also

chose a priori to present examples which produced an acceptable scalar amplitude,

compatible with Planck 1σ bounds. While most absolute choices of parameters

did not lead to a feasible scalar amplitude, by noting that As ∝ V , the effective

potential, it is easy to re-scale the parameters and initial conditions of a trajectory to

normalise the scalar amplitude. We assume that each trajectory’s spectral properties

are representative of their class of trajectories with qualitatively similar dynamics,

but given the size and complexity of parameter space we do not perform a detailed
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Figure 4.7.: The scalar (PR, blue solid line) and tensor (PT , black dashed line)
power spectra for Canonical Trajectory A, discussed in Section 4.2.4
at the background level. A normalised amplitude of 2.12 × 10−9 is
obtained, and the resulting spectrum has ns = 0.961, αs = −5.3× 10−4

and βs = 1.8×10−4. The tensor-to-scalar ratio is found to be 1.7×10−2.

statistical analysis of this.222 Instead, we aim with this work to simply categorise

the interesting types of behaviour and make an initial exploration of the spectral

properties possible within this theory.

Canonical Trajectory A

This trajectory represents disformal effects driven by a large value of the disformal

exponent d. Initially, φ rolls down its potential, causing φ̇ to increase quickly enough

to boost the value of γ, but as φ decreases from this, the steep exponential in

γ kicks in and causes it to decrease again. The early-time boosting of γ causes

sound speeds to depart from unity and hence amplifies the scalar spectrum (As ∝
c−1
s ). Resultingly, the tensor-to-scalar ratio is suppressed compared to the simplest

models of inflation, with a calculated value of r = 1.7 × 10−2, well within present

experimental bounds. Similarly, a feasible spectral index of ns = 0.961 and typically

small runnings of O(10−4) are found. The power spectra are explicitly shown in

Figure 4.7.
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Figure 4.8.: The scalar (PR, blue solid line) and tensor (PT , black dashed line)
power spectra for Canonical Trajectory B, discussed in Section 4.2.4 at
the background level. A normalised amplitude of 2.15×10−9 is obtained,
and the resulting spectrum has ns = 0.968, αs = 7.1 × 10−4 and βs =
−2.1× 10−5. The tensor-to-scalar ratio is found to be 1.7× 10−2.

Canonical Trajectory B

Here, instead of a large exponent in the disformal coupling, a large prefactor D0

provides the disformality that affects the dynamics. Instead of a “bump” in γ we

observe typically a smooth monotonic decrease from an initially large value. While

this likely leads to some small differences with the previous case, the overall effect of

the spectrum is comparable, with low sound speeds amplifying scalar perturbations

and producing a small tensor-to-scalar ratio of r = 3.1× 10−2, as well as ns = 0.968

and, again, O(10−4) runnings. The power spectra are explicitly shown in Figure 4.8.

Canonical Trajectory C

In a significant departure from the previous examples, Canonical Trajectory C has

small initial conditions but an immensely large γ. This example of extreme disformal

inflation somewhat surprisingly still can produce feasible spectra, with ns = 0.967,

and runnings of O(10−3). As one would qualitatively expect, the extremely large

γ (extremely small sound speeds) manifest through an incredibly small tensor-to-

scalar ratio of r = 1.2 × 10−9, which is likely undetectably small. The spectra are

shown in Figure 4.9.
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Figure 4.9.: The scalar (PR, blue solid line) and tensor (PT , black dashed line)
power spectra for Canonical Trajectory C, discussed in Section 4.2.4 at
the background level. A normalised amplitude of 2.15×10−9 is obtained,
and the resulting spectrum has ns = 0.967, αs = 1.2 × 10−3 and βs =
−1.1× 10−3. The tensor-to-scalar ratio is found to be 1.2× 10−9.

Canonical Trajectory D

As discussed in the background results Section, Trajectory D is much like Trajectory

B but with a steeper exponential coupling. This combination of a large disformal

prefactor and exponential multiplier leads to steep and rapid variation in γ and

sound speeds. At the level of the power spectrum, this unsurprisingly yields a yet-

smaller tensor-to-scalar ratio due to the larger initial γ, but as can be seen clearly

in the plot of the spectra in Figure 4.10, the scalar spectrum does not even look

qualitatively scale-invariant compared to the previous examples. This is clearly

explained when one considers that the dependence of the power spectrum on the

sound speeds implies that the spectral index and runnings depend on derivatives of

the cIs values. The presence of faster variation in γ, and hence the sound speeds,

manifests as a large deviation from scale invariance with runnings now O(10−2) or

larger, violating the Planck bounds.2

2In Chapter 6 we will argue that these bounds on runnings are not necessarily valid, but even with
the relaxations on this constraint discussed there, this trajectory is still difficult to reconcile
with data
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Figure 4.10.: The scalar (PR, blue solid line) and tensor (PT , black dashed line)
power spectra for Canonical Trajectory D, discussed in Section 4.2.4
at the background level. The rather pronounced scale dependence in
the scalar spectrum is qualitatively visible, and corresponds to running
parameters αs and βs with magnitudes of around 10−2, which exceeds
the Planck bounds. The spectrum has not been normalised, owing to
its inability to fulfil the constraints regardless.

DBI Trajectory A

As discussed previously, the main differences in the DBI model occur in “bump”

scenarios like Canonical Trajectory A, where now the bump occurs at later times.

In DBI Trajectory A, whose spectra are shown in Figure 4.11, the bump only begins

after horizon crossing has occurred, so all the interesting dynamics are affecting

the power spectrum via the late time entropy-adiabatic transfer. This produces a

perhaps slightly surprisingly low tensor-to-scalar-ratio of r = 7.2 × 10−3, but this

may be more due to coincidence from the choice of parameters and the complex

superhorizon dynamics, rather than a generic effect. Beyond this, the spectrum has

a respectable ns = 0.965 and the usual runnings of O(10−3).

DBI Trajectory B

The key difference between DBI Trajectories A and B is that in B (Figure 4.12), the

growth in γ now begins on subhorizon scales, thus boosting the effects of horizon-

crossing features on the spectrum, rather than in A where more convoluted super-

horizon effects are the main source of disformality. Here, a clear point of under-
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Figure 4.11.: The scalar (PR, blue solid line) and tensor (PT , black dashed line)
power spectra for DBI Trajectory A, discussed in Section 4.2.4 at the
background level. A normalised amplitude of 2.14× 10−9 is obtained,
and the resulting spectrum has ns = 0.965, αs = 2.4 × 10−4 and
βs = 2.1× 10−4. The tensor-to-scalar ratio is found to be 7.2× 10−3.

standing is that the suppressed sound speeds during horizon crossing mean that

the amplitude is enhanced and a smaller tensor-to-scalar ratio of r = 2.0 × 10−3 is

obtained. However, it seems the greater variation in disformal coupling effects in

combination with the superhorizon effects also drives the spectral index and runnings

farther from the typical values with ns = 0.973 actually yielding a flatter spectrum

at the linear deviation, but a higher second order deviation of αs = −5.9× 10−3. βs

is then small again at −6.4× 10−4, curiously.

Effect of the size of disformal effects on the power spectrum

While the qualitative different types of behaviour possible in the context of this

model are outlined in the previous Sections, it is also instructive to consider a series

of similar trajectories with slightly differing parameters. For concreteness, we hence

take Canonical Trajectory B as an example and in Figure 4.13 present spectra for

several different values of D0 in addition to the default one. We observe that as D

decreases, the spectral index becomes steeper, the tensor-to-scalar ratio increases,

and the scalar amplitude decreases, which is largely typical of the parameters that

were numerically studied. This shows that for this model, the size of the disformal
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Figure 4.12.: The scalar (PR, blue solid line) and tensor (PT , black dashed line)
power spectra for DBI Trajectory B, discussed in Section 4.2.4 at the
background level. A normalised amplitude of 2.14× 10−9 is obtained,
and the resulting spectrum has ns = 0.973, αs = −5.9 × 10−3 and
βs = −6.4× 10−4. The tensor-to-scalar ratio is found to be 2.0× 10−3.

coupling is critical; were it much smaller we would be quickly departing the Planck

1σ bounds in ns and r. These are very much “disformally driven” trajectories in

that the choices of initial conditions and masses alone would not drive successful

inflation with feasible spectra, and sufficiently large D is needed to correct this. The

tensor spectra are affected somewhat less, as one might expect, though the deviation

of the tensor spectra in the plot at large k show that the tensor tilt is being affected

by a small amount.

Towards the epoch of reheating with disformal couplings

In all the trajectories considered here, it can be seen that as inflation ends, γ re-

duces towards 1 which would suggest post-inflationary concerns like reheating are

still feasibly achievable in their usual form. However, as reheating usually involves

oscillating fields, this implies that γ will still cyclically change during reheating, and

may deform the typical behaviour of the field and hence the decay product densities

from this process. However, it would be difficult to see exactly how this may mani-

fest - consider in terms of the initial action the following modification, introducing

bosonic decay products ψ and σ for each field, respectively
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Figure 4.13.: Power spectra for Canonical Trajectory B with different choices for
the parameter D0. The blue curves show the scalar power spectra,
the black (dashed) lines show the resulting tensor power spectra. The
values of D0 for the lines labelled (i-v) are (i) D0 = 8 × 109, (ii)
D0 = 4 × 109, (iii) D0 = 2 × 109, (iv) D0 = 1 × 109 and (v) D0 =
0.5×109. The spectral indices for these choices of parameter are 0.9677,
0.9435, 0.9385, 0.9346 and 0.9306, respectively. The tensor-to-scalar
ratio varies from 0.03 for D0 = 8× 109 to 0.25 for D0 = 0.5× 109.

S =
1

2

∫
d4x
√−g R−

∫
d4x
√−g

[
1

2
gµνφ,µφ,ν + U(φ) + g2

φφ
2ψ2

]
−
∫

d4x
√
−ĝ
[

1

2
ĝµνχ,µχ,ν + V (χ) + g2

χχ
2σ2

]
. (4.3.9)

Each field can then decay into particles on its own metric (φφ→ ψψ and χχ→ σσ).

This makes sense when considered in the brane-motivated case particularly. When

transformed to the Einstein Frame as in eq. (4.1.3), one would obtain an additional

decay term in the action

S ⊃ −
∫

d4x
√−g

[
g2
φφ

2ψ2 +
C2

γ
g2
χχ

2σ2

]
= −

∫
d4x
√−g

[
g2
φφ

2ψ2 + g2
χ,EFχ

2σ2
]
,

(4.3.10)

such that the effective coupling, between χ and its decay products σ, in the Einstein

Frame g2
χ,EF = C2g2

χ/γ depends on φ, reminiscent of modulated reheating.239–247
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This would be tricky in itself, but the effective coupling also depends (via γ) on

∂µφ. Even normal modulated reheating significantly alters the details of reheating

in a complex way,248 so we expect the same to be true in our case, qualitatively

speaking.

The reheating process will likely also vary considerably from trajectory to trajectory

in our model. For example, even if the bare coupling constants in the bimetric action,

gφ and gχ, are of similar magnitude initially, they will not remain this way once the

field rolls significantly and disformality kicks in. Take Canonical Trajectory C, for

example, where even a very slowly rolling field will easy generate large γ and thus

heavily change the value of the χ→ σ decay constant.

An investigation into the dynamics of reheating, and hence its efficiency or average

equation of state, in these models, would hence be interesting. Some limited work

has been since done by other authors on this topic,249 in which it was found to be

feasible/promising that parametric resonance could occur even in extreme situations

like Canonical Trajectory C.

A note on the stability of trajectories

One can also question how stable the model is under variation in the position of the

observable window. (e.g. how many e-folds before the end of inflation do observable

modes cross the horizon?) Variations like this could arise223 due to inefficiencies

in the post-inflationary reheating procedure (which, as we argue in the previous

section, is not well understood and could hence have non-trivial behaviour). To

address this, we plot in Figure 4.14 the spectral index and tensor-to-scalar ratio

for the two DBI trajectories (as these prove most interesting for discussion’s sake)

under two different assumptions. First, our default assumption of efficient reheating

with ρth = ρend, and secondly with ρth � ρend (inefficient reheating). This affects

the e-folding number of horizon-crossing via

∆N =
1− 3w

12(1 + w)
ln

(
ρth

ρend

)
, (4.3.11)

where we take an average equation of state during reheating of w = 0 for argu-
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Figure 4.14.: Variation in the spectral index ns and tensor-to-scalar ratio r as a
function of reheating energy for DBI Trajectories A and B, overlaid on
the Planck likelihood contours at 1σ and 2σ for these quantities. We
see that Trajectory A is largely stable under such considerations and
falls comfortably within the 1σ contour regardless of the efficiency of
reheating, while Trajectory B is considerably more susceptible to being
possibly ruled out subject to the size of this unknown parameter.

ment’s sake. For the parameters considered this amounts to a different of 5 e-folds,

parametrising essentially our ignorance in how reheating post-processes the location

of the observable window.

One can see in Figure 4.14 that while DBI Trajectory A undergoes very little vari-

ation under a shift in the observable window, DBI Trajectory B undergoes a much

more significant decrease to as low as ns ≈ 0.94, which from the overlaid Planck

likelihood contours, we can see is comfortably (or perhaps uncomfortably) outside

of the 2σ bounds. While in both cases the tensor-to-scalar ratio remains trivially

unaffected, this large disparity in the behaviour of ns in the two examples reveals

that the stability of any prediction in this model is itself parameter-dependent and it

is difficult to hence address this question fully without a more comprehensive anal-

ysis of the large available parameter space. This particular example is most likely

due to the fact that in Trajectory A, γ is near-constant and ≈ 1 for a good while

before and during horizon-crossing, a small shift in its location has no drastic effects.

Meanwhile, as Trajectory B is constructed to allow a moderate change in γ across
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4.4. Non-Gaussianity

the N values in which observable scales are leaving the horizon, its steeper variation

over this interval means that a small shift in its location will have a pronounced

change in the γ and hence cs values determining the power spectra.

4.4. Non-Gaussianity

In contrast to the previous section, in which we numerically solved the first order

perturbation equations for disformally coupled inflation and used this to determine

the power spectra exactly, we will instead use approximate analytic methods in the

following analysis of the bispectrum produced by the model. This is primarily due

to the fact that to compute the non-Gaussianity/bispectrum, one needs to go to

second order in perturbation theory, rendering the unapproximated equations of

motion even more intractable and tedious to work with than the already rather

extensive first order equations (4.3.2 – 4.3.8).

Instead, we work directly with the third order action from which one can derive the

second order equations of motion. The derivation of even this is rather lengthy in

P (φI , XJK) theories, but has been done.212,233 We will only concern ourselves with a

subset of this action for which it has been argued the dominant contributions to non-

Gaussianity arise (that is, in an expansion of slow-roll and sound speed parameters,

they produce the leading order terms). In terms of Qφ and Qχ, the terms we would

in this sense be interested in, it turns out, would be223

L3 ⊃ a3gIJKQ̇
IQ̇JQ̇K + ahIJKQ̇

I∂iQ
J∂iQK . (4.4.1)

with

gIJK =
1

2
P<JK><AI>φ̇

A +
1

6
P<AI><BJ><CK>φ̇

Aφ̇Bφ̇C , (4.4.2)

hIJK = −1

2
P<JK><AI>φ̇

A . (4.4.3)

We refer to the first term, which itself consists of eight permutations of φ and χ

perturbations, as the kinetic vertices, and the second term’s eight contributions as
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4. Disformally Coupled Inflation

the gradient vertices to distinguish them in future discussion.

Once again, to properly quantise this system according to the discussion of Section

4.2.2, we want to rewrite this in terms of the (φ, θ) basis we defined previously. To

this effect, we perform the appropriate field redefinition QI = eII′Q
I′ using the form

of the e matrix given in Section 4.2.3 to obtain a new third order action in terms of

the canonical variables:

L3 ⊃ a3gI′J ′K′Q̇
I′Q̇J ′Q̇K′ + ahI′J ′K′Q̇

I′∂iQ
J ′∂iQK′ , (4.4.4)

where primed indices take values from (φ, θ) instead of (φ, χ) as usual, and we have

neglected new terms depending on the derivatives of e as these would contribute

at the next order in slow-roll, comparable to terms we have implicitly neglected

already. The coefficients in this new action take the form

fI′J ′K′ = eII′e
J
J ′e

K
K′fIJK , (f = g, h) . (4.4.5)

By direct inspection of the expressions for the coefficients in the third order ac-

tion, and noting that ∀ (A,B,C) , P<χχ><Aχ> = P<Aχ><Bχ><Cχ> = 0 as the La-

grangian contains terms of O((Xφχ)2) and O(Xχχ) but no higher orders, we can

immediately say that gθθθ = gχχχ = 0 and hθθθ = hχχχ = 0. This means that no

non-Gaussianity is generated at this order purely due to the field on the disformal

metric (i.e. 〈Qθ(k1)Qθ(k2)Qθ(k3)〉 ≈ 0), which is not unexpected as it is a canon-

ical field whose only abnormal feature is living on a metric which is dependent on

(derivatives of) φ. The non-zero terms at this order instead come from terms mixing

φ and χ due to their interactions (e.g. the motion of φ distorting the metric that

the otherwise canonical field χ feels), or purely from φ (which is non-standard in its

kinetic structure due to the presence of γ in the equation of motion).

130



4.4. Non-Gaussianity

4.4.1. Relating non-Gaussianity of fields to non-Gaussianity of

curvature

We can use the third order action in terms of Qφ and Qθ above to calculate three

point correlation functions of these Sasaki-Mukhanov variables. We can then relate

the three point correlation functions of the fields to that of the curvature perturba-

tion R using

〈R(k1)R(k2)R(k3)〉 = F 3
φ 〈Qφ(k1)Qφ(k2)Qφ(k3)〉+ F 2

φFθ 〈(Qφ)2Qθ〉

+ FφF
2
θ 〈Qφ(Qθ)2〉+ F 3

θ 〈Qθ(k1)Qθ(k2)Qθ(k3)〉 , (4.4.6)

where for convenience we have used the shorthands:

〈(Qφ)2Qθ〉 = 〈Qφ(k1)Qφ(k2)Qθ(k3)〉+ perms. , (4.4.7)

〈Qφ(Qθ)2〉 = 〈Qφ(k1)Qθ(k2)Qθ(k3)〉+ perms. , (4.4.8)

where ‘+perms.’ indicates the inclusion of similar terms with all distinct permuta-

tions of the momenta kn.

In this expression Fφ and Fθ are, loosely speaking, the coefficients of Qφ and Qθ in

the expression in eq. (4.3.1) relating R to these Sasaki-Mukhanov variables. More

concretely, however, we really want to work with a modified version of this expres-

sion which instead of expressing the curvature and field perturbations in terms of

each other at equal times, expresses the final curvature perturbation in terms of field

perturbations at horizon crossing where their behaviour is well understood analyt-

ically from solutions of the first order perturbation equations (see e.g. eq. (3.3.20)

and surrounding discussion). This involves making use of the transfer function for-

malism (Section 3.3.8) to parametrise the superhorizon evolution of the curvature

perturbation in terms of the transfer function TRS . We find, applying this, that the

derived coefficients we want are given by
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Fφ =
H

P<IJ>φ̇I φ̇J

[(
γd − γ2D

C
pχ

)
φ̇+ ATRS θ̇

]
, (4.4.9)

Fθ =
H

P<IJ>φ̇I φ̇J

[
C

γ
θ̇ − ATRS φ̇

]
, (4.4.10)

where A is given by223

A =
γ
(
γd − γ2D

C
pχ
)
φ̇

√
c

(θ)
s + Cθ̇

√
c

(φ)
s

γθ̇

√
c

(θ)
s − γφ̇

√
c

(φ)
s

. (4.4.11)

These derived coefficients are the ones appearing in the equal-time expression (4.3.1)

plus additional terms to handle the evolution R from horizon crossing to the end of

inflation. All of the quantities in these expressions are the horizon-crossing values

derived from background quantities at the time when k = aH, except for the trans-

fer function TRS which encodes the superhorizon evolution. This can be obtained

from our first order numerical simulations, as it is related to the ratio of the power

spectrum at the end of inflation and horizon crossing.

With these tools now in place to derive the appropriate non-Gaussianity in curvature

from the relevant field perturbations, we now turn our attention to the computation

of the three point functions of the fields.

4.4.2. Three point functions of the fields

Using the standard In-In formalism approach (3.3.61) and our third order La-

grangian (4.4.4), we can proceed to compute the contributions to the bispectrum by

computing a series of time integrals up until the end of inflation. As hinted above,

at this level of approximation we can treat g and h coefficients in the action as con-

stant, as their derivatives will be next order in slow-roll. We will work in conformal

time dt = a dη where the appropriate integration limits at this order are [−∞, 0].

We will compute the contributions to the three point functions from the kinetic and

gradient vertices separately and then sum them at the end.
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4.4. Non-Gaussianity

Additionally, to make numerical predictions, we need to choose a particular shape

of non-Gaussianity. For simplicity, we will be taking the equilateral configuration of

non-Gaussianity (k1 = k2 = k3) which has the constraint fNL = −4± 43. For other

configurations, effects such as modes crossing the horizon at different times216 can

complicate matters, and our goal here is not to investigate the effect of this more

general phenomenon, but instead how the parameters of disformally coupled inflation

influence the bispectrum. It is emphasised that this choice is not an implication that

the equilateral non-Gaussianity is the most significant or interesting for our model,

but instead just a minimal choice intended to disentangle our results from some of

the finer idiosyncrasies of non-Gaussianity which are not particular to our models.

To maintain some generality we will present first the results without specifying a

shape, but subsequently obtain the reduced expressions in the equilateral case for

later use.223

Kinetic Vertices

For convenience in calculating contributions term by term, we rewrite the kinetic

part of the third-order action (4.4.4), using the fact that gθθθ = 0 as we previously

found, as

L3 ⊃ a3gφφφ(Q̇φ)3 + a3(gφφθ + gφθφ + gθφφ)(Q̇φ)2Q̇θ + a3(gφθθ + gθφθ + gθθφ)Q̇φ(Q̇θ)2 .

(4.4.12)

Doing the integral in eq. (3.3.61) term by term, then, and beginning with the vertex

a3gφφφ(Q̇φ)3, we obtain a contribution to 〈Qφ(k1)Qφ(k2)Qφ(k3)〉 ,

〈Qφ(k1)Qφ(k2)Qφ(k3)〉 ⊃ (2π)3δ(k1 + k2 + k3)3gφφφH
5 1∏

k3
i

k2
1k

2
2k

2
3

K3
. (4.4.13)

With a3(gφφθ + gφθφ + gθφφ)(Q̇φ)2Q̇θ, we find
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〈(Qφ)2Qθ〉 ⊃ (2π)3δ
(∑

k
)

(gφφθ + gφθφ + gθφφ)H5k
2
1k

2
2k

2
3(cφs )2cθs∏
k3
i

(4.4.14)

×
[

1

(κφφθ)3
+

1

(κφθφ)3
+

1

(κθφφ)3

]
,

and finally, for a3(gφθθ + gθφθ + gθθφ)Q̇φ(Q̇θ)2, the result is

〈Qφ(Qθ)2〉 ⊃ (2π)3δ
(∑

k
)

(gφθθ + gθφθ + gθθφ)H5k
2
1k

2
2k

2
3(cθs)

2cφs∏
k3
i

(4.4.15)

×
[

1

(κφθθ)3
+

1

(κθφθ)3
+

1

(κθθφ)3

]
.

We have used the shorthands K = k1 + k2 + k3 and κIJK = cIsk1 + cJs k2 + cKs k3 in

these expressions.

Kinetic Vertices: Equilateral configuration Specialising to the equilateral con-

figuration where κIJK = k
(
cIs + cJs + cKs

)
and K = 3k, the three expressions above

reduce to

〈Qφ(k1)Qφ(k2)Qφ(k3)〉 ⊃ (2π)3δ
(∑

k
) 1

9
gφφφ

H5

k6
, (4.4.16)

〈(Qφ)2Qθ〉 ⊃ (2π)3δ
(∑

k
)

3(gφφθ + gφθφ + gθφφ)
H5

k6

(
(cφs )2cθs

(2cφs + cθs)
3

)
, (4.4.17)

and

〈Qφ(Qθ)2〉 ⊃ (2π)3δ
(∑

k
)

3(gφθθ + gθφθ + gθθφ)
H5

k6

(
(cθs)

2cφs

(2cθs + cφs )3

)
. (4.4.18)

Gradient Vertices

Again, decomposing the action into individual vertices for convenience, we have
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L3 ⊃ ahφφφQ̇
φ(∂Qφ)2 + a(hφφθ + hφθφ)Q̇φ∂iQ

φ∂iQθ + ahθφφQ̇
θ(∂Qφ)2

+ a(hθφθ + hθθφ)Q̇θ∂iQ
φ∂iQθ + ahφθθQ̇

φ(∂Qθ)2 . (4.4.19)

Once again, we methodically go through each term and compute the necessary

integral. For the vertex ahφφφQ̇
φ(∂Qφ)2 there is a contribution given by,

〈Qφ(k1)Qφ(k2)Qφ(k3)〉 ⊃ (2π)3δ
(∑

k
) hφφφH5

2(cφs )2

1∏
k3
i

1

K3
(4.4.20)

×
[
k2

1(k2 · k3)F1 + k2
2(k3 · k1)F2 + k2

3(k1 · k2)F3

]
,

while for ahφθθQ̇
φ(∂Qθ)2, one finds

〈Qφ(Qθ)2〉 ⊃ (2π)3δ
(∑

k
) hφθθH5

2

1∏
k3
i

cφs
(cθs)

2
(4.4.21)

×
[
k2

1(k2 · k3)
F φθθ

1

(κφθθ)3
+ k2

2(k3 · k1)
F θφθ

2

(κθφθ)3
+ k2

3(k1 · k2)
F θθφ

3

(κθθφ)3

]
.

Similarly, for ahθφφQ̇
θ(∂Qφ)2, there is the contribution

〈(Qφ)2Qθ〉 ⊃ (2π)3δ
(∑

k
) hθφφH5

2

1∏
k3
i

cθs

(cφs )2
(4.4.22)

×
[
k2

1(k2 · k3)
F θφφ

1

(κθφφ)3
+ k2

2(k3 · k1)
F φθφ

2

(κφθφ)3
+ k2

3(k1 · k2)
F φφθ

3

(κφφθ)3

]
.

For the vertex a(hφφθ + hφθφ)Q̇φ∂iQ
φ∂iQθ, the result is
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〈(Qφ)2Qθ〉 ⊃ (2π)3δ
(∑

k
) (hφφθ + hφθφ)H5

4

1∏
k3
i

1

cθs

×
[
k2

2(k3 · k1)F θφφ
2 + k2

3(k1 · k2)F θφφ
3

(κθφφ)3

+
k2

3(k1 · k2)F φθφ
3 + k2

1(k2 · k3)F φθφ
1

(κφθφ)3

+
k2

1(k2 · k3)F φφθ
1 + k2

2(k3 · k1)F φφθ
2

(κφφθ)3

]
, (4.4.23)

and finally, from the term a(hθφθ + hθθφ)Q̇θ∂iQ
φ∂iQθ we find

〈Qφ(Qθ)2〉 ⊃ (2π)3δ
(∑

k
) (hθφθ + hθθφ)H5

4

1∏
k3
i

1

cφs

×
[
k2

2(k3 · k1)F φθθ
2 + k2

3(k1 · k2)F φθθ
3

(κφθθ)3

+
k2

3(k1 · k2)F θφθ
3 + k2

1(k2 · k3)F θφθ
1

(κθφθ)3

+
k2

1(k2 · k3)F θθφ
1 + k2

2(k3 · k1)F θθφ
2

(κθθφ)3

]
. (4.4.24)

Gradient Vertices: Equilateral configuration Again, we specialise to the equilat-

eral case where the F objects can be simplified such that

F IJJ
n(eq) = F JIJ

n(eq) = F JJI
n(eq) =

[
(cIs)

2 + 10(cJs )2 + 6cIsc
J
s

]
k2 ,

F IIJ
n(eq) = F IJI

n(eq) = F JII
n(eq) =

[
6(cIs)

2 + 2(cJs )2 + 9cIsc
J
s

]
k2 ,

and Fn = 17k2 and the five above terms in the fields’ three point functions then

become

〈Qφ(k1)Qφ(k2)Qφ(k3)〉 ⊃ −(2π)3δ
(∑

k
) 17

36
hφφφ

H5

k6

1

(cφs )2
, (4.4.25)
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〈Qφ(Qθ)2〉 ⊃ −(2π)3δ
(∑

k
) 3

4
hφθθ

H5

k6

(
cφs
[
(cφs )2 + 10(cθs)

2 + 6cφs c
θ
s

]
(cθs)

2(2cθs + cφs )3

)
, (4.4.26)

〈(Qφ)2Qθ〉 ⊃ −(2π)3δ
(∑

k
) 3

4
hθφφ

H5

k6

(
cθs
[
(cθs)

2 + 10(cφs )2 + 6cφs c
θ
s

]
(cφs )2(2cφs + cθs)

3

)
, (4.4.27)

〈(Qφ)2Qθ〉 ⊃ −(2π)3δ
(∑

k
) 3

4
(hφφθ + hφθφ)

H5

k6

(
6(cφs )2 + 2(cθs)

2 + 9cφs c
θ
s

cθs(2c
φ
s + cθs)

3

)
,

(4.4.28)

〈Qφ(Qθ)2〉 ⊃ −(2π)3δ
(∑

k
) 3

4
(hθθφ + hθφθ)

H5

k6

(
6(cθs)

2 + 2(cφs )2 + 9cφs c
θ
s

cφs (2cθs + cφs )3

)
.

(4.4.29)

4.4.3. Total Non-Gaussianity

Aggregating the contributions calculated term by term from the third order action

in Section 4.4.2, our total three point functions for the fields in the equilateral

configuration at leading order are

〈Qφ(k1)Qφ(k2)Qφ(k3)〉 = (2π)3δ
(∑

k
) H5

k6

(
1

36

[
4gφφφ −

17hφφφ

(cφs )2

])
, (4.4.30)

〈(Qφ)2Qθ〉 = (2π)3δ
(∑

k
) H5

k6
× 3

4

s

(2 + s)3
(4.4.31)

×
[

4g1 − hθφφ
s2 + 6s+ 10

(cφs )2
− h1

2s2 + 9s+ 6

(cθs)
2

]
,
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〈Qφ(Qθ)2〉 = (2π)3δ
(∑

k
) H5

k6

3

4
× s̄

(2 + s̄)3
(4.4.32)

×
[

4g2 − hφθθ
s̄2 + 6s̄+ 10

(cθs)
2

− h2
2s̄2 + 9s̄+ 6

(cφs )2

]
,

where we have defined for convenience

g1 = gφφθ + gφθφ + gθφφ , g2 = gφθθ + gθφθ + gθθφ ,

h1 = hφφθ + hφθφ , h2 = hφθθ + hθφθ ,

s =
cθs

cφs
, s̄ =

1

s
.

with g and h coefficients as given in eq. (4.4.5). Using this, we can then evaluate

the expression for 〈R(k1)R(k2)R(k3)〉, given in eq. (4.4.6), using values from our

numerical integration of the background (and first order perturbations for TRS) and

in turn define an fNL value via comparison to eq. (3.3.60).

4.4.4. Results and Discussion

Finally, we present numerical results of the non-Gaussianity parameter fNL for the

five trajectories in Section 4.3.1 which were acceptable at the level of the power

spectrum predictions (hence, excluding Canonical Trajectory D which was chosen

to illustrate that excessive variation in γ produces too much scale dependence).

The obtained fNL values computed via the aforementioned method are compiled in

Table 4.1 alongside the power spectrum properties obtained previously for the sake

of comparison.222,223

We see that, given the present experimental bounds of fNL = −4±43 on equilateral

non-Gaussianity, it is only Canonical Trajectory C that is strictly and unambigu-

ously ruled out. Meanwhile, Canonical Trajectory A is within these 1σ bounds

but of a similar order to the present error in the constraint, making it likely that

even moderate future tightening of this bound will rule it out. The remaining three
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Table 4.1.: The calculated equilateral non-Gaussianity (fNL) as well as the ampli-
tude (As), tilt (ns), tensor-to-scalar-ratio (r), running (αs) and running
of the running (βs) for the studied trajectories of disformally coupled
inflation

Trajectory 109As ns 104αs 104βs 103r fNL
Canonical A (Fig. 4.1) 2.12 0.961 -5.3 1.8 17 -29.5
Canonical B (Fig. 4.2) 2.15 0.968 7.1 -0.21 31 -0.33
Canonical C (Fig. 4.3) 2.15 0.967 12 -11 1.2× 10−6 −2.4× 106

DBI A (Fig. 4.5) 2.14 0.965 2.4 2.1 7.2 -0.59
DBI B (Fig. 4.6) 2.14 0.973 -59 -0.64 2.0 0.88

trajectories predict fNL values of around O(1) and are hence more feasible and

harder to speculate about the validity of with the present data. Nevertheless, these

non-Gaussianities are still rather pronounced compared to the typical O(ε)� 1 non-

Gaussianities in simplistic single-field models, which is not unexpected considering

the presence of many factors generally capable of enhancing it above this level.

While we have not conducted a general trajectory-independent analysis of these

results, which would be rather involved given the number of free parameters, we

have examined the fNL values for a subset of possible trajectories which have been

selected by their compatibility with experimental constraints at the level of the power

spectrum. We can also make further remarks based on the qualitative dependence

of fNL and parameters like the sound speeds and the transfer function, and use

these to understand the possible variations in outcomes that we have observed and

tabulated.

First, we note that while the five examples we have given here all produce negative

fNL, we have no reason from the structure of the analytical results to believe that

this should be guaranteed, though this could be taken as evidence that it is at least

unlikely.

By inspecting eqs. (4.4.30 – 4.4.32), we see that the typical relationship of fNL ∝ c−2
s

is still present. Various terms in the total non-Gaussianity depend in this way on

each of the sound speeds in the model separately, and so one or both of them being

large may still typically be expected to amplify fNL, though the presence of two

sound speeds complicates this. This is not an unexpected generalisation of the

well-studied case of how non-Gaussianities depend on a single sound speed (either
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4. Disformally Coupled Inflation

in single- or multi-field models). This also presents a reason as to why Canonical

Trajectory C possesses such a prominent bispectrum, as it is in this trajectory where

cI
′
s � 1, though we note that given the actual values of the sound speeds at horizon

crossing that this only accounts for a factor of enhancement of O(104) in fNL and

other effects must also be present to make it quite so large.

As well as the individual sound speeds, the ratio of the two sound speeds appears

explicitly in the results (4.4.31) and (4.4.32), which give the contributions to the

three point function involving both φ and θ perturbations. This is an effect arising

purely from the presence of two different sound speeds, which as discussed is one of

the key novel features of disformally coupled inflation. While it is hence interesting to

point this out, we do not however find any evidence for this significantly influencing

the results of the trajectories studied; the sound speeds remain either nearly equal or

at best different by an O(1) factor in these examples. In principle, though, changing

the ratio of the sound speeds could shift which terms and which contributions are

important in deciding the value of fNL, leading to several different regimes where

the dominant effects differ. In the case we have here, though, with nearly equal

sound speeds, the three point functions are approximated by

〈(Qφ)2Qθ〉 = (2π)3δ
(∑

k
) H5

k6

(
1

36

[
4g1 −

17(hθφφ + hφθφ + hφφθ)

c2
s

])
, (4.4.33)

and

〈Qφ(Qθ)2〉 = (2π)3δ
(∑

k
) H5

k6

(
1

36

[
4g2 −

17(hθθφ + hθφθ + hφθθ)

c2
s

])
. (4.4.34)

Note that the approximate condition we derived in eq. (4.2.29) for there to be a

significant difference in the sound speeds reveals that to robustly achieve a significant

difference between the two sound speeds it would be desirable to investigate scenarios

where the χ field rolls quickly, which could pave the way to interesting results in

this direction.
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4.4. Non-Gaussianity

Another factor of importance is the entropy-adiabatic power transfer encoded by

TRS . In a situation where the final curvature power spectrum is mostly of entropic

origin (TRS � 1), noting that 〈R(k1)R(k2)R(k3)〉 ∝ F 3
I′ and FI′ ∝ TRS in this limit

due to eq. (4.4.9), we would expect 〈R(k1)R(k2)R(k3)〉 ∝ T 3
RS and hence from eq.

(3.3.60)

fNL ∼
〈R(k1)R(k2)R(k3)〉

P2
R

∝ T 3
RS

(1 + T 2
RS)2

∼ T −1
RS . (4.4.35)

This is particularly relevant, we find, for DBI Trajectory A, where the superhorizon

evolution of the sound speeds is relatively pronounced compared to other trajectories

and leads to a large TRS ≈ 100 that dominates the F coefficients as described

above. This helps explain why this particular case exhibits a fairly small fNL.

Large TRS is also conducive to a small r, so one may expect these two quantities

to correlate somewhat for spectra of highly entropic origin. The transfer function

is also O(102) in Canonical Trajectory C, however because γ is also O(102), the

coefficients FI′ ∝ γ2 � TRS are not dominated by superhorizon effects and instead,

in this case, one can show that

fNL ∝ γ6T −4
RS , (4.4.36)

which also helps explain the size of fNL in Trajectory C.

In summary there are many effects in play in determining the value of fNL and for

many trajectories a simple appeal to the values of cs or TRS does not alone explain

these values. Depending on the relative size of these quantities, the size of disformal

factors like γ and D (influencing FI′ and the g and h coefficients) and the ratio

of the two sound speeds, the dominant term or terms in 〈R(k1)R(k2)R(k3)〉 may

differ greatly from example to example, creating some difficulty in making widely

general statements about the results. Nonetheless, the sample of trajectories we

have studied give us considerable hope that O(1) non-Gaussianities may not be

excessively rare in the regions of parameter space of the model where a feasible

PR is produced, with the main counterexample being the rather non-conventional

Canonical Trajectory C.
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4. Disformally Coupled Inflation

Finally, we conclude this chapter by noting that in this, we ignore the possibility

that post-inflationary persistence of isocurvature perturbations could influence the

processing of fNL during reheating and hence technically change the mainstream

Planck constraints which do not account for such specific effects. Future work on

further understanding this would also be of potential interest.
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CHAPTER 5

INFLATION AND THE

GAUSS-BONNET TERM

The Gauss-Bonnet term is introduced in Section 2.2.4 as a modification of gravity

motivated by its status as a special combination of quadratic curvature scalars which

avoids the generation of unstable extra degrees of freedom often associated with such

theories. This chapter will detail the original work in this area by the author in

collaboration with Carsten van de Bruck, Konstantinos Dimopoulos and Charlotte

Owen, leading to a number of papers187,250,251 in Physical Review D.

5.1. Dynamics of the Gauss-Bonnet-coupled inflaton

We begin by stating the action of a Gauss-Bonnet coupled inflaton field as

S =
M2

Pl

2

∫
d4x
√−g [R−G(φ)EGB]−

∫
d4x
√−g

[
1

2
(∂φ)2 + V (φ)

]
, (5.1.1)

where EGB = R2−4RµνRµν+R
ρµσνRρµσν is the Gauss-Bonnet (GB) term. Compared

to eq. (2.2.16) where we introduced this earlier, we have explicitly reinstated a factor

of M2
Pl in the action to make clear the dimensionality of the coupling function G;
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5. Inflation and the Gauss-Bonnet term

as we have chosen to include the GB term in the gravitational part of the action

proportional to M2
Pl alongside the usual Ricci term, G must have a mass dimension

of -2 to maintain the dimensionlessness of the action. Meanwhile the second term

of the action just contains the normal scalar field terms. Varying this total action

then gives us explicit equations of motion for the field and scale factor on an FRW

background:

3M2
PlH

2 =
1

2
φ̇2 + V (φ) + 12M2

PlH
3Ġ , (5.1.2)

2M2
PlḢ = −φ̇2 + 4M2

PlH
2(G̈−HĠ) + 8M2

PlHḢĠ , (5.1.3)

φ̈+ 3Hφ̇+ V,φ + 12M2
PlH

2G,φ(Ḣ +H2) = 0 . (5.1.4)

Compared to the standard cosmological equations for a scalar field, several extra

interesting features are present. It is clear that the equations of motion depend only

on derivatives of G. This is expected as the GB term is by construction a total

derivative in 4D and therefore only significant if a non-constant coupling function is

present. Additionally, various complications arise due to the more complex structure

of the system. In particular, the first Friedmann equation is no longer quadratic in

H but cubic instead, making its solution less trivial. Futhermore, the generalised

Klein-Gordon equation now depends on Ḣ and the gravitational field equation for

Ḣ similarly depends on φ̈ via G̈ = φ̈ G,φ + φ̇2G,φφ. Given this mixing of terms, it is

useful to recast the two equations (5.1.4) and (5.1.3) in matrix form

M11 M12

M21 M22

Ḣ
φ̈

 =

V1

V2

 , (5.1.5)

with
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5.1. Dynamics of the Gauss-Bonnet-coupled inflaton

M11 = 2M2
Pl

(
1− 4HĠ

)
,

M12 = −4M2
PlH

2G,φ ,

M21 = −3M12 ,

M22 = 1 ,

V1 = −4M2
PlH

3Ġ−
(
1− 4M2

PlH
2G,φ,φ

)
φ̇2 ,

V2 = −12M2
PlH

4G,φ − 3Hφ̇− V,φ ,

such that one can easily solve for Ḣ and φ̈ simultaneously by inverting the matrix

of M coefficients. Note that when G is constant or zero and the GB coupling is

resultantly inert, the matrix in question becomes diagonal, leaving the solution of

the system obtainable via more straightforward means as usual. Before going on to

study this system further, however, it will be useful to note some subtleties involved.

5.1.1. Gauss-Bonnet and Conformal Transformations

While the GB coupling is a well-motivated modification of gravity from the per-

spective of effective field theory as it is the simplest way of stably adding terms

quadratic in curvature to GR, similar considerations would suggest that one could

also expect a scalar coupling to the Einstein Hilbert term in such scenarios. In fact,

it is found that such an F (φ)R coupling between a scalar and gravity is generated

from quantum field effects in a curved background even if it is not explicitly in-

cluded in the classical theory.87 This is one of the key ideas in theories like Higgs

Inflation83,84,96,252–255 which uses such a non-minimal coupling between gravity and

the standard model Higgs field h, typically with F (h) = 1 + fh2. This is interesting

because the Higgs field does not possess a suitable flat potential to drive inflation

usually, but the effect of this coupling to gravity is to alleviate this problem at large

h such that a period of inflation can be driven in the early universe before the usual

Higgs physics are recovered at small h, when F ≈ 1, so as to reconcile with usual

particle physics.
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5. Inflation and the Gauss-Bonnet term

In such F (φ)R theories, one typically uses a conformal transformation (2.2.9) to

put the theory in the so-called Einstein Frame (EF) where on a rescaled metric the

action looks like a minimally coupled scalar field again as in eq. (2.2.11), albeit

with a different potential. This procedure is, however, problematic when additional

terms are present in the action, such as in our case with the GB coupling. If one

were to consider a theory contain both the F term and the G term, one could not

simply conformally transform the F term away without causing the GB term to also

transform and generate some new terms in the action, conversely rendering it even

further from the appearance of a minimal scalar-tensor theory.

To see this, note that under a conformal transformation as in eq. (2.2.9), the specific

behaviour of the Gauss-Bonnet term EGB (in d dimensions for generality’s sake) is90

EGB → e−4A
{
EGB − 8(d− 3)Rµν (A;µA;ν − A;µ;ν)− 2(d− 3)R

(
2�A+ (d− 4) (∇A)2)

+ 4(d− 2)(d− 3)
[
(�A)2 + (d− 3) (∇A)2 (�A)

]
− 4(d− 2)(d− 3) (A;µ;νA

;µ;ν − 2A;µ;νA
;µA;ν)

+ (d− 1)(d− 2)(d− 3)(d− 4) (∇A)4
}
, (5.1.6)

In particular we note from this that the full transformed action with both an F

and a G term would contain things like (now returning to units where MPl = 1 for

brevity)

S ⊃
∫
ddx
√−g

{
Fe(d−2)A + 4Ge(d−4)A (�A)

}R
2

(4D)
=

∫
d4x
√−g

{
Fe−2A + 4G (�A)

}R
2
. (5.1.7)

This evidently complicates the usual process of making a choice A(φ) such that the

coefficient of R/2 is 1, particularly as the above expression includes objects such as

(�A). Additional terms such as
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5.1. Dynamics of the Gauss-Bonnet-coupled inflaton

S ⊃
∫
ddx
√−g

[
4(d− 3)e(d−4)AGRµν (A;µA;ν − A;µ;ν)

]
(4D)
=

∫
d4x
√−g [4GRµν (A;µA;ν − A;µ;ν)] . (5.1.8)

are also generated, and while these are all terms that are encompassed in the class

of Horndeski scalar-tensor theories, it is comparatively easier to just remain in the

Jordan Frame with action

S =

∫
ddx
√−g

[
1

2
F (φ)R− 1

2
(∂φ)2 − V (φ)− 1

2
G(φ)EGB

]
, (5.1.9)

and equations of motion

3H2(F − 4HĠ) =
1

2
φ̇2 + V (φ)− 3HḞ , (5.1.10)

2(F − 4HĠ)Ḣ = −φ̇2 − F̈ +HḞ + 4H2(G̈−HĠ) , (5.1.11)

φ̈+ 3Hφ̇+ V,φ − 3(Ḣ + 2H2)F,φ + 12H2G,φ(Ḣ +H2) = 0 . (5.1.12)

With this we can now generally treat cases where both F and G are important.

Generalising the above matrix method (5.1.5) for determining Ḣ and φ̈ in these

coupled equations (5.1.11) and (5.1.12) we find the coefficients should now take the

form

M11 = 2
(
F − 4HĠ

)
,

M12 = F,φ − 4H2G,φ ,

M21 = −3M12 ,

M22 = 1 ,

V1 = H
(
Ḟ − 4H2Ġ

)
−
(
1 + F,φ,φ − 4H2G,φ,φ

)
φ̇2 ,

V2 = 6H2
(
F,φ − 2H2G,φ

)
− 3Hφ̇− V,φ .
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5. Inflation and the Gauss-Bonnet term

One application of this in particular is to study an F (φ)R theory like Higgs inflation

with higher order corrections coming from a GB coupling.250 We keep this motivation

in mind as we proceed to derive results for this model in the next section.

5.1.2. Slow-roll power spectra

When considering theories with extra free functions or non-constant couplings, the

slow-roll formalism is typically modified to include conditions on the rate of change

of these objects in addition to the usual εn parameters in eq. (3.2.20). This is

because if a function of the field grows too rapidly, this in turn implies that the

field is growing rapidly enough that the slow-roll conditions would be violated at

some order anyway. More practically speaking, it is useful to re-express equations

of motion and other expressions in terms of analogues of the εn parameters so that

an order-by-order expansion can be systematically carried out. To this end, we

mimic the definition of the εn parameters in eq. (3.2.20) and define, first, slow-roll

parameters derived from our non-minimal coupling function F

ζ0 =
Ḟ

HF
, ζn =

ζ̇n−1

Hζn−1

, (5.1.13)

where the slow-roll condition is, as usual, ζn � 1. These ζn are interpretable as

close relatives of the normal slow-roll parameters in the Jordan Frame, as we note

that (in a theory with G = 0, for the moment) one finds that

ε0 ≈
φ̇2

2H2F
+

F̈

2H2F
− Ḟ

2HF
, (5.1.14)

which makes it clear that objects like ζ0 = Ḟ /(HF ), up to O(1) factors, must

be kept small if the principle slow-roll parameters are to remain acceptably small.

This is a similar approach to that taken by work in the literature91,95 on the topic of

inflationary calculations directly in the JF. Similarly, work on Gauss-Bonnet coupled

fields in the literature256 has on similar grounds defined slow-roll parameters derived

from the function G coupled to a field in the EF such as

δ0 = 4ĠH , δn =
δ̇n−1

Hδn−1

, (5.1.15)
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again, with δn � 1. However, our situation is slightly different in that we couple the

Gauss-Bonnet term directly to the Jordan Frame field, not the Einstein Frame field,

which as demonstrated by the above excursion into the nature of the GB term’s

conformal transformation, is a distinct theory. To see clearly the implications of

this, we again move to compute ε0 from eqs. (5.1.10 – 5.1.12) to find

ε0 =
φ̇2

H2F
+ F̈

H2F
− Ḟ

HF
− 4(G̈−HĠ)

F

2
(

1− 4HĠ
F

) . (5.1.16)

Note particularly that it is the combination δ0/F = 4HĠ/F rather than δ0 by itself

that appears in the resulting expression. From this, one might posit that the more

appropriate slow-roll parameter for a GB-coupled field in the Jordan Frame is this

combination which we will call ∆0 = δ0/F with the usual recursive extension to

higher orders, explicitly:

∆0 =
δ0

F
=

4HĠ

F
, ∆n =

∆̇n−1

H∆n−1

. (5.1.17)

And indeed, if we now express some useful quantities in terms of the principle slow-

roll parameters εn , the JF slow-roll parameters ζn and these new Jordan Frame

Gauss-Bonnet slow-roll parameters ∆n, we find, for example, that

φ̇2 = H2F

[
2ε0 + ζ0 −∆0 − ζ0 (ζ1 + ζ0 − ε0) + ∆0 (∆1 + ζ0 − ε0)

]
, (5.1.18)

V (h) =
H2F

2

[
6− 2ε0 + 5ζ0 + ∆0 + ζ0 (ζ1 + ζ0 − ε0)−∆0 (∆1 + ζ0 − ε0)

]
.

(5.1.19)

We see, then, that not only do the ∆n parameters more appropriately capture the

conditions for which the expansion of space is inflationary via their appearance in eq.

(5.1.16) when considered in the Jordan Frame, but also that they appear on equal

footing with the εn and ζn parameters, rather than appearing with an extra factor

of F . Due to this, we consider it the most appropriate analogue of the conventional

slow-roll parameters to use in what follows.
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We also note that from eq. (5.1.10) it is clear that ∆0 is also interpretable as the

density parameter associated with the GB-coupling’s contribution to the energy

content of the universe, ΩGB, as we can write the Friedmann equation in the form

Ωφ + ∆0 = 1.

We will now proceed to study the perturbation equations in this system

Scalar Perturbations

A careful study of the perturbation equations yields an equation of motion which

can257,258 be written in a form analogous to that shown in eq. (3.3.19)

v′′k +

[
c2
sk

2 − z′′s
zs

]
vk = 0 , (5.1.20)

where v = zsR/cs. The expression for the sound speed in this model, in terms of

the coupling functions F and G, is

c2
s = 1 + 4Ġ

1
2

(
Ḟ−4H2Ġ
F−4HĠ

)2 (
G̈
G
−H − 4Ḣ F−4HĠ

Ḟ−4H2Ġ

)
φ̇2 + 3

2

(Ḟ−4H2Ġ)
2

F−4HĠ

, (5.1.21)

and as in the standard case (3.3.19) we can still express the quantity zs in terms of

a via zs = a
√
Qs. The function Qs is then given by

Qs =
φ̇2 + 3

2

(Ḟ−4H2Ġ)
2

F−4HĠ(
H + 1

2
Ḟ−4H2Ġ
F−4HĠ

)2 . (5.1.22)

It is clear that both of these expressions reduce to the standard case when the

new couplings are trivial or neglected. Continuing to follow the logic presented in

Chapter 3, we see that the power spectrum of curvature perturbations would be

PR =
k3

2π2

∣∣∣∣csvkzs
∣∣∣∣2 . (5.1.23)

Following an application of the slow-roll approximation to find that

Qs =
FA(

1 + 1
2
x
)2 , (5.1.24)
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and

c2
s = 1 +

xB

2A
, (5.1.25)

where A, B and x are the following combinations of slow-roll parameters

A = 2ε0 + ζ0 −∆0 − ζ0 (ζ1 + ζ0 − ε0) + ∆0 (∆1 + ζ0 − ε0) +
3

2
(ζ0 −∆0)x , (5.1.26)

x =
ζ0 −∆0

1−∆0

. (5.1.27)

B = ∆0 (4ε0 − x+ x [∆1 + ζ0 + ε0]) , (5.1.28)

we can arrive at the expression, correct at leading order in slow-roll, for the power

spectrum

PR ≈
H2

4π2F |2ε0 + ζ0 −∆0|
, (5.1.29)

which yields a spectral index

ns = 1− 2ε0 −
2ε0 (ζ0 + ε1) + ζ0 (ζ0 + ζ1)−∆0 (ζ0 −∆1)

2ε0 + ζ0 −∆0

. (5.1.30)

Note that for F = 1 and ζ0 = ∆0 = 0 , these reduce to the standard case derived in

Chapter 3 as one would expect. It is also interesting to note that, despite the usual

result that PR ∝ c−1
s (3.3.58), eq. (5.1.25) shows in our case that c2

s = 1 + O(ε2).

Note that this arises because A and x are O(ε) and B = O(ε2). As a result, at

leading order, cs will not appear in the power spectrum.1 The main source of slow-

roll-level deviation from the standard spectrum is therefore the effect of the F and

G couplings on zs which in turn sets the effective mass of the perturbations in eq.

(5.1.20).

As in the standard case, slow-roll GB coupled inflation predicts an O(ε) deviation

1We use O(ε) to refer in brief to a term’s order in all slow-roll parameters such as ζn and ∆n, not
just strictly the εn functions.
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from a scale invariant curvature power spectrum and hence is a feasible model of

inflation from this perspective.

Tensor Perturbations

The tensor perturbations also do not follow the standard results of Chapter 3 as

we have a non-minimal gravity sector due to the presence of the GB term. This

modifies the perturbation equation for gravitational waves such that the canonical

variable u obeys257,258

u′′k +

[
c2
tk

2 − z′′t
zt

]
uk = 0 , (5.1.31)

where now we have a ct 6= 1 representing the possibility that gravitational waves

may not travel at the speed of light, and zt = a
√
Qt. Here, Qt depends on the scalar

field and its coupling functions, because the dynamics of the gravitational waves are

affected by not just the expansion of space (as in the minimal case of Chapter 3

where z = a) but also details of the field theory due to the non-minimal coupling;

this is not General Relativity. In particular, we have for this theory that

c2
t =

F − 4G̈

F − 4HĠ
, (5.1.32)

and

Qt = F − 4HĠ . (5.1.33)

The slow-roll expansions of these objects are then

Qt = F (1−∆0) , (5.1.34)

and

c2
t =

1−∆0 (∆1 + ζ0 + ε0)

1−∆0

. (5.1.35)

We can then use eq. (3.3.27) and these expansions to express the tensor-to-scalar

ratio (at leading order in slow-roll such that sound speeds, which deviate from unity
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at second order, do not appear) for GB coupled inflation in the Jordan Frame as

r ≈ PTPR
= 8×

∣∣∣∣Qs

Qt

∣∣∣∣ = 8
2ε0 + ζ0 −∆0

1−∆0

. (5.1.36)

The role of the GB term here is particularly interesting as it can, for particular ∆0

values at horizon crossing, suppress the tensor-to-scalar ratio below that of minimal

slow-roll inflation.

It is also interesting at this point to consider the tensor spectral index, found to be

nt = −2ε0 − ζ0 , (5.1.37)

as this does not obey the usual consistency relation discussed in Chapter 3, that

is r 6= −8nt due to the absence of a leading order GB contribution in nt. This

also occurs when the GB term is coupled to a scalar in the Einstein Frame,256

but from these expressions clearly does not occur when considering an otherwise-

minimal scalar in the Jordan Frame. This is an interesting signature of GB physics

during inflation, and the exact amount of departure from r = −8nt could be used

to measure ∆0 (and hence the density parameter ΩGB), given reasonably precise

experimental values of nt and r.

5.2. Effects on the end of inflation and reheating

We now move forward to complementing the former discussion of inflationary per-

turbations with a look at what happens as inflation ends in this class of theories. For

much of what follows it will help to assume some particular form for the couplings

to facilitate numerical evaluation. To that effect, we note that within the literature

on GB-coupled inflation,256 common choices of the functions V and G are power

laws such as

V (φ) = V0φ
n , G(φ) = G0φ

−g , (5.2.1)

are found. Both n and g are taken to be positive, possibly equal, and often integers,

such that the Gauss-Bonnet coupling is a negative power law and the potential is a
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conventional positive power law of the kind discussed at length in Chapter 3. This

is also partly motivated by the dimensions of these functions in the action; V must

have a mass dimension of positive 4 while G’s is negative 2. When studying such

positive/negative power law forms for V and G, a useful quantity to define is

α =
4V0G0

3
. (5.2.2)

This is essentially a rescaling of G0 by a convenient factor that appears in many

derivations and often has a simple and pleasant value in physically-relevant cases,

as we will soon see. We could also see how α appears in the results of the previous

section by specialising to these specific functions (and assuming F ≈ 1), where we

would find that e.g. r ∝ (1 − α), revealing that the tensor-to-scalar ratio is most

strongly suppressed when α ∼ G0V0 ∼ O(1). This is interesting as a minimal power-

law potential model has been shown to exceed the constraints on r by itself, but

this could be ameliorated by choosing a sufficiently large G0 (α).

A minimal choice for F (φ) that we will also assume when needed is F = 1 +

fφ2, with positive f assumed as this ensures the reality and positivity of quantities

like a and H, which should remain such in the name of physical sensibility. This

choice is simple, but additionally motivated by Higgs inflation and curved space

renormalisation of a scalar field as mentioned before. It is also a decent prototype

for many types of coupling as the leading order expansion of a function around a

minimum.

5.2.1. Late time behaviour of the Gauss-Bonnet coupled inflaton

The full system of equations given above is rather complicated, and so to get a

first impression of the behaviour of the system it is convenient to look towards

a numerical solution. This reveals something striking; as shown in an example in

Figure 5.1, the presence of the GB coupling (while neglecting F for now) inhibits the

end of inflation.259 We see the usual late-time behaviour of the field settling into its

potential minimum when α = G0 = 0, but when α = 0.5 (or generally 0 < α < 1) we

instead see the field asymptotically approach the minimum as if heavily damped, not
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5.2. Effects on the end of inflation and reheating

even beginning to oscillate. Correspondingly, it is shown that ε0 tends to a constant

in the same limit.187,250 Qualitatively, we observe in simulations that a smaller α

corresponds to a larger final ε0, but it always remains below 1 and hence does not

ever represent the termination of inflationary expansion. Using the equations of

motion, we can say that when ε0 is constant, the GB slow-roll parameter δ0 obeys

to a good approximation

δ0 (t→∞) ≈ 2ε0
1 + ε0

, (5.2.3)

and will hence also be constant. We also note that as α increases towards 1, the

constant value that ε0 approaches tends to 0, representing a perfect exponential

expansion with a constant potential (and hence constant field), as shown in the

figure. To understand these observations analytically, we consider that when ε0

is well approximated by a constant value, the evolution of the Hubble parameter

implied by the definition of the slow-roll parameter is

Ḣ = −ε0H2 ⇒ H(t) = (c+ ε0t)
−1 , (5.2.4)

for some constant of integration c depending on the initial conditions. From the

Friedmann equation, we can then say that the field’s evolution should obey

φ(t) =

(
βn

V0

) 1
n

(c+ ε0t)
− 2
n , (5.2.5)

where β is a shorthand for the combination of slow-roll parameters given by an

expansion of V/H2 as in eq. (5.1.19), and hence effectively a constant in this regime.

This is in good agreement with the numerics shown in Figure 5.1.

Note that this behaviour is not captured at any order in a slow-roll expansion. The

leading order slow-roll expansion, for example, predicts ε0 ∝ φ−2 and hence would

predict that for small enough φ, inflation would always end. This detail is missed by

much of the pre-existing literature on this topic. Only by analysing the equations of

motion exactly - not perturbatively in slow-roll parameters - does one unveil the true

behaviour of a gradual descent towards zero, when 0 < α < 1. Mathematically, this

is related to the fact that the GB coupling diverges at φ = 0. As the GB coupling
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Figure 5.1.: Evolutions of φ and ε0 in cosmic time for different given α values. Pa-
rameters are n = g = 2 and V0 = 3× 10−11. When α = 0 (solid, green)
standard inflation proceeds and ends (as ε0 > 1 eventually). On the
other hand, when α = 0.5 (blue, dashed), as stated in the main text,
ε0 takes a constant value at late times, and φ asymptotically tends to
0. Inflation continues forever. Lastly, for α = 1 (red, dotted), φ is held
constant at its initial condition and ε0 ≡ 0.

grows larger and larger with φ′s descent towards 0, this influences the dynamics in

such as way as to never let φ reach 0, slowing down the field and damping its usual

oscillatory behaviour strongly.

It is also worth noting that for α > 1 in this case (though not when the F coupling

is also taken into account as will be shown later), the expansion of the universe is

non-inflationary and the field rolls up its potential instead of down, making this

case of little interest for present purposes. We are however still interested in exactly

α = 1, also shown in Figure 5.1, where the field freezes at its initial value and the

slow-roll parameter is identically zero for all time. This, in contrast to the constant

but non-zero ε0 discussed above for intermediate α, is captured by slow-roll analysis

which predicts ε0 ∝ (1 − α). Analysis of the equation of motion in the limit of

φ̇ = φ̈ = 0 unveils that the constraint equation for a constant field in terms of the

coupling functions is

V,φF
2 − 2V FF,φ +

4

3
V 2G,φ = 0 , (5.2.6)

Using the forms of these functions described earlier in this section, and specialising
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to an n = 4 potential for argument’s sake (the JF Higgs potential is approximately

this at early times), this reduces to

1 + fφ2 +
αg

4
φg+4 = 0 . (5.2.7)

When g = 0 (corresponding to a constant and therefore trivial GB coupling) and

f ≥ 0, this has no real solutions, indicating the field cannot just freeze in place

as expected. A particularly straightforward case to study further is when g = −4,

though much of the following discussion is found numerically to still qualitatively

apply, this is by far the easiest case to see why it works analytically. In this case,

we have

1 + fφ2 − α = 0 . (5.2.8)

That is, when f = 0, the field can only remain constant when α = 1 (confirming

the above result), but when f 6= 0 this has more possible solutions. One finds that

the field can then freeze at a constant value of

φ =

√
α− 1

f
, (5.2.9)

such that if α ≥ 1 the field will be able to freeze with a positive f . We see this new

behaviour in Figure 5.2.

It is interesting that the presence of the F (φ) coupling function enriches the phe-

nomenology of the GB coupled inflaton. Now, α > 1 does not preclude inflation

from occurring and essentially, alongside the parameter f , allows one to build a

model that approaches and freezes at any φ value, while the α = 1, f = 0 model in

Figure 5.1 remains frozen at the initial condition only. It is confirmed by numerical

simulations that for a wide range of parameters, the field will approach the value

predicted by eq. (5.2.9) and stabilise at it regardless of initial condition; the field

will even increase from its initial condition to do this if necessary. Additionally, the

transition between the early time behaviour and the late time freezing is less smooth

when f 6= 0 as we observe in Figure 5.2 a local bump-like feature in the trajectory

of ε0 around N = 60− 70 in the two α 6= 0 cases.
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Figure 5.2.: Numerical solutions of φ and ε0 as a function of e-fold number N , with
F = 1 + fφ2 and f = 17367.233. The GB coupling is an inverse power-
law (g = −4) while the potential is quartic. Parameters are chosen
to mimic Higgs inflation specifically. The solid-green line corresponds
to α = 0 (standard inflation) and is shown for comparison with the
other trajectories with non-trivial Gauss-Bonnet effects. Of these, the
blue-dashed line has α = 0.25 and shows late-time constant ε0 as in the
previously discussed case, while the purple-dotted line has α = 2.5 which
causes the scalar field to behave as a constant at late times. Finally, we
see that this last trajectory also approaches the field value predicted by
eq. (5.2.9) of ≈ 0.0093

This type of behaviour is not unique to (inverse) power law functions and is generally

expected to occur whenever the GB coupling becomes large as the field rolls down

its potential. Note for example that with exponential forms of the potential and GB

coupling,

V (φ) = V0e
pφ , G(φ) = G0e

−qφ , (5.2.10)

that the solution of eq. (5.2.6) is found for p 6= q to be

φ =
1

q − p ln

(
4qV0G0

3p

)
, (5.2.11)

and that numerically, late-time freezing of the field occurs (e.g. this possible solution

is the one chosen by the dynamics) when q is sufficiently larger than p (typically

q/p & 2 is sufficient, making the prefactor in the above expression negative). For

these potentials, the field rolls down its exponential potential indefinitely, rather
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than towards a minimum, but once it has done so sufficiently, the GB coupling be-

comes exponentially large as the potential declines, and the same kind of impedance

seen in the power law case is exhibited. The argument of the logarithm in the above

expression can be considered the equivalent of the α parameter defined for the power

laws (5.2.1), so we define

α∗ =
4qV0G0

3p
(5.2.12)

and it is simple to see that when q > p, α∗ > 1 corresponds to the field freezing at

positive values and α∗ < 1 to negative values. While the particulars vary depending

on the precise forms of the functions, we see that a shrinking potential and quickly

growing GB coupling are a recipe for inhibition of the inflaton’s motion.

5.2.2. Implications for reheating

Of course, the lack of an end to inflation spells doom for the prospects of conventional

reheating. Without oscillations about the minimum of the potential, perturbative

reheating and parametric resonance will not be able to proceed. Worse yet, there is

little to no hope of successfully achieving reheating via e.g. instant preheating either.

To see this, consider eq. (3.2.67). For the power law coupling case described above,

φ → 0, so the final density produced by instantaneous non-perturbative particle

production would, with an interaction Lagrangian ∝ λ2φ2χ2, be

ρχ →
λ5/2|φ̇|3/2φ=νν

8π3
. (5.2.13)

Even assuming an optimistic set of parameters with λ = O(1) and ν = O(1), using

some typical numerical results from the simulations we previously carried out would

suggest that φ̇φ=ν ≈ 10−7 and therefore ρφ ≈ O(10−13) which is comparable to the

final inflation density ρφ also observed numerically. Now, unlike in the conventional

case where the inflaton becomes kinetically-dominated and scales in density as a−6,

allowing the decay products χ to come to dominate as they scale as a−3 or a−4

instead, here the inflaton behaves differently. For a constant ε0, one can show that

the inflaton will scale as a−2ε0 , and ε0 < 1, such that the inflaton will eventually
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dominate over the decay products even if they begin with comparable densities.

The inability for inflation to end is therefore a significant problem with no clear

and simple resolution in terms of how reheating can proceed following this. Despite

the established successes of GB coupled inflation with e.g. power law potentials in

producing feasible power spectra with suppressed tensor-to-scalar ratios at horizon

crossing, in reality such models may not be able to exit the inflationary epoch via

the usual period of reheating. One could add, for example, additional fields to deal

with the problem of reheating here, but this would also likely ruin the successful

power spectra generated at horizon crossing. We therefore consider how to minimally

extend the model, preserving the early time behaviour when good power spectra are

generated, and only altering the late-time behaviour enough to allow some kind of

reheating to proceed.

5.2.3. Minimal extension of model

Consider again a power law potential and Gauss-Bonnet coupling, but with the

extension of allowing the potential to possess a non-zero minimum ς. For simplicity

we will consider the case where the exponents of V and G are equal but opposite in

sign, and write this as

V (φ) = V0(φ+ ς)n , G(φ) = G0φ
−n . (5.2.14)

For convenience, we perform a field redefinition to absorb this shift into the GB

coupling function instead, so that we have a normal power law potential but a

modified GB coupling. That is,

V (φ) = V0φ
n , G(φ) = G0(φ− ς)−n , (5.2.15)

as this makes the theory look more like normal inflation with the simplest potential

but a non-standard correction coming from a coupling to modified gravity. Also for

the sake of simplicity we will also omit the F function in the following discussion

as we are mainly interested in overcoming the damping effect produced by the G

coupling, which F only influences the smaller details of.
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5.2. Effects on the end of inflation and reheating

Essentially, this shift in the coupling means that instead of the theory proposing

that the GB coupling tends to infinity as the potential minimum is approached, it

will do one of two things depending on the sign of ς.187

• Positive ς: The GB coupling tends to infinity before the field can approach its

minimum.

• Negative ς: The GB coupling will take on a finite but large value at the

potential minimum.

Of these, the latter case sounds more promising. One can imagine that it will still

allow the field to oscillate, but the large GB coupling can still affect the oscillatory

behaviour. However, the former case is not to be immediately ruled out; while it

does sound like it should only exacerbate the problem, it does provide a phenomeno-

logically different result.

Positive shift

Now, as ς > 0, the diverging GB coupling occurs at a point where there is a potential

gradient, and this manifests in two ways, which we show in six examples of this model

in Figure 5.3.

Firstly, we find that the new static solution occurs at a field value, marked as Λ on

the figure, of

φ = Λ = ς ×
(

1− α 1
n+1

)−1

, (5.2.16)

where α 6= 1. As can be seen in the six numerical examples given, the field ap-

proaches this static solution. There is hence an effective potential minimum at this

point. Since α < 1, as all other cases are uninteresting or ruled out, Λ > ς and

the field always reaches this static solution before it can approach the divergence

in the GB coupling. This differs from the ς = 0 case where the field directly ap-

proaches the GB divergence at φ = 0, rather than a point, Λ, somewhat before it.

Secondly, depending on the strength of the GB coupling, various things can hap-

pen. For α = 0.1, we see that the field just asymptotically approaches Λ as the GB
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Figure 5.3.: Six examples of the ς > 0 model with α = 10−x for x = 1 . . . 6 and
ς = 0.05 as a representative example of the different kinds of behaviour
observed numerically. Oscillations occur about the point Λ defined in
eq. (5.2.16) in general, but for sufficiently strong GB coupling (α ∼ 0.1)
or sufficiently small distance between the GB divergence and this point
(α < 10−3 or so) the oscillations are respectively either critically damped
away or made highly irregular. For more intermediate values, somewhat
normal oscillatory behaviour may briefly persist, but too transiently and
with too little amplitude to facilitate reheating.

coupling is strong enough to damp it heavily. However, as α decreases and the GB

coupling is weaker (by at least an order of magnitude or so), despite Λ now being

closer to the divergence at φ = ς, some amount of oscillation is permitted to occur.

This is only possible because Λ > ς such that the field is able to bypass its static

solution without hitting the divergence. For the cases of α = 10−2 and to an extent

also 10−3, the oscillations are smooth, sinusoidal and decreasing in amplitude as in

normal inflation, but once the effective minimum becomes prohibitively close to ς

the GB force experienced by the field is very different depending on which side of

the effective minimum it is on. As a result, non-sinusoidal oscillations occur. These

distorted oscillations are sharp and short-lived. That is, once the field decreases

below φ < Λ, the suddenly very steep GB coupling now rapidly kicks it back to

φ > Λ. This is seen when α = 10−4 or less, in ever more extreme amounts.

The question, then, is whether this is suitable for perturbative reheating. Unfor-

tunately, the answer is no, as the amplitude of the oscillations is far too small and

they persist for too short a time, when they are even present at all, and a negligible
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amount of radiation is produced in numerical simulations. Furthermore, the field

settles at a point with positive-definite potential energy, and will hence continue to

behave as vacuum energy. Any produced radiation would then be prevented from

persisting as the dominant fluid thanks to its eventual dilution as the field holds

constant. So while this case is intriguing, it is regrettably not useful to proceed

with.

Negative shift

As stated, this case looks more promising. For a large enough negative ς, the GB cou-

pling would be essentially zero throughout inflation and reheating, allowing things

to proceed as normal, but this would also leave the inflationary spectra unmodified

and basically trivialise the theory, so we need to instead consider more moderate or

smaller ς values, closer to zero. We know from minimal slow-roll inflation and e.g.

Figures 3.2 and 3.3 that the initial oscillations of the inflaton in, say, a quadratic

potential will be of an amplitude Φ ≈ 0.1, so we expect that |ς| should be of a similar

order to this, in order to have a pronounced effect on the oscillatory behaviour. This

is shown in Figure 5.4, with two different α values for comparison.

Here we see that, for ς = −0.05, the size of the resulting oscillations depends on α.

For large α and hence a steep G(φ), in the left plot, the oscillations can only reach an

amplitude of around half the size of ς. Meanwhile, for smaller α, shown in the right

plot, oscillations nearly as large as ς may occur, suggesting that the GB coupling

only becomes prohibitively strong when much closer to its divergent point. The

oscillations are, however, in both cases, rather deformed at first when their amplitude

is comparable to ς, exhibiting significant non-sinusoidal variation. This is, again,

explained by the sharp variation in G,φ breaking the usual symmetry of the restoring

force on each side of the effective minimum. As the oscillations drop in amplitude

due to the expansion of the universe, though, they feel the effect of the GB coupling

less strongly due to being farther from the steepest part of the coupling function, and

the oscillations relax towards a more sinusoidal waveform. This may be conducive

to reheating. While the amplitude is smaller than normal, the oscillations persist for

a comparable amount of time, and eventually begin to decrease in amplitude with
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Figure 5.4.: Two examples of the ς < 0 model with α = 10−1 and 10−4 for com-
parison, with ς taken to be −0.05. For the conservative former case,
the displacement of the potential minimum from the GB divergence is
comparable to the usual oscillatory amplitude, and this deforms the os-
cillations and reduces their amplitude (to around half of ς) due to the
fairly strong GB coupling in this region. For a smaller α in the second
case, the oscillations are more drastically deformed, higher frequency,
and surprisingly higher in amplitude - now almost as large as ς allows -
due to the less steep GB coupling, that only becomes significant closer
to the divergence. As the oscillations persist for longer, decreasing in
amplitude at a reasonable rate, and becoming less deformed with time,
this may facilitate perturbative reheating, albeit with some changes.

time as approximately 1/t. That is, something resembling usual post-inflationary

oscillation is recovered, despite the initial period of modified behaviour.

There are some questions that arise from this, though. We can ask if the reheating

temperature will be high enough to recover the Hot Big Bang’s successes, given

the less efficient reheating resulting from oscillations of a smaller amplitude (note

that eq. (3.2.52) suggests that lower-amplitude oscillations directly cause a reduced

rate of radiation production). Similarly, the non-uniformity and deformation of the

oscillatory waveform may influence the equation of state during reheating, which,

via eq. (3.3.39) may shift the observable window of inflationary perturbations and

lead to measurable spectral changes. Similarly, reducing the efficiency of reheating

will reduce the final energy density, having a similar effect. That is, if we take the

term in eq. (3.3.39) which pertains to reheating and call this ∆N
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Figure 5.5.: Numerical calculation of the equation of state as a function of time for
the trajectory with n = 2, α = 0.1 and ς = −0.05 (the left panel in
Figure 5.4). Additionally show is the time-averaged equation of state
(3.2.40) and the resulting change in the number of e-folds before the
end of inflation that observable fluctuations are generated at, ∆N . The
∆N plot has the following interpretation; if one were to interpret the
time tth at which reheating is said to be completed as the time t in the
graph, the observable window would be shifted by ∆N e-folds. The
relatively constant nature of ∆N as reheating is completed (w → 1/3,
we can confidently predict this value independently on precisely when
one takes reheating to have been finished.

∆N =
1− 3〈w〉

12(1 + 〈w〉) ln

(
ρth

ρend

)
, (5.2.17)

and find the relevant energy densities numerically, as well as use eq. (3.2.40) to

find 〈w〉, we can compute the magnitude of these effects. An example is plotted in

Figure 5.5.

From the figure we see that as in the standard case we have a successful decay

process leading to a radiation-dominated (w = 1/3) universe at late times, just as

in the minimal case shown in Figure 3.3. The earlier behaviour of w and hence

〈w〉, however, is rather distorted compared to the usual case as the oscillations in

the negative ς model are initially non-sinusoidal (Figure 5.4). This even allows

the equation of state to be spuriously larger than 1 or smaller than −1, as the

GB-modified energy density and pressure derived from eqs. (5.1.10 – 5.1.11) can,

in principle, when Ġ is important, make the field behave as a fluid with such an
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equation of state. The most important point to take away from this, however, is

that ∆N(t) as defined in eq. (5.2.17) is very well approximated by a constant at

late times, once reheating can be said to have completed. This means that we can

compute ∆N accurately without worrying about formally defining the time when

reheating ends, as the result is moderately agnostic of how, precisely, this is chosen.

For the sake of argument, we take the end of reheating in future calculations to

mean the point where Ωr = 2/3, though we have also confirmed that our results are

manifestly unchanged whether we take this value or, say, 0.9, for example. In this

example, we see that a shift in the observable window of about half an e-fold arises,

though this number varies for different parameter choices. We can also address

the question of the reheating temperature from this calculation, by reading off the

radiation energy density around this time, and find that is is reduced compared

to a scenario in which we turn off the GB coupling, but still of a similar order

(∼ 1013 GeV) and thus nothing to worry about in terms of, say, facilitating a later

period of nucleosynthesis (∼ 10−3 GeV).

Range of α values

As a supplementary note, the usual result that inflationary behaviour occurs between

0 < α < 1 in GB coupled inflation is slightly modified for negative ς. Instead, an

analysis of the equations of motion, supported by numerical evidence, yields the

result that inflationary expansion occurs for 0 < α < αmax, with the upper limit

given in terms of the shift parameter by

αmax ≈
(

1− ς

φ0

)n+1

, (5.2.18)

where φ0 is the initial condition for φ. Typically we have αmax ≈ 1, so we will

ignore this effect in the present work, and restrict our parameter space to α < 1 for

simplicity.
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5.2.4. Effects on spectra from non-standard reheating

The modified dynamics of the reheating oscillations will affect the total radiation

density produced, and in turn the reheating temperature via eq. (3.2.54). We assume

a fiducial decay rate of Γ = 4 × 10−8, for which the normal reheating temperature

(α = 0) would be Treh ≈ 1013 GeV. We then calculate the new Treh value as a fraction

of this for a range of α ∈ [0, 1] and ς ∈ [−0.2, 0]. The result is obtained numerically

via direct integration of the cosmological equations for a scalar field (5.1.10 – 5.1.12)

with the addition of a conventional radiation fluid of energy density ρr. This is shown

in Figure 5.6.
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Figure 5.6.: The reheating temperature as defined by eq. (3.2.54), as a function
of GB coupling strength α and potential minimum shift parameter ς,
for the example case of n = 2 and a decay rate of Γ = 4 × 10−8.
The calculated temperatures are displayed as a fraction of the Gauss-
Bonnet-free case (Treh ≈ O(1013GeV)). For small α (weak GB coupling)
and/or large negative ς (oscillations are hardly affected as |ς| > Φ)
the reheating temperature is normal. For positive semi-definite ς, or
for sufficiently small ς and very large α, reheating does not occur and
the reheating temperature is given as zero. Even the least optimistic
scenarios presented here, however, display a reheating temperature only
an order of magnitude or two below the conventional case, which is still
more than sufficient for e.g. nucleosynthesis.

Furthermore, using eq. (5.2.17) and the results of Figure 5.5, we can calculate

the power spectrum for the range of α and ς, each one having a slightly different

observable window position due to predicting a slightly different ∆N value, owing to
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the difference in the oscillation dynamics that changing the GB coupling parameters

brings about. In Figure 5.7 we show the ∆N value as a function of α and ς and

the resulting spectral index ns. This, along with a similar calculation of r, the

tensor-to-scalar ratio, can be used to constrain our model parameters.
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Figure 5.7.: Numerical results for ∆N (left) and the resulting variation in ns (right),
as a function of model parameters α and ς. The GB coupling modifies
the dynamics of reheating, and in turn the average equation of state and
final energy density, which via eq. (5.2.17) then move the observable
window at which the spectral parameters are generated. On the plot of
ns we indicate the areas in tension with current data; the black line at
around α = 0.3 bounds the region to the left which predicts r > 0.1 and
hence overproduces gravitational waves. The two contours on the right
hand side of the graph bound regions with spectral index either above
(upper,red) or below (lower, blue) the Planck 1σ range.39 The remaining
points are consistent with the Planck-measured amplitude of the power
spectrum, and possess running parameters αs and βs of O(10−3).

We have thus shown in some detail that while the simplest GB coupled inverse-

power-law models in the literature impede reheating via the diverging G function

at the potential minimum, this can be simply avoided by considering a minimal

extension where the GB coupling and the potential are shifted by a relative value

ς. For a reasonably wide range of values of this shift and the GB coupling strength

parametrised by α, detailed in Figures 5.6 and 5.7, it is possible to perturbatively

reheat the universe to an acceptable temperature. This does however lead to a

non-standard equation of state during the reheating phase which affects inflationary

predictions via displacement of the observable window given by eq. (3.3.39) and

in turn the N -dependent slow-roll spectral parameters like ns and r derived from
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eq. (5.1.29), however the new values are often compatible with CMB constraints for

moderate parameter values.

5.3. Towards Quintessential Inflation with the

Gauss-Bonnet term

In the previous sections we took a negative view of the Gauss-Bonnet term’s ability

to freeze the motion of a scalar field as this impedes the end of inflation, prevent-

ing the recovery of the post-inflationary universe via reheating. However, to take a

slightly different perspective, we ask what if this phenomenon could be used posi-

tively to instead construct a model of dark energy? In particular, what if we could

achieve a so-called quintessential inflation scenario where the inflaton persists after

inflation to eventually become what we today experience as dark energy.260–291 It is

an appealing prospect as the unification of two of the biggest mysteries in cosmology

could be solved within one theory, which, owing to their similarities as periods of

accelerating expansion, does not seem unreasonable.

Despite the elegance and apparent simplicity of the idea, achieving it is challenging.

While inflation occurs at immense energies close to or around the Planck scale

in the very early universe, dark energy is comparably tiny. A hundred or more

orders of magnitude between their energy scales is not a trivial problem, as simply

introducing this vast hierarchy of energy scales in a theory by hand is questionable

from a theoretical standpoint. The issue is then further compounded by the point

that quantum corrections would render the introduction of such a small energy

scale at the classical level futile anyway, without immense fine-tuning. Similarly,

if one supposes a potential with a steep exponential decline to allow such a vast

change in energy to occur dynamically as the field evolves, one typically finds that

the field is displaced by a super-Planckian amount, a scale over which we cannot

be confident in the real behaviour of without a concrete understanding of physics

at such large energies, which we presently lack. It is in this latter detail that the

GB effect might be useful, though. If the GB-sourced impedance of the field can

prevent it undergoing a trans-Planckian excursion, then we could potentially avoid
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this problem that plagues simpler quintessential inflation scenarios.

To model this, we need an inflationary potential which allows the field to continue to

decrease in energy after inflation so that it can drop to the dark energy scale without

reaching zero. This first ingredient makes it likely that conventional reheating will

not be possible, so a process like instant preheating may be needed. Further to this,

we also need a GB coupling that becomes large at late times to freeze the field so

that once the radiation/matter produced by reheating later dilute away, there is a

dark energy fluid waiting to dominate the universe in their place. To this end, let

us consider the potential

V (φ) =
V0

2

[
1 + tanh

(
p
φ− φc
MPl

)]
, p > 0 . (5.3.1)

and the GB coupling function

G(φ) = G0e
−qφ/MPl , q > 0 , (5.3.2)

while again assuming F = 1 for simplicity. As shown in eq. (5.2.11), with exponen-

tial potential and coupling, one doesn’t need to introduce the Jordan Frame function

F to gain control over where the field freezes, unlike with power law coupling and

eq. (5.2.9). While our potential here is technically tanh and not a straightforward

exponential, consider that following an inflationary period where the field begins at

large and positive φ� φc and rolls down the potential towards negative field values,

we require the field to freeze when it has rolled sufficiently far for its energy to be

suppressed down to the level of dark energy. That is, when pφ is large and negative,

at which point the potential can be approximated to leading order by

V (φ) ≈ V0e
2pφ/MPl . (5.3.3)

In essence, then, when considering the static solution - which we will here call φs -

we have the result of eq. (5.2.11), but with a potential exponent of 2p, that is

φs = φc +
MPl

q − 2p
lnα , (5.3.4)
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where

α ≡ 2qV0G0

3pM2
Pl

. (5.3.5)

and as discussed previously, freezing of the field occurs when we have q > 2p. For

generality, we have also introduced the parameter φc in the potential, but by noting

that under a field redefinition φ → φ + φc, we have the GB coupling prefactor

behaving as G0 → G0e
qφc . The value of φc can hence be set equal to 0 without

loss of generality, as it can be absorbed into a rescaling of the GB coupling. We

will henceforth neglect it. Also note that we have explicitly reinstated MPl into the

above equations to make a point about the values of p and q. By re-interpreting,

e.g. the GB coupling as

G(φ) = G0e
−φ/M , (5.3.6)

where M is some mass-scale, what value might it have? One would like it to be of

a sufficiently high energy scale that it represents new physics beyond the standard

model and is feasibly stable under quantum corrections, but below the Planck scale,

perhaps around the energy of grand unification theories, e.g. M ∼ MPl/100 or so.

This would imply by comparison to the coupling function written in terms of q, that

q ≈ O(102) would be ideal. A similar argument applies to p. As one goal of this

approach is to achieve quintessential inflation while avoiding naturalness issues, it is

important to bear in mind how realistic the numbers proposed in this context are.

With that said, let us move on to the inflationary considerations of this model.

5.3.1. Inflation

As inflation is assumed to occur on the upper plateau of the tanh potential, when

pφ and hence qφ is large (as q > p for the static solution to exist, numerically), we

expect the GB coupling to be negligible in this limit as it is exponentially suppressed

by qφ. While this is entirely an artefact of our arbitrary choice of coupling function,

for now we do not worry about this. While it is of course true that one could

consider more general scenarios where the GB coupling plays a role in inflation, we

171



5. Inflation and the Gauss-Bonnet term

are first interested in what role it can play later. It would be interesting to construct

a similar scenario to this from a fundamental physical theory featuring the GB term

like String Theory, as this might lead to the same parameters influencing inflationary

parameters (e.g. spectral index, tensor-to-scalar ratio) and the properties (equation

of state, etc) of dark energy. Here, though, we take a more simplistic approach of

just having inflation proceed in a straightforward way and only invoking the GB

coupling when it is needed for our main goal of achieving quintessential inflation.

As the potential is flat in this plateau region, the slow-roll approximation should

suffice for computations. Using eq. (3.2.18) we find for the potential (5.3.1) that

ε0 =
p2

2

[
1− tanh

(
p × φ

MPl

)]2

, (5.3.7)

which, via solution of ε0 = 1 implies an end-point of inflation at field value

φend =
MPl

p
tanh−1

(
1−
√

2

p

)
. (5.3.8)

To determine when inflation must begin to produce sufficient expansion before reach-

ing the point φend, we perform the integral (3.2.24) to find that in this case

N =
1

MPl

∫ φ

φend

dφ√
2ε

' 1

4p2
e2pφ/MPl +

φ

2pMPl

− 1

2p2

[
p√
2

+ tanh−1

(
1−
√

2

p

)
− 1

2

]
, (5.3.9)

which can be approximately inverted in the limit where the first term is dominant

(which is expected, as inflation occurs when pφ is large and positive) to obtain

φ(N) ≈ MPl

2p
log 4p2N . (5.3.10)

This suggests an initial condition for a desired e-fold number (typically 50 – 60).

We can determine spectral parameters, then, using the standard result (3.3.36) and

derived expressions such as eq. (3.3.37) to find power spectra N e-folds before the

end of inflation, giving the results
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PR =
H2

8π2ε
=
p2V0N

2

3π2M4
Pl

, (5.3.11)

where in the second equality we have used the Friedmann equation approximated

as 3H2M2
Pl = V and the above results to rewrite e.g. ε0 in terms of φ and then N .

We also have, following a similar process to determine ε1 in these terms, the result

ns − 1 = −2ε0 − ε1 = −4p2 (1 + 8p2N)

(1 + 4p2N∗)
2 ≈ −

2

N
, (5.3.12)

and

r = 16ε =
32p2

(1 + 4p2N)2 ≈
2

p2N2
. (5.3.13)

These are generally good predictions for the spectral index and tensor-to-scalar ratio.

The inverse-square dependence on N in eq. (5.3.13) is conducive to suppressing

the tensor-to-scalar ratio over cases like the power law potential inflation discussed

in Chapter 3, which has r ∝ 1/N . Similarly, a fiducial value of N = 60 places

ns ≈ 1− 2/N very close to the Planck best fit value. We also note that for a given

model with a certain p value, eq. (5.3.11) entirely specifies V0 by comparison to the

experimentally measured amplitude.

5.3.2. Late time behaviour and reheating

The result (5.3.4), alongside numerical investigation, demonstrates that there will be

no conventional perturbative reheating in this model, much like in Section 5.2.1. In

that section, we saw a model which would usually be able to reheat but is impeded

by the GB term and instead inflation does not end. Here, the situation is slightly

different because event without the GB term, perturbative reheating would not occur

anyway because of the non-oscillatory potential. Instead, instant preheating would

have to be used from the start. As discussed in Section 3.2.5, instant preheating

occurs when the non-adiabaticity condition on the mass of decay products χ, |ṁχ| >
m2
χ, is fulfilled, allowing particle production, and this occurs typically when the φ-

dependent mass of the decay products rapidly changes. Or in other words, when
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φ rapidly changes. Our tanh potential has the means to achieve this built in; with

sufficiently large p (which we want anyway to be able to suppress the energy of the

late-time inflaton enough to make it serve as dark energy later), the region around

φ = 0 is very steep and hence suitable for this. This also occurs much before we want

the GB term to become important, so it will not interfere in this. Assuming the

same simple inflaton-matter coupling discussed in Section 3.2.5, we can therefore

use the standard result derived there in eq. (3.2.67). Assuming that ν = 0 for

simplicity, this result reduces to

ρχ =
g5/2|φ̇|3/2t=tip

8π3
|φip| , (5.3.14)

where tip is the time at which instant preheating occurs, at which point φ = φip.

These values are found in numerical simulations of the post-inflationary dynamics

by identifying the time at which the above adibaticity condition is first broken.

The parameters of importance to determining the size of ρχ are the steepness of

the potential, p, which affects the field’s velocity at tip, and the coupling constant

between the inflaton and matter, g.

There are some complications to consider, however. We expect that over the very

short amount of time that instant preheating occurs, energy is conserved, so that the

field will be left with some energy (ρφ,a) equal to the difference between its energy

immediately before tip (ρφ,b) and the ρχ calculated in eq. (5.3.14). To bring about

the onset of radiation domination following tip, it is essential that ρχ is greater than

ρφ,a. This implies, using energy conservation, that the final radiation density should

be half or more the initial scalar field density, or

ρχ > ρφ,a → ρχ >
1

2
ρφ,b . (5.3.15)

Similarly, we want to avoid the problem that we found with instant preheating in

Section 5.2.1. That is, with a potential-dominated inflaton, even if it is initially sub-

dominant, it will dilute less rapidly than matter/radiation and hence quickly bring

about another inflationary epoch. This is of course the eventual goal; a realisation

of another accelerating expansion to produce dark energy. However, we want to
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avoid this being the case immediately following instant preheating as we need there

to be extended radiation/matter-dominated epochs before this occurs. This means

that the field must not be potential-dominated post-reheating else it may not dilute

sufficiently fast to permit radiation domination to persist. In other words, the final

scalar density should be more than double the scalar potential (such that the ma-

jority of its energy is kinetic). After some manipulation, and using the assumption

that the field’s potential energy is constant throughout instant preheating (that is,

the energy being converted to radiation is purely of kinetic origin), this leads us to

another inequality for the produced radiation density

ρφ,a > 2V (φip) → ρχ < ρφ,b − 2V (φip) . (5.3.16)

Combining these inequalities give us the following bounds on the acceptable values

of ρχ produced by instant preheating as

1

2
ρφ,b < ρχ < ρφ,b − 2V (φip) . (5.3.17)

The interpretation of this is that the radiation density must be sufficiently large to

dominate over the final scalar density, but not so large as to sequester all of the

field’s kinetic energy so as to make it potential-dominated again. It is easier to meet

these conditions if the field therefore comes into the instant preheating window with

a small potential but plenty of kinetic energy. For some parameters, this range of

allowed values may have zero size, which would indicate that the model is infeasible

in those cases. This can be used to rule out some parameters, as we will see later.

The set of parameters ruled out in this way is inextricably linked to the assumption

we make as to what constitutes a sufficient overdensity of radiation over residual

scalar, or a sufficient excess of kinetic energy over potential, in constructing the

above inequalities, so here we have made an admittedly arbitrary choice for the sake

of making progress and demonstrating the principle behind the model. It is however

true that we could formally introduce a parameter, say β, representing the required

ratio of quantities needed to constitute domination for the purpose of obtaining the

correct subsequent evolution. That is, our constraints would become ρχ > βρφ,a and
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ρφ,a > (β + 1)V , such that the total bounds would then be

β

β + 1
ρφ,b < ρχ < ρφ,b − (β + 1)V (φip) . (5.3.18)

Then, results could be obtained in terms of β to parametrise our uncertainty in

this value so that accompanying numerical work determining the β value actually

necessary to give way to a radiation-dominated epoch could produce more precise

constraints. One could even extend this further by allowing two different parameters

such that each inequality can represent domination by a different ratio as they may

not necessarily be equal. We do not however undertake this here, and merely note

this detail as a point of interest for future work attempting similar things. We hence

go forth assuming β = 1 as in eq. (5.3.17).

5.3.3. Post-reheating evolution of field

We restrict ourselves to parameter space in which the inequalities (5.3.17) are

obeyed, and hence by construction the field is kinetically-dominated rather than

potential-dominated in the period following instant preheating. Its equation of mo-

tion is then approximated by

φ̈+ 3Hφ̇ ≈ 0 , (5.3.19)

where H is now determined primarily by the radiation (or later, dust) dominating

the universe, so it will scale roughly as H ∼ k/t. We call this time following

preheating the kination period. It is in this period that conventional quintessential

inflation262,292 leads to a super-Planckian field displacement, as the unimpeded field

obeys this equation indefinitely. We solve eq. (5.3.19) for t > tip as

φ(t) = φip −MPl

√
6Ωip

(
k

3k − 1

)[
1−

(
tip
t

)3k−1
]
, (t < tgb) (5.3.20)

where k is the exponent in eq. (3.1.14): k = 1/2 for radiation domination, or 2/3 for

the dust case. It is kept general for now just because it is easy to do so and it may be

useful or informative to inspect some results with both values. We also define, here,
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Ωip as the density parameter of the inflaton at the time of instant preheating, which

we will obtain numerically when needed. It appears in the above result because in

kinetic domination, the Friedmann equation is φ̇2 = 6ΩipH
2M2

Pl and this is used to

set a boundary condition for φ̇(tip). The second boundary condition comes simply

from specifying the field value at tip is called φip.

Unlike in conventional quintessential inflation, this solution will only remain valid

until the GB coupling becomes important. While the full Klein-Gordon equation

(5.1.4) is too complex to solve exactly in a radiation-dominated background, we note

that at late times when the field is strongly impeded by the large GB coupling, we

could instead use the approximation

3Hφ̇+ 12M2
PlH

2G,φ(Ḣ +H2) ≈ 0 . (5.3.21)

That is, neglecting the second derivative à la slow-roll (and continuing to neglect the

potential because it is heavily exponentially suppressed) but including now the GB

term in the equation of motion, we can predict the behaviour of the field sufficiently

long after the GB term becomes important. We estimate the time when the GB term

first is significant enough to make the field approximately obey (5.3.21) rather than

(5.3.19) as the time when the neglected terms in each limit are equal in magnitude,

i.e. |φ̈| = |12M2
PlH

2(Ḣ + H2)G,φ|. We will call this time of the GB term’s first

significance tgb. Solving eq. (5.3.21) for t > tgb we find

φ(t) = φgb +
MPl

q
ln

[
1 + 2G0q

2k2(1− k)e−qφgb/MPl

(
1

t2
− 1

t2gb

)]
, (5.3.22)

which, at late times t� tgb is approximated as

φ(t� tgb) ≈ φgb +
MPl

q
ln

(
1− βG0q

2e−qφgb/MPl

t2gb

)
≈ φgb , (5.3.23)

where β = 2k2(1−k) is a constant.2 We note from trying out some fiducial values of

parameters that the second term in this expression is typically small, such that after

tgb when the GB term first becomes important in the field equations, the field does

2For reference, β = 1/4 for radiation and 8/27 for matter.
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not evolve much further and remains close to φ = φgb. This is not unexpected based

on results in previous sections as we know a large GB coupling tends to freeze the

field. Regardless, this solution shows that the field’s final value is dependent on the

time tgb at which the GB term is important. Our next step, then, is to compute φgb

and tgb. We can approximate this by solving |φ̈| = |12M2
PlH

2(Ḣ +H2)G,φ| where φ

is given by eq. (5.3.20) to obtain the following expression for tgb

Atνgb = exp
(
−Btµgb

)
, (5.3.24)

where the four constants in this equation are given by combinations of model pa-

rameters and quantities derived from them as

A =
1

2qkG0(1− k)

√
3Ωip

2
exp

(
qφip/MPl −

qk
√

6Ωip

3k − 1

)
t3k−1
ip , (5.3.25)

B = qk
√

6Ωip

(
t3k−1
ip

3k − 1

)
, (5.3.26)

µ = 1− 3k , (5.3.27)

ν = 3− 3k . (5.3.28)

This equation is nonlinear and not solvable with standard functions, but we can

define a special function W (x) that is the inverse function of xex such that WeW = x.

This is often referred to as the Lambert W Function. In terms of this special

function, we can solve for tgb to find

tgb =

[
ν

Bµ
W

(
Bµ

ν

(
1

A

)µ
ν

)] 1
µ

, (5.3.29)

Next, we can “stitch” together the two asymptotic solutions (5.3.22) and (5.3.20)

such that the solution of the latter is used to set approximate initial conditions for

the former at the crossover point tgb. It is important to note that the W (x) function

has two branches in the region (−e−1 < x < 0), implying that there are two times at

which equality between kinetic and GB contributions is achieved. Only the earlier

of the two solutions (provided by the lower branch of W , denoted W−1) is typically
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valid, though, as the latter solution would occur at some later time at which our

assumptions are violated (as the GB term has already become important once at

the earlier time). We also require that tgb > tip due to our assumptions, so the later

of the two solutions (W0, the principle branch) for tgb would instead be the correct

physical solution when the first one is ruled out on such grounds. Additionally,

the function W has no real values for x < e−1, so such an argument would instead

imply that there are no real solutions for tgb which would rule out the parameters

leading to this, as it either implies that conventional quintessential inflation proceeds

unimpeded by the GB contribution, or that the GB term is dominant before instant

preheating and acts too early to produce dark energy. This consideration imposes

the constraint

Bµ

ν

(
1

A

)µ
ν

≥ −1

e
, (5.3.30)

on the parameters of the theory. Finally, we also note that it is possible that the

physical value of tgb is sufficiently large that it is not in practice reached within the

present age of the universe. The physical meaning of this would be that the GB

impedance slows the field down enough that it cannot reach its ultimate late-time

state in the available time.

Evaluating eq. (5.3.23) with the tgb value computed above, then, we obtain a quan-

tity we shall call φm

φm = φ(t� tgb) ≈ φip +
MPlB

q

(
tµgb − tµip

)
+
MPl

q
ln

(
1 +

µB

2
tµgb

)
, (5.3.31)

which is the final value φ will freeze in at during the later matter-dominated epoch.

We want φm should be sub-Planckian to avoid the problems with this in conventional

quintessential inflation, though this is a conservative bound if the scenario is the

aforementioned one where tgb is comparable to the age of the universe, as even if φm

is super-Planckian, if it is not actually reached by the field then it’s just an upper

limit on how far the field might be displaced, rather than its achieved maximum

displacement.
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Here, as the field’s velocity has been heavily suppressed by the GB coupling, we

expect its equation of state to be close to −1 again, and hence suitable to eventually

behave as dark energy. As right now its potential energy is V (φm), which, for large

p, will be very small, it will remain subdominant until the remaining matter is

diluted to a lower density. Then, at very late times, when Ωm � 1 and the universe

is strongly dominated by dark energy, the field will obey the equations of motion

in the matter-free static limit and tend to freeze at the value φs determined in eq.

(5.3.4). We hence propose that today, we are somewhere between the field values

φm and φs as present observations indicate that Ωm ≈ 0.3. However, as the equation

of state for dark energy is w ≈ −1, this model predicts that the field could be not

exactly frozen yet, but instead slowly rolling. This field value today, which we will

determine next, and is somewhere between φm and φs, should be sub-Planckian to

avoid the usual problems.

5.3.4. Producing dark energy

We expect that when Ωm = 1, φ = φm and when Ωm = 0, φ = φs, but we are

at present between these limits. Here, we will work out exactly where the field

must therefore lie between these given the observational data. First, noting that eq.

(3.2.17) implies

M2
PlḢ = −1

2
(ρ+ p) = −1

2
(1 + w)ρ = −3

2
(1 + w)H2M2

Pl , (5.3.32)

we can rewrite the Klein-Gordon equation as

φ̈+ 3Hφ̇+ V,φ − 6H4(1 + 3w)G,φM
2
Pl = 0 . (5.3.33)

Then, assuming φ̈ remains negligible, we have

φ̇ ≈ 2H3(1 + 3w)G,φM
2
Pl −

V,φ
3H

. (5.3.34)

The Friedmann equation, meanwhile, can be broken up into parts depending only

on the field and only on matter using the definition of the density parameters, such
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that we can write

3H2M2
PlΩΛ =

1

2
φ̇2 + V + 12M2

PlH
3G,φφ̇ . (5.3.35)

Substituting eq. (5.3.34) into this, then, yields a constraint equation

V +
V 2
,φ

18H2
+

[
3ΩΛ +

2

3
(7 + 3w)V,φG,φ

]
M2

PlH
2+2(1+3w)(13+3w)(M2

PlG,φ)2H6 = 0 .

(5.3.36)

Or, in terms of our particular forms of V and G, we can solve this equation for φde,

the value of φ today, as

V0e
2pφde/MPl +

2p2V 2
0

9H2M2
Pl

e4pφde/MPl + 2q2G2
0M

2
PlH

6(1 + 3w)(13 + 3w)e−2qφde/MPl

+
4

3
qpG0V0H

2(7 + 3w)e(2p−q)φde/MPl − 3H2M2
PlΩΛ = 0 . (5.3.37)

This is highly nonlinear and complex, but with the substitution

φde → −
MPl

2p
logχ , (5.3.38)

it reduced to a polynomial in χ with terms

λ0 + λ1χ+ λ2χ
2 + λ3χ

1+ q
2p + λ4χ

2+ q
p = 0 , (5.3.39)

such that for certain ratios q/p it is analytically solvable, and for others either

approximately or numerically more tractable than the φde constraint. We will not

here give the precise forms of the λn coefficients but note that for typical parameters

today, very small numbers such as e.g. H = H0 ≈ 10−60MPl are present and this

renders many of these coefficients of vastly different orders of magnitude, and hence

one must be careful to use sufficiently high-precision arithmetic when numerically

evaluating them.

We proceed to solve this using ΩΛ = 0.7, w = ΩΛwΛ + Ωmwm ≈ −0.7, V0 given

by inflation constraints (5.3.11), and a range of possible model parameters p, q
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and G0. This then tells us, for each set of parameters, what field value must be

realised today in order for the observational data on ΩΛ and such to make sense.

Multiple solutions are technically possible, but many will be immediately ruled out

by sign, or order of magnitude, for example. There may be some parameter space

where no sensible solutions occur and that is in itself a constraint in principle. The

requirement that the resulting φde value is sub-Planckian will be the main physical

constraint here, though. In what follows we will now summarise all the constraints

we have accumulated and use them to constraint parts of the parameter space.

5.3.5. Constraints from cosmology

To summarise, then, we have the following cosmological history and resulting con-

straints.

1. Inflation occurs for φ > 0. We fix V0 using (5.3.11) and (5.3.12 – 5.3.13) imply

limits on p.

2. Instant preheating occurs at φip ≈ 0. The inequalities (5.3.17) constrain a

combination of model parameters (p, g).

3. The field undergoes kination and then the GB term becomes important later,

giving an upper limit to the field’s displacement φm (5.3.31) which should be

O(MPl) at worst. This constrains a combination of p, q and G0.

4. The field is now rolling slowly between φm and φs, and the present day value

(5.3.37) should be sub-Planckian, too, constraining p, q and G0.

There are evidently not enough constraints to solely determine all the viable param-

eters, so we must in the definition of the model specify some relation between them.

Fortunately we have something already approaching this in the statement that the

matter-free static solution φs only exists when q > 2p, so we will consider different

models defined by their q/p ratio.
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Inflation

With eq. (5.3.11) and PR ≈ 2.2× 10−9 from Planck,39 we find

V0 ≈
6.5× 10−8

p2N2
M4

Pl ≈
1.8× 10−11

p2
M4

Pl , (N∗ ≈ 60) . (5.3.40)

For 60 e-folds of inflation, the tensor-to-scalar ratio (5.3.13) has a maximum value

of r = 0.03 no matter what p value is considered. As this is a factor of 3 or so below

present observational limits, we cannot impose any limits on p via this. However,

the full expression for the spectral index in eq. (5.3.12) requires p & 0.1 to meet the

Planck limits. This is already much smaller that what we intuitively want based

on units (see eq. (5.3.6) and discussion) and the idea that we want the potential

to be steep to avoid super-Planckian excursions anyway. For larger p, however, the

spectral index is independent of p, and predicts ns = 0.9678, which is near ideal, so

we cannot say much more than this.

Given the V0 from eq. (5.3.40) we can also see roughly what p value we might need

to get a dark-energy level suppression of energy within an at-most Planckian field

displacement. Using φ = MPl and eq. (5.3.3), we see that 2p ≈ ln(V0/Λ) ≈ O(100),

where Λ ≈ 10−120M4
Pl is the dark energy scale. This is nice because then, (5.3.40) is

roughly V0 ' 10−15M4
Pl, or V

1/4
0 ' 1014 GeV, which is a typical Grand Unification

energy scale.

Reheating and Dark Energy

Using a numerical integration of the equations of motion to determine the energy

density after inflation at the point of instant preheating, the field velocity at this

time, and so on, as needed to assess the inequalities in eq. (5.3.17), then using

the values from this to similarly evaluate eq. (5.3.31) and eq. (5.3.37), for a range

of models specified by their q/p ratio, their G0 value, and their g coupling for

preheating, we obtain the results in Table 5.1 constraining p for each case.

We can see that in each case, p = O(100) as estimated from the discussion in

Section 5.3.5. We have considered two different G0 values: first a Planckian value

of G0M
2
Pl = 1 (note the units, as defined in eq. (5.1.1) and the following discussion)
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G0M
2
Pl q/p g p limits

1

4
0.8 86 < p < 100
0.9 86 < p < 238
1 86 < p < 507

8
0.8 51 < p < 100
0.9 51 < p < 207
1.0 51 < p < 370

100

4
0.8 85 < p < 100
0.9 85 < p < 238
1.0 85 < p < 507

8
0.8 51 < p < 72
0.9 51 < p < 155
1.0 51 < p < 258

Table 5.1.: Table of bounds for p in GB coupled quintessential inflation for various
models specified by G0, q/p and the g coupling to matter. For each
example, we find that the lower bound on p is due to imposition of the
sub-Planckian nature of φde today. Similarly, the upper bounds on p
arise are due to the reheating inequalities in eq. (5.3.17) being violated
otherwise.

and then a more sub-Planckian value of 100. This choice barely affects the bounds

for the q = 4p models, but when instead q = 8p, the upper limits are altered

by consideration of a different G0 value; this can be interpreted as the GB term

becoming too strong too early and affecting reheating. We also considered three

values of the coupling g in each of these four cases, and from our results it is clear

that allowing a larger g widens the acceptable parameter space, but for the models

studied we saw that going below g ≈ 0.8 makes it difficult to find successful models.

In each case, the allowed range of p values quoted do not violate any of the discussed

constraints, but as we go below or above these limits one or more constraints are

violated. In practice, for overly small p, we find that φde becomes super-Planckian

as the potential is not steep enough to reach the scale of dark energy within a sub-

Planckian field displacement, and for overly large p we instead find that reheating

is the problem; most likely this is because the steeper potential allows the non-

adiabaticity condition to be fulfilled at a point where the field still possesses large

amounts of potential energy.
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5.3.6. Tests of modified gravity as further constraints

As we have modified gravity to develop this model, there could in principle be ob-

servable deviations from GR in e.g. Solar System tests of gravity. Some pre-existing

work that discuss limits on the size of a GB-coupled scalar for these purposes293–295

has been done before, but critically is based on the assumption that V,φ ≈ Vφ, which

is of course not true in our case, where the parameter p sets the ratio between these

functions and is rather larger than O(1). Nevertheless, in the absence of constraints

more tuned to our situation, we will use this existing work as a starting point to

get an approximate idea. Doing so, we find their strongest constraint coming from

the Cassini spacecraft’s measurements of time delay in a gravitational field, which

implies the limit

MPl|G,φ| . 1.6× 1020 m2 ≈ 1.5× 1088M−2
Pl , (5.3.41)

The constraint is on the combination of parameters G,φ = qG0e
−qφ/MPl , which is

much more strongly dependent on the super-exponential contribution of q than the

linear G0 factor, therefore a small change in q would easily cancel out a change of

an order of magnitude or more in G0. We hence apply this constraint to q to find,

again, using the Lambert W function defined above, that for a given G0 value and

field displacement φde, q must obey

q . −MPl

φde

W

(
1.5× 1088

G0M2
Pl

)
. (5.3.42)

Assuming a Planckian field displacement for φde, which corresponds to the smallest

allowed p in each model in Table 5.1, and specialising to the G0M
2
Pl = 1 model, for

example, this constraint is evaluated to q . 200. Meanwhile, the best case scenario

in the table of results is q ≈ 300. This is fairly typical of the constraints, in that

we find our q values to be typically a factor of 2 or so too large to meet the Cassini

constraint. While, of course, this is all subject to the disclaimer that these limits are

derived based on an assumption that does not apply to our model, it does not bode

well. We would require the corrected analysis to weaken the constraints in order to

make them once again feasible. Failing this, the model may still be saved by e.g. a
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screening mechanism but we will not address either of these questions here, instead

leaving them to future work.

Finally, we note that the recent observation of a multi-messenger gravitational wave

and gamma ray burst signal6 also can be used to constrain our model. As shown

in eq. (5.1.32), a GB coupling predicts a deviation from ct = 1. That is, it predicts

that gravitational waves will travel not at the speed of light, but at some other

speed. The multi-messenger observation found that the gravitational waves and

electromagnetic waves emitted by the same neutron star merger arrived at Earth

at the same time, leaving very little uncertainty that ct = 1 to very high precision.

This, essentially, rules out all models that require a non-trivial GB coupling to be

present in the universe today. Despite this disappointing result, we still believe

that this is an interesting example of how using modified gravity to freeze a field

may be able to achieve quintessential inflation, even if this exact realisation was,

very shortly after its conception, proven wrong by this impressive new frontier in

observational astronomy. We nonetheless believe that these results are useful as

they could go on to inspire future model building efforts based on similar principles

but without explicitly introducing a pathological coupling which affects the tensor

speed; there is no a priori reason we would expect modification of the tensor speed

to be a necessary condition in achieving a sub-Planckian frozen field.
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CHAPTER 6

TESTING INFLATION WITH THE

RUNNING OF THE RUNNING OF THE

SPECTRAL INDEX

Compared to the previous two chapters which focused on models which realise infla-

tion by modifying gravity, in this chapter we will change direction and look instead

at testing inflation. In particular, testing it with higher order deviations from scale

invariance in the power spectrum. Based on an article published with Carsten van

de Bruck in Physical Review D Rapid Communications,296 as well as a paper in a

special issue of Universe containing the proceedings of the conference Varying Con-

stants and Fundamental Cosmology,297 we will discuss experimental analyses which

motivate this approach before providing a theoretical framework with which to com-

pute relevant quantities in multi-field inflation. This will then be used to discuss

the prospect of finding models which fit the data available.
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6.1. Motivations to study the Running of the Running

At present most inflation models in the literature, and indeed this thesis, are com-

pared to data via computation of the spectral index ns and the tensor-to-scalar

ratio r. As in Chapter 4, sometimes non-Gaussianity is also utilised, but the exist-

ing bounds on this are too rough for it to be as precise a discriminator. Constraints

on non-Gaussianity will presumably be improved with time as better data is accu-

mulated, however, so it is widely considered an interesting and useful direction of

investigation nonetheless. Higher order terms (collectively referred to as runnings

of the spectral index) in the power spectrum’s series expansion (3.3.28) such as αs

and βs are of a similar status. To summarise, the basic Planck analysis39 assumes

βs ≡ 0 alongside all higher order runnings, and finds that

ns = 0.9655± 0.0062 , (6.1.1)

αs = −0.0084± 0.0082 , (6.1.2)

βs ≡ 0 . (6.1.3)

Inflationary models which then predict ns of around 0.96 and runnings of no more

than O(10−3) or so are hence favoured by the data. Many simple models of inflation

predict just this, so it is unsurprising that very little work calculating αs (for some

examples, see298–301), and less still on βs has been done. It is taken as a kind of

common sense that the spectrum is close enough to scale invariant that these extra

parameters are more or less negligible and the above approximation should suffice.

However, a further analysis39 by the Planck team which does not assume βs ≡ 0

casts some doubt on this, as it finds

ns = 0.9569± 0.0077 , (6.1.4)

αs = 0.011+0.014
−0.013 , (6.1.5)

βs = 0.029+0.015
−0.016 . (6.1.6)
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It is worth explicitly noting that these results come with rather large error bars.

This is essentially because runnings are hard to measure in CMB experiments which

only have access to information on the power spectrum over a modest range of k

values. As these running terms are proportional to higher powers of log k in the

parametrisation used, the full extent of their possible influence would only be felt at

larger k. While it is hence important to keep these limitations in mind we see that,

here, βs is consistent with a positive value of O(10−2) at more than 1σ significance

despite the sizeable uncertainty. Furthermore, its value is probably larger than

that of αs according to this result. This provides some motivation to question

whether the standard assumption of a near-scale-invariant power spectrum which

only significantly departs from scale-invariance in the linear regime, as in eqs. (6.1.1

– 6.1.3), is reasonable. Higher order deviations from scale-invariance would, if non-

negligible, provide information of considerable use in testing inflationary models.

We see in the second version of the constraints that the quadratic-order running αs

is still largely consistent with zero, but the data at present seems to support the

possibility of a large and non-zero cubic deviation from scale invariance in βs.

The mutability of the results under the inclusion of the next order term in the fit

is suspicious. This could of course be a spurious result that with further data will

be ruled out with considerable significance - the error bars are large for now and

it is too soon to conclude this is definitely real - but it could also be the first hint

that we should expect something other than the standard hierarchy of runnings.

This is further supported by the more recent analysis of the Planck data by another

group,302 which found

ns = 0.9582+0.0055
−0.0054 , (6.1.7)

αs = 0.011± 0.010 , (6.1.8)

βs = 0.027± 0.013 , (6.1.9)

further cementing the inconsistency of βs = 0 now at more than 2σ. This analysis

differs from the Planck in-house analysis in that some additional parameters; the
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lensing amplitude AL, the curvature density parameter Ωk and the sum of the masses

of standard model neutrinos, are taken to be independent. Doing so produces results

more strongly consistent with the expectation thatAL and Ωk are zero, strengthening

the argument for this interpretation. Furthermore, the results including non-zero βs

have been found to better fit the Planck data at low multipoles.39

As noted, there are considerable uncertainties in these results thanks to the diffi-

culty of measuring βs, but the statistics do nevertheless suggest the very interesting

possibility of non-trivial runnings. Between this and the further suggestions that the

fit to the data may be improved in this case, we argue in this chapter that it is worth

trying to understand the implications of a large βs from a theoretical perspective in

anticipation of the future confirmation or denial of this result, much like with the

similarly-uncertain case of non-Gaussianity. Our goal is not to endorse the idea that

the runnings are large, but instead to cautiously acknowledge the possible evidence

for this scenario and speculatively investigate further. Before moving onto this theo-

retical work, we first give a quick overview of the prospects of improving the bounds

we have on αs and βs given forecasts from future and/or proposed experiments.

6.1.1. Forecasts for the Runnings

Several future experiments give promising forecasts for measurements of the run-

nings. CMB spectral distortions - slight deviations from a perfect black body spec-

trum such as the presence of an effective chemical potential term - can be mea-

sured and depend on the power spectrum at larger k values than observable CMB

anisotropies. This means they are correspondingly more sensitive to higher order

terms in the series expansion (3.3.28). Future improvements of our constraints on

spectral distortions, such as from the PIXIE303–306 experiment, would be advanta-

geous in improving our bounds on the runnings.

Future CMB surveys succeeding the very successful existing WMAP and Planck

missions, such as CORE307,308 or PRISM309 would of course be helpful, but it is also

noted that 21 cm mapping310 experiments using e.g. the Square Kilometre Array311

would provide useful data, as would propositions of using the Euclid satellite312 to

perform a highly detailed spectroscopic galaxy survey.
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A combination of some or all of these propositions,313 or perhaps equivalent/comparable

alternative experiments with the same goals, could bring the size of the uncertainties

in αs and βs down to as low as O(10−3), an improvement of around an order of mag-

nitude over present results. This would be invaluable in confirming or disproving

the hints discussed above.

6.2. Spectral runnings in minimal single-field inflation

In Chapter 3 we found that at leading order in a slow-roll expansion, the power

spectrum is given by

PR =
H2

8π2ε0
, (6.2.1)

and the spectral index is similarly

ns − 1 =
d lnPR
d ln k

= −2ε0 − ε1 . (6.2.2)

Extending this calculation to the next two terms in the series expansion (3.3.28),

one finds

αs =
dns

d ln k
= −2ε0ε1 − ε1ε2 , (6.2.3)

βs =
dαs

d ln k
= −2ε0ε1(ε1 + ε2)− ε1ε2(ε2 + ε3) . (6.2.4)

It is clear from this that αs ∼ O(ε2) ∼ (ns− 1)2 and βs ∼ O(ε3) ∼ (ns− 1)3. At the

point of horizon crossing when observable anisotropies are generated, εn � 1 and

hence the general result of an almost scale-invariant power spectrum is ensured. For

the same reason, however, each running is correspondingly smaller by a factor of

O(ε) than the former one, and we consistently obtain for all kinds of potentials and

slow-roll scenarios the hierarchy (6.1.1 – 6.1.3). That is, if one has ns−1 ≈ −4×10−2

to match eq. (6.1.1), one would roughly expect α ≈ 10−3 and βs ≈ 10−5, the latter

of which is largely consistent with the assumed βs = 0 as it is all but undetectable
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either way.314 This is, however, considerably harder to reconcile with the analyses

including βs which predict it is three orders of magnitude larger than this.

Additionally, as one usually has εn ≥ 0, the slow-roll formalism generally predicts

negative runnings. Meanwhile, the extended analyses somewhat favour positive αs

and strongly favour positive βs. This clearly presents a problem should the βs 6= 0

hierarchy be confirmed to higher significance; mainstream inflationary theory based

on the pillar of slow-roll is fundamentally incompatible with it. This would open

the door to more serious consideration of non-slow-roll, multi-field, and other non-

standard inflationary scenarios. We hence are motivated to begin considering some

of these options and work towards answering questions like which extensions of

inflation are best suited to realising diverse hierarchies of runnings.

6.2.1. Slow-roll inflation with a sound speed

To extend the point we are making here, consider the scenario discussed in Section

3.3.8 where the field has a sound speed cs. We saw there that the power spectrum

is now

PR =
H2

8π2ε0cs
, (6.2.5)

where cs is the sound speed of the adiabatic perturbation. If we define a series of

slow-roll-like parameters in cs such that,

s0 =
ċs
Hcs

, sn+1 =
ṡn
Hsn

, (6.2.6)

then, we find results for the spectral index and its runnings:

ns = −2ε0 − ε1 − s0 , (6.2.7)

αs = −2ε0ε1 − ε1ε2 − s0s1 , (6.2.8)

βs = −2ε0ε1(ε1 + ε2)− ε1ε2(ε2 + ε3)− s0s1(s1 + s2) . (6.2.9)

We see, again, that the correction terms are correspondingly first, second and third
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order in a slow-roll parameter. This kind of hierarchy is unavoidable in single-field

slow-roll scenarios because the time derivatives of slow-roll parameters are second

order in slow-roll, by construction, as their too-rapid growth would quickly cause

them to cease being small and cause a premature end to inflation. In general, the

point being made here is that to reconcile inflation with the non-standard running

hierarchy including βs, we must go beyond not just minimal slow-roll inflation, but

also slow-roll models with non-minimal inclusions like sound speeds, or e.g. the

F (φ)R and Gauss-Bonnet couplings in Chapter 5, as these all follow the pattern of

increasingly small contribution at each order in the series expansion of runnings.

6.3. Multi-field scenarios and Runnings

As we have argued that we need to go beyond the limits of single-field slow-roll

inflation, we choose here to see what happens if we relax the assumption of a single

field. While instead relaxing the assumption of slow-roll and investigating e.g. local

slow-roll violating features in potentials may produce interesting effects, they may

have to be unnaturally fine-tuned to occur at the right time and have the right-sized

effect on each spectral parameter. Therefore we focus instead on whether more

general two-field phenomena may prove useful.

In multi-field inflation the power spectrum is given by

PR = P∗R × (1 + T 2
RS) , (6.3.1)

where P∗R is the power spectrum at horizon crossing (note that we will frequently

specify or distinguish a quantity as being at horizon crossing with an asterisk in this

fashion), and TRS is as defined in eqs. (3.3.50 – 3.3.51). Here, all of the inflationary

dynamics from the beginning of inflation up to t∗ is encoded in this first term, and

TRS then evolves the result at t∗ to the end of inflation. In single-field scenarios,

TRS = 0 as the power spectrum is unchanged on superhorizon scales due to the

conservation of the curvature perturbation R in this regime. However, in multi-field

scenarios the presence of a non-negligible isocurvature perturbation S changes this.

The horizon crossing power spectrum P∗R is still, in multi-field scenarios, computed

193



6. Testing inflation with the running of the running of the spectral index

via the same procedure as in single-field scenarios. That is, we use the result (6.2.1)

for P∗R. While the presence of multiple fields changes how matter sources curvature,

the dependence of the power spectrum on background objects resulting from the

curvature (H, ε0) is unchanged.1 The spectral index and runnings derived from P∗R
will still behave the same way as in the standard case. However, the parameters

of the power spectrum at the end of inflation will also contain a correction term

deriving from TRS , such that, using the standard definitions of the runnings and

spectral index as in Chapter 3, we recursively find at leading order in slow-roll that

(ns − 1) =
d lnPR
d ln k

= (n∗s − 1) +
1

H∗
d ln (1 + T 2

RS)

dt∗
, (6.3.2)

αs =
dns

d ln k
= α∗s +

1

(H∗)2

d2 ln (1 + T 2
RS)

d(t∗)2
, (6.3.3)

βs =
dαs

d ln k
= β∗s +

1

(H∗)3

d3 ln (1 + T 2
RS)

d(t∗)3
. (6.3.4)

Here, the first term in each expression is the usual horizon crossing result that will,

in normal circumstances, behave much like the single-field result. The difference due

to multi-field effects then arises in the second term of each expression, correcting

the horizon-crossing value by an amount dependent on the derivatives of TRS with

respect to the horizon crossing time t∗. It is helpful to apply the chain rule to see

this explicitly as

ns = n∗s +
2

H∗

[ TRS
1 + T 2

RS
ṪRS

]
,

αs = α∗s +
2

(H∗)2

[
TRS

1 + T 2
RS
T̈RS +

1− T 2
RS

(1 + T 2
RS)

2 Ṫ 2
RS

]
,

βs = β∗s +
2

(H∗)3

[
TRS

1 + T 2
RS

...
T RS + 3

1− T 2
RS

(1 + T 2
RS)

2 ṪRS T̈RS + 2
TRS (T 2

RS − 3)

(1 + T 2
RS)

3 Ṫ 3
RS

]
.

Here, noting that the dotted variables indicate derivatives with respect to t∗ specif-

1When the single-field power spectrum depends on matter-related quantities like cs as in eq.
(6.2.5) this is no longer generally the case, such as when two fields have different sound speeds.
This is discussed in Chapter 4 and a related article.148
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ically, we can use the definitions (3.3.50 – 3.3.51) of the transfer functions and the

fundamental theorem of calculus to obtain the following296

ṪRS = −H∗ [A∗ +B∗TRS ] , (6.3.5)

T̈RS = (H∗)2
[
A∗B∗ + (B∗)2TRS

]
, (6.3.6)

...
T RS = −(H∗)3

[
A∗(B∗)2 + (B∗)3TRS

]
, (6.3.7)

where A and B are model-dependent functions of background quantities that one

obtains by recasting the perturbed equations of motion in the form (3.3.48 – 3.3.49)

and comparing. Using these derivatives and explicitly substituting them into the

above expressions for the spectral index and runnings, we could obtain expressions

for the corrections to each parameter in terms of the three variables A∗, B∗ and

TRS (as it is easily seen that the factors of H∗ will trivially cancel out). To make

the resulting expressions a little bit more intuitive, however, we define the transfer

angle Θ as

TRS = tan Θ . (6.3.8)

In this picture, Θ = 0 corresponds to TRS = 0, while the other limiting case of TRS �
1 (such that the final spectrum is dominated by power derived from entropy transfer)

is represented by Θ → π/2. This trigonometric description has the advantage of

Θ hence having a finite domain of possible values, as well as the helpful feature of

being able to use trigonometric identities to manipulate expressions written in terms

of e.g. sin Θ or cos Θ. Note, for example, that eq. (6.3.1) is now

PR =
P∗R

cos2 Θ
. (6.3.9)

The value of Θ could be measured, for example, by a violation of the usual infla-

tionary consistency relation between the tensor-to-scalar ratio and tensor spectral

index, which for single-field slow-roll models is r = −8nt. For a two-field model, Θ

would be given by

195



6. Testing inflation with the running of the running of the spectral index

Θ = cos−1

[√
− r

8nt

]
. (6.3.10)

Similarly, the expressions for the corrections to the spectral parameters become

ns = n∗s +
2

H∗

[
Θ̇ tan Θ

]
,

αs = α∗s +
2

(H∗)2

[
Θ̈ tan Θ + Θ̇2 sec2 Θ

]
,

βs = β∗s +
2

(H∗)3

[...
Θ tan Θ + 3Θ̈Θ̇ sec2 Θ + 2Θ̇2 tan Θ sec2 Θ

]
.

We can also see from eq. (6.3.8) that derivatives of the transfer angle behave as

e.g. Θ̇ = ṪRS cos2 Θ (with extensions to higher orders following naturally via the

chain rule). Putting all of this together then yields our main result expressing these

corrections in terms of A∗, B∗ and the transfer angle Θ as

ns − 1 = (ns − 1)∗ − 2 sin Θ (A∗ cos Θ +B∗ sin Θ) , (6.3.11)

αs = α∗s + 2 cos Θ (A∗ cos Θ +B∗ sin Θ)

× (A∗ cos 2Θ +B∗ sin 2Θ) , (6.3.12)

βs = β∗s − 2 cos Θ (A∗ cos Θ +B∗ sin Θ)

× (B∗ cos 2Θ− A∗ sin 2Θ)

× (A∗ + 2A∗ cos 2Θ + 2B∗ sin 2Θ) . (6.3.13)

6.3.1. Analysis and Limiting Cases

We can look at the expressions (6.3.11 – 6.3.13) in particular limiting cases to gain

useful insight into what qualitative behaviour to expect. First, in the limit of small

Θ, the expressions reduce to
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ns − 1 = (ns − 1)∗ , (6.3.14)

αs = α∗s + 2(A∗)2 , (6.3.15)

βs = β∗s − 6(A∗)2B∗ . (6.3.16)

Because the correction to ns is proportional to sin Θ, it is uncorrected at leading

order in the small transfer angle limit. Meanwhile, the factor of cos Θ instead

appearing in the runnings gives them a non-zero correction. Of course, when Θ ≡ 0

due to the absence of isocurvature, this is because A = 0 in eq. (3.3.48), so none of

the terms are corrected, but when Θ is small but non-zero these results are valid.

We see that the correction to βs differs from that to αs by a factor of −3B∗. This

implies two things for the small angle limit:

1. To obtain a positive correction for βs, B
∗ should be negative.

2. To make the magnitude of the corrected βs comparable to or greater than that

of αs, we need −3B∗ ≥ 1.

This could be promising. For an appropriate size A∗ of any sign as well as a neg-

ative and O(1) or greater B∗, this could feasibly match the constraints given, as

similar-sized positive corrections to both runnings would be obtained. The spectral

index continues to be well described by its horizon-crossing value, assuring that the

corrections needed to generate large runnings do not move ns into a disfavoured

region.

In the opposite limit of Θ → π/2, representing substantial transfer of power from

entropic to adiabatic fluctuations, we find leading order corrections of

(ns − 1) = (n∗s − 1)− 2B∗ , (6.3.17)

αs = α∗s , (6.3.18)

βs = β∗s . (6.3.19)
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6. Testing inflation with the running of the running of the spectral index

This is less useful as it does nothing to directly alter the usual hierarchy of run-

nings from horizon-crossing, and potentially ruins a perfectly good spectral index

prediction.

We also note by inspection that specific transfer angles may set certain factors

in the above expressions equal to zero. For example, in the case where Θ =

tan−1 (−A∗/B∗), the factor (A∗ cos Θ + B∗ sin Θ) = 0. As this factor appears in

all three expressions, this would correspond to no corrections to the spectral index

or runnings. This is , of course, yet again not useful for our purposes. However,

by noting that the factor (A∗ cos 2Θ + B∗ sin 2Θ) appears only in the correction to

αs and not in βs, we could obtain a hierarchy of runnings consistent with small αs

while still generating a significant βs in the case where Θ = tan−1 (−A∗/B∗) /2. In

this case, we would find

(ns − 1) = (n∗s − 1) +B∗

√
1 +

(A∗)2

(B∗)2
−B∗ , (6.3.20)

αs = α∗s , (6.3.21)

βs = β∗s −B∗(A∗)2

√
1 +

(A∗)2

(B∗)2
. (6.3.22)

Then, for example, if B∗ � A∗, ns is approximately uncorrected while βs = β∗s −
B∗(A∗)2, which could again be a useful case in achieving concordance with the CMB

data analyses discussed above.

6.3.2. Particular Models

In general we see that whether we inspect the unsimplified results or any of the

above limiting cases, to obtain an interesting deviation from the horizon-crossing

behaviour of the spectral parameters we still need A∗ and B∗ to be sufficiently large

for the correction terms to be significant. All of the trigonometric factors simply

set the sign and relative size of one correction to another, but it is the A∗ and B∗

which then set the maximum size of those corrections, given a suitable angle. As

the nth order deviation from scale invariance is typically O(εn) at horizon crossing,
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6.3. Multi-field scenarios and Runnings

and the correction term at that order is also nth order in A∗ and B∗, we can see

that we typically will need these two functions to be greater than O(ε), i.e. not

slow-roll suppressed, in a model for there to be a good chance of producing non-

standard runnings. Otherwise, the correction terms will be of a comparable size to

the horizon-crossing baselines. To this end, theories like eq. (2.2.20) with modified

kinetic terms may be a good place to start. A well-studied subset of such theories

of the form

S =

∫
d4x
√−g

[
1

2
R− 1

2
(∂φ)2 +−1

2
e2b(φ)(∂χ)2 − V (φ, χ)

]
, (6.3.23)

provide a simple starting point.206,207 This kind of action with particular forms of

the two free functions V and b can arise physically from supergravity-motivated

scenarios and from extended Starobinsky Inflation.315 First, let us consider a special

case where b = 0 and V is simply the sum of mass terms for the two fields:

V =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 , b = 0 . (6.3.24)

Here, we find that (all quantities are assumed to be evaluated at t∗ henceforth so

we omit the superscripted asterisks for better readability)

A ≈ 4(1−R2)

(φ2 + χ2)(φ2 +R2χ2)
φ̇χ̇ , (6.3.25)

B ≈− 2ε0 +
2(1−R2)

(φ2 + χ2)(φ2 +R2χ2)

(
φ̇2 − χ̇2

)
, (6.3.26)

where R is the mass ratio mχ/mφ. For near-equal masses R ≈ 1, we see that

A ≈ 0 and B ≈ O(ε). For unequal masses R 6= 1, the relevant factors in these

terms could be sizeable but as they multiply φ̇χ̇ and φ̇2 − χ̇2, respectively, and

these are O(ε), a simple deviation in the mass ratio from unity is not sufficient to

generate large runnings regardless of Θ. To demonstrate this visually we present

Figure 6.1, where for a given model we show ns(Θ), αs(Θ) and βs(Θ) calculated

using eqs. (6.3.11 – 6.3.13) and the above expressions for A and B, obtained from

a numerical integration of the equations of motion. For argument’s sake, we do this
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for Θ ∈ [−π/2, π/2], rather than just the single Θ value that would be achieved in

reality. In the figure, we see that regardless of Θ, the usual hierarchy is obeyed and

results largely consistent with the βs ≡ 0 Planck analysis are found.

A less minimal choice of b and V , such as

V =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 +
1

2
g2φ2χ2 , b = −ξφ , (6.3.27)

may however be able to do more. We find the new forms of A and B to be resultingly

much more complex:

A ≈ 4

F 2(φ2 + e−2ξφχ2)

[
(ξ(λ2 + φ2) + 2φ)χe−2ξφχ̇2 (6.3.28)

−(µ2 − λ2 + χ2 − φ2)e−ξφφ̇χ̇− 2φχφ̇2
]
,

B ≈− 2ε0 +
2ξ(λ2 + φ2)χ

F 2
+

2

F 2(φ2 + e−2ξφχ2)

[
((1 + ξχ)(λ2 + φ2)) (6.3.29)

−(µ2 + χ2)e−2ξφχ̇2 − (ξ(λ2 + φ2)− 8φ)χe−ξφφ̇χ̇+ (µ2 − λ2 + χ2 − φ2)φ̇2
]
,

where F 2 = (µ2φ2 + (λ2 + φ2)χ2), µ = mφ/g and λ = mχ/g. Here, while many

terms still contain O(ε) factors due to being second order in time derivatives of

fields, many of them are now multiplied by an exponential factor coming from the

non-zero choice of b. For certain parameters and initial conditions, it may be the

case that these exponentials are large enough to make A∗ and B∗ significant even in

a slow-roll trajectory with small field derivatives. In contrast to the plots shown in

Figure 6.1, where regardless of Θ one always finds |ns − 1| > |αs| > |βs|, we might

expect that in this generalised case we can find Θ values for some choices of g and

ξ where this is not the case. An extreme example is shown in Figure 6.2 using the

same methodology.

Here, we see that the size of A∗ and B∗ are large enough to cause quite dramatic

oscillations in the runnings. In reality, this model predicts via numerical evaluation

of eqs. (3.3.50 – 3.3.51) that Θ = 2.8× 10−2, and this point is shown on the figure

as a dashed black line at which αs = 1.4× 10−2, and βs = 2.7× 10−2. These values

are largely concordant with the experimentally favoured values from the extended
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Figure 6.1.: Spectral parameters for the potential and kinetic function given by eq.
(6.3.24), with mφ = 5 × 10−6MPl = 5mχ such that R = 5, though
the behaviour shown is considerably more general and typical than this.
Initial conditions are chosen to give rise to a suitable amount of inflation.
We first show ns, αs and βs as a function of the transfer angle Θ together
but given the smallness of the latter two parameters we also show them
more clearly in the lower plot. The shaded region is where ns falls within
the Planck 1σ contours. The amplitude of oscillation as a function of Θ
is consecutively smaller for each order deviation, such that one always
has |ns − 1| > |αs| > |βs|.
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Figure 6.2.: Spectral parameters for the potential and kinetic function given by
eq. (6.3.27), with mφ/MPl = 5mχ/MPl = g = 4.8 × 10−4 and
ξ = −0.125/MPl. This model predicts A∗ and B∗ which can be con-
siderably larger than in the uncoupled case (6.3.24) and the oscillations
in αs and βs as a function of Θ are hence amplified. Again, the range
of favoured values of the runnings are shown as a shaded region. A
black-dashed line within this shaded region represents the numerically
computed value of Θ = 2.8 × 10−2 for this particular trajectory, for
which we find αs = 1.4× 10−2, and βs = 2.7× 10−2.

analyses, though this is just one example that was achieved by trial and error with

parameters for the sake of demonstrating the principles involved, not a statement

about the general suitability of this particular model. For comparison, we find here

that β∗s ≈ −1 × 10−3 which is negative and much smaller in magnitude, such that

the final βs value is clearly dominated by the superhorizon effects, as assumed.

Qualitatively, note that around Θ = 0 we have ns ≈ n∗s ∼ 1 − O(ε) as expected

from discussion in Section 6.3.1, but at larger Θ, large superhorizon corrections

ruin the spectral index. Similarly, the runnings tend to approach near-zero values

at Θ = π/2 as the superhorizon corrections proportional to cos Θ vanish in this

limit. The running of the running approaches zero from negative values, which is

not conducive to achieving a positive running of the running at large Θ, though

as ns is far too large in this limit it is not a feasible model anyway. The only
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6.4. Alternatives to Inflationary Cosmology

feasible transfer angles appear to be very small ones, as elsewhere αs and βs are

never simultaneously of a comparable order and sufficiently small, as well as the

fact that it is only at small Θ that ns remains reasonable. We might hence expect

that barring any coincidental special cases, it is in the small Θ limit that good

results will typically be made possible. Unfortunately, via the consistency relation

r = −8nt cos2 Θ, it is in this limit that we do not obtain a consistency relation

significantly different to the single-field case, making detection of such a deviation

more challenging.

6.4. Alternatives to Inflationary Cosmology

As we argued that basic inflation is incompatible with the βs 6= 0 hierarchy of run-

nings, it is reasonable to consider how alternatives to inflation fare in this scenario;

confirmation of an unexpected set of runnings potentially motivates not just exten-

sions of inflation, but perhaps could imply a different physical principle entirely is at

work. Theories such as variable speed of light (VSL) models are popular with crit-

ics of inflation,316 and quantum gravity (QG) scenarios may pave the way to early

universe theories where suitable primordial perturbations are generated via novel

and general high energy effects rather than the details of the inflationary model.

Here, we briefly cover an example of each of these to compare and contrast with the

standard inflationary approach and the multi-field formalism introduced above.

6.4.1. VSL and Runnings

VSL models involve a non-constant ratio of the speed of light to the speed of gravita-

tional waves.317–319 As mentioned, critics of inflation often favour it as an alternative

as they claim it is more predictive, and relativiely free of fine-tuning issues.320 VSL

cosmology has also been studied outside the context of the early universe as e.g. an

aspect of dark energy model building.100,321 Bimetric theories of gravity are often

used to construct VSL scenarios (a context in which much like the model of Chapter

4, disformal couplings may be useful). For example, in the VSL theory advocated

by Moffat,318,322 the power spectrum takes the general form
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6. Testing inflation with the running of the running of the spectral index

PR ∝ ln2
(
Ak3

)
, (6.4.1)

where A is a constant depending on model parameters whose precise form we shall

not at present concern ourselves with. Proceeding with the standard definitions

of the spectral index and its runnings, one obtains the following relations between

them

αs = −1

2
(ns − 1)2 , (6.4.2)

βs =
1

2
(ns − 1)3 , (6.4.3)

such that ns ≈ 0.96 would imply αs ≈ −8× 10−4 and βs ≈ −3× 10−5.

This is very similar to the standard hierarchy of runnings. As in slow-roll single-field

inflation, αs ∝ (ns − 1)2 and βs ∝ (ns − 1)3, and so once again the same process

which allows the theory to make good scale-invariant predictions also dooms it to

incompatibility with large runnings. Another similarity to standard inflation is

that a prediction of βs < 0 is made, contradictory to the extended analyses of the

experimental data. We can see that a confirmation of βs ≈ O(10−2) would not help

distinguish VSL from inflation. If one is to take the predictivity of VSL as a main

advantage over the wide range of models that inflation can be achieved by, then it

would be contrary to the spirit of this to build arbitrary extensions to the theory

as needed to produce a non-standard running hierarchy. One could even argue that

a confirmation of large runnings would disfavour VSL when compared to extended

models of inflation such as multi-field scenarios.

6.4.2. Quantum Gravity and Runnings

Quantum gravity may provide novel effects beyond those of the General Relativistic

perturbation theory that has been used thus far to determine inflationary spectra.

For example, it has been shown that in Canonical Quantum Gravity (CQG), one

finds323,324 a correction term to the basic inflationary power spectra arising from
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QG effects in the form

PR = P(0)
R (1 + ∆) , (6.4.4)

where P(0)
R is the base General Relativistic spectrum such as in eq. (6.2.1), and the

correction term ∆ is

∆ = 0.988
H2

M2
pl

(
k̄

k

)3

+O(ε) . (6.4.5)

Note that ∆ > 0. Here, k̄ is an inverse length scale introduced by CQG. Proceeding

to compute the spectral parameters from their usual definitions yields

ns − 1 = (ns − 1)(0) − 3∆

(1 + ∆)
+O(ε) , (6.4.6)

αs = α(0)
s +

9∆

(1 + ∆)2 +O(ε) , (6.4.7)

βs = β(0)
s +

27∆ (∆− 1)

(1 + ∆)3 +O(ε) , (6.4.8)

where symbols superscripted with a (0) again indicate those calculated from the

uncorrected spectrum P(0)
R . It is interesting to study these corrections in the small

∆ limit, in which case one finds

ns − 1 ≈ (ns − 1)(0) − 3∆ , (6.4.9)

αs = α(0)
s + 9∆ , (6.4.10)

βs = β(0)
s − 27∆ , (6.4.11)

revealing that each order’s correction term is larger than the previous one. This

is similar to findings in Loop Quantum Gravity325 where runnings of comparable

magnitude at all orders are found. In the above expressions, however, the correction

to βs is negative, such that while it may present a large deviation from the mini-

mal hierarchy of runnings, it does so in the wrong direction to match the analyses
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showing βs > 0. We can similarly study the limit of large ∆, but here we find

the uninteresting result that αs and βs are largely unchanged while ns − 1 ≈ −3

which is irreconcilable with data; this is not unexpected as we have in this limit

PR ∝ ∆ ∝ k−3 which by eq. (3.3.28) implies this result. In less extreme cases, a

large ∆ can produce an appropriately sized positive correction to βs, but in doing

so also corrects ns and αs by undesirably large amounts. In summary, small CQG

corrections are inappropriate as they are unfortunately negative, and larger CQG

corrections tend to produce too great a difference in ns and/or αs for this approach to

be successful. While QG corrections to spectra are perhaps an interesting approach

in general to solving this problem, this particular realisation does not successfully

produce concordant results with the βs 6= 0 analyses.

6.4.3. Alternative Parametrisation of the Power Spectrum

The usual procedure of expanding the power spectrum as a Taylor series in log k

and determining the coefficients of this expansion via eq. (3.3.28) would lead to the

usual expectation that each subsequent term is roughly smaller than the previous

one, such that one can truncate the power series at a certain order and have it

still represent a reasonable approximation of the true function. The possibility of

a deviation from this, where βs � αs, for example, leads to serious questions such

as “but what about the next order term, γs?”. If, say, a further extended analysis

found that the best fit values of αs and βs were rather different under the inclusion

of a γs parameter, which was found to be comparable to or larger than βs again,

this would likely be a sign of a pathology in the choice of parametrisation itself.

If such a Taylor series representation of the curvature perturbation spectrum of

inflation is not suitable, one could instead consider a Padé series. That is, an

approximant that is a ratio of two Taylor series, e.g.

log (PR) = log (As) +
x1 log

(
k
k∗

)
+ x2

2
log
(
k
k∗

)2
+ . . .

1 + y1 log
(
k
k∗

)
+ y2

2
log
(
k
k∗

)2
+ . . .

, (6.4.12)

where the first term on the denominator is set to 1 without loss of generality. Padé

series are widely used in numerical evaluation of special functions to high precision,
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providing a better approximation than an equal-order Taylor series and being well

behaved for certain functions where the Taylor series is undefined or problematic.

The question we wish to ask here, then, is whether a well-behaved Padé series with

decreasing coefficients could lead to an unexpectedly large βs when we analyse the

spectrum through the lens of a Taylor series parametrisation. First, let us note that

the apparent values of ns and so on one would find by projecting the Padé series

(6.4.12) onto the usual Taylor expansion (3.3.28) would be

ns − 1 = x1 , (6.4.13)

αs = x2 − x1y1 , (6.4.14)

βs = x3 −
3

2
x2y1 +

3

2
x1y

2
1 − x1y2 . (6.4.15)

From this, we see that αs picks up a correction dependent on the denominator

coefficient y1 and the numerator coefficient x1, which is just the spectral index.

Similarly βs picks up corrections proportional to ns − 1 and αs and combinations

of the denominator coefficients. It is then feasible that for certain values of the

denominator coefficients y1 and y2, these corrections could amount to e.g. βs ≈
O(ns − 1). Let us say, then, we take x1 = −0.04 to impose ns = 0.96, and assume

that the numerator coefficients are x2 ∼ x2
1, x3 ∼ x3

1 and so on, as a prototype for

their decreasing nature. Then, these expressions become

ns = 0.96 , (6.4.16)

αs = 1.6× 10−3 + 4y1 × 10−2 , (6.4.17)

βs = −6.4× 10−5 − 2.4y1 × 10−3 − 6y2
1 × 10−2 + 4y2 × 10−2 . (6.4.18)

One can immediately see that most of the corrections to βs are negative, leading

to a negative observed βs for many possible yi values. Particularly, the y2
1 term is

always negative regardless of the sign of y1. This immediately poses a problem for

creating a hierarchy of runnings similar to that implied by the Planck data analysis
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without resorting to |y2| > |y1| in the denominator power series. For example, in

the case where y2 ≈ 1/4 � |y1|, we can obtain βs ≈ 10−2, but at this point is this

any better than just having a large running of the running in a normal power series

expansion? In fact, maximising eq. (6.4.18) subject to the constraint y2 ≤ |y1| finds

the best we can do in this case is βs = 7.4 × 10−3 for y2 = −y1 ≈ 0.353, for which

αs ≈ −0.125, which is rather inconsistent with the experimental constraints and

seemingly too great a price to pay for an only moderately consistent βs. With the

stronger condition of y2 ≤ |y1|/2, this reduces to a maximum running of the running

of βs ≈ 2× 10−3 with αs ≈ −5× 10−3, largely trivialised once again.

In summary, we see that the effects of a Padé parametrisation of the power spectrum

may uplift the apparent Taylor series parameters ns, αs and βs somewhat, but not

enough to achieve e.g. βs of O(10−2) without requiring a non-decreasing set of

coefficients in the denominator, thus failing to do any better than the questionable

status of having such a series of coefficients in the original Taylor parametrisation.
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CHAPTER 7

CONCLUSIONS

While cosmic inflation is widely accepted as the leading description of the early

universe, as a necessary phenomenon to generate primordial curvature perturba-

tions consistent with Cosmic Microwave Background radiation anisotropies, it is

not known precisely how it happened and what caused it. The research projects

presented in this thesis are hence motivated by the ongoing pursuit of an explana-

tion of how cosmic inflation may have occurred. Standard model physics coupled

to General Relativity provides a good description of most of the universe, but has

been long ruled out as an inflationary theory, and so we look either at extensions

of particle physics or gravity theory to provide possible mechanisms for this. In

this thesis we focus primarily on the latter; how modified gravity may provide a

framework for inflation. At the same time, the simplest models of inflation such as

a simple massive scalar field slow-rolling have now been ruled out by improved lim-

its on the tensor-to-scalar ratio, motivating in particular work on extended models

of inflation with diverse and interesting phenomenology. As well as understand-

ing inflation for its own sake, a comprehension of the physics of the early universe

would also be a significant and useful step towards understanding high energy and

beyond-standard-model physics in general.

Following a review of the necessary background material in gravity theory and phys-
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7. Conclusions

ical cosmology, in this thesis we have seen the results of my research spanning three

main topics relating to cosmic inflation in scenarios based on and inspired largely by

modified gravity: the novel disformally coupled model of inflation, the effects of the

Gauss-Bonnet term during and after inflation, and the computation of inflationary

spectral parameters such as the running of the running in multi-field theories.

In the first of these, we described and analysed a model of two-field inflation whose

noteworthy feature is that the second field is defined on an extra-dimensional brane

whose induced metric is disformally related to the spacetime metric. The non-

standard interactions of these two fields, elucidated by making a transformation

to a frame in which the theory looks like it describes a non-standard field on the

standard metric rather than a standard field on a non-standard metric, provide

interesting phenomenology including the distinctive feature of having two distinct

propagation speeds. We discussed how this was related to the kinetic structure of

the theory and used this to define and quantise the fundamental degrees of freedom

and subsequently compute the power spectra of the primordial fluctuations as well

as the curvature bispectrum and its non-Gaussianity parameter. We found that

a String Theory motivated realisation of this model was uninteresting due to its

suppression of potentially new physics in the inflationary scenario, but found a

different form of the theory provided more interesting behaviour to study. Effects of

the two sound speeds, the isocurvature transfer function, and the size of the disformal

coupling were discussed in relation to the spectra. It was found that one could obtain

spectra consistent with the latest experimental constraints if one did not have the

disformality parameter γ evolving too rapidly, and that successful models produced

consistently smaller tensor-to-scalar ratios than the simplest models of inflation due

to the amplified scalar power spectrum. These are some of the first results on the

topic of multi-speed theories.

Secondly, we developed a generalisation of the ubiquitous slow-roll formalism for

approximate computation of relevant quantities to inflation which accounts for the

presence of a coupling of a scalar field to the Gauss-Bonnet combination of quadratic

curvature scalars, and for generality did so in a Jordan Frame described by an arbi-

trary non-minimal coupling function to the Ricci scalar. Subsequently, we showed
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that a Gauss-Bonnet coupling of the typical inverse power law form previously con-

sidered in the literature, while interesting in its generation of primordial pertur-

bations, does not actually allow inflation to end due to its inhibition of the field’s

motion. Following a discussion of the dynamics of this we argued that it is infeasible

to save the model via any of the major reheating processes and instead found a min-

imal extension of the model which does allow reheating to proceed. We determined

the consequences of this extension and carried out extensive numerical simulations of

the reheating phase to determine its influence on inflationary observations. We also

took the ability of the GB term to freeze a scalar field and applied this to developing

a model of quintessential inflation where the inflaton persists after inflation at low

densities and goes on to become dark energy in the present universe, and found that

while this was technically achievable with natural parameter choices, the resulting

dark energy model is incompatible with recent observations that gravitational waves

travel at the speed of light, but nevertheless demonstrates an interesting principle.

Our third topic involved a change of pace from the model building activities of

previous chapters to instead think about tests of inflation. Reflecting on a recent

experimental analysis which indicates that the so-called running of the running of

the spectral index, βs, may not be consistent with zero as was previously expected,

we ask the question of what implications this has for the multitude of inflationary

models. After showing that minimal slow-roll inflation is not suitable to achieve

this, we looked at how multi-field models, with their superhorizon evolution of the

curvature perturbation, are more suitable for predicting such large βs values. In turn,

the confirmation of this unexpected experimental result would cast serious doubt

on most single-field realisations of inflation. Similarly, we looked at some theories

such as variable speed of light scenarios, the effects of canonical quantum gravity on

inflationary spectra, and alternative parametrisations of PR from the perspective of

spectral runnings. A confirmation of the hints that the runnings of the spectral index

may be non-trivial could change the landscape of inflationary theories dramatically,

and here we have taken some of the first steps towards comprehending this in a

theoretically-useful way.
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APPENDIX A

APPENDICES

A.1. Useful derivatives of the P function of

Disformally Coupled Inflation

Here we list, for convenience, all the different symmetrised derivatives that are

needed to compute spectra and non-Gaussianities of Disformally Coupled Inflation.

Where a difference is present between canonical and DBI models, this will be noted

with a superscript of C or DBI.

A.1.1. Second order symmetrised derivatives

Out of a possible 24 = 16 combinations of derivatives, only 6 of these are unique

due to the symmetries Xφχ = Xχφ and f,xy = f,yx (standard reordering of par-

tial derivatives). Of these, three are identically zero due to the structure of the

Lagrangian.

PC
<φφ><φφ> = −γ3hD (Xχχ − CV ) + 6γ5h2D(Xφχ)2 ,

PDBI
<φφ><φφ> = hγ3 + PC

<φφ><φφ> ,
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P<φφ><χχ> = P<χχ><φφ> = −γD ,

P<φφ><φχ> = P<φφ><χφ> = P<φχ><φφ> = P<χφ><φφ> = 2γ3hDXφχ ,

P<φχ><χχ> = P<χφ><χχ> = P<χχ><φχ> = P<χχ><χφ> = 0 ,

P<χχ><χχ> = 0 ,

P<φχ><φχ> = P<φχ><χφ> = P<χφ><φχ> = P<χφ><χφ> = γD .
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A.1.2. Third order symmetrised derivatives

Out of a possible 26 = 64 combinations of derivatives, only 10 of these are unique

due to the symmetries Xφχ = Xχφ and f,xy = f,yx (standard reordering of partial

derivatives). Of these, 6 are identically zero due to the structure of the Lagrangian.

PC
<φφ><φφ><φφ> = −3γ5h2D (Xχχ − CV ) + 30γ7h3D(Xφχ)2 ,

PDBI
<φφ><φφ><φφ> = 3h2γ5 + PC

<φφ><φφ> ,

P<χχ><χχ><χχ> = 0 ,

P<φχ><φχ><φχ> = P<χφ><φχ><φχ> = P<φχ><χφ><φχ> = P<φχ><φχ><χφ>

= P<χφ><χφ><φχ> = P<χφ><φχ><χφ> = P<φχ><χφ><χφ> = P<χφ><χφ><χφ> = 0 ,

P<φφ><φφ><χχ> = P<φφ><χχ><φφ> = P<χχ><φφ><φφ> = −γ3hD ,

P<φφ><φφ><φχ> = P<φφ><φφ><χφ> = P<φφ><φχ><φφ>

= P<φφ><χφ><φφ> = P<φχ><φφ><φφ> = P<χφ><φφ><φφ> = 6γ5h2DXφχ ,

P<χχ><χχ><φφ> = P<χχ><φφ><χχ> = P<φφ><χχ><χχ> = 0 ,

P<χχ><χχ><φχ> = P<χχ><χχ><χφ> = P<χχ><φχ><χχ>

= P<χχ><χφ><χχ> = P<φχ><χχ><χχ> = P<χφ><χχ><χχ> = 0 ,
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P<φφ><φχ><φχ> = P<φφ><χφ><φχ> = P<φφ><φχ><χφ> = P<φφ><χφ><χφ>

= P<φχ><φφ><φχ> = P<χφ><φφ><φχ> = P<φχ><φφ><χφ> = P<χφ><φφ><χφ>

= P<φχ><φχ><φφ> = P<χφ><φχ><φφ> = P<φχ><χφ><φφ> = P<χφ><χφ><φφ> = γ3hD ,

P<χχ><φχ><φχ> = P<χχ><χφ><φχ> = P<χχ><φχ><χφ> = P<χχ><χφ><χφ>

= P<φχ><χχ><φχ> = P<χφ><χχ><φχ> = P<φχ><χχ><χφ> = P<χφ><χχ><χφ>

= P<φχ><φχ><χχ> = P<χφ><φχ><χχ> = P<φχ><χφ><χχ> = P<χφ><χφ><χχ> = 0 ,

P<φφ><χχ><φχ> = P<φφ><χχ><χφ> = P<χχ><φφ><φχ> = P<χχ><φφ><χφ>

= P<φφ><φχ><χχ> = P<φφ><χφ><χχ> = P<χχ><φχ><φφ> = P<χχ><χφ><φφ>

= P<φχ><φφ><χχ> = P<χφ><φφ><χχ> = P<φχ><χχ><φφ> = P<χφ><χχ><φφ> = 0 .
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A.2. Perturbation Coefficients in Disformally Coupled

Inflation

In this appendix we detail various coefficients used in the perturbation equations

of disformally coupled inflation. These are background quantities that multiply the

linearised perturbation equations and are needed to numerically solve the system.

As in the main body of text, we use eq. (4.2.14) to encode differences between

Canonical and DBI models.

A.2.1. Coefficients in the Perturbed Einstein Equations

The Xn, Yn and Zn coefficients appearing in eqs. (4.3.6 – 4.3.8) have some slight

differences between Canonical and DBI cases, and are given by the expressions

X1 = 2U −
(
2γ2 − 3

)
ρχ − γ4pχ −

C

D

(
γ3
d − 3γd + 2

)
,

X2 = U ′ − 1

2

([(
2γ2 − 5

)
ρχ + γ4pχ

] C ′
C
−
(
γ2 − 1

) [
2ρχ + γ2pχ

] D′
D

)
− C

2D

(
C ′

C
− D′

D

)(
γ3
d − 3γd + 2

)
,

X3 =

[
γ3
d +

D

C
γ2
(
2ρχ + γ2pχ

)]
φ̇ ,

X4 = γC2V ′ ,

X5 = γ3Cχ̇ .

Z1 = − 2
(
φ̇2 − U

)
− (ρχ + 3pχ)− C

D

(
γ3
d − 3γd + 2

)
,

Z2 = − U ′ − 1

2

[
(ρχ − 3pχ)

C ′

C
− γ2 − 1

γ2
ρχ
D′

D

]
− C

2γD

(
C ′

C
− D′

D

)
(γd − 1)2 ,

Z3 = − Y1 =

[
γd +

D

C
ρχ

]
φ̇ ,

Z4 = − C2V ′

γ
,

Z5 = − Y2 = γCχ̇ .
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A.2.2. Coefficients in the Perturbed Klein Gordon Equation for χ

The βn coefficients appearing in eq. (4.3.5) are the same regardless of φ’s kinetic

term and take the forms

β1 = γ2D

C
φ̇χ̇ , β2 = 1 ,

β3 = − D

C
φ̇χ̇ , β4 = − 1

γ2
,

β5 = −
(
γ2 + 3

)
χ̇ ,

β6 = γ2
(
2γ2 − 1

) D
C
χ̇φ̈− 2Dφ̇V ′ − 1

2

[(
2γ4 − γ2 − 3

) C ′
C
−
(
2γ4 − γ2 − 1

) D′
D

]
χ̇ ,

β7 = 3H + γ2D

C
φ̇φ̈− 1

2

[(
γ2 − 3

) C ′
C
−
(
γ2 − 1

) D′
D

]
φ̇ ,

β8 = − 2γ2

(
γ2D

C
φ̇χ̇φ̈− CV ′ − 1

2

[
C ′

C
− D′

D

] (
γ2 − 1

)
φ̇χ̇

)
,

β9 = γ4D

C
φ̇χ̇φ̈

(
D′

D
− C ′

C

)
+
CV ′

γ2

[
γ2C

′

C
−
(
γ2 − 1

) D′
D

]
+

1

2

[(
γ2 − 1

) D′′
D
−
(
γ2 − 3

) C ′′
C

+

(
γ2C

′

C
−
(
γ2 − 1

) D′
D

)2

− 3

(
C ′

C

)2
]
φ̇χ̇ ,

β10 =
CV ′′

γ2
.
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A.2.3. Coefficients in the Perturbed Klein Gordon Equation for φ

The αn coefficients appearing in eq. (4.3.4) are the main element of the perturbed

system that differs between DBI and Canonical cases, and are given by

α1 = γ3
d +

D

C
γ2ρχ ,

α2 = 0 ,

α3 = −
(
γd −

D

C
γ2pχ

)
,

α4 = 0 ,

α5 = − φ̇
[
γ
(
γ2 + 3

)
+
D

C
γ2 (ρχ − 3pχ)

]
,

α6 = 3H

[
γ3
d

(
1− 3

γ2
d − 1

γ2 + γ + 1

)
− D

C

(
γ4pχ +

(
γ2 − 1

) (
ρχ + γ2pχ

))]
+
D

C
γ2φ̇

[
D

C
γ2
(
4ρχ + γ2pχ

)
φ̈

−1

2

([(
4γ2 − 1

)
ρχ +

(
γ2 + 4

)
γ2pχ

] C ′
C
−
[(

4γ2 − 2
)
ρχ +

(
γ2 − 1

)
γ2pχ

] D′
D

)]
+

3

2

(
C ′

C
− D′

D

)
φ̇γ3 1 + γd − 2γ2

d

γ2 + γ + 1
,

α7 = Dγ3
(
γ2φ̈− 3Hφ̇

)
χ̇− 1

2
Cγ3

((
γ2 + 1

) C ′
C
−
(
γ2 − 1

) D′
D

)
χ̇ ,
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α8 = −
(

2 +
D

C
γ2
[(

4γ2 − 1
)
ρχ + γ4pχ

])
φ̈

− 3Hφ̇

(
2 +

γ (γd − 1)2 (2γ2 + 3γ + 1)

γ2 + γ + 1
− D

C
γ2
[
ρχ +

(
2γ2 − 1

)
pχ
])

+
1

2

([(
4γ4 − 4γ2 + 2

)
ρχ +

(
γ4 + 4γ2 − 3

)
γ2pχ

] C ′
C

−
[(

4γ4 − 5γ2 + 1
)
ρχ +

(
γ2 − 1

)
γ4pχ

] D′
D

)

+
1

2

C

D

(
C ′

C
− D′

D

)
(γd − 1)3 (4γ2 + 7γ + 4)

γ2 + γ + 1
,

α9 = U ′′ +
1

2

([(
γ2 − 2

)
ρχ + 3γ2pχ

] D′′
D
−
[(
γ2 − 1

)
ρχ
] C ′′
C

)
+

1

4

([
1

2

(
4γ2 − 3

) C ′
C
− 2

(
γ2 − 1

) D′
D

]2

ρχ

+

[(
γ2 + 2

) C ′
C
−
(
γ2 − 1

) D′
D

]2

γ2pχ +

[
15

4
ρχ − 13γ2pχ

](
C ′

C

)2
)

+
γ2D

2C

[([(
4γ2 − 2

)
φ̈− 3H

D

C
φ̇3

]
ρχ +

[(
γ2 − 1

)
φ̈− 6Hφ̇

]
γ2pχ

)
D′

D

−
([(

4γ2 − 5
)
φ̈− 3Hφ̇

]
ρχ +

[
γ4φ̈− 3Hφ̇

(
2γ2 − 3

)]
pχ

) C ′
C

]

+
3

2
Hφ̇

(
C ′

C
− D′

D

)
γ (γd − 1)2 (2γ2 + 3γ + 1)

γ2 + γ + 1

+
3

4

C

D
γ3

(
C ′

C
− D′

D

)2
4γ2

d + γd − 2

γ2
d + γd + 1

− C

4D

(
3γd
(
2γ2

d − 1
)(C ′

C

)2

+
(
10γ2

d − 15γd + 8
)(D′

D

)2

− 2
C ′

C

D′

D

(
8γ3

d − 9γd + 4
))
− 1

2

C

D

(
γ3
d − 3γd + 2

)(C ′′
C
− D′′

D

)
,

α10 =

(
1

2

[(
γ2 − 1

) D′
D
−
(
γ2 − 5

) C ′
C

]
+
D

C

[
γ2φ̈+ 3Hφ̇

])
γC2V ′ .
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A.2.4. Coefficients following transformation to gauge-invariant

Sasaki-Mukhanov variables

When transforming from eqs. (4.3.4 – 4.3.5) to eqs. (4.3.2 – 4.3.3), one eliminates

the metric perturbations to obtain gauge invariant field equations, and in doing so,

we define modified versions of some of the above coefficients as they appear in the

gauge invariant system. These are

Transformation of αn

ᾱ6 = α6 −
1

2H

[(
α1φ̇+ α2χ̇

)
Z3 +

(
α3φ̇+ α4χ̇

)
X3

]
,

ᾱ7 = α7 −
1

2H

[(
α1φ̇+ α2χ̇

)
Z5 +

(
α3φ̇+ α4χ̇

)
X5

]
,

ᾱ9 = α9 +
Y1

2H

(
ᾱ6φ̇+ ᾱ7χ̇+ 2

[
α1

(
φ̈− Ḣφ̇

H

)
+ α2

(
χ̈− Ḣχ̇

H

)]

−H
[
α5 + (4α1 − 3α3) φ̇+ (4α2 − 3α4) χ̇

])
− Z2

2H

(
α1φ̇+ α2χ̇

)
− X2

2H

(
α3φ̇+ α4χ̇

)
,

ᾱ10 = α10 +
Y2

2H

(
ᾱ6φ̇+ ᾱ7χ̇+ 2

[
α1

(
φ̈− Ḣφ̇

H

)
+ α2

(
χ̈− Ḣχ̇

H

)]

−H
[
α5 + (4α1 − 3α3) φ̇+ (4α2 − 3α4) χ̇

])
− Z4

2H

(
α1φ̇+ α2χ̇

)
− X4

2H

(
α3φ̇+ α4χ̇

)
.
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Transformation of βn

β̄6 = β6 −
1

2H

[(
β1φ̇+ β2χ̇

)
Z3 +

(
β3φ̇+ β4χ̇

)
X3

]
,

β̄7 = β7 −
1

2H

[(
β1φ̇+ β2χ̇

)
Z5 +

(
β3φ̇+ β4χ̇

)
X5

]
,

β̄9 = β9 +
Y1

2H

(
β̄6φ̇+ β̄7χ̇+ 2

[
β1

(
φ̈− Ḣφ̇

H

)
+ β2

(
χ̈− Ḣχ̇

H

)]

−H
[
β5 + (4β1 − 3β3) φ̇+ (4β2 − 3β4) χ̇

])
− Z2

2H

(
β1φ̇+ β2χ̇

)
− X2

2H

(
β3φ̇+ β4χ̇

)
,

β̄10 = β10 +
Y2

2H

(
β̄6φ̇+ β̄7χ̇+ 2

[
β1

(
φ̈− Ḣφ̇

H

)
+ β2

(
χ̈− Ḣχ̇

H

)]

−H
[
β5 + (4β1 − 3β3) φ̇+ (4β2 − 3β4) χ̇

])
− Z4

2H

(
β1φ̇+ β2χ̇

)
− X4

2H

(
β3φ̇+ β4χ̇

)
.

221



BIBLIOGRAPHY

[1] A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Annalen der

Physik 354 (1916), no. 7 769–822.

[2] Particle Data Group Collaboration, J. Beringer et al., Review of Particle

Physics (RPP), Phys. Rev. D86 (2012) 010001.

[3] Particle Data Group Collaboration, K. A. Olive et al., Review of Particle

Physics, Chin. Phys. C38 (2014) 090001.

[4] Particle Data Group Collaboration, C. Patrignani et al., Review of

Particle Physics, Chin. Phys. C40 (2016), no. 10 100001.

[5] Virgo, LIGO Scientific Collaboration, B. P. Abbott et al., Observation of

Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116

(2016), no. 6 061102, [arXiv:1602.03837].

[6] GROND, SALT Group, OzGrav, DFN, INTEGRAL, Virgo,

Insight-Hxmt, MAXI Team, Fermi-LAT, J-GEM, RATIR,

IceCube, CAASTRO, LWA, ePESSTO, GRAWITA, RIMAS, SKA

South Africa/MeerKAT, H.E.S.S., 1M2H Team, IKI-GW

Follow-up, Fermi GBM, Pi of Sky, DWF (Deeper Wider Faster

Program), Dark Energy Survey, MASTER, AstroSat Cadmium

Zinc Telluride Imager Team, Swift, Pierre Auger, ASKAP,

222

http://arxiv.org/abs/1602.03837


Bibliography

VINROUGE, JAGWAR, Chandra Team at McGill University,

TTU-NRAO, GROWTH, AGILE Team, MWA, ATCA, AST3,

TOROS, Pan-STARRS, NuSTAR, ATLAS Telescopes, BOOTES,

CaltechNRAO, LIGO Scientific, High Time Resolution Universe

Survey, Nordic Optical Telescope, Las Cumbres Observatory

Group, TZAC Consortium, LOFAR, IPN, DLT40, Texas Tech

University, HAWC, ANTARES, KU, Dark Energy Camera

GW-EM, CALET, Euro VLBI Team, ALMA Collaboration, B. P.

Abbott et al., Multi-messenger Observations of a Binary Neutron Star

Merger, Astrophys. J. 848 (2017), no. 2 L12, [arXiv:1710.05833].

[7] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the

search for the Standard Model Higgs boson with the ATLAS detector at the

LHC, Phys. Lett. B716 (2012) 1–29, [arXiv:1207.7214].

[8] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a

mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716

(2012) 30–61, [arXiv:1207.7235].

[9] S. Dodelson, Modern Cosmology. Academic Press. Academic Press, 2003.

[10] V. Mukhanov, Physical Foundations of Cosmology. Cambridge University

Press, 2005.

[11] J. Peacock, Cosmological Physics. Cambridge Astrophysics. Cambridge

University Press, 1999.

[12] P. Peebles, Principles of Physical Cosmology. Princeton series in physics.

Princeton University Press, 1993.

[13] R. A. Alpher, H. Bethe, and G. Gamow, The origin of chemical elements,

Phys. Rev. 73 (Apr, 1948) 803–804.

[14] R. Durrer, The Cosmic Microwave Background. Cambridge University Press,

2008.

223

http://arxiv.org/abs/1710.05833
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235


Bibliography

[15] Supernova Search Team Collaboration, A. G. Riess et al., Observational

evidence from supernovae for an accelerating universe and a cosmological

constant, Astron. J. 116 (1998) 1009–1038, [astro-ph/9805201].

[16] Supernova Cosmology Project Collaboration, S. Perlmutter et al.,

Measurements of Omega and Lambda from 42 high redshift supernovae,

Astrophys. J. 517 (1999) 565–586, [astro-ph/9812133].

[17] Supernova Search Team Collaboration, A. G. Riess et al., Type Ia

supernova discoveries at z > 1 from the Hubble Space Telescope: Evidence

for past deceleration and constraints on dark energy evolution, Astrophys. J.

607 (2004) 665–687, [astro-ph/0402512].

[18] J. C. Kapteyn, First Attempt at a Theory of the Arrangement and Motion of

the Sidereal System, The Astrophysical Journal 55 (May, 1922) 302.

[19] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, The

Astrophysical Journal 86 (Oct., 1937) 217.

[20] V. C. Rubin and W. K. Ford, Jr., Rotation of the Andromeda Nebula from a

Spectroscopic Survey of Emission Regions, The Astrophysical Journal 159

(Feb., 1970) 379.

[21] V. C. Rubin, N. Thonnard, and W. K. Ford, Jr., Extended rotation curves of

high-luminosity spiral galaxies. IV - Systematic dynamical properties, SA

through SC, The Astrophysical Journal Letters 225 (Nov., 1978) L107–L111.

[22] V. C. Rubin, W. K. Ford, Jr., and N. Thonnard, Rotational properties of 21

SC galaxies with a large range of luminosities and radii, from NGC 4605

R = 4 kpc to UGC 2885 R = 122 kpc, The Astrophysical Journal 238 (June,

1980) 471–487.

[23] M. Persic, P. Salucci, and F. Stel, The universal rotation curve of spiral

galaxies - i. the dark matter connection, Monthly Notices of the Royal

Astronomical Society 281 (1996), no. 1 27–47.

224

http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/astro-ph/0402512


Bibliography

[24] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII.

Cosmological parameters, Astron. Astrophys. 594 (2016) A13,

[arXiv:1502.01589].

[25] F. C. Adams and G. Laughlin, A Dying universe: The Long term fate and

evolution of astrophysical objects, Rev. Mod. Phys. 69 (1997) 337–372,

[astro-ph/9701131].
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