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Cosmology is the science trying to understand the nature of the Universe and its
evolution. Inflation, the theory proposing a period of accelerated expansion in the
very early stages of the Universe, aims to answer a number of questions arising in the
standard Big Bang cosmology, like the flatness problem, the horizon problem and the
origin of large-scale structures.

Inflation is usually assumed to be driven by scalar fields. The aim of this thesis
is to investigate predictions of the Starobinsky model and its extensions, where an
inflationary phase is driven by corrections to General Relativity. First proposed in
1980 by A. Starobinsky, he showed that corrections to General Relativity could drive
an accelerated expansion in the early Universe. Here we extend this theory by adding a
matter field which influences the inflationary dynamics and discuss how the predictions
are altered. We find that the extended model is in excellent agreement with the latest
observational results by the Planck collaboration. We also study the running of the
spectral index and higher orders parametrisations of the power spectrum and compare
them to predictions in other inflationary models.

Finally we are investigating the theory of reheating in the extended Starobinsky
model. We show that the corrections to General Relativity have an effect on the
duration of reheating during perturbative reheating and that they reduce the efficiency
of particle production in parametric resonance reheating. Thus it becomes clear that
these effects need to be taken into account when comparing theoretical results to data.
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Preface

• Chapter 1 contains introductory material and a summary of im-

portant concepts.

• Chapter 2 contains an introduction to the Starobinsky model.

• Chapter 3 is based on the published work in Physical Review D

in May 2015 with Carsten van de Bruck [1]. All new analytical

and numerical calculations and production of figures were done

by the Author.

• Chapter 4 is based on work done in collaboration with Carsten

van de Bruck and Chris Longden. All numerical calculations and

figures presented in this Chapter were conducted by the Author.

• Chapter 5 is based on the published work in the International

Journal of Modern Physics in June 2016 [2], done in collaboration

with Carsten van de Bruck and Peter Dunsby. The numerical

calculations were performed by the Author and Carsten van de

Bruck. Other contributions included numerical simulations and

pieces of analytical work.

• Chapter 6 is a summary of the three projects.
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Chapter 1

Introduction

1.1 The Beginning - General Relativity

From the first moments of awareness as a species, people have incrementally pushed

the limits of their understanding. From a flat Earth, to the acceptance of a heliocentric

model, any advancement in scientific understanding has meant both a deeper insight

into the Universe and more questions to be answered. One such big event was the

perfecting of Einstein’s Theory of General Relativity [3, 4], where he introduced the

Einstein field equations. In his 1917 work [5], Einstein introduces the ’cosmological

constant’ in an attempt to find a solution to his equations which would account for

a closed, static Universe. His ’biggest mistake’, as he referred to it, is introduced to

counter the effects of gravity, which causes all structures in the Universe to collapse.

In order to verify the theory that marked the culmination of his work on General

Relativity, Einstein described three distinct instances, where his new approach was

able to explain satisfactorily what had previously been considered anomalous or inex-

plicable. Any and all theoretical extensions to the Theory of General Relativity are

13



14 CHAPTER 1. INTRODUCTION

required to satisfy these three tests.

Test One: The perihelion procession of Mercury

The first test concerns the perihelion precession of the planet Mercury. Until the advent

of Einstein’s new theory, Isaac Newton’s Philosophiae Naturalis Principia Mathemat-

ica, published in 1687, provided the most comprehensive set of principles to describe

the physics of both the earth and the cosmos in which it is located. This groundbreak-

ing piece of work changed astronomy profoundly with the three famous laws of motion

and the law of gravitation.

Newtonian physics was applied to the planetary motions. The French mathe-

matician Le Verrier found in 1841 that Mercury’s perihelion procession could not be

explained by the laws of motion and gravitation in their current formulation. A small

shift occurred in the perihelion every century; this was calculated to be about 38 arc-

seconds [6]. In 1895, Simon Newcomb corrected this angle slightly, adding another

10% to the unexplained shift.

Before Einstein’s explanation of the anomaly in 1915, there was no widely accepted

answer to the problem. The Theory of General Relativity not only provided a full

working explanation for Le Verrier’s anomaly with no need for a phantom planet,

it also helped Einstein to further correct the angle of the perihelion shift. Still in

agreement with the currently accepted value of 45 ± 5, he calculated it as 43 arc-

seconds per century [7].

Test Two: Deflection of light by massive bodies

Light waves travelling through space are affected by space-time curvature. A massive

body affects the path of light within its area of influence, causing it to bend, due to the
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way in which space-time is affected by the gravitational energy of that body. In 1804,

the German physicist Johann Georg von Soldner described this phenomenon through

a calculation of the deflection of solar light rays in our solar system.

Using the Theory of Relativity, Einstein corrected the deflection calculation in

1916. According to General Relativity, the effect of gravity on light was 2 times more

significant than previously thought.

Test Three: Gravitational redshift due to high density massive objects

The third classic test of the Theory of General Relativity is the gravitational redshift

of light close to high density massive bodies. Early on, Einstein proposed this as a

test of his new theory. It was not actually until 1960, when Rebka, Snider & Pound

at Harvard university examined how photons emitted by atoms are affected by the

Earth’s gravitational field, that the final test of Einstein’s theory was verified [8].

1.2 The Universe as We See It

1.2.1 Expanding Space

From Einstein’s work, studies followed in the early decades of the 20th century, which

led to the understanding that the Universe is expanding. Vesto Slipher’s paper from

1917 presents observational results of the red-shifting of the light coming from the

majority of galaxies that he had included in his 4 year study [9]. His work is followed

by that of Hubble in 1929 [10, 11], where a linear relation between galaxy distance

from the Solar System and observed redshift is introduced:

v = H0d, (1.1)
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with v the recession velocity between the galaxies, d the distance between the observ-

ables and H0 the Hubble constant.

The relation between distance and the recession velocity of galaxies had been de-

rived by Lemâıtre in 1927 [12]. He combined the ideas of de Sitter and Einstein as

follows. In 1917, de Sitter proposed a solution to Einstein’s equations [13], which

assumed no matter in the Universe and hence zero density; Einstein’s model assumed

a uniform distribution of matter on large scales and a static Universe and it led to a

relationship between matter density and the radius of the Universe. Lemâıtre’s work

brought the two together and he derived the solution to a Universe with constant

mass, that had a radius which was allowed to vary and expand without bounds. In

his later work [14, 15, 16], he proposed that this variation in size meant the Universe

started from a single point.

Lemâıtre independently obtained the same results that Friedmann had in the early

1920s. Friedmann published two papers exploring the possibilities of a space-time

which could either be static, or dynamic, which could grow or contract with time. He

derived the equations describing the process, in what we now refer to as the Friedmann

equations [17, 18].

1.2.2 Cosmological Microwave Background

The scientific understanding of the Universe changed dramatically from a Newtonian,

classically dynamical model of planetary motion, to a world where space-time-energy

affect each other. Further probing into the structure of the Universe was intimately

related to an increase in technological development.

First discovered by accident by Penzias and Wilson at the Bell Laboratory in 1965
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[19], the CMB is left behind after the cooling of the thermal background radiation. In

the original work, the CMB temperature was measured at 3.5± 1K in all directions,

indicating that we live in an isotropic Universe. The latest value of the CMB temper-

ature is 2.73K with inhomogeneities of order 10−5K [20]. Dicke was leading a group

planning to measure the CMB, when the results from Penzias and Wilson came out;

his group also published a paper on the same results [21] that year.

The existence of the CMB was first proposed by Alpher, Bethe and Gamow [22].

The CMB has a blackbody spectrum. This thermal radiation is the relic of a much

hotter, denser time. Alongside Hubble’s law, it stands as important supporting evi-

dence to the theory proposed by Lemâıtre [14, 15, 16], that the Universe could have

started from a singularity, later referred to as the Big Bang.

Shortly after the discovery of the CMB, Sachs and Wolfe predicted deviations from

a perfect blackbody spectrum which would be caused by density perturbations on the

surface of last scattering [23].

Observations done by COBE published in 1992 revealed that the background ra-

diation has a blackbody form, but exhibits small temperature anisotropies on large

scales with an amplitude of ∆T/T ' 10−5 [24],[25].

At the turn of the millennium, the WMAP satellite took on a mission to take

precise measurement of the CMB, the final results after 12 years were published in

[26]. The responsibility of observing the CMB was taken then by the Planck satellite,

which brought us the most comprehensive measurement of the densities of matter and

energy in the Universe to date [20].
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1.2.3 Concordance Model in Cosmology

The current concordance model in cosmology is the ΛCDM model; It models the

Universe after the Big Bang with a positive cosmological constant, which drives the

accelerated expansion of the Universe at late times and introduces dark matter as the

dominant matter component. The cosmological constant Λ represents, the dark energy

in the Universe and it was originally proposed by Einstein to allow for a static solution

to his field equations. Although the reason for its introduction was later invalidated

by Hubble’s discovery of distancing galaxies in the local group, it is now used to model

the late time accelerated expansion of the Universe.

1.2.4 Cosmological Principle

Most cosmological work is done on the assumption of the Cosmological Principle -

namely that the Universe is homogeneous and isotropic on large scales. Homogeneity

refers to its property of translational invariance of statistical properties and isotropy

to its rotational invariance. A Universe which is everywhere isotropic is also homo-

geneous, but the corollary does not hold true. On small scales the structure in the

Universe does not appear homogeneous and isotropic - consider galaxy clusters and

voids - however on scales larger than ≈ 100h−1Mpc, in ΛCDM , the matter distribu-

tion is statistically homogeneous. One way to look at this is to consider the small-scale

structure as perturbations of the Universe.

The assumption of homogeneity is at the core of the ΛCDM model, together with

the Friedmann-Robertson-Walker metric (which we will introduce later in equation

(1.7). Combining ΛCDM with a period of accelerated expansion in the very early

Universe, i.e. inflation, predicts density fluctuations which occur on all scales. The
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scale dependence of these perturbations is quantified by the spectral index ns of the

primordial power spectrum - for a spectral index equal to one, the spectrum is scale

invariant. The latest Planck collaboration results place the value of ns ≈ 0.9682 ±

0.0062 [20]. The density fluctuations are nearly scale invariant.

1.3 Cosmological Equations

So far, we have had a qualitative look at the evolution of our understanding of what

happens in the Universe. Before proceeding our discussion, let us introduce Einstein’s

equations, which are a fundamental instrument in talking about space and gravitation.

The beauty in the theory of relativity lies in the matching of mathematical predic-

tions to observable effects. This is even more elegant, as we are trying to describe the

very big, by starting with one of the most fundamental descriptions of space.

1.3.1 Curvature

We take a few steps into the geometric theory underlying our work in General Rela-

tivity and extensions. We start by defining a manifold space (M, gµν), which for our

purposes has dimension 4, with metric tensor gµν that defines distance on the mani-

fold. The coordinate basis on M is defined by the tangent vectors at all points in that

space:

êi =
∂

∂xi
= ∂i, i ∈ {1, 2, 3, 4} (1.2)

We define g = det(gµν) to be the determinant of the metric tensor.

We will need the Christoffel coefficients, which are related to the metric by:

Γµαβ =
gµν

2
(∂βgνα + ∂αgβν − ∂νgαβ) (1.3)
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where the upper index notation gµν denotes the inverse of the metric as in gµνgνγ = δµγ ,

where δµγ is the Kroneker delta. Using the Christoffel coefficients, we define the Ricci

tensor:

Rµν = Γανµ,α − Γααµ,ν + ΓααβΓβνµ − ΓανβΓβαµ (1.4)

that we use to define the Ricci scalar:

R = gαβRαβ, (1.5)

which holds information about the curvature of the space.

We define a covariant derivative of T µν , a tensor of rank (1, 1) in our space as:

∇σT
µ
ν = ∂σT

µ
ν + ΓµσλT

λ
ν − ΓλσνT

µ
λ . (1.6)

We have looked at some general geometric quantities which will help us in our

analysis later. In the next section we will make a choice of metric, that will be used

in the rest of this thesis.

1.3.2 FRW Metric

The line element of a space that is homogeneous and isotropic takes the following

Friedmann-Robertson-Walker (FRW) form:

ds2 = gµνdx
µdxν

= −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

] (1.7)

where the metric in cartesian coordinates for the case K = 0 is :

gµν = diag(−1, a2, a2, a2), (1.8)

t is cosmic time and a(t), called the scale factor, is a function of cosmic time and

describes the relative size of objects; an increase in the scale factor describes the ex-

pansion of the Universe, however the relative positions of cosmological objects remains
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the same in the absence of external forces acting on the system. The evolution of the

scale factor a(t) is determined by the Einstein Equations, which we will look at in the

following section.

The parameter K determines the geometry of space:

K > 0 for a closed Universe

K = 0 for a flat Universe

K < 0 for a open Universe

(1.9)

In the FRW metric, the nonzero components of the Ricci tensor are:

R00 = −3
ä

a
,

R11 =
aä+ 2ȧ2 + 2K

1−Kr2
,

R22 = r2(aä+ 2ȧ2 + 2K),

R33 = r2(aä+ 2ȧ2 + 2K) sin2 θ

(1.10)

and the Ricci scalar is:

R = 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
. (1.11)

Einstein’s Equations

The Einstein field equations relate the effect of energy and momentum on space-time

and take the following tensor form:

Gµν + Λgµν = κTµν . (1.12)

Here Gµν is the Einstein tensor defined by:

Gµν = Rµν −
1

2
gµνR, (1.13)

where Rµν is the Ricci curvature tensor, R is the scalar curvature, gµν is the metric

tensor, Λ is the cosmological constant and Tµν is the stress-energy tensor; we use the
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factor κ = M−2
PL = (8πGN)/c4, which is related to the reduced Planck mass, with GN

the gravitational constant and c the speed of light in vacuum.

We note that the Einstein tensor has zero divergence:

∇µG
µν = 0. (1.14)

The Einstein equations help describe the spacetime geometry, by describing the

metric tensor for a given stress-energy configuration Tµν . The Einstein field equations

are non-linear partial differential equations. In order to get exact solutions to the

equations, we make use of symmetry considerations.

1.3.3 Einstein-Hilbert Action and Friedmann Equations

The Einstein field equations can be derived from applying the principle of least action

on the Einstein-Hilbert action. The Einstein-Hilbert action for a Universe with matter

fields SM and cosmological constant is:

S =
1

2κ

∫
d4x
√
−g [R + Λ] + SM

=SG + SM

(1.15)

where d4x
√
−g is the invariant volume element, R is the Ricci scalar and Λ is the

cosmological constant. For the rest of this section we will work with natural units

where κ = 1, however there will be certain analytic sections in this thesis where we

will reintroduce it. In the numerical simulations done in Chapters 3, 4, 5, we work in

natural units.

We derive the Einstein equations from the Einstein-Hilbert action, by setting the

variation of the action in (1.15) with respect to the inverse metric gµν to be zero.

The inverse metric gµν follows the relation gµβgβν = δµν and the variation of metric
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is related to the variation of the inverse metric by δgµν = −gµαgνβδgαβ. We will first

derive the variation of the gravitational part of the action, denoted by SG:

δSG =
1

2

∫
d4x

[√
−g(δRµν)g

µν +
√
−g(Rµν + Λgµν)δg

µν +Rδ(
√
−g)

]
,

=
1

2

∫
d4x

[√
−g(Rµν + Λgµν)δg

µν +R

(
−1

2

√
−ggµνδgµν

)]
,

(1.16)

In the last term we have used the fact that:

δ(
√
−g) =

1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν . (1.17)

The first term in (1.16) can be rewritten as the integral over the natural volume element

of a quantity; thus it only contributes a surface term, which we set to be equal to zero.

We can see that the total variation of the gravitational action is:

δSG =
1

2

∫
d4x
√
−g
(
Rµν −

1

2
Rgµν + Λgµν

)
δgµν . (1.18)

Let us now turn our attention to the matter part of the action in (1.15), Sm. We

define the energy-momentum tensor, with respect to the variation of the matter action:

Tµν = − 2√
−g

δSM
δgµν

. (1.19)

The energy-momentum tensor contains information about the energy density and the

pressure of the matter fields in (1.15).

In the final step, we refer back to (1.15) and minimise the variation of the action

with respect to the inverse of the metric, δS = 0. Using (1.18) and (1.19) leads us

back to the Einstein equations defined in (1.12), written in natural units:

Gµν + Λgµν = Tµν . (1.20)

We have included the cosmological constant for completion in our discussion so far.

For the rest of this thesis we will set Λ = 0, as we are mostly concerned with the
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evolution of the very early Universe, where Λ is negligible and the Einstein equations

take the following form:

Rµν −
1

2
gµνR = Tµν . (1.21)

We now turn our attention to cosmology and we will model the behaviour of the

matter-energy content in an isotropic Universe by a perfect fluid. In the perfect fluid

description of the system, there are no self-interaction terms and thus it can be com-

pletely described by its density and pressure. In comoving coordinates, i.e. in the fluid

rest frame, the 4-velocity of the fluid uµ is:

uµ = (1, 0, 0, 0). (1.22)

We will work in the FRW metric and write the energy-momentum tensor in the

fluid rest frame:

Tµν = (ρ+ p)uµuν + pgµν ,

Tµν =



ρ+ p 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


+



−p 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


=



ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p


,

(1.23)

with trace:

T = T νν = Tµνg
µν = diag(ρ, p, p, p) · diag(−1, 1, 1, 1) = −ρ+ 3p. (1.24)

As we can see, in the FRW metric the density and pressure are:

−T 0
0 =ρ

T ij =pδij,

(1.25)
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Referring back to the Einstein equations (1.21), from the 00-component we get the

Friedmann equation:

H2 =
ρ

3
− K

a2
, (1.26)

where we define the Hubble expansion rate:

H =
ȧ

a
. (1.27)

Taking the trace of (1.21) and using (1.26) we get the acceleration equation:

ä

a
= −ρ+ 3p

6
. (1.28)

We take a moment here to note that we can now relate the curvature of the universe

to its density. To that effect we define a density parameter and the critical density

respectively:

Ω =
ρ

ρc
, ρc = 3H2. (1.29)

The critical density is the density for which the universe is flat. We can rewrite the

Friedmann equation (1.26) as:

Ω− 1 =
K

a2H2
. (1.30)

We also derive from (1.14) and (1.20), the conservation equation:

∇µT
µ
ν = 0. (1.31)

We calculate at the zero-component of the conservation equation, using the defini-

tion of the covariant derivative in (1.6):

∇µT
µ
0 = 0,

∂µT
µ
0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ = 0,

∂0T
0
0 + Γµµ0T

0
0 − Γλλ0T

λ
λ = 0,

−ρ̇− 3
ȧ

a
(ρ+ p) = 0,

(1.32)



26 CHAPTER 1. INTRODUCTION

where we have used the fact that T µν has only diagonal elements and the Christoffel

symbols (1.3) of the FRW metric Γµµ0 = ȧ
a
. The dot derivatives are with respect to

cosmological time. We have calculated the continuity equation or fluid equation:

ρ̇+ 3H(1 + ω)ρ = 0, (1.33)

where ω = p/ρ is the equation of state of the matter in the system.

For our analysis in subsequent Chapters, we will assume the curvature of space

K = 0 and that it does not play a role in the evolution of the Universe.

1.4 Inflation

Inflation has been proposed as a solution to a series of problems with the Big Bang

theory. It was first introduced as a cosmological theory in the 1980s in [27], [28], [29],

[30]. Inflation came as an extension to an already existing cosmological model.

1.4.1 Issues with the Standard Big Bang Theory

The standard Big Bang Theory produces a series of predictions about the Universe

we live in that require a very high level of fine tuning to match observation. Cosmic

inflation, a proposed period of accelerated expansion in the Early Universe (we will

define inflation in detail later in Section 1.4.2) was originally proposed as a solution

to the problems of the standard Big Bang theory. We outline them in the following

subsections and discuss how inflation solves them.
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Flatness Problem

In the standard big-bang theory, the acceleration of the scale factor is always negative,

ä < 0, implying that ȧ becomes smaller as time progresses. This scenario implies that

for K = 0, the density parameter in (1.29) grows further and further away from unity.

However, the observational value for the density parameter Ω is very close to one. To

get such a universe from standard cosmology would imply fine-tuning in the initial

conditions. With inflation, the curvature term on the right hand side term of the

Friedman equation (1.26) goes to zero as a increases and the universe is driven to

being flat. After inflation ends, we enter a period where the energy density starts to

increase, but as long as inflation lasts longer than ∼ 50 e-folds, then Ω will be close to

one even to the present day (we will define the concept of e-folds later in 1.42).

Horizon Problem

As we have discussed in Section 1.2.2, we observe the cosmic microwave background

(CMB) with a temperature of 2.73K and inhomogeneities of order 10−5K [20]. Ac-

cording to the Big Bang theory, these photons have traveled from the last scattering

surface. The surface of last scattering is the locus of points from which the photons we

are now observing have originated. The photons traveled since the time of recombina-

tion, when the universe became cool enough for protons to combine with electrons to

create hydrogen, resulting in a density drop of free charged particles and allowing light

to travel freely. As we would expect from thermodynamic considerations, only photons

corresponding to regions in causal contact at the time of last scattering would have

the same temperature today. However, we observe the same temperature in regions

which, according to the standard Big Bang theory would never have been in causal
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contact.

During inflation, physical wavelengths are pushed outside the Hubble radius. After

inflation, they re-enter it. In other words, during inflation, causally connected regions

can get stretched out of the Hubble radius, but after the end of inflation, they shrink

back inside, thus potentially solving the horizon problem. The requirement is that,

the comoving distance photons can travel before decoupling, needs to be much larger

than that after decoupling. This is true for inflation lasting more than ∼ 50 e-folds.

Origin of large-scale structure

The anisotropies in the CMB can be described in terms of the amplitude of the spher-

ical Fourier modes of the observed sky. The fluctuations cannot be generated by

causal processes in the time between the Big Bang and the time of last scattering. In

other words, standard cosmology cannot explain the homogeneity and isotropy of the

universe, nor the deviations from the FRW metric.

The scales of the perturbations are initially within the Hubble radius, meaning they

are subject to causal physics and thus small quantum fluctuations are induced. On such

small scales, the perturbations can be treated as perturbations in flat space-time. After

the scales are pushed outside the Hubble radius during inflation, the Hubble expansion

becomes relevant. On such long wavelengths, the fluctuations behave classically and

they essentially get frozen in. After the end of inflation, the Universe follows the laws

of standard Big Bang cosmology, where the Hubble radius increases. As this happens,

the scales of the perturbations fall back into the Hubble radius. The perturbations

seeded during inflation will have amplitudes depending on the approximately constant

Hubble rate at the time of appearance, meaning that the spectrum we observe today



1.4. INFLATION 29

is almost scale-invariant, with constant amplitude on different scales. This is what we

observe as the CMB anisotropies.

Relic Density Problem

According to some popular theories beyond the standard model of particle physics,

breaking certain gauge symmetries leads to the prediction of topological defects, such

as monopoles and cosmic strings. However, at the time of writing no observation

of such defects has been recorded. In the case of magnetic monopoles, their energy

density would decrease as a matter component, as a−3 once the temperature is below

their rest mass. The radiation energy density decreases as a−4, implying that these

defects could become the dominant matter in the early universe.

The unwanted relic problem is solved when the period of inflation causes these

particles to get redshifted away. The condition for this to hold true is for the symmetry

breaking transition that produces the magnetic monopoles to occur at least 20 e-folds

before inflation ends.

1.4.2 Inflationary Period

Inflation was proposed as a solution to the problems just discussed. The field, or fields

that drive inflation may be found in extensions to the standard model, like string-

theory, grand unified theories and supergravity. Inflation is defined as a period of

accelerated expansion of the universe, in which:

ä > 0. (1.34)

This means that ȧ increases during inflation whereas the comoving Hubble radius

(aH)−1 decreases.
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To generate such a phase, we introduce a homogeneous scalar field φ, called the

inflaton. The introduction of a scalar field, allows for the energy conditions of inflation

to be satisfied and for the period of inflation to come to an end naturally. Let us

consider the action for such a system:

S =
1

2

∫
d4x
√
−gR + Sφ, (1.35)

with:

Sφ =

∫
d4x
√
−g
[
−1

2
gµν∂µφ∂νφ− V (φ)

]
=

∫
d4xLφ, (1.36)

and V (φ) is the potential energy of the inflaton.

The energy-momentum tensor defined in (1.19) for the inflaton field is:

Tµν = ∂µφ∂νφ+ gµν
Lφ√
−g

. (1.37)

As defined in equations (1.25), the energy density and pressure are given by:

−T 0
0 =ρ =

1

2
φ̇2 + V (φ)

T ij =pδij ⇒ p =
1

2
φ̇2 − V (φ),

(1.38)

We can find the equations of motion for the inflaton field in the FRW metric by

using the Euler-Lagrange equations on the action (1.35):

∂µ

(
∂Lφ
∂(∂µφ)

)
− ∂Lφ

∂φ
= 0. (1.39)

This calculation gives us the Klein-Gordon equation for the inflaton field:

φ̈+ 3Hφ̇+ Vφ = 0, (1.40)

where Vφ = ∂V
∂φ

.

If we substitute (1.38) in the Friedmann equation (1.26) we find:

H2 =
1

3

[
1

2
φ̇2 + V (φ)

]
. (1.41)
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For equation (1.41) we recall that we neglect the curvature term K2/a2, as it will

become exponentially small during inflation.

1.4.3 Time and Length Scales

To describe the change in the scale factor during inflation, we define a useful quantity,

the number of e-folds:

N = ln a⇒ dN

dt
= H ⇒ N =

∫ tf

ti

Hdt (1.42)

where the subscript f marks the value of the scale factor and time at the end of

inflation and the subscript i that at the beginning of inflation and H is the Hubble

parameter.

We will define the transformation rules of derivatives of time to derivatives of e-fold

number:

ḟ = Hf ′,

f̈ = H2f ′′ + Ḣf ′,

(1.43)

where the dot denotes differentiation with respect to time t, the prime is differentiation

with respect to e-fold number.

For parts of the calculations in later sections, it is easier to work with conformal

time, whose relationship to cosmic time is:

dτ =
dt

a(t)
. (1.44)

Under this transformation, the line element in (1.7) for K = 0 becomes:

ds2 = a2(τ)[dτ 2 − δijdxidxj]. (1.45)
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The transformation rules of derivatives of time to derivatives of conformal time are

given by:

ḟ(t) =
f ∗(τ)

a(τ)
,

f̈(t) =
f ∗∗(τ)

a2(τ)
−Hf

∗(τ)

a2(τ)
,

(1.46)

where the dot denotes differentiation with respect to time t, the ’∗’ notation is differ-

entiation with respect to conformal time τ , with conformal Hubble parameter:

H =
a∗

a
. (1.47)

Using the simple result presented above in (1.46) we can calculate the following:

H =
ȧ

a
=
a∗

a2
=
H
a
,

ä =
a∗∗

a2
− H

2

a
,

Ḣ =
H∗

a2
− H

2

a2
,

H2 =
ρ

3
− K

a2
→ H2 =

ρa2

3
−K,

Ḣ = −(ρ+ p)

2
→ H∗ = −1

6
(ρ+ 3p)a2,

ρ̇+ 3H(ρ+ p) = 0→ ρ∗ + 3H(ρ+ p) = 0.

(1.48)

1.4.4 Slow-roll

For the period of accelerated expansion to be realised by the evolution of one or

several scalar fields to their lowest energy state, the assumption of a slow trajectory

must hold. Considering the inflationary condition (1.34) in the acceleration equation

(1.28) we find the following to hold true:

ä > 0 =⇒ ρ+ 3p < 0⇐⇒ 2φ̇2 − 2V (φ) < 0⇐⇒ φ̇2 < V (φ), (1.49)

where we have used the perfect fluid approximation to utilise the explicit form of the

pressure and density in (1.38). The above implies that there will be a phase of inflation
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when the potential energy of the inflaton is larger than its kinetic energy. One method

of fulfilling this condition is to require the potential to be nearly flat and that it has

a minimum, so inflation can end.

In qualitative terms, we can think of the slow-roll regime as a time where the

dynamics of the field are slowly evolving, so the following conditions must hold:

φ̇2

2
� V (φ), (1.50)

φ̈� 3Hφ̇. (1.51)

The slow-roll approximation ignores a term in each of the equations of motion; by

assuming the kinetic term is small relative to the potential term, we rewrite (1.41) as:

H2 ' 1

3
V (1.52)

and in the Klein-Gordon equation (1.40) using the fact that the second order derivative

of the inflaton is much smaller than its first derivative we find:

3Hφ̇ ' −Vφ, (1.53)

where we use φ = ∂
∂φ

notation throughout this work.

To characterise slow-roll we define the slow-roll parameters in the following math-

ematical way:

εH = − Ḣ

H2
,

ηH =
ε̇

Hε
.

(1.54)

We can also define the slow-roll parameters in terms of the potential of the inflaton

field:

εV =
1

2

(
Vφ
V

)2

ηV =
Vφφ
V
,

ξ2
V =

VφVφφφ
V 2

,

(1.55)
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where ε is defined to ensure (1.50) and η is defined to ensure that (1.51). In the case

of a single inflaton field the definitions (1.54) relate to the definitions in (1.55) by:

εH = εV = ε,

ηH = 4εV − ηV .
(1.56)

The necessary conditions for slow-roll are :

ε� 1, |η| � 1, (1.57)

with η ∈ {ηH , ηV }. Inflation ends when the two conditions in (1.57) no longer hold.

We can go further and define the Hubble flow-functions εn, which we will use later

in Chapter 4:

εn+1 =
ε̇n
HεN

, n ≥ 0, (1.58)

with ε0 = ε = − Ḣ
H2 . For slow-roll all |εn| � 1.

1.4.5 Models of Inflation

The first inflationary models were proposed by Starobinsky [31] and Guth [27]. Guth’s

model is now referred to as ’old inflation’ as it relies on a phase transition, between

a meta-stable vacuum and a true vacuum of the inflaton field. This does not happen

everywhere at once, as the transition happens via quantum tunnelling and bubbles

appear in the universe, some of which settle in the true vacuum and some remaining

in the false vacuum. This model illustrated how inflation would solve a number of

issues that the standard Big Bang picture did not; however it was not favoured due

to the high level of tuning. What followed were models of ’new inflation’ [28], [30],

which assume that the inflaton field is in thermal equilibrium and achieve inflation

through thermal corrections of its potential. Shortly afterwards, Linde proposed what
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he called ’chaotic inflation’ [32], which does not make assumptions about the thermal

equilibrium of the inflaton field. In chaotic models, the field driving inflation usually

starts at values of order several Planck masses and they have quite simple potentials.

Inflationary models can be categorised in many ways and one can find more com-

prehensive classifications in [33], [34]. We look briefly at the following general classes

of models.

Large field models

This category includes models such as chaotic inflation with monomial potentials:

V (φ) ∝M4

(
φ

MPL

)p
, p > 0, (1.59)

with M being a mass scale. This category also includes the exponential potential:

V (φ) = M4e
φ

MPL . (1.60)

Inflation ends naturally for this class of models when the slow-roll parameter εH = 1.

The issue with this class of models is that they are only renormalizable for p ∈ {2, 3, 4}.

Small field models

In these models the inflaton field is moving from a maximum to the minimum of its po-

tential. These types of models are usually spontaneous symmetry breaking motivated

and take the following potential form:

V (φ) = M4

[
1−

(
φ

MPL

)p]
, p > 0, (1.61)

where again M is a normalisation constant. A feature of these models is that the

tensor-to-scalar ratio (which we will define later in 1.110) is much lower than in large

field models.
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Hybrid models

This class of models uses two scalar fields, one that we call φ that is rolling to its

minimum and produces inflation and a second field χ which ends inflation as it rolls to

its minimum. The original model of hybrid inflation [35] has the following potential:

V (φ, χ) =
1

2
m2φ2 +

1

2
λ1χ

2φ2 +
1

4
λ2(M2 − χ2)2, (1.62)

where m is the mass of the φ field, λ1 and λ2 are dimensionless coupling constants and

M is a mass scale. The secondary field χ is locked in a minimum at χ = 0, for as long

as the principal field φ is bigger than the critical φc = M2 λ2
λ1

. During this phase, the

effective potential is:

Veff (φ) =
λ2M

4

4
+

1

2
m2φ2, (1.63)

which allows the field φ to slow-roll to the critical value φc, where χ finds two new

minima at −M and M . The field χ then rolls down into one of the two, causing

inflation to end.

Scalar-tensor models

Inflation can be driven by corrections to General Relativity as well. This type of model

was first introduced by Starobinsky [31] and is one of the inflationary models with

predictions in best agreement with the Planck 2015 results [20]. The Starobinsky model

is a generalisation of the Einstein-Hilbert action defined in 1.15 and generalisations of

this model have the following actions gravitational actions:

SG =
1

2κ

∫
d4x
√
−g
[
R + µR2p

]
, (1.64)

where R is the Ricci scalar, µ has units of M
−2(1+p)
PL , p ≥ 1 and we continue with our

assumption that Λ = 0.
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1.5 Perturbation Theory

We have outlined in the previous sections the motivation behind introducing the theory

of cosmological inflation in the very early stages of the universe and the mechanism

for it to be driven by a scalar field.

Quantum fluctuations in the scalar field exist during inflation, they would get

stretched to very large scales; the associated energy density perturbations might be

the seeds of structure in the universe. Quantum fluctuations during the phase of

inflation could help explain the origin of density perturbations.

Wavenumbers

We will discuss how perturbations behave. We define the wavenumber of a length

scale/mode, k, taking into account the expansion of space:

k ∝ 1

λ
, (1.65)

where λ is the wavelength. We also define the comoving Hubble radius:

RH = (aH)−1. (1.66)

There are three regimes which can be defined by comparing the scale of modes to

the Hubble radius:

k > aH subhorizon

k = aH horizon crossing

k < aH superhorizon

(1.67)

The Hubble radius is the distance from the observer at which the recession velocity

of the observed object is equal to the speed of light. Objects outside the Hubble radius

of the observer are out of causal contact at the time of measurement.
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In order to convert the number of e-folds to a measurable scale, we use the approx-

imation proposed in [36]. But in order to look back in time, we need to outline the

history of the Universe; the scenario which we shall consider is that of an inflationary

phase, followed by a reheating phase, a radiation dominated era, a matter dominated

era and a dark energy/cosmological constant dominated era - with the assumption

that the transitions between phases are instantaneous. We can use this model to re-

late observable scales today re-entering the Hubble horizon, to scales inside the Hubble

radius during inflation:

k

a0H0

=
ak
aend

aend
areh

areh
aeq

Hk

Heq

aeqHeq

a0H0

= e−N(k)aend
areh

areh
aeq

Hk

Heq

aeqHeq

a0H0

, (1.68)

where the subscript ’0’ refers to present day values, the subscript ’k’ values of the mode

at the time it crossed the horizon, ’end’ refers to the end of inflation, ’ reh’ denotes

reheating and ’eq’ the matter-radiation equality era.

We consider the following factors as given in [36]:

aeqHeq

a0H0

= 219Ω0h

Heq = 5.25× 106h3Ω2
0H0

H0 = 1.75× 10−61hMPL, with h ' 0.7

(1.69)

Taking the natural logarithm of (1.68) and using the slow-roll approximation for

Hk, we obtain an equation for Nk:

N(k) = − ln
k

a0H0

+
1

3
ln
ρreh
ρend

+
1

4
ln

ρeq
ρreh

+ ln(

√
V

3

1

Heq

) + ln 219Ω0h, (1.70)

where h = 0.7 and Ω0 is the matter density and we have used the slow-roll approxi-

mation from (1.52) in (1.70) to get a working conversion of e-fold number.

In single field evolution, modes outside the Hubble horizon stay frozen for as long as

they remain greater than the Hubble radius, which is why the evolution in observables
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must have happened before the mode exited the horizon.

As we will show later, for single field models, density perturbations do not evolve

once their wavelength has exceeded the Hubble radius, which is why structure forma-

tion via gravitational instability can only happen if fluctuations in density appeared

before the modes exited the horizon. The standard Big Bang picture needs these fluc-

tuations to be put in by hand, but inflationary theory offers a means of physically

explaining their origin.

During inflation the scale factor grows quasi-exponentially, the Hubble radius re-

mains almost constant. This means that a wavelength of a quantum fluctuation start-

ing inside the Hubble horizon will grow beyond the Hubble radius. The amplitude

of the fluctuations then becomes frozen in, it does not change in amplitude. We will

show that in an exponentially expanding universe, the wavelengths of all the vacuum

fluctuations of a scalar field φ grow exponentially. When the wavelength of any fluc-

tuation becomes greater than the Hubble radius ( H−1), its amplitude δφ is frozen.

Such a frozen fluctuation δφ would appear as a classical field that does not vanish

when time averaged over a macroscopic time.

At the end of inflation, the scale factor grows slower than the Hubble radius, so

fluctuations start to reenter the Hubble radius during radiation and matter dominated

epochs.

We will start by showing that during the exponential expansion of the Universe,

the inflaton will develop fluctuations.
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1.5.1 Fluctuations of Scalars During Inflation

To get a better understanding of the behaviour of quantum fluctuations of fields during

inflation, we follow the method presented in [37] and we look at the simplest case, that

of a massless scalar field in a flat space. We start by looking at de Sitter space and

then show what modifications are brought to our results when we transition to a quasi

de Sitter expansion. In a de Sitter expansion H is constant and a(τ) = −1/(Hτ).

Consider a massless scalar field φ, whose fluctuation we expand in Fourier modes:

δφ(x, t) =

∫
d3k

(2π)3/2
eik·xδφk(t). (1.71)

The following is the equation of motion for the perturbation:

δφ̈k + 3Hδφ̇k +
k2

a2
δφk = 0. (1.72)

We can now look at how the solutions behave on different scales. The first case is for

wavelengths inside the horizon, λ � H−1 ⇔ H � λ−1 ⇔ aH � k, the wavenumber

is much larger than the Hubble scale and 3H � k2

a2
. In this case looking at (1.72), it

becomes apparent that the second, friction term is much smaller than the third term,

so the equation can be reduced to:

δφ̈k +
k2

a2
δφk = 0, (1.73)

which indicates that the fluctuations behave like a perturbation in Minkowski space-

time, whose wavelength depends on the scale factor a. In other words, for scales within

the horizon, the fluctuations oscillate.

The second case is that in which the wavelengths are outside the horizon, λ �

H−1 ⇔ aH � k and 3H � k2

a2
, and equation (1.72) can be approximated to:

δφ̈k + 3Hδφ̇k = 0 (1.74)
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which indicates that on these scales, δφk remains constant.

With the redefinition:

δσk = a · δφk, (1.75)

equation (1.72) can be written in terms of conformal time:

δσ∗∗k +

(
k2 − a∗∗

a

)
δσk = 0, (1.76)

where we have introduced an effective mass term m = −a∗∗

a
, with ∗ = ∂/∂τ and τ

conformal time.

We can expand our analysis to the de Sitter case with a massive scalar field, with

mass mφ, for which equation (1.76) can be written as:

δσ∗∗k +
(
k2 +M2(τ)

)
δσk = 0, (1.77)

where:

M2(τ) = (m2
φ − 2H2)a2(τ) =

(
m2
φ − 2H2

) 1

H2τ 2
=

(
m2
φ

H2
− 2

)
1

τ 2
. (1.78)

Defining:

ν2
φ =

(
9

4
−
m2
φ

H2

)
, (1.79)

we can rewrite (1.77) as:

δσ∗∗k +

[
k2 − 1

τ 2

(
ν2
φ −

1

4

)]
δσk = 0. (1.80)

For ν2
φ ≥ 0, the solution to (1.77) is:

δσk =
√
−τ
[
c1H

(1)
νφ

(−kτ) + c2H
(2)
νφ

(−kτ)
]
, (1.81)
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where H
(1)
νφ and H

(2)
νφ are Hankel functions of the first and second kind, which behave

for small and large x as follows:

H(1)
νφ

(x� 1) '
√

2

πx
ei(x−

π
2
νφ−π4 ),

H(2)
νφ

(x� 1) '
√

2

πx
e−i(x−

π
2
νφ−π4 ),

H(1)
νφ

(x� 1) '
√

2

π
ei
π
2 2(νφ− 3

2) Γ(νφ)

Γ(3/2)
x−νφ .

(1.82)

To find the coefficients c1 and c2, we use the fact that for the ultraviolet regime,

where k � aH ↔ −kτ � 1, the solution (1.81) to (1.77) is the plane-wave solution

e−ikτ/
√

2k, to match the behaviour in Minkowski space-time. This gives c1(k) =

√
π

2
ei(νφ+ 1

2)π2 and c2(k) = 0. Substituting c1 and c2 into (1.81), gives the superhorizon

solution:

δσk = ei
π
2 (νφ− 1

2)2(νφ− 3
2) Γ(νφ)

Γ(3/2)

1√
2k

(−kτ)(
1
2
−νφ) . (1.83)

Revisiting the substitution in (1.75), we find:

|δφk| '
H√
2k3

(
k

aH

)( 3
2
−νφ)

(1.84)

on superhorizon scales, i.e the fluctuation of a massive field is no longer constant on

the superhorizon, but it has a small time dependence. We define :

ηφ =
m2
φ

3H2
' 3

2
− νφ, (1.85)

which � 1 for
mφ
H
� 1.

In a quasi de Sitter expansion, we take into account the variation of the Hubble

parameter, Ḣ = −εH2 (from 1.54) and analogously:

a(τ) = −1/(Hτ(1− ε)). (1.86)

The mass in (1.77) is:

M2(τ) = (m2
φ −

a∗∗

a3
)a2(τ) = m2

φa
2 − a∗∗

a
, (1.87)
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and

a∗∗

a
= a2

(
ä

a
+H2

)
= a2

(
Ḣ + 2H2

)
= a2(2− ε)H2

=
(2− ε)

τ 2 (1− ε)2

' 1

τ 2
(2 + 3ε) .

(1.88)

So the quasi de Sitter equivalent of (1.77) is:

δσ∗∗k +

[
k2 − 1

τ 2

(
ν2
φ −

1

4

)]
δσk = 0, (1.89)

with

νφ =
3

2
+ ε− ηφ. (1.90)

1.5.2 Fluctuations of the Metric and Gauge Transformations

To analyse perturbations we refer to a background state relative to which we introduce

the perturbations. In this work we are interested in perturbations from the flat FRW

metric. The choice of coordinates on which to define the flat metric and perturba-

tion is not unique and when deciding on a choice of coordinate one makes a gauge

choice. Performing a gauge transformation change from one system of coordinates

into another.

In different coordinate systems most quantities will take different values. Physical

quantities correspond to gauge invariant quantities, which have the same value in all

gauge choices. In the subsequent part we follow the presentation in [38].
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SVT decomposition

We want to study perturbations of the metric in the FLRW space-time. We consider

splitting the metric into a background part, ḡµν , which takes the form presented in

(1.7) and a perturbed part, δgµν as:

gµν(τ, x
i) = ḡµν(τ) + δgµν(τ, x

i), (1.91)

with δgµν(τ, x
i) � ḡµν(τ). The metric perturbations can be decomposed into scalar,

vector and tensor modes, which at linear order evolve independently. It is worth noting

that vector modes decay very quickly during inflation.

Scalar perturbations

In this work we will mostly use the longitudinal, or Newtonian gauge, where the scalar

metric perturbations are diagonal and the line element is:

ds2 = a2(τ)
[
−(1 + 2Φ)dτ 2 + (1− 2Ψ)δijdx

idxj
]

(1.92)

For perfect fluids, where there are no off-diagonal components in the stress-energy-

momentum tensor, so Φ = Ψ (for a full derivation see [38]).

Consider the following change in coordinates:

t→ t+ δt,

xi → xi + δij∂jδx,

(1.93)

where δt fixes the time slicing and δx the spatial threading.

Let us now analyse the matter perturbations. For a scalar field, its density and
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pressure, the transformation rule is:

δ̃φ = δφ− φ̇δt,

δ̃ρ = δρ− ρ̇δt,

δ̃p = δp− ṗδt.

(1.94)

We introduce the gauge invariant comoving curvature perturbation on hypersur-

faces orthogonal to comoving worldlines [39], [40], [41]:

R = Ψ− H

ρ+ p
δq, (1.95)

where δq is the perturbation of the momentum potential, defined as δq = δT 0
i , the

perturbation of the 0i components of the energy-momentum tensor. The momentum

potential perturbation transforms as:

δ̃q = δq + (ρ+ p)δt. (1.96)

For a single field φ we find δq = −φ̇δφ and the comoving curvature perturbation

becomes:

R = Ψ +Hδφ, (1.97)

1.5.3 Relating to Observables

The quantity used to compare the properties of the perturbations today is the power

spectrum of perturbations. Consider a generic quantity f(x, t) whose Fourier space

expansion is:

f(x, t) =

∫
d3k

(2π)3/2
eik·xfk(t). (1.98)

The power spectrum Pf of this quantity f is defined by:

〈0|f ∗k1
fk2 |0〉 ≡ δ(3)(k1 − k2)

2π2

k3
Pf (k), (1.99)
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where |0〉 is the vacuum state of the system.

We are particularly interested in the power spectrum of the comoving curvature

perturbation R defined in (1.97):

PR = 〈0|R∗k1
Rk2|0〉δ(3)(k1 − k2)

k3

2π2
. (1.100)

We substitute R from (1.97) in the above equation to find:

PR = H2Pδφ, (1.101)

where the definition (1.99) gives the power spectrum of the field perturbation Pδφ =

δφ2 k3

2π2 . We refer back to (1.84) to find:

PR = As

(
k

k0

)3−2νφ

, (1.102)

where k0 = aH|h.c. is the pivot scale when the mode leaves the horizon and As is the

amplitude at the pivot scale k0.

We define the power spectrum of tensor perturbations in a similar way:

PT = AT

(
k

k0

)nt
, (1.103)

The power spectrum scale dependence is given by the spectral index:

ns − 1 =
d lnPR
d ln k

|k=aH , (1.104)

evaluated at horizon crossing. Evaluating the spectral index of the curvature pertur-

bation in (1.102), we find:

ns − 1 = 3− 2ηφ
1.90

==⇒ ns = 1 + 2ε− 2ηφ. (1.105)

Similarly we can define the scale-invariant tensor spectral index:

nT =
d lnPT
d ln k

|k=aH . (1.106)
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Another way to parametrise the power spectrum of the comoving curvature per-

turbation to higher order is:

PR = As

(
k

k0

)ns−1+αs
2

log k
k0

+βs
6

(log k
k0

)2

, (1.107)

where αs is the running of the spectral index:

αR =
dns
d ln k

|k=aH , (1.108)

and βs is the running of the running of the index:

βs =
dαs
d ln k

|k=aH . (1.109)

This second order parametrisation of the power spectrum will be used in Chapter 4.

Another quantity we are interested in is the tensor-to-scalar ratio, defined by:

r =
PT
PR

. (1.110)

In this section, we have only looked at single field perturbations. In the later

chapters we will consider multi-field inflation, where isocurvature perturbations seed

curvature perturbations on the superhorizon scale.



Chapter 2

Starobinsky Model

Inflation is usually driven by scalar fields as we have discussed in section (1.5), how-

ever there are exceptions to this trend. One such exception are f(R) models and of

particular interest to this work is the Starobinsky model of inflation, in which the

Einstein-Hilbert action contains an R2 correction. First introduced in [31], its predic-

tions are in excellent agreement with the most recent cosmological observations, the

Planck 2015 results [20]. For a review of f(R) theories see [42], [43]. For an analysis

of inflation driven by corrections to General Relativity see [44].

In this short chapter we will discuss some generalities to do with f(R) theories

of inflation and we will introduce the gravitational part of the model that will be of

interest in later chapters. We start by showing that the extra degree of freedom in

f(R) theories coming from non-vanishing first derivatives of f(R) can be described

with the introduction of another scalar field. Then we introduce the Jordan and

Einstein frames and show how a theory can be recast from one to the other using a

conformal transformation. Finally we apply these techniques to the Starobinsky model

and look at inflationary predictions for it.

48
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2.1 f(R) and Scalar-Tensor Theories

f(R)−theories of gravity are generalisations of General Relativity. The total action

for f(R) gravity with matter fields is:

Smetric =
1

2κ

∫
d4x
√
−gf(R) +

∫
d4xLM(gµν , χM),

Smetric = SG + SM(gµν , χM),

(2.1)

where as before κ = 8πG, G is the gravitational constant, g is the determinant of the

metric, f(R) is a function of the Ricci scalar and χM denote all the matter fields in

the theory. This class of modified gravitational actions was first studied in detail in

[45]. If we look at the variation of the action with respect to the metric gµν we get:

δSmetric =
1

2κ

∫
dx
√
−g
[
F (R)Rµν −

1

2
f(R)gµν−

−∇µ∇νF (R) + gµν�F (R)− κTµν
]
δgµν ,

(2.2)

where F (R) = ∂f(R)
∂R

and we have ignored the surface terms at infinity.

Setting the variation to zero leads to following field equations:

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) = κTMµν , (2.3)

where TMµν is defined by (1.19) and �F (R) = 1√
−g∂µ(

√
−ggµν∂νF (R)).

Taking the trace of (2.3) we find:

3�F (R) + F (R)R− 2f(R) = κT. (2.4)

In f(R) modifications to General Relativity, the term�F (R) is non-vanishing; with

a field redefinition φ = F (R), (2.3) becomes the equation describing the dynamics of

the propagating scalar degree of freedom. We will use this in Chapter 5.
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2.2 Equivalent Action Formulation

We now turn our attention to the action in (2.1) and ignore the matter fields:

SG =
1

2κ

∫
d4x
√
−gf(R). (2.5)

We can introduce a field W , to write an equivalent action to (2.5):

SWG =
1

2κ

∫
d4x
√
−g [F (W )(R−W ) + f(W )] , (2.6)

where F (W ) = ∂f(W )
∂W

. Varying (2.6) with respect to W , we find the equation of motion

for W:

∂L
∂W

= 0 ←→ ∂2f(W )

∂W 2
(R−W ) = 0 ↔ W = R, (2.7)

assuming ∂2f(W )
∂W 2 6= 0, thus implying that the actions (2.5) and (2.6) are dynamically

equivalent. The field W is the name for the additional degree of freedom in f(R)

coming from the derivative ∂f
∂R

.

2.3 Going from Jordan to Einstein Frame

We call the action in (2.5) the ”Jordan frame” formulation of f(R). With the help

of a conformal transformation, the gravitational part of the action can be brought

to take the standard General Relativity form, in what is called the ”Einstein frame”

formulation:

SE =

∫
d4x
√
−g̃R̃ + other terms, (2.8)

where g̃ and R̃ are the determinant of the metric and the Ricci scalar in the new frame.

To map the theory to this frame, one performs a conformal transformation, in which

one chooses the appropriate function Ω as defined in (A.1):

g̃µν = Ω2gµν →
√
−g̃ = Ω4

√
−g. (2.9)
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Under the conformal transformation above, the action (2.6) changes to:

S ′G =

∫
d4x
√
−g̃Ω−4

2κ

[
F (W )(R(R̃)−W ) + f(W )

]
, (2.10)

where R(R̃) is using the expression for R in terms of the transformed Ricci scalar R̃

as given by (A.5):

R = Ω2R̃ + 6g̃µνΩ(∇̃µ∇̃νΩ)− 12g̃µν(∇̃µΩ)(∇̃νΩ). (2.11)

To find a transformation that takes us to the Einstein frame, we need to chose Ω

in such a way that the transformed Ricci scalar is only multiplied by
√
−g̃/2κ, which

means:

Ω2 = F (W ), (2.12)

for F (W ) > 0. With this choice we can rewrite the action in (2.10) as:

S ′G =

∫
d4x

√
−g̃

2κ

[
R̃+6g̃µν

∇̃µ∇̃νΩ

Ω
−12g̃µν

(∇̃µΩ)(∇̃νΩ)

Ω2
−Ω−2W+Ω−4f(W )

]
(2.13)

After integrating by parts we find:

S ′G =

∫
d4x

√
−g̃

2κ

[
R̃− 6g̃µν

(∇̃µΩ)(∇̃νΩ)

Ω2
− Ω−2W + Ω−4f(W )

]
=

∫
d4x

√
−g̃

2κ

[
R̃− 6g̃µν(∇̃µ ln Ω)(∇̃ν ln Ω)− Ω−2W + Ω−4f(W )

] (2.14)

We now do a field redefinition in order to get the second term in the action to look

like a standard kinetic term:

Ω = eαψ, (2.15)

with α a constant. The redefinition transforms the second term in the action as follows:

6

2κ
g̃µν(∇̃µ ln Ω)(∇̃ν ln Ω) =

6

2κ
g̃µνα2(∇̃µψ)(∇̃νψ)

↓

6

2κ
α2 =

1

2
→ α =

√
κ

6
,

(2.16)
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Ensuring that ψ takes the appearance of a scalar field with a standard kinetic term,

related to the f(R) theory by:

ψ =

√
3

2κ
ln (F (W )) . (2.17)

We refer to the field ψ as the scalaron field. We are thus left with the Einstein frame

redefined gravitational action:

S ′G =

∫
d4x
√
−g̃
[
R̃

2κ
− 1

2
g̃µν(∇̃µψ)(∇̃νψ)− V (ψ)

]
V (ψ) =e−2αψW − e−4αψf(W ),

(2.18)

where W can be calculated from (2.12) and (2.15). We proceed to apply this line of

reasoning to a specific f(R) theory.

2.4 R + µκR2 Model

The model we are particularly interested in has the following gravitational action:

SST = − 1

2κ

∫
d4x
√
−g(R + µκR2), (2.19)

where µ has units mass−2. We will discuss this model in detail in Chapter 3.

In the case of µ = 1M−2
PL the model reduces to the Starobinsky model. For this

choice f(W ) = W + κµW 2 and with the field redefinition (3.19), the Einstein frame

action for this model is:

SSTS =

∫
d4x
√
−g̃
[
R̃

2κ
− 1

2
g̃µν(∇̃µψ)(∇̃νψ)− (1− e−2αψ)2

8κ2µ

]
. (2.20)

We notice that the action (2.20) looks like standard gravity with a canonical scalar

field, of potential:

V (ψ) =
(1− e−2αψ)2

8κ2µ
. (2.21)
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The field ψ is called the scalaron. The minimum of the potential is at ψ = 0, and we

define its mass by:

m2
ψ = Vψψ(0) =

α2

µ
. (2.22)

The dynamics for action (2.20) have been considered in Section 1.4.2, so we find that

in an inflationary scenario, that is driven by such a transformed scalar, the slow-roll

parameters in natural units are (1.55):

εV =
8α2

(e2αψ − 1)2
,

ηV = 8α2e−2αψ 2e−2αψ − 1

(1− e−2αψ)2
,

(2.23)

both of which for positive values of ψ, tend upwards to 1 with decrease of ψ.

We are interested in the predictions for the spectral index in our choice of model.

To that end we start by integrating (1.42) and we will use the fact that we are working

in the slow-roll regime:

N =

∫ f

i

Hdt =

∫ f

i

H
dψ

ψ̇

1.53
= −

∫ f

i

3H2

Vψ
dψ

1.52
= −

∫ f

i

V

Vψ
dψ. (2.24)

Using the definition of the slow-roll parameter εV defined in (1.55) we find:

N = −
∫ f

i

1√
2εV

dψ. (2.25)

We use the form of εV calculated in (2.23) to relate the duration of inflation in e-folds

to the starting value of the field ψ:

N = −
∫ f

i

|e2αψ − 1|
4α

dψ. (2.26)

As we have discussed in Subsection 1.4.4, inflation ends when the slow-roll param-

eter εV = 1, which as we can see from (2.23) happens at:

ψf =
1

2α
ln(1 + 2α

√
(2)) ' 0.94. (2.27)



54 CHAPTER 2. STAROBINSKY MODEL

Going back to (2.26) and using the approximation e2αψ � 1 and find:

N =

∫ f

i

− 1

4α
e2αψdψ =

1

8α2
e2αψi , (2.28)

where in the last step we used e2αψf � e2αψi .

We evaluate the spectral index in this model using the standard relation [46]:

ns − 1 = −6ε+ 2η = −48α2

e4αψ
− 16α2e−2αψ, (2.29)

where we made use of the fact that e2αψ � 1. Finally, using (2.28), we obtain:

ns = 1− 48α2

(
3

3N

)2

− 16α2 3

4N
' 1− 2

N
, (2.30)

where we ignored the terms of order O(N−2) and we made use of (2.16) for the value

α = 1/
√

6. For N = 50 e-folds, the duration of inflation, the Starobinsky model

prediction for the spectral index is 0.96, which is in the range favoured by the latest

observational results [20]. The largest scales we observe today left the horizon 50 to

60 e-folds before the end of inflation.

In the rest of the thesis we will focus our study on the inflationary predictions for

an extension of the Starobinsky model. We will consider the Starobinsky correction

to General Relativity, R + µκR2 with an added scalar field χ which is present dur-

ing inflation and compare the predictions for inflationary parameters to observational

results.



Chapter 3

Simplest Extension to the

Starobinsky Model

3.1 Modified Starobinsky Model with a Scalar Field

In this chapter, we consider one specific model for inflation, that is an extension of

Starobinsky inflation with an added scalar field, denoted by χ in the action. We ask

why the Universe should be devoid of matter. Our motivation is that while gravi-

tation might not be completely described by General Relativity, matter fields might

be present during inflation and play a dynamically significant role. We consider the

simplest case, that of a single scalar field to understand what matter fields would do.

A similar setup was studied in [56], where different energy scales were considered.

Our theory is specified by the action:

S =

∫
d4x
√
−g 1

2κ

[
R + µκR2

]
+

∫
d4x
√
−g
[
− 1

2
gµν∇µχ∇νχ−

1

2
m2χ2

]
S = SG + Sχ,

(3.1)

where there is a gravitational part SG and a scalar part Sχ. For generality, we will

55
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now define:

b(ψ) = −αψ, (3.2)

where α is a function of ψ, that can be a scalar, which will later allow us to compare

this model to others in literature.

Using (2.20) and (A.7), we recast the action (3.1) in the Einstein frame, which is

given by:

SE =

∫
d4x
√
−g̃
[
R̃

2κ
− g̃µν

2
(∇̃µψ)(∇̃νψ)− g̃µν

2
e2b(ψ)(∇̃µχ)(∇̃νχ)− V

]
, (3.3)

with:

V =
(1− e2b(ψ))2

8κ2µ
+

1

2
m2e4b(ψ)χ2. (3.4)

From here on we will use the notation b for b(ψ).

Figure 3.1 shows the potential of this extended Starobinsky model for three cases

with the same initial conditions and different mass ratios.

ψ

χ

Figure 3.1: The potential of the Starobinsky model with an additional scalar field.
The field trajectories illustrate three paths for the same initial starting values of the
two fields, with different mass ratios. Blue corresponds to a heavier χ field, green
corresponds to a heavier ψ field and red corresponds to the fields having equal masses.
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3.1.1 Equations of Motion in the Einstein Frame

We find the resulting equations of motion for ψ and χ in (3.3) are:

�ψ−bψe2b(∇̃νχ)(∇̃νχ)− Vψ = 0

�χ+2bψ(∇̃νψ)(∇̃νχ)− e−2bVχ = 0,

(3.5)

where bψ = ∂b/∂ψ. We use the FRW metric g̃µν = (−1, a2, a2, a2) and the following

identity:

�ψ =
1√
−g

∂µ(
√
−g∂µψ)

=
1√
−g

∂µ(
√
−g gµν∂νψ)

=
1

a3
∂µ(a3(−ψ̇))

= −ψ̈ − 3Hψ̇

(3.6)

Working in natural units, we find the following background equations of motion:

ψ̈ + 3Hψ̇ − bψe2bχ̇2 + Vψ = 0

χ̈+ 3Hχ̇+ 2bψψ̇χ̇+ e−2bVχ = 0,

(3.7)

where the dot represents differentiation with respect to time and the derivatives of the

potential with respect to the fields are:

Vψ =− (1− e2b)e2b bψ
2µ

+ 2m2bψe
4bχ2,

Vχ =m2e4bχ.

(3.8)

Solving the differential equations in terms of time can be computationally intensive, so

for the purpose of solving the equations numerically, we rewrite them in terms of the

e-fold number defined in (1.42) and mark the derivative with respect to N by dash,

following the transformation rules defined in (1.43).

Now we will look at what the background equations (3.7) look like with respect to
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e-fold number using (1.43):

Ḣ

H2
ψ′ + ψ′′ + 3ψ′ − bψe2bχ′2 +

Vψ
H2

= 0

Ḣ

H2
χ′ + χ′′ + 3χ′ + 2bψψ

′χ′ +
Vχ
H2

e−2b = 0

(3.9)

To get the background equations in the new variable we use the Friedmann equation

(1.26) assuming zero curvature:

H2 =
1

3
ρ (3.10)

with the density from (1.25):

ρ =

[
1

2
ψ̇2 +

1

2
e2bχ̇2 + V

]
(3.11)

We take the time derivative of equations (3.10), (3.11) and use the background

equations of motion in (3.7). We then transform into to derivatives of e-folds to find:

Ḣ

H2
=

1

2

[
−ψ′2 − e2bχ′2

]
. (3.12)

Substituting (3.12) in (3.9), we obtain the field background equations in terms of

derivatives of e-fold:

ψ′′ + ψ′
[
− 1

2
ψ′2 − 1

2
e2bχ′2 + 3

]
− bψe2bχ′2 +

Vψ
H2

= 0

χ′′ + χ′
[
− 1

2
ψ′2 − 1

2
e2bχ′2 + 3 + 2bψψ

′
]

+
Vχe

−2b

H2
= 0

(3.13)

We relate the parameter µ to the mass of the scalaron field ψ as we have done in

(2.22):

mψ =

√
1

6µ
(3.14)

3.1.2 Perturbations and Power Spectra

In section 1.5 we discussed the perturbations of a single scalar field and found that

they get frozen after the mode exits the horizon. In multi-field models this is no longer
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true, as there are both adiabatic and non-adiabatic fluctuations, which we will study

now following the formalism presented in [47]. Adiabatic perturbations coincide with

perturbations in the metric, they are curvature perturbations, whereas non-adiabatic

perturbations correspond to situations where several matter species are present, where

energy exchange can happen between the matter components.

In order to study the perturbations of the model we chose to work in the longitudi-

nal (or Newtonian) gauge. In the models considered, the matter content is formed of

scalar fields, which means that the off-diagonal spatial components of the stress-energy

tensor are zero. The perturbed metric element takes the following form:

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Φ)δijdx
idxj, (3.15)

where we only consider scalar perturbations.

The scalar fields are composed into the background and perturbed components

respectively:

ψ(t, x) = ψ(t) + δψ(t, x),

χ(t, x) = χ(t) + δχ(t, x).

(3.16)

In two field models, there are usually 5 slow-roll parameters defined [48] , analogous

to (1.55), two which describe the slope of the potential along the directions of the fields:

εψ ≡
1

2

(
Vψ
V

)2

εχ ≡
1

2

(
Vχ
V

)2
(3.17)

and three curvature parameters:

ηψψ ≡
Vψψ
V

ηψχ ≡
Vψχ
V

ηχχ ≡
Vχχ
V

(3.18)
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In the formalism we will be using, it is convenient to perform a rotation in field

space as done in [49]:

δσ = cos θδψ + sin θebδχ,

δs = − sin θδψ + cos θebδχ,

(3.19)

with the following definitions:

cos θ =
ψ̇

σ̇
= cθ, sin θ =

χ̇eb

σ̇
= sθ, and σ̇ =

√
ψ̇2 + e2bχ̇2. (3.20)

The perturbations along the background trajectory at a point are quantified by

δσ and the perturbations orthogonal to the background trajectory perturbations by

δs. The variable θ̇ describes the amount of curvature. With this redefinition, the

slope orthogonal to the trajectory is zero, so the slow roll parameters in the redefined

directions are defined by:

ε = − Ḣ

H2
(3.21)

ηAB =
VAB
3H2

(3.22)

ησσ =
Vψψ
V

cos2 θ +
Vχχ
V
e−2b(ψ) sin2 θ +

Vψχ
V
e−b(ψ) sin 2θ, (3.23)

ησs =

(
Vχχ
V
e−2b − Vψψ

V

)
sin θ cos θ +

Vχψ
V
e−b cos 2θ, (3.24)

ηss =
Vψψ
V

sin2 θ − Vχψ
V
e−b sin 2θ +

Vχχ
V
e−2b cos 2θ+

+ sin θb,ψ

(
Vψ
V

sin θ +
Vψ
V
e−b cos θ

)
,

(3.25)
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which are extensions to those calculated in [50] with added non-canonical contri-

butions. Their time derivatives are given in [47] by:

˙ησσ = 2Hεησσ − 2Hη2
σs − 2Hησσξ1s

2
θcθ − 4Hησsξ1sθc

2
θ −Hασσσ, (3.26)

˙ησs = 2Hεησs +Hησsησσ −Hησsηss − 2Hηssξ1sθc
2
θ −Hησsξ1cθ −Hασσs,(3.27)

˙ηss = 2Hεηss + 2Hη2
σs − 2Hc3

θξ1ηss −Hασss and (3.28)

ξ̇1 = 2Hεξ1 −Hξ1ησσ −Hξ2
1s

2
θcθ +Hξ2cθ, (3.29)

where

αIJK ≡
VσVIJK
V 2

, (3.30)

and [51]:

ξ1 =
√

2εbψ, (3.31)

ξ2 = 2εbψψ. (3.32)

The parameters ξ1 and ξ2 are treated as first and second order slow-roll parameters

respectively.

Instead of working with δψ, δχ or δs, δσ, we chose to work with the Mukhanov-

Sasaki variables [52],[53] defined as:

Qσ = δσ − σ̇

H
Φ, (3.33)

where Φ is the metric perturbation defined in (3.15) and δσ is defined in (3.19). In

this basis the background equations are:

σ̈ + 3Hσ̇ + Vσ = 0 and

θ̇ +
Vs
σ̇

+ bψσ̇ sin(θ) = 0.

(3.34)
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The perturbation equations in Fourier space for the wavenumber k for the Mukhanov-

Sasaki variables are:

(
Q̈σ

δ̈s

)
+

 3H 2V,s
σ̇

−2V,s
σ̇

3H


(
Q̇σ

δ̇s

)
+

k2

a2
1 +

 Cσσ Cσs

Csσ Css


(Qσ

δs

)
= 0. (3.35)

The coefficients, CAB, are given to second order in slow-roll parameters in [47]:

Cσσ = 3H2

[
ησσ − 2ε+ ξ1s

2
θcθ −

η2
σs

3
− 2ε2 +

4εησσ
3

+
ξ1ησs

3
(sθ − 3sθc

2
θ)

+
5εξ1s

2
θcθ

3
− ξ1ησσs

2
θcθ

3
+
ξ2

1s
4
θc

2
θ

3

]
,

(3.36)

Cσs = 3H2

[
2ησs − 2ξ1s

3
θ +

2ησσησs
3

− 2εξ1s
3
θ

3
+

2ξ2
1c

3
θs

3
θ

3
+

2ησsξ1cθ(s
2
θ − c2

θ)

3

]
,

(3.37)

Csσ = 3H2

[
4εησs

3
− 2ησσησs

3
+

2ησσξ1s
3
θ

3
− 4εξ1s

3
θ

3
− 2ησsξ1s

2
θcθ

3
+

2ξ2
1s

5
θcθ

3

]
, (3.38)

Css = 3H2

[
ηss − ξ1(1 + s2

θ)cθ −
η2
σs

3
+
ξ2

1c
2
θ(s

4
θ − 1)

3
+
ησsξ1sθ(1 + s2

θ)

3

+
ησσξ1cθ(1 + s2

θ)

3
− εξ1cθ(1 + s2

θ)

3

]
,

(3.39)

As we are interested in specific observables, we convert back to the comoving curvature

perturbation and renormalised entropy perturbation, using the following relations [48]:

R ≡ H

σ̇
Qs

S ≡ H

σ̇
δs.

(3.40)

In order to calculate the power spectra at the end of inflation, we look at two

regimes, namely horizon crossing and the subsequent evolution. The former looks at a

single mode as it exits the horizon and the later follows that mode from a few e-folds

after it exits the horizon to the end of inflation.
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Horizon Crossing

According to [47] we calculate the power spectra for the curvature perturbation PR and

the entropy perturbation PS at horizon crossing as (the ∗ denotes horizon crossing):

PR∗ =
H2
∗

8π2ε∗
(1− 2ε∗ − 11ε2∗ + 4ε∗ησσ∗ + 4ε∗ξ1∗s

2
θ∗cθ∗)(1 + k2τ 2)×[

1 +
2

3
(3ε∗ + 20ε2∗ − 8ε∗ησσ∗ − 8ε∗ξ1∗s

2
θ∗cθ ∗ −AQ∗)f(x)

+

(
ε2∗ +

A2
Q∗ +B2

Q∗

9
− 2ε∗AQ∗

3

)
g(x)

]
,

(3.41)

PS∗ =
H2
∗

8π2ε∗
(1− 2ε∗ − 11ε2∗ + 4ε∗ησσ∗ + 4ε∗ξ1∗s

2
θ∗cθ∗)(1 + k2τ 2)×[

1 +
2

3
(3ε∗ + 20ε2∗ − 8ε∗ησσ∗ − 8ε∗ξ1∗s

2
θ∗cθ ∗ −DQ∗)f(x)

+

(
ε2∗ +

D2
Q∗ +B2

Q∗

9
− 2ε∗DQ∗

3

)
g(x)

]
,

(3.42)

where τ is conformal time defined in (1.44) and:

AQ = 3ησσ − 6ε+ 3ξ1s
2
θcθ + 10εησσ − 18ε2 + 11εξ1s

2
θcθ

− ησσξ1s
2
θcθ + ξ2

1s
4
θ − ησsξ1sθ(1 + c2

θ),

BQ = 3ησs − 3ξ1s
3
θ + 8εησs − 9εξ1s

3
θ + ησσξ1s

3
θ − ησsξ1c

3
θ + ξ2

1s
3
θcθ,

CQ = 3ησs − 3ξ1s
3
θ + 8εησs − 9εξ1s

3
θ + ησσξ1s

3
θ − ησsξ1c

3
θ + ξ2

1s
3
θcθ,

DQ = 3ηss − 3ξ1cθ(1 + s2
θ) + 6εηss − 7εξ1cθ(1 + s2

θ) + ησσξ1cθ(1 + s2
θ)

+ ησsξ1sθc
2
θ + ξ2

1(s4
θ − c2

θ).

(3.43)

f(x) = 2− γ − ln 2− lnx (3.44)

6g(x) = 16 + 3π2 − 44γ + 12γ2 + 24γ ln 2− 44 ln 2 + 12 ln2 2

+ 12 ln2 x− 44 lnx+ 24γ lnx+ 24 lnx ln 2 (3.45)

These will be used below.
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Super-Hubble Scales

Next we need to determine how these quantities evolve after horizon crossing. Working

on super horizon scales, where we can neglect the k2

a2
term and the time derivatives (as

the quantities in question are slowly evolving in time), equation (3.35) reduces to:

Q̇σ

H
= AQσ +Bδs, (3.46)

δ̇s

H
= Dδs, (3.47)

where

A =

(
2ε− ησσ − ξ1s

2
θcθ −

η2
σs

3
− 4ε2

3
− η2

σσ

3
+

5εησσ
3
− 2ξ2

1s
2
θc

2
θ

3
+
ξ2s

2
θc

2
θ

3

−4ησσξ1s
2
θcθ

3
− 4ησsξ1sθc

2
θ

3
+

4εξ1s
2
θcθ

3
− ασσσ

3

)
,

(3.48)

B =

(
−2ησs + 2ξ1s

3
θ + 2εησs −

2ησσησs
3

− 2ηssησs
3

+
4ησσξ1s

3
θ

3
− 4εξ1s

3
θ

3

−4ηssξ1sθc
2
θ

3
+

4ξ2
1s

3
θcθ

3
− 2ασσs

3

)
,

(3.49)

D =

(
−ηss + ξ1cθ(1 + s2

θ)−
η2
σs

3
− η2

ss

3
+
εηss
3
− ασss

3
+

4ησsξ1s
3
θ

3

−4ξ2
1s

4
θ

3
+

4ηssξ1cθs
2
θ

3

)
,

(3.50)

which can then be integrated and used to find the final power spectra as in [51]:

PR(N) = PR∗

[
1 +

(∫ N

N∗

B(N ′′)e
∫N
N∗ γ(N ′)dN ′dN ′′

)2

− 2ησsf(−kτ∗)
∫ N

N∗

B(N ′′)e
∫N
N∗ γ(N ′)dN ′dN ′′

]
, (3.51)

PS(N) = PS∗e2
∫N
N∗ γ(N ′)dN ′ , (3.52)

where the ’∗’ denotes the value of the power spectra at horizon crossing and γ = D−A.

Finally, to calculate the power spectrum of tensor perturbations PT we use the

slow-roll approximation (see [54]):

PT =
16

π
[1− 2(γ + ln 2− 1)ε]

H2

M2
PL

(3.53)
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To utilise equations (3.51) and (3.53), we need to relate the e-fold number N to

the scale k at which the mode exits the horizon. We implement the relation given in

[55], introduced in (1.70):

N(k) = − ln
k

a0H0

+
1

3
ln
ρreh
ρend

+
1

4
ln

ρeq
ρreh

+ ln

(√
Vk
3

1

Heq

)
+ ln 219Ω0h (3.54)

3.2 Observational Results

We look at predictions of this extension of the Starobinsky model for the spectral index

ns defined in (1.104), the amplitude of the power spectrum As, defined by PR|k=k0 and

the tensor-to-scalar ratio r defined in (1.110) at a pivot scale of k0 = 0.05 Mpc−1 and

compare to observational results of the Planck 2015 data given in [20].

We find that there are regions of parameter space which predict observables con-

sistent with observations. The parameters to be varied in this model are the starting

points of the fields ψ and χ, the mass mχ and the ratio of the two field masses:

Rm = mψ/mχ. (3.55)

To get predictions for the observables for this model, we have solved numerically

the equations of motion (3.13) and the equations for the evolution of the power spectra

in (3.51).and impose that during the numerical runs, inflation lasts no less than 55

e-folds and no more than 600 e-folds, of which only the last 55 are considered. The

inflationary phase is said to finish when the slow-roll parameter εH defined in (1.54)

is 1.
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3.2.1 Varying Field Initial Conditions

Firstly we study how robust the predictions for the observables are under variations of

initial conditions of the fields. We calculate the change in the observables at the pivot

scale of k0 = 0.05Mpc−1 when we fix the masses of the fields atmψ = mχ = 10−5.5MPL,

but vary the initial conditions on the field starting values ψini, χini. The analysis is done

changing the initial starting point of ψini between 5.5 MPL and 8 MPL in increments

of 0.1 MPL, whilst keeping the starting point of χini constant. Then we repeat the

analysis for the initial value of the field ψini constant and varying χini between 3 and

12 MPL. The starting values for the analysis are chosen, so that the predictions for

the observable are in the Planck 2015 accepted region [20]. We refer to these starting

values of the fields for the numerical runs ψini and χini. In the following subsections,

ψini and χini are given in units of MPL.

Change in Tensor-to-Scalar Ratio

We find the value of the tensor-to-scalar ratio to change very little and consistently

stays below 0.055 for all ψini and χini values considered.

The results are shown in Figure 3.2. The top two figures labeled ψini = 5 and

ψini = 7 are for runs where ψini is kept constant at 5MPL and 7MPL respectively, whilst

varying the initial value of the χ field. The bottom two figures, labeled χini = 5 and

χini = 10 are for runs where χini is kept constant at 5 MPL and 10 MPL respectively,

whilst varying the initial value of the ψ field. Note that the upper left-hand side

subplot, labeled ψini = 5 only showcases values for runs where χini > 9.5 MPL, because

of our restriction on the duration of the numerical run to last longer than 55 e-folds.
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Figure 3.2: Predictions for the tensor-to-scalar ratio r under changes in the starting
values of the inflationary fields. The top two subplots show the tensor-to-scalar ratio
for ψini constant at 5 MPL on the left and 7 MPL on the right, with varying χini in the
range {3 : 12}MPL. The bottom two subplots show the tensor-to-scalar ratio for χini

constant at 5 MPL on the left and 10 MPL on the right, with varying ψini in the range
{5.5 : 8}MPL.
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Change in Spectral Index and Perturbation Amplitude at Pivot Point

We now look at how the predictions for the spectral index and the amplitude at the

pivot scale k0 = 0.05 Mpc−1 change when the starting values of the fields are varied

and we compare them to the Planck 2015 [20] results:

ns = 0.9682± 0.0062, ns ∈ [0.9620, 0.9744],

109As = 2.23± 0.16, 109As ∈ [2.07, 2.39].

(3.56)

We consider the range of initial values of the fields ψini, χini ∈ {1 : 10}MPL.

We find that for runs with starting values in this range, the spectral index is in the

observationally allowed region by Planck 2015 results. We also find that the changes

in ns are small and tend to be below or just of the order of the latest observational

accuracy, of O(10−5), as can be seen in the left hand side panels of Figure 3.3 and

Figure 3.4. The changes in As with different initial conditions for the field values are

very small relative to the observational accuracy, staying consistently under 5%. We

note that the for this part of the analysis we are not interested in the absolute value of

the amplitude, as we are only trying to understand the robustness of the predictions

under these changes.

Note that in the figures showing the variation in the perturbation amplitude, the

y-axis shows different ranges of values for the amplitude; the lower the value of χini,

the bigger the apparent scatter in the plot. That is because the field χ has a smaller

effect on the trajectory relative to the field ψ, when they have equal masses, as can be

seen by looking at the potential of our model (3.4), where ψ contributes more to the

potential energy.
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Figure 3.3: The change in the spectral index ns (left hand side subplots) and in the
amplitude As at the pivot point k = 0.05 Mpc−1 (right hand side subplots), for fixed
values of χini and varying ψini. The solid lines on the left hand side plots of the spectral
index represent the Planck 2015 1 σ limits on ns. The top 2 panels show the predictions
for χini = 2 MPL in both ns and As at the pivot scale, the middle 2 panels going down
show the predictions for χini = 5 MPL and the bottom 2 panels show the predictions
for χini = 10 MPL.
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Figure 3.4: The change in the spectral index ns (left hand side subplots) and in the
amplitude As at the pivot point k = 0.05 Mpc−1 (right hand side subplots), for fixed
values of ψini and varying χini. The solid lines on the left hand side plots of the spectral
index represent the Planck 2015 1 σ limits on ns. The top 2 panels show the predictions
for ψini = 5 MPL in both ns and As at the pivot scale, the middle 2 panels going down
show the predictions for ψini = 6 MPL and the bottom 2 panels show the predictions
for ψini = 7 MPL.
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3.2.2 Varying Field Mass and Mass Ratio

Having looked at how the predictions in the model change when varying the initial

conditions for the fields and keeping the masses fixed, we now want to understand how

the predictions for the tensor-to-scalar ratio r, the spectral index ns and amplitude of

the power spectrum As at the pivot scale k = 0.05 Mpc−1 change when we vary the

masses of the fields. We will keep the initial conditions ψini = 6 MPL and χini = 3 MPL

and alter the two mass parameters, namely the mass of the χ field, mχ and the mass

ratio Rm = mψ/mχ.

We consider mass ratios Rm ∈ [0.15, 10] for values of mχ ∈ [10−7, 10−4]MPL. We

show in Figure 3.5 how changing the mass mχ and the ratio of the masses Rm affects

the background trajectory, by looking at mχ = 10−5.5MPL and mψ < mχ, mψ = mχ

and mψ > mχ. If the field χ is heavier than the field ψ, then it will run towards its

minimum faster than ψ. If the two fields have the same mass, then they both reach

their minimum at approximately the same time, when the slow-roll parameters also

approach 1. For the case when ψ is much heavier than χ, inflation ends before the

field χ has a chance to reach its minimum, leading to the possibility of double-inflation

[56].
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Figure 3.5: Field trajectories and corresponding scalar power spectra for runs with
the same field starting conditions, ψini = 6 MPL and χini = 3 MPL, for a mass mχ =
10−5.5MPL and varying the mass ratio Rm. The top row shows the case Rm = 0.2, or
mψ < mχ, the next row down shows Rm = 1.0, or mψ = mχ and the bottom row shows
Rm = 5.0, or mψ > mχ. The power spectra plots illustrate the qualitative behaviour
in these three cases; the numerical values hold no significance for our analysis.
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The extended Starobinsky model we are considering gives predictions consistent

with observational Planck 2015 results, however they are sensitive to the masses of the

fields. We would like to note how the predictions compare to the 2013 results; we want

to use this as an argument as to how robust our choice of model is when comparing it

to observational data.

As such, we mark the regions which predict the spectral index ns and amplitude

As to be consistent with the Planck 2013 results [57]. We considered mass ratios

Rm ∈ [0.15, 10], for values of mχ ∈ [10−7, 10−4]. The results are summarised in the

table below:

mχ(MPL) mψ(MPL)
10−4.5 [0.179, 0.180]

⋃
[0.190, 0.191]× 10−4.5

10−6.0 [5.70, 6.00]× 10−6.0

Table 3.1: Table illustrating regions of the field mass parameter space which yield
values of ns and As compatible with the constraints given by the Planck 2013 data as
referred to in [57].

In Figure 3.6, the black lines mark the 2013 Plank 2σ limits on the value of ns,

and it can be seen that the predictions of our model are on the upper limit of those

results. The size of the range for Rm varies in order of magnitude as well, as can be

seen from Table 3.1, with the variation in Rm of O(10−3) for mχ = 10−4.5MPL and Rm

of O(10−1) for mχ = 10−6MPL. For the Planck 2013 case, we are at the limits of the

numerical accuracy in trying to find cases for which the predictions for both ns and

As are in agreement with the 2013 observational results.

For the Planck 2015 limits, we find runs that give observationally viable predictions

for both ns and As, as can be seen in Figure 3.6.

The Planck predictions for As do not change between the two rounds of analysis

from the Planck collaboration. As can be seen from Figure 3.7, for every choice of
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mass ratio Rm, there exists a range of values of mχ which place the predictions for the

amplitude of the scalar power spectrum within the observational limits. The same can

be said for the tensor-to-scalar ratio r, which is predicted to be small and stays below

0.053 in the range of masses and mass ratios considered, as can be seen in Figure 3.8.
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Figure 3.6: The change in spectral index ns with change in mχ and ratio Rm. The
solid blue lines represent the Planck 2015 1 σ limit on the value of the spectral index.
The solid black lines represent the Planck 2013 1 σ limit on the value of the spectral
index. The coloured lines mark predictions from runs with the same value of Rm and
different choices of mχ.
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Figure 3.7: The change in amplitude of the power spectrum with change in mχ and
ratio Rm. The solid blue lines represent the Planck 2013 and 2015 1 σ limit on the value
of the amplitude of the scalar power spectrum. The coloured lines mark predictions
from runs with the same value of Rm and different choices of mχ. As can be seen,
for any choice of mass ratio Rm considered, there is a mass range for mχ which gives
predictions of As in agreement with observation.
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coloured lines mark predictions from runs with the same value of Rm and different
choices of mχ.The tensor-to-scalar ratio stays below 0.053 for the range considered.
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3.3 Summary of the Starobinsky Model Extension

The simplest extension to the Starobinsky model we have analysed in this Chapter

was found to be stable under changes to conditions of the initial starting values of

the fields in the considered range, ψini, χini ∈ {1, 10}MPL. The predictions for the

tensor-to-scalar ratio, spectral index and amplitude of the scalar power spectrum at a

pivot scale of k0 = 0.05 Mpc−1 vary little with the changes in initial field conditions.

The spectral index stays consistently within the Planck 2015 allowed region and the

amplitude of the power spectrum varies by a maximum of 5%. The tensor-to scalar

ratio stays consistently below 0.053.

When changing the mass scales of the model, we observe a higher variation in

predictions for observables than in the case of varying initial field conditions. In

the considered range, with mass ratios Rm ∈ {0.15 : 10} and mχ ∈ {10−7 : 10−4}, the

predictions for the spectral index are consistently within the Planck 2015 allowed range.

The strongest constraint on the model comes from the prediction for the amplitude

of the power spectrum. We have shown that for any given choice of mass ratio Rm

considered, we can find a mass range for mχ, such that the predictions for As are

within the Planck allowed range. Again the predictions for the expected values of the

tensor-to-scalar ratio are small and below 0.053 in the cases analysed.

It is also very important to note that the extension to the Starobinsky model

considered in this chapter is in much better agreement with the Planck 2015 results,

than the Planck 2013 results. This highlights the importance of understanding the

dynamics of this model, for future model building of inflationary models and possibly

embedding this model in a fundamental theory.



Chapter 4

Fine-Structure of Power Spectra in

Two-Field Inflationary Models

In this chapter we will discuss at the running of the spectral index αs = dns
d ln k

and

the running of the running βs = dαs
d ln k

defined in (1.108) and (1.109) respectively. The

most recent Planck collaboration analysis [20] places the Starobinsky model as the

most favoured model in the ns − r plane. We will investigate the fine-structure of

the power spectrum in the extended Starobinsky model in Chapter 3 and see how

the predictions compare to observation. We will also consider other models with non-

canonical kinetic terms and a model with a potential motivated by supergravity.

The interest in investigating the power spectrum beyond ns was raised by recent

observational studies of the CMB, which present large values for αs and βs [58], [59].

In [59] the constraints on the running are given by αs = 0.011 ± 0.010 and βs =

0.027± 0.013 at a pivot scale of k = 0.05Mpc−1. In other words, βs is positive in the

2σ limit and it appears to be larger than αs. Not all cosmological models would predict

such a hierarchy and work has been done to understand what kinds of models would

78
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predict such running of the spectral index and running of the running [60]. There are

a relatively limited number of studies looking at the running [61], [62], [63], [64] or the

running of the running [58], [65].

We will discuss the semi-analytical approach in [60] and compare its predictions

to those given by numerical fits on the power spectrum to second-order in slow-roll,

obtained from the method in [47]. We will then present our predictions for two-field

models of the running of the spectral index αs and the running of the running βs.

4.1 The Semi-Analytical Approach

Following the approach defined in [60] we work on models of General Relativity grav-

ity with a scalar field Lagrangian P , depending on two fields φI with kinetic terms

XJK = 1
2
gµν
(
∂φJ/∂xµ

) (
∂φK/∂xν

)
, with I,K, J = 1, 2.

The action for this system is:

S =

∫
d4x
√
−g
[

1

2
R + P

(
φI , XJK

)]
. (4.1)

We recall the definition of the nth order Hubble-flow parameters as defined in (1.58):

ε0 =− Ḣ

H2

εn+1 =
ε̇n
Hεn

,

(4.2)

where H is the expansion rate during inflation and the dot denotes the derivative

with respect to cosmic time. We work in the slow-roll regime, where the slow-roll

parameters defined in (4.2) are assumed to be very small (εn � O(1)) and not to vary

much in time.
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Under these assumptions, the power spectrum PR (3.41) of the curvature pertur-

bation R at horizon crossing is to leading order [66], [67]:

PR∗ '
H2

8π2ε0cs
, (4.3)

where ∗ refers to horizon crossing where csk = aH and cs is the speed of sound of the

adiabatic perturbation, related to the energy density and pressure by:

c2
s =

ṗ

ρ̇
. (4.4)

We further define the following slow-roll parameters [66], [67]:

s0 =
ċs
Hcs

,

sn+1 =
ṡn
Hsn

,

(4.5)

which we assume to be small as well. At horizon crossing, the spectral index ns, the

running of the spectral index αs and the running of the running βs, in the lowest order

slow-roll approximation, are:

(n∗s − 1) ≡ d lnPR
d ln k

|csk=aH ' −
d lnPR
dN

|csk=aH ' −2ε0 − ε1 − s0, (4.6)

α∗s ≡
dns
d ln k

|csk=aH ' −2ε0ε1 − ε1ε2 − s0s1, (4.7)

β∗s ≡
dαs
d ln k

|csk=aH ' −2ε0ε1 (ε1 + ε2)− ε1ε2 (ε2 + ε3)− s0s1 (s1 + s2) . (4.8)

As one can see, at horizon crossing, ns−1 is linear in the slow-roll parameters, whereas

αs is quadratic and βs is cubic in the slow-roll parameters. As such there should

be a hierarchy that ns − 1 > αs > βs. In single field inflation, these results stay

true after horizon crossing. In contrast, in two field models, such as the extended
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Starobinsky model we considered in Chapter 3, this hierarchy might no longer hold

true, because entropy perturbations in general source the curvature perturbations

outside the horizon.

Therefore, on super-horizon scales, we must study isocurvature modes. We use

the transfer function formalism of [48] where the total power spectrum at the end of

inflation is related to the horizon crossing spectrum:

PR = PR∗
(
1 + T 2

RS
)
≡ PR∗

cos2 Θ
. (4.9)

TRS is the transfer function describing the effect of entropy perturbations on the growth

of R and the transfer angle is:

Θ = tan−1 TRS. (4.10)

The transfer angle parametrises the superhorizon evolution and allows us to relate the

value of ns, αs and βs to their horizon crossing values. Using (4.6) through to (4.9)

we find the values of the spectral index, the running and the running of the running

at the end of inflation:

(ns − 1) =
d lnPR∗
d ln k

+
d ln(1 + T 2

RS)

d ln k

'(n∗s − 1) +
1

H∗

d ln(1 + T 2
RS)

dt∗

(4.11)

αs ' α∗s +
1

H2
∗

d2 ln(1 + T 2
RS)

dt2∗
(4.12)

βs ' β∗s +
1

H3
∗

d3 ln(1 + T 2
RS)

dt3∗
. (4.13)

In order to relate the perturbations in the early universe to those at later cos-

mic time, we need to understand the superhorizon evolution. At superhorizon scales,

due to local energy conservation, the curvature perturbation R remains constant for
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adiabatic perturbations [68]. Although entropy perturbations can generate curvature

perturbations, purely adiabatic perturbations cannot generate entropy perturbations

on superhorizon scales. Thus the time dependence of adiabatic and entropy perturba-

tions on superhorizon scales can be modelled by [48]:

Ṙ ' AHS

Ṡ ' BHS,
(4.14)

where A and B are model-dependent couplings.

The solution to these equations can be obtained by integrating (4.14) written as: R
S

 =

 1 TRS

0 TSS


 R
S


∗

, (4.15)

with the transfer functions:

TSS(t) = exp

(∫ t

t∗
B(t)H(t)dt

)
, (4.16)

TRS(t) =

∫ t

t∗
A(t)H(t)TSS(t)dt. (4.17)

Using this form we can evaluate the time derivatives of the transfer functions:

ṪRS ' −H∗(A∗ +B∗TRS),

T̈RS ' H2
∗ (A∗B∗ +B2

∗TRS),

...
T RS ' −H3

∗ (A∗B
3
∗ +B3

∗).

(4.18)

With the definition of the transfer angle (4.10) and diverse trigonometric relations,

we can show that:

ns ' n∗s − 2 sin(2Θ)A∗ + 2B∗ sin2 Θ, (4.19)

αs ' α∗s + 2 cos Θ(A∗ cos Θ +B∗ sin Θ)(A∗ cos(2Θ) +B∗ sin(2Θ)), (4.20)

βs ' β∗s − 2 cos Θ(A∗ cos Θ +B∗ sin Θ)(B∗ cos(2Θ)− A∗ sin(2Θ))·

· (A∗ + 2A∗ cos(2Θ) + 2B∗ sin(2Θ)).

(4.21)
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For models with actions:

S =

∫
d4x
√
−g̃
[
R̃

2
+Xφφ + ebXχχ − V (φ, χ)

]
, (4.22)

we have cs = 1. Expressions for A and B are given by [60] and [69]:

A ' −2ησs − εbχ sin2 θ, (4.23)

B ' (ησσ − ηss)− 2ε0 −
1

2
εbχ(1 + sin2 θ − sin θ cos θ), (4.24)

with cos θ = φ̇/σ̇, sin θ = ebχ̇/σ̇ with σ̇2 = φ̇2 + χ̇2e2b,

εbχ = 2
Vχbφ
V

(4.25)

and ησσ, ηss and ησs are as defined in (3.22).

We are now in the position to evaluate the power spectra in a number of models.

4.2 A Numerical Method

We introduce a second method to evaluate the running of the spectral index and the

running of the running. We perform a numerical fit to the power spectrum evaluated

to second order in slow-roll as presented in Section 3.1.2 in the previous chapter. We

evaluate the fit to the parametrisation of the power spectrum introduced in (1.107),

which we recall here:

PR = As

(
k

k0

)ns−1+αs
2

log k
k0

+βs
6

(log k
k0

)2

, (4.26)

with ns, αs and βs are free parameters in the fit, which will be evaluated for a horizon

crossing value of k0 = 0.05Mpc−1.

For the numerical fit we use two modules from independent Python libraries;

from the Scipy package [70] we use ”optimization.curve fit()” and from Numpy [71]
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”numpy.polyfit”. We find that the results predicted with the two methods are in agree-

ment up to order O(10−6), so for the rest of the chapter we will use the numerical

values predicted by the Scipy fitting module to discuss the model predictions for αs

and βs. To make the presentation of the results easier in the following section, we

introduce the parameter em = log10m, which is the base 10 logarithm of the mass m

in the model.

The semi-analytical method is based on the slow-roll approximation and ignores

higher order contributions to the power spectrum. In order to make accurate predic-

tions about the running of the spectral index and the running of the running, this

proves to be insufficient, as we will discuss later in this chapter.

4.3 Simplest Extension to Starobinsky and Modi-

fications

We begin with a Lagrangian that looks like the extended Starobinsky model in the

Einstein frame, but make the modification α→ αm, where αm 6= 1√
6
. In other words,

the action is written as:

SE =

∫
d4x
√
−g̃
[
R̃

2κ
− g̃µν

2
(∇̃µψ)(∇̃νψ)− 1

2
g̃µνe2b(∇̃µχ)(∇̃νχ)− V

]
, (4.27)

with:

V =
(1− e2b)2

8κ2µ
+

1

2
m2e4bχ2, (4.28)

where the parameter b is now given as:

b(ψ) = −αmψ. (4.29)
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We relate the mass of the scalaron ψ to the potential by:

µ =
α2
m

m2
ψ

. (4.30)

We will look at models with different values of αm and analyse the effect changing

the masses of the fields has on the values of the running αs and the running of the

running βs. We will focus on models whose predictions for the spectral index ns and

the amplitude As are within the Planck 2015 accepted range.

4.3.1 Changing αm and Mass Ratios Rm

In this subsection, we will analyse three scenarios by chosing αm = α = 1/
√

6, αm =

0.1α and αm = 2α. We are interested in finding combinations of mass scales for the

two fields, mχ and Rm = mψ/mχ, which predict values of ns and As in the Planck

2015 tolerance. For those cases we will show what the predictions for the running αs

and the running of the running βs are. We fix the initial conditions of the fields at

ψini = 5MPL and χini = 16MPL. In Figures 4.1, 4.2 and 4.3 we show the results for

the choice of model αm = α. Figure 4.1 illustrates the behaviour of the amplitude of

the power spectrum As under changing mχ and Rm. We observe how with increase in

mass mχ, the relative change in the value of the amplitude for increasing mass ratio

Rm grows. For all masses mχ, in Figure 4.1a, the values of Rm in reverse order from the

top are 2.5, 2, 1.5, 1, 0.5, 0.2. This behaviour is important, because as we will see later,

for certain models, there are no values of both As and ns in the Planck 2015 accepted

range. Figure 4.2a illustrates the behaviour of the spectral index ns under changing

mχ and Rm. For all values of mχ in mχ ∈ {10−4.7 : 10−5.6}MPL and Rm ∈ {0.15 : 2.5},

the predictions for the spectral index are in the Planck 2015 3 σ limits. Figure 4.2b

shows the values of ns for runs which predict both ns and As in the Planck 2015
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accepted range. In Figure 4.3 we see the predictions of this model for the running of

the spectral index and the running of the running. The predictions show that there

are choices of mass and mass ratio which lead to an inverted hierarchy, where βs > αs.

There are also runs which predict a positive βs. These results are favoured by the

analysis on the Planck 2015 data done by [59], and we show that the predictions on

the fine-structure of the power spectrum from the extension to the Starobisnky model

are in agreement with observation. In Figures 4.4 and 4.5 we show the results for

the choice of model αm = 0.1α, for masses mχ and Rm which give predictions for As

and ns in the Planck 2015 accepted range. Figure 4.5 illustrates the behaviour of the

running of the spectral index and the running of the running. The predictions show

that αs < 0 and βs > 0, although |βs| < |αs|.

Figures 4.6 and 4.7 illustrate the results for the choice of model αm = 2α, for

masses mχ and Rm which give predictions for As and ns in the Planck 2015 accepted

range. Figure 4.7 showes the behaviour of the running of the spectral index and the

running of the running. The predictions are that αs < 0 and βs < 0 with this choice

of model.

To summarise, in the Starobinsky model with a scalar field, as we increase αm, we

are suppressing the dynamics of the field χ and we are closer to the single field regime,

where the hierarchy of the runnings is as expected. As we decrease αm, the field χ

plays a more important role in the inflationary dynamics. We observe positive values

of αs in the case αm = 0.1α and βs > 0 in the case αm = α. We will proceed to discuss

the behaviour of other two field models.
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Figure 4.1: Predictions for the amplitude of the power spectrum in the extended
Starobinsky model for the choice αm = α = 1/

√
6. The initial starting conditions

for all runs are ψini = 5 MPL and χini = 16 MPL. The left hand side figure presents
the evolution of As with respect to changing mass scales mχ = 10em ∈ {10−4.7 :
10−5.6} MPL and Rm ∈ {0.2, 0.5, 1, 1.5, 2, 2.5}. We note the power law evolution of As
with respect to changing mχ for a given choice of Rm, e.g. the top points represented in
Figure 4.1a correspond to Rm = 2.5. The right hand side figure contains a wider range
of choices for Rm for the same range on mχ. We only show the runs with prediction
for As in the Planck 2015 3 σ limits.
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Figure 4.2: Predictions for the spectral index in the extended Starobinsky model for
the choice αm = α = 1/

√
6. The initial starting conditions for all runs are ψini = 5MPL

and χini = 16 MPL. The left hand side figure presents the evolution of ns with respect
to changing mass scales mχ = 10em ∈ {10−4.7 : 10−5.6} MPL and Rm varying between
0.2 and 2.5. The predictions for ns in this model are consistently in the Planck 2015
accepted range. The right hand side figure contains only the choices of Rm and mχ

which predict the amplitude of the power spectrum As in the Planck 2015 3 σ limits.
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Figure 4.3: Predictions for the running of the spectral index αs and the running of
the running βs in the extended Starobinsky model for the choice αm = α = 1/

√
6.

The initial starting conditions for all runs are ψini = 5 MPL and χini = 16 MPL. The
left hand side figure presents the values of αs and βs for all the runs with mass scales
mχ = 10em ∈ {10−4.7 : 10−5.6} MPL and Rm ∈ {0.2 : 2.5}. The right hand side figure
contains only the results from runs where both As and ns are in the Planck 2015 3 σ
limits. For this choice of model, there are choices of mχ and Rm which lead to positive
predictions for βs and cases where βs > αs, which are favoured by the Planck 2015
measurements.
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Figure 4.4: Predictions for the spectral index and amplitude of the power spectrum
in the extended Starobinsky model for the choice αm = 0.1α. The initial starting
conditions for all runs are ψini = 5 MPL and χini = 16 MPL. The left hand side figure
presents the values of ns for runs with mass scales mχ = 10em ∈ {10−4.7 : 10−5.6} MPL

and Rm ∈ {0.2 : 2.5}. Both figure contain the predictions for cases where both As and
ns are in the Planck 2015 3 σ limits.
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Figure 4.5: Predictions for the running of the spectral index αs and the running of the
running βs in the extended Starobinsky model for the choice αm = 0.1α. The initial
starting conditions for all runs are ψini = 5 MPL and χini = 16 MPL. The values of αs
and βs are shown for runs with mass scales mχ = 10em ∈ {10−4.7 : 10−5.6} MPL and
Rm ∈ {0.2 : 2.5}. The results are for runs where both As and ns are in the Planck
2015 3 σ limits.
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Figure 4.6: Predictions for the spectral index and amplitude of the power spectrum in
the extended Starobinsky model for the choice αm = 2α. The initial starting conditions
for all runs are ψini = 5 MPL and χini = 16 MPL. The left hand side figure presents
the values of ns for runs with mass scales mχ = 10em ∈ {10−4.7 : 10−5.6} MPL and
Rm ∈ {0.2 : 2.5}. Both figure contain the predictions for cases where both As and ns
are in the Planck 2015 3 σ limits.
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Figure 4.7: Predictions for the running of the spectral index αs and the running of
the running βs in the extended Starobinsky model for the choice αm = 2α. The initial
starting conditions for all runs are ψini = 5 MPL and χini = 16 MPL. The values of αs
and βs are shown for runs with mass scales mχ = 10em ∈ {10−4.7 : 10−5.6} MPL and
Rm ∈ {0.2 : 2.5}. The results are for runs where both As and ns are in the Planck
2015 3 σ limits.
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4.4 Two Field Models with Chaotic Potential

We are interested in the action:

SE =

∫
d4x
√
−g̃
[
R̃

2κ
− g̃µν

2
(∇̃µψ)(∇̃νψ)− 1

2
g̃µνebψ(∇̃µχ)(∇̃νχ)− V

]
, (4.31)

with:

V =
2

2
m2
ψψ

2 +
1

2
m2
χχ

2 (4.32)

and

b(ψ) = −αmψ. (4.33)

This is similar to the action in (4.27), with a different choice of potential. The dynamics

of the field χ are still affected by the field ψ, but the potential is quadratic for both

fields. We analyse three cases, where αm = 0.2, αm = −0.2 and αm = 1, we keep

the choice of initial conditions for the field values fixed and vary the value of mχ

and of the ratio Rm =
mψ
mχ

. We consider only values of initial conditions that give

predictions of the spectral index ns and amplitude of the power spectrum As which

are in the Planck 2015 3 σ limits. The masses we use in the numerical runs are

mχ ∈ {10−5.5, 10−5.4, 10−5.3, 10−5.2, 10−5.1, 10−5.0, 10−4.9, 10−4.8, 10−4.7} and mass ratios

Rm ∈ {0.1 : 2.5}.

4.4.1 Changing αm and Mass Ratio Rm

In Figures 4.8 and 4.9 we consider the first case αm = 0.2. The initial conditions

are ψini = 30 MPL and χini = 10 MPL and for given values of mχ, we choose the

ratio Rm ∈ {0.1 : 4.5} such that the predicted values of ns and As are in agreement

with the Planck 2015 results. In Figures 4.10 and 4.11 we present the results for

the second case αm = −0.2, with initial conditions of the fields ψini = 5MPL and
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χini = 16MPL and mass in the range mχ ∈ {10−4.7 : 10−5.5}MPL, with the mass ratios

in Rm ∈ {0.1 : 4.5}. Finally, in Figures 4.12 and 4.13 we present the results for the

third case with the parameter choice αm = −1, with initial starting values of the fields

ψini = 30MPL and χini = 10MPL and masses for the fields, mχ ∈ {10−5.5 : 10−5.3}MPL

and Rm ∈ {0.1 : 4.5}. All the parameter choices are such that the predictions for ns

and As are in agreement with Planck 2015 3σ limits. In all of the cases considered

for this model we found |αs| > |βs|, so no inverted hierarchy was observed. All the

predictions for αs and βs were found to be slightly negative, but still in the 3σ limit

calculated in [59].
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Figure 4.8: Predictions for the spectral index and amplitude of the power spectrum
for the chaotic potential with the parameter choice αm = 0.2. The initial starting
conditions for the numerical simulations are ψini = 30 MPL and χini = 10 MPL. The
figures present the values of ns on the left and As on the right for runs with mass in
the range mχ = 10em ∈ {10−4.7 : 10−5.5} MPL and mass ratio in Rm ∈ {0.2 : 2.5}.
Both figures contain the predictions for cases where both As and ns are in agreement
with the Planck 2015 results.
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Figure 4.9: Predictions for the running of the spectral index αs and the running
of the running βs for the chaotic potential with the parameter choice αm = 0.2.
The initial starting conditions for the numerical simulations are ψini = 30 MPL and
χini = 10 MPL. The values of αs and βs are shown for runs with mass scales mχ =
10em ∈ {10−5.5 : 10−4.9} MPL and Rm ∈ {0.2 : 2.5}. The predictions are for cases
where both As and ns agreement with the Planck 2015 results. We find αs < 0 and
βs < 0.
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Figure 4.10: Predictions for the spectral index and amplitude of the power spectrum
for the chaotic potential with the parameter choice αm = −0.2. The initial starting
conditions for the numerical simulations are ψini = 5MPL and χini = 16MPL, with
mass scales mχ = 10em ∈ {10−5.7 : 10−5.5} MPL and Rm ∈ {0.1 : 4.5}. Both figures
contain the predictions for cases where both As and ns are in agreement with the
Planck 2015 results.
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Figure 4.11: Predictions for the running of the spectral index αs and the running of the
running βs for the chaotic potential with the parameter choice αm = −0.2. The initial
starting conditions for the numerical simulations are ψini = 5MPL and χini = 16MPL.
The values of αs and βs are shown for runs with mass scales mχ = 10em ∈ {10−5.7 :
10−5.5} MPL and Rm ∈ {0.1 : 4.5}. The predictions are for cases where both As and
ns agreement with the Planck 2015 results. We find αs < 0 and βs < 0.
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Figure 4.12: Predictions for the spectral index and amplitude of the power spectrum
for the chaotic potential with the parameter choice αm = −1. The initial starting
conditions for the numerical simulations are ψini = 30MPL and χini = 10MPL. The
figures present the values of ns on the left and As on the right for runs with mass in the
range mχ = 10em ∈ {10−5.5 : 10−5.3} MPL and Rm ∈ {0.1 : 3.5}. Both figures contain
the predictions for cases where both As and ns are in agreement with the Planck 2015
results.
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Figure 4.13: Predictions for the running of the spectral index αs and the running of the
running βs for the chaotic potential with the parameter choice αm = −1. The initial
starting conditions for the numerical simulations are ψini = 30MPL and χini = 10MPL.
The values of αs and βs are shown for runs with mass scales mχ = 10em ∈ {10−5.5 :
10−5.3} MPL and Rm ∈ {0.1 : 3.5}. The predictions are for cases where both As and
ns agreement with the Planck 2015 results. We find αs < 0 and βs < 0.
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4.5 A Supergravity Motivated Model

The final model we are interested in was proposed in [72] and its action can be derived

from supergravity. Like the extension to Starobinsky inflation that we have considered

in 4.3, it is a two field model, where one field has a non-canonical kinetic term.

SE =

∫
d4x
√
−g̃
[
R̃

2κ
− g̃µν

2
(∇̃µψ)(∇̃νψ)− 1

2
g̃µνe2

√
2
3
ψ(∇̃µχ)(∇̃νχ)− V

]
, (4.34)

with:

V =
3

4
m2
(

1− e−
√

2
3
ψ
)2

+
1

2
m2χ2. (4.35)

There is only one mass scale in this model, m, so we will analyse the behaviour of

the running of the spectral index αs and the running of the running βs under changes

to conditions of the initial starting values of the fields, ψini ∈ {6 : 13} MPL and

χini ∈ {0.8 : 3.5} MPL.

Following the same analysis as in the previous sections, we present in Figure 4.14

the predictions for ns and As, for numerical runs with initial starting values of the

fields in the ranges ψini ∈ {6 : 13} MPL and χini ∈ {0.8 : 3.5} MPL. The mass is m ∈

{10−5.5 : 10−5.2} MPL. All the parameter choices are such that the predictions for ns

and As are in agreement with Planck 2015 3σ limits. As can be seen in Figure 4.15, for

the range we have analysed, this model predicts αs and βs as negative and |βs| < |αs|,

however it is still in the 3 σ limit of [59].
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Figure 4.14: Predictions for the spectral index and amplitude of the power spectrum
in a supergravity embedded model. The changes to changes to the initial starting
values of the fields are in the range ψini ∈ {6 : 13} MPL and χini ∈ {0.8 : 3.5} MPL.
The left hand side figure presents the values of ns for runs with mass scales m =
10em ∈ {10−5.5 : 10−5.2} MPL. Both figure contain the predictions for cases where
both As and ns are in the Planck 2015 3 σ limits.
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Figure 4.15: Predictions for the running of the spectral index αs and the running
of the running βs in a supergravity embedded model. The changes to changes to
the initial starting values of the fields are in the range ψini ∈ {6 : 13} MPL and
χini ∈ {0.8 : 3.5} MPL. The figure presents the values for runs with mass scales
m = 10em ∈ {10−5.5 : 10−5.2} MPL. The runs presented give predictions for cases
where both As and ns are in the Planck 2015 3 σ limits.
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4.5.1 Comparing the Two Methods

We compare the predictions for ns, αs and βs using two methods. In the first, we

use the semi-analytic method presented in Section 4.1 to evaluate the values of the

running of the spectral index αs and of the running of the running βs. In the second,

we perform a numerical fit to the power spectrum evaluated to second order in slow-roll

as discussed in Section 3.1.2.

We analyse the Supergravity motivated potential introduced in (4.34), where we

find that the predictions for the running of the spectral index αs and the running of

the running βs are not consistent between the two methods. To illustrate, we present

in Table 4.1 the numerical results.

ns n′s αs α′s βs β′s
0.9685 0.9685 −4.99 · 10−4 7.69 · 10−5 −1.48 · 10−5 4.29 · 10−4

Table 4.1: The predictions for the spectral index, the running of the spectral index and
the running of the running in the Supergravity motivated model with a scalar field, for
a choice of initial conditions ψini = 12 MPL, χini = 3 MPL, with mass m = 10−5.5 MPL.
We denote the semi-analytical method predictions by n′s, α

′
s and β′s. The numerical fit

predictions are marked as ns, αs and βs. The predictions for αs and α′s have opposite
signs. The absolute values of αs and α′s are an order of magnitude different. The same
is true for βs and β′s.

Our analysis of the chaotic potential with action (4.31) for αm < 0, confirms a

similar pattern, whereby the predictions from the two methods for αs can vary in sign

and the same holds true for βs.

We have shown that the numerical fit to the power spectrum evaluated to second

order in slow-roll [47] does not always agree with the semi-analytical method intro-

duced in Section 4.1, as we have discussed is the case for the Supergravity motivated

model in Table 4.1. This means that for precise calculations, we have to go beyond the

first order slow-roll approximation [60]. To improve the accuracy of the predictions,
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one has to go to higher order in the approximations, in order to make predictions that

can compare to data in the area of precision cosmology, as was also noted in [50] and

[47].

4.6 Conclusions to the Study on the Fine-Structure

of the Power Spectrum

We have looked at three different classes of models, the first an extension of Starobinsky

inflation with a scalar field, the second a two-field model with chaotic potential and

the third a supergravity embedded model. We have only observed positive values of

αs and βs in the Starobinsky extension models. Although the results in [59] are not

of a high-enough level of accuracy to exclude any of the models considered, they raise

an interesting question about the hierarchy of the running of the spectral index αs

and the running of the running βs and whether, as observational accuracy improves,

these parameters could help discriminate between inflationary models. We have found

that the semi-analytical method in [60] does not predict values in agreement with the

numerical fit to the power spectrum evaluated to second order in slow-roll. Future

work could explore the method to higher order.



Chapter 5

Preheating and Reheating in the

Simplest Extension to the

Starobinsky Model

In the previous chapters we have discussed what happens in two field models during

inflation and what the predictions are at the end of inflation. In this Chapter we want

to understand the behaviour of the fields and their decay at the end of inflation. After

inflation, as the fields reach the minimum value of their potential, the Universe is in

a state of very low temperature. A successful theory of inflation needs to be able to

then ’reheat’ the Universe to a temperature high enough for the subsequent phases of

the Universe’s evolution to occur. To present the theory of reheating and preheating,

we follow the structure in [38]. Other reviews on the theory of reheating can be found

in [76], [77], [78].

The first models of reheating were proposed by [73] and [74]. Reheating is explained

as particle production caused by the decay of the inflaton fields near the minimum of

100
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their effective potential. The inflaton fields oscillate near the minimum of the poten-

tial, but they experience the damping effect of the Hubble expansion. While the fields

oscillate around the minimum of their potential, they decay into other particles. The

process finishes when most of the energy of the fields has been converted into new par-

ticles. The equilibrium temperature at that stage is called the reheating temperature

Treh.

In this chapter we discuss the two main mechanisms for reheating the Universe

after inflation, namely perturbative reheating and parametric resonance, and apply

them to the extended Starobinsky model.

5.1 Theory of Reheating

5.1.1 Perturbative Reheating

We will briefly discuss the theory of perturbative reheating in the case of single field

inflation. Let us consider the inflaton φ to be a collection of scalar particles with

a finite probability of decaying, which couples to scalars ψ and fermions χ in the

Lagrangian, with interaction defined as :

Lint = −νσφψ2 − hφχ̄χ, (5.1)

where σ has dimensions of mass and ν and h are dimensionless couplings (see [74],

[75]). In the case of the inflaton being much heavier than the particles it decays into,

the decay rates are :

Γφ→ψψ =
ν2σ2

8πmφ

,

Γφ→χχ̄ =
h2mφ

8π

(5.2)
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Until Γ > H the expansion of the Universe will not allow a thermal distribution

to be reached, meaning there is an upper limit on the temperature after inflation.

Solving for the temperature Γtot = Γφ→ψψ + Γφ→χχ̄ = H = (8πρ/3MPL)1/2 with the

assumption that all the energy density ρ of the universe is in the form of relativistic

matter with ρ = g∗π
2T 4/30, where g∗ is the effective number of massless degrees of

freedom, we get the reheating temperature, Treh:

Treh ' 0.2

(
100

g∗

)1/4√
ΓtotMPL. (5.3)

The temperature changes if there are massive matter species, since the relationship

between H and T is modified.

The CMB imposes another constraint, coming from the amplitude of anisotropies,

which are kept low, provided that mφ ∼ 10−6MPL.

To reiterate, after inflation finishes and the slow-roll parameters ε and η are of order

one, the inflaton is at the minimum of its potential and it begins to oscillate around

the minimum, damped by the expansion of the Universe. As it reaches a certain model

dependent threshold, the inflaton decays into particles which behave like the beginning

of the Hot Big Bang model. That is one of the requirements of model building, having

a hot dense universe at the end of inflation; there are two main mechanisms which are

used to describe this effect, namely perturbative reheating and parametric resonance.

5.1.2 Theory of Perturbative Reheating

The inflaton oscillates around the minimum value of its potential and the coherent

oscillations can be considered as a collection of independent scalar particles. If these

scalars can couple to other particles, the inflaton can decay perturbatively into lighter

particles. The decay is described by an effective decay rate Γφ. Reheating - particle
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production - only starts when the decay rate is about the same value as the Hubble

parameter, Γφ ∝ H . The majority of the inflaton energy is in the k = 0 mode. In

models with potentials that have a minimum, the energy oscillates coherently in space.

Consider the massive, chaotic inflation potential:

V (φ) =
1

2
m2
φφ

2 (5.4)

At its minimum of φ = 0 the inflaton will execute oscillations damped due to the

expansion of the Universe:

φ(t) = φ̄(t) sin(mφt), φ̄(t) =
MPL√
3πmφt

. (5.5)

The amplitude of the inflaton oscillations φ̄(t) decreases in time. Inflation ends

when the slow-roll parameter η = 1 and is approximately at φf = MPL/2
√
π. The

initial amplitude for the oscillations of the field φ is slightly smaller than φf [76].

The system behaves classically to first approximation, so the inflaton can be treated

as a classical external force acting on the quantum fields χ and ψ.

As the inflaton changes with time, so do the effective masses of the fields χ and

ψ, which in turn leads to a non-adiabatic excitation of the field fluctuations by para-

metric resonance. Then the picture of the inflaton as a large collection of statistically

independent particle breaks down.

So consider the system where the inflaton only couples to a scalar ψ through an

interaction term :

Lint =
1

2
g2φ2ψ2, (5.6)

where g is a dimensionless coupling. This describes the process of two φ particles

decaying into two ψ particles. We will asume for simplicity that the inflaton potential
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does not depend on the particles it will decay into, so the potential of the system is:

Veff (φ, ψ) = V (φ) +
1

2
g2φ2ψ2 (5.7)

The effective mass of the ψ particle is:

m2
ψ,eff =

∂Veff (φ, ψ)

∂ψ2
= g2φ2(t). (5.8)

Neglecting metric perturbations, the Fourier modes of the ψ field then obey the

following Klein-Gordon equation:

ψ̈k + 3Hψ̇k +

[
k2

a2
+ g2φ2(t)

]
ψk = 0, (5.9)

with mψ,eff playing the role of mass in equation (5.9).

Equation (5.9) resembles a damped harmonic oscillator with a time-dependent

mass. The frequency in that case is :

ωk =
[
k2/a2 + g2φ2(t)

]1/2
(5.10)

and if it only varies slowly with time, then the solution to the equation can be approx-

imated to that in which ωk is constant, namely the solutions ψk(t) do not grow, in a

physical interpretation - there is no production of ψ particles. If the effective mass

mψ,eff changes rapidly in time, the WKB analysis breaks down. To quantitatively

describe the two regimes, we define the dimensionless ratio :

Ra =
ω̇k
ω2
k

(5.11)

When |Ra| << 1, the particle number nk is an adiabatic invariant, i.e. no particles are

produced. When |Ra| >> 1, the particle number increases, in other words we observe

particle production. We define nk, the comoving occupation number of bosons in mode

k as in [76], as the ratio of the total energy and the energy per particle ωk. The total
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energy is the sum of the kinetic energy |Ψ̇k|
2

2
and the potential energy ω2

kΨ
2
k−

ωk
2

, where

the latter term is due to the zero state of the quantum system.

nk =
ωk
2

(
|Ψ̇k|2

ω2
k

+ Ψ2
k

)
− 1

2
, (5.12)

where Ψk = a3/2ψk is the amplitude of the mode.

Looking at the dimensionless ratio Ra, defined in (5.11), and at the definition of

the frequency in (5.10), we can approximate for the regime of long wavelengths with

k/aH << 1 and with the effective mass defined in (5.8) given by the interaction term

introduced in (5.6), the following:

Ra =
ω̇k
ω2
k

=
g2φ(t)φ̇(t)

(k2/a2 + g2φ2(t))32
≈ φ̇

g2φ2
≈ mφ

g2φ
(5.13)

As the inflaton φ oscillates after inflation has ended, Ra diverges at every oscillation,

when φ→ 0; this means there is an explosion of particle production at every oscillation

of the inflaton.

5.2 Reheating in the extension to the Starobinsky

model

We now turn our attention to the extended Starobinsky model. The theory presented

so far relies on a) the theory of General Relativity for the background expansion and

b) on a single field decay. As shown in [79], the decay rates of the scalaron field are

suppressed by a factor of 1/M2
PL. We will find that in the extended Starobinsly model,

the dominant decay channel is the χ decay. Nevertheless, as we will show, the scalaron

affects the background evolution and hence the efficiency of reheating and preheating.

We will discuss the processes in both the Einstein and Jordan frames.
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5.2.1 Perturbative Reheating

We start by recalling the action of the theory in the Jordan frame (3.1):

SJ =

∫
d4x
√
−g 1

2κ

[
R+ µκR2

]
+

∫
d4x
√
−g
[
− 1

2
gµν∇µχ∇νχ−

1

2
m2χ2

]
+ SJ Other,

(5.14)

where SJ Other contains information about the other energy forms in the Universe,

which in the case we consider are matter particles that the field χ can decay into.

We have calculated the equations of motion for this action in (2.3) and we rewrite

them here:

F (R)Rµν −
1

2
f(R)gµν −∇µ∇νF (R) + gµν�F (R) = κTMµν , (5.15)

where F (R) = ∂f(R)/∂R and the trace of the equations of motion in (2.4), which is:

3�F (R) + F (R)R− 2f(R) = κT, (5.16)

where T is the trace of TMµν . If we perform a redefinition, we can rewrite (5.16) as the

equation of a new scalar field φ = F (R) = 1 + 2µR, with a potential defined by:

Vφ =
dV

dφ
=

1

3
(2f(R)− φR) =

R

3
=
φ− 1

6µ
(5.17)

and a mass given by m2
φ = Vφφ = 1/6µ.

The equation of motion for φ becomes:

�φ = Vφ +
κ

3
T. (5.18)

Using the fact that we are working in an FRW space-time, with ds2 = −dt2 +a2(t)dx2

and the identity �F (R) = 1√
−g∂µ(

√
−ggµν∂νF (R)), we find the equation of motion of

φ to be:

φ̈+ 3Hφ̇+ Vφ =
κ

3
(ρχ − 3pχ), (5.19)
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where ρχ = 1
2
χ̇2 + 1

2
m2
χχ

2 and pχ = 1
2
χ̇2− 1

2
m2
χχ

2. The time evolution of H is governed

by:

Ḣ =
R

6
− 2H2 =

φ− 1

12µ
− 2H2,

H2 =
κ

3φ
ρ− f − φR

6φ
− φ̇

φ
H.

(5.20)

The field equation for the field χ is:

χ̈+ 3Hχ̇+m2
χχ = −Γχ̇ (5.21)

and we have denoted the decay rate of χ into radiation by Γ. The equation for radiation

is:

ρ̇r = −4Hρr + Γχ̇2, (5.22)

where ρr is the radiation produced in the decay of χ.

As mentioned earlier, we use the fact that χ dominates the reheating process at

the end of inflation. Therefore there are no decay terms introduced in the evolution

equation for φ. In the Jordan frame φ influences the evolution of the Hubble parameter

H. However, we want that both fields oscillate when they reach their minimum, so we

will only look at cases where the mass ratios of the two fields mφ/mχ are O(1).

To understand the effect of perturbative reheating in our model, we will look at

three quantities:

• The reheating temperature is defined by:

ρr =
π2

30
gdofT

4
reh, (5.23)

where gdof ≈ 100 is the number of relativistic degrees of freedom.

• The duration of the reheating phase ∆N = Ner −Nei.
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• The e-fold averaged equation of state wNav is defined as follows

wNav =
1

Ner −Nei

∫ Ner

Nei

wdN , (5.24)

where the subscripts ‘ei’ denotes the time at the end of inflation and ‘er’ the

time at the end of reheating; w is the total equation of state, defined by

− Ḣ

H2
=

3

2
(1 + w) . (5.25)

It can be shown that [80]:

wNav =
2

3

1

∆N
ln

(
Hei

Her

)
− 1 . (5.26)

To find the predictions we are interested in, we numerically integrate equations

(5.19-5.22). We impose the condition that inflation last longer than 50 e-folds and

integrate from the beginning of inflation until the end of the reheating phase, when

the field χ has completely decayed into radiation such that ρra
4 = constant (5.22).

Numerically, we define the end of reheating when ρr/(ρχ + ρr) > 0.9. The choice of

parameters is motivated by our previous work [1], presented in Chapter 3, chosen such

that the inflationary predictions in our model are in agreement with the Planck 2015

data [20].

The numerical results for three choices of parameters are compiled in Table 5.1.

As it can be seen, increasing mφ relative to mχ, which makes the R2 corrections

become less important, leads to a slight increase in the reheating temperature and the

duration of reheating. On the other hand, decreasing mφ and therefore increasing the

importance of the R2 correction, decreases the reheating temperature and shortens

the reheating period. This can be understood physically by noting that, for mφ < mχ,

χ will approach its minimum faster than φ. As a result, any radiation produced
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mφ/mχ mχ(MPL) Tre(GeV ) wNav ∆N
1.5 5.89 · 10−6 2.11 · 1013 0.0416 5.17
1 8.51 · 10−6 8.72 · 1012 0.0066 4.95
0.9 9.33 · 10−6 5.47 · 1012 0.0998 4.86

Table 5.1: Reheating predictions for allowed values for mφ and mχ. Here we set
Γ = 10−3mχ. ∆N = Ner − Nei is the duration of the reheating phase. The end of
reheating is defined to be the time when ρr/(ρχ + ρr) > 0.9.

by the decay of χ would be diluted away by the expansion of the universe as it is

affected by the φ field. We illustrate the evolution of the fields in Fig. 5.1, where we

choose identical initial conditions for three simulations with different mass ratios, i.e.,

mφ < mχ, mφ = mχ and mφ > mχ. In our following analysis we fix the value of the

decay rate Γ = 10−3mχ.

Figure 5.1: Inflationary trajectories for different mass ratios with identical initial con-
ditions. On the top left, we show the case for mχ > mφ, on the top right mχ = mφ

and on the bottom mχ < mφ.
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In summary, we have found that the more important the R2 corrections are at the

end of inflation relative to the contribution from the χ-field, the lower the reheating

temperature and the shorter the reheating period.

5.2.2 Parametric Resonance

We turn now our attention to preheating in the extended Starobinsky model. We

begin our analysis in the Jordan frame.

The view from the Jordan frame

We add an additional scalar field σ, which interacts directly with the χ field via a

four-leg interaction term, so that the full action is given by

S =
1

2κ

∫
d4x
√
−g
[
R + µR2

]
+

∫
d4x
√
−g ·

·
[
− 1

2
gµν∂µχ∂νχ−

1

2
gµν∂µσ∂νσ −

1

2
m2
χχ

2 − 1

2
m2
σσ

2 − 1

2
h2χ2σ2

]
.

(5.27)

The σ field is neglected during inflation, so we set its vacuum expectation value

to be zero. The evolution of perturbations around the vacuum expectation value with

momentum k obeys

σ̈k + 3Hσ̇k +

(
k2

a2
+m2

σ + h2χ2

)
σk = 0 . (5.28)

As is well known, in the standard Einstein gravity case, for certain values of k, para-

metric resonance can occur [81], resulting in an explosive growth of the particle number

density nk, given by

nk =
1

2ωk

(
|σ̇k|2 + ω2

k|σk|2
)
− 1

2
, (5.29)
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where ω2
k = (k/a)2 +m2

σ + h2χ2.1 We will now investigate whether this effect happens

in the extended Starobinsky model.

We numerically integrate the equations for two cases with different mass ratios

mφ/mχ, whilst fixing mχ = 1.3 ·10−6MPL, mσ = 10−2mχ, h = 5 ·10−4 and k = 5 ·10−7.

In the first case, we choose mφ = 1.5mχ. The results are shown in the left panel of

Fig. 5.2. Here, the φ field oscillates around φmin = 1 MPL, but the amplitude is rather

small and therefore the modifications to General Relativity due to the R2 corrections

are not significant. The field χ oscillates around 0, but with a much larger amplitude.

As it can be seen, the particle number density nk of particles with momentum k, grows

rapidly. Because φ ≈ 1, the dynamics of the field χ is very close to that of General

Relativity. There are only minor deviations, due to the small oscillations of φ around

1 MPl, affecting slightly the evolution of the expansion rate H.

In the second case, we choose mφ = mχ. The results are shown in the right panel of

Figure 5.2. In this case, the field φ oscillates around φmin = 1 MPl with a much larger

amplitude, whereas the χ field oscillates around 0 with a smaller amplitude. As a

consequence, the modifications to General Relativity are more important in this case,

with the expansion rate H behaving in an unconventional way and showing oscillatory

behaviour, due to the oscillations of the φ field, see eq. (5.20). As a result, the number

density nk in this second case does not exhibit much growth.

In summary, we have found that preheating is much less efficient if the R2 cor-

rections are large at the end of inflation. We attribute this to the impact of these

corrections to the evolution of the expansion rate H, which in turn affects the evolu-

tion of χ.

1The equation above is justified by nk = ρk/ωk, where ωk is the energy of the harmonic oscillator
with mode k and ρk =

(
|σ̇k|2 + ω2

k|σk|2
)
/2− 1

2ωk is the energy density with subtracted ground state
energy ωk/2.
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Figure 5.2: Preheating for mass ratio mφ/mχ = 1.5 (left) and mφ/mχ = 1.0 (right).
The upper panels show the evolution of φ and χ at the end of inflation, the middle
panels show the evolution of the expansion rate H and the lower panels show the
particle number nk, defined in eq. (5.29). We have chosen a value of k where we are
in a band of instability. As it can be seen, the mass ratio affects the evolution of nk
significantly.

The view from the Einstein frame

The same question can be looked at in the Einstein frame, where the contributions

from corrections to Einstein gravity affect the system through the altered kinetics

of the fields. Whereas in the Jordan frame the field φ has to be displaced from its

minimum value φ = 1MPL for the Hubble parameter to be modified, as can be seen

from eq. (5.20), in the Einstein frame that is no longer the case.

The conformal transformation to the Einstein frame is presented in Section 2.3

by considering g̃µν = e2ψ/
√

6gµν , with ψ =
√

3
2κ

ln (1 + 2µR) defined in (3.19). Then,

choosing

gµν = diag
(
−1, a2(t), a2(t), a2(t)

)
(5.30)

g̃µν = diag
(
−1, a2

E(tE), a2
E(tE), a2

E(tE)
)
, (5.31)

with dtE = eψ/
√

6dt, the expansion rate in the Jordan frame H = ȧ/a is related to the
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expansion rate in the Einstein frame HE, by

HE ≡
1

aE

daE
dtE

= e−ψ/
√

6

(
H +

1√
6
ψ̇

)
, (5.32)

where the dot represents a derivative with respect to t. The equations of motion for

the fields are :

ψ′′ + 3HEψ
′ + Vψ = − 1√

6
e−2ψ/

√
6χ′2 , (5.33)

χ′′ + (3HE −
2√
6
ψ′)χ′ + e2ψ/

√
6Vχ = 0 , (5.34)

where the prime denotes the derivative with respect to tE, Vψ = ∂V/∂ψ and Vχ =

∂V/∂χ. The Friedmann equation has the standard form in the Einstein frame. It is

consistent to neglect the expansion of space (i.e. to set HE = 0) and have both fields

evolving. In this case the evolution of both fields are coupled via the kinetic terms. In

addition, the masses of the χ– and σ–fields become ψ–dependent as well as the coupling

h, which transforms as h→ h̃ = he−ψ/
√

6 and similarly for mχ and mσ. The evolution

of the ψ–field, which encodes the modifications of gravity in the Einstein frame, affects

the evolution of the χ–field in two ways. Firstly, χ acts as a source for the oscillations

of the ψ–field. Secondly, an oscillatory ψ–field results in oscillations of the effective

masses for χ and σ as well we as the coupling h. This is a very different situation

from the one studied in [82], where the masses and couplings were not functions of ψ.

In our model, if the amplitude of ψ is not negligible immediately after inflation, the

equation for the perturbations of σ can no longer be written in Mathieu or Whittaker

form and parametric resonance is mitigated.



114 CHAPTER 5. PREHEATING AND REHEATING

5.3 Conclusion on Preheating Reheating

In this chapter we studied the periods of reheating and preheating in a simple extension

of the Starobinsky inflationary model. The choices of parameters in this chapter are

such that the predictions for the primordial power spectrum are consistent with the

Planck 2015 data, as presented in Chapter 3. We considered the two most efficient ways

of reheating in this model, namely perturbative reheating and parametric resonance,

in order to better understand the implications to later stages in the evolution of the

Universe of having matter fields present during inflation.

In the case of reheating, the mass mφ of the scalar degree of freedom associated

with the R2 correction has an effect on the reheating temperature and the duration of

reheating. As the corrections to Einstein gravity are made less important by increasing

mφ, the reheating temperature increases and the duration of reheating is longer. The

influence is small for the parameter values we have considered, however it is of impor-

tance when comparing the theory to data. The change in the duration of reheating will

affect the relation between the e-fold number and the wavenumber k of the physical

scales, as can be seen from (1.68). The contribution is small, but not negligible.

In the case of preheating, we find that larger corrections to Einstein gravity at the

end of inflation, result in less efficient particle production. The corrections affect the

evolution of the expansion rate in the Jordan frame, which in turn affects the dynamics

of the χ field. We also considered the situation from the perspective of the Einstein

frame; the ψ-field, which encodes the corrections to Einstein gravity, couples in the

Einstein frame to the χ and σ-fields. Specifically, the masses and couplings of χ and σ

become ψ-dependent and the oscillating behaviour of ψ influences particle production.

We have shown that modifications of gravity have an effect in the reheating phase
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of the evolution of the Universe and these modifications due to corrections to gravity

have to be taken properly into account when comparing the theory to data.



Chapter 6

Conclusions

The theory of inflation offers an elegant solution to some questions about observa-

tional facts the Universe. There are numerous models of inflation, as we mention in

Chapter 1. In recent years, the accuracy of observational measurements has improved

and a large number of models have been ruled out by observations. The Starobinsky

model is one of the favoured models by the latest Planck results, predicting a nearly

flat power spectrum and a small tensor-to-scalar ratio. We were interested in inves-

tigating the robustness of these results and how the predictions would change if we

allow the dynamics of inflation to be co-driven by an additional scalar field.

We outlined the theory for General Relativity and Inflation in Chapter 1. What

followed in Chapter 2 was an analysis of the Starobinsky model, where an R2 term is

added to the Ricci scalar in the Einstein-Hilbert action. We showed that the modifica-

tion to General Relativity can be redefined with the help of a conformal transformation

and the action was shown to take the form of the standard Einstein-Hilbert action with

an additional scalar field called the scalaron. We showed that for inflation lasting ∼ 50

e-folds, the predictions for the value of the spectral index in the Starobinsky model,

116
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are ∼ 0.96, which is in the range favoured by the 2015 observational results from the

Planck collaboration.

In Chapter 3 we analysed what we refer to as the simplest extension to the Starobin-

sky model, a model which adds a µR2 correction to the Einstein-Hilbert action and

an additional scalar field, we denote by χ. To simplify the calculations we performed

a conformal transformation and field redefinition to go from the Jordan frame to the

Einstein frame, where the action takes the form of standard General Relativity with

two scalar fields, one describing the contributions of the µR2 correction, which we

called ψ, and the other, the χ field, which acquires a non-standard kinetic term in this

frame. We found that the predictions for the spectral index, amplitude of the power

spectrum and tensor-to-scalar ratio in this model do not vary much under changes to

conditions for the initial starting values of the fields. When we varied the masses of

the fields, mχ and mψ, we observed a more significant variation in predictions. The

strongest constraint on the model comes from the value of the amplitude of the power

spectrum. We have shown that for any given choice of mass ratio Rm = mψ/mχ con-

sidered, we can find a mass range for mχ, such that the predictions for As and ns are

within the Planck allowed range. The tensor-to-scalar ratio is predicted to be small,

for the masses considered.

In Chapter 4 we investigated the running of the spectral index αs = dns
d ln k

and the

running of the running βs = dαs
d ln k

in a number of inflationary models. We did this

with the help of two different numerical fits from the Scipy library on the evaluation

of the power spectrum to second order in slow-roll defined in Chapter 3. We started

by analysing the extended Starobinsky model, which was the focus of Chapter 3. We

found that there are choices of masses of the fields ψ and χ, that predict a positive
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running of the running βs for a negative running of the spectral index αs , as can be

seen in Figure 4.3, whilst also predicting a spectral index and amplitude of the power

spectrum in agreement with the Planck 2015 results. We proceeded to investigate the

effects of altering the action by changing the value of the parameter b(ψ). We found

that reducing the parameter by a factor of 10 resulted in negative βs and positive αs;

when we increased b(ψ) by a factor of 2, we found negative values for both αs and

βs. In all cases considered the absolute value of the running of the spectral index

is of higher order than the absolute value of the running of the running. We also

included in our analysis a model motivated by supergravity and models which have

two scalar fields, ψ and χ, where the latter has a non-standard kinetic term, with

potential 1
2
m2
ψ + 1

2
m2
χ. Our results show that αs and βs are both negative in these

models and that O|αs| > O|βs|. We have demonstrated that the Starobinsky model

with a scalar field and its modifications can predict positive values for either αs or

βs whilst predicting values for ns and As which are in agreement with Planck 2015

results. The analysis on the Planck CMB data [59] seems to favour models which

predict positive βs at the 2σ confidence level and we have shown that the extended

Starobinsky model can give such predictions.

In Chapter 5 we studied the end of inflation in the extended Starobinsky theory.

We were interested in particular in reheating and preheating. We found that the

scalaron mass inhibits the rise in temperature caused by the additional inflationary

field’s decay. The duration of reheating is not negligible, which is an important result

for comparing theoretical predictions to data. The scalaron was also shown to affect

the efficiency of particle production at the end of perturbative reheating.

Following the results from Chapter 4, we would be interested in developing the first
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order approximation in the analytical calculation to include higher order corrections to

the power spectrum and understand how the predictions for the running of the spectral

index and the running of the running would change. Current observational results are

approaching levels of accuracy which need to be met from a theoretical model building

perspective as well. It would also be of interest to explore further modifications of the

b(ψ) parameter in the Starobinsky model with a scalar field, to see if one can match

the numerical predictions for αs and βs from Planck.

The original Starobinsky model predictions are in good agreement with the obser-

vational CMB results form Planck 2015. The work presented in this thesis shows that

the predictions of the Starobinsky model with a scalar field present during inflation are

in a favoured position with respect to observational data. The model proves to be very

robust, even under the addition of a new matter species. What we have shown is also

the relevance of higher order corrections to slow-roll and to the structure of the power

spectrum in this model. Lastly, we have discussed how the scalaron affects the period

immediately after inflation. We hope that this work will be relevant to inflationary

model building and possibly embedding the model into a more fundamental theory.



Appendix A

Conformal Transformations

We define a conformal transformation as rescaling of the metric tensor at each point

in the space-time:

g̃µν = Ω2gµν →
√
−g̃ = Ω4

√
−g, (A.1)

where Ω = Ω(x) is a nonvanishing regular function. These transformations change the

the norm of space-like and time-like vectors, whilst leaving light cones unchanged and

not disturbing the causal structure of the space. Using the definition in (1.3) we see

that the Christoffel coefficients change under a conformal transformations as:

Γ̃αβγ = Γαβγ + Ω−1
(
δαβ∇γΩ + δαγ∇βΩ− gβγ∇αΩ

)
. (A.2)

We can calculate the change in the Ricci tensor using its definition in (1.4) on a

space of dimension n = 4:

R̃αβ =Rαβ − 2∇α∇β(ln Ω)− gαβgδγ∇δ∇γ(ln Ω) + 2∇α(ln Ω)∇β(ln Ω)−

− 2gαβg
δγ∇δ(ln Ω)∇γ(ln Ω).

(A.3)
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The transformed Ricci scalar is:

R̃ = g̃αβR̃αβ

= Ω−2

[
R− 6�(ln Ω)− 6

gαβ∇αΩ∇βΩ

Ω2

]
= Ω−2

[
R− 6�Ω

Ω

] (A.4)

R = Ω2R̃ + 6g̃µνΩ(∇̃µ∇̃νΩ)− 12g̃µν(∇̃µΩ)(∇̃νΩ). (A.5)

The conformal transformation will affect not only the gravitational part of the

action, but also any other scalars that exist in the theory. For example, let us consider

a scalar field χ of mass mχ with action:

Sχ =

∫
d4x
√
−g
[
− 1

2
gµν∇µχ∇νχ−

1

2
m2
χχ

2

]
. (A.6)

Under the conformal transformation in (A.1) it becomes:

Sχ =

∫
d4x
√
−g̃
[
− 1

2
g̃µνΩ−2(∇̃µχ)(∇̃νχ)− 1

2
m2
χΩ−4χ2

]
. (A.7)
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